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Preface

This book is the second and substantially enlarged edition of the Springer
Lecture Notes No. 88: Field Matter Interactions in Thermoelastic Solids,
which appeared in 1978 and is out of print for about two decades. Since then,
the basic issues addressed by the authors in that book have little changed:
Because of the nonunique definition of the electromagnetic field quantities
in ponderable bodies, constitutive postulates, e.g., for the stress tensor and
other field quantities, must adequately be postulated, if two theories aiming to
describe the same physical phenomenon yield for the same physical problem
the same values of the observables. In the Lecture Notes, equivalence relations
were established, which guarantee such equivalences for thermoelastic bodies,
but no applications of the complex theory were given. Nevertheless, there
was a continuous demand for the book, which was fulfilled by producing
photocopies.

In the meantime, however, the authors continued to work on continuum
problems of electromagneto-mechanical interactions, in which the theoretical
models or simplifications were applied to practical problems. A.A.F. Van de
Ven (AV) worked with students and postdoctoral fellows for more than two
decades on problems of magnetoelastic instabilities, i.e., buckling of ferro-
magnetic and superconducting beams, plates and more complex structures,
and on magnetoelastic vibrations of the same type of structures. In the latter
problems, it is specifically the eigenfrequencies that need to be determined,
inclusive of their dependence on the applied magnetic field or electric current.
K. Hutter (KH) who was not involved with electrodynamics for 10 years, took
up electromagnetic continua again about 15 years ago and concentrated on
applications in fluids, as well as electrorheology. In this field, equivalence of
formulations is equally a question of electromagneto-mechanical interactions.
Here, the central theme is the postulation of adequate constitutive relations,
which achieve the electrorheological effect, namely the transition from low
viscous fluid behaviour to very high viscous response when the electric field
is switched on. The application to plane Poiseuille flow of a theory was de-
veloped in a Ph.D. dissertation by W. Eckart, to 2D pipe flow with various
arrangements of electrodes along the walls of the bottom and the lid of the
2D channel, which was made by Ana Ursescu (AU). Ursescu is joining us as
the third author of this book.
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This then outlines the content of the present book. In its first part it
contains the material of the first edition and is due to AV and KH. Only
small changes have been made to this text. Few adjustments were necessary
because of the additions that were made. A few supplementing references
are given to account for the recent literature. In the applications, the new
chapter on Magnetoelastic (In)stability and Vibrations is due to AV and the
chapter on Electro-rheological Fluids has been drafted by AU along with KH.
The entire text has been screened for consistency and homogenization by AV
and KH.

The increasing interest in electromagnetic problems in the last decade of
the last century manifested itself in the appearance of a new journal in 1990,
International Journal of Applied Electromagnetics in Materials (IJAEM),
founded by K. Miya from Tokyo, and Richard K.T. Hsieh from Stockholm.
The first plans for this new journal were made in 1986, during a IUTAM-
Symposium in Tokyo alongwith Miya, Hsieh, Gerard Maugin, Francis Moon,
Junji Tani, and one of the authors, AV. The birth of the new journal was
accompanied by a series of ISEM symposia (International Symposia on Ap-
plied Electromagnetics in Materials, under the chairmanship of Miya) from
1988 until the present time. The 12th ISEM took place in 2005 in Salzburg,
Austria.

One proviso to the style of the book should be mentioned. Reading the
text is not easy. When developing results we are brief and we often outline the
steps as to how a result is reached but do not present any details. Thus, the
reader is expected to perform the in-between steps, or perhaps even consult
the literature. Such an approach is almost unavoidable in electromagneto-
mechanical interactions. The computations that are in principle not difficult,
but generally involved and long, cannot be presented in detail as it would
make the book twice as voluminous, and most likely rather boring over long
stretches. We regard this as an acceptable compromise.

We wish to thank our sponsors and many of our friends in this field
who have directly or indirectly contributed to this project. AV thanks the
Technische Universiteit Eindhoven for their general support to the research
on electromagnetoelastic interactions over many years (from 1975 onwards)
and he especially thanks, many students for their contributions in particular
M. Couwenberg, P. Rongen, P. Smits, and P. van Lieshout, who essentially
supported the research on magnetoelastic instabilities. Moreover, he highly
appreciates the cooperation and the many fruitful discussions in this area
with A.O. J. Tani, Y. Shindo, K. Miya, Shu-Ang Zhou, B. Marusewski, and
J.P. Nowacki. KH thanks the Darmstadt University of Technology and the
Deutsche Forschungsgemeinschaft (German Research Foundation) for nearly
20 years of support. He also acknowledges the support of W. Eckart and
AU in particular for their Ph.D. and postdoctoral fellowships in which the
Electrorheological work presented in this book was created. He also thanks
Professor K.R. Rajagopal and M. Růžička for their interest in our work on
electrorheology.
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We also thank E. Vasilieva and A. Maurer for compiling the text of the
first edition and helping with the editing of the entire manuscript. Finally
our thanks go to Dr. Ch. Caron from the Springer Verlag for his interest in
this book and his willingness to publish it.

Darmstadt, Eindhoven K. Hutter
Spring 2006 A. Ursescu

A.A.F. Van de Ven



Preface to the First Edition

The last two decades have witnessed a giant impetus in the formulation of
electrodynamics of moving media, commencing with the development of the
most simple static theory of dielectrics at large elastic deformations, proceed-
ing further to more and more complex interaction models of polarizable and
magnetizable bodies of such complexity as to include magnetic dissipation,
spin-spin interaction and so on and, finally, reaching such magistral synthesis
as to embrace a great variety of physical effects in a relativistically correct
formulation. Unfortunately, the literature being so immense and the methods
of approach being so diverse, the newcomer to the subject, who may initially
be fascinated by the beauty, breadth and elegance of the formulation may
soon be discouraged by his inability to identify two theories as the same,
because they look entirely different in their formulation, but are suggested
to be the same through the description of the physical situations they apply
to. With this tractate we aim to provide the reader with the basic concepts
of such a comparison. Our intention is a limited one, as we do not treat the
most general theory possible, but restrict ourselves to non-relativistic formu-
lations and to theories, which may be termed deformable, polarizable and
magnetizable thermoelastic solids. Our question throughout this monograph
is basically; what are the existing theories of field-matter interactions; are
these theories equivalent, and if so; what are the conditions for this equiva-
lence? We are not the first ones to be concerned with such fundamental ideas.
Indeed, it was W.F. Brown, who raised the question of non-uniqueness of the
formulation of quasistatic theories of magnetoelastic interactions, and within
the complexity of his theory, he could also resolve it. Penfield and Haus,
on the other hand, were fundamentally concerned with the question how elec-
tromagnetic body force had to be properly selected. This led them to collect
their findings and to compare the various theories in an excellent monograph,
in which they rightly state that equivalence of different formulations of elec-
trodynamics of deformable continua cannot be established without resort to
the constitutive theory, but at last, they dismissed the proper answer, as their
treatment is incomplete in this regard. For this reason the entire matter was
re-investigated in the doctoral dissertation of one of us (K. Hutter), but
this work was soon found unsatisfactory and incomplete in certain points,
although the basic structure of the equivalence proof as given in Chap. 3 of
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this tractate, was essentially already outlined there. Moreover, Hutter was
still not able to compare certain magnetoelastic interaction theories so that
what he attempted remained a torso anyhow.

The difficulties were overcome by Van de Ven in a series of letters,
commencing in fall of 1975, in which we discussed various subtleties of mag-
netoelastic interactions that had evolved from each of our own work. The
correspondence was so fruitful that we soon decided to summarize our efforts
in a joint publication. It became this monograph, although this was not our
initial intention. Yet, after we realized that a proper treatment required a
presentation at considerable length, we decided to be a little broader than
is possible in a research report and to write a monograph, which would be
suitable at least as a basis for an advanced course in continuum mechanics
and electrodynamics (graduate level in the US). We believe that with this
text this goal has been achieved. We must at the same time, however, warn
the reader not to take this tractate as a basis to learn continuum mechanics
and/or electrodynamics from the start. The fundamentals of these subjects
are assumed to be known.

Our acknowledgements must start with mentioning Profs. J.B. Alblas

(Technological University Eindhoven) and Y.H. Pao (Cornell University).
They were the ones who initiated our interest in the subject of magnetoelas-
tic interactions. While performing the research for this booklet and during our
preparation of the various draughts we were supported by our institutions,
the Federal Institute of Technology, Zürich and the Technological Univer-
sity, Eindhoven, and were, furthermore, encouraged by Prof. J.B. Alblas,
Eindhoven, Prof. D. Vischer, Zürich, Prof. I. Müller, Paderborn, Prof.
H. Parkus, Vienna, Dr. Ph. Boulanger, Brussels and Dr. A. Prechtl,
Vienna. The support and criticism provided by them, directly or indirectly,
were extremely helpful. We are grateful to these people not only for their
keen insight and willingness to discuss the issues with us, but also for their
encouragement in general.

During the initial stage and again towards the end of the write-up of
the final draught of this monograph K. Hutter was financially supported
in parts by the Technological University, Eindhoven, to spend a total of a
two months period (September 1976 and April 1978) at its Mathematics
Department. Without the hospitality and the keen friendship of the faculty
and staff members of this department and especially of Prof. J.B. Alblas and
his group, the work compiled in these notes would barely have been finished
so timely. The burden of typing the manuscript was taken by Mrs. Wolfs-

Van den Hurk. It was her duty to transform our hand-written draughts into
miraculously looking typed sheets of over 200 pages. Her effort, of course, is
gratefully acknowledged.

Eindhoven and Zürich K. Hutter
in the summer of 1978 A.A.F. Van de Ven
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1 General Introduction

With the boundaries of physical science expanding rapidly, present day engi-
neers must necessarily assimilate information and knowledge of subjects that
continue to become more and more complex. In the study of the nature and
mechanical behavior of engineering materials, however, their knowledge sel-
dom progresses beyond the level of elementary theory of elasticity and viscous
fluids and the basic concepts of the theory of plasticity and viscoelasticity.
More esoteric theories of material behavior and the interaction with vari-
ous fields are generally left out of consideration or soon abolished as being
mathematically intractable or economically unjustifiable.

This book is an account on one of the above mentioned more esoteric
theories. What we have in mind is the response of deformable bodies (solids or
fluids) to electromagnetic fields. Indeed, the interaction of electromagnetism
with thermoelastic fields is not only a challenging scientific problem, but
it is increasingly attracting also engineers in the materials sciences and in
nanotechnology from a fundamental and in the nuclear power and electronic
industry from a purely applied point of view.

The response of deformable bodies to electromagnetic fields is difficult to
describe for several reasons. First, it is fundamentally nontrivial because the
formulation of electrodynamics in ponderable bodies is nonunique. In other
words, one generally introduces four different electromagnetic vector fields,
e.g. the electric field strength E and the magnetic induction B plus two other
fields. Some authors work with electric displacement D and magnetic field
strength H, others use polarization P and magnetization M instead, but
there are several variants how to introduce the latter two quantities. This as
such would not make yet electrodynamics of deformable media fundamentally
difficult, as only unique transformations from the variables (E,D,B,H)
to (P ,M) would be needed. The difficulty arises with the definitions of
the electromagnetic stress tensor and specific body force in the momentum
equation (and in theories with polar structure corresponding definitions of
the electromagnetic couple stress and specific body couple). Consequently,
for two scientists using different electromagnetic variables and seemingly
unmatchable expressions for stress and specific body force, but aiming to
describe the same electromagneto-mechanical phenomenon, there arises the
question, whether the two formulations can ever yield the same results for the

K. Hutter et al.: Electromagnetic Field Matter Interaction in Thermoelastic Solids and
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2 1 General Introduction

measurable quantities in the mathematical reproduction of the same physi-
cal situation. In Part I of this book we shall give an answer to this difficult
problem. The form of the answer will demonstrate that thermodynamic ar-
guments involving the Second Law of Thermodynamics are needed to resolve
this fundamental question.

The analysis presented in Part I will be performed on the level of non-
relativistic approximation. This is a matter of judicious compromise, as our
interest is in technical applications for which mechanical equations are classi-
cal and Galilean. Alternatively, the Maxwell equations are Lorentz invariant.
To merge the two, an approximation will be introduced that is, in electro-
magnetic variables and combinations thereof, accurate up to terms of order
O(v2/c2), which will be omitted. Here, v denotes the modulus of the material
velocity and c is the speed of light.

Second, the description of deformable bodies to electromagnetic fields
is also difficult, because the formulation of rather simple initial boundary
value problems leads, in general, to rather complex solution procedures, i.e.,
the equations are generally structurally coupled and complex, i.e. nonlinear.
When deformations of solid bodies are concerned, then it is often so that
the deformations from the initial to the final positions are small. Under such
circumstances one may compose the total response to an external magnetic
field of an intermediate configuration that is known plus a correction from
it that is small, so that linearization of the perturbed equations is justified.
In many situations it is justified to identify the intermediate configuration
with the initial configuration, also called rigid-body state. The electromagnetic
fields as a response to the external driving fields are then in a first step
calculated for the rigid-body state and then corrected for the deformation. In
these perturbed equations the perturbed electromagnetic fields are coupled
with the mechanical equations for the displacement field. They are nonlinear
but on the prerequisite that the displacements and the corrections of the
electromagnetic fields due to these displacements are equally small, these
equations may be linearized. This makes the analysis much simpler, even
though for many problems analytical solutions still cannot be found. We
shall demonstrate in the last chapter of Part I how this decomposition can
systematically be implemented.

Part II of this book is devoted to two different, but technically impor-
tant engineering applications. Here, the complexity of the problem formu-
lation may be simply due to the surprising subleties of the electromagneto-
mechanical interactions that require adjustment of the novel reader’s attitude
to the delicacy of the results. We will shortly give an example.

We shall treat two different examples. The first concerns the reaction of
beams or plates to an external magnetic field. Early experiments, performed
in the 60s of the last century and theories describing the buckling of flat and
wide cantilever beams did not yield the same functional relation for the buck-
ling value of the external magnetic field B0. The reason was found more than
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20 years later. On the basis that the ratio “beam thickness to beam width”,
h/w � 1, was small, it was concluded that the finiteness of the width of
the beam could be ignored and w → ∞ or h/w = 0 could be assumed. This
is too simple, because for the perturbed magnetic potential, satisfying a 2D
Helmholtz equation and not a 2D Laplace equation, it is not allowed to
approximate the narrow rectangular cross-section by an infinitely wide one
(no matter how small the ratio h/w becomes). Once this was recognized and
the perturbed magnetic fields were calculated on the basis of the correct
geometry of the beam, experimental and theoretical analytic results could be
brought into coincidence. An analytical solution to this problem was found
for a Bernoulli beam with elliptical cross-section and arbitrary aspect ra-
tio. Rectangular cross-sections face difficulties because of singularities that
develop in corners. One procedure in the determination of the magnetoelastic
critical magnetic field is to start from the homogeneous set of linear equa-
tions with homogeneous boundary conditions for the perturbed fields and to
determine the smallest value for the magnetic field in the rigid-body state
that allows for a nontrivial solution. This is a linear eigenvalue problem and
the parameter characterizing this critical magnetic field is the eigenvalue of
this linear boundary value problem with nontrivial eigenvector. For ferromag-
netic materials this linear problem is replaced by a variational formulation
with higher-order accuracy. This variational formulation is applied to the
magnetoelastic response of two parallel circular rods, to a superconducting
torus and sets of two concentric tori and a pair of tori with circular cross
sections.

The solution of the linear elliptic partial differential equations requires
use of conformal mapping techniques and complex variable theory, which,
in these times of immediate application of electronic computation are often
considered to be difficult, even though they belong to the classical syllabus of
the education in theoretical engineering, physics and applied mathematics.

Another approximation that has been popular in determining the crit-
ical current in superconducting structures is the application of the law of
Biot–Savard. This law provides a formula for the electromagnetic force in
an infinitely thin wire due to a second infinitely thin wire, both carrying an
electric current. For parallel wires, finite and infinite helical wires the Law of
Biot–Savard allows determination of the bucklung current. Application of
the variational method or a combined method using the variational formu-
lation and the law of Biot–Savard shows that the Biot–Savard approach
can only yield reliable results, provided the distance of the wires or of con-
secutive tori is large as compared to the diameter of the wire. Interesting
and somewhat counterintuitive is the result that the buckling current of an
infinitely long helical wire is never approached by the buckling current of a
helical wire with n → ∞ coils.

The second example of electro-mechanical interactions is provided in the
last chapter where electrorheological fluids are treated. These are actually
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mixtures of an electrically neutral fluid with suspended polarizable particles.
Phenomenologically, when the electrical field is switched off the particles,
which are of subgrid scale, are randomly distributed and the mixture, treated
as a fluid, appears to have small viscosity. Alternatively, when the electric
field is switched on, the polarizable particles arrange in columns more or less
perpendicularly to the flow and so stiffen the motion against shearing. This
becomes manifest as a substantial increase in viscosity almost to the extent
that the mixture now behaves much like a solid.

The theoretical description of electrorheological fluids as we employ it
is based on a single constituent continuum concept and postulations of the
electromagnetic stress tensor, specific body force, energy supply and energy
flux. These are derived from the Maxwell equations in the Maxwell–
Minkowski formulation by deriving the electromagnetic balance laws of
momentum and energy. What emerges are e.g. two forms of electromagnetic
stresses and corresponding specific electromagnetic forces. By a scaling analy-
sis these are reduced to their nonrelativistic counterparts. The constitutive
theory is more complex than the corresponding theory in Part I, because
the mechanical stress tensor depends not only on the density, temperature,
electric field but also on the rate of strain tensors.

The difficulty in arriving at a theoretical formulation for electrorheological
fluids is in a proper three-dimensional formulation of the constitutive relation
for the “mechanical” stress tensor and how it matches experiments, mostly in
two-dimensional Poiseuille-type flows such that the Second Law of Ther-
modynamics is satisfied. This leads to Bingham-type and power-law type
stress-stretching relations and extensions thereof in which the dependence on
the electric field is particularly subtle.

The optimal model is subsequently applied to two-dimensional channel
flows of which the walls are alternatively covered by infinitely thin charged
electrodes or left uncovered. The electric field that would be uniform, if elec-
trodes were infinitely long, will now be inhomogeneous. In particular at elec-
trode ends square root singularities develop, and if electrodes are not long
in comparison to the gap width, the local electric fields will mutually inter-
act. Of interest is, how these inhomogeneities affect the discharge through
the two-dimensional channel or how the pressure drop between two positions
along the channel axis will depend on the relative electrode lengths and their
gap widths. Additional questions are, how finitely thick electrodes will af-
fect the pressure drop, if they confine or enlarge the gap width or yield a
converging or diverging channel stretch. Such questions are also asked when
electrodes are corrugated or beamed and thus destroy the nearly viscometric
flow of the fluid.

This is roughly speaking the content of the book.
After the appearance of the first edition of this book, the interest in

electromagnetomechanical problems increased strongly. This was manifested
for instance by the start of a new journal International Journal of Applied
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Electromagnetics in Materials (IJAEM) in 1990, edited by K. Miya and
R.K.T. Hsieh. In 1995, the journal changed its name slightly in Interna-
tional Journal of Applied Electromagnetics and Mechanics with K. Miya as
editor-in-chief. Parallel with this journal a series of symposia called ISEM
(International Symposium on Applied Electromagnetics in Materials) found
place every 2 years, the first being held in 1988 in Tokyo and the up to now
last one in 2005 in Salzburg, Austria. The proceedings of these symposia
appeared, besides in [189] and [190], as special volumes of IJAEM. For in-
stance, the proceedings of the 2003-symposium in Versailles, France, can be
found as a special issue in [191]. During this period, also, several new books
were published, of which we here only mention the works of Eringen and
Maugin [70, 71], Maugin et al. [137], Tiersten [238], and Shu-Ang Zhou

[215, 216].
Besides the two fields of applications dealt with in the Chaps. 7 and 8

of this book, a lot of other fields exists in which electromagneto-mechanical
models are applied. Far from aiming to be general, we mention here as ex-
amples the following three subjects:

Piezoelectric Devices

This subject is so diverse and knows so many different applications, such as
non-destructive testing by means of sonar, ignition lighters, ultrasonic trans-
ducers in remote controls, transducers in ink-jet printers and many more,
that a complete review is far beyond the scope of this book. Also, the amount
of literature appearing yearly on this subject is immense. Therefore, we re-
strict ourselves here to mentioning only the classical treatments by Tiersten

[235], Ikeda [101] and Taylor [232], and two, more recent ones, by Ding

and Chen [58] on 3D problems piezoelasticity, and by Qin [193] on frac-
ture in piezoelectric materials. Finally, Kamlah [106] gives an account on
ferroelectric and ferroelastic piezoceramics.

Cracks in Magnetoelastic or Piezoelectric Plates

The investigation of crack propagation and the (non-destructive) detecting
of cracks in magnetoelastic or piezoelectric materials is an important subject
in fracture mechanics. One of the authors having a great impetus in this
respect is certainly Y. Sindo, who published since 1981, [211], up to now on
cracks in magnetoelastic or piezoelectric layers and plates; see e.g. [212] and
[213] and, of more recent date, [125] and [214]. Some very recent papers are
by Hasanyan and Piliposian [87], Y. and I. Podil’chuck [183], Li and
Yang [119], and Wang and Jiang [262].

Waves in Electromagneto-Elastic Solids

This is a very classical subject that received attention from the first begin-
nings of the research on electromagneto-elastic interactions by the founding
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fathers of this theory such as Pao, Parkus, Eringen, Maugin and many
others. We restrict ourselves to giving only a few more recent references, which
consider successively surface waves in magnetoelastic conductors, Hhefni

et al. [88], waves at piezoelectric interfaces, Romeo, [201, 202] and Jang

and Zhou, [103] and flexure waves in electroelastic plates by Lancioni and
Tomasetti [117].



2 Basic Concepts

In this chapter we shall lay down the foundations of electrodynamics and
continuum mechanics as it will be used in this book. We start with kine-
matics and then turn to the equations of balance, the Maxwell equations
and the balance laws of mass, momenta, energy and entropy. We introduce
the concept of material objectivity in the nonrelativistic approximation and
briefly outline constitutive equations of thermoelasticity.

2.1 Kinematics

As is common in continuum mechanics, we regard a body as a three-
dimensional manifold embedded in Euclidian 3-space. Its elements are called
particles. Let RR be its reference configuration and Rt its configuration at
time t. Instead of Rt we shall subsequently write R, and we shall refer to R
as the present configuration of the body. Parts of the body will be denoted
by VR and V, dependent on whether they are referred to the reference config-
uration and the present configuration, respectively. The boundary of VR and
of V will be denoted by ∂VR and ∂V, respectively. The position of a particle
in RR will be designated by X(Xα, α = 1, 2, 3), whereas that in the present
configuration R is x (xi, i = 1, 2, 3). A motion of the body is then described
by the mapping

xi = χi(Xα, t) , (i, α = 1, 2, 3) . (2.1.1)

We assume χ to be invertible and this is tantamount to assuming that the
functional determinant

J := det (∂χi/∂Xα) , (2.1.2)

never vanishes and may without loss of generality be assumed to be positive.
In the above and throughout this monograph symbolic and Cartesian tensor
notation is used. Greek indices refer to the material coordinates X, and
Latin indices to the spatial coordinates x. Summation convention will be
used over doubly repeated indices and commas preceding indices indicate
differentiations with respect to space variables. If Aij denote the components
of a second rank tensor, then

A(ij) = 1
2 (Aij + Aji) , A[ij] = 1

2 (Aij −Aji) (2.1.3)
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DOI 10.1007/3-540-37240-7 2 c© Springer-Verlag Berlin Heidelberg 2006
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denote its symmetric and skew-symmetric parts such that

Aij = A(ij) + A[ij] . (2.1.4)

Moreover tr A = Aii will denote its trace. The symbol d/dt or the superim-
posed dot will designate differentiation with respect to time t, holding the
particle X fixed, i.e. for Φ = Φ̂(X, t)

dΦ

dt
≡ Φ̇ :=

∂Φ̂(X, t)
∂t

. (2.1.5)

Here, Φ̇ is called the material time derivative. Likewise, ∂/∂t will denote
differentiation with respect to time t, holding the spatial position x fixed.
Hence, with Φ = Φ̃(x, t),

∂Φ

∂t
:=

∂Φ̃(x, t)
∂t

, (2.1.6)

where ∂Φ/∂t is called the local, or partial, time derivative. It is easy to see
that (2.1.5) and (2.1.6) may be combined to yield

dΦ

dt
= Φ̇ =

∂Φ̃

∂t
+ ẋi

∂Φ̃

∂xi
. (2.1.7)

The local deformation of a body in the neighborhood of a particle X may be
characterized to first order by the deformation gradient Fiα, defined by

Fiα :=
∂χi(X, t)

∂Xα
= xi,α . (2.1.8)

Its inverse exists and is written as

F−1
αi = Xα,i . (2.1.9)

Of particular interest are objective combinations of Fiα. The right (left)
Cauchy-Green deformation tensors Cαβ , (Bij) are defined by

Cαβ := FiαFiβ , Bij = FiαFjα . (2.1.10)

In applications it is more convenient to use the Lagrangean (Eulerian)
strain tensors, Gαβ , (Eij) or the deformation tensors,

Gαβ := 1
2 (Cαβ − δαβ) , Eij := 1

2 (δij −Bij) (2.1.11)

instead. Here,

δαβ =
{

1 α = β ,
0 otherwise (2.1.12)

is the Kronecker delta.
The velocity of a material particle is the time rate of change of its position.

In the Lagrangean formulation it takes the form
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ẋi =
∂χi(Xα, t)

∂t
= v̂i(Xα, t) . (2.1.13)

The Euler representation of the velocity reads

ẋi = v̂i(X−1
α (xn, t), t) = ṽi(xn, t) . (2.1.14)

The time rate of change of the velocity of a material element is its acceleration.
We express this in the Euler representation as

ẍi = v̇i =
dṽi(xn, t)

dt
=

∂ṽi

∂t
+ Lij ṽj , (2.1.15)

in which Lij is the spatial velocity gradient defined as

Lij = ẋi,j = (grad ẋ)ij . (2.1.16)

Its symmetric, dij , and skew-symmetric, Wij , parts

dij := L(ij) , Wij := L[ij] , (2.1.17)

are called stretching or rate of strain tensor and vorticity or spin tensor,
respectively.

Combining (2.1.8) with (2.1.14) we see that

Ḟiα = (xi,α)� = v̂i,αṽi,jFjα = LijFjα ,

or after multiplication with F−1
αk

Lik = ḞiαF−1
αk . (2.1.18)

This formula expresses the spatial velocity gradient in terms of the material
deformation gradient.

2.2 Equations of Balance

2.2.1 The Balance Laws of Mechanics

It is the ultimate goal of any thermodynamic theory, be it a theory of a sim-
ple fluid or a fairly complicated description of electromechanical interaction
phenomena, to calculate within a body the independent fields of this theory
as functions of space and time. For the determination of these fields, we need
field equations, which are obtained when the balance laws of mechanics and
electrodynamics are combined with constitutive equations. Basic ingredients
of any theory are thus the balance equations which are discussed below.

We start with the balance laws of mechanics. The integral expressions of
the laws of conservation of mass, balance of momentum, moment of momen-
tum and energy in the spatial and material description are well-known. For
the former they are
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d

dt

∫

V

ρdν = 0 , (2.2.1)

d

dt

∫

V

ρẋidν =
∫

∂V

tijdaj +
∫

V

ρFidν , (2.2.2)

d

dt

∫

V

ρx[iẋj]dν =
∫

∂V

x[itj]kdak +
∫

V

ρ(Lij + x[iFj])dν , (2.2.3)

and

d

dt

∫

V

( 1
2ρẋiẋi + ρU)dν =

∫

∂V

(ẋitij − qj)daj +
∫

V

(ρẋiFi + ρr)dν . (2.2.4)

Here, ρ is the mass density per unit volume, tij is the Cauchy stress tensor,
Fi the total body force due to electromagnetic fields and external actions,
Lij the dual of the body couple Lk, i.e.

Lij = 1
2eijkLk , (2.2.5)

U is the internal energy per unit mass, qi the energy flux, consisting of heat
flux and non-thermal energy flux, and r the total energy supply, due to
the electromagnetic fields and due to heat. Bracketed indices indicate anti-
symmetric tensors. Note that the stress tensor tij and the stress vector t

(n)
i

on a surface element with exterior unit normal n are related by

t
(n)
i = tijnj . (2.2.6)

Often, in the literature the stress tensor is defined through

t
(n)
i = t̄jinj . (2.2.7)

This definition implies t̄ij = tji. Moreover, tij is not symmetric in general. It is
assumed that body force, body couple and energy supply can be decomposed
into two parts; one is due to the electromagnetic fields, the other is supposed
to be externally applied and known from the outset. Hence,

ρFi = ρF e
i + ρF ext

i ,

ρLij = ρLe
ij ,

ρr = ρre + ρrext .

(2.2.8)

Here, ρF e
i , ρLe

ij and ρre are thought to be expressed in terms of electromag-
netic field quantities, while ρF ext

i and ρrext are known. We have assumed
that there are no externally applied body couples.

For sufficiently smooth fields, the global balance laws (2.2.1)–(2.2.4) as-
sume their local forms
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ρ̇ + ρẋi,i = 0 ,

ρẍi = tij,j + ρF e
i + ρF ext

i ,

t[ij] = ρLe
[ij] ,

ρU̇ = tij ẋi,j − qi,i + ρre + ρrext ,

(2.2.9)

where use has been made of (2.2.8). Here, and throughout this work by ẋi,j

is meant
ẋi,j = (ẋi),j = F−1

αj Ḟiα . (2.2.10)

As follows from (2.2.9)1, the present density ρ is related to ρ0, the density in
the reference configuration, by

ρ =
ρ0

|J | . (2.2.11)

2.2.2 The Maxwell Equations

As is well-known, there are several formulations of electrodynamics, all of
which may be derived from different postulations. For reference we refer the
reader to Penfield and Haus ([177], Ch. 7). It is not our intention to derive
the electromagnetic balance laws from various charge and electric circuit
models, because we aim at describing the equivalence of these formulations
rather than emphasizing their differences.

We start with the Conservation of Magnetic Flux.
Let Bi be the magnetic flux density (or magnetic induction) and let Ei be

the effective electric field strength, sometimes also called the electromotive
intensity. The conservation law of magnetic flux (Faraday law) may then
be expressed as

d

dt

∫

S

Bidai +
∫

∂S

Eidli = 0 . (2.2.12)

This relation must hold for any material surface S with boundary ∂S in R
3.

By applying (2.2.12) to a closed surface S = ∂V, one can derive the
Gauss–Faraday law, which states that

d

dt





∫

∂V

Bidai



 = 0 ⇒
∫

∂V

Bidai = 0 , (2.2.13)

in which the constant of integration has been set to zero. For sufficiently
smooth fields, the balance laws (2.2.12) and (2.2.13) can be written in local
form. To this end, we use the divergence, Stokes’ and Reynolds’ transport
theorems as follows:
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∫

∂V

Bidai =
∫

V

Bi,idv ,

∫

∂S

Eidli =
∫

S

eijkEi,jdai ,

d

dt

∫

S

Bidai =
∫

S

�

Bi dai .

(2.2.14)

Substitute these into (2.2.12) and (2.2.13) and localize the emerging equa-
tions. This yields

eijkEk,j+
�

Bi = 0, Bi,i = 0 . (2.2.15)

In the above

eijk =






1, if i, j, k is an even pemutation of 1, 2, 3 ,

−1, if i, j, k is an odd pemutation of 1, 2, 3 ,

0, else ,

(2.2.16)

is the completely skew-symmetric Levi–Cività tensor and the convective

derivative
�

ψi of a vector ψi is defined by

�

ψi:=
∂ψi

∂t
+ ψi,j ẋj + ψiẋj,j − ψj ẋi,j . (2.2.17)

A proof of (2.2.14)3 is given e.g. in Chadwick [39] or Hutter & Jöhnk

[100].
The second basic law of electromagnetism is the law of Conservation of

Charge. Let Q be the electric charge density and Ji the conductive current.
The conservation law of electric charges may then be expressed by the global
balance law

d

dt

∫

V

Qdν +
∫

∂V

Jidai = 0 . (2.2.18)

This equation holds for any material volume V with boundary ∂V. It is a
purely formal matter to introduce a field Di such that

∫

V

Qdν =
∫

∂V

Didai , (2.2.19)

holds for any material part V of the body. This introduction of Di suggests
to call it charge potential; however, we shall refer to Di as the dielectric
displacement.

It follows from (2.2.18) and (2.2.19) that the conservation of charge is
satisfied if a field Hi exists such that
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∫

S

Jidai +
d

dt

∫

S

Didai =
∫

∂S

Hidli (2.2.20)

holds for any material surface S with boundary ∂S. Indeed, if we choose
S = ∂V in (2.2.20), then ∂S = ∅ and (2.2.20) reduces to (2.2.18). Equation
(2.2.20) is called Ampère’s law. We shall call Hi the effective magnetic field
strength or the magnetomotive intensity. Note that Hi and Di as introduced
by (2.2.19) and (2.2.20) are not unique.

Again, assuming sufficient smoothness of the fields, the balance laws
(2.2.18), (2.2.19) and (2.2.20) may be brought into local form. From (2.2.19)
and (2.2.20) we then obtain

Di,i = Q , eijkHk,j−
�

Di = Ji , (2.2.21)

and from (2.2.18)

(Ji + Qẋi),i +
∂Q
∂t

= Ji,i +
∂Q
∂t

= 0 , (2.2.22)

which is the local conservation law of electric charges. For convenience we
have also introduced here the non-conductive current Ji defined by

Ji := Ji + Qẋi . (2.2.23)

The equations (2.2.21) are called the inhomogeneous Maxwell equations, in
contrast to the homogeneous ones, (2.2.15), because on the right-hand sides
they contain electric charge and current densities.

Note that not all of the above equations are independent. Indeed, the con-
servation law of charge may be derived from the inhomogeneous Maxwell

equations. In other words, when integrating the Maxwell equations, the
conservation law of electric charges must be fulfilled along with the Maxwell

equations. As a result, at most seven of the above electromagnetic field vari-
ables can be considered basic, while for the remaining ones constitutive equa-
tions must be established. Of course, this does not mean that one cannot
establish constitutive equations for more electromagnetic field variables. In-
deed, there is a valid point to treat both Ji and Q as dependent constitutive
variables. If this is done, however, further integrability conditions must be
satisfied.

In the above presentation we have not made any appeal to a specific
model, how the moving material body may contribute to the electromagnetic
field vectors Bi, Ei, Di and Hi. We shall not do this here either and refer to
the pertinent literature (Penfield and Haus [177], Fano, Chu and Adler

[73], Truesdell and Toupin [244], Pao [172], Eringen and Maugin [70]
[71], Maugin et al. [137], Tiersten [238], Zhou [215, 216] and others). The
reader may be puzzled, however, by the occurrence of the convective time
derivatives in (2.2.15) and (2.2.21), which contain implicitly the motion. If
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he so desires, he may formally eliminate the latter by simply defining two
new fields through

Ei = Ei + eijkẋjBk , Hi = Hi − eijkẋjDk . (2.2.24)

Here, Ei and Hi are the well-known Minkowskian electric and magnetic
field strengths. We note that relations (2.2.24) are not the only ones through
which the motion can be eliminated.

We might further mention that of the four fields Bi, Ei, Di and Hi only
two are considered basic, while the remaining two will have to be described
by constitutive assumptions. In practice, some of the above field quantities
are replaced by others, which may allow a better physical insight, but this
does not change the fundamental fact that there are two basic vectorial field
quantities, while the remaining ones must be expressed in terms of the former.
We shall come back to this at a later stage.

2.2.3 Material Description

The balance laws listed in the previous two sections are written in the spa-
tial or Eulerian formulation. Corresponding to these equations there is a
material or Lagrangean description.

Let dν, dak and dlk be the volume-, area- and length-increments in the
spatial description, while dV, dAα and dLα are the corresponding increments
in the material description. Then the following well-known identities hold
between these increments:

dν = |J |dV , dak = JF−1
αk dAα , dlk = FkαdLα . (2.2.25)

Here a remark concerning the second equation is in order. Since the normal
vector on a closed surface is defined as the outward normal and outward
normals given by relation (2.2.25)2 are transformed into inward normals when
sgnJ < 0, we must replace in (2.2.25)2 J by |J | whenever the surface is closed.
Hence, if dAα and dak are area-elements of a closed surface, we have

dak = |J |F−1
αk dAα . (2.2.26)

Although we may restrict J to positive values, use of |J | instead of J in the
following equations is preferred in order to make the respective quantities
objective under the full group of (Euclidian) transformations, (see Sect. 1.6).
With the relations (2.2.25) the mechanical balance laws (2.2.1)–(2.2.4) may
be transformed into the following forms

d

dt

∫

VR

ρ0dV = 0 , (2.2.27)
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d

dt

∫

VR

ρ0ẋidV =
∫

∂VR

TiαdAα +
∫

VR

ρ0FidV , (2.2.28)

d

dt

∫

VR

ρ0x[iẋj]dV =
∫

∂VR

x[iTj]αdAα +
∫

VR

ρ0(Lij + x[iFj])dV , (2.2.29)

d

dt

∫

VR

(
1
2
ρẋiẋi + ρU

)

dV =
∫

∂VR

(ẋiTiα −Qα)dAα +
∫

VR

(ρ0ẋiFi + ρ0r)dV .

(2.2.30)
Here, integration is over reference volume and surface, respectively. Further,
Tiα is the first Piola–Kirchhoff stress tensor and Qα is the material energy
flux vector, which are related to tij and qi according to

Tiα = |J |F−1
αj tij , tij = |J−1|FjαTiα ,

Qα = |J |F−1
αi qi , qi = |J−1|FiαQα .

(2.2.31)

Assuming for the external source terms decompositions similar to those listed
in (2.2.8) and supposing sufficient smoothness of the fields involved, we find
that (2.2.28)–(2.2.30) imply

ρ0ẍi = Tiα,α + ρ0F
e
i + ρ0F

ext
i ,

T[iαFj]α = ρ0Lij ,

ρ0U̇ = TiαḞiα −Qα,α + ρ0r
e + ρ0r

ext ,

(2.2.32)

whereas (2.2.27) integrates to yield ρ0 = ρ0(X).
Apart from the stress tensors tij and Tiα we shall occasionally also use

the so-called second Piola-Kirchhoff stress tensor defined by

TP
αβ := TiαF−1

βi = |J |tijF−1
αj F−1

βi . (2.2.33)

Notice that TP
αβ is symmetric if and only if tij is symmetric. There exists also

a material formulation of the electromagnetic balance laws (see [92]). To de-
rive the material counterpart of (2.2.12), (2.2.13) and (2.2.18)–(2.2.20), recall
that the integrals occurring in these equations must only be transformed back
to the reference configuration. With the aid of (2.2.25) we obtain straightfor-
wardly

d

dt

∫

SR

BαdAα +
∫

∂SR

EαdLα = 0 , (2.2.34)

∫

∂VR

BαdAα = 0 , (2.2.35)
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∫

∂VR

DαdAα =
∫

VR

QdV , (2.2.36)

− d

dt

∫

SR

DαdAα +
∫

∂SR

HαdLα =
∫

SR

JαdAα , (2.2.37)

d

dt

∫

VR

QdV +
∫

∂VR

JαdAα = 0 . (2.2.38)

Here, hollow quantities are the material counterparts of Bi, Ei,Di,Hi,Ji and
Q and they are related to these according to the transformation rules

Q = Q|J | , Q = |J−1|Q ,

Jα = Ji|J |F−1
αi , Ji = |J−1|FiαJα ,

Dα = Di|J |F−1
αi , Di = |J−1|FiαDα ,

Hα = HiFiαsgnJ , Hi = F−1
αi HαsgnJ ,

Bα = BiJF−1
αi , Bi = J−1FiαBα ,

Eα = EiFiα , Ei = F−1
αi Eα .

(2.2.39)

The quantities Eα,Bα etc. will be called the material or Lagrangean electro-
magnetic fields. Again, although J may be assumed positive we have written
these formulas such that the hollow quantities transform under the Euclidian
transformation group as scalars (see Sect. 1.6).

For sufficiently smooth fields the global laws (2.2.34)–(2.2.38) can be writ-
ten in local form. Then they are

eαβγEγ,β + Ḃα = 0 , Bα,α = 0 ,

eαβγHγ,β − Ḋα = Jα , Dα,α = Q ,

Q̇ + Jα,α = 0 ,

(2.2.40)

where all differentiations are with respect to the material coordinates. As
was mentioned already before, this set of equations is a dependent one since
the conservation of charge is already implicitly contained in the Maxwell

equations. As a consequence, at most seven variables are independent, while
the remaining ones must be given by constitutive equations.

At the moment, the Lagrangean fields are introduced purely formally.
That they are of advantage will be demonstrated in Chaps. 4 and 5.

2.3 The Entropy Production Inequality

It is a fact of experience that real physical processes are irreversible. This
means that processes cannot, in general, be traversed backward in time, i.e.,
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time reversal does not lead to a physically realizable process. This fact is
called the second law of thermodynamics and its mathematical realization is
the entropy production inequality. It is based on the assumption that there
exists an additive quantity η, called the entropy, which satisfies the balance
law

d

dt

∫

V

ρηdν +
∫

∂V

φidai −
∫

V

ρsdν =
∫

V

ργdν . (2.3.1)

Here, φi is the entropy flux, s the entropy supply and γ the entropy production.
For sufficiently smooth fields (2.3.1) implies

ρη̇ + φi,i − ρs = ργ , (2.3.2)

and it is the expression of the second law of thermodynamics that

γ ≥ 0 ; (2.3.3)

hence
ρη̇ + φi,i − ρs ≥ 0 . (2.3.4)

This inequality must hold for all thermodynamic processes, i.e. processes that
satisfy the balance laws of thermomechanics and electrodynamics as well as
the constitutive relations. We shall set the entropy supply s equal to the
external energy supply divided by the absolute temperature Θ, i.e.

s =
rext

Θ
, (2.3.5)

but we shall, in general, not assume that “entropy flux equals heat flux di-
vided by absolute temperature”. Thus, (2.3.4) becomes

ρη̇ + φi,i ≥
ρrext

Θ
. (2.3.6)

The material counterpart of (2.3.1) can easily be derived. In its local form,
it reads

ρ0η̇ + Φα,α ≥ ρ0r
ext

Θ
, (2.3.7)

where
Φα = |J |F−1

αi φi , (2.3.8)

is the Lagrangean entropy flux.
Before we proceed it seems to be worthwhile to justify the approach we

take regarding the entropy inequality (2.3.4) and the interpretation we give to
the entropy supply and to the entropy flux. Our aim is not the justification of
one particular theory against any other one. On the contrary, we shall adopt
certain results obtained by using a particular entropy principle in each theory
and aim at a comparison of such theories. This comparison should be made
on the level of fully developed theories.
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2.4 Jump Conditions

Let
Σ = Σ̂(X, t) = σ̃(x, t) = 0 , (2.4.1)

be a smooth orientable surface, not necessarily material, and let WN and wn

be its speed of propagation and speed of displacement, respectively, i.e.

WN := − ∂Σ̂/∂t

(Σ̂,α Σ̂,α )1/2
, wn := − ∂σ̃/∂t

(σ̃,i σ̃,i )1/2
. (2.4.2)

Assume further that the electromagnetic field quantities Bi, Ei etc., or Bα,Eα

etc., as well as all mechanical quantities listed in Sect. 1.3.1 or 1.3.3 may
suffer finite jumps across the surface Σ. In particular we assume χi(X, t) to
be continuous on Σ, but its first derivatives may suffer finite jumps. Hence,
it follows that, although

Σ̂(X, t) = σ̃(χ(X, t), t) = σ̂(X, t) ,

is one and only one surface in VR, the values for WN are the same on both
sides of the surface only when χ̇i and Fiα are continuous. Waves in which χ̇i

and Fiα may jump are called shock waves.
By applying the global balance laws to a part of the body (V or VR)

containing the surface of discontinuity, we can derive jump conditions for
the fields occurring in these laws. We suppose the methods of derivation to
be known and therefore only list the results. The jump conditions obtained
thereby will depend on whether one is dealing with the material or the spatial
description. In the spatial description, the balance laws (2.2.12), (2.2.13) and
(2.2.18)–(2.2.20) reveal that
[[
Bi

]]
ni = 0 ,

[[
eijkEjnk + ẋiBknk −Bi(ẋknk − wn)

]]
= 0 ,

[[
Di

]]
ni = 0 ,

[[
eijkHjnk + ẋiDknk −Di(ẋknk − wn)

]]
= 0 ,

[[
Jini −Qwn

]]
= 0 .

(2.4.3)

Here, [[
Φ
]]

:= Φ+ − Φ− , (2.4.4)

denotes the jump of Φ across the surface σ̃(x, t), Φ± are the values of Φ
immediately on the positive and negative side of the surface, respectively,
and n is the unit normal vector at a point on the singular surface pointing
into the positive side of σ̃(x, t). We remark that conditions (2.4.3) tacitly
assume that Ji and Q are finite on the surface of discontinuity. This is a
restriction; e.g. it excludes surface distributions of charge and current.
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In the material description the counterparts of (2.4.3) read as follows
[[

Bα

]]
Nα = 0 , eαβγ

[[
Eβ

]]
Nγ +

[[
BαWN

]]
= 0 ,

[[
Dα

]]
Nα = 0 , eαβγ

[[
Hβ

]]
Nγ +

[[
DαWN

]]
= 0 ,

[[
JαNα − QWN

]]
= 0 .

(2.4.5)

If we set WN = 0, or wn = ẋ+
i ni = ẋ−

i ni, then the surface of discontinuity
is material. In that case, the jump conditions may serve as boundary condi-
tions. We like to note here that, in the sense of the definition given above,
the boundary of a body in a vacuum is not a material surface of discontinuity
because on this boundary:

ẋ+
i = 0 , and ẋ−

i niwn . (2.4.6)

For the derivation of the jump conditions of momentum and energy, we
start with the expressions for the electromagnetic body force and energy
supply. We consider it to be known that the electromagnetic momentum and
energy supply terms appearing in (2.2.2), (2.2.4), (2.2.28) and (2.2.30) can
always be written in the form

ρF e
i = tMij,j +

∂gi

∂t
, ρ0F

e
i = TM

iα,α + Ġi ,

ρre + ρF e
i ẋi = πi,i +

∂ω

∂t
, ρ0r

e + ρ0F
e
i ẋi = Πα,α + Ω̇ .

(2.4.7)

In the above relations, TM
iα and tMij are electromagnetic stress tensors, which

sometimes are called Maxwell stress tensors, Gi and gi are the electromag-
netic momenta in the material and spatial description, respectively, Πα and
πi are the material and spatial representation of the electromagnetic energy
flux and Ω and ω are electromagnetic energy densities. All these quantities
are expressible in terms of the electromagnetic fields, the motion and their
derivatives. Hence, although we assume the electromagnetic fields to suffer
at most a finite jump across the singular surface Σ, such an assumption does
not hold in general for ρF e

i and ρre (or ρ0F
e
i and ρ0r

e), which may become
unbounded because of the occurrence of the above mentioned gradients. Ap-
parently, for the weak forms of (2.4.7) one must write

∫

V

ρF e
i dν =

d

dt

∫

V

gidν +
∫

∂V

(tMij − giẋj)daj ,

∫

V

(ρre + ρF e
i ẋi)dν =

d

dt

∫

V

ωdν +
∫

∂V

(πi − ωẋi)dai ,

(2.4.8)

in the spatial formulation, and
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∫

VR

ρ0F
e
i dV =

d

dt

∫

VR

GidV +
∫

∂VR

TM
iα dAα ,

∫

VR

(ρ0r
e + ρ0F

e
i ẋi)dV =

d

dt

∫

VR

ΩdV +
∫

∂VR

ΠαdAα ,

(2.4.9)

in the material description, respectively. The fields Gi, gi, T
M
iα , tMij ,Πα, πi, Ω

and ω are related to each other by

Gi = |J |gi ,

TM
iα = |J |F−1

αj (tMij − giẋj) ,

Πα = |J |F−1
αi (πi − ωẋi) ,

Ω = |J |ω .

(2.4.10)

As long as all fields are sufficiently smooth, the left-hand and right-hand sides
of (2.4.8) and (2.4.9) are equivalent. This is no longer so if ρF e

i and ρre may
be unbounded. Then the left-hand sides of (2.4.8) and (2.4.9) may not be
meaningful at all, whereas the expressions on the right-hand sides still make
sense. We therefore postulate the expressions on the right-hand sides to be
the appropriate global statements.

Substituting (2.2.8)1,3 into (2.2.2) and (2.2.4) and using (2.4.8) yields the
global form of the balance laws of linear momentum and energy appropriate
for the derivation of the jump conditions. Under the assumption that the ex-
ternal sources ρF ext

i and ρrext remain finite at Σ, these global laws, together
with the balance of mass (2.2.1), lead to the following set of jump conditions

[[
ρ(ẋini − wn)

]]
= 0 ,

[[
(ρẋi − gi)(ẋjnj − wn)

]]
−
[[
tij + tMij − giẋj

]]
nj = 0 ,

[[
(1
2ρẋiẋi + ρU − ω)(ẋjnj − wn)

]]
−
[[
ẋitij − qj + πj − ωẋj

]]
nj = 0 .

(2.4.11)
Similarly, in the material description,

[[
ρ0WN

]]
= 0 ,

[[
(ρ0ẋi −Gi)WN

]]
−
[[
Tiα + TM

iα

]]
Nα = 0 ,

[[
(1
2ρ0ẋiẋi + ρ0U −Ω)WN

]]
−
[[
ẋiTiα −Qα + Πα

]]
Nα = 0 .

(2.4.12)

Note that the balance of mass simply implies that ρ0 may jump only along
with a jump of WN , or on material surfaces, where WN = 0. For WN = 0,
(2.4.11)2,3 constitute the boundary conditions for the tractions and the energy
flux of matter and fields, respectively. On the other hand, if ρ0 is continuous
on Σ, (2.4.12)1 implies continuity of WN .
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2.5 Material Objectivity

Although we consider the principle of material frame indifference to be known
in general, we would like to call upon it here, mainly because of the compli-
cations resulting from the combination of the mechanical balance laws with
those of electrodynamics.

Let xi be the Cartesian coordinates of a particle as measured by a sta-
tionary observer and let x�

i be the Cartesian coordinates of the same particle
as measured by another observer in his frame of reference. We call transfor-
mations that relate xi with x�

i by a rigid-body motion Euclidian transfor-
mations. They have the form

x�
i = Oij(t)xj + bi(t) , t� = t , (2.5.1)

where Oij is an orthogonal (time dependent) matrix and where bi is an arbi-
trary (time dependent) vector. A Euclidian transformation for which Oij is
not time dependent and for which bi = −Vit is called a Galilei transforma-
tion, and it is well-known that the balance laws of classical non-relativistic
mechanics are invariant and frame independent under such transformations.
They are, however, frame dependent with respect to Euclidian transforma-
tions.

Let a,a and A be scalar, vector and second rank tensor quantities over
R

3, and assume that two observers in their reference systems {O,e1,e2,e3},
{O�,e�

1,e
�
2,e

�
3} measure the components

a, ai, Aij and a�, a�
i A

�
ij , (2.5.2)

respectively. Then the starred and the unstarred quantities are related to
one another through a transformation that is dictated by the transformation
group from the unstarred to the starred reference system. If this transforma-
tion has the form

a� = (det O)pa ,

a�
i = (det O)pOijaj ,

A�
ij = (detO)pOikOilAkl ,

(2.5.3)

with p = 0 or p = 1, then a,a,A are called an objective scalar, objective
vector and objective tensor, respectively. For p = 0 (p = 1) these quantities
are specified as polar (axial) objective scalar, vector or tensor, respectively.
For brevity, the attribute “polar” is often omitted for polar field quantities.
For instance, detO is an axial scalar, the curl is an axial vector operator,
but the gradient is polar. If ai = ẋi is the velocity it is easily seen that under
the Galilei group it is an objective polar vector, but when the group is
Euclidian the velocity is not an objective vector quantity.

In contrast to classical mechanics, the Maxwell equations are neither
invariant under Euclidian nor under Galilei transformations. The trans-
formation group here is the extended Lorentz group. This group may be
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explained as follows. Let (xi, t) denote the position xi and time t of a particle
as measured by one observer and let (x�

i , t
�) be those as measured by another

observer, who translates relative to the first observer with constant velocity
Vi. A transformation of the form

x�
i = xi + Vi

{xkVk

V 2

[ 1
√

1 − V 2/c2
− 1

]
− t
√

1 − V 2/c2

}

= (xi − Vit)(1 + O(V 2/c2)) ,

t� =
t− xkVk

c2√
1 − V 2/c2

=
(

t− 1
c2

xkVk

)

(1 + O(V 2/c2)) ,

(2.5.4)

is then called a special Lorentz transformation. Special in this transforma-
tion is that the frames xi and x�

i are parallel. If they are also rotated with re-
spect to each other then x�

i on the left-hand side of (2.5.4)1 must be replaced
by Ojix

�
j , where Oij is a constant orthogonal matrix. The group of these

transformations is called the extended Lorentz group. In four-dimensional
notation

x�
A = ∗ABxB , (A,B = 1, 2, 3, 4) , (2.5.5)

where the four vector x(4) is the ordered quadrupel (x(3), t) and, to within
terms of the order of (V 2/c2), ∗AB is given by

ΛAB =











O11 O12 O13 −O1kVk

O21 O22 O23 −O2kVk

O31 O32 O33 −O3kVk

−V1/c
2 −V2/c

2 −V3/c
2 1











. (2.5.6)

The Lorentz group is the analogon to the Galilei group and there is no
immediate analogon to the Euclidian group.

The principle of material frame indifference (material objectivity) states
that the material response ought not be frame-dependent. But with respect
to which transformation group? Obviously, since classical mechanics is invari-
ant under the Galilei group and the special theory of relativity is so under
the Lorentz group, the material response must be invariant with respect to
one of these groups, depending on whether one deals with classical mechanics
or with special relativity. We consider it to be known that the principle of
material objectivity of classical mechanics as stated by Noll requests the
material response to be invariant under Euclidian transformations. There
have been objections raised against the general truth of this (see Müller

[159]), but this will be of no relevance here, because the results of this mono-
graph (except Chap. 8) will also hold true if we restrict ourselves in those
cases to Galilei transformations.
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In order to gain some insight into the transformation properties of the
electromagnetic field variables, recall that the fields Ei, Bi,Hi and Di intro-
duced in (2.2.24) can be written in the form of two skew-symmetric covariant
and contravariant four-tensors, namely as

ϕAB =











0 B3 −B2 E1

−B3 0 B1 E2

B2 −B1 0 E3

−E1 −E2 −E3 0











, ηAB =











0 H3 −H2 −D1

−H3 0 H1 −D2

H2 −H1 0 −D3

D1 D2 D3 0











,

(2.5.7)
and that these tensors transform under general transformations of the form
x�A(xB) according to

ϕ�
AB =

∂xC

∂x�A

∂xD

∂x�B
ϕCD , η�AB =

∂x�A

∂xC

∂x�B

∂xD
ηCD . (2.5.8)

With
σA := (Ji + Qẋi,Q) , (2.5.9)

it is then a routine matter to show that the Maxwell equations (2.2.15)
and (2.2.21) are given by

eABCD ∂ϕCD

∂xB
= 0 ,

∂ηAB

∂xB
= σA , (2.5.10)

where

eABCD =






−1, if ABCD is an even permutation of 1234 ,

1, if ABCD is an odd permutation of 1234 ,

0, else ,

(2.5.11)

is the four-dimensional permutation tensor. The equations (2.5.8) hold for any
transformation x�A = x�A(xB). If one chooses Euclidian transformations,
one can show that

Q transforms as an objective scalar ,

Ei,Di,Ji transform as objective polar vectors ,

Hi, Bi transform as objective axial vectors .

(2.5.12)

For the proof of these statements, the reader may consult Appendix A. In
particular, these quantities are objective under Galilei transformations. In
the sequel we shall also introduce other electromagnetic variables, such as po-
larization and magnetization vectors, some of which are also objective vectors
in the above sense.
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The Maxwell equations (2.5.10) would formally be invariant under gen-
eral transformations of the form x�A = x�A(xB), as can easily be checked by
substituting (2.5.8) into (2.5.10), if there would not be a relation of the form

ηAB = ηAB(ϕCD) , (2.5.13)

that is not invariant under the most general transformations. Indeed, a rela-
tion (2.5.13) even exists in vacuo, in which case it reads

Di = ε0Ei , Hi =
1
µ0

Bi . (2.5.14)

These relations are sometimes referred to as the Maxwell–Lorentz aether
relations. Equations (2.5.14) restrict the class for which the Maxwell

equations (2.5.10) are invariant to the extended Lorentz group. In general,
(2.5.13) gives a model for electromagnetic field interactions with matter.

Based on the properties (2.5.12) we may then request as is done classically,
that the material response be invariant under the Euclidian group. This is
an approximation, because the Maxwell equations can never be rendered
Lorentz invariant this way. On the other hand, dependent on the choice of
electromagnetic body force, body couple and energy supply, the balance laws
of mechanics may be Galilei invariant this way. Theories of this nature have
been proposed by, amongst others, Toupin [241], Liu and Müller [127],
Pao and Hutter [171], Alblas [9], Van de Ven [249], Hutter [95], De

Groot and Suttorp [53], Eringen and Maugin [70, 71], Tiesten [238],
Maugin et. al. [137], and Shu-Ang Zhou [216]. For reasons that will become
apparent shortly, we shall call these treatments non-relativistic theories.

Of course, the above selection of the transformation group is not satisfac-
tory, and it should be replaced by one treating the mechanical and electro-
magnetic equations alike. Such a description must necessarily be relativistic.
Hence, the material response must be invariant under the extended Lorentz

group. Considering motions only that are small relative to the velocity of
light, we may then drop all terms containing a factor c−2 (this statement
depends on the choice of units and in the way we state it here, SI-units are
implied). In this way one arrives at Maxwell equations which are Lorentz

invariant except for terms with a c−2-factor. The same holds true for the
constitutive relations and the mechanical equations. Theories obtained in
this fashion may also be called non-relativistic, because we may look at their
constitutive treatment in the light of Euclidian transformations, as we shall
soon see.

Finally there are formulations in which only the terms of order ẋ2/c2 are
dropped, while terms with a c−2-factor (but no (ẋ2/c2)-factor) are kept. Such
theories will be called semi-relativistic.

In order to render these ideas a little more precise, consider a stationary
frame of Cartesian coordinates and a particle moving with velocity ẋi. An in-
ertial frame, in which the particle is instantaneously at rest, is called the rest
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frame. Electromagnetic variables as measured by an observer in this frame
are called rest frame values and they are related to those in the stationary
frame by a Lorentz transformation. Rest frame values will be denoted by a

superimposed ring, viz.
◦
Ei etc. Of course, the Maxwell equations also hold

in the rest frame (whereby all variables and operations carry the symbol ◦).
Transforming these equations back to the original frame reveals the transfor-

mation rules for the variables Bi,
◦
Bi, Ei,

◦
Ei etc. To within the semi-relativistic

approximation the transformation rules are
◦
Bi= Bi + O(ẋ2/c2) , Bi = Bi −

1
c2

eijkẋjEk ,

◦
Ei= Ei + O(ẋ2/c2) ,

◦
Di= Di + O(ẋ2/c2) , Di = Di +

1
c2

eijkẋjHk ,

◦
Hi= Hi + O(ẋ2/c2) ,

◦
Ji= Ji + O(ẋ2/c2) ,

◦
Q= Q− 1

c2
ẋiJi + O(ẋ2/c2) .

(2.5.15)

From these definitions as well as (2.2.24) it follows that Bi, Ei,Di etc. are the
fields Bi, Ei,Di etc. as measured by an observer travelling with the particle.
Furthermore, under rigid rotations they transform like scalars and vectors,
and, as is shown in the theory of relativity (see Mφller, [158], p. 199), they
form within the semi-relativistic approximation the first three components of

a set of four-vectors. Hence Bi, Ei,Di,Hi,Ji and
◦
Q are vectors and scalars,

objective under Lorentz-transformations to within the semi-relativistic ap-
proximation.

Mere inspection of (2.5.15) shows, however, that the variables Bi and Di

are not objective under Galileian- or Euclidian transformations, because
according to (2.5.12) Bi and Di are. But, in the non-relativistic limit, where
c−2-terms are dropped

Di ≈ Di and Bi ≈ Bi , (2.5.16)

and Di and Bi are under Euclidian transformations an objective vector and
an objective axial vector, respectively.

Multiplying both sides of equation (2.5.15)2 with µ−1
0 shows that

1
µ0

Bi =
1
µ0

Bi − ε0eijkẋjEk , (2.5.17)

so that the second term on the right-hand side is no longer of order c−2.
Hence, Bi/µ0 cannot be objective non-relativistically (although Bi is). The
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objective quantity must be Bi/µ0 and indeed it can be shown (see Appen-
dix A) that Bi/µ0 is objective under Euclidian transformations. A similar
argument holds for Di, because

1
ε0

Di =
1
ε0

Di + µ0eijkẋjHk . (2.5.18)

Here again, Di/ε0 is the quantity that is objective non-relativistically and
not Di/ε0, although Di is. Needless to say that Euclidian invariance of
Di/ε0 also follows from the general relativistic transformation properties (see
Appendix A). This is why we have called theories non-relativistic which use
the principle of material objectivity under Euclidian transformations.

Hence, we may conclude by stating that in the non-relativistic approxi-
mation (neglecting c−2-terms) the requirement of invariance of the material
response under Galilei transformations (a special Euclidian transforma-
tion) is equivalent to the requirement of Lorentz invariance . The difference
is at most a philosophical one.

2.6 Constitutive Equations

The balance laws (2.2.9), (2.2.15) and (2.2.21) express the common physical
properties enjoyed by a material exhibiting electromagnetic mechanical inter-
actions. They comprise a set of differential equations for many more variables
than there are equations. So they are no field equations from which the field
quantities could uniquely be determined. In order to become field equations
the balance laws (2.2.9), (2.2.15) and (2.2.21) must be complemented by con-
stitutive equations. Of course, in this regard various degrees of complexity
are possible. In PART I, we shall restrict ourselves to magnetizable and po-
larizable solids, which deform elastically under the action of electromagnetic
and thermal fields and which exhibit electrical and thermal conduction. Me-
chanical dissipation is left out of consideration as is the exchange interaction
and magnetic spin. In PART II, Chap. 8, viscous and plastic effects will also
be included.

To obtain field equations it must first be decided which physical variables
we suppose to be the independent fields. With regard to thermo-mechanical
variables these fields are generally the motion X (X, t) and the temperature
Θ(X, t). The basic electromagnetic field variables are generally two electro-
magnetic field vectors and the free charge. Any constitutive relation must
be expressed therefore as a functional of the motion, the temperature, the
free charge and two electromagnetic field variables and derivatives thereof.
Taking for instance Ei and Hi as the basic fields the conceivably simplest
constitutive class exhibiting the above mentioned properties may have the
form.

C(t) = C̄(xi(t), ẋi(t), Fiα(t), Ei(t),Hi(t), Θ(t), Θ,i(t),Q(t)) . (2.6.1)
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Here, C stands for any scalar, vector or tensor valued quantity for which a
constitutive equation is established, and C̄(·) is a function of the indicated
variables. If the value of C at instant t depends on the motion xi, the temper-
ature Θ and the electromagnetic fields Ei,Hi and Q at the same instant only,
we call the material response to have no memory. Now the function C̄(·) also
depends on ẋi(t). Hence, with regard to xi the material appears to remember
the past history of a process it has undergone for a very short time. Indeed
knowing xi and ẋi at a time t allows us to approximate the motion arbitrarily
close to times τ = t as close as we please. We shall show, however, that an
explicit dependence on ẋi is not possible.

As is usual in continuum mechanics, we require the constitutive relations
to be independent of the observer. In terms of the above quantities C this
principle of material objectivity requires that the quantities C do not only
transform as objective scalars, vectors and tensors, respectively, but that
C̄(·) is frame independent under the transformation group considered. In
view of the fact that we shall restrict ourselves in the following chapters to
a non-relativistic approach we require the constitutive equations to be frame
independent scalar, vector and tensor valued functions under the group of
Euclidian transformations. (Actually invariance under Galilei transfor-
mations is sufficient for constitutive relations of the form (2.6.1)). Then it is
straightforward to shown that the constitutive quantities C cannot depend
on xi and ẋi explicitly. Furthermore, we have seen in the preceding section
that Ei,Hi and Q are objective, and thus we may set

C = C̄(Fiα, Ei,Hi, Θ,Θ,i,Q) . (2.6.2)

If viscous or plastic effects are included then the adequate constitutive pos-
tulate is

C = C̄(Fiα, Ḟiα, Ei,Hi, Θ,Θ,i,Q) . (2.6.3)

Of course, since Di and Bi are also objective, it is always possible to replace
in (2.6.2) Ei by Di and/or Hi by Bi.

Moreover, one can formally introduce polarization Pi and magnetization
Mi by

Pi := Di − ε0Ei , and µ0Mi := Bi − µ0Hi , (2.6.4)

and then, assuming for the moment that Pi and µ0Mi are an objective vector
and an objective axial vector under Euclidian transformations, respectively,
we could also use Pi and µ0Mi as basic (i.e. independent) field variables. In
this way we can choose from nine possibilities for the constitutive relations of
the kind (2.6.2). However, we shall not discuss them all here, but list below
only those combinations, which are physically relevant and will appear in the
next chapter. These are
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C = Ĉ(Fiα,
Pi

ρ
,
µ0Mi

ρ
,Θ,Θ,i,Q) , (a)

C = C̃(Fiα, Ei,
µ0Mi

ρ
,Θ,Θ,i,Q) , (b)

C = C̄(Fiα, Ei,Hi, Θ,Θ,i,Q) , (c)

C =
+

C (Fiα,
Pi

ρ
,Bi, Θ,Θ,iQ) , (d)

C = Č(Fiα, Ei, Bi, Θ,Θ,i,Q) . (e)

(2.6.5)

Although all the arguments appearing in the constitutive relations (2.6.5)
are objective quantities, we have not satisfied yet the requirement that

Ĉ(·), C̃(·), C̄(·),
+

C (·) and Č(·) must be objective tensorial, vectorial and scalar
functions of their variables with respect to the Euclidian group.

The explicit form of these expressions depends on whether Ĉ(·) etc. is a
scalar, vector or tensor valued function. The representations in all these cases
are well-known and are due to Noll. The reader may consult Truesdell

and Noll’s treatise [243] for an account on the history and for a proof.
If C is an objective scalar under the Euclidian transformation group it

may be shown that its constitutive function is frame independent if

C = Ĉ(Cαβ ,Pα,Mα, Θ,Θ,α,Q) , (a)

C = C̃(Cαβ ,Eα,Mα, Θ,Θ,α,Q) , (b)

C = C̄(Cαβ ,Eα,Hα, Θ,Θ,α,Q) , (c)

C =
+

C (Cαβ ,Pα,Bα, Θ,Θ,α,Q) , (d)

C = Č(Cαβ ,Eα,Bα, Θ,Θ,α,Q) . (e)

(2.6.6)

Here, Cαβ is the right Cauchy-Green deformation tensor, defined by
(2.1.10)1, and

Pα :=
1
ρ
PiFiα , Mα :=

µ0

ρ
MiFiαsgnJ ,

Eα := EiFiα , Hα := HiFiαsgnJ , Bα :=
1
µ0

BiFiαsgnJ .
(2.6.7)

If Ci is an objective polar vector, then

Ci = FiγĈγ(Cαβ ,Pα,Mα, Θ,Θ,α,Q), etc. (a) (2.6.8)

If Ci is an objective axial vector, then

Ci = FiγĈγ(Cαβ ,Pα,Mα, Θ,Θ,α,Q)sgnJ, etc. (a) (2.6.9)

Finally, for a second-order tensor Cij one obtains
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Cij = FiγFjδĈγδ(Cαβ ,Pα,Mα, Θ,Θ,α,Q), etc. (a) (2.6.10)

We now shall outline the procedure that will be used to bring the constitutive
equations in their ultimate form. First, we substitute the constitutive rela-
tions (2.6.5) for the dependent variables into the Maxwell equations and
into the balance laws of mass, linear and angular momentum and energy. The
resulting equations are the field equations for ρ, χi, Θ,Q and the two basic
electromagnetic fields (e.g. Pi and Mi in case a)). Any solution of these field
equations is called a thermodynamic process. Following Coleman and Noll,
[44] or more generally Müller [160], we request the entropy inequality, or any
inequality derived from it, to hold for all smooth thermodynamic processes.
This implies that at a particle we may freely choose the independent vari-
ables and derivatives thereof as long as the field equations are not violated
thereby. In an open system, that is for a body with arbitrary external body
force ρF ext

i and energy supply ρrext no contributions are provided by the mo-
mentum and energy equations, because to any process there exist appropriate
force and energy supply terms such that the momentum and energy equations
are satisfied identically. Special care should be observed with regard to the
electromagnetic variables, however, since, as can easily be deduced from the
Maxwell equations, not all the gradients of the basic electromagnetic fields
are arbitrary. Such gradients may occur in the entropy inequality, and if they
do, the relations implied by the Maxwell equations must be fulfilled along
with the exploitation of the entropy inequality. A detailed explanation of this
point is given by Hutter [96]. In any case, once the constitutive relations
are substituted into the entropy inequality and all the above mentioned side
conditions are properly taken into account, an inequality results with terms
that are explicitly linear in variables that, in a thermodynamic process, may
have any arbitrarily assigned value. Therefore, since otherwise this inequality
would be violated, each of the coefficients of these variables must be iden-
tically zero. These conditions then imply the constitutive equations in their
ultimate form. This procedure, which we assume to be familiar to the reader,
will be applied (and described in greater detail) in the next chapter.
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Equivalence of Different Electromagnetic
Formulations in Thermoelastic Solids



3 A Survey of Electromagneto-Mechanical
Interaction Models

3.1 Preview

The subject of electrodynamics of moving media has always been a contro-
versial one. This book will not end or resolve all controversies, because we can
answer some, but not all the relevant questions in connection with a complete
thermodynamic theory of electromagnetism.

The basic difficulties in the description of electromechanical interaction
models are manifold. A first difficulty is concerned with the invariance prop-
erties of the electromagnetic field equations. As is well-known, Maxwell’s
equations are invariant under Lorentz transformations, while the balance
laws of classical mechanics are invariant under Euclidian transformations
and frame indifferent under Galilei transformations. Clearly, a proper
derivation should also treat the mechanical equations relativistically. This is
true, but for most problems of technical relevance, relativistic effects are neg-
ligible. It is therefore customary, in general, to treat the mechanical equations
classically, while the equations of electrodynamics are handled relativistically.
In so doing it might in these theories become uncertain what transformation
properties some variables are based upon. However, knowledge of such trans-
formation properties is important, because they give us indications as to what
variables are comparable among different theories.

A second and even more serious difficulty can be found in the definitions
of electromagnetic body force, body couple and energy supply. The roots of
this difficulty lie in the separation of the electromagnetic field quantities in
near and far field effects. This separation has been and still is the root of con-
troversies, because almost every author separates the total fields differently.
In other words, near and far fields are not unique.

A third difficulty is connected with the Maxwell equations, which for
deformable moving matter were first derived by Minkowski. Apart from the
Maxwell equations in Minkowski’s form there exists a variety of other
forms of the Maxwell equations in deformable media, all of which are mo-
tivated from particular models. The “action” of the electromagnetic fields
upon the material is described hereby by quantities referred to as polariza-
tion and magnetization. However, dependent upon the model of derivation,
polarization and magnetization of one theory may be and in general are dif-
ferent from polarization and magnetization of another theory. Hence, while all

K. Hutter et al.: Electromagnetic Field Matter Interaction in Thermoelastic Solids and
Viscous Fluids, Lect. Notes Phys. 710, 33–88 (2006)
DOI 10.1007/3-540-37240-7 3 c© Springer-Verlag Berlin Heidelberg 2006
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formulations of electromagnetism of deformable continua are equally valid –
we know of five different descriptions – special care must be observed that
variables of one theory are not confused with those of another.

As a final difficulty, we mention that the equations of a theory of electro-
mechanical interaction are highly nonlinear. Generally, they defy any exact
analysis even for the most simple problems that are of physical relevance. As
a result, linearization procedures are needed.

To render the above statements more precise, consider the equations of
motion which may be derived by formulating the balance law of momentum
to an arbitrary part of the body. The local form of this balance law states
that “mass times acceleration equals divergence of stress plus body force”. In
ordinary classical mechanics the body force is either set equal to zero, or else
given by the gravitational force. A body couple hardly occurs in applications,
in which case the balance law of moment of momentum implies the symme-
try of the (Cauchy) stress tensor. When the body under consideration is
interacting with electromagnetic fields, however, body force and body couple
are given by electromagnetic quantities.

The total force and the total moment exerted on a body by electromag-
netic fields may be separated into a long range and a short range effect. The
long range effect is expressed as a body force and body couple. The short
range effect, on the other hand, manifests itself as surface tractions, which
can be combined with the mechanical tractions giving rise thereby to the
definition of the stress tensor. This decomposition is not unique, thus leading
to non-unique body force expressions and non-unique stress tensors. As a
consequence, the electromagnetic body couple cannot be unique either.

Although this non-uniqueness might be quite striking to the novel reader
it is nonetheless not disturbing at all if looked upon from the right point
of view. Indeed, it is not important that the above separation into force and
stress is unique, because differences in the body forces can always be absorbed
in the stress tensors, provided that they are expressible as a divergence of a
stress. A variety of mutually incompatible formulas for the force expressible in
terms of stresses are therefore equivalent with respect to the total force. Only
this force is physically observable. Thus the incompatibility is not physical,
but metaphysical or semantic.

The incompatibility expressed above also occurs in the energy equation
(first law of thermodynamics). This equation states that the time rate of
change of the internal energy is balanced by the power of working of the
stresses, the divergence of the heat flux, and the energy supply due to elec-
tromagnetic effects and due to heat. Since stress was already said to be non-
unique, it follows that internal energy, heat flux and electromagnetic energy
supply cannot be determined uniquely either. Likewise, the electromagnetic
energy supply might contain a term that is the divergence of a vector, which
could be absorbed in the heat flux vector. As an immediate consequence, it
cannot be assured that heat flux is energy flux of thermal nature. We shall
therefore prefer the term energy flux instead.
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As was the case for the momentum equation, seemingly incompatible
expressions for internal energy, energy flux and energy supply of electromag-
netic origin do not prevent two theories from being equivalent. However, it
is easily understandable that a proof of equivalence must be difficult in gen-
eral, for stress, internal energy and entropy (and also some electromagnetic
field vectors) are interrelated by thermodynamic conditions. More explicitly,
thermodynamic requirements make stress and entropy (and other quantities)
derivable from a so-called free energy. If two theories are different in the
body force, body couple and energy supply, therefore, the condition that the
momentum and energy equations remain the same must amount to an inter-
relation between the free energies of two theories. Hence, equivalence of two
theories of electromechanical interactions is a thermodynamic statement in
general.

The question of equivalence of two theories lies at the center of the differ-
ent formulations of electromechanical interaction theories. Although there is
a valid point behind the statement that equivalence of different theories need
not be proved, because these theories describe different physical situations, we
nevertheless take the position that different formulations of electromechanical
interaction theories should yield the same results for physically measurable
quantities, if the theories are claimed to be applicable to a certain class of
material response. For instance, if we call a material a thermoelastic polariz-
able and magnetizable solid and if there is more than one formulation for such
a solid, one should expect that, irrespective of all differences in the details,
these theories will in any initial boundary value problem deliver the same
results for physically measurable quantities. Measurable or observable quan-
tities are all those which can be measured uniquely by two different observers.
All kinematical quantities that are derivable from the motion are measurable
in principle and so is the (empirical) temperature. Regarding electromagnetic
field quantities, we take the position that they are not measurable except in
vacuo where they can be observed by measuring the force on a test charge.
There exist variables not observable by any means. These are all those which
are not defined except by the mathematical properties laid down for them.

To demonstrate the equivalence of the different formulations of electro-
mechanical interaction theories it is necessary to prove that physically mea-
surable quantities in two formulations assume the same values in every point
of the body for any initial boundary value problem. This does not only mean
that the field equations of one theory must be transformable into those of the
other, but this condition also includes the boundary and initial conditions.
One of the major goals of this monograph is to give an exposition of the
existing theories of polarizable and magnetizable electrically and thermally
conducting materials and to show in what sense they can be called equivalent.

The reasons behind this non-uniqueness of electrodynamics in moving
media are twofold. For one, the action of the body on the electromagnetic
fields is generally described by adding to the field variables occurring in vacuo
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two other electromagnetic field vectors. This addition is not unique and re-
sults in different forms of the Maxwell equations. Second, even when we
restrict ourselves to a particular form of the Maxwell equations, the elec-
tromagnetic forces, couples and energy supply terms need not be unique.
More precisely, we mention that the two electromagnetic field vectors de-
scribing the interaction of a ponderable body can be introduced for instance
by postulating that every material point is equipped with a number of non-
interacting electric and magnetic dipoles. These dipole moments then form
the two additional electromagnetic field vectors, which are called polarization
and magnetization.

When the calculations with these postulated dipoles are carried through
consistently, a certain set of Maxwell equations (now called the Chu for-
mulation) emerges. These equations are different from those which follow
from the postulation that magnetization is modeled as an electric circuit,
which follows the motion of the material particle in question (statistical and
Lorentz formulations).

As far as electromagnetic body forces are concerned these are not even
unique when one is restricting oneself to a particular interaction model. In-
deed, in the Chu formulation we shall present two versions of body force
expressions and we shall prove that the two are not distinguishable by any
measurements. This proof will also be given for all other formulations. How-
ever, we shall not present the models as such, because they are amply treated
in the pertinent literature.

Although the proof of the equivalence of various theories of electrody-
namics in deformable continua is a very important achievement, we want to
state here clearly that we have performed this proof only on the level of non-
relativistic theories. The exact definitions of the term “non-relativistic” will
be made precise in the respective chapters. It may suffice to mention that
it essentially means that in MKSA-units terms containing a c−2-factor are
neglected. Here, c is the speed of light in vacuo. There exists a number of
other theories of electromechanical interactions in which it is claimed that
terms of order V 2/c2 are neglected (V = velocity of the particle in the body)
while those containing c−2-factor are kept. We term such approximations
“semi-relativistic”. Quasistatic theories (terms, containing a c−1-factor are
neglected) will not be treated here.

It is a well-known fact that fluids are best handled in the spatial descrip-
tion. It is also known that electrodynamics is usually only formulated in the
spatial description. However, for a theory of solids it would be advantageous
when all equations could be referred to the reference configuration. This is
indeed possible and it essentially amounts to the introduction of new electro-
magnetic field variables as introduced in Sect. 2.2.3 of Chap. 2, see formulas
(2.2.39). It turns out that these so-called Lagrangean field variables are
much more convenient to describe the theory of solids, because many ther-
modynamic formulas appear in a more condensed form this way (see e.g.
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the Maxwell equations (2.2.40)). Another reason for the introduction of
the material description is its advantage in the linearization of the governing
equations. This linearization procedure is substantially easier when performed
in the material rather than in the spatial description.

This brings us naturally to the linearization procedure of the various the-
ories. In principle, there are two alternatives open to extract some useful
information from these complicated equations. One is to find numerical solu-
tions for the nonlinear equations and the other is to linearize the equations
on the basis of a sequence of consistent approximations. We shall follow the
latter, because it provides a better access to the real physics of the problem.
The linearization procedure is analogous to situations referred to as “small
fields superimposed upon large fields”. The difference between these general
treatments and ours is that the deformations are assumed to be small. This
assumption is not necessary, and indeed the formal expansion procedures we
shall apply also hold true for the general case. When the restriction to small
deformations is used, however, it means physically that large external fields
primarily induce strong electromagnetic fields within the body, but only small
deformations. Therefore, in the first step of evaluating the induced electro-
magnetism, the deformations may be neglected alltogether. A set of zeroth-
order equations, which formally agrees with rigid-body electrodynamics, is
thus obtained. In the second step small strains are considered which add small
but important corrections to the zeroth-order electromagnetic fields. Thus,
the second set consists of linear field equations, the coefficients of which gen-
erally depend upon the zeroth-order electromagnetic fields. These field equa-
tions may then be applied to solve problems such as magnetoelastic buckling,
wave propagation in a material subject to electromagnetic fields, etc.

Clearly, because we shall prove that all electromechanical interaction the-
ories of polarizable and magnetizable solids are equivalent, the linearization
procedure mentioned above need only be performed for one particular theory,
which can be selected according to our needs. Moreover, it should be clear
that this equivalence must amount in the statement how the free energy as
a function of its independent variables in one theory is related to the free
energy of another theory. The set of independent variables in this second
free energy may very well be different from the first one. In other words, the
correspondence relations for equivalence of various theories are dependent
on which set of independent variables is chosen in the constitutive relations,
but it is quite clear that the equivalence as such should not depend on the
choice of the independent fields. From a theoretical point of view the problem
just raised is not a serious one, because, in principle, equivalence of different
constitutive formulations in one single theory can be established quite easily.
It then suffices to prove equivalence of two different electromagnetic descrip-
tions of deformable bodies with the aid of just one constitutive formulation
in each of them.
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To find the free energy of a particular formulation from that of another
one is a very difficult problem in practice, however. It amounts to solving
a functional differential equation the solutions to which are not known to
date. Nevertheless, special cases are straightforward to handle. They serve
as explicit examples, which should demonstrate that equivalence is possible.
Mathematically this is important, because it serves as an explicit demon-
stration that the functional differential equations mentioned above do admit
exact solutions. That these correspond to a reasonable physical situation
is a nice additional property. The mathematical question of existence and
non-existence of solutions will not be attacked here. Instead we look at the
approximations in the way described below.

It is customary in applications to write for the free energies polynomial
expressions, and it is generally assumed that these polynomials can be trun-
cated at a certain level. When polarization and magnetization are amongst
the independent constitutive variables the free energy will be a polynomial ex-
pression in the deformation tensor, the temperature, polarization and magne-
tization, and the coefficients in this polynomial expression give rise to effects
such as magnetic and electric anisotropy, magnetostriction, electrostriction
etc. The coefficients bear the names electric and magnetic susceptibilities etc.
The same theory could be derived also with the electric field strength and the
magnetic induction as independent fields instead of magnetization and po-
larization. The free energy of this formulation would again be expressed as a
polynomial of its variables and it would again be truncated at a certain level.
This polynomial would again give rise to effects such as electric and magnetic
anisotropies, magnetostriction and electrostriction etc, but it is evident that
the coefficients of this polynomial must be different from those of the other, if
the two formulations aim at describing the same phenomena. The literature
is full of confusion in this regard, mainly because different coefficients bear
the same name. From the above it is, however, quite clear that there must be
relations between the above mentioned coefficients. We shall show how these
relations look like and in what sense the emerging approximate theories can
be regarded to be equivalent. The findings can be summarized as follows: Two
formulations, in which the free energies are represented by polynomials of a
certain order in their variables, can only be equivalent to within terms that
were omitted in the expansion process. Only on the basis that these terms
are negligibly small can we claim two theories to be equivalent. An analogous
statement also holds for one single formulation in which certain constitutive
quantities are interchanged as dependent and independent variables.

3.2 Scope of the Survey

In this chapter we make an attempt to surveying various electromagnetic
interaction models known to date. We do not present all the descriptions of
magnetizable and polarizable deformable bodies, but list the ones that have
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received considerable attention in the recent literature only. A comparison of
these models with still other ones will be given in Sect. 3.6.

Any continuum theory of deformable bodies subject to electromagnetic
fields amounts to the presentation of the basic electromagnetic field variables,
their relations to the other fields, as well as to the postulation of electromag-
netic body force, body couple and energy supply. Once this is done, the
Maxwell equations and the balance laws of mechanics and thermodynam-
ics can be expressed in terms of the variables of the model in question. Using
thermodynamic arguments, it is then a routine matter to reduce a postu-
lated set of constitutive equations to a form compatible with the second law
of thermodynamics.

It is the purpose of this chapter to present the various models of electro-
mechanical interactions, to scrutinize their invariance properties, to derive
the constitutive theory in each peculiar case and to present each model such
that, firstly, a comparison of one model with any other can be achieved fairly
straightforwardly and, secondly, an initial boundary value problem can be
solved, at least in principle.

3.3 The Two–Dipole Models

As discussed by Fano, Chu and Adler [73], or Penfield and Haus [177],
in the Chu formulation the Maxwell equations for moving matter are ex-
pressed in terms of Q, Ji, the velocity field ẋi, and four electromagnetic field
quantities EC

i ,HC
i , PC

i and MC
i , which are related to the fields Di, Ei, Bi and

Hi by the following transformation rules

Di = ε0E
C
i + PC

i , Ei = EC
i + µ0eijkẋjH

C
k ,

Bi = µ0H
C
i + µ0M

C
i , Hi = HC

i − ε0eijkẋjE
C
k .

(3.3.1)

For reasons that will become apparent shortly we shall occasionally also make
use of two auxiliary fields defined by

Ba
i := µ0H

C
i , Da

i := ε0E
C
i . (3.3.2)

As usual, EC
i and HC

i are the electric and magnetic field strengths, and PC
i

and MC
i are the polarization per unit volume and the magnetization per unit

volume, respectively. In order to differentiate these fields from those occurring
in other formulations, we have used a superscript C to indicate that these
fields are those as defined by Chu. Substituting (3.3.1) and (3.3.2) into the
Maxwell equations (2.2.15) and (2.2.21), we obtain
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Ba
i,i = −µ0M

C
i,i ,

eijkE
C
k,j +

∂Ba
i

∂t
= −µ0

∂MC
i

∂t
+ µ0eijk(eklmẋlM

C
m),j ,

Da
i,i = Q− PC

i,i ,

eijkH
C
k,j −

∂Da
i

∂t
= Ji +

∂PC
i

∂t
− eijk(eklmẋlP

C
m),j .

(3.3.3)

In the above equations µ0 and ε0 are universal constants with ε0µ0 = c−2, c
being the speed of light in vacuo. If we regard EC

i and HC
i as the basic elec-

tromagnetic fields, then, apart from Ji and Q, the terms on the right-hand
sides of (3.3.3) may be interpreted as charge and current densities due to po-
larization and magnetization. By assuming that positive and negative electric
and magnetic charges exist and may be combined to electric and magnetic
dipole moments, the above charge and current densities due to polarization
and magnetization can easily be derived, Pao & Hutter [171], Pao [172].
Equations (3.3.3) are therefore completely symmetric in the electric and mag-
netic field quantities except that magnetic monopols are assumed not to exist,
so that the corresponding charge and current densities are absent in (3.3.3).
This interpretation is helpful for the derivation of electromagnetic body force,
body couple and energy supply.

The above set of electromagnetic variables is based on the postulations
that:

(i) only two vector quantities are necessary to describe the electromagnetic
fields in free space, and

(ii) material bodies contribute toward the electromagnetic fields by acting as
sources for these fields.

These sources are usually interpreted in terms of electric and magnetic
dipoles, each such doublet being composed of a negative and positive electric
and magnetic monopole. We would like to de-emphasize this interpretation,
mainly because of the well-known objections physicists may rise against it.
Nevertheless we accept the Chu formulation as a proper description, but view
it as obtained from the definitions (3.3.1) by mere variable transformations.

Before we proceed it is advantageous to investigate how the Chu-variables
behave under the transformations discussed in Sect. 1.6. Following an ap-
proach analogous to that outlined by Truesdell and Toupin in [244], Sect.
283, it is not difficult to show that under the Euclidian transformation group

Q transforms as an objective scalar ,

Ei, P
C
i ,Ji transform as objective vectors ,

Hi, µ0M
C
i transform as objective axial vectors .

(3.3.4)

It can also be shown that
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Da
i transforms as an objective vector, while

Ba
i transforms as an objective axial vector ,

(3.3.5)

under the Euclidian transformation group. For the main lines of the proof
the reader may consult Appendix A. It is clear that the above transformation
rules also apply under the slightly less general Galilei group. The properties
laid down in (3.3.4) and (3.3.5) are exact in the sense that the Maxwell

equations can exactly (that is without the neglect of c−2-terms) be rendered
Euclidian invariant. However, relations (3.3.2) must also be satisfied, and
they are not Euclidian invariant, but Lorentz invariant or Galilei invari-
ant only to within terms containing a c−2-factor (see also eqs. (3.3.6)7,8).

Therefore, the Chu formulation of electromagnetism consisting of the
Maxwell equations (3.3.3) together with the aether relations (3.3.2) is in-
variant under the Galilei group only within the non-relativistic approxima-
tion. Hence, in order to remain consistent, we must neglect in the following
interaction models all terms preceded by a factor c−2.

In order to investigate semi-relativistic objectivity properties, let us con-
sider the extended Lorentz group. Under these transformations the Chu

variables transform (to within terms of order O(V 2/c2)) according to

◦
Q= Q− 1

c2
ẋiJi + O(V 2/c2) ,

◦
J i= Ji + O(V 2/c2) ,

◦
E i= Ei + O(V 2/c2) ,

◦
Hi= Hi + O(V 2/c2) ,

◦
PC

i = PC
i + O(V 2/c2) ,

◦
MC

i = MC
i + O(V 2/c2) ,

◦
Da

i = Da
i +

1
c2

eijkẋjH
C
k + O(V 2/c2) ,

◦
Ba

i = Ba
i − 1

c2
eijkẋjE

C
k + O(V 2/c2) .

(3.3.6)

Thus it is obvious that the transformation rules (3.3.4) also hold under the
extended Lorentz group, if terms of O(V 2/c2) are dropped. There is only

one exception, namely that Q has to be replaced by
◦
Q. In the non-relativistic

approximation (c−2 = 0) this difference is negligible, however, and hence in

this approximation we may everywhere replace Q by
◦
Q. Moreover, there are

reasons to assume that ‖Ji‖ is of the order of ‖QV ‖. Then, Q may even

be replaced by
◦
Q in the semi-relativistic approximation. As a consequence

the Chu formulation of electromagnetism has the nice feature to obey the
non-relativistic as well as the semi-relativistic invariance requirements. Note
that, in contrast to (3.3.5), the auxiliary fields Da

i and Ba
i do not behave as

objective quantities under the Lorentz transformation group, not even in a
semi-relativistic sense.
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A complete theory of deformable, polarizable and magnetizable bodies
consists of a set of electromagnetic and thermomechanical equations, the lat-
ter including expressions for the body force, body couple and energy supply
due to the electromagnetic fields. On the non-relativistic level there are es-
sentially two distinct formulations both of which use the dipole model not
only for the polarization but also for the magnetization.

3.3.1 The Two–Dipole Model with a Nonsymmetric
Stress Tensor (Model I)

As mentioned above, to complete the description of deformable continua in
the electromagnetic fields, expressions for ρF e

i , ρL
e
ij and ρre are needed. Pen-

field and Haus [177] and Pao and Hutter [171] have motivated and de-
rived the following expressions using the two-dipole model

ρF e
i = QEC

i + µ0eijkJjH
C
k

+ PC
j EC

i,j + µ0eijkẋjH
C
k,lP

C
l + ρµ0eijk

d

dt

(
PC

j

ρ

)

HC
k

+ µ0M
C
j HC

i,j − ε0eijkẋjE
C
k,lµ0M

C
l − ρε0eijk

d

dt

(
µ0M

C
j

ρ

)

EC
k ,

ρLe
ij = PC

[i Ej] + µ0M
C
[i Hj] ,

ρre = JiEi + ρEi
d

dt

(PC
i

ρ

)
+ ρHi

d

dt

(µ0M
C
i

ρ

)
.

(3.3.7)
The complete derivation of (3.3.7) as given by Pao and Hutter [171], is
based on the assumptions that:

(i) each material particle is equipped with a number of mutually noninter-
acting electric and magnetic dipoles,

(ii) each monopole suffers an electromagnetic body force as described by the
Lorentz force (see below), and

(iii) the monopoles of a particular dipole are only a small distance apart so
that Taylor series expansions are justified.

The Lorentz force mentioned in assumption (ii) is hereby taken in the form

ρFLorentz
i = QeEC

i + µ0eijkQeẋjH
C
k + QmHC

i − ε0eijkQmẋjE
C
k , (3.3.8)

where Qe and Qm are the electric and magnetic charges of the monopoles.
Again we do not wish to emphasize the physical aspects of this approach,
but we would like to view (3.3.7) as possible interaction postulates. We refer
to the paper of Pao and Hutter [171], for the details of the derivation.
Substituting (3.3.7) into the balance laws (2.2.9) yields the local balance
laws of mass, linear and angular momentum and energy in the form
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ρ̇ + ρẋi,i = 0 ,

ρẍi = tij,j + ρF ext
i + QEC

i + µ0eijkJjH
C
k

+PC
j EC

i,j + µ0eijkẋjH
C
k,lP

C
l + ρµ0eijk

d

dt

(PC
j

ρ

)
HC

k

+µ0M
C
j HC

i,j − ε0eijkẋjE
C
k,lµ0M

C
l − ρε0eijk

d

dt

(µ0M
C
j

ρ

)
EC

k

t[ij] = PC
[i Ej] + µ0M

C
[i Hj] ,

ρU̇ = tij ẋi,j − qi,i + JiEi + ρEi
d

dt

(PC
i

ρ

)
+ ρHi

d

dt

(µ0M
C
i

ρ

)
+ ρrext .

(3.3.9)
It is a routine though rather elaborate matter to transform (3.3.7) to the
form listed in (2.4.7). One obtains

ItMij = ε0E
C
i EC

j + µ0H
C
i HC

j + EiP
C
j + µ0HiM

C
j

−1
2
δij

(
ε0E

C
k EC

k + µ0H
C
k HC

k

)
,

Igi = − 1
c2

eijkE
C
j HC

k , (3.3.10)

Iπi = −eijkE
C
j HC

k +
(
PC

i EC
j + µ0M

C
i HC

j

)
ẋj ,

Iω = −1
2

(
ε0E

C
i EC

i + µ0H
C
i HC

i

)
.

Here we have used a left upper index to distinguish these quantities from
those of other interaction models.

With the expressions (3.3.10) the jump conditions of momentum and en-
ergy as listed in (2.4.11) are readily derived. For the sake of easy reference
they are given below together with the jump conditions of electromagnetic
fields and mass
[[
µ0H

C
i + µ0M

C
i

]]
ni = 0 ,

[[
ε0E

C
i + PC

i

]]
ni = 0 ,

[[
eijkE

C
j nk + µ0ẋiM

C
k nk + µ0H

C
i wn − µ0M

C
i (ẋknk − wn)

]]
= 0 ,

[[
eijkH

C
j nk − ẋiP

C
k nk − ε0E

C
i wn + PC

i (ẋknk − wn)
]]

= 0 ,

[[
ρ(ẋini − wn)

]]
= 0 ,

[[
tij + ε0E

C
i EC

j + µ0H
C
i HC

j + EiP
C
j + µ0HiM

C
j

− 1
2δij

(
ε0E

C
k EC

k + µ0H
C
k HC

k

)
+

1
c2

eiklE
C
k HC

l ẋj

]]
nj

−
[[
(ρẋi +

1
c2

eiklE
C
k HC

l )(ẋjnj − wn)
]]

= 0 ,

(3.3.11)
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[[

ẋitij − qj − eijklE
C
k HC

l +
(
PC

ij E
C
i + µ0M

C
j HC

i

)
ẋi

+ 1
2

(
ε0E

C
k EC

k + µ0H
C
k HC

k

)
ẋj

]]

nj

−
[[{

1
2ρẋiẋi + ρU + 1

2

(
ε0E

C
i EC

i + µ0H
C
i HC

i

)}
(ẋjnj − wn)

]]

= 0 .

Note that the jump conditions (3.3.11), specialized for material surfaces,
have also been obtained by Pao and Hutter, [171]. Their jump conditions
for the stress, however, does not contain the term

[[
1
c2

eiklE
C
k HC

l ẋj

]]

nj ,

but, as we shall soon see, this term is negligible in a non-relativistic theory
as it contains a prefactor c−2.

Before discussing the constitutive equations, it is interesting to look at
the invariance properties of the electromagnetic body force, body couple and
energy supply. At the beginning of this section the invariance properties
of the electromagnetic field variables were listed. From these it is immedi-
ately seen that Le

ij transforms under the Euclidian group as an objective
skew-symmetric tensor. Under the extended Lorentz group Le

ij still trans-
forms as an objective skew-symmetric tensor, but only to within terms of
order O(V 2/c2). Hence, Le

ij is objective non-relativistically as well as semi-
relativistically. If we write the energy supply term (3.3.7)3 in the form

ρre = (Ji+
�

Pi)Ei + µ0

�

Mi Hi + (EiPj + Hiµ0Mj)ẋi,j , (3.3.12)

then we recognize that ρre is not an objective scalar under the Euclidian
transformation group because of the term involving ẋi,j . Incidentally, in
(3.3.12) we have written Pi and µ0Mi for PC

i and µ0M
C
i in order to stress

the invariance properties of PC
i and µ0M

C
i . Moreover, it should be noted that

the material time derivative of an objective vector is not an objective vector
under the Euclidian group; but the convective time derivative is objective.
This is the reason why we have tried to use convective time derivatives in
(3.3.12). The non-objective part of (3.3.12) is now given by

(EiPj + µ0HiMj)ẋ[i,j] ,

which, in view of (3.3.9)3, equals

− t[ij]ẋ[i,j] .

With use of this result, (3.3.12) shows that

ρre + t[ij]ẋ[i,j] = (Ji+
�

Pi)Ei +µ0

�

Mi Hi + (EiPj +µ0HiMj)ẋ(i,j) , (3.3.13)
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is an objective scalar. Hence, the balance of internal energy can be written
as

ρU̇ = t(ij)ẋ(i,j) − qi,i + (Ji+
�

Pi)Ei + µ0

�

Mi Hi + (EiPj + µ0HiMj)ẋ(i,j) ,
(3.3.14)

a form in which each term is an objective scalar under the Euclidian trans-
formation group. In much the same way it can be shown that each term in
the above equation is – to within terms of order O(V 2/c2) – also an objec-
tive scalar under the extended Lorentz group. Hence, the energy balance
law is an invariant equation in the non-relativistic and semi-relativistic sense.
Finally, we also investigate the transformation properties of the electromag-
netic body force (3.3.7)1. A straightforward calculation shows that ρF e

i can
be written in the following form

ρF e
i = (Q− PC

j,j)Ei + eijk(Jj+
�

PC
j )Ba

k

−µ0M
C
j,jHi − eijkµ0

�

MC
j Da

k + (EiP
C
j + Hiµ0M

C
j ),j .

(3.3.15)

Using the transformation properties stated in (3.3.4) and (3.3.5), we readily
see that each term on the right-hand side of this equation is an objective (po-
lar) vector under the Euclidian transformation group. Because of the trans-
formation properties of the auxiliary fields Da

i and Ba
i , the body force does

not enjoy the invariance properties of semi-relativistically correct Lorentz

transformations, however.
The above expression of the electromagnetic body force is written in a

form which still contains the auxiliary fields. These fields may be eliminated
with the aid of relations (3.3.2), which, however, are only invariant equa-
tions in the non-relativistic approximation. A straightforward calculation, in
which the Maxwell equations (3.3.3) are used and in which terms of order
O(V 2/c2) are neglected, then shows that ρF e

i can be written in the form

ρF e
i = QEi + µ0eijkJjHk + PjEi,j + µ0eijk

�

Pj Hk

+µ0MjHi,j +
1
c2

[(Jj+
�

Pj)(ẋiEj − ẋjEi)

+eiklMjElẋk,j + ρeijk
d

dt
(Mj/ρ)EC

k ] .

(3.3.16)

In this form the body force is no longer an objective vector under Euclidian
transformations; this objectivity is destroyed by use of relations (3.3.2) for the
elimination of Da

i and Ba
i . However, in a non-relativistic approximation the

term involving a c−2-term must be dropped. Hence, within a consistent non-
relativistic approximation the momentum equation (3.3.9)2 must be written
as

ρẍi = tij,j + ρF ext
i + QEi + µ0eijkJjHk + PjEi,j

+µ0eijk

�

Pj Hk + µ0MjHi,j ,

(3.3.17)
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or since

QEi + µ0eijkJjHk + PjEi,j + µ0eijk

�

Pj Hk + µ0MjHi,j

= {ε0EiEj + µ0HiHj + EiPj + µ0HiMj

− 1
2δij(ε0EkEk + µ0HkHk)},j + O(V 2/c2)

(3.3.18)

as

ρẍi = tij,j + ρF ext
i +{ε0EiEj + µ0HiHj + EiPj + µ0HiMj

− 1
2δij(ε0EkEk + µ0HkHk)},j .

(3.3.19)

Moreover, the c−2-terms in (3.3.10) and (3.3.11) must also be neglected so
that Igi vanishes, i.e.

Igi = 0 . (3.3.20)

Thus the jump conditions for momentum and energy reduce to
[[
tij + ε0EiEj + µ0HiHj + EiPj + µ0HiMj

− 1
2δij(ε0EkEk + µ0HkHk)

]]
nj −

[[
ρẋi(ẋjnj − wn)

]]
= 0 ,

(3.3.21)

and
[[
ẋitij − qj − ejklEkHl + (ε0EjEk + µ0HjHk)ẋk

+(PjEk + µ0MjHk)ẋk − 1
2 (ε0EkEk + µ0HkHk)ẋj

]]
nj

−
[[
{ 1

2ρẋiẋi + ρU + 1
2 (ε0EiEi + µ0HiHi)}(ẋjnj − wn)

]]
= 0 .

(3.3.22)

To summarize, we may state that the Maxwell equations together with
the balance laws of mass, momentum (in the original not approximated ver-
sion), angular momentum and energy presented here are Euclidian invariant.
However, since these equations must be supplemented by the Maxwell-
Lorentz aether relations (3.3.2), the complete set of electromagnetic and
mechanical field equations is Euclidian invariant only in the non-relativistic
approximation.

With this digression on invariance properties, which in our opinion are
crucial, we now continue with the constitutive theory, which in accordance
with the preceding conclusions must also be Euclidian invariant. The con-
ditions for these requirements to be satisfied are given in Sect. 1.7, and in
equation (2.6.5) some possible constitutive relations are presented. In the
Chu formulation the B-field does not occur and therefore case d) must be
excluded here. As we are interested in a comparison of different formulations
of thermoelastic, polarizable and magnetizable bodies, we should present the
constitutive theory for each case in (2.6.5). We shall discuss the details for
case a) only, but the results for the two other cases will also be listed.



3.3 The Two–Dipole Models 47

Case a):
C = Ĉ(Fiα, Pi/ρ, (µ0Mi/ρ), Θ,Θ,i,Q) . (3.3.23)

Following the usual procedure, we introduce the Helmholtz free energy ψ
by

ψ = U −Θη , (3.3.24)

and eliminate with the aid of (3.3.7)3 rext from (2.3.6). This yields

−ρψ̇ − ρηΘ̇ + tijF
−1
αj Ḟiα + ρEi

d

dt
(Pi/ρ) + ρHi

d

dt
(µ0Mi/ρ)

+JiEi − qi,i + Θφi,i ≥ 0 .

(3.3.25)

Constitutive equations are established for the (dependent) variables

tij , Ei , Hi , η , φi , qi and Ji ,

which we all assume to be functions of the form (3.3.23). Furthermore, we
assume the classical form of the entropy flux, namely

φi =
qi

Θ
. (3.3.26)

Actually this need not be done. Instead one could also postulate a general
constitutive equation for φi and then prove the relation (3.3.26). For this for-
mulation such a proof has not been given. However, in view of the equivalence
of this theory with the next one (Model II) in which the result (3.3.26) was
rigorously established, we may regard (3.3.26) as a proven statement.

We now proceed in the way as described in Sect. 1.7. Substituting the con-
stitutive equations for the dependent variables into the Maxwell equations
(3.3.3) and into the balance laws of mass, momenta and energy (3.3.9), we
arrive at the field equations for xi, Pi,Mi, Θ and Q. Any solution to given ini-
tial data is called a thermodynamic process. Following Coleman and Noll

[44], we request the entropy inequality (or any inequality derived from it)
to hold for any smooth thermodynamic process. Since ρF ext

i and ρrext may
have any arbitrarily assigned values, this implies that we may freely choose
Fiα, Pi/ρ, µ0Mi/ρ,Θ,Q, their material time derivatives and (Θ,i)· and do
not violate the field equations. Using the constitutive relation (3.3.23) for ψ ,
substituting the expression (3.3.26) for the entropy flux φi into (3.3.25) and
performing all indicated differentiations, we obtain in the inequality

(

tijFαj − ρ
∂ψ̂

∂Fiα

)

Ḟiα + ρ

(

Ei −
∂ψ̂

∂(Pi/ρ)

)(
Pi

ρ

)�

+ρ

(

H− ∂ψ̂

∂(µ0Mi/ρ)

)(
µ0Mi

ρ

)�

−ρ

(

η +
∂ψ̂

∂Θ

)

Θ̇ − ρ
∂ψ̂

∂Θ,i
(Θ,i)� − ρ

∂ψ̂

∂QQ̇ + JiEi −
qiΘ,i

Θ
≥ 0 ,

(3.3.27)
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which is explicitly linear in

Ḟi,α, (Pi/ρ)·, (µ0Mi/ρ)·, Θ̇, (Θ,i)· , and Q̇ .

Since all these variables may have arbitrary values, their coefficients must
vanish, which implies that ψ̂ cannot depend on Q and Q,i,

ψ = ψ̂(Fiα, Pi/ρ, µ0Mi/ρ, Θ) , (3.3.28)

and that

Ei =
∂ψ̂

∂(Pi/ρ)
, Hi =

∂ψ̂

∂(µ0Mi/ρ)
, (3.3.29)

η = − ∂ψ̂

∂Θ
, tij = ρ

∂ψ̂

∂Fiα
Fjα .

Hence, the Helmholtz free energy cannot depend on the free charge and
the temperature gradient.

Of (3.3.25) there remains the residual inequality

JiEi −
Θ,iqi

Θ
≥ 0 , (3.3.30)

where Ji and qi are still general functions of the type (3.3.23).
Since φ, η, Ei,Hi and tij must be objective scalar, vector and tensor valued

fields under the full Euclidian group, ψ should have the form

ψ = ψ̂(Cαβ ,Pα,Mα, Θ) , (3.3.31)

with Cαβ ,Pα and Mα as given in (2.1.10) and (2.6.7). With this choice, the
constitutive equations (3.3.29) become

η = − ∂ψ̂

∂Θ
,

Ei =
∂ψ̂

∂Pα
Fiα ,

Hi =
∂ψ̂

∂Mα
FiαsgnJ ,

tij = 2ρ
∂ψ̂

∂Cαβ
FiαFjβ + PiEj + µ0MiHj

= ρ

[

2
∂ψ̂

∂Cαβ
+

∂ψ̂

∂Pβ
PγC

−1
αγ +

∂ψ̂

∂Mβ
MγC

−1
αγ

]

FiαFjβ .

(3.3.32)

Conversely, it is easily shown that with this choice η, Ei,Hi and tij indeed
behave as objective scalars, vectors and tensors, respectively (note that they
are in correspondence with (2.6.8), (2.6.9) and (2.6.10)). Moreover, (3.3.32)4
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implies that the balance law of angular momentum (3.3.9)3 is identically
satisfied.

The above derivation makes no direct use of the Gibbs relation, as is
usually done in irreversible thermodynamics. This must be so, because quite
contrary to irreversible thermodynamics, the Gibbs relation is a proven state-
ment here, valid not only in thermostatic equilibrium but also in a general
thermodynamic process. Indeed, (3.3.32) together with (3.3.24) imply

∂η

∂Θ
=

1
Θ

∂U

∂Θ

∂η

∂Pα
=

1
Θ

{
∂U

∂Pα
− F−1

αi Ei

}

,

∂η

∂Mα
=

1
Θ

{
∂U

∂Mα
− F−1

αi HisgnJ
}

,

∂η

∂Cαβ
=

1
Θ

{
∂U

∂Cαβ
− 1

2ρ
(tij − PiEj − µ0MiHj)F−1

αi F−1
βj

}

=
1
Θ

{
∂U

∂Cαβ
− 1

2
[
1
ρ0

TP
βα − (PγEδ + MγHδ)C−1

αγ C−1
βδ ]

}

,

(3.3.33)

from which we easily obtain the so-called Gibbs relation

dη =
1
Θ

{

dU − 1
2

[
1
ρ0

TP
βα − (PγEδ + MγHδ)C−1

αγ C−1
βδ

]

dCαβ

−EβC
−1
αβ dPα − HβC

−1
αβ dMα

}

,

(3.3.34)

where TP
αβ , Eα and Hα are defined by (2.2.33) and (2.6.7), respectively. Math-

ematically the terms in curly brackets are called a Pfaffian form.
Equation (3.3.34) delivers in a well-known manner integrability condi-

tions for the coefficient functions. These will not be derived here, because
picking a particular functional representation for the Helmholtz free en-
ergy ψ̂(·) and evaluating the fields η, Ei, Hi and tij according to (3.3.32)
guarantees the Gibbs relation to be satisfied identically. We do not say that
these integrability conditions must not be known in general. On the con-
trary, for experimentalists these relations are easier to be determined than
the free energies themselves, which may then be obtained by integration. If
the electromagnetic fields vanish, the above Pfaffian form reduces to

dη =
1
Θ

{

dU − 1
2ρ0

TP
αβdCαβ

}

, (3.3.35)

the Gibbs relation as proved correct by Carathéodory [37] for thermostatic
processes of thermoelastic materials. Irreversible thermodynamics postulates
(3.3.35) to be the Gibbs relation for all those thermodynamic processes of
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thermoelastic materials which deviate only slightly from thermostatic equilib-
rium. Here (3.3.34) holds for all thermodynamic processes in the presence of
the electromagnetic fields. Needless to say that, starting with a given electro-
mechanical interaction model, it would probably be rather difficult for an
irreversible thermodynamicist to guess a Gibbs relation of the form (3.3.34).

Case b): We now proceed with case b), which only differs from case a) in
that the independent variable Pi/ρ is replaced by Ei. In this case the con-
stitutive equations can easily be obtained from the preceding ones by the
Legendre transformation

ψ̃ = ψ − 1
ρ
EiPi = U −Θη − 1

ρ
EiPi , (3.3.36)

where

ψ̃ = ψ̃(Fiα, Ei, µ0Mi/ρ,Θ) = ψ̃(Cαβ ,Eα,Mα, Θ) . (3.3.37)

With (3.3.36) and (3.3.37) the constitutive equations (3.3.32) must now be
replaced by

η = − ∂ψ̃

∂Θ
,

Pi = −ρ
∂ψ̃

∂Eα
Fiα ,

Hi =
∂ψ̃

∂Mα
FiαsgnJ ,

tij = 2ρ
∂ψ̃

∂Cαβ
FiαFjβ − EiPj + µ0MiHj .

(3.3.38)

With the definition

ε̃ := U − 1
ρ
EiPi = U − EαPβC

−1
αβ , (3.3.39)

the Gibbs relation becomes

dη =
1
Θ

{

dε̃− 1
2

[
1
ρ0

TP
αβ + (EγPδ − MγHδ)C−1

αγ C−1
βδ

]

dCαβ

+ PβC
−1
αβ dEα − HβC

−1
αβ dMα

}
.

(3.3.40)

In a similar way we can derive constitutive equations for

Case c): Here we define

ψ̄ := U −Θη − µ0

ρ
HiMi = ψ̄(Fiα, Ei,Hi, Θ) = ψ̄(Cαβ ,Eα,Hα, Θ) . (3.3.41)

The constitutive equations pertinent to this case then become
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η = − ∂ψ̃

∂Θ
,

Pi = −ρ
∂ψ̃

∂Eα
Fiα ,

Mi = −ρ
∂ψ̃

∂Hα
FiαsgnJ ,

tij = 2ρ
∂ψ̃

∂Cαβ
FiαFjβ − EiPj − µ0HiMj .

(3.3.42)

Furthermore, after the introduction of

ε̄ := U − 1
ρ
EiPi −

µ0

ρ
HiMi = U − (EαPβ + HαMβ)C−1

αβ , (3.3.43)

the Gibbs relation may be transformed into

dη =
1
Θ

{

dε̄− 1
2

[
1
ρ0

TP
αβ + (EγPδ + HγMδ)C−1

αγ C−1
βδ

]

dCαβ

+PβC
−1
αβ dEα + MβC

−1
αβ dHα

}

.

(3.3.44)

Before we proceed to other electromechanical interaction models, we
would like to mention that all the above constitutive models are equally pos-
sible ones. Case a) is particularly fashionable among applied physicists and
has for the case that the material under consideration is polarizable-only or
magnetizable-only been used by, amongst others, Toupin [241] and Brown

[32], respectively. The formulation of case c) is used by Pao and Hutter

[171]. There are reasons for preference of case c). Indeed, since any electro-
magnetic problem must be solved in the entire space, including the vacuum,
any theory must ultimately be expressed in terms of Ei and Hi. lt follows
that in the cases a) and b) the constitutive equations for Ei and/or Hi must
be invertible in the sense that

Pi

ρ
= fP (Fiα, Ei,Hi, Θ) ,

µ0Mi

ρ
= fM (Fiα, Ei,Hi, Θ) . (3.3.45)

For linear constitutive relations such inversions are trivial; they become more
difficult or impossible analytically when dealing with nonlinear theories.

3.3.2 The Two–Dipole Model with a Symmetric Stress Tensor
(Model II)

The above two-dipole model is not the only one that has been proposed.
There is another one, leading to a symmetric stress tensor. This model has
been investigated by Hutter [95], but it is already suggested by Fano, Chu
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and Adler [73]. lt is the two-dipole counterpart of Model V, treated below.
The Maxwell equations are the same as stated for model I. Electromagnetic
body force, couple and energy supply, however, are taken as follows

ρF e
i = QeEC

i + eijkJ
e
j µ0H

C
k + QmHC

i − eijkJ
m
j ε0E

C
k ,

ρLe
ij = 0 ,

ρre = J e
i Ei + Jm

i Hi .

(3.3.46)

Here,
J e

i = Je
i −Qeẋi and Jm

i = Jm
i −Qmẋi , (3.3.47)

and the superscripts e and m indicate that the corresponding current or
charge densities are those due to electric and magnetic charges, respectively.
Formally, (3.3.46)1 is simply the electric and magnetic Lorentz force. The
quantities can easily be read off from the Maxwell equations (3.3.3):

Qe = Q− PC
i,i , Je

i = Ji + ρ
d

dt

(
PC

i

ρ

)

− (PC
j ẋi),j ,

Qm = −µ0M
C
i,i , Jm

i = ρ
d

dt

(
µ0M

C
i

ρ

)

− (µ0M
C
j ẋi),j ,

J e
i = Ji+

�

P
C

i , Jm
i = µ0

�

M
C

i .

(3.3.48)

Substitution of (3.3.48) into (3.3.46) yields

ρF e
i = QEC

i + µ0eijkJjH
C
k

+PC
j EC

i,j + µ0eijkẋjH
C
k,lP

C
l + ρµ0eijk

d

dt

(
PC

j

ρ

)

HC
k

+µ0M
C
j HC

i,j − ε0eijkẋjE
C
k,lµ0M

C
l − ρε0eijk

d

dt

(
µ0M

C
j

ρ

)

EC
k

−(PjEi + µ0MjHi),j ,

ρLe
ij = 0 ,

ρre = JiEi+
�

P i Ei + µ0

�

Mi Hi .
(3.3.49)

Before we proceed, let us look at the invariance properties of (3.3.49). To
this end, recall that Ei,Hi, Pi = PC

i , µ0Mi = µ0M
C
i ,Q and Ji are objec-

tive quantities with respect to the Euclidian transformation group. Hence,
the electromagnetic energy supply is an objective scalar under this group.
Incidentally, it should be noted that ρre is also an objective scalar under
the extended Lorentz group, provided we restrict ourselves to the semi-
relativistic approximation.
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Regarding the electromagnetic body force (3.3.49)1, we see that the above
expression differs from (3.3.7)1 only in a term which is objective under
Euclidian and under Lorentz transformations in the semi-relativistic sense.
Hence, all conclusions drawn in Model I do apply also here, and we refer the
reader to the pertinent discussion in Model I. In conclusion we state the gov-
erning equations of this theory consistently to within the order of exactness
of the non-relativistic approximation. Hence, all terms preceded by a c−2 fac-
tor must be dropped; as a result we arrive at the following balance laws for
mass, linear and angular momenta and energy:

ρ̇ + ρẋi,i = 0 ,

ρẍi = tij,j + ρF ext
i + QEi + µ0eijkJjHk − Pj,jEi

+µ0eijk

�

P j Hk − µ0Mj,jHi ,

t[ij] = 0 ,

ρU̇ = tij ẋi,j − qi,i + JiEi+
�

P i Ei + µ0

�

Mi Hi + ρrext .

(3.3.50)

Obviously the fact that ρre is by itself an objective scalar is corroboration
of the assumption of symmetry of the stress tensor (compare the relevant
discussion in Model I).

Furthermore, a long but straightforward calculation shows that, within
the non-relativistic approximation (compare these expressions with model I)

IItMij = ε0EiEj + µ0HiHj − 1
2δij(ε0EkEk + µ0HkHk) ,

IIgi = 0 ,

IIπi = −eijkE
C
j HC

k − eijkEjHk − (ε0EkEk + µ0HkHk)ẋi

+(ε0EiEj + µ0HiHj)ẋj ,

IIω = − 1
2 (ε0EkEk + µ0HkHk) .

(3.3.51)

Hence, the jump conditions for momentum and energy become
[[
tij + ε0EiEj + µ0HiHj − 1

2δij(ε0EkEk + µ0HkHk)
]]
nj

−
[[
ρẋi(ẋjnj − wn)

]]
= 0 ,

[[
ẋitij − qj − ejklEkHl + (ε0EjEk + µ0HjHk)ẋk

− 1
2 (ε0EkEk + µ0HkHk)ẋj

]]
nj

−
[[{

1
2ρẋiẋi + ρU + 1

2 (ε0EiEi + µ0HiHi)
}

(ẋjnj − wn)
]]

= 0 .

(3.3.52)

The jump conditions of electromagnetic fields and mass are the same as those
for Model I (see (3.3.11)) and will not be repeated here.
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We now turn to the constitutive theory. We shall not present all the details
here, but list the results only. We start by eliminating ρrext from the entropy
inequality (2.3.6) and the energy balance (3.3.50)4. The result reads

−ρU̇ + ρΘη̇ + ρEi
d

dt

(
Pi

ρ

)

+ ρHi
d

dt

(
µ0Mi

ρ

)

+(tij − EiPj − µ0HiMj)ẋi,j + JiEi −
Θ,iqi

Θ
≥ 0 ,

(3.3.53)

where we have also used the Duhem relation for the entropy flux,

φi =
qi

Θ
. (3.3.54)

In [95] Hutter dealt with a theory of this complexity and proved correct
the form of the entropy flux vector introduced here as a postulate.

As before, the constitutive theory depends on the selection of the inde-
pendent variables. We may again choose constitutive relations of the form
(2.6.5), but we shall give them for case a) only. The equations for the other
cases can be derived in the same way as was done for Model I.

When the constitutive relations are of the form

C = Ĉ(Fiα, Pi/ρ, µ0Mi/ρ,Θ,Θ,i,Q) , (3.3.55)

the Helmholtz free energy

ψ := U − ηΘ = ψ̂(Cαβ ,Pα,Mα, Θ) , (3.3.56)

does not depend on Q and Θ,i and serves as potential for η, Ei,Hi and tij as
follows

η = − ∂ψ̂

∂Θ
,

Ei =
∂ψ̂

∂Pα
Fiα ,

Hi =
∂ψ̂

∂Mα
FiαsgnJ ,

tij = 2

{

ρ
∂ψ̂

∂Cαβ
FiαFjβ + E(iPj) + µ0H(iMj)

}

.

(3.3.57)

There remains
JiEi −

Θ,iqi

Θ
≥ 0 , (3.3.58)

as the reduced entropy inequality.
Finally, the Gibbs relation takes the form
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dη =
1
Θ

{

dU −
[

1
2ρ0

TP
αβ − C−1

αγ C−1
βδ (EγPδ + EδPγ + HγMδ + HδMγ)

]

dCαβ

−C−1
αβ EβdPα − C−1

αβ HβdMα

}

.

(3.3.59)
For the reader’s sake of curiosity, we mention that this theory will be shown
to be fully equivalent to the theory of model I.

This completes the description of the two-dipole models. Both descriptions
outlined above use a dipole model not only for polarization but also for
magnetization. There are no others as far as we know and all the remaining
models bear to a lesser or larger extent the notion of dipole structure for
polarization and the structure of electric circuits for magnetization.

In conclusion we wish to mention a paper by Alblas [9], who also used
the Chu formulation and who derived a theory which completely agrees with
our model I. The derivation is on the basis of a global energy balance law
(see also Sects. 2.3 and 2.8) and for a more general problem, including spin-
and dissipation effects.

In what follows, we shall discuss theories presented by Van de Ven [249],
De Groot & Suttorp [53], Müller [160] and Hutter [92].

3.4 The Maxwell–Minkowski Formulation (Model III)

The foregoing two interaction models were constructed by postulating body
force, body couple and energy supply terms due to the electromagnetic fields.
The approach in this section is different. Basically, the balance laws of mass
and momenta are derived from a global energy balance law by postulating
certain invariance properties. In [249] Van de Ven follows this method, first
formulated by Green and Rivlin [77], and developed for a ferromagnetic
solid by Alblas [8]. By postulating that the energy balance is invariant under
rigid-body motions and by making some a priori assumptions concerning the
invariance properties of the quantities involved, the equations of balance of
mass and momenta are derived. In this derivation all terms preceded by a
factor c−2 are neglected.1

1 Clearly, the outcome of this approach essentially depends on what a priori as-
sumptions regarding the invariance properties of the various quantities are made.
Moreover, special care must be observed when neglecting terms which contain a
c−2-factor. Indeed, there is an essential difference between the approximations
performed in the above mentioned references and the non-relativistic approxima-
tion in Sect. 1.6. While we apply SI-units, Gaussian units are used in [249], and
it is a well-known fact that a c−2-term in one system of units is not necessarily
a c−2-term in the other system of units as well. For instance

1

c
E × H



56 3 A Survey of Electromagneto-Mechanical Interaction Models

Before proceeding the following remark seems to be in order: It is
conceivable that one might object to associate the names of Maxwell

and Minkowski with the formulation presented below, and indeed neither
Maxwell nor Minkowski ever presented a formulation of this kind. How-
ever, for the special case of a magnetostatic problem, the magnetoelastic
stresses that will be obtained here, are identical with those used by W.F.
Brown Jr. in his monograph, [32]; and Brown stated that these stresses
could be derived by taking over from Maxwell a formula for the magnetic
force. This is justification for us to associate this (dynamic) theory with the
name of Maxwell. Moreover, since the Maxwell equations will be used
in the Minkowski formulation, we shall refer to the formulation presented
in this section as the Maxwell-Minkowski formulation. Clearly, the asso-
ciation of names with certain theories or formulations of theories bears its
well-known disadvantages and a reader not willing to accept our proposal
may reject it and invent his own name for it. As an example the reader may
recall that there is no unique version of the Maxwell-Minkowski stress
tensor either. We shall come back to this subject at the end of this Section.

As said above, the Maxwell equations will be expressed in terms of the
Minkowski field variables EM

i ,DM
i ,HM

i , and BM
i , which are related to the

field variables introduced in (2.2.12) and (2.2.20) by

Ei = EM
i + eijkẋjB

M
k , Di = DM

i ,

Hi = HM
i − eijkẋjD

M
k , Bi = BM

i .
(3.4.1)

Accordingly, the following set of Maxwell equations is obtained:

Bi,i = 0 , eijkE
M
k,j +

∂Bi

∂t
= 0 ,

Di,i = Q, eijkH
M
k,j −

∂Di

∂t
= Ji .

(3.4.2)

Here and henceforth, since no confusion is possible, the superscript M for Di

and Bi is omitted. In a purely formal way polarization per unit volume and
magnetization per unit volume can be introduced via the definitions

in Gaussian units becomes
1

c2
E × H

in SI-units. As a consequence of both, the a priori assumptions on invariance
that are not in conformity with the results of Sect. 1.6 and the discrepancy in
the neglect of terms like that demonstrated above, the equations derived in [249]
are not Euclidian invariant in the sense as defined in Sect. 1.6. However, it is
possible to derive from an analogous energy balance as was postulated in [249]
local balance equations of mass, linear and angular momentum and energy that
are invariant under Euclidian transformations by simply applying in a consistent
way non-relativistic invariance requirements. This then fully justifies the a priori
assumptions we will impose.
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PM
i := Di − ε0E

M
i , µ0M

M
i := Bi − µ0H

M
i , (3.4.3)

and it is convenient to introduce also the variable

Mi := MM
i + eijkẋjP

M
k . (3.4.4)

It is now a routine matter (see for instance Appendix A) to prove that under
the Euclidian transformation group

Ei, Di and PM
i transform as objective vectors, and

Hi, Bi and Mi transform as objective axial vectors ,

(3.4.5)

respectively.
In particular, and as an easy calculation also shows directly, under the

rigid-body translation

x′
i = xi − bi(t) , t′ = t (3.4.6)

the following transformation laws must hold

D′
i = Di , EM ′

i = EM
i + eijk ḃjBk ,

B′
i = Bi , HM ′

i = HM
i − eijk ḃjDk ,

Q′ = Q , J ′
i = Ji −Qḃi ,

PM ′

i = PM
i , MM ′

i = MM
i + eijk ḃjP

M
k .

(3.4.7)

On the other hand, the Minkowski fields can also be subjected to the special
Lorentz transformation (2.5.4), which when written in the semi-relativistic
approximation, becomes

x�
i = xi − Vit , t� = t− 1

c2
xiVi . (3.4.8)

Then, the transformation rules are

D�
i = Di +

1
c2

eijkVjH
M
k , EM�

i = EM
i + eijkVjBk ,

B�
i = Bi −

1
c2

eijkVjE
M
k , HM�

i = HM
i − eijkVjDk ,

Q� = Q− 1
c2

JiVi , J�
i = Ji −QVi ,

(PM
i )� = PM

i − 1
c2

eijkVjM
M
k , (MM

i )� = MM
i + eijkVjP

M
k .

(3.4.9)

Comparison of (3.4.7) and (3.4.9), which constitute the transformation rules
for special Euclidian and Lorentz transformations, shows that the primed
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and stared quantities equal only in the non-relativistic approximation. This
conclusion is also correct if the Minkowski-fields are subject to general
Euclidian or Lorentz transformations. In view of the results of Sect. 1.6
this must be so expected.

A nice application of equations (3.4.7) and (3.4.9) is obtained if the in-
variance properties of the Maxwell equations are investigated. To this end,
they are best expressed in terms of the objective fields Ei,Di,Hi, Bi,Ji and
Q and read then (see (2.2.15) and (2.2.21))

Bi,i = 0 , eijkEk,j+
�

Bi = 0 ,

Di,i = Q , eijkHk,j−
�

Di = Ji .

(3.4.10)

If all the fields in these equations were independent it would follow at
once from the above listed transformation properties, that the equations
(3.4.10) would be invariant under Euclidian transformations. However, re-
lations (3.4.3), which replace the Maxwell-Lorentz aether relations in the
previous discussions, are not invariant under Euclidian transformations, for
according to (3.4.7) and (3.4.3) we have

PM ′

i = PM
i = Di − ε0E

M
i = D′

i − ε0E
M ′

i + ε0eijk ḃjBk

= D′
i − ε0E

M ′

i +
1
c2

eijk ḃj(Hk + Mk) ,

µ0M
M ′

i = µ0M
M
i + µ0eijk ḃjP

M
k = Bi − µ0H

M
i + µ0eijk ḃjP

M
k

= B′
i − µ0H

M ′

i − µ0eijk ḃj(Dk − Pk)

= B′
i − µ0H

M ′

i − 1
c2

eijk ḃjEk .

(3.4.11)

Because equation (3.4.6) is a special Euclidian transformation, we conclude
that relations (3.4.3) are not invariant under Euclidian transformations in
general except in the non-relativistic sense.

A similar calculation can also be performed with (3.4.9). The result is that
(3.4.3) is a Lorentz invariant equation. We leave this proof to the reader.
One further particular point in (3.4.11) must be mentioned. In reaching the
non-relativistic invariance property the relation

Bi = µ0(HM
i + MM

i ) , (3.4.12)

must be used and only afterwards terms containing a c−2-factor can be
dropped. This procedure is tantamount to assuming Bi to be proportional
to µ0. Apparently this should be done consistently and hence we make the
following statements that will be observed as basic rules henceforth:
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(i) Bi must be considered to be proportional to µ0 .
(ii) Under this provision terms containing a c−2-factor should be dropped.

When these rules are observed the relations (3.4.3) and (3.4.4) may be re-
placed by the very suggestive formulas

Di = ε0Ei + Pi , and Bi = µ0Hi + µ0Mi , (3.4.13)

in which we have set
Pi = PM

i . (3.4.14)

These preliminary remarks may suffice, and so we proceed to derive the
balance laws of mass, linear and angular momentum and energy by start-
ing with a global balance law of energy that is subjected to superimposed
rigid-body motions (Euclidian transformations). Although our approach is
different in detail we shall in the following derivation essentially follow Van

de Ven [249]. Starting equation is a global energy balance law of the form

d

dt

∫

V

{ρU + 1
2 (ε0EiEi + µ0HiHi) + 1

2ρẋiẋi + ρT}dν

=
∫

V

{ρrext + ρF ext
i ẋi}dν +

∫

∂V

{tij ẋi − qj − ejklE
M
k HM

l

+ 1
2 (ε0EkEk + µ0HkHk)ẋj + Rj}daj .

(3.4.15)

This equation, in which ρT and Ri are still to be determined as functions
of the electromagnetic field quantities and the motion, is a generalization of
the purely mechanical energy balance law. Indeed, when all electromagnetic
quantities are set to zero, what results is the classical non-relativistic energy
balance law. It is also easy to interpret in (3.4.15) the terms of electromagnetic
origin. Firstly,

1
2 (ε0EiEi + µ0HiHi)

is an electromagnetic energy density, and, secondly

EM × HM

is the Poynting vector. As is well-known, both are not unique and we shall
see that other electromagnetic models correspond to different postulates of
the electromagnetic energy density and the Poynting vector. This does not
mean, however, that these models will also yield different results for physically
measurable quantities.

A clue as to what should be chosen for the as yet undetermined quantities
ρT and Ri is obtained, if (3.4.15) is written for a body whose mass density
is vanishingly small. In this case we expect (3.4.15) to become the energy
equations for the electromagnetic fields in vacuo. This energy equation is a
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consequence of the Maxwell equations (3.4.10), and it can be brought into
the form (3.4.15) (with vanishing tij , qi, ẋi, U, rext, F ext

i ). It is not hard to
show that in this case and to within terms of order c−2

ρT = 0 and Ri = 0 . (3.4.16)

In other words, in a vacuum ρT and R must vanish.
Next we determine ρT and R in a ponderable body, and for that purpose

(3.4.15) must be written in local form. Assuming sufficient smoothness of the
fields involved this yields

(ρ̇ + ρẋi,i)(U + 1
2 ẋiẋi + T ) + ρṪ −Ri,i + (eijkE

M
j HM

k ),i

+{ρẍi − ρF ext
i − tij,j − 1

2 (ε0EkEk + µ0HkHk),i}ẋi

+ρU̇ − tij ẋi,j + qi,i − ρrext + 1
2 (ε0EkEk + µ0HkHk)� = 0 .

(3.4.17)

This equation is now subjected to Euclidian transformations and it is pos-
tulated that it is invariant under these transformations. The details of these
calculations are somewhat tedious and are presented in full detail in Appen-
dix B. They deliver expressions for ρT and R as well as local balance laws of
mass, linear and angular momentum and energy. The results for ρT and R
in Appendix B are

ρT = 0 , and Ri = (PjEj + µ0MjHj)ẋi + ejklPkBlẋj ẋi . (3.4.18)

We note that only the second term in the expression for Ri follows from in-
variance requirements, whereas the first term is chosen arbitrarily to simplify
certain formulas. This seems to be a disadvantage of this method of deriva-
tion, however a change in R only results in a different stress tensor tij (and,
eventually, a different energy flux qi) and it can be shown that this has no
effect in the ultimate form of the balance laws.

If (3.4.18) is substituted into (3.4.15) we obtain as global energy balance

d

dt

∫

V

{
ρU + 1

2 (ε0EiEi + µ0HiHi) + 1
2ρẋiẋi

}
dν

=
∫

V

{
ρrext + ρF ext

i ẋi

}
dν +

∫

∂V

{
tij ẋi − qj − ejklEkHl

+(DjEk + BjHk)ẋk − 1
2 (ε0EkEk + µ0HkHk)ẋj

}
daj ,

(3.4.19)

from which a local balance law can be derived, which with the use of (3.4.10)
and (3.4.13) may be written in the form
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(ρ̇ + ρẋi,i)(U + 1
2 ẋiẋi) + ρU̇ − JiEi − Ei

�

P i −µ0Hi

�

Mi

+qi,i − ρrext − [tij + EiPj + µ0HiMj ]ẋi,j

+[ρẍi − tij,j − ρF ext
i −QEi − eijkJjBk − PjEj,i

−µ0MjHj,i − eijk(Dj

�

Bk +
�

Dj Bk)]ẋi = 0 .

(3.4.20)

The invariance requirements under which

ρ, U, tij , (ẍi − F ext
i ), qi, ρr

ext,Q,Ji, Ei, Pi,Hi,Mi,Di, Bi

are assumed to transform as objective quantities then yield the local balance
laws of

mass
ρ̇ + ρẋi,i = 0 . (3.4.21)

momentum

ρẍi − tij,j − ρF ext
i = ρF e

i = QEi + eijkJjBk

+PjEj,i + µ0MjHj,i + eijk(Dj

�

Bk +
�

Dj Bk) ,
(3.4.22)

angular momentum
t[ij] = ρLe

ij = P[iEj] + µ0M[jHj] , (3.4.23)

energy

ρU̇ − tij ẋi,j + qi,i − ρrext = ρre

ρre = JiEi + ρEi
d

dt
(Pi/ρ) + ρµ0Hi

d

dt
(Mi/ρ) .

(3.4.24)

The source terms in (3.4.22) and (3.4.24) can be transformed into the form
(2.4.7) whereby, to within terms of order c−2,

IIItMij = EiDj + HiBj − 1
2δij(ε0EkEk + µ0HkHk) ,

IIIgi = 0 ,

IIIπi = −eijkEjHk + (DiEj + BiHj)ẋj − (ε0EjEj + µ0HjHj)ẋi ,

IIIω = − 1
2 (ε0EiEi + µ0HiHi) ,

(3.4.25)

is obtained.
Substitution of (3.4.1) into (2.4.3) and of (3.4.25) into (2.4.11) yields the

following set of jump conditions
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[[
eijkE

M
j nk + Biwn

]]
= 0 ,

[[
Di

]]
ni = 0 ,

[[
eijkH

M
j nk −Diwn

]]
= 0 ,

[[
Bi

]]
ni = 0 ,

[[
ρ(ẋini − wn)

]]
= 0 ,

[[
tij + EiDj + HiBj − 1

2δij(ε0EkEk + µ0HkHk)
]]
nj

−
[[
ρẋi(ẋjnj − wn)

]]
= 0 ,

[[
ẋitij − qj − ejklEkHl + (DjEk + BjHk)ẋk

− 1
2 (ε0EkEk + µ0HkHk)ẋj

]]
nj −

[[
{ 1

2ρẋiẋi + ρU

+ 1
2 (ε0EiEi + µ0HiHi)}(ẋjnj − wn)

]]
= 0 .

(3.4.26)

We note that (3.4.26)6,7 can still be written in a somewhat different form.
As described in [249] it can be shown that for a material surface relations
(3.4.26)6,7 are equivalent to

[[
tij
]]
nj = 1

2

[[
(µ0Mjnj)2 + (Pjnj)2

]]
ni ,

[[
qj

]]
nj =

[[
ẋitij − 1

2{(µ0Mknk)2 + (Pknk)2}ẋj

]]
nj .

(3.4.27)

If the singular surface is a boundary separating a ponderable body from a
vacuum, it is easily shown that equation (3.4.27)2 reduces to

[[
qj

]]
nj = 0. In

this special case, therefore, the normal component of the energy flux vector
must vanish.

In order to make the theory complete, the balance equations must be
supplemented by constitutive equations. Our presentation will be brief as
it follows exactly the approach in the preceding sections. As independent
variables we choose

Cαβ ,Eα,Mα, Θ,Θ,α and Q , (3.4.28)

where Cαβ , Eα and Mα have already been introduced in (2.1.10) and (2.6.7).
Defining the energy functional ψ̃ by (see (3.3.36))

ψ̃ := U − ηΘ − Pi

ρ
Ei , (3.4.29)

and using, as before, for the entropy flux the classical relation

φi =
qi

Θ
,

we deduce from the reduced entropy inequality that ψ̃ can neither depend on
Θ,α nor Q; hence

ψ̃ = ψ̃(Cαβ ,Eα,Mα, Θ) . (3.4.30)
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Moreover,

η = − ∂ψ̃

∂Θ
,

Pi = −ρ
∂ψ̃

∂Eα
Fiα ,

Hi =
∂ψ̃

∂Mα
FiαsgnJ ,

tij = 2ρ
∂ψ̃

∂Cαβ
FiαFjβ − EiPj + µ0MiHj .

(3.4.31)

Of the reduced entropy inequality there remains the residual inequality

JiEi −
Θ,iqi

Θ
≥ 0 , (3.4.32)

and the Gibbs relation becomes

dη =
1
Θ

{
d[U − PαEβC

−1
αβ ]

−1
2

[
1
ρ0

TP
αβ − (PγEδ + MγHδ)C−1

αγ C−1
βδ

]

dCαβ + PαdEα − HαdMα

}
,

(3.4.33)
with definitions of Eα, Hα, Pα and Mα as given in (2.6.7).

We still wish to point out that with the constitutive equation (3.4.31)4
the angular momentum equation (3.4.23) is satisfied identically.

At this point we have set up a complete theory, consisting of balance
laws, constitutive equations and jump conditions, for the interactions of elec-
tromagnetic and thermoelastic fields in solids based on the Minkowskian
formulation of electrodynamics. However, there is a certain arbitrariness in
the basic postulate of the theory, as manifest by the energy balance (3.4.19).
As a result, the so called Maxwell stress tensor (here denoted by tMij ) does
not appear in a unique form. Therefore, we shall give here some other for-
mulations for this global energy balance which all lead to seemingly different
theories, which, however, in the end all turn out to be equivalent.

First, we wish to consider a Minkowskian formulation as given by Pen-

field and Haus ([177], Sect. 7.3). Taking as energy balance the expression

d

dt

∫

V

{
ρU + 1

2 (ε0EiEi + µ0HiHi) + 1
2ρẋiẋi

}
dν

=
∫

V

{
ρrext + ρF ext

i ẋi

}
dν +

∫

∂V

{
tij ẋi − qj − ejklEkHl

+(DjEk + BjHk)ẋk − (EkDk + HkBk)ẋj

}
daj ,

(3.4.34)

which differs from (3.4.15) or (3.4.19) only in the choice of Ri, we derive the
local balance equations:
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ρẍi − tij,j − ρF ext
i = ρF e

i

ρF e
i = QEi + eijkJjBk −Bj,iHj −Dj,iEj + eijk(Dj

�

Bk +
�

Dj Bk)

= [EiDj + HiBj − δij(EkDk + HkBk)],j = tMij,j , (3.4.35)

t[ij] = ρLe
ij = P[iEj] + µ0M[iHj] , (3.4.36)

∂WM

∂t
+ (WM ẋi),i − tij ẋi,j + qi,i − ρrext = ρre

ρre = JiEi + EiḊi + HiḂi ,

(3.4.37)

where
WM := ρU + 1

2 (ε0EkEk + µ0HkHk) . (3.4.38)

We note that these balance laws equal those of Penfield and Haus, if the
latter are taken in the non-relativistic approximation (cf. eqs. (7.39)–(7.43)
of [177]). Furthermore, one can easily show that the only difference with the
previous formulation lies in the stress tensor. Indeed, when we require the
momentum equations in the two formulations to be the same, what results
is:

tij(3.4.35)−tij(3.4.22) = δij [DkEk+BkHk− 1
2 (ε0EkEk+µ0HkHk)] . (3.4.39)

Once this difference is taken into account the two systems based on (3.4.19)
and (3.4.34) are equivalent.

Still another possible form of the energy balance is

d

dt

∫

V

{
ρU + 1

2 (EiDi + HiBi) + 1
2ρẋiẋi

}
dν

=
∫

V

{
ρrext + ρF ext

i ẋi

}
dν +

∫

∂V

{
tij ẋi − qj − ejklEkHl

+(DjEk + BjHk)ẋk − 1
2 (EkDk + HkBk)ẋj

}
daj ,

(3.4.40)

and it leads to the following balance equations of momentum and energy

ρẍi − tij,j − ρF ext
i = ρF e

i

ρF e
i = [EiDj + HiBj − 1

2δij(EkDk + HkBk)],j ,
(3.4.41)

and
ρU̇ − tij ẋi,j + qj,j − ρrext = ρre

ρre = JiEi − 1
2 (ĖiDi − EiḊi + ḢiBi −HiḂi) .

(3.4.42)
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These equations resemble in a way a formulation in which the expressions for
the electromagnetic body force and energy supply are derived from a four-
dimensional formulation of the Maxwell equations, as outlined by Mφller
([158], Ch. 7) and in the report of Pao, ([172], Sect. 6). However, there is one
essential difference, as in (3.4.41) and (3.4.42) the rest-frame fields Ei and
Hi are used, whereas in [158] and [172] the laboratory fields Ei and Hi are
employed. Since the balance laws as presented in [158] or [172] are not invari-
ant in the non-relativistic sense, they can never be deduced from an energy
balance in the way described above. This makes it very questionable whether
the formulation, discussed in [158], describes the interactions between matter
and field in any meaningful way (see also [177], p. 202 and [172], pp. 121–
122). It is not too difficult to show that the results corresponding to (3.4.40)
and those based upon (3.4.19) are in correspondence provided that

tij(3.4.40) − tij(3.4.19) = 1
2δij(EkPk + HkMk) ,

ρU(3.4.40) − ρU(3.4.19) = − 1
2 (EiPi + HiMi) .

(3.4.43)

So far we have given three possible Minkowski formulations of electromag-
netoelastic interactions. Whenever in the sequel reference is made to the
Maxwell-Minkowski formulation (model III), the first theory of this sec-
tion is meant (i.e. system (3.4.21)–(3.4.24)).

We conclude by stating that the two theories outlined in the preceding
section could, at least for the consistent non-relativistic part, also be based
upon a global energy balance. The underlying energy balance for model I is
(see also Alblas [9])

d

dt

∫

V

{ρU + 1
2ρẋiẋi + 1

2 (ε0EkEk + µ0HkHk)}dν

=
∫

V

{ρrext + ρF ext
i ẋi}dν

+
∫

∂V

{tij ẋi − qj − ejklEkHl − 1
2 (ε0EkEk + µ0HkHk)ẋj

+(ε0EjEk + µ0HjHk)ẋk + (PC
j Ek + µ0M

C
j Hk)ẋk}daj .

(3.4.44)

In the usual way this relation leads to expressions for ρF e
i , ρL

e
ij and ρre

as given in (3.3.16), (3.3.7)2 and (3.3.7)3, respectively, except for the terms
preceded by a c−2-factor in (3.3.16).

In an analogous way, model II can be based upon the balance law

d

dt

∫

V

{ρU + 1
2ρẋiẋi + 1

2 (ε0EkEk + µ0HkHk)}dν

=
∫

V

{ρrext + ρF ext
i ẋi}dν +

∫

∂V

{tij ẋi − qi − ejklEkHl

− 1
2 (ε0EkEk + µ0HkHk)ẋj + (ε0EjEk + µ0HjHk)ẋk}daj .

(3.4.45)
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In the following sections we shall show that energy balances of this kind
can also serve as bases for the theories outlined there.

3.5 The Statistical Formulation (Model IV)

The proper physical approach toward a formulation of polarizable and magne-
tizable continua is through methods of statistical mechanics. Early attempts
go back to Rosenfeldt [204]. A comprehensive treatment - in the light of
relativistically covariant statistical mechanics - is given by De Groot and
Suttorp [53]. This book may also serve as guideline for a historical account
on the subject. In this theory, matter consists of stable groups of electrically
charged particles, such as electrons, ions etc. The field effect of these particles
within each stable group is represented by electric and magnetic multipoles,
the statistical averages of which give rise to the definition of electric polar-
ization Pi and magnetization Mi.

With regard to the statistical derivation of the Maxwell equations, De

Groot and Suttorp are entirely general and they do not introduce any non-
relativistic approximations. As a result, the macroscopic Maxwell equations
are proved to be Lorentz invariant, a property hitherto assumed to hold.

We introduce the statistical formulation again formally by transformation
rules, viz.

Bi = BS
i ,

Ei = ES
i + eijkẋjB

S
k ,

Di = ε0E
S
i + PS

i ,

Hi =
1
µ0

BS
i − eijkẋjε0E

S
k −MS

i − eijkẋjP
S
i .

(3.5.1)

Accordingly, the variables of the statistical formulation bear the superscript
S. Substituting (3.5.1) into the Maxwell equations (2.2.15) and (2.2.21),
we obtain

BS
i,i = 0 ,

eijkE
S
k,j +

∂BS
i

∂t
= 0 ,

ε0E
S
i,i = Q− PS

i,i ,

1
µ0

eijkB
S
k,j − ε0

∂ES
i

∂t
= Ji +

∂PS
i

∂t
+ eijkM

S
k,j .

(3.5.2)

Incidentally, Penfield and Haus [177] call this formulation the Boffi for-
mulation and, as a comparison with (3.4.2) and (3.4.3) shows, these variables
agree with those introduced in the preceding section as the Minkowski vari-
ables. The equations (3.5.2) are obtained also when the action of matter
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upon the electromagnetic fields is derived from very crude physical models
of stationary rigid bodies. Indeed they can be found in almost any physics
book treating electromagnetism (see e.g. Feynman [74]). They hold, how-
ever, for a much broader class of physical processes than anticipated in many
of these books and embrace all those for which the action of matter on the
electromagnetic fields has been discussed above.

The expressions for the electromagnetic force, couple and energy supply
have been derived by De Groot and Suttorp in full generality, including
relativistic effects. However, they also present two approximate versions, dif-
fering in the degree of approximation, which in our terminology are called
the non-relativistic and the semi-relativistic approximations. Here, we shall
discuss the non-relativistic case only.

In their second chapter, De Groot and Suttorp arrive at the following
non-relativistic expressions for body force, body couple and energy supply
(cf. [53], pp. 47, 63)

ρF e
i = QES

i + eijkJjB
S
k + PS

j ES
j,i + MS

j BS
j,i + ρeijk

d

dt

(
1
ρ
PS

j BS
k

)

= QEi + eijkJjBk + PjEj,i + MjBj,i + eijk(
�

P j Bk + Pj

�

Bk) ,

ρLe
ij = P[iEj] + M[iBj] ,

ρre = JiEi + ρEi
d

dt

(
Pi

ρ

)

−MiḂi ,

(3.5.3)

where

Bi = BS
i , Pi = PS

i and Mi = MS
i + eijkẋjP

S
k . (3.5.4)

Thus, the conservation of mass, the balance laws of linear and angular mo-
menta and the balance of energy become

ρ̇ + ρẋi,i = 0 ,

ρẍi = tij,j + ρF ext
i + QEi + eijkJjBk + PjEj,i

+MjBj,i + eijk(
�

P j Bk + Pj

�

Bk) ,

t[ij] = P[iEj] + M[iBj] ,

ρU̇ = tij ẋi,j − qi,i + JiEi + ρEi
d

dt

(
Pi

ρ

)

−MiḂi + ρrext .

(3.5.5)

Since, as already said before, the statistical fields are identical to the
Minkowski fields, we note that

Q,Ji, Ei, Pi, Bi and Mi
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transform under Euclidian transformations as an objective scalar, as ob-
jective vectors and as objective axial vectors, respectively. Consequently, the
electromagnetic body force and body couple, as given by the above expres-
sions, are an objective vector and a skew-symmetric tensor, respectively. Of
course, this holds true also in the non-relativistic sense as defined in Sect. 1.6.
As far as the electromagnetic energy supply is concerned, we should note, as
we already have seen in Sect. 2.2.1, that ρre cannot be an objective scalar,
because the stress tensor is not symmetric in this formulation. We should
rather look at the expression

ρre + t[ij]ẋi,j ,

which, according to (3.5.3)3, (3.5.5)3 and (3.5.2), equals

ρre + t[ij]ẋi,j = JiEi + Ei(
�

P i +eijkMk,j) + (eijkEjMk),i

+ (EiPj −MiBj + δijMkBk)ẋ(i,j) .
(3.5.6)

Each term on the right-hand side of (3.5.6) is obviously an objective scalar.
Hence, the balance equations are invariant under the Euclidian group. How-
ever, these laws are not invariant under Lorentz transformations, not even
in the semi-relativistic sense.

As the momentum equation and energy equation are invariant under
Euclidian transformations it may be expected that the results given above
are also derivable from a global energy balance as derived in Sect. 2.3. Indeed
this is true and the underlying energy balance reads

d

dt

∫

V

{
ρU + 1

2

(

ε0EiEi +
1
µ0

BiBi

)

+ 1
2ρẋiẋi

}
dν

=
∫

V

{
ρrext + ρF ext

i ẋi

}
dν +

∫

∂V

{
tij ẋi − qj − ejklEk

(
1
µ0

Bl −Ml

)

− 1
2

(

ε0EkEk +
1
µ0

BkBk

)

ẋj +
(

ε0EjEk +
1
µ0

BjBk

)

ẋk

+(PjEk −BjMk + δjkMlBl)ẋk

}
daj .

(3.5.7)

Using an approach analogous to that outlined in Sect. 2.3 and invoking the
invariance requirement that (3.5.7) is Euclidian invariant, one can show that
the above energy balance law implies the local balance equations (3.5.5).

The electromagnetic body force and energy supply can also be expressed
in the form (2.4.7). Indeed, straightforward calculations show that
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IV tMij = ε0E
S
i ES

j +
1
µ0

BiBj + ES
i Pj −MS

i Bj

− 1
2δij

(

ε0E
S
k ES

k +
1
µ0

BkBk − 2BkM
S
k

)

+ eiklPkBlẋj

= ε0EiEj +
1
µ0

BiBj + EiPj −MiBj

− 1
2δij

(

ε0EkEk +
1
µ0

BkBk − 2MkBk

)

,

IV gi = 0 ,

IV πi = −eijkE
S
j

(
1
µ0

Bk −MS
k

)

+ ES
j Pj ẋi

= −eijkEj

(
1
µ0

Bk −Mk

)

−
(

ε0EjEj +
1
µ0

BjBj

)

ẋi

+
(

ε0EiEj +
1
µ0

BiBj

)

ẋj + (PiEj −BiMj + δijMkBk) ẋj ,

IV ω = − 1
2

(

ε0E
S
k ES

k +
1
µ0

BkBk

)

= − 1
2

(

ε0EkEk +
1
µ0

BkBk

)

.

(3.5.8)
We note that in the above calculations (ε0E×B)-terms are neglected, which,
according to the statement made in the preceding section between (3.4.12)
and (3.4.13), is consistent with our requirements.

The jump conditions for the fields, mass, momentum and energy of matter
and fields become now
[[
Bi

]]
ni = 0 ,

[[
ε0E

S
i + Pi

]]
ni = 0 ,

[[
eijkE

S
j

]]
nk +

[[
Bi

]]
wn = 0 ,

[[

eijk

(
1
µ0

Bj −MS
j

)]]

nk −
[[
ε0E

S
i + PS

i

]]
wn = 0 ,

[[
ρ(ẋini − wn)

]]
= 0 ,

[[

tij + ε0EiEj +
1
µ0

BiBj + EiPj −MiBj

− 1
2δij

(

ε0EkEk +
1
µ0

BkBk − 2MkBk

)]]

nj

−
[[
ρẋi(ẋjnj − wn)

]]
= 0 ,

[[

ẋitij − qj − ejklEk

(
1
µ0

Bl −Ml

)

− 1
2

(

ε0EkEk +
1
µ0

BkBk

)

ẋj

+
(

ε0EiEj +
1
µ0

BiBj

)

ẋi + (EiPj −MiBj + δijMkBk)ẋi

]]

nj

−
[[{

1
2ρẋiẋi + ρU + 1

2

(

ε0EiEi +
1
µ0

BiBi

)}

(ẋjnj − wn)
]]

= 0 .

(3.5.9)
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It remains to develop the constitutive theory. For this purpose, we notice
that, in a non-relativistic theory, the invariance group which the principle
of material frame indifference relies upon, is the Galilei, or more generally,
the Euclidian, group. Hence, we may choose the constitutive relations of the
form derived in Sect. 1.6. In this section we restrict ourselves to the case

C =
+

C (Cαβ ,Pα,Bα, Θ,Θ,α,Q) , (3.5.10)

where Pα and Bα are defined in (2.6.7). The application of the entropy prin-
ciple is again a routine matter and we simply state the results. With the
Helmholtz free energy

ψ = U − ηΘ , (3.5.11)

and with (3.3.26), one finds that

ψ =
+

ψ (Cαβ ,Pα,Bα, Θ) , (3.5.12)

while the entropy η, the electromotive intensity Ei, the rest-frame magneti-
zation Mi and the stress tij are given by

η = −∂
+

ψ

∂Θ
,

Ei =
∂

+

ψ

∂Pα
Fiα ,

µ0Mi = −ρ
∂

+

ψ

∂Bα
FiαsgnJ ,

tij = 2ρ
∂

+

ψ

∂Cαβ
FiαFjβ + PiEj −BiMj .

(3.5.13)

These results imply that the balance law of moment of momentum is satisfied
identically. Furthermore, the reduced entropy inequality is

JiEi −
Θ,iqi

Θ
≥ 0 , (3.5.14)

and the Gibbs relation becomes

dη =
1
Θ

{
dU − 1

2

[
1
ρ0

TP
αβ + C−1

αγ C−1
βδ (PγEδ − BγMδ)

]

dCαβ

−C−1
αβ EαdPβ − C−1

αβ MαdBβ

}
,

(3.5.15)

where Eα and Mα are given in (2.6.7).
This completes the non-relativistic theory of magnetizable and polarizable

solids in the statistical description.
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3.6 The Lorentz Formulation (Model V)

The Lorentz description of electromagnetism is founded on his theory of
electrons, originally formulated for dielectric materials only, see [244]. Accord-
ing to this description, the body is supposed to consist of a set of electrically
interfering charged particles. These particles respond to their own fields (as
well as to possible external fields) and may move rapidly, thereby producing
highly fluctuating (microscopic) electromagnetic fields as well. The pertinent
field equations are the Maxwell equations in a vacuum and when averaged,
the Maxwell equations in the Lorentz formulation emerge (see for in-
stance the booklet by L.Rosenfeldt [204]). In the light of De Groot and
Suttorp’s statistical description this average is a crude statistical model.
This might lead the reader to the conclusion that the Lorentz formulation
is only approximate. This is not so. On the contrary, this theory has been put
on a sound, relativistically correct, axiomatics by Truesdell and Toupin

[244]. (For a non-relativistic presentation, though nevertheless relativistically
correct formulation, see the book by Müller [160].) That it may be defined
also from any set of Maxwell equations by simply performing a variable
transformation should be corroboration of its correctness.

This is exactly what we shall do here. Indeed, we introduce the Lorentz

formulation by using the definitions

Di = ε0E
L
i + PL

i , Ei = EL
i + eijkẋjB

L
k ,

Bi = BL
i , Hi =

1
µ0

BL
i −ML

i − ε0eijkẋjE
L
k .

(3.6.1)

Upon substitution of (3.6.1) into (2.2.15) and (2.2.21), the Maxwell equa-
tions in the Lorentz formulation are obtained as follows:

BL
i,i = 0 ,

eijkE
L
k,j +

∂BL
i

∂t
= 0 ,

ε0E
L
i,i = Q− PL

i,i ,

1
µ0

eijkB
L
k,j − ε0

∂EL
i

∂t
= Ji +

∂PL
i

∂t
+ eijk(eklmPL

l ẋm),j + eijkM
L
k,j .

(3.6.2)

These equations, introduced here formally, are often applied in the modern
literature, as for instance by Toupin [241], Liu and Müller [127], Benach

and Müller [25] and Hutter [92, 95, 96]. The equations are also mentioned
by Pao [172], but he states “that for magnetizable materials their validity is
questionable”.

Comparing (3.6.2) with the Maxwell equations of the statistical model
(3.5.2), we see that



72 3 A Survey of Electromagneto-Mechanical Interaction Models

EL
i = ES

i , BL
i = BS

i = Bi ,

PL
i = PS

i = Pi , ML
i = MS

i + eijkẋjP
L
k = Mi .

(3.6.3)

The Maxwell equations in the Lorentz description can also be deduced
from the assumption that every particle is equipped with a number of electric
dipoles and with an electric circuit. If this dipole-circuit model is treated non-
relativistically, again the Maxwell equations in the Lorentz description
are obtained. Of course, such a derivation bears inherently the notion of
approximation. What is approximated thereby is not the theory as such,
however, but the use of the model. That the theory is indeed correct from
a relativistic point of view cannot be seen from such a derivation, and this
must be regarded as a major disadvantage of the model. This might also
be the reason why Penfield and Haus use a model in which each particle
is equipped with a number of dipoles and an electric circuit both of which
are treated relativistically. What they obtain is different from the Lorentz

description. They call these Maxwell equations the Ampèrean model. The
difference between the Ampèrean and the Lorentzean variables is a small
difference in the polarization vector of the amount

c−2(ẋ × M) .

In a non-relativistic theory this term is negligible, and it emerges from the
fact that in the Lorentz description

PL
i = PM

i ,

while in the Ampèrean description

PA
i = PC

i ,

Nevertheless, both the Ampèrean and the Lorentz formulation are rela-
tivistically correct. This should make it clear that the approximations must
be sought in the model rather than in the basic theory.

With this digression on approximations we proceed and mention that in
the Lorentz formulation

− PL
i,i

is the charge density due to polarization,

eijkM
L
k,j

the current due to magnetization and

∂PL
i

∂t
+ eijk(eklmPL

l ẋm),j

the polarization current, all as shown on the right-hand side of (3.6.2). This
suggests to postulate as electromagnetic body force, body couple and energy
supply the expressions
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ρF e
i = QtotEL

i + eijkJ
tot
j Bk = QtotEi + eijkJ tot

j Bk ,

ρLe
ij = 0 ,

ρre = J tot
i EiJ

tot
i EL

i − ρF e
i ẋi ,

(3.6.4)

where Qtot and J tot
i are the total charge and total current densities as given

on the right-hand side of (3.6.2)3,4. (Compare this postulate with that for
model II, (3.3.46)). The postulates (3.6.4) have, in this generality, first been
introduced by Toupin [241]. They were then applied by Liu and Müller

[127], Benach and Müller [25], and Hutter [92] in theories of polarizable
and magnetizable fluids, fluid mixtures and solids, respectively. Substituting
Qtot and J tot

i , as obtained from (3.6.2)3,4, into (3.6.4) yields

ρF e
i = (Q− Pj,j)Ei + eijk(Jj+

�

P j +ejmnMn,m)Bk ,

ρLe
ij = 0 ,

ρre = JiEi + Ei(
�

P i +eijkMk,j) ,

(3.6.5)

where the convective derivative, denoted by a superimposed star, is defined
in (2.2.17).

With (3.6.5) the balance laws of mass, momentum and energy assume the
form

ρ̇ + ρẋi,i = 0 ,

ρẍi = tij,j + ρF ext
i + (Q− Pj,j)Ei + eijk(Jj+

�

P j +ejmnMn,m)Bk ,

t[ij] = 0 ,

ρU̇ = tij ẋi,j − qi,i + JiEi + Ei(
�

P i +eijkMk,j) + ρrext .

(3.6.6)

The expressions (3.6.5) immediately show that ρre and ρF e
i are an objective

scalar and objective vector under the Euclidian transformation group. For
this to be true, we have used that Q, Ji, Ei, Bi, Pi and Mi are objective
quantities, as we have already seen in the preceding sections. A proof of this
can also be found in Truesdell and Toupin [244], Chap. 7. Hence, the
momentum and energy equations enjoy the classical (non-relativistic) invari-
ance requirements. The energy equation is, however, only invariant under
Euclidian transformations, because we have also taken the stress tensor to
be symmetric. This may serve as a justification for the rather unmotivated
choice of ρLe

ij = 0.
Just as in the preceding sections, this formulation can also be derived

from a global energy balance which in this case reads
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d

dt

∫

V

{

ρU + 1
2ρẋiẋi + 1

2

(

ε0EkEk +
1
µ0

BkBk

)}

dν

=
∫

V

{
ρrext + ρF ext

i ẋi

}
dν

+
∫

∂V

{

tij ẋi − qj − ejklEk
Bl

µ0
+ 1

2

(

ε0EkEk +
1
µ0

BkBk

)

ẋj

}

daj .

(3.6.7)

Furthermore, it may be shown that the expressions (3.6.5) can be written in
the form (2.4.7) (with the non-relativistic approximations), yielding

V tMij = ε0EiEj +
1
µ0

BiBj − 1
2δij

(

ε0EkEk +
1
µ0

BkBk

)

,

V gi = 0 ,

V πi = −eijkE
L
j

Bk

µ0
= −eijkEj(Hk + Mk)

−
(

ε0EkEk +
1
µ0

BkBk

)

ẋi +
(

ε0EiEj +
1
µ0

BiBj

)

ẋj ,

V ω = −1
2

(

ε0EkEk +
1
µ0

BkBk

)

.

(3.6.8)

With these relations, the jump conditions for momentum and energy of mat-
ter and fields can be derived. We list them below, together with the jump
conditions for the electromagnetic fields and the density

[[
Bi

]]
ni = 0 ,

[[
ε0E

L
i + Pi

]]
ni = 0 ,

[[
eijkE

L
j

]]
nk +

[[
Bi

]]
wn = 0 ,

[[

eijk

(
1
µ0

Bj −Mj + ejlmẋlPm

)]]

nk −
[[
ε0E

L
i + Pi

]]
wn = 0 ,

[[
ρ(ẋini − wn)

]]
= 0 ,

[[

tij + ε0EiEj +
1
µ0

BiBj − 1
2δij

(

ε0EkEk +
1
µ0

BkBk

)]]

nj

−
[[
ρẋi(ẋjnj − wn)

]]
= 0 ,

[[

tij ẋi − qj − ejklEk
Bl

µ0
− 1

2

(

ε0EkEk +
1
µ0

BkBk

)

ẋj

+
(

ε0EiEj +
1
µ0

BiBj

)

ẋi

]]

nj

−
[[{

1
2ρẋiẋi + ρU + 1

2

(

ε0EkEk +
1
µ0

BkBk

)}

(ẋjnj − wn)
]]

= 0 .

(3.6.9)
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We wish to note that the jump conditions (3.6.9)6,7 and all corresponding
ones of the preceding sections, could have been derived from the respective
global energy balance laws. To illustrate this, note that from the global energy
balance (3.6.7) a jump condition can be derived as demonstrated in Sect.
1.5. This jump condition (given by (3.6.9)7) is then subjected to a rigid-body
translation of the form

xi ⇒ xi − bi(t) ,

under which (ẋjnj−wn) remains invariant. Since under such transformations

− eijkE
L
j Bk/µ0

changes into (recall that although BL
i is invariant, BL

i /µ0 is not (see
Sect. 1.6))

− eijkE
L
j

Bk

µ0
−
{(

ε0EiEj +
1
µ0

BiBj

)

− δij

(

ε0EkEk +
1
µ0

BkBk

)}

bi ,

(3.6.9)7 then immediately leads to (3.6.9)6.

We now turn our attention to the constitutive theory and for that purpose
it is advantageous to transform the energy balance equation (3.6.6)4 into the
form

ρU̇ = tij ẋi,j − qi,i + JiEi − (eijkEjMk),i + ρEi
d

dt

(
Pi

ρ

)

−MiḂi − (EiPj −MiBj + MkBkδij)ẋi,j + ρrext .

(3.6.10)

Then, elimination of ρrext from (2.3.6) and introduction of the Helmholtz

free energy by
ψ = U − ηΘ ,

reveals the inequality

−ρψ̇ − ρΘη̇ + ρEi
d

dt

(
Pi

ρ

)

−MiḂi + {tij − EiPj + MiBj

−MkBkδij}ẋi,j + JiEi + [Θφi,i − qi,i − (eijkEjMk),i] ≥ 0 .

(3.6.11)

Before we proceed, a comment seems to be in order regarding the last, brack-
eted, term of this inequality. Evidently, there is no unique definition of energy
flux and entropy flux in terms of thermodynamic and electromagnetic vari-
ables. To see this, let us introduce a new energy flux vector qS

i by

qS
i := qi + eijkEjMk . (3.6.12)

As will be shown in the next chapter, qS
i agrees with the energy flux vector

of the statistical model IV. With the choice
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φi = qS
i /Θ , (3.6.13)

the bracketed term in (3.6.11) then becomes [−Θ,iq
S
i /Θ], and this is what

one would expect classically, if one insisted to call qS
i the heat flux vector.

However, this is a purely formal definition, and no argument whatsoever
justifies such an identification. Moreover, if we substitute (3.6.12) into the
classical relation for the entropy flux (3.3.26), we find

φi =
qi

Θ
+

1
Θ

eijkEjMk , (3.6.14)

and, if we insist to call qi the heat flux, this equation teaches us that in
this case the entropy flux does not obey the classical relation, namely heat
flux divided by absolute temperature. This is the reason why we prefer to
call qi the energy flux vector. Moreover, this shows that it is imperative
to refrain from setting the entropy flux equal to the heat flux divided by
absolute temperature from the outset, because it is not evident what should
be understood under heat flux. Instead, one must prescribe φi as a general
constitutive variable, whose form should be determined in due course with
the exploitation of the entropy inequality. For one particular theory of the
complexity treated here, the relation

φi =
qS
i

Θ
=

qi + eijkEjMk

Θ
, (3.6.15)

was proved by Hutter [92], and the same relation was also found earlier by
Liu and Müller [127] for the case of a simple fluid. For the purpose of this
monograph we shall regard (3.6.15) as a postulate.

As was done for the other models, we now establish constitutive relations,
which in view of (3.6.11) are assumed in the form

C =
+

C (Fiα, Pi/ρ,Bi, Θ,Θ,i,Q) , (3.6.16)

where C denotes the set {U,ψ, η, Ei, µ0Mi/ρ, qi,Ji, tij}. Moreover, we require
the constitutive relations to be invariant under the Euclidian group of trans-
formations. In view of the transformation rules listed before this is already
ascertained.

In the usual way we can derive the following results:

ψ =
+

ψ (Cαβ ,Pα,Bα, Θ) , (3.6.17)

and

η = −∂
+

ψ

∂Θ
,

Ei =
∂

+

ψ

∂Pα
Fiα ,

µ0Mi

ρ
= − ∂

+

ψ

∂Bα
FiαsgnJ ,

(3.6.18)
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tij = 2ρ
∂

+

ψ

∂Cαβ
FiαFjβ + (PiEj + PjEi) − (MiBj + MjBi) + δijMkBk .

The reduced entropy balance then reads

JiEi −
Θ,i

Θ
(qi + eijkEjMk) ≥ 0 , (3.6.19)

and the Gibbs relation becomes

dη =
1
Θ

{

dU − 1
2

[
1
ρ0

TP
αβ − C−1

αγ C−1
βδ (PγEδ + PδEγ)

−C−1
αγ C−1

βδ (MγBδ + MδBγ) − C−1
αβ MγMγ

]
dCαβ

−C−1
αβ EβdPα + C−1

αβ MβdBα

}
.

(3.6.20)

This completes the presentation of the Lorentz formulation.

3.7 Thermostatic Equilibrium – Constitutive Equations
for Electric Current and Energy Flux

In the preceding sections we determined constitutive equations for entropy,
two electromagnetic field vectors and the stress tensor. All of the above men-
tioned variables are derivable from a thermodynamic potential (the latter
being the Helmholtz free energy or one of its Legendre transformations).
Given such a thermodynamic potential as a function of its independent vari-
ables the constitutive relations for the remaining fields are derivable. How-
ever, it is not possible to construct in the same way constitutive relations for
the conductive current density and for the energy flux. Constitutive relations
for these quantities are merely restricted by the residual entropy inequality,
which in all but the Lorentz formulation may be written as

γ := JiEi −
Θ,iqi

Θ
≥ 0 . (3.7.1)

In the Lorentz formulation qi must be replaced by

qS
i := qi + eijkEjMk . (3.7.2)

To find the restrictions imposed by the residual entropy inequality we look
at thermostatic processes, which will be defined as processes with uniform and
time-independent temperature and vanishing conductive current. The results
depend on whether we are dealing with an electrical insulator or conductor.
Hence, we discuss these cases separately.
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(a) In an electrical insulator the conductive current Ji vanishes identically.
Hence, (3.7.1) becomes

γ = −Θ,iqi

Θ
≥ 0 , (3.7.3)

and in equilibrium
γ = γ

∣
∣
∣
E

= 0 . (3.7.4)

We shall characterize thermostatic equilibrium by the index
∣
∣
∣
E

. It follows
that γ, which is a function of all the independent variables upon which
qi depends, assumes its minimum when Θ,i = 0. Necessary conditions for
this to be the case are

∂γ

∂Θ,i

∣
∣
∣
E

= 0 , and

∂2γ

∂Θ,i∂Θ,j

∣
∣
∣
E

is positive-semi definite ,

(3.7.5)

or
qi

∣
∣
∣
E

= 0 , and

∂q(i

∂Θ,j)

∣
∣
∣
E

is negative-semi definite.

(3.7.6)

Hence, for an electrical insulator in thermostatic equilibrium the energy
flux vector must necessarily vanish. To see what consequences these re-
strictions impose, let us consider the case for which the constitutive rela-
tions are given in the form

C = Č(Fiα, Ei, Bi, Θ,Θ,i,Q) . (3.7.7)

A constitutive relation for the energy flux vector that is objective under
Euclidian transformations and depends on the above variables is of the
form

qi = Fiαq̌α(Cβγ ,Eγ ,Bγ , Θ,Θ,β ,Q) , (3.7.8)

where Eγ , Bγ and Cβγ have been defined in (2.6.7) and where

Θ,α := FiαΘ,i . (3.7.9)

A necessary and sufficient condition for the energy flux vector to vanish
in thermostatic equilibrium is that qi is of the form

qi = −Fiαǩαβ(Cγδ,Eγ ,Bγ , Θ,Θ,γ ,Q)Θ,β . (3.7.10)
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This representation is suitable for solids to which we shall restrict our-
selves henceforth. In an electrical insulator, (3.7.10) is also the most gen-
eral constitutive relation for the energy flux vector which vanishes in ther-
mostatic equilibrium. For this form of the constitutive relation, the con-
dition (3.7.6)2 requires that the matrix

Aij := F(iαFj)β ǩαβ

∣
∣
∣
E

is positive-semi definite. (3.7.11)

In the theory of solids one often restricts oneself to small deformations
and small deviations from thermostatic equilibrium. In such special cases,
in the constitutive equations all terms that are quadratic or of higher
order in the above mentioned small quantities are neglected. Since the
constitutive relation for qi is already explicitly linear in Θ,i this requires
that ǩαβ is independent of Cαβ and Θ,α and that Fiα may be replaced by
δiα. For such a case (3.7.11) reduced to

Aij := ǩ(ij)

∣
∣
∣
E

is negative-semi definite. (3.7.12)

Nothing can be concluded from the equilibrium condition about the skew-
symmetric part of ǩij

∣
∣
∣
E

. As a consequence of the Onsager relations, one
usually requires that

ǩ[ij]

∣
∣
∣
E

= 0 . (3.7.13)

Finally, in this linear approximation it is not difficult to show that

qi = −ǩij(Ek, Bk, Θ,Q)Θ,j . (3.7.14)

Here, as a consequence of the Onsager relations, we require

ǩ[ij] = 0 , (3.7.15)

and, furthermore,
ǩijΘ,iΘ,j ≥ 0 . (3.7.16)

In this drastically simplified version the constitutive relation (3.7.14) for
the energy flux vector is known as the Fourier law of heat conduction.

(b) In an electrical conductor one may write

qi = q̌i(Fjα, Ej , Bj , Θ,Θ,j ,Q) ,

Ji = J̌i(Fjα, Ej , Bj , Θ,Θ,j ,Q) ,
(3.7.17)

and then γ is a function of

Fiα, Ei, Bi, Θ,Θ,i and Q .

Since the electrical insulator as a special case of an electrical conduc-
tor with zero conductivity was already considered on the previous pages,
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we exclude it here. For the general case, the second of the constitutive
relations (3.7.17) may be inverted in the sense that

Ei = ˇ̌E i(Fjα,Jj , Bj , Θ,Θ,j ,Q) . (3.7.18)

If this relation is substituted into (3.7.17)1, we may regard γ to be a
function of

Fiα,Ji, Bi, Θ,Θ,i and Q ,

so that (3.7.1) becomes

γ = Ji
ˇ̌E i −

Θ,i

Θ
ˇ̌qi = ˇ̌γ(Fiα,Ji, Bi, Θ,Θ,i,Q) ≥ 0 . (3.7.19)

Since then

γ
∣
∣
∣
E

= ˇ̌γ
(
Fiα

∣
∣
∣
E
, 0, Bi

∣
∣
∣
E
, Θ

∣
∣
∣
E
, 0,Q

∣
∣
∣
E

)
= 0 , (3.7.20)

we must necessarily have

∂ ˇ̌γ
∂Ji

∣
∣
∣
E

= 0 ,
∂ ˇ̌γ
∂Θ,i

∣
∣
∣
E

= 0 , (3.7.21)

and










∂2 ˇ̌γ
∂Ji∂Jj

∂2 ˇ̌γ
∂Ji∂Θ,j

∂2 ˇ̌γ
∂Ji∂Θ,j

∂2 ˇ̌γ
∂Θ,i∂Θ,j










∣
∣
∣

E

is positive-semi definite . (3.7.22)

Of necessity then

ˇ̌E i

∣
∣
∣
E

= 0 , and ˇ̌qi

∣
∣
∣
E

= 0 . (3.7.23)

Therefore, the electromotive intensity and the heat flux vector vanish in
thermostatic equilibrium. Hence, we could have defined thermostatic equi-
librium also as a time-independent process for which Ei and Θ,i vanish.
Then, the above relations would read

∂γ̌

∂Ei

∣
∣
∣
E

0 ,
∂γ̌

∂Θ,i

∣
∣
∣
E

= 0 , (3.7.24)

and
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









∂2γ̌

∂Ei∂Ej

∂2γ̌

∂Ei∂Θ,j

∂2γ̌

∂Ei∂Θ,j

∂2γ̌

∂Θ,i∂Θ,j










∣
∣
∣

E

is positive-semi definite . (3.7.25)

The relations (3.7.24), (3.7.25) now yield

J̌i

∣
∣
∣
E

= 0 , q̌i

∣
∣
∣
E

= 0 , (3.7.26)

as well as










∂J̌(i

∂Ej)

(
∂J̌i

∂Θ,j
− 1

Θ

∂q̌j

∂Ei

)

(
∂J̌i

∂Θ,j
− 1

Θ

∂q̌j

∂Ei

)

− 1
Θ

∂q̌(i

∂Θ,j)










∣
∣
∣

E

is positive-semi definite .

(3.7.27)
The most general form of the constitutive equations (3.7.17) for a solid
satisfying the principle of material frame indifference is

qi = Fiαq̌α(Cβγ ,Eβ ,Bβ , Θ,Θ,β ,Q) ,

Ji = FiαJ̌α(Cβγ ,Eβ ,Bβ , Θ,Θ,β ,Q) .
(3.7.28)

When they are written in the form

qi = Fiα{−ǩαβΘ,β + β̌
(q)
αβ Eβ} ,

Ji = Fiα{β̌(J )
αβ Θ,β + σ̌αβEβ} ,

(3.7.29)

they automatically satisfy the equilibrium conditions (3.7.26). Moreover,
in order to satisfy (3.7.27), the two relations (3.7.29) imply that

A :=










σ̌αβF(iαFj)β (β̌(J )
αβ − 1

Θ
β̌

(q)
βα)FiαFjβ

(β̌(J )
αβ − 1

Θ
β̌

(q)
βα)FiαFjβ

1
Θ

ǩαβF(iαFj)β










(3.7.30)

must be positive-semi definite. Necessary conditions (that are not suffi-
cient however) for this to be satisfied are
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σ̌αβF(iαFj)β and
1
Θ

ǩαβF(iαFj)β are positive-semi definite .

(3.7.31)
More interesting than the general case is again the linearized version of
the theory. Assuming small deformations and small deviations from ther-
mostatic equilibrium, it may be justified to postulate the constitutive re-
lations for qi and Ji, (3.7.29), to be linear in Θ,i and Ei and independent
of the deformation. In this case, the coefficient functions ǩαβ , β̌

(J )
αβ , β̌

(q)
αβ ,

and σ̌αβ are independent of Cαβ ,Eα and Θ,α, and Fiα may be replaced
by δiα. Under these simplified restrictions

A ≈










σ̌(ij)

(

β̌
(J )
ij − 1

Θ
β̌

(q)
ji

)

(

β̌
(J )
ij − 1

Θ
β̌

(q)
ji

)
1
Θ

ǩ(ij)










, (3.7.32)

must be positive-semi definite. Of necessity then, σ̌(ij) is positive defi-
nite (because σ̌ ≡ 0 is excluded) and ǩ(ij) is positive-semi definite. The
Onsager relations require here that

σ̌[ij] = 0 , ǩ[ij] = 0 ,

β̌
(J )
ij =

1
Θ

β
(q)
ji =:

1
Θ

βji .
(3.7.33)

Of course, σ̌ij , ǩij and β̌ij are still functions of Bk, Θ and Q.
When linearized and with the use of (3.7.33), the constitutive equations

(3.7.29) become

qi = −ǩij(Bk, Θ,Q)Θ,j + β̌ij(Bk, Θ,Q)Ej ,

Ji = β̌ji(Bk, Θ,Q)
Θ,j

Θ
+ σ̌ij(Bk, Θ,Q)Ej .

(3.7.34)

These equations are known as Fourier’s law of heat conduction and Ohm’s
law of electrical conduction, and in this form they appear in usual treatises
on crystallography and solid state physics (e.g. [165, 29]). The coefficients
ǩαβ and σ̌αβ are termed the thermal and electrical conductivity, respectively.
The coefficients β̌αβ are responsible for thermoelectric effects (e.g. Seebeck

effect, Peltier heat, Thomson heat, cf. [165], Chap. 12 or [263], Chap. 23),
and in magnetizable materials they also cause galvanomagnetic or thermo-
magnetic effects (e.g. Ettinghausen or Nernst effect). These effects are
investigated in more detail than is possible within the scope of this mono-
graph, in a series of papers by Pipkin and Rivlin, [180] and [181], and
Borghesani and Morro, [27] and [28]. Pipkin and Rivlin derive general,
nonlinear conduction laws for isotropic materials considering separately the
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effects of deformation on the electric current and the influences of the electric
field, the magnetic induction and the temperature gradient on the constitu-
tive equations for the electric current, the heat flux and the magnetic field
strength, whereas Borghesani and Morro derive the fourth-order versions
of Fourier’s law and Ohm’s law.

Finally we remark that for most purposes of this monograph the conse-
quences implied by the Onsager relations will be of no relevance. In par-
ticular, the results of Chap. 3 are independent of such relations. When using
the Onsager relations we shall in the following therefore explicitly state it.

In summary, we have given an exposure of five different descriptions of
deformable polarizable and magnetizable continua. Each model describes in
its own way the interactions between the electromagnetic fields and the ther-
moelastic body. The field equations consist of the following set of equations:

(i) The Maxwell equations, which must be counted as seven independent
equations (see the remark in Sect. 1.3.2).

(ii) Five balance laws of mass, momentum and energy.
(iii) Sixteen constitutive relations for entropy, two electromagnetic field vec-

tors and the stress tensor (the latter given in a form such that the balance
law of moment of momentum is satisfied identically).

(iv) Six constitutive relations for the electric current and the energy flux
vector.

These are 34 equations for the unknowns: four electromagnetic field vectors
(12), electric current and electric charge density (4), mass density (1), motion
χi (3), stress (9), temperature (1), energy flux (3) and entropy (1).

These field equations are supplemented by jump (or boundary) conditions
for the electromagnetic field variables, mass, momentum and energy of matter
and field.

3.8 Discussion

In the preceding sections five different descriptions of deformable polarizable
and magnetizable continua were treated. The interaction of the electromag-
netic fields with matter was achieved by introducing two additional electro-
magnetic field vectors to the two basic fields occurring in vacuo. In the five
formulations the choice of these field vectors was not unique, however. We
did not emphasize the models which lie behind these descriptions, although
each of the formulations can be based upon well-defined models. The Chu

variables of electrodynamics for instance can be founded on a two-dipole
model, and as long as one restricts oneself to the derivation of the Maxwell

equations, such a model leads to unique answers. The model may bear its
disadvantages insofar as it is handled non-relativistically, while the resulting
equations are postulated to be relativistically correct equations. This does
not change the basic fact that the resulting Maxwell equations are unique.
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When electromagnetic body force and energy supply are derived, however,
the dipole model is no longer unique and two theories of magnetizable and po-
larizable bodies can be developed. We have seen this when presenting models
I and II.

One can also develop a theory on the basis that polarization is modelled
by a dipole while magnetization is treated as an electric circuit. Dependent on
the degree of complexity of derivation, different Maxwell equations emerge
(statistical and Lorentz formulation), and also the expressions for the elec-
tromagnetic body force, body couple and energy supply are different in these
derivations. The reader could therefore be misled by these derivations as he
might conclude that some of the theories are superior to others, because the
derivation of the equations resembles a more profound approach. This is not
so, and our point of view is different, as we regard all formulations as equally
sound as long as none has been proved to be superior to any other one, e.g. via
transformation properties under Euclidian or Lorentz transformations. Of
course, this requires that we de-emphasize the models behind the equations.
This is why we do not even share the viewpoint of many physicists, who would
reject the two-dipole description on the basis that magnetic monopoles have
never been observed experimentally and that therefore magnetization must
be electric circuits. Corroboration to all the above statements will be found
in the next chapter of this monograph. For instance, the statistical model
and the Lorentz model (models IV and V) can be derived by methods of
statistical physics, but dependent on which author’s book one opens, either
one appears to be an approximation of the other. The reason that in the most
rigorous treatment the Lorentz formulation is not obtained is a matter of
definition of the macroscopic electric and magnetic dipole moments in terms
of statistical averages of microscopic quantities. Nonetheless, Pao concludes
in his reviewing article [172] that for magnetizable materials the validity of
the Lorentz model is questionable (page 24 of [172]). Yet, we shall prove
that the non-relativistic versions of polarizable or magnetizable continua in
the models IV and V are equivalent. A similar situation also exists for the
expression of the body force as suggested by Fano, Chu and Adler that
agrees with our model II. Again according to Pao (page 82 of [172]), “Pen-

field and Haus [177] have considered these force expressions incomplete”.
We shall prove that models I and II are equivalent. Needless to say that
Penfield and Haus [177] and Pao and Hutter [171] have advocated for
model I.

The above statements should make it clear then that the derivation of
the models is not important and that the formulations should be unified by
demonstrating their equivalence, rather than emphasizing their differences.
For this reason we have presented the five models per se and have studied their
invariance properties quite extensively. This led to the approach of model III,
in which electromagnetic body force, body couple and energy supply were de-
rived from a general energy expression that is subjected to specific invariance
requirements under the general Euclidian transformation group. In order to
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illustrate the above mentioned unification and because some authors seem
to have objections against the approach of Sect. 2.3 (as they do not believe
that this approach will lead to unique results) we have also given the energy
laws which could serve as basis for the other models. For model I this was
already done by Alblas [9]. This, together with the results of Chap. 3, in
which all models are shown to be equivalent, demonstrates that there is a
large amount of freedom in the choice of the specific terms occurring in such
an energy law, all leading to equivalent results.

We found further that in formulations in which the stress tensor was
symmetric the electromagnetic body force and energy supply are objective
quantities with respect to the Euclidian transformation group. In formula-
tions with non-symmetric stress, body force and body couple turned out to
be objective, while the energy supply term first had to be corrected by the
power of working of the skew-symmetric part of the stress. As a result, the
energy equation remained invariant.

These transformation properties make it possible that the various for-
mulations of electromagnetic interactions with thermoelastic bodies have a
chance to be equivalent. Indeed, full equivalence cannot be achieved when
corresponding quantities in different formulations do not transform alike un-
der the Euclidian transformation group. Similarly, if approximations in the
non-relativistic sense are performed, equivalence can only be attempted to
be proved within such approximations.

This discussion would not be complete if we would not point out that
other descriptions for field matter interactions often agree with our mod-
els I-V. We find it important to discuss these descriptions also. In order to
narrow the number of formulations down to a reasonable size, we shall not
discuss any quasi-static formulation, such as those by Toupin [240], Alblas

[8], Tiersten [233, 236], Pao and Yeh [170] and others (see e.g. Penfield

and Haus [177]), with the exception of the monograph of Brown [32], how-
ever. The reason for this exception is that Brown already was aware of the
non-uniqueness of the magnetoelastic stresses, and he stated explicitly that
these stresses are only then completely determined once the total system of
momentum and moment of momentum equations, boundary conditions and
constitutive equations are given. For a magnetostatic theory, Brown intro-
duced four different stress tensors, namely: (see Sect. 5.6 of [32])

(i) The pole-model t̄ij (eqs. (6.2.9)–(6.2.12)).
(ii) The Ampèrean current model t̄′ij(eqs. (6.2.9′)(6.2.12′)).
(iii) The Maxwell model I tij (eqs. (6.2.17)–(6.2.23)).
(iv) The Maxwell model II t′ij (eqs. (6.2.17′)-(6.2.23′)).

Comparing these stress models with the ones introduced in this chapter, we
see that when the latter are simplified to the magnetostatic case, the following
relations between our stresses and those of Brown hold:
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Itij = IIItij = tij , IItij = t̄ij ,

IV tij = t′ij , V tij = t̄′ij .

(3.8.1)

In comparing other authors’ work, any complications due to spin interactions
will be left aside. This does not mean that spin interaction theories will not
be compared here, but any contribution due to magnetic spin will be set to
zero without further mentioning. Furthermore, fully relativistic theories will
only be mentioned in connection with non-relativistic approximations.

First when the material is polarizable-only, model V is in full agreement
with a description of a dynamical theory of elastic dielectrics as presented
by Toupin [241], and indeed it must be so as our force and energy supply
expressions agree with those of Toupin. On the other hand, Dixon and
Eringen attempted to derive a theory of field-matter interaction using a
statistical description (which we believe to be incomplete) [59]. They include
in their derivation also macroscopic electric quadrupoles, but when these
are neglected their Maxwell equations and body force and energy supply
expressions are in agreement with model V. However, the jump condition of
energy derived by Dixon and Eringen (their equation (5.16)) is not correct.
Indeed, their global energy balance contains a volume source which becomes
indefinitely large when a surface of discontinuity is approached. Hence, apart
from these shortcomings in the derivation, their results are non-relativistically
correct. Moreover, Eringen in collaboration with Grot [78], and Grot [79]
present relativistic formulations of solids and fluids in the electromagnetic
fields, in which they postulate an energy-momentum tensor of field-matter
interaction which reduces to the force and energy expressions of model V
when terms of O(V 2/c2) are neglected.

Of a quite different nature is Tiersten’s approach to describe the interac-
tion of the electromagnetic fields with deformable continua. He uses a mixture
concept and describes the field-matter interactions by coupling a so called
lattice-continuum with charge-, electronic-, ionic- and spin-(sub)continua,
each bearing the notion of a particular physical effect. All work of Tier-

sten, [236], is based on such a mixture concept. In [237] Tiersten and Tsai

describe the interaction of the electromagnetic fields with heat conducting de-
formable electric insulators. In a simplified version of this theory, where only
a charge continuum is interacting with the lattice continuum, their body
force, body couple and energy supply (see equations (3.48), (8.4) and (8.7) in
[237]) agree with model IV. An explicit proof for this equivalence can also be
found in Pao’s review article, [172]. The same comments hold for the paper
of Lorentz and Tiersten, [55].

Still other methods of derivation are those in which the governing equa-
tions derive from an over-all energy balance law which is postulated to be in-
variant under Euclidian transformations. The technique, first introduced by
Green and Rivlin [77] for non-relativistic multipolar theories, was applied
to describe deformable polarizable and magnetizable continua by Alblas



3.8 Discussion 87

[9], Parkus [175] and Van de Ven [249]. We have shown in this monograph
that all formulations could have been derived from such an over-all energy
balance law. When we compare the work of Alblas [9] (who uses the Chu

variables) with our model I complete agreement is found. As concerns the
work of Parkus [175], he treats magnetizable and polarizable materials sep-
arately and when dealing with magnetizable materials restricts himself to
quasi-static processes. His treatment of dielectrics on the other hand agrees
with that of Toupin. Parkus uses Hamilton’s principle and the same is
done by Vlasov and Ishmukhametov [259], who arrive at results which
agree with our model III. We could have added other electromagnetic mod-
els, if we had wished to do so, and for reasons of completeness these models
should also be mentioned. Fano, Chu and Adler [73] and Penfield and
Haus [177] also present the so called Ampèrean descriptions, as do Hutter

and Pao [91] in a paper dealing with magnetizable elastic solids with thermal
and electrical conduction. The Ampèrean formulation (in which magnetiza-
tion is modelled by a relativistic electric circuit) can easily be transformed
into the Lorentz- or the statistical formulation and when this is done, it is
found that the body force expression agrees with the one presented in model
IV. The expressions for the energy supply and the body couple, when re-
stricted to the non-relativistic approximation, fully agree with those of model
IV.

Maugin on the other hand, partly in collaboration with Eringen and
Collet, [131]–[135] uses the principle of virtual power to derive the basic
equations for several different theories of magnetoelastic interactions. The
interest of these authors is generally more limited, as they treat specialized
subjects, such as spin relaxation and surface effects, all in the quasi-static ap-
proximation. In [45], Collet and Maugin, and in [135], Maugin treat dy-
namic processes in a non-relativistic approximation. Although there is a slight
difference between our non-relativistic approximation and their owns, which
can be traced back to the use of Gaussian units as opposed to MKSA-units,
the results of [45] and [135] when brought to our non-relativistic approxima-
tion completely agree with model IV. Maugin and Eringen also presented a
fully relativistic treatment in [132]. Finally, starting from a four-dimensional
relativistic formulation, Boulanger and Mayné [30] derive expressions for
the electromagnetic body force and energy supply. In cooperation with Van

Geen, they apply their results in [31] for the investigation of magnetooptical,
electrooptical and photoelastic effects in elastic polarizable and magnetizable
isotropic media. When comparing the relations for momenta and energy fol-
lowing from Eq. (14) of [50] or the balance laws (4)–(6) of [31], no immediate
equivalence with one of our models is found. However, their balance laws can
easily be related to those of, for instance, model IV by taking in the equations
(4)–(6) of [31]

ρε = IV (ρU) + BiMi ,

and
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σij = IV tij + EiPj + BiMj − δijBkMk .

(In this context it should be noted that in Eq. (16) of [30] two terms are
missing, which should follow from (14), and which re-appear in Eq. (4) of
[31].)

In conclusion we might justly state that the models I to V embrace within
the non-relativistic approximation the description of dynamic theories of po-
larizable and magnetizable materials known to date. There are formulations
simpler than those presented above, but these formulations aim at describing
more restrictive situations such as static and quasi-static processes. There are
also more complicated descriptions, but those include additional phenomena,
as for instance spin interaction, polarization gradient effects and the like.
These phenomena are outside the scope of this monograph.

Since the completion of this chapter a series of articles did appear which
we would have taken into account if being aware of them. To mention are
works by Alblas [10], Maugin and Eringen [136], Prechtl [185] and
Romano [200]. Alblas presents a general exposition of electro- and mag-
netoelasticity with special topics such as electro- and magnetostatics includ-
ing constitutive equations and linearization procedures and magnetoelastic
stability. His formulation is that of Chu. Maugin and Eringen formulate
a theory of magnetoelastic interaction including electric quadrupoles. Their
approach is similar to that of Dixon and Eringen [59] and they seem to cor-
rect the erroneous jump condition in this work. When discarding the electric
quadrupoles they arrive at body force expressions identical to those of our
model IV. Prechtl, on the other hand presents a relativistic Chu formula-
tion; he reduces it to a three dimensional form, which in the non-relativistic
approximation is equivalent to our model II. Unfortunately, Prechtl does
not present constitutive relations, so that a full comparison is not achieved.
Romano gives a quasi-static magnetoelastic Chu formulation.



4 Equivalence of the Models

4.1 Preliminary Remarks

In Chap. 3 various descriptions of electromechanical interaction models were
laid down, but no attempt was made to search for interrelations amongst
these models. In this chapter we perform the first steps toward a proof or dis-
proof of the equivalence of these models. Specifically, we are going to present
the conditions that need to be satisfied in order to render two formulations
equivalent.

To begin with, we should point out that two models are called equiva-
lent provided they deliver the same results for physically observable quanti-
ties in any arbitrary initial-boundary-value problem. By observable (measur-
able) quantities we mean all those physical quantities that can be measured
uniquely by two different independent observers. All kinematical quantities
that are derivable from the motion χi(X, t) are measurable in principle. Re-
garding electromagnetic field quantities we take the viewpoint that they are
not measurable except in vacuo, where they can be observed by measuring
the force exerted on a test charge. Finally, (empirical) temperature is also
regarded as being measurable, because, as is known from thermodynamics, it
is a measure for the hotness of a body. The instruments to measure tempera-
ture are thermometers. They relate our sensation of the hotness of a body to
a physical quantity, say pressure or volume, and the latter are measurable.

Differences in the various electromagnetic models appear in the body
force, body couple and energy supply of electromagnetic origin, but as is
well-known, such differences may be compensated in the stress tensor, the
internal energy and the energy flux. Except for the latter, these quantities
are determined by a thermodynamic potential (the Helmholtz free energy
or its Legendre transformations). In other words, equivalence of two electro-
mechanical interaction models depends to a large extent on the fact that the
free energies of the two formulations can be determined so as to render stress,
entropy and electromagnetic field variables compatible with the above men-
tioned compensation between stress and body force, etc. Equivalence of two
theories is therefore a thermodynamic requirement.

Practically, two formulations are equivalent if upon transforming one into
the other, not only the field equations but also the initial conditions and jump
conditions are alike. Here in this chapter we investigate the equivalence of

K. Hutter et al.: Electromagnetic Field Matter Interaction in Thermoelastic Solids and
Viscous Fluids, Lect. Notes Phys. 710, 89–102 (2006)
DOI 10.1007/3-540-37240-7 4 c© Springer-Verlag Berlin Heidelberg 2006
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the models described in the preceding chapter. In particular, the conditions
under which this equivalence is achieved will be formulated.

Needless to say that all comparison will be made to within the order of
the non-relativistic approximation.

4.2 Comparison of the Models I and II

Here we discuss the two-dipole models, and we shall for this purpose heavily
rely upon the results presented in Sect. 3.2.

To begin with, note that both models are based on the same set of electro-
magnetic field variables and therefore obey the same set of Maxwell equa-
tions (3.3.3). Differences do occur in the electromagnetic body force, body
couple and energy supply, which can most easily be identified by comparing
the expressions according to (3.3.7) and (3.3.49). From (3.3.7)1 and (3.3.49)1
we read off that

II(ρF e
i ) = I(ρF e

i ) − (PjEi + µ0MjHi),j . (4.2.1)

We conclude that the balance laws of momentum (3.3.9)2 and (3.3.50)2 are
identical provided that

IItij = Itij + EiPj + µ0HiMj . (4.2.2)

In order to compare the balance laws of moment of momentum and energy,
we must compare

ρLe
ij − t[ij] , and ρre + tij ẋi,j ,

respectively.
Using ρLe

ij as given in (3.3.7)2 and (3.3.49)2 and ρre according to (3.3.12)
and (3.3.49)3, we immediately see that

I(ρLe
ij − t[ij]) = II(ρLe

ij − t[ij]) , (4.2.3)

and
I(ρre + tij ẋi,j) = II(ρre + tij ẋi,j) , (4.2.4)

provided that the stresses are related by (4.2.2). Hence, with the conditions
(4.2.2), the balance laws of model I and model II have been proved to be
equivalent.

It remains to compare the jump conditions. Since the Maxwell equations
are the same, there cannot be a difference in the jumps of the electromag-
netic field variables. On the other hand, as can immediately be seen from
(3.3.21), (3.3.22) and (3.3.52), the jump conditions for momentum and en-
ergy of matter and fields are identical provided that the stress tensors are
related according to (4.2.2).



4.3 Comparison of the Models I and III 91

The above comparison makes no use of thermodynamic arguments. Other-
wise stated, equivalence of the two theories is guaranteed only if the relations
(4.2.2) hold. That such relations indeed can hold follows from thermodynamic
arguments, and they are, although trivial in this case, not obvious in general.
In order to invoke these conditions, we must compare theories based on the
same constitutive postulates, and, of course, in this case we must choose in
both models the same set of independent constitutive variables. Explicitly we
have done this for case a):

C = Ĉ(Cαβ ,Pα,Mα, Θ,Θ,i,Q) ,

and the results are listed as (3.3.32) and (3.3.57). It follows from these that

Itij = 2ρ
∂ I ψ̂

∂Cαβ
FiαFjβ + PiEj + µ0MiHj ,

and that
IItij = 2ρ

∂ II ψ̂

∂Cαβ
FiαFjβ + 2P(iEj) + 2µ0M(iHj) ,

and it is a straightforward matter to show that (4.2.2) is satisfied if we choose

II ψ̂ = I ψ̂ , (4.2.5)

or
IIU = IU . (4.2.6)

With this choice, all the other dependent constitutive quantities that derive
from the free energy, e.g. entropy, electromotive intensity, and magnetomo-
tive intensity are guaranteed to be the same. It thus only remains to mention,
that in order to obtain full agreement the energy flux vectors must also be
chosen to be the same, i.e.

IIqi = Iqi . (4.2.7)

The reader can readily prove the above statements to be correct also
for all other constitutive theories that are obtained from the above one by
merely interchanging some of the dependent and independent variables. We
therefore have proved the

Proposition. Within the constitutive class of thermoelastic polarizable and
magnetizable materials the two-dipole models I and II are equivalent, provided
that the free energies and the energy flux vectors are the same functions of
their independent variables. �

4.3 Comparison of the Models I and III

Before comparing the models I and III one should realize that in model I
electromagnetic fields according to the Chu model are used, whereas in model



92 4 Equivalence of the Models

III the Minkowski-fields are used. As stated by Penfield and Haus, [177],
Ch.7, and as follows from relations (3.3.1) and (3.4.1), these fields are related
in the following way

EM
i = EC

i − µ0eijkẋjM
C
k , DM

i = ε0E
C
i + PC

i ,

HM
i = HC

i + eijkẋjP
C
k , BM

i = µ0H
C
i + µ0M

C
i .

(4.3.1)

According to the definitions (3.4.3) for PM
i and MM

i we also have

PM
i = PC

i +
1
c2

eijkẋjM
C
k , MM

i = MC
i − eijkẋjP

C
k . (4.3.2)

Hence, to within the non-relativistic approximation,

PC
i = PM

i = Pi , and MC
i = MM

i + eijkẋjP
M
k = Mi , (4.3.3)

where both, Pi and Mi are known to be objective under Euclidian trans-
formations.

From the above relations it follows immediately that the rest-frame fields
Ei and Hi are equal in both formulations, and, moreover, that polarization
and magnetization in the Chu formulation are equal to the correspond-
ing rest-frame fields in the Minkowski formulation. Then, by comparing
(3.3.7)2,3 with the corresponding quantities as given by (3.4.23) and (3.4.24),
respectively, it is obvious that the expressions for the body couple and energy
supply of model I and model III are identical.

Since, in the non-relativistic approximation, in both models the electro-
magnetic momentum vector gi is zero, it is most convenient to relate the
respective electromagnetic body forces by comparing the expressions for the
Maxwell stresses tMij according to (3.3.10)1 and (3.4.25)1. With the aid of
(4.3.1)2,4, we may in (3.4.25) replace the Minkowski fields BM

i and DM
i by

the Chu fields and can then show that to within terms containing a c−2-factor

IIItMij = EiD
M
j + HiB

M
j − 1

2δij(ε0EkEk + µ0HkHk)

= ε0E
C
i EC

j + µ0H
C
i HC

j + EiP
C
j + µ0HiM

C
j

− 1
2δij(ε0E

C
k EC

k + µ0H
C
k HC

k ) = ItMij .

(4.3.4)

Hence, we have demonstrated that the balance laws (3.3.17), (3.3.9)2, (3.3.9)3
and (3.4.22), (3.4.23), (3.4.24), are equivalent, provided that

IIItij = Itij , IIIqi = Iqi , and IIIU = IU . (4.3.5)

Under these conditions, and to within the non-relativistic approximation, also
the jump conditions for momentum and energy of matter and fields of model
I and model III are equal (cf. (3.3.21), (3.3.22) and (3.4.26)6,7).

All the above is true, of course, again with the provision that constitutive
relations show the dependent constitutive variables to be the same in the
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two theories. This can be seen to be true immediately by comparing the
constitutive equations (3.3.38) with those of (3.4.31) (thus Iψ = IIIψ). The
reader may also show this to be correct, if any one of the dependent and
independent variables are interchanged.

Thus, we have proved the following

Proposition. Within the constitutive class of thermoelastic polarizable
and magnetizable materials the two-dipole model I and the Maxwell-
Minkowski model III are non-relativistically equivalent provided that the
constitutive relations for the internal energies (or the free energies) and the
energy flux vectors are the same functions of their independent variables. �

4.4 Comparison of the Models III and IV

We begin with the observation that the Maxwell equations in the statis-
tical formulation IV are written in a form which differs from that in the
Minkowski formulation. However, if in the equations (3.4.2) the DM and
HM fields are eliminated by means of (3.4.3) the resulting equations equal
(3.5.2). Hence, E,P ,B and M are identical in both formulations, and we do
not need superscripts to distinguish them. Of course, the same is then true
also for the fields E and M.

When with the use of (3.4.13) in the expression for the body force,
(3.4.22), Hi and Di are eliminated and in so doing terms of the form ε0E×B
are neglected (as is justified in view of the corresponding remarks made in
Sect. 1.6) one obtains

III(ρF e
i ) = QEi + eijkJjBk + PjEj,i + MjBj,i

−µ0MjMj,i + eijk(
�

P j Bk + Pj

�

Bk) ,

or
III(ρF e

i ) = IV (ρF e
i ) − ( 1

2µ0MjMj),i ,

(4.4.1)

as follows from a comparison with (3.5.3)1. Hence, the electromagnetic body
forces in model III and IV differ in the term

(
1
2µ0MjMj

)

,i
.

However, this term is easy to handle, because substitution of the expression
for the body force into the balance laws of momentum (3.4.22) and (3.5.5)
reveals that the above term leads to a difference in the stress tensors IIItij
and IV tij given by

IV tij = IIItij − 1
2δijµ0MkMk . (4.4.2)
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This relation does not change the anti-symmetric part of the stresses, and
one can see at once that the expressions for the body couples (3.4.23) and
(3.5.3)2 are identical, if the relation (3.4.13) is invoked.

As concerns the jump conditions of momentum, it is not difficult to see
that (3.4.26)6 is equal to (3.5.9)6, once Di and Hi are eliminated and, fur-
thermore, equation (4.4.2) is substituted.

Because of (4.4.2), it may then be expected that the electromagnetic en-
ergy supplies ρre in the models III and IV will also differ. This is indeed the
case and as can easily be seen from (3.4.24) and (3.5.3)3 they are related by

IV (ρre) = III(ρre) − ρ
d

dt
(BiMi/ρ) + ρµ0Mi

d

dt
(Mi/ρ) . (4.4.3)

Substituting the expressions (4.4.2) and (4.4.3) into the energy balance law
for model IV, (3.5.5)4, and comparing the resulting equation with (3.4.24), we
see that the two energy balance laws are equivalent, if the pertinent internal
energies are related by

IV U = IIIU −Bi
Mi

ρ
+

1
2
ρµ0

Mi

ρ

Mi

ρ
, (4.4.4)

and provided that the heat fluxes IIIqi and IV qi are identical, i.e.

IV qi = IIIqi . (4.4.5)

Furthermore, the same holds true for the jump conditions of energy of matter
and fields (3.4.26)7 and (3.5.9)7 as can be proved in the usual way.

What remains, is to find the conditions for which relations (4.4.2)–(4.4.4)
can be made compatible with the constitutive equations. For that purpose we
first consider the free energies. From equations (4.4.4) and (3.5.11) we obtain

IV ψ = IV U − IV ηΘ = IIIU − IIIηΘ −Bi
Mi

ρ
+

1
2
ρµ0

Mi

ρ

Mi

ρ

= IIIψ + PαEβC
−1
αβ − BαMβC

−1
αβ +

ρ

2µ0
MαMβC

−1
αβ ,

(4.4.6)

where according to (3.4.29) and (3.4.30)

IIIψ = ψ̃(Cαβ ,Eα,Mα, Θ) . (4.4.7)

Here, an important point must be mentioned, namely that the free energy
function IV ψ on the far left in (4.4.6) is a function of Cαβ ,Pα,Bα and Θ.
That this must be so can immediately be seen from (3.5.5)4 and the definition
of IV ψ in (3.5.11). On the other hand, IIIψ as given in (4.4.7) is a function
of Cαβ ,Eα,Mα, Θ, and, similarly, so must be the expression on the right-hand
side of (4.4.6). If ψ̃ is used as free energy functional in a constitutive theory
of model IV, then instead of (3.5.13) we obtain
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η = − ∂ψ̃

∂Θ
, Pi = −ρ

∂ψ̃

∂Eα
Fiα , Hi =

∂ψ̃

∂Mα
Fiαsgn J , (4.4.8)

and

IV tij = 2ρ
∂ψ̃

∂Cαβ
FiαFjβ − EiPj + µ0MiHj − 1

2δijµ0MkMk ,

in the derivation of which use has also been made of (3.4.13)2 and of the
relations

2
∂ρ

∂Cαβ
FiαFjβ =

∂ρ

∂Fiα
Fjα = −ρδij , (4.4.9)

and
∂C−1

γδ

∂Cαβ
FiαFjβ = − 1

2 (F−1
γi F−1

δj + F−1
δi F−1

γj ) . (4.4.10)

We note that relations (4.4.8) are not only compatible with (3.4.31) but
also with (4.4.2); needless to say once more that in all those comparisons the
non-relativistic approximation is employed. Moreover, the above comparison
has been made for one set of dependent and independent constitutive vari-
ables and can of course also be repeated for all other possibilities. In view of
the relation (4.4.4) this can be done easily. We shall not repeat the details
here and conclude with the

Proposition. Within the constitutive class of thermoelastic polarizable and
magnetizable materials the Maxwell–Minkowski model III and the sta-
tistical model IV can be brought to a one-to-one correspondence provided
that the internal energies IIIU and IV U are related by relation (4.4.4) and,
furthermore, that the energy fluxes are the same. �

There still remains one practical question. Given a free energy function IIIψ
and another one, IV ψ, each a function of its own variables, how can it be
decided that the theories according to the models III and IV are equivalent?
To this end, observe that IV ψ as it occurs in (4.4.6) is a function of the
variables Cαβ ,Pα,Bα and Θ, or

IV ψ =
+

ψ (Cαβ ,Pα,Bα, Θ) , (4.4.11)

whereas IIIψ as given by (4.4.7) is a function of Cαβ ,Eα,Mα and Θ instead.
We now can express IV ψ in terms of the same set of variables as IIIψ by
substituting into (4.4.11) for Pα the relation

Pα = − ∂ψ̃

∂Eβ
Cαβ , (4.4.12)

which follows from (4.4.8)2 and (2.6.7)1, and for Bα the expression
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Bα =
∂ψ̃

∂Mβ
Cαβ +

ρ

µ0
Mα , (4.4.13)

following from (4.4.8)3, (3.4.13)2 and (2.6.7)2,5. In this way we obtain

IV ψ = F (Cαβ ,Eα,Mα, Θ) :=
+

ψ

(

Cαβ ,−
∂ψ̃

∂Eβ
Cαβ ,

∂ψ̃

∂Mβ
Cαβ +

ρ

µ0
Mα, Θ

)

.

(4.4.14)
If this expression is substituted into (4.4.6) and in so doing an identity is
obtained, in other words if

+

ψ

(

Cαβ ,−
∂ψ̃

∂Eβ
Cαβ ,

∂ψ̃

∂Mβ
Cαβ +

ρ

µ0
Mα, Θ

)

= ψ̃(Cαβ ,Eα,Mα, Θ) − ∂ψ̃

∂Eα
Eα − ∂ψ̃

∂Mα
Mα − ρ

2µ0
MαMβC

−1
αβ

(4.4.15)

holds as an identity, then one condition that model III is equivalent to model
IV is satisfied. Of course, the energy flux vectors must also be expressed in
the same variables and must also be the same functions of these variables.

The above procedure illustrates how, in practice, two theories can be
decided to be equivalent. The procedure may in reality be very elaborate,
but it shows explicitly that equivalence of theories amounts to comparison
of thermodynamic potentials. We have done this here for the sets (Pα,Bα)
in theory IV and (Eα,Mα) in theory III. In the table below we show which
variable sets of these two formulations naturally correspond to each other.
The above investigation can be made for each of them, of course.

Model IV Model III

Pα, Bα Pα, Mα

Pα, Mα Eα, Hα

Eα, Mα Pα, Hα

Eα, Bα Pα, Mα

4.5 Comparison of the Models IV and V

In this section we compare the statistical model IV and the Lorentz model
V. With regard to the electromagnetic variables these models differ only in
the definitions of the magnetization vectors, which are related by

MS
i = ML

i − eijkẋjP
L
k = Mi − eijkẋjPk . (4.5.1)
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Here, as before we have set

ML
i = Mi , and PL

i = Pi . (4.5.2)

If these relations are used, the Maxwell equations of one formulation trans-
form into those of the other (see (3.5.2) and (3.6.2)). With the transformation
rule (4.5.1) it is also straightforward to relate the body forces. This is most
easily achieved by comparing the Maxwell stresses (3.5.8)1 and (3.6.8)1,
since in both formulations the electromagnetic momenta are equal to zero.
This gives

V tMij = IV tMij − ES
i Pj + MS

i Bj − δijBkM
S
k − eiklPkBlẋj

= IV tMij − EiPj + MiBj − δijBkMk .
(4.5.3)

In order for the balance laws of momentum of the two formulations to be
equivalent, it is thus necessary that the stress tensors be related by

V tij = IV tij + EiPj −MiBj + δijBkMk . (4.5.4)

This also implies that, if balance of moment of momentum is satisfied in
model V, in which the stress tensor is symmetric, so it is in model IV.

For a comparison of the energy equations, we first write (3.5.5)4 in the
form

IV (ρU̇) = IV t(ij)ẋi,j − IV qi,i + JiEi + Ei(
�

P i +eijkMk,j)

+(eijkEjMk),i + (EiPj −MiBj + δijMkBk)ẋ(i,j) ,
(4.5.5)

for the derivation of which use has also been made of (3.5.6).
Comparing (4.5.5) with the balance law of energy of model V, (3.6.6)4,

using thereby relations (4.5.3) and (4.5.4), we infer that the two balance laws
are equivalent if

V (ρU) = IV (ρU) , (4.5.6)

and
V qi = IV qi − eijkEjMk . (4.5.7)

Note that this relation between the energy fluxes was introduced already in
Sect. 3.5 (eq. (3.6.12)), where it was used to bring the entropy inequality into
its expected classical form. With relation (4.5.7) the reduced entropy inequal-
ities (3.5.14) and (3.6.19) are then also identical. Bearing the transformation
rules (4.5.3), (4.5.4) and (4.5.7) in mind, we further recognize that the jump
conditions (3.5.9) and (3.6.9) are also the same.

In order to obtain complete equivalence, there remains to consider the
constitutive equations. In Chap. 3 the constitutive theories for both models
were developed using constitutive assumptions of the form

C =
+

C (Fiα, Pi/ρ,Bi, Θ,Θ,i,Q) .
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The results are listed in the two sets of equations (3.5.13) and (3.6.18), and
they reveal that relations (4.5.3) and (4.5.4) are satisfied, provided that

V
+

ψ (Cαβ ,Pα,Bα, Θ) = IV
+

ψ (Cαβ ,Pα,Bα, Θ) , (4.5.8)

which is in accordance with (4.5.6). Furthermore, this simultaneously guar-
antees that entropy and electromotive intensity are the same in both formu-
lations.

The reader may show himself that these results remain correct when some
of the dependent and independent variables are interchanged. We have thus
proved

Proposition. Within the constitutive class of thermoelastic polarizable and
magnetizable materials the non-relativistic statistical model (IV) and the
Lorentz model (V) are equivalent provided that the two free energies are
the same functions of their variables and the energy flux vectors of the two
formulations are related by (4.5.7). �

4.6 Conclusions

In summary, we have shown that all field interaction models presented in
Chap. 3 and describing polarizable and magnetizable thermoelastic materials
are equivalent to each other and differ only in terms which in the context
of the non-relativistic approximation have been considered to be negligibly
small anyhow. We may thus justly call these theories to be equivalent. On
the other hand, it is true that results obtained for these various models could
be different in exactly these neglected terms. They have been assumed to
be unimportant in all of the above theories, because each of them neglects
terms that are preceded by a c−2-factor. Hence, if experiments for a material
obeying our constitutive assumptions should deviate from what any of these
formulations predicts, then either the constitutive class must be extended
or the non-relativistic approximation must be replaced by a semi-relativistic
formulation.

There exists a semi-relativistic version of the statistical model (cf. [53]),
whereas a semi-relativistic counterpart of the Lorentz model may be derived
from a fully relativistic theory of Grot and Eringen [78] by merely neglect-
ing terms of the order of V 2/c2. In the same way, still other semi-relativistic
formulations can be found in [177], Ch. 7. For all these semi-relativistic formu-
lations the constitutive treatment differs from what we have presented here.
Therefore, the equivalence proof of all these models – although claimed to be
established by Penfield and Haus,Penfield67 – still remains to be done.
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(In [177], neither a constitutive theory nor jump conditions are presented.)
This is still one of the important future research topics to be attacked.1

We have performed the equivalence proof for a polarizable and magneti-
zable solid only, which must be regarded as a severe restriction. There are
more complex material behaviors than that dealt with here. For all those this
proof is not established yet. One immediate generalization is the inclusion of
viscosity in the sense that apart from Fiα its time rate Ḟiα may be included
amongst the independent constitutive variables (cf. [9, 134] or [92]). When
this is done, it turns out that the stress tensor may be decomposed into two
parts:

tij = tthij + teij . (4.6.1)

One part, namely tthij , is then given by a thermodynamic potential and is
independent of Ḟiα. The second, dissipative, part teij is called extra stress
and is given by an independent constitutive relation involving Ḟiα. Since our
equivalence proofs have been performed for teij ≡ 0, it immediately follows
that models I-V are also equivalent for a viscous polarizable and magnetizable
thermoelastic body if, in addition to the conditions stated in this chapter,
the extra stress remains the same in all formulations.

Another possible extension is obtained when for ferromagnetic materi-
als spin interactions are taken into account. These effects can be reckoned
with by including in the constitutive theory the magnetization gradients and
by introducing an extra moment of momentum density emanating from the
magnetic spin action (see e.g. [9, 249, 233]). This results in two extra terms
in the angular momentum law, namely the magnetic spin and the gradient
of a magnetic couple stress tensor. The latter is determined by the derivative
of the thermodynamic potential (free energy) with respect to magnetization
gradients. Moreover, the energy equation must also be supplemented by two
1 On the other hand, if the semi-relativistic formulation is considered to be too

complicated, still a small improvement of our non-relativistic approximation can
be obtained by changing from SI-units to Gaussian units. In that case, as al-
ready said several times before, some c−2-terms that are neglected in our non-
relativistic approximation become c−1-terms and must be retained. The most
striking effect caused by this change of units, but not the only one, is the fact
that the electromagnetic momentum vector g is retained, which becomes (in
Gaussian units)

1

c
(E × H) ,

for the models I, II and III, and

1

c
(E × B) ,

for the models IV and V. If all transformations are executed in a consistent way,
all models remain equivalent also in a non-relativistic approximation based on
Gaussian units.
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terms, namely the kinetic energy of the magnetic spin and the energy flux due
to the magnetic couple stress. Since these terms always seem to be introduced
in a unique way, they do not lead to differences in the respective formula-
tions. Analogous remarks hold for constitutive theories in which polarization
gradients are taken into account (see e.g. [142, 225] or [42]).

We conclude this chapter with a Table 4.1 that lists all the pertinent
interrelations between the various models. In this table, the relations between
the four basic electromagnetic fields, between the stresses tij , the internal
energies U and the energy fluxes qi are listed. The differences between the
latter three quantities are expressed in the fields

Ei, Pi, Bi,Mi ,

which are identical in all formulations. We did not list the remaining variables,
which are also the same in all formulations. They are

Q,Ji, ρ, xi = χi(X, t), Θ, η .



5 Material Description

5.1 Motivation

In the last two chapters the governing equations of field matter interaction
were chiefly based on the spatial or Eulerian description. Only very briefly
the material or Lagrangean formulation was given. Such a formulation is
of advantage in describing the deformation of solids, because the boundary
conditions for solids are usually prescribed on the undeformed body, which
is generally the body in its reference configuration. As a consequence, any
theory describing deformable solids in the electromagnetic fields should from
the outset be given in the material description. This is not done in general;
on the contrary, in almost all theories the spatial description is applied. The
Lagrangean formulation is introduced only afterwards, and if so, only by
introducing some approximations, e.g. linearizations. These linearization pro-
cedures, although being straightforward are nevertheless quite cumbersome.
They become an almost trivial matter when the material description of the
governing field equations is used from the outset.

It thus should be apparent that the Lagrangean formulation is a ne-
cessity. The reason for presenting it this late is that it is relatively un-
known, so that the equations do at first sight not look familiar. They are
not new, however, and have been derived before (see Hutter [92, 95]).
Use of Lagrangean variables is also made by Alblas, [10], for the lin-
earization of some specialized topics as quasi-electroelastostatics and quasi-
magnetoelastostatics. This approach can be seen as an improvement of the
method used by Toupin, [241]. In his paper on the non-relativistic elec-
trodynamics of deformable media, Prechtl, [185], devoted one section to
a Lagrangean formulation of the balance equations and the jump condi-
tions (no constitutive equations are used by him). Both works of Alblas

and Prechtl are based on the Chu model. In the following, we shall de-
scribe the two-dipole models first and shall then pass on to the description
of the statistical and the Lorentz formulation; we shall conclude with the
Maxwell–Minkowski model.

K. Hutter et al.: Electromagnetic Field Matter Interaction in Thermoelastic Solids and
Viscous Fluids, Lect. Notes Phys. 710, 103–146 (2006)
DOI 10.1007/3-540-37240-7 5 c© Springer-Verlag Berlin Heidelberg 2006
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5.2 Material Description
of the Two–Dipole Models (Models I and II)

In Chap. 2, Sect. 2.3.3, the Lagrangean forms of the Maxwell equations
was briefly presented. Those equations appeared in one particular formu-
lation. We could, as was done for the Eulerian description, introduce the
various models by simply performing variable transformations. However, lit-
tle insight into the meaning of the new variables would be gained in doing
so, whereas a fresh derivation is enlightening.

The Chu formulation is based on the postulations that

(i) only two vector quantities are necessary to describe the electromagnetic
fields in free space and,

(ii) that material bodies contribute toward these fields by acting as sources
for these fields.

With regard to postulate (i) it is advantageous for the derivation of the
Lagrangean–Maxwell equations to work formally with four field vectors
and to relate the remaining two to the former ones. Concerning postulate
(ii) we assume it to be known that magnetization and polarization act as
charge and current distributions. Based on such a conception one arrives at
the equations (see Hutter [95])

∫

∂V

B a
i dν =

∫

V

Qmdν ,

∫

∂S

Eidli +
d

dt

∫

S

B a
i dai = −

∫

S

Jm
i dai ,

∫

∂V

D a
i dai =

∫

V

(Q + QP)dν ,

∫

∂S

Hidli −
d

dt

∫

S

D a
i dai =

∫

S

(Ji + J P
i )dν ,

d

dt

∫

V

Qdν +
∫

∂V

Jidai = 0 .

(5.2.1)

Here, Ei,Hi,Q and Ji are as introduced before; they are the electromotive
intensity, the effective magnetic field strength and the charge and conductive
current densities due to free charges. Moreover, QP,J P

i ,Qm and Jm
i are the

charge and conductive current densities due to polarization and magnetiza-
tion, and in the Chu formulation (compare also (3.3.48))
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∫

V

QP dν = −
∫

∂V

PC
i dai ,

∫

V

Qmdν = −
∫

∂V

µ0M
C
i dai ,

∫

S

J P
i dai =

d

dt

∫

S

PC
i dai ,

∫

S

Jm
i dai =

d

dt

∫

S

µ0M
C
i dai .

(5.2.2)

Finally, we introduced in (5.2.1) the auxiliary fields B a
i and D a

i , which are
related to the electric and magnetic field strength according to

B a
i = µ0H

C
i , D a

i = ε0E
C
i . (5.2.3)

These are the Maxwell–Lorentz aether relations. To derive a material
description from (5.2.1) and (5.2.2) one must by means of relations (2.2.25)
simply transform the integrals over spatial volumes and spatial surfaces into
integrals over reference volumes and reference surfaces. How this is done is
explained in Sect. 2.2.3, and hence we only give results:

∫

∂VR

B
a
αdAα =

∫

VR

Q
mdV ,

∫

∂SR

EαdLα +
d

dt

∫

SR

B
a
αdAα = −

∫

SR

J
m
α dAα ,

∫

∂VR

D
a
αdAα =

∫

VR

(Q + Q
P)dV ,

∫

∂SR

HαdLα − d

dt

∫

SR

DαdAα =
∫

SR

(J + J
P
α)dAα ,

d

dt

∫

VR

QdV +
∫

∂VR

JαdAα = 0,

(5.2.4)

with
∫

VR

Q
PdV = −

∫

∂VR

P
C
αdAα ,

∫

VR

Q
mdV = −

∫

∂VR

µ0M
C
αdAα ,

∫

SR

J
P
αdAα =

d

dt

∫

SR

P
C
αdAα ,

∫

SR

J
m
α dAα =

d

dt

∫

SR

µ0M
C
αdAα .

(5.2.5)

The following definitions have been used
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B
a
α = JF−1

αi B a
i , B a

i = J−1FiαB
a
α ,

Jα = |J |F−1
αi Ji , Ji = |J−1|FiαJα ,

P
C
α = |J |F−1

αi PC
i , PC

i = |J−1|FiαP
C
α ,

Q = |J |Q , Q = |J−1|Q ,

Eα = FiαEi , Ei = F−1
αi Eα ,

D
a
α = |J |F−1

αi D a
i , D a

i = |J−1|FiαD
a
α ,

Hα = FiαHisgnJ , Hi = F−1
αi HαsgnJ ,

µ0M
C
α = JF−1

αi µ0M
C
i , µ0M

C
i = J−1FiαM

C
α ,

(5.2.6)

some of which were already defined in (2.2.39) but are repeated here for
ease of reference. In the above equations integration is over material parts
VR, ∂VR, SR and ∂SR, and all variables are thought to be functions of Xα

and t so that, as usual, d/dt denotes the time derivative at a fixed particle.
The equations (5.2.4) and (5.2.5) may be combined, and for sufficiently

smooth fields they yield

B
a
α,α + µ0M

C
α,α = 0 ,

Ḃ
a
α + µ0Ṁ

C
α + eαβγEγ,β = 0 ,

D
a
α,α + Pα,α = Q ,

−Ḋ
a
α − Ṗα + eαβγHγ,β = Jα ,

Jα,α + Q̇ = 0 .

(5.2.7)

Equations (5.2.7) are the Maxwell equations in the material description. We
shall call Eα and Hα the Lagrangean electric and magnetic field strengths,
Pα and M

C
α the Lagrangean polarization and magnetization of the Chu

formulation and Q and Jα the Lagrangean free charge and current densities.
Since, in a non-relativistic approximation, the meaning of Pα is unique for
all formulations the upper index C for Pα has been dropped. This is not the
case for Mα and, therefore, the index C must be retained there.

Before we proceed, a few comments seem to be in order: Firstly, all quanti-
ties listed on the right column of (5.2.6) are objective vectors (Ji, P

C
i , Ei,D

a
i ),

objective axial vectors (B a
i ,MC

i ,Hi) and an objective scalar (Q) under the
Euclidian transformation group. As a consequence, all Lagrangean vari-
ables (listed on the left column of (5.2.6)) are scalars under this group, as
they must. Secondly, we can easily relate the variables occurring in (5.2.7) to
those listed in (2.2.39), and indeed, this transformation is achieved by setting

Bα := B
a
α + µ0M

C
α , Dα := D

a
α + Pα , (5.2.8)
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where Dα and Bα may be defined also in terms of Bi and Di as was done in
(2.2.39). Thirdly, in order to determine the auxiliary fields B

a
α and D

a
α , we

simply must use the Maxwell–Lorentz aether relations and must invoke
the transformations (5.2.6). When this is done and when terms proportional
to c−2 are discarded, a straightforward calculation shows that

D
a
α = ε0|J |C−1

αβ Eβ , B
a
α = µ0|J |C−1

αβ Hβ . (5.2.9)

These relations thus hold in a non-relativistic theory. When relativistic terms
are retained they become much more complicated as can be seen in [95].

Of course, as was the case in the Eulerian description, the global equa-
tions (5.2.4) and (5.2.5) also imply jump conditions, which follow from (2.4.5)
by invoking the definitions (5.2.8). They then read

[[
B

a
α + µ0M

C
α

]]
Nα = 0 ,

[[
D

a
α + Pα

]]
Nα = 0 ,

eαβγ

[[
Eβ

]]
Nγ +

[[
(B a

α + µ0M
C
α )WN

]]
= 0 ,

eαβγ

[[
Hβ

]]
Nγ −

[[
(D a

α + Pα)WN

]]
= 0 ,

[[
Jα

]]
Nα +

[[
QWN

]]
= 0 .

(5.2.10)

To complete the description of the electro-mechanical interaction the bal-
ance laws of mass, momentum, moment of momentum and energy must be
given. They are listed in (2.2.27)–(2.2.30), and their local forms appear in
(2.2.32). It thus suffices to write down the material counterparts of the elec-
tromagnetic body force, body couple and energy supply. They are ρ0F

e
i , ρ0L

e
ij

and ρ0r
e, respectively. To calculate them for models I and II we only need

to convert the expressions (3.3.15), (3.3.7)2, (3.3.12) and (3.3.49) to La-

grangean form omitting thereby c−2-terms. In this calculation it is also
advantageous to use relation (4.2.1):

ρ IF e
i = ρ IIF e

i + (EiPj + µ0HiM
C
j ),j .

The details are tedious even though they are straightforward, and what one
obtains reads as follows:

For model I

I(ρ0F
e
i ) = F−1

αi

(
(Q − Pβ,β)Eα + eαβγ(Jβ + Ṗβ)B a

γ − µ0M
C
β,βHα

)

+
(
F−1

βi (PαEβ + µ0M
C
α Hβ)

)

,α
,

I(ρ0L
e
ij) = F[iαF−1

βj] (PαEβ + µ0M
C
α Hβ) ,

I(ρ0r
e) = JαEα + ṖαEα + µ0Ṁ

C
α Hα + F−1

αi (EαPβ + µ0HαM
C
β )Ḟiβ ,

(5.2.11)



108 5 Material Description

and for model II

II(ρ0F
e
i ) = F−1

αi {(Q − Pβ,β)Eα + eαβγ(Jβ + Ṗβ)B a
γ − µ0M

C
β,βHα} ,

II(ρ0L
e
ij) = 0 ,

II(ρ0r
e) = JαEα + ṖαEα + µ0Ṁ

C
α Hα ,

(5.2.12)

in the derivation of which also the identities

eijkFiαFjβFkγ = Jeαβγ ,

(
1
J
Fiα

)

,i

= 0 ,

�

P i= |J−1|FiαṖα , Pi,i = |J−1|Pα,α ,

�

MC
i = J−1FiαṀ

C
α , MC

i,i = J−1
M

C
α,α ,

(5.2.13)

are used.
Two conclusions are readily drawn from the above expressions. Firstly,

mere inspection of (5.2.11) and (5.2.12) shows that the expressions for body
force and body couple are (in a non-relativistic sense) an objective vector
and an objective skew-symmetric tensor, respectively. It is also seen that
the electromagnetic energy supply is an objective scalar only in model II.
Needless to state which model seems to be simpler. Secondly, the body force
expression (5.2.12)1 is easily interpretable. It is composed of an electric and
a magnetic Lorentz force (compare (3.3.46)1)

II(ρ0F
e
i ) = F−1

αi

(
(Qe

Eα + eαβγJ
e
βB

a
γ ) + (Qm

Hα + eαβγJ
m
β D

a
γ )
)

, (5.2.14)

where
Q

e = Q − Pα,α , J
e
β = J + Ṗβ ,

Q
m = −µ0M

C
α,α , J

m
β = µ0Ṁ

C
β ,

(5.2.15)

as follows from (5.2.2).
As was done formally in (2.4.10) we can also derive the Maxwell stress

tensor TM
iα , the electromagnetic momentum Gi, the energy flux Πα and the

energy density Ω. Formally, this is done by expressing the representations
(3.3.10) and (3.3.51) in Lagrangean variables and using the transformations
(see (2.4.10))

TM
iα = |J |(tMij − giẋj)F−1

αj , Gi = |J |gi ,

Πα = |J |(πi − ωẋi)F−1
αi , Ω = |J |ω .

(5.2.16)

The calculations are again easy, though rather long, and what one obtains in
a non-relativistic formulation can be written as follows:
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For model II

IITM
iα = F−1

βi (D a
αEβ + B

a
αHβ) − 1

2F
−1
αi (D a

β Eβ + B
a
β Hβ) ,

IIGi = 0 ,

IIΠα = −eαβγEβHγ − 1
2 (D a

β Eβ + B
a
β Hβ)F−1

αi ẋi

+(D a
αEβ + B

a
αHβ)F−1

βi ẋi = −eαβγEβHγ + IITM
iα ẋi ,

IIΩ = − 1
2 (EαD

a
α + HαB

a
α) .

(5.2.17)

For model I

ITM
iα = IITM

iα + F−1
βi (PαEβ + µ0M

C
α Hβ) , IGi = IIGi = 0 ,

IΠα = IIΠα + (PαEβ + µ0M
C
α Hβ)F−1

βi ẋi , IΩ = IIΩ .
(5.2.18)

The jump conditions for the two models can now be obtained by simply
substituting (5.2.17) or (5.2.18) into the general jump conditions (2.4.12).

There remains the presentation of the constitutive theory. For that pur-
pose, we first eliminate ρ0r

ext from (2.3.7) and (2.2.32)3. When making use
of (5.2.14)3, the following entropy inequality for model II is obtained:

−ρ0ψ̇−ρ0ηΘ̇+ IITiαḞiα + ṖαEα +µ0Ṁ
C
α Hα +JαEα−

QαΘ,α

Θ
≥ 0 . (5.2.19)

Here we have introduced the Helmholtz free energy

ψ = U − ηΘ , (5.2.20)

and have also set
Φα =

Qα

Θ
. (5.2.21)

The entropy inequality for model I can be found from (5.2.19) by introducing
into the latter the following relation between the Piola-Kirchhoff stress
tensors of the two models (compare (4.2.2))

ITiα = IITiα − F−1
βi (PαEβ + µ0M

C
α Hβ) . (5.2.22)

Inequality (5.2.19) suggests to establish constitutive relations of the form

C = Ĉ

(

Cαβ ,
Pα

ρ0
,
µ0M

C
α

ρ0
, Θ,Θ,α,Q

)

. (5.2.23)

All variables in the above list are objective per se, although they are different
from the objective variables used in Chaps. 3 and 4 (say Pα and Mα etc.).
That the Lagrangean field variables are the natural objective combinations
of deformation and electromagnetic fields will become apparent shortly. How-
ever, before deducing constitutive equations, we first replace in (5.2.19) the
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first Piola–Kirchhoff stress tensor Tiα by the second one, which according
to (2.2.33) is defined as

TP
αβ := TiαF−1

βi . (5.2.24)

Once constitutive relations of the form (5.2.23) are postulated for ψ, η, TP
αβ ,Eα,

Hα, Jα and Qα, which all must be objective scalars, we may derive from
(5.2.19) in the usual way that i) the free energy cannot depend on Θ,α and
Q,

ψ = ψ̂

(

Cαβ ,
Pα

ρ0
,
µ0M

C
α

ρ0
, Θ

)

, (5.2.25)

and ii) that

η = − ∂ψ̂

∂Θ
, Eα =

∂ψ̂

∂Pα/ρ0
,

Hα =
∂ψ̂

∂µ0MC/ρ0
, IITP

αβ = 2ρ0
∂ψ̂

∂Cαβ
,

(5.2.26)

so that the reduced entropy inequality becomes

JαEα − QαΘ,α

Θ
≥ 0 . (5.2.27)

The second Piola–Kirchhoff stress tensor of model I on the other hand
obeys the relation

ITP
αβ = 2ρ0

∂ψ̂

∂Cαβ
− C−1

βγ (PαEγ + µ0M
C
α Hγ) , (5.2.28)

which, with the aid of (5.2.24) and (5.2.26)4, can be derived from (5.2.22).
Hence, this stress tensor, in contrast to IITP

αβ , is not symmetric. However, in
view of (5.2.28) and (5.2.11)2 the balance law of momentum of momentum,
which reads (see (2.2.32))

I(ρ0L
e
ij) = IT[iαFj]α = −FiαFjβ

ITP
[αβ] (5.2.29)

is satisfied identically.
When in the energy equation (2.2.32)3 use is made of relations (5.2.20),

(5.2.26) and (5.2.12)3, the latter may be written as

ρ0Θη̇ = JαEα −Qα,α + ρ0r
ext . (5.2.30)

It should be noted that this relation is derived for model II, but holds for
model I as well. It is this form of the energy equation which normally is used
in applications.

One advantage of the Lagrangean variables introduced in (5.2.6) is the
simplicity which the constitutive equation for stress assumes. Corroboration
is provided by a comparison of the formulas (3.3.57)4 and (5.2.26)4. Another



5.2 Material Description of the Two–Dipole Models (Models I and II) 111

advantage is the form of the Gibbs relation when written in terms of these
variables. Indeed, it follows from the definition of the Helmholtz free energy
ψ, (5.2.20), and the results (5.2.26) that

∂η

∂Θ
=

1
Θ

∂U

∂Θ
,

∂η

∂Pα/ρ0
=

1
Θ

{
∂U

∂Pα/ρ0
− Eα

}

,

∂η

∂µ0MC
α /ρ0

=
1
Θ

{
∂U

∂µ0MC
α /ρ0

− Hα

}

,

∂η

∂Cαβ
=

1
Θ

{
∂U

∂Cαβ
− 1

2ρ0

IITP
αβ

}

,

(5.2.31)

from which one readily deduces that

dη =
1
Θ

{

dU − 1
2ρ0

IITP
αβdCαβ − Eαd

(
Pα

ρ0

)

− Hαd

(
µ0M

C
α

ρ0

)}

. (5.2.32)

Next we would like to explore the consequences, which follow from the
Gibbs relation, but were not determined in the previous chapter. The reasons
for this postponement are formal ones, for the Gibbs relation assumes a par-
ticularly simple form when written in the Lagrangean variables (compare
(5.2.32) with (3.3.59)).

From a practical point of view, that is from a viewpoint of an applied
physicist, who must determine actual constitutive relations by performing
appropriate experiments, the Helmholtz free energy is not necessarily the
most convenient variable to match experiments with theory. These are rather
the internal energy, the stress tensor, the polarization and magnetization per
unit mass. In what follows, we shall demonstrate, firstly, how a consistent con-
stitutive theory can be developed when starting from this end. Secondly, this
approach will show that, ultimately one searches for the free energy also when
using this more physical approach. The method will further demonstrate that
the constitutive relations for internal energy, entropy, free energy and stress
can all be separated into two parts, one of which is of purely thermoelastic
origin and can therefore be determined from thermoelastic experiments in
the absence of electromagnetic fields. The second parts are then the respec-
tive effects due to the electromagnetic fields. We shall outline the procedure
for the case that Pα and Mα are chosen as independent electromagnetic field
variables. At the center of the following derivation lies the Gibbs relation
(5.2.32) or the identities (5.2.31), which are the basis for the derivation of
the latter.

Note that relations (5.2.31) imply integrability conditions, which can eas-
ily be derived by cross differentiations. If these differentiations are performed
the following chain of identities is obtained: (here Mα ≡ M

C
α )



112 5 Material Description

1
Θ

=
−∂Eα

∂Θ
∂U

∂Pα/ρ0
− Eα

=
−∂Hα

∂Θ
∂U

∂µ0Mα/ρ0
− Hα

=
−

∂ IITP
αβ

∂Θ

2ρ0
∂U

∂Cαβ
− IITP

αβ

,

∂Eα

∂µ0Mβ/ρ0
=

∂Hβ

∂Pα/ρ0
,

∂Eα

∂Pβ/ρ0
=

∂Eβ

∂Pα/ρ0
,

∂Hα

∂µ0Mβ/ρ0
=

∂Hβ

∂µ0Mα/ρ0
,

2ρ0
∂Eα

∂Cβγ
=

∂ IITP
βγ

∂Pα/ρ0
, 2ρ0

∂Hα

∂Cβγ
=

∂ IITP
βγ

∂µ0Mα/ρ0
,

∂ IITP
αβ

∂Cγδ
=

∂ IITP
γδ

∂Cαβ
.

(5.2.33)
It follows that the relations on the right of (5.2.33)1,2,3 are all functions of
the temperature alone. All the more, they are exactly 1/Θ and are equal.
Such relations, of course, reduce the effective labor of the experimentalist
considerably.

The next step consists in the integration of the identities (5.2.33). To this
end, notice that (5.2.33)1,2 can also be written in the form

∂U

∂Pα/ρ0
= −Θ2 ∂

∂Θ

(
Eα

Θ

)

,
∂U

∂µ0Mα/ρ0
= −Θ2 ∂

∂Θ

(
Hα

Θ

)

. (5.2.34)

As we shall see in a moment, these equations allow us to decompose U into
two parts of which one is due to the electromagnetic fields, whereas the other
is the internal energy of the body in the absence of the fields. To see this, we
introduce the 6-tuples

xA = (Pα/ρ0, µ0Mα/ρ0), fA = (Eα,Hα), (A = 1, 2, . . . , 6;α = 1, 2, 3) .
(5.2.35)

The two equations (5.2.34) then combine to give

∂U

∂xA
= −Θ2 ∂

∂Θ

(
fA
Θ

)

= FA , A = 1, 2, . . . , 6 . (5.2.36)

If the functions fA (or FA) are known functions of their arguments xA, Cαβ

and Θ, equation (5.2.36) is a set of six partial differential equations for U . Of
course, in order that such a system is integrable the functions fA must satisfy
integrability conditions, namely

∂fA
∂xB

=
∂fB
∂xA

, or
∂FA

∂xB
=

∂FB

∂xA
. (5.2.37)

In the above case these are identical with (5.2.33)4,5,6 and consequently,
(5.2.36) can indeed be integrated. To construct the solution of (5.2.36) we
write it in vector form

∇U = F ,
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which is more suggestive, because it shows the resemblance with the relation
between the potential energy U and a conservative force F , the conserva-
tivism of which is assured by (5.2.37). The value of U in a point x can then
be found from the line integral

U(x) =

x∫

0

F (x′) · dx′ + constant ,

which is independent of the path transversed from 0 to x. Choosing the
straight line from 0 to x, we thus can take

x′ = xs , 0 ≤ s ≤ 1 ,

and then obtain

U(x) = x ·
1∫

0

F (xs)ds + constant.

Proceeding in an analogous way with (5.2.36), we find the following solution:

U = U(xA, Cαβ , Θ) = −Θ2 ∂

∂Θ

(
I

Θ

)

+ U0(Cαβ , Θ) , (5.2.38)

where U0(Cαβ , Θ) replaces the integration constant in the preceding analysis
and I stands for

I = I(xA, Cαβ , Θ) = xA

1∫

0

fA(xBs, Cαβ , Θ)ds . (5.2.39)

From this relation it is obvious that I is zero for vanishing electromagnetic
fields (fA = 0). Furthermore, by differentiating (5.2.39) with respect to xA it
immediately follows that

fA =
∂I

∂xA
. (5.2.40)

With the representation (5.2.39) part of our goal is achieved, namely that
the internal energy U is separated into two parts. Here, U0 is the specific
internal energy when the electromagnetic fields vanish. The term involving I
is the correction due to the presence of the electromagnetic fields.

Not all the identities (5.2.33) have been exploited when constructing
the solution (5.2.38), (5.2.39). For instance, we still must explore conditions
(5.2.33)3. They can also be written in the form

1
Θ2

∂U0

∂Cαβ
=

∂

∂Θ

{
1
Θ

∂I

∂Cαβ
−

IITP
αβ

2ρ0Θ

}

. (5.2.41)
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This is simplified if we introduce the purely thermoelastic part of the second

Piola–Kirchhoff stress tensor II
◦
TP

αβ by

II
◦
TP

αβ = II
◦
TP

αβ (Cγδ, Θ) = IITP
αβ(xA = 0, Cγδ, Θ) . (5.2.42)

Then (5.2.41) with I = 0 delivers the relation

1
Θ2

∂U0

∂Cαβ
= − ∂

∂Θ






II
◦
TP

αβ

2ρ0Θ




 ,

whence follows

∂

∂Θ

{
1
Θ

[
∂I

∂Cαβ
+

1
2ρ0

(
II

◦
TP

αβ − IITP
αβ

)]}

= 0 ,

or after integration

IITP
αβ = II

◦
TP

αβ +2ρ0
∂I

∂Cαβ
+ Θταβ(xA, Cγδ) . (5.2.43)

With the aid of (5.2.33)7,8 and (5.2.40), ταβ can be shown to be independent
of xA, so that

ταβ = ταβ(Cγδ) .

Taking this result into account in equation (5.2.43) and evaluating the latter
at zero magnetic fields leads us, with the aid of (5.2.42), to the conclusion
that ταβ must be zero. Hence,

IITP
αβ = II

◦
TP

αβ +2ρ0
∂I

∂Cαβ
, (5.2.44)

an equation which separates the stress into a thermoelastic and a field part.
Equations (5.2.40) and (5.2.44) may now be used to write the Gibbs relation
(5.2.32) in the form

d

{

η +
∂I

∂Θ

}

=
1
Θ

{

dU0 − 1
2ρ0

II
◦
TP

αβ dCαβ

}

,

whence, since the right-hand side is independent of the electromagnetic fields,
it follows that

η = η0(Cαβ , Θ) − ∂I

∂Θ
. (5.2.45)

Thus, it has also been possible to separate the field part of the entropy from
the corresponding thermoelastic part.
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After the introduction of

ψ0 = ψ0(Cαβ , Θ) ,

as the free energy in case of vanishing electromagnetic fields, a nice interpre-
tation of I follows from (5.2.26)1 and (5.2.45). Accordingly,

∂

∂Θ
(ψ̂ − I) = −η0 =

∂ψ0

∂Θ
, (5.2.46)

and, hence,

ψ̂(xA, Cαβ , Θ) = ψ0(Cαβ , Θ) + I(xA, Cαβ , Θ) + g(xA, Cαβ) .

Use of (5.2.40), (5.2.26)2,3 and the definition of ψ0 then shows that g ≡ 0, so
that

ψ̂(xA, Cαβ , Θ) = ψ0(Cαβ , Θ) + I(xA, Cαβ , Θ) . (5.2.47)

Here, ψ0 denotes the free energy, when there are no electromagnetic fields
present, and I is therefore the field part of the Helmholtz free energy.

There is another possible separation of the internal energy, entropy, free
energy and the stresses, which, from a practical point of view is as important
as the above one. We mean the separation into contributions due to “rigid-
body processes” and the corrections due to deformations. This approach gives
a natural separation of rigid-body electrodynamics from that of deformable
bodies. The idea is to commence the integration of (5.2.33)1,2,3 with (5.2.33)3,
which, with the definitions

yA = (C11, C22, C33, C23, C31, C12) ,

gA = ( IITP
11,

IITP
22,

IITP
33,

IITP
23,

IITP
31,

IITP
12), (A = 1, 2, . . . , 6)

(5.2.48)

may be written as
∂U

∂yA
= −Θ2 ∂

∂Θ

(
gA

2ρ0Θ

)

, (5.2.49)

where in view of (5.2.33)
∂gA

∂yB
=

∂gB

∂yA
,

holds. Using the same approach as before, we derive the following represen-
tation:

U(xA, yA, Θ) = UR(xA, Θ) −Θ2 ∂

∂Θ

(
J

Θ

)

, (5.2.50)

where

J = J(xA, yA, Θ) =
yA

2ρ0

1∫

0

gA(xB , yB , s, Θ)ds , (5.2.51)

and, moreover,
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gA = 2ρ0
∂J

∂yA
,

fA = fR
A (xA, Θ) +

∂J

∂gxA

, η = ηR(xA, Θ) − ∂J

∂Θ
,

ψ̂(xA, yA, Θ) = ψR(xA, Θ) + J(xA, yA, Θ) ,

(5.2.52)

where we still note that for the derivation of (5.2.52) the Gibbs relation
(5.2.32) was written in the form

d

(

η +
∂J

∂Θ

)

=
1
Θ

(dUR − fR
AdxA) .

In these equations the quantities carrying a superscript R are the internal
energy UR, the electromagnetic fields fR

A , the entropy ηR, and the free energy
ψR for zero deformation. They constitute the rigid-body contributions and
form the constitutive relations of rigid-body electrodynamics. All constitu-
tive properties that can be traced back to deformation are contained in the
function J .

This completes the constitutive theory. The integration procedure has
shown that all difficulties rest on an appropriate determination of the func-
tions I or J (or more generally of ψ). Of course, the same procedure can also
be taken when some of the dependent and independent variables are inter-
changed. Since the details of the pertinent calculations are the same as above
we leave them to the reader.

Before we proceed we would like to mention that there are still further
possibilities of separating the various effects. These can easily be derived
if either only (5.2.33)1, or else (5.2.33)2, is used in the integration process.
If the results contained in all these combinations are put together, the free
energy can, for instance, be written as a sum of four parts, one of which is the
field-free energy. The second term involves, apart from the deformation, only
the electric effects (polarization); in the third term then only magnetization
appears. Only in the fourth term does there occur electromagnetic coupling.
Hence, we have shown that the separation of the interaction phenomena into
the four physically clearly defined parts is indeed possible – and justified.

For later reference, we would like to list here also the constitutive equa-
tions for the case that, instead of Pα/ρ0 and µ0Mα/ρ0,Eα and Hα are the
independent variables. In other words, we shall postulate constitutive equa-
tions of the form

C = C̄(Cαβ ,Eα,Hα, Θ,Θ,α,Q) , (5.2.53)

which can easily be obtained from the preceding ones by the Legendre

transformation

ψ̄ = U−ηΘ− 1
ρ0

EαPα−
µ0

ρ0
HαM

C
α = ε̄−ηΘ = ψ̄(Cαβ ,Eα,Hα, Θ) , (5.2.54)

which leads to the relations
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η = − ∂ψ̄

∂Θ
, Pα = −ρ0

∂ψ̄

∂Eα
,

µ0M
C
α = −ρ0

∂ψ̄

∂Hα
, IITP

αβ = 2ρ0
∂ψ̄

∂Cαβ
,

(5.2.55)

and to the Gibbs relation

dη =
1
Θ

{

dε̄− 1
2ρ0

IITP
αβdCαβ +

Pα

ρ0
dEα +

µ0Mα

ρ0
dHα

}

.

We conclude this section with a few complementary remarks. Firstly, in
the above constitutive theory we have introduced the classical expression for
the entropy flux, and we have done this already when treating this model in
the Eulerian description. That this is correct was proved by Hutter [95],
and indeed he obtains exactly the same Gibbs relation. Secondly, taking for
ψ, or ψ̄, in both models the same function of the form (5.2.25), or (5.2.54),
and for the energy flux the same function of the form (5.2.23), or (5.2.53), we
automatically guarantee that the two models are thermodynamically equiva-
lent. Finally, we mention that it is particularly easy to linearize the equations
in the Lagrangean formulation. We shall demonstrate this in Chap. 6.

If we were to follow the order of presentation of the previous chapter, the
Lagrangean description of the Maxwell–Minkowski formulation should
now follow. For didactic reasons, we shall treat this formulation last.

5.3 Material Description of the Statistical
and the Lorentz Formulation (Models IV and V)

As we have seen in Chap. 3 already, the statistical formulation and the
Lorentz formulation are very similar, and indeed in Chap. 4 we demon-
strated how the two models could be brought into a one-to-one correspon-
dence. We therefore expect the two models to show a close interrelation in
the Lagrangean formulation as well. This is indeed the case and we shall
give corroboration for this below.

To begin with, recall that the Maxwell equations in Chap. 2 were stated
in terms of the variables Ei,Di,Hi and Bi and that these quantities were
related to the statistical and Lorentzian variables in (3.5.1) and (3.6.1),
respectively. Using also the relations

PS
i = PL

i = Pi , Mi = MS
i + eijkẋjPk = ML

i , (5.3.1)

it is then easy to show that the Maxwell equations (2.2.12), (2.2.13),
(2.2.19) and (2.2.20) may be written in the form
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d

dt

∫

S

Bidai +
∫

∂S

Eidli = 0 ,

∫

∂V

Bidai = 0 ,

− d

dt

∫

S

D a
i dai +

∫

∂S

H a
i dli =

∫

S

Jidai +
d

dt

∫

S

Pidai +
∫

∂S

ML
i dli ,

∫

∂V

D a
i dai =

∫

V

Qdν −
∫

∂V

Pidai ,

(5.3.2)

where we have introduced the auxiliary quantities

D a
i := ε0Ei , H a

I := H a
I − eijkẋjD

a
k , (5.3.3)

with
H a

i :=
1
µ0

Bi . (5.3.4)

Note that even in a non-relativistic formulation

H a
i �= H a

I ,

but that in this approximation (recall the rules stated just after (3.4.12))

D a
i = εEi , µ0H

a
i = µ0H a

i ,

1
µ0

BiBi = H a
i Bi = H a

i Bi .
(5.3.5)

We remind the reader that Ei and Bi are the electric field strength and mag-
netic flux density as they occur in the Minkowski, statistical, and Lorentz

formulations. Furthermore, as it was convenient to introduce auxiliary fields
for the two dipole models, so it is here, and the equations (5.3.3)1 and (5.3.4)
represent nothing but the familiar Maxwell–Lorentz aether relations.

Before we pass on to the presentation of the material description of the
equations (5.3.2) a few words are in order regarding the interpretation of the
various terms in (5.3.2). Firstly, there is a set of homogenous equations and
another one that is inhomogeneous through the presence of free charge and
free current terms. As is seen from these, both polarization and magnetization
manifest themselves as distributions of surface charges and surface currents,
respectively. Secondly, we have expressed the integral laws (5.3.2) in terms
of Lorentzian variables, but it is not difficult to write them in terms of the
variables of the statistical description by simply invoking the transformations
(5.3.1). The only term that changes in this formal substitution is

∫

∂S

ML
i dli =

∫

∂S

MS
i dli +

∫

∂S

eijkẋjPkdli . (5.3.6)
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It is not convenient to absorb the second member on the right-hand side in
the term ∫

∂S

H a
i dai ,

as it occurs on the left-hand side of (5.3.2)3, because in that case H a
i would

also be expressed in terms which describe the material behavior. Thus, we
conclude that in both the statistical and the Lorentz formulations

∫

∂S

ML
i dli

is the proper (magnetization) current, and this is one reason for us to re-
gard the Lorentzian description as more advantageous than the statistical
description, for it is the former, which will directly lead to a material coun-
terpart of the Eulerian variables. In the statistical formulation this current
term must be attributed to magnetization as well as polarization.

To arrive at the Lagrangean counterpart of equations (5.3.2) one needs
only to transform the integrals back to the reference configuration. If this is
done, one obtains

d

dt

∫

SR

BαdAα +
∫

∂SR

EαdLα = 0 ,

∫

∂VR

BαdAα = 0 ,

− d

dt

∫

SR

D
a
αdAα +

∫

∂SR

H
a
αdLα =

∫

SR

JαdAα +
d

dt

∫

SR

PαdAα +
∫

∂SR

M
L
αdLα ,

∫

∂VR

D
a
αdAα =

∫

VR

Q dV −
∫

∂VR

PαdAα ,

(5.3.7)
and from these one may derive in the usual way the conservation law of
charges in the form

d

dt

∫

VR

Q dV +
∫

∂VR

JαdAα = 0 . (5.3.8)

All newly introduced variables are already defined in (5.2.6), except for
Bα,Ha

α and M
L
α, which are given by

Bα = JF−1
αi Bi , Bi = J−1FiαBα ,

H
a
α = FiαH a

i sgnJ , H a
i = F−1

αi H
a
αsgnJ ,

M
L
α = FiαML

i sgnJ , ML
i = F−1

αi M
L
αsgnJ .

(5.3.9)
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Specifically, we wish to point out the difference between M
L
α and M

C
α ; these

two fields are related by

M
L
α =

1
|J |CαβM

C
β . (5.3.10)

For sufficiently smooth fields equations (5.3.7) become

Bα,α = 0 ,

Ḃα + eαβγEγ,β = 0 ,

D
a
α,α = Q − Pα,α ,

−Ḋ
a
α + eαβγH

a
γ,β = J + Ṗα + eαβγM

L
γ,β ,

Q̇ + Jα,α = 0 .

(5.3.11)

These equations are the Maxwell equations in the material description, as
they naturally emerge from the Lorentz or the statistical formulations. As
was the case in the Chu formulation, they contain two auxiliary variables
which can be expressed in terms of Bα and Eα. Indeed, on using relations
(5.3.3) and the transformation rules for Ei,D

a
i ,H a

i and Bi, a straightforward
calculation shows that in a nonrelativistic approximation

D
a
α = ε0|J |C−1

αβ Eβ ,

H
a
α =

1
|J |

{
1
µ0

CαβBβ − ε0eµβγCαβFjγ ẋjEµ

}

.
(5.3.12)

Recognize, as was already the case in the material description of the two
dipole models, that it is through the Maxwell-Lorentz aether relations
that the formal linearity of the equations (5.3.11) is destroyed. Nevertheless,
equations (5.3.11) appear in a form, which is identical to that in the statistical
description when spatial coordinates are used (see (3.5.2)). Variables are,
however, different and so are the configurations.

One could, if one so desired, write (5.3.11) also as

Bα,α = 0 ,

Ḃα + eαβγEγ,β = 0 ,

Dα,α = Q ,

−Ḋα + eαβγHγ,β = Jα ,

Q̇ + Jα,α = 0 .

(5.3.13)

where
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Dα := D
a
α + Pα and Hα := H

a
α − M

L
α , (5.3.14)

and would in this way formally arrive at a material Minkowski formulation.
We shall come back to this in the next section. Note that (5.3.13) agrees with
(2.2.40) and thus Dα and Hα also agree with Dα and Hα introduced there.

The balance laws (5.3.2) imply also jump conditions, which can easily be
derived from (2.4.5) by simply invoking (5.3.14). This yields

[[
Bα

]]
Nα = 0 ,

eαβγ

[[
Eβ

]]
Nγ +

[[
BαWN

]]
= 0 ,

[[
D

a
α + Pα

]]
Nα = 0 ,

eαβγ

[[
H

a
β − M

L
β

]]
Nγ −

[[
(D a

α + Pα)WN

]]
= 0 ,

[[
Jα

]]
Nα +

[[
QWN

]]
= 0 .

(5.3.15)

To complete the description, we must also derive the Lagrangean ver-
sions of the body force, body couple and energy supply expressions of electro-
magnetic origin. For this purpose we simply express these quantities, which
in (3.5.3) and (3.6.5) are written in terms of the Eulerian variables, in the
Lagrangean fields Eα,Bα,Pα,ML

α etc. Starting from (3.6.5), we obtain for
the Lorentz formulation (model V)

V(ρ0F
e
i ) = F−1

αi

(
(Q − Pβ,β)Eα + eαβγ(Jβ + Ṗβ)Bγ

+(ML
α,β − M

L
β,α)Bβ

)
,

V(ρ0L
e
ij) = 0 ,

V(ρ0r
e) = JαEα + ṖαEα + eαβγM

L
γ,βEα .

(5.3.16)

For the derivation of the corresponding expressions of the statistical model
it is convenient to make use of the relation (compare (4.5.4))

IV(ρF e
i ) = V (ρ0F

e
i ) + (EiPi −MiBj + δijMkBk),j , (5.3.17)

an expression, which can be derived from (3.5.3) and (3.6.5). Alternatively,
the expressions for the body couple and energy supply follow from (3.5.3)2
and (3.5.3)3, respectively, the latter written in the form

IV(ρre) = JiEi +(
�

P i +Pj ẋi,j)Ei−(
�

Bi −Biẋj,j +Bj ẋi,j)Mi . (5.3.18)

Transforming the above expressions to referential coordinates, we obtain for
model IV
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IV(ρ0F
e
i ) = F−1

αi

(
(Q − Pβ,β)Eα + eαβγ(Jβ + Ṗβ)Bγ

+(ML
α,β − M

L
β,α)Bβ

)

+
(
F−1

αi (EαPβ − M
L
αBβ + δαβM

L
γ Bγ)

)

,β
,

IV(ρ0L
e
ij) = F[iαF−1

βj] (PαEβ − BαM
L
β ) ,

IV(ρ0r
e) = JαEα + ṖαEα − M

L
αḂα

+Ḟkγ

(
(EβPγ − M

L
β Bγ)F−1

βk + M
L
β BβF

−1
γk

)
.

(5.3.19)

We would like to point out that the body force expression (5.3.16)1 is seem-
ingly different from that given in [92]. However, when using the identity

F−1
νi,µBµM

L
ν −F−1

kδ F−1
µi F−1

νk,µBδM
L
ν = Fkµ(F−1

νi,k −F−1
νk,i)BµM

L
ν = 0 , (5.3.20)

which was not observed in [92], the body force expressions turn out to be
identical.

We see that the body force expressions in the two formulations differ by
a term that is the divergence of a tensor. It corresponds to the divergence
term occurring already in the Eulerian body force. Particularly interesting
is a comparison of the electromagnetic energy supply terms listed in (5.3.16)3
and (5.3.19)3. Using (5.3.11)2, we can show that IV(ρ0r

e) may also be written
as

IV(ρ0r
e) = JαEα + ṖαEα + eαβγM

L
γ,βEα + (eαβγEβM

L
γ ),α

+Ḟkγ

(
(EβPγ − M

L
β Bγ)F−1

βk + M
L
β BβF

−1
γk

)
.

(5.3.21)

Recognizing that, as already said several times before, for a comparison of
the energy supplies of two formulations we need not compare the term ρ0r

e

alone but rather the combination (ρ0r
e + tij ẋi,j). Thus when performing

this comparison we see that the last term of expression (5.3.21) for IV(ρ0r
e)

originates from the difference in the stress tensors of the models IV and V.
Indeed with the aid of (4.5.4) we may easily show that

IV Tiα = V Tiα + F−1
βi (PαEβ − BαM

L
β ) − M

L
γ M

L
γ F−1

αi . (5.3.22)

However, the term
(eαβγEβM

L
γ ),α

cannot be explained in this way. Consequently either the energy fluxes Qα

or the entropy fluxes φα of the two formulations must differ. Indeed, we may
choose, as was already done in the Eulerian description,

QS
α = QL

α + eαβγEβM
L
γ , (5.3.23)
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and then obtain

φS
α =

QS
α

Θ
=

QL
α + eαβγEβM

L
γ

Θ
= φL

α . (5.3.24)

This form of the entropy flux vector was proved to be correct by Hutter [92]
in a theory of viscous isotropic thermoelastic, polarizable and magnetizable
solids. Here we treat (5.3.23) as a postulate.

When we compare the expressions for the electromagnetic energy supply
(5.3.16)3 and (5.3.19)3 with the corresponding Eulerian expressions, (3.5.3)3
and (3.6.5)3, we recognize that the Lorentzian expression V(ρ0r

e) is formally
the same as its spatial counterpart V(ρre). This property is not shared by
IV(ρ0r

e) and IV(ρre).
Finally, we note that the expressions for the electromagnetic body couple

and body force are simpler in the Lorentz formulation than in the statis-
tical formulation. All this, of course, are reasons which make the Lorentz

formulation to be (formally) superior to the statistical one, although, as we
have shown, they are equivalent.

We proceed with the jump conditions for momentum and energy of matter
and fields as they are listed in their general form in (2.4.12). Therefore,
it suffices to evaluate TM

iα , Gi,Πα and Ω. These quantities are obtained if
use is made of the transformations (5.2.16) for tMij , gi, πi and ω, which in
(3.5.8) and (3.6.8) are given for the statistical and the Lorentz formulations,
respectively. When the indicated transformations are performed the following
relations are obtained:

(i) in the Lorentz formulation (model V)
V TM

iα = F−1
βi (D a

αEβ + BαH
a
β ) − 1

2F
−1
αi (D a

β Eβ + BβH
a
β ) ,

V Gi = 0 ,

V Πα = −eαβγEβH
a
γ + F−1

βi (D a
αEβ + BαH

a
β )ẋi − 1

2F
−1
αi (D a

β Eβ + BβH
a
β )ẋi

= −eαβγEβH
a
γ + V TM

iα ẋi ,

V Ω = − 1
2 (D a

αEα + BαH
a
α) ,

(5.3.25)
(ii) in the statistical formulation (model IV)

IV TM
iα = V TM

iα + F−1
βi (PαEβ − BαM

L
β + δαβBγM

L
γ ) ,

IV Gi = 0 ,

IV Πα = V Πα + eαβγEβM
L
γ + F−1

βi (PαEβ − BαM
L
β + δαβBγM

L
γ )ẋi

= −eαβγEβ(H a
γ − M

L
γ ) + IV TM

iα ẋi ,

IV Ω = V Ω.
(5.3.26)
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When we substitute the above expressions into (2.4.12), what emerges are
the jump conditions for momentum and energy of matter and fields. They
will not be written down explicitly.

There remains to formulate the constitutive theory of the two models. To
this end we derive the reduced entropy inequality for model V by eliminating
ρ0r

ext from the energy equation and the entropy inequality, taking thereby
into account that ρ0r

e is given by (5.3.16)3 and the entropy flux by (5.3.24),
respectively. In this way we obtain

− ρ0ψ̇ − ρ0ηΘ̇ + V TiαḞiα + EαṖα −M
L
αḂα + EαJα − QS

αΘ,α

Θ
≥ 0 , (5.3.27)

where V Tiα is the first Piola-Kirchhoff stress tensor in the Lorentz

formulation. It should be noticed that in (5.3.27) the heat flux vector QS
α is

used instead of QL
α.

Constitutive relations are now written as

C =
+

C (Cαβ ,Pα/ρ0,Bα, Θ,Θ,α,Q) . (5.3.28)

A short calculation then shows, as usual, that the Helmholtz free energy is
independent of Θ,α and Q,

ψ = U − ηΘ =
+

ψ (Cαβ ,Pα/ρ0,Bα, Θ) , (5.3.29)

and that

η = −∂
+

ψ

∂Θ
, Eα =

∂
+

ψ

∂(Pα/ρ0)
,

M
L
α = −ρ0

∂
+

ψ

∂Bα
, V TP

αβ = 2ρ0
∂

+

ψ

∂Cαβ
.

(5.3.30)

Here, V TP
αβ is the second Piola-Kirchhoff stress tensor, which is defined

in terms of Tiα in (2.2.33).
With these results the energy equation reduces to its ultimate form

ρ0Θη̇ = EαJα −QS
α,α + ρ0r

ext . (5.3.31)

On the other hand, the reduced entropy inequality takes the form

EαJα − QS
αΘ,α

Θ
≥ 0 , (5.3.32)

and the Gibbs relation reads

dη =
1
Θ

{

dU − 1
2ρ0

V TP
αβdCαβ − Eαd

(
Pα

ρ0

)

+
M

L
α

ρ0
dBα

}

, (5.3.33)

an equation that was also derived in [92].
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The results for model IV and V are identical, except for the stress ten-
sors of which the relation is given in (5.3.22). It follows from the latter and
(5.3.30)4 that

IV TP
αβ = 2ρ0

∂
+

ψ

∂Cαβ
+ (PαEγ − BαM

L
γ )C−1

βγ − M
L
γ M

L
γ C−1

αβ . (5.3.34)

With this constitutive relation for the second Piola-Kirchhoff stress ten-
sor, the balance law of angular momentum for the statistical formulation is
satisfied identically.

For later use, we wish to give constitutive relations also of the form

C = Č(Cαβ ,Eα,Bα, Θ,Θ,α,Q) . (5.3.35)

With the Legendre transformation

ψ̌ = U − ηΘ − 1
ρ0

EαPα = ε̌− ηΘ = ψ̌(Cαβ ,Eα,Bα, Θ) , (5.3.36)

this immediately leads to

η = − ∂ψ̌

∂Θ
, Pα = −ρ0

∂ψ̌

∂Eα
,

M
L
α = −ρ0

∂ψ̌

∂Bα
, V TP

αβ = 2ρ0
∂ψ̌

∂Cαβ
,

dη =
1
Θ

{

dε̌− 1
2ρ0

V TP
αβdCαβ +

Pα

ρ0
dEα +

M
L
α

ρ0
dBα

}

.

(5.3.37)

As was done in the Chu formulation we could now, if we so desired, also
explore the consequences implied by the Gibbs relation and would then again
be able to show that constitutive relations and free energy are separable into
a thermoelastic and a field part or else, a rigid-body part and a part due to
deformation. The procedure is analogous to that shown before, and therefore
we leave the pertinent details to the reader.

5.4 Material Description
of the Maxwell–Minkowski Formulation

We saw in Chap. 3, Sects. 3.4 & 3.5 that the spatial electromagnetic field
variables in the Maxwell–Minkowski formulation are formally the same
as those in the statistical description, and that the latter are closely related
to the variables in the Lorentz formulation. We therefore adopt the same
material electromagnetic variables as in Sect. 5.3 of this Chapter, which are
given by (5.3.9). There is only one difference that must be noted. Magnetiza-
tion and polarization are regarded as auxiliary variables, whilst the dielectric
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displacement and the magnetic field strength are considered basic. The La-

grangean counterparts of these fields can easily be read off from (5.3.14),
and it is not difficult to show that Dα and Hα are related to Hi and Di

according to

Dα = |J |F−1
αi Di , Di =

1
|J |FiαDα ,

Hα = FiαHisgnJ , Hi = F−1
αi HαsgnJ .

(5.4.1)

The Maxwell equations, expressed in Eα,Bα,Dα and Hα are already given
in (5.3.13), and we refrain from repeating them here.

Before passing on to the presentation of electromagnetic body force, body
couple and energy supply, one remark concerning the auxiliary fields must be
made. In view of the properties of this formulation as just outlined one would
expect Pα and M

L
α to be the adequate auxiliary variables. However, since the

description becomes formally much simpler when M
C
α is used instead, we shall

prefer to use the latter. In that case the auxiliary fields may be obtained from
(5.3.14), (5.3.10) and (5.3.12); they are

Pα = Dα − ε0|J |C−1
αβ Eβ ,

µ0M
C
α = Bα − µ0|J |C−1

αβ Hβ .
(5.4.2)

In Sect. 3.4 the expressions for the electromagnetic body force, body cou-
ple and energy supply are derived directly from the global energy balance
law (3.4.19). When written in material form the latter reads

d

dt

∫

VR

{
ρ0U + 1

2ρ0ẋiẋi

}
dV −

∫

VR

{
ρ0r

ext + ρ0F
ext
i ẋi

}
dV

−
∫

∂VR

{Tiαẋi −Qα}dAα

=
d

dt

∫

VR

{
− 1

2 |J |C
−1
αβ (ε0EαEβ + µ0HαHβ)

}
dV

+
∫

∂VR

{
−eαβγEβHγ + F−1

βi (DαEβ + BαHβ)ẋi

− 1
2 |J |F

−1
αi C−1

βγ (ε0EβEγ + µ0HβHγ)ẋi

}
dAα .

(5.4.3)

From this equation the expressions for IIIΩ and IIIΠα can directly be read
off. They are equal to the integrands of the first and the second integral on
the right-hand side of (5.4.3).

With the aid of the Maxwell equations (5.3.13) and relations (5.4.2)
this balance law can be transformed into the form
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∫

VR

{
[ρ0ẍi − ρ0F

ext
i − Tiα,α −

(
F−1

βi (DαEβ + BαHβ)

− 1
2 |J |F

−1
αi C−1

βγ (ε0EβEγ + µ0HβHγ)
)

,α
]ẋi + ρ0U̇

−ρ0r
ext + Qα,α − JαEα − ṖαEα − µ0Ṁ

C
α Hα

−[Tiα + F−1
βi (PαEβ + µ0M

C
α Hβ)]Ḟiα

}
dV .

(5.4.4)

By applying invariance requirements as was done in Sect. 2.3, it is possible to
derive from (5.4.4) local balance equations of linear and angular momentum
and energy in a material formulation. Comparison of these equations with
those given in (2.2.32) then yields the material versions of the electromagnetic
body force, body couple and energy supply. In the derivation of the angular
momentum equation it must be observed that Ṗα and Ṁ

C
α are objective

quantities under the Euclidian transformation group (in contrast to Ṗi and
Ṁi) this because Pα and M

C
α are objective scalars. In this way we obtain

III(ρ0F
e
i ) =

(
F−1

βi (DαEβ + BαHβ)

− 1
2 |J |F

−1
αi C−1

βγ (ε0EβEγ + µ0HβHγ)
)

,α

= F−1
αi

(
QEα + eαβγJβBγ + PβEβ,α + µ0M

C
β Hβ,α (5.4.5)

+eαβγ(DβḂγ + ḊβBγ)
)

+ F−1
βi,jFjα(PαEβ + µ0M

C
α Hβ) ,

III(ρ0L
e
ij) = F[iαF−1

βj] (PαEβ + µ0M
C
α Hβ) ,

III(ρ0r
e) = JαEα + ṖαEα + µ0Ṁ

C
α Hα + F−1

βi (PαEβ + µ0M
C
α Hβ)Ḟiα .

Of course, these expressions can also be obtained from their spatial ver-
sions (3.4.22), (3.4.23) and (3.4.24) by transforming the latter into their La-

grangean counterparts.
Furthermore, from (5.4.5)1 and (5.4.3) the electromagnetic momentum

Gi, Maxwell stress TM
iα , electromagnetic energy flux Πα, and energy density

Ω are obtained as
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IIITM
iα = F−1

βi (DαEβ + BαHβ) − 1
2 |J |F

−1
αi C−1

βγ (ε0EβEγ + µ0HβHγ) ,

IIIGi = 0 ,

IIIΠα = −eαβγEβHγ + F−1
βi (DαEβ + BαHβ)ẋi

− 1
2 |J |F

−1
αi C−1

βγ (ε0EβEγ + µ0HβHγ)ẋi

= −eαβγEβHγ + IIITM
iα ẋi ,

IIIΩ = − 1
2 |J |C

−1
αβ (ε0EαEβ + µ0HαHβ) .

(5.4.6)

Substitution of (5.4.6) into (2.4.12) then yields the jump conditions for mo-
mentum and energy of matter and fields.

There remains to formulate the constitutive theory. To this end, the re-
duced entropy inequality must be derived. Introducing

ψ = U − ηΘ − 1
ρ0

EαPα , (5.4.7)

and
φα =

Qα

Θ
, (5.4.8)

we obtain, as usual,

−ρ0ψ̇ − ρ0ηΘ̇ − PαĖα + µ0Ṁ
C
α Hα

+[Tiα + F−1
βi (PαEβ + µ0M

C
α Hβ)]Ḟiα + JαEα − QαΘ,α

Θ
≥ 0 .

(5.4.9)

Assuming constitutive relations of the form

C = C̃

(

Cαβ ,Eα,
µ0M

C
α

ρ0
, Θ,Θ,α,Q

)

, (5.4.10)

we can show that

ψ = ψ̃

(

Cαβ ,Eα,
µ0M

C
α

ρ0
, Θ

)

, (5.4.11)

η = − ∂ψ̃

∂Θ
, Pα = − ∂ψ̃

∂Eα
, Hα =

∂ψ̃

∂µ0MC
α /ρ0

,

IIITiα = 2ρ0
∂ψ̃

∂Cαβ
Fiβ − F−1

βi (PαEβ + µ0M
C
α Hβ) .

(5.4.12)

Moreover, it is easily shown that with the relation (5.4.12)4 the balance law
of moment of momentum is satisfied identically. Furthermore,

IIITP
αβ = 2ρ0

∂ψ̃

∂Cαβ
− C−1

βγ (PαEγ + µ0M
C
α Hγ) . (5.4.13)

When use is made of (5.4.12), (5.4.9) reduces to the residual inequality
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EαJα − QαΘ,α

Θ
≥ 0 .

On the other hand, the energy balance reduces in form to relation (5.2.30),
and (5.4.7) and (5.4.12) imply

∂η

∂Θ
=

1
Θ

∂ε̃

∂Θ
,

∂η

∂Eα
=

1
Θ

[
∂ε̃

∂Eα
+ Pα

]

,

∂η

∂µ0MC
α /ρ0

=
1
Θ

[
∂ε̃

∂µ0MC
α /ρ0

− Hα

]

,

∂η

∂Cαβ
=

1
Θ

{
∂ε̃

∂Cαβ
− 1

2ρ0

[
IIITP

αβ + C−1
βγ (PαEγ + µ0M

C
α Hγ)

]}

,

(5.4.14)

where
ε̃ := U − 1

ρ0
EαPα = ψ̃ − ηΘ , (5.4.15)

from which the Gibbs relation

dη =
1
Θ

{

dε̃ + PαdEα − Hαd

(
µ0M

C
α

ρ0

)

− 1
2ρ0

[
IIITP

αβ + C−1
βγ (PαEγ + µ0M

C
α Hγ)

]
dCαβ

}

,

(5.4.16)

may be derived.
When the functional ψ as defined by (5.4.7) is replaced by the Helmholtz

free energy
ψ = U − ηΘ = ψ̂(Cαβ ,Pα/ρ0, µ0M

C
α /ρ0, Θ) , (5.4.17)

the constitutive equations (5.4.12) only change in that ψ̃ becomes ψ̂, and
that the second equation must be replaced by

Eα =
∂ψ̂

∂Pα/ρ0
. (5.4.18)

Comparison of the results of this section with those of Sect. 4.2 immediately
shows that the Lagrangean formulations of models I and III are equivalent.
As we have already proved the thermodynamic equivalence of models I and II
in Sect. 4.2 and of the models IV and V in Sect. 4.3, we need for a comparison
of the Lagrangean formulations of the various models only consider one
model out of each of the following groups:

(i) models I, II and III,
(ii) models IV and V.

This comparison between models II and V will be made in Sect. 5.6.
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5.5 Thermostatic Equilibrium – Constitutive Relations
for Energy Flux and Electric Current

In the above, we derived constitutive equations for entropy, stress and two
electromagnetic field vectors, all of which turned out to be derivable from a
free energy. We did not present constitutive relations for the free current Jα

and the energy flux vector Qα. These must be given separately and they are
restricted by the residual inequality

γ := EαJα − QαΘ,α

Θ
≥ 0 . (5.5.1)

Here, Qα denotes the heat flux in all but the Lorentz formulation, where
it must be replaced by the right-hand side of (5.3.23).

As was the case in the Eulerian description, exploitation of (5.5.1) de-
pends on whether we are dealing with an electrical conductor or insulator.
Hence, we shall discuss the two cases separately.

(a) For an electrical insulator (Jα = 0) the residual inequality (5.5.1) re-
duces to

γ = −QαΘ,α

Θ
≥ 0 . (5.5.2)

In thermostatic equilibrium, which will again be characterized by the
index (·)

∣
∣
E

, that is for time-independent processes with uniform temper-
ature,

γ
∣
∣
E

= 0 .

Since γ is non-negative in general, it thus assumes its minimum for ther-
mostatic equilibrium. Of necessity then

∂γ

∂Θ,α

∣
∣
∣
∣
E

= 0 ,
∂2γ

∂Θ,α∂Θ,β

∣
∣
∣
∣
E

is positive-semi definite , (5.5.3)

or, when expressed in terms of Qα,

Qα

∣
∣
E

= 0 ,
∂Q(α

∂Θ,β)

∣
∣
∣
∣
E

is negative-semi definite . (5.5.4)

To see what consequences these relations impose on Qα we consider the
case in which constitutive relations are prescribed in the form

C = Č(Cαβ ,Eα,Bα, Θ,Θ,α,Q) . (5.5.5)

A necessary and sufficient condition for the energy flux vector Qα to
vanish in thermostatic equilibrium is to write

Qα = −κ̌αβ(Cγδ,Eγ ,Bγ , Θ,Θ,γ ,Q)Θ,β , (5.5.6)
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and this implies that κ̌(αβ)

∣
∣
E

must be positive-semi definite. Nothing can
be said about the skew-symmetric part κ̌[αβ]

∣
∣
E

, but when one restricts
oneself to small deformations and small deviations from thermostatic equi-
librium it follows from the Onsager relations that

κ̌[αβ](δγδ,Eγ ,Bγ , Θ, 0,Q) = 0 . (5.5.7)

(b) In an electrical conductor we may write

Qα = Q̌α(Cβγ ,Eβ ,Bβ , Θ,Θ,β ,Q) ,

Jα = J̌α(Cβγ ,Eβ ,Bβ , Θ,Θ,β ,Q) .
(5.5.8)

Thermostatic equilibrium is defined here as a time-independent process with
uniform temperature and vanishing electric field strength Eα. Hence,

γ
∣
∣
E

= 0 ,

must hold here too, and thus the following conditions emerge

∂γ

∂Eα

∣
∣
∣
∣
E

= 0 , and
∂γ

∂Θ,α

∣
∣
∣
∣
E

= 0 ,







∂2γ

∂Eα∂Eβ

∂2γ

∂Eα∂Θ,β

∂2γ

∂Eα∂Θ,β

∂2γ

∂Θ,α∂Θ,β







∣
∣

E

is positive-semi definite.

(5.5.9)

Of necessity then

Jα

∣
∣
E

= 0 , and Qα

∣
∣
E

= 0 , (5.5.10)

as well as







∂J̌(α

∂Eβ)

∂J̌α

∂Θ, β
− 1

Θ

∂Q̌β

∂Eα

∂J̌α

∂Θ,β
− 1

Θ

∂Q̌β

∂Eα
− 1

Θ

∂Q̌(α

∂Θ,β)







∣
∣

E

is positive-semi definite .

(5.5.11)
These conditions are satisfied provided that

Qα = −καβΘ,β + β
(Q)
αβ Eβ ,

Jα = β
(J)
αβΘ,β + σαβEβ ,

(5.5.12)

and that



132 5 Material Description






σ(αβ) β
(J)
αβ − 1

Θ
β

(Q)
βα

β
(J)
αβ − 1

Θ
β

(Q)
βα

1
Θ

κ(αβ)





∣
∣

E

is positive-semi definite .

(5.5.13)
Necessary conditions for (5.5.13) to be satisfied are that σ(αβ) and κ(αβ) are
positive definite, but these conditions are by no means sufficient. Conditions
of sufficiency include for instance also

σ[αβ]

∣
∣
E

= 0 , κ[αβ]

∣
∣
E

= 0 , and β
(J)
αβ

∣
∣
E

=
1
Θ

β
(Q)
βα

∣
∣
E

. (5.5.14)

These represent the well-known Onsager relations.

5.6 Recapitulation and Comparison

In the preceding sections we presented the material versions of the two dipole
models, of the statistical and Lorentz formulations and of the Maxwell-
Minkowski formulation. The basic principle in this derivation consisted in
transforming known equations into the Lagrangean form by introducing
new variables which are particularly convenient in this material description.
Since this chapter is heavily loaded with partly complicated formulas, it might
be advantageous when the basic ideas are recollected.

Key idea behind the Lagrangean description is to derive the equations
of electromechanical interactions in a form, which can directly be used in
the theory of solid bodies. All equations should therefore be referred to the
reference configuration. While such a formulation is well-known in continuum
mechanics, it is hardly used in electrodynamics. This is the reason why most
theories of solids of electromechanical interactions are treated in the spatial
description.

Whereas the advantages of the material description will be described ex-
tensively in Chap. 6, we would like to draw the reader’s attention here to
formal differences and similarities of the various formulations only. To this
end, consider the Maxwell equations first. They are listed in (5.2.8) and
(5.3.11) for the two-dipole and the Lorentz or statistical models, respec-
tively. For clarity of presentation they will be repeated here. In the Chu

formulation they read

B
a
α,α = −µ0M

C
α,α ,

Ḃ
a
α + eαβγEγ,β = −µ0Ṁ

C
α ,

D
a
α,α = Q − P

C
α,α ,

−Ḋ
a
α + eαβγHγ,β = Jα + Ṗ

C
α ,

Q̇ + Jα,α = 0 ,

(5.6.1)
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whereas in the statistical and Lorentz formulations they are

Bα,α = 0 ,

Ḃα + eαβγEγ,β = 0 ,

D
a
α,α = Q − P

L
α,α ,

−Ḋ
a
α + eαβγH

a
γ,β = Jα + Ṗ

L
α − eαβγM

L
γ,β ,

Q̇ + Jα,α = 0 .

(5.6.2)

Both sets of equations allow the presentation of the Lagrangean version of
the Minkowski formulation by introducing either

Bα = B
a
α + µ0M

C
α , Dα = D

a
α + P

C
α , (5.6.3)

or
Hα = H

a
α − M

L
α , Dα = D

a
α + P

L
α . (5.6.4)

This then yields

P
C
α = P

L
α = Pα , and M

C
α = |J |C−1

αβ M
L
β (5.6.5)

so that the Lagrangean form of the Maxwell equations in the Minkowski

formulation becomes
Bα,α = 0 ,

Ḃα + eαβγEγ,β = 0 ,

Dα,α = Q ,

−Ḋα + eαβγHγ,β = Jα ,

Q̇ + Jα,α = 0 .

(5.6.6)

Equations (5.6.1), (5.6.2) and (5.6.6) are the only ones that emerge in the
Lagrangean description from all presently known electromagnetic formula-
tions. We have presented in Chap. 3 four different formulations, but there are
others (for instance the Ampère formulation of Penfield and Haus [91])
and all these reduce to (5.6.1), (5.6.2) or (5.6.6). The Lagrangean descrip-
tion has therefore reduced this number to at most three, and the differences
among these models are particularly transparent in the Lagrangean de-
scription. The Chu formulation differs from the statistical and Lorentz

formulation only in the choice of magnetization. This resulted in the selec-
tion of different auxiliary fields, which are related to the basic fields via the
Maxwell-Lorentz aether relations (5.2.9) and (5.3.12). As a result, Hα

and Eα are the two basic electromagnetic field vectors in the Chu formula-
tion, while Bα and Eα are those of the statistical or Lorentz formulation. In
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this connection it is interesting to note that the Lagrangean electric field
Eα is the same in all formulations. This was not so in the spatial description
where EC

i and EL
i = ES

i are different variables. The same is also true for the
Lagrangean magnetic field strength Hα; it is the same variable in both the
Chu and the Minkowski formulation. Another noteworthy point is that the
Maxwell equations are formally the same as those in the spatial version
of the statistical or Minkowski formulation. Because the transformations
(5.6.3) and (5.6.4) relating the systems (5.6.1) and (5.6.2) to (5.6.6) are so
simple, it is now also plausible why the Maxwell-Minkowski formulation
served as connecting piece between the two-dipole and the statistical and the
Lorentz formulations.

In performing actual calculations in electromagnetism it is advantageous
to introduce electromagnetic potentials by satisfying those Maxwell equa-
tions identically that do not involve the charge Q and the current densities
Jα. Mathematically, this is achieved by introducing two potentials Aα and Φ,
such that

Bα = eαβγAγ,β , and Eα = Φ,α − Ȧα . (5.6.7)

Since Bα is a basic field in all but the Chu formulation, the replacement of
the Maxwell equations by the corresponding equations for the potentials
Aα and Φ and for the charge Q is easier in the Lorentz, the statistical and
the Maxwell–Minkowski formulation than it is in the Chu formulation.
This may be regarded as a disadvantage of the Chu formulation.

The above discussion is only concerned with the Maxwell equations
and leaves all mechanical balance laws aside. Yet, the basic advantages of
the different formulations are drawn from the expressions of electromagnetic
body force, body couple and energy supply. These are listed in (5.2.11) and
(5.2.12) (two-dipole models), (5.3.16) (Lorentz formulation), (5.3.19) (sta-
tistical formulation) and (5.3.23) (Maxwell-Minkowski formulation). Of
all these formulations the two-dipole model with symmetric stress tensor and
the Lorentz formulation led to electromagnetic body force and energy sup-
ply expressions, which are particularly simple and easy to interpret (see the
corresponding expressions (5.2.12) and (5.3.16)). This is not so for all other
formulations, although it is known that their interaction terms have a clear
physical meaning and are based on a clear method of derivation. It is also
interesting to note that the two most simple formulations are those with
no electromagnetic body couple and with symmetric Cauchy stress. Hence,
since all formulations are non-relativistically equivalent anyhow, future cal-
culations should be performed with either one of these simplest formulations.
The argument on electromagnetic potentials given above favors the Lorentz

formulation. We shall come back to this point in Chap. 6.
As was done for the Maxwell equations, we also wish to recapitulate the

mechanical balance equations and to comment on the equivalence properties
in the five presented models. Starting with the Chu models, we showed in
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Sect. 5.2 already that these two models are equivalent and, therefore, we only
list the balance equations for model II:

ρ0ẍi = IITiα,α + F−1
αi {(Q − Pβ,β)Eα + eαβγ(Jβ + Ṗβ)B a

γ

−µ0M
C
β,βHα} + ρ0F

ext
i .

IIT[iαFj]α = 0 ,

ρ0Θη̇ = JαEα −Qα,α + ρ0r
ext .

(5.6.8)

Here, the first and the second equation follow by substituting (5.2.12)1,2 into
(2.2.32)1 and (2.2.32)2.

The corresponding mechanical balance equations for model I are most
easily obtained if in (5.6.8) the stress tensor IITiα is replaced by ITiα; this
is achieved through use of (5.2.22).

Next we pass on to model V, or the Lorentz model. Its mechanical
balance laws emerge if (5.3.16) and (5.3.30) are substituted into (2.2.32).
When this is done care must be observed that the heat flux vector Qα in
(5.3.30) is correctly selected; it is QS

α of the statistical model, rather than QL
α

as originally introduced in the Lorentz model . We thus obtained

ρ0ẍi = V Tiα,α + F−1
αi {(Q − Pβ,β)Eα + eαβγ(Jβ + Ṗβ)Bγ

+(ML
α,β − M

L
β,α)Bβ} + ρ0F

ext
i ,

V T[iαFj]α = 0 ,

ρ0Θη̇ = JαEα −Qα,α + ρ0r
ext .

(5.6.9)

The next model is model IV, but again there is no need to list the re-
sults for this model explicitly, because the only difference between models IV
and V lies in the stress tensors and consequently the balance equations for
model IV may be obtained by merely introducing into (5.6.9) IV Tiα as given
by (5.3.26). Needless to state that the two models have been shown to be
equivalent already in Sect. 5.3.

There remains the presentation of model III. Because of its complexity
as compared to other models it is presented last. Its mechanical balance
equations emerge when (5.4.5) is substituted into (2.2.32). This yields

ρ0ẍi = IIITiα,α + F−1
αi {Q Eα + eαβγJβBγ + PβEβ,α

+µ0M
C
β Hβ,α + eαβγ(DβḂγ + ḊβBγ)}

+F−1
βi,jFjα(PαEβ + µ0M

C
α Hβ) + ρ0F

ext
i ,

IIIT[iαFj]α = F[iαF−1
βj] (PαEβ + µ0M

C
α Hβ) ,

ρ0Θη̇ = JαEα −Qα,α + ρ0r
ext .

(5.6.10)
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As already stated in Sect. 5.4, model III is identical to model I, and, hence,
the only difference in the formulations of models III and II stems from the
difference in the definition of the stress tensors, which are related to each
other according to (see (5.4.13) or (5.2.22))

IIITiα = IITiα − F−1
βi (PαEβ + µ0M

C
α Hβ) . (5.6.11)

From the above considerations we conclude that the only necessary step for a
completion of the comparison of the five models is a comparison of models II
and V. To perform this comparison, notice that in view of (5.6.8) and (5.6.9)
the balance laws of moment of momentum and energy are identical in the two
formulations. Consequently, at most the balance laws of linear momentum can
differ; and the difference can at most be a difference in stress. This difference
must, furthermore, be such that the balance of moment of momentum is met;
in other words the difference between the second Piola-Kirchhoff tensors
IITP

αβ and V TP
αβ must be a symmetric tensor.

In order to find this difference the balance equations (5.6.8)1 and (5.6.9)2
must be used. However, this step becomes much easier if for the electromag-
netic body force the respective representations in terms of the Maxwell

stress tensor are used; see (5.2.17)1 and (5.3.19)1. We then obtain

V Tiα − IITiα = IITM
iα − V TM

iα

= F−1
βi (B a

αHβ − BαH
a
β ) − 1

2F
−1
αi (B a

β Hβ − BβH
a
β ) .

(5.6.12)

To eliminate from this expression the auxiliary fields use must be made of
(5.2.9), (5.3.12) and (5.4.2); we may then derive the expressions

B
a
αHβ = µ0|J |C−1

αγ HγHβ ,

BαH
a
β =

1
µ0

|J−1|CβγBγBα = µ0|J |C−1
αγ HγHβ + µ0M

C
α Hβ

+µ0C
−1
αγ CβδHγM

C
δ + µ0|J−1|CβγM

C
α M

C
γ .

(5.6.13)

Substitution into (5.6.12) yields

V Tiα = IITiα − µ0F
−1
βi M

C
α Hβ − µ0C

−1
αγ FiβHγM

C
β

−µ0|J−1|FiβM
C
α M

C
β + µ0F

−1
αi M

C
β Hβ

+ 1
2µ0|J−1|F−1

αi CβγM
C
β M

C
γ ,

(5.6.14)

and after a multiplication with F−1
βi

V TP
αβ = IITP

αβ − µ0C
−1
βγ M

C
α Hγ − µ0C

−1
αγ MβHγ + µ0C

−1
αβ MγHγ

−µ0|J−1|M C
α M

C
β + 1

2µ0|J−1|C−1
αβ CγδM

C
γ M

C
δ ,

(5.6.15)
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from which it is easily seen that the difference between V TP
αβ and IITP

αβ forms
indeed a symmetric tensor. Needless to say that this relation corresponds to
an equation that was established in Chap. 4 and relates the Cauchy stresses
V tij and IItij (see Table 4.1).

In (5.6.15), the Lorentzian stress V TP
αβ is expressed in terms of IITP

αβ

and the Chu-variables. The reverse relation expresses IITP
αβ in terms of V TP

αβ

and the Lorentz-variables. This latter expression is obtained from (5.3.10),
(5.3.14)2 and (5.3.12)2 and reads

IITP
αβ = V TP

αβ + C−1
αγ M

L
γ Bβ + C−1

βγ M
L
γ Bα − C−1

αβ M
L
γ Bγ

−µ0|J |C−1
αγ C−1

βδ M
L
γ M

L
δ + 1

2µ0|J |C−1
αβ C−1

γδ M
L
γ M

L
δ .

(5.6.16)

The above equations and similar relations of the previous models are neces-
sary conditions, which must be satisfied in order that the models be equiva-
lent. If these relations hold equivalence goes as far as the local balance laws
of linear and angular momentum, energy and the corresponding jump condi-
tions are concerned. The conditions are not sufficient, however, because the
constitutive relations and therefore also the thermodynamic requirements im-
pose further conditions. In the following these thermodynamic requirements
will be discussed.

It follows from the foregoing considerations that in the constitutive theo-
ries of models I, II and III the internal energies must be identical, i.e.

I(ρ0U) = II(ρ0U) = III(ρ0U) , (5.6.17)

if the models are to be equivalent. The same holds for models IV and V:

IV(ρ0U) = V(ρ0U) . (5.6.18)

However, and as could already be expected from the corresponding results of
Chap. 4, relation (5.6.15) can only be satisfied simultaneously with the con-
stitutive equations (5.2.26) and (5.3.29) provided that the internal energies
for models II and V differ. To derive the corresponding relation note that
according to Chap. 4

V(ρU) = II(ρU) − µ0HiMi − 1
2µ0MiMi ,

which in Lagrangean notation reads

V(ρ0U) = II(ρ0U) − µ0HαM
C
α − 1

2µ0|J−1|CαβM
C
α M

C
β . (5.6.19)

If for models II and V we use constitutive relations of the form (5.2.53)
and (5.3.35) and if we introduce the Helmholtz free energies (5.2.54) and
(5.3.36), then (5.6.19) is equivalent to

V(ρ0ψ̌) = II(ρ0ψ̄) − 1
2µ0|J−1|CαβM

C
α M

C
β . (5.6.20)
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This equation may be used in (5.2.55) and (5.3.37) to obtain expressions
for the entropy, polarization, magnetization and the stress in the respective
formulations. These must then satisfy the identities derived above, and if they
do, the models are equivalent. The proof on the basis of (5.6.20), (5.2.55) and
(5.3.37) is straightforward and thus we leave it to the reader. However, we
shall come back to the consequences of this statement when defining material
coefficients in the various formulations.

Finally, we would like to point out that a major goal of the derivation
of the material description was in the presentation of a correct approach in
linearizing field equations. The Lagrangean formulation is useful from just
this practical point of view. Indeed, once the equations are known in their
material description the transformations

∂

∂xi
→ ∂

∂Xα
and

∂

∂t
→ d

dt

need no longer be performed, because all variables are per se already func-
tions of Xα and t. This means that any perturbation approximation is much
easier to be carried out when the equations are written in material rather
than spatial coordinates. All linearization procedures performed so far were
in the spatial description (see e.g. Toupin [241], Hutter and Pao [91] and
Van de Ven [249]). The treatments of Toupin and Hutter and Pao are
approximate, however, insofar as they contain ad hoc assumptions that can-
not be justified on the basis of non-relativistic arguments. This was pointed
out by Van de Ven, who also presents the correct solution. All the dif-
ficulties Toupin and Hutter and Pao were faced with disappear in the
material description and no ad hoc assumptions must be introduced here.
Corroboration of this will be given in the next chapter.

5.7 Approach to a Unified Constitutive Theory

In the preceding section we demonstrated that all theories of deformable bod-
ies in the electromagnetic fields which have the complexity of thermoelastic
polarizable and magnetizable solids are non-relativistically equivalent, pro-
vided that the respective constitutive functions for the internal energy or the
free energy satisfy certain relationships. Similar equivalence statements were
already established in the Eulerian description so that a new proof was not
a necessity except, perhaps, that it led to equivalence conditions expressed in
the Lagrangean variables; these are very useful relationships. To recapitu-
late them briefly, recall that in order to enforce equivalence of formulations
I, II and III the free energies must in all these formulations be the same
functions of the same variables. A similar statement also holds for models IV
and V, but to achieve equivalence between the groups (I, II, III) and (IV,V)
the corresponding free energies must be related by (5.6.20), viz.
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ρ0ψ̌ = ρ0ψ̄ − 1
2µ0|J−1|CαβM

C
α M

C
β . (5.7.1)

Here, ψ̄ is the free energy function in any one of the formulations I, II or III,
and, correspondingly ψ̌ is that of the models IV and V; they are defined in
(5.2.54) and (5.3.36), respectively. Accordingly, and apart from a dependence
on Cαβ and Θ, ψ̌ is a function of (Eα,Bα), whereas ψ̄ depends on (Eα,Hα)
as does M

C
α because (see (5.2.55)3)

M
C
α = − ρ0

µ0

∂ψ̄

∂Hα
.

Equation (5.7.1) can therefore also be written as

ψ̌(Cαβ ,Eα,Bα, Θ) = ψ̄(Cαβ ,Eα,Hα, Θ)

−1
2
ρ0

µ0
|J−1|Cαβ

(
∂ψ̄

∂Hα

∂ψ̄

∂Hβ

)

(Cαβ ,Eα,Bα, Θ) .
(5.7.2)

In this identity, the left-hand side is a function of Bα, in contrast to the
expression on the right-hand side, which is a function of Hα. In view of
(5.4.2)2 and (5.2.55)3 we may, however, express Bα as

Bα = −ρ0
∂ψ̄

∂Hα
+ µ0|J |C−1

αβ Hβ , (5.7.3)

so that
ψ̌(Cαβ ,Eα, µ0|J |C−1

αβ Hβ − ρ0∂ψ̄/∂Hα, Θ) =

ψ̄(Cαβ ,Eα,Hα, Θ) − 1
2
ρ0

µ0
|J−1|Cαβ

∂ψ̄

∂Hα

∂ψ̄

∂Hβ
,

(5.7.4)

in which the arguments in ∂ψ̄/∂Hα are, of course, the same as in ψ̄. For
given functions ψ̄ and ψ̌, equation (5.7.4) must be satisfied identically if the
formulations (I, II, III) and (IV,V) are to be equivalent. If, on the other hand,
only one of the functions ψ̌ or ψ̄ is given, then (5.7.4) is a functional differ-
ential equation to determine the other. The solution to this will, in general,
be very complex. We shall not try to solve it for a given function ψ̄, say. We
shall rather exploit (5.7.4) as common forms of the free energies ψ̄ and ψ̌. A
very popular procedure is to write these functions as polynomial expressions
of the independent variables. These polynomials must be regarded as trun-
cated Taylor series expansions about a state of zero electromagnetic fields
and zero deformation of a general functional relationship for the free energy.
Now, the equivalence of the various models was guaranteed in the above for
the general theory using a representation for the constitutive equations of the
free energy not restricted by any means. Otherwise stated, if one attempts
to establish equivalence statements between two given theories for which the
free energies are polynomials truncated at the quadratic terms, the two the-
ories might very well be non-equivalent simply because equivalence would in
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one formulation require the inclusion of cubic, quartic or even higher order
terms.

The point just raised is important, because it illustrates that, strictly,
fully equivalent theories might become non-equivalent, because in both for-
mulations one insists in too restrictive energy expressions. Nonetheless, we
can keep the usual polynomial representations and still claim equivalence,
but if we do so this is only in the following restricted sense: We formally
interpret the polynomials as truncated Taylor series expansions. With the
use of the latter equivalence of two formulations can be established exactly;
it amounts to a comparison of the polynomial coefficients. If in these Tay-

lor series expansions we restrict ourselves to terms of a certain order, then
equivalence can be established approximately.

To illustrate the above point more clearly, consider the following some-
what academic example: Let

f(x, y) =
∞∑

µ,ν=0

aµνx
µyν , g(x, z) =

∞∑

µ,ν=0

bµνx
µzν ,

and assume that for some reason z = x+ y and f = g. Then by the binomial
theorem we may set

zν = (x + y)ν =
ν∑

k=0

(
ν

k

)

xkyν−k ,

and therefore
∞∑

µ,ν=0

aµνx
µyν =

∞∑

µ,ν=0

bµν

ν∑

k=0

(
ν

k

)

xk+µyν−k .

The latter equation can also be written as

∞∑

µ,ν=0

{
µ∑

k=0

(
ν + k

k

)

b(µ−k)(ν+k) − aµν

}

xµyν = 0 ,

so that the coefficient functions must satisfy the relations

aµν =
µ∑

k=0

(
ν + k

k

)

b(µ−k)(ν+k) .

These identities must hold for all positive integers µ and ν. If we truncate
the above polynomial representations at ν = N and µ = M they can still be
satisfied, but then fMN and gMN , which denote the truncated expressions

fMN (x, y) =
M∑

µ=0

N∑

ν=0

aµνx
µzν , gMN (x, y) =

M∑

µ=0

N∑

ν=0

bµνx
µzν ,
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are no longer exactly equal, but only in the sense that

fMN = gMN + O(xM+1) + O(yN+1) ,

holds. For instance, if

f12(x, y) = a00 + a01y + a02y
2 + a10x + a11xy + a12xy

2 ,

g12(x, z) = b00 + b01z + b02z
2 + b10x + b11xz + b12xz

2 ,

and g12 is expressed in terms of x and y, then g12 should contain quadratic
and cubic terms in x, whence follows that f12 and g12 cannot be identical
except in the above mentioned approximate sense. In fact, one obtains

g12 = f12 + (b11 + b02 + 2b12y)x2 + b12x
3 .

The above considerations may look somewhat artificial to the novel reader,
yet they are important, and we would like to illustrate them using the most
simple example that accounts for magnetoelastic interactions. For that pur-
pose we restrict ourselves to conditions of isotropy and to free energies, which
are at most of quartic order in the electric and magnetic field quantities and
of quadratic order in the temperature difference

θ = Θ −Θ0 .

Here, Θ0 denotes a reference temperature. Moreover, we assume small defor-
mations, so that it suffices to write the free energy as a quadratic function of
the Lagrangean deformation tensor

Eαβ = 1
2 (Cαβ − δαβ) . (5.7.5)

With these limitations we may choose the following representations for the
free energy functions: for model II

ψ̄ =
1

2ρ0
2χ̄

(m)
HαHα +

1
4ρ0

4χ̄
(m)(HαHα)2 +

1
2ρ0

2χ̄
(e)

EαEα

+
1

4ρ0
4χ̄

(e)(EαEα)2 − 1
2 c̄θ2 +

1
2ρ0

L̄(m)
HαHαθ +

1
2ρ0

L̄(e)
EαEαθ

+
[

1
2ρ0

b̄(m)
αβγδHαHβ +

1
2ρ0

b̄(e)
αβγδEαEβ − ν̄δγδθ

]

Eγδ

+
1

2ρ0
c̄αβγδEαβEγδ , (5.7.6)
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for model V

ψ̌ =
1

2ρ0
2χ̌

(m)
BαBα +

1
4ρ0

4χ̌
(m)(BαBα)2 +

1
2ρ0

2χ̌
(e)

EαEα

+
1

4ρ0
4χ̌

(e)(EαEα)2 − 1
2 čθ

2 +
1

2ρ0
Ľ(m)

BαBαθ +
1

2ρ0
Ľ(e)

EαEαθ

+
[

1
2ρ0

b̌(m)
αβγδBαBβ +

1
2ρ0

b̌(e)
αβγδEαEβ − ν̌δγδθ

]

Eγδ

+
1

2ρ0
čαβγδEαβEγδ . (5.7.7)

Before we proceed it is worthwhile to look at these expressions more
closely. The polynomial representations for the free energy start with
quadratic terms. A constant term is left out, because it is immaterial, and
linear terms are discarded, because at zero deformation, zero temperature
difference and zero electromagnetic fields no stress and no polarization and
magnetization should be present. In other words we assume the body to pos-
sess a natural unstrained state. Cubic terms are also present in (5.7.6) and
(5.7.7), but in this regard the polynomials are not complete, since products
such as EαβEγδHε, Eαβ , EγδEε, and EαβEγδθ are missing. We believe that
these omissions are justified, because usually the field-free elasticities are
much more important than their change by the electromagnetic fields. We
have further neglected electromagnetic coupling terms.

In the ensuing analysis our aim is to investigate in what sense the above
representations would allow an identical satisfaction of (5.7.1). In view of the
above general remarks we expect that a full equivalence cannot be established,
so differences will show up in the higher-order terms of (5.7.6) and (5.7.7).
To find the equivalence conditions we substitute (5.7.6) into the first term on
the right-hand side of (5.7.1) and rewrite the latter by expressing the second
term as a function of the independent variables of ψ̄. To this end, note that

|J−1|Cαβ = δαβ(1−Eγγ)+2Eαβ +O(E2)δαβ +nαβγδEγδ +O(E2) , (5.7.8)

where
nαβγδ = −δαβδγδ + δαγδβδ + δαδδβγ . (5.7.9)

In view of (5.2.55)3 and (5.7.6) we may also write

µ0M
C
α = −ρ0

∂ψ̄

∂Hα

= − 2χ̄
(m)

Hα − 4χ̄
(m)

HβHβHα − L̄(m)
Hαθ − b̄(m)

αβγδHβEγδ .

(5.7.10)
Using these relations in (5.7.1) we find that the right-hand side of the latter
may be written as
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ψ̌ =
1

2ρ0

(

1 − 2χ̄
(m)

µ0

)

2χ̄
(m)

HαHα

+
1

4ρ0
4χ̄

(m)

(

1 − 4 2χ̄
(m)

µ0

)

(HαHα)2

+
1

2ρ0
2χ̄

(e)
EαEα +

1
2ρ0

4χ̄
(e)(EαEα)2 − 1

2 c̄θ2

+
1

2ρ0

(

1 − 2 2χ̄
(m)

µ0

)

L̄(m)
HαHαθ +

1
2ρ0

L̄(e)
EαEαθ

+
1

2ρ0

[(

1 − 2 2χ̄
(m)

µ0

)

b̄(m)
αβγδ −

2χ̄
(m)2

µ0
nαβγδ

]

HαHβEγδ

+
1

2ρ0
b̄(e)

αβγδEαEβEγδ − ν̄θEγγ +
1
2ρ

c̄αβγδEαβEγδ

− L̄(m)2

2ρ0µ0
HαHαθ2 +

L̄(m)

ρ0µ0

(
− 2χ̄

(m)nαβγδ − b̄(m)
αβγδ

)
HαHβEγδθ

− L̄(m)2

2ρ0µ0
nαβγδHαHβEγδθ

2 + higher order terms .

(5.7.11)

Here and henceforth all terms of order

HεEαβEγδ , EεEαβEγδ , θEαβEγδ ,

and higher are neglected. This is consistent with our basic assumption that
third-order terms involving the square of the deformation tensor are dis-
carded. In contrast to (5.7.6) or (5.7.7) the above representation for ψ̌ con-
tains also mixed fourth-order terms (the last three expressions on the right-
hand side). For reasons described above, these should be neglected as well.
The occurrence of these higher-order terms is corroboration for our earlier
statement that full equivalence might simply be impossible, because the free
energies in the respective formulations are too restrictive. However, it is ap-
parent from the above calculation that a full equivalence could be achieved
if the entire Taylor series expansion would be kept.

The functional relationship for ψ̌ is still not in the appropriate form for
comparison with (5.7.7). For that purpose Bα in (5.7.7) must be replaced by
Hα. This replacement is accomplished by using (5.4.2) and (5.7.10), and it
yields

Bα = µ0(1 − 2χ̄
(m))Hα − 4χ̄

(m)
HβHβHα − L̄(m)

Hαθ

−(b(m)
αβγδ + µ0nαβγδ)HβEγδ

= µHα − 4χ̄
(m)

HβHβHα − L̄(m)
Hαθ

−(b̄(m)
αβγδ + µ0nαβγδ)HβEγδ ,

(5.7.12)

where we have set
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µ0 − 2χ̄
(m) = µ , or 2χ̄

(m) = µ0 − µ . (5.7.13)

If (5.7.12) is substituted into (5.7.7) and the resulting expression is rearranged
(thereby neglecting third and fourth order terms as was done above) we obtain

ψ̌ =
1

2ρ0
µ2

2χ̌
(m)

HαHα

+
1

4ρ0

(
µ4

4χ̌
(m) − 4µ 2χ̌

(m)
4 χ̌(m)

)
(HαHα)2

+
1

2ρ0
2χ̌

(e)
EαEα +

1
4ρ0

4χ̌
(e)(EαEα)2 − 1

2 čθ2

+
1

2ρ0
(µ2Ľ(m) − 2µL̄(m)

2χ̌
(m))HαHαθ +

1
2ρ0

Ľ(e)
EαEαθ

+
1

2ρ0

[
µ2b̌(m)

αβγδ − 2µ
(
b̄(m)

αβγδ + µ0nαβγδ

)

2χ̌
(m)

]
HαHβEγδ

+
1

2ρ0
b̌(e)

αβγδEαEβEγδ − ν̌θEγγ +
1

2ρ0
čαβγδEαβEγδ ,

(5.7.14)

which is expressed in terms of the coefficients (̌ ) as well as (̄ ). Identifying
(5.7.11) with (5.7.14), we obtain

µ0µ 2χ̌
(m) = 2χ̄

(m) = µ0 − µ =: −µ0 2χ
(m) ,

2χ̌
(e) = 2χ̄

(e) =: − 2χ
(e) ,

4χ̌
(m) =

1
µ4 4χ̄

(m), 4χ̄
(e) = 4χ̌

(e) =: − 4χ
(e) ,

č = c̄ =:
cW

Θ0
, µ2Ľ(m) = L̄(m), Ľ(e) = L̄(e) =: L(e) ,

b̌(m)
αβγδ =

1
µ2

b̄(m)
αβγδ −

µ0 2χ
(m)

µ2
(2 + 2χ

(m))nαβγδ ,

b̌(e)
αβγδ = b̄(e)

αβγδ = b(e)
αβγδ ,

ν̌ = ν̄ = ν, čαβγδ = c̄αβγδ = cαβγδ .

(5.7.15)

Several of the coefficients occurring in the above equations can, without con-
fusion, be given specific names, as for instance

2χ
(m) magnetic susceptibility ,

µ magnetic permeability ,

2χ
(e), 4χ

(e) second- and fourth-order electric susceptibility ,

cW specific heat ,

L(e) thermoelectric constant ,
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b(e)
αβγδ electrostrictive constants ,

ν thermoelastic constant ,

cαβγδ elastic constants .

More difficulties arise, however, for L(m), because it is not clear whether L̄(m)

or Ľ(m) should be called thermomagnetic constant. A similar statement also
holds for the anisotropy coefficients 4χ̄

(m) and 4χ̌
(m). Since the difference

between b̄(m)
αβγδ and b̌(m)

αβγδ is essential, the situation is even more drastic for

b(m)
αβγδ, the coefficients usually attributed with the notion of magnetostric-

tion. In the Chu formulation one is inclined to call b̄(m)
αβγδ a magnetostrictive

constant; in the Lorentz formulation this is the case for b̌(m)
αβγδ instead.

For isotropic materials the relations (5.7.15)8 can still somewhat be sim-
plified, since for this special group of materials

b(m)
αβγδ = b(m)

1 δαβδγδ + b(m)
2 (δαγδβδ + δαδδβγ) (5.7.16)

must hold. Substituting this into (5.7.15)8 we obtain

b̌(m)
1 =

1
µ2

(
b̄(m)

1 + µ0 2χ
(m)( 2χ

(m) + 2)
)

,

b̌(m)
2 =

1
µ2

(
b̄(m)

1 − µ0 2χ
(m)( 2χ

(m) + 2)
)

.
(5.7.17)

From these expressions it is now evident that a unique definition of mag-
netostrictive constants is not possible by merely establishing the respective
polynomial representation of the free energy function. What would be needed,
is a simple experiment in which magnetostrictive effects could uniquely be de-
fined and in which the magnetostrictive constants could be measured, which
then must be independent of the model chosen.

At this point we must warn the reader to take the above conclusions as
the ultimate truth. The results are special insofar as they hold for isotropic
bodies and no electromagnetic coupling. For instance that all electric coeffi-
cients in the energy expressions are identical is a consequence of the omission
of electromagnetic coupling terms (these are terms such as χ̄(em)

EαHα and
b̄(em)

αβγδEαHβEγδ). Any generalization to these more complicated polynomial
expressions is straightforward, however, and will be left to the reader.

There still remains the evaluation and comparison of the constitutive
relations (5.2.55) and (5.3.37). To begin with, let us look more closely at the
entropy. According to (5.2.55)1 and (5.7.6), we obtain

IIη = −∂ψ̄

∂θ
= cW

θ

Θ0
− 1

2ρ0
L̄(m)

HαHα − L(e)

2ρ0
EαEα + νEγγ . (5.7.18)

On the other hand, straightforward evaluation of (5.3.37)1 on the basis of
(5.7.7) gives
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Vη = −∂ψ̌

∂θ
= cW

θ

Θ0
− 1

2ρ0
Ľ(m)

BαBα − L(e)

2ρ0
EαEα + νEγγ , (5.7.19)

which with the aid of (5.7.12) and (5.7.15) becomes

Vη = cW
θ

Θ0
− 1

2ρ0
L̄(m)

{

δαβ

(

1 − 2
µ

4χ̄
(m)

HγHγ − 2
µ
L̄(m)θ

)

− 2
µ

(b̄(m)
αβγδ + µ0nαβγδ)Eγδ

}

HαHβ − L(e)

2ρ0
EαEα + νEγγ

+ higher-order terms .

(5.7.20)

Mere comparison of (5.7.18) and (5.7.20) shows that IIη differs from V η.
Hence, use of (5.7.15) has not led to identical expressions for the entropy. The
difference arises, because of the terms (HαHα)2,HαHαθ, HαHβEγδ, and still
higher-order terms, which in the energy expression can be traced back to the
fourth-order terms (HαHα)2θ, HαHαθ2, and HαHβEαβθ. In the process of
the transformation of the energy expressions these fourth-order terms were
omitted (and they must be, if the polynomials are interpreted as truncated
Taylor series expansions).

Similar discrepancies also occur when the other constitutive quantities
derivable from the free energy are determined. These are given by

Pα = II
Pα = V

Pα = 2χ
(e)

Eα + 4χ
(e)

EβEβEα − L(e)
Eαθ

−b(e)
αβγδEβEγδ ,

(5.7.21)

µ0M
C
α = µ0 2χ

(m)
Hα − 4χ̄

(m)
HβHβHα − L̄(m)

Hαθ

−b̄(m)
αβγδHβEγδ,

(5.7.22)

M
L
α = 2χ

(m)

µ
Bα − 4χ̌

(m)
BβBβBα − Ľ(m)

Bαθ − b̌(m)
αβγδBβEγδ , (5.7.23)

II
T

P
αβ = b̄(m)

γδαβHγHδ + b(e)
γδαβEγEδ − νδαβθ + cαβγδEγδ , (5.7.24)

V
T

P
αβ = b̌(m)

γδαβBγBδ + b(e)
γδαβEγEδ − νδαβθ + cαβγδEγδ . (5.7.25)

They can be transformed into each other by neglecting all inconsistent terms
as was done above for the entropy.

This completes our transformation of the theories of group (I, II, III)
into those of group (IV,V). The calculations show that full equivalence may
be destroyed by a too special choice of the energy functions. However, the
calculations have simultaneously demonstrated how the material coefficients
of one theory can be related to those of another. These questions are of
immense practical importance and will be reconsidered in Chap. 6.
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6.1 Statement of the Problem

The governing dynamical equations of field-matter interaction in thermo-
elastic materials as outlined in the previous chapters are highly nonlinear.
Generally, it is hardly possible to find exact solutions even if the most simple
problems that are still of some physical relevance are attacked. As stated in
Chap. 5 already, one of the major disadvantages, namely that the equations
are given in the spatial description, while boundary conditions for a solid
body are usually prescribed in the reference configuration, has been removed
by the introduction of a consistent material description for both the field
equations and the jump and boundary conditions. Nevertheless, the resulting
equations are still highly nonlinear, and this implies that some approximation
scheme must be found.

To render the equations amenable to direct analysis, they will be linearized
with respect to some intermediate state. We suppose that in the intermediate
state the position of a material point, initially at X, is given by ξ (ξα, α =
1, 2, 3). The total motion of the particle from its initial position X to its final
position x is then decomposed into the motion from the reference state to
the intermediate state, characterized by the displacement vector Ū ,

Ū = ξ − X , (6.1.1)

and the motion from the intermediate state to the present state with dis-
placement u

u = x − ξ , (6.1.2)

(i.e. from now on u is not the total displacement, but the displacement from
ξ to x only).

In the above, ξ was not specified. In principle, any continuous map X → ξ
can be considered suitable for this intermediate configuration of the body.
However, it will be assumed that the problem at hand suggests a natural
definition of this state. For the time being we assume that it is known or at
least determinable. We further assume that the position of a material point in
the intermediate state ξ is close to its final position x. Based on this closeness
the motion and, more generally, all fields may be decomposed into two parts.
One of these parts represents the fields when u = 0, the other one is due to the

K. Hutter et al.: Electromagnetic Field Matter Interaction in Thermoelastic Solids and
Viscous Fluids, Lect. Notes Phys. 710, 147–197 (2006)
DOI 10.1007/3-540-37240-7 6 c© Springer-Verlag Berlin Heidelberg 2006
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perturbations from the ξ-state to the x-state. Because these perturbations
are assumed to be small, the governing equations can be linearized in these
perturbations.

This linearization procedure can be performed in a consistent way. For
instance, if a body is initially subjected to large biasing electromagnetic fields
and wave propagation or vibration properties of this body are investigated,
then our linearization procedure will be applicable (e.g. [233, 248] and [93,
94]). Of the same nature are magnetoelastic stability problems [152, 250].

To describe the linearization procedure into more detail, all field vari-
ables will be decomposed into two parts. Those in the intermediate state are
labelled with an overhead bar, whereas the perturbations on this state are
indicated by lower case letters, e.g.

Bα = B̄α + bα , Eα = Ēα + eα , (6.1.3)

where
‖b‖
‖B‖ = O(ε) ,

‖e‖
‖E‖ = O(ε) , etc. , (6.1.4)

and where ε denotes a small positive quantity (0 < ε � 1). The norms in
(6.1.4) may conveniently be defined as

‖a‖2 := limsup
0≤τ≤t

(a2(τ)) , (6.1.5)

where τ = 0 is the time at which the process started and t is the current time.
Moreover, the displacements from ξ to x and their material time derivatives
are assumed to be small in the sense that

∣
∣
∣
∣

∣
∣
∣
∣
∂u

∂ξ

∣
∣
∣
∣

∣
∣
∣
∣ = O(ε) and

||u̇||
v0

= O(ε) (6.1.6)

where v0 is some characteristic wave speed.
In the Lagrangean description any differentiation with respect to X or

t falls directly onto the respective variables as decomposed in (6.1.3). For
instance

Bα,α = B̄α,α + bα,α .

This is particularly easy and convenient, and to see this let us first briefly
investigate the Eulerian formulation. In this case all equations must be
traced back to the intermediate configuration. In particular, all derivatives
with respect to the present coordinates must be expressed in terms of the
intermediate coordinates by means of the transformation rules, which we
shall now briefly outline, (although lateron they will not be used). To this
end, let f be any physical quantity. It may be regarded as a function of the
variables (X, t), (ξ, t) or (x, t); thus

f = f̂(X, t) = f̃(ξ, t) = f̌(x, t) . (6.1.7)
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Depending on which representation we choose, we thus have

∂f̌

∂xi
=

∂f̃

∂ξα

∂ξ̌α

∂xi
=
(

δiα − ∂ǔα

∂xi

)
∂f̃

∂ξα
.

In particular with f ≡ uα we obtain

∂ǔα

∂xi
=
(

δiβ − ∂ǔβ

∂xi

)
∂ũα

∂ξβ

∼= δij
∂ũα

∂ξβ
,

whence follows
∂f̌

∂xi

∼= δiβ

(

δαβ − ∂ũα

∂ξβ

)
∂f̃

∂ξα
. (6.1.8)

Similarly, for the material time derivative we obtain

df

dt
=

∂f̂

∂t
=

∂f̃

∂t
+

∂f̃

∂ξα

∂ξ̂α

∂t
=

∂f̌

∂t
+

∂f̌

∂xi

∂x̂i

∂t
,

from which one easily deduces that

∂f̌

∂t
=

∂f̃

∂t
+

∂f̃

∂ξα

∂ξ̂α

∂t
− ∂f̃

∂ξα

∂ξ̌α

∂xi

∂x̂i

∂t
=

∂f̃

∂t
− ∂f̃

∂ξα

(
∂ξ̌α

∂xi

∂x̂i

∂t
− ∂ξ̂α

∂t

)

.

Here, in each of the occurring functions we have indicated the functional
dependencies. With the obvious definitions

∂ξ̂α

∂t
:= ξ̇α and

∂x̂i

∂t
:= ẋi = u̇i + ξ̇αδiα

this now becomes

∂f̌

∂t
=

∂f̃

∂t
−
[

δiβ

(

δαβ − ∂ũα

∂ξβ

)(
u̇i + δiγ ξ̇γ

)
− ξ̇α

]
∂f̃

∂ξα

∼= ∂f̃

∂t
−
[

u̇α − ξ̇β
∂ũα

∂ξβ

]
∂f̃

∂ξα
.

(6.1.9)

The above formulas (6.1.8) and (6.1.9) must be applied in all field equations
whenever space and time derivatives of physical quantities occur. That this
is very tedious can be seen from the fact that for a dynamical theory it has
been tried by several authors in the past as e.g. Toupin [241], Hutter and
Pao [91] and Van de Ven [249]. However, except for the procedure of Van

de Ven none of these is completely correct. Toupin,Toupin63, for instance,
seems to replace (6.1.8) and (6.1.9) at certain places by the approximations

∂

∂X
∼= ∂

∂x
and

∂

∂t
∼= d

dt
.
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Hutter and Pao, on the other hand, make full use of (6.1.8), but disregard
(6.1.9) all together. This led to inconsistencies, which resulted in other ad
hoc assumptions (as, for instance equation (5.7) in [91]).

In the Eulerian formulation the linearization of jump conditions is
equally tedious, because they are described at the deformed surface in the x-
state, which first must be traced back to the surface in the intermediate state.
Corroboration for the fact that this procedure is rather cumbersome can be
found e.g. in [91] or [249]. As we shall see in Sect. 5.2.4, in a Lagrangean
description the linearization of jump conditions is straightforward. Several
other authors have also published linearization procedures, which are all less
general than that we shall present here, because these authors restrict them-
selves to (quasi-) magneto or electrostatic processes, to static intermediate
states, or they simply delete jump conditions, etc. We confine ourselves to
mentioning Alblas [10], Pao and Yeh [171], Tiersten [233], Baumhauer

and Tiersten [22] and Jordan and Eringen [104].
The advantage of the Lagrangean formulation is that the transforma-

tions (6.1.8) and (6.1.9) need not be applied, because in this formulation all
operations are already referred to the reference or initial state. Similarly, the
jump conditions hold on the undeformed surface. Once this is realized, the
linearization procedure turns out to be straightforward.

A second, but less direct advantage of the Lagrangean or material
formulation is that it allows an immediate introduction of electromagnetic
potentials for the perturbed electromagnetic fields, which is, although also
possible, more elaborate in the Eulerian description. The reader may find
corroboration for this by noting (as we shall show lateron) that in the La-

grangean description the homogeneous Maxwell-equations (i.e. (2.2.15))
remain homogeneous in the perturbed state, whereas they become inhomo-
geneous in the Eulerian description (cf. [91], p. 81).

This will then be our procedure. The nonlinear equations will be devel-
oped by consistently expanding all variables about the intermediate state and
neglecting terms of order O(ε2). Two systems of equations emerge in doing
so, one for the equations in the intermediate state and a second one for the
perturbed quantities, in which the quantities of the intermediate state ap-
pear as coefficients. From a practical point of view the construction of the
solution of the perturbed equations is often more important than that of the
intermediate state. Often the intermediate state serves only as a (static) bi-
asing state deviations from which can be calculated by solving the perturbed
equations. For buckling problems, for instance, the prebuckled state is taken
as the intermediate state and its stability follows from the perturbed equa-
tions. Since, moreover, the perturbed equations are relatively insensitive to
an exact determination of the intermediate fields, it would be advantageous
to find an approximation scheme by which the coefficients could be deter-
mined to a sufficient degree of accuracy without making use of the exact
intermediate equations. This is indeed often possible; we will demonstrate it
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below by introducing the so-called rigid-body state. The purpose of its use is
to have a quick access to the perturbed equations without having to solve the
equations in the intermediate state exactly. To explain it we consider the spe-
cial situation where deformations, caused by the electromagnetic fields, are
small and where changes in temperature are small as well. If at the same time
coupling terms are small, which means that small deformations or small tem-
perature changes result in small changes in the electromagnetic fields, then
the intermediate state is close to an undeformed state. This imaginary state
will be called rigid-body state. In this state the motion of the body, clearly,
consists of a pure translation and rotation. The electromagnetic fields and the
temperature distributions in this state are determinable from rigid-body elec-
trodynamics, mechanics and thermodynamics. The fields in this state will be
denoted by a superscript ( )0, e.g. B

0
α,E 0

α, whereas subscripts ( )0 will indicate
initial values prior to any motion. By mere definition we then have

ρ0 = ρ0 , (6.1.10)

but generally neither Θ0 = Θ0 nor U0 = 0. If U0 = 0, then rigid-body
motions are excluded. In most applications this will be the case.

Since deformations are assumed to be small, we may define a measure
E, 0 < E � 1, by

E := ‖Ūα,β‖ , (6.1.11)

with the aid of which we may conclude that

|Θ̄ −Θ0|
Θ0

= O(E) ,
‖B̄ −B0‖
|| B0‖

= O(E) , etc . (6.1.12)

Returning to the perturbed equations, we notice that these equations are
linear in the perturbed fields u, b, etc., with coefficients, which depend on the
values of the fields in the intermediate state. When the intermediate fields
in these coefficients are replaced by the rigid-body fields, errors of order
O(E) are introduced. Because the perturbed equations are of order O(ε)
themselves, the neglect of these terms ultimately means that the resulting
equations are correct except for terms of order O(Eε). In short: The linearized
perturbation equations, in which the coefficients are referred to the rigid-body
state, represent an approximation bound to an error not larger than O(Eε).
It should further be emphasized that it is not justified, in general, to evaluate
the intermediate fields themselves by applying the rigid-body approximations.
This would result in errors of order O(E), which is larger than O(Eε).

The approach just described to approximate the equations is more consis-
tent than the usual small-strain approximations. In particular there are two
immediate advantages:

(i) the consistency of the linearization is a proven property and not an a
priori assumption (the neglects can be made explicit) and,
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(ii) the stresses (and all other fields) in the intermediate state can still be
calculated to within any desired degree of exactness.

This latter point is of importance in particular for a consistent derivation
of the equations governing magnetoelastic buckling of beams and plates (see
[249], Ch. IX).

As said above, we are still free to solve the equations in the intermediate
state as accurately as we please. For most practical purposes, however, a
small-strain approximation will suffice. We shall return to this point in due
course with the developments in this chapter.

6.2 Linearization of the Lorentz Model

6.2.1 Motivation for this Choice – Governing Equations

In this section we shall linearize the field equations, constitutive relations and
jump conditions of one particular interaction model, but before we present
the details a justification for our choice of the model is in order. We saw that
all models are equivalent; as a consequence, only practical considerations and
reasons of convenience can guide us to prefer one particular model over any
other one.

There are several reasons for the choice of model V. Firstly, the calcula-
tions in Chap. 5 have shown that the structure of many formulas is preserved
when they are transformed from the spatial description into their material
counterpart. Secondly, several thermodynamic relations, such as the relation
between stress and free energy or the Gibbs relation, are much more consize
for formulations with a symmetric than with an unsymmetric stress tensor.
This would leave us with model II and model V, but model V is again compu-
tationally advantageous, because the Gauss–Faraday law and the Gauss

law are homogeneous equations. This makes the introduction of electromag-
netic potentials much easier than it would be otherwise. We shall deviate
in one respect from the original Lorentz-model, however, in that we shall
use QS

α as energy-flux instead of QL
α. This essentially amounts to a different

choice of the entropy flux (see Sects. 3.5 and 5.3).1 Moreover, we shall exclude
external sources, so that

ρ0F
ext
i = ρ0r

ext = 0 . (6.2.1)

In the Lagrangean formulation and for the Lorentz model the govern-
ing equations read as follows

1 Compare the formulas (5.3.23) and (5.3.24).



6.2 Linearization of the Lorentz Model 153

Maxwell equations: (5.3.11)

Bα,α = 0 ,

Ḃα + eαβγEγ,β = 0 ,

D
a
α,α = Q − Pα,α ,

−Ḋ
a
α + eαβγH

a
γ,β = Jα + Ṗα + eαβγM

L
γ,β ,

Q̇ + Jα,α = 0 ,

(6.2.2)

where
D

a
α = ε0|J |C−1

αβ Eβ ,

H
a
α =

1
|J |

{
1
µ0

CαβBβ − ε0eµβγCαβFjγ ẋjEµ

}

.
(6.2.3)

Balance of momentum: ((5.6.9)1, with F ext
i = 0)

ρ0ẍi − Tiα,α = ρ0F
e
i = F−1

αi

(
(Q − Pβ,β)Eα + eαβγ(Jβ + Ṗβ)Bγ

+(ML
α,β − M

L
β,α)Bβ

)
.

(6.2.4)

Balance of energy: ((5.6.9)3, with Qα = QS
α and rext = 0)

ρ0Θη̇ = JαEα −Qα,α . (6.2.5)

In the above, all variables are referred to the time-independent reference
state characterized by the coordinates Xα. Superimposed dots thus represent
time derivatives at fixed particles.

Constitutive Relations:

In accordance with (5.3.35) we choose as independent variables

Cαβ , Eα, Bα, Θ, Θ,α and Q .

Following (5.3.36) and (5.3.37), we then have

ψ̌ = U −Θη +
1
ρ0

EαPα = ψ̌(Cαβ ,Eα,Bα, Θ) , (6.2.6)

and

η = − ∂ψ̌

∂Θ
, Pα = −ρ

∂ψ̌

∂Eα
,

M
L
α = −ρ0

∂ψ̌

∂Bα
, TP

αβ = 2ρ0
∂ψ̌

∂Cαβ
.

(6.2.7)
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Moreover, for an electrical conductor the constitutive relations for the electric
current and the energy flux are of the form (see (5.5.12) with (5.5.14)3)

Jα = σαβEβ + ββα
Θ,β

Θ
, Qα = −καβΘ,β + βαβEβ , (6.2.8)

where, in general, the coefficient matrices are still functions of Cαβ , Eα, Bα,
Θ, Θ,α and Q. However, in accordance with the linearization as described in
the derivation of (3.7.34) we shall assume these coefficients to be independent
of Eα and Θ,α. Moreover, we shall exclude an explicit occurrence of Q.

Equations (6.2.8) automatically guarantee that the current Jα and heat
flux Qα vanish in thermostatic equilibrium; in short, if Eα = 0 and Θ,α = 0,
then

Jα|E = 0 and Qα|E = 0 .

Further conditions of thermostatic equilibrium are that σ(αβ) and −κ(αβ)

must be positive-semi definite matrices and, if the Onsager relations are
adopted, that the skew symmetric parts of σαβ and καβ must vanish.

Jump conditions: ((5.3.15), (2.4.12), (5.3.25))
[[

Bα

]]
Nα = 0 , eαβγ

[[
Eβ

]]
Nγ +

[[
BαWN

]]
= 0 ,

[[
D

a
α + Pα

]]
Nα = 0 ,

eαβγ

[[
H

a
β − M

L
β

]]
Nγ −

[[
(D a

α + Pα)WN

]]
= 0 ,

[[
Jα

]]
Nα −

[[
QWN

]]
= 0 ,

[[
ρ0WN

]]
= 0 ,

[[
ρ0ẋiWN

]]
+
[[

Tiα + T
M
iα

]]
Nα = 0 ,

[[
(1
2ρ0ẋiẋi + ρ0U −Ω)WN

]]

+
[[
(Tiα + T

M
iα)ẋi −Qα − eαβγEβ(Ha

γ − M
L
γ )
]]
Nα = 0 .

(6.2.9)

In these relations, Nα is the unit normal vector on the singular surface, WN

is the speed of propagation, and TM
iα and Ω are given in (5.3.25); for ease of

reference they will be repeated here:

TM
iα = F−1

βi

(
D

a
αEβ + BαH

a
β − 1

2δαβ(D a
γ Eγ + BγH

a
γ )
)

,

Ω = − 1
2 (D a

αEα + BαH
a
α) .

(6.2.10)

In this chapter we shall from now on restrict ourselves to singular surfaces
of second order (see e.g. [68], Sect. 2.8). On such a surface, the deformation
gradients and the velocity will be continuous, as is the density ρ0, i.e.

[[
Fiα

]]
=
[[
ẋi

]]
=
[[
ρ0

]]
= 0 .
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In view of (6.2.9)6 continuity of ρ0 also implies that the speed of propa-
gation WN is continuous, [[

WN

]]
= 0 .

For the case that the singular surface is a real propagating surface, i.e. WN �=
0, the associated waves are called acceleration waves. Singular surfaces of
second order include as a special case material surfaces for which WN =
0, and also embrace the boundary of a solid body in a vacuum, if, as is
usually the case, the vacuum is considered as a medium with zero density,
which admits continuity of the velocities at the boundary. Surfaces on which
tangential velocities may jump are, however, excluded.

Under the above restrictions the last two jump conditions can be simpli-
fied. In view of the continuity of ρ0, ẋi and WN , (6.2.9)7 becomes

[[
Tiα

]]
Nα = −

[[
TM

iα

]]
Nα . (6.2.11)

This equation can be written in the form

[[
Tiα

]]
Nα = F−1

γi

(
〈Eγ〉

[[
Pβ

]]
Nβ + 〈Bβ〉(

[[
M

L
β

]]
Nγ −

[[
M

L
γ

]]
Nβ)

+ eβγδ〈Bβ〉
[[

Pδ

]]
WN

)
,

(6.2.12)

in which the symbol 〈·〉 stands for the arithmetic mean of a quantity over the
singular surface, i.e.

〈Eα〉 = 1
2 (E+

α + E
−
α ) . (6.2.13)

To prove (6.2.12), notice that in view of relations (6.2.3) and of the continuity
conditions of second-order singular surfaces,

〈D a
α〉
[[

Eα

]]
= 〈Eα〉

[[
D

a
α

]]
, 〈H a

α〉
[[

Bα

]]
= 〈Bα〉

[[
H

a
α

]]
. (6.2.14)

Moreover, the jump of the first term in the outer brackets of (6.2.10)1 may
be written as

[[
D

a
αEβ

]]
Nα = (〈D a

α〉
[[

Eβ

]]
+
[[

D
a
α

]]
〈Eβ〉)Nα

= 〈D a
α〉Nα

[[
Eβ

]]
− 〈Eβ〉

[[
Pα

]]
Nα ,

in which use has been made of (6.2.9)3. With (6.2.14)1 and (6.2.9)4 it is then
straightforward to show that in the non-relativistic approximation

[[
D

a
αEβ

]]
Nα − 1

2

[[
D

a
γ Eγ

]]
δαβNα

= −〈Eβ〉
[[

Pα

]]
Nα + eαβγ〈D a

α〉
[[

Bγ

]]
WN = −〈Eβ〉

[[
Pα

]]
Nα .

In an analogous way the remaining terms on the right-hand side of (6.2.10),
(6.2.11) can be handled, so that, at last, (6.2.12) emerges.

On the other hand, the first and fourth term in (6.2.9)8 vanish for accel-
eration waves; furthermore, with the use of (6.2.9)2,4 it can be shown that
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[[
eαβγEβ(H a

γ − M
L
γ )
]]
Nα =

([[
Bα

]]
〈H a

α − M
L
α〉 + 〈Eα〉

[[
D

a
α + Pα

]])
WN .

(6.2.15)

Finally, from (6.2.10)2 and with the application of relations (6.2.14) we find
[[
Ω
]]

= −〈Eα〉
[[

D
a
α

]]
− 〈H a

α〉
[[

Bα

]]
. (6.2.16)

With these results the jump condition for the energy flux assumes the simple
and elegant form

[[
Qα

]]
Nα =

(
ρ0

[[
U
]]

+ 〈ML
α〉
[[

Bα

]]
− 〈Eα〉

[[
Pα

]])
WN . (6.2.17)

It should be noted here that the right-hand side vanishes when the surface is
material.

Before we close, consider a surface separating a body from the vacuum.
According to our interpretation of the vacuum as a medium with vanishingly
small mass density, and because we are looking at surfaces of second order,
the deformation tensor is continuous across such a surface so that on the
vacuum side (+) one has

D
a+
α = (ε0JC−1

αβ )+E
+
β = (ε0JC−1

αβ )−E
+
β .

Similar statements also hold for H
a+
α . Note also that E

+
α �= E+

i δiα; one rather
has

E
+
α = F−

iα(E+
i + eijkẋ

−
j B+

k )

and
B

+
α = (JF−1

αi )−B+
i .

These facts should be borne in mind, for otherwise incorrect results emerge.
This completes the collection of the basic governing equations. Their lin-
earized versions will be derived below.

6.2.2 Decomposition of the Balance Laws

Having presented the governing equations we now proceed with the decom-
position of the balance laws. As was said several times before already, this
decomposition is particularly easy in the material description. To corroborate
this statement, let us consider the first of the Maxwell equations (6.2.2).
Introducing (6.1.3) as decomposition for the magnetic induction Bα, we may
write equation (6.2.2)1 as

(B̄α + bα),α = B̄α,α + bα,α = 0 . (6.2.18)

In view of the basic separation assumption, according to which the governing
equations must be fulfilled for the intermediate state itself, we thus have



6.2 Linearization of the Lorentz Model 157

B̄α,α = 0 , (6.2.19)

and, consequently,
bα,α = 0 . (6.2.20)

In these equations, both B̄α and bα are regarded as functions of Xα and t.
Proceeding with all Maxwell equations as was explained above with the
Gauss law, we can easily show that the equations, valid in the intermediate
state, are given by

B̄α,α = 0 , ˙̄
Bα + eαβγĒγ,β = 0 ,

D̄
a
α,α = Q̄ − P̄α,α , − ˙̄

D
a
α + eαβγH̄

a
γ,β = J̄α + ˙̄

Pα + eαβγM̄
L
γ,β ,

˙̄
Q + J̄α,α = 0 .

(6.2.21)

These equations are obtained from the original Maxwell equations (6.2.2)
by merely replacing in the latter all quantities by those carrying an overhead
bar. On the other hand, the perturbed Maxwell equations are2

bα,α = 0 , ḃα + eαβγeγ,β = 0 ,

da
α,α = q − pα,α , −ḋa

α + eαβγha
γ,β = jα + ṗα + eαβγmγ,β ,

q̇ + jα,α = 0 ,

(6.2.22)

in which all lower-case letters denote perturbed Lagrangean electromag-
netic field quantities, the definitions being analogous to that for bα. For
instance,

eα = Eα − Ēα , etc.

For convenience and since no confusion is possible here, we have used mα

for (ML
α − M̄

L
α) instead of mL

α. Whenever, in the sequel confusion with the
Chu-magnetization becomes possible we shall use mL

α, however.
Equations (6.2.22) are formally the same as the original Maxwell equa-

tions. This is no surprise, because equations (6.2.2)1−5 are written such that
they appear in a linear form. However, they are nevertheless nonlinear; the
nonlinearity is only covered by the use of the auxiliary fields D

a
α and H

a
α .

In the decomposition process of these quantities use must be made of the
following relations, of which the proof is straightforward:
2 In this chapter the perturbed fields from the intermediate state will be denoted

by Roman letters and not by italics. Alternatively, fields in the intermediate
state are identified by an overhead bar. This notation has already been used in
(6.2.18)–(6.2.20).
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xi = δiα(ξα + uα) ,

Fiα =
∂xi

∂Xα
= δiβ

(
∂ξβ

∂Xα
+

∂uβ

∂Xα

)

= δiβ(F̄βα + uβ,α) ,

F−1
αi =

∂Xα

∂xi
=

∂Xα

∂ξβ

∂ξβ

∂xi

∼= F̄−1
αβ (δiβ − δiδF̄

−1
γδ uβ,γ) ,

Cαβ = FiαFiβ
∼= C̄αβ + F̄γβuγ,α + F̄γαuγ,β ,

C−1
αβ = F−1

αi F−1
βi

∼= C̄−1
αβ − (C̄−1

βγ F̄−1
αδ + C̄−1

αγ F̄−1
βδ )uδ,γ ,

J = det(Fiα) = det[F̄βα(δiβ + δiδF̄
−1
βγ uδ,γ)] ∼= J̄(1 + F̄−1

γδ uδ,γ) .

(6.2.23)

Here,

F̄αβ =
∂ξα

∂Xβ
, F̄−1

αβ =
∂Xα

∂ξβ
, C̄αβ = F̄γαF̄γβ ,

C̄−1
αβ = F̄−1

αγ F̄−1
βγ , J̄ = det(F̄αβ) .

(6.2.24)

With these preliminary calculations the decomposition of the auxiliary fields
D

a
α and H

a
α can now be performed. The results are

D̄
a
α = ε0J̄ C̄−1

αβ Ēβ ,

H̄
a
α =

1
µ0J̄

C̄αβB̄β − ε0

J̄
eβγδC̄αβF̄εγ ξ̇εĒδ ,

(6.2.25)

and

da
α = ε0J̄

(
C̄−1

αβ eβ + (C̄−1
αβ F̄−1

γδ − C̄−1
βγ F̄−1

αδ − C̄−1
αγ F̄−1

βδ )Ēβuδ,γ

)
,

ha
α =

1
J̄

{
1
µ0

C̄αβbβ − ε0eβγδF̄εγ ξ̇εC̄αβeδ

+

[(
1
µ0

B̄β − eβνµF̄εν ξ̇εĒµ

)(
F̄δαδβγ + F̄δβδαγ − C̄αβF̄γδ

)

−ε0eβγµĒµC̄αβ ξ̇δ

]

uδ,γ − ε0eβγδĒδC̄αβF̄εγ u̇ε

}

.

(6.2.26)
Here and henceforth we restrict ourselves to positive values of the Jacobian J
and could therefore replace |J | by J whenever it occurred. We further would
like to emphasize that the perturbed fields da

α and ha
α are expressed here in

terms of the deformation and the electromagnetic fields in the intermediate
state, all of which are functions of Xα and t, in general.

The deformation in the intermediate state may, in our approximation, be
neglected and the intermediate fields be replaced by the fields in the rigid-
body state. If this is the case we may choose

ξ0
α(X, t) = Ξα(t) + Rαβ(t)Xβ , (6.2.27)



6.2 Linearization of the Lorentz Model 159

where Ξα(t) can be identified with the coordinates of the center of mass of
the body in its rigid-body state (the position of the center of mass in the
reference state, t = 0 is here taken as the origin of our coordinate system),
and where Rαβ(t) is a time-dependent proper orthogonal matrix, i.e.

R−1 = RT and detR = +1 .

Differentiating both sides of (6.2.27) with respect to time, we obtain

ξ̇0
α = Ξ̇α + ṘαβXβ = Ξ̇α + eαβγΩβRγδXδ , (6.2.28)

where Ω(t) is the angular velocity of the body, which is given by

Ωα = − 1
2eαβγṘβδRγδ . (6.2.29)

The approximate versions of equations (6.2.26) can now be obtained by
replacing in these equations all variables carrying an overhead bar, (̄·), by
the variables in the rigid-body state, (·)0. In other words, the following re-
placements must be made

Ēα → E
0
α , B̄α → B

0
α , F̄αβ → Rαβ , F̄−1

αβ → Rβα ,

J̄ → 1 , C̄αβ → δαβ , C̄−1
αβ → δαβ .

(6.2.30)

With these we obtain for (6.2.26)

da
α = ε0

(
eα + (δαβRδγ − δβγRδα − δαγRδβ)E 0

βuδ,γ

)
,

ha
α =

1
µ0

bα − ε0eαβγRδβ ξ̇
0
δeγ

+
[(

1
µ0

B
0
β − eβνµRεν ξ̇

0
εE

0
µ)(Rδαδβγ + Rδβδαγ −Rγδδαβ

)

−ε0eαγµE
0
µ ξ̇0

δ

]

uδ,γ − ε0eαβγE
0
γ Rδβ u̇δ .

(6.2.31)

Still further simplifications can be made, if the intermediate state is not only
close to a rigid-body state, but deviates from the initial state by a small
amount only (i.e. for a motionless rigid-body state). In that case equations
(6.2.31) are further simplified by setting

Rαβ = δαβ and ξ̇0
α = 0 .

The next step in the simplification of the balance laws is the decomposi-
tion of the momentum and energy equations. To this end, (6.2.4) and (6.2.5)
will be written as

(ρ0ξ̈α + ρ0üα)δiα = T̄iα,α + δiαtαβ,β + ρ0F̄
e
i + ρ0feαδiα ,

ρ0(Θ̄ + θ)( ˙̄η + ṡ) = (Jα + jα)(Eα + eα) − (Q̄α − qα),α .
(6.2.32)
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Apart from the perturbation variables already introduced before we have
defined here

f e
α = δiα(F e

i − F̄ e
i ) , tαβ = δiα(Tiβ − T̄iβ) ,

s = η − η̄ , θ = Θ − Θ̄ , qα = Qα − Q̄α .
(6.2.33)

Because we assume that equations (6.2.32) must hold for the intermediate
state, we have

ρ0ξ̈α = δiα(T̄iβ,β + ρ0F̄
e
i ) ,

ρ0Θ̄ ˙̄η = J̄αĒα − Q̄α,α ,
(6.2.34)

as momentum and energy equations in this state and

ρ0üα = tαβ,β + ρ0feα ,

ρ0(θ ˙̄η + Θ̄ṡ) = jαĒα + J̄αeα − qα,α ,
(6.2.35)

as the corresponding equations in the perturbed state.
An explicit representation of the body force expression is obtained from

(6.2.4) and (6.2.23)3, namely

ρ0F̄
e
i = δiδF̄

−1
αδ {(Q̄ − P̄β,β)Ēα + eαβγ(J̄β + ˙̄

Pβ)B̄γ + (M̄L
α,β − M̄

L
β,α)B̄β} ,

(6.2.36)
as the expression for the body force in the intermediate state, and

ρ0feα = F̄−1
δα

{
(Q̄ − P̄β,β)eδ + (q − pβ,β)Ēε

+eβγδ

[
(Jβ + ˙̄

Pβ)bγ + (jβ + ṗβ)B̄γ

]

+ B̄β(mδ,β − mβ,δ) + bβ(ML
δ,β − M

L
β,δ)

}

−F̄
−1
βγ F̄

−1
δα

{
(Q̄ − P̄ε,ε)Ēβ + eβµν(J̄µ + ˙̄

Pµ)B̄ν

+ B̄ε(M̄L
β,ε − M̄

L
ε,β)

}
uγ,δ ,

(6.2.37)

as the corresponding expression in the perturbed state. When deformations in
the intermediate state are neglected, but rigid motions are allowed, then F̄αβ

in (6.2.37) must simply be replaced by Rαβ and, furthermore, all variables
carrying an overhead bar must be replaced by the variables in the rigid-body
state. Moreover, for a motionless rigid-body state Rαβ = δαβ and ξ̇0

α = 0.
The balance laws of mechanics and electrodynamics are thus decomposed

into equations valid in the intermediate state and those in the perturbed state.
When in the latter the rigid-body approximation is applied, the corresponding
equations in this state are also needed. The governing equations consist of
the Maxwell equations
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B
0
α,α = 0 , Ḃ

0
α + eαβγE

0
γ,β = 0 ,

D
a0
α,α = Q

0 − P
0
α,α , −Ḋ

a0
α + eαβγH

a0
γ,β = J

0
α + Ṗ

0
α + eαβγM

L0
γ,β ,

Q̇
0 + J

0
α,α = 0 ,

(6.2.38)

where

D
a0
α = ε0E

0
α , H

a0
α =

1
µ0

B
0
α − ε0eαβγRδβ ξ̇

0
δE

0
γ , (6.2.39)

and of the energy equation

ρ0Θ
0η̇0 = J

0
αE

0
α −Q0

α,α , (6.2.40)

supplemented by the equations for the rigid-body motion (which will be
stated below), by the pertinent constitutive relations and by the jump con-
ditions.

Equations (6.2.38)–(6.2.40), together with constitutive relations and jump
conditions, suffice to determine the rigid-body fields, provided that the rigid-
body state is motionless (ξ̇0

α = 0) or has a prescribed motion. If this is not the
case, the motion (i.e. Ξα(t) and Rαβ(t) or Ωα(t)) must be determined from
momentum equations, which can best be handled, if the balance laws of linear
and angular momentum are recast into global form. We restrict ourselves to
a rigid body placed in a vacuum, in which case these relations are

d

dt

∫

Ω

ρ0ξ̇
0
αdV =

∫

∂Ω−

δiα(Tiβ + TM
iβ )0NβdA +

∫

Ω

ρ0F
ext
α dV ,

d

dt

∫

Ω

ρ0(ξ0
[α −Ξ[α)ξ̇0

β]dV =
∫

∂Ω−

(ξ0
[α −Ξ[α)(Tiγ + TM

iγ )0δiβ]NγdA

+
∫

Ω

ρ0{Lext
αβ + (ξ0

[α −Ξ[α)F ext
β] }dV .

(6.2.41)

Here, TM
iα is the Maxwell stress tensor as defined in (6.2.10)1 and F ext

α

and Lext
αβ are externally applied body forces and body couples with respect

to the center of mass, respectively. Ω is the body manifold and ∂Ω− the
surface of Ω just inside the boundary of the body. According to the jump
condition (6.2.11), which is applied for the boundary of the body separating
the vacuum, it is possible to simplify the surface terms in (6.2.41), for

((Tiβ + TM
iβ )0Nβ)δΩ− = (t(N)

i + (TM
iβ )0Nβ)∂Ω+ ,

where t
(N)
i are the surface tractions of other than electromagnetic origin,

(TM
iβ )∂Ω+ is the Maxwell stress tensor evaluated just outside the boundary

of the body and where ∂Ω+ represents a surface just outside the boundary
of the body.
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With the aid of (6.2.28) we may then transform (6.2.41) into

MΞ̈α = Fe
α + Fext

α ,

d

dt
(IαβΩβ) = Le

α + Lext
α ,

(6.2.42)

where

M =
∫

Ω

ρ0dV , Iαβ =
∫

Ω

ρ0

(
δαβXγXγ −RαγRβδXγXδ

)
dV , (6.2.43)

are the total mass and the instantaneous central moments of inertia of the
body,

Fe
α =

∫

∂Ω+

δiα(TM
iβ )0NβdA ,

Le
α = eαβγδiγ

∫

∂Ω+

(ξ0
β −Ξβ)(TM

iδ )0NδdA ,
(6.2.44)

are the resultant force and moment of electromagnetic origin relative to the
center of mass, and where

Fext
α =

∫

∂Ω+

δiαt
(N)
i dA +

∫

Ω

ρ0F
ext
α dV ,

Le
α = eαβγ

∫

∂Ω+

(ξ0
β −Ξβ)t(N)

i δiγdA

+eαβγ

∫

Ω

ρ0{Lext
βγ + (ξ0

β −Ξβ)F ext
γ }dV ,

(6.2.45)

are the resultant force and moment of the externally applied forces relative
to the center of mass.

To summarize, the velocity of the center of mass Ξ̇α and the angular
velocity Ωα of a rigid body moving in an electromagnetic field are governed
by equations (6.2.42), in which the electromagnetic surface forces and surface
couples acting on the body are determined from the Maxwell stress tensor
in the surrounding vacuum. Clearly, equations (6.2.42) must be solved along
with the Maxwell equations and the energy equation in the rigid-body
state, (6.2.38)–(6.2.40). In these equations the angular velocity Ωα and the
matrix Rαβ arise; these themselves are connected by equation (6.2.29).

This completes the decomposition of the electromagnetic and mechanical
balance laws. In the following sections the decomposed versions of the con-
stitutive relations and jump conditions will be given. With these the zeroth-
order solution can be solved, and once this is done the first-order perturbed
problem can be attacked.
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6.2.3 Decomposition of the Constitutive Equations

The constitutive equations for entropy, polarization, magnetization and stress
are known, once the functional ψ̌ as defined in (6.2.6) is specified. In order
to make the theory complete, constitutive equations for Qα and Jα must also
be established.

Assuming ψ̌ to be differentiable, we may expand it in terms of Tay-

lor series about the intermediate state (eventually approximated by the
rigid-body state). The series is truncated and substituted into (6.2.7) and
what emerges are expressions for entropy, polarization, magnetization and
the Piola–Kirchhoff stress tensor, which all are linear in the perturbed
quantities eα, bα, uα, etc. The expansion of the constitutive equations into
Taylor series is straightforward and could be performed formally without
specifying the energy functional ψ̌. Such expressions are of little use, how-
ever, because ultimately one must specify the free energy anyhow. A common
procedure, applicable for many practical purposes, is to assume ψ̌ to be a
polynomial in its independent variables, which can be truncated at a certain
order.

A reasonable expression for ψ̌, which contains all interaction effects at
least to within first-order terms is

ψ̌ =
1

2ρ0
2χ

(m)
αβ BαBβ +

1
4ρ0

4χ
(m)
αβγδBαBβBγBδ +

1
2ρ0

2χ
(e)
αβEαEβ

+
1

4ρ0
4χ

(e)
αβγδEαEβEγEδ +

1
ρ0

χ
(em)
αβ BαEβ − 1

2c(Θ −Θ0)2

+
1
ρ0

λ(m)
α Bα(Θ −Θ0) +

1
2ρ0

L
(m)
αβ BαBβ(Θ −Θ0)

+
1
ρ0

λ(e)
α Eα(Θ −Θ0) +

1
2ρ0

L
(e)
αβEαEβ(Θ −Θ0)

+
1
ρ0

[
ε
(m)
βγδBβ + 1

2b(m)
αβγδBαBβ + ε

(e)
βγδEβ + 1

2b(e)
αβγδEαEβ

−ρ0νγδ(Θ −Θ0)
]
Eγδ +

1
2ρ0

cαβγδEαβEγδ .

(6.2.46)

Here, instead of Cαβ we have used

Eαβ := 1
2 (Cαβ − δαβ) , (6.2.47)

as deformation measure. According to (6.2.23)4 this can be developed as

Eαβ = Ēαβ + eαβ , (6.2.48)

where

Ēαβ = 1
2 (C̄αβ − δαβ) , eαβ = 1

2 (F̄γβuγ,α + F̄γαuγ,β) . (6.2.49)

Neglecting the deformations in the ξ-state, we may approximate the latter
by
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eαβ = 1
2 (Rγβuγ,α + Rγαuγ,β) . (6.2.50)

The polynomial representation (6.2.46) for the free energy is such that elastic
and thermal effects are essentially linear and that interactions with three
fields are excluded. Yet, some magnetic and electric nonlinearities (fourth
order terms) are nevertheless present. The reasons for this are twofold:

(i) For ferromagnetic materials and for cubic crystals fourth-order anisotropy
effects (represented by 4χ

(m)
αβγδ) are often rather important and may, fre-

quently, even be more important than the second-order terms; for cubic
crystals fourth-order terms are the only nontrivial magnetic anisotropy
effects, in general.

(ii) For materials with central symmetry (e.g. cubic crystals or isotropic
bodies) first- and third-order coefficients in (6.2.46) vanish. In this case
second- and fourth-order terms such as Lαβ and bαβγδ must be dominant.

We further note that it is possible to extend the above functional form
of the free energy to include still higher-order effects without the result that
this would fundamentally influence the subsequent analysis. This will not
be done here, and for the time being we also refrain from assigning names
to the various coefficients occurring in (6.2.46), simply because the results
of Sect. 5.7 have shown that unique interpretations are not possible. The
coefficients occurring in (6.2.46) also satisfy certain symmetry requirements,
which are readily obtained from (6.2.46). Because they are so obvious, we
shall not explicitly state them here.

It is now straightforward to derive explicit expressions for entropy, po-
larization, magnetization and stress by substituting (6.2.46) into (6.2.7) and
performing the respective differentiations. For the entropy this leads to

η = +c(Θ −Θ0) −
1
ρ0

λ(m)
α Bα − 1

2ρ0
L

(m)
αβ BαBβ

− 1
ρ0

λ(e)
α Eα − 1

2ρ0
L

(e)
αβEαEβ + ναβEαβ

= c(Θ̄ −Θ0) −
1
ρ0

λ(m)
α B̄α − 1

2ρ0
L

(m)
αβ B̄αB̄β − 1

ρ0
λ(e)

α Ēα

− 1
2ρ0

L
(e)
αβĒαĒβ + ναβĒαβ + cΘ − 1

ρ0
(λ(m)

α + L
(m)
αβ B̄α)bα

− 1
ρ0

(λ(e)
α + L

(e)
αβĒβ)eβ + ναβeαβ =: η̄ + s .

(6.2.51)

Here, O(ε2)-terms are neglected and the entropy of the intermediate state is
given by

η̄ = c(Θ̄ −Θ0) −
1
ρ0

λ(m)
α B̄α − 1

2ρ0
L

(m)
αβ B̄αB̄β − 1

ρ0
λ(e)

α Ēα

− 1
2ρ0

L
(e)
αβĒαĒβ + ναβĒαβ ,

(6.2.52)
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whilst the perturbed entropy s may be written as

s = s1αβuα,β + s2αbα + s3αeα + s4θ , (6.2.53)

with coefficients, which can easily be derived from (6.2.51) and (6.2.49)2 as

s1αβ = F̄αγνβγ , s2α = − 1
ρ0

(λ(m)
α + L

(m)
αβ B̄β)

s3α = − 1
ρ0

(λ(e)
α + L

(e)
αβĒβ) , s4 = c .

(6.2.54)

When deformations of the intermediate state are neglected we simply set

F̄αβ = Rαβ and (̄·) = (·)0.

In a completely analogous way also the constitutive equations for polar-
ization, magnetization, and Piola–Kirchhoff stress can be deduced. One
obtains for the

• polarization

Pα = P̄α + pα = P̄α + p1
αβγuβ,γ + p2

αβbβ + p3
αβeβ + p4

αθ , (6.2.55)

where

P̄α = −(ε(e)
αγδ + b(e)

αβγδĒβ)Ēγδ − ( 2χ
(e)
αβ + 4χ

(e)
αβγδĒγĒδ)Ēβ ,

−χ
(em)
βα B̄β − (λ(e)

α + L
(e)
αβĒβ)(Θ̄ −Θ0) ,

(6.2.56)

and

p1
αβγ = −F̄βδ(ε

(e)
αγδ + b(e)

αεγδĒε) ,

p2
αβ = −χ

(em)
βα ,

p3
αβ = − 2χ

(e)
αβ − 3 4χ

(e)
αβγδĒγĒδ − b(e)

αβγδĒγδ − L
(e)
αβ(Θ̄ −Θ0) ,

p4
αβ = −λ

(e)
α − L

(e)
αβĒβ ;

(6.2.57)

• magnetization

Mα = M̄α + mα = M̄α + m1
αβγuβ,γ + m2

αβbβ + m3
αβeβ + m4

αθ , (6.2.58)

where

M̄α = −(ε(m)
αγδ + b(m)

αβγδB̄β)Ēγδ − ( 2χ
(m)
αβ + 4χ

(m)
αβγδB̄γB̄δ)B̄β ,

−χ
(em)
αβ Ēβ − (λ(m)

α + L
(m)
αβ B̄β)(Θ̄ −Θ0) ,

(6.2.59)

and
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m1
αβγ = −F̄βδ(ε

(m)
αγδ + b(m)

αεγδB̄ ε) ,

m2
αβ = − 2χ

(m)
αβ − 3 4χ

(m)
αβγδB̄γB̄δ − b(m)

αβγδĒγδ − L
(m)
αβ (Θ̄ −Θ0) ,

m3
αβ = −χ

(em)
αβ ,

m4
α = −λ

(m)
α − L

(m)
αβ B̄β .

(6.2.60)
• Piola–Kirchhoff stress tensor, which according to (6.2.7)4 and (5.2.24)

is given by

Tiβ = ρ0
∂ψ̌

∂Eβγ
Fiγ , (6.2.61)

so that

Tiβ = T̄iβ + δiαtαβ = T̄iβ + δiα(t1αβγδuγ,δ + t2αβγbγ + t3αβγeγ + t4αβθ) ,
(6.2.62)

where

T̄iβ = δiαF̄αγ [cβγδεĒδε + (ε(m)
δβγ + 1

2b(m)
δεβγB̄ε)B̄δ

+(ε(e)
δβγ + 1

2b(e)
δεβγĒε)Ēδ − ρ0νβγ(Θ̄ −Θ0)] ,

(6.2.63)

and

t1αβγδ = F̄αµF̄γεcβµεδ + δαγ [cβδµνĒµν + (ε(m)
εβδ + 1

2b(m)
εµβδB̄µ)B̄ε

+(ε(e)
εβδ + 1

2b(e)
εµβδĒµ)Ēε − ρ0νβδ(Θ̄ −Θ0)] ,

t2αβγ = F̄αδ(ε
(m)
γβδ + b(m)

γεβδB̄ε) ,

t3αβγ = F̄αδ(ε
(e)
γβδ + b(e)

γεβδĒε) ,

t4αβ = −ρ0F̄αγνβγ .

(6.2.64)

The above derivation is perfectly general and applies whether deformations
in the intermediate state are small or large. If they are small, all coefficients
characterized by a lower case letter (say p1

αβγ , t4αβ etc.) may further be sim-
plified by replacing all quantities with an overhead bar by the corresponding
rigid-body quantities. The error introduced into the balance laws of the per-
turbed quantities is then of order O(Eε).

Note that the term containing cβµεδ in the expression for t1αβγδ is, in
practice, always much larger than the remaining terms. This property is the
justification for the assumption that the deformations due to the electro-
magnetic and due to the thermal fields are small. It seems to be reasonable,
therefore, to approximate t1αβγδ by

t1αβγδ
∼= RαµRγεcβµεδ . (6.2.65)
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Here, we have written Rαµ for F̄αµ because the error introduced by dropping
the remaining terms in (6.2.64)1 is of the same order as that obtained by the
replacement F̄αβ → Rαβ .

We conclude this section with the presentation of the decomposition of
the generalized versions of Ohm’s and Fourier’s law, as given in (6.2.8).
The coefficients in these equations are functions of the variables Eαβ , Eα,
Bα, Θ and Θ,α.

We shall exclude a possible dependence of these constitutive relations on
the free charge Q, and shall, furthermore, restrict ourselves to a linear de-
pendence of current and heat flux on electric field and temperature gradient.
We then have

Λαβ = Λαβ(Eγδ,Bγ , Θ) , (6.2.66)

where Λαβ stands for σαβ , καβ and βαβ , respectively. To be more specific we
shall choose the following polynomial expansions

Λαβ = Λ
(r)
αβ +Λ

(d)
αβγδEγδ + 3Λ

(m)
αβγBγ + 4Λ

(m)
αβγδBγBδ +Λ

(t)
αβ(Θ̄−Θ0) . (6.2.67)

Here we have included second-order terms in Bα, but have deleted third-
order terms, because they vanish in a material with point symmetry anyhow.
Decomposing the representations (6.2.8) for electric current and energy flux,
we find

J̄α = σ̄αβĒβ + β̄βα
Θ̄,β

Θ̄
,

Q̄α = −κ̄αβΘ̄,β + β̄αβĒβ

(6.2.68)

as governing equations in the intermediate state and

jα = j1αβγuβ,γ + j2αβbβ + j3αβeβ + j4αθ + j5αβθ,β ,

qα = q1
αβγuβ,γ + q2

αβbβ + q3
αβeβ + q4

αθ + q5
αβθ,β

(6.2.69)

as the approximate equations in the perturbed state, in which

j1αβγ = F̄βδ(σ
(d)
αεγδĒε + β

(d)
εαγδ

Θ̄,ε

Θ̄
) ,

j2αβ =
(

3σ
(m)
αγβ + 2 4σ

(m)
αγβδB̄δ

)
Ēγ +

(

3β
(m)
γαβ + 2 4β

(m)
γαβδB̄δ

) Θ̄,γ

Θ̄
,

j3αβ = σ
(r)
αβ + σ

(d)
αβγδĒγδ + 3σ

(m)
αβγB̄γ + 4σ

(m)
αβγδB̄γB̄δ + σ

(t)
αβ(Θ̄ −Θ0) ,

j4α = −
(
β

(r)
βα + β

(d)
βαγδĒγδ + 3β

(m)
βαγB̄γ + 4β

(m)
βαγδB̄γB̄δ

+β
(t)
βα(Θ̄ −Θ0)

) Θ̄,β

Θ̄2
+ σ

(t)
αβĒβ + β

(t)
βα

Θ̄,β

Θ̄
,

j5αβ =
1
Θ̄

(
β

(r)
βα + β

(d)
βαγδĒγδ + 3β

(m)
βαγB̄γ + 4β

(m)
βαγδB̄γB̄δ + β

(t)
βα(Θ̄ −Θ0)

)
,

(6.2.70)
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and

q1
αβγ = F̄βδ(−κ

(d)
αεγδΘ̄,ε + β

(d)
αεγδĒε) ,

q2
αβ = −

(

3κ
(m)
αγβ + 2 4κ

(m)
αγβδB̄δ

)
Θ̄,γ +

(

3β
(m)
αγβ + 2 4β

(m)
αγβδB̄δ

)
Ēγ ,

q3
αβ = β

(r)
αβ + β

(d)
αβγδĒγδ + 3β

(m)
αβγB̄γ + 4β

(m)
αβγδB̄γB̄δ + β

(t)
αβ(Θ̄ −Θ0) ,

q4
α = −κ

(t)
αβΘ̄,β + β

(t)
αβĒβ ,

q5
αβ = −

(
κ

(r)
αβ + κ

(d)
αβγδĒγδ + 3κ

(m)
αβγB̄γ + 4κ

(m)
αβγδB̄γB̄δ + κ

(t)
αβ(Θ̄ −Θ0)

)
.

(6.2.71)
Specific forms of the coefficients, however only for isotropic materials, have
been derived by Pipkin and Rivlin, [180, 181], and by Borghesani and
Morro, [27, 28]. These authors also discuss the physical significance of the
various terms in (6.2.70) and (6.2.71).

At this point we have thus completed the presentation of the linearized
field equations. If (6.2.53), (6.2.55), (6.2.58), (6.2.62) and (6.2.69) are substi-
tuted into the balance laws (6.2.22) and (6.2.35), what we obtain is a system
of 11 independent field equations for the 11 unknowns bα, eα, q, uα and θ.
This system could still further by simplified by introducing electromagnetic
potentials ϕ and aα by (see also (5.6.7))

bα = eαβγaγ,β , eα = ϕ,α − ȧα , (6.2.72)

where aα should satisfy a gauge condition; for the Lorentz gauge

aα,α − µ0ε0ϕ̇ = 0 . (6.2.73)

For small deformations all quantities referred to the intermediate state that
appear in these perturbation equations can be replaced by the corresponding
variables in the rigid-body state. To complete the description the form of the
constitutive equations in this state will also be given. They are

η0 = c(Θ0 −Θ0) −
1
ρ0

λ(m)
α B

0
α − 1

2ρ0
L

(m)
αβ B

0
αB

0
β − 1

ρ0
λ(e)

α E
0
α

− 1
2ρ0

L
(e)
αβE

0
αE

0
β ,

P
0
α = −( 2χ

(e)
αβ + 4χ

(e)
αβγδE

0
γ E

0
δ )E 0

β − χ
(em)
βα B

0
β

−(λ(e)
α + L

(e)
αβE

0
β )(Θ0 −Θ0) ,

M
L0
α = −( 2χ

(m)
αβ + 4χ

(m)
αβγδB

0
γ B

0
δ )B 0

β − χ
(em)
αβ E

0
β

−(λ(m)
α + L

(m)
αβ B

0
β )(Θ0 −Θ0) ,

J
0
α = σ0

αβE
0
β + β 0

βα

Θ0
,β

Θ0
,

Q0
α = −κ0

αβΘ
0
,β + β 0

αβE
0
β ,

(6.2.74)
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where the coefficients σ0
αβ , β0

αβ and κ0
αβ take the forms

Λ0
αβ = Λαβ(0,B0

γ , Θ
0)

= Λ
(r)
αβ + 3Λ

(m)
αβγB

0
γ + 4Λ

(m)
αβγδB

0
γ B

0
δ + Λ

(t)
αβ(Θ0 −Θ0) . (6.2.75)

When these constitutive relations are substituted into the balance equations
(6.2.38)–(6.2.40) and (6.2.42), the rigid-body problem is reduced to a problem
for the 14 unknowns E

0
α, B

0
α, Q

0, Θ0, Ξα and Ωα. Again this problem could
even further be reduced by introducing electromagnetic potentials according
to

B
0
αeαβγA

0
γ,β , E

0
α = Φ0

,α − Ȧ0
α , (6.2.76)

with
A0

α,α − µ0ε0Φ̇
0 = 0 . (6.2.77)

What remains, therefore, are now the boundary and jump conditions.

6.2.4 Decomposition of the Jump and Boundary Conditions

The decomposition of the jump conditions is a very complex problem, in gen-
eral, and this is the reason why we restricted ourselves already in Sect. 6.2.1
to singular surfaces of the second order. This restriction will be maintained
here too. We shall be even more restrictive and shall assume simultaneously
that there are no propagating singular surfaces in the intermediate state.
Hence, in this state W̄N = 0. An acceleration wave, if present, can then only
exist in the perturbed state; the speed of propagation in this perturbed state
then also forms the total wave speed and may without confusion be called
WN . The above special situation does not necessarily require, however, that
WN be small. In fact, WN is a wave speed the numerical value of which
follows from the material properties. In what follows it is advantageous to
distinguish between the two different kinds of singular surfaces, namely

i) a propagating singular surface Σ(i) (acceleration wave) with velocity WN ;
ii) a material surface Σ(ii) for which WN = 0.

Since Σ(i) does not exist in the intermediate state, all quantities in this state
must be continuous at Σ(i), i.e.

[[
Ēα

]]
= 0 , etc, at Σ(i).

The linearization of the jump conditions is rather simple in a Lagrangean
formulation, and from (6.2.9), (6.2.11) and (6.2.17) we immediately obtain
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[[
bα

]]
Nα = 0 , eαβγ

[[
eβ

]]
Nγ +

[[
bα

]]
WN = 0 ,

[[
da

α + pα

]]
Nα = 0 , eαβγ

[[
ha

β − mβ

]]
Nγ −

[[
(da

α + pα)
]]
WN = 0 ,

[[
jα
]]
Nα −

[[
q
]]
WN = 0 ,

[[
tαβ

]]
Nβ = F̄−1

γα

(
Ēγ

[[
pβ

]]
Nβ + B̄β(

[[
mβ

]]
Nγ −

[[
mγ

]]
Nβ)

+eβγδB̄β

[[
pδ

]]
WN

)
,

[[
qα

]]
Nα =

(
ρ0

[[
u
]]

+ M̄α

[[
bα

]]
− Ēα

[[
pα

]])
WN ,

(6.2.78)

all valid on Σ(i). In the above, u denotes the perturbed internal energy, i.e.

u = {ψ̌ − (ψ̌)} + η̄θ + Θ̄s − 1
ρ0

Ēαpα − 1
ρ0

P̄αeα . (6.2.79)

On the other hand, on Σ(ii) the jumps in Ēα, B̄α etc. need not be zero, but
WN is. In this case the linearized jump conditions read

[[
bα

]]
Nα = 0 , eαβγ

[[
eβ

]]
Nγ = 0 ,

[[
da

α + pα

]]
Nα = 0 , eαβγ

[[
ha

β − mβ

]]
Nγ = 0 ,

[[
jα
]]
Nα = 0 ,

[[
tαβ

]]
Nβ = −F̄−1

γδ F̄−1
εα

{
〈Ēγ〉

[[
P̄β

]]
Nβ

+〈B̄β〉(
[[

M̄β

]]
Nγ −

[[
M̄γ

]]
Nβ)

}
uδ,ε

+F̄−1
γα

{
〈Ēγ〉

[[
pβ

]]
Nβ +

[[
P̄β

]]
Nβ〈eγ〉

+〈B̄β〉(
[[
mβ

]]
Nγ −

[[
mγ

]]
Nβ) + (

[[
M̄β

]]
Nγ −

[[
M̄γ

]]
Nβ)〈bβ〉

}
,

[[
qα

]]
Nα = 0 ,

(6.2.80)
on Σ(ii), whereas the jump conditions in the intermediate state follow from
(6.2.9), (6.2.11) and (6.2.17) by invoking WN = 0 and writing all quantities
with an overhead bar.

This completes the linearization of the jump conditions. It should be noted
that they can still be simplified (formally just a little bit, but for practical
calculations enormously) when O(Eε)-terms are neglected, i.e. when the (̄·)-
fields are replaced by the rigid-body fields (·)0. This step is a trivial one and
will therefore be deleted here.

6.3 Linearisation of the Other Models and Comparison

In the preceding section we presented the decomposition and linearization
procedure for the Lorentz model. This would suffice, in general, because
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the proofs in Chaps. 4 and 5 showed that all formulations are equivalent
anyhow. This is true, but since various formulations are used in the literature
and because one should be able to compare these with our presentation, we
shall in this section collect the balance laws and jump conditions for all five
models. The comparison of the constitutive equations will be postponed until
Sects. 6.4 and 6.5, however.

To perform the comparison of the various models, recall that the results
of Chap. 5 showed us that, in the Lagrangean formulation there are es-
sentially only two different formulations. The first is the Chu-formulation
(with its two different stress models) the other one is the Lorentz model,
which with a different stress tensor also embraces the statistical model. The
Maxwell–Minkowski model can be connected to either one of these two
basic models. In the previous chapter the Lagrangean formulation of it was
developed with the aid of the Chu-magnetization, rather than the Lorentz-
magnetization, because most formulas took a much simpler form this way. In
what follows we shall discuss therefore models (I,II,III) and (IV,V) as the two
basic different groups, although the separation of the various models could
equally well be made according to (I,II) and (III,IV,V).

We begin our comparison by stating the decoupled electromagnetic equa-
tions. They are obtained from equations (5.6.1)–(5.6.6) (compare also systems
(6.2.21), (6.2.22) of the previous section).

In the Chu formulation they read

B̄
a
α,α = −µ0M̄

C
α,α , ˙̄

B
a
α + eαβγĒγ,β = −µ0

˙̄
M

C
α ,

D̄
a
α,α = Q̄ − P̄α,α , − ˙̄

D
a
α + eαβγH̄γ,β = J̄α + ˙̄

Pα ,

˙̄
Q + J̄α,α = 0 ,

(6.3.1)

and
ba

α,α = −µ0mC
α,α , ḃa

α + eαβγeγ,β = −µ0ṁC
α ,

da
α,α = q − pα,α , −ḋa

α + eαβγhγ,β = jα + ṗα ,

q̇ + jα,α = 0 ,

(6.3.2)

in which B̄
a
α, D̄

a
α, ba

α and da
α are auxiliary fields, which, with the aid of (5.2.9)

and (6.2.23), become

D̄
a
α = ε0J̄ C̄−1

αβ Ēβ , B̄
a
α = µ0J̄ C̄−1

αβ H̄β , (6.3.3)

and

da
α = ε0J̄

(
C̄−1

αβ eβ + (C̄−1
αβ F̄−1

γδ − C̄−1
βγ F̄−1

αδ − C̄−1
αγ F̄−1

βδ )Ēβuδ,γ

)
,

ba
α = µ0J̄

(
C̄−1

αβ hβ + (C̄−1
αβ F̄−1

γδ − C̄−1
βγ F̄−1

αδ − C̄−1
αγ F̄−1

βδ )H̄βuδ,γ

)
.

(6.3.4)
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Note the symmetry of the formulas (6.3.4). Its origin is the complete sym-
metry of the Maxwell equations in this formulation.

In the statistical and the Lorentz model the decomposition of the
Maxwell equations was already made in Sect. 6.2.2. For completeness and
for the purpose of comparison they will be repeated here. In the intermediate
state they are

B̄α,α = 0 ,

˙̄
Bα + eαβγĒγ,β = 0 ,

D̄
a
α,α = Q̄ − P̄α,α ,

− ˙̄
D

a
α + eαβγH̄

a
γ,β = J̄α + ˙̄

Pα + eαβγM̄
L
γ,β ,

˙̄
Q + J̄α,α = 0 ,

(6.3.5)

whereas in the perturbed state they become

bα,α = 0 ,

ḃα + eαβγeγ,β = 0 ,

da
α,α = q − pα,α ,

−ḋa
α + eαβγhγ,β = jα + ṗα + eαβγmL

γ,β ,

q̇ + jα,α = 0 ,

(6.3.6)

with D̄
a
α, H̄

a
α, da

α and ha
α as given in (6.2.25) and (6.2.26):

D̄
a
α = ε0J̄ C̄−1

αβ Ēβ ,

H̄
a
α =

1
µ0J̄

C̄αβB̄β − ε0

J̄
eβγδC̄αβF̄εγ ξ̇εĒδ

(6.3.7)

and

da
α = ε0J̄{C̄−1

αβ eβ + (C̄−1
αβ F̄−1

γδ − C̄−1
βγ F̄−1

αδ − C̄−1
αγ F̄−1

βδ )Ēβuδ,γ} ,

ha
α =

1
J̄

{
1
µ0

C̄αβbβ − ε0eβγδF̄εγ ξ̇εC̄αβeδ

+
[(

1
µ0

B̄β − eβνµF̄εν ξ̇εĒµ)(F̄δαδβγ + F̄δβδαγ − C̄αβF̄γδ

)

−ε0eβγµEµC̄αβ ξ̇δ

]
uδ,γ − ε0eβγδĒδC̄αβF̄εγ u̇ε

}
.

(6.3.8)

Note that in the above sets of Maxwell equations we have retained the
upper indices C and L for the magnetizations.
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Clearly, because polarization and magnetization are based on different
conceptions, we cannot expect the formulas (6.3.7) and (6.3.8) to be symmet-
ric. This difference becomes formally particularly apparent if the equations
in the intermediate state are approximated by those in the rigid-body state.
Then the rigid-body motion does, formally, not enter the Chu-formulation,
but it does show up in the Lorentz- formulation.

We conclude this listing of the various forms of the Maxwell equations
with the Maxwell–Minkowski formulation. The equations are

B̄α,α = 0 , ˙̄
Bα + eαβγĒγ,β = 0 ,

D̄α,α = Q̄ , − ˙̄
Dα + eαβγH̄γ,β = J̄α ,

˙̄
Q + J̄α,α = 0 ,

(6.3.9)

bα,α = 0 , ḃα + eαβγeγ,β = 0 ,

dα,α = q , −ḋα + eαβγhγ,β = jα ,

q̇ + jα,α = 0 ,

(6.3.10)

and must be supplemented by the relations

D̄α = ε0J̄ C̄−1
αβ Ēβ + P̄α , B̄α = µ0J̄ C̄−1

αβ H̄β + µ0M̄
C
α , (6.3.11)

and

dα = ε0J̄
(
C̄−1

αβ eβ + (C̄−1
αβ F̄−1

γδ − C̄−1
βγ F̄−1

αδ − C̄−1
αγ F̄−1

βδ )Ēβuδ,γ

)
+ pα ,

bα = µ0J̄
(
C̄−1

αβ eβ + (C̄−1
αβ F̄−1

γδ − C̄−1
βγ F̄−1

αδ − C̄−1
αγ F̄−1

βδ )H̄βuδ,γ

)
+ µ0mC

α .

(6.3.12)
Apart from the use of different auxiliary fields the most essential difference
in these formulations lies in the choice of the magnetization: M

L
α against M

C
α ,

which are related to each other according to (see (5.3.10))

M̄
C
α = J̄ C̄−1

αβ M̄
L
β ,

mC
α = J̄ C̄−1

αβ mL
β + J̄(C̄−1

αβ F̄−1
γδ − C̄−1

βγ F̄−1
αδ − C̄−1

αγ F̄−1
βδ )M̄L

β uδ,γ .
(6.3.13)

Before we pass on to the mechanical balance laws, we would like to draw
the reader’s attention to the basic differences in the Gauss and Faraday

laws of the three formulations above. Because these laws are homogeneous
in the Lorentz and in the Maxwell–Minkowski formulations electro-
magnetic potentials could easily and straightforwardly be introduced as was
shown at the end of Sect. 6.2.4 (cf. (6.2.72), (6.2.73) or (5.6.7)). In the Chu

formulation, on the other hand, these equations are inhomogeneous. There-
fore, in this formulation the potentials Aα and Φ cannot be introduced in
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the same way as in Sect. 6.2.4. They must rather be defined as

B̄
a
α = eαβγĀγ,β − µ0M̄

C
α , Ēα = Φ̄,α − ˙̄Aα ,

ba
α = eαβγaγ,β − µ0mC

α , eαϕ,α − ȧα ,
(6.3.14)

with the gauge conditions

Āα,α − ε0µ0
˙̄Φ = 0 , aα,α − ε0µ0ϕ̇ = 0 . (6.3.15)

The above listed electromagnetic equations must still be supplemented by two
sets of constitutive relations for e.g. polarization and magnetization. They are
all given in Chap. 5, and since they are directly derivable from a free energy
functional the linearization is trivial and will, therefore, be omitted here.

As was done for the Maxwell equations, we also wish to recapitulate
the mechanical balance laws. If body forces of electromagnetic origin are not
specified the equations can easily be taken over from (6.2.34) and (6.2.35).
The momentum equations are

ρ0ξ̈α = δiα(T̄iβ,β + ρ0F̄
e
i ) , ρ0üα = tαβ,β + ρ0feα , (6.3.16)

whereas the energy equations in the intermediate and in the perturbed state
can be written as

ρ0Θ̄ ˙̄η = J̄αĒα − Q̄α,α

ρ0 ˙̄ηθ + ρ0Θ̄ṡ = jαĒα + J̄αeα − qα,α .
(6.3.17)

All that is needed to complete the above equations for the various formula-
tions is to prescribe the body force; for, all remaining quantities are either
independent fields or else given by constitutive relations. The correspondence
conditions of the various formulations of the latter were treated in Sect. 5.7
and will again be taken up in the following sections. Incidentally, that angu-
lar momentum is satisfied identically by satisfying objectivity requirements
in the constitutive relations is reason for us not to list the balance law of mo-
ment of momentum. Moreover, it is noted that the reduced energy equation
is the same in all formulations.

Let us now list the body force expressions of the various formulations.
In the Chu formulation we have, from (5.2.11)1 ,

for model I:
I(ρ0F̄

e
i ) = δiδ

{
F̄−1

αδ

[
(Q̄ − P̄β,β)Eα + eαβγ(J̄β + ˙̄

Pβ)B̄ a
γ

−µ0M̄
C
β,βH̄α + F̄−1

βδ (P̄αĒβ + µ0M̄
C
α H̄β)

]

,α

}
,

I(ρ0feα) = II(ρ0feα) +
[
F̄−1

βα (P̄εeβ + pεĒβ + µ0M̄
C
ε hβ + µ0mC

ε H̄β)

− F̄−1
βγ F̄−1

δα (P̄εĒβ + µ0M̄
C
ε H̄β)uγ,δ

]

,ε
,

(6.3.18)

where II(ρ0feα) is listed in (6.3.19)2. On the other hand,
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for model II: (from (5.2.12)1)

II(ρ0F̄
e
i ) = δiδF̄

−1
αδ

[
(Q̄ − P̄β,β)Ēα + eαβγ(J̄β + ˙̄

Pβ)B̄ a
γ

− µ0M̄
C
β,βH̄α

]
,

II(ρ0feα) = F̄−1
βα

[
(q − pε,ε)Ēβ + (Q̄ − P̄ε,ε)eβ + eβγδ(J̄γ + ˙̄

Pγ)ba
δ

+eβγδ(jγ + ṗγ)B̄ a
δ − µ0M̄

C
ε,εhβ − µ0mC

ε,εH̄β

]

−F̄−1
βγ F̄−1

δα

[
(Q̄ − P̄ε,ε)Ēβ + eβµν(J̄µ + ˙̄

Pµ)B̄ a
ν

−µ0M̄
C
ε,εH̄β

]
uγ,δ .

(6.3.19)

In actual calculations one only needs the force expression for one single model,
because the stress tensors of the two models are related by (5.2.22), or

I T̄iα = II T̄iα − δiαF̄−1
βδ (P̄αĒβ + µ0M̄

C
α H̄β) ,

I t̄αβ = II t̄αβ − F̄C
γα(pβĒγ + P̄βeγ + µ0mC

β H̄γ + µ0M̄
C
β hγ)

+F̄−1
εγ F̄−1

δα (P̄βĒε + µ0M̄
C
β H̄ε)uγ,δ .

(6.3.20)

When the stress tensor and the body force of model I are substituted into the
momentum equation what results is the body force of model II and a term
which agrees with IITiα.

In the Maxwell–Minkowski model III the body force is given by
(5.4.5)1. When decomposed this becomes

III(ρ0F̄
e
i ) = δiδ

{
F̄−1

αδ

[
Q̄Eα + eαβγ J̄βB̄γ + P̄βĒβ,α + µ0M̄

C
β H̄β,α

+ eαβγ(D̄β
˙̄
Bγ + ˙̄

DβB̄γ)
]

+ F̄−1
βδ,α(P̄αĒβ + µ0M̄

C
α H̄β)

}
,

III(ρ0feα) = F̄−1
βα

{
qĒβ + Q̄eβ + eβγδ(J̄γbδ + jγB̄δ) + P̄γeγ,β

+pγĒγ,β + µ0M̄
C
γ hγ,β + µ0mC

γ H̄γ,β + eβγδ(D̄γ ḃδ + ˙̄
Dγbδ

+dγ
˙̄
Bδ + ḋγB̄δ)

}
+ F̄−1

βα,γ

{
P̄γeβ + pγĒβ

+µ0M̄
C
γ hβ + µ0mC

γ H̄β

}
− F̄−1

βγ F̄−1
δα

{
QĒβ + eβµν J̄µB̄ν

+P̄εĒε,β + µ0M̄
C
ε H̄ε,β + eβµν(D̄µ

˙̄
Bν + ˙̄

DµB̄ν)
}

uγ,δ

−(F̄−1
βγ F̄−1

δα uγ,δ),ε(P̄εĒβ + µ0M̄
C
ε H̄β) .

(6.3.21)
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We recall that the stress tensors in models I and III are identical, hence
I T̄iα = III T̄iα and Itαβ = IIItαβ . (6.3.22)

The relationships between ( II T̄iα, IItαβ) and ( III T̄iα, IIItαβ) can then eas-
ily be read off from (6.3.20).

Next, we list the body forces for the statistical and the Lorentz-
formulations. In the Lorentz-formulation (model V) they are already given
in (6.2.36) and (6.2.37). For reasons of comparison they will be repeated here:

V(ρ0F̄
e
i ) = δiδF̄

−1
αδ

{
(Q̄ − P̄β,β)Eα + eαβγ(J̄β + ˙̄

Pβ)B̄γ

+ (M̄L
α,β − M̄

L
β,α)B̄β

}
,

V(ρ0feα) = F̄−1
βα

{
(Q̄ − P̄ε,ε)eβ + (q − pε,ε)Ēβ + eβγδ(J̄γ + ˙̄

Pγ)bδ

+eβγδ(jγ + ṗγ)B̄δ + B̄γ(mL
β,γ − mL

γ,β)

+ bγ(M̄L
β,γ − M̄

L
γ,β)

}
− F̄−1

βγ F̄−1
δα

{
(Q̄ − P̄ε,ε)Ēβ

+eβµν(Jµ + ˙̄
Pµ)B̄ν + B̄ε(M̄L

β,ε − M̄
L
ε,β)

}
uγ,δ .

(6.3.23)

On the other hand, in model IV we have (cf. (5.3.19)1)

IV(ρ0F̄
e
i ) = V(ρ0F̄

e
i ) + δiδ

{
F̄−1

αδ (ĒαP̄β − M̄
L
αB̄β + δαβM̄

L
γ B̄γ)

}

,β
,

IV(ρ0feα) = V(ρ0feα) +
{
F̄−1

βα

[
Ēβpε + eβP̄ε − M̄

L
β bε

−mL
β B̄ε + δβε(M̄L

γ bγ + mL
γ B̄γ)

]

− F̄−1
βγ F̄−1

δα

[
ĒβP̄ε − M̄

L
β B̄ε + δβεM̄

L
µ B̄µ

]
uγ,δ

}

,ε
.

(6.3.24)

These forces need not be calculated, however, because the divergence term
on the right-hand side of (6.3.24) will, with opposite sign, also arise in the
stress tensor of the statistical formulation; hence, the momentum equation
remains unchanged. Indeed, (cf. (5.3.22))

IV T̄iα = V T̄iα − δiδF̄
−1
βδ (P̄αĒβ − B̄αM̄

L
β + δαβB̄γM̄

L
γ ) ,

IV tαβ = V tαβ − F̄−1
γα

[
pβĒγ + P̄βeγ − bβM̄

L
γ − B̄βmL

γ

+δβγ(bδM̄
L
δ + B̄δmL

δ )
]

+F̄−1
εγ F̄−1

δα

[
P̄βĒε − B̄βM̄

L
ε + δβεB̄µM̄

L
µ

]
uγ,δ .

(6.3.25)

To find the link between the groups (I, II, III) and (IV, V ) we also need
the decomposed versions of relation (5.6.12) between V Tiα and IITiα. This
relation gives
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V T̄iα = II T̄iα + δiδF̄
−1
βδ

[
B̄

a
αH̄β − B̄αH̄

a
β − 1

2δαβ(B̄ a
γ H̄γ − B̄γH̄

a
γ )
]

,

V tαβ = IItαβ + F̄−1
γα

[
ba

βH̄γ + B̄
a
βhγ − bβH̄

a
γ − B̄βha

γ

− 1
2δβγ(ba

δH̄δ + B̄
a
δ hδ − bδH̄

a
δ − B̄δha

δ)
]

−F̄−1
εγ F̄−1

δα

[
B̄

a
β H̄ε − B̄βH̄

a
ε − 1

2δβε(B̄ a
µH̄µ − B̄µH̄

a
µ)
]
uγ,δ .

(6.3.26)
With the aid of the formulas (6.2.25)2, (6.2.26)2, (6.3.3)2 and (6.3.4)2 the
auxiliary fields B̄

a
α, H̄

a
α, ba

α and ha
α can be eliminated.

If we wished to do so, we could also give the decoupled constitutive equa-
tions for the stresses ITiα, . . . , V Tiα. We shall not do it here and restrict
ourselves to recalling that only IITiα and V Tiα are directly derivable from
a free energy; hence, their linearization is trivial. However, the free energies
occurring in these relations are not identical; they are related according to
(5.6.20), which when decoupled yields

V(ρ0ψ̌) = II(ρ0ψ̄) − µ0

2J̄
C̄αβM̄

C
α M̄

C
β ,

(
V(ρ0ψ̌) − V(ρ0ψ̌)

)
=
(

II(ρ0ψ̄) − II(ρ0ψ̄)
)
− µ0

J̄
C̄αβM̄

C
α mC

β

+
µ0

J̄
M̄

C
α M̄

C
β

[
F̄−1

γδ C̄αβ − δαδF̄γβ − δβδF̄γα

]
uγ,δ ,

(6.3.27)

We conclude this section with a survey of the decomposed jump and
boundary conditions. As before, the singular surfaces will be assumed to be
of order 2. Since the deduction of the respective conditions is straightforward
and analogous to the methods illustrated in Sect. 6.2.4, we shall only present
the final results. In accord with the assumptions laid down in Sect. 6.2.4,
Σ(i) will denote the propagating surface of acceleration waves across which
the intermediate fields (̄·) do not suffer a jump (

[[
(̄·)
]]

= 0, on Σ(i)). On a
material surface Σ(ii), on the other hand, WN = 0, but the intermediate
fields may jump there.

We start with the jump conditions for the electromagnetic fields. One
obtains:

for model I and model II
[[

B̄
a
α + µ0M̄

C
α

]]
Nα = 0 ,

[[
D̄

a
α + P̄α

]]
Nα = 0 ,

eαβγ

[[
Ēβ

]]
Nγ = 0 ,

eαβγ

[[
H̄β

]]
Nγ = 0 ,

[[
J̄α

]]
Nα = 0 ,






(6.3.28)on Σ(ii),
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and [[
ba

α + µ0mC
α

]]
Nα = 0 ,

[[
da

α + pα

]]
Nα = 0 ,

eαβγ

[[
eβ

]]
Nγ +

[[
(ba

α + µ0mC
α )
]]
WN = 0 ,

eαβγ

[[
hβ

]]
Nγ −

[[
(da

α + pα)
]]
WN = 0 ,

[[
jα
]]
Nα −

[[
q
]]
WN = 0 ,






(6.3.29)onΣ(i) andΣ(ii),

for model III
[[

B̄α

]]
Nα = 0 ,

[[
D̄α

]]
Nα = 0 ,

eαβγ

[[
Ēβ

]]
Nγ = 0, eαβγ

[[
H̄β

]]
Nγ = 0,

[[
J̄α

]]
Nα = 0 ,

}

(6.3.30)onΣ(ii),

and
[[
bα

]]
Nα = 0 ,

[[
dα

]]
Nα = 0 ,

eαβγ

[[
eβ

]]
Nγ +

[[
bα

]]
WN = 0 ,

eαβγ

[[
hβ

]]
Nγ −

[[
dα

]]
WN = 0 ,

[[
jα
]]
Nα −

[[
q
]]
WN = 0 ;






(6.3.31)on Σ(i) and Σ(ii),

for model IV and model V
[[

B̄α

]]
Nα = 0 ,

[[
D̄α + P̄α

]]
Nα = 0 ,

eαβγ

[[
Ēβ

]]
Nγ = 0 ,

eαβγ

[[
H̄β − M̄

L
β

]]
Nγ = 0 ,

[[
J̄α

]]
Nα = 0 ,






(6.3.32)on Σ(ii),

and
[[
bα

]]
Nα = 0 ,

[[
da

α + pα

]]
Nα = 0 ,

eαβγ

[[
eβ

]]
Nγ +

[[
bα

]]
WN = 0 ,

eαβγ

[[
ha

β − mL
β

]]
Nγ −

[[
da

α + pα

]]
Nα = 0 ,

[[
jα
]]
Nα −

[[
q
]]
WN = 0 ,






on Σ(i) and Σ(ii). (6.3.33)

These equations can easily be specified for Σ(i) and Σ(ii).
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For the jump conditions of momentum and energy of matter and fields
we must distinguish between Σ(i) and Σ(ii). We first list those valid at the
wave surface Σ(i); they only need be given for the perturbed relations. One
obtains:

for model I and model III
[[

Itαβ

]]
Nβ =

[[
IIItαβ

]]
Nβ

= F̄−1
γα

{
−P̄β

[[
eγ

]]
Nβ − µ0M̄

C
β

[[
hγ

]]
Nβ

+eβγδB̄
a
β

[[
pδ

]]
WN

}
,

[[
qα

]]
Nα =

{
ρ0

[[
IIu

]]
− Ēα

[[
pα

]]
− H̄α

[[
µ0mC

α

]]}
WN .






(6.3.34)onΣ(i).

We note that in the first of the above conditions the symmetry between
the electric and the magnetic fields, which is characteristic for the Chu-
formulation, is destroyed, because in the derivation the term

eβγδ〈D a
β 〉
[[
µ0M̄

C
δ

]]
WN

was dropped as it is proportional to c−2. Furthermore, for model III we have
replaced in (6.3.34)1 B̄

a
β by

B̄β − µ0M̄
C
β .

For model II we have
[[

IItαβ

]]
Nβ = F̄−1

γα

{
Ēγ

[[
pβ

]]
Nβ + H̄γ

[[
µ0mC

β

]]
Nβ

+eβγδB̄
a
β

[[
pδ

]]
WN

}
,

[[
qα

]]
Nα =

{
ρ0

[[
IIu

]]
− Ēα

[[
pα

]]
− H̄α

[[
µ0mC

α

]]}
WN ,






(6.3.35)on Σ(i) .

Moreover, for model IV

[[
IV tαβ

]]
Nβ = F̄−1

γα

{
−P̄β

[[
eγ

]]
Nβ − M̄

L
β

[[
bβ

]]
Nγ

+eβγδB̄β

[[
pδ

]]
WN

}
,

[[
qα

]]
Nα =

{
ρ0

[[
V u

]]
+ M̄α

[[
bα

]]
− Ēα

[[
pα

]]}
WN ,






(6.3.36)on Σ(i) ,

and for model V
[[

V tαβ

]]
Nβ = F̄−1

γα

{
Ēγ

[[
pβ

]]
Nβ + B̄β(

[[
mL

β

]]
Nγ

−
[[
mL

γ

]]
Nβ) + eβγδB̄β

[[
pδ

]]
WN

}
,

[[
qα

]]
Nα =

{
ρ0

[[
V u

]]
+ M̄

L
α

[[
bα

]]
− Ēα

[[
pα

]]}
WN ,






(6.3.37)on Σ(i) .
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Since in all of the above jump conditions for the energy, qα is the same
function (needless to say once more that in model V qα stands for qS

α rather
than qL

α) the right-hand sides of these conditions must be identical also.
That this is indeed the case can most easily be seen from (5.6.19), which in
perturbed form reads

ρ0
V u = ρ0

IIu − µ0hαM̄
C
α − µ0H̄αmC

α − µ0

J̄
C̄αβM̄

C
α mC

β

+
µ0

2J̄
M̄

C
α M̄

C
β

[
F̄−1

γδ C̄αβ − δαδF̄γβ − δβδF̄γα

]
uγ,δ .

(6.3.38)

Finally, we list the boundary conditions for momentum and energy on ma-
terial surfaces Σ(ii). On these, WN vanishes but the intermediate fields may
jump instead. Consequently ,

for model I and model III
[[

I T̄iα

]]
Nα =

[[
III T̄iα

]]
Nα

= δiδF̄
−1
αδ

{
〈P̄β〉

[[
Ēα

]]
Nβ − 〈µ0M̄

C
β 〉
[[

H̄α

]]
Nβ

}
,

[[
Itαβ

]]
Nβ =

[[
IIItαβ

]]
Nβ

= F̄−1
γα

{
−〈P̄β〉

[[
eγ

]]
Nβ − 〈pβ〉

[[
Ēγ

]]
Nβ

−〈µ0M̄
C
β 〉

[[
hγ

]]
Nβ − 〈µ0mC

β 〉
[[

H̄γ

]]
Nβ

}

+F̄−1
γδ F̄−1

εα

{
〈P̄β〉

[[
Ēγ

]]
Nβ + 〈µ0M̄

C
β 〉

[[
H̄γ

]]
Nβ

}
uδ,ε ,






(6.3.39)

on Σ(ii), in which for model III, B̄
a
α and ba

α must, respectively, be replaced
by

(B̄α − µ0M̄
C
α ) and (bα − µ0mC

α ) .

For model II
[[

II T̄iα

]]
Nα = δiδF̄

−1
αδ

{
〈Ēα〉

[[
P̄β

]]
Nβ + 〈H̄α〉

[[
µ0M̄

C
β

]]
Nβ

}
,

[[
IItαβ

]]
Nβ = F̄−1

γα

{
〈Ēγ〉

[[
pβ

]]
Nβ + 〈eγ〉

[[
P̄β

]]
Nβ

+〈H̄γ〉
[[
µ0mC

β

]]
Nβ + 〈hγ〉

[[
µ0M̄

C
β

]]
Nβ

}

−F̄−1
γδ F̄−1

εα

{
〈Ēγ〉

[[
P̄β

]]
Nβ + 〈H̄γ〉

[[
µ0M̄

C
β

]]
Nβ

}
uδ,ε ,






(6.3.40)

on Σ(ii),
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for model IV

[[
IV T̄iα

]]
Nα = δiδF̄

−1
αδ

{
−〈P̄β〉

[[
Ēα

]]
Nβ − 〈M̄L

β 〉
[[

B̄β

]]
Nα

}
,

[[
IV tαβ

]]
Nβ = F̄−1

γα

{
−〈P̄β〉

[[
eγ

]]
Nβ − 〈pβ〉

[[
Ēγ

]]
Nβ

−〈M̄L
β 〉
[[
bβ

]]
Nγ − 〈mL

β 〉
[[

B̄β

]]
Nγ

}

+F̄−1
γδ F̄−1

εα

{
〈P̄β〉

[[
Ēγ

]]
Nβ + 〈M̄L

β 〉
[[

B̄β

]]
Nγ

}
uδ,ε ,






(6.3.41)

on Σ(ii) ,
and for model V

[[
V T̄iα

]]
Nα = δiδF̄

−1
αδ

{
〈Ēα〉

[[
P̄β

]]
Nβ

+〈B̄β〉(
[[

M̄
L
β

]]
Nα −

[[
M̄

L
α

]]
Nβ)

}
,

[[
V tαβ

]]
Nβ = F̄−1

γα

{
〈Ēγ〉

[[
pβ

]]
Nβ + 〈eγ〉

[[
P̄β

]]
Nβ

+〈B̄β〉(
[[
mL

β

]]
Nγ −

[[
mL

γ

]]
Nβ)

+〈bβ〉(
[[

M̄
L
β

]]
Nγ −

[[
M̄

L
γ

]]
Nβ)

}

−F̄−1
γδ F̄−1

εα

{
〈Ēγ〉

[[
P̄β

]]
Nβ

+〈B̄β〉(
[[

M̄
L
β

]]
Nγ −

[[
M̄

L
γ

]]
Nβ)

}
uδ,ε ,






(6.3.42)

on Σ(ii). The boundary conditions of energy on Σ(ii) are equal in all formu-
lations and simply read

[[
Q̄α

]]
Nα =

[[
qα

]]
Nα = 0 , on Σ(ii) . (6.3.43)

Needless to say here that, with the use of relations (6.3.20), (6.3.25), (6.3.26)
and (6.3.38), all these jump conditions and boundary conditions can be trans-
formed into each other.

6.4 The Meaning of Interchanging Dependent
and Independent Constitutive Variables
in one Formulation

In Chaps. 4 and 5 it was demonstrated that all theories of magnetizable and
polarizable thermoelastic materials are fully equivalent. The equivalence re-
quirements could be stated as interrelationships between the free energies
and heat flux vectors of the formulations being compared. It was further
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demonstrated in Sect. 5.7 of Chap. 5 that full equivalence of different for-
mulations can be destroyed simply by comparing energy expressions, which
are too restrictive to allow complete matching. In particular, using in each
theory a polynomial expansion of the free energy in terms of its variables and
truncating these expansions at a certain prescribed level, destroyed complete
agreement. One can, of course, insist in polynomial representations, but must
then accept the fact that equivalence of two formulations is only possible to
within terms not being omitted in the expansion process.

A similar situation prevails if one tries to compare theories, which are
based on one single model (say the Lorentz model), in which different de-
pendent and independent constitutive variables are used. The situation is
similar as in the nonlinear theory of elasticity, in which there also exist two
different constitutive formulations, one in which the free energy is a func-
tion of the strains and a second one, whose energy function is obtained from
the former through a Legendre transformation. This latter energy, which is
called enthalpy (or complementary energy) is a function of the stresses rather
than the strains. It gives the strains as functions of the stresses. Inverting the
stress-strain relationship, that is expressing stress as a function of strain then
effectively amounts to finding the free energy from the enthalpy. If these in-
versions can be performed, the theories based on enthalpy and free energy,
respectively, are fully equivalent. It is known that this step is not a trivial
one, except in the linear elasticity theory, in which it amounts to writing the
elasticity coefficients in terms of the compliances.

In an electromechanical interaction theory changes of dependent and in-
dependent variables are possible also among the electromagnetic constitutive
variables. Indeed, it is not the change of strain and stress as dependent and
independent constitutive variables, that ordinarily gives rise to different con-
stitutive approaches, but rather that of electromagnetic variables.

We showed in Chap. 3 already that there are four different constitutive
theories in just one formulation, not counting that stress and strain and tem-
perature and entropy could also be interchanged as dependent and indepen-
dent variables. In what follows we shall only be dealing with two possibilities,
namely the Lorentz formulation, in which (Eα,Bα) and (Pα/ρ0,Mα/ρ0) are
taken as the respective independent constitutive variables. Results for the
Chu-formulation and other variable combinations will be stated, however.

In the Lorentz model and if Eα and Bα are selected we have

ψ̌ = U − ηΘ − 1
ρ0

EαPα = ψ̌(Eαβ ,Eα,Bα, Θ) , (6.4.1)

and

η = − ∂ψ̌

∂Θ
, Pα = −ρ0

∂ψ̌

∂Eα
,

M
L
α = −ρ0

∂ψ̌

∂Bα
, V TP

αβ = ρ0
∂ψ̌

∂Eαβ
.

(6.4.2)
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On the other hand, when Pα/ρ0 and M
L
α/ρ0 are the independent fields, we

use as energy functional

ψ̂ = U − ηΘ +
1
ρ0

M
L
αBα = ψ̂

(

Eαβ ,
Pα

ρ0
,
M

L
α

ρ0
, Θ

)

, (6.4.3)

and from it we obtain

η = − ∂ψ̂

∂Θ
, Eα =

∂ψ̂

∂Pα/ρ0
,

Bα =
∂ψ̂

∂ML
α/ρ0

, V TP
αβ = ρ0

∂ψ̂

∂Eαβ
.

(6.4.4)

In view of the definitions of ψ̌ and ψ̂, (6.4.1) and (6.4.3), the two constitutive
theories lead to identical results if

ψ̂ = ψ̌ +
1
ρ0

EαPα +
1
ρ0

BαM
L
α , (6.4.5)

or with the use of (6.4.2), if

ψ̂

(

Eαβ ,
Pα

ρ0
,
M

L
α

ρ0
, Θ

)

= ψ̌

(

Eαβ ,
∂ψ̂

∂Pα/ρ0
,

∂ψ̂

∂ML
α/ρ0

, Θ

)

+
∂ψ̂

∂Pα/ρ0

Pα

ρ0
+

∂ψ̂

∂ML
α/ρ0

M
L
α

ρ0
.

(6.4.6)

Of course, there is also a dual relation to (6.4.6), namely

ψ̌(Eαβ ,Eα,Bα, Θ) = ψ̂

(

Eαβ ,−
∂ψ̌

∂Eα
,− ∂ψ̌

∂Bα
, Θ

)

+ Eα
∂ψ̌

∂Eα
+ Bα

∂ψ̌

∂Bα
.

(6.4.7)
For given functionals ψ̂ and ψ̌, equations (6.4.6) and (6.4.7) must be satisfied
identically if the two constitutive theories are to be equivalent. If only one of
the energy functionals, ψ̂ or ψ̌, is given, then (6.4.6) or (6.4.7) are functional
differential equations to determine the other. The solution to these remains
an open problem, as we shall not attack it here. Nevertheless, in order to
demonstrate that this problem is extremely complex in general, consider, as
a more or less arbitrary example, the following energy functional

ψ̂ = ψ̂(Eαβ ,Mα) = f(M2) +
1

2ρ0

(
λ(Eαα)2 + 2GEαβEαβ

)
, (6.4.8)

which may be regarded as the most simple functional form for an isotropic
nonlinearly magnetizable body. In (6.4.8)

M2 :=
1
ρ2
0

M
L
αM

L
α , (6.4.9)
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and f(M2) is a continuous, differentiable function. With the aid of (6.4.4) we
may derive the following expression for Bα

Bα = 2
df

dM2

M
L
α

ρ0
. (6.4.10)

Substitution of this into the identity (6.4.5) allows determination of ψ̌,

ψ̌(Eαβ ,Bα) = f(M2) − 2M2 df
dM2

+
1

2ρ0
{λ(Eαα)2 + 2GEαβEαβ} . (6.4.11)

The right-hand side of (6.4.11) can be determined as an explicit function of
Bα, or more precisely of B

2 = BαBα, only if relation (6.4.10) is invertible,
i.e., only if M2 is expressible as a function of Bα. This is rarely the case in
general. However, the special choice

f(M2) = 1
2 2χ

M2
∫

0

[
1 + 2 4χ

2χ
ξ
]1/2

dξ

(∼= 1
2 2χM2 + 1

4 4χM4 + · · · ) ,

(6.4.12)

which is a nonlinear representation that may be regarded as an extension of
the usual functional dependencies of the free energy on magnetization, gives
(for 2χ �= 0, 4χ �= 0)

M2 = 2χ

4 4χ

{
−1 +

[
1 +

8 4χ

2χ3
B

2
]1/2}

, (6.4.13)

so that ψ̌ may be written as

ψ̌ = 1
2 2χ

M2
∫

0

[

1 + 2 4χ

2χ
ξ

]1/2

dξ − 2χ

[

1 + 2 4χ

2χ
M2

]1/2

M2

+
1

2ρ0

(
λ(Eαα)2 + 2GEαβEαβ

)
,

(6.4.14)

in which M2 is given by (6.4.13).
Often the construction of a free energy of one formulation from that of

another is a matter of shear patience or simply becomes impossible analyt-
ically. This does not mean that equivalence is not possible in these cases; it
simply means that a free energy function of the second formulation is given
only implicitly. Such is already the case in the above representation if we
leave f(M2) unspecified.

The above construction of a free energy may appear to be rather artificial,
because the representation (6.4.8) is of very limited practical applicability.
Nevertheless, it is important from a mathematical point of view, because it
explicitly demonstrates that the functional differential equations mentioned
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above do indeed admit exact solutions, at least for the demonstrated case.
Conditions imposed on the free energy functions that guarantee the exis-
tence of such solutions would be of value, and in particular, it would be
valuable if, for instance, free energies could be constructed, which would still
be of physical relevance, but would not admit a solution of the functional
differential equations. In that case non-equivalence of two theories would be
demonstrated. We shall not go any deeper into this subject, but will mention
one simple and physically important case, in which existence of solutions of
equations (6.4.6) or (6.4.7) can easily be established and for which equiva-
lence of the theories compared is guaranteed. What we have in mind is the
case for which the free energy functions can be expressed as Taylor series
expansions about zero deformation, constant temperature and zero electro-
magnetic fields. The proof to this case will not be outlined here, but from the
procedure explained below the reader should be able to construct his own
proof.

With these few comments we shall now leave the subject of an exact
determination of the functional ψ̌ from ψ̂ and pass on to an approximate
satisfaction of relations (6.4.6) and (6.4.7). To this end, we shall choose trun-
cated polynomials as expressions for the free energies. If the degree of the
polynomial representation of ψ̂ is known, then with (6.4.6) that of ψ̌ can
be determined. In general the order of truncation of ψ̌ needed to obtain full
equivalence is not the same as that for ψ̂. We shall not be so general and
choose for both energy functionals the same polynomial expressions. In com-
plexity, we shall be as general as we were in (6.2.46) and thus write

ψ̌ =
1

2ρ0
2χ̌

(m)
αβ BαBβ +

1
4ρ0

4χ̌
(m)
αβγδBαBβBγBδ +

1
ρ0

χ̌
(em)
αβ BαEβ

+
1

2ρ0
2χ̌

(e)
αβEαEβ +

1
4ρ0

4χ̌
(e)
αβγδEαEβEγEδ −

1
2
č(Θ −Θ0)2

+
1
ρ0

λ̌(m)
α Bα(Θ −Θ0) +

1
2ρ0

Ľ
(m)
αβ BαBβ(Θ −Θ0)

+
1
ρ0

λ̌(e)
α Eα(Θ −Θ0) +

1
2ρ0

Ľ
(e)
αβEαEβ(Θ −Θ0)

+
{ 1
ρ0

ε̌
(m)
αβγBβ +

1
2ρ0

b̌(m)
αβγδBαBβ +

1
ρ0

ε̌
(e)
βγδEβ

+
1

2ρ0
b̌(e)

αβγδEαEβ − ν̌γδ(Θ −Θ0)
}
Eγδ +

1
2ρ0

čαβγδEαβEγδ ,

(6.4.15)

and
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ψ̂ =
ρ0

2 2χ̂
(m)
αβ

M
L
α

ρ0

M
L
β

ρ0
+

ρ3
0

4 4χ̂
(m)
αβγδ

M
L
α

ρ0

M
L
β

ρ0

M
L
γ

ρ0

M
L
δ

ρ0

+ρ0χ̂
(em)
αβ

M
L
α

ρ0

Pβ

ρ0

+
ρ0

2 2χ̂
(e)
αβ

Pα

ρ0

Pβ

ρ0
+

ρ3
0

4 4χ̂
(e)
αβγδ

Pα

ρ0

Pβ

ρ0

Pγ

ρ0

Pδ

ρ0

− 1
2 ĉ(Θ −Θ0)2 + λ̂

(m)
α

M
L
α

ρ0
(Θ −Θ0)

+
ρ0

2
L̂

(m)
αβ

M
L
α

ρ0

M
L
β

ρ0
(Θ −Θ0) + λ̂(e)

α

Pα

ρ0
(Θ −Θ0)

+
ρ0

2
L̂

(e)
αβ

Pα

ρ0

Pβ

ρ0
(Θ −Θ0) +

{
ε̂
(m)
βγδ

M
L
β

ρ0
+

ρ0

2
b̂(m)

αβγδ

M
L
α

ρ0

M
L
β

ρ0

+ε̂
(e)
βγδ

Pβ

ρ0
+

ρ0

2
b̂(e)

αβγδ

Pα

ρ0

Pβ

ρ0
− ν̂γδ(Θ −Θ0)

}
Eγδ

+
1

2ρ0
ĉαβγδEαβEγδ .

(6.4.16)

With these representations full equivalence is not possible, because the trans-
formations indicated by (6.4.6) and (6.4.7) lead to terms, which have been
omitted in the formulation of the respective energy functions. Nevertheless,
except for these terms equivalence can be established. If (6.4.15) and (6.4.16)
are used to exploit (6.4.6) and (6.4.7) in this approximate sense a series of
identities can be derived for the phenomenological coefficients of the two
formulations. We have done this; the calculations for the derivation of the
corresponding relations are very long. Unfortunately, the emerging identities
are much too long, and conclusions that can be drawn from them in this full
generality are very meagre in order to justify to list them here. Nevertheless,
one result derivable from these identities may be quoted. It reads: If the co-
efficients 2χ̂

(m)
αβ , 2χ̂

(e)
αβ , χ̂(em)

αβ vanish, all remaining coefficients accounting for
electromagnetic effects must also vanish if the theories are to be equivalent in
the above mentioned sense. Otherwise stated, if 2χ̂

(m), 2χ̂
(e) and χ̂(em) van-

ish in one theory and the two theories are to be equivalent, the free energies
reduce to

ψ =
1

2ρ0
cαβγδEαβEγδ − ναβ(Θ −Θ0)Eαβ − 1

2c(Θ −Θ0)2 ,

and no other terms. In a truly polarizable and magnetizable material at least
one of the coefficients 2χ

(m)
αβ , 2χ

(e)
αβ or χ

(em)
αβ must therefore be non-zero.

In the following we shall exploit the equations (6.4.6) and (6.4.7) for an
isotropic body, in which
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λ
(m)
α = λ

(e)
α = 0 , ε

(m)
αβγε

(e)
αβγ = 0 ,

2χ
(m)
αβ = 2χ

(m)δαβ , 2χ
(e)
αβ = 2χ

(e)δαβ , χ
(em)
αβ = 0 ,

4χ
(m)
αβγδ = 4χ

(m) 1
3 (δαβδγδ + δαγδβδ + δαδδβγ) ,

4χ
(e)
αβγδ = 4χ

(e) 1
3 (δαβδγδ + δαγδβδ + δαδδβγ) ,

L
(m)
αβ = L(m)δαβ , L

(e)
αβ = L(e)δαβ , ναβ = νδαβ ,

b(m)
αβγδ = b(m)

1 δαβδγδ + 1
2b(m)

2 (δαγδβδ + δαδδβγ) ,

b(e)
αβγδ = b(e)

1 δαβδγδ + 1
2b(e)

2 (δαγδβδ + δαδδβγ) ,

cαβγδ = λδαβδγδ + G(δαγδβδ + δαδδβγ) .

(6.4.17)

Substituting these expressions into (6.4.15) and (6.4.16), we obtain

ψ̌ =
1

2ρ0
2χ̌

(m)
BαBα +

1
4ρ0

4χ̌
(m)(BαBα)2 +

1
2ρ0

2χ̌
(e)

EαEα

+
1

4ρ0
4χ̌

(e)(EαEα)2 − 1
2 č(Θ −Θ0)2

+
1

2ρ0
Ľ(m)

BαBα(Θ −Θ0) +
1

2ρ0
Ľ(e)

EαEα(Θ −Θ0)

+
1

2ρ0
(b̌(m)

1 BαBα + b̌(e)
1 EαEα)Eββ

+
1

2ρ0
(b̌(m)

2 BαBβ + b̌(e)
2 EαEβ)Eαβ − ν̌(Θ −Θ0)Eαα

+
1

2ρ0

(
λ̌(Eαα)2 + 2ǦEαβEαβ

)
.

(6.4.18)

and

ψ̂ =
ρ0

2 2χ̂
(m) M

L
α

ρ0

M
L
α

ρ0
+

ρ3
0

4 4χ̂
(m)

(
M

L
α

ρ0

M
L
α

ρ0

)2

+
ρ0

2 2χ̂
(e) Pα

ρ0

Pα

ρ0

+
ρ3
0

4 4χ̂
(e)

(
Pα

ρ0

Pα

ρ0

)2

− 1
2 ĉ(Θ −Θ0)2

+
ρ0

2
L̂(m) M

L
α

ρ0

M
L
α

ρ0
(Θ −Θ0) +

ρ0

2
L̂(e) Pα

ρ0

Pα

ρ0
(Θ −Θ0)

+
ρ0

2

(

b̂(m)
1

M
L
α

ρ0

M
L
α

ρ0
+ b̂(e)

1

Pα

ρ0

Pα

ρ0

)

Eββ

+
ρ0

2

(

b̂(m)
2

M
L
α

ρ0

M
L
β

ρ0
+ b̂(e)

2

Pα

ρ0

Pβ

ρ0

)

Eαβ

−ν̂(Θ −Θ0)Eαα +
1

2ρ0

(
λ̂(Eαα)2 + 2ĜEαβEαβ

)
.

(6.4.19)
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With these exploitation of (6.4.6) stays within reasonable effort. The ap-
proach is analogous to that demonstrated in Sect. 5.7 and at the beginning
of this section. One simply evaluates Eα and Bα according to (6.4.4),

Bα = 2χ̂
(m)

M
L
α + 4χ̂

(m)
M

L
β M

L
β M

L
α + L̂(m)

M
L
α(Θ −Θ0)

+b̂(m)
1 M

L
αEββ + b̂(m)

2 M
L
βEαβ ,

Eα = 2χ̂
(e)

Pα + 4χ̂
(e)

PβPβPα + L̂(e)
Pα(Θ −Θ0)

+b̂(e)
1 PαEββ + b̂(e)

2 PβEαβ ,

(6.4.20)

expresses with their use ψ̌ as a function Pα/ρ0 and M
L
α/ρ0 rather than Eα and

Bα and substitutes the emerging relation together with (6.4.16) into (6.4.6).
When this is done, the following identities are obtained:

2χ̂
(m) =

1

2χ̌(m)
=

µ0µ

µ− µ0
=

µ

χ(m)
, 2χ̂

(e) = − 1

2χ̌(e)
=

1
χ(e)

,

4χ̂
(m) =

(
µ

χ(m)

)4

4χ̌
(m) , 4χ̂

(e) =
(

1
χ(e)

)4

4χ̌
(e) ,

L̂(m) =
(

µ

χ(m)

)2

Ľ(m) , L̂(e) =
(

1
χ(e)

)2

Ľ(m),

b̂(m)
1,2 =

(
µ

χ(m)

)2

b̌(m)
1,2 , b̂(e)

1,2 =
(

1
χ(e)

)2

b̌(e)
1,2 ,

ĉ = č =
cw

Θ0
, ν̂ = ν̌ = ν , λ̂ = λ̌ = λ , Ĝ = Ǧ = G ,

(6.4.21)
with obvious inversions, which we shall not write down. In the above rela-
tions, µ is called magnetic permeability, χ(m) magnetic susceptibility and χ(e)

electric susceptibility; for an ideal medium (i.e. a rigid, isotropic body) they
are defined by

B = µH , M = χ(m)H , P = χ(e)H .

Further, cW is the specific heat, ν the thermoelastic constant, and λ and G
are the Lamé constants. In an isotropic body, therefore, the classical phenom-
enological coefficients are equal and thus clearly defined. This is not so for all
other coefficients, as can be seen from (6.4.21). In fact, the transformations
all involve the magnetic and electric susceptibility. The definitions of fourth-
order electromagnetic, magnetostrictive, electrostrictive, thermoelectric and
thermomagnetic coefficients are not unique in this restricted isotropic theory.
Care should therefore be observed with the use of specific names for these
effects. Note also that the above described transformation becomes simply
impossible whenever 2χ

(m) and/or 2χ
(e) are zero. In this case, the outlined

procedure does not lead to a polynomial expression for ψ̂ of the form (6.4.19).
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In the above only two possible constitutive formulations were investigated,
namely those in which (Eα,Bα) and (Pα/ρ0,Mα/ρ0), respectively, were the
independent constitutive variables. Of course, similar calculations can also be
performed, if other sets of independent variables are chosen. They also lead
to results similar to (6.4.21) relating the phenomenological coefficients of the
respective constitutive formulations. Below we shall present the transforma-
tions of all possibilities of the statistical and the Lorentz models (IV,V).

On the other hand, the Chu-formulations (models I,II) and the
Maxwell-Minkowski model (III) have been shown to be equivalent if
in each of them the same functional dependencies for the free energy are
taken. Hence, similar changes can also be performed for these formulations.

In the remainder of this section we shall list the transformation rules for
all these changes of dependent and independent constitutive variables; but
we shall restrict ourselves to free energies of the complexity (6.4.18). Thus
we write

ψ =
1

2ρ0
2χ

(m)VαVα +
1

4ρ0
4χ

(m)(VαVα)2

+
1

2ρ0
2χ

(e)WαWα +
1

4ρ0
4χ

(m)(WαWα)2 − 1
2c(Θ −Θ0)2

+
1

2ρ0
L(m)VαVα(Θ −Θ0) +

1
2ρ0

L(e)WαWα(Θ −Θ0)

−ν(Θ −Θ0)Eαα +
1

2ρ0

(
b(m)

1 VαVα + b(e)
1 WαWα

)
Eββ

+
1

2ρ0

(
b(m)

2 VαVβ + b(e)
2 VαVβ

)
Eαβ

+
1

2ρ0

(
λ(Eαα)2 + 2GEαβEαβ

)
.

(6.4.22)

Here, (Vα,Wα) stands for the respective pairs of electromagnetic variables
which will be chosen as independent variables. In particular, the following
choices will be made:

in the models I, II, III in the models IV, V

(Vα,Wα) = (Eα,Hα) : ˇ(ˇ)· (Vα,Wα) = (Eα,Bα) : (̌·)

(Pα,MC
α ) : (ˆ̂· ) (Pα,ML

α) : ( ·̂ )

(Eα,MC
α ) :

≈
( · ) (Eα,ML

α) : (
∼· )

(Pα,Hα) :
++

( · ) (Pα,Bα) : (
+· )

Correspondingly, ψ in (6.4.22) is the energy functional of the formulation
at hand and must be characterized for each of these. The symbols used are
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also indicated in the above table; clearly, they must also be applied in all
coefficients on the right-hand side of (6.4.22). Recall, further, that ˇ̌ψ and ˆ̂

ψ,
for instance, are not the same energy functionals, but they are related to each
other by Legendre transformations.

We shall now list all the equivalence relations for the various formulations:

(A): The transformations from the (̌·)- to the ( ·̂ )-formulation have been
listed in (6.4.21) and are labeled with the symbol (A).

(B): The transformations between the constitutive theories ( ·̂ ) and (
∼· ) are

based on the energy functionals

ψ̂ = U − ηΘ +
M

L
α

ρ0
Bα ,

ψ̃ = U − ηΘ +
M

L
α

ρ0
Bα − Pα

ρ0
Eα ,

(6.4.23)

and equivalence follows, if the following identities hold

2χ̃
(m) = 2χ̂

(m) =
µ

χ(m)
, 2χ̃

(e) = − 1

2χ̂(e)
= −χ(e) ,

4χ̃
(m) = 4χ̂

(m) , 4χ̃
(e) = (χ(e))4 4χ̂

(e) ,

L̃(m) = L̂(m) , L̃(e) = (χ(e))2L̂(e) ,

b̃(m)
1,2 = b̂(m)

1,2 , b̃(e)
1,2 = (χ(e))2b̂(e)

1,2 ,

c̃ = ĉ =
cw

Θ0
, λ̃ = λ̂ = λ ,

ν̃ = ν̂ = ν , G̃ = Ĝ = G ,






(6.4.24)(B)

(C): To relate the (
∼· )- and (

+· )-formulations one must start with the energy
functionals

ψ̃ = U − ηΘ +
M

L
α

ρ0
Bα − Pα

ρ0
Eα ,

+

ψ= U − ηΘ , (6.4.25)

and then obtains the equivalence relations
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2

+
χ

(m)

= − 1

2χ̃(m)
= −χ(m)

µ
, 2

+
χ

(e)

= − 1

2χ̃(e)
=

1
χ(e)

,

4

+
χ

(m)

=
(

χ(m)

µ

)4

4χ̃
(m) , 4

+
χ

(e)

=
(

1
χ(e)

)4

4χ̃
(e)

+

L
(m)

=
(

χ(m)

µ

)2

L̃(m) ,
+

L
(e)

=
(

1
χ(e)

)2

L̃(e),

+

b
(m)

1,2 =
(

χ(m)

µ

)2

b̃(m)
1,2 ,

+

b
(e)

1,2=
(

1
χ(e)

)2

b̃(e)
1,2 ,

+
c = c̃ =

cw

Θ0
,

+

λ = λ̃ = λ ,

+
ν = ν̃ = ν ,

+

G= G̃ = G ,






(6.4.26)(C)

(D): The energy functionals in the (
+· )- and (̌·)-formulations have already

been stated before, namely in (6.4.1) and (6.4.25)2 . Exploiting the
identity

ψ̌ =
+

ψ −Pα

ρ0
Eα ,

we obtain

2χ̌
(m) = 2

+
χ

(m)

= − µ

χ(m)
, 2χ̌

(e) = − 1

2

+
χ

(e)
= −χ(e) ,

4χ̌
(m) = 4

+
χ

(m)

, 4χ̌
(e) = (χ(e))4 4

+
χ

(e)

,

Ľ(m) =
+

L
(m)

, Ľ(e) = (χ(e))2
+

L
(e)

,

b̌(m)
1,2 =

+

b
(m)

1,2 , b̌(e)
1,2 = (χ(e))2

+

b
(e)

1,2 ,

č =
+
c=

cw

Θ0
, λ̌ =

+

λ = λ ,

ν̌ =
+
ν = ν , Ǧ =

+

G = G ,






(6.4.27)(D)

With these relations the constitutive theories of models IV and V are all
compared. Performing the transformations (A), (B), (C) and (D) must
lead to identical free energies. There remains to compare the constitutive
theories for models I, II and III.
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(AA): We begin with the transformations for the ˇ(ˇ)·- and (ˆ̂· )-
formulations. In these (see (5.2.25) and (6.2.45)) we have

ˇ̌ψ = U − ηΘ − Pα

ρ0
Eα − µ0M

C
α

ρ0
Hα ,

ˆ̂
ψ = U − ηΘ.

(6.4.28)

Note, however, that here U = IIU , whereas in all the foregoing relations one
must read V U for U . Comparing for both formulations the energy functionals
of the complexity (6.4.22) we obtain the following relations:

2
ˆ̂χ(m) = − µ2

0

2 ˇ̌χ(m)
=

µ0

χ(m)
, 2

ˆ̂χ(e) = − 1

2 ˇ̌χ(e)
=

1
χ(e)

,

4
ˆ̂χ(m) =

(
1

χ(m)

)4

4 ˇ̌χ(m) , 4
ˆ̂χ(e) =

(
1

χ(e)

)4

4 ˇ̌χ(e) ,

ˆ̂
L(m) =

(
1

χ(m)

)2
ˇ̌L(m) ,

ˆ̂
L(e) =

(
1

χ(e)

)2
ˇ̌L(e) ,

ˆ̂b(m)
1,2 =

(
1

χ(m)

)2
ˇ̌b(m)
1,2 ,

ˆ̂b(e)
1,2 =

(
1

χ(e)

)2
ˇ̌b(e)
1,2 ,

ˆ̂c = ˇ̌c =
cw

Θ0
,

ˆ̂
λ = ˇ̌λ = λ ,

ˆ̂ν = ˇ̌ν = ν ,
ˆ̂
G = ˇ̌G = G ,






(6.4.29)(AA)

(BB), (CC), (DD): It is now obvious how the transformations must look
like for the remaining formulations. For the electrical coefficients the trans-
formations (AA), (BB), (CC), (DD) are identical to the corresponding ones
indicated with a single letter, whereas for the magnetic coefficients we must
only replace the factor (µ/χ(m)) in the one-letter transformations by (1/χ(m))
to obtain the double-letter transformations.

What remains is then the transformation of one formulation out of the
group (IV, V) to one of (I, II, III). This problem has already been solved in
Sect. 5.7 in which the transformation from the (̌·)- to the ˇ(ˇ)·-formulation is
discussed. (There, ˇ̌ψ was denoted by ψ̄.) For completeness we shall repeat the
results here. We shall characterize this transformation, which makes the link
between the two distinct groups (IV, V) and (I, II, III) and, therefore, com-
pletes the comparison of all possible constitutive theories, with the symbol
A. It reads
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(A):

2 ˇ̌χ(m) = µ0µ 2χ̌
(m) = −µ0χ

(m)
2 ˇ̌χ(e) = 2χ̌

(e) = −χ(e) ,

2 ˇ̌χ(m) = µ4
4χ̌

(m) , 4 ˇ̌χ(e) = 4χ̌
(e) ,

ˇ̌L(m) = µ2Ľ(m) , ˇ̌L(e) = Ľ(e) ,

ˇ̌b(m)
αβγδ = µ2b̌(m)

αβγδ
ˇ̌b(e)

αβγδ = b̌(e)
αβγδ ,

+µ0χ
(m)(2 + χ(m))nαβγδ ,

ˇ̌c = č =
cW

Θ0
, ˇ̌λ = λ̌ = λ ,

ˇ̌ν = ν̌ = ν , ˇ̌G = Ǧ = G ,






(6.4.30)(A)

This completes the explicit comparison of all possible constitutive theories
in the formulations (IV, V) and (I, II, III) as far as the free energy goes. A
complete comparison must, however, also include the constitutive relations
for the electric current and the heat flux vector. They must in all formulations
be the same functions. For relationships of the complexity of Sect. 5.2.3 this
means that relations must hold such that (see (6.2.66))

Λαβ = Λ̌αβ (Eγδ,Bγ , Θ) = Λ̂

(

Eγδ,
M

L
γ

ρ0
, Θ

)

= Λ̂(Eγδ,−
∂ψ̌

∂Bγ
, Θ) . (6.4.31)

These relations can be elaborated in an analogous way as above and thus lead
to relations between coefficients as, for instance, Λ̌(d)

αβγδ and Λ̂
(d)
αβγδ etc. These

are, however, at most second order effects, and for most practical problems
linear relationships of the form

Qα(= QS
α) = −καβΘ,β + βαβEβ ,

Jα =
1
Θ

βαβΘ,β + σαβEβ ,
(6.4.32)

suffice. In (6.4.32), now καβ , βαβ and σαβ are constants which correspond to
the tensor of heat conduction, the tensor of electrical conductivity and the
tensor of the thermoelectric effect. Since the temperature gradient and the
Lagrangean electromagnetic field are the same variables in all formulations,
it suffices for a full equivalence of all theories to choose for καβ , βαβ , σαβ the
same numerical values.

6.5 Discussion

In this chapter, the governing equations of thermoelastic polarizable and
magnetizable solids were subjected to a decomposition procedure, which al-
lowed a separation of the general problem, described mathematically by a
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set of nonlinear partial differential equations, into two simpler problems. One
of these involves as unknowns only small quantities, so that all products of
these could justly be omitted. The emerging set of equations was linearized
this way. We saw that linearization by itself turned out to be a fairly com-
plex problem if not attacked with the proper formulation. The Lagrangean
description treated in Chap. 5 provided the appropriate vehicle to avoid all
complexities which arose in the Eulerian description.

The decomposition of the governing field equations into equations valid
for the intermediate state and the perturbation state was performed for the
Lorentz model only, because all theories were proved to be equivalent.
Hence, and if one so desires, all problems can be solved just with this formu-
lation. However, because all formulations are used in the current literature,
the transformations of the phenomenological parameters from one theory to
another one should be known, if the link between all these theories should
explicitly be possible. With the results derived in Sects. 5.7 and 6.4 this
can easily be achieved for the restricted constitutive class investigated there.
All necessary informations to perform such transformations are contained in
Fig. 6.1, in which the two circles stand for models (I, II, III) and (IV, V),
respectively. At the periphery, we show those electromagnetic field variables,
which are considered as independent electromagnetic fields of the constitu-
tive theory. The symbols used in these constitutive theories are also indicated
in the figure. In Sect. 6.4 we derived the transformation rules necessary for
the respective constitutive formulations to lead to equivalent electromagnetic
theories. The transformations as listed in Sect. 6.4 are indicated in Fig. 6.1
by an arrow on the periphery connecting the two formulations to which they
apply. The arrow is also characterized by a symbol (A), (B), . . . , (DD), indi-
cating the transformation rules derived in Sect. 6.4 and valid for the transfer

Fig. 6.1. Scheme for the transformation of a constitutive formulation of any model
into any other one
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of a formulation into the neighboring one on the periphery of the circle. It
is evident that to every constitutive theory within a circle any other one
corresponds. The missing piece to obtain full correspondence of all presented
formulations is the double arrow connecting both circles and characterized by
the symbol (A). The transformation from the (Eα,Hα)-formulation in mod-
els (I, II, III) to the (Eα,Bα)-formulation in models (IV, V) was derived in
Sect. 5.7 and recapitulated in Sect. 6.4. It allows a connection between any-
one of the constitutive theories in the models (I, II, III) with any other one
in the models (IV, V). With this result the main objective is achieved.

We must emphasize once more, however, that conditions of equivalence
were derived above for free energy functionals, which were regarded to be
truncated polynomial expansions and that equivalence was established to
within terms omitted in the respective expansion procedures. Moreover, for
reasons of transparency in the presentation and in order to avoid long ma-
nipulations, we restricted ourselves to isotropic solids for which equivalence
conditions turned out to be simple formulas relating the phenomenological co-
efficients. Of course, the calculations can be performed also for an anisotropic
solid, but they are very long and, furthermore, equivalence formulas are com-
plex.

Apart from its practical significance the study of the equivalence condi-
tions has led us to a deeper theoretical understanding at least in the following
regard: It is known that the phenomenological constants of the free energy
as given in (6.4.15) and (6.4.16) bear standard names. These are as follows:

magnetic constants 2χ
(m)
αβ

electric constants 2χ
(e)
αβ

electromagnetic coupling constants 2χ
(em)
αβ

electric, magnetic anisotropy constants 4χ
(e)
αβγδ, 4χ

(m)
αβγδ

pyroelectric, pyromagnetic constants λ
(e)
α , λ

(m)
α

thermoelectric, thermomagnetic constants L
(e)
αβ , L

(m)
αβ

piezoelectric, piezomagnetic constants ε
(e)
αβγ , ε

(m)
αβγ

thermoelastic constants ναβ

thermal constant c

elastic constants cαβγδ

The association of names with a certain phenomenological constant is not
unique, however. In particular, we know that dependent on the constitutive
approach the magnetic constants are called magnetic permeability or mag-
netic susceptibility. Moreover, we saw that for an isotropic body, in which
there are no electromagnetic coupling terms and no pyro- and piezoelectric
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and -magnetic effects, only the last three constants in the above list turned
out to remain the same in all formulations. The transformation rules of all
other constants involved the magnetic or the electric constants so that the
definition of a particular effect depended on the choice of the constitutive
variables and on the formulation. For anisotropic bodies the situation be-
comes even worse, and indeed, one can show that in a body, in which the
third-order constants eαβγ do not all vanish, not even the elastic coefficients
are unique. Similarly, in a material with nonvanishing λα’s thermoelastic
constants and the specific heats are not uniquely determinable either. Theo-
retically, these results are very important ones, because they say, for instance,
that in an anisotropic piezomagnetic body the elasticity coefficients depend
on the formulation used. Strictly this means that in such a material the elas-
ticity coefficients cannot be determined from an experiment in the absence of
electromagnetic fields. Practically, on the other hand, the corrections of the
field free elasticity coefficients are so small that the effect of the piezomagnetic
constants on them can always be neglected.

The constitutive theories developed in this monograph apply to all bodies
which are called magnetizable and polarizable thermoelastic solids. By setting
the appropriate phenomenological constants to zero, all special cases of it can
also be derived. If, for instance, all coefficients bearing the superscript (m)
vanish, the body is called polarizable-only or dielectric. If on the other hand,
all coefficients with a superscript (e) vanish, the body is magnetizable-only.
This definition is independent of the fact whether electrical conduction is
present or not. Often, dielectric substances are electric insulators, however.

Before we close, we would like to draw the readers attention on a few prac-
tical problems to which the theories presented in this book and in particular
the decomposition procedure of this tractate may be applied. An extensive
monograph on such problems is F.C. Moon’s “Problems in Magneto-Solid
Mechanics”, [155], so that it suffices if we point out some of the more interest-
ing problems. In principle the problems can be classified into two groups: first,
dynamical problems such as magnetoelastic wave propagation and vibration
problems, and second, magnetically and electrically induced bifurcation prob-
lems. Both classes of problems have been attacked by several authors already,
but so far this has only been done in the Eulerian description. Early ap-
plications to vibration and wave propagation are by Dunkin and Eringen

[62], Kaliski and Petykiewicz [105], Paria [174], Alers and Fleary [11]
and M.F. McCarthy [140]. The linearization procedure of these authors
is, however, only sketchy and, as far as dynamical equations go the theories
are quasi-static. A first attempt to investigate the wave propagation problem
with a linearized theory which proceeds along the lines of this article is due
to Hutter, [93, 94]. But his equations are based on those of Hutter and
Pao [91], which have been found not to be completely correct for the reasons
explained in Sect. 6.1. Hence, the influence of (polarization and) magnetiza-
tion on the propagation of waves in solids should still further be attacked,
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and experiments should be performed, which would corroborate or disprove
the theoretical predictions. This has already be done to a certain extent by
Moon and Chattopadhyay [154], but an extensive comparison with the
results in [93, 94] was not attempted.

Of similar nature are the vibration problems treated by Tiersten [234]
and Van de Ven [248]. Both authors use a linearization procedure equiva-
lent to that presented above, but using the Eulerian description and only
for a quasi-static theory (in [249], however, it was shown that the results
for a dynamic, non-relativistic theory correspond to those of the quasi-static
case). Tiersten determines the eigenmodes of magnetically saturated plates
of cubic Yttrium-Iron-Garnet in a large static transverse magnetic field, per-
pendicular to which a small time-periodic field is superimposed. Van de

Ven, on the other hand, discussed vibrations of circular cylinders.
First applications in the bifurcation of electro- and magnetoelasticity

trace back to 1967 when Moon and Pao [152] presented experimental and
first theoretical results on the buckling of a soft ferromagnetic plate in a
homogeneous magnetic field. The discrepancies of the theory and of the
experimental evidence initiated further work, notably by Wallerstein and
Peach [260], Popelar [184], Dalrymple, Peach and Vliegelahn [51],
Pao and Yeh [170] and Alblas [10], but with the exception of [170, 10],
these articles do not make use of a proper linearization scheme. Alblas [10],
includes in his analysis the buckling of circular rods based on a Liapunov

approach. Since in all of the aforementioned articles the plate boundary
conditions were not derived consistently, the entire matter was reinvesti-
gated by Van de Ven [250], who also compared the existing formulations of
static magnetoelasticity, in particular the Maxwell–Minkowski and the
Ampère-current model, which in the static theory agrees with the Lorentz

model. It turns out that, ultimately all models lead to the same buckling
values, as they must; however, the reasons for this buckling can in each case
be interpreted differently:
(i) in the Maxwell–Minkowski formulation buckling is due to distributed

magnetic surface forces at the upper and lower surface of the plate and
a shear force per unit length of magnetic origin at the boundary of the
plate;

(ii) in the Ampèrean current model, on the other hand, buckling originates
from distributed surface moments of magnetic origin at the upper and
lower surface of the plate; the boundary is now free of forces.

The difference in the loading could be traced back to differences in the con-
stitutive equations for the shear forces and bending moments in the plate.

Other interesting bifurcation problems are the buckling of superconduct-
ing rings and coils which carry a large electric current. A first step towards
a solution was done by Moon and Chattopadhyay [153], but further in-
vestigations are still needed to improve their solution. A contribution to this
field of research is due to Alblas. These problems are of extreme practical
interest in future reactor technology.
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7 Magnetoelastic (In)stability and Vibrations

7.1 Introduction

In modern technological equipments, such as fusion reactors, magnetic energy
storage devices, MRI-scanners, superconducting generators, and magnetically
levitated trains, huge magnetic fields occur. These fields are generated by high
currents through superconducting coils. In these devices, the superconducting
currents are so high that the coils are subjected to strong magnetic forces.
These forces can cause unwanted vibrations (resulting in loud unpleasant
noise as in MRI-scanners) or even collapse (buckling) of structures (coils) in
e.g. fusion reactors. Therefore, in the design of these devices the analysis of
the vibrations and the stability of magnetic and superconducting structural
elements due to electromagnetic forces plays an important role.

In this chapter, we consider the (in)stability of (systems of) ferromagnetic
bodies placed in an external magnetic field and of superconducting structures
loaded by Lorentz forces due to the electric currents in these conductors. Since
a stability problem is always an essentially nonlinear problem, the theory for
it must be built upon a nonlinear set of equations for a magnetoelastic model.
As seen in the first part of this book, several such models exist and thus one
specific model must be chosen first. After that the general approach to the
problem could run as follows: the final deformed state is considered as a per-
turbation of an intermediate state, for which in general the rigid-body state
may be taken, and the fields in the deformed state are linearized with respect
to the intermediate state. When the resulting homogeneous linear system has
a non-trivial solution, we say that the intermediate state is unstable.

We start this chapter with a historical review of magnetoelastic buckling
problems, in which we recapitulate some earlier results from the literature.
Section 7.3 deals with ferromagnetic systems. We introduce both the so-
called classical method and a variational method. Both methods are illustrated
by examples dealing with a cantilevered beam of (narrow) rectangular or
elliptic cross-section and a set of two parallel rods. In Sect. 7.4 the buckling
of superconducting structures is treated. A variational method is introduced
and illustrated by examples such as sets of two parallel rods or two concentric
or parallel rings. The results are compared with the results of the so-called
direct Biot–Savard method. It turns out that the latter method delivers
a lower bound for the critical buckling current, which however can deviate

K. Hutter et al.: Electromagnetic Field Matter Interaction in Thermoelastic Solids and
Viscous Fluids, Lect. Notes Phys. 710, 201–278 (2006)
DOI 10.1007/3-540-37240-7 7 c© Springer-Verlag Berlin Heidelberg 2006
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substantially from the value obtained by the more exact variational method,
when the slender rod-like superconductors are too close to each other. More
results for superconducting structures such as helical and spiral coils are
presented in Sect. 7.5. In the latter section a somewhat modified method
is proposed in which the law of Biot and Savard is used to construct an
admissible magnetic field for the variational method; we call this approach the
combined method. Finally, Sect. 7.6 deals with magnetoelastic vibrations of
magnetoelastic or superconducting systems. Eigenfrequencies are determined
both by a direct method (comparable with the classical method for buckling)
and by a variational method (a generalisation of Rayleigh’s principle to
include magnetoelastic interactions).

7.2 Historical Review
of Magnetoelastic Buckling Problems

Magnetoelastic buckling is a phenomenon in which an elastic structure be-
comes unstable (buckles) under electromagnetic loading. Such a structure can
be, for instance, ferromagnetic or (super)conducting. The first investigations
of technical relevance in this field are those of Moon [156]. He considered
both ferromagnetic and conducting systems, the latter in cooperation with
Chattopadhyay; see [152, 40]. A more fundamental theory of magnetoelas-
tic stability was presented by Alblas in [9]. In this respect, also the works
of Eringen [69] and of Goudjo and Maugin [76], who investigated the in-
stability of ferromagnetic plates, should be mentioned. This subject was also
studied by Van de Ven in [250].

Of more recent date is the paper of Zhou, Zheng and Miya [282], who
looked at magnetoelastic buckling of ferromagnetic plates with regard to the
safety of the first walls, or blankets, of a fusion reactor. These plates are
of ferritic stainless steel, and thus ferromagnetic, and the interactions with
the magnetic fields in the reactor are so strong that magnetoelastic buckling
comes into sight. In 1997, Zhou and Zheng [283] examined the magnetoelas-
tic instability and the increase of natural frequency of a ferromagnetic plate
in a magnetic field. They developed a variational formalism by use of which
they derived one general expression for the magnetic force that covers both
the stability and the frequency problem at one time. Yang [273] considered a
special subject, namely the buckling of a piezoelectric plate; he found a buck-
ling load that was greater than the purely mechanical buckling load, implying
that neglect of piezoelectric coupling would yield a conservative estimate of
the buckling load.

Moon and Pao [156] studied the buckling problem of a cantilevered fer-
romagnetic beam of narrow rectangular cross-section placed in a transverse
magnetic field B0. They found the magnitude of the buckling field B0cr to
be proportional to the (3/2)-power of the thickness-to-length ratio. This re-
sult, however, was in disagreement with their own experimental results. This
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discrepancy started a discussion in the literature between several authors no-
tably among Wallerstein, O’Peach, Bast, Popelar, Dalrymple, and
Miya et al.; for the latter, see [143]–[145]; for a further list of references, see
[252]. Many different approaches were tried, but they did not really result
in a much better agreement. The main reason for this disagreement seems
to lie in the assumption of an infinite width of the beam-plate. Although
the beam-plate was much wider than high, the infinite assumption did yield
unacceptable results. Ultimately, a good explanation was found by Van de

Ven [252, 253], who developed an analysis accounting for the finite width
of the rectangular cross-section. The main lines and results of this analysis
are presented in the Example in Sect. 7.3.1. Yabuno [271] investigated the
bifurcation in buckling of a beam subjected to an electromagnetic force and
he proposed a control method to stabilize the magnetoelastic buckling.

Tani and Otomo, at an IUTAM-conference in Paris 1983, presented a
paper on the magnetoelastic buckling of two nearby ferromagnetic panels
[231]. As a follow-up, Tani and Van de Ven et al. cooperated on the mag-
netoelastic buckling of two parallel rods. They found a good correspondence
between their theoretical and experimental results (obtained in the labora-
tory of Tani in Sendai, Tohoku University); see [255] or Sect. 7.3.3. This set
of two parallel rods will serve as a standard example throughout this chapter.

Ambartsumian and his coworkers reported on the magnetoelastic inter-
actions in magnetic and current-carrying plates and shells placed in external
magnetic fields; for a review of their earlier work, see [12]. Especially the
magnetoelastic stability of current-carrying plates and shells was intensively
studied in the school of Ambartsumian,Amb2, [14]; in this respect, we also
refer to the work of K.B. and R.A. Kazarian [109] and Ovakimian [169]
and, of more recent date, Mol’chenko [148, 149]. Vibrations and stability
of two-layered magnetostrictive and of superconducting plates were studied
by Bagdasarian et al. [18, 19].

In 1975, Chattopadhyay and Moon [40] were the first to give a closed
form solution for the buckling problem of a current-carrying elastic rod in its
own field. The stability of conducting strings in a parallel magnetic field were
studied by Wolfe [266, 267], and by Nowacki [164]. Chattopadhyay [41]
showed, by numerical means, that a superconducting circular coil in its own
field is always stable, a result confirmed by Van de Ven and Couwenberg

in [254] via an analytical solution. In Moon’s book [156, Ch.5 and 6], a
number of other related problems is presented, e.g. circular coils in transverse
or toroidal external fields.

For more realistic problems, however, structural problems of greater com-
plexity must be studied. The first example is [84] in which Hara and Moon

studied the internal buckling of superconducting solenoid magnets. A spe-
cial nomination here deserves the work of the group around Kenzo Miya

at the University of Tokyo, a.o. [143, 226, 162, 280, 279], who investigated,
over a period of more than two decades, theoretically and numerically (finite
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element analysis) as well as experimentally the stability of ferromagnetic
plates and superconducting coils. Their research was especially directed to
the design of fusion reactors, specifically with regard to the stability aspects;
see [147] and [56] for two survey papers. Miya presented already in 1982
together with Takagi et al. [146] a finite element analysis for the buckling of
an eight-coil superconducting full torus. Moreover, together with Zhou and
Zheng, he analysed the stability of a superconducting three-coil torus in
[280, 279] and of a superconducting helix [284]. Impulsive buckling of cylin-
drical shells was experimentally investigated in cooperation with Nemoto

et al. in [162]. In [282], Zhou, Zheng and Miya investigated the stability of
the so-called first walls in a fusion reactor. By means of a variational principle
the magnetoelastic buckling value for these ferromagnetic plates was found.

In our view, several of the approaches to magnetoelastic buckling men-
tioned above are rather ad hoc. Moreover, often a number of more or less
ad hoc assumptions are needed to keep the analysis in hand. Therefore,
we felt a need for a unified approach. To this end, Van de Ven with his
coworkers Lieshout, Rongen and Smits constructed a variational princi-
ple specifically suited for the solution of magnetoelastic buckling problems
for ferromagnetic and superconducting systems [121, 122, 123]. They opted
for a variational method in the hope that this would serve as

1. a unified method in a clear formulation;
2. a straight way to a direct solution for the exact buckling value, if possible,

or otherwise;
3. a solid basis for numerical computations of the buckling value if an exact

analytical solution is no longer possible.

Thus, Van de Ven et al. designed a standard tool for this class of problems.
In a series of papers they presented solutions for systems reaching from rather
simple ones, such as sets of two or more parallel rods [122, 124], or rings [218]
to complex ones such as helical or spiral coils [257]. Evident advantages of
this method are

1. once a definitive form for the variational principle is chosen, the remaining
analysis can be done in an exact way by mere analytical means;

2. whenever the principle is used in an approximate sense, the order of the
approximations and the conditions for which they are allowed can be
explicitly specified.

In the following sections, we shall present the derivation of this varia-
tional principle and its application to a number of magnetoelastic buckling
problems.
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7.3 Ferromagnetic Systems

7.3.1 Classical Method

In this section, we consider the (in)stability of (systems of) ferromagnetic
bodies placed in an external magnetic field. Since a stability problem is always
an essentially nonlinear problem, the theory for it must be built upon a
nonlinear set of equations for a magnetoelastic model. As seen in the first
part of this book, several such models exist and thus one specific model must
be chosen first. Once this is done, the general approach to the problem could
run as follows:

Consider a ferromagnetic body B placed in an external magnetic field B0.
Due to the action of magnetic forces, B will deform to a slightly deformed
intermediate state GI . In general, the precise deformation in this state is of
minor relevance for the stability considerations. It is the stability of this in-
termediate state which we want to investigate: we say that B buckles when
GI becomes unstable. To investigate the stability of GI we superpose a per-
turbation (in both the deformations and the magnetic fields) on GI leading
to the final state G for B. By assuming the perturbations to be small, we can
linearize the nonlinear set of equations and boundary conditions, referring to
state G, with respect to the perturbations. This results in a homogeneous
linear set of equations, now referring to GI . Since the deformations in GI

are always very small (and as said, not essential for the stability problem)
we may replace in the linearized perturbed system the intermediate state by
the rigid-body state (or undeformed state). The rigid-body fields have to be
calculated first, and once this is done, the perturbed system has to be solved.
However, as this is a homogeneous system it will in general only have the triv-
ial zero-solution. Only for a discrete set of real (eigen)values for B0 = |B0|
the perturbed system will have a non-trivial solution (the eigenvalues are real
because the underlying problem is conservative). The lowest of these eigen-
values is the buckling field B0cr. We will refer to this approach as the classical
method.

To explain this approach in a more formal, mathematical, way, we use the
following scheme:
Every equilibrium state of a body B, influenced by an external magnetic
field B0, is governed by a set of equations and boundary conditions. Let us
denote this set schematically by

S [B(x),M(x), T (x),x;B0] = 0 . (7.3.1)

The symbol S encloses various differential operators; some of them act on
the boundary.

In the theory of stability two configurations are distinguished, namely the
intermediate state GI , satisfying

S 0[B0(ξ),M0(ξ), T 0(ξ), ξ;B0] = 0 , (7.3.2)
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where ξ ∈ GI is the position vector in the intermediate state, and the final
(perturbed) state G, which differs only slightly from the intermediate state,
is characterized by

S [B0(ξ) + b(ξ),M0(ξ) + m(ξ), T 0(ξ) + T 1(ξ), ξ + u(ξ);B0] = 0 , (7.3.3)

where ξ + u(ξ) = x, and T 1 is the perturbed stress tensor. Here, the per-
turbations {b,m, T 1,u} are supposed to be small. Subtracting (7.3.2) from
(7.3.3) and neglecting terms that are of second order in the perturbations,
we arrive at a system that is linear and homogeneous with respect to the
perturbations. The derivation of this system however is rather complicated
because

1. the original set (7.3.1) is nonlinear;
2. the boundary conditions enclosed in S refer to the deformed boundary

∂G of B;
3. the constitutive equations for the stresses and the magnetization inside

the body are different from those outside the body.

In the sequel, the linearized homogeneous problem is denoted by

S 1[b(ξ),m(ξ), T 1(ξ),u(ξ);B0] = 0 , (7.3.4)

where all operators enclosed in S 1 act on the boundary of the intermediate
state.

The set (7.3.4) always has the trivial zero-solution as a solution, but we
are only interested in those values of B0 = |B0| for which [b,m, T 1,u] �= 0,
is a solution of (7.3.4). The thus-posed problem is an eigenvalue problem; the
perturbations [b,m, T 1,u] and the magnitude B0 of the magnetic field play
the role of the eigenvector and the eigenvalue, respectively. In the theory
of magnetoelastic stability these eigenvalues are called buckling values. Of
course, we are especially interested in the lowest buckling value.

The eigenvalue problem is linear with respect to the perturbations, but
the buckling appears in a nonlinear way, due to the nonlinear dependence
of the magnetic forces and stresses on B0. Although in many cases a simpli-
fication in which the intermediate state is replaced by the rigid-body state
is allowed, this simplification does not make the nonlinear dependence on
B0 of the eigenvalue problem less complicated. Generally it is impossible to
solve the buckling problem directly from (7.3.4). Therefore, it is important
to have at our disposal a procedure, intended to obtain a reliable approx-
imation for the buckling value. Practical experience shows that in general
variational principles guarantee reliable approximations. We will come back
to this subject further on in this chapter.

Moon and Pao [156] applied the classical method to the buckling prob-
lem of a cantilevered ferromagnetic beam of narrow rectangular cross-section
placed in a transverse magnetic field and they found a buckling field pro-
portional to the (3/2)-power of the thickness-to-length ratio. This result was
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in disagreement with their own experimental results. An explanation for
this discrepancy was found by Van de Ven [252, 253], who developed an
analysis accounting for the finite width of the rectangular cross-section. The
main lines and results of this analysis are presented in the following example.

Example: Magnetoelastic buckling of a soft ferromagnetic beam
of elliptic cross-section (classical method)

This example is based on [252] and [253]. Consider a slender cantilever
beam of length l having an elliptic cross-section with semi-major axis a and
semi-minor axis b (a > b). This beam consists of soft ferromagnetic elastic
material (with magnetic permeability µ � 1) and is placed in a uniform
external magnetic field B0 = B0ey, directed along the minor axis of the
ellipse (the y-direction).

Our analysis will be based on the general formulation for a magnetoe-
lastic body in interaction with an external magnetic field. When applied
to a slightly deflected beam, this general formulation is linearized with re-
spect to the pre-buckled state, which here is identified with the rigid-body
state (classical method). In this way, two problems are obtained: one for the
rigid-body magnetic potentials (for an infinitely long straight beam), and
a linear one for the perturbed magnetic potentials. For the determination
of the buckling value of B0, we need the potentials inside the beam only,
which are here denoted by Φ(0) for the rigid-body state, and ϕ, the per-
turbed potential. For the description of the magnetoelastic interactions the
Maxwell–Minkowski model (Sect. 2.3) is used. For a beam of a narrow
rectangular cross-section, {−a < x < a, − b < y < b, b/a � 1}, a so-called
beam-plate, this would yield the following expression for the normal stress on
the wider upper plane y = b of the beam-plate (see e.g. [250]; this expression
also follows straightforwardly from (compare with eq. (3.4.25)1 in Sect. 3.4
of this book)

tyy =
µ2

µ0

∂Φ(0)

∂y

∂ϕ

∂y

∣
∣
∣
∣
y=b

. (7.3.5)

Let the deflection of the slender beam in the y-direction be given by V (z),
z being the axial coordinate of the beam; then the bending of the beam is
governed by the one-dimensional beam equation

EIyV
iv(z) = q(z) , (7.3.6)

where EIy is the bending stiffness and q(z) the normal load per unit of length,

q(z) =
∫

Γ

Tyds , (7.3.7)

with Γ the boundary of the elliptic cross-section, and Ty the traction on Γ
in the y-direction given by (compare with (7.3.5))
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Ty =
µ2

µ0

∂Φ(0)

∂n

∂ϕ

∂n
ny , (7.3.8)

with n the unit normal vector on Γ .
As demonstrated in [252], the rigid-body magnetic potential can be cal-

culated by use of elliptic coordinates. However, the advantage of an elliptic
cross-section is that the magnetic field inside the beam is uniform; calcula-
tions in [252] reveal that this internal potential is given by

Φ(0) = − (1 + β)
µ

B0y , (7.3.9)

where β = b/a is the thickness-to-width ratio.
In [252], the following boundary value problem for the internal, ϕ(x, y, z),

and external, ψ(x, y, z), perturbed potential is derived:

• in the vacuum outside the beam

∆ψ(x, y, z) = 0 , ψ → 0 , as |x| → ∞ ; (7.3.10)

• inside the beam
∆ϕ(x, y, z) = 0 ; (7.3.11)

• at the boundary Γ

ψ − ϕ = −µ
∂Φ(0)

∂n
nyV (z) ; (7.3.12)

and
∂ψ

∂n
− µ

∂ϕ

∂n
=

∂

∂n

(
∂Ψ (0)

∂y

)

V (z) . (7.3.13)

For the solution of this system, we introduce a separation of variables ansatz
according to

ψ = Ψ(u, v)V (z) , ϕ = Φ(u, v)V (z) , (7.3.14)

where u, v are elliptical coordinates. This separation of variables is, however,
only consistent with ∆ϕ = 0 provided that

V ′′(z) + λ2V (z) = 0 , (7.3.15)

subject to V ′(0) = V ′′(l) = 0 for the cantilever, yielding

λ =
π

2l
, (7.3.16)

for the eigenvalue λ.
With this separation of variables, the Laplace equation for ϕ(x, y, z),

(7.3.11), transforms into the Helmholtz equation for Φ(u, v),

∆Φ(u, v) − λ2Φ(u, v) = 0 . (7.3.17)
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The solution of the resulting system is quite complicated and needs the
use of Mathieu functions. Therefore, we do not give the details here, but
only refer to [252] for those readers who are interested in the mathematics of
the solution procedure.

Using the results of these calculations, we obtain the following expression
for the load q(z):

q(z) =
2πB2

0

µ0κΛ
(1 + O(ε)) , (7.3.18)

where ε = πa/4l � 1 for slender beams, κ = −γ − ln((1 + β)/2) − ln ε, γ =
0.5772, and Λ = 1 + (2βµε2κ)−1. Note that although ε � 1, µ � 1 so that
µε2 can be strictly of order unity.

Substitution of (7.3.15) into the beam equation (7.3.6) yields (with Iy =
πab3/4, for the elliptic cross-section)

π

4
Eab3V iv(z) − 2πB2

0

µ0κΛ
V (z) = 0 . (7.3.19)

Taking into account (7.3.15) and (7.3.16), we infer that (7.3.19) has only then
a non-trivial (non-zero) solution if B0 is equal to its critical or buckling value

(
B0√
µ0E

)

cr

=
1
2

√
εκΛ

(
πb

2l

)3/2

. (7.3.20)

Let us now consider two limiting cases for the elliptic cross-section, namely

1. the circle: a = b = R, (⇒ β = 1);
2. the very wide narrow ellipse: b � a, (⇒ β � 1).

For both cases it is assumed that ε = πa/4l � 1.
For the circular rod this leads to

(
B0√
µ0E

)

cr

=
1
2

√

κ

2
+

1
µ

(
2l
πR

)2 (
πR

2l

)2

, (7.3.21)

where now κ = −γ−ln((1+β)/2)−ln(πR/4l). This expression is in agreement
with the results of Moon [156, Sect. III.3], Alblas [9], or Van de Ven [251].

For the more interesting case of the very wide ellipse, we note that in
the preceding derivations three dimension ratios are used, viz. b/a, a/l, and
b/l, though only two are independent. Since we consider here b/l as the basic
variable, there remain two possible choices for the second variable. We choose
b/a or β as the second independent variable, to obtain

(
B0√
µ0E

)

cr

=
1
2

√

κ

2β
+

1
µ

(
2l
πb

)2 (
πb

2l

)2

, (7.3.22)

where κ = −γ − ln((1 + β)/4β) − ln(πb/2l).
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Assuming that µ is so large that the second term in the square root in
(7.3.22) may be neglected, we see that this relation reduces to

(
B0√
µ0E

)

cr

=
1
2

√
κ

2β

(
πb

2l

)2

. (7.3.23)

Ignoring the b-influence in κ, we conclude that B0cr at fixed β is proportional
to the second power of b/l. This result is in conflict with the result of Moon

and Pao in [152], and many others who followed the same approach and
found a (3/2)-dependence of b/l. The basic reason for this difference is that
Moon et al. assumed the narrow rectangular cross-section to be infinitely
wide, whereas we considered here an ellipse of finite extent. The crucial point
is that the solution of the Helmholtz equation (7.3.17) for the perturbed
potential is fundamentally different for a cross-section of finite width from
that of an infinite width, no matter how small the ratio b/a is. As indicated
in [253], the power 2 is also much better in agreement with the experimental
results reported in [152] than the power 2/3 (see also Table 7.1 at the end of
the next example).

Our purely analytical method presented in [252] for an elliptic cross-
section is not possible for a rectangular cross-section; however, in [253], we
presented an approach based on a very reasonable approximation holding
for a narrow rectangular cross-section of finite width yielding an analogous
result as found in (7.3.23). In a second example below, we shall show how
we can use our variational approach to find the buckling value for a rectan-
gular cross-section. Again, this result confirms our result for the elliptical
cross-section.

This concludes our first example.

7.3.2 Variational Method for Ferromagnetic Systems

In the magnetoelastic stability theory, as presented in the preceding exam-
ple, it has been the usual procedure to start from a linear set of equations
for the perturbations and to look for a value of the basic field parameter B0

for which this set has a non-trivial solution. Since an exact 3-dimensional
solution is often very difficult, and magnetoelastic buckling problems almost
exclusively occur for slender bodies or structures, one starts looking for ade-
quate approximate solutions. This is usually done in the following way:

For a slender body the 3-dimensional displacement u is approximated
by a 1- or 2-dimensional characteristic displacement w; this can be
for instance the deflection of the central line of a beam or that of
the central plane of a plate. This chosen w has to satisfy the global
equilibrium equation, inclusive forces of magnetic origin, depending
on B0. The buckling value is then found as the first eigenvalue for B0

for which this equation has a non-trivial (non-zero) solution.
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However, as the solution obtained by the procedure described above is not an
exact solution, but merely a reasonable approximation, the obtained value for
B0 is also an approximation. Therefore, let us introduce the small parameter
ε (0 < ε � 1) as a measure for the approximation error in the perturbed
displacement field. Then it is evident that, due to the linear character of the
perturbed equations, the error in the found eigenvalue for B0 is also of the
first order in ε.

In this respect, use of a variational principle clearly has the advantage
that in such a procedure the error in B0 is of second order in ε. This can be
explained best by describing globally the main lines of a variational method.
These lines are successively as follows:

1. Starting from a given functional L, which attains its minimum in the final
(deformed) state (and which is quadratic in the perturbations) one has

2. to choose a class of trial functions (for the perturbed magnetic and dis-
placement fields) satisfying the constraints of the variational principle;

3. to determine the best members out of this class by equating the first
variations of L equal to zero;

4. to calculate the buckling value for B0 from the equation J = 0, where J
is the second variation of L; see (7.3.32), further on.

Due to the stationary behaviour of the quadratic functional J the deviation
between the exact buckling value and the approximated one calculated as
in point 4. above is of the order of the square of the deviation ε between
the exact and the approximated perturbations. Hence, the accuracy of the
variational method is one order higher than that of the classical method.

The choice of a class of trial functions (point 2.) is usually based on the
choice of a displacement field. In practice, buckling theory always applies
to slender bodies or structures, such as beams, rods, plates, rings, or more
complex structural elements. For slender bodies, the displacement in buckling
can be characterised by one or two global displacement parameters, such as
the deflection of the central line of a beam, or the normal displacement of
the central plane of a thin plate.

Clearly, it is assumed here that the intermediate fields are known. How-
ever, in many practical problems the deformations in the intermediate state
are small, and have a negligible effect on the buckling value. In these cases,
the intermediate state may be replaced by the so-called rigid-body state,
which in general is more simple to determine.

Let us proceed now with a more advanced explanation of the basic idea
behind a variational principle for magnetoelastic buckling. Assume that the
set S in (7.3.1) encloses equations and boundary conditions according to S =
{S1, S2, ....Sk, ....}. Take now some of the equations and boundary conditions
of (7.3.1) for granted, say

Si [B(x),M(x), T (x),x;B0] = 0, 1 ≤ i ≤ k , (7.3.24)

and analogously for (7.3.2)
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S0
i [B0(ξ),M0(ξ), T 0(ξ), ξ;B0] = 0, 1 ≤ i ≤ k , (7.3.25)

and consider these equations as constraints for the variations of the function-
als

L [B,M , T ;B0] =
∫

R3

L [B(x),M(x), T (x),x;B0]dV , (7.3.26)

L0 [B0,M0, T 0;B0] =
∫

R3

L 0[B0(ξ),M0(ξ), T 0(ξ), ξ;B0]dV , (7.3.27)

respectively. The integrands, the so-called Lagrangean densities, are con-
nected with the sets of equations and boundary conditions (7.3.1) and (7.3.2)
and need to be specified later on.

Evaluation of Si−S0
i = si and L−L0 in terms of the perturbations results

in
si [b(ξ),m(ξ), T 1(ξ),u(ξ);B0] = 0, 1 ≤ i ≤ k , (7.3.28)

and
L− L0 = δL + J + O(ε3) , (7.3.29)

where ε denotes the order of magnitude of the perturbations, δL is the first
variation of L with respect to the intermediate state, which contains only
terms of order ε, while J is the second variation of L, containing terms of
order ε2 only. If the Lagrangean L is chosen in such a way that

δL = 0 ∧ S0
i [B0(ξ),M0(ξ), T 0(ξ), ξ;B0] = 0, 1 ≤ i ≤ k , (7.3.30)

is equivalent to (7.3.2), then it can be proved that

δJ = 0 ∧ si [b(ξ),m(ξ), T 1(ξ),uξ;B0] = 0, 1 ≤ i ≤ k , (7.3.31)

is equivalent to (7.3.4). For the proof, we refer to [121]. Hence, the eigenvalue
problem for B0 is equivalent to finding a non-zero solution of (7.3.31).

Using that J is a homogeneous quadratic functional in the perturbations,
we infer the important property

δJ = 0 =⇒ J = 0 . (7.3.32)

The latter two results constitute a variational principle that should be used
in the following way:

First, a class of trial functions {b(ξ),m(ξ), T 1(ξ),u(ξ)} is con-
structed, satisfying the constraints (7.3.28). Those trial functions,
which approximate the exact perturbations best, are determined
from δJ = 0. Subsequently, an approximation of the buckling value
B0 is calculated from the equation J = 0; see (7.3.32). Let ε be
the order of magnitude of the deviations between the exact and the
approximate perturbations; then, due to the stationary behaviour of
J , the deviation between the exact and approximate buckling value
is of order ε2.
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In the above analysis, the determination of the Lagrangean density L
is rather difficult. Therefore, we follow here the reverse way: a Lagrangean
density accompanied by some constraints is postulated, and by variation of
L a set of equations like (7.3.24) is derived. If this set turns out to coincide
with one of the generally accepted models presented in Chap. 3 of this book,
we conclude that the right choice for L has been made.

For ferromagnetic elastic bodies the variational principle is based on the
following expression for the Lagrangean density L :

L = −1
2
µ0(H,H) − ρU +

1
2µ0

(B0,B0) , (7.3.33)

where U = U(F ,M) is the internal (magnetoelastic) energy density, F (with
components Fiα) is the deformation gradient, M the magnetization, and B0

the uniform external magnetic field at infinity. The pertinent constraints are
(here G− = G, G+ and ∂G are the configuration of the body B, that of the
surrounding vacuum, and the boundary of G, respectively, while an upper
index − or + stands for a value inside or outside the body, respectively)

B+
i = eijkA

+
k,j , M+

i = 0 , x ∈ G+ ,

B−
i = eijkA

−
k,j , Tij = ρ

∂U

∂Fiα
, ρ =

ρ0

JF
, x ∈ G− ,

A+
i = A−

i , x ∈ ∂G ,

B+
i → B0i , |x| → ∞ , (7.3.34)

where

H+
i =

1
µ0

B+
i , H−

i =
1
µ0

B−
i − ρM−

i , JF = detF . (7.3.35)

To obtain the total Lagrangean L the density L must be integrated over
both the (ferromagnetic) body (G−) and the surrounding vacuum (G+). The
requirement δJ = 0, taking into account the constraints given above, yields
the well-known Maxwell–Minkowski model for magnetoelastic interac-
tions (Model III in Chap. 3).

What we need next is the second variation J of L (J = δ2L); since this is
a cumbersome derivation, we refer for the resulting expression of J and the
underlying derivation to [121]. Since in the equilibrium state, of which the sta-
bility we are investigating, the first variation of L is zero, J must be of second
order in terms of the perturbations on the equilibrium state. If we neglect
higher-order terms, J becomes a homogeneous quadratic function in the per-
turbations. However, as the final state is again an equilibrium state, also the
first variation of J must be zero, but for a homogeneous quadratic function J
this implies that then J itself must be zero. Hence, δJ = 0 =⇒ J = 0, and
this relation delivers us directly an explicit expression for the buckling field
B0cr. This can be seen as follows: by splitting up J into a magnetic part K,
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which is proportional to B2
0 (K = B2

0K) and an elastic part W , according to
J = K−W = B2

0K−W , we see that J = 0 yields (K and W are independent
of B0)

B0cr =
√

W/K . (7.3.36)

Hence, if we can calculate W or K, either exactly or in a sufficiently accurate
numerical approximation, the relation above immediately delivers the looked-
for buckling field. Lieshout and Van de Ven et al. used this method to
calculate the magnetic buckling fields for a cantilevered beam of rectangular
cross-section (an exact solution was found) and a set of two parallel rods,
both systems being soft ferromagnetic, placed in a transverse magnetic field,
[122, 123]; the first problem is discussed in the following example, and the
second one in Sect. 7.3.1.

Example: Magnetoelastic buckling of a slender soft ferromagnetic
beam (variational method)

This example is based on [122] or [123]. Consider again a slender cantilever
beam of length l and of arbitrary simply-connected cross-section. This beam
is of soft ferromagnetic elastic material (with magnetic permeability µ � 1)
and is placed in a uniform external magnetic field B0 = B0ey, directed along
the y-direction. This is the same problem, at least for an elliptic cross-section,
as in the preceding example, but now we solve the problem by means of our
variational principle.

For this variational principle we need an expression for J = B2
0K −W in

terms of the perturbed magnetic potentials ψ and ϕ and the displacement u.
Here, W is the elastic energy due to u, and K is the scaled magnetic energy
(in the perturbed state). To start with the elastic energy, we choose for u a
displacement field owing to the bending of a slender beam, according to the
Bernoulli–Navier theory,

u(x) = V (z)e2 − yV ′(z)e3 , (7.3.37)

where V (z) represents the deflection of the central line of the beam. This
choice yields for W the well-known expression for the bending energy of a
slender beam

W =
1
2
EIy

∫ l

0

(V ′′(z))2dz , (7.3.38)

where EIy is the bending stiffness of the beam.
The derivation of an expression for K is not so straightforward. Therefore,

we omit here all details and immediately give the result, for the derivation of
which we refer to [122] or [123]1 (in the next section we will present a general
derivation for K, but then for the case of a superconducting structure):
1 In [122] and [123], the potential ψ is defined by b+

i = ψ,i, whereas we use here
the commonly accepted definition h+

i = −ψ,i; this means that the ψ in [122] and
[123] must be replaced by −µ0ψ in our notation
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K = −
∫

∂G

Biui
∂

∂n

(
ψ − 1

µ0
Bjuj

)
dS . (7.3.39)

This result holds for slender beams (quadratic terms in the slenderness pa-
rameter ε are neglected) and for soft ferromagnetic materials (terms of order
µ−1 are also neglected). In (7.3.39), B is the rigid-body magnetic field and
ψ the perturbed magnetic potential both for the external region (the reason
that only the external fields appear in this expression is that the internal
fields are order µ−1 smaller than the external ones). The perturbed potential
ψ = ψ(x, y, z) has to satisfy the following constraints (here, G+ is the vacuum
region external to the beam)

∆ψ(x, y, z) = 0 , for x ∈ G+ ,
ψ + Biui = 0 , for x ∈ ∂G ,

ψ → 0 , for |x| → ∞ .
(7.3.40)

The problem for the 3-dimensional potential ψ is reduced to a 2-dimensional
problem by the separation of variables

ψ(x, y, z) = Ψ(x, y)V (z) . (7.3.41)

This separation of variables is only then consistent with ∆ψ(x, y, z) = 0, if
V (z) satisfies the relation

V ′′(z) + λ2V (z) = 0 , (7.3.42)

where the real parameter λ, the separation constant, is related to the length l
through the support conditions; for a cantilevered beam λ = π/2l; see (7.3.15)
and (7.3.16). With all this, (7.3.40) reduces to the 2-dimensional problem for
Ψ(x, y) (here, D+ is the 2-dimensional region of the vacuum in the plane of
the cross-section, and Γ is its boundary)

∆Ψ(x, y) − λ2Ψ(x, y) = 0 , for (x, y) ∈ D+,
Ψ + By = 0 , for (x, y) ∈ Γ ,

Ψ → 0 , for
√

x2 + y2 → ∞ .
(7.3.43)

Moreover, substitution of (7.3.41) changes the 2-dimensional integral in
(7.3.39), with use of (7.3.37) for u, into a product of two 1-dimensional inte-
grals according to

K =
(

−
∫

Γ

By
∂

∂n
(Ψ − 1

µ0
By)ds

)(∫ l

0

V 2(z)dz

)

. (7.3.44)

The problem (7.3.43) for Ψ can be solved by use of a conformal mapping:
z = x + iy = h(ζ), which maps D in the xy-plane onto the unit circle in the
ζ-plane. The transformed problem can then be solved by use of the theory of
complex functions. However, we do not need a full solution for Ψ but rather
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a calculation of the integral for K in (7.3.44). How this is done in detail can
be found in [122]; we restrict ourselves here to giving only the result; it reads

K =
π

µ0

1
κ(εc)

, (7.3.45)

with κ = −γ− ln(εc), and ε is the slenderness parameter, as in the preceding
example, while c is a constant that follows from the conformal mapping as
c = limζ→∞ h′(ζ). We note here that for the elliptic cross-section: ε = πa/4l
and c = (1 + β)/2, in agreement with the preceding example.

Substituting this into the equation for the buckling value (7.3.36), we
arrive at (

B0√
µ0E

)

cr

=
1
2

√
κ

2β

(
πb

2l

)2

, (7.3.46)

a result identical to (7.3.22) from the first example. So our variational ap-
proach confirms the result of the classical method.

With the variational method, we could also solve analytically the buckling
problem for a beam having a (narrow) rectangular cross-section. As can be
found in [122] this leads to an expression for c in terms of elliptic integrals. We
can calculate this value of c for all types of rectangular cross-sections, ranging
from a square to very narrow ones. In [122], we compared the results with
those for corresponding ellipses, and we found that the difference nowhere
became more than 2%. With ‘corresponding’ we mean here that the elliptic
and rectangular cross-sections do have identical thickness-to-width ratio’s
and moments of inertia Iy.

In (7.3.46), we have expressed B0cr in terms of the two dimension ratios
β and b/l; instead of β we could also have used ε, which would yield (with
β = b/a = 2ε(2l/πb))

(
B0√
µ0E

)

cr

=
1
2
√

κε

(
πb

2l

)3/2

. (7.3.47)

Hence, whether B0cr is proportional to b/l to the power 2 or 3/2 depends
on the choice of β and b/l or ε and b/l as independent dimension ratios,
respectively. However, as we shall show further on, experimental data of a.o.
Moon and Pao [152] fit more accurately to a second-power law than to a
(3/2)-power law; see Table 7.1.

Some further conclusions that can be drawn from the latter two results,
(7.3.46) and (7.3.47), are:

1. At fixed thickness-to-length ratio b/l the buckling value B0cr increases
with increasing width-to-length ratio ε. This statement received exper-
imental confirmation from Dalrymple et al.; see [50, Fig. 4]. In this
figure the variation of the buckling field with the plate width a (at con-
stant thickness b and length l) is shown. This curve corresponds very well
with our result (7.3.47).
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2. At fixed thickness-to-length ratio b/l the buckling value B0cr decreases
with increasing thickness-to-width ratio β. Again this statement is sup-
ported by experimental results from the literature; this time from Miya

et al.; see [144, Fig. 3]. In addition, we note that the results of this paper
also support statement 1.

We conclude this example by giving a table in which for fixed values of β and
varying (b/l) our theoretical buckling values are compared with the theoret-
ical and experimental results of Moon and Pao [152, Fig. 6]; see Table 7.1.
This table shows good agreement between the theoretical values predicted by
(7.3.46) and the experimental data from Moon and Pao. This agreement is
so evident that we are convinced that this justifies our conclusion that the
discrepancy between the theoretical and experimental results of Moon and
Pao is substantially due to the inadequacy of the infinite-width assumption.
The results of this example evidently reveal that the influence of the finite
width of the beam is essential and remains so even for very small thickness-
to-width ratios.

We continue this section with one extra example.

Table 7.1. Theoretical and experimental buckling values for a rod of rectangular
cross-section

β = 5.6 × 10−2 and µ = 6 × 104

b
l
× 103

[(
B0√
µ0E

)

cr

]

(7.3.46)

[(
B0√
µ0E

)

cr

]

[152],Th

[(
B0√
µ0E

)

cr

]

[152],Exp

3.0 0.96 1.87 0.90-1.00
2.5 0.69 1.42 0.65-0.70
2.0 0.46 1.02 0.45-0.50

β = 2.4 × 10−2 and µ = 104

1.80 0.55 0.87 0.51
1.50 0.40 0.66 0.30-0.33
1.15 0.26 0.44 0.24
0.90 0.18 0.31 0.17-0.20

7.3.3 Magnetoelastic Buckling
of a Set of Two Soft Ferromagnetic Parallel Rods

Consider a system of two identical parallel slender soft ferromagnetic rods
with radii R, length L, R/L � 1, placed in an external magnetic field B0

acting in a plane normal to the axes of the rods, i.e. the Z-direction. A normal
cross-section of the system in the XY -plane is given in Fig. 7.1. The distance
between the centres of the rods is 2d. The uniform external field B0 lies in the
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B0

R R
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Fig. 7.1. Cross-section of system of two parallel rods

XY -plane and makes an angle α with the positive X-axis. We will present
the solution for the buckling problem for this system in two ways: in the
classical way and by means of our variational principle. These presentations
are based on [255] and [122], respectively.

The classical procedure is almost analogous to that for one single beam.
Here, we introduce the displacements of the central lines of the two can-
tilevered beams by the complex displacement w(m)(z), m = 1, 2, w(m) ∈ C

of the m-th beam by

w(m)(z) = u(m)(z) + iv(m)(z) , (7.3.48)

where u(m) and v(m) are the displacement in the x and y-directions, respec-
tively, and z is the (real) axial coordinate. With this, the beam equation for
the m-th beam becomes

EI
d4w(m)

dz4
= q(m)(z) , (7.3.49)

where I = πR4/4 and q(m) is the magnetic load per unit of length on the
beam. These loads are related to the rigid-body fields and the perturbed
fields, and in order to find the q(m)’s one has to determine these fields. How-
ever, we refrain from doing this here, and refer for the details of the calcula-
tions to [255]. It turns out that the q(m)’s are of the form
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q(1)(z) = B2
0

[
Q1w

(1)(z) + Q2w̄
(1)(z) + Q3w

(2)(z) + Q4w̄
(2)(z)

]
, (7.3.50)

while q(2) is obtained from q(1) by replacing the upper indices (1,2) by (2,1).
In (7.3.50), w̄(m) is the complex conjugate of w(m). However, Q1 to Q4 are
complex numbers, which are explicitly determined by the solutions of the
rigid-body and perturbed fields as can be found in [255]. The analysis pre-
sented there makes use of complex function theory and ultimately expresses
the perturbed solution in terms of Bessel functions. We note here that these
numbers depend on R,L, d and α, but are independent of B0.

The buckling equation (7.3.49) together with the separation condition
(compare with (7.3.15) or (7.3.42))

w(m)′′(z) + λ2w(m)(z) = 0 , λ =
π

2L
, m = 1, 2 , (7.3.51)

yields two homogeneous equations for w(1) and w(2). For a cantilever support
at z = 0, the boundary conditions are w(m)(0) = w′′(m)(L) = 0, from which
the value for λ actually follows. It turns out that they can be decomposed
into two independent equations for (w(1) + w(2)) and (w(1) − w(2)). Hence,
two possible solutions exist:

1. w(1) = −w(2) : symmetrical buckling mode;
2. w(1) = +w(2) : anti-symmetrical buckling mode.

The numerical results of [255] reveal that the lowest buckling value for B0 is
associated with the symmetrical buckling mode. The corresponding buckling
value reads

B0cr = λ2

√
EI

Ω
, Ω = Re(Q1 −Q3) +

√
|Q2 −Q4|2 − (Im(Q1 −Q3))2 .

(7.3.52)
This buckling value depends on α and d/R; explicit results for B0cr, scaled
with respect to the buckling value for one beam (d/R → ∞), as function of
d/R are depicted in Fig. 7.2 for α = 0 and α = π/2.

Discussion. In [255] also the pre-buckling deflections are calculated. Al-
though it turns out that, as expected, these deflections are small, they never-
theless have an effect that can explain the discrepancy between the theoretical
and experimental results observed in the left graph of Fig. 7.2. For this, we
consider the two cases α = 0 and α = π/2 one by one:

1. In case α = 0 both the pre-deflection and the buckling deflection are
in the same plane. Hence, if the system is imperfection sensitive the
pre-deflection will lower the buckling value. This explains why we ex-
perimentally found a somewhat lower buckling value than theoretically
predicted.
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Fig. 7.2. Buckling magnetic field, scaled to the buckling field for one rod, for
symmetric buckling mode vs. distance between rods, scaled to radius; solid lines
are theoretical values and � and ◦ are experimental values. The left panel refers to
a magnetic field parallel to the plane of the rods (α = 0); the right to a transverse
field (α = π/2); from [255]

2. In case α = π/2 the plane in which the pre-deflection takes place is
perpendicular to the plane of buckling. Hence, in this case there is no
influence of the pre-deflection on the buckling value and, therefore, a
much better correspondence between the theoretical and experimental
results is observed in the right figure.

We proceed by presenting a solution for the same problem, but now via
the variational principle. For this, we start with the following approximate
assumptions:

1. We neglect the influence of the intermediate deformations (see the Dis-
cussion above).

2. The magnetic susceptibility χ = 1 + µ is so high that all terms of order
χ−1 are neglected.

3. All terms of order δ2 are neglected, where δ = λR = πR/2L, is the
slenderness parameter of the rods.

4. The rods deflect according to Bernoulli’s classical bending theory; the
angle between the direction of bending and the X-axis is called θ1, and
the magnitude of the displacement of the center line is w(z) = w(1)(z) =
−w(2)(z) (symmetrical buckling mode).

5. The rigid-body (intermediate) fields are independent of z (for long slender
rods).

6. For the perturbed magnetic fields a separation of variables with respect
to (x, y) and z, and proportional to w(z) can be applied (compare with
the example of one rod).

7. Besides δ = λR, also λd = δd/R is small.

The variational principle is now applied in the following way: first, L − L0

is developed in the perturbations up to and including the second order, thus
yielding J . This expression for J is simplified using the approximations listed
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above. Next, a class of perturbations {b,m, T 1,u} is chosen in such a way
that the constraints (7.3.34) and the support conditions for the cantilevered
rods are satisfied. We assume a symmetrical buckling mode, meaning that
the displacement of the center line of the first rod is given by

u = V (z) cos θ1 ex + V (z) sin θ1 ey , (7.3.53)

where V (z) is the total deflection of the rod in the θ1-direction. Then the
elastic energy W is equal to that given in (7.3.38). For the magnetic functional
K we obtain a formula analogous to (7.3.44), namely

K = K1(θ1)K2 ,

K1(θ1) =
1
µ0

∫

Γ1

(Bx cos θ1 + By sin θ1)
∂

∂n

(
Ψ + Bx cos θ1 + By sin θ1

)
ds ,

K2 =
∫ L

0

V 2(z)dz , (7.3.54)

where Ψ = Ψ(x, y) is the perturbed external magnetic potential after a sep-
aration of variables analogous to (7.3.41).

The calculation of the rigid-body fields Bx and By and the potential Ψ
is done in [122] by using complex function theory together with a conformal
mapping of the two circular cross-sections of the rods in the XY -plane onto
an annular domain in the complex plane. Using Hilbert theory, we can then
derive expressions for Bx, By and Ψ . However, it should be emphasized here
that for our variational principle we do not need the explicit expressions for
these variables, but we only need an explicit expression for the integral for K
in (7.3.54). After several mathematical manipulations, for which we refer to
[122], the following expression for J = W −KB2

0 , which depends on θ1 only,
is obtained (here, we have normalized the integral

∫ l

0
V 2(z)dz to unity):

J(θ1) =
π

8
Eδ4 − 2π

µ0
B2

0Q(θ1) , (7.3.55)

where
Q(θ1) = c0 + c1 cos 2θ1 + c2 sin 2θ1 , (7.3.56)

and c0, c1 and c2 are known functions (calculated in [122, eq. (5.13)]) of
the parameters d/R and α. The optimal value θ1 = θ̂1, corresponding to a
minimum value of J , is obtained from

dJ

dθ
(θ̂1) = 0, and

d2J

dθ2
(θ̂1) > 0 , (7.3.57)

yielding
tan 2θ̂1 =

c2
c1

. (7.3.58)

The buckling value for B0 then follows from J(θ̂1) = 0, and this results in
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θ̂1 B0cr

d/R d/R

Fig. 7.3. Optimal angle for the deflection θ̂1 (left) and the buckling field B0cr,
scaled with respect to that for one rod (right) for different values of α; from [122]

B0cr =

√
µ0E

16Q(θ̂1)

(
πR

2L

)2

. (7.3.59)

Numerical evaluations show that the result (7.3.59) is equal to the previous
result (7.3.52), at least for large values of the magnetic susceptibility (µ1 ≈ 0).

Some of the numerical results are depicted in Fig. 7.3: the left panel shows
θ̂1 as a function of R/d for a set of values for α; the right panel displays B0cr,
scaled with respect to the buckling value for one rod, as a function of R/d
for three values of α. From these graphs, we draw the following conclusions:

1. For fixed values of R/d and α, the buckling value is proportional to
δ2 =

(
πR
2L

)2
.

2. An increase in R/d for fixed values of α results in a decrease of the
buckling value, whereas an increase in α for a fixed value of R/d causes
an increase of the buckling value.

3. For 0 < α < π/2, the angle of deflection θ̂1 is a decreasing function of R/d.

4. For 0 < α < π/2, the deflection is not in the direction of the field
(θ̂1 �= α); only for α = 0 or α = π/2 one obtains θ̂1 = α.

This concludes the section on ferromagnetic bodies; in the ensuing section
we shall discuss instabilities in superconducting structures.
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7.4 Superconducting Structures

Superconducting coils are extensively used in modern technology, as for in-
stance in magnetic fusion reactors, NMR-scanners, magnetically levitated
trains, and many other applications. The current in these devices is often so
high that the structures carrying the currents are subjected to strong mag-
netic forces, which can become so large that the structure collapses (buck-
les). Hence, in the design of these devices investigation of the stability of the
structure is of eminent importance, see e.g. [56, 147]. In reactors and scanners
complex structures such as spirals, helical or toroidal coils are in use. The
complexity of such structures makes the study of their stability very compli-
cated, see e.g. [280, 284]. These methods often use approximations, of which
the degree of accuracy could not always be indicated. To overcome this, we
have adapted our variational method for ferromagnetic bodies as presented
in the preceding section to one for superconducting structures [218]. In con-
ducting systems, the electromagnetic loading is mainly due to the Lorentz

forces, originating from an interaction of the electrical current with either
its own magnetic field or an external field. Whenever these Lorentz forces
become too strong, the structure buckles. The analysis of this (in)stability
phenomenon can be performed analogously to the perturbation method pre-
sented schematically at the beginning of the preceding section. These methods
often use approximations, of which the degree of accuracy could not always
be indicated. To overcome this, we have adapted our variational method for
ferromagnetic bodies as presented in the preceding section to one for super-
conducting structures [218].

To make the variational method of Sect. 7.3 suitable for systems of super-
conducting coils carrying a prescribed current I0, the Lagrangean density
must be changed into

L =
1

2µ0
(B,B) − ρU , (7.4.1)

which is formally a Legendre transformation of (7.3.33) (for non-
magnetizable bodies) in which we pass from the variable H to B; see [218].
Since the total current I0 through the coil is prescribed, B must satisfy as a
constraint the Ampère law

∫

C

(B,ds) = µ0I0 , (7.4.2)

where C is a contour encircling the conductor.
The further evaluation is completely analogous to that in Sect. 7.3 and

eventually amounts to (note that here the electromagnetic term is propor-
tional to I2

0 )

J = I2
0K −W = 0 , =⇒ I0cr =

√
W/K , (7.4.3)

yielding an explicit expression for the buckling current I0cr.
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For not too complicated systems, the values of W and, above all, K can
be calculated analytically or numerically, but both exactly, see [122] or [218].
When this is no longer possible, one can choose, on a variational basis, an
appropriate (approximate) set of admissible fields to calculate W and K, and
thus I0cr; see [257].

A more detailed derivation of this variational principle is presented in the
next section.

7.4.1 Formulation of Variational Principle
for Superconducting Structures

In this section, we shall start from expression (7.4.1) and derive a formulation
for J = 0, where J is the second variation of L. We shall do this for a
superconducting body (in practice, a slender structure) in vacuum. We denote
by G the configuration of the body, and by G+ that of the vacuum, while ∂G is
the boundary of G. We model a superconducting body as a non-magnetizable
body, for which the current density J (Ampère/m) is concentrated on the
surface of the body, and for which the magnetic fields inside the body vanish
(B− = H− = 0). The current density J is related to the boundary value of
the external field B+ by

µ0J = n × B+, x ∈ ∂G . (7.4.4)

We restrict ourselves here to a simply-connected superconducting body in a
static situation. For our magnetoelastic model we will use the Maxwell–
Minkowski model (Model III in Chap. 3). Moreover, since the internal fields
are zero, we shall simply denote the external fields by B and H (without the
superindex +).

For the choice of L like in (7.4.1), the magnetoelastic equations for the
final state x in the Maxwell–Minkowski formulation are obtained by vari-
ation of L (i.e. δL = 0) under the following constraints:

x ∈ G , ρJF = ρ0 , Tij = ρ
∂U

∂Fiα
Fjα ,

x ∈ G+ , eijkBk,j = 0 , B → 0 , |x| → ∞ , (7.4.5)

plus an extra constraint prescribing the total current I0 by means of
Ampère’s law (7.4.2).

To find the first and second variation of L, we develop L in terms of the
perturbations with respect to the intermediate state. In doing this, we take
for the intermediate state the rigid-body state. The displacement u is then a
perturbed field, while we split the total magnetic field as B = B0 + b, where
B0 is the field in the rigid-body state, and b is the perturbed field. Developing
L up to second-order terms in the perturbations, we obtain (J = δ2L)
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L− L0 = δL + J

=
1
µ0

∫

G+
biBidV − 1

2µ0

∫

∂G

BkBkuidS +
∫

G

Tij,juidV

−
∫

∂G

TijNjuidS

− 1
µ0

∫

∂G

[
bkBkui + 1

2Bk,jBkuiuj + 1
4BkBk(uiuj,j − ujui,j)

]
NidS

+
1

2µ0

∫

G+
bibidV − 1

2

∫

G

cijklui,kuj,ldV , (7.4.6)

where cijkl is the classical, Hookean, linear elasticity tensor.
Since the constraints (7.4.5) and (7.4.2) have to be satisfied for both

the intermediate and the present state, the constraints for the perturbations
become

X ∈ G , tij = −Tijuk,k + Tikuj,k + cikjluk,l ;
X ∈ G+ , eijkbk,j = 0 , b → 0 , |X| → ∞ ; (7.4.7)

and ∫

C

(b · ds) = 0 . (7.4.8)

The constraints (7.4.7)2 and (7.4.8) for b guarantee the existence of a con-
tinuous magnetic potential ψ(X) for X ∈ G+, such that

bi = ψ,i , X ∈ G+ . (7.4.9)

To dispose of irrelevant constants in ψ, we replace the last constraint of (7.4.7)
by

ψ → 0 , |X| → ∞ . (7.4.10)

With this we can eliminate b from (7.4.6) in favour of ψ to obtain

δL =
∫

G

Tij,juidV +
1
µ0

∫

G+
ψ,iBidV −

∫

∂G

(

TijNjui +
1

2µ0
BkBkNi

)

uidS ,

(7.4.11)
and

J = −1
2

∫

G

cijklui,kuj,ldV +
1

2µ0

∫

G+
ψ,iψ,idV

− 1
µ0

∫

∂G

[
ψ,kBkui + 1

2Bk,jBkuiuj + 1
4BkBk(uiuj,j − ujui,j)

]
NidS .

(7.4.12)

By standard procedures, for which we refer to [122], we can prove that
δL = 0 and δJ = 0 yield successively the equations for the intermediate
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(rigid-body) and the perturbed (linearized) state for the magnetoelastic prob-
lem of a superconducting body in vacuum in the Maxwell–Minkowski

formulation. In this respect, we note here that the rigid-body field obtained
from δL = 0 satisfies, besides the constraints (7.4.5)2, also

Bi,i = 0 , X ∈ G+ , BiNi = 0 , X ∈ ∂G . (7.4.13)

For the further evaluation of J we first conjecture that

− 1
2µ0

∫

∂G

ψ,kBkuiNidS = − 1
2µ0

∫

∂G

(Bi,juj −Bjui,j)ψNidS , (7.4.14)

a relation which, with the aid of (7.4.13), can be proven as follows
∫

∂G

(−ψ,jBjui+ψBi,juj−ψBjui,j)NidS =
∫

∂G

eijk(eklmψBlum),jNidS = 0 ,

(7.4.15)
because the integrand in the last integral is a tangential derivative. Secondly,
we note that for a pre-stressed linear elasticity problem and with the classical
Hookean relation for cijkl, one has

cijklui,kuj,l = Tjkui,jui,k +
E

1 + ν

(
ν

1 − 2ν
ekkell + eklekl

)

, (7.4.16)

where 2ekl = uk,l +ul,k. As the third step, we use Gauss’ divergence theorem
to evaluate

∫

G+
ψ,iψ,idV =

∫

∂G

ψψ,iNidS −
∫

G+
ψψ,iidV . (7.4.17)

Finally, to dispose of the integral over the infinite region G+ in the result
above, we impose the extra constraint

ψ,ii = ∆ψ = 0 , X ∈ G+ . (7.4.18)

We note that, as the constraints do not prescribe ψ at ∂G, there is still
freedom left for the variation of ψ.

Using the four steps above, we obtain J in the form

J =
1
2

∫

G

Tjkui,jkuidV − E

2(1 + ν)

∫

G

(
ν

1 − 2ν
ekkell + eklekl

)

dV

− 1
2µ0

∫

∂G

[
(ψ + Bkuk),jBjui + 1

2BkBk(uiuj,j − ui,juj − uj,iuj)

− 1
2BjBk(uj,k + uk,j)ui + (ψ,i + Bi,juj −Bjui,j)ψ

]
NidS . (7.4.19)

Here, the first integral on the right-hand side is the contribution of the pre-
stresses Tjk to the elastic energy, the second term is the classical (Hookean)
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linear elastic energy due to the perturbed deformations and the last integral
is the perturbed magnetic interaction energy.

The buckling current follows from J = 0; in order to obtain a direct
expression for I0cr we scale the magnetic variables with respect to I0. For
this we introduce the following dimensionless field variables:

B̂i =
2πR
µ0I0

Bi , ψ̂ =
2π

µ0I0
ψ , T̂ij =

(2πR)2

µ0I2
0

Tij , ûi =
1
R

ui , (7.4.20)

where R is some length parameter that has to be chosen for a specific problem
under consideration. With use of this in (7.4.19), the buckling equation J = 0
yields (we subsequently omit the hats)

√
µ0

E

(
I0

2πR

)

cr

=

√
W

K
, (7.4.21)

where W is the scaled elastic energy

W =
1

2(1 + ν)

∫

G

(
ν

1 − 2ν
ekkell + eklekl

)

dV , (7.4.22)

and K is

K = −1
2

∫

∂G

[(ψ + Bkuk),jBjui + 1
2BkBk(uiuj,j − ui,juj − uj,iuj)

− 1
2BjBk(uj,k + uk,j)ui + (ψ,i + Bi,juj −Bjui,j)ψ]nidS

+ 1
2

∫

G

Tjkui,jkuidV . (7.4.23)

The final result (7.4.21)–(7.4.23) immediately gives the buckling current
I0 once we know ψ and u, either exactly or approximately. Assuming that
the buckling deflection is in the x-direction, the external potential Ψ has to
satisfy the constraints:

∆ψ(x, y, z) = 0 , for x ∈ G+,
∂

∂n
(ψ + Biui) = 0 , for x ∈ ∂G ,

ψ → 0 , for |x| → ∞ .

(7.4.24)

We now illustrate the variational method on the example of a set of two
parallel superconducting rods.

Example: Buckling of two parallel superconducting rods
(variational method)

We consider a set of two identical parallel infinitely long superconducting
circular rods of radius R. The distance between the centres of the two rods
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is 2d. The rods are periodically supported over a distance L. The currents
through the rods have magnitude I0 and are in the same direction. Axes
X,Y,Z are chosen as in Fig. 7.1. The dominant buckling mode turns out to
be symmetric and in the X-direction; this means that the deflection of the
second rod is equal but opposite to that of the first rod. For the first rod, we
choose the displacement field (appropriate for slender rods in bending) as

u1 = V (z) , u2 = 0 , u3 = −xV ′(z) . (7.4.25)

The elastic energy is then, as in (7.3.38),

W =
π

8
ER4

∫ L

0

(V ′′(z))2dz . (7.4.26)

With the common separation of variables

ψ(x, y, z) = Ψ(x, y)V (z) , and V ′′(z) + λ2V (z) = 0 , (7.4.27)

the constraints (7.4.24) for ψ transform into

∆Ψ(x, y) − λ2Ψ(x, y) = 0 , for (x, y) ∈ D+,
∂

∂n
(Ψ + Bx) = 0 , for (x, y) ∈ Γ ,

Ψ → 0 , for
√

x2 + y2 → ∞ ,

(7.4.28)

where now, due to the periodic supports, λ = π/L.
Moreover, with (7.4.25) expression (7.4.23) for K reduces considerably;

all terms except the first three are zero (or, better, O(δ2)). Thus, K for one
rod becomes

K = −1
2

∫

Γ

[

(Ψ + Bx)
∂Bx

∂n
+

λ2x

2R2
(B2

x + B2
y)nx

]

ds

∫ L

0

V 2(z)dz . (7.4.29)

In [122, Sect. 4], the details of the calculation of Bx, By and Ψ are presented,
and as these analytical calculations are exact, this leads to an exact expres-
sion for the buckling current (exact within the concept of the slender beam
theory). This eventually results in (see [122, eq. (5.17)])

I0cr =
πR√
Q

(
πR

L

)2
√

E

µ0
, (7.4.30)

where

Q = Q(d/R) =
4
β2

∞∑

n=1

na2
n

(
1 − α2n

1 + α2n

)3

, (7.4.31)

with

β =

√
d2

R2
− 1 , an =

α2n

(1 + α2n−2)(1 + α2n+2)
, α =

d

R
− 1 . (7.4.32)
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L1 L2

t1 F

t2

s1 R

I1
s2

r1
I2

r2

0

Fig. 7.4. Two curves carrying current; generalization of the law of Biot and
Savard

Table 7.2. Values of Q and 1/
√

Q as functions of d/R

d/R 1 1.5 2 3 4 6 8 10

Q 0.311 0.220 0.168 0.0935 0.0568 0.0266 0.0153 0.00985
1/

√
Q 1.79 2.13 2.44 3.27 4.20 6.13 8.09 10.08

Values for Q and 1/
√

Q as functions of d/R are given in Table 7.2. For later
reference we note that for large values of d/R the factor 1/

√
Q approaches

d/R.
It is of technical interest to compare this exact result with the result of

provide
text for

a less accurate, but much simpler solution procedure that is based upon a
generalization of the law of Biot and Savart. The basic relation for this
method is given by Moon in [156, eq. (2-6.4)]. Let L1 and L2 be two distinct
curves in R3, carrying the same electric current I0, see Fig. 7.4. Moreover,
let P1 and P2 be two points on L1 and L2 with position vectors r1(s1) and
r2(s2), respectively, where s1 and s2 are the corresponding arc lengths. The
force per unit of length in P1 acting on L1 is now calculated as the Lorentz

force due to the current through L1 times the magnetic field created by L2.
The latter follows from a generalization of the law of Biot and Savard as
given in [156, eq. (2-6.3)–(2-6.4)]. According to [156, eq. (2-6.4)], this force is
then given by

F (s1) =
µ0I

2
0

4π

∫

L2

(t1(s1) × (t2(s2) × R(s1, s2)))
R3(s1, s2)

ds2 , (7.4.33)

where t1 and t2 are unit tangent vectors along L1 and L2, respectively, and
R is the position vector from P2 to P1, i.e.
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t1 =
dr1

ds1
, t2 =

dr2

ds2
, R = r1 − r2 . (7.4.34)

The above formula for F is an approximation in so far as

1. the three-dimensional current-carrying bodies are considered as one-
dimensional curves (thus, for instance, the specific shape of the cross-
section and the distribution of the current over the cross-section are dis-
regarded);

2. the force due to the self-field of L1 is neglected.

Both these effects are taken into account by the (exact) variational method.
We shall show here that this Biot–Savard method will yield only good
agreement with the exact results of the variational method if the two current
filaments are sufficiently apart from each other. To this end, we will apply
the Biot–Savard method to the example above. In the symmetrical buckling
mode the deflections of the two rods are equal but opposite and thus in the
deflected state we have

r1 = (d + V (s1)) ex + s1 ez ,

r2 = (−d− V (s2)) ex + s2 ez ,

R = (2d + V (s1) + V (s2)) ex + (s1 − s2) ez , (7.4.35)
t1 = V ′(s1) ex + ez ,

t2 = −V ′(s2) ex + ez .

These formulas enable us to evaluate (7.4.33). In doing so, we must realize
that the displacements are small and, hence, a linearization with respect to
these displacements is allowed. In this sense, we approximate R3 by

R3 = R3
0

[

1 +
6d
R2

0

(V (s1) + V (s2))
]

, (7.4.36)

where
R0 = R0(s1, s2) =

√
4d2 + (s1 − s2)2 ≥ 2d . (7.4.37)

In the same way linearizing the numerator, we find an expression for F
of the form

F (s1) = F (0)(s1) + f(s1) , (7.4.38)

where F (0) is independent of, and f is linear, in the displacement V (s1).
Hence, F (0) is the force in the pre-buckled state (causing the so-called pre-
buckling deflections), which may be discarded for the determination of the
buckling current. Therefore, we define q(s1) as the force per unit of length in
the x-direction acting on the deflected rod by

q(s1) = (f(s1) · ex) , (7.4.39)

and this force governs the deflection of the rod through the beam equation
(from here on, we replace s1 by z, the axial coordinate of the rod)
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EIV iv(z) = q(z) . (7.4.40)

The procedure described above yields the following expression for the load

q(z) =
µ0I

2
0

4π

∫ ∞

−∞

[
V (z) + V (ζ) − (z − ζ)V ′(ζ)

R3
0

− 12d2(V (z) + V (ζ))
R5

0

]

dζ .

(7.4.41)
After two integrations by parts, in which it is used that V (z) is periodic in
z, (7.4.41) becomes

q(z) =
µ0I

2
0

4πd2

[

V (z) + d2

∫ ∞

−∞

V (ζ) − V (z)
R3

0

dζ

]

. (7.4.42)

At this step, we note that the second term on the right-hand side of (7.4.42)
is of the order (d/L)2 with respect to the first term, and since we want to
restrict ourselves to cases where d � L (in fact, d/L is small of the same
order as δ), we may neglect this term. Thus, (7.4.40) becomes

V iv(z) − µ0I
2
0

4πd2EI
V (z) = 0 . (7.4.43)

For a simply supported rod, the boundary conditions are

V (0) = V (L) = V ′′(0) = V ′′(L) = 0 , (7.4.44)

and the first buckling mode that satisfies these boundary conditions is

V (z) = A sin
(πz

L

)
. (7.4.45)

After substitution into (7.4.43) this brings us to the following expression for
the buckling current

I0cr = πd

(
πR

L

)2
√

E

µ0
. (7.4.46)

Table 7.2 shows that 1/
√

Q ≈ d/R for values of d/R ≥ 4 (the relative dif-
ference is then less than 5%) and then (7.4.30) and (7.4.46) yield approxi-
mately the same result for I0cr. However, if the filaments are nearer to each
other the correspondence becomes worse. In the limit d/R → 1, formula
(7.4.46) predicts a buckling current that is about 80% lower than that ob-
tained with (7.4.30). From this we conclude that the so-called direct Biot–
Savard method yields acceptable results for the buckling current only if the
current filaments are sufficiently far away from each other.

7.4.2 A Set of Two Concentric Superconducting Rings

Consider two concentric superconducting tori (or rings) both having a circu-
lar cross-section of radius R. The central line of the outer torus has radius
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b + d

b − d 2d

er

ez

O

R

D1 D2

Fig. 7.5. Cross-section of a pair of concentric tori

b + d, and that of the inner one b − d, where d > R. A system of cylin-
drical coordinates in the center O of the system is introduced as given in
Fig. 7.5. We assume that ε = R/b � 1, and that d/R is of order one; in
view of this, the system of the two tori is called a slender system. The total
current through each of the tori is called I0, and the currents in the tori are
equally directed. We consider only in-plane buckling, and we assume that
the lowest buckling mode corresponds to an anti-symmetric buckling mode.
The deflection of the outer torus (i = 1) and the inner (i = 2) torus can
then be written as wi(φ)er + vi(φ)eφ , i = 1, 2, where w2 = −w1 for the
anti-symmetric buckling mode. The tori are assumed inextensible, which can
be shown to be expressible as v′i(φ) + wi(φ) = 0 , i = 1, 2. In analogy with
Bernoulli’s theory for the bending of slender beams, the 3-D displacement
field of the i-th torus may be written as, up to O(ε2),

u(i)
r = wi(φ) ,

u
(i)
φ = vi(φ) − (r − bi)

bi
(w′

i(φ) − vi(φ)) , i = 1, 2 , (7.4.47)

u(i)
z = 0 ,

where b1 = b+ d , b2 = b− d. The representation (7.4.47) yields the classical
expression for the elastic energy of a slender inextensible ring in bending,

Wi =
EIz

2b3

∫ 2π

0

(w′′
i + wi)2dφ (1 + O(ε)) , (7.4.48)

where we have used that r = b(1 + O(ε)) , bi = b(1 + O(ε)) and where
Iz = πR4/4.

As in the preceding examples, the perturbed potential ψ(r, φ, z) is sepa-
rated according to
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ψ(r, φ, z) = Ψ(r, z)ω(φ) , (7.4.49)

where ω(φ) must be periodic in φ. For the first buckling mode, we take
ω(φ) = cos(2φ) and, accordingly, choose for the displacements of the central
lines

w1(φ) = w cos(2φ) , and w2(φ) = −w cos(2φ) . (7.4.50)

This yields for the total elastic energy (7.4.48) of the system

W = W1 + W2 =
9π2

b3
EIz w2 =

9π2

4
ER4

b3
w2 . (7.4.51)

The electromagnetic interaction term K = I2
0K is found in [218] in a fully

analytical way, but we omit the details of this analysis here and refer to [218].
However, what we do want to point out is the following: for the slender system
of tori we expect that on a local scale, i.e. for a small line element bdφ, the
electromagnetic interaction between two such line elements of two different
tori will not differ very much from the corresponding interaction between two
parallel rods. This expectation is confirmed by the result for K found in [218,
eq. (4.84)]. In our notation, this result reads (K = K/I2

0 )

K =
µ0bQ

4R2
w2 , (7.4.52)

where Q = Q(d/R) is as given in (7.4.31). This yields for the buckling current

I0 =
3πR3

b2

√
E

µ0Q
. (7.4.53)

Note that this result is of the same form as the resulting buckling current for
two parallel rods as given in (7.4.30); the only difference is due to the elastic
energy. The basic reason for this is that the expression for K as given by
(7.4.29) for slender systems is dominated by its first term. This term takes
the same value for all types of slender systems that we will consider in this
chapter, at least in a zeroth-order approximation with respect to ε. Since
K is for one part determinant for the buckling value (the other part being
determined by the elastic energy W ) we may state that the buckling current
for any slender pair of parallel curved rods is equal to that of an equivalent
pair of parallel straight rods times the ratio of the elastic energies. Of course,
the concept “slenderness” has to be defined properly in each problem at
hand.

As we did already in the example on the buckling of two parallel rods,
we shall derive here also an approximate expression for the buckling current
based on the so-called direct Biot–Savard method as given by Moon in
[156, eq. (2-6.4)]. We will do this here not for the system of two concentric
tori discussed above, but for a set of two parallel tori, or rings, as depicted in
Fig. 7.6. The tori have equally directed currents. In this method, the tori are
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Fig. 7.6. Cross-section of a pair of parallel tori

considered as 1-dimensional rings. We consider here out-of-plane buckling,
which consists of out-of-plane bending (wi(φi)) and torsion (τi(φi): the twist
per unit of length along the central line). The positions on the two deflected
rings (i = 1, 2) are then given by

r1 = b er1(φ1) + (d + w1(φ1)) ez ,
r2 = b er2(φ2) + (−d + w2(φ2)) ez ,

(7.4.54)

where ri, φi, z are cylindrical coordinates connected to the i-th ring. In a way
analogous to that used in the derivation of (7.4.43) we can also here derive
an expression for the force per unit of length on one ring due to the current
in the other ring. In this case, this force is in the z-direction and equal to,
for the first ring and when neglecting O(d/b)-terms,

fz(φ1) =
µ0I

2
0

8πd2
[w1(φ1) − w2(φ1)] . (7.4.55)

The ring equations for out-of-plane bending and torsion can a.o. be found in
[156, eq. 6-7.18]; with A = EI = (π/4)ER4 and C = GIp = (π/2)ER4/(1+ν)
and in our notations they read

− EI

b4
[wiv

1 (φ1) − bτ ′′
1 (φ1)] +

GIp

b4
[w′′

1 (φ1) + bτ ′′
1 (φ1)] + fz(φ1) = 0 ,

− EI

b2
[w′′

1 (φ1) − bτ1(φ1)] −
GIp

b2
[w′′

1 (φ1) + bτ ′′
1 (φ1)] = 0 .

(7.4.56)

Putting

wi(φi) = Wi cos(2φi) , τi(φi) = Ti cos(2φi) , i = 1, 2 , (7.4.57)
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and using GIp = EI/(1 + ν), we obtain from the second relation of (7.4.56)
for i = 1

T1 = − 4(2 + ν)
(5 + ν)

W1

b
. (7.4.58)

With this result the first equation of (7.4.56) yields

36EI

(5 + ν)b4
W1 cos(2φ) = fz(φ) =

µ0I
2
0

8πd2
[W1 −W2] cos(2φ) . (7.4.59)

An analogous relation holds for W2. It is then easily seen that the lowest
buckling current occurs for W2 = −W1 (anti-symmetric buckling mode) and
is equal to (with I = πR4/4)

I0 =
6πdR2

b2

√
E

µ0(5 + ν)
. (7.4.60)

As can be found in [218], the “exact” variational method would yield for the
buckling value

I0 =
6πR3

b2

√
E

µ0(5 + ν)Q
. (7.4.61)

Hence, the result (7.4.60) is only in agreement with (7.4.61), if 1/
√

Q =
d/R, a result that was already found at the end of Sect. 7.4.1. Thus, we
conclude again that the direct Biot–Savard method yields an acceptable
approximation (relative error less than 5%) for the buckling current only if
the current filaments are far enough away from each other, say d/R ≥ 4. It
seems superfluous to say that an analogous result can also be obtained for
the system of two concentric tori; see [218].

7.4.3 How to Use the Law of Biot and Savard
in the Variational Principle

In the examples presented in the preceding sections, we used the variational
principle in the exact sense. This means that we looked for and found exact
rigid-body fields B0 and perturbed fields b, which we used in the variational
expression for K, thus obtaining exact values for the buckling current. Exact
always means here within the range of slender-beam theory, so for R/l �
1, where R is the radius of the circular cross-section of the beam and l a
characteristic measure of length of the beam. Essential in our model for a
superconductor is the assumption that the current runs over the surface of the
superconductor only, thus shielding the body from a magnetic field. Hence,
there is no magnetic field inside the body. In the preceding section, we also
presented a more direct method based on a formula for the Lorentz force on
a current carrier due to the current in another conductor derived from the
Biot–Savard law. We referred to this method as the direct Biot–Savard



236 7 Magnetoelastic (In)stability and Vibrations

method. The second method is less exact than the variational method, but
much easier to work with in practice. A comparison of the two methods
showed reasonable agreement as long as the conductors are not too close to
one another.

In this respect, it seems reasonable to look for a method that combines the
advantages of the two methods, i.e. the greater exactness of the variational
method and the convenience in the use pertinent to the direct Biot–Savard

method. To this end, we shall use in the variational formulation for K an
admissible magnetic field b obtained on the basis of the law of Biot and
Savard. Our expectation that this combined approach will yield a useful
approximation for the buckling current is supported by the observed corre-
spondence between the results of the two respective methods. As this method
consists of a combination of the variational principle and the Biot–Savard

law, we will refer to this method as the combined method. Our hope that this
method will result in buckling values that are closer to the exact values will
be confirmed by the results to be presented in the next section. Moreover, we
will show there how we can obtain in a relatively easy way buckling values
for systems that we can not solve in an exact way.

In the next section, we shall present the detailed derivation of this method;
moreover, we shall give the specific nature of the simplifications and the
restrictions under which they are allowable. Applications to such complex
systems as sets of helical or spiral conductors will also be presented. The
combined method will calculate in a convenient way buckling currents for
more or less complex structures, which are sufficiently precise in practical
applications.

7.5 Some Results for Superconducting Structures

7.5.1 Review of Specific Structures and Some Results

In this section, we present a series of examples of applications of the varia-
tional principle described in the preceding chapter to superconducting sys-
tems. These systems always consist of slender rod-like structures, of circu-
lar cross-section, radius R, and carrying a total current I0. These examples
concern:

1. A set of two parallel rods, infinitely long, but periodically supported over
distances L, and a distance 2d apart from each other (R < d � L); cf.
[122]; see also Sect. 7.4.1.

2. A set of two concentric tori (or rings) in one plane; the rings have radii
b1 and b2, and the distance between them is 2d = b2 − b1 (R < d � b2);
cf. [218]; see also Sect. 7.4.1.

3. A set of two identical parallel tori (or rings), of radius b and distance 2d
(R < d � b); cf. [218].
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4. Sets of n , n > 2, equidistant parallel rods (like the set in example 1.);
cf. [124]; see also Sect. 7.5.2.

5. An infinite helical conductor, periodically supported at every n turns; the
radius of the helix is b and the pitch is h, the distance between two turns
is 2d = 2πh, and the support length is 2πbn (R < πh � πb), cf. [256] or
[257]; see also Sect. 7.5.3.

6. A finite helical conductor (like the one in example 5.) of n turns, simply
supported at its end points; cf. [257]; see also Sect. 7.5.3.

7. A flat spiral of n turns; the radius is given as a function of the arc ϕ,
for ϕ ∈ [0, 2πn], by b(ϕ) = b0 + hϕ, where h is the constant pitch; the
distance between two turns is 2d = 2πh (R < d � b0); the spiral is simply
supported at its end points; cf. [257]; see also Sect. 7.5.3.

Problems 1, 2, and 3 are solved completely by analytical means, using confor-
mal mapping and complex function theory. These mathematical procedures
were necessary to obtain an exact solution for the magnetic fields, both for the
rigid-body and the perturbed states (referring to the deformed state of the
structure), which, in turn, were needed for the calculation of the electromag-
netic interaction integral K, as given in (7.4.23). In this way, an exact value
for the buckling current is obtained (exact within the concept of slender-beam
theory, i.e. up to O(R2/L2)-terms). The analytical approach to problem 4 re-
sulted in a set of integral equations for the perturbed magnetic field, which
had to be solved numerically. Nevertheless, the buckling value found was ex-
act, in the same sense as in the preceding examples. For problems 5 to 7 no
analytical solution was found, but here the variational principle was used to
find a good approximation for the buckling current; for this approximation
the law of Biot and Savard was used to obtain an admissible magnetic field
for the variational method; this method was already explained in Sect. 7.4.3.
In the latter three problems a result is also used that states that the value
of K for a set of two (or more) rings is equal to the value of K for a set
of two straight parallel rods. This result was proved to be true for the set
of two concentric rods; see also Sect. 7.4.2. It can also be made plausible by
the following reasoning: consider two rings and take a point A1 on one of
the rings; then the interaction of the second ring with A1 is concentrated
at a point A2 and its direct neighbourhood, where A2 is that point of the
other ring that is closest to A1. Then, according to the slenderness condition,
L � d, in a d-environment of A2 the ring may be considered to be locally
straight. The errors induced in this way are of O(d2/L2). This reasoning also
applies to a slender helix or spiral and, therefore, the contribution to K of
two interacting turns of a helical or spiral coil can be calculated by replacing
them locally by a set of two parallel rods, for which the value of K is known.

Results for the buckling current for the 7 examples listed above are
presented in Table 7.3. We conclude that for all the problems consid-
ered here the buckling current I0cr contains the common factor J , where
J = (dR2/L2)

√
E/µ0 , while the coefficient preceding J , is only a function of
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Table 7.3. Buckling currents I0cr for problems 1 to 7; E and ν are Young’s and
Poisson’s moduli, respectively, the common factor J = (dR2/L2)

√
E/µ0, where

L = πb for problems 2, 5, and 6, L = π(b1+b2)/2 for problem 3, and L = π(b0+nπh)
for problem 7, and q = R/d

√
Q, with Q = Q(d/R) according to (7.4.31); the factors

αn = αn(n) are given below, and κ = κ(d/R) , N(n) , λ(n), and λ(n, h) will be
specified in the next sections

System 1. 2. 3. 4.

I0cr π3qJ 3π3qJ 6π3q√
5+ν

J αnπ3qJ

System 5. 6. 7.

I0cr π2
√

N(n)
(2n−1)(1+ν)κ

J π3
√

2λ(n)
(1+ν)κ

J π3
√

2λ(h,n)
κ

J

R/d and is different for each problem. The factor αn(n) is for n = 3, 4, 5, and
∞ given by α3 =

√
2/3 , α4 = 0.753 , α5 = 0.723, and α∞ = 2/π = 0.637.

Formulas for κ = κ(d/R) , N(n) , λ(n), and λ(n, h) will be derived in the
subsequent sections.

In the next section, we shall show how we can use the law of Biot and
Savard in the variational method. The basic idea behind this approach is
that the magnetic field obtained by the law of Biot and Savard satisfies the
constraints of the variational principle and, hence, constitutes an admissible
field. In the same way as shown at the end of Sect. 7.4.1, we can directly from
the law of Biot and Savard calculate the Lorentz forces on the structures
and thus find approximate values for the buckling currents. These values can
be obtained from Table 7.3 by substituting q = 1 for problems 1 to 4, and
κ = 1 for problems 5 to 7. What we will find with the combined Biot–
Savard-variational method are buckling values in between the values from
the variational method (exact) and the direct Biot–Savard method. Hence,
the proposed combined method yields, on the one hand, an improvement of the
direct Biot–Savard method, and, on the other hand, an easy way to obtain
an admissible magnetic field. The details of the derivation of the combined
method will now be presented in the following section.

7.5.2 The Combined (Variational Biot-Savard) Method

Before starting with the derivation of the combined method, we first shortly
recapitulate from Sect. 7.4.1 the main lines of the variational principle for a
superconducting body in vacuum. In this case, there is only a magnetic field
B in the vacuum surrounding the body, which has to satisfy Ampère’s law
(see (7.4.2)) ∫

C

(B, ds) = µ0I0 , (7.5.1)
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where C is a contour entirely in the vacuum, encircling the current carrier
and I0 is the prescribed current through the superconductor.

The variational method is based upon a chosen expression for the La-

grangean for an elastic superconducting body, which, according to (7.4.1),
is given by

L =
1

2µ0

∫

G+
(B,B)dV −

∫

G−
ρUdV , (7.5.2)

where the first integral represents the magnetic energy of the vacuum field
and the second is the elastic energy of the deformed body. Note that here G+

and G− are the configurations of the vacuum and the body, respectively, in
the deformed state.

Variation of L should satisfy the constraint (7.5.1) and

eijkBk,j = 0 , x ∈ G+ , and B → 0 , |x| → ∞ . (7.5.3)

The total field B is split into the rigid-body field B0 and the perturbed field
b, where the latter is due to the displacement u of the elastic body. The
perturbed field is expressed in the perturbed magnetic potential ψ by

bi = ψ,i , (7.5.4)

where this potential has to satisfy the extra constraint (see (7.4.18))

ψ,ii = 0 , and ψ(x) → 0 , |x| → ∞ . (7.5.5)

The second variation of L, called J , can then be determined in terms of B0,
ψ, u and the associated linear deformations, or strains, eij = (ui,j + uj,i)/2,
eventually resulting in the expression (7.4.19).

In the examples presented thus far, we used the exact solutions for B0(x)
and b(x). However, if the systems become more complex, it becomes in-
creasingly difficult, not to say impossible, to determine these fields exactly.
Therefore, we are looking for admissible fields from which we may hope that
they are not too far away from the exact ones. Admissible fields are fields
B0(x) and ψ(x) that satisfy the constraints (7.5.1), (7.5.3) and (7.5.5). We
will employ these fields to obtain an approximation for the functional J . Here,
we will use the Biot–Savard fields as they can be derived from the law of
Biot and Savard (see [156, eq. (2-6.3)])

B(x) =
µ0I0

4π

∫

L

(t(s) × R(x, s))
R3(x, s)

ds , (7.5.6)

where t(s) is the unit tangent vector along L in a point P on L having
arc length s, and R(s,x) is the position vector of the point x ∈ G+ with
respect to P, while R = |R|. We will show that these fields are admissible.
The already rather good correspondence between the results of the direct
Biot–Savard method and the variational method as found in the earlier
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sections, supports us in our opinion that this choice will lead us to a good
approximation of the buckling current.

Before proceeding with the explicit derivation of the admissible fields,
we first simplify expression (7.4.19). To this end, we realize that we wish to
apply the variational principle to slender, beam-like, bodies. In the bending
of such structures the pure deformations are much smaller than the local
rotations of the slender body. This motivates us to neglect in the magnetic
term in (7.4.19) those terms that contain a factor of order B2ε (here, the
small parameter ε is some norm of the deformations eij). Moreover, since the
term containing the prestresses Tij in the elastic energy integral is small of
the same order, this term must be neglected too. We like to mention that the
neglect of the above terms leads to an error that is small of order R/l and,
hence, is justified for systems of slender bodies. Altogether, this leads us to
the following simplified expression for J (in which B is used for B0):

J = − E

2(1 + ν)

∫

G

(
ν

1 − 2ν
ekkell + eklekl

)

dV

− 1
2µ0

∫

∂G

[(ψ + Bkuk),jBjui + (ψ,i + Bi,juj −Bjui,j)ψ]NidS

= −W + I2
0K . (7.5.7)

We have written the last term in (7.5.7) as I2
0K, because K is independent of

I0 then. This is true because B and ψ are both linear in I0. With Bi,j = Bj,i,
as follows from (7.5.3), we can reduce the integral I2

0K still somewhat further
to obtain

I2
0K = − 1

2µ0

∫

∂G

[(ψ + Bkuk),j(BjuiNi + ψNj)]dS , (7.5.8)

where we have neglected again a term proportional to B2ε.
It is possible to derive explicit expressions for admissible B(x) and ψ(x)

from (7.5.6) for arbitrarily curved circuits, but we refrain from doing so here.
Instead, we use here a result of Sect. 7.5.1 that taught us that for the deriva-
tion of the K-integral it suffices to calculate its value for a corresponding
system of two parallel rods. We generalize this result by stating that this
value for K can also be used for systems of curved beams, not only for a
pair of rings (as we showed in Sect. 7.4.2), but also for such structures as
helical or spiral conductors, provided the system satisfies the condition of
being slender. Hence, in this case we only need to calculate B(x) and ψ(x)
for a straight current carrier L as we shall first do now.

Consider an infinite one-dimensional conductor L , carrying a current I0.
Let L in its original state be given by a straight line along the e3-axis, while
a point P on L then is given by its, undeformed, position vector ξ = ζe3.
The rigid-body field B(x) for x ∈ G+, with x = xe1 + ye2 + ze3, follows
then from (7.5.6) as
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B(x) =
µ0I0

4π

∫ ∞

−∞

(e3 × (x − ξ))
|x − ξ|3/2

dζ

= −µ0I0

4π
(ye1 − xe2)

∫ ∞

−∞

dζ

[x2 + y2 + (z − ζ)2]3/2

= −µ0I0

2π
(ye1 − xe2)
(x2 + y2)

. (7.5.9)

Clearly, this field satisfies the constraints (7.5.1) and (7.5.3).
For the calculation of ψ(x) we have to consider the deflected beam. For

this, we assume that L has a deflection in the e1-direction: u = u(ζ)e1, by
which

t(ζ) = u′(ζ)e1 + e3 ,

R(x, ζ) = (x− u(ζ))e1 + ye2 + (z − ζ)e3 , (7.5.10)

R−3 = R−3
0

[

1 +
3x
R2

0

u(ζ)
]

, R0 = [x2 + y2 + (z − ζ)2]1/2 ,

where the last result is only correct up to first order terms in u. With this,
(7.5.6) yields for the perturbed field in x ∈ G+

b(x) =
µ0I0

4π

∫ ∞

−∞

1
R3

0

[ 3x
R2

0

(xe2 − ye1)u(ζ)

−[(z − ζ)e2 − ye3]u′(ζ) − u(ζ)e2

]
dζ

= −µ0I0

4π

[

3xy
∫ ∞

−∞

u(ζ)
R5

0

dζ e1

+
∫ ∞

−∞

1
R3

0

(

u(ζ) + (z − ζ)u′(ζ) − 3x2

R2
0

u(ζ)
)

dζ e2 (7.5.11)

−y

∫ ∞

−∞

u′(ζ)
R3

0

dζ e3

]

= −µ0I0

4π

∫ ∞

−∞

[
3xy
R5

0

e1 −
(

1
R3

0

− 3y2

R5
0

)

e2 +
3y(z − ζ)

R5
0

e3

]

u(ζ)dζ ,

where the latter step follows after an integration by parts.
From (7.5.6) it follows that eijkbk,j = 0, and then there exists a magnetic

potential ψ(x) such that
bj = ψ,j . (7.5.12)

This potential is equal to

ψ(x) =
µ0I0

4π

∫ ∞

−∞

yu(ζ)
R3

0

dζ . (7.5.13)
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It is easily checked that (7.5.13) implies ψ,ii = 0 and ψ(x) → 0 for |x| → ∞,
so this result indeed satisfies the constraints (7.5.5).

We assume that the current carrier L is periodically supported over dis-
tances l. In that case, u(z) = 0 in all points z = kl , k ∈ N, and, moreover,
u(z) is periodic in z with period 2l. We thus can write (7.5.13) as

ψ(x) =
µ0I0

4π
y

[

u(z)
∫ ∞

−∞

1
R3

0

dζ +
∫ ∞

−∞

u(ζ) − u(z)
R3

0

dζ

]

= −µ0I0

4π
2yu(z)

(x2 + y2)

[

1 + O

(
R2

l2
ln

R

l

)]

. (7.5.14)

In the latter step we have used the mean value theorem and have assumed
that for x → ∂G, x and y are such that (x2 + y2)/l2 = O(R2/l2); in all our
applications the latter condition is fulfilled.

In the next sections, we shall employ the results derived above for the
solution of the buckling problem for helical and spiral superconductors. How-
ever, before doing so, we first apply the method to our standard example of
a set of two parallel straight rods. We do this for three reasons:

1. as an illustration of the method presented in this section;
2. because, and this is the most important reason, one of the results of this

example, namely the value of the integral K, can directly be applied
to problems more complex than those that will be dealt with in the
subsequent sections;

3. in order to show that the combined method leads us to a result that
is closer to the (exact) result of the variational method than the direct
Biot–Savard method does.

Example: A set of two parallel superconducting rods
(combined method)

We consider here exactly the same problem as in the Example of Sect. 7.4.1.
Thus two parallel rods with equally directed currents of magnitude I0, and
bending in the e1,e3-plane. The distance between the rods is 2d, the rods
are periodically supported over distances L , (l = L), and the first buckling
mode is the anti-symmetric buckling mode. This brings us to the following
choice for the displacements of the two rods:

u(1)(z) = V (z)e1 = A sin
πz

L
e1 ,

u(2)(z) = −V (z)e1 = −A sin
πz

L
e1 .

(7.5.15)

From (7.5.9) and (7.5.14) we find the fields B(x) and ψ(x) in an arbitrary
point x in the vacuum by simple superposition. This results in
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B(x) = −µ0I0

2π

[(
y

r2
1

+
y

r2
2

)

e1 −
(

x + a

r2
1

+
x− a

r2
2

)

e2

]

(7.5.16)

and

ψ(x) =
µ0I0

2π

[
y

r2
1

− y

r2
2

]

A sin
πz

L
, (7.5.17)

where
r2
1 = (x + a)2 + y2 , r2

2 = (x− a)2 + y2 . (7.5.18)

We can then calculate I2
0K for the two rods and over one full period −L <

z < L from (7.5.8) by substituting (7.5.16) and (7.5.17) into this expression.
After some lengthy but elementary calculations this results in

I2
0K =

µ0I
2
0κ

16πd2

∫ L

−L

[u(1)(z) − u(2)(z)]2dz =
µ0I

2
0κL

4d2
A2 , (7.5.19)

where

κ =
1 − 4(R/2d)2 + 3

2 (R/2d)4

[1 − (R/2d)2]2
. (7.5.20)

The elastic energy for the two rods over one full period is, like in (7.4.26),

W =
π

4
ER4

∫ L

−L

(V ′′(z))2dz =
π6

4L3
ER4 . (7.5.21)

By combining (7.5.19) and (7.4.32), we obtain the buckling value

I0cr =

√
W

K
=

π3dR2

L2

√
E

µ0κ
. (7.5.22)

We have compared this value with the corresponding results of the Exam-
ple of Sect. 7.4.1 for the variational method and the direct Biot–Savard

method; the result is depicted in Fig. 7.7. In this graph the buckling cur-
rents according to the variational method (VM) and to the combined method
(CM), both normalized with respect to the buckling current from the direct
Biot–Savard method (BS), are displayed as function of d/R. The graph
shows that the CM-value lies above the BS-value and below the VM-value.
Hence, as could be expected, the combined method yields an improvement
of the BS-value in the direction of the VM-value. The differences are signif-
icant, but of technical relevance only for values of d/R < 4. Moreover, the
CM-value is a conservative estimate, meaning that the “real” buckling value
is higher. So, using the CM-estimate keeps the designer on the safe side. The
reason for the higher VM-value is the following: In the direct BS-method the
currents run through the 1-dimensional central lines of the rods, whereas in
the VM-approach the current is distributed over the boundary of the cross-
section. When the currents in the two rods run in the same direction, the
interaction between the currents causes a shift of the current distributions
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Fig. 7.7. Comparison of the buckling currents for a set of two parallel rods accord-
ing to the variational method (VM) and the combined method (CM), both nor-
malized with respect to the buckling current from the direct Biot–Savard method
(BS); from [257]

to the most opposite sides. If we then would try to imagine that the current
runs through a 1-dimensional line, this line would be shifted away from the
central line to the outer side. Thus, apparently the distance between the rods
has increased and then the set buckles for a higher current. This explains
why the VM-value is higher than the CM- or BS-value.

We can easily generalize the above method to sets of n , n > 2, parallel
rods. Realizing that the integral in (7.5.19) is built up of two integrals (one
for the first rod with respect to the second one and vice versa), we see that
the generalization to n rods is straightforward, and yields

I2
0K =

µ0I
2
0κ

32πd2

n∑

i=1

n∑

j=1
j 
=i

1
(j − i)2

∫ L

−L

[u(i)(z) − u(j)(z)]2dz . (7.5.23)

This formula can also be applied to more complex structures such as helical
or spiral conductors. Then, n denotes the number of turns of the structure
and 2d is the distance between two subsequent turns. These cases will be
discussed in the following sections.
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7.5.3 Helical or Spiral Superconductors

Consider a superconductor in the form of a cylindrical helix; see Fig. 7.8.
The radius of the helix is b and the constant pitch is h. For the distance
between two turns, we then have 2d = 2πh; for a slender helix πh � b. In
the undeformed configuration a point on the central line of the helix is given
by its position vector

X = X(ϕ) = b cosϕ ex + b sinϕ ey + hϕ ez = b er(ϕ) + h ϕez . (7.5.24)

In this section, we shall consider both finite helices of n turns (in this case
ϕ ∈ [0, 2πn]) and infinite ones (ϕ ∈ R). In the first case, the helix is simply
supported in its end points, whereas in the second case the helix is periodically
supported in the points ϕ = ϕk = 2kπn , k ∈ N. The total current through
the helix is I0.

Since the pitch angle α is very small (α ≈ b/h � 1) the dominant buckling
mode will be a displacement in the axial or z-direction, i.e.

u = u(ϕ)ez . (7.5.25)

Here, u(ϕ) is the displacement of the central line of the helical conductor,
causing, besides bending, also torsion of the helix. We denote the torsion
angle by β(ϕ). This torsion has no influence on the integral K; it only affects
the elastic energy W . By variation of W with respect to β we will derive a
relation expressing β(ϕ) in terms of u(ϕ).

For the determination of the buckling current, we need expressions for
the integrals K and W . The basic idea for K is completely analogous to that
leading to (7.5.23). We only have to replace d by πh to obtain

K =
µ0κ

32π3h2

n∑

i=1

n∑

j=1
j 
=i

1
(j − i)2

∫

Li

[u(i)(ϕ) − u(j)(ϕ)]2bdϕ , (7.5.26)

b

2πh

I0

ϕ

ex

ez

Fig. 7.8. The helical conductor
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where Li stands for the trajectory

Li = {ϕ | 2(i− 1)π ≤ ϕ ≤ 2iπ} , (7.5.27)

while, for ϕ ∈ Li

u(i)(ϕ) = u(ϕ) , and u(j)(ϕ) = u(ϕ + 2(j − i)π) . (7.5.28)

For the elastic energy, we use the classical expression for a slender curved rod

W =
EI

2b4

∫

L

(u′′ − bβ)2b dϕ +
GIp

2b4

∫

L

(u′ + bβ′)2b dϕ

=
πER4

8b3

∫

L

[

(u′′ − bβ)2 +
1

(1 + ν)
(u′ + bβ′)2

]

dϕ , (7.5.29)

where L stands for the total length of the helix: L = L1 ∪ L2 ∪ ....Ln.
In the following two subsections, we first consider the infinite and after

that the finite helix.

The Infinite Helix

For the infinite helix, periodically supported over n turns, we choose for the
lowest buckling mode

u(ϕ) = A sin
( ϕ

2n

)
. (7.5.30)

Due to the periodicity, we may restrict the integral for K to that for one full
period, say ϕ ∈ [0, 4πn). According to (7.5.26) we then obtain

K =
µ0κb

32π3h2

2n∑

i=1

∞∑

j=−∞
j 
=i

1
(j − i)2

∫

Li

[u(ϕ) − u(ϕ + 2(j − i)π)]2dϕ

=
µ0κb

32π3h2

∞∑

k=1

A2

k2

∫ 4πn

0

{[

sin
( ϕ

2n

)
− sin

(
ϕ

2n
+

πk

n

)]2

+
[

sin
( ϕ

2n

)
− sin

(
ϕ

2n
− πk

n

)]2
}

dϕ

=
µ0κbn

4π2h2

∞∑

k=1

A2

k2

[

1 − cos
(

πk

n

)]

=
µ0κb

8h2

(

1 − 1
2n

)

A2 . (7.5.31)

In accordance with (7.5.30) we assume the torsion β to have the form

β(ϕ) =
1
b

B sin
( ϕ

2n

)
. (7.5.32)

Substituting (7.5.30) and (7.5.32) into (7.5.29), we obtain for the elastic en-
ergy of one full period
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W =
π2ER4

8b3

∫ 4πn

0

[(
A

4n2
+ B

)2

sin2
( ϕ

2n

)

+
1

4(1 + ν)n2
(A + B)2 cos2

( ϕ

2n

)
]

dϕ

=
π2nER4

8b3

[(
A

4n2
+ B

)2

+
1

4(1 + ν)n2
(A + B)2

]

. (7.5.33)

Since the variation of J with respect to β must be zero and K is independent
of β, or B, we have ∂W/∂B = 0, yielding

B = − (2 + ν)
4(1 + ν)n2 + 1

A , (7.5.34)

and with this

W =
π2nER4

4b3
(4n2 − 1)2A2

16n4[4(1 + ν)n2 + 1]
=

π2ER4A2

16(1 + ν)nb3
[1+O(n−2)] , (7.5.35)

for n � 1.
With use of (7.5.31) and (7.5.35) in J = −W + I2

0K, we find from J = 0
the following expression for the buckling current

I0cr =
πhR2

b2

√
N(n)

(2n− 1)κ
E

(1 + ν)µ0
, (7.5.36)

where κ is given by (7.5.20) and N(n) by

N(n) =

(
1 − 1

4n2

)2

[
1 + 1

4(1+ν)n2

] = 1 + O(n−2) , (7.5.37)

for n � 1.
According to its definition, N(n) depends on ν but only in a very weak

sense; for ν running from 0 to 0.5, the value of N(n) changes by less than
2%.

The Finite Helix

Consider a finite helix of n turns, of the same type as described in the pre-
ceding section, thus with ϕ running from ϕ = 0 to 2πn. For the evaluation of
K and W we have to select a representation for the deflection u(ϕ) and the
associated torsion β(ϕ). Due to the finiteness of the helix this representation
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is no longer as simple as it was for the infinite helix. We shall assume a rep-
resentation in a series of N sine-functions2 for u(ϕ) according to (we assume
the first buckling mode to be symmetric about ϕ = πn)

u(ϕ) =
N∑

k=1

Ak sin
[
(2k − 1)ϕ

2n

]

. (7.5.38)

We choose for the torsion the analogous representation

β(ϕ) =
N∑

k=1

Bk sin
[
(2k − 1)ϕ

2n

]

. (7.5.39)

Substituting (7.5.38) and (7.5.39) into expression (7.5.29) for W , we arrive
at

W =
πER4

8(1 + ν)b3

∫ 4πn

0





{
∑

k

(
2k − 1

2n

)2

(Ak + Bk) cos
[
(2k − 1)ϕ

2n

]}2

+(1 + ν)

{
∑

k

(
(2k − 1)2

4n2
Ak + Bk

)

sin
[
(2k − 1)ϕ

2n

]}2


 dϕ (7.5.40)

=
π2nER4

8b3
∑

k

{
(2k − 1)2

4(1 + ν)n2
(Ak + Bk)2 +

[
(2k − 1)2

4n2
Ak + Bk

]2
}

.

From ∂W/∂Bk = 0 we obtain

Bk = − (2 + ν)(2k − 1)2

[4(1 + ν)n2 + (2k − 1)2]
Ak , (7.5.41)

yielding, after substitution into (7.5.40),

W =
πER4

8(1 + ν)b3

n∑

k=1

ωkA
2
k , (7.5.42)

with

ωk =
π

4n
(2k − 1)2

{

1 +
(1 + ν)(2k − 1)2

4n2
− (2 + ν)2(2k − 1)2

[4(1 + ν)n2 + (2k − 1)2]

}

.

(7.5.43)
2 In [257], also a representation in splines was given. However, both the analyt-

ical and the subsequent numerical analysis were much more cumbersome and
time-consuming than the sine-representation, while the ultimate results were
practically the same. Therefore, we present here only the results of the sine-
representation.
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From (7.5.42) we conclude that in the elastic energy W the Ak-modes are
uncoupled.

For the magnetic integral K we obtain from (7.5.26) (with m = j − i)

K =
µ0κb

32π3h2

n∑

i=1

n−i∑

m=−(i−1)
m
=0

1
m2

∫

Li

(
∑

k

Ak

{

sin
[
(2k − 1)ϕ

2n

]

− sin
[
(2k − 1)ϕ

2n
+

(2k − 1)πm
n

]})2

dϕ

=
µ0κb

16π3h2

n−1∑

m=1

1
m2

∫ 2π(n−m)

0

(
∑

k

Ak

{

sin
[
(2k − 1)ϕ

2n

]

− sin
[
(2k − 1)ϕ

2n
+

(2k − 1)πm
n

]})2

dϕ

=
µ0κb

16π3h2

N∑

k,l=1

kklAkAl , (7.5.44)

with

kkl =
n−1∑

m=1

2n
m2

{
π

n
(n−m) − 1

(2k − 1)
sin

[
(2k − 1)πm

n

]}

× sin2

[
(2k − 1)πm

2n

]

,

if k = l ;
(7.5.45)

kkl = −
n−1∑

m=1

2n
m2

{
1

(k + l − 1)
sin

[
(k + l − 1)πm

n

]

+
1

(k − l)
sin

[
(k − l)πm

n

]}

sin
[
(2k − 1)πm

2n

]

sin
[
(2l − 1)πm

2n

]

,

if k �= l .

With (7.5.42) and (7.5.44) we obtain for J = −W + I2
0K,

J = − πER4

8(1 + ν)b3




N∑

k=1

ωkA
2
k − λ

N∑

k,l=1

kklAkAl



 , (7.5.46)

where

λ =
κb4

2π4h2R4

(1 + ν)µ0

E
I2
0 . (7.5.47)
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Variation of J with respect to Ak yields the linear eigenvalue problem

ωkAk − λ

N∑

l=1

kklAl = 0 , k = 1, 2, . . . , N . (7.5.48)

This problem is solved numerically, and from the lowest eigenvalue λ the
buckling current is calculated. This eigenvalue is independent of all system
parameters except for the number of turns n (and also, but only in a very
weak sense, for ν). Hence λ = λ(n), and from (7.5.47) it then follows that

I0cr =

√
2π2λ(n)
(1 + ν)κ

πhR2

b2

√
E

µ0
. (7.5.49)

The Flat Spiral

As a final example, consider a flat spiral conductor, lying in the xy-plane; see
Fig. 7.9. In the undeformed configuration, a point on the central line of the
spiral is given by its position vector

X = X(ϕ) = b(ϕ) cosϕ ex + b(ϕ) sinϕ ey = b(ϕ)er(ϕ) , (7.5.50)

with

I0

ϕ

b

2πh

ex

ey
er

Fig. 7.9. The flat spiral conductor
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b(ϕ) = b0 + hϕ , for 0 ≤ ϕ ≤ 2πn , (7.5.51)

where b0 is the radius of the spiral at its starting point, 2πh is the distance
between two adjacent turns (d = πh), and n is the number of turns. The
cross-section of the conductor is circular, of radius R. The system is called
slender if R/b0 � 1 (then, R/b(ϕ) < πh/b(ϕ) � 1 for all ϕ ∈ [0, 2πn]). The
spiral is simply supported in the two end points.

We assume that in the dominant buckling mode the spiral deforms in its
plane and that the pertinent displacement of its central line is given by (in
polar coordinates)

u = u(ϕ) = u(ϕ)er + v(ϕ)eϕ . (7.5.52)

The spiral is taken to be inextensible, implying that

u(ϕ) + v′(ϕ) = 0 . (7.5.53)

For an inextensible slender curved (almost circular) beam the elastic energy
due to in-plane bending is given by

W =
π

8
ER4

∫ 2πn

0

1
b3(ϕ)

[u′′(ϕ) + u(ϕ)]2dϕ . (7.5.54)

Completely analogous to the preceding sections, the expression of K follows
again from (7.5.26); we must only realize that now b = b(ϕ).

Just as in the preceding section we use for u(ϕ) a series of N sine-
functions; see (7.5.38). Using this representation in W , we arrive at

W =
π

8
ER4

∫ 2πn

0

1
b3(ϕ)

[
∑

k

(

1 − k2

4n2

)

Ak sin
(

kϕ

2n

)]2

dϕ

=
πER4

8b30

N∑

k,l=1

(

1 − k2

4n2

)(

1 − l2

4n2

)

IklAkAl , (7.5.55)

where

Ikl =
∫ 2πn

0

1
β3(ϕ)

sin
(

kϕ

2n

)

sin
(

lϕ

2n

)

dϕ , (7.5.56)

and

β(ϕ) =
b(ϕ)
b0

= 1 +
h

b0
ϕ . (7.5.57)

The evaluation of K is analogous to that in the preceding section and leads
to
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K =
µ0κb0
16π3h2

n−1∑

m=1

1
m2

∫ 2π(n−m)

0

β(ϕ + πm)

×
{
∑

k

Ak

[

sin
(

kϕ

2n

)

− sin
(

kϕ

2n
+

kπm

n

)]}2

dϕ (7.5.58)

=
µ0κb0
16π3h2

n−1∑

m=1

1
m2

N∑

k,l=1

JklmAkAl sin
(

kπm

2n

)

sin
(

lπm

2n

)

,

where

Jklm = 4
∫ 2π(n−m)

πm

β(ϕ) cos
(

kϕ

2n

)

cos
(

lϕ

2n

)

dϕ . (7.5.59)

Introducing λ as (we use here b1 = b0 + nπh, the mean radius of the spiral,
instead of b0 in order to weaken the influence of h on λ)

λ =
µ0κb

4
1

2π4ER4h2
I2
0 , (7.5.60)

substituting (7.5.55) and (7.5.58) into J = −W + I2
0K and taking the first

variation of J with respect to Ak, we arrive at the linear eigenvalue problem

N∑

l=1

(ωkl − λkkl)Al = 0 , k = 1, 2, . . . , N . (7.5.61)

Explicit expressions for ωkl and kkl can easily be read of from (7.5.55) and
(7.5.58). By a numerical solution of (7.5.61) the lowest eigenvalue λ is calcu-
lated. This λ depends on n and h and is related to the buckling current I0

through (7.5.60), yielding

I0cr =

√
2π2λ(h, n)

κ

πhR2

b2

√
E

(1 + ν)µ0
. (7.5.62)

note: The coefficient A2n does neither contribute to W nor to K; this mode
represents a rigid-body translation of the spiral. Therefore, in case N ≥ 2n,
we take A2n = 0.

In the preceding three sections we have shown how one can find the buck-
ling current for helical or spiral superconductors. We shall present and discuss
explicit numerical results in the next section.

7.5.4 Results

We start with the result for the infinite helix as given in (7.5.36). We would
like to express this formula in standard form in terms of d and L. Here, the
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choice for the distance 2d is clear, namely 2d = 2πh, but that for L is not so
evident. There are two possibilities at our disposal: either L = πb, half the
length of one turn, or L = 2πbn, the length between two supports. We prefer
here the first choice because we believe that this gives the best correspondence
with the set of n parallel rods. With this, we can write (7.5.36) in the standard
form (like in Table 7.3)

I0cr = π2

√
N(n)

(2n− 1)(1 + ν)κ
dR2

L2

√
E

µ0
, (7.5.63)

where κ and N(n) are given by (7.5.20) and (7.5.37), respectively. These
definitions show that

κ = 1 − 2
(

R

2d

)2

+ O

((
R

2d

)4
)

, for
R

d
� 1 , (7.5.64)

while N(n) depends on ν, but only in a very weak sense; for ν running from
0 to 0.5, the value of N(n) changes less than 2%. Moreover,

N(n) = 1 + O(n−2) , for n � 1 . (7.5.65)

From this, we conclude that I0 is proportional to n−1/2 for large values of
n. We recall that the direct Biot–Savard method yields a buckling current
that can be found from (7.5.63) by taking κ = 1.

For the finite helix, we have calculated the eigenvalues λ of the linear
eigenvalue problem (7.5.48) numerically for n = 2, 3, . . . , 15. In so doing, we
have used ν = 0 for the calculation of λ; this seems permissible because λ
depends only very weakly on ν. The results of our calculations are presented
in Table 7.4. In these calculations the following peculiarity was observed: the
first two coefficients Ak of the eigenvector for any n were dominant, and it
seems as if convergence was reached for N = 3 or 4 already, but for N = n a
sudden jump in λ, small but apparent, occurs. Calculation of the eigenvectors
showed that this jump occurred because the coefficients An and An+1 were
no longer negligible with respect to A1 or A2. As a consequence, complete
convergence was only found for N ≥ n + 2. Let us consider as an example
the case n = 8. For this case we found for the normalized eigenvector

A1 = −0, 94 , A2 = 0.25 , A3 = 0.02 , A8 = 0.21 , A9 = 0.15 ,
(7.5.66)

while all remaining coefficients are less than 10−2. Analogous results were
found for other values of n. From this, we conclude that the buckling mode
for a finite helix consists of, first, a global part, represented by A1 and A2 and,
second, a local part on the scale of one winding, represented by An and An+1.
The latter part must be due to the direct interaction between two adjacent
windings. Although this effect is very striking with regard to the buckling
mode, its effect on the buckling value is no more than a few percent.
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Table 7.4. Lowest eigenvalues λ × 102 (second, fifth columns) for the set of num-
bers n (first, fourth columns); the values in the third and sixth columns refer to
λ = 1/(4nπ)(×102), see (7.5.67)

n λ × 102 1/4nπ × 102 n λ × 102 1/4nπ × 102

2 3.87 3.98 9 .866 .884
3 2.71 2.65 10 .773 .796
4 2.05 1.99 11 .698 .723
5 1.62 1.59 12 .636 .663
6 1.34 1.33 13 .584 .612
7 1.13 1.14 14 .539 .568
8 .983 .995 15 .501 .531

Scrutiny of Table 7.4 leads us to the following observation: when we com-
pare the calculated values of λ(n) in the second row of this table with those
in the third row, we notice that the difference is always small; nowhere the
relative difference exceeds 6%. Hence, for practical purposes it seems allowed
to use for λ the very simple formula

λ(n) =
1

4πn
. (7.5.67)

Use of this formula in the expression for the buckling current (7.5.49) yields

I0cr = π2

√
π

2n(1 + ν)κ
dR2

L2

√
E

µ0
. (7.5.68)

Comparing the result (7.5.68) with the analogous result for an infinite helix
(7.5.63), we observe that in both cases the buckling current I0cr is propor-
tional to n−1/2 for large values of n. However, the buckling current for a
finite helix is always a factor

√
π times that for an infinite helix, no mat-

ter how large n may be. This result contradicts the expectation, logical at
first sight, which assumes that when n is large enough the formula for the
infinite helix also governs to a good approximation the buckling of a finite
helix of n turns. This expectation was explicitly stated by Van de Ven and
Lieshout in [256]. In the procedure for the infinite helix, one complete pe-
riod L − , ϕ ∈ [0, 4πn], was separated from the remaining part of the helix,
L +. The expectation, stated in [256], was motivated by the assumption that
the influence of the current in L + on the forces in L − becomes weaker for
increasing n, and was practically restricted to a close neighbourhood of the
end points of L −. If this would be true, the influence of L + on the buckling
value would diminish and noninterference between L − and L + would be
attained for n → ∞. However, the results of this section reveal that even for
exceedingly large values of n the remote parts of the infinite helix persist to
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Table 7.5. The lowest eigenvalues λ× 102 for several values of n and h; the values
in every second row refer to outcomes of formula (7.5.71)–(7.5.72)

h n = 2 3 4 5 6 7 8 9 10

.050 11.78 6.00 3.82 2.70 2.04 1.61 1.31 1.10 .96
10.97 5.97 3.88 2.77 2.11 1.67 1.37 1.15 .98

.075 11.32 5.43 3.36 2.35 1.76 1.39 1.14 .95 .83
9.45 5.16 3.35 2.40 1.82 1.45 1.18 .99 .85

.100 10.91 5.00 3.05 2.12 1.59 1.26 1.03 .87 .76
8.54 4.65 3.02 2.16 1.64 1.30 1.07 .89 .76

.125 10.54 4.69 2.83 1.97 1.48 1.18 .97 .82 .72
7.89 4.29 2.79 1.99 1.52 1.20 .99 .83 .71

.150 10.24 4.45 2.67 1.86 1.40 1.12 .92 .78 .69
7.38 4.02 2.61 1.87 1.42 1.13 .92 .77 .66

interfere with the inner part L −. Hence, the replacement of the finite helix
by an infinite one, in order to get an easier problem, is never allowed.

We have also computed the lowest eigenvalues λ = λ(h, n) of (7.5.61) for
n running from 2 to 10 for several values of h; the results are presented in
Table 7.5. In performing these computations, the results for the eigenvectors
A showed us that the coefficients Al for l close to 2n were dominant. Let
us consider as an example the case h = 0.125 and n = 10. For this case we
found for the normalized eigenvector

A19 = −0, 657 , A21 = −0.513 , A18 = 0.435 , A22 = 0.257,
A17 = −0, 209 , A23 = −0.068 , A16 = 0.057 , (7.5.69)

while all other coefficients are less than 10−2. Therefore, we changed the order
of the summation in (7.5.38) in the following way:

u(ϕ) =
N∑

k=1

{

Â2k−1 sin
[
(2n− k)ϕ

2n

]

+ Â2k sin
[
(2n + k)ϕ

2n

]}

. (7.5.70)

This reordening improved the rate of convergence substantially; we did obtain
a very satisfactory convergence already for N = 5.

In [257, Fig. 6] one can find plots of λ as a function of n and h. These
graphs are on a doubly logarithmic scale and they give rise to an almost
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linear behaviour in both h, for h ∈ [0.05 , 0.15] and for not too small values
of n, i.e. n ≥ 4. This implies that λ(h, n) over this range must be of the form

λ(h, n) = Λhαnβ . (7.5.71)

By means of a least square approximation, we found

Λ = 10.55 , α = −0.36 , β = −1.50 . (7.5.72)

The results of this formula are also presented in Table 7.5 (as italic numbers).
Everywhere in the range h ∈ [0.05 , 0.15] , n ≥ 4, the errors made by using
this approximation are less than 5%. Hence, (7.5.71)–(7.5.72) represents a
useful empirical formula for the buckling current. The latter then follows
from

I0cr = π2

√
2π2λ

κ

dR2

L2

√
E

µ0
, (7.5.73)

where here we have taken L = πb1 = π(b0 + nπh).
From the calculated values of the coefficients Al of the eigenvector we can

obtain an impression of the associated buckling mode. For explicit results
and graphs of some of these buckling modes, we refer to [257, Fig. 7]; we only
mention here that the displacements in the outer windings prevail over those
in the inner ones. This could be expected by virtue of the greater mechanical
stiffness of the inner windings as compared to the outer ones.

7.6 Magnetoelastic Vibrations
of Superconducting Structures

7.6.1 Scope of this Section

Up to here in this chapter, we have only considered static processes, related
to magnetoelastic buckling. However, also dynamic processes, such as waves
or vibrations, can be affected by electromagnetic elastic interactions. For in-
stance, magnetic fields or electric currents can influence the speed of propaga-
tion of waves or the eigenfrequencies or damping characteristics of vibrating
magnetoelastic structures, and dynamic electromagnetic fields can generate
forced elastic vibrations of such structures. On the other hand, elastic vibra-
tions can change the electromagnetic fields in a magnetizable or electrically
conducting body. The best known phenomenon in this is the piezoelectric
effect.

Forced vibrations due to dynamic electromagnetic fields can have highly
unwanted effects as they generate noise (high acoustic sound pressures) or
lead to resonance. Examples are in MRI-scanners, where acoustic noise is
generated by the gradient coil; see e.g. Yao et al., [275], or in fusion reactors;
see e.g. Tanaka,Tana1. For the analysis of forced vibrations, especially
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in connection with resonance, it is imperative to know the eigenfrequencies
of the system. These eigenfrequencies are influenced by external, or bias,
magnetic fields and electric currents, as we shall show in this section.

As said before, electro-elastic vibrations are most well know from, and
have found many practical applications in, piezoelectricity. An immens
amount of literature is published on vibrations in piezoelectric systems, and
it is far beyond the scope of this section to go deeper into this subject. There-
fore, here we will not consider piezoelectric vibrations and we will restrict
ourselves to mention only one review paper of Karlash, [107].

Magnetoelastic vibrations of electrically conducting plates and shells have
been studied from the 1980’s on in the group around Ambartsumian, and
later Bagdasarian, in the Yerevan University in Armenia. This research is
continued nowadays by Hasanyan and his coworkers, [85, 120, 86], to men-
tion only some recent papers from 2004–2005. These authors looked especially
at vibrations of conducting strip-plates placed in an external magnetic field.
Hasanyan et al., [85], considered the free vibrations of soft ferromagnetic
electrically conducting plates carrying an electric current. Nonlinear bending-
stretching vibrations are described by means of the von-Kármán theory. For
magnetoelastic interactions they used a model that looks like our Model IV.
They found that the eigenfrequency ω depends on the bias magnetic field
H and current I such that ω increases with H (magnetic stiffening) but de-
creases with I, the latter up to a point I = Icr, where ω reduces to zero,
implying that the basic state of the plate is unstable for I > Icr. Analo-
gous results are found in the examples which we shall present in this section.
Librescu et al., [120], considered free bending-stretching vibrations for per-
fectly conducting plates placed in an external magnetic field H. Again, it is
shown that ω increases with increasing H; this effect becomes stronger for
thinner plates. In 2005, Hasanyan et al., [85], reported on the effect of finite
versus infinite conductivity. For the finite case, the eigenfrequency ω depends,
besides on H, also on the conductivity σ. Moreover, special emphasis is given
to the effect of σ on the magnetic damping (this effect is zero for perfectly
conducting plates).

The bending vibrations of a magnetoelastic beam on a spring foundation
are analysed by Liu and Chang,Liu1. The beam is loaded by a mechanical
axial force and a magnetic force. The analysis is based on the classical Moon-
approach, [156]. Liu and Chang found that the magnetic field reduces the
deflection of the beam and decreases the eigenfrequency. Moreover, they reg-
istered the influence of the magnetic field on the damping of the vibrating
beam.

A special paper is that by Kumar et al., [116], who studied the vibration
control of a plate with a magnetostrictive layer by a coil surrounding the
plate. The aim was to find the location of the coil that gives the optimal
damping; this optimal position depends on the mode shapes of the vibrating
plate. The aim of this research was directed to smart structure design.
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In this section, we present a selection of examples in which eigenfrequen-
cies for specific electromagnetoelastic structures are determined. First, we
calculate the eigenfrequencies of thin soft ferromagnetic circular plates placed
in a transverse magnetic field for different support conditions of the plate; it
is shown how the magnetic field reduces the eigenfrequency until the buckled
state is reached. The second example concerns a superconducting ring carry-
ing a prescribed current; here, the current increases the eigenfrequency and,
consequently, the ring is always stable. Finally, our variational principle is
adapted for magnetoelastic vibrations of superconducting structures and ap-
plied to sets of two superconducting rings. By means of a kind of Rayleigh

quotient the eigenfrequencies of these sets are calculated. It turns out that
these eigenfrequencies decrease with increasing current up to a point where
the system becomes unstable and buckles. We close this section by presenting
a few more results for sets of parallel rods and for an infinite helix.

7.6.2 Magnetoelastic Vibrations of a Thin Soft Ferromagnetic
Circular Plate in a Uniform Transverse Magnetic Field

In this section, we consider free flexural vibrations of a thin circular plate
placed in a uniform transverse magnetic field B0. The plate is a soft fer-
romagnetic elastic body. For the description of the magnetoelastic vibra-
tions of the plate, the Maxwell–Minkowski model will be used; see Sec-
tion 3.4 (Model III). However, as far as the electromagnetic part is concerned
we only consider quasi-static processes. For soft ferromagnetic media (with
µ � 1, say µ > 104), the magnetoelastic stresses according to the Maxwell–
Minkowski model are approximately (for µ−1 ≈ 0) equal to the purely
elastic (Hookean) stresses. In this model, also the magnetic body force is
negligible (O(µ−1)). The only significant magnetoelastic coupling emanates
from the boundary conditions. It will turn out that the magnetic fields gen-
erate a normal load per unit of area on the upper and lower surfaces of the
deflected plate together with a shear force per unit of length at the edge of
the plate.

The plate has radius R and thickness 2h, where ε = h/R � 1 for a
thin plate. The z-axis of a system of cylindrical coordinates is chosen normal
to the plate. The uniform basic field is directed along the z-direction, so
B0 = B0ez. For the rigid (undeformed) thin plate, we note that, except for
a very small region (of O(ε)) near the edge r = R, the magnetic induction
field inside the plate is uniform and equal to B0. In using this approximation,
we thus neglect the influences of the edge of the plate on the magnetic fields
(we do not neglect the influence of the edge on the elastic stresses as we
shall show further on); in other words, we assume for the magnetic problem
the plate is infinite in its plane. Our strategy to find the eigenfrequencies of
the plate now runs as follows: we split up the problem in a rigid-body part
(whose solution we already know) and a perturbed part due to the dynamic
deflections of the plates. The latter problem is then linearized with respect to
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the perturbations. This leads to a set of linearized balance and constitutive
equations and boundary conditions; the general form of these relations for
the Maxwell–Minkowski model can be found in Chap. 6 of this book.

We shall neglect here all terms of O(ε); as one of the consequences, the
magnetic body force vanishes and the Maxwell stress tensor becomes equal
to the purely elastic tensor. These approximations result in the following set
of equations for the magnetic potentials ψ , |z| > h, and ϕ , |z| < h, and the
equation of motion for the stresses tij and the (vibrational) displacements
ui = ui(x, t):

∆ψ = 0 , |z| > h , ψ → 0 , for |z| → ∞ ,

∆ϕ = 0 , |z| < h ,

tij,j = ρüi , |z| < h , (7.6.1)

together with the boundary conditions on the upper and lower surface of the
plate (here, B = B0; the stress boundary conditions at the edge r = R will
be specified further on)

ψ,r − ϕ,r = Bw′(r) , ψ,z − µϕ,z = 0 ,

txz = tyz = 0 , tzz = − µ

µ0
Bϕ,z , |z| = h , (7.6.2)

where w(r) is the rotationally symmetric normal deflection of the central
plane of the plate. To be more precise, w(r) is here the amplitude part of
the deflection; the total displacement as well as the perturbed potentials, are
assumed to be time harmonic, i.e. proportional to eiωt, where ω is the real
frequency. Hence,

u(x, t) = w(r)eiωt ez (1 + O(ε)) . (7.6.3)

We note that the right-hand side of the boundary condition for tzz in (7.6.2)
originates from the rotation of the normal vector to the upper and lower
surface of the plate; without this rotation these two terms would cancel each
other. This boundary condition describes a plate loaded at its upper and
lower surface by a normal stress. This is equivalent to the problem of a thin
plate under a normal load per unit of area q(r), where

q(r) = tzz|z=−h − tzz|z=h = − µ

µ0
Bϕ,z

∣
∣
∣
∣

h

z=−h

. (7.6.4)

The classical Kirchhoff–Love theory then leads to the global equation of
motion for the flexural vibrations of a thin plate of the form

D∆∆w(r) = q(r) − 2ρhω2w(r) , (7.6.5)

where D = 2Eh3/3(1 − ν2) is the plate constant.
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We try to solve equations (7.6.1)1,2 for ψ (note that ψ = ψ(r, z) eiωt) and
ϕ by the separation of variables

ψ(r, z) = Ψ(z)Ω(r) , ϕ(r, z) = Φ(z)Ω(r) . (7.6.6)

The first boundary condition then yields

Ω′(r) = w′(r) , or w(r) = Ω(r) + w0 , (7.6.7)

where w0 represents a rigid-body translation, which we will need further on to
satisfy the mechanical (kinematical) boundary conditions at the edge of the
plate; one should realize here that w0 is a dynamic rigid-body translation,
since the actual displacement is w0e

iωt. It is evident that this rigid-body
translation does not affect the (quasi-static) magnetic potentials ϕ and ψ.

The Laplace equations in (7.6.1)1,2 can now be split up into

d2

dr2
Ω(r)+

1
r

d

dr
Ω(r)+λ2Ω(r) = 0 , and

d2

dz2
Φ(z)−λ2Φ(z) = 0 , (7.6.8)

where λ is some real separation constant, which will follow from the mechan-
ical boundary conditions at the edge r = R. There, it will turn out that
λR = O(1), implying that λh = O(ε). Analogous equations can be found for
Φ(z).

The equation for Ω(r) is a Bessel equation, having the general solution

Ω(r) = W J0(λr) , (7.6.9)

while the solutions for Ψ(z), using that Ψ(z) → 0 for z → ∞, and for Φ(z),
accounting for the symmetry in z, read

Ψ(z) = C e−λ|z| , |z| > h , Φ(z) = D cosh(λz) . (7.6.10)

The constants C and D and an expression for w(r) follow from the boundary
conditions (7.6.2)1, which yield, by using λh = O(ε) � 1 and neglecting all
O(ε)-terms except the term µλh (because µ is very large, µλh can be of O(1)
for ε � 1; in practice, we even have µε � 1)

C =
µλh

1 + µλh

B

µ0
, D = − 1

1 + µλh

B

µ0
(7.6.11)

and w′(r) = −λWJ1(λr). With these results we find for the load q(r), defined
in (7.6.4),

q(r) = −2µBΦ′(h)Ω(r) =
2µλ2h

µ0(1 + µλh)
B2ŵJ0(λr) , (7.6.12)

whereupon the equation of motion (7.6.5) becomes
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Dλ4ŵJ0(λr) =
2µλ2h

µ0(1 + µλh)
B2ŵJ0(λr) + 2ρhω2(ŵJ0(λr) + w0) . (7.6.13)

If w0 = 0, this equation would immediately yield the dispersion relation for
ω:

ω2 =
Eh2λ4

3ρ(1 − ν2)

(

1 − 3µ(1 − ν2)
µ0(1 + µλh)Eh2λ2

B2

)

. (7.6.14)

However, in all of the explicit examples that we shall consider here, we have
w0 �= 0, and then the approach above does not yield a correct dispersion
relation. However, we can already draw one general conclusion from this
result, that remains valid even for w0 �= 0. We see that ω2 decreases with
increasing B and becomes zero when the second term between the brackets
on the right-hand side of (7.6.14) becomes equal to one. Let us denote by
B0cr the associated value for B, and by ω0 the value for ω when B = 0. Then
(7.6.14) can be written as

ω2 = ω2
0

(

1 − B2
0

B2
0cr

)

. (7.6.15)

We thus see that if B > B0cr then ω2 < 0 and ω becomes purely imaginary,
implying that the unperturbed solution becomes unstable. Hence, B0cr is
indeed the buckling value for B0. Since the magnetic load q(r) in (7.6.12) and
the elastic bending term in the right-hand side of (7.6.13) are not affected by
w0, this result remained valid also for w0 �= 0. However, w0 has its effect on
the inertia term in (7.6.13) and therefore the value of ω does depend on w0.

Since the analytical method derived above does not yield results for ω
in the way we proposed it, we have to look for an alternative method. For
this, we will adapt the variational method as introduced in Sect. 7.4.2, so
as to include dynamical vibration problems, and after that we will apply
Rayleigh’s Principle to find the eigenfrequencies. To this end, we must cal-
culate also the kinetic energy T and have to replace the Lagrangean L by
the Hamiltonian H according to H = T − L. Because, as far as the elec-
tromagnetic part is concerned, we only consider quasi-static processes, the
expressions found for the perturbed electromagnetic interaction integral K
and the elastic energy W in the preceding sections remain the same here.
Moreover, the kinetic energy is only due to the dynamic perturbed displace-
ments and thus T is already the perturbed kinetic energy. Here, T is defined
on the perturbed displacement field u = u(x, t) as

T =
1
2

∫

G

ρ(u̇, u̇)dV , (7.6.16)

in which (u̇, u̇) is the inner product of u̇. For steady-state vibrations with
(eigen)frequency ω, we can assume the displacements to be harmonic in time
according to (7.6.3), whereupon T transforms into
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T = −1
2

ω2

∫

G

ρ(û, û)dV e2iωt = −ω22πρh
∫ R

0

rw2(r)dr e2iωt

= −ω2T̂ e2iωt . (7.6.17)

Applying Rayleigh’s Principle, we arrive at the well-known expression for
the Rayleigh quotient, but now for magnetoelastic systems,

ω2 =
W −K

T̂
=

W

T̂

(

1 − K

W
B2

0

)

= ω2
0

(

1 − B2
0

B2
0cr

)

, (7.6.18)

where we have used K = B2
0K, W/K = B2

0cr and W/T̂ = ω2
0 . We point out

here that this relation could also directly be derived from the global equation
of motion (7.6.5) by multiplying this equation by w(r) and integrating the
resulting equation over the plate.

We will apply this method now to the soft ferromagnetic plate. We start
with the expression for K according to (7.3.39), which with Bi = B(0)δi3 and
u3 → Ω(r) becomes (we discard the e2iωt-term from now on)

K = − 1
B2

∫

∂G

Bw(r)
∂

∂n

(

ψ − B

µ0
Ω(r)

)

dS

= −2π
B

∫ R

0

rw(r)ψ,z(r, h)dr . (7.6.19)

According to (7.6.6), the perturbed potential ψ(r, z) = Ψ(z)Ω(r) where Ψ(z)
is given by (7.6.10)–(7.6.11) and w(r) = Ω(r)+w0, with Ω(r) given by (7.6.9).
Here it is important to note that (7.3.39) is derived under the assumption that
µ−1 ≈ 0, inclusive (µλh)−1 ≈ 0, meaning that (7.6.11) then gives C ≈ B/µ0.
This leads us to

K = −2π
B

∫ R

0

rw(r)Φ′(h)Ω(r)dr =
2πλ
µ0

∫ R

0

rw(r)Ω(r)dr . (7.6.20)

For the elastic energy of a circular plate in rotationally symmetric bending
we have; see [239, eq. (1.94)],

W = πD

∫ R

0

(
r(∆w(r))2 − 2(1 − ν)w′(r)w′′(r)

)
dr . (7.6.21)

For a clamped plate the contribution of the second term in the integrand for
W vanishes, whereupon (7.6.21) reduces to

W = πD

∫ R

0

r(∆w(r))2 dr , (7.6.22)

see [239, eq. (1.96)]. With (7.6.7)2 for w(r), expression (7.6.17) for the scaled
kinetic energy T̂ for the circular plate of thickness 2h becomes
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T̂ = 2πρh
∫ R

0

r(w(r))2 dr = 2πρh
∫ R

0

r (ŵJ0(λr) + w0)
2
dr , (7.6.23)

an expression that clearly depends on w0.
We shall now illustrate this method by the following three examples.

1. Clamped plate
In this case, the (kinematic) boundary conditions are

w(R) = w′(R) = 0 . (7.6.24)

The second condition is met if

J1(λR) = J1(Λ) = 0 , (7.6.25)

where Λ = λR, so Λ is dimensionless and of O(1). The lowest root of this
equation is Λ1 = 3.832. Taking this mode as a good approximation for
the buckling mode, i.e. taking Ω(r) = ŵJ0 (Λ1r/R), we obtain for the
deflection w(r)

w(r) = ŵ
(
J0

(
Λ1

r

R

)
− J0 (Λ1)

)
, (7.6.26)

where the first condition of (7.6.24) is met by appropriately choosing the
coefficient w0. We note that for the clamped plate w0 does not affect the
value of K or W , but it does affect T̂ . Calculating K, W and T̂ , we obtain
successively

K =
2πλ
µ0

ŵ2

∫ R

0

rJ2
0

(
Λ1

r

R

)
dr =

πΛ1R

µ0
ŵ2J2

0 (Λ1) , (7.6.27)

according to [1, eq.(11.3.34)] and with the use of (7.6.25)

W = πD

(
Λ1

R

)4

ŵ2

∫ R

0

rJ2
0

(
Λ1

r

R

)
dr =

πD

2R2
Λ4

1 ŵ2J2
0 (Λ1) , (7.6.28)

and

T̂ = 2πρhŵ2

[∫ R

0

rJ2
0

(
Λ1

r

R

)
dr

+2J0 (Λ1)
∫ R

0

rJ0

(
Λ1

r

R

)
dr +

1
2
R2J2

0 (Λ1)
]

= πρhR2ŵ2
[
J2

0 (Λ1) + 0 + J2
0 (Λ1)

]
= 2πρhR2ŵ2J2

0 (Λ1) . (7.6.29)

Substituting these results into (7.6.18), we arrive at

ω2 =
πDΛ4

1

4πρhR4

(

1 − 2
µ0D

(
R

Λ1

)3

B2
0

)

= ω2
0

(

1 − B2
0

B2
0cr

)

. (7.6.30)
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Here,

ω0 =
Λ2

1√
2

1
R2

√
D

2ρh
=

Λ2
1√
6

h

R2

√
E

ρ(1 − ν2)
, (7.6.31)

is the eigenfrequency when B = 0. We find good correspondence with
[239, eq.(200)], who found as a first approximation of the coefficient in
the first right-hand side of (7.6.31) the value 10.33, whereas we find
Λ2

1/
√

2 = 10.37 (here one should realize that Timoshenko considers
plates of thickness h instead of 2h as we do). To get a better correspon-
dence with the more precise value 10.21 (see [239, eq. 201]), we have to
take for w(r), or Ω(r), a Fourier–Bessel series according to

w(r) = Ω(r) =
N∑

1

wkJ0

(
Λk

r

R

)
, (7.6.32)

with Λk the roots of J1 (Λk) = 0, and were the last coefficient wN is
chosen such that w(R) = 0. The best coefficients wk , k = 1, 2, . . . , N −1
can then be found by equating ∂ω2/∂wk = 0 for k = 1, 2, . . . , N .
We can use the result (7.6.30) also to obtain directly the value for the
magnetic field for which the ferromagnetic plate buckles. The value for
the buckling field obtained in this way is

B0cr√
µ0E

=
1

√
3(1 − ν2)

(
Λ1h

R

)3/2

=
4.33

√
(1 − ν2)

(
h

R

)3/2

. (7.6.33)

This result is in agreement with the buckling field found by Van de Ven,
[250, eq. (4.11)].

2. Simply supported plate
Here, besides the kinematical boundary condition w(R) = 0 also a dy-
namical condition, expressing that the bending moment along the edge
should be zero, holds. However, the latter only holds provided no bend-
ing moment of magnetic origin is acting at this edge. This is difficult to
prove here, because for this we need the mechanical boundary conditions
for the stresses at the edge, and for these we need the magnetic fields
there. And this is exactly what we do not know, because at the edge
either the magnetic fields become singular or the magnetization becomes
saturated. Therefore, we looked for another way. In [250], we showed by
using expressions for the total force and the total moment on the plate
and requiring that they should be in equilibrium with the total bending
moment and shear force along the edge, that indeed the bending moment
of magnetic origin is zero along the edge (this in contrast to the shear
force of magnetic origin as we shall see in the next case). Thus we obtain
the classical boundary condition

w′′(R) +
ν

R
w′(R) = 0 , (7.6.34)
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yielding

J0(λR) − (1 − ν)
λR

J1(λR) = 0 , (7.6.35)

of which the lowest root for ν = 0.3 is

Λ1 = λ1R = 2.049 . (7.6.36)

By adding the rigid-body translation w0, we obtain exactly the same
relation for w(r) as in (7.6.26). In an analogous way as we did for the
clamped plate we can now calculate the integrals K, W and T̂ from the
same expressions as found in (7.6.27)–(7.6.29), but the outcomes differ
somewhat due to the different boundary condition (7.6.34) (now J1(Λ1) =
(Λ1/(1 − ν))J0(λ) �= 0). Thus we obtain (use [1, eq.(11.3.34)])

K =
2πΛ1

µ0R

∫ R

0

rw(r) ŵJ0 (λ1r) dr

=
2πλ
µ0

ŵ2

[∫ R

0

rJ2
0

(
Λ1

r

R

)
dr − J0(Λ1)

∫ R

0

rJ0

(
Λ1

r

R

)
dr

]

=
πΛ1R

µ0
ŵ2

[

J2
0 (Λ1) + J2

1 (Λ1) −
2
Λ1

J0(Λ1)J1(Λ1)
]

=
πΛ1R

µ0(1 − ν)2
ŵ2

[
Λ2

1 − (1 − ν2)
]
J2

0 (Λ1) , (7.6.37)

where in the last step we have used (7.6.35) to eliminate J1(Λ1) in favour
of J0(Λ1),

W = πD

[
Λ4

1

R4
ŵ2

∫ R

0

rJ2
0

(
Λ1

r

R

)
dr − (1 − ν)(w′(R))2

]

=
πD

2R2
ŵ2

[
Λ4

1(J
2
0 (Λ1) + J2

1 (Λ1)) − 2(1 − ν)Λ2
1J

2
1 (Λ1)

]

=
πDΛ4

1

2(1 − ν)2R2
ŵ2

[
Λ2

1 − (1 − ν2)
]
J2

0 (Λ1) , (7.6.38)

and, finally,

T̂ = 2πρhŵ2

[∫ R

0

rJ2
0

(
Λ1

r

R

)
dr − 2J0 (Λ1)

∫ R

0

rJ0

(
Λ1

r

R

)
dr

+
1
2
R2J2

0 (Λ1)
]

= 2πρhR2ŵ2

[
1
2
(
J2

0 (Λ1) + J2
1 (Λ1)

)
− 2

Λ1
J0 (Λ1) J1 (Λ1) +

1
2
J2

0 (Λ1)
]

=
2πρhR2

2(1 − ν)2
ŵ2(Λ2

1 − 2(1 − ν2)) J2
0 (Λ1) . (7.6.39)
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Again substituting these results into (7.6.18), we arrive at

ω2 =
πDΛ4

1

2πρhR4

Λ2
1 − (1 − ν2)

Λ2
1 − 2(1 − ν2)

(

1 − 2
µ0D

(
R

Λ1

)3

B2
0

)

= ω2
0

(

1 − B2
0

B2
0cr

)

, (7.6.40)

where,

ω0 =
Λ2

1

R2

√
Λ2

1 − (1 − ν2)
Λ2

1 − 2(1 − ν2)

√
D

2ρh
=

4.936
R2

√
D

2ρh

= 2.987
h

R2

√
E

ρ
, (7.6.41)

is the eigenfrequency when B = 0.
For the buckling value, we find the same expression as in (7.6.33), but
due to the different value for Λ1 we obtain here, for ν = 0.3,

B0cr√
µ0E

= 1.78
(

h

R

)3/2

. (7.6.42)

This result is again in agreement with the buckling field found by Van

de Ven, [250, eq. (4.12)].
We still want to note here that in the calculation of K in (7.6.37), the
rigid-body translation w0 = ŵJ0 (Λ1) affects the outcome for K (i.e.
replacing w(r) by Ω(r) in the first integral would result in a different
(wrong) value for K). This may look at first sight somewhat surprising,
but this effect is due to the presence of a shear force of magnetic origin at
the edge of the plate, as we shall see in the next example. Due to this shear
force, the rigid-body translation performs work and thus contributes to
the magnetic interaction integral K. This is not actually so here, because
in this case the displacement of the edge is zero, and thus the work done
by the shear force at the edge is now zero (but this is only so because we
included the rigid-body translation w0 in our choice for the displacement
w(r)). However, this is no longer true in the next example; we will show
there how to incorporate the work done by the shear force in the magnetic
interaction integral K.

3. Free plate
For the free plate, one would expect as dynamic boundary conditions
for this rotationally symmetric problem that the bending moment and
the shear force are zero at the edge. However, only the first condition is
correct here. For the second one, we calculate the total force due to the
magnetic field on the plate, which because of equilibrium should be equal
to zero. This force is composed of the force due to the normal load q on
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the surface of the plate plus the force due to possible shear forces at the
edge. Let us denote this shear force by Q, then we have for the total force
in the z-direction

Fz = 2πRQ + 2π
∫ R

0

q(r)rdr = 0 . (7.6.43)

This leaves us with a shear force equal to (for µλh ≈ 0)

Q = − 2λ
µ0R

B2ŵ

∫ R

0

rJ0(λr)dr = − 2Λ
µ0R2

B2ŵJ1(Λ) . (7.6.44)

The boundary conditions at the free edge then become

w′′(R) +
ν

R
w′(R) = 0 ,

(
d

dr
∆w

)

(R) = −Q

D
. (7.6.45)

Moreover, we now choose the rigid-body translation w0 such that the
total momentum of the plate becomes zero, i.e.

∫ R

0

rw(r)dr = ŵ

∫ R

0

rJ0(λr)dr −
1
2

w0R
2

= ŵ
R2

Λ
J1(Λ) − 1

2
w0R

2 = 0 , (7.6.46)

or
w0 =

2
Λ

J0(Λ) ŵ . (7.6.47)

With this choice, the second boundary condition of (7.6.45) follows im-
mediately from one integration of the equation of motion (7.6.13) over
the surface of the plate. We then only have to satisfy the first bound-
ary condition, which, as in the preceding case, is satisfied by choosing
Λ = Λ1 = 2.049, for ν = 0.3.

The choice (7.6.47) for w0 yields for the deflection of the plate

w(r) = ŵ

(

J0(Λ1
r

R
) − 2

Λ1
J1(Λ1)

)

, (7.6.48)

and thus w(R) �= 0 now. This implies that the work done by the shear
force Q at the edge becomes unequal to zero and thus must be incor-
porated into K. The easiest way to incorporate this work into K is by
replacing w(r) by w(r) − w(R) in the formula for K, (7.6.19), yielding
(compare also with (7.6.27))

K =
2πλ
µ0

ŵ2

∫ R

0

rJ0

(
Λ1

r

R

)(
J0

(
Λ1

r

R

)
− J0 (Λ1)

)
dr , (7.6.49)
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the same expression as in the second example. Since also the elastic energy
remains the same, this implies that we will here find the same buckling
value as in the preceding example, and as in [250, eq. (4.12)].

However, as the kinetic energy depends on the rigid-body translation
w0, the frequency will differ from the value found in the preceding exam-
ple. Here we obtain

T̂ = 2πρhŵ2

[∫ R

0

rJ2
0

(
Λ1

r

R

)
dr − 4J1 (Λ1)

Λ1

∫ R

0

rJ0

(
Λ1

r

R

)
dr

+
2R2J2

1 (Λ1)
Λ2

1

]

= 2πρhR2ŵ2

[
1
2
(
J2

0 (Λ1) + J2
1 (Λ1)

)
− 2

Λ2
1

J2
1 (Λ1)

]

=
2πρhR2

2(1 − ν)2
ŵ2

(
Λ2

1 + (1 − ν)2 − 4
)

J2
0 (Λ1) . (7.6.50)

Again substituting these results into (7.6.18), we arrive at

ω2 =
πDΛ4

1

2πρhR4

Λ2
1 − (1 − ν2)

Λ2
1 + (1 − ν)2 − 4

(

1 − 2
µ0D

(
R

Λ1

)3

B2
0

)

= ω2
0

(

1 − B2
0

B2
0cr

)

, (7.6.51)

where,

ω0 =
Λ2

1

R2

√
Λ2

1 − (1 − ν2)
Λ2

1 + (1 − ν)2 − 4

√
D

2ρh

=
9.178
R2

√
D

2ρh
= 5.299

h

R2

√
E

ρ
, (7.6.52)

is the eigenfrequency when B = 0.

All three examples considered above show the same behaviour: the eigenfre-
quency decreases with increasing magnetic bias field B0 up to a value B0cr

when ω becomes zero, indicating that the undeflected state of the plate be-
comes unstable. Moreover, we have seen that a shear force of magnetic origin
is acting at the edge of the plate, which can have a dominant effect on the
frequency relation. The latter effect is strictly inherent to the Maxwell–
Minkowski model used here as we shall see in the following, where we com-
pare the Maxwell–Minkowski model with the Lorentz model (Model V
in Chap. 3 of this book).



7.6 Magnetoelastic Vibrations of Superconducting Structures 269

Comparison between the Maxwell-Minkowski and Lorentz models.
The equations derived above are based on the Maxwell–Minkowski model
(Model III). We now shall prove that two theories based on different models,
here Model III and the Lorentz model (Model V) (this model is in the liter-
ature also called the Ampèrean current model by a.o. Moon) yield identical
results. This is of course completely in agreement with the spirit behind this
book.

From Chap. 4, Sects. 4.4–4.5, more specifically, from equations (4.4.2) and
(4.5.4) we can deduce the following relation between the stresses in Models
III and V:

V tij = IIItij + MiBj + 1
2δijMk(Bk + Hk) , (7.6.53)

which for a soft ferromagnetic medium and with the same approximations as
used throughout this section, reduces to

V tij = tij −
1
µ0

BiBj +
1

2µ0
δijBkBk , (7.6.54)

where we have used that IIItij ≈ tij , the purely elastic stress. Hence, we see
here already one important difference in the two formulations: whereas in the
constitutive equation for IIItij the magnetic part is negligible, for V tij this
part is of the same order of magnitude as the elastic part.

After linearization of (7.6.54), we obtain for the perturbed stresses

V tij = tij − µB(δi3ϕ,j + δj3ϕ,i − δijϕ,z) . (7.6.55)

Analogously to (7.6.1) and (7.6.2) this leads to the equation of motion and
the boundary conditions in terms of the Lorentz stresses

V tij,j = ρüi , |z| < h , (7.6.56)

and
V ti3 = µB(−δi3ϕ,z + ϕ,i) , |z| = h . (7.6.57)

By comparing this with (7.6.1) and (7.6.2), we see that the equation of motion
is the same, but that the boundary conditions are different. This will lead to
a different relation for the shear force as we shall show now.

However, first we show that the relation for the bending moment does not
change. The bending moment is defined as

V Mrr =
∫ h

−h

z V tzzdz = Mrr −
µB

µ0

∫ h

−h

zϕ,zdz , (7.6.58)

where the last step follows after substitution of (7.6.55) and where Mrr is the
purely elastic bending moment given by its constitutive equation

Mrr = −D
(
w′′(r) +

ν

r
w′(r)

)
. (7.6.59)
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For the shear force V Q we find analogously

V Q =
∫ h

−h

z V tzrdz = Q +
µB

µ0

d

dr

∫ h

−h

ϕ(r, z)dz , (7.6.60)

with
Q = −D

d

dr
∆w(r) . (7.6.61)

If we want to compare the orders of magnitude of the magnetic terms in
V Mrr and V Q, we must compare V Mrr,r with V Q, or

∫ h

−h

zϕ,zdz with
∫ h

−h

ϕdz .

Using (7.6.6) and (7.6.9), we immediately see that

∫ h

−h

zϕ,zdz = O((λh)2)
∫ h

−h

ϕdz = O(ε2)
∫ h

−h

ϕdz , (7.6.62)

from which we conclude that the magnetic part in V Mrr may be neglected,
or

V Mrr = Mrr . (7.6.63)

On the other hand, for the shear force this implies that the magnetic term in
(7.6.60) may not be neglected as it is of the same order as the elastic term.

In the common way, by integrating the local equations of motion (7.6.56)
over the thickness of the plate and using in this process the constitutive
equation (7.6.55) and the boundary conditions (7.6.57), we can derive the
global equation of motion (compare with (7.6.5))

D∆∆w(r) = q(r) − 2ρhω2w(r) , (7.6.64)

where now

q(r) =
µB

µ0

(
d2

dr2
+

1
r

d

dr

)∫ h

−h

ϕ(r, z)dz , (7.6.65)

but, as follows from ∆ϕ(r, z) = 0, this can also be written as

q(r) = −µB

µ0
ϕ,z

∣
∣
∣
∣

h

z=−h

, (7.6.66)

which is identical to (7.6.4).
Finally, we look at the boundary conditions for a free plate. In the same

way as we derived (7.6.44) from (7.6.43) we obtain here for the shear force
at the edge

V Q = 0 . (7.6.67)
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Using (7.6.6) and (7.6.9)–(7.6.11) together with (µλh)−1 � 1 and λh � 1,
we derive from (7.6.60)

V Q =
B2ŵ

µ0λh

d

dr

(∫ h

−h

cosh(λz)dz J0(λr)

)

=
2B2ŵ

µ0
J1(λr) . (7.6.68)

where Q is the purely elastic shear force. This leads us to the boundary
conditions

w′′(R) +
ν

R
w′(R) = 0 , −D

(
d

dr
∆w

)

(R) +
µB

µ0

d

dr

∫ h

−h

ϕ(r, z)dz = 0 ,

(7.6.69)
which are exactly the same conditions as (7.6.45).

Thus, we have proved that the Lorentz formulation for this problem is
completely equivalent to the Maxwell–Minkowski formulation. This proof
can be extended to the other models presented in Chap. 3 of this book.

7.6.3 Magnetoelastic Vibrations of a Superconducting Ring
in its Own Field

In this section, we investigate the in-plane vibrations of a circular ring carry-
ing an electric current, which is confined to the surface of the superconducting
ring; see [254]. The investigation is based on a perturbation method: the fields
in the final, deformed, state of the ring are decomposed into the fields for the
undeformed ring, the rigid-body fields, and the perturbations on these fields.
The latter are due to the dynamic deflections of the ring. However, as far as
the electromagnetic part is concerned we only consider quasi-static processes.
First, the rigid-body problem is solved. As a specific result the initial stresses
due to the magnetic forces (of Lorentz type) in the undeformed coil are
obtained; it will turn out that these stresses play an essential role in the cal-
culation of the eigenfrequencies of the ring. Next, the linearized perturbed
problem is solved, yielding expressions for the load of magnetic origin on
the deformed ring. By superposition, the total load on the deformed ring is
now known, and from this an equation of motion for the vibrational in-plane
motion of the slender ring is derived. The solution of this equation leads to
an expression for the eigenfrequencies of the superconducting ring. This ex-
pression consists of two terms: one due to the initial stresses and one due to
the perturbed ones. The first term increases the frequency with increasing
current (and, hence, has a stabilizing effect), whereas the second term causes
the frequency to decrease (a destabilizing effect). We will show that the first
term dominates the second one, thus implying that the undeformed state of
the ring is stable against in-plane vibrations. This result agrees with that of
Chattopadhyay [41], who obtained this result by purely numerical means.

The ring that is considered here is an elastic superconducting slender ring
of radius b and circular cross-section, radius R; the ring is called slender if
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ε = R/b � 1. The ring is placed in a vacuum and carries an electric surface
current J at its surface, the total current being I0. The magnetic field inside
the ring is zero, and that outside the ring has to satisfy

eijkBk,j = 0 , Bi,i = 0 , B → 0 , |x| → ∞ . (7.6.70)

The current density J is related to the boundary value of the external field
B through the boundary conditions at the boundary ∂G of the ring

µ0Ji = −eijkBjnk , Bini = Jini = 0 , x ∈ ∂G . (7.6.71)

The total current I0 is prescribed by means of Ampère’s law
∫

C

(B · ds) = µ0I0 , (7.6.72)

where C is a contour entirely encircling a cross-section of the conducting ring.
The Cauchy stresses Tij have to satisfy the equations of motion

Tij,j = ρÜi , (7.6.73)

where U is the total displacement vector.
In the Maxwell–Minkowski model the current J produces a surface

tension at ∂G according to

Tijnj =
1
µ0

[

BiBj −
1
2
δijBkBk

]

=
1
2
eijkJjBk , x ∈ ∂G . (7.6.74)

The above equations hold on the unknown, deformed state of the ring and
are thus nonlinear. To derive a linear system, we first suppose the existence
of an intermediate static equilibrium state. Since for our considerations the
deformations in this state are not so relevant (this in contrast with the pre-
stresses in this state), we approximate this state by the rigid-body state. The
fields B0

i and T 0
ij in this state satisfy the same equations (7.6.70)–(7.6.74)

as above, but now in the known reference configuration. For later use, we
especially need the equation for the traction at ∂G

T 0
ijnj = T 0

i = 1
2eijkJ

0
j B

0
k . (7.6.75)

The perturbation on the rigid-body state is characterized by the displace-
ment vector u = u(x, t). The perturbed magnetic fields may be considered
as being time-harmonic functions of x and t. These fields are decomposed as
B = B0(x) + b(x)eiωt, J = J0(x) + j(x)eiωt and Tij = T 0

ij(x) + tij(x)eiωt

(the harmonic term eiωt will be discarded in the quasi-static electromagnetic
equations). The linearization procedure now results in the following sets of
equations (from here on we omit the the upper 0)
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inside the ring
tij,j − Tij,kuk,j = ρüi ; (7.6.76)

in vacuum

eijkbk,j = 0 , bi,i = 0 , b → 0 , |x| → ∞ ; (7.6.77)

at the surface ∂G of the ring

eijkbjnk + eijkBj,lulnk − eijkBjul,knl = −µ0ji + µ0Jiuj,knjnk ,

bini = Biuj,inj −Bi,jujni ,

jini = Jiuj,inj ,

tijnj = Tiuj,knjnk + Tijuk,jnk + ti , (7.6.78)

where
ti = 1

2eijkjjBk + 1
2eijkJj(bk + Bk,lul) , (7.6.79)

and the incremental stresses tij are given by

tij = −Tijuk,k + Tjkui,k + Tikuj,k + τij , (7.6.80)

where τij is the incremental elastic stress, which is directly related to the
infinitesimal deformations by Hooke’s law. Here, one must realize that all
these equations refer to the undeformed reference state of the ring.

Let u = u(x, t) = û(r, φ, z)eiωt be the time-harmonic displacement of
the ring, where {r, φ, z} are cylindrical coordinates in the centre of the ring.
Since we consider in-plane vibrations only, the displacement of the central
line of the slender ring can be presented by (compare with (7.4.47))

û(r, φ, z) =
(

w(φ)er +
(

v(φ) − (r − b)
b

(w′(φ) − v(φ))
)

eφ

)
(
1 + O(ε2)

)
.

(7.6.81)
For an inextensible ring, the displacements are restricted by the constraint

v′(φ) + w(φ) = 0 . (7.6.82)

In [254], the rigid-body problem and the linear perturbed problem for
the magnetic field and the current are solved by introducing a separation of
variables in toroidal coordinates. We do not repeat here these mathematical
manipulations, which result in expressions for the mechanical body forces
and the tractions at ∂G in the rigid-body state and the perturbed state. In-
tegration of the local equations of motion (7.6.76) over the cross-section of
the ring, with use of the boundary conditions (7.6.78)4, leads us to the global
equation of motion for the in-plane vibrations of the ring. These global equa-
tions can also be found in [156, eqs. (6-7.3)-(6-7.4)]; for in-plane vibrations
uy = Ny = Gx = H = 0. Moreover, in our notations, ux = −w , uz = v.
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After the elimination of Nx and T and with the use of the well-known consti-
tutive equation for the bending moment Gy in an inextensible slender ring,

Gy = −EI

b2
(w′′(φ) + w(φ)) = −πER4

4b2
(w′′(φ) + w(φ)) , (7.6.83)

one obtains

πER4

4b2
(wv(φ) + 2w′′′(φ) + w′(φ)) = Γ + πρω2b2R2(w′(φ) + v(φ)) . (7.6.84)

Here, Γ is a load parameter, arising from the body force in (7.6.76) and the
traction (7.6.78)4, and given by

Γ (φ) = bK ′
r(φ) + bKφ(φ) + L′′(φ) + L(φ) , (7.6.85)

where Kr and Kφ are forces per unit of length in r- and φ-direction, respec-
tively, and L is a (bending) moment per unit of length about the z-axis.

As is shown in [254], the contribution of the moment L to Γ is of order ε2

compared to the other terms, and thus negligible (L(φ) = L′′(φ) = 0), while
the remaining part can be split up according to Γ = Γ1 +Γ2, where Γ1 is the
rigid-body contribution and Γ2 the perturbation part, with

Γ1(φ) = −3µ0I
2
0

4π
w′(φ)

[

log
(

8
ε

)

− 1
2

]

(1 + O(ε log ε)) , (7.6.86)

and

Γ2(φ) =
3µ0I

2
0

4π
w′(φ)

[

log
(

8
ε

)

− 17
6

]

(1 + O(ε log ε)) . (7.6.87)

From these results we conclude that the highest-order contributions of Γ1

and Γ2 (of O(log ε)) are equal but opposite, so they cancel each other. This
implies that the remaining part of Γ = Γ1 +Γ2 is of O(ε0) = O(1), and equal
to

Γ (φ) = −7µ0

4π
I2
0w

′(φ)(1 + O(ε log ε)) . (7.6.88)

As in most preceding examples in this chapter, the separation of variables in
toroidal coordinates requires the relation

w′′(φ) + λ2w(φ) = 0 , (7.6.89)

to be satisfied. Taking account of the periodicity in φ and excluding rigid-
body translations, we see that the lowest eigenmode is represented by λ = 2,
yielding

w(φ) = W cos 2φ . (7.6.90)

Then, according to the inextensibility condition (7.6.82),
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v(φ) = − 1
2W sin 2φ . (7.6.91)

Substituting (7.6.90) and (7.6.91) into the global equation of motion (7.6.84),
we arrive at the dispersion relation for ω

18πER4

4b2
= −7µ0

2π
I2
0 +

5
2
πρb2R2ω2 . (7.6.92)

With the definition

ω2
0 =

R

b2

√
9E
5ρ

, (7.6.93)

the eigenfrequency of the free ring (I0 = 0), the dispersion relation (7.6.92)
yields for the eigenfrequency

ω2 = ω2
0

(

1 +
7µ0b

2

9π2ER4
I2
0

)

. (7.6.94)

Hence, the frequency of the current-carrying ring increases with increasing
current. For a conservative problem, as that considered here, instability oc-
curs when ω becomes zero. Since the right-hand side of (7.6.94) remains
positive for all values of I0, we infer that the equilibrium state of the ring
(i.e. the pre-stressed rigid-body state) is always stable against in-plane vibra-
tions. In analyzing the effects of Γ1 and Γ2 separately, we observe that Γ1,
due to the initial unperturbed field, has a stabilizing effect, whereas Γ2, due
to the perturbed field, has a destabilizing effect. When taken together, the
stabilizing effect dominates over the destabilizing one, and therefore the ring
remains stable.

The out-of-plane vibrations can be treated in an analogous way, and there
is no reason to expect that this will yield essentially different results. This is
confirmed by the results of [41].

In order to illustrate the influence of the current I0 on the eigenfrequency
ω quantitatively, we use the following numerical values (these values are from
[41])

E = 8 × 1010 N/m2
, I = 2.2 × 10−4 m4 ,

R = 3.03 m , µ0 = 4π × 10−7 H/m . (7.6.95)

For these values, (7.6.94) becomes

ω2 = ω2
0

(
1 + 4.06 × 10−14 I2

0

)
. (7.6.96)

This result agrees, at least in order of magnitude, reasonably well with that
of Chattopadhyay [41, eq. (42)]. In this aspect it must be mentioned that
in [41] it was assumed that the current is uniformly distributed over the
cross-section. This correspondence between our results and those of [41] sug-
gests that the specific distribution of the current over the cross-section (i.e.
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a uniform distribution in [41] against a distributed surface current in our
approach) can at most be of quantitative influence and not qualitative. A
different current distribution will change the numerical value of the coeffi-
cient of I0 in the dispersion relation for ω, but it is not to be expected that
it can disturb the stability of the ring.

7.6.4 Variational Principle for Magnetoelastic Vibrations
of Superconducting Structures

In this section, we will demonstrate how we can generalize our variational
method presented in the preceding sections to include also vibrational prob-
lems for superconducting structures, and how we can find the eigenfrequen-
cies of these structures from this. The basic idea for this is rather simple:
we only replace the Lagrangean L introduced in Sect. 7.4 by the Hamil-

tonian H = T − L, where T is the kinetic energy. However, in doing this
we shall as far as the electromagnetic part is concerned only consider quasi-
static processes. This also holds for the perturbed part and, therefore, the
expressions found for the perturbed electromagnetic interaction integral K in
the preceding sections remain the same here. Of course, this also holds for
the elastic energy. Moreover, the kinetic energy is only due to the perturbed
displacement and thus T is already the perturbed kinetic energy.

Therefore, we have to formulate here only the Hamiltonian for the per-
turbed case (which is in fact the second variation of the full Hamiltonian)
and we find for this H = T − (W −K) = T − W + K. Here, T is defined on
the perturbed displacement field u = u(x, t) as

T =
1
2

∫

G

ρ(u̇, u̇)dV . (7.6.97)

For steady state vibrations with (eigen)frequency ω we can assume the dis-
placements harmonic in time according to

u(x, t) = û(x) eiωt , (7.6.98)

whereupon T transforms into

T = −ω2

2

∫

G

ρ(û, û)dV = −ω2T̂ . (7.6.99)

The equation of motion and the electromagnetic equations for the perturbed
fields follow from equating the first variation of H to zero, but since H is a
homogeneous quadratic functional in the perturbations, then also H = 0 in
the perturbed state (analogous to J = 0 in the magnetostatic case). Thus,
putting H equal to zero, we arrive at the well-known Rayleigh quotient,
but now for magnetoelastic superconducting systems, in the form
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ω2 =
W −K

T̂
= ω2

0

(

1 −
(

I0

I0cr

)2
)

, (7.6.100)

where in the latter step we have used K = I2
0K and K/W = (I0cr)2, and

where we have introduced ω2
0 = W/T̂ .

Since we have derived values for I0cr for various systems in the preceding
sections, we can, from the relation above, directly read off the dependencies
of the eigenfrequencies on the imposed current I0. We conclude that for all
such systems the eigenfrequency decreases from ω0 (in case I0 = 0) to a value
going to zero for I0 → I0cr. For I0 > I0cr, ω2 becomes negative, meaning
that the eigenfrequency becomes purely imaginary, implying instability of
the system. Hence, this frequency analysis confirms that the system buckles
whenever I0 > I0cr.

Example: A set of two concentric superconducting rings

We consider here the same system as described in Sect. 7.4.2; see also Fig. 7.5.
To start with the kinetic energy, we describe the displacement as in (7.6.98)
with û(i), the deflection of the central line of the i-th ring, given by (7.4.47).
This yields the following expression for T (i), the kinetic energy of the i-th
ring,

T (i) = −ω2

2

∫

G(i)

[

w2
i (φ) +

(

vi(φ) − r − bi

bi
(w′

i(φ) − vi(φ))
)2

]

ρdV

= −πω2

2
ρbiR

2

∫ 2π

0

(
w2

i (φ) + v2
i (φ)

)
dφ

(
1 + O(ε2)

)
, (7.6.101)

where in the latter step we have used that the integral of (r− bi) over G(i) is
zero, while the integral with (r − bi)2 yields a term of O(ε2) where ε = R/b
and b = (b1 + b2)/2.

Use of, see (7.4.50), wi = ±w cos(2φ) and vi = ∓ 1
2w sin(2φ), such that

the inextensibility condition v′i(φ) + wi(φ) = 0 is fulfilled, leads us to

T (i) = − 5
8πω

2ρbiR
2w2 . (7.6.102)

This finally gives for the total kinetic energy T , or better T̂ ,

T̂ = 5
4πρbR

2w2 (1 + O(ε)) , (7.6.103)

where we have used that bi = b (1 + O(ε)) for i = 1, 2.
With the use of relations (7.4.51) and (7.4.52) for W and K, respectively,

in (7.6.100) we then arrive at the relation for the eigenfrequency of a set of
two concentric superconducting rings

ω2 =
W − I2

0K

T̂
=

9ER2

5ρb4

[

1 − µ0Q

E

(
b2I0

3πR3

)2
]

. (7.6.104)
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A few more results
We can apply the method above also to some of the other examples dealt

with in the preceding section. We only present the results for the eigenfre-
quencies here.

1. A pair of two parallel rods

ω2 =
E

ρ

(
π2R

2L2

)2
[

1 − µ0Q

E

(
L2I0

π3R3

)2
]

. (7.6.105)

2. A pair of two parallel rings

ω2 =
9E
5ρ

(
R

b2

)2
[

1 − µ0(5 + ν)Q
E

(
b2I0

6πR3

)2
]

. (7.6.106)

3. A set of n parallel rods

ω2 =
E

ρ

(
π2R

2L2

)2
[

1 − µ0Q

E

(
L2I0

αnR3

)2
]

. (7.6.107)

4. An infinite helix periodically supported at every n-th turn

ω2 =
EN(n)

8(1 + ν)ρ

(
R

nb2

)2
[

1 − µ0κ(1 + ν)(2n− 1)
EN(n)

(
b2I0

πhR2

)2
]

.

(7.6.108)



8 Electrorheological Fluids

8.1 Introduction

“Smart” materials can adaptively change or respond to an external stimulus
producing a useful effect. Mechanical stresses, temperature, electric or mag-
netic fields, photon radiation or chemicals are typical examples of stimuli. A
useful effect usually means a dramatic change of either one physical prop-
erty (mechanical, electrical, appearance), the structure or the composition,
which can be monitored and used in certain applications. A useful effect may
be completely reversed when the stimulus is removed and this important
feature permits an easy control through simply changing the environmental
conditions. A variety of smart materials exists, which are being researched
extensively. These include piezoelectric and thermoelectric materials, magne-
torheological and electrorheological fluids, photochromic and thermochromic
materials, electroluminiscent, fluorescent and phosphorescent materials and
shape memory alloys.

Electrorheological fluids (often abbreviated as ERF) are such intelligent
materials that exhibit drastic changes in their rheological properties upon
the application of an outer electric field on the order of 1 kV/mm. The ER
phenomenon is characterized by full reversibility and a very fast response
(often quoted in milliseconds). Upon removal of the field, the corresponding
relaxation time is of a comparable scale. The term ER-effect refers to the
abrupt change in the apparent viscosity. When the viscosity increases we deal
with a positive ER-effect while a decrease in viscosity is called negative ER-
effect [82, 207]. Both the positive and negative ER effect can be enhanced by
ultraviolet illumination in some ER systems [83]. This phenomenon is called
the photo-electrorheological (PER) effect.

Most ERFs are dispersions of polarizable small particles within a non-
conducting carrier liquid. The typical range size of the particles entering
the structure of an ER-fluid is on the order of 0.10 to 100 µm while the
particle volume fraction ranges between 2%–50%. Particles with dimensions
below the stated range are liable to execute Brownian motion while larger
particles are more liable to sedimentation and also to draw excessive currents.
A wide variety of particulate media have been employed in ER suspensions
starting from starch, flour, cellulose, ceramic, glass to complex particles such
as polyelectrolytes, composite particles (conducting particles coated with a

K. Hutter et al.: Electromagnetic Field Matter Interaction in Thermoelastic Solids and
Viscous Fluids, Lect. Notes Phys. 710, 279–366 (2006)

c© Springer-Verlag Berlin Heidelberg 2006DOI 10.1007/3-540-37240-7 8
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thin non-conducting outer layer, doubly coated particles with dielectric cores
of high strength and lower mass (see [228]). The impact of the particle shape
on ER performance was recently investigated experimentally in [192] by using
microspheres and micro-rods as the component of the solid phase of an ER
fluid. The dispersing phase of an ER fluid is an insulating oil or other non-
conductive liquid. Currently silicone oil, vegetable oil, mineral oil, paraffin
etc. are used. Besides the suspended particles and the carrier fluid, an ER
fluid contains also some additives which could be any polar material that can
enhance the ER effect or the stability of the whole suspension. ER fluids that
contain a small amount of water are normally called hydrous, in contrast to
water-free or anhydrous ER fluids in which no detectable water residue exists.
It was demonstrated that the addition of water can enhance the ER-effect.
Moreover, the influence of water in connecting together the particles has been
used as the basis of a theory to explain the ER mechanism (the water bridging
mechanism). However, a big disadvantage of ER-fluids with moisture content
is the limited range of operating temperatures by the freezing and boiling
points of water. Fortunately, it was shown that the operating mechanism does
not depend on the presence of water and recently, considerable emphasis has
been placed on the development of anhydrous particle suspensions. Extensive
reviews centred on the material science aspects of ERFs are available [26, 83]
and much work continues to be done in order to find optimal combinations
of material properties (see e.g. [197, 228, 276]).

The explanation for the ER effect can be given with the aid of experi-
mental observations at the microscopic level. Under the influence of an ex-
ternal electric field, the initially unordered particles become oriented and
attract each other to form particle chains in the fluid along the field lines.
The chains then aggregate to form columns. These chain-like and columnar
structures cause significant changes in the resistance to the flow, and the
material switches in this way from the liquid state to a solid-like state. In
1949, Winslow [265] reported an ER-effect for certain suspensions and de-
scribed for the first time the phenomenon of induced fibration even though
earlier observations on electroviscous effects were reported since 1896 (re-
viewed in [112]). The basic mechanism for this behaviour is thought to be
the field-induced particle polarization which is a consequence of the dielec-
tric mismatch between particles and solvent. It should be pointed out that
other mechanisms for the field-induced increase in viscosity have been sug-
gested including overlap of the diffuse counter-ion clouds surrounding neigh-
boring particles [112, 113], electrostatic torque preventing particle rotation
in the flow field [26], inter-electrode circulation [54] and field induced aggre-
gation due to water bridges between particles [208, 222, 223, 229]. A lot of
research has been done to develop theoretical models describing these mecha-
nisms and relating the material properties and microscopic phenomena to the
measurable macroscopic properties. Most theories are based on the electro-
static polarization mechanism. For an overview of the fundamental physical
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mechanisms and strategies in relating the microstructural models to the rhe-
ological behaviour we refer the reader to the review papers summarizing the
main results in this domain [176, 209].

Besides particulate ER suspensions (heterogeneous ERF), there have been
developments of homogeneous physical systems which also show dramatic
changes in rheological properties upon application of an external electric field.
Oil-in-oil emulsions and liquid-crystal polymer/oil immiscible systems display
a relatively strong ER-effect [102, 110, 111, 199, 245, 272]. This is explained
by the increase of domain interactions due to the orientation of elongated
molecules. In [66, 167, 168] it is shown that also simple dielectric liquids
(insulating oils), of which the viscosity hardly changes when being subject to
uniform fields, can be ER-active when subjected to non-uniform electric fields
(the ER effect is attributed to the electrohydrodynamic convection enhanced
by the use of electrodes with flocked fabrics). At last we mention the delicious
study of the melt of milk chocolate which also displays ER behaviour [52].

ERFs can be modeled in several different ways. ERFs may be analysed
by means of molecular dynamic simulations by using different models (such
as the dipole model, conduction model, equivalent plate conduction model)
to establish the equations of motion of the particles. [277, 278]. Another
possibility consists in the investigation of their microstructure in order to
obtain a macroscopic description of the material [90, 178, 199, 210, 258, 261].

A different approach is pursued in the context of continuum mechanics.
There are descriptions of ERFs as mixtures of two constituents (the partic-
ulate medium and the fluid) [195]. However, many researchers adopted the
approach in which ER fluids are treated in a homogenized sense [16, 17,
67, 194, 206]. Rajagopal and Růžička in [196] and Eckart in [63] for-
mulated independently governing equations of ER fluids. These formulations
have the advantage that they take into account the interactions between the
electro-magnetic and the mechanical fields. After assuming the constitutive
law characterizing a certain fluid (see Sect. 8.3 of the present chapter) this
approach permits mathematical modeling of the ER behaviour [35, 57, 205].
In our study we also assume ER-fluids to be homogeneous and continuous liq-
uids, and we apply a phenomenological modeling approach in order to predict
their macroscopic behaviour.

Recently, continuum models were developed which try to reflect (at the
macroscopic level) field induced effects of the micro- and mesostructure of
ERFs. In [60] thermodynamic continuum modeling is pursued and the in-
fluence of the field generated microstructure is described with the aid of an
internal variable theory. We mention the works of Brunn and Abu-Jdayil

[33, 34] who carried out a phenomenological study by considering ERFs as
fluids with transverse isotropy. This assumption is based on experimental
observations according to which fibers are formed upon the application of an
electric field. In their approach the extra stress tensor of an ERF depends
on the rate of strain but also on a vector which characterizes the orientation
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and size of the field induced fibers. In this way it is possible to describe nor-
mal stress effects appearing in viscometric flows. In [65] Eckart and Sadiki

applied a polar theory to electrorheological fluids in the context of extended
thermodynamics. They succeeded in obtaining a model which accounts for
different material responses, if the applied electric field (assumed to be con-
stant) is either perpendicular or parallel to the flow direction. This fact was
expected but the previous models were not capable to reflect it.

ER-fluids are potentially useful in numerous technical applications. Many
of them belong to the automotive industry: shock absorbers, clutches, valves,
brakes, dampers, actuators [36, 217]. A good review of the engineering appli-
cation of ERFs in vibration control can be found in [224]. Non-conventional
and advanced actuators may be built using ERFs [75, 139]. Another tech-
nological area in which ER fluids offer large promises is virtual reality
and telepresence enhanced with haptic (tactile and force) feedback systems
[114, 138, 179]. A haptic feedback is a modality for interacting with remote
and virtual worlds compared with visual and auditory feedback. ER fluids
can be used as smart inks, or to produce photonic crystals or in the polishing
industry [83].

Despite the rich research literature about ERFs and the acquired progress
in this subject, the application in real-life problems and commercialization
of devices based on ERFs have been very limited. The need of high voltage
input creates safety problems for the operators especially for the devices that
are designed to be in contact with humans. Besides, the problem of their
feedback (closed-loop) is difficult to solve because of their complex behaviour.
Other obstacles in the development of ERF technologies are related to the
composition of ER fluids (e.g. the instabilities caused by the sedimentation
tendency of the particles or the limited range of operational temperature).
Nevertheless, recent advanced studies led to significant improvements in the
fluid formulation.

It can be foreseen that the large interest concerning these materials and
the multitude of research studies focused on their potential applications will
finally improve the capabilities of ER fluids on the one hand and lead to an
optimal design for ER devices on the other hand.

8.1.1 Overview

The approach described here will be formulated within the framework of con-
tinuum mechanics of electromechanical interactions of polarizable materials.
In particular, electrorheological fluids are considered to be homogeneous sin-
gle constituent materials. Following this line, Sect. 8.2 presents the derivation
of the governing equations of electrorheology (based on the phenomenological
approach developed in [63, 64] with the corresponding jump conditions and
the exploitation of the entropy inequality once general constitutive equations
for the variables of the problem have been assumed.
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Section 8.3 treats the constitutive assumptions for the Cauchy stress
tensor in greater detail. A review of the constitutive models used to describe
ER fluids in the literature is given and two-dimensional constitutive laws,
appropriate for numerical simulations originating from the Casson-like and
power law models are introduced.

The last section deals with applications of the results presented in the
previous sections on channel flow of ERF. The boundary value in which the
electrodes, flush with the channel, is formulated for both electrically con-
ducting and non-conducting fluids. The simple case of infinite electrodes is
analytically solved for the Casson-like model and for the power-law model.
Subsection 8.4.3 treats the case of electrodes with finite length when the elec-
tric field is inhomogeneous. The equations are non-dimensionalized for both
cases, the alternative Casson-like and the alternative power law models. The
flow is simulated numerically using a software based on the finite element
method. We study the behaviour of different fields such as velocity, pressure,
generalized viscosity and the second invariant of the strain rate tensor near
the electrode edges. Comparison with experimental data is performed that
validates the simulations. Then we numerically optimize the configuration of
the electrodes to obtain an enhancement of the ER-effect. In the last subsec-
tion we present shortly the main experimental results as inferred from the
literature and obtained with electrodes of different geometries (restricted to
bidimensional geometries) under a direct current.

We, finally, emphasize here that unlike the general theory dealt with in
Chaps. 1 to 6, in which the material response was restricted to thermoelastic
behaviour of polarizable and magnetizable bodies, or to magnetoelastic solid
bodies, the constitutive behaviour of electrorheological materials includes vis-
cous or plastic effects. This makes the material class somewhat larger than
in the earlier chapters, but not significantly more complex than before.

8.2 Governing Equations and Constitutive Framework
in Electrorheology

We use a continuum mechanical model in which electrorheological fluids are
considered as homogeneous single constituent materials. Following [63] and
essentially [64], we will summarize in this section the main steps of the phe-
nomenological approach, conducted in order to obtain the governing equa-
tions of electrorheology with the corresponding jump conditions.

The starting point in deriving the system of equations that characterize
electrorheological fluids consists in recording the balance laws of thermo-
dynamics of fluids in electromagnetic fields. We recall here the balances of
mass, momentum, moment of momentum and internal energy (2.2.9) and the
entropy inequality (2.3.6)
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ρ̇ + ρẋi,i = 0 ,

ρẍi = tij,j + ρF e
i + ρF ext

i ,

εijktkj = 0 ,

ρU̇ = tij ẋi,j − qi,i + ρre + ρrext ,

ρη̇ + φi,i ≥
ρrext

Θ
,

(8.2.1)

where we assumed that the electromagnetic body couple vanishes. To com-
plete the physical picture we have to add the Maxwell equations which will
be considered here in the Maxwell–Minkowski formulation (see Chap. 3,
Sect. 3.4), namely (see equations (3.4.10))

eklmEm,l = −
∗
Bk , (8.2.2)

ejlmHm,l =
∗

Dj +Jj , (8.2.3)

Di,i = Q , (8.2.4)

Bi,i = 0 . (8.2.5)

We recall the definitions of the effective electric and magnetic field
strengths (expressed in terms of the Minkowskian electric and magnetic
field strengths Em and Hm) and the conductive current density according to

Em := Em + empqẋpBq , (8.2.6)

Hm := Hm − empqẋpDq , (8.2.7)

Jj := Jj −Qẋj . (8.2.8)

Introducing the electric polarization Pi and the magnetization Mi we have
the relations

Di := ε0Ei + Pi , Di := ε0(Ei − eijkẋjBk) + Pi , (8.2.9)

Hi := µ−1
0 Bi −Mi , Hi := µ−1

0 Bi − ε0eijkẋjEk −Mi , (8.2.10)

where Mi denotes the effective magnetization

Mi := Mi + eijkẋjPk . (8.2.11)

Relations (8.2.9)1, (8.2.10)1 and (8.2.11) are identical with relations (3.4.3)
and (3.4.4) given in Chap. 3 except for the notation (the superscript M in
the expressions for Ei, Hi, Pi, Mi is now dropped).
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8.2.1 The Electromagnetic Momentum Balance

The mathematical expressions for the electromagnetic force and energy sup-
ply rate in [63, 64] differ from those treated in Chap. 3. We will now sketch
this derivation, but omit details which can be found in [63, 64].

In order to calculate the expression for the electromagnetic force F e
i the

procedure used in [64] is the following: from the Maxwell–Minkowski

equations one may derive an identity which can be interpreted as the electro-
magnetic momentum balance. Of course, the expression which one may derive
in this way contains relativistic terms; since the mechanical balance laws are
only non-relativistically valid it follows that one must remove the terms of
relativistic order in F e

i . This reduction can be sought by non-dimensionalising
the equations by introducing adequate scales.

In [64] Eckart derives two different forms of the electromagnetic mo-
mentum balances, which contain different expressions for the electromagnetic
force. Later on he shows how these different expressions for F e

i influence the
mechanical quantities. Of course, the velocity obtained from the total mo-
mentum balance must – as an observable quantity – be the same for both
variants.

The first variant of the electormagnetic momentum balance is derived
by algebraically manipulating the Maxwell-Minkowski equations. Further
manipulation with the emerging balance expression then yields the second
form of the electomagnetic momentum balance. In [118], Landau and Lif-

schitz derive the electromagnetic body force from a general expression for
the internal energy and deduce an expression for the electromagnetic body
force that agrees with the second variant mentioned above. Therefore there
are two ways to arrive at these expressions, a formal one from the Maxwell-
Minkowski equations and a more elegant one from an adequate postulate
of the internal energy. Both variants differ in their electromagnetic stress
tensors and forces, but not in the quantities (appearing in the Maxwell-
Minkowski equations), Ej , Dj , Hk, Bk, Jj and Q. These are identical in
both forms.

In order to derive the electromagnetic momentum balance one starts by
postulating the expression for the electromagnetic momentum, viz.,

gi := eijk ε0 µ0 Ej Hk . (8.2.12)

From the Maxwell equations (8.2.2)–(8.2.5), and the definitions (8.2.9)2
and (8.2.10)2 one may then derive the following identity, that can be regarded
as the electromagnetic momentum balance

ġi + ẋl,l gi = (I)tMij,j − ρ (I)F e
i , (8.2.13)

an identity, in which the electromagnetic stress tensor (I)tMij and the electro-
magnetic force (I)F e

i are given by
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(I)tMij := EiDj + HiBj − 1
2 (EkDk + HkBk)δij + ε0µ0eilkElHk ẋj

− 1
2 (ε0ekmnẋmBnEk − ε0µ0ekmnẋmEnHk)δij , (8.2.14)

ρ (I)F e
i := QelEi + eijk(

�

Dj +Jj)Bk + 1
2 (PjEj,i − Pj,iEj)

+
µ0

2
(MkHk,i −Mk,iHk) + eijkDj

�

Bk −ε0ejmnẋmBnEj,i

+ε0µ0ekmnẋmEnHk,i − ε0µ0
∂

∂t
(eijkEjHk) . (8.2.15)

This form of the electromagnetic momentum balance is marked with the
left superscript “(I)” as an identifier and will subsequently be denoted as
the first variant. A second form of the electromagnetic momentum balance,
marked with the left superscript “(II)” is obtained by differently writing the
divergence of the pressure term in the first two lines of (8.2.14) as

− 1
2





Ek (Dk + ε0ekmnẋmBn)

︸ ︷︷ ︸

= ε0Ek + Pk

+Hk (Bk − ε0µ0ekmnẋmEn)
︸ ︷︷ ︸

= µ0(Hk + Mk)







,i

,

and incorporating it in the force term. One then obtains the following elec-
tromagnetic momentum balance

ġi + ẋl,l gi = (II)tMij,j − ρ (II)F e
i , (8.2.16)

where the electromagnetic stress tensor (II)tMij and the electromagnetic force
(II)F e

i are given by

(II)tMij := EiDj + HiBj + ε0µ0eilkElHk ẋj , (8.2.17)

ρ (II)F e
i := QelEi + eijk(

�

Dj +Jj)Bk + DjEi,j −BkHk,i

− ε0µ0
∂

∂t
(eijkEjHk) . (8.2.18)

In comparison with the first variant the second variant has fewer terms and
does not contain the quantities Pj and Mj .

We mention that the two electromagnetic momentum balances (8.2.13)
and (8.2.16) differ from the electromagnetic momentum balance defined in
(2.4.7)1. However, if we consider

gi (2.4.7) = −gi (8.2.13, 8.2.16) , (8.2.19)

tMij (2.4.7) = (I),(II)tMij (8.2.13, 8.2.16) − gi (8.2.13, 8.2.16)ẋj , (8.2.20)

we obtain the same form of the electromagnetic momentum equations in both
cases.
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8.2.2 The Electromagnetic Energy Balance

In an analogous manner Eckart [64] derives from the Maxwell–
Minkowski equations another identity which can be viewed as the elec-
tromagnetic energy balance. The starting point of the derivation consists in
the choice of the electromagnetic energy. In [64] the expression

ω := 1
2 (DjEj + BjHj) , (8.2.21)

is used. Analogously, eijkEjHk is used as the expression for the Poynting

vector. Using then the same equations (8.2.2)–(8.2.5), (8.2.9)2 and (8.2.10)2
and employing similar manipulations as for the derivation of the electromag-
netic momentum balance the first variant of the energy balance, viz.,

ω̇ + ẋl,l ω + (eijkEjHk),i = (I)tMij ẋi,j − ρ (I)re , (8.2.22)

is obtained, where the electromagnetic energy supply (I)re is given by

ρ (I)re := 1
2 (EjḊj − ĖjDj + ḂjHj − BjḢj) + JjEj

− 1
2 (ε0ekmnẋmBnEk − ε0µ0ekmnẋmEnHk)ẋj,j

+ε0µ0eimnEmHn ẋj ẋi,j . (8.2.23)

The electromagnetic energy balance 8.2.22 is an identity. Its second variant
is described by the equation

ω̇ + ẋl,l ω + (eijkEjHk),i = (II)tMij ẋi,j − ρ (II)re , (8.2.24)

where the electromagnetic energy supply (II)re is given by

ρ (II)re := 1
2 (EjḊj − ĖjDj + ḂjHj − BjḢj) + JjEj

− 1
2 (EkDk + HkBk)ẋj,j + ε0µ0eimnEmHn ẋj ẋi,j . (8.2.25)

In order to apply these balances in electrorheology one has to find their
corresponding non-relativistic approximation. This is done in [64] through a
non-dimensionalization process, which we now proceed to explain.

8.2.3 Non-relativistic Approximation

Since equations (8.2.13), (8.2.16) and (8.2.22), (8.2.24) contain some relativis-
tic contributions but equations (8.2.1) are valid only in the non-relativistic
case, the relativistic terms should be removed. In order to identify them one
needs to non-dimensionalize the equations.

One can define the non-dimensional form of most quantities introduced
up to this point, if we choose the dimensionless fields as follows:

E+
i =

Ei

E0
, E+

i =
Ei

E0
, D+

i =
Di

ε0E0
,

P+
i =

Pi

ε0E0
, J +

i =
Ji T

ε0E0
,

(8.2.26)
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ẋ+
j =

ẋj

V0
, x+

j =
xj

L
, t+ =

t

T
, (8.2.27)

where the following characteristic quantities were introduced: E0 is a typical
field strength of the external electric field, V0 is a characteristic velocity,
L a characteristic length (e.g. the extent of the flow domain) and T is a
characteristic time which is in general the inverse value of the electromagnetic
frequency. The correct choice of the characteristic quantities of the problem
is an important step. This choice determines the domain of validity of the
resulting balance laws and consequently of the whole theory.

As is evident, the magnetic quantities Bi, Hi, Mi and Mi are missing from
the above list. No characteristic magnetic quantity is introduced because, by
assumption, there is neither an external magnetic field nor a permanent mag-
netization present.1 So, it seems to be reasonable to build a new characteristic
quantity from the above characteristic quantities, that possesses the dimen-
sion of a “magnetic unit.”2 In order to do this let us look at the properties
of ERFs. Such fluids possess only dielectric and no magnetic properties. In
this case we can use the so-called dielectric assumption (see [80], p. 161 and
175), according to which

Mk = −ekmnẋmPn . (8.2.28)

In other words: The magnetization, measured in the rest frame, consists only
of a part that appears due to the motion of the electrically polarised medium.
This assumption is based on the idea that an observer traveling with the
fluid particle experiences no magnetization3. Using (8.2.11), relation (8.2.28)
is tantamount to the statement

Mk = 0 . (8.2.29)

So, a co-moving observer does not observe a measurable effective magnetiza-
tion.

The crucial relation is, however, (8.2.28). We know already how the quan-
tities on the right-side of (8.2.28) have to be non-dimensionalized. From
(8.2.26) and (8.2.27) there follows

ekmnẋ
+
mP+

n =
ekmnẋmPn

V0ε0E0
.

1 It is assumed here that the electrorheological systems studied are free of a per-
manent magnet (esp. no permanent magnetic electrodes are present).

2 In [205] the approach is different. There, a magnetic induction B0 is first in-
troduced. Later this is considered small in comparison with the electric field
strength and it is neglected. This is of course another possibility. But it must
be pointed out that there is no a priori knowledge of the magnetic induction. It
results as a variable only from the Maxwell-Minkowski equations.

3 One must exclude here that a magnetization due to acceleration effects can
appear (remarks related to this see also in [219]).
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Thus, we may write for the magnetization

M+
k =

Mk

V0ε0E0
, (8.2.30)

in which V0ε0E0 may be interpreted as the characteristic magnetization in the
electrorheological case. Now, we are able to non-dimensionalize the remaining
magnetic quantitites4. One obtains

B+
k =

Bk

V0ε0µ0E0
, M+

k =
Mk

V0ε0E0
,

H+
k =

Hk

V0ε0E0
, H+

k =
Hk

V0ε0E0
,

(8.2.31)

By applying all these transformations the electromagnetic momentum
balance in the first variant takes the dimensionless form

ε0E
2
0V

2
0

Lc2

(
d g+

i

dt+
+ ẋ+

l,l g
+
i

)

=
ε0E

2
0

L
(I)tM,+

ij,j − ε0E
2
0

L
(I)F e,+

i , (8.2.32)

where

d ()
dt

=
V0

L

d ()+

dt+
:=

V0

L

[

Str
∂ ()+

∂t+
+ ẋ+

l ()+,l

]

, Str =
L

TV0
, (8.2.33)

isolates in the bracketed factor the non-dimensionalized material derivative;
Str represents the (electric) Strouhal number, and gi and (I)tMij are given
by

gi =
ε0E

2
0V0

c2
g+

i :=
ε0E

2
0V0

c2
eijkE+

j H+
k , (8.2.34)

(I)tMij = ε0E
2
0

(I)tM,+
ij := ε0E

2
0

[

E+
i D+

j +
V 2

0

c2
H+

i B+
j

− 1
2

(

E+
k D+

k +
V 2

0

c2
H+

k B+
k

)

δij +
V 2

0

c2
eilkE+

l H+
k ẋ+

j

− 1
2

(
V 2

0

c2
ekmnv

+
mB+

n E+
k − V 2

0

c2
ekmnv

+
mE+

n H+
k

)

δij

]

, (8.2.35)

4 More precisely, we require that there is no other magnetic quantity, the value
of which clearly exceeds the just introduced quantity. Then (8.2.30) may be
interpreted as the highest estimation of the magnetic quantities. If e.g. an electric
field is used which varies rapidly in time, one should non-dimensionalize the
magnetic induction better with ε0µ0E0L/T instead of ε0µ0E0V0. When one takes
into account the electric current one must use a kind of effective conduction
instead of ε0/T . The choice ε0µ0E0V0 is considered an acceptable compromise
at the present point.



290 8 Electrorheological Fluids

and, with the use of (8.2.28), (I)F e
i takes the form

(I)F e
i =

ε0E
2
0

ρL
(I)F e,+

i :=
ε0E

2
0

ρL

[

Q+E+
i +

V 2
0

c2
eijk

( �

D+
j +StrJ +

j

)

B+
k

+
V 2

0

c2
eijkD

+
j

�

B+
k + 1

2

(
P+

j E+
j,i − P+

j,iE+
j

)
− LV0

Tc2
∂

∂t+
(
eijkE+

j H+
k

)

− V 2
0

c2
ejmnẋ

+
mB+

n E+
j,i +

V 2
0

c2
ekmnẋ

+
mE+

n H+
k,i

]

, (8.2.36)

in which, the convective derivative of a vector Ai = A0A
+
i has been written

as

�

Ai =
A0V0

L

�

A+
i :=

A0V0

L

[

Str
∂A+

i

∂t+
+ ẋ+

j A+
i,j − ẋ+

i,jA
+
j + ẋ+

j,jA
+
i

]

.

(8.2.37)
All bracketed terms in (8.2.33)–(8.2.37) are dimensionless. In the ensuing
analysis we wish to impose the non-relativistic approximation and shall drop
all terms of O(V 2

0 /c2), thus assuming V0 � c. Beyond this assumption we also
request L/T to be of order V0, so that (LV0)/(Tc2) = O(V 2

0 /c2) as well. This
bounds characteristic lengths not to be too large and characteristic times not
to be too small5. In electrorheological fluids the estimate L/T = O(V0) is
amply fulfilled, so that all above mentioned terms can indeed be neglected.

If in the momentum equation all terms of order V 2
0 /c2 are dropped, the

final form of the non-relativistic electromagnetic momentum balance for elec-
trorheological purposes is given by6

ε0E
2
0

L

[
(1)tM,+

ij,j − (1)F e,+
i + Oi

(
V 2

0

c2
,
V0L

Tc2

)]

= 0 , (8.2.38)

where the non-relativistic electromagnetic stress-tensor, (1)t
(M),+
ij and the

non-relativistic electromagnetic force (1)F e,+
i are given by

(1)tM,+
ij := E+

i D+
j − 1

2E
+
k D+

k δij , (8.2.39)
(1)F e,+

i := Q+E+
i + 1

2

(
P+

j E+
j,i − P+

j,iE+
j

)
. (8.2.40)

For the second variant of the electromagnetic momentum balance the same
procedure yields
5 This would not be reasonable in e.g. astrophysics or high frequency physics. In the

first case we would have as the characteristic lengths the distances between the
planets; in the second case we would have as the characteristic electromagnetic
times the inverses to the high frequencies.

6 To distinguish it from the relativistic balances we use now the left superscript
“(1)” for the first variant instead of “(I)” and analogously the left superscript
“(2)” for the second variant instead of “(II)”. From now on the symbol Oi (. . .)
(and later also O (. . .)) means “terms of order (. . .)”.
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ε0E
2
0

L

[
(2)tM,+

ij,j − (2)F e,+
i + Oi

(
V 2

0

c2
,
V0L

Tc2

)]

= 0 , (8.2.41)

with the non-relativistic electromagnetic stress-tensor, (2)t
(M),+
ij and the non-

relativistic electromagnetic force, (2)F e,+
i given by

(2)tM,+
ij := E+

i D+
j , (8.2.42)

(2)F e,+
i := Q+E+

i + D+
j E+

i,j . (8.2.43)

By applying the same procedure to the electromagnetic energy balances
(8.2.22) and (8.2.24) the equation

ε0E
2
0V0

L

[
dω+

dt+
+ ẋ+

l,l ω
+ − (I)tM,+

ij ẋ+
i,j +

(
eijkE+

j H+
k

)

,i
+ (I)re,+

]

= 0 ,

(8.2.44)
is obtained for the first variant, where

ω = ε0E
2
0 ω+ := ε0E

2
0

1
2

[

D+
k E+

k +
V 2

0

c2
B+

k H+
k

]

. (8.2.45)

The electromagnetic energy supply (I)re,+ becomes

(I)re =
ε0E

2
0V0

ρL
(I)re,+ :=

ε0E
2
0V0

ρL

[

StrJ+
j E+

j − 1
2

(

D+
j

dE+
j

dt+

−
dD+

j

dt+
E+

j +
V 2

0

c2
B+

j

dH+
j

dt+
− V 2

0

c2
dB+

j

dt+
H+

j

)

+
V 2

0

c2
eimnE+

mH+
n ẋ+

j ẋ+
i,j

− 1
2

(
V 2

0

c2
ekmnẋ

+
mB+

n E+
k − V 2

0

c2
ekmnẋ

+
mE+

n H+
k

)

ẋ+
j,j

]

. (8.2.46)

Neglecting in (8.2.45) and (8.2.46) the terms containing the factors V 2
0 /c2

and V0L/Tc2 the following non-relativistic electromagnetic energy balance

ε0E
2
0V0

L

[
d ω̃+

dt+
+ ẋ+

l,l ω̃
+ − (m)tM,+

ij ẋ+
i,j +

(
eijkE+

j H+
k

)

,i
+ (m)re,+

+O
(

V 2
0

c2
,
V0L

Tc2

)]

= 0 , (m = 1, 2) , (8.2.47)

is obtained where the non-relativistic electromagnetic energy, ω̃+, and the
non-relativistic electromagnetic energy supply, (ρ (m)re) , m = 1, 2, are given
by

ω̃ = ε0E
2
0 ω̃+ :=

ε0E
2
0

2
D+

k E+
k , (8.2.48)
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(1)re =
ε0E

2
0V0

ρL
(1)re,+

:=
ε0E

2
0V0

ρL

[

StrJ +
j E+

j − 1
2

(

D+
j

dE+
j

dt+
−

dD+
j

dt+
E+

j

)]

, (8.2.49)

(2)re =
ε0E

2
0V0

ρL
(2)re,+

:=
ε0E

2
0V0

ρL

[

StrJ+
j E+

j − 1
2

(

D+
j

dE+
j

dt+
−

dD+
j

dt+
E+

j

)

+
E+

k D+
k ẋ+

j,j

2

]

. (8.2.50)

In the above relations (8.2.44)–(8.2.50) the bracketed terms, [·], are dimen-
sionless as before.

From (8.2.6), there follows

E+
m := E+

m +
V 2

0

c2
empqẋ

+
p B+

q = E+
m + Om

(
V 2

0

c2

)

, (8.2.51)

and from relations (8.2.9)2 and (8.2.10)2 one obtains, with the help of (8.2.29),

D+
i = E+

i + P+
i , (8.2.52)

H+
i = B+

i − eimnv
+
mE+

n . (8.2.53)

Finally, let us quote the dimensionless form of the Maxwell–Minkowski

equations (8.2.2)–(8.2.5). They read

E0

L

(

eklm E+
m,l +

V 2
0

c2

�

B+
k

)

= 0 , (8.2.54)

ε0E0V0

L

(

ejlm H+
m,l −

�

D+
j −StrJ +

j

)

= 0 , (8.2.55)

ε0E0

L

(

D+
i,i − QL

ε0E0

)

= 0 , (8.2.56)

E0V0

Lc2
B+

i,i = 0 . (8.2.57)

Now, if one neglects all terms with the factors V 2
0 /c2 and LV0/(Tc2) one

obtains the electrorheological approximation of the Maxwell-Minkowski

equations

E0

L

[

eklm E+
m,l + Ok

(
V 2

0

c2
,
V0L

Tc2

)]

= 0 , (8.2.58)

ε0E0V0

L

[

ejlm

(
B+

m − empqẋ
+
p E+

q

)

,l
−

�

D+
j −StrJ +

j

]

= 0 , (8.2.59)

ε0E0

L

[

D+
i,i − QL

ε0E0

]

= 0 , (8.2.60)

E0V0

Lc2
B+

i,i = 0 . (8.2.61)
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Equation (8.2.58) is crucial. Provided boundary conditions for the electric
field at domain boundaries are expressible in the electric field strength alone,
it permits us to calculate the electric field decoupled from the magnetic in-
duction and the mechanical fields.

However it is not easy to get rid of the magnetic induction in the electro-
rheological approximation in all the Maxwell-Minkowski equations. The
field Bi appears in equations (8.2.54) and (8.2.55) (in Hm) with different
factors; this can better be seen in equations (8.2.58) and (8.2.59): the factors
in front of the brackets differ through ε0V0. Luckily, the magnetic induction
can be calculated from equations (8.2.59) and (8.2.61) if the electric field and
the velocity field are known, so it represents a dependent quantity.

In the following subsection we will revert the non-dimensionalization and
return to dimensional quantities; i.e. we will write e.g. instead of V0v

+
j again

vj and so on. Owing to (8.2.51) in the remainder of this chapter we will write
Ej instead of Ej .

8.2.4 The Total Balance Laws of Electrorheology

Having put the non-relativistic approximation on a rational footing by non-
dimensionalizing the equations, we may now again return to all approximate
equations back in dimensional form. This is often more convenient and cer-
tainly physically more transparent.

The mass balance (8.2.1)1 remains unchanged. By using (8.2.38) and
(8.2.39) the momentum balance equation (8.2.1)2 in the first variant takes
the non-relativistically correct form

ρẍi −
(

(1)tij + EiDj − 1
2EkDkδij

)

,j
− ρF ext

i = 0 . (8.2.62)

Similarly, with the help of (8.2.41) and (8.2.42) its second variant becomes

ρẍi −
(

(2)tij + EiDj

)

,j
− ρF ext

i = 0 . (8.2.63)

Obviously, the Cauchy stress tensor in the first and second variants cannot
be identical if the emerging models are requested to be the same. This is the
reason why they are distinguished in (8.2.62) and (8.2.63) and in the sequel
by the superscripts “(1)” and “(2)”.

With the aid of (8.2.49) the energy balance (8.2.1)4 for the first variant
becomes

ρ(1)U̇ + (1)qj,j − (1)tij ẋi,j − ρrext − JjEj ,

+ 1
2

(
DjĖj − ḊjEj

)
= 0 , (8.2.64)

whilst for the second variant, on using (8.2.50), it reads
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ρ(2)U̇ +(2) qj,j − (2)tij ẋi,j − ρrext − JjEj

+ 1
2

(
DjĖj − ḊjEj

)
− 1

2EkDkẋj,j = 0 . (8.2.65)

Here we took into account that, in the two variants, the internal energies and
the heat flux vectors can differ from one another. However the energy balances
can be written in a more appropriate form. After a simple transformation,
by using (8.2.48), we obtain from (8.2.64)

ρ(1) ˙̃U + (1)qj,j − (1)tij ẋi,j − ρrext − JjEj − Ej Ḋj − 1
2EkDkẋj,j = 0

(8.2.66)
with a modified internal energy7 (1)Ũ according to

ρ(1)Ũ := ρ(1)U + 1
2DkEk = ρ(1)U + ω̃ . (8.2.67)

An analogous change as in (8.2.67) yields instead of (8.2.65)

ρ(2) ˙̃U + (2)qj,j − (2)tij ẋi,j − ρrext −JjEj −Ej Ḋj−EkDkẋj,j = 0 . (8.2.68)

For the derivation of the jump conditions, it is advantageous to use yet
another form of the energy balance. What is needed is the conservative form
of the total energy balance. To obtain it, let us start from the energy balance
(8.2.1)4

d

dt

(
ρU + 1

2ρẋiẋi

)
+
(
ρU + 1

2ρẋiẋi

)
ẋj,j = (tij ẋi − qj),j

+ẋi

(
ρF ext

i + ρF e
i

)
+ ρrext + ρre , (8.2.69)

Using (8.2.69), (8.2.38) and (8.2.47) in the dimensional form, respectively,
we obtain after straightforward calculations the energy balance for the first
variant

d

dt

(
ρ(1)U + 1

2ρẋiẋi + 1
2EkDk

)
+

(
ρ(1)U + 1

2ρẋiẋi + 1
2EkDk

)
ẋj,j

+
(

(1)qj + ejikEiHk − (1)tij ẋi − EiDj ẋi + 1
2EkDkẋj

)

,j

= ẋi ρF
ext
i + ρrext , (8.2.70)

and for the second variant

d

dt

(
ρ(2)U + 1

2ρẋiẋi + 1
2EkDk

)
+

(
ρ(2)U + 1

2ρẋiẋi + 1
2EkDk

)
ẋj,j

+
(

(2)qj + ejikEiHk − (2)tij ẋi − EiDj ẋi

)

,j
= ẋi ρF

ext
i + ρrext .

(8.2.71)

7 The same modification was used also in [118].
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The balances (8.2.70), (8.2.71), now in conservative form, will be used −
as mentioned − exclusively to derive the jump conditions for the energy.
One may remark that in both equations the magnetic quantity Hk appears.
Unlike the energy balances (8.2.66), (8.2.68) the conductive electric current
Jj does not appear in (8.2.70), (8.2.71). Thus, effectively one has replaced a
constitutive quantity, namely Jj , by another quantity, namely Hk.

Concerning the entropy inequality we know or we can relatively easily
prove with Müller’s entropy principle that for the Maxwell-Minkowski

model the entropy flux obeys the Duhem relation

(1),(2)φj :=
(1),(2)qj

Θ
. (8.2.72)

Furthermore for both variants the density of the Helmholtz free energy
Ψ̃ (1),(2) is defined in [64] by

(1),(2)Ψ̃ := (1),(2)Ũ − (1),(2)η Θ − 1
ρ
DjEj , (8.2.73)

where η denotes the entropy as in (8.2.1)5.
If we solve (8.2.73) for the internal energy (1),(2)Ũ and replace in (8.2.66)

and (8.2.68) (1),(2) ˙̃U by the relation obtained from (8.2.73), then new forms of
energy balances for the two variants are obtained. These relations contain the
external energy supplies (1),(2)rext, which also occur in the entropy imbalance
(8.2.1)5. Eliminating these yields new forms of the entropy inequality in the
two variants, which are, respectively, given by

−ρ(1) ˙̃Ψ − 1
2DjEj ẋi,i − ρ(1)η Θ̇ −Θ,j

(1)qj

Θ
−DjĖj + Jj Ej

+ (1)tMij ẋi,j ≥ 0 , (8.2.74)

−ρ(2) ˙̃Ψ − ρ(2)η Θ̇ − Θ,j

(2)qj

Θ
− Dj Ėj + Jj Ej

+ (2)tMij ẋi,j ≥ 0 . (8.2.75)

These relations achieve the fundamental goal of this chapter: the electrorhe-
ological entropy inequality for both variants. As one can see, the difference
between both inequalities consists in the factor in front of the velocity diver-
gence.

Let us resume now all the total balance equations given so far for both
variants. These are (8.2.62), (8.2.66), (8.2.74) and (8.2.63), (8.2.68), (8.2.75),
respectively. For comparison of both variants the identifications

(1)tij =(2) tij + 1
2 DkEk δij , (8.2.76)

(1)qj =(2) qj , =⇒ (1)φj = (2)φj , (8.2.77)
(1)Ψ̃ =(2) Ψ̃ , (1)U = (2)U , =⇒ (1)η = (2)η . (8.2.78)
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are required if the two variants are to yield identical models. Evidently, the
only difference between the two variants appears in the Cauchy stress tensor.
One can compare the results from one variant with those of the other if one
takes into account relations (8.2.76)–(8.2.78). Recall also that the electro-
magnetic quantities Ei, Di, Bi, Hi and Ji are the same in both models.

8.2.5 Jump Conditions

In order to complete the electro-mechanical description of electrorheological
materials as continuous media, we have to add the jump conditions that
must be obeyed by the mechanical and electromagnetic quantities across a
discontinuity surface. Let Σ be a smooth surface, not necessarily material
(e.g. an infinitely thin wall or a membrane) which separates one part of the
body under consideration from another part, and let wini be its velocity in
the positive direction of the unit normal to Σ.

In [64] the easiest case is considered: with the exception of the classical
electric quantity Qs (electric surface charge density of the free charges) all
surface quantities vanish. In general, the jump conditions for volume balances
can be given as (see e.g. [24, 72] and also [161])

[[
Φj + Ξ (ẋj − wj)

]]
nj = 0 , (8.2.79)

in which the abbreviation
[[
Aj

]]
:= A

(+)
j − A

(−)
j is used where A

(+)
j , A

(−)
j

represent the values of Aj on the immediate exterior (+) and interior (−)
side of the surface, and n is the unit normal vector pointing into the positive
region of Σ. In addition, Φj denotes the non-convective flux of the volume
quantity Ξ and wj is the surface velocity. If Σ is a material surface then we
have wj = ẋj . Let us look now at the physical balances in detail.

For the mass balance (8.2.1)1 Ξ = ρ and the non-convective flux, Φj ,
vanishes. So, [[

ρ (ẋj − wj)
]]
nj = 0 . (8.2.80)

For the total momentum balance (8.2.62) of the second variant we have
Ξi = ρẋi, Φij = − (2)tij − EiDj + 1

2EkDkδij implying

[[
ρẋi (ẋj − wj) − (2)tMij − EiDj + 1

2EkDkδij

]]
nj = 0 . (8.2.81)

The jump condition in the first variant looks very similarly, namely
[[
ρẋi (ẋj − wj) − (1)tMij − EiDj

]]
nj = 0 . (8.2.82)

For the energy balance we start from (8.2.70) and (8.2.71), respectively.
With obvious identifications of Ξ and Φ one obtains
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[[
(
ρU + 1

2ρẋiẋi + 1
2EkDk

)
(ẋj − wj) + qj + ejikEiHk

−
(

(1)tij + EiDj − 1
2EkDkδij

)]]

nj = 0 , (8.2.83)
[[
(
ρU + 1

2ρẋiẋi + 1
2EkDk

)
(ẋj − wj) + qj + ejikEiHk

−
(

(2)tij + EiDj

)]]

nj = 0 . (8.2.84)

in the two variants, in which Hk can be eliminated by means of (8.2.53).
For the entropy imbalance we start from (8.2.1)5. For both variants the

jump condition is [[

ρη (ẋj − wj) +
qj

Θ

]]

nj ≥ 0 . (8.2.85)

Finally, the Maxwell-Minkowski equations in the electrorheological ap-
proximation, (8.2.58)−(8.2.61), imply

eijk nj

[[
Ek

]]
= 0 , (8.2.86)

eijk nj

[[
Hk + eklm (ẋl − wl)Dm

]]
= 0 , (8.2.87)

[[
Dj

]]
nj = Qs , (8.2.88)

[[
Bj

]]
nj = 0 , (8.2.89)

where Qs represents the electric surface charge density.
In what follows we shall exclusively use the second variant.

8.2.6 Discussion

The purpose of the first part of this section was to motivate the balance
equations for electrorheological fluids as they were derived in [64].

Starting from the general balance laws of rational thermodynamics and
electrodynamics the system of total balance equations was derived by a
consistent specialization to electrorheological behaviour. The total electro-
mechanical balance laws of mass, momentum and the Maxwell equations in
the Maxwell–Minkowski formulation were given both in local form and as
jump conditions across singular surfaces. The electromagnetic body force and
energy supply rates were derived from the Maxwell equations by deducing
from these the electromagnetic momentum and energy balances as identities.
The production terms in these expressions were identified as electromagnetic
body force and energy supply rate, respectively. However, since the division
of the time rates of change of the electromagnetic momentum and energy into
flux and production terms are not unique, two variants of electrorheological
models were presented, which required connecting relations between energies
and stresses, if equivalence of the emerging models are attempted.
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The crucial step put forward in this approach was the non-dimensionaliza-
tion process specific to the electrodynamic equations. The assumptions that
there is no external magnetic field and that the magnetic induction is pro-
duced exclusively by the motion of the polarized dielectrics, allowed us to
neglect the magnetic terms compared with the electric terms in most (but
not all) of the electrodynamical equations and, consequently, also the total
balances8.

The essential results are the simplified balance equations of thermome-
chanics and electrodynamics which will be used in the remainder of this work;
this is why we put them here together. These equations are (in due order)
the mass balance, the linear momentum balance, the balance of moment of
momentum, the energy balance, the entropy inequality as well as the four
Maxwell-Minkowski equations in the electrorheological approximations;
explicitly,

ρ̇ + ρ ẋj,j = 0 , (8.2.1)1

ρẍi −
(

(2)tij + EiDj

)

,j
− ρF ext

i = 0 , (8.2.63)

eijl
(2)tlj = 0 , (8.2.1)3

ρ ˙̃U + qj,j − (2)tij ẋi,j − ρrext − JjEj − Ej Ḋj

−EkDkẋj,j = 0 , (8.2.68)

(ERF) − ρ
˙̃
ψ − η Θ̇ − θ,j

qj

Θ
− Dj Ėj + Jj Ej + (2)tij ẋi,j ≥ 0 , (8.2.75)

eklm Em,l = 0 , (8.2.90)

ejlm

[
µ−1

0 Bm + empqvp (Dq − ε0Eq)
]

,l
− ∂Dj

∂t
− Jj ,

−Qẋj = 0 , (8.2.91)
Di,i − Q = 0 , (8.2.4)
Bi,i = 0 . (8.2.5)

Henceforth they will be labeled and called ERF equations.

8.2.7 Constitutive Equations

The balance equations in the electrorheological approximation given above
are not sufficient to determine all the unknowns of the problem; so additional
relations reflecting the specific properties of the studied material must be
postulated. The starting point of this procedure consists of the choice of the
8 Even if the magnetic induction would be produced primarily by a time changing

electric field or by an electric current, the neglect of the magnetic compared to
the electric quantities is under practically relevant circumstances still justified.
In general, the situation changes only drastically when an external magnetic field
is present.
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independent fields from all the physical variables involved in the governing
equations. Then we must establish the appropriate constitutive equations for
the remaining variables. In [64], by obeying the principle of material frame
indifference, the independent variables have been chosen as

ρ , Θ , Ej , dij , (8.2.92)

where dij denotes the rate of the strain tensor

dij := 1
2 (ẋi,j + ẋj,i) , (8.2.93)

which is objective.
The presence of this quantity among the independent variables is moti-

vated by the fact that ER-materials behave in general as viscous fluids. That
Θ,i is not among the variables (8.2.92) implies that effects of heat conduction
are not considered. Its incorporation would be formally quite obvious and
easy, but we omit such a dependence, because in subsequent applications it
will not be considered.

It is important to note that the magnetic flux density Bi is not an in-
dependent constitutive variable. Such an assumption is reasonable, because
Bi is likely very small, since according to (8.2.28) magnetization is induced
only by polarization. On this basis Bi can then be computed from (8.2.91)
and (8.2.5) if the electric field strength and the velocity are known. It then
follows that Bi will not influence the mechanical equations, and it will neither
intervene in the electrical problem as will soon be seen.

Although the electric field may also be space-dependent, in a first ap-
proximation its gradient will not be considered an independent constitutive
variable either.

The dependent constitutive quantities of the problem are

C := {tij ,Dj ,Jj , U, Ψ̃ , qj} , (8.2.94)

where we have dropped the left upper index “(2)” from tij , and they are of
the form

C = C(ρ,Θ,Ei, dij) . (8.2.95)

Henceforth we shall focus attention on formulation “(2)”.

Evaluation of the entropy inequality

Evaluation of the entropy inequality will bring the constitutive equations to
their final form. Substituting the constitutive function for the Helmholtz

free energy given in (8.2.94) and (8.2.95) into (8.2.75) and performing the
time differentiation according to the chain rule results in
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−ρ

(

η +
∂Ψ̃

∂Θ

)

Θ̇ −
(

Dj + ρ
∂Ψ̃

∂Ej

)

Ėj − ρ
∂Ψ̃

∂dkl

˙dkl −Θ,j
qj

Θ

+

[

tij + ρ2 ∂Ψ̃

∂ρ
δij

]

dij + JjEj ≥ 0 . (8.2.96)

Exploitation of this inequality follows the same procedure outlined earlier in
Chap. 3. The inequality is explicitly linear in

Θ̇ , Ėj , ˙dkl , Θ,j . (8.2.97)

Since in admissible thermodynamic processes all these terms may have any
arbitrarily assigned values, it follows that each of the coefficients of these
variables in 8.2.96 must be identically zero. This implies the relations

η = −∂Ψ̃

∂Θ
, (8.2.98)

Dj = −ρ
∂Ψ̃

∂Ej
, (8.2.99)

0 = − ∂Ψ̃

∂dkl
, (8.2.100)

qj

Θ
= 0 , (8.2.101)

and the residual inequality
[

tij + ρ2 ∂Ψ̃

∂ρ
δij

]

dij + JjEj ≥ 0 . (8.2.102)

Cross-differentiating (8.2.98)–(8.2.100) we obtain

∂η

∂dkl
= 0 , (8.2.103)

∂Dj

∂dkl
= 0 , (8.2.104)

ρ
∂η

∂Ej
=

∂Dj

∂Θ
. (8.2.105)

From (8.2.103), (8.2.104) it follows that the entropy and the electric displace-
ment cannot depend on the rate of strain tensor. Alternatively, (8.2.105) es-
tablishes a connection between the constitutive laws for η and Dj ; so not all
the constitutive assumptions can be chosen independently.

If we use the definitions of the thermodynamic pressure and if we decom-
pose the Cauchy stress tensor into a spherical tensor containing the dynamic
pressure −pδij and an extra stress tensor teij , viz,
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p := ρ2 ∂Ψ̃

∂ρ
, (8.2.106)

teij := tij + pδij , (8.2.107)

the imbalance (8.2.102) can be written as

ργ := teijdij + JjEj ≥ 0 , (8.2.108)

where γ is the density of entropy production. An important step is now the
satisfaction of (8.2.108). A necessary condition to fulfill the thermodynamic
equilibrium requirement, γ = 0 (no entropy is produced), is

∂γ

∂dA

∣
∣
∣
∣
E

= 0 ,
∂γ

∂Ep

∣
∣
∣
∣
E

= 0 , (8.2.109)

where we denoted by dA the 6 independent components of the rate of strain
tensor

(dA) := (d11, d12, d13, d22, d23, d33) . (8.2.110)

In (8.2.109) and in the sequel the index “E” will denote thermodynamic equi-
librium. Further, one has to treat separately the case of electric conducting
fluids (namely Jj �= 0) and the case of non-conducting fluids (namely Jj = 0)
because the results of this evaluation will be different in the two cases.

1. Electrically conducting fluids. In equilibrium it follows from
(8.2.108) that the independent variables dpq and Ep must vanish,

dpq|E = 0 , and Ep|E = 0 . (8.2.111)

If we replace in (8.2.109) γ by the formula given on the left-hand side of
(8.2.108) and take into account that teij = teij (ρ,Θ,Ek, dkl) as well as Jj =
Jj (ρ,Θ,Ek, dkl), then (8.2.111) yields

(
∂ teij
∂dA

dij + teij
∂dij

∂dA
+

∂Jj

∂dA
Ej

)∣
∣
∣
∣
E

=
(

teij
∂dij

∂dA

)∣
∣
∣
∣
E

= 0 , (8.2.112)

and (
∂ teij
∂Ep

dij +
∂Jj

∂Ep
Ej + Jp

)∣
∣
∣
∣
E

= Jp|E = 0 . (8.2.113)

For the conductive current Jj , (8.2.113) implies

when dpq = 0 and Ep = 0 , then Jj = 0 . (8.2.114)

In view of the choice of the independent variables (8.2.92) this condition is
always fulfilled.

From (8.2.112), by taking into account the symmetry of the extra stress,
it follows that teij cannot be composed of terms containing only ρ and Θ.
Consequently,
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when dpq = 0 and Ep = 0 , then teij = 0 . (8.2.115)

2. Electrically non-conducting fluids. Unlike for conducting fluids
the electric field does not need to vanish in thermodynamic equilibrium.
From (8.2.109)1 there follows a condition identical to (8.2.112), whilst from
(8.2.109)2 one obtains a condition which is always fulfilled if ∂teij/∂Ep|E is
bounded which we will assume. However, condition (8.2.112) is stronger in
this case: teij must vanish whenever dmn is zero and consequently teij cannot
contain terms formed only with ρ, Θ and El.

A sufficient condition guaranteeing that (8.2.108) is fulfilled at thermo-
dynamic equilibrium is that the matrix of the second-order derivatives (with
respect to dA and Ei) must be positive semidefinite (see [161]). More pre-
cisely, this means that all the principal subdeterminants of the matrix

(
(3 × 3) (3 × 6)
(6 × 3) (6 × 6)

)∣
∣
∣
∣
E

=






(
∂2γ

∂Ep ∂Er

) (
∂2γ

∂Ep ∂dA

)

(
∂2γ

∂dA ∂Er

) (
∂2γ

∂dA ∂dB

)






∣
∣
∣
∣
∣
∣
∣
E

(8.2.116)

must be larger or equal to zero. It is difficult to evaluate these conditions in
general, but we will do it later for concrete constitutive assumptions.

Constitutive functions for the electrical quantities

Let us discuss now the constitutive laws for the dependent electrical quanti-
ties. Starting from (8.2.94) and (8.2.95), Eckart considers in [64] the most
general expressions for isotropic polar vector functions (here Dj and Jj) of
a polar vector (here Ej) and a symmetric tensor of second order (here djk).
These representations are9

Dj = εEj , (8.2.117)
Jj = σ1 Ej + σ2 djk Ek + σ3 dj� d�k Ek . (8.2.118)

(see e.g. [72] and [220]). The quantity ε denotes the effective permittivity of
the ER-material at hand and σ1, σ2, σ3 represent the effective conductivities.

In view of (8.2.104) one can easily see that ε cannot depend on the strain
rate tensor dij ; therefore

ε = ε (ρ,Θ,EkEk) . (8.2.119)

Alternatively the effective conductivities can be any functions of the invari-
ants of the independent variables
9 In (8.2.117) two additional terms ε2djkEk and ε3djldlkEk are missing because

of (8.2.104)



8.3 Constitutive Laws for the Cauchy Stress Tensor 303

σA = σA (ρ,Θ,EkEk, dkk, djkdkj , djkdkldlj , EjdjkEk, EjdjkdklEl) ,
(8.2.120)

where A = 1, 2, 3. This is, of course very complicated, and in practice one
will restrict the number of independent variables to just a few, e.g.

σA = σA (ρ,Θ,EkEk, djkdkj) . (8.2.121)

The electrical model of order zero

The most simple meaningful constitutive assumptions for the electrical
quantities are models for which ε and σA (A = 1, 2, 3) do not depend on the
rate of strain tensor [they are of “zeroth order” in dij

10 (ε is of course always
of zeroth order in dij according to (8.2.119))]. Moreover, the constitutive
parameters must also be independent of the electric field: we consider here
linear dielectrics and Ohmian conductors. With these restrictions one obtains
from (8.2.119) and (8.2.121)

ε = ε (ρ,Θ) , σ1 = σ100 (ρ,Θ) , σ2 = σ3 = 0 . (8.2.122)

So, the electrical constitutive parameters are constant for constant density
and temperature. All these assumptions agree with the experimental results
presented by Eckart [64] who quotes a relevant selection from the measure-
ments done by the Rheology work-group, Department of Fluid Mechanics of
the University of Elangen-Nürenberg, see [2, 269, 270]. In our further ap-
proach we will adopt the material description given by (8.2.122).

A discussion about the constitutive function of the Cauchy extra stress
tensor teij is postponed until the next section where a literature review of the
constitutive models for teij used to describe ER fluids is given.

8.3 Constitutive Laws for the Cauchy Stress Tensor

8.3.1 Models Proposed in the Literature

A key step in electrorheology is to relate the theory with practical applica-
tions namely with the results from measurements and computations. Usually,
the theoretical approaches are very abstract, general and difficult to use in
concrete situations whereas the empirical approaches are applicable but of-
ten too particular. In the electrorheological field noticeable efforts are made
10 Measurements (see especially [2]) show that the measurable electric current can

depend on the shear rate. This dependence is, however, largely influenced by the
temperature, frequency of the electric field and mostly by the composition of the
ERF. For the ERF Rheobay the shear rate dependence is, however, small; in this
work this dependence will be neglected.
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from both sides to describe in a better and more accurate way the response
of electrorheological fluids to external fields. We will review briefly the most
important theoretical models for the expression of the Cauchy stress tensor
according to (8.2.94) and (8.2.95) that have so far been proposed in the litera-
ture. While these proposals are three-dimensional expressions for the Cauchy
stress, in most applications one-dimensional models are used. If one deals
with numerical computations involving two or three-dimensional models one
can either generalize the one-dimensional models or choose particular forms
of the general models taking into account also the experimental characteri-
zation of the ERFs.

The most general form of the constitutive function for the Cauchy stress
tensor that depends on the objective independent variables ρ, Θ, dij and Ei

(see (8.2.94) and (8.2.95) is given by (see [220])

tij = −pδij + teij = (−p + α1)δij + α2EiEj + α3dij + α4dikdkj

+α5(EidjkEk + dikEkEj) + α6(EidjkdklEl + dikdklElEj) , (8.3.1)

where αi, i = 1, . . . , 6 are functions of the invariants

ρ , Θ , EkEk , dkk , djkdkj , djkdkldlj , EjdjkEk , EjdjkdklEl . (8.3.2)

This general constitutive law was first proposed by Rajagopal and Wine-

man in [194]. However, they treated the electric field as a constant when
calculating the velocity field for the flow problems formulated in their paper.

In [196] two special cases of (8.3.1) are discussed. In the first it is assumed
that the stress is linear in dij and quadratic in Ei and hence the material
parameters have the form

α1 = α11 + α12dkk + α13EkEk + α14EkEkdjj + α15EjdjkEk ,
α2 = α21 + α22dkk ,
α3 = α31 + α32EkEk ,
α4 = 0 ,
α5 = α51 ,
α6 = 0 ,

(8.3.3)

where αij are functions of ρ and Θ only. The subcases of (i) a compressible,
(ii) a mechanically incompressible but electrically compressible and (iii) an
incompressible fluid are considered and for each of them the restrictions im-
posed on tij by the Clausius–Duhem inequality are given. The second case
pertains to the non-linear model of incompressible ERFs with shear depen-
dent viscosities. First it is assumed that

α4 = α6 = 0 . (8.3.4)

The choices for the material parameters α2, α3 and α5 reflect a combination
of a Newtonian and power-law like behaviour where the power exponent11

11 We adopted a different notation than in [196], where p is used instead of n, to
avoid confusion with the pressure p



8.3 Constitutive Laws for the Cauchy Stress Tensor 305

can be a function of EkEk. Concretely, it is assumed that

α2 = α20 + α21(dlmdml)(n−1)/2 ,

α3 = α30 + α31(dlmdml)(n−2)/2 + α32EkEk

+α33EkEk(dlmdml)(n−2)/2 , (8.3.5)
α5 = α50 + α51(dlmdml)(n−2)/2 ,

where αij are functions of Θ. The material function n depends on EkEk and
satisfies

1 < n∞ ≤ n(EkEk) ≤ n0 < ∞ , (8.3.6)

where

n0 = lim
EkEk→0

n(EkEk) , n∞ = lim
EkEk→∞

n(EkEk) . (8.3.7)

An alternative model to (8.3.5) is also given; in this model (dlmdml)β/2 is
replaced by

(ξ + dlmdml)β/2 or (ξ + (dlmdml)1/2)β , (8.3.8)

where β = n− 1 or n− 2. The purpose of the addition12 of ξ in the represen-
tation 8.3.8 prevents the model for n ∈ (1, 2) from developing infinite shear
viscosity at zero stretching and a yield-like behaviour as in the first model
(8.3.5). Simplified models of (8.3.5) and (8.3.8) corresponding to specific elec-
trorheological fluids (n ≡ 2 or n �≡ 2) are considered and restrictions for the
corresponding coefficients αij are obtained.

Finally, a model which includes all the discussed approximating models
except that with n ∈ (1, 2) and α30 = α32 = α50 = 0 is proposed as follows:

tij = −pδij + α21((ξ + dlmdml)(n−1)/2 − 1)EiEj

+(α31 + α33EkEk)(ξ + dlmdml)(n−2)/2dij

+α51(ξ + dlmdml)(n−2)/2(EidjkEk + dikEkEj) , (8.3.9)

where n satisfies (8.3.6). All cases formulated and discussed in [196] are
amenable to mathematical analysis. In [205], Růžička studied in detail math-
ematical issues such as existence, uniqueness and stability of weak and strong
solutions for steady flow of incompressible shear dependent electrorheologi-
cal fluids with the stress given by (8.3.9). In view of the dependence of the
material function n on the magnitude of the electric field, this problem is
described by an elliptic or parabolic system of partial differential equations
(PDE) exhibiting so-called non-standard growth conditions, i.e. the elliptic
operator teij = tij + pδij satisfies the inequalities

12 Here ξ is a quantity having the dimension 1/s2 in (8.3.8)1 and 1/s in (8.3.8)2
which for the sake of the mathematical treatment is taken to be equal to 1 s−2

(s−1). The choice ξ = 1 is justified, because the role of the extra constant ξ is to
regularize the system of partial differential equations at zero stretching
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teij(d,E)dij ≥ c0(1 + EkEk)(ξ + dlmdml)
n∞−2

2 dlmdml , (8.3.10)

teij(d,E) teij(d,E) ≤ c1(ξ + dlmdml)
n0−1

2 EkEk . (8.3.11)

In [205] the case of unsteady flows of shear dependent ERFs is also treated
for the constitutive function

tij = −pδij + α31(1 + EkEk)(ξ + dlmdml)(n−2)/2dij , (8.3.12)

where α31 > 0 and n = n(EkEk) satisfies (8.3.6) with n∞ ≥ 2. The existence
of weak and strong solutions global in time for large data under certain
restrictions on n∞ and n0 and the uniqueness of the strong solution are
proved.

The model proposed by Eckart in [63]13 consists of an extension of the
model (8.3.5) modified as in (8.3.8)1,

tij = −pδij + [α20 + α21Z
−a+1/2 + α22Z

−b+1/2]EiEj

+[α30 + α31Z
−a + α32Z

−b]dij

+[α40 + α41Z
−a−1/2 + α42Z

−b−1/2]dikdkj

+[α50 + α51Z
−a + α52Z

−b](EidjkEk + dikEkEj)

+[α60 + α61Z
−a−1/2 + α62Z

−b−1/2](EidjkdklEl + dikdklElEj) , (8.3.13)

where Z := D2
0 + dmndnm. Here αij as well as the exponents a and b are ma-

terial parameters that can depend only on ρ, Θ and EkEk, while D0 denotes
a constant reference shear rate. The reasons for this choice of the constitutive
function are explained in detail in [63] (see also [64]). We mention only some
selected arguments. First, this model includes the Casson model as a special
case, to be presented below in (8.3.49)–(8.3.50) and quite successfully used
(in one-dimensional form) to fit measured data for one of the ERFs, tested
in [2]. Second, by introducing coefficient expansions in Z with two exponents
a and b, it is possible to describe the measurements with constant exponents.
13 The same author presents in [64] a more detailed approach where he treats also

the so-called mechanical model of order 1 (the stress is linear in dij and quadratic
in Ei) which was discussed also in [196] as mentioned above. Unlike Rajagopal

and Růžička, Eckart considers only incompressible fluids but in addition to
the results presented in [196] he gives the consequences of the entropy inequality
on this model also for electrically conducting fluids. The particularization of this
model on a viscometric flow under uniform electric field perpendicular to the
flow direction shows Newtonian behaviour with a viscosity depending on the
electric field. This behaviour is not supported by the experimental data where
one observes strongly non-linear dependence of the shear stress on shear rate (for
more details see [64]).
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[Having only one exponent that does not depend on the electric field, it is in
general not possible to fit the data]. This is advantageous for inhomogeneous
electric fields (for which Ek depends on xj) since we then avoid the exponents
to be dependent on the coordinate xj .

The quantity D2
0, which in [196] has been chosen as D2

0 = 1, exhibits an
important meaning. A non-vanishing D0 plays the same role as ξ in (8.3.8).
Specifically, it prevents the model for certain choices of the exponents a and
b from developing an infinite viscosity limit at vanishing stretching. For nu-
merical calculations a non-vanishing value D0 �= 0 avoids singularities that
may otherwise cause problems in the computations. For some particular cases
of (8.3.13), however, e.g. in viscometric flows (see (8.3.27)–(8.3.30), (8.3.33)–
(8.3.36)), the choice D0 = 0 allows calculation of analytical solutions for the
velocity (see Subsect. 8.4.2). However, when an inhomogeneous electric field
is considered, the flow is no longer viscometric and numerical solutions must
be sought by choosing certain positive values for D0.

The phenomenological approach was continued in [63] (see also [64]) with
the investigation of model (8.3.13) in a viscometric flow with a constant
electric field perpendicular to the flow direction (e.g. shear flow in a plane
channel under an electric field produced by two infinite electrodes placed
along the channel walls – see Subsect. 8.4.2), i.e.,

E1 = E3 = 0 , E2 = −V

h
, (8.3.14)

d12 = d21 = 1
2 ẋ1,2 =: 1

2 γ̇ , dij = 0 otherwise . (8.3.15)

Then, it is straightforward to show that

Z = D2
0 + 1

2 γ̇
2 , (8.3.16)

τ := t12 = t21 = (β̄0 + β̄1Z
−a + β̄2Z

−b)γ̇ , (8.3.17)
t13 = t31 = 0 , (8.3.18)
t23 = t32 = 0 , (8.3.19)
t11 = −p + 1

4 (α40 + α41Z
−a−1/2 + α42Z

−b−1/2)γ̇2 , (8.3.20)

t22 = −p + (α20 + α21Z
−a+1/2 + α22Z

−b+1/2)
V 2

h2

+(ψ̄0 + ψ̄1Z
−a−1/2 + ψ̄2Z

−b−1/2)γ̇2 , (8.3.21)
t33 = −p , (8.3.22)

N1 := t11 − t22 = −(α20 + α21Z
−a+1/2 + α22Z

−b+1/2)
V 2

h2

− 1
2 (α60 + α61Z

−a−1/2 + α62Z
−b−1/2)

V 2

h2
γ̇2 , (8.3.23)

N2 := t22 − t33 = (α20 + α21Z
−a+1/2 + α22Z

−b+1/2)
V 2

h2

+(ψ̄0 + ψ̄1Z
−a−1/2 + ψ̄2Z

−b−1/2)γ̇2 . (8.3.24)
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where

β̄i := 1
2 (α3i + α5i V

2/h2) , i = 0, 1, 2 , (8.3.25)
ψ̄i := 1

4 (α4i + 2α6i V
2/h2) , i = 0, 1, 2 , (8.3.26)

and αij = αij(ρ,Θ, V 2/h2).
Unfortunately there are no measurements available for the normal stresses

t11, t22, t33. That is why the parameters α4i and α6i, i = 0, 1, 2, which are pri-
marily responsible for non-vanishing values of N1 and N2, will be set equal to
zero in the constitutive models used in the numerical computations described
below, see (8.3.39), (8.3.65), (8.3.66). We also mention that N1 = 0 when the
electric field vanishes which is an unrealistic property, but for an ERF this is
acceptable since these fluids exhibit no normal stress effects in the absence
of the electric field.

For certain choices of D0, a, b and β̄i the shear stress formula (8.3.17)
agrees with the corresponding formula that may also be derived from model
(8.3.8) if that is restricted to the viscometric flow in question. Model (8.3.17)
with D0 = 0 includes also the most popular models14 used in a one-
dimensional form in electrorheology: the Bingham model, the Casson model
and the power-law model [2, 176, 258, 269, 270]. Let us employ the upper
indices B, C and P to denote the quantities corresponding to each of them.

• By choosing β̄0 = ηB, a = 1
2 , β̄1 = 1√

2
τB
y and β̄2 = 0 the linear Bingham

model15 is found

τB = τB
y + ηB γ̇ , τB > τB

y , γ̇ > 0 , (8.3.27)

τB = −τB
y + ηB γ̇ , τB < −τB

y , γ̇ < 0 , (8.3.28)

where τB
y ≥ 0 is the yield stress and ηB > 0 the viscosity.

• The non-linear Casson-model possesses also two material parameters:
the yield stress τC

y ≥ 0 and the viscosity ηC > 0. Its equation reads

τC = τC
y + 2 (τC

y ηC γ̇)1/2 + ηC γ̇ , τC > τC
y , γ̇ > 0 , (8.3.29)

τC = −τC
y − 2 (τC

y ηC(−γ̇))1/2 + ηC γ̇ , τC < −τC
y , γ̇ < 0 , (8.3.30)

and is obtained by choosing the parameters in (8.3.17) as follows

β̄0 = ηC , a = 1
2 , β̄1 = 1√

2
τC
y , b = 1

4 , β̄2 = 23/4(ηCτC
y ) . (8.3.31)

14 For models with yield stress one can deduce only the equations describing the
liquid-like behaviour.

15 In [63], equations (8.3.27), (8.3.29), (8.3.33) and (8.3.35) are said to be valid also
for γ̇ = 0. We agree with this only in the sense of a subsequent extension by
continuation and not as a deduction from the model (8.3.17) since when a > 0,
Z is not defined for γ̇ = 0 (except when n > 1 for the power law model which is
valid for γ̇ = 0). Equations (8.3.28), (8.3.30) and (8.3.34) are not given in [63];
these can also be deduced from (8.3.17) and we give them here for completeness.
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• The power-law model is also non-linear but it does not possess a yield
region and thus continuously connects a zero stretching regime with any
such non-zero regime. For its parameterization one must choose

β̄0 = 0 , a = 1
2 (1 − n) , β̄1 = 2−(1−n)/2m , β̄2 = 0 , (8.3.32)

where m > 0 and n > 0 are the two model parameters and (8.3.17)
becomes

τP = mγ̇n , γ̇ > 0 , (8.3.33)

τP = −m(−γ̇)n , γ̇ < 0 . (8.3.34)

Then, by analysing the experimental data measured for the electrorheological
fluid Rheobay TP AI 3565, the Casson-like model, introduced by choosing
D0 = 0, a = 1

2 and b = 1
4 , is found to be a very suitable model (at least for

the fluid Rheobay)

τCl = (η0 + β0)γ̇ + 21/2β1 + 21/4β2γ̇
1/2 ,

τCl > 21/2β1 ≥ 0 , γ̇ > 0 , (8.3.35)

τCl = (η0 + β0)γ̇ − 21/2β1 − 21/4β2(−γ̇)1/2 ,

τCl < −21/2β1 ≤ 0 , γ̇ < 0 , (8.3.36)

where the upper index “Cl” is used to denote the shear stress for the Casson-
like model. Here, β1 = β̄1, β2 = β̄2 and β0 = β̄0 − η0 must obey the relation

βi(V = 0) = 0 , i = 0, 1, 2 , (8.3.37)

where η0 is the dynamic viscosity in the absence of an electric field. By
imposing (8.3.37) it is demanded that the fluid has Newtonian behaviour
at vanishing electric field. Whereas in the Casson model, the coefficient of
γ̇1/2 is connected to the other material coefficients, in the model (8.3.35)–
(8.3.36) it is independent of these. Consequently, the Casson-like model can
be particularized to the Bingham model. The values of η0 and β1, β2 may
differ for different electric fields. A table with values found by fitting the data
from the measurements obtained in a rotational viscometer for the ER-fluid
Rheobay at different electric fields is given in Subsect. 8.4.3 (Table 8.1).

Finally, taking into account the experimental results, we now impose ad-
ditional, new assumptions in the general model (8.3.13) to obtain a simpler
constitutive function which is still able both to describe the measurements
and to make simpler analytical solutions possible. First, the parameters re-
sponsible for the normal stress effects, (see (8.3.23), (8.3.24), are neglected16,

16 Actually, the parameter α2 can also be responsible for non-trivial normal stress
differences. However, it is almost impossible to describe realistically the normal
stress effects only with this parameter.
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α40 = α41 = α42 = α60 = α61 = α62 = 0 , (8.3.38)

and, second, the values a = 1
2 and b = 1

4 are chosen. This leads to

tij = −pδij + [α20 + α21 + α22(D2
0 + dmndnm)1/4]EiEj + 2η0dij

+[α30 + α31(D2
0 + dmndnm)−1/2 + α32(D2

0 + dmndnm)−1/4]dij

+[α50 + α51(D2
0 + dmndnm)−1/2 + α52(D2

0 + dmndnm)−1/4]
[EidjkEk + dikEkEj ] .

(8.3.39)

In [63] this is called the extended Casson model. When the electric field van-
ishes, the factors α30, α31 and α32 must equally vanish to guarantee New-

tonian behaviour for vanishing electric field. The entropy inequality imposes
restrictions on the material parameters. The necessary condition (8.2.114)
is always fulfilled due to the choice of the independent variables. On the
other hand, (8.2.115) is identically fulfilled for conducting fluids while for
non-conducting fluids it requests that

α20 + α21 + α22D
1/2
0 = 0 , (8.3.40)

The fact that the dependence of the parameters αij on the electric field is
unknown makes evaluation of the sufficient condition (8.2.116) difficult. For
non-conducting fluids the following relations can be deduced:

η0 ≥ 0 , (8.3.41)

2η0 + [α30 + α31D
−1
0 + α32D

−1/2
0 ]

+2[α50 + α51D
−1
0 + α52D

−1/2
0 ]E2

1 ≥ 0 , (8.3.42)

2η0 + [α30 + α31D
−1
0 + α32D

−1/2
0 ]

+[α50 + α51D
−1
0 + α52D

−1/2
0 ](E2

1 + E2
2) ≥ 0 . (8.3.43)

We regard the two approaches presented in [63] and [196] presently as
the most advanced single constituent constitutive proposals for the Cauchy

stress and electric field. They are therefore important and relevant for our
treatment of particular problems to be attacked below. Nevertheless, in order
to provide a broader view of attempts to describe ER-fluids, we consider it
worthwhile to mention also other constitutive models introduced in the spe-
cific literature. We continue by mentioning two studies which are interesting,
to a greater extent from the mathematical point of view. Both of them treat
extensions of the Bingham model.

In [67] the authors propose a so-called extension of the Bingham model
determined in terms of the minimization of the global dissipation energy. The
Cauchy stress (in tensorial form) is given by

t = −pI + γ
|E|
|dE| (dE ⊗ E + E ⊗ dE) + η d . (8.3.44)
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Obviously, it is not well defined when dE = 0, which characterizes the “rigid
zones”. It can be proved that the shear stress has to exceed the threshold
γ|E|2 outside the rigid zones; so this quantity may be viewed as an equivalent
of the yield limit of the standard Bingham model. However, the stress tensor
is not used directly to formulate the boundary value problem to be solved.
The velocity field is computed as the solution of a non-smooth minimiza-
tion problem for the global energy dissipation. This minimization problem
is solved numerically by the method of augmented Lagrangeans combined
with an operator-splitting technique. Numerical results are given that illus-
trate the ER-effect for a pure shear mode (Couette flow) and for a more
complicated flow structure for an electrorheological clutch.

Another mathematical study of the flow of electrorheological fluids and
of their constitutive description of Bingham behaviour is given in [35]. First,
a boundary value problem for unsteady flow of an electrorheological fluid
is formulated. Starting from the most general constitutive function for the
stress (8.3.1), the authors assume that t is quadratic in E and affine in d and
d/|d| and neglect the term containing E ⊗E. The resulting constitutive law
has the form

tij = −pδij +
(

α30 + α31
1
|d| + α32EkEk + α33EkEk

1
|d|

)

dij

+α50(EidjkEk + dikEkEj) , (8.3.45)

where the coefficients αij are constants that have to fulfill

α30 ≥ 0 , α31 ≥ 0 , α32 ≥ 0 , α33 ≥ 0 , α32 + 4
3α50 ≥ 0 . (8.3.46)

The restrictions (8.3.46) are deduced from the Clausius–Duhem inequal-
ity; they are essential in the further proofs of existence and uniqueness of
solutions. Model (8.3.45) is viewed as a combination of Newtonian and
Bingham behaviour. As in [67], (8.3.45) does not make sense if |d| = 0, so it
cannot be used in the boundary value problem. Instead of this, a variational
inequality is formulated for the stress which makes sense. So, the problem is
formulated in a variational form. Existence and uniqueness are proved for the
solution in the two-dimensional case for any initial data, while in the three-
dimensional case global existence of a weak solution is proved for small initial
data only. In the end of the paper an interesting result is given concerning
the estimation of the time when the fluid stops.

Both articles emphasize mathematical aspects and do not present identi-
fication of parameters by experiments.

8.3.2 Constitutive Laws Used in Our (Numerical) Approach

In the majority of the experimental evaluations, the constitutive assumptions
for ERFs used in the literature are confined to one-dimensional modeling.
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The standard configuration is (steady) plane shear flow for which the con-
stitutive equations take the form of a stress-shearing relation [2, 176, 198,
224, 269, 270]). Most popular in the literature are the Bingham, Casson

and power law models, depending on the electrorheological material at hand.
As mentioned previously, the Casson-like model was introduced in [63]. It
generalizes the usual Casson model and includes the Bingham model as a
particular case. However, when the more realistic case of finite electrodes is
considered (see Subsect. 8.4.3), the flow is two-dimensional and bidirectional.
So, more generally, we have to deal with two-dimensional constitutive equa-
tions. Let us recall here the two-dimensional forms of the aforementioned
constitutive equations (the indices take the values 1 and 2).

• The Bingham model is described by

teij = 2η0dij + 21/2τy
dij

|d| , |te| > 21/2τy , (8.3.47)

dij = 0 , |te| ≤ 21/2τy , (8.3.48)

where |d| :=
√

dmndnm is one form of the second invariant of d.
• The classical Casson model is given by

teij = 2η0dij + 21/2τy
dij

|d| + 27/4(η0τy)1/2 dij

|d|1/2
, |te| > 21/2τy , (8.3.49)

dij = 0 , |te| ≤ 21/2τy . (8.3.50)

When these equations are used to describe the ERF behaviour, one has
to take into account the dependence of the yield stress and, eventually of
the viscosity, on the magnitude of the electric field.

• For the power-law model we have (see [221])

teij = mγ̇n−12dij , (8.3.51)

where n > 1 (shear-thickening behaviour). Here γ̇ = 21/2|d| denotes a
generalized shear rate. When n < 1 (shear-thinning or pseudoplastic be-
haviour) we can no longer use (8.3.51), since for γ̇ → 0 the generalized
viscosity mγ̇n−1 → ∞. The difficulty is overcome by modifying the model
(8.3.51) through the introduction of a new free parameter γ̇0

teij =

{
mγ̇n−1

0 2dij , γ̇ ≤ γ̇0 ,

mγ̇n−12dij , γ̇ > γ̇0 .
(8.3.52)

Here, γ̇0 is a constant value of the generalized shear rate below which
Newtonian behaviour with viscosity η0 = mγ̇0

n−1 prevails17. For elec-
trorheological fluids the parameters m, n and γ̇0 may depend on the elec-
tric field.

17 An alternative to regularize 8.3.51 is to replace γ̇n−1 by (γ̇n−1 + γ̇0
n−1), where

γ̇0 is a very small constant.
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• Let us also generalize (8.3.35)–(8.3.36) and introduce the two-dimensional
form of the Casson-like constitutive function as

teij = 2η0dij + β1
2dij

|d| + β2
2dij

|d|1/2
, |te| > 2|β1| , (8.3.53)

dij = 0 , |te| ≤ 2|β1| , (8.3.54)

where the parameters η0, β1 and β2 are positive and may depend on
the magnitude of the electric field. The Bingham model and the classical
Casson model are obtained from (8.3.53), (8.3.54) if β1 = 2−1/2τy, β2 = 0
and β1 = 2−1/2τy, β2 = 23/4(η0τy)1/2, respectively, are chosen.

All these models may cause serious mathematical difficulties since they are
expressed by two-branched functions which are not smooth at the branching
point. The presence of the denominator |d| is an obstacle against straightfor-
ward numerical modeling of flows in complex geometries because it is difficult
to determine a priori where it vanishes. For instance, for models with yield
behaviour such as the Bingham, Casson and Casson-like models, it is not
possible to determine a priori the yield surfaces (the interfaces which sepa-
rate a non-deforming solid from a fluid state region) since they have to be
determined as part of the solution. Similarly, it is not possible to determine ex-
plicitly in what regions of the problem domain γ̇ = γ̇0 for the model (8.3.52).
Some attempts to overcome this difficulty have been proposed. Most of them
concern the Bingham model. In 1999 Barnes published a review [21] on
models with yield stress. In a special section of the article,“Problems with
yield stress and mathematics”, the author mentions important approaches
for several complex flow configurations dealing with yield stress. These are
mainly based on the modification of the Bingham model in such a way that
the mathematical problem concerning the yield stress is avoided. The most
important approximations of the Bingham model mentioned by Barnes are
the ‘bi-viscosity’ model and the Papanastasiou model. In the bi-viscosity
model, the rigid-body character (8.3.48) at low stresses is replaced by a New-

tonian fluid behaviour with very high viscosity (ηN � η0). Then, instead of
(8.3.47)–(8.3.48) we have the law

teij = 2η0dij + 21/2τy
dij

|d| , |te| > 21/2τN , (8.3.55)

teij = 2ηNdij , |te| < 21/2τN , (8.3.56)

where the constant τN is related with τy by

τy = τN (1 − η0/ηN ) . (8.3.57)

The law (8.3.55)–(8.3.56) for ηN → ∞ becomes (8.3.47)–(8.3.48). In Fig. 8.1
one can see how the shear stress depends on the shear rate (one-dimensional



314 8 Electrorheological Fluids

Fig. 8.1. One-dimensional form of the bi-viscosity model (8.3.55)–(8.3.56) (only
for positive shear rates)

case) within the bi-viscosity assumption. This model was used in the treat-
ment of squeeze-flow of an electrorheological fluid (see [224]).

Papanastasiou introduced in [173] a modified constitutive equation that
smoothes the yield criterion, permitting the numerical treatment of the flow
problems based on this model. In our notation his law reads

teij =
(

2η0 + 21/2τy
1 − exp [−n21/2|d|]

|d|

)

dij , (8.3.58)

where the exponent n is a relatively great material parameter that can be
determined by experiments. The Bingham law in the unyielded region is
recovered from equation (8.3.58) for n → ∞. By contrast to (8.3.47), equation
(8.3.58) is not singular since

lim
|d|→0

teij = 2(η0 + nτy)dij , (8.3.59)

and, consequently, it is valid for both the yielded and “unyielded” regions.
We should also mention here the so-called alternative Bingham model

introduced by Mellgren in [141]

teij =
(

2η0 + 21/2τy
1

(ε/2 + |d|2)1/2

)

dij , (8.3.60)

where ε is a positive material parameter. For ε → 0 (8.3.60) reduces to
(8.3.47) but since ε is required to be positive, (8.3.60) is defined for all possible
values of dij . As in (8.3.58) the material takes on only a liquid state and
therefore does not cause any mathematical difficulties.
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Fig. 8.2. Comparison (one-dimensional form) between the Bingham constitutive
function (8.3.27), (8.3.28) and the modified Bingham models (Papanastasiou’s
model, alternative Bingham model) for different values of the parameters n and ε,
respectively

In Fig. 8.2 one can see how the models (8.3.58) and (8.3.60) approxi-
mate the Bingham model in the one-dimensional case. The yield stress τy

functions only as a material parameter without the significance of a yield
stress. Relations (8.3.58) and (8.3.60) may be seen not only as mathematical
approximations of the Bingham model. In [20] a revolutionary but contro-
versial idea in rheology was introduced according to which the concept of
yield stress should be seen only as an idealization since “given accurate mea-
surements, no yield stress exists”. So, the viscosity is always finite. This point
of view was supported by some experiments done with rheometers which al-
low stress measurements for very low shear rates. When the experiment was
performed for lower shear rates (for the same material), the value of the yield
stress was found to be smaller. Consequently, from this point of view, models
(8.3.58) and (8.3.60) are closer to reality.

Let us denote by f and g the functions “shear stress vs. shear rate”
appearing in the one-dimensional versions of (8.3.58) and (8.3.60),viz.,

f(x) =
(

η0 + τy
1 − exp(−n|x|)

|x|

)

x , (8.3.61)

g(x) =
(

η0 + τy
1

(ε + x2)1/2

)

x . (8.3.62)

If we seek n and ε such that the slopes of the curves are equal in x = 0 i.e.
f ′(0) = g′(0) (where f ′(0) := f ′(0+) = f ′(0−)) then we obtain n = 1/(ε)1/2.
For n and ε satisfying this relation, the curves for f and g are very close (see
Fig. 8.2) showing very similar behaviour.
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One can apply the ingenious ideas of the models (8.3.58) and (8.3.60) to
avoid the singular behaviour of the stress to the Casson and Casson-like
models, too and even to the power-law model. However, when we use these
functions to describe the electrorheological fluids, the material parameters
η0, τy and n, ε, respectively, may depend on the electric field. For a space-
dependent electric field the constitutive equations modified as in (8.3.58)
become too complicated due to the presence of the exponential. Due to its
simplicity, (8.3.60) is easier to handle than (8.3.58). Let us show how this
same regularization can be applied to the power-law model: for instance, in
the one-dimensional case of (8.3.52), one may consider instead of the two-
branched function (we use the notation of (8.3.17))

τ =
{

m|γ̇|n−1γ̇ , |γ̇| > γ̇0 ,
mγ̇n−1

0 γ̇ , |γ̇| ≤ γ̇0 ,
(8.3.63)

the form
τ = m(ε + γ̇2)(n−1)/2γ̇ , (8.3.64)

which eliminates the branching (for illustration and comparison with the
original model (8.3.63) see Fig. 8.3). This law was used by Hutter (see
[97, 98, 99]) to derive the generalized Glen law in glaciology. As γ̇ → 0 this
law exhibits Newtonian behaviour. We found this approach very appropriate
for our study.

Even though the boundary value problem is quite different from ours, re-
cent work of Hild et al. [89] ought to be mentioned who applied the Bingham

model to modeling landslides. In their model the viscosity coefficient and the
yield stress depend on density which in turn is time- and space-dependent.
This makes this approach interesting also for our case. By using variational
methods the authors study the blocking property of the flow and describe
the rigid zones and the stagnant regions (which are stuck on the boundaries)

Fig. 8.3. Comparison between models (8.3.63) and (8.3.64)



8.4 Applications: Channel Flow of ERFs 317

for certain boundary value problems. However, they explicitly find the yield
surfaces only for one-dimensional cases.

Now synthesizing all the previous issues we will introduce two constitutive
models for electrorheological fluids which will further be used in the numer-
ical approach: the alternative Casson-like model (which contains also the
alternative forms of the Bingham and Casson models),

teij = 2η0dij + β1(E)
2dij

(δ + |d|2)1/2
+ β2(E)

2dij

(δ + |d|2)1/4
, (8.3.65)

and the alternative power-law model

teij = m(E)(δ + 2|d|2)(n(E)−1)/22dij , (8.3.66)

where E = (E2
1 +E2

2)1/2 is the electric field modulus and δ is a small positive
material parameter. With these two models it is possible to cover a large
class of electrorheological materials. They are suitable to numerical simula-
tions and consistent with the phenomenological approaches presented in the
previous section. Namely, the alternative Casson-like model may be seen as
a particularization of (8.3.39) if we take

α20 = α21 = α22 = α30 = α50 = α51 = α52 = 0 , (8.3.67)
α31 = β1 , α32 = β2 , (8.3.68)
D2

0 = δ , (8.3.69)

while the alternative power-law model is included in (8.3.13) as a particular
case; it is similar to a particularization of (8.3.9)1 (for α1 = α2 = α5 = 0)
with one small deviation: the function m in (8.3.66) depends only on the
magnitude of the electric field and its expression has to be determined for
each ER-material; the dependence of α3 (with the coefficients α31 = α33 = 0)
on the magnitude of the electric field, takes the particular form α30 +α33E

2.
For both models the dependence of the coefficients, β1, β2 for the Casson-

like model and m, n for the power-law model, on the electric field are estab-
lished for a certain ERF with the aid of the experimental data. The mea-
surements are usually performed with rotational viscometers based on the
Couette system (made by two concentric cylinders or plate-plate geome-
try). These devices provide graphs “shear stress vs. shear rate” for different
values of the electric fields. The material parameters are obtained from the
measured data by fitting techniques, and they are given in tables for differ-
ent values of the electric field [2, 63, 269]. By interpolation we can obtain the
desired functions.

8.4 Applications: Channel Flow of ERFs under
Homogeneous and Inhomogeneous Electric Fields

In general, the working behaviour of devices using ER fluids is classified by
three fundamental modes: shear, flow and squeeze [224]. In the flow mode,
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which is also called Poiseuille flow (the flow occurs under the effect of an axial
pressure), it is assumed that the two electrodes are fixed. The study presented
in this section is focused on a special case of the flow mode, the steady
pressure-driven flow of electrorheological fluids under isothermal conditions
(Θ = const.) in a plane channel under electric fields produced by several
kinds of electrodes. A number of ER equipments, including valves, dampers
and actuators is based on this configuration.

In the remaining part of this chapter we assume incompressible fluids,
i.e.,

dkk = vk,k = 0 , (8.4.1)

where vi := ẋi. Then the pressure is an unknown of the problem which will
be determined as a consequence of the constraint (8.4.1) up to a constant. As
mentioned already in Subsect. 8.2.7 we assume (8.2.122) to be valid in the
description of ERFs.

The first ensuing three subsections treat the case of the electrodes flush
with the channel walls, parallel to the flow as illustrated in Figs. 8.4–8.7. This
case was tackled both theoretically and experimentally. The last subsection
is concerned with some more complex configurations in which the electrodes
protrude into the channel (decreasing the channel height) or retreat from the
channel (enlarging the channel height). They can still be parallel to the flow
(see Fig. 8.53) or oblique (see Fig. 8.54). Another interesting case deals with
crenated electrodes (see Figs. 8.55–8.57). Due to the complexity of these
last mentioned cases, no theoretical results are yet available for them. We
will present the most important experimental results given in the literature
and will make some comments about an eventual theoretical modelling and
numerical implementation of such cases.

8.4.1 Formulation of the Problem – Electrodes Flush
with the Channel

Let Ox1x2 be a Cartesian coordinate system. We consider an infinitely long
channel of height 2h made by two infinite parallel planes of zero thickness.
These planes are situated at x2 = −h, x2 = h, respectively. Along the channel
walls, finite electrodes, charged with different potentials are placed. They may
be disposed in various configurations as one can see in the examples illustrated
in Figs. 8.4–8.7. If the electrodes were of infinite length (as in Fig. 8.8), the
electric field would be homogeneous. However, in every realistic application
the electrodes are finite and the field is inhomogeneous, especially close to
the edges of the electrodes. The electrodes are isolated outside the channel
with a dielectric material having constant electric permittivity ε1. The ER-
medium inside the channel has electric permittivity ε2 which is also a constant
according to (8.2.122) and to the fact that the density and temperature are
also constant. Since the problem is two-dimensional the indices i and j used
henceforth take only the values 1 and 2.
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Fig. 8.4. Configuration with two finite
electrodes of equal lengths (n1 = n2 =
1, V1 = 2V , V2 = 0)

Fig. 8.5. Configuration with two equal
but shifted finite electrodes (n1 = n2 =
1, V1 = 2V , V2 = 0)

Fig. 8.6. Configuration with finite
electrodes interrupted by electrically
neutral walls (periodic structure) (n1 =
n2 = 3)

Fig. 8.7. Configuration with finite
electrodes interrupted by electrically
neutral walls (general case) (n1 = 3,
n2 = 2)

Equation (8.2.90) is equivalent with the statement that Ei is the gradient
of a scalar function

Ei = −ϕ,i . (8.4.2)

Here, ϕ is the electric potential. In the further formulation of the boundary
value problem (BVP) one has to distinguish between the two cases of con-
ducting and non-conducting ER-fluids. More precisely, the equations from
which the electrical unknowns of the problem are determined are different in
the part of the domain inside the channel: −∞ < x1 < ∞, |x2| < h. In the
domain outside the channel, −∞ < x1 < ∞, |x2| > h, the formulation is
the same in both cases. The boundary conditions are formulated identically
for the two cases in the whole domain.

1. Electrically conducting fluids

In this case the electrical part of the BVP in the channel domain is given
by the divergence of the second Maxwell–Minkowski equation (8.2.91)

∂Dj,j

∂t
+ (Dj,jvk),k + Jj,j = 0 , −∞ < x1 < ∞, |x2| < h , (8.4.3)

where the electric charge Q was eliminated by using (8.2.4). It is worth men-
tioning that in this case Q is not a variable that can be given a priori but it
has to be determined from (8.2.4) after the calculation of the electric field.
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From relations (8.2.117), (8.2.118) and (8.2.122), from the incompressibil-
ity condition (8.4.1) and from (8.4.2) it follows that

ε2
∂ϕ,jj

∂t
+ ε2ϕ,jjkvk + σ100ϕ,jj = 0 , −∞ < x1 < ∞, |x2| < h . (8.4.4)

Since we treat only the stationary case, the first term on the left-hand side
of (8.4.4) vanishes. As one can see from (8.4.4), due to the presence of the
velocity in this equation, the electrical problem is explicitly coupled with the
mechanical problem.

1. Electric non-conducting fluids

When Jj = 0, then the electric potential is calculated from the third
Maxwell-Minkowski equation (8.2.4). Using (8.2.117), (8.2.122) and
(8.4.2) one obtains the Poisson equation

ϕ,jj = −Q
ε2

. (8.4.5)

In general the electric charge vanishes in electrorheological fluids since only
uncharged fluids are treated here18. Consequently the potential must fulfill
the Laplace equation in the channel domain

ϕ,jj = 0 , −∞ < x1 < ∞ , |x2| < h . (8.4.6)

In the domain outside the channel we assume that the material is electri-
cally non-conducting and that its electric charge can be neglected. Therefore
equation (8.4.6) is valid also in the domain −∞ < x1 < ∞, |x2| > h.

We must specify now the boundary conditions. The following Dirich-

let boundary conditions are given on the part of the boundary where the
electrodes are placed

ϕ(x1, h) = Vi1 , x1 ∈ Iel
i1 , (8.4.7)

ϕ(x1,−h) = Vi2 , x1 ∈ Iel
i2 , (8.4.8)

where i1 = 1, 2, . . . , n1, i2 = n1 + 1, n1 + 2, . . . , n1 + n2 and n1, n2 are the
numbers of electrodes placed on the upper and lower walls of the channel
respectively. Moreover, Iel

i1
, Iel

i2
are the interval domains of the x1-coordinate

of the electrodes placed on the upper and lower walls of the channel, respec-
tively.

Using (8.2.117) and (8.4.2) in (8.2.88), we see that the jump conditions
of the electrode-free boundary parts imply the following equations for the
normal derivative of ϕ:
18 In our continuum mechanical modeling the assumption of charge neutrality is

guaranteed. In a description at the mesoscale or microscale level this would not
be fulfilled because in ER-fluids free ions can be present.
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ε2ϕ,2 (x1, h−) = ε1 ϕ,2 (x1, h+) , x1 ∈ (−∞,∞) \
⋃

i1

Iel
i1 , (8.4.9)

ε2ϕ,2 (x1, −h+) = ε1 ϕ,2 (x1, −h−) , x1 ∈ (−∞,∞) \
⋃

i2

Iel
i2 , (8.4.10)

while from (8.2.86) the following continuity conditions in the tangential deriv-
ative are obtained

ϕ,1 (x1, h+) = ϕ,1 (x1, h−) , x1 ∈ (−∞,∞) \
⋃

i1

Iel
i1 , (8.4.11)

ϕ,1 (x1, −h+) = ϕ,1 (x1, −h−) , x1 ∈ (−∞,∞) \
⋃

i2

Iel
i2 . (8.4.12)

To specify the jump of the components of the electric field across x2 = ±h
for x1 ≤ 0, we use the upper index “+” to indicate the limit as x2 tends to
±h from positive values of (x2 ∓ h) and the upper index “−” to indicate the
limit as x2 tends to ±h from negative values of (x2 ∓ h). Moreover we may
choose

lim
x2→±∞

ϕ(x1, x2) = 0 , −∞ < x1 < ∞ . (8.4.13)

It is important to remark that for non-conductive ER-fluids (σ1 = 0) we
deal with a boundary value problem in which the electric field is completely
separated from the mechanical fields19. Consequently, the solution for the
electric field can be independently attacked and then used in a second step in
the mechanical problem. In the remaining part of the chapter we will study
only the case of non-conductive electrorheological fluids.

In order to formulate a boundary value problem for the mechanical part
we recall the balance of momentum (8.2.63) for a steady flow

ρvjvi,j − (tij + EiDj),j − ρF ext
i = 0 . (8.4.14)

Using (8.2.107) and (8.2.117) in the last equation, we obtain

ρvjvi,j − (−pδij + teij + ε2EiEj),j − ρF ext
i = 0 . (8.4.15)

Using (8.4.2) and (8.4.6), we obtain

(EiEj),j = 1
2 (EjEj),i . (8.4.16)

19 Of course, the fact that the flow does not affect the electric field in this case
is equally a consequence of other assumptions such as the neglect of the time
derivatives of the strain rate in the constitutive equations (so that (8.2.104)
could follow from the entropy inequality which means that the only remaining
pure electromagnetic dependent quantity, Dj , cannot depend on the rate of strain
tensor dij that is, apart from ρ and Θ the only independent mechanical quantity),
the neglect of the electric charge and the consideration of constant density and
isothermal conditions.
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If we suppose that the external force F ext
i is conservative then we may in-

corporate it into the pressure. Doing this and substituting (8.4.16) in the
momentum balance, we obtain

− p,i + teij,j + 1
2ε2(EjEj),i = ρvjvi,j . (8.4.17)

Substituting in (8.4.17) a constitutive function for the Cauchy stress
tensor and the solution for the electric field, we obtain for plane flow two
equations which together with (8.4.1) may be used to determine the three
unknowns: the components of the velocity vector and the pressure. Unlike
the electrical problem, the domain for the mechanical problem is restricted
to the channel. We assume the no-slip and impermeability conditions on the
channel walls

v1(x1,±h) = 0 , v2(x1,±h) = 0 , −∞ < x1 < ∞ . (8.4.18)

8.4.2 Particular Case – Infinitely Long Electrodes

If we consider in (8.4.7), (8.4.8) that n1 = n2 = 1, Iel
1 = Iel

2 = (−∞,∞)
and V1 = 2V , V2 = 0 we obtain the configuration sketched in Fig. 8.8. The
solution of the electrical problem in this case can be easily derived. It is

ϕ(x1, x2) =
V

h
x2 + V , −∞ < x1 < ∞ , |x2| ≤ h . (8.4.19)

Consequently, the electric field has the form

E1 = 0 , E2 = −V

h
, (8.4.20)

everywhere in the channel. The magnitude of the electric field is now E =
V/h. The dielectric material outside the channel has no influence on the
solution. Another consequence of the fact that the electric field is constant

Fig. 8.8. Configuration with infinite electrodes
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is that the flow problem will be uni-directional, i.e. the only non-vanishing
velocity component varies in the flow direction, provided, of course, that the
inlet and outlet boundary conditions agree with this. We may assume first
that v1,1 = 0 , v2,1 = 0 . Then, from the continuity equation it follows that
v2,2 = 0. If we take into account the impermeability condition on the walls, we
obtain that the x2-component of the velocity vanishes in the whole domain.
So, we have

v1 = v1(x2) , (8.4.21)
v2 = 0 . (8.4.22)

Consequently, the only non-vanishing component of the rate of strain tensor
is

D12 = D21 = 1
2v1,2(x2) , (8.4.23)

and from (8.2.94) and (8.2.95) it follows that all the components of the stress
tensor are independent of x1. By applying all these considerations in the
momentum balance (8.4.17) we obtain

−p,1 = −te12,2 , (8.4.24)
−p,2 + te22,2 = 0 . (8.4.25)

From the last equation it follows that the quantity −p + te22 can be only a
function of x1. However, as just concluded above, te22,1 = 0 , hence also p,1 is
only a function of x1. Since the right-hand side of (8.4.24) is not a function
of x1, neither is the left-hand side, and, therefore, p,1 = (p− te22),1 should be
constant. If we denote this constant by k, it follows from (8.4.24) and (8.4.25)
that

p = kx1 + te22 + c1 , (8.4.26)
te12,2 = k . (8.4.27)

The constant k (k ≤ 0) is the pressure gradient in the x1-direction. The
constant c1 can be determined if a boundary condition for p is given.

By assigning the constitutive functions (8.3.65) and (8.3.66) with δ = 0
to teij , one can determine analytically the solution of the problem formulated
above. With this choice of the parameter δ, in a viscometric flow, (8.3.65) re-
duces to the Casson-like model (8.3.35)–(8.3.36)20 introduced by Eckart in
[63], while (8.3.66) reduces to the classical power-law model (8.3.33)–(8.3.34).
The coefficients β1, β2, m and n are constant for a certain value of the electric
field E, namely of the electric potential V .
20 Unlike in the Casson-like model we choose as a simplification β0 = 0. This is

equivalent to saying that β0 = 0 is included in the viscosity η0.
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The Casson-Like Model

This case is solved here following Eckart [63] (see also [64]). First, let us re-
call the constitutive equations (8.3.35)–(8.3.36) (with the notation according
to the previous paragraph: γ̇ is replaced by v1,2 and τCL is replaced by te12)

te12 = η0v1,2 + 21/2β1 + 21/4β2v
1/2
1,2 ,

te12 > 21/2β1 ≥ 0 , v1,2 > 0 , (8.4.28)

te12 = η0v1,2 − 21/2β1 − 21/4β2(−v1,2)1/2 ,

te12 < −21/2β1 ≤ 0 , v1,2 < 0 . (8.4.29)

Integrating (8.4.27) with respect to x2 it is found that

te12 = kx2 + C2 , |te12| > 21/2β1 . (8.4.30)

Since k < 0, the shear stress te12 is a linear decreasing function of x2. Assuming
that the shear stress at the lower wall τw = −kh + C2 is greater than the
yield stress 21/2β1, one can distinguish three regions in the channel:

• one where the shear stress is greater than or equal to the yield stress:
−h ≤ x2 ≤ xi, with xi defining the place where te12 = 21/2β1; the velocity
in this region is increasing with respect to x2, hence the upper index “i”
is used;

• one where the material becomes solid and the velocity denoted by vp is
constant: xi ≤ x2 ≤ xd, with xd defining the place where te12 = −21/2β1;
this region is called the plug zone, so the upper index “p” is used;

• one where the shear stress is less than or equal to −21/2β1: xd ≤ x2 ≤ h;
here the velocity is decreasing and the upper index “d” is used.

The places xi and xd can readily be found from (8.4.30) as

xi
2 = −C2

k
+

21/2β1

k
, xd

2 = −C2

k
− 21/2β1

k
. (8.4.31)

The symmetry with respect to the axis x2 = 0 of the boundary value problem
implies xi = −xd. Hence, from (8.4.31) it follows that

C2 = 0 . (8.4.32)

By inserting (8.4.28) into (8.4.30) and by taking into account (8.4.32) one
arrives at the differential equation for vi

1

vi
1,2 +

21/4β2

η0
(vi

1,2)
1/2 +

−kx2 + 21/2β1

η0
= 0 . (8.4.33)

Employing the substitution vi
1,2 = (ui)2 in the previous equation, solving

the emerging quadratic equation for ui and using the inverting formula vi
1 =∫

(ui)2dx2 + Ci
3, one derives the general solution for vi

1 in the form
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vi
1(x2) =

k

2η0
x2

2 +
2−1/2β2

2 − 21/2η0β1

η2
0

x2

∓ 4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

+
kx2 − 21/2β1

η0

)3/2

+ Ci
3 . (8.4.34)

One proceeds analogously for negative shear rates: insertion of (8.4.29) and
(8.4.32) into (8.4.30), use of the substitution vd

1,2 = −(ud)2 and then of the
inverting formula vd

1 = −
∫

(ud)2dx2 + Cd
3 yields

vd
1(x2) =

k

2η0
x2

2 −
2−1/2β2

2 − 21/2η0β1

η2
0

x2

∓ 4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

− kx2 + 21/2β1

η0

)3/2

+ Cd
3 . (8.4.35)

To get rid of the constants C
i/d
3 , the boundary condition (8.4.18) are imposed

on (8.4.34), (8.4.35), so

vi
1(x2) =

k

2η0
(x2

2 − h2) +
2−1/2β2

2 − 21/2η0β1

η2
0

(x2 + h)

∓ 4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

+
kx2 − 21/2β1

η0

)3/2

± 4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

− kh + 21/2β1

η0

)3/2

, (8.4.36)

vd
1(x2) =

k

(2η0)
(x2

2 − h2) +
2−1/2β2

2 − 21/2η0β1

η2
0

(h− x2)

∓ 4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

− kx2 + 21/2β1

β0

)3/2

± 4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

− kh + 21/2β1

η0

)3/2

. (8.4.37)

To deduce the correct signs in (8.4.36), (8.4.37) two additional conditions are
needed. Notice that the velocity function should be continuously differentiable
for −h < x2 < h and that vp

1,2 = 0 in the plug zone. This leads to

vi
1,2(x2 = xi

2)
!= 0 , vd

1,2(x2 = xd
2)

!= 0 . (8.4.38)

Using (8.4.38) one finally determines the following solutions for the velocities
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vi
1(x2) =

k

2η0
(x2

2 − h2) +
2−1/2β2

2 − 21/2η0β1

η2
0

(x2 + h)

− 4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

+
kx2 − 21/2β1

η0

)3/2

+
4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

− kh + 21/2β1

η0

)3/2

,

−h ≤ x2 ≤ 21/2β1

k
, (8.4.39)

vp
1 = − k

2η0

(

h +
21/2β1

k

)2

− 1
6

2−3/4β2

k

(
21/2β2

2

η2
0

)3/2

+
4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

− k h + 21/2β1

η0

)3/2

+
2−1/2β2

2

η2
0

(

h +
21/2β1

k

)

,
21/2β1

k
≤ x2 ≤ −21/2β1

k
, (8.4.40)

vd
1(x2) =

k

(2η0)
(x2

2 − h2) +
2−1/2β2

2 − 21/2η0β1

η2
0

(h− x2)

− 4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

− kx2 + 21/2β1

β0

)3/2

+
4
3

2−3/4β2

k

(
2−3/2β2

2

η2
0

− kh + 21/2β1

η0

)3/2

,

− 21/2β1

k
≤ x2 ≤ h . (8.4.41)

Since the Casson-like model includes the Newtonian (β1 = β2 = 0), Bing-

ham (β2 = 0) and Casson (β2 = 2
√

η0β1) behaviours, the given solution
may be particularized for all these types of fluids.

Having found the analytical solution for the velocity field one can calculate
the volumetric flow rate

Q =

b∫

0

h∫

−h

v1(x2)dx2dx3 = b

h∫

−h

v1(x2)dx2 , (8.4.42)

where b is the width of the channel. The following formula relates the pressure
gradient k = p,1 with the volumetric flow rate Q:
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Q =
b

120 η4
0k

2

{
40
√

2 η0β1β
4
2 + 80

√
2 η3

0β
3
1 − 4

√
2β6

2 − 120
√

2 k2h2η3
0β1

−120
√

2 η2
0β

2
1β

2
2 + 60

√
2 k2h2η2

0β
2
2 + 80 k3h3η3

0 + 211/4kh
√

Z1η0β
3
2

−48 · 21/4 k2h2
√

Z1η
2
0β2 − 219/4 kh

√
Z1η

2
0β1β2 + 29/4

√
Z1β

5
2

−221/4
√

Z1η0β1β
3
2 + 225/4

√
Z1η

2
0β

2
1β2

}
, (8.4.43)

where Z1 :=
√

2β2
2−4 khη0−4

√
2 η0β1. Equation (8.4.43) yields, of course, the

volumetric flow rate of a Newtonian fluid, a Bingham fluid and a Casson

fluid if the corresponding particular values of the coefficients βi , i = 1, 2 are
selected.

If we use a procedure in which Q is the input value and we want to
calculate the pressure drop as output, we have to invert formula (8.4.43) in
order to obtain the pressure gradient for non-vanishing values of the electric
fields. Analytically, this is not possible, but using the software Mathematica

[268] we may obtain k as a function of the volumetric flow rate Q and of the
uniform electric field E.

The pressure gradient for a vanishing electric field (when β1 = β2 = 0) is

k = −3Qη0

2bh3
, (8.4.44)

and
Q = 4

3hbv0 , (8.4.45)

where v0 = v2(0) is the maximum velocity in the channel.
The above formulas may be used to evaluate approximately the pressure

drop in configurations with long finite electrodes when neglecting end effects.
Namely, on the electrode-free part of the channel, the pressure drop is calcu-
lated by applying the formula for a vanishing electric field (8.4.44) while on
the part where the electrodes are placed, the pressure drop is calculated by
applying the inversion of formula (8.4.43) for a constant electric field, where
the value of the electric field is chosen to be the value established in the homo-
geneous region, in the middle of the electrodes, far from the electrode edges.
Similar methods were used by Eckart in [64] and by Wunderlich in [270]
in order to compare the analytical results with the experimental results. The
relatively small deviations of the analytical plots from the measured values
are due to the neglect of the electric field in the region outside the electrodes
and of the inhomogeneity of the electric field in the vicinity of the electrode
edges.

The Power-Law Model

If we solve problem (8.4.21)–(8.4.27) for a power-law fluid (8.3.33)–(8.3.34)
we obtain (on assuming k < 0) the following velocity field
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v1(x2) =
k1n

n + 1
(h(n+1)/n − |x2|(n+1)/n) , (8.4.46)

where k1 = (−k/m)1/n. Now, calculating the volumetric flow rate yields

Q =
2(n + 1)
2n + 1

v0hb , (8.4.47)

where
v0 = v1(0) =

k1n

n + 1
h(n+1)/n (8.4.48)

is the maximum velocity in the channel. Inverting this formula, we obtain

k = −
(

Q(2 + 1/n)
hb

)n
m

h
. (8.4.49)

The model presented in this subsection was so far used to describe the
flow of an ERF in a channel (see [63]). When interpreting the experimental
results in slit flows, it was routinely assumed that the electric field is constant
and that it determines a shear flow in the channel [4, 5, 198, 207, 270]. In
other words, the model with infinite electrodes was used as an approximation
for the real case with finite electrodes. In our view this is not a realistic
approximation in all cases since it neglects the electrode end effects which
may considerably affect the flow as we will show in the next subsection.

8.4.3 Electrodes of Finite Length

As we mentioned in the Introduction, an impediment to overcome to make
an industrial exploitation of the ER-effect on a large scale possible is the very
high voltage requirements necessary to obtain the desired increase in viscosity.
There are attempts to increase the electrorheological effect by modifying
either the surface or the shape and position of the electrodes relative to
the flow geometry in such a way that inhomogeneities in the electric field are
introduced [3, 4, 5, 6, 7, 33, 81, 108, 150, 166, 269, 270]. All these experimental
investigations demonstrated that application of non-uniform electric fields
may lead to more efficient effects on the flow (than with homogeneous electric
fields).

The necessity of models which reproduce the ER behaviour for inhomoge-
neous electric fields was formulated in certain fields of applications [36, 114],
the purpose being an accurate description of the experiments performed in
order to improve the performance of ER devices. Nevertheless, in most theo-
retical approaches of ERF flows the electric field is only a constant parameter.
In channel flow this is an analytical consequence of the fact that the electrodes
are considered to be infinite while in cylindrical Couette-type configurations
this is an assumption that can be made when the fluid channel is small com-
pared with the radius of the inner cylinder. Exceptions are the theoretical



8.4 Applications: Channel Flow of ERFs 329

results for a radial configuration obtained by Atkin et al. [16, 17] where the
electric field is slightly inhomogeneous in the radial direction. Rajagopal

and Růžička in [196] and Eckart in [63] developed a theoretical framework
which allows for variable field strength. However, in such a case the electric
field has to be determined from the Maxwell equations.

The aim of the study presented in this subsection is twofold. On the
one hand, we consider it important to give a more realistic modeling by
taking into account the inhomogeneity effects which appear in the vicinity
of electrode edges. Comparing this with the case of plane shear flow exposed
to infinite electrodes, where the electric field is simply a constant, the non-
uniform electric field will cause here inhomogeneities in the flow too which, as
a consequence, will be non-viscometric. Consequently, both components of the
velocity are variables of the problem and they depend on both coordinates.
On the other hand, our intention is to examine numerically how the ER-effect
can be enhanced by a space-dependent electric field.

Let us return to the problem formulated in Subsect. 8.4.1 for electrically
non-conducting fluids. It consists of the electrical problem which may be
solved independently and the mechanical problem, equations which contain
terms based on the electric field components, namely on the solution of the
electrical problem. As one can see, the electric field is a key element since its
dependence on the space coordinates determines the kinematical character
of the flow. In order to gain a better understanding of the end effects of the
electrodes on the electric field inhomogeneity in the channel and then on the
flow, one needs to investigate first the simplest configuration of electrodes.

In [246] and [247] the distribution of the electric potential around two long
electrodes charged with different potentials in a symmetric, an anti-symmetric
and a non-symmetric way was investigated. The term “long electrode” de-
notes in these works either a semi-infinite electrode or a finite electrode of a
certain length chosen such that the two far edges of the electrode do not inter-
act. The solutions were found (semi)-analytically and they were constructed
with the use of the Wiener–Hopf (WH) technique21. With the help of the
WH-method it was possible to set the singularities at the tips of the electrodes
explicitly in evidence, which in a numerical solution must be approximately
accounted for in rather costly mesh refinements. Furthermore, the obtained
analytical solution was used to test and validate the numerical solution ob-
21 We mention that the problem is solved in a bounded domain in the x2-direction,

where the upper and lower boundaries consist of two infinite grounded electrodes
situated at a distance H > h from the x1-axis. If H is sufficiently large, this is
equivalent with the usual infinity conditions which means vanishing potential
at x2 = ±∞. For smaller H, this configuration can still be easily realized in
practice. We mention that the two grounding electrodes at x2 = ±H are needed
for technical reasons when solving the WH-problem, for otherwise, i.e., when
no grounding electrodes are present no solution could be found (see [247] for a
detailed explanation). Physically, this is no restriction because the channel will
always be earthed and the system can always be looked at for large H.
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tained using the software Femlab [47] (which is a powerful tool for solving
partial differential equations by applying the finite element method).

Apart from the purely analytical and numerical approach to determine
the solution of the electrical problem for the configurations with two long
electrodes, it may be more advantageous to use a mixed approach, in which
one uses the analytical solution in the numerical program and so reduces the
domain of numerical approach. Concretely, we can impose in the numerical
program Dirichlet conditions for the electric problem on the whole channel
walls deduced from the analytical solution so that the domain of the electric
problem is equally reduced to the channel as for the mechanical problem.
Since the mathematical expressions of the analytical solutions for the electric
potential on the walls are too complicated and create difficulties when trying
to introduce them directly into Femlab, we will interpolate them and use
polynomials which accurately approximate the exact solution. In this way
space memory and computing time can be saved. We call this approach nu-
merical analytic. When we treat configurations with two short electrodes
or with more than two electrodes then the electric field will be calculated
numerically. This is the so-called completely numerical approach.

Let us recall the equations of the mechanical problem:

−p,i + teij,j + 1
2 ε2(EjEj),i = ρvjvi,j , (8.4.50)

vi,i = 0 , (8.4.51)

with the boundary conditions

v1,1(−L, x2) = 0, v2(−L, x2) = 0 , |x2| ≤ h , (8.4.52)
p(L, x2) = 0 , |x2| ≤ h , (8.4.53)
vi(x1,±h) = 0 , |x1| ≤ L . (8.4.54)

The x1-positions −L and L mark the entrance and the exit of the fluid in
the channel, respectively. We assume that L is sufficiently large; specifically
the inlet boundary is far enough from the electrode edge so that the electric
field is negligible. Consequently, one may impose there the velocity as in a
uni-directional channel flow (described in Subsect. 8.4.2). Beyond the channel
exit we assume vanishing pressure. For the extra stress teij we will use models
(8.3.65) and (8.3.66) and thus may define a generalized viscosity ηgen so that
teij = 2ηgenDij . Explicitly,

ηgen = η0 +
β1(E)

(δ + |D|2)1/2
+

β2(E)
(δ + |D|2)1/4

(8.4.55)

for the alternative Casson-like model and

ηgen = m(E)(δ + 2|D|2)(n(E)−1)/2 (8.4.56)

for the alternative power-law model.
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The Dimensionless Problem
for the Alternative Casson-Like Model

We introduce the non-dimensional quantities x̃i, ṽi, Ẽi and p̃ according to

xi = hx̃i , vi = v0ṽi , Ei = E0Ẽi , p = p0p̃ , (8.4.57)

where h, v0, E0 and p0 are characteristic quantities of the problem: h is half
the channel height, v0 is the maximum inlet velocity, E0 is a typical value
for the electric field and p0 = η0v0/h. Application of these transformations
to (8.4.50), multiplying the resulting expression with h/p0 and dropping the
“tilde”, yields

− p,i + 2 (ηgen dij),j +
1

2Ma
(EjEj),i = Re vjvi,j , (8.4.58)

where

ηgen = 1 +
hβ1(E0E)

v0η0

1
(nδ + |d|2)1/2

+

√
hβ2(E0E)√

v0η0

1
(nδ + |d|2)1/4

(8.4.59)

is the dimensionless generalized viscosity,

Re = ρhv0/η0 , (8.4.60)

is the Reynolds number,

Ma = η0v0/(hε2E
2
0) , (8.4.61)

is the Mason number and nδ = δh2/v2
0 . The Reynolds number is usually

interpreted as the ratio of the inertial force to the viscous force while the
Mason number can be interpreted as the ratio of the viscous force to the
electrostatic force. We have chosen a non-dimensionalization appropriate to
creeping flows for which the Reynolds number takes small values. The di-
mensionless form of equation (8.4.51), after dropping the “tilde”, remains
unchanged.

Usually, β1, β2 vanish when the electric field is zero, so that in this case the
fluid response is Newtonian. Consequently, at the channel entrance, where
the electric field is approximately zero, we have before non-dimensionalization

v1(−L, x2) = v0(1 − (x2/h)2) . (8.4.62)

The non-dimensionalized boundary conditions (8.4.52)–(8.4.54) and (8.4.62)
become

v1(−L/h, x2) = 1 − x2
2 , v2(−L/h, x2) = 0 , |x2| ≤ 1 , (8.4.63)

p(L/h, x2) = 0 , |x2| ≤ 1 , (8.4.64)
vi(x1,±1) = 0 , |x1| ≤ L/h . (8.4.65)

The BVP is formulated now by equations (8.4.51), (8.4.58), (8.4.59) to-
gether with the boundary conditions (8.4.63)–(8.4.65), where Ej is the non-
dimensionalised solution of (8.4.2)–(8.4.12). It will be solved numerically for
the domain |x1| ≤ L/h, |x2| ≤ 1 using the commercial software Femlab [47].
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The Dimensionless Problem for the Alternative Power-Law Model

We apply the same procedure as in the previous case, namely we introduce the
non-dimensional quantities as in (8.4.57), but now consider p0 = m0(v0/h)n0 ,
where m0 = m(0), n0 = n(0) (which are usually non-zero). The non-
dimensional momentum balance for a power-law fluid has the same form
as (8.4.58) with the Mason number, the Reynolds number and the non-
dimensional generalized viscosity given by

Ma =
m0(v0/h)n0

ε2E2
0

, Re =
ρv2

0

m0(v0/h)n0
, (8.4.66)

ηgen =
m(E0E)(v0/h)n(E0E)

m0(v0/h)n0
(nδ + 2|d|2)(n(E0E)−1)/2 . (8.4.67)

We remark that, since the dimension of m is Pasn and since n, which is
dimensionless, is space dependent, the quantity m has variable dimension in
space. Even though we can fit the values of m (from the experimental data)
and we may obtain the function m(E0E), this quantity is meaningless from
a physical point of view. In order to avoid this problem, we will directly fit
the dimensionless function (see (8.4.67))

f(E0E, v0/h) = m(E0E)(v0/h)n(E0E) (8.4.68)

to the data. An example of this operation will be presented later in this
subsection.

In order to establish the non-dimensional form of the boundary condi-
tions let us apply formula (8.4.46) for vanishing electric field which gives the
dimensional velocity at the entrance of the channel

v1(−L, x2) = v0

(

1 −
(
|x2|
h

)(n0+1)/n0
)

. (8.4.69)

Consequently, the non-dimensional inlet boundary condition has the form

v1(−L/h, x2) = 1 − |x2|(n0+1)/n0 ,

v2(−L/h, x2) = 0 .
(8.4.70)

The non-dimensional boundary conditions at the channel exit and on the
channel walls are identical with their correspondents from the Casson-like
case: (8.4.64) and (8.4.65). The problem formulated by equations (8.4.51),
(8.4.58), (8.4.67) together with the boundary conditions (8.4.70), (8.4.64)
and (8.4.65), where Ej is the non-dimensionalised solution of (8.4.2)–(8.4.12)
will be solved numerically for the domain |x1| ≤ L/h, |x2| ≤ 1 using the
commercial software Femlab [47].
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a) Numerical Results – the Alternative Casson-Like Model

Material and Configuration Properties Used for the Simulations

An ER-fluid chosen for simulations is Rheobay TP AI 3565 which is pro-
duced by the Bayer Company (Germany). It is water-free and consists of
polyurethan particles in silicone oil, some additional additives and an emul-
gator [2, 270, 23]. In [63], the Casson-like model (8.3.35)–(8.3.36) is recom-
mended for this fluid since this model reproduces well the data measured in a
rotational viscometer. The fluid shows Newtonian behaviour in the absence
of an electric field i.e. β1 = 0 and β2 = 0 for E0E = 0, (E = (E2

1 + E2
2)1/2 is

the modulus of the dimensionless electric field). The value η0 = 0.037 Pa·s for
the viscosity and the values of the parameters β1 and β2 given in Table 8.1
were obtained in [64] using the experimental plots for creeping flow “stress
vs. shear rate”.

Table 8.1. Values of the parameters β1 and β2 of (8.3.35) for different electric field
strengths

E0E [ kV
mm] 0.5 1 2 3

β1 [Pa] 19.3 100.32 312.94 582.81

β2 [Pa·s1/2] 0.44 5.84 9.7 32.21

Fitting these data we obtained the dependence of the parameters on the
dimensional electric field E0E:

β1(E0E) = α11(E0E) + α12(E0E)2 , (8.4.71)
β2(E0E) = α21(E0E) + α22(E0E)2 + α23(E0E)3 , (8.4.72)

where the coefficients αij are given in Table 8.2.
The functions β1 and β2 are written as series expansions by retaining

only the terms up to the second and the third order, respectively. The exper-
imental data are provided for a limited range of the electric field and do not

Table 8.2. Values of the coefficients α1i and α2i from (8.4.71), (8.4.72)

i 1 2 3

α1i 55.322 Pa·mm/kV 46.946 Pa·(mm/kV)2 –

α2i 7.01 Pa·s1/2·mm/kV −5.22 Pa·s1/2·(mm/kV)2 2.15 Pa·s1/2·(mm/kV)3
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Fig. 8.9. Fitting curves for the dependence of the coefficients β1 and β2 on the
electric field. The insets show how the fit is extrapolated

cover the range of the electric field used in the simulations. We use formulas
(8.4.71) and (8.4.72) also to extrapolate the given data for β1 and β2 for
larger values of E. Figure 8.9 illustrates how the fitting curves approximate
the data and how they are extrapolated. In the subsequent analysis we shall
use the alternative bidimensional Casson-like model (8.3.65). Consequently,
the generalized viscosity is expressed by a low-degree polynomial function in
E. Substituting (8.4.71) and (8.4.72) in (8.4.59), we obtain

ηgen = 1 + n11
E

dδ
+ n12

E2

dδ
+ n21

E

d
1/2
δ

+ n22
E2

d
1/2
δ

+ n23
E3

d
1/2
δ

, (8.4.73)

where we used the short-hand notation

dδ = (nδ + dmndmn)1/2 . (8.4.74)

The non-dimensional coefficients nij , i = 1, 2, j = 1, 2, 3 are defined as

n11 =
hα11E0

v0η0
, n12 =

hα12E
2
0

v0η0
,

n21 =

√
hα21E0√
v0η0

, n22 =

√
hα22E

2
0√

v0η0
, n23 =

√
hα23E

3
0√

v0η0
.

(8.4.75)

For all graphs that subsequently will be shown we used a geometry char-
acterized by the value H/h = 10, where the x2-coordinates ±H mark the
upper and lower boundaries for the domain of the electrical problem. The
value of L/h is always chosen so that the inlet boundary is sufficiently
far from the electrode edge in order to insure a negligible electric field
at the entrance of the channel. The electric permittivity of Rheobay is
ε2 = 1.4 × 10−9 A·s/(V·m) and we choose ε1 = 0.02 ε2. The density of
Rheobay is ρ = 1041 kg/m3. All simulations except those done to make the
comparison with the experimental data from Fig. 8.29 are performed for
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Fig. 8.10. The mesh around the electrode edges. The arrows show the position of
the electrode edges

h = 1 mm, E0 = 1 kV/mm and v0 = 0.3 m/s. So, Re = 7.849, , Ma = 0.007,
n11 = 5.417, n12 = 4.597, n21 = 11.433, n22 = −8.515 and n23 = 3.506.
We considered here nδ = 0.002. We will study later the influence of this
parameter on the solution.

The Flow Near the Electrode Ends (long electrodes)

Let us first illustrate the effect of the electric field inhomogeneity produced
by the electrode edges on the flow. To do this we solved the problem (8.4.51),
(8.4.58), (8.4.73) together with the boundary conditions (8.4.63)–(8.4.65),
where Ej is the non-dimensionalised solution of (8.4.2)–(8.4.12) with two
long electrodes charged anti-symmetrically, using the numerical analytic ap-
proach. We took V = 2 kV.

A triangular mesh consisting of approximately 10000 elements (9984) was
used. The default mesh is twice refined (with a regular refinement) so that
the obtained mesh is characterized by 8 elements between the channel walls
in the regions far from the electrode ends. The maximum element size near
the vertices given by the electrode ends is taken to be 0.1. A detail of the
mesh in the region close to the electrode edges is plotted in Fig. 8.10.

We choose linear Lagrange elements for the electric problem and p2-p1
Lagrange elements22 for the fluid problem. We present and describe here
the most relevant fields in an area close to the electrode ends chosen in order
to set in evidence the effects ahead, near and after the electrode ends. This
is a crossing zone in which the quantities of the studied problem are passing
22 One has quadratic element for the variables vi, i = 1, 2 and linear element for

the variable p
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from the regime without an electric field to a regime with uniform electric
field through a transition zone with strong inhomogeneities. The ranges for
the color bars corresponding to Figs. 8.11, 8.19 and 8.20 were chosen so that
the transition zone is illustrated in an especially relevant fashion. Conse-
quently, the values from the zones with the darkest red could be greater than
the maximum values indicated on the scale. We mention that the maximum
values in a given area surrounding the electrode edges are much larger than
the maximum value within a similar area with uniform electric field (inside
the electrodes, far from the edges). The closest area to the edges is difficult
to be described exactly for three reasons. First, the electric field is singular
there (see [246]). Second, the material properties (β1 and β2) are not pro-
vided for high values of the electric field (see Table 8.1). Third, in practice,
the electrodes can not be infinitely thin as approximated here, so E is not
singular at the edges but has a large value.

Let us show first in Fig. 8.11 the electric field produced by this configura-
tion. The inhomogeneities of the electric field extend over a length of order h.
In the vicinity of an order smaller than h/10 around the electrode ends, the
electric field is very large, its value is exceeding the ranges for which experi-
mental data are provided. In this vicinity, due to the singularity of the electric
field, the numerical simulation of the electric field is not stable (since mesh
dependence was observed). However, this vicinity is small in comparison with
the characteristic length of the experimental configuration.

In Fig. 8.12 we plot the non-dimensional modulus of the velocity,
v(x1, x2) = (v2

1(x1, x2) + v2
2(x1, x2))1/2, in the vicinity of the electrode edges

Fig. 8.11. Surface plot of the dimensionless modulus of the electric field
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Fig. 8.12. Surface plot of the non-dimensional velocity modulus in the vicinity of
the electrodes edges (x1 = −20)

Fig. 8.13. Vector plot of the non-dimensional velocity

(x1 = −20). Note the two small domains formed around the electrode ends
where the fluid is almost solidified and the difference outside and between the
electrodes. To have a better view over the flow in the inhomogeneous area, we
present in Fig. 8.13 an arrow plot of the velocity field in a similar, somewhat
smaller area. Immediately before and immediately after the electrode ends,
v2 is not negligible; indeed, the transverse velocity influences the profile of the
x1-component as one can see in Figs. 8.14 and 8.15. It is worth mentioning
that the two extreme values of v2 at x1 = −20.2 (first positive and then
negative) and x = −19.5 (first negative and then positive) indicate that the
fluid avoids the electrode tips and flows around them. For x1 outside this
regime, far ahead of the electrode ends where the profile of v1 is Newtonian
the x2-component of the velocity almost vanishes (see Figs. 8.16 (left) and
8.17). Between the electrodes, far downstream from the electrode edges the
fluid velocity assumes the known one-dimensional Casson-like profile (see
Figs. 8.16 (right) and 8.17).

In Fig. 8.18 we plot the pressure along a part of the channel including the
transition area. The distinguished three regions are characterized by differ-
ent pressure gradients. First one can see a region with a very small gradient
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Fig. 8.14. Profiles of v1 at x1 = −20.2,−20,−19.5, respectively

Fig. 8.15. Profiles of v2 at x1 = −20.2,−20,−19.5, respectively

Fig. 8.16. Profiles of v1 at x1 = −23.5,−16.5, respectively

Fig. 8.17. Profiles of v2 at x1 = −23.5,−16.5, respectively
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Fig. 8.18. Dimensionless pressure in the transition zone (x1 = −20 marks the
electrode ends)

corresponding to the Newtonian fluid; then a steep region with a high gra-
dient corresponding to the entrance between the electrodes is followed by
the third region with the gradient corresponding to the Casson-like fluid.
For x1 < −20.3 and for x1 > −19.5 the gradients may be calculated ana-
lytically from the formulas corresponding to the Newtonian fluid and the
Casson-like fluid, respectively (see Subsect. 8.4.2). The increase in pressure
drop produced within the second, so-called transition zone is important and
shows that the inhomogeneity produced by the end effects may be used to ob-
tain an enhancement of the ER-effect. This strong inhomogeneity effect can
also be seen by the difference of the pressure curves for x2 = 0 and x2 = 0.7,
respectively. In Fig. 8.19 the second invariant of the rate of strain tensor
dij is plotted. As expected, the domains with high values of |d|2 are near the
walls and in the electrode region, since the velocity is zero on the walls and
the velocity gradients are larger there than at electrode-free boudaries, see
Fig. 8.13. Exceptions arise in the vicinity of the electrode ends. There one can
see zones with reduced shear rate, which suggests the presence of near solid
zones. This behaviour can be attributed to the high electric field generated
by the electrode edge. In the middle of the channel, |d|2 maintains a small
value.

In Fig. 8.20 we display the generalized viscosity. As one can see from
(8.4.59) and from Fig. 8.9, ηgen is decreasing when |d| is increasing, and it
is increasing when E is increasing (since β1 and β2 are increasing with E).
The electrode edges can again be identified; close to them, both E and |d|
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Fig. 8.19. Surface plot of dimensionless |d|2

Fig. 8.20. Surface plot of the generalized dimensionless viscosity

give increasing contributions. An interesting shape of the viscosity ηgen ought
to be noticed: right between the electrode ends a high viscosity “island” is
formed after which it quickly decreases; then it increases again and assumed
the known shape of the Casson-like fluid far downstream (with the unyielded
region in the middle).

Influence of the Parameters c and δ

Figure 8.21 shows the behaviour of the electric field outside the electrodes
for different values of the electric permittivity ratio (c = ε1/ε2). As shown
in [246], the electric field is stronger in the area without electrodes when
the permittivity of the material outside the electrodes is larger than the
permittivity of the ER-fluid. The plot also shows that in the small area close
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Fig. 8.21. Line plots of E(x, 0) (continuous line) and E(x, 0.7) (dashed line) for
different values of c (electrodes end at x1 = −20)

to the electrode edges this effect is reversed. As a consequence, we expect a
contribution to the pressure drop from the region outside the electrodes when
c is greater than 1. We plot in Fig. 8.22 the pressure in the region where the
ERF exits from the electrodes but including also the end of the channel where
the pressure takes the reference value p = 0. One can see that the pressure
drop immediately at the electrode ends is slightly decreasing with the value
of c. This effect may be important in configurations with short electrodes. For
long electrodes the difference is not relevant because the main contribution to
the pressure drop comes from the E = const. region between the electrodes,
see Fig. 8.18.

In Fig. 8.23 (left) we plot the pressure drops between x1 = 19 or x1 = 21
and the end of the channel, x1 = 35 (where the outlet boundary condition
imposes p = 0) versus the electric permittivity ratio (c). These pressures,
denoted by p19 and p21, respectively, were calculated in the middle of the
channel height x2 = 0 and at x2 = 0.7. One can see from the figure that the
pressure in the region outside the electrodes does not depend on x2 while
a small dependence of the pressure drop on x2 can be observed across the
electrode edges. For c greater than 50 the change in pressure drop is negligible.
Since the permittivity of the ER-fluid is quite small, in practice c � 1. To see
the effects for small values of the ratio c we repeat the same plot in Fig. 8.23
(right) but use now for c a logarithmic scale.

Another key parameter of the model is δ. This can be viewed as a para-
meter which ought to be chosen as small as possible in order to recover from
equation (8.3.65) the Casson-like model, (equation (8.3.53)). On the other
hand, δ can be viewed as a constitutive parameter which can be obtained
from equation (8.3.65) by fitting the experimental data.
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Fig. 8.22. Pressure (at x2 = 0) over the electrode ends for different c

Fig. 8.23. Pressure drop p19 and p21 vs. ratio of the permittivities c on a linear
scale (left) and on a semilogarithmic scale (right)

In what follows we study the influence of nδ = δh2/v2
0 (the dimensionless

form of δ) on the solution. In Figs. 8.24 and 8.25 we plotted ηgen(|d|2, E = 2)
for different values of nδ according to formula (8.4.55). The two figures differ
in the range of the argument |d|2. One can see from Fig. 8.24 that the choice of
nδ (nδ = 0.002) implies that the generalized viscosity differs from the classical
generalized Casson-like viscosity (for which nδ = 0) only for |d|2 < 0.01.
Figure 8.25 shows that the parameter δ can still have a strong influence on
the generalized viscosity for |d|2 < 0.1.

For determining the yielded/unyielded regions we can introduce a crite-
rion using the quantity |te| = ηgen|d| (we say the material has yielded when
ηgen|d| > 2|β1(E)|). As a consequence the yielded regions are influenced by
the choice of δ if |d|2 < 0.1; for |d|2 > 0.1, δ does not change significantly the
shape of the yielded regions.



8.4 Applications: Channel Flow of ERFs 343

Fig. 8.24. ηgen(E = 2, |d|2) for differ-
ent nδ in the range 0.0001 < |d|2 < 0.01
(Casson-like model)

Fig. 8.25. ηgen(E = 2, |d|2) for differ-
ent nδ in the range 0.01 < |d|2 < 1
(Casson-like model)

Fig. 8.26. Dimensionless pressure (at x2 = 0) over the electrode ends for different
values of nδ; the inset shows the detail of the pressure near x1 = 20

In Fig. 8.26 we plot the computed pressure evolution in the channel for
different values of nδ. In the region with constant electric field (between the
electrodes far from the electrode edge) the pressure drop is not influenced by
nδ; however, in the transition region nδ produces some differences. For values
less than nδ used in the simulations (0.002) the differences are unnoticeable.
In order to see the influence of δ on the flow field we plotted the velocities
in the transition area (see Fig. 8.27) and in the middle of the electrodes (see
Fig. 8.28) for different values of nδ. It is seen again that for small values of nδ

(nδ < 0.002), the profiles are almost congruent. Figures 8.27 and 8.28 permit
in principle to identify those fluids which are described by our model con-
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Fig. 8.27. Profiles of v1 at x1 = −20 (electrode ends) for different values of nδ

taining a larger nδ-value. For increasing nδ, the plateau is curving, indicating
a reduced yielded region.

Comparison with Experiment

In order to compare the numerical modeling with the experimental results re-
ported in [64] we considered in the numerical program a configuration consist-
ing of two electrodes, charged non-symmetrically, of length 2l = 40 mm, with
a channel height of 2h = 2 mm and a length of the channel of 2L = 70 mm
which corresponds to the geometry used in the experiments [64, 269]. Exper-
iments are performed in a channel of width b = 20 mm. For computations
the input value is the volumetric flow rate in the channel Q = 4

3 hbv0 and
the output is the dimensional pressure drop calculated from x1 = −30 mm
on a length of 60 mm. In Fig. 8.29 we compare the obtained results for
different values of Eu = V/h. The quantity Eu represents the value of the
uniform electric field established in the middle of the channel, far from the
electrode edges, and it is in fact the value of the magnitude of the electric
field if the electrodes were infinitely long (see Sect. 8.4.2). While good agree-
ment is obtained, the remaining inaccuracy of the calculations is given by the
uncertainty in fitting values for β1 and β2 (see (8.4.71) and (8.4.72)).
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Fig. 8.28. Profiles of v1 at x1 = −16 (between the electrodes) for different values
of nδ

We considered this result as a validation of our computational model
and used it to simulate further configurations in our search for a possible
enhancement of the electrorheological effect.

b) Numerical Results – the Alternative Power-Law Model

Material and Configuration Properties Used for the Simulations

To illustrate the power-law constitutive equation we chose the ER-fluid EPS
3301 because, as shown in [269] it is described well by this model. EPS 3301 is
produced by the company CONDEA Chemie AG (Germany). It is a particle-
free fluid and consists of an acid metal soap which is dissolved homogeneously
in a conventional hydraulic basis liquid. It contains also some additional hy-
draulic oil additives [48, 182, 269]. The fluid was studied experimentally by
Wunderlich [269]. In order to better characterize the fluid, it was found that
a dilution with 40% (weight percent) white oil (Weissöl) is appropriate, (see
[15]).

Unlike the ER-fluid Rheobay 3565, the ER-fluid EPS 3301 shows in the
absence of the electric field pseudoplastic behaviour (the shear viscosity
decreases with increasing shear rate). Under the application of an electric
field, also pseudoplastic behaviour is observed. In [269] the power law model
(8.3.33) was found the most appropriate model to describe the data. Fitting
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Table 8.3. Values of the parameters m and n of (8.3.33) for different electric field
strengths

E0E [ kV
mm] 0 1 2 3 4

m [Pasn] 0.4702 10.8695 23.0439 36.8244 67.0970

n [−] 0.8697 0.3923 0.3249 0.2921 0.2361

the experimental curves “stress vs. shear rate” (obtained with the rotational
viscometer), the values of m and n were calculated (see Table 8.3).

We used these values in our bidimensional model (8.4.67). First, by fitting
the values of f = m(v0/h)n (see Table 8.3) and n we have to obtain their
dependence on the dimensional electric field E0E:

f(E0E) = f1 + f2(E0E) + f3(E0E)2 , (8.4.76)
n(E0E) = n1((E0E)2 + n2)n3 . (8.4.77)

The coefficients f1, f2 and f3 depend on the values of v0 and h. For v0 =
0.1647 m/s and h = 0.001 m, we obtained the values given in Table 8.4.
The function f is written as a series expansion by retaining only terms up
to second order while n is described by a power function. The experimental
data (see Table 8.3) are provided for a limited range of the electric field and
do not cover the range of the electric field employed in the simulations. We
use formulas (8.4.76) and (8.4.77) also to extrapolate the given data for f
and n for larger values of E. Figure 8.30 illustrates how the fitted curves
approximate the data and how the extrapolations for v0/h = 164.7 s−1 look
like.

The geometry used for the simulation of EPS 3301 is the same as that used
for Rheobay. The electric permittivity of EPS is ε2 = 1.4× 10−10 A·s/(V·m),
and we choose ε1 = 0.02 ε2. The density of EPS 3301 is 850 kg/m3. All sim-
ulations except those done to conduct the comparison with the experimental
data from Fig. 8.44 are performed for h = 1 mm, E0 = 1 kV/mm, V = 2 kV
and v0 = 0.1647 m/s. So, Re = 0.578 and Ma = 0.284. We considered here
also nδ = 0.002. We will investigate later the influence of this parameter on
the solution.

Table 8.4. Values of the coefficients fi and ni from (8.4.76), (8.4.77) for v0 = 0.1647
m/s and h = 0.001 m

i 1 2 3

fi 41.431 33.284 mm/kV 2.958 (mm/kV)2

ni 0.398 (mm/kV)2−n3 0.008 (kV/mm)2 −0.163
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The Flow Near the Electrode Ends (long electrodes)

Here a similar analysis as for the alternative Casson-like fluid is carried out.
In order to study the influence of the electrode edges on the flow we chose the
same configuration of the electrodes and boundary conditions for the elec-
trical problem as for the ER-material Rheobay. Consequently, the different
rheological response must be due to the material properties.

One can distinguish three regions: (1) one with small electric field, far
upstream of the entrance between the electrodes; (2) the transition zone
with strongly inhomogeneous electric field right between the edges and (3)
the uniform electric field zone between the electrodes, far downstream the
edges.

In Fig. 8.31 the velocity modulus is plotted. In the areas far ahead and far
beyond the electrode edges, the x2-component of the velocity is very small
and does practically not influence the x1 velocity component. The end effect
is reduced and the velocity develops smoothly from the region with reduced
electric field to the region with constant electric field. Cross-sectional cuts
of the surface plot in these regions are presented in Figures 8.34 and 8.35.
Figure 8.35 indicates the negligible value of v2 (∼ 1/1000 of v1). The profile of
v1 from the first zone is close to a Newtonian profile (reduced pseudoplastic
behaviour as it was observed in the experiments for small electric fields in
[269]). In the third zone the velocity profile for constant electric field presents
the character of the unyielded region in the middle of the channel, as expected
in general for an ER-fluid. To quantify the flow in the transition region we
choose three points near the electrode ends: x1 = −20.2, x1 = −20 and
x1 = −19.5 (see Figs. 8.32 and 8.15). Notice the smooth plateaux in the
middle parts of the plots of v1. The curvature change of v1 at x1 = −20 is
very close to the electrode edge but only slightly visible and much less than
in the corresponding plot of the alternative Casson-like model (middle plot
of Fig. 8.14). The x2 component of the velocity is smaller than 5% relative
of the maximum inlet velocity. As for the alternative Casson-like model, the
two extreme values of v2 in x1 = −20.2 (first positive and then negative) and
x1 = −19.5 (first negative and then positive) indicate that the fluid avoids
the electrode tips and goes around them.

In order to study the influence of the electric field on the pressure we plot
in Fig. 8.36 the pressure along the channel, across the electrode ends (compare
also with Fig. 8.18). The transition area is characterized by a higher pressure
gradient compared with the pressure gradient in the region with small electric
field (outside the electrodes) and within the region with constant electric field
(between the electrodes, far from the edges). The difference between these two
regions is not significant. The presence of a higher gradient in the transition
zone led us to the study of the possibilities to obtain a better ER-effect.

We continue our study of the transition region near the electrode ends
with plots of the second invariant of the stretching tensor, |d|2 in Fig. 8.37
and of the generalized viscosity ηgen (8.4.67) in Fig. 8.38. Regarding the plot
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Fig. 8.30. Fitting curves for the dependences of the coefficients f and n on the
electric field. The insets show how the fit is extrapolated

Fig. 8.31. Surface plot of the modulus of the non-dimensional velocity in the
vicinity of the electrode edges (which are at x1 = −20)

of |d|2 against x1, x2, one can see that the regions with smaller values of
|d|2 around the electrode edges are reduced as compared to the alternative
Casson-like model (Fig. 8.19). This can be explained by the fact that the
ER-fluid EPS is a material with a reduced ER-effect. However, the plot is
qualitatively similar to the corresponding plot for Rheobay (Fig. 8.19).

In Fig. 8.38 as in Fig. 8.20 a transition to a “solid” island between the
electrode ends can be observed.

Influence of the Parameter δ

As for the alternative Casson-like model, δ can be viewed as a parameter
which has to be chosen as small as possible to recover the pure power-law
model (equations (8.3.51) and (8.3.52)) from equation (8.3.66). On the other
hand, δ can be viewed as a constitutive parameter which can be obtained
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Fig. 8.32. Profiles of v1 at x1 = −20.2,−20,−19.5, respectively

Fig. 8.33. Profiles of v2 at x1 = −20.2,−20,−19.5, respectively

Fig. 8.34. Profiles of v1 at x1 = −23.5,−16.5, respectively

Fig. 8.35. Profiles of v2 at x1 = −23.5,−16.5, respectively
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Fig. 8.36. Dimensionless pressure in the transition zone (x1 = −20 marks the
electrode ends)

Fig. 8.37. Surface plot of dimensionless |d|2

from the experimental data when fitting equation (8.3.66) with them. Here
we treat it as a small parameter.

The number nδ = δh2/v2
0 is the dimensionless form of δ. Figures 8.39 and

8.40 show the influence of nδ on the dimensionless viscosity ηgen(E = 2, |d|2)
according to formula (8.4.67) for different ranges of the argument |d|2. One
can see that its influence becomes more drastic for small values of |d|2. In
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Fig. 8.38. Surface plot of the generalized dimensionless viscosity

Fig. 8.39. ηgen(E = 2, |d|2) for
different values of nδ in the range
10−4 < |d|2 < 0.01 (alternative power-
law model)

Fig. 8.40. ηgen(E = 2, |d|2) for
different values of nδ in the range
0.01 < |d|2 < 1 (alternative power-law
model)

order to study the influence of nδ on the solution we plot in Fig. 8.41 (com-
pare also Fig. 8.26) the pressure along the channel axis containing also the
electrode ends for different values of this parameter. Differences are only
marginally visible for nδ < 0.002 while for larger values of nδ the curves are
practically congruent. Similarly, the plots of the velocity profiles in the uni-
form electric field and right between the electrode tips are shown in Figs. 8.42
and 8.43, respectively; they indicate a negligible influence of this parameter
on the flow.
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Fig. 8.41. Dimensionless pressure (at x2 = 0) across the electrode end for different
values of nδ; the inset shows the detail of the pressure near x1 = 20

Comparison with Experiment

The experiments given in [269] have been performed for configurations con-
sisting of two parallel electrodes charged non-symmetrically with three dif-
ferent lengths: 2l = 6 mm, 2l = 20 mm, and 2l = 40 mm. The channel height
is 2h = 2 mm, the channel length is 2L = 70 mm and the channel width
is b = 20 mm. The potential imposed on the upper electrode is V = 2 kV.
The input value for computations is the volumetric flow rate in the chan-
nel Q = 2(n + 1) v0hb/(2n + 1). The output is the ER-effect which is the
dimensionless quantity

F∆p(Q) =
∆pE(Q)

∆pE=0(Q)
− 1 , (8.4.78)

where ∆p is the dimensional pressure drop calculated between x1 = −30 and
x1 = 30 mm. In Fig. 8.44, the experimental results are compared with the
numerical results for the three lengths of the electrodes. We found qualitative
agreement: the ER-effect is decreasing with increasing volumetric flow rate
and as expected, the ER-effect is larger for larger electrode lengths l.

The Femlab results are quantitatively close to the approximate analytic
computations23. This means that the effect of the electrode ends is reduced,
as is expected for a long electrode.
23 The electrorheological effect (8.4.78) measured from x1 = −30 on a distance

of 60 mm for the configuration used in the experiments may be calculated an-
nalytically (approximately) by using the procedure described in Subsect. 8.4.2
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Fig. 8.42. Profiles of v1 at x1 = −20 (electrode ends) for different values of nδ

c) Enhancing the ER-Effect

In technical applications there is a strong interest in obtaining an enhanced
ER-effect (8.4.78). Many experimental works (see e.g. [2, 269]) have been per-
formed with a focus in this direction. Most attempts are based on the modifi-
cation of the geometry in such a way that inhomogeneities in the electric field
are introduced. These investigations show that changes in the geometrical
configurations may lead to a reduction or an enhancement of the ER-effect.
However, it is difficult to distinguish by what measure this enhancement is
produced, i.e. by the electric field inhomogeneities or by the inhomogeneities
in the flow which are due to the modification of the geometry (which appear
also when the electric field is switched off).

The configurations studied in this section are based on inhomogeneities
caused by the end effects of the electrodes. This means that instead of modi-
fying the geometry, the electric field inhomogeneities are introduced here by
changing the boundary conditions in the electrical problem. Since by each
such change, the formulation of the problem for vanishing electric field re-
mains unchanged, the increase/decrease in F∆p (see (8.4.78)) is equivalent to
an increase/decrease in ∆p. Consequently, our study will focus on the exam-
ination of the possibilities to obtain larger values of the pressure drop at the
same value of the volumetric flow rate by using the inhomogeneities produced
by the electrode ends.

(by considering a uniform electric field in the part of the channel between the
electrodes and a vanishing electric field in the remainder of the channel). One
obtains F∆p = 2l(k−k0)/(0.06k0) where k0 = (Q(2 + 1/n0)/(hb))n0 m0/h is the
pressure gradient at a vanishing electric field (see 8.4.49).
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Fig. 8.43. Profiles of v1 at x1 = −16 (between the electrodes) for different values
of nδ

As Figs. 8.18 and 8.36 show, the pressure decreases more rapidly around
the electrode edges than elsewhere. In order to analyse how one can use this
effect in an optimal way the simplest elements are investigated: short elec-
trodes (which imply also an interaction between the left and right electrode
edges), an electrode interrupted by a “hole” and a short electrode between
two “holes”. The study is performed for both ER-materials Rheobay and
EPS, which are modeled with the alternative Casson-like and power-law
equations, respectively, as described previously. Since we treat here (almost)
only cases with short electrodes, all approaches are numerical. The data in-
troduced in Femlab are those given above (all lengths in this section are
given relative to the channel height).

Let us investigate first the influence of the electrode length. To obtain the
plot of Fig. 8.45, different lengths 2l of the electrodes were considered, and
the pressure drop ∆p = px1=−30 − px1=0 vs. l was computed. For l < 1.5 for
the Casson-like fluid and for l < 2 for the power-law fluid, the curves (square
points interpolation with continuous lines) deviate from the linear behaviour
(solid straight lines) which is a consequence of the coupling of the electrode
ends in the electrical problem. For very short electrodes (stronger inhomo-
geneities) the pressure drop is significantly decreased. For the Casson-like
fluid, a better electrorheological effect is obtained when the electrode edges do
not interact while for the power-law fluid the largest value of the ER-effect is
obtained for short electrodes of length about 0.5 where the electrode ends are
strongly interacting. Note that 2 is the dimensionless height of the channel.
The dotted lines of the same figures represent the pressure drop calculated
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Fig. 8.45. Pressure drop from x1 = −30 to x1 = 0 vs. the half length of the
electrodes (Casson-like fluid (left) and power-law fluid (right)): dotted line – ana-
lytical evaluation with 1D model; square points interpolated with continuous line –
numerical evaluation with 2D model; continuous straight line – fit for the behaviour
of the pressure drop for long electrodes

analytically by neglecting the end effects. The difference between this curve
and the curves obtained numerically is a measure of the values of additive
pressure drops due to the end effects.

In order to see how the value of the pressure drop can be increased, we
will investigate further what happens when the electrodes are interrupted
by “holes” of length d (see Fig. 8.46). We study the effect in two cases of
charging the 4 electrodes: for V1 = V2 = V and for V1 = −V2 = V . We call
these situations normal and inverse polarity of the electrodes, respectively.
For inverse polarity, when the “hole” is sufficiently short, there will appear a
stronger electric field that influences the flow more significantly. To illustrate
this effect we plot in Fig. 8.47 the velocity surface in the channel for the
Casson-like fluid. The behaviour for the power-law model is similar. The
inhomogeneities in the flow are stronger near the electrode edges bounding
the “hole” than in the vicinity of the exterior edges. Of course, one should
avoid too short “holes” which can lead to short circuits.

We computed the average pressure gradient k1 = [p(x1 = −(l + d)/2) −
p(x1 = (l + d)/2)]/(l + d) for l = 10 and for variable d. Since the electrodes
are sufficiently long, the electric field becomes homogeneous and the flow will
be of Poiseuille type around x1 = ±(l+d)/2, the middles of the electrodes.
By plotting k1 for different lengths of the “hole” one can compare the “hole
effect” on the pressure drop. From Fig. 8.48 one can infer pretty similar
qualitative behaviours for both fluids.

For d > 1 and normal polarity and for d > 2 and inverse polarity, the
pressure gradient is smaller than that calculated for electrodes without any
“hole”, k1 = 85.84 (for Rheobay) and k1 = 4.464 (for EPS) (corresponding
to the case d = 0 for normal polarity). The behaviour for short “holes”
is different for the two polarity cases due to the different interactions of



358 8 Electrorheological Fluids

the electrode edges in the “hole”: smaller values of the pressure gradient
for normal polarity due to a reduced electric field in the “hole” and higher
pressure gradient for inverse polarity since a stronger electric field occurs
in this case in the “hole”. The optimal length of the “hole” is the shortest
possible one without electric short circuit.

If we introduce more “holes”, the next step is to study, for inverse polarity,
how close the “holes” should be placed. To answer this question we study
the case of one variable electrode of length l1 placed between 2 “holes” of
constant length d (see Fig. 8.49). The electrodes on the left and right sides
have length l2. In Fig. 8.50 we plotted the average pressure gradient k2 =
[p(x1 = −(l1 + l2 + 2d)/2) − p(x1 = (l1 + l2 + 2d)/2)]/(l1 + l2 + 2d) vs. l1
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Fig. 8.49. Configuration with electrodes between “holes” (inverse polarity)

Fig. 8.50. Average pressure gradient vs. length of the middle electrode (one elec-
trode placed between two “holes”, alternating polarity) (Casson-like fluid (left)
and power-law fluid (right))

for l2 = 10 and d = 1. The optimal length of an electrode between “holes” of
length d = 1 is around l1 = 2 in the Casson-like case while in the power-law
case it is around l1 = 1.5.

Having the optimal parameters, one can now design optimal series of
electrodes. As an example we consider a series of five electrode pairs and we
compare the pressure over an interrupted electrode pair with the pressure over
an uninterrupted electrode pair (see Fig. 8.51). One can see that up to 30%
enhancement of the pressure drop can be obtained when combined optimized
series of “holes” and electrodes are used. To get a better insight we display
in Fig. 8.52 the generalized viscosity. For the Rheobay fluid two regions with
increased viscosity can be discerned: one along the walls and another one
in the middle of the channel. The first one is due to the high electric field
around the edges of the electrodes. If we had uninterrupted electrodes, we
would have a continuous yielded region characterized by a high viscosity in
the middle of the channel. But in the case presented here this region is split
into islands of high viscosity. One observes a similar behaviour for the EPS
fluid but to a lower extent.
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Fig. 8.51. Comparison between the pressure over an uninterrupted electrode pair
and the pressure over an optimized series of five electrode pairs (inverse polarity)

Fig. 8.52. Surface plot of the generalized viscosity for an optimized series of five
electrode pairs (inverse polarity)

Conclusions

In this subsection we focused on pressure drop simulations due to its im-
portance for applications. Effects of the “holes” and of the lengths of the
electrodes have been computed that provide direct insight into the building
blocks of typical experimental set-ups. The analysis has been carried out by
taking into account the polarity of the electrodes which critically influences
the distribution of the electric field in the channel. A better effect is obtained
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by introducing “holes” in the electrodes and by alternating the polarity of the
electrode cuts as depicted in Fig. 8.49 than taking continuous electrodes. We
found optimal lengths for the electrodes and “holes” relative to the height of
the channel.

8.4.4 Electrodes with Modified Shape and Position Relative
to the Flow – Experimental Results and Discussion

The inhomogeneities of the electric field studied in Subsect. 8.4.3 were in-
troduced by changing the boundary conditions in such a way that the upper
and lower electrodes are parallel and placed along the walls of the channel.
The geometric configuration of the flow remains unchanged. Another way to
create non-uniform electric fields is to modify the shape or the position of
the electrodes.

Several experiments with different ER-fluids were performed in order to
study the influence of the geometry of the electrodes on the ER response.
Katsikopoulos and Zukoski [108] obtained an increase of the stress by a
factor of 2 by using electrodes with grooves and ridges perpendicular to the
direction of the flow when compared with the case having smooth electrodes.
On the other hand and quite contrary, the ER-response was the same as for
smooth electrodes when the grooves of the electrodes were disposed in the
direction of flow. Otsubo’s experiments [166] show that the non-uniformity
of the electric field obtained by using electrodes of different types – one coated
with a striped pattern of conductive lines and another one with a honeycomb
pattern of conductive lines – is responsible for an enhanced ER-effect not
achievable with smooth electrodes. These initiating studies and results were
followed by further systematic works of Abu-Jdayil [2], Abu-Jdayil and
Brunn [4, 5] and Wunderlich [269], whose results we briefly describe in this
subsection. All three authors try to find how the ER-effect can be increased
by altering the geometry of the smooth electrodes.

We focus in this presentation only on those experimental configurations
which are connected with the theoretical modelling presented in this section,
namely those performed on slit flows in a stationary electric field that can be
reduced to two-dimensional models.

The ER-fluid used in [2, 4, 5] for the slit flow, P 1723, is supplied by the
company Robert Bosch GmbH (Germany). It is a transparent fluid consisting
of paraffin oil and silica gel with particle diameters from 5 to 30 nm, and a
dispersed phase volume fraction of 30%. In the experiments performed by
Wunderlich in [269] under a direct current (DC) the ER-fluid EPS 3301
was used which was already described in Subsect. 8.4.3.

We mention that in the experiments performed in [2, 4, 5] the length
of the electrodes (irrespective of their shape and position), defined as the
distance between the electrode ends, is l = 200 mm. The measurements were
performed with fixed ∆p, where ∆p is the pressure drop determined in the
middle of the electrodes pair over a length of l∆p = 150 mm. The volumetric
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flow rate Q was obtained by integrating the measured velocity profiles as
a function of ∆p. The quantitative measure of the ER-effect is given by
the efficiency factor (F ) defined as the reduction in volumetric flow rate at
constant pressure drop

F =
Q|E=0 −Q|E

Q|E=0

∣
∣
∣
∣
∆p

. (8.4.79)

In order to quantify the influence of the modified geometry of the electrodes
on the ER-effect in [2] the quantity

f1 =
F

Fu

∣
∣
∣
∣
∆p

(8.4.80)

is formed, where Fu is the efficiency factor determined for smooth electrodes
flush with the boundary.

In all experiments reported in [269] and mentioned here the length of
the electrodes is l = 40 mm. The pressure drop over the electrodes, ∆p was
measured over a distance of l∆p = 60 mm containing the electrodes, as a
function of the volumetric flow rate at certain constant values of the applied
electric field24. Since l∆p > l one has to take into account also the distance
between the channel plates which is h = 2 mm. In order to represent the
variation of the ER-effect and of the electrical power due to the modified
geometry of the electrodes in [269] the quantities

f2 =
F∆p

F∆p,h=2 mm

∣
∣
∣
∣
Q

, (8.4.81)

and

f3 =
Pel

Pel,h=2 mm

∣
∣
∣
∣
Q

, (8.4.82)

respectively, are chosen. F∆p is defined in (8.4.78), while Pel represent the
electrical power dissipated to maintain the constant electric potential on the
electrodes. The reference values F∆p,h=2 mm and Pel,h=2 mm (in the denomina-
tors of (8.4.81) and (8.4.82), respectively) are evaluated for the configuration
with parallel smooth electrodes placed along the channel walls with Q =
constant25.
24 Although the electric field is inhomogeneous the authors calculate for each con-

figuration a mean value of the electric field in order to be able to compare the
results obtained with different configurations at the same value of the electric
field. It would be perhaps more appropriate to compare the results at the same
value of the applied voltage on the electrodes which is a constant.

25 Although the author does not mention it, we understand that the denominators
as well as the corresponding numerators are evaluated for the same value of the
electric field. We make an alternative proposal at the end of this subsection.
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Fig. 8.53. Configurations with electrodes separated by a gap smaller (left) and
larger (right) than the channel height

Fig. 8.54. Configurations with convergent (left) and divergent (right) oblique elec-
trodes

Let us make an important remark: the geometry of the electrodes may
directly influence the flow field and beyond the inhomogeneity of the electric
field. In other words the flow is non-viscometric due to the geometry even in
the absence of the electric field. In order to study what influence such a non-
viscometric flow may have on the ER-effect, two configurations with parallel
smooth electrodes with different distances (see Fig. 8.53) were investigated in
[269]. The flow becomes non-viscometric at least in the vicinity of the edges
and corners near the electrode ends. From the measurements with protruding
electrodes for hel = 1 mm and hel = 0.5 mm, f2 < 1 and f3 < 1 were found.
From the measurements with retreated electrodes for hel = 3 mm instead
f2 > 1 and f3 > 1 was obtained.

Another investigated configuration consists of oblique electrodes (see
Fig. 8.54). The idea behind this arrangement is to avoid as far as possi-
ble the presence of edges and corners and to examine the effects when the
distance between the electrodes varies which leads in this case to conver-
gence/divergence of the stream lines. There are no measurements with this
configuration conducted for DC in [269]. The configuration with convergent
electrodes was studied in [2, 4, 5] for h = 3 mm and hmin = 2 mm. When
evaluating f1 the author compared F with Fu, where Fu is the efficiency
factor for a configuration with smooth parallel electrodes separated by a gap
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Fig. 8.55. Configuration with corrugated electrodes (asymmetric arrangement)

Fig. 8.56. Configuration with corrugated electrodes (symmetric arrangement)

of hs = 2.5 mm26. The result was f1 = 1 for U < 1.7 kV and f1 < 1 for
U > 1.7 kV.

The configurations presented now are based on electrodes with modified
surfaces. The inhomogeneities of the electric field and the non-viscometric
effects of the flow are intensified in this way.

In order to study the influence of the surface of the electrodes on the ER-
effect grooved electrodes were used (see Figs. 8.55 and 8.56). This shape can
be viewed as a series of protruding and retreating electrodes. For d = 2 mm,
h1 = 2.15 mm and h2 = 2.3 mm in [269] an increased ER-effect f2 > 1 was
obtained at approximately the same electric power f3 ≈ 1 for both symmetric
and asymmetric arrangements. In [2, 4, 5] the dimensions characterizing the
applied grooved electrodes are d = 10 mm, h1 = 2.5 mm and h2 = 3 mm.
The efficiency factor F was compared with Fu taking the gap between the
smooth parallel electrodes, hs = 2.3 mm. The results obtained were f1 > 1
for U < 1.7 kV and f1 < 1 for U > 1.7 kV. For U > 1.7 kV the efficiency
factor for the asymmetric configuration is slightly less than for the symmetric
configuration.

In the above-described configurations the electric field lines are approxi-
mately perpendicular on the stream lines. Wunderlich considered in [269] a
configuration (see Fig. 8.57) in which this behaviour is altered: the electrodes
are shaped such that the electric field lines are in some regions essentially
parallel to the stream lines. Moreover, the flow is obstructed by the beamed
extrusions of the electrodes and the stream lines take a snake-like shape (the
flow direction will be alternatively horizontal and vertical). The fluid flows

26 This value is equal to the mean distance between the oblique electrodes. In this
way, at a certain applied voltage U , the electric field established between smooth
electrodes, Es = U/hs is the same as the mean value of the electric field between
the oblique electrodes, Emean = U/hmean.



8.4 Applications: Channel Flow of ERFs 365

Fig. 8.57. Configurations with beamed electrodes

alternatively through regions with and without an electric field. In spite of
all these strong inhomogeneities the obtained ER-effect is smaller than for
the smooth electrodes: f2 < 1 and f3 < 1.

The conclusion of all these experimental works is that an enhanced
ER-effect can be obtained when the inhomogeneities in the electric field are
introduced such that the flow field is perturbed as little as possible (i.e. re-
mains essentially viscometric). The inhomogeneity in the flow field lowers
the ER-effect or at least cancels the gained ER-effect due to the non-uniform
electric field so that the effects compensate each other.

In their approach the authors differentiate between two types of elec-
trodes. In a configuration based on the first type the flow becomes non-
viscometric due to both the shape of the electrodes (presence of corners and
edges) and the inhomogeneity of the electric field. This means that the flow
is non-viscometric also when the electric field vanishes. Configurations with
protruding electrodes, retreated electrodes, beamed electrodes belong to this
category. The second types of electrodes have shapes which are supposed
to be perturbed only by a small measure of the viscometric flow. Conse-
quently, in this case, the non-viscometry of the flow is due approximately to
the non-uniform electric field and in the absence of the electric field the flow
is approximately viscometric. Oblique electrodes and corrugated electrodes
are considered of this second type. However, since the mechanical problem is
coupled with the electrical problem in a non-linear way, this separation can be
used only as a guiding hint. A more rigorous approach would be accomplished
by complementing the experimental studies by theoretical modeling.

Concerning the theoretical approach to be applied to these complex con-
figurations some remarks should be made. Thanks to its generality, the for-
mulation of the problem given in Subsect. 8.4.1 permits its application and
numerical implementation also for modified geometries of the channel (e.g.
with oblique electrodes, grooved electrodes or with electrodes separated by a
gap smaller/larger than the channel height), by simply adapting the respec-
tive boundary conditions. However this formulation is restricted to electrodes
of zero thickness. Luckily, one can approximate each of the presented con-
figurations with a corresponding one having electrodes of zero thickness by
imposing the applied electric potential only on the interior boundaries of the
electrodes. The main difficulty which arises in the numerical implementation
is related to the choice of the mesh. A sufficiently refined mesh around the
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edges and corners requires huge memory space and excessively large CPU
times to ensure convergence since at sharp electrode corners the electric field
is singular (see [246]).

An important remark must be made about the empirical evaluation of
the quantity E, which appears in (8.4.79)–(8.4.82), and it is approximated
by the mean value of the electric field. Nevertheless, the electric field is inho-
mogeneous (at least in certain regions) in each configuration investigated in
these works so it is not reasonable to characterize it by a single mean value
for the whole domain. Since the aim of the experimental and theoretical in-
vestigations is to obtain enhanced effects at the same power consumption
by modifying the morphology of the electrodes, perhaps it would be more
appropriate to compare the obtained ER-effects for the initial and modi-
fied configurations at the same electric power instead of at the same mean
electric field. So, in order to conduct a correct comparison between the ER-
effect with normal electrodes and the ER-effect with modified electrodes we
suggest to choose for each modified configuration an electric voltage such that
the electric power is the same as the power dissipated for the configuration
with smooth electrodes. This means for Wunderlich’s approach that

Pel

Pel,h=2 mm

∣
∣
∣
∣
Q

= 1 . (8.4.83)
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9.1 Appendix A: On Objectivity

In this Appendix we briefly state how one can show what transformation
properties the various electromagnetic field variables introduced in the main
body of this book enjoy. To this end, we shall use three and four-dimensional
notation. Let xA be the (contravariant) four-vector (xi, t), consisting of the
position vector xi (i = 1, 2, 3) of a particle and time t, and let x�A = x�A(xB)
be any C1-transformation (xi, t) → (x�

i , t
�). A covariant four-tensor ψAB

and a contravariant four-tensor ψAB are then quantities, which under such
mappings transform according to

ψ�
AB =

∂xC

∂x�A

∂xD

∂x�B
ψCD , ψ�AB =

∂x�A

∂xC

∂x�B

∂xD
ψCD . (9.1.1)

Likewise, a contravariant four-vector transforms under general transforma-
tions (xi, t) → (x�

i , t
�) according to

σ�A =
∂x�A

∂xB
σB . (9.1.2)

Of special interest are Euclidian transformations given by

x�
i = Oij(t)xj + ci(t) , xi = Oji(t)(x�

j − cj(t)) ,

t� = t , t = t� .

(9.1.3)

In what follows we would like to explore some consequences implied by them.

(i) Let
σA = (Ji,Q)

be a contravariant vector. Then a routine calculation shows that under
Euclidian transformations

σ�A = (J�
i ,Q�) = (Oij(Jj − ẋjQ) + Qẋ�

i ,Q) , (9.1.4)

or

K. Hutter et al.: Electromagnetic Field Matter Interaction in Thermoelastic Solids and
Viscous Fluids, Lect. Notes Phys. 710, 367–374 (2006)

c© Springer-Verlag Berlin Heidelberg 2006DOI 10.1007/3-540-37240-7 9
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(Ji −Qẋi)� = Oij(t)(Ji −Qẋj) ,

Q� = Q .
(9.1.5)

In other words, Q and (Ji − Qẋi) = Ji transform under Euclidian
transformations as an objective scalar and an objective vector, respec-
tively.

(ii) Let ψAB be a skew-symmetric covariant four-tensor with the compo-
nents

ψAB =







0 b3 −b2 e1

0 b1 e2

(−) 0 e3

0





 (9.1.6)

(we choose to name these components bi and ei for suggestive reasons
lateron). If we perform a Euclidian transformation, (9.1.3) shows that
the three-vectors bi : (b1, b2, b3) and ei := (e1, e2, e3) transform as fol-
lows:

b�
i = det (O)Oikbk ,

e�
i + eijkẋ

�
j b

�
k = Oij(t)(ej + ejklẋkbl) .

(9.1.7)

Otherwise stated, bi is an objective axial vector and (ei + eijkẋjbk) an
objective polar vector under the Euclidian transformation group. To
prove (9.1.7)1 for instance, note that

ψ�
ij = OikOjlψkl , where ψkl = eklmbm ,

where eijk is the usual three-dimensional permutation tensor. In much
the same, though more complicated way, one can also prove that

e�
i = Oil{el + elmn[Ȯjm(x�

j − cj) −Ojmċj ]bn} ,

which, with the aid of the identity

Ȯjm(x�
j − cj) −Ojmċj = ẋm −Ojmẋ�

j ,

immediately implies (9.1.7).
A special application of (9.1.6) is the tensor whose components are
bi := mi, ei = 0. Then mi must be an objective axial tensor under the
Euclidian transformation group.

(iii) Another covariant skew-symmetric tensor of importance is

ψAB =







0 m3 −m2 (m × ẋ)1
0 m1 (m × ẋ)2

(−) 0 (m × ẋ)3
0





 . (9.1.8)

It can be shown by a straightforward calculation, that the three-vector
mi := (m1,m2,m3) is an objective axial vector under Euclidian trans-
formations. (This is just a special case of (ii).)
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(iv) Let ψAB be a skew-symmetric contravariant four-tensor with the com-
ponents

ψAB =







0 h3 −h2 −d1

0 h1 −d2

(−) 0 −d3

0





 . (9.1.9)

A calculation identical to that performed above shows that the vectors
d1 := (d1, d2, d3) and h1 := (h1, h2, h3) transform under the Euclidian
group as

d�
i = Oijdj ,

h�
i − eijkẋ

�
jd

�
k = det (O)Oij(hj − ejklẋkdl) .

(9.1.10)

Hence di and (hi − eijkẋjdk) are an objective vector and an objective
axial vector under Euclidian transformations.
A special situation is again the case for which

hi = mi and di = 0

which immediately shows that mi must be an objective axial vector.
(v) As a last example, consider the contravariant skew-symmetric tensor

ψAB =







0 (p × ẋ)3 −(p × ẋ)2 p1

0 (p × ẋ)1 p2

0 p3

(−) 0





 . (9.1.11)

Its transformation properties are most easily found in two steps. Firstly,
we write

(ψ�)k4 =
∂x�k

∂xl

∂x�4

∂x4
ψl4 ,

and obtain with the aid of (9.1.11) and (9.1.3)1,

p�
i = Oijpj , (9.1.12)

proving that pi is an objective vector. On the other hand

(ψ�)ij = p�
iẋ

�
j − p�

jẋ
�
i =

∂x�i

∂xk

∂x�j

∂xl
ψkl +

∂x�i

∂x4

∂x�j

∂xl
ψ4l +

∂x�i

∂xk

∂x�j

∂x4
ψk4 ,

and it is now an easy matter, using (9.1.11) and (9.1.3), to show that
the expression on the far right and in the middle of this chain are the
same if pi is assumed to obey (9.1.12).

It is shown in theoretical electrodynamics that the Maxwell equations of
deformable continua can be written in the form
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eABCD ∂ϕCD

∂xB
= 0 and

∂ηAB

∂xB
= σA , (9.1.13)

where ϕCD and ηCD are skew-symmetric covariant and contravariant four-
tensors, respectively, and where σA is a contravariant vector. Furthermore,
eABCD is the four-dimensional permutation tensor, which is anti-symmetric
with respect to any interchange of two indices and vanishes if any two indices
are the same. Moreover, e1234 = 1, and lowering and rising of indices is
achieved by the use of the metric tensor gAB = gAB , whose matrix is given
by

gAB =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





 . (9.1.14)

Hence e1234 = −1, since e1234 = +1.
The equations (9.1.13) are general and hold in vacuo as well as in matter,

but the contribution of matter is usually separated from that of vacuo; this
separation is achieved by writing

ϕAB = ΦAB − µAB , ηAB = HAB − πAB , (9.1.15)

where µAB and πAB are a covariant and a contravariant skew-symmetric
four-tensor, respectively, which vanish in vacuo. Thus ΦAB and HAB are the
vacuum fields. Note that in view of the transformation properties explained
under (i)–(v) for general skew-symmetric tensors, there will be no need to
derive such properties for ϕAB , ΦAB , µAB , ηAB , HAB and πAB anew. Before
we list these tensors in the various descriptions, recall that the vacuum-fields
ΦAB and HAB are related to each other through the equation

ΦAB = Φ̂AB(HCD) , (9.1.16)

a relation which is sometimes called the Maxwell–Lorentz-aether rela-
tion. We shall see that it is not invariant under the general transformation
(xi, t) → (x�

i , t
�).

We now list the various formulations and give the invariance properties
which their variables enjoy.

(a) Minkowski formulation. In this formulation one chooses µAB = 0
and does not separate ηAB into two parts. Thus

ϕAB =







0 B3 −B2 E1

0 B1 E2

(−) 0 E3

0





 , ηAB =







0 H3 −H2 −D1

0 H1 −D2

(−) 0 −D3

0





 . (9.1.17)

Hence, because of the properties (ii) and (iv) of skew-symmetric tensors, we
have under the Euclidian transformation group
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Di , Ei := Ei + eijkẋ
�
jBk , transform as objective polar vectors ,

Bi , Hi := Hi − eijkẋ
�
jDk , transform as objective axial vectors .

It is also a routine matter to show that (9.1.13) agrees with (3.3.36). Finally,
the Maxwell–Lorentz–aether relation is formally introduced by writing
ηAB = HAB − πAB with

HAB =










0 Ha
3 −Ha

2 −Da
1

0 Ha
1 −Da

2

(−) 0 −Da
3

0










, πAB =










0 −M3 M2 P1

0 −M1 P2

(−) 0 P3

0










,

(9.1.18)
where Ha

i and Da
i are auxiliary fields and Mi and Pi are the Minkowskian

magnetization and polarization. Again, in view of items (ii) and (iv) above

Da
i , Pi, transform as objective polar vectors ,

Mi := Mi − eijkẋjPk

Hi := Ha
i − eijkẋjDk

}

transform as objective axial vectors
(9.1.19)

under the Euclidian transformation group. Now, the Maxwell Lorentz–
aether relation (9.1.16) is given by

Ha
i =

1
µ0

Bi and Da
i = ε0Ei , (9.1.20)

and it is trivial to show that these are not invariant under Euclidian trans-
formations.

(b) Statistical Model. Except for notation this model is identical with
the Minkowski model. Hence, under Euclidian transformations

Da
i , Ei, Pi , transform as objective polar vectors ,

Mi, Bi,Hi, transform as objective axial vectors .
(9.1.21)

(c) Lorentz formulation. In this formulation one sets µAB = 0, as was
done in the previous formulations. Furthermore, HAB is given as in (9.1.18),
but

ηAB =










0 −ML
3 + (P L × ẋ)3 ML

2 − (P L × ẋ)2 PL
1

0 −ML
1 + (P L × ẋ)1 PL

2

0 PL
3

(−) 0










. (9.1.22)

This tensor can easily be written as the sum of two tensors, one containing
the polarization, the other containing the magnetization only. From iv) and
v) and the previous results it then follows that
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Da
i , Ei, P

L
i = Pi , transform as objective polar vectors ,

ML
i = Mi, Bi,Ha

i , transform as objective axial vectors .

under the Euclidian transformation group.
(d) Two–Dipole Model (Chu formulation). This model is the only one

with nonvanishing µAB . Indeed,

ΦAB =










0 Ba
3 −Ba

2 EC
1

0 Ba
1 EC

2

0 EC
3

(−) 0










, µAB =










0 −MC
3 MC

2 (MC × ẋ)1

0 −MC
1 (MC × ẋ)2

(−) 0 (MC × ẋ)3

0










ηAB =










0 HC
3 −HC

2 −Da
1

0 HC
1 −Da

2

(−) 0 −Da
3

0










, πAB =










0 (P C × ẋ)3 −(P C × ẋ)2 PC
1

0 (P C × ẋ)1 PC
2

0 PC
3

(−) 0










.

(9.1.23)
Here, all variables are the so-called Chu-variables and

Ba
i = µ0H

C
i and Da

i = ε0E
C
i

are the Maxwell–Lorentz–aether relations. It follows from (ii)–(v) above
that under Euclidian transformations

Da
i , Ei := Ei + eijkẋjB

a
k, P

C
i , transform as objective polar vectors ,

Ba
i ,Hi := HC

i − eijkẋjD
a
k,M

C
i , transform as objective axial vectors .

It is not difficult to show for each set of four-tensors, introduced above that
the three-dimensional Maxwell equations in the respective formulations are
obtained. Moreover, as can be clearly seen from the above derivation, Ei (or
EC

i ) and Hi (or Ha
i or HC

i ) are not objective vectors under the Euclidian
transformation group but that ε0Ei, ε0E

C
i , µ0Hi, µ0H

a
i and µ0H

C
i are, as

can easily be seen by invoking the Maxwell–Lorentz–aether relations in
the expressions for Da

i , B
a
i . Note also, that ML

i and MC
i are both objective.

Of such properties we have freely made use in the main body of this book.
Finally, we mention once more that it is through the Maxwell–

Lorentz–aether relations that the Maxwell equations are not invariant
under general transformations (xi, t) → (x�

i , t
�). Their form is such that the

Maxwell equations in vacuo (in which the Maxwell–Lorentz–aether
relations are substituted) are invariant only under a very restricted trans-
formation group, the Lorentz group. This should not be confused with
the basic fact that ϕAB , ΦAB , µAB , ηAB , HAB and πAB are four-tensors,
which must obey (9.1.1). Consequently, the transformation properties under
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the Euclidian group hold irrespective of the invariance properties of the
Maxwell equations.

Of course, Euclidian transformations are one group only, for which the
transformations (9.1.1) and (9.1.2) hold. In principle, any other transforma-
tion group can be investigated and of special interest are Lorentz transforma-
tions, because they leave the Maxwell equations including the Maxwell–
Lorentz–aether relations invariant. These transformations are well-known
and so we do not elaborate on them.

9.2 Appendix B: Some Detailed Calculations
of the Maxwell–Minkowski Model

In this Appendix we present a motivation for the choice of ρT and R, (3.4.18),
and a derivation of equation (3.4.20).

We start by transforming the Poynting-vector

EM × HM .

With the aid of (3.4.1) we show that

eijkE
M
j HM

j = eijk(Ej − ejlmẋlBm)(Hk + ekpqẋpDq)
= eijkEjHk + (EjDj + HjBj)ẋi − (EjDi + HjBi)ẋj

+ejklPkBlẋj ẋi + O(V 2/c2) .

(9.2.1)

Next, using the Maxwell equations (3.4.10) and (3.4.13), we derive

(eijkEjHk),i = −JiEi−
�

Di Ei−
�

Bi Hi

= −JiEi − (ε0EiĖi + µ0HiḢi) − EiṖi − µ0HiṀi

−(EjDj −HjBj)ẋi,i + (EiDj + HiBj)ẋi,j

= −JiEi −
d

dt

[
1
2 (ε0EiEi + µ0HiHi)

]
− EiṖi − µ0HiṀi

−(EiPj + µ0HiMj)ẋi,j − (ε0EjEj + µ0HjHj)ẋi,i

+(EiDj + HiBj)ẋi,j .

(9.2.2)

Substitution of (9.2.1) and (9.2.2) into (3.4.17) yields

(ρ̇ + ρẋi,i)(U + 1
2 ẋiẋi + T ) + ρṪ − ρU̇ + qi,i − ρrext

−JiEi − Ei

�

P i −µ0Hi

�

Mi −[Ri − (PjEj + µ0HjMj)ẋi

+ejklPkBlẋj ẋi],i − [tij + EiPj + µ0HiMj ]ẋi,j

+[ρẍi − ρF ext
i − tij,j − (EiDj + HiBj),j

+ 1
2 (ε0EkEk + µ0HkHk),i]ẋi = 0 .

(9.2.3)
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For this relation to be invariant under rigid-body translations, the term pro-
portional to ẋiẋj , i.e.:

ejklPkBlẋiẋj ,

must be compensated by Ri. Moreover, R must vanish with vanishing P and
M . Both requirements are satisfied by assuming (3.4.18)2 which reads

Ri = (PjEj + µ0MjHj)ẋi + ejklPkBlẋj ẋi . (9.2.4)

Furthermore, if T would not be an objective scalar under rigid-body transla-
tions (with velocity b(t)) the term ρT would lead to a term proportional to
ḃ(t). Since this would be the only term of this kind, the above assumption
leads to a contradiction and, hence, ρT must be objective. In that case, there
is no distinction possible between T and U , and so T may be absorbed by U ,
or in other words, we may take

ρT = 0 , (9.2.5)

as was done in (3.4.18)1.
We now substitute (9.2.4) and (9.2.5) into (9.2.3) and use the relation

(EiDj + HiBj),j − 1
2 (ε0EkEk + µ0HkHk),i

= QEi + eijkJjBk + PjEj,i + µ0MjHj,i + eijk(Dj

�

Bk +
�

Dj Bk) ,
(9.2.6)

which follows from (3.4.10) and (3.4.13). This then leads to (3.4.20).
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Flachkanal mit glatten, schrägen und geriffelten Elektroden. Diplomarbeit,
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