


Lecture Notes in Statistics 
Edited by P. Bickel, P.  Diggle, S. Fienberg, U. Gather, 
I. Olkin, S. Zeger

J.
201





Synthetic Datasets for 

Theory and Implementation

Statistical Disclosure Control

Jörg Drechsler



ISSN 0930-0325

Library of Congress Control Number: 2011931290

Department for Statistical Methods
Institute for Employment Research
Regensburger Straße 104
90478 Nürnberg
Germany

Jörg Drechsler

Joerg.Drechsler@iab.de

Springer  New York Heidelberg Dordrecht London

ISBN 978-1-4614-0325-8 e-ISBN 978-1-4614-0326-5
DOI 10.1007/978-1-4614-0326-5

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 

tion with any form of information storage and retrieval, electronic adaptation, computer software, or by 
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-



To my mother and my father (in loving
memory) for their love and support





Foreword

The topic of Jörg Drechsler’s work is, in my view, extremely important because
it addresses two conflicting demands that are becoming ever more important and
complex with the increasing sophistication of our society. First, there is the demand
to have access to the vast amounts of publicly supported data collected on all of us.
Second, there is the demand to preserve the confidentiality of critical information
about individuals in the data being released.

For a specific example of the first demand, in the United States there is the recent
call to use the vast collection of medical data, routinely collected on patients from
hospitals, pharmacies, etc., to conduct “comparative effectiveness research” in order
to find the best combination of medical treatments for individuals. The search for
answers to such questions, and therefore the request for publicly available micro-
data, i.e., data on individuals, is legitimate. Nevertheless, the release of such data
threatens the privacy of patients.

The second demand, therefore, is for any released data to preserve confidential
information from the individuals whose data are being released, whether because
of explicit or implicit guarantees made to them. Even the release of one piece of
confidential information can have relatively dire consequences when combined with
publicly available information. For another U.S. example, with a person’s name
and birth date, both of which are available essentially to anyone, all an “intruder”
needs is a social security number (taxpayer number) to open credit card accounts,
obtain loans, charge hospital bills, open Internet and cell phone accounts, etc. –
with all records and debts attached to that social security number. The result is that
the holder of that social security number can have a disastrous credit rating that is
essentially impossible to correct, even after thousands of dollars in expenses and
many years of trying. This ”stolen identity” problem is just one example of the
untoward effects of the release of confidential information, which may include life-
altering consequences, such as being denied mortgages on home purchases.

The work that Jörg Drechsler is pursuing in this book addresses both demands
by trying to find ways to benefit society by releasing microdata, here multiply im-
puted synthetic microdata, that simultaneously preserve individuals’ confidential in-
formation and yet allow valid inferences at some level of detail through the use of
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viii Foreword

specialized methods for combining the analyses of the resulting multiply imputed
datasets. The topic is a statistically challenging one that needs much development,
and I’m sure that this book will be a critical stimulus to this development. Jörg is to
be congratulated for this great contribution.

Cambridge, Massachusetts, March 2011 D. B. Rubin
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Chapter 1

Introduction

National statistical institutes (NSIs) such as the U.S. Census Bureau or the German
Federal Statistical Office gather valuable information on many different aspects of
society. Broad access to this information is desirable to stimulate research in offi-
cial statistics. However, most data obtained by the institutes are collected under the
pledge of privacy, and thus the natural interest in enabling as much research as pos-
sible with the collected data has to take a back seat to the confidentiality guaranteed
to the survey respondent. But not only legal aspects are relevant when considering
disseminating data to the public. Respondents who feel their privacy is at risk might
be less willing to provide sensitive information, might give incorrect answers, or
might even refuse to participate completely – with devastating consequences for the
quality of the data collected (Lane, 2007). Traditionally, this meant that access to
the data was strictly limited to researchers working for the NSI. With the increasing
demand for access to the data on the micro-level from external researchers, accel-
erated by the improvements in computer technology, agencies started looking for
possibilities to disseminate data that provide a high level of data quality while still
guaranteeing confidentiality for the participating units.

Over the years, a broad body of literature on statistical disclosure limitation
(SDL) techniques for microdata has evolved (see Bill Winkler’s famous list of mi-
crodata confidentiality references in the Appendix A). These techniques can be di-
vided into two main categories: approaches that protect the data by reducing the
amount of information contained in the released file through coarsening of the data
and approaches classified as data perturbation methods that try to maintain most of
the originally collected information but protect the data by changing some of the
values on the micro-level. Information-reducing approaches protect the data by

• categorizing continuous variables: building categories from the underlying con-
tinuous variables and reporting only the category in which the unit falls; for ex-
ample, building age groups in five-year intervals.

• top coding: setting values above a certain threshold equal to the threshold; for
example, reporting the income for all individuals with income above $100,000
as “100,000+.”

1 J. Drechsler, Synthetic Datasets for Statistical Disclosure Control: Theory and Implementation,  

© Springer Science+Business Media, LLC 2011 
Lecture Notes in Statistics 201, DOI 10.1007/978-1-4614-0326-5_1,  



2 1 Introduction

• coarsening categorical variables: coarsening to a reduced number of categories;
for example, instead of providing information on the state level, only reporting
whether a respondent lives in West or East Germany.

• dropping variables: dropping some variables that are considered too sensitive
(e.g., HIV status) or are not protected enough by any of the methods above.

There is much literature on data perturbation methods, and discussing all ap-
proaches, including possible modifications, is beyond the scope of this introduction.
A detailed overview is given in the Handbook on Statistical Disclosure Control
(Center of Excellence for Statistical Disclosure Control, 2009), issued by members
of the CENEX-SDC project funded by Eurostat. Good references for recent devel-
opments are the proceedings from the biannual conference Privacy in Statistical
Databases (Springer LNCS 3050, 4302, 5262, 6344).

While the first methods developed in the 1980s, such as swapping and adding
noise, mainly focused on disclosure protection and preserved only some univariate
statistics such as the population mean and the variance of a single variable, more so-
phisticated methods have emerged in recent years. But these sophisticated methods
often require different complicated adjustments for each estimate to get unbiased re-
sults, preserve only certain statistics, such as the vector of the means or the variance-
covariance matrix, or are valid only under specific distributional assumptions, such
as multivariate normality, that are unrealistic for real datasets. Besides, most sta-
tistical agencies still only apply standard methods, mainly because of their ease of
implementation. Winkler (2007b) shows the devastating consequences on data qual-
ity for many of these easy-to-implement procedures and the remaining procedures
often fail to achieve their primary goal: protecting the data adequately.

Since many of the proposed data perturbation methods significantly reduce data
quality and it is often impossible for the researcher using the perturbed data to judge
whether the results are still at least approximately valid, there is a common mistrust
of these methods among researchers. Still, strict legal requirements in many coun-
tries often force agencies to perturb their data before release, even though they know
that data quality can be heavily affected.

The situation is a little different in Germany, where the required disclosure pro-
tection for datasets used only for scientific purposes (so-called scientific use files)
is lower than for datasets that are available to anybody (public use files). For scien-
tific use files, the German Federal Law on Statistics enables the release of de facto
anonymous microdata. “Factual anonymity means that the data can be allocated to
the respondent or party concerned only by employing an excessive amount of time,
expenses and manpower” (Knoche, 1993). The concept of factual anonymity takes
into account a rational thinking intruder who calculates the costs and benefits of the
reidentification of the data. Because factual anonymity depends on several condi-
tions and is not further defined by law, it is necessary to estimate the costs and bene-
fits of a reidentification for every dataset with a realistic scenario. Disseminating sci-
entific use files under this law is much easier than under the usual requirement that a
reidentification of a single unit should be impossible under any circumstances. For
this reason, the scientific use files available in Germany traditionally are protected
using only a mixture of the nonperturbative methods described above. Nevertheless,
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there is common agreement that the dissemination of microdata on businesses is not
possible using only nonperturbative methods since the risk of disclosure is much
higher for these data than it is for microdata on individuals for several reasons:

• The underlying population is much smaller for businesses than it is for individu-
als.

• Variables such as turnover or establishment size have very skewed distributions
that make the identification of single units in the dataset very easy.

• There is a lot of information about businesses in the public domain already. This
information can be used to identify records in the released dataset.

• The benefit from identifying a unit in an establishment survey might be higher for
a potential attacker than the benefit of identifying a unit in a household survey.

• In most business surveys, the probability of inclusion is very high for large busi-
nesses (often close to 1), so there is no additional privacy protection from sam-
pling for these units.

Since only a few variables such as turnover, region, and industry code, are neces-
sary to identify many businesses, no data on enterprises were disseminated for many
years. In 2002, a joint project of the German Federal Statistical Office, several Statis-
tical Offices of the Länder, and the Institute for Applied Economic Research started
investigating the possibility of generating scientific use files for these data by ap-
plying perturbative methods for the first time in Germany. They came to the conclu-
sion that a release is possible using these methods and disseminated several survey
datasets protected by either adding multiplicative noise or microaggregation (Statis-
tisches Bundesamt, 2005). With the long history of releasing only unperturbed data,
it is not surprising that acceptance of these datasets was rather limited in the follow-
ing years. Many users of these data tend to believe the collected data is the direct
truth and ignore all the additional uncertainty and possible bias introduced at the
collection stage by measurement errors, coding mistakes, bad sampling design and
especially steadily increasing nonresponse rates. The additional bias introduced by
the perturbation method might be dwarfed by the bias already inherent in the data
due to these facts. But also the selected perturbation methods might be a reason
for the limited acceptance. Winkler (2007b) illustrates the negative consequences of
univariate microaggregation, namely on correlations, and although correction fac-
tors for estimations based on data perturbed by multiplicative noise are illustrated
in the German Handbuch zur Anonymisierung wirtschaftsstatistischer Mikrodaten
(Statistisches Bundesamt, 2005) for the linear model and the SIMEX method (Lech-
ner and Pohlmeier, 2005) can be used for nonlinear models, both are difficult to
compute and are applicable only under some additional assumptions. The Hand-
buch shows that the SIMEX method produces biased results for a probit regression
using simulated data. A further disadvantage the two methods share with most data
perturbation methods is that logical constraints between variables are not preserved.

This illustrates the common dilemma for data disseminating agencies: fulfilling
only one goal – no risk of disclosure or high data quality – is straightforward; release
data generated completely at random or release the original unchanged data. In both
cases, at least one party will be unhappy with the results, but balancing the two goals
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is extremely difficult. A dataset that guarantees the confidentiality of the respondent
but is not accepted by the research community due to data quality concerns is of
little value, and the question arises whether the high costs in time and money to
produce these datasets are justified.

A new approach to address the trade-off between data utility and disclosure risk
that overcomes the problems discussed above was proposed by Rubin (1993): the
release of multiply imputed synthetic datasets (MISDs). Specifically, he proposed
that agencies (i) randomly and independently sample units from the sampling frame
to comprise each synthetic dataset, (ii) impute unknown data values for units in the
synthetic samples using models fit with the original survey data, and (iii) release
multiple versions of these datasets to the public. These are called fully synthetic
datasets.

However, the quality of this method strongly depends on the accuracy of the
model used to impute the “missing” values. If the model doesn’t include all the re-
lationships between the variables that are of interest to the analyst or if the joint
distribution of the variables is misspecified, results from the synthetic datasets can
be biased. Furthermore, specifying a model that considers all the skip patterns and
constraints between the variables in a large dataset can be cumbersome, if not im-
possible. To overcome these problems, a related approach suggested by Little (1993)
replaces observed values with imputed values only for variables that bear a high risk
of disclosure or for variables that contain especially sensitive information, leaving
the rest of the data unchanged. This approach, discussed as generating partially syn-
thetic datasets in the literature, has been adopted for some datasets in the United
States (Abowd and Woodcock, 2001, 2004; Kennickell, 1997; Abowd et al., 2006).

The aim of this book is to give the reader a detailed introduction to the differ-
ent approaches to generating multiply imputed synthetic datasets by combining the
theory with illustrative examples using a real dataset, the German IAB Establish-
ment Panel. I start by giving an overview of the history of synthetic datasets and
discussing the major advantages of this approach compared with other perturba-
tion methods. Since the method is based on the ideas of multiple imputation (Rubin,
1978), the next chapter recapitulates its basic concepts originally proposed to impute
values missing due to nonresponse. Advantages and disadvantages of the two major
imputation strategies (joint modeling and fully conditional specification (FCS)) are
also addressed.

The Chapters 5–9 on different multiple imputation approaches for nonresponse
and synthetic data generation, are all organized in the same manner. First the gen-
eral ideas of the specific approach are discussed and then the point and variance
estimates that provide valid inferences in this context are presented. Each section
concludes with an extensive application to a real dataset. Since all applications are
based on the German IAB Establishment Panel, this dataset is introduced in a sep-
arate chapter at the beginning of the main part of the book (Chapter 4). The multi-
ple imputation approaches discussed include imputation for nonresponse (Chapter
5), generating fully synthetic datasets (Chapter 6), generating partially synthetic
datasets (Chapter 7), and generating synthetic datasets when the original data are
subject to nonresponse (Chapter 8).
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Chapter 9 contains an extension to the standard synthetic data generation to bet-
ter address the trade-off between data utility and disclosure risk, imputation in two
stages, where variables that drive the disclosure risk are imputed less often than oth-
ers. Since, in general, data quality and disclosure risk both increase with the number
of imputations, defining a different number of imputations for different variables
can lead to datasets that maintain the desired data quality with reduced risk of dis-
closure. In this chapter, the new combining procedures that are necessary for the
point and variance estimates are presented for fully and partially synthetic datasets,
and the IAB Establishment Panel is used to illustrate the impact of the number of
imputations on the data quality and the disclosure risk and to show the possible
advantage of using a two stage imputation approach. The book concludes with a
glimpse into the future of synthetic datasets, discussing the potentials and possible
obstacles of the approach and ways to address the concerns of data users and their
understandable discomfort with using data that don’t consist only of the originally
collected values.



Chapter 2

Background on Multiply Imputed Synthetic

Datasets

2.1 The history of multiply imputed synthetic datasets

In 1993, the Journal of Official Statistics published a special issue on data confiden-
tiality. Two articles in this volume laid the foundation for the development of mul-
tiply imputed synthetic datasets (MISDs). In his discussion “Statistical Disclosure
Limitation,” Rubin (1993) for the first time suggested generating synthetic datasets
based on his ideas of multiple imputation for missing values (Rubin, 1987). He pro-
posed to treat all the observations from the sampling frame that are not part of the
sample as missing data and to impute them according to the multiple imputation
framework. Afterwards, simple random samples from these fully imputed datasets
should be released to the public. Because the released dataset does not contain any
real data, disclosure of sensitive information is very difficult. On the other hand, if
the imputation models are selected carefully and the predictive power of the models
is high, most of the information contained in the original data will be preserved.
This approach is now called generating fully synthetic datasets in the literature.

In the same issue, Little (1993) suggested a closely related approach that is also
based on the idea of replacing sensitive information by multiple imputation. The
major difference is that only part of the data are replaced. The replaced data could
either be some sensitive variables, such as income or turnover, or key variables such
as age, place of birth, and sex that could be jointly used to identify a single unit in
the dataset. With this approach, now called generating partially synthetic datasets,
it is not mandatory to replace all units for one variable. The replacement can be
tailored only to the records at risk. It might be sufficient for example to replace the
income only for units with a yearly income above 100,000 euros to protect the data.
This method guarantees that only those records that need to be protected are altered.
Leaving unchanged values in the dataset will generally lead to higher data quality,
but releasing unchanged values obviously poses a higher risk of disclosure.

Fienberg (1994) proposed a related approach for data confidentiality. He sug-
gested generating synthetic datasets by bootstrapping from a “smoothed” estimate
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of the empirical cumulative density function of the survey data. This approach was
further developed for categorical data in Fienberg et al. (1998).

Ten years after the initial proposal, the complete theory for deriving valid in-
ferences from multiply imputed synthetic datasets was presented for the first time.
Raghunathan et al. (2003) illustrated why the standard combining procedures for
multiple imputation (Rubin, 1987) are not valid in this context and developed the
correct procedures for fully synthetic datasets. The procedures for partially synthetic
datasets were presented by Reiter (2003). One year earlier, Liu and Little (2002) had
suggested the selective multiple imputation of key variables (SMIKe), replacing a
set of sensitive and nonsensitive cases by multiple draws from their posterior pre-
dictive distribution under a general location model.

Reiter also demonstrated the validity of the fully synthetic combining procedures
under different sampling scenarios (Reiter, 2002), derived the combining procedures
when using multiple imputation for missing data and for disclosure avoidance si-
multaneously (Reiter, 2004), developed significance tests for multi-component esti-
mands in the synthetic data context (Reiter, 2005c; Kinney and Reiter, 2010), pro-
vided an empirical example for fully synthetic datasets (Reiter, 2005b), and pre-
sented a nonparametric imputation method based on CART models to generate syn-
thetic data (Reiter, 2005d). Recently he compared CART models with imputation
models based on random forests (Caiola and Reiter, 2010). Further work includes
suggestions for the adjustment of survey weights (Mitra and Reiter, 2006), select-
ing the number of imputations when using multiple imputation for missing data
and disclosure control (Reiter, 2008b), measuring the risk of identity disclosure for
partially synthetic datasets (Reiter and Mitra, 2009; Drechsler and Reiter, 2008), a
two-stage imputation strategy to better address the trade-off between data utility and
disclosure risk (Reiter and Drechsler, 2010), and an alternative approach for gener-
ating public use microdata samples (PUMS) from Census data called sampling with
synthesis (Drechsler and Reiter, 2010).

A new imputation strategy based on kernel density estimation for variables with
very skewed or even multimodal distributions has been suggested by Woodcock
and Benedetto (2009), while Winkler (2007a) proposed the use of different EM
algorithms to generate synthetic data subject to convex constraints. The attractive
features of synthetic datasets are further discussed by Fienberg and Makov (1998);
Abowd and Lane (2004); Little et al. (2004); An and Little (2007), and Domingo-
Ferrer et al. (2009).

It took several years before the groundbreaking ideas proposed in 1993 were ever
applied to any real dataset. The U.S. Federal Reserve Board was the first agency
to protect data in its Survey of Consumer Finances by replacing monetary values
at high risk of disclosure with multiple imputations, releasing a mixture of these
imputed values and the unreplaced, collected values (Kennickell, 1997). Abowd
and Woodcock (2001) illustrated the possibilities of protecting longitudinal, linked
datasets with data from the French National Institute of Statistics and Economic
Studies (INSEE). A very successful implementation of a partially synthetic dataset
is the data behind On the Map, illustrating commuting patterns (i.e., where people
live and work) for the entire United States via maps available to the public on the
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Web (http://lehdmap.did.census.gov/). Since the point of origin (where
people live) is already in the public domain, only the destination points are synthe-
sized. Machanavajjhala et al. (2008) developed a sophisticated synthesizer that max-
imizes the level of data protection based on the ideas of differential privacy (Dwork,
2006) while still guaranteeing a very high level of data utility. The most ambitious
synthetic data project to date is the generation of a public use file for the Survey of
Income and Program Participation (SIPP) funded by the U.S. Census Bureau and the
Social Security Administration (SSA). The variables from the SIPP are combined
with selected variables from the Internal Revenue Service’s (IRS) lifetime earnings
data and the SSA’s individual benefit data. Almost all of the approximately 625
variables contained in this longitudinal, linked dataset were synthesized. In 2007,
four years after the start of the project, a beta version of the file was released to
the public (www.sipp.census.gov/sipp/synthdata.html). Abowd et al.
(2006) summarize the steps involved in creating this public use file and provide a
detailed disclosure risk and data utility evaluation that indicates that confidentiality
is guaranteed while data utility is high for many estimates of interest.

The Census Bureau also protects the identities of people in group quarters (e.g.,
prisons, shelters) in the public use files of the American Community Survey by re-
placing demographic data for people at high disclosure risk with imputations. The
latest release of a synthetic data product by the Census Bureau is a synthetic ver-
sion of the Longitudinal Business Database (Kinney et al., 2011) that is available
as a public use dataset through the VirtualRDC’s Synthetic Data Server located
at Cornell University (http://www.vrdc.cornell.edu/news/data/lbd-
synthetic-data/). Partially synthetic, public use datasets are in the develop-
ment stage in the U.S. for the Longitudinal Employer–Household Dynamics survey
and the American Community Survey veterans and full sample data. Recently, a
statement by the American Statistical Association on data access and personal pri-
vacy explicitly mentioned distributing synthetic datasets as an appropriate method
of disclosure control (http://www.amstat.org/news/statementondat
aaccess.cfm).

Outside the U.S., the ideas for generating multiply imputed synthetic datasets
were ignored for many years, except for some small simulation studies at ISTAT
in Italy (Polettini, 2003; Franconi and Stander, 2002, 2003; Polettini et al., 2002).
They suggest generating model-based synthetic datasets. The main difference from
the methods described in this book is that they do not propose multiple imputation
and therefore do not correct for the additional variance from imputation. In 2006, the
German Institute for Employment Research launched a research project to generate
synthetic datasets of its longitudinal establishment survey for release as a scientific
use file. In the first phase of the project, the fully and partially synthetic approaches
were tested on a subset of the data (Drechsler et al., 2008b,a; Drechsler and Reiter,
2009). Drechsler et al. (2008a) also discuss the advantages and disadvantages of the
two approaches in terms of data utility and disclosure risk. Since the evaluations
during the first stage of the project indicated that the dataset could be sufficiently
protected by the partial synthetic approach, the second stage of the project focused
on the generation of a partially synthetic dataset for the complete 2007 wave of the
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survey. This dataset, the first outside the U.S., was released in 2011. The growing
interest in synthetic datasets in Europe is also documented by the report on syn-
thetic data files requested by Eurostat 2008 and published by Domingo-Ferrer et al.
(2009). Outside Europe, statistical agencies in Australia, Canada, and New Zealand
(Graham and Penny, 2005; Graham et al., 2009) also are investigating the approach.

2.2 Advantages of multiply imputed synthetic datasets compared

with other SDC methods

MISDs provide a number of advantages over other methods that are discussed in the
statistical disclosure control (SDC) literature

First, the aim of any SDC method should be to preserve the joint distribution of
the data. But most data perturbation methods either preserve only univariate statis-
tics or some predefined multivariate statistics such as the mean and the variance-
covariance matrix in previously defined subgroups. However, SDC methods are used
to generate datasets for public release on the microdata level, and it is impossible
to anticipate all analyses potential users will perform with the data. For example,
one analyst might remove some outliers before running her regressions, and it is
completely unclear what the effects of SDC methods that only preserve statistics in
predefined subsets of the data will be for this reduced dataset. Besides, for some
analyses it might be desirable to preserve more than just the first two moments of
the distribution (e.g., maintain interaction and nonlinear effects).

Second, many SDC methods are only applicable either to categorical variables
or continuous variables. This means that often a combination of different techniques
is required to fully protect a dataset before release. Methods based on multiple im-
putation, on the other hand, can be applied to categorical and continuous variables
likewise, rendering the use of different methods that might require different adjust-
ments by the data analyst unnecessary.

Third, most of the data collected by agencies are subject to nonresponse, and
besides the fact that missing data can lead to biased estimates if not treated correctly
by the analyst, many SDC methods cannot be applied to datasets containing missing
values. Since generating multiply imputed synthetic datasets is based on the ideas
of multiple imputation for handling item nonresponse in surveys, it is straightfor-
ward to impute missing values before generating synthetic datasets. Reiter (2004)
developed methods for simultaneous use of multiple imputation for missing data
and disclosure limitation.

Fourth, model-based imputation procedures offer more flexibility if certain con-
straints need to be preserved in the data. For example, non-negativity constraints
and linear constraints such as total number of employees ≥ number of part-time em-
ployees can be directly incorporated at the model-building stage. Almost all SDC
methods fail to preserve linear constraints unless the exact same perturbation is ap-
plied to all variables for one unit, which in turn significantly increases the risk of
disclosure.
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Fifth, skip patterns (e.g. a battery of questions are only asked if they are appli-
cable) are very common in surveys. Especially if the skip patterns are hierarchical,
it is very difficult to guarantee that perturbed values are consistent with these pat-
terns. With the fully conditional specification approach (see also Section 3.1.2) that
sequentially imputes one variable at a time by defining conditional distributions to
draw from, it is possible to generate synthetic datasets that are consistent with all
these rules.

Lastly, as Reiter (2008a) points out, the MI approach can be relatively transpar-
ent to the public analyst. Metadata about the imputation models can be released, and
the analyst can judge based on this information whether the analysis he or she seeks
to perform will give valid results with the synthetic data. For other SDC approaches,
it is very difficult to decide how much a particular analysis has been distorted.

On the other hand, as with any perturbation method, limited data utility is a prob-
lem of synthetic data. Only the statistical properties explicitly captured by the model
used by the data protector are preserved. A logical question at this point is, why not
directly publish the statistics one wants to preserve rather than release a synthetic
micro-dataset? Possible defenses against this argument are:

• Synthetic data are normally generated by using more information on the original
data than is specified in the model whose preservation is guaranteed by the data
protector releasing the synthetic data.

• As a consequence of the above, synthetic data may offer utility beyond the mod-
els they explicitly preserve.

• Not all users of a public use file will have a sound background in statistics. Some
of the users might only be interested in some descriptive statistics and won’t be
able to generate the results if only the parameters are provided.

• The imputation models in most applications can be very complex because dif-
ferent models are fitted for every variable and often for different subsets of the
dataset. This might lead to hundreds of parameters just for one variable. Thus, it
is much more convenient even for the skilled user of the data to have the synthe-
sized dataset available.

• The most important reason for not releasing the parameters is that the parameters
themselves could be disclosive on some occasions. For that reason, only some
general statements about the generation of the public use file should be released.
For example, these general statements could provide information about which
variables were included in the imputation model but not the exact parameters.
So the user can judge whether his analysis would be covered by the imputation
model, but he will not be able to use the parameters to disclose any confidential
information.



Chapter 3

Background on Multiple Imputation1

Multiple imputation, introduced by Rubin (1978) and discussed in detail in Rubin
(1987; 2004), is an approach that retains the advantages of imputation while allow-
ing the uncertainty due to imputation to be directly assessed. Originally developed
for the imputation of missing values in surveys, the approach can also be applied to
generate synthetic datasets (Rubin, 1993; Little, 1993) for high-quality data dissem-
ination without compromising the confidentiality of the survey respondents. With
multiple imputation, the missing or sensitive values in a dataset are replaced by
m > 1 simulated versions, generated according to a probability distribution for new
values given the observed data. Thus the general aim is to generate replacement
values by multiply drawing from P(Ynew|Yobs), where Ynew represents either values
that are initially not observed (in the missing-data context) or values that should be
replaced by imputed values (in the data confidentiality context).

Each of the imputed datasets is first analyzed by standard methods designed for
complete data, and the results of the m analyses are then combined to produce es-
timates, confidence intervals, and test statistics that properly reflect the uncertainty
from imputation. As pointed out in Chapter 1, the combining rules for the final es-
timates differ depending on the context for which multiple imputation is used, and
each of the following chapters in this book will start by presenting the correct com-
bining rules for the relevant setting.

The main aim of this chapter is to discuss some of the issues that are generally
important for multiple imputation regardless of whether the aim is to handle non-
response or to address confidentiality concerns. I start by introducing the two main
approaches for multiple imputation, joint modeling and sequential regression, with a
discussion of their advantages and disadvantages. Then I present some adjustments
for standard multiple imputation routines to handle problems that often arise with
real data.

1 Parts of this chapter are taken from Drechsler and Rässler (2008) and Drechsler (2011a).
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3.1 Two general approaches to generate multiple imputations

Over the years, two different methods have emerged to generate draws from P(Ynew|
Yobs): joint modeling and fully conditional specification (FCS), often also referred
to as sequential regression multivariate imputation (SRMI) or chained equations.
The first assumes that the data follow a specific distribution (e.g., a multivariate nor-
mal distribution). Under this assumption, a parametric multivariate density P(Y |θ)
can be specified with θ representing parameters from the assumed underlying dis-
tribution. Within the Bayesian framework, this distribution can be used to generate
draws from (Ynew|Yobs). Methods to create multivariate imputations using this ap-
proach have been described in detail by Schafer (1997) (e.g., for the multivariate
normal, the log-linear, and the general location model).

Fully conditional specification (van Buuren and Oudshoorn, 2000; Raghunathan
et al., 2001), on the other hand, does not require an explicit assumption for the joint
distribution of the dataset. Instead, conditional distributions P(Yj|Y− j,θ j) are speci-
fied for each variable separately. Thus imputations are based on univariate distribu-
tions allowing for different models for each variable. Values in Yj can be imputed,
for example, by a linear or a logistic regression of Yj on Y− j, depending on the scales
of measurement of Yj, where Y− j denotes all columns of Y excluding Yj. The process
of iteratively drawing from the conditional distributions can be viewed as a Gibbs
sampler that will converge to draws from the theoretical joint distribution of the data
if this joint distribution exists. Detailed descriptions of the approach can be found
in Raghunathan et al. (2001).

3.1.1 Joint modeling

In general, it will not be possible to specify P(Ynew|Yobs) directly. Note, however,
that we can write

P(Ynew|Yobs) =
∫

P(Ynew,θ |Yobs)dθ =
∫

P(Ynew|Yobs,θ)P(θ |Yobs)dθ . (3.1)

Given this equation, imputations can be generated in two steps:

1. Generate random draws for the parameter θ from its observed-data posterior
distribution P(θ |Yobs) given the observed values.

2. Generate random draws for Ynew from its conditional predictive distribution
P(Ynew|Yobs,θ) given the actual parameter θ from step 1.

With joint modeling, the second step usually is straightforward. The distribution of
(Ynew|Yobs,θ) can be obtained from the underlying model. For example, a multivari-
ate normal density can be assumed for the complete data. But the first step usu-
ally requires Markov Chain Monte Carlo techniques since the observed-data pos-
terior distribution for (θ |Yobs) seldom follows standard distributions, especially if
the missing pattern is not monotone (see Section 3.1.2). This means that, even for
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joint modeling, convergence of the Markov Chain has to be monitored and it is not
guaranteed that it will ever converge. Discussing the advantages and limits of the
many different methods to monitor the convergence of Markov Chain Monte Carlo
algorithms is beyond the scope of this book. One way of monitoring convergence if
imputations are drawn from multiple chains is introduced in the following section.
A more detailed discussion can be found in Schafer (1997, Chapter 4.4).

3.1.2 Fully conditional specification (FCS)

With FCS, the problem of drawing from a k-variate distribution is replaced by draw-
ing k times from much easier to derive univariate distributions. Every variable in the
dataset is treated separately using a regression model suitable for that specific vari-
able. Thus, continuous variables can be imputed using a normal model, binary vari-
ables can be imputed with a logit model and so on.2 Here, we can specify P(θ |Yobs)
directly and no iterations are necessary, because we don’t have to draw from possi-
bly awkward multivariate distributions. To give an example, let us assume we want
to impute values for a continuous variable Y . We can assume Y |X ∼N(μ,σ2), where
X denotes all variables that are used as explanatory variables for the imputation.
The two-step imputation approach described above can now be applied as follows.
Let n be the number of observations in the dataset. Let k be the number of regres-
sors to be included in the regression. Finally, let σ̂ 2 and β̂ be the variance and the
beta-coefficient estimates obtained from ordinary least squares regressions. In the
missing-data context, we assume that plausible starting values for the missing part
of Y have been filled in or have been imputed in previous imputation rounds. Start-
ing values can be obtained for example by using the predicted values from a linear
regression of Y on X . Imputed values for Ynew can be generated using the following
algorithm:

Step 1: Draw new values for θ = (σ2,β ) from P(θ |Y ); i.e.,

• draw σ2|X ∼ (Y −X β̂ )′(Y −X β̂ )χ−2
n−k,

• draw β |σ2,X ∼ N(β̂ ,(X ′X)−1σ2).

Step 2: Draw new values for Ynew from P(Ynew|Y,θ); i.e.,

• draw Ynew|β ,σ2,X ∼ N(Xβ ,σ2).

Note that we are drawing new values for the parameters directly from the
observed-data posterior distributions. This means we do not need Markov Chain
Monte Carlo techniques to obtain new values from the complete-data posterior dis-
tribution of the parameters. However, there might be more than one variable with
missing data. Thus, we generate new values for Ynew by drawing from P(Ynew|β ,σ2,X),

2 An alternative nonparametric imputation approach based on CART models was suggested by
Reiter (2005d) for the synthetic data context and was recently applied in the nonresponse context
by Burgette and Reiter (2010). I discuss this approach in detail in Section 8.3.2.
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and the matrix of regressors X might contain imputed values from an earlier impu-
tation step. These values have to be updated now, based on the new information in
our recently imputed variable Y . Hence, we have to sample iteratively from the fully
conditional distribution for every variable in the dataset. This iterative procedure es-
sentially can be seen as a Gibbs sampler for which the iterative draws will converge
to draws from the joint distribution, if the joint distribution exists.

In a more detailed notation, for multivariate Y , let Yj|Y− j be the distribution of
Yj conditional on all columns of Y except Yj and θ j be the parameter specifying the
distribution of Yj|Y− j. If Y consists of p columns and each Yj is univariate, then the
tth iteration of the method consists of the following successive draws:3

θ (t)
1 ∼ P(θ1|Y (t−1)

1 ,Y (t−1)
2 , ...,Y (t−1)

p )

Y (t)
1 ∼ P(Y new

1 |Y (t−1)
2 , ...,Y (t−1)

p ,θ (t)
1 )

... (3.2)

θ (t)
p ∼ P(θp|Y (t−1)

p ,Y (t)
1 ,Y (t)

2 , ...,Y (t)
p−1)

Y (t)
p ∼ P(Y new

p |Y (t)
1 , ...,Y (t)

p−1,θ
(t)
p ).

Since imputations are generated sequentially variable by variable, this approach
is also called sequential regression multivariate imputation (SRMI; see Raghu-
nathan et al., 2001). The sampler will converge to the desired joint distribution of
(Ynew|Yobs), but only if this joint distribution really exists. In practice, it is often im-
possible to verify this; thus its existence is implicitly assumed. This is problematic
since it will always be possible to draw from the conditional distributions and we
will not get any hint that the Gibbs sampler actually never converges.

A simple way to detect problems with the iterative imputation procedure is to
store the mean of every imputed variable for every iteration of the Gibbs sampler. A
plot of the means from the imputed variables over the iterations can indicate if there
is only the expected random variation between the iterations or if there is a trend
between the iterations indicating problems with the model. Of course, no observ-
able trend over the iterations does not guarantee convergence since the monitored
estimates can stay stable for hundreds of iterations before drifting off to infinity.
Nevertheless, this is a straightforward method to identify flawed imputation mod-
els. If different imputation chains are run to generate the m imputations, convergence
can be monitored by calculating the variance of a given estimate of interest ψ (e.g.,
the mean and the standard deviation of each variable) within and between different
imputation chains. Let ψi j denote the estimate obtained at iteration i, i = 1, ...,T ,
in chain j, j = 1, ...,m. The between-sequence variance B and the average within-
sequence variance W can be calculated as

3 For notational convenience, I assume that the conditional distributions of θ j and Yj are indepen-
dent of the remaining θs, an assumption that is often met in practice, especially when imputing
missing or synthetic data. Formally, we should also condition on all θs in each draw.
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Fig. 3.1 Two missing-data patterns.
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Gelman et al. (2004), p. 297 suggest that convergence can be assumed if

R̂ =

√
(1−1/T )W +B/T

W
< 1.1 (3.3)

However, it should be noted at this point that iterating between the imputations
is not always necessary. If we can reorder the data in such a way that Yj is fully ob-
served whenever Yj+1 is observed, we can use a slightly different sequential regres-
sion algorithm that renders iterations between the imputations unnecessary. Let X be
all the variables in the dataset that are fully observed and Y1, ...,Yp be the variables
with missing values ordered by the amount of missingness. Figure 3.1 depicts two
different types of missing-data patterns. The left pattern is called a monotone miss-
ingness pattern since the number of missing cases increases monotonically from Y1
to Yp. The right pattern is not monotone since there are values that are observed for
Yj+1 but not for Yj.

Now, remember that we can always write the joint probability as a product of
conditional probabilities:

P(Y1, ...,Yp|X) = P(Y1|X)P(Y2|Y1,X)...P(Yp|Y1, ...,Yp−1,X). (3.4)

If the missingness pattern is monotone, Y1, ...,Yj−1 will also be fully observed when-
ever Yj is observed, so the conditional distributions do not change if we impute the
missing values in Y1, ...,Yj−1. Consequently, we do not need to update the parame-
ters every time we impute these variables. Each draw will be a direct draw from the
posterior distribution, and we do not have to wait for convergence.
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Unfortunately, for most collected data, the missingness pattern will not be mono-
tone unless we have some sort of missing by design; for example, if a follow-up
study is conducted only with a subset from the original survey respondents. How-
ever, the situation is different when using multiple imputation to generate synthetic
datasets. In this case, it is common for the same number of records to be replaced
with synthetic values for each sensitive variable (i.e. the decision whether a value
is at risk is based on the combined attributes of the record and not on the variable).
This implies that for generating synthetic datasets we can often use the simplified al-
gorithm, significantly reducing the amount of time required to generate the datasets
while at the same time rendering the monitoring of convergence unnecessary.

3.1.3 Pros and cons of joint modeling and FCS

In general, empirical data will seldom follow a standard multivariate distribution,
especially if they consist of a mix of numerical and categorical variables. Further-
more, FCS provides a flexible tool to account for bounds, interactions, skip patterns,
or constraints between different variables (see Section 3.2). It will be very difficult to
handle these restrictions which are very common in survey data, by joint modeling.
In practice, the imputation task is often centralized at the methodological depart-
ment of the statistical agency, and imputation experts will impute values for all the
surveys conducted by the agency. Imputed datasets that don’t fulfill simple restric-
tions such as non-negativity or other logical constraints will never be accepted by
subject matter analysts from other departments. Thus, preserving these constraints is
a central element of the imputation task. For this reason, most applications of mul-
tiple imputation are based on FCS. Van Buuren and Groothuis-Oudshoorn (2010)
provide a vast list of applied papers that rely on this approach.

Overall, joint modeling will be preferable if only a limited number of variables
need to be imputed, no restrictions have to be maintained, and the joint distribution
can be approximated reasonably well with a standard multivariate distribution. For
more complex imputation tasks, only fully conditional specification will enable the
imputer to preserve constraints inherent in the data. In this case, convergence of the
Gibbs sampler should be monitored carefully.

3.2 Real data problems and possible ways to handle them

The basic concept of multiple imputation is straightforward to apply, and multiple
imputation tools available for most statistical software packages further reduce the
modeling burden for the imputer. For example, the fully conditional approach is
implemented in IVEware for SAS (Raghunathan et al., 2002), in the packages mice
(van Buuren and Groothuis-Oudshoorn, 2010) and mi (Su et al., 2009) for R, and
in a set of ado-files called ice for Stata (Royston, 2005, 2007, 2009). The latest
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version of the Missing Values add-on (MVA) module for SPSS 17.0 also includes a
multiple-imputation feature based on this approach. Joint modeling is implemented
in the stand-alone packages NORM, CAT, MIX, and PAN (Schafer, 1997), the R
package AMELIA II (Honaker et al., 2010), and INORM (Galati and Carlin, 2009)
and the new multiple imputation system, also called mi (StataCorp, 2009), in Stata.
However, simply applying standard imputation procedures to real data can lead to
biased or inconsistent imputations. Several additional aspects have to be considered
in practice when imputing real data. Unfortunately, at present most of the standard
software can only handle some of these aspects, which will be discussed below.

3.2.1 Imputation of semi-continuous variables

A problem with modeling continuous variables that often arises in surveys is the fact
that many of these variables in fact are semi-continuous (i.e., they have a spike at
one point of the distribution, but the remaining distribution can be seen as a contin-
uous variable). For most variables, this spike will occur at zero. To give an example,
in our dataset (see Chapter 4), the establishments are asked how many of their em-
ployees obtained a college degree. Most of the small establishments do not require
such highly skilled workers. In this case, I suggest adopting the two step imputa-
tion approach proposed by Raghunathan et al. (2001). In the first step, we impute
whether the missing value is zero or not. For that, missing values are imputed using
a logit model with outcome 1 for all units with a positive value for that variable. In
the second step, a standard linear model is applied only to the units with observed
positive values to predict the actual value for the units with a predicted positive
outcome in step one. All values for units with outcome zero in step one are set to
zero.

3.2.2 Bracketed imputation

Often, imputed values are required to fall into certain bounds. These bounds might
be defined by the outcome of another variable (e.g., when the survey respondent
refused to report his or her exact income but reported that it was between 80,000
and 90,000 euros). But imputation bounds might also be necessary because the out-
come space for a variable is limited. For example, many survey variables can never
be negative in reality. This has to be considered during the imputation process. A
simple way to achieve this goal is to redraw from the imputation model for those
units with imputed values that are outside the defined bounds until all values ful-
fill the constraints. In practice, usually an upper bound z has to be defined for the
number of redraws for one unit since it is possible that the probability of drawing a
value inside the bounds for this unit from the defined model is very low. The value
for this unit is set to the closest boundary if z draws from the model never produced
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a plausible value. However, there is a caveat with this approach. Redrawing from
the model for implausible values is equivalent to drawing from a truncated distribu-
tion. If the truncation points are not at the very far end of the distribution (i.e., the
model is misspecified), even simple descriptive analyses such as the mean of the im-
puted variable will differ significantly from the true value of the complete data. For
this reason, this approach should only be applied if the probability of drawing im-
plausible values from the specified model is very low and we only want to prevent
some very unlikely unrealistic values from being imputed. If the fraction of units
that would have to be corrected with this approach is too high, the model needs to
be revised. Usually it is helpful to define different models for different subgroups
of the data. For example, to overcome the problem of generating too many nega-
tive values, a separate model for the units with small values should be defined. An
alternative for the special case of non-negativity constraints is to log transform the
variable before imputation. This will guarantee that all imputed values are positive
after backtransformation.

3.2.3 Imputation under linear constraints

In many surveys, the outcome of one variable by definition has to be equal to or
above the outcome of another variable. For example, the total number of employ-
ees always has to be at least as high as the number of part-time employees. When
imputing values in this situation, Schenker et al. (2006) suggest the following ap-
proach. Variables that define a subgroup of another variable are always expressed as
a proportion (i.e., all values for the subgroup variable are divided by the total before
the imputation and thus are bounded between zero and one). A logit transforma-
tion of the variables guarantees that they will have values in the full range ]−∞,∞[
again. Values for these transformed variables can be imputed with a standard im-
putation approach based on linear regressions. After the imputation, all values are
transformed back to get proportions again, and finally all values are multiplied with
the totals to get back the absolute values. To avoid problems on the bounds of the
proportions, I suggest setting proportions greater than 0.999999 to 0.999999 before
the logit transformation and using the two-step imputation approach described in
Section 3.2.1 to determine zero values.

3.2.4 Skip patterns

Skip patterns (e.g., a battery of questions are only asked if they are applicable) are
very common in surveys. Although it is obvious that they are necessary and can
significantly reduce the response burden for the survey participant, they are a night-
mare for anybody involved in data editing and imputation or statistical disclosure
control. Especially if the skip patterns are hierarchical, it is very difficult to guar-
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antee that imputed values are consistent with these patterns. With fully conditional
specification, it is straightforward to generate imputed datasets that are consistent
with all these rules. The two-step approach described in Section 3.2.1 can be ap-
plied to decide whether the questions under consideration are applicable. Values are
imputed only for the units selected in step one. Nevertheless, correctly implement-
ing all filtering rules is a labor-intensive task that can be more cumbersome than
defining good imputation models. Furthermore, skip patterns can lead to variables
that are answered by only a small fraction of the respondents, and it can be difficult
to develop good models based on a small number of observations.



Chapter 4

The IAB Establishment Panel

Since the establishment survey of the German Institute for Employment Research
(IAB) is used throughout this book to illustrate the different aspects of multiple im-
putation, a short introduction to this dataset should prelude the body of this book.
The IAB Establishment Panel1 is based on the German employment register ag-
gregated via the establishment number as of June 30 of each year. The basis of the
register, the German Social Security Data (GSSD), is the integrated notification pro-
cedure for health, pension, and unemployment insurance, which was introduced in
January 1973. This procedure requires employers to notify the social security agen-
cies about all employees covered by social security. As by definition the German
Social Security Data only include employees covered by social security – civil ser-
vants and unpaid family workers, for example, are not included – approximately
80% of the German workforce are represented. However, the degree of coverage
varies considerably across occupations and industries.

Since the register only contains information on employees covered by social se-
curity, the panel includes establishments with at least one employee covered by
social security. The sample is drawn using a stratified sampling design. The stratifi-
cation cells are defined by ten classes for the size of the establishment, 16 classes for
the region,2 and 17 classes for the industry.3 These cells are also used for weighting
and extrapolation of the sample. The survey is conducted by interviewers from TNS
Infratest Sozialforschung. For the first wave, 4,265 establishments were interviewed
in West Germany in the third quarter of 1993. Since then, the Establishment Panel
has been conducted annually – since 1996 with over 4,700 establishments in East
Germany in addition. In the 2008 wave more than 16,000 establishments partici-
pated in the survey. The response rate of units that have been interviewed repeatedly
is over 80%. Each year, the panel is accompanied by supplementary samples and

1 The approach and structure of the establishment panel are described, for example, by Fischer
et al. (2008) and Kölling (2000).
2 Before 2006, the stratification by region contained 17 classes since two separate classes were
used for East and West Berlin.
3 Between 2000 and 2004, 20 industry classes were used, and before 2000 the sample was stratified
by 16 industry classes.
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follow-up samples to include new or reviving establishments and to compensate for
panel mortality. The questionnaire contains a set of core questions that are asked
annually with detailed information about employment development, business pol-
icy, vocational training, personnel structure and personnel movements, investments,
wages and salaries, and adherence to collective agreements. Information on further
training, working time, public funding, and innovations is asked every other year.
Additional changing questions relevant for the current political debate complete the
survey.

Considered one of the most important business surveys in Germany, there is high
demand for access to these data from external researchers. Because of the sensitive
nature of the data, researchers desiring direct access to the data have to work onsite
at the IAB. Alternatively, researchers can submit code for statistical analyses to the
IAB research data center, whose staff run the code on the data and send the results
to the researchers. To help researchers develop code, the IAB provides access to a
publicly available “dummy dataset” with the same structure as the Establishment
Panel. For all analyses done with the genuine data, researchers can publicize their
analyses only after IAB staff check for potential violations of confidentiality.

Releasing scientific use files of the Establishment Panel will allow more re-
searchers to access the data with fewer burdens, stimulating research on German
business data. It also will free up staff time from running code and conducting confi-
dentiality checks. Because there are so many sensitive variables in the dataset, stan-
dard disclosure limitation methods such as swapping or microaggregation would
have to be applied with high intensity, which would severely compromise the utility
of the released data. Therefore, the IAB decided to develop synthetic data. The first
synthetic dataset generated for the 2007 wave of the panel was released in January
2011.

To evaluate the quality of the different synthetic datasets that are used through-
out this book to illustrate the different MISD approaches, I always compare analytic
results achieved with the original data with results from the synthetic data. For most
datasets, comparisons are based on an analysis by Thomas Zwick, “Continuing Vo-
cational Training Forms and Establishment Productivity in Germany” published in
the German Economic Review, Vol. 6, No. 2, pp. 155–184, in 2005. Since this anal-
ysis is used for validity evaluations in several chapters of the book, I provide a
detailed description here.

Zwick analyzes the productivity effects of different continuing vocational train-
ing forms in Germany. He argues that vocational training is one of the most impor-
tant measures to gain and keep productivity in a firm. For his analysis, he uses the
1997 to 2001 waves from the IAB Establishment Panel.

In 1997 and 1999, the Establishment Panel included the following additional
question that was asked if the establishment did support continuous vocational train-
ing in the first part of 1997 or 1999, respectively: “For which of the following
internal or external measures were employees exempted from work or were costs
completely or partly taken over by the establishment?” Possible answers were: for-
mal internal training, formal external training, seminars and talks, training on the
job, participation at seminars and talks, job rotation, self-induced learning, quality
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circles, and additional continuous vocational training. Zwick examines the produc-
tivity effects of these training forms and demonstrates that formal external training,
formal internal training, and quality circles do have a positive impact on productiv-
ity. Especially for formal external courses, the productivity effect can be measured
even two years after the training.

To detect why some firms offer vocational training and others do not, Zwick runs
a probit regression using the 1997 wave of the establishment panel. In the regression,
Zwick uses two variables (investment in IT and the codetermination of the employ-
ees) that are only included in the 1998 wave of the establishment panel. Moreover,
he excludes some observations based on information from other years. As I use only
the 1997 wave for the illustrations in the following chapters, the two variables from
the 1998 wave are dropped from the regression and all results presented are based
on the full sample.

For his analysis, Zwick runs the regression only on units with no missing values
for the regression variables, losing all the information on establishments that did not
respond to all variables used. This might lead to biased estimates if the assumption
of a missing pattern that is completely at random (see Rubin (1987) or Section 5.2
in this book) does not hold. For that reason, I will always compare the regression
results from the synthetic datasets, which by definition have no missing values, with
the results Zwick would have achieved if he had run his regression on a dataset with
all the missing values multiply imputed.



Chapter 5

Multiple Imputation for Nonresponse1

For many datasets, especially for nonmandatory surveys, missing data are a common
problem. Deleting units that are not fully observed and using only the remaining
units is a popular, easy-to-implement approach in this case. However, using only
fully observed observations will generally lead to reduced efficiency for the esti-
mates. But even more problematic, this approach can possibly lead to severe bias
if the strong assumption of a missing pattern that is missing completely at random
(MCAR; see Section 5.2) is not fulfilled. Imputing missing values can help han-
dle this problem. However, imputing missing values only once (single imputation)
generally doesn’t account for the fact that the imputed values are only estimates for
the true values. After the imputation process, they are often treated like originally
observed values, leading to an underestimation of the variance in the data and from
this to p values that are too significant. Multiple imputation was suggested by Rubin
(1978) to overcome these problems.

5.1 Inference for datasets multiply imputed to address

nonresponse

5.1.1 Univariate estimands

To understand the procedure of analyzing multiply imputed datasets, think of an an-
alyst interested in an unknown scalar parameter Q, where Q could be, for example,
the population mean or a regression coefficient in a linear regression. Inferences for
this parameter for datasets with no missing values usually are based on a point esti-
mate q, a variance estimate u, and a normal or Student’s t reference distribution. For
analysis of the imputed datasets, let q(i) and u(i) for i = 1,2, ...m be the point and
variance estimates achieved from each of the m completed datasets. To get a final
estimate over all imputations, these estimates have to be combined using the com-

1 Most of this chapter is taken from Drechsler and Rässler (2008) and Drechsler (2011a).
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bining rules first described by Rubin (1978). The following quantities are needed
for inferences for scalar Q:

q̄m =
m

∑
i=1

q(i)/m, (5.1)

bm =
m

∑
i=1

(q(i)− q̄m)
2/(m−1), (5.2)

ūm =
m

∑
i=1

u(i)/m. (5.3)

The analyst then can use q̄m to estimate Q and

Tm = ūm +(1+m−1)bm (5.4)

to estimate the variance of q̄m.
For the point estimate, the final estimate is simply the average of the m point

estimates. Its variance is estimated by combining the “within-imputation” variance
ūm and the “between-imputation” variance bm. We will see in the following chapters
that all combining rules for the different multiple-imputation settings more or less
rely on these three quantities. The factor (1+m−1) reflects the fact that only a finite
number of completed-data estimates q(i) are averaged together to obtain the final
point estimate.

The quantity r = (1+m−1)bm/Tm estimates the fraction of information about Q
that is missing due to nonresponse.

Inferences from multiply imputed data are based on q̄m, Tm, and a Student’s t
reference distribution. Thus, for example, interval estimates for Q have the form
q̄m ± t(1−α/2)

√
Tm, where t(1−α/2) is the (1−α/2) quantile of the t distribu-

tion. Rubin and Schenker (1986) provide the approximate value νRS = (m− 1)r−2

for the degrees of freedom of the t distribution under the assumption that with com-
plete data a normal reference distribution would have been appropriate. Barnard
and Rubin (1999) relax the assumption of Rubin and Schenker (1986) to allow
for a t reference distribution with complete data and suggest the value νBR =
(ν−1

RS + ν̂−1
obs)

−1 for the degrees of freedom in the multiple-imputation analysis,
where ν̂obs = (1− r)(νcom)(νcom + 1)/(νcom + 3) and νcom denotes the complete-
data degrees of freedom.

5.1.2 Multivariate estimands

Often, researchers will be interested in testing a null hypothesis of the form Q = Q0
for some k-component estimand Q, for example when testing the null hypothe-
sis that some regression coefficients in a standard regression model equal 0. Fol-
lowing the notation in Reiter and Raghunathan (2007), let q̄m, bm, and ūm be
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the multivariate analogs to q̄m, bm, and ūm defined in (5.1) to (5.3). For the mul-
tivariate case, the quantities are based on the k-dimensional estimates q(i) and
k× k covariance matrices u(i). Unfortunately, the standard Wald test with statistic
(q̄m −Q0)

T T−1
m (q̄m −Q0) provides unreliable results, when k > m and m is moder-

ate, because of the potentially large variability in bm (Rubin, 1987; Li et al., 1991).
Two alternatives have been proposed in the literature that provide more stable

results. Rubin (1987) suggests using the following test statistic under the assumption
that the fraction of missing information r is equal for all components of Q:

Sm = (q̄m −Q0)
T ū−1

m (q̄m −Q0)/(k(1+ rm)), (5.5)

where rm = (1+ 1/m)tr(bmū−1
m )/k is the average relative increase in variance due

to nonresponse across the components of Q. Inference is based on an approximate
F distribution, Fk,νw , with νw = 4+(t−4)(1+(1−2/t)/rm)

2 and t = k(m−1)> 4.
When t ≤ 4, νw = t(1 + 1/k)(1 + 1/rm)

2/2. The p value for testing Q = Q0 is
Pr(Fk,νw > Sm).

If Q contains a large number of components k, using ūm can be cumbersome.
Meng and Rubin (1992) suggest a different approach based on the log-likelihood
ratio test that avoids calculating ūm. Again following the notation given in Reiter and
Raghunathan (2007), let ψ be the vector of parameters in the analyst’s model, and let
ψ(i) be the maximum likelihood estimate of ψ computed from D(i), where D(i) is the
ith imputed dataset and i= 1, ...,m. The analyst is interested in testing the hypothesis
that Q(ψ) = Q0, where Q(ψ) is a k-dimensional function of ψ . Let ψ(i)

0 be the
maximum likelihood estimate of ψ obtained from D(i) subject to Q(ψ) = Q0. The
log-likelihood ratio test statistic associated with D(i) is L(i) = 2log f (D(i)|ψ(i))−
2log f (D(i)|ψ(i)

0 ). Let L̄ = ∑m
i=1 L(i)/m, ψ̄ = ∑m

i=1 ψ(i)/m, and ψ̄0 = ∑m
i=1 ψ(i)

0 /m.
Finally, let L̄0 = (1/m)∑m

i=1(2log f (D(i)|ψ̄)− 2log f (D(i)|ψ̄0)), the average of the
log-likelihood ratio test statistics evaluated at ψ̄ and ψ̄0. The likelihood ratio test
statistic is given by

Ŝm = L̄0/(k(1+ r̂m)), (5.6)

where r̂m = ((m+1)/t)(L̄− L̄0). The reference distribution for Ŝm is Fk,ν̂ , where ν̂
is defined as ν but using r̂m instead of rm.

For small sample sizes, Reiter (2007) presents an alternative estimator for the
denominator degrees of freedom in the reference distribution for Sm. The derivation
is basically an extension of the methods developed in Barnard and Rubin (1999)
to the multivariate case. A simplified approximation to these degrees of freedom is
given by

ν f app = 4+
(

1
ν∗

com −4(1+a)
+

1
t −4

(
a2(ν∗

com −2(1+a))
(1+a)2(ν∗

com −4(1+a))

))−1

, (5.7)
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where ν∗
com = νcom(νcom + 1)/(νcom + 3) and a = rmt/(t − 2). Reiter (2007) also

presents a more complicated expression using higher-order terms in the formula for
the degrees of freedom.

5.2 Analytical validity for datasets multiply imputed to address

nonresponse

It is difficult to evaluate the quality of the imputations for missing values, since in-
formation about the missing values usually is not available by definition, and the
assumption that the response mechanism is ignorable (Rubin, 1987), necessary for
obtaining valid imputations if the response mechanism is not modeled directly, can-
not be tested with the observed data. A response mechanism is considered ignorable
if, given that the sampling mechanism is ignorable, the response probability only
depends on the observed information.2 If these conditions are fulfilled, the missing
data are said to be missing at random (MAR) and imputation models only need to
be based on the observed information. As a special case, the missing data are said
to be missing completely at random (MCAR), if the response mechanism does not
depend on the data (observed or unobserved), which implies that the distribution
of the observed data and the distribution of the missing data are identical. If the
requirements above are not fulfilled, the missing data are said to be missing not at
random (MNAR) and the response mechanism needs to be modeled explicitly. Little
and Rubin (2002) provide examples for nonignorable missing-data models.

As noted before, it is not possible to check whether the missing data are MAR
with the observed data. But even if the MAR assumption cannot be tested, this does
not mean the imputer cannot test the quality of his imputations at all. Abayomi et al.
(2008) suggest several ways of evaluating model-based imputation procedures. Ba-
sically their ideas can be divided into two categories. On the one hand, the imputed
data can be checked for reasonability. Simple distributional and outlier checks can
be evaluated by subject matter experts for each variable to avoid implausible im-
puted values like a turnover of $100 million for a small establishment in the so-
cial sector. On the other hand, since imputations usually are model-based, the fit
of these models can and indeed should be tested. Abayomi et al. (2008) label the
former as external diagnostic techniques since the imputations are evaluated using
outside knowledge and the latter internal diagnostic techniques since they evaluate
the modeling based on model fit without the need of external information.

To automate the external diagnostics to some extent, Abayomi et al. (2008) sug-
gest using the Kolmogorov–Smirnoff test to flag any imputations for which the dis-
tribution of the imputed values significantly differs from the distribution of the ob-

2 The additional requirement that the sampling mechanism also be ignorable (Rubin, 1987) (i.e.,
the sampling probability only depends on observed data) is usually fulfilled in scientific surveys.
The stratified sampling design of the IAB Establishment Panel also satisfies this requirement since
the sampling probabilities are defined solely by the stratification cells derived from the German
Social Security Data (see Chapter 4).
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served values. Of course, a significant difference in the distributions does not neces-
sarily indicate problems with the imputation. Indeed, if the missing-data mechanism
is MAR but not MCAR, we would expect the two distributions to differ. The test is
only intended to decrease the number of variables that need to be checked manu-
ally, implicitly assuming that no significant difference between the original and the
imputed data indicates no problem with the imputation model.

However, I am skeptical about this automated selection method since the test is
sensitive to the sample size and thus the chance of rejecting the null hypothesis will
be lower for variables with lower missing rates and variables that are answered only
by a subset of the respondents. Furthermore, it is unclear what significance level to
choose and, as noted above, rejection of the null hypothesis does not necessarily in-
dicate an imputation problem, but not rejecting the null hypothesis is not a guarantee
that we found a good imputation model either. However, this is implicitly assumed
by this procedure.

5.3 Multiple imputation of the missing values in the IAB

Establishment Panel

In this section, I illustrate how multiple imputation for nonresponse could be im-
plemented in practice. I discuss the extensive imputation task required to impute all
missing values in the 2007 wave of the IAB Establishment Panel and describe the
methods I used to evaluate the quality of the imputations.

5.3.1 The imputation task

Most of the 284 variables included in the 2007 wave of the Panel are subject to non-
response. Only 26 variables are fully observed. However, missing rates vary consid-
erably between variables and are modest for most variables: 65.8% of the variables
have missing rates below 1%, 20.4% of the variables have missing rates between 1%
and 2%, 15.1% have rates between 2% and 5%, and only 12 variables have missing
rates above 5%. The five variables with missing rates above 10% are subsidies for
investment and material expenses (13.6%), payroll (14.4%), intermediate inputs as
proportion of turnover (17.4%), turnover in the last fiscal year (18.6%), and num-
ber of workers who left the establishment due to restructuring measures (37.5%).
Obviously, the variables with the highest missing rates contain information that is
either difficult to provide, such as number of workers who left the establishment
due to restructuring measures, or considered sensitive, such as turnover in the last
fiscal year. The variable number of workers who left the establishment due to re-
structuring measures is only applicable to the 626 establishments in the dataset that
declared they had restructuring measures in the last year. Of these 626, only 391
establishments provided information on the number of workers that left the estab-
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lishment due to these measures. Clearly, it is often difficult to tailor exactly which
workers left as a result of the measures and which left for other reasons. This might
be the reason for the high missing rates. The low number of observed values is also
problematic for the modeling task, so this variable should be used with caution in
the imputed dataset.

5.3.2 Imputation models

Since the dataset contains a mixture of categorical variables and continuous vari-
ables with skewed distributions and a variety of often hierarchical skip patterns and
logical constraints, it is impossible to apply the joint modeling approach described
in Section 3.1.1. I apply the fully conditional specification approach described in
Section 3.1.2, iteratively imputing one variable at a time, conditioning on the other
variables available in the dataset. For the imputation, I basically rely on three differ-
ent imputation models: the linear model for the continuous variables, the logit model
for binary variables, and the multinomial logit for categorical variables with more
than two categories. Multiple-imputation procedures for these models are described
in Raghunathan et al. (2001). In general, all variables that don’t contain any struc-
tural missings are used as predictors in the imputation models in hopes of reducing
problems from uncongeniality (Meng, 1994). Uncongeniality refers to the situation
where the model used by the analyst of the data differs from the model used for the
imputation. This can lead to biased results if the analyst’s model is more complex
than the imputation model and the imputation model omitted important relation-
ships present in the original data. Since the true data-generating model is usually
unknown and an imputation model that is more complex than the true model only
causes some loss in efficiency, the standard imputation strategy should be to include
as many variables as possible in the imputation model (Little and Raghunathan,
1997).

In the multinomial logit model for the categorical variables, the number of ex-
planatory variables is limited to 30 variables found by stepwise regression. This
reduction is necessary since the full model never converges for most categorical
variables due to multicollinearity. But even if the model eventually converges, the
rate of convergence is so slow that finding the maximum likelihood estimates could
easily take more than 12 hours. Because I generate m = 5 imputed datasets running
100 iterations of the Gibbs sampler before storing the next dataset to avoid depen-
dencies between the imputed values, the imputation would take several months to
finish. Thus, I generally reduce the number of explanatory variables to 30 for the
multinomial imputation model, although this might increase the risk of unconge-
niality discussed above. The stepwise regression procedure should limit this risk
because the variables with the highest influence on the dependent variable are al-
ways included in the imputation model.

To improve the quality of the imputation, I define several separate models for the
variables with high missing rates, such as turnover or payroll. Independent mod-
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els are fit for East and West Germany and for different establishment size classes.
Ideally, different imputation models should be defined for every stratification cell to
correctly account for the stratified sampling design. Since most of the stratification
cells would be too small to allow useful modeling, we follow the advice in Reiter
et al. (2006) and always include the survey weights as predictors in every imputation
model instead.

All continuous variables are subject to non-negativity constraints, and the out-
come of many variables is further restricted by linear constraints. The imputation
process is further complicated by the fact that most variables have huge spikes at
zero and, as mentioned before, the skip patterns are often hierarchical. I therefore
have to rely on a mixture of the adjustments presented in Section 3.2. To control for
the skewness, I transform each continuous variable by taking the cubic root before
the imputation. I prefer the cubic root transformation over the log transformation
which is often used in the economics literature to model skewed variables such as
turnover, because the cubic root transformation is less sensitive to deviations be-
tween the imputed and original values in the right tail of the distribution. Since
the slope of the exponential function increases exponentially, whereas the slope of
f (x) = x3 increases only quadratically, a small deviation in the right tail of the im-
puted transformed variable has more severe consequences after backtransformation
for the log-transformed variable than for the variable transformed by taking the cu-
bic root.

5.3.3 Evaluating the quality of the imputations

Following Abayomi et al. (2008), I searched for possible flaws in the imputations
by plotting the distributions for the original and imputed values for every continu-
ous variable. I checked whether any notable differences between these distributions
could be justified by differences in the distributions of the covariates. Figure 5.1
displays the distributions for two representative variables based on kernel density
estimation. Original values are represented with a solid line, imputed values with
a dashed line. Both variables are reported on the log scale. The left variable (pay-
roll) represents a candidate that I did not investigate further since the distributions
match almost exactly. The right variable (number of participants in further edu-
cation (NB.PFE)) is an example of a variable for which I tried to understand the
difference between the distribution of the observed values and the distribution of
the imputed values before accepting the imputation model.

Obviously, most of the imputed values for the variable NB.PFE are larger than
the observed values for this variable. To understand this difference, I examined the
dependence between the missing rate and the establishment size. In Table 5.1, I
present the percentage of missing units in ten establishment size classes defined by
quantiles and the mean of NB.PFE within these quantiles. The missing rates are low
up to the sixth establishment size class. Beyond that point, the missing rates increase
substantially with every class. The average number of further education participants
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Fig. 5.1 Observed (solid line) and imputed (dashed line) data for payroll and number of partici-
pants in further education (NB.PFE). Both variables are reported on the log scale.

increases steadily with every establishment size class, with the largest increases in
the second half of the table. With these results in mind, it is not surprising that the
imputed values for that variable are often larger than the observed values.

I inspected several continuous variables by comparing the distributions of the
observed and imputed values in the dataset and did not find any differences in the
distributions that could not be explained by the missingness pattern. I also investi-
gated whether any weighted imputed value for any variable was above the maximum
weighted observed value for that variable. Again, this would not necessarily be prob-
lematic, but I did not want to impute any unrealistic influential outliers. However, I
did not find any weighted imputed value that was higher than the maximum of its
weighted observed counterpart.

Following Su et al. (2009), I used three graphics as internal diagnostics to eval-
uate the model fit: a normal Q-Q plot, a plot of the residuals from the regression
against the fitted values, and a binned residual plot (Gelman and Hill, 2006). The

Table 5.1 Missing rates and means per quantile for NB.PFE.

Est. size
quantile

Missing
rate in %

mean(NB.PFE)
per quantile

1 0.09 1.61
2 0.00 2.49
3 0.57 3.02
4 0.36 4.48
5 0.44 6.09
6 0.37 9.53
7 0.85 15.48
8 1.16 26.44
9 3.18 56.39

10 6.66 194.09
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Fig. 5.2 Model checks for turnover and number of participants in further education with college
degree.

normal Q-Q plot indicates whether the assumption of a normal distribution for the
residuals is justified by plotting the theoretical quantiles of a normal distribution
against the empirical quantiles of the residuals. The residual plot visualizes any un-
wanted dependencies between the fitted values and the residuals. For the binned
residual plot, the average of the fitted values is calculated within several predefined
bins and plotted against the average of the residuals within these bins. This is espe-
cially helpful for categorical variables since the output of a simple residual plot is
difficult to interpret if the outcome is discrete.

Figure 5.2 again provides an example of one model (one of the models for the
variable turnover) that I did not inspect any further and one model (for the variable
number of participants in further education with college degree (NB.PFE.COL)) for
which I checked the model for necessary adjustments.

For both variables, the assumption that the residuals are more or less normally
distributed seems to be justified. For the variable turnover, the two residual plots
further confirm the quality of the model. Only a small amount of residuals fall out-
side of the grey dotted 95% confidence bands for the residual plot, and none of the
averaged residuals fall outside the grey 95% confidence bands for the binned resid-
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uals. This is different for NB.PFE.COL. Although most of the points are still inside
the 95% confidence bands, we see a clear relationship between the fitted values and
the residuals for the small values, and the binned residuals for these small values all
fall outside the confidence bands. However, this phenomenon can be explained if
we inspect the variable further. Most establishments do not have any participants in
further training with a college degree, and I fitted the model only to the 3,426 units
reported to have at least one participant.Of these units, 648 reported that they had
only one participant, leading to a spike at 1 in the original data. Since I simply fit
a linear model to the observed data, the almost vertical line in the residual plot is
not surprising. It contains all the residuals for all the units with only 1 participant
in the original data. The binned residual plot indicates that the small fitted values
sometimes severely underestimate the original values. The reason for this is again
the fact that the original data are truncated at 1, whereas the fitted values are predic-
tions from a standard linear model that would even allow negative fitted values since
I computed the fitted values before the adjustments for non-negativity described in
Section 3.2.2. The consequence is a slight overestimation for the larger fitted values.

I found similar patterns in some other variables that had huge spikes at 1. I
could have tried to model the data with a truncated distribution or applied the semi-
continuous approach described in Section 3.2.1 to model the spike at 1 separately,
but since I expect that the non-negativity adjustments reduce this effect, I decided
to avoid making the already complex modeling task even more difficult.

Missing rates are substantially lower for the categorical variables. Only 59 out of
the close to 200 categorical variables in the dataset have missing rates above 1%, and
I limited my evaluation to these variables. I compared the percentage of responses
in each category for the observed and the imputed values and flagged a variable for
closer inspection if the percentage of responses in one imputed category differed by
more than 20% from the relative number in the observed category. I further limited
my search to categories that contained at least 25 units since small changes in cate-
gories with fewer units would lead to significant changes in the relative differences
for these categories. All 15 variables that were flagged by this procedure had a miss-
ing rate below 5%, and the differences between the imputed and original response
rates could be explained by the missingness pattern for all of them. I select one
variable here to illustrate the significant differences between observed and imputed
values that can arise from a missingness pattern that is definitely not missing com-
pletely at random. The variable under consideration asks for the expectations about
the investment in 2007 compared with 2006. Table 5.2 provides some summary
statistics for this variable. There is a substantial difference for the second and the
third categories if we simply compare the observed response rates (column 1) with
the imputed response rates (column 2). But the missing rate is only 0.2% for this
variable for units with investments in 2006 but soars to 10.5% for units without in-
vestments in 2006. Thus, the response rates across categories for the imputed values
will be influenced by the expectations for those units that had no investments in 2006
(column 4) even though only 12.9% of the participants who planned investments for
2007 reported no investments in 2006. These response rates differ completely from
the response rates for units that reported investments in 2006 (column 3). Thus the
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Table 5.2 Expectations for the investments in 2007 (response rates in % for each category).

Category Obs.
data

Imp. data Observed units with
investment 2006

Observed units without
investment 2006

Will stay the same 36.57 37.96 41.33 0.59
Increase expected 38.79 57.66 30.74 99.41
Decrease expected 20.33 0.73 23.05 0.00
Don’t know yet 4.31 3.65 4.88 0.00

percentage of establishments that expect an increase in investments is significantly
larger in the imputed data than in the original data.

For categorical data, the normal Q-Q plot is not appropriate as an internal diag-
nostic tool, and the residual plot is difficult to interpret if the outcome is discrete.
Therefore, I only examined the binned residual plots for the 59 categorical vari-
ables with missing rates above 1%. All plots indicate a good model fit. I moved all
graphics to the Appendix B for brevity.

To check for possible problems with the iterative imputation procedure, I stored
the mean for several continuous variables after every imputation iteration. I did not
find any inherent trend for the imputed means for any of the variables.



Chapter 6

Fully Synthetic Datasets1

In 1993, Rubin suggested creating fully synthetic datasets based on the multiple-
imputation framework. His idea was to treat all units in the population that have not
been selected in the sample as missing data, impute them according to the multiple-
imputation approach, and draw simple random samples from these imputed popula-
tions for release to the public. Most surveys are conducted using complex sampling
designs. Releasing simple random samples simplifies research for the potential user
of the data since the design doesn’t have to be incorporated in the model. It is not
necessary, however, to release simple random samples. If a complex design is used,
the analyst accounts for the design in the within-variance u(i), i = 1, ...,m.

As an illustration, think of a dataset of size n sampled from a population of size
N. Suppose further that the imputer has information about some variables X for the
whole population, for example from census records, and only the information from
the survey respondents for the remaining variables Y . Let Yinc and Yexc be the ob-
served units and the nonsampled units of the population respectively. For simplicity,
assume that there are no data with items missing in the observed dataset. Generating
fully synthetic datasets if the original data are subject to nonresponse is discussed
in Chapter 8. The synthetic datasets can be generated in two steps. First, construct
m imputed synthetic populations by drawing Yexc m times independently from the
posterior predictive distribution f (Yexc|X ,Yinc) for the N−n unobserved values of Y .
If the released data should contain no real data for Y , all N values can be drawn from
this distribution. Second, take simple random samples from these populations and
release them to the public. The second step is necessary, as it might not be feasible
to release m whole populations due to the simple matter of data size. In practice,
it is not mandatory to generate complete populations. The imputer can make ran-
dom draws from X in the first step and only impute values of Y for the drawn X .
The analysis of the m simulated datasets follows the same lines as the analysis after
multiple imputation for missing values in regular datasets, as described in Section
5.1.

1 Most of this chapter is taken from Drechsler et al. (2008b) and Drechsler and Reiter (2009).

J. Drechsler, Synthetic Datasets for Statistical Disclosure Control: Theory and Implementation,  
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6.1 Inference for fully synthetic datasets

6.1.1 Univariate estimands

To understand the procedure of analyzing fully synthetic datasets, think of an analyst
interested in an unknown scalar parameter Q, where Q could be, for example, the
mean of a variable, the correlation coefficient between two variables, or a regression
coefficient in a linear regression. Inferences for this parameter derived from the
original datasets usually are based on a point estimate q, an estimate for the variance
of q, u, and a normal or Student’s t reference distribution. For analysis of the imputed
datasets, let q(i) and u(i) for i = 1, ...,m be the point and variance estimates for each
of the m synthetic datasets. The following quantities are needed for inferences for
scalar Q:

q̄m =
m

∑
i=1

q(i)/m, (6.1)

bm =
m

∑
i=1

(q(i)− q̄m)
2/(m−1), (6.2)

ūm =
m

∑
i=1

u(i)/m. (6.3)

The analyst then can use q̄m to estimate Q and

Tf = (1+m−1)bm − ūm (6.4)

to estimate the variance of q̄m. The difference in this variance estimate compared
with the variance estimate for standard multiple imputation (see Section 5.1) is
due to the additional sampling from the synthetic units for fully synthetic datasets.
Hence, the variance bm between the datasets already reflects the variance within
each imputation. When n is large, inferences for scalar Q can be based on t distribu-
tions with degrees of freedom ν f = (m− 1)(1− ūm/((1+m−1)bm))

2. Derivations
of these methods are presented in Raghunathan et al. (2003).

A disadvantage of this variance estimate is that it can become negative. For that
reason, Reiter (2002) suggests a slightly modified variance estimator that is always
positive, T ∗

f = max(0,Tf )+δ ( nsyn
n ūm), where δ = 1 if Tf < 0 and δ = 0 otherwise.

Here, nsyn is the number of observations in the released datasets sampled from the
synthetic population.

6.1.2 Multivariate estimands

Significance tests for multicomponent estimands are presented in Reiter (2005c).
The derivations are based on the same ideas as those described in Section 5.1.2. Let
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q̄m, bm, and ūm be the multivariate analogs to q̄m, bm, and ūm defined in (6.1) to
(6.3). Let us assume the user is interested in testing a null hypothesis of the form
Q = Q0 for a multivariate estimand with k components. Following the notation in
Reiter and Raghunathan (2007), the Wald statistic for this test is given by

S f = (q̄m −Q0)
T ū−1

m (q̄m −Q0)/(k(r f −1)), (6.5)

where r f = (1+ 1/m)tr(BmŪ−1
m )/k. The reference distribution for S f is an F dis-

tribution, Fk,ν f , with ν f = 4+(t −4)(1− (1−2/t)/r f )
2, where t = k(m−1). Fully

synthetic datasets generally require a larger number of imputations m than standard
multiple imputation for nonresponse since the fraction of “missing” information is
large (Reiter, 2005b). Thus, generating less than m = 4 fully synthetic datasets is
not recommended, and I do not consider alternative degrees of freedom for t ≤ 4 as
I did in Section 5.1.2.

If Q contains a large number of components k, using ūm can be cumbersome.
As pointed out by Meng and Rubin (1992), it might be more convenient to use a
likelihood ratio test in this case. Reiter (2005c) also presents the derivations for this
test for fully synthetic datasets.

Again following the notation given in Reiter and Raghunathan (2007), let ψ be
the vector of parameters in the analyst’s model, and let ψ(i) be the maximum like-
lihood estimate of ψ computed from D(i), where D(i) is the ith imputed dataset
and i = 1, ...,m. The analyst is interested in testing the hypothesis that Q(ψ) = Q0,
where Q(ψ) is a k-dimensional function of ψ . Let ψ(i)

0 be the maximum likeli-
hood estimate of ψ obtained from D(i) subject to Q(ψ) = Q0. The log-likelihood
ratio test statistic associated with D(i) is L(i) = 2log f (D(i)|ψ(i))−2log f (D(i)|ψ(i)

0 ).
Let L̄ = ∑m

i=1 L(i)/m, ψ̄ = ∑m
i=1 ψ(i)/m, and ψ̄0 = ∑m

i=1 ψ(i)
0 /m. Finally, let L̄0 =

(1/m)∑m
i=1(2log f (D(i)|ψ̄)−2log f (D(i)|ψ̄0)), the average of the log-likelihood ra-

tio test statistics evaluated at ψ and ψ0. The likelihood ratio test statistic is given
by

Ŝ f = L̄0/(k(r̂ f −1)), (6.6)

where r̂ f = ((m+1)/t)(L̄− L̄0). The reference distribution for Ŝ f is Fk,ν̂ f , where
ν̂ f is defined as for ν f using r̂ f instead of r f .

6.2 Analytical validity for fully synthetic datasets

It is important to quantify the analytic usefulness of the synthetic datasets. Existing
utility measures are of two types: (i) comparisons of broad differences between the
original and released data and (ii) comparisons of differences in specific models be-
tween the original and released data. Broad difference measures essentially quantify
some statistical distance between the distributions of the original and released data,
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for example, a Kullback-Leibler or Hellinger distance. As the distance between the
distributions grows, the overall quality of the released data generally drops.

A very useful measure for specific estimands is the interval overlap measure of
Karr et al. (2006). For any estimand, we first compute the 95% confidence inter-
vals for the estimand from the synthetic data, (Ls,Us), and from the collected data,
(Lo,Uo). Then, we compute the intersection of these two intervals, (Li,Ui). The util-
ity measure is

I =
Ui −Li

2(Uo −Lo)
+

Ui −Li

2(Us −Ls)
. (6.7)

When the intervals are nearly identical, corresponding to high utility, I ≈ 1. When
the intervals do not overlap, corresponding to low utility, I = 0. The second term
in (6.7) is included to differentiate between intervals with (Ui −Li)/(Uo −Lo) = 1
but different lengths. For example, for two synthetic data intervals that fully contain
the collected data interval, the measure I favors the shorter interval. The synthesis
is successful if we obtain large values of I for many estimands. To compute one-
number summaries of utility, we can average the values of I over all estimands.
This utility measure provides more information than a simple comparison of the
two point estimates from the different datasets because it also considers the stan-
dard error of the estimate. Estimates with large standard errors might still have a
high confidence interval overlap and from this a high data utility even if their point
estimates differ considerably from each other because the confidence intervals will
increase with the standard error of the estimate. For more details on this method,
see Karr et al. (2006).

There do not exist published broad utility measures that account for all m syn-
thetic datasets. The U.S. Census Bureau has adapted an approach described by Woo
et al. (2009) that is based on how well one can discriminate between the original
and disclosure-protected data. In this approach, the agency stacks the original and
synthetic datasets in one file and estimates probabilities of being “assigned” to the
original data conditional on all variables in the dataset. When the probabilities are
close to 0.5 for all records in the original and synthetic data, the distributions of
the variables are similar–this fact comes from the literature on propensity scores
(Rosenbaum and Rubin, 1983)–so that the synthetic data have high utility. This ap-
proach is especially useful as a diagnostic for deficiencies in the synthesis methods
(variables with significant coefficients in the logistic regression have different dis-
tributions in the original and synthetic data).

6.3 Disclosure risk for fully synthetic datasets

In general, the disclosure risk for fully synthetic datasets is very low since all values
are synthetic values. Still, it is not necessarily zero. For example, in most establish-
ment surveys, the probability of inclusion depends on the size of the establishment
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and sometimes can be close to 1 for the largest establishments. Since the released
synthetic samples will have to be stratified, too, to take advantage of the efficiency
gained by stratification, the additional protection offered with the fully synthetic ap-
proach by drawing new samples from the sampling frame can be very modest for
larger establishments. A possible intruder can be confident that large establishments
in the released synthetic data represent establishments that were also included in the
original survey. The same argument holds for the release of synthetic census data.

Besides this actual risk of disclosure, the perceived risk of disclosure also needs
to be considered. The released data might look like the data from a potential survey
respondent an intruder was looking for. And once the intruder thinks he identified a
single respondent and the estimates are reasonably close to the true values for that
unit, it is no longer important that the data are all made up. The potential respondent
will feel that her privacy is at risk. Nevertheless, the disclosure risk in general will
be very low since the imputation models would have to be almost perfect and the in-
truder faces the problem that he never knows (i) if the imputed values are anywhere
near the true values and (ii) if the target record is included in one of the different
synthetic samples.

For this reason, the theory on disclosure risk for fully synthetic datasets is far
less developed than the theory for partially synthetic datasets (see Section 7.3).
Only recently Abowd and Vilhuber (2008) have proposed some measures based
on the ideas of differential privacy from the computer science literature. To under-
stand the concept of differential privacy, we need some further definitions. Let Drel
be the released dataset. Let N be the hypothetical population – unknown to the in-
truder – from which Drel was supposedly generated. According to Dwork (2006),
ε-differential privacy is fulfilled if

max
∣∣∣∣ln

(
Pr(Drel |N1)

Pr(Drel |N2)

)∣∣∣∣≤ ε, (6.8)

where ε is a predefined threshold and the maximum is taken over all N1,N2 that
differ only in a single row. The basic idea is that if the ratio is too large, the intruder
gains too much information from the released data since it is far more likely that
Drel was generated from N1 and not from N2. The data-releasing agency can decide
which level of ε it is willing to accept. Abowd and Vilhuber (2008) show that this
definition of disclosure risk is closely related to the risk of inferential disclosure
from the SDC literature, which measures the risk by the information gain about a
single respondent from the released data compared with the a priori information
before the release. The paper also illustrates that synthesizing categorical variables
under a multinomial/Dirichlet model can fulfill the requirements of ε-differential
privacy. However, informative priors need to be incorporated in the imputation mod-
els to guarantee this strict privacy definition. All the multiple imputation combining
rules developed so far are based on the assumption that noninformative priors are
used in the imputation models. Charest (2010) illustrates that applying the standard
combining rules for fully synthetic datasets described in Section 6.1 will lead to
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biased results under the multinomial/Dirichlet model proposed by Abowd and Vil-
huber (2008).

Still, the definition of ε-differential privacy is very appealing since it is the only
concept that guarantees a formal level of privacy independent of the actual data –
the agency only needs to select an SDC method that can guarantee ε-differential pri-
vacy and knows directly how protected the generated datasets are. Furthermore, the
agency can also select the level of privacy guaranteed by defining ε . But the mea-
sure is based on the very strong assumption that the intruder knows all records in
the dataset except one and measures how much information the intruder can reveal
about this one record. To keep this information low, strong requirements for the SDC
method are necessary, namely that the transition matrix between the observed and
the released data doesn’t contain any zeros (i.e., any point in the outcome space of a
variable must be reachable with positive probability from any given observed value
through the transition function between the original and the disclosure-protected
data implicitly specified by the SDC method). For many datasets, this would mean
that some very unlikely or even unrealistic events must be reachable with posi-
tive probability. Thus, the gain in data protection can come at a very high price in
terms of data quality. For this reason, Machanavajjhala et al. (2008) defined (ε,δ )-
probabilistic differential privacy, where 1 − δ is the probability that (6.8) holds.
This measure has been developed for the multinomial/Dirichlet model. Further re-
search is necessary to investigate whether it is possible to either adjust the combin-
ing rules to allow for informative priors or to develop synthesis models that fulfill
ε-differential privacy without the need to define informative priors.

6.4 Application of the fully synthetic approach to the IAB

Establishment Panel

To generate fully synthetic datasets for the IAB Establishment Panel, information
from the sampling frame of the Establishment Panel is necessary. I obtain this in-
formation by aggregating the German Social Security Data (GSSD) to the estab-
lishment level. From this aggregated dataset, I can sample new records that provide
the basis for the generation of the synthetic datasets. As noted earlier, the German
Social Security Data contain information on all employees covered by social secu-
rity. The notifications of the GSSD include for every employee, among other things,
the workplace and the establishment identification number. By aggregating records
with the same establishment identification number, it is possible to generate estab-
lishment information from the GSSD. As I use the 1997 wave of the IAB Estab-
lishment Panel for the analysis, data are taken and aggregated from the GSSD for
June 30, 1997 (see Figure 6.1 for all characteristics used). I use the establishment
identification number again to match the aggregated establishment characteristics
from the GSSD with the IAB Establishment Panel.

In this simulation, I only impute values for a set of variables from the 1997 wave
of the IAB Establishment Panel. As it is not feasible to impute values for the millions
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- number of employees in June 1996 
- qualification of the employees
- number of temporary employees
- number of agency workers
- working week (full-time and overtime)
- the firm‘s commitment to collective agreements
- existence of a works council
- turnover, advance performance and export share
- investment total
- overall wage bill in June 1997
- technological status
- age of the establishment
- legal form and corporate position
- overall company-economic situation
- reorganisation measures
- company further training activities
- additional information on new foundations

Information contained in the German 
Social Security Data (from 1997)
Available for all German establishments with at 
least one employee covered by social security

Information contained in the IAB 
Establishment Panel (wave 1997)
Available for establishments in the survey

Covered in both datasets
 establishment number, branch and size
 location of the establishment
 number of employees in June 1997

- number of full-time and part-time employees
- short-time employment
- mean of the employees age
- mean of wages from full-time employees
- mean of wages from all employees
- occupation
- schooling and training
- number of employees by gender
- number of German employees

 
Fig. 6.1 Included variables from the IAB Establishment Panel and the German Social Security
Data.

of establishments contained in the German Social Security Data for 1997, I sample
from this frame using the same sampling design as for the IAB Establishment Panel:
stratification by establishment size, region, and industry. Every stratum contains the
same number of units as the observed data from the 1997 wave of the Establishment
Panel.

Cross-tabulation of the stratum parameters for the 7,332 observations in our sam-
ple provides a matrix containing the number of observations for each stratum. A new
dataset can be generated easily by drawing establishments from the German Social
Security Data according to this matrix.

After matching, every dataset is structured as follows. Let N be the total number
of units in the newly generated dataset; that is, the number of units in the new sample
ns plus the number of units in the panel np, N = ns + np. Let X be the matrix of
variables with information for all observations in N. Then X consists of the variables
establishment size (from the GSSD), region and industry, and the other variables
added from the German Social Security Data. Note that the variable establishment
size is included in both the GSSD and the Establishment Panel. These two variables
need not necessarily be identical since they are reported at different points in time.
However, I use the establishment size from the GSSD as a very strong predictor
when synthesizing the establishment size in the Establishment Panel. Let Y be the
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missing data 

data from the 
new sample 

data from the IAB  
Establishment Panel 

Yexc 

Yinc 

 
X 

Fig. 6.2 The fully synthetic approach for the IAB Establishment Panel.

selected variables from the Establishment Panel, with Y = (Yinc,Yexc), where Yinc
are the observed values from the Establishment Panel and Yexc are the hypothetical
missing data for the newly drawn values in X (see Figure 6.2).

Now, values for the missing data can be imputed as outlined in Chapter 3 by
drawing Yexc from the posterior predictive distribution f (Yexc|X ,Yinc) for the N −np
unobserved values of Y . After the imputation procedure, all observations from the
GSSD and all originally observed values from the Establishment Panel are omitted
and only the imputed values for the panel are released. Results from an analysis of
these released data can be compared with the results achieved with the real data.

6.4.1 The imputation procedure

For this simulation, I only generate ten synthetic datasets. I deliberately selected a
small number of imputations to allow a direct comparison of the results with the
results of the partially synthetic approach described in Section 7.4. A larger number
of imputations is recommended in practice. Previous research has shown that re-
leasing large numbers of fully synthetic datasets improves synthetic data inferences
(Reiter, 2005b). The usual advice for multiple imputation for missing data – re-
lease five multiply imputed datasets – tends not to work well for fully synthetic data
because the fractions of “missing” information are large. Drechsler et al. (2008b)
obtain higher analytic validity by generating 100 fully synthetic datasets using the
two-stage imputation approach described in Chapter 9.

To generate the synthetic datasets, I use the FCS approach (see Section 3.1.2) as
implemented in the software IVEware (Raghunathan et al., 2002). Since most of the
continuous variables, such as establishment size, are heavily skewed, these variables
are transformed by taking the cubic root before imputation to get rid of the skewness.
In general, all variables are used as predictors in the imputation models in hopes of
reducing problems from uncongeniality (Meng, 1994;, see also Section 5.3.2). In the
multinomial logit model for the categorical variables, some explanatory variables
are dropped for multicollinearity reasons. For the imputation procedure, I use 26
variables from the GSSD and reduce the number of panel variables to be imputed
to 48 (Figure 6.1 provides a broad description of the information contained in these
variables).



6.4 Application of the fully synthetic approach to the IAB Establishment Panel 47

6.4.2 Measuring the analytical validity

To evaluate the quality of the synthetic data, I use the analysis by Zwick (2005)
described in detail in Chapter 4. Comparison results from Zwick’s regression run
on the original data and synthetic data are presented in Table 6.1. The last column
of the table measures data utility by looking at the overlap between the confidence
intervals for the estimates from the original data and the confidence intervals for the
estimates from the synthetic data as described in Section 6.2. All variables in the
regression except for the industry dummies that are part of the sampling design are
synthesized. Since all imputation models (except for some categorical variables) are
based on all variables in the dataset, the imputation model for the vocational training
variable contains all the variables that are used in the regression.

All estimates are close to the estimates from the real data and except for the
variable high number of maternity leaves expected, which is not significant at any
given significance level in the synthetic data, remain significant at the same level
when using the synthetic data. The confidence interval overlap is high for most es-
timates, but it drops below 50% for four of the 13 variables. Only for the dummy
variable that indicates establishments with 200 to 499 employees and the dummy
variable for establishments with more than 1,000 employees are the absolute devia-
tions between the estimates from the two datasets higher than 0.1 (0.138 and 0.202,
respectively). Obviously Zwick would have come to nearly the same conclusions in
his analysis if he had used the synthetic data instead of the real data. See Drechsler
et al. (2008b) for a two-stage imputation approach that could further improve the
quality of the synthetic data. These results indicate that valid statistical inferences

Table 6.1 Results from the vocational training regression for full synthesis.

Original data Synthetic data CI overlap

Redundancies expected 0.253∗∗∗ 0.293∗∗∗ 0.848
Many employees expected on maternity leave 0.262∗∗ 0.240 0.770
High qualification need expected 0.646∗∗∗ 0.601∗∗∗ 0.227
Appren. train. reaction on skill shortages 0.113∗ 0.149∗ 0.930
Training reaction on skill shortages 0.540∗∗∗ 0.532∗∗∗ 0.620
Establishment size 20–199 0.684∗∗∗ 0.649∗∗∗ 0.857
Establishment size 200–499 1.352∗∗∗ 1.215∗∗∗ 0.457
Establishment size 500–999 1.346∗∗∗ 1.404∗∗∗ 0.382
Establishment size 1,000 + 1.955∗∗∗ 1.753∗∗∗ 0.932
Share of qualified employees 0.787∗∗∗ 0.812∗∗∗ 0.437
State-of-the-art tech. equipment 0.171∗∗∗ 0.186∗∗∗ 0.712
Collective wage agreement 0.255∗∗∗ 0.293∗∗∗ 0.901
Apprenticeship training 0.490∗∗∗ 0.423∗∗∗ 0.534

Industry, East Germany dummies Yes

Notes: ∗ Significant at the 5% level,∗∗ significant at the 1% level,∗∗∗ significant at the 0.1% level.
Source: IAB Establishment Panel 1997 without newly founded establishments and

establishments not represented in the GSSD; regression according to Zwick (2005).
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can be achieved using the synthetic datasets, but is the confidentiality of the survey
respondents guaranteed? Disclosure of potentially sensitive information could be
possible, when the following two conditions are fulfilled:

1. An establishment is included in the original dataset and in at least one of the
newly drawn samples.2

2. The original values and the imputed values for this establishment are nearly the
same.

6.4.3 Assessing the disclosure risk

To determine the disclosure risk in this setting, I assume that the intruder would
search for records that appear in more than one of the ten new samples. Since the
intruder doesn’t know if any establishment in the synthetic datasets is also included
in the original dataset, she may use the probability of inclusion in the synthetic
datasets as an estimator for the probability that this record is also included in the
original survey.

Identifying records that were also included in the original survey is rational for
the intruder since their data were used to fit the imputation models. Thus, the chance
that their imputed values are close to the original values arguably is higher than for
records that were not included in the original survey. Table 6.2 displays how often

Table 6.2 How many records are sampled how often in the new samples?

Occurrence in sample(s) Number of records Percentage

1 45,553 82.75%
2 5,600 10.17%
3 1,805 3.28%
4 873 1.59%
5 507 0.92%
6 320 0.58%
7 164 0.30%
8 99 0.18%
9 45 0.08%

10 86 0.16%

Total 55,052 100%

2 In theory, it is possible that even units that did not participate in the survey will face an increased
risk of disclosure if they are included in the released synthetic datasets and their generated values
are close to the true values. Since I do not have any information regarding the survey questions for
these units, I can only compare the synthetic values with the true values for the survey respondents.
Arguably, the risk of imputing values that are too close to the true values is higher for the survey
respondents since their data were used to fit the models. Thus, if the risks for these units are low,
they should be low for those units that did not participate in the survey, too.
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Table 6.3 Establishments from the IAB Establishment Panel that also occur in at least one of the
new samples.

Occurrence in sample(s) number of records percentage

None 4,469 61.0%
1 1,091 14.9%
2 535 7.3%
3 362 4.9%
4 275 3.8%
5 199 2.7%
6 144 2.0%
7 89 1.2%
8 53 0.7%
9 32 0.4%

10 83 1.1%

Total 7,332 100%

different records occur in the synthetic samples. Overall, 55,052 establishments are
sampled in the synthetic datasets. The vast majority are sampled only once or twice.
Only roughly 7% of the establishments are sampled at least three times, and less
than 1% are sampled more than six times. But even if the intruder is able to identify
records that are sampled more than once, which in itself is a difficult task, since al-
most all values are imputed and thus differ from sample to sample, he cannot be sure
whether this record really is included in the original survey. Table 6.3 displays how
often the records from the original survey actually occur in the synthetic samples.
Of the establishments included in the original survey, 61.0% do not occur in any
of the ten new drawn samples, 14.9% are contained in one of the ten samples, and
only 5.5% can be found more than five times. Larger establishments have a higher
probability of inclusion in the original survey (for some of the cells of the stratifica-
tion matrix, this probability is close to one). Since I use the same sampling design
for drawing new establishments for our synthetic datasets, this means that larger es-
tablishments also have a higher probability of being included in the original survey
and in at least one of the new samples. Keeping that in mind, having only 25% of
establishments with 200 to 999 employees and 49% of establishments with 1000+
employees in at least one of the new samples is a very good result in terms of data
confidentiality (see Figure 6.3).

Comparing Tables 6.2 and 6.3, it is obvious that only for the records that occur
in all ten datasets the probability that these records are also included in the origi-
nal survey is very high. Of these establishments, 96.5% (83 of the 86 records) are
contained in the original survey. But this probability decreases quickly. It is 71.1%,
53.5%, and 54.3% for establishments that occur in nine, eight and seven samples,
respectively. For establishments that occur less than seven times, the probability is
always lower than 50%.
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Fig. 6.3 Occurrence of establishments already included in the original survey by establishment
size.

But even if a record is correctly identified, the intruder will only benefit from the
identification if the imputed values of these establishments are close to the original
ones. The second step of my evaluation therefore takes a closer look at the estab-
lishments from the survey that appear at least once in the newly drawn samples.
Using only these establishments, the differences between original and imputed val-
ues can be detected. For each synthetic record that is also included in the original
survey, I compare the imputed value with the true value. Binary variables tend to
have a matching rate between 60% and 90% (i.e., for 60% to 90% of these synthetic
records, the imputed binary value is the same as the true value from the survey).
Multiple-response questions with few categories show a high rate of identical an-
swers in the total item block, too. But with an increase in the number of categories,
this rate decreases rapidly. For example, for an imputed multiple-response variable
consisting of four categories, the probability of having the same values for all four
categories is about 57%. This probability decreases to about six percent if the num-
ber of categories increases to 13.

Imputed numeric variables always differ more or less from the original value. To
evaluate the uncertainty for an intruder wanting to identify an establishment using
the imputed data, I examine the variable establishment size for the 83 establishments
that appear in all ten datasets. The average relative difference between the imputed
and the original values is 21%. A plot of the distribution of the relative difference
for each record in each synthetic dataset shows that there are outliers for which the
imputed values are two, three, or even four times higher than the original ones (see
Figure 6.4). Thus, for an intruder who wants to identify an establishment using his
knowledge of the true size of the establishment, the imputed variable establishment
size will hardly be of any use.

Summing up the second step, I find that for establishments that are represented
in both datasets, up to 90% of some imputed binary variables are identical to the
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Fig. 6.4 Histogram of the relative difference between original and imputed values for the variable
establishment size.

original values. But just one binary variable won’t be sufficient to identify a single
establishment. Using more binary variables, the risk of identical values will de-
crease quickly. If, for example, we assume the intruder needs five binary variables
for identification and the variables are independently distributed, the risk will be
0.95 = 0.59. Normally an intruder needs variables with more information than just
two categories for a successful reidentification. But as shown for the variable estab-
lishment size, the chance of identifying an establishment by combining information
from numeric and categorical variables is very low.

These results together with the results for the data utility in Section 6.4.2 indicate
that a release of the described subset of the data would be possible. Of course, the
data utility for different estimates should be evaluated in detail for different kinds of
estimates before an actual release.



Chapter 7

Partially Synthetic Datasets1

As of this writing, no agency has adopted the fully synthetic approach discussed in
the previous chapter, but some agencies have adopted a variant of Rubin’s original
approach suggested by Little (1993): release datasets comprising the units origi-
nally surveyed with some collected values, such as sensitive values or values of key
identifiers, replaced with multiple imputations. These are called partially synthetic
datasets. For example, the U.S. Federal Reserve Board protects data in the Survey of
Consumer Finances by replacing large monetary values with multiple imputations
(Kennickell, 1997). In 2007, the U.S. Census Bureau released a partially synthetic,
public use file for the Survey of Income and Program Participation (SIPP) that in-
cludes imputed values of social security benefits information and dozens of other
highly sensitive variables (http://www.census.gov/sipp/synth data.h
tml). The Census Bureau also protects the identities of people in group quarters
(e.g., prisons, shelters) in the public use files of the American Community Survey
by replacing demographic data for people at high disclosure risk with imputations.
The latest release of a synthetic data product by the Census Bureau is a synthetic
version of the Longitudinal Business Database (Kinney et al., 2011) that is avail-
able as a public use dataset through the VirtualRDC’s Synthetic Data Server located
at Cornell University (http://www.vrdc.cornell.edu/news/data/lbd-
synthetic-data/). Partially synthetic, public use datasets are in the develop-
ment stage in the U.S. for the Longitudinal Employer–Household Dynamics survey
and the American Community Survey veterans and full sample data.

7.1 Inference for partially synthetic datasets

Following Reiter (2003, 2004), let Z j = 1 if unit j is selected to have any of its
observed data replaced, and let Z j = 0 otherwise. Let Z = (Z1, . . . ,Zs), where s is the
number of records in the observed data. Let Y = (Yrep,Ynrep) be the data collected

1 Most of this chapter is taken from Drechsler et al. (2008a) and Drechsler and Reiter (2008).
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in the original survey, where Yrep includes all values to be replaced with multiple
imputations and Ynrep includes all values not replaced with imputations. Let Y (i)

rep

be the replacement values for Yrep in synthetic dataset i. Each Y (i)
rep is generated by

simulating values from the posterior predictive distribution f (Y (i)
rep|Y,Z), or some

close approximation to the distribution such as those of Raghunathan et al. (2001).
The agency repeats the process m times, creating D(i) = (Ynrep,Y

(i)
rep) for i = 1, . . . ,m,

and releases D = {D(1), . . . ,D(m)} to the public.

7.1.1 Univariate estimands

To get valid inferences, secondary data users can use the combining rules presented
by Reiter (2003). Let Q be an estimand, such as a population mean or regression
coefficient. Suppose that, given the original data, the analyst estimates Q with some
point estimator q and the variance of q with some estimator u. For simplicity, assume
that there are no data with items missing in the observed dataset. Generating par-
tially synthetic datasets if the original data are subject to nonresponse is discussed
in Chapter 8. Let q(i) and u(i) be the values of q and u in synthetic dataset D(i) for
i= 1, ...,m. The analyst computes q(i) and u(i) by acting as if each D(i) is the genuine
data. The following quantities are needed for inferences for scalar Q:

q̄m =
m

∑
i=1

q(i)/m, (7.1)

bm =
m

∑
i=1

(q(i)− q̄m)
2/(m−1), (7.2)

ūm =
m

∑
i=1

u(i)/m. (7.3)

The analyst then can use q̄m to estimate Q and

Tp = bm/m+ ūm (7.4)

to estimate the variance of q̄m.
Similar to the variance estimator for multiple imputation of missing data, bm/m

is the correction factor for the additional variance due to using a finite number of
imputations. However, the additional bm necessary in the missing-data context is not
necessary here since ūm already captures the variance of Q given the observed data.
This is different in the missing-data case, where ūm is the variance of Q given the
completed data and ū+bm is the variance of Q given the observed data.

When n is large, inferences for scalar Q can be based on t distributions with
degrees of freedom νp = (m−1)(1+ ūm/(bm/m))2. Note that the variance estimate
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Tp can never be negative, so no adjustments are necessary for partially synthetic
datasets.

7.1.2 Multivariate estimands

Significance tests for multicomponent estimands are presented by Reiter (2005c).
The derivations are based on the same ideas as those described in Section 5.1.2. Let
q̄m, bm, and ūm be the multivariate analogs to q̄m, bm, and ūm defined in (7.1) to
(7.3). Let us assume the user is interested in testing a null hypothesis of the form
Q = Q0 for a multivariate estimand with k components. Following the notation in
Reiter and Raghunathan (2007), the Wald statistic for this test is given by

Sp = (q̄m −Q0)
T ū−1

m (q̄m −Q0)/(k(1+ rp)), (7.5)

where rp = (1/m)tr(BmŪ−1
m )/k. The reference distribution for Sp is an F distribu-

tion, Fk,νp , with νp = 4+(t −4)(1+(1−2/t)/rp)
2, where t = k(m−1). Synthetic

datasets generally require a larger number of imputations m than standard multiple
imputation for nonresponse since the fractions of “missing” information tend to be
large. Thus, generating less than m = 4 synthetic datasets is not recommended, and
I do not consider alternative degrees of freedom for t ≤ 4 as I did in Section 5.1.2.

If Q contains a large number of components k, using ūm can be cumbersome.
As pointed out by Meng and Rubin (1992), it might be more convenient to use a
likelihood ratio test in this case. Reiter (2005c) also presents the derivations for this
test for partially synthetic datasets.

Again following the notation given in Reiter and Raghunathan (2007), let ψ be
the vector of parameters in the analyst’s model, and let ψ(i) be the maximum like-
lihood estimate of ψ computed from D(i), where D(i) is the ith imputed dataset
and i = 1, ...,m. The analyst is interested in testing the hypothesis that Q(ψ) = Q0,
where Q(ψ) is a k-dimensional function of ψ . Let ψ(i)

0 be the maximum likeli-
hood estimate of ψ obtained from D(i) subject to Q(ψ) = Q0. The log-likelihood
ratio test statistic associated with D(i) is L(i) = 2log f (D(i)|ψ(i))−2log f (D(i)|ψ(i)

0 ).
Let L̄ = ∑m

i=1 L(i)/m, ψ̄ = ∑m
i=1 ψ(i)/m, and ψ̄0 = ∑m

i=1 ψ(i)
0 /m. Finally, let L̄0 =

(1/m)∑m
i=1(2log f (D(i)|ψ̄)−2log f (D(i)|ψ̄0)), the average of the log-likelihood ra-

tio test statistics evaluated at ψ and ψ0. The likelihood ratio test statistic is given
by

Ŝp = L̄0/(k(1+ r̂p)), (7.6)

where r̂p = (1/t)(L̄− L̄0). The reference distribution for Ŝp is Fk,ν̂p , where ν̂p is
defined as for νp using r̂p instead of rp.
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7.2 Analytical validity for partially synthetic datasets

To evaluate the analytical validity of partially synthetic datasets, we can use the
same methods as for fully synthetic datasets, namely measuring the confidence in-
terval overlap between confidence intervals obtained from the synthetic data and
confidence intervals obtained from the original data or measuring how well one
can discriminate between the original and the synthetic data based on the ideas of
propensity score matching. See Section 6.2 for details.

7.3 Disclosure risk for partially synthetic datasets

The disclosure risk is higher for partially synthetic datasets than it is for fully syn-
thetic datasets, especially if the intruder knows that some unit participated in the
survey, since true values remain in the dataset and imputed values are generated
only for the survey participants and not for the whole population. Thus, for partially
synthetic datasets, assessing the risk of disclosure is as important an evaluation step
as assessing the data utility. It is essential that the agency identifies and synthesizes
all variables that bear a risk of disclosure. A conservative approach would be to also
impute all variables that contain the most sensitive information. Once the synthetic
data are generated, careful checks are necessary to evaluate the disclosure risk for
these datasets. Only if the datasets prove to be useful both in terms of data utility
and in terms of disclosure protection should a release be considered.

As noted above, the risk of disclosure significantly increases if the intruder knows
who participated in a survey. Thus, it is important to distinguish between a scenario
in which the intruder knows that the target he is looking for is in the data and a
scenario in which the intruder has some external information but does not know
whether any of the targets he is looking for are actually included in the survey. For
most surveys, the latter case will be a more realistic assumption, but there might be
situations in which it is publicly known who participated in a survey or the agency
might want to release a complete synthetic population. I therefore start by present-
ing methods to evaluate the disclosure risk under the conservative assumption that
the intruder has full information about survey participation and afterwards discuss
necessary extensions to account for the additional sampling uncertainty if the in-
truder does not have any response knowledge. Both methods only evaluate the risk
of identification disclosure (i.e., the risk that a unit is correctly identified in the re-
leased data). Methods to evaluate the risk of inferential disclosure (i.e., the amount
of additional information an intruder might obtain about a unit for which she already
knows that it participated in the survey) still need to be developed for partially syn-
thetic datasets.
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7.3.1 Ignoring the uncertainty from sampling

To evaluate disclosure risks if the intruder knows which units are included in the
released data, we can compute probabilities of identification by following the ap-
proach of Reiter and Mitra (2009). Related approaches are described by Duncan
and Lambert (1989), Fienberg et al. (1997), and Reiter (2005a). Roughly, in this
approach we mimic the behavior of an ill-intentioned user of the released data who
possesses the true values of the quasi-identifiers for selected target records (or even
the entire database). To illustrate, suppose the malicious user has a vector of infor-
mation, t, on a particular target unit in the population corresponding to a unit in
the m released simulated datasets, D = {D(1), . . . ,D(m)}. Let t0 be the unique identi-
fier (e.g., establishment name) of the target, and let d j0 be the (not released) unique
identifier for record j in D, where j = 1, . . . ,s. Let M be any information released
about the simulation models.

The malicious user’s goal is to match unit j in D to the target when d j0 = t0 and
not to match when d j0 	= t0 for any j ∈ D. Let J be a random variable that equals j
when d j0 = t0 for j ∈D and equals s+1 when d j0 = t0 for some j 	∈D. The malicious
user thus seeks to calculate the Pr(J = j|t,D,M) for j = 1, . . . ,s+1. He then would
decide whether or not any of the identification probabilities for j = 1, . . . ,s are large
enough to declare an identification. Note that in this scenario Pr(J = s+1|t,D,M) =
0 because the intruder knows that the target record he is looking for is included in the
released data. Because the malicious user does not know the actual values in Yrep,
he should integrate over its possible values when computing the match probabilities.
Hence, for each record in D, we compute

Pr(J = j|t,D,M) =
∫

Pr(J = j|t,D,Yrep,M)Pr(Yrep|t,D,M)dYrep. (7.7)

This construction suggests a Monte Carlo approach to estimating each Pr(J =
j|t,D,M). First, sample a value of Yrep from Pr(Yrep|t,D,M). Let Y new represent
one set of simulated values. Second, compute Pr(J = j|t,D,Yrep = Y new,M) using
exact or, for continuous synthesized variables, distance-based matching assuming
Y new are collected values. This two-step process is iterated R times, where ide-
ally R is large, and (1) is estimated as the average of the resultant R values of
Pr(J = j|t,D,Yrep = Y new,M). When M has no information, the malicious user can
treat the simulated values as plausible draws of Yrep.

To illustrate, suppose that region and employee size are the only quasi-identifiers
in a survey of establishments. A malicious user seeks to identify an establishment
in a particular region of the country with 125 employees. The malicious user knows
that this establishment is in the sample. Suppose that the agency releases m datasets
after simulating only employment size, without releasing information about the im-
putation model. In each D(i), the malicious user would search for all establishments
matching the target on region and having synthetic employee size within some inter-
val around 125, say 110 to 140. The agency selects the intervals for employment size
based on its best guess of the amount of uncertainty that intruders would be willing
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to tolerate when estimating true employee sizes. Let N(i) be the number of records
in D(i) that meet these criteria. When no establishments with all of those character-
istics are in D(i), set N(i) equal to the number of establishments in the region (i.e.,
match on all non-simulated quasi-identifiers). For any j,

Pr(J = j|t,D,M) = (1/m)∑
i
(1/N(i))(Y new,i

j = t), (7.8)

where (Y new,i
j = t) = 1 when record j is among the N(i) matches in D(i) and equals

zero otherwise. Similar computations arise when simulating region and employee
size: the malicious user exactly matches on the simulated values of region and
distance-based matches on employee size to compute the probabilities.

Following Reiter (2005a) and Drechsler and Reiter (2008), I quantify disclosure
risk with summaries of these identification probabilities. It is reasonable to assume
that the malicious user selects as a match for t the record j with the highest value of
Pr(J = j|t,D,M), if a unique maximum exists. I consider three risk measures: the
expected match risk, the true match risk, and the false match rate. To calculate them,
we need some further definitions. Let c j be the number of records in the dataset
with the highest match probability for the target t j for j = 1, ...,s; let I j = 1 if the
true match is among the c j units and I j = 0 otherwise. Let Kj = 1 when c jI j = 1
and Kj = 0 otherwise. The expected match risk can now be defined as ∑ j (1/c j)I j.
When I j = 1 and c j > 1, the contribution of unit j to the expected match risk reflects
the intruder randomly guessing at the correct match from the c j candidates. The true
match risk equals ∑ j Kj. Finally, let Fj = 1 when c j(1−I j)= 1 and Fj = 0 otherwise,
and let s equal the number of records with c j = 1. The false match rate equals ∑Fj/s.
It is important to note that these summary statistics are helpful to summarize the
overall disclosure risk for the complete data, but the real advantage of the suggested
measures is the fact that the identification probabilities are calculated on the record
level. This enables disclosure risk evaluations for specified subgroups of the data. In
some situations, only a few records in the dataset might be correctly identified but
all identified records belong to the same subgroup. In this case, an overall measure
that indicates a low disclosure risk might be misleading since the risk of disclosure,
for example for the largest establishments in the dataset, might still be very high.

7.3.2 Accounting for the uncertainty from sampling

If the intruder does not know if the target she is looking for participated in the sur-
vey, the fact that the survey usually only comprises a sample of the population adds
an additional layer of protection to the released data. In this case we can use the ex-
tensions to the measures described above suggested by Drechsler and Reiter (2008).
We simply have to replace Nt,i in (7.8) with Ft, the number of records in the popu-
lation that match the target on region and establishment size in the example above.
When the intruder and the agency do not know Ft, it can be estimated using the
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approach in Elamir and Skinner (2006), which assumes that the population counts
follow an all-two-way-interactions log-linear model. The agency can determine the
estimated counts, F̂t, by fitting this log-linear model with Dobs. Alternatively, since
Dobs is in general not available to intruders, the agency can fit a log-linear model
with each Di, resulting in the estimates F̂t,i for i = 1, . . . ,m. Note that in this sce-
nario Pr(J = s+1|t,D,M) = 1−∑s

j=1 Pr(J = j|t,D,M).
For some target records, the value of Nt,i might exceed Ft (or F̂t if it is used). It

should not exceed F̂t,i since F̂t,i is required to be at least as large as Nt,i. For such
cases, we presume that the intruder sets Pr(J = s+1|t,D,M) = 0 and picks one of
the matching records at random. To account for this case, we can rewrite (7.8) for
j = 1, . . . ,s as

Pr(J = j|t,D,M) = (1/m)∑
i

min(1/Ft,1/Nt,i)(Y new
i j = t). (7.9)

We can use the three summary statistics of the identification probabilities de-
scribed in Section 7.3.1, with the important difference that we also have to consider
Pr(J = s+1|t,D,M), the probability for a match outside the sample. In many cases,
this will be the highest match rate. It is reasonable to assume that the intruder does
not match whenever Pr(J = s+ 1|t,D,M) is the maximum probability for the tar-
get. If this assumption is considered too strong, the data-disseminating agency can
define a threshold γ and assume that the intruder matches to the released data only
when Pr(J = s+1|t,D,M)≤ γ , where 0 ≤ γ ≤ 1.

7.4 Application of the partially synthetic approach to the IAB

Establishment Panel

To achieve results that can be compared with the results in Section 6.4, I use the
same subset of variables from the 1997 wave as in the fully synthetic application
(see Section 6.4 for a description of the variables selected).

For the partially synthetic datasets, I replace only two variables (the number of
employees and the industry, coded in 16 categories) with synthetic values. If the data
should actually be released to the public, some other variables would have to be syn-
thesized, too. Identifying all the variables that provide a potential disclosure risk is
an important and labor-intensive task. Nevertheless, the two variables mentioned
above definitely impose a high risk of disclosure since they are easily available in
public databases and especially large firms can be identified without difficulty using
only these two variables. I define a multinomial logit model for the imputation of
the industry code and a linear model stratified by four establishment size classes de-
fined by quartiles for the number of employees. For the partially synthetic datasets,
I use the same number of variables in the imputation model as in the fully synthetic
data example (26 from the German Social Security Data (GSSD), 48 from the es-
tablishment panel), but the original sample is used and no additional samples are
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drawn from the GSSD. As in the fully synthetic data example, I generate ten syn-
thetic datasets to allow a direct comparison of the results with the results in Section
6.4.2.

7.4.1 Measuring the analytical validity

For an evaluation of the utility of the partially synthetic data, I compare analytic
results achieved with the original data with results from the synthetic data. The
regression results in Table 7.1 are again based on the analysis by Zwick (2005)
described in detail in Chapter 4.2

All estimates are very close to the estimates from the real data, and except for the
variables many employees expected on maternity leave and apprenticeship training
reaction on skill shortages, for which the significance level increases from 1% to
0.1% and from 5% to 1% respectively, remain significant at the same level when
using the synthetic data. With an average of 0.925 over all 13 estimates, the confi-
dence interval overlap is very high. Only the effect of the largest establishment size
class is slightly underestimated, leading to a reduced overlap of 0.685. For all other
estimates, the overlap is above 0.85, indicating very high quality for the synthetic

Table 7.1 Results from the vocational training regression for partial synthesis.

Original data Synthetic data CI overlap

Redundancies expected 0.250∗∗∗ 0.259∗∗∗ 0.956
Many employees expected on maternity leave 0.267∗∗ 0.316∗∗∗ 0.869
High qualification need expected 0.648∗∗∗ 0.653∗∗∗ 0.982
Appren. train. reaction on skill shortages 0.115∗ 0.121∗∗ 0.969
Training reaction on skill shortages 0.539∗∗∗ 0.547∗∗∗ 0.962
Establishment size 20–199 0.682∗∗∗ 0.695∗∗∗ 0.920
Establishment size 200–499 1.350∗∗∗ 1.335∗∗∗ 0.936
Establishment size 500–999 1.344∗∗∗ 1.344∗∗∗ 0.994
Establishment size 1,000 + 1.956∗∗∗ 1.754∗∗∗ 0.685
Share of qualified employees 0.789∗∗∗ 0.803∗∗∗ 0.948
State-of-the-art tech. equipment 0.170∗∗∗ 0.175∗∗∗ 0.962
Collective wage agreement 0.257∗∗∗ 0.275∗∗∗ 0.894
Apprenticeship training 0.488∗∗∗ 0.496∗∗∗ 0.953

Industry, East Germany dummies Yes

Notes: ∗ Significant at the 5% level,∗∗ significant at the 1% level,∗∗∗ significant at the 0.1% level.
Source: IAB Establishment Panel 1997 without newly founded establishments and

establishments not represented in the GSSD; regression according to Zwick (2005).

2 For simplicity, I impute all missing values first and treat one fully imputed dataset as the original
data. Since missing rates are low for all variables used in the regression, results for the original
data only change in the third digit compared with the results in Table 6.1. See Chapter 8 on how to
correctly generate synthetic datasets from data that are subject to nonresponse.
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data. Obviously, Zwick would have come to the same conclusions in his analysis if
he had used the partially synthetic data instead of the real data.

7.4.2 Assessing the disclosure risk

To evaluate the risk of disclosure, I apply the disclosure risk measures described in
Section 7.3.1 (i.e. I assume, the intruder knows, who participated in the survey). I
further assume the intruder knows the true values for the number of employees and
industry. This is a conservative scenario but gives, in some sense, an upper bound
on the risk for this level of intruder knowledge. For an application of the disclosure
risk measures without response knowledge, see Section 8.3.5. Intruders might also
know other variables in the file, in which case the agency may need to synthesize
them as well. The intruder computes probabilities using the approach outlined in
Section 7.3.1. I assume that the agency does not reveal the synthesis model to the
public, so that the only information in M is that establishment size and industry were
synthesized. For a given target t, records from each D(i) must meet two criteria to
be possible matches. First, the record’s synthetic industry code must exactly match
the target’s true industry code. Second, the record’s synthetic number of employees
lies within an agency-defined interval around the target’s true number of employ-
ees. Acting as the agency, I define the interval as follows. I divide the true number
of employees (transformed by taking the cubic root) into 20 quantiles and calculate
the standard deviation of the number of employees within each quantile. The inter-
val is te ± sds, where te is the target’s true value and sds is the standard deviation
of the quantile in which the true value falls. When there are no synthetic records
that fulfill both matching criteria, the intruder matches only on the industry code. I
use 20 quantiles because this is the largest number of groups that guarantees at least
some variation within each group. Using a larger number of quantiles results in
groups with only one value of employment, which forces exact matching for targets
in those quantiles. On the other hand, using a small number of quantiles does not
differentiate adequately between small and large establishments. For small estab-
lishments, potential matches should deviate only slightly from the original values.
For large establishments, higher deviations are acceptable.

Given this matching scenario, both, the expected match risk and the true match
risk would be 139 (i.e. the intruder would get 139 true correct single matches from
the 7,332 records in her target file). The false match rate would be 98.1%. There
is no obvious common pattern for the identified records. Neither for the region nor
for the industry does the distribution of the identified records differ significantly
from the distribution in the underlying data. The identified records consist of very
small and very large establishments. However, as one might expect, the actual risk
of disclosure depends on establishment size. While only 1.38% of the establish-
ments with less than 100 employees are identified, this rate increases to 1.87% for
establishments with 100–1,000 employees and to 5.21% for establishments with
more than 1,000 employees. Considering the fact that the intruder matches on 7,332
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records and never knows which of the 7,330 single matches she obtains are actually
correct matches, the risk is very moderate, especially since these measures are based
on the very conservative assumptions that (i) the intruder knows who participated in
the survey and (ii) has exact information on the industry code and the establishment
size for all the survey participants. If the agency deems the risk of disclosure still too
high, it might broaden the industry codes or suppress this information completely
in the released file. Another possibility would be to use less detailed models for the
large establishments to ensure a higher level of perturbation for these records. As an
alternative, the agency might consider releasing fully synthetic datasets instead.

7.5 Pros and cons of fully and partially synthetic datasets

Obviously there are advantages and disadvantages for the partially and the fully
synthetic approach. The fully synthetic approach provides a very high level of dis-
closure protection, rendering the identification of single units in the released data
almost impossible. Partially synthetic datasets cannot offer such a high level of pro-
tection per se since true values remain in the data and synthetic values are only
generated for units that participated in the survey. This means that evaluating the
disclosure risk is as important a step as evaluating the data quality for partially syn-
thetic datasets.

Nevertheless, partially synthetic datasets have the important advantage that in
general the data utility will be higher since only for some variables do the true values
have to be replaced with imputed values, so by definition the joint distribution for
all the unchanged variables will be exactly the same as in the original dataset. The
quality of the synthetic datasets will depend highly on the quality of the underlying
models, and for some variables it will be very hard to define good models, especially
if logical constraints and skip patterns should be preserved. But if these variables do
not contain any sensitive information or information that might help identify single
respondents, why bother to find these models? Why bother to perturb these variables
in the first place? Furthermore, the risk of biased imputations will increase with the
number of variables that are imputed if the SRMI approach (see Section 3.1.2) is
used for imputations. If one of the variables is imputed based on a bad model, the
biased imputed values for that variable could be the basis for the imputation of
another variable and this variable again could be used for the imputation of another
one and so on. Thus, a small bias could increase to a really problematic bias over
the imputation process.

A comparison of the results in Sections 6.4.2 and 7.4.1 underlines these thoughts.
The partially synthetic datasets provide higher data quality in terms of lower devi-
ation from the true estimates and higher confidence interval overlap between esti-
mates from the original data and estimates from the synthetic data for almost all
estimates. Still, this increase in data utility comes at the price of an increase in the
risk of disclosure. Although the disclosure risk for fully synthetic datasets might
not be zero, the disclosure risk will definitely be higher if true values remain in the
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dataset and the released data are based only on survey participants. Thus, it is im-
portant to make sure that all variables that might lead to disclosure are imputed in
such a way that confidentiality is guaranteed. This means that a variety of disclo-
sure risk checks are necessary before the data can be released, but this is a problem
common to all perturbation methods that are based only on the information from
the survey respondents. Agencies willing to release synthetic public use files will
have to consider carefully which approach best suits their datasets. If the data con-
sist only of a small number of variables and imputation models are easy to set up,
the agencies might consider releasing fully synthetic datasets since these datasets
will provide the highest confidentiality protection, but if there are many variables
in the data considered for release and the data contain a lot of skip patterns, log-
ical constraints, and questions that are asked of only a small subgroup of survey
respondents, the agencies might be better off releasing partially synthetic datasets
and include a detailed disclosure risk study in their evaluation of the quality of the
datasets considered for release.



Chapter 8

Multiple Imputation for Nonresponse and

Statistical Disclosure Control1

Most if not all surveys are subject to item nonresponse, and even registers can con-
tain missing values, if implausible values are set to missing during the data-editing
process. Since the generation of synthetic datasets is based on the ideas of multi-
ple imputation, it is reasonable to use the approach to impute missing values and
generate synthetic values simultaneously. At first glance, it seems logical to impute
missing values and generate synthetic values in one step using the same model as
for the originally observed values. However, as Reiter (2004) points out, this can
lead to biased imputations if only a subset of the data (e.g., the income for units
with income above $100,000) should be replaced with synthetic values but the im-
putation model for the missing values is based on the entire dataset. To allow for
different models, Reiter (2004) suggests imputation in two stages. In the first stage,
all missing values are imputed m times using the standard multiple-imputation ap-
proach for nonresponse (see Chapter 5). In the second stage, all values that need
to be replaced are synthesized r times in every first-stage nest, leading to a total of
M = m ∗ r datasets that are released to the public. Each released dataset includes
a label indicating the first-stage imputed dataset from which it was generated. As
of this writing, only the combining rules for partially synthetic datasets have been
derived. Developing the correct combining rules for fully synthetic datasets if the
original data are subject to nonresponse is an area for future research.

8.1 Inference for partially synthetic datasets when the original

data are subject to nonresponse

The two-stage imputation described above generates two sources of variability: first,
when missing values are imputed, and second, when sensitive or identifying vari-
ables are replaced with synthetic values. Neither the combining rules for the im-
putation of missing values described in Section 5.1 nor those for synthetic datasets

1 Most of this chapter is taken from Drechsler (2011b).

J. Drechsler, Synthetic Datasets for Statistical Disclosure Control: Theory and Implementation,  
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described in Sections 6.1 and 7.1 correctly reflect these two sources of variability.
Reiter (2004) derived the combining rules necessary to obtain valid inferences in
this two-stage setting for partially synthetic datasets.

8.1.1 Univariate estimands

Again, let Q be an estimand, such as a population mean or regression coefficient.
Suppose that, given the original data, the analyst estimates Q with some point es-
timator q and the variance of q with some estimator u. Let q(i, j) and u(i, j) be the
values of q and u in synthetic dataset D(i, j) for i = 1, ...,m and j = 1, ...,r. The an-
alyst computes q(i, j) and u(i, j) by acting as if each D(i, j) is the genuine data. The
following quantities are needed for inferences for scalar Q:

q̄M =
m

∑
i=1

r

∑
j=1

q(i, j)/(mr) =
m

∑
i=1

q̄(i)/m, (8.1)

b̄M =
m

∑
i=1

r

∑
j=1

(q(i, j)− q̄(i))2/m(r−1) =
m

∑
i=1

b(i)/m, (8.2)

BM =
m

∑
i=1

(q̄(i)− q̄M)2/(m−1), (8.3)

ūM =
m

∑
i=1

r

∑
j=1

u(i, j)/(mr). (8.4)

The analyst then can use q̄M to estimate Q and

TP = (1+1/m)BM − b̄M/r+ ūM (8.5)

to estimate the variance of q̄M .
When n is large, inferences for scalar Q can be based on t distributions with

degrees of freedom

νP =

(
((1+1/m)BM)2

(m−1)T 2
M

+
(b̄M/r)2

m(r−1)T 2
M

)−1

. (8.6)

Similar to the variance estimate for fully synthetic datasets, TP can become nega-
tive since b̄M/r is subtracted. In this case, Reiter (2008b) suggests using the conser-
vative variance estimator T ad j

P = (1+1/m)Bm + ūM . This estimator is equivalent to
the variance estimator for multiple imputation for missing data. Consequently, the
degrees of freedom are given by

νad j
P = (m−1)(1+mūM/((m+1)BM))2. (8.7)

Generally, negative variances can be avoided by increasing m and r.
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8.1.2 Multivariate estimands

Significance tests for multicomponent estimands for partially synthetic datasets are
presented in Kinney and Reiter (2010). The derivations are based on the same ideas
as those described in Section 5.1.2. Let q̄M , b̄M , BM , and ūM be the multivariate
analogs to q̄M , b̄M , BM , and ūm defined in (8.1) to (8.4). Let us assume the user is
interested in testing a null hypothesis of the form Q=Q0 for a multivariate estimand
with k components. Following the notation in Kinney and Reiter (2010), the Wald
statistic for this test is given by

SM = (Q0 − q̄M)T ū−1
M (Q0 − q̄M)/(k(1+ rB − rb)), (8.8)

where rB = (1+1/m)tr(BMū−1
M )/k and rb = (1/r)tr(b̄Mū−1

M )/k. The reference dis-
tribution for SM is an F distribution, Fk,νM , with

νM = 4+
(

1+
rBνB

νB−2
− rbνb

νb−2

)2/(
(rBνB)

2

(νB−2)2(νB−4)
+

(rbνb)
2

(νb−2)2(νb−4)

)
,

(8.9)

for νB > 4 and νb > 4, and νB = k(m−1) and νb = km(r−1). When m ≤ 3 and k is
small, νM is not defined. Generally, generating a small number of imputed datasets is
not recommended, especially since this would lead to a high probability that TM < 0.
Alternative degrees of freedom for νB ≤ 4 and νb ≤ 4 are provided in Kinney and
Reiter (2010).

If Q contains a large number of components k, using ūm can be cumbersome.
As pointed out by Meng and Rubin (1992), it might be more convenient to use a
likelihood ratio test in this case. Kinney and Reiter (2010) also present the deriva-
tions for this test for partially synthetic datasets when the original data are subject
to nonresponse.

Again following the notation given in Kinney and Reiter (2010), let ψ be the vec-
tor of parameters in the analyst’s model, and let ψ(i, j) be the maximum likelihood es-
timate of ψ computed from D(i, j), where D(i, j) is the jth synthetic dataset generated
from the ith imputed dataset and i = 1, ...,m, j = 1, ...,r. The analyst is interested
in testing the hypothesis that Q(ψ) = Q0, where Q(ψ) is a k-dimensional func-
tion of ψ . Let ψ(i, j)

0 be the maximum likelihood estimate of ψ obtained from D(i, j)

subject to Q(ψ) = Q0. The log-likelihood ratio test statistic associated with D(i, j)

is L(i, j) = 2log f (D(i, j)|ψ(i, j)
0 )−2log f (D(i, j)|ψ(i, j)). Let L̄ = ∑m

i=1 ∑r
j=1 L(i, j)/(mr),

ψ̄(i) = ∑r
j=1 ψ(i, j)/r, ψ̄(i)

0 = ∑r
j=1 ψ(i, j)

0 /r, ψ̄ = ∑m
i=1 ψ̄(i)/m, and ψ̄0 = ∑m

i=1 ψ̄(i)
0 /m.

Furthermore, let L̄0 = (1/(mr))∑m
i=1 ∑r

j=1(2log f (D(i)|ψ̄0)− 2log f (D(i)|ψ̄)), the
average of the log-likelihood ratio test statistics evaluated at ψ and ψ0. Similarly,
let L̄M = (1/(mr))∑m

i=1 ∑r
j=1(2log f (D(i)|ψ̄(i)

0 )− 2log f (D(i)|ψ̄(i))), the average of

the log-likelihood ratio test statistics evaluated at ψ(i) and ψ(i)
0 . The likelihood ratio

test statistic is given by



68 8 Multiple Imputation for Nonresponse and Statistical Disclosure Control

ŜM = L̄0/(k(1+ r̂B − r̂b)), (8.10)

where r̂B = (m+ 1)(L̄M − L̄0)/(k(m− 1)) and r̂b = (L̄− L̄M)/(k(r− 1)). The ref-
erence distribution for ŜM is Fk,ν̂M , where ν̂M is defined as for νM using r̂B and r̂b
instead of rB and rb.

8.2 Analytical validity and disclosure risk

To evaluate the data utility in this setting, we can use the same measures as for
fully synthetic or partially synthetic datasets, namely measuring the confidence in-
terval overlap between confidence intervals obtained from the synthetic data and
confidence intervals obtained from the original data or measuring how well one
can discriminate between the original and the synthetic data based on the ideas of
propensity score matching (see Section 6.2). The only difference from the standard
partially synthetic data approach is that we compare the synthetic datasets with the
datasets for which all missing values have been multiply imputed.

For disclosure risk evaluations, the disclosure risk measures described in Section
7.3 can be used for partially synthetic datasets. Depending on the scenario, measures
that assume the intruder knows who participated in a survey (see Section 7.3.1) or
measures that consider the additional uncertainty from sampling (see Section 7.3.2)
can be applied. Useful disclosure risk measures for fully synthetic datasets still need
to be developed (see Section 6.3).

8.3 Generating synthetic datasets from the multiply imputed

IAB Establishment Panel

In the remainder of this chapter, I describe all the steps that were necessary to gener-
ate a scientific use file of the 2007 wave of the IAB Establishment Panel, which was
released in January 2011. I start by briefly discussing how I selected the variables to
be synthesized. I also describe the synthesis process and the models I implemented
for the synthesis. Finally, I present results from the data utility and disclosure risk
evaluations that I performed before the actual release. I refer to Section 5.3 for a
discussion of the extensive imputation task required to impute all missing values in
the dataset.

8.3.1 Selecting the variables to be synthesized

Once all missing values in the original data have been imputed (see Section 5.3), we
can begin with the actual synthesis. The first and crucial step in the synthesis pro-
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cess is to decide which variables need to be synthesized and whether it is necessary
to synthesize all records in the dataset. In general, agencies can decide whether they
only want to select key variables for synthesis or whether they also want to syn-
thesize some of the sensitive variables. Key variables are those variables that could
be used for reidentification purposes (i.e., variables for which the intruder knows
the true values for some target records from external databases such as business or
credit information databases). Sensitive variables are all those variables that contain
information that a survey respondent would not be willing to provide to the general
public.

In theory, there is often no need to synthesize sensitive variables that are not con-
sidered key variables. If all key variables are sufficiently protected, it will not be
possible to link any record in the dataset to a specific respondent. Synthesizing sen-
sitive variables is a conservative approach that might be justified since the amount
of data available in external databases might increase over time and records that are
considered safe now might be at risk later. It also helps convince survey respondents
that their information is sufficiently protected.

For the IAB Establishment Panel, I decided to synthesize a combination of both
variable types. Obviously, key variables such as establishment size, region, and in-
dustry code need to be protected since a combination of the three variables would
enable the intruder to identify most of the larger establishments, but I also syn-
thesized the most sensitive variables in the dataset such as turnover or amount of
subsidies received from the government. Almost all numerical variables and some
of the categorical variables are synthesized.

In many datasets, it is sufficient to alter only the subset of records that are actually
at risk. These records can be found by cross-tabulating the key variables. Only those
records in cross-tabulation cells with cell counts below an agency-defined threshold
might need protection. The selective multiple imputation of keys (SMIKE) (Liu and
Little, 2002) approach aims in that direction. In this application, it might have been
sufficient to synthesize values only for the larger establishments since the sampling
uncertainty and the similarities of the small establishments will make reidentifica-
tion very difficult. Besides, arguably intruders will only be interested in identifying
some larger establishments. However, I decided to synthesize all records since, given
the large amount of information contained in the dataset (close to 300 variables), all
records are sampling uniques arguably even population uniques. Of course, only a
few variables in the dataset can be considered key variables, but once the dataset is
released, a survey respondent might try to identify himself in the released dataset.
Since the respondent knows all the answers he provided, it will be easy for him
to find himself in the dataset. If he realizes that his record is included completely
unchanged, he will feel that his privacy is at risk, even if an intruder who does not
have the same background information will never be able to identify this respon-
dent. To drive down this perceived risk, I decided to synthesize all 15,644 records
in the dataset.
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8.3.2 The synthesis task

For the synthesis, I use the sequential regression multivariate imputation approach
(SRMI) (Raghunathan et al., 2001) with linear regression models for the continuous
variables and logit models for the binary variables (see Section 3.2 for details on
how to adjust these methods for skip patterns and logical constraints). Since I always
replace all records with synthetic values for the variables at risk, the imputation task
is comparable to imputation under a monotone missingness pattern, and thus I do
not have to iterate between the imputations (see Section 3.1.2 for details).

But replacing all records with imputed values means that developing good mod-
els is essential. All variables that don’t contain any structural missings are used as
predictors in the imputation models in hopes of reducing problems from unconge-
niality (Meng, 1994). For the synthesis, I use several imputation models for every
variable whenever possible. Different models are defined for West and East Ger-
many and for different establishment size classes defined by quantiles. Depending
on the number of observations that could be used for the modeling, I define up to
eight different regression models. I do not use the multinomial logit model for the
synthesis of the polytomous variables since I already experienced problems with
this approach when imputing the missing values in the dataset (see Section 5.3).
For the synthesis, I do not want to limit the imputation models to some 30 explana-
tory variables. Furthermore, I also have to synthesize variables with a large number
of categories such as region (16 categories) and industry code (41 categories). The
multinomial model would hardly ever converge for these variables.

The standard approach for a model-based imputation of categorical variables
with many categories is the multinomial/Dirichlet approach (see, for example,
Abowd et al., 2006). The disadvantage of this approach is that covariates cannot
be incorporated into the model directly. In general, a different model is fit for a
large number of subcategories of the data, defined by cross-classifying some of the
covariates to preserve the conditional distributions in the defined classes. This ap-
proach is impractical if the number of observations in a survey is low, because the
number of observations will be too low to define suitable models in every subclass
for which the marginal distribution should be preserved. For this reason, I follow a
different strategy when synthesizing the categorical variables in the dataset. I gen-
erate synthetic values using CART models, as suggested by Reiter (2005d).

CART models are a flexible tool for estimating the conditional distribution of a
univariate outcome given multivariate predictors. Essentially, the CART model par-
titions the predictor space so that subsets of units formed by the partitions have rela-
tively homogeneous outcomes. The partitions are found by recursive binary splits of
the predictors. The series of splits can be effectively represented by a tree structure,
with leaves corresponding to the subsets of units.

CART models can also be used to generate partially synthetic data (Reiter,
2005d). To illustrate the approach, let us assume that we only want to synthesize
three categorical variables: region, industry code, and legal form. To generate syn-
thetic datasets for these three variables, we proceed as follows. Using the original
data, Dobs, we fit a tree of region on all other variables that don’t contain any struc-
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tural missings except industry code and legal form.2 Label this tree Y(R). We require
a minimum of five records in each leaf of the tree and do not prune it; see Reiter
(2005d) for a discussion of pruning and minimum leaf size. Let LRw be the wth leaf
in Y(R), and let Y LRw

(R) be the nLRw values of Y(R) in leaf LRw. In each LRw in the tree,

we generate a new set of values by drawing from Y LRw
(R) using the Bayesian bootstrap

(Rubin, 1981). These sampled values are the replacement imputations for the nLRw

units that belong to LRw. Repeating the Bayesian bootstrap in each leaf of the region
tree results in the ith set of synthetic regions, Y(R)rep,i.

Next, imputations are made for the industry code. Using Dobs, we fit the tree,
Y(I), with all variables except legal form as predictors. To maintain consistency
with Y(R)rep,i, units’ leaves in Y(I) are located using Y(R)rep,i. Occasionally, some
units may have combinations of values that do not belong to one of the leaves of
Y(I). For these units, we search up the tree until we find a node that contains the
combination, then treat that node as if it were the unit’s leaf. Once each unit’s leaf
is located, values of Y(I)rep,i are generated using the Bayesian bootstrap. Imputing
legal form follows the same process: we fit the tree Y(L) using all variables that
don’t contain any structural missings as predictors, place each unit in the leaves of
Y(L) based on their synthesized values of region and industry code, and sample new
legal forms using the Bayesian bootstrap.

I generate r = 5 datasets for every imputed dataset (i.e., m ∗ r = 25 synthetic
datasets will be released). Reiter (2008b) elaborates on the number of imputations
at stages one and two when using multiple imputation for nonresponse and disclo-
sure control simultaneously. He suggests setting m > r, especially if the fraction
of missing information is large, to reduce variance from estimating missing values.
But this approach will increase the risk of negative variance estimates since b̄M will
increase relative to BM .

In the IAB Establishment Panel, only 12 variables (out of more than 300) have
missing rates above 5%. On the other hand, I always synthesize 100% of the records.
In his simulations, Reiter (2008b) does not find a significant reduction in variance
with increasing m compared with r for 100% synthesis paired with low missing
rates. On the other hand, the risk of negative variance estimates increases signifi-
cantly. From these results, I conclude that it is preferable to set m = r in this case.

8.3.3 Measuring the analytical validity

I evaluate the analytical validity of the generated datasets by comparing analytic re-
sults achieved with the original (fully imputed) data3 with results from the synthetic

2 To improve the data quality, I actually grow several trees for different subsets of the data. The
subsets are defined by West and East Germany and by up to 25 different establishment size classes,
defined by quantiles. To simplify the notation, I illustrate the approach assuming that only one tree
is fit for each variable.
3 For convenience, I will refer to the dataset with all missing values multiply imputed as the original
data from here on.
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Table 8.1 Regression results from a probit regression of part time-employees (yes/no) on 19 ex-
planatory variables in West Germany. For the CI length ratio, the CI length of the original datasets
is in the denominator.

Original
data

Synthetic
data

CI
overlap

z-score
orig.

z-score
syn.

CI length
ratio

Intercept −0.809 −0.752 0.87 −7.23 −6.85 0.99
5–10 employees 0.443 0.437 0.97 8.52 7.99 1.06
10–20 employees 0.658 0.636 0.90 11.03 10.88 0.98
20–50 employees 0.797 0.785 0.95 13.02 12.36 1.04
100–200 employees 0.892 0.908 0.96 9.23 9.48 0.99
200–500 employees 1.131 1.125 0.99 9.99 9.87 1.01
>500 employees 1.668 1.641 0.97 8.22 8.33 0.97
Growth in employment expected 0.010 0.006 0.98 0.18 0.12 0.99
Decrease in employment expected 0.087 0.100 0.96 1.11 1.27 1.00
Share of female workers 1.449 1.366 0.73 17.63 18.71 0.89
Share of employees with univ. degree 0.319 0.368 0.91 2.18 2.59 0.97
Share of low qualified workers 1.123 1.148 0.93 12.17 11.87 1.05
Share of temporary employees −0.327 −0.138 0.75 −1.74 −0.71 1.05
Share of agency workers −0.746 −0.856 0.88 −3.09 −4.24 0.84
Employed in last 6 months 0.394 0.369 0.87 8.33 7.82 1.00
Dismissal in the last 6 months 0.294 0.279 0.92 6.38 6.03 1.00
Foreign ownership −0.113 −0.117 0.99 −1.33 −1.38 0.99
Good/very good profitability 0.029 0.033 0.98 0.72 0.82 0.99
Salary above coll. wage agreement 0.020 0.031 0.95 0.35 0.54 0.99
Collective wage agreement 0.016 0.007 0.95 0.31 0.13 0.97

data. The probit regression displayed in Tables 8.1 and 8.2 is adapted from a regres-
sion originally based on a different wave of the Establishment Panel. The dependent
variable indicates whether an establishment employs part-time employees. The 19
explanatory variables include, among others, dummies for the establishment size,
whether the establishment expects changes in the number of employees, and infor-
mation on the personnel structure. Since there are still differences within Germany,
the results are computed for West Germany (Table 8.1) and East Germany (Table
8.2) separately.

Both regressions clearly demonstrate the good data quality. All point estimates
from the synthetic data are close to the point estimates from the original data, and
the confidence interval overlap (see Section 6.2) is higher than 90% for most es-
timates, with an average of 90% for West Germany and 93% for East Germany.
Some researchers are concerned that synthetic datasets will provide valid results
for the significant variables but might provide less accurate results for variables
with lower z-scores. The results indicate that this is not true at least for this anal-
ysis. The z-scores from the synthetic data are very close to the z-scores from the
original data. This is an important result since model selections are often based
on significance levels. The last column reports the 95% confidence interval length
ratio with the confidence interval length of the original data in the denominator.
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Table 8.2 Regression results from a probit regression of part time-employees (yes/no) on 19 ex-
planatory variables in East Germany. For the CI length ratio, the CI length of the original datasets
is in the denominator.

Original
data

Synthetic
data

CI
overlap

z-score
orig.

z-score
syn.

CI length
ratio

Intercept −0.712 −0.742 0.93 −6.42 −7.21 0.93
5–10 employees 0.266 0.257 0.96 4.81 4.53 1.03
10–20 employees 0.416 0.399 0.93 6.94 6.76 0.99
20–50 employees 0.542 0.532 0.96 9.18 8.72 1.04
100–200 employees 0.757 0.808 0.86 8.02 8.47 1.01
200–500 employees 0.971 1.013 0.91 8.25 8.57 1.00
>500 employees 1.401 1.422 0.98 5.69 5.66 1.02
Growth in employment expected −0.041 −0.040 1.00 −0.73 −0.73 1.00
Decrease in employment expected 0.035 0.040 0.98 0.44 0.50 1.00
Share of female workers 1.006 1.041 0.88 12.63 14.93 0.88
Share of employees with univ. degree 0.221 0.197 0.95 1.86 1.76 0.95
Share of low qualified workers 0.976 1.042 0.87 8.44 7.84 1.19
Share of temporary employees −0.049 0.049 0.84 −0.31 0.34 0.91
Share of agency workers −0.176 −0.232 0.94 −0.73 −1.08 0.89
Employed in last 6 months 0.230 0.210 0.89 4.95 4.55 1.00
Dismissal in the last 6 months 0.301 0.295 0.97 6.43 6.35 0.99
Foreign ownership −0.176 −0.176 1.00 −1.83 −1.84 1.00
Good/very good profitability 0.097 0.097 1.00 2.35 2.37 1.00
Salary above coll. wage agreement 0.080 0.086 0.98 1.04 1.10 1.01
Collective wage agreement 0.097 0.069 0.86 1.87 1.36 0.98

Since the multiple-imputation procedure for generating synthetic datasets correctly
reflects the uncertainty in the imputation models, it can happen that the confidence
intervals from the synthetic datasets are much wider and thus less efficient than the
confidence intervals from the original data. For the variable share of low qualified
workers in Table 8.2, the confidence interval length is increased by 19%. For all
other estimands, the intervals are never increased more than 7%.

The second regression is an ordered probit regression with the expected employ-
ment trend in three categories (increase, no change, decrease) as the dependent vari-
able. In this regression, I use 39 explanatory variables and the industry dummies
as covariates. Again the analysis is computed for West Germany and East Ger-
many separately. Figure 8.1 contains a plot of the original point estimates against
the synthetic point estimates and a boxplot for the confidence interval overlap and
the confidence interval length ratio. All graphs are based on the 78 estimates from
the two regressions. Most of the point estimates in the first graph are close to the
45 degree line, indicating that the point estimates from the synthetic data are very
close to the point estimates from the original data. But even if the point estimates
differ, the data utility measured by the confidence interval overlap is high. The mea-
sure never drops below 61%, and the median overlap is 92.7%. Thus, even though
some estimates are a little off the 45 degree line, the results are close to the orig-
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Fig. 8.1 Ordered probit regression of expected employment trend on 39 explanatory variables and
industry dummies.

inal results since these coefficients are estimated with a high standard error. The
boxplot of the confidence interval length ratio indicates that we do not lose much
efficiency by using the synthetic data instead of the original data. The confidence
interval never increases by more than 5% compared with the original data. Not all
users of the data will be interested in multivariate regression analysis. For this rea-
son, I also included an evaluation of the data utility for univariate statistics. For this,
I compare the weighted overall mean and the weighted mean in different subgroups
for all continuous variables in the dataset. The subgroups are defined by establish-
ment size (ten categories, defined by quantiles), industry code (17 categories), and
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Fig. 8.2 Original point estimates against synthetic point estimates for the overall mean and the
means in subgroups defined by establishment size class, industry code, and region.

region (16 categories). I do not investigate any cross-classifications since the cell
sizes would be too small to obtain meaningful results. I also limit the evaluation to
cells with at least 200 observations above zero for the same reason. This leads to
a final number of 2,170 estimates. Figure 8.2 again presents the plots of the esti-
mates from the original fully imputed datasets against the synthetic estimates. For
readability, the plots are divided into four parts depending on the original value of
the mean ([0;10],(10;50],(50;500],(500;∞)). Most of the synthetic estimates are
close to their original counterparts. Only a few estimates differ substantially from
the original values. Figure 8.3 contains boxplots for the confidence interval overlap.
The results for each stratifying variable and the overall mean are reported separately.
The means within different establishment size classes and those across regions pro-
vide the best results, with median overlaps of 81.2% and 84.1%, respectively. For
only 3.3% of the means within size classes and for less than 0.8% of the means
within regions is there no overlap between the 95% confidence intervals from the
original data and the 95% confidence intervals from the synthetic data. The results
for the overall means and the means for different industry codes are good for most
of the estimates, with median overlaps of 70.5% and 61.1%, respectively, but for
some of the estimates (14.6% and 12.7%) the overlap is actually zero.
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Fig. 8.3 Boxplots of CI overlaps for all continuous variables for the overall mean and the means
in all subgroups defined by different stratifying variables.

8.3.4 Caveats in the use of synthetic datasets

Despite these mostly promising results, it would be overly optimistic to assume that
synthetic datasets will provide results of similar quality for any potential analysis.
It is crucial that the potential user of the data knows which analysis might provide
valid results and for which analysis she might have to apply for direct access to the
data at the research data center. To enable the user to make these decisions, it is very
important that additional information about the imputation models be released in
combination with the synthetic data. For example, the IAB will release information
about which explanatory variables were used in the imputation models for each
variable.

To give an example for which the synthetic data would not give valid results, I
run a probit regression with the same explanatory variables as in Table 8.1, but I
replace the dependent variable with an employment trend variable that equals 1 if
the number of employees covered by social security increases between 2006 and
2007 and is 0 otherwise. I don’t claim that this is a useful applied analysis; it only
helps to illustrate that users should be careful when fitting models with dependent
variables derived from two or more variables.
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Table 8.3 Regression results from a probit regression of employment trend (increase/no increase)
on 19 explanatory variables in West Germany. For the CI length ratio, the CI length of the original
datasets is in the denominator.

Original
data

Synthetic
data

CI
overlap

z-score
orig.

z-score
syn.

CI length
ratio

Intercept −1.396 −0.978 0.05 −11.99 −9.28 0.92
5–10 employees 0.130 0.354 0.00 2.61 7.75 0.92
10–20 employees 0.316 0.495 0.05 6.19 11.19 0.87
20–50 employees 0.355 0.541 0.05 7.33 10.93 1.06
100–200 employees 0.366 0.351 0.94 5.69 6.09 0.91
200–500 employees 0.475 0.347 0.48 7.29 5.80 0.92
>500 employees 0.375 0.472 0.66 5.06 6.58 0.99
Growth in employment expected 0.374 0.148 0.00 9.29 3.59 1.05
Decrease in employment expected −0.376 −0.020 0.00 −6.16 −0.38 0.86
Share of female workers −0.140 −0.054 0.67 −2.09 −0.84 1.00
Share of employees with univ. degree 0.229 0.199 0.91 1.94 2.05 0.83
Share of low qualified workers −0.043 −0.004 0.84 −0.68 −0.07 0.97
Share of temporary employees 0.434 0.226 0.62 3.25 1.60 1.07
Share of agency workers 0.058 0.013 0.69 0.94 0.08 2.61
Employed in last 6 months 0.948 0.368 0.00 24.94 11.60 0.84
Dismissal in the last 6 months −0.172 −0.030 0.00 −4.42 −0.97 0.81
Foreign ownership −0.165 −0.113 0.79 −2.60 −1.90 0.98
Good/very good profitability 0.248 0.100 0.00 7.69 3.35 0.93
Salary above coll. wage agreement 0.039 0.033 0.96 0.87 0.81 0.91
Collective wage agreement 0.003 0.063 0.62 0.06 1.72 0.85

Table 8.3 provides the results for this regression, and it is obvious that they are
by no means close to the results given above in terms of data quality. Six of the 20
estimates actually have no confidence interval overlap at all, and the point estimates
and z-scores often differ substantially from the original estimates. So the question
arises, what is the reason for the poor performance of the synthetic datasets for this
regression? To understand the problem, I first compare the original data and the syn-
thetic data for the number of employees covered by social security 2006 and 2007.
Figure 8.4 presents Q-Q plots of the original values against the synthetic values. The
first two graphs present the plots for the two variables, and the last plot depicts the
Q-Q plot for the difference in the number of employees between 2006 and 2007.
The synthesis model did a very good job in capturing the distribution of the vari-
ables for 2006 and 2007; the quantiles are more or less identical. The distribution of
the difference between the number of employees covered by social security in 2006
and 2007 is also well preserved. If I were to run a simple linear regression with the
same covariates but with the difference in employment as the dependent variable,
the average confidence interval overlap would be 75%, a significant improvement
compared with 42% for the results in Table 8.3.

The actual problem stems from the fact that there is not much variation between
the employment numbers for 2006 and 2007. In the original dataset, 5,376 of the
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Fig. 8.4 Q-Q plots for the number of employees covered by social security in 2006 and 2007 and
the employment trend between the two years.

15,644 establishments report no change in employment numbers, and more than
90% of the establishments report change rates of ±5%. It can easily happen that
in the original data an establishment reported an increase from 30 to 31 employees
but in the synthetic data this establishment might have imputed values of 30 in both
years or maybe 29 in the second year. Thus, the actual number is estimated very
well and even the predicted difference is very close, but this record will change
from an establishment with a positive employment trend to an establishment with
no change or even a negative employment trend. The opposite is likely to occur as
well: a record with a small negative employment trend might end up with a positive
employment trend. If this happens for many records, which is to be expected since
changes are very small for most records in the original dataset, the binary variable
for employment trend will assign ones to a completely different subset of records. It
is not surprising that results from the synthetic data will be different from the results
in the original data in this case. It is important that users be made aware of this
problem, which is likely to occur if the user derives his variable of interest from two
or more variables in the dataset, and small changes in the underlying variables can
have huge impacts on the derived variable. As a side note, this problem is not limited
to multiply imputed synthetic datasets. In fact, most if not all standard perturbative
SDC methods, such as swapping, adding noise, or micro aggregation will lead to
similar problems.

8.3.5 Assessing the disclosure risk

It is unlikely that an intruder has detailed information about who participated in the
survey; thus, using the actual data from the survey for the disclosure risk calculations
is an unrealistic conservative scenario. For this reason, I apply the disclosure risk
measures described in Section 7.3.2 that account for the additional uncertainty from
sampling.



8.3 Generating synthetic datasets from the multiply imputed IAB Establishment Panel 79

Table 8.4 Probabilities of being included in the target sample and in the original sample depending
on establishment size.

Establishment size class Probability(%)

1–4 employees 0.91
5–9 employees 1.62
10–19 employees 2.87
20–49 employees 4.10
50–99 employees 6.55
100–199 employees 11.39
200–499 employees 16.69
500–999 employees 20.48
1000–4,999 employees 31.89
>=5,000 employees 39.39

To obtain a set of target records for which the intruder has some knowledge
from external databases that she uses to identify units in the survey, I sample new
records from the sampling frame of the survey, the German Social Security Data
(GSSD). I sample from this frame using the same sampling design as for the IAB
Establishment Panel: stratification by establishment size, region, and industry code.

I find that 917 records from the target sample are also included in the original
sample. Table 8.4 displays the percentage of records from the original dataset that
are also included in the target sample for different establishment size classes. As
expected, this probability increases with the establishment size. For establishments
with less than 100 employees, the probability is always less than 10%, whereas large
establishments with more than 5,000 employees are included in both samples with
a probability close to 40%.

For the disclosure scenario I assume, the intruder has information on region, in-
dustry code (in 17 categories), and establishment size (measured by the number of
employees covered by social security) for his target records and uses this informa-
tion to identify units in the survey. I further assume that he would consider any
record in the synthetic datasets a potential match for a specific target record if it
fulfills two criteria: first, that the record’s synthetic industry code and region exactly
matches the target’s true industry code and region; and second, that the record’s
synthetic number of employees lies within a defined interval around the target’s
number of employees. To define these intervals, I divide the number of employees
by the ten stratification classes for establishment size and calculate the standard de-
viation within each size class. The interval is te ±

√
sds, where te is the target’s true

value and sds is the standard deviation of the size class in which the true value falls.
I investigated several other intervals (e.g., using the standard deviation directly or
defining the intervals by 10-20 establishment size classes as I did in the example in
Section 7.4.2 instead of using the stratification classes). However, I found that the
criteria above led to the highest risk of disclosure.
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8.3.5.1 Log-linear modeling to estimate the number of matches in the

population

In general, the intruder will not know the number of records Ft that fulfill the match-
ing criteria in the population to estimate the matching probabilities given in (7.9).
One way to estimate the population counts from the released samples was suggested
by Elamir and Skinner (2006). I apply this approach to the data assuming that the
population counts follow an all-two-way-interactions log-linear model. To simplify
the computation, I use the original sample to fit the log-linear model instead of fitting
a log-linear model to each synthetic dataset separately. Arguably, this will increase
the estimated risk, but the results should differ only slightly.

To fit the log-linear model, the three matching dimensions region, industry code,
and establishment size are cross-tabulated in the sample. To obtain the correct num-
ber of establishment size matches, it is necessary to identify all records that fulfill
the establishment size match criterion in the survey sample for each integer value of
establishment size in the target sample. This leads to a 16×17×1102-dimensional
table to which I fit an all-two-way-interactions log-linear model. To calculate F̂t, I
need the sampling probabilities for each entry in this table. I obtain these probabili-
ties by dividing the stratification matrix from the original sample by the stratification
matrix from the GSSD. I assign the same probability to all establishment size val-
ues that fall into the same stratification cell. Again, an intruder will not know the
exact sampling probabilities because he can only estimate the stratification matrix
of the original sample from the synthetic samples, but arguably it is possible to ob-
tain information about the number of establishments in Germany by region times
industry times establishment size class. Since the stratification matrix from the syn-
thetic samples will not differ very much from the matrix of the original sample, the
estimated sampling probabilities might be reasonably close to the true sampling es-
timates. In any case, using the true sampling probabilities provides an upper bound
for the disclosure risk.

Table 8.5 Average Ft and F̂t for different establishment size classes.

Establishment size class mean(F̂t) mean(Ft)

1–4 employees 6467.66 6685.90
5–9 employees 1661.49 1737.89
10–19 employees 408.78 440.85
20–49 employees 161.98 179.01
50–99 employees 47.07 52.60
100–199 employees 17.91 22.89
200–499 employees 8.06 9.23
500–999 employees 2.17 2.88
1000–4,999 employees 1.51 2.03
>=5,000 employees 1.00 1.11
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Since I can actually compute the true Ft from the GSSD, I am able to evaluate
how well the true population counts can be estimated with the log-linear modeling
approach. In Table 8.5 and Figure 8.5, I compare the estimated F̂t with the true Ft .
In Table 8.5, I compute the average F̂t and Ft for the target records in the ten estab-
lishment size stratification classes. The average estimated population count slightly
underestimates the true counts but nevertheless is always very close to the average
true population count. In Figure 8.5, I plot F̂t against Ft for each record in the target
sample. The left graph presents the results for all establishments, and the right graph
is limited to establishments with more than 100 employees. The figure shows that
the log-linear modeling approach performs very well even at the record level.

8.3.5.2 Results from the disclosure risk evaluations

To estimate the actual risk of disclosure, I use the summary statistics presented in
Section 7.3.1, accounting for the uncertainty from sampling as described in Section
7.3.2. These statistics are presented in Table 8.6. Notice that using F̂t instead of Ft

gives almost similar results. In both cases, the disclosure risk is very low. Overall,
only about 150 of the 15,624 records in the target sample are matched correctly,
and the false match rate is 98.8%. I evaluated the disclosure risk in different estab-
lishment size classes and found that the percentage of true matches increases with
the establishment size but never exceeds 7%. I also investigated whether the risks
increase if the intruder only matches, when the average match probability exceeds
a predefined threshold γ . Table 8.7 lists the false match rate and the number of true
matches for different threshold values using Ft (there is almost no difference in the
results if I use F̂t instead). The false match rates continually decrease to almost 80%
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Table 8.6 Disclosure risk summaries for the synthetic Establishment Panel 2007 wave.

mean(F̂t) mean(Ft)

Expected match risk 162.34 160.92
True match risk 152 150
False match rate (%) 98.75 98.76

at γ ≤ 0.5. Further reducing γ leads to no improvements in terms of the false match
rate. Only for γ ≤ 0.1 the rate drops to 66.7%. At the same time, the number of
true matches continuously decreases until no true match is found at a threshold of
γ = 0. Since the intruder never knows which matches actually are true matches,
these results indicate that the data seem to be well protected at least under the given
assumptions about the information an intruder can gather in her target data.

8.3.5.3 Disclosure risk for large establishments

Even though the results in the last section indicate a low risk of disclosure, large es-
tablishments might still be at risk because these establishments might be identifiable
by matching on establishment size alone. Since a potential intruder will know that
region and industry code have been synthesized, she might match only on establish-
ment size for large establishments and ignore the fact that region and industry code
are different between the target record and the match found in the synthetic data.

To quantify the risk from this approach, I evaluate two disclosure risk scenarios.
In the first scenario, the intruder ranks all synthetic datasets by establishment size
and considers the mode of the ranks for one unit across the synthetic datasets as
the true rank of this unit. She then links that unit to the unit with the same rank in
her target dataset. The second scenario assumes that the intruder performs a simple

Table 8.7 False match rate and true match risk for different levels of γ .

γ False match rate True match risk

1 98.76 150
0.9 94.42 97
0.8 91.47 59
0.7 88.72 38
0.6 84.57 27
0.5 81.91 17
0.4 84.62 8
0.3 82.14 5
0.2 85.71 2
0.1 66.67 1
0.0 - 0
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nearest neighbor match between the records in her target data and the records in the
synthetic samples using the establishment size variable.

Since the largest establishments are sampled with high probability, I treat the
original sample as the target sample from which the intruder knows the true reported
establishment size. This is still conservative since the reported establishment size
might differ from the size reported in other databases, but it is not unlikely that the
intruder well get reasonably close estimates of the true establishment size for large
establishments in Germany.

Table 8.8 provides the results for the 25 largest establishments. The average
match rate in column three is the percentage of times the declared match from
the nearest neighbor matching approach actually is the true match across the 25
synthetic datasets. Obviously, the largest establishments face a very high risk of dis-
closure in both scenarios. The mode of the ranks in the synthetic datasets is almost
always the same as the rank in the original sample, and the nearest neighbor match-
ing approach will lead to correct matches for most of the datasets. If the intruder
were also to pick the mode of declared matches as the correct match, she would be

Table 8.8 Mode of the establishment size rank and average match rate for large establishments.

Original
rank

Mode of synthetic
ranks

Average match
rate

1 1 0.96
2 2 0.72
3 3 1.00
4 4 1.00
5 5 1.00
6 6 0.88
7 7 0.64
8 8 0.56
9 9 0.44

10 10 0.32
11 11 0.84
12 12 0.56
13 13 0.56
14 14 0.68
15 15 0.76
16 17 0.56
17 18 0.48
18 16 0.00
19 19 0.56
20 20 0.04
21 22 0.44
22 23 0.72
23 21 0.00
24 24 0.40
25 25 0.28
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right for 21 of the 25 establishments. Clearly, there is a need to further protect the
largest establishments in the dataset.

8.3.5.4 Additional protection for the largest establishments in the survey

A simple strategy to better protect large establishments would be to reduce the qual-
ity of the imputation model for establishment size, for example by dropping ex-
planatory variables from the imputation model until a predefined criterion of vari-
ability between the imputations is met. However, since it would be necessary to
drop the variables with the highest explanatory power to considerably increase the
variability, important relationships between the variables would not be reflected in
the released data, leading to uncongeniality problems if the analyst’s model differs
from the imputation model. It is also not an option to use other SDL techniques
since methods such as noise addition would have to be applied at a very high level
and other methods like data swapping and microaggregation, are well known to have
severe negative consequences for data quality in the upper tail of the distribution.
I therefore decided to inflate the variance of the beta coefficients in the imputation
model instead. Remember that the imputation process always consists of two steps.
In the first step, new parameters for the imputation model are drawn from their pos-
terior distributions given the observed data. In the second step, new values for the
variable to be imputed are drawn from the posterior predictive distribution given the
parameters drawn in step one. For the standard linear model, this means that step
one consists of drawing new values of σ2 and β from their posterior distributions.
I decided to protect records at risk by inflating the variance of β in the underlying
imputation models. I inflate the variance by drawing new values of β from

β |σ2 ∼ N(β̂ ,ασ 2(X ′X)−1), (8.11)

where α is the variance inflation factor, β̂ and X are the regression coefficients and
the explanatory variables from the underlying imputation model, respectively, and
σ2 is the new value of the variance drawn from its posterior distribution. Of course,
imputation under this variance-inflated model is not proper in Rubin’s sense (see
Rubin, 1987, pp. 118–119), so I conducted a small simulation study to evaluate
the impact of different levels of α on the validity of the results from a frequentist
perspective. In the simulation, reported in the Appendix C, I found almost no impact
on coverage rates. Even when synthesizing all records with α=1,000, the coverage
rate for the 95% confidence interval never dropped below 90% and was close to the
nominal 95% for most of the estimates of interest. The most notable consequence
is that we lose efficiency since the between-imputation variance increases linearly
with α . But since only some records at risk need to be replaced, I am not concerned
that this will have huge impacts on data utility. The utility evaluations in Section
8.3.3 that were actually performed on the final dataset after applying the additional
protection step described here seem to support this.
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To apply the variance inflation approach, it is necessary to define which records
are considered to be at risk. I define a record to be at risk if one of the following two
conditions is fulfilled:

1. The standard deviation of the establishment size rank across the synthetic datasets
for the record is less than 2.

2. The mode of the declared matches in the nearest neighbor matching scenario is
the correct match.

The threshold value for the standard deviation of the ranks is chosen somewhat
arbitrarily. Defining justifiable threshold rules is an area for future research.

To keep the negative impacts of this procedure at a minimum, I developed an
iterative replacement algorithm. For a given level of α , all records that fulfill one of
the criteria above are replaced by new draws from the variance-inflated imputation
model. Records that still are at risk after ten rounds of repeatedly drawing from this
model are replaced by draws from a model with the next higher level of α . In this
application, I set the levels arbitrarily to α=(10;100;1,000). Developing methods to
derive useful levels of α is an area for future research. Overall, I replace 79 records
in the dataset by this procedure. Less than ten are replaced by draws from imputa-
tion models with α ≥ 100. Evaluating the disclosure risk for large establishments
again, I find that the mode of the establishment size rank in the synthetic datasets
is equal to the rank in the original data for only 12 of the 100 largest establish-
ments. Since the intruder never knows if her match is correct and it is also unlikely
that the intruder will know the original rank beyond the 20 largest establishments in
the survey, the data are well protected from these kinds of attacks. For the nearest
neighbor matching scenario, I guaranteed that the mode of the declared matches is
never the correct match. I also find that no record is identified correctly in more than
five of the 25 datasets. These results together with the results in Section 8.3.5 and
the promising results on data utility in Section 8.3.3 demonstrate that the dataset is
ready for release.



Chapter 9

A Two-Stage Imputation Procedure to Balance

the Risk–Utility Trade-Off1

There has been little discussion in the literature on how many multiply imputed
datasets an agency should release. From the perspective of the secondary data ana-
lyst, a large number of datasets is desirable. The additional variance introduced by
the imputation decreases with the number of released datasets. For example, Re-
iter (2003) finds nearly a 100% increase in the variance of regression coefficients
when going from 50 to two partially synthetic datasets. From the perspective of the
agency, a small number of datasets is desirable. The information available to ill-
intentioned users seeking to identify individuals in the released datasets increases
with the number of released datasets. Thus, agencies considering the release of par-
tially synthetic data generally are confronted with a trade-off between disclosure
risk and data utility.

The empirical investigations presented in Section 9.3 indicate that increasing m
results in both higher data utility and higher risk of disclosures. In this chapter, I
present an alternative synthesis approach that can maintain high utility while reduc-
ing disclosure risks. The basic idea behind this approach is to impute variables that
drive the disclosure risk only a few times and other variables many times. This can
be accomplished by generating data in two stages, as described by Reiter and Drech-
sler (2010). In general, two-stage and one-stage approaches require similar amounts
of modeling effort; however, in some settings, the two-stage approach can reduce
computational burdens associated with generating synthetic data and thereby speed
up the process; see Reiter and Drechsler (2010) for further discussion of this point.
The two-stage imputation procedure is applicable to both, partially and fully syn-
thetic datasets. In the following sections, I present the combining rules for univariate
estimands for both approaches and provide an application of the two-stage partially
synthetic approach to illustrate the potential benefits of this procedure. Deriving the
combining rules for multivariate estimands is an area for future research.

1 Most of this chapter is taken from Drechsler and Reiter (2009) and Reiter and Drechsler (2010).

J. Drechsler, Synthetic Datasets for Statistical Disclosure Control: Theory and Implementation,  
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9.1 Inference for synthetic datasets generated in two stages

For a finite population of size N, let Il = 1 if unit l is included in the survey and
Il = 0 otherwise, where l = 1, . . . ,N. Let I = (I1, . . . , IN), and let the sample size
s = ∑ Il . Let X be the N × d matrix of sampling design variables (e.g., stratum or
cluster indicators or size measures). I assume that X is known approximately for the
entire population; for example, from census records or the sampling frame(s). Let Y
be the N× p matrix of survey data for the population. Let Yinc be the s× p submatrix
of Y for all units with Il = 1. I assume that there are no missing data. The observed
data are thus Dobs = (X ,Yinc, I). Methods for handling missing data and one stage of
partial synthesis simultaneously are presented in Chapter 8. Developing two-stage
imputation methods for data that are subject to nonresponse is an area for future
research.

9.1.1 Fully synthetic data

Let Ya be the values simulated in stage one, and let Yb be the values simulated
in stage two. The agency seeks to release fewer replications of Ya than of Yb, yet
do so in a way that enables the analyst of the data to obtain valid inferences with
standard complete-data methods. To do so, the agency generates synthetic datasets
in a three-step process. First, the agency fills in the unobserved values of Ya by
drawing values from f (Ya | Dobs), creating a partially completed population. This
is repeated independently m times to obtain Y (i)

a for i = 1, . . . ,m. Second, in each
partially completed population defined by nest i, the agency generates the unob-
served values of Yb by drawing from f (Yb | Dobs,Y

(i)
a ), thus completing the rest of

the population values. This is repeated independently r times for each nest to obtain
Y (i, j)

b for i = 1, . . . ,m and j = 1, . . . ,r. The result is M = mr completed populations,

P(i, j) = (Dobs,Y
(i)
a ,Y (i, j)

b ), where i = 1, . . . ,m and j = 1, . . . ,r. Third, the agency
takes a simple random sample of size nsyn from each completed population P(i, j) to
obtain D(i, j). These M samples, Dsyn = {D(i, j) : i = 1, . . . ,m; j = 1, . . . ,r}, are re-
leased to the public. Each released D(i, j) includes a label indicating its value of i
(i.e., an indicator for its nest).

The agency can sample from each P(i, j) using designs other than simple random
samples, such as the stratified sampling in the IAB Establishment Panel synthe-
sis. A complex design can improve efficiency and ensure adequate representation
of important subpopulations for analyses. When synthetic data are generated using
complex samples, analysts should account for the design in inferences, for exam-
ple with survey-weighted estimates. One advantage of simple random samples is
that analysts can make inferences with techniques appropriate for simple random
samples.

The agency could simulate Y for all N units, thereby avoiding the release of actual
values of Y . In practice, it is not necessary to generate completed-data populations
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for constructing the D(i, j); the agency only needs to generate values of Y for units
in the synthetic samples. The formulation of completing the population and then
sampling from it aids in deriving inferential methods (see Reiter and Drechsler,
2010).

Let Q be the estimand of interest, such as a population mean or a regression
coefficient. For all (i, j), let q(i, j) be the estimate of Q, and let u(i, j) be the estimate
of the variance associated with q(i, j). The q(i, j) and u(i, j) are computed based on
the design used to sample from P(i, j). Note that when nsyn = N, the u(i, j) = 0. The
following quantities are necessary for inferences:

q̄(i)r =
r

∑
j=1

q(i, j)/r, (9.1)

q̄M =
m

∑
i=1

q̄(i)r /m =
r

∑
j=1

m

∑
i=1

q(i, j)/mr, (9.2)

bM =
m

∑
i=1

(q̄(i)r − q̄M)2/(m−1), (9.3)

w(i)
r =

r

∑
j=1

(q(i, j)− q̄(i)r )2/(r−1), (9.4)

ūM =
r

∑
j=1

m

∑
i=1

u(i, j)/mr. (9.5)

The analyst then can use q̄M to estimate Q and

T2st, f = (1+m−1)bM +(1−1/r)w̄M − ūM (9.6)

to estimate the variance of q̄M , where w̄M = ∑m
i=1 w(i)

r /m. Inferences can be based
on a t distribution with degrees of freedom

ν2st, f =

(
((1+1/m)bM)2

(m−1)T 2
2st, f

+
((1−1/r)w̄M)2

(m(r−1))T 2
2st, f

)−1

.

Derivations of these methods are presented in Reiter and Drechsler (2010). It is
possible that T2st, f < 0, particularly for small values of m and r. Generally, negative
values of T2st, f can be avoided by making nsyn or m and r large. To adjust for negative
variances, one approach is to use the always positive variance estimator T ∗

2st, f =
T2st, f +λ ūM , where λ = 1 when T2st, f ≤ 0 and λ = 0 when T2st, f > 0. When T2st, f <
0, using ν2st, f is overly conservative since T ∗

2st, f tends to be conservative when λ =
1. To avoid excessively wide intervals, analysts can base inferences on t distributions
with degrees of freedom ν∗

2st, f = ν2st, f +λ∞.
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9.1.2 Partially synthetic data

The agency generates the partially synthetic data in two stages. Let Y (i)
a be the values

imputed in the first stage in nest i, where i= 1, . . . ,m. Let Y (i, j)
b be the values imputed

in the second stage in dataset j in nest i, where j = 1, . . . ,r. Let Ynrep be the values of
Yinc that are not replaced with synthetic data and hence are released as is. Let Za,l = 1
if unit l, for l = 1, . . . ,s, is selected to have any of its first-stage data replaced, and
let Za,l = 0 otherwise. Let Zb,l be defined similarly for the second-stage values. Let
Z = (Za,1, . . . ,Za,s,Zb,1, . . . ,Zb,s).

To create Y (i)
a for those records with Za,l = 1, first the agency draws from f (Ya |

Dobs,Z), conditioning only on values not in Yb. Second, in each nest, the agency gen-
erates Y (i, j)

b for those records with Zb,l = 1 by drawing from f (Y (i, j)
b | Dobs,Z,Y

(i)
a ).

Each synthetic dataset D(i, j) = (X ,Y (i)
a ,Y (i, j)

b ,Ynrep, I,Z). The entire collection of
M = mr datasets, Dsyn = {D(i, j), i = 1, . . . ,m; j = 1, . . . ,r}, with labels indicating
the nests, is released to the public.

To obtain inferences from nested partially synthetic data, I assume the analyst
acts as if each D(i, j) is a sample according to the original design. Unlike in fully
synthetic data, there is no intermediate step of completing populations. The analyst
again can use q̄M to estimate Q and

T2st,p = ūM +bM/m (9.7)

to estimate the variance of q̄M . Inferences can be based on a t distribution with
degrees of freedom ν2st,p = (m− 1)(1+mūM/bM)2. Derivations of these methods
are presented in Reiter and Drechsler (2010). Note that T2st,p > 0 always holds, so
that negative variance estimates do not arise in two-stage partial synthesis.

9.2 Analytical validity and disclosure risk

To evaluate the analytical validity and disclosure risk, the same methods as with
standard one-stage synthesis can be applied. I refer to Section 6.2 for possible data
utility measures and to Section 6.3 and Section 7.3 for possible disclosure risk eval-
uations.

9.3 Application of the two-stage approach to the IAB

Establishment Panel

To assess the impact of different numbers of imputations, I first evaluate the trade-off
between risk and utility as a function of m for standard one-stage imputation. I then
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compare the results with results achievable with the proposed two-stage imputation
approach.

For this simulation study, I synthesize two variables in the IAB Establishment
Panel for 1997: the number of employees and the industry coded in 16 categories.
For both variables, all 7,332 observations are replaced by imputed values. Employ-
ment size and industry code are high-risk variables since (i) they are easily available
in other databases and (ii) the distribution for the number of employees is heavily
skewed. Imputations are based on linear models with more than 100 explanatory
variables for the number of employees and on a multinomial logit model with more
than 80 explanatory variables for the industry. Some variables for the multinomial
logit model are dropped for multicollinearity reasons.

9.3.1 Analytical validity for the panel from one-stage synthesis

I investigate data utility for some descriptive statistics and a probit regression. The
descriptive statistics are the (unweighted) average number of employees by indus-
try; they are based solely on the two variables I synthesized. The probit regression,
which originally appeared in an article by Zwick (2005), is used in various places
throughout the book; see Section 6.4.2 for a detailed description.

Tables 9.1–9.4 display point estimates and the interval overlap measures for dif-
ferent values of m. For most parameters, increasing m moves point estimates closer
to their values in the original data and increases the overlaps in the confidence in-
tervals. Increasing m = 3 to m = 10 results in the largest increase in data utility, as

Table 9.1 Average number of employees by industry for one-stage synthesis.

Original data m=3 m=10 m=50 m=100

Industry 1 71.5 84.2 84.2 82.6 82.4
Industry 2 839.1 919.4 851.2 870.2 852.9
Industry 3 681.1 557.7 574.5 594.4 593.1
Industry 4 642.9 639.9 644.8 643.5 649.6
Industry 5 174.5 179.8 176.0 183.5 187.4
Industry 6 108.9 132.4 121.8 120.8 120.7
Industry 7 117.1 111.6 112.9 117.1 119.6
Industry 8 548.7 455.3 504.3 514.2 513.0
Industry 9 700.7 676.9 689.4 711.8 713.4
Industry 10 547.0 402.4 490.3 499.3 487.7
Industry 11 118.6 142.7 130.2 132.1 131.0
Industry 12 424.3 405.6 414.9 424.5 425.2
Industry 13 516.7 526.1 549.1 550.2 551.9
Industry 14 128.1 185.8 167.1 160.0 159.0
Industry 15 162.0 292.8 233.4 221.9 238.1
Industry 16 510.8 452.8 449.9 441.5 439.3
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Table 9.2 Results from the vocational training regression for one-stage partial synthesis revisited.

Original
data

m=3 m=10 m=50 m=100

Intercept −1.319 −1.323 −1.322 −1.323 −1.324
Redundancies expected 0.253 0.268 0.262 0.264 0.264
Many employees expected on maternity leave 0.262 0.334 0.316 0.312 0.314
High qualification need expected 0.646 0.636 0.640 0.640 0.639
Appren. training reaction on skill shortage 0.113 0.098 0.106 0.110 0.112
Training reaction on skill shortage 0.540 0.529 0.538 0.542 0.543
Establishment size 20–199 0.684 0.718 0.709 0.705 0.701
Establishment size 200–499 1.352 1.363 1.333 1.339 1.343
Establishment size 500–999 1.346 1.315 1.386 1.377 1.367
Establishment size 1,000 + 1.955 1.782 1.800 1.778 1.776
Share of qualified employees 0.787 0.787 0.788 0.784 0.785
State-of-the-art technical equipment 0.171 0.183 0.178 0.174 0.174
Collective wage agreement 0.255 0.268 0.264 0.267 0.268
Apprenticeship training 0.490 0.501 0.510 0.507 0.507
East Germany 0.058 0.038 0.033 0.042 0.044

the average confidence interval overlap over all 31 parameters in Table 9.3 and Ta-
ble 9.4 increases from 0.828 to 0.867. Increasing m = 50 to m = 100 does not have
much impact on data utility.

Table 9.3 Confidence interval overlap for the average number of employees for one-stage synthe-
sis.

m=3 m=10 m=50 m=100

Industry 1 0.778 0.770 0.777 0.782
Industry 2 0.844 0.893 0.853 0.874
Industry 3 0.730 0.776 0.797 0.800
Industry 4 0.983 0.992 0.995 0.971
Industry 5 0.920 0.935 0.863 0.817
Industry 6 0.605 0.749 0.764 0.767
Industry 7 0.809 0.820 0.863 0.876
Industry 8 0.692 0.862 0.894 0.890
Industry 9 0.926 0.966 0.968 0.963
Industry 10 0.660 0.876 0.897 0.871
Industry 11 0.609 0.804 0.773 0.792
Industry 12 0.903 0.912 0.916 0.918
Industry 13 0.946 0.814 0.809 0.799
Industry 14 0.408 0.589 0.655 0.664
Industry 15 0.586 0.639 0.654 0.638
Industry 16 0.666 0.645 0.583 0.566

Average 0.754 0.815 0.816 0.812
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Each entry in Table 9.1–9.4 results from one replication of a partially synthetic
data-release strategy. To evaluate the variability across different replications, I re-
peated each simulation ten times. Table 9.5 presents the average confidence interval
overlap over all 31 estimands for the ten simulations. The variation in the overlap
measures decreases with m. This is because the variability in q̄m and Tm decreases
with m, so that results stabilize as m gets large. I believe most analysts would prefer
to have stable results across different realizations of the synthesis and hence favor
large values of m.

9.3.2 Disclosure risk for the panel from one-stage synthesis

To assess the disclosure risk, I assume that the intruder knows which establishments
are included in the survey and the true values for the number of employees and
industry (i.e., I assume the intruder scenario described in Section 7.3.1). This is a
conservative scenario but gives, in some sense, an upper bound on the risk for this
level of intruder knowledge. Intruders might also know other variables in the file, in
which case the agency may need to synthesize them as well.

The intruder computes probabilities using the approach outlined in Section 7.3.1.
I assume that the agency does not reveal the synthesis model to the public, so that
the only information in M is that employee size and industry were synthesized.
For a given target t, records from each D(i) must meet two criteria to be possible
matches. First, the record’s synthetic industry code exactly matches the target’s true

Table 9.4 Confidence interval overlap for the vocational training regression for one-stage synthe-
sis.

m=3 m=10 m=50 m=100

Intercept 0.987 0.989 0.986 0.984
Redundancies expected 0.931 0.958 0.946 0.948
Many emp. exp. on maternity leave 0.808 0.856 0.867 0.861
High qualification need exp. 0.965 0.977 0.978 0.976
Appren. train. react. on skill shortages 0.928 0.964 0.984 0.996
Training react. on skill shortages 0.946 0.989 0.989 0.982
Establishment size 20–199 0.802 0.856 0.879 0.902
Establishment size 200–499 0.934 0.939 0.935 0.933
Establishment size 500–999 0.926 0.907 0.928 0.953
Establishment size 1,000 + 0.731 0.763 0.727 0.723
Share of qualified employees 0.995 0.997 0.989 0.993
State-of-the-art tech. equipment 0.919 0.953 0.976 0.977
Collective wage agreement 0.926 0.952 0.934 0.927
Apprenticeship training 0.937 0.883 0.899 0.899
East Germany 0.872 0.840 0.899 0.912

Average 0.907 0.922 0.928 0.931
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Table 9.5 Average confidence interval overlap for all 31 estimands for ten independent simulations
of one-stage synthesis.

m=3 m=10 m=50 m=100

Simulation 1 0.828 0.867 0.870 0.870
Simulation 2 0.864 0.869 0.869 0.874
Simulation 3 0.858 0.866 0.873 0.868
Simulation 4 0.881 0.861 0.874 0.871
Simulation 5 0.872 0.865 0.866 0.875
Simulation 6 0.845 0.862 0.869 0.865
Simulation 7 0.849 0.851 0.871 0.873
Simulation 8 0.841 0.862 0.871 0.873
Simulation 9 0.841 0.877 0.873 0.872
Simulation 10 0.861 0.865 0.874 0.867

Average 0.854 0.865 0.871 0.871

industry code. Second, the record’s synthetic number of employees lies within an
agency-defined interval around the target’s true number of employees. Acting as the
agency, I define the interval as follows. I divide the cubic root of the true number of
employees into 20 quantiles and calculate the standard deviation of the number of
employees within each quantile. The interval is te ± sds, where te is the target’s true
value and sds is the standard deviation of the quantile in which the true value falls.
When there are no synthetic records that fulfill both matching criteria, the intruder
matches only on the industry code.

I use 20 quantiles because this is the largest number of groups that guarantees
some variation within each group. Using more than 20 quantiles results in groups
with only one value of employment, which forces exact matching for targets in those
quantiles. On the other hand, using a small number of quantiles does not differentiate
adequately between small and large establishments. For small establishments, I want
the potential matches to deviate only slightly from the original values. For large
establishments, I accept higher deviations.

I studied the impact of using different numbers of groups for m = 50. I found
a substantial increase in the risks of identification, especially for the small estab-
lishments, when going from exact matching to five quantiles. Between five and 20
quantiles, the disclosure risk doesn’t change dramatically. For more than 20 quan-
tiles, the number of identifications starts to decline again.

Table 9.6 displays the average true matching risk and expected matching risk
over the ten simulation runs used in Table 9.5. Since the largest establishments are
usually considered as the records most at risk of identification, I also include the
risk measures for the largest largest establishments in parentheses. There is clear
evidence that a higher number of imputations leads to a higher risk of disclosure,
especially for the largest establishments. This is because, as m increases, the intruder
has more information to estimate the distribution that generated the synthetic data.
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Table 9.6 Averages of disclosure risk measures over ten simulations of one-stage synthesis. Mea-
sures for the 25 largest establishments are reported in parentheses.

m=3 m=10 m=50 m=100

Expected match risk 67.8 (3.2) 94.8 (5.2) 126.9 (6.9) 142.5 (7.1)
True match risk 35.2 (2.0) 82.5 (4.9) 126.1 (6.8) 142.4 (7.1)

It is arguable that the gains in utility, at least for these estimands, are not worth the
increases in disclosure risks.

The establishments that are correctly identified vary across the ten replicates. For
example, for m = 50, the total number of identified records over all ten replicates is
614. Of these records, 319 are identified in only one simulation, 45 are identified in
more than five simulations, and only ten records are identified in all ten replications.
For m = 10, no records are identified more than seven times.

The risks are not large on an absolute scale. For example, with m = 10, I an-
ticipate that the intruder could identify only 83 establishments out of 7,332. This
assumes that the intruder already knows the establishment size and industry classi-
fication code and also has response knowledge; i.e., he knows which establishments
participated in the survey. Furthermore, the intruder will not know how many of the
unique matches (i.e., c j = 1) actually are true matches.

I also investigated the disclosure risk for different subdomains for m = 50. Four
of the 16 industry categories had less than 200 units in the survey. For these cat-
egories, the percentage of identified records ranged between 5% and almost 10%.
For the remaining categories, the percentage of correct identifications never went
beyond 2.3%. If these risks are too high, the agency could collapse some of the
industry categories.

The percentage of identified establishments was close to 5% for the largest decile
of establishment size and never went beyond 2.5% for all the other deciles. The
identification risk is higher for the top 25 establishments but still moderate. When
m = 3, only two of these establishments are correctly identified; this increases to
seven establishments with m = 100. The intruder also makes many errors when
declaring matches for these establishments. In fact, the false match rate for these
top establishments is 87% for m = 3, 77% for m = 10, and approximately 70% for
m = 50 and m = 100. None of the top ten establishments are identified in all ten
simulations.

The largest establishment’s size is reduced by at least 10% in all synthetic
datasets. This can be viewed as reduction in data utility since the tail is not accurate
at extreme values. It may be possible to improve tail behavior with more tailored
synthesis models, such as CART approaches (Reiter, 2005d; see also Section 8.3.2).

As noted previously, these risk computations are in some ways conservative.
First, they presume that the intruder knows which records are in the survey. This
is not likely to be true since most establishments are sampled with probability less
than one. However, large establishments are sampled with certainty, so that the risk
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calculations presented here apply for those records. Second, the risk measurements
presume that the intruder has precise information on establishment size and industry
code. In Germany, it is not likely that intruders will know the sizes of all establish-
ments in the survey, because there is no public information on small establishments.
However, intruders can obtain size and industry type for large companies from pub-
lic databases. They also can purchase large private databases on establishments,
although the quality of these databases for record linkage on employee size is un-
certain. Thus, except possibly for the largest establishments, the risk measures here
could overstate the probabilities of identification.

9.3.3 Results for the two-stage imputation approach

For the two-stage imputation, I impute the industry in stage one and the number of
employees in stage two. Exchanging the order of the imputation does not materially
impact the results. I consider different values of m and r. I run ten simulations for
each setting and present the average estimates over these ten simulations.

Table 9.7 displays the average confidence interval overlap for all 31 parameters
and the two disclosure risk measures for the different settings. As with one-stage
synthesis, there is not much difference in the data utility measures for different M,
although there is a slight increase when going from M = 9 to M ≈ 50. The two-stage
results with M = 9 (average overlap of .867) are slightly better than the one-stage
results with m= 10 (average overlap of .865). The two-stage results with M ≈ 50 are
approximately on the same level or slightly above the one-stage results for m = 50
(average overlap of .871).

The improvements in data utility when using the two-stage approach are arguably
minor, but the reduction in disclosure risks is more noticeable. The measures are
always substantially lower for the two-stage approach compared with the one-stage
approach with approximately the same number of synthetic datasets. For example,
releasing two-stage synthetic data with M = 9 carries an average true match risk of
67 (3.4 for the top 25 establishments), whereas releasing one-stage synthetic data

Table 9.7 Average CI overlap and match risk for two-stage synthesis based on ten simulations.
Match risk for the 25 largest establishments is in parentheses.

m,r Avg. overlap Expected match risk True match risk

m=3,r=3 0.867 83.1 (4.0) 67.6 (3.4)
m=3,r=16 0.868 98.0 (4.1) 91.8 (4.0)
m=3,r=33 0.870 99.8 (3.8) 96.3 (3.8)
m=5,r=10 0.869 106.1 (4.6) 101.2 (4.4)
m=10,r=5 0.875 113.8 (5.0) 109.4 (5.0)
m=16,r=3 0.874 119.9 (5.2) 116.4 (5.2)
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with m = 10 has a true match risk of 82 (4.9). Risks are lower for M ≈ 50 compared
with one-stage synthetic data with m = 50 as well. Additionally, for the top 25
establishments, the percentage of unique matches that are true matches is lower
for the two-stage approach. When M = 9, this percentage is 17% for the two-stage
approach, compared with around 23% for one-stage synthetic data with m = 10.
When M ≈ 50, this percentage varied between 18% and 22%, whereas it is around
30% for one-stage synthetic data with m = 50.

The two-stage methods have lower disclosure risks at any given total number
of released datasets because they provide fewer pieces of data about industry codes.
This effect is evident in the two-stage results with M ≈ 50. The risks increase mono-
tonically with the number of imputations dedicated to the first stage.



Chapter 10

Chances and Obstacles for Multiply Imputed

Synthetic Datasets

The main focus of the first statistical disclosure limitation (SDL) techniques pro-
posed in the literature was on providing sufficient disclosure protection. At that
time, agencies paid only little attention to the negative impacts of these approaches
on data utility. Over the years, more and more sophisticated methods evolved. How-
ever, these methods also became more complicated to implement and often required
correction methods difficult to apply for nonstandard analysis. For these reasons,
most agencies still tend to rely on standard, easy-to-implement SDL techniques such
as data swapping or noise addition, although it has been shown repeatedly that these
methods can have severe negative consequences on data utility and may even fail to
fulfill their primary goal – to protect the data sufficiently (see, for example, Winkler
(2007b)).

Generating multiply imputed synthetic datasets is a promising alternative. With
this approach, the user doesn’t have to learn complicated adjustments that might dif-
fer depending on the kind of analysis the user wants to perform. Instead, she can use
the combining rules presented in this book, which are simple and straightforward
to calculate. With any synthetic data approach that is based on multiple imputation,
the point estimate is simply the average of the point estimates calculated for ev-
ery dataset, and its variance is estimated by a simple combination of the estimated
variance within each dataset and the variance of the point estimates between the
datasets. Furthermore, it is possible with synthetic datasets to account for many real
data problems such as skip patterns and logical constraints (see Section 3.2 for de-
tails). Most standard SDL techniques cannot deal with these problems. Besides, it
is very easy to address missing-data problems and confidentiality problems at the
same time when generating partially synthetic datasets. Since both problems can be
handled by multiple imputation, it is reasonable to impute missing values first and
then generate synthetic datasets from the multiply imputed datasets as described in
Chapter 8. This will actually increase the value of the generated datasets since the
fully imputed, nonsynthesized datasets could be used by other researchers inside the
agency who otherwise might not be able to adjust their analyses to account for the
missing values properly.
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However, most research on generating synthetic data, especially with real data
applications, dates back no more than five years, so it is not surprising that at the
current stage there are some obstacles to this approach that still need to be addressed.
First and foremost, many agencies complain that developing synthetic datasets for
complex surveys is too labor intensive, takes too long, and requires experts who are
familiar with the data on the one hand but also need detailed knowledge of Bayesian
statistics and excellent modeling skills to generate synthetic data with a high level of
data utility. Many small agencies cannot afford to fund research on synthetic data for
several months or even years. Other agencies are reluctant to invest in a new data-
dissemination strategy before the usefulness of this strategy has been clearly demon-
strated. This may change with the release of high-quality synthetic data in the United
States and in Germany. Besides, a new version of the multiple-imputation software
IVEware (Raghunathan et al., 2002) for generating synthetic datasets is under devel-
opment at the University of Michigan. This software will allow researchers without
a sound background in modeling and Bayesian statistics to develop synthetic data.
Another promising approach that might speed up the synthetic data generation is the
use of nonparametric imputation methods such as CART (Reiter, 2005d) or random
forests (Caiola and Reiter, 2010). With these approaches the modeling task can be
simplified significantly. Evaluating to what extent the synthesis can be automated
and testing the feasibility of these approaches for complex datasets with skip pat-
terns and logical constraints is an area for future research.

But it is not only the agencies that are concerned about this new data-dissemination
strategy. Many potential users of the released data are skeptical about the approach,
too. They insist that they would only work with the original data, ignoring the fact
that unrestricted access to the original data is not an option in many cases. It is im-
portant that users understand that they should focus on the potential benefits of this
approach relative to other SDC methods instead of comparing the approach with
unrestricted access. They also tend to see the original data as the true data, ignoring
other sources of uncertainty and potential bias such as nonresponse, undercoverage,
reporting or coding errors, etc., that might dwarf the additional bias potentially intro-
duced by the synthesis. Furthermore, a common misconception is that the synthetic
data will only provide valid results if the imputation model and the analyst’s model
match exactly. This is not true. If the imputation model contains more variables than
the analyst’s model, the results will still be valid, albeit with a reduced efficiency.
But even if the imputation model does not contain all the variables that are included
in the analyst’s model, this does not necessarily mean that the results will be biased.
In fact, if one variable is omitted from the imputation, the model implicitly assumes
conditional independence between the dependent variable and this variable. Now, if
the imputation model is already based on hundreds of variables, the assumption of
conditional independence given all the other variables might be appropriate. In this
case, the analyst would obtain valid results with the released data, even if some of
the information in her model was not included in the imputation model.

Still, it would be misleading to praise the synthetic data approach as the panacea
for data dissemination. It is simply impossible to generate a dataset with any kind of
statistical disclosure limitation technique that provides valid results for any potential
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analysis while at the same time guaranteeing 100% disclosure protection. The syn-
thetic data reflect only those relationships included in the data generation models.
When the models fail to reflect certain relationships accurately, analysts’ inferences
also will not reflect those relationships. Similarly, incorrect distributional assump-
tions built into the models will be passed on to the users’ analyses. In practice,
this dependence means that some analyses cannot be performed accurately and that
agencies need to release information that helps analysts decide whether or not the
synthetic data are reliable for their analyses. For example, agencies might include
summaries of the posterior distributions of parameters in the data-generation models
as attachments to public releases of data. Or, they might include generic statements
that describe the imputation models, such as “Main effects for age, sex, and race are
included in the imputation models for education.” This transparency also is a benefit
of the synthetic data approach: analysts are given indications of which analyses can
be reliably performed with the synthetic data. Analysts who desire finer detail than
afforded by the imputations may have to apply for special access to the observed
data.

To overcome the skepticism against synthetic data, agencies can also offer some
incentives to work with the synthetic data. For example the research teams at Cornell
University and the IAB independently decided to offer the guarantee that for an
initial phase any research that is performed on the synthetic data will also be run
on the original data and the results from the original data will be sent back to the
researcher after checks for potential confidentiality violations. This is a very strong
incentive since researchers do not have to apply for access to the research data center
but still can be sure that they will finally get the results from the original data. At
the same time, they can compare the results from the original data with the results
from the synthetic data, and if they repeatedly find that the results actually do not
differ very much, they hopefully will give up some of their reservations against the
use of synthetic data over time.

Finally, researchers tend to be reluctant to use new methods until they are im-
plemented in standard statistical software and results are easily obtainable using
standard commands. For example, the use of multiple imputation has significantly
increased since routines to multiply impute missing values and analyze the imputed
data became readily available in all major statistical software packages, such as
Stata, SAS, or R. I suggest that agencies work with academic researchers and soft-
ware developers to write software routines that implement the combining rules nec-
essary to obtain valid results for the different synthetic data approaches.

The interest in synthetic data is ever-growing, and many seemingly insurmount-
able obstacles have been overcome in the last few years. There are still some efforts
necessary to make the concept a universal, widely accepted, and easy-to-implement
approach, but the first releases of partially synthetic datasets in the United States
and Germany demonstrate that the approach successfully managed the critical step
from a pure theoretical concept to practical implementation. Nevertheless, plenty of
room remains for future research in this area that will further improve the feasibility
of this approach. With the continuous proliferation of publicly available databases
and improvements in record linkage technologies, releasing synthetic datasets might



102 10 Chances and Obstacles for Multiply Imputed Synthetic Datasets

soon be the only reasonable strategy to balance the trade-off between disclosure risk
and data utility when disseminating data collected under the pledge of privacy to the
public.



Appendix A

Bill Winkler’s Microdata Confidentiality

References (August 1, 2009)

Abowd, J. M., and Vilhuber, L. (2008). ”How Protective are Synthetic Data?”
in (J. Domingo-Ferrer and V. Yucel, eds.) Privacy in Statistical Databases, New
York, N.Y.: Springer, 239-246.
Abowd, J. M., and Woodcock, S. D. (2002), ”Disclosure Limitation in Longitu-
dinal Linked Data,” in (P. Doyle et al, eds.) Confidentiality, Disclosure, and Data
Access, Amsterdam, The Netherlands: North Holland.
Abowd, J. M., and Woodcock, S. D. (2004), ”Multiply-Imputing Confidential
Characteristics and File Links in Longitudinal Linked Data, in (J. Domingo-
Ferrer and V. Torra, eds.), Privacy in Statistical Databases, New York: Springer.
Adams, N. R., and Wortmann, J. C., (1989), ”Security-control Methods for Sta-
tistical Databases, A Comparative Study,” ACM Computing Surveys, 21, 515-
556.
Aggarwal, C. C., (2005), ”On k-Anonymity and the Curse of Dimensionality,”
Proceedings of the 31st VLDB Conference, Trondheim, Norway, http://ww
w.vldb2005.org/program/paper/fri/p901-aggarwal.pdf.
Aggarwal, C. C., and Parthasarathy, S. (2001), ”Mining Massively Incomplete
Data Sets through Conceptual Reconstruction,” Proceedings of the ACM KDD
Conference, 227-232.
Aggarwal, C. C., and Yu, P. (2004), ”A Condensation Approach to Privacy Pre-
serving Data Mining,” Proceedings of the EBDT Conference, 183-199.
Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas,
D., and Zhu, A. (2005), ”Anonymizing Tables,” International Conference on
Database Theory.
Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S. Panigrahy, R., Thomas, D.,
and Zhu, A. (2006), ”Achieving Anonymity via Clustering,” ACM PODS ’06.
Agrawal, D., and Aggarwal, C. C. (2001), ”On the Design and Quantification
of Privacy Preserving Data Mining Algorithms,” Association of Computing Ma-
chinery, Proceedings of PODS 2001, 247-255.

J. Drechsler, Synthetic Datasets for Statistical Disclosure Control: Theory and Implementation,  

© Springer Science+Business Media, LLC 2011 

103  
Lecture Notes in Statistics 201, DOI 10.1007/978-1-4419-9554-4,  



104 A Bill Winkler’s Microdata Confidentiality References

Agrawal, R., and Srikant, R. (2000), Privacy Preserving Data Mining, Proceed-
ings of the ACM SIGMOD 2000, 439-450.
Agrawal, R., Srikant, R., and Thomas, D. (2005), ”Privacy Preserving OLAP,”
ACM SIGMOD Conference.
Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. (2002), ”Hippocratic Databases,”
Very Large Databases 2002.
Bacher, J., Bender, S., and Brand, R. (2001), ”Re-identifying Register Data by
Survey Data: An Empirical Study,” presented at the UNECE Workshop On Sta-
tistical Data Editing, Skopje, Macedonia, May 2001.
Bacher, J., Brand, R., and Bender, S. (2002) Re-identifying Register Data by
Survey Data using Cluster Analysis: An Empirical Study, International Journal
of Uncertainty, Fuzziness, Knowledge-Based Systems, 10 (5) 589-608.
Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., and Talwar, K.
(2007), ”Privacy, Accuracy, and Consistency Too: A Holistic Solution to Contin-
gency Table Release,” PODS ’07, Beijing, China.
Bayardo, R. J., and Agrawal, R. (2005), ”Data Privacy Through Optimal K-
Anonymization,” IEEE 2005 International Conference on Data Engineering.
Bethlehem, J. A., Keller, W. J., and Pannekoek, J., (1990), ”Disclosure Control
of Microdata,” Journal of the American Statistical Association, 85, 38-45.
Blien, U., Wirth, U., and Muller, M. (1992), ”Disclosure Risk for Microdata
Stemming from Official Statistics,” Statistica Neerlandica, 46, 69-82.
Blum, A., Dwork, C., McSherry, F., and Nissim, K. (2005), ”Practical Privacy:
The SuLQ Framework,” ACM SIGMOD Conference (also http://research
.microsoft.com/research/sv/DatabasePrivacy/bdmn.pdf).
Brand, R. (2002), ”Microdata Protection Through Noise Addition,” in (J. Do-
mingo-Ferrer, ed.) Inference Control in Statistical Databases, New York: Springer,
97-116.
Castro, J. (2004), ”Computational Experience with Minimum-Distance Con-
trolled Perturbation Methods,” in (J. Domingo-Ferrer, ed.), Privacy in Statistical
Databses 2004, Springer: New York.
Chawla, S., Dwork, C., McSherry, F., Smith, A., and Wee, H. (2004), ”Toward
Privacy in Public Databases,” Microsoft Research Technical Report, Theory of
Cryptography Conference.
Chawla, S., Dwork, C., McSherry, F., and Talwar, K. (2005), ”On the Util-
ity of Privacy-Preserving Histograms,” http://research.microsoft.c
om/research/sv/DatabasePrivacy/cdmt.pdf.
Dalenius, T., and Reiss, S.P. (1982), ”Data-swapping: A Technique for Disclo-
sure Control,” Journal of Statistical Planning and Inference, 6, 73-85.
Dandekar, R. A. (2004), Maximum Utility Minimum Information Loss Table
Server Design of Statistical Disclosure Control of Tabular Data, in (J. Domingo-
Ferrer and V. Torra, eds.), Privacy in Statistical Databases, New York: Springer,
121-135.



A Bill Winkler’s Microdata Confidentiality References 105

Dandekar, R. A., Domingo-Ferrer, J., and Sebe, F. (2002), ”LHS-Based Hybrid
Microdata vs Rank Swapping and Microaggregation for Numeric Microdata Pro-
tection,” in (J. Domingo-Ferrer, ed.) Inference Control in Statistical Databases,
New York: Springer, 175-186.
Dandekar, R., Cohen, M., and Kirkendal, N. (2002), ”Sensitive Microdata Pro-
tection Using Latin Hypercube Sampling Technique,” in (J. Domingo-Ferrer, ed.)
Inference Control in Statistical Databases, New York: Springer, 117-125.
Defays, D., and Anwar, M. N. (1998), ”Masking Microdata Using Microaggre-
gation,” Journal of Official Statistics, 14, 449-461.
Defays, D., and Nanopolis, P. (1993), ”Panels of Enterprises and Confidentiality:
the Small Aggregates Method,” in Proceedings of the 1992 Symposium on Design
and Analysis of Longitudinal Surveys, 195-204.
De Waal, A. G., and Willenborg, L.C.R.J. (1995), ”Global Recodings and Local
Suppressions in Microdata Sets,” Proceedings of Statistics Canada Symposium
95, 121-132.
De Waal, A. G., and Willenborg, L.C.R.J. (1996), ”A View of Statistical Dis-
closure Control for Microdata,” Survey Methodology, 22, 95-103. De Wolf, P.-P.
(2007), ”Risk, Utility and PRAM: A Comparison of Proximity Swap and Data
Shuffle for Numeric Data,” in (J. Domingo-Ferrer, ed.) Statistical Data Protec-
tion 2006, Springer: New York, N.Y.
Dinur, I., and Nissim, K. (2003), ”Revealing Information while Preserving Pri-
vacy,” ACM PODS Conference, 202-210.
Domingo-Ferrer, J. (2001), ”On the Complexity of Microaggregation,” presented
at the UNECE Workshop On Statistical Data Editing, Skopje, Macedonia, May
2001.
Domingo-Ferrer, J. (ed.) (2002) Inference Control in Statistical Databases, New
York: Springer
Domingo-Ferrer, J., and Mateo-Sanz, J. M. (2001), ”An Empirical Comparison
of SDC Methods for Continuous Microdata in Terms of Information Loss And
Re-Identification Risk,” presented at the UNECE Workshop On Statistical Data
Editing, Skopje, Macedonia, May 2001.
Domingo-Ferrer, J., and Mateo-Sanz, J. M. (2002), ”Practical Data-Oriented Mi-
croaggregation for Statistical Disclosure Control,” IEEE Transactions on Knowl-
edge and Data Engineering, 14 (1), 189-201.
Domingo-Ferrer, J., Mateo-Sanz, J., Oganian, A., and Torres, A. (2002), ”On
the Security of Microaggregation with Individual Ranking: Analytic Attacks,”
International Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems,
477-492.
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Appendix B

Binned Residual Plots to Evaluate the

Imputations for the Categorical Variables

Figure B.1 presents the binned residual plots for all 59 categorical variables with
missing rates ≥ 1%. For variables with more than two categories, I present a graph
for each category (the first category is always defined as the reference category in
the multinomial imputation model).1
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Fig. B.1 Binned residual plots for the categorical variables with missing rates above 1%.

1 For readability, I use the internal labeling for the variables. A detailed description of all variables
can be obtained from the author upon request.
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Fig. B.1 Continued.
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Fig. B.1 Continued.
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Fig. B.1 Continued.



Appendix C

Simulation Study for the Variance-inflated

Imputation Model

Here I present results from a small simulation study that I conducted to evaluate
the impact on data quality for the variance-inflated imputation model described in
Section 8.3.5.4. For the simulation, I generate a population of N =1,000,000 records
comprising three variables, Y1, . . . ,Y3, drawn from N(0,Σ), where Σ has variances
equal to one and correlations ranging from 0.3 to 0.7. From this population, I re-
peatedly draw simple random samples of size s =10,000 and treat these samples as
the originally observed samples Dobs. For the synthesis, I replace values of Y3 for all
records in Dobs. I generate replacement values by sampling from the posterior pre-
dictive distribution, f (Y3|Dobs), using parameter values drawn from the variance-
inflated posterior distribution given in (8.11) with different levels of the variance
inflation factor α . For comparison, I also generate synthetic datasets with Y1 omit-
ted from the imputation model to illustrate the negative consequences of dropping
explanatory variables from the models to obtain a higher level of data protection.
In analogy with the real data application, I generate m = 5 synthetic datasets for
any one iteration of the simulation design. I obtain inferences for four quantities in
each simulation run, including the population mean and the intercept and regression
coefficients of Y2 (β1) and Y3 (β2) in a regression of Y1 on Y2 and Y3. I repeat each
simulation 5,000 times.

Table C.1 displays key results from the simulations. The average q̄m across the
5,000 simulation runs is always very close to the average qobs for α ≤ 100. For
α =1,000, I find small biases for all point estimates. The variance estimator Tp (col-
umn four) correctly estimates the true variance of q̄m (column three) for any given
level of α . Columns six and seven summarize the percentages of the 5,000 synthetic
95% confidence intervals that cover their corresponding Q for the original sam-
ple and the synthetic samples, respectively. The coverage rates from the synthetic
samples are always close to the expected nominal coverage of 95% for α ≤ 100.
Only for α = 100 is there a slight undercoverage for the regression coefficient β2
compared with the coverage rate of β2 in the original sample. The undercoverage
increases for α =1,000. All estimates slightly undercover, and for β2 the coverage
rate actually drops to 90.8%. The ninth column reports the ratio of the confidence
interval length from the synthetic datasets over the confidence interval length from
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the original samples. Not surprisingly, the ratio increases with increasing α since
the variance-inflated imputation model increases the between-imputation variance
bm and thus the variance of q̄m. Comparing the confidence interval length ratio with
the root mean squared error (RMSE) ratio in the last column, it is obvious that the
RMSE ratio is always smaller than or equal to the confidence interval length ra-
tio, indicating that the increased RMSE in the synthetic datasets is likely due to the
increased variance from the variance-inflated imputation model. Only for the regres-
sion coefficient β2 and α ≥ 100 is there an increased RMSE ratio compared with the
confidence interval length ratio. Overall levels of α ≤ 100 lead to reduced efficiency
in the estimation but no noticeable bias, at least for this simulation. For α =1,000,
there is a small bias that leads to slight undercoverage, but note that I replaced all
records with variance-inflated imputations in these simulations. In practice, agen-
cies will only replace some records that are specifically at risk with draws from
the variance-inflated imputation model. I expect that the bias will be small in this
context.

The results for the data generation that drops Y1 from the imputation model to ob-
tain a higher level of data protection are presented in Table C.2. Ȳ3 and the intercept
from the regression are not affected, but the two regression coefficients are com-
pletely biased, leading to a 0% coverage rate for both estimates and a substantially
increased RMSE ratio. It is obvious that the variance-inflated imputation model pro-
vides far better results in terms of data validity. Dropping variables from the impu-
tation models should only be considered an option if the data-disseminating agency
knows that the data user will never evaluate the relationship between the dropped
variable and the variable to be imputed.
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