
Partha Pratim Pande · Amlan Ganguly
Krishnendu Chakrabarty Editors

Design Technologies
for Green and
Sustainable
Computing Systems

Design Technologies for Green and Sustainable
Computing Systems

Partha Pratim Pande • Amlan Ganguly
Krishnendu Chakrabarty
Editors

Design Technologies
for Green and Sustainable
Computing Systems

123

Editors
Partha Pratim Pande
School of EECS
Washington State University
Pullman, WA, USA

Krishnendu Chakrabarty
ECE
Duke University
Durham, NC, USA

Amlan Ganguly
Department of Computer Engineering
Rochester Institute of Technology
Rochester, NY, USA

ISBN 978-1-4614-4974-4 ISBN 978-1-4614-4975-1 (eBook)
DOI 10.1007/978-1-4614-4975-1
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013942388

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Modern large-scale computing systems, such as data centers and high-performance
computing (HPC) clusters, are severely constrained by power and cooling costs
for solving extreme-scale (or exascale) problems. The relentless increase in power
consumption is of growing concern due to several reasons, e.g., cost, reliability,
scalability, and environmental impact. A report from the Environmental Protection
Agency (EPA) indicates that the nation’s servers and data centers alone use about
1.5% of the total national energy consumed per year, at a cost of approximately
$4.5 billion. The growing energy demands in data centers and HPC clusters are
of utmost concern and there is a need to build efficient and sustainable computing
environments that reduce the negative environmental impacts. Emerging technolo-
gies to support these computing systems are therefore of tremendous interest. Power
management in data centers and HPC platforms is getting significant attention both
from academia and industry. The power efficiency and sustainability aspects need to
be addressed from various angles that include system design, computer architecture,
programming language, compilers, networking, etc.

The aim of this book is to present several articles that highlight the state of the
art on Sustainable and Green Computing Systems. While bridging the gap between
various disciplines, this book highlights new sustainable and green computing
paradigms and presents some of their features, advantages, disadvantages, and
associated challenges. This book consists of nine chapters and features a range of
application areas, from sustainable data centers, to run-time power management in
multicore chips, green wireless sensor networks, energy efficiency of servers, cyber
physical systems, and energy-adaptive computing. Instead of presenting a single,
unified viewpoint, we have included in this book a diverse set of topics so that the
readers have the benefit of variety of perspectives.

v

vi Preface

We hope that the book serves as a timely collection of new ideas and information
to a wide range of readers from industry, academia, and national laboratories.
The chapters in this book will be of interest to a large readership due to their
interdisciplinary nature.

Washington State University, Pullman, USA Partha Pratim Pande
Rochester Institute of Technology, Rochester, USA Amlan Ganguly
Duke University, Durham, USA Krishnendu Chakrabarty

Contents

1 Fundamental Limits on Run-Time Power Management
Algorithms for MPSoCs . 1
Siddharth Garg, Diana Marculescu, and Radu Marculescu

2 Reliable Networks-on-Chip Design for Sustainable
Computing Systems . 23
Paul Ampadu, Qiaoyan Yu, and Bo Fu

3 Energy Adaptive Computing for a Sustainable ICT Ecosystem 59
Krishna Kant, Muthukumar Murugan, and
David Hung Chang Du

4 Implementing the Data Center Energy Productivity Metric
in a High-Performance Computing Data Center . 93
Landon H. Sego, Andrés Márquez, Andrew Rawson,
Tahir Cader, Kevin Fox, William I. Gustafson Jr., and
Christopher J. Mundy

5 Sustainable Dynamic Application Hosting Across
Geographically Distributed Data Centers . 117
Zahra Abbasi, Madhurima Pore, Georgios Varsamopoulos,
and Sandeep K.S. Gupta

6 Barely Alive Servers: Greener Datacenters Through
Memory-Accessible, Low-Power States . 149
Vlasia Anagnostopoulou, Susmit Biswas, Heba Saadeldeen,
Alan Savage, Ricardo Bianchini, Tao Yang, Diana Franklin,
and Frederic T. Chong

7 Energy Storage System Design for Green-Energy Cyber
Physical Systems . 179
Jie Wu, James Williamson, and Li Shang

vii

viii Contents

8 Sensor Network Protocols for Greener Smart Environments 205
Giacomo Ghidini, Sajal K. Das, and Dirk Pesch

9 Claremont: A Solar-Powered Near-Threshold Voltage
IA-32 Processor . 229
Sriram Vangal and Shailendra Jain

Chapter 1
Fundamental Limits on Run-Time Power
Management Algorithms for MPSoCs

Siddharth Garg, Diana Marculescu, and Radu Marculescu

1.1 Introduction

Enabled by technology scaling, information and communication technologies now
constitute one of the fastest growing contributors to global energy consumption.
While the energy per operation, joules per bit switch for example, goes down with
technology scaling, the additional integration and functionality enabled by smaller
transistors has resulted in a net growth in energy consumption. To contain this
growth in energy consumption and enable sustainable computing, chip designers
are increasingly resorting to run-time energy management techniques which ensure
that each device only dissipates as much power as it needs to meet the performance
requirements. In this context, MPSoCs implemented using the multiple Voltage
Frequency Island (VFI) design style have been proposed as an effective solution
to decrease on-chip power dissipation [10, 17]. As shown in Fig. 1.1a, each island
in a VFI system is locally clocked and has an independent voltage supply, while
inter-island communication is orchestrated via mixed-clock, mixed-voltage FIFOs.
The opportunity for power savings arises from the fact that the voltage of each island
can be independently tuned to minimize the system power dissipation, both dynamic
and leakage, under performance constraints.

In an ideal scenario, each VFI in a multiple VFI MPSoC can run at an
arbitrary voltage and frequency so as to provide the lowest power consumption
at the desired performance level. However, technology scaling imposes a number
of fundamental constraints on the choice of voltage and frequency values, for
example, the difference between the maximum and minimum supply voltage has

S. Garg (�)
University of Waterloo, 200 Univ. Avenue W., Waterloo, ON, Canada
e-mail: siddharth.garg@uwaterloo.ca

D. Marculescu • R. Marculescu
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA
e-mail: dianam@ece.cmu.edu; radum@ece.cmu.edu

P.P. Pande et al. (eds.), Design Technologies for Green and Sustainable Computing Systems,
DOI 10.1007/978-1-4614-4975-1 1, © Springer ScienceCBusiness Media New York 2013

1

2 S. Garg et al.

Fig. 1.1 (a) A multiple VFI system with three VFIs. (b) Decreasing difference between Vdd

and Vth with technology scaling [27]. (c) Increasing process variation with technology scaling
as outlined by the ITRS 2009

been shrinking with technology scaling which results in a reduced dynamic range
to make DVFS decisions. While the problem of designing appropriate dynamic
voltage and frequency scaling (DVFS) control algorithms for VFI systems has been
addressed before by a number of authors [2, 16, 17, 25],1 no attention has been
given to analyzing the fundamental limits on the capabilities of DVFS controllers
for multiple VFI systems.

Starting from these overarching ideas, we specifically focus on three technology
driven constraints that we believe have the most impact on DVFS controller
characteristics: (1) reliability-constrained upper-limits on the maximum voltage
and frequency at which any VFI can operate; (2) inductive noise-driven limits
on the maximum rate of change of voltage and frequency; and (3) the impact of
manufacturing process variations. Figure 1.1b shows ITRS projections for supply
voltage and threshold voltage scaling – assuming that the supply voltage range
allowed during DVFS can swing between a fixed multiple of the threshold voltage
and maximum supply voltage, it is clear that the available swing from minimum
to maximum supply voltage is reducing. Similarly, Fig. 1.1c shows the increasing
variations in manufacturing process variations with technology scaling, which
eventually lead to significant core-to-core differences in power and performance
characteristics on a chip. Finally, although not pictured in Fig. 1.1, in [15], the

1Note that an exhaustive list of prior work on DVFS control would be too lengthy for this
manuscript. We therefore chose to detail only the publications that are most closely related to
our work.

1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs 3

authors demonstrate the quadratic increase in peak voltage swing due to inductive
noise (relative to the supply voltage) with technology scaling. Inductive noise is
caused by sudden changes in the chip’s power consumption and therefore DVFS
algorithms must additionally be supply voltage noise aware.

Given the broad range of proposed DVFS control algorithms proposed in
literature, we believe that it is insufficient to merely analyze the performance limits
of a specific control strategy. The only assumption we make, which is common
to a majority of the DVFS controllers proposed in literature, is that the goal of
the control algorithm is to ensure that a reference state of the system is reached
within a bounded number of control steps, for example, the occupancies of a
pre-defined set of queues in the system are controlled to remain at pre-specified
reference values. In other words, the proposed bounds are particularly applicable to
DVFS control algorithms that, instead of directly minimizing total power dissipation
(both static and dynamic), aim to do so indirectly by explicitly satisfying given
performance/throughput constraints.

If the metric to be controlled is queue occupancy, we define the performance of a
controller to be its ability to bring the queues, starting from an arbitrary initial state,
back to their reference utilizations in a desired, but fixed number of control intervals.
Given the technology constraints, our framework is then able to provide a theoretical
guarantee on the existence of a controller that can meet this specification. The
performance metric is a measure of the responsiveness of the controller to adapt
to workload variations, and consequently reduce the power and energy dissipation
when the workload demands do not require every VFI to run at full voltage and
frequency.

1.2 Related Work and Novel Contributions

Power management of MPSoCs implemented using a multiple VFIs has been a
subject to extensive research in the past, both from an control algorithms perspective
and an control implementation perspective. Niyogi and Marculescu [16] presents an
Lagrange optimization based approach to perform DVFS in multiple VFI systems,
while in [25], the authors propose a PID DVFS controller to set the occupancies
of the interface queues between the clock domains in a multiple clock-domain
processor to reference values. In addition, [17] presents a state-space model of
the queue occupancies in an MPSoC with multiple VFIs and proposes a formal
linear feedback control algorithm to control the queues based on the state-space
model. Carta [2] also uses a inter-VFI queue based formulation for DVFS control
but makes use of non-linear feedback control techniques. However, compared to
[17], the non-linear feedback control algorithm proposed by Carta et al. [2] can only
be applied to simple pipelined MPSoC systems. We note that compared to [2, 17]
and the other previous work, we focus on the fundamental limits of controllability
of DVFS enabled multiple VFI systems. Furthermore, since we do not target a
specific control algorithm, the results from our analysis are equally applicable to

4 S. Garg et al.

any of the control techniques proposed before. On a related note, feedback control
techniques have recently been proposed for on-chip temperature management of
multiple VFI systems [23,26], where, instead of queue occupancy, the goal is to keep
the temperature of the system at or below a reference temperature. While outside
the direct scope of this work, determining fundamental limits on the performance
of on-chip temperature management approaches is an important avenue for future
research.

Some researchers have recently discussed the practical aspects of implementing
DVFS control on a chip, for example, tradeoffs between on-chip versus off-chip
DC-DC converters [12], the number of discrete voltage levels allowed [5], and
centralized versus distributed control techniques [1, 7, 18]. While these practical
implementation issues also limit the performance of DVFS control algorithms, in
this work we focus on more fundamental constraints mentioned before that arise
from technology scaling and elucidate their impact on DVFS control performance
from an algorithmic perspective.

Finally, a number of recent academic and industrial hardware prototypes have
demonstrated the feasibility of enabling fine-grained control of voltage and fre-
quency VFI-based multi-processor systems. These include the 167-core prototype
designed by Truong et al. [22], the Magali chip [3], and the Intel 48-core Single
Chip Cloud (SCC) chip [20] among others. The SCC chip, for example, consists of
six VFIs with eight cores per VFI. Each VFI can support voltages between 0.7 and
1.3 V in increments of 0.1 V and frequency values between 100 and 800 MHz. This
allows the chip’s power envelope to be dynamically varied between 20 and 120 W.

As compared to the prior work on this topic, we make the following novel
contributions:

• We propose a computationally efficient framework to analyze the impact of three
major technology-driven constraints on the performance of DVFS controllers for
multiple VFI MPSoCs.

• The proposed analysis framework is not bound to a specific control technique or
algorithm. Starting from a formal state-space representation of the queues in an
MPSoC, we provide theoretical bounds on the capabilities of any DVFS control
technique; where we define the capability of a DVFS control algorithm to be
its ability to bring the queue occupancies back to reference state starting from
perturbed values.

We note that a part of this work, including figures, appeared in our prior
publications [6, 8].

1.3 Workload Control for VFI Based MPSoCs

The power management problem for VFI MPSoCs is motivated by the spatial and
temporal workload variations observed in typical MPSoCs. In particular, to satisfy
the performance requirements of an application executing on an MPSoC, it may
not be required to run each core at full voltage and at its highest clock frequency,

1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs 5

Fig. 1.2 Example of a VFI system with three islands and two queues

providing an opportunity to save power by running some cores at lower power and
performance levels. In addition, looking at a specific core, its power and perfor-
mance level may need to be changed temporally to guarantee that the performance
specifications are met. In other words, the ideal DVFS algorithm for a multiple
VFI MPSoC meets the performance requirements and simultaneously minimizes
power dissipation (or energy consumption). While conceptually straightforward, it
is not immediately clear how DVFS can be accomplished in real-time; towards this
end, a number of authors have proposed queue stability based DVFS mechanisms.
In essence, by ensuring that the queues in the system are neither too-full nor too-
empty, it is possible to guarantee that the application demands are being met and,
in addition, each core is running at the minimum speed required for it to meet these
demands.

To mathematically describe queue-based DVFS control, we begin by briefly
reviewing the state-space modeled developed in [17] to model the controlled queues
in a multiple VFI system. We start with a design with N interface queues and
M VFIs. An example of such a system is shown in Fig. 1.2, where M D 3 and
N D 2. Furthermore, without any loss of generality, we assume that the system is
controlled at discrete intervals of time, i.e., the kth control interval is the time period
ŒkT; .k C 1/T �, where T is the length of a control interval.

The following notation can now be defined:

• The vector Q.k/ 2 RN D Œq1.k/; q2.k/; : : : ; qN .k/� represents the vector of
queue occupancies in the kth control interval.

• The vector F.k/ 2 RM D Œf1.k/; f2.k/; : : : ; fM .k/� represents the frequencies
at which each VFI is run in the kth control interval.

• �i and �i .i 2 Œ1; N �/ represent the average arrival and service rate of queue i ,
respectively. In other words, they represent the number of data tokens per unit
of time a core writes to (reads from) the queue at its output (input). Due to
workload variations, the instantaneous service and arrival rates will vary with
time, for example, if a core spends more than average time in compute mode

6 S. Garg et al.

on a particular piece of data, its read and write rates will drop. These workload
dependent parameters can be obtained by simulating the system in the absence
of DVFS, i.e., with each core running at full speed.

• The system matrix B 2 RM�N is defined such that the .i; j /th entry of B is the
rate of write (read) operations at the input (output) of the i th queue due to the
activity in the j th VFI. We refer the reader to [17] for a detailed example on how
to construct the system matrix.

The state-space equation that represents the queue dynamics can now simply be
written as [17]:

Q.k C 1/ D Q.k/ C TBF.k/ (1.1)

The key observation is that, given the applied frequency vector F.k/ as a function
of the control interval, this equation describes completely the evolution of queue
occupancies in the system.

Also note that, as shown in Fig. 1.2, we also introduce an additional vec-
tor F �.k/ D Œf �

1 .k/; f �
2 .k/; : : : ; f �

M .k/�, which represents the desired control
frequency values at control interval k. For a perfect system, F �.k/ D F.k/,
i.e., the desired and applied control frequencies are the same. However, due to
the technology driven constraints, the applied frequencies may deviate from the
frequencies desired by the control, for example, if there is a limit on the maximum
frequency at which a VFI can be operated. The technology driven deviations
between the desired and actual frequency will be explained in greater detail in the
next section.

1.4 Limits on DVFS Control

We now present the proposed framework to analyze the limits of performance
of DVFS control strategies in the presence of technology driven constraints. To
describe more specifically what we mean by performance, we define Qref 2
RN to be the desired reference queue occupancies that have been set by the
designer. The reference queue occupancies represent the queue occupancy level
at which the designer wants each queue to be stabilized; prior researchers have
proposed workload characterization based techniques for setting the reference queue
occupancies [25], but in this work we will assume that they are pre-specified.
The proposed techniques, however, can be used to analyze any reference queue
occupancy values selected by the designer or at run-time. We also assume that
as a performance specification, the designer also sets a limit, J , that specifies the
maximum number of control intervals that the control algorithm should take to
bring the queues back from an arbitrary starting vector of queue occupancies, Q.0/,

1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs 7

back to their reference occupancy values.2 We expect that an appropriate choice of
the specification, J , will be made by system-level designers, using, for example,
transaction-level simulations, or even higher-level MATLAB or Simulink modeling
methodologies.

Given this terminology, using Eq. 1.1, we can write the queue occupancies at the
J th control interval as [13]:

Q.J / D Q.0/ C .TB/

J �1X

kD0

F.k/ (1.2)

Since we want Q.J / D Qref , we can write:

.TB/

J �1X

kD0

F.k/ D .Qref � Q.0// (1.3)

1.4.1 Limits on Maximum Frequency

In a practical scenario, reliability concerns and peak thermal constraints impose an
upper limit on the frequencies at which the VFIs can be clocked. As a result, if the
desired frequency for any VFI is greater than its upper limit, the output of the VFI
controller will saturate at its maximum value. For now, let us assume that each VFI
in the system has a maximum frequency constraint f i

MAX .i 2 Œ1; M �/. Therefore,
we can write:

fi .k/ D min.f i
MAX; f �

i .k// 8i 2 Œ1; M � (1.4)

Consequently, the system can be returned to its required state Qref in at most J

steps if and only if the following system of linear equations has a feasible solution:

.TB/

J �1X

kD0

F.k/ D .Qref � Q.0// (1.5)

0 � fi .k/ � f i
MAX 8k 2 Œ0; J � 1�; 8i 2 Œ1; M � (1.6)

Note that this technique only works for a specific initial vector of queue
occupancies Q.0/; for example, Q.0/ may represent an initial condition in which
all the queues in the system are full. However, we would like the system to be
controllable in J time steps for a set of initial conditions, denoted by RQ.

2The time index 0 for Q.0/ refers to a control interval at which the queue occupancies deviate
from their steady-state reference values (Qref) due to changes in the workload behavior, and not
necessarily to the time at which the system is started.

8 S. Garg et al.

Let us assume that the set of initial conditions for which we want to ensure
controllability is described as follows: RQ D fQ.0/ W AQQ.0/ � BQg, where
AQ 2 RP �N and BQ 2 RP (P represents the number of linear equations
used to describe RQ). Clearly, the set RQ represents a bounded closed convex
polyhedron in RN . We will now show that to ensure controllability for all points
in RQ, it is sufficient to show controllability for each vertex of RQ. In particular,
without any loss of generality, we assume that RQ has V vertices given by
fQ1.0/; Q2.0/; : : : ; QV .0/g.

Lemma 1.1. Any Q.0/ 2 RQ can be written as a convex combination of the
vertices of RQ, i.e., 9f˛1; ˛2 : : : ˛V g 2 RN s.t.

PV
iD1 ˛i D 1 and Q.0/ DPV

iD1 ˛i Q
i.0/.

Proof. The above lemma is a special case of the Krein-Milman theorem which states
that a convex region can be described by the location of its corners or vertices. Please
refer to [19] for further details.

Lemma 1.2. The set of all Q.0/ for which Eqs. 1.5 and 1.6 admit a feasible solution
is convex.

Proof. Let F 1.k/ and F 2.k/ be feasible solutions for initial queue occupancies
Q1.0/ and Q2.0/ respectively. We define Q3.0/ D ˛Q1.0/ C .1 � ˛/Q2.0/, where
0 < ˛ < 1. It is easily verified that F 3.k/ D ˛F 1.k/ C .1 � ˛/F 2.k/ is a feasible
solution for Eqs. 1.5 and 1.6 with initial queue occupancy Q3.0/.

Finally, based on Lemmas 1.1 and 1.2, we can show that:

Theorem 1.1. Equations 1.5 and 1.6 have feasible solutions 8Q.0/ 2 RQ if and
only if they have feasible solutions 8Q.0/ 2 fQ1.0/; Q2.0/; : : : ; QV .0/g.

Proof. From Lemma 1.2 we know that any Q.0/ 2 RQ can be written as a convex
combination of the vertices of RQ. Furthermore, from Lemma 1.2, we know that,
if there exists a feasible solution for each vertex in RQ, then a feasible solution
must exist for any initial queue occupancy vector that is a convex combination of
the vertices of RQ, which implies that a feasible solution must exist for any vector
Q.0/ 2 RQ.

Theorem 1.1 establishes necessary and sufficient conditions to efficiently verify
the ability of a DVFS controller to bring the system back to its reference state,
Qref , in J control intervals starting from a large set of initial states, RQ, without
having to independently verify that each initial state in RQ can be brought back
to the reference state. Instead, Theorem 1.1 proves that it is sufficient to verify the
controllability for only the set of initial states that form the vertices of RQ. Since
the number of vertices of RQ is obviously much smaller than the total number of
initial states in RQ, this significantly reduces the computational cost of the proposed
framework.

In practice, the region of initial states RQ will depend on the behavior of
the workload, since queue occupancies that deviate from the reference values are

1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs 9

observed due to changes in workload behavior away from the steady-state behavior,
for example, a bursty read or a bursty write. While it is possible to obtain RQ

from extensive simulations of real workloads, RQ can be defined conservatively
as follows: RQ D fQ.0/ W 0 � qi .0/ � qi

MAXg; 8i 2 Œ1; N �, where qi
MAX

is the physical queue length of the i th queue in the system. In other words, the
conservative definition of RQ implies a case in which, at any given point of time,
each queue can have an occupancy between empty and full, irrespective of the other
queues occupancies. In reality, the set RQ can be much smaller, if for example,
it is known that one queue is always full when the other is empty. Nonetheless,
henceforth we will work with the conservative estimate of RQ.

1.4.2 Inductive Noise Constraints

A major consideration for the design of systems that support dynamic voltage
and frequency scaling is the resulting inductive noise (also referred to as the
di=dt noise) in the power delivery network due to sudden changes in the power
dissipation and current requirement of the system. While there exist various circuit-
level solutions to the inductive noise problem, such as using large decoupling
capacitors in the power delivery network or active noise suppression [11], it may
be necessary to additionally constrain the maximum frequency increment from one
control interval to another in order to obviate large changes in the power dissipation
characteristics within a short period of time.

Inductive noise constraints can be modeled in the proposed framework as
follows:

jfi .k C 1/ � fi .k/j � f i
step 8i 2 Œ1; M �; 8k 2 Œ0; J � 1� (1.7)

where f i
step is the maximum frequency increment allowed in the frequency of VFI i .

Equation 1.7 can further be expanded as linear constraints as follows:

fi .k C 1/ � fi .k/ � f i
step 8i 2 Œ1; M �; 8k 2 Œ0; J � 1� (1.8)

�fi .k C 1/ C fi .k/ � f i
step 8i 2 Œ1; M �; 8k 2 Œ0; J � 1� (1.9)

Together with Eqs. 1.5 and 1.6, Eqs. 1.8 and 1.9 define a linear program that can
be used to determine the existence of a time-optimal control strategy.

Finally, we note that for Theorem 1.1 to hold, we need to ensure that Lemma 1.2
is valid with the additional constraints introduced by Eq. 1.7. We show that this is
indeed the case.

Lemma 1.3. The set of all Q.0/ for which Eqs. 1.5, 1.6 and 1.7 admit a feasible
solution is convex.

10 S. Garg et al.

Proof. As before, let F 1.k/ and F 2.k/ be a feasible solutions for an initial queue
occupancies Q1.0/ and Q2.0/ respectively. In Lemma 1.2 we showed that F 3.k/ D
˛F 1.k/ C .1 � ˛/F 2.k/ is a feasible solution for Eqs. 1.5 and 1.6 with initial queue
occupancy Q3.0/. The desired proof is complete, if we can show that F 3.k/ also
satisfies Eq. 1.7, i.e.,

jf 3
i .k C 1/ � f 3

i .k/j � f i
step 8i 2 Œ1; M �; 8k 2 Œ0; J � 1� (1.10)

where, we know that:

jf 3
i .k C 1/ � f 3

i .k/j
D j˛.f 1

i .k C 1/ � f 1
i .k// C .1 � ˛/.f 2

i .k C 1/ � f 2
i .k//j (1.11)

Using the identity jx C yj � jxj C jyj, we can write:

jf 3
i .k C 1/ � f 3

i .k/j
� ˛j.f 1

i .k C 1/ � f 1
i .k//j C .1 � ˛/j.f 2

i .k C 1/ � f 2
i .k//j

� f̨ i
step C .1 � ˛/f i

step D f i
step (1.12)

Therefore a feasible solution exists with initial queue occupancies Q3.0/.

Lemma 1.3 ensures that Theorem 1.1 still remains valid after the inductive noise
constraints given by Eq. 1.7 are added to the original set of linear constraints. Recall
that Theorem 1.1 is essential to minimize the computational cost of the proposed
method.

We note that there might be other factors besides inductive noise that constrain
the maximum frequency increment. For example, experiments on the Intel SCC
platform illustrate that the time to transition from one voltage and frequency pair to
another is proportional to the magnitude of voltage change [4]. Thus, given a fixed
time budget for voltage and frequency transitions, the maximum frequency (and
voltage) increment becomes constrained. In fact, in their paper, the authors note that
the large overhead of changing voltage and frequency values has a significant impact
on the ability of the chip to quickly react to workload variations. Although further
investigation is required, we suspect that this is, in fact, because of the fundamental
limits of controllability given the slow voltage and frequency transitions.

1.4.3 Process Variation Impact

In the presence of process variations, the operating frequency of each VFI at the
same supply voltage will differ even if they are the same by design. The maximum
frequency of each island is therefore limited by the operating frequency at the

1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs 11

maximum supply voltage allowed by the process. In other words, under the impact
of process variations, we must think of f i

MAX as random variables, not deterministic
limits on the frequency at which each VFI can operate.

Since the maximum frequency bounds, f i
MAX , must now be considered as random

variables, the linear programming framework described in the previous sections will
now have a certain probability of being feasible, i.e., there might exist values of
f i

MAX for which it is not possible to bring the system back to steady state within J

control intervals. We will henceforth refer to the probability that a given instance of
a multiple VFI system can be brought back to the reference queue occupancies in J

time steps as the probability of controllability (PoC).
We use Monte Carlo simulations to estimate the PoC, i.e., in each Monte Carlo

run, we obtain a sample of the maximum frequency for each VFI, f i
MAX , and

check for the feasibility of the linear program defined by Eqs. 1.5, 1.6, 1.8 and 1.9.
Furthermore, we are able to exploit the specific structure of our problem to speed
up the Monte Carlo simulations. In particular, we note that, if a given vector of
upper bounds, f

i;1
MAX.i 2 Œ1; M �/, has a feasible solution, then another vector,

f
i;2

MAX .i 2 Œ1; M �/, where f
i;2

MAX � f
i;1

MAX8i 2 Œ1; M � must also have a feasible
solution. Therefore, we do not need to explicitly check for the feasibility of the
upper bound f

i;2
MAX by calling a linear programming solver, thereby saving significant

computational effort. A similar argument is valid for the infeasible solutions and is
not repeated here for brevity. As it will be seen from the experimental results, the
proposed Monte Carlo method provides significant speed-up over a naive Monte
Carlo implementation.

1.4.4 Explicit Energy Minimization

Until now, we have discussed DVFS control limits from a purely performance
perspective – i.e., how quickly can a DVFS controller bring a system with
queue occupancies that deviate from the reference values back to the reference
state. However, since the ultimate goal of DVFS control is to save power under
performance constraints, it is important to directly include energy minimization as
an objective function in the mathematical formulation.3 If Eik denotes the energy
dissipated by VFI i in control interval k, we can write the total energy dissipated by
the system in the J control steps as:

Etotal D
MX

iD1

JX

kD1

Eik D
MX

iD1

JX

kD1

Powi .fi .k//T (1.13)

3In this work, we concentrate only on the dynamic power dissipation, although leakage power can
also be included.

12 S. Garg et al.

Fig. 1.3 Power versus f for a 90 nm technology

where Powi .fi .k// is the power dissipated by VFI i at a given frequency value.
The mathematical relationship between the power and operating frequency can be
obtained by fitting circuit simulation results at various operating conditions. Note
that if only frequency scaling is used, the dynamic power dissipation is accurately
modeled as proportional to the square of the operating frequency, but with DVFS
(i.e., both voltage and frequency scaling), the relationship between frequency and
power is more complicated and best determined using circuit simulations. Figure 1.3
shows SPICE simulated values for power versus frequency for a ring oscillator in
a 90 nm technology node and the best quadratic fit to the SPICE data. The average
error between the quadratic fit and the SPICE data is only 2%.

Along with the maximum frequency limit and the frequency step size constraints
described before, minimizing Etotal gives rise to a standard Quadratic Programming
(QP) problem that can be solved efficiently to determine the control frequencies for
each control interval that minimize total energy while bringing the system back to
the reference state from an initial set of queue occupancies.

Using the quadratic approximation, we can write Etotal as:

Etotal D
MX

iD1

JX

kD1

T .ai fi .k/2 C bifi .k/ C ci / (1.14)

where ai , bi and ci are the coefficients obtained from the quadratic fit.

1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs 13

As in the case of time-optimal control, the energy minimization formulation
provides an upper bounds on the maximum energy savings achievable by any DVFS
control algorithm for a given set of parameters, i.e., an upper limit on the maximum
frequency and frequency step size, the number of control intervals J and a vector
of initial queue occupancies. Unfortunately, unlike the time-optimal control case,
the bound on energy savings need to be computed for each possible vector of queue
occupancies in RQ, instead of just the vectors that lie on the vertices of RQ.

Finally, we note that peak temperature is another important physical constraint
in scaled technology nodes. Although we do not directly address peak temperature
limits in this work, we note that the proposed formulation can potentially be
extended to account for temperature constraints. If Temp.k/ and Pow.k/ are the
vectors of temperature and power dissipation values for each VFI in the design, we
can write the following state-space equation that governs the temperature dynamics:

Temp.k/ D Temp.k � 1/ C ‚Pow.k � 1/ (1.15)

where ‚ accounts for the lateral flow of heat from one VFI to another. We have
already shown that the power dissipation is a convex function of the operating
frequency and the peak temperature constraint is easily formulated as follows:

Temp.k/ � Tempmax8k 2 Œ0; K � 1� (1.16)

Based on this discussion, we conjecture that the peak temperature constraints are
convex and can be efficiently integrated within the proposed framework.

1.5 Experimental Results

To validate the theory presented herein, we experiment on two benchmarks: (1)
MPEG, is a distributed implementation of an MPEG-2 encoder with six ARM7-
TDMI processors that are partitioned to form a three VFI system, as shown in
Fig. 1.4a; and (2) Star, a five VFI system organized in a star topology as shown
in Fig. 1.4b. The MPEG encoder benchmark was profiled on the cycle-accurate
Sunflower MPSoC simulator [21] to obtain the average rates at which the VFIs read
and write from the queues, as tabulated in Fig. 1.4a.4 The arrival and service rates
of the Star benchmark are randomly generated.

To begin, we first compute the nominal frequency values f i
NOM of each VFI in

the system, such that the queues remain stable for the nominal workload values. The

maximum frequency constraint, f i
MAX is then set using a parameter � D f i

MAX

f i
NOM

. In

our experiments we use three values of � D f1:1; 1:25; 1:5g, to investigate varying

4VFI 2 has the same read and write rates to its input and output queues, respectively.

14 S. Garg et al.

Fig. 1.4 (a) Topology and workload characteristics of the MPEG benchmark. (b) Topology of the
Star benchmark. (c) Impact of � and maximum frequency increment on the minimum number of
control intervals, J

degrees of technology imposed constraints. Finally, we allow the inductive noise
constrained maximum frequency increment to vary from 5 to 20% of the nominal
frequency. We note that smaller values of gamma and of the frequency increment
correlate with more scaled technology nodes, but we explicitly avoid annotating
precise technology nodes with these parameters, since they tend to be foundry
specific. For concreteness, we provide a case study comparing a 130 nm technology
node with a 32 nm technology node using predictive technology models, later in this
section.

Figure 1.4c shows the obtained results as � and the maximum frequency step are
varied for the MPEG benchmark. The results for Star benchmark are quantitatively
similar, so we only show the graph for MPEG benchmark in Fig. 1.4c. As it can
be seen, the frequency step size has a significant impact on the controllability of
the system, in particular, for � D 1:5 we see an 87% increase in the number of
control intervals required to bring the system back to reference queue occupancies,
J , while for � D 1:1, J increases by up to 80%. The impact of � itself is slightly
more modest – we see a 20–25% increase in J as � increases from 1:1 to 1:5.

To provide more insight in to the proposed theoretical framework, we plot in
Fig. 1.5, the response of the time-optimal control strategy for the MPEG benchmark

1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs 15

Fig. 1.5 (a) Response of a time-optimal and energy minimization controllers to deviation from
the reference queue occupancies at control interval 2 for the MPEG benchmark. (b) Evolution of
queue occupancies in the system with both queues starting from empty. Queue 1 is between VFI 1
and VFI 2, while Queue 2 is between VFI 2 and VFI 3

16 S. Garg et al.

Fig. 1.6 Impact of � on the energy savings achieved using an energy minimizing controller for
the same performance specification J

when the queue occupancies of the two queues in the system drop to zero (i.e.,
both queues become empty) at control interval 2. As a result, the applied frequency
values are modulated to bring the queues back to their reference occupancies within
J D 10 control intervals. From Fig. 1.5a, we can clearly observe the impact of
both the limit on the maximum frequency, and the limit on the maximum frequency
increment, on the time-optimal control response. Figure 1.5b shows how the queue
occupancies change in response to the applied control frequencies, starting from
0% occupancy till they reach their reference occupancies. From the figure we
can clearly see that the controller with the energy minimization objective has a
markedly different behaviour compared to the purely time-optimal controller, since,
besides instead of trying to reach steady state as fast as possible, it tries to find the
solution that minimized the energy consumption while approaching steady state.
Numerically, we observe that the energy minimizing controller is able to provide
up to 9% additional energy savings compared to the time-optimal controller for this
particular scenario.

Figure 1.6 studies the impact of � on the total energy required to bring the
system back to steady state in a fixed number of control intervals assuming that
the energy minimizing controller is used. Again, we can notice the strong impact of
the ratio between the nominal and maximum frequency on the performance of the
DVFS control algorithm – as � decreases with technology scaling, Fig. 1.6 indicates
that the energy consumed by the control algorithm will increase. This may seem
counterintuitive at first, since lower � indicates lower maximum frequency (for
the same nominal frequency). However, note that any DVFS control solution that

1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs 17

is feasible for a lower value of � is also feasible for a higher � value, while the
converse is not true. In other words, the tighter constraints imposed by technology
scaling reduce the energy efficiency of DVFS control.

Next, we investigate the impact of process variations on the probability of
controllability (PoC), as defined in Sect. 1.4.3, of DVFS enabled multiple VFI sys-
tems. As mentioned before, because of process variations, the maximum frequency
limits, f i

MAX , are not fixed numbers, but random variables. For this experiment, we
model the maximum frequency of each VFI as an independent normal distribution
[14], and increase the standard deviation (�) of the distribution from 2 to 10% of
the maximum frequency. Finally, we use 5,000 runs of both naive Monte Carlo
simulations and the proposed efficient Monte Carlo simulations (see Sect. 1.4.3) to
obtain the PoC for various values of � and for both benchmarks. From Fig. 1.7a,
we can see that the proposed efficient version of Monte Carlo provides significant
speed-up over the naive Monte Carlo implementation – on average, a 9� speed-up
for the MPEG benchmark and a 5:6� speed-up for the Star benchmark – without
any loss in accuracy.

From the estimated PoC values in Fig. 1.7b, we can see that the PoC of both
MPEG and Star benchmarks are significantly impacted by process variations,
though MPEG sees a greater degradation in the PoC, decreasing from 92% for
� D 2% to only 40% for � D 10%. On the other hand, the PoC of Star drops
from 95 to 62% for the same values of � . We believe that PoC of Star is hurt
less by increasing process variations (as compared to MPEG) because for the Star
benchmark, the PoC depends primarily on the maximum frequency constraint of
only the central VFI (VFI 1), while for MPEG, all the VFIs tend to contribute to
PoC equally. To explain the significance of these results, we point out that a PoC
of 40% implies that, on average, 60% of the fabricated circuits will not be able
to meet the DVFS control performance specification, irrespective of the control
algorithm that is used. Of note, while the specific parameters used in the Monte
Carlo simulations (for example, the value of � at various technology nodes) are
implementation dependent and may cause small changes in the PoC estimates in
Fig. 1.7, the fundamental predictive nature of this plot will remain the same. This
reveals the true importance of the proposed framework.

1.5.1 Case Study: 130 nm Versus 32 nm

While the experimental results shown so far have used representative numbers for
the technology constraint parameters, it is instructive to examine how the proposed
methodology can be used to compare two specific technology nodes. For this study,
we compare an older 130 nm technology with a more current 32 nm technology
node. For both cases, the technology libraries and parameters are taken from the
publicly available PTM data [27]. In particular, the maximum supply voltage for the
130 nm technology is 1:3 V, while that for the 32 nm technology, it is only 0:9 V. On
the other hand, to guarantee stability of SRAM cells, the minimum supply voltage

18 S. Garg et al.

Fig. 1.7 (a) Speed-up (�) of the proposed efficient Monte Carlo technique to compute PoC
compared to a naive Monte Carlo implementation. (b) PoC as a function of increasing process
parameter variations for the MPEG and Star benchmarks

is limited by the threshold voltage of a technology node and is a fixed multiple of
the threshold voltage. The threshold voltage for the two technologies is 0:18 and
0:16 V, respectively and the minimum voltage for each technology node is set at 4X

its threshold voltage. It is clear that while the voltage in a 32 nm can only swing
between 0:64 V ! 0:9 V, for a 130 nm technology, the range is 0:72 V ! 1:3 V.

To convert the minimum and maximum voltage constraints to constraints on
the operating frequency, we ran SPICE simulations on ring oscillators (RO)
constructed using two input NAND gates for both technology nodes at both
operating points. ROs were chosen since they are commonly used for characterizing

1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs 19

technology nodes, and to ensure that the results are not biased by any specific
circuit implementation. Furthermore, although the quantitative results might be
slightly different if a large circuit benchmark is used instead of an RO, we believe
that the qualitative conclusions would remain the same. The maximum frequency
for the 32 nm technology is 38% higher than its minimum frequency, while the
maximum frequency for the 130 nm technology is 98% higher. This illustrates
clearly the reduced range available to DVFS controllers in scaled technologies.
Finally, assuming that the nominal frequency for both technology nodes is centered
in its respective operating range, we obtain values of �32 nm D 1:159 and �130 nm D
1:328. For these constrains, and optimistically assuming that the inductive noise
constraints do not become more stringent from one technology node to another,
the number of control intervals required to bring the system back to steady state
increases from 8 to 9 when going to a 32 nm technology. In addition, for a control
specification of 9 control steps, the yield for a 130 nm design is 96% while the 32 nm
design yields only 37%. Again, this is under the optimistic assumption that process
variation magnitude does not increase with shrinking feature sizes – realistically, the
yield loss for the 32 nm technology would be even greater.

We note that although our experimental results indicate that conventional DVFS
techniques may become less effective with technology scaling due to the shrinking
Vdd and Vth gap, and due to noise and variabilty effects, we view this as a challenge
and not an insurmountable barrier. For example, alternative SRAM architectures
have recently been proposed that enable potential scaling of VDD:min closer to or
beyond the threshold voltage [24]. In addition, with increasing integration density,
a case can be made for having a large number of heterogeneous cores on a chip
and enabling only a subset of cores [9] at any given time, based on application
requirements.

In fact, the increasing number of cores on a chip provides a greater spatial range
and granularity of power consumption. If we look at a few technologies of interest,
we can see that, while for 45 nm Intels SCC chip the number of cores is 48, under
the same core power budget, at 32 and 22 nm, a chip will likely consist of 100 and
300 cores, respectively. Therefore, even if we conservatively (and unrealistically)
assume that there are no opportunities for dynamic voltage scaling, a 300� spread in
power consumption can be achieved for a 300 core system by turning an appropriate
number of cores on or off. We believe that next generation DVFS algorithms will be
accompanied by synergistic dynamic core count scaling algorithms to full exploit
the available on-chip resources in the most power efficient way.

It is important to interpret the results in the correct context. In particular, our
main claim in this paper is not that the baseline system performance and energy
efficiency reduces with technology scaling, but that the performance of DVFS
control algorithms, in terms of their ability to exploit workload variations, is
expected to diminish in future technology nodes. At the same time, technology
scaling also offers numerous opportunities to overcome the potential loss in DVFS
control performance by, for example, allowing for an increased granularity of VFI
partitioning and enabling more complex on-chip DVFS controllers that approach the

20 S. Garg et al.

theoretical performance limits. As such, we view our results not as negative results,
instead as motivating the need for further research into overcoming the barriers
imposed by technology scaling on fine-grained DVFS control.

1.6 Conclusion

We presented a theoretical framework to efficiently obtain the limits on the con-
trollability and performance of DVFS controllers for multiple VFI based MPSoCs.
Using a computationally efficient implementation of the framework, we present
results, using both real and synthetic benchmarks, that explore the impact of three
major technology driven factors – temperature and reliability constraints, maximum
inductive noise constraints and process variations – on the performance bounds of
DVFS control strategies. Our experiments demonstrate the importance of consider-
ing the impact of these three factors on DVFS controller performance, particularly
since all three factors are becoming increasingly important with technology scaling.

Acknowledgements Siddharth Garg acknowledges financial support from the Conseil de
Recherches en Sciences Naturelles et en Genie du Canada (CRSNG) Discovery Grants program.
Diana Marculescu and Radu Marculescu acknowledge partial support by the National Science
Foundation (NSF) under grants CCF-0916752 and CNS-1128624.

References

1. Beigne E, Clermidy F, Lhermet H, Miermont S, Thonnart Y, Tran XT, Valentian A, Varreau D,
Vivet P, Popon X et al (2009) An asynchronous power aware and adaptive NoC based circuit.
IEEE J Solid-State Circuit 44(4):1167–1177

2. Carta S, Alimonda A, Pisano A, Acquaviva A, Benini L (2007) A control theoretic approach
to energy-efficient pipelined computation in MPSoCs. ACM Trans Embedded Comput Syst
(TECS) 6(4):27–es

3. Clermidy F, Bernard C, Lemaire R, Martin J, Miro-Panades I, Thonnart Y, Vivet P, Wehn N
(2010) MAGALI: a network-on-chip based multi-core system-on-chip for MIMO 4G SDR.
In: Proceedings of the IEEE international conference on IC design and technology (ICICDT).
Grenoble, France IEEE, pp 74–77

4. David R, Bogdan B, Marculescu R (2012) Dynamic power management for multi-cores: case
study using the Intel SCC. In: Proceedings of VLSI SOC conference. Santa Cruz, CA IEEE

5. Dighe S, Vangal S, Aseron P, Kumar S, Jacob T, Bowman K, Howard J, Tschanz J, Erraguntla
V, Borkar N et al (2010) Within-die variation-aware dynamic-voltage-frequency scaling core
mapping and thread hopping for an 80-core processor. In: IEEE solid-state circuits conference
digest of technical papers. San Francisco, CA IEEE, pp 174–175

6. Garg S, Marculescu D, Marculescu R, Ogras U (2009) Technology-driven limits on DVFS
controllability of multiple voltage-frequency island designs: a system-level perspective. In:
Proceedings of the 46th IEEE/ACM design automation conference, San Francisco, CA IEEE,
pp 818–821

7. Garg S, Marculescu D, Marculescu R (2010) Custom feedback control: enabling truly scalable
on-chip power management for MPSoCs. In: Proceedings of the 16th ACM/IEEE international
symposium on low power electronics and design. Austin, TX ACM, pp 425–430

1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs 21

8. Garg S, Marculescu D, Marculescu R (2012) Technology-driven limits on runtime power
management algorithms for multiprocessor systems-on-chip. ACM J Emerg Technol Comput
Syst (JETC) 8(4):28

9. Goulding-Hotta N, Sampson J, Venkatesh G, Garcia S, Auricchio J, Huang PC, Arora M, Nath
S, Bhatt V, Babb J et al (2011) The GreenDroid mobile application processor: an architecture
for silicon’s dark future. IEEE Micro 31:86–95

10. Jang W, Ding D, Pan DZ (2008) A voltage-frequency island aware energy optimization
framework for networks-on-chip. In: Proceedings of the IEEE/ACM international conference
on computer-aided design, San Jose

11. Keskin G, Li X, Pileggi L (2006) Active on-die suppression of power supply noise. In:
Proceedings of the IEEE custom integrated circuits conference, San Jose. IEEE, pp 813–816

12. Kim W, Gupta MS, Wei GY, Brooks D (2008) System level analysis of fast, per-core DVFS
using on-chip switching regulators. In: Proceedings of the 14th international symposium on
high performance computer architecture. Salt Lake City, UT IEEE, pp 123–134

13. Kuo BC (1992) Digital control systems. Oxford University Press, New York
14. Marculescu D, Garg S (2006) System-level process-driven variability analysis for single

and multiple voltage-frequency island systems. In: Proceedings of the 2006 IEEE/ACM
international conference on computer-aided design. San Jose, CA

15. Mezhiba AV, Friedman EG (2004) Scaling trends of on-chip power distribution noise. IEEE
Trans Very Large Scale Integr (VLSI) Syst 12(4):386–394

16. Niyogi K, Marculescu D (2005) Speed and voltage selection for GALS systems based on
voltage/frequency islands. In: Proceedings of the 2005 conference on Asia South Pacific design
automation, Shanghai

17. Ogras UY, Marculescu R, Marculescu D (2008) Variation-adaptive feedback control for
networks-on-chip with multiple clock domains. In: Proceedings of the 45th annual conference
on design automation. Annaheim, CA

18. Ravishankar C, Ananthanarayanan S, Garg S, Kennings A (2012) Analysis and evaluation
of greedy thread swapping based dynamic power management for MPSoC platforms. In:
Proceedings of the 13th international symposium on quality electronic design (ISQED), Santa
Clara. IEEE, pp 617–624

19. Royden HL (1968) Real analysis. Macmillan, New York
20. Salihundam P, Jain S, Jacob T, Kumar S, Erraguntla V, Hoskote Y, Vangal S, Ruhl G, Borkar

N (2011) A 2 Tb/s 6 � 4 mesh network for a single-chip cloud computer with DVFS in 45 nm
CMOS. IEEE J Solid State Circuit 46(4):757–766

21. Stanley-Marbell P, Marculescu D (2007) Sunflower: full-system, embedded microarchitecture
evaluation. In: De Bosschere K, Kaeli D, Stenström P, Whalley D, Ungerer T (eds) High
performance embedded architectures and compilers. Springer, Berlin, pp 168–182

22. Truong D, Cheng W, Mohsenin T, Yu Z, Jacobson T, Landge G, Meeuwsen M, Watnik C,
Mejia P, Tran A et al (2008) A 167-processor 65 nm computational platform with per-processor
dynamic supply voltage and dynamic clock frequency scaling. In: Proceedings of the IEEE
symposium on VLSI circuits. Honolulu, Hawaii IEEE, pp 22–23

23. Wang Y, Ma K, Wang X (2009) Temperature-constrained power control for chip multiproces-
sors with online model estimation. In: ACM SIGARCH computer architecture news, vol 37.
ACM, pp 314–324

24. Wilkerson C, Gao H, Alameldeen AR, Chishti Z, Khellah M, Lu SL (2008) Trading off
cache capacity for reliability to enable low voltage operation. In: ACM SIGARCH computer
architecture news, vol 36. IEEE Computer Society, pp 203–214

25. Wu Q, Juang P, Martonosi M, Clark DW (2004) Formal online methods for voltage/frequency
control in multiple clock domain microprocessors. ACM SIGOPS Oper Syst Rev 38(5):
248–259

26. Zanini F, Atienza D, Benini L, De Micheli G (2009) Multicore thermal management with
model predictive control. In: Proceedings of the European conference on circuit theory and
design. Antalya, Turkey IEEE, pp 711–714

27. Zhao W, Cao Y (2006) New generation of predictive technology model for sub-45 nm design
exploration. In: Proceedings of ISQED, San Jose

Chapter 2
Reliable Networks-on-Chip Design
for Sustainable Computing Systems

Paul Ampadu, Qiaoyan Yu, and Bo Fu

2.1 Introduction

Since the 1 gigaFLOPS Cray 2 [1] was created in 1985, supercomputers have
shown a sustained growth [2]. Recently, the Chinese supercomputer, Tianhe-
1, achieves 2.5 petaFLOPS performance [3]. To further enhance the computing
capability, many-core systems have been attractive [4–6]. As bus-based interconnect
cannot keep pace with the increasing scale of many-core systems, networks-on-
chip (NoCs) have emerged as a promising on-chip interconnect infrastructure, in
terms of scalability, reusability, power efficiency and high throughput [7–9]. NoCs
have also demonstrated potential to manage the increasing complexity of on-chip
communication, by routing message packets over multi-hop network. As shown in
Fig. 2.1, a NoC is typically composed of, on-chip interconnect (i.e., link), routers,
and network interfaces.

Thanks to advanced technologies, the many-core systems consist of a large
number of computation and storage cores that operate at low-voltage levels,
attempting to break the power wall [2, 10, 11]. Unfortunately, the side effect is
the new reliability challenge. In fact, reliability becomes one of the most critical
challenges caused by technology scaling and increasing chip densities [12–15].
Nanometer fabrication processes inevitably result in defective components, which
lead to permanent errors [16]. As the critical charge of a capacitive node decreases

P. Ampadu (�)
University of Rochester, Rochester, NY 14627, USA
e-mail: paul.ampadu@rochester.edu

Q. Yu
University of New Hampshire, Durham, NH 03824, USA
e-mail: qiaoyan.yu@unh.edu

B. Fu
Marvell Technology Group Ltd., Santa Clara, CA, USA
e-mail: fubo.fu@gmail.com

P.P. Pande et al. (eds.), Design Technologies for Green and Sustainable Computing Systems,
DOI 10.1007/978-1-4614-4975-1 2, © Springer ScienceCBusiness Media New York 2013

23

24 P. Ampadu et al.

Fig. 2.1 A simplified
diagram of network-on-chip

with technology scaling, the probability that a high-energy particle strike will flip
the logic value in a storage element increases [17]. The smaller pitch size produces
more crosstalk [18]. Moreover, the error rate of transient errors in logic gates is
expected to increase because of higher frequencies and lower supply voltages [19].
Therefore, research on the power efficiency and high reliability for the sustainable
computing systems is imperative.

The outline for the following section as follow: in Sect. 2.2, we overview the
common techniques used for reliable NoC design. In Sect. 2.3, several recent NoC
link design methods are presented. In Sect. 2.4, techniques for reliable NoC router
design are introduced. Summaries are provided in Sect. 2.5.

2.2 Overview for Reliable NoC Design

2.2.1 General Error Control Schemes

Three typical error control schemes are used in on-chip communication: error
detection combined with automatic repeat request (ARQ), hybrid ARQ (HARQ)
and forward error correction (FEC). The generic diagram for transmitter and
receiver is shown in Fig. 2.2. ARQ and HARQ use an acknowledge (ACK) or not
acknowledge (NACK) signal to request transmitter resending message; FEC does
not need ACK/NACK but try to correct error in receiver, although correction may be
wrong. In error detection plus automatic repeat request (ARQ) scheme, the decoder
in the receiver performs error detection. If an error is detected, retransmission is
requested. This scheme is proved as the most energy efficient method for reliable on-
chip communication, if the error rate is rarely small [20]. Hybrid automatic repeat
request (HARQ) first attempts to correct the detected error; if the error exceeds
the codec’s error correction capability, retransmission is requested. This method
achieves more throughput than ARQ does, at the cost of more area and redundant
bits [21]. Extended Hamming code can detect and correct errors; thus, this code
can be employed to HARQ error control scheme. According to the retransmission
information, HARQ is divided into type-I HARQ and type-II HARQ categories

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 25

Fig. 2.2 Generic diagram for error control scheme

[21, 22]. The former one transmits both the error detection and correction check
bits. In contrast, the latter one transmits parity checks for error detection. The check
bits for error correction are transmitted only when necessary. As a result, type-II
HARQ achieves better power consumption than type-I HARQ [23]. Forward error
correction (FEC) is typically designed for worst-case noise condition. Different with
ARQ and HARQ, no retransmission is needed in FEC [23]. The decoder always
attempts to correct the detected errors. If the error is beyond the codec’s capability,
error correction is still performed. As a result, decoding failure occurs. Block FEC
codes achieves better throughput than ARQ and HARQ; however, this scheme
designed for worst-case condition wastes energy if the noise condition is favorable.
Alternatively, encoding/decoding current input and previous input, convolutional
code increases coding strength but yields significant codec latency [24]; thus, FEC
with convolutional code is not suitable for on-chip interconnect network.

2.2.2 Error Control Coding

Error control coding (ECC) approaches have been widely applied ARQ, HARQ
and FEC schemes mentioned above. In ECCs, parity check bits are calculated
based on the input data. The input data and parity check bits are transmitted
across interconnects. In the receiver, an ECC decoder is used to detect or correct
the errors induced during the transmission. In early research work, simple ECCs,
such as single parity check (SPC) codes, Hamming codes, and duplicate-add-
parity (DAP) codes are widely used to detect or correct single errors. As the
probability of multiple errors increases in nanoscale technologies, more complex
error control codes, such as Bose-Chaudhuri-Hocquenghem (BCH) codes, Reed-
Solomon (RS) codes and product codes are applied to improve the reliability of
on-chip interconnects.

The single parity check (SPC) code is one of the simplest codes. In SPC codes, an
additional parity bit is added to a k-bit data block such that the resulting (k C 1)-bit
codeword has an even number (for even parity) or an odd number (for odd parity)
of 1s. SPC codes have a minimum Hamming distance dmin D 2 and can only be used
for error detection. SPC codes can detect all odd numbers of errors in a codeword.

26 P. Ampadu et al.

Fig. 2.3 An example of single parity check (SPC) codes

The hardware circuit used to generate the parity check bit is composed of a number
of exclusive OR (XOR) gates as shown in Fig. 2.3. In the SPC decoder, another
parity generation circuit, identical to that employed in the encoder, is employed to
recalculate the parity check bit based on the received data. The recalculated parity
check bit is compared to the received parity check bit. If the recalculated parity
check bit is different from the received parity check bit, errors are detected. The bit
comparison can be implemented using an XOR gate as shown in Fig. 2.3.

In duplicate-add-parity (DAP) codes [25, 26], a k-bit input is duplicated and an
extra parity check bit, calculated from original data, is added. For k-bit input data,
the codeword width of DAP codes is 2k C 1. DAP codes have a minimum Hamming
distance dmin D 3, because any two distinct codewords differ in at least three bit
positions. It can correct single errors. The encoding and decoding process of DAP
codes are shown in Fig. 2.4. In the DAP code implementation, each duplicated data
bit is placed adjacent to each original data bit. Thus, DAP codes can also reduce the
impact of crosstalk coupling.

Hamming codes are a type of linear block codes with minimum Hamming
distance dmin D 3. Hamming codes can be used to either correct single errors or
detect double errors. Figure 2.5 shows an example of the Hamming(7, 4) decoding
circuits. The syndrome is calculated from the received Hamming codeword. The
syndrome calculation circuit can be implemented as XOR trees. The calculated
syndrome is used to decide the error vector through the syndrome decoder circuit.

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 27

Fig. 2.4 Encoding and decoding process of DAP codes

Fig. 2.5 Hamming (7, 4) decoder

The syndrome decoder circuit can be realized using AND trees. The syndrome and
its inverse are the inputs of the AND trees. A Hamming code can be extended by
adding one overall parity check bit. Extended Hamming codes have a minimum
Hamming distance dmin D 4 and belong to single-error-correcting and double-error-
detecting (SEC-DED) codes, which can correct single errors and detect double
errors at the same time. Figure 2.6 shows an implementation example of the

28 P. Ampadu et al.

Fig. 2.6 Extended Hamming (8, 4) decoder

extended Hamming EH(8, 4) decoder. One of the syndrome bits is an even parity of
the entire codeword. If this bit is a zero and other syndrome bits are non-zero, this
implies that there were two errors—the even parity check bit indicates that there are
zero (or an even number of) errors, while the other non-zero syndrome bits indicate
that there is at least one error.

Hsiao codes are a special case of extended Hamming code with SEC-DEC ca-
pability. In Hsiao codes, the parity check matrix H(n�k) � n satisfies the following
four constraints—(a) Every column is different. (b) No all zero column exists. (c)
There are an odd number of 1’s in each column. (d) Each row in parity check matrix
contains the same number of 1’s. This parity check matrix has an odd number of
1’s in each column and the number of 1’s in each row is equal. The double error is
detected, when the syndrome is non-zero and the number of 1’s in the syndrome is
not odd. The hardware requirement in the encoder and decoder of Hsiao codes is less
than that of extended Hamming codes, because the number of 1’s in parity check
matrix of Hsiao codes is less than that in an extended Hamming code. Further, the
same number of 1’s in each row of the parity check matrix reduces the calculation
delay of the parity check bits.

As the occurrence of multiple error bits is expected to increase with the
technology further scales down, error control for multiple errors has gained more
attentions than before. Interleaving is an efficient approach to achieve protection
against spatial burst errors. Multiple SEC codes combined with interleaving can
correct spatial burst errors [27, 28]. In this method, the input data is separated into
small groups. Each group is encoded separately using simple linear block codes
(e.g., SEC codes). Another method to detect burst errors is cyclic redundancy code
(CRC), which is a class of cyclic code [24]. The encoding process of cyclic codes

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 29

can be realized serially by using a simple linear feedback shift register (LFSR). The
use of an LFSR circuit requires little hardware but introduces a large latency when a
large amount of data is processed. Cyclic codes can also be encoded by multiplying
input data with a generator matrix. BCH codes are an important class of linear block
codes for multiple error correction [24]. RS codes are a subclass of nonbinary BCH
codes [24, 29] that are good at correcting multiple symbol errors.

2.2.3 Fault Tolerant Routing

Other than error control coding, NoCs are capable of employing fault tolerant
routing algorithms to improve error resilience. The fault tolerant capability is
achieved by using either redundant packets or redundant routes. In redundant-
packet-based fault tolerant routing algorithms, multiple copies of packets are
transmitted over network, so that at least one correct packet can reach the destina-
tion. The disadvantages of this routing category: (1) add more network congestion;
(2) increase power consumption; (3) fault tolerance capability decreases if the
number of copies decreases; (4) boost the router design complexity. Different
efforts have been made to improve the efficiency of redundant-packet-based routing.
Flooding routing algorithm requires the source router sending a copy of the packet
to each possible direction and intermediate routers forwarding the received packet
to all possible directions as well [30]. Various flooding variants have been proposed.
In probabilistic flooding, source router sends copies of the packet to all of its
neighbors and the middle routers forward the received packets to their neighbors
with a pre-defined probability (a.k.a gossip rate), which reduces the number of
redundant packets [31]. In directed flooding, the probability of forwarding packet
to the particular neighbor is multiplied with a factor depending on the distance
between current node and the destination [32]. Different with previous flooding
algorithms, Pirretti et al. proposed a redundant random walk algorithm, in which
the intermediate node assigns different packet forwarding probabilities to the output
ports (but the sum is equal to 1). As a result, this approach only forwards one
copy of the received packet, reducing the overhead [33]. Considering the tradeoff
of redundancy and performance, Patooghy et al. only transmit an additional copy
of the packet through low-traffic-load paths for replacing the erroneous packet [33].
Redundant-packet-based routing is feasible for both transient and permanent errors,
no matter whether the error presents in links, buffers or logic gates in the router.

In redundant-route-based fault tolerant routing algorithms, single copy of the
packet is transmitted via one of the possible path. This category routing algorithm
takes advantage of either global/semi-global information or distributed control to
use NoC inherent redundant routes in topology for handling faults. Representative
redundant-route routing using global/semi-global information are distance vector
routing, link state routing, DyNoC and reconfigurable routing. In distance vector
routing, the number of hops between current router and each destination are
periodically updated in the routing table. As a result, the faulty link and router can

30 P. Ampadu et al.

be notified in each router within one period. Link state routing uses handshaking
protocol to sense the state of neighbor links and router, so that the faulty links
and routers can be considered in computing the shortest path [33]. Unlike distance
vector routing and link state routing, dynamic NoC routing does not broadcast the
broken links or permanently unusable routers to the entire network; instead, only
neighboring routers receive the notification, so that the obstacle can be bypassed
[34]. In reconfigurable routing [35], eight routers around the broken router are
informed, and those routers use other routing path to avoid that router and prevent
the presence of deadlock.

Global control routing algorithms are aiming to obtain the optimal path, but
resulting in large area overhead, power consumption and design complexity. In
contrast, distributed control routing algorithms have fewer overheads than global
ones; they only gather information from their directly connected routers, thus not
always optimal. A large portion of distributed control routing algorithms [36–38]
is used to avoid network congestion or deadlock. Recently, those algorithms have
been employed to tolerate permanent faults [35–41]. In contrast, Zhou and Lau
[42], Boppana and Chalasani [43], and Chen and Chiu [44] took advantage of
virtual channels to extend the region of re-routing for the flits encountering fault
interference. The fault-tolerant adaptive routing algorithm proposed by Park et al. in
[45] requires additional logic circuit and multiplexers for buffers and virtual channel
switching, respectively. The routing algorithms analyzed by Duato need at least
four virtual channels per physical channel, which is not desirable for area-constraint
NoCs [46]. In [41], Schonwald et al. proposed a force-directed wormhole routing
algorithm to uniformly distribute the traffic across the entire network, in the process
of handling fault links and switches. Link permanent errors can also be addressed
by adding spare wires [47, 48].

2.3 Reliable NoC Link Design

2.3.1 Energy Efficiency ECC

A powerful ECC usually requires more redundant bits and more complex encoding
and decoding processes, which increases the codec overhead. To meet the tight
speed, area, and energy constraints imposed by on-chip interconnect links, ECCs
used for on-chip interconnects need to balance reliability and performance.

2.3.1.1 Hamming Product Codes

Product codes were first presented in 1954 [49]. The concept of product codes
is very simple. Long and powerful block codes can be constructed by serially
concatenating two or more simple component codes [49–51]. Figure 2.7 shows

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 31

Fig. 2.7 Encoding process of product codes

the construction process of two dimensional product codes. Assume that two
component codes C1(n1, k1, d1) and C2(n2, k2, d2) are used, where n1, k1 and d1 are
codeword width, input data width, and minimum Hamming distance for the code
C1, respectively; n2, k2 and d2 are codeword width, input data width, and minimum
Hamming distance for the code C2, respectively. The product code Cp(n1 � n2,
k1 � k2, d1 � d2) is from C1 and C2 as follows:

1. Arrange input data in a matrix of k2 rows and k1 columns.
2. Encode the k2 rows using component code C1. The result will be an array of k2

rows and n1 columns.
3. Encode the n1 columns using component code C2.

Product codes have a larger Hamming distance compared to that of the compo-
nent codes. If the component codes C1 and C2 have minimum Hamming distance
d1 and d2 respectively, then the minimum Hamming distance of the product code
Cp is the product d1 � d2, which greatly increases the error correction capability.
Product codes can be constructed by a serial concatenation of simple component
codes and a row-column block interleaver, in which the input sequence is written
into the matrix row-wise and read out column-wise. Product codes can efficiently
correct both random and burst errors. For example, if the received product codeword
has errors located in a number of rows not exceeding .d2 � 1/=2 and no errors in
other rows, all the errors can be corrected during column decoding.

The Hamming product codes can be decoded using a two-step row-column (or
column-row) decoding algorithm [24]. Unfortunately, this decoding method fails
to correct certain error patterns (e.g. rectangular four-bit errors). A three-stage
pipelined Hamminproduct code decoding method is proposed in [52]. Compared
to the two-step row-column decoding method, the three-stage pipelined decoding
method uses a row status vector and a column status vector to record the behaviors
of the row and column decoders. Instead of passing only the coded data between

32 P. Ampadu et al.

Fig. 2.8 Block diagram of three-stage pipelined decoding algorithm

row and column decoder, these row and column status vectors are passed between
stages to help make decoding decisions [52]. The simplified row and column status
vector implementation can be described as follows: The ith (1 � i � n2) position in
the row status vector is set to “1” when there are detectable errors (regardless of
whether the errors can be corrected or not) in the ith row; otherwise that position is
set to “0”. For the column status vectors, there are two separate conditions that can
cause the jth (1 � j � n1) position in column status vector to be set to “1” (a) when
an error is detectable but not correctable, or (b) when an error is correctable, but the
row where the error occurs has a status value “0”. Otherwise, that position is “0”.

Figure 2.8 describes the three-stage pipelined Hamming product code decoding
process. After initializing all status vectors to zeros, the steps are described as
follows: Step 1: Row decoding of the received encoded matrix. If the errors in a row
are correctable, the error bit indicated by the syndrome is flipped. The row status
vector is set to “0” if the syndrome is zero and “1” if the syndrome is nonzero. Step
2: Column decoding of the updated matrix. The error correction process is similar
to Step 1. The column status vector is calculated using both the column error vector
and the row status vector from Step 1. Step 3: Row decoding the matrix after changes
from Step 2. The syndrome for each row is recalculated. If any remaining errors in
each row are correctable, the row syndrome will be used to do the correction. If the
errors in each row are still detectable but uncorrectable, the column status vector
from Step 2 is used to indicate which columns need to be corrected.

To balance complexity and error correction capability, an error control method
combining extended Hamming product codes with type-II HARQ is introduced
by [52]. The encoding process of the combination of extended Hamming product
codes with type-II HARQ is simple. In the decoding process of extended Hamming
product codes with type-II HARQ, the received data is first decoded row by row
using multiple extended Hamming decoders. Extended Hamming codes can correct
single errors and detect double errors in each row. If all errors are correctable (no
more than one error in each row), the receiver indicates a successful transmission by

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 33

Fig. 2.9 An example of decoding process for extended Hamming codes with type-II HARQ

sending back an ACK signal to transmitter. If the receiver detects two errors in any
row, it saves the row decoded data and row parity check bits in the decoding buffer
and requests a transmission of column parity check bits and checks-on-checks by
sending back a NACK signal. When the extra parity check bits are received, they
are used with the saved data and row parity check bits to complete the column
decoding process and the second row decoding process in the three-stage pipelined
decoding method. Figure 2.9 shows an example of the decoding process when
extended Hamming product codes with type-II HARQ are applied. A rectangular
four-error pattern occurs in the transmission of the original data and row parity
check bits. The extended Hamming decoder detects these errors during the first row
decoding process and a transmission of column parity check bits and checks-on-
checks is requested. A single error occurs during retransmission of column parity
check bits and checks-on-checks. It can be directly corrected, before these extra
parity check bits are combined with the saved data and row parity check bits to
complete the three-stage pipelined decoding process. In Step 2, because double
errors are detectable but uncorrectable, no correction is performed and “1”s are
recorded in the corresponding column states. In the second row decoding process
(Step 3), the extended Hamming decoder still detects two errors in a row, so the
column status vector is used to indicate which positions need to be flipped.

2.3.1.2 Experimental Results

Reliability

The residual flit error rate Presidual is used to measure the system reliability [52].
Figure 2.10 shows the residual flit error rate of different error control schemes as
a function of noise voltage deviation. Dependent error model introduced in [52] is

34 P. Ampadu et al.

Fig. 2.10 Residual flit error rate for different error control schemes as a function of noise voltage
deviation at (a) Pn D 10�2 and (b) Pn D 1

used in the simulation with two coupling probability values, Pn D 10�2 and Pn D 1.
A link swing voltage of 1.0 V is used. The simulation results show that Hamming
product codes with type-II HARQ achieves a significant reduction in residual flit
error rate when multiple random and burst errors are considered. ARQ CRC-5 has
a good burst error detection capability but it is inefficient to detect multiple random
errors. HARQ EH(72, 64) scheme can correct single errors and detect double errors
but as the burst error probability increases, the performance of decreases. Compared
to the BCH(85, 64) code, extended Hamming product codes with type-II HARQ can
effectively correct multiple random and burst errors, while BCH code is only good at
correcting multiple random errors. The combination of extended Hamming product
codes with type-II HARQ can correct at least two permanent errors, while ARQ
CRC-5 will not work in this persistent noise environment.

Energy Consumption

The average energy per flit is used as the metric to measure energy consumption.
The average energy consumption includes the encoder energy Ee1, the link energy
El1, and the decoder energy Ed1 in the first transmission, as well as the encoder
energy Ee2, the link energy El2, and the decoder energy Ed2 in the retransmission,

Eavg D .Ee1 C El1 C Ed1/ C Pd uc.Ee2 C El2 C Ed2/ (2.1)

where Pd uc is the probability that the errors are detectable but uncorrectable. The
link energy using low swing voltage can be estimated as,

El � Sf � WL � CL � VDD � Vswing C Elevel (2.2)

where CL is the interconnect capacitance. WL is the number of wires in the
link, which depends on the error control scheme. In the combination of extended

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 35

Fig. 2.11 Required link
swing voltages of different
error control schemes for
given reliability requirements

Hamming product codes with type-II HARQ, WL is greatly affected by the selection
of k2. Sf is the wire switching probability. VDD is the supply voltage. The link
swing voltage Vswing is decided by the reliability requirement. Elevel is the energy
consumption of the level translation circuit when low swing voltage is applied.

Figure 2.11 compares the link swing voltage of different error control schemes
for the same residual flit error rate requirement. The �N is assumed to be 0.1 V.
The coupling probability Pn is 10�1. The results show that the more effective
the error correction capability of an error control scheme, the lower the swing
voltage needed for the interconnect links. To achieve the same residual flit error
rate, the combination of extended Hamming product codes with type-II HARQ
achieves the smallest link swing voltage. The link swing voltage of the combination
of extended Hamming codes with type-II HARQ is about 60% and 80% compared
to that of the H(71, 64) and ARQ CRC-5, respectively. The lower link swing voltage
allows this method to consume less link energy.

Figure 2.12 compares the link energy consumption of different error control
schemes given the same residual flit error rate requirement. In the simulation,
the requirement of residual flit error rate is assumed to be Presidual � 10�20. The
simulation was performed for a noise environment of �N D 0.07 V. Different
technology nodes are considered in the simulation using Predictive Technology
Model (PTM) CMOS 65 and 45 nm technology. The effect of different link lengths
on energy consumption is also evaluated. In NoCs, the link length is the distance
between two routers, which is decided by the dimension of the tile block. In mesh
or torus topologies, the links between two routers are generally a few millimeters
long wires. In the experiments, link lengths from 1 to 3 mm are examined. The
link energy is measured in Cadence Spectre. The input data is generated using an
H.264 video encoder with the average switching factor about 0.5. Figure 2.12 shows
that the combination of extended Hamming product codes with type II HARQ
has the smallest link energy of the compared schemes, because the lowest link

36 P. Ampadu et al.

Fig. 2.12 Link energy
consumption of different
error control schemes for
different link lengths (a)
45 nm technology (b) 65 nm
technology

swing voltage counterbalances the large number of wires in the link. As link length
increases, Hamming product codes with type II HARQ can benefit more from the
lowest link swing voltage. The link energy consumption of Hamming product codes
with type-II HARQ is about 80% and 35% compared to the link energy consumption
of ARQ CRC-5 and H(71, 64), respectively.

Figure 2.13 compares the average energy consumption per flit for different
error control schemes at the same reliability requirement (10�20). The average
energy includes encoder, decoder and link energy consumption. Two noise voltage
deviations, �N D 0.07 V and �N D 0.1 V, are considered. Raw bit error probability
" is about 10�12 and 10�6 for these two cases. The results show that ARQ
CRC-5 achieves the least average energy consumption at low noise environment
(�N D 0.07 V) for small link lengths, because of the smaller codec energy and link
energy consumption. As the noise voltage deviation increases, however, higher link

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 37

Fig. 2.13 Energy comparison of different error control schemes at residual flit error rate 10�20

(a) Link length 1 mm (b) Link length 3 mm

swing voltages are needed to achieve the same reliability. In high noise conditions,
the average energy consumption of ARQ CRC-5 increases more than the average
energy consumption of the combination of extended Hamming product codes with
type-II HARQ, because ARQ CRC-5 has larger link energy consumption. The
combination of extended Hamming product codes yields the least average energy
consumption at the higher noise environment (�N D 0.1 V). The BCH(85, 64)
scheme has the larger average energy consumption for small link lengths because
it has the largest codec energy consumption. Hamming product codes with type-
II HARQ achieve the least energy consumption at large link lengths or high noise
environments. When the link length is 3 mm, the energy consumption of the this
approach is about 15% and 50% less than that of ARQ CRC-5 and H(71, 64),
respectively, in high noise environment. In addition to the energy consumption
improvement compared to ARQ in high noise environments, the combination of
extended Hamming product codes with type-II HARQ can correct at least two
permanent errors, while ARQ will not work in a persistent noise environment. Thus,
the approach combining forward error correction with limited retransmission can
achieve a better performance for balanced energy, performance, and error resilience.

2.3.2 Combining Error Control Codes with Crosstalk
Reduction

2.3.2.1 Crosstalk Avoidance Codes

DAP codes can reduce capacitive coupling [25, 26]. An intelligent spacing method
can be used to further optimize DAP code [53]. In intelligent spacing method,
the spacing between two wires carrying the identical data can be smaller than the

38 P. Ampadu et al.

spacing between two wires carrying different data. BSC [54] does not have any
adjacent bits simultaneously switch in opposite direction (i.e., no 01 ! 10 or
10 ! 01 transition at two adjacent bit positions). The DAP code concept can be
extended to construct Crosstalk Avoidance and Multiple Error Correction Code
(CAMEC) codes [55], in which the input data is first encoded using Hamming
codes, and the outputs of the Hamming encoder are duplicated and an overall parity
check bit, calculated from the output of the Hamming encoder, is added to the whole
codeword. The CADEC decoding algorithm can only guarantee to correct double
errors. An updated joint crosstalk avoidance and triple error correction (JTEC)
decoding algorithm is introduced in [56]. The JTEC code can guarantee to correct
three bit errors. In JTEC codes, the Hamming code along with the overall parity
bit comprise of an extended Hamming code, which can correct single error and
detect double error at the same time. A unified coding framework by combining
error control coding with crosstalk avoidance codes is proposed in [25, 57]. In this
method, the input data is first encoded using nonlinear crosstalk avoidance codes
(CACs). The outputs of CACs are encoded using an error control code. The parity
bits generated by the error control codes are protected against crosstalk coupling
using techniques such as shielding and duplication. There are three common
used CACs—forbidden overlap condition (FOC) codes [58], forbidden transition
condition (FTC) codes [59], and forbidden pattern condition (FPC) codes [60]. Each
of these CACs has different crosstalk reduction capabilities.

2.3.2.2 Error Control Codes with Skewed Transitions

Skewed transition method [61, 62] is used to reduce crosstalk coupling by de-
laying adjacent transitions with some finite time �T. In this section, we will
introduce another method combining error control coding with skewed transitions
to simultaneously address error correction and capacitance coupling induced delay
uncertainty. In skewed transitions, the simultaneous opposite switching on neighbor-
ing bus lines are avoided by the induced relative delay �T. The worst-case effective
capacitance Ceff of skewed transition (Ceff of a middle wire when a 010 ! 101 or
101 ! 010 transition occurs on three adjacent wires) can be expressed by Eq. 2.3
below [61],

Ceff D Cgt C
�

4 � 2
jVN .�T / � VN .0/

VDD

�
Cct

D Cgt C .4 � 2v.�T //Cct (2.3)

where Cgt is the total capacitance between the wire and ground; Cct is the total
coupling capacitance between any two adjacent wires; VN(�T) and VN(0) are the
voltages of neighboring wires at time �T and 0, respectively; v(�T) is the ratio of
the neighboring wire’s voltage difference at time �T and 0 to VDD (0 � v(�T) � 1).
When �T D 0, v is 0. As �T increases, v approaches 1.

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 39

420a b

380

340

300

260

220
0 50 100 150 200

D1

D2

D3

Q1

Q2

Q3

CLK

CLK
Delay unit

R

R

R

R Out1

Out2

Out3

R

R

Cg Cg

CgCg

Cg

Cc Cc

CcCc

CLK

W
or

st
 c

as
e

lin
k

de
la

y
(p

s)

Skewed delay ΔT (ps)

DT

Fig. 2.14 Conventional skewed transitions (a) Skewed transition by inserting delay elements
(b) The relation between the worst-case link delay and skewed delay �T

In skewed transition methods, delay elements are inserted at the beginning of
alternate bus lines to generate the relative delay �T, as shown in Fig. 2.14a. For a
bus line with k�1 repeaters, the worst-case link delay Td in skewed transitions can
be described by Eq. 2.4 below [61],

Td D
�

0:7Rr C 0:4
Rt

k

�
.Cgt C 4Cct/ C 0:7.kRr C Rt /Cr C �T

�
�

1:4Rr C 0:8
Rt

k

�
Cctv.�T / (2.4)

where Rr and Cr are the on-resistance and output capacitance of the repeater. Rt is
the total resistance of the wire. The first two terms in Eq. 2.4 are the worst-case
delay of the standard bus. From Eq. 2.4, the delay reduction achieved by the skewed
transition method depends on the difference between the last two terms. Thus, a
large �T increases the overall link delay Td, as shown in Fig. 2.14b.

In [63], a method combining ECCs and skewed transitions is proposed to improve
the reliability of on-chip interconnects. In this method, ECCs are used to correct
logic errors while skewed transitions are applied to reduce capacitive crosstalk
induced delay uncertainties. By hiding the delay insertion overhead of the skewed
transition method, this method achieves a larger reduction in the worst-case link
delay compared to conventional skewed transition method. Figure 2.15 shows the
method combining ECCs with skewed transitions. In an error control encoder, the
parity bits are generated from the original input data after a finite delay. Instead of
sending the input data and parity bits to the link at the same time, partial input data
can be sent before the parity bits are available. Two clocks (CLK1 and CLK2, with
CLK1 arriving ahead of CLK2) are used alternately to offset the transitions in each
pair of adjacent interconnect lines. The input data and parity bits are mapped to
registers triggered by these two clocks, as shown in Fig. 2.15.

Figure 2.16 illustrates the transmission procedure of the method combining
ECCs with skewed transition. Assume that the clock cycle of CLK1 and CLK2 is

40 P. Ampadu et al.

Fig. 2.15 Block diagram of proposed method exploiting parity computation latency to reduce
crosstalk coupling

Tcycle and k-bit input data are available at the rising edge of CLK1. The calculation
of r-bit parity data is completed after a delay of Dparity. The wires l(i) (1 � i � k C r)
in the link with odd index i are triggered by CLK1 and l(i) with even index i are
triggered by CLK2. In the proposed method, input data can be sent at the next
rising edge of CLK1 or at the rising edge of CLK2, which arrives after a delay
�T1, as shown in Fig. 2.16. Because the data bits are available before the parity
bits are calculated, thus the data can be sent earlier than the parity bits without
affecting the overall system performance. Parity-check bits are calculated using the
input data after the delay Dparity; thus, they can only be transmitted at the next
rising edge of CLK1. The relationship between Tcycle and the timing offsets �T1

and �T2 is described in Fig. 2.16 and should meet the following constraint Eq. 2.5.
For implementation simplicity, CLK1 and CLK2 can be the rising and falling edge
of the same clock.

Tcycle D �T1 C �T2 � Dparity (2.5)

2.3.2.3 Experimental Results

Performance Evaluation

Unlike conventional skewed transition methods, the combination of error control
codes with skewed transitions hides the overhead induced by delay elements

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 41

0

0

0

0

0 0

0

01

1

1

1

1

1

1

11

10

I(n)

I(3)

I(2)

I(1)

Parity [1:r]

Data [1:k]

CLK2

CLK1

DT1

t1 t2t0

DT2

Tcycle

Dparity

I(n–1)

0

Fig. 2.16 Transmission procedure of the method combining error control coding with crosstalk
reduction

Fig. 2.17 Total energy
versus link length for
different schemes
simultaneously addressing
error correction with crosstalk
reduction

in the ECC encoding stage. Figure 2.17 compares the worst-case link delay of
the combination of ECCs with skewed transitions with the conventional skewed
transition method. A Hamming H(71, 64) code is used to correct single logic
errors. The Hamming encoder is implemented as XOR trees. The depth of the
XOR trees determines the worst-case delay of the Hamming encoder. The H(71,
64) encoder is synthesized using a TSMC 65 nm technology with the worst-case

42 P. Ampadu et al.

delay Dparity D 400 ps. A 65 nm link model [64] with lengths from 1 to 5 mm is
used in the simulations. The link delay is normalized to the delay of a standard
bus with minimum link width and spacing. Figure 2.17 compares the total energy
consumption Etotal of each method at link lengths of 1 and 3 mm. Etota includes
encoder, link, and decoder energy. The results show that combining H(71, 64) with
FPC consumes more total energy than other schemes, because of the larger codec
and link energy consumption. The combination of H(71, 64) with skewed transitions
achieves the least total energy consumption because of the relatively small codec
overhead and the least required number of wires. Compared to combining H(71, 64)
with FPC, it can achieve 32% improvement in energy consumption at link length
3 mm.

2.4 Reliable NoC Router Design

2.4.1 Router Architecture

Typically, error control coding techniques are only effective in linear systems.
Unfortunately, the router control path is not a linear system, requiring alternative
approaches to manage general routing errors. One common approach to handle
permanent errors in router is fault tolerant routing. These methods involve isolating
the entire router or a few ports of a router [65–67] if permanent errors are detected.
This isolation creates irregularities in the NoC topology, potentially degrading
NoC performance. To manage permanent errors in router, we can either add
spare components to replace the defective elements or increase the burden on
the remaining usable elements in the system. Both of those solutions achieve
fault tolerance at the cost of increasing area overhead, degrading performance, or
consuming more energy. In addition, the permanent error management methods
generally are based on the assumption that the faulty components in the router
have been recognized in the test phase. However, transient errors happen during the
runtime and cannot be predicted. Consequently, new energy-efficient and reliable
methods are imperative to control transient errors in routers.

Triple-modular redundancy (TMR) duplicates the unit under protection and
determines the most likely output by using a majority voting. Because of its
simplicity, TMR has been applied to the router control paths [53, 68]. Theoretically,
TMR functions correctly when up to one-third of the received copies are wrong.
Error happened to the majority voter further reduces the effectiveness of the TMR
approach, particularly when the size of the unit under protection is small [69].
Consequently, TMR is not an ideal solution for the control paths in NoC routers.

In this section, we focus on transient error management for the NoCs using
popular mesh topology and five-port routers. To obtain high clock frequency, we
assume each hop has four pipeline stages: three for the router and one for links
between two neighboring routers, as shown in Fig. 2.18. Note that each dash-dotted

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 43

Fig. 2.18 Generic pipelined router architecture

box is duplicated by five times in each router, because five-port router is interested
here. In the first stage of the router, ECC decoder is used to manage interconnect
link errors. Error-free packets are stored in the input FIFO. In the second stage, the
route computation (RC) block extracts the type of the incoming flit, determines the
desired output port from the given destination address, and requests access to the
appropriate output port. The round-robin arbitration (RRA) unit is composed of
round-robin computation unit and registers for priority vectors and port reservation
information. Each RRA unit grants the input port with the highest-priority to access
the output port that follows that RRA unit. In the third stage, flits popped out from
the output FIFO are encoded before transmission. In this section, we concentrate on
the error resilience of Stage 2, the router control path, to complementary to error
control methods for link and router data path.

The inherent information redundancy is obtained through the occurrence of
forbidden signal patterns or inconsistent request-response pairs in the system. Note
that failure detection in this work is applied to dimensional XY routing. In this work,
we use a practical packet format [70]. Each packet has one header flit, one tail flit and
several payload flits. The first two bits of a header flit are ‘10’. The remaining bits in
the header flit contain information such as source identifier, destination coordinator
and routing protocol. The first two bits of a tail flit are ‘01’. A flit with high logic on
both the first and second bits is a payload flit.

2.4.2 Reliable Router Architecture

Error correction typically results in more overhead than error detection. We
proposed a method that provides error correction to the unit only if errors in that unit
will directly result in packet loss or misrouting [71]. As shown in Fig. 2.19, the RC
unit is protected by error detection unit (1). If RC computation errors are detected,
a warning signal is activated to stop the input FIFO popping out the next flit and to
request RC re-computation. This re-computation process results in additional one-
cycle latency, but it is faster than multi-cycle rerouting The warning signal is also

44 P. Ampadu et al.

Fig. 2.19 Block diagram of proposed round robin arbiter. We propose the addition of the four
shaded units to the conventional arbiter design, enabling error control in the arbitration. RC route
computation, RR round-robin

used to clear the request of using one of the output ports, with the logic—e.g. Req v
& (Re-compute). The Req v vector after error detection unit (1) informs output
ports whether a new packet header arrives. The CReq signal indicates to release
the reserved input-output port connection in the next cycle. The ValidFlit vector
indicates if the current flit is a valid flit (i.e., header, payload, or tail flit). The RRA
unit in Fig. 2.18 is composed of round-robin computation (RRC) unit and registers
shown in Fig. 2.19. The round-robin (RR) registers store the grant vector used in
the last cycle. Priority registers save the priority vector, which will instruct the RRC
unit to select the next highest-priority input port. By exploiting inherent information
redundancy, we use four separated error management components—error detection
unit (2), error correction units (3) and (4)—to prevent spatial and temporal error
propagation. In our implementation, the four error control units are merged with the
RC and RRC units to reduce the critical path delay.

2.4.3 Route Computation

2.4.3.1 Failures in Route Computation (RC) Unit

The function of the RC unit is to determine which output port the current input
port should connect to. This means no more than one output port is requested
each time, and this exclusive feature is regarded as one of the inherent information
redundancies. According to RC unit functionality, three request failures happen:

1. Mute-request: No output port request when a header flit arrives at the input port.
This failure does not result in packet loss, but delays the release of the current
input port, increasing latency.

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 45

Fig. 2.20 Operation flowchart of proposed route computation unit

2. Multiple-request: One header flit requests multiple output ports at one cycle (we
assume no flooding protocol is being used here). This type failure will result in
multi-copy transmission, which consumes extra energy and potentially increases
the network traffic congestion.

3. Request-switch: A non-header flit arrives but there is a request to build a new
input-output port connection; or the request of the intended output port is muted
while there is a simultaneous request for another output port. Although the RC
unit only produces a single request, this erroneous request results in packet
misrouting and even deadlock.

Detecting and correcting these three failures can effectively prevent error propa-
gation to the next hop, saving energy on unnecessary network fabrics and logic gate
switching.

2.4.3.2 Sigma and Branch Detection Method

A sigma and branch detection method is introduced detect mute-request, multiple-
request and request-switch failures [71]. The flowchart for the proposed method is
shown in Fig. 2.20. Any detected failure turns the warning signal to high, demanding
re-calculation of the output port requests. For XY routing, the route computation
(RC) unit compares the destination address, indicating by the coordinator (X D,
Y D) in the 2D mesh network, with the current node ID represented by (X C, Y C).

Figure 2.21a shows the diagram of the request generation circuit in the RC unit.
The number of active outputs (i.e., Req E/S/W/N/L) cannot be more than ‘1’s at
each computation. There exists two pairs of branch points—(A0, A1) and (B0, B1),
which have forbidden the pattern ‘11’. We propose to warn the system by examining
the number of active Req signals and checking the forbidden status of the branch
points. If the number of requests is more than one, the branch points have the same

46 P. Ampadu et al.

Fig. 2.21 Sigma & branch detection method. (a) Requests generation circuit (ReqGC), (b) Error
detection circuit

high logic value or invalid request arrives, a warning signal is turned into high. The
proposed architecture is shown in Fig. 2.21b. A sigma function († > 1) is applied to
detect the multiple-request events. The validation of the incoming flit is examined to
detect the muted request. The complementary status of the branch points is checked
to capture the failure behavior.

2.4.3.3 Evaluation

The influence of the number of failed gates on the route computation (RC) unit
reliability is examined in Fig. 2.22. We randomly inject errors to the RC unit netlist.
The output of each gate is possible to be flipped. Since the number of logic gates
in the RC unit is less than 50, each data point is obtained by averaging 50,000
random simulations. As shown in Fig. 2.22, examining the number of requests (i.e.,
† detection) can reduce the system failure rate to 0.2. Combining † detection with
branch point detection can further reduce the RC failure rate. Compared to the TMR
method, our method achieves smaller system failure rate. This is valid even if only
a single gate fails in the RC unit.

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 47

Fig. 2.22 Probability of RC
unit failure

a b

Fig. 2.23 (a) Impact of gate failure rate on RC unit failure rate, (b) RC unit failure rate reduction

Figure 2.23a shows the relationship of error management method and gate failure
rate with the system failure rate �RC. TMR cannot reduce the system failure rate by
several orders of magnitude as expected. This is because the duplicated RC unit
has the same probability of experiencing logic gate failure. Moreover, TMR has
large area overhead, thus it is more likely to have errors. Our method considers both
the error detection and correction capability (i.e., ’) and the area cost, providing a
smaller system failure rate (�RC) than TMR. Figure 2.23b clarifies the RC unit
failure rate reduction over the no-protection case. As can be seen, our method
achieves three times system failure rate reduction than the TMR, and yet, the
overhead of TMR is 2.6X over our method, as shown in Fig. 2.24. The limitation of
our method is 10% more latency on the critical path, compared with TMR.

48 P. Ampadu et al.

Fig. 2.24 Overhead
comparison

2.4.4 Arbitration Unit

2.4.4.1 Failures in Arbitration Unit

Each packet experiences three steps—create an input port-output port connection,
maintain the port reservation and release the connection—to transfer a packet over
the RRA unit. The RRA unit in each port grants a single connection between that
port and one of the input ports. The connection remains until the request signal CReq
is high. The RRA unit may experience four types of failures:

1. Valid header flit with already active grant: the round-robin computation unit
changes the priority vector after each packet transmission. If one or more bits
in the RR and priority registers are flipped by particle strikes, an input port may
be given the grant before the header flit requests.

2. Valid payload flit without active grant: the header flit has reserved one output
port; however, the reservation information is corrupted. Consequently, the pay-
load flits cannot be continually transferred and network congestion occurs.

3. Valid tail flit without active grant: the tail flit cannot be forwarded to the output
port and the input port-output port connection cannot be released. This also cause
flit loss and network congestion.

4. Invalid incoming flit with active grant: the output port provides a grant to an input
port, in which no valid flit exists. This grant cannot be cleared unless another
failure happens in the RRA unit.

These inconsistent request-response pairs are used to provide error resilience in
the RRA unit, preventing packet corruption and loss.

Round-robin arbitration (RRA) unit is used to reserve an output port for one input
port when a header flit arrives. In the RC unit, transient errors can be managed with
re-computation and the residual errors do not result in packet loss. However, the
undetected errors in the RRA unit will lead to packet loss and network congestion
increase. Consequently, the error management for RRA needs error correction
capability.

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 49

Fig. 2.25 Flowchart of round-robin arbitration. (a) Generic and (b) Proposed

2.4.4.2 Self-Correcting Method

Generic flowchart for the error-free arbitration unit is shown in Fig. 2.25a. The pres-
ence of CReq has the highest priority, because CReq releases the reserved resource
to transfer new packets over the router. If one of the reservation registers is not
zero, no new request can be granted until the current packet transmission completes.
Round-robin arbitration is executed only when the output port is available. However,
the arbitration unit composed of logic gates and storage elements may be affected by
the voltage fluctuation and particle strikes, experiencing mute reservation, switching
reservation and multiple reservations similar to destination computation unit. We
propose a new RRA unit, which exploits the inherent information redundancy
to perform error detection or/and correction. Assume Req, CReq and flit type
information are error free because of the error management in the RC unit. We
examine the errors in reservation registers (i.e., round-robin registers), by checking
the consistency between the register contents and the Req, CReq and flit type signals.
The proposed flowchart is shown in Fig. 2.25b. Three error management operations
are added to the branches shown in Fig. 2.25a.

Conflict Between Output Port Reservation and CReq

We examine whether the content in the RR registers matches to the CReqs or not
before updating the registers (i.e., releasing output port reservation). If no error, only
the input port that reserves the current output port issues a valid CReq; any incident
termination on the output port reservation is caused by errors. This constraint is the
inherent information that can be used to correct the corrupted round-robin registers.
The incorrect registers are reset when the reservation does not match to the CReq.

50 P. Ampadu et al.

Fig. 2.26 (a) Conventional and (b) proposed grant generation circuit

Conflict Between Output Port Reservation and Flit Type

Corruption of the round-robin register results in packet loss. The input port does not
have active CReq and Req either in the middle of transferring a packet or during
no data transmission period. To differentiate these two cases, we check whether the
reservation matches to the flit type. If the current flit type is payload, there exists a
single valid reservation in one of the output ports. Missing or switched reservation
in the round-robin register can be detected and then be repaired by rewriting the
register and stopping current data flow.

Illegal Single Reservation

Because each arbiter issues a single grant each cycle, the presence of multiple
reservation signals after the RRA unit indicates miscomputing. This error is caused
by logic gate errors in round-robin computing unit. We examine the number of active
grants and reset the reservation registers if more grants exist. We assume permanent
errors on logic and storage elements have been examined and repaired in the testing
process. Stopping the grant process for one cycle, we can obtain the correct grant
signal and reservation register content in the next cycle.

2.4.4.3 Implementation

In the generic round-robin arbitration, the grant gi, t and priority vector pi, t are given
by Eqs. 2.6 and 2.7 respectively.

gi;t D .Req & CReq & pi;t�1/j.Req & CReq & gi;t�1/ (2.6)

pi;t D gmod.iC3;4/;t j.gct & pi;t�1/ (2.7)

in which, i is the port ID, mod(i C 3,4) is the function to shift the priority for a five
port router without 180ı transmission, t is time, gc is the bit-OR signal of all grant
signals in each output port. The circuit of conventional grant generator without error
resilience is shown in Fig. 2.26a.

Our proposed method detects and overwrites the erroneous round-robin register
based on the appropriate operation for the given Req, CReq and ValidFlit infor-

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 51

Fig. 2.27 Diagram of proposed round-robin arbitration unit

mation. The round-robin register achieves error resilience by using our new gi,t

computation expressed in Eq. 2.8.

gi;t D CReq & ValidFlit & .pi;t�1jReq/ (2.8)

Equation 2.6 applies to our method, as well. As can be seen from Eqs. 2.6 and 2.7 the
grant signal has error propagation problem: failure on gi,t will cause failure on pi,t,
vice versa. Thus, we propose an error termination technique for the priority register.
Priority registers are reset either when the number of ‘1’ of priority bits greater than
one or when zero priority vector occurs. The reset signal PR reset n is given by
Eq. 2.9. The reset operation may result in packet loss, but our simulation results that
the impact of packet loss on the average latency and energy is significantly smaller
than other approaches.

PR reset n D
8
<

:
0; if

3P
kD0

pi;k

1; otherwise
� 2 or

3X

kD0

pi;k DD 0 (2.9)

The completed view of the proposed RRA unit is shown in Fig. 2.27. Note
that this diagram is for the East output port. The circuit for other output ports is
same with that for the east output port, except the round-robin priority. We use the
proposed grant generator (shown in Fig. 2.26b) to detect and correct mute-request,

52 P. Ampadu et al.

multi-request and switched-request caused by errors happen to logic gates and D
flipflops in the RRA unit. In addition, the signal PR reset n is used to reset the
priority registers (DFFs before pS/W/N/L). The priority registers cannot be all zeros;
otherwise no request can be granted after initialization. For example, the highest
priority in the east output port is for the request from the south input port.

2.4.4.4 Evaluation

Reliability

We compared the proposed method with TMR using quasi-simulation method.
Because purely random simulation cannot capture each error case, we firstly verify
whether the system will yield a wrong output under the different error injection
conditions, to obtain �RRA,i.j (i is the number of failed registers and j is the number
of failed logic gates). The average RRA failure rate �RRA is computed by Eq. 2.10.

�RRA D
NLogicX

j D0

NDFFX

iD0

.pi;j � �RRA i;j / (2.10)

where, the probability of having i register failures and j logic gate failures, pi,j, is a
function of the total number of register NDFF, the total number of logic gates NLogic,
each D flipflop (DFF) failure rate ", the failure rate ratio of logic gate over DFF ˇ,
and the specific number of failure DFFs and logic gates. The closed-form expression
for pi,j is given by Eq. 2.11.

pi;j D f
�
NDFF; NLogic; "; ˇ; i; j

�

D
�

i

NDFF

�
"i .1 � "/NDFF�i �

�
j

NLogic

�
.ˇ"/j .1 � ˇ"/NLogic�j (2.11)

in which, 0 � i � NDFF, 0 � j � NLogic, and ˇ � 1.
The RRA reliability is evaluated in Fig. 2.28. Each data point for �RRA i,j is

obtained from the random simulation executed by 50,000 times. The values of
each logic gate and D flip-flop can be flipped with the probabilities of ˇ" and
", respectively. It has been observed that storage element has higher failure rate
than logic gate. However, as the circuit frequency increases, it is expected to have
higher logic error rate than before. Consequently, we assume that the ratio “ is no
more than 1. As shown in Fig. 2.28a our method reduces the system failure rate by
two orders of magnitude over the no-protection and TMR approaches for “ D 10�3.

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 53

a b c

Fig. 2.28 Impact of logic gate error rate on the failure rate of round-robin arbitration unit (a) RRA
failure rate at ˇ D 10�3 (b) RRA failure rate at ˇ D 10�1 (c) RRA failure rate at ˇ D 1

a b

Fig. 2.29 Impact of failed flit type on the system failure rate. (a) Payload flit, (b) Tail flit for
“ D 10�3

As “ increases to 10�1, our method still achieves up to 4X higher system error
rate reduction than TMR, as shown in Fig. 2.28b. Our method is superior to TMR
in a wide range of " and ˇ. When the logic gate failure rate is equal to register
failure rate, the advantage of our method does not maintain, as shown in Fig. 2.28c.
Figure 2.28 shows that our approach cannot reduce the failure rate to zero, partly
because an incoherent state of the registers cannot be propagated through the
additional control logic, eluding the detection and correction mechanisms.

In Fig. 2.29, we compare the failure rate reduction achieved by different error
management methods when payload and tail flits are being transferred from input
port to output port. The metric ”RRA reduction is defined as the ratio of TMR failure
rate over the failure rate of our method. As shown in Fig. 2.29a our method achieves
up to 380X more failure rate reduction than TMR, in the case of transferring payload
flits. As shown in Fig. 2.29b our method can tolerate comparable error rate to TMR
method in low " region, and the failure reduction increases to 14 times as " increases
to 10�2, in the case of transferring tail flits.

54 P. Ampadu et al.

Table 2.1 Area and power of routing arbitration units

No protection TMR Proposed

Area (m2) 1982 (100%) 3822 (202%) 2160 (109%)
Dyn. Power (W) 859.7 (100%) 2462.6 (286%) 884.3 (103%)
Leak. Power (W) 7.2 (100%) 13.9 (193%) 8.0 (111%)

Area

Reliability improvement of TMR and our methods has been demonstrated in
previous sections. Here, we compare the total area, power and delay of three
different implementations for the routing arbitration stage. TMR and proposed
approaches are employed to protect the RC unit and RRC unit. Error control
overhead for protecting multiplex in the data path and pipeline stage registers are
not included here. As shown Table 2.1, the proposed method only increases 9%
area overhead over the no-protection approach; while the area overhead of TMR is
more than two times to that of the no-protection approach. Compared to TMR, our
method reduces area by 43%.

Power

Table 2.1 also shows the power consumption of different routing arbitration units
in router stage 2. Because of fewer logic gates and D flip-flops are employed in the
arbitration units, the proposed method reduces the dynamic power by 64% and the
leakage power by 42%, compared to TMR. The increased total power overhead of
our method over no-protection design is only 3%.

2.5 Summary

The application of Networks-on-Chip in the computing systems becomes popular,
as NoC is capable to provide the scalable on-chip interconnect management.
In addition to performance and energy efficiency, reliability emerges as a new
challenge on the computing system design. Typical error control schemes are
summarized in this chapter, and commonly used error detection/correction codes
and crosstalk avoidance codes are overviewed, as well. To balance the reliability
and the overhead on hardware cost and power consumption, we presented the very
recent NoC link and router designs. In future work, the new error control codes
and their applications in NoCs are worth more investigation to further improve the
reliability for the sustainable computing systems.

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 55

References

1. Cray Research, Inc. (1985) The cray-2 computer system
2. Gioiosa R (2010) Towards sustainable exascale computing. In: Proceedings of the18th

IEEE/IFIP VLSI system on chip conference (VLSI-SoC), Madrid, Spain, pp 270–275
3. Zhang Y, Sun J, Yuan G, Zhang L (2010) Perspectives of China’s HPC system development: a

view from the 2009 China HPC TOP100 list. J Frontiers Comput Sci China 4(4):437–444
4. Nickolls J, Dally WJ (2010) The GPU computing era. IEEE Micro 30(2):56–69
5. Truong DN et al (2009) A 167-processor computational platform in 65 nm CMOS. IEEE J

Solid State Circuits 44(4):1130–1144
6. Seiler L et al (2009) Larrabee: a many-core x86 architecture for visual computing. IEEE Micro

29(1):10–21
7. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In:

Proceedings of the 38th design automation conference (DAC’01), Las Vegas, NV, USA, pp
684–689

8. Benini L, De Micheli G (2002) Networks on chips: a new SoC paradigm. Computer 35:70–78
9. Agarwal A, Iskander C, Shankar R (2009) Survey of network on chip (NoC) architectures &

contributions. Eng Comput Architec 3:1–15
10. Kogge P et al (2008) Exascale computing study: technology challenges in achieving exascale

systems. Tech Rep DARPA-2008-13, DARPA IPTO
11. Naffziger S (2006) High-performance processors in a power-limited world. In: Proceedings of

the symposium on VLSI Circuits, Honolulu, Hawaii, USA, pp 93–97
12. Constantinescu C (2003) Trends and challenges in VLSI circuit reliability. IEEE Micro 23:

14–19
13. Hussein MA, He J (2005) Materials’ impact on interconnect process technology and reliability.

IEEE Trans Semiconduct Manuf 18:69–85
14. Jakushokas R et al (2011) Power distribution networks with on-chip decoupling capacitors.

Springer, New York
15. Chandra V, Aitken R (2008) Impact of technology and voltage scaling on the soft error

susceptibility in nanoscale CMOS. In: Proceedings of DFT’08, Cambridge, MA, USA, pp
114–122

16. Barsky R, Wagner IA (2004) Reliability and yield: a joint defect-oriented approach. In:
Proceedings of the 19th IEEE international symposium on defect and fault tolerance in VLSI
Syst (DFT’04), Cannes, France, pp 2–10

17. Shivakumar P et al (2002) Modeling the effect of technology trends on the soft error rate of
combinational logic. In: Proceedings of international conference on dependable systems and
networks, Washington, DC, USA, pp 389–398

18. Agarwal K, Sylvester D, Blaauw D (2006) Modeling and analysis of crosstalk noise in coupled
RLC interconnects. IEEE Trans Comput Aided Des Integr Circuits Syst 25:892–901

19. Baumann R (2005) Radiation-induced soft errors in advanced semiconductor technologies.
IEEE Trans Device Mater Reliab 5:305–316

20. Bertozzi D, Benini L, De Micheli G (2005) Error control scheme for on-chip communication
links: the energy-reliability tradeoff. IEEE Trans Comput Aided Des Integr Circuits Syst
(TCAD) 24:818–831

21. Lin S, Costello D, Miller M (1984) Automatic-repeat-request error control schemes. IEEE
Commun Mag 22:5–17

22. Metzner J (1979) Improvements in block-retransmission schemes. IEEE Trans Commun COM
23:525–532

23. Lehtonen T, Lijieberg P, Plosila J (2007) Analysis of forward error correction methods for
nanoscale networks-on-chip. In: Proceedings of the nano-net, Catania, Italy, pp 1–5

24. Lin S, Costello DJ (2004) Error control coding, 2nd edn. Prentice Hall
25. Sridhara S, Shanbhag RN (2005) Coding for system-on-chip networks: a unified framework.

IEEE Trans Very Large Scale Integr (VLSI) Syst 12:655–667

56 P. Ampadu et al.

26. Rossi D, Metra C, Nieuwland KA, Katoch A (2005) Exploiting ECC redundancy to minimize
crosstalk impact. IEEE Des Test Comput 22:59–70

27. Zimmer H, Jantsch A (2003) A fault model notation and error-control scheme for switch-
to-switch buses in a network-on-chip. In: Proceedings of the international conference on
hardware/software codesign and system synthsis (CODES-ISSS), Newport Beach, CA, USA,
pp 188–193

28. Yu Q, Ampadu P (2008) Adaptive error control for NoC switch-to-switch links in a variable
noise environment. In: Proceedings of IEEE international symposiun on defect and fault
tolerance in VLSI system (DFT), Cambridge, MA, USA, pp 352–360

29. Reed SI, Solomon G (1960) Polynomial codes over certain finite fields. J Soc Ind Appl Math
8:300–304

30. Dumitras T, Kerner S, Marculescu R (2003) Towards on-chip fault-tolerant communication.
In: Proceedings of the Asia and South Pacific design automation conference (ASP-DAC’03),
Kitakyushu, Japan, pp 225–232

31. Haas ZJ, Halpern JY, Li L (2006) Gossip-based ad hoc routing. IEEE/ACM Trans Network
(TON) 14:476–491

32. Pirretti M et al (2004) Fault tolerant algorithms for network-on-chip interconnect. In: Proceed-
ings IEEE computer society annual symposium on VLSI emerging trends in VLSI syst design
(ISVLSI’04), Lafayette, Louisiana, USA, pp 46–51

33. Patooghy A, Miremadi SG (2008) LTR: a low-overhead and reliable routing algorithm for
network on chips. In: Proceedings of international SoC design conference Busan, Korea, I-
129–I-133

34. Bobda C et al (2005) DyNoC: a dynamic infrastructure for communication in dynamically
reconfigurable devices. In: Proceedings of international conference on field programmable
logic and applications, Tampere, Finland, pp 153–158

35. Zhang Z, Greiner A, Taktak S (2008) A reconfigurable routing algorithm for a fault-tolerant
2D-mesh network-on-chip. In: Proceedings of IEEE design automation conference (DAC’08),
Austin, TX, USA, pp 441–446

36. Glass CJ, Ni LM (1992) The turn model for adaptive routing. In: Proceedings of international
symposium computer architecture, Gold Coast, Australia, pp 278–287

37. Chiu G-M (2000) The odd-even turn model for adaptive routing. IEEE Trans Parallel Distr
Syst 11:729–738

38. Li M, Zeng QA, Jone WB(2006) DyXY-A proximity congestion-aware deadlock-free dynamic
routing method for network-on-chip. In: Proceedings of DAC 2006, San Francisco, CA, USA,
pp 849–852

39. Hosseini A, Ragheb T, Massoud Y (2008) A fault-ware dynamic routing algorithm for on-chip
networks. In: Proceedings of IEEE international symposium circuits and syst(ISCAS ’08),
Seattle, Washington, USA, pp 2653–2656

40. Aliabadi MR, Khademzadeh A, Raiya AM (2008) Dynamic intermediate node algorithm
(DINA): a novel fault tolerance routing methodology for NoCs. In: Proceedings of international
symposium on telecommunication, Tehran, Iran, pp 521–526

41. Schonwald T, Zimmermann J, Bringmann O, Rosenstiel W (2007) Fully adaptive fault-tolerant
routing algorithm for network-on-chip architectures. In: Proceedings of euromicro conference
on digital system design architecture, Lubeck, Germany, pp 527–534

42. Zhou J, Lau FCM (2001) Adaptive fault-tolerant wormhole routing in 2D meshes. In:
Proceedings of 15th international parallel and distributed processing symposium, pp 1–8

43. Boppana RV, Chalasani S (1995) Fault-tolerant wormhole routing algorithms for mesh
networks. IEEE Trans Comput 44:848–864

44. Chen K-H, Chiu G-M (1998) Fault-tolerant routing algorithm for meshes without using virtual
channels. Inform Sci Eng 14:765–783

45. Park D, Nicopoulos C, Kim J, Vijaykrishnan N, Das CR (2006) Exploring fault-tolerant
network-on-chip architectures. In: Proceedings of international conference on dependable syst
and networks (DSN’06), Philadelphia, PA, USA, pp 93–104

46. Duato J (1997) A theory of fault-tolerant routing in wormhole networks. IEEE Trans Parallel
Distr Syst 8:790–802

2 Reliable Networks-on-Chip Design for Sustainable Computing Systems 57

47. Lehtonen T, Wolpert D, Liljeberg P, Plosila J, Ampadu P (2010) Self-adaptive system for
addressing permanent errors in on-chip interconnects. IEEE Trans Very Large Scale Integr
(VLSI) Syst 18:527–540

48. Lehtonen T, Liljeberg P, Plosila J (2007) Online reconfigurable self-timed links for fault
tolerant NoC. VLSI Des 2007:1–13

49. Elias P (1954) Error-free coding. IEEE Trans Inf Theory 4:29–37
50. Fujiwara E (2006) Code design for dependable systems: theory and practical applications.

Wiley Interscience, Hoboken
51. Pyndiah R (1998) Near-optimum decoding of product codes: block turbo codes. IEEE Trans

Commun 46(8):1003–1010
52. Fu B, Ampadu P (2009) On hamming product codes with type-II hybrid ARQ for on-chip

interconnects. IEEE Trans Circuits Syst I, Reg Papers 9:2042–2054
53. Constantinides K et al (2006) BulletProof: a defect-tolerant CMP switch architecture. In:

Proceedings of HPCA’06, Austin, Feb 2006, pp 5–16
54. Patel KN, Markov IL (2004) Error-correction and crosstalk avoidance in DSM busses. IEEE

Trans Very Large Scale Integr (VLSI) Syst 12:1076–1080
55. Ganguly A, Pande PP, Belzer B, Grecu C (2008) Design of low power & reliable networks

on chip through joint crosstalk avoidance and multiple error correction coding. J Electron Test
Theory Appl (JETTA), Special Issue on Defect and Fault Tolerance 24:67–81

56. Ganguly A, Pande PP, Belzer B (2009) Crosstalk-aware channel coding schemes for energy
efficient and reliable NOC interconnects. IEEE Trans Very Large Scale Integr (VLSI) Syst
17(11):1626–1639

57. Sridhara S, Shanbhag RN (2007) Coding for reliable on-chip buses: a class of fundamental
bounds and practical codes. IEEE Trans Comput Aided Des Integr Circuits Syst 5:977–982

58. Sridhara S, Ahmed A, Shanbhag RN (2004) Area and energy-efficient crosstalk avoidance
codes for on-chip busses. In: Proceedings of international conference on computer design
(ICCD), San Jose, CA, USA, pp 12–17

59. Duan C, Tirumala A, Khatri SP (2001) Analysis and avoidance of crosstalk in on-chip buses.
In: Proceedings of hot interconnects, Stanford, California, USA, pp 133–138

60. Victor B, Keutzer K (2001) Bus encoding to prevent crosstalk delay. In: Proceedings of
IEEE/ACM international conference on computer-aided design (ICCAD), San Jose, CA, USA,
pp 57–63

61. Hirose K, Yassura H (2000) A bus delay reduction technique considering crosstalk. In:
Proceedings of design, automation and test in Europe (DATE), Paris, France, pp 441–445

62. Nose K, Sakurai T (2001) Two schemes to reduce interconnect delay in bi-directional and
uni-directional buses. In: Proceedings of VLSI symposium, Kyoto, Japan, pp 193–194

63. Fu B, Ampadu P (2010) Exploiting parity computation latency for on-chip crosstalk reduction.
IEEE Trans Circuits Syst II: Expr Briefs 57:399–403

64. Arizona State University Predictive Technology Model [Online]. http://ptm.asu.edu/
65. Fick D et al. (2009) A highly resilient routing algorithm for fault-tolerant NoCs. In: Proceed-

ings of DATE’09, Nice, France, Mar 2009, pp 21–26
66. Sanusi A, Bayoumi MA (2009) Smart-flooding: a novel scheme for fault-tolerant NoCs. In:

Proceedings of IEEE SoC conference, Belfast, Northern Ireland, Sept 2009, pp 259–262
67. Rodrigo S, Flich J, Roca A, Medardoni S, Bertozzi D, Camacho J, Silla F, Duato J (2010)

Addressing manufacturing challenges with cost-efficient fault tolerant routing. In: Proceedings
of NOCS’10, Grenoble, France, May 2010, pp 25–32

68. Yanamandra A et al (2010) Optimizing power and performance for reliable on-chip networks.
In: Proceedings of ASP-DAC’10, Taipei, Taiwan, Jan 2010, pp 431–436

69. Lyons REAND, Vanderkulk W (1962) The use of triple-modular redundancy to improve
computer reliability. IBM J Res Dev 6(2):200–209

70. Vangal S et al (2008) An 80-tile sub-100-W TeraFLOPS processor in 65-nm CMOS. IEEE J
Solid State Circuits 43(1):29–41

71. Yu Q, Zhang M, Ampadu P (2011) Exploiting inherent information redundancy to manage
transient errors in NoC routing arbitration. In: Proceedings of. 5th ACM/IEEE international
symposium on networks-on-chip (NoCS’11), Pittsburgh, Pennsylvania, USA, pp 105–112

http://ptm.asu.edu/

Chapter 3
Energy Adaptive Computing for a Sustainable
ICT Ecosystem

Krishna Kant, Muthukumar Murugan, and David Hung Chang Du

3.1 Introduction

Information and Computing Technology (ICT) has traditionally emphasized
primarily on the performance of both hardware and software. Lately power/thermal
issues of ICT equipment have forced a consideration of these aspects on par with
performance. Power/thermal issues arise at all levels from transistors up to entire
ecosystems that involve data centers, clients and the intervening network. At the
architectural level, the increasing speeds, smaller feature sizes, and exploding
wire widths (and hence resistance) all conspire to make power/thermal issues the
main architectural hurdle in sustaining Moore’s law. At higher levels, the smaller
form factors and more difficult cooling aggravate the problem further. Although
power/thermal management is an active area of research, power/thermal issues
are still largely approached in the form of opportunistic methods to reduce power
consumption or stay within the thermal profile while minimizing any performance
impact [1, 2]. Much of this research is focused on reducing the direct energy
usage of the data center, whereas from an environment impact perspective one
needs to consider the entire life-cycle of energy consumption – that is, the energy
consumption in the manufacture, distribution, installation, operation and disposal
of the entire data center infrastructure including IT assets, power distribution
equipment, and cooling infrastructure [3].

K. Kant (�)
George Mason University, Fairfax, VA, USA
e-mail: kkant@gmu.edu

M. Murugan • D.H.C. Du
University of Minnesota, Minneapolis, MN, USA
e-mail: murugan@cs.umn.edu; du@cs.umn.edu

P.P. Pande et al. (eds.), Design Technologies for Green and Sustainable Computing Systems,
DOI 10.1007/978-1-4614-4975-1 3, © Springer ScienceCBusiness Media New York 2013

59

60 K. Kant et al.

Looking at energy consumption from this larger perspective entails not only
low power consumption during operation but also leaner designs and operation
using renewable energy as far as possible. Thus, the fundamental paradigm that we
consider is to replace the traditional overdesign at all levels with rightsizing coupled
with smart control in order to address the inevitable lack of capacity that may arise
occasionally. In general, such lack of capacity may apply to any resource; however,
we only consider its manifestation in terms of energy/power constraints. Note that
power constraints could relate to both real constraints in the power availability as
well as the inability to consume full power due to cooling/thermal limitations. Power
consumption limitation indirectly relates to capacity limitation of other resources as
well, particularly the dominant ones such as CPU, memory, and secondary storage
devices. We call this as energy adaptive computing or EAC [4, 5].1 The main point
of EAC is to consider energy related constraints at all levels and dynamically adapt
the computation to it as far as possible. A direct use of locally produced renewable
energy could reduce the distribution infrastructure, but must cope with its often
variable nature. Thus, better adaptation mechanisms allow for more direct use of
renewable energy.

It is well recognized by now that much of the power consumed by a data
center is either wasted or used for purposes other than computing. In particular,
when not managed properly, up to 50% of the data center power may be used
for purposes such as chilling plant operation, compressors, air movement (fans),
electrical conversion and distribution, and lighting [6]. It follows that from a
sustainability perspective, it is not enough to simply minimize operational energy
usage or wastage; we need to minimize the energy that goes into the infrastructure
as well. This principle applies not only to the supporting infrastructure but to the
IT devices such as clients and servers themselves. Even for servers in data centers,
the increased emphasis on reducing operating energy makes the non-operational
part of the energy a larger percentage of the life-cycle energy consumption and
could almost account for 50% [3]. For the rapidly proliferating small mobile clients
such as cell-phones and PDAs, the energy used in their manufacture, distribution
and recycling could be a dominant part of the life-time energy consumption.
Towards this end, it is important to consider data centers that can be operated
directly via locally produced renewable energy (wind, solar, geothermal, etc.) with
minimal dependence on the power grid or large energy storage systems. Such an
approach reduces carbon footprint not only via the use of renewable energy but
also by reducing the size and capacity of power storage and power-grid related
infrastructure. For example, a lower power draw from the grid would require less
heavy-duty power conversion infrastructure and reduce its cost and carbon footprint.
The down-side of the approach is more variable energy supply and more frequent
episodes of inadequate available energy to which the data center needs to adapt

1Here “energy adaptation” implicitly includes power and thermal adaptation as well.

3 EAC for Sustainable IT 61

dynamically. Although this issue can be addressed via large energy storage capacity,
energy storage is currently very expensive and would increase the energy footprint
of the infrastructure.

The power and cooling infrastructure in servers, chassis, racks, and the entire data
center is designed for worst-case scenarios which are either rare or do not even occur
in realistic environments. We argue for much leaner design of all components having
to do with power/thermal issues: heat sinks, power supplies, fans, voltage regulators,
power supply capacitors, power distribution network, Uninterrupted Power Supply
(UPS), air conditioning equipment, etc. This leanness of the infrastructure could
be either static (e.g., lower capacity power supplies and heat sinks, smaller disks,
DRAM, etc.), or dynamic (e.g., phase shedding power supplies, hardware resources
dynamically shared via virtualization). In either case, it is necessary to adapt
computations to the limits imposed by power and thermal considerations. We
assume that in all cases the design is such that limits are exceeded only occasionally,
not routinely.

3.2 Challenges in Energy Adaptive Computing

It is clear from the above discussion that many advanced techniques for improving
energy efficiency of IT infrastructure and making it more sustainable involve the
need to dynamically adapt computation to the suitable energy profile. In some
cases, this energy profile may be dictated by energy (or power) availability, in other
cases the limitation may be a result of thermal/cooling constraints. In many cases,
the performance and/or QoS requirements are malleable and can be exploited for
energy adaptation. For example, under energy challenged situations, a user may
be willing to accept longer response times, lower audio/video quality, less up to
date information, and even less accurate results. These aspects have been explored
extensively in specific contexts, such as adaptation of mobile clients to intelligently
manage battery lifetime [7]. However, complex distributed computing environments
provide a variety of opportunities for coordinated adaptation among multiple nodes
and at multiple levels [8]. In general, there are three types of distributed energy
adaptation scenarios: (a) Cluster computing (or server to server), (b) Client-server,
and (c) Peer to Peer (or client to client). These are shown pictorially in Fig. 3.1 using
dashed ovals for the included components and are discussed briefly in the following.
Notice that in all cases, the network and the storage infrastructure (not shown) are
also important components that we need to consider in the adaptation.

Although we discuss these three scenarios separately, they generally need to be
addressed together because of multiple applications and interactions between them.
For example, a data center would typically support both client-server and cluster
applications simultaneously. Similarly, a client may be simultaneously involved in
both peer-to-peer and client-server applications.

62 K. Kant et al.

Fig. 3.1 Illustration of energy adaptation loops

3.2.1 Challenges in a Cluster Environment

Cluster EAC refers to computational models where the request submitted by a client
requires significant computation involving multiple servers before the response can
be returned. That is, client involvement in the service is rather minimal, and the
energy adaptation primarily concerns the data center infrastructure. In particular,
a significant portion of the power consumed may go into the storage and data
center network and they must be considered in adaptation in addition to the servers
themselves.

In cluster EAC, the energy adaptation must happen at multiple levels such as
subsystems within a server, servers in a rack, etc. At each level there may be a power
limit that the level must adapt to. Some of the limits may be “soft” in the sense
that they simply represent algorithmic allocation of available energy, and intelligent
estimation and adjustment of these limits is crucial. At the highest level, energy
adaptation is required to conform to the power generation (or supply) profile of the
energy infrastructure. Power limits may also need to be established for different
types of infrastructure, for example, the compute, storage and network portions of
the infrastructure.

In addition to the available energy, the thermal constraints play a significant
role in workload adaptation. Traditionally, CPUs are the only devices that have
significant thermal issues to provide both thermal sensors and thermal throttling
mechanisms to ensure that the temperature stays within appropriate limits. For
example, the T states provided by contemporary CPUs allows introduction of dead

3 EAC for Sustainable IT 63

cycles periodically in order to let the cores cool. DIMMs are also beginning to
be fitted with thermal sensors along with mechanisms to reduce the heat load.
With tight enclosures such as blade servers and laptop PCs, ambient cooling,
and increasing power consumption, other components (e.g. switching fabrics,
interconnects, shared cache, etc.) are also likely to experience thermal issues. In
challenging thermal environments, a coordinated thermal management is crucial
because the consequences of violating a thermal limit could be quite severe. Also,
an over throttling of power to provide a conservative temperature control could have
severe performance implications.

Thermal control at the system level is driven by cooling characteristics. For
example, it is often observed that all servers in a rack do not receive the same
degree of cooling, instead, depending on the location of cooling vents and air
movement patterns, certain servers may receive better cooling than others. Most
data centers are unlikely to have finer grain mechanisms (e.g., air direction flaps)
to even out the cooling effectiveness. Instead, it is much easier to do their thermal
management to conform to the cooling profile. So, the simplest scheme is for each
server to manage its own thermals based on the prevailing conditions (e.g., on-
board temperature measurements). However, such independent controls can lead to
unstable or suboptimal control. A coordinated approach such as the one considered
in [5] could be used to ensure satisfactory operation while staying within the
temperature limits or rather within the power limits dictated by the temperature
limit and heat dissipation characteristics.

3.2.1.1 Estimation and Allocation of Energy

An important aspect of managing a resource is the ability to easily measure resource
consumption of the desired software component (e.g., a task, VM, or application)
while it is running and accurately estimate the resource requirements before the
software is run. The purpose of the latter is to decide where, when, and how to run
the software. Unfortunately, when the resource in question is energy (or power),
both the measurement or estimation can be quite difficult. Part of the difficulty
in measurement arises from the fact that the direct power measurement capability
is often unavailable, and the power consumption must be estimated indirectly via
available counters in the platform. For example, a direct measurement of power
consumption of an individual CPU core is often not feasible and a standard method
is to compute power based on a variety of low-level performance monitoring
counters that are available on-chip. An even more difficult issue is to break the
power consumption of a physical entity down to the software entities (e.g., VMs or
tasks) using it [9].

An a-priori estimation of power consumption is difficult because the energy
consumption not only depends on workload and hardware configuration but also
on complex interactions between various hardware and software components and
power management actions. For example, energy consumed by the CPU depends on

64 K. Kant et al.

the misses in the cache hierarchy, type of instructions executed, and many other
micro-architectural details and how they relate to the workload being executed.
Furthermore, when multiple software components are running together on the same
hardware, they can interact in complex ways (e.g., cache working set of one task
affected by presence of another task). Consequently, neither the performance nor
the power consumption adds up linearly, e.g., the active power for two VMs running
together on a server does not equal the sum of active powers of individual VMs on
the same server. Thus accurate energy estimation remains a difficult problem that
we do not tackle in this article.

3.2.1.2 Planning and Execution of Control Actions

Given the power and QoS constraints, the first step in any power control mechanism
is to design an optimal/close to optimal solution that would achieve the target
performance. However these control actions are not instantaneous and involve
overheads. Realizing these solutions in real time involves multiple steps that include
time consuming operations like switching a server from sleep/low power modes
to fully operational modes or vice versa. The latency involved in these operations
is significant and cannot be overlooked. The state changes involved may cause
transient instabilities in the participating components. For instance in a datacenter
environment, when a server is shut down, the load it was handling needs to be
redistributed to other servers. This sudden increase in load in the other servers
causes the applications already running on them to slow down. Also, the control
actions themselves consume some resources for their execution. All these factors
call for a careful planning and execution of the power control actions.

The initiation of the planning process is based on certain events e.g., decrease
in available power supply, increase in application traffic etc. If these processes are
reactive, i.e., they are initiated after the event has occurred, the associated delays
will be extremely large. Hence the events need to be predicted and the necessary
control actions need to be initiated beforehand. The planning process can also be
made more dynamic by means of Model Predictive Control (MPC) [10] techniques
where the actions are planned for every time instant t C
 , 8
 2 f0; 1; ::T g, at
time t , and only the control action for time t C 1 is implemented. The same process
is repeated for the rest of the receding time horizon T . However these techniques
could turn out to be expensive when the state space is large. Also these techniques
might take a long time to converge and are not essentially optimal.

3.2.2 Challenges in Other Environments

In this section, we briefly address the client-server and peer-to-peer (P2P) environ-
ments. In its full generality, client-server EAC needs to deal with a coordinated
end-to-end adaptation including the client, server, and the intervening network. The

3 EAC for Sustainable IT 65

purpose of the coordination is to optimize the client experience within the energy
constraints of each of the three components. As the clients become more mobile
and demand richer capabilities, the limited battery capacity gets in the way and the
energy adaptation can help. Furthermore, since these devices are also constrained
in terms of their compute power, energy and network bandwidth, the adaptation
goes well beyond just the energy. For example, techniques have been proposed to
outsource mobile computation to the cloud platforms that can provide the required
resources on demand [11–13]. In particular, complex and compute intensive image
processing tasks can be migrated from the mobile clients to the cloud, and this could
be considered as a broader energy adaptation since the migration does conserve
battery life. Adding energy adaptation on the server side to these mechanisms
makes them particularly difficult to handle. One interesting approach is to adapt
the allocation of resources on the server side based on the remaining energy of the
mobile clients.

Client-server EAC can be supported by defining client energy states and the QoS
that the client is willing to tolerate in different energy states as a contract and
then do a contract adaptation, as in [14]. However, since server-side adaptation
(such as putting the server in deep sleep state and migrating the application to
another server) can affect many clients, the client contracts play a role in where
the client applications are hosted on servers and how the servers themselves adapt.
This coupling between client and servers, along with appropriate network power
management actions makes the overall coordination problem very difficult.

Energy adaptation in P2P environment requires cooperation among peers. This
issue is examined in [15]. The authors propose an energy adaptive version of the
Bit Torrent protocol. The battery constrained clients define an energy budget for
downloading the file which enables them to adapt their contributions to the network
and the service they receive from the network based on it. The protocol ensures the
provisioning and delivery of the desired service rate to the clients based on their
energy budget. The proposed mechanism exploits the following two characteristics
of the mobile devices to adapt their energy consumption based on their energy
budgets.

1. A mobile device consumes more energy when transmitting than receiving.
Essentially, during transmission, the signal is amplified to achieve the desired
signal to noise ratio for successful decoding at the receiver. Thus attributing for
the higher energy consumption.

2. It is much more energy efficient for the mobile device to download a file faster,
i.e., at high download rate.

After each transmission or reception, mobile devices continue to remain in active
state for a short duration, called tail time, in anticipation of another packet. Frequent
occurrence of tail time can result in significant energy consumption for the mobile
devices [16]. At high download rates, packets are either received in the tail time
or in large single bursts, thus, preventing the frequent occurrence of tail time and
reducing the average energy per transfer [16].

66 K. Kant et al.

3.3 Realizing Energy Adaptive Computing in Datacenters

In this section we discuss two specific cases of EAC in a cluster environment in a
datacenter.

1. The first case is a datacenter with transactional applications where clients send
queries to the applications running on servers in the datacenter and the response
is sent back to the clients. We assume that the applications are running in virtual
machines that can be migrated between servers. We discuss the design and
implementation details of a controller called Willow that reacts to changes in
supply and demand side migrations and migrates work from energy deficient to
energy surplus regions.

2. The second case also considers transactional workloads. However, the client
sessions are long lived and each query is processed by multiple tiers of servers
and finally the response is sent back to the client. We discuss strategies for
planning the control actions for energy adaptations in such a scenario.

3.3.1 Willow: Controller for Energy and Thermal Adaptive
Computing in Datacenters

This section describes in detail the design and implementation of a control system
named Willow for energy and thermal adaptive computing in datacenters.

3.3.1.1 Hierarchical Power Control

Power/energy management is often required at multiple levels including individual
devices (CPU cores, memory DIMMs, NICs, etc.), subsystems (e.g., CPU - cache
subsystem), systems (e.g., entire servers), and groups of systems (e.g., chassis or
racks). In a power limited situation, each level will be expected to have its own
power budget, which gets divided up into power budgets for the components at the
next level. This brings in extra complexity since one must consider both the demand
and supply sides in a coordinated fashion at various levels. One simple such multi-
level power management model is shown in Fig. 3.2. The data center level power
management unit (PMU) is at the level 3. The rack level PMU is at level 2 and
server/switch level PMUs are at level 1. With such a multilevel power management
architecture our control scheme attempts to provide the scalability required for
handling energy and thermal adaptation in large data centers with minimum impact
on the underlying networks.

In the hierarchical power control model that we have assumed, the power budget
in every level gets distributed to its children nodes in proportion to their demands.
All the leaf nodes are in level 0. The component in each level l C1 has configuration

3 EAC for Sustainable IT 67

Fig. 3.2 Hierarchical multi-level power control in a datacenter

information about the children nodes in level l . For example the rack level power
manager has to have knowledge of the power and thermal characteristics of the
individual components in the rack. The components at level l continuously monitor
the demands and utilization levels and report them to level lC1. This helps level lC1

to continuously adjust the power budgets. Level l C 1 then directs the components
in level l as to what control action needs to be taken. The granularities at which the
monitoring of power usage and the allocation adjustments are done are different and
are discussed in detail later.

3.3.1.2 Energy-Temperature Relationship

In the design of our control scheme we limit the power consumption of a device
based on its thermal limits as follows.

Let t denote time, T .t/ the temperature of the component as a function of time,
P.t/ power consumption as a function of time, and c1, c2 be the appropriate thermal
constants. Also, let Ta denote the ambient temperature, i.e., temperature of the
medium right outside the component. The component will eventually achieve this
temperature if no power is supplied to it. Then the rate of change of temperature is
given by

dT.t/ D Œc1P.t/ C c2.T .t/ � Ta/�dt (3.1)

Being a first-order linear differential equation, this equation has an explicit solution.
Let T .0/ denote the temperature at time t D 0. Then,

T .t/ D ŒTa C ŒT .0/ � Ta�e�c2t � C c1e
�c2t

Z t

0

P.
/ec2
 d
 (3.2)

68 K. Kant et al.

where the first term relates to cooling and tends to the ambient temperature Ta

and the second term relates to heating. Let Tlimit denote the limit on the temperature
and Plimit is the limit on power consumption so that the temperature does not exceed
Tlimit during the next adjustment window of �s seconds. It is easy to see that,

T .
/ D Ta C Plimitc1=c2Œ1 � e�c2�s � C ŒT .0/ � Ta�e�c2�s (3.3)

It can be observed that Eq. 3.2 can be used to predict the value of temperature of
the device at the end of the next adjustment window and hence can help in making
the migration decisions. We use this relationship to estimate the maximum power
consumption that can be allowed on a node so that it does not exceed its thermal
limits.

3.3.1.3 Time Granularity

The utilization of server resources in a data center varies widely over a large scale. If
the nature of the workload fluctuates significantly, it is likely that different resources
(e.g., CPU cores, DRAM, memory bus, platform links, CPU core interconnects,
I/O adapters, etc.) become bottlenecks at different times; however, for a workload
with stable characteristics (but possibly varying intensity) and a well-apportioned
server, there is one resource (typically CPU and sometimes network adapter) that
becomes the first bottleneck and its utilization can be referred to as server utilization.
We assume this is the case for our modeling presented in this article, since it is
extremely difficult to deal with arbitrarily configured servers running workloads
that vary not only in intensity but their nature as well. Under these assumptions,
the power consumption can be assumed to be a linear monotonic function of the
utilization.

Because of varying intensity of the workload, it is important to deal with average
utilizations of the server at a suitable time granularity. For convenience the demand
side adaptations are discretized with a time granularity of �Dl . It is assumed that this
time granularity is sufficiently coarse to accommodate accurate power measurement
and its presentation, which can be quite slow. Typically, appropriate time granularity
at the level of individual servers are of the order of tens of milliseconds or more.
Coarser granularities may be required at higher levels (such as rack level).

Even with a suitable choice of �Dl , it may be necessary to do further smoothing
in order to determine trend in power consumption. Let CPl;i be the power demand
of node i at level l . For exponential smoothing with parameter 0 < ˛ < 1, the
smoothed power demand CP 0 is given by:

CP0
l;i D ˛CPl;i C .1 � ˛/CP0old

l;i (3.4)

Note that the considerations in setting up the value of �Dl come from the demand
side. In contrast, the supply side time constants are typically much larger. Because of
the presence of battery backed UPS and other energy storage devices, any temporary
deficit in power supply in a data center is integrated out. Hence the supply side time

3 EAC for Sustainable IT 69

constants are assumed to be �Sl D �1�Dl , where �1 is an integer > 1. Willow also
performs workload consolidation when the demand in a server is very low so that
some servers can be put in a deep sleep state such as S3 (suspend to memory) or
even S4 (suspend to disk). Since the activation/deactivation latency for these sleep
modes can be quite high, we use another time constant �Al for making consolidation
related decisions. We assume �Al D �2�Dl , for some integer �2 such that �2 > �1.

3.3.1.4 Supply Side Adaptation

As mentioned earlier we ignore the case where the data center operates in a
perpetually energy deficient regime. The available power budget of any level l C 1

is allocated among the nodes in level l proportional to their demands. As mentioned
before, the supply side adaptations are done at a time granularity of �Sl. Hence the
power budget changes are reflected at the end of every �Sl time period. Let TPold

lC1

be the overall power budget at level l C1 during the last period. TPlC1 is the overall
power budget at the end of current period. �TP DTPlC1�TPold

lC1 is the change in
overall power budget. If �TP is small we can update the values of TPl;i ’s rather
trivially. However if �TP is large we need to reallocate the power budgets of nodes
in level l . In doing so we consider both hard constraints due to power limitations of
devices and soft constraints due to available power budgets.

The power and thermal constraints thus necessitate the migration of demand in
level l from power deficient nodes to nodes with surplus power budget. Any increase
in the overall power budget happens at a higher level and is then reflected in its
constituent lower levels. This situation can lead to three subsequent actions.

1. If there are any under provisioned nodes they are allocated just enough power
budget to satisfy their demand.

2. The available surplus can be harnessed by bringing in additional workload.
3. If surplus is still available at a node then the surplus budget is allocated to its

children nodes proportional to their demand.

3.3.1.5 Demand Side Adaptation

The demand side adaptation to thermal and energy profiles is done systematically
via migrations of the demands. We assume that the fine grained power control in
individual nodes is already being done so that any available idle power savings can
be harvested. Our focus is on workload migration strategies to adapt to the energy
deficient situations. For specificity we consider only those type of applications in
which the demand is driven by user queries and there is minimum or no interaction
between servers, (e.g.,) transactional workloads. The applications are hosted by one
or more virtual machines (VMs) and the demand is migrated between nodes by
migrating these virtual machines. Hence the power consumption is controlled by
simply directing the user queries to the appropriate servers hosting them.

70 K. Kant et al.

We carefully avoid pitfalls like oscillations in decisions by allowing sufficient
margins both at the source and the destination to accommodate fluctuations after
the migrations are done. The migrations are initiated in a bottom up manner. If the
power budget TPl;i of any component i is too small then some of the workload is
migrated to one of its sibling nodes. We call this as local migration. Only when local
migrations to sibling nodes is not possible non-local migrations are done.

The migration decisions are made in a distributed manner at each level in the
hierarchy starting from the lowermost level. The local demands are first satisfied
with the local surpluses and then those demands that are not satisfied locally are
passed up the hierarchy to be satisfied non-locally. Now we define a few terms
related to the migration decisions.

Power Deficit and Surplus: The power deficit and surplus of a component i at level
l are defined as follows.

Pdef .l; i/ D ŒCP0
l;i � TPl;i �

C (3.5)

Psur.l; i/ D ŒTPl;i � CP0
l;i �

C (3.6)

where []C means if the difference is negative it is considered zero.
If there is no surplus that can satisfy the deficit in a node, the excess demand is

simply dropped. In practice this means that some of the applications that are hosted
in the node are either shut down completely or run in a degraded operational mode
to stay within the power budget.

Power Margin (Pmin): The minimum amount of surplus that has to be present after
a migration in both the source and target nodes of the migration. This helps in
mitigating the effects of fluctuations in the demands.

Migration Cost: The migration cost is a measure of the amount of work done in the
source and target nodes of the migrations as well as in the switches involved in the
migrations. This cost is added as a temporary power demand to the nodes involved.

A migration is done if and only if the source and target nodes can have a surplus
of at least Pmin. Also migrations are done at the application level and hence the
demand is not split between multiple nodes. Finally Willow also does resource
consolidation to save power whenever possible. When the utilization in a node is
really small the demand from that node is migrated away from it and the node is
deactivated.

The matching of power deficits to surpluses is done by a variable sized bin
packing algorithm called FFDLR [17] solves a bin packing problem of size n in
time O .n log n/. The optimality bound guaranteed for the solution is (3/2) OPT C1
where OPT is the solution given by an optimal bin packing strategy.

Willow implements a unidirectional hierarchical power control scheme. Mi-
grations of power demands are initiated by the power and thermal constraints
introduced as a result of increase in demand at a particular node or decrease in power
budget to the node. Simultaneous supply and demand side adaptations are done to

3 EAC for Sustainable IT 71

Table 3.1 Utilization vs. power consumption

Application class SLA requirement

Type I Average delay � 120 ms, cannot be migrated
Type II Average delay � 180 ms, can be migrated
Type III Average delay � 200 ms, can be migrated

match the demands and power budgets of the components. In the next section we
evaluate Willow via detailed experiments and simulations.

3.3.1.6 Assumptions and QoS Model

We built a simulator in Java for evaluating the ability of our control scheme to
cater to the QoS requirements of tasks when there are energy variations. The Java
simulator can be configured to simulate any number of nodes and levels in the
hierarchy. For our evaluations we used the configuration with 18 nodes and 3 types
of applications. The application types and their SLA requirements are shown in
Table 3.1. For simplicity we assume that each application is hosted in a VM and
can be run on any of the 18 nodes. To begin with, each node is assigned a random
mix of applications. The static power consumption of nodes is assumed to be 20%
of the maximum power limit (450 W). There is a fixed power cost associated with
migrations. In the configuration that we use for our experiments, we assume a
single SAN storage that can be accessed by all nodes in the data center. Storage
migration is done when the VM disk files have to be migrated across shared storage
arrays due to shortage of storage capacity and is usually dealt with separately
(e.g., Storage VMotion [18]) so as to reduce the delays involved. Since we deal
with compute intensive applications in our experiments, we assume a single shared
storage domain is large enough to support the applications and we do not account
for delays involving data migrations.

Since our experimental platform consists of multiple VMs with independent
traffic patterns, initially we ran our experiments for the case where the traffic to each
individual VM was a Poisson process. In order to test our proposed scheme with
real world traces, we used the Soccer World Cup 98 [19] traces for our evaluation.
In this section, we present only the results with the World Cup 98 trace. The trace
dataset consists of all the requests made to the 1998 Soccer World Cup Web site
during April to July, 1998. Since the trace data was collected from multiple physical
servers, we had to process the traces before we could use them in our virtualized
environment. We used traces collected on different days for different VMs. We
scaled the arrival rates of queries to achieve the target utilization levels. We assume
that the queries in the traces belonged to the three classes of applications as shown
in Table 3.1. The service times for queries for each application class is different (10,
15 and 20 ms respectively) and the energy consumed by a query is assumed to be
proportional to its runtime. The time constant multipliers for discrete time control

72 K. Kant et al.

�1 and �2 are assumed to be 4 and 7 respectively. Unless specified otherwise the
ambient temperature of the nodes was assumed to be 25 ıC. Also the thermal limit
of the servers and switches is assumed to be 70 ıC. The thermal constants in Eq. 3.1
were determined to be c1 D 0:2 c2 D �0:008 from the experiments as described
in [5]. We use these values for our simulations as well.

We measure the utilization of a VM based on CPU time spent by the VM in
servicing the requests. However the actual utilization may be higher. For instance
the actual utilization of a task may be increased due to CPU stalls that are caused by
memory contention from other tasks or context switches between multiple VMs. In
our simulations we include a factor called the interference penalty for the utilization
and power/energy calculations. Basically the idea is that when n tasks are running
on a server, the utilization of each task is increased due to the interference from the
other .n � 1/ tasks. Hence the actual utilization of an application is calculated as
follows.

Ui D Ui C ˛
P

j Uj , 8j 2 f1; 2; : : : ng � fig
Unode D min Œ1:0;

Pn
iD1 Ui �

where n is the total number of applications in the node
Ui is the utilization of i th application, i 2 f1; 2; : : : ng.
Unode is the actual utilization of the node.

We then calculate the average power consumed in the node based on the actual
average utilization of the node. We conducted a few experiments on a Dell machine
running VMWare ESX server to determine the value of ˛. We varied the number
of VMs and their utilization levels and compared the sum of their utilizations with
the actual utilization reported by the ESX server. We then calculated the value of
˛ using simple first order linear regression. The value of ˛ was found to be 0:01.
Note that the workload that we used in our experiments was totally CPU bound.
For other workloads that involve memory or network contention, the interference
penalty might be higher.

3.3.1.7 QoS Aware Scheduler

Traditional scheduling algorithms like round robin and priority based scheduling
are not QoS aware and do not have any feedback mechanism to guarantee the QoS
requirements of jobs. A few algorithms that attempt to guarantee some level of QoS
do so by mechanisms like priority treatment and admission control. Our objective
in this work is to allow for energy adaptation while respecting QoS needs of various
applications to the maximum extent possible. In this regard we implemented a QoS
aware scheduling algorithm in the nodes as shown in Fig. 3.3. The scheduler uses
an integral controller to adjust the weights of the applications at regular intervals
based on the delay violations of the applications. The applications are allocated
CPU shares proportional to their weights. Applications with higher delay violations
get more CPU share. It is well known from classic queuing theory [20] that in an
asymptotic sense, as U ! 1 the wait time of jobs is directly proportional to 1/(1�U)

3 EAC for Sustainable IT 73

Fig. 3.3 QoS aware scheduler

Fig. 3.4 Various adaptations done in Willow and the different time granularities

where U is the overall queue utilization. Hence the integral gain for the controller
is calculated as (1 � U). Using the overall utilization as the integral gain also avoids
oscillations and keeps the system stable. The error in delay E.t/ for each application
is the difference between the delay bound and the measured delay. At the end of each
sample interval t (of size �t), the new weights are calculated as follows.

weight.t/ D weight.t � 1/ C Ki � E.t/ (3.7)

Then the CPU shares are allocated to the applications proportional to their weights.
Figure 3.4 shows an overall picture of the different adaptation mechanisms

that are done in Willow at different time granularities. The scheduler works in
the individual nodes at the smallest time granularity. At the next higher time
granularity the demand side adaptations are done that include migration of deficits

74 K. Kant et al.

Fig. 3.5 Power supply profiles used – CDF of the total available power budgets as a function of
the maximum utilization levels supported

to surplus nodes. At the next higher granularity the supply side adaptations such
as allocating power budgets at different levels takes place. At the largest time
granularity consolidation related decisions are made that include shutting down of
nodes with very low utilization.

3.3.1.8 Experimental Results

We use the response time as a metric to quantify the impact of EAC in the presence
of variations in energy. The response time includes the time that the queries wait in
the queue to be scheduled and the run time of the queries. We show that the response
times are improved when adaptations to the energy variations are done in Willow.
The significance of Willow is realized the most when the devices are operating at
the edge – that is when the power budgets are just enough to meet the aggregate
demand in the data center and there is no over provisioning. To demonstrate this,
we tested the performance of Willow with two different cases of power budgets as
shown in Fig. 3.5. Let PU be the power required to support the data center operations
when the average utilization of the servers is U %. Figure 3.5 shows the cumulative
distribution of the total available power budget values during the simulation of
350 min and the proportion of time for which the particular power budget value was
available. The first case (Case 1) is when the total available power budget varies
between P100 and P60. The second case (Case 2) is when the total power budget
varies between P80 and P50.

Figure 3.6a compares the percentage of queries with delay violations in Case 1

when the QoS aware scheduler described in Sect. 3.3.1.7 is used alone and when
the scheduler is used in combination with Willow. We see that at low utilizations the

3 EAC for Sustainable IT 75

Fig. 3.6 Percentage of queries with delay violations when the power profile used is as shown in
(a) Case 1 of Fig. 3.5 (b) Case 2 of Fig. 3.5

performance of Willow is not significantly better than when the QoS aware scheduler
alone is used. However at high utilizations Willow performs better than the case
when the QoS aware scheduler alone is used since there are no adaptation related
migrations. Figure 3.6b shows the percentage of queries with delay violations in
Case 2. It can be seen that the benefits of Willow are very significant in Case 2 as
compared to Case 1, especially at moderate to high utilization levels. Figure 3.6
shows that an efficient QoS aware scheduler alone cannot do any good in the
presence of energy variations. Willow significantly improves the possibility of
meeting the QoS requirements with the help of systematic migrations.

Figure 3.7 shows the percentage of queries with delay violations when the
ambient temperature of servers 1–4 is 45 ıC at 60% utilization. As explained before,
at a moderately high utilization level (60%), Willow migrates applications away
from high temperature servers and hence they run at lower utilizations. This in turn
reduces the number of queries with delay violations.

76 K. Kant et al.

Fig. 3.7 Percentage of queries with delay violations when servers 1–4 are at high temperature at
60% utilization

3.3.2 Energy Adaptive Computing in Multi-tiered Datacenters

In this section we investigate a specific incarnation of EAC which is the mani-
festation of Energy Adaptive Computing in datacenters hosting multi-tiered web
services [21]. These include a wide variety of applications ranging from e-
commerce services to large scale web search applications.

The energy profiles of renewable energy resources provide ample opportunities
for predicting the available energy during different time periods. For instance, the
energy available from a solar panel may be correlated with the temperature (e.g.,
more solar energy during hotter days). The energy available from a wind power
plant can be inferred from the weather forecast. Such interactions can be exploited
in the adaptation mechanisms. If energy availability is predicted to be low during
a certain period of time in a data center located at a specific location, some work
can be done during the previous energy plenty periods. For example, in a datacenter
supporting a web search application, background operations like web crawling and
indexing operations can be done during energy plenty periods. Workload can also
be migrated from datacenters located in places where there is surplus/cheap energy
available. As simple as it may sound, the required control actions are complex and
need to be continuously coordinated across multiple time granularities.

Figure 3.8 shows such a scenario with different time constants for an example
datacenter with multiple clusters in different geographical locations. The time inter-
val between successive control actions decreases as we move down the pyramid. In
a datacenter which has hierarchical power distribution units (PDUs), the datacenter
level PDU is at the top and the individual nodes are at the bottom of the hierarchy.

3 EAC for Sustainable IT 77

Fig. 3.8 Time windows for different power control actions

We classify the control actions into two, based on the direction of initiation of the
control actions – those that are initiated from the top–down and those from the
bottom–up along the hierarchy. The largest time window T1 in Fig. 3.8 represents
the time interval during which the power supply varies. The variations are significant
enough to initiate the control actions. The control actions may include predicting
the available power for the next control period and migrating load from energy
deficient clusters. In the multi-tier web server scenario that we consider, assuming
that the services are stateless, workload migration involves redirecting more traffic
to data centers with surplus energy. The number of servers in each cluster needs to
be adjusted depending on the available power. Workload needs to be redistributed
based on the number of servers that are kept powered on after the execution of the
control actions. These are the top–down actions based on the available power. The
bottom–up control actions are initiated from the node level. For instance some of
the nodes might experience thermal constraints due to inefficient cooling or high
thermal output. The demand variations and thermal constraints of the nodes need
to be continuously monitored and reported to the managing entity (e.g., tier level
load dispatcher) and the load and power budgets of the nodes need to be adjusted
accordingly. This happens at a smaller time granularity (T 2 < T1) than the power
variations. At an even smaller time granularity (T 3 < T 2), the control actions may
include adjusting the operational frequency of individual nodes or putting the nodes
in shallow sleep modes if available.

The number of servers that are kept powered on and running in each tier is
determined based on the available power and the delay constraints of the application.
We model the problem of determining the servers that need to be kept powered
on as a knapsack problem. The expected delay with a given number of tiers in

78 K. Kant et al.

Fig. 3.9 Architectural assumptions of a three tiered datacenter

each tier is estimated based on queuing theoretic models and the best configuration
that minimizes delay violations is chosen. Once this is done, some servers need
to be turned on and some others need to be turned off. These operations are not
instantaneous and involve significant overheads. For instance, before a server can
be turned off, the pending queries that it was serving need to be completed and the
workload that it was handling before needs to be redistributed to other servers. When
a server that is currently powered off needs to be turned on, the activation period
may be in the order of several seconds. An efficient planning of these operations
is essential to avoid any adverse impacts on QoS. Many research works in the
past have focused on formulating the power/performance trade-offs as optimization
problems and have proposed solutions that would minimize these costs. However
they fail to analyze and design an execution plan for the implementation of such
optimization solutions. In order to design an execution plan, we leverage on a well
known technique that is widely used for solving planning problems in Artificial
Intelligence. A load dispatcher at each tier adjusts the load allocated to different
servers in the tier. All these actions are executed at different time granularities and
help in adapting to the available power profiles and the workload variations for
efficient operation of data centers.

3.3.2.1 Architecture of a Multi-tiered Datacenter

Figure 3.9 shows the typical architecture of a data center hosting a web service
application like an e-commerce service with three tiers. The frontend nodes in
Tier 1 process the HTTP requests and forward queries to the nodes in application
tier (Tier 2). The application servers handle the queries and send the appropriate

3 EAC for Sustainable IT 79

Fig. 3.10 Integral controller design for load dispatcher

response back after communicating with the database tier (Tier 3) which consists of
a clustered database handled by multiple nodes.

Application Tiers

The front end nodes then process the response and format the response (e.g., convert
to HTML) to send it back to the user. Each query thus passes through the same
tier multiple times. We assume that the servers in each tier are stateless from the
application point of view and any server can process any query. However, when
a query from the same session revisits a tier, it needs to be serviced by the same
server that handled it before. The load in the datacenter depends on the number of
sessions in progress and the number of servers involved in processing the queries.
QoS guarantees are typically expressed in terms of the overall response time which
is the time elapsed between the user request and the time when the user gets back
the response. Recently, newer datacenter architectures have been proposed where
a large number of cheap commodity servers replace fewer powerful and expensive
servers [22]. This is not only a power efficient architecture but also reduces the initial
capital costs significantly. We consider such a scenario where there are multiple
commodity servers in each tier and are typically homogeneous. Each server has a
service queue where the queries are queued and a load dispatcher in each tier assigns
the queries to the appropriate servers based on their capacity and current load.

The service rate �i
j (of server j in tier i), is different for different servers

depending on power budgets and thermal constraints. For instance even with
sufficient power budgets certain servers can only be operated at half their capacity
due to inefficient cooling (e.g., servers in the top of racks) and the service time of a
server running at 50% of its maximum frequency is almost double that of a server
running at its maximum frequency of operation (ignoring memory access and other
delays). The relationship between the power consumption and thermal limitations of
a server was derived in our previous work [5] and is given by Eq. 3.2. Power budgets
are allocated to servers so that the thermal constraints of individual servers are not
violated and the capacity of servers are proportional to the power budgets.

Figure 3.10 shows the design of the load dispatcher. The load dispatcher in
each tier accounts for the differences in capacities of the servers and adjusts the

80 K. Kant et al.

input to each server in the tier. The load dispatcher periodically infers the average
service times of the individual servers and the current arrival rates for each server.
The average utilization for tier i is then given by �i D �i=�i where � and �

are the average arrival rate and service times of the tier. The dispatcher in each tier
i then adjusts the arrival rate of queries �i

j , for each server j so that the utilization
�i

j D �i
j =�i

j is the same (D �i) for all servers j . The service rate reduction can
be due to a number of reasons. The servers might be running at lower operational
frequencies by means of techniques like dynamic voltage and frequency scaling
(DVFS) [23]. An alternative technique is to force the servers to go to deep sleep
states with low power consumption periodically in order to reduce their power
consumption or prevent their temperatures from increasing beyond certain limits.
Irrespective of the control mechanism used, the load dispatcher has to make sure
that the load is shared proportional to the capacities (service rates) of the servers.
During each integral control period �TI the utilization of the tier is measured.
The integral controller shown in Fig. 3.10 periodically adjusts the weights for each
server depending on the difference between the target (�i D �i /�i) and measured
utilizations. The input to the controller is the measured utilization of each server.
The error term E.t/ is the difference between the target and measured utilizations
at time t . The new weights for the time period .t; t C 1/ is given by the following
equation.

Weight.t C 1/ D Weight.t/ C KiE.t/ (3.8)

where Ki is the integral constant. The arrival rates of each server for that period is
then adjusted proportional to the weights assigned to each server.

Data Storage Tier

The database tier typically has very high service times since it has to fetch data
from the backend storage systems and disk accesses are orders of magnitude slower
than memory. Traditionally very powerful and expensive servers are used in the
database tier which connect to backend hard disk arrays via high speed Storage
Area Networks (SAN). All servers in the database tier can access the data across the
SAN. This is the shared disk model where data is shared between all the servers and
is shown in Fig. 3.11a.

However recently, there has been a rising popularity of scale out frameworks
to process large volumes of data [22] and NoSQL databases [24]. A large number
of commodity servers are beginning to replace a few powerful servers. The data is
typically stored on the local disks of the servers as shown in Fig. 3.11b. If a node
needs data from another node, the data has to be accessed through the network.

In the shared disk model, the storage tier can be modeled as a separate tier.
However when the disks storing the data are powered down to stay within the
allocated power budget, the data access involves spinning the disk back on and then
accessing the data. Let the disks storing the data be labeled as D1; D2; : : : ; DN .

3 EAC for Sustainable IT 81

Fig. 3.11 Data storage models. (a) Shared disk storage model. (b) Shared nothing storage model

The disks that are already powered on are denoted by D1; D2; : : : ; DN1 . Hence the
average service time of the storage tier is given by Eq. 3.9.

�mean D
X

i

�i1Pi C
X

j

�j 2Pj ; i D 1 to N1; j D N1 C 1 to N (3.9)

where �i1 is the service time of disk i that is already powered on and �j 2 is the
sum of service time of the disk j that is powered down and the time taken to
spin the disk back on from standby to ready state. Note that if all the disks are
identical, �i1 D �1; 8i and �j 2 D �2; 8j . Pi is the probability of access of disk i .
The number of active disks to be kept powered on is decided based on the power
budget to the storage tier. However which disks to keep powered on depends on
the popularity of data in the disks. For instance if there is a Zipf access distribution
where only a subset of the data is the most popular, the disks storing the least popular
data can be turned off so that the impact of spin up time delay is minimum. It is
to be noted that this relies heavily on the data placement strategy. Previous works
have proposed techniques that migrate the most frequently accessed data to a subset
of the disks [25, 26]. These techniques can be complementary to our adaptation
mechanisms.

In the shared nothing storage architecture model, when a node in the database
tier is shut down, the data that it was handling is migrated to other nodes. The data
migration involves a migration delay. Also there is a minimum capacity requirement
for the stored data. Consequently, there are a minimum number of nodes that need
to be powered on and hence there is a minimum power budget for the storage tier.
Data migration across nodes involves large delays. Hence more care needs to be
taken in planning the migration operations. We detail the planning of control actions
in Sect. 3.3.2.3.

3.3.2.2 Delay Estimation (Mean Value Analysis)

An important step in determining the number of servers in each tier is to determine
the overall delay across all tiers given the current workload demand of the data
center. We leverage on queuing theoretic modeling of the datacenter to estimate the

82 K. Kant et al.

Fig. 3.12 Closed queue
model of a datacenter

delays involved. Let us assume that the arrival rate of requests into the data center
is �. As mentioned before the load dispatcher in each level i adjusts the arrival rate
to each server j in level i , �i

j so that the utilization � D �i
j =�i

j is the same for all the
servers. The requests pass through the same tier multiple times. The average number
of sessions in progress handled by the datacenter is N . With the above assumptions,
the multiple tiers can be analyzed as a closed network of queues [20, 27] as shown
in Fig. 3.12. The user requests originate from queue Q0 and passes through each tier
multiple times. The delay at Q0 corresponds to the user think time which is the time
spent by the user after receiving the response for a previous request and issuing
a successive request. Q0 is an infinite server queue that generates N concurrent
sessions on the average. The traffic equation of each tier can hence be written as
follows.

�j D
kDMX

kD0

�kpkj; j D 1; 2; : : : N (3.10)

where pkj is the proportion of requests routed from queue k to queue j .

3 EAC for Sustainable IT 83

Mean Value Analysis (MVA) [20] is a popular technique for analyzing delays
in networks of queues where each queue satisfies the M) M property. This
property states that if a queue is fed with Poisson input, the output process will also
be Poisson. For a closed network, the MVA algorithm starts with the population of
1 and recursively computes the queue length and response time at higher population
levels. The algorithm is shown in Algorithm 1.

Algorithm 1 MVA algorithm
ni.0/ D 0; i D 1; 2; 3 : : : M

i .N / D 1

�i

C 1

�i

� ni .N �1/, i D 1; 2; 3 : : : M

�.N / D N

0 CPi D M
iD1
i .N /

ni.N / D �.N /
i .N / (Little’s Law)

where, �.N / is the throughput of the system with N customers

i .N / is the average delay of the i th server when there are N customers in the system and
ni.N / is the average number of customers in queue i when there are N customers in the system

In the case of FCFS scheduling discipline, M) M property holds only for
exponential arrival and service time distributions (M=M queues). Since exponential
service time is not practical, we use a simple modification to extend the MVA for
queuing networks where the M) M does not hold as suggested in [20]. The
N th arriving customer will find ni .N � 1/ customers in service in tier i of which
Ui.N � 1/ will be busy already receiving service from the server in tier i . The
average residual time of the customers is given by

�i D si

.1 C CV2
i /

2
(3.11)

where si is the service time of tier i and C Vi is the coefficient of variance of
service times. The response time of the customer is therefore given by the following
equation.

i .N / D 1

�i

Œ1 C ni .N � 1/� C Ui .N � 1/.�i � si / (3.12)

Hence this value of
i .N / can be substituted in Algorithm 1 to get a more
accurate estimate of the delay values for the FCFS service discipline with a general
service time distribution. The mean service time of each tier depends on the thermal
and power constraints of the individual servers and the arrival rates (assigned by
the dispatcher). As before, the thermal constraints are ignored temporarily and it is
assumed that each server in the tier can run at full capacity. We model the scenario
of replication in each tier similar to [27]. Each server in the tier has a service queue
and the load dispatcher is assumed to be a perfect load balancer. Hence for different
configurations i.e., different number of servers in each tier, MVA can be used to

84 K. Kant et al.

calculate the mean overall delay across all tiers for the requests. The configuration
with the minimum power consumption that can satisfy the QoS guarantees for
the requests is then chosen. For the chosen configuration, the knapsack problem
instance is solved at each tier.

3.3.2.3 Planning and Execution of Energy Adaptive Control Actions

As explained before, at each time step �TS the algorithm to optimize for power
and performance based on the predicted power supply is executed and the number
of servers that need to be powered on is adjusted. New servers need to be powered
on and some servers need to be turned off. In either case, workload needs to be
reassigned and the sessions that are already in progress need to be completed before
the servers handling those sessions are turned off. All these operations cannot be
done instantaneously and each of them has associated costs.

Let the initial state of servers at time t be X.t/ and the goal state given by the
knapsack algorithm is Y.t C T /. Here the term state refers to the set of servers that
are powered on and turned off and their workloads. The interval between time t and
t C T of length T is the planning horizon. A transition from state X.t/ to state
Y.t C T / involves multiple steps. An exploration of each possible state transition
has a time complexity factor that is exponential in the number of servers involved.
Hence we employ search heuristics that are well known and widely used in Artificial
Intelligence for planning. One such technique is A� search algorithm [28] that
employs a greedy best first search technique to find the least cost path from the initial
state to the goal state. The cost function f .x/ from one state to another consists of
an accumulated direct path cost value to the next state g.x/ and a heuristic function
h.x/. The next state that is chosen is the one with the minimum cost function f .x/.
The sufficient and necessary condition for optimality is that the heuristic function
h.x/ is admissible. An admissible heuristic is one that does not overestimate the
cost to the goal state.

Figure 3.13 shows the different state transitions during the execution of the
required changes for adaptation. Let us now consider the steps involved during state
transition. Let fSig be the set of servers that are currently serving the requests. Let
fAig be the set of servers that need to be shut down and fBi g be the set of servers
that need to be powered on. When a server has to be turned off, no new requests
are forwarded to the server and the sessions that it is currently serving need to
be completed. Hence the workload of the server to be shut down will have to be
redistributed to other servers that are already up, thereby increasing the average
delay in those servers. The path to reach the goal state from the start state needs to
minimize the time taken for the control actions to be completed.

The cost function g.x/ which is the cost of getting to state x is therefore the
estimated time to reach the state x from the start state. The heuristic function h.x/

is given by the following equation.

3 EAC for Sustainable IT 85

Fig. 3.13 State transitions from initial to goal states

h.x/ D max

Qj .x/

�j .x/
; Ta

!
; if NA.x/ ¤ 0

D Qj .x/

�j .x/
; if NA.x/ D 0 (3.13)

where j is the server with the maximum queue length in state x and Qj .x/ is the
queue length of j . NA.x/ is the cardinality of the set of servers that are activated
in state x. Ta is the time of activation of a server. Qj .x/=�j .x/ is the virtual work
that needs to be completed before the server can be completely shut down. It can be
easily seen that the heuristic function is never an overestimate of the actual delay
involved since it is a conservative estimate of the most time consuming control
action (deactivating/activating a server). Hence this heuristic function is admissible.
Any state is considered infeasible if the power consumption during or at the end
of the state is more than the power budget of the tier. A server with a long queue
length, will most likely have a large workload to be redistributed and hence shutting
it down will increase the utilization of the other servers. Hence it is better to mark
it for deactivation towards the end of the planning horizon since most of the servers
that are marked for activation would be fully functional by then and will be ready to
accept the workload of the servers with long queues.

Note that the constraints that we introduce for the feasibility of a state is along
the power dimension. Orthogonally, strict constraints can also be introduced along
the time dimension and the power consumed can be minimized.

86 K. Kant et al.

3.3.2.4 Simulation Results

As explained before we assume that the power supply consists of a constant source
of power (henceforth referred to as brown energy/backup power) and a renewable
(green) energy resource. Together, these two resources can support the datacenter
operations at full load (� 50 kW). The reason behind this model is that in the current
scenario, renewable energy resources alone cannot support datacenter operations
entirely [29]. Hence we assume that when all the servers in the datacenter operate at
full load, a portion of the necessary power to support the operation of the datacenter
comes from conventional (backup) power resources. The available backup power is
denoted as BP kW. The remaining power comes from a renewable energy source
and is denoted as GP kW. Hence when the renewable energy source is operating at
full capacity, BP C GP � 50 kW. In our simulations we assume that all of the
available green energy is utilized first before using any power from the backup
power resources so that the environmental impact of brown energy consumption
is minimized.

We now investigate the energy profiles of renewable resources that our proposed
scheme can successfully manage to adapt to. We changed the amount of the
available backup power and estimated the extent of variations in renewable energy
that can be tolerated i.e., the SLA requirement (delay � 1;000 ms) is not violated.
The baseline scheme that we use to compare the efficiency of our scheme is one
where the available power is allocated equally to all tiers. We choose this baseline
scheme to demonstrate the effect of failing to account for the difference in delays
in different tiers when allocating power budgets. With the baseline scheme, when
there are 1,000 concurrent sessions, more than 100 servers need to be powered on
to meet the SLA requirement. Figure 3.14a shows the level of variations that can
be tolerated with our scheme. Let TP D GP C BP be the total power required
to support all servers in the data center. It can be seen that when the number of
sessions is less (� 400), our scheme can successfully maintain the delay bounds
even when the renewable energy varies by as high as 90% (i.e, the renewable energy
generated is between 0:1 GP kW and GP kW) when the backup power is 20% of
TP . Even when the number of sessions is as high as 1,000, the tolerable limit for
variation in renewable energy is almost 47%. However in the case of the baseline
scheme as shown in Fig. 3.14b, the tolerable variation limit is only 8% with a 20%
backup power. This is because of the fact that the baseline scheme requires a lot
more servers to be powered on than the MVA based allocation scheme in order
to meet the delay bounds. It can be seen that as the proportion of backup power
increases, the tolerable variation limit also increases as more power can be drawn
from brown energy sources.

Figure 3.15 shows the proportion of green and brown energy required to support
the datacenter operations when the available backup power is 20% of the total
power required to support the entire datacenter (0:2 � 50 D 10 kW in our case)
and the renewable energy varies uniformly between 50 and 100% of the remaining
40 kW. We can see that when the number of sessions is small, the entire data center
operations can be handled by renewable energy alone. When the number of sessions

3 EAC for Sustainable IT 87

Fig. 3.14 Percentage of variation in renewable energy that can be tolerated for different propor-
tions of constant power (a) Tier power allocation based on MVA (b) Equal power allocation to all
tiers

Fig. 3.15 Proportion of green and brown energy consumed when the renewable energy varies
between 50 and 100%

88 K. Kant et al.

Fig. 3.16 Power supply variation assumed for simulation

increases, the variability in renewable energy requires that some backup power
needs to be used occasionally. We can see that even when the number of sessions
is as high as 1,000, only 38% of backup power is needed to guarantee the delay
bounds. On the average, only 15% of the total power consumption comes from
the brown energy source. This is because at each time instant in our scheme only
the required number of servers are kept powered on in each tier to meet the SLA
requirements. It is to be noted that we do not explicitly optimize the consumption of
brown energy. Our scheme naturally reduces the energy consumption by powering
on only the necessary number of servers in each tier to maintain the delay bounds.

Next, we evaluate the performance of our scheme under an energy constrained
situation where the available energy is (at times) not sufficient to support the
required number of servers to meet the SLA requirements. In order to simulate
an energy constrained scenario, we assume the following power supply model. We
consider a period of 1 h where the available green energy fluctuates between 0:45 GP
and 0:55 GP kW which corresponds to a variation level of 55%. Note that if the
variation in available green energy is � 48%, then according to Fig. 3.14a there are
no energy constraints and the delay bounds can be met with. Figure 3.16 shows
the available renewable power profile that we assume for our simulation and the
associated variations. It can be seen that the available renewable energy fluctuates
every 10 min. With the presence of adequate energy storage infrastructure, these
fluctuations may be at the granularity of hours.

Figure 3.17 shows the delay incurred when the number of sessions is 1,000 and
the backup power is 20%. The power profile assumed is the same as shown in
Fig. 3.16. The baseline scheme that we use here is one where the available power
budget is equally shared among all tiers. It can be seen that when the power budget
is allocated equally, the delay values are 48% more than our scheme on the average.
A blind allocation of power to the tiers without accounting for the tier delays will
result in high waiting times even when a large number of servers are powered on.

3 EAC for Sustainable IT 89

Fig. 3.17 Average delays with 20% backup power and 1,000 sessions

3.4 Conclusion

In this article we have discussed the challenges involved in adapting to the energy
and thermal profiles in a data center. EAC puts power/thermal controls at the heart
of distributed computing. We discussed how EAC can make ICT more sustainable
and elaborated on two specific cases of EAC. First, we presented the design of
Willow, a simple control scheme for energy and thermal adaptive computing in a
datacenter running CPU intensive transactional applications. Second, we discussed
the control actions that need to be executed at different time granularities and
their implementation in a multi-tiered datacenter. We showed that an efficient
implementation of the control actions can help reduce the associated overheads
significantly. We have also demonstrated the ability of our schemes to adapt to
significant variations in the available power supply. A major goal of this work is
to inspire right-sizing the otherwise over designed infrastructure in terms of power
and ensure the possibility of addressing the ensuing challenges via smarter control.
A coordinated approach such as the one described in this article is necessary for
coping with energy variability and variations in demand.

References

1. Heller B, Seetharaman S, Mahadevan P, Yiakoumis Y, Sharma P, Banerjee S, McKeown N
(2010) ElasticTree: saving energy in data center networks. In: NSDI’10: Proceedings of the
7th USENIX symposium on networked systems design and implementation, San Jose

2. Gurumurthi S, Sivasubramaniam A, Kandemir M, Franke H (2003) DRPM: dynamic speed
control for power management in server class disks. SIGARCH Comput Archit News
31(2):169–181

3. Chang J, Meza J, Ranganathan P, Bash C, Shah A (2010) Green server design: beyond
operational energy to sustainability. In: Proceedings of the 2010 international conference on
power aware computing and systems, ser. Vancouver Canada. HotPower’10

90 K. Kant et al.

4. Kant K, Murugan M, Du D (2012) Enhancing data center sustainability through energy
adaptive computing. ACM J Emer Technol Comput Syst 8:1–20

5. Kant K, Murugan M, Du DHC (2011) Willow: a control system for energy and thermal adaptive
computing. In: Proceedings of 25th IEEE international parallel & distributed processing
symposium, IPDPS’11, Anchorage

6. Greenberg S, Mills E, Tschudi B, Rumsey P, Myatt B (2006) Best practices for data
centers: lessons learned from benchmarking 22 data centers. ACEEE summer study on energy
efficiency in buildings, 2006, Pacific Grove

7. Flinn J, Satyanarayanan M(2004) Managing battery lifetime with energy-aware adaptation.
ACM Trans Comput Syst 22:137–179

8. Kant K (2009) Challenges in distributed energy adaptive computing. In: Proceedings of ACM
HotMetrics, Seattle

9. Krishnan B, Amur H, Gavrilovska A, Schwan K (2011) VM power metering: feasibility and
challenges. SIGMETRICS Perform Eval Rev 38:56–60

10. Kusic D, Kandasamy N, Jiang G (2011) Combined power and performance management of
virtualized computing environments serving session-based workloads. IEEE Trans Netw Serv
Manage 8(3):245–258

11. Miettinen AP, Nurminen JK (2010) Energy efficiency of mobile clients in cloud computing. In:
HotCloud’10. Boston

12. Chun B-G, Ihm S, Maniatis P, Naik M, Patti A (2011) Clonecloud: elastic execution between
mobile device and cloud. In: Proceedings of the 6th conference on computer systems, ser.
EuroSys’11. ACM, New York, pp 301–314. Available http://doi.acm.org/10.1145/1966445.
1966473

13. Cuervo E, Balasubramanian A, Cho D-K, Wolman A, Saroiu S, Chandra R, Bahl P
(2010) Maui: making smartphones last longer with code offload. In: Proceedings of the 8th
international conference on mobile systems, applications, and services, ser. MobiSys’10.
ACM, New York, pp 49–62. Available: http://doi.acm.org/10.1145/1814433.1814441

14. Petrucci V, Loques O, Mossé D (2009) A framework for dynamic adaptation of power-aware
server clusters. In: Proceedings of the 2009 ACM symposium on applied computing, ser.
SAC’09. Honolulu, Hawaii

15. Raj M, Kant K, Das S (2012) Energy adaptive mechanism for P2P file sharing protocols. In:
CoreGRID/ERCIM workshop on grids, clouds and P2P computing, ser. EuroPar’12. Rhodes
Island, Greece

16. Sharma A, Navda V, Ramjee R, Padmanabhan VN, Belding EM (2009) Cool-tether: energy
efficient on-the-fly wifi hot-spots using mobile phones. In: Proceedings of the 5th international
conference on emerging networking experiments and technologies, ser. CoNEXT’09. ACM,
New York, pp 109–120

17. Friesen DK, Langston MA (1986) Variable sized bin packing. SIAM J Comput 15(1):222–230
18. VMWare vSphere, http://www.vmware.com/products/storage-vmotion/overview.html
19. Arlitt M, Jin T, 1998 World Cup Web Site Access Logs. http://www.acm.org/sigcomm/ITA/
20. Kant K (1992) Introduction to computer system performance evaluation. McGraw-Hill,

New York
21. Murugan M, Kant K, Du D (2012) Energy adaptation for multi-tiered datacenter applications.

Intel Technol J 16: 152–170
22. Barroso LA, Dean J, Hölzle U (2003) Web search for a planet: the Google cluster architecture.

IEEE Micro 23:22–28
23. Dhiman G, Rosing TS (2007) Dynamic voltage frequency scaling for multi-tasking systems

using online learning. In: ISLPED’07: proceedings of the 2007 international symposium on
Low power electronics and design, Portland

24. NoSQL Databases, http://nosql-database.org/
25. Pinheiro E, Bianchini R (2004) Energy conservation techniques for disk array-based servers.

In: Proceedings of the 18th annual international conference on supercomputing, ser. ICS’04.
Malo, France ACM, New York

http://doi.acm.org/10.1145/1966445.1966473
http://doi.acm.org/10.1145/1966445.1966473
http://doi.acm.org/10.1145/1814433.1814441
http://www.vmware.com/products/storage-vmotion/overview.html
http://www.acm.org/sigcomm/ITA/
http://nosql-database.org/

3 EAC for Sustainable IT 91

26. Colarelli D, Grunwald D (2002) Massive arrays of idle disks for storage archives. In:
Supercomputing’02: proceedings of the 2002 ACM/IEEE conference on supercomputing.
IEEE Computer Society Press, Los Alamitos, Baltimore, pp 1–11

27. Urgaonkar B, Pacifici G, Shenoy P, Spreitzer M, Tantawi A (2005) An analytical model
for multi-tier internet services and its applications. In: Proceedings of the 2005 ACM
SIGMETRICS international conference on measurement and modeling of computer systems,
Banff

28. Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall,
Englewood Cliffs

29. Stewart C, Shen K (2009) Some joules are more precious than others: managing renewable
energy in the datacenter. In: Workshop on power aware computing and systems (HotPower)
Big Sky, Montana

Chapter 4
Implementing the Data Center Energy
Productivity Metric in a High-Performance
Computing Data Center

Landon H. Sego, Andrés Márquez, Andrew Rawson, Tahir Cader, Kevin Fox,
William I. Gustafson Jr., and Christopher J. Mundy

4.1 Introduction

4.1.1 In Pursuit of Energy Efficiency and Productivity

Rapidly rising energy consumption by data centers is an environmental and
economic concern. The U.S. Environmental Protection Agency (EPA) conducted
a comprehensive study of “energy use and energy costs of data centers and servers
in the U.S.,” including an appraisal of the “existing and emerging opportunities for
improved energy efficiency” [8]. This study, in part, has influenced the efforts of the
information technology (IT) industry to improve energy efficiency. For example,
organizations targeting commercial data centers like The Green Grid (TGG) and the

This work is based on an earlier work: Implementing the Data Center Energy Productivity Metric,
in Journal on Emerging Technologies in Computing Systems, (Volume 8, Issue 4, Article 30,
October 2012) ©ACM 2012. http://doi.acm.org/10.1145/2367736.2367741

L.H. Sego (�) • A. Márquez • K. Fox • W.I. Gustafson • C.J. Mundy
Pacific Northwest National Laboratory (PNNL), Richland, USA
e-mail: Landon.Sego@pnnl.gov; Andres.Marquez@pnnl.gov; Kevin.Fox@pnnl.gov;
William.Gustafson@pnnl.gov; Chris.Mundy@pnnl.gov

A. Rawson
Advanced Micro Devices, Inc., Sunnyvale, USA
e-mail: Andy.Rawson@amd.com

T. Cader
Hewlett-Packard Company, Palo Alto, USA
e-mail: Tahir.Cader@hp.com

P.P. Pande et al. (eds.), Design Technologies for Green and Sustainable Computing Systems,
DOI 10.1007/978-1-4614-4975-1 4, © Springer ScienceCBusiness Media New York 2013

93

http://doi.acm.org/10.1145/2367736.2367741

94 L.H. Sego et al.

Uptime Institute are formalizing procedures and best practices to improve energy
efficiency. Recent recommendations from ASHRAE’s Technical Committee 9.9 [2],
regarding acceptable increases in the ranges of operating temperatures, are designed
to reduce cooling demands by exploiting thermal robustness of IT components.
Major companies are promoting hardware and software technologies to address
power and cooling demand in data centers. Besides the EPA, other government
entities, including the Energy Efficiency and Renewable Energy office of the U.S.
Department of Energy and national laboratories like Lawrence Berkeley National
Laboratory and Pacific Northwest National Laboratory (PNNL) are developing tools
and recommendations that are relevant to energy efficiency in the commercial and
high-performance computing sectors.

The concept of energy productivity extends the notion of energy efficiency by
considering the useful work accomplished by the data center in exchange for energy.
Thus, if a data center produces the same amount of work using less energy than
another, it has a higher energy productivity. Improving the energy efficiency, and
perhaps more importantly, the energy productivity, of data centers requires the use of
carefully chosen—and carefully applied—metrics. No metric is all-encompassing,
and metrics can easily be miscalculated, misapplied, or misinterpreted.

4.1.2 The Challenges and Nuances of Measurement

A variety of approaches may be used to assess the performance of a data center in
terms of energy efficiency, productivity, or both. Wang and Khan [34] provided a
review of data-center metrics, a number of which we discuss here. One commonly
used approach to assess efficiency is to compare the average power consumed by
the entire data-center facility (including IT, cooling, and power delivery equipment)
to the average power delivered to the IT equipment. Power usage effectiveness
(PUE) and data center infrastructure efficiency (DCiE) are two such metrics [30].
Specifically, PUE is the ratio of total facility power to IT equipment power, and
DCiE is the reciprocal. This practical approach, with some caveats, facilitates
comparisons that are of interest to data center operators and designers.

However, these metrics have limited value to IT equipment users. Typically,
users are interested in the performance of their applications, with the objective
of minimizing the time to completion of a computing task or completing the
maximum number of iterations of a program in an allotted period of time. Many
metrics have been used to quantify these types of performance objectives. Examples
include floating-point operations per second (FLOPS) and bits per second. These
metrics tend to use artificial workloads to quantify completed computing work.
Traditionally, these component-level metrics measure a capability subset of the
machine that might not reflect the capabilities and shortcomings of the system as
a whole.

As energy consumption has become an increasing concern, researchers have
proposed metrics that compare the completed computational work to the energy

4 Implementing the Data Center Energy Productivity Metric 95

required to carry out the computation. These include FLOPS per unit energy
(FLOPS/E) and the energy-delay product (ED˛) [10, 12, 27]. Converting these
metrics for use at the data-center level is problematic at best. If synthetic workloads
are used, their performance is difficult to correlate to the performance of actual
workloads at the data-center level because actual workloads tend to be a function of
multiple inter-dependent performance aspects that are difficult to simulate. These
aspects include processing performance, memory capacity and speed, network
bandwidth and latency, and input/output (I/O) bandwidth and latency. Energy con-
sumption by ancillary systems, such as transformers, uninterruptible power supplies
(UPS), lighting, and cooling might not be properly considered. Consequently, it
would be inappropriate to attempt to measure energy productivity at the data-center
level using metrics like FLOPS/E or ED˛.

To overcome these shortcomings, new metrics are required at the data-center
level that can bridge the gap between unit-less infrastructure efficiency metrics and
component-level performance metrics. These metrics would address the needs of
IT users interested in quantifying energy productivity from the perspective of their
applications. Ideally, they would account for ancillary energy use and nonlinear
computational effects.

Nonlinear computational effects on energy efficiency (e.g., inter-node com-
munication, job scheduling, and load balancing, to name a few) pose a major
hurdle in the definition of a useful metric that accounts for varying problem sizes.
Similarly, nonlinear effects on energy efficiency at data-center scales—such as
power distribution and cooling that are driven by ever-increasing power and heat
density management requirements—must be accounted for in any useful metric
applied at the data-center level.1 Ad hoc solutions have extended component-level
performance metrics to the data center with mixed success [10]. Users seem to
agree vaguely on an understanding of the metrics (e.g., FLOPS/E), but comparisons
across systems tend to be flawed and actionable measures to increase productivity
are difficult to enact. Other attempts to develop data center productivity metrics
will be explored in more detail in Sect. 4.2.2. Common to all these attempts is the
realization that without a well-defined baseline (or a class of baselines), actionable
productivity comparisons across systems is difficult at best.

4.1.3 Data Center Energy Productivity

We favor a user-centric approach to measuring the computational work performed
by a data center. Instead of dictating performance rates to users (e.g., FLOPS,
bytes/second), we propose that users define the performance units they deem
important to make measurable progress towards job completion. Universality across

1Due to nonlinearity, we do not view productivity as an intensive property, as proposed by Kamil
et al. [20]. However, we agree with their bias discussion: productivity can be biased by scale.

96 L.H. Sego et al.

data centers and workloads is lost in this process—but for the data center manager,
energy productivity improvements at the data-center level now become measurable,
adapted to the particular workload of the data center. Towards this end, we decided
to evaluate the DCeP metric, first introduced by TGG [29]. DCeP is the amount of
useful work completed divided by the energy required to produce that work during
a defined period of time.

The DCeP metric has a number of unique properties that make it realistic
and useful in assessing energy efficiency at the data-center level. The physical
measurements that constitute the numerator of DCeP (useful work completed) and
the denominator (energy consumed) are gathered during an interval of time called
the assessment window. Rather than simply measuring how much computational
work is completed during the assessment window, the DCeP metric allows the user
to define the computational tasks, transactions, or jobs that are of interest, and
then assign a measure of importance or economic value to each specific unit of
work completed. To the extent it is desirable and practical, the energy consumed
during the assessment window may be measured at any point in the data center
power distribution system. For instance, in addition to IT equipment, the measure of
energy consumption may account for ancillary equipment such as power distribution
panels, UPSs, pumps, motors, air handlers, and even the chiller plant.

Because the numerator and denominator of DCeP are obtained by integrating
over the assessment window, it results in a more accurate assessment of energy
consumption and productivity than would be obtained by one (or a few) instanta-
neous measures of performance rates and power consumption. Assessments based
on a small number of instantaneous measurements may be prone to increased error
and decreased precision2 due to fluctuations3 in these quantities over time. The
assessment window for DCeP should be of sufficient length to mitigate the effect
of rapid fluctuations—especially fluctuations in power consumption.

To evaluate the effectiveness of DCeP in quantifying the energy productivity of a
data center, we used it to measure the outcomes of experiments conducted with the
Energy Smart Data Center (ESDC) at PNNL. The ESDC was a highly instrumented
data center constructed in 2007 for research in power-aware computing and data
center productivity and energy efficiency. The ESDC’s capability to measure chip,
server, rack, and machine room performance holistically, as well as its capability
to control cooling, was unusual in its expansiveness for a high-end computing
data center. The fundamental objectives of these experiments were to demonstrate
the practical use of DCeP in a data center, and determine whether DCeP could
distinguish various operational states in a data center.

2Our use of the terms accuracy, error, and precision are consistent with those used by the
International Vocabulary of Metrology [19].
3Figures 4.1–4.3 illustrate these fluctuations.

4 Implementing the Data Center Energy Productivity Metric 97

4.2 Data-Center Metrics

4.2.1 Considerations When Measuring Productivity
and Efficiency

In general, defining the productivity and energy efficiency of a system is challenging
due to confounding parameters that are open to interpretation and influenced by the
context in which the system is used. These parameters include, among others, system
output/input, system scope, and system scale.4 The control-theoretic concept of
system output/input might be characterized by several properties that are weighted
according to interest (e.g., the output of computing performance given the inputs
of energy and hardware). System scope is driven by responsibility, interest, and
feasibility (e.g., whether energy use should account for IT equipment only, both
IT and cooling equipment, IT and cooling and power distribution equipment, etc.).
System scale classifies systems by size (e.g., office computing versus institutional
computing). Programmable systems provide an additional twist by permitting the
characterization of workload (the work mix that the system is required to handle).
Perhaps most importantly, metrics should also be driven by practicality (the ease of
implementation and interpretation of the metric). It would be ideal for productivity
and efficiency metrics to account for each of these five parameters.

4.2.2 An Assessment of Various Metrics

We now briefly discuss a selection of productivity and efficiency metrics in terms of
the parameters discussed in Sect. 4.2.1: system output/input, scope, scale, workload,
and practicality. Debuting in November 2008, the Green500 [10, 32] re-ordered
the top 500 highest-performing machines (Top500) according to a FLOPS/power
metric, where IT equipment power was defined as input. Energy can be derived
under the assumption that Top500 machines will be used to their fullest. By
choosing to use an existing list of machines with an established workload of high-
performance LINPACK (HPL), the authors emphasized practicality over all other
qualities. Broadening the scope reduces practicality because measuring at the data-
center or building level tends to be more onerous. Output, scale, and workload are
predetermined by Top500 and, consequently, introduce intended and unintended
biases (e.g., smaller HPL-optimized machines that still make it into the Top500 will
generally come out ahead).

Addressing output and workload shortcomings that stem from the use of a
single benchmark, the now disbanded SiCortex company introduced the Green
Computing Performance Index (GCPI) in 2009 [34]. It broadened the Green500
workload with the High-performance Computing Challenge (HPCC) benchmark

4Similar concepts have been proposed by other organizations such as the Uptime Institute.

98 L.H. Sego et al.

suite by intensively exercising memory and networks as opposed to focusing
predominantly on the processors. The index was the sum of weighted contributions
for each benchmark that were normalized against a reference system. The GCPI
was less practical because it required that classes of suitable reference machines
be identified for each system scale. Furthermore, estimating the system’s HPCC
power consumption while accounting for overhead and load factors is more involved
than with HPL. While there does not appear to be any surviving documentation or
references that describe the implementation of GCPI, we opted to mention it here to
preserve the noteworthy idea of constructing a metric using multiple benchmarks.

The previously described metrics for high-end computing rank a list of machines
according to productivity but do not highlight parameters that would assist in
productivity improvement. Parametric models similar to Amdahl’s and related laws
[1, 15] help address these shortcomings by extending these laws with parameters
that directly influence power consumption (e.g., load, frequency, and voltage) [11].

Anticipating power and energy productivity concerns before the high-end com-
puting community, the commercial sector has been evaluating several metrics
for some time. In 2005, Sun Microsystems unveiled SWaP [14, 34], a ratio of
performance to space � watts. The performance is measured as system output (e.g.,
the number of transactions per second) and the space and watts are measured as
system input. The declared intention is to reward the density of IT equipment.
Scope and workload have to be specified to allow cross-system comparisons. In
2008, Standard Performance Evaluation Corporation (SPEC) introduced its first
performance and power benchmark for workloads consisting of server-side Java
[27]. SPEC provides a methodology to measure at different machine-load levels,
thereby enhancing its practicality. Scope and scale are kept vague, but the tester is
encouraged to document experimental provenance in detail.

Circumventing the difficulties in identifying and assessing relevant workloads,
efficiency metrics measure overhead, losses, and energy use at multiple levels and
scales of the data center. The most widely accepted efficiency metrics are PUE
and DCiE, promoted by TGG [30], as well as the five metrics described by the
Uptime Institute: site infrastructure energy-efficiency ratio (SI-EER), site infras-
tructure power-overhead multiplier (SI-POM), hardware power-overhead multiplier
(H-POM), deployed hardware utilization ratio (DH-UR), and deployed hardware
utilization efficiency (DH-UE) [28]. In the government sector, the U.S. EPA has
specified ENERGY STAR server requirements [9].

4.2.3 Formal Definition of Data Center Energy Productivity

DCeP provides a measure of the useful work performed by a data center relative to
the energy consumed by the data center to perform this work. Informally, we can
express this as

DCeP D W

ETotal
D Useful work produced

Total energy consumed by the data center
: (4.1)

4 Implementing the Data Center Energy Productivity Metric 99

DCeP should be computed over a contiguous time interval, called the assessment
window. The assessment window should be defined to best suit the needs of the
investigation at hand. It should be long enough to gather a representative sample
of the workload of interest, including an adequate representation of the typical
fluctuations in work and energy consumption. However, it should not be so long
as to be impractical. For example, assessment windows may be selected to coincide
with times of maximum computational task loading, or they may be chosen to focus
on specific workload characteristics on certain days of the week.

Useful work is measured in terms of useful computational units (UCUs), and W

is essentially a weighted, normalized count of the number of UCUs produced by
one (or more) application(s) during the assessment window. Each UCU represents a
discrete amount of work, such as an email transaction, the execution of a query, the
completion of a simulation, etc. The UCU must be defined specifically for each task
or application, and its relative value may be based on time and/or cost. We present a
formulation of W that differs slightly from the notation used by TGG [29] to more
clearly account for the work produced by multiple applications:

W D
NaX

j D1

MjX

iD1

Vj Uj .tij; Tij/Cij; (4.2)

where j D 1; : : : ; Na indexes the applications, Na being the number of applications,
and i D 1; : : : ; Mj indexes the UCUs initiated by the application during an
assessment window. Mj is the number of UCUs initiated during the assessment
window by the j th application, Vj is the relative value of a UCU produced by the
j th application, and Cij D 1 if the i th UCU from the j th application completes
during the assessment window and Cij D 0 otherwise.

To account for the value of timely completion, Uj .tij; Tij/ is a time-based utility
function for application j , where tij is the elapsed time from initiation to completion
of the UCU and Tij is the absolute time by when the UCU must be completed.
We would typically expect the utility function to be decreasing in tij, and possibly
going to 0 if the current time exceeds Tij. Well-established techniques in decision
analysis and utility theory [4, 7, 21] can be employed to determine the functional
form for each Uj . There are also a variety of techniques available for determining the
relative value weights, Vj [13, 22, 35, 36]. It is interesting that W closely resembles
the additive utility function, a standard approach for calculating multiattribute
utility [21].

Properly determining Vj and Uj for more than one application can be challenging
because different applications may produce UCUs at different rates. Likewise,
UCUs from different applications will likely represent different quantities of work.
One application may have more intrinsic value than another, but assigning a
specific value to each application may be difficult because “customers” of UCUs
are likely to value output from some applications more than others. In these
situations, the aforementioned decision analysis techniques for eliciting the Vj may
be especially helpful.

100 L.H. Sego et al.

Depending on the length of time required to produce UCUs, the assessment
window should be long enough that the exclusion of UCUs that overlap the
boundaries of the assessment window will not be a significant factor when making
comparisons among different operational states in the data center.

In practice, the value of W is likely to be obtained by processing information
in time-stamped log files that are produced by the applications under study. Our
experience suggests that these log files typically require a fair amount of parsing and
summarizing to arrive at the values of W for each assessment window, though the
process could be automated easily. The details of calculating W for the experiment
we performed are discussed in Sect. 4.3.5.

We obtained the value of ETotal by measuring the energy consumed by IT
equipment and the corresponding cooling systems, including the energy consumed
by the chiller plant and cooling towers that support the computer room air handlers
(CRAHs) or air conditioners. This required frequent measurements of various
systems in the ESDC and chiller plant. These measurements are described in more
detail in Sect. 4.3.5 and the appendixes of Sego et al. [24].

4.2.4 DCeP and the Considerations of Productivity
and Efficiency

We now consider how DCeP addresses the five parameters discussed in Sect. 4.2.1:
system output/input, scope, scale, workload, and practicality. System output is a
principal component of the DCeP metric, where the output, defined as useful work,
is measured in terms of UCUs. System input for DCeP is the energy used by the
data center, where the scope defines the extent of the energy calculation. Ideally,
the largest possible system scope would be used in calculating ETotal to account for
the energy consumed by IT equipment, the energy required to cool the data center,
and losses associated with power delivery to both the IT and cooling equipment.
However, the scope of the energy measurement may need to be restricted due
to practical limitations in instrumentation at a particular facility. While the scope
should be carefully defined and disclosed, the flexibility in defining the scope of the
energy consumption does increase the practicality of the DCeP metric because users
may find it difficult (or impossible) to measure all of the components at their facility
that provide energy for data center operations.

While DCeP does not explicitly account for scale, the ratio of useful work
completed to energy consumption allows for the comparison of systems5 with
different scales. Specifically, larger systems, which presumably consume more
energy than smaller ones, must produce more useful work to have comparably high
energy productivity. The versatility of the definition of W permits the assessment

5Provided the definition of useful work and the scope of energy consumption is consistent for all
systems under comparison.

4 Implementing the Data Center Energy Productivity Metric 101

of virtually any system workload, provided the applications of interest can be
measured in terms of UCUs. On the other hand, the subjectivity in defining UCUs
and their associated relative values (Vj) and utility functions (Uj) will likely render
DCeP less effective in making comparisons from one data center to the next unless
standardized workloads and common definitions of Vj and Uj can be agreed on by
interested parties. However, for the very reason of its flexibility, we believe DCeP
may prove to be a practical measure for data-center operators who seek to improve
within-data-center energy productivity by making within-data-center comparisons
of various operational configurations within the data center. The practicality of
DCeP may be improved by using alternative measures, or proxies [31], of useful
work that may be easier to obtain than W as defined in (4.2).

4.3 Methodology

4.3.1 The Energy Smart Data Center

The ESDC was established at PNNL in 2007 with funding from the National
Nuclear Security Administration of the U.S. Department of Energy. It consisted
of a liquid-cooled (spray-cooled) IBM x3550, 9.58-TFlop cluster called NW-ICE
that contained 192 servers, each with two 2.3-GHz Intel (quad-core) Clovertown
CPUs, 16 GB DDR2 FBDIMM memory, 160 GB SATA local scratch, and DDR2
InfiniBand NIC. Five racks in the cluster were equipped with evaporative cooling
at the processors, while two racks were completely air-cooled. The five liquid-
cooled racks each contained a thermal management unit (TMU) that extracted
heat from the liquid used to cool the processors and transferred that heat to a
chilled water line. NW-ICE employed a Lustre global file system with 34 TB
mounted and 49 TB provisioned. It was housed in PNNL’s Environmental Molecular
Sciences Laboratory (EMSL). The EMSL is a mixed-use facility that also houses the
main cluster of the Molecular Sciences Computing Facility, providing an industry-
relevant setting in which we could study data-center productivity and energy
efficiency. The ESDC and its corresponding cooling and power equipment are
discussed in greater detail by Sisk et al. [25]. The unique measurement capabilities
of the ESDC exceeded those usually found at the single-component level or
indirectly derived via performance profile estimation [10,11,27]. Comparable large-
scale measurement harnesses include, for example, HP Data Center Smart Grid [16],
HP Insight Control [17], and IBM Tivoli [18].

Using the ESDC, we conducted an experiment in November 2008 with the
principal objective of determining whether DCeP could distinguish different opera-
tional states in the data center. These experiments were data-intensive and required
extensive instrumentation, real-time access to sensor measurements, and semi-
automated analysis routines to monitor system health (air and chip temperatures,
humidity, power consumption, etc.), iteratively adjust experimental conditions, and
rapidly query, summarize, and visualize data.

102 L.H. Sego et al.

4.3.2 The High-Performance Computing Workload

As part of the experiment, an HPC workload consisting of two research applications
was processed by NW-ICE: the Weather Research and Forecasting Model (WRF)
and CP2K, an open-source program for performing atomistic and molecular simu-
lations of solid-state, liquid, molecular, and biological systems.

WRF [26] is a state-of-the-art weather forecasting model used by many in-
stitutions around the world for production weather forecasts as well as detailed
process studies for basic research. WRF represents the atmosphere as a number
of variable states discretized over regular Cartesian grids. It is somewhat I/O-
intensive, repeatedly writing out three-dimensional representations to construct
a time series of the state of the atmosphere. The WRF simulation set-up for
ESDC consisted of a basic weather forecast for the period beginning June 26,
2008 12:00 UTC for a region covering most of North and Central America using
15-km grid spacing. Output was performed every three model-hours, with each
output consisting of a 2.3-GB netCDF file. To simulate heavier use of NW-ICE
by WRF, multiple simultaneous copies of the same simulation were performed.
These represent multiple realizations of an ensemble, which are often generated for
production weather forecasts. Each simulation used a total of 184 processes (182
for computation and two for I/O). For this experiment, the initial and boundary
conditions, as well as the physics parameterizations, remained identical in all
simulations to maintain similar load balances and simplify the set-up for the tests.

CP2K is an open-source, all-purpose molecular dynamics code written in
FORTRAN 95 [5]. CP2K has an efficient implementation of density functional
theory (DFT) that allows for the integration of nuclear coordinates under the
influence of a quantum mechanical interaction potential [33]. The strength of
the CP2K implementation of DFT is that it allows one to study phenomenon in the
condensed phase that can be experimentally verified. Calculations from CP2K have
far-reaching implications for understanding the basic chemical physics underlying
heterogeneous reactions at interfaces. Our system in this study comprised 216 water
molecules, which was one of the larger systems to that date for performing the
required statistical mechanical sampling for aqueous interfacial systems [3]. The
output consisted of synchronous 75-MB files representing coordinates and energies
at 0.5-fs time steps. These files contained a record of the useful computational
output, which we discuss further in Sect. 4.3.5.

4.3.3 Experimental Design

To design our experiment, we began by identifying a number of factors that were
likely to influence the value of the DCeP metric. Each combination of these factors
represents a possible operational state in the data center. Examples of these factors
include: the application load balance (the fraction of the nodes devoted to each
application), the balance between memory and CPU (whether to use all or half of

4 Implementing the Data Center Energy Productivity Metric 103

Table 4.1 Description of the randomized complete block design, the treatment assignments, and
the start and end times of the assessment windows. All events in this table occurred in 2008

Assessment window

Block Launch time Treatment Start End

1 6-Nov 23:00 75%WRF-AllCore 6-Nov 23:30 7-Nov 00:55
1 7-Nov 01:15 25%WRF-HalfCore 7-Nov 01:45 7-Nov 03:10
1 7-Nov 03:30 75%WRF-HalfCore 7-Nov 04:00 7-Nov 05:25
1 7-Nov 05:45 25%WRF-AllCore 7-Nov 06:15 7-Nov 07:40
2 7-Nov 08:00 25%WRF-HalfCore 7-Nov 08:30 7-Nov 09:55
2 7-Nov 10:15 75%WRF-AllCore 7-Nov 10:45 7-Nov 12:10
2 7-Nov 12:30 25%WRF-AllCore 7-Nov 13:00 7-Nov 14:25
2 7-Nov 14:45 75%WRF-HalfCore 7-Nov 15:15 7-Nov 16:40
3 7-Nov 20:00 25%WRF-HalfCore 7-Nov 20:30 7-Nov 21:55
3 7-Nov 22:15 75%WRF-AllCore 7-Nov 22:45 8-Nov 00:10
3 8-Nov 00:30 25%WRF-AllCore 8-Nov 01:00 8-Nov 02:25
3 8-Nov 02:45 75%WRF-HalfCore 8-Nov 03:15 8-Nov 04:40
4 8-Nov 08:00 25%WRF-AllCore 8-Nov 08:30 8-Nov 09:55
4 8-Nov 10:15 75%WRF-HalfCore 8-Nov 10:45 8-Nov 12:10
4 8-Nov 12:30 25%WRF-HalfCore 8-Nov 13:00 8-Nov 14:25
4 8-Nov 14:45 75%WRF-AllCore 8-Nov 15:15 8-Nov 16:40

the CPU cores on a node), the scheduling algorithm (largest first, smallest first,
first-in/first-out, random, etc.), cooling scheme (air- or liquid-cooled), processor
architecture (RISC, CISC, AP, GPU), memory size, connectivity (Ethernet versus
InfiniBand), and operating temperature.

For our experiment, we chose to vary the application load balance (between
CP2K and WRF) and the memory/CPU balance (full- or half-core) because these
two factors were relatively easy to implement and did not require costly or time-
consuming hardware adjustments. The first factor, load balance, had two levels:
75% of NW-ICE running WRF (with 25% allocated to CP2K) versus 25% of NW-
ICE running WRF (with 75% allocated to CP2K). The second factor, the percentage
of cores utilized for computation, also had two levels: 50 and 100%. We refer to the
four unique combinations of load balance and core utilization as treatments—and
these treatments constitute a 22 factorial design [6]. We subsequently refer to these
four treatments as 75%WRF-AllCore, 25%WRF-AllCore, 75%WRF-HalfCore, and
25%WRF-HalfCore. To replicate the experiment, each of these four treatments was
exercised during four, 9-h blocks of time.

The structure of the experiment is illustrated in Table 4.1. The order of the
treatments within each block was randomized, constituting a randomized complete
block design [6]. All four treatments are present in each block. We suspected that
time-varying energy consumption at the EMSL might affect the energy efficiency
of the chiller plant that supplies cooling to the ESDC and the entire EMSL facility.
Consequently, the blocks were chosen to account for the potentially different energy
use at the EMSL facility during various periods of the day. Specifically, Block 1
occurred in the late evening and early morning of a weekday (Thursday night/Friday

104 L.H. Sego et al.

morning), Block 2 took place during a weekday (Friday), Block 3 was late evening
and early morning of a weekend (Friday night/Saturday morning), and Block 4 took
place on a weekend day (Saturday).

4.3.4 Experimental Protocol and Time Line

As shown in Table 4.1, each treatment period in a block lasted 2.25 h and consisted
of a sequence of steps that were scheduled ahead of time. Each treatment period
began with the simultaneous launch of the CP2K and WRF jobs, followed by a 30-
min stabilization phase. This was followed by an 85-min assessment window (for
which DCeP was calculated), followed by a 5-min ending buffer after which the
CP2K and WRF jobs were terminated. The treatment period concluded with 15 min
of cool-down prior to initiating the next treatment period. The 30-min stabilization
phase was included to allow the heat and cooling loads to stabilize within the data
center, and to give the CP2K and WRF jobs time to initialize and begin completing
their UCUs with regularity.

The length of the treatment period was chosen to accommodate four treatments
within a 9-h block of time while still providing assessment windows that were long
enough to permit the completion of a sizable number of UCUs—and thus minimize
the impact of uncounted UCUs that overlapped the boundaries of the assessment
window. In Fig. 4.1, the entire process is illustrated for Block 3, during which the
power use for each of the NW-ICE compute racks is graphed over time. Similar
patterns of power use were observed during the other three blocks. The full- and
half-core treatments are easily distinguished in Fig. 4.1.

During the course of the experiment, we monitored a number of parameters,
such as chip temperatures (DIMM and CPUs), evaporative water temperatures, rack
power, chiller and pump power, chiller tonnage, CRAH cooling loads, etc., to ensure
regularity and consistency. Analysis of these data was made possible by a real-
time software data collection tool known as FRED [25] and a custom querying and
visualization package we created in R [23]. During the 25%WRF-AllCore treatment
of Block 2, certain sensor readings in the chiller plant were interrupted for about
4 min, during which time they returned values of 0. To calculate the energy use of the
chiller plant during this period, these clearly aberrant values were removed from the
data and we assumed the true, but unknown, values of these measurements remained
steady during the period of interruption. Apart from this, no other abnormalities
were observed in the data.

4.3.5 Calculation of DCeP

Calculating the useful work produced by NW-ICE during the experiment required
the identification of the UCUs for each application under test. For WRF, the

4 Implementing the Data Center Energy Productivity Metric 105

R
ac

k
P

ow
er

 (
kW

)

19
:4

5

20
:1

5

20
:4

5

21
:1

5

21
:4

5

22
:1

5

22
:4

5

23
:1

5

23
:4

5

00
:1

5

00
:4

5

01
:1

5

01
:4

5

02
:1

5

02
:4

5

03
:1

5

03
:4

5

04
:1

5

04
:4

5

Time (HH:MM)

8

9

10

11

B
eg

in
 2

5%
W

R
F

−
H

al
fC

or
e

S
ta

rt
 A

ss
es

sm
en

t W
in

do
w

E
nd

 A
ss

es
sm

en
t W

in
do

w
B

eg
in

 7
5%

W
R

F
−

A
llC

or
e

S
ta

rt
 A

ss
es

sm
en

t W
in

do
w

E
nd

 A
ss

es
sm

en
t W

in
do

w
B

eg
in

 2
5%

W
R

F
−

A
llC

or
e

S
ta

rt
 A

ss
es

sm
en

t W
in

do
w

E
nd

 A
ss

es
sm

en
t W

in
do

w
B

eg
in

 7
5%

W
R

F
−

H
al

fC
or

e

S
ta

rt
 A

ss
es

sm
en

t W
in

do
w

E
nd

 A
ss

es
sm

en
t W

in
do

w

Fig. 4.1 Rack power consumption during Block 3. Each of the seven computing racks of the
ESDC is represented by a single black line

completion of modeling 3 h of weather comprised the UCU, at which time WRF
wrote an output file with an associated time stamp. The UCU for CP2K consisted
of one full, self-consistent field optimization of the quantum mechanical wave
function, resulting in the calculation of the energy nuclear forces for a particular
arrangement of the simulated molecules. The completion times of these UCUs were
consistently identified in the main log file of the CP2K program. Depending on
the treatment, the number of UCUs that were initiated and completed during an
assessment window ranged from 19–72 for WRF and 259–859 for CP2K. After
accounting for the load balance and CPU utilization, the rate at which WRF
produced UCUs was approximately 8% of the rate of UCUs produced by CP2K.
Under the neutral assumption that the aggregate work accomplished by WRF during
an assessment window was of equal value to the work accomplished by CP2K,
we set Vc D 0:08 for all UCUs produced by CP2K and Vw D 1 for all UCUs
produced by WRF, where the subscripts c and w are used to denote CP2K and WRF,
respectively.

We also investigated the sensitivity of DCeP to various choices of Vc and Vw,
which we discuss in Sect. 4.5. For simplicity, we set the utility function to be

106 L.H. Sego et al.

constant (i.e., Uj .tij; Tij/ D 1). Consequently, for our experiment, we can express
the useful work from (4.2) as:

W D
X

j 2fc;wg

0

@Vj

MjX

iD1

Cij

1

A : (4.3)

The denominator of DCeP, ETotal .kWh/, was calculated for each assessment
window:

ETotal D 1

0:97

�
Energy consumed by ESDC C Energy required to cool ESDC

�

D 1

0:97

�
ENWICE C ECRAH

C �Chiller.HNWICE C HCRAH/ C �TowerHTMU

�
; (4.4)

where

• ENWICE .kWh/ is the energy consumed by the eight NW-ICE racks;
• ECRAH .kWh/ is the energy consumed by the two CRAHs in the ESDC;
• �Chiller .kWh=Ton�hour/ is the efficiency associated with the air-cooling in the

ESDC (specifically, it is the energy efficiency of the entire EMSL chiller plant,
calculated as the ratio of the aggregate energy utilized by the cooling towers,
condenser pumps, heat recovery system, chillers, and chilled water pumps to the
tonnage measured on the entire chilled water system);

• HNWICE .Ton�hour/ is the heat ejected to the air by NW-ICE that is removed by
the CRAHs;

• HCRAH .Ton�hour/ is the heat produced by the motors of the two CRAHs (and
removed by the CRAHs);

• �Tower .kWh=Ton�hour/ is the predicted efficiency associated with the liquid
cooling in NW-ICE, assuming (as discussed below) the warm water produced
by the TMUs could be sent directly to the towers for cooling (thus, �Tower

is the energy efficiency of the EMSL cooling tower system, calculated as the
ratio of aggregate energy utilized by the cooling towers, condenser pumps, and
heat recovery system to the tonnage measured on the water serving the chiller
condensers);

• HTMU .Ton�hour/ is the heat extracted from the NW-ICE processors and ejected
to water by the TMUs of the five liquid-cooled racks of NW-ICE; and,

• 0:97 is an estimate of the efficiency of the distribution of power from the utility
company to the ESDC and the EMSL chiller plant and cooling towers.

Details regarding the calculation of each of these quantities are provided in
the appendixes of Sego et al. [24]. While the ESDC and the EMSL chiller plant
are highly instrumented, we were not able to measure the cooling capacity of the
CRAHs directly (via water flow rates and changes in water temperature). Due to
this and other constraints, we made the following assumptions to calculate ETotal:

4 Implementing the Data Center Energy Productivity Metric 107

1. After a period of stabilization, thermal balance existed between the heat ejected
into the air by NW-ICE and the heat extracted by the CRAHs.

2. All electrical and mechanical power in the ESDC was dissipated as heat. This
heat was ultimately ejected to the air in the ESDC and, for the liquid-cooled
racks, heat from the CPUs was ejected to water.

3. Provided Assumptions 1 and 2 hold, the required cooling capacity for the CRAHs
could be estimated reliably by the electrical power consumed by the CRAHs and
by NW-ICE (after accounting for the heat evacuated by the TMUs directly to
water).

4. The warm water returned by the TMUs can be discharged directly into the
cooling tower condenser line without any pumping costs, and the cooling tower
was capable of sufficiently cooling the water that is supplied to the TMUs.6

5. The room where the ESDC was housed had heating, ventilation, and air-
conditioning (HVAC) vents and returns whose temperature and flow rates we
were unable to control or reliably measure. Consequently, we ignored the cooling
capacity of the HVAC system and assumed its cooling effect was negligible, or
at least consistent, for each of the treatment runs that were conducted.

To support the first assumption of thermal balance, we adjusted the thermostat
settings of the two air handlers to ensure that both did not run at 100 or 0%
load simultaneously. These adjustments were made throughout the course of the
experiment to accommodate the different treatment conditions, but not during the
assessment windows. Ideally, both of the CRAHs should operate between 0 and
100% load, which was the case most of the time. To illustrate, the CRAH loads
of the third block are displayed in Fig. 4.2, which were typical of the other three
blocks. For each treatment period, the loads stabilized by the time the assessment
window began. Initial thermostat settings for the two CRAHs were determined
based on results from previous pilot experiments. Incidentally, determining the ideal
thermostat settings for the two CRAHs proved to be quite challenging.

The energy efficiency of the entire chiller plant, �Chiller, and the cooling tower
system, �Tower, varied during the course of the experiment. This is illustrated in
Fig. 4.3. To ensure that changes in the chiller plant efficiency were not confounded
with the effect of load balance and CPU utilization, we calculated these efficiencies
over the course of the entire experiment, rather than calculating the efficiency for
each assessment window separately. In so doing, we assumed these fluctuations in
chiller plant efficiency were not attributable to the ESDC because the total heat
produced by the IT equipment and the CRAHs was consistently 217 Ton�hours
for each block, which represented only about 6.4% of the total cooling capacity
produced by the EMSL chiller facility during those same blocks of time.

The effect of calculating �Chiller and �Tower for the entire experiment versus
calculating them separately for each assessment window is illustrated in Fig. 4.4.
When constant values of �Chiller and �Tower (estimated over the course of the whole

6This capability did not actually exist in the ESDC. Instead, the water temperature for liquid
cooling was regulated via a separate heat exchanger meant to simulate the cooling that would
be provided by cooling towers.

108 L.H. Sego et al.

%
 L

oa
d,

 N
or

th

B
eg

in
 2

5%
W

R
F

−
H

al
fC

or
e

S
ta

rt
 A

ss
es

sm
en

t W
in

do
w

E
nd

 A
ss

es
sm

en
t W

in
do

w
B

eg
in

 7
5%

W
R

F
−

A
llC

or
e

S
ta

rt
 A

ss
es

sm
en

t W
in

do
w

E
nd

 A
ss

es
sm

en
t W

in
do

w
B

eg
in

 2
5%

W
R

F
−

A
llC

or
e

S
ta

rt
 A

ss
es

sm
en

t W
in

do
w

E
nd

 A
ss

es
sm

en
t W

in
do

w
B

eg
in

 7
5%

W
R

F
−

H
al

fC
or

e

S
ta

rt
 A

ss
es

sm
en

t W
in

do
w

E
nd

 A
ss

es
sm

en
t W

in
do

w

0
20
40
60
80

100

%
 L

oa
d,

 S
ou

th

19
:4

5

20
:1

5

20
:4

5

21
:1

5

21
:4

5

22
:1

5

22
:4

5

23
:1

5

23
:4

5

00
:1

5

00
:4

5

01
:1

5

01
:4

5

02
:1

5

02
:4

5

03
:1

5

03
:4

5

04
:1

5

04
:4

5

0

20

40

60

80

100

Time (HH:MM)

Fig. 4.2 Percentage load of the two ESDC computer room air handlers during Block 3

2.2

2.3

2.4

2.5

2.6

2.7

kW
 p

er
 T

on

Time
Fri 02:00 Fri 12:00 Fri 22:00 Sat 08:00 Sat 18:00

Block 1 Block 2 Block 3 Block 4

Fig. 4.3 Instantaneous total chiller plant efficiency during the course of the experiment, with
smoothing curve

experiment) were used, the energy consumption was consistent from block to
block, as illustrated in Fig. 4.4a. However, if �Chiller and �Tower were calculated
separately for each assessment window, we observed substantial changes in ETotal

from one block to the next, as illustrated in Fig. 4.4b. While localized estimates

4 Implementing the Data Center Energy Productivity Metric 109

E
T

ot
al

 [k
W

h]

1 2 3 4

209
211
213
215
217
219
221
223

Block
1 2 3 4

Block

75%WRF−AllCore

25%WRF−HalfCore

75%WRF−HalfCore

25%WRF−AllCore

a b

Fig. 4.4 Total energy consumption, ETotal, of the ESDC for each treatment and block. In panel (a),
constant values of �Chiller and �Tower, calculated from the entire experiment, were used to calculate
ETotal for all assessment windows. In panel (b), �Chiller and �Tower were calculated separately for
each assessment window

of the efficiency (i.e., for only a particular assessment window) provided more
accurate estimates of total energy use for that window of time, we wished to
ensure that changes in these efficiencies did not influence our assessment of the
performance of the various treatments. Consequently, in all subsequent analyses,
we used �Chiller D 2:42 kWh=Ton�hour and �Tower D 0:675 kWh=Ton�hour,
which were estimated using data from the entire experiment. The value of �Chiller

is considerably larger than �Tower because it includes the energy consumption of
the entire chiller facility, including cooling towers, all relevant pumps, the chillers
themselves, etc.

4.4 Results

The fundamental objective of the experiment was to demonstrate the practical use
of DCeP and determine whether it could distinguish various operational states in a
data center. To this end, we analyzed the effect of the treatments (load balance and
CPU utilization) on W , ETotal, and DCeP.

Prior to calculating DCeP, we first counted the number of UCUs produced in
each assessment window as defined at the beginning of Sect. 4.3.5. As expected, the
UCU counts produced by a given treatment were nearly identical from one block
to the next. The average number of UCUs for each treatment for both CP2K and
WRF are given in Table 4.2. The range of the number of UCUs (the largest number
of UCUs minus the smallest number of UCUs) observed for that treatment across
the four blocks is shown to the right in parentheses. Naturally, the number of UCUs
increased when the application was using a larger share of the data center and/or
when a larger percentage of cores were used.

110 L.H. Sego et al.

Table 4.2 Average and (range) of the number of UCUs, summarized over the four blocks

CP2K UCUs WRF UCUs

Load balance Load balance

Percentage 75%WRF 25%WRF Percentage 75%WRF 25%WRF
of cores (%) 25%CP2K 75%CP2K of cores (%) 25%CP2K 75%CP2K

50 259.75 (1) 641.75 (2) 50 57.75 (1) 19.75 (1)
100 349.50 (3) 856.25 (6) 100 72.00 (0) 24.00 (0)

D
C

eP

1 2 3 4

0.34

0.36

0.38

0.40

0.42

0.44

Block

75%WRF−AllCore

25%WRF−HalfCore

75%WRF−HalfCore

25%WRF−AllCore

Fig. 4.5 DCeP for each treatment and block, with the relative value of a UCU from CP2K being
8% of the relative value of a UCU from WRF (Vc D 0:08 and Vw D 1)

Analysis of variance [6] of ETotal demonstrates a significant interaction (p-value
<0.0001) between the load balance and the percentage of cores. Obviously, AllCore
treatments consume more energy than HalfCore treatments. But the 25%WRF-
AllCore configuration consumes more energy than 75%WRF-AllCore, whereas
25%WRF-HalfCore consumes less energy than 75%WRF-HalfCore.

Using the relative values discussed in Sect. 4.3.5 (Vc D 0:08 and Vw D 1),
which presumed the work accomplished by CP2K and WRF during an assessment
window to be of equivalent value, the DCeP metric showed clear distinctions
among the treatments, as illustrated in Fig. 4.5. Analysis of variance showed the
treatment effects to be highly statistically significant, with AllCore treatments
having significantly higher energy productivity (DCeP) than HalfCore treatments
(p-value <0.0001) and 75%WRF having higher DCeP values than 25%WRF
treatments (p-value <0.0001). As with ETotal, DCeP remained constant over the
four blocks for a given treatment.

Due to the consistency of ETotal and DCeP over time (i.e., across the blocks),
we also considered the results by averaging across the blocks. This is illustrated by
the interaction plots in Fig. 4.6. The interaction for ETotal is illustrated by the non-
parallel lines in the plot, suggesting that the effect of the load balance of WRF versus
CP2K depended on whether half or all the cores were used. However, for DCeP,

4 Implementing the Data Center Energy Productivity Metric 111

210

212

214

216

218

220

222

ETotal

M
ea

n
of

 E
T

ot
al

 [k
W

h]

AllCore HalfCore

25% WRF
75% WRF

0.34

0.36

0.38

0.40

0.42

0.44

DCeP

M
ea

n
of

 D
C

eP

AllCore HalfCore

25% WRF
75% WRF

Fig. 4.6 Interaction plots showing the effects of load balance and core percentage on ETotal and
DCeP, averaged over the four blocks. Each mean is significantly different from every other mean
in that same plot

the interaction was not present (indicated by near-parallel lines), which led us to
conclude that the effect of load balance on DCeP does not depend on the percentage
of CPU cores. After averaging across the blocks, a Tukey pair-wise comparison test
[6] demonstrated that each of the four ETotal treatment means for were significantly
different from any other treatment mean (all adjusted p-values <0.005). The same
holds true for the four DCeP treatment means (all adjusted p-values <0.0001). Of
course, the separation in DCeP between the treatments is due in part to the choice
of the relative value weights, Vc and Vw. We explore the sensitivity to these weights
in Sect. 4.5.

4.5 Discussion

The sensitivity (or insensitivity) of DCeP to the choice of Vj and Uj should be
understood by users. To illustrate, we examine the sensitivity of DCeP to the relative
value weights, Vc and Vw, with six interaction plots shown in Fig. 4.7. In these plots,
the relative value weight for CP2K was chosen to be 1, 5, 10, 20, 50, or 100%
of the weight for WRF. The actual values of Vc and Vw were scaled to make the
resulting DCeP values comparable while still achieving the desired ratio of Vc to
Vw. Specifically, the weights were scaled so the mean DCeP score for the 75%WRF-
AllCore treatment was always equal to 0.45 (the value obtained from the original
analysis presented in Sect. 4.4 with Vc D 0:08 and Vw D 1).

While the relationship between AllCore and HalfCore treatments remained
consistent regardless of the weighting scheme, the effect of the load balance between
the applications was very sensitive to the choice of weights (a load balance of
25%WRF has lower DCeP values when CP2K UCUs were given less value relative

112 L.H. Sego et al.

0.2

0.4

0.6

0.8

1.0

Vc = 0.013, Vw = 1.325,
Vc

Vw

Vc

Vw

Vc

Vw

Vc

Vw

Vc

Vw

Vc

Vw

 = 0.01

M
ea

n
of

 D
C

eP 25% WRF
75% WRF

Vc = 0.056, Vw = 1.118, = 0.05 Vc = 0.094, Vw = 0.935, = 0.10

0.2

0.4

0.6

0.8

1.0

Vc = 0.141, Vw = 0.705, = 0.20

M
ea

n
of

 D
C

eP

Vc = 0.203, Vw = 0.405, = 0.50 Vc = 0.237, Vw = 0.237, = 1.00

HalfCore HalfCore HalfCore

AllCore AllCore AllCore

AllCore AllCore AllCore

HalfCore HalfCore HalfCore

Fig. 4.7 Sensitivity of DCeP to the choice of relative value weights, Vc and Vw, where the weight
for CP2K was 1, 5, 10, 20, 50, and 100% of the weight for WRF

to WRF UCUs), but the opposite occurs when CP2K UCUs were given more value
relative to WRF UCUs. This sensitivity underscores the need to carefully develop
a rational basis for choosing Vj when multiple applications are included in the
DCeP calculation, especially when the applications produce UCUs at different rates
with potentially different relative values, as was the case here. While we did not
investigate a time-based utility function Uj .tij; Tij/, it stands to reason that W , and
hence DCeP, will also be sensitive to the choice of the utility function.

Due to the sensitivity of DCeP to parameters that are chosen subjectively, its
greatest value as a metric lies in comparing various operational configurations in
the same data center. Using DCeP to compare different data centers would require
a standard set of applications, the same choice of relative value weights and utility
functions, and the same scope for energy calculations. In the absence of industry
benchmarks, it would be difficult to compare the performance of two data centers
using DCeP–especially if they belong to different organizations.

We found that implementing a designed experiment to study DCeP was advan-
tageous for a number of reasons. The structure of the experiment with blocks over
time led us to discover that the chiller plant and cooling tower efficiency were not
as stable over time as we might have expected. This instability demonstrates the
need for investigators to consider carefully the objective of their experiments when
accounting for the energy required by chiller plants to supply cooling capacity to
data center cooling equipment. That is, the fact that chiller plant efficiencies may
change over time may obscure or confound the effects of experimental conditions
that may be of principal interest, which was precisely the case for our experiment.

4 Implementing the Data Center Energy Productivity Metric 113

We addressed this issue by using a single estimate of chiller plant and cooling tower
efficiencies that was computed using the entire period of experimentation.

Another benefit of using a designed experiment is that more than one factor
can be investigated in a single experiment. This is more efficient than investigating
single factors in separate experiments, especially because the multifactor approach
allows researchers to identify potential interactions among the factors. For example,
in our experiment, we investigated the effects of both application load balance and
CPU utilization on DCeP and ETotal, which revealed an interesting interaction for
ETotal (Fig. 4.6). Furthermore, randomization of the treatments helps avoid potential
sources of bias from unknown factors that may influence the outcome of the
experiment. Using a constant estimate for �Chiller and �Tower, we found that W

and ETotal, and hence DCeP, were very consistent (though not identical) over the
four blocks. Consequently, for future experiments, we would likely use only two
replicates (instead of four) and we may not use blocks. Nonetheless, the blocks
proved valuable in demonstrating the consistency of the treatments over time and
the instability in the chiller plant efficiency.

Experiments that are properly designed, executed, and analyzed can require
considerable cost and effort. In particular, pilot experiments (which we conducted
prior to the experiment described here) proved to be essential for identifying control
settings and refining experimental protocols and logistics. Experimental costs must
be weighed against the potential benefits of identifying optimal (or near-optimal)
energy productivity configurations for data center operations.

4.6 Conclusion

We described the implementation of the Data Center Energy Productivity (DCeP)
metric in an experiment conducted at Pacific Northwest National Laboratory using
the Energy Smart Data Center (ESDC). We demonstrated that DCeP can be used
to clearly measure and distinguish the energy productivity of different operational
states in a data center. We investigated how DCeP is influenced by varying the load
balance of two HPC applications and by simultaneously varying the percentage
of cores (50 or 100%) utilized in the computations. Not surprisingly, we observed
that 100% core utilization always resulted in higher energy productivity. However,
the effect of the load balance on DCeP depended on the choice of the weights
used to measure the relative value of the useful computational units (UCUs) for
each application.

Even though the ESDC and its corresponding chiller plant were highly instru-
mented, we still found it necessary to make a number of simplifying assumptions
to estimate the total energy consumption required to operate the ESDC. This
challenge would be applicable to any metric for which one desires to measure energy
consumption from the vantage point of the broadest possible scope (i.e., energy
consumed by IT equipment and all ancillary equipment used to cool or otherwise
support the data center). While it is a worthwhile endeavor to estimate the total
energy consumption as accurately and with as broad a scope as possible, meaningful

114 L.H. Sego et al.

comparisons among operational states can still be made using DCeP with a narrower
scope of energy use, provided the estimates of energy consumption are calculated
consistently for each operational state.

Despite the subjectivity in the choice of relative value weights and the utility
function that compose the numerator of DCeP, as well as challenges associated
with calculating total energy consumption with a broad scope, the DCeP metric
is useful for making comparisons of operational states within a given data center.
These within-data-center comparisons can help operators identify hardware and/or
software configurations that will improve energy productivity. The DCeP metric
would have greater utility if it could be readily used to compare one data center
to another. For any metric, defensible comparisons among data centers require
a common standard of system output and input, workloads, and scope—while
adjusting for scale. In addition to these parameters, using DCeP to compare data
centers would require a common definition of useful work. Identifying approaches
for comparing the energy productivity of data centers is worthy of future research
and collaboration.

Acknowledgements This work was supported in part by the U.S. Department of Energy under
DE-Award Numbers 47128, 55430, and SC0005365.

References

1. Amdahl GM (1967) Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the spring joint computer conference, AFIPS ’67
(Spring), Atlantic City, 18–20 Apr 1967. Association for Computing Machinery, New York,
pp 483–485

2. ASHRAE (2011) ASHRAE TC 9.9: 2011 thermal guidelines for data processing environments-
expanded data center classes and usage guidance. Technical report, American Society of
Heating, Refrigerating and Air- Conditioning Engineers. http://www.eni.com/green-data-
center/it IT/static/pdf/ASHRAE 1.pdf

3. Baer M, Mundy CJ, Chang TM, Tao FM, Dang LX (2010) Interpreting vibrational sum-
frequency spectra of sulfur dioxide at the air/water interface: a comprehensive molecular
dynamics study. J Phys Chem B 114(21):7245–7249

4. Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, New
York

5. CP2K (2011) CP2K developers home page. http://www.cp2k.org
6. Dean A, Voss D (1999) Design and analysis of experiments. Springer, New York
7. Edwards W, Miles R, von Winterfeldt D (2007) Advances in decision analysis: from founda-

tions to applications. Cambridge University Press, Cambridge/New York
8. EPA (2007) Report to Congress on server and data center energy efficiency, public law 109-

431. Technical report, United States Environmental Protection Agency. http://www.energystar.
gov/index.cfm?c=prod development.server efficiency study

9. EPA (2010) ENERGY STAR computer server specification Draft 1 Version 2.0. Technical
report, United States Environmental Protection Agency. http://www.energystar.gov/ia/partners/
prod development/revisions/downloads/computer servers/Draft1Version2ComputerServers.
pdf

http://www.eni.com/green-�data-�center/it_IT/static/pdf/ASHRAE_1.pdf
http://www.eni.com/green-�data-�center/it_IT/static/pdf/ASHRAE_1.pdf
http://www.cp2k.org
http://www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study
http://www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study
http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/computer_servers/Draft1Version2ComputerServers.pdf
http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/computer_servers/Draft1Version2ComputerServers.pdf
http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/computer_servers/Draft1Version2ComputerServers.pdf

4 Implementing the Data Center Energy Productivity Metric 115

10. Feng W, Scogland T (2009) The Green500 list: year one. In: Proceedings of the 2009 IEEE
international symposium on parallel & distributed processing, IPDPS ’09, Rome. pp 1–7

11. Ge R, Feng X, Cameron KW (2009) Modeling and evaluating energy-performance efficiency
of parallel processing on multicore based power aware systems. In: Proceedings of the 2009
IEEE international symposium on parallel & distributed processing, IPDPS ’09, Rome. pp 1–8

12. Ge R, Feng X, Song S, Chang HC, Li D, Cameron K (2010) Powerpack: energy profiling
and analysis of high-performance systems and applications. IEEE Trans Parallel Distrib Syst
21(5):658–671

13. Goicoechea A, Hansen DR, Duckstein L (1982) Multiobjective decision analysis with engi-
neering and business applications. Wiley, New York

14. Greenhill D (2005) SWaP: space, watts, and power. Technical report, Sun Microsystems. www.
energystar.gov/ia/products/downloads/Greenhill Pres.pdf

15. Gustafson JL (1988) Reevaluating Amdahl’s law. Commun ACM 31(5):532–533
16. Hewlett-Packard Company: HP Data Center Smart Grid. http://h17007.www1.hp.com/us/en/

converged-infrastructure/ci-arch.aspx
17. Hewlett-Packard Company: HP Insight Control. http://h18013.www1.hp.com/products/

servers/management/index.html
18. IBM: Tivoli Monitoring for Energy Management. http://www-01.ibm.com/software/tivoli/

products/monitor-energy-management/
19. JCGM (2008) International vocabulary of metrology – basic and general concepts and

associated terms (VIM). Joint Committee for Guides in Metrology. http://www.bipm.org/utils/
common/documents/jcgm/JCGM 200 2008.pdf

20. Kamil S, Shalf J, Strohmaier E (2008) Power efficiency in high performance computing. In:
IEEE international symposium on parallel and distributed processing, IPDPS ’08, Miami,
pp 1–8

21. Keeney RL, Raiffa H (1976) Decisions with multiple objectives: preferences and value
tradeoffs. Wiley, New York

22. Ma J, Fan Z, Huang L (1999) A subjective and objective integrated approach to determine
attribute weights. Eur J Oper Res 112:397–404

23. R Development Core Team (2011) R: a language and environment for statistical computing.
http://www.r-project.org

24. Sego LH, Márquez A, Rawson A, Cader T, Fox K, Gustafson WI Jr, Mundy CJ (2012)
Implementing the data center energy productivity metric. ACM J Emerg Technol Comput Syst
8(4):1–22 (Article 30)

25. Sisk DR, Khaleel MA, Márquez A, Hatley D, Cader T, Schmidt R (2009) Real-time data
center energy efficiency at Pacific Northwest National Laboratory. ASHRAE Trans 115(Part I):
242–253

26. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W,
Powers JG (2008) A description of the advanced research WRF Version 3. NCAR Technical
Note NCAR/TN-475+STR, National Center for Atmospheric Research. http://www.mmm.
ucar.edu/wrf/users/docs/arw v3.pdf

27. Standard Performance Evaluation Corporation (2008) SPECpower ssj2008 Benchmark. http://
www.spec.org/power ssj2008

28. Stanley JR, Brill KG, Koomey J (2007) Four metrics define data center “greenness”. Technical
report, The Uptime Institute.

29. TGG (2008) A framework for data center energy productivity. Technical report 13,
The Green Grid. http://www.thegreengrid.org/en/Global/Content/white-papers/Framework-
for-Data-Center-Energy-Productivity

30. TGG (2008) Green grid data center power efficiency metrics: PUE and DCIE. Technical
report 6, The Green Grid. http://www.thegreengrid.org/en/Global/Content/white-papers/The-
Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE

31. TGG (2009) Proxy proposals for measuring data center productivity. Technical report 17, The
Green Grid. http://www.thegreengrid.org/en/Global/Content/white-papers/Proxy-Proposals-
for-Measuring-Data-Center-Efficiency

32. The Green 500: http://www.green500.org

www.energystar.gov/ia/products/downloads/Greenhill_Pres.pdf
www.energystar.gov/ia/products/downloads/Greenhill_Pres.pdf
http://h17007.www1.hp.com/us/en/converged-infrastructure/ci-arch.aspx
http://h17007.www1.hp.com/us/en/converged-infrastructure/ci-arch.aspx
http://h18013.www1.hp.com/products/servers/management/index.html
http://h18013.www1.hp.com/products/servers/management/index.html
http://www-01.ibm.com/software/tivoli/products/monitor-energy-management/
http://www-01.ibm.com/software/tivoli/products/monitor-energy-management/
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf
http://www.r-project.org
http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
http://www.spec.org/power_ssj2008
http://www.spec.org/power_ssj2008
http://www.thegreengrid.org/en/Global/Content/white-papers/Framework-for-Data-Center-Energy-Productivity
http://www.thegreengrid.org/en/Global/Content/white-papers/Framework-for-Data-Center-Energy-Productivity
http://www.thegreengrid.org/en/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE
http://www.thegreengrid.org/en/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE
http://www.thegreengrid.org/en/Global/Content/white-papers/Proxy-Proposals-for-Measuring-Data-Center-Efficiency
http://www.thegreengrid.org/en/Global/Content/white-papers/Proxy-Proposals-for-Measuring-Data-Center-Efficiency
http://www.green500.org

116 L.H. Sego et al.

33. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep:
fast and accurate density functional calculations using a mixed gaussian and plane waves
approach. Comput Phys Commun 167(2):103–128

34. Wang L, Khan SU (2011) Review of performance metrics for green data centers: a taxonomy
study. J Supercomput 1–18.

35. Wang YM, Luo Y (2010) Integration of correlations with standard deviations for determining
attribute weights in multiple attribute decision making. Math Comput Model 51(1–2):1–12

36. Wang YM, Parkan C (2005) Multiple attribute decision making based on fuzzy preference
information on alternatives: ranking and weighting. Fuzzy Sets Syst 153(3):331–346

Chapter 5
Sustainable Dynamic Application Hosting
Across Geographically Distributed Data Centers

Zahra Abbasi, Madhurima Pore, Georgios Varsamopoulos,
and Sandeep K.S. Gupta

5.1 Introduction

With the increasing prevalence of Internet-based computing services such as online
gaming [7], cloud-based services [27], and search engines, the energy consumption
in data centers to host such services has skyrocketed. Such increasing rate in
energy consumption is of growing concerns to both operators and society. Electricity
for Internet-scale systems costs millions of dollars, and burnt fossil fuels have
detrimental impact on the environment. For these reasons and more, industry
and research community propose to (i) increase data centers’ overall energy
efficiency [4, 10, 11, 18, 25, 28, 30, 38], and (ii) reduce data centers’ dependence on
fossil fuels [5, 29, 34, 45, 53]. Despite progresses, still the electricity cost is a huge
concern to operators. According to a report by Intel Corp. and Microsoft [24], the
energy cost accounts for over 10% of the total cost of ownership (TCO) of a data
center.

This work has been partly funded by NSF, CRI grant #0855527, CNS grant #0834797, CNS grant
#1218505 and Intel Corp.

This work is based on an earlier work: DAHM: A green and dynamic web application hosting
manager across geographically distributed data centers, J. Emerg. Technol. Comput. Syst.(JETC)
8, 4, Article 34 (November 2012), 22 pages ACM

Z. Abbasi (�) • M. Pore • G. Varsamopoulos • S.K.S. Gupta
Arizona State University, Tempe, AZ, USA
e-mail: zahra.abbasi@asu.edu; madhurima.pore@asu.edu; georgios.varsamopoulos@asu.edu;
sandeep.gupta@asu.edu

P.P. Pande et al. (eds.), Design Technologies for Green and Sustainable Computing Systems,
DOI 10.1007/978-1-4614-4975-1 5, © Springer ScienceCBusiness Media New York 2013

117

118 Z. Abbasi et al.

Recently research community has proposed Geographical workLoad/appLication
Placement (GLP) to shift workload toward data centers that offer lower electricity
price or green energy at a given time.

Fortunately, cloud computing facilitates a dynamic, demand-driven allocation of
computation and allows workload distribution across data centers. Applications can
be assigned to Virtual Machines (VMs), independent of the physical infrastructure.
Virtualization provides a cloud the flexibility to host an application on the most
cost-efficient data center at the time through VM migration.

5.1.1 Why GLP?

The ability to shift workload between data centers creates many energy management
possibilities to lower electricity price, lower energy consumption, and efficiently
manage the renewables [2, 3, 29, 31, 33, 40–43, 52].

“Follow the moon” takes advantage of lower costs for power and cooling
during overnight hours. In this scenario, the workload is shifted across data centers
depending on its local time to leverage low electricity cost from off-peak utility
rates. In addition to the utility load, there are many other factors that cause electricity
price to vary over time and location (e.g., hourly) including a variety of grid
operators, power generation profiles, and wholesale markets. These factors all
together contribute to the spatio-temporal variation of energy cost. These factors
are shown in Fig. 5.1a.

Recently, energy buffering for minimizing energy cost in data centers has drawn
attention [15,32,34,47,51]. The idea is to hoard energy in low utility rate periods (or
when renewable is available) into batteries and draw from them during periods of
high utility rate. GLP can jointly manage energy buffering and workload distribution
to enable cost-efficient computation.

Beside energy cost reduction, importance of using green energy is increasing in
data centers. Data center operators have started deploying renewables to partially
power their systems. However, due to the unpredictability and fluctuation in
availability of renewables, sustainability can hardly be achieved without large-
scale batteries. GLP manages the computational load over a cloud by distributing
it according to the availability of green energy at the time. The idea is to move
computation across data centers, so as to minimize energy buffering, effectively
reducing the overhead of energy storage.

In addition to the aforementioned factors, the heterogeneity of data centers in
terms of computation speed, computing and cooling energy efficiency is another
strong motivation toward GLP. In most data centers, computing servers are partially
upgraded every 2–3 years. For example, in a 5-year old data center, several gen-
erations of equipment co-exist, thus resulting in heterogeneity, where servers have
different computing capacity, power rating, and consequently, different computing

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 119

energy efficiency. In addition to the magnitude of power, the power-utilization
curve, specifying the power proportionality of servers vary among servers [6, 49].
An ideal power-proportional server consumes no power when idle as well as its
power increases linearly with its utilization. However, current data center servers
are not ideally power-proportional. Though the idle power of modern servers has
reduced, the power utilization curve is not linear. Further, the energy efficiency,
utilization over power consumption, of modern computing systems are becoming
more diverse with respect to power characteristics [49].

Power Usage Effectiveness (PUE), which measures the efficiency of a cooling
system and any source of power consumption other than the computing equipment
in data centers, may vary among data centers as well. A large PUE is a strong
indication of large cooling power, since the cooling system is the biggest consumer
of the non-computing power in a data center (followed by power conversion and
other losses). According to the US Department of Energy [14], a modern data
center’s PUE is around 1.7, which means that 0:7=1:7 ' 41% of the power is,
in its most part, consumed in cooling the data center. The data centers’ thermal
conditions and the type of cooler affect the cooling energy. Thermal condition of
the data center room depends on the design of the room. The types of coolers that
data centers use may depend on their location. Chillers are widely used as cooling
systems in data centers which refrigerate water to cool the room but require a large
amount of electricity to operate. To save power, many data centers are reducing
their reliance on chillers and use the outside air to support the cooling systems [34].
Variety in data centers’ room design and locations result into variety of PUEs.

All the above mentioned spatio-temporal variables make one data center the most
cost-efficient at one time, and another data center at another time (refer to Fig. 5.1).

5.1.2 Applications’ Requirements

For dynamically shifting workload across data centers, data center management
should be aware of the network delay and bandwidth overhead during migration
(e.g., user state data). This overhead depends on the type of applications, which
can be either stateless or stateful. In stateless applications, e.g., search engines, the
state of online users is not recorded; whereas stateful applications, e.g., multi-player
online games, keep track of the state of users [7]. Therefore, stateful applications
tend to induce higher migration cost.

Finally, for Web applications, requests may originate from different locations
or geographical areas. As such, the network delay from these locations to the
hosting data centers might also impact the end-to-end delay experienced by the
users. Further, the bandwidth cost is different for different providers [41]. These
may prevent an application from being hosted at certain locations.

120 Z. Abbasi et al.

0 5 10 15 20 25
0

20

40

60

80

Time (GMT +0:00)

E
le

ct
ric

ity
 P

ric
e

($
/M

W
h)

Atlanta, GA

Houston, TX

Mountain View, CA

5 10 15 20
0

5000

10000

15000

Time (GMT +0:00)

N
um

be
r

of
 u

se
rs

 (
vi

si
to

rs
)

California

Texas

Illinois

14 CA

S
ol

ar
 E

ne
rg

y
gh

i (
W

/m
2)

Time index (every 10 mins)

12

10

8

6

1

4

2

0

IL
TX

120 240 360 480 600 720 840 960 1080

40

Time index (every 10 mins)

W
in

d
ra

te
d

po
w

er
 o

ut
pu

t (
M

W
)

30

20

10

0

CA
IL
TX

1 120 240 360 480 600 720 840 960 1080

a b

c d

Fig. 5.1 Spatio-temporal variation of energy source and demands of data centers. (a) Hourly
electricity price data for three major locations of Google IDCs on May 2nd, 2009 (data are taken
from [43]), (b) hourly number of online users from three states for an entertainment Web site
hosted at GoDaddy.com [3], (c) solar energy traces for three different sites, and (d) wind energy
traces for three different sites

5.1.3 Challenges

Dynamic workload management across data centers is based on mathematical
modeling and optimization algorithms to minimize energy cost under performance
and the available (green) energy constraints. However, in practice it is quite often
impossible to exactly model all the involved parameters (e.g., workload migration
and battery characteristics) or know all of the required data (e.g., electricity
price, workload demand) in advance. Further, the complexity of models such as
performance and power make the problem non-convex and non-linear which suggest
to approximately optimize energy by making simplistic assumptions about the
models.

Besides technical challenges, there are some implementation challenges, includ-
ing GLP management overhead and dynamic request direction that the solution
should account for them. Sometimes data centers may belong to different compa-
nies. In this case, more management parameters such as accounting come into play.

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 121

The aforementioned challenges are partially resolved in recent literature.
However, most of the efforts focus on improving/developing GLP problem under
a specific workload type or data center energy management configuration. To our
knowledge, there is no work that surveys GLP as a general problem to manage the
heterogeneous workload over a cloud with heterogeneous energy infrastructure.

This chapter gives an overview on GLP. Further, it discusses the existing
challenges and proposed solutions along with some important GLP modeling issues.
GLP generally can account for any mix of interactive and batch jobs. However for
the sake of simplicity, the given model assumes delay-sensitive stateless and stateful
applications. The modeling of GLP is based on a cost optimization problem to
minimize electricity cost and maximize the utilization of the available renewable
energy profile under the constraints of applications’ delay requirements, energy
storage sizes, and servers’ capacities.

Although GLP can potentially be a significant aid in handling the intermittency
of renewable sources and electricity price fluctuations, a study that highlights the
impact of GLP on the size of renewable infrastructure and batteries is still lacking.
We perform a simulation study to evaluate the efficiency of GLP to make sustainable
data centers. The study is performed using realistic traces and various data center
configurations, e.g., workload and renewable energy predictability, battery sizes,
and renewable energy profiles in data centers. Finally the chapter concludes and
highlights future work and research directions.

5.2 Preliminaries

5.2.1 Wholesale Electricity Market

Electricity price vary over time and location. The variation is due to several factors
including power generation, and more importantly supply-demand variation, and
the market.

Electricity is produced from a variety of sources including coal, natural gas,
nuclear power, and hydroelectric generation. Different regions use different sources
depending on the availability of sources and their expenditure. For example in US.
the total generation output in 2011 shows that coal dominates (40%), followed by
natural gas (25%), nuclear (19%), hydro (8%), and renewables (5%) generation [14].

The key limitation of the electricity comes from the fact that it currently cannot
be stored in a scalable and cost-efficient way. A sophisticated control is needed to
ensure a close match between the supply and the demand. Any mismatch between
the two can induce a high cost as power producers may need to add or remove
the generation plants or load both of which are costly. To reduce such problems,
system operators, known as balance authority, closely monitor the system to ensure
capacity reliability. The system operators consisting of utilities, federal agencies
and Independent System Operators (ISO) or Regional Transmission Organization

122 Z. Abbasi et al.

(RTO)s, forecast demand in day-ahead market, schedule power generation, reserve
and transmission, adjust schedule as hours get closer, correct imbalances in real
time, restore systems if disturbance occur and sometimes plan for long-term
capacity and transmission upgrade.

System operators are usually regulated (e.g., by local government) to set rates,
prescribe accountings, enforce reliability/safety and evaluate the need for new
projects.

System operators in many regions of north America are ISO/RTOs which manage
the grid. RTOs also administer wholesale electricity markets. The pricing in the
wholesale market can be day-ahead, hourly basis or real-time.

The system price in the day-ahead market is determined by auctioning mecha-
nism for the producers and the customers at each node to develop a classic supply
and demand equilibrium price, usually on an hourly interval, and is calculated
separately for subregions in the grid.

RTOs set the Locational Marginal Price (LMP) for different nodes in the grid
which consists of three components: (i) System Energy Price (SEP): system clearing
price if no congestion exists (always same at all locations), (ii) Marginal Lost
Cost (MLC): Cost of marginal losses along transmission into specific node, and
(iii) Marginal Congestion Cost (MCC): If congestion is positive, cost is incurred
by expensive energy delivered to the destination. Whereas negative congestion
indicates that the electricity generated is more than its demand. The cost is then
calculated for each less MW that destination nodes consume compared to what is
generated at source nodes in the grid.

The above discussion highlights the various parameters that affect the spatio-
temporal variation of the electricity price which is a motivating factor for GLP. We
also assume a time varying electricity price in this chapter.

5.2.2 Renewable Energy in Data Centers

Renewable energy are usually very expensive to implement, depend on the sur-
rounding weather conditions, intermittently available, and require a big land
area to implement in many cases. Despite drawbacks, data centers have already
started to deploying them in various ways, not only to make their commitments
for sustainability, but also to mitigate any steep raise in the electricity price in
future. Google, Apple, FaceBook and many other industry leaders already made
investments to partially or totally power their data centers from renewable energy
sources [20, 21, 37, 50].

Some modern data centers have already installed (or are installing) on-site solar
generation (e.g., i/o data center, FaceBook and Apple). This is in-spite of its high
cost and the need for large arrays of Photovoltaics (PVs), to generate a small
fraction of energy. Further, there are few examples of data centers that have installed

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 123

wind turbines to power data centers from wind energy. Also some data centers,
specifically small data centers, are seeking 100% on-site wind energy for their data
center, e.g., Microsoft Virtual Earth. Furthermore, there are an increasing number
of data center providers that use utility power that is sourced from wind generation
e.g., Google.

Due to limitations of on-site renewable energy sources, i.e., geographical location
or land, many companies do not have opportunities to install on-site renewable
sources or directly use renewable utility power. There are other solutions such as
Renewable Energy Certificates (RECs) that data centers can purchase to contribute
in the growth of renewable energy industry. In this way, data centers support
renewable energy producers by committing to buying their energy for long-term,
but use brown energy in site [21].

In this study we only consider renewable energy sources that directly power data
centers’ servers. The source is assumed to be either generated on-site or purchased
from a utility.

5.2.3 Sustainability Using Renewable and GLP

GLP manages workload and energy buffering across data centers rather than within
a single data center. The result is to (i) shift the peak demand away from high
electricity rate periods and push it into data centers that offer low electricity price or
green energy at a time, (ii) store energy when the electricity rate is low or when the
excess renewable energy is available and use it at other times.

A pictorial representation of GLP is presented in Fig. 5.2. GLP takes information
of the workload, the available energy sources, and the battery state into account
while placing the newly arriving workload. It also decides on the charging or
discharging of batteries at each time instant considering the electricity cost and
available renewable profile over time. However, in reality, various prohibiting
factors such as battery’s physical characteristics and workload migration overhead,
may prevent GLP to utilize the low-cost energy. Frequent charging and discharging
of a battery reduces its life time [16]. Further, the charging and discharging rate of
a battery depends on its physical characteristics. Furthermore, there are many other
factors such as energy density, power density, ramping time, energy efficiency and
self-discharge that need to be taken into account to achieve a cost efficient solution
[51]. Workload shifting incurs bandwidth cost and delay. GLP should avoid shifting
workload from one data center to another, if its migration cost outweighs its energy
saving due to shifting.

In this study, we assume ideal batteries for the sake of simplicity (we ignore the
aforementioned physical limitations of batteries). The modeling in the next section
accounts for workload migration overhead.

124 Z. Abbasi et al.

Energy storage

Server farms

grid

windsolar

Energy storage

Server farms

grid

windsolar

Workload split (xij)

charge/
discharge
policy Bi,t

Energy flow

Control Policy

Workload flow

on/off
control yi,t

Workload history
GLP Spatio-temporal data

e.g. renewable energy,
performance

Data center Data center

Front-ends

Fig. 5.2 Pictorial representation of GLP to achieve sustainable data centers

5.2.4 Practical Issues

GLP is based on the assumption that the underlying infrastructure allows request
redirection mechanism. Request redirection are already in use to enable replication
over Internet and Content Delivery Network [12, 39]. In this regard DNS based
Request-Routing techniques are common due to the ubiquity of the DNS system. In
DNS based Request-Routing techniques, a specialized DNS server is inserted in the
DNS resolution process. The server is capable of returning a different set of records
based on user defined policies, metrics, or a combination of both [9]. There are also
other techniques such as HTTP redirection using persistent HTTP proxies to tunnel
requests, which are currently employed for selecting data centers. These techniques
usually incur high networking overhead (i.e., delay, bandwidth).

Although the concept of dynamic request redirecting is not new, more efficient
techniques are required in order to ensure that GLP maintains the delay requirements
of delay-sensitive application over a cloud.

Another practical issue is the ownership of data centers in a cloud. A cloud may
consist of several data centers which are owned independently. Depending on the
cloud accounting policies, another cost factor, in addition to the power cost, may
affect the total cost of GLP.

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 125

For simplicity, GLP modeling in this chapter is based on the assumption that the
cloud infrastructure supports request redirection and there is no accounting policies
across data centers.

5.3 GLP System Model and Formal Definition

This section gives a system model and problem statement of GLP for interactive
stateless/stateful applications. The model is inspired by the models and assumptions
that are made in recent studies [2,3,29,31,33,40–43,52]. The goal is to show a cost
model of GLP and discuss the associated challenges and solutions. The discussion,
however, is not limited to the model of this section, but to a more general GLP
problem which involves more practical phenomenon (e.g., mix of interactive and
batch applications).

GLP for interactive jobs can be generally modeled as a network flow optimization
model on a bipartite graph (see Fig. 5.2). End users’ requests arrive from jAj geo-
graphically distributed front-ends (i.e., the sources) where A D fa1 : : : aj : : : ajAjg
denotes the set of front-ends (we use the term area and front-end interchangeably
in the rest of this chapter). The geographical front-ends may be network prefixes,
or even geographic groupings (states and cities). The reason to include multiple
sources of workload (i.e., front-ends) is twofold. First, the bandwidth cost is an
important contributor to data centers’ TCO, and there may be large differences
between costs on different networks, and sometimes on the same network over
time [41]. Second, network delay between different front-end and data centers may
vary over time and network. This may prevent some workload to be shifted to some
data centers due to their delay requirements.

The workload must be distributed among the jS j available data centers in the
cloud (i.e., sink), where St D fsi;tg; i D 1; : : : ; jS j denotes the set of available data
centers in the cloud, and each si;t represents the number of available servers in data
center i at time t . Also data centers may be provided with an energy storage of
limited size, Bsize, to smoothen the fluctuation in the availability of the renewables
as much as possible.

There are many possible energy optimizations that can be developed by taking
into account factors such as the workload split between the data centers, power state
of the servers, migration overhead of the user state data, energy buffering levels
and performance requirements of applications. For simplicity, we only focus on the
workload split, a two power state for servers (active and off) as well as renewable
energy buffering. The goal is to perform workload consolidation over minimal
number of servers in the most cost-efficient data center at any given time. Extra
servers are assumed to be turned off. Mathematical modeling of GLP consists of
energy consumption model and cost, performance, workload and migration model
of applications. The following sections introduce these models.

126 Z. Abbasi et al.

Table 5.1 Symbols
and definitions

Symbol Definition

t Epoch index
i Index of data centers
j Index of areas
xi;j;t Workload share of area j to DC i

yi;t Number of active servers

 Length of epochs (in second)

pidle
i Server idle power

putil Server peak power minus pidle

ci Avg. util. of a user on a server
uth

i Threshold util. of servers
nth

i Affordable no. of users for servers
si Number of available servers
d Total delay of a request
d 0 Data center delay
d 00 Network delay between areas and DCs
d ref Total reference delay
d 0ref Service reference delay

ei Electricity cost
ˇ Migration cost per migration
˛ Switching cost of a new server
� Performance violation cost per each user

nj;t Avg. number of online users in area j

si Percentage of new users over an epoch
so Percentage of users to sign out over an epoch

5.3.1 Performance Modeling

Performance constraints will enforce workload management to consolidate work-
load without compromising performance requirements of applications. Internet
applications are usually delay-sensitive such that their Quality of Service (QoS)
mainly depends on the end-to-end delay. For that we assume that in order for the
end users to experience a high QoS, their delay should not go above a reference
delay, d ref. The delay d experienced by a user consists of the service delay d 0, i.e.,
data center delay, and the network delay d 00, i.e., the delay between the front-end
and the data center; thus, d D d 0 C d 00 (Table 5.1).

In Internet data centers, the SLA statistically bounds the delay, e.g.,, the delay
of q percent of requests should not go beyond the reference service delay d ref. We
use the performance model by Chase et al. to guarantee the SLA for data centers
[1, 10]. This model asserts that the service delay strongly depends on the servers’
utilization levels; specifically, the SLA is guaranteed under a utilization threshold.
This threshold depends on the capacity of the servers and the type of the application.
Specifically, there is a threshold uth

i associated with each data center’s servers, such
that, if servers are not utilized above that point, the service delay d 0

i respects the
SLA, i.e., d 0

i � d 0ref for at least q percent of users.

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 127

The above utilization-to-delay model can be replaced by queuing models, e.g.,
M/M/n or GI/G/n, mainly because the average delay is linearly correlated to the
arrival rate � and the per-request utilization (d 0 D f �

d 0Df .u/
, where u D �

service rate),
based on Little’s Law. In GI/G/n, the coefficients of variation of the workload arrival
rate and of the service time come into play but they do not change the nature of the
problem.

In modeling the network delay, we consider the delay differs depending on the
network distance between the areas and the data centers. Also this delay may vary
over time, depending on the network congestion. If we denote a delay as di;j;t to
mark the dependence on data center i , the front-end j and the epoch t , it will be
sum of the network delay and the service delay experienced by the user, as di;j;t D
d 0

i;t C d 00
i;j;t .

5.3.2 Workload Modeling

Workload characteristics along with other issues such as performance constraints
determine the range of active servers needed in a cloud. Workload is usually
characterized through statistical parameters of servers’ traffic, those being average
request arrival rate, peak arrival rate, service time and mean requests sizes. Since,
the problem formulation accounts for migration overhead, we model workload at
user level instead of request level. Note that migration overhead is due to moving
state data associated with online users from source server to the destination server,
thusly can be estimated from the number of online users whose application server
is migrated. There are many research that verify the strong dependence between
workload intensity and the number of online users [44]. Therefore, if one of those
parameters is known, the other one can be estimated.

Let Nt be the set of the average numbers of online users in the areas for an
epoch t , where Nt D fn1;t : : : nj;t : : : njAj;t g. The set Nt varies over time because,
first, different applications have different local peak times during a day; second, the
traffic peaks across the areas differ due to the time zone differences. We assume
the population and distribution of the users and the electricity price to vary over
time and space. However, we assume that these values remain constant within each
epoch.

5.3.3 Energy Costs

We assume that the energy cost of a data center hosting a Web application is a
function of the power model of its servers, its cooling energy and the electricity
price.

128 Z. Abbasi et al.

We model the power consumption of a server at data center i at epoch t as:
pi;t D ui;tp

util
i C pidle

i , where pidle
i is the per-server average idle power consumption

for that data center, putil
i is the additional power consumption of a server at full

utilization with respect to idle, and ui;t is the utilization of the server at epoch t .
The utilization of a server depends on its workload and its physical charac-

teristics. The workload of a server is a function of its online users. Therefore,
we assume the following linear model for utilization of a server: ui;t D ci ni;t ,
where ci is the average utilization that one online user imposes on the server, and
ni;t D PjAj

j D1 xi;j;t nj;t is the total number of users that are assigned to the data center
i at epoch t . This model is frequently used in existing literature and experimental
results show its sufficiency [1, 10].

Usually, many servers are allocated to the application. Assume nth
i to be the total

number of users that a single server in data center i can afford, i.e., ci n
th
i D uth

i , then
the data center’s cumulative idle power consumption equals to yi;t p

idle
i , where yi;t

is the number of active servers, calculated as dni;t =nth
i e.

A data center’s total power equals to the sum of computing and non-computing
equipment power consumption (e.g., cooling power), and can be estimated as the
product of its PUE and computing power. There are many data center metrics that
evaluate its overall energy efficiency with respect to its computing energy efficiency.
We choose PUE since it captures the data center energy inefficiency of the non-
computing equipment with respect to computing energy in a linear way.

ptotal
i;t D

�PjAj
j D1 xi;j;t nj;t ci p

util
i;t C yi;t p

idle
i

�
PUEi : (5.1)

5.3.3.1 Total Energy Cost Considering Renewable Energy

To capture the effect of integrating renewable energy, we model energy buffering.
According to this model flow of the renewable energy is smoothened using battery
storage. Further, to maximize the renewable energy utilization over the energy
drawn from the grid, the cost of renewables is set to zero. Let r total

i;t be the available
renewable power at data center i which can be drawn at a time, Bi;t denote the
available renewable power at the battery, and Bsize be the battery size to store and
smooth renewables, the renewable harvesting at a time, ri;t , always satisfies the
following:

Bi;t � pAC
i;t
 C ptotall

i;t
 C ri;t
 D Bi;tC1; Bi;t � Bsize; and ri;t � r total
i;t ; (5.2)

where, pAC
i;t denotes the total power draw from AC. If the total renewable power

is always large enough, i.e., ri;t C Bi;t > ptotal
i;t ; 8t , data centers are called to be

sustainable. While this is true if one can do perfect smoothing of the renewables
using large-size storage, it is not always practically possible. This is due to, currently
renewable power draw is a very small fraction of a data center’s total power draw,
there is energy leakage associated with storage, and there is size constraint for

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 129

batteries because of battery costs and space limits of data centers. Considering
zero cost for renewables, the total energy cost of a data center in an epoch can be
calculated by multiplying the total energy draw from AC into the electricity price.
We denote the electricity price by ei;t , thus the total energy cost of an application
hosted in data center i during epoch t equals to:

costenergy
i;t D .pAC

i;t /
ei;t : (5.3)

5.3.4 Migration Cost

Dynamic workload distribution for stateful applications may require live migration
(i.e., online users’ state information should migrate from the source to the
destination data center). Migration imposes a cost in terms of increase in network
bandwidth consumption, and delaying the service for the affected online users.
Therefore, we consider a uniform, per-user migration cost ˇ, assuming equal-sized
state information for all users. The calculation of the migration cost is based on the
number of online users who have been migrated, as follows. Equation 5.3 suggests
that if a front-end assignment to a data center between two intervals changes, then
migration is performed. Therefore, we can calculate the number of migrated users
for each data center and front-end by calculating the difference in the number of
assigned users between two consecutive epochs. However, we choose not to directly
take the difference between the previous epoch’s (t � 1) assignment and the next
epoch’s (t) assignment, i.e., nj;t xi;j;t � nj;t�1xi;j;t�1, because we have to account
for the users that are signing out in epoch t � 1 (and therefore their connections
are not migrated) and the users that are signing in, in epoch t (and therefore their
connections did not exist at migration time). Let si denote the average fraction
(0 6 si 6 1) of new users out of the total users at each area over epochs, and so
denote the average fraction (0 6 so 6 1) of users at each area who sign out during
each epoch, then the migration cost for a data center i at time t can be formulated as

costmigration
i;t D ˇ

jAjX

j D1

�
.1 � si/nj;t xi;j;t � .1 � so/nj;t�1xi;j;t�1

�C
: (5.4)

Each of the si and so parameters can be estimated from the other based on
preservation of flow, expressed by this relation: nj;t .1 � si/ D nj;t�1.1 � so/

(i.e. the users that did not sign out in epoch t�1 should be equal to the online
users that did not just sign in, in the epoch t). The decision to migrate workload
is justified by the expectation that it can complete its execution by posing lower
energy cost on another data center. The migration depends on two parameters:
(i) the longevity of user connection; naturally, it is rarely beneficial to migrate a
short running job as the benefit does not outweigh the migration costs; and (ii) the
migration cost; if the migration cost is much higher than the difference between

130 Z. Abbasi et al.

Fig. 5.3 Mixed Integer Programming (MIP) formulation of GLP problem for interactive
applications

energy cost efficiency of two data centers for processing an online user workload,
the migration never happens. If the migration cost is much lower than the difference
between energy-cost efficiency of two data centers, it always happens.

5.3.5 A Problem Formulation of GLP

The problem can be summarized as follows:

GLP problem: Given an application with a specific delay requirement d ref , a cloud St in
which the application can be hosted in a dynamic way, a spatio-temporal variation of the
electricity price, ei;t , a spatio-temporal variation of the number of the online users Nt , time-
varying and fluctuating nature of renewable energy sources at each data centers, r total

i;t , and
size-constrained batteries to buffer low-cost energy, find the hosting for each epoch t that
minimizes the sum of energy and migration cost, Eqs. 5.3 and 5.4.

All aforementioned costs are assumed to be monetary. We can model the application
hosting problem as an optimization problem where the objective is minimizing the
total cost as shown in Fig. 5.3.
Cost minimization is subject to the following constraints:

• Power constraint (Eq. 5.6), which states the total power required for computing
and cooling at each data center.

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 131

• Buffering constraint (Eq. 5.7) which asserts the sufficiency of the power draw
from battery and AC for the total required power, as well as the battery power
level at a time.

• Service constraint (Eq. 5.8), which asserts that all users of every area should
be assigned to a data center, and that there are no double assignments in either
direction.

• Idle power constraint (Eq. 5.9), which ensures that the idle power consumption
of all active servers is accounted.

• Capacity constraint (Eq. 5.10), which states that the number of assigned active
servers to the application in a data center should not exceed the available servers
(denoted by si;t) in that data center.

• Performance constraint (Eq. 5.11), which states that the traffic of end users
should be split among data centers whose network and service delay is less than
the users’ delay requirement.

A solution to this problem would specify, at each epoch, how many servers in
each data center should be assigned to the application (i.e., yi;t), what portion of
each area’s traffic should be assigned to which data center (i.e., xi;j;t), and how
much is average power draw from AC, renewable and battery. Observe that some
of the variables are reals (i.e., xi;j;t ; pAC

i;t , and Bi;t) and some are integers (i.e.,
yi;t). Therefore, due to linearity of all equations (both the objective function and the
constraints), the problem is a Mixed Integer Programming, (MIP). MIP is a well-
known NP-hard problem.

5.4 GLP Technical Challenges

5.4.1 Algorithmic Issues

The complexity of GLP solution is twofold. First, if we assume all information about
workload, electricity price, renewable power over time are accurately available for
a long decision period (i.e., t D 0 : : : T), still the optimal solution can not be found
in a time-efficient way using existing techniques. This is due to the NP-hardness of
the problem: special case of the problem with zero migration cost and zero sized
battery, is NP-hard [3]. In fact, under these assumptions, GLP can be formulated as
a Fixed Charge Min Cost Flow (FCMCF) which is also a NP-hard [26] problem.

Second, in practice, it is quite often impossible to accurately know all of
the information about electricity price, workload, and renewables in advance. In
other words, the optimal solution, if any, can only be found offline. Therefore, to
dynamically decide on the workload distribution across data centers, we need an
online algorithm that competently decides on hosting of applications and workload
placement. To ensure the performance of online algorithm compared to offline
algorithm a theoretical competitive ratio is required which is usually not easy to
calculate.

132 Z. Abbasi et al.

5.4.2 Prediction Issues

In practice, workload, renewable energy, and electricity price should be predicted
over a window of epoch intervals to feed GLP. It is shown that the efficiency
of GLP online solution compared to the optimal offline solution depends on the
prediction window length [31]. The longer the prediction window is, the higher
the performance of GLP online solution becomes compared to the optimal offline
solution. While some of information, i.e., workload, electricity price, solar energy
and are shown to have nice cyclic behavior, and thusly predictable, the others (i.e.,
wind energy) do not exhibit cyclic behavior and are thusly hard to predict.

5.4.3 General Model of GLP

In addition to the aforementioned challenges that deal with solving the given GLP
problem, the formulation itself is lacking in some practical aspects.

First, the formulation assumes a single application type. In practice, data centers
host different applications. In this regard GLP consolidate different applications
over the cloud to incur minimum energy cost. Applications can be assigned to VMs,
which can be placed at the most cost efficient data center at the time. However,
consolidation of different set of applications comes with interference amongst them.
Recent works suggest that consolidation of applications in a single server increases
the contention on the shared resources such as on-chip caches, buses, main memory,
CPUs and network [35, 36]. This contention results in performance degradation of
applications. The performance overhead due to contention depends on the workload
type of applications. The contention can also cause energy consumption overhead
due to increase in runtime. Modeling such an effect and incorporating into GLP is
not easy, since the interference effect depends on the workload type of applications
and the workload intensity which are not easy to quantify and model for the scale of
data centers [35].

Second, energy management in data centers is a cyber-physical problem in the
sense that consolidating the workload on fewer servers affects the thermal conditions
of data centers (e.g., creating hot spots due to the high power consumption of
the active servers). However, energy formulation of GLP is given as a cyber
problem and ignores thermal awareness into its formulation. The reason is the
high cost that thermal awareness imposes on the solution, its evaluation, and
its implementation (e.g. data center thermal modeling [46], managing a complex
nonlinear cooling energy [48]). However recent studies show that depending on the
power proportionality of servers, and thermal conditions of data center room, non-
thermal aware server consolidation not only cannot reduce the energy consumption,
but also increases the total energy consumption compared to no consolidation [4,13]
depending on data center cooling and computing power efficiency. This means that
the current GLP formulation may not perform optimal server consolidation.

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 133

Third, GLP, as given, deals with steady state of data centers’ dynamics i.e.,
workload, renewable energy sources, and thermal conditions (if thermal awareness
would be incorporated in the current formulation) over an epoch. However, all of
these parameters exhibit temporal fluctuation. Ignoring such temporal aspects can
potentially affect the energy savings projected by GLP, since the decision making
is performed according to inaccurate information. Due to management overhead of
GLP, it is infeasible to choose very short decision time interval. However, initial
transient analysis of GLP can help to optimally choose GLP parameters such as
epoch length and prediction window to minimize such problems.

Finally, as discussed in Sect. 5.2.3 the physical limitations of batteries should be
incorporated in GLP modeling, as they are significant factors [15, 51].

5.5 Existing Solutions and Related Work

This section reviews the existing work related to GLP problem, and the way that
previous research resolve some of the challenges.

5.5.1 Proof of Concept: Trace Based Simulation Using
Realistic Data

Qureshi et al. did the very first work in the area of workload management across data
centers, to prove the concept and show effective parameters in the cost efficiency of
the problem [40, 41]. The authors use heuristics to quantify the potential economic
gain of considering electricity price in the location of computation. Through
simulation using historical electricity prices, for twenty nine locations in the US, and
network traffic data collected on Akamai CDN, they report that judicious location
of computation load may save millions of dollars on the total operation cost of
data centers. They also show that the magnitude of cost savings depends on how
power-proportional the servers are and whether there is a constraint on the network
bandwidth. They find that the cost saving is the highest when servers are ideally
power-proportional and when the available network bandwidth is unconstrained.
The results in this work reveals the potential gain of workload management across
data centers for large providers, and some of the essential system requirements in
practice, e.g., network bandwidth constraint.

5.5.2 Workload and Server Management for Stateless
Applications (ˇ D 0)

Considerable amount of research has been recently performed to find efficient GLP
solutions for stateless workloads [2, 3, 31, 33, 42, 43, 52].

134 Z. Abbasi et al.

Le et al. developed a workload scheduling scheme across data centers for
stateless applications where the problem is modeled as nonlinear optimization and
it is solved using a meta-heuristic, i.e., Simulated Annealing [29]. The problem
accounts for workload and server management across data centers, where the non-
power-proportionality assumption of servers contributes in the nonlinearity of the
problem. Their simulation results showed that by leveraging the electricity price,
significant cost can be saved when servers are ideally power-proportional, and the
cost saving decreases when servers have greater-than-zero idle power.

Rao et al. considered the load distribution of stateless applications across data
centers with the objective of minimizing current energy cost subject to delay
constraints [43]. The energy cost considered accounted for the average energy cost
of active servers (i.e., active servers are assumed to operate at an average utilization
and frequency). The authors used linear programming techniques and min-cost flow
model to find an approximate solution. Abbasi et al. additionally enhance the power
consumption model of active servers to be dependent on their current utilization and
provide theoretical and numerical analysis of the approximation compared to the
optimal solution [3]. The authors showed that the workload and server management
for stateless applications can be modeled as fixed-charge min-cost flow problem,
and find an N-approximation algorithm to solve it, where N is the number of class
of servers across data centers. Rao et al. extended their scheme above (i.e., [43])
by developing a joint optimization of server management (i.e. resizing the active
server set) and power management (i.e., CPU dynamic voltage and frequency
scaling) across data centers using General Benders Decomposition [42]. In this
model, DVFS technique is applied on active servers to reduce the processors’ power
consumption by scaling their frequency according to their offered workload.

Liu et al. tackled the management overhead of GLP by developing two dis-
tributed algorithms for achieving optimal geographical load balancing [33]. The
authors develop a convex cost model which accounts for per active server energy
cost, and delay cost. The delay cost is incurred due to overloading servers’ or
network propagation delay. They design decentralized algorithms which allow each
data center and front-ends to optimize based on partial information. The authors
provide theories to guarantee the convergence of algorithms solution to the optimal
solution. The result in this work is very important, since the proposed algorithms
simplify the implementation of GLP without degrading its performance.

Xu and Liu have developed GLP when jobs are a mix of delay-sensitive
applications and delay-tolerant jobs, such as background/maintenance jobs [52].
The proposed solutions use delay-tolerant jobs to fill the extra capacity of data
centers, give a higher priority to delay-sensitive jobs, and achieve good delay
performance. Two algorithms are designed. (1) A stochastic subgradient-based
algorithm, which solves a convex optimization problem for capacity allocation
and load shifting in each slot. The solution is shown to converge to optimal cost.
(2) A queue-based which also solves a convex optimization problem for capacity
allocation and load shifting in each slot. The authors show this algorithm achieves
optimal trade-off between queuing delay and cost.

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 135

5.5.3 Workload Management for Stateful Applications (ˇ ¤ 0)

Workload management for stateful applications does not receive much attention in
the literature.

Buchbinder et al. developed a scheme for online job migration across data
centers to reduce the electricity bill [8]. They assume data-intensive jobs for which
migration causes overhead in terms of network delay and power. The authors make
some simplification assumptions to provide theoretical results. They assume the
migration cost is constant over all jobs, and more importantly they assume the total
load over time is constant. To optimize the electricity cost, the authors develop a
cost model consisting of server’ electricity cost and job migration. Since migration
cost depends on every two consecutive job assignment, the optimal solution can
only be found offline. Authors design an online algorithm and prove that it has a
competitive bound of log.n/ compared to the offline optimal solution, where n is
the total number of servers across the cloud. However, due to the complexity of
the algorithm, an easy-to-implement heuristic online algorithm is proposed which
is evaluated through simulation using real electricity pricing and job workload data.
The assumptions to derive the analytical bound was more suited to batch jobs.

Abbasi et al., modeled the GLP for Web based stateful applications jobs.
The migration cost is modeled as a function of the number of migrated user
connections (see Sect. 5.3.4). Through the simulation study, the authors argue
that when migration cost is comparable to the reference energy-cost benefit of a
migration, i.e., the average energy-cost difference between data centers, migration
does not drop the cost efficiency of GLP significantly.

5.5.4 Renewable Energy Utilization Within and Across Data
Centers

Some related work propose green scheduling algorithms to maximally utilize
renewable [5, 32, 34, 45, 53]. The idea is to adjust the power consumption to the
available green power supply using power management techniques, e.g., server
power state transitions and workload shifting. Liu et al., perform a numerical
study to evaluate the utilization of renewable energy with size constrained batteries
across data centers. Their simulation study highlights the efficiency of “follow
the renewable” strategy [32]. Further, they show that small-size batteries can
be beneficiary to efficiently utilizing renewables. The authors further perform a
theoretical and empirical study in a HP data center to jointly optimize renewable
and cooling energy within a data center [34]. Zhang et al., propose GreenWare for
Internet data centers to maximize the percentage of renewable energy used to power
a network of distributed data centers,subject to the desired cost budget [53]. Finally,
[45] focuses on workload distribution based on renewable availability and energy
cost across a set of distributed data centers.

136 Z. Abbasi et al.

5.5.5 Energy Buffering Management

Recently, energy buffering to exploit low-cost electricity has drawn attention [15,
47]. Data centers are conventionally equipped with UPSes for emergency case.
Govindan et al. and Urgaonkar et al. propose to partially utilize UPSes for energy
cost management [15, 47]. The idea is to store energy in UPS batteries during
“valleys” periods of lower demand, which can be drained during “peaks” periods
of higher demand. Urgaonkar et al. develop an on-line control algorithm using
Lyponov to exploit UPS devices across data centers [47], and Govindan et al.
perform a comprehensive study on the feasibility of utilizing UPS to store low-cost
energy, the constraints (e.g., charging discharging periods depending on life-cycle
of batteries) and a Markovian based solution to [15].

Wang et al., investigate how data centers can leverage the existing huge set of
heterogeneous Energy Storage Devices (ESDs) [51]. The authors argue that contin-
uing technology advances provides a plethora of competitive ESD options which
offer different trade-offs between lifetime, energy efficiency, and cost. Further, ESD
devices can be placed in different levels of data centers power hierarchy (i.e., data
center, rack, and server levels). The authors developed useful cost models to study
the cost-benefit of various ESDs. They also presents a theoretical framework to
quantify the cost-benefit trade-offs of various ESD options as a function of workload
properties.

5.5.6 Online Algorithms Versus Offline Algorithms to Manage
Energy Buffering and Server Switching GLP

There have been few works which try to design online algorithms with guaranteed
competitive bound compared to the optimal offline algorithms. Lin et al., propose
online algorithms for GLP when there is a cost associated to switching servers to
on [31]. Since server switching cost depends on every two consecutive active server
set, the GLP solutions over time are dependent. Therefore, the optimal solution
can only be found offline. The authors evaluate a commonly used algorithm for
GLP which suggest to perform workload management for the current time by
optimizing cost over a time window where load is predicted. They show that such
an algorithm performs well compared to the offline optimal provided that servers
are homogeneous. Particularly, the competitive bound decreases with increasing
prediction window length. They propose a new online algorithm for the case of
heterogeneous servers with guaranteed competitive bound of .1 C O. 1

w //, where w
denotes the prediction window length.

Another online algorithm for GLP is proposed in [47]. Urganokar et al., consider
the problem of using UPS batteries to reduce the time average electric utility bill
in a data center. The problem accounts for the battery energy management to shift
the peak demand away from high tariff period. Using the technique of Lyapunov

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 137

Table 5.2 A taxonomy of GLP existing solutions

Applications’ types Management Articles

Stateless interactive jobs Workload and server
management

[2, 3, 29, 31, 33, 40–43, 52]

Workload, server, and
energy buffering

[32, 34, 47]

Energy buffering [15, 51]
Renewable harvesting [5, 32, 34, 45, 53]

Stateful interactive jobs Workload and server
management

[2, 3]

Stateful batch jobs Workload and server
management

[8]

Interactive and batch jobs Workload and server
management

[52]

optimization, the authors develop an online control algorithm that can optimally
exploit batteries to minimize the average cost. Interestingly, this algorithm does not
need any knowledge of the statistics of the workload or electricity cost processes.
The authors also show that the deviation of the algorithm from the optimal solution
reduces as the storage capacity is increased.

5.5.7 Summary

The above work highlights that GLP problem for stateless applications can be
approximately modeled by a linear or a convex cost function, and that the ap-
proximation yields negligible ratio/effect in its solution. GLP discretizes two way
connection between proxies and data centers, and yield optimal solution. This
has much simpler implementation with less network and management overhead
compared to a centralized solution.

Existing work lacks the accurate migration modeling of jobs as well as efficient
online algorithms which account for migration cost. The bandwidth costs associated
with moving the applications might be a significant factor and might vary over
cloud. Further the migration might affect the application’s delay, and thusly violate
the performance requirement of delay-sensitive applications. Quantifying such
parameters to accomplish joint optimization of power cost and migration cost is
a challenge. Empirical studies can help to resolve such challenges (Table 5.2).

Despite progress on developing efficient GLP algorithms for stateless applica-
tions, many aspect of the problem has not been addressed sufficiently.

Specially, the performance of GLP depends on the predictability of information
such as workload, and renewable energy sources, however there is no work which
suggest what prediction technique and configuration (i.e. prediction time interval
and window length) incur the lowest cost.

138 Z. Abbasi et al.

Data centers host different applications ranging from batch jobs [35] to web
services (e.g., e-commerce). The workload types of such applications, e.g., CPU-
intensive workloads (e.g., to analyze or organize data) and memory-intensive
workloads (e.g., data retrieval tasks), and their performance requirements (e.g.,
delay-sensitive and delay -tolerant applications) are different. To achieve sustain-
ability, GLP should account for a coordinated management of set of heterogeneous
applications, as well as batteries and workload assignment to adapt the total
computing over all data centers in the cloud to the total low-cost energy supply.

Moreover, all of the above work only account for a cyber-model of power
consumption, ignore temporal dynamics of data center workload, batteries and
thermal condition, and only use a trace-based evaluation.

5.6 Evaluating the Efficiency of GLP for Developing
Sustainable Data Centers

We perform a trace-based simulation to evaluate the efficiency of GLP using realistic
renewable energy profiles and workload traces.

5.6.1 Simulation Setup

We simulate a cloud consisting of three data centers. Their workload, electricity
and physical characteristics, such as server power profiles, battery are set according
to realistic data. To this end, we assume data centers are located at the following
three locations: Atlanta, GA; Houston, TX; and Mountain View, CA, namely DC1,
DC2 and DC3, respectively. These locations correspond to the location of three
major Google data centers. We used the historical electricity prices for the above
locations [43] (see Fig. 5.1a). Note that, in reality, each data center provider may
have different electricity price contracts, i.e., lower electricity price than households.
The electricity price of Fig. 5.1a is used as an example to show the cost saving benefit
of GLP by leveraging electricity cost. We also assume a battery for each data centers
where its size vary between 0 and 6,400 MJ (this size is equal to the average energy
consumption of data centers in 24 h).

5.6.1.1 Data Center Types

Three homogeneous (identical) data centers are considered for the simulation with
contemporary servers (e.g., IBM Systems x3650 M2: idle power 100 and peak
power 320 W). The maximum number of servers for each data center is set to 400
which matches the workload intensity range used in the simulations.

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 139

0 3 6 9 12 15 18 21 24
0

2

4

6

8
x 104

Time (GMT +0:00)
N

um
be

r
of

 v
is

ito
rs

Fig. 5.4 Hourly number of
U.S. online users for an
entertainment Web site hosted
at GoDaddy.com on 17th
March, 2011 [3]

To model the utilization of servers, we assume that each online user imposes
0:0005 utilization to each server (i.e., c D 0:0005) in Eq. 5.9 from Fig. 5.3 and for
the sake of simplicity we assume servers can be utilized up to 100% and there is no
network delay.

5.6.1.2 Workload Distribution

We used one day (March 17, 2011) of workload trace of an entertainment Web
site hosted at GoDaddy.com. Using Google Analytics, we collected the hourly total
number of visitors to the Web site from different USA states (see Fig. 5.4). The
workload is scaled up to the data centers’ capacity.

5.6.1.3 Renewable Energy Profile

We use realistic traces of wind and solar energy from [22, 23] that have measure-
ments every 10 min for a year across different location in USA. We choose two
centers in CA and TX to capture the availability of solar and wind energy in DC1
and DC2. Since we did not find any center at GA, we choose a renewable profile of
a center in IL instead to use at DC3 (see Fig. 5.1c, d).

5.6.1.4 Experiments Performed

We performed different experiments to show how GLP along with energy buffering
management can push energy/cost sustainability through increasing the utilization
of renewable and decreasing electricity cost. We evaluate the cost efficiency of
GLP with respect to battery sizes of data centers, and energy renewable prediction
window length. We run two workload and server management algorithms, (i) GLP

140 Z. Abbasi et al.

0

500

1000

1500

2000

38% 38% 42% 45% 47% 47%

Battery size (MJ)

NoG
LP

, 0 0

64
 (1

%
)

64
0
(1
0%

)

16
00

 (2
5%

)

32
00

 (5
0%

)

48
00

 (7
5%

)

($
)

Fig. 5.5 Electricity cost of
GLP versus NoGLP and
battery sizes

that is the solution of the problem shown in Fig. 5.3 (with a real value assumption
for the variable y), and (ii) NoGLP where workload is statically balanced among
data centers and no dynamic workload shifting across data centers is allowed; to
solve NoGLP, the problem in Fig. 5.3 is independently solved for each data center
(with a real value assumption for the variable y)).

We used GNU Linear Programming Kit (GLPK) solver under MATLAB 2009,
to solve GLP and noGLP algorithms.

5.6.2 GLP Electricity Cost Saving

In this experiment, we compare the GLP electricity cost to NoGLP cost with respect
to battery size. We vary the battery size form 0 to 6,400 MJ, where 6,400 MJ is equal
to the average energy consumption of data centers in 24 h. We scale renewable traces
such that when GLP runs with zero battery size the average renewable percentage
equals to 5%. Results in Fig. 5.5 show that GLP saves 38% electricity cost compared
to NoGLP when there is no battery. Saving increases up to 47% with increasing
battery. The reason is that GLP utilizes batteries to store low cost energy during
low-electricity-rate periods.

5.6.3 Sustainability Versus GLP and Battery Size

In the following experiment, GLP along with energy buffering helps to increase the
sustainability of data centers through increasing renewable energy utilization. We
run the experiment for several values of battery sizes ranging from 0 upto 6,400 MJ.
Finally, we compare the optimal offline solution of both GLP and NoGLP for a time
horizon of 1 week (T D 7 � 24), where all of the information of renewable and
workload for the entire time horizon is available.

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 141

0 64 640 1600 3200 4800 6400
0

2

4

6

8

10

12
x 1010

Battery size, Bsize (MJ)

R
en

ew
ab

le
 e

ne
rg

y
us

ag
e

(J
)

28% 28%
28%

29%
34% 36% 33%

NoGLP GLP

Increased
usage
(%)

Fig. 5.6 Renewable energy
utilization versus battery size

0

5

10

15
x 1010

T
ot

al
 e

ne
rg

y
co

ns
um

pt
io

n
(J

) Renewable energy draw
AC energy draw

NoGLP GLP

Fig. 5.7 Energy
consumption
(type/magnitude) of GLP and
NoGLP versus different
battery sizes (bars are sorted
according to battery sizes of
Fig. 5.6)

We scaled the renewable linearly for all data centers, and run both GLP and
NoGLP. Results shown in Fig. 5.6 indicates that GLP utilizes renewable 28% more
than NoGLP when there is no battery. Note that renewable energy profile for each
data centers in both GLP and NoGLP are the same, however GLP can utilize it more
than NoGLP under the same battery size.

With increasing battery size, both GLP and NoGLP increase the utilization of
renewable. However, to achieve the same renewable energy usage, NoGLP needs
much larger battery size compared to GLP.

Figure 5.7 showing total energy usage (type and magnitude), indicates how GLP
can push sustainability in data centers using both workload placement across data
centers and energy buffering management.

Figures 5.8 and 5.9 show the energy consumption and energy type of all three
data centers using GLP and NoGLP over time. The figures shows that NoGLP
buffers renewable energy (or low-cost electricity price) during low workload time

142 Z. Abbasi et al.

0 50 100 150
0

0.5

1

1.5

2 x 109

E
ne

rg
y(

J)

0 100
0

0.5

1

1.5

2 x 109

Time index (hour)

Total Energy Cons. AC Energy draw Renewable draw Battery level

0 50 100 150
0

0.5

1

1.5

2 x 109

Fig. 5.8 Energy consumption across all data centers using GLP and battery size of 1,600 MJ

0 100
0

0.5

1

1.5

2 x 109

E
ne

rg
y

(J
)

0 100
0

0.5

1

1.5

2 x 109

Time index (hour)
0 100

0

0.5

1

1.5

2 x 109

Total energy cons. AC energy draw Renewable draw Battery level

Fig. 5.9 Energy consumption across all data centers using NoGLP and battery size of 1,600 MJ

(low utility rate) and utilizes it during peak workload time (high utility rate).
Along with this, GLP also manages the workload share of each data centers to
minimize cost.

5.6.4 Workload and Renewable Energy Prediction

In this section, we use different time series prediction techniques to investigate the
predictability of renewable energy sources and workload. We use solar and wind

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 143

Fig. 5.10 (a) The solar energy trace indicates daily seasonal behavior which is captured with the
with SARIMA(002,111). (b) The model fitted indicates that the residual values are close to 0 for
most of the fitted values

Fig. 5.11 (a) The wind energy trace indicates no seasonal behavior hence simple moving average
model can be used. (b) The model fitted indicates that the residual values are close to 0 for most of
the fitted values

energy traces obtained from the sites in California, Texas and Illinois [22, 23] (see
Fig. 5.1c, d).

We used different techniques such as the moving average based technique of Holt
Winters, auto regression techniques (i.e., linear, linear with seasonal, linear with
harmonics), and SARIMA (Seasonal Auto Regressive Integrated Moving Average).

We found that to model the cyclic behavior in the solar energy trace, the
SARIMA model performs better than the other models (see Fig. 5.10a) where as
a simple moving average model is better for wind traces (see Fig. 5.11a).

The accuracy of the models is decided based on several factors such as the
residual values obtained at different lags, the fitting of the residual value as in
Figs. 5.10b and 5.11b. We also use the Auto Correlation Function and Partial Auto
Correlation plots of the residuals to make sure that residuals do not exhibit any
correlation.

To evaluate the predictability of solar and wind energy traces, we calculate the
absolute prediction error and normalize it to compare the predictability of the two
traces.

144 Z. Abbasi et al.

Fig. 5.12 (a) Error for different forecast window for wind and solar, (b) prediction of NASA
workload trace using SARIMA

As shown in Fig. 5.12a, the prediction error of the wind trace increases rapidly
with the size of the forecast window. The same figure shows that the prediction error
of solar energy remains almost constant with the size of the forecast window.

We also investigate the predictability of the Internet workload using NASA
traces. We develop an ARIMA based prediction model and observe the absolute
prediction error to be 5.8% over a forecasting window length of 24.

5.6.5 Sustainability Versus Prediction Window

The GLP evaluation results that is presented so far were based on an GLP offline
solution which is aware of the information of the entire time horizon in advance. The
results in the previous section highlights that the information such as wind traces can
not be accurately predicted.

In this experiment we solve GLP for a prediction window of size 24, and compare
the results with the offline solution results where GLP is solved for the entire
time horizon of 168 (a week). Results as shown in Fig. 5.13 indicates of up to 8%
reduction in renewable energy usage of GLP compared to the offline solution.

5.6.6 Discussion on the Results

The simulation study highlights the usefulness of GLP in reducing electricity cost,
and its potential aid in reducing energy infrastructure cost to achieve sustainability
(e.g., renewable energy generation and energy storage). The results show that
while GLP achieves 75% energy sustainability, i.e. the contribution of renewable
energy in the total energy consumption, with average renewable generation rate of
54 MWh and battery size of 640 MJ, No GLP achieves 60% sustainability under

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 145

1 640 3200 4800 6400
0

2

4

6

8

10

12
x 1010

0% 0%
4% 8% 8%

Battery size, Bsize (MJ)

R
en

ew
ab

le
 E

ne
rg

y
U

sa
ge

 (
J)

Prediction window=24
Prediction window=168

Fig. 5.13 Renewable energy
versus prediction window
length

the same condition of renewable energy generation and battery size (refer Fig. 5.6).
The simulation however, is performed under ideal assumptions of zero bandwidth
cost, zero migration cost, and ideal batteries (e.g., 100% energy efficiency). In
practice the benefit of GLP may come at the cost of using high cost bandwidth,
and consuming higher bandwidth than NoGLP (the extra bandwidth usage is due to
migration of users’/applications’ state information). Further, the physical limitation
of batteries prevent GLP to charge/discharge battery at any frequency, time and rate.
Future work should address the cost-benefit of GLP in developing sustainable data
centers under physical characteristics of batteries and bandwidth costs.

The performance of GLP is also affected by predictability of information
including workloads and renewable. The longer prediction window length increases
the cost efficiency of GLP. However, our results show that the prediction error
of wind rapidly increases with increasing prediction window. This necessitates to
design efficient online algorithms with small competitive ratio with respect to the
offline optimal solutions than runs on a long time horizon.

Finally, the practical issues of GLP should be tested and examined using data
center research infrastructure such as the BlueTool [17, 19], which offers a small
data center for experimentation with innovative management schemes.

5.7 Conclusions

This study gave an overview on Geographical appLication/WorkLoad Placement
(GLP) which has recently drawn attention in research and industry. Existing
research highlights its usefulness in increasing the use of renewable energy by
managing the costs of energy buffering and bandwidth costs. Despite all this, a lot
still needs to be done. Particularly, there is no empirical study to expose the practical
challenges of GLP. Further, the practical issues to migrate stateful applications’
workload, heterogeneity of applications, joint optimization of computing and
cooling energy across data centers has not been sufficiently addressed.

146 Z. Abbasi et al.

This chapter also presented a general cost model of GLP for interactive stateful
applications that accounts for minimizing electricity cost price and maximizing re-
newable energy usage across data centers. The model along with realistic workload
and renewable traces used in a simulation study to evaluate the efficiency of GLP in
achieving sustainable data centers. Results show that, GLP, can indeed decreases the
need for large-scale batteries to move toward sustainable data centers. This can be
achieved if predicted workload and renewable energy information is provided with
reasonably accuracy.

References

1. Abbasi Z, Varsamopoulos G, Gupta SKS (2010) Thermal aware server provisioning and
workload distribution for Internet data centers. In: ACM international symposium on high
performance distributed computing (HPDC10), Chicago, pp 130–141

2. Abbasi Z, Mukherjee T, Varsamopoulos G, Gupta SKS (2011) Dynamic hosting management
of web based applications over clouds. In: International conference on high performance
computing conference (HiPC2011), Bengaluru

3. Abbasi Z, Mukherjee T, Varsamopoulos G, Gupta SKS (2012) DAHM: a green and dynamic
web application hosting manager across geographically distributed data centers. J Emerg
Technol Comput Syst 8(4):34:1–34:22

4. Abbasi Z, Varsamopoulos G, Gupta S (2012) Tradeoff and energy awareness in IDC manage-
ment. ACM Trans Archit Code Optim 9(2):11

5. Akoush S, Sohan R, Rice A, Moore AW, Hopper A (2011) Free lunch: exploiting renewable
energy for computing. In: Proceedings of HotOS, Napa

6. Barroso LA, Holzle Urs (2007) The case for energy-proportional computing. Computer
40:33–37

7. Beskow PB, Vik K-H, Halvorsen P, Griwodz C (2009) The partial migration of game state and
dynamic server selection to reduce latency. Multimed Tools Appl 45(1):83–107

8. Buchbinder N, Jain N, Menache I (2011) Online job-migration for reducing the electricity bill
in the cloud. Networking 6640:172–185

9. Barbir A., Cain B, Nair R, Spatscheck O (2003) Known content network (CN) request-routing
mechanisms. Internet engineering task force RFC 3568

10. Chase J, Anderson D, Thakar P, Vahdat A, Doyle R (2001) Managing energy and server
resources in hosting centers. In: Proceedings of the eighteenth ACM symposium on operating
systems principles (SOSP 2001), Lake Louise, pp 103–116

11. Chen Y, Das A, Qin W, Sivasubramaniam A, Wang Q, Gautam N (2005) Managing server
energy and operational costs in hosting centers. SIGMETRICS Perform Eval Rev 33(1):
303–314

12. Conti M, Gregori E, Panzieri F (2000) Load distribution among replicated web servers: a qos-
based approach. ACM SIGMETRICS Perform Eval Rev 27(4):12–19

13. Faraz A, Vijaykumar TN (2010) Joint optimization of idle and cooling power in data centers
while maintaining response time. ACM SIGARCH Comput Archit News 38(1):243–256

14. GSA FEMP (2010) Quick start guide to increase data center energy efficiency. Technical
report, General Services Administration (GSA) and the Federal Energy Management Program
(FEMP)

15. Govindan S, Sivasubramaniam A, Urgaonkar B (2011) Benefits and limitations of tapping into
stored energy for datacenters. In: Proceedings of the 38th international symposium on computer
architecture (ISCA), San Jose

5 Sustainable Dynamic Application Hosting for Distributed Data Centers 147

16. Guoju Z, Xisheng T, Zhiping Q (2010) Research on battery supercapacitor hybrid storage and
its application in microgrid. In: Power and energy engineering conference (APPEEC), 2010
Asia-Pacific, Chengdu, pp 1–4

17. Gupta SKS, Gilbert RR, Banerjee A, Abbasi Z, Mukherjee T, Varsamopoulos G (2011)
GDCSim: a tool for analyzing green data center design and resource management techniques.
In: Proceedings of international green computing conference (IGCC11), Orlando. IEEE

18. Gupta SKS, Mukherjee T, Varsamopoulos G, Banerjee A (2011) Research directions in energy-
sustainable cyber-physical systems. Elsevier Sustain Comput (SUSCOM) 1(1):57–74. Invited
paper

19. Gupta SKS, Varsamopoulos G, Haywood A, Phelan P, Mukherjee T (2012) BlueTool: using
a computing systems research infrastructure tool to design and test green and sustainable
data centers. In: Ahmad I, Ranka S (eds) Handbook of energy-aware and green computing,
number 45. Chapman and Hall/CRC, Boca Raton

20. http://www.apple.com/environment/renewable-energy/
21. http://www.google.com/about/datacenters/renewable/index.html
22. http://rredc.nrel.gov/solar/new data/confrrm/
23. http://wind.nrel.gov/Web nrel/
24. Koomey JG, Belady C, Patterson M, Santos A, Lange K-D (2009) Assessing trends over time

in performance, costs, and energy use for servers. Technical report, Microsoft Corporation and
Intel Corporation

25. Krioukov A, Mohan P, Alspaugh S, Keys L, Culler D, Katz R (2010) NapSAC: design and
implementation of a power-proportional web cluster. In: Proceedings of the first SIGCOMM
workshop on green networking, New Delhi. ACM, pp 15–22

26. Krumke SO, Noltemeier H, Schwarz S, Wirth H-C, Ravi R (1999) Flow improvement and
network flows with fixed costs. In: Operations research proceedings 1998, Zurich. Springer,
Berlin/Heidelberg, pp. 158–167

27. Kumar K, Lu Y-H (2010) Cloud computing for mobile users: can offloading computation save
energy? Computer 99:51–56

28. Kusic D, Kephart JO, Hanson JE, Kandasamy N, Jiang G (2009) Power and performance
management of virtualized computing environments via lookahead control. Clust Comput
12:1–15

29. Le K, Bilgir O, Bianchini R, Martonosi M, Nguyen TD (2010) Managing the cost, energy
consumption, and carbon footprint of Internet services. SIGMETRICS Perform Eval Rev
38(1):357–358

30. Lin M, Wierman A, Andrew LLH, Thereska E (2011) Dynamic right-sizing for power-
proportional data centers. In: Proceedings of the IEEE INFOCOM, Shanghai, pp 10–15

31. Lin M, Liu Z, Wierman A, Andrew LLH (2012) Online algorithms for geographical load
balancing. In: Proceedings of international green computing conference (IGCC11), Orlando.
IEEE

32. Liu Z, Lin M, Wierman A, Low SH, Andrew LLH (2011) Geographical load balancing with
renewables. ACM SIGMETRICS Perform Eval Rev 39(3):62–66

33. Liu Z, Lin M, Wierman A, Low SH, Andrew LLH (2011) Greening geographical load
balancing. In: Proceedings of the ACM SIGMETRICS, San Jose. ACM, pp 233–244

34. Liu Z, Chen Y, Bash C, Wierman A, Gmach D, Wang Z, Marwah M, Hyser C (2012)
Renewable and cooling aware workload management for sustainable data centers. ACM
SIGMETRICS Perform Eval Rev 40:175–186. ACM

35. Mars J, Tang L, Hundt R, Skadron K, Soffa ML (2011) Bubble-up: increasing utilization
in modern warehouse scale computers via sensible co-locations. In: Proceedings of the 44th
annual IEEE/ACM international symposium on microarchitecture, New York. Porto Alegre,
Brazil ACM, pp 248–259

36. Merkel A, Stoess J, Bellosa F (2010) Resource-conscious scheduling for energy efficiency on
multicore processors. In: Proceedings of the 5th European conference on computer systems,
EuroSys ’10. ACM, New York, pp 153–166

37. Miller R (2011) Facebook installs solar panels at new data center. White Paper

http://www.apple.com/environment/renewable-energy/
http://www.google.com/about/datacenters/renewable/index.html
http://rredc.nrel.gov/solar/new_data/confrrm/
http://wind.nrel.gov/Web_nrel/

148 Z. Abbasi et al.

38. Mukherjee T, Banerjee A, Varsamopoulos G, Gupta SKS (2010) Model-driven coordinated
management of data centers. Comput. Netw. 54(16):2869–2886

39. Pathan M, Vecchiola C, Buyya R (2008) Load and proximity aware request-redirection for
dynamic load distribution in peering CDNs. In: On the move to meaningful internet systems:
OTM 2008. Springer, Berlin/Heidelberg, pp. 62–81

40. Qureshi A (2010) Power-demand routing in massive geo-distributed systems. PhD thesis,
Massachusetts Institute of Technology

41. Qureshi A, Weber R, Balakrishnan H, Guttag J, Maggs B (2009) Cutting the electric bill for
Internet-scale systems. In: Proceedings ACM SIGCOMM, Barcelona, pp 123–134

42. Rao L, Liu X, Ilic M, Liu J (2010) MEC-IDC: joint load balancing and power control for
distributed Internet data centers. In: Proceedings of the 1st ACM/IEEE international conference
on cyber-physical systems, Stockholm, pp 188–197

43. Rao L, Liu X, Xie L, Liu W (2010) Minimizing electricity cost: optimization of distributed
Internet data centers in a multi-electricity-market environment. In: Proceedings of the IEEE
INFOCOM, San Diego, pp 1–9

44. Saroiu S, Gummadi KP, Dunn RJ, Gribble SD, Levy HM (2002) An analysis of internet content
delivery systems. ACM SIGOPS Oper Syst Rev 36(si):315

45. Stewart C, Shen K (2009) Some joules are more precious than others: managing renewable
energy in the datacenter. In: Workshop on power aware computing and systems, Big Sky

46. Tang Q, Gupta SKS, Varsamopoulos G (2008) Energy-efficient thermal-aware task scheduling
for homogeneous high-performance computing data centers: a cyber-physical approach. IEEE
Trans Parallel Distrib Syst 19(11):1458–1472

47. Urgaonkar R, Urgaonkar B, Neely MJ, Sivasubramanian A (2011) Optimal power cost
management using stored energy in data centers. In: Proceedings of the ACM SIGMETRICS
joint international conference on measurement and modeling of computer systems, San Jose,
pp 221–232. ACM

48. Varsamopoulos G, Banerjee A, Gupta SKS (2009) Energy efficiency of thermal-aware job
scheduling algorithms under various cooling models. In: International conference on contem-
porary computing IC3, Noida, pp 568–580

49. Varsamopoulos G, Gupta SKS (2010) Energy proportionality and the future: metrics and
directions. In: 39th international conference on parallel processing workshops (ICPPW), San
Diego. IEEE, pp 461–467

50. Vokoun R (2012) Renewable energy in today’s data center. White Paper
51. Wang D, Ren C, Sivasubramaniam A, Urgaonkar B, Fathy H (2012) Energy storage in

datacenters: what, where, and how much? In: Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on measurement and modeling of
computer systems, London. ACM, pp 187–198

52. Xu D, Liu X (2012) Geographic trough filling for internet datacenters. In: INFOCOM, 2012
Proceedings IEEE, Orlando. IEEE, pp 2881–2885

53. Zhang Y, Wang Y, Wang X (2011) Greenware: greening cloud-scale data centers to maximize
the use of renewable energy. In: Middleware 2011, Lisboa, Portugal, pp 143–164

Chapter 6
Barely Alive Servers: Greener Datacenters
Through Memory-Accessible, Low-Power States

Vlasia Anagnostopoulou, Susmit Biswas, Heba Saadeldeen, Alan Savage,
Ricardo Bianchini, Tao Yang, Diana Franklin, and Frederic T. Chong

6.1 Introduction

Energy represents a large fraction of the operational cost of Internet services. As a
result, previous works have proposed approaches for conserving energy in these
services, such as consolidating workloads into a subset of servers and turning
others off [8–10, 31], and leveraging dynamic voltage and frequency scaling of the
CPUs [9, 12, 13].

Consolidation is particularly attractive for two reasons. First, current resource
provisioning schemes leave server utilizations under 50% almost all the time [13].
At these utilizations, server energy efficiency is very low [4]. Second, current servers
consume a significant amount of energy even when they are completely idle [4].
Despite its benefits, services typically do not use this technique. A major reason
is the fear of high response times during re-activation in handling traffic spikes.
Another reason is that services often want the memory and/or storage of all servers
to be readily available even during periods of light load. For example, interactive
services try to maximize the amount of memory available for data caching across
the cluster, thereby avoiding disk accesses or content re-generation.

In this paper, we propose an approach that does not completely shutdown idle
servers, enables fast state transitions, and keeps in-memory application code/data
untouched. Specifically, we propose to send servers to a new family of “barely-alive”
power states, instead of turning them completely off after consolidation.

V. Anagnostopoulou (�) • S. Biswas • H. Saadeldeen • A. Savage • T. Yang
D. Franklin • F.T. Chong
University of California Santa Barbara, Santa Barbara, CA 93106, USA
e-mail: vlasia@cs.ucsb.edu; susmit@cs.ucsb.edu; heba@cs.ucsb.edu; asavage@cs.ucsb.edu;
tyang@cs.ucsb.edu; franklin@cs.ucsb.edu; chong@cs.ucsb.edu

R. Bianchini
Rutgers University, Piscataway, NJ 08854, USA
e-mail: ricardob@cs.rutgers.edu

P.P. Pande et al. (eds.), Design Technologies for Green and Sustainable Computing Systems,
DOI 10.1007/978-1-4614-4975-1 6, © Springer ScienceCBusiness Media New York 2013

149

150 V. Anagnostopoulou et al.

In a barely-alive state, a server’s memory (and possibly its disks) can still be
accessed, even if many of its other components are turned off. Keeping data
active and accessible in barely-alive states enables software to implement cluster-
wide (or “cooperative”) main-memory caching, data replication and coherence, or
even cluster-wide in-memory data structures, while conserving a significant amount
of energy.

Our evaluation starts by comparing barely-alive states to conventional consol-
idation via complete server shutdown, as well as more recent proposals such as
PowerNap and Somniloquy. In particular, we evaluate the effect of server restart
latency on response time during typical load spikes. Spikes may occur due to a
variety of reasons, including external events (e.g., Slashdot effect), the temporary
unavailability of a mirror datacenter, operator mistakes, or software bugs. Under
latency constraints, greater restart latency translates to a larger number of extra
active servers provisioned to absorb the load. We evaluate the sensitivity of each
energy conserving scheme to the duration and magnitude of load spikes, as well as
to modifications to data while in energy-conserving server states.

We then present a study of a server cluster implementing a cooperative cache
for the “snippet” generator of a Web search service. Many services today use
cooperative caching middlewares (e.g., Memcached is used at Wikipedia, Twitter,
and others [11]). Our cooperative caching implementation accommodates barely-
alive servers and dynamically re-sizes the cache as a function of workload variations
and desired performance. Any memory not used for caching can be used by other
applications. For this study, we simulate systems based on an efficient barely-alive
state, on-off, Somniloquy, and low-end servers. We also investigate the tradeoff
between performance and energy savings under various system parameters.

Finally, we introduce two case studies using the barely-alive states. In the first
study, we propose a “mixed” system that combines active, barely-alive and off
states. We find that at each performance level, the mixed system achieves the highest
energy savings. In the second study, we propose a system that combines active and
barely-alive only, but hosts more than one service. Overall, barely-alive states can
produce energy savings of up to 38%, compared to a baseline energy-oblivious
system. Moreover, we find that barely-alive states can conserve significant energy
across a large parameter space. When two services share the cluster, the barely-alive
system can save up to 34% energy.

The remainder of the paper is organized as follows. Next, we discuss the
background and right after the related work. In Sect. 6.4, we introduce the barely-
alive family of power states. We qualitatively compare our family of states to
previous schemes in Sect. 6.5. Section 6.6 presents our analysis of provisioning
for load spikes. In this section, we also describe our simulation infrastructure and
aggregate memory results. In Sect. 6.7 we introduce the mixed system case study
and assess the energy savings of the mixed system at different performance levels
as compared to other approaches. In Sect. 6.8 we introduce the memory sharing
functionality of our caching middleware with the barely-alive system, and evaluate
its potential for energy savings at the presence of two services. Finally, we draw our
conclusions in Sect. 6.9.

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 151

6.2 Background

6.2.1 Consolidation and Low-Power Server States

The idea of dynamic workload consolidation consists of adjusting the number of
active servers dynamically, based on the load offered to the service. During periods
of less-than-peak load, the workload can be concentrated (either through state
migration or request distribution) on a subset of the servers and others can be turned
off. An alternative to turning servers off is to transition the rest of the servers into a
low power state.

Two low-power states have been proposed recently. Somniloquy [2] augments
the network interface to be able to turn most other components off during periods of
idleness, while retaining network connectivity. In the low-power state, main memory
becomes inaccessible, so accesses can only be performed to the small memory
of the network interface. No disk accesses can be effected. Moreover, updates to
main memory can only be performed after activation, thereby increasing delay. In
contrast, our states allow read and write accesses to the entire main memory and
disks. PowerNap rapidly [27] transitions servers between active and “nap” state,
obviating the need for consolidation. In nap state, a server is not operational.
PowerNap requires server software to avoid unwanted transitions to active state
(e.g., due to clock interrupts). More challengingly, PowerNap requires the server
to be completely idle, which is becoming harder as the number of cores per CPU
increases (the idle times of all cores must perfectly overlap). Recently, Meisner and
Wenisch addressed the latter problem by forcing idle times to overlap and adding a
co-processor to each server [26].

6.2.2 Cooperative Caching

Cluster-wide cooperative main-memory caching (or simply cooperative caching)
[6, 11, 30] improves the performance of Internet services, as it caches the most
popular objects in the server memories, thereby avoiding disk accesses or content
regeneration. The mapping of objects to server memories is known to the intra-
cluster request distribution algorithm. However, existing cooperative caching layers
differ in how they distribute the incoming client requests across the cluster. In the
layer we study in this paper [6], when a client request arrives, the distribution
algorithm directs it to one of the servers that caches the requested object (if one
exists), as long as that does not excessively imbalance the load across servers. When
it does, the caching layer creates an additional replica of the object to better spread
the load.

An important characteristic of the caching layer is the object placement and
replacement. A simple LRU cache has been found to yield good results [14] for this.
At the same time, it is important to have a notion of the hit ratio of a cache hierarchy,

152 V. Anagnostopoulou et al.

given its capacity, the replacement policy and a sequence of memory accesses, in
order to implement memory allocation and sharing policies for the applications. An
interesting approach for LRU caches is the Stack algorithm [25], which can compute
the hit ratio that would be achieved by all cache sizes using a single pass over the
stream of memory accesses. The idea of the algorithm is to keep an “LRU stack” of
memory block (e.g. main memory page) addresses sorted by recency of access; an
access moves the corresponding block address to the top of the stack. In addition,
the algorithm computes the “stack distance” between two consecutive accesses to
each block. On an access, the stack distance is the number of other blocks between
the current location of the accessed block and the top of the stack. The distance
reflects the number of other blocks that were accessed between the current and the
previous access to the block. A distance larger than the number of blocks that fit in
each cache size represents a cache miss for that size.

In its simplest implementation, the algorithm uses a linked list to represent
the stack [25]. More efficient implementations typically keep track of the reuse
distances of the references instead of the references themselves, and use more
sophisticated data structures, e.g. [5]. Because of the overhead of the algorithm and
the need to detect all memory accesses, it can only be used on-line when hardware
support is available [36], when large blocks are accessed explicitly [21], or when
approximations are acceptable [34, 36]. In our caching middleware, we consider a
single-level memory hierarchy (main memory), blocks (objects) that are accessed
explicitly by calling the middleware, and use LRU as the object replacement policy.

6.3 Related Work

Many papers have studied the combination of dynamic workload consolidation with
server turn off [8–10,15,31,32]. In this paper, we demonstrate how to make energy
conservation in dynamic workload consolidation more practical through the creation
of a family of active low-power server states. We compare our server states against
PowerNap and Somniloquy [2, 27] extensively in Sects. 6.5 and 6.6.

An orthogonal approach to consolidation and turn off is to dynamically scale the
voltage/frequency of the processor (DVFS), when the CPU load is low. We focus on
consolidation and turn off for two main reasons. First, DVFS currently only applies
to the CPU, while other server components also consume significant power. Second,
the opportunity to reduce voltage (the main source of CPU energy savings) has and
will continue to diminish over time.

Our study focuses on high-performance servers with consolidated workloads
requiring significant processing power. Other work has studied datacenters com-
prising lower performance (and power) servers [3]. These servers were not found
to be particularly advantageous for Web search in terms of energy (although more
advantageous in terms of cost) in [22]. More recently, Reddi et al. at [19] found
that these servers perform poorly for a computationally intensive search engine
workload. In Sect. 6.6.3, we compare our results to those of such servers.

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 153

Some states in the barely-alive family turn all the CPU cores off but still allow
memory accesses through the network interface. Remote Direct Memory Access
(RDMA) also allows memory to be accessed without host intervention. However,
the previous works in RDMA have focused on using this mechanism to bypass an
active CPU in fully operational servers. A few high-end network interface cards,
such as InfiniBand [24], provide RDMA capabilities. Although we intentionally
abstract the mechanisms required by RDMA (e.g., address registration and memory
pinning) in this paper, we do rely on similar functionality.

Another approach that enables remote memory accesses in a blade chassis is
disaggregated memory (DM) [23]. In DM, a set of memory blades extend the
memory of the compute blades. A memory blade can be seen as a server in a
barely-alive state with all cores and disks turned off. However, our approach is more
flexible in that barely-alive servers can be activated and recover the full functionality
of a server. In addition, most barely-alive states require no hardware modification
and can use off-the-shelf clustering software. Finally, in our approach, each server
includes more local memory, reducing interconnect bandwidth requirements with
respect to DM.

6.4 Barely-Alive States

We propose a family of barely-alive server states. The states differ in terms of exactly
what components are turned off to conserve energy. The unifying characteristic of
all states in the family is that selected levels of the memory hierarchy (main memory
and possibly disks) can be accessed by remote servers, despite the fact that some
components are turned off. An Internet service can transition some servers to one of
the barely-alive states, instead of the off state, after consolidating the workload on
another set of servers.

6.4.1 Members of the Family

We have identified many barely-alive states, called “BA” followed by a member
number. The deepest state, BA1, turns off all the cores, all the disks, the shared
cache, all but one fan, and all but one network interface. The memory controller is
kept on (even if the controller is on chip), but the memory devices are sent to the
self-refresh mode immediately after any access. Remote memory accesses occur
through a very low-power embedded processor built into the network interface.
(Some existing network cards include programmable processors in them, e.g. [29].)
This processor accesses memory by driving the memory controller directly, just as
in regular DMA operations involving the network interface. In fact, compared to
current server hardware, the only hardware support required by BA1 is a separate
power rail for the memory controller and the low-power embedded processor (if it
is not already available in the network card).

154 V. Anagnostopoulou et al.

BA2 consumes slightly more power than BA1, as it manages the memory using
the standard close-page policy. Under this policy, most power savings (beyond those
of BA1) come from transitioning memory ranks that have no open row buffers to
the (precharge) powerdown mode. BA2 requires no hardware support beyond that
for BA1.

BA1 and BA2 can be used when the memory access traffic on a barely-alive
server is low enough that a single network interface and embedded processor can
manage. Higher load may require additional components to be activated. In state
BA3, one or more additional network interfaces are activated. To name variations
with different numbers of active components, we use a suffix. For example, when
two active network interfaces are used, we refer to this state as BA3-2NI. Again,
BA3 requires no hardware support beyond that for BA1.

If the load on a barely-alive server is excessively high for the embedded
processors to handle, one or more cores (and possibly fans) must be activated; the
embedded processors can be turned off. State BA4 represents these scenarios. The
deepest of the BA4 states is BA4-1C, which keeps a single core, fan, and network
interface active. The shared cache is active as well. In terms of hardware support,
BA4 requires the ability to turn off cores independently. This ability already exists
in some modern multi-core CPUs. In addition, BA4 could benefit from the ability
to activate only part of the shared cache, e.g. 1=N of it for an N -core CPU. Current
processors do not provide this feature.

One or more cores must also be active, when remote disk accesses to barely-alive
servers are needed. The active core(s) can execute the device driver for the disk(s).
State BA5 represents these scenarios. The deepest of the BA5 states is BA5-1C-1D
which keeps a single core, fan, network interface, and disk active. BA5 requires no
hardware support beyond that for BA4.

Transition overheads. The transitions to and from a barely-alive state are initiated
by a CPU core (if at least one is active) or by the embedded processor (if no core
is active). Transitions can be between the active state and a barely-alive state or
between two barely-alive states. Regardless of the states involved, transitions can
be very fast and consume little energy, since the memory contents (including any
cached data and the operating system state) are not affected. In fact, updates to the
memory contents can occur while the server is in a barely-alive state. The discussion
below quantifies these overheads for the two extreme transitions: (1) from the active
state to BA5 and back (disks remain active all the time); and (2) from the active state
to BA1 and back (disks can be shut down in the barely-alive state).

The transitions between the active state and BA5 take on the order of microsec-
onds, i.e. the time needed to transition the cores and network interfaces. The fans
need not complete their transitions before the server can be declared in the barely-
alive or the active state. The energy overhead of the transitions is negligible.

The transition from the active state to BA1 also takes on the order of microsec-
onds, since the fans and disks can complete their transitions in the background. The
energy overhead of this transition is dominated by the energy consumed in spinning
down the disks. In contrast, the transition from BA1 to the active state is dominated

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 155

in terms of both time and energy by the disk activation overheads. Carrera et al. [7]
have quantified the overheads of sending an IBM Ultrastar disk to the standby state
at 10 J and 2 s, and the overheads of activating it at 100 J and 10 s. Others [35]
have reported much lower overheads for a Fujitsu disk. Fortunately, these overheads
are modest, given that Internet service workloads allow servers to stay in a barely-
alive state for long periods of time.

Implications for software. To be most useful, the barely-alive family requires the
cluster software to have the ability to (1) consolidate the workload into a subset
of (active) servers and (2) perform remote memory (read and/or write) accesses
to barely-alive servers. For Internet services, it would be natural for the cluster
software to implement some sort of cooperative main-memory caching system
[6, 11, 30], which would manage the main memories of the cluster as a single
large cache. This implementation could be coupled with a standard consolidation
algorithm. In fact, regardless of the barely-active state(s) used, the consolidation
algorithm can be the same as before [8, 31]. The only adjustment is that schemes
involving larger activation overheads (e.g., on-off consolidation) require more
servers to be active at all times to handle typical load spikes.

Although cooperative caching is a good application for barely-alive servers,
other types of datacenter workloads are also amenable to our family of states. For
example, one might implement a distributed file service that sends some servers to a
barely-alive state under light load, but continues using their memories to avoid disk
accesses. Another example is a replicated database system that transitions servers to
a barely-alive state, but keeps updating the tables they store and/or cache. Even
MapReduce computations with limited parallelism can leverage the set of main
memories to store large data structures. Obviously, the best barely-alive state for
these types of workloads may be different than that for cooperative caching.

When using barely-alive states in which at least one core is active (e.g., state
BA4-1C), all memory addressing can be done using virtual addresses. Furthermore,
the disks of barely-alive servers can be accessed (e.g., state BA5-1C-1D).

For the family members that turn off all cores (BA1, BA2, and BA3), memory
addressing requires careful handling in software. In particular, as the embedded
processor does not understand virtual addresses, the remote memory accesses have
to specify physical addresses or be translated to physical addresses in software by
the embedded processor. Memory management also becomes more difficult when
multiple embedded processors are active (e.g., state BA3-2NI). In this case, the
software is responsible for guaranteeing proper coordination. Finally, the embedded
processor has to implement some sort of (RDMA) communication protocol to be
able to receive memory access requests coming from active servers and reply to
them. As our target system is a server cluster, this communication protocol can be
lean and simple. Because the barely-alive states are independent of this protocol, we
do not discuss it further.

156 V. Anagnostopoulou et al.

6.4.2 Cooperative Caching Middleware

Our middleware implements the PRESS cooperative main-memory caching system
[6], but modifies it to accommodate servers in a barely-alive state and to re-size the
local caches dynamically. The goal is to reach a target cache hit ratio, while allowing
energy conservation and freeing up as much memory as possible for applications.
Note that the middleware cannot target an average response time, since it does not
service the cache misses (as explained below). We assume that each application
knows the average response time it wants to achieve, computes the target hit ratio
based on this response time and the average cache hit/miss times, and informs the
middleware about the computed target hit ratio.

Request distribution. The middleware caches application-level objects and names
them using numerical ids. It maintains the location of each cached object in the
cooperative cache directory, which is replicated at each server. When first received
by the service, a client request is assigned to a server in round-robin fashion. This
initial server decides whether to actually serve the request, depending on whether it
caches the requested object. If it does not, it looks up the directory and forwards the
request to a server that does (if one exists). If the remote server is in the BA2 state,
the initial server accesses the object directly from its memory. If the remote server is
overloaded, the initial server does not forward the request and replicates the object
locally.

Applications interact with the middleware mainly by calling runtime routines for
storing and fetching objects to/from the cooperative cache. A fetch call that misses
the cache returns a flag reflecting the miss; in this case, the application is supposed
to fetch or re-generate the object and store it in the cache. The middleware also
provides calls for object invalidation. The middleware allows these calls to originate
at any active server, i.e. servers in a barely-alive state are essentially passive “object
fetch servers”. The servers in the BA2 state can find objects in memory because
the network interface processor shares the object addresses with the host processor.
Invalidating an object cached by a barely-alive server works fine, because when the
barely-alive server is activated, it realizes that the object should be invalidated by
contacting one of the active nodes. To prevent the loss of cache space at the barely-
alive servers in invalidate-intensive scenarios, they can be periodically activated,
while some of the active servers can be sent to the barely-alive state.

Local cache re-sizing. The middleware determines the local (LRU) cache sizes
that are required for a target hit ratio using the stack algorithm [25]. The middleware
periodically (every hour) collects the stack information from all active servers and
computes the total (cooperative) cache size required to achieve the target hit ratio.
In systems that consolidate workloads and turn servers off, the middleware sets the
local caches to their maximum size and informs the consolidation algorithm about
the minimum number of servers (= total size divided by maximum local size) that
need to remain active. In systems that use barely-alive states, the middleware sets
the local cache sizes to the total cache size divided by the total number of servers.

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 157

 0

 20

 40

 60

 80

 100

0 50 100 150 200 250
0

2

4

6

8

H
it-

ra
te

 [%
]

N
um

-c
hu

nk
s

Stack slot size [KB]

Hit-rate and num-chunks with slot size

Hit-rate
Num-chunks

 0

 20

 40

 60

 80

 100

0 50 100 150 200 250

H
it-

ra
te

 [%
]

C
ut

-o
ff

ob
js

 [%
]

Cut-off size [KB]

Hit-rate and fraction of cut-off objs w. cut-off size

Hit-rate
Cut-off objs

Fig. 6.1 Optimizing the caching layer

6.4.2.1 Caching Layer Optimization

The stack algorithm assumes fixed-sized cache slots (e.g. pages). In contrast, Web
objects exhibit widely varying sizes. For this reason, selecting a large slot size would
generate excessive fragmentation in the cache, whereas selecting a small size could
generate significant overhead. Fortunately, through experimentation, we found that
splitting the local sizes into two parts, each with a different slot size and associated
stack, works well; splitting the cache into more parts provides only trivial benefits.

Two parameters affect the performance of this implementation, the cacheable
object cut-off size and the cache block-size. The best setting for both parameters
depends on the workload. The cut-off size determines the largest object that can
be cached. It is important to prevent extremely large objects from being cached,
because these objects tend to exhibit poor locality [6]; caching them could displace
many smaller objects that exhibit better locality, thereby lowering the hit-ratio
significantly. Users of our middleware configure this parameter by analyzing the
object size distribution statically. Similarly, defining the best value for the slot
sizes for the two parts of the local caches requires an analysis of the object size
distribution, as well as the desired response time and bookkeeping overheads.

We now discuss the setting of these parameters using the snippet service as an
example. Figure 6.1 (left) shows the hit-ratio (left Y axis) and average number of
slot-sized chunks per object (right X axis), as a function of the cache slot size.
The hit-ratio curve suggests that the best slot size would be the smallest possible.
However, at this size, an average of about eight blocks are required to represent
a single application object! Clearly, this number of chunks induces a significant
overhead for bookkeeping. From the graph, we can see that a slot size of 8 KB
translates into an average of roughly two chunks, which we use in our experiments.
Figure 6.1 (right) shows the hit-ratio (left Y axis) and the number of objects which
are not cached (right X axis), as a function of the cut-off size. These curves suggest
that a cut-off size of 32 KB, which we use in our experimentation is the best choice
for this workload.

158 V. Anagnostopoulou et al.

6.4.3 Consolidation Algorithm

We use a consolidation algorithm that periodically (every hour) determines how
many servers should remain active while others can be transitioned to a low-power
state (barely-alive, Somniloquy, or off state). The behavior of the algorithm depends
on the type of low-power state the system wants to use.

For systems that use a barely-alive state, the number of active servers is based
solely on the average utilization of the resource that is closest to saturation [15,31].
As a server-wide proxy for this average utilization, we use the average number
of outstanding requests divided by the maximum number of outstanding requests
a server can handle efficiently given the workload. Using this metric, when the
average response time increases, the utilization also increases.

When the average utilization cluster-wide is lower than the “state-transition
threshold”, the algorithm tries to reduce the number of active servers. Its main
constraint is that, after consolidation, no server shall exhibit a utilization higher
than this threshold. As discussed in Sect. 6.6.1, when provisioning for potential load
spikes, the algorithm adds extra active nodes to compensate for activation delays.

For systems that use Somniloquy or off states, the number of active servers is the
maximum between the above utilization-based calculation and the hit-ratio-based
minimum number of active servers described in the previous subsection.

6.5 Qualitative Evaluation of the Barely-Alive States

Table 6.1 presents a qualitative comparison of the power consumption and transition
overheads to and from active state of the members of the barely-alive family.
The power numbers assume a single multi-core CPU and do not include power
supply losses. The table also includes the same characteristics of PowerNap [27],
Somniloquy [2], On/Off [8, 31], and low-end servers (e.g., Atom-based servers)
[3, 19, 22]. Table 6.3 shows a more detailed breakdown of the power consumptions
we assume. In comparing the systems, we assume that they run an Internet service
workload and a cluster-wide cooperative caching middleware.

We first describe the systems that rely on load consolidation (the bottom group
in the table). The barely-alive family was described in Sect. 6.2. We assume that the
content of the memory of a server with no active cores (BA1, BA2, and BA3-2NI
in the table) is only updated when the server is activated. Somniloquy is similar to
BA1, except that all accesses in the low-power state are performed to memory in the
network interface itself, rather than main memory. As a result, data updates are only
performed to main memory when the server is activated. In addition, the amount of
memory that can be accessed is limited to the size of the network interface memory.
These two characteristics mean that Somniloquy must keep more servers active than
a barely-alive system to compensate for the higher activation time and the smaller
global memory cache.

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 159

Table 6.1 State transition overheads

Access Transition Transition
to all time energy

System memory Power (up/down) (up/down)

Traditional servers Y O.300 W/ N/A N/A
Low-end servers Y O.50 W/ N/A N/A
PowerNap Y O.40 W/ O.	s//O.	s/ O.	J//O.	J/
BA1 Y O.30 W/ O.10 s//O.	s/ O.100 J//O.10 J/
BA2 Y O.40 W/ O.10 s//O.	s/ O.100 J//O.10 J/
BA3-2NI Y O.50 W/ O.10 s//O.	s/ O.100 J//O.10 J/
BA4-1C Y O.60 W/ O.10 s//O.	s/ O.100 J//O.10 J/
BA5-1C-1D Y O.70 W/ O.	s//O.	s/ O.	J//O.	J/
Somniloquy N O.30 W/ O.10 s//O.	s/ O.100 J//O.10 J/
On/Off N O.0 W/ O.100 s//O.	s/ O.1; 000 J//O.100 J/

Transition overheads include the time and energy of the actual state transitions, as well as
the overhead to re-load and update the memory after activation. A detailed breakdown of our
assumed power consumptions is presented in Table 6.3. For a fair comparison, a disk is present
in PowerNap, but never shutdown.

The On/Off system turns servers completely off after consolidation, which means
that part of the cluster memory cannot be accessed, server activation takes a long
time, and data updates are done in batches after activation. Thus, the On/Off system
needs to keep more servers active than a barely-alive system to compensate for the
smaller memory cache and guarantee that server activation does not translate into
higher response times.

PowerNap and low-end servers do not rely on consolidation. PowerNap sends all
components (except for disks, which were replaced by solid-state drives in [27]) to
their deepest power states whenever there is any idle time at a server. Unfortunately,
multi-core servers are completely idle only for very short periods of time (if at
all), since the core idle times have to overlap perfectly. Low-end servers seek to
provide better energy efficiency simply through the use of more efficient (and often
lower performance) components; no power state changes are effected. As a basis for
comparison, we also consider a system that uses traditional 1U servers and keeps
them active at all times.

The key observations to make from this table are: (1) all systems have very low
power states with different levels of energy savings; (2) transition overheads are not
significant (except in the On/Off system), since we expect the systems that leverage
consolidation to transition states at the granularity of hours. Moreover, in the barely-
alive and Somniloquy systems, the time to activate a server can be reduced from
O.10 s/ to O.	s/, if the system does not shut down the disk; (3) when there is
idle time at all (i.e., under extremely low utilization), transition frequencies are
likely to be high for PowerNap, which would significantly increase the system’s
energy consumption; and (4) the low power of Somniloquy and On/Off is partially
countered by the need to keep more servers active, leading to higher overall energy,
as we shall demonstrate in our results.

160 V. Anagnostopoulou et al.

Overall, the barely-alive family presents a range of interesting tradeoffs between
power and overhead. BA1 is a deep power state with relatively small performance
and energy overheads, whereas BA5-1C-1D consumes more power but has trivial
overheads. No other system can achieve all the benefits that barely-alive states
provide.

Although all of the barely-alive states support our goals well, henceforth we will
focus on BA2 only. This state represents an interesting design point for two reasons:
(1) some current processors already have a power rail for the memory controller that
is separate from those for the cores; and (2) leaving one core on currently requires
leaving the entire shared cache on, reducing energy savings. Both these reasons are
illustrated by the Nehalem “uncore” [33].

6.6 Quantitative Evaluation of the Barely-Alive States

6.6.1 Benefits of Fast Activation

A significant challenge for all load consolidation schemes is handling typical
load spikes without violating latency constraints [13, 20]. In this section, we
present a simple analysis of barely-alive and previous schemes when faced with
a parameterized load spike. We estimate the extra server provisioning and illustrate
the tradeoffs of activation latency, standby power consumption, and data update
latency. We use the intuition deriving from these tradeoffs in our detailed case study
in Sect. 6.6.3.

To avoid excessive latency, extra active servers must be provisioned to absorb the
spike load until more servers can be activated. The number of extra active servers
must match the typical increase in load during the activation time. In more detail:

N umExtraAct D .MaxLoadRateAf terActT ime � LoadRateBeforeSpike/=

ActServerCapacity (6.1)

where N umExtraAct is the number of extra active servers; MaxLoadRateAf ter

ActT ime is the maximum request rate during a period equal to the activation time,
since the beginning of a typical spike; LoadRateBeforeSpike is the request
rate before the spike begins; and ActServerCapacity is the request processing
capacity of an active server. Thus, the higher the latency of server activation, the
more the request rate during the spike will increase, and the more extra servers must
be provisioned.

Next, we quantify these effects. Our analysis assumes that the cluster has 32
servers, and each active server can process 2,000 connections/second and consumes
222–404 W as a linear function of utilization. For the latency of server activations,
we assume 30 s for the On/Off system, and 10 s for the BA2 and Somniloquy
systems. All these values match our assumptions in the simulation results section
(Sect. 6.6.3).

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 161

0

20

40

60

80

100

0 1 2 3 4 5 6

Lo
ad

 [%
 o

f C
ap

ac
ity

]

Time [min]

Load

5

10

15

20

25

0 1 2 3 4 5 6

N
 A

ct
iv

e

Time [min]

Ideal/PowerNap

Off
Somni

BA-2

Fig. 6.2 A typical load spike (left) and corresponding server provisioning (right)

0

500

1000

1500

2000

2500

3000

 0 10 20 30 40 50 60 70

P
ow

er
-o

ve
rh

ea
d

[W
]

Height of Spike [% of Capacity]

Off
Somni

BA-2
Ideal/PowerNap

0

500

1000

1500

2000

2500

3000

2 4 6 8 10

P
ow

er
-o

ve
rh

ea
d

[W
]

Width of Spike [min]

Off
Somni

BA-2
Ideal/PowerNap

Fig. 6.3 Impact of spike height (left) and width (right) on the cluster power consumption

In Fig. 6.2 (left), we present an example of a synthetic load spike, which increases
the request load on the system from 20 to 80% of its maximum capacity. Figure 6.2
(right) shows that the number of active servers before the load spike is significantly
higher for the On/Off system than for the more sophisticated BA2, PowerNap,
and Somniloquy systems. For a baseline comparison, the “ideal” system is an
On/Off system in which servers can be brought up with zero latency and no energy
overhead. As originally proposed [27], PowerNap exhibits near-zero transition
latency. BA2 and Somniloquy are equivalent with respect to load spike provisioning,
as long as no data needs to be modified at servers in a low-power state.

We can parameterize load spikes by duration and amplitude, and choose param-
eters consistent with observed behavior such as from studies of an HP customer’s
Web server trace [20]. Figure 6.3 (left) shows how the power overhead of extra
server provisioning (with respect to the ideal system) varies with spike amplitude,
assuming a duration of 2 min. We can see that the On/Off system entails a modest
level of overhead with spikes of low amplitude. However, the overhead grows
significantly as the spike increases in amplitude. Figure 6.3 (right) shows the impact

162 V. Anagnostopoulou et al.

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

N
 o

f E
xt

ra
 A

ct
iv

e

N of Deferred-Writes [Nx106]

Somni
BA-2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 6 8 10 12 14 16 18 20

P
ow

er
-o

ve
rh

ea
d

[W
]

N of Deferred-Writes [Nx106]

Somni
BA-2

Fig. 6.4 Impact of deferred writes on the cluster provisioning (left) and power consumption (right)

of spike duration, assuming an amplitude of 60% of the peak capacity. We can see
that, if the duration of the spike is 2 min, the over-provisioning overhead is large.
The overhead drops to more modest levels for spikes lasting 10 min.

6.6.2 Benefits of Allowing Immediate Data Updates

Services modify data that may reside on servers that are off or in a low-power state.
A key advantage of barely-alive systems is the ability to directly modify data in
main memory while in a low-power state. Modification of such data is impractical in
On/Off and PowerNap systems. For On/Off systems, writes would need to be source
buffered and deferred to wake up, which can be problematic if systems are off for
long periods of time. PowerNap can avoid this problem by waking up the server to
perform data updates. However, for all but the most insignificant of write intensities,
PowerNap would spend too long in active state.

Other than barely-alive, Somniloquy offers the best solution to data updates while
in a low-power state. Writes can be buffered in the Somniloquy device. However,
with the limited size of the Somniloquy memory (64 MB), we assume that writes
would need to be buffered in their Secure Digital (SD) card auxiliary storage. The
time to read the updated data from the SD card to main memory during activations
increases the activation time and, thus, increases the number of extra active servers
(Eq. 6.1).

In Fig. 6.4, we compare BA2 and Somniloquy as the number of deferred
writes varies, assuming the same cluster and server parameters from the previous
subsection. Writes are to objects typical of our Web application (6 KB each).
Figure 6.4 (left) quantifies the number of extra active servers in each system. As
the number of buffered writes increases (either due to higher write traffic or longer
time in a low-power state), the Somniloquy activation latency becomes significant.
This effect quickly results in a large number of extra active servers provisioned

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 163

for spikes. The number of extra active servers levels out when transitioning servers
to Somniloquy state actually starts to increase energy consumption. Figure 6.4
(right) shows the same comparison in terms of total power for extra active servers.

6.6.3 Benefits of Aggregating Memory

Although barely-alive server states provide fast server activation and allow data
updates while in a low-power state, an even greater advantage is their ability
to effectively use all of a cluster’s memory while adjusting processing power to
reduced load. In this section, we pair the systems we study with a middleware
implementation of distributed cooperative object caching. The middleware manages
the available memory resources across the cluster as a single large cache to avoid
disk accesses. This set of experiments is motivated by the observation that, while
load offered to Internet applications may vary significantly, the working set often
does not.

For our evaluation, we built a trace-driven simulator and focus on a representative
Internet service. We simulate the major pieces of software that are of interest,
namely the service’s workload, the consolidation algorithm, and the middleware for
cooperative caching. We also simulate the major hardware components of the cluster
(CPUs, main memory, network interfaces and switch, and disks), their utilizations,
bandwidths, latencies, and power consumptions. Next, we describe these aspects of
our simulator in greater detail.

6.6.3.1 Internet Service and Its Workload

Our representative application is a “snippet” generator that services Web search
queries by returning a query-dependent summary of the search results. Each query
generates a list of ten URLs. The snippet generator scans the pages associated with
these URLs and produces a text snippet for each of them. It uses the middleware to
cache the pages.

We obtained a 7-day trace representing a fraction of the query traffic directed to
a popular search engine (Ask.com). Due to privacy and commercial concerns, the
trace only includes information about the number of queries per second. The volume
of queries follows the traditional pattern of peaks during the day and troughs during
the night. Weekend traffic follows a similar pattern but with lower traffic. In order to
generate a complete workload, we also analyze publicly available traces that contain
all submitted queries (36:39 Million) to AOL over a duration of 3 months in 2006.
The distribution of object popularity follows a Zipfian distribution [1]. We ran a
sample of AOL queries against Ask.com, downloaded the content pointed to by
the URLs listed in the returned results, and computed the content size. We found a
median size of 6 KB following a Gamma distribution. In our experiments, we run
2 days of the trace, corresponding to a Friday and a Saturday, as well as a few extra
hours of cache warm-up time pre-pended.

164 V. Anagnostopoulou et al.

6.6.3.2 Discussion

We simulate a relatively simple single-tier service to demonstrate the benefits of
barely-alive states and dynamic state transitions more clearly. In this service, the
application data is placed in such a way that any active server can handle a cache
miss by performing local disk I/O. This simplifies the consolidation algorithm and
allows the system to (1) turn off the entire CPU and all disks in the barely-alive
(BA2) state; or (2) transition some servers to Somniloquy or off state.

In practice, services are often more complex with multiple tiers and highly
distributed data-sets. In such services, the low-power states that can be used depend
on the characteristics of each tier. For example, some of the tiers may involve servers
that do not require much computation or disk I/O. The system can easily transition
some of those servers to deep barely-alive states (e.g., BA2). For the tiers that do
require computation and disk I/O, a cache miss may cause the server to perform
some local computation and communicate with other servers that will perform more
computation and disk I/O. The system can still transition some of these servers to a
barely-alive state (e.g., BA5-1C-1D) and perform computation and disk I/O in that
state. In contrast, the other schemes would either (1) be unable to use low-power
states at all; or (2) have to activate the servers first. Thus, the benefits of our server
states would be even clearer for these tiers.

6.6.3.3 Simulation Methodology

We implement a detailed trace-driven simulator, which we use with our 2-day trace.
We model the workload using tuples of the form (object-id, object-size, timestamp).
The simulator takes the workload as input and implements all aspects of the caching
middleware in detail. It simulates an LRU stack and hits table for each node,
which it updates using the requested object-id. It also simulates the memory usage
accurately, using the object-size information. The simulator also implements the
consolidation algorithm in detail.

We simulate 32-node clusters by default. We provision the clusters for the peak
demand of our application. Specifically, when all servers are active, the average
server utilization at the peak load intensity is roughly 70%. This setting allows
enough slack to handle major unexpected increases in load. We set the default state-
transition threshold to 85% of the 70% of the peak utilization, i.e. in terms of actual
utilization the threshold is: 70 � 85 D 59%. Henceforth, when we mention a state-
transition threshold, its value is always relative to the 70% peak load intensity.

The simulator models all the major hardware components of each server and
the interconnect. We assume that a server’s CPU utilization is directly proportional
to the request load currently handled by the server. Disk utilizations and latencies
are computed by accounting for average seek, rotational, and data transfer times.
Similarly, the memory utilizations and latencies are computed by accounting for
row buffer hits and misses. The interconnect performance is modeled by a TCP
connection establishment time and its communication bandwidth.

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 165

Table 6.2 Server performance parameters

Component Type Performance

CPU High-end 2.66 GHz Xeon
Low-end 1.66 GHz Atom

Memory DDR3 Row access: 35 ns
Column access: 20 ns
Row size: 2 KB
Access size: 64 bytes

Disk High-end Avg seek time: 8.2 ms
Avg rotational time: 4.2 ms
Media transfer rate: 130 MB/s

Low-end Avg seek time: 11 ms
Avg rotational time: 4.2 ms
Media transfer rate: 155.6 MB/s

Network Ethernet Connection establishment:
.24 C 19/ � 0:001 ms
Bandwidth: 1 Gbit/s

Table 6.3 Server power consumption breakdown by component

Component Active BA2 Somniloquy Low-end

Core i7 (Xeon 5500) CPU 94–260 W 18 W (2) 2 W
Atom (D500) CPU 0–26 W
1 Gbit/s NI 5 W 5 W 6 W (64 MB) 5 W
2 Hitachi Deskstar 7K1000 24 W 4 W 4 W
500 MB laptop disk 10 W
DRAM 12 W (4 GB) 12 W (4 GB) 0.7 W (4 GB) 5 W (1 GB)
Fans 50 W (5) 10 W (1) 10 W (1) 10 W (1)
Small embedded CPU 1 W
Power supply loss 37–53 W 10 W 5 W 5–8 W

(20–15%) (20%) (20%) (15%)
Total 222–404 W 60 W 28 W 35–64 W

Each simulated server has two Xeon CPUs (each with four cores), two 2 GB
DIMMs of DDR3 main memory, two 7,200 rpm disks, one 1 Gbit Ethernet
network interface, and five fans. We assume that the middleware is allowed to
manage 1/4 of the main memory of each server. When in BA2, many of these
components can be turned off. The default performance parameters of our servers
are described in Table 6.2. The power consumptions of our servers in the active,
BA2, and Somniloquy states are presented in Table 6.3 (servers that are off consume
0 W). These performance and power parameters came from real datasheets and
papers [16–18, 22, 28]. We do not simulate PowerNap because there are very few
opportunities to use it with eight cores. Note that the CPUs still consume 18 W in the
BA2 state, because their memory controllers remain active. Similarly, the disks still
consume 2 W each, because their interfaces need to remain on even when the disks
have been spun down. We compute the power consumption of each active server as a

166 V. Anagnostopoulou et al.

Table 6.4 Energy consumption and energy savings without spike provisioning

Weekday Weekend-day

Energy Energy Energy Energy
System (Wh/day) Savings (%) (Wh/day) Savings (%)

Baseline 229,845 0 219,108 0
BA2 169,522 26.2 144,224 34.2
On/Off 198,678 13.6 187,773 14.3
Somniloquy 218,875 4.8 216,920 1.0
Low-end 185,020 19.5 176,680 19.4

linear function of utilization between their minimum and maximum consumptions.
As we can see, the power savings due to the BA2 state range from 162 to 344 W, as
compared to the active state.

For further comparison, we also simulate clusters built out of lower power (and
lower performance) servers that use mobile-class processors. Researchers have
argued for using such servers in services, rather than workload consolidation and
server turn off [3, 19, 22]. The parameters we use for these servers are listed in
Table 6.3 under the “Low-end” heading.

Defining the number of low-end servers to use in a fair comparison with our
system is difficult. We simulate low-end clusters six times larger than the other
systems for two reasons: (1) each of the high-end servers includes two processors;
and (2) previous work [19] suggested that 3� is the performance loss of low-end
servers compared to single-processor high-end servers. The middleware manages
1/4 of the memory of each server (256 MB); the same ratio we use for the high-
performance servers. As mentioned above, consolidation is turned off. In summary,
our low-end configuration uses 192 nodes (instead of 32 nodes in the high-
performance configuration) and a total cache space of 48 GB (instead of 32 GB).

6.6.3.4 Results

In our first set of simulations, we consider the case in which the systems we study
are provisioned without expecting load spikes. In our second set of simulations,
we consider the more realistic case in which load spikes may occur and must be
provisioned for. We first identify the maximum hit ratio that can be achieved by our
workload (all nodes active using their entire memories for object caching). We refer
to this hit ratio as the baseline ratio. As our default, we set the target hit ratio for all
systems to 95% of this baseline ratio. The total amount of cache space required by
this target hit ratio is 26 GB.

Our results show that the BA2, Somniloquy, On/Off, Low-end, and baseline
systems achieve an average response time within 1–2% of 23 ms during both days
we study. Despite the similar performance, the energy savings achieved by these
systems differ significantly. Table 6.4 lists the energy consumption and savings with

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 167

0

5

10

15

20

25

30

35

40

-10 0 10 20 30 40 50

N
 o

f A
ct

iv
e

[#
]

Time [Hour]

On/Off w/o spike prov.
Somni w/o spike prov.

BA2 w/o spike prov.

0

2000

4000

6000

8000

10000

12000

-10 0 10 20 30 40 50

P
ow

er
 [W

]

Time [Hour]

On/Off w/o spike prov.
Somni w/o spike prov.

BA2 w/o spike prov.

0

5

10

15

20

25

30

35

40

-10 0 10 20 30 40 50

N
 o

f A
ct

iv
e

[#
]

Time [Hour]

On/Off w. spike prov.
Somni w. spike prov.

BA2 w. spike prov.

0

2000

4000

6000

8000

10000

12000

-10 0 10 20 30 40 50

P
ow

er
 [W

]

Time [Hour]

On/Off w. spike prov.
Somni w. spike prov.

BA2 w. spike prov.

Fig. 6.5 Number of active servers (left) and cluster power consumption (right) over time, without
(first row) and with (second row) spike provisioning

respect to the baseline system. As we can see from the table, in this scenario, the
BA2 system achieves at least twice the energy savings of the On/Off system. The
reason is that the On/Off system needs to always maintain a relatively large number
of active servers to satisfy the target hit ratio. The BA2 system, on the other hand,
keeps only as many active servers as necessary to service the current offered load;
it transitions the other servers to the BA2 state. The top graphs in Fig. 6.5 show
the number of active servers (left) and average power consumption (right) of these
systems over time.

The advantage of the BA2 system is even more pronounced when we compare
it against the Somniloquy system. In Somniloquy state, a server can only store
64 MB, which is only a small contribution to the global cache. For this reason,
the Somniloquy system needs to keep many more active servers than the BA2
system. In fact, the former system keeps only slightly fewer active servers than the
On/Off system. Again, the top graphs in Fig. 6.5 illustrate these behaviors.

The Low-end system achieves the second best energy savings; 7–15% lower
savings than the BA2 system. Figure 6.5 does not show the behavior of the Low-end
system because it keeps all servers active during the entire execution.

168 V. Anagnostopoulou et al.

Table 6.5 Energy consumption and energy savings with spike provisioning

Weekday Weekend-day

Energy Energy Energy Energy
System (Wh/day) Savings (%) (Wh/day) Savings (%)

Base 229,845 0 219,108 0
BA2 171,142 25.5 145,844 33.4
On/Off 215,688 6.2 204,783 6.5
Somniloquy 224,309 2.4 222,484 �1.5

Handling load-spikes. In this set of experiments, the On/Off system is provisioned
to keep some additional active nodes, so that the spikes can be handled without
performance degradation. Specifically, the additional provisioning translates into
five extra active nodes over time. In contrast, the BA2 system activates servers much
faster so it only needs three additional active nodes. The Somniloquy system also
transitions fast because the caching middleware does not perform store operations
to servers that are in a low-power state. For this reason, it also only needs three extra
active servers.

Table 6.5 summarizes the results assuming spike provisioning; the Baseline and
Low-end systems behave as in Table 6.4, as they never transition power states
and, thus, do not require extra active servers. The bottom graphs of Fig. 6.5 show
the number of active nodes and power consumption over time, assuming spike
provisioning. We observe that the penalty of the extra active servers hurts the On/Off
system significantly more than the BA2 and Somniloquy systems. Moreover, we
can see that the additional active server is enough to cause an increase in energy
consumption for the Somniloquy system compared to the baseline. In contrast, the
energy savings of the BA2 system decrease by only 1%.

Note that the Somniloquy results are substantially worse than in [2], where it
was mainly used to keep idle desktop machines network-connected. As we discuss
above, for data-intensive Internet services, Somniloquy would require much larger
memory to be competitive. For services that include frequent writes, the fact that the
writes would not be performed in place in Somniloquy is also a problem.

6.6.3.5 Sensitivity Analysis

In this section, we evaluate the sensitivity of our results to three key parameters:
the state-transition threshold for consolidation; the ratio of active and barely-alive
(BA2) powers; and the range of load intensities of the workload. Unless otherwise
stated, we assume the scenario with provisioning for load spikes.

State-transition threshold. Recall that this threshold determines how much the
systems consolidate; the lower the threshold, the more machines are kept active.
Table 6.6 shows the results for threshold values ranging from 50 to 85%. Recall
that 85% is our default threshold setting. As one would expect, the table shows that

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 169

Table 6.6 Sensitivity of the energy savings to the state-transition threshold with spike
provisioning

Weekday Weekend-day

System (transition Energy Energy Energy Energy
threshold) (Wh/day) Savings (%) (Wh/day) Savings (%)

Base 229,845 0 219,108 0
BA2(85%) 171,142 25.5 145,844 33.4
BA2(70%) 184,926 19.5 156,823 28.4
BA2(50%) 203,984 11.3 180,025 17.8
On/Off(85%) 215,688 6.2 204,783 6.5
On/Off(70%) 221,841 3.5 204,783 6.5
On/Off(50%) 231,440 �0.7 209,371 4.4
Somniloquy(85%) 224,309 2.4 222,484 �1.5
Somniloquy(70%) 221,146 3.8 209,928 4.2
Somniloquy(50%) 222,199 3.3 201,064 8.2

the energy savings that can be achieved by the BA2 system decrease significantly,
as we decrease the threshold. Nevertheless, even at the most aggressive setting
(50%), the BA2 system still achieves significant energy savings (11 and 18%). The
small energy savings from the On/Off system also degrade with lower thresholds.
In fact, for the lowest threshold, the On/Off system actually consumes more energy
than the baseline on Friday. The Somniloquy results are more interesting in that
decreasing the threshold sometimes increases energy savings. The reason is that a
lower threshold enables the Somniloquy system to use more memory for caching
(since there are more active servers), improving its cache hit ratio.

Target hit-ratio. The target hit ratio is the main performance parameter in our
systems: the higher the target, the lower the response time of the service. We
consider three target hit ratios: 95 (our default), 90, and 85% of the maximum
achievable hit ratio. These hit ratios require 26, 22, and 17 GB of main-memory
cache in the On/Off system. For these simulations, we keep the state-transition
threshold at its default value (85%).

We again find that the systems achieve average response times within a few
percent of each other for each target hit ratio. In terms of energy, decreasing the
target hit ratio affects the On/Off and Somniloquy systems more strongly than
the BA2 system. Specifically, for a system without spike provisioning, the energy
savings of the BA2 system decrease slightly from 26 to 23%, when we decrease
the target hit ratio from 95 to 85%. The decrease in energy savings is a result of
slightly higher server and disk utilizations. In contrast, the energy savings of the
On/Off system increase from 14 to 26%, with the same change in target hit ratio. The
reason for such a large improvement is that the On/Off system requires many fewer
active servers with the lower target. The Somniloquy system also benefits from the
lower target hit ratio, but to a smaller extent than the On/Off system. Under spike
provisioning, the BA2 energy savings surpass those of its counterparts even at the
85% target hit ratio. These results illustrate that the advantage of the BA2 systems
is greater when the service’s performance requirements are more stringent.

170 V. Anagnostopoulou et al.

Ratio of active and BA2 powers. Under our hardware assumptions, this ratio is
roughly 7:1. We also studied ratios of 13:1, 3:1, and 1:1, under our default state-
transition threshold. For the weekday, these ratios produce energy savings of 31.6,
15.6, and �21:8%, respectively. For the weekend day, the savings are 41.1, 20.4,
and �27:9%, respectively. These results show that the BA2 system can conserve
substantial energy even at a low 3:1 ratio.

Range of load intensities. Finally, we investigate the impact of the difference in
load intensity between the peak and valley of the workload, assuming our default
state-transition threshold and power parameters. Specifically, we scale down the
difference between these load intensities by up to a factor of 4. As expected,
the lower the load variation, the lower the energy savings that can be achieved.
Nevertheless, the BA2 energy savings reach 10.5% on a weekday and 13.7% on a
weekend day, even when the load variation is reduced by a factor of 4.

6.7 Case Study I: Mixed System

So far, we have considered systems that leverage a single low-power state for energy
conservation. In this section, we propose a “mixed” system that combines off and
BA2 states in the context of our cooperative caching middleware. The motivation
is that the BA2 system could potentially turn servers off to conserve even more
energy, when they are not needed to achieve the target hit ratio. In addition, we study
the tradeoff between response time (represented by target hit ratio), state-transition
threshold, and energy savings.

6.7.1 Mixed System: Off + BA2

The BA2 system we have discussed so far has an important characteristic: it
minimizes the number of active servers; the number of such servers is the minimum
required by the offered request load. However, the BA2 system may not require
all the other nodes to be in BA2 state; it may be possible to satisfy the target hit
ratio with fewer servers, and turn the others completely off. This is what our Mixed
system does.

Specifically, the Mixed system activates as many servers as directed by the
consolidation algorithm for a BA2 system. However, instead of using the local cache
re-sizing approach of the BA2 system, it uses that of the On/Off system. In other
words, instead of re-sizing the local caches of all servers so that their sum is equal
to the total required cache size, it re-sizes them to their maximum size and defines
the minimum number of servers that is needed to reach the total required cache size.
If this minimum number is larger than the number of active servers computed by the

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 171

0

5

10

15

20

25

30

-10 0 10 20 30 40 50
N

 o
f A

ct
iv

e
an

d
B

A
2

[#
]

Time [Hour]

N of Act
N of BA2

Fig. 6.6 Number of active
and BA2 servers in the mixed
system (without spike
provisioning)

consolidation algorithm, the difference between them is the number of servers that
will be transitioned to the BA2 state. The system transitions the other servers to the
off state.

6.7.2 Results

Figure 6.6 shows the number of active and BA2 servers in our Mixed system during
the 2 days without spike provisioning. Since the target hit ratio (95% of the highest
achievable ratio) is fixed, the total number of servers in the active or BA2 state stays
constant (26) throughout the 2 days. The other servers stay in the off state.

This behavior enables the Mixed system to achieve higher energy savings than its
counterparts. In more detail, the Mixed system achieves energy savings of 30% for
the Friday and 38% for Saturday, both with respect to the baseline system. Recall
that the BA2, On/Off, and Somniloquy systems achieve energy savings of 26, 14,
and 5% for Friday, and 34, 14, and 1% for Saturday, respectively. These results
illustrate the potential energy benefits of leveraging both BA2 and off states.

We now compare the Mixed system to the BA2 and On/Off systems, as a function
of the performance level (i.e., target hit ratio) and the state-transition threshold. We
do not include the Somniloquy system because it behaves substantially worse than
the other systems. Table 6.7 presents the results broken down by day. Again, the
energy savings are computed with respect to the baseline system.

In the Mixed system, for a fixed target hit ratio, a higher state-transition threshold
enables more servers to be in the BA2 state, instead of the active state. Thus,
increasing the threshold increases the energy savings. For a fixed state-transition
threshold, a higher target hit ratio requires more servers to be in the BA2 state,
instead of the off state. Since BA2 consumes little power and the number of servers
in this situation is fairly small, the impact of varying the target hit ratio is very small
in this system. This result suggests that the Mixed system is resilient regardless of
the desired performance.

172 V. Anagnostopoulou et al.

Table 6.7 Energy savings
with the state-transition
threshold, performance level,
and day

Weekday Weekend-day

System (transition Energy Energy
threshold) savings (%) savings (%)

Target hit ratio = 95% of max
BA2(85%) 26.2 34.2
BA2(70%) 20.2 29.2
BA2(50%) 12.0 18.6
On/Off(85%) 13.6 14.3
On/Off(70%) 10.9 14.3
On/Off(50%) 6.7 12.2
Mixed(85%) 30.3 38.4
Mixed(70%) 23.6 33.4
Mixed(50%) 14.0 22.4

Target hit ratio = 90% of max
BA2(85%) 25 33.1
BA2(70%) 18.8 28.0
BA2(50%) 10.8 17.0
On/Off(85%) 20.3 23.8
On/Off(70%) 16.6 23.8
On/Off(50%) 9.7 16.4
Mixed(85%) 31.2 40.3
Mixed(70%) 23.8 35.2
Mixed(50%) 13.9 22.0

Target hit ratio = 85% of max
BA2(85%) 23.4 31.8
BA2(70%) 17.4 26.9
BA2(50%) 9.7 15.5
On/Off(85%) 26.3 34.9
On/Off(70%) 20.5 30.9
On/Off(50%) 12.5 19.9
Mixed(85%) 31.4 42.4
Mixed(70%) 23.5 36.3
Mixed(50%) 13.8 21.5

We study the energy behavior of the BA2 system for a fixed target hit ratio and
varying state-transition threshold in the previous section. For a fixed state-transition
threshold, a higher target hit ratio increases the energy savings slightly because
server the disk utilization decreases. Again, we consider the energy behavior of
the On/Off system for a fixed target hit ratio and varying state-transition threshold
in the previous section. For a fixed state-transition threshold, a higher target hit ratio
decreases the energy savings because more servers have to stay active.

Discussion. Overall, these results demonstrate that the Mixed system consistently
conserves more energy than the BA2 and On/Off systems. Compared to the BA2
system, the advantage of the Mixed system is most pronounced at low target hit

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 173

ratios and high state-transition thresholds. Given these results, the Mixed system
is the clear choice for services that can accept higher response times or want to
conserve more energy.

Compared to the On/Off system, the advantage of the Mixed system is most
pronounced at high target hit ratios and high state-transition thresholds. In this
comparison, the Mixed system is the clear choice for services that require lower
response times or want to conserve more energy.

6.8 Case Study II: Memory-Sharing in Barely-Alive Systems

An implicit capability of cooperative caching in Barely-Alive systems is the ability
to share memory between multiple services. In this section, we examine a scenario
in which two services must share the cluster. Specifically, we examine the transition
when a service is running on a cluster and a second service is migrated to that
cluster. This can happen in the event of a downtime at another cluster, because of
maintenance or failure.

Given an allocation scheme, we can use our stack-based allocation scheme to
attempt to maintain the hit-rate targets of both services. We evaluate this scenario in
terms of energy savings against individual deployment of the services.

6.8.1 Memory Sharing Algorithm

Figure 6.7 shows the hit-rate as a function of our snippet service. As expected,
we observe that the hit-rate is a monotonically increasing function with the memory
size. Consequently, we can conclude that a linear optimization solution to maximize
the aggregate application hit-rate will solve this problem optimally and in linear time

0

20

40

60

80

100

100 200 300 400 500 600 700 800 900 1000

H
it-

ra
te

 [%
]

Size [MB]

Sample day

Fig. 6.7 Hit-rate curve for
the snippet service

174 V. Anagnostopoulou et al.

with the size of the memory stack. We therefore define the following problem: given
a cluster where each node has a memory capacity M , N is the number of services
to share the cluster, the hit-rate curves for each service, and a vector of size N with
the minimum allowable hit-rates, we must calculate a vector of size N with the
allocations for each of the services such that the aggregate hit-rate is maximized,
subject to the memory capacity M .

Assume the simple case where we have the memory shared by two instances of
a service which achieves 15% cumulative hit-rate with one stack slot, 20% with
two stack slots and 23% with three stack slots. The minimum hit-rate is 15% for
each service, which is equivalent to one stack slot, while the target hit-rate is 23%
(three slots). The stack capacity is 100 slots. Initially the algorithm will run the stack
algorithm for each of the applications with the 15% hit-rate and fill the allocations
vector with an initial value of 1. If the initial allocations violate the stack capacity
already, the algorithm fails to return valid allocations. After the initialization, the
algorithm will allocate one slot at a time, to the application whose hit-rate is further
away from its target hit-rate (a quantity we define as hit-rate distance). Round-robin
is used to pick an application in the case that the hit-rate distances are equivalent.

In our example, after the initial allocations step, our algorithm will pick the first
application and increase its allocation by one slot, increasing its hit-rate to 20%.
In the second iteration, the second application is chosen, since its hit-rate distance
to the target hit-rate is greater compared to the first application’s distance (8% vs.
3%). In the third iteration, the hit-rate distances are equivalent, but because the first
application was chosen first before, the algorithm now picks the second application
and updates its allocation by one. Since the target hit-rate for this application is now
met, the application is removed by the application list in the algorithm. The last step
repeats until the target hit-rates of all applications have been met, or the memory
capacity has been exhausted. Although we do not explore a priority scheme here,
different priorities could be implemented by altering the round-robin ordering of
allocation.

6.8.2 Results

In this section, we evaluate the energy savings when co-deploying two instances of
our application on a single cluster versus each instance on its own cluster.

Figure 6.8 shows the cache allocations and hit-rates for the instances of the
snippet web-services during fair memory sharing. There are two observations to
make here: (1) the application hit-rates converge very fast (in less than an hour) and
(2) although each application is only allocated 50% of the memory capacity, the hit-
rates degrade only by very small amounts. This fact can be explained by the shape
of the hit-rate curve (Fig. 6.8). The logarithmic shape of the curve guarantees that
a reduction in the memory allocation yields less than proportional reduction in the
hit-rate.

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 175

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3 4

C
ac

he
 [G

B
]

Time [Hour]

Cache with Time

Main
Sec

 0

20

40

60

80

100

-3 -2 -1 0 1 2 3 4

H
it-

ra
te

 [%
]

Time [Hour]

Hit-rate with Time

Main
Sec

Fig. 6.8 Cache allocations (left) and hit-rates (right) for two snippet web-services during memory
sharing (hours 1–4)

0

20

40

60

80

100

 70 75 80 85 90 95 100

S
ec

 H
it-

ra
te

 [%
/B

as
e]

Main Hit-rate [%/Base]

Fig. 6.9 Hit-rate tradeoff
between two snippet
web-services

Figure 6.9 shows the hit-rate trade-off between the two applications when the
main application has priority. Overall, the increase in the hit-rate of the prioritized
application corresponds to a proportional decrease in the hit-rate of the other
application, yet, both hit-rates are still significantly high considering the reductions
in their memory allocations, confirming the scalability of our previous observation.
At some point, however, the target hit-rate of the prioritized application is so high
that the second application cannot satisfy its minimum target hit-rate. In our graph,
this is when the main application targets a hit-rate of 95%, which corresponds to a
memory allocation of 0.8 GB, while the minimum target hit-rate is 85% and requires
an allocation of 0.5 GB.

In terms of energy consumption, the barely-alive sharing cluster consumes
energy close to the barely-alive system with the consolidation threshold set to 50%,
which is 207,461 KWh for the weekday and 185,119 KWh for the weekend-day.
Had we deployed each of the web-services on two separate mixed clusters, and had
we picked the optimal configuration for each of those clusters, the respective energy

176 V. Anagnostopoulou et al.

consumptions would have been 2 � 157; 693 D 315; 386 KWh and 2 � 126; 223 D
252; 446 KWh. Therefore, the barely-alive sharing system saves 34.22% energy
over a weekday and 26.78% over the weekend-day, compared to the optimal,
individual cluster deployment.

6.9 Conclusion

In this paper, we introduced the barely-alive family of low-power server states. We
compared the family to conventional on-off consolidation, other low-power server
schemes, and low-end servers. We found that the ability to access memory while
in a low-power state has important advantages for both keeping data current and
for cooperative caching. Our study of an Internet service workload with cooperative
caching showed that conserving energy by using only a barely-alive state can save
significant energy, up to 34%. Energy savings can be even higher, up to 38%, when
the service may transition servers to either a barely-alive or the off states.

References

1. Adamic L (2000) Zipf, power-laws, and Pareto – a ranking tutorial. Technical report, HP Labs
2. Agarwal Y et al (2009) Somniloquy: augmenting network interfaces to reduce pc energy

usage. In: Proceedings of the 6th USENIX symposium on networked systems design and
implementation, Boston. USENIX Association, Berkeley, pp 365–380. http://dl.acm.org/
citation.cfm?id=1558977.1559002

3. Andersen D et al (2009) FAWN: a fast array of wimpy nodes. In: Proceedings of the ACM
SIGOPS 22nd symposium on operating systems principles, SOSP’09, Big Sky. ACM, New
York, pp 1–14. doi:http://doi.acm.org/10.1145/1629575.1629577. http://doi.acm.org/10.1145/
1629575.1629577

4. Barroso LA, Hölzle U (2007) The case for energy-proportional computing. Computer
40:33–37. doi:10.1109/MC.2007.443. http://dl.acm.org/citation.cfm?id=1339817.1339894

5. Bennett BT, Kruskal VJ (1975) LRU stack processing. IBM Res J 19(4):353–357
6. Carrera EV, Bianchini R (2005) PRESS: a clustered server based on user-level communication.

IEEE Trans Parallel Distrib Syst 16:385–395. doi:http://dx.doi.org/10.1109/TPDS.2005.60.
http://dx.doi.org/10.1109/TPDS.2005.60

7. Carrera EV et al (2003) Conserving disk energy in network servers. In: Proceedings of the 17th
annual international conference on supercomputing, ICS’03, San Francisico. ACM, New York,
pp 86–97. doi:http://doi.acm.org/10.1145/782814.782829. http://doi.acm.org/10.1145/782814.
782829

8. Chase J et al (2001) Managing energy and server resources in hosting centers. In: Proceedings
of the eighteenth ACM symposium on operating systems principles, SOSP’01, Banff. ACM,
New York, pp 103–116. doi:http://doi.acm.org/10.1145/502034.502045. http://doi.acm.org/10.
1145/502034.502045

9. Chen Y et al (2005) Managing server energy and operational costs in hosting centers.
In: Proceedings of the 2005 ACM SIGMETRICS international conference on measurement
and modeling of computer systems, SIGMETRICS’05, Banff. ACM, New York, pp 303–
314. doi:http://doi.acm.org/10.1145/1064212.1064253. http://doi.acm.org/10.1145/1064212.
1064253

http://dl.acm.org/citation.cfm?id=1558977.1559002
http://dl.acm.org/citation.cfm?id=1558977.1559002
http://doi.acm.org/10.1145/1629575.1629577
http://doi.acm.org/10.1145/1629575.1629577
http://doi.acm.org/10.1145/1629575.1629577
10.1109/MC.2007.443
http://dl.acm.org/citation.cfm?id=1339817.1339894
http://dx.doi.org/10.1109/TPDS.2005.60
http://dx.doi.org/10.1109/TPDS.2005.60
http://doi.acm.org/10.1145/782814.782829
http://doi.acm.org/10.1145/782814.782829
http://doi.acm.org/10.1145/782814.782829
http://doi.acm.org/10.1145/502034.502045
http://doi.acm.org/10.1145/502034.502045
http://doi.acm.org/10.1145/502034.502045
http://doi.acm.org/10.1145/1064212.1064253
http://doi.acm.org/10.1145/1064212.1064253
http://doi.acm.org/10.1145/1064212.1064253

6 Barely Alive Servers: Keeping Data Active in a Low-Power State 177

10. Chen G et al (2008) Energy-aware server provisioning and load dispatching for connection-
intensive internet services. In: Proceedings of the 5th USENIX symposium on networked
systems design and implementation, NSDI’08, San Francisco. USENIX Association, Berkeley,
pp 337–350. http://dl.acm.org/citation.cfm?id=1387589.1387613

11. Dormando: Memcached (2011). Http://memcached.org
12. Elnozahy E et al (2003) Energy-efficient server clusters. In: Proceedings of the 2nd work-

shop on power-aware computer systems, PACS’02, Cambridge. Springer, Berlin/Heidelberg,
pp 179–197. http://dl.acm.org/citation.cfm?id=1766991.1767007

13. Fan X et al (2007) Power provisioning for a warehouse-sized computer. In: Proceedings of the
34th annual international symposium on computer architecture, ISCA’07, San Diego. ACM,
New York, pp 13–23. doi:http://doi.acm.org/10.1145/1250662.1250665. http://doi.acm.org/10.
1145/1250662.1250665

14. Fitzpatrick B (2004) Distributed caching with memcached. Linux J 2004:5. http://dl.acm.org/
citation.cfm?id=1012889.1012894

15. Heath T et al (2005) Energy conservation in heterogeneous server clusters. In: Proceedings
of the 10th ACM SIGPLAN symposium on principles and practice of parallel programming,
PPoPP’05, Chicago. ACM, New York, pp 186–195. doi:http://doi.acm.org/10.1145/1065944.
1065969. http://doi.acm.org/10.1145/1065944.1065969

16. Hitachi: Deskstar 7k1000 (2011). Specification Sheet
17. Intel: Intel Xeon processor 5500 series datasheet, volume 1 (2009)
18. Intel: Intel Atom processor d400 and d500 series datasheet, volume 1 (2010)
19. Janapa Reddi V et al (2010) Web search using mobile cores: quantifying and mitigating the

price of efficiency. In: Proceedings of the 37th annual international symposium on computer
architecture, ISCA’10, Saint-Malo. ACM, New York, pp 314–325. doi:http://doi.acm.org/10.
1145/1815961.1816002. http://doi.acm.org/10.1145/1815961.1816002

20. Jung G et al (2009) A cost-sensitive adaptation engine for server consolidation of multitier
applications. In: Proceedings of the ACM/IFIP/USENIX 10th international conference on
middleware, Middleware’09, Urbana. Springer, Berlin/Heidelberg, pp 163–183. http://dl.acm.
org/citation.cfm?id=1813355.1813367

21. Kim JM et al (2000) A low-overhead high-performance unified buffer management scheme
that exploits sequential and looping references. In: Proceedings of the 4th conference on
symposium on operating system design & implementation – volume 4, OSDI’00, San Diego.
USENIX Association, Berkeley, pp 9–9. http://dl.acm.org/citation.cfm?id=1251229.1251238

22. Lim K et al (2008) Understanding and designing new server architectures for emerg-
ing warehouse-computing environments. In: Proceedings of the 35th annual international
symposium on computer architecture, ISCA’08, Beijing. IEEE Computer Society, Washing-
ton, DC, pp 315–326. doi:http://dx.doi.org/10.1109/ISCA.2008.37. http://dx.doi.org/10.1109/
ISCA.2008.37

23. Lim K et al (2009) Disaggregated memory for expansion and sharing in blade servers. In:
Proceedings of the 36th annual international symposium on computer architecture, ISCA’09,
Austin. ACM, New York, pp 267–278. doi:http://doi.acm.org/10.1145/1555754.1555789.
http://doi.acm.org/10.1145/1555754.1555789

24. Liu J et al (2003) High performance RDMA-based MPI implementation over infiniBand.
In: Proceedings of the 17th annual international conference on supercomputing, ICS’03,
San Francisico. ACM, New York, pp 295–304. doi:http://doi.acm.org/10.1145/782814.782855.
http://doi.acm.org/10.1145/782814.782855

25. Mattson RL et al (1970) Evaluation techniques for storage hierarchies. IBM Syst J 9:78–117.
doi:http://dx.doi.org/10.1147/sj.92.0078. http://dx.doi.org/10.1147/sj.92.0078

26. Meisner D, Wenisch TF (2012) Dreamweaver: architectural support for deep sleep. In: Pro-
ceedings of the seventeenth international conference on architectural support for programming
languages and operating systems, ASPLOS’12, London. ACM, New York, pp 313–324. doi:10.
1145/2150976.2151009. http://doi.acm.org/10.1145/2150976.2151009

http://dl.acm.org/citation.cfm?id=1387589.1387613
Http://memcached.org
http://dl.acm.org/citation.cfm?id=1766991.1767007
http://doi.acm.org/10.1145/1250662.1250665
http://doi.acm.org/10.1145/1250662.1250665
http://doi.acm.org/10.1145/1250662.1250665
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://doi.acm.org/10.1145/1065944.1065969
http://doi.acm.org/10.1145/1065944.1065969
http://doi.acm.org/10.1145/1065944.1065969
http://doi.acm.org/10.1145/1815961.1816002
http://doi.acm.org/10.1145/1815961.1816002
http://doi.acm.org/10.1145/1815961.1816002
http://dl.acm.org/citation.cfm?id=1813355.1813367
http://dl.acm.org/citation.cfm?id=1813355.1813367
http://dl.acm.org/citation.cfm?id=1251229.1251238
http://dx.doi.org/10.1109/ISCA.2008.37
http://dx.doi.org/10.1109/ISCA.2008.37
http://dx.doi.org/10.1109/ISCA.2008.37
http://doi.acm.org/10.1145/1555754.1555789
http://doi.acm.org/10.1145/1555754.1555789
http://doi.acm.org/10.1145/782814.782855
http://doi.acm.org/10.1145/782814.782855
http://dx.doi.org/10.1147/sj.92.0078
http://dx.doi.org/10.1147/sj.92.0078
10.1145/2150976.2151009
10.1145/2150976.2151009
http://doi.acm.org/10.1145/2150976.2151009

178 V. Anagnostopoulou et al.

27. Meisner D et al (2009) PowerNap: eliminating server idle power. In: Proceeding of the 14th
international conference on architectural support for programming languages and operating
systems, ASPLOS’09, Washington, DC. ACM, New York, pp 205–216. doi:http://doi.acm.org/
10.1145/1508244.1508269. http://doi.acm.org/10.1145/1508244.1508269

28. Micron: System power calculators (2011). http://www.micron.com/support/dram/power calc.
html

29. Myricom: Myrinet (2009). http://www.myri.com/myrinet
30. Pai V et al (1998) Locality-aware request distribution in cluster-based network servers. In:

Proceedings of the eighth international conference on architectural support for programming
languages and operating systems, ASPLOS-VIII, San Jose. ACM, New York, pp 205–216.
doi:http://doi.acm.org/10.1145/291069.291048. http://doi.acm.org/10.1145/291069.291048

31. Pinheiro E et al (2001) Load balancing and unbalancing for power and performance in cluster-
based systems. In: Proceedings of the workshop on compilers and operating systems for low
power, COLP’01, Barcelona

32. Rajamani K, Lefurgy C (2003) On evaluating request-distribution schemes for saving energy
in server clusters. In: Proceedings of the 2003 IEEE international symposium on performance
analysis of systems and software, Austin. IEEE Computer Society, Washington, DC, pp 111–
122. http://dl.acm.org/citation.cfm?id=1153924.1154555

33. Shimpi, A.L.: Nehalem: the unwritten chapters. AnandTech (2008)
34. Tam DK et al (2009) RapidMRC: approximating L2 miss rate curves on commodity systems

for online optimizations. In: Proceeding of the 14th international conference on architectural
support for programming languages and operating systems, ASPLOS’09, Washington, DC.
ACM, New York, pp 121–132. doi:http://doi.acm.org/10.1145/1508244.1508259. http://doi.
acm.org/10.1145/1508244.1508259

35. Weddle C et al (2007) PARAID: a gear-shifting power-aware RAID. ACM Trans Stor-
age 3. doi:http://doi.acm.org/10.1145/1289720.1289721. http://doi.acm.org/10.1145/1289720.
1289721

36. Zhou P et al (2004) Dynamic tracking of page miss ratio curve for memory management. In:
Proceedings of the 11th international conference on architectural support for programming lan-
guages and operating systems, ASPLOS-XI, Boston. ACM, New York, pp 177–188. doi:http://
doi.acm.org/10.1145/1024393.1024415. http://doi.acm.org/10.1145/1024393.1024415

http://doi.acm.org/10.1145/1508244.1508269
http://doi.acm.org/10.1145/1508244.1508269
http://doi.acm.org/10.1145/1508244.1508269
http://www.micron.com/support/dram/power_calc.html
http://www.micron.com/support/dram/power_calc.html
http://www.myri.com/myrinet
http://doi.acm.org/10.1145/291069.291048
http://doi.acm.org/10.1145/291069.291048
http://dl.acm.org/citation.cfm?id=1153924.1154555
http://doi.acm.org/10.1145/1508244.1508259
http://doi.acm.org/10.1145/1508244.1508259
http://doi.acm.org/10.1145/1508244.1508259
http://doi.acm.org/10.1145/1289720.1289721
http://doi.acm.org/10.1145/1289720.1289721
http://doi.acm.org/10.1145/1289720.1289721
http://doi.acm.org/10.1145/1024393.1024415
http://doi.acm.org/10.1145/1024393.1024415
http://doi.acm.org/10.1145/1024393.1024415

Chapter 7
Energy Storage System Design
for Green-Energy Cyber Physical Systems

Jie Wu, James Williamson, and Li Shang

7.1 Introduction

Electric-drive transportation offers a wonderful new opportunity [1,2] to address air-
pollution issues and petroleum consumption problems around the world. Currently,
the greenhouse gas emissions from conventional transportation account for 40% of
air-pollution emissions from all energy-using sectors [3, 4]. Development of new
electric-drive techniques, in the transportation sector, is both a new and ongoing
endeavor. Hybrid electric vehicles (HEVs) have been quickly adopted and widely
deployed over the past decade. Presently, plug-in hybrid electric vehicles (PHEVs),
which use the electricity from the electric power grid along with petroleum to power
the vehicle, have received considerable recent attention to significantly reduce
petroleum consumption and greenhouse gas emissions.

Since fundamental challenges are raised in (P)HEV development—including
how to store the electric energy from the electric power grid, how to power the
vehicle in an electric mode without using the combustion engine, or how to run
in a combination mode—the electric energy storage system (ESS) has become a
key component for fuel displacement potential in (P)HEV design [1,5,6]. However,
due to the imbalance between the fast-growing energy demand and the ESS supply,
energy storage technology has been the key bottleneck in (P)HEV design. More
specifically, the ESS high cost, limited energy capacity [7], limited life time [8, 9],
and safety are major obstacles that need overcoming for (P)HEV to have market
penetration. Therefore, this chapter discusses the challenges of energy storage
systems in the (P)HEV application area.

J. Wu (�) • J. Williamson • L. Shang
Department of Electrical, Computer, and Energy Engineering,
University of Colorado Boulder, Boulder, CO 80309, USA
e-mail: Jie.Wu-2@Colorado.EDU; james.a.williamson@colorado.edu; li.shang@colorado.edu

P.P. Pande et al. (eds.), Design Technologies for Green and Sustainable Computing Systems,
DOI 10.1007/978-1-4614-4975-1 7, © Springer ScienceCBusiness Media New York 2013

179

james.a.williamson@colorado.edu
li.shang@colorado.edu

180 J. Wu et al.

7.2 Motivation and Rationale

This section overviews the electric energy storage technologies for (P)HEV design
and summarizes the challenges of ESS.

7.2.1 Energy Storage Technologies Overview
and Performance Metrics

Energy storage Systems (ESS) are significant components in electric vehicles (EVs),
HEVs, and PHEVs [10–12]. In ESS-aware (P)HEVs, the power density and energy
density of the ESS needs to be high enough to satisfy the power and energy demand.
However, no single energy storage element can fulfill the energy requirement of
(P)HEVs. A typical way to address this issue is to build a large scale ESS with
over 1,000 energy storage elements, connected in parallel and series, to supply high
power and energy. This system is controlled by a distributed energy management
system [13], which measures and monitors the run-time current, the run-time voltage
and the temperature of the energy storage element. The following performance
metrics are considered in large-scale ESS modeling, optimization, and control for
green-energy electric-drive vehicles [14].

– Cost:
The primary obstacle to market penetration of (P)HEVs is the cost of large-scale
ESS. The cost goals selected for the ESS is set to be substantially challenging
to promote (P)HEV technology development. For instance, high-energy batteries
cost from $800/kWh to $1,000/kWh [15]. The price of ESS is more than half
price of (P)HEV. The cost of large-scale ESS is an essentially important concern
when modeling, optimizing, and controlling ESS. This is because the ESS
cost is strongly correlated with its run-time charge-cycle efficiency and long-
term lifetime. The former metric determines run-time fuel savings; the latter
assesses the ESS overall lifetime and financial return. Moreover, the cost of
ESS is also contributed by ESS configuration, such as the number of storage
units and the type and size for each energy storage unit. That means different
ESS configurations generally lead to different ESS costs. The overall ESS cost
must be minimized by appropriate ESS configuration and while satisfying some
important constraints, such as total energy storage capacity, peak power demand,
long-term lifetime, run-time charge-cycle efficiency, and safety.

– Energy density:
Energy density determines the maximal available energy within an ESS charge
cycle. Among the electrochemical energy storage technologies, Li-ion batteries
have the highest energy storage densities. The specific energy density of Li-
ion batteries is typically around 200 Wh/kg, while ultracapacitors and NiCd/
NiMH batteries have lower energy densities of <50 Wh/kg and 60–80 Wh/kg,

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 181

L
ar

ge
r

NiMH
BatteryNiCd

Battery

10 100 1000 10,000
0.01

0.1

1

10

100

1000

Power Density (W/kg)

E
ne

rg
y

D
en

si
ty

 (
W

h/
kg

)

Lead-Acid
Battery

Li-ion
Battery

Ultracapacitor

Larger

Fig. 7.1 The power and energy density for different energy storage technologies

respectively [16]. Therefore, due to their high energy densities, Li-ion batteries
are proving to be the most advantageous energy storage technology for (P)HEVs.

– Peak power:
Peak power is calculated as the maximal instantaneous power that can be
delivered by a large-scale ESS to a vehicle. Note that energy density and peak
power are two distinct performance metrics. In comparison to the Li-ion battery,
the ultracapacitor provides exceptional power density due to the charges being
physically stored on the electrodes [5, 16], as shown in Fig. 7.1. Therefore,
ultracapacitors can be seen in (P)HEV applications with high peak or pulse
power requirements. Since large-scale ESS designs must leverage the high energy
density and high power density of energy storage units to respectively support
stringent energy capacity requirements and high run-time peak power demand, a
list of energy and power densities of various storage energy units may act as a
guideline when choosing an appropriate ESS configuration.

– Run-time charge-cycle efficiency:
Run-time charge-cycle efficiency is defined as the ratio of the run-time char-
ged/discharged energy capacity to the rated energy capacity of an ESS over
the entire charging-discharging process. The run-time charge-cycle efficiency is
directly affected by run-time usage and the ambient environment, which is in turn
determined by the user-centric run-time driving profiles, e.g., speed, acceleration,
slope, and trip duration. For instance, aggressive driving profiles lead to frequent
charging or discharging of the ESS, which results in dramatic ESS temperature
increases as well as deterioration of its potential energy delivering capability, thus
decreasing the ESS lifetime and ESS charge-cycle efficiency [17–19]. Therefore,
accurate analysis of the ESS must be driven by real-world user driving studies.

182 J. Wu et al.

– Lifetime:
ESS lifetime is characterized as long-term cycle life, i.e., the total number
of charge-discharge cycles before the system capacity permanently degrades
below a certain threshold. It is desirable that the ESS has a slow deterioration
of energy capacity. This deterioration occurs during the charging-discharging
process when unavoidable and unwanted chemical reactions carry out inside the
energy storage unit. ESS lifetime is mainly affected by temperature and depth-of-
discharge, which characterize the ESS aging effects. The most dominant aging
effects have strong correlation with temperature [20]. Since large-scale ESS is
comprised by a large number of energy storage units, the system capacity and
lifetime are determined by the weakest of those units. Variances determined
by manufacture tolerance and the heterogeneity of the environment lead to
significant energy capacity degradations and variations among individual energy
storage units. Without the careful balancing of those energy storage units, an
individual unit can overcharge or over discharge over time. The total energy
capacity then decreases rapidly during operation, which could result in the failure
of the ESS. However, (P)HEVs impose stringent lifetime constraints on the ESS.
For instance, automotive vendors typically target a 10	20-year ESS lifetime
guarantee with 20	30% maximal capacity degradation [21]. Due to irreversible
physical and chemical changes in Li-ion battery technology, the aging effects of
Li-ion batteries are the primary lifetime concern in ESS design and optimization.
Different from the Li-ion battery technology, the ultracapacitor demonstrates
excellent lifetime [22] due to the fact that there are no chemical changes on the
electrodes.

7.2.2 Challenges of ESS Design

ESS modeling, optimization, and control design is necessary to combine all
discussed performance metrics together. More specifically,

– Considering that the Lithium-ion battery is the current fundamental energy
storage technology, high ESS lifetime is a crucial challenge in ESS modeling,
optimization, and control design. A key issue concerning ESS lifetime is run-
time aging effects, which are exponential functions of temperature [19, 23]. ESS
temperature dramatically increases under frequent high-rate charge and discharge
operations [12,24]. Therefore, to improve ESS lifetime, effectively handling run-
time surge currents becomes vital to consider. An effective way to address this
issue might be to increase the number of units in the ESS, which would mitigate
the high-rate charging–discharging current. However, such a strategy would also
increase ESS cost.

– The performance of the ESS (e.g., its energy capacity), the run-time charge-
cycle efficiency, and the lifetime are all limited by its weakest element. Without
balancing performance metrics across the entire system, such as temperature

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 183

gradients across the pack, mismatched degradation over calendar life, and man-
ufacturing tolerance, individual units can tend toward overcharge and excessive
discharge [25, 26], resulting in severe lifetime limits and potential failure of the
overall system. This scenario becomes worse as the number of ESS elements
increases.

– Moreover, different motorists provide variances in (P)HEV operation, resulting
in substantially different ESS run-time use and aging effects. For instance,
intensive run-time use of the ESS by aggressive driving causes considerable
self-heating in the ESS, which accelerates the temperature-dependent aging
effects and ultimately leads to ESS energy capacity degradation. Therefore, data
taken from real-world motorists helps to quantify (P)HEV energy usage. This
information can also help to give vehicle companies better strategies in building
the most effective ESS for the (P)HEV.

In short, the large-scale ESS has emerged as a fundamental factor in the (P)HEV.
To meet the stringent energy budget of these vehicles, researchers have explored
various ESS modeling, architecture design, system-level optimization, and control
design to effectively power (P)HEVs.

The rest of this chapter is organized as follows. Section 7.3 presents the ESS
modeling overview of current research. Section 7.4 describes the ESS-Aware
motorist driving analysis in the (P)HEV. Section 7.5 discusses the ESS architecture
design framework. Section 7.6 presents the recent studies in system-level ESS
optimization. The chapter concludes in Sect. 7.7.

7.3 ESS Modeling Overview

This section presents a large-scale ESS modeling overview found in recent studies.
Specifically, this section is organized as follows: Sect. 7.3.1 introduces the ESS
unit’s major effects. Section 7.3.2 describes basic large-scale system-level ESS
modeling.

7.3.1 ESS Unit Major Effects

This subsection overviews the major effects of the ESS unit. In view of the
sophisticated electrochemical characteristics of the ESS, the major electrochemical
properties for each energy storage unit [27–32] include run-time rate capacity
effects, run-time recovery effects, self-discharge effects, and capacity fading effects,
as described as follows.

Because the energy drawn from a battery is not always equivalent to the energy
consumed in device circuits, understanding discharge behavior is essential for
optimal system design.

184 J. Wu et al.

– Run-time Rate Capacity Effect:
Because battery lifetime shortens as discharge rate increases, run-time discharge
rate becomes an essential component of ESS design. During the discharge
procedure, a fully charged energy storage unit with the maximum concentration
of active reaction sites in the cathode is connected to a load and the current flows
through the external circuit. If the current discharge profile (i.e., rate of discharge)
is high, the reduction occurs only at the outer surface of the cathode. Thus,
this results in the lower concentration of active species at the electrode surface.
When the concentration falls below a certain threshold, which corresponds to
the voltage cutoff, the electrochemical reaction can no longer be sustained at the
cathode. The potential energy delivering capability is deteriorated and battery
lifetime decreases. This effect, named rate capacity effect [20], represents the
dependency between the actual capacity of a battery and the magnitude of its
current discharge profile [18]. Due to its structure and characteristics, run-time
discharge rate has little impact on the ultracapacitor [33].

– Run-time recovery effect:
In the ESS, the run-time charging–discharging procedure is a burst process,
followed by an idle period. During this time slot, the unused charge in an
electrode will be available when the concentration gradient flattens out after
enough time. Therefore, based on the existing studies [18, 29, 34, 35], the ESS
unit partially recovers its capacity lost during the run-time idle periods [17]. This
phenomenon, named recovery effect, occurs when the reactants have sufficient
time to diffuse into the electrode surface and leads to more ions in the idle time.

– Self-Discharge Effect:
The self-discharge effect of the energy storage unit is defined as the gradual
decrease in voltage that occurs when the energy storage unit is unconnected
to either a charging circuit or an electrical load [36, 37]. It is an important
factor in determining the duration of maintaining stored energy for low-duty-
cycle applications [38], as opposed to run-time energy usage.

The self-discharge effect for the Li-ion battery is generally ignored due
to its negligible impact [33]. Meanwhile, this effect has been studied in the
ultracapacitor to determine the loss of stored energy [36–38] and the decrease
in voltage, modeled as a non-linear function of time due to leakage charges.

When the ultracapacitor is in use, the energy consumption of run-time usage
dominates the energy leakage, as such becoming much more important to analyze
and optimize. Therefore, little work in the literature considers the self-discharge
effect while the ultracapacitor is connected to the circuit.

– Capacity Fading Effect:
In contrast to the long lifetime with little degradation over millions of charge
cycles [22] of electric double layer capacitors (i.e., ultracapacitors), the capacity
fading effect of the Li-ion battery is a major lifetime concern. The capacity fading
effect is defined as the effect of battery capacity losses to a specific percentage
of its initial fully charged capacity. The long-term lifetime of the Li-ion battery
is affected by the capacity fading effect, such as electrolyte decomposition and
cell oxidation [20, 23, 39]. Based on the properties of the Li-ion battery, the

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 185

oxidation procedure is the most important effect, resulting in a solid-electrolyte
interphase (SEI) film in the electrode surface. As this passive film grows thicker
over time, the internal resistance of the Li-ion becomes larger and leads to
worse battery long-term capacity. Obviously, this phenomena of the ESS unit is
closely correlated with the replacement cost of the ESS. Note that the long-term
lifetime of a Li-ion battery depends on the temperature and depth-of-discharge
(DOD) [23,32,39,40]. The former metric determines the chemical activity which
impacts on the internal resistance, reducing the capacity of the Li-ion battery; the
latter influencing open-circuit voltage and internal resistance. These irreversible
scenarios ultimately cause whole system failure.

7.3.2 ESS Model Design Overview

Recently, several researchers have focused on the modeling of an ESS to character-
ize ESS run-time charging–discharging behaviors and long-term performance. This
chapter categories those models to two basic criteria:

– Single ESS modeling in portable embedded systems:
Since the 1990s, several works have developed models for portable embedded
systems with small size, such as mobile devices. This chapter introduces single
ESS modeling in detail, including physical-level models, system-level analytical
models, empirical models, equivalent circuit models, and stochastic models.

– Large-scale ESS modeling in (P)HEV applications:
From the viewpoint of the (P)HEV application, large-scale ESS modeling design
has been given new consideration in current years. In comparison to the portable
embedded system, the (P)HEV involves a large number of energy storage units
(i.e., over 1,000) to power vehicles with the necessary high output voltage,
current, and energy storage capacity. Therefore, direct extensions of existing
single ESS models to the (P)HEV application may not satisfy the requirement of
computationally feasible mathematics in capturing the interaction effect among
those units. Therefore, this chapter describes the large-scale ESS modeling
design for the (P)HEV application, including the system-level large-scale ESS
model and the circuit-level large-scale ESS model.

7.3.2.1 Single ESS Unit Model Overview

This subsection introduces the existing work which have focused on single ESS unit
modeling.

1. Physical-level model:
Physical-level models present the detailed physical procedures occurring in the
ESS. It is the most accurate model to characterize the physical parameters of the
ESS. Due to a complex and slow capturing process, the physical-level models

186 J. Wu et al.

are computationally prohibitive for ESS designers. Even for simple structures, a
purely physical model is well beyond any reasonable implementation complexity.

Dualfoil et al. [41] developed a Fortran program to calculate the short-term
lifetime, run-time potential degradation, and concentration variation of the Li-ion
battery from the electrochemical level. This program supplies a simulation tool
to accurately capture the major physical factors for single ESS unit designers.

Vetter et al. [20] conducted a detailed physical analysis of the Lithium-ion
battery’s electrochemical capacity fading phenomenon. This model describes the
capacity degradation mechanism from concentration solution theory under differ-
ent storage scenarios based on the positive active materials in the cathode. This
work shows that capacity fading is highly dependent on cycling, temperature,
and storage conditions.

Smith et al. [42] designed a physical model, using a linear kalman filter
scheme to reduce the existing high order electrochemical model so as to obtain
the concentration gradients, internal potential drops, and state-of-charge. The
authors used the model order reduction method to develop a seventh-order Li-ion
battery model to fast solve the physical governing equations of Doyle’s physical
model [27, 43].

2. System-level analytical model:
System-level analytical models capture system-level behavior of Lithium-ion
batteries during the charging or discharging procedure, and do so from a macro
perspective. Although the accuracy of these types of models is less than the
physical-level model, the computational complexity is better. Physical simulation
of a given Li-ion battery requires estimation of more than 50 physical parame-
ters, even when given explicit knowledge of some Li-ion specific information
including chemical composition, capacity, battery structure, temperature, and
other characteristics.

Rakhamatov et al. [30, 44] presented an analytical model for lifetime predic-
tion of battery cells under time-varying load conditions. This analytical model
considered that battery lifetime is closely related to time-varying load, resulting
in concentration of active reactions changes. Its changing process consists of
two main procedures: electrochemical reaction at the electrode surface and
diffusion in the electrolyte. The authors used the proposed analytical model to
describe reaction behavior and to build system-level diffusion equations in order
to characterize the diffusion process.

Peng et al. [23] proposed an analytical model that uses battery charge/discharge
history information to estimate remaining capacity, including temperature effect
and Li-ion aging effect under variable workload conditions. This model used
temperature-dependence kinetics theory to capture the capacity fading behavior
of the Li-ion battery, taking into account temperature-dependence SEI film
growing, number of cycles, and discharge rate effects.

3. Empirical model:
Based on experimental data from physical measurements of ESS, empirical
models can easily build and fast predict run-time charging or discharging
behaviors of ESS. However, due to these models being based on observation

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 187

data and without deep theoretical support, the accuracy is lower than physical
and analytical models. While this is the general case, the empirical model does
work well in some specific scenarios.

Gao et al. [45] proposed a Li-ion battery model from experimental data
with low temperatures and high discharge rates, taking into account nonlinear
equilibrium potentials, temperature-dependence of Li-ion capacities, thermal
effects and response to transient power demands. This presented model adopted
empirical equations to capture the behavior of the thermal effect of Li-ion
batteries.

Santhanagopalan et al. developed two empirical electrochemical models to
characterize the Lithium-ion battery cell aging process occurring during battery
charge–discharge cycles [39]. Incorporation of the parabolic approximation for
the solid phase concentration of the diffusing species significantly reduces the
computational time as compared to the physical model developed by Fuller
et al. [27].

4. Equivalent circuit model:
In this sub item, this chapter considers a class of techniques that model battery
charging–discharging behavior using an equivalent electrical circuit, instead
of empirical approximation or describing the electrochemical processes of
the energy storage unit. The equivalent circuit model attempts to provide an
equivalent representation of an energy storage unit. Despite acceptable accuracy
and computational complexity, these models have limited utility for automated
design space exploration because they lack analytical expressions for many
variables of interest.

The first electrical-circuit models were proposed by Hageman [46]. He
used simple PSpice circuits to simulate nickel-cadmium, lead-acid and alkaline
batteries. The basic idea of those battery models is that a capacitor represents
the capacity of the battery and a discharge-rate normalizer determines the lost
capacity at high discharge currents.

Liaw et al. [47] proposed an equivalent electric circuit model to simulate
charge and discharge behaviors of the lithium-ion battery. This model character-
ized the SOC-dependent open-circuit voltage and resistance with an equivalent
circuit to obtain accurate prediction of unit discharge behavior.

Lee et al. [48] formulated ways to extract the state-of-charge (SOC) factor
by an equivalent electric circuit model. This model built a bridge between the
open-circuit voltage and the state-of-charge to accurately estimate the capacity
of a Lithium-ion battery.

5. Stochastic model:
A stochastic model of a battery is described in [18], where the battery is
represented by a finite number of charge units, and the discharge behavior of
the battery is modeled using a discrete-time transient stochastic process.

The first stochastic battery models were developed by Chiasserini et al..
Between 1999 and 2001, they published a series of papers on battery modeling
based on discrete-time Markov chains [49–52]. In these papers, the stochastic
battery models were applied in a portable mobile communication device.

188 J. Wu et al.

Rao et al. [29] proposed a stochastic battery model based on the analytical
Kinetic Battery Model (KiBaM) proposed by Manwell et al. [53]. This model
captured the battery behavior as a Markov process with probabilities in terms of
physical-based parameters of the energy storage unit. The parameters used for
this model are determined by a pretest, which takes into account the newfound
background into recovery and rate capacity effect.

7.3.2.2 Large-Scale ESS Model Overview

From the viewpoint of (P)HEV application, the modeling of large-scale ESS has
drawn significant attention in recent years. This chapter introduces the large-scale
ESS modeling in detail, including the equivalent circuit model and analytical
model.

1. Equivalent circuit model:
National Renewable Energy Laboratory (NREL) [28] proposed an equivalent
circuit model to predict the current, voltage, SOC, and temperature of a bat-
tery. This model considered many parameters, including temperature variation,
voltage limits, and an SOC calculator. It is accurate to characterize the charg-
ing/discharging cycles of a battery in actual driving cycles by ADVISOR tools.

Argonne National Laboratory [54] developed an equivalent electric circuit
model for Lithium-Manganese Spinel/Lithium-Titanate batteries to capture their
run-time charging–discharging behaviors. They used the powertrain system
analysis tool (PSAT) [55] with MATLAB/Simulink to estimate the run-time
performance of batteries.

Kroeze et al. [56] designed a battery model using the equivalent circuit method
to capture self-discharge and run-time charging behaviors. The proposed model
represented major lithium-ion battery run-time behaviors within a dynamic
hybrid electric vehicle (HEV) simulator.

2. System-level analytical model:
The system-level analytical model distinguishes itself from the existing equiv-
alent electric circuit model, not only because it builds the large-scale model of
battery from the top-level based on physical and mathematical theory, but also
because it models several effects that are important to the large-scale ESS cost
and lifetime.

Wu et al. [19, 57] developed a large-scale system-level analytical ESS model
to characterize ESS long-term capacity fading effects, their impacts on ESS long-
term cycle life, and interaction effects, such as the variances in manufacture
tolerance and the environment’s heterogeneity. This study developed the ESS
short-term quasi-static model, which consists of the run-time thermal model and
run-time charge capacity and aging model, to characterize the ESS run-time
performance and thermal effect. Given the run-time current charge-discharge
profile and the configuration of the ESS, this study has proposed the ESS run-
time thermal model as follows:

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 189

CheatŒN �N � � dTŒN �1�.t/

dt
D GŒN �N � � TŒN �1�.t/ C PŒN �1�U.t/; (7.1)

where matrix Cheat ŒN �N � models the heat capacity of the N units. Matrix GŒN �N �

models the thermal conductance between adjacent units. PŒN �1� models the
run-time power dissipation of individual units. U.t/ is a step function. The
proposed thermal model characterizes the heterogeneous thermal effects, which
lead to significant degradation and variations among energy-storage units. After
that—taking into account energy storage unit run-time effects—the proposed
system-level ESS run-time charge capacity characterizes the ESS run-time
charge efficiency. Due to the fact that large-scale ESS has complex connectivity
interrelations, Wu et al. have developed a matrix differential equation for run-
time charge capacity, as follows:

dCeŒN �N �.t/

dt
D KŒN �N � � VŒN �N � � I � U.t/

C CeŒN �N �.t0/ � d�ŒN�N�.t/

dt
; (7.2)

where matrix CeŒN �N �.t/ is a diagonal matrix that models the run-time charge
capacities of the N energy-storage units. Matrix KŒN �N � models the ESS topol-
ogy and the corresponding current distribution I among the N units. Diagonal
matrixVŒN �N � represents the ESS output voltage among the N units. U.t/ is a
step function. Diagonal matrix
ŒN�N� models the run-time aging of individual
units, which is a function of CeŒN �N �.t/. Note that the variable �ŒN�N� is a matrix
form of the aging factor !, as follows.

�.t/ D ˚ 1

„
� .1 � e

‰.t/
ƒ /
� 1

‚ ; where (7.3)

‰.t/ D K � R � I � �.Voc.t/ � Vc/;

Where R, Voc, Vc, „, and ‚ are the matrix form of resistance r , open-circuit
voltage Voc, cutoff voltage Vc, �, and �, specifically. The proposed run-time
charge capacity and aging model capture the characteristics of the ESS run-
time aging effect on the capacity degradation phenomenon and run-time charge
efficiency by considering the ESS connectivity information.

7.4 ESS-Aware Motorists Driving Analysis

(P)HEVs represent a useful technology to reduce the dependence of transportation
on petroleum and reduce the prevalence of greenhouse emissions. The distin-
guishing feature of a (P)HEV is the ability of the vehicle to charge the energy

190 J. Wu et al.

storage system (ESS) from the electrical grid, which has a stronger link with
the driving habits of motorists compared to a conventional vehicle. For instance, the
heterogeneous driving habits of motorists significantly leads to differences in the
operation of a (P)HEV that affect the corresponding ESS performance as well as
having other environmental impacts. Therefore, accurately capturing and analyzing
motorist-vehicle interaction at runtime has become a major bottleneck. To address
this issue, this section discusses the impacts of performing driving analyses of ESS-
aware motorists and presents an overview of existing studies in this area.

7.4.1 Impacts of ESS-Aware Driving Behavior Analysis

The run-time operation of the (P)HEV is tied to the driving behavior pattern of
the vehicle’s owner. Different motorists drive their vehicles differently. The ESS-
aware driving behavior analysis is aimed at collection and analysis of data from the
HEV under different operational modes to estimate the impact of driving behavior
patterns on vehicle performance.

Due to the fact that (P)HEV performance substantially depends on the operation
of the vehicle, existing researchers classify three different modes for use during a
trip [58]:

1. Charge Sustain (CS) mode: In this mode, the (P)HEV acts as a conventional
Hybrid Electric Vehicle, with charge and discharge cycles, and tries to sustain
the SOC level. When a driver applies pedal pressure to cause acceleration, the
battery provides necessary auxiliary power, and in this case, discharge current is
observed. When brake is applied and the vehicle is decelerating or standing still,
the batteries recharge and charge current is observed. Therefore, driving behavior
primarily determines the current profile.

2. Charge Deplete (CD) mode: In this mode, once the vehicle is fully charged, it
can be operated almost exclusively (except during hard acceleration) on electric
power until its battery state of charge is depleted to a predetermined level, at
which time the vehicles internal combustion engine (ICE) or fuel cell will be
engaged.

3. Blended mode: Blended mode is a special kind of charge-depleting mode and
usually employed by vehicles, Toyota Prius for instance, which do not have
enough electric power to sustain high speeds without the help of the internal
combustion portion of the power train. In (P)HEV, when the speed is less than a
preset value which is considered to be the speed below which the engine cannot
operate steadily, vehicle will only use electric power no matter how the driving
behavior is, while the engine idles. This is called EV mode by Toyota, which
is short for Electric Vehicle mode. This mode is more like standard CD mode
except for the condition of speed limitation. At faster speed, the ICE will be used
to provide power, while electric power can still be available in reserve.

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 191

Based on the different run-time operation modes, how a motorist drives has a
significant impact on (P)HEV fuel efficiency, emissions, and ESS use. Two impacts
of motorist driving behavior analysis are as follows:

– Different driving behavior directly affects the operation of the (P)HEV internal
combustion engine, hence the impact on fuel efficiency and greenhouse gas
emissions.

– Heterogeneous driving behavior of motorists affects the run-time charging–
discharging of the ESS and its long-term lifetime.

7.4.2 Overview of ESS-Aware Driving Behavior Analysis

Considering the above impacts of driving behaviors of different motorists, hetero-
geneous driving behaviors have great impact on the vehicle economy and energy
consumptions of different power split control strategies of (P)HEVs. Currently,
various research works have focused on the different road conditions, traffic
conditions, and vehicle energy consumption analyses of (P)HEVs.

– Standard Driving Cycles Analysis: Ericsson has demonstrated the factors of
driving behavior and estimated their influence on the greenhouse emissions and
fuel consumption [59]. Utilizing factorial analysis on driving patterns, Ericsson
has extracted the independent factors that describe driving behaviors. Further,
this study investigates which independent factors have significant effect on fuel
consumption and greenhouse emissions. According to a certain speed profile, the
study built performance models of the greenhouse emissions of HC , NOx , and
CO2 and the engine system using an engine map and other vehicle parameters of
the specified vehicle.

Lin et al. have used an Artificial Neural Network (ANN) technique to
recognize driving patterns [60]. Meanwhile, Lin et al. also designed a rule-based
control strategy [61] to optimize parameters for control on each RDP (Repre-
sentative Driving Pattern) and presented how heterogeneous driving behavior
can result in different driving cycles under different compositions of modal
events (i.e., cruise, idle, acceleration, and deceleration). Based on driving cycles,
this study has analyzed the variance on average speed and average road power,
statistically.

Dembski et al. have studied statistical analysis and designed a clustering
technique for standard driving cycles. This technique [62] has separated the
driving cycles into segments based on statistical information. Meanwhile, this
study has proposed a technique to reproduce the driving cycle by choosing the
segments from the existing database.

Ganji et al. have analyzed the standard driving cycles under different pow-
ertrain configurations (i.e., conventional, series hybrid, parallel hybrid, and
series-parallel hybrid vehicles) to simulate the real-world conditions for vehicle

192 J. Wu et al.

performance analysis [63]. This study has shown that using two energy sources
(i.e., fuel and ESS) in the propulsion system allows for a very diverse set of
powertrain configurations.

– Real-World Driving Cycles Analysis:
Gong et al. have presented a systematic analysis using a clustering technique for
real-world driving profiles and developed a driving pattern recognition algorithm
based on the results of the clustering [64]. Further, the study built a Markov-chain
model for the stochastic velocity reproduction for different driving behaviors.
The final goal of this study is to estimate the impact of (P)HEVs on electric
energy consumption and fuel consumption.

Li et al. have studied real-world driving analysis using a systematic approach,
which leverages multi-modality driver-vehicle information to identify the corre-
sponding operation modes under specific driving behaviors [65]. This study has
modeled (P)HEV ESS usage, fuel consumption, and CO2 emissions, enabling
comprehensive and quantitative analysis of (P)HEV economic and environmental
impacts under motorist-specific driving behavior.

7.5 ESS Architecture

Commonly, a large-scale ESS consists of thousands of energy storage units.
Heterogeneous characteristics of energy storage units cause the whole ESS to be
charged or discharged differently, even though all units are initially identical. Thus
the capacity and lifetime of a large-scale ESS are determined by the weakest energy
storage unit. Manufacturing tolerance, along with heterogeneous run-time usage and
the ambient environment, lead to significant degradations and variations among
individual energy storage units which results in serious ESS lifetime reliability
concerns. Therefore, an active battery management system (BMS) is a must to
monitor, control, and balance the pack of ESS. In the following sections, we will
introduce the ESS architecture overview and the challenges of architecture design.

7.5.1 ESS Architecture Overview

Considering the high power/energy requirement of (P)HEVs, an ESS consists of
a large number of energy storage units (more than 1,000) connected in parallel
and series and controlled by a battery management system (BMS). The BMS is
defined as an optimal control system to guarantee that the ESS supplies optimum
energy to power the (P)HEV and guarantee that the risk of failure on the ESS
is minimized. This is obtained by monitoring and controlling the ESS run-time
charging–discharging current, temperature, as well as output voltage. Therefore, the
fundamental undertaking of the BMS [66] is shown as follows:

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 193

– Effective controlling and monitoring: Due to the ESS capacity fading caused
by heterogeneous manufacture tolerance and the heterogeneous run-time usage,
the BMS must suitably control and monitor charging/discharging of the ESS,
including tracking the state of charge (SOC) and the state of health (SOH) of
ESS, with practically no overcharging or over discharging, so as to satisfy the
run-time performance and the long-term cycle life of the ESS.

– Practical powering: Due to the differences in operational voltage and current
between the large-scale ESS and the electric-drive propulsion components, the
BMS powers the ESS to supply the minimum voltage and current to load, using
DC/DC conversion, in order to achieve a longer run-time of the (P)HEV.

A general ESS architecture consists of a large number of energy storage units,
a BMS, a DC/DC converter, and electric-drive propulsion components. The intelli-
gence in the ESS architecture is included in two functions. One is the monitoring
function, which involves the measurement of the characteristics of the ESS such as
voltage, current, temperature, SOC and so on; the other is the controlling function,
which acts on the charging–discharging of the ESS based on the measured variables.
According to the literature [66, 67], the general ESS architecture has two types.
One type is a central control scheme, which is responsible for monitoring and
controlling all energy storage units. The central control scheme is straightforward
to implement, but does not scale well; i.e., this architecture is not energy efficient
when the number of energy storage units increase, resulting in large management
latency. The other is the distributed control scheme, which is an individual control
module that takes responsibility for each energy storage unit independently. The
distributed architecture monitors and controls the energy storage unit efficiently.
However, as the numbers of energy storage unit increase, the cost of the distributed
BMS grows rapidly. Therefore, we need the smart ESS architecture to maximize the
system performance and reliability while with minimum cost.

7.5.2 ESS Architecture Challenges

The ESS architecture design needs to jointly consider the cost of monitoring and
controlling the components, the ESS run-time performance, and the long-term cycle
life. More specifically,

– The performance (e.g., energy capacity) and cycle life of an ESS are constrained
by the weakest battery cell. Due to the limited capabilities of monitoring cells and
system SOC and SOH over high-voltage boundaries, existing BMS offers limited
control over individual cells. As a result, mismatches among cells—due to
manufacturing tolerance, temperature gradients across the pack, and mismatched
degradation over cycle and calendar life—can lead to overcharging or excessive
discharge of individual unit, resulting in overall system performance degradation
and severe cycle life limits. This problem becomes increasingly worse with the
increase of the number of energy storage units.

194 J. Wu et al.

Battery Pack

ECU/EQU
Mod 4

ECU/EQU
Mod 3

ECU/EQU
Mod 2

ECU/EQU
Mod 1

200/15
DC/DC

Converter

ECU
Central
Module

12 V. Vehicle
Battery

12Cells/Module

(+)

+

-

+

-

(-)

To Vehicle
System

4Wire Can, +12 V. Bus

B48

B1

IB
+12 V.

D1 D2

S2

S1

OFF

ON

Fig. 7.2 A prototypical modular system for a Li-ion pack [67]

– Even with the help of the BMS, the string length (i.e., the number of cells or
modules in series) is limited. An additional bidirectional high voltage DC-DC
converter is therefore required between the battery pack and the electric-drive
propulsion components, which regulates the propulsion DC bus voltage VDC but
also increases the overall ESS complexity and cost.

– Existing BMS implementations support same-technology and same-spec battery
cells only. They do not allow heterogeneous storage technology integration (e.g.,
power cells, energy cells, and ultracapacitors) or storage units with different
design specs, therefore seriously limiting the overall ESS design optimization
space.

7.5.3 Existing ESS Architectures

Currently, many studies have focused on the ESS architecture design to address the
above issues. Stuart et al. proposed a modular-based ESS architecture [67], which
consists of four local modules and one central module to monitor battery cells, as
shown in Fig. 7.2. This modular-based ESS architecture has reduced the wiring
latency and has better energy-efficiency than the centralized ESS architecture.
Also, the modular-based ESS architecture provides three advantages. Firstly, it has
developed an accurate circuit to measure the voltage of each module. Secondly,
it has designed the charge measurement circuit to assess the run-time charge–
discharge current waveform. Thirdly, it has proposed a relative current routing

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 195

DC charge transfer interconnect (CTI)

Charger/
Converter

Controller

LoadPower supply

EES bank 1 EES bank 2

Cell

Charger/
Converter

Fig. 7.3 Hybrid electrical energy storage architecture [68]

circuit to boost the charge on low voltage. However, since the modular-based ESS
architecture requires a local module to monitor and control cells—along with a
global module to synthesize local modules—the cost of the whole ESS architecture
increases as the cells increases.

To address these issues, Kim et al. proposed a hybrid electrical energy storage
(HEES) system architecture [68] to maximize the overall cycle efficiency. A HEES
system is an EES that consists of two or more heterogeneous EES elements to lever-
age the advantages of each type. The HESS architecture consists of heterogeneous
EES banks, and each bank is composed of homogeneous EES elements cells, which
is shown in Fig. 7.3.

Energy is transferred between banks, from a bank to the load, or from the power
supply to a bank over a DC charge transfer interconnect (CTI). Power converters
are placed in between the CTI and EES banks for regulating voltage and/or current.
A bank is typically organized as a two-dimensional array structure with a number of
parallel and series connections of cells in order to provide more output power, larger
energy capacity, or higher voltage level. The power capacity and voltage rating are
determined by the number of parallel and series connections.

This study introduced a dynamic HEES bank reconfiguration method considering
power conversion issues as the first step in order to realize higher cycle efficiency
and storage capacity utilization with minimum HEES system cost. Kim et al. have
applied the proposed the reconfiguration technique to ultracapacitor banks, and
demonstrated that the cycle efficiency could be improved by up to 108% for a
constant given power profile, whereas the pulse duty cycle was improved by up
to 127% for a high-current pulsed power profile.

196 J. Wu et al.

Power Control

Supercapacitor bank

Lead-acid battery bank

Li-ion battery bank

Charger Converter

Charger

Charger

Converter

HEES control system

Supervisor control

Charge replacementCharge allocation

Charge migration

Hybrid electric energy storage

Converter

Power
source Load

Fig. 7.4 Architecture of the hybrid EES system [32]

In addition to the existing works, Pedram et al. proposed a memory hierarchy
structure to build a heterogeneous hybrid ESS system architecture [32] to organize
and allocate various types of energy storage units, which is shown in Fig. 7.4. The
heterogeneous hybrid ESS architecture consists of heterogeneous ESS elements,
with each unit connected through DC-DC converters. In this architecture, it
has adopted a flat topology, which means a single controller is responsible for
monitoring and controlling all energy storage units. In comparison to the existing
flat structure, the memory-based flat structure combines the flat physical topology
and the hierarchical logical structure to take the advantage of shortening charge
transfer paths, reducing the losses in charge allocation processes, and allowing any
combination of charge allocation, migration and replacement policies.

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 197

7.6 System Optimization and Control

Several researchers have developed numerous optimization and control strategies
for ESSs. This section presents the overview of such optimization and control
strategies. These strategies can be classified into two application areas: one is the
portable embedded system application, another is the (P)HEV application.

7.6.1 Optimization and Control Strategies in Portable
Embedded Systems

Considering the portable embedded system with small size, such as mobile devices,
researchers have focused on maximization of ESS short-term lifetime with single
battery cell and designed plentiful strategies of optimization and control for the
ESS.

Because of the high power density of the ultracapacitor, recent studies have
started to consider hybrid energy storage technology, named battery-ultracapacitor
integration, which shows a promising way to improve the performance of the
ESS [31, 32]. During 2006–2012, Pedram et al. published several papers that
discussed strategies of optimization and control for the ESS [8, 69–72].

Peng et al. have described the problem of maximizing the capacity utilization of
the battery power source in the portable embedded system under latency and loss
rate constraints. Based on this problem, this study has built a battery-aware power
management technique using the continuous- time Markovian Decision Processes
(MDP) and stochastic networks [8] to capture the current rate-capacity feature and
capacity recovery feature of the battery cell. This study aims to maximize the battery
short-term service lifetime while satisfying the given service timing constraints.
In comparison to the existing heuristic techniques for battery management, the
proposed algorithm achieves 17% improvement in average energy delivered per
energy storage unit weight.

Shin et al. have proposed a battery-ultracapacitor hybrid architecture [69] to
maximize the deliverable energy density under different constraints for portable
electronics. This study also has developed a design space exploration algorithm to
maximize the deliverable energy density for a given charging–discharging current
profile. The proposed hybrid optimization architecture can reduce the capacity loss
due to the highly fluctuating charging–discharging current profile. The proposed
optimization algorithm achieves 7:7% improvement in deliverable energy density
over the conventional parallel connection of battery and ultracapacitor.

Wang et al. have developed the optimization technique of charge migration for
hybrid electric energy storage systems that finds the best migration efficiency [70].
This study has defined time-unconstrained and time-constrained charge migration
problems and provided a systematic derivation of the optimal charge migration.
Compared with the baseline charge migration technique, the proposed optimization
method enhances the global migration efficiency up to 51:3%.

198 J. Wu et al.

Xie et al. have presented the charge allocation problem and developed the
systematic technique for maximum charge allocation efficiency [71]. Based on the
generalized hybrid electric energy storage (HEES) architecture, this study has built
the corresponding electrical circuit models to describe the chargers and banks.
Further, utilizing the mixed integer nonlinear optimization technique, this study
designed an optimal algorithm to find the global charge allocation efficiency for
long-term charge allocation processes. After that, Xie et al. have described the
global charge replacement (GCR) optimization problem for HEES. Meanwhile,
this study has designed an algorithm to achieve the near-optimal GCR control
policy [72] under many constraints (i.e., energy reservation, converter efficiency,
rate capacity effect, and self-discharge rates). In comparison to the baseline setup,
the proposed near-optimal GCR control algorithm achieves 42:8% improvement.

In addition, Mirhoseini et al. have developed a hybrid battery-ultracapacitor
power supply optimization [73] to improve the lifetime of portable systems. Further,
Mirhoseini et al. have proposed an optimal management strategy [74] for the hybrid
battery-ultracapacitor system.

7.6.2 Optimization and Control Strategies in the (P)HEV

Although the aforementioned methods for portable embedded systems offer optimal
solutions for single battery cells, they are challenging, if not impossible, to extend
to the (P)HEV application. The (P)HEV consists of a large number of energy
storage units (even more than 1,000) connected in parallel and serial to provide
output voltage, driving current, and energy storage capacity to vehicles. Direct
extensions of existing methods used for single battery cells to (P)HEVs are therefore
computational prohibitive and also fail to characterize the interaction effect among
the energy storage units (e.g., heterogeneous capacity). Moreover, existing methods,
developed for the maximization of short-term lifetime, have ignored the long-term
aging effect, which is, however, important for the energy storage system (ESS) cost
of the (P)HEV.

From the perspective of the (P)HEV application, the energy storage technology
and hybrid ESS design have drawn significant attention in recent years. Markel et al.
have investigated (P)HEV technologies and pointed out the power and the energy
capacity as the two critical factors in (P)HEV ESS design [1]. Rousseau et al.
have presented an ESS design considering vehicle design, control strategies,
and drive cycle [75], based on existing HEV configurations. Dumitrescu et al.
have proposed a hybrid integration of NiMH battery and double-layer capacitor
technologies [76]. This study has designed a technique for a power management
system of loads with large peak-to-average power ratios. Smith has integrated fuel
cells with ultracapacitors for ESS power and energy optimization [77]. Burke has
analyzed the feasibility of incorporating ultracapacitors into electric vehicle battery
systems [78]. Cooper et al. have developed a hybrid lead-acid battery-ultracapacitor
ESS called UltraBattery, which demonstrated that both run-time power demand and

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 199

lifetime can be enhanced [79]. In this study, the ultracapacitor acts as a buffer
to share the discharging and charging currents with the lead-acid battery, thus
enabling it to provide and absorb charge rapidly during vehicle acceleration and
braking. Lukic et al. have summarized the different charge control strategies with
different topologies of hybrid ESSs [80]. Garcia et al. have proposed the control
strategy of charge allocation for the battery-ultracapacitor to coordinate the (P)HEV
power demand [81]. The proposed control strategy in [81] regulates the output
voltage based on the combination of two different energy storage technologies
(i.e., battery-ultracapacitor), in order to keep stability. Zhou et al. have developed
a run-time power management strategy [82] for multi-source (e.g., lead-acid battery
and ultracapacitor) in the hybrid electric vehicle. In addition, Wu et al. have
proposed a design framework that unifies design-time optimization and run-time
control [83]. This study has distinguished itself from existing studies, not only
because it minimizes the ESS cost—instead of the run-time energy consumption—
by optimizing the ESS configurations, but also because it models several effects
that are important to the ESS cost and lifetime. Targeting the ESS architecture,
the design-time optimization is to quantitatively determine the ESS configuration,
including the number of storage units, as well as the type and size of each unit, to
minimize the system cost while ensuring the target lifetime for most (P)HEV vehicle
drivers. In the (P)HEV application, the ESS system consists of N D m � n energy
storage units organized in an m � n regular array. This means m modules connected
in series and n units connected in parallel for each module. For each energy storage
unit i; j with type qi;j 2 Q and size si;j , the ESS cost is minimized while satisfying
the usage demand for the target lifetime. Therefore, the ESS cost function is shown
as follows:

cost.s/
4D

mX

iD1

nX

j D1

ci;j .si;j /; (7.4)

where the ci;j .si;j / is the cost function for energy storage unit i; j with size si;j and
type qi;j .

In order to meet the power demand, the energy demand, and the particular
remaining capacity requirements, the constraints of this study is shown as follows:

PrŒP ESS.s/ � P d ^ EESS.s/ � Ed ^ AESS.s/ � �� � ı; s 2 S: (7.5)

The P ESS and EESS are denoted as the power and energy capacities of the ESS at
the end of the lifespan, separately. AESS represents the capacity aging effect of the
ESS. P d and Ed are separately denoted as the maximal power usage demand and
energy demand among the motorists. � is an upper-bound of efficiency used for each
energy storage unit. The ı 2 Œ0; 1� is the statistical lifetime guarantee. A lifetime
guarantee equal to 1 is equivalent to the deterministic optimization that targets at
the worst-case scenarios of both the ESS manufacture process variations and the
driving patterns (i.e., ESS run-time use) to meet a particular remaining capacity
requirement. Overall, compared against the worst-case based Li-ion only ESS, the
produced hybrid ESS designs reduce the system cost on average by 51:2% with only
5% lifetime guarantee loss.

200 J. Wu et al.

7.7 Conclusions

(P)HEVs present an excellent opportunity to not only reduce transportation
petroleum dependencies but also to curb greenhouse gas emissions. This chapter
overviewed the challenges found in energy storage systems (ESS) design for
the (P)HEV application area. Firstly, the performance metrics that drive ESS
design were outlined (i.e., cost, energy density, peak power, run-time charge-cycle
efficiency, and lifetime), along with the electrochemical effects of various energy
storage technologies (e.g. Li-ion batteries and ultracapacitors). Next, ESS modeling
methodologies—from the single ESS unit to large-scale ESS—were compared.
Impacts of motorist driving behaviors and driving cycles were shown on ESS
performance and the environment. ESS architectures, including hybrid electrical
energy storage (HEES) architectures, were presented. Finally, (P)HEV optimization
and control strategies were given for combining and overall balancing of all ESS
performance metrics.

References

1. Markel T, Simpson A (2006) Cost-benefit analysis of plug-in hybrid electric vehicle technol-
ogy. In: 22nd international electric vehicle symposium, Yokohama

2. Environmental assessment of plug-in hybrid electric vehicles, vol 1: nationwide greenhouse
gas emissions. Electric Power Research Institute (EPRI), Palo Alto, CA, Tech. Rep. 1015325,
July 2007

3. Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from
plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42(9):3170–3176

4. Karplus V et al (2012) Should a vehicle fuel economy standard be combined with an economy-
wide greenhouse gas emissions constraint? Implications for energy and climate policy in the
united states. Energy Econ 36: 322–333

5. Miller JM (2009) Energy storage system technology challenges facing strong hybrid, plug-
in and battery electric vehicles. In: IEEE vehicle power propulsion dsonference, Dearborn,
pp 4–10

6. Pang C, Dutta P, Kezunovic M (2012) Bevs/phevs as dispersed energy storage for v2b uses in
the smart grid. IEEE Trans Smart Grid 3(1):473–482

7. Lahiri K, Raghunathan A, Dey S (2004) Efficient power profiling for battery-driven embedded
system design. IEEE Trans Comput-Aided Des Integr Circuits Syst 23(6):919–932

8. Rong P, Pedram M (2006) Battery-aware power management based on markovian decision
processes. IEEE Trans Comput-Aided Des Integr Circuits Syst 25(7):1337–1349

9. Li Y et al (2012) An energy efficient solution: Integrating plug-in hybrid electric vehicle
in smart grid with renewable energy. In: IEEE conference on computer communications
workshops (INFOCOM WKSHPS), Orlando, 2012. IEEE, pp 73–78

10. Baisden A, Emadi A (2004) Advisor-based model of a battery and an ultra-capacitor energy
source for hybrid electric vehicles. IEEE Trans Veh Technol 53(1):199–205

11. Lukic SM et al (2008) Energy storage systems for automotive applications. IEEE Trans Ind
Electron 55(6):2258–2267

12. Cao J, Emadi A (2012) A new battery/ultracapacitor hybrid energy storage system for electric,
hybrid, and plug-in hybrid electric vehicles. IEEE Trans Power Electron 27(1):122–132

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 201

13. Maksimovic D, Zane R, Erickson R (2009) Multi-cell battery systems. University of Colorado
at Boulder (UCB), Invention Disclosure

14. US Advanced Battery Consortium. http://www.uscar.org/
15. Pesaran A, National Renewable Energy Laboratory (U.S.) et al (2009) Battery requirements

for plug-in hybrid electric vehicles–analysis and rationale. National Renewable Energy
Laboratory, Golden

16. Vazquez S et al (2010) Energy storage systems for transport and grid applications. IEEE Trans
Ind Electron 57(12):3881–3895

17. Martin TL (1999). Balancing batteries, power, and performance: system issues in Cpu speed-
setting for mobile computing. Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA,
USA

18. Panigrahi D et al (2001) Battery life estimation of mobile embedded systems. In: Proceedings
of the 14th IEEE/ACM international conference on VLSI design, San Diego

19. Li K et al (2010) Large-scale battery system modeling and analysis for emerging electric-drive
vehicles. In: ACM proceedings of the 2010 international symposium on low power electronics
and design (ISLPED), Austin

20. Vetter J et al (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources
147(1):269–281

21. Toyota PHEV technologies. http://www.toyota.com
22. Seo H et al (2010) Power quality control strategy for grid-connected renewable energy sources

using pv array and supercapacitor. In: International conference on electrical machines and
systems (ICEMS) 2010. IEEE, Incheon, Korea (South), pp 437–441

23. Rong P, Pedram M (2006) An analytical model for predicting the remaining battery capacity
of lithium-ion batteries. IEEE Trans Very Larg Scale Integr Syst 14(5):441–451

24. Hung S, Hopkins D, Mosling C (1993) Extension of battery life via charge equalization control.
IEEE Trans Ind Electron 40(1):96–104

25. Moawad A et al (2009) Impact of real world drive cycles on phev fuel efficiency and cost for
different powertrain and battery characteristics. In: International battery, hybrid and fuel cell
electric vehicle symposium, Stavanger

26. Shiau CSN et al (2009) Impact of battery weight and charging patterns on the economic and
environmental benefits of plug-in hybrid vehicles. Energy Policy 37(7):2653–2663

27. Fuller T, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium ion
insertion cell. J Electrochem Soc 141(1):1–10

28. Johnson VH (2002) Battery performance models in ADVISOR. J Power Sources 110: 321–329
29. Rao V et al (2005) Battery model for embedded systems. In: 18th international conference on

VLSI design, Kolkata, 2005. IEEE, pp 105–110
30. Rakhmatov D, Vrudhula S, Wallach D (2002) Battery lifetime prediction for energy-aware

computing. In: ISLPED ’02: proceedings of the 2002 international symposium on Low power
electronics and design, New York, pp 154–159

31. Lukic SM et al (2006) Power management of an ultra-capacitor/battery hybrid energy storage
system in an HEV. In: IEEE vehicle power propulsion conference, Windsor, United Kingdom,
pp 1–6

32. Pedram M et al (2010) Hybrid electrical energy storage systems. In: ACM/IEEE international
symposium on low-power electronics and design (ISLPED), Austin, 2010. IEEE, pp 363–368

33. Du Pasquier A et al (2003) A comparative study of li-ion battery, supercapacitor and nonaque-
ous asymmetric hybrid devices for automotive applications. J Power Sources 115(1):171–178

34. Lahiri K et al (2002) Battery-driven system design: a new frontier in low power design. In:
Design automation conference, 2002. Proceedings of ASP-DAC 2002. 7th Asia and South
Pacific and the 15th international conference on VLSI design, Bangalore

35. Khateeb SA et al (2006) Mechanical-electrochemical modeling of Li-ion battery designed for
an electric scooter. J Power Sources 158(1):673–678

36. Ricketts B, Ton-That C (2000) Self-discharge of carbon-based supercapacitors with organic
electrolytes. J Power Sources 89(1):64–69

http://www.uscar.org/
http://www.toyota.com

202 J. Wu et al.

37. Conway B (1999) Electrochemical supercapacitors: scientific fundamentals and technological
applications. Springer, New York

38. Diab Y et al (2009) Self-discharge characterization and modeling of electrochemical capacitor
used for power electronics applications. IEEE Trans Power Electron 24(2):510–517

39. Santhanagopalan S et al (2005) Review of models for predicting the cycling performance of
lithium ion batteries. J Power Sources 156: 620–628

40. Kazuo O et al (2003) Study on heat generation behavior of small lithium-ion secondary battery.
J Electrochem Soc 150(3):A285–A291

41. Newman JS (1999) FORTRAN programs for simulation of electrochemical systems. Available:
http://www.cchem.berkeley.edu/�jsngrp/.

42. Smith K, Rahn C, Wang C (2010) Model-based electrochemical estimation and constraint
management for pulse operation of lithium ion batteries. IEEE Trans Control Syst Technol
18(3):654–663

43. Doyle M, Fuller T, Newman J (1993) Modeling of galvanostatic charge and discharge of the
lithium/polymer/insertion cell. J Electrochem Soc 140(6):1526–1533

44. Rakhmatov D, Vrudhula S, Wallach D (2003) Model for battery lifetime analysis for organizing
applications on a pocket computer. IEEE Trans Very Larg Scale Integr Syst 11(6):1019–1030

45. Gao L, Liu S, Dougal R (2002) Dynamic lithium-ion battery model for system simulation.
IEEE Trans Compon Packag Technol 25(3):495–505

46. Hageman S (1993) Simple pspice models let you simulate common battery types. Edn-Boston
Denver 38:117–117

47. Yann Liaw B et al (2004) Modeling of lithium ion cellsa simple equivalent-circuit model
approach. Solid State Ion 175(1):835–839

48. Lee S et al (2008) State-of-charge and capacity estimation of lithium-ion battery using a new
open-circuit voltage versus state-of-charge. J Power Sources 185(2):1367–1373

49. Chiasserinia C, Rao R (2000) Stochastic battery discharge in portable communication devices.
IEEE Aerosp Electron Syst Mag 15(8):41–45

50. Chiasserini C, Rao R (1999) A model for battery pulsed discharge with recovery effect. In:
Wireless communications and networking conference (WCNC), 1999. IEEE, New Orleans,
LA, pp 636–639

51. Chiasserini C, Rao R (2001) Improving battery performance by using traffic shaping tech-
niques. IEEE J Sel Areas Commun 19(7):1385–1394

52. Chiasserini C, Rao R (2001) Energy efficient battery management. IEEE J Sel Areas Commun
19(7):1235–1245

53. Manwell J, McGowan J (1994) Extension of the kinetic battery model for wind/hybrid power
systems. In: Proceedings of EWEC, Thessaloniki, Greece, pp 284–289

54. Nelson, Amine K (2007) Advanced lithium-ion batteries for plug-in hybrid-electric vehicles.
In: 23rd international electric vehicle symposium (EVS23), Argonne National Laboratory,
Lemont

55. A. N. Laboratory, PSAT (Powertrain Systems Analysis Toolkit). http://www.transportation.anl.
gov/

56. Kroeze R, Krein P (2008) Electrical battery model for use in dynamic electric vehicle
simulations. In: Power electronics specialists conference (PESC), 2008. IEEE, Rhodes, Greece,
pp 1336–1342

57. Wu J et al (2011) Large-scale battery system development and user-specific driving behavior
analysis for emerging electric-drive vehicles. Energies 4:758–779

58. Midlam-Mohler S et al (2009) Phev fleet data collection and analysis. In: Vehicle power and
propulsion conference (VPPC’09), 2009. IEEE, Dearborn, MI, pp 1205–1210

59. Ericsson E (2001) Independent driving pattern factors and their influence on fuel-use and
exhaust emission factors. Transp Res Part D: Transp Env 6(5):325–345

60. Lin C et al (2002) Control of a hybrid electric truck based on driving pattern recognition. In:
Proceedings of the 6th international symposium on advanced vehicle control, Hiroshima

61. Lin C et al (2004) Driving pattern recognition for control of hybrid electric trucks. Veh Syst
Dyn 42(1–2):41–58

http://www.cchem.berkeley.edu/~jsngrp/.
http://www.transportation.anl.gov/
http://www.transportation.anl.gov/

7 Energy Storage System Design for Green-Energy Cyber Physical Systems 203

62. Dembski N et al (2005) Development of refuse vehicle driving and duty cycles. SAE Trans
114(2):90–102

63. Ganji B, Kouzani A, Trinh H (2010) Drive cycle analysis of the performance of hybrid electric
vehicles. In: Life system modeling and intelligent computing. Springer, New York, pp 434–444

64. Gong Q et al (2010) Statistical analysis of phev fleet data. In: Vehicle power and propulsion
conference (VPPC), 2010. IEEE, pp 1–6

65. Li K et al (2012) Personalized driving behavior monitoring and analysis for emerging hybrid
vehicles. In: Pervasive computing. Springer, New York, pp 1–19

66. Bergveld H, Kruijt W, Notten P (2002) Battery management systems: design by modelling,
vol 1. Springer, Boston

67. Stuart T et al (2002) A modular battery management system for hevs. In: Proceedings of the
SAE future car congress (Paper number 2002-01-1918), Arlington

68. Kim Y et al (2010) Balanced reconfiguration of storage banks in a hybrid electrical energy
storage system. In: Proceedings of the international conference on computer-aided design.
IEEE, San Jose, CA, pp 624–631

69. Shin D et al (2011) Constant-current regulator-based battery-supercapacitor hybrid architecture
for high-rate pulsed load applications. J Power Sources 205:516–524

70. Wang Y et al (2011) Charge migration efficiency optimization in hybrid electrical energy
storage (hees) systems. In: ISLPED’11, Fukuoka, pp 103–108

71. Xie Q et al (2011) Charge allocation for hybrid electrical energy storage systems. In:
Proceedings of the 9th international conference on hardware/software codesign and system
synthesis (CODES+ISSS), Taipei, 2011. IEEE, pp 277–284

72. Xie Q et al (2012) Charge replacement in hybrid electrical energy storage systems. In: 17th
Asia and South Pacific design automation conference (ASP-DAC), Sydney, 2012. IEEE,
pp 627–632

73. Mirhoseini A, Koushanfar F (2011) Hypoenergy hybrid supercapacitor-battery power-supply
optimization for energy efficiency. In: Design, automation & test in Europe conference &
exhibition (DATE), Grenoble, 2011. IEEE, pp 1–4

74. Mirhoseini A, Koushanfar F (2011) Learning to manage combined energy supply systems. In:
International symposium on low power electronics and design (ISLPED) 2011. IEEE, Fukuoka,
pp 229–234

75. Rousseau A et al (2007) Research on phev battery requirements and evaluation of early
prototypes. In: 7th advanced automotive battery conference. Long Beach, CA

76. Roman Dumitrescu CR, Gausemeier J (2009) Design methodology of a combined battery-
ultracapacitor energy storage unit for vehicle power management. In: 10th international
workshop on research and education in mechatronics. Glasgow, UK

77. Smith R (2004) Fuel cells and ultracapacitors. In: Advanced capacitor world summit 2004.
Washington, DC

78. Burke AF (2007) Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc
IEEE 95(4):806–820

79. Cooper et al A (2009) The ultrabattery–a new battery design for a new beginning in hybrid
electric vehicle energy storage. J Power Sources 188(2):642–649

80. Lukic et al S (2008) Energy storage systems for automotive applications. IEEE Trans Ind
Electron 55(6):2258–2267

81. Garcia F, Ferreira A, Pomilio J (2009) Control strategy for battery-ultracapacitor hybrid energy
storage system. In: Twenty-fourth annual IEEE applied power electronics conference and
exposition (APEC), 2009. IEEE, Washington, DC, pp 826–832

82. Zhou Z et al (2011) Power management of passive multi-source hybrid electric vehicle. In:
Vehicle power and propulsion conference (VPPC), 2011. IEEE, Chicago, IL, pp. 1–4

83. Wu J et al (2012) Large-scale energy storage system design and optimization for emerging
electric-drive vehicles. IEEE Trans Comput-Aided Des Integr Circuit Syst 32:325–338

Chapter 8
Sensor Network Protocols for Greener
Smart Environments

Giacomo Ghidini, Sajal K. Das, and Dirk Pesch

8.1 Introduction

A wireless sensor network (WSN), depicted in Fig. 8.1, consists of a set of sensor
nodes, small battery-powered computing devices connected via a multi-hop wireless
network [2, 40]. These nodes, also called sensors or motes, measure physical
quantities of the surrounding environments using on-board sensors. Thanks to
advances in micro-electronic mechanical systems (MEMS), there exist small form-
factor sensors to measure a wide array of physical quantities: from temperature to
humidity, from strain to electromagnetic field, to name a few. These analog data
are then converted to digital values and relayed to the base station, or sink, along
a multi-hop route formed by the motes in the wireless network. These data may be
stored in memory at the source node, en route, or the base station, and processed by
these nodes, in order to remove redundancy or noise, add error correction, or verify
authenticity. Once the data reach the base station, they may be used to monitor
the environment in which the WSN is deployed, build a model thereof, and make
decisions as to what actions need be taken by actuators or humans.

Given their nature as a direct connection between the physical and cyber
worlds, WSNs have potential applications in many diverse fields, and are one
of the fundamental components to develop greener computing systems. In fact,
one can imagine that most problems humankind is facing could be addressed in
a more precise and (energy) efficient manner, if accurate data from the physical
environment (be it a forest hosting an endangered species, a crop needing the

G. Ghidini (�) • S.K. Das
Center for Research in Wireless Mobility and Networking, The University of Texas
at Arlington, Arlington, TX 76019, USA
e-mail: giacomo@uta.edu; das@uta.edu

D. Pesch
Cork Institute of Technology, Cork, Ireland
e-mail: dirk.pesch@cit.ie

P.P. Pande et al. (eds.), Design Technologies for Green and Sustainable Computing Systems,
DOI 10.1007/978-1-4614-4975-1 8, © Springer ScienceCBusiness Media New York 2013

205

206 G. Ghidini et al.

Fig. 8.1 A wireless sensor network consisting of motes connected to a base station via a multi-hop
wireless network

appropriate quantity of water and fertilizers, or a freeway network often jammed by
traffic) were available. So far, WSNs have been applied in several areas, including
natural environments [32], rural areas [31], and urban domains [21]. Constraints
on the motes due to the current technology, such as battery lifetime, size of the
devices, and manufacturing costs, may temporarily delay the widespread application
of WSNs to certain domains and scenarios. While WSNs are a necessary component
towards more energy efficient systems in many domains, it is also important that the
WSN protocols and applications be designed with energy efficiency as one of the
driving objectives in order to make the overall system greener.

In this chapter, we aim to provide an overview of state-of-the-art algorithms and
protocols for wireless sensor networks with a special focus on the communication
stack. In all distributed systems, the protocols for the communication stack play a
vital role by enabling interoperability of different subsystems. In wireless sensor
networks, the communication stack is even more important because it accounts
for the largest share of energy consumption in many application scenarios, and
thus well-designed, energy-efficient protocols have a strong impact on the overall
lifetime of the WSN.

In the past decade, several organizations, including the Institute of Electrical and
Electronics Engineers (IEEE) and the Internet Engineering Task Force (IETF), have
defined standards for physical layer, MAC layer, and network layer. In particular,
we observe a trend towards the adoption of IEEE 802.15.4 [19] for physical (PHY)
and medium access control (MAC) layers, and IETF 6LoWPAN [18,27] as the IPv6
protocol at the network layer. Standards for routing and ReSTful communication are
also being proposed within the IETF. The IETF Routing over Low Power and Lossy

8 Sensor Network Protocols for Greener Smart Environments 207

Fig. 8.2 Comparison of the
communication stacks used in
the Internet and in WSNs

Networks (RoLL) working group (WG) is developing the Routing Protocol for
LLNs (RPL) [38], a standard for routing in WSNs, while the Constrained ReSTful
Environments (CoRE) [20] is developing the Constrained Application Protocol
(CoAP), a standard for ReSTful communication with WSNs. Figure 8.2 displays
these protocols side-by-side with the corresponding ones already being used in the
Internet.

We argue that it is important to provide an overview of the existing and proposed
standards and their implementations not limiting the analysis to one layer, but rather
discussing them as part of this developing communication stack for WSNs. To this
extent, in our presentation of state-of-the-art solutions and proposed standards we
attempt to bring to the foreground the interdependencies between different layers
and the implications that design decisions at one layer have on the performance
at other ones. Ultimately, our analysis of the communication stack is aimed to
help researchers who are new to the area of WSN communications understand its
overall functioning, while also offering to more seasoned researchers an insight into
protocols at different layers and the interplay among them.

The rest of the chapter is organized as follows. In Sect. 8.2, we review the
different classes of MAC protocols, and describe the major features of IEEE
802.15.4. In Sect. 8.3, we present 6LoWPAN and RPL, respectively the standards
for IPv6 and routing in WSNs, and survey implementations and results. In Sect. 8.4,
we summarize the major features of CoAP, and then analyze recent evaluations of
the protocol. Finally, we draw our conclusions in Sect. 8.6.

8.2 MAC Layer

In a WSN, the MAC layer plays a vital role as it enables the actual communication
among nodes over a common medium. As such, a MAC protocol is often evaluated
along several dimensions, including delay, throughput, and energy efficiency.
However, constraints such as scarce battery capacity, limited computational power,
and small memory size, make the design of MAC protocols that can perform well
with respect to the performance metrics very difficult. Finally, the diversity of traffic
patterns generated by applications in diverse domains further complicate the design
of a general, effective, and efficient MAC protocol for WSNs.

Likely because of the challenges discussed above, researchers have dedicated
a lot of efforts to developing MAC protocols that meet all the requirements.

208 G. Ghidini et al.

As a results, dozens, if not hundreds, of MAC protocols have been proposed by
the research community in the past 15 years. In the past, and to a certain extent,
still today, authors tried to classify MAC protocols based on the technique that they
employ to coordinate access to a common medium by multiple nodes. These clas-
sifications are often variations of the one considering reservation-based protocols,
contention-based protocols, and hybrid solutions. In this classification, reservation-
based protocols usually feature some form of time-division multiple access (TDMA)
and/or frequency-division multiple access (FDMA), while contention-based pro-
tocols are built around ALOHA or carrier-sense multiple access (CSMA), and
hybrid protocols feature a mix of the two. The requirement for knowledge of the
topology and strict synchronization are among the major drawbacks of the first
class of protocols (i.e., reservation-based). Instead, the second class of protocols
(i.e., contention-based) does not require this information, but experiences degraded
performance in case of heavy traffic load and high energy consumption per bit (i.e.,
poor energy-efficiency) even in presence of light traffic loads.

8.2.1 MAC Protocol Classes

Recently, [4] proposes a classification of MAC protocols based on traffic patterns.
The important assumption behind this classification is that the ultimate MAC
protocol for WSNs with optimal performance for all traffic loads does not exist.
Instead, there exist MAC protocols that are optimal for certain classes of WSN
traffic.

The authors first summarize the causes of wasteful energy consumption at the
MAC layer. In particular, they list: collisions, overhearing, overhead, and idle
listening. Then they define three classes of traffic load: heavy, medium, and low.
They observe how certain kinds of wasteful energy consumption are more likely
to arise in presence of specific traffic loads. For instance, collisions are more
common in case of heavy traffic, while idle listening is usually a cause of wasteful
energy consumption in presence of light traffic. The authors then introduce three
basic classes of MAC protocols: scheduled protocols, common active period-based
protocols, and preamble sampling-based protocols. Hybrid protocols, such as IEEE
802.15.4, present features of different classes, and thus are grouped in a separate
class.

8.2.1.1 Schedule-Based Protocols

In a scheduled protocol like TSMP [28], medium access is controlled by a schedule
in the time and/or frequency domains. In a first version, communication links
for each pair of neighboring nodes can be scheduled. Figure 8.3 portrays the
communication between all pairs of nodes in a clique of four sensors. Alternatively,
simply the senders or the receivers can be scheduled. The first option performs very

8 Sensor Network Protocols for Greener Smart Environments 209

Fig. 8.3 Sample scheduled MAC protocol. Black lines depict communication links; orange and
blue arrows depict scheduled communication on two different channels. (a) t D 0. (b) t D 1.
(c) t D 2. (d) t D 3. (e) t D 4. (f) t D 5

well in presence of heavy traffic loads, but brings about major overhead since all
pairs of neighboring nodes must be scheduled a slot for communication. Overhead
is reduced by scheduling only senders or receivers, but other sources of wasteful
energy consumption become relevant. In the solution where senders are scheduled,
all neighbors have to listen to each sender, because the message may be addressed
to them, thus resulting in overhearing. If receivers are scheduled instead, collisions
may occur, so that this variant is not as effective in case of heavy traffic loads.

8.2.1.2 Common Active Period-Based Protocols

The next class of MAC protocols is that of those based on common active periods
and targeted to medium traffic loads such as SMAC [39]. As depicted in Fig. 8.4,
protocols in this class attempt to achieve a coarse synchronization between the active
periods of neighboring nodes, so that they can communicate during these times,
and turn off the radios at all other times. This is based on the assumption that a
medium traffic load can be taken care of during a fraction of the node lifetime,
and thus precious battery power can be saved by operating the radio only during
these times. In the common active periods, nodes usually operate according to a
contention-based mechanism such as CSMA to transmit their frames. In a common
active period-based protocol, schedules are distributed so that all neighbors turn on

210 G. Ghidini et al.

Fig. 8.4 Example of
schedule distribution in
SMAC. Two different
schedules (orange and blue)
are distributed to nodes, and
eventually border nodes have
to accept both

Fig. 8.5 Example of
preamble sampling-based
MAC protocol

their radios at the same time. As a result of this schedule distribution, clusters of
nodes with the same schedule can be formed. As depicted in Fig. 8.4, in order to
support inter-cluster communication, certain nodes are required to keep their radio
on according to the union of all known schedules, and incur into higher energy
consumption as a result.

8.2.1.3 Preamble Sampling-Based Protocols

In the third class of MAC protocols, targeted to low traffic loads, nodes use preamble
sampling to synchronize communications. In a preamble sampling-based protocol
such as the low-power listening (LPL) mechanism used in TinyOS and BMAC
[29], the sender transmits a beacon to announce that it has a message to relay to
a neighboring node. As depicted in Fig. 8.5, all nodes periodically turn on their
radios for brief periods of time, and sample the channel looking for these beacons.
If such a beacon is received, then the node keeps its radio on and waits for the actual
transmission from the sender. There exist several variations of this basic mode of
operations. For instance, synchronization information can be piggybacked on the
beacon like in WiseMAC [14], so that the potential receivers do not have to keep
their radios on, but rather can turn them off and then turn them on again at the time of
communication as announced by the sender. In other protocols such as X-MAC [6],
senders transmit the beacon in periodic short preambles instead of a single long one,
so that receivers can acknowledge the reception of the preamble without waiting for
its end. Finally, in a reversal of the original protocol, receivers may transmit the
beacon to initiate transmission from the senders as it is the case in RICER [26].

8 Sensor Network Protocols for Greener Smart Environments 211

8.2.1.4 Hybrid Protocols

Besides the three classes described above, there exist also hybrid MAC protocols.
The objective of these protocols is to optimize performance across different traffic
loads. To achieve this goal, hybrid protocols employ several techniques. For
instance, they may rely on flexible MAC frame structure like IEEE 802.15.4, so that
different modes of operation can be applied. In particular, the non-beacon mode of
this standard protocol is basically a CSMA with collision avoidance (CSMA/CA).
Instead, in the beacon-enabled mode so-called collision free period (CFPs) may be
scheduled by the coordinator for specific nodes, while CSMA is still available for
the rest of the time. Another solution is to blend a reservation-based protocol with a
contention-based mechanism. In a hybrid protocol like ZMAC [35], nodes operate
according to CSMA whenever traffic load is light, but can set up a schedule and
switch to TDMA when they observe heavier traffic. Finally, in protocols such as
Funneling MAC [1], nodes can operate according to a contention-based mechanism
if they are further away from the sink where traffic load is low, and use reservation-
based techniques if they are in the surroundings of the sink, where convergecast
traffic brings about heavier loads.

8.3 Network Layer

In the past several decades, the Internet has thrived also thank to the availability of
IP (the Internet Protocol) across different devices and networks. There is widespread
agreement within the WSN research community that WSNs and other constrained
networks will fulfill their potential, if they can seamless interoperate with the
Internet. In order to enable seamless internetworking not requiring complex gate-
ways between the Internet and constrained networks such as WSNs, it is necessary
to bring the Internet network layer protocols to these novel networks. However,
WSN specific features such as limited battery power and memory size make the
direct implementation of network layer protocols for sensor nodes impossible. For
this reason, several organizations, including the IETF, have embarked on projects
to design network layer protocols that enable efficient operation of WSNs and
straightforward internetworking between these and the broader Internet. As far
as the IETF is concerned, the two major standard efforts are the 6LoWPAN WG
with its IPv6-like protocol, and the RoLL WG with its RPL routing protocol, both
depicted in Fig. 8.2. In this section, we briefly introduce 6LoWPAN and then focus
our attention on the RPL routing protocol.

8.3.1 IPv6 in Low-Power Wireless Personal Area Networks

After approximately a decade of very active research in WSNs, the IETF chartered
the 6LoWPAN working group to develop an IPv6-like protocol for these constrained

212 G. Ghidini et al.

networks using IEEE 802.15.4 at the physical and MAC layers. In order to be
IPv6-compatible and work on top of IEEE 802.15.4, 6LoWPAN has to implement
fragmentation, since IEEE 802.15.4 PHY frames have a maximum payload of
127 bytes, whereas IPv6 requires a 1,280-byte minimum MTU. The standard
implements fragmentation using a 3-field fragmentation header. Besides a tag field
for keeping track of the IPv6 packet the fragment belongs to and an offset field to
keep track of its position within the IPv6 packet, 6LoWPAN also tracks the datagram
size with an additional fragmentation header field as this is useful to pre-allocate a
buffer of the appropriate size on resource-constrained nodes [23].

Since IEEE 802.15.4 PHY frame payload is only 127 bytes long and MAC
headers use up several of them, as many as possible of the approximately 80
remaining bytes should be dedicated to carry the IPv6 payload, not the header fields.
For this reason, 6LoWPAN performs stateless header compression. The adopted
solution is stateless to minimize complexity on resource-constrained nodes, and is
based on assigning short representations for common values in header fields while
removing redundant information at the link, network, and transport layers [23].
6LoWPAN also uses assumptions on the link layer, such as that IPv6 addresses are
derived from MAC layer ones, to implement the IPv6 neighbor discovery protocol
[23] for WSNs. Thanks to its support of fragmentation, header compression, and
simplified neighbor discovery mechanism, 6LoWPAN is a viable solution for IPv6-
based networking in WSNs. As 6LoWPAN moved through the standardization
process, the need for an effort to standardize a protocol to route 6LoWPAN packets
became more relevant, and the IETF RoLL working group was chartered.

8.3.2 The Routing Protocol for Low Power and Lossy
Networks (RPL)

RPL is the routing protocol for low power and lossy networks under development
within the IETF RoLL WG. The working group defined four different application
domains for this distance vector protocol: urban environments, industrial networks,
home automation, and building automation [23]. As a consequence of the selected
application areas, the protocol is optimized for convergecast, supports multicast,
and makes unicast communications also possible [8]. In the current version of the
protocol, there is no direct support for mobility [8]. Similar to what happened within
the 6LoWPAN working group, the IETF RoLL WG had to make decisions as to
what would be the most important use cases and scenarios. The decision to primarily
target convergecast and not to support directly mobility are rooted in the analysis
of the application scenarios and the need to limit the complexity and footprint
of the protocol, so that it can be adopted in novel products and applications. The
correctness of these design decisions is being validated during the standardization
process, and will be put to the ultimate test when the standard is released and made
available to be used in real-life applications.

8 Sensor Network Protocols for Greener Smart Environments 213

Fig. 8.6 The directed acyclic graph constructed by RPL. Solid lines indicate the currently selected
next-hop on the route to the root, while the dashed lines show the other nodes in the parent set

8.3.2.1 RPL Basics

The protocol relies on an iterative process inspired by the Trickle algorithm [23]
featuring one-hop DODAG (destination-oriented directed acyclic graph) Informa-
tion Objects (DIOs) [8] used to propagate routing state. Instead of relying on a single
node to relay packets to the root, sensors feature a parent set to achieve resilience to
dynamically changing wireless links [23]. The actual next-hop neighbor is selected
based on the metrics in the objective function used in the current instance of RPL [8].
RPL supports dynamic link metrics (for quality, latency, and throughput among
others) in DIO messages such as ETX (estimated number of transmissions for one-
hop packet transfer) [12, 23]. Figure 8.6 portrays a DAG constructed by RPL. The
root also uses DODAG Confirmation Objects (DCOs) to distribute root-defined
network-wide parameters [8], which are used for instance in the mechanism to repair
loops. Finally, optional security mechanism is proposed [23].

8.3.2.2 Multicast and Unicast Communications

For multicast and unicast communications, RPL offers storing mode and non-
storing mode [8]. In storing mode, nodes keep track of the forwarding nodes to
all their descendants, so that they can re-route packets addressed to one of them,
thus lowering congestion near the root. However, storing mode incurs into a larger
memory footprint as nodes in the WSN must store the set of all their descendants as
well as the corresponding forwarding nodes. In non-storing mode, all packets have

214 G. Ghidini et al.

Fig. 8.7 Unicast routing with RPL. (a) Non-storing mode. (b) Storing mode

to travel all the way to the root, which then source routes them to the destination. The
routes resulting from the two modes are depicted in Fig. 8.7. The advantage of non-
storing mode is that nodes are relieved of the need to store information regarding
their descendants. Nevertheless, non-storing mode has to surrender in terms of
bandwidth and route length what it gains in terms of memory footprint. In fact,
in a source routing solution, information about all hops should be included in the
packet header. Since the IEEE 802.15.4 MAC frame allows approximately 80 bytes
for its payload and 6LoWPAN uses several of them for its other header fields,

8 Sensor Network Protocols for Greener Smart Environments 215

source routing can be implemented over approximately 8 hops if uncompressed
IPv6 addresses are used, and still takes away valuable payload space for upper
layer (i.e., UDP) datagrams. For these reasons, we expect RPL instances to rely
on storing mode more and more as memory size on resource-constrained devices
slowly increases. Mixed operation with a subset of nodes using storing mode and
the rest using non-storing mode is not supported [23].

8.3.3 RPL Implementations

In [22], the TinyRPL implementation of RPL and Collection Tree Protocol (CTP)
[17] are evaluated by means of experiments on a testbed of 51 TelosB motes using
BLIP, the Berkeley Low-Power IP stack, as the IPv6 implementation, where packets
are generated every 5 and 10 s. Packet reception ratio is above 99.8% for both RPL
and CTP, and between 8 and 10 control packets per hour are generated by each mote
on average. The results also show that only 1.13 transmissions per hop and 1.86
end-to-end transmissions are required by TinyRPL. Unfortunately, the relevance
of these results is hampered by the fact that no information is provided about the
network topology, such as the average hop length of routes, on which they were
collected. The authors also test the performance of bi-directional links set up by
RPL, and show that a PC on the Internet sending requests to RPL motes through
the edge router receives a response approximately 98% of the times. These results
on round-trip packet reception ratio seem to disprove the claim in [8] discussed
previously that the RPL mechanism for route construction does not select reliable bi-
directional links. Finally, the authors make several suggestions for the improvement
of the standard and its implementation, including a stricter definition for Trickle
timer reset, trade-off solutions between storing and non-storing modes, and IPv6
fragmentation.

In [33], the authors present ContikiRPL, an implementation of RPL for Contiki
OS, and discuss the results of simulations and experiments. According to the results,
the ContikiRPL implementation uses approximately 3 KB ROM and 800 B RAM,
which is more than an order of magnitude smaller than the 50 KB reported for it
in [8]. The results for energy efficiency are encouraging as all motes maintain a duty
cycle below 3% while generating 40 UDP packets per minute. However, similar to
other experimental setups, the network size is limited to a few dozens motes and no
information about the route hop length is provided.

8.3.4 RPL Analyses

In [36], the authors survey the research work in the area of routing as it evolved
from mobile ad-hoc networks (MANETs) to WSNs. In particular, they detail
flooding protocols, clustering protocols, and geographical protocols, and then the

216 G. Ghidini et al.

so-called self-organizing coordinate protocols. For each protocol class, the authors
provide a brief overview and describe its most relevant instances. They conclude
their survey by presenting RPL, an instance of gradient-based routing in the class
of self-organizing coordinate systems. Thanks to its chronological approach and
classification of over 40 protocols in 4 well-defined classes, this survey offers a very
good insight in the research work in the area of routing for WSNs.

A detailed survey of RPL is performed in [16]. After describing the features
provided by RPL and the assumed network model, the authors present the mecha-
nisms and messages used to build the routes from the root to the sensors (used for
multicast), and from the sensors to the root (used for convergecast). Unicast between
sensors is implemented by using these two sets of routes in what is called dog-
leg routing. The authors then present RPL mechanisms for route and loop repair,
discuss several objective functions (performance metrics) used to provide QoS, and
summarize security support in RPL.

RPL is experimentally evaluated on a small TelosB testbed running ContikiRPL
with the Minimum Rank with Hysteresis Objective Function (MRHOF) and ETX.
The results show that DODAG construction may take several minutes in a WSN
of 30 nodes between 1 and 4 hops apart. The authors also measure an average
power consumption of 2.2 mW during the construction of the DODAG in such a
network. A packet loss ratio of 20% is observed when the RPL routes are used for
multi-hop communications. The authors argue that other metrics may yield a better
performance than ETX. Overall, they are satisfied with packet delays of 2.5 s in the
4-hop network. Finally, the performance of the reactive mechanism used for fault
detection is also tested.

After reporting on these experiments, the authors describe other existing routing
protocols and compare them to RPL. They also survey simulation and experiment
results obtained by other researchers using several implementations, including
ContikiRPL and TinyRPL. Finally, they point out some of the open issues in RPL,
including the definition of appropriate objective functions and security mechanisms.

In [23], an overview of 6LoWPAN and RPL is presented. The survey first recaps
how the research community did not consider the Internet architecture as a viable
solution for communication in WSNs, thus developing many interesting, but also
usually non-interoperable, ideas. It is argued that the push for the implementation
of smart grids and home area networks for which WSNs are a core component
prompted the adoption of the Internet architecture in WSNs. After this shift in
opinion within the research community, the IETF chartered two working groups
to define standards for IPv6 (6LoWPAN) and routing (RoLL) in these low-power
and lossy networks, whose efforts and proposed standards are then described. The
survey also briefly describes BLIP 2.0 and TinyRPL, resp. the 6LoWPAN and RPL
implementations for TinyOS. According to the authors, TinyRPL with non-storing
mode (the implementation with highest memory requirements) uses approximately
9 KB ROM and 300 B RAM, thus being much smaller than ContikiRPL, which uses
approximately 50 KB of memory according to [8].

In [8], a critique of the current version of RPL is offered. The protocol is
first described, and then analyzed by the researchers who eventually support

8 Sensor Network Protocols for Greener Smart Environments 217

their statements with simulation and/or experiment results, whenever feasible. It
is pointed out that traffic patterns other than convergecast are also common in
certain application scenarios such as building automation, but RPL has limited
support for them. Furthermore, complex metrics may bring about IP fragmentation
as the ICMPv6 packets carrying RPL control messages may be larger than the
approximately 80 bytes allowed by IPv6 on IEEE 802.15.4. Data traffic routed
using RPL in non-storing mode may also risk fragmentation, as the route needs
to be incorporated in the message. With respect to storing and non-storing modes to
support downward routes, it is observed that storing mode limits the route length to
64 hops if IP fragmentation is to be avoided, while the non-storing mode restricts the
network size to a few dozen devices as the ones near the root need to store paths to a
large subset of the WSN in their limited memory. A proposed solution to this issue
when operating in storing mode consists in assigning IP addresses in the sub-tree in
a hierarchical fashion as it is the case in the Internet. However, this solution limits
the ability of RPL routers to change preferred parent, as all the neighbors featuring
in the parent set should share a common parent for the IP address hierarchy to be
maintained.

As far as bidirectional links are concerned, it is argued that selecting a preferred
parent based on the link quality from it to the RPL router may not be the optimal
solution as the quality of the link in the opposite direction may be very different.
Furthermore, the Neighbor Unreachability Detection (NUD) mechanism proposed
with RPL may be unable to detect whether the problem is indeed at this link and
not farther away along the route, and to do so in a timely manner. The authors also
criticize the complexity of RPL, and claim that most implementations will not be
interoperable as they will have to pick a feature subset (as it is already the case
for ContikiRPL [33]) in order to limit the memory footprint. They also criticize an
insufficiently detailed specification, such as in the case of DAO message timing,
which may lead to poor performance, and warn against Trickle performance in
real-life WSNs, as its convergence is not as fast as stated by simulation results.
While conceding that the RPL mechanism to support convergecast is elegant and
well-understood, [8] also points out that reactive loop repair in RPL brings about
potentially unacceptable delays and eventually packet losses if not all messages can
be buffered at the RPL router while the loop is repaired. Furthermore, [8] also argues
that mechanisms to enable unicast communication are underspecified and are likely
to bring about IP fragmentation or require lots of memory for storing routes.

8.4 Application Layer

The World Wide Web is arguably one of the most successful applications enabled
by the Internet. Among the several technologies making up what we call the
Web, there are three fundamental ones: the HyperText Markup Language (HTML),
the Hypertext Transfer Protocol (HTTP), and uniform resource identifiers (URIs).
As discussed in [15, 37], HTTP implements the so-called representational state

218 G. Ghidini et al.

Fig. 8.8 Internetworking via
CoAP and HTTP between the
Internet and WSNs

Fig. 8.9 ReSTful networking
between Internet device and
wireless sensor node

transfer (ReST) architecture thanks to which resources (often consisting of HTML-
formatted data) are accessed via their URIs. In particular, ReSTful HTTP enables
interaction with remote resources identified by their URIs via four basic methods:
PUT, GET, POST, and DELETE, used to create, retrieve, update, and remove
resources, respectively. As the Internet of Things is slowly coming into being,
researchers have started to design and analyze mechanisms to bring the powerful
ReSTful paradigm to this new Internet that could potentially connect billions of
devices across the world.

8.4.1 The Constrained Application Protocol (CoAP)

The Constrained Application Protocol is an application layer protocol that brings the
ReST programming model of the Web to the Internet of Things and its embedded
devices. Similar to HTTP, CoAP implements the four request methods of ReST; and
uses similar response codes. By implementing the same ReSTful architecture as
HTTP, internetworking between Web clients and CoAP-enabled WSNs as depicted
in Fig. 8.8 will be streamlined. As detailed in Fig. 8.9, this will be made possible
by using a simple gateway or proxy. In order to reduce complexity, CoAP relies on

8 Sensor Network Protocols for Greener Smart Environments 219

Fig. 8.10 Examples of exchanges between CoAP client and server. (a) Successful request-
response exchange. (b) With packet loss and retransmission. (c) Using separate responses. (d) In
observation mode

UDP instead of TCP, and defines its own simple mechanism to manage packet losses
and retransmissions. Figure 8.10 portrays the sequence diagrams for communication
modes provided by CoAP. CoAP supports the transfer of large payloads such as it
is the case when the application or the firmware on the embedded devices need
to be updated. Large payload transfer is achieved in CoAP by having multiple
request-response exchanges in the so-called block mode, thus avoiding solutions
involving IP fragmentation under UDP (although this is implemented by 6LoWPAN
as described in Sect. 8.3), or having a stateful CoAP server. CoAP also provides a
push-based mechanism, called observation, for monitoring a resource accessed via
a GET request. In its GET request, the client asks the server to send a response
with the current version of a resource not just once, but rather each time it changes.
Finally, CoAP also addresses problems related to resource discovery for machines
by defining standard resource paths on constrained devices.

220 G. Ghidini et al.

In [5], the authors provide an introduction to the CoAP protocol. They first
point out how standardization efforts at the network layer have brought IPv6 to
WSNs (IETF 6LoWPAN), and are defining a common flexible routing protocol for
these networks (IETF RoLL). Then they argue that an application layer protocol is
needed that can support the growth of applications in the Internet of Things like
HTTP has supported the growth of the Web. After summarizing the features of
ReST, the programming model underlying the Web, the authors introduce CoAP,
discussing internetworking with HTTP, and block transfer, resource observation,
resource discovery, and security in the protocol. An earlier introduction to CoAP by
one of the authors of [5] is provided in [30].

In [34], the authors initially summarize the major features and issues in the
Internet of Things that led to the design of CoAP, and offer a brief overview thereof.
The rest of the survey presents and discusses the state-of-the-art of research on
CoAP in several areas: performance evaluation, comparison between CoAP-over-
HTTP and SOAP-based CoAP, tools and frameworks to ease development and
usage of CoAP, solutions for network configuration and service discovery, and
applications to building management and the smart grid. After listing CoAP-related
applications and libraries, the authors point out that support for quality of service is
missing in CoAP, and argue that the dominant design for the Internet of Things (i.e.,
what combination of CoAP, SOAP, JSON, EXI, etc.) has not arisen yet.

8.4.2 CoAP Implementations

In [24], an implementation of CoAP for ContikiOS is presented. By relying on
ContikiMAC [13], a sampling-based MAC layer protocol, it is possible to deploy an
energy-efficient CoAP-enabled WSN. After summarizing MAC protocols with duty
cycling and CoAP, the authors report on their implementation of CoAP for Con-
tikiOS. This implementation provides all the protocol’s major features, including
block-wise transfer, resource observation, resource discovery, and separate response
mechanism.

The authors run experiments on a linear 4-hop TmoteSky WSN with IEEE
802.15.4 and 6LoWPAN. The experiments show that energy-efficient operation
of the CoAP-enabled WSN can be achieved simply by using an energy efficient
protocol, in this case ContikiMAC, at the MAC layer without any changes to the
application layer. In fact, the CoAP-enabled WSN can operate at a duty cycle around
1%, thus saving precious battery power, while latency is only lightly affected.
However, the results also show that the rate of increase in latency for a CoAP
exchange is higher when a duty cycling MAC protocol is used. This implies that
simply relying on a duty cycling MAC for energy efficiency may result in very high
latency, if the route consists of more than just a few hops as in this experimental
setup.

The authors also demonstrate how ContikiMAC can help limit latency in case
of block-wise transfer or 6LoWPAN fragmentation for large CoAP payloads.

8 Sensor Network Protocols for Greener Smart Environments 221

In ContikiMAC, a sensor achieves this by signaling its next-hop neighbor that it
will be sending a link-layer burst, i.e., a series of frames, so that the neighbor stays
awake and is ready to receive them right away without going through the channel
sampling stage again.

In [25], an implementation of CoAP for TinyOS and Contiki is presented, along
with its application to monitor a container and its content. After introducing the
application scenario and the major features of CoAP, the authors describe libcoap,
their C implementation of the protocol. As such it can be readily used for the
communication between the WSN and the backend, thus reducing the amount of
data to be transferred over a satellite or cellular link. In order to use the CoAP library
on more constrained embedded devices, it had to be stripped of some features when
it was being ported to ContikiOS and TinyOS. Unfortunately, the authors do not
evaluate the performance of the proposed CoAP library over a multi-hop network,
but just test it over a two-node TelosB WSN. Instead, to evaluate the proposed CoAP
library, the authors compare the latency and amount of data transferred over a GPRS
network, which has a round-trip time similar to that of a WSN, when using CoAP
and different HTTP settings, including one with bare HTTP server and client over
UDP. The results show that CoAP requires 107 bytes and 1.029 s, while bare HTTP
over TCP uses 885 bytes and 3.076 s.

Another comparison of CoAP and HTTP is presented in [11]. The authors first
recap the adoption and adaptation of IPv6 as the standard network protocol in
WSNs, and the ReSTful programming model. They then proceed to introduce two
alternative stacks on top of 6LoWPAN, the IPv6 standard for embedded devices.
One stack features TCP and HTTP similar to what is found in the Internet,
while the other one uses UDP and CoAP. The two stacks are implemented in
ContikiOS, and the authors use libcoap [25] and cURL (http://curl.haxx.se) as
the respective clients to access resources on motes. In these experiments, the
server and client are only one hop away from each other. The results show that
CoAP exchanges consist of approximately between 10 and 20% as many bytes
as HTTP ones, which is consistent with results presented in [25]. Furthermore,
the authors also perform experiments using the Cooja simulator for Contiki to
measure the energy consumption associated with the two stacks. The greater amount
of bytes exchanged when using HTTP turns into a greater energy consumption
for this protocol over CoAP. Preliminary results for transferred bytes and energy
consumption were presented in [10]. The authors also perform simulations for
varying request inter-arrival time and find that the energy consumption when using
CoAP is not affected when requests become more frequent as it is the case for HTTP.
However, the discussion of these specific results does not seem to be convincing.
Finally, experiments on one-hop and two-hop routes confirm that CoAP achieves
much shorter latency than HTTP.

CoAPP, an implementation of CoAP for TinyOS, is presented in [7]. Both server
and client interfaces are provided in the CoAPP component with TinyOS commands
in the client triggering TinyOS events in the server, and vice versa. Experiments
show that 20 servers on a MEMSIC TelosB can successfully serve 90% of the 50
requests per second sent by another TelosB. Therefore, the proposed CoAP server

http://curl.haxx.se

222 G. Ghidini et al.

and client implementation is deemed to be effective and scale well. The authors also
implemented a library to support the encoding and decoding of XML documents
into and from EXI data streams. For the EXI processing library to be used on
resource-constrained microcontroller such as the Texas Instruments MSP430, the
XML schemas need to be pre-processed into a set of grammars and data structures.
Experiments show that the proposed EXI library is very efficient as the size of the
output EXI data stream is usually around 10% of that of the original XML document
containing sensor data, if a byte-aligned schema is used.

8.4.3 Internetworking Between HTTP and CoAP

A gateway and a proxy for ReSTful internetworking of CoAP and HTTP are
introduced in [9]. A preliminary design of the gateway was presented in [10].
The proposed gateway consists of a Web server that presents a HTTP interface to
the Web client and a CoAP client running ContikiOS that interacts with CoAP-
enabled devices in the WSN. Web clients, such as browsers, are unaware of CoAP,
and retrieve data from the WSN by connecting via HTTP to the Web server. The
Web server then retrieves cached data from a database (Apache CouchDB [3] in this
case), or uses the CoAP client to pull data from the deployed sensors.

Since a HTTP/CoAP gateway is a complex system, the authors also propose
a simple HTTP-CoAP proxy. Given that both HTTP and CoAP implement the
ReST programming model, the development of a HTTP-CoAP proxy is relatively
straightforward. In fact, the proposed proxy offers a fully transparent protocol-
agnostic resource access, so that any Web client can access a WSN using HTTP
using this proxy. While the authors state that the proposed proxy does not implement
resource observation, they do not list which other features have been implemented.

8.5 Discussion

Although research work on the MAC, network, and application layers of the wireless
communication stack for WSN has brought about several important results, there
are still several open problems in this area of research. In the rest of this section,
we break down the discussion of the communication stack along the each layer and
point out several open issues and problems for each one of the surveyed layers.

8.5.1 MAC Layer

At the MAC, many protocols for each one of the traffic classes have been proposed.
As far as the MAC layer is concerned, an interesting question is whether the

8 Sensor Network Protocols for Greener Smart Environments 223

Fig. 8.11 Example of
dynamic MAC protocol
selection for time-varying
traffic load

flexibility offered by IEEE 802.15.4 is sufficient for the diverse WSN applications
looming ahead. In particular, it will be important to establish whether this stan-
dard MAC protocol can meet the requirements in terms of network lifetime for
environmental monitoring applications, as well as the requirements in terms of
delay and throughput of industrial applications. If research prototypes, but even
more so, commercial applications demonstrate the effectiveness of IEEE 802.15.4
to achieve these different and conflicting objectives, then the standard will be widely
adopted. Otherwise, there is the risk of a fragmentation in terms of the adopted MAC
protocols. In that case, it may be beneficial to revisit the standard and define a more
flexible solution such that nodes in a WSN, or a subnetwork thereof, can switch
to the optimal operating mode within the standard for the current traffic load, be it
heavy, medium, or light. Given the diversity of real-life application scenarios, we
would not be surprised if they required performance levels beyond those achievable
with IEEE 802.15.4.

Independent of the potential need for a more flexible standard MAC protocol,
there is another important question regarding MAC protocols that has not been fully
answered yet. Although MAC protocol classes have been defined for different traffic
loads, there is no algorithm that can select the optimal MAC protocol given the
observed traffic in a WSN. Such an algorithm should take into consideration the
characteristics of the traffic. The algorithm could be employed not only for network-
wide pre-deployment MAC protocol selection, but also for dynamic changes both
in space and time. For instance, a preamble sampling-based protocol could be
initially selected for the WSN, while a subnetwork may switch to a scheduled
protocol later on to carry heavy traffic loads in a more energy-efficient manner than
the original protocol. This behavior is portrayed in Fig. 8.11. Although there exist
hybrid protocols and solutions that offer a simple version of this (e.g., Funneling
MAC [1] with TDMA in subnetwork near the sink and CSMA in rest of the WSN),
they address special situations, and do not provide a mathematical proof of their

224 G. Ghidini et al.

performance. This is undoubtedly a very complex problem, but advances in this
area are likely to greatly benefit WSN applications by improving most performance
metrics, including delay, throughput, and lifetime.

Finally, IEEE 802.15.4 or any other proposed standard MAC protocol should
be extensively analyzed within the broader horizon of the communication stack.
To provide the necessary background, in the following sections we introduce and
discuss recent developments and advances at the network and application layers to
help with this task.

8.5.2 Network Layer

After more than a decade of research work in the very important area of routing
for WSNs, we are finally witnessing a strong effort by the IETF to design a
standard protocol. The slightly earlier definition of an IPv6-like protocol for the
WSN network layer, namely 6LoWPAN, gave the necessary boost for the chartering
of IETF RoLL. Unlike application-specific protocols such as the ones in the ZigBee
or Z-Wave stacks, RPL is designed to be deployed in several different scenarios,
from home automation to industrial environments. Given the important role of the
network layer in the Internet communication stack, it is instrumental for the growth
of WSNs that the protocol be not only appropriately timed, but also flexible enough
to be used in more than just one vertical market. For this reason, it is instrumental
that open issues and problems be addressed swiftly during the standardization
process.

An important issue is the support of traffic beyond convergecast, in particular
unicast to nodes in the WSN. As we describe in more detail in Sect. 8.4, the Internet
of Things is thought of as an extension of the current Internet where data collected
from embedded devices such as sensor nodes can be remotely accessed via CoAP,
an application layer protocol similar to HTTP. In this scenario, there is a need for
requests to be sent through the WSN root over a multi-hop route to individual sensor
nodes. However, the current support for this kind of communications in WSN relies
on the storing or non-storing modes described above. Therefore, we argue that the
performance of RPL in storing and non-storing modes be more thoroughly evaluated
using CoAP traffic. Due to their shortcomings, it may be that these modes do not
enable proper functioning of CoAP. In this case, the protocol should be promptly
revised, and other solutions to better support unicast, such as the one suggested
in [8], should be considered.

Overall, there is a need for more implementations of RPL beyond the two
for TinyOS and ContikiOS, and extensive experiments on larger testbeds. In fact,
several issues may arise when the protocol is tested on real-life larger deployments.
First of all, there may be problems with the stability of the routes. Since the wireless
medium is very noisy and its dynamics highly variable, it is unknown whether
the RPL mechanism to select a forwarding node within the parent set is both
optimal and stable enough in all the different application domains, from suburban

8 Sensor Network Protocols for Greener Smart Environments 225

homes to factory floors. In fact, it is likely that the current metrics (e.g., ETX) and
objective functions (MRHOF) bring about frequent route updates in real-life noisy
environments. As a result, timely communications in WSNs consisting of a few
dozens nodes and several hops between root and leaf may become impossible. Once
the performance of the protocol and, more specifically, the link metrics and objective
functions is assessed, novel objective functions may be needed, that achieve (sub-)
optimal but stable routes.

8.5.3 Application Layer

Although the CoAP protocol is still in the stage of Internet Draft and a standard
has not been proposed yet within the IETF CoRE WG, the community around it is
overall very active. This activity is demonstrated by the surveyed articles, including
several ones presenting implementations of the protocol. The many analyses and
implementations of the protocol also bring out several directions of further research.

First of all, we argue that the existing body of work on experimental analysis
of the protocol falls short of thoroughly validating CoAP, especially when other
communication stack layer are considered. For instance, while it is reassuring to
know that CoAP (which uses UDP) is indeed better than HTTP (which uses TCP) in
terms of transferred bytes, energy consumption, and latency, [11] this was somewhat
expected as it was one of CoAP’s goals from its inception. Since implementations
of CoAP are already available for two of the major WSN operating systems, namely
TinyOS and ContikiOS, it would be beneficial to perform an extensive experimental
evaluation of this protocol. In terms of comparison of different implementations,
[25] is a welcome first step, but additional effort should be dedicated to this task.
Most importantly, CoAP should be evaluated on larger testbeds. Small setups such
as the one consisting of 4 nodes on a path used in [24] can provide an initial
validation of the protocol, but results obtained on them cannot be taken as a final
proof.

Another important open issue is the necessity of energy-efficient mechanisms at
the application layer. As reported in our survey of existing experiment results, it
appears that the usage of an energy-efficient MAC protocol such as ContikiMAC is
sufficient to greatly improve the energy efficiency of the whole communication stack
[24]. While this is an important finding, we argue that it is insufficient to discard the
pursuit of energy-efficient solutions at the application layer. In fact, the results in
[24] were obtained for a specific traffic load, MAC protocol, and network topology.
However, as we remarked in Sect. 8.2, different combinations of traffic load and
MAC protocols present greatly varying behavior. For this reason, we argue that
more extensive experiments with CoAP on different network topologies, or at least
all traffic classes should be performed. Only the experiment results will show if the
behavior observed in [24] for ContikiMAC and CoAP in presence of a relatively low
traffic load extends to heavier loads and different classes of MAC protocols. In case

226 G. Ghidini et al.

these experiments highlight a significant performance degradation, countermeasures
will have to be adopted. First of all, existing mechanisms within CoAP may be
employed. For instance, separate responses could be used to counteract the increased
number of retransmissions that would derive from timeouts at the client side.
Alternatively, CoAP should be re-assessed and extended with novel mechanisms
to support more energy-efficient operations.

Although the proposed and existing standards try to accommodate different use
cases, not all application scenarios can be optimally addressed even by the most
flexible standards. For instance, the proposed standards for the communication
stack do not readily support in-network fusion, because the content of packets
on their way from sensors to the base station cannot be inspected and modified,
unless the boundaries between layers in the communication stack are broken. We
argue that in most application scenarios the advantages of standardized solutions,
such as interoperability of different systems, will be preferred over the positive
features of customized solutions, such as a slightly reduced cost. Therefore, any
solution involving in-network fusion should design, implement, and optimize it at
the application layer while relying on the standard protocols at the underlying layers,
rather than proposing customized cross-layer approaches.

8.6 Conclusions

In this chapter, we introduced several protocols and solutions developed to support
communications in WSNs. We focused especially on the MAC, network, and
application layers, due to their relevance within the communication stack. After
pointing out a slow convergence of different solutions towards an Internet-like
WSN communication stack featuring IEEE 802.15.4 at the physical and MAC
layer, IETF 6LoWPAN and IETF RPL at the network layer, UDP at the transport
layer, and IETF CoAP at the application layer, we discussed specific protocols and
solutions more in detail. We observed that the research community is very active
in the synthesis of many research ideas, which were proposed in the past 15 years,
into well-designed standard protocols. In our discussion, we pointed out several
open problems, including the selection of optimal MAC protocol for a given traffic
load, objective functions that select stable routes, and the importance of energy-
efficient mechanisms at layers beyond the MAC one. All these problems require
more experiments to be fully modeled, and novel ideas to be solved. To conclude,
we argue that, now more than ever, novel ideas solving these open problems will
have the opportunity to shape standard protocols and the WSN applications of the
(near) future.

8 Sensor Network Protocols for Greener Smart Environments 227

References

1. Ahn G-S, Hong SG, Miluzzo E, Campbell AT, Cuomo F (2006) Funneling-MAC In: Proceed-
ings of the 4th international conference on embedded networked sensor systems (SenSys),
Boulder, p 293

2. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a
survey. Comput Netw 38(4):393–422

3. Apache Software Foundation (2011) CouchDB. Available: http://couchdb.apache.org
4. Bachir A, Dohler M, Watteyne T, Leung KK (2010) MAC essentials for wireless sensor

networks. IEEE Commun Surv Tutor 12(2):222–248
5. Bormann C, Castellani AP, Shelby Z (2012) CoAP: an application protocol for billions of tiny

internet nodes. IEEE Internet Comput 16(2):62–67
6. Buettner M, Yee GV, Anderson E, Han R, (2006) X-MAC: a short preamble MAC protocol for

duty-cycled wireless sensor networks. In: Proceedings of the 4th international conference on
embedded networked sensor systems (SenSys), Boulder, pp 307–320

7. Castellani AP, Gheda M, Bui N, Rossi M, Zorzi M (2011) Web services for the internet
of things through CoAP and EXI. In: Proceedings of the IEEE international conference on
communications (ICC) workshops, Kyoto, pp 1–6

8. Clausen T, Herberg U, Philipp M (2011) A critical evaluation of the IPv6 routing protocol for
low power and lossy networks (RPL). In: Proceedings of the 7th IEEE international conference
on wireless and mobile computing, networking and communications (WiMob), Shanghai,
pp 365–372

9. Colitti W, Steenhaut K, De Caro N, Buta B, Dobrota V (2011) REST enabled wireless sensor
networks for seamless integration with web applications. In: Proceedings of the 8th IEEE
international conference on mobile Ad-Hoc and sensor systems (MASS), Valencia, pp 867–872

10. Colitti W, Steenhaut K, De Caro N (2011) Integrating wireless sensor networks with the web.
In: Proceedings of the workshop on extending the internet to low power and lossy networks
(IP+SN), Chiacgo,

11. Colitti W, Steenhaut K, De Caro N, Buta B, Dobrota V (2011) Evaluation of constrained
application protocol for wireless sensor networks. In: Proceedings of the 18th IEEE workshop
on local & metropolitan area networks (LANMAN), Chapel Hill, pp 1–6

12. Couto DSJD, Aguayo D, Bicket J, Morris R (2005) A high-throughput path metric for multi-
hop wireless routing. Wirel Netw 11(4):419–434

13. Dunkels A, Mottola L, Tsiftes N, Osterlind F, Eriksson J, Finne N (2011) The announcement
layer: beacon coordination for the sensornet stack. In: Wireless sensor networks, vol 6567.
Springer, Berlin, pp 211–226

14. El-Hoiydi A, Decotignie J-D, Enz C, Le Roux E (2003) Poster abstract: WiseMAC, an ultra
low power MAC protocol for the wiseNET wireless sensor network. In: Proceedings of the
1st international conference on embedded networked sensor systems (SenSys), Los Angeles,
p 302

15. Fielding RT (2000) Architectural styles and the design of network-based software architec-
tures. Ph.D. dissertation, University of California Irvine

16. Gaddour O, Koubâa A (2012) RPL in a nutshell: a survey. Comput Netw 56(14):3163–3178
17. Gnawali O, Fonseca R, Jamieson K, Moss D, Levis P (2009) Collection tree protocol. In:

Proceedings of the 7th ACM conference on embedded networked sensor systems – SenSys’09,
Berkeley, p 1

18. Hui JW, Thubert P (2011) Compression format for IPv6 datagrams over IEEE 802.15.4-based
networks. Available: http://datatracker.ietf.org/doc/rfc6282

19. IEEE 802.15 Task Group 4 (TG4) (2011) IEEE Wtandard 802.15.4-2011
20. IETF CoRE (2012) Constrained RESTful environments (core). Available: http://datatracker.

ietf.org/wg/core
21. INRIX Inc. (2011) INRIX traffic. Available: http://www.inrixtraffic.com

http://couchdb.apache.org
http://datatracker.ietf.org/doc/rfc6282
http://datatracker.ietf.org/wg/core
http://datatracker.ietf.org/wg/core
http://www.inrixtraffic.com

228 G. Ghidini et al.

22. Ko J, Dawson-Haggerty S, Gnawali O, Culler DE, Terzis A (2011) Evaluating the performance
of RPL and 6LoWPAN in TinyOS. In: Proceedings of the workshop on extending the internet
to low power and lossy networks (IP+SN), Chiacgo

23. Ko J, Terzis A, Dawson-Haggerty S, Culler D, Hui J, Levis P (2011) Connecting low-power
and lossy networks to the internet. IEEE Commun Mag 49(4):96–101

24. Kovatsch M, Duquennoy S, Dunkels A (2011) A low-power CoAP for contiki. In: Proceedings
of the 8th IEEE international conference on mobile Ad-Hoc and sensor systems (MASS),
Valencia, pp 855–860

25. Kuladinithi K, Bergmann O, Pötsch T, Becker M, Görg C (2011) Implementation of CoAP and
its application in transport logistics. In: Proceedings of the workshop on extending the internet
to low power and lossy networks (IP+SN), Chiacgo

26. Lin E-Y, Rabaey J, Wolisz A (2004) Power-efficient rendez-vous schemes for dense wireless
sensor networks. In: Proceedings of the IEEE international conference on communications
(ICC), Paris, vol 7, pp 3769–3776

27. Montenegro G, Kushalnagar N, Hui JW, Culler DE (2007) Transmission of IPv6 packets over
IEEE 802.15.4 networks. Available: http://datatracker.ietf.org/doc/rfc4944

28. Pister KSJ, Doherty L (2008) TSMP: time synchronized mesh protocol. In: Proceedings of
parallel and distributed computing systems (PDCS), Orlando, pp. 391–398.

29. Polastre J, Hill J, Culler D (2004) Versatile low power media access for wireless sensor
networks. In: Proceedings of the 2nd international conference on embedded networked sensor
systems (SenSys), Baltimore, pp 95–107

30. Shelby Z (2010) Embedded web services. IEEE Wirel Commun 17(6):52–57
31. Silva AR, Vuran MC (2010) Development of a testbed for wireless underground sensor

networks. EURASIP J Wirel Commun Netw 2010:1–14
32. Tolle G, Gay D, Hong W, Polastre J, Szewczyk R, Culler D, Turner N, Tu K, Burgess S,

Dawson T, Buonadonna P (2005) A macroscope in the redwoods. In: Proceedings of the 3rd
international conference on embedded networked sensor systems (SenSys), San Diego, p 51

33. Tsiftes N, Eriksson J, Dunkels A (2010) Low-power wireless IPv6 routing with ContikiRPL.
In: Proceedings of the 9th ACM/IEEE international conference on information processing in
sensor networks (IPSN), Stockholm, pp 406–407

34. Villaverde BC, Pesch D, De Paz Alberola R, Fedor S, Boubekeur M (2012) Constrained
application protocol for low power embedded networks: a survey. In: Proceedings of the
6th IEEE international conference on innovative mobile and internet services in ubiquitous
computing, Palermo, pp 702–707

35. Warrier A, Aia M, Sichitiu M (2008) Z-MAC: a hybrid MAC for wireless sensor networks.
IEEE/ACM Trans Netw 16(3):511–524

36. Watteyne T, Molinaro A, Richichi MG, Dohler M (2011) From MANET to IETF ROLL
standardization: a paradigm shift in WSN routing protocols. IEEE Commun Surv Tutor
13(4):688–707

37. Wilde E (2007) Putting things to REST. Technical report, UC Berkeley School of Information.
Available: http://datatracker.ietf.org/doc/rfc6550.

38. Winter TE, Thubert PE, Brandt A, Hui JW, Kelsey R, Levis P, Pister K, Struik R, Vasseur JP,
Alexander R (2012) RPL: IPv6 routing protocol for low-power and lossy networks

39. Ye W, Heidemann J, Estrin D (2002) An energy-efficient MAC protocol for wireless sensor
networks. In: Proceedings of the 21st annual joint conference of the IEEE computer and
communications societies (INFOCOM), New York, no. c, pp 1567–1576

40. Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw
52(12):2292–2330

http://datatracker.ietf.org/doc/rfc4944
http://datatracker.ietf.org/doc/rfc6550

Chapter 9
Claremont: A Solar-Powered Near-Threshold
Voltage IA-32 Processor

Sriram Vangal and Shailendra Jain

9.1 Introduction to Near-Threshold Voltage
(NTV) Computing

Aggressive power supply scaling into the near-threshold voltage (NTV) region
holds great promise for applications with strict energy budgets. In the NTV region,
the supply voltage is at or near the switching voltage (VT) of the transistors. In
this region, energy savings on the order of 5X–10X can be realized [1]. This
work summarizes results from application of NTV techniques to a 32-bit Intel
Architecture (IA) core in an effort to quantify and overcome the barriers that have
historically relegated ultralow-voltage operation to niche markets.

The purpose of this chip is to advance NTV computing and to demonstrate
the energy benefits of NTV designs, which promise better energy efficiency. Most
digital designs operate at nominal voltages – about 1V today. NTV circuits operate
around 400–500mV – very close to the “threshold” voltage at which transistors turn
on and begin to conduct current. It is challenging to run electronics reliably at such
reduced voltages. To put it simply, the difference between a “1” and a “0” in terms
of electrical signal levels become very small, so a variety of noise sources can cause
logic levels to be misread, leading to functional failures. The benefit, however, is
that energy consumption reaches an absolute minimum in the NTV regime with a
sizeable 5–10X improvement over nominal operation. The key challenge is to lock-
in this excellent energy efficiency benefit at NTV while mitigating performance loss.

Enabling the processor to operate over a wide voltage range helps achieve the
best possible energy efficiency while satisfying varying application performance.
This work describes an IA-32 processor fabricated in 32nm CMOS technology [2],
demonstrating reliable ultra-low voltage operation and energy efficient performance
across the wide voltage range from 280mV to 1.2V. The research processor [3]

S. Vangal (�) • S. Jain
Intel Labs, Intel Corporation, M/S JF2-04 2111 N.E. 25th Avenue, Hillsboro, OR 97124, USA
e-mail: sriram.r.vangal@intel.com; shailendra.jain@intel.com

P.P. Pande et al. (eds.), Design Technologies for Green and Sustainable Computing Systems,
DOI 10.1007/978-1-4614-4975-1 9, © Springer ScienceCBusiness Media New York 201

229
3

230 S. Vangal and S. Jain

Fig. 9.1 Block diagram of Pentium™ class IA-32 Processor with two instruction pipelines (U and
V pipelines). Processor logic and memory are on independent power planes

(Fig. 9.1) consists of a Pentium™ class IA-32 core [4] with superscalar in-order
pipeline, dynamic branch prediction and 8KB of separate instruction and data
caches. Core logic and memory blocks are powered by independent voltage domains
to allow processor core and the memories (L1 cache C microcode ROM) to operate
at their individual optimal power supplies for best overall energy efficiency. This
capability allows the IA core logic to aggressively voltage scale well beyond
memory Vmin limits.

9.2 NTV Circuit Design Methodology

As supply voltage approaches the threshold voltage of transistors, circuit behavior
changes drastically due to an exponential increase in device delay. The presence
of within Die (WID) variations results in further delay degradation. This problem
becomes more prominent when the device sizes are smaller, near the process-
allowed minimum width (Zmin), causing excessive timing push-outs and even

9 Claremont: A Solar-Powered Near-Threshold Voltage IA-32 Processor 231

Fig. 9.2 Simulated normalized gate delays in the presence of random variations (6¢)

functional failures in case of sequential and Register File (RF) cells. This section
describes low voltage design techniques used for combinational cells, sequentials,
and Register File bit-cell based memory blocks.

Circuits need to be optimized for robust and reliable ultra-low voltage operation.
Statistical static timing analysis (SSTA) is employed – a method which replaces
the normal deterministic timing of gates and interconnects with probability distribu-
tions, and provides a distribution of possible circuit outcomes. This variation-aware
SSTA study is performed on the standard cell library to eliminate the circuits which
exhibit DC failures or extreme delay degradation due to reduced transistor on/off
current ratios and increased sensitivity to process variations [5]. With multiple
stacked devices, the drive current is significantly reduced in the NTV regime. Based
on gate-level 6¢ SSTA simulations (Fig. 9.2), complex logic gates with four or more
stacked devices and wide transmission-gate multiplexers with four or more inputs
are pruned from the library, and not used in the design, because they exhibit more
than 108% and 127% delay degradation when compared to three stack gates or
three-wide multiplexers respectively, at 300mV power supply.

To assist design teams with leakage power reduction while meeting performance
targets, multi-threshold voltage libraries are employed with the ability to limit the
use of low-voltage threshold cells. Low-voltage threshold (low VT) cells can be good
for timing, but are unfavorable for reducing power because they are very leaky. To
enable reliable operation at low voltages, low VT and high VT devices are used
selectively. All the critical timing paths are designed using low VT devices because
high VT devices indicate 76% higher delay penalty, in the presence of variation
(Fig. 9.3) at 300mV supply. Similarly, all minimum sized gates having a device
width (Zmin) less than 2X of process-allowed minimum width are filtered from the
library due to a 130% higher variation impact, when analyzed at 300mV power
supply. As a result, the standard cell library was conservatively constrained, with
only 40% of the total combinational cells in the library employed in the final NTV
optimized design.

232 S. Vangal and S. Jain

Fig. 9.3 Simulations indicate high VT devices have 76% higher delay penalty over Low VT

flavors, while minimum width (1X) devices show 130% higher delay, at 300mV power supply

Sequential circuits and memories are more susceptible to functional failures at
NTV over combinational cells, due to the need for state retention. At lower supply
voltages, degradation in the transistor on/off current ratio, random and systematic
process variations, affect stability of the storage nodes. Conventional transmission
gate master–slave flip-flops typically have weak keepers for state nodes and larger
transmission gates. During retention phase, the on-current of the weak keeper
contends with off-current of the strong transmission (pass) gate affecting state node
stability. Additionally, charge sharing via the pass gate between master and slave
latches of the flip-flop circuit (write-back glitch between storage nodes n1 and
n2) can result in incorrect bit flip due to reduced noise margins at lower voltages.
As a result, all sequential circuits in the NTV processor are optimized to ensure
stability of state nodes in the presence of random variations. The feedback keepers
are upsized to improve the state retention and are made interruptible to avoid write
contention. A clocked-CMOS style flip-flop implementation (Fig. 9.4a) replaces
master and slave transmission-gates in the conventional circuit topology with “pass-
gate free” clocked inverters, thereby eliminating the risk of data write-back through
the transmission-gate.

The processor caches employ a fully interruptible 10-transistor Register File
SRAM bit cell (Fig. 9.4b) with a full transmission gate on the write bit-line
(WRBL), which allows for contention free writes. This optimization achieves a
250mV improvement in write Vcc-min, when compared to a standard 8-transistor
SRAM bit cell, at the cost of area. The bit cell is sized carefully with the help of
circuit simulations to achieve 550mV retention Vcc-min. As shown in Fig. 9.4b,
employment of a 10-T SRAM design can allow for operation at the lower supply
voltage for optimal energy, thus making it a desirable design option for ultra-low
power SRAM caches.

9 Claremont: A Solar-Powered Near-Threshold Voltage IA-32 Processor 233

Fig. 9.4 Circuit optimizations for ultra-low voltage operation (a) pass-gate free low-voltage
clocked-CMOS flip-flop circuit, (b) Original 8-T (transistor) and modified 10-T register-file
interruptible cache memory bit-cell

9.3 Designing for Wide-Dynamic Range

The optimized cell library is characterized at 0.5V, 0.75V and 1.05V corners
for synthesis and timing convergence. Achieving the performance targets across
the entire voltage range is challenging since critical path characteristics change
drastically due to non-linear scaling of device delay and disproportionate scaling
of device versus interconnect (wire) delay. In the absence of multi-corner, wide
range design optimization tools, it is critical to identify an optimal design point
such that the targeted power and performance are achieved at a given corner without
a significant compromise at the other corner. Synthesis corner evaluations (Fig. 9.5)
show that 0.5V, 80MHz synthesis achieves the target frequency at both 0.5V
(80MHz) and 1.05V (650MHz). In comparison, it is observed that 1.05V synthesis
does not sufficiently size up the device dominated data paths which become critical
at lower voltages, resulting in 40% lower performance at 0.5V. Although 1.05V
synthesis achieves lower leakage and better design area, the 0.5V corner was
selected for final design synthesis, considering its low voltage performance benefits
and promise for wide operational range.

234 S. Vangal and S. Jain

Fig. 9.5 Optimizations for
wide range design
convergence. Design criteria
can vary widely at the 0.5V
versus1.05V corners

9.4 Experimental Results

The NTV Processor is fabricated in a 32nm CMOS process technology with nine
layers of copper interconnect [2]. The IA core is demonstrated to be operational over
the wide voltage range from 280mV to 1.2V. Figure 9.6 shows the measured total
core power and maximum operating frequency across the voltage range, measured
while running the Pentium Built-In Self-Test (BIST) in a continuous loop mode.
Starting at 1.2V and 915MHz, core voltage and performance scales down to 280mV
and 3MHz, reducing total power consumption from 737mW to merely 2mW. With
a dual-Vcc design, memories stay at its measured Vcc-min of 0.55V while allowing
logic to scale further down till 280mV.

Figure 9.7 plots the total energy per cycle across the wide voltage range along
with its dynamic and leakage components. Minimum energy operation is achieved at
the near-threshold voltage, with the total energy reaching minima of 170pJ/cycle at
450mV (Vcc-opt), demonstrating 4.7X improvement in energy efficiency compared
to the Vcc-max (1.2V) corner.

Figure 9.8 shows a total core power breakup across super-threshold, near-
threshold and sub-threshold regions. Contribution of logic dynamic power reduces
drastically from 81% at Vcc-max to only 4% at Vcc-min. Leakage power contribu-
tion starts increasing in the near-threshold voltage region, accounting for 42% of the
total core power at Vcc-opt. At Vcc-min point, memories continue to stay at higher
Vcc than logic, thus contributing 63% of the total core power.

9 Claremont: A Solar-Powered Near-Threshold Voltage IA-32 Processor 235

Fig. 9.6 Measured IA core power and maximum frequency of operation (Fmax) versus logic and
memory power supply

Fig. 9.7 Measured IA core energy efficiency versus logic and memory power supply. At an
optimal NTV supply (Vopt), a 4.7X improvement in energy efficiency is observed over nominal
1.2V operation

9.5 Solar-Powered NTV Processor Demonstration

Figure 9.9 shows the packaged IA processor and the solar cell used to power the
core. The 2mm2 IA core contains six million transistors and uses a 951-pin flip-
chip ball grid array (FCBGA) package with 168 signal pins. A custom interposer is
designed to retrofit the processor into a legacy Pentium™ motherboard for silicon
characterization and booting operating systems.

236 S. Vangal and S. Jain

Fig. 9.8 Measured IA core power breakdown (pie-charts) from sub-threshold to super-threshold
operation. Dynamic power dominates total power in the super-threshold regime while leakage
power is the main contributor in the sub-threshold region, with both power components balanced
in the NTV region of operation

Fig. 9.9 Packaged IA core and the solar cell used to power the core

The solar cell solution used for powering the NTV processor is shown in
Fig. 9.10. A photo-voltaic cell powers an external voltage regulator module (VRM),
which provides two power supply rails – a 500mV rail for the processor logic
and a higher 600mV rail for the memory logic. This implementation enables

9 Claremont: A Solar-Powered Near-Threshold Voltage IA-32 Processor 237

Fig. 9.10 Solar cell solution used for demonstrating the NTV processor

Fig. 9.11 Pentium-based platform with Claremont NTV processor powered by the solar cell.
Successful windows XP™ boot is observed in the computer monitor

10–20mW of power to be harvested from the solar cell under good incandescent
lighting conditions. Figure 9.11 shows a Pentium-based platform demonstration
with the NTV processor and a successful Windows XP boot, with the processor
core completely powered by the solar cell.

238 S. Vangal and S. Jain

9.6 Conclusions

This case-study presented an experimental NTV IA microprocessor capable of
unprecedented low-power operation. NTV technology could lead to “greener”
computing, more always-on devices, longer battery lives, and energy-efficient
powerful many-core processors for use in everything from handhelds to servers and
even supercomputers.

Years of research went into realizing Intel’s NTV IA Processor. Extreme sensi-
tivity to power supply and transistor threshold voltage variations complicates NTV
design. NTV-aware techniques had to be developed to improve design robustness
for reliable operation. On-die caches were re-designed and new circuit design
techniques and methods were incorporated to tolerate variations at NTV, while
increasing the chip’s dynamic operational range. For this test case, we selected the
Pentium design, though the same techniques could be applied to any digital designs
in the future.

The result is a “heat-sink free” processor core that can be placed in NTV mode at
<10mW with minimum-energy and 5X better energy efficiency. The processor also
provides wide dynamic operational range and can run at higher frequencies (10X)
when performance is needed. The new “always-on” – yet “ultra low power state”
can keep applications running and is ideal whenever compute demands are modest.
Conclusions from the NTV research could lead to the integration of scalable NTV
technology across a wide range of future products from mobile to high-performance
computing (HPC).

NTV technology isn’t just unique to processors. The concepts are promising to
a wide range of digital platforms and opens up many new “use conditions”, taking
“always on” to a new level. For instance, this could be compelling for smart phones,
tablets and other devices allowing “one” design to efficiently scale all the way,
obviating the need for heterogeneous architectures. Also, these ultra-low power
levels could allow energy-efficient processor architectures to expand into broader
applications like embedded devices, which would include “everyday” devices such
as home appliances and automobiles.

In fact, one goal of NTV research is to enable “zero power” architectures where
power consumption is so low that we could power entire digital devices off solar
energy, or off of the energy that surrounds us every day in the form of vibrations
and ambient wireless signals. This gives us unfettered freedom so we can just leave
our power cord and chargers behind. NTV research is particularly applicable to self-
powered autonomous sensor networks and monitors strewn about our environment
allowing computers to “see” and intelligently “react” to the world around us.

Finally, NTV research is quickly maturing and the processor is a key enabler for
Extreme Scale Computing. Extreme scale means getting the most energy-efficient
performance for the power spent – achieving 1000X performance at only 10X the
power, or perhaps 10X performance at 1/10 the power. This could help us realize
massive Exa-scale supercomputers or put trillions of computations per second in our
pockets, while enabling sustainable computing along the way.

9 Claremont: A Solar-Powered Near-Threshold Voltage IA-32 Processor 239

Acknowledgements The authors thank the dedicated efforts of the entire Claremont NTV
processor team.

References

1. Dreslinski RG, Wieckowski M, Blaauw D, Sylvester D, Mudge T (2009) Near threshold
computing: overcoming performance degradation from aggressive voltage scaling. Workshop
on energy efficient design

2. Jan CH, Agostinelli M, Buehler M et al. (2009) A 32nm SoC platform technology with 2nd
generation high-k/metal gate transistors optimized for ultra low power, high performance, and
high density product applications. IEDM technical digest, pp 1–4

3. Jain S, Khare S, Yada S, Ambili V, Salihundam P, Ramani S, Muthukumar S, Srinivasan M,
Kumar A, Gb SK, Ramanarayanan R, Erraguntla V, Howard J, Vangal S, Dighe S, Ruhl G,
Aseron P, Wilson H, Borkar N, De V, Borkar S (2012) A 280mV-to-1.2V wide-operating-range
IA-32 processor in 32nm CMOS. ISSCC digest of technical papers, pp 66–68

4. Schutz J (1994) A 3.3V 0.6um BiCMOS superscalar microprocessor. ISSCC digest of technical
papers, pp 202–203

5. Wang A, Chandrakasan A (2004) A 180mV FFT processor using sub-threshold circuit tech-
niques. ISSCC digest of technical papers, pp 292–592

	Preface
	Contents
	Chapter
1 Fundamental Limits on Run-Time Power Management Algorithms for MPSoCs
	1.1 Introduction
	1.2 Related Work and Novel Contributions
	1.3 Workload Control for VFI Based MPSoCs
	1.4 Limits on DVFS Control
	1.4.1 Limits on Maximum Frequency
	1.4.2 Inductive Noise Constraints
	1.4.3 Process Variation Impact
	1.4.4 Explicit Energy Minimization

	1.5 Experimental Results
	1.5.1 Case Study: 130nm Versus 32nm

	1.6 Conclusion
	References

	Chapter
2 Reliable Networks-on-Chip Design for Sustainable Computing Systems
	2.1 Introduction
	2.2 Overview for Reliable NoC Design
	2.2.1 General Error Control Schemes
	2.2.2 Error Control Coding
	2.2.3 Fault Tolerant Routing

	2.3 Reliable NoC Link Design
	2.3.1 Energy Efficiency ECC
	2.3.1.1 Hamming Product Codes
	2.3.1.2 Experimental Results

	2.3.2 Combining Error Control Codes with Crosstalk Reduction
	2.3.2.1 Crosstalk Avoidance Codes
	2.3.2.2 Error Control Codes with Skewed Transitions
	2.3.2.3 Experimental Results

	2.4 Reliable NoC Router Design
	2.4.1 Router Architecture
	2.4.2 Reliable Router Architecture
	2.4.3 Route Computation
	2.4.3.1 Failures in Route Computation (RC) Unit
	2.4.3.2 Sigma and Branch Detection Method
	2.4.3.3 Evaluation

	2.4.4 Arbitration Unit
	2.4.4.1 Failures in Arbitration Unit
	2.4.4.2 Self-Correcting Method
	2.4.4.3 Implementation
	2.4.4.4 Evaluation

	2.5 Summary
	References

	Chapter
3 Energy Adaptive Computing for a Sustainable ICT Ecosystem
	3.1 Introduction
	3.2 Challenges in Energy Adaptive Computing
	3.2.1 Challenges in a Cluster Environment
	3.2.1.1 Estimation and Allocation of Energy
	3.2.1.2 Planning and Execution of Control Actions

	3.2.2 Challenges in Other Environments

	3.3 Realizing Energy Adaptive Computing in Datacenters
	3.3.1 Willow: Controller for Energy and Thermal Adaptive Computing in Datacenters
	3.3.1.1 Hierarchical Power Control
	3.3.1.2 Energy-Temperature Relationship
	3.3.1.3 Time Granularity
	3.3.1.4 Supply Side Adaptation
	3.3.1.5 Demand Side Adaptation
	3.3.1.6 Assumptions and QoS Model
	3.3.1.7 QoS Aware Scheduler
	3.3.1.8 Experimental Results

	3.3.2 Energy Adaptive Computing in Multi-tiered Datacenters
	3.3.2.1 Architecture of a Multi-tiered Datacenter
	3.3.2.2 Delay Estimation (Mean Value Analysis)
	3.3.2.3 Planning and Execution of Energy Adaptive Control Actions
	3.3.2.4 Simulation Results

	3.4 Conclusion
	References

	Chapter
4 Implementing the Data Center Energy Productivity Metric in a High-Performance Computing Data Center
	4.1 Introduction
	4.1.1 In Pursuit of Energy Efficiency and Productivity
	4.1.2 The Challenges and Nuances of Measurement
	4.1.3 Data Center Energy Productivity

	4.2 Data-Center Metrics
	4.2.1 Considerations When Measuring Productivity and Efficiency
	4.2.2 An Assessment of Various Metrics
	4.2.3 Formal Definition of Data Center Energy Productivity
	4.2.4 DCeP and the Considerations of Productivity and Efficiency

	4.3 Methodology
	4.3.1 The Energy Smart Data Center
	4.3.2 The High-Performance Computing Workload
	4.3.3 Experimental Design
	4.3.4 Experimental Protocol and Time Line
	4.3.5 Calculation of DCeP

	4.4 Results
	4.5 Discussion
	4.6 Conclusion
	References

	Chapter
5 Sustainable Dynamic Application Hosting Across Geographically Distributed Data Centers
	5.1 Introduction
	5.1.1 Why GLP?
	5.1.2 Applications' Requirements
	5.1.3 Challenges

	5.2 Preliminaries
	5.2.1 Wholesale Electricity Market
	5.2.2 Renewable Energy in Data Centers
	5.2.3 Sustainability Using Renewable and GLP
	5.2.4 Practical Issues

	5.3 GLP System Model and Formal Definition
	5.3.1 Performance Modeling
	5.3.2 Workload Modeling
	5.3.3 Energy Costs
	5.3.3.1 Total Energy Cost Considering Renewable Energy

	5.3.4 Migration Cost
	5.3.5 A Problem Formulation of GLP

	5.4 GLP Technical Challenges
	5.4.1 Algorithmic Issues
	5.4.2 Prediction Issues
	5.4.3 General Model of GLP

	5.5 Existing Solutions and Related Work
	5.5.1 Proof of Concept: Trace Based Simulation Using Realistic Data
	5.5.2 Workload and Server Management for Stateless Applications (β=0)
	5.5.3 Workload Management for Stateful Applications (β≠0)
	5.5.4 Renewable Energy Utilization Within and Across Data Centers
	5.5.5 Energy Buffering Management
	5.5.6 Online Algorithms Versus Offline Algorithms to Manage Energy Buffering and Server Switching GLP
	5.5.7 Summary

	5.6 Evaluating the Efficiency of GLP for Developing Sustainable Data Centers
	5.6.1 Simulation Setup
	5.6.1.1 Data Center Types
	5.6.1.2 Workload Distribution
	5.6.1.3 Renewable Energy Profile
	5.6.1.4 Experiments Performed

	5.6.2 GLP Electricity Cost Saving
	5.6.3 Sustainability Versus GLP and Battery Size
	5.6.4 Workload and Renewable Energy Prediction
	5.6.5 Sustainability Versus Prediction Window
	5.6.6 Discussion on the Results

	5.7 Conclusions
	References

	Chapter
6 Barely Alive Servers: Greener Datacenters Through Memory-Accessible, Low-Power States
	6.1 Introduction
	6.2 Background
	6.2.1 Consolidation and Low-Power Server States
	6.2.2 Cooperative Caching

	6.3 Related Work
	6.4 Barely-Alive States
	6.4.1 Members of the Family
	6.4.2 Cooperative Caching Middleware
	6.4.2.1 Caching Layer Optimization

	6.4.3 Consolidation Algorithm

	6.5 Qualitative Evaluation of the Barely-Alive States
	6.6 Quantitative Evaluation of the Barely-Alive States
	6.6.1 Benefits of Fast Activation
	6.6.2 Benefits of Allowing Immediate Data Updates
	6.6.3 Benefits of Aggregating Memory
	6.6.3.1 Internet Service and Its Workload
	6.6.3.2 Discussion
	6.6.3.3 Simulation Methodology
	6.6.3.4 Results
	6.6.3.5 Sensitivity Analysis

	6.7 Case Study I: Mixed System
	6.7.1 Mixed System: Off+BA2
	6.7.2 Results

	6.8 Case Study II: Memory-Sharing in Barely-Alive Systems
	6.8.1 Memory Sharing Algorithm
	6.8.2 Results

	6.9 Conclusion
	References

	Chapter
7 Energy Storage System Design for Green-Energy Cyber Physical Systems
	7.1 Introduction
	7.2 Motivation and Rationale
	7.2.1 Energy Storage Technologies Overview and Performance Metrics
	7.2.2 Challenges of ESS Design

	7.3 ESS Modeling Overview
	7.3.1 ESS Unit Major Effects
	7.3.2 ESS Model Design Overview
	7.3.2.1 Single ESS Unit Model Overview
	7.3.2.2 Large-Scale ESS Model Overview

	7.4 ESS-Aware Motorists Driving Analysis
	7.4.1 Impacts of ESS-Aware Driving Behavior Analysis
	7.4.2 Overview of ESS-Aware Driving Behavior Analysis

	7.5 ESS Architecture
	7.5.1 ESS Architecture Overview
	7.5.2 ESS Architecture Challenges
	7.5.3 Existing ESS Architectures

	7.6 System Optimization and Control
	7.6.1 Optimization and Control Strategies in Portable Embedded Systems
	7.6.2 Optimization and Control Strategies in the (P)HEV

	7.7 Conclusions
	References

	Chapter
8 Sensor Network Protocols for Greener Smart Environments
	8.1 Introduction
	8.2 MAC Layer
	8.2.1 MAC Protocol Classes
	8.2.1.1 Schedule-Based Protocols
	8.2.1.2 Common Active Period-Based Protocols
	8.2.1.3 Preamble Sampling-Based Protocols
	8.2.1.4 Hybrid Protocols

	8.3 Network Layer
	8.3.1 IPv6 in Low-Power Wireless Personal Area Networks
	8.3.2 The Routing Protocol for Low Power and Lossy Networks (RPL)
	8.3.2.1 RPL Basics
	8.3.2.2 Multicast and Unicast Communications

	8.3.3 RPL Implementations
	8.3.4 RPL Analyses

	8.4 Application Layer
	8.4.1 The Constrained Application Protocol (CoAP)
	8.4.2 CoAP Implementations
	8.4.3 Internetworking Between HTTP and CoAP

	8.5 Discussion
	8.5.1 MAC Layer
	8.5.2 Network Layer
	8.5.3 Application Layer

	8.6 Conclusions
	References

	Chapter
9 Claremont: A Solar-Powered Near-Threshold Voltage IA-32 Processor
	9.1 Introduction to Near-Threshold Voltage (NTV) Computing
	9.2 NTV Circuit Design Methodology
	9.3 Designing for Wide-Dynamic Range
	9.4 Experimental Results
	9.5 Solar-Powered NTV Processor Demonstration
	9.6 Conclusions
	References

