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Teach your tongue to say
“I don’t know”

for fear

of inventing things

and then being ensnared.

Berachot, 4a



Preface

The teaching of solid state physics essentially concerns focusing on crystals
and their properties. We study crystals and their properties because of the
simple and elegant results obtained from the analysis of a spatially periodic
system; this is why the analysis can be made considering a small set of atoms
that represent the whole system of many particles.

In contrast to the formal neat approach to crystals, the study of struc-
turally disordered condensed systems is somewhat complicated and often
leads to relatively imprecise results, not to mention the experimental and
computational effort involved. As such, almost all university textbooks, in-
cluding the advanced course books, only briefly touch on the physics of amor-
phous systems.

In any case, both the fundamental aspect and the ever wider industrial
applications have given structurally disordered matter a role that should not
be overlooked. The study of amorphous solids and their structure, stability
and properties is a vibrant research branch; it is difficult to imagine how any
physicist, chemist or engineer who has to deal with materials could possibly
ignore this class of systems.

The author of Disordered Matter — an Introduction uses this course book
at the Politecnico in Milan, Italy. Collecting the material for the course proved
no mean task, leading him to have to prepare ad hoc didactic material. The
continual exchange between teacher and student has led to the present version
of the book.

The positive reactions to the first edition of the text have prompted me
to prepare this second edition, trying to introduce improvements and correc-
tions where necessary, as well as to include recent relevant experimental and
theoretical results.

The goal in preparing this book was to supply a selected range of topics
in a way that would allow the reader to understand the various aspects of
a highly complicated and many facetted problem, such as the investigation
and modelling of the structure of a structurally disordered condensed system.

To this aim Chapter 1 of the book briefly examines the geometry and
the symmetries of the platonic solids, taken as constructive elements that
can be used to represent atomic structures, even highly complicated ones, by
matching them together in various ways.
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In Chapter 2 cellular and topological disorders are defined and the entropy
approach to describing these kinds of disorder is introduced.

Chapter 3 is devoted to the glass transition, with an emphasis on its
kinetic and thermodynamic features, an examination of the material param-
eters that drive the glass forming ability and an overlook to the current
theoretical approaches to the glass transition, including the historical free
volume theory and the fundamental mode coupling theory.

Chapter 4 contains an in-depth look at the characteristics and limits of the
main experimental techniques used in structural investigations; the various
modelling strategies are then examined. Much effort is placed on the ability
to geometrically represent the elementary units that, when bonded together,
give rise to a structure with local order that is partially similar to the order
obtained from experiments on real disordered systems. It is little wonder
that an amorphous solid and its corresponding crystal should have a number
of structural elements in common. As such we try to study the structure
of disordered systems using the very same elements that define the ordered
system. An introduction to the collective excitations in liquids and disordered
solids is centred on the derivation, the experimental determination and the
physical meaning of the dynamic structure factor. Although not simple, this
topic helps the reader to understand many features of the mode coupling
theory.

Attention is then placed on how the structure of a system evolves with
changing its dimensions. Chapter 5 examines how the transition from an
atom-molecule to a solid occurs; atomic clusters allow for exploring the role of
the surface in the stability of a system and clearly indicate that the structure
of small assemblies of atoms is non-crystalline. The analysis of noble-gas clus-
ters offers direct evidence of the problems arising when we realise an extended
packing of elementary structural building blocks with icosahedral symmetry.
These blocks are made up of only a few atoms and are also locally the most
stable. However, it is impossible to endlessly juxtapose them without intro-
ducing defects into the structure, which would be destabilised. On the other
hand, the evolution of alkali-metal clusters provides a good example of the
role of electrons in stabilising the structure of the system. The family of Car-
bon clusters with a closed-cage structure, Fullerene Cgy being the prototype,
is then described. An introduction to the cluster-assembled nanocrystalline
and nanoglassy materials that have recently been synthesised, and that are
at the heart of much research activity, is a logical development to cluster
physics and is a further relevant step along the path from the atom to the
solid.

The quasicrystals are dealt with in Chapter 6: they are a paradigm of
extended orientational order but do not have the translational order that is
the distinctive feature of usual periodic crystals. The study of these systems,
which constitute an intermediate phase between the crystalline phase and
topologically disordered matter, leads to a new definition of the concept of the
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crystal itself. Besides the basic questions about what governs the occurrence
and stability of quasicrystals, the features of the amorphous to quasicrystal
transformation as well as the reverse one are discussed. Finally, the conditions
leading to nano-quasicrystalline phases of technological interest are examined.

Although all topics are treated self consistently, this book is directed
at a reader with a reasonable undergraduate background in the physics of
crystals. Each chapter is fully supported with a set of figures and completed
with references, both general and specialised. Given the plan of the text
it is addressed to third, fourth and fifth-year students majoring in physics,
materials sciences, chemistry, as well as materials, chemical and electronic
engineering. Since the book is the outcome of research work, including very
recent research results, it can be used as a reference book for researchers
working in the field of structurally disordered condensed systems.

I would like to express my gratitude to several colleagues who helped
me with their constructive comments and valuable suggestions at various
stages of the preparation of the manuscript. I am indebted to my students,
who listened to the lectures, made useful comments and pointed out many
mistakes; all remaining errors are my responsibility alone. G. Benedek was
the first person to suggest I should prepare an English version of the book.
T. Dass made a painstaking translation and provided many suggestions to
make reading the book easier. I am grateful to M. Verona for the careful
preparation of the figures and to A. Lahee, my editor at Springer, as well
as C. Rau, production editor at LE-TEX, for their patience and assistance.
Finally I wish to thank the publishers of the journals carrying the papers
I refer to throughout the book.

Milano Paolo M. Ossi
April, 2006
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1. Platonic Solids:
Geometry and Symmetry

It does seem somewhat difficult and artificial to talk about condensed mat-
ter with irregular structure without first making some reference to its “non
pathological” counterpart, those crystals that made up the entire world of
solid state physics up to a few years ago.

When we consider the amorphous metals and the amorphous solidified
noble gases we see that both the position of the interstices after high density
packing of hard sphere atoms and the structure resulting from the disposition
of partially deformable spheres, relaxed in a suitable potential, consist mostly
of tetrahedra and octahedra, all distorted to some extent or another. Tetra-
hedra and octahedra are the very same structural units we find in closely
packed crystals. Moreover, the way such simple structural units, with a well
defined geometrical shape and composition, are packed lies at the heart of
those structural models that have been developed both for covalent glasses
and for metals whose stoichiometry depends also on chemical factors and not
just on geometric constraints.

As such we shall examine the geometrical and symmetrical properties of
certain highly regular solids in order to help us model amorphous solids (see
Chap. 4).

A brief introduction will be given to hypersolids in more than three di-
mensions space and to the techniques to project them onto the usual three-
dimensional space. This is particularly relevant in order to study the qua-
sicrystals (see Chap. 5).

Lastly the essential concepts of “classic” crystallography will be recalled;
these can be traced back to the recognised crystal perfection and symmetry
and supply a simple framework to describe their properties. Indeed, to study
disordered solids special reference will be made initially to their corresponding
crystals.

1.1 The Platonic Solids and Their Duals

The five platonic solids, tetrahedron, cube, octahedron, dodecahedron and
icosahedron, are perfect examples of highly regular and symmetrical struc-
tures. Each has the same kind of regular convex polygon faces, whether they
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Fig. 1.1. Stellated polygons according to
Kepler

be triangle, square or pentagon, and the vertices are all alike. The term poly-
gon means a closed flat region bounded by n straight lines simply connected
together. The polygon can be contracted as much as you like and a closed
line originally drawn within it will contact accordingly and still within the
polygon.

The vertices of a regular polygon, that is equilateral and equiangular, are
equally distanced from the centre. As such it is easy to draw a circle around
the polygon. The sides are also the same distance from the centre, which
means a circle can be drawn inside the polygon that touches each side. A
regular polygon {n} has n sides and angles.

Apart from studying the regular or primary polygons whose sides do not
intersect Kepler was the first to study in a systematic way stellated polygons
whose sides are obtained by extending non-adjacent sides of a primary poly-
gon until they intersect, provided that the perimeter is a single line (Fig. 1.1).

A convex polyhedron is said to be regular if its faces are all regular, i.e.
the polygons that make up the polyhedron and its solid angles are all regular.
For simplicity we shall refer to the term vertex figure rather than solid angle.
So, let’s consider a vertex V' of a polygon: the vertex figure connected to it is
the segment enclosed by the centres of the sides that meet at vertex V. For
polygon {n} whose sides are long L, the length of the vertex figure is given
by

Ly =Lcos ™. (1.1)
n

(a) (b)

Fig. 1.2. Vertex figure relative to vertex V of a square (a) and (dashed-line triangle)
at vertex V of a cube (b)
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Figure 1.2 shows (part a) the vertex figure of a vertex V' in a square. The
vertex figure of vertex V in a polyhedron is a polygon whose sides are the
vertex figures of the faces for V. Figure 1.2 shows (part b) the vertex figure
(triangle) of a vertex V of a cube.

The sum of the external angles that make up a polygon is given by 27, thus
each external angle of {n} is 27 /n, whereas the corresponding supplementary
internal angle is given by 7 (1 — 2/n). Furthermore, the sum of the internal
angles is given by (2n —4)7/2. In a regular convex polyhedron the solid angle
of any vertex has r face angles, each of which is 7 (1 — 2/n). The sum of these
angles must be less than 27 otherwise we would get re-entrant vertices and
not all the vertices would be equal; thus the following would stand:

2 2 1 1 1
1—— - —+->—, th -2)(r—2)<4. 1.2
( n><<r>orn+r>2’ us (n —2)(r—2) < (1.2)
A platonic solid whose vertex is surrounded by r faces, each face having
{n} sides, is called a regular polyhedron and is given as {n,r}.
From (1.2) we can deduce that the only platonic solids are those reported
in Table 1.1.

. Touching faces
{n,r} | Faces | Vertices | Edges at each vertex Name
{3,3} 4 4 6 3 Tetrahedron
{3,4} 8 6 12 4 Octahedron
137 6 8 2 3 Cube
{3,5} 20 12 30 5 Icosahedron
{5,3} 12 20 30 3 Dodecahedron

Table 1.1. Features of the platonic solids

It is now possible to obtain the same result by construction. In fact as at
least three faces have to meet at each vertex the smallest face angle is 27/3.
This is the value of the angles of a regular hexagon. However, as can be seen
from Fig. 1.3, three regular hexagons with a common vertex lie on the same
plane and as the value of an angle of a regular polygon increases with the
number of sides, the faces of a regular polyhedron can only be a triangle, a
square or a pentagon. As the angles of a square are right angles there can
be no more than three at any vertex since the sum of the face angles that
meet at the vertex must be less than 2m; thus the cube is obtained. By the
same analogy there cannot be more than three pentagons at any vertex of a
regular polyhedron (dodecahedron); four or more cannot be joined together
without there being some overlapping.

If equilateral triangles are joined together then the rule for the sum of
the face angles at each vertex is fully met, with three equilateral triangles
giving a tetrahedron, four giving a tetrahedron and five giving a icosahedron,
whereas if we use six faces we get a hexagon.
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A0 &R

OD

Fig. 1.3. Construction of platonic
solids starting from (left side of the
figure from top to bottom) an equi-
lateral triangle, a square and a pen-
tagon. The figure also shows how six
triangles, four squares, four (overlap-
ping) pentagons and three hexagons
with the same vertex lead to a plane
figure

Given that all the faces of a regular polyhedron are regular and thus all
the edges are the same length L and all the vertex figures are regular, then
all the faces must be the same. If, though, two adjacent faces are different,
they would have the same vertex V but the vertex figure for V' would have
different length sides, each given as L cos(w/n) with different values for n.
Furthermore, the dihedral angle, between two adjacent faces, must be the
same since the faces that meet at a given vertex V are part of a right angled
pyramid whose base is the vertex figure. Each lateral face of this pyramid
is an isosceles triangle whose sides are L/2, L/2, L cos(m/n). The number of
sides to the base is given by the value of the dihedral angle. This value, r, is
the same for all the vertices and the vertex figures must all be the same, too.
The regular polyhedron {n,r} has polygon faces with n sides each of length
L and the vertex figure is a polygon {r} whose sides are all: L cos(7/n).

One should note that a perpendicular line passing through the centre of
a face will meet the perpendicular line passing through the centre of a vertex
figure at a point O, which is the centre of the circumsphere (touching all the
vertices) and of the midsphere, touching all the edges, as well as being the
centre of the insphere which touches all the faces.

The platonic solids are nothing but simply connected polyhedra and show
the property (just like simply connected polygons) that any simple closed
curve drawn onto the surface of a polyhedron can be shrunk until it is a dot,
still remaining on the surface of the polyhedron. Alternatively we can see
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that any region bounded by edges of the polyhedron is made up of one or
more faces of the solid.

For those polyhedra that are simply connected, Eulero’s formula stands.
This formula defines the number of faces Nt, vertices N, and edges N, as

Ni+ N, =N, +2. (1.3)

Equation (1.3) is an important result from Eulero’s research on polyhedra
and was mentioned in his letter to his friend Goldbach dated November 1750.
The formula expresses how the number of different elements that make up
the surface of a polyhedron are related to each other. The really new aspect
is the distinction between the edges (lines on the surface of the polyhedron)
and the sides (lines that define the perimeter on its faces). Given that each
edge has two sides, the number Ny of sides is given by

N, = %NS (1.4)

where Ny is even. Furthermore, as each face of the polyhedron has at least
three sides,

2N, > 3N¢ (1.5)
and as at least 3 faces are required to define a solid angle, then
2N, > 3N, . (1.6)

As such (1.3) is fully met both by the platonic solids (see Table 1.1) and
by the pyramids and prisms. If the base of a pyramid has n sides then there
are (n+ 1) faces, the same number of solid angles and 2n edges. At the same
time a prism with n sides to the base will have (n + 2) faces, 2n solid angles
and 3n edges.

Using formulas (1.3), (1.5) and (1.6) we get new conditions for Ny and N
as given by

2N, + 2Ny =2N, +4 > 3N, +4
and get
2Ny —4 > N, . (L.7)
If, on the other hand, we say
2Ny + 2Ny =2N.+4 > 3Ny +4
from which

2N, —4 > N;
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we can deduce that
1

The proof of (1.3), as drawn up by Eulero, assumed that polyhedra were
convex, given that at the time polyhedra and convex solids were synonyms.

Later on exceptions to the formula were found. One, for example, is a
polyhedron made up of two tetrahedra meeting at one common edge or vertex.
For a polyhedron to meet the requirements of Eulero’s formula it must consist
of a definite number of polygons where any two vertices are connected by
edges and each closed curve on the surface divides the polyhedron into two
parts.

The term polygon means a plane surrounded by straight segments that
are topologically equivalent to a disc which, in turn, is any flat surface that
is homeomorphic to a circle.

To demonstrate (1.3) we shall divide the edges of the polyhedron into two
groups, each with a given colour. For simplicity let’s take a cube and colour
one edge red. The two vertices must thus also be red. The next edge to colour
is chosen according to the rule that it must have a red vertex (there are only
two options). If we continue to colour all the edges of the cube following the
above rule in the end all the vertices will be coloured red and the edges,
whether coloured or not, will have red vertices.

The cube will have eight red vertices and seven red edges; there will
usually be one red edge N, less than the number of red vertices. The number
of red vertices is, though, equal to the number of vertices in the polyhedron,
N,. Let us now colour all the faces yellow leaving the red edges intact. You
will get Noy yellow edges (five for the cube), one less than the number of
faces (yellow) Nt (six in the cube). The relation between the number of edges,
vertices and faces is

Ney=Ny—1 ; Ney=DNe— 1

Since the number of edges of the polyhedron is N, and

Ne=Nep+Ney =(Ny—1)+ (Ng—1) = Ny + Ng — 2
then

Ne +2 =N, + N¢.

In this example the polyhedron is divided into two parts, red and yellow.
Both parts are topologically connected and have the same contour, the line
where the two colours meet. As such each part can be deformed to give a disc.
The surface obtained by joining two discs together by way of the perimeter
is a sphere, so the polyhedron can be deformed uniformly to obtain a sphere.
Thus, for Eulero’s formula to be valid the polyhedron musty be “spherical”
or otherwise defined as simple.
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|

(a) (b)

Fig. 1.4. Cube-octahedron duality

For the circumsphere of a given platonic solid, i.e. the sphere touching
all the polyhedron vertices, we defined a set of non continuous rotations in
space such that the vertices of the polyhedron form a set of equivalent points
under the mentioned rotations and as such the polyhedron is brought into
self-coincidence. The tangent planes to the circumsphere at the vertices of
the polyhedron outline another regular polyhedron which, in turn, is brought
into self-coincidence when the original circumsphere undergoes the same set
of rotations.

This construction establishes that there is a relation between pairs of pla-
tonic solids: when applied to a octahedron, for example, it becomes a cube
and vice versa the octahedron can circumscribe a cube as shown in Fig. 1.4.
The two polyhedra are defined dual to each other. The group of rotations
is called the octahedral group. There is a similar dual relation between the
icosahedron and the (pentagonal) dodecahedron: the pertinent group of ro-
tations is called the icosahedral group.

Duality has nothing to do with the fact that the platonic solids are made
up of regular polygons. The principle holds because there is a relation between
the number of faces and vertices for pairs of regular polyhedra. As can be seen
in Table 1.1 the construction of dual solids consists in exchanging vertices and
faces: where there is a face we substitute it with a vertex. The eight vertices
and six faces of a cube become six vertices and eight faces of an octahedron.
Likewise, the twenty vertices and the twelve faces of a dodecahedron become
the twelve vertices and the twenty faces of the icosahedron. The tetrahedron,
with its four vertices and four faces, is self-dual.

From the construction of dual solids we can see that the vertices of an
inscribed solid coincide with the centres of the faces of its dual. If we examine
pairs of dual solids whose edges are the same length we will see that in the
dual construction the edge of the first solid lies perpendicular to the edge of
its dual and they intersect at the centres. As such every two edges form a
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Fig. 1.5. Inscribing a tetrahedron
inside a cube where the vertices of
the two solids coincide. The dou-
ble lines and the lines in bold show
the two possible dispositions of the
tetrahedron

pair of perpendicular bisectors; it is clear that one solid will have the same
number of edges as its dual.

That the tetrahedron is self-dual may be related to the property, shared
by all other platonic solids, that they are symmetrical to their centres; the
vertices, faces and edges make up symmetrical pairs around the centre of the
polyhedron. As such, for example, the straight line that connects the centre
point of an edge of a cube to the cube centre intersects another edge at its
centre point. However, the tetrahedron is not centrosymmetric; the straight
line that connects a vertex with the centre of the polyhedron intersects the
tetrahedron in the centre of a face. A tetrahedron can be inscribed into a
cube in two different ways; in both cases the vertices of the two solids will
coincide and the edges of the tetrahedron will make up the diagonals of faces
of the cube, as shown in Fig. 1.5. This construction is possible because the
tetrahedral group is a subgroup of the octahedral group. Similarly, we will see

Fig. 1.6. One of the possible disposi-
/ tions of a cube inscribed in a dodeca-
hedron. Each edge of the cube lies on
a face of the dodecahedron
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that the octahedral group is a subgroup of the icosahedral group and as such
a cube can be inscribed into a dodecahedron in the same way a tetrahedron
can be inscribed into a cube. Figure 1.6 shows one of the five dispositions of
a cube inscribed into a dodecahedron; each edge of the cube lies on a face of
the dodecahedron, and two cubes meet at each vertex of the dodecahedron.

1.2 Elements of Symmetry in Space

The platonic solids are highly symmetrical. If we examine a cube’s axes of
rotational symmetry we will see (Fig. 1.7) three fourfold rotation axes, each of
which intersects with the centre of two opposite faces, four threefold axes that
extend from opposite vertices, and six twofold axes, each of which intersects
with the centre of pairs of opposite edges. Since the octahedron is dual with
the cube it has the same number of rotation axes as the cube with the three
fourfold rotation axes passing through pairs of opposite vertices, the four
threefold axes intersecting the centres of pairs of opposite faces, and the six
twofold axes must lie as in the cube.

In the case of the dodecahedron-icosahedron dual solids (Fig. 1.8) fifteen
twofold axes intersect with the centres of opposite edges, ten threefold axes
intersect with the centres of opposite faces (icosahedron) and pass through
pairs of opposite vertices (dodecahedron), six fivefold axes pass through pairs
of opposite vertices (icosahedron) and intersect with the centres of opposite
faces (dodecahedron). The tetrahedron (Fig. 1.9), on the other hand, has
four threefold axes and three twofold axes. The three twofold axes intersect
with the centres of pairs of opposite edges whereas each threefold axis passes
through a vertex and intersects with the centre of the opposite face.

Fig. 1.7. Cube ro-

- tation axes: (a) four-
fold; (b) threefold;
(c) twofold. Octahe-
dron rotation axes: (d)
fourfold; (e) threefold;
(f) twofold
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Fig. 1.8. (a) Twofold (15, about the centre of the opposite edges), threefold (10,
about pairs of opposite vertices), fivefold (6, about centres of opposite faces) rota-
tion axes of dodecahedron. (b) Analogous scheme for the icosahedron; the number
of axes of each order is the same as the corresponding axes in the dodecahedron.
The figure shows only one axis of each kind

Apart from rotation the platonic solids have important reflection symme-
tries. If we divide a cube into two with the plane intersecting the centre of
two opposite faces and we imagine we have put one of the cut surfaces onto
a mirror we will see a cube where one half of the cube is real and the other
half is its reflection in the mirror. Whenever a plane cuts a solid into two,
so that when it is put onto a mirror the reflected image gives us the original

|

|
I
|
!

(a

(b)

Fig. 1.9. Twofold (a) and threefold (b) rotation axes of a tetrahedron
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(@ (b)

Fig. 1.10. Reflection planes lying normal to a fourfold rotation axis (a) and to a
twofold rotation axis (b) of a cube

solid again, we have identified a reflection plane. All reflection planes have a
common point, i.e. the centre of the platonic solid we are examining.

Since a cube has three pairs of parallel opposite faces, we have three reflec-
tion planes (Fig. 1.10) each of which lies normally to one of the three fourfold
rotation axes. Furthermore, each plane, (six all together) that intersects with
the diagonals of one face and its opposite face, i.e. it passes through pairs of
opposite edges (Fig. 1.10) is in turn a reflection plane and lies normally to a
twofold rotation axis. In the end we can count nine reflection planes.

Since the octahedron is dual with the cube it too has nine reflection planes
which lie the same way as the reflection planes of the cube (Fig. 1.11).

The number of reflection planes of a tetrahedron can easily be deduced,
provided we remember how the tetrahedron is inscribed into a cube. The
tetrahedron has six reflection planes: each plane contains an edge and cuts

Fig. 1.11. Reflection planes of an octahedron. Notice that the disposition of the
reflection planes of the cube is the same. This is due to the duality between the
two solids
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Fig. 1.12. Each reflection plane of a
tetrahedron contains one edge and cuts
the opposite edge in half

the opposite edge into two (Fig. 1.12). These planes coincide with the same
number of reflection planes of the cube the tetrahedron is inscribed into.

It is quite easy to see the reflection planes of a dodecahedron and a icosa-
hedron, which are dual to each other (Fig. 1.13). Each reflection plane inter-
sects with a pair of opposite edges, cuts another two opposite edges into half
and is perpendicular to one of the fifteen twofold rotation axes. There are
also fifteen reflection planes.

Let us now consider a pair of dual platonic solids: the construction method
used to define duality makes the vertices of one of the two solids coincide with
the centres of the same number of faces of the other solid. This way all the
rotation axes and the reflection planes of the two solids coincide, and thus
are also symmetry elements of the compound solid.

The method used to find the reflection planes of a tetrahedron, by way
of inscribing it into a cube, where the cube is not dual to the tetrahedron,
consists in making all four threefold axes of the two solids coincide with each

(a) (b)

Fig. 1.13. Each reflection plane of dodecahedron (a) and icosahedron (b) passes
through a pair of opposite edges, cuts another two opposite edges into half and is
perpendicular to a twofold rotational axis
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other and then expanding or shrinking the tetrahedron until its four vertices
fall on four of the cube vertices. This method can be pursued systematically
every time a platonic solid can be inscribed into a different one by identifying
the symmetry elements that are common to both solids. These constitute the
symmetry elements of the compound solid. Where a tetrahedron is inscribed
into a octahedron, which is dual to a cube, the procedure is just the same as
the above explanation.

If, though, we want to inscribe a tetrahedron into a dodecahedron us-
ing the same method to inscribe it into a cube, making the vertices of the
tetrahedron coincide with the same number of vertices of the dodecahedron
so that there are four common threefold axes, we will see that the three
twofold axes of the tetrahedron coincide with the same number of twofold
axes of the dodecahedron. However, all similarity with the tetrahedron in a
cube ends here because the edges of the tetrahedron do not lie on the faces
of the dodecahedron and the six reflection planes of the tetrahedron do not
correspond to any reflection plane of the dodecahedron. The compound solid
has no reflection planes.

When a tetrahedron is inscribed into a icosahedron, which is dual to the
dodecahedron, the vertices coincide with four face centres of the icosahedron,
thus each of the four opposite faces of the icosahedron is parallel to one face
of the tetrahedron.

As we have seen we can inscribe a cube into a dodecahedron or into its dual
icosahedron. In this way if we make the threefold axes of the cube coincide
with the same number of threefold axes of the icosahedron, the vertices of
the cube will fall on the centre of the faces of the icosahedron parallel to
those of a octahedron. However, each face of the cube will be parallel to
one of the edges of the icosahedron or of the circumscribed dodecahedron.
Three reflection planes of the cube and the icosahedron (dodecahedron) will
coincide and make up the reflection planes of the compound solid.

1.3 Polytopes in the Four Dimensional Space
and Their Projections onto the Physical Space

We can imagine the transformation of polyhedra into hyper-solids in Eu-
clidean space having more than three dimensions by repeating the procedure
by which we can transform the figure defined in a low dimension space into
a figure in progressively higher dimension space.

In space of null dimension the only figure is a point FPy. In space of one
dimension there can be any number of points and two of these points will
bound a line-segment P; which can be constructed by joining point P, to
another point. If we join P; to a third non collinear point we will get a triangle,
the simplest polygon, P», on a plane; if we then join this triangle to a fourth
point outside its plane we will construct a tetrahedron, the simplest form of
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Fig. 1.14. Constructive scheme of pentatope Py

polyhedron, Ps. If we now join a fifth point to the polyhedron outside the
three dimensional space we will construct a pentatope, the simplest element
P,. This succession is exhibited in Fig. 1.14 where the equilateral triangle
has the same faces as the tetrahedron.

In general any set of (r + 1) points that do not lie in a (r — 1) space are
the vertices of the r-dimensional simplest figure, the so-called simplex, whose
elements are simplexes formed by subsets of the (r + 1) points, namely the

vertices themselves, (T —; 1) edges, <r —g 1) triangles, <T 1— 1) tetrahedra,

(r+1) cells: in a single relation,

W= (1) - (1) ()

A line-segment is bounded by two points, a triangle by three line-segments
(sides), a tetrahedron by four planes (faces) and a pentatope by five three-
dimensional regions (tetrahedral cells). In general a simplex is a finite region
of r-dimensional space enclosed by (r 4+ 1) hyper-planes. If all the %T(T +1)
edges are equal then we obtain a regular simplex, as shown in Fig. 1.14.

If we limit ourselves to the 4-dimensional space the regular polytopes
are those whose cells are regular polyhedra. These polytopes are called -
cells if they are bounded by only r polyhedra. One fundamental property of
Euclidean r-dimensional space is that we can draw r mutually perpendicular
lines through any point O; r points equidistant from O along these lines
will thus make the vertices of a regular simplex (r — 1) whereas all the lines
together constitute a set of r cartesian reference axes.

If all the centre points of the edges that extend from a given vertex V of P,
lie in one single hyper-plane (e.g. if there are r edges) then these centre points
are the vertices of a (r — 1)-dimensional polytope called the vertex figure of
V in P,. Since the cells of the vertex figure are themselves the vertex figures
of cells then a regular polytope Py, whose cells are {n,r}, must have {r, s}
vertex figures where s is the number of cells that surround an edge. This
polytope is {n,r, s}. Thus in four dimensions the formula

.m0 i
sin —sin — > cos — (1.10)
no s r
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Equivalent Numbeli & kind Number .
Polytope Py of limit of Duality

polyhedron polyhedra vertices
3335 | Tetranedron Cetronedia 5 Self-dual
{487—?:,6?1}; Cube Cu?oes 16 ~]{)31,1?11, ?? }1f
{?(’Si;jl%’ Octahedron Oct;}?edra 8 ?4?3{ g }1f
{géf (;:1% ; ) Tetrzﬁedra 24 Self-dual
{152703-,6?;%1; Dodecahedron Dodelcigledra 600 ~]{)31,1§l, E()) }1f
%%O%;il}l; [cosahedron Tetri(ﬁ)edra 120 {%l,lgl, Z(’: {

Table 1.2. Features of the P polytopes

holds; this means that 27/s is greater than or equal to the dihedral angle
(m—2¢) of {n,r}. As such we can place s polyhedra {n,r} around a common
edge. The 4-dimensional Schlafli symbol {n,r,s}, gives a polytope where
{n,r} and {r, s} must belong to the platonic solids

{3,3},{3,4},{4,3},{3,5},{5,3}.

The criterion in (1.10) limits the number of possible polytopes to six, as
shown in Table 1.2.

The polytope {3,3,4} is the only one with no equivalent polyhedron.
Apart from being self-dual this polytope is also centrosymmetric whereas
{3, 3,3}, like the tetrahedron, has no centre of symmetry.

From Table 1.2 duality relations can be inferred when we consider that, in
four dimensional space, points correspond dually to three-dimensional lines
and the lines to three-dimensional planes.

The study of the projections of polytopes Pj into three dimensional space
is simplified by first considering an analogous, but easier to visualise, case
where a polyhedron is projected onto a plane. Among the various possible
projections, which are based on the choice of the centre of projection and
the choice of the image plane, a usual one is the parallel projection with
the centre at an ideal point and whose parallel lines represent parallel lines.
However, there is the disadvantage that the projected faces partially overlap.
This limitation can be overcome by moving the centre of projection to a point
very close to one of the polyhedron faces; we usually prefer the centre of the
face and to project onto the plane of that face. The projections of the platonic
solids obtained this way are shown in Fig. 1.15; this is what we see when we
remove one face of the polyhedron and look at the interior through the hole.

Parallel projection is not the correct method when projecting polytopes
P, since the polyhedra that bound the polytope are represented in three-
dimensional space by polyhedra that intersect with each other and partially
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tetrahedron cube octahedron

Fig. 1.15. Projections

dodecahedron icosahedron onto the plane of the five
platonic solids

overlap, thus giving a distorted image. The very best results are obtained
when we project from a point very close to a hyper-surface; in so doing the
boundary polyhedra of the polytope Py are represented by sets of polyhedra in
three-dimensional space, one of which has a very special role and is filled up in
a simple way by the others. If we project further onto the plane we will achieve
the images as seen in Fig. 1.16 for polytopes {3, 3,3}, {4,3,3}, {3,4,3} and
{3,3,4}. It is noticeable that the last projection is a large octahedron filled by

Fig. 1.16. Projections onto
the plane of polytopes P
{3,3,3}, {4,3,3}, {3,4,3},

»
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Fig. 1.17. One of the possible
projections onto the plane of
polytope {3,3,5}

23 smaller octahedra, with four different possible forms, making 24 polyhedra
in all.

Projections of {5,3,3} and {3,3,5} are much more complicated; Fig-
ure 1.17 shows a possible projection of {3,3,5}.

Our main interest on the polytopes Py is given by the observation that
{3, 3,5} is a packing of tetrahedra where every five have a common edge. This
packing represents an excellent model of the highly dense physical structures
with local icosahedral coordination such as the Frank-Kasper metallic phases
and the quasicrystals. In these structures the local coordination polyhedra
coincide with the icosahedral coordination polyhedron, which is typical of
the atoms arranged at the vertices of the {3,3,5} polytope. On the other
hand the four-dimensional space has positive curvature whereas the three-
dimensional space is flat. The idea of representing a physical structure (three-
dimensional) using an ideal four-dimensional crystal will allow us to use the
normal techniques adopted to analyse the properties of three-dimensional
crystals, but it requires defects, particularly disclinations, being introduced
just when the projection is made, in order to obtain, on average, a flat plane.
Thus the local interaction between atoms will lead to a local icosahedral
configuration that is ideal to obtain an efficient packing of metallic atoms with
isotropic interaction. This configuration is however partially incompatible
with the requirement to fill the three-dimensional space with matter; this is
possible without altering the icosahedral coordination only with an energy
cost to introduce disclinations (see Chap. 5). This will be discussed in further
depth in the following chapters.
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1.4 Elements of Crystallography

In order to specifically study the degree of structural order of extended sys-
tems, as seen from the position in the physical three dimensional space R of
the atoms, or molecules, we must start by examining how regular an ideal, de-
fect free crystal with no surfaces is. In order to discuss the regularity of atomic
arrangement in a crystal we have to refer to the idea of a crystal lattice. This
is a mathematical construction made of an infinite three-dimensional array of
points distributed periodically in space. Each point has identical first neigh-
bours and is equal to every other lattice point. Thus the crystal lattice is said
to have perfect translational symmetry.

The position r of any lattice site in relation to an arbitrary origin is
defined by a vector:

T =MN1T1 + NoTo + N3x3. (1.11)

Equation (1.11) defines the set of lattice vectors called lattice translations
or primitive translations.

A translation vector, also called lattice vector T', joins equivalent points
on the lattice

TZ'I'i—T‘j. (112)

Equation (1.12) is true of any of the indices i, j.

In (1.11), n; are integers and the non-coplanar vectors, called basis vectors,
Ty, T2, T3, are the fundamental units of translation symmetry. The volume
enclosed by the three integers (21, 2, x3) defines the so called primitive cell.
Referring to a given lattice there is not a single choice of basis vectors, as
shown in Fig. 1.18 for a two-dimensional square lattice. It is usual to choose
the two shortest basis vectors (top left) but each choice of (x1, x2) allows us
to reach any point of the square lattice.

If the system is elemental, namely it is made up of a single kind of atoms,
then these atoms can be placed directly onto the lattice sites so that each

Fig. 1.18. Possible choices for
the basis vectors for a two-
dimensional square lattice
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lattice vector coincides with the position of one atom. More frequently we
will find that each lattice site is associated with a set of atoms. In this case
we speak about a lattice with a basis and the three vectors (x1, 2, x3) will
define a parallelepiped unit-cell (not necessarily the cell with the minimum
volume). Repetition of this unit-cell in space generates the whole crystal with
the associated periodicity. The unit-cell with the minimum volume is called
the primitive unit cell and it contains one atom.

Each unit cell contains the same number of atoms, usually a small number,
in a fixed position. Thus if the cell contains p atoms, and if we suppose
that this cell is centred on the origin O, the atomic coordinates being &,
(€=0,1,2,...,p— 1), the distribution of the atoms in the crystal is given by
the (microscopic) density o(x) as

oz) =3 Y s@—r—¢,) (1.13)

r £=0
to which is associated the periodicity property
o + 1) = o(x). (1.14)

Since each basis is positioned and oriented the same way with respect to
its lattice site then the resulting atomic structure is a perfect crystal. Some
very complicated structures have even been found where the unit cells have
up to a few thousand atoms. All the r vectors defined by (1.11) have greater
or equal modules to the module of the shortest vector connecting two vertices
of the unit primitive cell. The set of lattice translation vectors T is closed
with respect to the sum and product. Thus, if we take two lattice vectors Ty
and Ty then FT'1, FT9, (T1 FT2), F(T1 + T>) are also lattice vectors.

It is often quite useful to substitute one parallelepiped unit-cell with an-
other unit cell, the so-called Wigner—Seitz cell.

Taking any point of the lattice as the centre of the cell to be constructed,
we join such a centre to all its closest lattice sites, bisecting them and making
the bisector planes intersect with each other. The obtained (two dimensional)
regular polygon or (three-dimensional) regular polyhedron is the Wigner—
Seitz cell. Like the primitive cell the Wigner—Seitz cell contains one lattice
site; this lies at the centre of the cell whereas each of the eight lattice sites
at the vertices of the primitive cell is common to eight adjacent cells. If we
represent the atoms as hard spheres on the sites of the various lattices then
the crystal will look like a box where the hard spheres are packed in different
arrays, depending on the structure, to obtain the highest packing efficiency
in the space.

The planes defining the faces of the three-dimensional Wigner—Seitz cell
are given by the equation:

(r + x)’= x?. (1.15)
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This means that such planes are defined by the intersection of spheres
of equal radii centred around adjacent lattice sites. This is another example
of the periodicity property of functions associated with the distribution of
atoms on the lattice sites.

When we examine elemental metals the most frequent structures found
are the simple cubic, sc, the body-centred cubic, bce, and the face-centred
cubic, fce (see Fig. 1.19). In the first case there are eight atoms on the vertices
of the unit cubic cell, whose edge [ is called the lattice parameter. % of the total
volume of each atom goes to fill volume I of the cell, which thus contains one
atom. The volume available for each atom is V = % (%)3 and the packing
efficiency is given as

vV

f= Bo6" 52.36% . (1.16)

The body-centred cubic structure not only has atoms at the vertices of
the cube, it also has an atom at the centre of the cube. The unit cell contains

two atoms; the radius of the hard sphere is thus given as r = [ ?% = @l
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Fig. 1.19. Wigner—Seitz cell for the most common lattices: (a) simple cubic struc-
ture; (b) face-centred cubic structure; (c), body-centred cubic structure; (d), hexag-
onal structure
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and the packing efficiency is:

3
2%7r (l%)
f= g =068.02%. (1.17)

The face-centred cubic structure, on the other hand, still has eight atoms
at the cube vertices as well as an atom at the centre of each face; thus the cell
contains four atoms. The radius of the hard sphere is given by r = 11v/2 =

l% and the packing efficiency is:

3
4%7r (l@)
=g = T405%. (1.18)

This is the most efficient extended three dimensional packing of hard
spheres. The hexagonal close-packed structure, hep, is in turn often found in
pure metals and has the same packing efficiency as the fcc. If we examine
an fce crystal and an hep crystal from the same angle (Fig. 1.20) we will see
that the sequence of planes in the hep crystal is ABAB. .., whereas in the fcc
crystal the sequence is ABCABC.. ..

The geometric problem to realise the most efficient packing of hard
spheres, simple in the case of elemental structures, becomes more compli-
cated when we try to achieve highly compact structures using two different
kinds of atoms of different sizes. One typical example is given by the Laves
phases ABs where the prototype is MgCusy. This is an intermetallic com-
pound whose stability depends not only on electronic factors but especially
on geometric factors such as the greatest possible symmetry, the most dense

hcp fce

Fig. 1.20. Stereographic models of the hcp and fcc lattices seen from the same
angle. In the hcp structure the plane sequence is ABAB..., whereas in the fcc
structure the sequence is ABCABC...
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space occupation and the greatest number of atoms coordinated with one
given atom. Generally known as C15, the structure of MgCus is face-centred
cubic with eight chemical formulas in each unit cell which is cubic and non
primitive. The arrangement of the atoms can be seen by using two sub-
lattices, the cubic lattice, typical of a diamond (Fig. 1.21) with magnesium
atoms, and the sub-lattice with copper atoms distributed on vertex sharing
Cuy tetrahedra. These tetrahedra are arranged in such a way that pairs of
tetrahedra overlap and are “welded” to a vertex to form a sandglass, as can
be seen in Fig. 1.22. A local representation of the structure is given by the
Frank—Kasper polyhedra, all of which are convex polyhedra, with triangular
faces either all the same or different to each other, and at least five triangles
having a common vertex. In these kinds of polyhedra the atom in the central
position has 12, 14, 15 and 16 as its coordination numbers.

If the central atom of MgCuy is copper then the polyhedron is a icosahe-
dron with coordination number 12, whereas if the centre atom is magnesium
than the polyhedron has four magnesium atoms that form a tetrahedron and
12 copper atoms that make up four triangles each of which is opposite to a
magnesium atom, as shown in Fig. 1.23.

The packing efficiency f can be calculated looking at Fig. 1.24, which
represents a section of the cubic cell along the diagonal. The four copper
atoms touch each other and are aligned along the diagonal, which is 11/2
long, so (Cu) = (1/8)lv/2. Two magnesium atoms on the diagonal of the
unit cell and (1/4)lv/3 separated from each other lead to r(Mg) = (1/8)l+/3.
The ideal ratio between the atomic radii of the constituents in this kind of

Fig. 1.21. The diamond structure: lattice (a) is the same as the fcc lattice though
it has two atoms per unit cell. Starting with the fcc lattice, if we give one of the
atoms (A) at a cube vertex the coordinates (0,0,0), an atom (B) will be inserted at a
quarter of the main cube diagonal: its coordinates will be (i, i, i) Each unit cube
will have eight such atoms; the diamond structure consists of two interpenetrating
fce lattices. (b) Alternative view, highlighting the tetrahedral atom disposition
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Fig. 1.22. Two pictures of the C15 structure; (a) tetrahedral sub-lattice of Cu
atoms (in the prototype system MgCus); (b) small dots represent Cu atoms, ar-
ranged in tetrahedra, and large dots indicate Mg atoms

packing is thus (r(Mg)/r(Cu)) = (3/2)1/2. The space filling efficiency is given
by

f=2dil [8 (%zﬁ)g +16 (%z«/&) 3] =0.710,

313

if we take into account that the cubic cell contains eight magnesium atoms
and sixteen copper atoms. This is a little less efficient than the fcc packing of
hard spheres. In the C15 structure of MgCus the atoms of both metals touch
each other that is why the crystal has two interpenetrating lattices made up
of only copper atoms and magnesium atoms, respectively.

Fig. 1.23. The two polyhedra of local coordination in MgCus; (a) with Cu as a
central atom we obtain a icosahedron: polyhedron C12; (b) Mg as a central atom
is coordinated with four Mg atoms which form a tetrahedron and with twelve Cu
atoms which form four triangles, opposite to the Mg atoms: polyhedron C16
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Mg
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Fig. 1.24. A section of the cubic cell of MgCus along the diagonal, to calculate
packing efficiency

Since the translational periodicity so far examined is a common property
to all crystals this property alone is insufficient to identify and classify the
over twenty thousand crystal systems so far discovered. The distinctive sym-
metry elements of a given crystal can be determined when we consider the
rotations about certain crystallographic axes, as centred on lattice points, the
reflections with respect to particular atomic planes, the inversions and com-
bination among these operations and with translations. In 1848 the Russian
mathematician Bravais demonstrated that first, in three dimensional crys-
tals, lattice translations are only compatible with some kinds of rotations
and, second, because of a crystal’s so-called point symmetry, i.e. all the ro-
tations, reflections, inversions and their combinations as a whole, there can
be no more than 14 different kinds of lattices. These lattices are commonly
referred to as the Bravais lattices and are represented in Fig. 1.25.

In a plane the Bravais lattices can be determined by the relative length
of the basis vectors &, and x> and by angle a between these vectors. There
are five possible lattices: oblique (x; # 2, where « is any angle), square
(x1 = x2, « = 90°), primitive rectangle (x1 # @2, @ = 90°), centred rectangle
(x1 = x2, o is any angle) and hexagonal (x; = x2, a = 60°).

The so-called crystallographic restriction (Barlow theorem, 1901) requires
that a lattice, when rotated around an axis of a given order, covers positions
equivalent to the starting ones, unaffected by the operation: only rotations
of order 1, 2, 3, 4, and 6 are allowed in three dimensional space. In two-
dimensional space, which is easier to visualise, let us take floor tiles to il-
lustrate the crystallographic restriction. Only if we use triangular, square or
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Fig. 1.25. The fourteen three-dimensional Bravais lattices. From top to bottom
and from left to right: simple, body centred and face centred cubic structures, simple
and body-centred tetragonal, simple, basis centred, body centred and face centred
orthorhombic, simple and basis centred monoclinic; triclinic; trigonal; hexagonal

hexagonal tiles is it possible to completely and evenly cover the plane with-
out overlapping the tiles. In an empiric way this same rule has been used
since ancient times. As an example, in Fig. 1.26 are reported two portions
from antique mosaic flooring. Here besides the geometric (triangular) motif,
the artist introduced in the mosaic new decorative motifs through the use
of coloured tiles. We notice the the resulting shape of the mosaic can be
either a rectangle, as in part (a) of Fig. 1.26, or a circle, as in part (b) of
Fig. 1.26.

The result can be explained if we consider that the sum of the inside
angles of a polygon is 7(n — 2) where n is the number of sides. In order to
obtain a regular tiling the vertex angle of the polygon 7(n — 2)/n must be a
divisor of 27, namely

2mn .
=m where m is a natural number

SO
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(a)

Fig. 1.26. Details of the mosaic flooring (XII Century a.D.) from Santi Maria e
Donato basilica in Murano island (Venice, Italy)(Reproduced by permission, Ufficio
Beni Architettonici ed Artistici, Curia Patriarcale, Venice, Italy)

As such, m can only be a natural number if 4 can be divided by (n —2), and
this will occur if

n—2=1, n=3, triangles,
n—2=2, n=4, squares,
n—2=4, n=6, hexagons.

There are no other cases; these are the only polygons we can use to achieve
a perfect tiling structure and this is done by ensuring that all tiles adjacent
to each other share the same vertex.

We could consider using a different form of tiling structure where the
vertex of one polygon touches one side of a second polygon. If « is the angle
between the second polygon and one of the sides that go to make up the
vertex angle of the first polygon, then the following must stand:

ma =T,
where m is a natural number; so
m(n —2)
n

and

2
m=14 ——
R

as such the condition for m can only be obtained if

n—2=1, n=3,
n—2=2, n==4.
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Fig. 1.27. Two possible ways of
covering the plane using triangu-
lar tiles

Fig. 1.28. Covering the plane us-
ing squares and hexagons

Given the above the different ways of matching tiles will not give us a tile
shape different to those we found before.

Figure 1.27 gives us an example of the two kinds of tiling obtained using
triangular tiles, whereas Fig. 1.28 shows us tilings obtained from square and
hexagon tiles.

Going back to three-dimensional lattices the symmetrical elements of the
unit cell are usually considerably reduced by the symmetry of the atomic
arrangement in the basis.

All operations that do not affect the crystal constitute the space group
(group in the mathematical language); all the primitive translations in turn
are a group, the translation group, which is a sub-group of the space group.
We should note that the result of two successive translations does not de-
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pend on the order in which they are applied to a crystal, whereas the result
of two rotations may depend on the order the crystal is rotated. So, while
the translation group is commutative the space group generally is not. All
rotations that are compatible with the symmetry of the Bravais lattice are
part of the point group of a crystal. The symmetry elements of this group
pass through a fixed point of the lattice, which we shall take as the origin of
the reference axes for the crystal. The point group may not be a sub-group
of the space group since the space group rotations only take place together
with non-primitive translations.

The importance of the point group is that the Bravais lattice and the unit
cell are invariant under whatever point group operations. This all means that
the point group is the group of symmetries of the Bravais lattice or at least a
sub-group of it. This limits the possible number of point groups. Particularly,
in two-dimensional space there are ten groups, whereas in three dimensional
space there are thirty-two and these constitute the crystalline classes. In
the end, a point group may be associated with a corresponding Bravais lat-
tice; these, together with non-primitive translations combined with the point
group elements, go to make up the space group. In two-dimensional space the
five Bravais lattices and the ten point groups will give us 17 space groups; in
three-dimensional space the fourteen Bravais lattices and the thirty-two point
groups will give us 230 space groups. The space group of a crystal depends
on the translation symmetry and on the distribution of the atoms in the unit
cell, namely on the basis symmetry.

Conventional analysis of crystal directions and planes is carried out using
the Miller indices. For a plane these indices are represented by three integers
(h,k,1). In a cubic crystal the Miller indices are related to the orientation
of the plane relative to the crystallographic axes where 1/h, 1/k and 1/1 are
the intercepts of the plane (h, k,1) on the axes @1, €2, 3. If an intercept, for
example k, has a negative value then it is shown as k.

The equation for the plane is given as

z

€ Yy

— + = =1 1.19

VREYIRRY (1.19)
SO

hr +ky+1lz=1. (1.20)

Thus the direction cosines of the perpendicular to the plane (h, k,1) are pro-
portional to h, k, [, respectively.

Alternatively, if the intercepts of a plane with xi, ®2, ®3 axes are
(l1,12,13), then the Miller indices are the smallest integers having the ratio
(1/11) : (1/12) : (1/13). For example, if the intercepts on the axes are (4,3, 2)
they define a plane with indices (1/4) : (1/3) : (1/2), which correspond to
the ratio between the integers 3 : 4 : 6; then the Miller indices of the plane
are (3,4, 6).
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For crystals with hexagonal symmetry we use four Miller indices (h k& i [)
where ¢ = —(h + k). The first three indices refer to the intercepts of the
considered plane on the three axes x, @2, ®3 which define the hexagonal
basal plane where the three axes are inclined at 120°, whereas [ defines the
intercept on the 2’ axis which is perpendicular to the basal plane.

The notation {h k [} refers to the family of equivalent lattice planes,
perpendicular to a crystal axis. For example, {100} refers to planes (100),
(200), (300), ... The directions in a crystal are also given by three indices
(four for the hexagonal lattice). [h k 1] is the direction perpendicular to a
plane with Miller indices (h k ). Direction [k k ] defines a straight line that
passes through a point with coordinates (h k 1).

1.5 The Reciprocal Lattice

The three Miller indices do not define a plane univocally because all parallel
planes have a common perpendicular.

The notation does, however, have a simple geometric meaning if we intro-
duce a lattice, dual of the lattice in the physical space R, called the reciprocal
lattice. (h k 1) now refers to the coordinates of a point in the reciprocal space
K, also called the space of wave vectors k. The reciprocal lattice points are
given by the relation

k =mix] + mox; + max} (1.21)

where, just as n;’s in (1.11), m,; are integers and x}, @3, 3, are the non-
coplanar vectors that define primitive translations in the reciprocal lattice.
These vectors are linked to the x1, o2, 3 vectors by orthogonality since each
basis vector of the reciprocal space (for example x7) is orthogonal to the two
non-homologous basis vectors of the physical space (in our example &2 and
@3 ). Given this we obtain:

x; - T; =270, where 4,5 =1,2,3.

If this is true then

x1 = const (xy X x3)

and since
x1-x] = const ¢1(xe X x3) =27
we obtain
ot = op (T2 X ) (1.22)

.’131(.’132 X .’133) ’

Equivalent relations hold for =3 and x3.
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The basis vectors of direct space are defined in the same way as vectors
of reciprocal space. For example, we get

The relations for x5 and x3 are similar. To sum up, each Bravais lattice
corresponds to one reciprocal lattice.

The denominator in (1.22) is the volume of the primitive cell in physical
space. As such the dimension of k vectors is [L]~! ; hence the name reciprocal
lattice.

The parallelepiped unit-cells given by «7, 3, =3, are the primitive cells
of the reciprocal lattice. In the same way we can construct Wigner—Seitz
cells using the same method used for direct lattices. These cells are built up
around the origin of the reciprocal lattice, which is made to coincide with a
reciprocal lattice point, and is called the G point. The Wigner—Seitz cells in
the reciprocal lattice are called Brillouin zones.

The Wigner—Seitz cell and the Brillouin zone of the simple cubic lattice
and the hexagonal lattice are all the same except that the hexagonal lattice
is rotated 30° about the x3 axis of the hexagonal Brillouin zone as compared
to the orientation of the Wigner—Seitz cell. The shape of the Brillouin zone
of the body-centred cubic lattice is the same as the Wigner—Seitz cell of the
face-centred cubic lattice, and vice versa (Fig. 1.29).

The Brillouin zone is a convex polyhedron bounded by planes defined by
the equation

(k' + k) = K? (1.23)

just as for (1.15) in direct space.

Geometrically speaking the planes that satisfy the requirements of (1.23)
bisect the segments that join the origin, where k’ = 0, to the nearest recip-
rocal lattice points, so k' = k.

The relation between the points of the two spaces, namely the physical
space and the reciprocal space, is

r- k=2rN (1.24)
where N is an integer. Equation (1.24) can also be expressed as
expik-r] =1 (1.25)

which is of particular interest when interpreting data from diffraction exper-
iments.

All the r points that meet the requirements of (1.15) for a fixed k value
lie on a plane perpendicular to k. Each set of (m, ma, mg), which defines
a specific k value, refers to a set of lattice planes in the R lattice. If the m;
values are the minimum compatible integers then k is the shortest primitive
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t
(a)

(d)

Fig. 1.29. Brillouin zone for various lattices; (a) simple cubic; (b) face-centred
cubic; (c¢) body-centred cubic; (d) hexagonal

translation in the reciprocal lattice and the m;’s are thus the Miller indices.
As such we get

(2,y,2) = (ra,ry, 1) = k. (1.26)
What’s more,

hok:l=ky:ky:k,
which is equivalent to

1 k

—— (kg by, k) = —— .
2TN ( v k) 2tN

From the point of view of the structural analysis of materials the most
important consequence of the described symmetry, (see (1.14) and (1.25)),

regarding the physical properties of a crystal is that the matter density o(x)
is periodic and it can be Fourier transformed to

o(x) = Z o(k)explik-x]. (1.28)

k

(h, k1) = (1.27)

This means that the Fourier transform g(k) is not zero only for the vectors
k=haxl+kax;+1 x5 (1.29)

where h, k, [, are Miller indices.
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2.1 Order and Disorder

Order and disorder are rather complex concepts with various and sometimes
contrary exceptions and shades and this makes it somewhat difficult to give
them a generally valid definition. The dictionary defines order as “the ar-
rangement of objects in position, or of events in time” or, more generally,
“the manner in which one thing succeeds another” [2.1].

Fig. 2.1. An example of ordered, but not regular, structure is given by “Path of
Life I1” by M.C. Escher (1958). “From the centre, representing the limit of infinitely
small, four rows of fish (rays) protrude, in spiral form, swimming head to tail. The
four largest examples, enclosing the square surface, change direction and colour:
the white tails are still part of the school that comes from the centre while the
grey heads are pointed towards the inside and are part of the grey rows pointed
towards the centre.” (M.C. Escher’s “Path of Life II” (©)2002 Cordon Art B.V.-
Baarn-Holland. All rights reserved)



34 2. Structural Order

Fig. 2.2. Example of aperiodic,
non-regular lattice points

Rather than the general definition of order we are more interested in a
series of criteria that can be used in Physics and in particular in analysing
the structure of condensed matter, and that can possibly include “objects”
in Nature and in art that give the observer the feeling of order.

First of all it is common to consider order and regularity as equivalent,
namely that they belong to the same category and refer to objects in that
category. In actual fact the idea that something is regular is geometric and is
based on the idea that one or more geometric elements are repeated, whereas
order is probabilistic and hinges on the idea of singleness in that a given
macroscopic structure corresponds to a single microscopic configuration.

Structures may be ordered but not necessarily regular. An example is
Escher’s covering of a flat surface in his xylography called “Path of Life II”
shown in Fig. 2.1; another example is given by the proteins which have a
single configuration (ordered) with an irregular structure.

The point lattice in Fig. 2.2 is aperiodic and not regular. Figure 2.3 gives
two possible ways of covering a flat surface, using different schemes, yet keep-
ing the disposition of the points in Fig. 2.2. In one case the polygons are all
different whereas in the other two convex regular polygons give rise to an
ordered system in that the arrangement achieved by joining the polygons
under certain well defined rules is unique and can be extended indefinitely
by further polygon addition.

Crystals are ordered and regular since they can be obtained by periodical
translation of an elementary (geometric) cell in space. Excluding the trivial
case of a vacuum, crystals constitute the highest degree of three-dimensional
order that can be achieved. In a crystal an assembly of innumerable particles
(atoms or molecules) is packed in a regular structure along lines in space
and on planes in a geometric lattice in order to obtain the highest density
possible. With exception to vibrational motion the atoms have a fixed position
and are temporarily invariable. As such, from a rheological point of view a
crystal is a solid. As we saw in Chap. 1 crystal structures do not change when
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(a) (b)

Fig. 2.3. Two possible plane coverings obtained by conforming with the disposition
of the points in Fig. 2.2; (a) using irregular polygons; (b) using two regular polygons
(losanges), interconnected by defined rules: the result is a Penrose tiling (aperiodic)

they undergo lattice translations, rotations about axes of different order or
reflections in various planes and combinations of reflections and rotations.

The concept of disorder is intuitive and, to some extent, primitive. As
such, since it is closely connected to the concept of “casual” it may be defined
independently only in a specific context. It is easier to define disorder as a
state of absence of, or departure from, the condition of order. The immediate
consequence of this approach is that we have to give a better definition of
perfect order. From this we have to be able to recognise how much more or
less departure from the condition of order is achievable.

2.2 Rules of Order

The order of a set of objects is defined with respect to one particular property
of the objects. An object may possess p properties, and the set may be ordered
contemporaneously with respect to ¢ properties where ¢ is less than p.

In the case of a set of atoms, distributed in space, whose positions are
defined by a particular point, namely the centre of mass, and if there is a
rule that, when applied to all the atoms, establishes their reciprocal position,
provided each atom actually occupies the position it was assigned, then the
set is said to be perfectly ordered.

This rule is called the rule of order R.

The positional (and orientational) order in decorative motifs is associated
with a particular rule of order. In the simplest of cases if these motifs are
distributed along a straight line they represent a sort of “crystal” in one
dimension.

The repeated application of the rule of order R is essential. In fact, in
a finite collection it is possible to construct a single arrangement in space
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according to a complex rule that defines exactly where each member of the
collection is to be placed. The result, however, may be extremely irregular.

To obtain perfect order we must be able to move from one member of
the set to another by repeating the same rule. This rule can thus be re-
peated infinitely and will give us the correct position of the objects that are
progressively added to the set.

More generally, a set of objects {Oy}, each having n properties {p, }, has
perfect order in relation to property p; provided there is a rule of order it and
that there is at least one object O, of which we know p;(O,.). The property p;
of each of the other objects in the set {Oy}, taken singularly, can be obtained
in a unique way with respect to p;(O,) provided that the rule ® is applied
repeatedly.

This means that the R rule does not contain any factors of probability; it
will give the very same result whenever it is applied to {Oj} which, in turn,
may be finite or infinite and may also consist of both physical objects (atoms,
molecules) and abstract elements, whether they be geometrical (polygons,
polyhedra, points, ) or not. Lastly, all the properties {p,, } may include space-
time coordinates such as, in Physics, orientational coordinates, the atomic
number Z, which is usually a function of the position Z(z), electrical or
magnetic dipole moments (atomic or molecular).

In studying condensed matter we must discuss systems that are extended
in space and that include many atoms or sets of atoms. In the simple case of
an elemental system we are interested in the position of like atoms.

The most important aspect of the rule of order R is that when it is applied
to the set in question sequentially we will obtain a unique space arrangement.
It is clear that in order to achieve order the atoms only have to be the same
distance from each other, though this is not a necessity. The application of
the rule of order R allows us to substantiate whether the position occupied
by any object in the set is correct or not.

The rule of order ® must be exact and quantitative. In the simple case of
a one dimensional “crystal” we can require that the atoms, seen as random
points along a straight line, are distanced from each other by a fixed length,
e.g. L = 1 nm. There is no sense in their being just any distance between them
provided that the distance is between 1 nm and 1.5 nm; such an imprecise
criterion would lead to infinite space dispositions.

In order for space order to be perfect the rule that leads to this space
order must be a rule of order namely it generates a unique space disposition
when applied repeatedly.

If the objects to be ordered are not identical, e.g. if we are dealing with
two different kinds of atoms, X and Y, then they can be set out in an ordered
manner based on a positional (or topological) rule of order. They may then
either be ordered or not with respect to any other property they have in
common; among these common properties the chemical order may require
that the two species of atoms occupy alternative lattice sites. This sort of
order may not occur even though there may be topological order.
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Multiple order occurs when a set of objects is ordered at the same time
with respect to two or more properties. For example, when there is no ex-
ternal magnetic field, atoms of the X and Y species, with non-zero magnetic
moments, arranged alternatively on simple cubic lattice sites, and having
parallel or anti-parallel alignment because of the atomic spin, constitute a
set with multiple order, i.e. topological, chemical and magnetic order.

2.3 Order Parameters

In most cases physical systems do not exhibit perfect order, nor do they
represent complete disorder. On the contrary, the non conformity with a rule
of order varies greatly both as regards the degree of order and as regards such
properties other than those that lead to the definition of order.

Let’s now come back to structural order. Even though a crystal structure
may have various kinds of defects 99% of the atoms will lie on lattice sites.
The same material in the liquid state will present local order between first
and sometimes second neighbours. In sufficiently diluted gases no traces of
order are found. If a hypothetical observer ideally inserted an atom in the
crystal system then this would more than likely be recognisable since it would
occupy an interstitial site. In the case of a gas we would not be able to tell
which is the additional atom, not even after a short time interval, owing to
the high non-correlated atomic mobility.

On the other hand, it is more difficult to treat a liquid. Owing to the high
atomic mobility we presume that the additional atom cannot be identified.
However, we can see, at least after a time interval shorter than the diffusion
time constant, some atomic correlation in the microscopic arrangement under
observation. This is an index of specific local order due to the increased local
number density. In this case of limited space order, which, however, leaves no
trace over a long distance, we consider, if we start from any arbitrary point,
the radial extension of local order by implicitly considering that the material
is isotropic.

Whenever we refer to systems showing partial order (the most common
situation) we must identify how they are disordered and the degree of disor-
der.

For each kind of phase transition where symmetry is broken we can iden-
tify an appropriate macroscopic parameter, called the order parameter 7,
which gives us a numeric measurement of the degree of order in the system.
While we can immediately identify the order parameter in certain transitions
it is very difficult to do so in others. For example, in normal liquid-crystalline
solid transition the translation symmetry of the liquid phase at high temper-
ature is broken at the transition. In fact, while the space-time average of the
microscopic density of a liquid is isotropic, thus it is invariant under all the
elements of the translation group, the crystal has a periodic average density
and is invariant only under a sub-group of the translation group.
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The order parameter, which may be a scalar, vectorial or tensorial quan-
tity, a complex number or any other quantity, appears in the less symmetri-
cal phase in any transition where symmetry is broken whatever the order of
the transition, defined according to Ehrenfest. In this scheme the order of a
phase transition is given by the lowest order derivative of Gibbs’ free energy,
G, which presents a discontinuous change at the transition. In liquid-crystal
transition, which is first order, since the slope of the G curve is discontinuous
at the transition temperature, there is an abrupt discontinuity in the state of
the system, as reflected by the trend of any intensive variable (volume, den-
sity): consequently, the symmetry properties in the liquid and solid phases
are not related to each other.

In the case of a continuous transition, such as in paramagnetic-ferro-
magnetic materials, the rotational symmetry is broken since the spontaneous
magnetisation that acts as an order parameter defines a single direction in
space. In this case the state of the system changes with continuity and the
symmetry properties of the two phases are closely related; usually, though
not always, the low temperature phase is the least symmetrical.

Now we consider the continuous order-disorder transition in a binary XY
alloy where, by convention, in the fully ordered configuration the X atoms
occupy the ¢ lattice sites and the Y atoms occupy the v lattice sites. Disorder
is achieved when the X atoms move from the ¢ sites to the v sites and, at the
same time, the Y atoms move from the v sites to the ¢ sites. No holes and/or
interstices are allowed for. In order to quantitatively obtain the degree of
order in the system we will take a crystal with N atoms where

N)&( = number of X atoms on the ¢ sites,
Ny = number of Y atoms on the v sites,
N% = number of X atoms on the v sites,
Nf, = number of Y atoms on the £ sites.

Thus the following stand

N = Nx + Ny
Nx = N% + N%
Ny = Ny + Ny
NY = NS

(2.1)

where N, Nx and Ny are constant during the order-disorder transition (we
do not consider there may be some chemical reaction between the X and Y
atoms).

Nx
CX = —/——

d Ny
an cy = —
N YON
are the atomic fractions of the X and Y atoms respectively of the crystal,

and

fi*ﬁ

1=, where I =X,Y; i =&
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are the fractions of the I type of atoms that occupy (correctly) the i sites,
calculated with respect to the number of I type of atoms (and not with
respect to the overall number of atoms, N, in the crystal).

The long range order parameter S is obtained using the following relation

o
=1 1 2.2
[ ex (2.2)

or, in the same way, by
S = M (2.3)

].—Cy

S may only take on values in the interval [0, 1]. In particular, when the
crystal has a totally ordered configuration the fraction f§( of the X atoms
that occupy the ¢ sites, calculated on the total number of X atoms, is equal
to 1, thus each X atom occupies a & site; in this case S = 1.

When, though, the crystal has a totally disordered configuration, f)g( =cx
and S = 0; this condition corresponds to the greatest value of N{ = Né :
the search for the greatest value is bound by the values in (2.1). The greatest
disorder, thus, does not correspond to the condition f§ =1 (all the X atoms
on v sites). For simplicity’s sake let us refer to a binary alloy with equiatomic
composition. This state would lead to the interchange of all the X atoms
with all the Y atoms, thus back to complete order.

As an example we shall consider an equiatomic binary alloy XY lying on
a two-dimensional square lattice, as shown in Fig. 2.4. The lattice sites are
N = 36; for stoichiometric composition Nxy = Ny = 18, thus cx = ¢y = 0.5.

Figure 2.4 shows (part a) the £ and v sites occupied by the X and Y
atoms in a fully ordered configuration. In this case N)f( = 18 = Ny and
Ny = Nf/ =0, thus f§( = 1= fy. The long range order parameter (egs. 2.2
and 2.3) is S = 1.

Figure 2.4 shows (part b) partial disorder in the system shown in part
(a) of Fig. 2.4. The disorder was obtained by exchanging the positions of
X and Y atoms that are nearest neighbours, along any line. The scheme
shows that alternative lines have a disordered atom arrangement and each
position of an XY atom exchange is separated from the next by an atom
in its correct position. Furthermore, the disordered arrangement between
contiguous disordered lines is staggered by one atomic position. We impose
cyclic boundary conditions; the lattice is thought to be closed on itself. As
such we understand why we have to exchange atoms at the edge of the lowest
line of the lattice. In this configuration N)g( =12= Ny and N} =6 = N}E,,
thus f§ = 2 = f¥. The long range order parameter is S = 1/3.

Figure 2.4 shows (part ¢) complete crystal disorder. The lines where all
the possible exchanges have taken place alternate with perfectly ordered lines.
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Fig. 2.4. Possible schemes of chemical disordering of an eqiatomic XY binary
system on a square lattice (e: X ;01 Y ; -1 & O: v ; ~~: interchange XY)

The result is thus N)g( =9= Ny and Ny =9 = Nf,; this corresponds to
f5% =05=fy, thus S = 0.

Let us take any other disordering scheme, where f)E( = O: the long range
order parameter has the same value as that of the scheme in part (c) of
Fig. 2.4. However, each configuration is characterised by a different value of
the short range order parameter a(z) (see Chap. 4), which gives us an index
of the degree of local order around the position of a reference atom.

Figure 2.4 shows (part d) the exchange of all the X atoms with all the Y’
atoms. So, fo =0= Ny and Ny =18 = Né at the same time. In this case
f§( = 0 = fy, thus S = 1. The structure is hence completely ordered; only
the observation point has changed.

The quantity S interpolates between the extremes of complete order and
complete disorder and is an example of a scalar order parameter. By using
this quantity we can give a quantitative meaning to the expression “partial
order” so we can compare different systems with each other.
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A probabilistic rule of order which does not give us a single result, leads
us to partially ordered sets; perfect order, in this case, is obtained only sta-
tistically.

In actual fact, even when we consider sets, for example sets of atoms or
molecules, for which the property whose degree of order is characterised by
a deterministic rule of order, what mostly interests us is the degree of order
in the set, considered in a thermodynamic state. Therefore, no particular
meaning can be assigned to any specific microscopic configuration among the
huge number of those compatible with the set of thermodynamic variables
that define the state of the system; we are interested in the ensemble average
of the order parameter 7.

In principle the calculation for the ensemble average can be simplified pro-
vided certain conditions are true. In Statistical Mechanics we usually require
that the ergodic condition is true, which can be translated into the equiva-
lence of the ensemble averages with time averages. We can give an example
of this equivalence, in general terms, as follows.

We shall start from an initial fixed instant, ¢ = 0, and consider that the
time evolution for two systems, P and Q, which are identical and isolated
and that at the initial time are in two states, 1 and 2, of equal energy.

We will then observe what states P and Q are in at periodic intervals. For
the ergodic condition to be true and having waited long enough, the Q sys-
tem will occupy state 1 and, as of that moment, its statistical evolution will
coincide with that of P, measured after the initial instant. When we average
out very long times, the statistical behaviour of the two systems will become
identical. The base hypothesis is that the skip frequencies V,,,, between any
two configurations m and n that are compatible with thermodynamic vari-
ables are never zero. The isolated system, with fixed constraints, must be able
to move from one state to any other of equal energy (accessibility hypothesis).

The equilibrium distribution of the fluctuations of any observable physical
quantity, that is its distribution averaged along a sufficiently long period of
time so that it becomes independent of time, must be the same for both
systems. This means that the characteristics of the equilibrium state of a
system depend only on the bonds and on the energy that fix the accessible
configurations, whereas any particular microscopic configuration from which
system evolution begins is of no importance.

The time averages are necessary because the values of the physical vari-
ables that describe the system generally fluctuate from time to time, and
thus the degree of order therein fluctuates at the same time. In the statis-
tical set all the variables we want to determine the degree of order of, from
the positions to the orientations, to the electrical and magnetic moments,
... present statistical distributions. As such it is clear that if we extract a
particular set of values of the variables from the distributions of such a set,
the probability that the set we choose provides us with a faithful description
of the real degree of order is extremely low.
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2.4 Cellular Disorder and Topological Disorder

We generally make a distinction between Long Range Order (LRO), which
extends throughout the structure, and Short Range Order (SRO), which in-
volves the shell of the first neighbours of any atom chosen to be the origin,
depending on the spatial extension of structural order.

Since the atoms on the surface of a solid, even at thermodynamic equilib-
rium, undergo different forces compared to those that experience the effect of
the presence of atoms in the volume, the interatomic spacing on the surface
are different to those in the bulk. The immediate consequence is that there is
no lattice order in an agglomerate, with say 100 atoms, where a large num-
ber are on the surface. In these cases, however, we will often find short range
order.

Atomic clusters are an example of this situation: the kind of structural or-
der in them and their evolution with the dimensions, namely with the number
of atoms in the cluster, will be examined in more depth later on. In glassy and
liquid systems the experimentally observed short range order is imposed by
the chemical nature of the constituents and by the need to achieve geometric
atom packings as compact as possible. The structural arrangement among
first neighbours gives rise to local order, either Chemical Short Range Order
(CSRO), of chemical origin, or Topological Short Range Order (TSRO), of
geometrical origin.

Medium Range Order (MRO) has progressively gained more importance
in amorphous solids, initially in the analysis of elemental semiconductors,
silicate and chalcogenide glasses, and later in the structural characterisation
of metallic glasses. MRO typically extends on intervals of the order 0.5—2 nm,
and this is characteristic of the interaction between second neighbours.

A macroscopic structure with long range crystalline order is subject to
periodic translation. Though this is the highest level of structural order pos-
sible in condensed matter these crystal structures are usually associated with
various kinds of disorder, as seen in Fig. 2.5.

The most widespread sort of disorder is short-range disorder due to lo-
calised defects (point and line defects) such as vacancies, di-vacancies, inter-
stitials, substitutional impurity atoms, F' centres, dislocations. Apart from
the atoms in the “core” of the defect, the first neighbour atoms of the defect,
too, are not to be found on their ideal lattice sites.

Many properties of materials with a technological interest are the out-
come of the presence and mutual interaction of these kinds of imperfection.
Among these we will find the colour of gems, the electrical properties of
semiconductors and the mechanical and thermal properties of metals.

Chemical or compositional disorder, which we have already referred to,
can be seen in the XY binary alloys which undergo order-disorder transitions.

For materials whose atoms have intrinsic magnetic moment, such as ferro-
magnetic and anti-ferromagnetic materials, disorder is associated with alter-
ations in atomic spin orientation above the critical point of magnetic ordering.
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Fig. 2.5. Various kinds of disorder that can be found in a perfect crystal (a)
elemental and (d) made of an equiatomic binary alloy; (b) the bond lengths vary
generating bond disorder; (c) bond coordination also varies giving rise to dangling
bonds and topological disorder; (e) (f) (g) and (h) present various combinations of
the above kinds of disorder with varying weights

Disorder may occur in molecular arrangement as well. This is observed, for
example, in the semiconductor compound CsPb, of which it has recently been
noticed that melting takes place in two distinct phases. At higher temperature
the system is a normal liquid, showing orientational and translational disor-
der; at lower temperatures, structural units Cs4Pby, each characterised by a
tetrahedron (Pbj™ ) inside a tetrahedron (Cs;" ) oriented in the opposite di-
rection have been identified. Such relatively large units, possessing rotational
symmetry, have long range translational order though they are subject to fast
re-arrangement along four non-equivalent directions in the lattice. Such an
intermediate phase, called a plastic crystal, is common of organic molecular
solids and has also been observed in the NaSn semiconductor.

At a temperature T = 0 K, in those systems with chemical or orienta-
tional disorder, both molecular and involving atomic spins, perfect order sets
whereas disorder is prevalent at temperatures above the pertinent critical
temperature, T.. To understand and to describe the disappearance of order
at T'> 0 K and the growth of disorder as the system approaches T, are both
problems that lead to the study of the dependence of the order parameter
on temperature.

The four kinds of disorder we have just examined make up what is called
cellular disorder. This kind of disorder can be described with reference to a
particle placed on an ideal lattice site of a solid. The properties involved are
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intrinsic, as in the case of spin direction and chemical composition, or pertain
to the presence or absence of defects at low or moderate concentration or, as
in the case of thermal motion, regard vibrational displacements.

Unlike a crystal with some degree of disorder, a microscopic sample of an
amorphous liquid, or a solid with no defined crystal lattice, is characterised
by topological disorder. This is the outcome of a relevant property in a liquid,
such as the absence of translational atomic motion. In these kinds of system
we must consider the distribution of the relative positions of the molecules.

Furthermore, if the material is a mixture or an alloy of X and Y then it
will also have chemical disorder. The preferential attraction of an X atom
for atoms (Y) of the other kind leads to the formation of structural units
characterised by well defined geometrical shapes, sizes and structures (often
based on tetrahedral packing) with partial Chemical Short Range Order.

In the very same way, topologically disordered structures may display
complete order regarding the spin orientation, as can be seen in saturated
amorphous ferromagnetic materials.

2.5 Structurally Disordered Materials

The most common class of disordered materials are liquids. The greatest prob-
lem with liquids is understanding their structural properties and macroscopic
behaviour based on atomic and molecular interaction. We shall examine var-
ious classes of materials based on their specific microscopic interaction:

113

1) “simple” liquids characterised by Van der Waals molecular forces (Ar)

2) fused salts where the electrostatic ionic forces prevail (NaCl)

3)liquid semiconductors (Se)

4)liquid metals whose properties are largely determined by a Fermi gas of
conduction electrons

The first investigation, both experimental and theoretical, focused on the
structural properties and the equation of state of the simple liquids. Over the
last twenty years research has been widened to include semiconductors and
metals. However, a clear understanding of the structure of materials in the
liquid state is still some way off.

While liquids are usually thermodynamically in a state of equilibrium
the amorphous solids, which comprise the second family of macroscopically
structurally disordered systems, are not. In fact, in principle any material
can be vitrified, provided

AGproc 2 AGa (2.4)

namely that the difference in free energy AGproc between the undisturbed
crystal and the material condition caused by any external processes (high
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pressure compression, deforming and mechanical alloying, irradiation, diffu-
sion at the interface, hydrogen charging up to high concentrations) is greater
than the free energy difference between the glassy phase and the crystal
phase, AG,... When (2.4) holds the crystal will be disordered. We have to
inhibit atoms from returning to the ordered crystalline arrangement associ-
ated with the minimum value of free energy in the system. The preparation
techniques must thus be able to “arrest” the atomic movement and freeze
the atoms in their metastable non-equilibrium arrangement. The techniques
employed often make use of ultra-rapid cooling; among these techniques we
can outline vapour condensation onto a layer kept at cryogenic temperature
(10* Ks~1), ultra-rapid quenching from the liquid (10° Ks~!) quenching a
thin surface layer, liquefied by a laser pulse (108 Ks™!) and ion implantation
(1014 Ks™1).

When a material can be rendered amorphous by a technique with a
given cooling rate it can also be vitrified by any technique characterised
by a higher cooling rate. What actually changes is the compositional range
through which the amorphisation process occurs; this range increases with
the cooling rate. The problem to compare the structure of specimens of
the same material, amorphised by different techniques, which could lead to
freezing of different degrees of disorder, is still relatively open to discussion.
Though not much research has been done on this aspect the amorphous alloys
Nigg.7Zr36.3, obtained by melt spinning, and NigsZr35, obtained by mechan-
ical alloying, present the very same partial structure factors. Notice that
the last is an amorphisation process in the solid state, where the kinetics
are very slow compared to the quenching process. For the Zr;_;)Ni, alloys,
where x = 28;33;40 at.%, amorphised by the same two very different tech-
niques, the interatomic distances calculated from the deconvolution of the
first peak of the radial distribution function are equal. Samples of the metal
glass ZrggNis4, obtained both by melt spinning and by sputtering, namely
condensation from the gas phase, are structurally the same. In the amor-
phous Ti(;_,)Ni, systems, where 2 = 24; 35 at.%, as obtained by solid state
amorphization reactions, or by ultra-fast quenching from the liquid state,
though the total structure factors differ with composition they are the same
as regards differently prepared specimens with the same stoichiometry. Lastly,
when the CuZr alloy is vitrified using quenching from the liquid state or by
low temperature proton bombardment or even by mechanical alloying, no
evident structural difference is observed, as shown in Fig. 2.6.

While local structural order in a vitrified metallic system depends on its
nature alone, it appears that a number of distinct amorphous phases may
form, especially in materials with tetrahedral coordination, such as HoO and
SiO4 (see Sect. 3.1).

There are only a few pure elements among the metallic amorphous sys-
tems, such as tin, germanium and bismuth. The last two are semi-metals
whereas the first has various crystal allotropic forms with free energy values
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Fig. 2.6. Trend of the scattering intensity I(k) versus wave vector k, in CusoZrso
samples amorphised by various techniques; (1) energetic particle irradiation; (2)
fast quenching from the liquid; (3) mechanical alloying; (4) superposition of curves
(1) dots, (2) dashes and (3) continuous line (adapted from [2.3])

close to the amorphous phase, which is thus competitive with them. Even
though we often read that amorphous elemental metals have been obtained
by way of rapid quenching techniques, we have to treat these results with
some degree of caution since if there is even a minimum amount of impurity,
mainly gaseous, in the specimens this impurity plays an important role in
the heterogeneous nucleation process of amorphisation.

It has been ascertained, though, that chemically pure specimens of some
transition metals, such as cobalt, titanium and zirconium, are vitrified when
bombarded with low doses, at low current, of accelerated heavy ions with
energy in the order of GeV. In these experiments, however, the mechanism
that destabilises the crystal structure is not lattice disordering, rather it is
electronic. The interaction between the projectile and the electrons of the
target atoms situated along its trajectory is the relevant process, whereas
the atoms themselves will not be displaced from their lattice positions owing
to the direct effect of the interaction with the ion.

The physical-chemical structure and properties of many amorphous bi-
nary alloys have been studied in depth. Among the considered systems, the
simple metal and polyvalent metal alloys (CaZn), the inter-transition metal
alloys (NiZr), the noble metal and semiconductor alloys (AuSi) and, lastly,
the transition metal and metalloid alloys (FeB). Amorphous alloys with many
elements (up to eight) are more easily obtained and have high (meta)stability;
such materials have a number of technological applications, but they are not
present in basic study owing to their complexity.
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Hereafter such terms as non-crystalline solids, amorphous solids, vitrified
solids, glassy solids and glass will be taken as synonyms.

Traditionally, glass is taken to mean an amorphous solid obtained by
supercooling a liquid until it solidifies. Since the viscosity of a solid is different
to that of a liquid, then by way of the macroscopic definition of glass we
assume that a value of viscosity of 10'2 Pas is so high that we can consider
any form of fluidity will be inhibited, at least on an infinite time scale as
compared to what is experimentally accessible.

From a macroscopic viewpoint, and with reference to the structure, glass
is often defined as an amorphous solid. Thus it shows, both in the length and
in the angles that characterise the chemical bonds between first neighbours,
a degree of variability. Such a variability, although meeting the constraints of
the chemical bond present, which lead to a specific sort of short range order,
is, however, sufficient for the constraints are not able to induce long range
order.

The silicate glasses such as SiO5, B2oOgs, and the chalcogenide glasses,
including AssSs, AssSe, GeSeq, are part of the traditional glass family. On
principle, the metallic glasses are a sub-group of the amorphous metallic
solids. These solids can be produced using a wide range of methods, which
do not necessarily imply the transformation from a liquid to a supercooled
liquid state. To this aim, the term metallic glass will hereafter bear the same
meaning as the expression non-crystalline metallic solid. This choice is based
on the fact that the re-crystallisation of an amorphous metallic material,
caused by heating, takes place through very distinct phases of nucleation and
growth, exactly like the crystallisation of a liquid and the re-crystallisation
of silicate glasses.

Until the mid 1980s liquids and amorphous materials were the only classes
of structurally disordered materials known. In actual fact structural disorder
was recognised in atomic clusters, and a great deal of research has been
done on them in the last twenty years. Having produced them, the aim is to
characterise the structure, stability and properties, in particular electronic, of
free atomic clusters that contain from a few atoms to several tens of thousands
of atoms. The changes in properties in these clusters, based on the number
of atoms and possibly on their stoichiometry, allow us to experimentally
investigate a topic on which, until a few years ago, it was only possible to
draw up models and theories. This is the transition from a single atom to an
extended solid through the progressively more complex phases of molecule,
atomic cluster, surface.

Not too surprisingly we will see that in rare gas atomic clusters the struc-
ture of small neutral clusters, during their spontaneous evolution, is non-
crystalline; the structure is dominated by tetrahedral and polytetrahedral
packing, largely the same as in amorphous materials. Only when the clus-
ters are larger than a certain size will the structures, which are progressively
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Fig. 2.7. Electron diffraction pattern produced by quasicrystalline AlgsMnig

changing with the size of the clusters, take on the fcc structures present in
the solidified crystals of the rare gases.

The dependence of the structure on the electronic properties of the con-
stituent atoms, as seen in the small clusters of alkali metals, is also particular.
The shell models developed to analyse these clusters are the same successfully
used in the study of nuclei and their stability. Basically, the structural stabil-
ity of the clusters depends on the degree of electronic shell filling, namely on
the number of atoms contained in the shell. For those cluster mass numbers
which correspond to shell closing, the observed peaks in the mass spectra
indicate cluster stability.

In 1984 samples of ribbons of an alloy with AlgsMnig composition were
produced using a fast cooling technique. Electron diffraction (Fig. 2.7) showed
the presence of rotational three-dimensional fivefold symmetry, that is one of
the “forbidden” symmetries in classical crystallography.

From peak width analysis it was clarified that the fivefold symmetry was
not an effect due to the presence of multiple twinning, in which case the struc-
ture of the materials should have been fcc. It was possible to conclude that
in Nature quasicrystals with orientational long range order and rotational
icosahedral fivefold symmetry exist; such a symmetry is responsible for the
absence of translational periodicity.

This combination of properties was previously thought to be present only
in geometric model structures, both two-dimensional and three-dimensional,
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obtained artificially. Among these, in particular, we can mention the Penrose
tilings, which uniformly cover the plane provided exact matching rules are
used to combine together a small finite number of aperiodic “tiles”, thus
generating non regular coverings (Fig. 2.3).

Over the last fifteen years a few hundred compounds have been discov-
ered having quasicrystalline structures, for specific composition and prepa-
ration techniques, thus demonstrating that quasicrystal formation is much
less pathological than one might think. We are aware of materials with five-
fold, eightfold, tenfold and twelvefold rotational symmetry, all of which are
“forbidden” by classical crystallography. Much work has been carried out
to understand the structural stability of the quasicrystals in relation to the
various crystal phases and the glassy state, the microscopic causes at the
root of quasiperiodicity and the peculiar physical properties, in particular
the electronic ones, of the quasicrystalline materials.

2.6 Description of Disorder Through Entropy

Entropy S is often described as a quantitative index of the disorder present
in a system and is frequently used to characterise the glass transition and
amorphous materials. From an experimental viewpoint, the trend of the spe-
cific heat at constant pressure, c,, measured against the absolute tempera-
ture when, for instance, liquid—to—solid crystal transition occurs, or when an
amorphous solid transforms into a crystal, provides an example of how the
reduction in entropy is tied to the reduction in disorder in a given material.

Entropy is connected to the fact that in most thermodynamic states a
system is not found to be in a unique, well defined quantum state; it is
distributed over a large number of microscopic configurations that are com-
patible with the considered macrostate, according to a certain probability
distribution.

The problem lies in giving the right definition to the quantum multiplicity
M, namely the true number of quantum states over which the probability is
distributed at any time.

Entropy S is defined by

S' =k InM. (2.5)

In the simplest case the probability is distributed uniformly over M states,
thus the probability that a particular state is occupied, is p’ = 1/M, hence
we obtain

S"'=—k Inp'. (2.6)

Using (2.5) and (2.6) entropy supplies us with a measurement of the order
of a system, or rather it indicates the lack of detail in the knowledge of the
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microscopic state the system is in. Even though the system may be in a
particular configuration at any time we ignore which state it is in. This is the
same as acknowledging that the system is considerably disordered.

If the system is not in a state of equilibrium, or if it can interact with
a heat reservoir, then (2.6) must be expressed in general terms with due
consideration to the fact that probability p} is not the same value for all the
states under examination. The definition of S’ thus becomes, according to
Boltzmann—Gibbs

S' = —kp Zp; Inp] (2.7

where kg = R/Nay, R is the perfect gas constant and Na, Avogadro’s num-
ber. This function is the average of (2.6) carried out on the states based on
their probability.

In a system at a temperature T' and where p; is the equilibrium probability
according to Boltzmann,

i = exp[—FE;/kpT]
b > exp[—Ei/kgT]

the entropy defined in (2.7) becomes the equilibrium entropy

S = —k‘B Zpi lIlpi. (28)

3

The states of a macroscopic system usually make up a continuum energy
distribution and it is not possible to identify any one countable group of
states with the same energy.

The opposite case is more interesting where a macroscopic system has a
defined countable number, W, of isoenergetic configurations.

As such we obtain a configurational contribution to entropy,

Seont = kg In W (2.9)

where W is the number of quantum states of the macroscopic system that
are compatible with the set of values for the thermodynamic variables that
define the state under examination. W is thus the number of microstates that
are compatible with the macrostate. If we work within the microcanonical
ensemble then W is the number of microstates that are compatible with the
volume V', the number of particles N and the total energy E in the system.

For the canonical ensemble, W is the number of quantum states that
contribute significantly to the average energy in the system, where V', N and
the absolute temperature T' are fixed.

In a macroscopic system, IV is extremely large, somewhere in the order
of Nay. As such all the quantum states in the ensemble W, namely those
that are compatible with the macroscopic variables (thus with “reasonable”
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probability they can be realised) define a very narrow band of energy val-
ues, centred on the average energy. This means that in practice the energy
differences are negligible compared to the average energy.

One example of configurational entropy (i.e. due to the various locations
of the component particles in space) of a condensed system, liquid or solid,
is given by mixing entropy in an ideal XY binary system where the mixing
entropy AH iy is zero and the variation in free energy during mixing is only
due to entropic change

AGix = —T ASmix. (2.10)

This representation of an ideal solution, which is easy for us to imagine
in a diluted gas with no intermolecular forces, is only acceptable for a solid if
the atoms (or molecules) of both species are so similar that we can substitute
the atoms of one species with the atoms of the other without causing any ap-
preciable change in either the space structure or in the energy associated with
the interatomic interactions in the solution. This implies that the shape and
size of the X and Y atoms are practically the same and that the interaction
energy between pairs of atoms X — X, Y — Y, and X — Y coincide.

A typical example of such a “mixed crystal” is given by the binary system
Mo — W, which shows a continuous series of solid solutions with bcc structure
throughout, as can be seen in the phase diagram in Fig. 2.8. The molybdenum
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Fig. 2.8. Phase diagram of the Mo—W system: an example of a “mixed crystal”
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atoms, like the tungsten atoms, can occupy any lattice sites; this gives us a
substitutional solid solution, and thus we obtain

W = (Nato + Nw)!/Nago! Ny (2.11)

where Ny, and Nw are the number of atoms of Mo and W respectively.
If we refer to a mole of solution, and if Xy, and Xw are the molar
fractions of the two elements, then

Numo = XnioNav; Nw = XwNay.

When we substitute this in egs. (2.9) and (2.11), and we make use of the
Stirling approximation (In N!~ NIn N — N),

ASmiX = —R[XMO lnXMo + XW lan] (212)

Since Xy, and Xy are fractions of the unit, ASpx is positive, namely
an increase in entropy is associated with the mixing of the two subsystems
of the atoms Mo and W.

If there is neither interatomic interaction of a chemical nature nor change
in volume owing to the mixing process the increase in the system disorder
is due solely to the increased uncertainty regarding the position occupied by
each atom in the crystal lattice. There are many more possible sites for the
atoms to settle on than there are separately available in each of the uniform
subsystems Mo and W. From a thermodynamic viewpoint, the above situa-
tion is similar to mixing two ideal gases except for the presence of the crystal
lattice. Disorder in mixed crystals is much less than topological disorder in an
amorphous solid due to the existence of the crystal lattice whose translational
periodicity is maintained.

Should the chemical interactions lead to the preferential formation of
clusters of atoms, either homogeneous (clustering), or according to some sto-
ichiometric rates (formation of compounds), then we would obtain partial
chemical ordering which could lead to a negative change in the system vol-
ume. Both these phenomena play an opposite role to the increase in volume
associated with mixing and can even lead to negative changes in entropy.

The analysis of mixing ideal fluids X and Y is very similar to that of solid
solutions. In the case of mixing fluids X and Y, the uncertainty regarding
the position of a given molecule is due to the possibility that the molecule
might undergo diffusive translational motions within a certain volume. Once
mixing has occurred, there is even greater uncertainty regarding the position
of the molecule due to the fact that the volume available for diffusive motion
increases. The increase in entropy associated with mixing is calculated by
considering the product of each pure macrostate (namely one that has not
yet been mixed) of X for the total number of ¥ macrostates necessary to
obtain Wiyix.

Since the latter is greater than the sum of W, and W,, the change in
entropy associated with mixing is positive.
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Even when we introduce local disorder into a crystal, when we form lat-
tice vacancies while heating the crystal itself, configurational entropy will
increase. For a fixed volume V' and number of atoms IV, as the number of va-
cancies increases so does the number of equally probable alternative positions
for the vacancies on the lattice sites, obtained through an atomic jump mech-
anism. If we assume that the vacancies are equivalent to an atomic species the
resulting system is obtained by mixing vacancies and atoms in the crystal.
The total change in the system entropy is

AS=—-R[X,In X, + (1 - X,)In(1 — X,)] + X, AS,. (2.13)

Here X, represents the molar vacancy fraction we have introduced and (2.13)
coincides with (2.12) for mixing entropy in an ideal system, except for the
second term that represents the (small) contribution to thermal entropy from
a mole of vacancies AS,. This term is associated with the slight change in
the vibrational frequency of the atoms surrounding a vacancy in the lattice,
which is due to the substitution of a vacancy for an atom.

The aim of this discussion, using the examples, is to clarify that, though
strictly connected, disorder and entropy are qualitatively different from each
other. Entropy is a variable that is intrinsically statistical. The occupational
probability associated with a particular state under consideration is an inte-
gral part of its definition. As such there is no reason to discuss the entropy of
a single configuration whereas determining the amount of disorder associated
with that very same configuration does constitute a significant problem.

If the specific configurations of the system exhibit disorder then the ex-
amination of the statistical ensemble of the systems will allow us to calculate
a finite entropy which, in turn, will give us the number of configurations that
are compatible with the degree of disorder.

Since a fluid is normally in a state of thermodynamic equilibrium it is pos-
sible to calculate its thermodynamic properties using methods that, though
complicated, belong to equilibrium statistical mechanics.

The remaining non-crystalline matter (ordinary glasses and metals, sys-
tems with frozen spins, quasicrystals ...) cannot be found, normally, in ther-
modynamic equilibrium since it is obtained through fast quenching tech-
niques. The atomic motion is frozen during the fast cooling of the system so
that the atoms do not have enough time to reach configurations of equilib-
rium at the final temperature. Fast cooling, in fact, does not inhibit thermal
motions: the atoms vibrate around their positions just as, in a magnetic
system, the spins can be realigned. However, the thermal excitation is not
sufficient to cause the redistribution of atom positions. The system is thus
metastable, in that the atom positions coincide with relative minima of the
free energy, unlike the lattice positions, which correspond to absolute minima.
Thus, an amorphous system is subject to atomic relaxation motions towards
equilibrium configurations, with very low atomic re-arrangement rates.

It is not immediately clear how to apply thermodynamics or statistical
mechanics to these classes of supercooled systems. One approach consists
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in dividing the variables, used to describe the microscopic state, into two
groups, {C} and {T'}. The first group comprises the instantaneously frozen
variables, namely those that specify the atomic sites, but do not contribute
to thermal motion, whereas the {T'} variables are necessary to describe the
thermal motions, such as vibrations and alignment.

p{C} is the probability factor that the variables in the set {C'} will take
on certain values and it is imposed a priori. It describes the system and
depends on the method chosen to prepare it. For each {C} we can calculate
any thermodynamic quantity using the {T'} variables. The quantity under
examination is then turned into an average over the distribution p{C} of the
frozen variables.



3. The Glass Transition

3.1 The Phenomenology of Glass Transition

We have no precise data about the place and time where glass was first
produced; it is likely that it was discovered by chance, possibly in different
places in the Middle East. The oldest archaeological finds from Mesopotamia
and Egypt date back to around 3000 b.C. In Fig. 3.1 are shown a hydria, a
comb decorated bottle and a ribbed bowl, all dating back to the I Century
a.D. They bear witness to an advanced ability to manufacture glass. The
shape perfection, the colour control and the refinement of the decorations
of these objects make them comparable to present day glass and crystal
glass objects. Such a long standing, well-documented glassworking ability is
contrasted by the difficulties we encounter to understand the nature of glass
and the essential features of the glass transition.

We shall now go on to examine some of the fundamental aspects of liquid-
glass transition and the glassy state of matter. We shall pay particular at-
tention to the physical ideas in order to point out those conceptual steps any
glass transition theory has to follow.

Fig. 3.1. Ancient glass objects, hydria, comb decorated bottle and ribbed bowl
(I Century AD) (reproduced by permission, Museo Vetrario, Murano, Venice, Italy)
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It is commonly observed that when a liquid is cooled to below the melting
point, Ty, at a constant pressure it crystallises through a process of nucle-
ation and growth. If the cooling rate — (d7'/dt) = —r is fast enough the liquid
will supercool within a temperature range where the processes of atomic re-
distribution that characterise crystallisation will take place ever more slowly.
In the end, below the glass transition temperature Ty, the macroscopic effects
of atomic redistributions can no longer be seen and the liquid looks frozen,
just like a disordered solid off thermodynamic equilibrium, namely a glass.
Conversely, if the transformation path is reversed, the glass is progressively
heated until, at Ty, it melts, just as happens with a crystal when it is brought
up to the T,, temperature.

Many physical properties remain almost constant, or show slight changes
when a crystal liquefies. For example, the distance between first neighbour
atoms hardly changes, the thermal expansion coefficient increases, but still
has around the same value as that of the crystal, the heat capacity changes
slightly and the volume increases, typically between 2% and 5% for most
materials. What immediately makes a solid stand out from a liquid is, from
a macroscopic viewpoint, its ability or not to resist shear stresses, namely
the fluidity. Thus we can easily find T}, within the narrow temperature range
where the measured shear viscosity 7 reaches the typical value of 102 Pas.
This viscosity rises rapidly as the system approaches the transition from
the high temperature side. The changes in 7 as the temperature varies are
schematically shown in Fig. 3.2 for a metallic system or an ionic compound.
The parallel branches (1) and (2) correspond to different cooling rates, where
|7o| is less than |71 |, and clearly demonstrate that hysteresis occurs. Typically,
AT, /T, can vary by about 10% of Ty, given as an absolute temperature, when
we vary the cooling rate by several orders of magnitude. Conventionally, T} is
defined as the temperature where, during heating tests carried out at a rate
of 0.167 Ks~!, we can see an increase in the slope of the specific heat curve
at constant pressure, cp, as a function of the temperature.

The fall in T, as |7| falls confirms that a structural relaxation time, T,
which is representative of microscopic relaxation, depends on temperature.
The inverse of 7 indicates the rate at which the atomic structure of the system
reacts and adapts to the externally set change in temperature. We should note
that for a liquid-glass transition, within a typical interval of 200 K, 7 varies
with continuity from 107! s to 10'7 s with values of around 10 s at T, which
correspond to about one atomic jump an hour.

The importance of kinetic factors in the glass transition emerges from the
fact that branches (1) and (2) tend to converge on the ideal glass curve, as
schematically shown in (3), provided we wait long enough, and even if this
trend is never completed.

On the other hand, the dependence of T, on |r|, though still not very
large, is in any case too marked to indicate that, in the glass transition,
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Fig. 3.2. Viscosity trend as a function of the temperature in a metallic system in
the solid-liquid transition region. Curves 1, 2: glassy system, obtained with various
cooling rates (|r2| < |r1]); curve 3: ideal glass; curve 4: liquid-crystal transition;
curve 5: computer simulated quenching process from the liquid

kinetic factors alone are the only cause of the change in 7, as the cooling
rate changes.

When the temperature is below T, the configurations of the system do
not change appreciably; as such the two states (1) and (2) are defined as
isoconfigurational. The schematic curves (4) and (5) represent respectively
crystallisation and a computer simulation of a rapid quenching process.

The viscosity trend shown in the figure is observed in glassy systems
where the bonds are non-directional (metals, ionic solids or van der Waals
solids) and cannot maintain a given medium range order as the tempera-
ture varies. A small thermal excitation can produce various structures that
compete energetically and fluctuate among many states of particle coordi-
nation and orientation. In particular, when heated, this type of glass shows
an abrupt fall in viscosity immediately above T, suggesting that the sys-
tem architecture is really fragile and collapses rapidly. The viscosity of these
“fragile” systems is well expressed by the phenomenological relation

B
1 = 1o €Xp {T_TO], (3.1)

this is called the Vogel-Fulcher-Tammann (VFT) equation. A semi-logarith-
mic plot of (3.1) as a function of the reduced temperature 7, /7 has a hy-
perbolic trend (Fig. 3.3), with 7, and B constants. For simple liquids, such
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as metals, B is relatively small, between T,,/3 and 2T3,/3. Temperature T,
where 71 diverges, is called the ideal glass transition temperature. If T} is
zero, then (3.1) becomes an Arrhenius equation. In this case the constant
B is equal to E/kp and is the activation barrier. If T is positive then the
viscosity dependence on temperature is non-exponential, and where T" = Tj
the relaxation time 7 diverges. At any given temperature non-Arrhenius re-
laxation processes are characterised by an apparent activation energy
d(lnT)

E_de(T—l)' (3.2)

The values of the apparent activation energy for fragile liquids around 7T,
can reach 500 kJmol~!. Under these conditions a small temperature change
is expected to provoke changes in the system dynamics of 1 decade. A typical
temperature change is not greater than 5 K.

It should be noted that viscosity is continuous at T, (though discontinuous
in the case of crystallisation) whereas its singularity at Tj cannot actually be
reached under experimental conditions.

For those “strong” systems ( silicate and chalcogenide glasses, elemental
semiconductors) that have a network of strongly directional covalent bonds,
thus with relevant medium range order (see Sect. 4.8) which survives within
the glass transition region, the trend in 7 is exponential, n = n, exp[C/T], as
seen in Fig. 3.3.
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The influence of medium range order on the glass transition has recently
been clarified in the exemplary case of the fragile liquids of the family of
lithium metaborate, LiBOs, whose structure was examined using infrared
and Raman spectroscopies. When the liquid is solidified at 723 K, well above
T, (693 K), a—LiBO; is obtained and the boron atoms are threefold coordi-
nated. At 683 K, within the glass transition region, 3—LiBOs nucleates with
boron atoms both threefold and fourfold coordinated. Lastly, if the glass is
slowly re-crystallised below 673 K the product becomes y—LiBOy where all
the boron atoms are fourfold coordinated. The changes in the coordination
number between the crystalline phases reflect the changes that occur in the
supercooled liquid during the glass transition. Why the borate systems are so
extremely fragile can be explained if we consider that boron can hardly form
7 bonds with fourfold coordination, so the medium range order networks can
only form at temperatures well below the normal crystallisation temperature.

The special dependence on temperature, as given by the VFT law, whose
physical origin is somewhat obscure, is typical also of other transport phe-
nomena in the liquid state, including ionic conduction and atomic diffusion
rates. This dependence cannot be obtained by simply starting from an Ar-
rhenius type relation, neither by using suitable energy averages nor from a
specific dependence of energy on temperature.

The cooling rate required for a material to transform into a glass is a
critical process parameter. This rate spans at least eleven orders of magnitude
and depends on the nature of the atomic bond which, in turn, determines
the microscopic structural rearrangement rate needed to maintain equilibrium
during cooling. In the silicate glasses and the organic polymers the strongly
directional bonds allow the system to transform into a glass easily, with |7|
values around 1072 Ks™1.

At the other end of the spectrum the liquid metals, with non-directional
bonds, may present lower || values of around 10% Ks™!, though they fre-
quently require cooling rates above 10° Ks~!. As a consequence, the thickness
of the metallic glasses varies from 102 ym to less than 0.1 ym. The research for
metallic systems that can easily transform into the glassy state has recently
shifted the lower cooling rate threshold required to inhibit the crystallisation
of a liquid alloy to around 10 Ks™!, a value close to those observed in silicate
glasses. Not only has this research opened up the way to the preparation of
massive amorphous alloys, it has also clarified some of the mechanisms of
glass formation and the concept of easy glass formation, too.

The clearest example of the role played by the cooling rate in glass for-
mation is given by the difficulty to transform pure metals into glass. Simu-
lation techniques have shown that quenching rates are required in the range
of 10" Ks~! for metals such as Y, Zr or Rb. By evaporating thin films on
cold substrates, where |7*| ~ 103 Ks ™!, we can obtain structurally disordered
samples of many transition metals, such as Ni and Mo. However, it is ex-
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tremely difficult to obtain pure samples, particularly as traces of gaseous
contaminants are present and these act as stabilisers of the glassy phase.

If we consider that glass is formed by solidification without crystallisa-
tion we can then wonder about the nature of the process and the product
obtained from the transformation. The transition is similar to a second or-
der one, showing a continuous transformation of the liquid into an amorphous
solid, with no latent heat. However an order parameter has never been found,
system symmetry does not change and divergence of a correlation length is
lacking. We note that for a liquid that has been supercooled just below Ty,
the structural re-arrangement processes are not significantly different from
those just above Ty,. If the crystalline phase nucleates then the system will
be frozen as a crystal below T},. However, while cooling the liquid, this nucle-
ation can be inhibited, for example by kinetically reducing the probability of
creating and maintaining the crystalline atomic arrangement. A point will be
reached where the experimental times are too short, compared to those re-
quired by the supercooled liquid to explore those regions of the configuration
space that correspond to structural changes. It is clear that since there are so
many possible configurations and rearrangements some of them will require
such little energy that we cannot completely disregard them. However, for
T < Tg, extraction of thermal energy from the system leads to a reduction
in vibrational atomic motions without any structural changes. This is like
saying that for T' < T, the time scale for vibrational motion and the time
scale that leads to structural changes depart from each other.

This is the microscopic representation that corresponds to the drastic
change in the fluidity of the system at T,. Glass only explores a narrow re-
gion of the phase space that corresponds to thermal vibrations, given that
atomic rearrangement is impossible or extremely improbable. The accessi-
bility hypothesis (see Sect. 2.3) is no longer valid and the time average of a
property, observed on a reasonable experimental time scale, does not coincide
with the corresponding ensemble average. The system transforms from being
ergodic, in the liquid state, to being non-ergodic, in the glassy state. From
this point of view the glass transition is not regarded as a thermodynamic
phase transition, but as a dynamical transformation in which the initial and
the final state are connected through a singularity in the intrinsic dynamics.

We can estimate that at T the time constant 7 for structural rearrange-
ment is around the value for the experimental time constant, T.xp, and that
this value is connected to the cooling rate |7| as

Texp |T| = kBng/Ea (33)

where F, is the apparent activation energy required to structurally relax the
supercooled liquid. For most metallic glasses Ty ~ 700 K and E, ~ 4 eV, so
that (kBTg/Ea) ~ 10 K.

Figure 3.4 schematically shows the trends of free energy, G, specific heat
at a constant pressure, c,, and volume, V' commonly observed in the glass
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transition region. We should notice that the changes in G and V are contin-
uous whereas ¢, has an extra positive contribution Ac, in the supercooled
liquid region (it is this that allows us to define T}). Moreover, we can observe
a positive discontinuity in the isothermal compressibility K, whereas the
discontinuity A« of the isobaric thermal expansion coefficient may be either
positive or negative.

Bearing in mind that —S = (0G/9T),,, then the trends in the free en-
ergy G for a crystal and a liquid (see Fig. 3.3) are clear since both systems
are thermodynamically in equilibrium. The curves for the amorphous solid
are dashed (the one with lowest G values pertains to the ideal glass) since
the amorphous system is not in equilibrium, as proven by the existence of
structural relaxation processes. The glass can at the most transform to a
supercooled liquid, which is in internal equilibrium.

The two trends given for c, at the glass transition are typical of the
way the two classes of glass behave. In “strong” (curve a) glasses ¢, may be
measured with continuity throughout the critical field. In “fragile” glasses
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Fig. 3.4. Trend in free energy G, spe-
cific heat at constant pressure, ¢, and
volume, V for crystal (C), amorphous
solid (A) and liquid (L) as functions of
the temperature, with particular regard
to the region between the glass transi-
tion temperature, Ty, and the melting
temperature, Ty,
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(curve b) part of the curve for the liquid phase is dashed and is an extrap-
olation of values between just above Ty and just below Tj,. Indeed, a little
after having exceeded these limits, the system crystallises owing to the low
rate of temperature change required to correctly measure cp,.

In both cases the value of the specific heat, which is due to vibrational
atomic motions, is similar in the crystal and in its corresponding amorphous
solid. The fast decrease from c, values typical of a liquid to the values for
a crystal, generally between 50% and 100% of the vibrational contribution
to cp, indicates that the degrees of freedom typical of liquid have become
kinetically inaccessible. It is important to note that when a crystal melts at
T\, there is latent heat (c, diverges), whereas when a glass melts, whether
strong or fragile glass, there is no latent heat.

Starting from the trends of the free energy in Fig. 3.3, and supposing that
the glass transition is II order, then by the Ehrenfest conditions, at Ty, the
entropy values of the liquid, S1, and of the glass, S, coincide with each other
thus

05 ) < 05 > <8Sg > < 0S5, )
— | AT+ | ) dp=|—-=) dT'+ (=) dp.
< or ), op ) or ), Op )

If we bear in mind that the definition of ¢, is

oS %G
CP—T(aT)p—‘T (aTz),,

and that of a is
oL (ov
S v\ar),

and that Maxwell’s thermodynamic relation

(), =~ (),

holds, then, for any variation in 7T, as a function of pressure p, we obtain

%: TV(CYQ_CYI) :Tvﬂ (34)
dp (CIJ2 - Cpl) ACP

Likewise, the continuity condition for volume V at the transition, taking
into consideration that the isothermal compressibility Kt is

1 /oV
Kr=——|—
* V<5P>T7

gives
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dT, AKr
—5 = . 3.5
dp Aa (3.5)

Equation (3.4) has been experimentally demonstrated whereas (3.5) is
only valid for computer simulations of the glass transition. For real glasses,
on the other hand, the measured value for AK~ is always too large.

A comparison between the two relations implies that the glass transition
is not a simple II order phase transition. On the other hand, in any thermo-
dynamic transition that is controlled by a single order parameter, apart from
temperature and pressure, Prigogine and Defay demonstrated that the ratio

- AKT ACp

= v (aap (3.6)

PD

has value unity.

In any system that undergoes a glass transition Rpp is greater than one,
usually between 2 and 5; at least two order parameters are required to study
this problem, which, thus, is thermodynamically non-equilibrium. A descrip-
tion is possible with a single order parameter only if the system is considered
non-homogenous with respect to both the density and the composition.

We note in Fig. 3.4 that the specific volume of glass does not depend on
the temperature alone, since it is continuous at the transition, but also on
the formation pressure. In turn, entropy S is continuous; this means that at
T, the free energy surfaces of the glassy (g) and liquid (1) phases are tangent.
This, together with the fact that the free energy for the liquid, Gj, is lower
than for the glass, G, means that the intensive variables thermal expansion
coefficient & = (91InV/9T), isothermal compressibility Kt = — (01nV/dp)
and specific heat at constant pressure ¢, = =T (82G / 8T2)p all show discon-
tinuity at 7}, since they are second order derivatives of Gibbs free energy
G.

However, we will also notice that whereas this behaviour seems very sim-
ilar to what is observed in II order thermodynamic phase transitions, in this
particular case the discontinuities are not sharp, but appear to be distributed
over a small temperature interval. Hence, for example, the round part of the
curve V(T') that marks the interval where the transition takes place (the sin-
gle value of T} is a graphic extrapolation obtained using the tangent method)
corresponds to a narrow step rather than to a vertical discontinuity.

Configurational entropy Scons, both finite and positive, and which per-
sists until 7' = 0 K, is associated with the amorphous state. This is because
in thermodynamic treatment of the system we have to consider the set of
“liquid” configurations that are instantaneously frozen at T,. It is the very
existence of S¢onr that does not allow us to represent a glass as a specific
instantaneously frozen microscopic configuration. On the other hand, this
“ill defined” state of matter may be considered as a statistical ensemble of
different atomic configurations; it is the statistical weight of these configura-
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tions that freezes at T,. This is the representation of a liquid instantaneously
frozen in a rigid, isoconfigurational state.

As a consequence, a thermodynamic glass phase is not defined since the
supercooled liquid deviates from the (meta)stable equilibrium line at the
glass transition. This is a non-equilibrium transition; it connects two different
metastable conditions together, i.e. the supercooled liquid and the glass. The
crystalline phase is the equilibrium state underlying both liquid and glass,
and it is kinetically impeded.

Y

atomic configuration

Fig. 3.5. Schematic trend of the free energy G for representative configurations
of a structurally disordered system; f: frozen state; u: unstable state; b: basin; s:
saddle point; S: stable state

The scheme in Fig. 3.5 helps, by analogy with topographic maps of the
Earth’s surface, to understand those collective phenomena that determine
the relative stability of liquids and glasses. In the figure are evident maxima,
minima and saddle points that define a complex pattern in the configura-
tion space. We see a considerable variation in the depth of the minima; with
respect to each minimum we define a valley, namely a set of configurations
connected to the considered minimum by strictly downhill motion. Such a re-
gion is the basin of attraction. Contiguous basins have in common a boundary
that contains at least one saddle point, or transition state. Figure 3.5 com-
pares also the free energies of several metastable (frozen) states, an unstable
state and the stable state. The difference between unstable and frozen states
is essentially given by the height of the energy barrier in relation to the avail-
able thermal energy kgT. Considering that small changes in temperature,
or in pressure, induce reversible changes in the properties of the glass, the
glassy state may, in practice, be considered stable, namely its properties do
not change over time. The existence of amorphous solids from the Moon,
frozen and undeformed over billions of years, allows us to use the concept
of false equilibrium, which only exists because of the extraordinary slow rate
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of structural relaxation processes of glass. The trend in shear viscosity in
Fig. 3.2 backs up this interpretation: the glass transition coincides with the
point where the viscous flow of the liquid is inhibited and the value of 1 di-
verges. From the scheme in Fig. 3.5 the possibility of polyamorphism in glasses
clearly results. Crystalline materials often have different polymorphs, stable
within defined temperature and pressure intervals. It was recently found that
a high pressure phase of amorphous ice changes to a low density phase via
a reversible first order transition, with a volume variation of 0.2 cm?3g~! at
about 135 K and 0.2 GPa. This is an example of polyamorphism, thereby
structurally distinct states of an amorphous solid are observed as a function
of density. A first order transition between two liquid phases, driven by den-
sity and entropy differences, is unusual, but besides ice it is observed also in
liquid phosphorous and in aluminate glasses containing 20 to 32 mol percent
Y30s5. In this system, by differential scanning calorimetry two distinct glass
transition temperatures (1135 K; 1300 K) were measured and attributed to
a high and respectively a low density amorphous phase. The former is a very
fragile structure, as shown by the height of the jump in the heat capacity curve
across the glass transition; the low density phase is consistently less fragile. In
between the two glass transitions a strong exothermic signal is interpreted as
evidence of a transition between the supercooled high density liquid and the
low density glass. Neutron scattering data (see Sect. 4.3) indicate that at the
polyamorphic transition no major changes occur in the aluminate structure,
while the oxygen-yttrium first neighbour distance significantly increases.

High pressure studies on the well known tetrahedrally coordinated glasses
SiO; and GeOsy have indicated polyamorphism with irreversible volume
changes. In the case of SiO, simulations suggest that the high pressure amor-
phous phase is due to bond reconstruction with larger ring size and a density
increase by about 24 %. Differently to SiOy and GeOs, in BoOg3 the volume
variation associated with high pressure polyamorphism is completely recov-
ered once pressure is released.

If we consider liquid cooling at a microscopic level, the increase in viscosity
implies an abrupt slowing down of the diffusive atomic motions. When the
position of the atoms changes there is a change in the microscopic density. The
microscopic shear viscosity 77 and the microscopic self diffusion coefficient, D,
are connected by the Stokes—Einstein relation

n=s ’fl}_%)T (3.7)
mD ()
where (z) is the average interatomic distance. The metallic glasses, above
Ty, follow (3.7) very well, given the heavy extrapolation required in order to
move from the macroscopic scale to the atomic scale.

A realistic representation of the condition of a liquid during cooling is
that the continual structural rearrangement required to maintain equilibrium
as the temperature decreases favours low energy configurations; these are
characterised by increasing short range order. The kind of local order that
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develops depends critically on both the geometrical hindrances, such as shape
and dimensions of the involved structural units, and the nature of interatomic
forces. Thus, whereas it is generally difficult to predict the characteristic
properties of short range order we can presume that, for a given class of
materials, e.g. metallic glasses, the short range order is of the same kind.

The relaxation time 74 for the structural relaxation modes gives us the
kinetic evolution for structural changes. The divergence in 74 (see Fig. 3.2) is
connected to the divergence in 7, which measures the reaction of the liquid
to a suddenly imposed shear stress, through Maxwell’s relation

Ty = —— (3.8)

where G, is the high frequency shear module. For easy glass forming mate-
rials, Goo ~ 10'° Jm™3 and, approaching Ty, n ~ 10'? Pas, so 7 ~ 10?s. As
we get closer to T the behaviour of 7 is dictated by (3.8) and explains the
kinetic dependence of the glass transition on the cooling rate.

The critical slowing down of the structural relaxation modes is responsible
for the separation between the time evolution of the fast vibrational modes,
which decay well above T, at the normal value of 10713 s and that of slow
configurational modes.

One feature of supercooled liquids with high viscosity is that the time
dependence of structural relaxation is very different from the exponential
trend typical of visco-elastic media. While at the crystallisation temperature
all non-local motions are suddenly stopped, in the supercooled region during
cooling the different relaxation modes slow down and freeze out one after
the other with characteristic time constants. Thus we observe a distribution
of relaxation times, which broadens as the temperature falls. This feature
is shown in Fig. 3.6 for the prototype fragile liquid o-terphenyl: the slowest
relaxation process, called a, is related to molecular rotation. Secondary re-
laxation processes occur over shorter time scales; the slow [ processes, due
to partial reorientation of the molecules, differ from various fast 3 processes;
although the mechanisms responsible for such processes are still debated, in
the mode coupling theory (see Sect. 3.2) (-relaxation is related to localised
cage motion. The slowest process gives the dominant contribution to the av-
erage relaxation time, (7). The glass transition is located where (7) is equal
to or greater than reasonable experimental times (for relaxation experiments
this is a few minutes at the most). Density fluctuations show cooperative
freezing; in the framework of mode coupling theory (see Sect. 3.2) this leads
to a power law dependence of the glass transition. The region between T, and
T,/2 is governed by highly cooperative molecular motions. Notably, in the
bulk metallic glass “vitalloy” (see Sect. 3.3) nuclear magnetic resonance stud-
ies using °Be show that in the supercooled region around T beryllium atoms
do not undergo transport by single atom hopping, but by cooperative motion.

A fingerprint that the structural fluctuations in the glass have become
partly static is given by the appearance of an elastic peak in the dynamic
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structure factor measured by neutron scattering (see Sect. 4.10). Nevertheless,
below T the slowest structural relaxation modes survive and are gradually
frozen. As a consequence we observe relaxation in glasses, too.

So far we have dwelled on the presence of kinetic aspects in the glass
transition. If, though, we examine the thermodynamic quantities, the devel-
opment of structural relaxation in a cooling liquid has an obvious counterpart
in entropy behaviour. The excess entropy trend in a liquid, as compared to
a crystal (Fig. 3.7), demonstrates that there is a residual entropy associated
with the glassy state whose value remains nearly constant from T, to 7' = 0 K.
This result does not in any way violate the third law of thermodynamics since
the system is not in internal equilibrium. This implies that most configura-
tional disorder in the liquid, which distinguishes it from a crystalline solid,
does remain frozen in the glass. If the entropy data for the supercooled liquid
are extrapolated below T}, within the region of ever increasing supercooling,
and ever lower cooling rates ||, then we obtain a transition characterised by
an entropy crisis. This region, between 75 and T, in Fig. 3.7, is experimen-
tally inaccessible. Temperature 75, which is lower than T;, though close to it
(for polymer glasses the difference between T, and Ty is around 50 K, and,

2
log 7 (s) 2-‘1 T (K) (x10%)
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Fig. 3.6. Schematic trend in relaxation times due to « (74), slow 3 (73s) and fast
[ (73¢) processes in o-terphenyl, as functions of temperature
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in any case, well above absolute zero) is a point where there is coincidence
between the entropies S| of the liquid and S, of the crystal.

Apart from vibrational and mixing contributions, liquids have a configura-
tional term Sconf; this takes into account any possible configurational changes
that represent the distinctive property of the liquid:

Sconf = Sl - Sc . (39)

At Ty, Scont disappears much the same as what occurs in a second order
phase transition. At temperatures below T5, Scont is negative. This result
is paradoxical since the liquid has to be found at least in a configuration;
this analysis, developed by Kauzmann and which really is a paradox since
it would violate the third law of thermodynamics, is called the Kauzmann
paradox.

It has been observed that, within the limits of available experimental
data, the ideal glass transition temperature T, where we can observe diver-
gence in the transport properties (see (3.1)), corresponds to T5. This corre-
spondence should constitute an indication of thermodynamic glass transition,

Sconf

Fig. 3.7. Trend in configurational entropy, Scont, in a supercooled liquid and in the
corresponding glass. Notice the value of residual entropy at 7' = 0 K in the glass;
extrapolation of the curve for the liquid leads to identify the ideal glass transition
temperature 15
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which however should be partially concealed by kinetic factors. Indeed the
dependence of relaxation times associated with the various transport prop-
erties (as described by (3.1)) on temperature implies that all the processes
above Ty would freeze. The singularity is inaccessible. However, in some bulk
metallic glasses we observe a discrepancy between values of T and the corre-
sponding values of T5. Furthermore, one of the most reputed glass transition
theories, namely the mode coupling theory (see Sect. 3.2) gives a purely ki-
netic representation of vitrification of a system and does not allow for any
thermodynamic transition phase.

It is important to note that, apart from the theoretical interest in the
Kauzmann paradox, the cooling rates required to shift the glass transition
from T, to Ty (a typical difference is a few tens of degrees) can be evaluated
starting from the activation energy for atomic motions (highly limited by
viscosity) around Ty. The required cooling time would be in the order of
thousands of years. It is doubtful that the system would not crystallise if it
were kept in the transition region for such a long time. The disappearance
of Scont at T implies that, even if we had infinite time and we could work
with a material with an infinitely high crystallisation barrier, it would not be
possible to reduce T, indefinitely; to avoid the absurd condition of a liquid
phase with entropy below that of the stable crystalline phase, at T5 the liquid
phase cannot exist and glass transition must occur.

Temperature T5 is the lowest threshold for the T, value. This means that
thermodynamic factors set a limit to any process kinetics. On the other hand,
since the residual entropy term in glass is small and in any case not much
greater than crystal entropy, the liquid-glass transition must occur quickly
enough for the entropy curve to take on the shape given in the graph in
Fig. 3.7. This corresponds to a sharp step, as shown in Fig. 3.3 for the ¢,
trend at the transition.

These thermodynamic conditions merge on the idea that 7, does not
signal glass transition but its final point. The transition from liquid to amor-
phous solid occurs over a wide temperature interval by way of a progressive
loss in internal degrees of freedom in the system. T, coincides with the pre-
vailing slow kinetics which brings the solidification process to an end. Further
energy release from the system would only lead to cooling, namely a change
in the vibrational atomic dynamics, without causing any structural effects.

3.2 Theories of the Glass Transition

Analysis of the above examined phenomena shows that kinetic and thermo-
dynamic features are present in the glass transition and that they are inter-
woven. For this reason it is extremely difficult to put forward a theoretical
representation of the transition. This is one of the most complicated prob-
lems in solid state physics. As such, this problem has not yet been completely
resolved. Those models, often phenomenological, that have been developed
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have put much light on the trend of (kinetic) relaxation phenomena or, re-
spectively, on thermodynamic quantities; only recently have theories been
put forward that, though complicated, merge relaxation and thermodynamic
aspects in a consistent way.

We are now going to examine the phenomenological theory of free vol-
ume, both because of its historical importance and because of its pictorial
simplicity. We will then move to a thermodynamic theory developed in the
framework of scaling, and finally we will give an introduction to the theory
of mode coupling.

Free volume theory. The free volume theory was originally developed for a
fluid of hard spheres which simulate the molecules in a liquid. The molecules
vibrate due to thermodynamic effects in cages that correspond to Voronoi
polyhedra (see Chap. 4). The total volume W of the liquid is divided into one
part that is occupied by the spheres, Vj, and one part of free (void) volume,
Vi, where the spheres can carry out diffusive motion. It has been postulated
that transport takes place only if the sum of all voids, Vv, is greater than
a critical value, Vi .. Furthermore, since the free volume consists of variable
sized voids, whose distribution is the result of random molecular motion,
there are no local concentration variation terms, which would otherwise lead
to space rearrangement of the voids. Space concentration of free volume is
thus uniform.

As the temperature falls, both the occupied volume and the free volume
contract.

The liquid is different from a glass because in the glass Vi, is independent
of temperature and is not redistributed, being frozen in the set of positions
it occupies at glass formation. Glass transition occurs if Vi; < Vs c.

It is interesting to estimate the fraction of free volume at 7. This can
be achieved if we remember that both the free volume V5 and the occupied
volume Vj contribute to the heat expansion coefficient of the liquid a; whereas
the heat expansion coefficient of glass, o, only depends on Vj. As such,
Ao = oy — oy is the heat expansion coefficient for the free volume Vy. If we
take the total volume V; of the glass at T, as our reference, the free volume
V& at a temperature T' above T is

W = va + ‘/g Aa(T — Tg) .

Now, if we equalise V], extrapolated at T' = 0 K, with V, againat T'= 0 K,
we obtain

Vo(T = 0K) = V(1 — ouTy).

The volume of the glass at T'= 0 K is Vy(1 — azTy), so we can assume
that, for the free volume of the glass,

Wi = Vel — apTy) — V(1 — aiTy) = VT, Acx (3.10)
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and so we obtain

We _ T, A (3.11)
Ve
The product Ty A, measured for polymer and chalcogenide glasses, varies
between 0.08 and 0.13. Likewise, the estimated fraction of free volume at Ty is
around 10% of the total volume. The fluidity depends on the probability, P,
that volume fluctuations occur locally and will cause a change in the position
of an atom. The probability, P, that a volume fluctuation is greater than AV
is

P(AV) = %exp [’yA‘;f/] (3.12)

where 7 is a geometrical factor and V; the specific free volume, so V; = Vi, /N,
where N is the number of atoms.

If we postulate that the fluidity is proportional to the number of fluctua-
tions with amplitude greater than a critical value V*, then for diffusivity D
we obtain

3ksT\ /2 AV
D=ga* B2 - 3.13
ga ( - > exp | =37 (3.13)

where g is a geometric constant, a* is in the order of an atomic diameter and
m is the atomic mass.
When we match (3.12) with the Stokes—Einstein equation

D_ kT
3man

where a is the diameter of a diffusing atom, the viscosity is given by

1 (mkgT\"? AV
_ 14
" 3wga*2< 3 > exp[ Vi (3.14)

In order to agree with the experimental data the product yV* ~ V in
(3.14) must be around the atomic volume.

From (3.14), keeping the volume constant, the viscosity n varies with
T'/2. The model predicts a continuous increase in 1 with the tempera-
ture.

If we keep the pressure constant instead of the volume, then thermal ex-
pansion must be considered, and the dominant temperature dependence is
given by V%; in practice (3.14) becomes the Vogel-Fulcher-Tammann equa-
tion.

The theory considers the high entropy associated with a liquid by in-
troducing the cumulative entropy, starting from a crystal where each atom
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moves in a finite square well potential such as the Kronig—Penney one. The
entropy S for each atom is

S =kpglnV, (3.15)

where Vj is the ratio between the volume of the cell the atom can move in
and the volume V, of the atom itself. For a mole of atoms (N = Nay)

where R is the gas constant. In the simplest model a liquid is characterised
by the possibility for each atom to move not only in its own cell, but within
the whole volume. The associated entropy thus becomes
(NV)N ]

(3.17)

Sl = kBln |:]V'

where the N! term is due to the fact that when two identical atoms exchange
their positions the entropy does not change. By applying the Stirling formula,
the difference

1 s NN
S —S"=kpln [N'] (3.18)
is R.

This term is the cumulative entropy and is present in a liquid due to the
complete atom delocalisation throughout the available volume.

The model, in its simplicity, supplies us with an interesting picture of the
liquid, though it has some severe limitations.

From the experimental point of view it is known that when T" ~ T, a
supercooled liquid has lost almost all its excess entropy as compared to a
crystal; the model does not take this into consideration since the cumulative
entropy is independent of temperature. Furthermore, it is difficult to intro-
duce a mechanism for the gradual reduction in cumulative entropy; a simple
reduction in atomic mobility is indeed useless since changing the mobility is
just like changing the time scale, thus leaving the thermodynamic properties
unchanged.

A revised version of this theory considers the atoms in motion within cells
formed by the surrounding atoms, but introduces liquid cells larger than some
critical size. The potential profile within such cells is flatter and allows wider
atomic fluctuations. A free volume is only associated with the liquid cells.
The essential feature of this version of the model is that the liquid cells can
form agglomerates.

If we use the percolation theory, then above a critical fraction of agglom-
erates in the volume of the system some agglomerates, which were initially
separated, coalesce to form a single infinite agglomerate, i.e. one large enough
to span the entire system.
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The solid-liquid transition coincides with the formation of the infinite
agglomerate. Since all the atoms in the same agglomerate have the same free
volume then the model is able to provide for a gradual increase in cumulative
entropy.

Since the agglomerates have greater entropy, due to the cumulative term
contribution, they are favoured at high temperature; on the other hand, since
their energy content is greater they are less favoured at low temperatures.
The model provides for the amorphous solid melting through forming drops
of liquid agglomerates whose sizes will grow as the temperature increases.

The drawback to the free volume theory is that the liquid-glass phase
transition is first order. However, this kind of transition can always be in-
hibited by slowing down the kinetics; thus it should be possible to keep the
liquid supercooled at temperatures below T, provided the cooling rates are
high enough, which is contrary to any experimental results.

Thermodynamic theories. In the framework of the standard theory of
scaling at a second order transition we may consider the glass transition as
being a classical continuous transition, with dynamic (divergence) and static
(anomalies in the specific heat ¢,, Kauzmann paradox) effects. Both these
effects reflect divergence of a correlation length &.

By adopting the following relation for &:

5 (T - Tc ) -
= = (3.19)
€o T

where the critical temperature 7. coincides with the glass transition tem-
perature T}, and by assuming that the ¢ divergence follows a power law, we

obtain an equation for the critical slowing down which includes the dynamics
of a second order phase transition

(;)”: <T—TTC>””:TTO, (3.20)

A Taylor expansion of (3.20) gives

T T, T, T2
In|— ) ~vp—=(1+— < 3.21
D(TO) UpT(+2T+3T2+ (8:21)
At high temperature, well above the critical temperature T, the trend

of In(7/79) in (3.21) is comparable to the trend obtained for In (7/7¢) using
the Vogel-Fulcher-Tammann law

T vpT
In{— )~ .22
n<70) T—T.(1/2+ Tc/3T + ...) (3:22)

provided we require B = pT,. In the high temperature limit the two curves
are thus asymptotic. Since the ratio B/Ty may be considered constant for a
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given family of systems then we can use the concept of universality class: all
systems in a given family are characterised by the same dynamic exponent
and are part of a specific universality class.

The theory takes into account both the specific heat singularity and the
Kauzmann paradox starting from the assumption that the proximity to Tg
of the lower limit for the glass transition temperature 75 is by no means
accidental. Furthermore, the divergence in the relaxation times around T,
leads to underestimate 15 since both ¢, and S are underestimated. If we
consider that the leading contribution to the entropy at the glass transition
comes from the high temperature region (T' > T.), the correlation length
allows us to define n renormalised pseudo-particles in d dimensions, according
to the relation n = V/ fd, where Ed is the volume of the particle. For a gas
of such particles, if we differentiate with respect to the temperature the free
energy GG, whose expression is

dv
Gy —ry (=T (3.23)
gd

T

we obtain the entropy S and the specific heat ¢, as

S——4 (TTT°>1Q {H(la)jﬂ (3.24)

where o = (2 — dv) and

S [(dvTC)Z—dqu} (T_TT)a (3.25)

p:ﬁ

with the conditions A > 0 and T, < (dvTy).

In a second order transition entropy contributions are found both from
the low (T < T¢) and from the high (T" > T,) temperature sides. Thus, there
is an anomaly on both sides of T.

In (3.25) parameter A is the difference between the entropy at infinite
temperature and the entropy at the critical temperature and gives us the
entropy change in the high temperature field (T' > T,). When A = 0, there
is no entropy change in the high temperature field; this is like considering a
transition where any entropy change is concentrated below T, in analogy with
the mean field approximation for ferromagnetic materials. If A = Scoy¢, i.e.
it consists of all the excess configurational entropy in the supercooled liquid,
as compared to the crystal (see (3.18)), we assume that the entire entropy
change takes place in the high temperature region and that it becomes zero
at T.. This picture of the Kauzmann paradox corresponds to the freezing of
all the degrees of freedom at a finite temperature.

Mode coupling theory. A completely different approach to the glass tran-
sition is given by the mode coupling (MC) theory. This theory applies to
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fragile materials that can transform into glass easily and can thus be cooled
slowly through the transition region, so that it is possible to measure both
the thermodynamic and the structural quantities, the latter using mainly
neutron scattering. In such materials the shear viscosity n spans a broad
range of values, from about 1073 Pa s well above the melting temperature
T, to 1012 Pas at T,. What makes MC theory different to the other theories
is that it is dynamic. It was developed starting from the assumption that,
apart from (3.7) there should be another independent relation between the
self-diffusion coefficient D and the shear viscosity 7, since the viscous flow
requires diffusive atomic motions.

Before introducing MC theory it is useful to recall the main features of
relaxation phenomena in liquids. Maxwell’s relation (3.8) indicates that the
characteristic relaxation time 7 needed by a viscoelastic liquid to recover
equilibrium after application of an impulsive shear strain is proportional to
1. Ultrasonic attenuation and dielectric susceptibility experiments confirm
that 7 increases rapidly with decreasing temperature. When the elementary
Maxwell’s relation with one exponent is substituted by a stretched expo-
nential (or Kohlrausch) function F(t), the long time, so-called a-relaxation
process is better fitted. High frequency (or short time) experiments show that
a-relaxation is preceded by a fast relaxation, as shown in Fig. 3.8. With the
normalisation condition F(0) = 1, the relaxation, or correlation function F'
can be approximated as

Ft) = (1 — a)h(t) + a exp|—(—=)] (3.26)
(07

where a marks the beginning of a-relaxation. The index « specifies that 7,
refers to the long time relaxation. The inset in Fig. 3.8 shows that with a
linear time scale only the slow a-relaxation may be seen. When temperature
is lowered « processes become increasingly slow (long times) and undergo
a freezing in. The consequence is that the plateau (region 2 in Fig. 3.8) is
stretched to infinity. This gives rise to elastic scattering of neutrons, or light.
When temperature decreases even more the contribution of the fast relax-
ation (1 — a) reduces; consequently a — 1, corresponding to the fact that
the frozen-in component has become the dominating one. In the analysis of
experimental data for F'(t), to the lowest order approximation h(t) is due
exclusively to vibrational dynamics. Even such a simplest approach qualita-
tively predicts two main features of the dynamics that have a counterpart in
the susceptibility spectra x”(w). First, the sequence of a fast relaxation that
decays after a time 7y, plus a slow a-relaxation corresponds to a minimum,
usually observed, in the susceptibility. Second, when a-dynamics is very slow
(low temperature) so that a broad plateau sets on between fast and slow
relaxation, the spectrum is white (flat) over an interval of frequencies below
wp = T]Tl. In such a region x”(w) is proportional to w and a knee is produced
at wy in the susceptibility spectrum, due to the down bending of x. The two
features just discussed are general predictions of each model of decay involv-
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ing two regimes. A satisfactory theory should predict both the shape and the
temperature dependence of the above features.

MC theory has its roots in the theory that was developed to describe the
dynamics of simple liquids that only need a few correlation functions, where
density fluctuations and both longitudinal and transverse current fluctuations
are considered.

In the case of glass transition the density-density correlation function
plays the fundamental role since the trend of 7 at T, implies freezing in of
the density fluctuations. The theory supplies us with a new relation between
D and n.

We consider that the damping of the density fluctuations is the result of
their decaying into other modes of the same kind. This is an extension of the
Mori—Zwanzig formalism that describes the correlation functions for equilib-
rium fluctuations in classical simple liquids. It is necessary to independently
determine the bare interatomic potential and the static structure factor &(k)
(see Sect. 4.3) for the liquid at equilibrium.

The density correlation function, that is time and wavevector dependent,
is introduced for a dense, single component liquid

F(k,t) = (On(k,t) On(—k,0)) (3.27)
1]
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Fig. 3.8. Schematic trend of the correlation function F'(t) versus time ¢ in a su-
percooled liquid. Different dynamic regimes are shown: 1, long time a-relaxation;
2, two-step relaxation stage; 3, microscopic, short time relaxation. With a linear
scale for time (see the inset) only a-relaxation is evident
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where On(k,t) is the microscopic density fluctuation with respect to the con-
stant equilibrium value n. F'(k,t) corresponds, provided the neutron scatter-
ing amplitudes of the nuclei are weighted, to the experimentally accessible
dynamic structure factor &(k,w) (see Sect. 4.10).

The Laplace transform for F'(k,t) is

F(k,w) = /OOO exp [iwt] F(k, t)dt

and this can be rewritten as

w + k2m(k,w)

Fk,w) = =6 o T mG () + whkm(,w)

(3.28)

where m(k,w) is the generalised viscosity that at Tt shows a singularity with
w™! dependence.

The main assumption behind the MC theory is that after a microscopic
time interval, lasting about the same time as the inverse of the Debye fre-
quency, m(k,t) may be expressed as a function of F(k',t) only.

It is convenient for us to represent (3.27) as the equation of motion for
a harmonic oscillator, including a memory function term M (k,t) which is
considered a damping function

[32 + ay(k)+w8(k)] F(k.t)

t

+w?(k) | Mkt — t’)%F(k,t’)dt’ = 0. (3.29)

0

The structure of (3.29) is similar to the equation of motion for the
normalised density correlation functions in a generalised hydrodynamic ap-
proach. In (3.29), however, M (k,t) is splitted into a regular, fast component
v(k) and the time dependent term w? (k)M (k,t). In the elementary version of
the theory there is no dependence of the memory function on the wavevector
and M (k,t) reduces to

M(t) = 4 ? [F ()] (3.30)

where the parameter A expresses the coupling force and is a linearly increasing
function of the density. The memory function M (k,t), whose general form is

M(k,t) = > Vi F ([k + K| ,t) F (=K', 1) (3.31)
-

gives rise to a non-linear closed coupling of all the modes. The essential
parameters are the static coupling terms Vj,; their expressions do not con-
tain the interatomic potentials, but only the static structure factors &(k),
that are non pathological even when the potential is singular, as in the case
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of hard spheres. The Vi are postulated to vary slowly when temperature
changes.

Equations (3.31) and (3.29) are solved self-consistently for a discrete set
(a few hundreds) of wavevectors.

The important novelty of MC theory results only when the equations are
solved self-consistently so that modes with different k values are all treated
equivalently. It is noteworthy that when temperature is changed the structure
factors have a smooth dependence both on temperature and on wavevector
values. The singularity in the solutions of (3.29) comes out concurrently for all
k’s at a critical value T¢. It is a zero-frequency pole in the Fourier transform
of F(k,t). At high temperature, or at low density, the non-linear coupling
simply produces the behaviour of a damped harmonic oscillator. When the
non-linear coupling force is increased above certain thresholds, (3.29) causes
a stretching of the correlation functions F'(k,t) to longer times; the corre-
sponding partial freezing of the dependence of the fluctuation intensity on
M (k,t) produces a non trivial dynamics on an intermediate time scale (the
(G-relaxation regime), besides the final a-relaxation. It is important to ob-
serve that the above fluctuation intensity is subjected to space variations.
Since there are no changes in the structure, which is and remains a liquid,
the above freezing is considered an index of the glass transition. Thus, apart
from the obvious condition that, when time diverges, F(k,to) — 0 when
D # 0, the solution of (3.29) leads to the critical slowing down of F(k,t) at
a critical temperature T, where D — 0 and 11 — o0, so that

F(k,t — o) = f(k,T) =

{: 0 forT > T, = ergodic behaviour

. . (3.32)
>0 forT <T. = non-ergodic behaviour.

f(k,T) is called the non-ergodicity parameter; its values lie between 0
and 1. At high temperature the coupling constants Vi are small and F'(k,t)
after an initial microscopic transient falls quickly to zero. The liquid is ergodic
and f(k,T) is null. When temperature decreases the coupling terms progres-
sively increase till the point where F'(k,t) remains finite, even for diverging
time: this point is identified with the glass transition singularity. The density
fluctuations are in part frozen because F(k,t) decays from unity to f(k,T).
Such a partial freezing of the fluctuations makes the glass a non-ergodic
system that cannot be described macroscopically within the MC scenario
simply because there is no thermodynamic description of the glass transi-
tion.

f(k,T) coincides with &.(k), namely the Debye-Waller factor for the elas-
tic peak of the dynamic structure factor (see Sect. 4.10); this is a wavevector
dependent order parameter. At the critical temperature Tt, f(k,T") changes
discontinuously from zero to a non null critical value f.(k), as shown in
Fig. 3.9. For diverging time, when the system approaches Tt from below, the
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equations of MC theory yield

F(k,t) = fo(k) + (k)¢ (3.33)

with € o« (T, — T)/Te. The square root cusp of f(k,T) is a result of MC
theory with general validity.

It is remarkable that the critical slowing down of the decay of the density
correlation function at a critical value of the coupling constant implies that
a purely dynamic mechanism is responsible for the freezing of the density
fluctuations.

At temperatures below T, the atoms are trapped in cages made of their
own local surroundings; such cages are heterogeneous both in space and dy-
namically. Thus the reason of the heavy slowing down of the diffusion pro-
cess is the transient localisation of a particle in the time-fluctuating cage
made of its neighbours. This is the microscopic picture of the decay towards
the plateau (region 2 in Fig. 3.8; see also Fig. 3.9) characteristic of the (-
relaxation regime. From Fig. 3.9 we see that the density correlation function
presents a critical slowing down of the decay at the critical value of the cou-
pling constant. This means that the density fluctuations have been frozen by
purely dynamic mechanisms. The progressive widening of the terrace with
decreasing temperature can be interpreted as the result of collective cage
motion. The decay of the (-relaxation into the final, long-time a-relaxation
(called von Schweidler decay) is associated to cage breaking.

On the high temperature side the plateau height near T, is the critical
value of the non-ergodicity parameter, f.(k). As the ratio (T — T¢)/T, is

]
-1 0 1 2 3 log (wot)

Fig. 3.9. Correlation function F(k,t) as a function of time, for various coupling
force values A, each being constant. Notice the critical slowing down in the decay
at the critical value Ac
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well below unity in this region, MC equations can be expanded in terms of
& = f(k,T) — f.(k) and the theory offers some predictions in analytic form.
In particular

&= f(k,T) — folk) = U (K)C(1) (3.34)

Equation (3.34) is an important asymptotic result, often used to compare
the predictions of MC theory with experiments. In (3.34) the dependence
of @ on k is fully expressed by I’(k); all the relaxation functions depend
on time through the same function C(t) (the f-relaxation function), in turn
independent of k. C(t) is obtained from

d / / / / _ 2
ﬁ/C(t—t)C(t )t — € = AC2(t) (3.35)
0

where the adjustable parameter A, whose value lies between 0.5 and 1, is
specific of the material and puts in reciprocal relation the exponents a of the
critical decay and b of the von Schweidler decay. Indeed when (3.35) is solved
for the liquid, for which & is negative, initially C'(t) — 0 as t~* and then as
t*. When the transition is approached from the liquid side, where A\ < A,
also a singularity with power law dependence is found both in relaxation time
and in viscosity:

)\771
72‘1

A

where v = 1.765. However, this relation does not agree with that obtained
from the Vogel-Fulcher—Tammann phenomenological law,

T ™~ exp [(/\C - )\)_1] .

The description of a-relaxation within MC theory requires a numerical treat-
ment. The main result of the latter is that the Kohlrausch stretched exponen-
tial function provides a good representation of a-relaxation. The correlation
function is thus

F(k,t) = fo(k) exp [~ (t/7)°] (3.36)

where 7 and 3 depend on k in the solutions of MC equations. The very same
dependence has been observed in neutron scattering experiments. A difficulty
arises immediately because exponent b does not depend on k and in general
no simple relation connects b with 8, apart from the limit k& — oo, where
(3.36) is exact and 8 = b.

Among the most significant corrections to the idealised MC theory, a crit-
ical examination of the dependence on the wavevector k indicates that only
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those density fluctuations with wavevector value close to that of the first
peak in the static structure factor significantly contribute to amorphisation.
Furthermore, coupling has also been introduced among other modes in the
liquid; as a result the sharp singularity characteristic of the ideal transition
(see 3.32) is removed, leaving a “rounded” transition similar to what is ob-
served experimentally.

However, to obtain this result the system is forced to follow trajectories in
the entry parameter space that correspond to correlation functions for den-
sity fluctuations which, invariably, disappear as time diverges. Consequently,
ergodicity is not broken. On the other hand, in real systems the thermally
activated atomic jumps smear out the singularities and restore ergodicity by
way of very slow relaxation of the underlying disordered structure.

Just as for any theory the crucial point to the MC theory is the comparison
between its predictions and experimental results.

We have to consider that the significant time scale required to evaluate the
theoretical predictions, even for fragile systems that can transform into glass
easily, is around 1079 s, which is less than the usual experimental time scale.
Moreover, the relaxation spectra extend over many decades. Thus, inelastic
neutron scattering, using the spin echo technique, allows us to analyse relax-
ation spectra in the frequency interval between 0.1 GHz and 10 THz. Besides
this, only the results of Molecular Dynamics (MD) simulations performed
in the region of temperatures approaching 7. from above can be directly
compared to theory.

The kinetic transition observed in MD calculations for a binary alloy,
simulated using spherical atoms with two different diameters, d; e do, which
interact by a soft purely repulsive pair potential,

dyi1 + da2 2
2z

Vip(z) =¢ (

shows that the cooling rate does not influence the dynamic behaviour around
the critical temperature. The shear viscosity n and the self diffusion coefficient
D for the two atomic species allow us to follow the Stokes—Einstein relation
(3.7) in the supercooled liquid within a very wide temperature field. The
dependence on the wavenumber of the order parameters for the glass matches
the results predicted by the MC theory.

Also, coherent and incoherent neutron scattering results from the super-
cooled liquid state and the glassy state of the prototype system o-terphenyl
(OTP) compare in a satisfactory way with MC predictions. To obtain this,
the data are analysed in the time domain, under the assumption that the cor-
relation times 7 scale with the shear viscosity n according to 7(T") ~ n(T")/T.

In the temperature dependence of the Debye—Waller factor F(k,t~) a
cusp appears; this is interpreted as an indication of the critical temperature
T, whose existence is an essential point in the MC theory. As predicted,
below T., F(k,ts) follows a (T, — T)/? behaviour, whereas the structural
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relaxation above T, is well parameterised by a stretched exponential function.
The existence of the critical temperature T, > T, (Tc ~ 1.15-1.2 Tg) is one
of the strongest arguments in support to the mode coupling theory. The very
same scenario observed for fragile liquids characterises the dynamics of strong
liquids at high temperature, such as BoO3. These systems, too, show a critical
temperature below which the fast relaxation processes become temperature
dependent. Ty is, though, much higher than T, (T, ~ 1.15-1.6 T}).

An analysis of the variation with temperature of the structural relaxation
time 7 has proven that the critical temperature 7T, does indeed exist. As
the temperature falls towards T,, 7 varies by ten orders of magnitude. The

parameter ¢ = [d(logT) /dT}_l/ ?, which according to the VFT law should
depend linearly on temperature, is shown to clearly deviate from its linear
trend around T, for various kinds of glass forming compounds.

A noteworthy support to MC theory was recently given by radiotracer
diffusion measurements in the supercooled Pd;3Cus7NijgPyg alloy, over the
temperature range from T to the equilibrium melting point. The high sta-
bility of this alloy against crystallisation allows one to perform reliable mea-
surements. A 57Cd%°Co mixture was used because cobalt efficiently probes
nickel self-diffusion. The onset of liquid-like atomic motion, evidenced by a
gradual drop of the effective activation energy was observed to set in exactly
above T, where in turn the breakdown of the Stokes-Einstein relation (3.7)
occurs.

One of the most severe drawbacks to the MC theory lies in the choice
to study systems where the interatomic interactions are characterised by
spherical symmetry. This ignores the complexity of real easy glass forming
systems in which interatomic interactions are covalent and thus non-central.
Furthermore, the theory gives a quantitative description of the behaviour
of liquids in the low viscosity region (7 is less than 10 Pas) in reasonable
agreement with experiments, but it predicts the glass transition at too low 7
values, around 10 Pas.

MD simulations of a binary liquid made of a mixture that is controlled
by a Lennard-Jones potential (Fig. 4.46), have clarified that (3.34) strictly
holds for this simple liquid, which is particularly suited to quantitatively test
the theory.

There is, though, disagreement between the simulation results and the
theory predictions when we consider the longer time scales. Indeed the MC
theory predicts that the diffusion constant diverges at T, with the same ex-
ponent v as the relaxation times. However, the simulation shows that at T,
~ value in the diffusion relation considerably differs from the value found in
the relaxation relation, even though the relaxation time and the diffusion
constant are the same.

According to the MC theory, the glass transition is characterised by qual-
itative changes in the dynamics of the liquid around T,. Above T, the system
is a normal liquid where the diffusive motions dominate, whereas at T, the re-
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laxation of the supercooled liquid induces a progressive change of its behavior
and a transition towards a solid begins; this becomes even more pronounced
as the temperature falls and system properties characteristically come close
to those of a solid. The difference between fragile and strong glasses may be
put in relation to the width of the temperature interval between T, and Ty,
namely to the temperature field where the glass transition takes place; this
is large for strong systems and small for fragile systems.

3.3 Ease of Glass Formation

The empirical observation that some systems can be brought into the glassy
state more easily than others has stimulated research, and technological in-
terest, into criteria and theories on the formation of non-crystalline phases
that can both interpret and predict glass formation ability.

Behind any kind of criteria there should already be a firmly established
glass transition theory which, however, is still lacking. This is why models
have been developed with validity generally limited to certain classes of ma-
terials, usually with no more than two components, and for some specific
amorphisation processes. These models are given more to the interpretation
of experimental results than to the prediction of how materials will behave
when they possibly undergo vitrification.

Before we proceed to examine the various criteria we should bear in mind
that amorphisation can be obtained by way of fast quenching, starting from
the liquid phase, or by a direct reaction in the solid state. Whereas kinetic
and thermodynamic factors dominate in the first case, the link between the
amorphisation reactions in the solid state and the quenching processes in
the liquid state is based on the fact that even in the former heterogeneous
nucleation of the non-crystalline phase is essential. This is associated with
the breakdown of the long range chemical order, similarly to what is observed
when a crystal melts. In this case the heterogeneous nucleation is an essential
mechanism that many models of the phenomenon are based on.

The loss of extended chemical order is an important condition to drive
amorphisation. To this aim the relevant factors are the defects, the degree of
chemical interaction between system components and its elastic properties.

The difference between the above glass forming processes is actually much
less marked than might appear, because first in many systems considerable
traces of the short and medium range structural organisations present in the
solid crystalline phase still remain (see Chap. 4) in the liquid phase. Second,
in many amorphisation reactions in the solid state, it is quite plausible for
the system, which is highly energised, not to stay in the solid state but, for
very short time intervals and at a local scale, to liquefy or even vaporise.
Moreover, some vitrification processes occur over quite long time scales so
that thermodynamic factors may come into play.
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In general the tendency to readiness of glass formation is most evident
in metallic alloys with large, negative enthalpies of mixing, such as Co—Nb,
Cu—Zr and Ni-Ti. In such systems where compound formation is favoured,
amorphous phases are obtained over broad composition ranges. On the other
hand, when systems with positive enthalpies of mixing are processed un-
der non-equilibrium conditions, supersaturated solid solutions are usually
obtained. Amorphisation is observed as an exception, when the enthalpies
of mixing of the solid solutions and the amorphous phase are considerably
different in magnitude, or they differ in sign. In these systems the Gibbs
free energy curve of the amorphous phase, calculated by extrapolation of
the liquid curve to low temperatures, lies above the curves for the solid so-
lutions over the whole composition range. In fact the amorphous phase is
usually less metastable than assumed on the basis of the free energy curve
of the liquid extrapolated to the supercooling region. The increased metasta-
bility is attributed to the short-range order that evolves in the liquid during
supercooling. In systems which are immiscible even in the liquid state the
formation of an amorphous phase is at variance to the thermodynamics of
“normal” liquids. The glassy phase free energy is much lower than deduced
from the phase diagram; this implies that during cooling the enthalpy of mix-
ing of the liquid changes its sign. A prototypical study on this kind of systems
was performed on Nb(;_;)Cu, (32 at. % < x < 77 at. %), whose enthalpy of
mixing in the liquid state is +12 kJ g atom ™! at 1800 K. X-ray diffraction on
sputter deposited films of the alloy shows that they are amorphous and by
differential scanning calorimetry crystallisation enthalpies between 4.5 and
7.6 kJ g atom ™! were measured. This result shows that there is a stabilisa-
tion of the liquid phase, which implies that the positive enthalpy of mixing at
high temperature has changed sign becoming negative at low temperature.

The glass becomes unstable at T}, compared to the supercooled liquid, and
the supercooled liquid exists as such above T}, for a short temperature interval,
usually around 20 K, before it crystallises again, either directly or by way of
a sequence of metastable phases. Thus the narrower the interval between the
liquidus and the glass transition temperatures 77 and Tg, respectively, the
easier it is to vitrify the system.

This criterion leads us to define the reduced glass transition temperature,
Tg = T,/Ti, as the dominant parameter for amorphisation. This parameter
is favoured the closer T}, approaches the unit. For systems with relatively
weak chemical interactions, T, is not very sensitive to the composition, so
T,¢ depends mostly on the trend of 7j. For many systems that undergo vitri-
fication we observe that the critical amorphisation cooling rate || is a single
monotonic function of T}, that decreases rather rapidly. For those systems
with stronger chemical interactions, thus with thermodynamic functions that
are more markedly dependent on temperature and concentration, we expect
similar behaviour, except for stronger 7, dependence on the composition.
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It has commonly been observed that a compound, whether organic or
inorganic, with stoichiometry close to a eutectic composition, undergoes easier
transition from the crystalline to the amorphous phase. The melting point T},
for this composition is depressed so that at 7, the liquid is less supercooled
and it is more difficult for crystallisation to take place. If, though, |7| is not
high enough, the liquid eutectic alloy will crystallise and will form, in the
simplest of cases, a mixture of two components. We note that around the
eutectic alloy the excess entropy is negative; this means that locally there is
a considerable degree of chemical/structural order. This is confirmed by the
fact that, at least in the metallic systems, the number of eutectic structures
observed is particularly high.

The first interpretation for the ease of amorphisation in certain oxides,
while others resist vitrification, was given by W.H. Zachariasen in 1932 [3.1].
This was an initial attempt to consider both topological and structural fac-
tors when analysing vitrification. The ideas at the heart are simple: the in-
ternal energy of an amorphous material must only be a little higher than
it is in its corresponding crystalline phase, otherwise it would immediately
re-crystallise. Furthermore, it is reasonable to consider that the same kind of
atomic interaction exists in both states, thus the elementary structural units
must be the same, and only at an extended packing level must periodicity
develop, or not. For example, both in crystalline and amorphous SiOs; we
must find the same tetrahedral SiO4 units that are vertex-connected through
dihedral (torsion) angles, all equal, or, respectively, variable within a certain
interval.

From this rule the so-called Continuous Random Network (CRN) struc-
tural model for amorphous materials was obtained and we can explain why
the crystal is absolutely stable for certain compound compositions. For exam-
ple, in a hypothetical bidimensional oxide with a XO composition (Fig. 3.10),

Fig. 3.10. Structure of a hypothetical
stoichiometric oxide XO on a bidimen-
sional lattice: each oxygen atom (e) is
at the vertex of three different triangles
XO3s. In the CRN model, disorder is in-
troduced, in the simplest way, by distort-
ing the bond angle
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each oxygen atom would be at the vertex of three different XOg triangles. In
this case, if we introduced disorder, by distorting the bond angle (equivalent
in the plane to the three-dimensional dihedral angle) we would have to spend
so much energy that the glass structure is definitely unfavoured.

The above model developed for covalent systems with strong chemical
interactions has an equivalent proposed in the 70’s for metallic systems.
This model is particularly suited to transition metal-metalloid alloys. Once
the metal atoms have arranged themselves in a dense, random packing, the
smaller metalloid atoms will fill the interstices, thus forming the structure.
The compositional ratio is correctly predicted; amorphisation is favoured at
about 20% metalloid, even though recent structural investigations point at
a higher degree of steric correlation between the metal and the metalloid
atoms, and in particular rule out the random interstice occupation by met-
alloid atoms (see Sect. 4.7).

The above model also incorporates the idea that steric hindrances may
play a significant role in whether a system can undergo the amorphisation
process or not. Indeed, if the atomic sizes of the compound constituents
differ significantly from each other, the cooling down kinetics of a melt is
considerably reduced. In fact, it has been observed that a minimum value in
the difference in the atomic radii of the constituents of the binary alloy, or
compound, coincides with glass formation ease. Experiments with model sys-
tems (hard spheres and soap bubbles) give a 10% difference in the “atomic”
radii as the lower threshold. The atomic radius difference has been associ-
ated with other parameters connected to bond strength, such as electroneg-
ativity, or vaporisation enthalpy, in order to draw up two parameter maps
where intervals for parameter values that correspond to easy amorphisation
are identified. In general the size criterion better fits experimental results
than the energetic criteria, although a number of exceptions are found in the
maps.

Recently, bulk massive amorphous alloys with wide compositional inter-
vals have been produced starting from consideration of the size difference
between constituent elements. Among these bulk metallic glasses (BMG) are
the ternary La—Al-(Ni, or Cu), Mg-Y—(Ni, or Cu) and Zr-Al-(Ni, or Cu)
with exceptional supercooling intervals, higher that 50 K, (AT = 77 K, for
ZrepAly5Nigs), and lower cooling rate thresholds to induce vitrification, |r|,
up to around 90 Ks=1 (|| = 87 Ks™1, for LassAlasNigg). The glass forming
ability has been correlated in this case, to what occurs in Al-lanthanide—
transition metal alloys (e.g. Alg7LagNis) where the chemical interaction be-
tween aluminium and lanthanide is strong, which is an index of relevant short
range order. This has been confirmed by the formation enthalpy values for
this family of alloys, negative, with large absolute values.

The alloy Zrg; 2Tii3.8Cui2.5NijgBess s (vitalloy) has been produced us-
ing the same criteria. This is a peculiar alloy in that it transforms into the
amorphous phase at || values below 10Ks™!, the lowest so far obtained
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Fig. 3.11. Time-temperature-transformation diagram for the alloy Zra; 2Tiizs
Cui2.5NijpBess 5. Full circles indicate data points. The figure shows the liquidus
temperature 7j, the temperature ranges for the observed structures and the length
scales of the microstructures developed at various temperatures after isothermal
annealing (adapted from [3.2])

for metallic systems, and much less than the cooling rate usually required
to produce metallic glasses. The viscosity n of this system, measured in the
supercooled liquid region, is between 10'° and 10° Pas, a very unusual range
for amorphous metals whose minimum viscosity just reaches 10'° Pas in the
most favourable of cases. The 1 dependence on temperature obeys the VET
law (see (3.1)) where Ty = 352 K, a very low value which is equal to around
Tg/2. This behaviour is similar to what occurs with silicate glasses. Results
on microstructure and structure evolution during isothermal crystallisation of
the alloy between the liquidus and T, temperatures are reported in Fig. 3.11.
The alloy structure changes from ZryCu type at high temperature (above
780 K), to MgZny type, between 740 and 710 K, to an fcc solid solution
at low temperature, between 670 and 610 K. The characteristic length scale
of the microstructure decreases by five orders of magnitude with increasing
supercooling, from 958 K to 613 K. The number density of crystallisation nu-
clei, as estimated from microstructure observations, increases from 10 m—3
at 958 K, to 1022 m~3 at 613 K. Such high values for nuclei density mean a
high nucleation rate, in contrast to the observed slow crystallisation kinet-
ics shown in Fig. 3.11. A possible explanation for the contradiction is that
decomposition occurs in the liquid before it crystallises.

In connection with the ease of production it is noteworthy that bulk metal-
lic glasses overcome some important limitations encountered by glassy met-
als, such as very high quenching rates, in turn resulting in the technologically
relevant constraint of a small thickness, poor ductility, strength and fracture
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toughness. BMGs have elastic limits improved by a factor of two to three and
tensile strength up to 3 GPa, much higher than the corresponding crystalline
alloys. Although the plastic deformation mechanism involves inhomogeneous
flow along localised shear bands, resulting in brittle behaviour, crystalline
alloy composites with BMGs can tolerate strains up to 8 % in compression;
besides this some bulk metallic glasses have good corrosion resistance and
low internal friction. This set of properties is expected to lead to a signifi-
cant growth of commercial applications of metallic glasses. As an example we
quote Mg-Ca-Zn BMGs with Ca content between 1.5 and 12.5 at. % and Zn
between 20 and 35 at.%. Rods with composition MgroCasZnos with 3 mm
diameter, obtained from the liquid by melt spinning at cooling rates not
higher than 102 Ks~! have Young’s modulus of 47.6 GPa and bulk modulus
of 48.2 GPa, with Poisson ratio 0.335. The microhardness H, is 2.16 GPa;
with the empirical relation between H, and the fracture strength o the es-
timated fracture strength is about 700 MPa, significantly higher than that
of commercial magnesium alloys. As the mass density p ranges from 2 to
3 gem™3, the specific strength opp™' of these BMGs is between 250 and
300 MPa cm?® g=!, a value about 40 % higher than that of crystalline magne-
sium alloys. Besides this, amorphous samples with Ca content between 2 and
6 % and Mg content between 65 and 85 % are significantly ductile: they can
be bent by 180° and pinched along the bending edge without breaking them.
Optical micrographs of fracture surfaces in these amorphous alloys show a
vein-like pattern associated to intrinsic local plasticity.

If the difference in the atomic radii of the components is too great, which is
typical of small solute atoms, such as carbon atoms, then amorphisation will
hardly occur, or the process will be incomplete. Indeed high atomic diffusivity
of carbon reduces the effect of the steric hindrances; the Fe-C alloys are
prototypes of this mechanism. Likewise, hydrogen is a good stabiliser in the
glass phase only if it is highly concentrated.

The steric criterion has been made more accurate by considering the min-
imum concentration of solute required for the amorphous phase to occur in
a compound XY (1_,). For a set of about sixty glassy systems, the following
relation has been verified and is hypothesised as being generally valid:

Vy = Vs

Ymin ~ A
e

]_1 (3.37)

where V' is the atomic volume of the alloy components and A ~ 0.1 is a
numerical constant. The reason why solid crystalline solutions are unstable
when the solute concentrations are above Yy, is explained on the basis of
elastic deformation, which is locally introduced into the crystalline lattice.

If we consider a solid (metallic) solution as an elastic continuum, we can
then define the elastic modulus E,, in terms of shear stress p and compress-
ibility B
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The Debye temperature ©@p has been used here along with the corre-
sponding wavevector kp and the macroscopic density p; kg is the Boltzmann
constant and h the Planck constant.

Using the elastic criterion we find that, if the difference in the atomic
radii for the constituents of the alloy is large, then E,, undergoes a dramatic
lowering as a function of the solid solution stoichiometry. It is thus possible
to find a composition at which, by linearly extrapolating the trend of the
value of the elastic modulus, it will soften. The system becomes mechanically
unstable and vitrifies. In the case of the Zr—Rh alloy, where the atomic size
difference is about 20%, the predicted critical concentration of Rh is 12 at. %,
and the alloy undergoes glass transition quite easily when ZrgsRhy5 is formed.
On the other hand, if we consider metallic systems with small differences in
the constituent atomic radii, no instability is highlighted in the trend of the
elastic modulus.

The previously examined free volume theory also lies at the base of an
instability criterion for crystals, with respect to amorphous solids, that was
developed for binary alloys. Basically, if zero, or negative, volume changes
are measured when a crystalline alloy melts then it will transform into glass
easily under a fast quenching process. In fact, the greater the free volume of
the liquid the less the viscosity is, and the higher the atomic diffusion. Thus,
if a crystal is denser than the liquid from which it grows, it will push free
volume into the liquid whose viscosity, in turn, will be further reduced, thus
favouring the growth of new crystallites.

If a material is found in various polymorphous modifications then it will
easily be vitrified. This amorphisation criterion is particularly important
when examining the competition between the various possibilities of local
order. SiO; is probably the best example among all the non-metallic glasses
for this criterion since it has three crystalline phases.

However, this criterion is also true for, for example, elemental tin and for
various binary alloys. In these cases the glass forms because while the system
is cooling, even below the melting temperature groups of atoms structurally
coordinated in different ways are nucleated. Such agglomerates compete with
each other, and none of them can grow at the expense of the others to be-
come a centre of extended crystallisation. Though there is much validity to
this criterion its theoretical foundations are disputable since it gives us a mi-
crocrystalline picture of the amorphous solid. Our current understanding is
that the microscopic structure of a covalent, or metallic, amorphous solid is
specific and cannot be reduced to assemblies of microcrystals, even though
they may have small dimensions (see Sect. 4.8).

An electronic amorphisation criterion has been developed for binary alloys
on the basis of the interaction between the electronic structure and the ionic
structure. If the composition of an amorphous alloy is such that the Fermi
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level Er coincides with a minimum of the electronic density of states, then it
is particularly (meta)stable with respect to crystallisation. Quantitatively, if
k, is the wavevector that corresponds to the strongest peak for the structure
factor G(k) (see Chap. 4), where the relation kr = k,/2 is valid, and where
kr is the wavevector at the Fermi level, then an energy gap opens. This
mechanism is associated with the stabilisation of the glassy structure.

We assume that the crystal Brillouin Zone corresponds to a pseudo-zone
with spherical symmetry in the structurally disordered amorphous system.
Furthermore, in metals the first peak of &(k) is often so narrow that only one
Fourier component is dominant, namely the one with wavevector k,, whose
role is similar to that of a reciprocal lattice vector in a crystal.

The key point is the hypothetical relation between k;, and 2kr. In general
k, is greater than 2kr for monovalent metals and less than 2ky for divalent
metals (Fig. 3.12). For an alloy made of a metal X with a valence of Z, =1
(the transition metals are considered part of this group) and a metal Y whose
valence Z, is greater than one, the effective valence is Z, = ¢, Z, +(1—c3)Z,.
This changes with the composition, and the position of 2k changes accord-
ingly, until, for a certain composition, it coincides with the k, position. The
glassy phase of the alloy with such a stoichiometry is particularly (meta)stable
with respect to recrystallisation.

If fluctuations occur then in the system long range order may start to
develop which would remove the spherical symmetry of &(k). The value k,
takes on would now depend on the direction so that the reduction mechanism
for the electronic density of states would be activated in different directions,
for different electronic energy values. Since not all the states with |k| = k,/2
would contribute to the stabilisation mechanism at the same time, the deep
minimum at Fr present when the system is spherically symmetrical would be
heavily reduced. The perturbation of &(k) would imply that system energy
would increase when the electrons reached the Fermi level (Fig. 3.13).

S(k)

Fig. 3.12. Structure factor S(k) as
a function of the wavevector k; the

Kp \ K positions of the Fermi wavevectors
2 =1 2k (7=2 are shown for divalent and monova-
ke(z=1) {z=2) lent metals
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This criterion represents an extension of the Hume-Rothery rule for the
stability of the various phases in so-called electron compounds, and was sub-
jected to much debate, due to contrasting experimental results. Whereas in
some model systems of the noble metal-semiconductor family (AuP; AuSi),
the electronic criterion correctly predicts the composition for maximum
(meta)stability of the metallic glass, it has been impossible to unquestionably
find the pseudo-gap in the density of states of transition metal alloys. How-
ever, the approach has been proved valid for amorphous binary noble metal
polyvalent metal alloys (AuSn) with varying compositions.

The basic concepts of the model have been successfully transposed into a
structural stability criterion in the physical space. In this case the conduction
electrons shield the ionic charge and this causes the so-called Friedel oscil-
lations of the pair potential @(z) whose asymptotic trend is cosine: @(x)
cos(2kpz)/x3. In turn, the pair correlation function g(z) (see Sect. 4.3) also
shows oscillating behaviour since g(z) oc 1 + [sin(kyz)/z], where k;, is the
wavevector corresponding to the maximum of the strongest peak for the
isotropic structure factor S(k).

When the maxima of g(z) coincide with the minima of @(x), then the
energy term for the band structure

Ey x /x2 [9(z) — 1] P(z)dz

has a large negative value, thus contributing to the stability of the system.
The best coincidence between a cosine curve and a sine curve is obtained
when 2kp = k,,, i.e. when the wavelength of the two kinds of oscillations are
equal (Fig. 3.14). This criterion has been proven on simple metal alloys with
interatomic potentials basically characterised by spherical symmetry (MgCa,
MgZn). An introduction to the theoretical basis of this criterion is discussed
later (see Sect. 4.10).
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structure stabilisation occurs

One microscopic theory for the stability of the glassy phase has recently
been put forward for binary compounds with both metallic and covalent
bonds. The compounds have undergone amorphisation reactions in the solid
state, particularly ion bombardment. Presently this is the most highly con-
trolled technique to induce disorder and subsequent vitrification in a system.
The theory takes into account the physics of the irradiation process, with
special regard to the formation of atomic collision cascades along the trajec-
tory followed by an energetic projectile as it slows down in the target. It is
assumed that at the interface between these cascades, where the atoms are
highly energised, and the surrounding unperturbed crystalline lattice, atoms
of one of the compound components coming from the cascade core prefer-
entially migrate. As a consequence, both the compositional profile and the
electronic charge density at the cascade-crystal interface are altered with re-
spect to their equilibrium values. Such profiles can be non-equilibrium over
the typical time scale for cascade quenching (1071 s).

Re-equilibration is supposed to occur by way of local charge transfer re-
actions between pairs of atoms of either compound constituent. The result
is that the atom of the interface migrating component captures an electron
from the atom of the other component. In so doing an atomic pair is formed,
namely a dimer of an effective compound whose electronic and thermody-
namic properties are compared with those of the original compound. In par-
ticular, for those systems that undergo the glass transition, we observe: a pos-
itive energy contribution AFE,- associated with the electronic charge transfer
and an increase in surface atomic mobility in the effective compound, whose
formation enthalpy AH; is greater than that of the original compound. The
introduction of effective compound dimers into the original compound in-
creases the system energy, and this system becomes unstable. Furthermore,
the high surface atomic mobility corresponds to the realisation of many ener-
getically equivalent local configurations, that are off thermodynamic equilib-
rium, and whose freezing corresponds to the formation of the glassy phase.
The opposite is true for compounds that remain crystalline upon bombard-
ment. By calculating the local deformation associated to the formation of a
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Fig. 3.15. Trend in the electronic energy contribution AE, - associated with the
creation of a dimer (cluster) of effective compound, as a function of the formation
enthalpy difference A(AHy) between original and effective binary compounds. The
triangles for the crystalline systems under irradiation occupy the region of negative
parameter values, whereas the circles for the amorphised systems lie in the region
of positive parameter values. For both groups the second component is solute. Full
symbols refer to metallic compounds, open symbols to non-metallic compounds
(adapted from [3.3])

dimer of effective compound, threshold deformation levels have been associ-
ated to vitrification.

The theory has been applied to a large number of metallic systems and
only a few exceptions to the described behaviour have been found. It has
also been tested with success on many non-metallic compounds, including
borides, carbides, nitrides and oxides. Figure 3.15 shows a two parameters
map: the first is AF,- and the second is the difference between the formation
enthalpies for the effective alloy and for the original alloy, A(AH¢). The map
clearly shows value intervals for the two parameters that define the regions
where amorphous and, respectively, crystalline compounds are most easily
formed.

The theory offers us a physical representation of amorphisation starting
from the essential processes that lie at the heart of system energisation. In
principle this theory may be applied to other experimental typologies char-
acterised by structural disordering followed by glass formation, and thus at
least to all the glass-forming reactions in the solid state.



4. The Structure of Disordered Systems

4.1 Why We Study the Structure
of Amorphous Systems

Structural research has traditionally had a preferential role in solid state
physics since the determination of the arrangements of atoms in space is the
foundation stone for subsequent studies in order to determine the different
physical, or chemical, properties. As far as crystalline solids are concerned,
determining the structure has been made simpler by the possibility to limit
ourselves to the relatively few atoms in the unit cell. Due to spatial periodic-
ity, these atoms make up the fundamental unit the whole structure is based
on. Conversely, for those solids that lack translational periodicity, the unit
cell has infinite spatial extension, which makes it of no use to us in analysing
the structure of amorphous systems.

If the structure of an amorphous solid were random and chaotic, in the
strictest sense of the term, and we were only able to carry out average sta-
tistical calculations regarding the position of the atoms, then the structural
analysis would be meaningless. However, a structurally disordered solid is an
extremely complex system, it certainly is not crystalline, but, at the same
time, it is not purely random.

The amorphous solids, particularly the metallic amorphous solids, are al-
most invariably systems with more than one component (at least two); they
are thus made up of a mixture of different atomic species. In general we need
to know how many atoms of each species surround the atom under consid-
eration, and to define the structure and the symmetry of the shell, which
is made of the atom’s first neighbours. Only if a structure can be described
in a satisfactory manner in terms of a random collection of atoms, will the
problem in determining the environment around each atom be resolved from
the knowledge of the stoichiometry of the material and the atomic radii of
the constituent elements. In this case, short range order, both chemical and
topological, does not exert any significant influence on the local structure.

In reality, the structure of many amorphous solids is non-random, at least
on certain length scales. The structure has a considerable degree of order even
though it lacks global periodicity. For example, the structure of the silicate
glasses consists of tetrahedral structural units with SiO4 stoichiometry, dis-
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orderly connected together. The existence of this structural unit, which can
be observed using various experimental techniques, implies that the system
is not totally random.

Even the metallic glasses made of a transition metal and a metalloid (e.g.
NiB) show practically perfect local order. The boron atoms are likely to co-
ordinate with a first shell of nickel atoms, whereas they are correlated among
themselves at a first neighbour level only for high metalloid concentrations,
above 25 at.%. Furthermore, it has been experimentally ascertained that
there is definite topological organisation of the atom shells of nickel and the
first neighbour atoms of boron. Again, referring to medium range order, these
amorphous alloys present a high degree of structural organisation, to a scale
of around 2 nm.

However, we must remember that these observations do not have general
validity. Some amorphous transition metal alloys only exhibit a weak degree
of chemical organisation and no topological organisation.

The presence of chemical bonding between the atoms of a solid, resulting
in highly directional covalent bonds is usually responsible for local order. This
is true also in metals and ionic compounds, where chemical bonding adds to
predominant non-directional forces. Structural research on the amorphous
systems is intended to ascertain the degree of local order, what is responsible
for it, and why it shows up, however strongly. If we can answer these questions
we will gain detailed knowledge of each amorphous system and be able to
identify the relevant factors in a general theory for the non-crystalline phases.

It is important for us to specify the scale of length used to study the
structure. Bearing in mind that the various reciprocally incompatible ex-
perimental techniques used in structural research are efficient for lengths of
below and above 10 nm, we assume that lengths of this order are discrimina-
tory for a microscopic structural approach. For example, X-rays are sensitive
to structural changes of a few tenths of a nanometre (microscopic region),
whereas the optical microscope is efficient in observing lack of structural ho-
mogeneity over hundreds of nanometres, or even more (macroscopic region).
Thus, X-rays allow us to determine the position of the atoms around an ar-
bitrarily chosen “origin” atom, for example by the EXAFS technique. By
contrast, the meaningful lengths required in studying the re-crystallisation of
a glassy material are macroscopic and an optical microscope is generally used
to count the number of micro-crystals that have formed in the amorphous
matrix.

Here we shall concentrate on the microscopic structure of structurally
disordered systems, and we shall make an additional distinction between short
range order (SRO), which extends over a few tenths of a nm, and medium
range order (MRO), between 0.5 and 2 nm.

An investigation into the structure of non-crystalline materials has to
answer three basic questions:
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1) What elements are necessary for us to understand the amorphous struc-
ture?

2) What structural features do the various physical-chemical properties
depend on? It is essential we answer this question to be able to prepare new
materials with ad hoc composition for particular applications.

3) Among the specific elements in the structure of an amorphous solid,
which are relevant in describing the very nature of the glassy state of the
material?

In this area of research we encounter certain specific problems. The first
problem concerns what mathematical tools can be best used to represent the
disordered structure, in particular the topologically disordered structures, in
the most rational way.

We have to turn to statistical data such as the distribution in the number
of first neighbours. The very definition of first neighbours for a given atom
requires caution. Moreover, it is difficult to obtain the statistical data for
real systems. Diffraction experiments give us the interparticle distances but
not the spatial arrangements. For example, if we consider groups of three
atoms, the structure and size of the triangles they form are unknown and
have to be calculated approximately by starting from the distribution of
the interparticle distances. Furthermore, for fluids, the configuration taken
on by the particles is continuously changed by molecular motion. Therefore,
experiments and theories have to consider time, or configuration averages, for
the observed physical quantities. It is not easy to obtain these average values
in a correct way; ultimately, it reduces to solve the Schrédinger equation
when the potential energy varies irregularly from one point to another. In this
case the statistical information, such as the distribution of the interparticle
distances, is really useful.

Lastly, there is a practical hurdle to characterising samples of the amor-
phous systems. As discussed in Chap. 2, even though there are strong in-
dications that a material, prepared using various techniques, takes on non-
equilibrium configurations that, essentially, are indistinguishable, yet the his-
tory of a sample may considerably affect its properties.

The above difficulties slow down any progress towards understanding the
structurally disordered systems. Non-crystalline matter is some way off from
the conditions where we can apply the simplified procedures allowed by trans-
lational periodicity, or, at the other end of the spectrum, by the almost perfect
randomness that the kinetic theory of gases is based on.

4.2 The Distribution Functions

In the following discussion, we shall first refer, for simplicity, to an ordered
structure, namely an elemental face centre cubic (fcc) crystal where each atom
is represented by a hard sphere with a radius r. Each sphere is in contact
with 12 first neighbour spheres; as such the space is fully occupied. Hence, 2r
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shell order | R; [2r] | Z;
1 1 12
2 V2 6
3 V3 24
4 2 12
5 NG 24
6 V6 8
7 N&i 48
8 2V/2 6
9 3 36
10 V1o | 24
11 Vil | 24
12 2v3 | 24

13 V13 | 72
14 - -
15 V15 | 48
16 1 12

Table 4.1. Features of the atomic coordination shells of increasing order for the
fcc lattice.

represents both the spacing between the centres of two adjacent spheres and
the spacing between the positions of the first neighbours in the fcc lattice.

If we take a lattice site as the origin, 0, we build a sphere, and progressively
increase its radius R. As we look for the values of R we observe intersections
between the “explorer” sphere and the atoms of the structure being exam-
ined. The first intersection, with 12 atoms, is observed for R = Ry = 2r; this
coordination shell, for the first neighbours, is characterised by two param-
eters, Ry = 2r and Z; = 12. As R grows, and Ry = 2r\/2, we obtain the
following coordination shell, for the second neighbours, where Z = 6. Con-
tinuing, the third coordination shell is given by Rz = 2rv/3 and by Z3 = 24.
For the fcc structure we build a discrete sequence of coordination shells char-
acterised by the pair (R;; Z;), until i = 13. Generally speaking the spacing
between following, adjacent shells shortens as the order of the coordination
shell increases. In the fcc case, there are no neighbours for 2rv/14 and, suc-
cessively, for 2r/30. Table 4.1 gives the R; values and the distribution of the
neighbour number of order i, Z;, for the first 16 coordination shells in a fcc
lattice.

Once this construction is generalised, we obtain the so-called Radial Dis-
tribution Function (RDF), which is given the symbol J(z). For an ideal crys-
tal, with no defects or thermal noise, each atom is rigidly locked onto its
correct lattice site and J(x) is thus a summation of Dirac § functions, as
shown schematically by curve (a) of Fig. 4.1. In a dilute gas, the RDF has
an increasing monotonic trend since there are no interatomic distances where
particular interparticle correlation occurs. This condition corresponds to the
dashed curve (b) in Fig. 4.1. A non-crystalline system, whether liquid or solid,
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Fig. 4.1. Schematic trend in radial distribution function J(x): (a) an ideal crystal;
(b) a dilute gas; (¢) a non-crystalline condensed system. An origin atom is repre-
sented by the full circle. Two atoms, that belong respectively to the shells of the first
and second neighbours, here schematised by open circles, are shown to illustrate
the definition of the correlation distance between first neighbours, 1 and between
second neighbours, x2; v is the bond angle between first neighbour atoms

shows a distribution of irregularly spaced atomic positions. In this case the
qualitative trend for J(z) is the curve (c) in Fig. 4.1. At small z values J(z) is
practically null, reflecting the very high energy needed to overlap atoms. The
first peak lies at a distance from the origin atom corresponding to the radius
of the shell of its first neighbours. The position of the peak maximum is very
close (coincident, in low density systems) to the first and deepest minimum
of the atomic pair potential.

In the description of the microscopic structure, particularly in determin-
ing the short range order (0.2 — 0.5 nm), the distribution functions for the
interparticle distances are an essential mathematical tool. We can now define
some of the most commonly used functions.
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Let us consider N point-like, identical, indistinguishable particles, which
lie within a volume V. The position vectors relative to their centres, are { X; }.
The average number density is

No = N/V. (4.1)

We require each point in space to be occupied by a single particle centre,
or empty. Hence, only one particle centre may occupy one point. Using the
Dirac § function the single-particle density function is

N
(@)= d(@-X;) (4.2)

and
/ ¢*(x)dx = N. (4.3)
|4

In a single-particle approach, this means that ¢! (z) expresses the number
of ways the particle can be located in the set of positions X;, without regard
to the other particles.

The two-particle density function is

N N-1

Clor,z) =) Y 0@ — Xi) (w2 — X)) (4.4)

i=1 j#1

Equation (4.4) is null unless two particles are respectively located in X;
and X ;. We must obviously disregard any possibility that the positions of
different particles may coincide with each other. If we integrate over x, we
will obtain a contribution whenever the following condition occurs,

QICQZXj?éXi

thus
N
/V C2dxy = (N — 1) Za (1 —X;) = (N — 1) (x1). (4.5)

So, having fixed the position of a particle, as given by Cl(azl)7 ¢? is the
number of arrangements such that particle 1 is in any of the points, with
coordinates X ;, and particle 2 is located in any one of the other points in
the integration volume V.

If the particles under examination are atoms, then they are not spatially
locked into rigid positions, so we have to turn to the ensemble, or time aver-
ages. These are given as

(¢H(@)) = N'(z) .
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NY(x)dx thus represents the average number of particle centres in dx and,
as such, coincides with the probability of finding a particle in dx.

So
/ N'(z)dx = N (4.6)
1%

where N!(z) is referred to as the number density function or the one-particle
distribution function.

If each particle is given its own size, in order to conform to the hypothesis
that the various particles do not coincide with each other we have to consider
that N'(z)dx must be less than the unity. By taking the average of (4.5) we
obtain

d:lil /‘/N2($1,$2)d$2 = (N — 1)N1<CL'1)diL'1. (47)

In (4.7), N?(x1, ®2)dz; dzs represents the number of configurations with
the two particles 1 and 2 respectively in dV; and in dV5 at the very same
time. This is clarified when we notice that the result of the double integration
for N2 is N(N —1), namely the number of pairs that can form in an ensemble
of N elements (when considering pairs 1-2 and 2-1 as distinct pairs).

We define N? as the two-particle distribution function.

In general N2(zq,x2) # N'(x1) N*(x2) since the probability that x5 will
be occupied may be influenced by the probability that x; will be occupied.
This effect is more significant the more effective the interparticle forces are
on the interval (z; — x2).

We may define the pair correlation function g2(x1,xs) as

N2(x1,22) = N ()N (22) g% (21, 22) (4.8)

As (1 — z2) tends to infinity, we expect g2 to tend to the unity, since the
reciprocal interparticle influence cancels out.
If the system is homogeneous,

N(zy) = N'(x2) = N

and as a consequence
N2(z1,25) = (No)” g% (x1, x2). (4.9)
It is often convenient to put (x2 — 1) = x and make the origin coincide

with the position of particle 1. In this case, egs. (4.7) and (4.9), supposing
that particle 1 is fixed in its official position, give us

NO/VQQ(:E)dac =(N-1)-1. (4.10)
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The interpretation of (4.10) is that Nog?(z)dx represents the average
number of particles and thus the probability that within the elementary vol-
ume dx one particle will lie at a distance x from another particle located at
the origin.

It may now be convenient for us to count also the particle located at the
origin; in this case we define

Z(x) = Nog*(x) + o(x) (4.11)

and
/ Z(x)dx = N. (4.12)
1%

Since the disordered materials may be considered isotropic, even though
they are not usually homogeneous, we may then put forward the following
simplification

9*(x) = g*(|z|) = g(x). (4.13)

In the last term of (4.13), apex 2, which gives the order for the considered
correlation, has been suppressed since g(z) conventionally indicates the pair
correlation function.

From a formal point of view we can immediately extend the treatment
to three, or more, particles. The probability of finding three particles in da;
dzy dxz at the very same time is N3(zy, 2o, £3) dz day dxs. Now,

N3(xy, @y, 3) = N (1) N (20) N (223) 95 (21, 22, 23) (4.14)
where g3 is the triplet correlation function. If the distance among particle

triplets in amorphous materials is large, ¢> tends towards the unity. In a
homogeneous system,

N* = (Np)* ¢ (4.15)

If we use the previous definitions and results we immediately find that
/N3da:3 = (N —2)N?(xy,xs) (4.16)

//N?’dazgdazg = (N —1)(N - 2)N'(x) (4.17)

///N3dw3dm2dm1 = N(N —1)(N —2). (4.18)
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When we repeat the procedure we find that the result of integrating
NN(zy...x,,) is N!, namely the number of ways N distinguishable particles
can be located in the same number of distinct positions.

Each higher order correlation function supplies us with better structural
information about the system under examination as compared to the corre-
sponding lower order function. In particular, if we take (4.16) as an exam-
ple, we will notice that an infinite number of triplet particle arrangements is
compatible with the same pair distribution function. This result immediately
leads us to understand how badly detailed the information contained in g(x)
is as regards a disordered structure. Unfortunately, g(z) often represents the
maximum amount of information that can be obtained from the experiment.

The very problem of obtaining from the experiment, particularly from
diffraction, a univocal picture of the arrangements of atoms, has led to the
development of structural models.

The average number of particles found in a homogeneous isotropic spher-
ical shell with radius & and thickness dx, centred on a particle chosen as the
origin 0, may be expressed as

/ Nl(wl)Nl(:cg)g2(w1,xg)d:cld:cg
0 Jshell

= Nl(:cQ)/é(ml —0)g*(x1, x2)dz 1 day (4.19)
shell 0

since N!(z1) = §(x; — 0), provided, of course, that origin 0 has been fixed.
Now, considering the integration over the shell, where the integrand is

N1<$2)92(£E2,0)d3§2

and if we take xs = x as the only meaningful variable, we obtain
N(z)g*(z)dx.
shell

Furthermore, since the system is homogeneous,
N'(x) = Ny = constant

and for isotropy we consider |x|. Given these hypotheses, we obtain

Ry
N(z)g*(z)dx = / 412® Nog(z)dz (4.20)

shell R

where R, and R, are respectively the minimum and the maximum radii of
the shell. If a shell has infinitesimal thickness, the pair distribution density
(4.20) reduces to

4rx? Nog(x)da.
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If we now substitute the density function o(z) for g(x), to indicate the
atomic pair correlation function, then

42 Nog(z) = dna’o(x) = J(x) (4.21)

Literature usually refers to r instead of x; J(x) is called the Radial Dis-
tribution Function (RDF).

Figure 4.2 schematically shows the trend in microscopic density o(z) in
a disordered system of identical particles, starting from an arbitrarily chosen
atom. It will be noticed that where, by definition, no interatomic correlation
occurs, namely for values of x below the average interatomic distance between
first neighbours, x1, o(x) is zero. At the other end of the spectrum, for large
values of x, where the material may be considered homogeneous, the absolute
value of g(x) coincides with the average value for the macroscopic density of
the material, gy. In the region between these two extremes, in a glassy system,
the density function, when represented as a function of x, has an oscillating
trend. The x values that correspond to the peaks in function g are interpreted
as the average interatomic distances. The radial distribution function, in turn,
has a null value below the first peak, centred on x, like the analogous peak
of o(x). Furthermore, as can be seen in Fig. 4.1, J(z) oscillates around the
parabolic curve for the trend in the average density 4wz g,,.

Attribution of any precise physical meaning to J(z) has limited meaning,
as does any procedure to deduce structural parameters of a non-crystalline
system, starting from the bare analysis of the radial distribution function.

p(x) 4

Fig. 4.2. Trend in the microscopic density function, o(z), defined for a structurally
disordered system of identical atoms, starting from an arbitrary origin atom. For
distances x less than the average interatomic distance between first neighbours, x1,
o(z) is null
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First of all, J(z) is a one-dimensional representation of a three-dimensional
structure; as such, the information contained in it is a spatial average, and
is only valid the more isotropic the system is. Moreover, from the RDF defi-
nition (4.20), the integral of a given peak gives us the effective coordination
number, Z, for that atomic shell. The first peak is the best defined one. In
non-crystalline materials, the width x?2 is due to static disorder (topological
and/or chemical), and corresponds to a distribution of the interatomic bond
lengths, Xﬁ and to thermal disorder y?

Xa = X3+ Xi- (4.22)

The position of the second peak in the J(z) function gives the average
interatomic distance between second neighbours zy. According to Fig. 4.1,
once both parameters are known, we can calculate the bond angle v

g = arcsin <2m;1> (4.23)

The severe limitations to the radial distribution function are already high-
lighted at the level of the second peak. In an amorphous system, the second
peak is consistently broader than the first peak. This can be attributed, at
least in covalently bonded solids, to a change in the bond angles of up to 1/10

G (x)
(at. nm™)
(x10%) 4

0 . 0.2 ‘ 04 0.6 x(nm)

Fig. 4.3. Reduced radial distribution function, G(z), for a structurally disordered
condensed system
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of the equilibrium value. This contribution has to be added to the contribu-
tion from thermal disorder. More realistically, we have to consider that, for
an amorphous solid, the area right below the second peak depends also on
correlations of order higher than the second. The role of these contributions
is highlighted by the fact that the second J(x) peak does not fall to zero on
the side of increasing X values.

Taking the J(z) trend as a whole as x increases, we notice that as the
order of the considered peak of the radial distribution function increases,
the relative weight of the higher order pair correlations contributing to that
peak also increases, thus making any simple geometric interpretation of the
characteristic properties of J(x) impossible right from the third peak. All the
problems discussed so far make it necessary to introduce structure modelling.

The reduced radial distribution function (RRDF) is often used without
changing the supplied information:

G(z) = drzfo(x) — 0o] = @ — 4rz,. (4.24)

The function G(x) (Fig. 4.3) is said to be “reduced” because it oscillates
around zero instead of being an increasing, or decreasing, function of z, like
J(x) is. In the region of radial values below z1, where J(x) is zero, G(x)
decreases linearly like —4mag,.

G(z) for large values of x is asymptotic to zero, thus indicating a lack in
correlation; the information on the average density of the material is deduced
from the slope of G(z) in the origin.

4.3 Diffraction

Diffraction effects are associated with any kind of wave propagation when
the waves meet an obstacle whose size can be compared with the incident
radiation wavelength. When the scattering centres are atoms organised in
condensed systems, X-rays, electrons and neutrons, are probes whose wave-
length may be in the order of atomic sizes.

X-ray diffraction is commonly used in structural analysis, given the ease
by which a collimated beam of adequate intensity is obtained. An electro-
magnetic wave interacts with the electrons of the target; an X-ray photon
is absorbed and excites the electronic sub-system that immediately is de-
excited via emission of an X-ray photon. In the case of scattering from a
single crystal, X-rays with wavelength A, elastically scattered by families of
atoms lying on regularly spaced planes, give rise to constructive interference
whenever the Bragg equation holds

2dsin @ = nA (4.25)

where d is the interplanar spacing and n an integer. We only observe beams
of diffracted X-rays for values of A and of the scattering angle 26 such that
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(4.25) is fulfilled, as shown in Fig. 4.4. Using a sensitive screen placed on
a plane normal to the direction of the monochromatic incident beam, we
observe a series of sharp spots distributed in a complicated, though highly
regular array. From the study on the position of the spots and their variation
in intensity we can determine the structure of the crystal.

Collections of crystals oriented in a random manner, just like in the poly-
crystalline systems, and subject to X-ray diffraction, produce typical concen-
tric circles, with sharp edges, of varying intensities from each other. Lastly,
in the case of an amorphous material, we observe diffuse halos.

When there is no structural periodicity the Bragg law cannot be used to
interpret the experimental data and the diffraction conditions from a disor-
dered structure have to be obtained from the very beginning.

We shall specifically examine the case of X-ray diffraction from an amor-
phous sample. The radiation is scattered by the electrons in the atoms of
the material. The coherent scattering due to a single electron constitutes the
fundamental process. We suppose that the X-ray wavelength is far different
from the values that correspond to the X-ray absorption edges for the exam-
ined material. In turn, the electron bonding energy is very low compared to
the X-ray photon energy; thus, a fairly simple classical representation of the
interaction gives us results that are equivalent to the results obtained from a
complete quantum analysis.

We shall start by taking a single electron and consider it as a point charge.
The Thomson relation describes its behaviour as a scattering source. We shall
assume hereafter that the scattered waves may be considered plane waves,
described by the pertinent wavevectors k.

detector

Fig. 4.4. Typical geometry in a diffraction experiment; three atomic layers are
represented
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" (1+cos?20)
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Fig. 4.5. Polar diagram of the angular
factor
(14 cos® 6)

As far as coherent scattering is concerned, where the radiation wavelength
is conserved, and using an unpolarised beam, the differential scattering cross-
section is

do/d2 = F%(1 4 cos?6) /2. (4.26)

The angular factor (1 + cos? §)/2, indicated as ©, is called the polarisa-
tion factor. The corresponding polar diagram is represented in Fig. 4.5. The
explicit form for the term F' in (4.26) is

F = (e*/4megmec?)

where e and m, are the electron charge and mass, €q is the dielectric constant
of the vacuum and c the speed of light in the vacuum. Given this, we suppose
that an electron located at point P will cause radiation of intensity U to
be scattered through an angle 20 (Fig. 4.6). The intensity of the scattered
radiation observed at P’, which is distant X from P, is

Up = (U/X?)F?0. (4.27)

If, more realistically, we now want the electron charge to be distributed
uniformly within a volume dV', as odV, and not concentrated at one point,
then the classical scattering induced by the “extended electron” will be odV
times the scattering amplitude from the point-like electron. In order to con-
sider the difference in optical path between scattered rays, originating from
different points of the charge distribution at distance x from an arbitrary
origin (e.g. the centre of symmetry for the system, which, in the case of an
atom, coincides with the centre of the atom), the scattering intensity becomes

(U/X*F?0 = 5,55 = |S.|* (4.28)

where the scattering factor S, is given by
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Fig. 4.6. Scattering geometry for radiation of intensity U scattered from a point-
like electron located in P

Se = /,Q(:n)exp [(27ri/A)(E~ac) dv. (4.29)

In (4.29), the vector difference between the two vectors ks and k; for, re-
spectively, the scattered radiation and the incident radiation, is € = (ko —k1),
and E is the versor, £/ |€|. Since the wavelength is conserved in coherent
scattering, then ko and k; have the same magnitude, (27/)\). Referring to
Fig. 4.7, and using trigonometric relations, we obtain the wavevector magni-
tude |€|, where

|€] = 2(27/\) sin 6.

If we give this scattering wavevector the usual symbol k, then we obtain
in vectorial form

4 -
k= 7” sinf €. (4.30)

Neutron scattering literature refers to @ as the scattering vector. For
simplicity, we shall use the symbol k even when we discuss the results of
neutron scattering experiments.

We adopt the simplified, though widely applied, hypotheses that the sym-
metry is spherical, thus o(x) = p(x) and the origin coincides with the origin
of x. If we choose a set of three spherical coordinates z, n(0 < n < 2m),
»(0 < ¢ < ), and we integrate with respect to n, then the scattering factor
for a single electron, S,, becomes

/ / x) exp [ikx cos @] 2m2? sin ¢ dy da. (4.31)
=0 p=

If we then integrate this over ¢ we obtain

oo

Se = / dra? o(x)

0

sin kx

dz. (4.32)
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ki

Fig. 4.7. Geometrical illustration to de-
fine the scattering wavevector &

For the general case where the atom contains ¢ electrons we simply assume
that the electron distribution has spherical symmetry. This is true for heavy
atoms where the fraction of valence electrons, involved in non-spherically
symmetric chemical bonding, is small. As such, the atomic scattering factor,
or form factor, is simply the summation of the individual amplitudes

° sin kx
S = ZSQ,Z» = Z/o dra? o, (x) . dz (4.33)

and the total scattered intensity Uy is

Uy = (U/X?) F?0 = S5* = |S|*. (4.34)

When k is small, the value of [(sinkx)/(kx)] is around unity and the
form factor (4.33) gives us the number of electrons in the atom. S tends to
the atomic number Z when k, and thus (sind)/A tend to zero. The form
factor dependence on k is strong, and it is a characteristic feature of each
element. The reason is that atomic sizes are comparable to X-ray wavelength;
thereby intra-atomic interference plays a relevant role, resulting in the above
dependence of S on k. This dependence is tabulated in the literature for all
atomic species. As an example, the typical trends for oxygen and hydrogen
is given in Fig. 4.8. This property is characteristic of X-rays, whereas, in the
case of neutron diffraction, the scattering amplitude is independent from k
unless there is a magnetic scattering contribution from unpaired electrons.

For a distribution of n atoms, the scattering intensity is given by the sum
of the scattering amplitudes from each of the n atoms in the @, positions,
multiplied by their complex conjugates, thus

(U/X?)F?0 = ZS” exp [(271'1/)\)(3- :Bn)}

xS Sy exp {(27ri/>\)(g- wm)} . (4.35)
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(
O N b O 0 O

10 30 50 70 Fig. 4.8. Dependence of t‘he X-ray atomic
) form factor S(k) on scattering vector, k, for
k(nmM™)  oxygen and hydrogen

n (4.35), which is valid for both crystalline and amorphous materials, we
assume that the form factors have real values. In crystals, the translational
periodicity implies that for any two atomic position vectors, x,, and ,,, there
is a reciprocal lattice vector k such that k = x,, — ,,. In this case, the sums
in (4.35) constitute a geometrical progression that can be evaluated. In an
amorphous system, with no simple relation between atomic position vectors,
the sums are left as they are and we can only re-write equation (4.35) in a
more compact manner, with the notation (wn — ccm) = Tum

U/X)F20 =33 5,5, exp [(m/x)(& : xnm)] . (4.36)

n

Figure 4.9 schematically shows the geometrical relation between &, and
E If we can assume that the amorphous solid is isotropic, the x,,, vector
spans all the orientations with the very same probability. It is possible to
calculate the orientational average of the exponential term in (4.36) through
an integration over ¢, obtaining for the intensity of the scattered radiation

sin kx,m

<exp [(Qm/A)(g.mnm)D = (4.37)

kxnm
When we substitute the result in (4.37) for (4.36), the intensity of the
radiation scattered by a random distribution of atoms is

(U)X F?6 = ZZS s, SR Znm (4.38)

kZnm

Equation (4.38) is often called the Debye equation and is the simplest
form, under very general conditions, to express the angle and the wavelength
dependence (see (4.30)) of the average scattered intensity from a completely
random spatial distribution of identical atoms.

It is now necessary to specify what kind of atom we are considering in
the analysis. In the simple case of an elemental system, the Debye equation
can be re-written as
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Xm

xnm

Fig. 4.9. Geometrical relation between & and pm,
defined as the difference between the two position
vectors €, and T,

(U/X?)F?0 = ZSQ S iy (4.39)

kx
n m#n nm

When we introduce the density function o,, (2., ) for the origin atom n,
still on the assumption of spherical symmetry, and by integrating over the
sample volume, we obtain

(U/X?)F20 = Zs? Zs? / 0, () ST gy (4.40)

KZm

The microscopic density function, averaged out on the n atoms of the
sample is

{on(Tnm)) = o(z) (4.41)

If the macroscopic average density is gy, when we add and then we sub-
tract a term in g,, we obtain

(U/X?)F?0 =
sin kx
ZS2+ZS2/4TI'$ o(z) — 0] o dz
k
+252/47T$2Q05Hk1xxd$. (4.42)

The sum over n gives us N, the total number of atoms in the sample. The
quantity [o(z) — g,] tends to zero for distances greater than the interatomic
distances relative to the atoms within the first three-four coordination shells.
This confirms that the lack in long range order, and thus the lack in strong
correlations that extend over great distances, make the density function o(x)
converge to the average macroscopic density of material g,, for sufficiently
large values of x.
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0 5 10 15 Fig. 4.10. Qualitative trend in the total
1 scattering intensity, I(k), as a function
k (nm™') (X10) of the scattering vector k, for an amor-

phous film (adapted from [4.1])

In integrating the second term of (4.42), the contribution of the scat-
tering centres which are neighbours with each other and between them and
the origin, is dominant, whereas the third term represents the interaction
between atoms that are a long distance apart, and thus consists in small
angle scattering. If L indicates the sample size, then the integral is usually
limited to values |k| < (27/L) of the scattering vector. Given L values are
in a few millimetre range and the X-ray wavelength in a few tenths of a
nanometre range, the third term of (4.42) includes X-ray scattering at very
small angles, so that the primary (transmitted) beam obscures the scattered
beams.

Equation (4.42) thus reduces to the total scattering intensity, I(k), so

I(k) = (U/X*)F?0

9 o [ sin kx
=NS*+ NS / drz= [o(x) — 04) de. (4.43)
0

The upper integration limit indicates that the typical size of the sample
is much greater than the atomic size. In Fig. 4.10 I(k) is the curve we ob-
tain directly from the experiment after we have subtracted the incoherent
scattering contributions, such as those due to Compton scattering.

Currently, energy dispersive detectors are available that can measure the
coherent contribution to scattered intensity, I'(k) only. In the case of X-
ray diffraction I(k) has an oscillating trend around the curve of the squared
atomic scattering intensity, S?, which strongly depends on the value of the
scattering vector, k (see Fig. 4.8).

A further simplification of (4.43) is obtained by introducing the reduced

scattering intensity F(k)
/ 52} : (4.44)

F(k), whose schematic trend is given in Fig. 4.11, oscillates around zero
instead of being an increasing, or decreasing, function of k. If we express the

(U/X?) F?0

Q2
N S

F(k):k{
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0 50 100 150 scattering intensity, F'(k), as a function of the
® scattering vector k, for an amorphous film
k (nm™) (adapted from [4.1])

first part of (4.43) as a function of F'(k), then using (4.44) we obtain

(U/X?)F?0 = <52€;(k) + 52) N. (4.45)

When we substitute (4.45) in (4.43) and we use the definition for G(z)
provided in (4.24), then

Pk = /0 ~ Ga) sin (k) do. (4.46)

This equation gives us the link between a quantity that is directly obtain-
able experimentally, such as F'(k), and a function that describes the structure
of the disordered system in real space, namely G(z).

Given its structure, (4.46) can be Fourier transformed, giving, upon in-
version

o0
Glz) = (2m)~1/2 / F(k)sin (kz) dk. (4.47)
0

Equation (4.47), from which we obtain the correlation function in real
space, in principle requires experimental data for infinite values of the scat-
tering vector k. Since, in practice, it is impossible to fulfil the condition, this
is a major difficulty when analysing experimental data. However, the analysis
of the reduced scattering intensity, F'(k), often supplies us with more infor-
mation than we can obtain from the radial distribution function when we
compare the structure of amorphous systems that are similar to each other.
This typically occurs with samples of the same material but with slightly
different stoichiometries. The reason for this is clearer when we introduce the
structure factor &(k) which is given as

&(k) = [(U/X*)F?0]/NS? (4.48)

The dividend of &(k) is defined in terms of the scalar product (k- x) and
includes the k& dependence. The structure factor is independent of the kind
of radiation used, due to the normalisation by the 52 factor, and oscillates
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about an average unity value. If we now express F'(k) in terms of the structure
factor we obtain

F(k) = k[S(k) — 1]. (4.49)

The relevance of high k values in F(k) is emphasised in (4.49). When
analysing the data for &(k), errors could be made that affect both the func-
tion ordinate and the abscissa. The first does not alter the structure or the
characteristic properties of G(x) (see (4.24)), but it affects the estimate of the
coordination number Z. In amorphous metallic systems the latter is defined
to an accuracy of a few percent. The resolution for G(x), Az = (27/ |kmax|),
which is determined from the position of the abscissa starting from the ex-
perimental value of kp.x, is usually between 0.08 nm, when we use Cuk,
radiation, and 0.01 nm for high values of ky.x, typically achieved with X-
rays from a synchrotron, with A ~ 1072 nm and kpax ~ 600 nm™".

High energy (larger than 30 keV) X-ray diffraction with third generation
synchrotron sources such as those at ESRF (Grenoble, France), SPring-8
(Harima, Japan) and APS (Argonne, USA), together with the introduction
of wigglers and undulators allows for higher resolution in real space due to
a wide range of k, smaller correction terms, particularly concerning absorp-
tion corrections, reduction of truncation errors, besides the possibility to
explore extreme environments, including high temperatures and pressures. A
direct comparison between X-ray and neutron diffraction data is instructive.
As an example, in the prototypical strong amorphous system SiOs, interfer-
ence functions were recorded using X-ray photons of wavelength 0.033 nm
(37.8 keV) and 0.02 nm (61.7 keV) respectively at SPring-8. The X-ray and
neutron-weighted interference functions were compared to each other over
the k interval up to kmax = 360 nm~!. Apart from a consistent, expected
difference between the two functions in the range from 10 to 110 nm™1,
due to the difference in weighting factors, above 120 nm~! the oscillations
both in intensity and in period of k[Sx (k) — 1] nearly coincide with those of
k[Sx(k) — 1] because the values of X-ray and neutron weighting factors for
the Si-O correlation are comparable.

Using standard X-ray sources the procedure used to convert data in the
reciprocal space into correlation functions in real space becomes more and
more critical as the interval of accessible experimental values for £ becomes
narrower. In practice, let us consider (4.30), by which the diffusion vector
is defined as |k| = (4mwsinf)/A. The highest value for k is obtained when
# = 90°, and this depends critically on the wavelength A of the X-rays used.
For Mo K, radiation, A\ = 0.071 nm, which corresponds to |kmax| = 177 nm 1!
(for Cu K,, we obtain |kmyax| = 81.5 nm™1).

The transformation from reciprocal space to real space would only be
perfect if (see (4.46)) we knew F'(k) for an infinite set of k values. In prac-
tice, the data is interrupted at a finite k., value; as such we have to mul-
tiply F(k) by a truncation function T'(k), which is defined in such a way
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as to obtain a unit value for k < kpax and null for k& > k. the result
is

/

G (z) = (2m) /2 /0 b F(k)sin (kz) dk

~ (2m)"1/? /OO F(k)T (k) sin (kz) dk. (4.50)
0

Obviously, when using this procedure we introduce truncation errors in
the Fourier transform, namely in G(z). The weight of these errors is less
the higher the value of kp.x, i-e. the less the wavelength of the X-rays
used.

When examining the limitations to the procedure used to define G(z),
we note that the curves for F'(k) are obtained directly from the measured
data, and as such are not affected by any spurious effects of the Fourier
transformation procedure. The drawback to observing the correlation curves
in reciprocal space is that we cannot immediately derive from these curves
any structural correlation in real space. We understand this problem when
we study the trend in the contributions to F'(k) from correlations of dif-
ferent order, and compare them with the contributions from the very same
correlations to G(x).

With reference to an ideal elemental disordered system, at low tempera-
ture, and if the interatomic correlations are confined to the first correlation
shell (see Fig. 4.2), with correlation length z1, then G(x) gives us a unique
peak, centred on x; for simplicity we shall assume this is a lorentzian peak,
so that

1

T ar

. 1/2
G(x _
) X%*‘(—x—xl)Q]

where the peak width, x?, is due to static disorder alone. Thus, after Fourier
transforming, F'(k), (or &(k)), is a dampened sine curve,

F(k) = exp [—kx,] sin kzq

where x; is the damping degree. Using the relation k; = (27/x1) we obtain,
from the period k; of the sine curve, the distance x; between first neighbours.

Using the same assumption made for the first coordination shell, we could
deal with the effect of another shell of higher order, with bond length x5. The
contribution from this structural correlation to F'(k) would be a sine curve
with ko and x, parameters. When the values for k are small, F'(k) would have
a complicated structure, as a result of the mixing of the two contributions.
On the other hand, the width of the coordination shells increases with their
order, namely x? > x? for ¢ > j (see Fig. 4.2), and the contribution to the
reduced scattering intensity of increasingly ill defined structural coordinations
would be progressively lowered. Based on this hypothesis, for large values of
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k, the structure of F'(k) should depend only on the correlation between first
neighbours and would thus be a simple sine curve of period (27/z1), from
which we could deduce the bond length x;.
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One notable example of structural correlation which can be interpreted
with the above hypothesis is given by the transition metal-metalloid amor-
phous alloys where the structure factor G(k) has a first, sharp peak centred
around 20-30 nm~!, as shown in Fig. 4.12. On the other hand, for “large” dis-
tances, i.e. greater than approximately twice the correlation distance between
first neighbours, the radial distribution function shows oscillations that are
almost periodic. These correspond to the characteristic repetition distance of
the diameter of hard spheres, typical of quasi-random packing of spheres. As
such, we obtain an initial approximation of the structure (Fig. 4.13). Gener-
ally speaking, on the other hand, the first sharp peak in F(k) or in &(k) does
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not correspond to any simple structural correlation in real space; indeed, we
cannot associate its position solely to the distance between first neighbours.

The above scattering analysis particularly refers to X-rays; if the structure
of non-crystalline materials is probed by electron scattering, thin samples
are irradiated in situ in an electron microscope with an electron beam of
energy between 50 and 200 keV, which corresponds to wavelengths around
5 x 1073 nm.

The experimental geometry requires us to keep the electron wavelength
constant. The scattering angle is varied by deflecting the electron beam with
a scanning coil.

The form factor for electron scattering is

S- (k) = (2mee®/12) {[Z — S (B)] /) (451)

where m, and e are respectively the electron rest mass and charge, and Sy (k)
the corresponding form factor for X-ray scattering.

Coulomb interaction makes the scattering much stronger than when us-
ing X-rays. This implies that multiple scattering contributes significantly to
the signal if the thickness of the sample exceeds a few tens of nanometres.
Moreover, a strong background signal is inevitable due to electron energy-loss
anelastic processes.

The need to use very thin samples, usually obtained by mechanical and
chemical procedures, is a considerable practical problem; we could cause mod-
ifications in the structure of the thin film compared to the thicker samples
we start with. Particularly, in the case of experiments on vitrified materi-
als, the relaxation processes that occur in a structure which is in any case
metastable, are highly dependent on the internal stresses that are inevitably
induced in the thin sample, and can greatly affect the structure observed
under the microscope.

The validity of the structural analysis of disordered systems so far exam-
ined is limited to monatomic systems. However, this is of limited practical
use since most of the amorphous systems are polyatomic metallic alloys, or
compounds, which need a more complicated treatment.

We shall now examine the simplest case of a binary compound XY. Ob-
viously a single correlation function in real space is insufficient to adequately
describe the structure. We require three partial functions to respectively treat
the X — X, Y —Y and X —Y pair correlations. Thus it is necessary to carry
out three different diffraction experiments to achieve, in a non-ambiguous
way, three functions for the considered atomic pairs. Depending on the na-
ture of the compound constituents, X-ray scattering, neutron scattering and
electron scattering can be jointly performed on the same sample. If we use
neutron diffraction we can examine a number of isotopically substituted sam-
ples, all with the same stoichiometry, though with different neutron scattering
lengths, b. In any case we have to perform three scattering experiments, each
with different structure factors, or scattering lengths, to obtain the three
partial correlation functions.
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We are thus talking about a strategy which is realistic in the case of
binary compounds, but cannot be used for more complicated systems be-
cause a compound with n constituents requires n(n + 1)/2 partial functions.
The number of possible distinct pairs in a system with n atomic species

is (g) to which we must add the number of homologous pairs X — X,

Y — Y...., which are n. As such the number of radial distribution functions
is

n n! n(n—1) n(n+1)
(2)*7‘@_2)!2*"2*”2

So, for materials with more than two constituents the only way we can
carry out a possible structural analysis is to adopt a technique that specif-
ically examines the chemical short range structure. The best way of doing
this is usually to use EXAFS spectroscopy (see Sect. 4.4).

In scattering experiments on multi-component systems the drawbacks to
the information obtained from experiments on elemental systems persist; in-
deed, these drawbacks are even worse for samples with a complicated com-
position. The information, both regarding the spatial atomic arrangement
and the chemical correlation, on the system is obtained indirectly. We can
obtain a good definition of the bond length between first neighbours, but
often doubts persist even about the coordination number for second neigh-
bours, which can be determined by Fourier transforming the intensity data
(see (4.47)).

For a polyatomic system with n constituents (4.43), which holds for
monatomic systems, is formally generalised as

(U/NX?)F?0 =Y ¢;S?
i=1

+iiclcjss / [Q”' )] (W) d

=1 j=1

n 2 %) .
- [Z ciSl-] / 4ra? o, (sm kx) dz (4.52)
P 0 kx

where ¢; and S; are the atomic fraction and the scattering factor for element
1, and Qij(.’[:) is the number density of j atoms that, in the unit volume, are
found at x distance from any 7 species atom.

The reduced scattering intensity is thus rewritten as

(Uu/x?)F?0 9
F(k‘) —k N — <S >

= /OOo 4rz? [o(x) — 0o) (T) da. (4.53)
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In this equation we use the functions
(S) = ZciSi; (S%) = ZciS?; o(z) = Zpijgij(x)/cj. (4.54)
i=1 i=1 ij

The weighting factors p;; are given as p;; = ¢;¢;5:5;/ <S>2.

The similarity between (4.53) and (4.44) for elemental systems is formal;
the scattering factors in (4.53) are weighted and p(x) depends on the very
scattering factors through the weight factors p;;.

It is useful to introduce the partial interference functions, I;;(k), which

are widely used in the literature, as

Lin(k) —1 = /Ooo Ama? [(%@) - go} (b”;fx) da (4.55)

where the symmetry relation I;; = I;; is fulfilled since o;;/c; = 0;;/c:-
Thus, in the case of practical interest of a binary compound whose con-
stituents are given as 1 and 2, we can write the equation for the reduced
scattering intensity as
(U/INX?)F?0 — (S?) = 57 [T11(k) — 1]
+c555 [Ina (k) — 1]
+261025152 [Ilg(k) - 1} . (456)

The equations thus far given constitute the Faber—Ziman formalism.

Still referring to the partial interference functions (4.55), Bhatia and
Thornton introduced three new correlation functions for binary compounds;
the number-number, Sy n(k), the concentration-concentration, Scc(k), and
the number-concentration, Sy (k). These three functions are interesting be-
cause of their physical meaning.

The number-number correlation function is

SNN(k) = C%Ill(k) + C%IQQ(k) -+ 20162]12(k) (457)

It oscillates about the unity when k tends toward infinity, and represents
topological SRO. When we transform Sy (k) using the Fourier transform
we obtain the number-number distribution function in real space

(2m) 1/ / k[Snw (k) — 1] sinka dk = 47z [ox (%) — 0o] (4.58)
0
There is a formally simple relation between the number-number distri-

bution function and the corresponding partial quantity in the Faber—Ziman
formalism

onn (@) = c101(x) + c205() (4.59)
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where o;(7) = Zle pij(x) respectively, for j =1 and j = 2.
The concentration-concentration correlation function Scc (k) is

Scc(k) = C1Co {1 + c1co [Ill(k) =+ Igg(k‘) — 2[12(]{:)]} .

Scc(k) describes the chemical SRO and, for a random distribution of
atom species 1 and 2, Scc(k) = cica. If not, Scc (k) has an oscillating trend
about this value and tends to it when k tends to infinity. Considering the
quantity Scc(0) — cica, if it has a positive value then the atoms of each of
the two species tend to coordinate with first neighbours of the same species;
thus clustering results. If, though, Scc(0) — c¢1c2 has a negative value then
it is likely that the atoms of a species prefer to coordinate with atoms of the
other species; thus we have chemical SRO.

Again, using the Fourier transform we obtain, for goc (),

(2m)~'/2 / k{[Scc(k) — cica] Jeica} sinka dk = dnzoce(a)
0
whose relation with the Faber—Ziman correlation functions is given by

0cc(®) = c201(2) + c105(7) — 012(2) /2 (4.60)

where the definitions already given for Sy n (k) are used for g, and g,.
We rewrite (4.60) as

occ(x) = [ea1(2) + cro5(2)] ()

where we have introduced the Warren—Cowley generalized chemical short
range order parameter

012(7)
ca[e201(2) + croo(2)]

alz) =1-

The radial correlation function for concentration 47z2oq () is modu-
lated about zero. Negative peaks, or minima, correspond to distances where
unlike atom pairs prevail (C'SRO), whereas positive peaks, or maxima, cor-
respond to distances where like atom pairs prevail.

Since for both oy (z) and 4720 v (2) the first peak only is usually well
defined we can rewrite the chemical short range order parameter with explicit
reference to the number of atoms in the first coordination shell,

Ny

“a=rT c2(caN1 + ¢1No)'

(4.61)

Here N5 is the number of atoms of species 2 first neighbours of a species
1 atom, so
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Tt

N; = ZNz‘j; Nij :/ 47rx29ij(x)dx
j=1 @

b

where x, and xy are respectively the values for the bottom and top radii of
the first coordination shell. Only when oo (z) = 0, can (4.61) be reduced to
the Warren-Cowley C'SRO parameter.

The term oy () gives us the correlation between the density fluctuations
and the concentration fluctuations; oy () has a null value for g, (z) = 05(x),
a condition that occurs in a substitutional binary alloy with atoms of identical
sizes. In this case, then, Sy (k) is obviously also null,

SNC(k) = C1C2 {[01[11(]{,‘) + Cg[lg(k)] - [lezl(k) + Cg[zg(k)]} . (462)

The Fourier transform of Sy (k) is oy (), thus
(2m)~1/2 / kESnc(k)sinkz dk = 4rzoync(z). (4.63)
0

Generally speaking, oy (z) has an oscillating trend about zero and is
null as = tends towards infinity. The link with the Faber—Ziman correlation
function is

one () = crcafo) (2) — oa(2)]. (4.64)

When we invert this equation we obtain the reduced scattering intensity
(see (4.62)). The procedure is formally simple; only if the factors p;;, and
thus .S; and S;, all have the same dependence on, or are independent from
k, no approximations are introduced in the information on the real space
correlations. The second condition (S; = b;), holds for neutrons whereas none
of the conditions are generally satisfied for X-rays since .S; are functions of k.
Using the Bhatia—Thornton partial functions, again for a binary compound,
the scattering intensity is given as

(U/X?) F?0
N

(S)* S (k) +2[S1(k) — Sa(k)] (S) Sne (k) +
+[((5%) = 187°) ferca) Sccth). (1.65)

As an example, we shall now examine the results from the structural
analysis of a disordered binary system. We shall study the amorphous alloy
Ni5oNbgg prepared in the form of ribbons using ultra-fast quenching from the
melt.

Both neutron scattering experiments, using the isotopic substitution
method, and X-ray scattering were performed. The analysis shows up both
the Faber—Ziman (Fig. 4.14, part (a)) and the Bhatia-Thornton (Fig. 4.14,
part (b)) partial structure factors. On examining part (a) of Fig. 4.14, it is
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Fig. 4.14. Comparison between trends in partial correlation functions for amor-
phous NiNb: (a) according to Faber-Ziman, I;;(k); (b) according to Bhatia—
Thornton, Sy.(k) (adapted from [4.3])

clear that the Sni.np and Sni.n; contributions are very similar to each other,
apart from the pre-peak of around 19 nm™!, in Syi.ni which is present in
NiNb alloys, even with differing compositions. The same peak is found also
in Sninb where, though, it only occurs in the spectra for alloys that are
sub-stoichiometric in niobium.

The pre-peak is an index of chemical ordering in the amorphous alloys;
the preference for hetero-coordination between first neighbours implies there
is greater probability for homo-coordination in the second coordination shell.
This gives rise to a larger period in the structure in the physical space, that
corresponds to the pre-peak in the reciprocal space. The asymmetry of this
ordering feature, which is more pronounced for nickel atoms than for niobium
atoms, can be explained by considering the atom sizes. The nickel atoms,
which are smaller, are less likely to be first neighbours with each other than
are the niobium atoms.

Part (b) of Fig. 4.14 clearly shows the sharp peak for Sy, which is due
to the topological arrangement of the atoms. Even Scc, which is due to
chemical ordering, has rather strong oscillations. This confirms the results
obtained from the Faber—Ziman partial functions, whereas the oscillations
in Syc¢ are due to the size difference between Ni and Nb and are, in fact,
independent of the specific chemical short range order.

From the reduced Faber—Ziman partial radial distribution functions, as
shown in part (a) of Fig. 4.15, we extract the average distances between pairs
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Fig. 4.15. Comparison between trends in reduced partial pair distribution func-
tions for amorphous NiNb: (a) according to Faber—Ziman G;;(x); (b) according to
Bhatia-Thornton, G.(z) (adapted from [4.3])

of Ni atoms (0.25 nm), Nb atoms (0.302 nm) and Ni-Nb atoms (0.264 nm),
as well as the relative coordination numbers (respectively 5.0,7.5,7.4). We
confirm the observation that the Ni atoms, smaller in size, can be first neigh-
bours with each other, though with less efficiency than the Nb atoms, which
are larger. We are here dealing with a phenomenon that is common to many
amorphous metallic systems, whether they are made of transition-transition
metals or of transition metals with metalloids.

Lastly, part (b) of Fig. 4.15 shows the reduced Bhatia—Thorntorn partial
pair distribution functions. The presence of consistent topological order is
revealed by the trend in Gyy (where oN(z) = [Gnn(x)/47x] + 0y), Whereas
the maxima in Gee(x) give us distances where correlations between pairs
of like atoms (respectively Ni-Ni or Nb—Nb) predominate, and the minima
correspond to distances where the correlations between pairs of Ni and Nb
atoms predominate.

4.4 X-ray absorption spectroscopy (XAS)

When X-rays pass through a material they can either be scattered or ab-
sorbed. The probabilities for each process depend on both the energy of the
radiation and the nature of the target material.

As the X-ray energy increases, in any material we will observe sudden
jumps in the trend of the absorption coefficient. This is due to the radiation-
matter interaction; when the radiation is energetic enough, it can extract
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Fig. 4.16. Typical trend in X-ray absorption coefficient, y,, as a function of photon
energy E. The highlighted regions are (a) the pre-edge region, (b) the absorption
edge, (¢) the region beyond the edge, with XANES and EXAFS oscillations. The
experiment geometry is also schematised

electrons from specific electron shells. For example, the emission of a 1s elec-
tron corresponds to the K absorption edge. In the case of an isolated atom,
the change in the absorption coefficient is a monotonic function where the
photon energy decreases smoothly, except for the mentioned sudden jumps. In
condensed matter we observe a characteristic oscillating behaviour, from the
high energy side of an absorption edge, as shown in Fig. 4.16. This structure
is defined as the Extended X-ray Absorption Fine Structure, or EXAFS. The
analysis of this pattern gives us detailed information on the local structure
about a given atom in a crystalline or disordered environment.

Experimentally, we collect an absorption spectrum around an X-ray ab-
sorption edge for a particular atom. The experiments are usually carried out
in transmission, as shown in Fig. 4.16; depending on the energy of the pho-
tons, the incident intensity Iy of the X-ray beam is measured together with
the intensity I transmitted through a sheet with a thickness of s

I=1Iyexp[—py, 9| . (4.66)

If we subtract the background signal p, from the measured absorption
coefficient, u,,, we obtain the EXAFS signal amplitude

X(E) = (e — 1o) /o (4.67)

FE represents the photoelectron energy: this value is not known exactly
because the reference level Ey, which is the difference between the binding
energy of the excited electron from an internal shell and the vacuum cannot be
accurately determined. The background absorption, 1, is difficult to measure
and is taken as an approximation, using a polynomial expression.
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When we consider the scattering factor S(k), we note that it is a func-
tion of both the change in the scattering wavevector and of the radiation
frequency w,

Sk, w) = So(k) + S1(k,w) +iSa(k,w) (4.68)

The first term in the sum is the form factor (see (4.33)), namely the
Fourier transform of the electron density, and it does not depend on the
frequency, whereas the other terms represent the so-called dispersion correc-
tions; these corrections are important only if the frequency is very close to
an absorption edge for the atom species under examination.

An X-ray absorption spectrum may be divided into three regions: in the
pre-edge region we generally observe a monotonic reduction in the X-ray
absorption coefficient, p,, as a function of the photon energy, E.

The absorption edge region follows, where p,, increases suddenly at the
energy Fjy.

Lastly, in the post-edge region, atoms organised in a condensed structure
give rise to the Extended X-ray Absorption Fine Structure, or EXAFS; this
is a set of oscillations of yu,, with energy approximately between 70 eV and
800 eV beyond the edge. On the other hand, if the pu, oscillation energy
is closer than about 70 eV to the edge value, then we call the spectrum
X-ray Absorption Near Edge Structure, or XANES. Besides the acronym
XANES, this kind of spectroscopy is also called NEXAFS, i. e. Near Edge
X-ray Absorption Fine Structure.

The pre-edge is caused by photo-excitation of electrons of the internal
shells to low energy bonded states of the ionised atom, or to resonant con-
tinuum states. This kind of absorption spectroscopy, which can in principle
highlight the local coordination of transition metal atoms, or of rare earths
in an amorphous matrix. In fact, depending both on the local coordination of
the metallic atoms, which act as impurities in this process, and on the kinds of
atoms these metallic atoms are coordinated with, the relative occupation for
levels d or f changes; they also shift in energy. In practice, however, it is only
possible to distinguish between tetrahedral and octahedral coordinations, but
no other structural parameters can be identified.

The fine structure beyond the edge, whether EXAFS or XANES, is not
caused by direct absorption processes but by a sort of internal diffraction.

During the absorption process the photon is treated as a classical electro-
magnetic field, and the electron as a quantum particle. If the photon wave-
length is large as compared to the spatial extension of the excited internal
shell, then the absorption coefficient, as a function of the energy, ., (E), can
be calculated using the Fermi golden rule, with a time dependent perturbative
approach

1, (E) = (4x>Ne*w/c) |(e |E| )[* D, (4.69)

where N is the number of atoms for a given species in the sample, w is
the X-ray frequency, |¢) and |e) are the wave functions for the starting inner
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Fig. 4.17. Schematic rep-
resentation of absorption

of an X-ray photon by the
dashed atom in central po-
sition, which emits a photo-
electron (—); this is then
backscattered by the atoms
surrounding the emitter atom

shell atomic level and for the final state of the photoelectron, E is the electric
dipole transition and D, is the final electronic density of states at the Fermi
level.

Since the photon field is assumed to be spatially uniform, we make use
of a scalar potential that is proportional to distance x, with the X-ray beam
polarised in the x direction.

For a free atom, the final state is a free electron beyond the region affected
by the atomic potential

e) = |0) ~ exp[idr] hr(kz) + conjugate complex

where exp [id1] is the shift caused by the atomic potential and hy, is an output
spherical wave with angular momentum L.

The oscillating trend of p,,, observed for an atom in a bonded structure,
may be attributed to the matrix element, or to the density of states in (4.69).
Dpg, is the free electron density, if the photon energy is above the thresh-
old; this energy changes monotonically, so the oscillating trend can only be
caused by the matrix element. This is a reasonable hypothesis since both the
output wave and the backscattered wave contribute to the wavefunction of
the final state |e); the interference between these two waves modulates the
matrix element. In fact, the other atoms around the absorbing atom cause
the output photoelectron to be backscattered and its associated wave inter-
feres with the output waves. This process modifies the matrix elements that
trace the absorption, as schematised in Fig. 4.17.

The more the X-ray photon energy exceeds the absorption threshold the
more the energy of the produced photoelectron increases, and the lower the
corresponding wavelength. When the local interatomic distance equals an in-
teger, or a semi-integer multiple of the photoelectron wavelength, constructive
interference occurs. The periodic oscillations in X-ray absorption, observed
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above the absorption edge, are the result of alternating constructive and de-
structive interference conditions, and make up the fine structure.

XAS is particularly suited to investigate short-range structure and dy-
namics in many constituent materials due to its combined selectivity of
atomic species and insensitivity to long-range order.

The EXAF'S part of the absorption spectrum is caused by the scattering
of two atoms, the absorbing one and the backscattered one. If multiple scat-
tering dominates, namely more atoms are involved in the backscattering of
an electron, then before such electron returns to the absorption site XANES
oscillations will occur. Hence, both EXAFS and conventional diffraction give
us information on the atomic pair correlations, whereas XANES gives us
information on triplet (or higher order) correlations.

In the structurally disordered systems partial decoupling between correla-
tions of different order occurs, and any knowledge of higher order correlations
adds significant structural information (see Sect. 4.2). However, pair corre-
lations and higher order correlations are not completely independent of each
other since the need to densely fill the space with atoms restricts the choice of
atomic arrangements. Furthermore, given the nature of the disordered struc-
tures, higher order correlations cannot be associated with the presence of a
specific structural element; we have to consider the statistic weight of the
various structural elements.

XANES spectrum analysis is based on comparing the specific features of
the experimental spectrum with those of simulated spectra; these are obtained

8.34 8.36 8.38
Ni K edge E (keV)
L L 1 Fig. 4.18. Experimental
7.12 7.14 7.16 XANES spectra around the
K edges of nickel and iron,
Fe K edge E (keV) in Ninglg and in FegoBzo

(adapted from [4.4])
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by ad hoc algorithms that calculate multiple scattering from various trial
geometric structures whose parameters are changed.

For example, the measured XANES spectra for the representative amor-
phous systems Fegy Bog and Nig; Big are characterised by being very sim-
ilar to each other and by their having a small, though significant, “hump”
(Fig. 4.18). The simulated spectra, starting from different structural models
in which Fe and Ni are taken as being equivalent, were compared with ex-
perimental spectra. Only by introducing triangular structures Ni-B—Ni into
a specific model, with a Ni-B distance of 0.2 nm and a Ni-Ni distance of
0.25 nm, is it possible to reconstruct the characteristic “hump” shown in
Fig. 4.19.

The improvements of third generation synchrotron radiation sources allow
for measurements of unprecedented accuracy. Here we address an exemplary
study devoted to the problem of short range order (see Sect 4.7) in a deeply
undercooled elemental liquid metal, such as copper. The experiment can be
considered a direct test of the old Franck’s hypothesis that icosahedral short
range order is energetically favoured in liquid materials with isotropic inter-
atomic interactions. The use of an advanced method of data analysis based on
multiple scattering simulations allowed to obtain information on three-body
correlations and consequently to determine the bond angle distribution and
the fraction of icosahedral, or nearly icosahedral configurations. The full bond
angle distribution resulting from simulations was compared to that for equi-
lateral triangles; with decreasing temperature, within the undercooling range
the number of such local configurations for a given number of neighbours
increases, while at the same time the first-neighbour two body distribution
sharpens, without any relevant variation of the distance of closest approach.
A further analysis of the average three dimensional structure of the liquid
required to use a set of bond orientational order parameters, including the
cubic invariant WG, a sensitive indicator with well separated values for icosa-
hedral and fcc structures. For liquid copper the Wy distribution is broad and
strongly asymmetric; it includes both the value for fcc and that for ideal
icosahedral packing. From the integral of the distribution the presence of a
meaningful fraction, around 10 %, of icosahedral configurations was assessed
even in an unfavourable system such as an undercooled liquid noble metal
(see Sect. 4.7).

To calculate the EXAFS amplitude in an analytical form is easier. We
assume that not only are the electron wavefronts plane, but so are the wave-
fronts generated by backscattering electron shells, as schematised in Fig. 4.17.
This is reasonable for energies in the typical range of the EXAFS spectra (at
least 70 eV above the absorption edge value). We can thus study the exper-
imental results with an analytical equation, avoiding any comparison of the
data with simulated spectra.

We choose as our reference atom and coordinate origin an atom of a known
species (X)), whose absorption edge value is known; in Fig. 4.17 this atom
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t Fig. 4.19. Simulation of the

essential features in the ex-
perimental XANES spectra in
Fig. 4.18, as obtained using
a model structure which in-
cludes metal-metalloid three-
body correlations (adapted
from [4.4])
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is shown in a central position. The number of unlike atoms (Y') in the shell
between x and z + dx from the origin is

ny(x) = oyg(x)dra’de

where gy is the number density of the Y atoms and g(z) the pair correlation
function relative to the Y atoms, with reference to origin (X). The EXAFS
function is

xx (k) =
Z/o |SZJE2)| {e p[ 2x/)‘Y(k)]PY9($)47T:c2
Y

x sin(2kx + sop, + ¥y)} dx (4.70)

where |Sy ()| is the backscattered amplitude from the Y atoms in the consid-
ered shell and Ay (k) the mean free path of the elastically scattered electrons,
the only ones that contribute to the signal. This is the result of the total
interference process about each absorbing atom. The phase shifts §;, and
1y take into account that the photoelectron is emitted and backscattered by
atomic potentials.

If there are N scatterer atoms at a fixed distance x; from the origin, then
g(z) is given by

N
 Arado

g(x) (z — 1)
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and the EXAFS function becomes
~N[S(7)|

x(k) = F? exp [—2x1 /A(k)] sin(2kz1 + 251, + ). (4.71)

In this case we obtain z; from the period of the oscillations and N from
their amplitude, whereas the S(7) dependence on energy, i.e. on wavevector,
allows us to identify the species of scattering atom. Now, if the distances

from the origin of the N scattering atoms have a Gaussian distribution, as a
result of e.g. thermal vibrations, then

0le) =z e [~o = /2]
and so
(k) =~ 5N e [ /) exp [~24%2
x sin(?llcxl 26, +1b). (4.72)

The EXAFS amplitude is proportional to the number N of backscattering
atoms and to their nature through S(m). x(k) lowers as x~2, because of
the spherical electron wavefunctions (both outgoing and backscattered) with
amplitude decreasing as x~!; also the finite electron mean free path Ay (k)
attenuates x(k). With respect to (4.71), (4.72) is further reduced by the
Debye—Waller factor in the second exponential term. The standard deviation
of the Gaussian distribution, x,, is determined by interpolation starting from
the experimental data. x? is not the usual mean squared amplitude of an
atom, but the mean squared fluctuation of the relative positions of the central
atom and the backscattering atoms. These fluctuations may have a dynamic
origin, that depends on the separate vibrational motion of the two atoms,
or a static origin, when they are caused by structural disorder; the latter
depends on the correlation between the involved atoms.

The Fourier transform of x(k) shows peaks at distances that correspond
to the coordination shells for the first neighbours of the reference atom and
this gives us an approximate picture of the structure. The peaks are shifted
with respect to the exact values of 1 due to the dependence of (261, + ) on
the wavevector.

EXAFS is a complicated oscillating function; it is made up of the sum of
as many sine curves as there are atomic shells. All such curves have the same
structure as (4.72) and each bears a 2kz; period different from the others.
The amplitude of each sine curve gives us the number of neighbours in the
considered shell, modified by an envelope due to the scattering amplitude, to
the Debye—Waller damping and to the damping due to the electron mean free
path. However, since A(k) is limited, and x? increases with the shell order,
only a few shells with low order contribute significantly to the amplitude.
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In practice, we can deduce the coordination number N, the interatomic
spacing # and the mean square deviation x?2, for the first two coordination
shells surrounding the absorbing atom.

One example of how the EXAFS technique is used is the investigation
on the local coordination of the compounds Dy Fes; and Th Fes, both crys-
talline and amorphous. The typical structure around each constituent atom
has been identified separately by the respective EXAFS spectra since the K
absorption edge of iron, at 7.1 keV, is well separated from the Ly 3 edges of
dysprosium and terbium, which are at more than 8 keV. The surroundings of
the iron atoms are not modified by the crystal-amorphous transition whereas
the surroundings of the rare earth atoms do change drastically.

In the crystalline state, X-ray diffraction indicates that Dy—Fe and Th—Fe
distances are 0.3036 nm and 0.3046 nm respectively; these values decrease for
materials in the glassy state, down to 0.264 nm and 0.270 nm, as obtained
from the EXAFS measurements. Such distances are very close to the sum
of the covalent radii of the constituent metals. Furthermore, the number of
rare earth atoms coordinated among themselves changes from 12, for both
crystalline alloys, to 7.1+1 for Dy and 8.4+1.8 for Th. Lastly, in the metallic
glasses we observe a shift of about —1.5 eV in the position of the L3 edge, as
compared to the same edge in the crystal. This means that the initial state of
the rare earth in the amorphous material is less ionised than in the crystal.
When we consider all these observations together, we understand that the
glass transition for this family of alloys implies an increase in their degree of
covalency.

Another example of the EXAFS analysis is the study of the local or-
der in amorphous Ni,Ti(;_,), using various alloys with stoichiometries =
68; 56; 43; 30 at.% respectively. The experiment was carried out at the ab-
sorption edges K of Ti and Ni respectively, to examine how nickel influences
the K edge of titanium and vice versa. Figure 4.20 shows the trend of the
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coeflicient p,, around the K edge of Ni in alloys progressively enriched in Ti,
whereas Fig. 4.21 shows a comparison between X-ray absorption spectra in
crystalline and amorphous NiggTizg. The EXAFS signal at the K edge of Ti
(Fig. 4.22) is more influenced by the changes in sample stoichiometry than
does the signal at the K edge of Ni (Fig. 4.23). In both cases, the strong
signal damping as the energy increases indicates that there is considerable
topological disorder; the weight of this disorder varies in the neighbourhood
of each atomic site, even when we consider the same component of the alloy.

Referring to X-ray diffraction data, it was possible to optimise the average
interatomic distances and the average coordination numbers were obtained;
these are almost the same (11 — 11.5) in all the alloys. However, there is a
strong tendency towards chemical short range order since the coordination
number for the nickel atoms moves from 13 to 10.5 as the nickel content grows
in the alloys, whereas the corresponding values for titanium increase from
10.5 to 12.5. This means that around a given species of atom, atom pairs with
unlike atoms will more likely form. Furthermore, if we consider that the value
of static topological disorder is the same for all the atomic shells (thermal
disorder is limited since the experiments were performed at 7' = 78 K), then
a local structure is formed with a higher degree of chemical organisation in
the surroundings of the minority atomic species. The average interatomic
distances are in excellent agreement with the interatomic distances deduced
from X-ray diffraction. These distances increase with the titanium content
in the alloy, but remain less than the distances calculated for a disordered
solid solution. This is further proof that chemical short range order is realised
where the shorter Ti—Ni bonds are favoured over the longer Ti—Ti bonds. We
can easily correlate this result with the values of the atomic radii, the nickel
atoms being smaller than the titanium atoms.

Lastly, the increase in the distance between pairs of titanium atoms as
the concentrations of these atoms decreases confirms the clear tendency to
chemical ordering. In alloys with very little titanium, on the one hand, Ti—Ni
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_ Fig. 4.21. Comparison between
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bonds are formed; on the other the Ti—Ti bonds are stretched, compared to
the bond length in NiTi alloys with high titanium content.

As a final example of the results presently attainable by XAS analyses
we consider the study of coordination environment of germanium and ar-
senic atoms in Ge;As;S19p—2, chalcogenide glasses, with compositional range
13.3 < = < 32.5. EXAFS was performed around the K edge of both Ge and
As. In all examined glasses Ge and As are fourfold and threefold coordinated,
respectively. Stoichiometric and S-rich glasses consist of GeS, tetrahedra and
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Fig. 4.23. Trend in EXAFS
amplitude, x(F), at the K

edge of nickel in amorphous
alloys with given composi-

tions. The dotted curves are
data points and the continu-
ous curves are simulation re-
sults (courtesy of M. Jaouen)
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AsS3 trigonal pyramids, indicating strong chemical order that extends at least
over the typical distances of the first coordination shell. With increasing S
deficiency As-As homopolar bonds appear, while Ge-Ge bonds form only in
glasses with very low sulphur content, once all arsenic atoms clustered to-
gether forming homopolar bonds, thus violating chemical order.

4.5 Mossbauer Spectroscopy

Mossbauer spectroscopy is a nuclear spectroscopy based on the emission of
~-rays associated with a transition between nuclear energy levels. The sensi-
tivity of the method is based on the observation that the -ray emission, due
to radioactive decay of atoms of a suitable source embedded in a solid may
be recoil-free, namely without energy loss.

In general, the energy partitioning between an emitted v photon and the
recoiling source is

E,=hv = Ey— E,. (4.73)

The energy E, of the v photon is less than the difference, Ey, between the
excited energy level and the ground state energy since a fraction, F, of the
energy is absorbed by the nucleus as the recoil energy. In a non-relativistic
scheme,

B, = p2/2my = (hw)?/(2myc?)

where p, and m,, are the momentum and the rest mass of the nucleus. Like-
wise, the absorption energy F., must be grater than Fy by the amount F;.
The resonant excitation of a nucleus of the same species, via absorption of a
~ photon, requires that the photon energy is

E, = Ey +2E, (4.74)

thus being greater than Fy. With a v photon of energy £ = hv ~ 10 keV
and with mass number A = 50, we obtain 2F, ~ 2 x 1073 eV, which is
much larger than the line width AFEy (typically (AFEy/Eq) ~ 10710 —10719).
It is thus impossible to observe resonant nuclear fluorescence, namely a free
nucleus cannot absorb 7 rays emitted from another free nucleus of the same
species. In 1958 R. Mossbauer discovered that radioactive nuclei, bonded into
suitable crystalline lattices, showed resonant nuclear florescence since both
the emission and the absorption of v photons occur without any recoil energy
losses because the solid, in a classical picture, recoils as a whole of infinite
mass. The nucleus mass, in turn, tends towards infinity, the recoil energy
towards zero and the energy of v photons to Ey.

From a quantum point of view, the probability that a v photon will be
emitted, or absorbed, without a phonon being emitted at the same time,
namely without energy transfer to the crystal, is finite.
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In normal conditions, the atomic nucleus is in the ground state. The exact
level of this state can be slightly perturbed due to the molecular environment
of the nucleus itself. The environment is determined by both the kind of near-
est neighbour atoms and by the spatial distribution of these atoms, namely
the structure of the condensed system. From a quantum point of view, there
is a finite probability that the wave function of the electrons surrounding
the nucleus may extend inside the nucleus volume. The interaction between
these electrons and the nuclear matter, particularly the protons, modifies the
nuclear energy states. The degree of modification varies slightly when the
nucleus is embedded in atomic structures that are different from each other,
which determine different specific features of the electron environment.

The efficiency of the transmission of v rays through matter is high; how-
ever, if the energy of « radiation from the source is equal to the excitation
energy of the lowest excited level of the absorbing nuclei, then the radia-
tion is resonantly absorbed. After an interval of about 107 7s, the v rays are
isotropically re-emitted. The absorber behaves just like a uniform scattering
source and a significant fraction of the radiation incident on this absorber is
not transmitted and thus is not detected.

Since the chemical perturbation of nuclear energy levels is weak, we can
modify the frequency of the incident v rays by Doppler effect. The relative
motion of the source with respect to the absorber at very low Doppler veloci-
ties, vp, is used. Compared to the relative stationary conditions, if the source
is moved towards the absorber there is an increase in the ~ ray frequency,
whereas if the source is moved away from the absorber there is a lowering in
the frequency.

Typical changes in energy values between levels, caused by modifications
in the surrounding chemical environment are, for °"Fe and for 19Sn (two
commonly used nuclei, together with 12'Sb, 1291, 169Tm, just to cite some
of the about forty possible Méssbauer sources) around 5 x 10~8eV, which
correspond to Doppler velocities in the range of one millimetre per second.

A Mossbauer spectrum is characterised by position, intensity and width
of the absorption lines. The shorter the mean life of the excited nuclear state,
the broader the observed line is.

If the atoms of the source and the absorber were embedded in the very
same chemical and structural environment, then the resonance line would be
observed at zero Doppler velocity.

A number of interactions may perturb the resonance line. Among them,
the isomeric, or chemical, shift, &, is due to the density of the s electrons
at the nucleus being not null. This density shifts the relative energy of the
fundamental and excited nuclear levels, and thus the energy of the resonance
line, without lifting the degeneracy.

So,

0= EO,a - EO,e
~ (2/3)n2e [(R2) — (R { [0, ) ~ e (0) } (4.75)
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where indices a and e refer to the target (absorber) and the source (emitter),
R, and R, are the nuclear radii of the excited and ground states, and the
electronic wave functions ¢(0) are calculated at the centre of the nucleus.

The isomeric shift can supply us with structural information since mod-
ifications in the atomic arrangement in the neighbourhood of the resonant
nucleus cause modifications in the electron charge density.

Furthermore, an electric field gradient can exist at the position of the
nucleus, being caused by the change in density of the bonded electrons, which
is not isotropic. Such a gradient may cause quadrupole interaction with the
nuclear energy levels, which give rise to a nuclear quadrupole moment. With
a geometric approach, this moment is generated when we can schematically
describe the electric charge distribution by two opposite facing dipoles, set a
distance d apart.

For example, in the case of °"Fe, the nuclear ground state (I = 1/2) does
not change but the degenerate excited level (I = 3/2), is split into two, and
corresponds to I = +1/2 and I = £3/2; the resonance line is split into a
“quadrupole doublet”.



138 4. The Structure of Disordered Systems
Fe1-xBx
(0.12<sx< 0.25)

Hyperfine field
distribution

<

0
10
022 P(Hy)
51 (x10°%)
0.20
0
0.175
0.15
0'1,2 . . Fig. 4.25. Calculated distributions
2 25 3 3.5 of hyperfine fields Hy, starting from
2 five discrete values for the magnetic
Hn(kG) (x10%) fields (adapted from [4.5])

Finally it is possible for a magnetic field, that may be internal, to com-
pletely lift the degeneracy both of the ground state and of the excited level
of the nucleus, thus creating a characteristic structure called the “magnetic
hyperfine spectrum”. In the case of 5“Fe this magnetic hyperfine spectrum
consists of six lines, which correspond to the possible transitions allowed
because of the selection rule Am = 0,+1. Only if the internal fields are dis-
tributed isotropically will the intensity ratio between the hyperfine lines be
3:2:1:1:2:3.

Not only is the Mossbauer spectroscopy useful in structural analysis, it is
also helpful in studying the magnetic properties of metallic glasses.

An illustrative case concerns the glassy magnetic alloy Fe(;_,)B, with
12 <z < 25 at. %; Fig. 4.24 reports the Mossbauer spectra and Fig. 4.25 the
calculated distributions of hyperfine fields H},. Starting from the profile of the
six hyperfine lines in Fig. 4.24 we observe that a single hyperfine spectrum is
not sufficient to reproduce the characteristic properties of the broad experi-
mental lines. There is, however, a distribution of internal magnetic hyperfine
fields p(Hy). In principle, this distribution may be due to various structural
causes, among which topological, or compositional, fluctuations. On the as-
sumption that p(Hy,) may be correctly represented with five discrete values
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for the magnetic fields, then the histogram distribution has been modified to
obtain the best fit to the experimental spectrum. The resulting distribution
p(Hy) in Fig. 4.25 is very similar to the p(n) distribution for the coordina-
tion numbers n for first neighbours, typical of the model for the metallic glass
structure which consists in a dense random packing of hard spheres. Despite
the success this model has had, it has been observed that the hyperfine field
at the iron nucleus is specifically sensitive to the number of metalloid atoms
being first neighbours of the iron atom.

In principle the analysis of the degree of quadrupole splitting might give us
some structural information about non-magnetic glassy alloys. Unfortunately
this analysis cannot be performed because it would require a general theory
of the tensor of the electric field gradient which is presently lacking.

By Mssbauer spectroscopy the magnetic properties of nanometer sized
materials are sensitively tested; we discuss as an example the magnetic mo-
ment distribution in a-Fe nanowires embedded in porous anodic aluminium
templates. Comparing the room temperature conversion electron spectra of
arrays of nanowires with diameters d of 60 nm and 300 nm with the spec-
trum of a reference a-Fe foil 25 pm thick, the hyperfine field H), is similar;
the progressive peak broadening, as reflected by the increase of FWHM with
decreasing nanowire diameter shows that the influence of magnetocrystalline
anisotropy is more and more relevant in wires with greater diameter. The
ratio between the first two peaks moves from 1.179 for the a-Fe foil to 0.215
when d = 300 nm and to 0.089 when d = 60 nm; this is a signature of progres-
sive departure of the magnetic moment from the direction of nanowire axis on
increasing wire diameter. Based on these observations a core-shell structure
is assumed, with core spins magnetically coupled and surface spins randomly
oriented, due to the reduced iron coordination. Indeed in room temperature
spectra the contribution from thermally activated surface spins results in
a paramagnetic central single peak whose relative intensity increases with
decreasing nanowire diameter.

4.6 Vibrational Spectroscopies

Vibrational spectroscopies have long been reliable and widely used analytical
methods supplying us with a great deal of useful information to specify the
molecular structure of organic and inorganic compounds, revealing both mi-
croscopic and macroscopic details of materials. These techniques are based on
the interaction between electromagnetic radiation and matter, and allow us
to determine the vibrational frequencies of the molecules we are interested in.

Basically there are two families of experiments: in the first the incident
photon is absorbed by the target and its energy is entirely converted into
vibrational excitations of the target; in the latter the probe photon undergoes
inelastic scattering. Thus a fraction of its energy is transferred to, or gained
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from target phonons. The energy hw of the scattered photon reveals the
frequency w of the vibrational mode involved in the scattering event.

For simplicity, we shall first examine the motion of an isolated molecule,
as decomposed into translations, rotations and vibrations. The position of
a point in space is given by three coordinates; three degrees of freedom are
associated with this point in space. A molecule having M atoms has 3M
coordinates; three of these coordinates give us the translations where the
molecule motion as a whole is described by the change in the coordinates
of its centre of gravity. A further three degrees of freedom (two for linear
molecules) give us the rotations about the molecule’s centre of gravity. Lastly,
the remaining (3M —6) or (3M — 5) pertain to the vibrations, in which bond
distances and/or angles change in a periodic manner.

The number of molecular degrees of freedom coincides with that of normal,
or fundamental, modes of vibration. Normally, each of these modes is not
localised at a specific molecular bond; it involves several atoms. For this
reason the vibrational problem is not studied using Cartesian coordinates, but
internal coordinates () that describe the atom motions in terms of changes
in bond angles and bond lengths, as well as torsion (or dihedral) angles (see
Sect. 4.8). In a normal mode of vibration all the atoms vibrate in phase;

Mode Symbol Involved
bonds
Stretching \ 1
In-plane bending 5 2
Qut-of-plane Y 3
bending
Torsion T 3

Fig. 4.26. Representation of the various types of normal modes of vibration
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furthermore, it is possible to decompose any vibration into the superposition
of a number of normal modes. The set of normal modes of vibration thus
is a basis for an irreducible representation of the vibrational motion of the
system.

In general, each normal mode of vibration corresponds to a vibrational
frequency v. In some cases two distinct vibrational modes have the same
frequency, and are said to be degenerate.

The normal modes of vibration are classified based on their type (Fig. 4.26)
and on their symmetry. These motions are either symmetric or antisymmetric,
depending on whether the molecule symmetry is preserved, or not, during the
vibration. For example, the normal modes of vibration of the CS; molecule
are schematised in Fig. 4.27, classified by type and symmetry. Modes v, and
Vas are not degenerate, whereas the §; mode is twice degenerate, since the
linear molecule can oscillate both in the plane of the sheet and in the plane
normal to the plane of the sheet.

The symmetry of each molecule tells us which of the (3M —6), or (3M —5)
modes of vibration are infrared (IR) or Raman active. An external elec-
tromagnetic field will distort the electron charge distribution around the
molecule nuclei. This induces an electrical dipole moment p, which is pro-
portional to the electric field E

n=akE,

where « is the molecule polarisability and, in a semi-classic representation
of radiation-matter interaction, tells us how much the electron charge dis-
tribution can be deformed. The molecule has dipole moment p only if the
centre of the electron charge distribution does not spatially coincide with the
centre of positive charge. In the simplest case of two charges +e and —e,
separated by a distance @, u = ex. A vibration is IR active only if a non-zero
variation in the electric dipole moment p, (Op/0Q) # 0, is associated with
it. The molecule does not have to have a permanent dipole moment to be

Fig. 4.27. Normal vibrations of the
molecule CSy
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IR active, but the considered fundamental vibration must induce a change in
dipole moment.

Similarly, a vibration is Raman active only if it alters the polarisability
« of the molecule, namely (da/0Q) # 0.

The structure of the molecule greatly affects the characteristic properties
of the vibrational spectra associated with that molecule. The geometry of the
molecule determines the symmetry of the fundamental vibrations, which in
turn cause the changes in p, and in a.

In general, the IR and Raman spectra of a molecule, or a crystalline system
are complementary to each other, in that some fundamental vibrations that
do not cause a change in the dipole moment may be associated with a change
in polarisability, and vice versa. It may well occur that a mode may provoke
the contemporary change in both g and in «, or, conversely, that that mode
is neither IR nor Raman active. For this reason often only the use of both
kinds of spectroscopy can give us a clear picture of the vibrational behaviour
of a system. Referring back to Fig. 4.27, the normal mode of vibration vg
induces modifications in the polarisability, and is Raman active. While the
permanent dipole moment of CSy is zero, modes v,s and J5 are IR active
since (Op/0Q) is not null for both.

When we represent the vibrational spectra it is common practice to make
use of the wavenumber v/, which is defined as the reciprocal of wavelength A
and is given in cm™!; the relation between v/, v and \ is

v[s™1] 10*

Viem™] = clems—1] - Alpm]

IR Absorption Spectroscopy. The IR spectrum of a sample is measured by
exposing the target to polychromatic radiation. The spectra are collected in
transmission, and represent the transmittance as a function of the radiation
wavelength; in the case of supported films the signal is corrected for the
substrate absorption.

The absorption coefficient, A, is obtained from the equation

(1= R)exp[-At]
=3z R2 exp [—2At]

(4.76)

where T is the percent transmittance, R the reflectivity and ¢ the thickness of
the film. Equation (4.76) strictly applies to samples that are not supported
by a substrate; however, it can often be used for samples with a suitable
film-substrate geometrical configuration.

The vibrational frequencies are obtained as the absolute absorbed radia-
tion frequencies over the wavelength interval under examination; the intensity
of the sample beam is compared with a suitable reference beam. In modern
spectrometers a Michelson interferometer allows to record an absorption spec-
trum as a function of the time required to move one of the mirrors of the
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interferometer. Then a Fourier transform of the set of time-dependent data
converts them to a standard spectrum as a function of frequency.

The IR bands are originated when (I) a particular chemical bond is
stretched (v), or (II) the in-plane bond angle is either opened or closed (planar
bending band 0) while bond lengths are unchanged, or (III) an atom vibrates
through a plane defined by three surrounding atoms (out-of-plane bending
band «) or, lastly, (IV), a molecular torsion occurred (band 7), so that the
dihedral angle, between two planes which share a bond, varies (Fig. 4.26).
In general we observe that the frequencies associated with the four kinds of
vibrational band described are progressively lower, based on the sequence:
stretching, in-plane bending, out-of-plane bending and torsion.

When electromagnetic radiation of energy F;, impinges onto the molecule,
then a fundamental mode of vibration is excited, provided Ej, is equal, for
example, to the energy difference between the first excited vibrational level,
FEq, of the molecule and the fundamental vibrational level, Fy. A resonant
transition of the system from the vibrational ground state Ejy, to the excited
level, E1, occurs. Thus,

Ep:th:hI/V:El—EO

where E, and v, are the energy and the frequency of the photon and vy is
the vibrational eigenfrequency of the molecule.

When we schematise the molecule as a harmonic quantum oscillator, the
sequence of its energy eigenvalues is given by E,, = hv,(n + 1/2) where n is
an integer, zero included. The fundamental transitions are characterised by
the selection rule An = +1. We also observe contributions, called overtones,
that correspond to An = +2; +3...; the transition probability associated with
these overtones decreases progressively as the energy difference between the
initial state and the final state increases; the intensity of the respective ab-
sorption bands decreases accordingly.

The above analysis of IR spectroscopy refers to an isolated molecule.
In general, in a condensed system, such as a film, even if it is structurally
ordered, the molecules interact and this leads to band shift and/or broadening
as well as to the possible appearance of new bands. Furthermore we have to
consider that in a crystal the frequencies of optic modes near the centre
of the Brillouin zone are the highest and lie in the range of a few THz,
corresponding to IR photons with wavelengths between 10° and 10* nm.
Thus an IR photon can be absorbed and a phonon is created when a TO
mode is able to induce an electrical dipole change A of the crystal unit cell.
The wavevector magnitude of such IR photons can be estimated from the
dispersion relation k = w/c, and is typically k¥ = 10° m~!, very small when
compared to the size of the Brillouin zone, k = 7 /a = 10° m~*. Thus only TO
modes nearest to the crystal zone centre can be probed by photon absorption
in one-phonon processes, as a consequence of momentum conservation

k =k +kg (4.77)
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where k, k’ and kg are the wavevectors of the IR photon, the created phonon
and a reciprocal lattice vector, respectively.

Raman Spectroscopy. If we irradiate a sample with an intense beam of
monochromatic radiation (laser), with a frequency vy, that cannot be ab-
sorbed by the molecules under examination, and whose energy lies between
the typical energy for IR spectroscopy and the energy of the electronic tran-
sitions, then a fraction of the incident beam will be scattered isotropically. In
the scattered light spectrum, called the Raman spectrum, frequencies v, are
observed that are in relation to the vibrational frequencies of the molecule.

We consider that the molecule occupies the electronic ground state and
that the photon energy Ep, = hvy is insufficient to cause transition to the
first excited electronic state. Any transition will involve the fundamental
and the excited vibrational states of the electronic ground state. The scat-
tering process is represented starting from the photon-molecule collision, as
schematically shown in Fig. 4.28. Both the photon and molecule energies are
unchanged if the collision is elastic, so that the frequency of the scattered
photon, vy, is equal to vy,. This type of diffusion, called Rayleigh scattering,
gives rise to an intense line in the spectrum when the molecule, which has
been excited by the photon, undergoes transition from the fundamental vi-
brational state to a virtual state v, with higher energy, and then immediately
decays to the fundamental state.

We must not confuse the concept of virtual level with stationary energy
level s, which was introduced when we examined absorption.

If the molecule decays, for example, to the first excited vibrational state,
which is associated with frequency v;1, it will absorb a fraction of the photon
energy, and so the photon frequency, after the collision, reduces to vg =
vy, — vj1, and we will observe a line in the spectrum called the Stokes line.

s S s
g ——— Y
g — — — =V g e = =V
1 -‘ ¥ hv, hvas
hv, hv, hv, hvg
2 2 2
1 ﬁ_ﬁT_Lq 1
_—L—o hvﬂ 0 hV,2 —* 0
(a) (b) (c)

Fig. 4.28. Schematic representation of the transitions associated to (a) Rayleigh
scattering; (b) Stokes scattering; (c) anti-Stokes scattering. s: stationary level; v:
virtual level; 0, 1, 2: fundamental and excited vibrational levels
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The absorption of the photon hvy, and the emission of the photon hrg occur
simultaneously and cannot be separated from each other in time.

Similarly, the molecule may initially be in an excited vibrational level of
frequency v, o; the molecule will lose energy and return to the fundamental
vibrational level, whereas the scattered photon will have a frequency v,s =
vy, + v; 2. The corresponding Raman anti-Stokes line is normally much less
intense than the corresponding Stokes line since, at room temperature, most
of the molecules are observed in the fundamental vibrational state.

This model allows us to explain why the intensity of the Stokes line Ig,
is higher than the anti-Stokes lines, I,5. The population of the fundamental
vibrational level is by far greater, for optical phonons at moderate temper-
atures, than that of the excited vibrational levels, and the likelihood of the
system being in an excited vibrational state is much less than it being in the
fundamental state. When we consider that the ratio between the populations
depends on the Bose—Einstein statistics,

5 w exp [l (k) [k T] (4.78)

then the Ig/I,gs ratio in equation (4.78) is certainly greater than one, as has
been experimentally observed. Raman intensity depends also on the polarisa-
tion of the incident as well as of the scattered beam. These can be vertically
(V), or horizontally (H) polarised with respect to the scattering plane. For ex-
ample, Iy means that the scattered intensity is measured in the V direction,
with the incident beam horizontally polarised.

The experimental geometry essentially includes a laser source (normally
in the visible, but also in the IR and UV regions of the electromagnetic
spectrum), a scattering region where the sample is illuminated by a parallel
beam of light, and a detector that measures the intensity scattered at a finite
angle; in many cases the detector is positioned normal to the direction of
the incident beam. Only the availability of laser sources has made Raman
spectroscopy a rather common analytical technique, because a high inten-
sity source is necessary given the very low cross section for inelastic photon
scattering.

In the Raman spectrum the scattered light intensity is usually displayed as
a function of the Stokes, or anti-Stokes frequency (shift). The former should
be negative, however it is conventionally considered positive.

Raman scattering in molecules is completely analogous to what occurs in a
crystal, though we must remember that molecular normal modes of vibration
correspond to collective vibrational motions (normal modes) of the ions that
occupy the lattice sites in the crystal.

Understanding of Raman scattering is easy in terms of a qualitative, quan-
tum representation, when we consider an ideal crystal that constitutes the
immediate reference for us to study structurally disordered systems. Photon-
crystal elastic collision gives rise to Rayleigh scattering, whereas Raman scat-
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tering corresponds to an inelastic interaction where the photon destroys, anti-
Stokes, or creates, Stokes, one or more lattice phonons. Precisely to such
phonons is associated the above discussed change of crystal polarisability. In
any case, a photon in the incident beam, with a frequency vy, and wavevector
kr, is destroyed and both a photon of the scattered beam with (v, ks) and a
phonon, with a frequency v; and wavevector k;, are created. The scattering
process is thus second order since it requires two interactions of the radia-
tion field with the scattering system (destruction of the incident photon and
creation of the scattered photon).

The energy and the momentum are conserved between the initial and final
states. For Rayleigh scattering,

VL = Vs (4.79)
ki = k. (4.80)

and for Raman scattering

vy, =vs £ v;(k;) (4.81)
ki =k k;. (4.82)

For Raman scattering, normally, vy, is much higher than v;(k;), so vy,
is nearly equal to v (typical values are vy, about 2 x 10*cm™!, v; about
10%cm™'; these values for v; correspond to phonon frequencies in the optical
branch). Furthermore, we choose frequencies where, in practice, there is no
dispersion in the refraction index n, given the small difference between vy, and
Vs, 8o n(vy,) ~ n(vs) = n. Since ki, and ks are defined within the crystal kg
= vpn(vy) /e = ks = vsn(vs)/c. Furthermore, ki, and ks are much smaller
than the wavevector at the Brillouin zone boundary, so (see (4.80)) k;, in
turn, is very small. This means that in first order Raman scattering only the
optical phonons at the centre point of the Brillouin zone can be excited. This
condition coincides with the selection rule

kj~0 (4.83)

where, in practice, the equality sign is assumed. The existence of a simple
relation between energy and momentum of specific excitations is associated
to the existence of propagating collective modes. They are associated to the
translational invariance of crystals and free particles.

When a photon, with hvy, energy, in the visible or the ultraviolet regions
of the spectrum interacts with a crystal, it perturbs the electron wave func-
tions since only the electrons are light enough to follow the rapidly changing
electric field caused by the photon. The system wave functions become linear
combinations of all the possible wave functions of the perturbed crystal with
time dependent coefficients. Formally, we assume that the crystal reaches a
non-stationary energy level with higher energy. This is the already mentioned



4.6 Vibrational Spectroscopies 147

virtual level which, in the classical description, corresponds to a forced oscil-
lation of the electrons at frequency vy, of the incident radiation. In a quantum
approach, the virtual level is essential in modelling the perturbation process
(see Fig. 4.28).

IR Spectroscopy of Amorphous Systems. If a solid is structurally dis-
ordered, then the absence of long range order coincides with the lack of large
enough crystallites to produce well defined diffraction peaks, or spots. There
are two general criteria we can use to analyse the vibrational spectrum of
an amorphous solid: the first is that the general features of the spectrum are
similar to the corresponding crystalline system, if the short range order (see
Sect. 4.7) does not change, as is observed in most materials; the second is
that the local spatial arrangement of bonds in amorphous systems can ac-
tivate vibrational modes, which are forbidden by the extended symmetry in
the crystal; this gives rise to the appearance of specific spectral features. For
example, non-polar crystals, with covalent bonds, do not have static dipole
moment, so that each induced dipole moment can only depend on a dynamic
effect which induces atomic displacements that cause the bonds to either
stretch or to contract. If we express the bond compression Cj; as

Ci‘ = ('l"i —T‘j) . scij

where r; and r; are the displacement vectors and x;; is a unit vector that
connects the ¢ and the j sites, then the dipole moment p is

p=2> (> Cy (Z wil> : (4.84)
i j l

For example, the induced moment g in crystals with tetrahedral symme-
try is zero, since ), @; = 0; for this reason crystalline silicon and germa-
nium are not IR active, nor are any of the non-polar cubic crystals with two
atoms per primitive cell. This selection rule is strictly valid for crystals, while
it is relaxed by lattice disorder that causes local moments not to cancel in
amorphous silicon and germanium. Bond charge flows from extended to com-
pressed bonds, resulting in a dynamic local electrical dipole moment p. In a
glass, when interparticle interactions become dominant, structural disorder
inhibits a proper definition of any kind of quasi-particle and its associated ex-
citation spectrum. As a reciprocal lattice is not defined the wavevector k of a
phonon excited in an amorphous material is not forced to take a discrete value
compatible with a reciprocal lattice vector. Figure 4.29 schematically shows
that various phonons with different k values have the same frequency w. We
see that at low k values the dispersion relation is acceptably well defined;
here we are in the elastic continuum limit, where the effects of structural dis-
order are smeared out. With increasing k values the uncertainty Ak rapidly
grows and may even become comparable to |k| (this is the Ioffe-Regel limit),
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Fig. 4.29. Schematic trend of the w(k) dispersion relation for an acoustic vibra-
tional mode in an amorphous material.

thus making the dispersion relation w(k) useless to interpret vibrational ex-
citations in amorphous solids. Given the breakdown of the k selection rule
all modes can contribute to the IR, as well as to the Raman spectrum. The
observed exceptions to such a general trend are highly symmetric vibrational
modes, whose Raman signal is predominant. A typical example is the sym-
metric stretching mode of the regular six-membered rings in BoO3 (boroxol
rings).

To describe phonons both in crystals and in amorphous solids we use the
vibrational density of states (VDOS) g(w), that is the number of vibrational
states with frequencies between w and w + dw. In a non-crystalline material
g(w) is a sum of delta functions, each corresponding to a phonon frequency

9(@)) Did(w — wi) (4.85)

where 7 is a running index with no specific physical meaning.

We expect that the IR (but also the Raman) spectrum of an amorphous
material consists of broad bands and is reminiscent of the features of the
VDOS, although each band intensity is weighted by the pertinent transition
matrix element, in turn proportional to the square of the electrical dipole
moment 2. Figure 4.30 illustrates the correspondence in amorphous silicon.
The above strategy, that is widely adopted for covalent solids, corresponds to
consider the extended network of chemical bonds of the continuous random
network (CRN) model (see Sect. 4.7). As such it is an alternative to represent
the amorphous system as a crystal that has lost its extended symmetry.

In a different, “non-collective” picture, IR spectra are interpreted by omit-
ting the contribution from all the bonds and by considering the solid as being
made up of molecular units; these units are then dealt with as if they were all
separate from each other. The internal motions in each unit are similar to the
fundamental vibrations of an isolated molecule. The “molecular vibrations”
of the various units are influenced by the potential generated by the surround-
ing molecular units. This is similar to what we observe in the lattice modes of
crystalline solids. These vibrations are caused by the relative motions of the
various molecular units. Here we are talking about vibrations with wavenum-
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Intensity (a. u.)

Fig. 4.30. Compar-
ison of experimental
IR (1) and Raman (2)
spectra of amorphous
Si (adapted from [4.6])
with the VDOS (3)
calculated for a CRN
model of the material
(adapted from [4.7])

bers typically below 800 ecm~!, thus frequencies lower than the frequencies
of the internal modes. The difference between a crystal and an amorphous
system is that the bands in the amorphous system are broad, whereas in the
crystal they are sharp and well resolved. The shift and broadening of the
IR bands reflect the influence of the various local chemical surroundings of
each molecular unit. The effect of structural disorder is that, in principle, a
different chemical environment surrounds each molecular unit, and induces
a specific shift in each fundamental vibrational frequency. The large number
of such contributions, which differ from each other, arising from the various
structural units, gives the broad absorption bands observed experimentally.

If the amorphous system contains particular molecular units whose vi-
brations are excited independently from the surrounding matrix, then the IR
spectroscopy is an excellent method for investigating short range structural
order. In the case of terminator atoms whose bond coordination is different
from that of most atoms of the solid, we observe very strong effects. If the
terminator atoms are lighter than the other atomic species they give rise to
localised “impurity” high frequency modes; these are a characteristic feature
of the behaviour of hydrogen atoms in an amorphous matrix. The latter is
an extreme example of disorder effects: vibrational, but also electronic ex-
citations undergo stronger and stronger disorder scattering and their mean
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Fig. 4.31. Optical
density IR spectra of
amorphous SiC films
treated differently; (1)
as deposited film; (2)
film heated in air at
1273 K for 2.5 hours;
(3) film heated in

v (em™) (x10°%) vacuum up to 1673 K
(adapted from [4.6])

Optical density

-

o
[+2]
T

Fig. 4.32. Magnifica-
tion of the spectral re-
gion up to 2x10% cm ™!
for (1) film heated in
air at 1273 K for 2.5

hours; (2) film heated
in air at 1273 K for 15
v (em™) (x10%) hours (adapted from
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free path is severely reduced, up to the point that, whenever disorder is huge,
they become spatially localised, instead of being extended.

One exemplary study on the structure of amorphous materials demon-
strating the potential of IR spectroscopy concerns the vibrational behaviour
of thin amorphous films of silicon carbide, Siy5Css5, annealed in different ways.
The samples were prepared by radio frequency sputtering, starting from sin-
tered cathodes, with SiC composition, and accidentally incorporating about
5 at. % hydrogen. Neither the hydrogen bond state nor its evolution as a
function of the temperature and the modifications in the chemical environ-
ment are known. From a comparison of the characteristic features of the IR
absorption spectra of a deposited film with the features of films that have
been subjected to annealing in various environments (air, or vacuum) at dif-
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Fig. 4.33. Magnifi-
cation of the spectral
region including the
umbrella-shaped de-
formation mode of
group CHs, coordi-
nated like Si—CHjs
in (1) as deposited
film; (2) film heated
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ferent temperatures and for different times, as shown in Figs. 4.31 to 4.34,
we observe that:

a)in freshly deposited films there is only a band centred at 795 cm™!, at-
tributed to SiC. This band is broad, indicating structural disorder in the
material. The presence of H in the films was not revealed by IR spec-
troscopy (Fig. 4.31);

b)heat treatment in air at 1273 K for various times induced SiO2 formation
(Fig. 4.32) and the coordination of hydrogen, that was incorporated dur-
ing film formation, into CH3 groups, both free and bonded like Si—-CH3.
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We clearly observe a band at 2970 cm™!, caused by the asymmetrical
stretching of CH3, and a band centred at about 1267 cm ™! caused by the
umbrella-like deformation of the Si-CHgs group shown in Fig. 4.33. The
intensity of the latter increases as the heat treatment continues, whereas
the intensity of the band at 2970 cm~! decreases with the heat treatment
(Fig. 4.34). Hydrogen is not released from the films, not even at 1273 K;
this is presumably because the surface layer of SiOs is an efficient barrier
to any hydrogen desorption;

¢) by heating the films under vacuum to 1673 K, where the re-crystallisation
process for the SiC matrix starts, the hydrogen contained in the samples
under various coordination is released; this is evident from Fig. 4.31, curve 3
and Fig. 4.33, curve 3.

The characteristic features of the IR spectrum at the highest tempera-
ture are very different from the features of the spectra recorded at lower
temperatures; this is an indication of dramatic structural changes, due to
hydrogen release, which induces strong deterioration in the surface structure
of the samples. Indeed, hydrogen evaporation from the films seems to be a
necessary condition to trigger the amorphous solid-crystal transition, both
as regards the SiC matrix and the excess carbon that is present right from
the beginning in the samples. This transition seems to be associated to the
formation of a highly defective and/or highly non-uniform structure.

Raman Spectroscopy in amorphous systems. The effect of structural
disorder on the Raman spectrum of a solid is examined starting from the
consideration just discussed with reference to IR absorption that the unit cell
in an amorphous solid has infinite size, and thus the Brillouin zone shrinks to
a single point, with k = 0. This means that k becomes a meaningless index
of the vibrational modes. The only quantity that is useful to describe the
phonon modes in amorphous solids, which is defined also for crystals, is g(w)
the vibrational density of states (VDOS), namely the number of states per
unit frequency interval.

This is because when the crystal-amorphous solid transition occurs the
progressive breakdown in the Raman selection rules makes all the phonons
into the Brillouin zone able to contribute to the scattering process. We can
see this effect by introducing a correlation length &, which is characteristic of
the spatial extension of a normal mode. Given a perfect crystal, £ = oo, which
means that the mode under examination is a true phonon, with a definite
wavevector k. It is reasonable to consider that the space-time correlation
function for the mode with index j is proportional to

F =explik; - r]exp[—r/{]

where the exponential damping term mixes the k; states, which are all dis-
tinct in the crystal. Since the Fourier transform of F is proportional to the
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Raman scattered intensity for mode j, then if we sum over all the modes we
obtain, for the scattered intensity (Stokes component)

I(w)=> aw " [1+n(w,T) g(w) (4.86)
1

where q) is the atomic coupling constant for band [ of the vibrational states,
g1(w) is the phonon density of states for the same band and n(w,T) is the
phonon occupation number

1
exp [fw/kpT] — 1

n(w,T) = (4.87)

From (4.86) we see that the Raman spectrum of an amorphous material
gives us a representation of the vibrational density of states (unless there are
particular visibility effects due to the Raman coupling coefficient) since the
intensity I (), when we also consider factor v* in (4.78), is proportional to the
material VDOS. In many materials, including amorphous silicon, germanium
and carbon, the VDOS is similar to the VDOS of the corresponding crystal,
convoluted with a Gaussian which takes into account the phonon mean life
in the amorphous material.

In the analysis of the Raman spectrum we introduce the depolarisation
ratio p(w) = Igv/Iyv. Raman peaks with p = 0.75(pMmax) are depolarised;
peaks with p < 0.75 are polarised and the maximum polarisation corresponds
to p=0.

Although (4.86) provides us with an appealing, simple relation, it is based
on the assumption that matrix elements a; are independent of frequency;
besides this the subdivision of the spectrum into bands, each of which in
principle is related to a specific vibrational mode, is a crude approximation for
several materials. Yet, (4.86) gives a good description of the Raman spectra
of amorphous silicon and germanium, that are tetrahedrally coordinated,
by using as gj(w) a broadened version of the VDOS for the crystals. The
consequence is that Raman spectra of amorphous Si and Ge are relatively
featureless, similar to the corresponding IR spectra.

In the case of such tetrahedrally coordinated amorphous solids the anal-
ysis of Raman spectra offers also structural information. The width A of the
highest frequency TO-like phonon is a function of the degree of strain-induced
disorder. For a-Si and a-Ge various CRN models with different degrees of
strain, namely with different fluctuations A@ of the bond angle were pre-
pared and their Raman spectra were calculated. A linear relation connects
A and AG

A=c+dAO

with ¢ and d constants.
The above analysis of tetrahedrally coordinated amorphous solids cannot
include carbon-based compounds. Much work was devoted to the structural
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investigation of this class of materials whose technological interest is relevant.
Focussing on the simplest case of elemental non-crystalline carbon films, they
are modelled as random networks with different degrees of disorder. We are
thinking of amorphous carbon and nanostructured carbon, the latter being a
mixture of amorphous carbon, nanotubes, fullerenes and graphitic fragments.
An amorphous carbon with a large fraction of tetrahedral diamond-like sp®
hybridised bonds is known as diamond-like carbon (DLC). The possibility to
synthesise DLC at room temperature is a great advantage with respect to
diamond films. The interesting mechanical and optical properties of DLCs
lead to several applications, including magnetic hard disks, wear protective
and anti-reflective coatings, flat panel displays and biomedical coatings.

The versatility of carbon materials is associated to the critical dependence
of their physical properties on the sp? (graphite-like) to sp® (diamond-like)
bond ratio. We know many types of sp?>-bonded carbons, ranging from micro-
crystalline graphite to glassy carbon, each with a different degree of graphitic
order. Any amorphous carbon has a mixture of sp3, sp? and occasionally sp'
bonds, possibly in the presence of a fraction of hydrogen that can be as high
as 60 %. As a rule, hydrogenated amorphous carbons have a quite small con-
tent of sp? C-C bonds; DLCs with the highest sp? contents are known as
tetrahedral amorphous carbon (ta-C).

The electronic structure of amorphous carbons essentially consists of the
strong o bonds of sp® and sp? sites that form the occupied bonding states
in the valence band and the empty ¢* antibonding states in the conduc-
tion band; a wide gap separates ¢ from o* states. The 7 bonds of sp? and
sp! states result in the occupied 7 and unoccupied 7* states that largely lie
within the o —o* gap. Each modification of the sp?/sp? fraction is associated
to a change of the density of states and of the energy gap. Any technique
to synthesize carbon films flexible enough to allow one to control the above
fraction, in addition to the degree of structural disorder and the extent of
clustering of sp? phase, its orientation and anisotropy is suitable to prepare
DLC films with largely different structural, mechanical, optical and electronic
properties. In particular ta-C is grown by deposition techniques involving en-
ergetic ion beams, or a plasma; such an energetic beam deposition is necessary
to stabilise the metastable sp® bond coordination. It was observed that the
optimum ion energy to maximise the fraction of tetrahedrally coordinated
material, around 70-80 % percent, lies between 100 and 200 eV.

The visible Raman spectra of disordered carbons are markedly different
from those of amorphous silicon and germanium. While neutron scattering
shows that the VDOS of disordered carbon with various sp® contents is com-
posed of smooth broad features, in the Raman spectra of all disordered car-
bons, including amorphous carbons with negligible graphitic ordering, the
relatively well defined G (from graphite) and D (from disorder) bands, both
due to sp? sites, dominate. This is due to the scattering cross section of 7
states, much greater than that of o states.
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One example of structural analysis carried out using IR and Raman spec-
troscopy together regards the study of the structure of thin films of boron
nitride, BN. In a number of ways the system is similar to carbon and it is
expected to have many applications. Apart from being chemically inert in
aggressive environments, and stable up to very high temperatures, BN crys-
tallises in phases that have several very different properties from each other:
at room temperature the material has a hexagonal structure (h-BN), it is sp?
hybridised and similar to graphite. At very high pressures and temperatures
we can synthesise the cubic phase (c-BN), sp® hybridised, similar to diamond
both as regards the electronic and the mechanical properties. In particular, c-
BN (45 GPa) is the second hardest material after diamond (around 96 GPa).
It is very difficult and expensive to synthesise the massive material in the
cubic phase, similarly to the synthesis of artificial diamond. For this reason,
attention turned to the low pressure and low temperature deposition by way
of a number of techniques of ¢-BN films on suitable substrates. The great-
est difficulties encountered are due to two factors: if the stoichiometric ratio
between boron and nitrogen, 1 : 1, is not maintained, h-BN is nearly always
deposited. Furthermore, the nucleation of c-BN occurs only if we can locally
achieve very high pressure, for example by bombarding the surface of the film
with ions with well defined energy, so that locally the favoured coordination is
sp® instead of sp?. This implies that in the film and at the interface with the
substrate, high (up to 10 GPa) internal stresses of a compressive nature are
present; such stresses can induce poor film adhesion to the substrate. Depo-
sition onto substrates that are kept at high temperature, around 600-800 K,
favours relaxation of most internal stresses; however, these annealings make
it very unlikely BN can be used to coat many technologically important ma-
terials, which undergo heavy deterioration at the considered temperatures.
In particular, the use of ¢-BN for electronic applications (c-BN can easily be
doped, both p with beryllium and n with silicon) is precluded.

We can more easily obtain at room temperature films with a mixed coordi-
nation sp?-sp®, with a variable fraction of tetrahedral bonds, up to 70-80%,
and intermediate hardness (about 30 GPa). These films are almost always
structurally disordered; since the fraction of material with “valuable” coordi-
nation sp® depends heavily on the choice of process parameters, irrespective
of the specific preparation method adopted, then a structural analysis is nec-
essary that can recognise the presence, and the possible abundance, of the
two coordinations.

The vibrational spectroscopies, used together, allow us to identify the sp?
and sp? coordinations, as well as the hexagonal and cubic crystalline phases.

The IR absorption spectrum of h-BN is characterised by two peaks; the
weaker at 783 cm ™! is caused by the out-of-plane bending of the B-N-B
group, whereas the most intense, at 1370 cm™!, is associated with the in-
plane stretching of the B-N group. The cubic phase has a single peak at
1065 cm ™1, and is interpreted as the transverse optical phonon (TO).
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Several films were deposited at low temperature (around 350 K) by mag-
netron sputtering of a sintered BN target in an atmosphere made up of a
mixture of Ar 97 at. % - Ng 3 at. %, keeping the substrate (Si(100)) polarised
in radio-frequency. The IR spectra highlight a strong dependence of the BN
coordination on the power applied to the target (between 100 and 200 W)
and on the bias voltage at the substrate (between —50 and —130 V). Fig-
ure 4.35 shows how the fraction of sp® coordinated material in four films
deposited at 150 W varies from 0% (—50 V) to 11% (=70 V), 90% (—100 V)
and 30% (—130 V). Glancing angle X-ray diffraction patterns from purely
sp? coordinated films show the (1000) peak of h-BN; from peak width at half
maximum correlation lengths of 3.2 nm, in the hexagonal planes, and 1.6 nm
in the direction normal to the hexagonal planes, are deduced. In the pattern
of the film with the highest fraction of sp® coordination the (111) peak of
c-BN is evident with a correlation length of 1.5 nm. Raman spectroscopy has
been used to confirm the structural information on films obtained using IR
spectroscopy and X-ray diffraction.

The first order Raman spectrum of crystalline BN, whether hexagonal
or cubic, exhibits characteristic peaks at k = 0, which are associated with
optical phonons. h-BN has two active modes, one at 51.8 cm ™! and the other
at 1366 cm~!, whereas c-BN has two modes, the transverse optical (TO) at
1056 cm~! and the longitudinal optical (LO) at 1306 cm™1.
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Fig. 4.35. IR absorption spectra of BN films produced in Ar 4+ Ng atmosphere
with the substrate polarised at various voltages (adapted from [4.7])
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Fig. 4.36. Raman spectrum for an h-BN film; the complete spectrum is shown in
the inset (adapted from [4.7])

The Raman cross-section for BN is small, particularly for ¢c-BN; this makes
these spectroscopy measurements critical even for single crystals. Given the
amplitude of the optical gap (5.8 eV in h-BN, more than 6.4 eV in ¢-BN),
the material is transparent in the visible region; since the Ar™ laser works
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at a single frequency at 514.5 nm wavelength, it is necessary to polarise the
scattered beam so as to depress the intensity of the peak from the silicon
substrate at about 970 cm~!. Figure 4.36 and Fig. 4.37 show the Raman
spectra for h-BN and c¢-BN; Gaussian interpolations are also reported and
the arrows indicate the maxima. In both figures the insets represent the
complete spectra and highlight the silicon peak. Just as in other experiments
on polycrystalline BN films with nanometre sizes, we notice that the peaks
degenerate in bands, which result particularly broad and unstructured for
¢-BN. Taking into account phonon confinement due to the small crystal size,
as deduced from X-ray diffraction, we can attribute the peak at 1381 cm™!
(Fig. 4.36) to h-BN. This is the 1366 cm ! peak, blue shifted due to phonon
confinement. The two broad maxima at 1025 cm ™! and 1273 ecm ™! (Fig. 4.37)
correspond respectively to the TO ¢-BN peak, shifted with respect to its
position at 1056 cm ™! in single crystals, and to a peak that is found only in
¢-BN films due to the nanometre size of the crystallites.

Conclusions

In conclusion, from the global examination of the experimental methods used
in the structural analysis, particularly as regards short range order, of glassy
materials, it is clear that determining the structure of amorphous solids is
a somewhat complex matter and that none of the above discussed methods
is in reality sufficient if used alone. In the more favourable case of elemen-
tal systems, the conventional diffractometric methods may well be sufficient
enough to determine short range order and, together with the development
of structural models, medium range order (see Sects. 4.7 and 4.8).

On the other hand, the study of multi-component systems is much harder
to undertake. The diffraction techniques, and techniques directly related to
them such as anomalous scattering, isotopic substitution and neutron mag-
netic scattering, can be used in practice only for binary compounds, which
need three pair correlation functions.

For those systems with more than two constituents, XAS is the only reli-
able tool for direct structural investigation; the advantage of being sensitive
to the average local order around the atomic species that absorb the X-ray
photons is, unfortunately, offset by the absence of sensitivity to atomic cor-
relations beyond the second coordination shell, and by the difficulty in quan-
tifying the coordination numbers. The limitations to XANES spectroscopy,
which in principle shows up three body coordinations, are connected to the
difficulties in analysing spherical waves and the need to compare results with
simulated spectra obtained from trial structures.

Mossbauer and vibrational spectroscopies supply us with relatively indi-
rect structural information which usually requires backing up with results
from other structural probes.



4.7 Short Range Order 159

4.7 Short Range Order

Our degree of knowledge about the nature of the amorphous state is often
influenced by an unconscious bias, namely that the amorphous state must
correspond to a set of properties that is radically different to those properties
that refer to the well established models for the two extreme cases: total order,
typical of the crystalline state, and complete disorder, associated with a dilute
gas.

The dividing line between crystalline and glassy materials is given by
the lack, in seconds, of translational symmetry that can be detected using
interferometric methods. The notion of crystal is connected to the use of X-
ray diffraction to detect structural order, which extends over not less than
1.5-2 nm. On the other hand, many physical properties that are determined
by short distance atomic organisation, from the structure of hyperfine fields,
as manifested by Mossbauer spectroscopy, to the magnetic properties that
are determined, in alloys, by the nature of the first neighbour atoms of the
magnetic atoms, to the EXAFS features often exhibit surprising similarities
both in crystals and in amorphous solids with the same composition.

It is not possible, thus, to give a unique definition of short range order
(SRO) in non-crystalline materials; indeed, SRO totally depends on the spe-
cific features of the kind of chemical bonds in the system, in particular on
the bond directionality; precisely this directionality sets constraints to the
symmetry of the atomic arrangements.

It is clear how important local atomic coordination is, and we are inclined
to define, for a macroscopic set of identical atoms that are densely packed in a
disordered way, the correct size and symmetry of those “structural building
blocks” that are mainly responsible for the properties and stability of the
glassy state. These structural building blocks play the same role as the unit
cell in a crystal; from a chemist’s point of view, the factors that determine
stability in an amorphous system and in a crystal are the same: concentration
of valence electrons, atomic size, chemical affinity.

In general, we speak about Topological Short Range Order (TSRO) when
we consider only the sizes of the atoms, which are packed together as dense as
possible, whereas Chemical Short Range Order (CSRO) is determined by the
chemical nature of the various atoms. CSRO can easily be correlated with
the (meta)stability of amorphous solids up to a specific temperature, thus
with the ease by which a material is vitrified (see Sect. 3.3) and thus, from
the operational point of view, with the cooling rate required for the liquid to
turn amorphous.

The trend in the crystallisation process, starting from the liquid state, is
given by interatomic attractive forces. The resulting atom arrangement has
two properties, first valence electron energy is minimum, and second, the
steric constraints that correspond to the point symmetry for one of the 14
Bravais lattices are fully met.
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The stability of a given atomic configuration depends on the characteristic
properties of the initial atomic orbitals which, after hybridisation, give rise
to new atomic orbitals with the required point symmetry. The van der Waals
forces are radial and can thus stabilise any densely packed atomic configu-
ration. The ionic forces are radial, too; however, ions with the same charge
sign must organise themselves in space as far apart as possible. The metallic
bond typical for the simple metals involves almost free conduction electrons
and does not imply any restraints on the resulting atomic arrangement. On
the other hand, among the strongly bound d electrons, those with to, sym-
metry preferably stabilise the tetrahedral configurations in the fcc and hcp
structures, whereas those with e, symmetry stabilise the less dense cubic
configurations in the bee structure. Lastly, the sp® configuration corresponds
to bonds with the tetrahedral symmetry of the diamond lattice.

Quite arbitrarily, we can examine the non-crystalline systems with cova-
lent, strongly directional bonds, where the chemical factors are dominant in
realising short range order, separately from the metallic and ionic systems
where the non-directional chemical bonds imply that geometric considera-
tions prevail in the study of topological order. Such a study is often associ-
ated with the problem to densely pack spherical atoms, whether hard or not,
and, at the same time, inhibit any crystal structures forming.

We shall start with the relatively complicated description of short range
order in those metallic systems, both elemental, where topological factors
largely predominate, and alloys, either with other metals or with metalloids.
In these systems, in addition to topological factors, chemical factors are re-
quired to achieve local order.

It is reasonable to think that a crystal forms when structurally identical
small elements with a simple structure, that include the significant chemical
bonds in the solid, join together by way of simple crystallographic operations
such as translations, rotations, reflections, and interpenetrating growth.

The vast family of the Frank—Kasper inter-metallic phases is a typical
example of this approach. The structural building blocks do not coincide,
but they are part of the crystal unit cell, which is very large and meets
the conditions of one of the 230 space groups so that the crystal with infinite
extension can form by way of pure translations. The structural building block
is, on the other hand, a tetrahedron and allows high density atom packings.

Before we proceed to discuss the meaning and implications of this struc-
tural unit, we have to better examine the simpler problem of how the most
dense packing is achieved in a plane. The greatest packing efficiency for identi-
cal disc-shaped atoms corresponds to an equilateral triangle as our structural
building block (see Chap. 1). We can describe the densest possible tiling, in
statistical geometric terms, by using the Voronoi polygons (Voronoi poly-
hedra, in three dimensions). Just like the Wigner—Seitz and Brillouin cells,
by definition each of these cells has a single atom located at its centre and
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Fig. 4.38. Construction of a Voronoi polygon for ordered and regular tiling of the
plane with triangles

is made up of the intersections between the segments that perpendicularly
bisect the “bonds” that join the central atom to all its first neighbours.

As regards tiling a plane with equilateral triangles (Fig. 4.38), the Voronoi
polygons are all regular hexagons. In general, in the case of disordered atomic
distributions, we obtain polygons with a variable number of sides.

Analogous to the above example, the Voronoi polyhedra are the smallest
convex polyhedra that contain a single central atom. They are formed by
the intersection among the planes that normally bisect the “bonds” which
connect the atom chosen as the central atom to its first neighbours. The
faces of the Voronoi polyhedra are irregular polygons, very often pentagons,
as exemplified in Fig. 4.39. The number of sides for a given face is equal
to the number of packed tetrahedra about the “bond” that is bisected by
that face. There being pentagonal faces implies there is a consistent degree
of icosahedral order.

Fig. 4.39. Voronoi polygons for a disordered tiling and a Voronoi polyhedron for a
disordered solid: notice the high number of pentagonal faces; the number of sides to
a face corresponds to the number of tetrahedra packed around the “bond” bisected
by that face.
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icosahedral
tetrahedral cluster

structural unit
—_— — ?
20 tetrahedra -

Fig. 4.40. Construction of an icosahedron starting from twenty tetrahedra, slightly
distorted

In three dimensions, the densest packing of identical atoms is given by
the tetrahedral arrangement of four hard spheres, each of which is in contact
with the other three. The packing efficiency, namely the fraction of volume
filled by matter, is around 78%, whereas, for an octahedral structural unit,
this fraction is around 72%.

If we start with 20 tetrahedral building blocks, as in Fig. 4.40, we obtain,
with small distortions, an icosahedron. Similarly to the hexagon, the surface
of the icosahedron is divided into regular triangles: six in the hexagon and
twenty in the icosahedron (see Chap. 1). However, unlike the hexagon in
the plane, the icosahedra, with their six five-fold rotation axes, cannot be
arranged in a simple and periodic manner to fill the space. The fact that
it is impossible for perfect tetrahedra to fill the space already emerges from
the icosahedron geometry where the distance between the surface atoms is
5% greater than the distance between surface atoms and the central atom
(Fig. 4.41). If we try to bring the surface atoms closer together, without
affecting the distance between them and the central atom, then the small
interatomic surface voids in the initial atom arrangement (Fig. 4.42), coalesce
to form a single fracture that opens up at some points of the surface, as

Fig. 4.41. The distance
between the central atom
and the surface atoms in an
icosahedron is 5% shorter
than the distance between
the surface atoms themselves
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void

Fig. 4.42. Surface atoms in an icosahe-
dron do not touch each other

shown in Fig. 4.43. This fracture constitutes an excess “free volume”, even
though it is insufficient to host a thirteenth surface atom. Similarly, if we
try to construct a structural unit that is simpler than the icosahedron, still
using the tetrahedra, we immediately come across insurmountable problems
in trying to occupy the available space. In the simplest of cases (Fig. 4.44),
if we densely assemble the largest number possible of tetrahedra (five) about
a common edge, we observe an unoccupied “segment” of space subtended by
an angle of 7°35’. The only possible way of filling the space with such units
is to introduce line defects, namely to distort the structure, at the expense
of a considerable increase in the free energy of the system.

The definitive incompatibility between tetrahedral local order and a sim-
ple scheme of extended tetrahedra packing is called frustration. Surface atoms
are said to be frustrated because the positions of the atoms surrounding the
empty “segment” are not, at the same time, points of minimum energy of
the pair interactions with all the first neighbours. Yet, the tetrahedron seems
to be the most natural structural building block in studying short range
order and transition to long range order in condensed phases made up of

Fig. 4.43. In an icosahedron, if we force contact be-
tween surface atoms a fracture is caused at a point
on the surface
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Fig. 4.44. When five tetrahedra are joined
around a common edge a fracture is caused,
subtended by an angle of 7°35’

hard-sphere atoms. As a matter of fact, nature adopts various strategies to
overcome the unavoidable frustration.

The cube is the only regular polyhedron that allows us to completely
fill the space fully when it is used alone. In general, in order to accomplish
this we need at least two kinds of polyhedra, packed together using well
defined proportions and sequences, so that we can obtain the maximum global
density. This information is contained in the space group of a crystal; however,
it is lost in the liquid.

Among the crystals, those with the simple fcc or hep structures, with
highest packing densities (Fig. 4.45) can be constructed by alternating an

fcc hcp

Fig. 4.45. Elemental clusters of spherical atoms, packed according to the fcc and
hep schemes (see also Fig. 1.20)
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octahedron with every two tetrahedra. As such we obtain a 74.05% packing
efficiency. In the fcc structure, the tetrahedra are packed about the octahedra
so that they share edges and vertices, but do not have common faces. In the
hep structure, the tetrahedra have common vertices and faces, but never with
more than one tetrahedron. The bce structure is made up of considerably
distorted tetrahedra.

To increase the overall packing density, a number of tetrahedra must share
their faces, and this can be achieved by piling them along a spiral or by
coordinating 12 atoms about a central atom in order to form a icosahedron,
which is the first coordination shell of a regular tetrahedral arrangement.

Each atom is in contact with the 12 first neighbours also in the fcc and
hep crystals; the difference between this local elementary structure and the
icosahedral structure is that in the fcc (hep) cluster the 12 first neighbours
are not distributed uniformly on the surface of the central atom they are in
contact with, whereas when the central atom is icosahedrally coordinated, the
12 first neighbours are distributed symmetrically on it, but are not in contact
with each other, as shown in Fig. 4.42. The icosahedron surface is divided
into twenty regular triangles. If we take the central atom as our reference
atom, then each of the 12 first neighbours is coordinated on the surface of
the central atom with five atoms whose centres make up a regular pentagon.
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In 1952, Frank compared the energies of a 13-atom icosahedral cluster
with a similar fcc cluster; both clusters were relaxed in Lennard-Jones U(x)
potential.

This is a particular case of the potential

ne n\ 6/(n—6) o\ o\ 6
v =55 (5" G- ()]
where o is the distance at which U(x) = 0 and ¢ the depth of the potential

well. When exponent n, which usually varies between 9 and 15, equals 12,
U(z) is called the Lennard-Jones potential.

U(z) = 4e { (%) v (2)6} (4.88)

The trend of U(x) is given in Fig. 4.46. The surprising discovery from
the analysis of clusters was that the energy of the icosahedral structure is
8.4% less than that of the cubic structure, although the latter is made up of
tetrahedra and octahedra. The considerable increase in local stability of the
icosahedral cluster is not sufficient, though, to remove the frustration in the
eztended structure.

The crystalline state is made compatible with an extended tetrahedral
order by way of slightly distorting the tetrahedra. The result is that the
crystal has a regular arrangement of —72° disclination lines (see Chap. 5)
which corresponds to removing a tiny portion of the material in a medium
showing extended icosahedral order.

The frustration associated with obtaining perfect extended tetrahedral
structures is partially relaxed by mixing together atoms with two different
sizes. The typical example is given by the Frank-Kasper phases where the
triangles on the surface of each icosahedron form ideal tetrahedra with the
central atom, provided the diameter of the central atom is about 10% less
than that of the external atoms.

Frank and Kasper suggested the use of four different polyhedra with
normal coordination, that respectively coordinate 12,14,15 and 16 atoms
(Fig. 4.47) with different sizes. These polyhedra are made up of tetrahedra
only, and are characterised by having very high packing efficiency. Even
though the local density of the tetrahedra is greater than the average crystal
density it cannot be kept for steric reasons. In three-dimensional crystalline
lattices, the polyhedra with normal coordination are located in skeletons
and generally give rise to layered structures. The Frank—Kasper phases, of
which the Laves phases (see Chap. 1) are an example, are described as be-
ing sequences of high density atomic layers tiled with alternating hexagons,
pentagons and triangles and stacked in such a way as to form, between the
layers, tetrahedral interstices only.

In the C15 structure with XY composition, whose packing efficiency
we have already discussed (see Chap. 1), the interatomic distances Y=Y are
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Fig. 4.47. The four normal coordination polyhedra according to Frank and Kasper
consist only of tetrahedra and respectively coordinate 12, 14, 15 and 16 atoms

often less than the distances observed in the Y elemental lattice, whereas the
opposite is true for the X—X distances. As such, we can then suppose that
the small Y4 tetrahedra determine the structural stability of the crystal. If
we substitute Cu with Zn in MgCus, we notice that the form of the skeleton,
in which the Y (Cu and/or Zn) atoms are packed, depends on the number of
valence electrons per atom, e/a. In particular, where e/a = 1.8, we observe a
structural transition from the C15 phase to the C36 hexagonal phase (type
MgNiy) and where e/a = 2 a transition occurs to the still hexagonal C14
phase, (type MgZns), as shown in Fig. 4.48.

This sequence throws light on the role played by the conduction electrons,
in the bands that form when X-X overlapping occurs, in stabilising long range
order. The short range order is determined by the Y, tetrahedra, which are
formed because of the directional atomic orbitals involving d or p electrons.

The shape of the elementary structural unit depends critically on the
concentration, size and electron configuration of the constituent atoms; it
seems reasonable to assume that the structural building blocks for a given
alloy are essentially the same in the crystalline, glassy and liquid states. They
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realise various relative arrangements of the above structural units depending
on the degree of atomic mobility typical for the phase under examination.

The same material in the liquid state is not subject to the steric con-
straints the crystal is; tetrahedra can form in the liquid in unlimited number
and arrange themselves into icosahedral coordination. Local polytetrahedral
order in the icosahedron differs from the order of tetrahedra and octahedra
distribution in the fcc crystal due to the orientational part of the coordina-
tion. This is not identified in diffraction experiments, due to the orientational
average in the liquid, yet, it is the specific characteristic of the polytetrahe-
dral (icosahedral) order, according to the models and simulations for this
structure.

As the atomic mobility typical of a liquid at high temperature is reduced
towards the crystallisation temperature, new structural elements, e.g. octahe-
dra, form and are packed in the correct proportions. The experimental proof
that the short range order in a liquid is not the same as that in the corre-
sponding crystal is given by the supercooling of small droplets of mercury to
temperatures around (2/3)Ty,. This proves that atoms with the same coor-
dination number and coordination distance, thus with similar atomic volume
(as is observed in a material both in the crystalline and in the liquid phases),
may have different short range order.

According to Frank, the reason why large supercooling takes place in
liquid metals, where the central interatomic potential dominates, is precisely
the presence of icosahedral (polytetrahedral) order.

The liquid metals are supercooled because in order to substitute a local
stable configuration (icosahedral) with one of the extended configurations

C15 C36 C14

Fig. 4.48. In the crystalline Laves phases with composition XY2, the relative ar-
rangement of Y4 tetrahedra changes in structures C15, C36 and C14 as the average
number of electrons per atom, e/a, increases
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typical of a crystal, with higher energy, we have to overcome a high energy
barrier.

The fact that the solidification is blocked in the glassy, disordered state
implies that there are constraints which impede the structural building blocks
arranging themselves according to appropriate crystalline order. It is just
because both the elementary structural building blocks and the bond energies
coincide in the amorphous solid and in the crystal that these constraints are
only steric in origin, and must thus be explained in terms of the specific
nature of the chemical short range order.

The free energy in a liquid alloy is dominated by the mixing entropy,
in particular at high temperature. Whether the structural building blocks
survive in the liquid or not depends on the comparison between the local
enthalpy, associated with each building block, and the entropy associated
with the short range order these building blocks establish. When the liquid is
cooled, the constraints set by the need to densely occupy the available space
increase as the density increases. For essentially steric reasons, many tetra-
hedral units are formed. These are not solid clusters; rather, they fluctuate
spatially and temporally.

Whether chemical short range order will exist or not, thus, strongly de-
pends on the symmetry associated with it. Any deviation from the (poly)tetra-
hedral structure implies there is an entropic contribution. Conversely, the
realisation of chemical short range order with tetrahedral symmetry leads to
an increase in local enthalpy when chemical bonds are formed without any
contribution to configurational entropy. Direct evidence of icosahedral short
range order in deeply undercooled liquid cobalt was gained from the determi-
nation of the structure factors by energy dispersive diffraction of synchrotron
radiation. Assuming that the liquid is made of clusters with different short
range structures, the best fit to the experimental data is given by icosahedral
SRO, thus confirming Franck’s hypothesis, as well as the results of molecular
dynamics calculations on Lennard-Jones liquids that predict an increase of
icosahedral SRO with increasing undercooling of the melt.

The frustration that occurs while a liquid solidifies, when a lot of tetrahe-
dral building blocks have to rearrange and coordinate themselves with other
polyhedra, indicates that there is an energy barrier due to the new kind of
chemical short range order, and that this barrier is higher the stronger the
chemical bonds are.

The height of the barrier is insufficient to allow vitrification in most of
the pure metals, under reasonable supercooling conditions. Elements that
stabilise the amorphous phase have to be added to the system; they form
a dilute alloy with the metal. The greater the cohesion energy of the alloy
is, the greater is the efficiency of these impurities, which operate as nucle-
ation centres of the glassy phase. This corresponds to the formation of stable
chemical bonds that can associate atoms together to form structural units,
e.g. tetrahedra, still in the liquid state. During the cooling phase, and start-
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ing from these localised units, a well defined short-range chemical order is
developed which, in the end, freezes in the amorphous state.

Among the experimental results to prove the existence of tetrahedrally
coordinated units in the glassy state, on the one hand we may mention the
great similarity between the intrinsic magnetic properties of the transition
metal-metalloid ferromagnetic alloys in the crystalline and in the amorphous
states and, on the other, the tiny density reduction, about 2%, in the glassy
alloys compared to the corresponding crystals. Such value is incompatible
with the strong density reduction, about 15%, in the amorphous materials,
as provided for in a model that does not include local structural organisation,
such as the dense random packing of hard spheres.

However, the most direct proof of structural organisation in metal glasses
comes from X-ray and neutron diffraction, which often give rise to a pre-peak
and to a sharp, narrow first peak.

The pre-peak is found in alloys with two constituents, such as NiyyTig,
NigsZrgs5, NizNb(;_;). The reason for this pre-peak has already been discussed
for NiND (see Sect. 4.3). This pre-peak is an index of the considerable degree
of chemical short range order, thereby hetero-coordination is preferred to a
random atomic arrangement. A tetrahedral packing model for the atoms of
the minority species often gives the best agreement between the calculated
distances between first neighbour atoms of the various constituents and the
measured interatomic distances.

A dense packing of tetrahedra best describes the structure of the rare
earth-aluminium glasses with a composition ratio of four to three. The lo-
cal arrangement of the structural units is very similar here to the crystalline
alloys with a strongly packed tetrahedral structure, as exemplified by the pro-
totypical alloy Zrs7;Alys. The rare earth atoms are arranged in Frank—Kasper
normal coordination polyhedra and the aluminium atoms are icosahedrally
coordinated.

Even in those alloys where the chemical factors are less efficient in deter-
mining short range order, this order is often tetrahedral. For example, when
we compare the structure of amorphous Gds;Alys with that of crystalline
Gd57Cuys, we see that the need to fill the space as efficiently as possible
generates topological short range order that is extremely similar to tetrahe-
dral order in the Frank—Kasper phases. Yet, we do not observe a distribution
in the distances between first neighbours, which clearly indicates the pres-
ence of chemical short range order. This same order, which is determined by
the dense packing of tetrahedral units, has been observed, among others, in
equiatomic amorphous GdY. The most probable hypothesis about the nature
of such an ordering is that it is originated by the spherical symmetry typical
of the pair potential which governs interatomic interaction in metals.

The bond directionality in covalent materials greatly simplifies the study
of short range order. This can be defined by referring to a specific local co-
ordination polyhedron. As shown in Fig. 4.49, the description of the local
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topological order in a binary compound XY only requires us to know the
number of first neighbours for the atom z, n,, the subtended bond angle for
atom z, ¢,, the bond length X, and the corresponding quantities when we
consider atom y as the origin, namely ¢, and n,.

The number of faces, edges and vertices that each coordination polyhedron
shares with the other surrounding polyhedra, namely the connectivity, is more
important when studying medium range order than short range order.

When atoms of different species are coordinated about the central atom
of a coordination polyhedron, the chemical short range order takes on prime
importance. If the composition is not stoichiometric, and we assume that both
the valence and the atomic coordination are unchanged, then the only possible
way to arrange the excess atoms is through homopolar, thus “wrong” bonds.
Consequently, the chemical order associated with stoichiometric composition
is at least in part broken. The significant order parameter in this case is given
by the relative abundance of wrong bonds.

In some cases we notice that atoms of a given chemical species have dif-
ferent bond charge and connectivity states, even when the composition is
stoichiometric. The consequence is that, for a given polyhedron, these atoms,
which are coordinated about a central atom, will realise a degree of chemical
short range order which is less than the CSRO in an identical coordination
polyhedron in which all the atoms have equal valence and connectivity. The
trend can continue until the limiting case is reached where chemical order
can be completely discarded.

The description of chemical order in covalent systems, is particularly sim-
plified in the case of the binary compounds X(;_.) Y. where, if elements X
and Y belong to column x and y of the Periodic Table, the local coordinations
N, = 8 —x and IV, = 8 — y are achieved, which is an agreement with the
normal valence of the two elements and with the “8 — N” rule.

In a compound with arbitrary stoichiometry, bonds X-—X, X-Y and Y-Y
can coexist. The possible distribution of these bonds can be derived from

y Fig. 4.49. Schematic illustration of
the elements defining short range or-
der in amorphous covalent materials:
number of first neighbours, n, (two in
the figure), bond angle, ¢, and bond
length, Xy
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two alternative models. In the first model, the Chemically Ordered Network
(CON), the X-Y bonds are more likely to form. At the stoichiometric com-
position, ¢, = Ny /(N + N,), the phase is perfectly ordered from the chem-
ical point of view. If the compound is enriched in element X, namely for
0 < ¢ < ¢g, then apart from the X—Y bonds there are only X—X bonds. Con-
versely, if the compound is over-stoichiometric in element Y (1 > ¢ > c¢;),
X-Y and Y-Y bonds only are observed. The bond statistics in the CON
model, in the case of a XYy system (like SiO3) in the region enriched in
X(0 < ¢ < 0.67), can be obtained if we take into consideration that each
divalent Y atom coordinates through two bonds, so

NX7Y = 2c. (489)

We can obtain the number Nx_x of X—X bonds by considering the number
of bonds atoms X can enter, 4(1 — ¢); this is equal to

Nx x = % [4(1—-c¢)—2c] =2— 3¢ (4.90)

The second term in the brackets has to be subtracted from the first to
take into consideration the already formed X-Y bonds. The 1/2 factor is
introduced to ensure we count each bond one time. Given the stoichiometry,
then obviously

Ny v = 0. (4.91)

In the region enriched in the divalent element Y, (1 > ¢ > 0.67), the bond
statistics becomes

Nx_x = 0. (4.92)

The number of Y-Y bonds is obtained from the difference between the
total number of bonds, (1/2)(2¢), and the number of X-Y bonds, namely

(1/2)[4(1 =€)}, s0
(1/2)[2¢—4(1 = ¢)] =3c—2 (4.93)

where the 1/2 factor is necessary again to ensure we count each bond one
time only.

In Fig. 4.50 the lines represent the number of bonds per atom as a function
of composition ¢ for the Chemically Ordered Network model.

The second model, the Random Covalent Network (RCN), deals purely
with the statistics of bond distribution and is only determined by the local
coordinations Nx and Ny and by the composition c¢. Any effect due to pref-
erential ordering, that arises from the possible differences in bond energy, is
disregarded; thus, for any composition, except for the extremes ¢ = 0 and
c =1, the X—X, X-Y, and Y-Y bonds are allowed. Once again, referring to
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a compound with a ratio of 2 : 4 between the constituent coordinations, we
obtain the statistics for the various bonds from the total number of bonds
taken singularly,

%[4(1 —o)+2=2—-c (4.94)

The first term in the brackets in equation (4.94) takes into account the
valence four of the X atoms, and the second term the valence two of the Y
atoms.

The number of X-X bonds is proportional to 4(1 — ¢)?, the number of
X-Y bonds is proportional to 2[2¢(1 — ¢)] and the number of Y=Y bonds is
proportional to (1 - ¢?). Factors 4, 2 and 1 refer to the various possibilities
that atoms with different valences have to combine together. Thus, in a purely
statistical model, a pair of next neighbour tetravalent X atoms is more likely
to bond together since each one has four available atomic orbitals, whereas
two divalent Y atoms each have two atomic orbitals. Thus we obtain the
following system:

Nx x o 4(1 — ¢)?

Nx_y x 2[2¢(1 = ¢)] (4.95)
NY Y X (1 . 02)

So,

4a(1 —¢)® +dac(l —c) +ac* =2 —c¢ (4.96)

from which we obtain a = 1/(2 — ¢).
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When we insert this value into (4.95) we obtain

Nx x =4(1 —¢)?/(2—¢)

Nx.yv =4¢(l—¢)/(2—¢) (4.97)
Ny y = /(2 —¢).

The curves in Fig. 4.51 represent the dependence of the number of bonds
per atom on stoichiometry in the random covalent network model.

Both models are simplified pictures and can only be applied to covalent
systems with well defined directional bonds. Of the two models, CON provides
a deeper physical insight, and gives a good description of most chalcogenide
glasses.

4.8 Medium Range Order

On the basis of the remarkable amount of short range order in all the kinds
of non-crystalline systems, it is quite normal for us to wonder if there is any
structural correlation on a longer scale, typically in the interval 0.5-2 nm.
We certainly understand less about medium range order (MRO) than we
do about local order. This is immediately confirmed by the lack of a single
definition of medium range order. The simplest definition accounts for the
elements accepted when the defining short range order, namely the two and
three particle correlations that determine, respectively, the bond lengths and
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angles as well as the local symmetry of the site under examination. Four to
ten particle correlations regard ordering over intermediate distances. On the
other hand, we can claim that an amorphous solid exhibits medium range
order when it is structurally non-random, even beyond the first neighbour
shell of an atom taken as the origin.

Just like local order, the development of medium range order must be
considered separately in covalent and metallic systems. Furthermore, in the
former, where order on an intermediate level is undoubtedly clearer, we can
identify various levels of structural organisation on scales of increasing length,
yet within the already specified interval. The short range order is often de-
scribed by well defined coordination polyhedra; in turn the first level of inter-
mediate order depends on the kind of connections between those polyhedra
and on their relative orientation.

Even if we start from a single polyhedron, which constitutes the most
elementary structural unit, then the obtained structure when a number of
units are interconnected in such a way as to share vertices or edges or faces
is highly differentiated, already at the level of local order.

Medium range order is more evident when the relative orientation of ad-
jacent polyhedra is locked by the interconnection procedure. Qualitively we
expect the medium range order associated to the sharing of edges to be more
marked than the MRO determined by the sharing of vertices, which in princi-
ple would allow the various structural units to freely rotate around common
bonds. In this case, however, we are more likely to obtain certain orienta-
tions than others. In the covalent systems, these orientational correlations
are measured using the dihedral or torsion angle &, as shown in Fig. 4.52.
When we consider two interconnected structural units, and having chosen a
reference bond, then @ is the angle the homologous projections of the other
bonds in the structural unit under examination must be rotated about in
the plane normal to the bonds to be brought into coincidence. Any deviation
from uniformity in the distribution for @ values, P(®) is an index of medium
range order.

The difference in SRO for chemically similar systems with the same local
structural organisation (thus with the same coordination polyhedra) gives
rise to different dimensionality of the networks of disordered bonds, which
we can obtain when we force adjacent polyhedra to share different elements
(vertices, edges or faces).

One characteristic example is given by the X(Ge; Si) Yo (S; Se) chalco-
genide glasses. In these cases the characteristics of the short range structure
are due to the prevalence of XY, tetrahedra; however, the kind of connection
between polyhedra changes from material to material. While the adjacent
tetrahedra of SiOs, both crystalline and glassy, are connected through the
vertices and give rise to a three-dimensional giant molecule structure, GeSes
and GeSs exhibit a fraction of structural units interconnected at the edges,
both in the amorphous and in the crystalline states, and these edges produce
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Fig. 4.52. Schematic illustration to define the dihedral angle, ¢

local two-dimensional structures. Lastly, the polymorphous crystalline mod-
ifications in SiSe; and in SiSs exhibit edge sharing only between tetrahedra.
This type of connection predominates in the glassy state, too, and gives rise
to one-dimensional local structures.

If we consider a greater scale than 0.5 nm, then the medium range order
is characterised by extended structural units. These units consist of, for ex-
ample, rings of atoms with a particular shape and size, and are found in the
system with significantly greater frequency than the purely statistical one.
The local structure within each ring is determined by short range order.

So far our examination of medium range order has developed by consider-
ing that the structural order over an intermediate distance is a consequence
of a specific kind of short range order. This is largely proven in covalent sys-
tems where the short range order is well defined, and is strictly dependent on
the constraints of chemical bonding. Conversely, in the metallic amorphous
systems, where non-directional bonding prevails, these kinds of constraints
are absent.

However, when a considerable degree of short-range order is found, like
in the transition metal-metalloid alloys, where short range order has mainly
topological origin, we may assume that such a SRO is the consequence of a
well defined medium range order, unlike in the covalent systems.

As such, diffraction studies on amorphous NiggBsg show that the aver-
age coordination number around the metalloid atoms is 9.3 (in crystalline
NizsBas, with a cementite structure, for which Fez5Css is a prototype, the
same coordination number is 9) and around the transition metal atoms it
ranges between 12 and 14. It is noteworthy that there are no metalloid-
metalloid first neighbours. We require that the same kind of elementary
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(a)

Fig. 4.53. (a) Trigonal prismatic elemental building block of cementite NirsBos;
(b) construction of the disordered structure for amorphous NigoBag, using the same
kind of structural element

structural unit, namely trigonal prismatic, capped, already adopted for crys-
talline NiysBos is the base element for the amorphous NiggBog structure.
This choice has the specific objective to highlight the considerable degree of
medium range order in the system.

Each prism contains a metalloid atom surrounded by nine transition metal
atoms. These units are efficiently connected together by sharing vertices and
edges, and are highly constrained both in terms of position and orientation.
Layers of densely packed trigonal prisms, as shown in Fig. 4.53, make up the
core of a computer simulated model for the Nig;B1g alloy. This system ex-
hibits extra planes of densely packed nickel atoms which separate the various
layers; three connecting rules govern the reciprocal arrangements of structural
sub-units within each domain:

1) the nickel atoms can only occupy the vertices, or they must cap prisms.
In this way we ensure that the trigonal prismatic coordination extends
throughout the structure;

2)the connection between adjacent prisms can only occur by way of shared
vertices, or edges. The structure is thus similar to the crystalline structure;

3)if an atom does not occupy a prism vertex, then it occupies a (common)
vertex of two semi-octahedra which cap adjacent prisms.

With specific care not to create grain boundaries, the model produces
various positionally ordered domains similar to, though not identical to, some
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of the crystalline phases of the system. The medium range order obtained
may extend to distances of 2 nm, as shown in Fig. 4.54. A further structural
relaxation in a Lennard—Jones potential with 6-12 exponents (see (4.88) and
Fig. 4.46) does not bring about any significant topological modifications.
This means that the system in its initial configuration already lies in the
neighbourhood of a local minimum of the potential energy.

It is noteworthy that the structural model for this class of metallic glasses
does not include, by construction, any icosahedral local order. Glass forma-
tion is caused by the freezing of configurational defects rather than by geo-
metrical frustration.

Medium range order has been investigated in the easy glass former BMG
Pdy4gNiggPop; this alloy is specifically suitable to structural analysis, being
made of three-constituents only. Both imaging in a TEM and HREM were
performed; in carefully underfocused HREM pictures regions with an aver-
age size of 2 nm showing straight fringe contrast were found. The interplanar
spacing and the cross-angle of lattice image are consistent with a fcc (Pd,
Ni)-type cluster of [100] zone axis. Yet, the selected area electron diffraction
pattern taken on a region that includes the crystalline area is typical of a fully
amorphous material. A structural model made of a dense random packing of
5000 atoms in which is embedded in central position a 500 atoms fcc island
with a diameter of 2.5 nm was then constructed. In the model the evident
core region with fcc MRO is smoothly connected to the surrounding random
atomic arrangements. Once the model is subjected to a reverse Monte Carlo
simulation the obtained interference function shows a halo pattern similar to
that obtained from a fully amorphous structure, in agreement with experi-
ment. In a Voronoi polyhedra analysis of the model structure capped trigonal

G (x)

X (nrl*n)

Fig. 4.54. Trend in the reduced radial distribution function Ggs(z) of amorphous
NigoB2o. —: experimental; — — —/ ..., obtained using the structural model in part
(b) of Fig. 4.51 which presents non-crystalline domains with medium range order
extending typically up to 2 nm and 1.2 nm, respectively (adapted from [4.10])
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growth; the top curve shows
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material, the bottom curve
gives the corresponding en-
thalpy change (adapted from
[4.11])

prisms and Archimedean antiprisms are the most frequent SRO structures
around P atoms. It is noteworthy that a previous similar analysis performed
on the rapidly quenched PdgsSiig prototype metallic glass gave the same re-
sults, with a volume fraction of islands with fcc Pd MRO as low as 10-20 %,
the main part of the structure being Pd-Si trigonal prisms. The existence
of structural fluctuations, that give rise to structural decomposition at the
nanometer scale confirms that there is competition between crystallisation
and glass formation, independently of the cooling rate.

Whether or not we need local icosahedral order in the formation of amor-
phous metallic structures is a problem that greatly influences the study of
medium range order for these systems. So far only a few model alloys have
been analysed, using Molecular Dynamics simulations, and the orientational
order of the bonds in the liquid phase has been measured. Attention has
been placed particularly on those glass forming alloys involving aluminium;
these can be divided into two groups: the first group includes those systems
which easily turn amorphous, that do not produce quasicrystals and have
a rather low re-crystallisation temperature. Among these systems we shall
consider Al-Ni as our prototype. The second group covers the alloys that are
more difficult to vitrify, that do form quasicrystals and re-crystallise at high
temperature. We shall consider AI-Mn as the prototype.

The way crystallisation occurs in the two groups is clearly different since
in the first group crystallisation occurs through a nucleation and growth
mechanism, whereas for the second group no nucleation stage exists. As such,
we are given to think that the “amorphous solids” in the second group are
in actual fact quasicrystals whose crystallites are no larger than 1.5 nm, and,
as such, cannot produce narrow diffraction peaks. This is not surprising;
“amorphous” films have been deposited, e.g. AgsoCuyg, whose experimental
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structure factor, with non-crystalline features, coincides perfectly with that
of a fcc cluster of the very same alloy composed of a small number of atoms,
125 for the specific case.

Microcalorimetry shows that the crystallisation kinetics of a system that
undergoes a nucleation and growth process is characterised by sigmoidal trend
as a function of time of the fraction of the crystallised material, as shown in
Fig. 4.55. Conversely, the observed trend, where there is no nucleation stage
(Fig. 4.56), for example in the “crystallisation” of Algs ¢Mn;7 4 films supposed
to be amorphous, involves monotonic growth in the size of the crystalline
grains already present in the alloy.

When we consider the partial correlation functions obtained by neutron
scattering from AI-Ni and Al-Mn in the liquid state, they seem very simi-
lar, except for the first peak in the AI-Ni distribution which is consistently
broader than the Al-Mn peak. The calculated pair potentials are very differ-
ent from each other and from the Lennard—Jones potential. These potentials
have been used in Molecular Dynamics simulations to analyse the orienta-
tional order of atom clusters with initial random configuration corresponding
to the liquid state. Each bond connecting the first neighbour atoms together
in a cluster is given a spherical harmonic

Qim(x) = Yim[0(z), d(x)]. (4.98)

In this equation 6(x) and ¢(x) are the polar angles for the bond being
considered, measured in a reference coordinate system, and where () is the
coordinate of the mid-point in the bond. We calculate averages on suitable
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Fig. 4.56. Transformation of
a nanocrystalline material via
isothermal grain growth; the

. . top curve shows the evolution
0 10 30 50 t(min) in the average grain size; the
bottom curve gives the cor-
responding enthalpy change
(adapted from [4.11])
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Fig. 4.57. Trend in the second order invariants, @, in various systems; (a) random
packing of identical atoms; (b) liquid AlgoNizg at 7' = 1320 K; (¢) liquid AlgoMnag
at T'= 1320 K; (d) quasicrystalline icosahedral AIMnSi; (e) a—AlIMnSi, crystalline
(adapted from [4.12])

groups of bonds,

anL = <Ql’m(m)> :

The analysis of the orientational order parameters Q;,,(x) allows us to
determine the characteristic intervals orientational order extends on. In an
isotropic system, only Qo is not null, after having calculated an average on
the volume of the sample.

We then consider the combination of @, which are invariant under ro-
tation, for given values of [,

b 1/2
2
D] Z |le|] - (4.99)
m=—1

Q, is called a second order invariant.

Analysis of @, as shown in Fig. 4.57, indicates that only liquid Al-Mn
consistently deviates from a random atomic packing, and exhibits a kind of
order very similar to the order in the a—AIMnSi phase, which is a crystalline
approximant of the icosahedral quasicrystalline structure (see Chap. 6).

Very similar results have also been obtained for the Al-Pd-Mn liquid
alloy. We may be given to think that local orientational order of icosahedral
kind is not dominant in all alloys in the liquid state; easy glass forming alloys,

Q =
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Fig. 4.58. High resolution electron microscopy images of glassy Pdg2Si1s alloys

prepared under different fast-quenching conditions; (a) —% = 1x 10°Ks™'; (b)

f% = 6x10°Ks™"; (c) shows the drastic structural modifications in the alloy with

changed composition, Pd75Sizs (adapted from [4.13])

such as AI-Ni, that do not exhibit icosahedral organisation in the disordered
phase, often exhibit a crystalline phase with cementite structure. This has
also been observed in Ni75Bss and in Pd75Siss, whose local structural units
are also found in the glassy structure. In all these cases, vitrification seems
to be caused not so much by the topological frustration, but by frustration
of the connectivity scheme for the structural units, as already discussed.
Only very recently have structures caused by medium range order been di-
rectly observed on an atomic scale, using high resolution electron microscopy.
One very clear example of this kind of structure is given in Fig. 4.58, and
refers to two amorphous alloys with composition PdgsSiig prepared at cool-
ing rates of 10° Ks~! and 6 x 10° Ks~'. Domains with an inter-fringe distance
of 0.22 nm have been identified, whose mean size and volume fraction grow
with the decrease in the quenching rate. These domains have a very similar
structure to the fcc structure. The structure and inter-fringe distances change
drastically on changing the stoichiometry of the material. The inter-fringe dis-
tance in Pdz5Sigs grows up to 0.25 nm, whereas the super-structures due to
the medium range order display very similar characteristics to Pd75Sis5 crys-
talline cementite with PdgSi trigonal prisms. The above observations confirm
that when the concentration of metalloid in the transition metal-metalloid
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Fig. 4.59. Experimental evidence of medium range order in amorphous systems;
the first sharp diffraction peak is invariably around kx, = 2.5

alloys exceeds 20 at. %, medium range order with a chemical origin is devel-
oped.

The most immediate experimental proof of medium range order in non-
metallic glasses is given by the presence in the diffraction patterns of the
so-called First Sharp Diffraction Peak (FSDP), or pre-peak, in the reciprocal
space. While this structure is very evident, as shown in Fig. 4.59, there is usu-
ally no specific well defined index for medium range order in any correlation
functions in real space, typically in the radial distribution function.

The pre-peak has been observed in many chalcogenide glasses and in other
covalent materials, such as SiSes, GeSes, GeSy, BoOs, P4Ses, AssSes, B, P,
As, Sb, whereas it is not present in pure, amorphous Se and Ge. It has also
been observed in liquid metallic alloys like KPb.

‘We must not confuse the FSDP with the pre-peak observed in amorphous
metallic solids with two constituents which is caused by chemical short range
ordering of the minority species (see Sects. 4.3 and 4.7). In this case, if kj, is
the wavevector associated with the maximum of the pre-peak, and x; is the
bond distance between first neighbours, then the reduced parameter k,z; has
values between 4.3 and 5, very close to kx; = 4.43, which is characteristic of
the tetrahedral packing in amorphous Ge.

The alternative name for FSDP, namely pre-peak, comes from the fact
that when the structure factor G(k), whether including the above feature or
not, is Fourier transformed, the correlation functions in real space coincide
among themselves. This indicates that the peak under examination does not
contain structural information concerning short range order, but that it is
associated with the realisation of structural arrangements that can be defined
at the level of medium range order.

The S(k) features that are to be attributed to medium range order can
be estimated by considering the function (sinkx)/(kx), whose first maxi-
mum is located at kx = 7.725. This is a reasonable estimate of the FSDP
position, which is correct within the limits of validity of the Debye equation
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(see (4.38)). The significant scattering vector is given by k = 7.725/x, where
x is evaluated starting from the short range order information on the system
under examination.

If we take a fairly common structural unit, the XY, tetrahedron, where
the X-Y distance is d, then a medium range order generating element consists
of three tetrahedra with one common vertex. We can define the maximum
distance this cluster of tetrahedra extends along. This distance is the radius
rmax Of the sphere centred on atom X in one of the tetrahedra, and whose
surface touches the centres of the other two tetrahedra. As such rpa. ~ 2d,
and the features of the &(k) curve at k values not greater than 7.725/2d, can
be interpreted as being due to medium range order. As such we can set the
lower threshold for the correlation lengths that give origin to medium range
order as x. = 2d = rvRro-

The main features of the pre-peak in covalent systems are:

1) when we represent G(k) as a function of reduced parameter kz, the peak
is located at kxq ~ 2.5 for all the systems it has been observed in. The
full width at half maximum of the peak, Ak, is such that Ak -z ~ 0.6;
the correlation length z. for the medium range order is x. ~ % ~ 10z, a
broad correlation interval for materials in which, by definition, long range
order is absent. We must note that this estimate for z. is the result of a
“crystalline approach” to the amorphous structure where we combine the
Bragg equation (see (4.25)), for the interplanar spacing d in a crystalline
lattice, with the most general definition for the scattering vector k;

2) the peak intensity increases with the temperature (this has not been fully
validated), whereas the height of all the other peaks of the structure fac-
tor decreases with the temperature, in agreement with the Debye—Waller
factor. The peak is visible even in the liquid state;

3)when we apply a hydrostatic pressure the peak intensity falls and its posi-
tion shifts towards higher k values.

Lastly, in chalcogenide glasses, the pre-peak intensity increases as the
atomic number of chalcogen X in a particular glass lowers.

The origin of the pre-peak is connected to the hypothesis that the system
consists of atomic clusters that correspond to a single broad peak in the cor-
relation functions in direct space, located at distance x., which characterises
the medium range order in the structure. In the reciprocal space, this corre-
sponds to a highly dampened sine curve whose first and most intense peak
is the pre-peak. We assume that the measured total structure factor results
from two terms

S(k) = f(k) +d(k) (4.100)

where d(k) is the structure factor that describes the inter-cluster interference
due to X-ray or neutron scattering from structural units. Here, z. is the
average correlation distance and f(k) is the structure factor for intra-cluster
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scattering. Now, the fluctuations in z. are much larger than the fluctuations
in the bond length within a single cluster. Thus d(k), whose contribution is
dominant at small k values, is strongly dampened. As f(k) is prevalent in
the region of high k values, it is much less dampened.

Given that we can almost always observe the pre-peak in systems bearing
an atomic component, typically a chalcogen, with a low coordination number
that inhibits dense atomic packing in its neighbourhood, we can understand
why these systems are so sensitive to externally applied pressure. In fact, the
van der Waals bonds between atoms with low coordination in the directions
where covalent bonds are absent, can easily be compressed.

A geometric interpretation for FSDP has recently been put forward. This
interpretation stems from observations, with almost general validity (B2Og3
is the only exception), that the position of the pre-peak in various kinds of
glasses almost coincides with the first, and most intense, peak observed in
elastic diffraction from the crystalline phase with a composition that is the
same as, or very near to, the amorphous material under examination. This
means that the pre-peak may be generated by atomic density oscillations cor-
responding to the Bragg planes in crystals. Taking amorphous SiO5 as our
example, the X-ray scattering data at low k values are interpreted in terms of
the medium range order that leads to definite quasi-Bragg planes which, in
turn, exhibit certain characteristics similar to those in the {111} Bragg planes
of (-cristobalite. From a modelling point of view the consequence of this is
that the same set of operations leads to the formation of the amorphous struc-
ture and, with a few additional constraints, to the crystal structure. Since
the main difference between the two depends on whether there is periodicity
or not, we first analyse the (known) crystal structure using those operations
that can be applied to both periodic and aperiodic structures.

We then introduce distortions and disorder, inherent in the aperiodic sys-
tems, into the structure. In the case of SiOg, the requirement for tetrahedral
coordination with defined average values and standard deviation for the bond
distance, bond angles and the vertex angles among inter-connected tetrahe-
dra produces short range order. SiO, tetrahedra are interconnected so as
to form six membered rings in staggered conformations, corresponding to
60° dihedral angles. This structure generates medium range order. The ring
statistics is constrained in the crystal whereas it is relatively unconstrained
in the glass forming material. Indeed, (-cristobalite exhibits an atomic plane
structure consisting in planar layers. Each layer is composed of six membered
rings connected together so that each ring shows just the “chair” configura-
tion typical of cristobalite. These atomic layers are connected by a significant
number of oxygen atoms arranged on anti-planes. The atomic connectivity
within each layer is greater than the atomic connectivity in the anti-planes.
We can introduce disorder by varying the Si—-O bond distance in the plane
and the distance between atomic layers, where the bonds are weaker. The first
kind of disorder, which should have an effect on the (111) peak, is limited
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and leads to a well defined pre-peak, whereas the second is more important
and corresponds to a much more badly defined peak, in qualitative agree-
ment with the X-ray diffraction results. It is remarkable that in the glass
the above discussed MRO highlights compositional rather than positional or-
der of the network forming, as well as the network modifying elements. In
turn, compositional ordering is likely to be the main factor affecting glass
properties.

A pre-peak similar to what is observed in covalent glass forming ma-
terials, as explained above, has been observed in some amorphous metallic
systems. One significant example of the analysis of medium range order in
these systems, starting from the simulation of the characteristic features of
the pre-peak, is given by the metallic glass Tigi NisgCuyg. Experimentally,
the pre-peak position shifts abruptly from 16.5 nm~! at room temperature,
to 15 nm ™! at 723 K (where the metallic glass has not yet re-crystallised),
while the intensity grows with the temperature.

It has been assumed that the diffraction profile could be simulated by a
set of atomic clusters with icosahedral structure. Each icosahedron, as shown
in Fig. 4.60, contains a central titanium atom with a weighted statistical dis-
tribution of titanium, copper and nickel atoms at the vertices. The size of
the icosahedron can vary by contraction of both the pentagonal planes, nor-
mal to the icosahedral axis, and along the icosahedral axis. Four icosahedra
connected to the central one through the faces, defined by the vertices of two
adjacent pentagons, make up the reference extended cluster where 49 atoms
strongly correlated together, as shown in Fig. 4.61, give rise to intermediate
range order.

Fig. 4.60. Icosahedral struc-
tural unit in a model of
amorphous Tiﬁl Niggculﬁ .
The arrows indicate the di-
rections the structure may
be slightly deformed along
(adapted from [4.14])
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Fig. 4.61. Relative arrange-
ment of four icosahedra to
give qualitative agreement
with medium range order
features in the X-ray diffrac-
tion spectra of amorphous
Tig1 NizsCuis (adapted from
[4.14])
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Fig. 4.62. Trend in scattering intensity in the region of the first sharp diffraction
peak of amorphous Tig1 NiazCuie, as a function of the temperature (O, 705 K; A,
273 K). The simulated patterns were obtained using the structural elements in
Fig. 4.59, with medium range order extending to 0.85 nm (...) and 0.925 nm (—)
(adapted from [4.14])

When we change the size of the icosahedra in order to obtain modest fluc-
tuations, both in the centre-vertex distance and in the minimum vertex-vertex
distance on the pentagon faces, we obtain excellent agreement between the
experimental X-ray diffraction pattern and the simulated ones. Furthermore,
when we translate a 49-atom cluster in the z direction over various distances,
with the “double” cluster of 98 atoms, the pre-peak shift is well simulated
without affecting the remaining diffraction pattern. Figure 4.62 qualitatively
shows that the simulated patterns produce the same features as the exper-
imental patterns, not only concerning the peak position, but also when the
typical modification in the full width at half maximum is considered.
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Reverting again to non metallic glasses, both in incoherent neutron scat-
tering and in Raman scattering we observe a feature, with a striking almost
universal shape, that lies between 20 and 100 cm™! (corresponding to the
range between 2.5 and 12 meV, or between 0.5 and 3 THz). Such a broad
band is called Boson peak, because the temperature dependence of its inten-
sity is described by the Bose-Einstein distribution function. Although there is
no general agreement as to the vibrational, in turn propagating, or localised,
or relaxational nature of the excitations responsible for the peak, the latter
is often ascribed to collective atomic motions, precisely acoustic phonons,
extending over a length scale that coincides with that of medium range or-
der in the glass. The Boson peak is associated to an increase of the VDOS
g(w) over the Debye frequency wp. Since in the incoherent approximation in-
elastic neutron scattering directly provides us with g(w), a comparison with
the Raman spectrum shows that in several representative glasses g(w) has a
broad maximum in the Boson peak region, while the coefficients a;(w) (see
(4.86)) have a smooth frequency dependence. The elastic inhomogeneities
caused by structural disorder strongly scatter the excess transverse phonons
involved in the Boson peak, whose associated mean free path is drastically
reduced up to the point that such phonons can be considered localised. In
the Toffe-Regel (IR) limit (see Sect. 4.6), phonon localisation can be expressed
as k(w)irl(w)r = 1 with k& wavevector and ! phonon mean free path at the
Toffe-Regel frequency wir. Alternatively, once we take into account the cor-
relation length /., the same limit may be put as [, ~ vswgé with vg sound
speed and wpp Boson peak frequency. Thus it is tempting to deduce from
the Boson peak frequency a quantity directly connected to the medium range
order in the glass such as the correlation length. For representative glasses
including SiOs, B2O3, GeOs, [ values span a narrow range between 1.6 and
2.5 nanometers, in agreement with medium range order correlation lengths
obtained from the FSDP analysis.

The critical point of the above interpretation of the Boson peak is the
assumption that supercooled liquids are spatially heterogeneous. Indeed (see
Sect. 3.2) two extreme pictures lead to the observed non-exponential relax-
ation behaviour of the system: either an heterogeneous assembly of local
environments relaxes with a nearly exponential law, but every such environ-
ment has a different relaxation time, or the supercooled liquid is homogeneous
and each molecule relaxes in the same intrinsically non-exponential way. The
non-ergodic behaviour originates from the first picture, while the Kohlrausch
function (3.26) is related to the second picture. Although the cooperative na-
ture of the glass transition can result in a non-exponential time dependence,
experiments that probe properties of a large ensemble of molecular units, are
unable to directly recognise whether non-exponential relaxation results from
homogeneous, or heterogeneous dynamics.
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4.9 Structural Models

The inherent limitations to experiments on amorphous materials, especially
concerning diffraction, prohibit us from obtaining a complete understanding
of the structure, even in the more favourable case of covalent systems. From
the analysis of the parameters that characterise the first two coordination
shells we can calculate the distances and bond angles between the first neigh-
bour atoms arranged in well defined structural units, but the information
regarding the spatial organisation of the unit itself is becoming even more
difficult to extract from experimental data obtained from spectroscopic tech-
niques; it is in fact as yet impossible to exceed the picture emerging from the
knowledge of the medium range order, which is a long way from giving us a
global view of a disordered structure.

The information we have gathered from the various structural probes is
complementary to the information obtained from the use of models, which
are used to simulate the structure of a non-crystalline system. In order to
realise an artificial amorphous material we have to merge two needs that often
appear to be mutually not very compatible: the degree of randomness and
the specific chemical-topological features in the structure, at least concerning
short range order. Once again, this leads to a difference in the models used
for systems where the bonding forces are non-directional, as the metals, and
the non-metallic solids with covalent bonds.

The need to turn to models, both physical and computer simulated, is
based on the lack of complete theories on the liquid state. When the model
simulates a liquid the obtained atomic coordinates correspond to a snapshot
of the atom positions in a real liquid. On the other hand, when the model
simulates a glassy material, with frozen translational motions, we obtain a
set of possible positions for the atom assembly.

Once the model has been built, we can then calculate the structural prop-
erties, in particular the radial distribution function and the density, in order
to make a comparison with the experimental data for real system.

At the beginning of the 1960’s, Bernal perceived that the structure of a
simple liquid, made of spherical atoms or molecules, where the interatomic po-
tential has no angular dependence, is given by the distribution of the volume
that is not occupied when the spheres are brought into reciprocal contact.
Since the density of a liquid is only a few percent lower than the density of its
corresponding crystal, the constituent atoms must presumably maintain high
coordination numbers in the liquid phase. In fact, the coordination numbers
obtained from experimental data lie between 8 and 12.

The simplest structural model of an elemental, structurally disordered,
condensed system, adopts hard spheres whose local spatial organisation de-
pends on the constraints on space filling. A minimum distance between two
atoms is required, which is equal to the diameter of the constituent spheres.
The structure of the crystals made up of hard spherical atoms (inert gases
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Fig. 4.63. A portion of the phys-
ical model of dense random pack-
ing of hard spheres (adapted from
[4.15])

and simple metals) is fcc or hep. This is the best answer to the need for
maximum density and for a crystalline lattice.

When this approach is extended to liquids, we come up against the prob-
lem of realising a dense packing of hard spheres without creating the slightest
trace of crystallisation.

The first models were realised physically by filling a flexible container with
thousands of steel balls (up to 7934, [4.15]). The container was previously set
on an irregular surface to avoid any formation of a crystalline surface. The
collection of spheres was then tightly wrapped in rubber strips to exert an
eternal compressing force on the system. The spheres were kneaded to favour
the spatial rearrangement and enhance the density to the most. In Fig. 4.63
is offered a picture of the system after it was blocked by pouring a liquid
glue into the structure and letting it harden. Lastly, the external “skin” was
removed and the coordinates of each sphere were measured.

Experimental methods somewhat different from each other led to the
very same results, namely that the maximum density obtainable in a dense
randomly packed system of hard sphere is 0.6366, with an 86% packing effi-
ciency compared to a close packed crystal. Further experiments to simulate
the same structure using a computer resulted in radial distribution functions
that were essentially undistinguishable from those obtained from the atomic
coordinates in the physical models.

The calculations made on the distributions of interatomic distances and on
the connectivities show that the dense random packing of hard sphere model
(DRPHS) shows many of the structural characteristics of simple liquids. Since
the model is static and the density is maximised (though models with lower
packing densities can be built, namely the so-called loose random packing



4.9 Structural Models 191

- -1 Nizghy

Fig. 4.64. Comparison
between reduced radial
distribution functions
for the physical model

! of dense random pack-
o ing of hard spheres (—)

) (adapted from [4.15]) and

1 1.5 2 for amorphous NizgPay
X/Dps (= — —) (adapted from
[4.16])

\

models), it is particularly suited as a model for an ideal glass with spherical
atoms at 0 K.

However, as surprising as it may seem, a quantitative comparison between
the experimental radial distribution function for amorphous NiygPo4 and that
for the DRPHS model (Fig. 4.64) shows considerable agreement.

Among the available models, the DRPHS is the only one that reproduces
the experimentally observed splitting into two sub-peaks of the second peak
in the radial distribution function. This splitting is specific to the amorphous
metals, and is absent in the liquid metals.

However, two serious difficulties are encountered when trying to compare
the structure obtained using the DRPHS model with the experimental results.

The first problem is that the relative position and intensity of the two
components of the second peak disagree with each other. This is essentially
a quantitative problem and is overcome by adopting soft potentials in the
computer simulations. The second problem is a qualitative one. We have to
identify a real two-component alloy with a single component model. Even
if the nickel contribution is dominant in X-ray scattering, the phosphorus
contribution, around 8%, to the scattered intensity cannot be overlooked.
Furthermore, as there is a second component that promotes the vitrification
process, namely the phosphorus, it undoubtedly has a significant influence
on the structure of the metallic glass.

In view of this problem, the observed agreement does seem somewhat
misleading in terms of understanding the DRPHS model, which may be more
suited to representing the structure of an ideal, single-component glass than
that of a particular amorphous alloy.
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Since 1972 computer algorithms have been developed that generate nu-
merical models of the dense random atomic packing. These models are re-
alised about a pre-existing structural core, with defined geometry, whether a
three-sphere triangle, or a tetrahedron with four spheres in mutual contact
at its vertices. The spheres often have, though not necessarily, the same di-
ameter, D. The computer adds to the structure one sphere at a time, keeping
it in close contact with three spheres already present; then the added sphere
is locked into its position. The process is then repeated up to a few thou-
sand times to generate an irregular dense model that gradually grows and
is completely characterised by the coordinates of each spherical atom. The
disordered system can also be reproduced as a physical model by using, for
example, hard plastic balls.

At each step of the process there are a number of stable positions where
another sphere can be added. These so-called tetrahedral pockets are defined
by three spheres, to which a fourth can be added that stays in contact with
the three spheres already mentioned.

The structure of the model depends on the nature of the core and on
the criteria used to judge the degree of acceptability for the positions of the
additional spheres as they are added. The simplest criterion used to add the
atoms is the global criterion where the pocket closest to the centre of the
original core is chosen. The chosen site is, in fact, the point of minimum
energy in a long range potential.

A second local criterion chooses the deepest pocket, thus favouring those
sites that are supposed to be more strongly bound in a short range potential.

One example of a criterion for the acceptability of the new atomic posi-
tions, based on a modified version of the global criterion, follows these steps:

1) choose three spheres on the surface of the structure so that the distance
between pairs of spheres is less than nD, where n > 1;

2) choose the position of another sphere that touches the other three spheres,
without overlapping any other spheres present. This position is called the
pocket;

3)label the position of all the pockets in the system;

4) place the new sphere into the pocket nearest to the centre of the structure
and lock it into position;

5)calculate the new positions of the pockets in the “grown” structure, then
repeat from step 4).

The whole calculation can be repeated for a set of values for parameter n.
In Fig. 4.65 are compared the radial distribution functions for the DRPHS
models, physical (part (a)) and computer generated, using the global criterion
(part (b)).

The overall agreement between the two models appears quite acceptable
even though the splitting of the second peak into two components is consid-
erably less marked in the computer generated model.
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Fig. 4.65. Comparison between calculated reduced radial distribution functions;
(a) physical model of dense random packing of hard spheres (adapted from [4.15]);
(b) computer generated model according to the global criterion (adapted from
[4.17])

A modification of the growth procedure for the global criterion model
reduces the used pockets to a pre-specified set, defined on the basis of the
tetrahedral perfection of each pocket, namely how close the four spheres, that
make up the pocket, are to being an ideal tetrahedron. For a cluster of three
spheres,

k123 = Max{12;13;23} [JZU/(Rl + RJ)] (4101)

where z;; is the distance between the centres of spheres i and j, and R;
and R; are their radii. The ideal tetrahedral arrangement corresponds to
kmax = 1. In this way models have been produced that contain up to 5000
particles.

The sequential procedure of adding atoms raises a number of delicate
aspects. The first regards the very sequentiality character in that once an
atom has been added to the structure it cannot be removed. Due to simi-
larity between the procedures the pockets are filled, the resulting packings
look more like the experimental “loose” laboratory packings than the dense
packings; as such, the model structure has to be made more dense. In fact,
the extrapolated densities are rather low, less than 0.60.

To this low density we must associate the inability of these models to ad-
equately reproduce the splitting in the second peak in the radial distribution
function, as observed experimentally (Fig. 4.64). In other words, if we cannot
reach an adequate density the system will not exhibit all the required struc-
tural properties. As such, the simulation methods using sequential build-up
may give us misleading results if they are used singularly. Not surprisingly,
the global procedure allows us to obtain the higher densities, whereas the
density falls dramatically when we introduce progressively higher degrees of
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tetrahedral perfection. Models where k = 1.2 are highly porous and could be
mechanically unstable.

Since the first component of the second peak in the RDF for Nigy4P1g is
found at about 1.65 hard-sphere diameters, a value that indicates that there
is a large fraction of icosahedral structural units, an algorithm has been put
forward that produces a model with a consistent number of these units. How-
ever, even though each icosahedral unit is rather dense (0 = 0.67), the global
packing of the amorphous solid exhibits low density, ¢ = 0.52. This result can
be explained by the existence of holes located at the interfaces between locally
dense sub-structures, and is a further example of the topological frustration
that inhibits effective extended packing of high density structural elements.

We should remember that, owing to the considerable polarisation towards
local icosahedral order in the model, the position and relative intensity of
the two components of the second peak for the radial distribution function
reasonably agree with the experimental data. Yet, the unrealistically low
global density demonstrates that this agreement has been obtained at the
expense of the packing constraints that have to be present in a real material;
as such the model is inappropriate.

The dense random packing models realised using equal-sized spheres are
dense in that no holes are allowed that are big enough to contain normal-sized
spheres. However, this does not mean no holes are present; on the contrary,
the packing density difference, around 10% between these models and the
densely packed crystalline structures, suggests that sizeable holes do indeed
exist. These holes are classified with reference to five polyhedra, the so-called
canonical holes, shown in Fig. 4.66, whose vertices are defined by the centres
of the involved atom spheres, provided we admit that the position of the
polyhedra vertices can be shifted up to about 20% compared to the ideal
ones.

The tetrahedron is the smallest polyhedron out of those under examina-
tion; it is also found with the highest frequency (73%, 2.9 per atom). This is
followed by the octahedron (20%), the trigonal prism and the tetragonal do-
decahedron (3%) and the Archimedean anti-prism (1%); the other polyhedra
are even less frequent. The fact that there is such a high fraction of packing
defects is reflected in the exaggeratedly high values of free energy calculated
for many amorphous models.

The topology for the densely packed statistical structures can also be
described with reference to the Voronoi polyhedra (see Sect. 4.7). On average
each Voronoi polyhedron has 14.25 faces, compared to the 12 faces for the
fcc and hep cells and 14 faces for the bee cell.

When we let the structure relax under a long range external potential,
such as the Lennard—Jones (6-12) one (see (4.88)), the total energy of the
amorphous solid reduces by about 5%. Correspondingly, the arrangement
of the Voronoi polyhedra is modified, resulting mainly in deformed tetrahe-
dra (70%) and deformed octahedra (20%). These very same elements, un-
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(a)

Fig. 4.66. The five polyhedra used to define the canonical holes: (a) tetrahe-
dron; (b) octahedron; (c) trigonal prism, capped with three half-octahedra; (d)
Archimedean anti-prism, capped with two half-octahedra; (e) tetragonal dodeca-
hedron

deformed, constitute the densely packed metallic crystals with coordination
number twelve. Furthermore, the structural relaxation causes significant mod-
ifications in the radial distribution function. In particular, the height of the
two components of the second peak is exchanged, which correctly reproduces
the ratio between the experimentally observed intensities. Apart from this,
the first peak shrinks and the first minimum is more pronounced. Lastly, we
observe a striking increase in global density. The best results are obtained
when we allow the system to relax, keeping its boundaries free. Unfortunately,
this leads us to underestimate the importance of the packing constraints that
exist in real structures.

To conclude, it is fairly simple to choose a model with either the ex-
perimentally observed density or a reasonable radial distribution function.
However, we have to produce both at the very same time, and this certainly
is not easy, probably impossible, to realise through the infinite packing of
more or less hard spheres. Indeed, the above general considerations regard-
ing the hard sphere models can also be applied to the more realistic dense
packings of soft spheres, partially overlapping each other.

A dense random packing of (hard) spheres is at one extreme of the mod-
elling procedures of disordered structures where the resulting short range
order is given by the geometry of the arrangement of the spheres.

When we simulate systems with highly directional covalent bonds, the
structural models must be significantly influenced by the valence of the sys-
tem constituents, by the bond length and by the bond angles. The calculated
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correlation functions for the models, whether they concern particle pairs or
triplets, must contain this information. We presume the number of first neigh-
bours for a given atom must be small and must be determined by the chemical
affinity of the compound constituents.

The continuous random network (CRN) of covalent bonds is the pro-
totype model for covalent amorphous systems. It had a profound influence
on the development of the representation of structurally disordered systems,
including non-covalent ones.

We already examined some of the features of the CRN model when we
discussed the criteria used to interpret glass-forming ease (see Sect. 3.3). The
amorphous material is treated as a super-molecule in which connectivity is
maintained throughout, the atoms keeping their normal valence, with the
only exception of surface atoms. From the modelling point of view, in the
case of SiOy we consider a tetrahedron with four oxygen atoms bound to
a central tetravalent silicon atom as the structural unit. This same unit is
found in the crystalline modifications of SiO5. Let us now imagine that one
oxygen atom occupies the common vertex between two adjacent tetrahedra.
The oxygen atom is thus bound at the same time to two silicon atoms.

When we use the same connecting strategy with many structural units,
by way of vertex sharing, we build an extended network without long range
order. This occurs because we have introduced a randomness element into the
system, namely a distribution around an average value of the bond angle O—
Si—O. We can obtain this distribution by either stretching, or contracting, the
bonds, or by rotating the tetrahedra adjacent to each other by an arbitrary
angle, around a line that is given by the Si—O bond, or eventually, by using
both methods together (see Figs. 4.49 and 4.52).

In the physical models for amorphous SiOs, realised with small spheres
connected together using rods and containing a few hundred tetrahedra, we
observe that O-Si-O angle varies by + 20% compared to the average value
of 140°. Similarly, in a model of amorphous Si and Ge, 12% of the bonds are
stretched by 10% of the average value.

These models can be traced to the traditions of both Zachariasen, given
that short range order is determined by keeping the specific chemical bonds,
and Bernal, given that we obtain essentially irregular extended packings.

We can measure the atomic coordinates, the density, the connectivity and
the radial distribution function for the CRN models just as we did for the
DRP model.

We can count one by one closed rings that are formed by bonds with
four, five or n elements, giving us topological-chemical information that is
useful for a theory of the structure of covalent glasses. If we consider, on the
other hand, the inherent statistical imprecision due to the rather low number
of atoms in the model and, on the other hand, the experimental errors and
the limitations associated with converting data from the reciprocal space
to the physical space, then the agreement between the radial distribution
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functions obtained from the models and from experiments is rather good.
It is noteworthy that the models include well defined conditions for three
and more atom coordinations, whereas the experimentally obtained radial
distribution functions do not give us this information.

It is doubtful we shall ever realise complete agreement between models
and experimental results; the realisation of continuous, statistical networks
with unlimited sizes without having to insert defective bonds into the system,
which is theoretically possible, corresponds to an ideal glass structure. Real
materials, such as the prototype amorphous silica, come close to this ideal
structure, but they do contain defects, just as the real crystals deviate from
the perfect idealised crystalline structure.

Adoption of either the DRP or the CRN models does not mean that
the CRN model includes chemical short range order, whereas this important
structural property is absent in the DRP models and cannot be taken into
consideration. One possible connection between the two kinds of models has
been explored with the aim to discuss whether there is partial, or relevant,
chemical short range order in a metallic alloy.

We obtain glassy structures with short and medium range order when first
we choose a particular structural element, embodying the possible chemical
order of the alloy, and second, we assemble these units using similar rules
to those used for the continuous random network. The transition metal-
metalloid alloys already discussed (see Sects 4.7 and 4.8) are examples of
this approach.

4.10 Collective Excitations

All the quantities defined so far in this chapter are static, as they provide
information on the position of atoms in a disordered system; this is suffi-
cient to investigate system structure. However, we are interested to study
also transport and non-equilibrium properties. These include the dynamics
of a liquid in the neighbourhood of the glass transition and the vibrational
collective behaviour of amorphous materials, both metallic and non-metallic,
where the motion of atoms plays a central role. We have to take into account
the time variation of positions and momenta of all atoms in the considered
system. To this task time dependent correlation functions are needed. Among
them the van Hove pair correlation function G(z,t) that is a generalisation
of the pair correlation function g(x) (see (4.13)), is of prominent importance.

In general, considering a piece of condensed matter, we suppose that at
the initial time 0 an atom ¢ is at position X;(0). We are interested to the
possibility that at a subsequent time ¢, another atom j is located at X ;(¢).
The distance between the two positions is

xr = Xj(f,) —Xl(O)



198 4. The Structure of Disordered Systems

The average number of atoms in a small volume V' around « can be conve-
niently expressed as

N/d:c <Z(5w— )+ X; (o)}> (4.102)

In (4.102) the delta function counts one every time the relative separation
between ¢ atom at instant 0 and j atom at instant ¢ is x, the sum over j
takes into account all 7 atoms and the average over all ¢ atoms corresponds
to the term = Z The van Hove space-time correlation function G(z, t) that

is a complex functlon of time is defined as

<Z Sz — )+ X (0)]> (4.103)

Notice that the atom at X ;(¢) can be the same one that was at X ;(0). Given
the formal similarity between G(x,t) and the one particle density function
¢! () in (4.2), it appears that G(z, t) is linked to density correlations at points
separated by (x,t). Indeed we found (see Sect. 4.2) that a continuous and
uniform material density yields no scattering. Any scattering cross section
measures the correlated space-time variations of density.

When we consider for simplicity an elemental liquid as our reference clas-
sical system, at ¢ = 0 there is a simple link between G(z,0) and g(z) in
(4.13)

G(x,0) = Gy(x,0) + Gq(x,0) = 6(x) + pg(z) . (4.104)

In (4.104) G(x,0) is splitted in a Gy self member that includes all terms
with ¢ = j and a G4 distinct member that includes all terms with 7 # j. In
general Gg(x,t) indicates the probability that the same particle is at (0,0)
and at (x,t). Also

G(zx,t) = Gs(x,t) + Ga(x, ) (4.105)

In (4.104) and (4.105) p is the average macroscopic density, g(z) is normalised
to unity and G(z,t) to p. The schematic trends of the distinct and the self
contributions to G(x, t) are shown in Fig. 4.67 for ¢ short, comparable to and
longer than the leading relaxation time 7 of the liquid.

The change of dynamics that occurs when the melt is cooled down towards
the glass transition is evident. In particular, the probability P(x,t) that an
atom has travelled a distance x during time ¢t is

P(x,t) = 4na*Gy(x, t).

Apart from the geometrical constant 47z?, at high temperature P(z,t)
is nearly gaussian, with a broadening proportional to ¢!/2; when the liquid
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Fig. 4.67. Schematic trends of the van Hove’s correlation function G(z,t) for
different values of ¢, compared to the leading relaxation time 7 of the liquid: (a)
distinct term; (b) self term. Continuous curves: ¢ much shorter than 7; dotted

curves: ¢t comparable to 7; dashed curves: ¢t much longer than 7 (adapted from
[4.20])

is cooled towards Ty, Gs(x,t) becomes strongly non-gaussian, with a tail to
large distances that increases with time.

The measurement of the van Hove correlation function G(x,t) requires
that the wavelength and energy of the probe are comparable to the rele-
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vant length and energy in the sample. In an elemental liquid the ratio 27 /a,
with a average interatomic distance, is several tenths of a nanometer and
the potential energy well is 10~! eV deep, at most. Thermal neutrons are
the best experimental probe, as their energy is usually in the range between
a few 1072 eV and 107! eV, with wavevectors of a few hundreds cm™!.
Thus they can easily gain energy from, or lose energy to phonons whose fre-
quencies lie in the interval between 50 and 1500 cm~!. Obviously in such
inelastic scattering events the dynamic pair correlation function G(x,t) is
adopted. In experiments at high &, the important contribution to Gq(,t)
is at small z: in this region Gq(x,t) tends to zero, as for ¢ > 0 only the
atom at the origin is found close to its initial position, because all atoms
oscillate around their equilibrium sites and do not approach each other closer
than the interatomic distance xg. When kxzg > 1, in the neutron scatter-
ing cross section the distinct term that describes interference of neutrons
scattered by different atoms is neglected. This is the incoherent approxima-
tion; the associated simplification is that the scattering is proportional to
the phonon density of states. On the contrary, in coherent scattering only
certain discrete energy and momentum transfers are allowed, like in Bragg
scattering.

As we will discuss later, also X-rays from synchrotron radiation sources
match well the requirements from a scattering experiment. However, the scat-
tering of electromagnetic radiation is coherent, i.e. all the waves scattered
from different atoms have the same amplitude.

In a neutron scattering experiment the general form of the differential
cross section for a given scattering angle and energy transfer is

d’o k
- _r i(k - @ — wt)|dadt
d02dw _ 27Nkg / / expli(k - @ —wi)lde

x <Z / bidla + X;(0) — a'Jb;d[a’ — Xj(t)]dac'> (4.106)

,J 1%

where kg, k are the wavevectors before and after scattering and b;, b; are
the appropriate nuclear scattering lengths. From an inspection of (4.106) we
see that basically the outcome of a scattering experiment is the function
G(z,t) formally introduced in (4.103). The Fourier transform of G(z,t) is
the dynamic structure factor S(k,w)

+oo
S(k,w) = %/ / expli(k - © — wt)][G(x, t) — p]dedt . (4.107)
V —oo

In &(k,w) the constant p is subtracted from G to exclude a (k) term from
S(k,w). Besides this, the scattering lengths b; and b; have been extracted
from the differential cross section (4.106). This is relatively simple for a sys-
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tem of classical particles where nuclear spins are not correlated, either mu-
tually, or with particle positions. In such a case

< bi,bj >= bgoh — b2 5;

incVij -

Here the indexes coh and inc indicate coherent and incoherent scattering
respectively; thus we may rearrange (4.106) as

d?p k

00~ k—o[bzth(k, w) + b2 Gs(k,w)] + &(k) terms. (4.108)

Under the usual assumption that the liquid is isotropic and homogeneous the
scattering function &(k,w) depends on |k|. The subsequent spatial average
makes &(k,w) an even function of k. Taking into account that

i(t) = o /exp[—iwt]dw , (4.109)

the correlation between &(k, w) and the static structure factor S(k) (see 4.104)
is

706(k,w)dw = % / / / exp[—iwt]dwdt[G(z, t)] — pexplik - z]dx

= /[G(az,O) — plexplik - x]dx

1+ p/exp[ik: ~z]g(z) — 1]dz = &(k) . (4.110)
1%

Thus both neutron and X-ray scattering measurements of &(k) include an
integration of &(k,w) over w at constant k. Integration of the intensity as a
function of angle is correct only if neutron energy is high compared to fw for
every significant intensity in &(k,w).

As G(z,t) is a complex function of time it is possible to consider its real
and imaginary parts. These are related through

m{G(x),t} = — tanh (%) %Re{c(w,t)} (4.111)

where the trigonometric term, once expanded in a power series, includes an
infinite sum of time derivatives; truncating the expansion to the first order
in A, (4.111) becomes

2kgT
h

m{G(z,t)} = %Re{G(m,t)} . (4.112)
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It is useful to introduce the intermediate scattering function I(k,t)

(k1) = / explik - 2][G(@, £) — plda . (4.113)
1%

For a classical system, I is a real even function of ¢ that we can expand as
a power series in ¢? over an interval of ¢ values

I(k,t)a = Y am(k)t*" (4.114)

m=0

where the an, (k) are coefficients defined by the expansion. With (4.113) we
obtain (4.112) in the form

2kgT

m{I(k,t)} = f%Re{I(k:,t)} . (4.115)

The dynamic structure factor &(k,w) is the time Fourier transform of the
intermediate scattering function I(k,t)

S(k,w) = /I(k,t) exp|—iwt]dt . (4.116)

We have introduced the van Hove correlation function in a classical ap-
proach. The lowest order quantum corrections to time-dependent properties
are of order i and the classical limit is approached when we let i tend
to zero, that is when length and time scales are “large”. Thus the time
scale for observation of atomic motions must be longer than (h/kgT), or
1/w > h/(2MkgT)"/2. In practice, taking into account the two representa-
tive liquid families of metals (both simple and polyvalent) and noble gases
(apart from helium that always shows quantum behaviour) in correspondence
to the interval of k£ and w values that fulfil the conditions for classical be-
haviour it is found that both |&(k,w)| is small and &(k) approaches unity.

The dynamic structure factor &(k, w) contains the specific dependence on
k, arising from coherence effects that are averaged out in the incoherent ap-
proximation. Inelastic neutron scattering experiments explored the influence
of correlated atomic motions (coherence effects) on the k-dependence of the
spectra, over rather large frequency intervals, mainly corresponding to optic
phonons. A detailed calculation of the above k-dependence was performed
for amorphous silicon using a CRN model (see Sect. 4.7). The calculated
k-dependence for selected energies are reported in Fig. 4.68 and compared
with the measured dependence of &(k,w) on the scattering vector k; the
agreement is acceptable.

In the case of metallic alloys, inelastic neutron scattering is an effective
technique to probe collective excitations. A general trend is observed in amor-
phous and in liquid systems: the dispersion relation w(k) shows both a mini-
mum at k ~ kp, with k, wavevector corresponding to the most intense (first)
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Fig. 4.68. Experimental (tri-
angles) and calculated (dotted
lines) dependance of the dy-
namic structure factor &(k,w)
on the scattering vector k in
amorphous Si, at different ener-
gies F;(F1 = 12.1 meV; Ey =
4 25.3 meV; E3 = 42.5 meV)
k (nm™) (adapted from [4.21])

& (ko) (a. u.)

peak of the static structure factor &(k), and a maximum at k such that
2k ~ k. Here, as a consequence of the spatial isotropy of the liquid, & is
a scalar quantity, assumed also for the corresponding amorphous solid (see
Sect. 4.2). If we suppose that the first peak of &(k) plays the same role as
a quasi-Bragg peak, then there is an analogy between the minimum in the
dispersion relation of the amorphous solid and the maximum in w(k) found in
crystals when 2k = kg, with kp wavevector (a true reciprocal lattice vector)
corresponding to the Brillouin zone boundary.

In binary simple metal glasses (CazoMgsg, in particular) the vibrational
behaviour was calculated, due to the relative simplicity of the interatomic
potential associated to their spherical symmetry. The trend of w(k) is cor-
rectly predicted for the propagation of longitudinal collective excitations; the
experimental data points are nicely fitted by the calculated data, obtained
from the position of the first peak of the dynamic structure factor &(k,w).
Besides a global qualitative agreement, there is agreement between the min-
imum of w(k) at about 21 nm~! and the position of the first peak of G(k) at
21.3 nm~!. The principles on which is based the above analysis were gener-
alised to a stability criterion for metallic glasses (see Sect. 3.2).

Inelastic X-ray scattering (IXS) is an alternative to inelastic neutron scat-
tering to investigate the collective dynamics of disordered systems when two
conditions are fulfilled: first, distances are comparable to those that charac-
terise structural correlations among constituent particles and second, times
are comparable to the lifetime of these correlations. Over this intermediate
scale we expect big changes of the dynamics when the considered times are
either much larger, or much shorter than those associated to the relaxation
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of a spontaneous density fluctuation into the pertinent equilibrium state (see
Fig. 4.67). Experimentally, again the dynamic structure factor is directly
determined. With respect to the limit k, ~ 27/a, where a is the average
interparticle distance, the investigation at large k and E values, up to k ~ k;,
was experimentally difficult until meV resolution was attained in IXS. Un-
der rather general conditions the IXS cross section is formally similar to
that for neutrons and the coupling of X-rays to density fluctuations is of the
same order of magnitude as that of neutrons. Presently the incident beams
are extracted from easy tunable “white” X-ray radiation produced by third
generation synchrotron facilities. Available absolute energy resolutions are of
the order of 1 meV, not very different from those typical of inelastic neutron
scattering and the resolving power is higher than 107.

As an example of IXS application in Fig. 4.69 is reported a selection of
S(k,w) data measured on liquid sodium at 390 K, at several, fixed k val-
ues. Since the incident flux on the sample changes with time, the data were
normalised to the monitor; also, as the five analysers used had different scat-
tering efficiencies, to obtain &(k,w) in absolute units the known lower order
frequency momenta of the dynamic structure factor were used. From the de-
duced peak position and speed of sound as functions of k it was found that
in the IXS characteristic k range, between 1 and 10 nm~", the value of the
sound speed exceeds the value expected in the k& — 0 limit by about twenty
per cent. Such a behaviour, referred to as positive dispersion, is typical of one,
or more relaxation processes in the liquid. By a memory function approach
two relaxation times, 7, typical of slow dynamics and 7,, characteristic of
microscopic processes, were obtained thus providing one of the first experi-
mental evidences of the two relaxation timescales predicted by mode coupling
theory (see Sect. 3.2).

An alternative to scattering methods to study the collective behaviour of
amorphous systems is provided by a local technique such as XAS. We noticed
when introducing XAS as a structural probe for non-crystalline systems that
it is a local, site-selective spectroscopy. One kind of atoms is chosen as the
central, X-ray absorbing site and the number, coordination and disposition of
its first (and sometimes second) nearest neighbours are extracted from XAS
data. In the discussion of (4.72) for the EXAFS amplitude we observed that
the fluctuations producing the Debye-Waller factor can have either a static, or
a dynamic, for example thermal, origin. Indeed the temperature dependence
of x2 provides information on the vibrational properties of the system. x? is
the mean square relative displacement of the central atom 7 with respect to
its backscattering neighbours [ along the direction that connects them

X7 = [(us — w) - a3, (4.117)

where u;, u; are the displacement vectors of the atoms at sites i and [, uy
is the unit vector along the direction that connects atoms ¢ and [ and the
subscript th indicates a thermal average. We now introduce the projected

VDOS gp(w)
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Fig. 4.69. IXS determined dynamic structure factor &(k,w) for liquid sodium at
various fixed k values (adapted from [4.22])

gp(w) = Z(éj )20 (w — wj) (4.118)
J
Here é; is the eigenvector of the ji, vibrational mode with eigenfrequency
(.L)j.
It was proposed that gp(w), that selects only the modes with displace-
ments along directions i — [, determines x?2

hof gp(w) hw
2=— [ 2 th d 4.11
Xr 2u/ w 0 2kgT s (4.119)
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where p is the reduced mass for the atom pair (i,1). With the simplifying
Einstein approximation where one single frequency wg is assumed, (4.119)
reduces to

h hwg
2 = th ——dw . 4.120
Xr 2MwE o 2kBT v ( )

From (4.120) we see that at low temperatures x? is independent of tem-
perature, while at high temperatures x? is proportional to the temperature
T. With the hypothesis that both coordination numbers and bond lengths
remain constant when temperature changes, in the plane wave approximation
the ratio between EXAFS amplitudes x(k) for two temperatures T; and T

is,

(T1)
X(T2)

The slope of the straight line obtained in a logarithmic representation of
X(T1)/x(T») versus k? is the difference between the corresponding Debye-
Waller factors. In amorphous arsenic and in the chalcogenide glass AssSs
the predictions of (4.120) are met, with a w value in agreement with the
experimental Raman frequency of the symmetrical stretching mode.

=

In

=2k [} (1) — x: (T1)] - (4.121)



5. Clusters

5.1 Definition of an Atomic Cluster

One of the foremost reasons for studying atomic and molecular clusters is to
understand those mechanisms that relate the properties of the bulk material
to the properties of the particles the material is made of. When we inquire
into what stage of the “Aufbau” (in English, “construction”) process single
atoms collect together to form a cluster having the properties we know for an
extended solid, we have to ask a number of questions which all have different
answers depending on the specific property being considered. Indeed, for some
properties, there is no answer because the properties change so slowly as the
cluster grows that we cannot distinguish any clear dividing line between a
cluster and a solid.

The term cluster means an assembly which, on the one hand, lacks the
well defined composition, geometric structure and chemical bonds so typical
of a molecule and, on the other, lacks any properties typical of bulk materials,
where surfaces are ignored, unless we are specifically interested in studying
the surface itself and the shallow layers immediately below it.

If we confine the field we are interested in, then these clusters of atoms,
or molecules, contain any number of particles whatsoever ranging from a few
atoms (a minimum of two) to some hundreds of thousands of atoms. A cluster
is thus an example of a large finite system. A further classification is made for
small, or molecular, medium and large clusters. The interval for cluster sizes
does not depend on the nature of the cluster alone, but, to a great extent,
also on the cluster forming technique. When the properties change so much
with cluster shape and size that we cannot define any smooth functional
dependence on the number of constituent particles, the cluster is considered
small. It contains fewer than thirty atoms and has a very high ratio, f;,
between the number of surface atoms, ng, and the total number of atoms in
the cluster, N.

From the information in Table 5.1, concerning spherical clusters with
increasing diameter d, in general fs is proportional to N~1/3. It is clear that
the influence the surface atoms have on system properties increases rapidly
as the size of the cluster gets smaller.
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d(nm) 1 2 5 10
N 30 | 250 | 4000 | 30000
na/N (%) 99 | 80 | 40 | 20

Table 5.1. Variation in the number of atoms N and in the fraction ns/N of surface
atoms of spherical clusters with diameter d.

Even the structural, energetic and dynamic properties of the cluster
micro-surfaces are of great interest. Owing to surface corrections, which scale
with f5, the various properties cannot be considered extensive.

The dividing line between small atomic clusters and small molecules is
often blurred. A ring with eight atoms of sulphur, or a tetrahedron of phos-
phorus atoms, certainly cannot have all the requisites of a cluster. Such stable
structural units exist in the vapour, liquid and solid phases and are tradi-
tionally called molecules. Conversely, the term cluster is adequate to define
atomic aggregates that are not found in appreciable quantities in a vapour
in equilibrium.

If the properties of a cluster change slowly enough as the cluster grows, but
in the dependence there are still effects due to the low number of constituent
particles, then the cluster is considered a medium-sized cluster. Lastly, the
properties of a large cluster are very similar to the properties of a bulk mate-
rial. While the radius of a large cluster may reach a few tens of nanometers,
and thus it is classified as a nanocrystal, the average-sized cluster contains
between thirty and one hundred atoms. Just to give an idea of their size, a
cluster with one hundred atoms of gold has a radius of 1.1 nm.

The definition of a cluster, based on its size, is incomplete, and as such
we have to add that an atomic cluster is

a)a finite collection of particles whose composition and structure can be
changed by adding, or removing, units of the species that form it;

b)it is made up of a countable number of atoms which, in composition but not
necessarily in structure, form an extremely small sample of the extended
material.

An atomic cluster is thus different from molecules both in composition
and in structure. In fact, usually the molecules consist of a small, definite
number of atoms, they are completely specified in the stoichiometry and
almost always exhibit a single structure.

Conversely, a cluster can contain any number of atoms, and both the clus-
ter properties and the more stable structure it can take on are dependent on
this number of atoms. Again, unlike molecules, the number of locally stable
structures admitted for a cluster grows rapidly as the number of constituent
atoms in the cluster grows; this is true of most clusters. Given a fixed com-
position, NV, the number of chemical isomers also grows quickly. Even though
we usually define an isomer as a distinct chemical species, in the case of the
clusters with various structures but the same composition, these clusters are
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considered part of a single chemical species. However, there are cases where
it is important to consider the isomers of clusters with fixed stoichiometry as
being separate.

It is useful for us to make a distinction between homogeneous clusters,
with a single kind of chemical constituent, both atomic and molecular, such
as Ary4 and (NaCl), and heterogeneous clusters made up of different kinds of
atoms and/or molecules, such as Os;C(CO)16 or K4Rb7. Again, the distinc-
tion into two separate families is not completely clear cut; it is not easy to say
whether the cluster with n molecules of Rbl, given as (RbI),,, is homogeneous
or heterogeneous.

In normal conditions electrically neutral clusters are formed; however, in
experimentally favourable conditions we can even obtain both positive and
negative charged clusters. In the case of Rbl, the clusters contain an extra
atom of rubidium (Rb,411,)" or iodine (Rb,I ,+1)7; it is not immediate to
define this kind of electrically charged cluster as being homogeneous instead
of heterogeneous. Obviously, it is easier to explain the existence of charged
clusters in alkaline halide, since bulk RbI can also be schematised as being
composed of Rb* and I~ ions. However, many other kinds of electrically
charged clusters have been studied.

Clusters have both ionic bonding forces, such as in the alkaline halide
clusters, and bonding forces like those found in covalent bonding, such as in
the elemental clusters of carbon, including the fullerenes, like Cgy and Crq. In
the clusters of the rare gases and the atoms with closed electron shells, such as
magnesium, calcium and barium, the weakest form of electromagnetic forces
are present, namely the van der Waals forces. Lastly, while large clusters of
both simple and transition metals are subject to the forces that give rise to
the metallic bond owing to delocalisation of the conduction electrons, in the
small metallic clusters the forces are more like the forces observed in systems
with covalent bonds.

This difference is based on the fact that in the extended matter, the
quantum states are extremely close in energy to each other and give rise to
bands of states whereas, in a small cluster, the energy difference between
adjacent states cannot be overlooked. The latter depends on the size of the
structure under examination and, as such, in small clusters it is similar to
small, or medium-sized, molecules. In actual fact, quantum corrections are
also observed in large clusters due to their reduced size.

When a cluster has grown to a critical size it loses one of its distinctive
features, namely it can no longer reconstruct its structure whenever an atom
is added to it. At this point, a defined crystalline structure is frozen into the
cluster and the cluster can then be classified as a nanocrystal.

Crystallisation occurs at highly variable cluster sizes, the bottom thresh-
old being around 100 atoms. Obviously, in the case of particularly small
nanocrystals, we observe deviation from the structure of the bulk solid, and
this is adequately described as surface relazation.
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Up to the 1980’s atomic clusters were essentially looked upon as small
molecules. In the specific case of metals, there was no reason to expect the
properties of clusters, either different in size, or made of different materials,
to be correlated to each other. Rather, each cluster was considered unique,
the same way as a molecule. At that time, extremely small clusters were
synthesised containing a dozen atoms at the most, and it was not possible to
identify any structural order. At the same time, much larger particles were
considered as essentially similar to macroscopic solids.

The breakthrough came in 1983 when it was possible to synthesise and
unveil atomic clusters with up to one hundred atoms. On the one hand, these
relatively large clusters exhibited a remarkable degree of structural order and,
on the other, the electronic structure of the clusters exhibited the features of
a potential well with spherical symmetry.

The study of clusters takes on many facets that regard, first of all, under-
standing the microscopic mechanisms by which a crystal grows. Whenever
an atom, or a molecule, condenses on the surface of a cluster, the atoms
in the cluster completely change their reciprocal arrangement, namely the
cluster is re-constructed and, as such, in principle, we can follow the struc-
tural sequence the cluster undergoes step by step as it transforms from a
molecule into a crystal. Then, based on the nature of the cluster and its
size, we can recognise the dominant factors in the process. At the same time,
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Fig. 5.1. Progressive coalescence of the discrete energy levels for atomic silicon
into a band structure, as the cluster increases in size. The upper limit represented
by the crystal bands is also reported
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we can follow the development of the band structure of a solid through the
progressive coalescense of the atomic levels to form these bands, and we ob-
serve the appearance of a gap between occupied and empty states. Figure 5.1
schematically shows this process for some small silicon clusters.

As it is possible to accurately select the mass of the produced clusters, we
can study the trend in the significant chemical reactions in detail, for example
in the catalysis, and determine the stability of the reaction products.

In the case of the metallic clusters, this study is of prime importance
in understanding at what point of the molecule-crystal transition the char-
acteristic features of a metal appear. These latter features determine the
transport properties, which are so interesting from a technological point of
view. In other words, we wonder when and how the electrons that form the
bonds in the small clusters change their behaviour and give rise to the bands
so characteristic of metallic solids. Photoelectron spectroscopy has, for ex-
ample, allowed us to observe in detail how the occupation of 3d levels in Tiy
clusters changes as a function of their size N, where N ranges between 3
and 65.

Bonding energy spectra are obtained when we subtract the measured
kinetic energy distributions for the electrons emitted from the cluster surface
at any given photon energy. Figure 5.2 shows all the photoelectron spectra
gathered at the photon energy of 4.66 eV. In smaller clusters, up to Ti7,
we observe discrete spectra features. The spectra change greatly with N and
reflect the essentially molecular nature of the clusters. Starting from Tig , a
relatively narrow band appears in the spectra. This band progressively grows
and broadens, and quickly converges into a single band, centred at about
2.7 eV, whose width tends to increase with N. The narrow low intensity
peaks that appear in the higher bond energy region are spurious and are
caused by statistical noise.

The only evident spectral feature in the “large” clusters is considerably
similar to the broad band that appears around the Fermi energy Fy in the
valence photoemission spectrum of titanium crystal. The full width at half
maximum of this band is 2 eV and it is caused by the solid’s 3d band. The
broadening of the band in the measured cluster spectra is a function of N
and exhibits a width of around 1 eV in the size interval between N = 20 and
N = 50.

It is reasonable to assume that this band broadens monotonically as the
cluster size increases until it finally converges onto the solid’s valence pho-
toemission band. At this point we are given to think that the solid’s 3d band
is exhibited already in small clusters, such as Tig . This kind of behaviour is
rather different from the clusters of other transition metals, such as chromium
and iron, where we observe narrow well resolved bands even when NN is just
greater than 20; this suggests that the titanium clusters presumably take on
a structure similar to the solid already at small sizes.
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The difference between the behaviour of the titanium clusters and the
clusters of the transition metals with a greater number of 3d electrons, can
be put down to the modifications in the 3d atomic orbitals along the first
series of transition elements. The spatial extension of these orbitals falls with
the atomic number Z owing to the increased nuclear charge. These orbitals
in titanium are highly delocalised, overlap between first neighbour atoms in
the cluster and exhibit a strong valence character.

Since there are two 3d electrons, the antiboding d orbitals are empty,
thus allowing spatially compact clusters to form with strong bonds, as shown
by the high dissociation energy in the small Ti; clusters. Such energies are
very high, compared to those of elemental clusters in the first row of the
transition metals. Also the icosahedral structures with high packing efficiency
suggested for certain titanium clusters confirm their stability. In this respect,
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the photoemission spectrum for Tis5 in Fig. 5.2 is an exception to the general
trend discussed above, and exhibits a single band which is much narrower
than the bands of the surrounding clusters. Since N = 55 is a magic number
for the clusters with icosahedral structure (see Sect. 5.3), this anomalous
band width is an index of a highly symmetrical structure in this cluster.

It is thus possible to attribute the fast convergence of the electronic struc-
ture of titanium clusters to that of the solid both to the strong delocalisation
of the 3d atomic orbitals and to the densely packed structures of these clus-
ters.

In this chapter much attention is placed on the structure of clusters and on
their evolution towards the macroscopic structure of the corresponding solid.
The analysis is developed by examining elemental clusters of two families,
namely van der Waals systems and neutral alkali metals, which stand as a
valid model also for the study of polyvalent metal clusters. We shall also
briefly examine the structural properties so specific to the covalent cluster
of carbon Cgg, the fullerene. Finally, we shall examine the structure of the
recently discovered and technologically promising cluster-assembled solids.

5.2 Synthesis and Detection of Atomic Clusters

Cluster physics has progressed through the development of sources and de-
tectors of clusters present in molecular beams, and thus in an environment
that is essentially free from any interactions.

The size distribution and the mass analysis can be performed either on
free clusters, namely clusters under vacuum, or in an inert gas. The structure
of clusters is studied mainly using electron diffraction; the electron beam
travels perpendicular to the direction of the cluster beam being examined in
order to perform a scattering experiment. As an alternative, we can deposit
a certain number of clusters onto a substrate, usually a film of amorphous
carbon. Cluster beams are presently synthesised and analysed for just about
all the elements, with sizes that vary from a few atoms to tens of thousands
of atoms.

Each of the various kinds of sources has been developed to synthesise
clusters of a certain class of materials with definite size distributions.

The seeded supersonic nozzle source is used for substances with a low
boiling point. We obtain the highest intensities for the synthesised beams
and fairly narrow cluster velocity distributions. Using this technique we can
obtain clusters with up to several hundred atoms per cluster.

The material is vaporised in an oven and mixed with an inert carrier gas.
The vapour/gas mixture is then sprayed into the vacuum through a small
nozzle. The supersonic molecular beam expands adiabatically in the vacuum
and very quickly cools. The cooled vapour becomes supersaturated and con-
denses in the form of atomic, or molecular, clusters. By changing stagnation
pressure and nozzle temperature the average cluster size is controlled.
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The larger clusters further cool down as the surface atoms evaporate,
which demonstrates that they are near the evaporation temperature.

The relative abundance of clusters produced by this adiabatic expansion
is determined by thermodynamic processes and is sensitive to the binding
energies. For this reason the measured mass spectra clearly show structures.

Using the gas aggregation technique we synthesise large clusters, contain-
ing 10* atoms or more. The intensities are much lower than the intensities
obtained from supersonic beam sources, and the size distribution of the clus-
ters is quite broad. These sources are used for materials whose boiling point
is below 2000 K, such as the alkali and noble metals, germanium and tin.
The temperatures of the synthesised clusters may be as low as 100 K.

The material is vaporised and fed into a cold inert gas flow (He). The
vapour is then supersaturated, and produces a dense smoke containing mainly
nanocrystals between 1 and 10 nm in diameter. Since the support gas is
at a low temperature, the cluster grows by way of successive single-atom
additions. As any re-evaporation is negligible, then the cluster abundances are
independent of their thermodynamic stability and show a smooth dependence
on their size.

The pulsed laser vaporisation method allows us to synthesise clusters of
any material, both neutral and positively or negatively ionised, whose sizes
range from a few atoms to some thousands of atoms. The laser pulse vapor-
ises the atoms of the target material; the clusters then form as the vapour
is transported and cools into a low temperature pulsed jet of helium. The
gas/cluster mixture is then sprayed into the vacuum through a nozzle and is
further adiabatically cooled to an estimated temperature of around 100 K.
Using this source we can also synthesise atomic clusters of carbon.

Again, clusters of any material, including compounds with complex stoi-
chiometry, can be synthesised by the conceptually simple technique of pulsed
laser ablation. In depositions performed in vacuum, during the flight from the
target to a substrate where a film is deposited, a plasma plume of ablated
material expands and cools down. Associated to the process is the aggrega-
tion of small clusters that are a minority plume constituent with respect to
neutral atoms and ions. However, if the plume propagates through an ambi-
ent gas at sufficiently high density (typical pressure values are between tens
of Pa and several kPa) it is significantly scattered and in the spatially con-
fined plume efficient cluster aggregation occurs. Usually rather narrow cluster
size distributions are observed. It is noteworthy that the scattering gas can
be either inert, or reactive; with a noble gas-oxygen mixture, for example,
transition metal oxide clusters can be synthesised starting from ablation of a
metal target.

The sputtering source produces continuous, intense and singly ionised
beams of clusters for most of the metals and the alkaline halides. The clusters,
around the boiling point, are synthesised by irradiating a solid surface with a
high current (up to 10 mA) beam of inert ions (Xe™; Kr*), with medium-low
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energy (5-20 keV). The bombardment causes the emission from the surface
of ionised clusters, besides secondary ions, neutrals and photons. The cluster
formation processes are not fully understood. The produced intensities fall
exponentially with the size of the clusters, whose initial temperatures are
extremely high. Cooling occurs by way of evaporation during the flight phase.

The mass spectra give us direct information about the thermodynamic
stability of the clusters, as a function of their size, which is dependent on the
cluster binding energy.

The mass analysis of cluster beams is basically performed using Wien-
filters, quadrupole mass filters, or, lastly, time-of-flight mass spectrometers.
In the first case the mass separation is achieved with crossed homogeneous
electrical, E, and magnetic, B, fields, perpendicular to the ionised cluster
beam. If we define ¢ as the charge of a cluster, whose mass is m, which is
accelerated by a potential, V', up to speed v, then the cluster will reach the
energy V. The cluster undergoes a null force if £ = Bw. As the clusters
pass through the filter they are not deflected, and can be selected by suitably
positioned collimators only when

m/q =2V (B/E)%. (5.1)

The resolution dm/m is around 1072 and the mass interval that can be
analysed is between 1 and 5000 amu.

Using the quadrupole mass filter only ionised clusters with a charge-to-
mass ratio that corresponds to trajectories compatible with applied ac and
dc currents can pass through the filter. Typical resolution is around 1073,
and the mass interval that can be analysed is normally 1000 amu.

When we use a time-of-flight (TOF) spectrometer, the ionised clusters
are accelerated by a sequence of homogeneous electrical fields (ion gun) un-
til they enter a free flight region and, in the end, fall onto an ion detector.
The ion arrival times are recorded, which give us the mass, or, rather, the
mass-to-charge ratio for the cluster. A typical resolution using this apparatus
is 10™%, but limits of 107° can be reached by reflecting the ions backwards
using an electrostatic mirror (a uniform electric field directed in the oppo-
site direction to the incident ions) located at the end of the flight tube. In
the electrostatic mirror, the time required for an ion to revert its direction
depends on its speed. For the same mass value, the slowest ions have enough
time to cluster with the faster ions, and all ions with the same specific mass
reach the detector simultaneously.

5.3 Structure of van der Waals Clusters
Many of the experimentally observed properties of condensed matter have

been interpreted with structural models based on hard sphere packing. Such
properties include the morphology of single crystals, the structure of liquids
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and certain classes of amorphous materials and the fivefold symmetry of small
metallic particles.

The first micrographic observations of clusters with fivefold symmetry
date back to 1966, when thin films of gold were evaporated onto sub-
strates of sodium chloride. These anomalous crystallographic morphologies
(see Chap. 1) were later observed in clusters of other metals, including sil-
ver, nickel, platinum and palladium, deposited onto substrates by physical,
or electrochemical methods or, again, evaporated in a flowing inert gas.
Structural models of small and medium-sized atomic clusters with N atoms
are obtained by progressively clustering together atoms assumed to be spheri-
cal. The highest degree of coordination, which, in a real system, is equivalent
to minimising the number of open surface orbitals, has unique geometric
solutions up to N = 5. These structures correspond respectively to dimers,
equilateral triangles, ideal tetrahedra and bi-tetrahedra, as shown in Fig. 5.3.
At N = 6, we obtain two isomers with equal coordination: the first consists
of the packing of four adjacent tetrahedra, the second is an octahedron, as
shown in Fig. 5.4. Of the two kinds of arrangement the octahedral packing is
the most stable. When we add a seventh atom (Fig. 5.5), the first structure,
this time with the packing of five tetrahedra, is favoured since the re-entrant
angle is an energetically favoured site. If we require that the tetrahedra are
composed of hard spheres, then they have to be ideal, which leads to pack-
ing frustration, namely to the opening of a gap in the structure of the five
tetrahedra (see Sect. 4.7). In the case of real atoms, we can obtain a more
stable configuration by slightly distorting the tetrahedra in order to close
the gap, thus forming a regular pentagonal bi-pyramid, or decahedron. In so
doing, we obtain a higher coordination, at the expense of modest elastic dis-
tortion. The decahedron exhibits one more bond than any other seven-atom
arrangement, and is the most stable. It consists of a regular pentagon with
five atoms centred on each of the vertices, and a further two atoms that cap
the pentagon in the two opposite directions. Alternatively, the structure may
also be constructed by adding a fifth atom to the four atoms that make up
the base of the octahedron.

@
(b)

Fig. 5.3. Geometric arrangements of iden-
tical atoms with maximum coordination.
Up to five atoms, we have a single solution

© @ 7 @)
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Fig. 5.4. Six identical atoms admit two
alternative dispositions with maximum
coordination

As the number N of atoms increases, so does the possible number of
isomers; at N = 13, and, if we adopt a Lennard—Jones interatomic potential,
we can obtain 988 stable isomers. Among these isomers, the icosahedron,
with its twelve surface atoms located at the vertices, exhibits the maximum
number of surface orbitals (Fig. 5.6). In particular, the competing fcc and hep
clusters exhibit four bonds between each surface atom and its surface first
neighbours. The icosahedron has five of these orbitals, provided we slightly
distort it, by compressing the radial orbitals, as compared to the surface
orbitals. Both the decahedron and the icosahedron exhibit fivefold symmetry
axes, in numbers of one and six respectively (see Sect. 1.2). This kind of
symmetry, which allows both structures to increase their bond energies at
the expense of the slight elastic distortion mentioned, is obtained by packing
regular tetrahedra together and then distorting them.

If we proceed with this method we can increase the sequence to beyond
N = 13 by adding pentagonal rings around each icosahedral vertex. The
process does not give us any guarantee that the resulting isomers will have
the greatest degree of stability; however, on hindsight, the method can be
justified owing to the fact that it leads to the first sequence of magic numbers
observed in the mass spectra for the atomic clusters of inert gases. When we
add a pentagonal ring, centred about a fivefold axis, and a further atom in the
“capping” position, we obtain a double icosahedron, with N = 19 (Fig. 5.7),
made of two interpenetrating icosahedra which, in turn, have in common two
central atoms and a pentagonal ring (part (a)). At N = 23, an isomer can be
obtained by placing a second pentagonal ring about another axis, provided
that this ring has the highest number of atoms in common with the first
pentagonal ring (part (b)). In order to obtain this result we just have to add

Fig. 5.5. Five adjacent tetrahedra constitute the ener-
getically favoured packing of seven identical atoms. The
dashed atom shows geometric frustration
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fec hep

Fig. 5.6. Three possible solutions out of the 988 theoretically possible for thirteen
atoms: respectively the cuboctahedral fcc, hcp and icosahedral clusters

three atoms to the structure, keeping the external atom, which is the capping
atom, in its position.

Likewise, by adding another two atoms, plus an external one, we can build
an N = 26 isomer (part (d)), and so on to achieve N =29, N = 32, N = 34,
(part (e)). The structural model of this last isomer is characterised by hav-
ing five axes with fivefold symmetry, and consists of seven interpenetrating
icosahedra, which gives us 16 double icosahedra. Once all the possible pen-
tagonal rings have been added to the parent icosahedron it will be completely
enwrapped; now N = 45, (part (f)). A structure that consists of double in-
terpenetrating icosahedra, or of icosahedra that are joined together by way
of common faces, is called a polyicosahedral structure.

In the experimental mass spectra, the relative intensities for clusters con-
taining N atoms, as N progressively increases, exhibit a slowly increasing
trend. However, for specific N values it emerges that the intensity increases,
giving us a local maximum; immediately after, the intensity falls abruptly.

(©)

N=26

Fig. 5.7. Schematic representation of polyicosahedral packing: from (b) to (f). NV
is the number of atoms corresponding to the increasing fractions of covering of the
parent icosahedron (a). Each covering is complete
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Clusters with pathological intensity, namely those abnormally abundant clus-
ters in the beam, as compared to the global trend, are characterised by par-
ticular structural stability. We expect these abnormally abundant clusters to
exhibit the minimum number of open surface orbitals. The mass numbers N
pertinent to these clusters are called magic numbers.

The sequence of the first seven values for N, for the construction based on
double icosahedra, is N = 13,19, 23, 26,29, 32, 34. It is particularly interest-
ing that such a sequence coincides exactly with the sequence numbers N at
which the first intensity maxima are observed in the mass spectrum for argon
clusters synthesised in the adiabatic expansion of a seeded supersonic beam
(Fig. 5.8). With this technique the growth in cluster size is thermodynamic
and the relative intensities are determined by the relative stability.

Figure 5.9 shows a similar spectrum for xenon clusters; when we com-
pare the two spectra we observe that the trends in the peaks for the mass
abundance are highly regular.

The structure of argon clusters with just a few tens of atoms has been
reproduced using Molecular Dynamics (MD) calculations. This computer sim-
ulation technique consists in examining the time evolution of motion, as gov-
erned by Newtonian mechanics, for a set of atoms, or molecules. The set
usually includes one hundred to one thousand particles, interacting through
a given potential (generally a Lennard—Jones potential, but phenomenologi-
cal potentials are also used). Particle dynamics is a function of the change in
temperature, or other thermodynamic variables. In practice, if we start from
the liquid state of the system at given temperature, we observe the liquid as
it solidifies. We obtain a complete simulated thermal history in terms of the
trajectory and conjugated moments of all the cluster atoms.

Initially, if we want to minimise the surface effect, the atoms have to be
confined to a cube, which is subject to periodic boundary conditions; the
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Fig. 5.8. Mass spectrum for atomic cluster beams of argon with magic numbers
highlighted (adapted from [5.2])
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Fig. 5.9. Mass spectrum for atomic cluster beams of xenon with magic numbers
highlighted (adapted from [5.3])

sizes of the cube are such that they reproduce the density of the material
in the required aggregation state. Each atom is assigned an initial random
position; a Boltzmann distribution of random velocities is then imposed which
typically corresponds to a temperature of some thousands of Kelvin degrees.
With a set of successive time steps, each being typically around 10~ 1% s, we
solve the motion equations. The system is cooled by reducing the temperature
one finite step at a time; we then perform a Molecular Dynamics isothermal
simulation, which requires around 1071%s, to ensure that the system reaches
thermal equilibrium.

The results of MD simulation on inert gas clusters are particularly in-
teresting both because of the small number of atoms, even in real clusters,
and because the structural properties of these materials are well described
by a Lennard—Jones interatomic potential. As such, by using this potential
the simulation is realistic.

As regards argon cluster beams, the patterns obtained by electron diffrac-
tion from the beam, at different gas inlet pressures, pg, between 8 x 10% Pa
and 1.5 x 10° Pa (Fig. 5.10), were compared with the diffraction patterns
simulated for various possible structures of differently-sized clusters.

The experimental pattern, for the lowest inlet pressure, corresponds to
a molecular beam and represents electron scattering from atomic argon. At
the other end of the inlet pressures, namely where py = 1.5 x 10% Pa, the
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Fig. 5.10. Electron diffraction
patterns from cluster beams
of argon obtained at various

gas inlet pressures, po (adapted
from [5.4])

great number of large atomic clusters gives rise to a crystallographic diffrac-
tion pattern where the peaks are caused by an fcc structure, the very same
structure taken on by argon when it solidifies under normal conditions.

The predicted structure for the heavy noble gases in the solid state is
hep; however, the observed structure is fcc. Details of the transition from the
icosahedral structure to the fcc structure, at a critical cluster size of around
N = 1500, could shed some light onto why this solid system prefers the
fce structure to the hep structure. In actual fact, the detailed properties of
the diffraction pattern obtained from the argon clusters synthesised using
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Fig. 5.11. Simulated electron
diffraction  patterns  obtained
from equal-sized argon clusters
(N = 3000) with different geo-
metric structures; (1) “mixed”
fcc-icosahedral cluster; (2) nine-
shell icosahedron; (3) decahedron;
(4) spherical hcp; (5) nine-shell
fcc  cuboctahedron. The sim-
ulated pattern (1) (thin line)
has been superimposed to the
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20 40 60 80 100120 experimental diffraction pattern
4 (po = 1.5 x 10°Pa), obtain-
k (nm’™) ing nearly perfect coincidence

(adapted from [5.5])

po = 1.5 x 10% Pa do not exactly correspond to the properties for an ideal
fce system, nor can they be reproduced using various distorted fcc structures
involving multiple twinning and defects in the stacking of atomic planes.
The best simulation of the experimental pattern is obtained using a struc-
ture where the largest clusters consist of a non-crystalline “core” with an
atomic arrangement that exhibits fivefold symmetry identical, or very similar,
to the smaller clusters, as discussed below, completely surrounded by matter
with an fcc single crystal structure. Figure 5.11 shows the electron diffraction
patterns for five kinds of equal-sized argon atomic clusters (N = 3000).
The best simulation is obtained using the “mixed” structure, which gives
us pattern (1). When we adopt this model we first have to solve two problems:
how to embed local atomic arrangements with fivefold symmetry into a crys-
talline matrix, and how these arrangements stimulate that matrix to grow.
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One possible solution can be traced to the experimental observation that,
unlike in perfect macroscopic crystals, the four (111) directions are not equiv-
alent in very thin fcc structures. For example, they produce three crystallo-
graphic reflections such as 111,111,111 and one diffuse reflection, 111. This
is due to {111} faceting, namely that thin triangular or hexagonal lamellae
give rise to anisotropy of the (111) growth rates in the crystal. The diffuse
reflection corresponds to the direction of slow growth, perpendicular to the
triangular, or hexagonal, faces. This is apparently the direction along which
disorder in atomic plane stacking occurs; this very same disorder prevents
stacking disorder developing in the other three (111) directions. The high
growth rate along these directions suggests that faces (111), (111) and (11T)
are modified by the stacking defects in the [111] direction in such a way that
the nucleation of new layers on these faces is much more probable than on
the faces with low growth rate, which are parallel to the stacking defects.

In order to obtain high growth rates without disorder in the stacking
of atomic planes along all (111) directions, we have to introduce two twin
lamellae into the crystal, and ensure they are not parallel to each other. Each
lamella is defined by two twin planes very close to each other. Since the two
lamellae must intersect each other, then the atomic arrangement in the inter-
section region deviates significantly from the ideal fcc arrangement. Such a
local atomic arrangement represents the cluster structure on the size interval
where a structural “transition” is expected from behaviour dominated mainly
by pentagonal atomic dispositions to one where the fcc crystalline structure
becomes progressively dominant.

Crystallography shows that the twin lamellae cannot intersect each other
in a hep crystal, whereas the defects in atomic plane stacking in one direction
favours the fcc sequence growth in other directions. This may well be the
reason why we observe fcc and not hcp structures in the solidified heavy
noble gases.

If we examine Fig. 5.11 once again, we will notice that the hcp structure,
which gives us pattern (4), is completely inadequate to reproduce the experi-
mental diffraction pattern. Furthermore, if the structural transition exhibited
a dependence on the cluster size, then the experimental result should be com-
pared to a weighted average of simulations: (2) icosahedron, (3) decahedron
and (5) fcc cuboctahedron. Even if we chose smaller or larger clusters to those
used, with such an average we would not be able to adequately reproduce
experimental results.

Unlike the diffraction pattern for the clusters synthesised with high inlet
pressure, the experimental pattern for clusters synthesised using interme-
diate values of py cannot be interpreted using crystalline models; we need
non-crystalline structural models. The pattern for py = 1.7 x 10° Pa exhibits
a number of oscillations, and in particular a shoulder in the second peak on
the side of high values for wavevector k. This shoulder is a characteristic
feature of diffraction patterns for amorphous metals and is attributed to the
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kind of short range order they have. Simulations using Molecular Dynamics
calculations on the solidification of droplets with fewer than 50 argon atoms
are very similar to each other, and correctly reproduce the shoulder in the
second peak. We obtain the best agreement between simulated and experi-
mental diffraction patterns using a cluster with N = 42, as shown in Fig. 5.12.
The structure of the computer simulated solid cluster has three icosahedra;
of these, two have seven atoms in common and form a double icosahedron,
whereas the third has four atoms in common with this double icosahedron,
namely two faces. As such we are faced with a polyicosahedral structure.

The ability to reproduce the characteristic splitting of the second diffrac-
tion peak is peculiar to polyicosahedral structures. Figure 5.13 shows the
diffraction intensity patterns for a liquid droplet containing 56 atoms, (part
(a)), a cluster of 55 atoms with the cuboctahedral structure (fcc), (part (b)),
and an analogous cluster with an icosahedral structure, (part (c)), all cal-
culated with Molecular Dynamics. It is clear that the first two structures
cannot correctly reproduce the typical trend in the second peak.

The ability of the polyicosahedral model to simulate experimental struc-
tural data is limited to the understanding of small clusters, whereas the
correct sequence of magic numbers in the mass spectrum of argon, and other
noble gases, for clusters with more than fifty atoms is not predicted. This
sequence is correctly interpreted by the multilayer icosahedral structure.

This is an extended structural arrangement with, once again, the external
shape of a regular icosahedron with twelve vertices and twenty faces, though
it can be extended to infinity. Despite the perfect fivefold symmetry, the local
order of this atomic arrangement is similar to that of a crystal. The internal
structure is made up of a packing of twenty identical tetrahedra with one
common vertex occupied by the atom at the centre of the structure. From
Fig. 5.14 we see that the twenty tetrahedra are connected to each other by
adjacent faces, and each face gives rise to twinning planes. The atoms in each
tetrahedron are arranged on planes parallel to the surface, just like in the fcc
structure.

4 N=42
& ?
—

2 Fig. 5.12. Simu-
lated electron diffrac-
tion pattern obtained

L from a 42 atom ar-

il

120 k(n m'1) gon cluster with poly-
icosahedral structure
(adapted from [5.4])
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However, the radial interatomic distances are 5% shorter than the tangent
distances, as illustrated in Fig. 5.15. An icosahedron with n complete layers
exhibits n. = (n + 1) spherical atoms located on each edge, just like the
tetrahedra it is made of. The sequence starts with the icosahedron, at n = 1,
which accommodates two atoms on each edge. Each face, whose side has
(n+1) atoms, holds n¢ atoms, n¢ being equal to the sum of the first (n+1—3)
integers, which, using the Gauss relation, can be written as

m+1-3)(n+1-3+1) (nn-2)(n—1) n?-3n+2

= - - . (5.2
ng 5 5 5 (5.2)

The icosahedron displays twenty faces and thirty edges, each of which
contains (n + 1) atoms. Considering that each vertex (12) is common to five
edges, we have to subtract (12 x 4) atoms from the total. In the end, for the
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n = number of completed layers

n=4

N = total number of atoms

Fig. 5.14. Construction scheme for multilayer icosahedral packing

total number of atoms contained in the layer with index n, n;, we obtain,

n=20—————+30(n+1) — (12 x 4) = 10n* + 2. (5.3)

The total number N of atoms in a multilayer icosahedral structure with
complete external layers can thus be deduced quite easily. This structure,
whose construction is shown in Fig. 5.14, is extremely stable since it allows
the cluster to take on an almost spherical shape and has high atomic surface

Fig. 5.15. Distortion of the tetrahedral building
block in the multilayer icosahedral packing
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density due to the (111) faces. When we complete the successive layers we
obtain a second sequence of numbers of atoms per cluster which corresponds
to maximum structural stability; the sequence includes, in order 13, 55[13 4+
10 x 22 + 2], 147,309, 561,923, ... (Fig. 5.16).

That the multilayer icosahedral arrangement is stable is confirmed by the
fact that an fcc crystallographic structure, such as the cuboctahedron, can be
transformed into a regular icosahedron by simply uniformly shortening the
distances from the vertices to the centre by 5%. This process will transform
each external square face of the cuboctahedron into two equilateral trian-
gles. Molecular Dynamics calculations on clusters with 55 atoms relaxed in
a Lennard—Jones potential suggest that these clusters easily transform into
a two-layer icosahedron.

When we use multilayer icosahedral structural models for clusters with
N = 147, three-layer icosahedron, and with N = 420, 4.5-layer icosahedron,
the obtained diffraction patterns show excellent agreement with the exper-
imental results for argon clusters synthesised with pg = 3.3 x 10° Pa and
po = 6 x 10° Pa respectively, as shown in Fig. 5.17.

When we compare experimental diffraction patterns with the calculated
ones for clusters at various temperatures, we obtain the best agreement for
clusters whose simulated temperature is 32 K.

For an even higher beam inlet pressure, pg, a number of fine structural
details of the experimental diffraction patterns are not reproduced by the
diffraction functions calculated using purely multilayer icosahedral models.

N=13 N=55

Fig. 5.16. External view of clusters with number of atoms that correspond to
filling the first four layers in the multilayer icosahedral packing
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For example, the pattern for py = 9 x 10° Pa, agrees with the superposition
of two weighted functions, for multilayer icosahedral model (70%) and fecc
(30%), respectively, as shown in Fig. 5.17, curve (3).

This is an indication that the clusters of the noble gases undergo a struc-
tural phase transition when they contain around 1000 — 1500 atoms. The
elastic deformations in the multilayer icosahedral structure are no longer effi-
ciently compensated for by the surface energy when the ratio of the number of
surface atoms Ny to the number of cluster atoms, N, falls to below a critical
value.

Apart from the principal magic numbers, which correspond to complete
icosahedral layers closing, other less evident magic numbers correspond to
the closing of sub-layers. The very existence of sub-layer closing confirms
that icosahedral packing occurs, since, with fcc packing, we can obtain sta-
ble clusters with closed layers giving the same sequence of the main magic
numbers observed with icosahedral packing.

So far we discussed the important role played by noble gas clusters as
model systems allowing to explore the mechanisms that connect cluster size,
geometry and stability up to the definition of magic numbers. Our interest
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Fig. 5.17. Electron diffraction patterns obtained from argon cluster beams of var-
ious sizes, increasing with gas inlet pressure, po, in the order (1), (2), (3) and
simulated electron diffraction patterns obtained from argon clusters packed (pat-
terns (1) and (2)) according to the multilayer icosahedral scheme (MI), and with
contribution from both MI packing, and from fcc packing, (3) (adapted from [5.4])
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now shifts to multi-component nanoclusters, to explore surface properties,
such as surface segregation and reconstruction in systems with intermediate
size. In particular, free heterogeneous argon - krypton clusters with an average
size of 103 atoms per cluster were produced by adiabatic expansion. Kr abun-
dance in the primary mixture ranged between 0.6 and 9 at.%; pure Ar and Kr
clusters were also deposited. Two major questions were addressed: first, are
the clusters binary, mixed, or does the cluster beam contain a mixture of pure
elemental Ar and Kr clusters? Second, is it possible to extract information
about the atomic distribution within the clusters? X-ray photoelectron spec-
troscopy (XPS) yields the local atomic environment around the target atom
ionised by the X-ray photon. From the changes of electron binding energy
in clusters and a comparison of the relative intensities, keeping into account
the differences among signals from atom, bulk and surface, we obtain hints
to cluster composition and structure. In this case the produced clusters are
binary and, although it is still difficult to establish the details of cluster com-
position, they show evidence of radial segregation, with krypton dominating
the bulk and argon favoured at surface sites. The thermodynamic character
of co-expansion allows initially hot clusters to cool down “slowly”, so that
atoms can migrate within the cluster and reach energetically favourable con-
figurations. This is at variance to the evolution of elemental clusters doped
after their formation that are not able to reach the lowest energy structure.

Apart from the inert gases, 13 has experimentally been observed as a
magic number for some metals: for example barium, when it is in the form
of a cation in clusters with various charge states; magnesium, which exhibits
clusters with an icosahedral structure in the size interval 147 < N < 2869,
and for which there is proof that the smaller clusters, in turn, have this struc-
ture during cooling; aluminium, gallium and indium, whose clusters exhibit
particular stability at N = 13, or N = 14, subject to their charge state.
Clusters of Pbis, Smi3z and Ybys correspond to considerably intense peaks
in the mass spectra of the atomic clusters of those elements. When a silicon
cation cluster with 13 atoms reacts with various molecules it is chemically
inert. Lastly, recent reactions with Ho and NH3 molecules indicate that even
the Nij3 and Coq3 clusters have icosahedral structure.

Rarely have sequences of magic numbers been observed in the mass spec-
tra for transition metal clusters because laser vaporisation is usually used
to generate cluster beams for those elements, and as such cluster growth
is an off-thermodynamic equilibrium process. Furthermore, one feature of
the chemistry of transition metals is their ability to adopt various oxidation
states, which makes counting the cluster electrons difficult, unlike what oc-
curs for alkali metal clusters. On the other hand, interesting results have
emerged regarding nickel and cobalt cluster structures from laser vaporisa-
tion beams, over the size interval 50 < N < 1000. Magic mass numbers are
observed for both the closing of the main shells (147,309, 561, 923), and for
the sub-shells expected in icosahedral packing.
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Unfortunately, the laser vaporisation sources are, as yet, not efficient
enough to produce beams of clusters from these elements where N is greater
than 1200, which is a useful size range in analysing the transition to crys-
talline structures and the relative mechanisms. These mechanisms may be
quite different in these two metals since nickel crystallises in the fcc struc-
ture, whereas in cobalt the fcc and hep structures compete, even though they
exhibit the same coordination numbers (Fig. 1.20).

Magic polyicosahedral core-shell structures have been found among bime-
tallic nanometer sized clusters. The properties of such systems not only de-
pend on their size, as observed in the elemental clusters of their constituents,
but also change very strongly with chemical composition. The identification
of magic clusters with peculiar stability, both structural and electronic is the
first step towards the synthesis of cluster-assembled materials (see Sect. 5.6).
Among metallic clusters examples of bimetallic small magic clusters are pro-
vided by silver-nickel and silver-copper. The photoabsorption spectra of Ag-
Ni and Ag-Co nanoclusters, with diameters ranging from 2 to 5 nm, prepared
by laser vaporisation and embedded in alumina matrices, show a surface plas-
mon resonance damped, broadened and blue-shifted with respect to pure sil-
ver clusters. For any given average cluster size the importance of the above
features increases with increasing Ni, or Co content in the clusters. There is
good qualitative agreement with classical predictions, if a Ni (Co) core - Ag
shell configuration is assumed for the clusters. Direct low energy ion spec-
troscopy confirms that cluster surface consists of pure silver; such an Ag outer
shell is often of mono-atomic thickness. The interplay of the core-shell chem-
ical ordering (Ag segregates at the cluster surface) with a polyicosahedral
structure results in highly symmetric icosahedral clusters. The occupation of
inner cluster sites by smaller atoms (Ni and Cu atoms are smaller than Ag
atoms by 16 % and 13 %, respectively) allows avoiding the increase of optimal
bond length that increases with atom coordination. Such an increase was ob-
served in transition metal elemental clusters and hinders the attainment of a
polyicosahedral structure. Important factors to observe a chemical-structural
ordering are that the bigger atoms segregate at the surface and that the two
cluster constituents have a low tendency towards mixing, or alloying in bulk
phases. Both conditions are met in AgNi and AgCu clusters.

The interest in stable metallic clusters has grown rapidly as they are
considered to be potential building blocks for nanostructures. The discov-
ery that small gold clusters have catalytic properties for selective oxidation
of CO was followed by the prediction of a series of gold-based highly sym-
metric and stable metallic clusters. Among them WAu,5 and MoAu;s are of
particular interest. The twelve Au atoms encapsulate in central position an
impurity atom of a 5d element, such as W, Mo, Ta~ and Re™. The eigh-
teen electron clusters have icosahedral symmetry, with maximised number
of nearest-neighbour bonds among the constituent atoms and a closed-shell
electron configuration, stabilised both by aurophilic attractions and by rel-
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Fig. 5.18. Crystallographic re-
lation between tetrahedral and
rhombohedral (r) cells in multiply
twinned icosahedral particles; an-
gle a is 63°44’

ativistic effects. The HOMO-LUMO gap of the prototype WAuys is near
3 eV, revealing high chemical inertness. W-Au and Mo-Au clusters were pro-
duced by laser vaporisation in an inert helium atmosphere and analysed by
TOF mass spectrometry. The selected WAu;, and MoAu;, were then stud-
ied by photoelectron spectroscopy. The spectra of the two systems are nearly
identical; they consist of a sharp, weak peak at low energy, suggesting that
the geometry modification between negatively ionised and neutral clusters in
their ground state is small. This feature is followed by a large energy gap and
a high density of electronic transitions at higher binding energies. The energy
gaps, as deduced from the spectra, are 1.48 eV in MoAu;, and 1.68 eV in
WAui,, consistent with the predicted, large HOMO-LUMO gap in this class
of clusters.

The small elemental clusters of alkali and noble metals do not follow the
same strategies as the inert gases to achieve maximum structural stability. In-
deed we observe magic numbers in these metals at N = 8,20, 34,40, 58,92, ....
These magic numbers indicate that the maximum stability coincides with
electronic shell closing. The electronic structure of alkali atoms immediately
leads to a structural stabilisation scheme in which electronic factors play a
major role. On the other hand, the electronic configuration of the noble met-
als is (n+1)s'nd'®. Some characteristic mechanisms of electronic shell closing
are often found in the clusters of these elements; this is because the nd shells
are complete and spatially contracted, so the bonds mainly involve orbitals
(n+1)st. If we take collections of large gold and silver clusters with diameters
between 4 nm and 8 nm, with a few thousand atoms per cluster, and subject
the clusters to annealing treatment, then the fraction of clusters with fivefold
symmetry, caused by multiple twinning in the smaller particles with an fcc
structure increases from 70% to around 100%. The features of the diffraction
patterns of these large clusters, obtained using high resolution electron mi-
croscopy, change sharply from point to point, and this suggests that the two
extreme fcc and icosahedral structures compete with each other, and that
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there are configurations with intermediate structure. In the multiply twinned
icosahedral particles where the relation between tetrahedral cell and rhom-
bohedric cell, given by r, is shown in Fig. 5.18 (see Chap. 4), the single units
are twinned along the {100}, faces. Such particles share < 100 >, edges, and
the [111], directions, which correspond to ¢ axis in the hexagonal reference,
coincide with the threefold axes through the centre of the icosahedron and
the centres of its triangular faces (see Chap. 1).

The single crystallites exhibit a rhombohedric unit cell where o = 63°44’,
and this corresponds to a (¢/a) ratio = 2.267 in the hexagonal reference. The
remarkable difference from the ideal close-packed cubic arrangement, where
a = 60° and (¢/a) = 2.45, explains why the multiply twinned icosahedral
particles are observed in metals with a close-packed cubic structure only as
nanoparticles; such icosahedrally coordinated particles are found in larger
grains when the latter are grown under non-equilibrium conditions.

5.4 Structure of Alkali-Metal Clusters

The alkali metals are the prototypes for such systems that can be described
using the free electron model. By analogy, the clusters of these elements
are considered the prototypes of metal clusters. It is, however, necessary to
question if those methods, that are recognised in solid state physics, can be
applied for small clusters. In other words, starting from what cluster size
will the free electron model correctly describe the properties of alkali metal
clusters? How will the reduced size influence the electronic structure of the
system? From an experimental point of view, we observe that the proper-
ties of alkali metal clusters are determined by their size and shape, and with
increasing size show a regular trend towards the properties of the bulk ma-
terial itself. The study of alkali clusters has been concentrated mainly on the
size interval corresponding to a number of atoms, IV, between two and one
hundred.

I (a.u.)

\ — N

MMM Wﬁ?ﬁm -
(b)

Fig. 5.19. Mass spectrum for potassium clusters: (a) N = 3 to N = 51; (b) N = 50
to N = 100. Magic numbers (N) indicate closing of principal electronic shells and
sub-shells (adapted from [5.6])
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In Fig. 5.19 is reported the experimental mass spectrum for potassium
where the magic numbers coincide with those for closing of the main electronic
shells and sub-shells.

One efficient model used to represent the structural properties of the alkali
metal atomic clusters (thus a model that is suited to those cases where there
are no d electrons) is given by a “jelly” of ions, thus deliberately lacking
structure, embedded in a sea of indistinguishable itinerant electrons. Such a
model system is called jellium.

To a first approximation the conduction electrons, whose density is uni-
formly distributed throughout the volume of the system, are totally delo-
calised. In actual fact, the electrons shield the positive charge in the ion
core and the positive charge, in turn, is represented as being delocalised and
uniformly distributed within volume V.

The picture the jellium gives us of two equal, opposite and congruent
charge distributions does seem somewhat unrealistic, especially when we
compare it to the usual scheme where the atoms, which form a crystalline
structure, are bonded together by localised orbitals. Once we eliminate the
crystalline structure the quantum energy levels for the valence electrons are
determined solely by the shape and the symmetry of the region they are con-
fined in. In the case of a solid, this may be represented by a macroscopic box,
whereas for atomic clusters we often refer to a microscopic spheroid.

The volume V, of a spherical cluster with n atoms is

V. = 4rNR¥;/3 (5.4)

where Rwysg is the radius of the Wigner—Seitz sphere for the material. Radius
R, for the cluster of N atoms is

R. = RwsN'/3. (5.5)

Independently from the geometry of the volume that contains the elec-
trons, the model represents an extreme situation where the electrons are con-
fined within a well under the action of a uniform attractive potential. The
valence electrons experience the effects from the positively charged back-
ground, the average potential due to the other electrons and the constraints
imposed by the confining potential well.

When we introduce the mean field approximation the electrons undergo
the same potential at all points and the calculation for the wave functions and
energies depends on the shape of the potential well. As such the geometric
structure of the well is dominant with respect to the geometry of the atomic
packing.

The simplest shape for the potential well is a sphere, and the simplest
shape for the deformed sphere is the ellipsoid. The axes of this ellipsoid are
obtained by minimising the total electronic energy with respect to the axial
ratio, keeping the volume constant.
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Two of the results from studying jellium have important consequences in
modelling small atomic clusters. The first is that, on an atomic scale, there is
a sharp edge to the positively charged jellium sphere, with radius R., whereas
the electron gas is not terminated at the jelliun edge but extends beyond the
edge by a distance d, which is typically around 0.1 nm. In the case of small
clusters, d is a significant fraction of R.; for example, in a cluster with twenty
atoms of sodium, R, = 0.58 nm.

The second result is that the electronic energy is the dominant fraction of
total energy of the system, and as such the equilibrium geometric structure
for a cluster is that corresponding to the minimum electronic energy of the
system. The energy and shape of the cluster are given in terms of the axial
ratio for the ellipsoid.

Though we normally schematically consider a rigid jellium container in
which the electrons are forced, in this case we observe the opposite. The shape
of the jellium background adapts to the shape of the electron potential well.

It is experimentally found that to a first approximation, the details of
the ionic core structure are not relevant to determine the structural stability
of simple metal clusters. Moreover, the electrons may be treated as if they
were free and confined within a potential well. While these results allow us to
adopt the simplified jellium model, we are left with a complicated many-body
problem in which the electrons are to be treated self-consistently.

We can adopt a highly simplified approach by using an effective single
particle potential with simple geometric structure, such as a three-dimensional
square well, possibly with a rounded background.

With reference to Fig. 5.19 we expect that for potassium clusters (but
also for sodium, rubidium, ..., clusters) the potential the electrons experience
is spherically symmetric and it gives rise to a spherical shell structure where
the electrons progressively fill the energy levels.

Having approximated the potential the electrons undergo by way of a
uniform well, where each particle is subjected to the same average field, the
independent particle states show degeneracies, which depend on the shape of
the potential well. The last electron to complete a degenerate state closes an
electronic shell. This condition corresponds to a particular state of stability
in the system compared to the immediate neighbouring configuration. The
electronic magic numbers suggest that the principal electron shells are closed,
which corresponds to discontinuities in the system stability as well as in other
properties such as the first ionisation potential.

The demand for clusters to take on spherical symmetry does not always
coincide with a configuration of minimum energy; in fact, infinite clusters with
electronic shells that are allowed to deform, keeping the volume constant, take
on an ellipsoidal shape where values of semiaxes g, o, 2o, correspond to the
minimum energy. The degree of deformation with respect to the spherical
configuration is measured by the deformation parameter 7.
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The problem is to determine the geometric structure of the cluster where
N atoms arrange themselves, provided that the total energy in the system
is minimum. As a first approximation, the energy levels occupied by the
cluster atoms are calculated by solving the single particle Hamiltonian for
the harmonic three-dimensional oscillator

E* +1 + +1 + Jr1 (5.6)
h—ngc2warj nyzwy nz2wz .

where ng, ny, n, are the quantum numbers for the three axes and wg, wy, w.
are the corresponding oscillation frequencies. Each quantum state can host a
maximum of two atoms at most.

The total energy of the system is given by the sum of the energies of all
atoms. These energies are determined as functions both of the occupations
of the stationary levels (each being identified by a set of three quantum
numbers) and of the cluster’s geometric structure (the oscillation frequencies
depend on the values of z, yo, 2o for the ellipsoid axes), provided that the
potential energy is constant over the entire ellipsoid surface,

2B,/ (mwiR2) = (x/20)” + (y/y0)* + (2/20)* . (5.7)

Given that, as the cluster deforms from a spherical geometric structure
to an ellipsoidal geometric structure, we require the total volume to remain
constant, then the normalisation condition must be fulfilled,

ToYoco = Rg (58)

where R., as given in (5.5), is the radius of the spherical configuration.
The energy state of the cluster is obtained from the set of equations

E = E(wg,wy,w;)

Wy :Wx(x07y0720)

wy = wy(Z0,Y0, 20) (5.9)
w2 = w(To, Yo, 20)

ToYozo = Rg

Once the stationary levels occupied by the atoms are known, when we
substitute the equations for w,, wy, w. into the equation for energy, we obtain
the explicit dependence E = E(wy, wy,w,).

Before we proceed to calculate the values for the semiaxes xg, yo, 20,
which correspond to the minimum of the function E(zq,yo, 20), we should
notice that the normalisation condition (5.8) reduces the problem by one
degree of freedom because a relation among the ellipsoid semiaxes is intro-
duced.

We can further simplify the problem by assuming the particular geometric
structure where, for example, is ¢ = yg, so that only two axes of the ellipsoid
are different from each other. In this case the energy only depends on xzq. If
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we impose the variation dE/dxg to be null, we obtain the value for parameter
xo where the energy is minimum. The semiaxis zq is given by the equation

20 = R2/(zoy0).

Having just outlined the general solution procedure, we have to express
in explicit form the way the ellipsoid geometric structure depends on angular
frequency.

Given the condition of equipotentiality of the cluster surface, again pro-
vided zg = yo, is

1 1

ikzzé = §klx(2) (5.10)
hence

k, a3

— = —. 5.11

On the other hand, k, = mw? so, substituting,

3 wg
== (5.12)
20 x

When w, = w, () and w, = w,(2g), from (5.12) we obtain
Wy o< Tyt (5.13)

Let us now return to the calculation for the energy eigenstates in the
harmonic oscillator approximation. The energy levels may be represented as
functions of deformation parameter 7, in the so-called Nilsson diagram, as
shown in Fig. 5.20.

The Nilsson model develops as an extension of the three-dimensional
isotropic oscillator problem where the deformation parameter 7 is null. In
this case, in order to consider spin-orbit interaction, the Hamiltonian opera-
tor is

H=Hy+ C(l- s) (5.14)

where Hy = —%VQ + $mwdr? refers to the harmonic oscillator and C(1- s)
includes the spin-orbit interaction. I and s are respectively the orbital and
spin momenta.

When we solve the Schrodinger equation for the energy eigenstates we
obtain the eigenvalues

Engj = (N +3/2)hwo — ajmwy (5.15)

The first addendum is the harmonic oscillator solution. The quantum
number N is called the principal quantum number and coincides with the
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Fig. 5.20. Nilsson diagram for N < 20

sum of the three quantum numbers n;, n,, n. needed to solve the three-
dimensional case projected onto the orthogonal reference x, y, z. The zero
point energy (3/2 hwy) is the sum of the zero point energy (1/2 hwg) in each
of the projection directions.

When we have analytically solved the equation for the energy eigenstates
we observe that the principal quantum number may take on a set of infinite
values

N=1{0,1,2...}.

For the harmonic oscillator }AI:ICIO7 and each level Fy corresponds to a
number of states with different values for [; [ varies between 0 and N. The
eigenfunction for the considered eigenvalue must have the same parity as
N. Since this parity is (—1)! then the values for [ associated to a specific
N must have the same parity as N; thus not all the [ values between 0
and N are acceptable. When we arrange the possible energy eigenvalues we
obtain
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N | allowed [ | spectroscopic notation | available states
0 0 1s 2
1 1 1p 6
2 0 2 2s 1d 12
3 1 3 2p 1f 20
410 2 4 3s 2d 1g 30

In the spectroscopic notation [ is the index for the type of orbital, in
agreement with the atomic physics convention, whereas n means that the
following [ value occurs for the nth time in the sequence.

It is remarkable that this very same sequence of energy levels is found in
the spherical jellium model.

Having set I, (2 4+ 1) degenerate quantum states are available, each of
which can be occupied, according to the Pauli principle, by two particles.
The degeneracy degree may be verified by observing that

N =3 nk compatible triplets number | available states
(Ng, Ny, N2) of orbitals
(0,0,0) 1 )
1 (1,0,0) (0,1,0) (0,0,1) 3 6
2 (2,0,0) (0,2,0) (0,0,2) 6 12
(1,1,0) (1,0,1) (0,1,1)

Having solved the complete equation for the three-dimensional isotropic
oscillator, the eigenvalue (5.15) contains the term

2
—a;mwy

which takes into consideration the spin-orbit interaction. The total angular
quantum number is given as j, where

j=l+s l+s—1,...[l—s|. (5.16)

When we consider particles with a spin angular momentum of s = + (1/2),
the possible values for j are (I +1/2) and (I — 1/2), so

+if j=(01+1/2)
i { —(1+1) if j=(-1/2).

The spin-orbit interaction lifts the spin degeneracy, splitting the generic
nl level into the two levels (nl);11/2 and (nl);_1 /2. For the state ns, where
1=0,only j = (l+1/2) = 3 is allowed by (5.16).

The sequence of these energy levels is given in the Nilsson diagram in
correspondence to n = 0.
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The non-spherical shape of the potential for the clusters with any kind
of geometric structure is considered in the energy eigenstate problem defined
by the operator

A R s 1 2,2 2,2 2.2 2

H= —%V +gm (wiz® +wiy® +wiz®) + C(1- s) + Dl (5.17)
where %m (wixQ + w§y2 + w§z2) is the anisotropic oscillator potential and
DI? is a correction to the eigenstate energy for high values of angular mo-
mentum 1.

The simplest non-spherical configuration, to which often we can reduce
the geometric structure of a generic cluster, is a rotation ellipsoid. As such,
we assume first that the field is characterised by axial symmetry and second
that w, = wy, # w,. If we take that the cluster volume is constant, we can
introduce a single deformation parameter 7.

The equation for H reduces to

H=Hy+C(- s)+DI> +H,. (5.18)
ICL7 includes all the effects due to the potential distortion and is given as
ICI,, = —Bn mngZYQO

where Y5 is the spherical harmonic.

Since the operator associated with j, = (I, +s,), where z is the symmetry
axis for the potential, commutes with the operator H, the field eigenstates (see
(5.17)) are defined by definite values for the projection of the total angular
momentum, {2

Q2 = |j|,where j.=+1/2,£3/2..+ j.

When 1 # 0, no analogous property holds for I2 and j2, which are no
longer constants of the motion; as such, j and [ are no longer good quantum
numbers. Conversely, (2 is still meaningful.

The principal quantum number N remains a good quantum number even
when 1 # 0. The eigenvalues of the Schrédinger equation for the deformed
potential are

EX0) = (N + 3 ) o) - (5 ) 0. (5.19)

In (5.19), index a numbers these very eigenvalues. The equation shows
that the energy is directly dependent on the deformation parameter 7, for
every quantum state (N, £2).

If n is not null, then a given isotropic oscillator eigenstate (nl); splits into
(2§ + 1)/2 eigenstates, and each eigenstate has a different (2 value. If the
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projections of the orbital and the spin angular momenta on the z symmetry
axis of the potential are respectively A and X, then 2 = X' + A.

Since quantum numbers [ and j lose physical meaning as deformation
increases, then when 7 tends towards infinity the single particle states are
described by the quantum numbers N, {2, A and n,. If {2 and A are known,
2 is univocally determined, whereas n is the number of nodal planes for the
eigenfunction in direction z.

In the Nilsson diagram the quantum numbers are conventionally repre-
sented as

QEDYN, n,, A

Since these quantum numbers are meaningful only for large deformations
(when n — 0, N, [, j remain good quantum numbers) they are called asymp-
totic quantum numbers. When we introduce the deformation parameter 7 the
degeneracy of states (nl) is lifted, so we put the eigenstates QDY [N,n,|A]]
into bi-univocal correspondence with the triplets (n, n, n.), which fulfil the
condition ), ny = N, where k = x,y, 2.

If we use the Nilsson diagram we can define the geometric structure for a
cluster of N atoms.

For example, at N = 9, the occupied states are:

eigenstate | asymptotic quantum | (ng, ny, n,) | number of particles
numbers per state
1s 1/2% [0,0,0] (0,0,0) 2
172~ [1,1,0] (0,0,1) 2
1p 3/2- [1,0,1] (1,0,0) 2
1/2= [1,0,1] (0,1,0) 2
1d 5/27 12,0,2] (2,0,0) 1

From (5.6) we obtain
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When we consider that z is the symmetry axis for potential, then

wz:wy#wzv

and thus
E 13
7= 15w, + 3402 .

Using (5.12) where /20 = w,/w,, and substituting, we obtain

E 1
154 B0
x 2ZO

If we normalise to the unit

20 = (1/x3)
so that
F 13 .

Now, given w, x (1/z¢) (see (5.13)) we obtain

E 15 13,
- — -y -
h i) 20

If we now impose the minimum energy conditions

M =0, we obtain
d.’bo

zo = 1.0488 = yo; 20 = 1/22 = 0.909.
Since the deformation parameter 7 is given by the relation

20 — To
=2—
2o + xo

then, in this case, we obtain n = —0.1428 .

Negative values for 1 correspond to oblate ellipsoidal geometric structure,
whereas positive values correspond to prolate geometric structure.

When we determine the structure of a cluster with 8 atoms by the same
procedure we obtain

o=y =1
20:1
n =0.

As such, a cluster with 8 atoms has, in correspondence to the minimum
energy, a spherical configuration where shell closing occurs.
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In all the clusters where n = 0 we observe closing of electronic shells
with spherical symmetry. This occurs at N = 2,8, 20,40, 58,92, as shown in
Fig. 5.21.

The deformation of deformed spherical clusters gives rise to sub-shell clos-
ing, which can be recognised in Fig. 5.21 in the fourfold sequences 15-18,
23-26, 27-30, 41-44.

The structure of clusters with N = 18 and N = 34 should consist of
closed shells, according to the theory based on spherical shells, but when
we examine the possible deformations, the latter exhibit a reduction in the
corresponding energy gaps. These kinds of cluster correspond to spheroidal
sub-shell closing and show excellent agreement with the experimental data
deducible from the mass spectra. Figure 5.22 refers e.g. to sodium.

The electron shell model gives a successful general scheme to interpret
the stability of clusters of simple metals. When we deal with large metal
clusters made of several hundred to thousand atoms, highly stable structures
are observed (see Sect. 5.3). They often result from closed configurations
that can be interpreted in the frame of an atomic-like strategy; alternatively,
such structures display the same lattice symmetry as the corresponding bulk
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Fig. 5.21. Complete Nilsson diagram: besides closing of principal shells, with spher-
ical symmetry, sub-shell closing is visible (adapted from [5.7])
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Fig. 5.22. Experimental mass spectrum for sodium clusters (a); prediction from
Nilsson model (b). Notice the evident agreement in magic number sequence
(adapted from [5.7])

matter; in the latter case the orientation and area of surface facets optimise
the surface free energy. However, some experimental fine details associated to
deviations from this simple scheme of behaviour attracted our attention once
clusters of ever better-defined size became available and were characterised,
e.g. spectroscopically.

The structure assumed by small and medium-sized clusters often raise
delicate problems related to the equilibrium between binding energy and
surface energy, to the kind of bonding orbitals and to their symmetry and,
lastly, to the number of open orbitals. Here we discuss three examples, namely
the structure and stability of small gold clusters, the structural differences
between medium-size clusters of silver and gold and the structure evolu-
tion as a function of increasing size in small silicon and germanium clus-
ters.

Small gold clusters are particularly attractive for their surface properties.
Thus a range of Au clusters were prepared by laser vaporisation in helium
atmosphere and mass analysed with TOF mass spectrometry. Photoelectron
spectra indicate that Augg is extremely stable and chemically inert, being
even superior to WAuo (see Sect. 5.3); the HOMO-LUMO gap is 1.77 eV
and the vertical detachment energy of 2.74 eV, identical to Au electron affin-
ity, suggests that the cluster tightly binds an electron. According to the elec-
tron shell model Auyy with its twenty valence electrons should be a principal
shell closing. The large HOMO-LUMO gap means that Ausy should be in-
ert and should have a highly symmetric structure. A comparison was made
among the calculated relative stabilities of highly symmetric 20 atom Au
structures including, among the others, the icosahedral Platonic dodecahe-
dron (see Sect. 1.1), the octahedron with octahedral symmetry, linear and
planar geometries. The latter are the most stable in small clusters; calcula-
tions show that the transition from two- to three-dimensional clusters occurs
at Auys and that the relativistic spin-orbit coupling plays a minor role to such
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a transition. Among three-dimensional clusters the ideal closed-shell tetra-
hedral structure is the most stable with a HOMO-LUMO gap of 1.8 eV, in
excellent agreement with the spectroscopy datum. Au-Au distances in the
cluster are so similar to those in bulk gold that Auyy can be considered a
very tiny piece of bulk gold with negligible relaxation. Each of its four faces
is an ideal model of a (111) surface of fcc gold. All the atoms lie on clus-
ter surface, so that the surface area is large. There are three kinds of atom
sites: four atoms occupy the tetrahedron vertices, four are at the centre of
each face and twelve, two for each edge, lie along the edges. These kinds of
atoms with different coordination environments are expected to be ideal sur-
face sites to selectively bind different molecules, such as CO, Os, CO,, for
catalysis.

In our second example we start from silver and gold, both with nd'®(n +
1)s! valence electron configuration. The structure of small clusters is well
characterised for both elements. At the opposite side, large nanostructured
particles made of hundreds to thousands of atoms have been studied by elec-
tron microscopy and diffraction (see Sect. 5.3). The applicability of the shell
model and the importance of relativistic effects in medium-size clusters of
around fifty atoms were addressed, comparing the calculated electronic den-
sity of states (DOS) for Ag;, and Aug;to high-resolution photoelectron spec-
tra recorded on cold cluster beams. Among the optimised cluster structures
with their electronic DOS a closed atomic shell icosahedron matches well
the experimental results; moreover, given the relevant stability of such a
structure Ag;., that corresponds to closing the free electron shell at 58 elec-
trons was investigated, looking for possible isomers based on the 55 atoms
icosahedron. Picking out three structures, each with two extra-atoms on the
icosahedron surface, the calculated DOS do not match the photoelectron
spectrum of Agz,. However, a simple average over them nicely fits even the
finer spectrum features. This indicates a high mobility of the two adatoms
on the surface of the icosahedral cluster, showing that several isomers of
Ag. contribute to the observed spectrum. For Aug, calculations show that
several low energy, low symmetry structures are energetically favoured with
respect to symmetric icosahedral, cuboctahedral, or decahedral structures.
The electronic DOS qualitatively agree with the highly structured “s-band”
observed in photoelectron spectra, where no shell structure is found. Such
a structure difference between the two clusters leads to symmetry breaking
and is due to the important relativistic effects in gold. Indeed a fictitious
non-relativistic Aug; cluster has an icosahedral ground state and electronic
DOS very similar to those of Ag;;. When scalar relativistic calculations are
performed low symmetry isomers become preferred due to a strong 6s shell
contraction and a reduced 5d - 6s energy gap. This leads to meaningful s
- d hybridisation and a direct d - d bonding, thus to a change of inter-
atomic bonding. The same mechanism is responsible for the anomalous pla-
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nar structures of the ground state anionic small Auy clusters with N up to
twelve.

The third example is given by germanium and silicon, for which we may
well expect the same kind of cluster structural evolution as the size increases.
When we perform Raman spectroscopy measurements on small silicon clus-
ters, and then compare spectral features with the Raman vibrational frequen-
cies for various test structures, we can assign its structure to each of these
clusters. For a set of eleven well defined vibrational lines the maximum ab-
solute deviation between measured frequencies and predicted frequencies is
only around 10 cm ™!, as shown in Fig. 5.23. On these grounds it is concluded
that Siy has a unique structure, which is planar, with a rhombus geometric
structure; Sig takes on the structure of a slightly distorted octahedron, and,
lastly, Si7 is a pentagonal bi-pyramid. It is remarkable how these compact

4.0 I T
5
a
S 18 -
Siy
-0.5 4 L .
200 400 600
>
S 04F -
Sig
02 . L N
200 400 600
0.7 l N l
w .
S g3l N Fig. 5.23. Raman
S ' spectra for small sili-
- con clusters and model
. structures to obtain
Si7 the best agreement
-0.1 1 between simulated
200 400 600 spectra and experi-
4 mental data (adapted
Av (cm™) from [5.8])



246 5. Clusters

structures of clusters with very few atoms are so different to known micro-
crystalline structures.

If we consider larger, singly ionised silicon clusters, we observe a smooth
decreasing trend in their mobility, down to N = 27; this is an index of
prolate distorted spheroidal symmetry, which is associated with high surface
energy. Then, on a short interval for cluster size we observe a sharp increase
in mobility, followed by a further slowly decreasing monotonic trend. This
kind of behaviour can be attributed to a structural transition of the clusters
that take on a more spherical geometric structure, with higher mobility. For
prolate clusters where N is between 20 and 34, the most compatible structural
models consist in sequences of capped trigonal prisms.

We even observe prolate geometric structure in ionised germanium clus-
ters when the size of these clusters is between N = 10 and N = 40,
which corresponds (Fig. 5.24) to dissociation energy values of around 1.2 eV.
These values are much less than the binding energy in the bulk material,
3.85 eV atom ™. Since the latter value is almost equal to the dissociation en-
ergy values for small clusters we can reasonably assume that, unlike silicon
clusters, the larger germanium atomic clusters are made of weakly bonded
packings of small stable clusters, such as Ge; and Gejg. Atomic clusters
with between 40 and 70 particles seem to be characterised by having a sin-
gle geometric structure, still a prolate spheroid. Lastly, at N greater than
70, the clusters undergo sharp reconstruction which gives rise to essentially
spherical geometric structure where the atomic disposition is similar to the
bulk material, and differs greatly from the geometric structure of silicon
clusters with similar size. The reason for this qualitative difference in the
structural evolution of the clusters of these two materials is currently un-
known.

Just as for isolated atoms, the trend in the first ionisation potential is an
index of atomic cluster stability. The clusters of alkali metals with particular
stability are also marked by relatively high ionisation potential. The ionisa-
tion potentials for small clusters of alkali metals were measured in the 1970’s:
more recent measurements have been made with high energy resolution on

E(eV)
N W A~ O

QO

0 1[0 2b 310 4',0 5b 60 Fig. 5.24. Dissociation energy

trend in Ge}, clusters (adapted
N from [5.9])



5.4 Structure of Alkali-Metal Clusters 247

clusters of sodium, potassium, lithium and silver, whose electronic structure
is similar to that of the alkali metals.

The first ionisation potential is the minimum energy required for the
reaction

X, +hv=X+e". (5.20)

The atomic clusters are bombarded with low energy photons, so that they
are ionised in one-photon processes; then the photo-ions are selected in mass.
We study the intensity trend in the signal produced by a particular ionic
mass as the ionising photon energy changes. As such, for each mass in the
beam, we construct the photoionisation efficiency curve. The potential that
corresponds to the extrapolated energy value at which the ion signal is null,
is defined as the ionisation potential.

In general, given that the ionisation potential for single atoms is always
higher than the extraction potential for the corresponding solid, we expect,
and indeed observe, a decrease in the first ionisation potential for atomic
clusters as they become larger. The decrease law depends on the specific na-
ture of the atoms under examination; when we compare equal-sized clusters
of sodium and potassium we observe that the ratio between ionisation po-
tentials, as reported in Fig. 5.25, is in fact independent from the size of the
clusters and, starting with the isolated atom up to the crystal, is around 1.2.

In medium and large alkali metal clusters the measured values for the
first ionisation potentials are in good agreement with the work function W
estimated for an isolated spherical drop of metal with z radius and with Z
charge. This function is the energy required to displace an electron from the
drop to an infinite distance away, namely

2
W(z, Z) = Wao + % (Z + 2) . (5.21)

In general, when medium and large-size clusters exhibit anomalies in the
trend in the ionisation potential as compared to the trend in the metallic drop
model, these anomalies coincide with strong changes in physical properties.
A typical example is given by mercury and antimony clusters; in both cases
the significant deviations compared to the smooth, regular fall in ionisation
potential, that are observed when the clusters grow in size, are indices of
metal-non-metal transition.

For small alkali-metal clusters we have to consider quantum effects. The
description of a quantum metallic drop, with spherical symmetry, predicts a
structure of electronic shells where we can observe closing in correspondence
to a total number of electrons: 2(1s), 8(1p), 18(1d), 20(2s), 24(1f), 40(2p),
58(1g), 68(2d), 70(3s), 92(1h), 106(2f), 112(3p), 138(1%), 156(2g)...; for small
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Fig. 5.25. Trend in first ionisation potential Vi as a function of the number N of
particles in the cluster, for silver (o), sodium (4) and potassium (e) clusters

masses we observe most of the shells, whereas for the large masses we only
observe the shells with quantum number N = 1.

Figure 5.25 is a representation of the ionisation potentials for clusters of
sodium, potassium and silver with growing size as a function of the number
of constituent atoms. We should notice, in the case of K, for example, that
the falls in ionisation potential are observed at N = 8,18, 20,40, 58,92 and
correspond to spherical shell closing. Even if the absolute error in determining
ionisation potentials is comparable to the observed fall in ionisation potential,
the variation in potential from cluster to cluster may be determined to an
accuracy of 1072 eV, which allows us to recognise the falls in ionisation po-
tential even in larger clusters, at N = 40, 58,92. It is also possible to identify
a “fine structure” in the trend in the variation of ionisation potential, which
shows good agreement with the closing scheme for spheroidal sub-shells.

In general, the ionisation potential for a cluster with closed electronic
shells is significantly greater than for larger clusters with open electronic
structures. Lastly, the shell structure is more evident for silver than for
sodium or potassium since the potential well in silver is deeper.



5.5 The Fullerene Cgo 249

5.5 The Fullerene Cgg

Ceo, in the form of a free atomic cluster, was only clearly recognised for the
first time in 1984 as an irregularity in the mass spectrum of carbon atomic
clusters, as shown in Fig. 5.26. These clusters are obtained on cooling the
plasma resulting from the laser vaporisation of a graphite target at an initial
temperature between 5000 K and 10000 K.

Despite being a relatively recent discovery, Cgg is probably the most inten-
sively studied molecule among those molecular compounds whose structure
is based on a three-dimensional cage of trivalent carbon atoms, generally
known as fullerenes; our present knowledge of the properties of fullerenes is
comparable to our knowledge of methane and benzene. This is also due to
the fact that Cgg is the easiest fullerene to be synthesised, it has the most
stable structure and the highest degree of symmetry, the same pertinent to
the icosahedral point group Iy; thus Cgg is an anomaly with respect to most
fullerenes that adopt a relatively low point group symmetry.

Various experimental methods, including infrared absorption, Raman and
photoelectron spectroscopies, X-ray diffraction and nuclear magnetic reso-
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Fig. 5.26. Mass spectrum for carbon atomic clusters; abundance peaks correspond-
ing to fullerenes are highlighted; in spectral region at N > 38 the mass abundance
peaks are magnified (x10)compared to region at N < 38 (adapted from [5.10])
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nance, suggest that the sixty carbon atoms in each molecule, or cluster, are
located at the vertices of a regular truncated icosahedron. This is obtained by
substituting the twelve icosahedron vertices with twelve regular pentagons;
the cluster surface is made of alternating regular pentagonal faces and regu-
lar hexagonal faces (twenty). The atomic sites coincide with the polyhedron
vertices; every site is equivalent to every other site, and each site hosts one
carbon atom. This polyhedron forms a closed cage and is shaped like a soc-
cer ball with a radius of 1.02 nm (Fig. 5.27); given this shape the fullerene
has been jokingly called a “buckyball”’, a contracted form of “buckminster-
fullerene”, because of its resemblance to the geodetic domes with a polyhedral
structure designed and built by R. Buckminster Fuller.

All closed cage fullerene structures have hexagonal or pentagonal faces
only. There are always twelve pentagonal faces whereas the number of hexag-
onal faces, in principle, in keeping with Eulero’s theorem on polyhedra (see
Sect. 1.1) is

Ni+ Ny — N =2

where N, N, and N, are respectively the number of faces, vertices (carbon
atoms) and edges (covalent orbitals) for the polyhedron. When we distinguish
fn hexagonal faces from f, pentagonal faces, and bear in mind that two
meeting faces make up one edge and that three adjacent faces have one carbon
atom in common, then

Ni = fp Jrfh
N, = 5f, + 6 (5.22)
3Nv = 5fp +6fh

so that,

(5.23)

Fig. 5.27. Schematic representation of a
Ceo cluster; the 60 carbon atoms are dis-
tributed on the surface of the closed cage
and are seen as pentagonal rings (12)
alternating with hexagonal rings (20).
Single bonds are grey, double bonds are
black
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The smallest fullerene is thus Cgg, a regular dodecahedron with twelve
pentagonal faces. The fullerene size grows with the number of hexagonal
rings, (N —20)/2, where N is the (even) number of carbon atoms. The struc-
tural stability depends on the ratio between the number of hexagonal and
pentagonal faces. Indeed, Cog, which has not been experimentally observed,
is energetically unfavoured since pairs of adjacent pentagons lead to excessive
local curvature of the fullerene surface, which would require an unreasonable
degree of elastic deformation. This is why, as epitomised in the “isolated pen-
tagon” rule, fullerenes with much fewer than sixty carbon atoms are relatively
unstable.

As N increases, all the clusters, except for N = 22, may form closed cage
structures with pentagonal and hexagonal faces. Furthermore, the number
of different ways the pentagons and hexagons are arranged increases rapidly.
Cgo will allow 1812 cage isomers. However, only from N = 60 can at least
one isomer exhibit non-adjacent pentagonal rings. This unique (for N = 60)
fullerene structure is still today the only bare (that is made up of carbon
atoms only) cage cluster that is stable at room temperature. Where N is
greater than 60, apart from N = 62,64, 66, and 68, we obtain isomers with
non-adjacent pentagonal faces. These stable arrangements are unique for N =
70,72 and 74, whereas the fullerene at N = 76 has two isomers with isolated
pentagons, and that at N = 78 has five; with increasing N the number of
isolated pentagon isomers increases rapidly.

Several examples in Nature illustrate the role pentagons play to round a
flat surface; a simple one is the patchwork giraffe mantle. This mantle is light
and spotted with dark spots that completely tile, without overlapping each
other, the neck, back, sides and part of the legs. Such spots have the shape of
polygons, often nearly regular, that include squares, triangles, hexagons and
pentagons; it is the very presence of pentagons that allows the “tiling” to fit
to both the convex curvature of the animal’s body and to perfectly match
adjacent spots.

Coming back again to microscopic structures, apart from the fullerene
structure, other more complicated carbon structures have recently been syn-
thesised under controlled conditions, and examined in detail. These structures
are based on cages elongated in one direction: nanotubes, multilayer tubes
and cone-shaped tubes. The local curvature of these geometric structures of-
ten requires heptagons, which suggests a greater number of pentagonal faces
than f, = 12.

In a curved structure, the corrugation of the flat hexagonal surface lattice
of carbon atoms, typical of a graphene sheet, is due to energetic reasons. The
sp? hybridised, open orbitals on the hexagon edges have a large dangling
bond energy. Provided the temperature is sufficiently high and enough time
is available to allow for annealing, the structure spontaneously re-arranges
itself by folding and incorporating pentagonal defects until it closes (47 total
disclinations, that is twelve pentagons); this way dangling bonds are elim-
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Fig. 5.28. Representation of a 60° pos-
itive cone disclination in a hexagonal
plane lattice; the open point in the lat-
tice is fivefold coordinated

inated. Each pentagon corresponds to a +60° disclination, schematised in
Fig. 5.28; thus a cone-shaped portion of matter with a vertex angle of 60° is
removed from the lattice. If we weld the two remaining flaps of the lattice
together, then the atom where the disclination is located is coordinated with
five first neighbours to form the vertex of a cone.

In the very same hexagonal lattice the presence of a heptagon, namely a
—60° disclination (Fig. 5.29) coincides with the insertion of a cone of matter,
with a 60° vertex angle. The coordination of the atom where the disclination
is found is seven and the atomic plane corrugates with negative curvature.
This kind of transformation from a cone to a cylinder favours the growth of
nanotubes.

Even though the mechanisms for nucleation and growth of a cage struc-
ture are still hypothetical, recent experiments have allowed us to correlate
the number of +60° disclinations we find in the nucleus from which the cones

Fig. 5.29. Representation of a 60° neg-
ative cone disclination in a hexagonal
plane lattice; the open point in the lat-
tice is sevenfold coordinated
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develop with the observed structure and topology. Seven kinds of apex geo-
metric structure have been observed; they diverge from the initial nucleation
centre and correspond to the number p of pentagons in the apex. If p equals
zero, we observe two-dimensional discs, whereas when p lies between one and
five we observe cones with a vertex angle of ¢, such that

(p/2) = arcsin [1 — (p/6)] (5.24)

 is thus 113°,84°,60°,39° and 19°20/, respectively.

If p is six, we synthesise open cylindrical tubes, whereas whenever p is
greater than six the structure falls into the closed cage structure for Cgg
(p = 12) with total disclination of 4.

Apart from the geometric modelling, the structures of fullerenes deviate
from the regular polyhedral structures due to the different lengths of the C—
C bonds, which are determined by local deformation and by the electronic
structure. This is why the symmetry of real fullerenes may be quite low; so
far the observed point symmetries of isolated clusters have been Dsyp, (Cro),
D2(Cr6; Cso), Cay(Crs), D3(Crs), C2(Csa).

The particular stability exhibited by isomers that fulfil the “isolated pen-
tagon” rule is further supported by the fact that when we have been able to
determine the structures of experimentally synthesised fullerenes, these struc-
tures have always coincided with the structures of isomers with non-adjacent
pentagonal faces.

Given the electronic configuration 1522s22p? for atomic carbon, the high-
est coordination number is four. When the bonds are ¢ — m — 7, the orbitals
are linear, sp hybridised. In the case of equivalent trivalent ¢ — 7w bonds, the
orbitals arrange themselves into sp? hybridised planar rings. Lastly, when the
bonds are purely o, tetravalent and equivalent, then the orbitals are three-
dimensional, sp® hybridised.

This kind of structure has a surface with open orbitals; these orbitals are
structure destabilising, just like graphene sheets.

No tetravalent bonds have been observed in carbon clusters; the average
hybridisation is sp™, where n is between 1 and 3. This hybridisation de-
pends on the size of the cluster and its isomerisation. Experiments suggest
that where IV is greater than 32 the clusters arrange themselves in three-
dimensional cage structures, whereas smaller sizes give rise to linear chains,
or monocyclic rings.

Only Cgp and Crgya, are stable clusters, since their electronic shells are
closed, whereas all other fullerenes are reactive due to their incomplete outer
orbitals. It is the very existence of pentagonal rings in the graphitic layers in
Cgo that forces the sp? hybridised structure to bend up to the point where a
closed cage of carbon atoms results, and the open orbitals are removed. The
structure is further stabilised by overlapping adjacent 7 electrons.

We obtain sp? hybridisation when 7 states correspond to pure p, orbitals,
namely if the bond angle v,_,. between o and 7 bonds is 90°, like in the
honeycomb graphite lattice.
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When we introduce pentagonal rings we cause local curvature in the lattice
and the disappearance of the pure p, orbitals. As such, we obtain a different
kind of hybridisation between the s and 7 states. The number of pentagons
governs the degree of sp® hybridisation. In Cag, this is pure sp3, where v,__
is 110°, a value that is very close to the observed value in diamond (109°28').
As N increases, the average hybridisation tends towards sp? rather quickly:
in Cgo we obtain sp?3.

Hence, given that the number of pentagonal rings is unchanged, then the
electronic structure of the carbon cages tends towards the graphite structure
as the number of hexagonal rings increases, which corresponds to a reduction
in the cluster curvature radius. This explains some of the similarities between
Cgo and graphite. On the one hand, the overwhelming number of hexagonal
faces allows us to schematically depict Cgy as a single layer of crystalline
graphite where the twelve pentagonal defects generate the cluster curvature
and, on the other, the bond coordination for each atom is trigonal with
another three carbon atoms.

However, we observe two distinct kinds of orbital: each carbon atom is
bound to three carbon first neighbours by two long bonds (about 0.145 nm)
and one short bond (about 0.14 nm). The Cgp bonds are neither pure simple
bonds (about 0.154 nm), nor pure double bonds (about 0.132 nm), even
though, often, they are respectively called double bond, or simple bond.

The double bonds are interpentagonal and realise a sequence where the
single and double bonds alternate along the perimeter of each hexagonal face.
This feature gives the hexagons threefold symmetry, thus maintaining one of
the symmetry typologies of the icosahedral group (see Chap. 1), with its
ten threefold axes (and not sixfold), that bisect the centres of the hexagonal
faces, besides six fivefold axes that bisect the centres of the pentagonal faces,
and fifteen twofold axes that bisect the centres of the edges that connect two
hexagons together. The localisation of the bonds along the perimeter of the
hexagonal faces is a feature peculiar to fullerenes; the Cgg hexagons have a
different chemical behaviour from both the benzene rings and the hexagonal
arrangement taken up by carbon atoms in the graphite layers, even though
the Cgp surface is almost non-reactive, just like a sheet of graphite. The
chemical inertness is given by the very low number of open surface orbitals,
which is characteristic of a cluster with a magic mass number.

Several carbon-based structures, synthesised starting from fullerenes, have
been studied both theoretically and experimentally. Among such structures
a prominent one is obtained by assembling together ideal Cgy units. The
resulting solid, called a fullerite, is characterised by a very weak chemical
bond between adjacent clusters, as realised by van der Waals forces. One of
the problems we encounter when we try to interpret the crystalline structure
of the fullerite is how the molecular fivefold symmetry can be compatible with
the realisation of a crystalline lattice, given that perfect fivefold symmetry
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can only be realised in the quasicrystals (see Chap. 6), and the fullerite is
not quasicrystalline.

Just as for all molecules with high point symmetry, Cgo tends to crys-
tallise in a structure where the molecule centres of gravity are arranged in a
long-range periodic fashion. At room temperature, Cgg crystals and thin films
are characterised, just like inert gases, by fcc packing of hard spheres with
a lattice constant of 1.42 nm (Fig. 5.30), as obtained directly by scanning
tunneling microscopy. The hcp structure has also been observed, though it
is less stable than the fcc structure. We observe that the various Cgg clus-
ters in the fullerite are disordered from the orientational point of view, since
the molecules rotate quickly about preferential axes, and they are all ori-
ented differently to each other. The frustration in the packing of icosahedral
molecular structural units (see Sect. 4.7) is removed by rapid molecular re-
orientation, which occurs at a frequency of 1.11 x 10'! Hz. The corresponding
re-orientation times (about 9 ps), typical of free rotator in the gas phase,
are extremely short for a cluster with a considerable moment of inertia. The
calculated characteristic time of rotation of a free Cgg cluster at room tem-
perature is 3 ps. It is remarkable that if Cgg is dissolved in solution, the
re-orientation times become 50% longer than those observed in the fullerite.

Still at room temperature, the cluster surroundings in the disordered ful-
lerite, analysed using nuclear magnetic resonance, suggest that there is a
re-orientation mechanism with very small activation energy, around 690 K.
This means that even those orientations corresponding to the maximum of
the activation barrier have a high probability, as high as 10% of the proba-
bility for lowest energy configurations.

At progressively lower temperatures, the fullerite exhibits various phase
transitions to cubic structures, with lower symmetry than the icosahedral
structure. In general we can interpret them by taking into account the pro-
gressively increasing weight of the properties of each cluster. First neighbour

Fig. 5.30. The structure of the fullerite,at

room temperature, is fcc; looking along [001]

the fourfold symmetry is highlighted; look-

[111] ing along [111] the sixfold symmetry is high-
[100] lighted
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clusters may be reciprocally locked to specific relative positions, which gives
rise to variations in the cubic lattice constant as the temperature changes.

At 260 K the activation barrier for Cgo cluster free rotation is very high,
3000 K. The molecules can only ratchet between various preferred orienta-
tions. The centres of the Cgq clusters define a fcc lattice; the unit cell contains
four clusters arranged in the space so as to form a tetrahedron; the orientation
of each cluster is maintained within each tetrahedron. The tetrahedral struc-
tural units constitute a simple cubic crystal lattice; the relation between the
fcec and simple cubic structures may be illustrated by construction by consid-
ering that the fcc structure is the result of the interpenetration of four cubic
lattices. The first lattice contains the clusters located at the vertices of the
cubes in the fcc lattice, whereas the other three are obtained from the first
by translating the clusters along two of the z,y, z axes by a quantity (a/2),
where a is the lattice constant.

Each of the oriented clusters, which go to make up any tetrahedron, comes
from a different cubic lattice, so the lattice formed by the tetrahedral struc-
tural units is simple cubic. Bearing in mind that the lattice sites occupied
by clusters with different preferential orientation are not equivalent, then in
order to represent the structure the simple cubic cell will be twice as large
as the cell in the fcc structure. The interpretation of the data from nuclear
magnetic resonance experiments highlights that there is a specific fast molec-
ular re-orientation mechanism in the temperature interval between 260 K
and 100 K. We assume that two distinct configurations with similar energies
alternate. Figure 5.31 shows that when we observe the solid along the [110]
bond direction, in the first configuration a pentagonal ring of single bonds in
a Cgo cluster faces a double bond in a nearest neighbour cluster. The bond

(a) (b)

Fig. 5.31. Inter-atomic configurations between adjacent Cego clusters, as observed
along [110]; (a) a pentagon with single bonds facing a hexagon with double bonds in
the adjacent cluster; (b) a hexagon with mixed single+double bond facing a double
bond of the adjacent cluster. Both configurations ((a) is energetically favoured) are
observed in fullerite at low temperature, below 260 K
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site 6 : 6 is exactly above the centre of a pentagonal face, and the torsion an-
gle is 179°36’. The consequence of this is that the pentagonal rings, with their
low electronic density, are facing double bonds with high electronic density.
In the second configuration, which is energetically less favoured, one hexagon
faces the double bond of the adjacent cluster.

Lastly, at 5 K, the structure of the ordered fullerite is characterised by
the coupling between facing pentagonal rings in adjacent Cgy clusters.

The link between fullerene-based structures and diamond has been re-
cently explored in detail. The problem consists in obtaining fully sp3-
coordinated lattices by assembling together small fullerenes. The possible
stable structures of such crystals, called clathrates, are found after a topology-
based analysis of periodic polyhedral networks. We use Eulero’s theorem
again (see Sect. 1.1) with the restrictions that the network can only be four-
fold coordinated and only five- and six-membered rings are permitted. After
total energy minimisation we find the ground state cohesive energy and elastic
properties of each clathrate.

Using the four smallest fullerenes, Cog, Cayq, Cog and Csg as building
blocks, we construct the three most elementary three-dimensional periodic
clathrate lattices. The simplest one is obtained from the coalescence of two
Cag and four Cy per unit cell; the structure is fec, with [(2x28)+(4x20)]/4 =
34 atoms per unit cell. We can view it as two interpenetrating diamond
lattices with a relative displacement of a/2, a being the cube edge. The
second lattice results from the combination of two Coyy4, two Cog and three
Cog per unit cell; it is hexagonal, with 40 atoms per unit cell. We obtain the
third lattice from the coalescence of two Cyp and six Coyq per unit cell; its
structure is sc, with 46 atoms per unit cell.

Starting from clathrate structures infinite series of periodic lattices are
obtained, provided we use carbon clusters with eclipsed configuration like

Fig. 5.32. Eclipsed tetrahedral bonding
configuration
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Fig. 5.33. Staggered tetrahedral bond-
ing configuration

the fullerenes. This is schematised in Fig. 5.32. We replace each atom in the
original structure with a tetrahedral diamond cluster of given size. A cluster
that has n atoms along its edge contains [n(n +1)(2n +1)/6] atoms per unit
cell and from the clathrate with N atoms per unit cell (N = 34,40,46, ...)
we can generate lattices with N[n(n + 1)(2n + 1)/6] atoms per unit cell.
Once equal-sized (i.e. with the same n) diamond clusters are bound together
through triangular face sharing, every new lattice is a fourfold-coordinated
structure in the eclipsed configuration.

In the smallest crystals (n = 1) small fullerenes coalesce, so that each
atom belongs to four different fullerenic cages. In larger crystals (n > 1)
fullerene cages are isolated and form a superlattice with increasing inter-cage
spacing. The space between fullerenes is filled with a diamond structure of
progressively larger size, with staggered configuration, as shown in Fig. 5.33.
Such a family of carbon crystals has been named hollow diamonds. The frac-
tion of diamond structure associated with the tetrahedral units that surround
the hollows diverges with n. The limit structure is a diamond crystal. In this
crystal the planes where tetrahedral clusters are joined (in an eclipsed way)
form a regular network of stacking faults with the same periodicity and ge-
ometry as those of the starting clathrates. Structures of this kind, with n in
the order of 2 x 10%, have been recently synthesised; scanning electron mi-
croscopy pictures show that they are large trimmed tetrahedral clusters with
regularly shaped large hollows at the cluster cusps.

5.6 Nanostructured and Cluster-Assembled Materials

The possibility to produce atomic and molecular clusters with well defined
size and composition has recently opened the way to the synthesis of a new
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class of materials whose building blocks are clusters instead of atoms. By
assembling together clusters with sizes in the nanometre range, typically con-
taining hundreds to tens of thousands of atoms, bulk materials are obtained.

The properties of such cluster-assembled, nanophase materials, with grain
size usually in the range between 5 and 25 nm, often differ from the properties
of conventional materials. There are several reasons for the differences. A
crystalline solid is characterised by a single length scale, the lattice parameter,
by the specific nature of bonding force, whether ionic, covalent, metallic, or
van der Waals, and by energy bands resulting from the overlap of atomic
orbitals. A cluster-assembled solid presents two characteristic length scales,
the intra- and the inter-cluster distances. Atom bonding in a cluster may
differ from bonding between clusters (compare, e.g. the fullerene cluster to
the cluster-assembled fullerite), and the energy bands result from the overlap
of cluster orbitals that can significantly differ from each other, depending on
cluster size, besides being different from atomic orbitals.

Cluster-assembled materials can be prepared using a variety of techniques;
we limit our discussion to the structure of materials synthesised by the con-
ceptually simple technique of modified gas condensation. This two-step pro-
cedure allows us to prepare samples with a large number of interfaces.

The precursor material is evaporated, usually by Joule effect, in an evac-
uated chamber (base pressure below 107 Pa) back filled with an inert gas,
typically helium, at pressures around 1 kPa. Inert gases are used to pre-
pare metal samples, while reactive gases, or gas mixtures are employed when
synthesising ceramic materials. Evaporated atoms lose their kinetic energy
through interatomic collisions with gas atoms in the supersaturated region
near the vapour source and condense into clusters; these are continuously
brought via convection to a cold finger kept at 77 K, where they land. Prepa-
ration of nanocrystalline systems under high vacuum conditions is crucial to
obtain uncontaminated interfaces. Nanocrystals with contaminated surfaces
usually do not have the properties discussed in the following. Particular atoms
can be deliberately adsorbed at the crystallite surfaces before the compaction
stage when we want to dope the grain boundaries in a controlled way.

As-deposited clusters form highly porous structures, they are easily
scraped from the finger surface and collected in a piston-and-anvil device
where they are compacted at pressures up to about 5 GPa. The resulting
nanophase pellets are typically around 1 c¢m in diameter and 0.1 to 0.6 mm
in thickness. The type and pressure of the gas and the evaporation rate mainly
affect crystallite size distribution. The main impurities are light gases such as
hydrogen, nitrogen and oxygen, up to a total concentration around 1.5 at. %.

The most impressive feature of a cluster-assembled material is the high
number of incoherent interfaces it contains. In a polycrystalline sample with
5 nm grain size, typically a fraction of 30% of all atoms are found within
one lattice spacing, or less from a grain boundary of average thickness be-
tween 0.5 and 1 nm. If the average grain size is 10 nm, the above fraction
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Fig. 5.34. Schematic
two-dimensional picture
of a nanocrystalline solid.
Full circles represent
atoms in crystallites and
empty circles represent
atoms in interface regions

falls as low as about 15% and for 100 nm grain size it falls to about 1%. It
is expected that, as the interaction energy between nearest neighbour atoms
depends on the number of neighbours and their interatomic spacing, some
physical properties of such nanostructured solids will strongly differ from the
corresponding usual crystals. An example of this is the enhanced silver diffu-
sion in cluster-assembled copper, which is twenty orders of magnitude larger
than in single crystal copper over the same temperature interval, between
about 300 and 400 K.

Wide- and small-angle X-ray and neutron scattering, as well as EXAFS,
besides conventional and high-resolution transmission electron microscopy,
have been used to investigate the structure of nanocrystalline materials. A
simplified picture of the microstructure of a cluster-assembled solid (Fig. 5.34)
shows that essentially it consists of small crystallites, separated by narrow
grain boundaries, i.e. interface planes shared by two neighbouring crystallites.
We are concerned with a twofold problem, the crystal structure and the
interface structure.

The size distribution of isolated crystallites prepared by modified gas con-
densation is well described by a lognormal function, although abnormal grain
growth in nanocrystalline metals results in a bimodal size distribution that
deviates from the lognormal distribution. Presently in high purity elemental
metals achievable grain sizes are in the range between 5 and 10 nm. The re-
duced crystal size often has the effect that the crystal structure of ultra-fine
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grained particles differs from the thermodynamic equilibrium structure in the
corresponding coarse-grained polycrystalline, or single crystal material. For
example nanoparticles of the bee Cr, Mo and W metals crystallise in the A15
structure, which is non-equilibrium for coarse-grained samples. The structure
of nanocrystalline Y503 is monoclinic and coincides with that of the high
pressure phase. In freshly prepared metals and ceramics small-angle X-ray
and neutron scattering give average density of the boundary regions around
60% and 80% of the crystal density, respectively. The estimated boundary
thickness is between 0.5 and 1 nm. The density loss in the interface regions
can be up to five times greater than the density reduction in an amorphous
solid.

X-ray diffraction combined with EXAFS (see Sect. 4.4) allowed for the
measurement of the nearest neighbour coordination number in the crystalline
and in the interface regions of some elemental metals, including palladium,
copper and tungsten, with crystal sizes between 5 and 10 nm. In the bound-
ary regions coordination numbers are lowered by as much as 30%, with a
reduction five times larger than in amorphous samples.

It is difficult to perform unambiguous quantitative measurements to de-
fine the atomic structure in the grain boundaries of a nanostructured solid.
Using X-ray powder diffraction we obtain the average boundary atomic struc-
ture, provided we make a difficult separation of the contributions from crys-
tallites. Imaging by high resolution transmission electron microscopy high-
lights those boundaries with special orientation relationships between the
crystallites and could be not representative of all grain boundaries. The large
static disorder emerging from EXAFS data can arise both from boundaries
and from crystallites; again the separation of both contributions is question-
able.

The initial picture of gas-like short range order in the boundary regions,
thus a peculiar short range order, with no other analogues in condensed mat-
ter has been partly mitigated. If we refer to elemental metals, in freshly
prepared samples about 10% of atoms are located in non-lattice sites, with a
broad distribution of interatomic spacings across the grain boundaries, that
is with no detectable short range order across the grain boundary planes.
Associated to such high angle boundaries are large values of specific grain
boundary area; this structural parameter is proportional to the grain bound-
ary free energy. Thus the excess free energy AG. of a cluster-assembled
nanocrystalline material scales with the inverse of the grain size; when this
is very small, AG,. becomes comparable to, or even higher than that of the
corresponding amorphous phase. The essential difference is that an amor-
phous material is metastable with respect to the equilibrium phase, that is
to the crystal, while a nanocrystal is usually unstable with respect to the
approach to equilibrium via grain growth. Analysis of samples annealed at
room temperature for some months indicates that during this time nearly
all atoms relaxed to crystal lattice sites; this means that regions of perfect
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crystal lattice extend to the interface plane where the topological defect has
become two dimensional. Pure nanocrystalline metals undergo spontaneous
grain growth at temperatures that are a small fraction of the melting tem-
perature. Stabilisation of the microstructure of cluster-assembled materials
is presently a major problem with considerable technological implications.
There is now evidence that the degree and type of grain boundary disorder
are influenced by the nature of the material (metal, or ceramic, elemental,
or compound, including the equilibrium structure of coarse-grained crystals)
and by the sample history. In fact, in selected metals that have been studied
in detail, it appears that nanocrystalline samples of the same material have
similar properties, even if the structure of the boundaries is rather dissimi-
lar.

It is worth mentioning that, apart from cluster-assembled crystalline
solids, manoglasses have been recently synthesised. These are obtained when
amorphous, often spheroidal particles with nanometric size are produced and
compacted together, usually with the same modified gas condensation tech-
nique used to synthesise cluster-assembled nanocrystalline solids. A nanoglass
is a bulk non-crystalline solid; we can view it as an assembly of amorphous
regions of nanometric size joined together by a network of narrow interfaces.
The latter are formed when the initially free surfaces of the glassy spheres are
welded together during the compaction stage. Similarly to what occurs when
differently oriented crystallites are brought into contact, the boundary regions
between adjacent amorphous spheres show reduced density and lowered near-
est neighbour coordination. However, with respect to nanocrystalline systems
an amorphous nanostructure may bear a greater variety since the constraints
arising from crystalline unit cells are removed. Indeed the typical structural
scale ranges between 1 nm and about 100 nm, thus encompassing molecu-
lar and cluster sizes, as well as the length scale of medium range order (see
Sect. 4.8). So far nano-chalcogenide glasses, in particular selenium, have been
studied to some extent, concerning their thermal stability, namely the trends
of glass and recrystallisation temperatures, T, and 7T.. In nanoglassy Se thin
films T, was observed to decrease with thickness, suggesting that the weaker
bonding of atoms at and near the surface governs such a thermal instability.
A condition favouring crystallisation is that the amorphous Se nanoclusters
in the films are larger than the crystallite size, around 5-10 nm and such a
condition may not be met in these spatially restricted systems. An analysis
on multilayered Se/CdSe and Se/AssS3 architectures in which Se films are
nanoglassy indicates that T, of Se increases from about 323 K to 373 K with
decreasing Se cluster size from about 30 nm to about 1.5 nm. The trend is
in agreement with that observed in several organic molecules, showing that
T, increases in increasingly confined samples, unless interfacial interactions
significantly affect confinement.

One of the major research tasks in the field of cluster-assembled materi-
als is to tailor cluster size, structure and morphology, selecting the desired
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Fig. 5.35. SEM micrograph
cross section of a representa-
tive cluster assembled carbon
film prepared at pue = 60 Pa,
P =16 MW mm 2 (adapted
from [5.11])

Fig. 5.36. SEM micrograph
cross section of a representa-
tive cluster assembled carbon
i film prepared at pa, = 2 kPa,
— P =16 MW mm 2 (adapted
from [5.11])

characteristics over broad ranges before the clusters are assembled together
to give the designed material. This problem was addressed preparing cluster-
assembled carbon films with nanometric size by pulsed laser deposition (PLD)
in a background noble gas atmosphere (see Sect. 5.2). The influence of con-
trollable process parameters on the synthesis, propagation, aggregation and
energy distribution of clusters in the ablation plume was studied, with spe-
cific attention to the power density deposited on the graphite target by each
laser pulse (from 8 to 19 MW mm~2) and to the ambient gas nature (He,
or Ar), pressure (from 0.5 Pa to 2 kPa) and temperature (from 223 K to
293 K). Changing power density comparatively minor film modifications are
found, while film microstructure, as investigated by cross section scanning
electron microscopy, dramatically changes, from dense columns, to node-like
morphology, to an open dendritic structure, with either increasing gas pres-
sure, or decreasing gas temperature, as shown in Figs. 5.35 and 5.36. Ra-
man spectroscopy (Fig. 5.37) indicates that all films have trigonal coordi-
nation and are structurally disordered, thus belonging to the family of car-
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Fig. 5.37. Macro-Raman spectra of representative cluster assembled carbon films;
(1) pre = 60 Pa, P = 16 MW mm™2; (2) pa, = 2 kPa, P = 16 MW mm 2 (adapted
from [5.12])

bon nanoglasses. It is noteworthy that the films synthesised at the highest
gas pressure, with the most irregular morphology, consist of graphitic ag-
gregates of considerable size, thus being less disordered than films prepared
at lower gas pressures, or at higher temperatures. The cluster size deduced
from the coherence length in all films and confirmed by direct transmission
electron microscopy observations, ranges from 4.5 to about 20 nm as a func-
tion of gas nature, pressure and temperature. Such data are in excellent
agreement with the predictions of an atomistic model of cluster synthesis
in the ablation plume and cluster aggregation after plume landing on the
substrate, provided they have low enough kinetic energy to preserve cluster
structure. When cluster energy is relatively large, cluster mobility on the
substrate increases and bigger, irregularly shaped aggregates of clusters are
formed.

The synthesis of cluster-assembled films sensitively depends on the size,
cohesive energy and kinetic energy of the constituent clusters, but the sub-
strate plays a meaningful role to the very initial stages of film growth mainly
through its temperature and surface structure. Taking Si (111) as a model
system, we observe that on a reconstructed (7x7) unit cell, silicon, or germa-
nium clusters are confined to one half-unit cell of the (7x7) reconstruction.
The leading factor that determines cluster size is the size of the reconstructed
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unit cell; indeed, by scanning tunnelling microscopy it is shown that at sub-
strate temperatures below 600 K a high density of small, isolated clusters,
each consisting of around eight atoms on average, with narrow size distri-
bution are located each inside a different (7x7) half unit cell. Moreover, on
a (5x5) reconstructed surface, whose cell size is nearly halved with respect
to the (7x7) cell, the average acceptable cluster size reduces to half of the
cluster size observed on a (7x7) surface.



6. Quasicrystals

6.1 Periodic and Aperiodic Crystals

We commonly refer to two atomic arrangements when describing the struc-
ture of an ideal solid, namely a homogeneous, chemically pure single-phase
solid, the crystal, with its periodic structure (see Chap. 1) and the random
arrangement typical of the amorphous state (see Chap. 4).

Given the periodicity of the microscopic structure, the crystal is consid-
ered a finite part of a structure with three-dimensional lattice periodicity.
The surfaces, the atomic packing defects and the impurities can cause local
deviation from the ideal atomic sites, as given by space group symmetry;
however, long range order is far from being removed.

When a crystal undergoes X-ray, electron or neutron diffraction, we ob-
serve constructive interference between rays elastically scattered from atoms
arranged on successive planes that belong to a given family {hki} (see
Chap. 1), provided that the Bragg equation (see (4.25)) is fulfilled. Equa-
tion (4.25) may be rewritten as

2(dhkl/n) sinf = A (61)

where n is the diffraction order, 6 the scattering angle and A the wavelength of
the incident radiation; from this the nth order diffraction from {hkl} planes
is equivalent to the first order diffraction from the (nh nk nl) plane.

The atomic periodicity makes the diffraction coherent along some privi-
leged directions, as characterised by the geometric structure of the crystal.
The diffraction pattern in these directions exhibits high intensity spots, or
perfectly localised peaks, evenly spaced out.

The pattern’s global symmetry (see Chap. 1) reveals the geometric shape
of the elementary structural unit, and thus of the unit cell. The angular
separation of the Bragg reflections is inversely proportional to the size of the
unit cell. The intensity of the reflections allows us to deduce the crystal’s
spatial structure, by way of numerical simulation, namely the species and
position of the least number of atoms required to build, by translation, the
entire structure.

Since the lattice points are equally spaced out along each lattice line, then
each lattice point is an inversion centre of the lattice, taken as a whole. The
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A Fig. 6.1. No kind of two-dimensional or three-
. . dimensional lattice will allow lattice points
with fivefold rotational symmetry

same holds for each half-way point between any two lattice points. The lat-
tices with the lowest symmetry do not exhibit any other symmetry operation.
The lattices are then classified into families based on the symmetries that de-
fine their lattice points and on how the symmetry group operates on the lat-
tice. The lattice symmetry is governed by geometry laws; an example of these
laws is the Barlow theorem on crystallographic restrictions (see Sect. 1.4).
Based on this theorem, fivefold rotations and higher than sixfold order ro-
tations are incompatible with complete occupation of the three-dimensional
space, without overlapping occurring; also, rotations of these same orders are
incompatible with any periodic tiling of the plane. In this case, if we consider
the pentagon, the 180° vertex angles are a fraction (3.333...)~! of 27; so, if we
juxtapose three regular pentagons so that they have one vertex in common,
namely a lattice site, then a 36° angle of subtended space is left uncovered.

Alternatively, if we assume we have obtained a two-dimensional Bravais
lattice with pentagonal cells, as schematised in Fig. 6.1, then the symmetry
would require all the points about which fivefold rotations occur to be defined
as a lattice, because of the translational symmetry. We shall call one of these
points P. Since the lattice is discrete, there must be a minimum distance,
x, between the points which, in turn, are translationally equivalent. Let @
be a lattice point at a minimum distance from P. Now, let us assume that
P is surrounded by five of these points, )/, and that ) is surrounded by
five points P’; however, this conflicts with the requirement that the distance
between P and Q should be minimum.

We obtain the same result with three-dimensional lattices since the rota-
tion about an axis (fivefold) affects rotations of the same order in the lattice
planes perpendicular to that axis. As such, if a two- or three-dimensional
crystal has periodic structure it cannot exhibit fivefold rotational symmetry.
Nor can the outer shape of the crystal be either an icosahedron or a regular
pentagonal dodecahedron, since the shape of a crystal cannot exhibit any
kind of symmetry that is forbidden by its internal structure. In other words,
a system that exhibits fivefold symmetry has a non-periodic structure.

Coming back to our two-dimensional case, and using the same reasoning
as above, we cannot consider heptagonal tiles with a vertex angle of 128°57’
a (2.8)7 fraction of 2.



6.1 Periodic and Aperiodic Crystals 269

In general, the vertex angles for regular polygons with n sides is given by
m(n—2)/n; the plane can be periodically covered if p = 2n/(n—2) is an integer
number (see Sect. 1.4). Apart from the heptagon (n = 7), where p = 2.8, we
also observe that, for polygons with progressively increasing order, p = 2.666
(n =28), 2.571 (n=9), 2.5 (n = 10), 2.222 (n = 20), 2.143 (n = 30),..., and
that p is always greater than 2.

Very few shapes with repeated juxtapositions can fill the space, even for
three-dimensional crystals; these polyhedra do not include morphologies with
fivefold rotational symmetry.

When we also consider translation, reflection and inversion operations,
and when we define the 230 space symmetry groups, those space groups with
fivefold, sevenfold and higher order rotations are excluded.

Since the set of possible symmetry operations is given by the dimension
of the space the lattice is embedded in, the crystallographic restriction de-
pends on that dimension. In particular, in four- or higher dimensional spaces,
fivefold and twelvefold rotations are allowed, whereas sevenfold rotations are
observed for the first time in six-dimensional space. On the other hand, atomic
decorations characterised by any symmetry may be exhibited, and are ob-
served, in many cases in the unit cells of a three-dimensional crystal, or on its
faces. It is the symmetry of the unit cell that ensures the space be filled, re-
gardless of the shape or symmetry of the decorations, since these decorations
are in reciprocal relation through the symmetry of the underlying lattice.

The appearance of structural elements with “prohibited” symmetry is
widespread both in chemistry and in biology. Figure 6.2 shows one among
the simplest examples, namely the structure of the artificially synthesised
dodecahedrane (CH)qp, where the carbon atoms are arranged on the face
centres of a icosahedron, namely, in positions equivalent to the vertices of
a regular dodecahedron (see Chap. 1). Boron chemistry supplies us with a
number of examples of molecules with icosahedral structure: [B12H12]2, whose
elemental structural unit is an icosahedron, the icosahedron Bis, as shown in
Fig. 6.3 (part (a)), which is found in the allotropic forms of crystalline Boron,

Fig. 6.2. The dodecahedrane (CH)z consti-
tutes an ideal dodecahedron
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Fig. 6.3. (a) The icosahedral symmetry of BgO is revealed by its morphology;
(b) evidence of multiple twinning in BgO; (c¢) structure of BgO: full dots indi-
cate oxygen atoms and open dots represent boron atoms; the centres of the Bis
icosahedra occupy the vertices of a cuboctahedron

B12C3 (rhombohedric) and BgO. From Fig. 6.3 multiply twinned particles
(see Chap. 5) in this system have the same morphology (part (b)) as the
Cgo clusters (see Chap. 5) and are arranged in a compact cubic packing of
B2 icosahedra (part (c)). The oxygen atoms are arranged on densely packed
layers; each oxygen atom is coordinated with three boron atoms belonging to
three B1s icosahedra. The BgO particles are among the largest particles with
icosahedral symmetry that grow spontaneously; for comparison, a particle
with a diameter of 20 wm contains some 10'* atoms, whereas a virus has
around 107.

The fact that BgO is an extremely hard material makes these particles
suitable for such applications where high wear resistance is required. All
the external faces have the same crystallographic orientation ([1 1 1], see
Chap. 5) and the same surface energy, minimum; this explains why they are
all subject to the same, extremely low, wear rate.

It is remarkable that icosahedral SRO is observed even in amorphous
boron, as revealed by a clear shoulder in the second peak of the scattering
intensity curve I(k), measured using high intensity synchrotron radiation.
The distance between first neighbour boron atoms, as obtained from the well
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Fig. 6.4. Electron microscopy image of the reovirus core. Icosahedral symmetry is
evident. The core is about 70 nm in diameter and contains five proteins out of the
eight that make up a complete virion. The \; protein defines the core symmetry
and size; it is stabilised by the o2 protein (white crosses in the picture). A fivefold
rotation symmetry axis lies normal to the central A2 structure. Other five equivalent
A2 proteins are marked as open dots in the picture. (adapted from [6.1])

defined first peak of I(k), on the one hand confirms a high degree of SRO and,
on the other, coincides with the average distance between first neighbours
observed in fragments of crystalline boron with icosahedral packing.

Boron ions are usually implanted into silicon to dope it p; after bombard-
ment at doses higher than 10'® cm~2, infrared spectra clearly suggest that
boron arranges itself into B1s icosahedra; this corresponds to an absorption
peak whose intensity linearly depends on the implanted dose.

The recurring icosahedral spatial arrangement is not an exclusive char-
acteristic feature of boron; indeed, for example, icosahedral Asis units are
encountered in CogAsio, a mineral (skutterudite) with a structure that is
globally cubic. Even some primitive biological structures, such as the Ra-
diolaria, a marine microfossil, have icosahedral skeletons, and many viruses
exhibit icosahedral morphology (Fig. 6.4). The viruses are on the edge be-
tween living matter and non-living matter. Since perfect crystallisation is
associated with non-living matter, then pentagonal symmetry, which we fre-
quently observe in primitive living organisms, seems to constitute a defence
strategy against crystallisation, as illustrated in Fig. 6.5.

At the end of 1984 it was reported that fast quenched thin ribbons of
aluminium—manganese with composition AlgsMng, obtained at a quenching
rate of —(d7T'/dt) = 10 Ks™! and subject to electron diffraction, give rise to
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Fig. 6.5. Schematic view of the reovirus core,
as seen from the interior. Five copies of A1 (1)
radiate from an icosahedral fivefold axis and are
arranged alternately to the members of a second
set (2) thus forming a decamer. (adapted from

[6.1])

a pattern with well defined and regularly spaced out bright spots, analogous
to a ordinary crystal, though with icosahedral three-dimensional symmetry
(Fig. 6.6). One characteristic property is that the density of the Bragg spots
observed in each plane is considerably greater than the density we normally
find for a periodic crystal. The reported diffraction pattern is surprising since
one of the characteristic properties of icosahedral symmetry lies in having six
fivefold rotation axes. Thus we observe the typical features of a diffraction
pattern from a crystalline (thus periodic) structure in apparent contrast with
a concomitant symmetry that cannot exist in a periodic structure. Systems
with this kind of characteristic properties are called quasicrystals.

()

(N

Fig. 6.6. Stereographic projection of the icosahedral point group and diffraction
patterns (transmission electron microscopy) of fast quenched AlgaMnig, perpendic-
ular to a threefold axis (I), a twofold axis (II), and a fivefold axis (III)
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Fig. 6.7. Scanning electron
microscopy micrograph of
a dodecahedral single grain
of AlgsCugoFers, grown in
thermodynamic equilibrium
(adapted from [6.2])

The scanning electron micrographs of AlgsMn;4 samples are characterised
by having a morphology with dendritic nodules a few micrometers in cross-
section. Each nodule is homogeneous and exhibits, in agreement with the
characteristic features of the diffraction pattern, long range orientational or-
der; on the other hand, the latter is associated with icosahedral symmetry.
Figure 6.7 highlights the outer shape of the nodule, a regular pentagonal
dodecahedron (compare the part (a) of Fig. 1.8).

Our interpretation of the above inconsistency has led us to generalise
and complete the definition of a crystal, whereas the successive discovery
of hundreds of other compounds with quasicrystalline phases and rotational
symmetry with fivefold, eightfold, tenfold and twelvefold order allowed us
to synthesise under thermodynamic equilibrium single-phase quasicrystalline
samples. These kinds of quasicrystals are most suited to highlighting the
structural, electrical, magnetic, mechanical and thermal properties of perfect
quasicrystals. Thus, we can compare them with the samples obtained with
non-equilibrium techniques and with the so-called crystalline approximants,
namely those truly crystalline phases with composition very close to the
quasicrystals.

We can understand the “pathology” of the structure of quasicrystals by
following two research paths at the same time. The first implies considering
the ideal systems, i.e. without any defects, that are aperiodic, though ex-
hibiting long range order. Known as incommensurate phases, these systems
have been observed, examined and synthesised since the 1960s. The second
path refers to the search for a new and wider definition for a crystal. This re-
quires us, among other things, to consider extending our notions on periodic
functions (see Appendix).
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6.2 The Enlarged Notion of Crystal

If the realisation of a crystalline state, with the associated long range order,
is axiomatically tied to lattice periodicity, then the cases for AlggMn;g and
hundreds of other alloys become insoluble. On the other hand, over the last
few years experimental structural studies on, and models for, these systems,
as well as the incommensurate phases, have led to the emergence of a new
and more global definition of the crystal. A solid that satisfies the diffraction
conditions, in that it gives rise to an essentially discrete diffraction pattern,
is to be deemed a crystal. This definition does not take into consideration
either the symmetry of the system nor any a priori structural assumptions.

From a formal point of view, the general definition of a crystal requires us
to examine two aspects in more depth: we have to topologically characterise
the set of points that fulfil the diffraction conditions, and we have to develop
model structures that fill the space, whose local properties are necessary and
sufficient to determine the diffraction conditions. The very study of purposely
built model systems aids us in analysing many characteristic properties of real
quasiperiodic structures.

Let us take an ordinary crystal. The atomic positions » may be expressed
as (T + x;), where T is a lattice translation and x; the position of the j-
th atom in the unit cell. If @ is a modulation wavevector, then the atomic
position in a modulated phase is

r=T+xz;+f; [Q (T+=;)+¢,] (6.2)

where the function f;(x) = f;(x + 1) is periodic.

For simplicity, we shall take into account a one-dimensional chain of
atoms, with interatomic distance x;. The system is stabilised at low tem-
perature if the charge density o(x) is spatially modulated. The deviation
no(x) in the charge density from its spatially homogeneous average value is
well approximated as

no(x) = pcos(2wa/\)

where A is the periodicity. In turn, this modulation induces a modulation
in the atomic positions. If (z1/A) is a rational number, which can thus be
expressed as the ratio between two prime integers (A/B), the structure is
commensurate and a new unit cell with B atoms of the chain forms in the
system. If, instead, (z1/A) is irrational, then the modulation is incommen-
surate with respect to the original lattice. In general, the modulated phase,
where the atomic positions are given by (6.2), once it is subjected to a scat-
tering experiment, produces diffraction spots or peaks in positions

k = mix] + moxs + msxh + mQ. (6.3)

In (6.3), my, ma, mg are the indices for a reciprocal lattice vector, k'.
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When the components of modulation vector @ are irrational compared
to the basis vectors of the reciprocal lattice (x7,x3,x3), namely when Q
is rationally independent, the observed diffraction spots do not refer to a
lattice; rather, they refer to the Fourier module for a quasiperiodic function
(see Appendix).

We can experimentally recognise an incommensurate crystal by the ap-
pearance in the diffraction pattern of the so-called satellite peaks. These
peaks correspond to irrational multiples of reciprocal lattice vectors of the
starting, non modulated, crystal.

Again with reference to the one-dimensional example, the spots in the
scattered intensity correspond to a lattice whose vectors are

k= (+Ay: + Bys) &

where A and B are integers, & is the unit vector in direction x, and y; =
(27/x1) &, y2 = (27/A) &, where x1/) is irrational.

It is noteworthy that already in the simple example of a one-dimensional
incommensurate structure to introduce the concept of reciprocal lattice im-
plies there are two primitive translation vectors, y; and yo. The ratio (y1/y2)
is such that there are infinite pairs of integers A, B, which, for a fixed num-
ber ¢, fulfil the condition |A y; — B y2| < €, which is true for any ¢ (see
Appendix). Thus, the reciprocal lattice vectors for an incommensurate sys-
tem make up a dense set in the reciprocal space. In general, the ensemble of
wavevectors given by (6.3) is dense; as such it is reasonable for the intensity
of the experimentally measured diffraction spots to tend towards zero quite
rapidly as the values of the indices increase. If they do not tend towards
zero it would be impossible to distinguish one spot from another because
they would largely overlap. This means that we only observe a finite number
of spots (Fig. 6.6), which makes it impossible to distinguish a quasiperiodic
function from a semiperiodic function that is not quasiperiodic.

It is not easy to determine whether the @ components obtained from
the experiment are irrational rather than rational with large denominators.
Furthermore, we cannot define with absolute precision the position of the
spots because of their intrinsic width, mainly due to the finite size of the
sample and to instrumental effects. We do, however, assume that the physical
properties of the system are independent of whether @ is irrational or not.

In an ordinary crystal, plane waves with arbitrary wavevector propagate,
with the exception of those with a value k’ for which the diffraction condition
is fulfilled,

2%k - k' + |k|* = 0. (6.4)

The excluded states correspond to stationary waves with two components.
These states remain extended but contribute to neither the propagation nor
to energy transport. Since the k vectors form a dense set in quasicrystals, then
any k' vector satisfies (6.4) and can thus contribute to diffraction. Besides
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this, we observe multiple diffraction, and the number of simple plane waves
that contribute to the resulting stationary state grows with |k'|.

Since we could suspect that propagation phenomena are inhibited in qua-
sicrystals, it is convenient to consider the particle, e.g. the electron, associated
with the plane wave with frequency w and wavevector k’. Let us refer to the
dispersion relation w(k’) of an ordinary crystal; this extends up to the Bril-
louin zone boundary. When k’ obeys the Bragg law, a gap with width Aw
opens up in the THz region (Aw ~ 10'2 Hz) of the phonon dispersion curve.
The average lifetime of the particles consequently reduces to At = (Aw)~1,
namely 107'?s; when group velocity is below 10 ms™!, the resulting mean
free path is less then 1 nm.

If we take any quasicrystal, the dispersion relation is a dense hierarchy
of gaps, most of which are very narrow. When Aw ~ 10~% THz, the particle
may propagate over distances in the order of a few micrometers. As such,
propagative and non-propagative states may coexist. Unlike their counter-
parts in the ordinary crystals, propagative states are much less effective and
there are many more non-propagative states.

The size of the primitive unit cell in the physical space in a periodic
crystal gives rise to a minimum interatomic distance; the above mentioned
density property for wavevectors (which corresponds to the high density of
Bragg spots observed in the quasicrystalline structures) implies that arbitrar-
ily small vectors are allowed in the reciprocal lattice of an incommensurate
structure. This condition poses the problem of the position of the atoms in
the space, since these atoms cannot be found arbitrarily close to each other.

As surprising as it may seem, most of the crystalline phases are almost
periodic. There are obviously also periodic structures, which are usually de-
fined as “crystals”, whereas the other phases are incommensurate crystalline
phases. Among these phases, one important class is given by the modulated
structures. The description of these crystals is obtained from an underlying
structure with three-dimensional space group symmetry, which is associated
with a periodic deviation, namely the modulation; the period of the latter,
in the incommensurate case, is not compatible with the period of the lattice
corresponding to the underlying space group.

If we observe modulation in atomic displacements, then the structure is
displacively modulated, as shown in part (a) of Fig. 6.8. When the modu-
lation regards the probability that crystallographic sites of the underlying
structure may be occupied by atoms of a given species, we obtain an oc-
cupationally modulated structure, as schematised in part (b) of Fig. 6.8. A
system that is made up of sub-systems whose underlying structures are mu-
tually incommensurate, is called a compositionally modulated system and it
is displayed in part (c) of Fig. 6.8.

Incommensurability may even occur in two-dimensional crystalline layers;
it is observed quite frequently in atomic monolayers adsorbed onto crystalline
substrates.
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Fig. 6.8. Schematic illustration of incommensurate crystalline phases. (a) 1 con-
stant; x2 constant, in the presence of transversal displacive modulation where
y = cos(mw/6) x cos(niz1/5), with ny an integer. (b) Occupation modulation of
lattice sites on a square lattice. Symbols (o) and (M) are respectively less than or
equal to 0.5 and greater than 0.5 for the probability occupation function P of each
lattice site. P = cos[cos (57/12) - (n1z1) (1 4+ n2x2/9)]. (¢) Compositional modula-
tion. Two sub-lattices are present, where the ratio between the lattice constant of
the first (o) and that of the second (M) sub-lattice in x direction is the irrational
number (2/4/3): the two lattice constants are reciprocally incommensurate. Along
direction y the ratio between the lattice constants for the two sub-lattices is unity

Lastly, it is currently possible to realise incommensurate artificial hetero-
structures. One significant example has been obtained by alternating layers
of GaAs and AlAs, grown by molecular beam epitaxy; the artificial structure
resulting from the sequence of layers is quasiperiodic. The scheme given in
Fig. 6.9 shows alternating layers of fixed thickness: the first layer, L, consists
of 1.7 nm of AlAs and 4.2 nm of GaAs, and alternates with a second layer,
B, which consists of 1.7 nm of AlAs and 2 nm of GaAs.

7 \’//\/
A
R
Z/Q Fig. 6.9. Fibonacci superlattice. B: AlAs
L é (1.7 nm) + GaAs (2 nm). L: AlAs (1.7 nm)
+ GaAs (4.2 nm). The sequence of pairs

B — L is the Fibonacci chain
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B 1

L 1

LB 2

LBL 3

LBELLE 5
LELLBLBL 8
LBLLBLBLLBLLE 1
LBLLBLELLELLELELLBLBL 2

-

Fig. 6.10. Fibonacci chain. A particular local arrangement (the same as in Fig. 6.9)
found in various generations is underlined. The Fibonacci numbers, on the right,
give the number of B and L elements in each chain line, or generation

The L and B layers are subsequently added to the structure, according to
a sequence that corresponds to the Fibonacci chain, F™. Given an initial pair
of LB layers, Fig. 6.10 shows the addition of the following layers according
to the substitution rule L — LB, B — L. The result is a perfectly ordered,
aperiodic, deterministic sequence of B and L layers.

F™ is a mathematical structure with peculiar properties; let us con-
sider the Fibonacci n,, series, whose terms indicate the number of elements,
whether they are B, or L, we find in the nth generation (line) of the chain.
The Fibonacci n,, series is given as ng =0, ny =1, no = 1, ng = 2, ny = 3,
ng =5, ... Ny = Np_1 + Ny_2 . These numbers are reported on the right of
each line of the Fibonacci chain in Fig. 6.10; they have the property that,
as n increases, the ratio (n,41/n,) converges onto the irrational number 7,
called the golden ratio:

7= (145)/2 = 1.61803398... . (6.5)

Each rational term (n,y1/n,) of the series is defined as the nth order
rational approximant to 7.

The frequency, f, with which elements B and L respectively appear in the
F™ chain is given by f,,(B) = ny,—2 and f,(L) = np,_1; in the limit of large n,
fu(L)/ frn(B) = 7. Thus, periodic repetitions of groups of L and B elements
are excluded. Even the 77 elements, with increasing n, are a Fibonacci chain,
namely 77 = 7771 4 772,

Coming back to our experimental realisation of the F™ chain with the
above mentioned hetero-structure GaAs/AlAs, when the number of L and B
layers increases, thus leading to a number of chain generations, we obtain a
quasiperiodic sequence of L and B layers, whose diffraction pattern exhibits
narrow peaks. These peaks are given two integer indexes instead of the single
index, which is a feature of any one-dimensional periodic structure.

Since we have good control over the sequence growth, this system, just
like several other similar systems, is a model for the quasiperiodic structures.
The Fourier module for the artificial hetero-structure under examination has
an order of four. We define as z the axis along which layers B and L grow;
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given that the structure is periodic in both z and y directions, two vectors
are generated in these two directions, respectively 7 and x5, whereas the
need to introduce a quasiperiodic function along the z axis requires another
two vectors, 3 and x}, which are associated with mutually incommensurate
periods.

6.3 Quasicrystals and Tilings

The quasicrystals form a special class of incommensurate quasiperiodic struc-
tures. The diffraction pattern exhibits well defined, narrow peaks and suggests
that there is long range order in the system. The quasicrystals are associated
with having perfect orientational order without translational periodicity. As
the quasicrystals possess fivefold symmetry, which is associated with ideal
orientational order, and quasiperiodicity, we are immediately led to assume
that an analogy exists between these physical structures and the so-called
Penrose tilings. This is a class of quasiperiodic tiling of the plane using tiles
of two different shapes, where the vertices of the tiles satisfy the diffraction
condition which, in turn, is associated with a Fourier transform with fivefold
symmetry.

Very basically, we are in the presence of one of the three questions in
Hilbert’s 18" problem, namely, is there a tiling on whose tiles no symmetry
group can transitively act? i.e. it does not act transitively on any partition of
the n-dimensional Fuclidean space, E™, obtained using the above mentioned
cell.

A tiling of E™ is a partition of the space into a countable family 1" of
non-overlapping, closed sets C, called cells; T = {C4, Cy, ..., C,,...}, such that

int C,NC; =¢ for any i # j (6.6)
and
ue,C; = E™. (6.7)

A number of different cells have been devised that meet the Hilbert re-
quirements; in Fig. 6.11 an example of a two-dimensional solution as given
by Escher’s “ghosts” is shown which, though they seem somewhat complex,
constitute a modified version of plane tiling by equilateral triangles. The tri-
angle side has two ghosts aligned in the sequence “head-tail-tail-head” and
each triangle has three ghosts inside it. Since there is no rigid motion to
cause any interchange between the ghosts inside the triangles and the ghosts
on the sides, the symmetry group of this tiling does not transitively act on
the tiling itself. Moreover, this is a unique tiling in that this is the only way
to reciprocally assemble ghosts in such a way that the plane is completely
covered without overlapping the tiles.
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Fig. 6.11. The “ghosts” (M.C. Escher) are a complex modification of a plane tiling
using equilateral triangles. The continuous line highlights a triangle and the crosses
mark a triplet of ghosts inside the triangle. There is no rigid motion to allow the
exchange of “inside” ghosts with those on the sides of a triangle

The Hilbert question may be put slightly differently; we could wonder if
such a tile exists that can give rise to only aperiodic tilings. We are not aware
of any such tile at this time that, used on its own, could fulfil the required
conditions. There are, however, tiles with such a shape that both periodic and
aperiodic tilings can be generated. The initial assumption that any set of tiles
that gives an aperiodic tiling can also give rise to a periodic tiling is, indeed,
false. An exclusively aperiodic plane tiling could be realised using a set of six
tiles with different shapes; this set was later reduced to four tiles and, later
to two tiles. It was observed that such Penrose tiles gave rise to tilings with
meaningful properties to understand the properties of quasicrystals.

The shape of the Penrose tiles can be chosen in a number of ways; for
example, we can refer to two pairs of motifs which basically give rise to two
“unit cells”. The first motif, that is reported in Fig. 6.12, consists of two
rhombi with equal length sides, whose acute angles are 7/5 (“thin (T)”) and
27 /5 (“fat (F)”) respectively.

The second pair of tiles (Fig. 6.13) is obtained from the first pair by
finding the point along the principal diagonal of a “fat” rhombus that cuts
the rhombus itself into two parts, whose ratio is given by the golden ratio
7; such a point is then connected to the vertices of the two obtuse angles.
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Fig. 6.12. The two fat (F) and thin (T) rhombi
for the Penrose tiling

Fig. 6.13. “Dart” and “kite” construction starting from an F
rhombus

The two resulting motifs are called dart and kite, from their shapes. The side
length of these two motifs is 7 or 1, whereas the ratio between the area of
the kite and the area of the dart is the golden ratio.

Figure 6.14 shows how, by using rhombi, we can produce both periodic
(part (a)) and aperiodic (part (b)) uniform plane tilings, depending on the
rules we adopt to assemble the tiles together. We force the aperiodic structure
by using specific matching rules between tiles, namely construction rules for
the tiling. For example, for a lozenge-based tiling, we index the vertices of
tiles with different numbers of arrows, then we arrange tiles together in such
a way that they share equal-index sides. The procedure is schematised in
Fig. 6.15.

O\ @

Fig. 6.14. Using rhombi F and T we obtain both periodic tilings (a), and aperiodic
tilings (b)
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Fig. 6.15. Illustration of
the local matching rules

to construct an aperiodic
Penrose tiling

The graphic rules for the reciprocal matching of the tiles are local and do
not guarantee that, even when correctly applied, defective local arrangements
will not occur. A defect is a void interstice that cannot be filled with a tile.
Void formation may occur both when we simply consider correct matching
of first neighbour pairs of tiles and when we try to consider the arrangement
taken up by tiles that are second, third, fourth, neighbours to the tile we are
disposing on the plane.

The size of the already covered region which, at each stage of tiling growth,
should be examined so that we can correctly add another tile, is unlimited;
this is like implying that the error is intrinsic to aperiodicity.

A strict mathematical procedure has recently been introduced, whereby
we define precise matching rules that can lead to both aperiodic and periodic
structures. This procedure, called substitution, has allowed us to establish a
clear connection between the two families of structures.

Even if we use the tiling matching rules, and having chosen a fixed set of
tiles, we still cannot realise a single, unique aperiodic tiling; on the contrary,
the number of Penrose tilings is uncountable. This is because these tilings are
self-similar, namely they exhibit a characteristic behaviour with respect to a
change of scale. Such a process is defined as the inflation-deflation procedure.
As shown in Fig. 6.16, inflation is achieved by taking the tiles in a given tiling
apart and rescaling them so that the size of the new tiles is the same size as the
original tiles. Thus we realise a different tiling to the original one, yet formed
by thin and fat rhombi with sizes that are greater than the original tiles.

Figure 6.10 clearly shows the inflation-deflation procedure for the one-
dimensional Fibonacci chain which, in turn, is a self-similar structure. When
we apply the substitution rules L — LB, B — L, the process becomes
inflationary, whereas using the opposite rules we obtain the deflation process.
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Fig. 6.16. A graphic
example of inflation-
deflation procedure ap-
plied to rhombi F and T;
inflation scheme

F=2F+T

Coming back to our Penrose tilings, the inflation (deflation) procedure
may be iterated ad infinitum to produce, at each stage, a generation of pro-
totype rhombi that are larger (smaller) than the rhombi of the previous gen-
eration, thus giving rise to different plane tilings. Penrose tilings belonging
to different generations are all distinct from each other since there is no Eu-
clidean transformation, namely no distance-preserving affine transformation
that could transform one tiling into another tiling.

Different generation tilings, however, are relatively homogeneous, and
their local structures are repeated fairly regularly. This pattern similarity
corresponds to the property that in the tiling each local surrounding, for any
finite radius, is relatively dense. This means that in E™ every ball with radius
greater than a fixed positive number contains at least one tiling vertex (an
ordinary crystal is relatively dense).We observe that the Penrose matching
rules allow only seven different rhombi arrangements at each vertex. Each of
these local arrangements is relatively dense. This tiling property is called lo-
cal isomorphism. Each local configuration, defined within a circle with radius
R, e.g. centred on a vertex, re-appears within a distance of 2R. Locally, two
Penrose tilings are thus equal to each other, in that each local (finite) con-
figuration observed in one of these tilings is observed in the other. This kind
of local regularity is shown in the tiling in Fig. 6.15. Local isomorphism is a
weaker form of repetitiveness, which in turn is a consequence of homogeneity.
By comparison with quasicrystals and tilings, in ordinary crystals, repetitive-
ness is strong and results in long range order; in amorphous materials it is
weak and produces short range order (see Sect. 4.7).

Local isomorphism is observed also in the Fibonacci chain shown in
Fig. 6.10, where, for different adjacent generations, which correspond to dif-
ferent lines, a particular local configuration has been highlighted.

Given the local regularity of aperiodic structures, we immediately wonder
whether this local regularity is the cause of the observed diffraction behaviour.

From the simulation of the Fourier transform for one- and two-dimensional
aperiodic structures, we observe that the local isomorphism is not, in itself,
sufficient to guarantee the condition required for diffraction. This condition
seems to be governed by the properties of the substitution matrix applied
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F >

Fig. 6.17. Prolate (a)
and oblate (b) rhombohe-
dra needed to construct

(a) () a three-dimensional Pen-
rose lattice

in order to achieve the inflation-deflation procedure. For the Penrose tilings,

this matrix is S = (? 1) and guarantees both local isomorphism and non-

periodicity. In actual fact, the ratio between fat and thin rhombi is given by
the golden ratio 7; we define a population vector as (F,, T},), whose compo-
nents are the number of fat and thin rhombi we find in the nth generation
tiling. Since (Fy,Tp) is the population vector for the arbitrarily chosen initial
configuration, then

(FnaTn) = Sn(GO7TO)~ (68)

If we let (Fp,Tp) be a linear combination of the S matrix eigenvectors,
we can then study the trend in the population vectors as S is iterated. The
eigenvectors are proportional to (7,1) and to (—1, 7), whereas the eigenvalues
are 72 and 1/72. The population vector is thus attracted to the eigenvector
with an eigenvalue of 72, since the absolute value for the second possible

5008 B 20089 o Fig. 6.18. Simulated Fourier spectrum
*.. -.‘o'l.- '.-“..,'..-‘ -._'._.‘ ... perpendicular to a fivefold axis for a
@9+ ® 000 -0 three-dimensional Penrose lattice. The

P e e b e dot arrangement in the plane is pen-

tagonal; the distance between adjacent
pairs of dots along each axis scales
with 7
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Fig. 6.19. Electron diffraction pattern
for a fivefold axis of quasicrystalline
AlgsCugoFess; the lines highlight the
pentagonal symmetry (adapted from
[6.3])

eigenvalue is less than unity. It is exactly this Penrose tiling property that
seems to be connected to the fulfilment of the diffraction condition.

The Penrose tilings have also been extended to three-dimensional struc-
tures; in this case the tiles are rhombohedra, respectively prolate and oblate,
as shown in Fig. 6.17. Again, when we carry out a computer simulation of
the Fourier transform for a three-dimensional Penrose tiling, as shown in
Fig. 6.18, it is observed to qualitatively agree with the experimental electron
diffraction patterns obtained from real quasicrystalline materials (Fig. 6.19).

6.4 Model Structures and Crystalline Approximants

When examining diffraction patterns obtained from real quasicrystals we
observe the unambiguous presence of icosahedral symmetry in the reciprocal
space, which lies at the origin of the intense reflections in the direction of the
fivefold, threefold and twofold order rotation axes. The position of the high
intensity diffraction spots observed along the binary axes (with even parity of
the electron scattering pattern), may be obtained by 7 inflation. We can reach
the second spot in a row of spots along a diffraction line by multiplying 7 by
the distance from the initial spot to the centre. For threefold and fivefold axes
(with odd parity), the inflation factor is 73, which reflects the symmetry of
the primitive icosahedron in the reciprocal space. The quasicrystals exhibiting
these features are called simple or primitive icosahedral quasicrystals.

The morphology of the quasicrystalline phase depends on the growth con-
ditions specific to the sample. When the quasicrystals form as a primary phase
from the liquid, they often exhibit a faceted shape, which reveals the related
point group symmetry. In the case of Zn—-Mg—Y, just as for the prototype Al-
Mn, the shape is a pentagonal dodecahedron, as shown in Fig. 6.20, whereas
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the morphology of the Al-Li—Cu alloy (Fig. 6.21) is a triacontahedron and
that of AI-Pd—Mn in Fig. 6.22 is an icosidodecahedron.

Although all the simple quasicrystals exhibit the signature of 73 infla-
tion along the odd parity directions, the details of the diffraction patterns
from these phases, especially the intensities of the spots, differ significantly
from material to material, suggesting that different atomic arrangements are
present.

The inherent incommensurability of the icosahedral phase makes it dif-
ficult to reconstruct both the atomic structure and the scattered intensity
distribution in the reciprocal space starting from a given set of diffraction
data. If we try to index the diffraction patterns using the three Miller indices
(hkl) used for periodic crystalline structures, we obtain irrational indices,
instead of integer indices. Assuming icosahedral symmetry, a good choice to
assign the indices to the diffraction patterns requires using siz linearly in-
dependent basis vectors to explore the whole reciprocal space. These vectors
correspond to the vectors that point out from the centre to the vertices of the
icosahedron inscribed in a six-dimensional hypercube as shown in Fig. 6.23.
Each reciprocal lattice vector k;, and thus in particular each diffraction spot
or peak, is given by six integer indices

ki = k’o (nﬁET + ’/7,2.’13; + ’I’L3$§ + TL4CBZ + 715513; + n(,-mg) (69)

where kg is a constant that fixes the scale for the diffraction pattern. Owing
to the inflation symmetry, we cannot choose a single value for kg a priori,
unlike what we do for periodic crystals where the reference length scale is
given by the length of the unit cell edge. For example, for a cubic crystal, the
(100) reflection is located in correspondence to the wavevector (27 /a) along

Fig. 6.20. Morphology (pentagonal dodecahedron) of a grain of ZnsoMgasYs and
pertinent electron diffraction pattern



6.4 Model Structures and Crystalline Approximants 287

Fig. 6.21. Morphology (rhom-
bic triacontahedron) of a grain of
Alss.4Liss.9Cug.7 and pertinent electron
diffraction pattern

the (h00) axis, where a is the lattice constant of the material. For an ideal
icosahedral quasicrystal, where a is the edge of the hypercube,

27
a =
K3
where } is the unit vector along the hypercube edge.
In the primitive icosahedral systems there are no restrictions to the se-
quence of the indices, namely, each n; can take on any integer, just like the
simple cubic crystals; this structure is known as a simple icosahedral (SI)

quasilattice.

Fig. 6.22. Morphology (icosidodecahedron) of a grain of AlgsPd2sMng



288 6. Quasicrystals

Fig. 6.23. Icosahedron with unit length edges inscribed in a cube; edges A, A,
B,B’, C,C’, are parallel to axes z, x and y of the cube. Coordinates for points
A, A", B,B', C,C" are, respectively, (7,0,+1), (+1,7,0) and (0, %1, 7). The basis
vectors &7, ... ¢g used to index the diffraction spots produced by an icosahedral
structure, by way of n; integers, point out from the centre of the icosahedron to
the six vertices A, A’, B,B’, C,C’

A second kind of quasilattice has also been observed, which, for example, is
associated with the alloys Al-Cu-Fe, AlI-Cu—Ru, Al-Pd-Mn. This is a face-
centred icosahedral (FCI) structure where the indices must have the same
parity, namely the n; must all be even, or odd, just like the indices for the
face-centred cubic crystals.

The reciprocal space for a quasicrystal is dense. Equation (6.9) provides
us with a six-dimensional periodic reciprocal lattice whose Fourier transform
corresponds to a six-dimensional periodic distribution of mass density. This
is not a new description since we currently use higher than three-dimensional
space to analyse incommensurate phases, yet the quasicrystals are three-
dimensional structures. Equation (1.28) holds for a three-dimensional peri-
odic ordinary crystal, and the wavevectors, k, that enter the Fourier expan-
sion of the atomic density o(x) are vectors of the three-dimensional reciprocal
lattice, according to (1.29); thus the atomic density is periodic in three di-
mensions.
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In an icosahedral quasicrystal, the relation between the three-dimensional
physical description of the system and its six-dimensional image is given
by the cut and projection technique. In order to illustrate this relation to
some extent it is worth referring to projections from two dimensions onto
one dimension. This simple model also allows us to describe the structure
of the one-dimensional incommensurate structures experimentally observed
in Al-Cu—Co, Al-Ni-Si and Al-Cu—Mn. These materials with layered struc-
ture exhibit periodicity within each atomic plane. Such planes, in turn, are
stacked in agreement with the Fibonacci aperiodic sequence. The pertinent
crystalline approximants are a series of CsCl-type structures where one of the
two interpenetrating cubic lattices is made of lattice vacancies with repetition
distances along the [111] axes such that they approximate a Fibonacci chain.

System modelling requires generating a one-dimensional aperiodic ar-
rangement of atoms starting from a periodic square lattice, that simulates
the hyperdimensional space. Given a pair of orthogonal axes, X and Y, for
the two-dimensional lattice, we define a second pair, X' and Y, which is

Fig. 6.24. One-dimensional cut {X } through a two-dimensional square lattice.
The atoms as represented by full dots, each with its surface ( *.) in the square lattice
are indicated. Projections into the physical space {X } of atoms within the two-
dimensional strip between {X 1} and the dashed line parallel to it, give a partition
of {Xl} into segments. If angle v between X and {Xl} is such that coty = T,
the sequence of the projected segments, respectively L and B is a Fibonacci chain.
The figure shows, from the origin, the fifth, sixth and seventh generations as well
as the first seven elements of the eighth generation of the chain obtained using the
substitution rule B — L; L — LB (see Fig. 6.10)
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rotated at an angle of « to the reference pair of axes. The physical space we
are interested in is {Xl}, namely the axis X!, as shown in Fig. 6.24.

The atoms on the square lattice are represented by dotted segments with a
fixed length, [, which stand for the atomic “surfaces” with a point-like central
“nucleus”. These segments lie perpendicular to {X 1}. The intersect of each
segment with {X 1} corresponds to the localisation of the point-like atoms in
the physical space {X*}. This is an example of m-dimensional cut through
a periodic n-dimensional lattice, where n is greater than m. In this case, we
make a one-dimensional cut through a two-dimensional periodic lattice. Then
we project the atoms in the strip bounded by the X' axis and by the dashed
straight line parallel to the X! axis (Fig. 6.24), which contains p bases for
the square lattice adjacent to each other. If angle ~y is irrational, then the
sequence of interatomic distances d between points that are projections onto
{X 1} of the atomic positions in the square lattice will also be irrational. In
particular, if cot v = 7, the sequence coincides with a Fibonacci chain with
(L) and (B) elements (segments) respectively.

If we use a graphic representation instead of the above procedure, then
we overlook the details of the atomic basis and define a collection domain.
Looking at Fig. 6.25 we see that all the points of the two-dimensional lattice
in this domain are projected onto the physical space {X 1 } The strip with a
width of F', which is parallel to {X 1}, and thus is rotated at an angle of 7/,
equal to 7, to the reference axes, is the two-dimensional collection domain.
Let us consider a pair of any points with integer coordinates, that belong to
the dashed stairs in Fig. 6.25. For both points, distance d from { X'} is given
by

_ lam — b+ ¢
m2+1

d

where m = tany = 1/X and, in our case, ¢ = 0 since {Xl} intersects the

origin of the coordinate axes. The two points respectively have coordinates
(a,b) and (c,d). So,

dapy = a 2b)\ ; Aty = c 2d)\
A +1 AT +1

Ounly if A is rational, namely if A = (a — ¢)/(b — d), will D(4), which
gives the distance between the projections of the two points onto {X 1}, be
periodic.

Again, we obtain one-dimensional incommensurate structures if cot(vy’) is
an irrational number. The atomic density along {X 1} is obtained from the
projection of the dashed segments, respectively vertical (v) and horizontal
(h), contained in the collection domain. In particular, where cot(y’) = 7, the
atomic density is given by a Fibonacci chain with (L) and (B) interatomic
spacings.
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Fig. 6.25. Alternative construction scheme of a Fibonacci chain. The collection
domain is the strip parallel to {Xl}7 of width @. The atom sites contained in this

domain are projected onto {XI}; we consider the sequence of the segments on
{Xl}7 each resulting from the projection of adjacent atoms. When cot~y = 7, the

projection onto {Xl} of a pair of adjacent atoms lying parallel to X in the square
lattice (h), gives us a segment L; the projection of a pair of atoms parallel to Y (v),
gives a segment B. We generate a Fibonacci chain of L and B segments; the sixth
and seventh generations are shown, as well as the first eleven elements of the eighth
generation of the chain obtained using the substitution rule B — L; L — LB

If we calculate the Fourier transform for the atomic basis, as shown in
Fig. 6.26, and find the intersecting points between the two-dimensional struc-
ture factor and the K axis, which is the reciprocal space for physical space
X', we obtain the diffraction pattern produced by the chain under examina-
tion. The intersecting points are given by the vectors of the reciprocal lattice,
k'. The Fourier transform of the basis, or of the collection domain, produces
a set of delta functions along {K 1} in coincidence with specific values for
k'. The intensity of the delta functions is proportional to the square of the
amplitude of the transform at the intersection point on the reciprocal space

{5}
I = [sin(kla)/k:lan]2 (6.11)

where a is the interatomic spacing for the two-dimensional lattice.
Let us suppose that the angle v = cot () between axis X of the two-
dimensional lattice and the rotated axis {X 1} is only slightly different from
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Fig. 6.26. Schematic view of the Fourier transform of the Fibonacci chain in
Fig. 6.24. On the sites of a square two-dimensional lattice, reciprocal to the lattice
in Fig. 6.24, we arrange the Fourier transform either of the atomic surfaces in
Fig. 6.24 or of the collection domain in Fig. 6.25

angle v/ = cot~%(3/2), which gives us the orientation of the collection do-
main. When we project the points contained in the new collection domain
onto {X 1} the resulting structure is a periodic sequence of the very same
segments in the Fibonacci chain, with repetition distance, namely unit cell,
(BLBLL). This structure, which is shown in Fig. 6.27 is called a rational
approximant. The example refers to the rational approximant 3/2 of the Fi-
bonacci chain. This approximant schematically explains the relation between
crystalline approximants and quasicrystals.

We can build periodic approximants of the Fibonacci chain with ever
greater unit cell sizes. All we have to do is give cot(v’) the value of a rational
approximant (n,4+1/n,) of 7.

Structure shifts along {X 1} correspond to translations in the physical
space. If we distort the unit cell, thus changing its size, we simulate deforma-
tion; as a consequence, the diffraction peaks broaden more and more as k'
increase.

If we cause a rigid translation of {X'} in direction Y, we obtain, once
again, a Fibonacci chain where the arrangement of the L and B segments has
changed. The diffraction pattern does not change, since the translation shifts
the view-point of the structure some distance along {X 1}. This is a phase
shift of the density waves, which is expected in incommensurate structures,
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Fig. 6.27. Similar construction to Fig. 6.25, for the rational approximant (3/2)
of the Fibonacci chain. The collection domain lies at an angle 4’(arctany’ = 3/2)
to {Xl}, slightly different to y(arctany = 7). The distances on {Xl} between
projections of adjacent atoms within the collection domain give a periodic sequence
with unit cell (BLBLL)

but not in periodic systems. The shifts along Y! axis are associated with
additional degrees of freedom; these collective modes are called phasons.

We can force the slope of the collection domain to fluctuate about an
average value of 771 as shown in Fig. 6.28. These fluctuations are small am-
plitude and we obtain, again, a Fibonacci chain where defects are observed
locally. In the pertinent diffraction pattern we still find Bragg spots at the
same positions as for the ideal F™ chain, but a degree of diffuse scatter-
ing arises from these defects. This kind of structure lies at the roots of the
quasicrystal models based on so-called random tilings.

We can also artificially corrugate the collection domain. In this case, we
can immediately imagine that there is much more disorder inherent in the
structure, as clarified by Fig. 6.29. Indeed, the forced fluctuations are un-
bounded; on the contrary, they grow along with {X 1} values and can even
give rise to random sequences of interatomic L and B distances. This kind
of structural model for the quasicrystalline alloys is called icosahedral glass,
and the kind of disorder we have introduced is called phason strain. The sim-
ulated diffraction patterns again exhibit rather narrow peaks whose shape,
width and position depend on the specific features of the fluctuations.

From the experimental point of view, phason strain was observed in all the
systems studied before 1988, and synthesised using rapid quenching methods,
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Y

Fig. 6.28. The dashed curve is the collection domain whose slope varies with the
amplitude of the bounded fluctuations about 7~ ': we introduce local defects into
the Fibonacci chain, obtaining a model of random tiling

whereas it is absent in the so-called equilibrium quasicrystals with a high
degree of structural perfection. Phason strain is associated with shifts in the
experimental diffraction spots, or with spot broadening. It does not depend
on k', and it increases with the phason momentum, k.

The close relationship between approximant periodic crystalline struc-
tures and quasicrystalline structures allows us to apply the cut and projection
technique even to three-dimensional systems. The purely quasiperiodic three-
dimensional quasicrystal is considered a section through the six-dimensional
periodic space, where a primitive hypercubic lattice is defined. Using the pro-
jection operation we can define the quasilattice constant for the quasicrystal.
The link between such a constant and the diffraction pattern is not, however,
as clear as it is for periodic crystals.

When we project a vector of the six-dimensional reciprocal space onto the
real three-dimensional space, R, with icosahedral symmetry, we obtain

r=(2r/a;) P anscf (6.12)

where P is the projection operator, as given by the matrix of rank three
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Fig. 6.29. Collection domain whose slope varies limitless: in the example, the
amplitude of slope fluctuations increases with {X 1 } We introduce strong disorder
into the Fibonacci chain. Model of quasicrystal with phason disorder, or icosahedral
glass

1
A 1
pP=1/Vv2 L 11 VB -1 (6.13)
1
1

From (6.12), the basis vectors &} in (6.9) may be rewritten in the three-
dimensional space. If we choose a cubic coordinate system, based on three
orthogonal binary rotation axes of the icosahedron as in Fig. 6.23, the vectors
xf are given by (£1,47,0) and their permutations, where 7 is the golden
ratio. All the k; vectors have cubic coordinates (h+h'7, k+k'7,1+1'T) where
h,h' k, k' ,I' are integers.

Once we define the projection of the hypercube edge as the quasilattice
constant, ay,, we obtain

a, =a/Vv2. (6.14)

If we look at the value of the quasilattice constant for all known quasicrys-
tals, the quasicrystals can be divided into two groups: for the Al-transition
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metal alloys ag, ~ 0.46 nm, whereas for the quasicrystals obtained from Al-
Mg—7Zn and from Al-Li-Cu, a4, ~ 0.52 nm. When we normalise to the atomic
diameters of the alloy constituents the values are about 1.65-1.75 and about
2.00 respectively for the two groups.

The relative intensities of the spots in the diffraction patterns are caused
by the atomic arrangements, which are repeated in the quasilattice; these in-
tensities reflect the differences between the two groups of quasicrystals. With
reference to the crystalline approximant structures, two distinct geometric
structures have been identified in the arrangements of the atomic clusters
forming the basic atomic motifs. These clusters are the Mackay icosahedron
for the Al-transition metal group of alloys shown in Fig. 6.30 and the Pauling
triacontahedron for the Al-Mg-Zn group displayed in Fig. 6.31. Both clusters
contain three different atomic shells, each with icosahedral symmetry.

Modelling the atomic structure of icosahedral quasicrystals is based on
these elementary structures which allow us to computer simulate the diffrac-
tion patterns, thus very closely reproducing the intensity differences in the
experimental diffraction patterns.

Despite the above results, no quasicrystal structure is presently under-
stood with the degree of accuracy and completeness we have reached in the
analysis of crystalline structures. However, we expect considerable advances
in this field from the study of the recently discovered stable binary quasicrys-
talline alloys, such as CdgsYbys. Indeed, in a systematic exploration of the
Cd-Yb phase diagram, icosahedral CdgsYb;5 was found; this phase congru-
ently melts at 909 K. The obtained single crystals have a big orthogonal unit
cell and selected-area electron diffraction patterns show that their lattice is
icosahedral, primitive. The phase is found both in the solidified and in the
fully annealed state, thus it is thermodynamically stable. The reason why no
other rare earth forms stable quasicrystals with Cd lies in the combination
of Yb size and valency. Yb can be divalent (radius 0.194 nm) and trivalent

Fig. 6.30. Construction of a Mackay
icosahedron cluster for AlgsMnisg;
open dots: Al; full dots: Mn (adapted
from [6.4])
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Fig. 6.31. Construction of a Pauling tri-
acontahedron cluster (see Fig. 6.21) for
Mgso.5(Al,Zn)go.5; open dots: Mg; full dots:
Al, or Zn (external); dashed dots: Al, or Zn

(inner)

: Mg
C Al Zn external
= LAl Zn internal

(radius 0.174 nm). It is divalent YDb to form the quasicrystal; the only other
divalent and trivalent rare earth is Eu (radius of divalent Eu, 0.204 nm) that
does not form any binary quasicrystal with cadmium. As the radii of most
rare earths lie in the range 0.175-0.185 nm, a condition to obtain a binary
quasicrystal with Cd is that the radius of the partner lies between 0.185 and
0.204 nm. Indeed, calcium, though not a rare earth, fulfils this condition and
it has been found to form stable binary quasicrystals with Cd.

The crystalline approximant of CdgsYbys is the cubic phase Cdgs.7Yb14.3
(space group Im3) with lattice parameter a = 1.564 nm. This structure is
modelled by packing into a bcc skeleton clusters whose atomic shells have
icosahedral symmetry. Unlike the above discussed Mackay icosahedron and
Pauling triacontahedron, four atoms, arranged in a tetrahedron at the centre
of each cluster, break the icosahedral symmetry, as shown in Fig. 6.32.

In an energetic picture, a stable quasicrystal corresponds, like an ordinary
crystal, to a symmetric atom arrangement associated to the lowest energy.
The role of the tetrahedron is to provide the asymmetry required by energy
stabilisation. Here the structurally simple quasi-unit cell, through spatial
repetition according to local matching rules, realises the lowest energy state
that coincides with the highest packing density.

Alternatively to the energy picture, the presence of the tetrahedron sup-
ports the idea that quasicrystals are entropy-stabilised. Here the advantage
with respect to the energy picture and the associated strict matching rules be-
tween elementary structural units is that in the entropic framework the exact
tetrahedron orientation is irrelevant when modelling quasicrystal structure
because all orientations are equivalent.

Also, the observation that CdgsYbis is a congruent melter supports the
entropy picture. Indeed, when cooling down the high temperature liquid
CdYDh, the first phase that forms is the quasicrystal, which can be in equi-
librium with the melt; this indicates that the entropies of the two phases are
comparable. Formation of the crystalline approximant requires a solid state
reaction at a lower temperature, involving the quasicrystal and the other
crystal phase.

Besides CdYb, an icosahedral phase has been found to form as a primary
precipitation phase in the crystallisation process of the binary amorphous
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Fig. 6.32. Construction of
the 66-atom icosahedral clus-
ter in the quasicrystalline
CdssYbis alloy. The first
shell is a tetrahedron of Cd
atoms around the cluster
centre. The second shell is a
Cd dodecahedron (20 atoms).
The third shell is an icosa-
hedron of 12 Yb atoms. The
fourth shell is a Cd icosi-
dodecahedron, obtained by
putting 30 Cd atoms on the
edges of the Yb icosahedron
(adapted from [6.5])

Zr7oPd3g alloy. Although the icosahedral phase is metastable and converts
to an equilibrium crystalline phase upon annealing, its discovery has made it
possible to predict the existence of several binary icosahedral alloys in other
systems.

6.5 Structural Properties and Stability
of Real Quasicrystals

The basic question about what governs the formation and the stability of
quasicrystals, together with the related issue whether quasicrystals are a
ground state of matter, being thermodynamically stable at 0 K, or they
are entropy stabilised high temperature phases, need careful structural anal-
yses. Presently only very few quantitative X-ray and neutron diffraction
experiments are available, the most complete concerning quasicrystalline
A170.6006.7Ni22.7, Al70Mn17Pd13 and AAx1701\/IIll()PdQO7 besides the crystalline
approximants R-AlLiCu, 2/1 AIMnPd and 1/1 AlCuFe. Although these stud-
ies are based on the analysis of a conspicuous number of Bragg reflections
(several hundreds to few thousands), much larger data sets would be needed
to go beyond rough short range order models. Indeed, the number of ob-
servable reflections from a periodic crystal is n = (27V,)(3d3)), with V. unit
cell volume and d,;, = A(2sentax), A being the radiation wavelength. The n
value for a high-order crystalline approximant gives an estimate of the cor-
responding n value for the related quasicrystal. Still, even if such a data set
were readily available, it would permit a structure determination at a scale
comparable to the unit cell size of the approximant, while the relevant infor-
mation on the kind of quasiperiodic long range order is associated to very
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Fig. 6.33. (a)Quasiperiodic arrangement of pentagons connected together by the
edges using local matching rules: the result is a Penrose tiling. (b) Random arrange-
ment of pentagons connected together by their edges. A two-dimensional version of
the icosahedral glass is obtained

weak reflections with large perpendicular-space components of the diffrac-
tion vectors. In terms of rational approximants, the corresponding lattice
parameters would span the micrometer range and billions of Bragg reflec-
tions should be taken into account. As a matter of fact, the number of Bragg
reflections observed in quasicrystals is often not significantly larger than in
their low-order crystalline approximants. This implies a consistent deviation
from perfect quasiperiodic order and makes impossible an accurate structure
determination by diffraction techniques. Alternatively, electron microscopy
offers excellent pictures of the local projected structure of quasicrystals that,
particularly in the case of decagonal systems, significantly contribute to struc-
ture modelling. Here the limitation is that averages over thirty to fifty atomic
layers are unavoidable, besides a limited chemical resolution, namely Z con-
trast.

We can often understand the features of the real quasicrystalline systems
synthesised using non-equilibrium methods in terms of the icosahedral glass
model. From a pictorial point of view, in two dimensions the difference be-
tween the computer simulated structures using a quasiperiodic model and
using an icosahedral glass, shown in Fig. 6.33, is clear. In part (a) of the
figure, the tiling with pentagons connected to each other through their edges
using Penrose matching rules completely and aperiodically covers the plane;
in part (b), the same pentagons are randomly connected together through
their edges; the inherent disorder is considerable, as evidenced by several
large voids.

When we extend the icosahedral glass (part (b) of Fig. 6.33) into three
dimensions, we obtain a system with atomic clusters where each cluster has
icosahedral symmetry. The clusters are reciprocally connected in such a way
to exhibit the same orientation, yet there is a certain degree of randomness
in the way the clusters are interconnected. From Fig. 6.34 it is evident that
cluster growth is governed by purely local rules, thus avoiding the formation
of quasiperiodic patterns in the resulting structure. From the semantic point
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of view, this is not a glassy system, in the strict sense of the term, since
we observe long range orientational order; yet, a high degree of disorder is
intrinsic to the structure of this model system.

The development of the icosahedral glass model matches the observations
of finite peak widths in the high resolution X-ray diffraction patterns for
Al-Mn; from these patterns the coherence length for the samples is around
30 nm, even though icosahedral orientational order extends over much longer
distances. Thus, these quasicrystalline systems exhibit icosahedral orienta-
tional correlations that extend over much greater distances than the transla-
tional correlation length, analogous to the liquid crystals.

Even the crystalline approximant phases, where a—AlMnSi, Al;sMo and
R—AILiCu are prototypes, are formed by clusters of atoms with a substan-
tially icosahedral shape all packed together in a body-centred cubic lattice,
exemplified in Fig. 6.35. For the approximants, the size of the atomic clus-
ters required to obtain agreement between the random packing model and
the experimental data is just the cluster size in the crystalline phase. This
result suggests that the unit cells in the crystalline and icosahedral phases
are identical.

It is tempting to represent the growth process of a quasicrystal using
a very simple scheme. When the liquid alloy is cooled, stable icosahedral
clusters form. If the material is further cooled slowly enough, the clusters
will grow and form a periodic crystalline arrangement of clusters arranged in
a bece lattice with coordination eight. If, though, the cooling conditions are off-
equilibrium, each cluster will coordinate with a lower number of neighbours;
consequently, interconnection defects form in a quasiperiodic structure.

Fig. 6.34. Icosahedra connected
together along the threefold axes
form the basic structural element
of the three-dimensional icosahe-
dral glass model
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Fig. 6.35. X-ray diffraction pattern from Al;sMo crystalline approximant. The
structure is made of a bce lattice of Mo atoms (full dots), each located in the
centre of an icosahedron of Al atoms (open dots) interconnected through octahedra.
(adapted from [6.6])

This conceptual scheme is quite realistic for those systems prepared with
non-equilibrium techniques; however, some experimental results are incom-
patible with such a picture. Indeed, quasicrystalline alloys have been obtained
by solid state diffusion reactions, where the icosahedral phase nucleates in
the absence of a pre-existing liquid, or amorphous phase with its associated
short range order. Moreover, systems have been observed where the icosahe-
dral phase is a stable equilibrium phase, such as AlLiCu, AlCuFe and TiZrNi.
In particular, as regards the TiZrNi system, the alloy TissZrsgNiy7, obtained
by cooling down the melt, includes the Laves hexagonal C14 phase and a
solid solution «; after annealing in vacuum at 843 K for 64 hours, the ma-
terial exhibits one single stable phase with Tigy 57r41.5Nij7 composition and
primitive icosahedral structure similar to AlLiCu.

One important feature of the icosahedral glass model is given by the
predicted dependence of the broadening of the simulated diffraction peaks
on the phason momentum ‘kl’ In the first models this dependence was
more than linear, which gave rise to much broader diffraction peaks than
those experimentally observed at high |k:J-| values. However, when structural
rearrangement is introduced into the model by slightly heating the system,
it improves the agreement with the experimental results. This indicates that
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the widths of the diffraction peaks are approximately linearly dependent on
the phason momentum.

Although the icosahedral glass model for quasicrystalline systems allows
quite a considerable degree of disorder in the structure, it does offer us a
simple representation of the structure with a good qualitative reproduction
of the features of the diffraction patterns. This suggests that a real icosahe-
dral structure is probably midway between the extremes of a purely random
model and the almost perfect periodic order associated with the Penrose
tiling.

The relation between quasicrystalline and amorphous phases, including
the transformation path in either direction, has drawn attention since the be-
ginning of quasicrystal story. It was soon demonstrated that the same icosa-
hedral structural units are exhibited in liquid, amorphous and quasicrystalline
systems; these very same units are found also in the crystalline approximants.
Ordinary metallic glasses cannot be transformed into quasicrystals; thus, we
wonder if the local order in the amorphous materials from which we can syn-
thesise quasicrystals, which we call qc. amorphous, already includes some of
the typical features that favour the establishment of long range orientational
order during the transition from the metallic glass to the quasicrystal. We
now discuss some features of the amorphous < quasicrystal transformation
(AQT) in a few selected alloys.

In Fig. 6.36 the static structure factor for the qc. amorphous AlggMngq is
compared with that of the metallic glass CoggP2g. We notice that both exhibit
a pre-peak, a main peak at k; ~ 30 nm~! and a second peak. The main peak
in Alg4Mn;g is caused by the broadening and overlapping of the contributions
from the most intense lines in the quasicrystalline diffraction pattern. Once
peak positions are normalised to the position of kq, the position of the second
peak of AlggsMnyg is given by ro = (ko/k1) ~ 1.66, whereas for CoggPo it is
given by o ~ 1.72. The value for AlggsMn;q is typical of other qc. amorphous
system, such as Alg, V16 and Al;gFe 3Si7, whereas the position of the second
peak in other ordinary metallic glasses, such as PdggSiag and FegyBog lies in
the interval 7o = 1.70 — 1.75. The difference is quite meaningful.

The simulation of chemical medium range order between like atoms does
not affect the position of the peaks, even though such ordering does produce
an increase in the intensity of some peaks, in particular in the pre-peak at
ro = (ko/kl) = 0.55.

Now, the general features of the diffraction pattern generated by an amor-
phous structure depend on the contributions arising from first, second and,
at the most, third neighbour correlations (see Sect. 4.3); thus, 7o is presum-
ably given by small scale topological features, including a few atoms. The
simulation of the trend in the structure factor &(k) for three different clus-
ters, where each cluster is formed by thirteen atoms, is given in Fig. 6.37.
In the first case, the atoms form an ideal icosahedron with twelve spheres at
the vertices in rigid contact with each other and with the thirteenth atom,
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Fig. 6.36. Comparison between
experimental structure factors
S(kn/k1). —: &(kpn/k1) for amor-
phous AlgsMnig; k1 is the position of
the principal peak of G(k), taken as
the unit wavevector. —-—: & (k, /k1)
for amorphous CogoP20 (adapted
from [6.7])

5% smaller, in the central position (ro = 1.65). The second structure is a
distorted icosahedron formed by like atoms (ro = 1.72). Lastly, an fcc cluster
of identical atoms is simulated (ry =
icosahedral arrangements match the experimental results for AlggsMn;g and
for CogpP2g, thus suggesting that regular icosahedra are contained in the qc.

amorphous alloys.

1.84). The values for ro for the two

Although the non-relaxed icosahedral glass model cannot correctly re-
produce the width of the diffraction peaks observed in real quasicrystals, it
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Fig. 6.37. G&(kn/k1) calculated
for thirteen-atom clusters with vari-
ous geometries... : ideal icosahedron,
where the central atom is 5% smaller
than the surface atoms; — - — - —
distorted icosahedron, obtained us-
ing the dense, random packing of
hard spheres model; —: fcc packing
(adapted from [6.7])
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remains a valid tool in the search for mutual correlations between amorphous
and quasicrystalline structures. One specific X-ray diffraction investigation
has been performed on the Al;5Cuy5V1g, Als3sMnggSisy and Algs CuggFers al-
loys; the starting materials were amorphous materials and they were annealed
to grow the icosahedral phase (i).

Compared to i-AlCuFe, the patterns for the first two alloys exhibit fewer,
considerably broader peaks that do not change under further heat treatment.
The correlation length, estimated by the peak width, is around 30 nm both for
i-AlCuV, and for -AIMnSi. Whereas we do not observe any relation between
the phason momentum ’kL‘ and the diffraction peak width for i-AlCuFe, we
do notice progressive peak broadening as a function of ‘kl] for i-AlCuV and
i-AlMnSi. The dependence is nearly linear, in agreement with the predictions
of the structural model of a partially relaxed icosahedral glass.
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Fig. 6.38. High resolution electron microscopy image of quasicrystalline
Al75Cui5Vio. The incident beam is kept parallel to a fivefold axis of the system. The
fringes are attributed to reciprocally incongruent spatial arrangements in various
directions (adapted from [6.8])
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After keeping the glassy phase at high temperature (693 K) for an hour,
high resolution electron microscopy, keeping the beam parallel to a fivefold
axis of the -AlCuV sample, provides us with an image that highlights de-
fective areas in the grown quasicrystalline structure, as shown in Fig. 6.38.
In particular, the exhibited fringes are an index of incongruity between the
spatial order that develops along different directions and reflect a random
distribution of phason disorder. The simulation of the image lattice, which
produces the fringes in Fig. 6.38, produces a structure formed by pentagons
connected together at their edges in a random fashion. Some elementary
structures we typically find in Penrose tilings (“diamond” and “boat”) ap-
pear with unusual frequency. However, this kind of tiling is specifically charac-
terised by, above all, defects, that are highlighted in black in Fig. 6.39; this is
a typical feature of the icosahedral glass model. Thus, in real quasicrystalline
alloys, obtained in non-equilibrium conditions, the presence of structural de-
fects can be represented by a icosahedral glass model, possibly relaxed. This
is true also of quasicrystals grown from a non-equilibrium system, such as an
amorphous phase.

The precipitation of an icosahedral quasicrystalline phase upon annealing
of an amorphous phase was thoroughly investigated in a few Zr-based bulk
metallic glasses (see Sect. 3.3), characterised by excellent glass forming ability
and correspondingly low cooling rates from the melt. In these studies atten-
tion is focussed both on the details of structure evolution, mainly investigated
with high-resolution transmission electron microscopy (HRTEM) and on com-
positional changes at the nanometer scale, besides the traditional calorimetric

Fig. 6.39. Simulation of the image
lattice that produces the structure
in Fig. 6.38. The simulation is ob-
tained using pentagons connected to-
gether by their edges in a random
way, resulting in an icosahedral glass
(adapted from [6.8])
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analyses. The amorphous-quasicrystal transformation (AQT) usually occurs
in the initial stage of crystallisation and it sensitively depends on the oxy-
gen content, on the cooling rate adopted to prepare the metallic glass and
on alloy composition. The transformation is favoured when noble and refrac-
tory metals are added to the system. While it is currently believed that the
AQT proceeds via the usual nucleation and growth mechanism, it is unclear
whether the transformation should be considered polymorphous, thus with-
out long-range diffusion, or not. Part of these questions were addressed in
a HRTEM study of the processes occurring in ZrgsNijgCur 5Aly 5Ag19 bulk
metallic glass, annealed at different, controlled temperatures chosen from the
differential scanning calorimetry profile of the alloy. The amorphous mate-
rial undergoes several intermediate processes and follows the transformation
sequence amorphous — fcc ZragNi — tetragonal ZroNi — tetragonal ZroNi
with a domain structure — quasicrystal. The domain structure identified by
HRTEM has a high density of stacking faults with structural symmetries sim-
ilar to those of icosahedral quasicrystals. Nano-beam energy dispersive X-ray
spectroscopy shows that atomic diffusion occurs during all steps of the trans-
formation sequence; thus the studied reaction is non-polymorphous. When
heated at high temperature, bulk amorphous Zrs; 2Tii13.8Cuis.5NijgBess s
(vitalloy VIT 1; see Sect. 3.3) undergoes decomposition of the amorphous
matrix before crystallisation. On the contrary, the compositionally similar
ZI‘46.75Ti8A25CU7_5N110B827.5 (vitalloy VIT 4) directly crystallises. TEM, as-
sociated with chemical analysis at the nanometer scale, show that in VIT 1
alloy the amorphous matrix decomposes in two matrices, in turn amorphous.
Crystallisation starts from the matrix enriched in titanium and nickel, result-
ing in an fcc phase. The second matrix is rich in beryllium and zirconium and
it crystallises in a second stage. As to VIT 4, isochronal treatments lead to the
formation of nanometer-sized ZrBes particles with hexagonal shape, besides
spherical nanoparticles of quasicrystalline Zrg3Ti14.4Nij2.4Cuig.o. These are
likely to be formed by a nucleation and growth process associated to long-
range diffusion of beryllium.

A nanoquasicrystalline (NQC) phase is interesting in view of technological
applications and the conditions under which such a nanostructure can result
were rationalised starting from an analysis of binary ZrPd and ZrPt alloys.
In both alloys, provided the composition is the eutectic one (Zr75Pdgs and
ZrgoPtog, respectively) a NQC phase is obtained directly on cooling down
the liquid during melt spinning at speeds lower than the critical one to ob-
tain an amorphous phase. Both systems have a large, negative enthalpy of
mixing AH,, corresponding to the presence of deep eutectics that are known
to stabilise metallic glasses. Stabilisation of the liquid state at the eutectic
composition is expected to stabilise icosahedral clusters and confirms that the
same type of short range order is shared by liquid, amorphous and nanoqua-
sicrystalline phases. When alloy composition is non-eutectic, an amorphous-
quasicrystal transformation occurs during crystallisation of the metallic glass.
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In multi-constituent alloys kinetics can hinder the direct formation of a NQC
phase from the liquid, as long-range atomic diffusion is needed, while the
solidification time scale could be too brief. An example of a ternary alloy
where a NQC phase results on cooling down the liquid is Tiz7ZrssNis;. Dur-
ing free radiative cooling of the electrostatically levitated undercooled liquid,
a temperature increase associated to the release of the melting enthalpy is
observed at 973 K, corresponding to the nucleation and growth of the icosahe-
dral phase, provided the samples are small enough. The presence of extended
icosahedral order in the liquid is confirmed by the observed shoulder on the
high wavevector side of the second peak in the measured static structure
factor (see Sects. 4.9 and 5.3). When kinetic constraints inhibit direct for-
mation of a NQC phase, icosahedral clusters can nucleate in the glass and
grow to a nanoquasicrystal during annealing of the bulk metallic glass, as
we already discussed. In alloys with small, negative AH,,, if a crystalline
approximant of the Frank-Kasper type (see Sect. 4.7) exists, then a NQC
phase either directly forms on cooling down the liquid, or on annealing the
amorphous phase; the specific formation path depends on kinetics, thus on
the cooling rate adopted during solidification of the melt. The experimental
observation that NQC phases do not form in many systems of this family
indicates that presumably in the liquid phase of such alloys the density of
icosahedral clusters is relatively low.

Though most experimental efforts to understand the atomic structure of
quasicrystals were focused on reciprocal space studies, imaging techniques
such as scanning tunnelling microscopy (STM) have been used to observe
the real space structure of quasicrystals. STM provides high quality surface
images and we have strong indications that quasicrystal surfaces well reflect
the structural order of the bulk. Thus the technique is valuable to mitigate
the inherent difficulties of diffraction methods. A representative example is
the study of the fivefold surface in the prototypical AlggPds3Mng icosahedral
quasicrystal.

The STM images exhibit atomically flat terraces that are much like
the terraces of ordinary periodic crystals. However, the step heights be-
tween terraces exhibit only two incommensurable values, L = 0.678 nm and
B = 0.422 nm; the L/B ratio is 1.61, very close to the golden ratio 7. The flat
terraces are separated by steps in the sequence LLBLLBLBLL, which is part
of the seventh generation of the Fibonacci chain F*, BLLBLLBLBLLBL,
obtained iteratively by the substitution rule B — L, L — BL. These ob-
servations do indeed confirm the theoretical prediction that any icosahedral
quasicrystal will exhibit a finely faceted surface with flat terraces perpendic-
ular to a fivefold axis of the quasicrystal. The terraces are separated from
each other by steps with only two possible different heights, where the ratio
between the higher and lower step height is 7, and the step sequence makes
a Fibonacci chain.
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The experimental proof that the normals to the terrace surfaces are par-
allel to a fivefold axis of the quasicrystal is given by the terrace shown in
Fig. 6.40 observed using high resolution STM. We notice a highly regular
distribution of pentagonal-shaped “holes” with the same size and orientation
along the whole terrace; these holes give rise to a set of parallel lines of holes.

The distribution of these pentagonal objects reflects the quasicrystalline
nature of the samples. If we draw a set of lines that form a grid parallel to
the pentagon sides we observe only two possible distances between pairs of
these lines, L = 1.181 nm and B = 0.738 nm; the ratio between them is very
close to 7 and their spatial sequence reproduces a Fibonacci chain.

The morphological features of a threefold surface of an icosahedral AIPdMn
alloy are similar to those of a fivefold surface; again, a terrace-step configu-

Fig. 6.40. High resolution STM image of a fivefold surface of quasicrystalline
AlgsPd23Mng; symmetry elements with fivefold order are highlighted. A pentagon-
shaped star is shown by the arrow. The separations between the dotted lines aligned
with the edges of pentagonal spots constitute a non-periodic sequence, with alter-
nating L and B distances that reproduce part of the Fibonacci chain. L = 1.18 nm;
B = 0.738 nm; the ratio (L/B) is almost equal to the golden ratio 7 (adapted
from [6.9])
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ration is found. Each terrace displays a fine structure with long range order
compatible with the threefold symmetry. This fine structure is rougher than
that observed in fivefold surfaces, and we find holes of typical depth in the
tenth of a nanometer range. As to the steps, they can be straight and they
bound triangles, or portions of triangles, whose edges are invariably parallel.

When studying the quasicrystalline systems we obviously want to know
what mechanisms give the quasicrystals their considerable structural stability.

The specific features of the diffraction patterns obtained from quasicrys-
tals prove the existence of fivefold orientational order and a dense distribution
of diffraction spots, or peaks. Each of these peaks is very narrow, being delta-
like in samples prepared using equilibrium methods where the phason disorder
is strongly limited. This feature suggests that the electrons in quasicrystals
undergo strong diffusion throughout the entire reciprocal space.

The electrical resistivity typical of these structures is very high; in the ex-
treme cases of icosahedral samples of AIPdRe with high structural perfection,
at low temperature, (below 1 K), the resistivity is around 3042 cm, thus being
9-10 orders of magnitude greater than in pure aluminium. Resistivity grows
as the temperature rises until, at room temperature, it is about 200 times the
value at 4 K. The result is anomalous if compared to the ordinary metals,
insulators and semiconductors. This kind of behaviour can be associated with
the packing hierarchy for icosahedral clusters and with the intensity of the
Coulomb interaction, that give rise to repeated localisation of the binding
electrons. As a result, a significant electron-quasilattice interaction occurs
indicating that the cohesive mechanism in quasicrystals is electronic.

In the same sense, we have to interpret the measurements of electronic
specific heat coefficient, 7., which give us an estimate for the density of
the electronic states around the Fermi level. The rather small values (0.1-
0.3 mJ K~2mol™!), measured for all stable quasicrystals, lie between thirty
and ten percent of the value for the free electron model. It is likely that
in these systems a mechanism exists that opens up a gap in the electronic
density of states at the Fermi level.

A direct observation of the pseudo-gap was made by X-ray absorption
and valence band photoelectron spectroscopy (PES), investigating the details
of the electronic structure of both occupied and empty valence states in i-
Al;oPdss 5Rer 5. Using differently annealed samples a broad range of values,
between 8.3 and 107, of the ratio r of the electrical resistivity at 4.2 K to that
at 300 K was explored. XANES spectra (see Sect. 4.4) taken at Al K-edge and
at Pd Lz-edge show that the electronic density of states N (F) near and above
the Fermi level Er jumps to a larger value when r decreases below about 20.6.
The valence band photoelectron spectra show a strong reduction of N(E)
near Er in the quasicrystal, relative to that of pure metal, confirming that in
the former a pseudo-gap has opened up. Besides this, PES spectrum shows a
sharp cut-off, typical of a metal, at Er in a quasicrystal with r = 8.3, while
in samples with larger r values the corresponding spectra decrease smoothly
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to zero at Ey, a characteristic feature of insulators. Taken together, these
results mean that a metal-insulator transition takes place in this alloy.

The existence of localised versus extended electron states in quasicrystals,
corresponding respectively to a discrete, or continuous, eigenvalue spectrum,
has not been clarified completely. The problem has been investigated by an-
gle resolved photoemission in the decagonal quasicrystal Alyy gNijg gCo13.4.
Here crystalline order exists along the tenfold axis, while the planes with
tenfold symmetry, lying parallel to the sample surface and normal to the ten-
fold axis, show quasi-periodicity. Both emission angles and kinetic energies
(i.e. momenta k) of valence electrons scattered by soft X-rays from the near
surface regions were measured. Looking at the behaviour of electrons in the
decagonal planes, the effect of quasicrystallinity was tested, while looking at
normal incidence to the planes the effect of crystalline order was assessed.

Both s — p and d states exhibit band-like behaviour, with the symmetry
of the quasiperiodic lattice, as determined by low energy electron diffraction.
Moreover, the Fermi level is crossed by dispersive d bands, similarly to what is
observed in ordinary crystals. The measured broad bandwidths and effective
masses are comparable to those of free electrons suggesting that at least some
states, both within and out of the quasicrystalline planes, are extended in real
space. However, the weakness of the observed features, from both s — p and
d states, is probably due to the damping of such states, which is typical of
localisation.

Indeed, quasicrystals could have critical states, with a power-law decay
of their amplitudes (in amorphous metals the decay is exponential). Such
states should be localised to a cluster of size R, which can resonantly tunnel
to locally isomorphous clusters, within a 2R distance (see Sect. 6.3). Thus
the properties of critical eigenstates could depend on a dispersion relation
determined by the potential profile that results from the local environment,
with strongly dampened amplitudes.

Among ordinary metallic crystalline materials the electron phases are
alloys whose crystalline structure changes at specific values for the average
number of valence electrons per atom, (Z). In the framework of the nearly
free electron (NFE) model, the compositional limits for the various electron
phases are determined by the condition of geometrical contact between the
Fermi surface and the first Brillouin zone.

We can assume that the stability of quasicrystals is also attributable to an
analogous mechanism, and apply the NFE model to quasicrystalline alloys.
From an analysis of the X-ray, or neutron, diffraction patterns and supposing
that the Fermi surface and the pseudo-Brillouin zone have spherical symme-
try, we obtain

1 [2m)* /2] (2)

3TFF.NFE = “@3) Ay (6.15)
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Fig. 6.41. Relation between experimental values of the Fermi wavevector, kr and
values calculated with the nearly free electron (NFE) model, krnre. Dots and
squares refer to alloys of the Al-transition metal family and Ga-Mg—Zn family,
respectively (adapted from [6.10])

The volume of the Fermi surface is given by the ratio between the volume
of the occupied electronic states and the volume of the pseudo-Brillouin zone;
(ry is the average atomic radius of the alloy, thus for a A;_,B, system,
(ry =ra(1 — )+ rgx and 7 is the packing efficiency, namely 0.688 for ideal
icosahedral packing.

The Fermi wavevector values calculated with the NFE model, kr nFE,
can be plotted against kp values deduced from the position of the most in-
tense peak in the experimental diffraction pattern. For a meaningful set of
quasicrystalline alloys, both icosahedral and decagonal, we observe the linear
relationship shown in Fig. 6.41.

This allows us to extend the sequence of electron phases so that they
also encompass the quasicrystals. The peculiar quasicrystalline structure is
bounded by an average lower (Z) value of 1.45 and an upper value of 2.6. Ta-
ble 6.1 gives the structure, the average concentration of valence electrons per
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atom, (Z), and the upper (Z) limit for the electron phase sequence including
crystalline, quasicrystalline and glassy states.

It is significant that the values for the parameter (Z) associated with var-
ious crystalline phases, quasicrystalline phases and the glassy phase, make up
a hierarchy. The stability of quasicrystals in terms of their behaviour as elec-
tron phases was tested on a sufficiently large set of alloys and it was confirmed
that the most relevant quantity related to the stability of quasicrystalline
phases is the average number of valence electrons per atom (Z). Further,
high stability is observed when the atomic size factor v = (ra — rB)/ra is
larger than about 0.10.

The idea that an essentially electronic mechanism is responsible for the
stability of quasicrystals is supported by a detailed analysis of structure
stability and electronic transport properties performed on several films of
Al;_,(CugFe),, both amorphous and quasicrystalline icosahedral, with Al
contents ranging from 30 to 80 at.% and the CusFe ratio kept constant.

In the amorphous films an electronic induced structural peak at k = kp,
shifting as a function of composition just below, but parallel to, 2kg is ob-
served (see Sect. 3.3). Correspondingly, the deviations of electronic transport
properties from the NFE model are largest. As to the icosahedral phase, with
ideal atom packing at the composition Algs 5CussFeqs 5, it shows two main
structural peaks. The position of the first peak coincides with that of the
electronic induced peak in the amorphous alloy with the same composition.
Assuming that the 2k value coincides in both phases, the second peak of
the icosahedral phase falls even closer to 2kg, thus optimising the structural
stability.

The initially amorphous films were annealed in several steps, until crys-
tallisation into the icosahedral phase occurred at about 700 K. The ther-
mopower S(T') of the alloy was measured down to 10 K after each annealing
step, as shown in Fig. 6.42 for two representative samples. In the amorphous
phase both films show proportionality between thermopower and tempera-
ture, in agreement with the free electron model. By contrast, dramatic dif-

Electron phase Structure (Z) Limit (Z)

@ fee 1.00 — 1.41 1.362
8 bee 1.35 — 1.60 1.480
¢ hep (c/a=1.633) 1.22—1.83 -
¥ complex cubic 1.54 - 1.70 1.620
6 complex cubic 1.55 — 2.00 -
I [5—Mn 1.40 — 1.54 —
€ hep (c/a=1.570) 1.65 — 1.89 1.700
n hep (c/a=1.750) 1.92 —2.00 —
qc icosahedral 1.45 — 2.60 -

amorphous disordered > 1.80 -

Table 6.1. Crystalline structure, average concentration of conduction electrons per
atom, (Z) and limiting (Z) values for various electron phases (adapted from [6.10])
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ferences in magnitude and even in sign, both positive and negative, of S(T")
were observed in icosahedral films. S(T) is strongly affected by band structure
effects; as a general trend it is observed that those samples with largest elec-
trical resistivity (measured independently), hence those that have best trans-
formed into the icosahedral phase, display the largest positive thermopower.
Thus positive S(T') values are a fingerprint of best quasicristallinity.

In amorphous systems, electrons can be treated as spherical waves, the
atoms being located at Friedel minima of the pair potential (see Sect. 3.3).
Owing to scattering, those electrons whose wavelength matches the sphere
diameter, \p = (27/2kp) = (27/k;), will be localised because multiple
backscattering is extremely effective. Gaps, or pseudo-gaps in the electronic
density of states will open at the Fermi energy Fr. Let us now suppose that
starting from the amorphous state, each annealing step allows for a better
atom rearrangement in the Friedel minima; this leads to enhanced backscat-
tering, to a deeper pseudo-gap and to lower conductivity. In the icosahedral
phase atom location at the shells becomes ordered (orientationally) and angu-
lar correlations arise. The ultimate effect of such an ordering process is even
stronger coherent backscattering of electron waves, which in turn enhances

S(T) (WVK™)

0 200 400
T(K)

Fig. 6.42. Schematic trend of the thermopower S(7') as a function of temperature
for representative quasicrystalline films with composition Algs.5 CuasFei2.5 (curve a)
and Algs.5CugsFer2.5 (curve b). Arrows indicate the verse of phase change; double
arrows refer to reversible changes of the icosahedral phase. No data are available in
the regions where the curves are interrupted (adapted from [6.11])
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interference effects and localisation. Thus, the observed low conductivity of
perfect quasicrystals depends on multiple backscattering and a coherent in-
terference effect.

The strong similarity between atomic structure and electronic transport
properties of amorphous and icosahedral phases again supports the idea that
both phases are stabilised by a Hume—Rothery mechanism, the essential dif-
ference between the two phases being the orientational order in the icosahe-
dral phase.



A. Appendix

The following is a collection of results pertaining to the theory of the almost
periodic functions, and particularly the quasiperiodic functions [A.1] [A.2],
presented in axiomatic form. The aim is to define certain properties of the
Fourier spectrum for those classes of function that are useful in comparing
the diffraction patterns obtained from quasicrystalline materials.

Let # be the real line, X a complete metric space and p = p(x1,z2) a
metric on X. Let f(t) : # — X be a continuous function with values in X;
the range of f is the set Dy {z € X : x = f(t),t € R}.

We say that a set of real numbers F C R is relatively dense if there is a
number A > 0 such that any interval (o, + A) C R, of length A, contains
one number from F.

A number 7 is called an e-almost period of f: R — X if

flelgu(f(HTLf(t)) <e. (A1)

We say that a continuous function f : ® — X is almost periodic if, for
each € > 0, it has a relatively dense set of e-almost periods; this means that
there is a number A = A(g) > 0 such that each interval (o, a+\) C R contains
at least one number 7 = 7. that satisfies (A.1).

When we analyse (A.1) we notice that an almost periodic function will al-
low an infinite number of 7 translations such that in each point the translated
function differs by less than e from the original, non-translated, function. This
guarantees that the sum of two almost periodic functions is in turn almost
periodic.

Let, for example,

f(t) = sin (27t) + sin (277t) . (A.2)

This function is non-periodic when 7 is irrational; however, let us consider
the multiples of 7 with a module of one; these are a countable number of
irrationals such that, when each is translated by a suitable integer they are
contained in the interval [0, 1]. As such, they densely cover this interval. For
this reason, for each positive € number there is an integer N, such that

[sin(277TN.)| < €. (A.3)
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Each periodic function is also almost periodic. For, if f is periodic with
period T, then all numbers nT'(n = 1, £2...) are also periods of f, and thus
are almost periods of f for each € > 0.

The set of numbers nT is, in turn, relatively dense.

The period of a periodic function gives us a unique definition of the set
of its Fourier exponents. If T positive is the period, then all the Fourier
exponents are multiples of 27 /T

The almost periods of an almost periodic function and the relative Fourier
exponents are closely related together; for each d positive and for all the
natural numbers N there is an ¢ = £(d; N) > 0 such that each e-almost
period of an almost periodic function f(¢) : ® — X fulfils the system of
inequalities

lexp(ir,7) — 1] < (n=1,2,...N). (A.4)

Conversely, for each positive ¢ there is a positive § = 0(¢) and a natural
number N = N(e) such that each real number 7 that fulfils the system of
inequalities (A.4) is an e-almost period of an almost periodic function f(t).
As such, an almost periodic function f(¢) may be expanded in a Fourier series

Z f(n) exp[2mk,t]. (A.5)

The Fourier spectrum for an almost periodic function thus consists of a
countable sum of delta peaks.

The family of almost periodic functions is closely tied to the family of peri-
odic functions of several variables, including a countable number of variables
and, in particular, to the family of the limit periodic functions. A function
f(t1,ta, ...ty) : R — X is a limit periodic function of the n variables t1, t5...t,
if it is the uniform limit on R", of a sequence fi(t1,t2,....,tn) (k=1,2,...,n)
of continuous periodic functions.

A function f(t1,ts,...) of a countable number of variables is called limit
periodic if a sequence of continuous periodic functions fx(t1,%2, ..., tm, ) exists
(such that limy_ o, my = o0o) which uniformly converges to f(t1,ta,...).

Let F(t1,ts,...t,) be a continuous periodic function and T, T3, ..., T;, its
periods; we assume that Tfl,T{l, ..., -1 are linearly independent and we
define the diagonal function f(t) = F(t,t,...,1).

The set of values for the diagonal function f(t) is dense everywhere in the

set of values of F'(t1, ta, ...t,,); this means that for all points (tgo)’ téo), - 510)) €
R™ and for every € > 0 there is a £ € R such that

() - 6] < a0

Each almost periodic function f(t) is the diagonal function of a limit
periodic function of a finite number, or a countable number of variables. This
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is true also if F'(t1,to,...t,) is a periodic continuous function, with periods
T1,T5, ..., T, and the diagonal function f(t) = F(t,t,...,t) is almost periodic.

A non-empty set of numbers is called a module if it is a group under the
operation of addition. For example, the set of all real numbers is a module;
the set of all the real integers is a module. We shall here only consider count-
able modules of real numbers. Given a finite, or countable set of real numbers
ay,Qa,...aq, ... We can obtain a module containing all of these numbers, con-
sidering the numbers mia; +msoas+...+myag, with my, mso...m; integers and
[ arbitrary and finite. This set of numbers is the smallest module containing
the set {aq, g, ...} and is given as M{ay, as, ..oy}

A sequence of numbers t,,, € R is called f-increasing if f(t + t,,) — f(¢)
uniformly, that is if ¢,,, is an €,,-almost period where ¢, — 0.

For every almost periodic function f : ® — X a countable module M
exists, where a sequence {t,,} is f-increasing if and only if

exp(iAty,) — 1, where A € M. (A7)

It follows from this result that if two almost periodic functions f(¢) and
g(t) have equal modules (M; = M,) then they have a single unique set of
increasing sequences. Thus, for two almost periodic functions f(t) and g(t)
to have the same increasing sequences My must and only has to be equal
to M.

The kind of basis of Fourier exponents of the almost periodic function f ()
in the module M gives us the characteristic properties of the limit periodic
function f(tl,tg, ...) where f(t) is the diagonal function. In particular, if the
basis in M is integer, that is each Fourier exponent of f(¢) is a linear com-
bination of 7;,7,... with integer coefficients, then f(tl,tg, ...y ty) s periodic
with periods 27 /74, 27/7s, .... If the basis is finite, though not necessarily in-
teger, then f(tl, to, ..., t,) is a limit periodic function of a finite number n of
variables. If the basis is both integer and finite, then f(tl, ta, ..., t,) is periodic
in each variable. This class of almost periodic functions is called condition-
ally periodic functions, with periods 27/, 27/vs, ..., 27/7,,, Or quasiperi-
odic functions. Thus, a quasiperiodic function is uniformly approximated by
a finite sum of exponential functions, for a fixed value m, with argument
[27i(n1y, + nevyy + oo+ Y )t

One immediate example is once again given by the sum of two sine func-
tions with irrational periods

f(t) = Asin(27t) + Bsin(27vt) (A.8)

where v is an irrational number. In general terms, the quasiperiodic function
f(t) is written as

f@) = Z f(ni,...,nm) exp[2mi(n1y; + N2y + oo + N Y,,)t. (AL9)
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This function is usually not periodic; however it can be obtained from a
function g(t) of m variables, where ¢ is periodic in each variable

g(t1y ey tm) = Z f(na,..nm)exp2mi(nity +nota + ... + nptm)]. (A.10)
ni Nm

Equation (A.10) turns into (A.9) if ¢; = ~,t.

In the case of functions of several variables, the formal generalisation is
immediate: a function f(x) in an N-dimensional space is quasiperiodic if its
Fourier transform is given as

fk)y= > F(ha...;hm)d(k — g} — ... — hpa},). (A.11)
hi...hpm

This way the Fourier wavevectors belong to the set M*

M* = Zn: himz‘ (A.12>

i=1

where the n vectors a; are chosen so that they are rationally independent.
In general, a given set of n vectors xj...x, is rationally independent if the
equality Y n;x; = 0 holds only when all the n; rational coefficients are
null.

The set of wavevectors in the Fourier transform, with the M™ structure
(A.12), is called the Fourier module; the number of basis vectors gives the
rank of M™ and its dimension is the same as that of the space spanned
by the basis vectors. The non-quasiperiodic, but almost periodic functions
are the limit of the quasiperiodic functions when the rank of the Fourier
module diverges. At the other end of the spectrum, the reciprocal lattice of
an ordinary crystal is a Fourier module where the rank, namely three, is equal
to the dimension, since we obtain periodicity along each of the directions given
by the basis vector triplet x7, 23, z5.
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