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Preface

This book concerns the uncertainty of the hydrogeological modeling. In a sense, it
is a development of the ideas published long ago (Gorokhovski 1977). The topic of
that book was impossibility of evaluating the uncertainty of the simulation results
in a provable quantitative way. The book happened to be a success: I had difficulty
finding its copies for my friends, some prominent hydrogeologists and geological
engineers started treating me with more respect, and some colleagues stopped
speaking to me for a long time. But no other consequences followed.

I personally was not fully satisfied. The book was mostly a critique based on
common sense and illustrated by simple and transparent examples from hydro-
geology and geological engineering. The examples could be easily verified, using
just a calculator. The book stated that the impossibility to evaluate the uncertainty
of simulation results does not preclude obtaining the results which are best in a
reasonably defined sense, though the uncertainty of those best results remains
unknown. But I had a vague notion of how to assure such results at that time.

Quantitative predictions of responses of geological objects on man made and
natural impacts were, are, and will remain in the foreseeable future a considerable
element of engineering design and decision making. Even at that time and even in
the Soviet Union, where I resided and worked, it was possible to simulate many
applied hydrogeological processes, though access to the pertinent software and
computers was not easy, at least for me (see Afterword for more details). At
present, due to the fast development of computers and numerical methods, we can
simulate almost any process based on contemporary concepts and theories. The
gravest obstacle remains uncertainty of the simulation results caused by paucity of
the available data on properties of geological objects, boundary conditions, and
impacts when the natural impacts are affecting factors. So, one of the main issues,
in my opinion, is how to assure that the yielded results are the best, and effective in
the sense best is defined. I hope that this book is a considerable step to yielding the
effective simulation results.

The uncertainty of the results of hydrogeological modeling was and is discussed
intensively. Thus, Beck (1987) writes: ‘‘The difficulties of mathematical modeling
are not questions of whether the equations can be solved and the cost of solving
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them many times; not are they essentially questions of whether priory theories (on
transport, dispersion, growth, decay, predation, etc.) is potentially capable of
describing the system’s behavior. The important questions are those whether the
priory theory adequately matches observed behavior and whether the predictions
obtained from models are meaningful and useful.’’ Oreskes et al. (1994), hold that
geological models ‘‘predictive value is always open to question.’’ (See also
Oreskes 2003, 2004). This is not surprising, since in hydrogeology ‘‘the modeling
assumptions are generally false and known to be false’’ (Morton 1993, Beven
2005). I could continue this list of quotations. But let me restrict myself with one
more. As Beven (2004), puts it mildly: ‘‘There is uncertainty about uncertainty.’’ I
think he is wrong: the uncertainty of the hydrogeological modeling is the fact
about which there is no uncertainty. Indeed: ‘‘It’s a fundamental tenet of philos-
ophy of science that the truth of a model can never be proved; only disproved’’,
(Mesterton-Gibbons 1989).

The above quotations are a tribute to academism really. Experienced hydrog-
eologists are well aware of the uncertainty of most of their conclusions. And the
reason is obvious. The models include properties and combinations of the prop-
erties of geological objects. Those must be known continuously, at least, when
differential or integral equations are involved. That is, they must be known at each
point of the object and at each instant of the simulation period, excluding sets of
isolated points and instants. But geological objects are inaccessible to direct
observations and measurements and the data on them are sparse. The geological
models are a tool to interpolate and extrapolate the sparse data at every point of the
geological object which they represent in simulations and at every instant of the
periods of the simulations. The tool is limited. The geological interpolation and
extrapolation are based on the principle that geological settings of the same origin,
composition, and geological history have the same properties. This principle leads
to so-called piecewise homogeneous geological models. Sometimes the properties
are subjected to spatial trends whose mathematical descriptions are arbitrary in
essence (Chap. 3). So how can we evaluate in a quantitative way the reliability of
the geological models with respect to a problem at hand? It suffices just common
sense to conclude that it is impossible except, maybe, in some rare cases.

Since the issue is not simulations, solving the corresponding equations, but the
uncertainty of the yielded results, the question arises, what to do? US EPA (1987),
gives the answer related to environmental predictions, including hydrogeological
ones: ‘‘It should be recognized that the data base will always be inadequate, and
eventually there will be a finite sum that is dictated by time, common sense, and
budgetary constraints. One simply has to do the best one can with what is avail-
able’’. Unfortunately, US EPA (1987), does not explain what is and how ‘to do the
best’.

The situation seems to be clear enough: it is impossible to evaluate the
uncertainty of simulation results of the hydrogeological models in a provable
quantitative way. But, contrary to its own statement cited above (US EPA, 1989),
holds that ‘‘Sensitivity and uncertainty analysis of environmental models and their
predictions should be performed to provide decision-makers with an understanding
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of the level of confidence in model results and to identify key areas for future
study’’. It claims also that ‘‘A number of methods have been developed in recent
years for quantifying and interpreting the sensitivity and uncertainty of models’’.
NCR (1990), states ‘‘Over the past decade, the development of stochastic modeling
techniques has been useful in quantitatively establishing the extent to which
uncertainty in model input translates into uncertainty in model prediction.’’ Binley
and Beven (1992), Beven and Freer (2001) and Beven (2005) suggest a general
likelihood framework for uncertainty analysis, recognizing that it includes some
subjective elements and, therefore, in my opinion, may not be provable. Hill et al.
(2000) suggest the algorithm and program, permitting evaluating the uncertainty of
simulation results. Cooley (2004) suggests a theory for making predictions and
estimating their uncertainty. And so on (Feyen and Caers 2006; Hassan and Bekhit
2008; Rojas et al. 2008, 2010; Ch and Mathur 2010; Mathon et al. 2010; Ni et al.
2010; Singh et al. 2010a, b; Zhang et al. 2009; and many others).

Although the number of publications providing the methods as if quantifying
uncertainty of the results hydrogeological modeling growths very fast, the philo-
sophical tenet mentioned above leaves us still with the only real option: ‘‘to do the
best one can with what is available’’. In this book, it means obtaining the best
simulation results in the sense of the least squares criterion on a given monitoring
network, though other criteria of the efficiency are also possible. Besides, the
required best must relate not to the best fit during model identifications (calibra-
tions), but to the best results in the coupled predictive simulations. Such simulation
results are called effective. To achieve the predictive efficiency for a given sim-
ulation model, we need to find the effective parameters, that is, the parameters
making the pertinent predicting or evaluating effective. A model furnished with the
effective parameters is called effective. Once more, the goal must be the models
which are effective in predictive simulations and extended evaluations, and not in
model identification procedures like calibration. This can be achieved by intro-
ducing the transforming mechanisms converting the actual properties of geological
bodies into effective parameters of the predictive models (Chap. 5). Chapters 6 and
7 contain examples of such mechanisms. The standard procedure for evaluating
the transforming mechanisms is called by me the two-level modeling (Chap. 8).
The transforming mechanisms can be applied for solving inverse problems (
Chap. 9). The notion of the inverse problem in this book differs from the standard
one accepted in hydrogeological modeling. That is, the inverse problem is
understood as evaluating properties of more complex models using less complex
ones. Chapter 10 is a short conclusion. I included in the book Chap. 11 also where
I compare my Soviet and American experiences as a teacher and a scientist. I hope
it may by interesting for readers.

I hope that this book is helpful for modelers working with the underground
flows and mass transport. But its main addressees are common hydrogeologists
and, maybe, students of hydrogeology and environmental sciences. I knew and
know many excellent hydrogeologists who never differentiated or integrated
anything after passing the final tests on calculus. For these reasons, I resort to the
sound sense and the simplest mathematical models and examples, rather of the
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conceptual nature, i.e., ‘‘constructed to elucidate delicate and difficult points of a
theory’’ (Lin and Segel 1974, Kac 1969) as much as I can. However, the approach
to alleviating the issue of the uncertainty of the results of hydrogeological simu-
lations suggested in this book requires intensive computational calculations. This
does not permit avoiding mathematics completely. But the mathematics applied in
the text is mostly the least squares method. The examples and the results are
transparent and easy to understand and to interpret even for those readers who do
not want to mess with mathematics.
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Abstract

Effective Parameters of Hydrogeological Models Geological models applied in
predictive hydrogeological modeling are not exact replicas of the objects they
represent. Manifold of details related to structures and properties of the objects
remains unknown. Those details affect the simulation results considerably, dif-
ferently and unpredictably for different formulations of the simulation problem.
They cause the phenomenon of problem-dependence of model identification and
make the model parameters effective in calibration ineffective in predictive sim-
ulations. Due to them the provable evaluation of uncertainty of the simulation
results is impossible. However this does not preclude obtaining the best, effective,
simulation results based on the available data and predefined criteria of quality of
predicting. To provide such results, transforming mechanisms are introduced.
They are mathematical expressions for evaluating the model parameters which are
effective in predictive simulations. Examples of the mechanisms are provided as
well as a method for their evaluations. Shown also how the mechanisms can be
used for interpretation hydrogeological data which is possible due to the mention
above phenomenon of the problem-dependence. In his last chapter author com-
pares the conditions under which he worked in the Soviet Union (35 years) and in
the United States (20 years) which may be interesting for readers.
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Chapter 1
Introduction

Although hydrogeological conditions can be of interest per se, most hydrogeo-
logical investigations are of applied nature, and their results are used in decision-
making that may carry large ecological and financial risks. For example, when
developing a reservoir project, the developers have to evaluate possible losses of
water from the reservoir, the stability of the dam, and how adjacent soils and rocks
could be affected by different project decisions. Hydrogeological investigations
related to the use of an aquifer for water supply should not only conclude that the
usage is possible. The developers must also have estimates on how long and with
what intensity the aquifer can be exploited by a well or group of wells. The
developers of a landfill project must know whether the landfill can cause con-
tamination of the aquifer below and, if so, whether and when the contaminant
plume will reach water supply wells and the concentration of the pollutant at the
wells. The developers of an irrigation project need to know to what extent and how
fast the water table rise should be expected, what consequences are possible, how
to deal with them effectively, etc.

The point is that, for projects that affect the geological surroundings to be
effective environmentally and economically, the responses of the surroundings to
the planning impacts must be taken into consideration. To this end, the goal of
applied hydrogeological investigations is to provide quantitative predictions of
those responses. Moreover, to make a correct or optimal decision, decision-makers
must know the errors of the quantitative predictions. (The term ‘‘to predict’’ relates
to processes developing in time. In this text it is used also as a synonym for the
term ‘‘to evaluate’’ in cases of evaluating some instant value or steady-state
conditions, if such usage does not cause confusion).

The usual tool for obtaining quantitative hydrogeological predictions is math-
ematical modeling, i.e., solving differential and integral equations describing the
pertinent processes or states. The mathematical models are applied to geological
models substituting for real geological objects. In this book, the mathematical
models are assumed to be adequate, i.e., that they reproduce the processes of
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interest sufficiently accurately. This is not true in general, but mathematical
models recognized by the professional community and applied properly usually
yield satisfactory approximations of reality (see Sect. 4.4). The main source of
error occurring in simulations is the distinction between predictive geological
models and actual geological objects, and inaccurate or often just wrong boundary
conditions, though inaccuracies of the mathematical models also contribute to
those errors. Since the geological surroundings are inaccessible to direct obser-
vations and measurements, and data on them are sparse, the issue is how the parts
of geological objects which are unknown or wrongly represented by geological
models can affect the accuracy of the simulation results.

Let us start with a simple example: steady-state filtration in an unconfined
aquifer on a horizontal base when recharge is absent (Fig. 1.1). Under the
Dupuit–Forchheimer assumption, considering the vertical component of the Darcy
velocity to be negligibly small, the filtration can be treated as one dimensional. It is
governed by the following ordinary differential equation:

d K xð Þh xð Þ dh
dx

� �

dx
¼ 0; ð1:1Þ

where h(x) is the thickness of the aquifer at point x and K(x) is the hydraulic
conductivity varying along the x-axis. Equation 1.1 is derived based on the law of
conservation and the Darcy law stating that the velocity of filtration q (the Darcy
velocity, specific flux) is equal to

q ¼ �K xð Þ dh

dx
: ð1:2Þ

The boundary conditions are the thickness of the aquifer at the ends of the
interval [0, L], which is assumed to be known: h(0) = h0 and h(L) = hL.

Let the goal be to evaluate the thickness of the aquifer at any arbitrary location
x within the interval [0, L]. To this end, we have to integrate Eq. 1.1. Its first
integration yields

2K xð Þh xð Þ dh

dx
¼ C;

Fig. 1.1 One-dimensional
steady-state flow on the
interval [0, L]
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where C is an arbitrary constant (the factor of 2 being used to simplify Eq. 1.3
below). Assuming that K(x) = 0 in the interval [0, L], we can rewrite the above
equation as

2h xð Þdh ¼ C
dx

K xð Þ :

Integrating the above equation, we obtain

2
Zx

0

h xð Þdh ¼ h2 xð Þ � h2 0ð Þ ¼ C

Zx

0

dx

K xð Þ: ð1:3Þ

To obtain a unique solution to Eq. 1.1, we need to define the arbitrary constant
C. To this end we use the second boundary condition at x = L:

h2
L ¼ C

ZL

0

dx

K xð Þ þ h2
0 and C ¼ � h2

0 � h2
L

RL

0

dx
K xð Þ

:

Then, the solution to Eq. 1.1 with the given boundary conditions takes the form

h2 xð Þ ¼ h2
0 � h2

0 � h2
L

� �
Rx

0

dx
K xð Þ

RL

0

dx
K xð Þ

: ð1:4Þ

Thus, to obtain the thickness of the aquifer, h(x), at an arbitrary point x within
the interval [0, L], we need to know the boundary conditions h0 and hL at the ends
of the interval and the hydraulic conductivity, K(x), continuously, i.e. at each point
of the interval, excluding perhaps a countable set of points (i.e., a set of points that
can be enumerated, meaning separated from each other).

However, knowing K(x) at each point of the interval of interest is not possible
physically or economically. A few, sparse measurements of the hydraulic con-
ductivity are available at best. We need to fill in the information gap by inter-
polating and extrapolating the available data on the hydraulic conductivity over all
points of the interval [0, L]. Tools for doing this are geological (structural) models
(which I prefer to call geological ones, to emphasize that geologists with their
knowledge of geological settings and their spatial variability play the most
important role in interpolating and extrapolating geological data). The tools are
usually limited and even primitive. They are based on the principle that soils and
rocks of the same origin, lithological composition, geological age, and history are
homogeneous geologically; that is, each property of a geologically homogeneous
structure is considered constant. Simple trends in the property values are per-
missible, if the data reveal some spatial tendencies. Model calibration is also a tool
for generalization of the variable property values of interest in the predictive
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model parameters (see Chap. 4). Another approach to filling the information gap is
the use of random functions as a tool for describing spatial distributions of the
geological properties (see Chap. 3). Both approaches can be combined: geologists
assign boundaries of geologically homogeneous parts of a site, and different
regressions and random functions can be used within those geologically homo-
geneous parts.

The simplest interpolation in the considered example is recognizing the aquifer
as homogeneous within the interval [0, L] with constant hydraulic conductivity
K xð Þ ¼ K̂. Then, the constant hydraulic conductivity K̂ can be factored out from
Eq. 1.1 or 1.4 and canceled, converting Eq. 1.4 into

h2 xð Þ ¼ h2
0 � h2

0 � h2
L

� � x

L
: ð1:5Þ

So, as soon as the homogeneous model of the aquifer is chosen, the predicted
aquifer thickness does not depend on the hydraulic conductivity at all. Since the
actual hydraulic conductivity is not constant, the simulation results will carry
errors. The only possible estimate for these errors is that the real water table
elevations are between h0 and hL. The errors are equal to zero at the ends of the
interval [0, L] and reach the maximal absolute value somewhere inside the
interval. The magnitude of the error does not exceed |h0 - hL|.

Let the previous scheme (Fig. 1.1) represent a cross-section of a channel and a
capturing drain, and the goal be to evaluate the losses, flux Q, from the channel to
the drain parallel to the channel. The geological model is still homogeneous,
though the geological object is not. The losses depend on the hydraulic conduc-
tivity of the rocks and soils between the channel and the drain. Assuming the
steady-state regime and absence of infiltration within the interval [0, L], we obtain
the constant flux Q which is described by the following equation at arbitrary point
x within the interval [0, L]:

Q ¼ �K xð Þh xð Þ dh

dx
: ð1:6Þ

Separating variables, we can rewrite Eq. 1.6 as

Q
dx

K xð Þ ¼ �h xð Þdh: ð1:7Þ

Integrating Eq. 1.7 with the same boundary conditions [h0 = h(0) and
hL = h(L)] yields

Q ¼ � h2
0 � h2

L

2
RL

0

dx
K xð Þ

: ð1:8Þ

In the case of the homogeneous model, Eq. 1.8 yields
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Q̂ ¼ �K̂
h2

0 � h2
L

2L
: ð1:9Þ

So, to evaluate the losses Q accurately, the effective hydraulic conductivity K̂ of
the homogeneous model must be assigned as

1

K̂
¼ 1

L

ZL

0

dx

KðxÞ: ð1:10Þ

If the acceptable losses Q are known, and the soil between the canal and the
drain can be compacted, Eq. 1.9 could be applied to evaluate the necessary degree
of compression of the soil, but this is not the point here. Contrary to the case of
evaluating the thickness of the aquifer, applying the homogeneous model, in this
case we are not able to evaluate the upper boundary for errors of the predicted
losses Q, if we do not know the range of the actual values of the hydraulic
conductivities K(x). However, Eq. 1.10 gives the rule for assigning the hydraulic
conductivity to the homogeneous models to evaluate the errors, considering the
Dupuit–Forchheimer assumption to be acceptable. It should be the weighted
harmonic mean of the actual hydraulic conductivities.

The most popular geological models represent geological sites as consisting of
homogeneous subintervals such that, within subinterval [xi-1, xi], the hydraulic
conductivity is constant and equal to Ki. Then Eq. 1.10 can be rewritten as

1

K̂
¼ 1

L

Xn

i¼1

1
Ki

Zxi

xi�1

dx

0

@

1

A ¼ 1
L

Xn

i¼1

Dxi

Ki

; ð1:11Þ

where n is the number of homogeneous subintervals and Dxi = xi - xi-1. Thus,
the hydraulic conductivity of the homogeneous model must be assigned as the
harmonic mean weighted with respect to the length of the homogeneous subin-
tervals. If the errors DKi for the hydraulic conductivities Ki within each subinterval
[xi, xi-1] are known, evaluating the errors of the model parameter K̂ and the flux
Q becomes possible.

The above examples demonstrate that not only the geological settings, but also
the formulation of the simulation problem, define the choice of model parameters.
Thus, when evaluating the thickness of the aquifer on the horizontal aquitard by
applying a homogeneous model under the Dupuit–Forchheimer simplification, we
do not need to worry about choosing the model hydraulic conductivity at all
(rather avoid the homogeneous model in such sorts of problems). However, when
evaluating the flux, we do need to do this. Moreover, as demonstrated in Chap. 6,
the effective hydraulic conductivities (the model characteristics providing the best
fit of the simulation results to the observations) depend on the monitoring net-
work. As shown in Chap. 7, the effective hydraulic transmissivities can depend on
time also.
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Gomez-Hernandez and Gorelick (1989) hold that, ‘‘if there is no best effective
hydraulic conductivity …, the predictive capability of the model must be
questioned.’’ Why? The two examples above illustrate the well-known phenom-
enon called the problem dependence of model identification (Gorokhovski 1977;
Carrera and Neuman 1986; Yeh 1986; Kool et al. 1987; Hornung 1990; van
Genuchten et al. 1990; Bear et al. 1992). The phenomenon does affect the pre-
dictive capability of the models. This means that the effective parameters of a
predictive model may be different for different formulations of the simulation
problem. Namely, the issue of obtaining model parameters that are effective in
predictive simulations, not just in calibrations, is the main point of this book.

Let us consider two simple examples of assigning the hydraulic conductivity
values to our homogeneous model according to Eq. 1.10 [more examples can be
found in Gorokhovski (1977)]. In these examples, functions K(x) are such that
integral 1.10 can be found in any textbook on integral calculus.

First, let the hydraulic conductivity be a linear function of the coordinates:
K xð Þ ¼ KL�K0

L xþ K0;

where K0 = K(0) and KL = K(L). Then, according to Eq. 1.10,

1

K̂
¼ 1

L

ZL

0

dx
KL�K0

L xþ K0
¼ 1

KL � K0
ln

KL

K0
:

Thus,

K̂ ¼ KL � K0

ln KL
K0

: ð1:12Þ

Second, let the hydraulic conductivity be an exponential function:

K xð Þ ¼ K0e�
x
L:

Substituting the above K(x) into Eq. 1.10, we obtain

1

K̂
¼ 1

L

ZL

0

dx

K0e�
x
L
¼ 1

K0

ZL

0

e
x
L
dx

L
¼ 1

K0
e� 1ð Þ:

So in this case

K̂ ¼ K0

e� 1
: ð1:13Þ

Equations 1.12 and 1.13 also represent the harmonic means of the actual values
of hydraulic conductivities under their specific spatial distributions. What is
important is that no statistical or probabilistic concepts or notions are applied to
yield these results; they have been obtained based on the usual deterministic
approach. Equation 1.11 is, for example, a complete analogy to the well-known
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rule for calculating the total resistance of series electrical circuits. The horizontal
filtration along layers with fixed hydraulic heads at the ends of the interval of
interest in a confined aquifer is analogous to an electrical parallel circuit. So, the
hydraulic conductivity for evaluating the flux when applying a homogeneous
model must be the arithmetic mean of the hydraulic conductivity of the layers,
weighted by their thicknesses.

There exist many ways for estimating the errors of a function caused by errors
in its parameters. Let a model be represented by the function

y ¼ f ðx;PÞ; ð1:14Þ

where x is an independent variable or a vector (list) of independent variables and
P = (P1, P2,…,Pi,…,Pn) is a vector (list) of the governing parameters. Then, the
errors of the model Dy caused by the errors of the parameters DP can be estimated,
for example, as

Dyj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

of ðx;PÞ
oPi

DPi

� �2
vuut

or

Dyj j �
Xn

i¼1

of ðx;PÞ
oPi

DPi

����

����:

ð1:15Þ

Estimates (1.15) are provable only if Eq. 1.14 represents the phenomenon of
interest adequately. If not all the parameters affecting the modeled phenomenon
are not included in the list P, then it can happen that Estimates (1.15) are still
acceptable, if we are lucky, but the obtained errors are not provable.

If we had complete information on a geological object but for some reason were
going to simulate its response on an impact, using simplified geological models,
we could, at least in principal, evaluate the errors resulting from the simplification.
However, if we simplify something that we do not know in full, we cannot
evaluate the consequences of our simplifications. This is where, in my opinion, the
central issue of hydrogeological modeling lies. Computer power at present is such
that we are able to make predictions based on the highest theoretical level of the
hydrogeological sciences (Beven 1989). However, there is a gap between the data
necessary for making predictions and the available pertinent data. We do not know
the accuracy of the function K(x) which we use in our simulations. Applying a
piecewise homogeneous model, we may miss some homogeneous parts of the real
site or add inexistent ones. We almost never know the exact locations of bound-
aries between the homogeneous parts, and so on. We fill such informational gaps
with assumptions. However, ‘‘the modeling assumptions are generally false and
known to be false’’ (Morton 1993; Beven 2005). Consequently, we cannot obtain
provable estimated errors of the simulation result.

The use of false or unprovable assumptions does not make the results necessary
wrong. They may be acceptable practically. For example, the Dupuit–Forchheimer
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simplification neglecting the vertical component of the Darcy velocity in all our
previous examples is wrong and contradictory. However, as Muskat (1946)
observed, the resulting fluxes ‘‘will nevertheless be surprisingly close to those
given empirically or by exact calculations.’’ False or untested assumptions do not
permit provable estimation of errors and the uncertainty of the simulation results,
which are important for informed decision-making. However, they do not preclude
achieving the best result or making the best decisions in some circumstances.

Two approaches to hydrogeological modeling exist at present. I call one of
them engineering and the other geostatistical. The first approach is based on
practical engineering experience. The second one is based on statistical methods
which are developed to work with incomplete and erroneous data. The approaches
do not exclude each other: the engineering approach includes some statistical
features, and the geostatistical one essentially uses the elements of the engineering
approach. Unfortunately, neither of them provides provable estimates of the
simulation result uncertainty, as discussed in detail in Chaps. 2 and 3.

‘‘To do the best’’ (US EPA 1987), we need first to define ‘‘the best’’ reasonably,
keeping our expectations in line with our possibilities. For example, we can
request that our estimation be the best one in the sense of the least-squares method
on a given monitoring network; or, which model and its parameters are the best in
a given situation may be the subjective opinion of an expert based on his or her
experience. After we define the meaning of ‘‘the best,’’ we need to furnish our
model (models) with the set (sets) of values of the model parameters providing the
best prediction in the defined sense. We are not able to evaluate the uncertainty of
our best decision yet. However, what we can do is to make our decisions more
informed. There is not one way to this end, and a concept for one such approach,
based on transforming mechanisms and two-level modeling, is suggested in this
book (Chaps. 5–9).
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Chapter 2
Engineering Approach

In 1992, the journal Advances in Water Resources published a series of papers on
validation of hydrogeological models. In one of those papers, Konikow and
Bredehoeft (1992) hold that groundwater models cannot be validated but
only invalidated. This means that the real quality of a model can be judged only by
comparing the prediction produced by the model with what actually occurred, only
based on post audit, and that accurate results in the process of model calibration do
not warrant that the model will predict accurately. However, if calibration goes
wrong, the model cannot be trusted. Commenting on their paper, De Marsily et al.
(1992) write:

We all know that the parameters of a model are uncertain, probably wrong in many cases,
and easily can be invalidated. Similarly, the ‘structures’ of the model (2-D, multi-layered,
3-D, etc.) can be incorrectly chosen. So what? As long as they reproduce the observed
behavior of the system, we can use them to make predictions. It also seems to us that the
better or the longer the reproduction of the observed behavior, the more confident we can
be of their validity. … Using the model in a predictive mode and comparing it with new
data is not a futile exercise; it makes a lot of sense to us. It does not prove that the model
will be correct for all circumstances; it only increases our confidence in its value. We do
not want certainty; we will be satisfied with engineering confidence.

Writing this chapter, I had a strong urge to call it ‘‘So What?’’ and to use as an
epigraph the last sentence of the above quotation. However, I overcame this urge
and named it instead after the engineering approach. It is simple and conceptually
transparent. Indeed, the modeling assumptions are generally ‘‘false and known to
be false’’ (Morton 1993; Beven 2005). However, working on many similar projects
in similar geological surroundings and observing the results of implementation of
those projects, professionals gain personal and collective experience of what
models work satisfactorily, how their parameters and boundary conditions should
be assigned to yield satisfactory results, and the chance that a given model will
fail, which is a factual, empirical estimate of the uncertainty of the simulation
results. Validated in such a probabilistic way, a model can be considered as a
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‘‘sound, fulfilling all necessary conditions, and just good enough model’’
(McCombie and McKinley 1993).

Let us come back to the models based on the Dupuit-Forchheimer assumption,
i.e., that when the gradient of a water table is small enough, the vertical component
of the Dupuit velocity can be neglected and the flow considered as strictly hori-
zontal. Such simplifications are fairly common in mathematical physics or engi-
neering. Muskat (1946) calls the Dupuit-Forchheimer assumption ‘‘not
trustworthy.’’ However, he expresses his astonishment at the fact that the results of
its application are accurate compared with ‘‘those given empirically or by exact
calculations.’’ Haitjema (1995) holds that ‘‘a Dupuit-Forchheimer model could
have done the job, saving resources and cost.’’ Since the Dupuit-Forchheimer
assumption is false, there is no possibility to evaluate the errors of simulation
results based on it in a closed way, i.e., based on errors of the model structure and
its parameters. However, Beven (1981) considers it reasonable for water table
slopes that are mild, and according to Bear (1972), it generates practically
acceptable errors for a homogeneous shallow aquifer on a horizontal aquitard,
if the squared slope of the water table is less then 0.01.

Such use of unprovable and even wrong assumptions (let us call them sim-
plifications), which lead to accepted practical results under some empirically
established conditions, I call the engineering approach. My attitude with respect to
this approach is rather positive. It recognizes the reality of the impossibility of
evaluating the uncertainty of predictions in a provable way. I would rather trust the
professionals, though I understand that their experience is subjective and that this
is different from an objective proof. However, this trust, though cautious, relates to
situations where the engineering approach really exists, e.g., in the case of building
small reservoirs, or drilling water supply wells for small farms or family houses.
However, what does one have to do if there is no such experience, e.g., when a
project is unique per se, or unique for a given surroundings? Or what does one
have to do if experienced professionals make different recommendations and
estimations?

Lerner (1985) described several cases related to groundwater supply in Africa,
Latin America, and England in which teams of highly qualified experts made
different but equally incorrect estimations and predictions, using the same data.
Anderson and Woessner (1992) report several instances with unencouraging
results of post audit in the USA. They explain the failures by errors in conceptual
models in developing which the professional experience plays the major role.
Andersen and Lu (2003) add several more examples of post audits that ‘‘have not
provided high confidence in the predictive accuracy’’ of the applied models.

In relatively good times for Soviet hydrogeology, an extensive study of the
reliability of hydrogeological estimates of groundwater resources was undertaken
(Yazvin 1972). The study of 89 large intakes from artesian aquifers revealed that
only in 12 cases was the accuracy of the predictions satisfactory. The resources
were considerably underestimated in 76 cases and overestimated in 1 case. The
study of 25 intakes from alluvial aquifers revealed that the resources were con-
siderably overestimated in 20 cases. In all 114 cases the estimates of groundwater
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resources were approved by the Central Commission on Ground Water Resources
of the USSR, consisting of highly experienced hydrogeologists. In most of the
above examples, professional expertise was combined with model calibration, and
this fact aggravates the situation even more.

It may be consoling, at least in part, that other fields where completeness of
geological information is essential share the same plight. One of the most well-
documented examples demonstrating that the uncertainty of geological modeling
is not just an abstract issue is the complete failure of geophysical data interpre-
tation relating to superdeep drilling at Kola Peninsula, Russia (Kola 1984) and in
Bavaria, Germany (Kerr 1993). As drilling revealed, actual geological structures
differed completely from those anticipated. The same happened for the superdeep
bore in Azerbaijan (Kola 1984). These failures cannot be explained by the scarcity
of data or unsatisfactory ability of the interpretational teams. In such expensive
enterprises as superdeep drilling, the teams certainly were the best, and the data
(with respect to their amount and quality) exceeded what is available in routine
enterprises. The failures were caused by the use of the ‘‘sound, fulfilling all
necessary conditions, and just good enough,’’ but nevertheless fallible, models
recognized by the professional communities. Bredehoeft (2005) calls this ‘‘the
conceptualization model problem’’ and gives several examples from his and his
colleagues’ hydrogeological practice in the USA. Problems, including civilian and
economical, related to uncertainty of predictions made by experts in seismology
are discussed by Geschwind (1997), Hanks (1997), and many others. Unfortu-
nately, professionalism and credentials do not always warrant confidence in
models and simulation results.

The viewpoint that engineering confidence is good enough to trust predictions
is usually grounded on two groups of arguments. First, during their studies and
professional activity, practitioners accumulate knowledge and develop thorough
professional experience on where and how geological and mathematical models
should be applied to yield practically meaningful results. We have discussed this
kind of arguments above.

The second is that all human progress is founded on the use of invalidated or
even provably incorrect models. Indeed, it is true that ‘‘astronomers, on the basis
of a few days of observations, will predict asteroid and comet orbits for thousands
of years with good accuracy’’ (McCombie and McKinley 1993). Their argument
can be even strengthened by mentioning one of the greatest achievements of those
models: Le Verrier’s discovery ‘‘on pen’s point’’ of Neptune based on peculiarities
of Uraniums’ orbit. He calculated the orbit of the unknown planet, and Neptune
was discovered exactly at the location he predicted.

Somehow, it is less well known that Le Verrier explained in the same way the
peculiarities of Mercury’s orbit (Levy 1973). This hypothesis was never con-
firmed. Its failure gave birth to several other hypotheses that failed also. It is
recognized at present that Einstein’s theory of relativity explains Mercury’s
behavior. My point is that there has never once been a need to revise astronomic
models.

Engineering Approach 13



Effective modern technologies based on models that are impossible to validate
can be included in this argument also. However, each such technology undergoes
extensive testing, and then, when it is applied, e.g., in manufacturing new prod-
ucts, special attention is paid to controlling the quality of raw materials,
to assembly, and to other pertinent procedures. Final products are also tested. For
example, each airplane and ship undergoes thorough tests.

In hydrogeology we do not have such luxuries. Each hydrogeological site is
unique. We cannot control its geological structure or even know the structure in
full. Its response is also unique and depends on impacts. The impacts can be
intensive and diverse, and many of them do not have analogs in the past. We do
not have long enough periods of observations, and no prediction for a period of
more than a 100 years has actually been tested. In science, if a hypothesis is
proved to be wrong, another hypothesis takes its place, then another, and another,
etc. In hydrogeology, it may be too late to seek another model when it becomes
clear that the applied one is faulty.

Professionalism is a necessary condition for obtaining meaningful results,
especially for the development of geological models. As Tsang (1992) points out, a
sick person should go to an expert having an MD degree. However, faith in
professional judgment as always true is also a fallacy.

Finally, let me repeat. If a professional has experience obtained on many similar
projects in similar environments and has observed the results of implementation of
those projects, it could be reasonable to trust in the professional’s judgment. Often
such professionals do not need any mathematical modeling, they just know what
works (In Athens, Georgia, where I am typing these lines, I have never seen
geological engineering or geotechnical explorations supporting projects for
developing residential middle-class neighborhoods. The builders just know what
kind of foundations must be used). However, in the case of projects which are very
expensive and carry large environmental and financial risks, it is difficult if not
impossible to find a professional with the pertinent experience. Even if such a
professional exists, it is not reasonable to rely on his or her subjective opinion. We
need models (quantitative theories) to predict what can happen, and of course we
need professionals for developing conceptual geological models. However, if the
professional’s judgment about the uncertainty related to the use of some model in
some situation is supported by pertinent statistics, it should be taken into
consideration. When such statistics is not available, nothing can be said about the
quality or the uncertainty of the results obtained in the framework of the
engineering approach.

However, contemporary computational techniques and methods permit
the development of a surrogate for engineering experience. This surrogate cannot
provide provable estimates of uncertainty either. However, it permits more
informed decision-making (see Chaps. 5–10).
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Chapter 3
Geostatistical Approach

The situation with the deterministic approach to predictive simulations is trans-
parent. It can provide evaluations of the uncertainty of the simulation results in
some typical circumstances for which engineering experience exists. These eval-
uations are of statistical nature. They are based on observed successes and failures
of decisions made based on results of the corresponding simulations. However, if
such experience does not exist, the engineering approach fails to provide provable
estimates for the uncertainty of the simulation results. The situation seems more
complicated with the geostatistical approach.

Statistics is the science which deals with incompletely known and fallible data,
which makes it so appealing to hydrogeologists (Shvidler 1963, 1964; Dagan
1986; Graham and McLaughlin 1989; Gomez-Hernandez and Gorelick 1989; NRC
1990; Review 1990; Cooley 2004; and many others). Thus, van Genuchten et al.
(1990) write ‘‘Because measurements and model predictions are both subject to
uncertainty, the parameter estimation problem is essentially a statistical problem.’’
More than this, geostatistics has come with the promise to quantify the uncertainty
of hydrogeological simulations: ‘‘…geostatistics has been integrated with hydro-
geology to provide methods for quantifying uncertainty where estimation, inter-
polation, and extrapolation of hydrogeologic attributes are required between and
beyond data locations’’ (Kitandis 1997).

This widespread notion that statistics is a sufficient tool to overcome paucity of
geological data and provide provable estimates for the uncertainty of simulation
results is a fallacy; geostatistical estimates are strongly conditioned by many
assumptions. As demonstrated below, some of those assumptions are impossible to
test, and some are known to be invalid. This means that the accuracy of geosta-
tistically acquired results cannot be proven. In this sense, the deterministic and
geostatistical approaches do not differ. Moreover, the geostatistical approach
makes use of all or nearly all the assumptions of the deterministic one, plus many
others. This alone makes it more vulnerable. Thus, averaging processes popular in
geostatistical applications and resulting in the harmonic, geometric, or arithmetic

V. Gorokhovski, Effective Parameters of Hydrogeological Models,
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means of actual hydraulic conductivity and transmissivity values are not related to
the probability distributions of these properties. They emerge from deterministic
formulations of some filtration problems, as shown in Chap. 1. When a specific
averaging process is defined (deterministically) and the probability distributions of
the pertinent properties are known, then we can use statistical methods to estimate
the errors of those deterministically inferred parameters and the simulation results.
So, if we reject the deterministic approach, the geostatistical estimates do not make
sense. However, if we accept it, we can still doubt its geostatistical extensions, if
they are based on unverified or knowingly false assumptions.

Even if the statistical assumptions are valid, the geostatistical approach may be
irrelevant. Thus, real groundwater flows always depend on the hydraulic con-
ductivity and its variability. However, simulated hydraulic heads are not affected
by the hydraulic conductivity; if the geological model is homogeneous, filtration is
steady state and governed by the Laplace equation with prescribed hydraulic heads
as boundary conditions (Eq. 1.5). This shows that the geostatistical formulations of
some real problems can be meaningless. Therefore, before applying them, we must
demonstrate their relevance to the problem at hand. Mentioning the paucity and
inaccuracy of the pertinent information is insufficient. It is the same situation as
with numerical algorithms: not every algorithm is unstable, but because unstable
algorithms exist, we must demonstrate each time that the algorithm which we
apply is stable when applied to the given problem.

It must be noted that the proponents of geostatistics understand the artificial
nature of the introduction of geostatistics into hydrogeology. Thus, Review (1990)
holds: ‘‘It should be noted here that the decision to select random functions to
model a regionalized variable is only a matter of analytical convenience. This does
not imply that the phenomenon under study is indeed random.’’ Indeed, the
hydraulic conductivity K(x) in the problem leading to Eq. 1.1, reproduced here for
convenience,

d KðxÞhðxÞ dhðxÞ
dx

� �

dx
¼ 0;

is unique for a given site and is not a random function. The fact that the
measured values of K(x) carry random errors does not make K(x) a random
function either. We can try to minimize the errors resulting in estimation of the
thickness h(x) of the aquifer or of flux Q. To this end we can use, say, a
regression equation approximating K(x) by a least squares regression applied to
available measurements of the hydraulic conductivity. In so doing, we are still in
the frame of the deterministic approach. However, when we assume that K(x) is a
random function, we assume that what we observe within our site is only one
realization of the function K(x). Since we have only one, deterministic distri-
bution of the hydraulic conductivity, the following question arises: Where are the
others? They must belong to other, analogous, sites. So, we assume that our site
is an element of an ensemble comprising many sites. The goal becomes to find
the stochastic characteristics of that ensemble and than apply them to our one. To
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solve this additional problem, we have to resort to a number of additional
assumptions that can be as convenient and as false as the assumption that K(x) is
a random function.

Now let us assume that we have finally solved our problem; we got some result,
which may be practically acceptable. Can we prove that our estimate of the
uncertainty of our result is true? We can, if all our assumptions are true, but not if
even just one of them is false or untested. So, let us consider some geostatistical
assumptions and practice in more detail.

3.1 Ensembles

The concept of an ensemble is fundamental to the geostatistical approach (Dagan
1986). Conclusions, statements, and results of the statistical approach are related to
ensembles or to their elements with respect to ensembles: We estimate expected
values of properties and other statistics for an ensemble, the property’s correlation
and autocorrelation functions within the ensemble, the probability of a quantity
characterizing an element to be within some range of the ensemble values of the
same nature, etc. To evaluate an element belonging to an ensemble means to place
it within the ensemble. To this end, we must know the statistical properties of the
ensemble. If they are not known, but many other elements of the ensemble are
available, we can try to use the available elements and statistical methods to
evaluate the ensemble properties and then proceed with the element of interest.
However, in geostatistical applications to hydrogeology, the site we have to work
with is only one available element of an unknown ensemble. It is unique, and it is
not obvious where to look for and find the others. To overcome this conceptual
difficulty, or rather to forget it, geostatisticians suggest that ‘‘the ensemble does not
actually exist’’ (Dagan 1986).

The statistical approach does not make much sense if there is no ensemble. So,
we need to make up the ensemble, one element of which is our site. Since the
unknown ensemble ‘‘is only a matter of analytical convenience,’’ making it up is
not an issue. Following Dagan (1986), we assume that the made-up ensemble is
stationary (ergodic). This permits one to ascribe to the made-up ensemble the
statistical properties of the ‘‘random’’ functions observed at our site. Note that,
even if an observed function exhibits some kind of stationarity within our site, the
statement about stationarity of the made-up ensemble is still just a hypothesis
which is impossible to test, since only one element (one realization of the pertinent
random functions) is available.

Thus, the site of interest, the only available element of the made-up ensemble,
is assigned to be the mathematical expectation (the mean) of the made-up
ensemble. The flow within the site becomes the mean flow for the made-up
ensemble, and all geostatistical characteristics of the made-up ensemble can be
estimated based on the available observations on our site. In this way, we obtain,
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or rather make up, all necessary geostatistical data and can proceed to evaluate the
uncertainty of the results of our predictive problem.

Unfortunately, for the reasons discussed in Sect. 3.5 and Chap. 4 and well
known to geostatisticians, the use of the mean characteristics of an ensemble does
not warrant the mean response of the ensemble on a given impact. However, let us
forget about this for a while and ask the following question: How probable is it that
the only sample from an ensemble coincides with the ensemble’s mean? The
answer is obvious: not very. However, does this question make sense? For our
convenience, we constructed our made-up ensemble in such a way that this should
happen for sure.

However, what does one have to do, if a property, e.g., the hydraulic con-
ductivity as a function of coordinates, is not obviously stationary? No problem
again: Dagan (1986) suggests generalizing the definition of stationarity, ‘‘allowing
for instance for polynomial trends and stationary increments.’’

The polynomial trend is the universal and most convenient tool for describing
regional trends besides, maybe, Fourier decomposition. We can try polynomials of
different order until we find a polynomial that satisfies our taste. The only limi-
tation is the maximal order of the polynomial, which depends on the number of
available observations. The polynomial of maximal possible order, though very
attractive since its residuals equal zero, is not stable with respect to additional data.

In general, the mathematical description of a trend is a compromise between
fulfilling the following requirements:

1. Reasonable considerations about the geological structure of the site.
2. Simplicity depending on the amount of data available and the intended appli-

cation of the trend description.
3. Minimization of the sum of the squared residuals.

The first two of these requirements are obviously subjective. The third follows
from the first two. Thus, our judgment about the mathematical description of
regional trends and even their existence are hypotheses that are impossible to
prove. They may be more realistic than our hypotheses related to the random
functions and the made-up ensemble, but still remain hypotheses.

Figure 3.1 illustrates the possibility of polynomial trend descriptions (data from
Bondarik 1974). Only polynomials of 1st, 2nd, 7th, and 14th orders are presented
in Fig. 3.1. The polynomial of 14th order is not stable, and the goodness-of-fitness
criterion is not defined for it. Instead, we could use linear interpolation between
neighboring observations. However, then our regional trend becomes nondiffer-
entiable at points of observation. Polynomial trends have the advantage of being
differentiable everywhere.

So we can use 15 polynomials, including the polynomial of zeroth order, that is,
the mean value of the observations, and many other mathematical representations
to describe the regional trend and, according to Dagan (1986), convert our made-
up ensemble into a stationary one. However, can we prove that our choice is
correct? Even if some of the polynomials can be practically close within the region
of interest, the situation remains the same: just the number of alternatives
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decreases slightly. However, we would be extremely lucky if the true trend were
present in our set of alternatives. Note also that, if we need derivatives of the
regionalized variable, we should understand that different representations of the
trend can lead to essentially different derivatives.

I do not know about you, but I feel some discomfort, since the made-up
ensemble remains arbitrary. It seems that Dagan feels the same. So, he recom-
mends ‘‘to check a posteriori whether the stationary assumptions are met at a given
degree of significance’’ and to use ‘‘some prior information derived from similar
sites’’ (Dagan 1986).

I understand his first recommendation as testing the statistical homogeneity of
the residuals. I doubt that we have enough data for real testing of statistical
hypotheses in most cases, and such testing will make our choice less arbitrary.
Indeed, there is nothing more statistically homogeneous than the residuals for the
trend represented above by the polynomial of 14th order with each residual equal
to zero. However, do you believe that it represents the real trend? In general,
statistical testing of hypotheses is not a proof of their validity or invalidity; it only
creates some basis for decision-making, which is still arbitrary. ‘‘A given degree of
significance’’ means the probability to reject erroneously a tested hypothesis,
usually called the null hypothesis. However, the null hypothesis ‘‘is never proved
or established, but possibly disapproved’’ (Fisher 1935). In other words, if a
hypothesis passes statistical testing at a given degree of significance, it means that
we do not have enough evidence to reject it based on the criterion corresponding to
the given degree of confidence. A number of different hypotheses able to pass the
same test may exist. We know nothing about the probability of accepting the null
hypothesis when it is false. However, this is essential for evaluating the uncertainty
of our simulation results (see Sect. 3.4).

Dagan’s suggestion to use ‘‘some prior information derived from similar sites’’
seems to be an attempt to include the only available element in a really existing

Fig. 3.1 Polynomial trends
based on the same factual
data represented by stars
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ensemble and is a good idea. To do this, we must define what similarity between
hydrogeological sites and impacts means, how it can be evaluated, and already
know similar sites and their responses to the impact at hand. To my knowledge the
method of geological analogy (Rozovsky and Zelenin 1975) is the only example of
such an approach. Interesting conceptually, it has few practical applications, since
it requires the existence of similar sites with similar impacts and already observed
responses to those impacts.

Thus, we are able to make up a number of ensembles to which our site could
belong. However, this does not change the situation: the choice of the ensemble
remains an untested hypothesis.

3.2 Elements

Ensembles are collections of elements. The elements are bearers of properties or
characteristics. Thus, when statisticians study the height, weight, or longevity of a
population, the elements are human beings. When they study income, the elements
can be families, and so on. To make the results more accurate and interpretable,
statisticians make such ensembles as statistically homogeneous as possible: they
partition the ensembles by gender, race, age, number of family members, level of
income, etc. The fictitious analogous sites discussed in the previous section are
also elements characterized by different random functions. Since geostatisticians
consider all such elements to be analogous to the site at hand, let us restrict
ourselves to properties within the site only.

In geology, and in particular in hydrogeology, the role of the element car-
rying a property is assigned to the representative elementary volume (REV).
Following the established tradition (Kolomensky and Komarov 1964; Bear 1972;
Brown et al. 2000), let us introduce the notion of REV using porosity. In
principle, porosity can be measured on slices of media, applying the Bernoulli
trail; that is, if a point selected at random falls into a pore, the result of the
measurement xi is assigned equal to 1 (xi = 1); otherwise it is xi = 0. If we
repeat this procedure n times, than the porosity h of the sample is evaluated as
the mean of the measurements: h ¼

Pn
i¼1 xi=n: Its variance, r2 ¼ ðhð1�

hÞÞ=ðn� 1Þ; decreases with increasing number of measurements. The standard
procedure of evaluating the porosity on samples of finite volume is more con-
venient, since each such evaluation substitutes for manifold measurements on
slices. Nevertheless, the variation of the porosity still depends on the sample
volume. A possible pattern of the change of estimated mean porosity for
samples of different volume is shown in Fig. 3.2. The sample volume for which
the variance of the porosity becomes negligible is assigned as the REV. If we
continue to increase the sample volume, the mean or mathematical expectation
of the porosity can start changing again. These changes are usually attributed to
the fact that the volume becomes too large and includes some heterogeneous
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macroscopically changes in the structure of the medium; it becomes statistically
and geologically heterogeneous.

The notion of REV defines the element bearing a property, i.e., its point value,
and makes the property continuous in space. It is possible that different repre-
sentative elementary volumes exist for different properties. The minimum of those
volumes can be considered as the REV for all pertinent properties.

In the case of porosity, changing the sample volume leads to change of the
variance r2: This phenomenon is called by Rats (1968) a ‘‘scaling effect of the
second kind.’’ It is well known to statisticians (Yule and Kendall 1950). Some
properties have ‘‘scaling effect of the first kind’’ (Rats 1968). The means of such
properties depend on the volume of the samples on which they are measured. For
example, the mean of the strength of soil and rock decreases with increasing
sample volume (Kolomensky and Komarov 1964) and the mean hydraulic con-
ductivity increases with increasing sample volume (Rats 1968). According to
Bolotin (1965), the strength of a sample is defined by the weakest element of its
structure. The probability of having such elements in a sample increases with
sample size. Rats (1968) extended this explanation to hydraulic conductivity: the
hydraulic conductivity is defined by the most conductive element in a sample. The
probability of finding such structures within a sample is larger for larger samples.
One of the Weibull probabilistic distributions relates the mean of the hydraulic
conductivity obtained on samples of volume V with the mean conductivity of a
reference sample of volume V0. Thus, the results obtained by testing different
volumes of soils and rocks may be different statistically even for statistically
homogeneous media, just because of differences in the volume of samples, and this
can cause some problems with defining the REV.

The notion of REV is convenient in laboratory studies when the volume of
samples can be controlled. However, here we are most interested in cases in which
we can control neither the volume nor the shape of the bearers of the obtained
results, as happens, for example, in pumping tests. To deal with such situations,
Rats (1968), Dagan (1986), and many other hydrogeologists have suggested a
simple and straightforward approach. They introduce different scales of

Fig. 3.2 Definition of
representative elementary
volume for porosity
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heterogeneity and use these scales as elements of corresponding ensembles. Thus,
Dagan (1986), speaking about the hydraulic conductivity, says that a point on the
local scale has dimension of order 10-1–100 m. These points are characterized by
results obtained on extracted cores and by slug tests. At the regional scale,
according to him, a point has dimension of the order 101–102 m.

Such assignation of the elements carrying property values is arbitrary in
essence. Thus, it is not clear why the results yielded on cores are of local and not
laboratory scale. Pumping tests involve different volumes of soils and rocks,
depending on geological settings, duration, patterns of the tests, and interpretation
models. For example, 3-h, 3-day, 3-week, and 3-month pumping tests involve
different volumes of geological media. Then the question arises: should we
introduce different scales for the results of pumping tests of different durations, and
if so, how many scales should we have and how should we define them? The
results of pumping tests depend on interpretation models. We can arbitrarily
change these and obtain different results and bearers of the hydraulic conductivity
or transmissivity. For example, if we consider an aquifer as homogeneous and
unconfined in the plane, and assign the boundary conditions at infinity, then the
resulting hydraulic conductivity or transmissivity formally relates to the entire
aquifer, which is not realistic. If we had a developed monitoring network, we could
limit the infinity using the distances to the closest monitoring wells that do not
respond to the pumping. Without such a network, we can do what geophysicists
usually do, namely to call infinity the distance exceeding the thickness of the
aquifer by ten times, or something similar. If we apply a different interpretation
model, say a pumping test conducted near a river well connected to the aquifer, we
may have a quite different situation. When the hydraulic conductivity and trans-
missivity are defined by model calibration, the elements bearing the results of
calibration depend on the structures of the calibrated models and the formulation
of the model identification problem (Gorokhovski 1977; Yeh and Yoon 1981; Yeh
1986).

The scales and their interaction are confusing, at least for me. So, it is inter-
esting to see how geostatisticians deal with them. For example, Zimmermann et al.
(1998) use in their work estimates of the hydraulic transmissivity at 41 boreholes
obtained through slug tests, local pumping tests, and three regional-scale pumping
tests lasting from 1 to 3 months. The obtained transmissivity values span seven
orders of magnitude, from 10-7 to 100 m2/s. Nevertheless, all these transmissivity
values are considered as a collection coming from the same ensemble (Zimmer-
mann et al. 1998, Table 2a). Thus, the scaling is just ignored. I assume that this
was done because it was impossible to infer serious statistical conclusions from the
results obtained through three regional-scale pumping tests. The same happens if
we separate slug tests and local pumping tests. (I do not believe that serious
statistical conclusions can be supported by 41 available values either).

By the way, Zimmermann et al. (1998) state that ‘‘Large-scale pumping tests
indeed suggest that narrow, relatively conductive fractured zones are possible in
some areas.’’ This is possible. On the other hand, the larger transmissivity values
may be due to a scaling effect of the second kind. Another possible explanation is
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that the averaging of lower-scale hydraulic transmissivity values in the regional
ones is not of statistical nature: the regional-scale transmissivity values are not
weighted averages of the smaller-scale ones with nonnegative weights summing to
one. Both of the above explanations contradict the statements of Dagan (1986),
Moore and Doherty (2006), and many others that the results of regional pumping
tests are averages of locally scaled properties. Review (1990) recognizes the
existence of negative weights: ‘‘Negative weights (often, but not always) occur for
points that are ‘‘shadowed’’ by closer points.’’ The authors do not explain what
exactly ‘‘shadowed’’ means or why the negative weights occur. Isaaks and
Srivastava (1989) relate the appearance of the negative weights in their Eq. 17.1 to
the values of secondary data without any explanation of what the ‘‘secondary data’’
means. The appearance of the negative weighting factors follows also from
Eq. 8.25 presented by Kitandis (1997), also without explanation. (The mechanism
of the appearance of the negative weights is demonstrated in Chap. 5).

Unfortunately, the notion of an element in hydrogeological geostatistics is as
vague as the notion of an ensemble. Both are ‘‘a matter of analytical convenience.’’

3.3 Sampling at Random

Sampling at random is one of the most important requirements for making
provable statistically inferences, but what is sampling at random? Gnedenko
(1963) writes that ‘‘many authors have arrived at the conviction that in the case of
infinite number of outcomes, no definition of probability can be given that is
objective and independent of the method of calculation.’’ He gives several
examples of problems which, depending on the operational definition of sampling
at random, actually lead to different problems with different solutions, and
describes the real-life situations relevant to each solution. One of them, called
Bertrand’s paradox, is cited here.

The problem is formulated as following: A chord of a circle is chosen at
random. What is the probability that its length exceeds the length of a side of the
inscribed equilateral triangle?

Case 1 By consideration of symmetry, the direction of the chord can be fixed at
point A in advance. The chords of this direction exceed the length of a side of the
inscribed triangle if they intersect the diameter that is perpendicular to them within
the interval CC0:The length of this interval is equal to the radius of the circle,
r (Fig. 3.3, case 1). Since the diameter of the circle is 2r, the probability for the
chord length to exceed the side of the equilateral triangle is equal to 1/2.

Case 2 As in case 1, we can fix one end of a chord in advance. The tangent to
the circle at this point and two sides of the inscribed equilateral triangle with
vertex at this point form three angles, each equal to 60� (Fig. 3.3, case 2). Only the
chords falling within the middle angle are favorable cases. Thus, by this method of
computation, the probability we are looking for is equal to 1/3.
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Case 3 We also can fix the positions of a chord by indicating its midpoint
position. For chords to exceed the length of a side of the inscribed equilateral
triangle, the midpoint must lie within the concentric circle with radius OA = r/2
(Fig. 3.3, case 3). The area of this circle is equal to 1/4 of our circle. Therefore, the
probability we are looking for is equal to 1/4.

Depending on how the notion ‘‘at random’’ is defined, we actually have three
different problems with three different solutions. Gnedenko (1963) provides real-
life situations relevant to each of these three formulations of the notion ‘‘at
random.’’

Thus, good practice would dictate that, when formulating a geostatistical
problem, the sampling at random must be defined operationally, and its relevance
to the problem formulation must be demonstrated. This has never been done in
hydrogeology. Moreover, the sampling systems in hydrogeology are almost never
random; they are based on professional experience and understanding of hydro-
geological surroundings. Thus, when prospecting for groundwater resources, hy-
drogeologists allocate wells where they anticipate to find water. They do not
conduct pumping tests where low hydraulic conductivity is suspected. This is
sound and effective hydrogeological practice. However, the results based on such
sampling systems are not representative statistically: they are biased.

3.4 Probability Distributions

Almost all theoretical and practical developments of geostatistics in hydrogeology
are based on the assertion that hydraulic conductivity and transmissivity have
lognormal probabilistic distribution. This assertion is very convenient, greatly
simplifying calculations. However, it reminds one of the well-known joke that
physicists consider that the universality of the normal distribution of probability is
a theorem proven by mathematicians, while mathematicians think that it is an
empirical law established by physicists. Likely, hydrogeologists and geostatisti-
cians consider the lognormality of hydraulic conductivity in the same way.

Fig. 3.3 Bertrand’s paradox
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In fact, according to Review (1990), there exist many different probability
distributions of the hydraulic conductivity and transmissivity. Thorough studies
conducted in the Soviet Union (Borevsky et al. 1973) have revealed that proba-
bility distributions of hydraulic conductivity can be divided into three, approxi-
mately equal groups: normal, lognormal, and those which could not be described
as normal or lognormal.

As discussed above, the volumes characterized by values of hydraulic con-
ductivity are known only if they are obtained in laboratory tests, whereas the
elements characterized by hydraulic conductivity values obtained by slug and
pumping tests are not. Their volume and shape depend on the duration of the tests
and the geological surroundings. In which case, the hydraulic conductivity of what
do the probability distributions describe?

The common assertion that the hydraulic transmissivity has the same distri-
bution as the hydraulic conductivity just adds confusion. For example, in the
case described by Zimmermann et al. (1998), both have lognormal distribution
of probabilities. However, the transmissivity is a product of the conductivity and
the thickness of the aquifer. Therefore, the thickness should have some special
distribution for the product of the thickness and the conductivity to have the
same kind of probability distribution as the conductivity. I have never heard
about a study of the probabilistic distribution of the thickness of an aquifer or
aquifers.

Statements about distributions of hydraulic conductivity are usually based on
testing a hypothesis about its probabilistic distribution at ‘‘a given degree of
significance.’’ Let us consider this procedure more closely. Let us assume that we
have an ensemble whose elements bear random values of property X which
probability density function is p0(x) (Fig. 3.4). To test our hypothesis, let us call
it H0 and perform the following simple procedure. We assign some criterion xa.
Then, we sample the ensemble at random. The obtained sample is characterized
by value xs. If xs [ xa, we conclude that our hypothesis that X has the probability
density function p0(x) is wrong and reject it. Otherwise, we accept the
hypothesis.

Fig. 3.4 Testing hypothesis
H0 based on a degree of
confidence
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In practice we usually assign not xa, but a, the degree of significance,

a ¼
Z1

xa

p0ðxÞdx ð3:1Þ

and calculate xa based on Eq. 3.1. In technical applications, the degree of sig-
nificance is usually assigned as 0.1, 0.05, or 0.01. If our selection of the sample has
been random, than the probability of obtaining xs C xa is small. We expect that an
event with low probability is not likely to happen in a single experiment. However,
it has happened. Therefore, our assertion that value xs has low probability likely is
wrong. So, we reject the hypothesis that X has the probability density function
p0(x).

However, rare events happen from time to time, and rejecting hypothesis H0

may be a mistake. The probability of such a mistake is a. The degree of signifi-
cance is the probability of erroneously rejecting the hypothesis which we are
testing when it is true. In doing so, we commit a so-called type I error. Obviously,
assigning the degree of significance is arbitrary. If we are critical with respect to
the hypothesis, we can increase a, moving our criterion xa to the left. This makes
rejecting the hypothesis more probable. If we like the hypothesis, we can decrease
a and move xa to the right. This decreases the probability of making a type I error.
Anyway, by assigning some degree of significance we establish a criterion for
recognizing whether the obtained evidence is sufficient to reject our hypothesis,
and no more than this.

However, what does a degree of significance say about the possibility of
committing a type II error, i.e., accepting hypothesis H0 when it is wrong? The
answer is: not much. Common sense suggests that, in our case, by moving xa to the
right and decreasing a we relax the condition to accept our hypothesis. Therefore,
the probability, b, of committing a type II error is increased. If we increase a,
moving xa to the left, we increase the probability of a type I error and decrease the
probability of a type II error. That is all. We cannot evaluate b in a quantitative
way unless we have the probability density function p1(x) of an alternative
hypothesis H1.

Let us assume that we have an alternative hypothesis H1 with probability
distribution function p(x) = p1(x) (Fig. 3.5). Only one of these two hypotheses
is true. The procedure for testing the hypothesis is the same as above.
We assign a criterion. It seems to be natural, but not mandatory, to pick as the
criterion value x01 for which p0(x01) = p1(x01). Then, we sample at random
ensemble X and obtain the sample for which x = xs. If xs [ x01, we conclude
that hypothesis H0 is wrong, reject it, and consequently accept hypothesis H1.
If xs \ x01, we accept hypothesis H0, rejecting hypothesis H1. The probability
of erroneously rejecting hypothesis H0, i.e., the probability of making a type I
error, is
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a ¼
Z1

x01

p0ðxÞdx: ð3:2Þ

The probability of erroneously rejecting hypothesis H1 is

b ¼
Zx01

�1

p1ðxÞdx: ð3:3Þ

Erroneously rejecting hypothesis H1, we erroneously accept hypothesis H0.
Therefore, b is the probability of making a type II error, to accept erroneously
hypothesis H0 when it is wrong. So the probability for hypothesis H0 to be true is
equal to 1 - b. This value is called the power of the criterion.

Our choice of the value x01 does not consider the further use of the obtained
result. Having some additional information, we can select a different value x01. If
we move x01 to the right, we decrease the probability of making a type I error, but
increase the probability of a type II error. If we move it to the left, we get the
opposite effect: we increase the probability of a type I error and decrease the
probability of a type II error. If we knew the losses (lossa and lossb) associated
with errors of both types, we could formulate the problem of finding x01 as a
problem of optimization; that is, we could select x01 in such a way as to minimize
the goal function representing the mathematical expectation of the losses:

loss ¼ a lossa þ b lossb: ð3:4Þ

This provides about the most objectivity we can achieve, when performing
hypothesis testing in the case of a simple alternative.

Hypothesis testing becomes more complicated in the case of many possible
alternatives. It would be solvable still, if we could compile a complete list of
alternatives weighted by their probabilities to be true. Say, we assume that the
hydraulic conductivity has a lognormal distribution, but what is the complete list
of mutually incompatible alternatives to our hypothesis? And how can we weight
the hypotheses, including H0, to be true?

Fig. 3.5 Testing a hypothesis: simple alternative
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The point here is that, when making a choice based on a given degree of
significance, we cannot evaluate the uncertainty associated with the choice. We do
not know the elements to which values of the hydraulic conductivity relate, and we
cannot compile a complete list of the possible alternative probability density
functions and objectively formulate the objective function for making this choice.
Therefore, we never know the probability that the accepted hypothesis is false.
Or coming back to the challenge of evaluating the uncertainty of the results of
hydrogeological modeling, we never know the uncertainty associated with the
acceptance of our hypotheses. This relates to all parameters involved in under-
ground water flow.

3.5 Effective Hydrogeological Parameters

To produce predictions related to underground flow and contaminant transport
based on solving the pertinent mathematical equations and their systems (mathe-
matical models), we have to know the coefficients of the mathematical models
continuously, that is, at each point of the geological object of interest and at each
instant of the period of the predictions, as well as the corresponding initial and
boundary conditions. Since this is impossible, simulation results never reproduce
reality exactly. In the geostatistics approach the goal is to reproduce an average
behavior of all processes of interest related to the underground flow: the hydraulic
heads, fluxes, contaminant plume contours, travel time, etc. It is assumed that this
can be achieved using some lump values of the pertinent parameters. Thus, instead
of noncountable (infinitely large) sets of property values, small finite numbers of
them can be used (Cooley 2004). These values are called effective parameters.
Since the goal of the geostatistical approach is to predict some average behavior of
the underground flow, it seems natural to use some statistics of the pertinent
characteristics as effective parameters.

It was believed at an early stage of geostatistics development that the statisti-
cally inferred effective hydraulic conductivity is effective in a broad spectrum of
hydrogeological situations, since ‘‘if there is no unique best effective hydraulic
conductivity…, the predictive capability of the model must be questioned’’
(Gomez-Hernandez and Gorelick 1989). Dagan (1986), defining the effective
conductivity as the value that satisfies exactly the Darcy law for uniform steady-
state average flow, holds that the effective hydraulic conductivity, Kef, is bounded
by the harmonic mean,KH ¼ exp lY � r2

Y=2
� �

; and the arithmetic mean,KA ¼
exp lY þ r2

Y=2
� �

; where lY and r2
Y are the geometric mean and the variation of

the natural logarithms of the observed values of the hydraulic conductivity K:

KH�Keff �KA: ð3:5Þ

He also holds that, for three-dimensional flow in isotropic media,
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Keff ¼ KG 1þ r2
Y=6

� �
; ð3:6Þ

where KG ¼ expðlYÞ is the geometric mean.
It is interestingly that, according to Dagan (1986), Eq. 3.6 ‘‘is of a rather

academic interest,’’ since ‘‘we generally measure directly a space average of
K by pumping tests’’ and ‘‘under certain limiting conditions, yet to be eluci-
dated in a quantitative manner, this space averaging is close to Kef.’’ The
concept that the results obtained by pumping tests on some scaling level are
averages of the hydraulic conductivity values belonging to the preceding scale
level is shared by most geostatisticians (Review 1990; McLaughlin and
Townley 1996; Cooley 2004; Moore and Doherty 2006, and many others).
However, as mentioned above, the results of pumping tests depend on the
chosen interpretation models, which are arbitrary in principle. It is hard to
believe that the choice of the interpretation models does not affect the character
of ‘‘the space averaging.’’

The concern of Gomez-Hernandez and Gorelick (1989) regarding the predictive
capability of a model if there is no unique value of the effective hydraulic con-
ductivity happened to be justified. Beven (1989) writes that many studies ‘‘have
concluded that it is not possible to define a consistent effective parameter value to
reproduce the response of a spatially variable pattern of parameter values.’’
Neuman and Orr (1993) demonstrated that ‘‘an effective hydraulic conductivity
does not generally exist.’’ They also ‘‘demonstrated numerically that in two
dimensional mean radial flow an effective hydraulic conductivity may increase
from the harmonic mean of K(x) near interior and boundary sources to the geo-
metric mean far from such sources.’’ However, contrary to the statement of
Gomez-Hernandez and Gorelick (1989), the predictive capability of predictive
models is not questioned by geostatisticians.

Cooley (2004), recognizing the absence of unique effective values of the
hydraulic conductivity, explains it, as do many other geostatisticians, with the fact
that hydrological mathematical models are nonlinear with respect to the hydraulic
conductivity. To understand this, let us consider a simple example. Let some
variable of interest q be a linear function of the property k:

q ¼ ak þ b:

Let k take values k1 and k2. Than, the arithmetic average value of q is

�q ¼ ak1 þ ak2 þ 2b

2
¼ ak1 þ ak2

2
þ b ¼ a

k1 þ k2

2
þ b ¼ a�k þ b:

So, we can evaluate the arithmetic mean value of �q and its statistical charac-
teristics by applying the arithmetic mean value �k and its statistical characteristics.

Now, let variable h be a quadratic function of k:

h ¼ ak2 þ b:
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Then, the arithmetic mean value, �h; is not equal to its estimate ĥ calculated with
the use of the arithmetic mean �k:

�h ¼ ak2
1 þ ak2

2 þ 2b

2
¼ a

2
k2

1 þ k2
2

� �
þ b 6¼ a�k2 þ b ¼ a

k1 þ k2

2

� �2

þb ¼ ĥ:

Indeed,

�h� ĥ ¼ a

2
k2

1 þ k2
2

� �
� a

k1 þ k2

2

� �2

¼ a

4
k2

1 � 2k1k2 þ k2
2

� �
¼ a

4
k1 � k2ð Þ2:

Unless k1 = k2 or a = 0, making h constant,�h 6¼ ĥ; due to the nonlinearity of
the mathematical models. So, different variables of interest can require different
effective values of the same parameters. Of course, this example is an oversim-
plification of real-life situations, just to demonstrate in the simplest way how
nonlinearity works.

No doubt, the nonlinearity of hydrogeological problems contributes to the fact
that the effective parameters are not universal. However, an even greater part in the
nonuniversality of statistically effective parameters is played by the phenomenon
of problem dependence of model identification, which in turn is related to the fact
that the structures of geological models differ from the structures of real geological
objects (see Chap. 4).

3.6 Meaning of Geostatistically Inferred Results

Let us assume that all our geostatistical assertions about the site of interest are true
and that we have obtained true results. What do they mean really? For example, an
insurance company evaluates the average longevity for a segment of population
and does this correctly. However, can the company predict what will happen to a
person with the average characteristics of a given segment of the population? The
answer is no. The segment of population to which my parents and my talented
colleague belonged had average longevity of about 60 years. My parents passed
away at ages 89 and 92 years and my colleague at 40 years.

Meteorology, with its much longer historical records, numerous comparisons of
statistical generalizations with real facts, and much better developed observational
networks and predictive techniques than hydrogeology, makes a quite expressive
illustration of this point. Thus, a 100-year flood event statistic refers to the
disastrous floods which, in a long sequence of years, occur on average once per
100 years; that is, it has probability equal to 0.01 to happen during a 1-year period.
Nevertheless, two such floods happened in California during just the first 3 months
of 1995, and then again in 1997. The possibility that climate change or some other
factors depriving the long previous series of observations of their statistical
meaning for future predictions makes the situation even worse.
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In the same way, the geostatistical approach, if all its assumptions are true,
leads to results that represent the average response of a made-up imaginary
ensemble. They do not relate to the unique object used to make up the ensemble, or
to what may happen to that object.

3.7 Geostatistics and Uncertainty

As Hornung (1990) puts it, ‘‘One cannot substitute lack of theory and/or data by
sophisticated mathematical models for parameter identification.’’ Developing such
complex theories as hydrogeological geostatistics, or proving new and beautiful
theorems, is challenging and gratifying. However, how practical are those
achievements? V.N. Tatubalin, a colleague of A.N. Kolmogorov and B.V. Gne-
denko in the Department of the Probability Theory, Moscow State University,
USSR, who often consulted hydrogeologists and geological engineers in the 1960s
and 1970s, used to say: ‘‘You are looking for a razor. But considering amount and
quality of your data, you would better learn to work with a chopper.’’

Shvidler (1963, 1964), one of the pioneers in the application of random func-
tions to underground flows, gives the best (to my knowledge) practical example,
applying them to oilfields consisting of 60–80 wells located on a relatively small
territory. He describes the procedure of geostatistically solving the filtration pro-
blem in the following way (his notation is substituted with the one used in this
text):

1. From experimental data, one realization of the random function K(x) is constructed.
2. From one realization, the appropriate functional characteristics—mathematical

expectation and autocorrelation functions of (the hydraulic conductivity) K(x)—are
determined.

3. Based on them, sufficiently many realizations of K(x) are constructed.
4. Any algorithm whatsoever for solving the corresponding boundary-value problem for

each realization of K(x) is applied.
5. From the set of boundary-value solutions obtained, the fundamental characteristics of

the random function h(x) are computed.

To realize steps 1–3, he applied the assumptions of stationarity of the observed
random function K(x), suggested later by Dagan (1986). To realize step 4, he
applies different algorithms including analytical or numerical solutions, the
method of small perturbations, the random walk, and the Monte Carlo simulations,
all of them in deterministic mode. Step 4 provides also the solution of the problem
of the nonlinearity of the original deterministic problem. In step 5, Shvidler
usually restricted himself to calculating the mean and variation of the yield of the
oil pumping wells. The latter was usually based on the Chebyshev inequality: if
k[ 1 is an arbitrary positive real number, q is a random variable, �q is its mean,
and rqis its standard deviation, then the probability of the event q� �qj j[ krq is
smaller than k-2, that is,
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P q� �qj j[ krq

� 	
\k�2: ð3:7Þ

The Chebyshev inequality does not depend on the probabilistic distribution of
the random variable q and permits evaluation of two-sided confidence intervals for
a given confidence level and vise versa, though it overstates the confidence levels.
For example, an arbitrary distributed variable q lies in the interval �q� 3rq with
probability close to 0.9.

Shvidler states also that it is necessary to have tens and in some cases even
hundreds of observations for reliable derivation of correlation functions. (In his
real-life examples, the number of wells is always above 60.) Since, in many cases,
we do not have sufficient information for a valid determination of the statistical
characteristics of the random functions, we have to choose between the deter-
ministic and stochastic approaches. However, he writes: ‘‘It is quite obvious that
the statistical model should be preferred as being more general.’’ It may be, but not
for me.

Shvidler (1963, 1964) never mentioned that the statistical approach provides
provable estimates of the uncertainty of its results. He rather considers it as a way
to systematize and optimize modeling: Steps 1–3 above are preparations for
step 4, which is essentially deterministic. It is possible that the geostatistical
approach can be useful in this sense sometimes, for example, in a context of model
equifinality (Beven and Freer 2001). However, what is discussed here is not the
comparison of the computational efficiency of the two approaches but the inability
to obtain provable estimates of the uncertainty of the results of the engineering
approach and, as if, the ability of the geostatistical one to provide such estimates.

It is a common and sound practice in mathematics to use convenient assump-
tions and methods such as Lagrange multipliers or perturbation methods to
facilitate analytical solution of many problems. When analytical solutions are
impossible, finite-difference and finite-element methods are convenient tools to
yield numerical solutions. Statistical concepts and Monte Carlo simulations are
sometimes used as a convenient tool to solve deterministic problems such as
evaluating integrals and solving differential equations. The Buffon needle problem
of the value of p estimation is a famous example of the application of the Monte
Carlo method (Gnedenko 1963; Gentle 1985). However, all such applications
include demonstrations that the employed conveniences actually lead to the
solution of the original problem; that is, the yielded solutions converge to the true
solutions if the number of experiments, or nodes in case of numerical methods,
goes to infinity.

This is not the case for hydrogeological applications of geostatistics in which
the word ‘‘random’’ is like the magic spell ‘‘open sesame’’: one proclaims what-
ever one wants as random and then is free to proceed. In geostatistics, analytical
convenience means complete substitution of the problem needing solution by a
vaguely related problem which seems easier to solve. The deterministic problem of
finding space–time distributions of the hydraulic heads caused by a given impact
within a given site is replaced by the problem of evaluating the average
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distributions of the hydraulic heads or fluxes belonging to a made-up ensemble.
The reason for the substitution is the impossibility of estimating the error of the
results from the deterministic formulation of the problem. To solve this new
problem, an ensemble is made up which consists of undefined elements and
actually even does not exist, random functions are applied to the phenomena which
are not random, and many assumptions are employed which are not properly
tested, or not tested at all, and ‘‘generally false and known to be false’’ (Morton
1993; Beven 2005).

The geostatistical approach may render the results acceptable practically.
However, contrary to the statements of geostatisticians, it does not permit
evaluation of the uncertainty of those results. Thus, one of their most power
tools to overcome the nonlinearity of hydrogeological models and complications
with defining the statistical distributions of the simulation results is Monte Carlo
simulation. Let us forget that expressing the simulation result uncertainty in
terms of levels of significance without evaluating type II error is meaningless.
The main problem with such use of Monte Carlo simulations is that their object
is a model itself but not its relation to the real world (Gentle 1985). Varying the
parameters of a model, one can evaluate its sensitivity to those parameters, but
no more than this.

I do not think that all this is news for geostatisticians, at least for those from the
first generations. I cited above works of Dagan (1986) and Review (1990) where
they stated directly that they introduce most of their assumptions not because they
are true, but because they are convenient. However, Kitanidi (1997) motivates the
next generation of geostatisticians, claiming that ‘‘because we cannot come up
with a deterministic mechanism that explains variability, we postulate a proba-
bilistic model,’’ that common sense ‘‘is often the best guide,’’ and that geostatistics
is a ‘‘practical and reasonable way to use what we know in order to make pre-
dictions.’’ He recognizes that the geostatistical technique may be misleading and
should be avoided if certain assumptions are not met. Based on common sense, he
suggests considering an assumption as met if it is reasonable, there is no evidence
to the contrary, and the data do not discredit the assumption. All of these and even
more have been already discussed above.

However, the two following suggestions are new. First, Kitandis (1997)
suggests, based on common sense and the geostatistical tradition, to use Fourier
decomposition ‘‘to grasp the concept of scale’’ for properties varying in space.
The Fourier expansion representing a function as a sum of an infinite number of
harmonics of different periods and amplitudes is a powerful and widely used
tool in both pure and applied mathematics. However, if we take into consid-
eration that about any trend, including linear and polynomial, can be subjected
to Fourier decomposition and presented as a sum of an infinite number of
harmonics of different periods and amplitudes, then it becomes obvious that
Fourier decomposition has nothing to do with the concept of scale. Applying
such logic, we can use the Taylor expansion to grasp the linear, quadratic,
cubic, and further components (or scales?) of the regional trend. Mathematics
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permits describing trends as sums of the harmonics, but any periodicity has
geological meaning if it is supported by geological evidence and consider-
ations, not the other way round.

Second, Kitandis (1997) mentions a couple of times the principle of Occam’s
razor, that is, the use of the simplest empirical model consistent with the observed
data. Taking into account how many assumptions the geostatistical approach
involves, citing the principle of Occam’s razor as one of the reasons for the
geostatistical approach sounds at least ironic.

This chapter happened to be much longer than I expected, the reason being
that, due to the brilliance of the leading geostatisticians, geostatistics has won the
market, at least in terms of scientific publications. I speak without any irony
about their brilliance. They have solved many difficult mathematical problems
and obtained many beautiful results. Unfortunately, all this does not solve the
problem of the uncertainty of the results of hydrogeological modeling, and the
reason for this is the use of too many assumptions and postulates, most of which
cannot be tested or are just not true. In the beginning of the application of
geostatistics to hydrogeology, they honestly declared that those assumptions and
postulates were introduced for convenience only. We do not hear much about the
physical and geological meaning or the consequences of accepting such
assumptions at present. Frequent use, and tradition, has made them as if valid. It
seems that many geostatisticians have believed that geostatistics really over-
comes the uncertainty of the groundwater modeling problem. They communicate
their belief to the community of decision-makers, and there exists a great danger
if the decision-makers believe them. On the other hand, if somebody has enough
data and wants to use the geostatistical methods as a tool for interpolation and
extrapolation of sparse data and does not pretend falsely that this methodology
permits evaluation of the uncertainty in a provable way, the geostatistical
approach is as good as the deterministic one. Although it is more cumbersome,
the development of computational techniques and methods makes this factor less
and less significant.

Statistical methods are a powerful instrument for organizing, sorting, and
analyzing data, revealing whether the data support a hypothesis, or that their
structure has peculiarities which may possibly change the comprehension of a site
or a phenomenon. They are rather a starting point for developing conceptual
geological models. They permit calculation of confidence intervals and many other
statistics. However, all of them are conditioned by different assumptions, and the
more assumptions that are introduced, the less must be the trust in the conclusions
following from application of those assumptions.

In general, the situation with geostatistics is not so bad. Once a proponent of
geostatistics asked me why I am against it, as ‘‘Nobody uses it in practice,’’ he
added. And this is true, as serious application of geostatistics to hydrogeo-
logical problems requires an amount of data that is not feasible to acquire
physically and economically in most hydrogeological and environmental
projects.
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Chapter 4
Model Identification

To predict responses of geological objects on man-made or natural impacts by
applying mathematical methods, i.e., by solving differential or integral equations,
the pertinent properties of the geological objects should be assigned continuously,
that is, at each point of the objects and at each instant of the period of simulation, if
the properties vary in time, besides maybe countable sets of points, i.e., isolated in
space and time points. The boundary and initial conditions must be known in the
same way. Unfortunately, only an infinitesimal part of the required geological
information is available from direct observations and measurements. This infor-
mation gap must be filled, and geological models have to do the job. They are a
tool for interpolation and extrapolation of the sparse available data to all points of
the geological objects of interest.

Geologists, with their understanding of geological surroundings, seem to be the
best developers of geological models representing geological objects in simula-
tions. However, as discussed earlier, those models are not exact copies of real
geological objects. The results obtained by using geological models cannot
reproduce simulation processes exactly. So, the goal of predictive simulation is to
yield the best, in some predefined sense, possible results. To this end, the models
must be furnished with the values of the model-governing parameters providing
those results. Such parameters and their values are called effective parameters.

The engineering and geostatistical approaches differ in their way of assigning
the effective parameters. Proponents of the engineering approach just know, from
theirs and their colleagues’ practical experience, which models and which values
of their parameters, which may be some statistics, are best in a given situation.
Geostatisticians apply more complicated statistical methods inherent to their
general concept. Both approaches test and refine their choices of the effective
model parameters, observing how they reproduce the available data.

This process of finding or refining predictive model parameters based on
available observations on natural or induced hydrogeological phenomena is known
as model identification, model calibration, historical matching, or site-specific

V. Gorokhovski, Effective Parameters of Hydrogeological Models,
SpringerBriefs in Earth Sciences, DOI: 10.1007/978-3-642-23722-5_4,
� The Author(s) 2012
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validation. Model identification is often considered as inverse problem-solving
(Yakowitz and Ducstein 1980; Yeh and Yoon 1981; Carrera and Neuman 1986;
Yeh 1986; Hornung 1990; van Genuchten et al. 1990; Aster et al. 2005; Carrera
et al. 2005; Moore and Doherty 2006; Dai et al. 2010). However, in general, the
term ‘‘inverse problem’’ is not a synonym for the term ‘‘model identification’’ and
its synonyms listed above (see Chap. 9).

At present, model identification is the most popular method for assigning the
effective parameters of predictive hydrogeological models. The results of cali-
bration are often considered as the strongest argument in support of a model’s
soundness. The faith in the model identification is based, at least in part, on the
belief that the identified parameter values compensate automatically for unknown
details. Flavelle (1992) writes: ‘‘The calibration (or tuning) of model can be
described by a goodness-of-fit parameter which reflects how well the calibrated
results match the observed data being simulated. This scalar parameter should
incorporate the measurement uncertainty of the observations as well as the
uncertainty in the model output.’’ He also holds that ‘‘validation tests can also be
designed simply to measure the accuracy of the predictions, without reference to a
predetermined accuracy as a criterion for acceptance or rejection.’’ The latter
statement expresses, likely, Flavelle’s belief that we can judge the accuracy of
future simulations based on the accuracy of the calibration of predictive models.

Some other professionals, relaying on model identification as an effective tool,
are more cautious. As cited in Chap. 2, De Marsily et al. (1992) emphasize that
success in calibration ‘‘does not prove that the model will be correct for all
circumstances, it only increases our confidence in its value.’’ Indeed, there exist
many facts that put in doubt statements such as those of Flavelle (1992). Thus,
Yakowitz and Ducstein (1980) describe failures of several successfully calibrated
models to predict the hydraulic head development on the same water intake. They
explain the failures by incorrectness of the model identification, equating it to the
inverse problem. Freyberg (1988), using numerical experiments, demonstrated that
success in prediction may not be related to success in matching observed heads and
that a good calibration alone may not lead to good prediction.

Based on general philosophical considerations and examples from hydrogeo-
logical modeling practice, Konikow and Bredehoeft (1992) claim that a site-spe-
cific validation ‘‘per se, is a futile objective,’’ a point disputed by De Marsily et al.
(1992). Beven (1989) goes even further, holding that use of calibration as a tool for
setting model parameters is rather ‘‘an act of faith that is not based on sound
physical reasoning.’’ Oreskes et al. (1994) state: ‘‘Verification and validation of
numerical models of natural systems is impossible,’’ and so on.

Accepting the philosophical arguments of Beven (1989), Hornung (1990),
Morton (1993), Oreskes et al. (1994), Oreskes (2004), and others that successful
model calibration does not guarantee success of predictive simulations, it seems
too much to claim that site-specific validation is ‘‘a futile objective.’’ We should
analyze every piece of available information. Model calibration is one of the tools
for such analysis. Playing with different models and parameter values can help
improve understanding of the geology and hydrogeology of the objects and their
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possible responses on natural or manmade impacts, and why a specifically site-
validated model could become misleading in predictive simulations.

4.1 Incorrectness in Mathematics

The usual explanation for model identification yielding misleading results is that it
is an ill-posed, incorrect, problem. This makes it worth discussing the mathe-
matical notion of incorrectness in more detail.

A problem is well-posed, correct, if the three following conditions hold:

1. The problem has a solution.
2. The solution is unique.
3. The solution is stable (continuous), meaning that small errors in the data lead to

small errors in the solution.

If at least one of the above conditions is violated, the problem is ill-posed,
incorrect.

One of the main causes of incorrectness is observation and rounding errors,
whose role can be seen from the following simple example:

Let us consider evaluation of a parameter A based on observation of the process
described by the equation

x ¼ Ae�2t; ð4:1aÞ

where t and x are the independent and dependent variables. The solution of this
inverse problem follows directly from Eq. 4.1a as

A ¼ xe2t: ð4:1bÞ

The process described by Eq. 4.1a has asymptote y = 0 (Fig. 4.1), which
makes processes with different values of the parameter A indistinguishable for
large values of t. However, using good mathematical software, we can evaluate the
parameter A for very large values of t. Thus, for t = 250,

x ¼ 5e�500 ¼ 0:35622882033706� 10�216 and x ¼ 10e�500

¼ 0:71245764067413� 10�216:

Substituting these values for x into Eq. 4.1b yields correspondingly

A ¼ 5:00000000000000 and A ¼ 10:00000000000000;

solving our inverse problem more than satisfactorily.
However, as soon as errors of observation and rounding become commensurate

with the observed values, we obtain the situation presented in Fig. 4.1. Assuming
that the resolution of the figure corresponds to the accuracy of measurements y, we
see that the measurements do not permit separation of A = 5 and A = 10 for large
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enough values of t. Conditionally, the problem is correct for t \ 3 and incorrect for
t [ 4. There exists also a grey zone for 3 B t B 4 where the correctness or
incorrectness of the problem depends on the accuracy of the measurements.

This kind of situation is typical for hydrogeological processes developing from
transient to steady-state filtration. Observation and calculation errors can make
solving inverse problems impossible for some parameters, if observations are
made close to the steady-state phase.

Let the actual behavior of the hydraulic heads be described by the function h(x).
However, what we observe is

hobðxÞ ¼ hðxÞ þ eðxÞ; ð4:2Þ

where e(x) is the error of the observation at x. In many situations there is a need to
evaluate the gradient of h(x) based on observations hob(x). If e(x) is not differen-
tiable (a random value, for example), hob(x) is not differentiable either. So, the
problem of evaluating the gradient based on observations does not have a solution;
it is incorrect.

Now, let us assume that the error is differentiable. For example,

eðxÞ ¼ A sinðxxÞ; ð4:3Þ

where A is the amplitude and x is the frequency of the oscillations. Then, the
gradient does exist and can be evaluated as

h
0

obðxÞ ¼ h
0 ðxÞ þ Ax cosðxxÞ: ð4:4Þ

The upper boundary for the error in evaluating the gradient of h is |Ax|. If the
frequency x is large, small errors in evaluating x can lead to large errors in
evaluating h0ðxÞ: This means that the problem of evaluating gradients based on
observations can be ill-posed, even if the error is differentiable.

We can represent the observations differently, applying different differentiable
approximations such as splines, polynomial regressions, etc. However, by applying
different approximations based on the same observations, we may obtain different
gradients. Moreover, we can find gradients when they do not actually exist.

Fig. 4.1 Evaluating
parameter A using
observations on the process
described by Eq. 4.1a
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One-dimensional steady-state filtration in a shallow homogeneous unconfined
aquifer with constant hydraulic conductivity on a horizontal aquitard in the
absence of recharge is described by the following differential equation, where
h(x) is the thickness of the aquifer, and K is its hydraulic conductivity, which is
constant:

d KhðxÞ dhðxÞ
dx

� �

dx
¼ 0: ð4:5Þ

If the boundary conditions in the model described by Eq. 4.5 are given as the
aquifer thickness at the ends of the interval of interest [0, L], we cannot use the
model to find the hydraulic conductivity of the aquifer: any value of the hydraulic
conductivity satisfies Eq. 4.5, making the problem incorrect.

However, if one of the boundary conditions is given as the total flux Q, for
example,

Qð0Þ ¼ Q0 ¼ �Khð0ÞdhðxÞ
dx

����
x¼0

; ð4:6Þ

the model can be used to find the hydraulic conductivity K as

K ¼ 2Q0x

h2
0 � h2ðxÞ : ð4:7Þ

Solution 4.7 is correct: it exists for all x that are not equal to zero, unique, and
stable, since it is continuous with respect to h0, h(x), and Q0. Actually we can use
any two points, xi and xj within the interval [0, L] to find the hydraulic conductivity
value as

Kj;i ¼
2Q0ðxi � xjÞ

h2ðxjÞ � h2ðxiÞ
: ð4:8Þ

However, let us assume that we have five observations over the thickness of the
aquifer. This gives 10 possibilities to calculate the hydraulic conductivity, using
Eq. 4.8. If our model, measurements, and calculations are absolutely accurate, then
all values of Ki,j are the same. However, if the model does not reproduce the real
object exactly or the measurements and calculations carry errors, it is possible that
we can have up to 10 considerably different values of the hydraulic conductivity. If
the differences between those values exceed what could be expected based on the
measurement errors, we have to recognize that our solution becomes not unique
and the problem is ill-posed.

There are at least two obvious ways to reformulate the above problem to make
it well-posed. One is to accept some statistics of the obtained values Ki,j as the
solution. On the other hand we can partition the aquifer according to the available
observations and then consider that between the observations the aquifer is
homogeneous. Thus, different hydraulic conductivity values characterize different
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parts of the aquifer, so we have a unique and stable solution of our problem but for
a heterogeneous aquifer this time. In both cases we use ad hoc assumptions which
usually cannot be verified.

Many inverse and model identification problems are reduced to solving systems
of linear equations. Let us start with the following system:

x� y ¼ 1

xþ y ¼ 3
ð4:9Þ

In the context of our discussion, the matrix of system 4.9 A ¼ 1 �1
1 1

� �
can

be interpreted as the characteristic of a model structure. Its right-hand vector

b ¼ 1
3

� �
can be considered as observed data. The goal is to evaluate the

parameters x and y, which are properties of the model. Note that these parameters,
when interpreted geometrically, are the coordinates of the point of intersection of
the lines represented by the equations of system 4.9.

The problem of evaluating parameters x and y is formulated correctly: it has a
unique solution (x = 2 and y = 1) which is stable. Indeed, let us assume that the
structure of the model and the observations carry errors such that, instead of
system 4.9, we have system

0:97x � 1:02y ¼ 0:99

1:04xþ 0:95y ¼ 3:02

The unique solution to this system is x = 2.03 and y = 0.96. So, in response to
reasonable inaccuracy of the model and the observations, we have reasonable
errors in evaluating the parameters x and y.

Let us consider a different system

x� y ¼ 1

2x� 2y ¼ 3
ð4:10Þ

System 4.10 does not have a solution at all: its determinant is equal to zero.
Geometrically, the equations of system 4.10 represent two parallel lines which
never intersect. Therefore, the problem of finding the parameters x and y for system
4.10 is ill-posed.

The system

1:05xþ 1:05y ¼ 1:05

0:98xþ 0:98y ¼ 0:98
ð4:11Þ

has infinitely many solutions, since both equations represent the same straight line
and any values x and y ¼ 1� x satisfy system 4.11. Therefore, the problem leading
to system 4.11 is ill-posed.
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The system

xþ y ¼ 3

1:05xþ y ¼ 4
ð4:12Þ

is ill-posed also. The solution of this system is x = 20 and y = -17. However, if
its coefficients carry measurement errors and system 4.12 takes, say, the form

0:99xþ 1:01y ¼ 3:01

1:06xþ 0:98y ¼ 3:99

its solution becomes x = 10.76 and y = -7.56. Thus, small errors in measure-
ments lead to considerable error in the solution. The reason is that the straight lines
represented by the equations of system 4.12 are almost parallel and small errors in
their coefficients lead to large errors in the coordinates of their intersection, given
by the parameters x and y.

Since systems of linear equations play a considerable part in solving different
problems, including hydrogeological ones, let us consider a general system of
n linear equations

Ax ¼ b; ð4:13Þ

where A is a square matrix of n 9 n size, x is a column vector of the unknowns,
and b is a column vector of the observations (both of size 1 9 n). To have a unique
solution, matrix A must have an inverse matrix A-1, such that
A-1A = AA-1 = I (where I is the unit diagonal matrix whose nondiagonal ele-
ments are equal to 0 and whose diagonal elements are equal to 1). The matrix A-1

exists if the determinant of matrix A is not equal to zero, |A| = 0. Then

A�1A x ¼ x ¼ A�1b: ð4:14Þ

Discussion on the stability of the above solution requires the introduction of the
notion of vector and matrix norms. Let us start with the definition of the vector
norm.

A vector norm ak k of vector a is a measure of the vector magnitude. It must be
a real number having the following properties:

Iv ak k[ 0 if a 6¼ 0

IIv ak k ¼ 0 if a ¼ 0

IIIv lak k ¼ lj j � ak k l is a real number

If b is a vector with norm bk k and its dimension is equal to the dimension of
vector a, then the following properties hold:

IVv abj j � ak k � bk k Cauchy--Buniakowsky--Schwarz inequality

Vv aþ bk k� ak k þ bk k Triangle inequality
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There exist many different vector norms satisfying the above properties. The
most popular matrix norms are the following:

ak k1¼
Xn

i¼1

aij j norm 1

ak k2 ¼
Xn

i¼1

a2
i

 !1=2

norm or norm 2 or Euclidean norm

ak k1¼ max
1� i� n

aij j norm infinity or maximum norm

ð4:15Þ

Since matrices are sets of vector columns or vector rows, it is natural to
associate the matrix norms with the vector ones. Namely, for a matrix of size
n 9 n, some of the most often applied norms are defined as

Ak k1¼ max
1�i�n

Xn

j¼1

aj;i

�� �� norm 1 : the maximum magnitudeof sum of matrix columns

Ak kF¼
Xn

j¼1

Xn

i¼1

a2
j;i

 !1=2

Frobenius norm

Ak k1¼ max
1�j�n

Xn

i¼1

aj;i

�� �� norm infinity : the maximum magnitudeof sum

of matrixrows ð4:16Þ

As an example, let us consider the matrix

A ¼
1 2 3
4 5 6
7 8 9

2

4

3

5

Corresponding norms are presented in Table 4.1.
The matrix norms share the properties of the vector norms, plus one more,

related to the matrix–vector product (VIm):

Im Ak k[ 0 if A 6¼ 0

IIm Ak k ¼ 0 if A ¼ 0

IIIm lAk k ¼ lj j � Ak k l is a real number

IVm ABk k� Ak k � Bk k Cauchy--Buniakowsky--Schwarz inequality

Vm Aþ Bk k� Ak k þ Bk k Triangle inequality

VIm Abk k� Ak k � bk k

It is assumed that matrices A and B and vector b in the above list of properties
permit the operations involved. In particular, matrices are assumed to be square of
size n 9 n.
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The notion of the coordinated vector and matrix norms permits evaluation of
errors of the solutions of systems of linear equations (4.13). If matrix A and vector
b carry errors, then system 4.13 becomes

Aþ DAð Þ xþ Dxð Þ ¼ bþ Db; ð4:17Þ

where DA is the matrix of errors of the elements of matrix A, Db is the vector of
errors of the elements of vector b, and vector Dx is the errors of the elements of
vector x. It follows from Eq. 4.17 that

Dx ¼ A�1 Db� DAx� DADxð Þ: ð4:18Þ

Applying the norms and the triangle inequality to Eq. 4.18 yields

Dxk k� A�1
�� ��� Dbk k þ A�1

�� ��� DAk k � xk k þ A�1
�� ��� DAk k � Dxk k:

ð4:19Þ

Inequality 4.19 can be reorganized as

Dxk k
xk k �

k

1� k DAk k
Ak k

Dbk k
bk k þ

DAk k
Ak k

� 	
; ð4:20Þ

where k Að Þ ¼ Ak k � A�1
�� ��� 1 is the condition number. The condition number

k Að Þ� 1. Indeed,

A�1A
�� �� ¼ Ik k ¼ 1� A�1

�� �� � Ak k ¼ k: ð4:21Þ

Inequality (4.20) relates the relative errors of the solution to system 4.13 and the
relative errors of the initial data of matrix A and vector b. The system is well-
conditioned ifk � 1 to 10: A system is ill-conditioned if k � 102–103. There
exists the gray zone 10\k\103 within which the solution to linear systems may

remain stable. Inequality 4.20 is meaningful ifk DAk k
Ak k � 1: This implies that the

ratio DAk k
Ak k must be considerably smaller than 1. This requirement is practical

enough, since there is no sense to working with an inaccurate system 4.13.
Note that the formulation of incorrectness includes the absence of a mathe-

matical solution. It sometimes happens that a mathematically correct solution is
physically incorrect, for example, a negative hydraulic conductivity. Such a sit-
uation is easily recognizable and could be rejected or accepted depending on how
the physically incorrect solution is intended to be used (see Chaps. 6–9 for more
details). It may also happen, as shown in the following chapters, that a solution

Table 4.1 Comparing different norms of matrix A

Norm 1 Frobenius norm Norm infinity

18 16.8819 24
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looks physically correct but is incorrect geologically, being out of the actual
property value range. Such a kind of incorrectness, let us call it geological
incorrectness, is difficult if possible to recognize, though it could lead to cata-
strophic consequences.

4.2 Regularization of Ill-Posed Problems

The notion of correctness with respect to inverse problem formulations came from
the application of mathematics to the study of properties of natural objects and
impacts to which the objects are or were subjected. Real physical objects have
unique real property distributions and, if the properties change in time, at each
given instant. Each object has a unique response to a given impact. The response
should depend continuously on small changes of the property values and impacts.
Therefore, the inverse problem, using the observed data, must provide those
unique distributions of the actual property distributions, and the impacts and initial
and boundary conditions when they are needed. (There may be natural processes
that are inherently instable. They are not discussed here).

At the time of the discovery of the existence of mathematically incorrect
problems, it was natural to think that the incorrectness was caused by unfortunate
formulations of pertinent problems. However, it later became obvious that there
are many meaningful problems that are inherently incorrect. Most problems of
geophysical and hydrogeological data interpretation are of this kind. (It is inter-
esting to note that there are no processes in nature corresponding to inverse
problems or model identification in geophysics and hydrogeology). As soon as this
became clear, many methods to treat incorrect problems were developed. Those
methods reformulate incorrect problems as correct ones. Discretization of the
hydraulic conductivity in the previous subsection can be considered as such a
method. Numerical differentiation of function 4.2 can be interpreted as such a
method also. Indeed, if the locations of the observations hob(xi) are such that
xi+1 - xi = xi - xi-1 = Dx, the derivative of hob(xi) can be evaluated as

h
0

obðxiÞ �
hobðxiþ1Þ � hobðxi�1Þ

2D x
:

As mentioned above, we can also apply splines, different regressions, and many
other methods to obtain the derivative h

0
obðxiÞ: However, attention is required here,

as different methods can provide different values of the derivative h
0

obðxiÞ: Also, as
mentioned above, we can find the derivative even where it does not exist.

One of the most popular and thoroughly developed methods for converting
incorrect problems into correct ones is Tikhonov regularization (Tikhonov and
Arsenin 1977; Allison 1979; Aster et al. 2005). Applied to inverse problems, it
consists of looking for the set of parameters that minimizes the functional
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b ¼
Xm

j¼1

Xn

i¼1

hob xi; tj


 �
� h xi; tj;P

 �
 � 2 þ k

XK

k¼1

Pk � P0;k


 � 2
: ð4:22aÞ

In Eq. 4.22a, hob(xi, tj) is the observed value at the point with coordinate xi at
instant tj. The simulation results are represented by h(x, t, P), where P = [P1, P2,
…, Pk, …, PK] is the list (vector) of parameters governing the simulation process,
P0 = [P01, P02, …, P0k, …, P0K] is an a priori guess for the unknown values of
parameters P, and k is a small positive number called the regularization parameter.
It is often assumed that P0 = 0, meaning that all parameters in the a priori guess
are equal to zero. Then, functional 4.22a can be rewritten in the form

b ¼
Xm

j¼1

Xn

i¼1

hob xi; tj

 �

� h xi; tj;P

 �
 � 2 þ k

XK

k¼1

P2
k : ð4:22bÞ

Tikhonov regularization is a combination of least-squares regression with
penalties for poor a priori guessing. Different forms of the penalizing term are also
possible. In particular, it can be constructed to penalize larger values of derivatives
of the model h(x, t, P) to provide smoother solutions, so the penalizing term is
often called the smoothing term. There exist statistical interpretations of Tikhonov
regularization. They require additional assumptions on the statistical characteris-
tics of the observations and the model itself, and are not discussed here.

Regularization substitutes one problem with another. Different regularizations
of the same problem result in different problems having different solutions.
Sophisticated regularization methods, such as Tikhonov regularization, converge
to true solutions if the model subjected to regularization is true and adequate, and
the noise, the random errors in observations and calculations, is the only com-
plicating factor. However, all geological models are knowingly false (Morton
1993; Beven 2005). For example, the numbers of model parameters and the
parameters governing the actual processes are different usually. What regulari-
zation means and achieves, if applied to false models, is disputable. It may be a
proper moment to cite V. N. Tatubalin again (Sect. 3.7): ‘‘You look for a scalpel,
but with such data as you have, you should rather learn to work with a chopper.’’
He meant geostatistics, but it seems to be true with respect to regularization as
well.

4.3 Problem Dependence of Model Identification

The problem dependence of model identification means that the results of iden-
tification depend on the formulation of the model identification problem. This
phenomenon is commonly recognized and often cited (Gorokhovski 1977; Yeh
and Yoon 1981; Carrera and Neuman 1986; Kool et al. 1987; Hornung 1990; van
Genuchten et al. 1990). Practicing hydrogeologists always knew, for example, that
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the results of pumping test data interpretation depend on the interpretation models,
and that it is possible to infer different, sometimes considerably different, hydraulic
conductivities and transmissivities based on the same data. What is surprising is
that problem dependence is actually ignored in practical applications and theo-
retical developments of model identification. Commonly it is referred to as some
kind of nuisance along with the recommendation to maintain caution. Thus, Yeh
and Yoon (1981) write: ‘‘In order to obtain physically meaningful parameter
estimates, caution must be exercised.’’ Hornung (1990) requires lengthy discussion
on the coupled predictive and inverse problem and ‘‘a thorough knowledge of the
difficulties involved,’’ as if such discussion and knowledge are enough to over-
come the problem dependence. Batu (2006), citing Mercer and Faust (1981),
writes ‘‘Confidence in predictive results must be based on (1) a clear understanding
of model limitations; (2) the accuracy of the match with the observed historical
behavior; and (3) data reliability knowledge about aquifer characteristics.’’

Hornung (1990), by the way, makes an excellent point, coupling predictive and
model identification problems explicitly. Indeed, the goal of model identification is
to find the parameters of a geological model, the effective parameters, which
reproduce observations best in some predefined sense. When the set of parameter
values is found, it furnishes the same structural geological model to solve the
coupled predictive problem. However, predictive problems differ from the corre-
sponding problems of identification nearly always. The differences can include the
size and shape of the objects, impacts, boundary conditions, and monitoring net-
works. Often models calibrated under steady-state conditions are applied to pre-
dicting transient flows. It sometimes happens that the goals of calibration and
prediction are different: a model that is calibrated based on observations on
hydraulic heads is applied to find streamlines that are not observable directly. If a
model were an exact copy of the pertinent geological object, than the model
identification made once would be effective with respect to any predictive problem
related to the object. However, models are not exact copies of geological objects,
and this causes the problem dependence. Namely, the effective set of model
parameters providing the best prediction of one kind, say, water table elevations,
may not be and often is not the best one for a different kind of prediction, say, of
streamlines (Beven 1989; Neuman and Orr 1993; Cooley 2004). Moreover, values
of the effective parameters can change with time, without any changing in the
simulation problem formulation (see Chap. 7).

Let us consider a simple and transparent example: a confined aquifer consisting
of two homogeneous bodies, one with hydraulic transmissivity T1 and the other T2

(Fig. 4.2). In the initial state the aquifer has uniform distributions of the hydraulic
heads h(x, 0) = H0. At instant t = 0, the hydraulic head at x = 2L jumps instantly
to h(2L, 0) = H2L and then remains unchangeable: h(2L, t) = H2L. At x = 0 the
hydraulic head does not change: h(0, t) = H0. The jump of the hydraulic head at
x = 2L initiates change of the aquifer hydraulic heads. We wish to predict this
process based on a homogeneous model of the aquifer with the constant effective
hydraulic transmissivity T̂ , whose value is to be found.

50 4 Model Identification



The simulated process of developing the hydraulic heads in this case when
neither sources nor sinks are present in interval [0, 2L] is described by equation

S
oĥ x; tð Þ

ot
¼ T

o2ĥ x; tð Þ
ox2

ð4:23Þ

where ĥðx; tÞ are the simulated hydraulic head at point x and instant t, T is the
hydraulic transmissivity of the homogeneous model and S is its storativity which is
assumed known and equal to 0.1. Assume also that observing the process during
some not long period of time, we found the effective value of the model trans-
missivity T̂ .

To see what will happen to our prediction with the use of the found effective
transmissivity T̂ , let us consider the steady-state distributions of the simulated

ĥðx; tÞ and actual hðx; tÞ hydraulic heads hðx; tÞ when the process will reach the
steady state. Then the left-hand part of Eq. 4.23 becomes zero, and the effective
transmissivity, being concealed, disappears from the equation. Thus, the steady-
state distribution of the simulated hydraulic heads is described by equation

d2ĥ

dx2
¼ 0

which does not depend on the transmissivity. With the boundary conditions
assigned as

h 0ð Þ ¼ H0 and hð2LÞ ¼ H2L; ð4:24Þ

the solution to the simulated hydraulic heads ĥðx; tÞ is

ĥ xð Þ ¼ H2L � H0

2L
xþ H0: ð4:25Þ

Solution 4.25 corresponds to the straight line (H0, H2L) in Fig. 4.2 with

ĤL ¼
H2L þ H0

2
: ð4:26Þ

Fig. 4.2 Modeling a
confined aquifer with a
homogeneous model
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Actually the steady-state filtration in the heterogeneous aquifer consisting of
two geological bodies with the hydraulic transmissivities T1 and T2 is described by
two functions: left lfth(x) within interval [0, L] and right rgth(x) within interval
[L, 2L]. The functions are solutions of the differential equations

d2
lfthðxÞ

 �

dx2
¼ 0 and

d2
rgthðxÞ

 �

dx2
¼ 0 ð4:27Þ

under the outer boundary conditions: lfth(x) = H0 and rgth(2L) = H2L. There exist
also the inner boundary conditions on continuity of the hydraulic heads and the
flux at x = L:

lfth Lð Þ ¼ rgth Lð Þ and T1
dlft h xð Þð Þ

dx

����
x!L

¼ T2
drgt h xð Þð Þ

dx

����
L x

: ð4:28Þ

The conditions connect the solutions of Eq. 4.27 which are

lfthðxÞ ¼
HL � H0

L
xþ H0; 0� x� L ð4:29aÞ

rgthðxÞ ¼
H2L � HL

L
x� Lð Þ þ HL; L� x� 2L ð4:29bÞ

where the unknown HL is the same for both solutions (the first condition 4.28). To
find HL, the condition on continuity of the flux (the second Eq. 4.28 should be
applied. Since functions lfthðxÞ and rgthðxÞ are straight lines, their derivatives are
equal to their slopes.

So, we can rewrite the second Eq. 4.28 as

T1
HL � H0

L
¼ T2

H2L � HL

L
: ð4:30Þ

Solving Eq. 4.30, we obtain

HL ¼
T1

T1 þ T2
H0 þ

T2

T1 þ T2
H2L: ð4:31Þ

So the steady-state hydraulic head HL at the midpoint x = L is the average of H0 and
H2L weighted according to the actual hydraulic transmissivities. The equality ĤL ¼ HL

is true only if the aquifer is homogeneous (T1 = T2). If T1 \ T2, then HL\ĤL: If
T1 [ T2, then HL [ ĤL (Fig. 4.2). The magnitude and sign of the deviation of ĤL

from the observed value HL depend on H2L and H0, the ratio T2=T1, and time.
Calibrating the homogeneous model in the transient regime can permit the

simulation results to fit the observation satisfactorily for some period of time.
Then, the simulated and actual hydraulic heads will start diverging inevitably. If
the calibration period is short, we may not see the divergence, but it makes itself
known later.

The point of this simple example is obvious. The effective parameters of the
simplified models may not and usually do not compensate for the unknown. We
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cannot evaluate the error of the simulation results yielded by our homogeneous
model even in our simple case. It is possible that something like this caused the
failures described by Yakowitz and Ducstein (1980). Unlucky simulation models
could be the source of failures described by Kola (1984), Lerner (1985), Kerr
(1993), and many others. However, in the presented case, the homogeneous model
can be applied successfully for solving our predictive problem. To this end, the
effective hydraulic transmissivity must vary in time (see Chap. 7).

4.4 More Complex Model Versus Less Complex One

That all models are false is no news. Practicing hydrogeologists know also that
those false models often provide practically acceptable results. Otherwise mod-
eling would not have any sense at all. Nevertheless it seems interesting to illustrate
this contradiction (false models and acceptable results) on a simple real-life
example. However, our notions on real geological objects are not more than
models, and as such they are false. The only option left is to compare the results
yielded by a more complex model, considering it as if true, and a less complex
which is undoubtedly false. It is desirable to find a simple and well-studied object
to make the comparison simpler.

The Borden landfill (Ontario, Canada) seems appropriate for such an exercise.
It was in operation from 1940 to 1976. The contaminant plume in the shallow
aquifer below the landfill was the subject of detailed investigations that lasted from
1974 to 1980. The simplicity of the site as a hydrogeological object, the sharply
delineated plume, and the relatively large amount of data make the Borden site a
suitable object for testing different approaches and models, as has been done more
than once (Frind et al. 1985; Frind and Hokkanen 1987; Batu 2006).

The more complex model is the model applied by Frind and Hokkanen (1987).
They simulated two-dimensional steady-state flow in the Borden aquifer in terms
of streamlines. Correspondingly, the boundary conditions are assigned as specific
fluxes normal to the object’s boundaries. The main goal of their model calibration
is to find the specific fluxes on the boundaries of the Borden site that provide the
best reproduction of the observed streamline. (As discussed below, only one
streamline can be considered as observable within the Borden site. Likely, the
hydrogeological part of the model had been calibrated by reproducing that
streamline.) Then, the obtained results, the recharge pattern and the streamlines,
were applied to solve the mass transport problem.

The competing model is the D1_Flow model developed by the US EPA
(Gorokhovski and Weaver 2007). It is a screening-level model numerically sim-
ulating one-dimensional steady-state flow in shallow unconfined aquifers on an
arbitrarily shaped base. The model permits evaluation of water table, streamlines,
and time for contaminants to travel to selected locations. Being simple in terms of
data preparation and operation, it saves considerable resources and cost. The
D1_Flow model is based on the Dupuit-Forchheimer assumption that the Darcy
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velocity is horizontal (i.e., that its vertical component can be neglected). This
assumption simplifies the mathematical description of the underground flow
considerably. The D1_Flow model has been validated thoroughly on available, not
numerous, analytical solutions for a shallow aquifer on horizontal and sloppy
(Polubarinova-Kochina 1962) bases. The results are more than satisfactory. The
Borden site object has been chosen for validating the D1_Flow model on a real-life
object (Gorokhovski and Weaver 2007).

Compared with the more physically sound, two-dimensional model by Frind
and Hokkanen (1987), the D1_flow model is undoubtedly false: it simulates the
flow as one-dimensional when it is actually at least two-dimensional, and uses the
knowingly false Dupuit-Forchheimer assumption and the physically controversial
method of calculating two-dimensional streamlines by a one-dimensional model,
as suggested by Strack (1989) and described in Sect. 4.4.3. The model of Frind and
Hokkanen (1987) does not need these assumptions.

The main goal of the D1_Flow model calibration below is to demonstrate that
simple and by definition false models can yield results comparable to the results of
more complicated and physically sound models such as that of Frind and Hok-
kanen (1987). Unfortunately, the factual data used by Frind and Hokkanen (1987)
in calibrating their model as well as the accuracy of reproduction by their model of
the corresponding observations were not available. For this reason, only the results
obtained graphically from their publication are used in the D1_Flow model cali-
bration. A byproduct of the D1_Flow model calibration below is explicit dem-
onstration of the problem dependence of model identification. Frind and Hokkanen
(1987) deal with this phenomenon, though without mentioning it.

4.4.1 Short Description of the Borden Landfill

The unconfined aquifer under the Borden landfill consists of beds and lenses of
fine-, medium-, and coarse-grained sand overlying an extensive deposit of clay and
sandy silt. The 10 ppm outline of chloride is chosen as the boundary of the
contamination plume. The longitudinal cross-section of the site with the water
table, the contaminant plume, and the aquitard surface (Fig. 4.3) was obtained

Fig. 4.3 Cross-section of the
Borden landfill site
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graphically from Frind and Hokkanen (1987). The hydraulic conductivity of the
Borden aquifer was assigned based on pumping and permeability tests as equal to
10.11 m/day in the horizontal direction and 5.05 m/day in the vertical direction.
(Being one-dimensional, D1_Flow uses only the horizontal hydraulic conductivity
in simulation of the Borden aquifer).

4.4.2 Simulating the Water Table

Frind and Hokkanen (1987), simulating the contaminant plume development
within the Borden site, assume that the flux in the Borden aquifer is steady state.
Their problem formulation requires that the boundary conditions be stable as well
as the boundaries themselves. In particular, they assumed that the water table and
precipitations do not change in time. In reality, the water table is affected by
seasonal changes of precipitation. Thus, the first task to be addressed is to assign as
if the long-term average steady-state water table. Frind and Hokkanen (1987) write
‘‘The aspect of the water table has been addressed by Frind et al. (1985),’’ who in
turn resolve the issue by stating: ‘‘The water table boundary was obtained visually
drawing a smooth curve through the relevant water level points.’’ [By the way,
Fig. 15 of Frind et al. (1985) and Fig. 4 of Frind and Hokkanen (1987) reveal that
the water tables used in those works differ by up to 0.6 m] .The ‘‘relevant points’’
are the factual observations in April and December 1979. The water table thus
assigned is arbitrary in essence. Besides, it is biased with respect to the available
observations (Fig. 4.4). However, it is likely that the water table was an inter-
mediate and not decisive part of their calibration processes. Their final goal was
‘‘matching streamlines to the observed plume’’ (Frind et al. 1985).

Fig. 4.4 Observed, assigned,
and calibrated water tables: 1-
observations, 2-water table
assigned by Frind and
Hokkanen (1987), 3-
reproduction of the water
table of Frind and Hokkanen
(1987), by D1_Flow model,
4-water table approximated
by regression 4.32, 5-water
table reproducing
regression 4.32 by the
D1_Flow model
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The D1_Flow model was calibrated with respect to the water table of Frind and
Hokkanen (1987). The goal was to reproduce their water table by varying piece-
wise-constant recharge rates within the recharge pattern structure presented by
Frind and Hokkanen (1987). The boundary conditions are assigned in the water
divide at x = 135 m, where the water table elevation is 222.36 m and the total flux
Q is zero. The choice of the boundary conditions is based on the figures of Frind
and Hokkanen (1987), and supported by their boundary conditions. Indeed, the
specific flux on the boundary at x = 0, where the thickness of the aquifer is about
30 m, is assigned as -70 cm/year. The recharge rate in the interval [0, 140] m is
assigned as equal to 15 cm/year. The water table divide seems to be somewhere
close to but not exceeding 140 m, since there is no evidence of a contaminant up-
gradient to the landfill. The recharge pattern provided by the simple D1_Flow
model (Table 4.2) reproduces the water table of Frind and Hokkanen (1987), with
error magnitude less than 5 cm (Fig. 4.4), i.e., satisfactorily accurately.

It is interesting to note that, if 1979 were not a special year with respect to the
long-term precipitation regime for the Borden site, it could be reasonable to
present the long-term steady-state water table as some averaging of the observa-
tions in April and December. The least-squares method applied to those obser-
vations yields the following regression equation for depicting the water table:

rĤðxÞ ¼ �2:5725� 10�6x2 � 7:7991� 10�4xþ 222:5731 m ð4:32Þ

(Other regression presentations of the water table are possible also) .The water
table described by Eq. 4.32 is presented in Fig. 4.4. The corresponding total flux is
described by equation

rQ̂ðxÞ ¼ K
dðrHÞ

dx
rHðxÞ � YðxÞð Þ

¼ K 5:145� 10�6xþ 7:7991� 10�4

 �

rHðxÞ � YðxÞð Þm2=day; ð4:33Þ

where K (m/day) is the hydraulic conductivity. The water table simulated by the
D1_Flow model and based on the piecewise recharge rate calculated by Eq. 4.33

Table 4.3 Recharge pattern calculated by Eq. 4.33 and assigned by Frind and Hokkanen (1987)
(cm/year)

Interval (m) 0–140 140–300 300–600 600–800 800–1,050
Equation 4.33 34 9 -1.6 2.7 -10

Table 4.2 Recharge patterns according to Frind and Hokkanen (1987), and the D1_Flow model
(cm/year)

Interval (m) 0–140 140–300 300–600 600–800 800–1,050
Frind and Hokkanen (1987) 15 55 15 45 10
D1_Flow model 15 55 10 50 12
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(Table 4.3) reproduces the water table depicted by Eq. 4.32 with error magnitude
less than 4 cm. Interestingly, Frind et al. (1985) obtained a negative recharge rate,
-30 cm/year, for x greater then 700 m, although the ‘‘slightly modified’’ recharge
pattern of Frind and Hokkanen (1987) does not contain negative recharge rates
(Table 4.2).

Note that the assumption about the existence of the water divide in the long-
term average steady-state flow system makes the flow in the Borden aquifer three
dimensional. It could be considered two dimensional along the axis of symmetry,
if such an axis exists. Likely, Frind et al. (1985), and Frind and Hokkanen (1987),
assume this implicitly.

The two observations above are just digressions. Since the goal is to demon-
strate that the simple, and false, model D1_Flow is able to reproduce the results
obtained by the complex model of Frind and Hokkanen (1987), we continue
working with the data used and obtained in the process of calibration by Frind and
Hokkanen (1987).

4.4.3 Calibration with Respect to the Streamlines
and the Arrival Time

As mentioned above, Frind and Hokkanen (1987), following Frind et al. (1985),
assigned their water tables arbitrarily and then calibrated the flow system based on
the plume configuration ‘‘matching streamlines to the observed plume’’ (Frind
et al. 1985). There are only two streamlines which could be considered as if
observed: the upper and bottom boundaries of the plume. The bottom boundary is
not informative, since the corresponding streamline starts near the water divide
and seepage along this streamline is extremely low, theoretically equal to zero.
Thus, only the sharply outlined upper boundary of the Borden plume can be
interpreted as the streamline to be used in calibration.

Fig. 4.5 Streamline
calculation: H(x), HS(x), Y(x),
and Q(x) are the elevations of
the water table, streamline
and aquifer base, and the total
flux at location x, N(x) is the
recharge, S is the streamline
[QS = Q(xst)]
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Calibrating their model with respect to the streamlines, Frind and Hokkanen
(1987), following Frind et al. (1985), simultaneously scale the recharge rates and the
hydraulic conductivity. Such scaling does not change the structure of the flow sim-
ulated by their model. However, the hydraulic conductivity of the Borden aquifer is
evaluated based on pumping and permeability tests. As such, it must be considered as
an objective characteristic of the Borden aquifer. Scaling the hydraulic conductivity
represents an ad hoc substitution of one geological object with another. Since the
recharge pattern is not observable and is evaluated as an effective characteristic, it
seems more natural to manipulate the recharge rates only. Frind and Hokkanen
(1987) do not explain their reasons for scaling. Likely, they did this to satisfy the
travel time to reach the furthest location to which the plume had spread, some
600–650 m from the down-gradient edge of the landfill. Proportional decreasing or
increasing the recharge rates and the hydraulic conductivities affects the travel time.

At first sight, the Dupuit-Forchheimer model ignoring the vertical component of
flow does not have tools for simulating curved, two-dimensional streamlines.
Strack (1989) overcomes this controversy, suggesting that the incoming recharge
pushes down the existing streamlines, curving them. He provides the mathematical
expression describing the process. Gorokhovski and Weaver (2007), developing
the D1_Flow model, applied his approach to one-dimensional flow in horizontally
heterogeneous aquifers on an arbitrarily shaped base.

Let streamline S originate at location xst on the water table (Fig. 4.5) and QS

denotes the total flux Q(x) at xst [QS = Q(xst)]. Streamline S is the upper boundary
of the QS part of the total flux Q(x). Since the specific flux does not depend on
depth according to the Dupuit-Forchheimer simplification, the following equality
holds at any location x C xst:

QðxÞ
QS
¼ HðxÞ � YðxÞ

HSðxÞ � YðxÞ : ð4:34Þ

It follows from Eq. 4.34 that

HðxÞ � YðxÞ ¼ QðxÞ
QS

HSðxÞ � YðxÞð Þ: ð4:35Þ

The travel time for a particle to reach location x moving along streamline S is

tðxÞ ¼ Rh
Zsx

sst

ds
vðsÞ; ð4:36Þ

where R is the retardation factor, h is the effective porosity, and v(s) is the pro-
jection of the horizontal Darcy velocity v(x) onto streamline S. (According to Frind
and Hokkanen 1987, for the Borden aquifer, h = 0.38 and R = 1.) In a one-
dimensional filtration model the Darcy velocity at any location x can be repre-
sented as

vðxÞ ¼ QS

HSðxÞ � YðxÞ : ð4:37Þ
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Correspondingly

vSðxÞ ¼
vðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dHSðxÞ
dx

� �2
r : ð4:38Þ

Equation 4.36 can be rewritten as

tðxÞ ¼ Rh
QS

Zx

xst

HSðxÞ � YðxÞð Þ 1þ dHSðxÞ
dx

� 	2
 !

dx: ð4:39Þ

The D1_Flow model integrates Eq. 4.39 numerically, using the trapezoid rule.
The D1_Flow model has been calibrated with respect to the upper boundary of

the plume representing the streamline starting at the water table beneath the down-
gradient edge of the landfill at x = 300 m. This streamline is the shortest and
fastest way for contamination to spread. The goal of the calibration is to evaluate
the recharge pattern for x [ 300 m to provide the best reproduction of the
streamline and the travel time for the plume to reach the furthest distance from the
landfill, which is located somewhere in the interval 900-950 m. The starting point
for calibrating is the recharge pattern accepted by Frind and Hokkanen (1987)
(Table 4.4).

Calibration has been conducted in two steps. First, the recharge pattern pro-
viding the best reproduction of the streamline was found. The results are presented
in Table 4.4 and Fig. 4.6. The magnitude of the errors in the best reproduction of
the streamline by the D1_Flow model is equal to 5 cm. The second step is nec-
essary as the travel time for the contaminant to reach x = 900 m with the obtained
streamline and recharge rates is about 32 years instead of the expected
39–40 years. The recharge pattern providing travel time equal to 39.1 years to
reach x = 900 m and 40.2 years to reach x = 950 m is presented in Table 4.3
also. The total flux QS under this streamline is 0.1253 m/day. This seems to be a
satisfactory compromise between reproducing the shape of the streamline and the
available travel time. The magnitude of the errors in reproducing the observed
streamline is less than 5.04 cm. Some other streamlines obtained by Frind and
Hokkanen (1987) and the D1_Flow model are shown in Fig. 4.7.

The calibration procedure has been simplified by the fact that, according to
Eq. 4.34, the simulation results are defined by the ratio Q/QS. However, since the
model is not an exact copy of the geological object and the procedure utilized in

Table 4.4 Recharge patterns (cm/year) for evaluating streamlines and travel time

Interval (m) 0–140 140–300 300–600 600–800 800–1,050
Frind and Hokkanen (1987) 10 37 10 30 7
D1_Flow model:
Best streamline 7 34 12.1 26.5 10
Best travel time 5.85 28.41 10.2 23 8.36
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the D1_Flow model is not more than an approximation of the real process, the final
part of the second step required manual fitting of the simulation results to the
observations. The manual fitting is not cumbersome either, as the D1_Flow model
permits fitting with available data sequentially.

Summarizing, the simple D1_Flow model exploiting some obviously false
assumptions yields results which are practically comparable to those yielded by the
more physically sound model of Frind and Hokkanen (1987). In principle, models
with larger number of governing parameters are more flexible, being easier to fit
with available observations; for example, the D1_Flow model simulating the

Fig. 4.7 Results of
calibration of the D1_Flow
model (solid lines) with
respect to streamlines of
Frind and Hokkanen (1987)
(dots): 1-water tables, 2-base
of aquifer, 3-streamline
starting at x = 300 m, 4-
streamline starting at
x = 170 m, 5-streamline
starting at 140 m

Fig. 4.6 Results of
calibration of the D1_Flow
model based on data of Frind
and Hokkanen 1987, on the
streamline starting at
x = 300 m
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Borden plume could reproduce the observations absolutely accurately, if the
recharge rates changed at (and stayed constant between) the points of observations,
but what does this prove? Thus, the quality of calibration, fitting the available
observations, cannot be a decisive reason for choosing a model. (Compare with the
chose of mathematical expressions depicting regional trends discussed in Sect. 3.1
and illustrated by Fig. 3.1).

The calibration of both models explicitly demonstrates the problem dependence
of model identification. Indeed, Frind and Hokkanen (1987) scaled the recharge
pattern and the hydraulic conductivities to satisfy the factual travel time. Their
scaling leads to substitution of the empirically established properties of the object by
different model parameters; that is, one object is substituted with another. In the case
of the D1_Flow model, to achieve a good fit, only the recharge pattern was manip-
ulated. The hydraulic conductivity, i.e., the hydrogeological object per se, remained
the same. Nevertheless both calibrations can be considered as successful. However,
the uncertainty of the simulation results in both cases cannot be evaluated in a
provable way, since the simulations use many unverified and even incorrect
assumptions, the most obvious of which are those about steady-state filtration plus
the Dupuit-Forchheimer assumption in the case of the D1_Flow model.

Geological models are not exact copies of the real, not fully known, geological
objects that they represent. Such models can be tuned to simulate satisfactorily the
problems under conditions imposed in calibration. However, if the conditions
change, parts of the objects that are unknown, not represented, or misrepresented
can affect the objects’ responses in ways that differ considerably from what is
expected based on simulation models. Namely, this causes the problem depen-
dence of model identification. (Inaccuracy of a mathematical model can produce
similar effects which might be the subject of special research).

Model identification in hydrogeology is often considered as an inverse problem.
This is not accurate. Model identification is an optimization problem usually. Its
solution depends on the systems to be optimized. The systems include a number of
factors: structures and properties of the objects, known and not known; the models
representing them in the simulation; the mathematical descriptions of the processes in
the model; actual and modeled boundary conditions; manmade and natural impacts
affecting the available data; quality criteria for fitting the data; and monitoring net-
works used for evaluating the criteria (the list is not exhaustive). The optimal
parameters are optimal, effective, in the sense they are assigned to be effective.
However, if the system that they optimize is changed, those effective parameters may
lose effectiveness and even become misleading. And this is indeed the case, since
predictive problems differ from model identification problems in many respects.
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Chapter 5
Transformation of Geological
Objects’ Properties into Effective
Model Parameters

One of the effects of the phenomenon of problem dependence of model identifi-
cation is that the model parameters effective in a given formulation of the model
identification may not be, and often are not, effective in the coupled predictive
simulations. The reason is that the coupled predictive problem differs from the
model identification problem in many respects. They can have different impacts,
boundaries and boundary conditions, nature of simulating fields (water tables and
streamlines, as in the example discussed in Sect. 4.4), quality criteria of simula-
tion, and monitoring networks on which quality is evaluated. Even the mathe-
matical models applied are often different (steady-state filtration in calibration
versus transient in predictive simulations). The goal of model identification must
be to provide the model parameters effective in predictive simulations, not just in
calibration. The concept of transforming mechanisms introduced below is focused
on providing the model parameters effective in predictive simulation.

5.1 Geological Objects and Simulation Models

As discussed in the previous chapters, to simulate underground flow and mass
transport by solving differential equations describing the simulation processes
within a site, we need to assign pertinent boundary conditions on the boundaries of
the site of interest. Although some of the conditions can be controlled or induced
by us, i.e., are known, a considerable part of them remains unknown but just
assumed. To find the boundaries on which boundary conditions can be established,
we usually have to go outside of the site of interest. If we cannot find them close
enough to our site, then we consider that the boundaries are as if at infinity and,
based on this assumption, evaluate the boundary conditions as close to the site as
possible. Thus, simulation models must usually represent larger geological sur-
roundings than the sites of interest.
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Let us assume that the goal of simulation is to predict how construction of a landfill
can affect water supplying wells (Fig. 5.1). Let rivers 1 and 2 and a channel be
closely connected to the aquifer used for the water supply. This permits assignation
of boundary conditions along those rivers and the channel and solving of the mass
transport problem within the territory outlined by the rivers and the channel.

The territory including the sites of interest and outlined by the boundaries
permitting assignation of boundary conditions required for solving pertinent
hydrogeological and mass transport problems are called here geological objects (or
just objects). Homogeneous geological units, the units comprising rocks and soils
of the same lithological composition, origin, and geological history, are called
geological bodies (or just bodies). Their properties are traditionally considered as
constant. Space and time trends of the properties are rarely taking into account.
However, when they are, the coefficients of the corresponding trends can be
considered as properties of the geological bodies, constant within them.

Geological models (or just models) are simplified replicas of the geological
objects. They introduce rules of interpolation and extrapolation of sparse available
data on geological properties at every point of the objects, thereby filling the
information gaps created by the paucity of the data. The interpretation rules are
primitive. Models usually consist of homogeneous units called model blocks (or
just blocks): One parameter value of each relevant property substitutes for the
variety of that actual property’s values within a given model block. This parameter
and its value are called the model block parameter (or justparameter). Figure 5.2
illustrates the notions of the geological object and geological model. The object
consists of five geological bodies, and the model of two blocks. If bodies 1.3 and
2.1 are actually the same geological body, they are considered as two different
bodies, since they belong to different model blocks.

5.2 Transforming Mechanisms

Let an object comprise N geological bodies. Its geological model consists of
M blocks (M B N). Block j represents Nj geological bodies with actual values of
G of ðgj;1; . . .; gj;NjÞ; and model block parameter ĝj substitutes for these values in

Fig. 5.1 Site of interest and
geological object
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predictive simulations. Conversion of actual property values of the geological
bodies into the effective model block parameter is called transformation. The term
is used to emphasize that the conversion is not necessarily statistical averaging,
which is characterized by nonnegative weighting factors that sum to one.

Since geological models are not exact copies of the geological objects, the
simulation results do not reproduce the objects’ responses on natural and manmade
impacts exactly. We can request only that the results be best in some predefined
sense, i.e., satisfy some criterion of quality on a given monitoring network. The
most popular and mathematically convenient is the least-squares criterion
requiring minimization of the squared residuals between the data observed by the
monitoring network and the corresponding simulation results. Other criteria can be
applied as well. Model identification is the search for the set of model parameters
providing the best, in a predefined sense, results of the pertinent predictive sim-
ulation, not just in calibration. Thus, the problem of model identification is an
optimization problem.

The model which is best in a defined sense is called effective. The corre-
sponding set of its parameters ðĝ1; . . .; ĝj; . . .; ĝMÞ is effective. Each parameter of
the set is an effective parameter. A mathematical expression describing the
transformation of actual values of property G of the geological bodies forming the
geological object into the effective parameter ĝj; generalizing property G in block
j, is called the transforming mechanism (or just the mechanism). The following
equation represents one of the possible forms of such expressions:

ĝj ¼
XM

m¼1

XNm

n¼1

wj;m;ngm;n; ð5:1aÞ

where geological bodies are enumerated within each model block: gm,n is the
actual value of property G in geological body n (n = 1 to Nm) belonging to model
block m, and wj,m,n is the affecting factor describing the contribution of body
n belonging to block m in forming the effective parameter value ĝj of property
G for block j. Equation 5.1a can be written also as

ĝj ¼
XN

n¼1

wj;ngn; ð5:1bÞ

Fig. 5.2 Five-body
geological structure and two-
block model
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where the enumeration of the geological bodies is total (1 B n B N) so gn and wj,n

are the actual value of property G in body n of the object. Block j for which the
effective parameter value ĝj is evaluated is called the evaluated block. Other
blocks are called affecting.

Contrary to statistical averaging, which includes only bodies belonging to the
evaluated block j, summations in Eq. 5.1 include all geological bodies of the
geological object. Subsurface flow, as well as mass transport, is a dynamic process
affected by the internal conditions on continuity of flow and hydraulic heads or
water table elevations at the geological body contacts. The internal conditions bind
all geologic bodies of the object in a united system, and the response occurring in a
part of the object represented by some model block depends not only on properties
of the bodies represented by this block but also on properties of each body of the
object. Therefore, any transformation of a spatially variable property G related to
modeling dynamic processes should incorporate relevant property values of all
geological bodies.

Equation 5.1 represent a linear transforming mechanism if the affecting factors
depend on positions of the geologic bodies and/or time only. If the affecting factors
depend on geologic bodies’ property values, Eq. 5.1 represents a nonlinear
transforming mechanism.

The transforming mechanisms can be property interrelated also. The interre-
lation can reflect real bounds as in the cases of aquifer transmissivity (the product
of aquifer thickness and hydraulic conductivity) and hydraulic diffusivity (the
quotient of hydraulic transmissivity and storativity). The subsurface flow transport
models are essentially governed by nondimensional coefficients, binding different
physical parameters; for example, one-dimensional steady-state flow in a homo-
geneous aquifer is described by the equation

Kd hðxÞ dhðxÞ
dx

� �

dx
¼ �N; ð5:2Þ

where h(x) is the aquifer thickness, K is the hydraulic conductivity, and N is the
recharge. Although Eq. 5.2 contains two parameters (K and N), it is actually
governed by the dimensionless ratio W = K/N.

In the case of the interrelating mechanisms, the transforming mechanisms
represented by Eq. 5.1b take the following form:

ĝj;s ¼
XN

n¼1

XP

p¼1

wj;n;pgn;p; ð5:3Þ

where ĝj;s is the effective value of property Gs in model block j, and g n, p is the
actual value of property Gp of geological body n. The interrelating mechanisms are
not discussed in this work, since it complicates presentation of the concept of the
transforming mechanisms.
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5.3 Properties of Transforming Mechanisms

Let a geological model be an exact replica of a geological object with respect to
property G. This means that each model block is homogeneous in property G; i.e.,
all geological bodies represented by each block have the same value of property
G. Thus, all bodies belonging to model block m have the same value gm of property
G. It is reasonable to assume in this case that the effective value ĝj provided by
Eq. 5.1a should be equal to the actual value of the property in block j:

ĝj ¼
XM

m¼1

XNm

n¼1

wj;m;n

 !

gm ¼ gj: ð5:4Þ

For Eq. 5.4 to be true for any set {gm} of actual property values, three obvious
properties of the transforming mechanisms must hold.

Property 1 is expressed by the equality

XNj

n¼1

wj;j;n ¼ 1 for evaluated block j; ð5:5Þ

that is, the affecting factors related to evaluated block j sum to one in any trans-
forming mechanism forming effective parameterĝj:

Property 2 is expressed by the equality

XNm

n¼1

wj;m;n ¼ 0 for affecting block m m 6¼ jð Þ; ð5:6Þ

that is, the affecting factors for any affecting block sum to zero. One more property
follows from properties 1 and 2:

Property 3

XN

n¼1

wj;n ¼ 1; ð5:7Þ

that is, the total sum of all affecting factors is equal to one.
The following example illustrates the above properties of the transforming

mechanisms. Let a geological object comprise five geological bodies and its model
consist of two blocks (Fig. 5.3). Two effective parameters ðĝ1 and ĝ2Þ must rep-
resent actual values of property G in simulations. Two transforming mechanisms
convert properties of the geological bodies into the effective model parameters:

ĝ1 ¼ w1;1g1 þ w1;2g2 þ w1;3g3 þ w1;4g4 þ w1;5g5;

ĝ2 ¼ w2;1g1 þ w2;2g2 þ w2;3g3 þ w2;4g4 þ w2;5g5;
ð5:8Þ

where g1 = g1,1, g2 = g1,2, g3 = g1,3, g4 = g2,1, and g5 = g2,2 in Fig. 5.3.
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Properties of the transforming mechanisms can be easily demonstrated by
mechanisms 5.8. Indeed, let the discussed model be an exact replica of the object.
This means that property G is the same within each model block:

g1 ¼ g2 ¼ g3 ¼ G1 and g4 ¼ g5 ¼ G2: ð5:9Þ

Then, Eq. 5.8 converts into equations

ĝ1 ¼ w1;1 þ w1;2 þ w1;3
� �

G1 þ w1;4 þ w1;5
� �

G2;

ĝ2 ¼ w2;1 þ w2;2 þ w2;3
� �

G1 þ w2;4 þ w2;5
� �

G2:
ð5:10Þ

For the model which is an exact replica of an object, the model block effective
parameters are equal to the actual property values:

ĝ1 ¼ w1;1 þ w1;2 þ w1;3
� �

g1 þ w1;4 þ w1;5
� �

g2 ¼ G1;

ĝ2 ¼ w2;1 þ w2;2 þ w2;3
� �

g1 þ w2;4 þ w2;5
� �

g2 ¼ G2:
ð5:11Þ

Equalities 5.11 must hold for any values G1 and G2. To make this possible,
mechanisms 5.11 should have properties 1 and 2:

w1;1 þ w1;2 þ w1;3 ¼ 1 Property 1

w1;4 þ w1;5 ¼ 0 Property 2

w2;1 þ w2;2 þ w2;3 ¼ 0 Property 2

w2;4 þ w2;5 ¼ 1 Property 1

It follows from property 2 that, if an affecting block represents more than one
geological body, at least one of affecting factors of the block is negative. This
means that, in general, the effective parameters of models are not of the statistical
nature. That is, they are not statistical averages with nonnegative weighting factors
summing to one. In the case of homogeneous models, due to property 1, the
effective parameters can be the statistical averages. However, as shown in Chap. 7,
summing of the affecting factors of the evaluated blocks to one does not warrant
that all the factors are not negative. The fact that all geological bodies of the object
participate in forming effective parameters for any block undermines the statistical
nature of the effective parameters also.

The effective parameters are the characteristics optimizing the system made up
by the geological structure of the object, the model representing it, the boundary

Fig. 5.3 Five-body object
and two-block model
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conditions, the natural or manmade impact which is to be simulated, the criterion
of quality of planning predictive simulations, and the monitoring network on
which the given criterion is evaluated. The system changes if any of the above
listed factors change, and this changes the transforming mechanisms. Even the
progress of time can change the transforming mechanisms and the effective
parameter values. (See examples in Chaps. 6 and 7).

The presence of negative affecting factors in the transforming mechanisms can
lead to physically incorrect values of the effective parameters such as negative
hydraulic conductivities and transmissivities (see Chaps. 6–8 for examples). This
emphasizes that the effective parameters are deprived of physical meaning. They
are system characteristics providing the system efficiency and nothing more. To be
effective in a changed system, different effective parameters and different trans-
forming mechanisms are required (showing problem dependence at work).

A physically incorrect effective parameter is self-obvious. However, the
effective parameters, being correct physically, may be incorrect geologically,
exceeding the range of the actual values of the property they represent. Geological
incorrectness is not obvious. Geologically incorrect effective parameters, being
effective in a given predictive problem formulation, may become misleading and
even dangerous in other applications.

Problem dependence is usually seen as an obstacle or, at least, as a nuisance. On
the other hand, the problem dependence of the effective parameters permits dif-
ferent values of the effective parameters to be obtained, using different model
identification problem formulations. This permits better understanding of the
structures of geological objects and can be used for formulating and solving
inverse hydrogeological problems (Chap. 9).

The transforming mechanisms, defined by their affecting factors, describe
contributions of different objects’ parts to the effective parameters of the simu-
lation models. Therefore, being evaluated before starting field investigations
(Chap. 8), they can be a tool for their optimization. The transforming mechanisms
can be applied also for assigning monitoring networks and even simulation
models.

Transforming mechanisms are introduced here in the hydrogeological context.
However, their introduction does not assume any hydrogeological specificity. It
would not be surprising if such mechanisms with analogous properties are known
to professionals in the field of optimization. In any case, the transforming mech-
anisms and their properties can be applied to other fields where simplified versions
of complex systems are in use, such as geophysics, engineering geology, and
environmental sciences.
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Chapter 6
Examples of Linear Transforming
Mechanisms

6.1 One-Dimensional Steady-State Filtration to Fully
Penetrating Trench

Let us consider one-dimensional steady-state underground flow in an unconfined
aquifer on a horizontal base with constant recharge N to a fully penetrating trench
at X0 = 0 (Fig. 6.1). The aquifer is piecewise homogeneous. Its hydraulic con-
ductivity changes at locations X1, X2, and X3, taking within the intervals [X0, X1],
(X1, X2], (X2, X3], and (X3, X4] the values K1, K2, K3, and K4. Recharge
N = 0.0001 m/day, and X1 = 25, X2 = 50, X3 = 75, and X4 = 100 m. The outer
boundary conditions are given as the aquifer thickness h0 at X0 and the slope
(gradient) of the water table at X4:

h0 ¼ hðX0Þ;
dh

dx
jx¼X4

¼ 0:

Within homogeneous interval j, [Xj-1, Xj], the flow is described by the equation

d Kj hðxÞ dhðxÞ
dx

� �� �

dx
¼ �N; Xj�1� x�Xj; ð6:1Þ

where h(x) is the aquifer thickness at x.
The inner boundary conditions on continuity of the water table elevation and

the flux at locations X1 = 25, X2 = 50, and X3 = 75 m are

lim
x!Xj

ðhðxÞÞ ¼ lim
Xj x
ðhðxÞÞ

Kj h
dh

dx

� �����
x!Xj

¼ Kjþ1 h
dh

dx

� �����
Xj x

:
ð6:2Þ

Integrating Eq. 6.1, using the outer and inner boundary conditions for interval
[Xj-1, Xj], yields (see the inference in Text Box 6.1):
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h2ðxÞ ¼ h2
j�1 þ 2

N

Kj
ðL� Xj�1Þðx� Xj�1Þ �

N

Kj
ðx� Xj�1Þ2; Xj�1� x�Xj:

ð6:3Þ

Text Box 6.1
Integrating Eq. 6.1 with the outer and inner boundary condition yields the

general solution

h2ðxÞ ¼ �N

K
ðx� Xj�1Þ2 þ C1ðx� Xj�1Þ þ C2; Xj�1� x�Xj;

where C1 and C2 are arbitrary constants. To obtain the particular solution of
our problem, we need to find C1 and C2 based on the boundary conditions at
the ends of intervals at locations: X0 = 25, X1 = 25, X2 = 50, X3 = 75, and
X4 = L = 75 m. It follows immediately from the fist condition (6.2) that
C2 = hj-1 = h(Xj-1). To find C1, we have to write the equation for flux at the
same location:

2K hðxÞ dhðxÞ
dx

� �
¼ 2NðL� xÞ ¼ �2Nðx� Xj�1Þ þ C1:

So, C1 = 2N(L - Xj-1), and the particular solution, Eq. 6.3, follows

The squared thickness of the aquifer hj = 1,…4 observed at locations X1, X2, X3,
and X4 follows from Eq. 6.3 as

h2
j ¼ h2

j�1 þ
N

Kj
ð2L� Xj�1 � XjÞðXj � Xj�1Þ: ð6:4Þ

Let the simulation geological model consist of two homogeneous blocks with
the boundary between them at location X = 50 m. The goal is to evaluate two
effective hydraulic conductivities, K̂1 and K̂2; for the model blocks based on
observations on the thicknesses of the aquifer at locations X1 = 25, X2 = 50,
X3 = 75, and X4 = 100 m, selected to simplify calculations. The simulated
thickness of the aquifer at those locations can be calculated as

ĥ2
j ¼ ĥ2

j�1 þ
N

K̂i
ð2X4 � Xj � Xj�1ÞðXj � Xj�1Þ; i ¼ 1; 2; j ¼ 1; 2; 3; 4: ð6:5Þ

Fig. 6.1 One-dimensional
steady-state flow to a fully
penetrating trench in an
unconfined aquifer
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(The effective hydraulic conductivity K̂1 substitutes for K1 and K2, and K̂2 for K3 and
K4). The goodness of fit for the parameters K̂1 and K̂2 is evaluated by the criterion

s ¼
X4

j¼1

pj ĥ2
j � h2

j

� �2
; ð6:6Þ

in which the weight pj assigns the significance of the squared differences between
the observed and simulation results at location Xj (pj may be any number,
including negative ones). If all observations are equally important, all weights pj

must be equal, say to 1, to 2, or 52. If, for example, the accuracy of simulations
must increase with distance, the weights can be assigned as p1 = 1, p2 = 2,
p3 = 3, and p4 = 4, or p1 = 3, p2 = 7, p3 = 8, and p4 = 12, and so on.

Substituting in Eq. 6.4 the given values of X0 = 0, X1 = 25, X2 = 50, X3 = 75,
X4 = 100 m, and N = 0.0001 m/day yields

h2
1 ¼ h2

0 þ 0:4375g1;
h2

2 ¼ h2
0 þ 0:4375g1 þ 0:3125g2;

h2
3 ¼ h2

0 þ 0:4375g1 þ 0:3125g2 þ 0:1875g3;
h2

4 ¼ h2
0 þ 0:4375g1 þ 0:3125g2 þ 0:1875g3 þ 0:0625g4:

ð6:7Þ

The same procedure for Eq. 6.5 for simulation results yields

ĥ2
1 ¼ h2

0 þ 0:4375ĝ1;

ĥ2
2 ¼ h2

0 þ 0:75ĝ1;

ĥ2
3 ¼ h2

0 þ 0:75ĝ1 þ 0:1875ĝ2;

ĥ2
4 ¼ h2

0 þ 0:75ĝ1 þ 0:25ĝ2;

ð6:8Þ

where g1 ¼ 1=K1; g2 ¼ 1=K2; g3 ¼ 1=K3; g4 ¼ 1=K4 are called the actual
hydraulic resistivity, and ĝ1 ¼ 1=K̂1 and ĝ2 ¼ 1=K̂2 are the effective hydraulic
resistivities.

Substituting the simulation results Eq. 6.8 in criterion (6.6) yields

s ¼ p1 h2
0 þ 0:4375ĝ1 � h2

1

� �2þ p2 h2
0 þ 0:75ĝ1 � h2

2

� �2

þp3 h2
0 þ 0:75ĝ1 þ 0:1875ĝ2 � h2

3

� �2þ p4 h2
0 þ 0:75ĝ1 þ 0:25ĝ2 � h2

4

� �2
:
ð6:9Þ

Application of the standard procedure of the least-squares method to the sum
(6.9) leads to the following linear system of equations for calculating the effective
values ĝ1 and ĝ2 based on the observed differences h2

i � h2
0

� �
ði ¼ 1; 2; 3; 4Þ:

0:43752p1 þ 0:752ðp2 þ p3 þ p4Þð Þĝ1 þ 0:75ð0:1875p3 þ 0:25p4Þĝ2

¼ 0:4375p1 h2
1 � h2

0

� �
þ 0:75 p2 h2

2 � h2
0

� �
þ p3 h2

3 � h2
0

� �
þ p4 h2

4 � h2
0

� �� �

0:75ð0:1875p3 þ 0:25p4Þĝ1 þ 0:18752p3 þ 0:252p4ð Þĝ2

¼ 0:1875p3 h2
3 � h2

0

� �
þ 0:25p4 h2

4 � h2
0

� �
: ð6:10Þ
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Matrix c of system (6.10) is

c ¼ 0:43752p1 þ 0:752ðp2 þ p3 þ p4Þ 0:75ð0:1875p3 þ 0:25p4Þ
0:75ð0:1875p3 þ 0:25p4Þ 0:18752p3 þ 0:252p4

	 

ð6:11aÞ

It depends on the structure of the object and simulation model, the observation
network, and the weights, but not on the observations. The right-hand terms
(vector b) of system (6.10)

b ¼ 0:4375p1 h2
1 � h2

0

� �
þ 0:75 p2 h2

2 � h2
0

� �
þ p3 h2

3 � h2
0

� �
þ p4 h2

4 � h2
0

� �� �

0:1875p3 h2
3 � h2

0

� �
þ 0:25p4 h2

4 � h2
0

� �
	 


ð6:11bÞ
depend on observations.

The effective hydraulic resistivities are solution of system (6.10)

ĝ1 ¼ D1=D; ĝ2 ¼ D2=D ð6:12aÞ

with determinants
D ¼ c11c22 � c12c21;

D1 ¼ b1c22 � b2c12;

D2 ¼ b2c11 � b1c21:

ð6:12bÞ

Expression (6.12) solves the above-formulated model identification problem.
To find the mechanisms transforming the actual hydraulic resistivities g1, g2, g3,
and g4 into the effective resistivities ĝ1 and ĝ2; it is necessary to express vector
b (6.11b) and solution 6.12a in terms of the resistivities g1, g2, g3, and g4. This
procedure yields

b1 ¼ 0:4375 ð0:4375p1 þ 0:75ðp2 þ p3 þ p4ÞÞg1 þ 0:3125� 0:75 ðp2 þ p3 þ p4Þg2

þ 0:1875� 0:75ðp3 þ p4Þg3 þ 0:75� 0:0625p4g4;

b2 ¼ 0:4375 ð0:1875p3 þ 0:25 p4Þg1 þ 0:3125 ð0:1875p3 þ 0:25p4Þg2

þ 0:1875 ð0:1875p3 þ 0:25p4Þg3 þ 0:25� 0:0625p4g4: ð6:13Þ

Let us introduce vectors W1 and W2 constituted by the multipliers of the
hydraulic resistivities g1, g2, g3, and g4 in Eq. 6.13:

W1 ¼

0:4375 ð0:4375p 1 þ 0:75 ðp2 þ p3 þ p4ÞÞ
0:3125� 0:75 ðp2 þ p3 þ p4Þ

0:1875� 0:75ðp3 þ p4Þ
0:75� 0:0625p4

8
>>><

>>>:

9
>>>=

>>>;

W2 ¼

0:4375 ð0:1875p3 þ 0:25p4Þ
0:3125 ð0:1875p3 þ 0:25p4Þ
0:1875 ð0:1875p3 þ 0:25p4Þ

0:25� 0:0625p4

8
>>><

>>>:

9
>>>=

>>>;

ð6:14Þ
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Then, the affecting factors of the pertinent transforming mechanisms can be
calculated as

w11;w12;w13;w14f g ¼ W1c22 �W2c21

c11c22 � c12c21

	 
0
;

w21;w22;w23;w24f g ¼ W2c11 �W1c12

c11c22 � c12c21

	 
0
:

ð6:15Þ

6.2 Illustrative Cases

Several cases are presented in this section to get a better feeling for the trans-
forming mechanisms, their properties, and their sensitivity to each element of the
model identification problem formulation.

Cases 6.2.1 and 6.2.2 These cases differ only with respect to the distributions of
the actual hydraulic conductivity values (Table 6.1). The weighting is uniform (all
weights are equal to one). The values of the effective hydraulic resistivities for
model blocks 1 (interval [0, 50 m]) and 2 (interval [50, 100 m]) are evaluated,
using the transforming mechanisms, the affecting factors, calculated by expression
(6.15). Since those are linear transforming mechanisms, the affecting factors do
not depend on the hydraulic conductivity distributions and are the same for both
cases:

ĝ1 ¼ 0:6861g1 þ 0:3139g2 þ 0:0072g3 � 0:0072g4;

ĝ2 ¼ �0:3451g1 þ 0:3451g2 þ 0:8155g3 þ 0:1845g4:
ð6:16Þ

The results for case 6.2.1 are presented in Table 6.2 and Fig. 6.2. They seem to be
satisfying. The maximal error in the aquifer thickness is 0.0538 m at x = 75 m.

Table 6.1 Cases 6.2.1 and 6.2.2: distributions of the hydraulic conductivity values

Intervals (m) 0–25 25–50 50–75 75–100

Hydraulic conductivity (m/day) K1 K2 K3 K4

Case 6.2.1 1 0.9 0.2 0.1
Case 6.2.2 0.1 0.2 0.9 1

Table 6.2 Case 6.2.1: comparison of factual data and simulation results

Effective conductivity (m/day) K̂1 ¼ 1:0011 K̂2 ¼ 0:1678

Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m2) 0.4475 0.7947 1.7322 2.3572
Squared simulated aquifer thickness (m2) 0.4470 0.7592 1.8766 2.2491
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The results of case 6.2.2 are presented in Fig. 6.2 and Table 6.3. They are not
so good, compared with the result of case 6.2.1, with maximal error in the aquifer
thickness equal to 0.1708 m at x = 25 m. The most disappointing is the negative
value of the effective hydraulic conductivity K̂2; which is meaningless physically.

The first urge is to disregard case 6.2.2 as an incorrect formulation of the model
identification problem, but what is wrong with the formulation? It does not differ
from that of case 6.2.1. The transforming mechanisms are the same. The effective
hydraulic resistivities are unique solutions of linear systems which are stable.
What is more important, being physically incorrect, they provide the effective
simulation of the water table or the thickness of the aquifer at the observation
locations, doing exactly what was required of them. Sure, it would be wrong to
apply these hydraulic conductivities to reproducing streamlines, but the stream-
lines were not the goal of the optimization.

The negative conductivity appeared as compensation for a very steep growth of
the aquifer thickness near the trench and its very slow growth at the right half of
the object, that is, as a consequence of the applied optimization procedure. By the
way, the value of the effective conductivity K̂1 in case 6.2.1 is slightly greater than
the real-world hydraulic conductivity K1. Thus, although correct physically, it is
incorrect geologically. In the following cases, this phenomenon demonstrates itself
more clearly.

Fig. 6.2 Cases 6.2.1 and
6.2.2: comparison of factual
and simulated aquifer
thicknesses

Table 6.3 Case 6.2.2:
comparison of factual data
and simulation results

Effective conductivity
(m/day)

K̂1 ¼ 0:1186 K̂2 ¼ �1:5751

Monitoring location (m) 25 50 75 100
Squared factual

aquifer thickness (m2)
4.3850 5.9475 6.1558 6.2183

Squared simulated
aquifer thickness (m2)

3.6987 6.3335 6.2144 6.1748
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To avoid the use of the negative value of the effective hydraulic conductivity K̂2

in case 6.2.2, let us try more physically appropriate model parameters: the har-
monic means of the actual hydraulic conductivities.

Case 6.2.3 The effective hydraulic conductivity of the above two blocks is
assigned as harmonic means:

K̂1 ¼
K1K2

K1 þ K2
¼ 0:1� 0:2

0:1þ 0:2
¼ 0:0667 m=day;

K̂2 ¼
K3K4

K3 þ K4
¼ 0:9� 1

1:9
¼ 0:4737 m=day:

Substituting these values of the hydraulic conductivities into Eq. 6.8 yields the
results presented in Table 6.4 and Fig. 6.3. The advantage of the formulation of
the model identification problem in case 6.2.2 is obvious. (Note that the above
values of the model parameters are not geologically correct).

Case 6.2.4 Let us try a homogeneous (one-block) simulation model with the
effective hydraulic conductivity assigned as the harmonic mean of the four factual
values of hydraulic conductivity:

K̂ ¼ 1
1

K1
þ 1

K2
þ 1

K3
þ 1

K4

¼ 1
1

0:1þ 1
0:2þ 1

0:9þ 1
1

¼ 0:0584 m/day:

Fig. 6.3 Cases 6.2.3, 6.2.4,
and 6.2.5: comparison of
factual and simulated aquifer
thickness

Table 6.4 Case 6.2.3: comparison of factual data and simulation results

Effective conductivity (m/day) K̂1 ¼ 0:0667 K̂2 ¼ 0:4737

Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m2) 4.3850 5.9475 6.1558 6.2183
Squared simulated aquifer thickness (m2) 6.5725 11.2600 11.6558 11.7878
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The results of case 6.2.4 are presented in Table 6.5 and Fig. 6.3. Note that the
above statistics is geologically incorrect again.

Comparison of the results of cases 6.2.2, 6.2.3, and 6.2.4 demonstrates that the
physically incorrect effective parameters perform better, much better, than those
assigned from physical and statistical consideration. Besides the latter are geo-
logically incorrect as well. So, it is up to the modeler to decide what the model
parameters are preferable, i.e., simulating results more accurately or yielding less
accurate but ‘politically correct’ results. (Political correctness is mentioned here
based on the author experience: each time when the efficiency of the physically
incorrect parameters was demonstrated, hydrogeologists object to them just
because of their physical incorrectness.)

Case 6.2.5 It is interesting also to compare cases 6.2.3 and 6.2.4 with the
homogeneous (one-block) model optimized in the sense of criterion (6.6) with
uniform weighting (pj = 1, j = 1, 2, 3, 4). The corresponding effective hydraulic
resistivity in this case is equal to

ĝ ¼
0:4375 h2

1 � h2
0

� �
þ 0:75 h2

2 � h2
0

� �
þ 0:9375 h2

3 � h2
0

� �
þ h2

4 � h2
0

� �

0:4375 2 þ 0:75 2 þ 0:9375 2 þ 1
: ð6:17Þ

The corresponding transforming mechanism can be obtained by substituting

into the equations the values of the differences h2
j � h2

0

� �
from Eq. 6.7

ĝ ¼ 0:5193g1 þ 0:3190g2 þ 0:1380g3 þ 0:0237g4: ð6:18Þ

The results of case 6.2.5 are presented in Fig. 6.3 and Table 6.6. Although they
are worse than the ones in case 6.2.2, they are considerably better than those of
cases 6.2.3 and 6.2.4.

Table 6.5 Case 6.2.4: comparison of factual data and simulation results

Effective conductivity (m/day) K̂ ¼ 0:0584

Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m2) 4.3850 5.9475 6.1558 6.2183
Squared simulated aquifer thickness (m2) 7.4961 12.8433 16.0517 17.1211

Table 6.6 Case 6.2.5: comparison of factual data and simulation results

Effective hydraulic conductivity (m/day) K̂ ¼ 0:1436

Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m2) 4.3850 5.9475 6.1558 6.2183
Squared simulated aquifer thickness (m2) 3.0572 5.2338 6.5397 6.9750
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Case 6.2.6 If, for any reason, we are not satisfied with the results yielded by
formulations of the problem identification in case 6.2.2, we can try different ones;
for example, we can assign weights increasing with distance from the trench, say,
p1 = 1, p2 = 2, p3 = 3, and p4 = 4. Corresponding transforming mechanisms are

ĝ1 ¼ 0:6407g1 þ 0:3593g2 þ 0:0133g3 � 0:0133g4;

ĝ2 ¼ �0:1891g1 þ 0:1891g2 þ 0:7802g3 þ 0:2198g4:
ð6:19Þ

The results of case 6.2.6 are presented in Table 6.7 and Fig. 6.4. The maximal
error in the aquifer thickness is 0.2160 m at x = 25 m. Although the maximal
error is slightly greater than in case 6.2.2 (0.1708 m), the accuracy of the results in
case 6.2.6 grows with distance due to the choice of the weights. Moreover, the
effective conductivity K̂2 is physically correct, being positive. However, it is
incorrect geologically, exceeding the actual hydraulic conductivity K3 and K4

considerably. This can make the model as erroneous as the physically incorrect
effective value K̂2 in case 6.2.2 and in some different formulations of the simu-
lation problem.

Case 6.2.7 Let us change the observation network. We come back to the uniform
weighting, but move the observation from location x = 25 m to x = 10 m. This

Table 6.7 Case 6.2.6: comparison of factual data and simulation results

Effective hydraulic conductivity (m/day) K̂1 ¼ 0:1219 K̂2 ¼ 7:0757

Monitoring location (m) 25 50 75 100
Squared factual aquifer thickness (m2) 4.3850 5.9475 6.1558 6.2183
Squared simulated aquifer thickness (m2) 3.5997 6.1637 6.1902 6.1990

Fig. 6.4 Case 6.2.6:
comparison of factual and
simulated aquifer thickness
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leads to changing the above system composed by the geological object, simulation
model, and observation network. In turn, this leads to a different system of
equations for finding the effective conductivities and the transforming mecha-
nisms. The effective hydraulic resistivities ĝ1 and ĝ2 correspondingly are solutions
of system:

0:192p1 þ 0:752ðp2 þ p3 þ p4Þð Þĝ1 þ 0:75ð0:1875p3 þ 0:25p4Þĝ2

¼ 0:19p1 h2
1 � h2

0

� �
þ 0:75 p2 h2

2 � h2
0

� �
þ p3 h2

3 � h2
0

� �
þ p4 h2

4 � h2
0

� �� �
;

0:75 ð0:1875p3 þ 0:25p4Þĝ1 þ 0:18752p3 þ 0:252p4ð Þ ĝ2

¼ 0:1875p3 h2
3 � h2

0

� �
þ 0:25p4 h2

4 � h2
0

� �
:

ð6:20Þ

The corresponding transforming mechanisms are

ĝ1 ¼ 0:6076g1 þ 0:3924g2 þ 0:0091g3 � 0:0091g4;

ĝ2 ¼ �0:0814g1 þ 0:0814g2 þ 0:8096g3 þ 0:1904g4:
ð6:21Þ

The results of case 6.2.7 are presented in Table 6.8 and Fig. 6.5. The maximal
error in the aquifer thickness is 0.1968 m at x = 25 m.

Table 6.8 Case 6.2.7: comparison of factual data and simulation results

Effective hydraulic conductivity (m/day) K̂1 ¼ 0:1244 K̂2 ¼ 1:4642

Monitoring location (m) 10 50 75 100
Squared factual aquifer thickness (m2) 1.9100 5.9475 6.1558 6.2183
Squared simulated aquifer thickness (m2) 1.5373 6.0389 6.1669 6.2096

Fig. 6.5 Case 6.2.7:
comparison of factual and
simulated aquifer thickness
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It is worth noting that the model identification in case 6.2.7 is also geologically
incorrect: the effective hydraulic K̂2 exceeds the factual values of the hydraulic
conductivity.

Case 6.2.8 Let us consider one more alternative to the model identification
problem presented in case 6.2.2. This time we change the model itself: the first
block of the new model coincides with the first geological body (interval [0,
25 m]). The second block (interval [25, 100 m]) consists of three geological
bodies. The observation network and weights are the same as in case 6.2.2. The
system of equations for finding the effective values ĝ1 and ĝ2 is

0:4375 p1 þ p2 þ p3 þ p4ð Þĝ1 þ 0:3125p2 þ 0:5p3 þ 0:5625p4ð Þĝ2

¼ p1 h2
1 � h2

0

� �
þ p2 h2

2 � h2
0

� �
þ p3 h2

3 � h2
0

� �
þ p4 h2

4 � h2
0

� �
;

0:4375 0:3125p2 þ 0:5p3 þ 0:5625p4ð Þĝ1 þ 0:31252p2 þ 0:52p3 þ 0:56252p4
� �

ĝ2

¼ 0:3125p2 h2
2 � h2

0

� �
þ 0:5p3 h2

3 � h2
0

� �
þ 0:5625p4 h2

4 � h2
0

� �
: ð6:22Þ

Fig. 6.6 Case 6.2.8:
comparison of factual and
simulated aquifer thickness

Table 6.9 Case 6.2.8:
comparison of factual data
and simulation results

Effective hydraulic
conductivity (m/day)

K̂1 ¼ 0:0964 K̂2 ¼ 0:3043

Monitoring location (m) 25 50 75 100
Squared factual

aquifer thickness (m2)
4.3850 5.9475 6.1558 6.2183

Squared simulated
aquifer thickness (m2)

4.5472 7.7881 8.4041 8.6095
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The transforming mechanisms in this case are

ĝ1 ¼ 1� g1 þ 0:0948g2 � 0:0743g3 � 0:0205g4;

ĝ2 ¼ 0� g1 þ 0:5612g2 þ 0:3673g3 þ 0:0715g4:
ð6:23Þ

The results of case 6.2.8 are presented in Fig. 6.6 and Table 6.9. The maximal
error in the aquifer thickness is 0.4405 m at x = 100 m. In general, the results are
considerably worse than those in case 6.2.2. The effective parameters are incorrect
geologically. However, the accuracy of reproducing the aquifer thickness in the
interval [0, 25 m] is impressive. Maybe, it is worth contemplating application of
different models to different parts of geological objects.

6.3 Discussion on Illustrative Cases

Table 6.10 summarizes the results of Sect. 6.2. The cases clearly demonstrate the
problem dependence of model identification and support the statement that ‘‘it is
not possible to define a consistent effective parameter value to reproduce the
response of a spatially variable pattern of parameter values’’ (Beven 1989). We see
that the effective parameters of predictive models and the transforming mecha-
nisms depend on geological conditions (cases 6.2.1 and 6.2.2), and literally on
each element of the simulation problem formulation (cases 6.2.2, 6.2.5–6.2.8). All
transforming mechanisms have properties 1–3, and they are not statistics, besides
the transforming mechanism presented by Eq. 6.18.

The problems in Sect. 6.2 are linear with respect to the squared thickness of the
aquifer. Therefore, they do not support the most popular explanation of the phe-
nomenon of problem dependence as due to nonlinearity of the simulation pro-
cesses. Being results of optimization, the effective parameters are not physical or
geological entities. They are characteristics of the system made up not only by
geological objects but also by all elements of the model identification problem
formulations. This is why the effective parameters can be incorrect physically and
geologically, but still remain effective in pertinent optimizations. However, they
can become misleading, if predictive simulations deal with systems different from
those in which they are obtained as effective. Case 6.2.2 is revealing in this sense.
The effective hydraulic conductivities K̂1 ¼ 0:1186 and K̂2 ¼ �1:5751 m=day
satisfactorily reproduce the aquifer thickness but are misleading in evaluations of
streamlines, which are not a subject of optimization in the calibration.

At earlier stages of investigation, exact formulations of simulation problems
may not be known yet. Then the goal of model identification is to find geologically
correct parameters; i.e., the model characteristics must be within the range of
factual properties of the geological object of interest. The transforming mecha-
nism, as in case 6.2.5, being averaging of statistical nature, can serve this end.
However, to be sure that the effective parameter values are indeed averaging of
statistical nature, the transforming mechanisms must be presented explicitly.
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ĝ 1
¼

0:
99

89
;

K̂
1
¼

1:
00

11
2
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ĝ 1
1
¼

3:
28

62
;

K̂
11
¼

0:
30

43

6.3 Discussion on Illustrative Cases 85



Contrary to seeing problem dependence as an obstacle or annoying factor, it is
more profitable to consider it as a tool for investigation of geological objects.
Different formulations of the model identification problems and corresponding
transforming mechanisms carry information about the structures and properties of
geological objects. They can even be applied during formulating and solving
inverse problems. Geophysics is an example of such use of the phenomenon of
problem dependence. The notion of apparent electrical resistivity corresponds to
an effective parameter as defined in the hydrogeological model identification
herein. Namely, the apparent specific electrical resistivity provides the exact dif-
ference of electrical potentials between the receiving electrodes for a given con-
figuration of the current electrodes. Its value is calculated based on the assumption
that the geological object is homogeneous with respect to the specific electrical
resistivity. If the actual object is not homogeneous, changing the configuration of
the current electrodes, which is equivalent to changing the boundary conditions (or
locations of sources and sinks), leads to change of the apparent resistance. The
pattern of this change can be used for qualitative or quantitative interpretation of
the object structure.

Let us consider the following system of equations:

0:6861g1 þ 0:3139g2 þ 0:0072g3 � 0:0072g4 ¼ 8:4311;

�0:3451g1 þ 0:3451g2 þ 0:8157g3 þ 0:1843g4 ¼ �0:6351;

0:6076g1 þ 0:3924g2 þ 0:0091g3 � 0:0091g4 ¼ 8:0386;

�0:0814g1 þ 0:0814g2 þ 0:8096g3 þ 0:1904g4 ¼ 0:6930:

ð6:24Þ

System (6.24) is composed from Eqs. 3, 4, 8, 9 (Table 6.10). The actual
hydraulic resistivities g1…4 are assumed to be unknown. Corresponding effective
hydraulic resistivities, the right-hand terms, are found from observations and as
such are known. Solving system (6.24) for the unknown actual resistivities and
recalculating them for the actual hydraulic conductivities yields

K1 ¼ 0:1; K2 ¼ 0:2; K3 ¼ 0:9; K4 ¼ 1:0 m=day: ð6:25Þ

These are the exact actual properties of the considered object.
Inverse problems are inherently incorrect. The source of incorrectness is errors

in the coefficients making up the matrix of system (6.24) and in the right-hand
vector. Solutions of systems such as system 6.3 depend strongly on the accuracy of
the initial data and rounding errors (see Eq. 4.20). The above success is due to the
fact that the made-up, artificial situation permits calculation of values of the
affecting factors and effective parameters with accuracy of 14 digits. If solving the
inverse problem with the data presented in Table 6.10, that is, with four significant
digits, the result becomes

K1 ¼ 0:1; K2 ¼ 0:1997; K3 ¼ 0:9109; K4 ¼ 0:9622 m=day; ð6:26Þ

which is still appropriate. If the system for finding the actual hydraulic resistivity is
made up by Eqs. 3, 4, 6, and 7 from Table 6.10 and the pertinent values are
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rounded up to three digits after the decimal point, the obtained solution is not so
good:

K1 ¼ 0:0997; K2 ¼ 0:2030; K3 ¼ 0:8137; K4 ¼ 1:4905 m=day; ð6:27Þ

though it may be acceptable, considering the usual accuracy of hydrogeological
information. Some systems made up from other combinations of the four equations
presented in Table 6.10 may yield much worse results.

In day-to-day practice, having four correct significant digits is an unavailable
luxury. A more practical approach to solving our inverse problem is to use
excessive systems of equations and solve them by the least-squares method; for
example, the affecting factors in Eqs. 3–11 from Table 6.10 can be considered as
independent variables and the unknowns the actual values g1, g2, g3, and g4 as
coefficients of the linear regression

ĝj ¼ g1wj1 þ g2wj2 þ g3wj3 þ g4wj4: ð6:28Þ

(Due to the properties 1–3 of the affecting factors are not independent. This
does not preclude considering them as such. However, the dependence of the
affecting factors can simplify solution of inverse problems).

Applying the least-squares method to minimize the sum

s ¼
X11

j¼3

g1wj1 þ g2wj2 þ g3wj3 þ g4wj4 � ĝj

� �2 ð6:29Þ

yields a system of four equations for evaluating the regression coefficients g1, g2, g3,
and g4. Solution of that system expressed in terms of the hydraulic conductivities is

K1 ¼ 0:0995; K2 ¼ 0:1981; K3 ¼ 0:8627; K4 ¼ 1:1594 m=day: ð6:30Þ

This approach to solving inverse problems, using the transforming mechanisms,
is considered in more detail in Chap. 9.

Konikow and Bredehoeft (1992) claim that a site-specific validation ‘‘per se, is
a futile objective.’’ In my opinion, they are wrong if we stop looking at calibration
as just the procedure for searching for the effective parameters of a given model to
provide the best fit of the available observations and start seeing it as a procedure
for systematic study of hydrogeological objects. The transforming mechanisms
may become a tool for this kind of investigations, though I believe that other tools
can be found also.

6.4 Borden Landfill

I think that Frind and Hokkanen (1987) assigned their recharge rate pattern and the
steady-state water table for the part of the Borden site located down-gradient of the
landfill (x [ 300 m) in Sect. 4.4, taking into consideration the observed streamline
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which coincides with the upper boundary of the contaminant plume. Then, they
scaled the pattern to satisfy the known arrival time. The goal of this section is to
obtain the mechanism transforming the rates N3, N4, and N5 into one effective
recharge rate N̂ of the homogeneous simulation model for x [ 300 m (Fig. 6.7).

The effective recharge rate N̂ should provide the effective, as if steady-state,
water table. [Note that, if the structure of the model of Frind and Hokkanen (1987)
in Sect. 4.4 had been an exact replica of the Borden site, then effective recharge
rates would be equal to the actual recharges, i.e., N̂3 ¼ N3; N̂4 ¼ N4 and N̂5 ¼ N5;
and as shown in Sect. 5.3, the corresponding transforming mechanisms become
trivial, with affecting factors w1,1 = w2,2 = w3,3 = 1, w1,2 = w1,3 = w2,1 =

w2,3 = w3,1 = w3,2 = 0].
The transforming mechanisms for the homogeneous model can be presented as

N̂ ¼ w1N3 þ w2N4 þ w3N5; ð6:31Þ

where the affecting factors w1, w2, and w3 sum to one. According to Eq. 4.35, the
actual water table H(x) for x [ xst is described by the equation

HðxÞ ¼ QðxÞ
QS
ðHSðxÞ � YðxÞÞ þ YðxÞ; ð6:32Þ

where HS(x) is the streamline S elevation, Y(x) is the aquifer base elevation, Q(x) is
the total flux, and QS = Q(xst), where xst is the coordinate of the point of
streamline S on the water table.

The effective water table ĤðxÞ is described by the equation

ĤðxÞ ¼ Q̂ðxÞ
QS
ðHSðxÞ � YðxÞÞ þ YðxÞ; ð6:33Þ

where Q̂ðxÞ is the effective total flux x [ xst. The effective value of the homoge-
neous recharge rate N̂ minimize the sum

s ¼
Xn

i¼1

ĤðxiÞ � HðxiÞ
� �2

; ð6:34Þ

Fig. 6.7 Borden site: model
homogeneous with respect to
recharge rate
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where xi are the locations where the values H(x), Y(x), and HS(x) are observed.
However, observations on H(x) are not necessary and even may not exist in this
case. Indeed, substituting Eqs. 6.32 and 6.33 into criterion (6.34) yields

s ¼ 1
Q2

S

Xn

i¼1

ðQ̂ðxiÞ � QiðxiÞÞðHSðxiÞ � YðxiÞÞ
� �2

: ð6:35Þ

So, the problem is reduced to evaluating the effective recharge rate based on an
observed streamline. According to the least-squares method, the effective recharge
rate N̂ is the solution of the equation

Xn

i¼1

ðQ̂ðxiÞ � QðxiÞÞðHSðxiÞ � YðxiÞÞ
� � dQ̂ðxiÞ

dN̂
¼ 0: ð6:36Þ

Substituting the data from Table 6.11 into Eq. 6.36 and solving it for N̂ yields
Eq. 6.31 with w1 = 0.8005, w2 = 0.1727, and w3 = 0.0269 summing to 1.0001.
(The error of 0.0001 is due to rounding. Adding one more digit, i.e., putting
w1 = 0.80045, w2 = 0.17267, w3 = 0.02688, makes the sum equal to one.) So
finally, the transforming mechanisms converting the recharge rates N3, N4, and N5

into the effective recharge rate N̂ is

N̂ ¼ 0:8005N3 þ 0:1727N4 þ 0:0269N5: ð6:37Þ
Substituting into Eq. 6.37 the recharge pattern N1:5 = [5.85, 28.41, 10.20,

23.00, 8.36] cm/year (Table 4.4) satisfying the streamline shape and the travel
times to x = 900 m and x = 950 m (about 39.1 and 40.2 years) yields the
effective recharge

N̂ ¼ 0:8005� 10:2þ 0:1727� 23þ 0:0269� 8:36 ¼ 12:36 cm=year: ð6:38Þ

To obtain mechanism (6.37), we do not need the observation on the water table,
and the total flux QS at x = 300 m. Taking into consideration the seasonal vari-
ability of the water table, which is expected to be greater than the variability of the
streamline elevations, the water table obtained with the use of the effective
recharge N̂ seems to be a good first approximation. However, the above result

Table 6.11 Data for evaluating the transforming mechanism for effective recharge rate

No. x HS Y u = HS - Y Q̂ Q

0 300 222.31 204.31 17.99 QS QS

1 400 219.25 206.17 13.08 QS þ 100 N̂ QS ? 100 N3

2 500 218.26 209.55 8.71 QS þ 200 N̂ QS ? 200 N3

3 600 217.46 210.85 6.61 QS þ 300 N̂ QS ? 300 N3

4 700 216.07 211.33 4.74 QS þ 400 N̂ QS ? 300 N3 ? 100 N4

5 800 215.47 211.86 3.61 QS þ 500 N̂ QS ? 300 N3 ? 200 N4

6 900 215.67 212.79 2.88 QS þ 600 N̂ QS ? 300 N3 ? 200 N4 ? 100 N5
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N̂ ¼ 12:36 cm=year can be checked by straightforward calculation of the effective
recharge applying the observed water table. To this end it is necessary to minimize
the criterion

s ¼
X6

i¼1

Q̂i

QS
ðHSðxiÞ � YðxiÞÞ � ðHðHSðxiÞ � YðxiÞ � YiÞ

 !2

ð6:39Þ

with H(x) corresponding to the above-mentioned recharge pattern from Table 4.4
(N1…5 = 5.85, 28.41, 10.20, 23.00, and 8.36 cm/year). The data for calculation are
presented in Table 6.12. Note also that the effective recharge rate of the model
which is homogeneous with respect to recharge for x [ 300 m must minimize the
difference between the observed water table and the simulated one.

It follows from Eq. 6.39 that the minimum value of the criterion (6.39) depends
on the ratio Q̂i

�
QS: Thus, the goal is to find the optimal value of this ratio, denoted

here as rN. The standard least-squares technique leads to the equation

100 u2
1 þ 4u2

2 þ 9u2
3 þ 16u2

4 þ 25u2
5 þ 36u2

6

� �
rN ¼ u1ðv1 � u1Þ þ 2u2ðv2 � u2Þ

þ3u3ðv3 � u3Þ þ 4u4ðv4 � u4Þ þ 5u5ðv5 � u5Þ þ 6u6ðv6 � u6Þ:
ð6:40Þ

According to Eq. 6.40, rN = 0.0027. Calculated based on recharge rates
N1…2 = 5.85, 28.41 cm/year the total flux QS at x = xst = 300 m is equal to
0.1253 m2/day. Thus, the effective recharge rate is

N̂ ¼ rN � Qs � 100� 365 ¼ 12:40 cm=year: ð6:41Þ

The results obtained by Eqs. 6.38 and 6.41 are consistent, though based on
slightly different data.

Thus, the transforming mechanism presented by Eq. 6.38, as expected, provides
the effective parameter N̂ for the discussed simulation model. The magnitude of
the maximal error in reproducing the water table is less than 9.1 cm. However, the
magnitude of the maximal error in evaluation the streamline starting at x = 300 m
is too large, about 0.56 m (Fig. 6.8), since the streamline was not the goal of

Table 6.12 Data for evaluating the transforming mechanism for effective recharge rate N̂
ðrN ¼ N̂

�
QSÞ

No. x H v = H - Y Y HS u = HS - Y Q̂=QS

0 300 222.31 17.99 204.31 222.31 17.99 1
1 400 222.23 16.06 206.17 219.25 13.08 1þ 100 rN
2 500 222.11 12.56 209.55 218.26 8.71 1þ 200 rN
3 600 221.95 11.09 210.85 217.46 6.61 1þ 300 rN
4 700 221.72 10.39 211.33 216.07 4.74 1þ 400 rN
5 800 221.42 9.56 211.86 215.47 3.61 1þ 500 rN
6 900 221.04 8.24 212.79 215.67 2.88 1þ 600 rN
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reproduction (providing one more illustration of the problem dependence of model
identification). Nevertheless, the travel times to x = 900 and x = 950 m are equal
to approximately 38.5 and 39.7 years, close to those found in Sect. 4.4 (39.1 and
40.2 years).
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Fig. 6.8 Reproduction of
observations by the
homogeneous model
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Chapter 7
Examples of Nonlinear Transforming
Mechanisms

Linear transforming mechanisms are rare in practical applications. Even the
mechanisms presented in Sect. 6.2 were obtained by linearization of nonlinear
mechanisms. Mathematical descriptions of the nonlinear mechanisms, and their
inferences and applications are considerably more complicated. However, it is still
possible to find simple examples for illustrations.

7.1 Simulation of Transient Filtration in a Two-Body Object
by a Homogeneous Model: Problem Formulation

As shown in Sect. 4.3, a homogeneous model with constant hydraulic transmis-
sivity cannot successfully represent the development of hydraulic heads for a long
enough period in a confined aquifer consisting of two geological bodies with
hydraulic transmissivities T1 and T2 (Fig. 7.1). However, the situation is different
if we use an effective hydraulic transmissivity changing in time.

Let the aquifer have uniform distribution of hydraulic heads in the initial state:
h(x, 0) = H0. At instant t = 0, the hydraulic head at x = 2L jumps to h(2L, 0) = H2L.

At x = 0 the hydraulic head remains unchanged: h(0, t) = H0. The instantaneous
jump of the hydraulic head at x = 2L initiates a process of change of the aquifer
hydraulic heads. The goal is effective simulation of the hydraulic head at location
x = L, using a homogeneous, one-block, model.

Filtration within two geological bodies, that is, within intervals [0, L] and [L,
2L], is described by two partial differential equations

ohðx; tÞ
ot

¼ Aj
o2hðx; tÞ

ox2
j ¼ 1; 2; ð7:1Þ

V. Gorokhovski, Effective Parameters of Hydrogeological Models,
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where x and t are the distance and the time, h(x, t) is the hydraulic head in intervals
[0, L] (j = 1) or [L, 2L] (j = 2), Aj = Tj/S is the hydraulic diffusivity of body j, Tj

is its transmissivity, and S is the storativity, which for the sake of simplicity, is
assigned equal to 0.1 for both bodies. The initial and boundary conditions are the
following:

hðx; 0Þ ¼ 0; 0� x� 2L; ð7:2Þ

hð0; tÞ ¼ H0 ¼ 0; and hð2L; tÞ ¼ H2L ¼ 1 m: ð7:3Þ

(The values of the boundary conditions are assigned to make calculations simpler).
The inner boundary conditions on continuity of hydraulic head and flux exist at

the boundary between the geological bodies at x = L

limðhðx; tÞÞjx! L ¼ limðhðx; tÞÞjL x

T1
ohðx; tÞ

ox

� �����
x! L

¼ T2
ohðx; tÞ

ox

� �����
L x

ð7:4Þ

The real world constructed in the above problem formulation is to be simulated
by a homogeneous model. The simulation process is described by the equation

oĥðx; tÞ
ot

¼ Â
o2ĥðx; tÞ

ox2
; ð7:5Þ

where ĥðx; tÞ is the effective hydraulic head at location x and at time instant t,
Â ¼ T̂=S; and T̂ is the effective hydraulic transmissivity. The model storativity S is
assigned equal to 0.1.

The simulation must effectively reproduce the next hydraulic head, ĥðL; tiÞ ¼ ĥi;
based on the observed previous head hðL; ti�1Þ ¼ hi�1: For simplicity, the time
increment Dt = ti - ti-1 is kept constant. The simulations are to be conducted by
explicit finite differences. The model must be effective in the time interval [tk, tm] in
the sense of least squares; that is, the simulated hydraulic heads must minimize the
sum

sk;m ¼
Xm

i¼k

ĥi � hi

� �2
: ð7:6Þ

Fig. 7.1 Modeling a two-body object by a homogeneous model
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To this end, the effective hydraulic transmissivity, T̂k;m; the only parameter
governing the simulation, must be found.

7.2 Explicit Numerical Simulation

There exists an analytical solution for the hydraulic heads in the above-formulated
problem. However, to simplify obtaining the pertinent transforming mechanism,
the explicit finite-difference method with the stencil presented in Fig. 7.2 is
applied to simulate both the real-world and the homogeneous model. The equation
for evaluating the real-world hydraulic head based on the immediately preceding
observed hydraulic head is

hi � hi�1 þ
Dt

SL2
ðð1� hi�1ÞT2 � hi�1T1Þ: ð7:7Þ

The hydraulic heads simulated on the homogeneous aquifer model with
effective hydraulic conductivity T̂k;m can be obtained from Eq. 7.7 by putting

T1 ¼ T2 ¼ T̂k;m;

ĥi � hi�1 þ
Dt

SL2
ð1� 2hi�1ÞT̂k;m: ð7:8Þ

Then, criterion (7.6) can be written as

sk;m ¼
Dt

SL2

Xm

i¼k

ð1� 2hi�1ÞT̂k;m � ðð1� hi�1ÞT2 � hi�1T1Þ
� �2

: ð7:9Þ

Applying to criterion (7.9) the standard least-squares technique, that is, dif-
ferentiating it with respect to T̂k;m and equalizing the derivative to zero, yields

T̂k;m ¼ �

Pm

i¼k
hi�1ð1� 2hi�1Þ

Pm

i¼k
ð1� 2hi�1Þ2

T1 þ

Pm

i¼k
ð1� hi�1Þð1� 2hi�1Þ

Pm

i¼k
ð1� 2hi�1Þ2

T2; k [ 0: ð7:10Þ

Equation 7.10 can be rewritten in terms of the affecting factors

T̂k;m ¼ w1;½k;m�T1 þ w2;½k;m�T2; ð7:11Þ

where the affecting factors w1,[k,m] and w2,[k,m] are

w1;½k;m� ¼ �

Pm

i¼k
hi�1ð1� 2hi�1Þ

Pm

i¼k
ð1� 2hi�1Þ2

; w2;½k;m� ¼

Pm

i¼k
ð1� hi�1Þð1� 2hi�1Þ

Pm

i¼k
ð1� 2hi�1Þ2

; k [ 0:

ð7:12Þ
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It is easy to check that the above affecting factors obey property 1 (Sect. 5.3,
Eq. 5.5), summing to one. However, they can have different signs. If in interval
[tk, tm] all hi-1 are less than 0.5 m, then w1,[k,m] is negative and w2,[k,m] is positive.
If in interval [tk, tm] all hi-1 are greater than 0.5 m, then w1,[k,m] is positive and
w2,[k,m] is negative. Therefore, the effective hydraulic transmissivities T̂k;m are not
statistics of the hydraulic conductivities T1 and T2, even though the affecting
factors in Eq. 7.11 sum to one.

It is somehow more cumbersome to see the nonlinearity of mechanism (7.11),
but in the case of the effective parameter T̂1;2 this is fairly obvious. It follows from
the initial condition (7.2) and Eq. 7.7 that

h0 ¼ 0 and h1 �
Dt

SL2
T2:

Substituting the above values in Eq. 7.12 yields

w1;½1;2� ¼ �
1� 2 Dt

SL2 T2
� �

Dt
SL2 T2

1þ 1� 2 Dt
SL2 T2

� �2 ; w2;½1;2� ¼
1þ 1� Dt

SL2 T2
� �

1� 2 Dt
SL2 T2

� �

1þ 1� 2 Dt
SL2 T2

� �2 :

Thus, the affecting factors w1,[1,2] and w2,[1,2] depend on T2, demonstrating the
nonlinearity of the corresponding transforming mechanism. Note that the mech-
anism does not depend on the transmissivity T1. However, it could be demon-
strated in the same way that T1 appears in the transforming mechanisms T̂2;3; T̂1;3;
and all others for which m C 3.

Let us simplify the problem even more, requesting that the effective trans-
missivity T̂i�1;i should provide exact reproduction of the hydraulic head hi = h(L,
ti), at instant ti based on the observed hydraulic head hi-1, at instant ti-1. Then the
effective transmissivity T̂i�1;i can be obtained straightforwardly from Eq. 7.10 or
by equalizing the hydraulic heads presented by Eqs. 7.7 and 7.8:

T̂i�1;i ¼ �
hi�1

1� 2hi�1
T1 þ

1� hi�1

1� 2hi�1
T2: ð7:13Þ

The affecting factors for the transforming mechanism presented by Eq. 7.13 are

w1;i ¼ �
hi�1

1� 2hi�1
; w2;i ¼

1� hi�1

1� 2hi�1
: ð7:14Þ

Fig. 7.2 Four-point stencil
for numerical modeling of the
hydraulic heads
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It follows from expression (7.14) that the effective hydraulic conductivity T̂i�1;i

is not a statistic. Note that the affecting factors and the effective hydraulic trans-
missivity are not defined for the instant when the hydraulic head hi-1 is equal to
0.5 m. Note also that, at t = 0, the hydraulic head h(0) = h0 = 0. Thus, the factor
w1,1 = 0 and the effective hydraulic transmissivity T̂0;1 ¼ T2:

The simulation results for two contrasting cases are presented in Fig. 7.3: one is
the real world consisting of two bodies with hydraulic transmissivities T1 = 0.1
and T2 = 0.9 m2/day and the other with hydraulic transmissivities T1 = 0.9 and
T2 = 0.1 m2/day. The main distinction between these cases is that in one of them
the asymptotic value of the ‘‘observed’’ hydraulic heads h is equal to 0.1 m. It does
not reach the crucial number h = 0.5 m. In the other the asymptote of the
hydraulic heads is equal to 0.9 m, and the observed hydraulic heads exceed the
crucial value h = 0.5 m.

Case 7.2.1 T1 = 0.9 and T2 = 0.1 m2/day. The homogeneous model works per-
fectly. The affecting factors w1,i and w2,i and the effective transmissivity T̂i�1;i are
presented in Fig. 7.4.

The upper left effective hydraulic transmissivity value is equal to T2 = 0.1 m2/day,
which follows from Eq. 7.13.

The case demonstrates that the effective hydraulic transmissivities are incorrect
geologically as well, approaching zero as time progresses.

Case 7.2.2 T1 = 0.1 and T2 = 0.9 m2/day. The results are presented in Figs. 7.5
and 7.6. (The affecting factor w1,i is shown only, since w2,i = 1 - w1,i.) In this
case there exists the instant t0.5 such that h(t0.5) = 0.5 m. At this instant the
affecting factors and the effective hydraulic transmissivity do not exist. Thus, the
effective transmissivity is deprived of both physical and geological meanings in

Fig. 7.3 Comparison of
actual hydraulic heads
obtained for a two-body
object and homogeneous
simulation model
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Fig. 7.4 Case 7.2.1: resulting affecting factors and effective hydraulic transmissivity

Fig. 7.5 Case 7.2.2: affecting factor w1,i in the vicinity of the crucial instant t0.5

Fig. 7.6 Case 7.2.2: effective hydraulic transmissivity T̂i�1;i in the vicinity of the crucial instant
t0.5
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this case as well. However, this does not preclude its values from providing
effective reproduction of real-world hydraulic heads.

As stated in Sect. 4.3, calibrating homogeneous models in a transient
regime can permit simulation results fitting the observations satisfactorily for
some short time interval. Use of effective hydraulic transmissivities changing
in time permits obtaining considerably more accurate results. The two cases
presented above clearly demonstrate that such effective parameters are not
statistics, and even not geological or hydrogeological entities. They are just
optimal characteristics of the corresponding systems and have no physical
meaning.

7.3 Implicit Numerical Simulation

In the previous section an explicit finite-difference method was applied. To pro-
vide stability of the explicit numerical integration, the time increment Dt must be
sufficiently small. An increment Dt of 0.1 days was selected in cases 7.2.1 and
7.2.2 for this reason. Although with the present status of automation, the duration
of the time increment between measurements is not an issue, it may not be
practical to use a very small value. However, the stable numerical solution for the
problem formulated in Sect. 7.1 can be obtained for time increments of arbitrary
duration by integrating Eq. 7.7 over time. Indeed, for infinitesimal ðDt! 0Þ;
Eq. 7.7 can be rewritten, after separation of variables, as

dh

ð1� hÞT2 � hT1
¼ dt

SL2
:

Integrating the above equation in intervals [hi-1, hi] and [ti-1, ti] yields

Zhi

hi�1

dh

T2 � ðT1 þ T2Þh
¼ � 1
ðT1 þ T2Þ

lnðT2 � ðT1 þ T2ÞhÞjhi
hi�1
¼
Zti

ti�1

dt

SL2
¼ ti � ti�1

SL2
:

ð7:15Þ

It follows from expression (7.15) (see Box 7.1) that

hi ¼
T2

T1 þ T2
1� 1� T1 þ T2

T2

� �
hi�1

� �
exp � T1 þ T2

SL2
ti � ti�1ð Þ

� �	 

: ð7:16Þ
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Text Box 7.1.
Inference of Eq. 7.16

Substituting in the right equality of expression (7.15) the limits of integration
yields

1
ðT1 þ T2Þ

ln T2 � ðT1 þ T2Þhð Þjhi
hi�1
¼ � 1
ðT1 þ T2Þ

ln
T2 � ðT1 þ T2Þhi

T2 � ðT1 þ T2Þhi�1

¼ ti � ti�1

SL2
:

Potentiating the above equality gives

T2 � ðT1 þ T2Þhi

T2 � ðT1 þ T2Þhi�1
¼ exp �ðT1 þ T2Þ

ti � ti�1

SL2

� �� �

or

T2 � ðT1 þ T2Þhi ¼ ðT2 � ðT1 þ T2Þhi�1Þ exp �ðT1 þ T2Þ
ti � ti�1

SL2

� �� �
:

Solving this equation gives

hi ¼
T2

T1 þ T2
� T2

T1 þ T2
� hi�1

� �
exp � T1 þ T2ð Þ ti � ti�1

SL2

� �� �
:

Factoring out the term T2=T1 þ T2 yields Eq. 7.16

A comparison of the results obtained by Eqs. 7.7 and 7.16 is presented in
Figs. 7.7 and 7.8 (the time increments for Eq. 7.16 are 100 days in Fig. 7.7 and
250 days in Fig. 7.8). In spite of the increase of the time increment by 1,000 and
2,500 fold, the results are identical.

Fig. 7.7 Comparison of the
explicit and implicit
simulations
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For a homogeneous simulation model ðT1 ¼ T2 ¼ T̂i�1;iÞ; Eq. 7.16 converts
into

ĥi ¼
1
2

1� ð1� 2hi�1Þ exp � 2T̂i�1;i

SL2
ðti � ti�1Þ

� �� �
: ð7:17Þ

The requirement for the model to be effective in the sense that ĥi ¼ hi leads to
the following choice for the effective hydraulic transmissivity:

T̂i�1;i ¼
SL2

2 ti � ti�1ð Þ ln
1� 2hi�1

1� 2hi
: ð7:18Þ

Substituting in Eq. 7.18 the hydraulic head hi from Eq. 7.16 yields the fol-
lowing transforming mechanism:

T̂i�1;i ¼
SL2

2 ti� ti�1ð Þ ln
1� 2hi�1

1� 2
T1þT2

T2� T2� T1þ T2ð Þhi�1½ �exp � T1þT2
SL2 ti� ti�1ð Þ

� � � :

ð7:19Þ

The nonlinear transforming mechanism presented by Eq. 7.19 is difficult to
analyze. However, it follows immediately from Eqs. 7.18–7.19 that the effective
hydraulic transmissivity and the affecting factors are not defined for the case
T1 \ T2 at instant t0.5 for which h(t0.5, L) = 0.5 m. To the left and right of this
instant, the effective hydraulic transmissivities and the affecting factors are con-
tinuous function of time and the hydraulic transmissivities T1 and T2. The
hydraulic head h(t0.5, L) \ 0.5 always if T1 [ T2. So, the effective transmissivity
and the affecting factors are continuous in time in this case.

The affecting factors and the effective transmissivity for cases T1 = 0.9 and
T2 = 0.1 m2/day and T1 = 0.1 and T2 = 0.9 m2/day with time increment of 50 days
are presented in Figs. 7.9 and 7.10. As expected, in the first case (T1 = 0.9 and
T2 = 0.1 m2/day), the affecting factors and the effective transmissivity change

Fig. 7.8 Comparison of the
explicit and implicit
simulations
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smoothly in time. The affecting factor w1,i takes nonpositive values. The factor w2,i

always exceeds 1. The effective hydraulic transmissivity decreases smoothly from
0.1 to 0. In the case T1 = 0.1 and T2 = 0.9 m2/day, the affecting factors and the
effective transmissivity are not defined in the vicinity of an instant at approximately
200 days (Figs. 7.10–7.12). Factually, there exist two different transforming
mechanisms. One is valid for time interval [0, 200] and the other for interval (*200,
1,000] days. It should be noted also that the affecting factors and the effective
transmissivities obtained implicitly vary less than those obtained explicitly.

Sections 7.2 and 7.3 demonstrate that values of the effective parameters and the
transforming mechanisms depend on the methods of their evaluation. Although

Fig. 7.9 Affected factors and effective hydraulic transmissivity T̂i�1;i: T1 = 0.9 and
T2 = 0.1 m2/day

Fig. 7.10 Affected factor w1,i and effective hydraulic transmissivity T̂i�1;i: T1 = 0.1 and
T2 = 0.9 m2/day
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some affecting factors of the mechanisms are negative, they sum to one. Thus,
summing of the affecting factors to one does not warrant that the pertinent
effective parameter is a statistic. The rightmost values of the effective hydraulic
transmissivity have zero as an asymptote. This occurs because the hydraulic head
approaches asymptotically its maximum value at x = L.

Most hydrogeologists hold that use of effective but incorrect values of geo-
logical parameters such as negative hydraulic conductivity or transmissivity in
simulations is unacceptable. The question is what do we want: more accurate
predictions and evaluations provided by physically incorrect parameters, or less
accurate ones based on physically correct parameters? The physically correct
parameters can be incorrect geologically, as demonstrated here, as well as in Chap.
6. Why is the use of geologically incorrect parameters acceptable? Just because we
do not know that they are incorrect? Being an engineer, I prefer the accuracy and
the tools that provide it. One must simply understand the systematic, optimizing,
nature of effective model parameters. They are not physical entities and are
effective only in the formulation in which they have been obtained. Any change in
the simulation problem changes the system and requires reevaluation of the
parameters. Applying effective parameters obtained for one simulation problem to
a different one can cause misleading results, even when the differences between
the problem formulations may not seem to be considerable.

Fig. 7.12 T1 = 0.1 and T2 =0.9 m2/day: effective hydraulic transmissivity

Fig. 7.11 T1 = 0.1 and T2 = 0.9 m2/day: affected factor w1,i
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Chapter 8
Evaluation of Transforming Mechanisms

In the examples of Chaps. 6 and 7 the transforming mechanisms were obtained
analytically. Such a direct approach can be cumbersome and even not available in
many situations. The two-level modeling introduced below is more universal and
seems to be more practical.

8.1 Two-Level Modeling Concept

The following hypothetical situation is used to introduce the two-level modeling
concept. Suppose that we are going to use a particular simulation model to predict
the response of a particular geological object to a given impact. Information on the
object is sparse, but we have complete information on many other geological sites
with the same boundary conditions, impact, and monitoring network. Their
responses to the impact have already been observed. Applying our simulation
model to those sites, we could determine how different geological conditions
affected the simulation results and use this knowledge; that is, we could see the
sensitivity of our model to different geological conditions, which parts and
properties of the geological objects (i.e., what information) are essential for
effective prediction using our model, and how to assign its effective parameters.
We could even abandon the model, if it is not satisfactorily effective, to try
different ones.

In other words, we can accumulate specific engineering experience to deal with
a specific problem. This does not eliminate the uncertainty of the simulation
results, since the object of interest is not yet fully known. However, studies such as
those would make our decisions related to prediction and its interpretation,
including its uncertainty, more informed and focused. We acquire better under-
standing of what could go wrong and when, whether and when we have to update
the simulation model, what additional feasible information could be necessary, etc.

V. Gorokhovski, Effective Parameters of Hydrogeological Models,
SpringerBriefs in Earth Sciences, DOI: 10.1007/978-3-642-23722-5_8,
� The Author(s) 2012
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Unfortunately, we do not have objects with completely known geological
surroundings, exactly the same impacts, monitoring networks, and long enough
periods of observations. However, we can make them up as computer models. We
can produce [using the terminology of McLaughlin and Wood (1988)] synthetic
data, reference systems, and real worlds that are as complex as our computational
resources permit, simulate their responses to a given impact, and compare those
responses with the results yielded by a given simulation model. Simply speaking,
we can make up some surrogate for the specific engineering experience.

There is nothing new about the use of artificial sites or synthetic data in
groundwater modeling. In fact, the entire geostatistical approach with its made-up
ensembles and other assumptions is based on them. McLaughlin and Wood (1988)
use a synthetic, stochastically homogeneous ensemble of sites, or rather one site
representing the mathematical expectation of the ensemble, to evaluate the accu-
racy of a proposed modeling study before extensive resources are committed to
data collection and model development. Synthetic data are used by Zimmermann
et al. (1998) and many others. Unfortunately, in practice, the relationship between
artificial and actual sites is ambiguous, and the extension of the obtained results to
real-world situations is difficult or even impossible (Eggleston et al. 1996).

The similarity of the reference systems to the geological object of interest is not
necessary in the above hypothetical example. On the contrary, the diversity of
conditions could be beneficial, permitting deeper understanding of the predictive
problems. The reverse side of such diversity is the abundance of information,
making it difficult to review and analyze. The transforming mechanisms are
suggested as a generalization of the obtained information.

Thus, the idea behind the described approach, called here two-level modeling,
is to investigate how the given predictive model performs when representing more
complex geological models. In a sense, it corresponds to Monte Carlo simulations,
only reversed. Routinely in Monte Carlo simulations ‘‘the object of the investi-
gation is a model itself’’ (Gentle 1985). Varying the properties of a simulation
model permits exploration of the sensitivity of the simulation results to the
model’s parameters. However, the sensitivity of a model to its parameters tells us
nothing about the model’s ability to represent the real geological objects. (Two
exceptions are possible: low or high sensitivity of a model indicate that it may not
be practical). In two-level modeling the structure of the geological model is fixed
and the real worlds vary. This permits evaluation of how different factors,
including the unknowns, can affect the simulation results.

The goal of two-level modeling is to evaluate the transforming mechanisms
making the model parameter effective in the coupled predictive simulations, not
just in calibration. The concept of two-level modeling can be described in general
using the example of cases 6.2.1 and 6.2.2. The geological object, the real world,
in these cases consists of four geological bodies and the geological model of two
blocks. Pertinent transforming mechanisms for the first and second model blocks
are described by the equations
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ĝ1 ¼ w1;1g1 þ w1;2g2 þ w1;3g3 þ w1;4g4;

ĝ2 ¼ w2;1g1 þ w2;2g2 þ w2;3g3 þ w2;4g4;
ð8:1Þ

where ĝ1 ¼ 1=K̂11 and ĝ2 ¼ 1=K̂2 are the effective specific hydraulic resistivities
of the first and second model blocks (K̂1 and K̂2 are the corresponding effective
hydraulic conductivities), and gi = 1/Ki (i = 1,…, 4) are the real-world specific
hydraulic resistivities of the geological bodies (Ki are the corresponding hydraulic
conductivities).

The transforming mechanisms described by Eqs. 8.1 are linear and independent
of time. They can be interpreted as regressions, and their affecting factors wj,i

(j = 1, 2 and i = 1,…, 4) as coefficients of those linear regressions. To evaluate
them, we need a large enough set consisting of subsets of data: {gm,1, gm,2, gm,3,
gm,4} representing different real worlds and fĝm;1; ĝm;2g representing the corre-
sponding effective parameters of the predictive model. M such subsets are pre-
sented in Table 8.1. Independent variables {gm,1, gm,2, gm,3, gm,4} can be assigned
arbitrarily, in particular to be generated as random values. Their knowledge per-
mits the calculation of ‘‘observations’’ (Eqs. 6.7). The corresponding dependent
variables fĝm;1; ĝm;2g for a given set {gm,1, gm,2, gm,3, gm,4} can be calculated by
solving system (6.10).

8.2 Examples of Evaluating Linear Transforming
Mechanisms

Case 8.2.1 Let us come back to the problem described in Sect. 6.1: one-dimensional
steady-state flow with constant recharge N to a fully penetrating trench at X0 = 0 m
in an unconfined aquifer on a horizontal aquitard (Fig. 8.1). The boundary conditions
remain those assigned in Sect. 6.1.

As shown in Sect. 6.1, the effective resistivities for cases 6.2.1 and 6.2.2 are solutions
of system (6.10), which in the case of uniform weighting (p1 = p2 = p3 = p4 = 1)
takes the form

Table 8.1 Set consisting of
M subsets of observed
effective and actual hydraulic
resistivities

Effective parameters Actual parameters

ĝ1;1; ĝ1;2 g1;1; g1;2; g1;3; g1;4

ĝ2;1; ĝ2;2 g2;1; g2;2; g2;3; g2;4

………. ……….
ĝm;1; ĝm;2 gm;1; gm;2; gm;3; gm;4

………. ……….
ĝM;1; ĝM;2 gM;1; gM;2; gM;3; gM;4
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ĝ1 ¼ 0:5635 h2
1� h2

0

� �
þ 0:9659 h2

2� h2
0

� �
þ 0:1546 h2

3� h2
0

� �
� 0:1159 h2

4� h2
0

� �
;

ĝ2 ¼�1:8931 h2
1� h2

0

� �
� 3:2454 h2

2� h2
0

� �
þ 1:4005 h2

3� h2
0

� �
þ 2:9491 h2

4� h2
0

� �
:

ð8:2Þ

Equations 8.2 permit evaluation of the effective values ĝ1 and ĝ2 for any subset
m of the real-world hydraulic resistivities gm,1, gm,2, gm,3, gm,4, if corresponding
squared thicknesses of the aquifer are known (calculated by Eqs. 6.7).

M such subsets are presented in Table 8.1. Equations 8.1 can be rewritten for
convenience as one equation

ĝm;j ¼ wj;1gm;1 þ wj;2gm;2 þ wj;3gm;3 þ wj;4gm;4; j ¼ 1; 2; ð8:3Þ

where the index j defines the model block and gm,1, gm,2, gm,3, gm,4 are the ran-
domly assigned hydraulic resistivities. Since the affecting factors wj,1, wj,2, wj,3,
wj,4 of the linear transforming mechanisms do not depend on the real-world
hydraulic resistivities, they can be interpreted as regression coefficients of the
regression represented by Eq. 8.3, and evaluated by the standard least-squares
technique, that is, by minimizing the sum

sj ¼
XM

m¼1

wj;1gm;1 þ wj;2gm;2 þ wj;3gm;3 þ wj;4gm;4 � ĝm;j

� �2
; ð8:4Þ

where M is the number of sets {gm,1…4} assigned randomly. The least-squares
technique leads to two systems (j = 1, 2) of linear equations for finding coeffi-
cients wj,1, wj,2, wj,3, wj,4:

wj;1
PM

m¼1
g2

m;1þwj;2
PM

m¼1
gm;1gm;2þwj;3

PM

m¼1
gm;1gm;3þwj;4

PM

m¼1
gm;1gm;4 ¼

PM

m¼1
gm;1ĝm;j;

wj;1
PM

m¼1
gm;1gm;2þwj;2

PM

i¼1
g2

m;2þwj;3
PM

i¼1
gm;2gm;3þwj;4

PM

i¼1
gm;2gm;4 ¼

PM

i¼1
gm;2ĝm;j;

wj;1
PM

m¼1
gm;1gm;3þwj;2

PM

i¼1
gm;2gm;3þwj;3

PM

i¼1
g2

m;3þwj;4
PM

i¼1
gm;3gm;4 ¼

PM

i¼1
gm;3ĝm;j;

wj;1
PM

m¼1
gm;1gm;4þwj;2

PM

i¼1
gm;2gm;4þwj;3

PM

i¼1
gm;3gm;4þwj;4

PM

i¼1
g2

m;4 ¼
PM

i¼1
gm;4ĝm;j:

ð8:5Þ

Fig. 8.1 One-dimensional
steady-state flow to a fully
penetrating trench in an
unconfined aquifer
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Solving system (8.5) yields the affecting factors wj,1, wj,2, wj,3, wj,4.
The resulting transforming mechanisms obtained with M = 50, 100, and 1,000

are exactly those obtained analytically for cases 6.2.1 and 6.2.2:

ĝ1 ¼ 0:6861g1 þ 0:3139g2 þ 0:0072g3 � 0:0072g4;

ĝ2 ¼ �0:3451g1 þ 0:3451g2 þ 0:8155g3 þ 0:1845g4:
ð8:6Þ

Case 8.2.2 Let us consider the above example only with a more complex
piecewise-homogeneous real world. It comprises eight geological bodies with
boundaries at locations X0 = 0, X1 = 12.5, X2 = 25, X3 = 37.5, X4 = 50,
X5 = 62.5, X6 = 75, X7 = 87.5, and X8 = 100 m. The hydraulic conductivities Ki

are constant within intervals [Xi-1, Xi]: K1, K2, K3, K4, K5, K6, K7, K8. The two-
block geological model has a boundary between the homogeneous blocks at
X4 = 50.

The monitoring network is located at the same four locations: X2 = 25,
X4 = 50, X6 = 75, and X8 = 100 m. The criterion of efficiency remains the same
(Eq. 6.6). Under the assumption of uniform weighting of observations, it can be
rewritten as

s ¼
X4

i¼1

ĥ2
2i � h2

2i

� �2
: ð8:7Þ

Equation 6.4 for calculation of the real-world observed squared water table
elevations at the boundaries of geological bodies takes the form

h2
i ¼ h2

i�1 þ
N

Ki
2X8 � Xi � Xi�1ð Þ Xi � Xi�1ð Þ: ð8:8Þ

The following equations describe the ‘‘observations’’ at locations Xi (i = 1–8)
for N = 0.0001 m/day (gi = 1/Ki):

h2
1 ¼ h2

0 þ 0:2344 g 1

h2
2 ¼ h2

0 þ 0:2344 g 1 þ 0:2031 g 2

h2
3 ¼ h2

0 þ 0:2344 g 1 þ 0:2031 g 2 þ 0:1719 g 3

h2
4 ¼ h2

0 þ 0:2344 g 1 þ 0:2031 g 2 þ 0:1719 g 3 þ 0:1406 g 4

h2
5 ¼ h2

0 þ 0:2344 g 1 þ 0:2031 g 2 þ 0:1719 g 3 þ 0:1406 g 4 þ 0:1094 g 5

h2
6 ¼ h2

0 þ 0:2344 g 1 þ 0:2031 g 2 þ 0:1719 g 3 þ 0:1406 g 4 þ 0:1094 g 5

þ 0:0781 g 6

h2
7 ¼ h2

0 þ 0:2344 g 1 þ 0:2031 g 2 þ 0:1719 g 3 þ 0:1406 g 4 þ 0:1094 g 5

þ 0:0781 g 6 þ 0:0469 g 7

h2
8 ¼ h2

0 þ 0:2344 g 1 þ 0:2031 g 2 þ 0:1719 g 3 þ 0:1406 g 4 þ 0:1094 g 5

þ 0:0781 g 6 þ 0:0469 g 7 þ 0:0156 g 8

ð8:9Þ
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Since the simulation model, the observation network, and the criterion of
goodness of fit stay the same, finding the effective hydraulic resistivities (Eq. 8.2)
need only change in enumeration of the observations:

ĝ1 ¼ 0:5635 h2
2� h2

0

� �
þ 0:9659 h2

4� h2
0

� �
þ 0:1546 h2

6� h2
0

� �
� 0:1159 h2

8� h2
0

� �
;

ĝ2 ¼�1:8931 h2
2� h2

0

� �
� 3:2454 h2

4� h2
0

� �
þ 1:4005 h2

6� h2
0

� �
þ 2:9491 h2

8� h2
0

� �
:

ð8:10Þ

The regression equations relating the real-world hydraulic resistivities and the
effective hydraulic conductivities of two model blocks differ from Eqs. 8.1 by the
numbers of independent variables gi and regressions coefficients w1,i and w2,i

representing the affecting factors:

ĝ1 ¼ w1;1g1 þ w1;2g2 þ w1;3g3 þ w1;4g4 þ w1;5g5 þ w1;6g6 þ w1;7g7 þ w1;8g8;

ĝ2 ¼ w2;1g1 þ w2;2g2 þ w2;3g3 þ w2;4g4 þ w2;5g5 þ w2;6g6 þ w2;7g7 þ w2;8g8:

ð8:11Þ

The standard least-squares technique applied for evaluating the affecting factors
leads to two linear systems, each consisting of an equation with eight regression
coefficients. Generating randomly the real-world data gm,1, gm,2, gm,3, gm,4, gm,5,
gm,6, gm,7, gm,8 permits the calculation of the squared water table elevations
h2

m;2; h2
m;4; h2

m;6; and h2
m;8; the effective hydraulic conductivities ĝm;j; and finally

the affecting factors wj,1, wj,2, wj,3, wj,4, wj,5, wj,6, wj,7, wj,8. For the situation
corresponding to cases 6.2.1 and 6.2.2 and the ‘‘real world’’ consisting of eight
geological bodies, the results are the transforming mechanisms

ĝ1 ¼ 0:3676g1 þ 0:3185g2 þ 0:1727g3 þ 0:1413g4 þ 0:0042g5 þ 0:0030g6 � 0:0054g7 � 0:0018g8;

ĝ2 ¼ �0:1849g1 � 0:1602g2 þ 0:1899g3 þ 0:1553g4 þ 0:4759g5 þ 0:3397g6 þ 0:1383g7 þ 0:0461g8:

ð8:12Þ

The mechanisms described by Eqs. 8.12 have the properties of the transforming
mechanisms described by Eqs. 5.5–5.6. Indeed, the affecting factors belonging to
the evaluated blocks w1,1, w1,2, w1,3, w1,4 and w2,5, w2,6, w2,7, w2,8 sum to one, and
the affecting factors belonging to the affecting blocks w1,5, w1,6, w1,7, w1,8 and w2,1,
w2,2, w2,3, w2,4 sum to zero. Besides, the affecting factors are additive. Thus, if
K1 = K2, K3 = K4, K5 = K6, K7 = K8, Eqs. 8.12 convert into Eqs. 8.6.

Note that properties 1 and 2 of the transforming mechanisms (Sect. 5.3) permit
simplification of the evaluation of the affecting factors, decreasing their numbers.
For example, regressions (8.1) can be rewritten as

w1;1 g1 � g2ð Þ þ w1;3 g3 � g4ð Þ ¼ ĝ1 � g2;

w2;1 g1 � g2ð Þ þ w2;3 g3 � g4ð Þ ¼ ĝ2 � g4:
ð8:13Þ

Applying the least-squares method to the first Eq. 8.13 leads to a system of two
equations for evaluating w1,1 (w1,2 = 1 - w1,1) and w1,3 (w1,4 = - w1,3).
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The second equation yields a system of two equations for evaluating w2,1

(w2,2 = - w2,1) and w2,3 (w2,4 = 1 - w2,3).

8.3 Transforming Mechanisms for Effective
Recharge Rates at Borden Landfill

Let us come back to the problem described in Sect. 6.4, where the mechanism for
converting three recharge rates in the effective recharge of a homogeneous model
simulating the water table within the Borden site was obtained analytically. To this
end, the available observations on the streamline starting at x = 300 m and the
aquifer base elevations are used. The effective recharge rate N̂ was calculated,
using additionally the water table elevation, providing satisfactory reproduction of
the streamline and the arrival time. Here, the transforming mechanism is evaluated
by two-level modeling. The technique applied is exactly as described in the
previous section.

This time the goal is to obtain the affecting factors (w1, w2, and w3) of the
transforming mechanism

N̂ ¼ w1N3 þ w2N4 þ w3N5; ð8:14Þ

where N̂ is the effective recharge rate of the homogeneous model and N3, N4, and
N5 are the actual recharge rates (Fig. 8.2). For subset m of the independent vari-
ables N3, N4, N5, relationship (8.14) takes the form

N̂m ¼ w1Nm;3 þ w2Nm;4 þ w3Nm;5: ð8:15Þ

This can be interpreted as a linear regression in which the affecting factors w1,
w2, w3 can be evaluated as regression coefficients. Thus, first, M sets of recharge
patterns {N3:5} and corresponding to them M sets of effective recharge rates N̂

� �

should be accumulated. (M must be a large enough number). Then a redundant
system of equations such as Eq. 8.15 can be made up and solved for the affecting
factors w1, w2, w3 by the least-squares method.

Fig. 8.2 Borden site and its
homogeneous model with
respect to the recharge rate
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Subsets {Nm,3, Nm,4, Nm,5} can be generated randomly. The problem is to
evaluate the recharge rateN̂m providing effective reproduction of the water table.
The effective recharge rates should be obtained based on the generated recharge
rate {Nm,3, Nm,4, Nm,5} and data presented in Table 8.2. Since the randomly picked
recharge rates {Nm,3, Nm,4, Nm,5} are known, there is no need to resort to an as-if
steady-state water table and its effective simulation (Eqs. 6.32–6.33). So, the
effective recharge patterns N̂m can be evaluated by minimization of criterion (6.36),
which for working with subsets {Nm,3, Nm,4, Nm,5} and N̂m can be rewritten as

sm ¼
X6

i¼1

Q̂m;i � Qm;i

� �
HS;i � Yi

� �� �2
: ð8:16Þ

The standard least-squares technique leads to the equation

u2
1 þ 4u2

2 þ 9u2
3 þ 16u2

4 þ 25u2
5 þ 36u2

6

� �
N̂m

¼ u2
1 þ 4u2

2 þ 9u2
3 þ 12u2

4 þ 15u2
5 þ 18u2

6

� �
Nm;3

þ 4u2
4 þ 10u2

5 þ 12u2
6

� �
Nm;4 þ 6u2

6Nm;5:

ð8:17Þ

So

N̂m ¼

u2
1 þ 4u2

2 þ 9u2
3 þ 12u2

4 þ 15u2
5 þ 18u2

6

� �
Nm;3

þ 4u2
4 þ 10u2

5 þ 12u2
6

� �
Nm;4 þ 6u2

6Nm;5

u2
1 þ 4u2

2 þ 9u2
3 þ 16u2

4 þ 25u2
5 þ 36u2

6

: ð8:18Þ

The coefficients in terms containing Nm,3…5 are made up from observations.
They do not depend on the recharge they are equal to those presented in Eq. 6.37,
though the corresponding effective recharges N̂m are different. However, such
convenience is not always available, and it may be easier to apply the two-level
modeling exactly as done in the previous section. The affecting factors w1, w2, w3

are those minimizing the sum

Table 8.2 Data for evaluating effective recharge rate N̂m

No. x HS Y u = HS - Y Qm Q̂m

0 300 222.31 204.31 204.31 QS QS

1 400 219.25 206.17 206.17 QS ? 100Nm,3 QS þ 100 N̂m

2 500 218.26 209.55 209.55 QS ? 200Nm,3 QS þ 200 N̂m

3 600 217.46 210.85 210.85 QS ? 300Nm,3 QS þ 300 N̂m

4 700 216.07 211.33 211.33 QS ? 300Nm,3 ? 100Nm,4 QS þ 400 N̂m

5 800 215.47 211.86 211.86 QS ? 300Nm,3 ? 200Nm,4 QS þ 500 N̂m

6 900 215.67 212.79 212.79 QS ? 300Nm,3 ? 200Nm,4 ? 100Nm,5 QS þ 600 N̂m
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s ¼
XM

m¼1

N̂m � w1Nm;3 � w2Nm;4 � w3Nm;5
� �2

: ð8:19Þ

The standard least-squares technique leads to the following system of linear
equations for evaluating the affecting factors:

w1

XM

m¼1

N2
m;3 þ w2

XM

m¼1

Nm;3Nm;4 þ w3

XM

m¼1

Nm;3Nm;5 ¼
XM

m¼1

Nm;3N̂m;

w1

XM

m¼1

Nm;4Nm;3 þ w2

XM

m¼1

N2
m;4 þ w3

XM

m¼1

Nm;4Nm;5 ¼
XM

m¼1

Nm;4N̂m;

w1

XM

m¼1

Nm;5Nm;3 þ w2

XM

m¼1

Nm;5Nm;4 þ w3

XM

m¼1

N2
m;5 ¼

XM

m¼1

Nm;5N̂m:

ð8:20Þ

Solving system (8.20) yields the affecting factors {w1, w2, w3}, which for
M equal 10, 100, and 1,000 stay the same:

w1 ¼ 0:8005;w2 ¼ 0:1727;w3 ¼ 0:0269f g:

That is, the affecting factors are exactly those obtained in Sect. 6.4 (Eq. 6.37).
The explicit use of the properties of the transforming mechanism can simplify

evaluation of the affecting factors, as shown in the previous section. In particular,
since the affecting factors sum to one, one of them can be expressed through two
others. So, instead of system (8.20) consisting of three equations, it is possible to
work with a system consisting of two equations.

It may seem that, in the case of linear transforming mechanisms, two-level
modeling is more complicated than their analytical deduction in Chap. 6. How-
ever, when geological objects and the corresponding simulation model become
more complex, the situation may change. Besides, two-level modeling may work
when there are no observed data yet, i.e., before starting field research, as shown in
Sect. 8.2, or with data whose accuracy is low, as with the data on the water table in
the Borden site. The procedures of the two-level modeling reveal more informa-
tion on objects. They are easier to be standardized and programmed.

8.4 Two-Level Modeling for Nonlinear Transforming
Mechanisms

Problems involving nonlinear transforming mechanisms are considerably more
complex than those involving linear mechanisms, since nonlinear mechanisms
depend on the actual distributions of the actual properties (geological bodies).
There is no developed methodology for their evaluation at this moment. However,
some notions on how this could be done are demonstrated below based on the
conceptual examples of Sect. 7.3.

8.3 Transforming Mechanisms for Effective Recharge Rates at Borden Landfill 113

http://dx.doi.org/10.1007/978-3-642-23722-5_6
http://dx.doi.org/10.1007/978-3-642-23722-5_6
http://dx.doi.org/10.1007/978-3-642-23722-5_6
http://dx.doi.org/10.1007/978-3-642-23722-5_7


Let a two-body geological object be simulated by a one-block model.
To simulate effectively the hydraulic heads h(t, L) under the boundary conditions
h(t, 0) = 0 and h(t, 2L) = 1, we have to use an effective hydraulic transmissivity
varying in time. As shown in Sect. 7.3, the pertinent effective hydraulic conduc-
tivities are described by Eq. 7.18, which is repeated here:

T̂i�1;i ¼
SL2

2D t
ln

1� 2hi�1

1� 2hi
ð8:21Þ

[S = 0.1 is the storativity, h(ti-1, L) and h(ti, L) are the observed hydraulic
heads at L = 50 m and instants ti-1 and ti.] Equation 8.21 permits evaluation of
the effective transmissivity T̂i�1;i, which reproduces exactly the hydraulic head
h(ti, L) based on the known hydraulic head h(ti-1, L). This result applies for the
implicit formulation of the simulation problem and is valid for an arbitrary time
increment Dt between observations. In the example discussed below, Dt = ti-ti-1

is equal to 7 days.
Equation 8.21 assumes that both hydraulic heads h(ti-1, L) and h(ti, L) are

known; that is, Eq. 8.21 is a tool for calibration. As we know, the effective
transmissivities depend on time. So, the goal should be to extrapolate them
beyond the period of calibration. This is possible since, as follows from
Eq. 8.21, the effective transmissivity is a continuous function of h(ti-1, L) and
h(ti, L), and consequently of time, besides the instant when h(ti-1, L) = 0.5, in
our case. For this reason, we can expect that the effective transmissivity
evaluated by Eq. 8.21 remains close to efficiency for some time beyond the
calibration period. As soon as monitoring reveals that the simulation results
become unsatisfactory, the simulation model must be recalibrated.

Case 8.4.1 The hydraulic transmissivity of the first body is greater than that of the
second one. (To make the ‘‘observations,’’ the transmissivities T1 and T2 are
assigned equal to 0.9 and 0.1 m2/day, respectively, in this case). The model has
been calibrated on the 13 available hydraulic heads obtained during the first
13 weeks (91 days) of observation. The results are presented in Fig. 8.3.

The calibration is an obvious success. To extrapolate its results beyond the
period of calibration we need to describe the time dependence of the effective
transmissivity explicitly. This can be done in many ways. The approximation
(regression) presented in Fig. 8.3 is a polynomial of third degree

T̂ � �1:0833� 10�10 t ��tð Þ3þ3:7356� 10�7 t ��tð Þ2�2:8554

� 10�4 t ��tð Þ þ 0:0862; ð8:22Þ

where �t ¼ 49 days:
During about 60 weeks (420 days) the model worked more than satisfactorily

(Fig. 8.4). Then, a systematic deviation appears between the simulation results and
the observations. If the deviations are not permissible, the model must be recali-
brated based on all available data. Let the new approximation be a polynomial of
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fourth order. The least-squares method applied to the 81 weeks of ‘‘observations’’
yields

T̂ � �3� 10�14 t ��tð Þ4�2:0173� 10�10 t ��tð Þ3þ2:3536� 10�7 t ��tð Þ2

� 1:3809� 10�4 t ��tð Þ þ 0:0372; ð8:23Þ

where �t ¼ 287 days:
The results of recalibration and extrapolation of the transforming mechanisms

described by Eq. 8.23 on the entire prediction period, 1,000 days, are presented in
Figs. 8.5 and 8.6. They reveal that there is no need for additional model recalibration.

By the way, location x = 50 m, convenient for illustration, is not the best for
monitoring in this case. The hydraulic heads h(t, L) approach the value 0.1
asymptotically. The closer the observed hydraulic heads are to this value, the less
informative they become. To the right from that location, say, at x = 75 m, the
process of development of the hydraulic heads is more dynamic and informative.

Fig. 8.4 Case 8.4.1: extrapolating simulations beyond period of calibration to the 81th week,
applying the transforming mechanisms described by Eq. 8.22

Fig. 8.3 Case 8.4.1: calibration on data related to the first 13 weeks. The effective hydraulic
transmissivity given in m2/day
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Case 8.4.2 The hydraulic transmissivity of the first body is less than that of the
second body. To make the ‘‘observations,’’ T1 = 0.1 and T2 = 0.9 m2/day are
assigned in this case. This case differs from the previous one. Developing in time,
the hydraulic heads exceed the critical value h(t, L) = 0.5. According to Eq. 8.21
the effective hydraulic transmissivity as a function of time is discontinuous at that
instant. Thus, two different transforming mechanisms have to be applied for
simulation: one for the period when h(t, L) is less than 0.5 and the other for the
period when h(t, L) exceeds 0.5.

The model has been calibrated on the 13 available hydraulic heads obtained
during the first 13 weeks of observations. The results of calibration and the cor-
responding transforming mechanism are presented in Fig. 8.7. They seem to be
quite satisfactory. To extrapolate those results from the development of the
hydraulic heads beyond the period of calibration we need to describe the time

Fig. 8.5 Case 8.4.1: recalibration on data related to the first 81 weeks. The effective hydraulic
transmissivity given in m2/day

Fig. 8.6 Case 8.4.1: extrapolating simulations beyond period of calibration (81 weeks),
applying the transforming mechanisms described by Eq. 8.23
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dependence of the effective transmissivity mathematically. It seems that the
regression presented in Fig. 8.7

T̂ � 1:4589� 10�9 t ��tð Þ4þ2:2495� 10�7 t ��tð Þ3þ3:2093� 10�5 t ��tð Þ2

þ 4:8893� 10�3 t ��tð Þ þ 1:0714; ð8:24Þ

where �t ¼ 49 days; works excellently on the first 13 observations. Since it is
continuous, we can try to extrapolate it for some further time. As shown in
Fig. 8.8, it works satisfactory up to 28 weeks (196 days).

Since at this time the hydraulic head nears the critical value 0.5, it may make no
sense to extrapolate the obtained transforming mechanism further. As soon as the
hydraulic head exceeds the critical value, new data should be collected for a new
calibration. Let the collection start at week 30 and last for 13 weeks, i.e., during
the period from days 210 to 301. The results of the model calibration are presented
in Fig. 8.9 and seem to be satisfactory.

Fig. 8.7 Case 8.4.2: calibration on data related to the first 13 weeks

Fig. 8.8 Case 8.4.2: extrapolating simulations beyond period of calibration to the 28th week,
applying the transforming mechanisms described by Eq. 8.24

8.4 Two-Level Modeling for Nonlinear Transforming Mechanisms 117



The transforming mechanism in this case is represented by the regression

1

T̂
� �4:0923� 10�8 t ��tð Þ3�1:9219� 10�5 t ��tð Þ2�9:8878

� 10�3 t ��tð Þ � 0:4697; ð8:25Þ

where �t ¼ 259 days:
This transforming mechanism was extrapolated on all the remaining period of

simulation for weeks 30–143 (about 1,000 days). As shown in Fig. 8.10, there is
no need for model recalibration.

Contrary to in case 8.4.1, location L = 50 m is not a bad choice for monitoring
this object, since the range of the hydraulic heads is larger in this case. The point
here is that, when assuming different values T1 and T2 or rather different ratios
T2/T1, the choice for location or locations for monitoring wells can be done prior to
starting field explorations.

Fig. 8.9 Case 8.4.2: recalibration on data related to weeks 30–43

Fig. 8.10 Case 8.4.2: extrapolating simulations beyond period of calibration (43 weeks),
applying the transforming mechanisms described by Eq. 8.25
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8.5 Conclusions

This chapter illustrates the general concept and demonstrates the possibility to
evaluate the mechanisms transforming real properties of geological objects into the
parameters which are effective in simulation of predictive or evaluative problems
according to those problems’ formulations. However, evaluating nonlinear trans-
formations may face considerable computational difficulties.

Indeed, evaluation of linear transforming mechanisms is straightforward. If a
linear mechanism depends on time, the procedure described in Sects. 8.1–8.2 must
be repeated for the instants of interest. Moreover, this can be done before
beginning field exploration. Evaluation of nonlinear mechanisms requires some
knowledge on the object’s reaction to the planned impact, that is, monitoring of the
reaction, and model recalibration from time to time.

By the way, it is possible to predict the development of the hydraulic heads
without finding effective parameters, transforming mechanisms, and physically
based simulation models at all. The available observations can be used to evaluate
the regression relationship describing those observations in time, which can then
be extrapolated into the future. When this becomes unsatisfactory, the additional
data obtained by monitoring are applied to obtain a new regression relationship,
and so on. In particular, in case 8.4.2, the regression

ĥ � �1:66� 10�12t4 þ 4:9846� 10�9t3 � 5:8572� 10�6t2 þ 0:0034t ð8:26Þ

works satisfactorily (Figs. 8.10, 8.11).
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Chapter 9
Inverse Problems and Transforming
Mechanisms

As mentioned in Chap. 4, the term ‘‘inverse problem’’ is not a synonym for the
terms ‘‘model identification,’’ ‘‘model calibration,’’ ‘‘historical matching,’’ or
‘‘site-specific validation.’’ Those terms relate to evaluating the effective charac-
teristics for a given simulation model, which is usually an optimization problem.
The goal of the inverse problem is to estimate the actual properties of geological
objects using available observations on natural geological phenomena or on
responses on manmade impacts. Since the notions of geological objects are not
more than models, it seems to be more accurate to define inverse problems as
applications of simpler models for evaluating properties of more complex ones.
The simpler models applied for solving inverse problems are called interpretation
models.

The physical and geological meanings of the results of model identification do
not matter. The effective parameters must provide the best results for the coupled
simulation problem, and they depend on its formulation. In contrast, the result of
solving an inverse problem must not depend on its formulation, and its solution is
not acceptable if it is deprived of physical meaning.

As demonstrated in Sect. 6.3, the linear transforming mechanisms obtained in
Sect. 6.2 can be applied to solve inverse problems in a straightforward way.
Indeed, if affecting factors wj,i (j = 1, 2 indicates model blocks, i = 1, 2, 3, 4
geological bodies) and the pertinent effective parameters ĝj are known, a trans-
forming mechanism

wj;1g1 þ wj;2g2 þ wj;3g3 þ wj;4g4 ¼ ĝj ð9:1Þ

can be considered as an equation with respect to the unknown actual property
values g1…4. So, it suffices to make up a sufficient number of transforming
mechanisms with known affecting factors and effective parameter values, to
consider them as a system of equations, closed or redundant, and than to solve it
for g1…4. Exactly this has been done in Sect. 6.3 (system 6.24). However, the
development of many different formulations of a model identification problem,
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such as those in Sect. 6.2, is a cumbersome enterprise. The approach described in
this chapter permits making this procedure more practical. It is based on assigning
different (random) sets of weights to the available observations.

Inverse problems are inherently incorrect. However, as shown in Sect. 4.1, this
does not mean that they are incorrect always. The mathematical correctness or
incorrectness of an inverse problem depends on the actual structure and properties
of the geological object, the choice of the model representing the object, and the
diversity and accuracy of the available observations. Any practicing geophysicist
has the experience of success and failure of interpretation of geophysical data.
Understanding the geology and the observed process are necessary conditions for
success.

9.1 Linear Transforming Mechanisms: Illustrative Examples

Let us rewrite criterion 6.6, introducing arbitrary subsets of the weights
{p}m = {pm,1 pm,2, pm,3 pm,4} to the errors of our simulation of the squared
thickness of the aquifer in different observation locations:

sm ¼
X4

i¼1

pm;i ĥ2
p;i � h2

i

� �2
: ð9:2Þ

Then system 6.10 converts into

0:43752pm;1þ 0:752ðpm;2þ pm;3þ pp;4Þ
� �

ĝm;1þ 0:75ð0:1875pm;3þ 0:25pm;4Þĝm;2

¼ 0:4375pm;1 h2
1� h2

0

� �
þ 0:75 pm;2 h2

2� h2
0

� �
þ pm;3 h2

3� h2
0

� �
þ pm;4 h2

4� h2
0

� �� �
;

0:75ð0:1875pm;3þ 0:25pm;4Þĝp;1þ 0:18752pm;3þ 0:252pm;4
� �

ĝm;2

¼ 0:1875pm;3 h2
3� h2

0

� �
þ 0:25pm;4 h2

4� h2
0

� �
:

ð9:3Þ

The matrix of system (9.3) is

cm ¼
0:43752pm;1 þ 0:752ðpm;2 þ pm;3 þ pm;4Þ 0:75ð0:1875pm;3 þ 0:25pm;4Þ
0:75ð0:1875pm;3 þ 0:25pm;4Þ 0:18752pm;3 þ 0:252pm;4

� �

ð9:4aÞ

The right-hand term vector is

bm¼
0:4375pm;1 h2

1�h2
0

� �
þ0:75 pm;2 h2

2�h2
0

� �
þpm;3 h2

3�h2
0

� �
þpm;4 h2

4�h2
0

� �� �

0:1875pm;3 h2
3�h2

0

� �
þ0:25pm;4 h2

4�h2
0

� �
� �

ð9:4bÞ

(compare to expressions 6.11). Solving system (9.3) yields two values of the
effective hydraulic resistivities: ĝ2m�1 and ĝ2m:
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To find the affecting factors of the corresponding transforming mechanisms,
Eq. 6.15 can be applied to each set of weights:

w2m�1;1 w2m�1;2 w2m�1;3 w2m�1;4f g ¼ W2m�1cm;2;2 �W2mcm;1;2

cm;1;1cm;2;2 � cm;1;2cm;2;1

� �0
;

w2m;1 w2m;2 w2m;3 w2m;4f g ¼ W2m;cm;1;1 �W2m�1;1cm;2;1

cm;1;1cm;2;2 � cm;1;2cm;2;1

� �0
;

ð9:5Þ

where the vectors W2m-1 and W2m are defined by expression 6.14,

W2m�1 ¼

0:4375 0:4375pm;1 þ 0:75ðpm;2 þ pm;3 þ pm;4Þ
� �

0:3125� 0:75ðpm;2 þ pm;3 þ pm;4Þ

0:1875� 0:75ðpm;3 þ pm;4Þ

0:75� 0:0625pp;4

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

;

W2m ¼

0:4375ð0:1875pm;3 þ 0:25pm;4Þ

0:3125ð0:1875pm;3 þ 0:25pm;4Þ

0:1875ð0:1875pm;3 þ 0:25pm;4Þ

0:25� 0:0625pm;4

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

:

ð9:6Þ

Thus, in the case of a two-block interpretation model and M sets of weights {p}m,
we can accumulate 2M effective values and sets of affecting factors (Table 9.1),
permitting making up of an excessive system for evaluating the four actual
hydraulic resistivities g1, g2, g3, g4.

To solve the above excessive system, the least-squares method can be applied;
that is, the unknown values g1, g2, g3, g4 are considered as the regression coeffi-
cients minimizing the sum

Table 9.1 Set consisting of M subsets of weights for evaluating the real-life hydraulic resis-
tivities as regression coefficients

Eq. No. Weights Effective
parameters

Affecting factors

1 {p}1 ĝ1;1 {w1,1,1, w1,1,2, w1,1,3, w1,1,4}
2 ĝ1;2 {w1,2,1, w1,2,2, w1,2,3, w1,2,4}
3 {p}2 ĝ2;3 {w2,3,1, w2,3,2, w2,3,3, w2,3,4}
4 ĝ2;4 {w2,4,1, w2,4,2, w2,4,3, w2,4,4}
………… …….. ………….…… ………….………….
2m-1 {p}m ĝm;2m�1 {wm,2m-1,1, wm,2m-1,2, wm,2m-1,3, wm,2m-1,4}
2m ĝm;2m {wm,2m,1, wm,2m,2, wm,2m,3, wm,2m,4}
………… …….. ………….…… ………….………….
2M-1 {p}M ĝM;2M�1 {wM,2M-1,1, wM,2M-1,2, wM,2M-1,3, wM,2M-1, 4}
2M ĝM;2M {wM,2M,1, wM,2M,2, wM,2M,3, wM,2M,4}

9.1 Linear Transforming Mechanisms: Illustrative Examples 123

http://dx.doi.org/10.1007/978-3-642-23722-5_6
http://dx.doi.org/10.1007/978-3-642-23722-5_6


sm ¼
X2M

m¼1

g1wm;1 þ g2wm;2 þ g3wm;3 þ g4wm;4 � ĝm

� �2
: ð9:7Þ

Applying the standard least-squares technique to sum 9.7 leads to the following
system of four equations:

g1

X2M

m¼1

w2
m;1 þ g2

X2M

m¼1

wm;1wm;2 þ g3

X2M

m¼1

wm;1wm;3 þ g4

X2M

m¼1

wm;1wm;4 ¼
X2M

m¼1

wm;1ĝm;1;

g1

X2M

m¼1

wm;2wm;1 þ g2

X2M

m¼1

w2
m;2 þ g3

X2M

m¼1

wm;2wm;3 þ g4

X2M

m¼1

wm;2wm;4 ¼
X2M

m¼1

wm;2ĝm;2;

g1

X2M

m¼1

wm;3wm;1 þ g2

X2M

m¼1

wm;3wm;2 þ g3

X2M

m¼1

w2
m;3 þ g4

X2M

m¼1

wm;3wm;4 ¼
X2M

m¼1

ww;3ĝm;3;

g1

X2M

m¼1

wm;4wm;1 þ g2

X2M

m¼1

wm;4wm;2 þ g3

X2M

m¼1

wm;4wm;3 þ g4

X2M

m¼1

w2
m;4 ¼

X2M

m¼1

ĝm;4wm;4:

ð9:8Þ

Solving the above system yields the values g1…4.

Case 9.1.1 Let the available observations on the squared water table elevations be
those obtained and used in case 6.2.2. The squared elevations in Table 9.2 are
obtained with the following distribution of hydraulic conductivities: K1 = 0.1,
K2 = 0.2, K3 = 0.9 and K4 = 1 m/day in the intervals [0, 25], (25, 50], (50, 75],
and (75, 100] m, respectively.

Applying the above procedure to the data presented in Table 9.2 with use of
100 transforming mechanisms (M = 50) yields

K1 ¼ 0:1000; K2 ¼ 0:2000;K3 ¼ 0:9001;K4 ¼ 1:0000 m=day;

that is, the above procedure solves the inverse problem accurately.
Since the inverse problem is prone to incorrectness, it is interesting to consider

how the errors in the initial data affect the results. Thus, rounding the squared
water table elevations in Table 9.2 to three digits after the decimal point results in
the solution

K1 ¼ 0:1000;K2 ¼ 0:1999;K3 ¼ 0:9014;K4 ¼ 1:0081 m=day:

Rounding the same data to two digits after the decimal point yields

K1 ¼ 0:0999; K2 ¼ 0:2003; K3 ¼ 0:8929; K4 ¼ 1:0417 m/day:

Table 9.2 ‘‘Observed’’ data
in case 6.2.2

j 0 1 2 3 4

x (m) 0 25 50 75 100
h2ðm2Þ 0.01 4.3850 5.9475 6.1558 6.2183
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Rounding the same data to one digit after the decimal point results in

K1 ¼ 0:1; K2 ¼ 0:2; K3 ¼ 0:6; K4 ¼ 1:49� 1013m/day:

This result, at least regarding K4, is unacceptably corrupt. (The error in the
value K3 of about 30% could be considered as acceptable by many practitioners).

The last result demonstrates the incorrectness (instability) of this inverse
problem. The reason is that the slope of the water table approaches the water
divide at x = 100 m and becomes about horizontal: the difference between water
table elevations at x3 = 75 and x4 = 100 m is less than 2 cm. This situation is
close to that presented in Fig. 4.1. It is difficult to expect that, under such cir-
cumstances, there exists a mathematical manipulation able to convert the problem
into a correct one. If it is impossible to improve the accuracy of the initial data, we
have to exclude the data related to location x4 from consideration and limit our-
selves to finding the hydraulic conductivities K1, K2, and K3. To evaluate the
hydraulic conductivity of the fourth body, the aquitard must be perturbed by a
pumping test or in some other way.

The data on case 6.2.2 were selected because reproducing the aquifer thick-
nesses is much worse than in case 6.2.1. Nevertheless, it is interesting to apply the
above procedure to the data of case 6.2.1. The intervals with different values of the
hydraulic conductivity in case 6.2.1 are the same as in case 6.2.2. The corre-
sponding values of the conductivity are K1 = 1, K2 = 0.9, K3 = 0.2, and
K4 = 0.1 m/day. The squared thicknesses of the aquifer for this case are presented
in Table 9.3.

Application of the above-described procedure to the data in Table 9.3 yields the
following results:

K1 ¼ 1:0000; K2 ¼ 0:9001; K3 ¼ 0:2000; K4 ¼ 0:1000 m/day:

Rounding the squared water table elevations in Table 6.3 to three digits after
the decimal point results in the solution

K1 ¼ 0:9989; K2 ¼ 0:9006; K3 ¼ 0:2001; K4 ¼ 0:1000 m/day:

Rounding the same data to two digits after the decimal point yields

K1 ¼ 0:9943; K2 ¼ 0:9191; K3 ¼ 0:1995; K4 ¼ 0:0992 m/day:

Rounding the same data to one digit after the decimal point results in

K1 ¼ 1:1218; K2 ¼ 0:7812; K3 ¼ 0:2083; K4 ¼ 0:0893 m/day:

Table 9.3 ‘‘Observed’’ data
in case 6.2.1

Effective
conductivity
(m/day)

K̂1 ¼ 1:0011 K̂2 ¼ 0:1678

x (m) 0 25 50 75 100

h2ðm2Þ 0.4475 0.7947 1.7322 2.3572 0.4475
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These results seem to be more stable and accurate due, probably, to the absence of
‘‘observations’’ which are not indistinguishable practically.

Case 9.1.2 Let the interpretational model be the simplest one, i.e., homogeneous.
For this model the relationship between the effective hydraulic resistivity and the
effective squared water table can be represented as follows:

ĥ2
1 � h2

0 ¼ 0:4375ĝ
ĥ2

2 � h2
0 ¼ 0:75ĝ

ĥ2
3 � h2

0 ¼ 0:9375ĝ
ĥ2

4 � h2
0 ¼ ĝ

ð9:9Þ

Criterion 9.2 takes the form

sm ¼ pm;1 0:4375ĝm � h2
1 � h2

0

� �� �2þpm;2 0:75ĝm � h2
2 � h2

0

� �� �2

þpm;3 0:9375ĝm � h2
3 � h2

0

� �� �2þpm;4 ĝm � h2
4 � h2

0

� �� �2
;

ð9:10Þ

where {p}m is the mth set of weights. Applying the standard least-squares tech-
nique yields

ĝm¼
0:4375pp;1 h2

1�h2
0

� �
þ0:75pm;2 h2

2�h2
0

� �
þ0:9375pm;3 h2

3�h2
0

� �
þpm;4 h2

4�h2
0

� �

0:43752pm;1þ0:752pm;2þ0:93752pm;3þpm;4
:

ð9:11Þ

The actual squared water table elevations are described by the expressions

h2
1 � h2

0 ¼ 0:4375g1

h2
2 � h2

0 ¼ 0:4375g1 þ 0:3125g2

h2
3 � h2

0 ¼ 0:4375g1 þ 0:3125g2 þ 0:1875g3

h2
4 � h2

0 ¼ 0:4375g1 þ 0:3125g2 þ 0:1875g3 þ 0:0625g4

ð9:12Þ

Substituting expression 9.12 in Eq. 9.11 and combining the terms containing
the same real-world hydraulic resistivities yields the following affecting factors:

wm;1 ¼
0:4375ð0:4375pm;1 þ 0:75pm;2 þ 0:9375pm;3 þ pm;4Þ

cm

wm;2 ¼
0:3125ð0:75pm;2 þ 0:9375pm;3 þ pm;4Þ

cm

wm;3 ¼
0:1875ð0:9375pm;3 þ pm;4Þ

cm

wm;4 ¼
0:0625pm;4

cm
;

ð9:13Þ
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where

cm ¼ 0:43752pm;1 þ 0:752pm;2 þ 0:93752pm;3 þ pm;4: ð9:14Þ

Thus, we obtain regression 9.1

g1wm;1 þ g2wm;2 þ g3wm;3 þ g4wm;4 ¼ ĝm ð9:15Þ

and find the pertinent hydraulic resistivities as coefficients of the above regression
in which the affecting factors wm,i play the role of independent variables and ĝm is
calculated based on the observations.

The homogeneous model yields results which are exactly the same as in
case 9.1.1, though the model and the inverse problem solving are considerably
simpler.

Case 9.1.3 Cases 9.1.1 and 9.1.2 demonstrated that the transforming mechanisms
can be successfully applied for inverse problem solving in some situations.
However, this is not always so. Let us now assume that, in the inverse problem
considered above, the geological object consists of eight geological bodies with
boundaries at locations X0 = 0, X1 = 12.5, X2 = 25, X3 = 37.5, X4 = 50,
X5 = 62.5, X6 = 75, X7 = 87.5, and X8 = 100 m, with constant hydraulic con-
ductivities within the intervals [Xj-1, Xj]: K1, K2, K3, K4, K5, K6, K7, and K8

(hydraulic resistivities g1 = 1/K1, g2 = 1/K2, g3 = 1/K3, g4 = 1/K4, g5 = 1/K5,
g6 = 1/K6, g7 = 1/K7, and g8 = 1/K8). The monitoring network and the observed
squared water table elevations are those presented in Table 9.2. The recharge rate
also remains the same, N = 0.0001 m/day. The task is to find the hydraulic
conductivities K1, K2, K3, K4, K5, K6, K7, and K8 based on the available water table
elevations using a homogeneous interpretation model.

The approach to solving this inverse problem remains the same as in the pre-
vious cases. Namely, the unknown hydraulic resistivities g1 to g8 are coefficients of
the linear regression

g1wm;1 þ g2wm;2 þ g3wm;3 þ g4wm;4 þ g5wm;5 þ g6wm;6 þ g7wm;7 þ g8wm;8 ¼ ĝm;

ð9:16Þ

where wm,i (i = 1–8) are the pertinent affecting factors corresponding to the set of
weights {p}m = {pm,1, pm,2, pm,3, pm,4} and playing the role of independent vari-
ables; ĝm is the known pertinent effective value of the hydraulic resistivity, the
‘‘observation.’’ Thus, the goal is to make up a large number of sets of the affecting
factors {w}m = {wm,1, wm,2,…, wm,8} and the pertinent effective parameters ĝm:

The effective resistivity ĝm corresponding to the set of weights {p}m = {pm,1,
pm,2, pm,3, pm,4} can be calculated by Eq. 9.9. In the case of the eight-body real
world, Eq. 9.10 becomes
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h2
1 � h2

0 ¼ 0:2344g1 þ 0:2031g2

h2
2 � h2

0 ¼ 0:2344g1 þ 0:2031g2 þ 0:1791g3 þ 0:1406g4

h2
3 � h2

0 ¼ 0:2344g1 þ 0:2031g2 þ 0:1791g3 þ 0:1406g4 þ 0:1094g5 þ 0:0781g6

h2
4 � h2

0 ¼ 0:2344g1 þ 0:2031g2 þ 0:1791g3 þ 0:1406g4 þ 0:1094g5 þ 0:0781g6

þ0:0469g7 þ 0:01563g8

ð9:17Þ

Substituting expression 9.17 in Eq. 9.11 and calculating multipliers in terms
with different g1…8 yields the following affecting factors

wm;1 ¼
0:2344ð0:4375pm;1 þ 0:75pm;2 þ 0:9375pm;3 þ pm;4Þ

cm
; wm;2 ¼

0:2031wm;1

0:2344

wm;3 ¼
0:1719ð0:75pm;2 þ 0:9375pm;3 þ pm;4Þ

cm
; wm;4 ¼

0:1406wm;3

0:1719

wm;5 ¼
0:1094ð0:9375pm;3 þ pm;4Þ

cm
; wm;6 ¼

0:0781wm;4

0:1094

wm;7 ¼
0:0469pm;4

cm
; wm;8 ¼

0:01563pm;4

0:0469

ð9:18Þ

where the denominator cm is defined by Eq. 9.14.
Now we can apply the standard least-squares technique to evaluate the

unknown hydraulic resistivities g1…8, the regression coefficients of regres-
sion 9.16. Based on the data presented in Table 9.2 and M = 100 corresponding to
100 sets of independent variables {w}m and the known values ĝm we obtain

K ¼ ½�0:0321 0:0262 �0:0596 0:0435

0:0848 �0:2215 �0:0021 0:0007 �m/day

instead of the factual hydraulic conductivities

K ¼ 0: 1; 0:1; 0:2; 0:2; 0:9; 0:9; 1; 1 m=day:

Thus, the inverse problem formulation in case 9.1.3 is incorrect. The mathe-
matical cause of the incorrectness is poor conditioning of the system for finding the
hydraulic resistivities g1…8. This happened because the affecting factors are
mutually dependent and not sufficiently diverse. (This is not the case for evaluating
the affecting factors per se by two-level modeling. Indeed, we are free to select
any values of the real-world parameters and to make them as diverse as we want).
However, the main reason is the mismatch of the complexity of the object and the
data for solving the inverse problem. What may provide some comfort is the
possibility to establish the correctness or incorrectness of the formulation of an
inverse problem before starting field explorations through use of two-level mod-
eling and to look for appropriate changes to the methodology of the investigations.
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9.2 Borden Landfill: Evaluating Actual Recharge Rates

Let the simulation model in Sect. 4.4 represent the real geological object accu-
rately. The goal is to evaluate the actual recharge rates pertaining to the intervals
(300, 600], (600, 800], and (800, 900] m assigned by Frind and Hokkanen (1987).
The data for solving the inverse problems are presented in Table 9.4 (cf.
Tables 6.11 and 6.12). They comprise the available observations on the water table
and the streamline starting at x = 300 m and the expressions for calculating the
total flux at the points of observations. (The recharge rates in the interval [0,
300] m and the total flux QS = Q(300) = 0.1253 m2/day are assumed known).

Case 9.2.1 Let the interpretation model be homogeneous with respect to the
recharge pattern for x [ 300 m (Fig. 9.1). The approach to solving this inverse
problem is roughly the same as in the previous section. Namely, the goal is to
make up a manifold of transforming mechanisms by applying different subsets of
weights to the observed data, u1…6. As soon as the manifold is obtained, the
corresponding transforming mechanisms

N3wm;1 þ N4wm;2 þ N5wm;3 ¼ N̂m ð9:19Þ

are considered as linear regressions with unknown regression coefficients N3…5.
The effective recharge rates N̂m; corresponding to the random set of weights
{pm,1…6}, can be evaluated based on the available observations. With all necessary
data accumulated, the unknown recharge rates N3…5 can be obtained by standard
least-squares technique by solving the following system:

N3

XM

m¼1

w2
m;1 þ N4

XM

m¼1

wm;1wm;2 þ N5

XM

m¼1

wm;1wm;3 ¼
XM

m¼1

wm;1N̂m

N3

XM

m¼1

wm;2wm;1 þ N4

XM

m¼1

w2
m;2 þ N5

XM

m¼1

wm;2wm;3 ¼
XM

m¼1

wm;2N̂m

N3

XM

m¼1

wm;3wm;1 þ N4

XM

m¼1

wm;3wm;2 þ N5

XM

m¼1

w2
m;3 ¼

XM

m¼1

wm;3N̂m

ð9:20Þ

Table 9.4 Data for solving inverse problems for the Borden landfill

No. x H v = H - Y Y HS u = HS - Y Q

0 300 222.31 17.99 204.31 222.31 17.99 QS

1 400 222.23 16.06 206.17 219.25 13.08 QS ? 100N3

2 500 222.11 12.56 209.55 218.26 8.71 QS ? 200N3

3 600 221.95 11.09 210.85 217.46 6.61 QS ? 300N3

4 700 221.72 10.39 211.33 216.07 4.74 QS ? 300N3 ? 100N4

5 800 221.42 9.56 211.86 215.47 3.61 QS ? 300N3 ? 200N4

6 900 221.04 8.24 212.79 215.67 2.88 QS ? 300N3 ? 200N4 ? 100N5
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In Sect. 6.4, the transforming mechanism was obtained analytically for uniform
weighting. The same can be done for nonuniform weighting. Let us assume that
recharges N3, N4, and N5 are known. The effective recharge rates corresponding to
the weighting {pm, 1…6} and the above recharge pattern can be obtained
straightforwardly by minimizing the criterion

sm ¼
X6

i¼1

pm;i Q̂m;i � Qi

� �2
u2

i ; ð9:21Þ

where Qi and Q̂m;i are the actual and effective total fluxes at the observation
points, presented in Table 9.5. The standard least-squares procedure requires
solving the equation

X6

i¼1

pm;iu
2
i Q̂m;i � Qi

� � dQ̂m;i

dN̂m
¼ 0: ð9:22Þ

Substituting in Eq. 9.22 the expressions for Qi and Q̂m;i from Table 9.5 and

solving it for N̂m yields Eq. 9.19, in which

wm;1 ¼ bm;1=cm; wm;2 ¼ bm;2=cm; wm;3 ¼ bm;3=cm; ð9:23Þ

and

cm ¼ pm;1u2
1 þ 4pm;2u2

2 þ 9pm;3u2
3 þ 16pm;4u2

4 þ 25pm;5u2
5 þ 36pm;6u2

6

bm;1 ¼ pm;1u2
1 þ 4pm;2u2

2 þ 9pm;3u2
3 þ 12pm;4u2

4 þ 15pm;5u2
5 þ 18pm;6u2

6

bm;2 ¼ 4pm;4u2
4 þ 10pm;5u2

5 þ 12pm;6u2
6

bm;3 ¼ 6pm;6u2
6

ð9:24Þ

(It is easy to check that, as expected, the affecting factors in mechanism 9.23 sum
to one.)

Thus, the affecting factors comprising the coefficients of system 9.20 are
obtained. To complete the creation of system (9.20), it is necessary to obtain the
right-hand terms including N̂m; the actual effective recharge rates corresponding to
different sets of weights {pm, 1…6}. They can be found by minimization of the
criterion

Fig. 9.1 Case 9.2.1:
homogeneous interpretational
model for evaluating recharge
rates N3, N4, and N5
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sm ¼
X6

i¼1

pm;i Q̂m;iui � QSvi

� �2
: ð9:25Þ

(cf. criterion 6.39). They are solutions of the equations

100 pm;1u2
1þ4pm;2u2

2þ9pm;3u2
3þ16pm;4u2

4þ25pm;5u2
5þpm;6u2

6

� �
N̂1

¼QS

pm;1u1ðv1�u1Þþ2pm;2u2ðv2�u2Þþ3pm;3u3ðv3�u3Þþ4pm;4u4ðv4�u4Þ

þ5pm;5u5ðv5�u5Þþ6pm;6u6ðv6�u6Þ

 !

:

ð9:26Þ

Substituting the data from Tables 9.4 and 9.5 in Eq. 9.26 yields

N̂m ¼
QS

100

P6

i¼1
pm;iiuiðvi � uiÞ

P6

i¼1
pm;ii2u2

i

; QS ¼ 0:1253 m2= day
� �

: ð9:27Þ

Now, system 9.20 can be made up and solved. The results of several realiza-
tions of the above procedure are presented in Table 9.6. They seem consistent. The
results obtained for M = 50 are presented in Fig. 9.2. They are practically satis-
fying: the travel time to x = 900 and 950 m is about 38.9 and 40 years. The
magnitude of the maximal error in reproducing the streamline occurs at
x = 500 m. It is less than 5 cm, which is better than that obtained in the process of
model identification (Sect. 4.4). However, for x [ 800 m the error grows con-
siderably, meaning that the recharge rate N5 needs correction. Besides, the con-
dition numbers of system 9.20 for different M are large.

Fortunately, the interpretation model permits manual correction. Indeed, the
model is such that the recharge rate N5 for x [ 800 m does not affect the previous
observations. Thus, the recharge pattern

N3 ¼ 10:29;N4 ¼ 22:75 and N5 ¼ 8 cm/year

makes the magnitude of the error at x = 900 m close to 2 cm (compare with
N3 = 10.2, N4 = 23, and N5 = 8.36 cm/year in Table 4.4). The travel times to
x = 900 and 950 m are about 39 and 40.2 years.

Table 9.5 Case 9.2.1:
expressions for calculating
total fluxes Qi and Q̂m;i

No. x Q Q̂m

0 300 QS QS

1 400 QS þ 100N3 QS þ 100N̂m

2 500 QS þ 200N3 QS þ 200N̂m

3 600 QS þ 300N3 QS þ 300N̂m

4 700 QS þ 300N3 þ 100N4 QS þ 400N̂m

5 800 QS þ 300N3 þ 200N4 QS þ 500N̂m

6 900 QS þ 300N3 þ 200N4 þ 100N5 QS þ 600N̂m
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Case 9.2.2 Let us change the interpretation model. Now, it comprises two blocks:
intervals (300, 600] m constitutes the first homogeneous block with effective
recharge rate N̂1; and the interval (600, 900] m the second one with recharge rate
N̂2 (Fig. 9.3).

In general, the procedure for solving the inverse problem in this case does not
differ from the previous one. The goal is to create and solve a system of equations
like system 9.20. The available information remains the same (Table 9.4), but two
effective recharge rates now exist: N̂m;1 for the first model block and N̂m;2 for the
second one in this case. They correspond to two different transforming
mechanisms:

N̂m;1 ¼ wm;1;1N3 þ wm;1;2N4 þ wm;1;3N5;

N̂m;2 ¼ wm;2;1N3 þ wm;2;2N4 þ wm;2;3N5:
ð9:28Þ

The necessity to work with two transforming mechanisms could complicate
the problem. In this case, it is not so. According to properties 1 and 2 of the
transforming mechanisms (Sect. 5.3), the affecting factors wm,1,1 = 1,
wm,1,2 = - wm,1,3, wm,2,1 = 0, wm,2,3 = 1 - wm,2,2 and mechanism 9.28 can be
rewritten as

Fig. 9.2 Case 9.2.1:
reproducing the streamline
starting at x = 300 m using
the recharge rates yielded by
inverse problem solving

Table 9.6 Some results of
solving the inverse problem
in case 9.2.1 (M is the
number of simulations)

M Recharge rates (cm/year) Condition number

N3 N4 N5

10 10.38 22.53 16.70 6,017
50 10.29 22.75 18.33 4,261
250 10.31 22.68 18.89 3,992
1,250 10.30 22.68 18.59 4,247
6,250 10.30 22.66 18.66 3,897
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N̂m;1 ¼ N3 þ wm;1;2N4 � wm;1;2N5;

N̂m;2 ¼ wm;2;2N4 þ ð1� wm;2;2ÞN5:
ð9:29Þ

However, we will consider all affecting factors as unknown and use their prop-
erties to the calculation.

Mechanism 9.28 can be evaluated analytically as was done in case 9.2.1,
though this may be a cumbersome task. We come back to the standardized pro-
cedure described in Sects. 8.1–8.3. Let us assign R sets of recharge rates {rNr,3,
rNr,4, rNr,5} at random. Then, for a given set of weights {pm,1…6} and each set
{rNr,3…5}, the effective recharge rates N̂m;r;1 and N̂m;r;2 are evaluated by minimi-
zation of the criterion (cf. criterion 9.26)

sm;r ¼
X6

i¼1

pm;iu
2
i Q̂m;r;i � Qr;i

� �2
; ð9:30Þ

where ui is the observed thickness of the aquifer’s part below the streamline S, and
expressions for calculating the effective total fluxes Q̂m;r;1 are presented in
Table 9.7. The standard least-squares method leads to a system of two equations

X6

i¼1

pm;iu
2
i Q̂m;r;i � Qr;i

� � Q̂m;r;i

N̂m;r;j
; j ¼ 1; 2; ð9:31Þ

which can be represented explicitly as

P3

i¼1
i2pm;iu2

i þ 9
P6

i¼4
pm;iu2

i

� 	
N̂m;r;1 þ 3

P6

i¼4
ði� 3Þpm;iu2

i

� 	
N̂m;r;2

¼
P2

i¼1
i2pm;iu2

i þ 9
P6

i¼3
pm;iu2

i

� 	
rN3 þ 3

P6

i¼4
i� 3ð Þpm;iu2

i � pm;6u2
i

� 	
rN4 þ 3pm;6u2

6rN5;

3
P6

i¼4
ði� 3Þpm;iu2

i

� 	
N̂m;r;1 þ

P6

i¼4
ði� 3Þ2pm;iu2

i

� 	
N̂m;r;2 ¼ 3

P6

i¼4
ði� 3Þpm;iu2

i

� 	
rN3

þ pm;4u2
4 þ 4pm;5u2

5 þ 6pm;6u2
6
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6rN5:

ð9:32Þ

Fig. 9.3 Case 9.2.2: two-
block interpretation model for
finding recharge rates N3, N4,
and N5
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Solving system 9.32 yields M coupled values of the effective recharge rates N̂m;r;1

and N̂m;r;2:

Substituting values N̂m;r;1 and N̂m;r;2 in Eq. 9.28, which for fixed m and different
r can be rewritten as

N̂m;r;1 ¼ wm;1;1rNr;3 þ wm;1;2rNr;4 þ wm;1;3rNr;5;

N̂m;r;2 ¼ wm;2;1rNr;3 þ wm;2;2rNr;4 þ wm;2;3rNr;5;
ð9:33Þ

we obtain the excessive system of linear equations for evaluating the unknown
affecting factors wm,j,1…3 (j = 1, 2) by the least-squares method.

The next step is to evaluate the actual effective values N̂m;1 and N̂m;2 corre-
sponding to different sets of weights applying the data from Tables 9.4 and 9.7 by
minimization of criterion 9.25

pm;1u2
1þ 4pm;2u2

2þ 9
P6

i¼3
pm;iu2

i

� 	
N̂m;1þ 3

P6

i¼4
pm;iði� 3Þu2

i N̂m;2

¼ QS
100 pm;1u1ðv1� u1Þþ 2pm;2u2ðv2� u2Þþ 3

P6

i¼3
pm;iuiðvi� uiÞ

� 	

3
P6

i¼4
ði� 3Þpm;iu2

i

� 	
N̂1þ

P6

i¼4
ði� 3Þ2pm;iu2

i

� 	
N̂2 ¼ QS

100

P6

i¼4
ði� 3Þpm;iuiðvi� uiÞ

� 	
:

ð9:34Þ

Its solution is 2M values of the effective recharge rates N̂m;1 and N̂m;2:
Now, the system of equations similar to system 9.20 can be made up and

solved. Several results of realization of the above procedure are presented in
Table 9.8. They are close to those obtained in case 9.2.1. Note that the condition
number of system 9.20 in case 9.2.2 is much better then in case 9.2.1, meaning
that the inverse problem in case 9.2.2 is practically stable.

Case 9.2.3 Let the interpretation model be an exact copy of the real object. This
means that now for x [ 300 m it comprises three blocks in the intervals [300,
600], [600, 800], and x [ 800 m. In this case the above approach, that is, creating
and solving systems of equations like system 9.19, does not work. Indeed, the three

Table 9.7 Case 9.2.2: expressions for calculating total fluxes Qr;i and Q̂m;r;i

No. x Qr Q̂m;r

0 300 QS QS

1 400 QS ? 100Nr,3 QS þ 100N̂m;r;1

2 500 QS ? 200Nr,3 QS þ 200N̂m;r;1

3 600 QS ? 300Nr,3 QS þ 300N̂m;r;1

4 700 QS ? 300Nr,3 ? 100Nr,4 QS þ 300N̂m;r;1 þ 100N̂m;r;2

5 800 QS ? 300Nr,3 ? 200Nr,4 QS þ 300N̂m;r;1 þ 200N̂m;r;2

6 900 QS ? 300Nr,3 ? 200Nr,4 ? 100Nr,4 QS þ 300N̂m;r;1 þ 300N̂m;r;2
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corresponding transforming mechanisms do not depend on weighting the obser-
vations, and the affecting factors stay the same: w1,1 = w2,2 = w3,3 = 1 and
w1,2 = w1,3 = w2,1 = w2,3 = w3,1 = w3,2 = 0 for any weighting. This converts
the current inverse problem into an optimization one: three unknown recharge
rates N3, N4, and N5 can be evaluated as the effective ones by straightforward
application of the least-squares method, that is, by minimization of the criterion

s ¼
X6

i¼1

Qiui � QSvið Þ2; ð9:35Þ

where the total flux Qi is defined by column Qr,i in Table 9.9 (index r ignored). The
standard least-squares technique leads to the following system of linear equations:

X6

i¼1

Qiui � QSvið Þui
dQi

dNj
¼ 0; j ¼ 1; 2; 3; ð9:36Þ

which can be presented explicitly as
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P6

i¼3
uiðvi � uiÞ
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4 þ 2u2

5 þ 2u2
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� �
N3 þ u2

4 þ 4u2
5 þ 4u2

6

� �
N4 þ 2u2

6N5

¼ QS
100 u4ðv4 � u4Þ þ 2u5ðv5 � u5Þ þ 2u6ðv6 � u6Þð Þ

3u2
6N3 þ 2u2

6N4 þ u2
6N5 ¼ QS

100 u6ðv6 � u6Þ

ð9:37Þ

The results of solving system 9.37 are presented in Table 9.9. They are close to the
results obtained in cases 9.2.1 and 9.2.2.

The overestimation of the rate N5 with respect to the effective value N̂5 may
cause some discomfort, though the difference between them can be considered as

Table 9.8 Some results of
solving the inverse problem
in case 9.2.2 (M is the
number of simulations)

M Recharge rates (cm/year) Condition number

N3 N4 N5

10 10.34 22.48 19.69 343
50 10.34 22.44 18.93 132
250 10.31 22.59 18.85 151
1,250 10.32 22.64 18.98 139
6,250 10.31 22.60 18.93 134

Table 9.9 Results of solving
the inverse problem in
case 9.2.3

Recharge rates (cm/year) Condition number

N3 N4 N5

10.31 22.64 18.98 254
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acceptable practically. The reason is the same: too many assumptions, in particular
about the structure of the real object and the steady-state water table. However,
different formulations of the considered inverse problem led to consistent results.
This could be a good reason to reconsider the assumptions applied in the model
identification.

9.3 Nonlinear Transforming Mechanisms: Illustrative Example

Conceptually, solving inverse problems involving nonlinear transforming mech-
anisms does not differ from solving inverse problems involving linear ones,
although technically they can be considerably more complicated. However, those
problems can be solved, especially for not very complex real worlds. Interpretation
of apparent resistance obtained by vertical electric sounding is an obvious
example. The following conceptual example demonstrates, at least in principle, the
possibility of formulation of and solving the hydrogeological inverse problem by
applying the effective, or rather apparent, parameters.

Let us come back to the object presented first in Sect. 4.3, that is, a confined
aquifer comprising two homogeneous bodies having hydraulic transmissivities T1

and T2 (Fig. 9.4). In the initial state the aquifer has uniform distributions of
hydraulic heads h(x, 0) = H0. At instant t = 0, the hydraulic head at
x = 2L = 100 m jumps instantly to h(2L, 0) = H2L and stays the same: h(2L,
t) = H2L. At x = 0 the hydraulic head does not change: h(0, t) = H0. (Without
loss of generality, the values H0 and H2L are assigned equal to 0 and 1 m.) The
jump of the hydraulic head at x = 2L initiates the process of changing the aquifer
hydraulic heads. The goal is to evaluate the hydraulic conductivities, observing the
changing hydraulic head h(L, t) at x = L = 50 m and using a homogeneous, one-
block, interpretational model.

The transforming mechanism acting in this problem is described by Eq. 7.13,
which is presented here for convenience

T̂i ¼ �
hi�1

1� 2hi�1
T1 þ

1� hi�1

1� 2hi�1
T2; ð9:38Þ

where hi-1 = h(L, ti-1). In terms of the affecting factors wi,1 and wi,2, Eq. 9.38 can
be rewritten as

T̂i ¼ T1w1;i þ T2w2;i; ð9:39Þ

where

w1;i ¼ �
hi�1

1� 2hi�1
and w2;i ¼

1� hi�1

1� 2hi�1
: ð9:40Þ

The simplest way of solving the inverse problem is to consider Eq. 9.39 for two
different instants ti and tj and solve the system of these two equations.
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Equation 9.39 can be interpreted also as a linear regression with T1 and T2 as
unknown actual transmissivities and one of the affecting factors as the independent
variable (w1,i = 1 - w2,i). T1 and T2 can be found by the least-squares method
exactly in the same way as was done in the cases above with the linear trans-
forming mechanisms. Several results of solving inverse problems based on
regression 9.39 are presented in Table 9.10. The corresponding forward problems,
providing ‘‘observations,’’ are produced explicitly (Sect. 7.2). Since the method of
simulations is explicit, the time increment is chosen to be small, Dt = 0.1 days. In
solving the corresponding inverse problems, the observations are made once a day,
once a week, and once in 2 weeks. The period of observation is chosen as
182 days to avoid the instant of possible discontinuity of the transforming
mechanisms when T1 \ T2 as discussed in case 7.2.2.

There are many other ways of solving this simple inverse problem; for example,
it follows from Eq. 9.38 that T̂i�1;i ¼ T2 for hi-1 = 0. This fact can be helpful also.
On the other hand, the observed h(t) at x = L have a limit described by Eq. 4.31.
For H0 = 0 and H2L = 1, Eq. 4.31 becomes

HL ¼
T2

T1 þ T2
: ð9:41Þ

Correspondingly,

T1 ¼
1� HL

HL
T2: ð9:42Þ

It may not be necessary to use transforming mechanisms to solve inverse
problems; rather, one can operate with the effective transmissivity directly. The
curves of effective transmissivity versus time for once-a-week observations are
presented in Figs. 9.5 and 9.6. (Such curves are called master curves in geo-
physics).That is, the factual curve obtained based on actual observations can be
compared with the master curves: the master curve best fitting the observations
provides the transmissivity T1. (The transmissivity T2 can be evaluated as the left
asymptote of the curves).

Such an approach is typical in applied geophysics, and for vertical electric
sounding in particular. Indeed, apparent electric resistivities are actually effective

Fig. 9.4 Two-body object
and homogeneous
interpretation model
(confined aquifer with
horizontal base)
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parameters of homogeneous interpretation models. They are effective exactly in
the same sense as the effective transmissivities in ours; that is, they have to
reproduce the actual potential differences between two measuring electrodes,
assuming the homogeneity of geological objects in terms of electrical resistivity.
[Use of the geophysical master curves from electrical sounding, of both three-

Table 9.10 Solving inverse problems by regression 9.39

Actual transmissivity (m2/day) Interval between measurements (days)

1 7 14

T1 T2 Results of solving inverse problems: T1, T2 (m2/day)

0.1 0.9 0.1050 0.9013 0.1050 0.9013 0.1056 0.9016
0.5 0.9 0.5005 0.8999 0.5005 0.8999 0.5006 0.8999
0.9 0.9 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
0.9 0.5 0.9000 0.5001 0.9000 0.5001 0.9000 0.5001
0.9 0.1 0.9003 0.1000 0.9003 0.1000 0.9003 0.1000

Fig. 9.5 Master curves for
effective transmissivities for
T2 \ T1

Fig. 9.6 Master curves for
effective transmissivities for
T2 [ T1
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electrode and dipole type, for interpreting pumping test data for corresponding
combinations of not fully penetrating pumping, injecting, and observation wells in
the steady-state regime was suggested by Gorokhovski and Jazvin (1970). At that
time, pumping tests lasting from several days up to half of year had been common
practice in the Soviet Union. I had used those master curves always when it
seemed to be appropriate. However, I am not aware of somebody else who had
been doing this].

Let us complicate the problem slightly. Namely, the hydrogeological process is
the same as above with the same initial and boundary conditions but the hydro-
geological object comprises three geological bodies (Fig. 9.7). The ‘‘observa-
tions,’’ that is, the results of solving the forward problem, are obtained at
x = 2L. The interpretation model is homogeneous. The flow within each geo-
logical body is described by three equations

ohðx; tÞ
ot

¼ Aj
o2hðx; tÞ

ox2
j ¼ 1; 2; 3; ð9:43Þ

where x and t are the distance and time coordinates, and h(x, t) is the hydraulic head
in the intervals [0, L] (j = 1), [L, 3L] (j = 2), and [3L, 4L] (j = 3). Aj = Tj/S is the
hydraulic diffusivity of body j, Tj is the hydraulic transmissivity of body j, and
S = 0.1 is the storativity, which is the same for all bodies. The initial and
boundary conditions are the following:

hðx; 0Þ ¼ 0; 0� x� 4L; ð9:44Þ

hð0; tÞ ¼ H0 ¼ 0 and hð2L; tÞ ¼ H4L ¼ 1 m: ð9:45Þ

The inner boundary conditions on continuity of the hydraulic heads and the flux
exist at x = L and x = 3L:

lim
x!L

hðL; tÞð Þ ¼ lim
L x

hðL; tÞð Þ and T1 lim
x!L

ohðx;tÞ
ox ¼ T2 lim

L x

ohðx;tÞ
ox

lim
x!3L

hð3L; tÞð Þ ¼ lim
3L x

hð3L; tÞð Þ and T2 lim
x!3L

ohðx;tÞ
ox ¼ T3 lim

3L x

ohðx;tÞ
ox

ð9:46Þ

The explicit approximation of the hydraulic heads h(2L,ti+1) can be presented as

Fig. 9.7 Three-body
confined aquifer and
homogeneous interpretation
model
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hiþ1 � hi

Dt
¼ T2

S

h3L;i � 2hi þ hL;i

L2
;

where hi ¼ hð2L; tiÞ; hiþ1 ¼ hð2L; tiþ1Þ; hL;i ¼ hðL; tiÞ and hL;i ¼ hð3L; tiÞ; or

hiþ1 ¼ hi þ
T2Dt

SL2
ðh3L;i � 2hi þ hL;iÞ: ð9:47Þ

It follows from the inner boundary conditions (Eq. 9.46) that

hL;i ¼
T2

T1 þ T2
hi; h3L;i ¼

T3 þ T2hi

T2 þ T3
ð9:48Þ

Substituting the above results in Eq. 9.47 yields the following procedure for
making up the ‘‘observations’’:

hiþ1 ¼ hi þ
T2Dt

SL2

T3

T2 þ T3
þ T2

T2 þ T3
þ T2

T1 þ T2
� 2

� 	
hi

� 	
: ð9:49Þ

The made-up ‘‘observations’’ for 100 days for the object with hydraulic conduc-
tivities T1 = 0.1, T2 = 0.2, and T2 = 0.9 m2/day calculated by Eq. 9.49 are pre-
sented in Fig. 9.8.

The effecting hydraulic transmissivity of the homogeneous model (Fig. 9.7) for

the given structure of the geological object and the efficiency criterion ðĥiþ1 ¼ hiþ1Þ
can be calculated by the following equation, applying the implicit method this time:

T̂i;iþ1 ¼
SL2

2ðtiþ1 � tiÞ
ln

1� 2hi

1� 2hiþ1
: ð9:50Þ

Master curves in Fig. 9.9 are presented for the case when the hydraulic
conductivities T1 = 0.1 and T2 = 0.2 m2/day are fixed while the hydraulic
conductivity T3 varies. The same curves can be made up for other combinations of
T1…3 and for objects with different numbers of geological bodies.

Fig. 9.8 Development of the hydraulic heads as x = 2L during the first 100 days according to
Eq. 9.49 (T1 = 0.1, T2 = 0.2, and T2 = 0.9 m2/day)
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9.4 Conclusions

Often, transforming mechanisms can be applied to the formulation and solution of
inverse problems related to underground flows. However, they cannot eliminate
the inherent incorrectness of such problems. When manifolds of transforming
mechanisms are created by the use of different weightings, the incorrectness is
usually caused by the limited diversity of the weights assigned to the available
observations. Whatever weights are applied, they act as if their values were in the
interval [0, 1], or [-1, 1] if negative weights are applied. The failures can be
caused also by unlucky choices of the models representing the real geological
object and monitoring networks providing unsatisfactory amounts or diversity of
data. Fortunately, the possibility of such failures can be identified before even
starting the pertinent field investigations and taken into consideration in the stage
of designing the pertinent projects. Projects can be corrected and optimized during
their implementation based on incoming information. Thus, the approach based on
transforming mechanisms permits the best (according to an accepted definition)
results to be obtained. However, since our notions of geological objects are just
models and, as such, false, the results of solving inverse problems are uncertain,
meaning that it is impossible to evaluate their inaccuracy in a provable way.
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Chapter 10
Conclusion

Contemporary computational techniques permit simulation of any predictive
problem based on up-to-date hydrogeological theories and concepts. The real issue
is the reliability of the simulation results, their uncertainty. Geological objects and
their properties are not known in full, and how the inaccuracy of a simulation
model can affect the simulation results is unknown. Hornung (1990) writes: ‘‘One
cannot substitute lack of theory and/or data by sophisticated mathematical models
for parameter identification.’’ In this sense, hydrogeology does not differ from
other sciences: ‘‘Science is uncertain; the moment you make a proposition about a
region of experience that you have not directly seen then you must be uncertain.
But we always must make statements about the regions that we have not seen, or
whole business is no use,’’ as the great physicist and Nobel Prize winner Feynman
(1965) wrote.

Hydrogeology is an applied science in the sense that we usually, if not always,
‘‘must make statements about the region we have not seen’’ and make decisions
based on incomplete and erroneous data (US EPA 1987). Our best decisions are
uncertain still and do not warrant success. Even a post audit demonstrating the
failure or success of a decision does not mean that the decision was bad, or good.
In the 1960s or 1970s, I read a book by an American author, I guess the author is
Simon, about decision-making. One of his examples impressed me strongly.
A person who needs to come to New York from San Francisco asks his friend
whether it is better to fly or to go by car or train. The friend advises him to fly. The
person flies. The airplane crashes. The person perishes. Thus, the post audit is
disastrous, but does this mean that the advice and the person’s decision to fly were
bad? A successful post audit does not make the corresponding decision good
either. Possibly, the same result could be achieved in more effective (economically
or technologically) ways. Thus, we must judge the quality of our decisions based
on the information available at the time of the decision-making.

In applied hydrogeology, the results, including the results of predictive
modeling, are either a basis for decision-making or a goal per se. In both cases it
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must provide the best results in some predefined sense with what we have (US
EPA 1987). In my opinion, engineering experience, where it exists, seems to be the
best practical tool for estimating probabilities of failure; for example, mass con-
struction of family houses in geologically well-studied territories often makes
geotechnical explorations unnecessary. Construction of small dams and reservoirs
might also be based on simplified or reduced explorations. Practitioners know
which models and model parameters are best to use for evaluating dam stability
and water losses from reservoirs in given geological conditions. They may be
wrong sometimes, and the rate of failed decisions can be interpreted as an
approximation of the uncertainty.

But, what if the required experience does not exist? This usually happens in the
case of unique projects where failures carry great financial or environmental risks.
Contemporary computers and computational techniques permit the development of
a surrogate for engineering experience, by applying simulation models based on
geological considerations to fully known, different real worlds, i.e., to more
complex models. (The certainly known details of the real worlds can and must be
included in the two-level modeling). Comparing the results obtained from a
simulation model (or several models) applied to numerous real worlds permits
evaluation of how different factors could affect the simulation results for a given
predictive problem. This is what I call two-level modeling. Essentially it is Monte
Carlo simulation, only the other way around: the real worlds are changing, but the
predictive model remains the same; only its effective parameters are changing, as
demonstrated by the conceptual examples in Chaps. 5–8.

Since the factors affecting the ‘‘observations’’ in the real worlds are numerous
and not all of them are taken into consideration in the simulation model(s), the
issue arises of how to generalize the results of the simulation model calibrations on
different real worlds in a practical, workable way. Transforming mechanisms,
describing how the actual geological parameters convert into effective parameters
of simulation models in an accepted formulation of the predictive problem, can be
one approach to such generalization. The transforming mechanisms in the con-
ceptual examples of Chaps. 6–8 clearly demonstrate that, in the case of dynamic
processes such as underground water flow and mass transport, conversion of actual
properties into effective parameters is not of statistical nature. The effective
parameters are characteristics of the systems made up by geological conditions,
structures of models, boundary conditions, criteria of effectiveness, monitoring
networks, and time. The transforming mechanisms provide the effective parame-
ters only for the systems in which they are obtained. Any changes of the systems
lead to change in their transforming mechanisms. Thus, the transforming mech-
anisms and effective parameters for predicting water table or hydraulic heads may
not be effective for evaluating streamlines or fluxes, and so on.

Transforming mechanisms, in particular their affecting factors, can be a tool for
developing the methodology of field investigations. They demonstrate the
importance of knowledge about the geological properties of different parts of the
object for the accepted formulation of the predictive problem. They can be applied
to formulate and solve inverse problems, or more accurately, to find actual
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parameters of more sophisticated models (objects) by applying less complex
interpretation models as well (Chap. 9). The corresponding approach is similar to
the approach to interpreting geophysical data, and in particular data from electric
prospecting. Again the correctness or incorrectness of a given formulation of an
inverse problem can be evaluated prior to starting field explorations.

It should be emphasized once more that transforming mechanisms and two-
level modeling do not exclude the uncertainty of the simulation result. Also, I do
not insist that the suggested approach is the only one possible, or the best for
alleviating the issue of the uncertainty of hydrogeological simulation results.
I hope that this work will help in the search for other, maybe quite different, ways
to make hydrogeological modeling more informed and consequently better.
Hydrogeology is a science, though partly an art also, and it must be treated as a
science and use scientific methodology, which according to the great physicist and
Noble Prize winner Bridgman (1955), ‘‘is nothing more than doing one’s
damnedest with one’s mind, no holds barred.’’
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Afterword

Before coming to the United States in 1991, I worked for 35 years in applied
geophysics, hydrogeology, geological engineering, and as a professor at two
Universities in the Soviet Union. In this country I work for 20 years: with a private
firm on projects ordered by Environmental Protection Agency (U.S. E.P.A.), as an
instructor in a few colleges, a developer of models of underground flow and mass
transport in the University of Georgia, where I received a Masters Degree in
Applied Mathematics, and as a grantee with U.S. E.P.A. I think that comparison of
my Soviet and American experiences may be of interest for readers.

At the very beginning of my professional career, I tried to apply statistical
methods as much as I could to the results obtained by my colleagues and me.
My colleagues were appreciative when I used such statistical methods as
regression analysis, analysis of variances, discriminant analysis, and some others
to their data especially when the data sets were huge. But they were usually skeptic
about confident intervals and probabilities related to hypothesis testing,
regressions, and so on. Their skepticism, based on their practical experience and
common sense, made me reflect on the role of the statistical methods in geological
applications. The results of my reflections are presented in Chap. 3. Briefly,
although statistics is an effective tool for analysis of geological information, it is
useless for provably evaluating the uncertainty of the simulation results in the case
of modeling dynamic processes. In 1974, I wrote a pamphlet (Gorokhovski 1977)
in which I considered this issue. Many colleagues were positive about my work in
personal communications. A well-known geologist stopped speaking to me for 5
years. However, no positive or negative reviews appeared in professional publi-
cations. An American publisher bought the right to publish the pamphlet and I got
my first $500. This made my wife Inna happy, as she could shop in ‘Berjozka’,
where only people having foreign currency could shop, the privilege not available
to most Soviet citizens. But the pamphlet was never published abroad.

I was already aware of the philosophical concept that all models are false and
therefore it was impossible to prove the validity of modeling at that time. But we

V. Gorokhovski, Effective Parameters of Hydrogeological Models,
SpringerBriefs in Earth Sciences, DOI: 10.1007/978-3-642-23722-5,
� The Author(s) 2012

147

http://dx.doi.org/10.1007/978-3-642-23722-5_3


can reiterate about the uncertainty of the simulation results as much as we wish.
The models remain our tool, likely our best one, for envisioning the effects induced
by natural or man made impacts on geological surroundings. So in my opinion, the
goal should be finding how to achieve the best with what we have, as US EPA
(1987), states.

Once, while preparing simple problems for my students on evaluating effective
parameters like those presented in Sect. 6.2, I found that some of the effective
hydraulic conductivities obtained by the least squares method are negative. It was
not the first time I saw physically incorrect results. Accordingly to the common
practice, I discarded them based on the definition of incorrectness. But formally
that definition assumes the absence of a mathematical solution. In the examples I
was working with, the solutions in the mathematical sense existed. Due to the
simplicity of the examples, I discovered some system and learned what geological
structures are prone to obtaining the negative effective hydraulic conductivities.
Then the question emerged as to what was incorrect in the problem formulation?
The same well-conditioned system of equations yielded physically correct solu-
tions with some combinations of the actual properties and incorrect ones with
others. Thus the problem was correct mathematically. Two weeks of jogging and
thinking led me to the concept described in Chap. 5.

I was happy with my finding, in particular with the properties of affecting
factors. But the concept of the transforming mechanisms and their properties
seemed so self-evident that I was concerned that somebody else would come to the
same concept soon. To keep my priority, I wrote a paper (Gorokhovski 1982) and
sent it in a paper repository. Such repositories in the Soviet Union did not require
independent peer reviews and provided a very fast registration as a paper
(3 months). Then the paper could be referred to as a publication (They also could
be ordered and bought). Later the concept was published two more times
(Gorokhovski 1986, 1991).

To my knowledge, the concept was original, absolutely new. Since the concept
contradicted with the common notion, existing at present also, that the effective
parameters of hydrogeological models are some statistics of the pertinent property
values, the examples in my publications were such that they could be easily
checked using a calculator or even by hand. But again, my colleagues demonstrated
little interest in the concept. No response, positive or negative, appeared in the
professional media, though in personal communications they called it interesting
and promising (Sorry, I am not accurate. I had one negative response. A prominent
Soviet hydrogeologist after reading my first paper on the transforming mechanism,
Gorokhovski 1982, told me: ‘‘You are not modest’’, and that was it. The reason for
such severe judgment was the phrase ending Chap. 5 about the possibility of using
the transforming mechanisms not only in hydrogeology but in other fields as well).
So I decided that there was a need for a more detailed publication with more
examples, maybe slightly more sophisticated, but transparent still.

At that time I worked as a docent (associate professor) of the Geology and
Geography Department of the Rostov State University. My teaching load in the
Spring semester of 1991 was 16 class hours a week, plus 10 course projects, plus
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13 master thesis, plus consulting (I mention only my last semester with the
University, because I remember it distinctly. But this load was close to average, if I
was to exclude master theses which we did not have in the winter semesters).
My desk was one of five in a shared office. A typewriter occupied the sixth one.
We consulted students and performed all necessary jobs in this office. For a short
time, a real PC was available to me but only for two hours per week. I was
deprived even those hours very soon. Instead I got, in my full possession, a Soviet
PC. The PC had a RAM of 64 Kb and a tape recorder instead of a hard drive.
My graduate students used this PC for solving some simple problems related to
their theses. I used it for preparing my lectures and other materials and for solving
some problems related to teaching. In other words, there was no hope for me to
develop my concept further in those circumstances.

In 1990 I met and befriended Dr. Zia Hosseinipour, an American scientist
working on a project of cleaning up the low flow of the river Don. Returning to the
United States, he asked me whether I would like to work there. My response was
immediate: ‘‘Yes’’. For me, as for most Soviet scientists, working in the United
States was a dream. The American science, scientists and work conditions,
including salaries, were a benchmark. I hoped also that I would be able to continue
my work on the concept of the transforming mechanisms and some other projects.

In the spring of 1991, I got an invitation from an American firm to work on a
project. To have an invitation for a job abroad was not enough for leaving the
Soviet Union at that time. You needed your bosses’ consent. My University bosses
did not want me to go. To make a long story short, being in complete despair,
I took the liberty of calling Professor V.I. Sedletski. We were not friends. He was a
head of the Mineralogy Chair of the department. More essential, he was a vice-
president of the North Caucasus Science Center of Higher School. He told me that
he needed a couple of days. Then I should start the process again. I got the desired
permission to leave for the United States 4 days later. I owe the deepest gratitude
to V. I. Sedletski still.

About 2 months later Zia Hosseinipour introduced me to Dr. James Martin,
Head of the Athens, Georgia, branch of the company that hired me. Dr. Martin
immediately took me to my office. My first American shock happened when I saw
it: two desks, one with PC and the other with a telephone and a chair to travel
between the desks. The office was mine only!

I started working, and nobody asked what I was doing during the first 3 months.
It was absolutely different from my previous experience. In the Soviet Union,
every supervisor asked you how your work was going, whether it was going
accordingly to the planned schedule, and so on. And most annoyingly, it did not
matter whether the supervisor understood or not what you were doing, the
supervisor told you what to do and how to do it. So I was a little worried that
Dr. Martin did not ask, teach, and advise me. Zia explained that James considered
me as an expert in my field. When I finally finished my project, he would send it
for review. In the meantime, if I had a problem, I should go to James and he would
do everything he could to help me.
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I got a problem when the project was almost finished. James passed me an
instruction on conducting the sensitivity analysis. According to the instruction,
I had to select the most important model parameters and to evaluate the model’s
sensitivity to each selected parameter, having fixed all others on their average
levels. In my case, the block of the model describing mass transport through the
vadose zone, contained 23 parameters when the zone was assumed homogeneous.
How to decide which parameters are most important and on what average levels
the not so important parameters should be fixed were not clear: the task was to
validate the model in general without any specificities related to object structures
and properties. Even if I selected the important parameters correctly and fixed all
others on the right average levels, why would the sensitivity of a parameter
obtained in such a way be representative? It can depend essentially on combining
particular values of entire sets of the governing parameters. As I understand, the
requirement or advice to fix all other parameters on their average level was
dictated by the desire to make the sensitivity analysis workable. But there are other
ways to make the sensitivity analysis workable, at least in my case. The most
natural way is to perform the sensitivity analysis in the dimensionless form as I
taught my Soviet students to do. My model was governed by three dimensionless
parameters in the steady-state version and by four or five ones in the transient
version. All these parameters are important. The sensitivity could be studied in the
maximal realistic domain comprising all participating parameter values. The
results for such a small number of the dimensionless parameters can be presented
as contour maps. They can also be recalculated for any set of all actual parameter
values. So I came to James and refused to do the sensitive analysis as the
instruction required. He asked: ‘‘Why?’’ I explained. And, the second shock, his
response was: ‘‘Well, do it as you consider the best’’. In the Soviet Union, my boss
would either tell me: ‘‘Do not pretend that you are the cleverest one. Do what you
are told to do’’ or, if I were more fortunate, the boss would make me send a
detailed letter to the instruction’s authors and wait for their response.

I could say more positive words about the conditions under which research is
being done in the United States. Sure there is control. But this control is not by the
administration but usually by peers. They review your project, its implementation
on different stages, and the final product. And you can dispute their conclusions if
you disagree. The administration helps you, since you do the job (They are for you,
not you for them). They also help you to get any information you wish (I found here
the Russian text books on mathematics which had been used in Russian schools
more than 60 or even 70 years ago. I could not find them in the Soviet Union).

However, not all my impressions related to scientific research in the U.S.A. are
so positive. I was surprised by the standard approaches to the applied scientific
researches by many of my American colleagues. The above instruction on the
sensitivity analysis is just one example. It describes a standard procedure which
does not take into consideration the specificity of the situation. The standards are
useful and convenient. They save time and serve as a safeguard for engineers. But
they do not have any relation to the real science and scientific research. Geological
explorations deal with objects which are not known in full. In this sense they are
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scientific, and the best way to conduct them is ‘‘doing one’s damnedest with one’s
mind’’ (Bridgman 1955). I taught my Soviet students that if they act as engineers,
they have to follow the standards to cover themselves, even if they do not like or
disagree with the standards. But if they work as researchers or scientists, the only
limitation on their work is the detailed protocol of their actions and a clear
presentation of their concepts and results. I rarely observed my American
colleagues, realizing such a scientific approach, though the protocol for them
seems to be about a holy thing.

Soviet hydrogeological models had bad interfaces in my time. This required
that their users understood well the hydrogeological structure and properties of the
object as well as the process they were simulating and its computational algorithm
and were prepared to make non-trivial decisions sometimes. On the other hand, the
American models are usually user friendly: their developers try to foresee and
prevent any issue that a user could meet. And this is very convenient and effective,
if the modeler is a professional. However, the convenience permits performing
modeling by lay-modelers as well. The first American model, I worked with, led
you through simulations, prompting what to do and even gave optional model
parameters values if you had issues with their assigning. Once a colleague, who
had a masters degree in Environmental Protection and worked with the same
model, asked me to explain what the hydraulic conductivity is. In turn I was
interested to know how she simulated her problems, having no notion of the hydraulic
conductivity. She explained that she just followed prompts of the software while
assigning different properties to different soils. I think that the example does not
require any comment about the uncertainty of simulation results.

The above example leads me to compare the Soviet and American education
systems. When we arrived at the United States, our American friend who was
teaching Mathematics and Russian in a high school invited my wife to visit a
lesson on Mathematics in his freshman year class. When I met my wife that
evening, she was excited: the lesson started with repeating the table of
multiplication. In the Soviet Union, we learned it in elementary school and
never returned to it again. I even cannot imagine a student of the fifth grade not
knowing the multiplication table in the Soviet Union.

I have taught precalculus in several colleges in this country. There was no such
subject in Soviet Universities and Institutes in my time. All Soviet students were
studying the same subjects and in the same details (Those who wanted to get some
additional knowledge usually had the opportunity to do this). Students entering
Universities and Institutes that required knowledge of algebra, geometry, and
trigonometry had to pass entry tests. If they were not prepared properly, they failed.

The students in geology, hydrogeology, geological engineering, and geophysics
of all Universities had the same syllabi (again, those who wanted to get some
additional knowledge usually had the opportunity to do this). Any future
geophysicist studied, besides geophysics and pertinent physics and mathematics,
general geology and hydrogeology, paleontology, historical geology, mineralogy,
tectonics, geology of the Soviet Union and so on, though in less detail compared to
geologists and hydrogeologists. So it was expected that geophysicists were aware
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of hydraulic conductivity, geological age, and most other main geological notions
and geologists and hydrogeologists have the knowledge on geophysics which
permits understanding methodology and interpretation of geophysical
explorations. Such education makes easier teamwork and even changing the
fields of interest as it happened to me.

When I first met my American colleague in his University office, he was on the
phone, explaining to somebody the method of characteristics. This was also some
kind of surprise. I started recollecting how many Soviet hydrogeologists I knew,
who were able to explain the method of characteristics: maybe, half a dozen not
more. And here, the first one I met knew. I was delighted. But later I came to the
understanding that many American hydrogeologists are rather mathematicians
applying mathematics to hydrogeology. Hydrogeology is rather secondary for
them, just a field for applied mathematics.

Returning to my first American model, it is defined as a screening level one.
The model is not interesting per se. It comprises two blocks. The first one
simulates the one-dimensional mass transport from a landfill through the vadose
zone which could be piece-wise homogeneous. The second block simulates
filtration within a homogeneous confined aquifer on the horizontal base. The flow
in the aquifer is considered one-dimensional and steady state with constant and
known seepage. No sorption, no degradation. The goal is to evaluate the arrival
time for the contaminant from the landfill to an intake well which also works in a
steady-state regime.

I was interested in the first block mostly. The block simulates input of the
pollution in the confined aquifer which seems to me a little strange. Sensitivity
analysis of the simulation results showed that for some physically acceptable
values of the dimensionless parameters and the pertinent physical characteristics
the contaminant mass coming into the confined aquifer were negative. Before
writing my report, I informed the leader of the team working on developing the
model about my discovery. He did not show any surprise and said that this
problem was not a major one and would be corrected. I assume that he already
knew about the problem.

I mention this story not to demonstrate that American modelers are bad. On the
contrary, they are thorough professionals. Although the model I worked on had
already been in practical applications , it was still in a stage of development .
So errors could happen. The reason for me to tell this story came later when I was
presenting my dimensionless sensitivity analysis at a conference. I concluded my
presentation by saying that I discovered the negative concentration in the output of
a block. We cannot expect that a modeler solving a practical problem has time and
possibly skills for performing such thorough analysis. I suggested that every model
which is to be used in practical applications must be tested and licensed by an
independent body. The response of the audience was instant and unanimous: ‘‘No,
this is not the American way’’. My arguments that they go to licensed doctors and
lawyers, who send their kids to licensed schools, and so on did not change the
response of the colleagues: licensing the models developed by them is not the
American way.
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Let us return to my concept of the transforming mechanisms and two-level
modeling. In 1993, I told a known American geostatistician that effective
parameters of hydrogeological simulation models are not statistics and explained
why. He answered that it was very interesting and that he liked my approach.
Later, I sent him my paper (Gorokhovski 1996). His response was brief: ‘‘I like
this less’’. I never heard from him again. I gave my paper to another well-known
geostatistician during the same conference. He promised to review the paper and to
send his review to me. He did not. I asked him about his opinion on my paper
when we met at another conference. He told me that he read it in the airplane on
his way back from the previous conference, was very interested and was going to
send me a review but could not find my paper. He asked mr to give him one more
copy. I sent it immediately. I never heard from him again. I tried to publish several
papers on my concept and made several presentations in the United States. Some
of my papers were rejected (Interestingly, one review started with the phrase: ‘‘I do
not understand what the author is about’’. Well, if you do not understand, it would
be reasonable to return the paper to the editor. But the reviewer continued with
unmerciful critique of what he or she did not understand. When I asked the editor
to pay attention to this fact, he responded that he trusted his reviewers). Anyway, a
couple of papers and texts of my presentations were published. The response was
the same as in the Soviet Union: no response. My conclusion was also the same: I
have to describe the concept in a more detailed but still transparent form. To do
this has taken a long time and arduous effort which I do not want to describe here.
But if you read these lines, then I have fulfilled my goal. It would not be possible
in Russia, and I am grateful to the United States of America for giving me this
wonderful opportunity.
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