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Preface

R is an open-source and free software environment for statistical computing
and graphics. R compiles and runs on a wide variety of UNIX platforms
(e.g., GNU/Linux and FreeBSD), Windows, and Mac OSX. Since the late
1990s, R has been developed by hundreds of contributors and new capabilities
are added each month. The software is gaining popularity because: 1) it is
platform independent, 2) it is free, and 3) the source code is freely available
and can be inspected to determine exactly what R is doing.

Our objectives for this book are to 1) demonstrate the use of R as a solid
platform upon which forestry analysts can develop repeatable and clearly
documented methods; 2) provide guidance in the broad area of data handling
and analysis for forest and natural resources analytics; and 3) to use R to
solve problems we face each day as forest data analysts.

This book is intended for two broad audiences: students, researchers, and
software people who commonly handle forestry data; and forestry practition-
ers who need to develop actionable solutions to common operational, tactical,
and strategic problems. We often mention better and more complete treat-
ments of specific subject material for further reference (e.g., forest sampling,
spatial statistics, or operations research).

We hope that this book will serve as a field manual for practicing forest an-
alysts, managers, and researchers. We hope that it will be dog-eared, defaced,
coffee/tea-stained, and sticky-noted to near destruction. We hope the reader
will engage in the exercises, scrutinize its contents, forgive our weaknesses,
possibly and carefully absorb suggestions, and constructively criticize.

Acknowledgments

This book would not have been possible without the patient and generous
assistance of many people. We first thank all the authors of the literature
we cite, who were willing to publish their data as part of their research.

vii



viii Preface

These data are often our only link between repeatable research and anecdotal
opinion.

We thank Valerie LeMay and Timothy Gregoire for their kind contribution
of tree measurement data and for their encouragement and leadership in
the field. We thank Boris Zeide for his generous contribution of the von
Guttenberg data. We thank Don Wallace and Bruce Alber for supplying
an interesting dataset to demonstrate the data management, plotting, and
file functions in Chapter 2. We thank the Oregon State University College
of Forestry Research Forests web site for posting a publicly available forest
inventory for Chapters 2 and 4. Without those data, many of the examples
and topics in this book would have to have been performed using simulated
data and frankly would have been much less interesting. We thank Martin
Ritchie for providing data, funding, and snippets of code once lost and found
again during the development of the rconifers package, used in Chapter 8. We
thank David Hann for, years ago, providing an original copy of the manuscript
that we used to generate the shared library example (chambers-1980.so) in
Chapter 8 (Chambers, 1980).

We have received considerable constructive criticism via the review pro-
cess, only some of which we can source. We especially thank John Kershaw
for generous and detailed comments on Chapter 3, Jeff Gove for his support
and useful commentary on Chapter 5, and David Ratkowsky and Graham
Hepworth for their thoughtful and thought-provoking comments on Chap-
ters 6 and 7, respectively. Numerous other useful comments were made by
anonymous reviewers. The collection of review comments improved the book
immeasurably.

We thank R Core, the R community, and all the package authors and main-
tainers we have come to rely upon. Specifically, we thank the following people,
in no particular order: David B. Dahl (xtable); Lopaka Lee (R-GLPK); An-
drew Makhorin (GLPK); Roger Bivand (maptools); Deepayan Sarkar (lat-
tice); Hadley Wickham (ggplot2); Brian Ripley (MASS, class, boot); Jose
Pinheiro and Douglas Bates (nlme); Frank Harrell (Hmisc); Alvaro Novo and
Joe Schafer (norm); Greg Warnes (gmodels et al.); Reinhard Furrer, Douglas
Nychka, and Stephen Sain (fields); Thomas Lumley (survey); and Nicholas
J. Lewin-Koh and Roger Bivand (maptools).

We thank John Kimmel, our managing editor at Springer, for showing in-
credible patience and Hal Henglein, our copy editor, for keeping us consistent.

AR wishes to thank Mark Burgman for providing space to finish this book
within a packed ACERA calendar, and for his substantial support and guid-
ance. AR also wishes to thank Geoff Wood, Brian Turner, Alan Ek, and
Albert Stage for their kindness and intellectual support along the way.

JH wishes to thank Martin Ritchie, David Marshall, Kevin Boston, and
John Sessions for their support along the way.

Finally, we wish to thank our wives, children, and friends for cheerful
perseverance and support in the face of a task that seemed at times like a
little slice of Sisyphus.



Preface ix

Melbourne and Corvallis Andrew Robinson

August 16, 2010 Jeff D. Hamann



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Part I Introduction and Data Management

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Topics Covered in This Book . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Conventions Used in This Book . . . . . . . . . . . . . . . . . . . . 6
1.1.3 The Production of the Book . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Communicating with R . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Getting Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Using Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Extending R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.5 Programming Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.6 Programming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.7 Speaking Other Languages . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Notes about Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Forest Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 File Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Spreadsheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Using SQL in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.4 The foreign Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.5 Geographic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.6 Other Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Data Management Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Herbicide Trial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Simple Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



xii Contents

2.3.3 Graphical error checking . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.4 Data Structure Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 Upper Flat Creek in the UIEF . . . . . . . . . . . . . . . . . . . . . 43
2.4.2 Sweetgum Stem Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.3 FIA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.4 Norway Spruce Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.5 Grand Fir Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.6 McDonald–Dunn Research Forest . . . . . . . . . . . . . . . . . . 55
2.4.7 Priest River Experimental Forest . . . . . . . . . . . . . . . . . . . 61
2.4.8 Leuschner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Part II Sampling and Mapping

3 Data Analysis for Common Inventory Methods . . . . . . . . . . . 75
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.1 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.2 Example Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Estimate Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.1 Sampling Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.2 Intervals from Large-Sample Theory . . . . . . . . . . . . . . . . 80
3.2.3 Intervals from Linearization . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.4 Intervals from the Jackknife . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.5 Intervals from the Bootstrap . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.6 A Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 Single-Level Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.3.1 Simple Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.3.2 Systematic Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4 Hierarchical Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.1 Cluster Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.2 Two-Stage Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Using Auxiliary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.5.1 Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.5.2 Ratio Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.5.3 Regression Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.5.4 3P Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.5.5 VBAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4 Imputation and Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.1 Examining Missingness Patterns . . . . . . . . . . . . . . . . . . . 118
4.2.2 Methods for Imputing Missing Data . . . . . . . . . . . . . . . . 125



Contents xiii

4.2.3 Nearest-Neighbor Imputation . . . . . . . . . . . . . . . . . . . . . . 126
4.2.4 Expectation-Maximization Imputation . . . . . . . . . . . . . . 131
4.2.5 Comparing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.3.1 Methods of Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.3.2 Ordinary Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.3.3 Semi-variogram Estimation . . . . . . . . . . . . . . . . . . . . . . . . 141
4.3.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Part III Allometry and Fitting Models

5 Fitting Dimensional Distributions . . . . . . . . . . . . . . . . . . . . . . . . 155
5.1 Diameter Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.2 Non-parametric Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3 Parametric Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.1 Parameter Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.3.2 Some Models of Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.3.3 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.3.4 Sampling Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6 Linear and Non-linear Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.1.2 Thinking about the Problem . . . . . . . . . . . . . . . . . . . . . . . 180
6.1.3 Fitting the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.1.4 Assumptions and Diagnostics . . . . . . . . . . . . . . . . . . . . . . 181
6.1.5 Examining the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.1.6 Using the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.1.7 Testing Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.1.8 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.1.9 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.1.10 Generalized Least-Squares Models . . . . . . . . . . . . . . . . . . 197

6.2 Non-linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.2.2 Thinking about the Problem . . . . . . . . . . . . . . . . . . . . . . . 200
6.2.3 Fitting the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.2.4 Assumptions and Diagnostics . . . . . . . . . . . . . . . . . . . . . . 203
6.2.5 Examining the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.2.6 Using the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.2.7 Testing Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.2.8 Generalized Non-linear Least-Squares Models . . . . . . . . 212
6.2.9 Self-starting Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.3 Back to Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.3.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215



xiv Contents

6.3.2 Non-linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.3.3 Heavy-Tailed Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7 Fitting Linear Hierarchical Models . . . . . . . . . . . . . . . . . . . . . . . 219
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.1.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.1.2 Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.1.3 Solving a Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.1.4 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7.2 Linear Mixed-Effects Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.2.1 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.3 Case Study: Height and Diameter Model . . . . . . . . . . . . . . . . . . 233
7.3.1 Height vs. Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.3.2 Use More Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.3.3 Adding Fixed Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.3.4 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

7.4 Model Wrangling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.4.1 Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.4.2 Meddle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.4.3 Modify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.4.4 Compromise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

7.5 The Deep End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.5.1 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
7.5.2 Restricted Maximum Likelihood . . . . . . . . . . . . . . . . . . . . 263

7.6 Non-linear Mixed-Effects Models . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.6.1 Hierarchical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

7.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Part IV Simulation and Optimization

8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
8.1 Generating Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

8.1.1 Simulating Young Stands . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.1.2 Simulating Established Stands . . . . . . . . . . . . . . . . . . . . . 284

8.2 Generating Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
8.2.1 The Taper Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
8.2.2 Computing Merchantable Height . . . . . . . . . . . . . . . . . . . 291
8.2.3 Summarizing Log Volumes by Grade . . . . . . . . . . . . . . . . 293
8.2.4 Young-Stand Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
8.2.5 Established-Stand Volumes . . . . . . . . . . . . . . . . . . . . . . . . 296

8.3 Merging Yield Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
8.4 Examining Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

8.4.1 Volume Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
8.4.2 Mean Annual Increment . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8.5 Exporting Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305



Contents xv

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

9 Forest Estate Planning and Optimization . . . . . . . . . . . . . . . . . 307
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
9.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
9.3 Strict Area Harvest Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

9.3.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
9.3.2 Adding Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
9.3.3 Naming Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
9.3.4 Bounding Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
9.3.5 Setting Objective Coefficients . . . . . . . . . . . . . . . . . . . . . . 312
9.3.6 Adding Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
9.3.7 Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
9.3.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
9.3.9 Archiving Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
9.3.10 Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335



Part I

Introduction and Data Management



Chapter 1

Introduction

Forestry has offered a fertile environment for data analysts to operate in
since forest measurements began. Forestry datasets are typically voluminous,
hierarchical, messy, multi-faceted, and expensive. The challenges that forest
managers face are complex, and the costs of poor decisions can be high. On
the other hand, often, but not always, decisions are made over long time
frames, and there is time for considered data analysis. Forestry data analysts
are fortunate to work in a space in which the data and the resources are
usually sufficient to do something that is more useful than doing nothing.

Forestry has a wide range of datasets and questions in which statistics,
econometrics, and applied mathematics tools can all play a constructive role.
The challenge for the data analyst is to find the best match between the data,
the question, and the tools. The match depends on the context. A model or
dataset that perfectly suits one application may be quite inappropriate for
another. The same model or dataset may be just the best that can be done
at the time, and reluctantly accepted. The analyst must be pragmatic.

This need for pragmatism must cut across received dogma from statistics
and other fields. For example, in Chapters 6 and 7 we spend considerable
time scrutinizing graphical diagnostics to learn more about the intersections
between particular models and the data to which we have fit them, as en-
capsulated in the model assumptions. The importance of the fidelity of the
match between the assumptions and the diagnostics depends entirely on con-
text. We can learn more about the data and can possibly improve the model,
but at some point the analysis finishes and the action begins. To be clear:
sometimes you have to make the decision in front of you using the data and
the model that you have rather than the data and the model that you wish
you had. Go ahead.

This book develops and demonstrates solutions to common forestry data-
handling and analysis challenges. We draw upon solutions from applied statis-
tics, forest biometrics, and operations research. Most of these solutions have
already been suggested and applied in forestry literature; our goal is to survey
them, and demonstrate an approach to resolving them using R (Ihaka and

3A. P. Robinson, J. D. Hamann, Forest Analytics with R, Use R!,
DOI 10.1007/978-1-4419-7762-5_1, © Springer Science+Business Media, LLC 2011
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Gentleman, 1996). R is an open-source, GNU-licensed statistical program-
ming language that has interpreters for several computing platforms, notably
Unix, Windows, and Mac OSX, in 32 bit and 64 bit versions (R Development
Core Team, 2010). R is free, flexible, and powerful, and rapidly making in-
roads into various aspects of statistical endeavor, including those relevant to
forestry.

Forestry datasets are usually collected and managed according to lo-
cal or organizational customs. Sometimes these customs are documented.
Datasets may be censored, analyses chaotic, vocabularies inchoate, and pro-
cesses more often breached than observed. The data analyst must respond
flexibly and creatively, document processes, and leave an unambiguous ana-
lytical trail. Analyses should be scripted, and scripts should be documented,
time-stamped, and carefully archived. It is in these contingencies that R can
shine most brightly. As we will see in Chapter 2, R provides a suite of data-
reading and data-handling tools that can be combined to handle pretty much
any data-preparation challenge.

A cornucopia of analytical strategies is coupled to this plethora of data.
R encompasses a considerable range of statistical and mathematical tools by
itself, and with its extension packages, written by the R community, its reach
widens further. The count of such packages, at the time of writing, is in the
multiple thousands. The quality of these packages, in terms of the match
between what they say and what they do, is not guaranteed. Some packages
are used and scrutinized daily by hundreds of individuals. Some packages are
developed in passing, contributed to the community, and rarely dusted off.
Although there has been discussion of the development of a systematic review
facility or the tracking of usage statistics, these have not yet been developed.
The analyst must consider the source carefully.

The challenge of real-world data analysis can be divided into substantial
parts. In an ideal situation, these challenges are met sequentially. More often,
iteration, if not outright back-tracking, is necessary. The parts are:

1. Abstraction: the art of translation of a practical question into a model.
This process is interactive and relies at least as much upon communication
skills and sensitivity as it does statistical ability.

2. Data collection: from the field, the filing cabinet, the hard drive, or the
Internet, find the data that are most likely to satisfy the model as it
pertains to the practical question, within the time and effort that are
dictated by the available budget.

3. Modeling: find the best match between the model and the data that are
available, in the context of the question that the model represents.

4. Conclusion: stop modeling. Identify the model flaws rigorously and move
on.

5. Communication: translate the results and the model flaws back to the
answer to the practical question and the caveats with which it must be
interpreted.
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Regardless of the platform used for analysis, the development of carefully
documented scripts will inevitably save anguish and time, sooner or later.

1.1 This Book

The objectives of this book are to 1) demonstrate the use of R as a solid
platform upon which forestry analysts can develop repeatable and literate
programming methods; 2) provide guidance in the broad area of data handling
and analysis for forest and natural resources analytics; and 3) to use R to
solve problems we face each day as forest data analysts.

This book is intended for two broad audiences: 1) students, researchers,
and software people who commonly handle forestry data; and 2) forestry prac-
titioners who need to develop actionable solutions to common operational,
tactical, and strategic problems.

At times, our citations may appear excessive, and at other times lacking.
We shamelessly mix units and nomenclature. The focus of this book is to
present R as an analytical tool for manipulating data, performing analysis,
and generating useful outputs. We mention, where appropriate, better and
more complete treatments of the subject material, and assume the reader
either has access to these standard texts or understands the details behind
the subject matter.

In each chapter, we present one or more analysis problems and at least one
solution. Our solutions are not necessarily the most efficient for the problem
at hand. We encourage the reader to examine the problem in a variety of ways
and develop alternative solutions. In each chapter, we also present a number of
questions that are important for many analysis tasks and attempt to provide
good templates for providing objective, unbiased, and useful answers.

1.1.1 Topics Covered in This Book

Four major subject areas are covered in this text. Part I includes this intro-
duction and a chapter presenting the fundamental processes of data ingestion,
data manipulation, and performance of basic procedures to examine forest,
forestry, and forestry-related data.

In Part II, we present the processing of sample surveys, and imputation
methods. In Chapter 3, we cover the analysis of forest sample surveys, interval
estimation methods, single-level sampling, hierarchical sampling, and samples
using auxiliary information. In Chapter 4, we cover mapping, imputation, and
prediction of spatial data using nearest-neighbor, expectation maximization,
and kriging methods to generate a complete dataset for a forest landscape
when we begin with incomplete or missing data.
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In Part III, we present more sophisticated tools for examining allometric
relationships, fitting dimensional distributions, and linear and non-linear hier-
archical models. In Chapter 5, we fit diameter distributions using parametric
and non-parametric representations. In Chapter 6, we fit linear and non-linear
regression models. In Chapter 7, we present methods for model construc-
tion using maximum likelihood, linear mixed-effects models, and non-linear
mixed-effects models.

In Part IV, we present techniques for simulation and optimization in forest
environments. In Chapter 8, we shift focus to methods to generate simula-
tions for disparate forest models using C and FORTRAN code. In Chapter 9,
we present and solve a well-known linear forest estate planning and optimiza-
tion problem to determine the wood flow for a strict area harvest schedule
(Leuschner, 1990).

1.1.2 Conventions Used in This Book

This book contains numerous equations, examples of source code, computer
output, and citations. The format for the computer inputs and outputs in this
book is as follows: 1) names of files, objects, and functions used within the
text are in courier font; 2) package names are in plain text; 3) R code that
you type at the command line is in slanted courier font; and 4) output
that comes out of R is in courier font. For example, a simple R session would
look like (startup message omitted):

> a <- rnorm(1000)

> b <- mean(a)

> b

[1] -0.01262165

where a and b are objects of type vector and scalar; rnorm and mean are
functions that return objects, respectively.

1.1.3 The Production of the Book

This book was produced by the authors using LATEX and the Sweave function
in R, and was compiled under a variety of platforms. At times, both authors
have used the Windows, FreeBSD, and Mac OSX operating systems, includ-
ing both 32 bit and 64 bit versions. While we make no guarantees that these
scripts will work on other platforms, we encourage readers to report their
results.
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1.2 Software

As well as demonstrating forest analytics, another aim of this book is to
enable the reader to quickly get started in using these methods via R. The R
software is compiled for numerous platforms and can be freely obtained from
the Comprehensive R Archive Network at http://cran-r.project.org.

1.2.1 Communicating with R

R is, at its most basic level, a command-line language, meaning that we
interact with R by typing sequences of commands at its prompt. The default
prompt, which means that R is ready to receive an instruction, looks like
this:

>

Sometimes input to R will be longer than one line. In these circumstances,
R will change the prompt to let you know that it expects a continuation of
previous input. By default, this is the plus sign:

+

A common trap that starting R users fall into is to fail to notice which
prompt is being provided. If you get a + when you expect a >, then R is still
waiting for input to complete. This completion could require the balancing of
parentheses, or quotes, for example. If you get lost, then cancel out and start
again. Canceling out is a platform-specific operation; for example, in Unix,
hitting Ctrl-C does the trick, whereas in Windows there is a big red button
to click using the mouse.

We type commands at the prompt, and if R understands them, then it
carries them out and returns the result. For example,

> 1 + 2

[1] 3

If the command does not explicitly require feedback, then R will not provide
it. Thus, if we were to wish to save the result of the preceding arithmetic as
an object, called a.out, then we might type

> a.out <- 1 + 2

and no output is returned. <- is the assignment operator. This is how we tell R
to create (or recreate) the object named a.out. Note that R is case-sensitive.

One convenient way to gather sequences of commands together in R is to
write them as a function. For example, the following function evaluates the
preceding arithmetic expression and provides a cheery message:
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> hi.there <- function() {

+ a.out <- 1 + 2

+ cat("Hello World!\n")

+ return(a.out)

+ }

Some points need elaboration: the call to function creates a new object that
is stored in random-access computer memory (RAM). The object is called
hi.there, and it contains the function that we have defined. We call the
function as follows.

> hi.there()

Hello World!

[1] 3

If we wanted to write a more general function, for example one that would
add 1 to an arbitrary number, we would include an argument to pass the
arbitrary number to the function, as follows.

> hi.there <- function(arbitrary.number) {

+ a.out <- 1 + arbitrary.number

+ cat("Hello World!\n")

+ return(a.out)

+ }

> hi.there(pi)

Hello World!

[1] 4.141593

We can feed a sequence of R commands to the command line using the
source function. The source function accepts as its first argument the name
of a file that contains the R commands to be executed.

The code that we executed above created objects inside R. These objects
are stored in RAM in a container referred to as the workspace. We can identify
the objects in our workspace using the ls function:

> ls()

[1] "a" "a.out" "b" "hi.there"

and delete any of them using the rm function:

> rm(a.out)

> ls()

[1] "a" "b" "hi.there"
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Unless we take steps to explicitly save the objects, or the workspace that
contains them, they will be lost when the R session finishes. See the help
information about the save and save.image functions for more information.
We can delete all the objects in the workspace using

> rm(list = ls())

This line of code shows us that R will allow us to nest statements seamlessly.
Here, the output of the call to ls is being used as the list argument for the
function rm.

When we move objects from the workspace to the hard drive or back, as
we do in the next chapter, we need to tell R in which directory to look for
files or to which directory to save files. If we do not tell R what directory
to use, it will use a default directory, called the working directory. We can
see what the working directory is by using the getwd function and set the
working directory by using the setwd function.

In addition to the command line, R has graphical user interfaces in varying
states of sophistication. Adoption of one of these interfaces can simplify the
challenge of learning R.

1.2.2 Getting Help

There are four main sources of assistance: the internal help files, the R man-
uals, the R-help community’s archive, and the R-help community itself.

1.2.2.1 Getting Help Locally

While working through this book, it is likely that you will find commands that
are used in example code that have been inadequately explained or perhaps
ignored completely. When you find such commands, you should read about
them using the help function, which has ? as a prefix-style shortcut. We can
get help on commands this way; for example

> ?mean

> help(mean)

This approach is useful so long as we know the name of the command that
we wish to use. If we only know some relevant words, then we can use the
help.search function.

> help.search("quartile")

The output from this command is long. We have to read through all the
descriptions of the functions that correspond to this call until we find the one
that seems to be the best match with what we want.
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...

stats::qqnorm Quantile-Quantile Plots

stats::quantile Sample Quantiles

survey::svykm Estimate survival function.

...

Now we can try help(quantile). It also tells us that the quantile function
is in the stats package. It doesn’t tell us that the stats package is already
loaded, but it is.

We have found that the best way to learn to use the functions is to try
out the examples that usually appear at the end of the help information. For
most help files, we can just copy those example commands, paste them to the
console, and see what happens. The commands can then be altered to suit
our needs. Furthermore, these examples are often miniature data analyses
and provide pointers to other useful functions that we can try. Finally,

> example(gstat)

and

> demo(graphics)

are useful for running examples from packages.
We can also access the files that are installed with R using a web browser.

Again inside R, run the following command:

> help.start()

This function opens a browser (or a window inside an existing browser) into
which help results will be sent and within which you can then point, click,
and search for keywords. You may need to set the default browser, depending
on your operating system. That would be done by, for example,

> options(browser="firefox")

The page that is opened in the browser window also provides hyperlinked
access to R’s manuals, which provide a great deal of very useful information.
The manuals are constantly under development, so it is worth checking back
regularly. The options function allows you to change much of R’s default
behavior. Use help to learn more about it.

1.2.2.2 Getting Help Remotely

There is a thriving community of programmers and users who will be happy
to answer carefully worded questions and, in fact, may well have already
done so. Questions and answers can be easily found from inside R using the
following commands:
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> RSiteSearch("lme4 p-value", restrict = "Rhelp08")

> RSiteSearch("{logistic regression}") # matches exact phrase

If you don’t find an answer after a solid search, then you should consider
asking the community by using the R-help email list. There is a posting guide
to help you write questions that are most likely to obtain useful answers —
it is essential reading! Point your browser to http://www.r-project.org/

posting-guide.html for further guidance.
One point that we emphasize is that a question is much easier to answer

when the motivation can be reproduced. Therefore, if at all possible, include
minimal, commented, executable R code that demonstrates the phenomenon
of interest.

Details on joining the email list group can be found at https://stat.

ethz.ch/mailman/listinfo/r-help. You may like to consider the digest
option; emails arrive at a rate of up to 100 per day.

1.2.3 Using Scripts

Using R effectively virtually demands that we write scripts. We save the
scripts to a known directory and then either copy and paste them into the R
console or read them in using one of the following commands:

> source(file = "C://path/to/scripts/file.R", echo = TRUE)

> source(file = "../scripts/file.R", echo = TRUE)

> source("file.R", echo=TRUE) # If file.R is in

# the working directory (q.v.)

Note the use of forward slashes to separate the directories. Also, the di-
rectory names are case sensitive and are permitted to contain blank spaces.

A key element of good script writing is commentary. In R, the comment
symbol is the # symbol. Everything on a line after a # is ignored. Some
editors will tab comments based on the number of #s used.

Instructions can be delimited by line feeds or semicolons. R is syntacti-
cally aware, so if you insert a return before your parentheses or brackets are
balanced, it will politely wait for the rest of the statement.

Script writing is a very powerful collaborative tool. It’s very nice to be able
to send your code and a raw data file to a cooperator and know that they
can just source the code and run your analysis on their machine. Writing
readable, well-commented scripts is a really good habit to get into early; it
makes life much easier in the future. Large projects are vastly simplified by
rigorous script writing.
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1.2.4 Extending R

We need to distinguish between the R software application and its packages.
When the R application is run, it automatically provides access to a sub-
stantial range of functionality. For example, we can compute the mean of a
sequence of numbers using the mean function.

> mean(c(1, 2, 3))

[1] 2

However, still more functions are available to R within packages that are
installed by default but not automatically attached to R’s search path. To
access these packages, we use the library or require functions. As a modest
example, in order to be able to use the boot function for bootstrapping, we
must first run

> library(boot)

We can obtain a list of the packages that are directly available via the library
command using the installed.packages function.

In addition to these installed packages, R also provides access to packages
that have been written by members of the community. These packages are
made available on the CRAN web site, mirrors of which are available in
many countries. In order to obtain a list of the packages that are available for
download and installation, use the available.packages function. To install
one, use the install.packages function.

We have written an R package called FAwR (Forest Analytics with R)
that includes the functions and data for this book.

CRAN also offers Task Views, which present collections of packages that
support a particular theme. For example, the CRAN Task View for spatial
data1 is an excellent source of options for data and algorithms for spatial
data, and the CRAN Task View for Environmetrics2 is an excellent source for
ecological and environmental data. We check the CRAN Task Views regularly
and suggest you do, too.

We often use packages that act as an interface to other libraries (for ex-
ample, GLPK). We refer to the functions as wrapper functions, as the goal
is to simply pass arguments into the underlying application programming
interface (API). For example, in Chapter 9, we use glpk wrapper functions
such as lpx_set_mat_row, which stores, or replaces, the contents of the i -th
row of the constraint matrix of the specified problem object. As you may
find in the R documentation, this function is simply a wrapper for the glpk

function, which is written in C.

1 http://cran.r-project.org/web/views/Spatial.html
2 http://cran.r-project.org/web/views/Environmetrics.html
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void glp_set_mat_row(glp_prob *lp,

int i,

int len,

const int ind[],

const double val[]);

where the column indices and numerical values of new row elements must
be placed in locations ind[1], . . . , ind[len] and val[1], . . . , val[len],
respectively. For most if not all of these cases, we refer the reader to the
original documents (e.g., Makhorin (2009) for the GLPK API).

1.2.5 Programming Suggestions

Generic programming skills are as useful in coding with R as anywhere else.
Wherever possible, examine the results of your code, possibly using summary
statistics, to ensure that it has done what you intended. Keep backups of your
scripts and datasets. Work with the raw data as it came to you, as much as
possible, and execute the necessary cleaning and corrections inside R. This
ensures that, when the time comes to share your work, you need only pass
on the data as it came to you and one or more R scripts.

We prefer to start with an empty workspace to ensure that no lurking
objects can affect code execution. Emptying the workspace is easiest via

> rm(list = ls())

Of course, these checking steps may later be omitted during automation
if that proves clumsy.

For reporting, we have found that the most reliable rounding is done by
the sprintf function because it retains trailing zeros; for example,

> sprintf("%.1f", 3.01)

[1] "3.0"

We find that debugging R code is greatly eased by keeping in mind R’s
object orientation. We do not go into this aspect of R in any great detail
except to mention that if R code is not doing what we expect it to, we often
find that it is because the class of the object is not as we expect. We can
learn the class of any object by using the class function:

> class(mean)

[1] "function"

> class(c(1, 2, 3))

[1] "numeric"
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> class(mean(c(1, 2, 3)))

[1] "numeric"

R will often refuse to carry out operations that are inappropriate to the class
of the object. This is a feature, not a bug! For example,

> not.really.numeric <- c("1", "2", "3")

> class(not.really.numeric)

[1] "character"

> mean(not.really.numeric)

[1] NA

Here we can fix the problem by setting the class using one of several ap-
proaches.

> not.really.numeric <- as.numeric(not.really.numeric)

> class(not.really.numeric)

[1] "numeric"

> mean(not.really.numeric)

[1] 2

The second strategy in the debugger’s kit is to examine the object. Often
the contents or the structure of the object will provide us a hint that our
expectations are not being met. Sometimes this realization will lead directly
to the solution to our problem. The most useful function in this instance is
str, which reports the object’s class, its dimensions if appropriate, and a
portion of the contents.

> str(not.really.numeric)

num [1:3] 1 2 3

We cannot emphasize enough that the use of str, class, and the related
functions dim, head, and tail has led directly to solving problems that could
otherwise have taken hours of debugging.

For debugging in more complicated scenarios, for example within func-
tions, we use browser.

1.2.6 Programming Conventions

There are many different ways to do things in R. There are no official conven-
tions on how the language should be used, but the following thoughts may
prove useful in communicating with long-time R users.
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1. Although the equals sign “=” does work for assignment, it is also used for
other things, for example in identifying values for arguments. The arrow
“<-” is only used for assignment. We use the arrow for assignment, rather
than the equals sign. Others use the equals sign.

2. Spaces are cheap. Use spaces liberally between arguments and between
objects and arithmetic operators.

3. Call your objects useful names. Don’t call your model model or your
dataframe data.

4. You can terminate your lines with semicolons, but most programmers do
not do so.

For example, the following code is hard to read and understand. We don’t
know what role the constant is playing, and the text is dense.

> constant=3.2808399;

> x=x*constant;

The following code is easier to read and understand. The identities (and
the units) of the variables and the constant are obvious from our naming con-
vention. The equations are spaced so that the distinction between operators
and variables is easily seen.

> feet_per_meter <- 3.2808399

> heights_m <- heights_ft * feet_per_meter

When we return to this code years later, it will be obvious what we did
and why we were doing it.

1.2.7 Speaking Other Languages

For processes that take a long time, it may be useful to convert R code
into other languages (e.g., C, C++, and FORTRAN) or use other system-
accessible tools (glpk, GRASS, or PostgreSQL). We use C or FORTRAN
when it seems that our R code will take too long to execute.

For example, in Chapter 8, we build and use a shared library to perform
forest simulation for established stands to demonstrate the process. While
we use a relatively simple model and a shared library does not appear to be
required for our task, we demonstrate all necessary steps required to produce
a shared library should the need arise.

Switching and blending languages can make a substantial difference to the
overall time taken for a project but has to be balanced against the necessary
investment of writing and debugging in another language.

The basic steps that we follow are:

� Write a draft solution in R, and try it out.
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� Identify the bottlenecks using the Rprof function.
� Write C and FORTRAN functions to replace the computational bottle-

necks.
� Compile the functions into a shared library.
� Attach the library to an R session.
� Call the functions when needed.

Note that a constraint in working with FORTRAN is that R can only call
FORTRAN subroutines, not functions, and so we must generate wrappers
for each of the FORTRAN functions that we wish to call.

Direct access to operating system functions is available via the R system

function. Judicious use of system provides the ability for R to directly over-
see the execution of other software on your computer. Personally, we have
used system at various times to manipulate text files, organize input files,
execute simulation runs of an external forest growth simulator (specifically,
ORGANON), build our own shared library (chapters-1980.so), solve large
linear programming problems, and set up the output files for subsequent im-
port and analysis by R and other software.

Other approaches are offered by the inline and Rcpp packages.

1.3 Notes about Data Analysis

The following collection of aphorisms covers ideas that we wish we’d heard
earlier, opinions that we wish we’d held earlier, and points for discussion
when data analysis seems thornier than it should.

� Find the solution to the simplest possible version of the problem in front
of you. Add complexity as you have to.

� Every serious data analysis has multiple phases. Specific problems can be
handled in more than one phase of the analysis. Picking the best phase in
which to handle each problem is an art.

� The first time you ever submit a statistical report is nerve-wracking. Don’t
be afraid to start, and don’t be afraid to finish (Schabenberger and Pierce,
2002).

� Data can be cheap or expensive. Examine the trade-offs. Select your data
wisely.

� Time is often more expensive than computers, hard drives, and memory.
Think carefully about the overall investment of time, machines, and cre-
ative capital.

� Find the right questions. Traditional statistics provide one perspective.
Operations research provides another. Depending on the question, there
may not be one best tool for the challenges that you face. Dogmatism will
impede your progress.
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� Keep aware of the options. Build a satisfactory solution by moving from
familiar to unfamiliar territory. Use your background knowledge to con-
struct increasingly more appropriate models. Learn more about the data
as the models develop.

� Don’t fit a model for your project merely because it is the new thing.
� Fit new models to old projects. Always benefit from your investment of

what you’ve already learned. Use your prior knowledge (about techniques
and datasets) as leverage.

� Borrow concepts from other fields to help you examine frameworks for
formulating problems (graph theory, sampling, optimization).

� To paraphrase a quote about writing: “There is no good analysis, only
good re-analysis.”



Chapter 2

Forest Data Management

2.1 Basic Concepts

Proper data management techniques are essential to ensuring flexible and
efficient forest resource analysis options. However, little systematic attention
has yet been paid to the tools and protocols that are necessary to provide
robust and convenient access to data. There exists an overwhelming variety
of candidate tools and file formats. This wealth of choices offers the chance to
find a solution that best fits an organization’s needs. Unfortunately, this same
wealth can create problems for interoperability and communication among
tools and can create confusion and mistakes and ultimately lead to poor
decisions.

For example, many optimization programs use matrix generators to create
a file that is then read into another program that solves linear or mixed
integer programs. These outputs are then reformatted to conform to some
standard organizational report format, which might or might not include
graphical displays. The solution from the linear programming software is then
transferred to yet another application, which is used for report generation.
Those results can then be output to any number of formats or programs such
as web browsers, geographic information systems (GIS) applications, or some
combination thereof. At each step in transferring and reformatting data, the
probability of introducing process errors increases. Performing analysis within
a single system can greatly reduce these errors and enhance the analysis
process by simplifying data management tasks.

Although it is not necessarily suitable at all scales for all operations, R pro-
vides functionality that will allow for the integration of many, and sometimes
all, of these different tasks. However, none of these tasks can be accomplished
with poor or improper data management techniques. This chapter will focus
on those functions within R that read and write files commonly found in
forest resource databases, will introduce some basic data-manipulation func-
tions, and will briefly present some of its graphical capabilities. These fea-

19A. P. Robinson, J. D. Hamann, Forest Analytics with R, Use R!,
DOI 10.1007/978-1-4419-7762-5_2, © Springer Science+Business Media, LLC 2011
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tures, combined with some simple creativity, can create an effective analytical
toolbox.

2.2 File Functions

We use the function list.files to report the files that are available in the
working directory. To learn what files are available in some other directory,
pass the absolute or the relative directory location as an argument. If the
relative location is used, it should be located relative to the working directory.

2.2.1 Text Files

The ability to read and write plain text files is critical because text files
are very commonly used for storing and communicating data. Most publicly
available growth and yield models use plain text files for input and output, as
do many landscape-level database systems and cruise compilers. Furthermore,
text files can be straightforwardly managed in version control software (CVS
and Subversion) to allow users to track all the changes in data over the
lifetime of a project. Text files can be easily transferred through email and
FTP programs, and are easily reformatted and displayed in any number of
programs. Finally, text files are also in human-readable form, making them
ideal for archival purposes.

Unfortunately, text files provide limited flexibility for moving large amounts
of data because of the need to convert values into their machine representa-
tions, storage and retrieval efficiency, and rounding problems. The additional
time required for conversion can be considerable for large datasets.

To read text files into R, use the read.table command. For example, to
import a comma-separated values (CSV, usually with suffix “.csv”) file that
contains row names in the first column, use

> fia.plots <- read.table("../../data/fia_plots.csv", sep = ",",

+ header = TRUE, row.names = 1)

The default action of the read.table command is to convert character
fields into factors. If you want the characters to remain as characters, then
provide as.is = TRUE in the argument list. This inclusion is handy for when
you are importing files that contain comments.

A refined version of the read.table function, called read.csv, can also
be used to read CSV files. The only difference between the two functions
is that the default arguments for read.csv are designed to simplify reading
CSV files. Note that here we will use relative directory paths; absolute paths
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are also supported. Also note that the directories are delimited by forward
slashes, even in the Microsoft Windows environment.

> fia.plots <- read.csv("../../data/fia_plots.csv")

The object that is returned by the read family of functions is a data frame
object. For example,

> class(fia.plots)

[1] "data.frame"

The data frame is one of the fundamental data structures within R and will
appear frequently in the functions we will use throughout this book.

The command that we use to save an R table or table-like object to a text
file is almost identical to the read.table function. To write a data frame
object to a text file called fia-plots.csv, we use

> write.table(fia.plots, file = "fia-plots.csv")

The names of these two functions are slightly misleading since the functions
can read and write data structures other than tables.

The read.fwf function reads data in fixed-width format. This is useful for,
among other tasks, reading data that have been formatted for applications
written in FORTRAN. The read.fwf function accepts an argument that
reports the width of individual data fields. The widths argument accepts an
integer vector of fixed-width field lengths or a list of integer vectors giving
widths for multi-line records.

For example, to read a Forest Vegetation Simulator (FVS, see Wykoff
et al., 1982) input tree file

1 1 161PP 54.4 165 8

1 2 161DF 16.4 101 8

2 1 01WF 36.3 171 7

2 2 161PP 35.6 131 5

...

3 44 161IC 5.5 45 7

3 45 161IC 10.8 53 7

4 1 161DF 14.6 91 8

4 2 161WF 9.6 83 9

4 3 161PP 46.8 159 6

4 4 161M 8.2 61 6

using the format defined at the FVS web site, we can use the read.fwf

function as follows:
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> fvs.trees <-

+ read.fwf("../../data/stnd73.fvs",

+ widths = c(4, 3, 6, 1, 3, 4, -3, 3, -7, 1),

+ as.is = FALSE, row.names = NULL,

+ col.names = c("plot", "tree", "tree.count",

+ "history", "species", "dbh", "live.tht",

+ "crown.code"))

The negative numbers represent portions of the file to be skipped. We
might then produce a plot of the heights against diameters by species (Fig-
ure 2.1) using Deepayan Sarkar’s xyplot function in the lattice package
(Sarkar, 2010),

> library(lattice)

> xyplot(live.tht ~ dbh | species, data = fvs.trees)

The final data import function that we discuss is scan. The scan function
provides the ability to examine data line by line from a file, the console,
or a connection. This ability is useful when reading files that have complex
structure; for example, when data and metadata are combined. A specific
example is when tree-specific and plot-specific information are combined in
one file for a number of plots.

The output of scan is a list object in which each row of the file is stored
as a separate object. We would then use a loop to process the list. Inside the
loop, we would use the substr function to examine specific portions of the
row in order to decide what to do with it.

A simple example follows. We have three plots upon which trees were
measured for species and diameter by two different crews. The dataset is

Plot 001 Crew A

1 DF 23.7

2 GF 40.1

Plot 002 Crew A Clearfell

Plot 003 Crew B

1 GF 122.6

2 GF 20.3

We import the data using the following code:

> eg <- scan(file = "../../data/scan-example.txt",

+ sep = "\n", what = "")

Note that by using sep = "\n" we ask R to use the end of line to delimit the
input chunks, and by using the what = "" argument we instruct R to read
each chunk (row) as a character string.

We now create two empty lists to contain the plot and the tree information.
We know that the number of trees and plots must be less than the length of
the scanned object.
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Fig. 2.1: DBH–height plot of data from the FVS file (stnd73.fvs) created using the
xyplot function.

> n.in <- length(eg)

> eg.trees <- eg.plots <- vector(mode = "list", length = n.in)

> plot.n <- tree.n <- 1

We use a different approach to processing the chunk depending on whether
it is a plot or a tree. If it is a plot, we extract portions of the string and save
them as variables. If it is a tree, then we split the string on whitespace, which
creates a list object, and select the portions of the list that are of interest
to us. The split is handled by the strsplit function, which accepts regular
expressions (regex) as splitting criteria; " +" means “one or more instances
of whitespace”.

> for (i in 1 : n.in) {

+ chunk <- eg[[i]]
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+ if (substr(chunk, 1, 4) == "Plot") {

+ plot.id <- as.numeric(substr(chunk, 6, 9))

+ crew.id <- substr(chunk, 16, 16)

+ comments <- ifelse(nchar(chunk) > 17,

+ substr(chunk, 17, nchar(chunk)),

+ "")

+ eg.plots[[plot.n]] <-

+ list(plot.id, crew.id, comments)

+ plot.n <- plot.n + 1

+ } else {

+ tree <- strsplit(chunk, " +")[[1]]

+ tree.id <- as.character(tree[1])

+ species <- as.character(tree[2])

+ dbh.cm <- as.numeric(tree[3])

+ eg.trees[[tree.n]] <-

+ list(plot.id, tree.id, species, dbh.cm)

+ tree.n <- tree.n + 1

+ }

+ }

Also, the plot identification for the tree record is retained from the most
recent iteration of processing the plot information. We conclude by forming,
naming, and examining the plot and tree objects. We form the objects from
the lists using the do.call and rbind functions.

> eg.plots <- as.data.frame(do.call(rbind, eg.plots))

> names(eg.plots) <- c("plot", "crew", "comments")

> eg.plots

plot crew comments

1 1 A

2 2 A Clearfell

3 3 B

> eg.trees <- as.data.frame(do.call(rbind, eg.trees))

> names(eg.trees) <- c("plot", "tree", "species", "dbh.cm")

> eg.trees

plot tree species dbh.cm

1 1 1 DF 23.7

2 1 2 GF 40.1

3 3 1 GF 122.6

4 3 2 GF 20.3

Our example code is quite inefficient. For example, we could handle the
conversions of the data types outside the loops. However, it will suffice for
the purposes of demonstrating the processing steps.
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The scan function is very powerful and flexible, and our example has
barely scratched the surface of its use. For example, much larger files can be
handled by using the skip and nlines arguments.

Next we examine reading the second most common data format used in
forest resource analysis: spreadsheets.

2.2.2 Spreadsheets

In forestry, as in most fields, spreadsheets are extremely common as data stor-
age and communication devices. However, there are shortcomings that limit
the spreadsheet’s utility for these purposes. Most spreadsheet applications
cannot separate the data from the analysis routines and formulas, so that
performing a new analysis requires an entirely new spreadsheet, which may
involve cutting and pasting cell formulas, etc. Some spreadsheets can contain
many subsheets, and the subsheets can all contain inter-connected formulas,
macros, and so on. Not all programs can read multiple-sheeted spreadsheets,
and some applications may be confused by other contents within the file. Most
spreadsheet programs are not platform independent, which makes them diffi-
cult to use in a distributed environment or a web-based setting. Finally, some
spreadsheets are encoded in proprietary formats that encrypt the data and
any associated analysis unnecessarily.

For these reasons, we recommend that spreadsheets not be used for main-
taining data. While spreadsheets have their place for simple data-editing tasks
and for prototyping analysis methods, we advocate that the storage and man-
agement of data be in text files for small projects and in formal databases
for large projects. The data should be extracted from the file or the database
using sequences of commands that are recorded in documented scripts. We
recommend that data be stored in a relational database management system
(RDMS) such as PostgreSQL, MySQL, Microsoft Access, or Oracle, and that
the RODBC package (Section 2.2.3) be used for data retrieval and updates.

In some circumstances, there may be no way to avoid the use of spread-
sheets for data storage. If so, Windows users can use odbcConnectExcel in
the RODBC package, originally developed by Michael Lapsley and now main-
tained by Brian Ripley (Ripley and Lapsley, 2009). The odbcConnectExcel

function can select and extract rows and columns from any of the sheets
in an Excel spreadsheet file. This approach allows data importation into R,
but it does not impede or interrupt the disparate, or incongruous, data cycle
present in many organizations (Brackett, 2000).
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2.2.3 Using SQL in R

The Structured Query Language (SQL) is a standard language for writing
commands that can be used to access data within RDMS such as Oracle, Mi-
crosoft SQL Server, and PostgreSQL (Kline and Kline, 2001). Using an RDMS
with SQL for data storage and retrieval provides efficient, straightforward,
and consistent interface to data in both simple or complex arrangements.

For example, suppose we have a table in a database named plots. Using
one of the database accessibility packages such as RODBC, RPostgreSQL, or
RMySQL to access the data stored within the RDMS, the SQL select string
to select and retrieve all the data associated with the plots table would be the
same. Using the RPostgreSQL package (Prayaga et al., 2009), for example,
the resulting code snippet to retrieve data from the plots table would look
like

> library(RPostgreSQL)

> drv <- dbDriver("PostgreSQL")

> con <- dbConnect(drv,

+ dbname="forestco",

+ user="hamannj",

+ host="localhost")

> sql.command <-

+ sprintf( "select * from plots where plottype = �fixed�;" )

> rs <- dbSendQuery(con, statement = sql.command )

> fixed.plots <- fetch(rs, n = -1)

> dbDisconnect(con)

where the resulting object from the fetch function, fixed.plots, contains
a data frame object that contains all plots where the plottype is fixed.

In this book, however, we do not present data access methods for rela-
tional databases using SQL since tasks commonly associated with databases
use large datasets, and project management with large datasets is beyond the
scope of this book. For more complete descriptions and examples of accessing
an RDMS, see any number of database access libraries, e.g., RODBC, RPost-
greSQL, and RMySQL (James and DebRoy, 2009) and the R-data document
that comes with the R documentation.

2.2.4 The foreign Package

R provides a package called foreign to read and write files in formats that
are used by other software tools (R core members et al., 2010). The foreign
package is a collection of file translation functions that can be used to read
and write various file formats of common statistical and database applica-
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tions. Table 2.1 presents the functions for reading and writing data currently
available in the foreign package.

Table 2.1: A list of functions available for reading and writing common file formats.

Function Purpose

data.restore Read an S3 binary file
lookup.xport Look up information on a SAS XPORT format library
read.dbf Read a DBF file
read.dta Read Stata binary files
read.epiinfo Read Epi Info data files
read.mtp Read a Minitab Portable Worksheet
read.octave Read Octave text data files
read.S Read an S3 binary File
read.spss Read an SPSS data file
read.ssd Obtain a data frame from a SAS permanent dataset via read.xport
read.systat Obtain a data frame from a Systat file
read.xport Read a SAS XPORT format library
write.dbf Write a DBF file
write.dta Write files in Stata binary format
write.foreign Write text files and code to read them

Most of the functions in the foreign package are simple to use. For example,
the code to read a dBase-formatted file (e.g., stands.dbf) using the foreign
package is

> library(foreign)

> stands <- read.dbf("../../data/stands.dbf")

As before, it is useful to immediately examine the imported object. We
learn something about the object by using the names function (we would also
use str, but doing so here is a poor use of paper!).

> names(stands)

[1] "SP_ID" "AREA" "PERIMETER" "STANDID"

[5] "ALLOCATION" "TAGE" "BHAGE" "DF_SITE"

[9] "TOTHT" "CUBVOL_AC" "TPA" "QMD"

[13] "BA"

We can then plot the count of stands in hexagonal bins of quadratic mean
diameter and tree counts per hectare using the plot and the hexbin func-
tions, the latter from the hexbin package (Carr et al., 2010) (Figure 2.2).

> stands.non.zero <- stands[stands$QMD > 0,]

> plot(hexbin(stands.non.zero$QMD*2.54 ~
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Fig. 2.2: A hexbin plot of stand counts in classes of average diameter and tree
density.

+ stands.non.zero$TPA*2.47),

+ ylab = "Average Diameter (cm)",

+ xlab = "Stem Density (stems/ha)")

which looks like many other size–density plots presented in the literature
(Reineke, 1933; Drew and Flewelling, 1979; Curtis, 1982).

2.2.5 Geographic Data

Several R packages enable reading and writing geographic data in the format
of some of the more popular GIS applications, such as Arc/Info and GRASS.
We will examine the functions that read ESRI shapefiles that are provided
by Nicholas J. Lewin-Koh and Roger Bivand’s maptools package (Lewin-Koh



2.2 File Functions 29

and Bivand, 2010). Packages to read and write other GIS file formats can be
found at CRAN.

Shapefiles can contain information about many individual polygons. If the
shapefiles are relatively small and only consist of a few hundred polygons, then
R is suitable for making thematic maps, performing analyses, and storing and
updating data within the shapefiles. However, R should not be considered a
substitute for a fully featured GIS.

We begin by loading a shapefile of the forest inventory that is made avail-
able by Oregon State University1. (stands.shp). First, we start by loading
the package and reading the shapefile using the readShapePoly command

> library(maptools)

> stands <- readShapePoly("../../data/stands.shp")

The total area, in acres, is

> sum( stands$AREA ) / 43560.0

[1] 11994.71

and the number of stands is

> nrow(stands)

[1] 510

We use the names function to obtain the names of the attributes:

> names(stands)

[1] "SP_ID" "AREA" "PERIMETER" "STANDID"

[5] "ALLOCATION" "TAGE" "BHAGE" "DF_SITE"

[9] "TOTHT" "CUBVOL_AC" "TPA" "QMD"

[13] "BA"

Then, we can use the plot command to produce a simple map such as
that shown in Figure 2.3

> plot(stands, axes = TRUE)

2.2.6 Other Data Formats

The set of functions we presented in the previous sections was not exhaustive
but covers the bulk of the formats in which forestry data tend to be stored.
There are additional file management topics such as how to format a file

1 These data can be found at http://www.cof.orst.edu/cf/gis/.



30 2 Forest Data Management

1250000 1260000 1270000 1280000 1290000 1300000

36
00

00
37

00
00

38
00

00
39

00
00

40
00

00

Fig. 2.3: A plot of the ESRI shapefile that contains stand data for the dataset
presented in Section 2.4.6.

into single or multiple time series objects, constructing geospatial data from
scratch, how to read and write various files for linear programming solvers,
and reading remotely sensed images from the Internet. These tasks are beyond
the scope of this book. In future chapters, when we make use of an additional
file format or reformatting function, we will simply apply the function in the
package we happen to be using and suggest the reader become familiar with
the documentation.

2.3 Data Management Functions

Most of the data we use for our projects were collected with a specific ques-
tion, although often one that is quite unlike the question we are examining.
In fact, it is not unusual that a completely different analysis project was in
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mind when the data that we must use were originally collected. Most likely,
the data were collected under less than ideal conditions and without clear
protocols. Each analysis project usually requires that some effort be spent on
reformatting and checking data. This section is designed to introduce readers
to a few data manipulation and management functions in R. At the time
of writing, the authors have, between them, about 40 years of experience in
handling forestry data and have never worked with a dataset that did not
demand some level of scrutiny for structure and cleanliness.

2.3.1 Herbicide Trial Data

The herbdata dataset started as a herbicide trial. The plots were installed
during the 1994 planting season in southwestern Washington by Don Wal-
lace and Bruce Alber. Three replications of 20 seedlings were planted in two
blocks. The two blocks were a control block and a block treated with 220
ml per hectare of Oust herbicide (DuPont, 2005). The plots were then mea-
sured over the next ten years. At each observation, the basal diameter, total
height, and condition of the stem were recorded. When the stems reached
breast height (1.37 m in the United States), the breast height diameter was
also recorded. An indicator variable was used to record if the stem was dead
or alive. If the stem was dead, the observations were recorded as NA. Recall
that to read in the data from a text file, we use the read.table function

> herbdata <- read.table("../../data/herbdata.txt",

+ header = TRUE, sep = ",")

and to make sure we have suitable data by printing the first five rows of data
using the str function.

> str(herbdata)

�data.frame�: 960 obs. of 8 variables:

$ treat : Factor w/ 2 levels "CONTROL","OUST": 1 1 ...

$ rep : Factor w/ 3 levels "A","B","C": 1 1 ...

$ tree : int 1 1 ...

$ date : Factor w/ 8 levels "10/7/1996 0:00:00",..: 1 2 ...

$ isalive: int 1 1 ...

$ height : num 31 59 ...

$ dia : num 6.5 9 ...

$ dbh : num 0 0 ...

The measurement dates, but not the measurement times, were recorded for
the observations. So, we can use the strptime function to reformat the dates,
thus removing the time portion of the date (otherwise when we plot the data
by date, the times will be printed as YYYY-MM-DD 0:00:00) and storing
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the resulting objects using a special object class that represents temporal
data, POSIXct.

> herbdata$date <- as.POSIXct(strptime(herbdata$date,

+ "%m/%d/%Y"))

We can then plot the data (Figure 2.4) using the coplot function, which
creates conditioning plots:

> coplot(height ~ dia | treat * rep, type = "p",

+ data = herbdata[herbdata$isalive == 1,],

+ ylab = "Height (cm)", xlab = "Basal Diameter (mm)")
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Fig. 2.4: A conditioning plot of the observations in the herbdata data frame.
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Something looks suspicious in the figure. The cloud on the right side of the
control plot in the B replication looks out of place. We suspect measurement
or process error in the data, and we should investigate further, as follows.

2.3.2 Simple Error Checking

Making use of simple tables and graphics to check for outliers and invalid
values in datasets is common practice. To produce a summary of the variables
in a data frame object, use the summary function:

> summary(herbdata)

treat rep tree

CONTROL:480 A:320 Min. : 1.00

OUST :480 B:320 1st Qu.:15.75

C:320 Median :30.50

Mean :30.50

3rd Qu.:45.25

Max. :60.00

date isalive height

Min. :1996-10-07 00:00:00 Min. :0.0000 Min. : 15.0

1st Qu.:1999-03-09 18:45:00 1st Qu.:1.0000 1st Qu.: 193.0

Median :2001-10-03 23:30:00 Median :1.0000 Median : 449.9

Mean :2001-04-30 11:37:30 Mean :0.9615 Mean : 472.1

3rd Qu.:2003-04-04 05:15:00 3rd Qu.:1.0000 3rd Qu.: 693.4

Max. :2005-08-23 00:00:00 Max. :1.0000 Max. :1280.2

NAs : 37.0

dia dbh

Min. : 0.00 Min. : 0.00

1st Qu.: 36.75 1st Qu.: 0.00

Median : 82.00 Median : 22.00

Mean : 95.12 Mean : 52.96

3rd Qu.:138.50 3rd Qu.: 98.00

Max. :439.42 Max. :342.90

NAs : 37.00 NAs : 37.00

We see that some of the observations contain NA values, which signify
missing values. Other than that, nothing immediately appears to be wrong
with the data. We display the first few observations to assess whether or not
the other observations in those rows that include NA entries are correct:

> head(herbdata[is.na(herbdata$height),])

treat rep tree date isalive height dia dbh

282 CONTROL B 36 1997-11-11 0 NA NA NA
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283 CONTROL B 36 1999-08-18 0 NA NA NA

284 CONTROL B 36 2001-02-07 0 NA NA NA

285 CONTROL B 36 2002-05-31 0 NA NA NA

286 CONTROL B 36 2002-11-26 0 NA NA NA

287 CONTROL B 36 2004-04-26 0 NA NA NA

We suspect that the trees with missing measurements are those trees that
are not alive (isalive = 0). This conjecture can be verified by counting the
rows that have missing values anywhere for each value of isalive, as follows.

> table(complete.cases(herbdata), herbdata$isalive)

0 1

FALSE 37 0

TRUE 0 923

As we suspected, the rows that contain missing values, which correspond to
the complete.cases function returning FALSE, are all dead trees. To com-
plete our scrutiny, in the following section we will visually inspect the rela-
tionships among the variables.

2.3.3 Graphical error checking

Graphical error-checking methods are straightforward using basic plotting
functions. As we saw in Figure 2.4, graphical error checking provided quick
identification for the suspect observations using a conditioning plot (Cham-
bers, 1991; Cleveland, 1993).

We created a conditioning plot by plotting the height–diameter scatter-
plots, conditioned on treatment and replication (Figure 2.4). Inspection of
Figure 2.4 reveals outliers in the B replication of the control group. In order
to focus on these outliers we now need to produce a conditioning plot by
measurement date (Figure 2.5):

> coplot(height ~ dia | treat * factor(date),

+ data = herbdata[herbdata$isalive == 1,],

+ type = "p",

+ ylab = "Height (cm)",

+ xlab = "Basal Diameter (mm)")

We can see that the measurements taken on 2004-04-26 contain the sus-
picious observations. We can conveniently narrow in on those observations
using index operators. To get the correct levels of the factors, use the levels
function, which returns the values of the levels of its argument.

> levels(herbdata$treat)
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Fig. 2.5: A conditioning plot, by measurement date, of the observations in the herb-
data data frame.

[1] "CONTROL" "OUST"

> levels(herbdata$rep)

[1] "A" "B" "C"

The date variable is not a factor, so we handle it differently

> sort(unique(herbdata$date))

[1] "1996-10-07 EST" "1997-11-11 EST" "1999-08-18 EST"

[4] "2001-02-07 EST" "2002-05-31 EST" "2002-11-26 EST"

[7] "2004-04-26 EST" "2005-08-23 EST"

so we can use the values to index those problematic observations,
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> bad.index <- herbdata$treat == levels(herbdata$treat)[1] &

+ herbdata$rep == levels(herbdata$rep)[2] &

+ herbdata$date == sort(unique(herbdata$date))[7]

> bad.data <- herbdata[bad.index,]

treat rep tree date isalive height dia dbh

167 CONTROL B 21 2004-04-26 1 734.56 439.42 342.90

175 CONTROL B 22 2004-04-26 1 637.03 259.08 187.96

183 CONTROL B 23 2004-04-26 1 883.92 330.20 266.70

191 CONTROL B 24 2004-04-26 1 478.53 269.24 157.48

199 CONTROL B 25 2004-04-26 1 646.17 233.68 165.10

207 CONTROL B 26 2004-04-26 1 612.64 218.44 147.32

...

treat rep tree date isalive height dia dbh

279 CONTROL B 35 2004-04-26 1 697.99 381.00 213.36

287 CONTROL B 36 2004-04-26 0 NA NA NA

295 CONTROL B 37 2004-04-26 1 615.69 332.74 231.14

303 CONTROL B 38 2004-04-26 1 774.19 330.20 279.40

311 CONTROL B 39 2004-04-26 1 792.48 375.92 330.20

319 CONTROL B 40 2004-04-26 1 762.00 0.00 203.20

A subsequent telephone call revealed the error in our data handling. In
this case, the field crew had used a different device to measure the stems
on 2004-04-26. During our unit conversion process, the value was incorrectly
converted from imperial units to metric units. The values should have been
divided by 2.54. We can use the index values again to correct the problem
with the following commands:

> herbdata$dia[bad.index] <- herbdata$dia[bad.index] / 2.54

Note that we have to correct the breast-height diameter as well:

> herbdata$dbh[bad.index] <- herbdata$dbh[bad.index] / 2.54

These data-cleaning commands represent important intelligence about the
data handling. It is very important that the newly cleaned data object not
be saved back over the original dataset. Instead, either the data should be
kept as they are and the code that was used to clean the data should be
run routinely when the data are used, or a new version of the data, time-
stamped, should be saved, and the differences between the original and the
cleaned data should be carefully documented in a data dictionary or journal,
which should be readily available with the dataset.

Now that the data have been corrected, we may want to revisit our original
plots using coplot or Deepayan Sarkar’s lattice functions to generate the
conditioning plot again, verify our results, and continue with our analysis.
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2.3.4 Data Structure Functions

Although we may be able to simply pass an unaltered data frame object to
other functions for sample processing, model development, or optimization,
we may want to change the structure of the data frame object to facilitate
specific programming needs. The main functions for data manipulation are
the split, aggregate, and merge functions.

The first of these functions that we examine is the split function, which
divides a data frame (or any vector) into a list of the groups, distinguished
by corresponding with common values of some categorical variable. A list is
a specific class of R object that is a collection of objects that can be unalike.
The reverse operation can be performed by the unsplit function.

Imagine that we want to find out how many trees we have in each of the
treatments of the herbdata object. Using the split function, we can split
the data frame into a list of data frames where the name of each treatment
is now the item in the list,

> split.herb <- split(herbdata, herbdata$treat)

> class(split.herb)

[1] "list"

> names(split.herb)

[1] "CONTROL" "OUST"

> nrow(split.herb$CONTROL)

[1] 480

> nrow(split.herb$OUST)

[1] 480

We can also check the names of the members,

> names(split.herb$CONTROL)

[1] "treat" "rep" "tree" "date" "isalive" "height"

[7] "dia" "dbh"

A more compact way to obtain the row count information is to use the
powerful lapply function, which applies its second argument as a function
to each of the items in the list that is identified as its first argument; for
example

> lapply(split.herb, nrow)
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$CONTROL

[1] 480

$OUST

[1] 480

The lapply(X, FUN, ...) function returns a list of the same length as X.
Using the newly split data frame, which is stored as a list, we can write
for loops to process our data or continue to manipulate our data frame for
processing using the core data management functions.

For simplicity’s sake, we examine a reduced data frame, including only
columns 1 (treatment), 2 (replication), 6 (height), and 7 (basal diameter),
and print some basic summaries using the lapply function:

> herbdata.short <- herbdata[,c(1,2,6,7)]

> split.herb.short <- split(herbdata.short, herbdata$treat)

> lapply(split.herb.short, summary)

$CONTROL

treat rep height dia

CONTROL:480 A:160 Min. : 15.0 Min. : 0.00

OUST : 0 B:160 1st Qu.: 175.6 1st Qu.: 26.75

C:160 Median : 391.4 Median : 62.00

Mean : 413.4 Mean : 69.55

3rd Qu.: 615.7 3rd Qu.:102.00

Max. :1219.2 Max. :228.60

NAs : 37.0 NAs : 37.00

$OUST

treat rep height dia

CONTROL: 0 A:160 Min. : 42.0 Min. : 10.0

OUST :480 B:160 1st Qu.: 212.6 1st Qu.: 51.0

C:160 Median : 530.4 Median :109.0

Mean : 526.2 Mean :112.6

3rd Qu.: 762.0 3rd Qu.:159.0

Max. :1280.2 Max. :298.4

The aggregate function is useful for collapsing data into forms familiar to
foresters such as stand tables, log-stock tables, and species-level summaries.
For example, we might want to know the diameter distribution of the trees
by treatment, ignoring the replications, for the herbicide trial data for the
latest sample date. We can combine all three functions in conjunction with
the ability to select a subset of the measurements by date. We check what
dates we have to choose from by printing the unique values, sorted:

> sort(unique(herbdata$date))
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[1] "1996-10-07 EST" "1997-11-11 EST" "1999-08-18 EST"

[4] "2001-02-07 EST" "2002-05-31 EST" "2002-11-26 EST"

[7] "2004-04-26 EST" "2005-08-23 EST"

To generate our summaries, we select and split only the last measurement:

> herbdata.shorter <-

+ herbdata[herbdata$date == max(herbdata$date), c(1,2,6,8)]

> split.herb.shorter <-

+ split(herbdata.shorter, herbdata.shorter$treat)

We can now classify the trees by diameter class. We bind that column
to a temporary data frame to facilitate the process. We can then use the
aggregate function to generate totals for each of the treatments by diameter
class:

> rt <- cbind(herbdata.shorter,

+ dc = cut(herbdata.shorter$dbh,

+ breaks = c(0, 50, 100, 150, 200, 300, 400, 999),

+ labels = c("000--050", "050--100", "100--150",

+ "150--200", "200--300", "300--400","400+")))

> st <- aggregate(x = list(basal.area = pi/(4*10^2) * rt$dbh^2,

+ tht = rt$height,

+ stems = rep(1, nrow(rt))),

+ by = list(treat = rt$treat,

+ diac = rt$dc),

+ FUN = sum)

> st

treat diac basal.area tht stems

1 CONTROL 000--050 27.61556 2255.52 5

2 CONTROL 050--100 993.34934 13441.68 18

3 OUST 050--100 73.16856 883.92 1

4 CONTROL 100--150 3028.48926 21244.56 26

5 OUST 100--150 2439.45448 17465.04 18

6 CONTROL 150--200 1404.13710 6035.04 6

7 OUST 150--200 9093.28375 40660.32 39

8 OUST 200--300 681.82558 2529.84 2

From our results, we can see that the total height value is a sum of all
the heights. We really wanted the mean height for the treatment, so we can
use the assignment operator (<-) to reassign the tht variable to the correct
value, now expressed in meters, and print the results again:

> st$tht <- st$tht / st$stems / 100

> st
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Table 2.2: OUST herbicide trials.

Treatment Dia. Class (mm) Basal Area (mm2) Mean Total Height (m) Stems

CONTROL 000–050 27.616 4.5110 5
CONTROL 050–100 993.349 7.4676 18
CONTROL 100–150 3028.489 8.1710 26
CONTROL 150–200 1404.137 10.0584 6
OUST 050–100 73.169 8.8392 1
OUST 100–150 2439.454 9.7028 18
OUST 150–200 9093.284 10.4257 39
OUST 200–300 681.826 12.6492 2

treat diac basal.area tht stems

1 CONTROL 000--050 27.61556 4.511040 5

2 CONTROL 050--100 993.34934 7.467600 18

3 OUST 050--100 73.16856 8.839200 1

4 CONTROL 100--150 3028.48926 8.170985 26

5 OUST 100--150 2439.45448 9.702800 18

6 CONTROL 150--200 1404.13710 10.058400 6

7 OUST 150--200 9093.28375 10.425723 39

8 OUST 200--300 681.82558 12.649200 2

Now that we have a summary table, we could change the column names
and print a nice-looking table in our LATEX document. Since we are using the
Sweave/Rtangle functions to generate this book, we can create a table using
the latex function after sorting the results (Table 2.2).

> cap <- "OUST herbicide trials."

> st <- st[order(st$treat, st$diac),]

> st$treat <- as.character(st$treat)

> st$diac <- as.character(st$diac)

> names(st) <- c("Treatment", "Dia. Class (mm)",

+ "Basal Area ($\\mbox{mm}^2$)",

+ "Mean Total Height (m)", "Stems")

> latex(st, rowlabel = NULL, rowname = NULL, file="",

+ caption = cap, label = "tab:herbdata_results",

+ digits = 5, booktabs = TRUE,

+ cjust = c("l","c","r","r","r"))

Finally, the merge function merges two data frames by common columns
or row names. This function can perform one-to-one, many-to-one and many-
to-many merges. By default, the data frames are merged on common column
names, but separate specifications of the columns can be given by the by.x

and by.y arguments, using either name or index number. The merge function
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can be used to append columns onto a data frame where y is the result of
summarization operations at various levels such as plots or clusters.

For example, imagine that we wish to fit a height–diameter model for the
herbicide trials and we want to include the plot-level total basal areas in our
list of potential regressors as a measure of local competition. For this exercise,
we will not concern ourselves with model specification. We are interested
simply in demonstrating the usefulness of the merge function.

We know that we have two blocks in the herbicide trial data

> names(split.herb)

[1] "CONTROL" "OUST"

and we want to construct a data frame that contains the total basal diameter
area and breast height (1.3 m) area on each replication for each time period,
treatment and replication. Note that we use the with function, which attaches
the object names in the first argument to the search path while it executes the
code identified in the second argument. It is no more efficient but produces
code that is easier to read.

> areas <-

+ with(herbdata,

+ aggregate(x = list(plot.bh.area = pi/400 * dbh^2,

+ plot.bas.area = pi/400 * dia^2),

+ by = list(treat = treat,

+ rep = rep,

+ date = date),

+ FUN = sum))

To verify our results, we will print the first ten rows of the resulting data
frame:

> areas[1:10,]

treat rep date plot.bh.area plot.bas.area

1 CONTROL A 1996-10-07 0 61.01271

2 OUST A 1996-10-07 0 86.17891

3 CONTROL B 1996-10-07 0 49.58501

4 OUST B 1996-10-07 0 98.32062

5 CONTROL C 1996-10-07 NA NA

6 OUST C 1996-10-07 0 98.47361

7 CONTROL A 1997-11-11 0 128.76603

8 OUST A 1997-11-11 0 236.90554

9 CONTROL B 1997-11-11 NA NA

10 OUST B 1997-11-11 0 293.01438

Something does not look correct because there are basal diameter values
that contain NAs and we know that not all of the stems died within those
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blocks on those measure dates. Since we have used the default arguments
for the sum function, the missing diameter observations have caused the sum
function to return NA. We have to pass the na.rm = TRUE argument to sum

to tell it to ignore the missing values:

> areas <-

+ with(herbdata,

+ aggregate(x = list(plot.bh.area = pi/400 * dbh^2,

+ plot.bas.area = pi/400 * dia^2),

+ by = list(treat = treat,

+ rep = rep,

+ date = date),

+ FUN = sum,

+ na.rm = TRUE))

> areas[1:10,]

treat rep date plot.bh.area plot.bas.area

1 CONTROL A 1996-10-07 0 61.01271

2 OUST A 1996-10-07 0 86.17891

3 CONTROL B 1996-10-07 0 49.58501

4 OUST B 1996-10-07 0 98.32062

5 CONTROL C 1996-10-07 0 41.80674

6 OUST C 1996-10-07 0 98.47361

7 CONTROL A 1997-11-11 0 128.76603

8 OUST A 1997-11-11 0 236.90554

9 CONTROL B 1997-11-11 0 105.53984

10 OUST B 1997-11-11 0 293.01438

We can now merge the results based on the values of the original data
frame with the new aggregated data frame and print the names of the results
to verify the operation worked as expected:

> final.data <- merge(herbdata, areas)

> names(final.data)

[1] "treat" "rep" "date"

[4] "tree" "isalive" "height"

[7] "dia" "dbh" "plot.bh.area"

[10] "plot.bas.area"

> head(final.data[,c(1,2,3,4,7,10)])

treat rep date tree dia plot.bas.area

1 CONTROL A 1996-10-07 1 6.5 61.01271

2 CONTROL A 1996-10-07 6 24.4 61.01271

3 CONTROL A 1996-10-07 18 13.4 61.01271

4 CONTROL A 1996-10-07 3 22.6 61.01271

5 CONTROL A 1996-10-07 8 26.3 61.01271

6 CONTROL A 1996-10-07 20 16.6 61.01271
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We can use this dataset to fit our model. We cover the use of R for hierarchical
regression in Chapter 7.

2.4 Examples

We now demonstrate the tools and principles that were developed in the pre-
ceding sections to read and scrutinize a number of forestry-related databases
that will be used in subsequent chapters of the book.

One operation that we will continuously rely upon is the identification of
the counts of missing values in the variables of the datasets. We have written
an R function to compactly report this information as follows.

> show.cols.with.na <- function(x) {

+ ## First, check that object is a data frame

+ if (class(x) != "data.frame")

+ stop("x must be a data frame.\n")

+ ## Count the missing values by column.

+ missing.by.column <- colSums(is.na(x))

+ ## Are any missing?

+ if (sum(missing.by.column) == 0) {

+ cat("No missing values.\n")

+ } else {

+ ## Only return columns with missing values.

+ missing <- which(missing.by.column > 0)

+ return(missing.by.column[missing])

+ }

+ }

This function will report the number of missing observations by variable for
only those variables that have missing values.

2.4.1 Upper Flat Creek in the UIEF

In the summer of 1991, a stand examination was made of the Upper Flat
Creek unit of the University of Idaho Experimental Forest (UIEF). A square
grid of 144 plots was laid out, with north–south inter-plot distance of 134.11
m and east–west inter-plot distance of 167.64 m. A 7.0 m2/ha BAF variable-
radius plot was installed at each plot location. Every tree in the plot was
measured for species and diameter at 1.37 m (dbh), recorded in mm. A sub-
sample of trees was measured for height, recorded in dm, although it is no
longer known how this subsample was selected. The area of the stand was
323.8 ha.
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2.4.1.1 Tree Data

These data will require a number of processing steps before they can be
used for inventory or modeling analysis. For example, some of the units are
inappropriate, some trees need to be excluded, and some empty plots need
to be recognized. The data are stored as a single comma-delimited flat file.

> ufc.tree <- read.csv("../../data/ufc.csv")

We use the str function to examine the structure of the object.

> str(ufc.tree)

�data.frame�: 637 obs. of 5 variables:

$ Plot : int 1 2 ...

$ Tree : int 1 1 ...

$ Species: Factor w/ 13 levels "","DF","ES","F",..: 1 2 ...

$ Dbh : int NA 390 ...

$ Height : int NA 205 ...

We now count the missing values by variable.

> show.cols.with.na(ufc.tree)

Dbh Height

10 248

We note that ten records are missing diameter measures. These ten rows
represent empty plots and therefore should not be eliminated thoughtlessly.
We will have to deal with them as necessary later in the analysis. Some
straightforward manipulations are required to deliver the measures in useful
units.

> names(ufc.tree) <-

+ c("point","tree","species","dbh.mm","ht.dm")

> ufc.tree$dbh.cm <- ufc.tree$dbh.mm / 10

> ufc.tree$ba.m2 <- ufc.tree$dbh.cm^2 / 40000 * pi

> ufc.tree$height.m <- ufc.tree$ht.dm / 10

For the moment, we impute the missing heights using species-specific
diameter–height models from Wykoff et al. (1982). This is cold-deck imputa-
tion (see Section 4.2.2.2). We have written a vectorized function that applies
these models in the original imperial measures, and we have also written ac-
companying metric wrapper functions. These functions are available as part
of the package that accompanies this book.

> height.hat <- ht.fvs.ni.m(ufc.tree$species, ufc.tree$dbh.cm)

> missing.hts <- is.na(ufc.tree$height.m)

> ufc.tree$height.m[missing.hts] <- height.hat[missing.hts]
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We estimate tree-level merchantable volumes using functions provided by
Wykoff et al. (1982). Again, we have written a vectorized function that applies
these models in the original imperial measures and accompanying metric
wrapper functions.

> ufc.tree$vol.m3 <-

+ with(ufc.tree, vol.fvs.ni.m3(species, dbh.cm, height.m))

2.4.1.2 Plot-Level Data

We now create an object that summarizes the plot-level information. In order
to process the tree-level data, we need to invoke some elements of the design.
The tree factor is the design basal area factor (BAF) divided by the tree-level
basal area, and the tree-level volume per unit area is the product of the tree-
level volume and the tree factor, as above. We can proceed with the aggregate
command as there are no empty subsets, although there are some that have
missing values. We allow for these in the sum command by appending the
flag: na.rm = TRUE. That flag is then passed by aggregate to the function
that it calls.

> ufc.baf.met <- 7

> ufc.tree$tf.ha <- ufc.baf.met / ufc.tree$ba.m2

> ufc.tree$vol.m3.ha <- ufc.tree$vol.m3 * ufc.tree$tf.ha

> ufc.SyRS.data <-

+ aggregate(x = list(vol.m3.ha = ufc.tree$vol.m3.ha),

+ by = list(point = ufc.tree$point),

+ FUN = sum,

+ na.rm = TRUE)

> ufc.SyRS.data$weight <- 1

> str(ufc.SyRS.data)

�data.frame�: 144 obs. of 3 variables:

$ point : int 1 2 3 4 5 6 7 8 9 10 ...

$ vol.m3.ha: num 0 63.4 204.6 296.8 309.6 ...

$ weight : num 1 1 1 1 1 1 1 1 1 1 ...

Note that R automatically recycled the 1 that we assigned to the weight
variable in the ufc.SyRS.data data object until it had the same length as
the other variables contained in that object.

We now have a point-level dataset with the necessary design information
and a variable of interest. We named the object ufc.SyRS.data to reflect the
fact that the inventory was performed using a systematic random sample,
about which more can be found in Section 3.3.2. The spatial structure of the
design is reported in the next section.
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2.4.1.3 Spatial Data

We also have spatial information about the sample, obtained from sketch
maps that were made by the inventory crews. When we add the spatial infor-
mation to the data frame, we can use R to get a snapshot of the stand with
the additional variables. First, we form the data frame using the locations.

> locations <- data.frame(point = 1:144,

+ north.n = rep(c(12:1),12),

+ east.n = rep(c(1:12), rep(12,12)))

> locations$north <- (locations$north.n - 0.5) * 134.11

> locations$east <- (locations$east.n - 0.5) * 167.64

We combine these datasets using merge, which automatically performs match-
ing using those variables that appear in both datasets.

> ufc.SyRS.data <- merge(ufc.SyRS.data, locations)

Figure 2.6 is then obtained by the following code:

> opar <- par(las=1, pty="s")

> plot(ufc.SyRS.data$east, ufc.SyRS.data$north,

+ type = "n", axes = F,

+ xlim = c(0,max(ufc.SyRS.data$east)+167.64/2),

+ ylim = c(0,max(ufc.SyRS.data$north)+134.11/2),

+ xlab = "West-East (m)", ylab = "South-North (m)",

+ main = expression(paste("Units of 50", m^3, "/ha")))

> axis(1); axis(2)

> grayrange <- range(ufc.SyRS.data$vol.m3.ha)

> text(formatC(ufc.SyRS.data$vol.m3.ha/50,

+ format = "f", digits = 0),

+ x = ufc.SyRS.data$east,

+ y = ufc.SyRS.data$north, cex=1.5,

+ col = gray(1 - (ufc.SyRS.data$vol.m3.ha+200)/800))

> par(opar)

Now we can use the processed data for further analysis in later chapters.
We have two specific pieces: the tree-level measurements, contained in an
object called ufc.tree, and the plot-level information, contained in an object
called ufc.SyRS.data.

2.4.2 Sweetgum Stem Profiles

This dataset is a collection of stem measurements of a sample of sweetgum
(Liquidambar styraciflua L.) trees from Texas in the USA. The data were
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Fig. 2.6: Spatial snapshot of the Upper Flat Creek stand in units of 50 m3/ha.

kindly supplied by Professor Timothy Gregoire and were originally collected
by David Lenhart. We will read the data, which are stem profile measures
(that is, bole diameters at particular heights), and then use them to compute
tree volumes.

The sweetgum measurement data are a good example of the kind of data
that require the use of scan. The first 26 lines of the file are metadata. The
profile measures for each of the 39 trees then follow, each separated by a line
that provides information about the tree. Also, the trees each have varying
numbers of measurements.

> raw.data <- scan("../../data/TX_SGUM2.DAT",

+ what = "", sep = "\n")

> length(raw.data)

[1] 1101

We have 1101 rows of data to work with. Inspection of the raw.data object
(not shown here) shows us that the first 26 rows and the last row should be
ignored.

> raw.data <- raw.data[-c(1:26, 1101)]
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We need to compare the metadata for the trees to be sure that we understand
them and their structure. After examining the file, we see that each tree is
consistently identified with the label SWEETGUM. We identify and examine
these rows using the grep function in the following code (results not shown).

> metadata <- grep("SWEETGUM", raw.data)

> cbind(metadata, raw.data[metadata])

This exercise shows us that the plot ID is incomplete for two of the trees.
We fix them with educated guesses as follows. The substr function is very
powerful: it can be used to report and to alter portions of a string.

> substr(raw.data[627], 1, 1) <- "4"

> substr(raw.data[910], 1, 1) <- "5"

As is usually true with R, there are numerous ways to process the data.
Here we will use brute force to associate plot and tree identifiers with the
stem measures. We do this in a loop: every line that is not tree metadata has
the first ten characters of the previous line prefixed to it using paste. We can
then use these values to merge the tree data and the stem data.

> for (i in 1:length(raw.data)) {

+ if(substr(raw.data[i], 57, 64) != "SWEETGUM")

+ raw.data[i] <- paste(substr(raw.data[i - 1], 1, 10),

+ raw.data[i], sep="")

+ }

This quick and dirty solution guarantees that the stem measures are now all
associated with the tree data that precede them in the file. We can now extract
the tree and section data using the search that we had already performed.

> tree.data <- raw.data[metadata]

> length(tree.data)

[1] 39

> sections.data <- raw.data[-metadata]

> length(sections.data)

[1] 1035

The variables of interest to us can be extracted directly from these two ob-
jects.

> sweetgum <-

+ data.frame(plot = factor(substr(tree.data, 1, 5)),

+ tree = substr(tree.data, 6, 10),

+ dbh.in = substr(tree.data, 21, 26),

+ stump.ht.ft = substr(tree.data, 27, 32),
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+ height.ft = substr(tree.data, 39, 44))

> sections <-

+ data.frame(plot = factor(substr(sections.data, 1, 5)),

+ tree = substr(sections.data, 6, 10),

+ meas.ln.ft = substr(sections.data, 11, 16),

+ meas.dob.in = substr(sections.data, 20, 25),

+ meas.dib.in = substr(sections.data, 26, 31))

We should check the data classes before continuing. We use sapply to easily
apply the class function to each column in the data frames.

> sapply(sweetgum, class)

plot tree dbh.in stump.ht.ft height.ft

"factor" "factor" "factor" "factor" "factor"

> sapply(sections, class)

plot tree meas.ln.ft meas.dob.in meas.dib.in

"factor" "factor" "factor" "factor" "factor"

The data are not yet of the appropriate class. We have to convert them.
A single loop will suffice.

> for (i in 3:5) {

+ sweetgum[,i] <- as.numeric(as.character(sweetgum[,i]))

+ sections[,i] <- as.numeric(as.character(sections[,i]))

+ }

We next merge the two data frame objects. R will automatically use the
variables that are common to the data frames.

> all.meas <- merge(sweetgum, sections, all = TRUE)

> dim(all.meas)

[1] 1035 8

> names(all.meas)

[1] "plot" "tree" "dbh.in" "stump.ht.ft"

[5] "height.ft" "meas.ln.ft" "meas.dob.in" "meas.dib.in"

We now need to convert the data to metric measures for the section data and
the tree-level data.

> all.meas$meas.ht.ft <- with(all.meas,

+ meas.ln.ft + stump.ht.ft)

> all.meas$meas.ht.m <- all.meas$meas.ht.ft / 3.2808399

> all.meas$meas.dob.cm <- all.meas$meas.dob.in * 2.54

> sweetgum$height.m <- sweetgum$height.ft / 3.2808399

> sweetgum$dbh.cm <- sweetgum$dbh.in * 2.54
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Finally, we are in a position to compute the volumes of the trees. We treat
the trees as geometric solids and integrate their sectional areas along their
length. We use a function for this task. This function accepts the diameters
and the heights at which they are measured, along with tree height and lower
limit for volume. It constructs a spline model of the radius as a function of
measurement height. Finally, it computes the sectional area from the out-
put of the spline function evaluated at arbitrary heights and integrates that
quantity along the length of the stem. The argument that supplies the radius
is constrained to be non-negative using the parallel maximum function pmax

> spline.vol.m3 <- function(hts.m,

+ ds.cm,

+ max.ht.m,

+ min.ht.m = 0) {

+ rs.cm <- c(ds.cm[order(hts.m)] / 2, 0)

+ hts.m <- c(hts.m[order(hts.m)], max.ht.m)

+ taper <- splinefun(hts.m, rs.cm)

+ volume <- integrate(f = function(x)

+ pi * (taper(pmax(x,0))/100)^2,

+ lower = min.ht.m,

+ upper = max.ht.m)$value

+ return(volume)

+ }

We apply this function to the section data and the tree data using the pow-
erful mapply function, along with split.

> sweetgum$vol.m3 <-

+ mapply(spline.vol.m3,

+ hts.m = split(all.meas$meas.ht.m, all.meas$tree),

+ ds.cm = split(all.meas$meas.dob.cm, all.meas$tree),

+ max.ht.m = as.list(sweetgum$height.m),

+ min.ht.m = 0.3)

We conclude by checking that the volumes are commensurate with our
expectations by comparing the predicted volumes with those of a second-
degree paraboloid with the same height and breast-height cross-sectional area
(Figure 2.7).

> par(las = 1)

> plot(sweetgum$vol.m3,

+ (sweetgum$dbh.cm/200)^2 * pi * sweetgum$height.m / 2,

+ ylab = expression(paste("Second-degree paraboloid volume (",

+ m^3, ")", sep="")),

+ xlab = expression(paste("Integrated spline volume (",

+ m^3, ")", sep="")))

> abline(0, 1, col="darkgrey")
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Fig. 2.7: Comparison of sweetgum volumes computed by integrating the sectional
area as estimated from a spline fit to the height–radius profile (x-axis) and assuming a
second-degree paraboloid with the same height and breast-height cross-sectional area
(y-axis).

2.4.3 FIA Data

These data are plot-level measures of stand basal area and unweighted mean
tree height from the USDA Forest Service Forest Inventory and Analysis
program. The data are an approximately systematic sample of 2632 plots
from the Inland Empire of the western United States. More information on
the origin and processing of these data can be found in Froese (2003). The
geographic location of the plots is obscured; we only know the identifier of the
national forest to which the plots are closest. Reading and processing these
data is straightforward, largely because we benefit from Froese’s (2003) hard
work.

> fia.plots <- read.csv("../../data/fia_plots.csv")

> fia.plots$forest <- factor(fia.plots$forest)
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> fia.plots$ba.m2.ha <- fia.plots$ba * 2.47105381 / 10.7639104

> fia.plots$ht.m <- fia.plots$ht * 0.3048

2.4.4 Norway Spruce Profiles

The Norway spruce (Picea abies [L.] Karst) data are tree data originally
reported in von Guttenberg (1915) and kindly provided to us by Professor
Boris Zeide. The dataset comprises measures taken on 107 average-size trees
from seven locations that encompassed five different sites. These data are
more fully documented in Zeide (1993).

We read the comma-delimited file, convert the variable names to be all
lowercase, change one of them, and examine the resulting object.

> gutten <- read.csv("../../data/gutten.csv")

> names(gutten) <- tolower(names(gutten))

> names(gutten)[names(gutten)=="diameter"] <- "dbh.cm"

> str(gutten)

�data.frame�: 1287 obs. of 8 variables:

$ site : int 1 1 1 1 1 1 1 1 ...

$ location: int 1 1 1 1 1 1 1 1 ...

$ tree : int 1 1 1 1 1 1 1 1 ...

$ age.base: int 10 20 30 40 50 60 70 80 ...

$ height : num 1.2 4.2 9.3 14.9 19.7 23 25.8 27.4 ...

$ dbh.cm : num NA 4.6 10.2 14.9 18.3 20.7 22.6 24.1 ...

$ volume : num 0.3 5 38 123 263 400 555 688 ...

$ age.bh : num NA 9.67 19.67 29.67 ...

It would be useful to ensure that we have a unique tree identifier.

> gutten$site <- factor(gutten$site)

> gutten$location <- factor(gutten$location)

> gutten$tree.ID <- with(gutten, interaction(location, tree))

We can now count the trees within site and location classes by reducing
the first three columns of the data frame to their unique components and
tabulating them. We use the unique function. Here we count trees by location
and then by location and site.

> with(unique(gutten[,c("site","location","tree.ID")]),

+ table(location))

location

1 2 3 4 5 6 7

15 2 13 10 46 11 10



2.4 Examples 53

> with(unique(gutten[,c("site","location","tree.ID")]),

+ table(location, site))

site

location 1 2 3 4 5

1 6 4 5 0 0

2 2 0 0 0 0

3 7 4 2 0 0

4 3 2 2 0 3

5 3 19 7 15 2

6 0 7 2 2 0

7 0 1 2 4 3

There seems to be substantial imbalance in the tree counts in the different
locations — ranging from two at location 2 to 46 at location 5. Next, we
check whether any observations contain missing values.

> show.cols.with.na(gutten)

dbh.cm volume age.bh

87 6 87

The 87 measures with missing diameter and age at breast height were each
presumably taken while the tree height was less than or equal to 1.3 m. We can
check this conjecture by asking R to report the maximum height associated
with all the tree measures that have missing diameters. We identify the values
that are missing by using the is.na function.

> max(gutten$height[is.na(gutten$dbh.cm)])

[1] 1.3

Our conjecture seems reasonable. We will exclude these measures from the
data for the purposes of modeling.

> gutten <- gutten[!is.na(gutten$dbh.cm),]

These data are subsequently used in Sections 6.2 and 7.6.

2.4.5 Grand Fir Profiles

The grand fir (Abies grandis (Dougl.) Lindl.) data were provided to us by Dr.
Albert Stage. To give a brief synopsis of the design, a sample of 66 trees was
selected in national forests around northern and central Idaho. According to
Stage (pers. comm., 2003), the trees were selected purposively rather than
randomly. Stage (1963) noted that the selected trees “. . . appeared to have
been dominant throughout their lives” and “. . . showed no visible evidence
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of crown damage, forks, broken tops, etc.” The habitat type and diameter
outside bark at 1.37 m (4′6′′) were also recorded for each tree, as was the
national forest from which it came. Each tree was then split, and decadal
measures were made of height and diameter inside bark at 1.37 m (4′6′′). We
have data from nine national forests and six different habitat types.

We import the data as follows:

> stage <- read.csv("../../data/stage.csv")

> str(stage)

�data.frame�: 542 obs. of 7 variables:

$ Tree.ID: int 1 1 1 1 1 2 2 2 2 2 ...

$ Forest : int 4 4 4 4 4 4 4 4 4 4 ...

$ HabType: int 5 5 5 5 5 5 5 5 5 5 ...

$ Decade : int 0 1 2 3 4 0 1 2 3 4 ...

$ Dbhib : num 14.6 12.4 8.8 7 4 20 18.8 17 15.9 14 ...

$ Height : num 71.4 61.4 40.1 28.6 19.6 ...

$ Age : int 55 45 35 25 15 107 97 87 77 67 ...

Some cleaning and manipulation will be necessary. We start by defining
the factors.

> stage$Tree.ID <- factor(stage$Tree.ID)

> stage$Forest.ID <- factor(stage$Forest, labels = c("Kaniksu",

+ "Coeur d�Alene", "St. Joe", "Clearwater", "Nez Perce",

+ "Clark Fork","Umatilla", "Wallowa", "Payette"))

The following habitat codes refer to the climax tree species, which is the
most shade-tolerant species that can grow on the site, and the dominant un-
derstory plant, respectively. Ts refers to Thuja plicata and Tsuga heterophylla,
Th refers to just Thuja plicata, AG is Abies grandis, PA is Picea engelmanii

and Abies lasiocarpa, Pach is Pachistima myrsinites, and Op is the nasty
Oplopanaz horridurn.

Grand fir is considered a major climax species for AG/Pach, a major seral
species for Th/Pach and PA/Pach, and a minor seral species for Ts/Pach
and Ts/Op. Loosely speaking, a community is seral if there is evidence that
at least some of the species are temporary and climax if the community is
self-regenerating (Daubenmire, 1952).

> stage$Hab.ID <- factor(stage$HabType, labels = c("Ts/Pac",

+ "Ts/Op", "Th/Pach", "AG/Pach", "PA/Pach"))

The measurements are all imperial (this was about 1960, after all). We com-
pute metric measures.

> stage$dbhib.cm <- stage$Dbhib * 2.54

> stage$height.m <- stage$Height / 3.2808399

A final check for missing values shows us that there are
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> show.cols.with.na(stage)

No missing values.

2.4.6 McDonald–Dunn Research Forest

The McDonald–Dunn Research Forest is located near Oregon State Univer-
sity in Corvallis, Oregon. The forest is approximately 4856 hectares (11995
acres) and is actively managed for student instruction, revenue, research, and
recreation.

The forest has been divided into areas of homogeneity (stands), represented
by polygons, and each polygon has been designated for one of the objectives
above. The data2 comprise two spatial datasets: stand polygons with plot
locations, and a tabular dataset consisting of field samples, which are tree
measurements. To simplify our presentation, we use a derived dataset that
contains fewer attributes.

2.4.6.1 Stand Data

The stand polygon data are stored in an ESRI3 shapefile, which can be read
in using the readShapePoly function of the maptools package.

> stands <- readShapePoly("../../data/stands.shp",

+ verbose=FALSE)

> names(stands)

[1] "SP_ID" "AREA" "PERIMETER" "STANDID"

[5] "ALLOCATION" "TAGE" "BHAGE" "DF_SITE"

[9] "TOTHT" "CUBVOL_AC" "TPA" "QMD"

[13] "BA"

The readShapePoly function reads data from a polygon shapefile into a
SpatialPolygonsDataFrame object. The data can be accessed using the $

operator (e.g., stands$TAGE) or coerced into a non-spatial data frame using
the as.data.frame function. For other geometry types, other functions are
available (e.g., ?readShapeLines and ?readShapePoints).

To examine the attribute data for stands, use the names function.

> names(stands)

[1] "SP_ID" "AREA" "PERIMETER" "STANDID"

[5] "ALLOCATION" "TAGE" "BHAGE" "DF_SITE"

2 Available at http://www.cof.orst.edu/cf/forests/mcdonald/.
3 Environmental Systems Research Institute, Inc.
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[9] "TOTHT" "CUBVOL_AC" "TPA" "QMD"

[13] "BA"

The names function reveals that the data contain a few geometric at-
tributes (AREA and PERIMETER, in feet), a stand identifier (STANDID), the
land classification (ALLOCATION), total age (TAGE), breast-height age (BHAGE),
a site productivity measure for Douglas-fir (DF_SITE) (Bruce, 1981), average
height of the 40 tallest stems per acre (TOTHT), an estimate of the current vol-
ume per acre (CUBVOL_AC), current stocking in trees per acre (TPA), quadratic
stand diameter (QMD), and total stand basal area (BA) for each stand polygon.
Some of the attributes contain NA (signifying that attributes are missing) and
will need to be either ignored or imputed.

To plot the SpatialPolygonsDataFrame object, with unique shadings for
the different stand allocations (stands$ALLOCATION), use a gradient in gray
scale (?gray) to represent the forest allocation (see Figure 2.8).

2.4.6.2 Plot Data

The plot data, read in using the readShapePoints function,

> plots <- readShapePoints("../../data/plots.shp")

contains a plot identifier (plots$UNIPLOT) and plot locations stored as co-
ordinates (plots$coords.x1 and plots$coords.x2). The plot locations can
be easily added to the existing plot using the plot function with the add =

TRUE argument,

> plot(plots, add=TRUE, pch=46)

> lev <- as.numeric(stands$ALLOCATION)

> fgs <- gray(length(levels(stands$ALLOCATION)):1 / 3)

> plot(stands,

+ col=fgs[lev],

+ add=FALSE,

+ axes=TRUE)

> title(paste("McDonald-Dunn Research Forest",

+ "Stand Boundaries and Plot Locations",

+ sep = "\n"))

> legend(1280000, 365000,

+ levels(stands$ALLOCATION)[3:1],

+ fill = fgs[3:1],

+ cex = 0.7,

+ title = "Land Allocations")

> plot(plots, add=TRUE, pch=46)



2.4 Examples 57

1260000 1270000 1280000 1290000

35
00

00
36

00
00

37
00

00
38

00
00

39
00

00
40

00
00

McDonald−Dunn Research Forest
Stand Boundaries and Plot Locations

Land Allocations

research
old growth
forest

Fig. 2.8: The Oregon State University research forest. The polygons are shaded
according to management allocation (stands$ALLOCATION), and plot locations are
represented as points.
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2.4.6.3 Tree Data

Load the tree observation data from the dBase� file using the read.dbf

function and print a few lines,

> mdtrees <- read.dbf("../../data/mdtrees.dbf")

> head(mdtrees)

STANDID PLOT TREE SUBPLOT SPCODE DBH AGE THT CBH SITETREE

1 010101 10001 1 1 WO 15.3 NA 48.7 37.6 0

2 010101 10001 2 1 DF 9.9 NA 60.9 35.0 0

3 010101 10001 3 1 DF 8.1 NA 50.8 26.8 0

4 010101 10001 4 3 GF 4.6 NA 30.3 23.3 0

5 010101 10001 5 3 DF 5.6 NA 46.1 32.4 0

6 010101 10001 6 3 DF 6.5 NA 41.9 25.4 0

To generate plot-level summaries, we first need to compute the per-area
expansion factor (acre or hectare weights), denoted πi, for each tree in the
dataset. The sample design is defined by circular plots with radius varying
by tree size: 1) a 7.78 ft (2.37 m) radius plot for stems smaller than four
inches (10.16 cm) (SUBPLOT == 3); 2) a 15.56 ft (4.74 m) radius plot for
stems between four and eight inches (20.32 cm) (SUBPLOT == 2); and 3) a

variable radius plot (20 f t2

ac
BAF) (4.59 m2

ha
) BAF) for all stems over eight inches

(SUBPLOT == 1). Using that definition, the expansion factor for a tree (πi) is
then

πi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

BAF
Bi

D > 8.0

43560.0
(π×7.782)

4.0 < D ≤ 8.0

43560.0
(π×15.562)

D ≤ 4.0

(2.1)

where Bi is the basal area of tree i and the BAF is 20 square ft per acre.
To compute the expansion factors (πi), we first create an empty variable

in the data frame object.

> mdtrees$EXPF <- NA

Then we assign the values, using the SUBPLOT variable as a filter.

> mdtrees$EXPF[mdtrees$SUBPLOT == 1] <-

+ 20.0 / (0.0054541539 *

+ mdtrees$DBH[mdtrees$SUBPLOT == 1] ^2)

> mdtrees$EXPF[mdtrees$SUBPLOT == 2] <- 43560 / (pi * 7.78^2)

> mdtrees$EXPF[mdtrees$SUBPLOT == 3] <- 43560 / (pi * 15.56^2)

Once again, we print the first few entries of the important columns to
verify our results.
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> head(mdtrees[, 3:11])

TREE SUBPLOT SPCODE DBH AGE THT CBH SITETREE EXPF

1 1 1 WO 15.3 NA 48.7 37.6 0 15.66462

2 2 1 DF 9.9 NA 60.9 35.0 0 37.41383

3 3 1 DF 8.1 NA 50.8 26.8 0 55.88980

4 4 3 GF 4.6 NA 30.3 23.3 0 57.26890

5 5 3 DF 5.6 NA 46.1 32.4 0 57.26890

6 6 3 DF 6.5 NA 41.9 25.4 0 57.26890

Now that we have the expansion factors, we can process the tree data and
link them to the plot locations, which can yield summaries from which we
can create or update stand-level attributes. We can then spatially interpolate
attributes between plots and possibly cluster plots into similar sets.

To process the tree data, first split the tree data.frame object into a
list object by plot,

> trees.by.plot <- split(mdtrees, mdtrees$PLOT)

Then, we need to construct a function that

1. sums the expansion factors (πi) for all trees on each plot (expf.tot),
2. sums the expansion factors (πi) for only those trees with a DBH observation

that is not NA, which should be all trees over breast height (expf.ha),
3. computes the plot’s basal area, using only trees over breast height (ba),
4. computes the plot’s quadratic mean diameter (QMD) (qmd),
5. computes the site index using a function from Bruce (1981) (site), and
6. returns a vector of the results (ret.val),

so that the function can be called using sapply to generate a data frame
object that will store the results.

Our version of the code for the list of tasks is

> get.plot.sums <- function(trs) {

+

+ # /******************************************************/

+ # /* Bruce, D. 1981. Consistent height-growth and */

+ # /* growth-rate estimates for remeasured plots. */

+ # /* Forest Science 27:711-725. */

+ # /******************************************************/

+ site.index.bruce.1981 <- function(tht, bha) {

+ tht * exp(-21.663 * (3.744e-2 - (bha + 8.0)^ -0.809))

+ }

+

+ not.missing.dbh <- !is.na(trs$DBH)

+ bh.idx <- not.missing.dbh & trs$THT > 4.5

+ expf.tot <- sum(trs$EXPF)

+ expf.bh <- sum(trs$EXPF[not.missing.dbh])
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+ ba <- sum(0.0054541539 * trs$DBH[not.missing.dbh] ^ 2 *

+ trs$EXPF[not.missing.dbh])

+ qmd <- sqrt(ba / expf.bh / 0.0054541539)

+ s.trs <- trs[trs$SITETREE == 1 & trs$SPCODE == "DF" &

+ !is.na(trs$THT),]

+ nst <- nrow(s.trs)

+ site.bar <-

+ ifelse(nst > 0,

+ weighted.mean(site.index.bruce.1981(s.trs$THT,

+ s.trs$AGE),

+ s.trs$EXPF),

+ NA)

+ return(c(nrow(trs), expf.bh, expf.tot,

+ ba, qmd, nst, site.bar))

+ }

To generate the summaries, call the sapply function, and transpose and
coerce the results from sapply call

> plot.sums <-

+ data.frame(t(sapply(trees.by.plot, get.plot.sums)))

so that each row in plot.sums contains the plot-level summaries, computed
in the get.plot.sums function.

The current column names are meaningless, as they have been automat-
ically generated. Also, the plot identifier needs to be appended to our data
frame. Therefore we use the names from the split operation with the names
of the variables from the get.plot.sums function,

> plot.sums$id <- as.numeric(names(trees.by.plot))

> names(plot.sums) <- c("trees","expf.bh","expf.tot",

+ "ba","qmd","nst","site","id")

> print(head(plot.sums), digits=3)

trees expf.bh expf.tot ba qmd nst site id

10001 20 1368.9 2972 134.449 4.244 0 NA 10001

10002 7 1030.8 1260 26.828 2.184 0 NA 10002

10003 2 286.3 286 15.955 3.196 0 NA 10003

10005 4 35.2 722 20.000 10.200 0 NA 10005

10006 3 458.2 687 0.562 0.474 0 NA 10006

10017 8 145.4 145 158.519 14.140 1 117 10017

The next step is to merge the plot summary data (plot.sums) with the
plot.centers to create a single data frame object, making sure to preserve
empty plots, using the argument all = TRUE.

> plot.id <- as.numeric(as.character(plots$UNIPLOT))

> plot.centers <- data.frame(cbind(coordinates(plots), plot.id))
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> names(plot.centers) <- c("x","y","id")

> final.plots <- merge(plot.centers, plot.sums, all = TRUE)

> print(head(final.plots[,c(1:3,5:10)]), digits = 3)

id x y expf.bh expf.tot ba qmd nst site

1 10001 1264447 400414 1368.9 2972 134.449 4.244 0 NA

2 10002 1264178 400423 1030.8 1260 26.828 2.184 0 NA

3 10003 1263912 400430 286.3 286 15.955 3.196 0 NA

4 10005 1264715 400734 35.2 722 20.000 10.200 0 NA

5 10006 1264460 400741 458.2 687 0.562 0.474 0 NA

6 10017 1265432 398729 145.4 145 158.519 14.140 1 117

We’ll use these plots in Chapter 4 so our final step is to write the final
plots to a file until we need them,

> write.csv( final.plots, "../../data/final-plots.csv")

2.4.7 Priest River Experimental Forest

In July and August of 2000, a survey was carried out on the Priest River
Experimental Forest, a 2530 ha temperate conifer forest in northern Idaho,
USA (48◦ 212′ N, 116◦ 472′ W) (Duursma et al., 2003; Pocewicz et al., 2004).
Inventory of the forest resources was not the principal goal but a happy by-
product.

The forest was divided into nine strata to control the variability that we
anticipated would be caused by the topography. The strata comprised three
classes of elevation and three classes of solar insolation. Forest growth was
expected to vary considerably with elevation because we observed systematic
changes in species dominance across elevation gradients, which range from
700 to 1710 m above sea level. Solar insolation is a calculated variable that
combines elevation, slope, aspect, and local viewshed to represent the average
annual availability of solar radiation at a point. Forest growth was also ex-
pected to vary considerably with aspect and slope because the slope variation
and the high latitude altered the availability and timing of solar radiation.

Four clusters were assigned to each of the nine strata. The clusters were
located randomly within each stratum, subject to the constraint that no point
could be more than 500 m from a road. This constraint removed a small
portion of the forest from the sampling frame. We will ignore the omission
for the purposes of our use of the data.

Each cluster comprised five point locations on a grid. Four of the points
were at the corners of a 60 m square, and the fifth was located in the center.
At each sample point, a variable-radius plot was installed. The basal area
factor was varied adaptively at each site to allow at least six trees per plot.
Varying the BAF adaptively in this way leads to a sequential sample, and is
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generally not recommended because it can introduce bias to the basal area
estimates (see, e.g., Banyard, 1987). We will ignore the bias for the purposes
of our use of the data.

Each sample tree was measured for species and diameter at 1.3 m (dbh)
above mineral soil. A subsample of 85% of the trees was also measured for
height. Missing heights were imputed using species-specific diameter–height
models constructed from the measured data (Duursma et al., 2003). We will
use only those trees with diameter greater than 25.4 cm at 1.3 m.

Tree-level merchantable volumes, in board feet, were estimated using func-
tions provided by Wykoff et al. (1982). The use of the functions requires that
diameter will be measured at 1.37 m rather than 1.3 m as in these data. We
will ignore the difference for the purposes of our use of the data.

A complete description of the study design can be found in Duursma et al.
(2003).

2.4.7.1 Ground Data

These data require a number of processing steps before they can be used for
inventory analysis. For example, some of the units are inappropriate, some
trees need to be excluded, and some of the labels need to be corrected.

We start by importing the data into R.

> pref.tree.all <- read.csv("../../data/pref_trees.csv")

After importing the data, we take a snapshot of the data frame and check it
for missing values.

[1] "stratum" "cluster" "point" "tree"

[5] "species" "distance.m" "azimuth" "dbh.cm"

[9] "dbh.in" "hcb.m" "ht.m" "ht.ft"

[13] "baf.ft2.ac" "ba.ft2" "tf.ac" "vol.bf"

[1] 1365 16

> show.cols.with.na(pref.tree.all)

distance.m azimuth hcb.m ht.m

2 4 233 235

When R imports data from a comma-delimited file, as above, it is forced
to guess what class each column is. We should check the class of each variable
to make sure that we agree with the guess. We can do so conveniently using
sapply. Note that the read.csv command allows the column data classes
to be specified using the colClasses argument; see the inbuilt R help files for
details.

> sapply(pref.tree.all, class)
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stratum cluster point tree species

"integer" "integer" "integer" "integer" "factor"

distance.m azimuth dbh.cm dbh.in hcb.m

"numeric" "integer" "numeric" "numeric" "numeric"

ht.m ht.ft baf.ft2.ac ba.ft2 tf.ac

"numeric" "numeric" "integer" "numeric" "numeric"

vol.bf

"numeric"

Everything looks reasonable except the choice of integers for the stratum,
cluster, point, and tree identifiers. These variables should all be factors. There
is nothing intrinsically wrong with using the integer class here, as R will
usually intelligently force the integer to behave like a factor when necessary.
For example, this command counts the number of rows within each stratum.

> table(pref.tree.all$stratum)

1 2 3 4 5 6 7 8 9

155 145 158 127 175 155 132 167 151

However, making the decision about data type explicit provides us with a
layer of error checking. R will warn us if we try to do something that does
not make sense, like adding labels together. A one-line for loop takes care of
the conversion from integers to factors.

> for (i in 1:4)

+ pref.tree.all[,i] <- factor(pref.tree.all[,i])

R will then object, correctly, to the illegal operation of trying to average
the stratum labels.

> mean(pref.tree.all$stratum)

[1] NA

A collection of contemporaneous remotely sensed variables is also available
for the PREF (Pocewicz et al., 2004). Inevitably, some wrestling is necessary
to match data structures when more than one source of data is being used.
We document this process because the tools are useful.

The design for the remotely sensed variables is documented more fully
below. For the moment, we only need to know that it is based on plots, which
correspond to the ground-level clusters. Furthermore, each plot contains nine
subplots, which correspond in scale to the points (Pocewicz et al., 2004).
The volume measures that comprise our data were made on points that were
arrayed in five-point clusters, corresponding to subplots 1, 3, 5, 7, and 9 in
the covariate data.

In order to merge the current data frame with the dataset that contains
covariates of interest, we need to redefine the point identifier, so that the
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current values are mapped from 1, 2, 3, 4, 5, to 1, 3, 5, 7, 9. First, we examine
the current values in the variable.

> table(pref.tree.all$point)

1 2 3 4 5

254 304 262 270 275

The conversion proceeds as follows.

> levels(pref.tree.all$point) <- c("1","3","5","7","9")

We then check the new values of the variable.

> table(pref.tree.all$point)

1 3 5 7 9

254 304 262 270 275

We next consider those trees that are less than 25.4 cm (10 in.) in dbh.
The stand-level volume contribution for trees that are less than 25.4 cm (10
in.) in dbh is negligible. Furthermore, the volume models used to compute
the volume are not reliable for trees that are so small (Wykoff et al., 1982).
We therefore exclude them from the data frame and check the effect on the
sample size as follows.

> pref.tree <- subset(pref.tree.all, dbh.cm > 25.4)

> dim(pref.tree)

[1] 1046 16

Note that in removing trees from the database we have removed some rows
from the data frame. In some cases, there may be no rows left that correspond
to certain levels of the factors; that is, the levels may be empty. The factor
levels still remain defined, even though there are no rows corresponding to the
levels. These empty levels can cause problems in later analysis, for example
when looping over levels of the factor. It is therefore best to address the
empty-level condition explicitly. Fixing the empty-level condition is easy to
do: simply redefine the factor.

It is very important, however, to think about which factors to redefine. An
empty level can be informative for a factor that is related to the design. A
plot that has no trees should not be eliminated; to do so would cause bias in
estimates of population parameters. A species that has no trees, on the other
hand, is not of interest. Therefore we redefine the species factor but not the
others. For safety, we surround the relevant command with other commands
that reveal the effect of the redefinition.

> levels(pref.tree$species)
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[1] "ABGR" "ABLA" "ABLA2" "LAOC" "PICO" "PIEN" "PIMO"

[8] "PIPO" "PSME" "THPL" "TSHE"

> pref.tree$species <- factor(pref.tree$species)

> levels(pref.tree$species)

[1] "ABGR" "ABLA" "ABLA2" "LAOC" "PICO" "PIEN" "PIMO"

[8] "PIPO" "PSME" "THPL" "TSHE"

In the end, no species levels needed to be dropped.
The tree-level volume was computed in board feet, which is a unit of

volume equivalent to 144 cubic inches, but when volume in board feet is
computed, deductions are made for squaring assumptions and kerf. That is, in
general, in the systems for which these functions were originally constructed,
if volume is reported in cubic feet, then it reflects the physical volume from
which timber may be cut, whereas if volume is reported in board feet, then
it reflects the physical volume of the bole discounted for the loss of volume
during the cutting process.

We will convert this volume measure from board feet to cubic meters. Also,
the tree factor must be converted from trees per acre to trees per hectare.
Note that the tree factor is the sampling weight for each tree, not the factor
that identifies the tree identity!

> pref.tree$vol.m3 <- pref.tree$vol.bf / 12 * 0.0283168466

> pref.tree$tf.ha <- pref.tree$tf.ac * 2.47105381

> pref.tree$vol.m3.ha <- pref.tree$vol.m3 * pref.tree$tf.ha

> pref.tree$baf.m2.ha <-

+ pref.tree$baf.ft2.ac / 3.2808399^2 / 0.404685642

We finally need to add the sampling weight to the tree database. This is
somewhat easier than trying to add the sampling probability. For the PREF
inventory, the weight is theoretically rather complex because of the sequen-
tial nature of the survey; however, as we noted above, we are ignoring that
element. Therefore, the sampling weight for each tree is proportional to its
basal area and inversely proportional to the basal area factor of the wedge
used for its plot, so it is inversely proportional to the tree factor.

> pref.tree$weight <- 1/pref.tree$baf.ft2.ac

The tree-level volume per hectare is the product of the tree volume in
cubic meters and the tree factor in trees per hectare. This quantity can then
be summed to the point level. There are numerous ways to make that sum, of
which aggregate is the most convenient because it creates a complete data
frame.

> pref.point <- with(pref.tree,

+ aggregate(x = list(ba.m2.ha = baf.m2.ha,

+ vol.m3.ha = vol.m3.ha),
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+ by = list(stratum = stratum,

+ cluster = cluster,

+ point = point),

+ FUN = sum))

We should examine the new object to ensure that it matches our expecta-
tions. For example, we expect each of the nine strata to contain 20 points.

> table(pref.point$stratum)

1 2 3 4 5 6 7 8 9

18 14 20 16 19 20 20 20 18

This summary shows a problem: several strata are missing points. The
aggregate function drops indicators for the empty points. At the time of
writing, there is no way to instruct aggregate to keep the empty levels,
although there may well be in the future. Regardless, we can take the oppor-
tunity to demonstrate more data manipulation commands. As always, there
are several options for proceeding.

We will create a new data frame that reflects the structure of the design,
using the expand.grid function, and merge it with this dataset. Note that the
cluster identifier crosses stratum boundaries, instead of being nested inside
the strata, so we will add the stratum identifier to our new data frame after
creating it.

> design.point <-

+ expand.grid(cluster = levels(pref.tree.all$cluster),

+ point = levels(pref.tree.all$point))

> str(design.point)

�data.frame�: 180 obs. of 2 variables:

$ cluster: Factor w/ 36 levels "1","4","5","6",..: 1 2 ...

$ point : Factor w/ 5 levels "1","3","5","7",..: 1 1 ...

- attr(*, "out.attrs")=List of 2

..$ dim : Named int 36 5

.. ..- attr(*, "names")= chr "cluster" ...

..$ dimnames:List of 2

.. ..$ cluster: chr "cluster=1" ...

.. ..$ point : chr "point=1" ...

This new data frame comprises 36 plots of five clusters for a total length of
180. Next we need to construct a data frame that contains the cluster and the
stratum identifiers for all the clusters, including the empty ones. We could
create such a document in a spreadsheet and read it in. We prefer to reduce
the number of steps needed to analyze the data by creating the needed object
in R. Here, we do this by extracting the cluster and stratum columns from
the original dataset, removing all the missing values, and then removing all
the duplicate rows, as follows.
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> design.cluster <-

+ unique(pref.tree.all[, c("cluster","stratum")])

> str(design.cluster)

�data.frame�: 36 obs. of 2 variables:

$ cluster: Factor w/ 36 levels "1","4","5","6",..: 1 7 ...

$ stratum: Factor w/ 9 levels "1","2","3","4",..: 1 2 ...

The merging operation requires the merge command. This operation is best
monitored, and an easy way to monitor it is to use dim commands before and
afterward. When reusing an object name, we should check the effect of our
merge command on a test data frame first, so we do not have to recreate
the original if we make a mistake. And, we often do. Also, it is important to
ensure that the factors for merging are appropriately defined before merging.
Failure to do so can lead to errors that are difficult to detect, and may only
show up much later in the analysis or, worse, go undetected.

> dim(design.point)

[1] 180 2

> dim(design.cluster)

[1] 36 2

> test <- merge(x = design.point,

+ y = design.cluster,

+ all = TRUE)

> dim(test)

[1] 180 3

> head(test)

cluster point stratum

1 1 1 1

2 1 7 1

3 1 9 1

4 1 5 1

5 1 3 1

6 10 1 2

This seems to have worked just fine. We can now merge the volumes.

> design.point <- test

> dim(design.point)

[1] 180 3

> dim(pref.point)
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[1] 165 5

> test <- merge(x = design.point,

+ y = pref.point,

+ all = TRUE)

> dim(test)

[1] 180 5

> head(test)

cluster point stratum ba.m2.ha vol.m3.ha

1 1 1 1 1.147842 4.284489

2 1 3 1 22.956841 86.528810

3 1 5 1 9.182736 42.078591

4 1 7 1 13.774105 67.786741

5 1 9 1 12.626263 65.055821

6 4 1 1 45.913682 164.223243

Again, this is successful. Three last steps complete the cleaning.

> test$vol.m3.ha[is.na(test$vol.m3.ha)] <- 0

> test$ba.m2.ha[is.na(test$ba.m2.ha)] <- 0

> pref.point <- test

> rm(test)

Our final step is to append the survey weights. In this case, the weights
are equal, which simplifies the process.

> pref.point$weight <- 1

This seems like a lot of work to complete a conceptually very simple opera-
tion. It simultaneously shows a weakness and some strengths of R: sometimes
what you want to do takes numerous small steps, but the advantage is that
the decisions that you have made along the way are explicitly documented,
and the scripts are reusable.

2.4.7.2 Remotely Sensed Data

A Landsat 7 ETM+ image of the forest was procured at the same time
as the field measurements were under way (Pocewicz et al., 2004). Briefly,
the Landsat image covered the entire forest and comprised square pixels of
approximately 30 m side length. Several popular vegetation indices were com-
puted. We choose the Normalized Difference Vegetation Index with a correc-
tion for the middle-infrared wavelength, which showed the best performance
for predicting an effective plant area index (Pocewicz et al., 2004). We as-
sume that effective plant area is correlated with above-ground merchantable
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tree volume. Full information on the processing steps applied can be found
in Pocewicz et al. (2004) and Landsat Project Science Office (2005).

We now access two relevant comma-delimited datasets. The pixel dataset
contains the corrected, pixel-level response values for the coverage of the
PREF.4 The subplot dataset contains field and remote measurements for the
points. The remotely sensed covariates are taken from the pixels in the pixel
database that were closest in location to the field points.

> pref.pixel <- read.csv("../../data/pref_pixels.csv")

> names(pref.pixel)

[1] "num" "utme" "utmn" "lai.rs"

[5] "ndvi" "mir" "slope" "cti"

[9] "elev" "inso" "ndvic" "mirc.1"

[13] "mirc.2" "mirc.amy" "mirc.check" "mirc.pref"

> dim(pref.pixel)

[1] 28102 16

> pref.pixel[1:5, c(1:5,11)]

num utme utmn lai.rs ndvi ndvic

1 1 510731.2 5353596 5.870416 0.8032642 0.7116639

2 2 510731.2 5353626 5.229210 0.7827569 0.6076666

3 3 510731.2 5353656 5.900865 0.7757183 0.6872592

4 4 510731.2 5353566 4.912140 0.7921855 0.6149861

5 5 510731.2 5353686 6.003587 0.7757183 0.6872592

> show.cols.with.na(pref.pixel)

No missing values.

> sapply(pref.pixel, class)

num utme utmn lai.rs ndvi

"integer" "numeric" "numeric" "numeric" "numeric"

mir slope cti elev inso

"integer" "numeric" "numeric" "numeric" "integer"

ndvic mirc.1 mirc.2 mirc.amy mirc.check

"numeric" "numeric" "numeric" "numeric" "numeric"

mirc.pref

"numeric"

The pixel-level dataset seems fine.

> pref.subplot <- read.csv("../../data/pref_subplots.csv")

> names(pref.subplot)

4 Landsat imagery courtesy of NASA Goddard Space Flight Center and U.S. Geo-
logical Survey.
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[1] "plot" "subplot" "point"

[4] "scale" "utme" "utmn"

[7] "slope" "wetind" "elevclass"

[10] "insoclass" "elev1" "elevsq1"

[13] "inso1" "insosq1" "LAIbeer2total"

[16] "LAIbeer2can" "acblue" "acgreen"

[19] "acred" "acnir" "acmir1"

[22] "acmir2" "acndvi" "acndviC"

[25] "acsr" "acsrC" "acvegind"

[28] "acsavi" "acsarvi2" "acslavi"

[31] "acinfrared" "acbrightness" "acgreenness"

[34] "acwetness" "MIRc"

> dim(pref.subplot)

[1] 324 35

> pref.subplot[1:5, c(1:3, 5:6, 24)]

plot subplot point utme utmn acndviC

1 1 1 a 515397 5357562 0.3328538

2 1 2 a 515397 5357592 0.7114403

3 1 3 a 515397 5357622 0.7114403

4 1 4 a 515427 5357622 0.7396296

5 1 5 a 515457 5357622 0.6101370

> show.cols.with.na(pref.subplot)

No missing values.

> sapply(pref.subplot, class)[1:4]

plot subplot point scale

"integer" "integer" "factor" "factor"

> pref.subplot$plot <- factor(pref.subplot$plot)

> pref.subplot$subplot <- factor(pref.subplot$subplot)

The subplot-level dataset also seems fine. The merge command blends
our existing point-level information with the new subplot-level information.
Again, we surround our merge with dim statements to monitor the process.

> dim(pref.point)

[1] 180 6

> dim(pref.subplot[,c("plot","subplot","acndviC")])

[1] 324 3
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> pref.point.cov <-

+ merge(x = pref.point,

+ y = pref.subplot[,c("plot","subplot","acndviC")],

+ all.x = TRUE, all.y = FALSE,

+ by.x = c("cluster","point"),

+ by.y = c("plot","subplot"))

> head(pref.point.cov)

cluster point stratum ba.m2.ha vol.m3.ha weight acndviC

1 1 1 1 1.147842 4.284489 1 0.3328538

2 1 3 1 22.956841 86.528810 1 0.7114403

3 1 5 1 9.182736 42.078591 1 0.6101370

4 1 7 1 13.774105 67.786741 1 0.6126499

5 1 9 1 12.626263 65.055821 1 0.8090011

6 10 1 2 4.591368 16.293566 1 0.5550567

> dim(pref.point.cov)

[1] 180 7

> show.cols.with.na(pref.point.cov)

No missing values.

We now have a point-level dataset with the necessary design information,
a variable of interest, and an auxiliary variable.

We note that there is a mismatch between the scales of the two sets of
measurements. The Landsat data comprise the average spectral responses
across 30 meter pixels. The ground measurements represent points on the
landscape, ideally in the center of the pixel but most likely not. There also
may be errors of registration; that is, the points and the pixels might not line
up as we would hope. These types of errors are likely to occur in large-scale
inventories. We will deal with this mismatch by defining the sampling unit as
the 30 meter area represented by each Landsat pixel. The point-level volume
measurements are then a subsample of the volume per hectare within the
pixel. Understood this way, the design is a two-stage–two-phase sample, with
auxiliary information on the primary sampling unit (PSU) and the variable of
interest on the secondary sampling unit (SSU), of which there is only one per
PSU. Särndal et al. (1992) devote a section to this problem. We will ignore it
because the within-PSU variation is impossible to assess with only one SSU,
and we believe that it is likely to make only a negligible contribution anyway
(see Section 3.4.2.1).
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2.4.8 Leuschner

For our forest-planning example, we have used the data presented in Leuschner
(1990, see Tables 3.1 and 3.2) and Curtis et al. (1982). The data, originally
from DFSIM simulations, was adapted and used to demonstrate forest plan-
ning and regulation techniques by Leuschner (1990; see Tables 3.1 and 3.2).

For this book, we have entered the values into a text file that can be read
into R using the read.table function

> leusch.ylds <- read.table("../../data/leuschner.txt",

+ header = TRUE)

where the resulting leusch.ylds object contains four columns: 1) the stand
identifier (stand), 2) the planning period (per), 3) the age of the stand in
period per, and 4) the yield (volume), in thousands of cubic feet per acre, if
we harvest stand stand in period per.

In these data, there are eight stands and the problem is to schedule the
harvest of the forest over six periods to create a fully regulated forest. The
areas of the stands are presented in Chapter 9, where we use these data to
demonstrate using R for forest activity scheduling.

2.5 Summary

We have briefly covered many of the basic data management and manipula-
tion functions within the context of data conversion, error checking, gener-
ating summaries and plots. The tools that R contains for data manipulation
(keyword ‘manip’) are numerous, and we have only scratched the surface.
Some of the documentation is extensively detailed, and reading it may seem
laborious. It is well worth the effort.

In the next chapter, we will start processing data from forest samples and
discuss some sampling design topics.
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Sampling and Mapping



Chapter 3

Data Analysis for Common Inventory
Methods

3.1 Introduction

This chapter covers the analysis of sample surveys in the context of natural
resources inventories, with a particular focus on forest inventories. Our goal is
twofold: to provide coverage that is relevant to the efficient analysis of sample
survey data using R, and to demonstrate the data manipulation techniques
introduced in Chapter 2. We also provide scripts and commentary for the
analysis of sampling designs that are commonly used in natural resource
inventories.

We include only as much background material as necessary to motivate
our analysis. More thorough expositions on various elements of sampling the-
ory are available elsewhere (see, e.g., Cochran, 1977; Särndal et al., 1992;
Schreuder et al., 1993). Also, our survey of inventory designs is limited by
space and variation. We focus on those designs that permit us to present the
key elements of analysis in R rather than trying to be exhaustive in scope.

We draw heavily on several third-party packages. Notably, Thomas Lum-
ley’s survey package provides most of the necessary sampling estimation tools
(Lumley, 2004, 2010), and Angelo Canty’s boot package, maintained by Brian
Ripley, provides useful tools for bootstrapping (Davison and Hinkley, 1997;
Canty and Ripley, 2010). We include our own R code where it seems useful.
The code we present is not necessarily optimal for our immediate purpose;
there are many ways to proceed using R, and the palette of options increases
every month. We intend that the data-processing sections serve two purposes:
first, to demonstrate how to achieve simple but important goals in the pro-
cessing of natural resources inventory data, and second, to demonstrate some
of the flexibility and power of the R language.

We next introduce some useful vocabulary and examples for sample sur-
veys in the context of forest inventories. We then identify three example
datasets that we will use to demonstrate the steps necessary for point and
interval estimation from sample surveys. In Section 3.2, we introduce inter-

75A. P. Robinson, J. D. Hamann, Forest Analytics with R, Use R!,
DOI 10.1007/978-1-4419-7762-5_3, © Springer Science+Business Media, LLC 2011
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val computation and demonstrate three methods for their estimation. The
following sections detail the use of R for single-level sampling (Section 3.3),
hierarchical sampling (Section 3.4), and sampling with auxiliary information
(Section 3.5).

3.1.1 Infrastructure

We briefly introduce some useful vocabulary and examples for sample surveys
in the context of forest inventories.

The population is the entity for which one wishes to estimate quantities of
interest. The population comprises sampling units and is in a sense co-defined
with the sampling unit. It must be possible to represent the population by a
frame. An example of a population is the Priest River Experimental Forest
(PREF).

A frame is a list of units of the population that is established to facilitate
the selection of a random sample from the population. A frame for the PREF
might be a map with a grid drawn upon it.

The sampling unit is the unit that we select from the population to make
measurements upon. A sampling unit for the PREF might be a fixed area
within the forest of size, say, 0.1 ha.

The sample is the collection of sampling units that are measured.
The variables of interest are the quantities that are measured on the sam-

pling units about which we wish to make estimates.
A statistic is an arithmetical function of data that reduces it to a summary.

Example statistics are the total, the mean, and the standard deviation.
The parameters are the population-level statistics of the variables of inter-

est.
The sampling distribution is the distribution of values that could possibly

be taken by a statistic that is computed using a sample of data taken from a
population.

Sometimes we will also measure auxiliary information, which is informa-
tion that is in some way related to the variable of interest and is available for
all or most of the units in the population.

For example, we may wish to estimate the population total (a parameter)
of the volume of merchantable timber (variable of interest) on PREF. We take
a map of the PREF, divided into a 0.1 ha grid (the frame), and randomly
nominate a collection of 100 grid spaces (plots) to locate and measure (these
plots are the sample). Upon each plot we measure the volume of the trees
(the variable of interest). We may have soil, elevation, and aspect measures for
the entire forest (auxiliary information). We can estimate the population total
using a statistic that is calculated from the variables of interest as measured
on the sample. We will use an assumption about the sampling distribution
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of the sample statistic to estimate the confidence interval of the estimate of
the population parameter.

3.1.2 Example Datasets

We adopt three datasets for our examples. In each case, we report the sample
design that was used without necessarily making any recommendations as to
the appropriateness of the design for other purposes. In order to use these
example datasets in this chapter, it was necessary to simplify or ignore ele-
ments of the actual design. We will document the necessary simplifications
when they are applied. The datasets are the UFC data (Section 2.4.1), the
PREF data (Section 2.4.7), and the FIA data (Section 2.4.3).

3.2 Estimate Computation

An estimate of a population parameter is more useful when it is accompanied
by an estimate of its certainty. Two measures of certainty that are commonly
computed are the standard error and the confidence interval.

Confidence intervals can be computed in several ways. Here we will cover
classical large-sample theory, jackknife, and bootstrap methods. We review
the principles of the sampling distribution in order to set the scene for devel-
opment of the interval estimates.

3.2.1 Sampling Distribution

Given an assumed sampling distribution of a statistic, our goal is to identify
an interval of that distribution that contains a suitable proportion of the
sampling distribution, for example 95%. We need to estimate the shape of
the distribution to be able to identify the interval that contains a suitable
proportion. Each of the three strategies that we demonstrate for computing
the interval uses a different approach to solving this problem.

For reference, the confidence interval for the population mean can be ex-
pressed as

μ̂ ± ŝμ̂ × tn−1
1−α/2

(3.1)

where μ̂ is an estimate of the population mean (often the sample mean), ŝμ̂ is
an estimate of the standard error of the estimate of the population mean, and



78 3 Data Analysis for Common Inventory Methods

tn−1
1−α/2

is a quantile from Student’s t-distribution. The following approaches

can be applied.

1. Large-sample theory invokes the Central Limit Theorem and Slutsky’s
Theorem to permit the assumption that the sampling distribution of the
mean is Student’s t. The quantiles of Student’s t are used with the sample-
based estimate of standard error ŝμ̂ to compute a confidence interval, as
per equation (3.1). See Section 3.2.2.

2. When no reasonable closed-form estimate for the standard error can be
found (e.g., for the ratio of means estimator) approximations may be used.
A popular example is the Taylor-series linearization, which expands the
function of the estimators into an infinite series and ignores all terms
beyond the linear approximation (see, e.g., Särndal et al., 1992, p. 172).
We cover linearization in Section 3.2.3.

3. Use of the jackknife allows us to replace the analytical estimate of the
standard error ŝμ̂ in equation (3.1) with a resampling-based estimate. This
approach is useful when no reasonable closed-form estimate for the stan-
dard error can be found (e.g., for the ratio of means estimator). Use of
the jackknife requires the assumption that the sampling distribution be
normal, or at the very least symmetric. See Section 3.2.4.

4. The bootstrap generates an estimate of the shape of the sampling distri-
bution directly by resampling from the observed sample, and computing
the statistic of interest, many times. See Section 3.2.5. The bootstrap can
be used in one of two ways, each of which has numerous variations.

a. Bootstrap-based estimates of the standard error ŝμ̂ can be used to re-
place the usual sample-based estimate in equation (3.1) when no rea-
sonable closed-form estimate of the standard error is known (e.g., for
the ratio of means estimator).

b. Bootstrap-based estimates of the confidence interval can be used instead
of the usual formula (3.1) if there is doubt about the shape of the
sampling distribution.

Among these options, if there is a closed-form equation for the standard
error of the parameter of interest and the sampling distribution of the pa-
rameter of interest can be reasonably expected to be normal (or at least
symmetric), then approach 1 is reasonable. If there is no closed-form equa-
tion for the standard error of the parameter of interest but the sampling
distribution of the parameter of interest can be reasonably expected to be
normal (or at least symmetric), then estimating the standard error ŝμ̂ us-
ing approach 3 or 4a is reasonable. If there is doubt about the shape of the
sampling distribution, then approach 4b is best, but careful use of 4a is still
possible (see Section 3.2.5.2).

There is no definitive answer as to whetherthe jackknife or the bootstrap is
better for estimating the standard error of an estimate. Schreuder et al. (1993)
summarized a collection of studies that used forestry data and addressed
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common forestry concerns, and their conclusions depended heavily on the
sample design.

In practical terms, the jackknife requires considerably less computation
time than the bootstrap, and is probably computationally more stable, be-
cause the jackknife resamples are most likely more similar to the original
sample than are the bootstrap samples. All else being equal, if an estima-
tor can be computed for a sample then it is more likley that it can also be
computed for a jackknife sample than for a bootstrap sample. These obser-
vations suggest that, unless there is a strong reason to do otherwise, using
the jackknife is a reasonable strategy.

Several books have been written that compare the traditional, jackknife,
and bootstrap estimates for various purposes using simulations and asymp-
totic theory. For example, Shao and Tu (1995) develop and compare the
rates of convergence of various estimators and report simulation studies. The
authors focus on sample surveys, as well as more general applications, and
demonstrate that for sample surveys the jackknife and the linearization esti-
mators have the best performance (Shao and Tu, 1995, pp. 252–256). Manly
(1997) compared the coverage rates and accuracy from a simulation study
for estimating a confidence interval for the standard deviation of a sample of
size 20 generated from an exponentially distributed population. The small-
sample properties of the compared estimators performed poorly, but such a
case seems more extreme than those typically faced in natural resources in-
ventories, for which larger samples and relatively straightforward functions
of the mean will be more common.

Overall, the jackknife estimator has no asymptotic advantage over the lin-
earization estimator (Shao and Tu, 1995, p. 262). Lumley noted that the lin-
earization estimates “...are approximately unbiased but may be quite variable
and as a result tend to lead to confidence intervals that are too short in small
samples” (Lumley, 2004, p. 4). However, Shao and Tu (1995) present simula-
tion results that suggest that the linearization estimator can be more (nega-
tively) biased and less variable than the jackknife estimator (Table 2.1, p.3̃2)
in small samples.

Other approximations are plausible, and may become more popular. Sad-
dlepoint approximations are more complicated functions of the sample statis-
tics that provide more accurate approximations to the distribution and there-
fore are more likely to be accurate at a given sample size. Readable exposi-
tions can be found in Reid (1988) and Goutis and Casella (1999). A forest
inventory application is reported in Magnussen (2001) and an examination
of the use of the approximation in ratio and regression estimation in Agho
et al. (2005).

Higher-order asymptotics also provide opportunities for improvement (see,
e.g., Reid and Fraser, 2000; Reid, 2003). The“higher-order” label refers to the
inclusion of terms in the approximations that are higher than linear order,
which results in a faster convergence rate of the estimators. Again, the result
is to provide estimators with better asymptotic properties than the existing
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estimators; for example, more accurate intervals. Higher-order asymptotics
are implemented in R for some models (Brazzale, 2005).

3.2.2 Intervals from Large-Sample Theory

We ordinarily use large-sample theory, such as the Central Limit Theorem
and Slutsky’s Theorem (see, e.g., Casella and Berger, 1990), to tell us how we
can reasonably treat the sampling distribution of the parameter of interest.
This leads to the use of the familiar estimators in, among others, Bell and
Dillworth (1997), Avery and Burkhart (2003), and Iles (2003).

For example, the sample mean is used to estimate the population mean
in simple random sampling. The sampling distribution of a mean can be
reasonably treated as though it were normal if the sample is large enough.
(The population total is more commonly the parameter of interest in natural
resources inventories, but the mean provides a more straightforward exam-
ple.) The best estimate of the population mean is the sample mean, as it is
unbiased and has the least variance among all unbiased estimators.

μ̂v = v̄ =
1

n

n

∑
i=1

vi (3.2)

The standard error of the mean is estimated by

sv̄ =
sv√

n
(3.3)

where sv is the standard deviation of the sample. (In the finite population
case, we will add the finite population correction; see equation (3.3).)

Then an approximate 95% confidence interval for the population mean is

95% C.I. = v̄± sv̄ × t0.975,n−1 (3.4)

These quantities can be easily computed in R (see Section 3.3.1.1).
The utility of these theories in any given situation depends on the circum-

stances. Generally, as a prescription, we invoke the theories if the sample size
is large enough. What that prescription means in practice is anyone’s guess.1

It is straightforward to generalize the approach above to cases where the
population parameter of interest is a linear function of other population pa-

1 The Berry-Esseen Theorem, which describes the rate of convergence of the sampling
distribution to normality, states that the maximum vertical distance of the cdf of the
standardized sample mean of data with finite third moment to the normal cdf is
constrained as a function of a constant, the sample size, and the skew of the data,
and sigma raised to the power 3 (Berry, 1941; Esseen, 1942). Hence, the skew of the
population distribution of the data affects the quality of the approximation, but the
kurtosis does not.
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rameters, for example, in stratified sampling. The means and variances of
independent random variables are additive.

3.2.3 Intervals from Linearization

Use of the approach developed in Section 3.2.2 is impossible when the popu-
lation parameter of interest is estimated by a non-linear function of random
variables. An example is the ratio of means estimate for ratio estimation,
for which the estimate is the ratio of two sample means, each of which is a
random variable. The usual theory to compute linear functions of random
variables will not help us here; we need another approach.

Linearization involves finding a close linear approximation to the non-
linear function. For example, one could approximate the estimator by a first-
order Taylor-series expansion, for which it is relatively easy to estimate the
variance. Thus, we replace the exact function, which has an unknown vari-
ance, by a close approximation, which has a variance that is easily calculated.
When the approximation is linear, then the approach is called “first order”.
The linearization approximation is also known as the delta method, and is
related to the sandwich estimators that are used in some branches of statis-
tics.

An example of a linearized estimate is the ratio of means estimate for ratio
estimation, which we briefly cover here. We base our derivation on Wolter
(1985). We have a variable of interest, yi, measured on a simple random
sample of n units from an infinite population. We also have an auxiliary
variable, xi, measured on the same units, and we know the population mean
of x, which we denote μx. We wish to estimate μy. For the ratio of means
estimator,

μ̂y = μx × R̂ = μx × ȳ

x̄
(3.5)

Since we know μx, we can write the important parts of equation (3.5) as a

function of a bivariate parameter θ : R̂ = g(θ), where θ = (x̄, ȳ) and g(θ) = θ2
θ1
.

The linearized estimate of the variance is then based on the first-order Taylor-
series expansion of the estimator:

s2
R � dΣd′ (3.6)

where d is a vector of first derivatives of g with respect to the elements of θ
and Σ is the covariance matrix of θ2. Then,

2 Wolter (1985) notes that equation (3.6) is the estimate of the MSE of the estimator,
rather than the variance, but that the bias is negligible to a first-order approximation.
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d =
[

δθ1
δg

δθ2
δg

]
=
[

δ x̄
δg

δ ȳ
δg

]
=
[
− ȳ

x̄2
1
x̄

]
(3.7)

and

Σ =

[
s2

x̄ sx̄ȳ

sx̄ȳ s2
ȳ

]
(3.8)

Straightforward algebra shows us that

ŝ2
R̂
= dΣd′ =

s2
x̄ ȳ2

x̄4
− 2sx̄ȳȳ

x̄3
+

s2
ȳ

x̄2

=
R2

n

[
s2

y

ȳ2
+

s2
x

x̄2
−2

sxy

x̄ȳ

]
(3.9)

Equation (3.9) is equivalent to those found in Cochran (1977), Wolter
(1985), and Schreuder et al. (1993). The estimate of the variance of the esti-
mate of the population mean is then

s2
μ̂y

= μ2
x × ŝ2

R̂

=
μ2

x

x̄2
× s2

y + R̂2s2
x −2R̂sxy

n
(3.10)

which is similar to that in Avery and Burkhart (2003) and identical if x̄ = μx

and the finite population correction is considered.
Linearization-based estimates of standard errors are provided by the sur-

vey package of R (Lumley, 2004).

3.2.4 Intervals from the Jackknife

The application of the jackknife that is relevant to our interests is to provide
estimates of standard errors for non-linear functions of random variables.
There are references to two types of jackknife, although one is obviously a
special case of the other: the delete-1 jackknife and the delete-d jackknife.
We consider only the first, and refer to it hereafter as the jackknife.

The principle behind the jackknife is to divide the sample into subsamples
and compute a statistic for each subsample. Then each such statistic provides
information about the distribution of the parameter of interest. The following
brief description draws from Shao and Tu (1995).
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Assume that g is a possibly biased estimator of a parameter of interest θ ,
where g is a function of the data from a sample of size n. Let g−i denote the
same function, computed on the same sample, but with the i-th observation
removed and the sample size reduced to n−1. Then g and each of the g−i are
all valid, possibly biased, estimators of θ .

Now define each of n pseudovalues as follows. The i-th pseudovalue, g̃i, is

g̃i = n×g− (n−1)×g−i (3.11)

Each pseudovalue is now an estimate of θ . Also note that each pseudovalue
is, loosely speaking, the difference between the function g applied to two
related samples. Therefore a portion of the bias in g will be canceled out in
the g̃i and any estimates that are calculated from them.

Tukey (1958) asserted that these pseudovalues could be treated as though
they were independent and identically distributed. Furthermore, each pseu-
dovalue has a variance approximately equal to n×σ2

g , where σ2
g is the variance

of g. If this is true, then we can estimate θ by the mean of the pseudovalues,
and the standard error of the estimate of θ will be the standard error of that
mean. That is,

θ̂ jack =
1

n

n

∑
i=1

g̃i (3.12)

ŝ2
θ jack

=
1

n(n−1)

n

∑
i=1

(
g̃i − θ̂ jack

)2
(3.13)

This estimator θ̂ jack will have less bias than g, and the estimate of the
standard error can be computed easily for arbitrary functions.

Jackknife-based estimates of standard errors are provided by the survey
package of R (Lumley, 2004). In cluster and multi-stage designs the jackknife
variance is computed by jackknifing the highest-stage units only.

3.2.4.1 A Brief History of the Jackknife

The origin of the jackknife is curiously unsettled. There seems little doubt
that it was suggested originally by Maurice Quenouille as a tool for bias re-
duction. Casella and Berger (1990, p. 341) and Cochran (1977, p. 178) refer to
Quenouille (1956), as does Tukey (1958). Efron and Tibshirani (1993, p. 133)
say that Quenouille proposed it in the mid-1950s but later cite Quenouille
(1949a), as do Davison and Hinkley (1997, p. 59) and Shao and Tu (1995, p.
4). Särndal et al. (1992, p. 437) and Schreuder et al. (1993, p. 102) both cite
Quenouille (1949b) and Quenouille (1956). Quenouille (1956, p. 358) does
cite Quenouille (1949a) as referring to a special case of the principle. To us,
Quenouille (1956) seems to be the clearest starting point.
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Most authors then cite Tukey (1958) as providing the original suggestion
for variance estimation, although the citation is only to an abstract of a
preliminary report presented at an April 1958 meeting of the Institute of
Mathematical Statistics. Tukey cites Quenouille (1956) as suggesting the use
of the tool to reduce bias, and Jones (1956) for the idea of using subsamples
of the sample in general.

To round out our historical exegesis, the earliest explicit reference to the
name “jackknife” that we can find in a peer-reviewed publication is either
Brillinger (1964) or Miller (1964). David (1995) cites Miller (1964) as being
the earliest peer-reviewed reference. We note that both articles were in the
last edition for 1964 of each journal, Miller’s being in December, and that
Miller cites Brillinger, but as being“soon to appear”. Concerning the question
about lineage above, Brillinger cites Quenouille (1956), Tukey (1958), and a
1959 unpublished manuscript by Tukey,3 and Miller cites Quenouille (1949a)
and a 1962 unpublished manuscript by Tukey.4 Only the latter seems to be
among the published collection of Tukey’s papers (Jones, 1986).

3.2.5 Intervals from the Bootstrap

The history of the bootstrap is much easier to trace than that for the jack-
knife: it was introduced by Efron (1979). We focus here on the non-parametric
bootstrap.

The bootstrap can be used to obtain an estimate of the empirical sampling
distribution of many useful statistics and functions of statistics. The estimate
of the empirical sampling distribution can be examined directly for quantities
of interest, such as standard errors, or confidence intervals of parameters of
interest.

An important caveat is that the bootstrap can ameliorate some of the
problems associated with inference from small samples but will not eliminate
them. The bootstrap relies upon its own large-sample theory, and it has its
own strengths and weaknesses. Published theoretical examinations suggest
that in specific situations the convergence of the bootstrap large-sample the-
ory is faster than in the classical large-sample theory (Hall, 1992; Shao and
Tu, 1995). Consequently, it is important to recognize that clever use of the
bootstrap can lead to estimators with significantly better properties than
naive use of the bootstrap.

A good, basic introduction to and description of the bootstrap can be found
in Efron and Tibshirani (1993). For further reading, we suggest Davison and
Hinkley (1997) and Manly (1997). More advanced expositions can be found
in Hall (1992) and Shao and Tu (1995).

3 Tukey, J. 1959. Approximate confidence limits for most estimates. Unpublished
manuscript.
4 Tukey, J. 1962. Data analysis and behavioral science. Unpublished manuscript.
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3.2.5.1 Implementation

We start with a simple situation: computing a bootstrap estimate of the stan-
dard error of the sample mean in R. We will obtain bootstrap estimates of
the standard error of the mean for the purposes of demonstration only; the
usual formula (3.3) is perfectly satisfactory. However, if the goal is an inter-
val estimate, then the assumption of normality of the sampling distribution
should be carefully considered.

First, we need a function that computes the mean of the sample. The
function must accept an index and use that index to permute the sample
data, as follows.

> boot.mean <- function(x, index) {

+ mean(x[index])

+ }

Superficially this function seems like it must be more complicated than is
necessary, and, for this problem, perhaps it is. However, for more complicated
situations, this syntax lends itself to very easy generalization. The boot func-
tion will efficiently call this function many times, sending the same data each
time, along with a randomly generated index, which permutes the sample.
We demonstrate the function using only the first point in each cluster of the
PREF data (see Section 2.4.7 for more details about these data), selected
using subset. We call it as follows:

> library(boot)

> pf.pt.1 <- subset(pref.point, point==1)

> rownames(pf.pt.1) <- 1:nrow(pf.pt.1)

> pref.SRS.boot <- boot(pf.pt.1$vol.m3.ha,

+ boot.mean,

+ R = 1999)

Here we have chosen 1999 bootstrap replicates. Efron and Tibshirani
(1993) suggest the use of up to 199 replicates for estimating standard errors
and 1999 for estimating quantiles. The resulting object contains the output
of the bootstrap call. We can examine it thus:

> pref.SRS.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = pf.pt.1$vol.m3.ha, statistic = boot.mean, R = 1999)

Bootstrap Statistics :
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original bias std. error

t1* 143.9130 0.5546451 23.98449

We can also plot the bootstrap object, as per Figure 3.1. In interpreting
this graph, we are looking for approximate normality of the realizations in
order for our bootstrap estimate to be most reliable. If we are satisfied, then
the standard deviation (sd) of the estimated bootstrap means may be used
as an estimate of the standard error of the parameter.
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Fig. 3.1: Diagnostic graphical output for the bootstrap object, obtained by calling
plot(pref.SRS.boot).

> sd(pref.SRS.boot$t)

[1] 23.98449

The calculation of this estimate encapsulates the bootstrap innovation. We
have computed an estimate directly from a simulated underlying distribution
instead of an estimate that is based on an assumption about the underlying
distribution. Much theory says that this is a defensible idea in many cases.
It is certainly an improvement when the statistic of interest is a non-linear
function of one or more parameters.

We can then either use the resulting estimate of the standard error directly
to compute a confidence interval or we can use one of a number of other
strategies that will be discussed shortly. The following approach assumes
that the sampling distribution is normal, corrects for bias in the estimate
of the mean, uses the standard deviation of the bootstrap estimates as the
standard error, and uses the familiar 1.96 as a scale multiplier.

> boot.ci(pref.SRS.boot, type="norm")
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BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1999 bootstrap replicates

CALL :

boot.ci(boot.out = pref.SRS.boot, type = "norm")

Intervals :

Level Normal

95% ( 96.3, 190.4 )

Calculations and Intervals on Original Scale

We can also deploy some graphical diagnostics to assess the effect of indi-
vidual units upon our estimates. The jack.after.boot function presents for
each observation the empirical distribution of the simulations that omit that
observation (Figure 3.2). This diagnostic identifies rows 11 and 21 as having
a strong influence on the results.
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Fig. 3.2: Diagnostic graphical output of jackknifing the bootstrap object, obtained
by calling jack.after.boot(pref.SRS.boot).
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The identification of the rogue units is clarified by Figure 3.3, which pro-
vides a labeled normal quantile plot of the original sample, based on the
qqnorm function. Figure 3.3 was constructed as follows:

> normalized <- qqnorm(pf.pt.1$vol.m3.ha, plot.it = FALSE)

> plot(normalized$x, normalized$y, type="n",

+ ylab="Sample Quantiles", xlab="Theoretical Quantiles",

+ main="Normal Q-Q Plot")

> qqline(pref.point$vol.m3.ha, col="darkgray")

> text(x = normalized$x, y = normalized$y, cex = 0.85)

The graphic suggests that rows 11 and 21 do not resemble the other rows.
We can quickly confirm this by printing out the top five rows in terms of
volume using the order function. Note the nesting of the subscript operations.

> pf.pt.1[order(pf.pt.1$vol.m3.ha, decreasing = TRUE),][1:5,]

cluster point stratum ba.m2.ha vol.m3.ha weight

11 15 1 3 64.27916 705.6219 1

21 31 1 6 91.82736 545.8158 1

9 13 1 3 45.91368 266.3664 1

5 7 1 2 55.09642 256.1642 1

31 47 1 8 55.09642 250.1831 1

The volumes in rows 11 and 21 are substantially higher than the others.
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Fig. 3.3: Normal q-q plot of the PREF point-level volume data, replacing the points
with the row numbers of the observations.
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3.2.5.2 Innovations

We now consider different approaches to the construction of confidence in-
tervals for a population parameter. As mentioned earlier, non-naive use of
the bootstrap can lead to estimates that have better properties than those
from naive use. For example, transforming the statistic of interest so that it
is a pivot, also called a pivotal quantity, results in bootstrap simulations that
have better properties (Davison and Hinkley, 1997).

The boot.ci function provides up to five different non-parametric confi-
dence interval estimates for any given alpha value. The basic structure of the
interval estimate is

μ̂ + sμ̂ × tα/2, μ̂ + sμ̂ × t1−α/2 (3.14)

The options for different intervals are as follows.

� norm: the normal confidence interval (3.14), with bootstrap-based bias
correction for the estimate of the mean (μ̂), bootstrap estimate of the
standard error sμ̂ , and z in place of t.

� stud: as per norm, but replacing t with the corresponding quantiles of the
bootstrap sampling distribution of the studentized statistic. These are also
called bootstrap-t intervals. The principle is to bootstrap a pivot; that is,
a quantity whose distribution does not depend on the parameters. For
example, the t statistic is a pivot for normal data because the distribution
of t is unaffected by the mean and variance.

� basic: estimate the quantiles by subtracting the opposite observed quantiles
from double the bootstrap estimate of the mean.5

� perc: directly use the quantiles of the estimated sampling distribution.
This is the original percentile method, suggested by Efron.

� bca: adjusted percentile intervals, which are similar to the percentile in-
tervals but change the quantiles to try to correct for bias.

The accuracy of the first three bootstrap estimators may improve for cer-
tain datasets if a variance-stabilizing transformation is employed. We will
demonstrate the use of a variance-stabilizing transformation on page 90.

In order to studentize the simulations, it is necessary to obtain an estimate
of the variance of the estimate within each realization. We could do this by
adding another set of bootstrap operations within each bootstrap replicate or
by using an approximation. Here we use an approximation. Since the statistic
of interest is the sample mean, we can use the usual non-parametric estimator
of the variance of the sample mean. This function must be computed and
returned as part of the bootstrap function thus:

> bm.2 <- function(x, index)

+ c(mean(x[index]), var(x[index])/length(x))

5 Manly (1997) calls this the second percentile method and attributes it to Peter Hall.
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This function is then called as before, but now the bootstrap function can
compute studentized values, which are approximate pivots.

> pref.SRS.b2 <- boot(pf.pt.1$vol.m3.ha, bm.2,

+ R = 1999)

> pref.SRS.b2

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = pf.pt.1$vol.m3.ha, statistic = bm.2, R = 1999)

Bootstrap Statistics :

original bias std. error

t1* 143.9130 0.6177333 23.94001

t2* 589.5670 -10.3283157 265.16489

The bootstrap object now contains estimated means and variances. These
can be graphed to assess stability. Here we impose a lowess curve on the
scatterplot and hope that there is no pattern. Figure 3.4 shows a strong linear
relationship between the bootstrap estimates of the mean and the variances.

> scatter.smooth(pref.SRS.b2$t[,1],

+ sqrt(pref.SRS.b2$t[,2]),

+ ylab = "Standard Error",

+ xlab = "Bootstrap Mean")

Since we know that the sample data are volumes and that they are skewed
(and limited to positive numbers only), it is possible that a square root trans-
formation will be useful. Figure 3.5 shows that using the transformation
seems to be a reasonable strategy. Had we required a different transforma-
tion, then further searching would have been necessary.

> pref.SRS.b3 <- boot(I(sqrt(pf.pt.1$vol.m3.ha)),

+ bm.2,

+ R = 1999)

> scatter.smooth(pref.SRS.b3$t[,1],

+ sqrt(pref.SRS.b3$t[,2]),

+ ylab = "Standard Error",

+ xlab = "Bootstrap Mean")

A call to boot.ci, which includes appropriate forward and backward trans-
formations, and the first derivative of the transformation, produces all five
intervals.
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Fig. 3.4: Scatterplot and lowess smooth
of estimated standard errors against es-
timated means from each of 1999 boot-
strap replicates. The standard error and
the mean are related.
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Fig. 3.5: Scatterplot and lowess smooth
of estimated standard errors against esti-
mated means from each of 1999 bootstrap
replicates taken from square root trans-
formed data.

> h.dot <- function(x) 1/2 * x^(-1/2)

> h.inv <- function(x) x^2

> boot.ci(pref.SRS.b2,

+ h = sqrt,

+ hdot = h.dot,

+ hinv = h.inv)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1999 bootstrap replicates

CALL :

boot.ci(boot.out = pref.SRS.b2, h = sqrt, hdot = h.dot,

hinv = h.inv)

Intervals :

Level Normal Basic Studentized

95% (101.3, 197.4) ( 99.3, 196.2) (103.5, 219.5)

Level Percentile BCa

95% ( 99.7, 196.7) (105.5, 205.8)

Calculations on Transformed Scale; Intervals on Original Scale

The intervals are fairly similar, although the BCa and studentized intervals
have longer right tails than the others.
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It is presently unclear which of these intervals is the best to use. Davison
and Hinkley (1997) recommend studentized intervals applied to data that
have been transformed to stabilize variance.

We next report the results of a simulation study using a large-scale sample
of forest inventory data as a population.

3.2.6 A Simulation Study

The best way to assess the different interval-generating strategies is to com-
pare them in known situations on the basis of their realized coverage rates
and relative lengths. Such a comparison requires complete knowledge of the
target population and is rarely possible in a practical setting.

An alternative is to use ideal target populations; for example, the normal,
the exponential, etc. The challenge is to find the subtle balance between
reliably generating the natural patterns that provide realism and including
sufficient randomness to provide a challenging test for the tool in question.

A slightly messier alternative is to obtain large databases that are within
the scope of interest, treat the databases as the population of interest, and
simulate the process of sampling. We report such an exercise in this section
using the FIA data presented in Section 2.4.3.

Here we apply the ratio of means estimator, with the unweighted tree
height as the auxiliary variable. This scenario is reasonable because tree
heights have been successfully measured from aerial photographs and will
become increasingly attractive as a source of auxiliary information with the
introduction of remote measurement tools such as LIDAR. The relationship
between height and basal area in our data is well suited to the use of the
ratio of means estimator, being approximately linear, increasing in variance
with height, and plausibly intersecting the origin (not shown here).

Each subpopulation was sampled randomly with replacement 2000 times,
and the resultant sample data were used to estimate the mean stand basal
area and a 95% confidence interval. We then counted whether the true value
for the subpopulation was above, below, or within the confidence interval.
The sample sizes used were 16, 32, 64, 96, and 128.

The average coverage rate is summarized by estimator and sample size in
Figure 3.6.

> xyplot(contained ~ n | interval,

+ xlab = "Sample size (n)",

+ ylab = "Realized Coverage Rate",

+ panel = function(x, y) {

+ panel.xyplot(x, y, type="l")

+ panel.abline(h = 0.95, col = "darkgrey")

+ },
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+ index.cond = list(c(3:5,10,1,9,14,2,6:8)),

+ skip = c(rep(FALSE, 11), TRUE, rep(FALSE, 3)),

+ data = ratio.test)

Note that an effective coverage of, say, 0.92, where 0.95 is expected, is
analogous to behaving as though one collected a sample that was 1.12 times
as many units as the actual sample size. Furthermore, an effective coverage
of, say, 0.94, where 0.95 is expected, is analogous to behaving as though one
collected a sample that was 1.04 times as many units as the actual sample
size.

Sample size (n)
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Fig. 3.6: Coverage rates against sample sizes for 14 different interval-estimating
strategies.
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Our results suggest that the coverage rate is reasonable for the classi-
cal, jackknife, and linearized estimators. The eight different bootstrap in-
tervals performed poorly unless the sample was studentized or the sample
size was sufficiently large, in which case it performed well. It is noteworthy
that although bootstrapping the transformed data worked better than the
untransformed data, studentizing was much more successful. Given that the
linearization and jackknife tools are already available in R via the survey
package, they seem suitable for our purposes.

Further examination of the results when categorized by nearest national
forest did not reveal any important variation from these conclusions.

3.3 Single-Level Sampling

3.3.1 Simple Random Sampling

Simple random sampling involves the selection of a sample of known size n

in such a way that every possible permutation of n sampling units has an
equal and known probability of being selected. This approach is uncommon
in natural resources inventories. It does, however, present a straightforward
starting point for analysis.

3.3.1.1 Analysis for Simple Random Sampling

Assume that we have selected a simple random sample of n plots from a
frame of N plot labels that completely represent a small forest stand. We
measured the above-ground volume of the trees of each plot i, vi m

2ha−1. We
wish to estimate the population total and a 95% confidence interval of the
volume of the stand. For example, we have 180 observations of point-level
above-ground volume in units of m3ha−1 from the PREF dataset. We shall
assume that these points represent a simple random sample.

We will obtain our estimate of the total by multiplying an estimate of the
mean volume per hectare with the known size of the stand, in hectares. The
sample mean of a simple random sample is a design-unbiased estimate of the
population mean,

v̄ =
1

n

n

∑
i=1

vi (3.15)

The standard error is estimated using equation (3.3)

sv̄ =
sv√

n
×
√

1− n

N
(3.16)
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where sv is the standard deviation of the sample and the quantity
√

1− n
N

is referred to as the finite population correction (FPC). The 95% confidence
interval is then

95% C.I. = ḡ± sḡ × t0.975,n−1 (3.17)

These computations can be done most efficiently in R via the survey package.
The data are in a data frame called pref.point, and the variable of inter-

est is volume, reported in cubic meters per hectare, vol.m3.ha. We begin by
declaring a survey object, which contains design information as well as the
survey data. The required id argument identifies any hierarchical clustering,
and the required id argument identifies the relative probability of selection
of the sample units.

> library(survey)

> pref.SRS <- svydesign(id = ~1,

+ data = pref.point,

+ weight = pref.point$weight)

We note that the svydesign function requires a weight argument, which
reports the sampling probability or the sampling weight of the observations.
If a weight is not provided, then svydesign will issue a warning and assume
equal weights. We now compute the estimate of the mean and its standard
error as follows.

> svymean(~vol.m3.ha, pref.SRS)

mean SE

vol.m3.ha 141.62 8.8959

However, for simple random sampling, it is almost as easy to code the
analysis manually.

> (SRS.v.hat <- mean(pref.point$vol.m3.ha))

[1] 141.6188

> SRS.n <- length(pref.point$vol.m3.ha)

> (SRS.v.se <- sd(pref.point$vol.m3.ha) / sqrt(SRS.n))

[1] 8.895931

> SRS.v.hat + SRS.v.se * qt(0.975, df = SRS.n - 1) * c(-1, 1)

[1] 124.0644 159.1732

The estimate of the total, and an appropriate confidence interval, can then
be found by multiplying the estimate and confidence interval of the mean by
the known forest area (2530 ha for PREF).
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3.3.2 Systematic Sampling

Systematic sampling involves imposing a grid of sampling points with a one
or more dimensions upon the population, preferably with random start and
orientation. Generally speaking, systematic sampling provides good coverage
of the population. An important exception is if one suspects that there is
cyclic behavior in the population, in which case a systematic sample should
not be used. An extreme example of such a spatial pattern is a plantation
that has had different site preparations for different rows; for example, as
might arise after slash mounding.

3.3.2.1 Analysis for Systematic Sampling

The Upper Flat Creek data are a systematic sample of 144 variable-radius
plots. See Section 2.4.1 for a more detailed description of the sample design
and the data collection methodology.

Estimating the population mean or total follows the same approach for
systematic sampling as used for simple random sampling. We include the
code here merely to set the scene for estimation of the standard error of the
estimate.

> (SyRS.v.hat <- mean(ufc.SyRS.data$vol.m3.ha))

[1] 148.1544

Estimating the standard error is a little more complex for systematic ran-
dom sampling because, in a design-based setting, the standard error is usually
computed using the randomization distribution, and there is only one inde-
pendent sample from that distribution. It is common that, for the purposes
of variance estimation, samples from systematic random sampling are treated
as though they were simple random samples. If the plot locations are known,
or at least the order of the plot measurement is known, then better estimates
of the variance are available.

Wolter (1985) provides an extensive discussion of eight distinct candidates,
of which we select one that was also recommended by Schreuder et al. (1993)
for use when nothing is known about the spatial structure of the population.
The survey package does not currently support the use of spatial information
for variance estimation in this way.

σ̂ȳ =

√(
1− n

N

) 1

2n(n−1)

n

∑
i=2

(yi − yi−1)2 (3.18)

We omit the finite population correction because the sample units were
points, not plots.
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> SyRS.v.n <- length(ufc.SyRS.data$vol.m3.ha)

> vol.first.diffs <- ufc.SyRS.data$vol.m3.ha[1:(SyRS.v.n-1)] -

+ ufc.SyRS.data$vol.m3.ha[2:SyRS.v.n]

> SyRS.v.se <- sqrt(1 / (2 * SyRS.v.n * (SyRS.v.n - 1)) *

+ sum(vol.first.diffs^2))

> SyRS.v.se

[1] 6.581681

The 95% confidence interval follows from the simple random sampling case.
Had this sample been treated as a simple random sample, then the standard
error would have been estimated as

> sd(ufc.SyRS.data$vol.m3.ha) / sqrt(SyRS.v.n)

[1] 8.106629

3.4 Hierarchical Sampling

Hierarchical sampling involves the selection of sets of sampling units, and
possibly subsampling within those sets. Hierarchical sampling is less efficient
than simple random sampling with the same number of sampling units. How-
ever, the inclusion in the budget of other elements of inventory, such as travel
time, can make single-level sampling more expensive per unit of standard
error. Furthermore, there are circumstances when it is impossible or pro-
hibitively expensive to obtain a list of the sampling units in the population
but easier or cheaper to obtain a list of clusters.

3.4.1 Cluster Sampling

Cluster sampling is a specific kind of hierarchical sampling in which sets of
sampling units are selected and measured. As noted above, cluster sampling
can be used to save on inventory costs, but it may also be used if a list of
clusters is available but a sampling frame for the population is not. Clus-
ter sampling can be considered as a special case of two-stage sampling (see
Section 3.4.2), in which all of the secondary sampling units in each selected
primary sampling unit are measured.

3.4.1.1 Analysis for Cluster Sampling

We have selected a simple random sample of n clusters from a frame of N

clusters of plots, representing our population of interest. Each sampled cluster
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contained mi plots, and we measured the volume for each plot, vi. We wish to
estimate the population total for the tree volume, τv, and a 95% confidence
interval.

This is a cluster sample because the variable of interest is a plot-level
characteristic, but the selection strategy uses only clusters of plots. Call the
total of the measures in the i-th cluster ti, so ti is the sum of the plot volumes
within cluster i. Denote the average number of plots per sampled cluster as m̄.

For the PREF data, we have 36 clusters of five plots each. The data are
contained in the pref.point object, the selection weight is in the weight

variable, the cluster identifier is in the cluster variable, and the variable of
interest is vol.m3.ha.

The estimate is

v̄c =
∑

n
i=1 ti

∑
n
i=1 mi

(3.19)

In the survey package of R, the design is expressed by

> pref.CS <- svydesign(id = ~cluster,

+ data = pref.point,

+ weight = pref.point$weight)

and the estimate is

> svymean( ~ vol.m3.ha, pref.CS)

mean SE

vol.m3.ha 141.62 14.636

The variance of the estimator is the variance of the cluster means weighted
by the number of units in each cluster,

s2
v̄c
=

N −n

N

1

n

1

n−1

n

∑
i=1

m2
i

m̄2

(
ti

mi

− v̄c

)2

(3.20)

We can easily compute both these classical estimates manually. The code
that follows is intended to show the process rather than maximize the effi-
ciency of the computation.

> v.clust <-

+ aggregate(x = list(vol.m3.ha = pref.point$vol.m3.ha),

+ by = list(cluster = pref.point$cluster),

+ FUN = sum)

> v.clust$count <- table(pref.point$cluster)

> n.clusters <- length(v.clust$count)

> (v.bar.c <- sum(v.clust$vol.m3.ha) / sum(v.clust$count))

[1] 141.6188
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> (se.v.bar.c <-

+ sqrt(sum(v.clust$count^2 / mean(v.clust$count)^2 *

+ (v.clust$vol.m3.ha / v.clust$count -

+ v.bar.c)^2) / n.clusters / (n.clusters - 1)))

[1] 14.63561

When the clusters each have an identical number of sampling units, m, the
variance estimate simplifies to

s2
v̄c
=

N −n

N

1

n

1

n−1

n

∑
i=1

( ti

m
− v̄c

)2

(3.21)

For the purposes of setting a confidence interval, we either need to pin
down a reference distribution or apply the bootstrap. An exact reference
distribution is difficult to pin down for cluster sampling. In practice, the
following simplification is used:

95% C.I. = v̄c ± sv̄c ×2 (3.22)

If we wish to use the bootstrap for this problem, then we should probably
bootstrap the clusters only (Davison and Hinkley, 1997, p. 101). Based on
our experience in Section 3.2.6, we will studentize the bootstrap variable. The
code for the mean and standard deviation can be used as above.

> boot.mean.cluster <- function(v.clust, index) {

+ v.clust <- v.clust[index,]

+ v.bar.c <- sum(v.clust$vol.m3.ha) / sum(v.clust$count)

+ c(v.bar.c,

+ sum(v.clust$count^2 / mean(v.clust$count)^2 *

+ (v.clust$vol.m3.ha / v.clust$count -

+ v.bar.c)^2) / n.clusters / (n.clusters - 1))

+ }

> pref.cluster.boot <- boot(v.clust,

+ boot.mean.cluster,

+ R = 1999)

> pref.cluster.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = v.clust, statistic = boot.mean.cluster, R = 1999)

Bootstrap Statistics :

original bias std. error
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t1* 141.6188 -0.1852036 14.45360

t2* 214.2011 -7.5990225 60.49281

> boot.ci(pref.cluster.boot, type = "stud")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1999 bootstrap replicates

CALL :

boot.ci(boot.out = pref.cluster.boot, type = "stud")

Intervals :

Level Studentized

95% (115.4, 177.2)

Calculations and Intervals on Original Scale

These are only slightly different from the classical approach as in equation
(3.22):

> v.bar.c + c(-1, 1) * 2 * se.v.bar.c

[1] 112.3476 170.8900

3.4.2 Two-Stage Sampling

Two-stage sampling is similar to cluster sampling in that the units upon which
the measurements are made are selected in groups, or clusters. However,
the clusters are now referred to as primary sampling units (PSUs), and the
sampling units within the clusters are called secondary sampling units (SSUs).
Instead of measuring every sampling unit within the cluster, we now sample
them. Here we will assume that sampling is with equal probability among
the PSUs and SSUs and that the PSUs are all the same size.

3.4.2.1 Analysis for Two-Stage Sampling

We have collected a simple random sample of n = 36 primary sampling units
(plots) from a frame of N labels of plots, representing our population. Each
potential plot was a 90 m horizontal square projected onto the landscape, so
approximately 3124 sampling units are possible in the 2530 ha.

There are Mi secondary sampling units, for example points, on each se-
lected plot, of which we have measured mi for volume vi j. We wish to estimate
the population mean and a 95% confidence interval. To keep the algebra sim-
ple, we will assume that the same number of points is measured in each plot;
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i.e., that mi = m. Also note that for variable-radius plot sampling, M = ∞, so
we will use a very small second-stage FPC weight.

The estimate is

v̄ts =
∑

n
i=1 ∑

m
j=1 vi j

n×m
(3.23)

The analysis of such data in R is straightforward. We now declare two
layers of hierarchy in our sampling units and proceed as before. We also add
a variable to the dataset as the FPC for the PSU. The design is expressed as
follows.

> pref.2SS <- svydesign(id = ~cluster + point,

+ fpc = ~rep(36/3124, nrow(pref.point)) +

+ rep(0.000001, nrow(pref.point)),

+ weight = pref.point$weight,

+ data = pref.point)

To obtain the estimates, we use

> svymean(~vol.m3.ha, pref.2SS, na.rm = TRUE)

mean SE

vol.m3.ha 141.62 14.569

This estimate is practically identical to that from cluster sampling.
The standard error of the mean is marginally more complex than for cluster

sampling. The development is similar to that of analysis of variance in that the
estimate of the standard error is the weighted sum of estimates of variances of
the different levels of units. Each sampling book we referred to had a slightly
different exposition of the variance; we found Cochran (1977) the clearest.
Let f1 = n/N and f2 = m/M. Then

s2
v̄ts

=
1− f1

n
s2

1 +
f1(1− f2)

mn
s2

2 (3.24)

where s2
1 is the variance of the means of the PSUs and s2

2 is the variance of
the SSUs within the PSUs.

s2
1 =

1

n−1

n

∑
i=1

(v̄i− =
v)2 (3.25)

s2
2 =

1

n(m−1)

n

∑
i=1

mi

∑
j=1

(vi j − v̄i)
2 (3.26)

Note that equation (3.25) is just the variance of the PSU means and equa-
tion (3.26) is the within-PSU variance. Computation proceeds as follows.

> v.2SS <-

+ aggregate(x = list(vol.m3.ha.bar = pref.point$vol.m3.ha),
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+ by = list(cluster = pref.point$cluster),

+ FUN = mean)

> v.2SS$count <- table(pref.point$cluster)

> n.2SS <- nrow(v.2SS)

> N.2SS <- 3124

> m.2SS <- mean(v.2SS$count)

> M.2SS <- 10000

> f1.2SS <- n.2SS / N.2SS

> f2.2SS <- m.2SS / M.2SS

> pref.point.temp <- merge(pref.point, v.2SS)

> v1 <- var(v.2SS$vol.m3.ha.bar)

> v2 <- 1 / n.2SS / (m.2SS - 1) *

+ sum((pref.point.temp$vol.m3.ha -

+ pref.point.temp$vol.m3.ha.bar)^2)

> se.v.bar.2SS <- sqrt((1 - f1.2SS)/n.2SS*v1 +

+ f1.2SS*(1-f2.2SS)/(n.2SS*m.2SS)*v2)

> se.v.bar.2SS

[1] 14.56936

If n/N is negligible, then it is reasonable to assume that

s2
v̄ts

� s2
1

n
(3.27)

and in R

> sd(v.2SS$vol.m3.ha) / sqrt(n.2SS)

[1] 14.63561

Another development of the standard error is found in Avery and Burkhart
(2003). We translate the development into terms more similar to those used
by Cochran (1977) for ease of comparison. Again, let f1 = n/N and f2 = m/M.
Then, from Avery and Burkhart (2003, p. 61),

s2
v̄ts

=
1

nm

[
s2

B

(
1− n

N

)
+

ns2
W

N

(
1− m

M

)]

=
1− f1

mn
s2

B +
f1(1− f2)

mn
s2
W (3.28)

where s2
B is the variance of the means of the PSUs when estimated from m

SSUs and s2
W is the variance of the SSUs within the PSUs. s2

W and s2
B are

defined as follows.

s2
B =

1

n−1

⎛
⎜⎝∑

n
i=1

(
∑

m
j=1 vi j

)2

m
−

(
∑

n
i=1 ∑

m
j=1 vi j

)2

mn

⎞
⎟⎠ (3.29)
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s2
W =

1

n(m−1)

⎛
⎜⎝ n

∑
i=1

m

∑
j=1

v2
i j −

∑
n
i=1

(
∑

m
j=1 vi j

)2

m

⎞
⎟⎠ (3.30)

Some brief algebra shows us that s2
1 =

s2
B

m
and s2

2 = s2
W . The authors note

that if n/N is negligible, then it is reasonable to assume that

s2
v̄ts

� s2
B

mn
(3.31)

Note also that s2
W and s2

B can be conveniently obtained from the mean
square column of an analysis of variance table.

> summary(aov.tab <- aov(vol.m3.ha ~ cluster, data=pref.point))

Df Sum Sq Mean Sq F value Pr(>F)

cluster 35 1349467 38556 4.6254 3.163e-11 ***

Residuals 144 1200346 8336

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

> unlist(aov.tab)[5:6]

$coefficients.cluster7

[1] 304.9582

$coefficients.cluster8

[1] 51.35599

> v1*5

[1] 38556.2

> v2

[1] 8335.738

These equations will yield results identical to those of Cochran (1977).
We note in passing that an incorrect estimator is presented in the third

and fourth editions of Husch et al. (2003). The second edition presents correct
formulas that result in estimates similar to those from Cochran (1977).

The final unique development of the standard error that we cover can be
found in Schreuder et al. (1993). The authors suggest computing the within-
PSU variance for each sampled PSU instead of pooling the variances, which is
as the previous developments suggest. From Schreuder et al. (1993, equation
(5.12)), the variance of the estimate of the total is
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s2
V̂ts

= N2M2
a(1− f )

s2
B

n
+

N

n

n

∑
i=1

M2
i (1− fi)

s2
Wi

mi

(3.32)

where f = n/N, fi =mi/Mi, Ma =∑
N
i=1 Mi/N, mi is the number of SSUs selected

in PSU i, and s2
Wi is the variance within PSU i. Also, the authors’ label for

our equation (3.25) is s2
b instead of s2

1.
Substituting terms that we have used above, and assuming that the same

number of SSUs is sampled in each PSU, the variance of the estimate of the
mean is

s2
v̄ts

= (1− f1)
s2

1

n
+

f1(1− f2)

n2

n

∑
i=1

s2
Wi

m
(3.33)

which, if we assume s2
Wi = s2

W , is identical to (3.24).

3.5 Using Auxiliary Information

The efficiency of estimation from sampling can be greatly enhanced by the
use of auxiliary information. Auxiliary information is some kind of knowledge
about the sampling units that is related to the variable of interest and that
is known for all of the units in the population, or at least the population
parameters are known. Auxiliary information can be used for the design of a
sample (as per stratification, Section 3.5.1) or for the estimation (as per ratio
and regression estimation, Sections 3.5.2 and 3.5.3, respectively).

3.5.1 Stratified Sampling

Stratification enables us to control variation. To stratify, we divide the popu-
lation into discrete, non-overlapping subpopulations using an auxiliary vari-
able. We then sample within each subpopulation without reference to the
other subpopulations. That is, the sampling is carried out independently.

Stratification controls variation by allowing us to calculate separate statis-
tics for things that we think will differ, a priori. We then compute population-
level estimates by taking weighted averages of these stratum-level statistics.
In this way, the variation between the subpopulations does not enter the
uncertainty of the estimate.

We can stratify using a discrete or a continuous auxiliary variable. Once
we have stratified, we do not use the auxiliary variable further unless we
explicitly involve it by means of a more advanced estimation technique. In
stratification, the auxiliary variable only affects the design. Once we have the
design, it plays no further role.
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3.5.1.1 Analysis for Stratified Sampling

Our population is still the PREF experimental forest (see Section 2.4.7). The
forest was stratified into L = 9 strata, of relative size wh, h = 1 . . .9, and we
shall assume that simple random sampling was carried out independently
within each stratum and that the strata are of equal size. We ignore the
clustering of the actual sample for the moment. Each point was measured for
volume, vi j m3/ha. We wish to estimate the population mean (v̄sts) and a 95%
confidence interval for the population mean.

The estimate is

v̄sts =
L

∑
h=1

whv̄h (3.34)

The survey package allows us to declare the strata as an argument. We
have only to provide the name of a factor that describes stratum membership.
The design is then

> pref.StRS <- svydesign(id = ~1,

+ strata = ~stratum,

+ data = pref.point,

+ weight = pref.point$weight)

and the estimate is obtained by

> svymean(~vol.m3.ha, pref.StRS)

mean SE

vol.m3.ha 141.62 8.7787

This estimate is very similar to the previous estimates, and the standard
error is lower, because the clustering has been ignored. We will analyze the
design more appropriately shortly.

The variance of the mean is simply the weighted sum of the variances of
the stratum-level means. This equation enables straightforward estimation
from a stratified sample even if different sampling regimes have been used for
each stratum.

sv̄sts =

√
L

∑
h=1

w2
hs2

v̄h
(3.35)

We can still easily compute these estimates manually.

> stratum.weights <- rep(1/9, 9)

> v.str <- sum(stratum.weights *

+ tapply(pref.point$vol.m3.ha,

+ pref.point$stratum,

+ mean))
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> se.v.str <- sqrt(sum(stratum.weights^2 *

+ tapply(pref.point$vol.m3.ha,

+ pref.point$stratum, var) /

+ tapply(pref.point$vol.m3.ha,

+ pref.point$stratum, length)))

Again, the exact reference distribution for constructing an appropriate
confidence interval is not known; the common approximation is to subtract
a degree of freedom from the t distribution for each stratum.

95% C.I. = v̄sts ± sv̄sts × tn−L (3.36)

3.5.1.2 Combinations of Designs

An advantage of the adoption of the survey routines now becomes obvious: the
blending of simple design elements into more complicated designs is relatively
straightforward. Thus, if we have stratified our population and performed
cluster sampling within each stratum, then the appropriate code is as follows.

> pref.CStRS <- svydesign(id = ~cluster,

+ strata = ~stratum,

+ data = pref.point,

+ weight = pref.point$weight)

> svymean(~vol.m3.ha, pref.CStRS)

mean SE

vol.m3.ha 141.62 15.527

Note that with the inclusion of clusters, the effective sample size within
each stratum plummeted, and the standard error is actually larger than the
estimate without stratification. This suggests that stratification was a waste
of time for our purposes. However, it may well have proven to be more useful
if we had been interested in estimates of volume by species.

3.5.2 Ratio Estimation

When our auxiliary variable is continuous, then it may be more efficient
to involve our knowledge of the variable directly in the estimation process.
We consider two principal strategies for this approach: ratio estimation and
regression estimation.

Ratio estimation itself has two variants, labeled the ratio of means and the
mean of ratios. The latter is mostly applied when sampling is performed with
probability proportional to the auxiliary variable. The variable of interest
from the point of view of sampling is then the ratio of the variable of interest
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and the auxiliary variable, and computation proceeds according to variable
probability sampling.

Here we focus on the ratio of means case. Ratio of means estimation is
appropriate if we are reasonably certain that the relationship between the
variable of interest and the auxiliary variable is linear and passes through the
origin and that the variance of the variable of interest is roughly proportional
to the value of the auxiliary variable.

This case provides the simplest interesting challenge to the sampler, as the
population parameter of interest is a non-linear function of two statistics. As
we have discussed earlier in the context of interval estimation, estimating the
variance is complicated.

3.5.2.1 Analysis for Ratio Estimation

Continuing the analysis of the PREF inventory data, we now introduce the
remotely sensed auxiliary variable, which is the atmospherically corrected
Normalized Difference Vegetation Index (NDVI), adjusted using the mid-
infrared band. This variable is available for every 30 m by 30 m pixel of
the forest and can be expected to be fairly well correlated with the per-unit
volume. As previously, the use of the survey package simplifies the analysis
considerably.

As noted earlier in the chapter, the following two equations provide the
usual estimate of the population mean of the variable of interest and an
estimate of its standard error. Initially, we will ignore some of the important
elements of the PREF design: the clustering and the stratification.

μ̂y = μx × ȳ

x̄
(3.37)

s2
μ̂y

=
μ2

x

x̄2
× s2

y + R̂2s2
x −2R̂sxy

n
(3.38)

We register the design as follows

> pref.SRSc <- svydesign(id = ~1,

+ data = pref.point.cov,

+ weight = pref.point$weight)

Then the analysis is performed by

> volume.over.acndviC <- svyratio(numerator = ~vol.m3.ha,

+ denominator = ~acndviC,

+ design = pref.SRSc)

> predict(volume.over.acndviC, mean(pref.pixel$ndvic))

$total

acndviC
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vol.m3.ha 139.5000

$se

acndviC

vol.m3.ha 8.317442

We can easily reproduce these straightforward results using our own code to
check our understanding.

> ratio.hat <- sum(pref.point.cov$vol.m3.ha) /

+ sum(pref.point.cov$acndviC)

> RatE.v.hat <- mean(pref.pixel$ndvic) * ratio.hat

> RatE.v.hat

[1] 139.5000

> RatE.v.hat.se <-

+ sqrt((mean(pref.pixel$ndvic))^2 /

+ (mean(pref.point.cov$acndviC))^2 *

+ (var(pref.point.cov$vol.m3.ha) +

+ ratio.hat^2 * var(pref.point.cov$acndviC) -

+ 2 * ratio.hat * cov(pref.point.cov$acndviC,

+ pref.point.cov$vol.m3.ha)) /

+ nrow(pref.point.cov))

> RatE.v.hat.se

[1] 8.317442

The results of the simulation study reported in Section 3.2.6 suggest that
the use of the jackknife or the linearized estimates of the standard error,
along with the t quantile that is appropriate for the desired coverage, may
provide a reasonable confidence interval.

3.5.2.2 Combinations of Designs

As before, the use of the survey package permits the straightforward exten-
sion of these simple design elements into a more complex whole. Here we
include the design elements of stratification and clustering as well as the
ratio estimation in our analysis. The design is

> pref.CStRSc <- svydesign(id = ~cluster+point,

+ strata = ~stratum,

+ data = pref.point.cov,

+ weight = pref.point$weight)

and the analysis requires the following code:
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> v.over.a.CStRSc <- svyratio(numerator = ~vol.m3.ha,

+ denominator = ~acndviC,

+ design=pref.CStRSc)

> predict(v.over.a.CStRSc, mean(pref.pixel$ndvic))

$total

acndviC

vol.m3.ha 139.5000

$se

acndviC

vol.m3.ha 13.77745

This analysis is closest to being the most appropriate analysis for the original
design.

3.5.3 Regression Estimation

In the more general case when we are uncertain as to the nature of the re-
lationship between the variable of interest and the auxiliary variable, specifi-
cally the form of the conditional mean and variance, we can apply regression
estimation.

3.5.3.1 Analysis for Regression Estimation

Continuing the analysis of the PREF inventory data, we again use the re-
motely sensed auxiliary variable, which is the atmospherically corrected Nor-
malized Difference Vegetation Index, adjusted using the mid-infrared band.
This variable is available for every 30 m by 30 m pixel of the forest and can
be expected to be fairly well correlated with the per-unit volume. Again, the
use of the survey package simplifies the analysis considerably.

The following four equations provide the usual estimate of the population
mean of the variable of interest and an estimate of its standard error. Initially
we again ignore the important elements of the PREF design: the clustering
and the stratification.

The regression-based estimate of the mean of the variable of interest, y, is

ȳlr = ȳ+ β̂1 × (X̄ − x̄) (3.39)

where x̄ is the mean of the auxiliary variable for the sample X̄ is the (known)
mean of the auxiliary variable for the population, and

β̂1 =
sxy

s2
x

(3.40)
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The standard error is estimated as follows:

sy|x =

√
n−1

n−2

(
s2

y −
s2

xy

s2
x

)
(3.41)

sȳlr
= sy|x ×

√(
1

n
+

(n−1)(X̄ − x̄)2

s2
x

)
×
(

1− n

N

)
(3.42)

These estimates are computed in R using the following code:

> volume.against.acndviC <- svyglm(vol.m3.ha ~ acndviC,

+ design = pref.SRSc)

We now rely on another package, gmodels (Warnes, 2010), to provide us
with appropriate predictions and standard errors. We will use the estimable
function for this purpose. This very useful function will compute estimates,
standard errors, confidence intervals, and hypothesis tests for arbitrary linear
combinations of parameters from a wide variety of model types, including
mixed-effects models. We load the package using the library function.

> library(gmodels)

We then invoke the estimable function as follows.

> estimable(volume.against.acndviC,

+ conf.int = 0.95,

+ cm = rbind(total=c(1, mean(pref.pixel$ndvic))))

Estimate Std. Error t value DF Pr(>|t|) Lower.CI

total 139.3812 8.34162 16.70913 178 0 122.9200

Upper.CI

total 155.8424

3.5.3.2 Combinations of Designs

Again we can draw upon the survey package to provide us with a general yet
straightforward solution that is appropriate for the full PREF design.

> pref.CStRSc <- svydesign(id = ~cluster+point,

+ strata = ~stratum,

+ weight = pref.point$weight,

+ data = pref.point.cov)

> v.against.a.CStRSc <- svyglm(vol.m3.ha ~ acndviC,

+ design = pref.CStRSc)

> estimable(v.against.a.CStRSc,

+ conf.int = 0.95,

+ cm = rbind(total = c(1, mean(pref.pixel$ndvic))))
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Estimate Std. Error t value DF Pr(>|t|) Lower.CI

total 139.3812 13.66037 10.20332 26 1.391884e-10 111.3019

Upper.CI

total 167.4605

Note that the acknowledgment of the clustering of sampling units has
inflated the estimate of the standard error considerably.

3.5.4 3P Sampling

3P sampling, also called Poisson sampling (see, e.g., Schreuder et al., 1993),
is a system that involves guessing the variable of interest before measuring
it, and using the guesses as auxiliary information.

3.5.4.1 Analysis for 3P Sampling

We have a population of N trees, and we wish to estimate the total volume.
We have guessed the population size N and generated N random numbers,
qi, uniformly distributed from 0 to qmax. qmax corresponds to the estimated
total divided by the desired sample size.

We visited each of the trees and guessed the volume in cubic meters, xi.
If qi < xi, we measured the tree accurately for volume yi. The guesses sum to
Xt for the whole population. We wish to estimate the population total and a
95% confidence interval.

For the purposes of demonstration, we will use the PREF tree database
as our population. The variable of interest is now volume in cubic meters,
vol.m3. We set up the sample as follows. We believe that the tree count in the
population is 1000, and we wish to accurately measure, say, 20 trees. Further,
we shall guess that the volume of all the trees in the forest is, say, 1000 m3.
Then we generate 1000 random numbers between 0 and 1000/20 = 50.

> q.max <- 1000/20

> PPP.rand <- q.max * runif(1200)

The guesses can be simulated by either adding a random variable to or
multiplying a random variable by the known values. All kinds of scenarios
can be compared. The authors are notoriously poor at guessing tree volumes,
so for the purpose of generating realistic data to demonstrate the technique,

> PPP.guesses <- pref.tree$vol.m3 *

+ rnorm(n = nrow(pref.tree), mean = 1.05, sd = 0.15) +

+ rnorm(n = nrow(pref.tree), mean = -0.05, sd = 0.05)

We then choose the sample using one of numerous possible approaches.
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> PPP.sample <-

+ PPP.rand[seq(1,length(PPP.guesses))] < PPP.guesses

> PPP.trees <-

+ data.frame(vol.m3 = pref.tree$vol.m3[PPP.sample],

+ guess.m3 = PPP.guesses[PPP.sample])

The estimate is then

Ŷ3P∗ = Xt × 1

n
×
(

n

∑
i=1

ri

)
(3.43)

ri =
yi

xi

(3.44)

and in R

> (PPP.hat.1 <- sum(PPP.guesses) / sum(PPP.sample) *

+ sum(PPP.trees$vol.m3 / PPP.trees$guess.m3))

[1] 1217.149

An alternative estimator with slightly better properties, in that it corrects
somewhat for the randomness of the sample size (Schreuder et al., 1993), is

Ŷ3P =
1

n
× Xt

qmax

× Ŷ3P∗ (3.45)

In R,

> (PPP.hat.2 <- PPP.hat.1 *

+ sum(PPP.guesses) / q.max / sum(PPP.sample))

[1] 905.2569

The actual value is known to be

> sum(pref.tree$vol.m3)

[1] 1185.261

The standard error of the estimate also has numerous incarnations. A
simple version is

sŶ3P
= Xt × sr̄ (3.46)

> se.PPP.hat <- sd(PPP.trees$vol.m3 / PPP.trees$guess.m3) /

+ sqrt(sum(PPP.sample)) * sum(PPP.guesses)

> se.PPP.hat

[1] 44.86651
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As with other complicated sampling routines, the reference value for the
sampling distribution of the statistic is not known. The usual approximation
is used,

95% C.I. = Ŷ3P ±2× sŶ3P
(3.47)

3.5.5 VBAR

VBAR stands for variable-basal area ratio. It is an efficient way to gather
dimensional information on trees in a stand. It is most often applied using
variable-radius plots, but there is no reason that it could not be applied with
fixed-area plots.

The idea behind VBAR is to use many cheap basal area plots to cover the
spatial variation and a smaller number of more expensive plots to establish a
relationship between the basal area and the variable of interest. The two best
references for this technique are Bell and Dillworth (1997) and Iles (2003).

VBAR was originally coined as volume-basal area ratio, but it has since
(rightly) been pointed out that the technique can be used for measuring most
anything, as long as it is likely to be related to basal area at the point level, by
some kind of ratio. It is formally known as two-phase sampling in statistical
literature.

3.5.5.1 Analysis for VBAR

We have installed n1 variable-radius plots. In each one, we only counted the
trees. Among these plots, we took a subsample of measure plots, upon which
we ended up measuring n2 trees for basal area gi and volume vi. We wish to
estimate the population total and a 95% confidence interval.

We can easily alter the PREF database to demonstrate the use of VBAR.
We have already computed the basal area and volume from each plot, so we
just need to choose a sample of the plot numbers. We shall take a sample of
30 volume plots.

> vbar.sample <- sample(1:dim(pref.point)[1], size=30)

> vbar.points <- pref.point[vbar.sample,]

> vbar.points <- vbar.points[vbar.points$ba.m2.ha > 0,]

> vbar.points$ratio <- vbar.points$vol.m3.ha /

+ vbar.points$ba.m2.ha

Empty plots should be eliminated from the sample for the purposes of
computing the ratio and its standard error. Note that this is a rare occasion
when ignoring measured plots is reasonable. Our rationale is that 0/0 is un-
defined. Also note that this strategy effectively makes the sample size for the
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ratio a random variable, which, if correctly accounted for, will complicate the
analysis. We ignore that element of the analysis here. Probably the simplest
approach to accommodating this element of the design would require use of
the bootstrap.

The estimate is

v̄V BAR = ḡ× v/g (3.48)

> (v.hat.vbar <-

+ mean(pref.point$ba.m2.ha) * mean(vbar.points$ratio))

[1] 138.6455

The units are, as before, m3/ha.
The estimation of standard error follows principles laid out in Goodman

(1960),

sv̄% =
√

s2
ḡ% + s2

v/g%
− s2

ḡ% × s2
v/g%

(3.49)

Here sv̄% is the ratio of the standard error of the volume and the mean
volume, s2

ḡ% is the square of the ratio of the standard error of the basal area

and the mean basal area, and s2
v/g%

is the square of the ratio of the standard

error of the ratios and the mean ratio,

sv̄V BAR
= v̄V BAR × sv̄% (3.50)

> s.bar.g.perc.2 <- (sd(pref.point$ba.m2.ha) /

+ sqrt(length(pref.point$ba.m2.ha)) /

+ mean(pref.point$ba.m2.ha))^2

> s.bar.r.perc.2 <- (sd(vbar.points$ratio) /

+ sqrt(length(vbar.points$ratio)) /

+ mean(vbar.points$ratio))^2

> s.bar.v.perc <- sqrt(s.bar.g.perc.2 + s.bar.r.perc.2 -

+ s.bar.g.perc.2 * s.bar.r.perc.2)

> s.bar.v <- s.bar.v.perc * v.hat.vbar

> s.bar.v

[1] 9.71663

The confidence interval again uses 2 as the approximate quantile of the
sampling distribution.

3.6 Summary

This chapter gives a brief presentation of the tools available for sample pro-
cessing and confidence interval estimation. We chose to focus on the oper-
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ations required for the various sampling designs normally found in forest
inventories, but the reader should be aware that these methods can apply to
any situation where these sampling designs are applicable.



Chapter 4

Imputation and Interpolation

4.1 Introduction

In Chapter 3, we presented methods to process samples, estimate param-
eters, and construct confidence intervals for design-based inference. In this
chapter, we present model-based imputation (to fill in missing values) and
interpolation (for predicting values at unsampled locations) methods to gen-
erate complete datasets so that 1) we have no missing values in our analysis
dataset or so that 2) we have complete coverage using predicted values at
unsampled locations for some variable of interest.

In Section 4.2, we impute missing values for the stands data frame object.
We use definitions consistent with those presented by Little and Rubin (2002)
and define imputation as any process that replaces missing values (NA) with
other predicted or observed values. We first examine the stands data to
determine if any data are missing. Then, we examine missingness patterns to
determine if the missingness has a simple spatial pattern. We then present
a few methods to impute missing values in Section 4.2.2. In Sections 4.2.3
and 4.2.4, we impute missing values using the nearest-neighbor (NN) and
the expectation-maximization (EM) algorithms. Finally, in Section 4.2.5, we
briefly examine and compare the two results against the original data for a
single site productivity variable, specifically site index (Bruce, 1981).

In Section 4.3, we then interpolate site index using the processed plots and
tree data frame objects from Section 2.4.6. In Section 4.3.1, we present a few
interpolation methods. In Section 4.3.2, we answer a few critical questions,
select one interpolation method (specifically, kriging) and briefly present the
theory. In Section 4.3.3, we estimate the variogram used in Section 4.3.4,
where we finally predict site index over a finite region.

117A. P. Robinson, J. D. Hamann, Forest Analytics with R, Use R!,
DOI 10.1007/978-1-4419-7762-5_4, © Springer Science+Business Media, LLC 2011
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4.2 Imputation

Imputation is a process of filling in missing values. Imputation is often per-
formed when complete data are required but only incomplete data are avail-
able. The specific protocols adopted usually depend on the subfield (e.g.,
inventory, growth and yield, simulation, and optimization). Imputation has
received considerable attention in the forestry literature (e.g., Moeur and
Stage, 1995; Holmström, 2002; Ohmann and Gregory, 2002; Holmström et al.,
2003); however, we refer the reader to Little and Rubin (2002) for a more
complete and general treatment of imputation methods. Here we use defini-
tions that are consistent with those presented by Little and Rubin (2002) and
simply define imputation as any process that replaces missing values (in R,
NA) with other predicted or observed values.

Here we first examine the stands data using a variety of techniques to
determine if data are missing and perform a few simple tests to determine
if there is a spatial pattern to the missing data. In Section 4.2.2, we present
methods to impute missing data and provide two examples, k -NN and EM,
in Sections 4.2.3 and 4.2.4, respectively. Finally, in Section 4.2.5, we briefly
compare the results of the two methods.

4.2.1 Examining Missingness Patterns

To quickly determine if missing values exist in the stands data, use the
show.cols.with.na function, telling R to treat the stands object as a data
frame.

> source("../../scripts/functions.R")

> stands <- readShapePoly("../../data/stands.shp",

+ verbose = FALSE)

> show.cols.with.na(as.data.frame(stands))

STANDID TAGE BHAGE DF_SITE TOTHT CUBVOL_AC

6 28 181 36 97 103

TPA QMD BA

97 97 101

The output reveals that many stand polygons contain some missing values.
Recall from Chapter 2 that NA values represent an unobserved or missing
value, not an observation made where the value of the observation was zero.

Graphical examination of missingness can also be quickly performed by
generating a map of polygons shaded by the number of missing attributes.
To generate that map, first compute the number of missing attributes for
each stand polygon and append a MISSING attribute to the stands object,
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> stands.frame <- as.data.frame(stands)

> stands.frame$MISSING <- rowSums(is.na(stands.frame))

The stands object now contains stands$MISSING, which reports the num-
ber of missing attributes for each stand polygon. Next, create a color ramp
from the number of unique values of the MISSING attribute:

> brks <- sort(unique(stands.frame$MISSING))

> colors <- gray(length(brks):1 / (length(brks)))

Finally, plot the stands, add a title, and include a legend to produce Fig-
ure 4.1.

> plot(stands,

+ col = colors[findInterval(stands.frame$MISSING,

+ brks, all.inside = TRUE)],

+ forcefill = FALSE,

+ axes = TRUE)

> title(main="Attribute Missingness by Polygon")

> legend(1280000, 365000, brks, fill = colors, cex = 0.7,

+ ncol = 3, title = "# of Missing Attributes")

Figure 4.1 reveals a potential pattern in which missingness might be more
prominent in the northern portion of the landscape than in the southern part.
If the headquarters is located at or near the southern portion of the forest, for
example, a lengthy drive might explain the pattern where the stands in the
north portion of the forest might be sampled less frequently or have fewer
measurements taken on fewer variables. Regardless of the mechanism that
created the differences in missingness, the summaries presented above and
Figure 4.1 show that 1) data are missing in the stands object; 2) some stand
polygons have more missing attributes than others; and 3) there may be a
spatial pattern; with more missing values in the north than in the south.

While this quick analysis cannot tell us for certain that there is a pattern
to the missingness, missing data problems can be more formally expressed so
that more sophisticated techniques can be applied to construct a complete
dataset.

Let Y denote the n×m random matrix that represents the complete data
matrix of n rows (observations) and m columns (variables) and follows a
multivariate density function f (y;θ), where y is a particular realization of
the random variable Y (complete data) and θ is a parameter vector that
defines the distribution of y. Also, Y can be partitioned into a matrix of the
non-missing observations Y o

i j and missing observations Y m
i j .

To describe missingness, let M ∈ (0,1) be a random indicator matrix that
represents the missingness of the data for the i-th observation on the j-th
variable. When yi j is missing, Mi j = 1; otherwise, Mi j = 0. The realization of
M, m, shows the pattern of missing values of y, a realization of Y that follows
f (y;φ), where f (y;φ) defines the pattern of missing data m. The primary
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Fig. 4.1: This figure presents the stand polygons, where the darkness is a function
of the number of missing attributes.
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objective in most imputation problems is to describe f (y;φ) sufficiently so
that all pertinent missing values can be imputed to construct a complete
dataset.

Often, the indicator matrix M can be described by answering a few im-
portant contextual questions, such as:

1. What were/are the sampling design, plot design, and sampling frequency?
2. Is there any information about censoring observations in the field manuals

or protocol documents?

Once these types of questions have been addressed, it is then possible
to more rigorously examine the data for patterns of missingness using the
techniques described by Little and Rubin (2002). Formally, the challenge is
to determine the values for θ that best define f , so you can say with some
certainty whether the data are missing with any detectable pattern, or if the
pattern is indeed random. Here we do not make an attempt to determine the
distinct missingness mechanism, and instead focus on the examination of m

itself.
First, we examine m by simply printing out the unique binary combinations

of m in the data. Since there are 13 columns in the stands dataset, there are
8192 possible (213) missingness patterns.

To create a simple table to examine row-wise summaries for m, use the
na.pattern function provided in the Hmisc package,

> nap <- na.pattern(stands.frame)

The na.pattern function provides a summary of the row-wise vectors for
m. Since printing the resulting object by itself is difficult to read, coercing
the resulting object into a matrix and then printing the results to obtain a
more presentable pattern yields

> as.matrix(nap)

[,1]

00000000000000 324

00000000000010 2

00000000111110 1

00000001111110 2

00000010000000 68

00000010000010 1

00000010010000 5

00000010111110 61

00000011000000 6

00000011000010 1

00000011111110 11

00000110000000 1

00000110010000 1
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00000110111110 10

00000111000000 4

00000111111110 6

00010111111110 6

The call to convert the object to a matrix prints a frequency table of the
combinations of missingness patterns for the stands object. In this case, there
are 324 rows that have no missing attributes. There are 26 rows that have
a 0000010111110 pattern, which is to say that there are 61 rows with the
6th and the 8th through the 13th variables missing. Again, since there are 13
variables for each row in the stands data frame, the total possible number
of missing combinations is 213, or 8192, combinations, of which we only have
17, a considerable reduction in unique patterns. While this is interesting, it
may not be very useful for generating a complete dataset. For additional
diagnosis, however, use the naclus and naplot functions to examine m for
possible relationships. Here, we only plot the patterns for visual inspection
in Figure 4.2.

> par(mfcol=c(2,2), cex=0.7)

> nac <- naclus(stands.frame)

> naplot(nac)

Examination of Figure 4.2 reveals different missingness ratios. Specifi-
cally, the fractions of missingness values for DF_SITE (∑N

i=1 Mi, j=7) and TAGE

(∑N
i=1 Mi, j=5) are similar. However, the variable with the highest fraction of NA

values is the breast-height age (BHAGE), which is often associated with total
age (TAGE) observations in this dataset. For example, it may be operational
procedure for this dataset to sample a stand polygon only when enough time
has passed so that all the stems have grown taller than 1.37 m (4.5 feet).
Since total age can be updated once seedlings are planted, this might ac-
count for the difference in missingness. While BHAGE yields a large number
of missing values when compared with the other variables, this may be one
of those cases where having NA as a legitimate value can cause problems in
statistical analysis, and we recommend caution.

Finally, we present another simple procedure to detect possible missing-
ness patterns by predicting the probability of missingness using some metric
that is easy to compute. In this case, we attempt to predict the probabil-
ity of missingness using the Euclidean distance between the stand centroid
and the forest headquarters (stand.dist). Then, using a Bernoulli response
variable (0/1) to represent the presence or absence of a value (site.missing
<- is.na(DF_SITE)), we can then use the glm function to fit a model of
missingness.

First, compute the distance for each stand centroid to the headquar-
ters, which is located, in rectangular coordinates, at 1288538.5625 east,
373896.78125 north. Using the rdist function, from the fields package (Fur-
rer et al., 2009), we compute the distances from each of the stand centroids
to the headquarters,
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> hq <- c(1288538.5625,373896.78125)

> centers <- coordinates(stands)

> stand.dist <- rdist(t(c(1288538.5625,373896.78125)), centers)

Then, we define a vector where the entries are NA if the site index is missing
using the is.na function:

> site.na <- as.numeric(is.na(stands.frame$DF_SITE))

Finally, fit a binomial model using the glm function:

> gfit.site <- glm(site.na ~ c(stand.dist),

+ family = "binomial")

> summary(gfit.site)

Call:

glm(formula = site.na ~ c(stand.dist), family = "binomial")

Deviance Residuals:

Min 1Q Median 3Q Max

-0.4511 -0.4126 -0.3764 -0.3389 2.4567

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.015e+00 4.315e-01 -6.986 2.83e-12 ***

c(stand.dist) 2.145e-05 1.865e-05 1.150 0.25

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 260.26 on 509 degrees of freedom

Residual deviance: 258.91 on 508 degrees of freedom

AIC: 262.91

Number of Fisher Scoring iterations: 5

The resulting p-value of 0.25 for the predictor variable suggests that there
is little correlation between the distance of the stand centroid to the head-
quarters and the probability of the DF_SITE observation being missing. It
seems that distance from the office is not a good predictor of missingness
here.

We could continue to examine the dataset with more sophisticated tools
and plots, but, in practice, the determination of the mechanism, and the
method used to correct for it, is at the discretion of the analyst and judgment
will dictate the final determination once our attempt to document the search
for a missingness pattern is complete.
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4.2.2 Methods for Imputing Missing Data

Now that we have determined that some data are missing, we present a few
methods for imputation. Little and Rubin (2002) grouped the methods for
imputing unobserved variables into three categories: 1) weighting procedures;
2) imputation-based procedures; and 3) model-based procedures. We briefly
present them in the next few sections.

4.2.2.1 Weighting Procedures

When the sample selection is based on unequal probabilities of inclusion (sam-
ple weights), as described by Horvitz and Thompson (1952), then weighting
procedures can adjust the weights used to compute various estimators (Little
and Rubin, 2002, Chapter 3).

For relatively small amounts of missing data, weighting procedures that
are based on completely recorded units (that is, with no missing values) can
yield sufficient results. They can yield biased results and may not be very
efficient when making inferences to subpopulations such as stands or strata
(Little and Rubin, 2002, Chapter 3). In the current example, we believe we
have sufficiently large numbers of missing observations in the stands object
to give us biased results if we were to apply these methods. We do not present
them here.

4.2.2.2 Imputation-Based Procedures

Imputation-based methods include those methods most commonly used in
forestry, such as k-nearest neighbor (k-NN) and most similar neighbor (MSN)
(Moeur and Stage, 1995), as well as less sophisticated methods such as mean

and regression imputation methods . The mean imputation method simply
replaces the missing attributes with the mean of the sampled attributes. The
regression imputation method estimates unsampled attributes from sampled
attributes using regression techniques (Little and Rubin, 2002, Chapter 1).
These hot-deck methods of imputation are covered more completely elsewhere
(e.g., by Venables and Ripley, 2002) and are not presented further here.

Alternatively, cold-deck methods assign values based on a constant value
from an external source rather than from samples of the observed data. For
example, in landscape-planning projects, regeneration stands might not have
an adequate sample to make inference for the entire population over the span
of the planning horizon. A decision is made to assign all unsampled stands
that are under some arbitrary age a set of values that is “representative” of
young stands across the landscape. This method ignores the consequences
of imputation, such as bias, and is discouraged when unbiased results are
desired (Little and Rubin, 2002, Chapter 4).
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Finally, the nearest-neighbor methods are those for which unsampled mea-
sures are assigned values from nearby sampled attributes using a variety of
statistical distances (Bishop, 2006, see, e.g., Chapter 2). We present our first
imputation method, the k-NN method, in Section 4.2.3.

4.2.2.3 Model-Based Procedures

Model-based procedures are methods that make inferences upon the distri-
bution of the data under a specific model. These methods include maximum-
likelihood estimation (MLE) , expectation-maximization (EM), and Markov
chain Monte Carlo (MCMC) methods (Little and Rubin, 2002; Madras, 2002;
Kuroda, 2004). These methods offer great flexibility, as the imputation proce-
dures can include models of the covariance structure of the data themselves.
Also, the underlying model assumptions can be assessed, and the model subse-
quently improved, based on standard statistical diagnostics. There are meth-
ods for continuous values, categories, and censored data. We present the EM
approach to imputation in Section 4.2.4.

4.2.3 Nearest-Neighbor Imputation

Nearest-neighbor methods for imputation of attributes in forest inventories
are common in forest resource analysis. The method and various forms of it
have been used to impute stand-level attributes (Moeur and Stage, 1995),
plot-level attributes (Holmström et al., 2003), basal-area diameter distribu-
tions (Haara et al., 1997), and tree lists (Korhonen and Kangas, 1997).

Numerous R packages provide nearest-neighbor methods for continuous
and categorical data; for example: the class (Venables and Ripley, 2002) and
knncat packages (Buttrey, 2008); weighted k -nn, for example the kknn pack-
age (Schliep and Hechenbichler, 2009); and generic nearest-neighbor methods
for missing observations, for example the class package (Venables and Rip-
ley, 2002). Crookston and Finley’s yaImpute package includes many methods
that are commonly found in the forest inventory analysis, such as the gra-
dient nearest-neighbor (GNN, Ohmann and Gregory, 2002), Most Similar
Neighbor (MSN, Moeur and Stage, 1995), and the random forest method
Breiman (2001a).

Here we will use the simplest of the nearest-neighbor methods, k -nn im-
putation. The k -nn method is a kernel density estimation method that is
commonly used to impute missing values where the value of k dictates the
number of nearest neighbors, in statistical distance, to the observed data in
any given row of the dataset (Bishop, 2006, Chapter 2). The method is non-
parametric in the sense that it does not assume any underlying distribution.
The lack of a distributional assumption is an advantage, as the distributional
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form of variables of interest is often influenced by factors such as market
conditions (for example, sales, exchanges, and depletions) and disturbance
patterns (such as fire, insects, and disease). It is often difficult to find a dis-
tributional form that is sufficiently flexible to match these contingencies.

Nearest-neighbor methods require training and target datasets. The train-
ing dataset comprises the data for which we have all the necessary attributes.
The target dataset is the dataset for which we have some, but not all, of the
values. The task then is to find which data in the training data are closest to
the target data, using the attributes that are common to both datasets, and
assign those values that are missing from the training dataset.

Normally, we would begin by obtaining our training data from those rows
in the inventory that contain all of the attributes. Since there is a possibility
that there are rows with all nine attributes missing, we shall include the
centroid of the stand polygon so that we can assign the geographically, not
statistically, closest stand if we have no other attributes to compare. For
this example, location is the only variable that is available for every polygon
regardless of missingness.

We already know from the MISSING variable how many attributes are
missing from each row of the stands object. We select those rows from stands

that have no missing values as our training dataset,

> centers <- coordinates(stands)

> stands.frame <- as.data.frame(stands)

> stands.frame$x.ctr <- centers[,1]

> stands.frame$y.ctr <- centers[,2]

> stands.frame$MISSING <- rowSums(is.na(stands.frame))

> training.stands <- subset(stands.frame, MISSING == 0)

> nrow(training.stands)

[1] 324

The remainder of the rows contain various missing attributes. Assign those
rows to a variable named target.stands,

> target.stands <- subset(stands.frame, MISSING > 0)

> nrow(target.stands)

[1] 186

Recall from Chapter 2 that stands contains 510 polygons and in Sec-
tion 4.2.1 we partitioned stands into target and training rows to represent
rows with and without missing data, respectively. From the output above, the
number of rows with and without missing data are 324 and 186, respectively,
and the sum of the two equals the total number of rows in the stands object.

Next, create the training and target objects and include the coordinates
of the centroid for each of the sampled stands
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> cls <- c("x.ctr","y.ctr")

> training <- training.stands[,cls]

> target <- target.stands[,cls]

so that the original dataset is now divided into two datasets (training and
target) and the row names represent the factor we wish to assign to a target
dataset from the training dataset.

To confirm our data are properly split, print the first few rows of each to
verify that the datasets as different,

> head(rownames(training))

[1] "0" "4" "5" "7" "13" "18"

> head(rownames(target))

[1] "1" "2" "3" "6" "8" "9"

The resulting printout shows that the row names, or row labels, from the
training object are not in the target object and vice versa. Here the labels
are numeric but do not correspond with the row number.

Now, using the knn function in the class package, classify the target stand
polygons using the polygons in the training object. The result will be the
values to replace the missing attributes in target using a subset of the rows
from the training object. Specifically, the assignments here should come
from the nearest neighbors, in terms of Euclidean distance, to the polygons
with missing attributes (target).

> cl <- factor(rownames(training))

> knn.res <- knn(training, target, cl, k = 1)

The resulting knn.res object contains a levels attribute, which repre-
sents the class factors (rowlabels), assigned from training for the target

dataset. For a more complete description of the function, see the documen-
tation for the knn function.

Next, extract the row names from the target dataset to identify those
rows that originally contained missing values.

> missing.rows <- as.character(rownames(target))

Then, to keep track of which rows are being replaced in the original data,
coerce the results of the nearest-neighbor assignment (knn.res) into a nu-
meric vector, named replacement.rows,

> replacement.rows <- as.character(knn.res)

so that now we have two vectors that contain the original row identifiers that
correspond to rows with missing values (missing.rows) and the resulting
rows that should be assigned to replace the missing rows (replacement.rows)
in the target data (target).
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Now, to facilitate our analysis, we create a copy of the original data frame,
which will be used to construct our final data frame object,

> stands.knn <- stands.frame

Next, replace the subset of the attribute data row (columns 5 though 13)
in the new copy by assigning the subset from the row from the target vector
from the k-nn assignment to the stands.knn data frame object. The reason
we are using a subset of the columns is to maintain the geographic data
since the first four variables are specific to each stand polygon and are not
influenced by the missing data.

Again, use the indexes of the fields rather than the names of the fields
themselves to replace the rows that contain missing values from the origi-
nal data that does not contain missing values by using the vectors of row
identifiers for the respective data frame objects,

> stands.knn[missing.rows,c(4,5:13)] <-

+ stands.frame[replacement.rows,c(4,5:13)]

> show.cols.with.na(stands.knn)

No missing values.

To make sure that we can easily keep track of the values that were imputed,
we add a replaced.by field that identifies the rows that have replaced the
originally missing rows (missing.rows),

> stands.knn$replaced.by <- NA

> stands.knn[missing.rows,]$replaced.by <- replacement.rows

Finally, check the results by examining the values for the first few stands
in the newly created object,

> head(as.data.frame(stands.knn))

SP_ID AREA PERIMETER STANDID ALLOCATION TAGE BHAGE

0 0 612731.1 4827.898 010101 forest 42 37

1 1 2466649.0 13244.230 010108 forest 81 76

2 2 226084.4 2019.828 010101 forest 42 37

3 3 139821.6 1807.653 010113 forest 14 15

4 4 2897093.0 12078.560 010105 forest 40 35

5 5 455932.7 2779.376 010113 forest 14 15

DF_SITE TOTHT CUBVOL_AC TPA QMD BA x.ctr y.ctr

0 101 62.2 5201 419.84 9.4 202 1264263 400519.8

1 118 102.3 3133 43.59 17.7 75 1265432 399298.9

2 101 62.2 5201 419.84 9.4 202 1265964 400281.0

3 124 31.3 637 458.39 5.3 69 1263518 400345.6

4 95 59.9 2874 304.57 9.3 144 1263896 399065.8

5 124 31.3 637 458.39 5.3 69 1264166 399966.9
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MISSING replaced.by

0 0 <NA>

1 1 13

2 6 0

3 6 5

4 0 <NA>

5 0 <NA>

> show.cols.with.na(stands.knn)

replaced.by

324

By printing the first few rows, we can verify that the rows with missing
data have had columns replaced (columns 4 and 5 through 13). For example,
the dataframe row labeled ”2” of the original data (stands[3,]) has been
replaced by row 0 based on the Euclidean distance. If we print them out
together,

> stands.knn[c(1,3),]

SP_ID AREA PERIMETER STANDID ALLOCATION TAGE BHAGE DF_SITE

0 0 612731.1 4827.898 010101 forest 42 37 101

2 2 226084.4 2019.828 010101 forest 42 37 101

TOTHT CUBVOL_AC TPA QMD BA x.ctr y.ctr MISSING

0 62.2 5201 419.84 9.4 202 1264263 400519.8 0

2 62.2 5201 419.84 9.4 202 1265964 400281.0 6

replaced.by

0 <NA>

2 0

we can see that the entries we replaced (columns 4 and 5 through 13), contain
the same values. Again, since the target and training vectors are the row
labels, not row numbers, caution must be taken when creating scripts that
automatically replace values.

Finally, the show.cols.with.na function reports the number of rows
where the replaced.by attribute is NA,

> show.cols.with.na(stands.knn)

replaced.by

324

which matches the number of rows in the training data.
We now have a data frame object (stands.knn) that contains the original

data from stands, and where there were missing values, we replaced a subset
of the row with the associated columns within that row from the original
data that were from the nearest, in Euclidean distance, from the centroid of
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the stand. Ultimately we now have a data frame object that does not contain
missing values.

To apply k -nn in this context, we have invoked some useful simplifications:

1. We ignored the fact that some of the attributes were more complete than
others.

2. We also ignored the fact that the distribution of the missing attributes
might not have been equal, although the frequency of the missing at-
tributes was roughly equal for many of the missing values.

3. We replaced the entire row when at least one attribute was missing, not
individual fields based on additional information.

With those simplifications, we have generated imputed values similar to
those of our observations, where there were no negative values, no extremely
large values, and the distributions of the combined imputed and observed
values were similar to the observed values alone. This may not always be the
case.

Nearest-neighbor classification methods are useful for determining which
category a new observation belongs to, but the methods require that the
entire training set be stored, which can lead to excessive computational times
(Bishop, 2006, Chapter 2). Another drawback is that the methods rely on
selecting and computing a weighted combination of the observations rather
than making assumptions of the underlying distributions of the missing and
observed data.

Yet another problem with our specific method of using the closest neighbor
is that there might be large contrasts in adjacent cover types when adjacency
is defined by the Euclidean distance and nothing more. For example, if we
had a stand polygon with no measurements, it is possible that the stand was
recently harvested and could be surrounded by either much older stands or
much younger stands. In either case, since we are not including information
on the distribution of the surrounding stands, our imputed values may not
reflect the true distribution of the current vegetation.

A better method would allow us to control the classification process inde-
pendently of the size of the training data while maintaining the ability to es-
timate complex densities. For that, we turn to the expectation-maximization
(EM) algorithm.

4.2.4 Expectation-Maximization Imputation

The Expectation-Maximization (EM) algorithm iteratively computes the ex-
pected values for missing observations by repeatedly updating maximum-
likelihood parameter estimates and imputing expected values until conver-
gence is achieved. It has been applied to maximum likelihood estimation
(Little and Rubin, 2002), latent structure models (McLachlan and Krishnan,
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2008), neural network learning (Bishop, 2006, Chapter 9), and Gibbs sam-
pling (Watanabe and Yamaguchi, 2004, Chapter 4). For a more complete
presentation, we refer the reader to Dempster et al. (1977). Watanabe and
Yamaguchi (2004) and McLachlan and Krishnan (2008) also provide a thor-
ough introduction, related models, and extensions to the algorithm.

Briefly, the algorithm iterates over two steps (Little and Rubin, 2002, see
Chapter 8):

1. E-step: Find the conditional expectation of the missing data from the
observed data and current estimates of the parameters and substitute the
expectations back into the missing data.

2. M-step: Perform maximum-likelihood estimation of the parameters as if
there were no missing data.

Imputation using the EM algorithm can be accomplished using the norm
package (Novo and Schafer, 2002) if we are willing to assume that our data
are distributed as multivariate normal. To use R for imputing missing values
using the EM algorithm, first use the prelim.norm function,

> cls <- c(5:12)

> sd <- as.matrix(as.data.frame(stands[,cls]))

> psd <- prelim.norm(sd)

This function performs preliminary bookkeeping functions (e.g., sorting,
centering, and scaling) on the input data, and the output object (psd) is an
intermediate object, so for brevity we do not present the details here. For
more complete details, see the documentation provided with the package.

Next, call the em.norm function to compute the maximum-likelihood esti-
mates on the psd matrix and assign the results to a variable called thetahat,

> thetahat <- em.norm(psd, showits=FALSE) #compute mle

where thetahat contains a vector that represents the maximum-likelihood
estimates of the normal parameters that are not in the original scales.

To extract the estimates, covariances, and correlations from thetahat in
the original scales, call the getparam.norm function,

> em.params <- getparam.norm(psd, thetahat, corr=TRUE)

which extracts the information of interest. Here we extract only the mean
(em.params$mu),

> names(em.params)

[1] "mu" "sdv" "r"

> em.params$mu

[1] 0.00000 58.05591 53.21879 115.85964 69.26065

[6] 5890.92943 241.54077 12.42562



4.2 Imputation 133

Finally, to obtain our imputed values, we seed the random number generator,

> rngseed(1234567) #set random number generator seed

make a copy of the original data as we did for the stands.knn object,

> stands.em <- as.data.frame(stands)

and use the imp.norm function to impute the missing values

> stands.em[,cls] <- imp.norm(psd, thetahat, sd)

using the cls to index the columns to be replaced.

> show.cols.with.na(stands.em)

STANDID BA

6 101

Once again, we now have a complete dataset that contains no missing
values. The imp.norm function returns a matrix of the same form as the
input matrix (psd) but with all missing values filled in with simulated values
drawn from their predictive distribution given the observed data (sd) and
the specified parameter (thetahat).

A print of the summaries (from summary(stands.em)) shows a few neg-
ative values for fields that are not normally negative (specifically, QMD, TPA,
and BA). This reveals that the method can produce values beyond the range
of the original data, which in some cases is unacceptable. In the next section,
we compare our results for a single metric (site index) and examine some
differences between the two methods.

4.2.5 Comparing Results

Comparing results for imputation methods can include numerous metrics
(Dempster et al., 1977). Here we compare the results graphically to simplify
our presentation. Specifically, we generate a plot of the distributions for the
original data and the distributions of the two imputation methods we tried
(see Figure 4.3) and discuss them briefly.

First, construct the individual data frame objects,

> knn.frame <- data.frame(site = stands.knn$DF_SITE,

+ method = "KNN")

> em.frame <- data.frame(site = stands.em$DF_SITE,

+ method = "EM")

> obs.frame <-

+ data.frame(site = subset(stands.frame,

+ MISSING == 0)$DF_SITE,

+ method = "OBS")
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Then merge them together using the rbind function,

> site.frame <- rbind(knn.frame, em.frame, obs.frame)

Finally, generate a histogram of the data using the histogram function,

> histogram(~ as.numeric(site ) | method, data = site.frame,

+ xlab = "Site Index (feet)",

+ type = "density",

+ main = "Stand Site Index Frequency Distributions",

+ breaks=30,

+ layout=c(3,1),

+ index.cond=list(c(3,1,2)),

+ panel = function(x, ...) {

+ panel.histogram(x, ...)

+ panel.mathdensity(dmath = dnorm,

+ col = "black",

+ args = list(mean=mean(x),

+ sd=sd(x)))

+ }

+ )
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Fig. 4.3: Distributions of the site index values from the observations (OBS), k-NN,
and EM algorithms. An estimated normal density is plotted over the histograms.

Comparing the histograms in Figure 4.3, we can see that the distributions
are similar. The ranges between the two sets of distributions are roughly the
same, and we are comforted by the fact that in the k-nn imputed distributions,
the extreme values are not outside the range of the observations.
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The EM algorithm is gaining popularity because of the flexible nature of
the method, but packages for estimating non-normal distributions are cur-
rently limited. Convergence can be slow, especially when the missing data
contain information about the estimated parameters and are functions of
the missingness indicator matrix M, as described in Section 4.2.1 (Longford,
1993; Little and Rubin, 2002). While specification of the missing data is at
the discretion of the analyst, the sparse dataset can often be viewed as a small
portion of a much larger dataset, and within that framework, estimation of
the missing values, via the assumed distributions, can be much easier.

The appeal of this method is that a fairly robust method of imputation
can be examined with a few lines of code. This still does not free the analyst
from examining the assumptions or checking constraints, such as negative
estimates or excessively large values.

Although simply assigning attributes from the nearest neighbor yielded
acceptable results, several issues were not examined. The fact that abrupt
changes in vegetation characteristics often coincide with missing data (e.g.,
harvest unit not sampled yet), the consequences of ignoring the additional
information such as the distributions, or the correlation among variables as
well as over distance cannot be determined without more detail. In order to
examine the landscape with finer detail, we need to refine our examination
to a resolution smaller than the stand polygon. Fortunately, we know the
locations of the plots and have a measurement of the site index at several
locations. This knowledge could give us the resolution we need. For that
resolution, we turn to interpolation.

4.3 Interpolation

In the previous section, we examined methods to impute stand-level data
from sampled stand polygons assuming that the attributes of interest were
distributed uniformly throughout the stand polygon and that the attributes
were normally distributed. Now, we will also estimate values for unsampled
locations, but unlike in the previous section, we will interpolate values be-
tween point samples to generate a continuous surface. This procedure will
require slightly different assumptions.

Following Neteler and Mitasova (2002, Chapter 7), we define interpola-

tion as the conversion of a spatially continuous process, such as elevation or
site index observations, into a raster representation. There is some debate
regarding the spatial continuity of vegetation attributes, but here we assume
that the attributes of interest, for example site productivity, which should be
considered independent of the vegetation conditions (Newton and Hanson,
1998), are continuous over the region of interest.
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4.3.1 Methods of Interpolation

There are numerous methods for interpolating values at unsampled loca-
tions, including point interpolation, inverse distance methods, and minimum-
variance methods. Point estimation methods can be classified into polygo-
nal and triangular interpolation methods. The relative performance of these
methods can vary depending on the estimation criteria (Isaaks and Srivas-
tava, 1989). These methods are relatively simple and are thoroughly pre-
sented within other references (Okabe et al., 2000; Cressie, 1993), so we do
not present them here.

Instead, we focus on minimum-variance methods. These methods are de-
signed to yield the best estimates under one particular statistical criterion:
unbiased estimates with minimum error variance. To begin, we need to ad-
dress the following questions to provide key contextual information:

� Are we interested in global or local estimates?
� Are we interested in population parameters, such as mean and variance,

or do we want the complete distribution of values?
� What is the support? Do we want point values or estimates over larger

areas such as polygons?

For global estimates, all of the sample values and locations are used for
prediction. Global estimates are typically used for estimating the distribution
of attributes over the region of interest and can be greatly influenced by clus-
tering (Isaaks and Srivastava, 1989) . For local estimates, only those points
near the point of interest are used for estimation. As with global estimates,
local estimates are also influenced by clustering, but local estimation meth-
ods account for both the distance of sample points to estimation locations
and possible redundancy among samples.

Historically, forest inventories have been focused on global estimation by
attempting to answer such questions as “How much volume does a forest
contain?” or “How many trees are in a given area?” Site-specific information
is also becoming important. Both types of estimation are influenced by the
number and location of samples within a given area, and much work has been
done to examine the influence of plot location on both global estimation and
local estimation (de Gruijter et al., 2006, Chapters 6 and 8 respectively).

Once we have decided whether we are interested in obtaining global or
local estimates, we then need to determine whether we are interested in es-
timating parameters of a distribution or the distribution itself. The mean is
the most commonly estimated parameter (Isaaks and Srivastava, 1989). If
estimation of an entire distribution is of interest, then both parametric and
non-parametric methods are available. Parametric methods make assump-
tions about the underlying distribution of the data, but the assumptions can
be difficult to verify and may not be appropriate for many types of situations
where the surface is neither smooth nor continuous. Non-parametric methods
do not make those assumptions but require interpolation between points on
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the cumulative histogram. Should we need to extrapolate beyond the data,
the results can be invalid.

Then we need to determine if we are interested in predicting values at in-
dividual points across the entire region or in smaller subregions such as stand
or harvest polygons rather than individual points. The support, or spatial
continuity , is important, as it determines the appropriate prediction meth-
ods depending on our desire to predict point, line, area, or volume estimates.
The support acts as a smoothing filter depending on the size of the area being
estimated and the density of the sample data (Goovaerts, 1997, Chapter 5)
and (Isaaks and Srivastava, 1989, Chapter 19).

For this section, we will examine one of the most basic types of interpo-
lation commonly used for point support. There are numerous methods that
can be used for all types of support, but it is beyond the scope of this book
to cover all of the possibilities.

Here we are interested in estimating the mean site index at unsampled
point locations over the entire landscape. The data, from Chapter 2, includes
the final.plots dataframe,

> final.plots <- read.csv("../../data/final-plots.csv" )

To begin, we examine the distribution of the site index plots using a basic
histogram and normal q-q plot,

> opar <- par(mfcol = c(1,2), las = 1, cex.axis = 0.70)

> site.plots <- subset(final.plots, !is.na(site))

> hist(site.plots$site, xlim = c(0,220), ylim = c(0,0.025),

+ freq = FALSE, main = "Histogram", xlab = "Site Index",

+ breaks = 30)

> qqnorm(site.plots$site, pch=46)

> qqline(site.plots$site, lty=1, col="grey", pch=46)

Judging from the histogram and normal quantile-quantile plots in Fig-
ure 4.4, the distribution of the site index is fairly close to normal, which
would lead us to conclude that using one of the parametric methods might
yield satisfactory results.

Some of the nomenclature associated with the various interpolation meth-
ods can cause confusion. Schabenberger and Pierce (2002, Table 9.3) present
a useful table of the various features of kriging systems in relation to the un-
derlying assumptions. Here, we need to estimate the site index at any point in
a finite region where the mean over the entire region is unknown. Their table
suggests that a parametric method for point estimation known as ordinary
kriging meets our requirements.
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Fig. 4.4: Graphical summaries of the site index observations from the site index
plots.

4.3.2 Ordinary Kriging

Ordinary kriging allows the prediction of variables at unmeasured locations
by using the relationships among the sample points around the prediction site
(Goovaerts, 1997). The method is commonly used when samples are taken
from an area and the goal is to obtain complete coverage of an attribute with
some measure of uncertainty about the predicted value. Kriging is named
after Danie G. Krige, a South African who developed the technique, with
Herbert Sichel, in an attempt to more accurately predict ore reserves (Arm-
strong, 1998), thus the use of terms such as nugget.

In order to use this method, we have to make some assumptions about the
process we are attempting to predict :

� We must assume the variable we are trying to predict is a continuous
random variable over the region of interest.

� We must assume the expected value of the variable is constant over the
region.

� We must assume the variance is constant and finite.
� We must assume the covariance function is dependent only on the distance

between two points and not the absolute positions of the data.

For an excellent introduction to random variables and random functions
within the framework of spatial interpolation, we recommend Isaaks and Sri-
vastava (1989), and for a complete overview of most kriging methods, we
recommend Goovaerts (1997) and Schabenberger and Gotway (2005). These
references provide an excellent background on spatial interpolation. We pro-
vide only a brief introduction here.
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4.3.2.1 Theory

Ordinary kriging is a best linear unbiased estimator (BLUE) because the
estimates are weighted linear combinations of the data that have the smallest
possible variance among all possible linear combinations of the data (Isaaks
and Srivastava, 1989). The estimator is unbiased because the mean residual
error is zero, and it minimizes the variance of the errors. In order to achieve
BLUE, we have to develop a model to describe our data and select weights
to apply to our random function model that ensure that the error variance

σ̂2
r = σ̂2 +

n

∑
i=1

n

∑
j=1

wiw jĈi j −2
n

∑
j=1

wiĈi0 (4.1)

is minimized subject to the unbiasedness constraint ∑
n
i=1 wi = 1. Ĉ is a model

of the covariance (Isaaks and Srivastava, 1989, Chapter 12). Since we need
to constrain the solution to equation (4.1), a system of n+ 1 equations can
be expressed more compactly in matrix notation as⎡
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1

⎤
⎥⎥⎥⎦ (4.2)

or more simply

Cw = D (4.3)

where w is a vector of weights, C is the covariance matrix of the observations,
and D is the vector of the covariances at the points themselves; that is,
C(h) = 0, where h is the distance between sample points. This generates a
system of n+ 1 equations that can be easily solved for C−1 to obtain the
kriging weights w

w = C−1D (4.4)

where the resulting values for w produce the unbiased estimates with the
minimum error variance for equation (4.1). Finally, the resulting estimate
(v̂0) can then be calculated as

v̂0 =
n

∑
i=1

wivi (4.5)

and the resulting minimized estimation variance (σ̂2
r ) is

σ̂2
r = σ̂2 −

n

∑
i=1

wiCi0 +μ (4.6)
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It should be noted here that the use of the system of equations we have
presented requires some caveats and observations.

First, since we will need to predict values (v̂0) that are at distances that
are not found in the distance matrix, we must construct a function of the
distance between points to describe the relationship among the attributes
of interest. This relationship C(h) represents the statistical distances among
the sample points separated by a distance h. Thus when two points are very
similar, the values of Ĉi j will be large compared with the other entries of the
matrix.

Second, there is no guarantee that a C−1 exists that yields a unique so-
lution to our system of equations. We can check for the positive definite
condition (x′Ax > 0;A,x ∈ C

n) using any number of methods, such as deter-
mining whether all of the eigenvalues are greater than zero. In most cases, we
do not need to worry about this condition, as we will almost always fit our
spatial relationships with positive definite functions, such as the exponential
function presented in equation (4.7).

Third, the predictor is an exact interpolator, meaning the predictions ex-
actly match the measured values at locations where measurements have been
made and the corresponding estimation variance is zero (Journel and Hui-
jbregts, 1978).

Last, the matrix D is not necessarily the spatial distance from the sample
points to the location we are estimating but rather the statistical distance.
The combination of these two matrices (C and D) accounts for the two most
important aspects of spatial estimation: clustering of the data values (C−1)
and the statistical distances (D) between them (Isaaks and Srivastava, 1989).

In order to compute the kriging weights, we must first decide on a random
function, C(h), that will represent the spatial relationship of our data.

4.3.2.2 Descriptions of Spatial Correlation

In order to obtain the unbiased estimate of the random function C(h) with
the minimum error variance, we need to define the spatial relationship for
our random function model. This relationship is usually defined as a model
of the covariance structure of the distance between sample locations and
data with some unexplainable variation (nugget). We use this model to de-
scribe the variation of our random function model. The covariance model is
often a combination of two models (Armstrong, 1998). For example, when
the exponential model exp(−h

a
) is combined with the nugget model (c0), the

covariances form the function

C(h) =

{
c0 + c1 if h = 0

c1 exp(−h
a
) if h > 0

(4.7)
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which can also be expressed as a semi-variogram

γ(h) =

{
0 if h = 0

c0 + c1(1− exp(h
a
) if h > 0

(4.8)

where c0 + c1 = σ2 and h is the distance between two points. The c0 and c1

parameters have special interpretations:

1. c0 describes that part of the variance that cannot be accounted for in
the smallest sampling distance between two points. This is known as the
nugget effect.

2. a is known as the range. The range is that distance at which the variance
is considered constant and the distance between points will not account
for the variation. It can be considered the horizon at which no changes in
variation can be detected.

3. The sum of c0 + c1 is known as the sill, which represents the variance of
the random variables.

In fact, the covariance function is directly related to the semi-variogram in
that one can be expressed as a variation of the other (Isaaks and Srivastava,
1989; Goovaerts, 1997; Pebesma, 2004). It can also be shown that the total
variance (σ̂2

r ) for an ordinary kriging system can be decomposed as

σ̂2
r = σ̂2 +

σ̂2

n
(4.9)

where σ̂2 is the variance of the random variables and σ̂2

n
is the variance of

the unknown mean. Closer examination shows us that the addition of extra
samples (increasing n) only reduces the uncertainty about the unknown mean
and not the variance introduced by the random variables in our random
function.

There are many semi-variogram model forms. The gstat package provides
infrastructure to list and examine different forms (Pebesma, 2004). A list of
possible semi-variogram models can be obtained using the vgm function with
no arguments, and a convenient trellis plot of the semi-variogram models can
be generated using the show.vgms function.

Since we wish to predict values and their accompanying confidence inter-
vals, our first task is to develop the covariance (semi-variogram) model for
the plot summary data we developed in Chapter 2.

4.3.3 Semi-variogram Estimation

Much has been written on the subject of fitting semi-variograms (Cressie,
1993, Chapter 2). Armstrong (1998) provides three reasons that least-squares
methods often fail when fitting semi-variogram models:
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1. The function must be positive definite; otherwise mean-squared errors of
prediction may be negative.

2. Least-squares fitting assumes all sample points are independent observa-
tions.

3. Semi-variogram behavior close to the origin is unknown, yet it is vital, and
least-squares methods cannot take this into account.

The gstat package provides several methods to estimate parameters for
semi-variogram models and uses iteratively reweighted least squares (Cressie,
1993, Chapter 2) by default (Pebesma, 2004). The package also provides a
method for fitting the semi-variogram using restricted maximum-likelihood
(REML) estimation, although Pebesma (2004) suggests that REML may be
slow for moderate to large datasets (that is, having more than 100 observa-
tions). We will use the default settings.

To estimate the semi-variogram for our site index data, we first obtain the
plots that have a site index observation by constructing a data frame object
that contains the non-missing site index values.

> site.plots <- subset(final.plots, !is.na(site))

We then build a model of the semi-variogram using the variogram and
fit.variogram functions and fit.

> site.var <- gstat::variogram(site ~ 1,

+ locations = ~x+y,

+ data = site.plots,

+ width = 50,

+ cutoff = 3000)

> site.model <-

+ fit.variogram(site.var,

+ vgm(1000, "Exp", 1000, nugget = 0))

Here we have used the scope operator (::) to let R know that we wish to
use the variogram function provided by the gstat package and not the one
provided by the spatial package (Venables and Ripley, 2002).

We then print the results of our model:

> site.model

model psill range

1 Nug 129.1209 0.0000

2 Exp 172.6557 952.9546

The sum-of-squares value for the fitted model can be obtained using the
attributes function.

> attributes(site.model)$SSErr

[1] 14.51226
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Site Index Semi−variogram

Distance (m)

S
em

i−
va

ria
nc

e

150

200

250

300

500 1000 1500 2000 2500

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●
●

●
●

●

●

●

●
●●●

●

●●●●●●

●
●

●

●

●●●

●
●

●

●●

●
●

●

●
●

●
●

●

●
●

●
●

Fig. 4.5: Sample and fitted semi-variograms for the site index.

A plot of the resulting experimental (points) and fitted (line) semi-
variograms can be generated using the plot function (see Figure 4.5).

> plot(site.var,

+ model = site.model,

+ main="Site Index Semi-variogram",

+ ylab = "Semi-variance", xlab = "Distance (m)",

+ ylim = c(100,310), xlim = c(0,3000))

The sum of the sills c0 +c1 for the two individual models is roughly where
the semi-variogram approaches a constant value and range. This value at
which about 95% of the variance is accounted for occurs near the range of
the exponential model (Isaaks and Srivastava, 1989).

> sum(site.model[,2])

[1] 301.7766

Before we predict the site index values throughout the landscape, we
should also discuss the width and cutoff arguments to the variogram

function from the gstat package and describe their influence on the semi-
variogram. The width argument changes the width of the bin size for h so
that the larger the width, the more smoothing occurs. The cutoff argument
determines the maximum distance at which points are no longer included
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Fig. 4.6: Site index experimental semi-variograms for various widths and cutoffs.

in the semi-variogram model. Figure 4.6 displays several plots with various
width and cutoff values.

From Figure 4.6, we can see that selecting various width and cutoff values
can influence the parameter estimates and model form of the semi-variogram .
Many authors have recommended attempting several width and cutoff values
appropriate to the sampling design and caution against a single fit (Isaaks
and Srivastava, 1989; Goovaerts, 1997; Armstrong, 1998; Webster and Oliver,
2001). We concur.
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4.3.4 Prediction

Upon visual inspection, our semi-variogram model seems to fit the data sat-
isfactorily. Now we can estimate the site index and accompanying variance
estimates throughout the entire forest, but first we need to generate a pre-
diction grid and clip the points outside our region using the inside.owin

function.
First, read the geometry from the boundary file (boundary.shp),

> bdry2 <- readShapePoly("../../data/boundary.shp")

Then, using the fortify function in the ggplot2 package, we gener-
ate a region to define the forest boundary using the boundary attribute
(FORBNDRY_),

> dum <- fortify(bdry2, region = "FORBNDRY_")

> summary(dum)

long lat order

Min. :1257463 Min. :354303 Min. : 1.0

1st Qu.:1267739 1st Qu.:368686 1st Qu.: 345.5

Median :1272965 Median :379267 Median : 690.0

Mean :1274130 Mean :379745 Mean : 690.0

3rd Qu.:1280129 3rd Qu.:391242 3rd Qu.:1034.5

Max. :1292129 Max. :400783 Max. :1379.0

hole piece group id

Mode :logical 1:1329 2.1: 50 Length:1379

FALSE:1329 2: 50 3.1:1279 Class :character

TRUE :50 3.2: 50 Mode :character

NA�s :0

From the output of the summary function, we have three polygons (group)
defining the forest boundary: two that define the boundary going clockwise
and one to define the hole in the southern portion of the forest.

To generate our boundary, we must manually extract the polygons’ pieces,
using array indices and our familiarity with the data, and generate a list of
points from the inner and outer pieces that can then be used to define an
owin object, using the poly constructor argument (owin(poly))

> dum2 <- dum[dum$id == 3,]

> outer <- dum2[dum2$piece == 1,]

> inner <- dum2[dum2$piece == 2,]

Next, construct a list object that contains the pairs of vertices for the
boundary

> bdry.poly <- vector(2, mode="list")

> bdry.poly[[1]] <-
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+ list(x = outer[(nrow(outer)-1):1,]$long,

+ y = outer[(nrow(outer)-1):1,]$lat)

> bdry.poly[[2]] <-

+ list(x = inner[(nrow(inner)-1):1,]$long,

+ y = inner[(nrow(inner)-1):1,]$lat)

and then generate the owin object, using the forest polygon boundary we
just created,

> bdry.owin <- owin(poly=bdry.poly)

Checking 2 polygons...1, [Checking polygon with 1278 edges...]

2.

done.

Checking for cross-intersection between 2 polygons...1.

done.

> grid <- gridcentres(bdry.owin, 200, 200)

The owin function requires that the polygon that defines the window that
will be applied masks out unwanted points in our prediction grid. The indices
are reversed because the vertices for the outer boundaries must be listed
counter-clockwise. The vertices for the holes must be listed clockwise. The
object grid now contains a prediction grid bounded by the bounding box of
the window defined by bdry.owin.

Next, reduce the prediction grid by only including those points within the
polygonal boundary, defined by the bdry.owin object,

> ok <- inside.owin(grid$x, grid$y, bdry.owin)

> pred.grid <- data.frame(x=grid$x[ok], y=grid$y[ok])

Then, to predict the site index estimates at the new prediction locations
using the model we developed previously,

> sample.site.plots <- sample(1:nrow(site.plots), 1000 )

> site.pred <- krige(formula = site ~ 1,

+ locations = ~ x + y,

+ data = site.plots[sample.site.plots,],

+ model = site.model,

+ newdata = pred.grid)

[using ordinary kriging]

We can see from printing the first few rows of the resulting predictions
(site.pred) that our values appear in the range of the distribution presented
in Figure 4.7.

> head(site.pred)
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x y var1.pred var1.var

1 1262056 354419.3 116.2973 236.3804

2 1262229 354419.3 115.8959 242.1147

3 1262403 354419.3 115.3195 246.6632

4 1262576 354419.3 114.8777 248.7282

5 1262749 354419.3 114.5954 247.5300

6 1262923 354419.3 114.3469 242.7019

The variable site.pred now contains the prediction and the kriging vari-
ance at each of the points defined by the prediction grid.

As a simple check of our results, we plot the histogram and normal
quantile-quantile plots as we did with the observations. If we examine the
histograms of the predicted site index values (Figure 4.7) versus the sampled
site index values (see Figure 4.4), we see that the predicted values are well
within the range of the sample values.

> opar <- par(mfcol = c(1,2), las = 1, cex.axis = 0.80)

> hist(site.pred$var1.pred, breaks=30,

+ main="Predicted Site Index",

+ freq=FALSE, ylim=c(0,0.08), xlim=c(80,150))

> qqnorm(site.pred$var1.pred, pch=46)

> qqline(site.pred$var1.pred, lty=1, col="darkgrey", pch=46)

Predicted Site Index

site.pred$var1.pred
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Fig. 4.7: Histogram and q-q plot of the site index plots and the predicted site index
values.

We can see by examining Figure 4.7 that the distribution of the pre-
dicted site index values is more peaked than the observations (Figure 4.4)
and has a smaller variance. For now, this is acceptable for our purposes, but
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we may want to revisit our assumptions should we wish to apply more strin-
gent assumptions such as matching the distribution of the site index values
throughout the region, but more complex methods (e.g., indicator kriging or
non-parametric methods) are beyond the scope of this presentation.

Finally, generate a plot of the resulting predictions using the following
code (Figure 4.8).

> levelplot(var1.pred ~ x + y,

+ data = site.pred,

+ col.regions = terrain.colors(80),

+ main = "Predicted Site Index",

+ xlab = "Easting",

+ ylab = "Northing",

+ panel = function(...) {

+ panel.levelplot(...)

+ lpoints(site.plots[sample.site.plots,]$x,

+ site.plots[sample.site.plots,]$y,

+ col="black", cex=0.25, pch=19)

+ }

+ )

and the resulting variance estimates similarly (Figure 4.9), both using the
levelplot function in the lattice package.

Examination of Figures 4.8 and 4.9 shows that where we have high con-
centrations of plots, the estimated variance is low, and where we have few
plots, the variance is high. This would suggest that having a well-distributed
grid would yield a good sample that would give a consistent estimate of the
precision of our estimated site index (Webster and Oliver, 2001).

So far, we have only examined estimating a single variable throughout a re-
gion. In many cases, we are interested in estimating multiple variables such as
tree density, size, or species composition, which are most likely spatially cor-
related. As mentioned previously, there are many excellent references present-
ing techniques for kriging correlated variables, variables in blocks (stands),
and parametric and non-parametric distributions. The gstat package handles
many of these situations.

4.4 Summary

In this chapter, we examined missingness in forest data, a few imputation
methods for estimating missing values, and some of the properties of each
estimation method. We then presented a basic interpolation method (kriging)
to predict values and an associated uncertainty measure (prediction variance)
at unsampled locations over an entire region. The methods we have presented
here constitute only a small portion of possible methods available, so we
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Fig. 4.8: Site index predicted from ordinary kriging of site index plots. The points
represent plot locations.
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Estimated Variance of Site Index Prediction
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Fig. 4.9: Predicted variance of site index estimates from ordinary kriging of site
index plots. The points represent a subsample of the plot locations.
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encourage the reader to search the documentation for additional methods
that might be more appropriate for any given situation.



Part III

Allometry and Fitting Models



Chapter 5

Fitting Dimensional Distributions

This chapter focuses on the use of statistical tools for fitting models to di-
mensional data that represent a sample of trees. Here, we consider the mod-
els, theory, and tools for one-dimensional data, such as diameter distribu-
tions. Two-dimensional data, such as the classical allometric relationships,
and multi-dimensional data, which require systems of equations, are handled
in a later chapter.

Our goal is to reduce the information about a sample of n observations to
as compact and simple a representation as possible while retaining as much
information about the underlying population as we can.

The representation of the sample that we choose may require the assump-
tion of a particular model form, for example the Weibull or beta probability
density functions, or a family of model forms, such as the Johnson family
of distribution functions. Using a model provides several benefits. A model
simplifies communication of the outcome because the outcome can be sum-
marized by the estimates of the parameters of the model. Also, if comparable
model forms are used, the parametric approach facilitates straightforward
connection or comparison with historical theory or results.

The analyst may prefer to represent the data without relying on having
to choose a particular functional form, instead using one of a number of non-
parametric representations. These so-called non-parametric approaches are
more flexible and allow for a wider range of possible densities, including, for
example, densities that are bimodal.

It is important to recognize that, since the 1980s, the major differences
between parametric and non-parametric models have been in ease of com-
munication and portability. Given an appropriate computing platform, it is
just as easy to obtain a prediction of a non-parametric distribution at any
number of points as it is a parametric distribution (see, e.g., Borders et al.,
1987).

We focus on diameter distributions, but the principles still hold and the
tools work for the distribution of any other measures.

155A. P. Robinson, J. D. Hamann, Forest Analytics with R, Use R!,
DOI 10.1007/978-1-4419-7762-5_5, © Springer Science+Business Media, LLC 2011
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5.1 Diameter Distribution

A diameter distribution is a histogram of the tree-level dbh measurements.
The bin widths and bin starting point that are used to construct the his-
togram are chosen subjectively and are usually chosen to simplify the inter-
pretation rather than to optimally capture the shape of the distribution. It
is well known that the estimate of the shape of the diameter distribution
can be strongly affected by the choice of these parameters (see, e.g., Scott,
1985). In forestry, the width and starting point are most commonly set by
convention; for example, a popular configuration is bins that have a width of
5 cm (alternatively, 2 inches), starting at 0 cm.

Diameter distributions are important tools in forest resource management.
The interpretation of diameter distributions will affect silvicultural decisions,
such as when to thin and how much to thin, as well as harvesting decisions,
such as where and when to harvest and what kinds of equipment will be
necessary. Diameter distributions are also used as inputs to growth models
and sometimes are the subject of growth modeling themselves. Consequently,
information about the diameter distribution for a forest stand as it is and
as it may be in the future is very useful for forest management. Clutter
et al. (1983), Borders et al. (1987), Vanclay (1994), and Avery and Burkhart
(2003) provide useful overviews of the uses and interpretation of diameter
distributions in forest management.

Invariably the diameter distribution is computed from a sample of trees,
rather than the population. Often the sample of trees is arranged in plots,
which may muddy the interpretation of the sample-based diameter distribu-
tion as an estimate of the population diameter distribution (Garćıa, 1992).
Trees might compete against their closest neighbors, which may induce nega-
tive correlation in dimensions among the proximate trees. Also, local growth
patterns could reflect positive correlation due to micro-site variability. These
concerns about representativeness and independence of the sample data are
most likely impossible to resolve with the usual forest inventory data and are
consequently ignored in the modeling phase. However, interpretation of the
outcomes can be softened.

From the point of view of the biometrician, the two primary goals for the
estimation of a diameter distribution from a sample are prediction in time and
in space, and probably both. The spatial goal is to use the sample diameter
distributions to represent the size class densities of the population from which
the sample was taken. The temporal goal is to project the current diameter
distribution forward in time, contingent on some management decision. In
order to achieve these tasks efficiently, the distribution is summarized by
statistics, and the statistics are projected in time and/or space. The statistics
may be parameters of a chosen distribution, such as the Weibull, or they may
be quantiles of the sample. The projections are often supported by auxiliary
information, such as site class, stem density, or age class. Simplified, the
sequence of steps is:
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1. a sample is collected,
2. the diameter distribution is constructed,
3. the diameter distribution is represented by statistics,
4. the statistics are projected in time and/or space using, for example, linear

regression, and
5. the projected diameter distributions are predicted, conditional on the pro-

jected statistics.

In this chapter, we focus on the problem of representing the diameter
distribution from the sample data. The problem of projecting the estimates
in time and space rely on a suite of other tools, some of which are presented
in other chapters of the book.

5.2 Non-parametric Representation

Figure 5.1 shows a simulated random sample of 30 tree diameters, selected
from the N(50,36) distribution. The tree diameters have been lumped into
5 cm (2 in.) diameter classes, forming the diameter distribution. We note in
passing that the distribution does not appear to be symmetric, although we
know that the population is symmetric.

> set.seed(1)

> diameters <- rnorm(30, mean = 50, sd = 6)

> hist(diameters, main = "", xlab = "Diameter Class (cm)")

Diameter Class (cm)
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Fig. 5.1: Histogram of 30 sample diameters that were randomly generated from the
normal distribution with mean 50 and standard deviation 6, with the true pdf and
the pdf of the best-fitting normal curve superimposed.



158 5 Fitting Dimensional Distributions

The sample diameter distribution can be interrogated directly for quan-
tities of interest. For example, the percentile method due to Borders et al.
(1987) represents the distribution using a collection of quantiles. The usual
empirical quantiles can be obtained from the sample using the quantile func-
tion, although the 0 and 100% quantiles require the min and max functions,
respectively.

> min(diameters)

[1] 36.7118

> quantile(diameters, p = (5 + (0:9) * 10) / 100 )

5% 15% 25% 35% 45% 55% 65%

39.46411 45.48462 47.39024 49.67330 50.48011 52.32096 53.37517

75% 85% 95%

54.25220 55.30858 58.02619

> max(diameters)

[1] 59.57168

5.3 Parametric Representation

Sometimes we prefer to make an assumption about the shape of the underly-
ing density. Here, we will proceed under the assumption that the population is
normally distributed. This is a fairly unusual assumption for fitting diameter
distributions; we make it here to simplify this introductory material.

The normal distribution is completely determined by two parameters,
mean and variance; that is, if you know the mean and variance of data that
are normally distributed, then you know everything about the distribution
of those data. Therefore, in order to obtain all possible information from a
sample about a normally distributed population, all we need to estimate are
the mean and variance.

We often prefer to think about the standard deviation rather than the
variance because the standard deviation is in the same units as the data, as
is the mean. Doing so allows us to think about the spread of the data in units
that have a natural interpretation.

5.3.1 Parameter Estimation

We now present a number of approaches to the challenge of estimating the
parameters of the distribution given data. We develop these estimators for
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the relatively familiar normal pdf before introducing the more popular pdfs
that are used for diameter distribution modeling.

5.3.1.1 Plug-in Principle

One intuitively satisfying way of estimating the mean and standard deviation
is to calculate the sample mean and the sample standard deviation and use
those values to estimate the population parameters. This is called the plug-in
principle (PP),

μ̂PP = x̄; σ̂PP =

√
1

n−1

n

∑
i=1

(xi − x̄)2

The sample mean is known to be an unbiased estimator of the population
mean. Furthermore, it can be shown that, in terms of estimator variance,
the sample mean is as good as the best possible unbiased estimator for the
population mean; specifically, the variance of the sample mean is the same as
the Cramer–Rao lower bound, which is a theoretical lower limit on how small
the variance of an estimator can possibly be (see, e.g., Casella and Berger,
1990).

The sample standard deviation is a biased estimator of the population
standard deviation. The bias in the estimate can be demonstrated by recog-
nizing that the sample variance is an unbiased estimator of the population
variance and the standard deviation is a curvilinear function of the variance,
and applying Jensen’s Inequality (Jensen, 1906).

So, the PP estimators of the mean and standard deviation of the popula-
tion are:

> (x.bar.pp <- mean(diameters))

[1] 50.49475

> (s.x.pp <- sd(diameters))

[1] 5.544725

At this point, we have a model of the diameter distribution. The model
form was selected based on an assumption about the distribution of the un-
derlying population and parameterized using a sample of data. We can now
use this model to speculate, for example, what is the most common diam-
eter in the population. Also, if we know how many stems we have in the
population, then we can estimate the number in each size class.

We can superimpose the estimated population distribution over the his-
togram of the data using the following code (Figure 5.1).

> curve(dnorm(x, x.bar.pp, s.x.pp) * length(diameters) * s.x.pp,

+ add = TRUE,

+ col = "darkgrey")
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Note that we can choose to summarize the sample using its mean and
standard deviation but without making an assumption about the underlying
distribution. Our purpose here is to push our knowledge one step further
so that we can also estimate the relative numbers of stems in the different
size classes. Note that we can only push the knowledge further by making
assumptions that while they may be plausible, cannot be proven.

5.3.1.2 Method of Moments

A more formal approach to obtaining estimates for the parameters involves
equating the sample and population moments. A moment is a unit that is
used to characterize a random variable that has a certain pdf. Specifically,
the k-th moment of a random variable X is the expectation of Xk.

We now demonstrate the method of moments estimation using our data.
We have a sample of size n selected from a population that we assume follows
the normal distribution, and we wish to estimate the parameters of the normal
distribution, μ and σ .

Although the moments are well known for the normal distribution, and
indeed most of the distributions that are within the scope of this chapter, we
will provide the steps that would be necessary to use for a distribution for
which these quantities are unknown. This development draws from Casella
and Berger (1990).

In order to compute the moments associated with any pdf, we use the
moment generating function (mgf). This function is defined as

MX (t) = EetX (5.1)

that is, the mgf of the random variable X evaluated at a value t is the expec-
tation of e raised to the power of tX . Then, the moments of X are generated
as follows: the k-th moment is is the k-th derivative of MX (t) with respect to
t, evaluated at t = 0.

The mgf for the normal distribution is therefore

MX (t) =
1√

2πσ

∫ ∞

−∞
etxe−(x−μ)2/(2σ2)dx (5.2)

and after some algebra,

MX (t) = eμt+σ2t2/2 (5.3)

So, the first moment is

μ1 =
d

dt
eμt+σ2t2/2 |t=0

which is μ. The second moment is
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μ2 =
d2

dt2
eμt+σ2t2/2 |t=0

which is μ2 +σ2.
Then we set these moments equal to the first two moments of the sample

and solve the resulting simultaneous equations. That is, take m1 =
1
n ∑x and

m2 =
1
n ∑x2 and set them equal to μ1 and μ2, respectively. Then, after further

manipulations, μ̂ = x̄ and σ̂ =
√

1
n ∑(xi − x̄)2. In R,

> (x.bar.mm <- mean(diameters))

[1] 50.49475

> (s.x.mm <- sqrt(sum((diameters - x.bar.mm)^2) /

+ length(diameters)))

[1] 5.45153

This several-step process will reliably provide estimates, but there is no
body of theory to suggest that method of moments estimates are always
particularly good.

5.3.1.3 Maximum Likelihood

Another popular parameter estimation technique involves direct use of the
pdf of the assumed underlying population: maximum likelihood. Maximum
likelihood involves maximizing the joint probability density function of the
data as a function of the parameters. That is, the maximum-likelihood es-
timates (MLE) of the parameters are those values that maximize the joint
probability density of the data, conditional on the data and on having chosen
a population distribution.

For mathematical convenience and computational stability, it is better to
maximize the log of the joint density. This is equivalent to maximizing the
sum of the logs of the densities, if the data are independent. In addition to
computational stability, another advantage of working with the log of the
joint density is that large-sample estimates of the standard errors of the
parameters can be easily obtained, as we will see below.

We compute MLE estimates by applying an optimizer to the sum of the
logs of the probability density functions.

> ll.norm <- function(parameters, data) {

+ mu.hat <- parameters[1]

+ sigma.hat <- parameters[2]

+ return(sum(dnorm(data, mu.hat, sigma.hat, log = TRUE)))

+ }
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The optimizer requires initial estimates. Initial estimates can be generated
using the plug-in principle or the method of moments. We scale the function
by −1 using the fnscale argument of the control list because optim mini-
mizes the function, and we want to find the values of the parameters that
maximize the log-likelihood. The default engine for optim is the Nelder–Mead
simplex algorithm (Nelder and Mead, 1965).

> (mle.n <- optim(c(x.bar.mm = x.bar.mm, s.x.mm = s.x.mm),

+ ll.norm,

+ data = diameters,

+ hessian = TRUE,

+ control = list(fnscale = -1)))

$par

x.bar.mm s.x.mm

50.49475 5.45153

$value

[1] -93.44504

$counts

function gradient

53 NA

$convergence

[1] 0

$message

NULL

$hessian

x.bar.mm s.x.mm

x.bar.mm -1.009449 0.000000

s.x.mm 0.000000 -2.018899

A brief description of the preceding output follows. The par slot contains
the three parameter estimates in the same order as they are used in the ll.w3
function. The value slot reports the value of the objective function evaluated
at its maximum — this is the maximized joint log-likelihood. The hessian

slot reports the estimated Hessian matrix, which is the matrix of second
derivatives of the joint log-likelihood with respect to the three parameters,
evaluated numerically at the estimated optimum. The other three slots pro-
vide feedback on the optimization process itself: the number of evaluations of
the function and its gradient, whether or not the convergence criterion had
been achieved (0 means that it had been), and textual feedback from the
optimizer.
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The ML estimators of the mean and standard deviation of the population
are then

> mle.n$par

x.bar.mm s.x.mm

50.49475 5.45153

An asymptotic estimate of the covariance matrix of the parameter esti-
mates can be obtained by inverting the negative of the Hessian matrix. We
use the following code:

> solve(-mle.n$hessian)

x.bar.mm s.x.mm

x.bar.mm 0.9906392 0.0000000

s.x.mm 0.0000000 0.4953194

Furthermore, asymptotic estimates of the standard errors can be found using

> sqrt(diag(solve(-mle.n$hessian)))

x.bar.mm s.x.mm

0.9953086 0.7037893

Notice that the estimate of the mean is the same as those using PP and
MM, within reasonable computation error, but the ML estimate of the stan-
dard deviation is smaller than the PP estimate. It turns out that PP, ML, and
MM estimates of parameters are often identical. When they differ, it is often
easier to find the MLE than to find the PP or MM estimates of parameters.

In general, the statistical properties of MLE are at least as good as the
properties of PP and MM estimates, and are known to be better under certain
circumstances. Specifically, MLEs are consistent and asymptotically efficient,
as long as the support of the likelihood is independent of the parameters
being estimated. The latter condition is not satisfied, for example, in the
case of the location parameter for the three-parameter Weibull. In any case,
the characteristics mentioned provide a rationale for selecting ML estimates
in the first instance, but they do not guarantee that ML is the best approach
to use in any given situation. Thought and care are still required.

In addition to hand-coding the joint log-likelihood, we can also make use
of the flexible fitdistr function from the MASS package, which provides
maximum-likelihood estimation for a range of univariate distributions (Ven-
ables and Ripley, 2002).

> library(MASS)

> d.n <- fitdistr(diameters, "normal")

> d.n

mean sd

50.4947490 5.4515297

( 0.9953086) ( 0.7037895)



164 5 Fitting Dimensional Distributions

5.3.2 Some Models of Choice

Numerous distribution families have been proposed to match diameter dis-
tributions; for example, the exponential distribution, the two- and three-
parameter Weibull distributions (Bailey and Dell, 1973), and Johnson’s SB

(Hafley and Schreuder, 1977), among many others. Some of these distribu-
tions are easy to parameterize; others are more difficult.

We start with the two-parameter Weibull distribution. The Weibull dis-
tribution originated in the statistical analysis of failure rates and is popular
in the statistical analysis of survival data. The interested reader can learn
more from Johnson et al. (1994). The two-parameter Weibull can be fit to a
dataset in a number of ways; we use the fitdistr function again.

> d.w2 <- fitdistr(diameters, "weibull")

> d.w2

shape scale

11.5600440 52.8091906

( 1.6694364) ( 0.8766854)

Now we want to compare the two distribution fits; that is, compare the fit
of the two-parameter Weibull against the fit of the normal distribution. The
pdfs both have the same number of parameters, so a direct comparison of the
log-likelihoods will yield the same outcome as a comparison of AIC would.

> logLik(d.n)

�log Lik.� -93.44504 (df=2)

> logLik(d.w2)

�log Lik.� -91.75936 (df=2)

These results suggest that the two-parameter Weibull distribution is a
slightly better fit to our data than the normal distribution.

The three-parameter Weibull distribution is an extension of the two-
parameter Weibull that provides for a shift in location. The three-parameter
Weibull distribution is useful when the mass of points is known to be remote
from zero, which is often the case with tree dimension measurements. The
pdf of the three-parameter Weibull distribution is

fX (x | α,β ,γ) =
γ

β

(
x−α

β

)γ−1

exp

(
−
(

x−α

β

)γ)
(5.4)

with β > 0, γ > 0, and −∞ < α < ∞. And, in R, we can use the following
function:

> dweibull3 <- function(x, gamma, beta, alpha) {

+ (gamma/beta)*((x - alpha)/beta)^(gamma - 1) *
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+ (exp(-((x - alpha)/beta)^gamma))

+ }

So the joint log-likelihood for an independent sample from the three-
parameter Weibull distribution is, ready for optim,

> ll.w3 <- function(p, data)

+ sum(log(dweibull3(data, p[1], p[2], p[3])))

Note that we have separated the steps of computing the pdf and taking
its log for clarity. Using a function that computed the log of the density
directly would be more efficient and more stable for operational uses. Density
functions that are provided in R, for example dnorm, offer the option of
returning the log of the density value directly. Doing so is recommended
when the log of the density is of interest, such as in this case, because it
eliminates redundant steps; note, for example, that among other things we
are taking the log of the exponential raised to the power −((x−α)/β )γ .

A challenge in fitting this distribution is that the location parameter α
limits the domain of the random variable. Maximum-likelihood inference is
problematic for such models because the likelihood is undefined across a set
of the real numbers that is determined by the data. Furthermore, estimates
of such parameters that arise from ML procedures no longer necessarily have
the desirable characteristics of consistency and asymptotic efficiency (Casella
and Berger, 1990).

From the point of view of parameter estimation, the troublesome portion
of the pdf is (x−α)γ , which is

� undefined if α > x and γ is not an integer,
� negative if α > x and γ is an odd integer, and
� increasing as α increases in absolute value for α outside the range of x if

γ is an even integer.

Fortunately, the optimization algorithms are reasonably robust against
these difficulties and will recover gracefully if they find themselves arriving
in areas of the parameter space for which the function is undefined. The
only requirement is that the starting values be chosen in such a way that the
function can be evaluated. For example, upon application to our data and the
three-parameter Weibull log-likelihood, the Nelder–Mead algorithm reports
convergence and provides plausible parameter estimates.

> mle.w3.nm <- optim(c(gamma = 1, beta = 5, alpha = 10),

+ ll.w3,

+ data = diameters,

+ hessian = TRUE,

+ control = list(fnscale = -1))

> mle.w3.nm$par
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gamma beta alpha

6.843394 32.530438 20.122516

The log-likelihood, evaluated at its maximum, is

> mle.w3.nm$value

[1] -91.99055

We can obtain asymptotic estimates of the standard errors from the result
using code similar to that which we have used previously.

> sqrt(diag(solve(-mle.w3.nm$hessian)))

gamma beta alpha

3.796482 16.293066 16.079340

Different optimization engines may well yield different estimates of the
parameters. For example, the optimization method due to Broyden, Fletcher,
Goldfarb, and Shanno (see, e.g., Nocedal and Wright, 2006) fails to converge
after (the default) 100 iterations, and when more iterations are requested,
using the maxit option in the control argument, the solution is different
from that offered by Nelder–Mead.

> mle.w3.bfgs <- optim( c(gamma = 1, beta = 5, alpha = 10),

+ ll.w3,

+ method = "BFGS",

+ data = diameters,

+ hessian = TRUE,

+ control = list(fnscale = -1,

+ maxit = 1000))

> mle.w3.bfgs$value

[1] -91.75805

> mle.w3.bfgs$par

gamma beta alpha

11.6698254 53.2463892 -0.4232776

> (mle.w3.bfgs.se <- sqrt(diag(solve(-mle.w3.bfgs$hessian))))

gamma beta alpha

13.15200 57.46787 57.22259

These results leave the analyst in somewhat of a dilemma. The outcome of
fitting the pdf seems to depend on the optimization engine that has been cho-
sen. And, if the parameter estimates from BFGS are used as a starting point
for the Nelder–Mead, then different estimates again are obtained (results not
shown here). However, reference to the estimated standard errors suggests
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that the differences between the parameter estimates are minor compared
with the uncertainties in the estimates themselves. Another way to obtain
insight into such differences is to plot the functions and see how substantial
the differences between the fitted curves are (Figure 5.2). The figure suggests
that the practical differences between the fits are negligible.

> hist(diameters, main="", xlab="Diam. Class (cm)", freq=FALSE)

> curve(dnorm(x, x.bar, s.x), add=TRUE, col=grey(0.2), lty=1)

> curve(dweibull(x, d.w2$estimate[1], d.w2$estimate[2]),

+ add=TRUE, col=grey(0.2), lty = 2)

> w3.n.h <- mle.w3.nm$par

> curve(dweibull(x - w3.n.h[3], w3.n.h[1], w3.n.h[2]),

+ add=TRUE, col=grey(0.2), lty = 3)

> w3.b.h <- mle.w3.bfgs$par

> curve(dweibull(x - w3.b.h[3], w3.b.h[1], w3.b.h[2]),

+ add=TRUE, col=grey(0.2), lty = 4)

> legend("topleft", lty = 1:4, bty = "n", cex=0.8,

+ legend = c("Normal","Weibull (2)",

+ "W. (3, NM)","W. (3, BFGS)"))
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Fig. 5.2: Comparison of normal, two-parameter Weibull, and three-parameter
Weibull fitted curves to the example diameter dataset. The Weibull 2 and the Weibull
3 BFGS are indistinguishable.
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5.3.3 Profiling

The behavior of a likelihood depends on the data to which it is fitted and
should be the subject of further examination. One way to examine the be-
havior is to develop and graph the log-likelihood profile curves. To create a
one-dimensional log-likelihood profile curve for a given parameter, we first
select a set of candidate values for that parameter. For each candidate value
we fix the parameter at that value and maximize the log-likelihood across the
other parameters. We then plot the maximized log-likelihood values against
the candidate values. Analogous graphics can be created for two-dimensional
profiles.

Here we develop the code required to provide a reasonably general solution
to the problem of creating one- and two-dimensional profile plots for the three-
parameter Weibull likelihood. First we create a suite of plot wrappers that
allow us to choose which parameters to fix and which ones to vary in our
calls to the dweibull function. For example, for the location profile, we write
the loc function, which passes shape and scale as the first argument, which
optim uses for its optimization, and location as the third argument, which
will be considered fixed and will be taken from the suite of candidate values
that we specify ahead of the exercise.

> all.w3 <- list(loc = function(p, data, fix)

+ sum(log(dweibull3(data, p[1], p[2], fix))),

+ sha = function(p, data, fix)

+ sum(log(dweibull3(data, fix, p[1], p[2]))),

+ sca = function(p, data, fix)

+ sum(log(dweibull3(data, p[1], fix, p[2]))),

+ loc.sha = function(p, data, fix)

+ sum(log(dweibull3(data, fix[1], p, fix[2]))),

+ sca.sha = function(p, data, fix)

+ sum(log(dweibull3(data, fix[1], fix[2], p))),

+ sca.loc = function(p, data, fix)

+ sum(log(dweibull3(data, p, fix[1], fix[2]))))

We now select the suites of candidate values that will be fixed for the condi-
tional optimization. We arbitrarily nominate the range of values as being the
estimated standard errors and choose 30 equally spaced values within those
extremes as follows.

> grain <- 30

> k <- 1

> p.hat <- mle.w3.bfgs$par

> p.se <- mle.w3.bfgs.se

> frame <- list(sha = seq(from = p.hat[1] - k * p.se[1],

+ to = p.hat[1] + k * p.se[1],

+ length = grain ),
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+ sca = seq(from = p.hat[2] - k * p.se[2],

+ to = p.hat[2] + k * p.se[2],

+ length = grain ),

+ loc = seq(from = p.hat[3] - k * p.se[3],

+ to = p.hat[3] + k * p.se[3],

+ length = grain ))

We now want to simplify the conditional maximization of the log-likelihood
across the suite of candidate values. We rewrite the call to optim and wrap
it in a function that allows us to pass the fixed values as an argument, one
by one, as well as the version of the likelihood wrapper that we wish to use
and an integer to identify which starting parameter estimates to retain. We
use the parameter estimates from the previous fit as the starting points to
provide some stability. We wrap the call to optim in the try function because
there is no guarantee that our arbitrarily selected fixed parameter values will
result in an optimizable function, and we want to handle the ensuing errors
gracefully.

> profile.fn <- function(x, fn, p.fix) {

+ out <- try(optim( p.hat[-p.fix],

+ fn,

+ method = "BFGS",

+ data = diameters,

+ fix = x,

+ control = list(fnscale = -1,

+ maxit = 1000)), silent = TRUE)

+ if (class(out) == "try-error") return(NA)

+ else return(out$value)

+ }

We can then call this function in sapply. We can now compute the profile
curves and plot them (Figure 5.3).

> sha.out <-

+ sapply(frame$sha, profile.fn, fn = all.w3$sha, p.fix = 1)

> sca.out <-

+ sapply(frame$sca, profile.fn, fn = all.w3$sca, p.fix = 2)

> loc.out <-

+ sapply(frame$loc, profile.fn, fn = all.w3$loc, p.fix = 3)

> ll.stack <- as.data.frame(rbind(cbind(sha.out, frame$sha),

+ cbind(sca.out, frame$sca),

+ cbind(loc.out, frame$loc)))

> names(ll.stack) <- c("ll","x")

> ll.stack$parameter <- rep(c("shape","scale","location"),

+ rep(grain,3))

Finally, plot the profiles using xyplot from the lattice package.
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> xyplot(ll ~ x | parameter,

+ type = "l",

+ ylab = "ll(x)",

+ scales = list(x="free"),

+ layout = c(3,1),

+ data = ll.stack)
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Fig. 5.3: One-dimensional profile plots for a three-parameter Weibull function fitted
to the 30 normally distributed, randomly generated diameter values.

These profile curves look quite poor. We would like to see inverted parabo-
las with the apex at the MLE. These graphs suggest that our efforts to fit the
three-parameter Weibull to the sample data do not necessarily yield a model
that can be extrapolated reliably. The profiles are far from symmetric about
the estimate, and indeed in some cases do not identify the same optimum
that the optimization procedure did. We speculate that the smallness of the
sample size may well play a role in this difficulty. It is an instructive exercise
to repeat the process with many more simulated observations — say 300 —
and see what effect a larger sample has on the model-fitting process. We leave
this exercise for the reader.

For higher-dimensional functions, it is also useful to examine the two-
dimensional profile plots to see how the information about pairs of parameter
estimates varies as a function of each of them. As above, this is a relatively
easy problem to set up. Taking the scale and shape parameters as a starting
point, we create a two-dimensional grid of values using the expand.grid

function.

> sha.sca.grid <- expand.grid(sha = frame$sha, sca = frame$sca)

We then use a slightly altered version of the call to sapply as the core of
a call to mapply, a multivariate equivalent.
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> sha.sca.grid$ll <-

+ with(sha.sca.grid,

+ mapply(function(sha, sca) {

+ out <- try(optim(p.hat[3],

+ all.w3$sca.sha,

+ method = "BFGS",

+ data = diameters,

+ fix = c(sha, sca),

+ control = list(fnscale = -1,

+ maxit = 1000)))

+ if (class(out) == "try-error") return(NA)

+ else return(out$value)

+ }, sha, sca))

Finally, we remove the combinations of values that resulted in a failure to fit.

> sha.sca.grid <- na.omit(sha.sca.grid)

The results are ready to present. We opt for a contour plot of the join log-
likelihood against the two parameters, using the contourplot function from
the lattice library. This function allows us to augment the contours with
points that represent the places where the model fit converged, providing
feedback on which portions of the parameter space were available.

> contourplot(ll ~ sha * sca, data = sha.sca.grid,

+ at = c(-92, -96,-100, -110),

+ xlab = "Shape", ylab = "Scale",

+ panel = function(x, y, z, ...) {

+ panel.contourplot(x, y, z, ...)

+ panel.points(x, y, col="darkgrey")

+ panel.points(p.hat[1], p.hat[2],

+ pch = 19, col = "black")

+ })

The outcome is Figure 5.4. This plot shows that a large proportion of the
sample space led to convergence failure for our chosen starting points. We may
have been able to obtain better results with a more thoughtful approach. The
parameter estimates are highly correlated, and the data do not provide much
assurance about their true values.

Again, it is an instructive exercise to repeat the process with many more
simulated observations — say 300 — and see what effect a larger sample has
on the model-fitting process. We leave this exercise for the reader.

This example suggests that the blithe application of maximum-likelihood
estimation to data may result in estimates that have poor properties, espe-
cially when sample sizes are small. Caution is recommended, and R provides
suitable tools for learning more about the circumstances.



172 5 Fitting Dimensional Distributions

Shape

S
ca

le

20

40

60

80

100

5 10 15 20

−92

−96

−96

−100

−100

−110

−1
10

−110

● ●

● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Fig. 5.4: Two-dimensional parameter profile plot for a three-parameter Weibull func-
tion fitted to the 30 normally distributed, randomly generated diameter values.

5.3.4 Sampling Weights

Often in forest inventory the sample trees are selected using variable-radius
plot sampling, which leads to their sample weights being different from one
another; specifically, the sampling weights are approximately proportional to
the tree’s basal area. In order to estimate the parameters of the distribution
appropriately, we need to incorporate the sampling weight into our param-
eterization of the distribution. Gove (2003) provides a useful discussion, as
well as MM and ML estimators for the parameters of the two- and three-
parameter size-biased Weibull pdf, where sampling may be proportional to
length or area. Here we focus on sampling proportional to area. A simpler
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correction is used for length-biased sampling; see Gove (2003) for further
details.

The alterations that are necessary to make the joint log-likelihood suitable
for area-biased estimation are as follows. We compute a correction to the log-
likelihood that allows for the fact that the observations have been drawn
with variable probability. This correction is the following function of the
parameters for area-biased sampling (equation (2), Gove, 2003):

μ ′
2 = β 2Γ (2/γ +1)+2αβΓ (1/γ +1)+α2 (5.5)

> ll.w3.sb2 <- function(p, data) {

+ gam <- p[1]

+ bet <- p[2]

+ alp <- p[3]

+ mu.prime.2 <- bet^2 * gamma(2/gam + 1) +

+ 2 * bet * gamma(1/gam + 1) * alp + alp^2

+ sum(log(dweibull3(data, gam, bet, alp))) -

+ log(mu.prime.2) * length(data)

+ }

We can now use optim to maximize the joint log-likelihood as we have
before, and can furthermore obtain asymptotic estimates of the standard
errors of the parameter estimates.

> mle.w3.sb2 <- optim( c(gamma = 1, beta = 5, alpha = 0),

+ ll.w3.sb2,

+ method = "BFGS",

+ data = diameters,

+ hessian = TRUE,

+ control = list(fnscale = -1,

+ maxit = 1000))

The function converges, providing the following estimates:

> mle.w3.sb2$par

gamma beta alpha

13.67537 68.21522 -16.45170

> sqrt(diag(solve(-mle.w3.sb2$hessian)))

gamma beta alpha

20.10398 100.20780 100.04163

The estimated standard errors for the parameter estimates are quite large
relative to the estimates themselves. The overarching message from the statis-
tics would appear to be that fitting a three-parameter Weibull function to
these diameters is a fairly perilous prospect.



Chapter 6

Linear and Non-linear Modeling

This chapter describes some of the tools that are available in R for fitting cer-
tain kinds of conditional distributions; that is, constructing models to predict
the behavior of one random variable given that the value of another one or
more is known. Examples of such models in forestry include height–diameter
models, diameter–volume models, and so on. Such models are of interest for
two reasons: in order to make predictions and in order to estimate and inter-
pret the parameters that describe the relationship. For example, a scientist
might wish to know whether or not coring trees affects their growth and mor-
tality, and how much; this problem is more naturally an interpretation and
estimation problem. Alternatively, a manager might wish to predict heights
for some trees for which only diameters and species are known; this problem
is a prediction problem. The intended application of the model intimately
affects the fitting process. Breiman (2001b) and the discussions that follow
are excellent reading on this topic.

6.1 Linear Regression

There are many excellent references that describe the theory and practice of
linear regression. Here we will provide enough information to motivate our
example and provide context for the analysis. For further reading, we suggest
Draper and Smith (1998), Harrell (2001), Weisberg (2005), and Gelman and
Hill (2007).

Broadly speaking, a goal of regression is to make a statement about the
distribution of the response variable Y conditional on the values of predictor
variable(s) X having some known value(s), F (Y | X1, . . . ,Xp).

Usually we are interested only in the conditional mean and the conditional
variance, and we ignore the higher-order moments such as the skew. Evidence
of residual skew or kurtosis in the data, conditional on the model, is taken
as a sign of poor model choice, and ameliorative action is usually taken, such
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as deploying a generalized linear model or making a transformation of the
response variable.

Furthermore, in performing, for example, ordinary least-squares linear re-
gression, we will assume that the conditional distribution of Y given X is
normal. The mean and variance are (jointly) a sufficient statistic for the nor-
mal distribution, and other moments are known and fixed. If this assumption
is untenable, then some alternative approach must be found, which we will
touch upon later.

So, we can simplify the expression of our model as

yi = f (xi;βββ )+ εi

where f is a known function of known predictor variables x and some unknown
parameters βββ . For linear regression, we write

yi = β0 +β1x1i + . . .+βpxpi + εi

That is, the β s are the gradients, or (partial) first derivatives, of the rela-
tionship between y and the xs. f is encapsulated by two model statements,

E (Y | X1, . . . ,Xp) = β0 +
p

∑
j=1

β jx ji

and

Var(Y | X1, . . . ,Xp) = σ2

This model is called a linear model because it is linear in the predictors.
Formally, a linear model is one for which none of the first derivatives of the
mean function with respect to each of the parameters contain any of the
parameters. Hence the linearity in the model label refers to the parameters,
not to the predictor variables.

Our goal is to find the best estimates of the β s and σ . We have to provide
some structure in order to do so. First, we have to choose what is meant
by best and develop an objective function that reflects the definition. For
example, we might say that we would like the estimates of the β s to be those
that minimize the sum of the squared residuals. This particular strategy is
known as least-squares estimation, also referred to as L2 minimization.

Other objective functions are possible and may be more appropriate. We
note in passing that the sum of absolute values of the deviations is an L1

criterion and the maximum of the absolute deviations is an L∞ criterion.
Least-squares estimation has some pleasant properties that are not immedi-
ately obvious, not least among which is that the sums of squares of various
portions of the model are additive.

We can construct these estimates using one of numerous methods. To mini-
mize the least-squares objective function, we could use brute force (numerical
minimization, using for example the Gauss–Newton algorithm) or, more ele-
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gantly, we could differentiate the sum of squared residuals with regard to the
β s, set these derivatives to 0, and solve the resulting system of simultaneous
equations, called the normal equations. Neither of these approaches is taken
by R because neither is necessarily numerically stable or efficient; by default
R uses QR-decomposition (Chambers and Hastie, 1992, Section 4.4.2).

It turns out that the least-squares parameter estimates are unbiased (see,
among many others, Weisberg, 2005), although we did not specify that they
had to be. Furthermore, the Gauss–Markov Theorem (see, among many oth-
ers, Casella and Berger, 1990) establishes that among all linear unbiased
estimates the least-squares estimates have the lowest possible variance; that
is, they are the most efficient. So, the least-squares estimates are referred to
as BLUEs, that is, Best Linear Unbiased Estimates.

However, if the population from which the residuals are sampled is nor-
mally distributed, then other useful facts hold. First, the least-squares esti-
mates are also normally distributed, which greatly simplifies the problem of
creating and interpreting interval estimates of the parameters. Second, the
least-squares estimates are now the minimum-variance estimates among all
possible unbiased estimators, not just the linear ones. Such estimates are
called minimum-variance unbiased estimators (MVUEs). These latter points
provide us motivation to check the assumption of the normality of the resid-
uals; if the regression assumptions are satisfied, then our model has better
statistical properties than if they are not satisfied. We may be able to ob-
tain unbiased estimates that have as low a variance as least-squares estimates
using some other algorithm, but not unbiased estimates that have lower vari-
ance.

Forming interval estimates and performing hypothesis tests on the popu-
lation parameters both require an estimate of the conditional variance, σ2.
This term can be estimated using the variance of the residuals. However,
the model assumes that the variance is constant. There are many ways that
this assumption could fail to be true, but in practice we really only worry
about one way: if the variance seems to change systematically with any of
the available predictor variables. If the variance changes systematically with a
variable, then we have to ask whether or not the interval estimates or the out-
comes of tests that we compute might change depending on X . That would
be an unsatisfactory outcome. Hence we check the assumption of constant
variance and take action if the assumption seems unreasonable. For example,
we may elect to use generalized linear modeling, or we may transform the
response variable, or use weighted least squares, or even try to model the
variance explicitly, if we have enough data and sufficient motivation.

A further concern in estimating the residual variance is that we need to
be sure that the data are valued appropriately; that is, the observations tell
us as much about the system as we hope they do. A key way in which this
assumption can fail to be true is if the population from which the residuals
are sampled has correlation structure, a situation that is usually informally
referred to as having correlated residuals. Although that seems like it might
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be a simple case to check, of course there are infinite ways that the residu-
als can be correlated, so again we only worry about a handful of correlation
structures, two of which we describe here. First, observations may be similar
because they are close together in space or time; for example, trees close to-
gether in a forest or measurements of a tree diameter close together in time.
This phenomenon is called autocorrelation. Second, observations may be sim-
ilar because there is a grouping structure and the observations belong to the
same group. Examples include pigs in a litter and students in a classroom.

The kind of correlation that we check for is usually suggested by the design
of the experiment or the structure of the dataset. In each of the cases, we
are sensitive to the possibility of unmodeled influences that are similar for
observations that are close or in groups. In practice, a model correction might
be made using generalized least squares, or a hierarchical model fit using, for
example, mixed-effects models. We discuss generalized least-squares models
further in Section 6.1.10 and mixed-effects models in Chapter 7.

Finally, the estimates, tests, and conclusions that we draw all stem from a
key assumption that the data actually do represent the population for which
we wish to draw inference. If the data as a whole do not represent the pop-
ulation, then the estimates are flawed. In order to provide some protection
against this outcome, we check to see whether single values or clusters of val-
ues seem to be having an undue effect upon the estimates. Also, we interpret
the parameter estimates carefully in the light of our knowledge about the
underlying system to be sure that we trust them. No amount of assumption
checking will provide any guarantees, however.

6.1.1 Example

We provide a demonstration of the use of regression in R to solve a biological
and natural resources problem: the construction of an allometric equation
that relates one dimension of an organism with another dimension. We will
use this example to motivate and link the following material.

Section 2.4.2 shows the data reading, cleaning, and analysis. We will con-
struct models to predict tree volume in cubic meters using tree diameter
measured in cm.

First, we plot the data using the following code. The data are plotted in
Figure 6.1. We use the par function with the argument las = 1 to make
the tick labels on the y-axis horizontal. Also, note our use of the expression
and paste functions in the label for the y-axis. See demo(plotmath) to learn
more about this topic.

> par(las = 1)

> plot(vol.m3 ~ dbh.cm,

+ data = sweetgum,
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+ xlab = "Diameter (cm)",

+ ylab = expression(paste("Volume (", m^3, ")")))
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Fig. 6.1: Scatterplot of volume against diameter for sweetgum data.

It is tempting at this point to immediately start thinking of ways that
the linear regression could fail and to try to identify the assumptions that
are likely to be contradicted. Some analysts may even begin with favored
transformations of the response variable. We try to avoid transformation if at
all possible. First, it is unusual, although not impossible, for transformation
to preserve the meaning of the model. That is, we mind the fact that the
model can play an important role as a mathematical representation of the
system that is being modeled. Transformation may result in a model with
better statistical properties but lacking the meaning inherent in the original
model. Second, transformation may not be necessary, depending on the model
being fitted and the dataset. Fitting models is inexpensive, and much can be
learned about the data and model from fitting the basic models to the raw
data and examining them. Also, it may well be that the base model and the
raw data combine in an acceptable way. So, we avoid tempting pre-emptive
measures. However, fitting models should not be used as a substitute for
thinking about the problem.
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6.1.2 Thinking about the Problem

We need to identify the scope of applications that the model will be used for.
In some settings, the scope of applications will be known, at least approxi-
mately, before the data are collected. Often the scope will change, or not be
fully formulated before modeling begins, and compromises will be called for.

Here, we wish to be able to predict an unobserved volume conditional on
a known diameter,

vi = β0 +β1 ×di + εi (6.1)

We would like to make an interval prediction and would like this interval
prediction to have good statistical properties. For example, we would like
our interval to be wide enough that it covers the true value with specified
confidence but be no wider than it really needs to be. We would like our
estimators to be unbiased. We would like our estimators to make as efficient
use of the data as possible, meaning that they should have minimum variance
among the class of unbiased estimators. To support our stated preferences,
we will make the following assumptions:

1. the linear model captures the relationship,
2. εi are independent,
3. εi have constant variance,
4. εi are normally distributed, and
5. the sample represents the population from which it was drawn.

The scope of applications of the model is important to know because it
affects what compromises we are willing to make in the modeling process,
which in turn affects how important the different model assumptions are. As
noted above, two fairly distinct applications for models are the prediction of
future values and the estimation of population or process parameters. Any
application that requires knowledge of the distribution of the estimator, such
as hypothesis testing and interval estimation, will demand that the assump-
tions about constant variance and normal residuals be satisfied to some degree
unless the analyst wishes to fall back on large-sample theory. Applications
that merely require point estimates will not be so stringent.

6.1.3 Fitting the Model

The lm function is used to fit least-squares regression.

> sweetgum.lm.d <- lm(vol.m3 ~ dbh.cm, data=sweetgum)
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This code fits the model vi = β0 +β1 × di + εi. Note that we did not specify
the intercept term; R includes it by default. To remove the intercept from
the model, we would instead write vol.m3 ~ dbh.cm - 1.

6.1.4 Assumptions and Diagnostics

We noted above that, in order for our estimators to have good statistical
properties, we need several assumptions to be true. Each desirable property
can be connected to one or more assumptions. Not all properties are necessary
to use the model; therefore, some assumptions will be less important than
others, depending upon the application.

There is no way to know whether these assumptions are true, but it is
possible to determine whether or not the assumptions are reasonable by us-
ing graphical diagnostics. Checking assumptions in this way distinguishes a
statistical analysis from the mathematical operation of just minimizing an
objective function.

The default graphical display, which is created by the plot function when
an object of class lm is passed as its first argument, produces four plots, and
two others can be obtained by using the which argument (Figure 6.2). Opin-
ions vary among statisticians as to the utility and necessity of the following
graphics. We find them useful. We obtain the diagnostics using the following
code. Note the use of par to set up a 2×2 matrix of plots with appropriately
sized margins.

> par(mfrow = c(2, 2), mar=c(4, 4, 3, 1), las = 1)

> plot(sweetgum.lm.d)

The default graphical representation of the model provides plots of the
model residuals, scaled and manipulated in various ways as described below.
Smooth lines are superimposed to aid interpretation; however, in cases where
the sample size is small, these smooth lines can overemphasize departures
from acceptable patterns, so they should not be overinterpreted. As a remedy,
R will allow the plot function to pass those arguments that should be passed
to the functions that it calls. Hence, a less wiggly set of smooth lines can be
obtained by including, say, span = 2 in the call to plot. Also, keep in mind
that unstandardized residuals will have non-constant variances by design.

We interpret these diagnostic graphics as follows.

� The top-left panel shows a plot of the residuals against the fitted values,
with a smooth curve superimposed. Here we are looking for evidence of
curvature and outliers. Our plot shows curvature, which we are concerned
about, but no points that are particularly unlike the others. Curvature in
this plot is of concern because it suggests possibly substantial local bias in
the model. Also, curvature contradicts the first assumption above. These



182 6 Linear and Non-linear Modeling

0 1 2 3 4 5

−0.5

0.0

0.5

1.0

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

Residuals vs Fitted

13
39

26

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

−2 −1 0 1 2

−1

0

1

2

Theoretical Quantiles
S

ta
nd

ar
di

ze
d 

re
si

du
al

s

Normal Q−Q

13
39

26

0 1 2 3 4 5

0.0

0.5

1.0

1.5

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Scale−Location
13

39
26

0.00 0.04 0.08 0.12

−2

−1

0

1

2

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

Cook's distance

0.5

Residuals vs Leverage

26

13
39

Fig. 6.2: Diagnostic plots for the regression of volume against diameter.

residuals are not standardized, so any non-constant variation in this plot
does not concern us.

� The top-right panel shows a quantile-quantile (q-q) plot of the standard-
ized residuals against the normal distribution. Here the ideal plot is a
straight line, although modest departures from straightness are often ac-
ceptable (due to large-sample theory). Departures from a straight line
in this plot may indicate non-normality of the residuals or non-constant
variance, or both. These conditions are imposed by the third and fourth
assumptions above. Here, all points are in a reasonably straight line.

� The bottom-left panel shows the square root of the absolute residuals
against the fitted values, along with a smooth line. Departures from a hor-
izontal line signify heteroskedasticity, contradicting the third assumption.
Here we have modest evidence of changing variance, but it is not consis-
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tent. Interpretation of this graph will be complicated by variability in the
mean of the residuals, which we clearly observe in the top-left panel.

� The bottom-right panel shows a plot of the leverage of the observa-
tions against the standardized residuals. These are the two components
of Cook’s distance, which is a statistic that reports the overall effect on
the parameter estimates of each of the observations (Cook, 1977). So far
as observations are concerned, being a large residual or a high leverage
point alone is no guarantee of having a substantial impact on the param-
eter estimates. A reasonably well accepted rule of thumb is that Cook’s
distances greater than 1 should attract our attention. Contours of these
distances1 at 0.5 and 1.0 are added to the graph by default to assist such
an interpretation. This plot provides us with some information about the
fifth assumption above. Here we see no evidence to suggest that more
than one population has been sampled or that the population that has
been sampled is unduly heterogeneous.

Interpretation of diagnostics is as much an art as it is a science. On av-
erage, our experience is that more experienced data analysts tend to be less
concerned than less experienced analysts about deviation from the strict ex-
pectations. Whether this greater relaxation reflects experience or fatigue re-
mains a point of conjecture. However, training one’s eye is instructive and
easy: generate a clutch of diagnostic plots, for example q-q plots, on data
generated randomly under the null hypothesis.2

R does not automatically provide diagnostics that are relevant to testing
the assumption of independence. If we suspect that residual dependence is
a possibility, then we would fit a model that accommodates it and examine
estimates of its magnitude. For example, we might check for clustering by
fitting a mixed-effects model and estimating the intra-class correlation (see
p. 241) and check autocorrelation by fitting a generalized least-squares model
with an autocorrelation function using the gls function of the nlme package
(see Section 6.1.10).

Overall, the panels show worrying curvature. We will now quash our evil
thoughts about transformations. In fact, it is natural to think of the following
allometric function in the context of predicting volume from diameter:

yi = β0x
β1
i × εi (6.2)

It is easy to fit something like this model, although with additive instead of
multiplicative errors, as a non-linear least-squares model (see Section 6.2.9).
For the moment, we take log transformations of the response and the predictor
variables and use those as the predictor and response variables for a new linear
model.

1 These contours should probably be referred to as isoCooks.
2 For example, par(mfrow=c(4,4)); for (i in 1:16) qqnorm(rnorm(20)).
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> sweetgum$log.vol.m3 <- log(sweetgum$vol.m3)

> sweetgum$log.dbh.cm <- log(sweetgum$dbh.cm)

> sweetgum.lm.ld <- lm(log.vol.m3 ~ log.dbh.cm,

+ data = sweetgum)

Again, we examine the model diagnostics (Figure 6.3).

> par(mfrow = c(2, 2), mar=c(4, 4, 3, 1), las=1)

> plot(sweetgum.lm.ld)
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Fig. 6.3: Diagnostic plots for the regression of log volume against log diameter.

Overall, these diagnostics are much more acceptable than those presented
in Figure 6.2. There is some evidence of lack of fit in the top-left panel, but
it is probably not worth worrying about for the moment. It might be worth
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experimenting with a few other terms in the model to see if the lack of fit
can be ironed out, but to do so here is beyond the scope of this chapter.

6.1.5 Examining the Model

Having satisfied ourselves that the model is at least reasonable, by using the
regression diagnostics, we can examine parameter estimates and summary
statistics. The summary function reports a number of useful statistics. We
dissect it as follows.

> summary(sweetgum.lm.ld)

First, the fitted model call is identified. This identification may seem redun-
dant, but it is useful when the model is more complex and has been specified
using some of the convenient shortcuts that are available.

Call:

lm(formula = log.vol.m3 ~ log.dbh.cm, data = sweetgum)

The distribution of the residuals is then summarized by the minimum, max-
imum, median, and two quartiles. Ideally the distribution will be symmetric.

Residuals:

Min 1Q Median 3Q Max

-0.286306 -0.089245 0.008477 0.071497 0.249096

A regression table is presented, including the parameter estimates, their es-
timated standard errors, the t-statistic for the two-sided null hypothesis that
the population or process parameter is actually 0, and the p-value appropriate
to that same test.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.80452 0.14542 -53.67 <2e-16 ***

log.dbh.cm 2.22675 0.04023 55.35 <2e-16 ***

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Finally, some summary statistics of the model fit are presented: the estimated
standard deviation of the errors, the multiple and adjusted R-squared values,
and the F-statistics and associated p-value for the null hypothesis that the
model is no better than the sample mean of the response variable.

Residual standard error: 0.1163 on 37 degrees of freedom

Multiple R-squared: 0.9881, Adjusted R-squared: 0.9877

F-statistic: 3063 on 1 and 37 DF, p-value: < 2.2e-16
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An informal way to assess the usefulness of the model is to compare the
marginal and conditional variabilities of the response variable — e.g., compare
the standard deviation of the response variable with the standard deviation of
the residuals. Here there is a big difference between the marginal variability,
which is 1.05 (units are logm3), and the conditional variability, which is 0.12
(units are logm3). The model appears to be a useful one. A formal comparison
would require the use of cross-validation or a similar strategy (see, e.g., Hastie
et al., 2009).

We can obtain interval estimates of the model parameters in several ways.
For example, we can compute estimates directly from a portion of the output
of the summary statement. Here we capture the output as an object, convert
it to a data frame, and then manipulate it to obtain an interval estimate for
the slope.

> reg.table <- as.data.frame(coef(summary(sweetgum.lm.ld)))

> reg.table$Estimate[2] +

+ reg.table$�Std. Error�[2] *

+ qt(c(0.025, 0.975), summary(sweetgum.lm.ld)$df[2])

[1] 2.145230 2.308270

The same quantities can be more easily obtained using the confint function:

> confint(sweetgum.lm.ld)

2.5 % 97.5 %

(Intercept) -8.099178 -7.509869

log.dbh.cm 2.145230 2.308270

In order to interpret the interval estimates appropriately, it is essential
that we check the assumptions that underpin them. Specifically, the interval
estimates are made conditional on the assumption that the sampling distribu-
tion of the parameter estimate is normal with mean equal to the population
parameter and constant variance. For this to be true, we need the assump-
tions 1–5 listed on p. 180 to be true or that the sample size be sufficiently
large that the Central Limit Theorem can be invoked in place of assumption 4
. These assumptions are assessed using the graphical diagnostics presented
in Figure 6.2 as well as our knowledge about the system or process that the
data represent and our knowledge of the protocols by which the data were
collected.

More general manipulation of the parameter estimates is also possible. Al-
though it seems cumbersome, the estimable function of the gmodels package
provides great flexibility in that it constructs point and interval estimates for
arbitrary linear combinations of the parameter estimates for a wide range of
different model objects (Warnes, 2010). The function requires a specification
of the linear combinations of interest, but the specification can be in one of a
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number of formats. Here we opt for a matrix with named rows and truncate
the output. See the estimable help file for more information.

> library(gmodels)

> estimable(sweetgum.lm.ld,

+ rbind(Intercept = c(1,0),

+ Slope = c(0,1)),

+ conf.int = 0.95)[,c(1,2,4,6,7)]

Estimate Std. Error DF Lower.CI Upper.CI

Intercept -7.804523 0.14542291 37 -8.099178 -7.509869

Slope 2.226750 0.04023317 37 2.145230 2.308270

We now diverge from the example to discuss elements of R that are sug-
gested by the preceding code. Readers that are uninterested in the internals
of R should skip to the next section.

We can identify some of the object classes that have a corresponding
estimable method via the methods function.

> methods(estimable)

[1] estimable.default* estimable.mer* estimable.mlm*

Non-visible functions are asterisked

However, the list is not definitive because the default function may handle
a wide range of object types. What do we do? The next step would be to
examine the source code of the default method by printing it,

> estimable.default

Error in eval(expr, envir, enclos) : object �estimable.default�

not found

but the code seems to be hidden. Therefore we call on the getAnywhere

function with success.

> getAnywhere(estimable.default)

A single object matching �estimable.default� was found

It was found in the following places

registered S3 method for estimable from namespace gmodels

namespace:gmodels

with value

function (obj, cm, beta0, conf.int = NULL, show.beta0,

joint.test = FALSE, ...)

And, scrolling down through the code, we find the list of classes that the
function is used for.
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"obj must be of class �lm�, �glm�, �aov�, �lme�, �gee�, �geese�

or �nlme�"

We have included this exercise because it is an instructive demonstration
of the kind of digging that is required to be able to use R effectively. We
can learn a great deal about the environment from scrutiny. Questions that
seem insoluble can often be easily resolved by examining the object and
asking straightforward questions about it: What are its classes, what are
its dimensions, and what are its contents?

6.1.6 Using the Model

Our goal in constructing this model was to provide a means to obtain a
prediction of volume for a tree for which we know only the diameter.

We note that the effect of fitting an unbiased model to log-transformed
data and back-transforming to the natural scale results in a model that forms
biased predictions (see Jensen, 1906). Flewelling and Pienaar (1981) provide
some discussion and candidate corrections. The parameters that are used by
the corrections have to be estimated from the model in any case, and this
estimation will add uncertainty to the predictions. Here an estimate of the
multiplicative correction is

exp

(
σ̂2

2

)
(6.3)

> exp(summary(sweetgum.lm.ld)$sigma^2 / 2)

[1] 1.006784

using the second candidate of Flewelling and Pienaar (1981). The reader may
wish to estimate the confidence interval for the correction, bearing in mind
that R provides the inverse cdf for the χ2 distribution as qchisq and that
(n− p)s2/σ2 ∼ χ2

n−p. We also note the high importance of the assumption of
constant variance for the sensible application of this bias correction.

We can write a function to ease the use of the model for making corrected
predictions. This function will accept one or more diameters, in cm, and
predict the corresponding volume or volumes, approximately corrected for
bias.

> sweetgum.vol.hat <- function(dbh.cm,

+ ht.dbh.lm = sweetgum.lm.ld,

+ correct = TRUE) {

+ sweetgum.hat <- data.frame(dbh.cm = dbh.cm)

+ sweetgum.hat$log.dbh.cm <- log(sweetgum.hat$dbh.cm)

+ correction.2 <- ifelse(correct,
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+ exp(summary(ht.dbh.lm)$sigma^2 / 2),

+ 1)

+ sweetgum.hat$vol.m3 <-

+ exp(predict(ht.dbh.lm, newdata = sweetgum.hat)) *

+ correction.2

+ return(sweetgum.hat$vol.m3)

+ }

We can then use the function

> sweetgum.vol.hat(10, sweetgum.lm.ld)

[1] 0.06921896

as inputs, as well as single values. Such code is called vectorized and will
execute much more quickly than an equivalent operation within a loop.

> sweetgum.vol.hat(c(10,12), sweetgum.lm.ld)

[1] 0.06921896 0.10388239

We can also omit the correction to see how large it is for these trees.

> sweetgum.vol.hat(c(10,12), sweetgum.lm.ld, correct = FALSE)

[1] 0.06875256 0.10318242

We note in passing that we could simplify the use of the function even fur-
ther by omitting the second argument and identifying our lm object directly
in the predict function. R would search the environment that has been cre-
ated by the function for the object and upon failing to find it would search
the parent environment from which the function was called. R would find the
object there and either use that object (if no changes are being made) or a
copy of it if changes are to be made. This nested search path provides an
example of lexical scoping. Lexical scoping permits complicated sets of op-
erations to be expressed and performed very easily. However, lexical scoping
contains traps for the unwary; it is easy to perform operations on the wrong
object.

Figure 6.4 presents a view of the data and the model. It replicates Fig-
ure 6.1 and adds the fitted line by using the curve function.

> par(las = 1)

> plot(vol.m3 ~ dbh.cm,

+ data = sweetgum,

+ xlab = "Diameter (cm)",

+ ylab = expression(paste("Volume (", m^3, ")")))

> curve(sweetgum.vol.hat, from=0, to=100, add=TRUE)
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Fig. 6.4: Scatterplot of volume against diameter for sweetgum data with fitted model
superimposed.

In order for curve to work, we needed to be sure that all arguments for
sweetgum.vol.hat other than the first were provided default values in the
function definition. Default values are provided to the function using the
following protocol in the declaration: argument = default.

We can use the predict function to obtain prediction intervals for values
of interest of the predictor variables. For example,

> exp(predict(sweetgum.lm.ld,

+ newdata = data.frame(log.dbh.cm = log(c(10, 20))),

+ interval = "prediction"))

fit lwr upr

1 0.06875256 0.05298514 0.08921207

2 0.32181591 0.25229082 0.41050038

These estimates are not corrected for bias, although extending the function
above to provide bias-corrected interval estimates is a straightforward exer-
cise.

We now take another brief detour into the workings of R. Again, we direct
the disinterested reader to the end of the section.

Model interrogation is enriched if we take advantage of the fact that the
model that we have fitted is an object and the summary of that model fit is
a different object. The following discussion pertains to S3 classes. Complete
coverage of R’s facilities for object-oriented programming, including S3 and
S4 classes, is beyond the scope of this book.
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> names(sweetgum.lm.ld)

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "xlevels"

[10] "call" "terms" "model"

> names(summary(sweetgum.lm.ld))

[1] "call" "terms" "residuals"

[4] "coefficients" "aliased" "sigma"

[7] "df" "r.squared" "adj.r.squared"

[10] "fstatistic" "cov.unscaled"

The reader may also wish to try the str function on these two objects.
Some high-level functions, called methods, exist to enable the reliable ex-

traction of model information, for example, the residuals and fitted func-
tions are methods that will extract the residuals and the fitted values, re-
spectively.

We can learn what methods are available for our object as follows: first
identify the class of the object, and then call the methods function using the
class as the argument. Here we print only the first few.

> class(sweetgum.lm.ld)

[1] "lm"

> head(methods(class = class(sweetgum.lm.ld)))

[1] "BIC.lm" "add1.lm" "addterm.lm" "alias.lm"

[5] "anova.lm" "attrassign.lm"

We can also extract or otherwise manipulate the attributes of some objects
by means of the $ sign:

> sweetgum.lm.ld$call

lm(formula = log.vol.m3 ~ log.dbh.cm, data = sweetgum)

> summary(sweetgum.lm.ld)$sigma

[1] 0.1162833

Generally, code authors prefer that attributes be extracted using custom-
written extractor functions. An example extractor function to extract the
estimate of the standard deviation of the residuals might look like this:

> sigma <- function(x) {

+ if (class(x) == "lm") {

+ return(summary(x)$sigma)

+ } else {
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+ stop("Object is not a linear model (class �lm�).")

+ }

+ }

> sigma(sweetgum.lm.ld)

[1] 0.1162833

The advantage of using custom extractors is that the code author can
change the object structure and methods as necessary without unduly incon-
veniencing the code user. An advantage of using such functions is that there is
a consistent interface, and options such as standardizing the residuals can be
coded and performed as needed. However, extractor functions are not always
available.

6.1.7 Testing Effects

Statistical theory offers numerous different approaches for assessing the con-
tribution of a predictor variable to the model, some of which are related.
Statistical tests involve, by and large, a comparison of a statistic against a
standard. The standard is usually calculated in a way to represent no effect,
or more generally the null effect, encapsulated as the null hypothesis. If the
statistic and the standard are distinctly different, then the hypothesis is re-
jected. A key point is that the standard is almost always determined using
assumptions.

The assumptions that were important for the qualities of the point esti-
mators of the parameters are also important for the interval estimators and
tests.

The summary function for the linear model object provides a coefficient
table that includes t-tests of the null hypothesis that the parameter is zero
(see p. 185). This specific test may or may not have any useful interpretation
in the context of model application. However, the t-test is a way to test
whether or not the term should be included (for some values of should). The
table can also be abstracted from the summary object as follows.

> summary(sweetgum.lm.ld)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.804523 0.14542291 -53.66777 1.064901e-36

log.dbh.cm 2.226750 0.04023317 55.34614 3.454727e-37

Here we see no evidence to suggest that either parameter is redundant in the
model.

R also provides the anova function, which produces F-tests on the sums
of squares that are attributable to each term. If the predictor variables are



6.1 Linear Regression 193

independent (orthogonal), then the order of the terms does not matter. If they
are not orthogonal, then the terms are tested sequentially in descending order;
that is, each term is tested assuming that the terms above it are included in
the model. The following code produces a standard analysis of variance table.

The following example uses the Upper Flat Creek data, which were intro-
duced in Section 2.4.1.

> hd.lm.1 <- lm(I(log(height.m)) ~ dbh.cm * species,

+ data = ufc.tree,

+ subset = height.m > 0)

> anova(hd.lm.1)

Analysis of Variance Table

Response: I(log(height.m))

Df Sum Sq Mean Sq F value Pr(>F)

dbh.cm 1 40.477 40.477 917.6248 < 2.2e-16 ***

species 11 2.260 0.205 4.6586 7.55e-07 ***

dbh.cm:species 10 1.161 0.116 2.6331 0.003818 **

Residuals 603 26.598 0.044

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Note the use of the I function in the latter approach. This tells R to
interpret the function in the usual way, not in the context of the linear model.
The difference becomes more obvious when we think about the double usage
that R is placing upon our familiar operators. For example, * usually signifies
multiplication, but in the linear model it means ‘include main effects and
interaction’. Likewise, + usually means addition, but in the linear model it is
used to separate the additive terms in the model statement. This phenomenon
is called operator overloading. So, in order to be sure that R will interpret
our instructions arithmetically, we wrap them in I.

The anova function can also be used to compare models by using the
whole-model test. We fit a simpler model and then compare the simpler and
more complex models as follows.

> hd.lm.2 <- lm(I(log(height.m)) ~ dbh.cm,

+ data = ufc.tree,

+ subset = height.m > 0)

> anova(hd.lm.1, hd.lm.2)

Analysis of Variance Table

Model 1: I(log(height.m)) ~ dbh.cm * species

Model 2: I(log(height.m)) ~ dbh.cm

Res.Df RSS Df Sum of Sq F Pr(>F)

1 603 26.599
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2 624 30.020 -21 -3.4219 3.6941 7.594e-08 ***

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

R uses an algorithm to control the order in which terms enter a model. The
algorithm automatically respects parameter hierarchy in that all interactions
enter the model after the main effects, and so on. However, sometimes we wish
to change the order in which terms enter the model. This may be because we
are interested in testing certain terms while other terms are included in the
model. For example, using the npk dataset provided by MASS (Venables and
Ripley, 2002), imagine that N and P are design variables and we wish to test
the effect of K in a model that already includes the N:P interaction.

> require(MASS)

> data(npk)

> anova(lm(yield ~ block + N * P + K, npk))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block 5 343.30 68.659 4.3911 0.012954 *

N 1 189.28 189.282 12.1055 0.003684 **

P 1 8.40 8.402 0.5373 0.475637

K 1 95.20 95.202 6.0886 0.027114 *

N:P 1 21.28 21.282 1.3611 0.262841

Residuals 14 218.90 15.636

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

The preceding code fails to provide tests of the terms of interest in the
desired order because of R’s effect-order algorithm. To force the order in
which the effects enter the model, we must use the terms function.

> anova(lm(terms(yield ~ block + N * P + K,

+ keep.order = TRUE), npk))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block 5 343.30 68.659 4.3911 0.012954 *

N 1 189.28 189.282 12.1055 0.003684 **

P 1 8.40 8.402 0.5373 0.475637

N:P 1 21.28 21.282 1.3611 0.262841

K 1 95.20 95.202 6.0886 0.027114 *

Residuals 14 218.90 15.636
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---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Happily, we learn that the order of the terms makes no difference to our
inference in this case. A balanced dataset is a wonderful thing!

6.1.8 Transformations

Sometimes the modeler has biological or statistical reasons to change the
nature of the data that are being modeled. Such transformations can be done
either by creating a new variable in the data frame with the appropriate
function or by making the transformation inside the call to the model.

> ufc.tree$log.height.m <- log(ufc.tree$height.m)

> hd.lm.4a <- lm(log.height.m ~ dbh.cm * species,

+ data = ufc.tree,

+ subset = height.m > 0)

> hd.lm.4b <- lm(I(log(height.m)) ~ dbh.cm * species,

+ data = ufc.tree,

+ subset=height.m > 0)

Transformation can be very useful, but it is not without cost. We believe
that if possible it is best to work in the units that will make the most sense
to the person who uses the model. Of course, it is possible to back-transform
arbitrarily, and correct for bias, but why do so if it is unnecessary? There
are certainly circumstances where transformation is called for, but often a
more appropriate and satisfying strategy is available, whether that be fitting
a generalized linear model or an additive model or performing a small Monte
Carlo experiment on the residuals and placing trust in the Central Limit
Theorem.

6.1.9 Weights

We have been analyzing the UFC data assuming that each observation is
equally informative about the population. However, although the sample trees
may be considered a random sample, they are not selected with equal prob-
ability, and furthermore they are clustered in location because they were
selected using a variable-radius plot sample. How much difference to the pa-
rameter estimates does this sample design make? Here we will assess the effect
of the sample weights. We will examine tools that more formally illuminate
the effect of clustering upon our parameter estimates in the next chapter.
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Recall that, in a variable-radius plot, the probability of selection of a tree
is proportional to its basal area. We can fit a model that accommodates this
effect as follows.

> hd.lm.5 <- lm(height.m ~ dbh.cm * species,

+ weights = dbh.cm^-2,

+ data = ufc.tree)

Now we may wish to know what effect this change of weights has on our
parameter estimates. To pull out estimates of each slope and intercept, we
can use the estimable function provided in the gmodels package, but for
models that have only one categorical predictor variable, there is a hack, a
simpler way to obtain them. We refit the models with the intercept and, if
necessary, the slope explicitly removed from the model statement. That is,

> unweighted <-

+ coef(lm(height.m ~ dbh.cm * species - 1 - dbh.cm,

+ data = ufc.tree))

> weighted <-

+ coef(lm(height.m ~ dbh.cm * species - 1 - dbh.cm,

+ weights = dbh.cm^-2, data = ufc.tree))

Note that altering the model in this way (that is, fitting the model with
the intercept omitted) distorts the meaning of much of the summary output,
so we advocate its use only for expediting the extraction of specific parameter
estimates.

We can now plot these estimates in various more or less informative ways.
The following code constructs Figure 6.5, which provides a compact graphi-
cal summary of the effects of weighting. We use the text function to place
symbols and the abline function to provide an x = y line for the purposes of
comparison.

> intercepts <- 1:10; slopes <- 11:20

> par(mfrow = c(1,2), las = 1, mar = c(4,4,3,1))

> plot(unweighted[intercepts], weighted[intercepts],

+ main = "Intercepts", type = "n",

+ xlab = "Unweighted", ylab = "Weighted")

> abline(0, 1, col="darkgrey")

> text(unweighted[intercepts], weighted[intercepts],

+ levels(ufc.tree$species))

> plot(unweighted[slopes], weighted[slopes],

+ main = "Slopes", type = "n",

+ xlab = "Unweighted", ylab = "Weighted")

> abline(0, 1, col = "darkgrey")

> text(unweighted[slopes], weighted[slopes],

+ levels(ufc.tree$species))
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Fig. 6.5: Summary of effect of sample weights upon species-specific height–diameter
parameter estimates for UFC data.

The effect of weighting upon the parameter estimates appears to be pretty
substantial. This effect can be interpreted as telling us that the smaller and
the larger trees require different models because the parameter estimates
change when the small trees are weighted more heavily.

6.1.10 Generalized Least-Squares Models

Another solution to the problems of non-constant variance and auto-correlated
residuals is to explicitly include those elements in the model. If these elements
are included as components of the model, then the assumptions are more
likely to be satisfied, the parameter estimators will have better statistical
properties, and the model may be more informative.

One convenient way to fit linear models that include these components
is to use the gls function of the nlme package (Pinheiro and Bates, 2000).
The model expression and manipulation is largely identical to that of lm, but
other arguments are possible. For example, to add a fitted variance model to
the sweetgum volume function, we would use the code

> library(nlme)

> sweetgum.gls.ld <- gls(log.vol.m3 ~ log.dbh.cm,

+ weights = varPower(form = ~ dbh.cm),

+ data = sweetgum)

The model that this code has fitted is the same as above, except that
we no longer assume that the variance of the residuals is constant. Instead,
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we assume that the variance of the residuals is some power of the diameter.
Specifically, we assume that

Var(εi) = σ2|di|2δ (6.4)

where σ2 and δ are estimated from the data (see Pinheiro and Bates, 2000,
p. 210). We can examine the model in the usual way.

> summary(sweetgum.gls.ld)

Generalized least squares fit by REML

Model: log.vol.m3 ~ log.dbh.cm

Data: sweetgum

AIC BIC logLik

-41.61428 -35.17060 24.80714

Variance function:

Structure: Power of variance covariate

Formula: ~dbh.cm

Parameter estimates:

power

-0.2801518

Coefficients:

Value Std.Error t-value p-value

(Intercept) -7.760255 0.15079627 -51.46185 0

log.dbh.cm 2.214602 0.04045249 54.74575 0

Correlation:

(Intr)

log.dbh.cm -0.993

Standardized residuals:

Min Q1 Med Q3 Max

-2.24372393 -0.80677668 0.09360657 0.56845164 1.93350960

Residual standard error: 0.3124869

Degrees of freedom: 39 total; 37 residual

The variance function is now taken into account for all reported summaries
of the model. Standardized residuals will be standardized conditional on this
model, for example. They are obtained by including the type = "pearson"

argument to the call to residuals.
We can even obtain an approximate test of the improvement of the quality

of the model by using the anova function, so long as we include the gls-fitted
object as the first argument.

> anova(sweetgum.gls.ld, sweetgum.lm.ld)
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Model df AIC BIC logLik Test

sweetgum.gls.ld 1 4 -41.61428 -35.17060 24.80714

sweetgum.lm.ld 2 3 -42.44004 -37.60728 24.22002 1 vs 2

L.Ratio p-value

sweetgum.gls.ld

sweetgum.lm.ld 1.174237 0.2785

The p-value above suggests poor support in the data for the inclusion of
a variance function that depends on the predictor variable.

The gls class has a number of useful methods. Use

> methods(class = "gls")

to discover them. Pinheiro and Bates (2000) is essential reading.

6.2 Non-linear Regression

One of the unsatisfying characteristics of linear models is that we are con-
strained in how the parameters and coefficients can interact. We have had
to ensure that the normal equations, which are the first derivatives of the
objective function with respect to the coefficients, were independent of the
coefficients. This constraint has precluded us from using a wealth of biolog-
ically realistic model forms. There have also been advantages: we have been
guaranteed that any inference has been exact, conditional on the assumptions
and the model, and that fitting has required one step only and no starting
values. However, it is arguably better to get an approximate answer to a
meaningful question than to get an exact answer to an approximation to a
meaningful question.3

With non-linear model fitting, we can deploy classes of models that do
not have such a restriction. This broader stance allows us to choose model
forms that we feel genuinely represent the underlying processes in some way,
which in turn allows us to think about the fitting process in more than purely
empirical ways.

As before, we do not present the theory here, as that has been covered more
effectively elsewhere. Recommended reading includes Ratkowsky (1983), Gal-
lant (1987), Bates and Watts (1988), Schabenberger and Pierce (2002), and
Seber and Wild (2003).

Examples of non-linear models that might be relevant in forestry and nat-
ural resources include:

� change-point models
� plateau models
� allometric models

3 This quotation is a first-order approximation to Tukey (1962).
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� growth models

Schabenberger and Pierce (2002) charge that researchers tend to avoid
non-linear models because of discomfort with the messiness of implementa-
tion. The messiness is unavoidable; however, non-linear models are parsimo-
nious, incorporate limits, and can be parameterized so that parameters will
have a direct interpretation.

We consider non-linear models with one continuous predictor. We write

yi = f (xi,β )+ εi (6.5)

where β is a p+1-length vector of parameters; e.g., β = (β0,β1, . . . ,βp)
′.

This model statement is sufficient to find least-squares estimates: we simply
need to find those values of β that minimize the sum of squared deviations
between the observed yi and the fitted yi. Furthermore, the least-squares
estimates of the parameters are asymptotically normally distributed if the
following assumptions hold:

1. Var(εi) = σ2, a constant.
2. εi are independent.
3. εi are normally distributed.

As in the linear model case, each of the assumptions play different roles
and are of varying importance depending on the purpose to which the model
will be put. Note that the assumption of zero mean for the errors depends on
whether or not an additive constant is included in f .

6.2.1 Example

As in the previous section, we will motivate non-linear modeling via an exam-
ple. Our data are Norway spruce measurements drawn from von Guttenberg
(1915), kindly provided to us by Professor Boris Zeide. Our goal is, in the
first instance, to construct a model that predicts tree diameter as a function
of age. The data import and cleaning are documented in Section 2.4.4.

6.2.2 Thinking about the Problem

We start with a plot of the trajectories of diameter growth. The following
code uses Hadley Wickham’s qplot function from the ggplot2 package in R,
documented in Wickham (2009), to produce Figure 6.6.

> library(ggplot2)
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> qplot(x = age.bh, y = dbh.cm, group = tree,

+ linetype = site, facets = ~ location,

+ xlab = "Age (y)", ylab = "Dbh (cm)",

+ geom = "line",

+ data = gutten) +

+ scale_x_continuous(breaks = 40 * (0:3)) +

+ scale_y_continuous(breaks = 10 * (0:5))

Age (y)

D
bh

 (
cm

)

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

1

4

7

0 40 80 120

2

5

0 40 80 120

3

6

0 40 80 120

site

1

2

3

4

5

Fig. 6.6: Diameter–age trajectories for von Guttenberg’s Norway spruce data. The
panels represent locations and the line types represent sites.

The reader may prefer to substitute color = site for linetype = site

in the code.
After inspecting Figure 6.6, we shall use a simple non-linear model that

passes through the origin and provides an asymptote. Passing through the
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origin is reasonable as a starting point because, by definition, dbh is non-zero
only after age at breast height is non-zero. That may prove to be an ugly
constraint, however. A candidate model is then

yi = φ1 ×
[

1− exp

(
−xi log2

φ2

)]
+ εi (6.6)

where φ1 is the fixed, unknown asymptote and φ2 is the fixed, unknown time
until the tree reaches half its predicted maximum size (see Pinheiro and Bates,
2000, who use a different parameterization). Note that the model omits an
additive constant, so we can’t expect the residuals to have zero mean and we
may take substantial deviation of the residuals from zero mean to be evidence
of lack of fit.

6.2.3 Fitting the Model

Fitting non-linear models is an iterative procedure; in order to calculate esti-
mates of the parameters, we need to have existing estimates. So, we require a
starting point for the estimates, a numerical rule for updating the estimates,
and a stopping rule.

The principle of least squares still underpins parameter estimation: we
wish to minimize the sum of squares of deviations between the observations
and the predictions. That is, we want to find the value θ̂ that minimizes

S(θ) =
n

∑
i=1

(yi − f (xi,β ))
2

Two parameter-estimation strategies are popular: Gauss–Newton and
Newton–Raphson. The differences between the two are important: the Gauss–
Newton algorithm requires the calculation of first derivatives, and the Newton–
Raphson requires the calculation of first and second derivatives. If the resid-
uals are small, then the Gauss–Newton algorithm will converge more rapidly
than Newton–Raphson, but if the residuals are large, then it may not converge
at all. R’s non-linear model fitting function, nls, uses the Gauss–Newton al-
gorithm by default.

In order to fit a non-linear model, we generally need to construct our own
non-linear model function. We can do this simply by constructing a function
that produces the appropriate predictions given the inputs. However, fitting
the model turns out to be more efficient if we can also pass the first and
maybe second derivatives to the function as well. Writing a function to pass
the predictions and the derivatives is simplified by using the deriv function.
NB: R provides some simple prepackaged models, about which we will learn
more later.
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Our use of deriv() requires three things: a statement of the function, a
vector of parameter names for which derivatives are required, and the tem-
plate of the function call.

> dbh.growth <-

+ deriv(~ asymptote * (1 - exp(-log(2)/scale * x)),

+ c("asymptote","scale"),

+ function(x, asymptote, scale){},

+ hessian = TRUE)

The Hessian is the matrix of estimated second partial derivatives. We asked
for the Hessian to be returned as well because it will be used later in diagnostic
code that determines the curvature of the model.

Having written the non-linear model as a function, we should try it out.
We select a handy tree:

> handy.tree <- subset(gutten, tree.ID == "1.1")

In a departure from our earlier chapters, we also need to guess the starting
estimates for the parameters. Here we will use the highest value as an estimate
of the asymptote and guess that the tree reaches about half its maximum
diameter in about 30 years.

> max(handy.tree$dbh.cm, na.rm=TRUE)

[1] 29

Then the model is fit using nls, as per the following code. Note the in-
clusion of the argument na.action = na.exclude to tell R how to handle
missing values: we are asking R to take the missing values out of the data
prior to fitting but also to pad its observation-level statistics, such as fitted
values and residuals, so that they are of the same length as the original data.
We will need this facility in the construction of Figure 6.7.

> handy.nls <-

+ nls(dbh.cm ~ dbh.growth(age.bh, asymptote, scale),

+ start = list(asymptote = 29, scale = 10),

+ na.action = na.exclude,

+ data = handy.tree)

6.2.4 Assumptions and Diagnostics

We now need to assess the model assumptions in the light of the fit of the
model to the data. Some background will help us to understand the impor-
tance of these assumptions.
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Geometry provides a convenient way to think about least-squares linear re-
gression. Briefly, the response variable is an n-dimensional vector in n-space.
The predictor variables are used to form a p-dimensional surface, specifi-
cally a hyperplane, in the n-space. Then, the model predictions are the p-
dimensional vector within the p-dimensional hyperplane that is closest to
the n-dimensional vector in n-space. That p-dimensional vector is found by
projecting the n-dimensional vector into the p-dimensional hyperplane. The
parameter estimates are then the coordinates of that p-dimensional vector.

In non-linear least squares, the least-squares geometric principles are as-
sumed to hold locally, but they are known to hold only approximately. The
quality of the information about the model fit depends on how close to linear
the model is, for the data, in the region of the optimum.

First, there is no guarantee that the surface that is formed by the pre-
dictor variables is flat, or the multi-dimensional equivalent of flat. This lack
of flatness is because the values of the parameters affect the shape of the
model; that is, the normal equations are not independent of the parameters.
Therefore projection will not find the nearest point; the location upon the
hyperplane of the nearest point to the n-vector must be found iteratively. The
assumption of local flatness is referred to as the planar assumption (Seber
and Wild, 2003, p. 134) and is estimated using the intrinsic curvature.

Second, there is no guarantee that the surface thus formed has well-
behaved coordinates; that is, coordinates that map to straight, parallel,
equidistant lines. The scale may change along one direction or another, the
coordinates might be curved, and the inter-coordinate distance may vary. The
assumption of locally well-behaved coordinates is called the uniform coordi-

nate assumption (Seber and Wild, 2003, p. 135), and is estimated using the
parameter-effects curvature.

We will refer to these assumptions jointly as the local-linearity assump-
tions.

The MASS package in R (Venables and Ripley, 2002) provides code that
can be used to compute the intrinsic and the parameter-effects curvatures for
a given model, so long as the model function can provide the Hessian. The
code, which we invoke after loading the MASS package, is

> rms.curv(handy.nls)

Parameter effects: c^theta x sqrt(F) = 0.096

Intrinsic: c^iota x sqrt(F) = 0.0246

The value 0.3 has been suggested as a soft cutoff for the point at which
the curvature becomes unacceptable for the planar assumption and the uni-
form coordinate assumption. Both assumptions seem to be reasonable for this
model and these data.

As a side note, we also fit the model represented in equation (6.6) using
the parameterization suggested in Pinheiro and Bates (2000),
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yi = φ1 × [1− exp(−exp(φ2)xi)]+ εi (6.7)

An advantage of that parameterization is that the effect of scale is con-
strained to be positive, so the process of estimation may be more stable. This
strategy is also useful for constraining estimates of parameters that have
biological constraints. We obtained the following curvature estimates:

Parameter effects: c^theta x sqrt(F) = 0.1818

Intrinsic: c^iota x sqrt(F) = 0.0246

Note that the intrinsic curvature is unchanged. That is, our efforts left the
fundamental shape of the surface upon which we were projecting unchanged.
However, the parameter-effects curvature has doubled, suggesting that the
assumption of uniform coordinates for the Pinheiro and Bates (2000) param-
eterization does not hold as well for these data as the assumption for the
previous parameterization. For further reading, see Ratkowsky (1983), Chap-
ter 7 of Bates and Watts (1988), and Section 5.7.1 of Schabenberger and
Pierce (2002).

The intrinsic curvature also affects the nature of the residuals in that in
the presence of substantial intrinsic curvature the residuals may have non-
zero means, non-unit variances, and negative correlation with the response
variable (Seber and Wild, 2003, p. 179). Note that

> mean(residuals(handy.nls), na.rm=TRUE)

[1] -0.06936603

Therefore residual diagnostics should be interpreted carefully in the light
of the estimate of the intrinsic curvature. That said, there seems to be no
reason to omit the diagnostics in this case. We provide several in Figure 6.7,
which is created using the following code:

> par(mfrow=c(1,3), mar=c(4,4,2,1), las=1)

> plot(fitted(handy.nls), residuals(handy.nls, type="pearson"),

+ xlab = "Fitted Values", ylab = "Standardized Residuals")

> abline(h=0, col="red")

> qqnorm(residuals(handy.nls, type="pearson"))

> qqline(residuals(handy.nls, type="pearson"))

> plot(fitted(handy.nls), handy.tree$dbh.cm,

+ xlab = "Fitted Values", ylab = "Observed Values")

> abline(0, 1, col="red")

The left frame is a plot of the standardized residuals against the fitted
values, with a y = 0 line imposed. As with OLS regression, we want to see no
particular pattern and no influential outliers. Here we seem to see a distinct
kink — a systematic lack of fit in the trajectory. The center panel is a q-q plot
of the residuals against the normal distribution. We prefer to see the points
matching the line, and apart from one point, the match seems reasonable.



206 6 Linear and Non-linear Modeling

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25 30

−2

−1

0

1

Fitted Values

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.5 −0.5 0.0 0.5 1.0 1.5

−2

−1

0

1

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●
●

●

5 10 15 20 25 30

5

10

15

20

25

Fitted Values

O
bs

er
ve

d 
V

al
ue

s

Fig. 6.7: Diagnostic plots for a simple asymptotic model fitted to the handy tree.

The right panel is a plot of the fitted values against the observed values, with
an x = y line imposed. We would like the points to be close to that line and
not show fanning or curvature. This graphic suggests that, relative to the
amount of variation being fitted by the model, the fitted model deviations
are modest.

Overall, the model seems to be a pretty good fit, but we might be interested
in finding a model form that accommodates the kink in the data, especially
if it recurs in the trajectories of other trees.

We can learn more about the local-linearity assumptions using the profile
function, which provides insight as to the shape of the parameter space onto
which our data have been projected. Ideally we want the distribution of the
parameter estimates to be approximately normal. Bates and Watts (1988)
developed a graphical tool referred to as a profile-t plot, which is available in
R using the following code (Figure 6.8).

> handy.prof <- profile(handy.nls)

> opar <- par(mfrow=c(1,2), mar=c(4,4,2,1), las=1)

> plot(handy.prof, conf = c(0.95))

The interpretation of the profile-t plot is as follows. These panels provide
information about the acceptability of the assumption of normality on the
underlying distribution of the parameter estimates. Our ideal scenario is for
the solid lines to be straight and the vertical dashed lines to meet the x-axis
at approximately the large-sample 95% confidence interval. However, in any
case, the exact interval can be read directly from the graph or obtained using
the confint function as we do below.

Two-dimensional likelihood profile traces are also available, as produced
below using the pairs function (Figure 6.9). This output confirms that locally
the linear approximation seems reasonable, as the traces for each parameter
are close to straight. Furthermore, the parameter estimates are highly cor-
related because the trace lines are close to parallel. Independent parameter
estimates would yield perpendicular trace lines.

> pairs(handy.prof)
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Fig. 6.8: One-dimensional profile plots for a simple asymptotic model fitted to the
handy tree.

We can confirm the high correlation by calculating the estimated cor-
relation between the parameter estimates. The scaled estimated covariance
matrix is

> (cov.hat.mat <-

+ matrix(summary(handy.nls)$cov.unscaled, nrow=2) *

+ summary(handy.nls)$sigma^2)

[,1] [,2]

[1,] 0.1749164 0.4223982

[2,] 0.4223982 1.2225317

so the covariance is either of the off-diagonal elements

> cov.hat <- cov.hat.mat[1,2]

and the correlation is this quantity divided by the standard errors of each
parameter estimate.

> cov.hat / prod(summary(handy.nls)$coefficients[,2])

[1] 0.913433

This quantity is close to one, confirming our inference about the high corre-
lation of the parameter estimates from Figure 6.9.

6.2.5 Examining the Model

We can inspect the model object in the usual way. The t-tests against the
null hypothesis that the parameters are zero are reported although they have
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dbh.cm~dbh.growth(age.bh, asymptote, scale)
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Fig. 6.9: Two-dimensional profile plots for a simple asymptotic model fitted to the
handy tree.

no interpretation in this context. Interpretation of the following output is
similar to that on page 185.

> summary(handy.nls)

Formula: dbh.cm ~ dbh.growth(age.bh, asymptote, scale)

Parameters:

Estimate Std. Error t value Pr(>|t|)

asymptote 31.0175 0.4182 74.16 3.33e-16 ***

scale 32.1395 1.1057 29.07 9.40e-12 ***

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
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Residual standard error: 0.4507 on 11 degrees of freedom

Number of iterations to convergence: 5

Achieved convergence tolerance: 6.62e-06

Apart from the fact that we can’t guarantee to have found a global mini-
mum, the reported estimates are the least-squares estimates. We should try
a range of other starting points to be sure that the final estimates are robust
to the initial estimates.

We can compute the approximate large-sample interval estimates using

> (my.t <- qt(0.975, summary(handy.nls)$df[2]))

[1] 2.200985

> coef(summary(handy.nls))[,1:2] %*%

+ matrix(c(1,-my.t,1,my.t), nrow=2)

[,1] [,2]

asymptote 30.09697 31.93801

scale 29.70590 34.57308

and extract the exact marginal profiled versions using

> confint(handy.prof)

2.5% 97.5%

asymptote 30.14710 31.97636

scale 29.84986 34.67562

These estimates are very similar, which confirms the outcomes of our diag-
nostics. But, the data appear to have a modest kink that our model failed to
capture. This might be true just of this tree, a subset of the trees, or all the
trees. We are naturally curious, but understandably reluctant to go through
the same process for every tree. We will need some more powerful tools, to
which we will return in Section 7.6.

Finally, we can obtain an estimate of the root-mean-squared error of the
residuals using confint

> sqrt(sum(residuals(handy.nls)^2, na.rm=TRUE) /

+ summary(handy.nls)$df[2])

[1] 0.4507378

and compare it with the standard deviation of the data,

> sd(handy.tree$dbh.cm, na.rm=TRUE)

[1] 7.640395

which provides a loose indication of the predictive quality of the model. A
more formal comparison requires the use of a cross-validation mechanism.
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6.2.6 Using the Model

The fitted model can be used in the same manner as the fitted lm object:
via the predict function. We don’t need to back-transform or correct the
predicted values from this model, so we don’t need to write a special function
for its predictions, but the following terse function simplifies the use of curve
in Figure 6.10.

> handy.dbh.hat <- function(age.bh)

+ predict(handy.nls, newdata = data.frame(age.bh = age.bh))

We can call handy.dbh.hat directly as follows. Note that unless instructed
otherwise, curve takes its range of values from the range of the current plot.

> par(las = 1)

> plot(dbh.cm ~ age.bh, data = handy.tree,

+ xlim = c(0, max(handy.tree$age.bh, na.rm=TRUE)),

+ ylim = c(0, max(handy.tree$dbh.cm, na.rm=TRUE)),

+ ylab = "Diameter (cm)", xlab = "Age (y)")

> curve(handy.dbh.hat, add = TRUE)
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Fig. 6.10: Points and fitted line for diameter and age of a single tree from the von
Guttenberg data.

6.2.7 Testing Effects

Effects in the models can be tested using the extra-sums-of-squares approach,
which is also an approximate likelihood ratio test (Bates and Watts, 1988).



6.2 Non-linear Regression 211

The test is formed along the lines of the classical F-test, computing the change
in sums of squares divided by the residual sums of squares. The test statistic is
asymptotically F if the null hypothesis is true. R provides an anova function
for testing nested models that calls anovalist.nls when the arguments are
nls objects.

For example, we can assess the constraint of forcing the trajectory to pass
through the origin by comparing the fit of handy.nls against the self-starting
asymptotic function (see Section 6.2.9). The unconstrained asymptotic func-
tion is fit by

> handier.nls <- nls(dbh.cm ~ SSasymp(age.bh, Asym, R0, lrc),

+ na.action = na.exclude,

+ data = handy.tree)

and the model comparison is made by

> anova(handy.nls, handier.nls)

Analysis of Variance Table

Model 1: dbh.cm ~ dbh.growth(age.bh, asymptote, scale)

Model 2: dbh.cm ~ SSasymp(age.bh, Asym, R0, lrc)

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 11 2.23481

2 10 0.36182 1 1.873 51.766 2.944e-05 ***

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

The very low p-value in the outcome suggests that the unconstrained
asymptotic function is a substantially better fit than the asymptotic func-
tion constrained to go through the origin that we have been using. We can
verify the results of this test by checking that the interval estimate for the
intercept, R0, excludes zero. The two-dimensional profile and profile-t plots
(not shown here) suggest that the local-linearity assumptions are satisfactory.
We compute the confidence intervals as before.

> confint(handier.nls)

2.5% 97.5%

Asym 29.757344 30.575968

R0 -2.837191 -1.465437

lrc -3.751648 -3.652848

The interval for R0 excludes zero by some distance, which confirms the results
of the whole-model comparison.
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6.2.8 Generalized Non-linear Least-Squares Models

As with linear regression, there will be circumstances in which assumptions
will fail to be satisfied by our models and data. For various reasons, we will
prefer to accommodate the failings within the model rather than transforming
them away. The nlme package provides the gnls function, which extends nls
in the same way that gls extends lm (Pinheiro and Bates, 2000). For example,
to add a fitted variance model to the model of the diameter growth trajectory
of the handy tree, where the variance is some power of the diameter, we would
use the following code4:

> handy.gnls <-

+ gnls(dbh.cm ~ dbh.growth(age.bh, asymptote, scale),

+ start = list(asymptote = 30, scale = 10),

+ na.action = na.exclude,

+ weights = varPower(form = ~age.bh),

+ data = handy.tree)

Alert readers will notice that we have used 10 as the starting point for the
scale parameter rather than 30, as per our earlier call to nls. This is because,
at the time of writing (and for the versions of R and nlme being used5),
the function failed to converge when the initial scale was 30. However, the
function converged when the initial value was 10.

We can examine the model diagnostics and output in the usual way, al-
though the profile and rms.curv functions are as yet unavailable.

As in Section 6.1.10, the variance function is now taken into account for all
reported summaries of the model. We can use the anova function to produce
a whole-model test that assesses the value of the variance function as follows.

> anova(handy.gnls, handy.nls)

Model df AIC BIC logLik Test L.Ratio p-value

handy.gnls 1 4 -12.0 -9.75 10.005

handy.nls 2 3 20.0 21.70 -7.001 1 vs 2 34.011 <.0001

The low p-value suggests that the statistical fit of the model that includes
the variance function seems substantially better than that of the model with-
out the variance function.

4 This is one of the rare occasions in which the code that we developed was platform-
specific. If this code doesn’t work for your platform and version of R, then we suggest
that you change the starting values.
5 2.11.1 and 3.1-96, respectively.
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6.2.9 Self-starting Functions

A handful of popular non-linear modeling functions have been retooled in R
to provide their own starting values. These are called self-starting functions
and are distinguished by having their names begin with the letters SS. This
information is enough to be able to identify the functions in help, as typing
?SS and then TAB will provide a list of all such functions at the command
prompt.6

We now take another brief detour into searching for R objects. We can
also find all instances of these functions in the entire search path using the
apropos function.

> apropos("^SS")

[1] "SSD" "SSasymp" "SSasympOff" "SSasympOrig"

[5] "SSbiexp" "SSfol" "SSfpl" "SSgompertz"

[9] "SSlogis" "SSmicmen" "SSweibull"

Note the use of the exponent symbol ^ to alert R that the string SS should
start the object name. This symbol is an integral part of the so-called regular
expressions (regex), which provide a very powerful and flexible framework for
searching text strings.

It is possible that the returned objects are not all of the right class. We
can filter all the objects in the search path by class using the following code:

> apropos("^SS")[sapply(apropos("^SS"),

+ function(x) {

+ "selfStart" %in%

+ class(eval(parse(text = x)))}) ]

[1] "SSasymp" "SSasympOff" "SSasympOrig" "SSbiexp"

[5] "SSfol" "SSfpl" "SSgompertz" "SSlogis"

[9] "SSmicmen" "SSweibull"

NB: We can see how many objects R has in the search path using

> length(apropos("."))

[1] 4212

If the existing collection of self-starting functions is inadequate for our
purposes, then we can write our own. For example, we could create an
SSallometric function. R provides a selfStart function for this purpose.
We need to provide a function for fitting, a function for determining initial
estimates, and the names of the parameters. The function to fit will be

6 This is true for all the versions of R that we use.
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> allometric <- deriv(~ alpha * x^beta, c("alpha", "beta"),

+ function(x, alpha, beta){},

+ hessian = TRUE)

and the function for obtaining initial estimates is

> allometric.init <- function (mCall, data, LHS) {

+ xy <- data.frame(sortedXyData(mCall[["x"]], LHS, data))

+ if (nrow(xy) < 3)

+ stop("Too few observations to fit allometric function")

+ pars <- as.vector(coef(lm(I(log(y)) ~ I(log(x)),

+ data = xy)))

+ pars[1] <- exp(pars[1])

+ names(pars) <- mCall[c("alpha", "beta")]

+ return(pars)

+ }

We then call

> SSallometric <- selfStart(allometric,

+ allometric.init,

+ c("alpha", "beta"))

This function then works as follows.

> nls(vol.m3 ~ SSallometric(dbh.cm, alpha, beta),

+ data = sweetgum)

Nonlinear regression model

model: vol.m3 ~ SSallometric(dbh.cm, alpha, beta)

data: sweetgum

alpha beta

0.0006338 2.1160953

residual sum-of-squares: 2.278

Number of iterations to convergence: 5

Achieved convergence tolerance: 3.696e-06

6.3 Back to Maximum Likelihood

In Section 5.3.1.3, we demonstrated the use of maximum likelihood (ML)
for estimating the parameters of the Weibull distribution for tree diameters.
One of the advantages of ML is its flexibility. For example, we can replace
any parameter in the likelihood with a function of other parameters, perhaps
including predictor variables. We need to be careful about adding complex-
ity; the ML estimates can become correspondingly harder to find, and poor
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choices of parameterization may really make a difference to the quality and
ease of fitting of the model.

6.3.1 Linear Regression

In Section 6.1.3, we fit a linear model to predict log volume from log diameter
of the sweetgum trees. We know that the parameter estimates that arise from
least-squares estimation are the same as those that arise from maximum-
likelihood estimation if the residuals are normally distributed. The following
code fits the same regression model using maximum likelihood and provides
estimates of the parameters and their asymptotic standard errors.

First, we write a function that computes the conditional, joint log-likelihood
of the data. The observations are assumed to be conditionally normal. We
sum the logs of the pdfs of the normal distribution evaluated at the observed
data as a function of the parameter estimates.

> normal.ll <- function(parameters, x, y) {

+ sum(dnorm(y,

+ parameters[1] + parameters[2] * x,

+ parameters[3],

+ log = TRUE))

+ }

We then maximize this function using optim.

> good.fit <- optim(c(intercept = 1, slope = 1, sigma = 1),

+ normal.ll,

+ hessian = TRUE,

+ control = list(fnscale = -1),

+ x = sweetgum$log.dbh.cm,

+ y = sweetgum$log.vol.m3)

We can now extract the maximum-likelihood parameter estimates from the
returned object.

> good.fit$par

intercept slope sigma

-7.8050519 2.2268877 0.1132759

The (asymptotic) estimates of the standard errors are then

> sqrt(diag(solve(-good.fit$hessian)))

intercept slope sigma

0.14166190 0.03919263 0.01282375



216 6 Linear and Non-linear Modeling

These estimates are close to those reported previously, allowing for numerical
error, although the estimate of the variance differs, as we would expect.

A disadvantage of taking this approach to fitting the linear model is that
it is cumbersome to generalize in certain ways. For example, if we now wished
to fit a unique slope and intercept for each species, we’d have to write that
requirement into the objective function explicitly, whereas when we use lm

we just add the species term to the model specification (see Section 6.1.9 for
an example).

6.3.2 Non-linear Regression

A corresponding advantage is that other types of generalizations are easy.
For example, we can also fit a non-linear model simply by changing the mean
function.

> normal.ll.nl <- function(parameters, x, y) {

+ sum( dnorm(y,

+ parameters[1] * x ^ parameters[2],

+ parameters[3],

+ log = TRUE ))

+ }

We maximize this function using optim:

> good.fit <- optim(c(intercept = 1, slope = 1, sigma = 1),

+ normal.ll.nl,

+ hessian = TRUE,

+ control = list(fnscale = -1),

+ x = sweetgum$dbh.cm,

+ y = sweetgum$vol.m3)

The MLEs are then

> good.fit$par

intercept slope sigma

0.0006654548 2.1041851701 0.2411616481

The (asymptotic) estimates of the standard errors are

> sqrt(diag(solve(-good.fit$hessian)))

intercept slope sigma

0.0001729483 0.0629433124 0.0272184407
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6.3.3 Heavy-Tailed Residuals

If we are uncomfortable with the assumption that the error distribution is
normal, it is a straightforward matter to choose a member of the location-scale
family of the t-distribution. We will fit a linear regression with errors described
by a t-distribution with 10 degrees of freedom, which provides robustness
against outliers due to having heavier tails than the normal distribution.

Recall that, for any pdf f (x) and constants μ and σ > 0,

g(x|μ,σ) =
1

σ
f

(
x−μ

σ

)
(6.8)

is also a pdf (see, e.g., Casella and Berger, 1990, p. 116).
The problem with this formulation is that if σ < 0, then g< 0, which makes

no sense in the context of g being a pdf and will create problems when we are
trying to take the log of g. Therefore we want to constrain σ > 0 somehow. We
could use a version of optim that supports box constraints on the parameter
estimates, but it seems cleaner in this case to reparameterize the function
and use exp(σ) as the parameter rather than σ . Now σ is unconstrained, but
g > 0.

We can do this because maximum-likelihood estimators (MLE) are invari-
ant under monotonic transformation. That is, if the MLE of σ is σ̂ , then the
MLE of exp(σ) is exp(σ̂).

> t3.ll <- function(parameters, x, y) {

+ sum(dt((y - parameters[1] - x * parameters[2]) /

+ exp(parameters[3]),

+ df = 10,

+ log = TRUE) - parameters[3])

+ }

We again maximize this function using optim:

> good.fit.t <- optim(c(intercept = 1, slope = 1, sigma = 1),

+ t3.ll,

+ hessian = TRUE,

+ control = list(fnscale = -1),

+ x = sweetgum$log.dbh.cm,

+ y = sweetgum$log.vol.m3)

We can now extract the MLEs from the returned object.

> good.fit.t$par

intercept slope sigma

-7.770645 2.217431 -2.265762

The (asymptotic) estimates of the standard errors are
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> sqrt(diag(solve(-good.fit.t$hessian)))

intercept slope sigma

0.14326083 0.03943311 0.12799391

The interpretation of the parameters μ and σ is left to the analyst. Don’t
forget that the variance of the tν is ν

ν−2 (Casella and Berger, 1990), so the
reported scale parameter should not be directly interpreted as the antilog of
the conditional standard deviation of the data. The conditional estimate of
the standard deviation of the data would be

> exp(good.fit.t$par[3]) * sqrt(10 / (10 - 2))

sigma

0.1159971

All these parameter estimators are maximum-likelihood estimators, con-
ditional on the model, and therefore are asymptotically normal, efficient es-
timators, if the model is sufficiently flexible to capture the true relationship
and if the assumptions hold.



Chapter 7

Fitting Linear Hierarchical Models

7.1 Introduction

We now shift to the analysis of hierarchical data using mixed-effects mod-
els. These models are a natural match for many problems that occur com-
monly in natural resources. A number of the tools that we discuss in this
chapter are extensively documented in Pinheiro and Bates (2000), and our
goal is to complement that resource, not replace it. Although we focus on
mixed-effects models, other solutions are possible. For example, stochastic
differential equations have also seen success in forestry (Garćıa, 1983), and
generalized estimating equations may also be useful.

Recall that for fitting a linear regression using the least-squares or maximum-
likelihood techniques, it was necessary to make some assumptions about the
nature of the residuals or, equivalently, about the distribution of the response
variable conditional on the predictor variables. The level of detail of the as-
sumptions depended upon the applications of the model. For direct interval
estimation of model parameters, it was necessary to assume that the residuals
were

1. independent,
2. identically distributed, and
3. normally distributed.

It was also necessary to assume that the nature of the relationship between
the response and the predictors was accurately captured by the model form.
An assumption of constant variance (homoskedasticity) is implied by the
“identically distributed” assumption (point 2 above).

If these assumptions are defensible, then model interpretation proceeds
without complications and with a degree of comfort. However, more often
than not, we will know that the assumptions are not true. This knowledge
is common in natural resources data collections because the data may have
a temporal structure, a spatial structure, or a hierarchical structure, or all
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three.1 That structure may or may not be relevant to the scientific question,
but it is very relevant to the assumptions that are necessary for data analysis
and modeling.

Numerous strategies are available for modeling when the standard assump-
tions are unsatisfied. It may well be justifiable in some circumstances to ignore
the problem altogether, depending on the application to which the model will
be put. We do not advocate ignoring the problem in general.

Mixed-effects models contain both fixed and random effects. The model
structure is usually suggested by the underlying design or structure of the
data. An oversimplified but useful position is that random effects are sug-
gested by the design of a study and fixed effects are suggested by the hy-
potheses. This position is not always true.

7.1.1 Effects

“Effects” is the label for predictor variables in a linear or non-linear model.
The use of the label seems to be a hangover from experimental design and
no longer really suits the application, but inertia prevents change.

The distinction between fixed and random effects can be confusing. “Ran-
dom” and “fixed” are not normally held to be antonyms, or even mutually
exclusive, except by sheer force of habit. Why not use “stochastic” and “de-
terministic”? Or “sample” and “population”? Or “local” and “global”? Such
labels would provide clearer links to alternative strategies, such as stochas-
tic differential equations. However, in order to maintain a clear connection
with our source material, we shall continue to use these labels, although they
appear to be both fixed, in the sense that they do not change, and random,
in the sense that they lack a clear connection to their interpretation in this
context.

In order to be used in a mixed-effects model, an effect has to be clas-
sified as either fixed or random. There are different ways to look at which
of these two labels is best for an effect. This decision is important because
the assigned label affects the data analysis and the conclusions that can be
drawn. Modelers may disagree on whether effects should be fixed or random,
and a predictor variable can switch from one type to the other depending on
circumstances.

In some published analyses, an effect may appear to be both fixed and
random in a model, for example the subplot treatment effect in the split-
plot design of Pinheiro and Bates (2000), but this is merely a matter of
convenience. The fixed effect that represents the treatment is numerically
identical to the random effect that represents the subplot, so the same variable
can be used for both roles.

1 “The first law of ecology is that everything is related to everything else” (Commoner,
1971).



7.1 Introduction 221

Statisticians have not agreed on a strategy for assigning the fixed and
random roles (see, e.g., Gelman, 2005, and discussion). Some analysts claim
that it depends entirely on the desired inference and some that it depends
entirely on the design. In an ideal world, of course, the inference and the
design are unambiguously linked. This scenario is rare in our experience.

As the statistical tools that are used to analyze such data become more
sophisticated, and models that were previously unthinkable become main-
stream, the inadequacies of old vocabularies become increasingly obvious.
Vocabularies can affect the way we think about a problem, and inadequate
vocabularies may impede progress. Robinson (1991) is excellent reading.

7.1.1.1 Fixed Effects

Fixed effects are generally held to be purposively selected, and the estimates
of the levels represent only themselves. For example, if we have a fixed effect
called sex with levels female and male, the statistics that we collect for level
female refer only to sampling units in the population that belong to the
class with level female. They are not intended to represent other, possible
but unsampled, levels of sex.

In a designed experiment context, fixed effects represent the treatments,
or interventions. Imagine that you have carried out an experiment and are
considering repeating it. If for the experiment to be repeated it would be
necessary to purposively produce the exact same levels, or even a subset of
the same levels, of an experimental effect, then the effect is fixed in the design.

However, some effects that might vary upon remeasurement may also be
considered fixed. An example is when the predictor variable in a regression is
measured but not set. If we are interested in constructing a height–diameter
equation for a particular forest and we randomly sample trees, then the di-
ameter is usually held to be a fixed effect, even though a new sample would
yield a new set of diameters. This is because the diameter of a tree has to be
known in order to use the model to predict the tree’s height.

Alternatively, one might say that a fixed effect is simply one for which the
estimates of location (as opposed to measures of scale) are of primary inter-
est. In the case of the height–diameter equation above, interest would lie in
estimating the parameters that describe the relationship between height and
diameter, as opposed to merely estimating the strength of the relationship.

Another alternative is that one might say that a fixed effect is one that the
analyst wishes to condition on, for whatever reason. This pragmatic definition
speaks to what we want to do with the variable rather than where it came
from. That is, we classify the variable by what inference we would like to
draw for it rather than how it appeared in the sample design. Hopefully, the
sample design reflects the intended purpose for the variable in any case.
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7.1.1.2 Random Effects

Random effects are those whose levels are supposedly sampled randomly from
a range of possible levels. For example, if we have a random effect called
forest, comprising two randomly selected forests that are represented by
levels 1 and 2, then the statistics that we collect for levels 1 and 2 are intended
to represent all possible levels (that is, forests) in the population from which
the sample of forests was selected.

Generally, although not always, when effects are considered random, it is
of interest to draw conclusions from the results of the sample of levels to the
broader population of levels. That is, the levels are assumed to be collectively
representative of a broader class of potential levels about which we wish to
say something. In the case of the forest random effect, we might wish to
make inference about the population of forests from which our sample has
been drawn.

Alternatively, one might say that a random effect is simply one for which
the estimates of location are not of primary interest. We might be less in-
terested in the individual values of forest 1 and forest 2, for example, than
what they can tell us about the distribution — mostly the spread — of the
population of forests as a whole.

Another alternative is that one might say that a random effect is one that
the analyst wishes to marginalize, for whatever reason. Again, this pragmatic
definition speaks to what we want to do with the variable rather than where
it came from.

In a designed experiment context, random effects represent the experimen-
tal material; that is, they identify the replication. Generally, blocks, plots, and
subplots are held to be random effects.

Some authors infer from this definition of the random effect that an effect
can only be random if its levels are known to be a simple random sample
from a population of possible levels. We believe that this requirement is too
stringent. For our purposes, an effect can be a random effect if the modeler
reasonably believes the levels are representative of the population for which
inference will be drawn. One way to be sure of this condition is to randomly
sample the levels from the population of interest, but it is clear that other
kinds of sample designs should also be acceptable.

7.1.1.3 Mixed-up Effects

Some variables do not lend themselves to easy classification, and either knowl-
edge of the process or an epistemological slant is required. Such variables are
common in natural resources. For example, if an experiment that we feel is
likely to be affected by climate is repeated over a number of years, would year

be a fixed or a random effect? It is not a random sample of possible years,
but the same years would not recur if the experiment were repeated. Per-
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haps year might be included as a continuous fixed effect and as a categorical
random effect. Likewise, there is ambiguity in classifying the replication of
an experiment at known locations: some would claim that these should be a
fixed effect, others that they represent environmental variation, and therefore
they can be considered a random effect.

Furthermore, it may be necessary to consider as fixed effects that would
otherwise be considered random, if they have only a small number of levels.
Random effects are used to estimate variance components, which we describe
later, and the variance components are used in inference about other terms
in the model. If a variance component is poorly estimated, the effects on the
rest of the model can be substantial. For example, if an experiment were split
across two forests, it might seem most sensible for the forest factor to be a
random effect in order that it not be necessary to condition upon the forest
for model use. On the other hand, the model might be much easier to fit, and
might make more sense, if the forest factor is included as a fixed effect.

7.1.2 Model Construction

The process of model construction for mixed-effects models is much more
complicated than the construction of fixed-effects models. We have to bal-
ance different approaches and assumptions, each of which carries different
implications for the model and its utility. If we think about the process of fit-
ting an ordinary regression as being like a flow chart in two dimensions, then
adding random effects adds a third dimension to the flow chart altogether.
This additional complication is magnified by the plethora of fitting tools that
can be used to fit mixed-effects models, each of which provides different func-
tions. Therefore it is very important to plan the approach carefully before
beginning.

The key point to remember is that you should be prepared to take time
over this process. All the fancy graphics and scripts will amount to nothing if
they are used without careful reflection. It could be argued that the increasing
efficiency of model-fitting software is deleterious to the practice of statistics
if it tempts the analyst to fit more models and think less about them.

The number of potential strategies is almost as varied as the number of
models we can fit. Here is one that we will rely on in our further examples.

1. Choose the minimal set of fixed and random effects for the model. Specif-
ically:

a. Identify the random effects that must be included. These effects should
be such that if they are not in the model, then the model will not
adequately reflect the experimental or sample design.

b. Identify the fixed effects that must be included. These effects should be
such that if they are not in the model, then the model has no meaning.
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If the data are from a designed experiment, then include all the fixed
effects that will be necessary to test the hypotheses of interest.

This is the baseline model to which others will be compared.
2. Fit this model to the data using tools discussed in this chapter, and check

the assumption diagnostics. Iterate through the process of refining and
improving the representation of the random effects, including consideration
of

a. a heteroskedastic variance structure (several candidates),
b. a correlation structure (several candidates), and
c. extra random effects (e.g., random slopes).

3. When the diagnostics suggest that the fit is reasonable, consider adding
more fixed effects. At each step, re-examine the diagnostics to be sure that
any estimates that you will use to assess the fixed effects are based on a
good match between the data, model, and assumptions.

We note in passing that often the software that we use to fit models con-
strains the range of models that can be fit with finite effort.

A further layer of complexity is that it may well be that some important
assumptions cannot be met in the absence of certain fixed effects or random
effects. That is, a satisfactory resolution of step 3 above may never be achieved
because the key fixed effects are missing. In this case, a certain amount of
iteration is inevitable and careful record-keeping is essential. And compromise
might be necessary.

The roles of the fixed and the random effects are distinct in the tools that
we will describe. Fixed effects explain variation. Random effects organize the

unexplained variation. The careless analysis of certain experimental designs
may result in error. Be sure to check whether the between-block variation is
being used according to the experimental design.

At the end of the model-fitting process, you will have a model that may
superficially seem worse than a simple linear regression by most metrics of
model quality, for example residual variance. Adding random effects may add
information, and may improve diagnostic compatibility, but does not explain
more variation!

The bottom line is that the goal of the analyst is to find the simplest model
that satisfies the necessary model assumptions and answers the questions
of interest. It is tempting to go hunting for more complex random effects
structures, which may provide a higher maximum likelihood, but if the simple
model satisfies the assumptions and answers the questions, then trying to
maximize the likelihood further may not bear fruit. Schabenberger and Pierce
(2002) provide some wonderfully practical advice: “Don’t be afraid to start,
and don’t be afraid to finish”.
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7.1.3 Solving a Dilemma

We approach the advantages to modeling that are offered by mixed-effects
models through a simple example. Imagine that we are interested in con-
structing a height–diameter relationship using two randomly selected plots
in a forest and that we have measured three trees on each plot. It turns out
that on the plots the growing conditions are quite different, leading to a sys-
tematic but unexpected difference between the height–diameter relationships
on each. We plot the data in Figure 7.1 using the following code:

> trees <- data.frame(plot=factor(c(1, 1, 1, 2, 2, 2)),

+ dbh.cm=c(30, 32, 35, 30, 33, 35),

+ ht.m=c(25, 30, 40, 30, 40, 50))

> plot(trees$dbh.cm, trees$ht.m, pch=c(1, 19)[trees$plot],

+ xlab="Diameter (cm)", ylab="Height (m)")

> abline(lm(ht.m ~ dbh.cm, data=trees), col="darkgrey")

If we fit a simple regression to the trees, then we obtain a residual/fitted
value plot as displayed in Figure 7.2.

> case.model.1 <- lm(ht.m ~ dbh.cm, data=trees)

> plot(fitted(case.model.1), residuals(case.model.1),

+ ylab = "Residuals", xlab = "Fitted Values",

+ pch = c(1, 19)[trees$plot])

> abline(h = 0, col = "darkgrey")

If we fit a simple regression to the trees with an intercept for each plot,
then we obtain a residual/fitted value plot as displayed in Figure 7.3.

> case.model.2 <- lm(ht.m ~ dbh.cm*plot, data=trees)

> plot(fitted(case.model.2), residuals(case.model.2),

+ ylab = "Residuals", xlab = "Fitted Values",

+ pch = c(1, 19)[trees$plot])

> abline(h = 0, col = "darkgrey")

Figures 7.1–7.3 show the analyst’s dilemma. The residuals in Figure 7.2
clearly show a correlation structure within the plots; the plot conditions dic-
tate that all the trees in the plot will have the same sign of residual. This
phenomenon is not seen in Figure 7.3. However, the model described by Fig-
ure 7.3 has limited utility because in order to use it for an unmeasured tree
we have to nominate whether the unmeasured tree belongs to plot 1 or plot
2. If the tree belongs to neither plot, which is true of all of the unmeasured
trees, then the model can make no prediction. So, the dilemma is that we
can construct a useless model that satisfies the regression assumptions or a
useful model that definitely does not.
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ameter for three trees on
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Fig. 7.3: Residual plot for
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on two plots (full and out-
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7.1.4 Decomposition

The dilemma documented in Section 7.1.3 has several solutions. One is to
use mixed-effects models, and the others, which we do not cover here, are
explicit modeling of the correlation structure using generalized least squares,
generalized estimating equations, etc.

The mixed-effects models approach is to decompose the unknown varia-
tion into smaller pieces, each of which satisfies decomposed versions of the
necessary assumptions. Imagine that we could take the six residual values
presented in Figure 7.2, which have the plot-level correlation structure, and
decompose each of them into two plot-level errors and six within-plot errors.
That is, instead of symbolizing the difference between the observations and
the predictions using six residuals, we could use eight. Instead of

yi j − ŷi j = ε̂i j (7.1)

with εi j ∼ N (0,σ2), we could write

yi j − ŷi j = b̂i + ε̂i j (7.2)

Then we would need to assume that:

� The true relationship between x and y is linear.
� bi ∼ N (0,σ2

b ).
� εi j ∼ N (0,σ2).
� All the εi js are independent.
� The sample represents the population for which inference is being made.

This collection of assumptions is arguably better for our circumstances.
Furthermore, when the time comes to use the model for prediction, we do
not need to know the plot label, as the fixed effects do not require that
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we know it. The plot-to-plot variation is represented by σ2
b and no longer

creates a correlation structure within the residuals. Also, although it seems
odd to use eight quantities to represent six unknowns, the fact that we put
constraints on them (for example, zero mean) means that the quantities can
be estimated, although they do not need to be estimated in order to fit the
model.

We now have two unknown variances in our model. These variances are
generally referred to as variance components, inasmuch as they represent the
sources of variation that contribute to the errors in the model.

This example illustrates the use of random effects. Random effects do
not explain variation. Explaining variation is the role of the fixed effects.
Random effects organize variation, or enforce a more complex structure upon
it, in such a way that a match is possible between the model assumptions
and the diagnostics. We would expect the overall uncertainty, measured as
root-mean-squared error, to increase any time we estimate parameters for a
model using any way other than by least squares.

7.2 Linear Mixed-Effects Models

Now we use a simple example as a basis for walking through the code to fit
mixed-effects models in R.

7.2.1 A Simple Example

We start with a very simple and abstract example. Our goal is to construct
a model to predict y from a continuous predictor variable x and a categorical
predictor variable called group. First we generate a simple dataset.

> example <- data.frame(y = c(4.2, 4.8, 5.8, 1.2, 10.1,

+ 14.9, 15.9, 13.1),

+ x = c(1, 2, 3, 4, 1, 2, 3, 4),

+ group = factor(c(1, 1, 1, 1,

+ 2, 2, 2, 2)))

Now, we have to load the package that holds the mixed-effects code, nlme
(Pinheiro and Bates, 2000).

> library(nlme)

Next, we plot the data (Figure 7.4).

> par(las=1, mar=c(4,4,1,1))

> colours <- c("red", "blue")
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> plot(y ~ x, data = example,

+ col = colours[group],

+ pch = as.numeric(group))
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Fig. 7.4: A simple dataset to show the use of mixed-effects models. Circles are from
group 1 and triangles are from group 2.

7.2.1.1 Linear Regression

We provide only modest information about linear regression as it is covered
more thoroughly in Chapter 6. This model is just trying to predict y using x.
In algebraic notation, we would write

yi = β0 +β1 × xi + εi (7.3)

where β0 and β1 are fixed but unknown population parameters and εi are
residuals. The following assumptions are required:

1. The true relationship between x and y is linear.
2. εi ∼ N (0,σ2).
3. εi are independent.
4. The sample represents the population for which inference is being made.

Note that the values of β0 and β1 that minimize the residual sum of squares
are the least-squares estimates in any case and are unbiased if assumption
1 is true. If assumptions 2 and 3 are also true, then the estimates also have
other desirable properties: they are minimum-variance, unbiased estimators.

The model is fit using R with the following code:
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> basic.1 <- lm(y ~ x, data=example)

We can examine estimates from the model via:

> coef(summary(basic.1))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.5 5.142956 1.65274590 0.1494694

x 0.1 1.877942 0.05324978 0.9592616

Next, we let each group have its own intercept. In algebra,

yi = β01 +β02 ×gi +β1 × xi + εi (7.4)

where β01, β02, and β1 are fixed but unknown population parameters, gi is
an indicator variable with value 0 for group 1 and 1 for group 2, and εi are
residuals. Note that in accordance with R’s convention, β01 is the coefficient
representing the intercept for the first group and β02 is the coefficient rep-
resenting the difference between the intercepts for the first and the second
groups. The same assumptions are required as for model (7.3).

The model is fit using R with the following code:

> basic.2 <- lm(y ~ x + group, data=example)

Now we let each group have its own intercept and slope.

yi = β01 +β02 ×gi +(β11 +β12 ×gi)× xi + εi (7.5)

where β01, β02, β12, and β12 are fixed but unknown population parameters,
gi is an indicator variable with value 0 for group 1 and 1 for group 2, and the
εi are the errors. The same assumptions are required as for model (7.3).

The model is fit using R with the following code:

> basic.3 <- lm(y ~ x * group, data=example)

7.2.1.2 Mixed Effects

In order to analyze the data using a mixed-effects model, some preparation
is advantageous. It will help to convert the data to a grouped object — a
special kind of data frame that supports special nlme commands. The group
will hereby be a random effect. Constructing a groupedData object is not
essential, but it enables functionality later on. For example, we will be able
to use augPred, as seen in Figure 7.5, below.

> example.mixed <- groupedData(y ~ x | group, data=example)

Now we fit the basic mixed-effects model that allows the intercepts to vary
randomly between the groups. This is analogous to the situation described in
the previous section. We will add a subscript for clarity. The model form is



230 7 Fitting Linear Hierarchical Models

yi j = β0 +b0i +β1 × xi j + εi j (7.6)

where β0 and β1 are fixed but unknown population parameters, the b0i are
the two group-specific random intercepts, and εi j are residuals. The following
assumptions are required:

� The true relationship between x and y is linear.
� b0i ∼ N (0,σ2

b0
).

� εi j ∼ N (0,σ2).
� The b0i and the εi j are all independent.
� The samples represent the populations from which they were drawn.

The model is fit using R with the following code:

> basic.4 <- lme(y ~ x,

+ random = ~1 | group,

+ data = example.mixed)

The random syntax can be a little confusing. Here we are instructing R to
let each group have its own random intercept. If we wanted to let each group
have its own slope and intercept, we would write random = ~x | group. If
we wanted to let each group have its own slope but only a common intercept,
we would write random = ~x - 1 | group. We can also write the model in
list form, that is, random = list(group = ~ 1).

We can examine the model in a useful graphic called an augmented pre-

diction plot. This plot provides a scatterplot of the data, with a unique panel
for each group, and a fitted line that represents the model predictions (Fig-
ure 7.5). We should also check the regression diagnostics that are relevant to
our assumptions, but we have so few data here that the diagnostics are not
instructive. We will develop these ideas further during the case study that
follows.

> plot(augPred(basic.4))

If we are satisfied with the model diagnostics, then we can examine the
structure of the model, including the estimates, using the summary function.
The summary function presents a collection of useful information about the
model. Here we report the default structure for a summary.lme object; that
is, the object produced when the summary function is called on an object of
type lme.

> summary(basic.4)

First, the data.frame object is identified and fit statistics are reported,
including Akaike’s information criterion, Schwartz’s Bayesian information cri-
terion, and the log-likelihood.
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Fig. 7.5: An augmented plot of the basic mixed-effects model with random intercepts
fit to the sample dataset.

Linear mixed-effects model fit by REML

Data: example.mixed

AIC BIC logLik

43.74387 42.91091 -17.87193

The random-effects structure is then described, and estimates are provided
for the variance components. Here we have an intercept for each group for
which the standard deviation is reported as well as the standard deviation of
the residuals within each group.

Random effects:

Formula: ~1 | group

(Intercept) Residual

StdDev: 6.600769 2.493992

The fixed effects structure is described next in a standard t-table arrange-
ment. Estimated correlations between the fixed effects follow.

Fixed effects: y ~ x

Value Std.Error DF t-value p-value

(Intercept) 8.5 5.142963 5 1.6527437 0.1593

x 0.1 0.788670 5 0.1267958 0.9040

Correlation:

(Intr)

x -0.383

The distribution of the within-group residuals, also called the innermost

residuals in the context of strictly hierarchical models by Pinheiro and Bates
(2000), is then described.
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Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.2484738 -0.4255493 0.1749470 0.6387985 1.0078956

Finally, the hierarchical structure of the model and data is presented.

Number of Observations: 8

Number of Groups: 2

7.2.1.3 Mixed Effects, Unique Variances

Next we shall allow the residuals within each group to have their own vari-
ances. The model form will be the same as in equation (7.6), but the assump-
tions will be different. Now we will need to assume that the residuals εi j from
each group have their own distributions. That is:

� The true relationship between x and y is linear.
� b0i ∼ N (0,σ2

b1
).

� ε1 j ∼ N (0,σ2
b01).

� ε2 j ∼ N (0,σ2
b02).

� The b0i and the εi j are all independent.
� The samples represent the populations from which they were drawn.

The model is fitted using R with the following code:

> basic.5 <- lme(y ~ x, random = ~1 | group,

+ weights = varIdent(form = ~1 | group),

+ data = example.mixed)

The summary output is essentially identical to the previous output in
structure, with the addition of a new section that summarizes the newly
added variance model. Here we show only the new portion.

> summary(basic.5)

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | group

Parameter estimates:

1 2

1.000000 1.327843

We see that the standard deviation of the first group has been set to 1 and
the standard deviation of the other groups is presented as a ratio relative to
group 1.
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7.2.1.4 Mixed Effects, Unique Variances, Autocorrelation

Finally, we allow for simple temporal autocorrelation within each group. We
will specify a one-step autocorrelation that specifies that the correlation be-
tween any pair of residuals is a function of their distance apart in time (or
space). Again, the model form will be the same as in equation (7.6), but the
assumptions will be different. Now, we will need to assume that:

� The true relationship between x and y is linear.
� b0i ∼ N (0,σ2

b1
).

� ε1 j ∼ N (0,σ2
b01).

� ε2 j ∼ N (0,σ2
b02).

� Corr(εab,εac) = ρ |c−b|.
� The b0i and the εi j are all independent otherwise.
� The samples represent the populations from which they were drawn.

The model is fit using R with the following code:

> basic.6 <- lme(y ~ x, random = ~1 | group,

+ weights = varIdent(form = ~1 | group),

+ correlation = corAR1(),

+ data = example.mixed)

The summary output is again essentially identical to the previous output
in structure, with the addition of a new section that summarizes the newly
added correlation model. Here we show only the new portion.

> summary(basic.6)

Correlation Structure: AR(1)

Formula: ~1 | group

Parameter estimate(s):

Phi

0.8107325

The model estimates the first-order autocorrelation between the residuals
within the groups as 0.81, which is quite high.

Any or all of the innovations that we added to the model in the recent
fitting exercise might be necessary to achieve a suitable model fit.

7.3 Case Study: Height and Diameter Model

We now use a real dataset to demonstrate the construction of mixed-effects
models. Section 2.4.5 summarizes the data entry and processing. Briefly, a
sample of 66 trees was purposively selected in national forests around north-
ern and central Idaho. The habitat type and diameter at 1.37 m (4′6′′) were
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also recorded for each tree, as was the national forest from which it came.
Each tree was then split, and decadal measures were made of height and di-
ameter inside bark at 1.37 m (4′6′′). We have data from nine national forests
and six different habitat types.

> names(stage)

[1] "Tree.ID" "Forest" "HabType" "Decade" "Dbhib"

[6] "Height" "Age" "Forest.ID" "Hab.ID" "dbhib.cm"

[11] "height.m"

> dim(stage)

[1] 542 11

7.3.1 Height vs. Diameter

The prediction of height from diameter provides useful and inexpensive
information. It may be that the height vs. diameter relationship differs
among habitat types, climate zones, or tree ages. We shall examine the
height/diameter model of the trees using a mixed-effects model. We’ll start
with a simple case, using only the oldest measurement from each tree.

> stage.old <- stage[stage$Decade == 0, ]

Note that this code actually drops a tree from our dataset because that
tree lacks a measurement at decade 0, but we can afford to let it go for the
purposes of this demonstration.

Based on our knowledge of the locations of national forests, it seems rea-
sonable to believe that there will be similarities between trees that grow in
the same forest relative to the overall population of trees. That is, a randomly
selected pair of trees from the same forest are more likely to be similar to one
another than a randomly selected pair of trees from the whole population,
which includes all the different forests. However, we would like to create a
model that does not need to rely on knowing the national forest; that is, a
model that can plausibly be used for trees in other forests. The following
approach is acceptable as long as we are willing to believe that the sample of
trees that we are using is representative of the conditions for which we wish
to apply the model. In the absence of other information, this decision is a
judgment call. We assume it for the moment.

So, based on the information above, national forest will be a random effect
and habitat type will be a fixed effect, the inclusion of which we will test for.
That is, we wish to construct a model that can be used for any forest, and that
might be more accurate if used correctly within a named national forest, and
provides unique estimates for habitat type. We can later ask how useful the
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knowledge of habitat type is and whether we want to include it in the model.
So, we’ll have two random effects: national forest and tree within national
forest. We have one baseline fixed effect, diameter at breast height inside
bark, with two potential additions, age and habitat type. The lowest-level
sampling unit will be the tree, nested within national forest.

As noted earlier, it is convenient to provide a basic groupedData structure
to R. The structure will help R create useful graphical diagnostics later in
the analysis.

> stage.old <- groupedData(height.m ~ dbhib.cm | Forest.ID,

+ data = stage.old)

Now, we look to our model. An algebraic expression of the model is

yi j = β0 +b0i +β1 × xi j + εi j (7.7)

where yi j is the height of tree j in forest i and xi j is the diameter of the same
tree. β0 and β1 are fixed but unknown parameters, and b0i are the forest-
specific random and unknown intercepts. Later we might see if the slope also
varies with forest. So, in matrix form from Laird and Ware (1982), the model
is

Y = Xβββ +Zb+ εεε

b ∼ N (0,D)

εεε ∼ N (0,R)

where Y is the column of tree heights and X is the column of diameters
bound with a column of 1s for the intercept. β will be a vector of parameter
estimates. Z will be a matrix of 0s and 1s to allocate the observations to
different forests. b will be a vector of means for the forests and trees within
forests. Finally, we will let D be a 9 × 9 identity matrix multiplied by a
constant σ2

h , as there are nine national forests, and R be a 66× 66 identity
matrix multiplied by a constant σ2, as there are 66 trees.

NB: D and R are covariance matrices constructed using a small number of
parameters. The structure of D and R is suggested by what is known about
the data and can be tested by comparing nested models.

The key assumptions that we’re making for our model are that:

1. The model structure is correctly specified.
2. The random effects are normally distributed.
3. The innermost residuals are normally distributed.
4. The innermost residuals are homoskedastic within and across the groups.
5. The innermost residuals are independent within the groups.
6. The sample represents the population for which inference is being made.
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It is timely to introduce some useful nomenclature. For hierarchical models,
there is more than one level of fitted values and residuals. Pinheiro and Bates
(2000) adopt the following labels: the outermost residuals and fitted values
are conditional only on the fixed effects, the innermost residuals and fitted
values are conditional on the fixed and all the random effects, and there are
as many levels between these extremes as necessary. So, in a two-level model
like this one:

� The outermost residuals are the residuals that are computed from the
outermost fitted values, which are computed using only the fixed effects.
Let’s refer to them as r0.

r0 = yi j − β̂0 − β̂1 × xi j (7.8)

� The innermost residuals are the residuals that are computed from the
innermost fitted values, which are computed from the fixed effects and the
random effects. We shall refer to them as r1.

r1 = yi j − β̂0 − b̂0i − β̂1 × xi j (7.9)

Note that in the more general case of mixed-effects models with crossed
random effects, the labels “innermost” and “outermost” are not likely to be
useful.

The linear mixed-effects apparatus also provides us with three kinds of
innermost and outermost residuals:

1. response residuals, simply the difference between the observation and the
prediction;

2. Pearson residuals, which are the response residuals scaled by dividing by
their estimated standard deviation; and

3. normalized residuals, which are the Pearson residuals pre-multiplied by the
inverse square root of the estimated correlation matrix from the model.

In the model specification, we are not making any assumptions about the
outermost residuals. However, they are useful for summarizing the elements
of model performance. We fit a model to the measurements taken at the latest
point for each tree as follows. First, we construct the groupedData object.

> stage.old <- groupedData(height.m ~ dbhib.cm | Forest.ID,

+ data = stage[stage$Decade == 0,])

Our model is then fit using the following code:

> hd.lme.1 <- lme(height.m ~ dbhib.cm,

+ random = ~1 | Forest.ID,

+ data = stage.old)

We next construct diagnostic graphs to check our assumptions. Note that
in some cases the assumptions are stated in an unhelpfully broad fashion.
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Therefore the sensible strategy is to check for the conditions that can be
interpreted in the context of the design, the data, and the incumbent model.
For example, there are infinite ways that the innermost residuals could fail
to have constant variance. We should ask: What are the important ways?
The situation that is most likely to lead to problems is if the variance of
the residuals is a function of some effect, whether that be a fixed effect or a
random effect.

Rather than trust our ability to anticipate what the programmers meant
by the labels that they use, etc, we prefer to know what goes into each of
our plots. The best way to do that is to put it there ourselves. To examine
each of the assumptions in turn, we have constructed the following suite of
graphics. These are presented in Figure 7.6.

1. A plot of the outermost fitted values against the observed values of the
response variable. This graph allows an overall summary of the explanatory
power of the model.

> scatter.smooth(fitted(hd.lme.1, level=0),

+ stage.old$height.m,

+ xlab = "Fitted Values (height, m.)",

+ ylab = "Observed Values (height, m.)",

+ main = "Model Structure (I)")

> abline(0, 1, col = "blue")

The important questions to ask are:

a. How much of the variation is explained by the fixed effects?
b. How much of the variation remains?
c. Is there evidence of lack of fit anywhere in particular?

2. A plot of the innermost fitted values against the innermost Pearson residu-
als. This graph allows a check of the assumption of correct model structure.

> scatter.smooth(fitted(hd.lme.1),

+ residuals(hd.lme.1, type="pearson"),

+ main = "Model Structure (II)",

+ xlab = "Fitted Values",

+ ylab = "Innermost Residuals")

> abline(h = 0, col = "red")

The important questions to ask are:

a. Is there curvature? If so, then perhaps the fixed effects could be aug-
mented or improved. There might be an interaction missing, or perhaps
a predictor should be quadratic.

b. Do the residuals fan out? If so, then the variance function for the model
could be inadequate. Consider modeling the change in variance explic-
itly. Or, if this is coupled with curvature and a biological explanation,
a transformation might be useful.
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c. Are any outliers evident? If so, then they should be checked and their
influence on the model assessed by refitting the model without them.

3. A q-q plot of the estimated random effects to check whether they are nor-
mally distributed with constant variance. Note that interpretation of the
q-q plot is sensitive to the assumption of constant variance, so violations
of this diagnostic could be due to non-normality or heteroskedasticity.

> ref.forest <- ranef(hd.lme.1)[[1]]

> ref.var.forest <-

+ tapply(residuals(hd.lme.1, type="pearson", level=1),

+ stage.old$Forest.ID, var)

> qqnorm(ref.forest, main="Q-Q Norm: Forest Random Effects")

> qqline(ref.forest, col="red")

The important questions to ask are:

a. Do the points follow a straight line, or do they exhibit patterns that
can be translated as skewness or kurtosis? If the latter, then the vari-
ance function for the model could be inadequate. Consider modeling the
change in variance explicitly. Also, a transformation may be required,
but care should be taken. Perhaps large-sample theory can be invoked.

b. Are any outliers evident? See possible actions in part 2c above. The
identification of outlying groups can be particularly informative.

4. A q-q plot of the Pearson residuals to check whether they are normally
distributed with constant variance.

> qqnorm(residuals(hd.lme.1, type="pearson"),

+ main="Q-Q Normal - Residuals")

> qqline(residuals(hd.lme.1, type="pearson"), col="red")

The important questions to ask are:

a. Do the points follow a straight line, or do they exhibit skewness or
kurtosis? See possible actions in part 3a above.

b. Are any outliers evident? See possible actions in part 2c above.

5. A notched boxplot of the innermost Pearson residuals by the grouping
variable to see what the within-group distribution looks like.

> boxplot(residuals(hd.lme.1, type = "pearson", level = 1) ~

+ stage.old$Forest.ID,

+ ylab = "Innermost Residuals",

+ xlab = "National Forest",

+ notch = TRUE,

+ varwidth = TRUE,

+ at = rank(ref.forest))

> axis(3, labels = format(ref.forest, dig=2),
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+ cex.axis = 0.8, at = rank(ref.forest))

> abline(h = 0, col = "darkgreen")

The important questions to ask are:

a. Do the notches intersect 0? If not, then the relevant groups should be
checked and their effect on the model fit examined by deleting them.

b. Is there a trend between the medians of the within-group residuals and
the estimated random effect? If so, then the random effect may be ex-
plaining some variation that could be explained by a fixed effect.

6. A scatterplot of the variance of the Pearson residuals within the forest
against the forest random effect.

> plot(ref.forest, ref.var.forest,

+ xlab = "Forest Random Effect",

+ ylab = "Variance of within-Forest Residuals")

> abline(lm(ref.var.forest ~ ref.forest), col="purple")

a. Is there a distinct positive or negative trend? If so, then careful thought
about the variance model might be beneficial.

Of course, there is no need to pack all the graphical diagnostics into one
figure. We cross-reference the list against Figure 7.6. In fact, all of these
residual diagnostics look good for the model that we have fit.

The next important question is whether there are any outliers or high-
influence points. In a case like this, it is relatively easy to see from the diag-
nostics that no point is likely to dominate the fit in this way. However, a more
formal examination of the question may be valuable. There is considerable
peer-reviewed development of the problem of outlier and influence detection
in mixed-effects models, reaching back at least to Christensen et al. (1992).
Schabenberger (2005) provides an overview of the extensive offerings avail-
able in SAS, none of which are presently available in R packages as far as
we know. Demidenko (2004) and Demidenko and Stukel (2005) also suggest
some alternatives.

It is worth recalling that much of the outlier-detecting apparatus focuses
on efficiently assessing the effect of individual observations on the model.
Therefore, if the fitting process is reasonably quick and the analyst is pa-
tient, it is straightforward to custom-build influence diagnostics that focus
specifically upon the parameter estimates or tests of interest. The simplest
strategy is to refit the model, dropping each observation or group one by
one and collecting the results in a vector for further analysis. This is easily
handled by using the update() function, and we do not cover it here.

We will accept the model as it stands for the moment and go on to examine
the model summary. We divide the summary into pieces here to explain its
structure and content.

> summary(hd.lme.1)
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Fig. 7.6: Selected diagnostics for the fit of the mixed-effects model of height against
diameter, with each national forest having a random intercept, for Stage’s data
(hd.lme.1).
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1. Linear mixed-effects model fit by REML

Data: stage.old

AIC BIC logLik

376.6805 385.2530 -184.3403

Here we have the overall metrics of model fit, including the log-likelihood
(recall that this is the quantity that we are maximizing to make the fit)
and the AIC and BIC statistics. The fixed effects are profiled out of the
log-likelihood, so that the log-likelihood is a function only of the data and
two parameters: σ2

h and σ2. We are not comparing these statistics with
anything, so they do not offer direct interpretation here.

2. Random effects:

Formula: ~1 | Forest.ID

(Intercept) Residual

StdDev: 1.151405 3.937486

The formula reminds us of what we asked for: that the forest be a random
effect and that a unique intercept be fit for each level of forest. The square
roots of the estimates of the two parameters are also here. These quantities
are measured in meters. That is, the standard deviation of the variation
between the forest mean heights is 1.15 m and that of the tree heights
within the forests is 3.94 m.

3. Another metric of model quality is RMSE, which is the estimate of the
standard deviation of the response residuals conditional on only the fixed
effects. Note that 3.94 is not the RMSE but it is instead an estimate of
the standard deviation of the response residuals conditional on the fixed
and the random effects. Obtaining the RMSE is relatively easy because
the random effects and the residuals are assumed to be independent.

RMSE =
√

σ2
h +σ2 = 4.1

The last metric of model quality we can get here is the intra-class correla-
tion. This is the variance of the random effect divided by the sum of the
variances of the random effects and the residuals

ρ =
σ2

h

σ2
h +σ2

= 0.0788

so about 7.9% of the variation in height (that is not explained by diameter)
is explained by national forest. This is a small quantity and implies that
the systematic differences between tree heights in the different forests are
small once the tree diameter has been taken into account.

4. Fixed effects: height.m ~ dbhib.cm

Value Std.Error DF t-value p-value

(Intercept) 6.58239 1.7763571 55 3.705556 5e-04

dbhib.cm 0.57036 0.0335347 55 17.008062 0e+00
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Now we have a reminder of the fixed-effects model and the estimates of
the fixed effects. We have several columns:

a. the value of the estimate,
b. its standard error,
c. the degrees of freedom,
d. the t-value associated with the significance test of the null hypothesis

that the estimate is 0 against the two-tailed alternative that it is not 0,
which is meaningless for this particular model, and

e. the p-value associated with that meaningless test.

5. Correlation:

(Intr)

dbhib.cm -0.931

This is the correlation matrix for the estimates of the fixed effects. It is
estimated from the design matrix. This comes from the covariance matrix
of the fixed effects, which can be estimated by (X′V̂−1X)−1. Here the cor-
relation is high and negative, which in our case is simply a consequence of
not centering the data before fitting the model. The high negative corre-
lation is to be expected and is not of great diagnostic importance in this
case.

6. Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.91215622 -0.70233393 0.04308139 0.81189065 1.99133843

This segment reports distributional information about the within-group
residuals. We should be asking ourselves: Are they symmetric? Are there
egregious outliers? We can compare these values to what we know of the
standard normal distribution, for which the median should be about 0, the
first quartile at −0.674, and the third quartile at 0.674.

7. Number of Observations: 65

Number of Groups: 9

And finally, we have confirmation that we have the correct number of
observations and groups. This is a useful conclusion to draw; it comforts
us that we fit the model that we thought we had!

A set of sequential tests of the model’s fixed effects can be had from

> anova(hd.lme.1)

numDF denDF F-value p-value

(Intercept) 1 55 2848.4436 <.0001

dbhib.cm 1 55 289.2742 <.0001

Pinheiro and Bates (2000) recommend that these tests be used in pref-
erence to whole-model tests and Wald tests, which are reported in item 4
above. It is worth noting at this point that the question of testing in the
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more general case of models with crossed random effects is not satisfactorily
resolved. The anova.lme function, that is, the version of anova that is used
when the first argument is of class lme, also has a type argument, for which
“marginal” is an option and that defaults to “sequential”.

7.3.2 Use More Data

We now treat the grand fir height/diameter data from Stage (1963) in a
different way. We have numerous measurements of height and diameter for
each tree. It seems wasteful to use only the oldest observation.

We still assume that the national forests represent different purposively
selected sources of climatic variation and that habitat type represents a ran-
domly selected treatment of environment (it is probably not true, but we
assume that it is). This is like a randomized block design, where the blocks
and the treatment effects are crossed. This time we are interested in using
all of the data. Previously we took only the first measurement. How will the
model change? We begin by setting up the data in a groupedData object.

> stage <- groupedData(height.m ~ dbhib.cm | Forest.ID/Tree.ID,

+ data = stage)

We say that, based on the information above, national forest will be a
random effect and habitat type a candidate fixed effect. So, we will have
one to three fixed effects; dbhib, age, and habitat, and two random effects;
forest and tree within forest. The response variable will still be the height
measurement. There will be numerous height measurements within each tree,
separated by time. There will be numerous trees measured within each forest,
separated by space. We assume, for the moment, that the measurements are
conditionally independent within the tree. This means that we are assuming
that the innermost residuals from the model that we have just described will
be independent of one another. This assumption is definitely not true, and
will be revisited. Now, we look to our model.

yi jk = β0 +b0i +b0i j +β1 × xi jk + εi jk (7.10)

where yi jk is the height of tree j in forest i at measurement k and xi jk is the
diameter of the same tree. β0 and β1 are fixed but unknown parameters, b0i

are the forest-specific random and unknown intercepts, and b0i j are the tree-
specific random and unknown intercepts. Later we might see if the slope also
varies with forest. So, in matrix form, we have
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Y = Xβββ +Zb+ εεε

b ∼ N (0,D)

εεε ∼ N (0,R)

where

� Y is the vector of height measurements. The basic unit of Y will be a
measurement within a tree within a forest. It has 542 observations.

� X is a matrix of 0s, 1s, and diameters to allocate the observations to
different tree diameters at the time of measurement.

� β is a vector of parameter estimates.
� Z is a matrix of 0s and 1s to allocate the observations to different forests

and trees within forests.
� b is a vector of means for the forests and the trees.
� D is a block diagonal matrix that comprises two portions: a 9×9 identity

matrix multiplied by a constant σ 2
f and then a square matrix for each

forest, which is a diagonal matrix with variances on the diagonals.
� R is a 542×542 identity matrix multiplied by a constant σ2.

This model is fitted using the following code:

> hd.lme.3 <- lme(height.m ~ dbhib.cm,

+ random = ~1 | Forest.ID/Tree.ID,

+ data = stage)

The key assumptions that we’re making are that:

1. The model structure is correctly specified.
2. The tree and forest random effects are normally distributed.
3. The tree random effects are homoskedastic within the forest random ef-

fects.
4. The innermost residuals are normally distributed.
5. The innermost residuals are homoskedastic within and across the tree ran-

dom effects.
6. The innermost residuals are independent within the trees.
7. The samples represent the populations from which they were drawn.

We again construct diagnostic graphs to check these assumptions. To ex-
amine each of the assumptions in turn, we have constructed the earlier suite
of graphics along with some supplementary graphs. The extra graphs are:

1. An extra q-q plot of the tree-level random effects to check whether they
are normally distributed with constant variance.

a. Do the points follow a straight line, or do they exhibit skewness or
kurtosis? If not, then careful thought about the variance model might
be beneficial.
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b. Are any outliers evident? If so, they should be checked and their effect
on the model fit examined by their deletion.

2. A notched boxplot of the tree-level random effects by the grouping variable
to see what the within-group distribution looks like.

a. Do the notches intersect 0? If not, then the relevant groups should be
checked and the effect of their deletion on the model fit examined.

b. Is there a trend between the medians of the within-group residuals and
the estimated random effect? If so, then the random effect may be ex-
plaining some variation that could be explained by a fixed effect.

c. Do any of the random effects stand out as being wildly different? If so,
they should be checked and the effect of their deletion on the model fit
examined.

3. A scatterplot of the variance of the tree-level random effects within the
forest against the forest random effect.

a. Is there a distinct positive or negative trend? If so, then careful thought
about the variance model might be beneficial.

b. Do any of the random effects stand out as being wildly different? If so,
they should be checked and the effect of their deletion on the model fit
examined.

4. An autocorrelation plot of the within-tree errors.

a. Is there evidence of substantial autocorrelation? If so, then the model
should be extended to cover that possibility, as documented below.

As a rule of thumb, we will need about four plots plus three for each
random effect. Cross-reference these against Figures 7.7–7.9. Each graphic
should ideally be examined separately in its own frame. The code follows.

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1,

+ cex.axis = 0.9)

> plot(fitted(hd.lme.3, level=0), stage$height.m,

+ xlab = "Fitted Values", ylab = "Observed Values",

+ main = "Model Structure (I)")

> abline(0, 1, col = "gray")

> scatter.smooth(fitted(hd.lme.3),

+ residuals(hd.lme.3, type="pearson"),

+ main = "Model Structure (II)",

+ xlab = "Fitted Values",

+ ylab = "Innermost Residuals")

> abline(h = 0, col = "gray")

> acf.resid <- ACF(hd.lme.3, resType = "normal")

> plot(acf.resid$lag[acf.resid$lag < 10.5],

+ acf.resid$ACF[acf.resid$lag < 10.5],

+ type="b", main="Autocorrelation",
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+ xlab="Lag", ylab="Correlation")

> stdv <- qnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))

> lines(acf.resid$lag[acf.resid$lag < 10.5],

+ stdv[acf.resid$lag < 10.5],

+ col="darkgray")

> lines(acf.resid$lag[acf.resid$lag < 10.5],

+ -stdv[acf.resid$lag < 10.5],

+ col="darkgray")

> abline(0,0,col="gray")

> par(opar)
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Fig. 7.7: Selected overall diagnostics for the fit of the height/diameter mixed-effects
model hd.lme.3 for Stage’s data.

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1,

+ cex.axis = 0.9)

> ref.forest <- ranef(hd.lme.3, level=1, standard=T)[[1]]

> ref.tree <- ranef(hd.lme.3, level=2, standard=T)[[1]]

> ref.tree.frame <- ranef(hd.lme.3, level=2,

+ augFrame=TRUE, standard=TRUE)

> ref.var.tree <- tapply(residuals(hd.lme.3, type="pearson",

+ level=1),

+ stage$Tree.ID, var)

> ref.var.forest <- tapply(ref.tree,

+ ref.tree.frame$Forest, var)

> qqnorm(ref.forest, main = "QQ plot: Forest")

> qqline(ref.forest)

> qqnorm(ref.tree, main = "QQ plot: Tree")

> qqline(ref.tree)

> qqnorm(residuals(hd.lme.3, type="pearson"),

+ main="QQ plot: Residuals")

> qqline(residuals(hd.lme.3, type="pearson"), col="red")

> par(opar)
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Fig. 7.8: Selected quantile-based diagnostics for the fit of the height/diameter mixed-
effects model hd.lme.3 for Stage’s data.

> opar <- par(mfrow = c(2, 2), mar = c(4, 4, 3, 1),

+ las = 1, cex.axis = 0.9)

> boxplot(ref.tree ~ ref.tree.frame$Forest,

+ ylab = "Tree Effects", xlab = "National Forest",

+ notch= TRUE, varwidth = TRUE, at = rank(ref.forest))

> axis(3, labels=format(ref.forest, dig=2), cex.axis=0.8,

+ at=rank(ref.forest))

> abline(h=0, col="darkgreen")

> boxplot(residuals(hd.lme.3, type="pearson", level = 1) ~

+ stage$Tree.ID,

+ ylab = "Innermost Residuals", xlab = "Tree",

+ notch = TRUE, varwidth = TRUE, at=rank(ref.tree))

> axis(3, labels=format(ref.tree, dig=2), cex.axis=0.8,

+ at=rank(ref.tree))

> abline(h=0, col="darkgreen")

> plot(ref.forest, ref.var.forest, xlab="Forest Random Effect",

+ ylab="Variance of within-Forest Residuals")

> abline(lm(ref.var.forest ~ ref.forest))

> plot(ref.tree, ref.var.tree, xlab="Tree Random Effect",

+ ylab="Variance of within-Tree Residuals")

> abline(lm(ref.var.forest ~ ref.forest))

> par(opar)

Everything in these figures looks good except for the residual plots and the
correlation of the within-tree residuals, which show an unacceptably strong
signal. At this point, one might think that the next step is to try to fit
an autocorrelation function to the within-tree residuals, but the kink in the
residual plot suggests that it seems more valuable to take a look at a different
diagnostic first.

Note that our interpretation of the diagnostics depends on what we see in
other diagnostics. Also, note that much of the direction that we take is con-
tingent upon our interpretation of the diagnostics that we examine. Providing
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Fig. 7.9: Selected random-effects-based diagnostics for the fit of the height/diameter
mixed-effects model hd.lme.3 for Stage’s data.

an unequivocal algorithm for model development, even in such a seemingly
simple case, is impossible.

The augmented prediction plot overlays the fitted model with the observed
data at an optional level within the model. It is constructed using xyplot

from lattice package and accepts arguments that are relevant to that function
for further customization. This allows us to sort the trees by national forest
to help us pick up any cluster effects.

> library(lattice)

> trees.in.forests <-

+ with(stage, aggregate(x = list(measures = height.m),

+ by = list(tree = Tree.ID,

+ forest = Forest.ID),



7.3 Case Study: Height and Diameter Model 249

+ FUN = length))

> panel.order <-

+ rank(as.numeric(as.character(trees.in.forests$tree)))

> plot(augPred(hd.lme.3),

+ index.cond = list(panel.order),

+ strip = strip.custom(par.strip.text = list(cex = 0.5)))

The augmented prediction plot (Figure 7.10) shows that a number of the
trees have curvature in the relationship between height and diameter that
the model fails to pick up, whereas others seem quite linear. It also shows
that the omission of a random slope appears to create problematic lack of
fit. Finally, there does not appear to be any particular pattern among the
forests.

At this point, we have several options, each of which potentially leads to
different resolutions of our problem or, more likely, to several further prob-
lems. How we proceed depends on our goal. We can

1. add a quadratic fixed effect;
2. add a quadratic random effect;
3. add quadratic fixed and random effects;
4. correct the model by including within-tree correlation; and
5. switch to non-linear mixed-effects models and use a more appropriate func-

tional form.

Since we do not believe that the true relationship between height and di-
ameter could reasonably be a straight line, we add a fixed quadratic diameter
effect and a random diameter effect, by tree, and see how things go. We will
show only a sample of the diagnostic graphs here.

> hd.lme.4 <- lme(height.m ~ dbhib.cm + I(dbhib.cm^2),

+ random = list( ~ 1 | Forest.ID,

+ ~ dbhib.cm | Tree.ID),

+ control = lmeControl(maxIter = 500,

+ msMaxIter = 500),

+ data = stage)

Note the splitting of the random-effects statement into a list in order to
permit different inclusions at different levels of the hierarchy. During the
process of writing this text, we tried various more detailed arrangements,
but the more complex models failed to converge for these data. Also note our
invocation of the control = lmeControl argument in the function call. This
argument is an essential element of the model-fitter’s toolbox, and we delay
its discussion until Section 7.4. We present the first set of relevant diagnostics
in Figure 7.11.

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1,

+ cex.axis = 0.9)



250 7 Fitting Linear Hierarchical Models

dbhib.cm 

he
ig

ht
.m

 

0
20
40
60

0 20 60

●●●●●●
●

●
●

Kaniksu/6

●●●●●
●

●

Kaniksu/7

0 20 60

●●
●

●
●

●
●

Kaniksu/34

●●●●●●●●
●

●●●●

Kaniksu/65

0 20 60

●●●●●●●●●●●

Coeur d'Alene/11

●●●●●
●●●●

Coeur d'Alene/12

0 20 60

●●●●
●

●●●

Coeur d'Alene/13

●●●●●●●●●●

Coeur d'Alene/19

●●
●

●
●

●
●

Coeur d'Alene/33

●●●●●
●

●

Coeur d'Alene/38

●●
●●●

●●●

Coeur d'Alene/39

●●●●●
●

●●

St. Joe/4

●
●

●●●●

St. Joe/5

0
20
40
60

●●●●●

St. Joe/15

0
20
40
60

●●●●
●

●●

St. Joe/60

●●●●●●●●
●

●
●

●●

St. Joe/61

●●●●●
●●

●●
●●

St. Joe/77

●●
●●●

Clearwater/1

●●●●●●●●●●

Clearwater/2

●
●●●●●●●●●

●
●

Clearwater/3

●●●●●●●●●●●
●

Clearwater/17

●
●

●
●

Clearwater/18

●●●●●●●●●●
●

●

Clearwater/30

●●●●●●●●●
●

●
●

●

Clearwater/31

●●●●●●●
●●●

●
●

●

Clearwater/59

●●●●●●●●●●
●

●

Nez Perce/28

●●●
●

●
●

●

Nez Perce/29

0
20
40
60

●
●

●
●

Nez Perce/32

0
20
40
60

●●
●●

●

Nez Perce/35

●●●●

Nez Perce/36

●●●●●●
●●●

●●●

Nez Perce/37

●●
●●●●●●

Nez Perce/40

●●●●●●●●●●

Nez Perce/48

●●●●
●

●●●

Nez Perce/49

●
●

●●

Nez Perce/50

●●●
●●●

Nez Perce/51

●●●●●
●●●●●●

Nez Perce/52

●●●●●●
●

●●●

Nez Perce/53

●●
●

●
●●

Nez Perce/54

●●
●

●●

Nez Perce/55

●
●

●
●●

Nez Perce/56

0
20
40
60

●●●●●●●●●●
●

●
●

Nez Perce/57

0
20
40
60

●●
●

●●●

Nez Perce/58

●●
●

●
●

●

Nez Perce/74

●●●●●
●

Nez Perce/75

●●●●●

Nez Perce/76

●●●●●●●●
●●

●
●●

Clark Fork/62

●●●●●
●

●
●●

Clark Fork/64

●●●●●●

Umatilla/63

●●●●
●

●●
●

●●

Umatilla/68

●●●
●

●●

Umatilla/69

●●
●

●
●

Umatilla/70

●●●●●●●●●●

Umatilla/71

●●●●●
●

●
●

●●●

Umatilla/72

●●
●

●

Umatilla/73

0
20
40
60

●●●●●●●●●●●

Umatilla/84

0
20
40
60

●●●●●
●

●●

Wallowa/66

●●●●●●●●

Wallowa/67

●●●●●●●●
●

●
●

Wallowa/85

●●●
●

●
●

●
●

Payette/41

●●
●

●●
●

●
●

Payette/42

●●
●●●●

Payette/43

●●●●●●●●●●●

Payette/44

●●
●●●

●●●●

Payette/45

0 20 60

●
●●●

Payette/46

0
20
40
60

●
●

●●

Payette/47

Fig. 7.10: Height against diameter by tree, augmented with predicted lines from the
mixed-effects model hd.lme.3.
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> plot(fitted(hd.lme.4, level=0), stage$height.m,

+ xlab = "Fitted Values", ylab = "Observed Values",

+ main = "Model Structure (I)")

> abline(0, 1, col = "gray")

> scatter.smooth(fitted(hd.lme.4),

+ residuals(hd.lme.4, type="pearson"),

+ main = "Model Structure (II)",

+ xlab = "Fitted Values",

+ ylab = "Innermost Residuals")

> abline(0, 0, col = "gray")

> acf.resid <- ACF(hd.lme.4, resType = "n")

> plot(acf.resid$lag[acf.resid$lag < 10.5],

+ acf.resid$ACF[acf.resid$lag < 10.5],

+ type="b", main="Autocorrelation",

+ xlab="Lag", ylab="Correlation")

> stdv <- qnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))

> lines(acf.resid$lag[acf.resid$lag < 10.5],

+ stdv[acf.resid$lag < 10.5],

+ col="darkgray")

> lines(acf.resid$lag[acf.resid$lag < 10.5],

+ -stdv[acf.resid$lag < 10.5],

+ col="darkgray")

> abline(0,0,col="gray")

> par(opar)
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Fig. 7.11: Selected diagnostics for the fit of the height/diameter mixed-effects model
hd.lme.4 for Stage’s data.

This inclusion has improved the model somewhat based on the lack of
curvature in the plot of the innermost residuals against the fitted values,
but it looks like we do need to include some accounting for the within-tree
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correlation. Pinheiro and Bates (2000) detail the options that are available.
Also, we’ll start to use update because it simplifies the model expression
considerably.

> hd.lme.5 <- update(hd.lme.4, correlation = corCAR1())

We now check the model using the same graphics (Figure 7.12). The nec-
essary code is omitted to save space. The unaccounted within-tree autocor-
relation is now negligible.
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Fig. 7.12: Selected diagnostics for the fit of the height/diameter mixed-effects model
hd.lme.5 for Stage’s data.

Another element of the model that we have control over is the variance of
the random effects. We haven’t seen any red flags for heteroskedasticity in the
model diagnostics, so we haven’t worried about it. However, such situations
are common enough to make an example worthwhile.

Two kinds of heteroskedasticity are common and worthy of concern: first,
that the variance of the response variable is related to the mean of the re-
sponse variable; and second, that the conditional variance of the observations
varied within one or more strata. Some combination of the two conditions is
also possible.

We can detect these conditions by using conditional residual scatterplots
of the following kinds. The first is a scatterplot of the innermost Pearson
residuals against the fitted values, stratified by habitat type. Pearson resid-
uals, also called standardized residuals, are residuals that have been divided
by their estimated standard deviation. The code to create this graphic is part
of the nlme package.

> plot(hd.lme.5, resid(.) ~ fitted(.) | Hab.ID, layout=c(1, 5))

The second is a quantile plot of the innermost Pearson residuals against
the normal distribution, stratified by habitat type. This code is provided by
the lattice package, and we found a template under ?qqmath (Sarkar, 2010).



7.3 Case Study: Height and Diameter Model 253

> qqmath(~ resid(hd.lme.5) | stage$Hab.ID,

+ prepanel = prepanel.qqmathline,

+ panel = function(x, ...) {

+ panel.qqmathline(x, distribution = qnorm)

+ panel.qqmath(x, ...)

+ })
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Fig. 7.13: Innermost Pearson residuals
against fitted values by habitat type.
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Fig. 7.14: Quantile plots of innermost
Pearson residuals against the normal dis-
tribution by habitat type.

There seems little evidence in either Figure 7.13 or Figure 7.14 to suggest
that the variance model is problematically incorrect. The TsOp panel of the
q-q plot looks a little peculiar, but the sample size is very small. We are not
perturbed. Had the variance model seemed inadequate, we could have used
the weights argument in a call to update with one of the following approaches:

� weights = varIdent(form=~1 | HabType.ID). This option allows the
observations within each habitat type to have their own variance.

� weights = varPower(). This option fits a power function for the rela-
tionship between the variance and the predicted means, and estimatse the
exponent.

� weights = varPower(form = ~dbhib.cm | HabType.ID). This option fits
a power function for the relationship between the variance and the diam-
eter uniquely within each habitat type and estimates the exponent.

� weights = varConstPower() This option fits a power function with a
constant for the relationship between the variance and the predicted mean
and estimates the exponent and constant.

Other options are available; the function is fully documented in Pinheiro
and Bates (2000). We accept the model as it stands for the moment. This
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model is the baseline model, as it provides predictions of height from diameter
and satisfies the regression assumptions. Other models may later prove to be
better fitting; for example it may be that including habitat type or age in the
model obviates our use of the quadratic diameter term. Whether or not this
makes for a better model in terms of actual applications will vary!

We now use the following code to construct a snapshot of the fitted lines
and the observations (Figure 7.15).

> plot(augPred(hd.lme.5),

+ index.cond = list(panel.order),

+ strip = strip.custom(par.strip.text = list(cex = 0.5)))

7.3.3 Adding Fixed Effects

We can try to extend the baseline model to improve its performance based
on our knowledge of the system that we are trying to model. For example,
it might be true that the tree age mediates its diameter–height relationship
in a way that has not been captured in the model. We can formally test this
assertion using the anova function, we can examine it graphically using an
added-variable plot, or we can try to fit the model with the term included
and assess what effect the extra term has on the residual variation.

An added-variable plot is a graphical summary of the amount of variation
that is uniquely explained by a predictor variable. It can be constructed in R
as follows. Here we need to decide what level of residuals to choose, as there
are several. We adopt the outermost residuals.

> age.lme.1 <- lme(Age ~ dbhib.cm,

+ random = ~1 | Forest.ID/Tree.ID,

+ data = stage)

> res.Age <- residuals(age.lme.1, level = 0)

> res.HD <- residuals(hd.lme.5, level = 0)

> scatter.smooth(res.Age, res.HD,

+ xlab = "Variation unique to Age",

+ ylab = "Variation in Height after all but Age")

In order to assess whether we would be better served by adding habitat
type to the model, we can construct a graphical summary of observed against
predicted heights arranged by habitat type (Figure 7.16)

> xyplot(stage$height.m ~ fitted(hd.lme.5, level=0) | Hab.ID,

+ xlab="Predicted height (m)",

+ ylab="Observed height (m)",

+ data=stage,

+ panel = function(x, y, subscripts) {
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Fig. 7.15: Height against diameter by tree, augmented with predicted lines.
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Fig. 7.16: Added-variable plot for age against height=.

+ panel.xyplot(x, y)

+ panel.abline(0, 1)

+ panel.abline(lm(y ~ x), lty=3)

+ }

+ )

In Figure 7.16, substantial deviation from a straight line with zero slope, if
it occurred, would suggest that age would be a useful predictor in the model.
In Figure 7.17, substantial deviation from the y = x line in the panel-wise
fitted lines, if it occurred, would suggest that habitat type would be a useful
predictor in the model. But neither of these figures suggests that significant
or important improvements would accrue from adding these terms to the
model.

The incumbent model represents the best compromise so far. It seems to
have addressed most of our major concerns in terms of model assumptions.
It may be possible to find a better model with further searching. However,
there comes a point of diminishing returns.

Note, finally, that although the presentation of this sequence of steps seems
fairly linear, in fact there were numerous blind alleys followed, much looping,
and retracing of steps. This is neither a quick nor a direct process! Intro-
ducing random effects to a fixed-effects model vastly increases the number of
diagnostics to check and possibilities to follow.

7.3.4 The Model

Let us now examine our final model. We have fit
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Fig. 7.17: Plot of predicted height against observed height by habitat type. The
solid line is 1:1, as predicted by the model. The dotted line is the OLS line of best fit
within habitat type.

yi jk = β0 +b0i +b0i j

+
(
β1 +b1i j

)× xi jk

+β2 × x2
i jk

+εi jk

where yi jk is the height measured at time k for the j-th tree in the i-th forest
and xi jk is the diameter measured at time k for the j-th tree in the i-th forest;
β0, β1, and β2 are fixed population-level parameters; b0i are forest-specific in-
tercepts; b0i j and b1i j are tree-specific intercepts and slopes, respectively; and
εi jk are time- and tree-specific errors. In matrix form, the model expression
is still

Y = Xβββ +Zb+ εεε

b ∼ N (0,D)

εεε ∼ N (0,R)
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The structure is as follows:

� Y is the vector of height measurements. It has 542 observations.
� X is a 542×3 matrix of 1s, diameters, and squared diameters.
� β is a vector of length three: it has an intercept, a slope for the linear

diameter term, and a slope for the quadratic diameter term.
� Z is a 542×141 unit brute. See below.
� b is a vector of intercepts and slopes for diameter and diameter squared

for each forest, and then for each tree. It will be 9 + 132 = 141 elements
long. See below. The predictions can be obtained using ranef(hd.lme.5).

� D is a block diagonal matrix comprising a 9× 9 matrix followed by 66
2×2 identical matrices. Each matrix will express the covariance between
the random effects within forest or within tree. See below.

� R is a 542×542 symmetric matrix for which the off diagonals are 0 between
trees and a geometrically decreasing function of the inter-measurement
time distance within trees.

7.3.4.1 More on Z

Recall that the role of Z is to allocate the random effects to the appropriate
element. This allocation can be somewhat complicated. Our Z can be divided
into two distinct sections: a 542×9 matrix Zf associated with the forest-level
effects and a 542× 132 matrix Zt associated with the tree-level effects. In
matrix nomenclature,

Z = [Zf | Zt] (7.11)

Now, Zf allocates the random intercept to each observation from each
forest. There are nine forests, so any given row of Zf will contain eight zeros
and a 1. Similarly, Zt allocates an intercept and slope to each observation
from each tree. There are 66 trees, so any given row of Zt will contain 195
zeros, a 1, and the corresponding dbhib.

7.3.4.2 More on b

The purpose of b is to contain all the predicted random effects. Thus it will be
141 units long, which corresponds to 1 unit for each level of forest (intercept)
and 2 units for each level of tree (intercept, slope for diameter).

b = (b f 1,b f 20, . . . ,bt10,bt1d ,bt20,bt2d , . . .)
′ (7.12)

The combination of b and Z serves to allocate each random effect to the
appropriate unit and measurement.
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7.3.4.3 More on D

Finally, D dictates the relationships between the different random effects
within the levels of forest and tree. We have assumed that the random effects
will be independent between habitat types and trees. So, there are only two
submatrices to this matrix, called Df and Dt.

Df =
[
σ2

b f 0

]
(7.13)

Dt =

[
σ2

bt0 σbt0d

σbt0d σ2
btd

]
(7.14)

Then the structure of D is simply nine repetitions of Df laid on a diagonal
line followed by 66 repetitions of Dt laid on the same diagonal and zeros
everywhere else.

7.4 Model Wrangling

We observed earlier that the use of the control argument was a key tool
for the modeler. This element can introduce a little culture shock. Having
come from traditions of model fitting for which exact solutions were easily
obtained and convergence was unequivocal, it was surprising, not to say dis-
heartening, for us to find that algorithms sometimes quit before they achieved
convergence. Probably we are displaying our naivete.

The statistical models that we have been discussing in this chapter do not
have exact solutions. Accordingly, we have to try to maximize the likelihood,
for example, by iterative means. It is necessary and correct that the authors
of the code we use will have put in checks to halt the code in situations where
they deem continuing to be unprofitable.

In any case, bitter experience and ruthless experimentation have taught us
that the code authors do not necessarily have exactly our problem in mind
when they are choosing the default parameters for their software. In such
cases, it is necessary to roll up our sleeves and plunge our arms into the organs
of our analysis. Most of the fitting tools that we use have control arguments
that will report or modify the process of model fitting. Experimenting with
them will often lead to model configurations that fit reliably.

In short, don’t be reluctant to experiment. Any or all of the following
strategies might be necessary to achieve a satisfactory fit of your model to
your data.
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7.4.1 Monitor

In order to be better informed about the progress of model fitting, we use the
msVerbose argument. It provides a brief updating description of the progress
of the model fit. It will also point out problems along the way, which help
the user decide what is the best thing to do next.

7.4.2 Meddle

This strategy involves adjusting the fitting tool.
If the model is failing to converge, then often all that is required is an

increase in the number of allowable iterations. The mixed-effects model fitting
algorithm in lme uses a hybrid optimization scheme that starts with the EM
algorithm and then changes to Newton–Raphson (Pinheiro and Bates, 2000,
p. 80). The latter algorithm is implemented with two loops, so we have three
iteration caps. We have found that increasing both maxIter and msMaxIter

is a useful strategy. If we are feeling patient, we will increase them to about
10000 and monitor the process to see if the algorithm still wishes to search.
We have occasionally seen iteration counts in excess of 8000 for models that
subsequently converged.

We have also had success with changing the optimization algorithm. That
is, models that have failed to converge with nlminb, by getting caught in a
singular non-convergence, have converged successfully using Nelder-Mead in
optim. The default is to use nlminb, but it may be worth switching to optim,
and within optim choosing between Nelder-Mead and BFGS. Each of these
algorithms has different properties and different strengths and weaknesses.
Any might lead more reliably to a satisfactory solution.

7.4.3 Modify

This strategy involves changing the relationship between the model and the
data.

A number of the model components permit the specification of a starting
point. For example, if we provide the corAR1 function with a suitable num-
ber, then the algorithm will use that number as a starting point. Specifying
this value can help the algorithm converge speedily or at all. Experimenting
with subsets of the full model to try to find suitable starting points can be
profitable; for example, if one has a correlation model and a variance model.

We can also think about how the elements in the data might be interacting
with the model. Is the dataset unbalanced or does it contain outliers, or is it
too small? Any of these conditions can cause problems for fitting algorithms.



7.5 The Deep End 261

Examining the data before fitting any model is standard practice. Be prepared
to temporarily delete data points, or temporarily augment underrepresented
portions, in order to provide a reasonable set of starting values to those
functions that accept them.

7.4.4 Compromise

Sometimes a model involves a complicated hierarchy of random effects. It is
worth asking whether or not such depth is warranted and whether a superfi-
cially more complex but simpler model might suffice. The case study in this
chapter serves as a good example: although model fit benefited by allowing
each individual tree to have a random slope, there was no need to allow each
national forest to have a random slope. Including a slope for each forest made
the model unnecessarily complicated and also made fitting the model much
harder. Specifying the smaller model was a little less elegant, however.

Finally, sometimes no matter what exigencies we try, a model will not
converge. There is a point in every analysis where we must decide to cut
our losses and go with the model we have. If we know that the model has
shortcomings, then it is our responsibility to draw attention to those short-
comings. For example, if we are convinced that there is serial autocorrelation
in our residuals but cannot achieve a reasonable fit using the available re-
sources, then providing a diagnostic plot of that autocorrelation is essential.
Furthermore, it is important to comment on the likely effect of the model
shortcoming upon inference and prediction. If we are fortunate enough to be
able to fit a simpler model that does include autocorrelation, for example,
we might demonstrate what effect the inclusion of that portion of the model
has upon our conclusions. We would do this by fitting three models: the com-
plex model, the simple model with the autocorrelation, and the simple model
without the autocorrelation. If the difference between the latter two models is
modest, then we have some modest degree of indirect evidence that perhaps
our conclusions will be robust to misspecification of the complex model. It is
not ideal, but we must be pragmatic.

7.5 The Deep End

We will now provide some mathematical motivation for the fitting strategies
that we showcased in the previous section. There are numerous different rep-
resentations of the linear mixed-effects model. We adopt that suggested by
Laird and Ware (1982):
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Y = Xβββ +Zb+ εεε

b ∼ N (0,D)

εεε ∼ N (0,R)

Here Y and X are the response variable and the design matrix, respectively,
and D and R are variance–covariance matrices that are preferably constructed
using a small number of parameters, which will be estimated from the data.
That is, despite their apparent complexity, they are motivated by a handful
of parameters, such as σ 2

b01, σ2
b02, and σ2

b1
, as above.

7.5.1 Maximum Likelihood

Recall that the principle behind maximum likelihood was to find the set of
parameter estimates that were best supported by the data. This began by
writing down the conditional distribution of the observations. For example,
the pdf for a single observation from the normal distribution is

f
(
yi | μ,σ2

)
=

1√
2πσ

e
−(yi−μ)2

2σ2

So a vector of observations Y is distributed according to Y
d
= N(μ,V), and

f (Y | μ,V) =
|V|− 1

2

(2π)
n
2

e−
1
2 (Y−μ)′V−1(Y−μ)

Now if we are interested in predicting Y using some linear predictors X , we
might claim that the expectation of Y is equal to some linear combination of
the Xs. So in terms of the linear model Y = Xβ , the conditional joint density
is

f (Y | X,β ,V) =
|V|− 1

2

(2π)
n
2

e−
1
2 (Y−Xβ )′V−1(Y−Xβ )

Reversing the conditioning and taking logarithms yields the log-likelihood:

L (β ,V | Y,X) =−1

2
ln(|V|)− n

2
ln(2π)− 1

2
(Y−Xβ )′ V−1 (Y−Xβ )

Notice that the parameters we are interested in, β and V, are now embedded
in the likelihood. Solving for those parameters requires maximizing the like-
lihood. Assume that we know V. Then, to find β̂ , we take the derivative of
L (β ,V | y,X) with regard to β :
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dL

dβ
=

d

dβ

[
−1

2
(y−Xβ )′ V−1 (y−Xβ )

]
This formulation leads, as we’ve seen earlier, to

β̂MLE =
(
X′V−1X

)−1
X′V−1Y

but this can only be solved if we know V! Since we do not know V, we have
to maximize the likelihood as follows. First, substitute

(X′V−1X)−1X′V−1Y

for β in the likelihood. That is, remove all the instances of β , and replace
them with this statement. By this means, β is profiled out of the likelihood.
The likelihood is now only a function of the data and the covariance matrix
V . This covariance matrix is itself a function of the covariance matrices of
the random effects, which are structures that involve hopefully only a few
unknown parameters and are organized by the model assumptions.

We maximize the resulting log-likelihood in order to estimate V̂ , and then
we calculate the estimates of the fixed effects via

β̂MLE =
(
X′V̂−1X

)−1
X′V̂−1Y (7.15)

After some algebra, which is well documented in, for example, Schabenberger
and Pierce (2002), we also get the best linear unbiased predictors (BLUPs)
of the random effects,

b̂MLE = DZ′V̂
(

Y−Xβ̂
)

(7.16)

where D is the covariance matrix of the random effects.

7.5.2 Restricted Maximum Likelihood

Maximum-likelihood estimators of covariance parameters are usually nega-
tively biased. Restricted or residual maximum likelihood will penalize the
variance estimates based on the model size and is therefore preferred for
mixed-effects models. REML-based estimates are not unbiased, except under
certain circumstances, but they are expected to be less biased than maximum-
likelihood estimates. See Demidenko (2004) for a useful discussion.

Instead of maximizing the conditional joint likelihood of Y, we do so for
an (almost) arbitrary linear transformation of Y, which we shall denote K. It
is almost arbitrary inasmuch as there are only two constraints: K must have
full column rank, or else we would be creating observations out of thin air,
and K must be chosen so that E[K′Y] = 0.
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The easiest way to guarantee that these hold is to ensure that K′X = 0 and
that K has no more than n− p independent columns, where p is the number
of independent parameters in the model. This removes the fixed effects from
consideration and in so doing also penalizes the estimation for model size. So,
the likelihood is restricted by the fixed effects being set to 0, thus the name
restricted maximum likelihood.

So, briefly, REML involves applying ML but replacing Y with KY, X with
0, Z with K′Z, and V with K′VK. Pawitan (2001) and Lee et al. (2006) show
that the REML estimation procedure can be derived as maximization of a
modified profiled likelihood.

7.6 Non-linear Mixed-Effects Models

In Section 6.2.3, we fit a nice non-linear model to a single tree. It would be
good to be able to fit the same model to a collection of trees with minimal
fuss. The nlme package again provides us with a way forward. First, we can
use the groupedData structure to simplify the problem of fitting a model to
many trees, and secondly, we can use a so-called self-starting function, which
provides its own starting values for any data that are presented to it. This
self-starting function is one of the packaged functions mentioned earlier, and
its adoption simplifies our approach considerably.

Our data are Norway spruce measurements drawn from von Guttenberg
(1915), kindly provided to us by Professor Boris Zeide. Our goal in the first
instance is to construct a model that predicts tree diameter as a function of
age. The data import and cleaning are documented in Section 2.4.4.

The lattice package provides us with an easy way to plot the data (Fig-
ure 7.18). Note that these are not particularly large trees!

> library(lattice)

> xyplot(dbh.cm ~ age.bh | tree.ID, type="l", data=gutten)

> library(nlme)

> gutten.d <- groupedData(dbh.cm ~ age.bh | tree.ID,

+ data = gutten)

The relevant self-starting function is called SSasympOrig.

> gutten.nlsList <-

+ nlsList(dbh.cm ~ SSasympOrig(age.bh, asymptote, scale),

+ data = gutten.d)

We are now in a position to speculate as to whether or not the kink that
we observed in the residuals for tree 1.1 is repeated in the other trees (Fig-
ure 7.19). Figure 7.19 is created using the following code.



7.6 Non-linear Mixed-Effects Models 265

age.bh

db
h.

cm

0
10
20
30
40
50

0 50 100

1.1 2.1

0 50 100

3.1 4.1

0 50 100

5.1 7.1

0 50 100

1.2 2.2

0 50 100

3.2 4.2

0 50 100

5.2

6.2 1.3 3.3 4.3 5.3 6.3 1.4 3.4 4.4 5.4

0
10
20
30
40
50

6.4
0

10
20
30
40
50

3.5 4.5 6.5 1.6 3.6 4.6 5.6 6.6 7.6 1.7 3.7

4.7 5.7 6.7 1.8 3.8 4.8 5.8 6.8 1.9 4.9

0
10
20
30
40
50

5.9
0

10
20
30
40
50

6.9 1.10 3.10 4.10 5.10 6.10 7.10 1.11 3.11 5.11 6.11

7.11 1.12 3.12 5.12 6.12 7.12 1.13 3.13 5.13 7.13

0
10
20
30
40
50

1.14
0

10
20
30
40
50

3.14 5.14 7.14 1.15 5.15 7.15 1.16 5.17 5.18 5.19 5.20

7.20 5.21 7.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28

0
10
20
30
40
50

5.29
0

10
20
30
40
50

5.30 5.31 5.32 5.33 5.34 5.35 5.36 5.37 5.38 5.39 5.40

5.41

0 50 100

5.42 5.43

0 50 100

5.44 5.45

0 50 100

5.46 5.47

0 50 100

0
10
20
30
40
50

5.48

Fig. 7.18: Tree diameter data from von Guttenberg.

> plot(gutten.nlsList,

+ residuals(., type="pearson") ~ fitted(.) | tree.ID)

These results suggest that there certainly is a systematic lack of fit across the
board. We may need to adopt a more flexible function.

We could print out all the parameter estimates but it is more useful to
construct a graphical summary, using the following commands (Figure 7.20).

> plot(intervals(gutten.nlsList), layout=c(2,1))

Note that the intervals are based on large-sample theory.
We can extract and manipulate the coefficient estimates with a little bit of

digging. The digging follows, and may be skipped. First we try to find what
functions are available to manipulate objects that have the same class as the
object that we have just created.
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Fig. 7.19: Plot of residuals against fitted values from non-linear models as fit to each
tree.

> methods(class=class(gutten.nlsList))

[1] formula.nlsList* nlme.nlsList summary.nlsList*

[4] update.nlsList*

Non-visible functions are asterisked

A summary method is available. Let’s find out what functions are available to
manipulate summary objects.

> methods(class=class(summary(gutten.nlsList)))

[1] coef.summary.nlsList*

Non-visible functions are asterisked
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Fig. 7.20: Interval plot for diameter prediction model fitted to the von Guttenberg
data.

A coef method is available. What does its output look like?
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> str(coef(summary(gutten.nlsList)))

num [1:107, 1:4, 1:2] 18.7 21.4 27.6 26.5 44.5 ...

- attr(*, "dimnames")=List of 3

..$ : chr [1:107] "5.32" "5.36" "5.33" "7.12" ...

..$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"

..$ : chr [1:2] "asymptote" "scale"

It is an array. We can extract its elements in the following way:

> asymptote <-

+ coef(summary(gutten.nlsList))[,"Estimate","asymptote"]

> half.age <- log(2) /

+ exp(coef(summary(gutten.nlsList))[,"Estimate","scale"])

These two objects contain the parameter estimates for each tree. Figure 7.21
shows a scatterplot of the estimated parameters for each tree: the estimated
asymptote on the y-axis and the estimated age at which the tree reaches
half its maximum diameter on the x-axis, with a lowess smooth added to
describe the mean of the pattern. There is clearly a relationship between the
asymptote and the estimated age at which half the asymptote is reached.

> opar <- par(las=1, mar=c(4,4,1,1))

> scatter.smooth(half.age, asymptote,

+ xlab = "Age", ylab = "Asymptote")

> par(opar)
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Fig. 7.21: Plot of the estimated age at which the tree reaches half its maximum
diameter against the estimated tree-level maximum diameter.

This approach provides us with a convenient way to think about fitting
data to many different objects. But, what practical use does the model have?
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Not much. This model is analogous to the linear model that includes one
intercept for each plot: the model assumptions are (probably) satisfied, but
the model isn’t really useful. We need a way to tie all these little models
together. Hence, we adopt a hierarchical approach.

7.6.1 Hierarchical Approach

We now focus on fitting the same kinds of models to hierarchical data. This
direction produces simplifications and complications, but sadly more of the
latter than the former.

We use the non-linear mixed-effects model that generalizes the Pinheiro
and Bates (2000) parameterization of our earlier non-linear model (equa-
tion (6.6)). We will start with allowing each tree to have a random asymptote
and scale. That is, for diameter measure t in tree i,

yit = (φ1 +φi1)× [1− exp(−exp((φ2 +φi2)x))]+ εit (7.17)

where φ1 is the fixed, unknown asymptote and φ2 is the fixed, unknown scale,
and [

φi1

φi2

]
∼ N

([
0

0

]
,

[
σ 2

1 σ12

σ12 σ2
2

])
(7.18)

The process of fitting and critiquing these models is well documented in
Pinheiro and Bates (2000). Given that we have already used nlsList, the
easiest approach both from the point of view of typing and of having sensible
starting points is to use gutten.nlsList as the starting point for the model:

> gutten.nlme.0 <- nlme(gutten.nlsList)

If we wanted to construct this model from scratch, then we would need to
do this:

> gutten.nlme.0 <-

+ nlme(dbh.cm ~ SSasympOrig(age.bh, asymptote, scale),

+ fixed = asymptote + scale ~ 1,

+ random = asymptote + scale ~ 1,

+ start = c(asymptote = 50, scale = -5),

+ data = gutten.d)

Note that as of the current version2 we do need to include the estimated
starting values.

As with the linear mixed-effects models, we have a wide array of differ-
ent diagnostic plots that we can deploy, and the functions to obtain those

2 nlme 3.1-96 on R 2.11.1.
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diagnostics are pretty much identical. Here we will focus on examining the
within-tree autocorrelation (Figure 7.22).

> plot(ACF(gutten.nlme.0, form = ~1|tree.ID), alpha=0.01)

The figure shows that there is substantial within-tree autocorrelation,
which suggests systematic lack of fit. At this point, we have two options: we
can try a different mean function or we can try to model the autocorrelation.
That is, we can try to improve the fixed effects or we can try to compensate
using the random effects. In general, we should try them in that order. For
the moment, though, we will focus on modeling the autocorrelation. After
some experimentation, we arrived at

> gutten.nlme.1 <- update(gutten.nlme.0,

+ correlation = corARMA(p = 1, q = 2))

This model produces residuals with the autocorrelation pattern presented in
Figure 7.23.

> plot(ACF(gutten.nlme.1, resType = "n", form = ~1|tree.ID),

+ alpha = 0.01)

This is clearly superior to the preceding model, but still needs some tin-
kering. Perhaps there is too much lack of fit?
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Fig. 7.22: Autocorrelation of within-tree
residuals from non-linear mixed-effects
model.
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Fig. 7.23: Autocorrelation of within-
tree residuals from non-linear mixed-
effects model with explicit autocorrelation
model.

As noted above, we can also try to eliminate the patterns in the residuals
using a more flexible model. In the previous chapter, we tried a model that
does not constrain the fitted line to pass through the origin, SSasymp. We
can try this model here using the following code:
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> gutten.nlme.2 <-

+ nlme(dbh.cm ~ SSasymp(age.bh, asymptote, scale, R0),

+ fixed = asymptote + scale + R0 ~ 1,

+ random = asymptote + scale + R0 ~ 1,

+ start = c(asymptote = 40, scale = -0.07, R0 = -4),

+ data = gutten.d)

We had to try numerous different starting points before this model would
converge. For example,

1. with c(asymptote=50, scale=-5, R0=1), the error was “system is com-
putationally singular”,

2. with c(asymptote=50, scale=-5, R0=-10), the error was “step halving
factor reduced below minimum in PNLS step”,

3. with c(asymptote=50, scale=-5, R0=-1), the model converged but took
several minutes, and

4. with c(asymptote=40, scale=-0.07, R0=-4), the model converged within
a few seconds.

We can compare the models using whole-model tests in the anova function.
The test statistics should be regarded as only approximate. Here we see some
evidence to suggest that the constraint leads to a worse-fitting model.

> anova(gutten.nlme.0, gutten.nlme.2)

Model df AIC BIC logLik Test

gutten.nlme.0 1 6 3627.763 3658.304 -1807.882

gutten.nlme.2 2 10 3473.265 3524.166 -1726.632 1 vs 2

L.Ratio p-value

gutten.nlme.0

gutten.nlme.2 162.4983 <.0001

A graphical comparison provides a useful addition. Because we constructed
these models from a groupedData object, we can use the augmented predic-
tion plots as a very useful summary of the model’s behavior. This graphic is
presented in Figure 7.24, and shows that the differences between the models
does not appear to be substantial.

> plot(comparePred(gutten.nlme.0, gutten.nlme.2))

We can get the approximate 95% confidence intervals of the estimates from
the following call:

> intervals(gutten.nlme.1)

Approximate 95% confidence intervals

Fixed effects:

lower est. upper
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Fig. 7.24: Diameter data from von Guttenberg with both origin-constrained and
unconstrained asymptotic models fitted. Here the tree-level models (equation (7.17))
are plotted.

asymptote 36.477392 38.649203 40.821014

scale -4.203253 -4.119008 -4.034763

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: tree.ID

lower est. upper

sd(asymptote) 8.9042315 10.5142706 12.4154325

sd(scale) 0.3232857 0.3855331 0.4597661

cor(asymptote,scale) -0.6726260 -0.5225912 -0.3312863
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Correlation structure:

lower est. upper

Phi1 0.7549473 0.8217214 0.8716312

Theta1 0.2940804 0.4007537 0.5090448

Theta2 0.5607426 0.6827465 0.7757331

attr(,"label")

[1] "Correlation structure:"

Within-group standard error:

lower est. upper

1.291170 1.524274 1.799463

7.7 Further Reading

The book that documents the fitting tools that we have used for this chapter,
Pinheiro and Bates (2000), should be considered essential reading for anyone
wanting to use the code. The authors describe the theory, the algorithms, and
most of the options, and provide substantial examples for using the code.
We have also found Schabenberger and Pierce (2002), Demidenko (2004),
Fitzmaurice et al. (2004), Wood (2006), Lee et al. (2006), and Gelman and
Hill (2007) to be very useful. Venables and Ripley (2002) also provides some
advice and examples.



Part IV

Simulation and Optimization



Chapter 8

Simulations

In this chapter, we use R to generate, examine, detect, and illuminate sim-
ulated yield tables, projections, or sets of possible future forest conditions.
Our objectives are to 1) cover the major topics and tasks required to generate
forest forecasts; 2) compare some common metrics from the resulting simu-
lations; and 3) examine and present potential shortcomings and remedies for
the methods presented. Our motivation is to generate simulations and combi-
nations of simulations that can be 1) examined quickly for anomalies; 2) easily
queried to answer specific questions; and 3) efficiently exported into other ap-
plications like harvest scheduling and transportation applications (Weintraub
and Navon, 1976) or ecological community analysis (Oksanen et al., 2010),
or linked to a geospatial database (Prayaga et al., 2009).

We tackle a specific and common problem in forest growth simulation
in which more than one growth and dynamics model is needed in order to
provide forecasts but those models are not commensurate, meaning that the
physical scale of the unit of simulation between the models differs. Here we
use the individual-tree young-stand simulator rconifers (Ritchie and Hamann,
2006, 2008) and construct a stand-level, established-stand simulator using the
equations presented by Chambers (1980). The jurisdiction of the young-stand
simulator presented here is normally for plantations below 25 years of age.
The jurisdiction for the established-stand simulator is considered to be no
younger than 30 years. This gap, or in some cases overlap, is not unusual,
and it has been expected that a smooth transition between the young-stand
simulator and the established-stand simulator would occur at about the time
of crown closure. Here we will focus on the challenges that are introduced by
our attempts to use projections from these two models jointly and ignore the
minutiae of the individual jurisdictions of the respective models.

The chapter is structured as follows. In Section 8.1, we provide a brief
presentation of rconifers and construct the established-stand simulator us-
ing Chambers (1980). In Section 8.2, we then determine volume and volume
distributions using the taper function developed by Kozak et al. (1968) and
individual tree records. In Section 8.3, we merge the results from our two

277A. P. Robinson, J. D. Hamann, Forest Analytics with R, Use R!,
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models into a single data frame object. We use that object to examine the
following questions in Section 8.4: 1) What, if anything, happens to the pre-
dicted maximum mean annual increment when we merge the results from
multiple models (e.g., linear combination of the results)? 2) What, if any-
thing, happens to the distribution of log product volumes when the results
are merged to create a single prediction? Finally, in Section 8.5, we export the
predicted yields to a database using the Structured Query Language (SQL)
to allow our results to be used conveniently in other software.

8.1 Generating Simulations

The simulation of forest growth and dynamics is a complicated and multi-
facted undertaking. Depending on the objectives, forest simulation may re-
quire multiple software tools (e.g., SAS, PostgreSQL, Python), several sim-
ulators and models (e.g., CONIFERS, ORGANON, ZELIG), and sometimes
a handful of supporting model components (e.g., taper functions, wildlife
habitat models, and fuel loading models). Coordinating and linking these
disparate tools is a substantial challenge.

Few forest simulation models have been developed within R, although there
are some tools for simulating ecological phenomena (see, e.g., Oksanen et al.,
2010). We must construct our own tools to achieve our objectives. Here we
use two different and non-commensurate models that have different model
architectures: 1) rconifers, a young-stand and single-plant model developed
by Hamann and Ritchie (2009); and 2) the normal yield tables developed by
Chambers (1980) for stand-level projection of established stands.

We start by generating model forecasts given 1) some initial set of condi-
tions; 2) a set of possible management decisions (e.g., harvest, thin, and do
nothing); and 3) a list of the required outputs (e.g., reports, maps, and files).
The process, presented in Algorithm 1, comprises the steps that are used to
generate the required outputs: age, volume, and volume distribution by log
grade. For this simple example, the process is: 1) project the initial plant list
one year, then 2) compute the volume and volume distribution by log grade,
then 3) compute the summary statistics for all necessary metrics of interest,
and finally 4) repeat the process until the end of the planning horizon. These
procedures are the major focus of this section. In Sections 8.2 and 8.3, we
examine and address potential problems.

The final step is to plot graphs, generate maps, and write reports. We
assume that each project will have a unique set of metrics, constraints, and
objectives, so here we focus on only three outputs for simplicity: age, vol-
ume, and volume distribution by log grade. For more complicated simulation
projects, the list of inputs, management decisions, and outputs can be exten-
sive.
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The steps in Algorithm 1 present no specific challenge as individual tasks.
As a complete process, however, the GrowOneYear task presents a common
dilemma: How do we continue projecting the sample under different condi-
tions? Specifically, in our project, how do we manage the transition from the
young-stand model to the established-stand model? And, how do we know
when to effect this transition? Among the options are: 1) continue projecting
the sample until the end of the planning horizon using the young-stand model;
2) only grow the sample using the established-stand model; 3) define some
method by which we use the results from the young-stand model to initialize
the established-stand model with some single cutoff age; or 4) examine an-
other method by which we combine the results of the two inconguent models
into a single set of results. Each method has advantages and shortcomings,
which we examine in Section 8.3. In this section, we briefly introduce the two
simulators.

8.1.1 Simulating Young Stands

The CONIFERS growth model, developed by Ritchie and Hamann (2006,
2008), provides an R package that is called rconifers (Hamann and Ritchie,
2009). The package includes two variants, or simulators, that can be used
to project plant records. The default variant (SWO, variant #0) is used
to project vegetation from southern Oregon and northern California. The
alternative variant (SMC, variant #1) is used to project vegetation from
the Pacific Northwest region of the United States. See Hamann and Ritchie
(2009) for more detailed documentation. In this section, we present the basic
functionality of the simulator, then introduce some functions used to process
an rconifers sample.data object, then project sample.data objects forward in
time, and finally generate summaries by species.

Data: field data, growth and yield equations, project objectives and constraint
formulas, software

Result: Complete datasets of forecast future forest conditions
§t=3 = sample.3;
Ŝt=0 = ImputeMissingValues(St=0);
EvaluateSummaryStatistics(t = 0);
for g ← 2 to 100 do

St+1 ← GrowOneYear(St);
Yg = EvaluateSummaryStatistics(St+1);
μg ←U pdateParetoArchive(λg);

end

ExportYields(YG);

Algorithm 1: Forest simulation process.
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8.1.1.1 Loading the rconifers Package

We assume that the rconifers package is installed, for example using

> install.packages("rconifers")

We load the CONIFERS model using the library function and set the species
map to the variant that we wish to use. Here we use variant 1.

> library(rconifers)

Initialized 19 functional species coefficients for variant # 0

coefficients version is 4.120000

> set.species.map(set.variant(1))

Initialized 3 functional species coefficients for variant # 1

coefficients version is 4.120000

The species map object, called smc, contains settings for three functional
species-level coefficients that can be controlled by the user. We can examine
it as follows.

> dim(smc)

[1] 3 13

> names(smc)

[1] "idx" "code" "fsp"

[4] "name" "organon" "cactos"

[7] "fvs" "endemic.mort" "max.sdi"

[10] "browse.damage" "mechanical.damage" "genetic.worth.h"

[13] "genetic.worth.d"

> head(smc)

idx code fsp name organon cactos fvs

1 0 CV 0 Competing Vegetation 0 0

2 1 DF 1 Douglas fir 202 4 DF

3 2 NS 2 Non Stocked 0 0

endemic.mort max.sdi browse.damage mechanical.damage

1 0.002 0 0 0

2 0.002 450 0 0

3 0.000 0 0 0

genetic.worth.h genetic.worth.d

1 0 0

2 0 0

3 0 0
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or by using the str function.
Each functional species code is used to map an actual species into the co-

efficient array for each variant. We use the term functional species to describe
a group species of that behave similarly to one another in the growth model.
The data frame object smc also contains a text species code that can be used
in data recorder files. The species map also includes elements for mortality
controls like endemic mortality (smc$endemic.mort), maximum stand den-
sity index values (smc$max.sdi Reineke, 1933), and values that can be used
to control height growth like mechanical damage (smc$mechanical.damage)
or damage caused by animal browsing (smc$browse.damage).

8.1.1.2 Creating and Using a sample.data Object

The rconifers package provides a specific class for storing the data to be
used for simulation: a sample.data object. A sample.data object must con-
tain at least two data frame objects: one to define plot-level attributes
(called sample.data$plots) and one to define the tree records (called
sample.data$plants). In additon to the data frame objects, the sample.data
object must also include an age (called sample.data$age) and a parameter
(called sample.data$x0) that defines the intercept term for a stand den-
sity trajectory (Reineke, 1933; Hann and Wang, 1990). Most of the rconifers
functions operate directly upon sample.data objects.

First, load the plot and plant data frame objects from the package.

> data(plots.smc)

> data(plants.smc)

Next, create a list that contains the plots, plants, and initial age, and
assign the resulting list a sample.data class,

> sample.3 <- list(plots = plots.smc,

+ plants = plants.smc,

+ age = 3,

+ x0 = 0.0)

> class(sample.3) <- "sample.data"

Now we can call many of the functions in rconifers directly upon the sample.3
object. For example, to generate a set of species-level summaries, we use the
summary function.

> summary(sample.3)

sample contains 18 plots records

sample contains 58 plant records

age = 3

x0 = 0
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max sdi = 450

qmd tht ba expf

DF 0.578505 5.76724 0.456331 322.222

The summary function calls the sp.sums function, which generates a data
frame object for which each row contains the summaries for a different species
in the plant list. This data frame can also include non-tree species. The
summary function also presents the sample.data$age and sample.data$x0

variables.

8.1.1.3 Generating Young-Stand Simulations

We use the project function to project for a sample.data object. Here, we
grow the sample.3 sample.data object forward in time for 10 years, and
simply print out the projected summary, using the summary function,

> summary(sample.3)

sample contains 18 plots records

sample contains 58 plant records

age = 3

x0 = 0

max sdi = 450

qmd tht ba expf

DF 0.578505 5.76724 0.456331 322.222

> sample.25 <- project(sample.3,

+ 22,

+ control = list(rand.err = 0,

+ rand.seed = 0,

+ endemic.mort = 0,

+ sdi.mort = 0))

> summary(sample.25)

sample contains 18 plots records

sample contains 58 plant records

age = 25

x0 = 0

max sdi = 450

qmd tht ba expf

DF 8.59453 65.5306 129.815 322.222

Here the output includes the number of total plot records, the total number
of plant records in the sample, the total age, the maximum stand density in-
dex (max.sdi, see Hann and Wang, 1990), the initial value at which max.sdi

crossed the line of imminent mortality (Reineke, 1933), x0, and the output
from the sp.sums function.
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The project function includes a control argument that can be used to
fine-tune the behavior of the function, and thus the simulator. rand.err is a
flag to indicate that a normally distributed random number should be added
to the height growth of the plant (rand.err = 1). rand.seed sets the initial
value for the random number generator and only needs to be called once at
the beginning of the simulation for each sample you want to project. If you
need to repeat the randomness pattern, you need to reseed the random num-
ber generator with the same seed before projecting the sample. The value
is not a switch; it requires an integer value to set the random number gen-
erator (see ?set.seed). The endemic.mort argument is used to toggle the
background mortality in the model applied to each growth cycle. Finally, the
sdi.mortality switch is used to control additional mortality using the stand
density index, defined by Reineke (1933). This last component of mortality
is independent of the endemic mortality in the simulator. The influence of
specific arguments is covered more completely in the package documentation
(Ritchie and Hamann, 2006, 2008; Hamann and Ritchie, 2009).

As we described in Section 8.1, we ultimately want to compare simulations,
given the same initial conditions. For example, in the following simulation
run we assume that no vegetation control will be applied, and we generate
simulations using a set of for loops to project a sample.data object for 100
years.

> res.v <- vector(length = 98, mode = "list")

> s0 <- sample.3

> res.v[[1]] <- data.frame(age = s0$age, sp.sums(s0)["DF",])

> ## grow from age 3 to age 100 (97 more years)

> for(m in 1:97) {

+ ## project s0 in one year intervals

+ s1 <- project(s0, 1, control = list(rand.err = 0,

+ rand.seed = 0,

+ endemic.mort = 1,

+ sdi.mort = 1))

+ res.v[[m+1]] <- data.frame(age = s1$age,

+ sp.sums(s1)["DF",])

+ s0 <- s1

+ }

> res.v <- do.call(rbind, res.v)

> res <- res.v

In this example, the plant list in the sample s0 includes only Douglas-fir
(Pseudotsuga menzesii Mirb. Franco), and so we can use the index operator
to extract only the Douglas-fir results from the summaries generated by the
sp.sums function (here sp.sums(s1)["DF",]). The process, as outlined in
Section 8.1, is to assume that sample.3 represents the initial conditions,
compute the initial condition summary statistics, and then project s0 forward
in time 1 year where the results are stored in s1. The process is repeated
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Fig. 8.1: Results from rconifers simulations using the SMC variant for the first 100
years of a simulation. These plots are for the sample.data object described in the
text. The gray dashed line represents the trajectory from McArdle et al. (1949) (site
index 180).

until the end of the planning horizon (here, 100 years). Figure 8.1 presents
trajectories for two stand metrics: 1) trees per acre (from sp.sums()$expf)
and 2) stand basal area (from sp.sums()$ba).

Had we included other functions from the rconifers package (for example,
thin), the data frame res would also need to store those simulations so that
the results would now be sufficient to examine the basic silvicultural rela-
tionships influenced by various initial conditions and silvicultural treatments
(e.g., vegetation management or pre-commercial thinning). For a more com-
plete presentation of all the functions in the rconifers package, the reader is
refered to the rconifers documentation.

8.1.2 Simulating Established Stands

The CONIFERS model is a young-stand model and is suitable for projecting
forest growth for about the first 25 years of growth. In order to provide pro-
jections after this age, we need an established-stand model. Our requirement
is that the simulator can be run on multiple platforms, which means the
source code must be available. We implement the empirical growth and yield
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tables for the Douglas-fir zone in Washington State developed by Chambers
(1980). This approach allows us to provide a useful example of 1) building a
model using external C or FORTRAN source code; 2) using that model from
within R; and finally 3) integrating that model into our current project to
create a uniform, and thus useful, stream of data.

The model developed by Chambers (1980) contains equations for predict-
ing normal1 basal area (nba), trees per acre for trees 7 inches and larger
(tpa.7.plus), average stand diameter (qmd), and stand mean height for trees
5 inches and larger (smh). The model also includes equations for cubic foot
volume, Scribner volume to a 6 inch top, Scribner volume in 16 foot logs, and
Scribner volume in 32 foot logs using a tariff system. However, since rconifers
does not provide volumes and we may want to compute volumes to some
other specification, we defer volume determination until Section 8.2. In this
section, we briefly present a subset of the source code, compile the source code
for use within R, and finally load, attach, and call the functions to generate
a data frame commensurate with the resulting data frame in Section 8.1.1.3.

8.1.2.1 Source Code

The files chambers-1980.h, chambers-1980.c, and chambers-1980.r con-
tain equations and functions that define the growth and yield characteristics
for the Douglas-fir (Pseudotsuga menzesii Mirb. Franco) zone in Washington
State as defined in Chambers (1980). The header file (chambers-1980.h) de-
fines the functions presented in the implementation file (chambers-1980.c),
and we provide a set of R wrapper functions (chambers-1980.r).

In this section, we demonstrate the procedures for calling external func-
tions using the equation to predict stand mean height (Chambers, 1980, Table
16), expressed as

Ĥ = 2202.75000

+205.41618× (log(Abh ×S))2

−1323.88477× (log(Abh ×S))

−0.00671×A2
bh

−383.35889× 1

Abh

where Ĥ is the predicted stand mean height for trees 5.0 inches and larger,
Abh is the age at breast height, S is the site index, defined by King (1966),
and log is the base 10 logarithm.

1 Normal is defined here informally as meaning typical or average for a large popula-
tion of sampled stands.
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The C function chambers_1980_stand_mean_height is defined in the file
chambers-1980.h as

void chambers_1980_stand_mean_height(

double *site_index,

double *total_age,

double *stand_mean_height);

and the C implementation for the function is in the file chambers-1980.c as

void chambers_1980_stand_mean_height(

double *site_index,

double *total_age,

double *stand_mean_height)

{

double ret_val;

double bha;

bha = chambers_1980_breast_height_age(site_index,

total_age);

if(bha < 1.0)

{

bha = 1.0;

}

ret_val = 2202.75000

+ 205.41618 * pow(log10(bha * (*site_index)), 2.0)

- 1323.88477 * log10(bha * (*site_index))

- 0.00671 * bha * bha

- 383.35889 * (1.0 / bha);

if(ret_val <= 0.0)

{

ret_val = 0.0;

}

*stand_mean_height = ret_val;

}

The function chambers_1980_breast_height_age, which is called from
within the chambers_1980_stand_mean_height function, is also found in
the file chambers-1980.c.

The function is called using three arguments: *site_index, *total_age,
and *stand_mean_height. The first two arguments are the predictor vari-
ables. The last argument is a pointer to where the results are stored. All
three arguments are pointers to variables of type double (that is, these argu-
ments are passed by reference). At the time of this writing, all arguments to
external functions or subroutines are passed by reference. A table of variable
types is presented in Table 8.1.
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Table 8.1: Foreign language data types.

R storage mode C type FORTRAN type

logical int * INTEGER

integer int * INTEGER

double double * DOUBLE PRECISION

complex Rcomplex * DOUBLE COMPLEX

character char ** CHARACTER*255

raw unsigned char * none

8.1.2.2 Compile, Attach, Call, and Wrap External Code

The final step in the process of calling external source code is to 1) compile

the source code into a shared library; 2) attach the resulting shared library
to your current R process; 3) call the external code using one of the R func-
tions for calling external libraries; and optionally 4) wrap the R external
calling functions into a wrapper function of your own. The following code
assumes that appropriate command-line tools are available to build R and R
extensions.

Compile

Since the files chambers-1980.h and chambers-1980.c define and contain
the functions themselves, we only need to issue a single command, from the
operating system command prompt (here, $) to compile the shared library,

$ R CMD SHLIB chambers-1980.c

which will compile and link the code into a shared library chambers-1980.so
(chambers-1980.dll in Windows). The call will present reasonably helpful er-
ror messages if necessary.

Attach

To attach the shared library and access the functions in the current R process,
use the dyn.load function at the R prompt,

> dyn.load("chambers-1980.so")

upon which, unless something goes wrong, you should recieve no error mes-
sage and be returned directly to the R command prompt.
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Call

To call the function chambers_1980_stand_mean_height, which is written
in C, we must use either of R’s .C or .Call function, passing the arguments
to the function as well,

> site.index <- 120.0

> total.age <- 60

> .C("chambers_1980_stand_mean_height",

+ as.double(site.index),

+ as.double(total.age),

+ smh = as.double(0))$smh

[1] 112.9387

which returns the correct value but looks cumbersome.

Wrap

For simplicity, we wrap the .C function call within a more accessible-looking
R function called chambers.1980.smh,

> chambers.1980.smh <- function(site.index,total.age) {

+ ret.val <- .C("chambers_1980_stand_mean_height",

+ as.double(site.index),

+ as.double(total.age),

+ smh = as.double(0))$smh

+ ret.val

+ }

which provides an easier interface to the original function and returns the
value of interest.

Finally, to verfiy the wrapper function is working properly, simply call the
R wrapper function chambers.1980.smh,

> chambers.1980.smh(120.0, 60.0)

[1] 112.9387

which matches the results presented in the original publication for a stand
with a 50 year site index of 120 feet at age 60 (Chambers, 1980, Table 16).

In all, there are about 14 functions defined in chambers-1980.h and
chambers-1980.c that need .C wrappers. We provide a set of wrapper func-
tions so, to conserve space, the functions can be loaded by sourcing the file

> source("chambers-1980.r")
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so that now all the functions required to produce the tables in Chambers
(1980) from the functions defined in chambers-1980.h, chambers-1980.c,
and chambers-1980.r are available from the R command prompt. For more
details on calling external functions, we refer the reader to “Writing R Ex-
tensions”, which is part of the R documentation.

8.1.2.3 Generating Established-Stand Simulations

We include another wrapper function, called chambers.1980, to project es-
tablished stands,

> chambers.1980 <- function(ages = 1:100,

+ site = 125.0,

+ pnba = 1.0) {

+ ret.val <- matrix(0, length(ages), 5)

+ for(i in ages) {

+ res <- c(i,

+ chambers.1980.adbh(site, i, pnba), ## Table 5

+ chambers.1980.smh(site, i), ## Table 16

+ chambers.1980.nba(site, i), ## Table 1

+ chambers.1980.ntpa(site, i, pnba) ## Table 3

+ )

+ ret.val[i,] <- res

+ }

+ ret.val <- as.data.frame(ret.val)

+ names(ret.val) <- c("age","qmd","tht","ba","expf")

+ ret.val

+ }

where the function returns a data frame object similar to that in Sec-
tion 8.1.1.3 that includes our three critical metrics: 1) average stand diameter
(qmd); 2) stand mean height (tht), and basal area (ba); and 3) trees per acre
(expf) for each year in a projection. The results of a simulation are presented
in Figure 8.2.

Figure 8.2, like Figure 8.1, contains plots of the number of trees per acre
(expf) and the stand basal area (ba). The plots reveal a common phenomenon
presented in forest simulation projects. The model by Chambers (1980) (gray
line) contains only stems over 7 inches (17.78 cm), whereas the rconifers
simulator (black line) reports values for all stems. The results of this disparity
are clearly visible in both plots. These results suggest that the user needs to be
aware of the input requirements, output limitations, and model assumptions
for each simulator. We acknowledge this critical shortcoming and address it
in Section 8.3. Regardless, we now have the ability to generate simulations by
passing in a set of reporting ages, a site index (site.index), and a percent
normal basal area (pnba) for established stands. We now need to consistently
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Fig. 8.2: Simulation results from the chambers-1980 function where site=120 and
pnba=1.0. The dark gray lines represent the resulting rconifers stand trajectories (see
Figure 8.1).

generate volumes needed to determine the maximum mean annual increment
and the volume distribution by log grade.

8.2 Generating Volumes

In this section, we generate log and stem volumes and calculate the distri-
bution of stem volume by log grade for a set of simulations to examine our
metrics of interest (specifically, total volume, mean annual increment, and
volume distribution). To compute the volumes for our simulations, we use
the taper function presented by Kozak et al. (1968) and obtain the mer-
chantable height using the root-finding function uniroot. To simplify our
task, we use the Smalian log rule (Briggs, 1994) and present the procedure
in metric units. We then summarize the volumes by log grade for all mer-
chantable stems in the young-stand simulations and, finally, compute the
volumes for the established-stand simulations using the same method.
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8.2.1 The Taper Function

The taper equation for Douglas-fir, developed by Kozak (1988), can be used
to provide 1) predictions of inside diameter at any point on the stem; 2) esti-
mates of total volume; 3) estimates of merchantable volume and merchantable
height to any top diameter and from any stump height; and 4) estimates of
individual log volumes. The taper equation function is

di = a0Da1aD
2 Xb1Z2+b2 ln(Z+0.001)+b3

√
Z+b4 expZ+b5(

D
H ) (8.1)

where X = (1−√hi/H)(1−√
p), D is the diameter at breast height (1.3 m), H

is the total stem height, p = 0.25, Z = hi
H
, and hi is the height above ground on

the stem at which we want to determine di, the diameter inside bark, ln is the
natural logarithm, and a0, a1, a2, b1, b2, b3, b4, b5 are estimated coefficients
(Kozak, 1988).

Equation (8.1) can be written as a vectorized R function,

> bcmof.diDBH <- function(dbh, tht, cr, hi) {

+ p <- 0.25

+ dib <- 1.02453 * dbh^0.88809 * 1.00035^dbh

+ X <- (1.0 - sqrt(hi / tht)) / (1.0 - sqrt(p))

+ Z = hi / tht

+ a = 0.95086 * Z * Z;

+ b = -0.18090 * log(Z + 0.001);

+ c = 0.61407 * sqrt(Z) + -0.35105 * exp(Z);

+ d = 0.05686 * (dbh / tht);

+ retval <- (dib * X^(a + b + c + d))

+ retval[tht < hi] <- 0

+ retval

+ }

where arguments for the function are dbh, tht, cr, and hi, which represent the
diameter at breast height (1.3 m), the total stem height, the crown ratio, and
the height at which we want to determine di, respectively. An example profile
where dbh = 45 cm, tht = 27 m, and cr = 0.6 is displayed in Figure 8.3.

8.2.2 Computing Merchantable Height

To determine the height above the base of the stem at which we cannot make
cuts (the merchantable limits), we need a function that will cross the x-axis
at the merchantable height of the stem. A simple method to accomplish this
is to subtract the merchantable diameter (md) from the diameter inside bark
(diDBH)
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> merch.height.func <- function(hi, dbh, tht, cr, md) {

+ dib <- bcmof.diDBH(dbh, tht, cr, hi)

+ diff <- dib - md

+ diff

+ }

so that when diDBH is less that md, the function crosses the x-axis; that is,
the root of equation (8.1).

We pass the merch.height.func function to the uniroot function to ob-
tain the merchantable height of the stem,

> mh <- uniroot(merch.height.func,

+ c(0, 27),

+ dbh = 45.0,

+ tht = 27,

+ cr = 0.60,

+ md = 10.0)

> mh

$root

[1] 23.34488

$f.root

[1] 1.584768e-06

$iter

[1] 5

$estim.prec

[1] 6.103516e-05

where the arguments of the uniroot function include the limits of eval-
uation (c(0,27)) and any necessary arguments to pass through to the
merch.height.func function (here dbh, tht, cr, and md).

The results of the uniroot function show that it took five iterations to ar-
rive at the root (iter), which occurred at 23.34488 meters above the ground.
To be precise, for the inputs we provided, the location of the root occured
at 23.34488 and the taper function actually evaluates to 0.000002 (a zero, or
root) at that value. The estimated precision after five iterations was 0.00006.
Should we require greater precision, we can alter the tol and maxiter argu-
ments to our satisfaction.

Finally, to verify the results, we can pass the resulting uniroot mh$root

value back into the taper function to verify that we get the same value for
the minimum merchantable diameter inside bark of 10.0 cm,

> min.dib.check <- bcmof.diDBH(45, 27, 0.60, mh$root)

> min.dib.check
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Table 8.2: Log grades and merchandising specifications.

Sort name Diameter range (inches) Description

Pulp 2 ≤ D < 5 Pulp logs (chipped)
Sawlog #3 5 ≤ D < 12 Small sawlogs
Sawlog #2 12 ≤ D < 18 Medium sawlogs
Sawlog #1 18 ≤ D < 32 Large sawlogs
Peeler D ≥ 32 Veneer Logs

[1] 10.00000

Success. We may now proceed with summarizing the volumes by grade.

8.2.3 Summarizing Log Volumes by Grade

To generate the log volumes and volume distributions by grade for each time
period, we must declare a log volume function and a set of vectors that
contain the definitions for the minimum diameters for logs (log.breaks)
and the names to assign to the grades (log.grades),

> smal.vol <- function(d1, d2, l) {

+ c <- 0.0001570796 ## in m^3

+ smal.vol <- (0.25 * d1^2 + 0.25 * d2^2) * l * c

+ smal.vol

+ }

> log.breaks=c(2,5,12,18,32,999)

> log.grades=c("pulp","s4","s3","s2","s1","peeler")

> grade.names <- c("Pulp","#4 Sawlog","#3 Sawlog",

+ "#2 Sawlog","#1 Sawlog", "Peeler")

where the function smal.vol is the function for the Smalian volume (Briggs,
1994), d1, d2, and l are the small-end diameter, large-end diameter, and
length for a log, in meters, and the log.breaks contain the smallest diameter
for a log in the respective log.grades class in centimeters. The last entries in
the log.breaks and log.grades vectors represent the largest category (see
Table 8.2).

Equipped with these inputs and a tree list, we can proceed with merchan-
dising our stems so that we obtain a vector of volumes, using log.grade, for
each tree record. The process of merchandising each stem is as follows: 1)
determine the merchantable height for the stem given the set of log.breaks;
2) compute the length of the stem that could be produced for each log grade;
and 3) use a for loop to compute the volume for each log within the stem,
with the length of each log being the difference in the heights between cuts
in the stem at the minimum log diameters (at log.breaks).
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First, we create a vector to store the merchantable heights for each of the
log.breaks. Then, we loop over the log.breaks vector to determine where
to make the cuts in the stem so that the stem is cut into lengths that represent
the longest possible log for each log grade,

> mh.bks <- rep(0, length(log.breaks))

> for(i in 1:length(log.breaks)) {

+ dbh <- 45.0; tht <- 27; cr <- 0.60

+ if(log.breaks[i] <= bcmof.diDBH(dbh, tht, cr, 0.0)) {

+ mh <- uniroot(merch.height.func,

+ c(0, tht),

+ dbh = dbh,

+ tht = tht,

+ cr = 0.60,

+ md = log.breaks[i])

+ mh.bks[i] <- mh$root

+ } else {

+ mh.bks[i] <- 0.0

+ }

+ }

The resulting vector (mh.bks) contains the heights at which the stem can
no longer be merchandised into the associated log.break entry. For example,
the first entry in the merchantable height breaks (that is, mh.bks[1]), which
is

> log.breaks

[1] 2 5 12 18 32 999

> mh.bks

[1] 26.497448 25.405561 22.451219 19.407203 4.588263 0.000000

means that the longest log that can be cut from the stem while maintain-
ing a small-end diameter larger than 2 cm is 26.49745 m above the ground.
Subsequently, the maximum length that can be cut from the stem for a 5 cm
log is 25.40556 m. Thus, the length of the top log is the difference between
the two lengths, 1.09189 m, so that the top log has a small-end diameter
(sed) of 2 cm, a large end diameter of 5 cm, and a length of 1.09189 m. The
Smalian volume given those dimensions is in cubic meters. Since the process
of iterating over tree records can be lengthy, we provide a function called
generate.log.vols so that given a sample.data object and a vector of min-
imum log diameters (log.breaks), the generate.log.vols function returns
a data frame that contains the original tree list, with volumes, by log.grade,
appended as columns. The function can be used to compute volumes for both
young-stand and older-stand model results.
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Fig. 8.3: The example stem with the bucking lines for logs defined by the log.breaks
vector, given a stem with a breast-height diameter of 45 cm and a total stem height
of 27 m.

Figure 8.3 presents the major features of merchandising a single stem using
the methods described in this section. The vertical lines represent the cross-
cut decisions at each of the minimum height values (mh.bks). The horizontal
lines represent the cylinders that would result from extending the small-end
log diameter to the base of the stem (log.breaks). The profile of the stem
diameter, at height hi, is represented by the solid line.

8.2.4 Young-Stand Volumes

Using the generate.log.vols function, we can generate tree lists with vol-
umes for each year in the young-stand simulations. Ultimately, we need to de-
velop a single line, for each year, that contains the stand-level attributes (qmd,
tht, and expf), the total volume (sm.vol), the volume by log.grade, and
the distribution of that volume. Again, to reduce the code presented here, we
have included another function in the file generate_log_volumes.r, called
sp.sums.2. The function sp.sums.2 performs all of the tasks described in
this section and returns a set of summaries, by species, that includes the to-
tal log volume and the percentage of the volume in for the log.grade and
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log.breaks vectors. For example, to obtain the volumes for the young-stand
simulation from Section 8.1.1.3 (that is, sample.25),

> ## the log.breaks are in cm

> sp2 <- sp.sums.2(sample.25, log.breaks/2.54, log.grades)

> sp2[,c("sm.vol", log.grades)]

sm.vol pulp s4 s3 s2 s1

DF 3647.269 1.380405 21.88773 463.9883 1826.207 1321.220

peeler

DF 12.58429

The resulting data frame object contains the quadratic mean diameter
(qmd), the mean total height weighted by the stem’s expansion factor (expf),
the total basal area (ba), the total number of stems per acre (expf), the total
number of stems per acre over 7 inches (expf.7.plus to compare our results
against the Chambers (1980) model), the total Smalian log volume (sm.vol),
a vector of Smalian volumes by log.grade, and a vector of proportions for
the log volume (log.grades) for each species in sample.25. Here we only
present the total volume and the volumes in each of the log.grades.

8.2.5 Established-Stand Volumes

To generate established-stand volumes using the function sp.sums.2, we
need to create a temporary sample.data object from the results of the
chambers.1980 function. The output from the established-stand simulator
is a vector of attributes for any given age, so we can either 1) determine
the volume from a single set of observations (that is, summary statistics like
qmd and tht) or 2) generate a set of stem observations (a tree list) from the
population of stems described by the summary statistics. We present both
methods in this section.

8.2.5.1 From Summary Statistics

The first method is the simplest. Here we construct a single stem from the
stand summary statistics from the established-stand simulator. For exam-
ple, to determine the volumes for an established-stand simulation at age
50 years (e.g., site = 120, pnba = 1.0, age = 50), we first generate the
established-stand simulation using the chambers.1980 function. Then, we
create an rconifers plot and plant data frame objects and, finally, an rconifers
sample.data object,

> ch <- chambers.1980(ages = 1:200, site = 120, pnba = 1.0)

> ch.stem <- data.frame(plot = 1,
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+ sp.code = "DF",

+ d6 = NA,

+ dbh = ch[50,]$qmd,

+ tht = ch[50,]$tht,

+ cr = 0.6,

+ n.stems = 1,

+ expf = ch[50,]$expf,

+ crown.width = NA,

+ errors = 0)

> ch.plot <- data.frame(plot = 1,

+ elevation = NA,

+ slope = NA,

+ aspect = NA,

+ whc = NA,

+ map = NA,

+ si30 = 120)

> ch.50 <- list(plots = ch.plot, plants = ch.stem, age = 50)

> class(ch.50) <- "sample.data"

> sh2 <- sp.sums.2(ch.50, log.breaks, log.grades)

> sh2[,c("qmd","ba","expf","sm.vol",log.grades)]

qmd ba expf sm.vol pulp s4 s3

DF 12.13548 207.8756 258.7996 9032.07 22.49502 360.6965 8481.45

s2 s1 peeler

DF 167.4276 0 0

Note that the volumes are generated from a single representative stem for
the stand.

8.2.5.2 From Tree Lists

There are many techniques for generating tree lists. Here we generate a nor-
mal distribution of diameters. Using the normal function, and choosing year
50, we generate round(ch[50,]$tpa) realizations from an assumed normal
population of stem sizes,

> dia.obs <- rnorm(n = round(ch[50,]$expf)*10,

+ mean = ch[50,]$qmd,

+ sd = 0.20*ch[50,]$qmd)

where mean is the quadratic mean of the tree diameters, sd is the standard
deviation of the population which we assume is 20% of qmd , and ch[50,] is
the data for the 50th year in the simulation. To increase the number of stems
in our sample, say to generate a smoother distribution of stems, we would
generate ten times the number of stem observations and divide the expansion
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factor for each entry by ten to obtain the correct total number of stems per
unit area.

To construct the tree list, we include a set of values for the heights. Here
we use the equation to predict total height given DBH, presented by Hanus
et al. (1999), to generate the heights for each of the diameter realizations,
and assume a crown ratio of 40% (that is, cr = 0.40) and a single plot
representing the sample,

> ## generate the plant records

> plant.obs <- data.frame(plot = 1,

+ sp.code = "DF",

+ d6 = NA,

+ dbh = dia.obs,

+ tht = 4.5 + exp(7.262195456 +

+ -5.899759104 *

+ dia.obs^-0.287207389),

+ cr = 0.40,

+ n.stems = 1,

+ expf = 1/10,

+ crown.width = NA)

> plot.obs <- data.frame(plot = 1,

+ elevation = 1000,

+ slope = 0,

+ aspect = 0,

+ whc = NA,

+ map = NA,

+ si30 = 85.0)

> ch.50 <- list(plots = plot.obs,

+ plants = plant.obs,

+ age = ch[50,]$age,

+ x0 = NA)

> class(ch.50) <- "sample.data"

Finally, we can use the modified function sp.sums.2 to obtain the metrics
of interest:

> sh2 <- sp.sums.2(ch.50, log.breaks, log.grades)

> sh2[, c("qmd", "ba", "expf", "sm.vol", log.grades)]

qmd ba expf sm.vol pulp s4 s3

DF 12.43444 218.4129 259 7868.594 20.05454 328.2135 6692.396

s2 s1 peeler

DF 819.5235 8.406364 0

methods, as in Section 8.2.4.
Finally, when we no longer need the chambers-1980.so shared library, we

unload the library using the dyn.unload function,
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> dyn.unload("chambers-1980.so")

8.3 Merging Yield Streams

For each of the two models, we can now produce data frame objects that
contain projected summaries that include volumes and volume distributions
for each of the log grades. Before we can examine our results, however, we
must address the dilemma presented in Section 8.1.2.3. We need to provide
a smooth transition between young-stand and established-stand simulations.
Here our solution is to construct a linear combination similar to that pre-
sented by Wykoff et al. (1982), which creates results so that values from the
young-stand simulations are used at young ages followed by some mixture of
the two, and then, as the simulation progresses, the established-stand model
defines the characteristics of the stand.

A linear combination of the values from the two data frames for each
simulator can be expressed as

Sα,t = α(t)Sy,t +(1−α(t))Se,t (8.2)

where Sα,t is the linear combination of Sy,t , the young-stand simulation vari-
able at time t, Se,t , the established-stand simulation variable at time t, and
α(t) is defined by

α(t) =

⎧⎪⎨
⎪⎩

1 for 1 < t < 20
t−ts
te−ts

for 20 ≤ t ≤ 40

0 for t ≥ 40

(8.3)

where ts = 20 is the starting age at which the transition between the two mod-
els begins and te = 40 is the end of the transition period. Here, when t < 20,
the young-stand model defines the yields. When t > 40, the established-stand
model defines the yields. For example, at age 35, the value of the statistic is
a linear combination of 25% young-stand model and 75% established-stand
model. For other situtations, the starting and ending values of the transition
period may be substantially different. This method should not be applied to
ordinal or categorical data.

8.4 Examining Results

Figure 8.4 presents a comparison of the results for the individual models.
The results for the stems per acre (expf) and basal area (ba) appear com-
mensurate with the results from McArdle et al. (1949). The trajectories for
mean stand height (tht) and, as a result, volume (sm.vol) appear patho-
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Fig. 8.4: Common metrics for forest simulations. The solid black lines present the
results from rconifers. The dashed black lines are the results from the chambers-
1980.so simulator. The thick gray solid line presents the linear combination, defined
using equation (8.2). The dashed gray line presents values from McArdle et al. (1949)
for a normal stand with the site index of 180.0 feet. The thick dashed line in the
Smalian volume represents the volume generated using the method described in Sec-
tion 8.2.5.2.
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logical, however, when compared with both McArdle et al. (1949) and the
young-stand simulator rconifers. The resulting stand height, as described in
Chambers (1980), exhibits negative height growth; we can interpret this as
a sign that the established-stand simulator does not extrapolate well beyond
the intended domain of the original data (20 < age < 100).

The Smalian volume plot presented next to the mean stand height in Fig-
ure 8.4 exhibits an artifact of the height function behavoir as well. The thin
dashed gray line represents the volume computed from a single tree record
(see Section 8.2.5.1). The line exhibits a sinusoidal nature with increasing
amplitude. This artifact is corrected by generating a tree list using the stand-
level attributes from the established-stand model (see Section 8.2.5.2). The
final results (thin black dashed line in the thick gray solid line) represent the
volumes computed from the generated tree lists using the method presented
in Section 8.2.5.2. Note that this volume trajectory maintains a realistic path:
the line exhibits a roughness resulting from the generation of stems indepen-
dently at each year in the simulation. Finally, the mean annual increment
trajectories, at the lower-left of Figure 8.4, include the resulting Smalian vol-
umes from the methods presented in Sections 8.2.5.1 (uncorrected) and 8.2.5.2
(corrected), respectively, and also exhibit behavior similar to that found in
the volume plot.

To determine the maximum mean annual increment, we obtain the maxi-
mum of the mean annual increment, using the which.max function to identify
which row to retrieve from the data frame for each model,

> a.max.mai <- a[which.max(a$mai),]

> b.max.mai <- b[which.max(b$mai),]

> b.prime.max.mai <- b.prime[b.prime$mai == max(b.prime$mai),]

> c.max.mai <- c[c$mai == max(c$mai),]

> c.max.mai$col <- "c"

> c.prime.max.mai <- c.prime[c.prime$mai == max(c.prime$mai),]

> c.prime.max.mai$col <- "c.prime"

> max.mais <- rbind(a.max.mai,

+ b.max.mai,

+ b.prime.max.mai,

+ c.max.mai,

+ c.prime.max.mai)

where a represents the young-stand rconifers model, b represents the results
from the established-stand simulator, b.prime contains the corrected volume
results (see Section 8.2.5.2), c contains the uncorrected volume results, and
c.prime contains the combined corrected results.

We now have all the data required to examine the influence of our differ-
ent fusion methods on the maximum mean annual increment. For example,
Table 8.3 presents the major metrics of interest, including the total volume,
age, and tree density (TPA). For this table, we can examine basic summary
statistics such as the ranges in age, variance in the basal areas, and aver-
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Table 8.3: Statistics for simulations at the maximum mean annual increment for
each of the models.

Simulation Age QMD (in) Height (ft) Basal Area (ft2) TPA TPA 7”+ Volume (ft3)
1 38 10 93 153 290 285 7305
2 40 11 82 178 285 285 7863
3 35 10 71 165 295 274 5967
4 40 11 82 178 285 285 7863
5 30 9 77 142 305 300 5626

age volume at maximum MAI. Here we only present our summary results to
demonstrate the method.

In the next two sections, we further examine our results, focusing specifi-
cally on the volume and the mean annual increment, and finally answer our
original questions: 1) What, if anything, happens to the distribution of log
product volumes over time; and 2) What, if anything, happens to the result-
ing maximum mean annual increment values?

8.4.1 Volume Distribution

The top row of Figure 8.5 contains the smallest two log grade classes in the
simulations (pulp and #4 sawlog). The results from the young-stand model
increase rapidly below age 20 for both. After age 20, the pulp grade contin-
ues to increase, but more slowly, and the #4 sawlog volume also continues
to increase after a slight dip. The uncorrected combined results (solid gray
line) from the established-stand simulator increase rapidly, peak, and then
also decline, but in a smooth line rather than showing the extreme changes
exhibited by the young-stand simulator.

Medium sawlog grades (#2 and #3 sawlog) are displayed in the middle
row of Figure 8.4. The results for the young-stand simulator increase mono-
tonically over the entire range of the simulation, whereas the uncorrected
combined results (light-gray dashed line) peak and decline near the middle
of the simulation. The corrected combined results (solid and dashed black
lines in thick gray lines) also peak, albeit lower and slightly sooner than the
uncorrected combined results. Likewise, the results for the #2 sawlog grade
appear to exhibit the same results, but later in the simulation. Also notewor-
thy is the fact that the volume for the uncorrected combined results begins
to increase later, peaks higher, and crosses the corrected combined results.
Our simulations do not extend far enough in time to determine when the two
trajectories cross again.

At the bottom of Figure 8.5, the results for the combined corrected model
begin to exhibit Peeler grade volume shortly after age 100 years. The de-
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Fig. 8.5: Volume development, for each log grade, over the planning horizon. The
young-stand simulator results are represented by a thin black solid line. The uncor-
rected established-stand simulation is represented by a thin gray solid line. The thick
gray line with the thick dashed black line inside represents the merged young-stand
and corrected established stand simulations.
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velopment of #1 Sawlog volume follows a similar pattern, with the stand
age around 60 years for the corrected combined results (black dashed line
inside thick gray solid line), followed 20 years later by accumlated volume in
the uncorrected combined results. When we examine ages above our original
range (150 years), only then do any of the simulators produce volumes in the
largest class.

The patterns and resulting conclusions we can infer from Figure 8.5, sim-
ilar to those in Figure 8.4, are that 1) the method used to merge models
can greatly influence the behavoir of the resulting combination; 2) the result-
ing simulations, and resulting combinations, may exhibit behavoir similar to
published results (Chambers, 1980); and 3) producing results using a small
sample (Chambers uncorrected) can lead to peculiar behavoir, and the deci-
sions resulting from those simulations should be viewed critically.

8.4.2 Mean Annual Increment

Table 8.4: Volume metrics for simulations at maximum mean annual increment.

Model Age Pulp #4 Sawlog #3 Sawlog #2 Sawlog #1 Sawlog Peeler Total MAI
1 38 31 560 6599 115 0.000 0 7305 192
2 40 24 397 7438 3 0.000 0 7863 197
3 35 24 431 5421 91 0.003 0 5967 170
4 40 24 397 7438 3 0.000 0 7863 197
5 30 29 559 4986 52 0.000 0 5626 188

Mean annual increment, which determines the biological rotation age in
many forests (Leuschner, 1990; Davis et al., 2001), can be greatly influenced
by the results of the growth and yield models used to compute the volumes
over time. Table 8.4 presents the age, the Smalian volumes (see Section 8.2)
by log.grade, and the mean annual increment at the age when maximum
mean increment occurs. This is the time point that corresponds with the
highest average yield. It is important to note that Table 8.4 represents only
a single moment in time: when the mean annual increment is maximum.

The range in values in projected MAI, from a low of 5966.92 ft3 to a high
of 7863.18 ft3, is reasonably compact. Conversely, the range in ages when the
maximum occurs is considerable when compared with the values themselves.
The ages range from a low of 35.00 ft3 to a high of 40.00 ft3. This range
may have a considerable effect on the projections of forest- or landscape-level
services.
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8.5 Exporting Yields

To export the results from the simulations (res$rconfiers) into a database
program, we could use an SQL file. First, we would construct a loop to gen-
erate SQL INSERT commands and then write the results to a file named
smc-yields.sql:

> hres <- res$rconifers

> names(hres)[3] <- "rx"

> sql.file <- file("smc-yields.sql", "w")

> sql.columns <- names(hres)

> for(i in 1:nrow(hres)) {

+ sql.command <-

+ sprintf("insert into results (%s) values (%s);",

+ paste(as.vector(sql.columns), collapse=","),

+ paste(hres[i,], collapse=","))

+ cat(sql.command, file = sql.file, sep = "\n")

+

+ }

> close(sql.file)

8.6 Summary

Forest simulation is a complex subject. Depending on the level of resolution
required in the analysis (tree, stand, or forest), the process may be as simple
as a single equation (model component) or require the development of a
shared library or simulation package (chambers-1980.so and rconifers) and
include multiple software packages (R and SQL), which could include using
the system function to run command-line applications (FVS, ORGANON,
CACTOS).

In this chapter, we used R to generate simulated yield tables, projections,
or sets of possible future forest conditions that could be analyzed within R or
exported to other packages (for example, a harvest scheduler). Our methods,
while basic, provide a starting place for more complex analysis techniques.



Chapter 9

Forest Estate Planning and Optimization

9.1 Introduction

So far, we have developed procedures for processing field data, producing
complete inventories, and generating forecasts of future forest conditions. In
this chapter, we use R to solve a forest estate planning problem assuming we
already have a sufficient inventory to describe the forest. Here we present and
solve a linear programming (LP) problem that was originally presented by
Leuschner (1990, see Chapter 4). The objective is to determine the harvest
schedule for a classical method of forest regulation, the strict area harvest
schedule. Strict area control is an indirect method of controlling the amount
of forest produced in each cutting period. To achieve our objective, we use
the glpk package (Lee and Luangkesorn, 2010), which is the R interface to
Andrew Makhorin’s GNU linear programing kit (GLPK) (Makhorin, 2009).

This problem provides a gentle introduction to mathematical program-
ming that does not require extensive background development. There are
other types of harvest schedules, model formulations, and constraints that
can be applied to develop more interesting problems, but they are beyond the
scope of this book. For more complete presentations of forest estate planning
problems, we recommend Leuschner (1990), Rönnqvist (2003), and Bettinger
et al. (2009).

The chapter is structured as follows. In Section 9.2, we briefly present a
basic formulation framework. In Section 9.3, we present the tasks that are
required to translate the model formulation into the components that are
required to solve the formulation, namely 1) generating the decision variable
columns, 2) the objective function coefficients, 3) row constraints, and 4)
forest-level row constraints. In Section 9.3.7, we then obtain a solution given
the developed model. Then, in Section 9.3.8, we extract the solution, decode
the decision variables, compute forest-level metrics, and examine important
features of the solution. Finally, we generate a machine-readable archive of
the problem in Section 9.3.9.

307A. P. Robinson, J. D. Hamann, Forest Analytics with R, Use R!,
DOI 10.1007/978-1-4419-7762-5_9, © Springer Science+Business Media, LLC 2011
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9.2 Problem Formulation

Our first objective is to formulate the forest estate planning problem. While
the formulation for each problem is unique, here we present a general for-
mulation and notation that can be applied to many different problems. Here
we use notation commonly found in computer science, operations research
and management sciences. For each problem, we assume that the forest es-
tate plan is to cover T planning periods. The length of each of the planning
periods is � years, and the total length of the planning horizon is denoted as
|T | years, where T × �= |T |.

Let polygon A ⊂ R
2 represent a forest with a finite boundary, where the

surface area, measured in acres1, is denoted Λ(A ). The polygon A is parti-
tioned into A polygons (stands). Each stand polygon, denoted Ab, is defined
by a unique label B = {1, . . . ,b, . . . ,A}. The total area of each stand, measured
in acres, is denoted λ (Ab), where

⋃
Ab

= A (Ab ⊂ R
2), and

⋂
Ab

= /0 ∀ b ∈ B.
Let λ (Ab) denote a vector of length A representing the areas of Ab such that

∑λ (Ab) = Λ(A ).
Let Y represent an A×T matrix of initial and future conditions (per unit

area yields) for each stand Ab for each period � ∈ T (the planning horizon).
Let A x

b represent the decision vectors for each stand Ab, where x is a vector
of length T . The T elements of Ax

b represent the area harvested from Ab

over the planning horizon, subject to A
xt

b ≤ λ (Ab) for each period t. This
constraint ensures that at most the total area of each stand is harvested in
each period. To conserve notation, A x

b will be represented by x, where x is
an A×T length vector of decision variables

x = (A x
1 , . . . ,A

x
b , . . . ,A

x
A ) (9.1)

where x ∈ B, I, R, or some combination thereof.
Finally, given the forest A and a set of initial and future conditions Y, a

forest estate optimization problem can be expressed using the general problem
formulation

x∗ = argmax
x∈S

{
f (x) ∈ R

∣∣∣g(x)≥ 0,h(x) = 0
}

(9.2)

where the goal is to obtain the arguments x∗ that yield the maximum f , which
is the objective, subject to g, which is a vector of K inequality constraints; h,
which is a vector of M equality constraints; and S , which is some subset of
(I, N, R) or some combination thereof.

When f , g, and h are linear in the parameters, then equation (9.2) can be
expressed as a linear programming problem.

We refer the reader to Dantzig (1963) for more details on linear pro-
gramming, Bettinger et al. (2009) for more examples and formulations, and
Makhorin (2009) for specifics on the glpk package.

1 We retain the units in which the problem was originally expressed.
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9.3 Strict Area Harvest Schedule

For this problem, our objective is to generate a solution for a strict area
harvest schedule that maximizes the total woodflow of A over a planning
horizon of six 10 year periods (T = 6, � = 10, |T |= 60 years) subject to some
set of physical and policy constraints. Specifically, suppose that we have a
forest with a finite boundary, denoted A , and the function for the surface
area, denoted λ (A ), returns 84000 acres. Also, A is partitioned into eight
stand polygons (so A = 8), where the areas of the stands are

λ (Ab) = (5000,5000,5000,5000,30000,20000,12000,2000)

Since these values are relatively easy to keep track of using atomic objects,
we begin by simply assigning them to individual variable names,

> A <- 8 # A

> T <- 6 # T

> l <- 10 # \ell

> P <- T * l # |T|

> ## \lambda(\mathcal{A}_{b})

> stand.acres <- c(5000,5000,5000,5000,30000,20000,12000,2000)

For this example, we will use the published yields from the original problem
as presented by Leuschner (1990, see Chapter 4, Table 4.2). Here we have
entered the values into a text file (located at ../../data/leuschner.txt),
which can be read in using the read.table function,

> leusch.ylds <- read.table("../../data/leuschner.txt",

+ header = TRUE)

where the resulting leusch.ylds object contains four columns: 1) the stand
identifier (stand is the label for Ab); 2) the planning period (per); 3) the age
of the stand (Aa

b = age); and 4) the yield (volume) (A v
b = vol) in thousands

of cubic feet per acre if we harvest stand Ab in period t.
To solve this problem, we need to generate the 14×48 detached coefficient

matrix that stores the coefficients for the problem. The results matrix should
have a set of eight rows that define the area constraints, a set of six rows that
define the policy constraints, and 48 columns for the decision variables.

To generate all the required components to solve this problem, we first
need to load the glpk package and create a glpk problem object,

> library(glpk)

> leusch.lp <- lpx_create_prob()

Next, we assign a symbolic name to the problem object:

> lpx_set_prob_name(leusch.lp, "leuschner")
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By default, glpk will minimize the objective function. Since we want to
maximize the objective function (equivalently, −min(− f )), we need to call
the lpx_set_obj_dir function to change the direction of optimization,

> lpx_set_obj_dir(leusch.lp, LPX_MAX)

where GLP_MAX indicates maximization.
The glpk problem object we have now created (called leusch.lp) is the

object that stores the information about the optimization problem in memory
and allows us to pass information to the glpk library directly, and almost all
functions in the glpk package require it.

9.3.1 Objective Function

For this problem, the objective is to maximize the total yield

f = A
vt

b ∀ t ∈ T,b ∈ B (9.3)

where the objective function (total yield) f is the sum of the product yields
from stand A v

b , harvested in period t, over the entire forest A . In this prob-
lem, the vector of yields for each stand (A v

b ) is known exactly (that is, non-
stochastic), so the only decision variables required (A x

b ) represent the number
of acres to harvest in Ab in period t (Marti, 2005).

In the following sections, we add columns, give them names, and place
bounds on the columns.

9.3.2 Adding Columns

To add columns (decision variables) to the newly created problem object, we
now use the lpx_add_cols function. For this problem, the length of x is 48,
and so we need to add 48 columns to hold the 8 stand polygons × 6 harvest
periods:

> lpx_add_cols(leusch.lp, nrow( leusch.ylds ))

[1] 1

where the 1 is the response from the glpk library. In this case, it is the ordinal
number of the first new column added to the problem object.
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9.3.3 Naming Columns

To generate names for the columns, we use the paste function with the
stand and period columns of the leusch.ylds data frame object to generate
human-readable labels for each decision variable,

> leusch.ylds$dv <- paste("a",

+ leusch.ylds$stand,

+ leusch.ylds$period,

+ sep="")

> head(leusch.ylds)

stand period age vol dv

1 1 1 30 3.2 a11

2 1 2 40 6.1 a12

3 1 3 50 8.3 a13

4 1 4 60 10.1 a14

5 1 5 70 11.6 a15

6 1 6 80 12.9 a16

where leusch.ylds$stand= b and leusch.ylds$per= p (see equation (9.3)).
The resulting column labels (leusch.ylds$dv) are easy to read for this

problem. For example, the label a13 can be deciphered as “harvest stand 1 in
period 3”. The reason for the a character is that many solvers require the first
character of the input label to be non-numeric. There may be constraints on
the length of the label that can be used for each different solver, and so, for
larger problems (e.g., A > 100000 or T > 100), this simplistic approach might
not work. For example, if this problem contained over 10,000,000 stands,
there would be no room left in a label that could only contain eight charac-
ters using the method (that is, nchar("a10000000") = 9 is too long). For
specific formats and naming conventions, we recommend that you consult
the documentation for the solver of interest. Here, however, we can use this
method because our solution space is sufficiently small.

Finally, to assign names to the columns, use the lpx_set_col_name func-
tion and loop over all of the entries in the leusch.ylds data frame object,
passing the newly created label to be used as the column name to the func-
tion,

> for( t in 1:nrow(leusch.ylds)) {

+ label <- leusch.ylds[t,]$dv

+ lpx_set_col_name(leusch.lp, t, label)

+ }
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9.3.4 Bounding Columns

To set the bounds on the columns (decision variables) so that the harvested
area from each stand, in any period, is zero or greater (Ax

b ≥ 0 ∀ t ∈ T ),

> for(t in 1:nrow(leusch.ylds)) {

+ lpx_set_col_bnds(leusch.lp, t, LPX_LO, 0.0, 0.0)

+ }

The lpx_set_col_bnds function takes as its arguments the lp object, the
row number, the type of bound being set (LPX LO), and a set of bounds.
Here we only need one bound since we are setting a lower bound only. For
more details on setting bounds, see the glpk documentation (specifically,
?lpx_set_col_bnds).

9.3.5 Setting Objective Coefficients

Finally, to set the objective function coefficients described in Section 9.3.1,
we use the lpx_set_obj_coef function,

> for(t in 1:nrow( leusch.ylds)) {

+ ## set the objective coefficient in period t = 0.0

+ lpx_set_obj_coef(leusch.lp, t, leusch.ylds[t,]$vol)

+ } #$

We now have the major components to define our decision variables, the
bounds on those variables, and the objective function coefficients. Next, we
add row contraints for each of the stand areas (these are physical constraints)
and a constraint for the forest as a whole (a policy constraint).

9.3.6 Adding Constraints

Constraints are commonly classified into several types (Weintraub and Navon,
1976; Davis et al., 2001; Bettinger et al., 2009). To simplify our presentation,
we classify our constraints into physical constraints (e.g.,land availability,
accessibility to transportation, or no ground equipment on ground over 60%
slope) and policy constraints (e.g.,risk avoidance or maximum opening size,
or only one assigned schedule per stand).

This problem has both types of constraints:

1. One or more physical constraints limiting the total forest area available
for harvest.
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2. A policy constraint to control cutting so that the acres harvested over all
periods must equal the total acres of the forest (i.e., strict area control).

Since the goal is to turn the current forest A into a well-regulated forest,
where an equal area will be harvested in each period, we need to include two
physical constraints,

1. stand total area constraints and
2. total harvest area constraints

so that we can generate the final volume flow policy constraints. We first add
the rows for each stand area and then add the constraints for the strict area
control.

9.3.6.1 Stand Area Constraints

An unconstrained problem might harvest an infinite number of acres in each
period, but since the total number of acres available for harvest in any period
is limited to the total area of the forest (Λ(A) = 84000), we must constrain
the total harvested area to be no larger than the total forest area (84000
acres). Mathematically, this constraint is expressed as

∑
t

A
xt

b ≤ λ (Ab) ∀ b ∈ B (9.4)

where A
xt

b is the total available acres in stand b harvested in period t, and
λ (Ab) is the total available acres in stand b.

Since each stand may be harvested in more than one period, we must
ensure that the total area that is harvested is no larger than the total stand
area over all periods. To accomplish that, we must add a set of rows for each
period in the planning horizon and include a sum of all the acres harvested
for each stand over all periods.

First, add the constraint rows, using the lpx_add_rows function to create
a row for each stand,

> lpx_add_rows(leusch.lp, length(stand.acres))

[1] 1

Create a matrix to contain sets of coefficients for each row, using I ⊗ 1,
where I is an A× A matrix, 1 is a column vector of length P (number of

periods), and ⊗ is the Kronecker product,

> acre.consts <- t( kronecker(diag(length(stand.acres)),

+ as.matrix( rep(1,6))))

The result is an 8 × 48 matrix called acre.consts. Now set the row
names, bounds, and row matrix coefficients for Ab using lpx_set_row_name,
lpx_set_row_bounds, and lpx_set_mat_row, respectively.
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To do that, we create a for loop as we did for the columns in Section 9.3.6,
generate the entries for the row, and finally set the row name, bounds, and
coefficients. Here we perform all three functions at the same time rather than
creating a loop for each operation as we did previously.

First, we create a variable to store the coefficient values for this portion of
the detached coefficients matrix. The variable, val, is a vector of ones that
holds the coefficients

> val <- rep(1, 6) # this is the value of the constraint

Then, we loop over the stands to create the row coefficients for the number
of acres harvested over the six periods. Since we can create all six entries for
each of the six columns that need to be set for each row, we create a vector
that will contain the column index (idx) by creating a loop within the outer
loop, to generate the values for idx, and then perform the row operations,

> ## loop over the stands to generate

> ## the idx is the index for the set of rows

> ## we are trying to set the coefficients for

> for(i in 1:length(stand.acres)) {

+

+ idx <- rep(0, 6) # this is the index of the col coeffs

+

+ ## manually create the index using id

+ ## and assign row i, column j stored as idx[id]

+ id <- 1

+ for(j in 1:ncol(acre.consts)) {

+ if(acre.consts[i,j] != 0.0) {

+ idx[id] <- j

+ id <- id + 1

+ }

+ }

+

+ ## now, perform all three tasks within the same loop

+ ## set the constraint row name

+ lpx_set_row_name(leusch.lp, i, paste("s", i, sep=""))

+

+ ## set the upper bound on the acres for this stand

+ ## to make sure no more than stand.acres[i] are cut

+ lpx_set_row_bnds(leusch.lp, i, LPX_UP, 0.0,

+ stand.acres[i])

+

+ ## set matrix row coefficients (?glp_set_mat_row)

+ ## idx = ???, row index = i, val = vector of 1�s

+ lpx_set_mat_row(leusch.lp, i, length(val), idx, val)

+ }
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By now, we should have added eight and eight columns to the problem
object. To check, we can use the lpx_get_num_rows and lpx_get_num_cols

functions to obtain the number of rows and columns in the problem object,

> lpx_get_num_rows(leusch.lp)

[1] 8

> lpx_get_num_cols(leusch.lp)

[1] 48

The output verifies our results.
Note that in Sections 9.3.1 through 9.3.5 we used separate loops to present

the glpk functions. Here we combined loops to conserve space, but it is im-
portant to verify that the matrix generation procedures you use create the
matrix you intend. Without verification of your code, you might inadvertently
solve another problem, as mathematical programming solves the problem you
actually specify, not the problem you intended to specify.

9.3.6.2 Strict Area Control

In a classic regulated forest, the acres are distributed so that there are Λ(A )
T

acres in each age class from 1 to T periods. A strict area control schedule
requires that the forest be regulated so that the maximum woodflow oc-
curs when the area weighted mean annual increment (MAI) is maximum.
Leuschner (1990) determined that the maximum MAI, for A , occurs at 60

years, given the area weighted mean base age 50 year site index is 113.57 feet.
Given that data, the annual harvest in hundreds of cubic feet should be

∑
j

ai j =
Λ(A )

r
=

84000

60
= 1400 (9.5)

where r is the rotation age in years (e.g., 60) (Leuschner, 1990, p. 33). The
result should be multiplied by 10 to obtain the harvest per planning period
(�= 10).

Now, we need to create a vector to contain the target harvest acres (14000)
over all periods, as we did for the row constraints in Section 9.3.6.1,

> target.acres <- rep(14000, 6)

This vector, of length T , represents the right-hand side (RHS) values giving
the area, in acres, to be harvested in each period to achieve a strict area
control forest.

Finally, use the lpx_add_rows,

> lpx_add_rows(leusch.lp, length(target.acres))
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[1] 9

to add the T rows to the leusch.lp problem object. The function returns
the first index of the new row set.

Next, add the strict area control constraints, as was done in Section 9.3.6.1,

> val <- rep(1,8) ## a vector of 8 ones.

> for(i in 1:length(target.acres)) {

+ idx <-

+ as.numeric(rownames(subset(leusch.ylds, period == i)))

+ lpx_set_row_name(leusch.lp,

+ i + length(stand.acres),

+ paste("tac", i, sep="" ))

+ lpx_set_row_bnds(leusch.lp,

+ i + length(stand.acres),

+ LPX_FX,

+ target.acres[i],

+ target.acres[i])

+ lpx_set_mat_row(leusch.lp,

+ i + length(stand.acres),

+ length(val),

+ idx,

+ val)

+ }

We should now have added a total of 14 rows and 14 columns to the
problem object. Recall from Section 9.3.6.1 that we added only eight rows.
Here we added an additional six rows to represent the constraints on the total
acres cut (tac) in each of the six periods.

Again, using the lpx_get_num_rows and lpx_get_num_cols functions to
retrieve the number of rows and columns in the problem object,

> lpx_get_num_rows(leusch.lp)

[1] 14

> lpx_get_num_cols(leusch.lp)

[1] 48

This again verifies our results, and we now have a completed glpk problem
object that contains all the components of our forest planning problem.

9.3.7 Solving

function
Now we can solve the linear program by calling the lpx_simplex function:
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> lpx_simplex(leusch.lp)

0: objval = 0.0000000e+00 infeas = 1.0000e+00 (0)

13: objval = 1.1584000e+06 infeas = 0.0000e+00 (1)

* 13: objval = 1.1584000e+06 infeas = 0.0000e+00 (1)

* 25: objval = 1.2246000e+06 infeas = 0.0000e+00 (1)

OPTIMAL SOLUTION FOUND

[1] 200

The lpx_simplex function is the wrapper function for the GLPK API
glp_simplex routine, a driver to the glpk solver that uses the simplex
method. This function retrieves problem data from the specified problem
object, calls the glpk solver to solve the problem instance, and stores re-
sults of computations back into the problem object. Fortunately, this solution
matches the solution reported by Leuschner (1990).

9.3.8 Results

In this section, we 1) obtain the value of the objective function, 2) decode the
decision variables (column activities), 3) confirm that our solution achieves a
strict area policy (equation (9.5)), 4) compute and plot the resulting wood-
flow, and 5) examine shadow prices, reduced costs, and binding constraints.
To conserve space, we include two functions that can be used to obtain row
(get.row.report) and column (get.col.report) information from the lin-
ear programming object. See the provided script schedpak.r for these func-
tions.

9.3.8.1 Objective Function

To extract the value of the objective function, use the get_obj_val function,

> leusch.obj <- lpx_get_obj_val(leusch.lp)

> leusch.obj

[1] 1224600

The resulting object, leusch.obj, is the value of equation 9.3 at its max-
imum. Therefore the optimal set of harvest decisions yields a total volume of
1224600 ×103ft3.

It would also be nice to have some report on the quality of the solution
here as well (e.g., the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939;
Kuhn and Tucker, 1951; Press et al., 2007)). The KKT general optimality
conditions are necessary and sufficient conditions for the decision variables
(x) to be optimal and are often used to report the quality of the solution for
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mathematical programming problems. However, at the time of this writing,
the glpk package cannot produce them directly with R, but they can be
generated and reported by the stand-alone solver glpsol if needed.

9.3.8.2 Decision Variables

To obtain the set of decision variables, we use the get.col.report function
supplied in the FAR package,

> leusch.col.rpt <- get.col.report(leusch.lp)

where the leusch.col.rpt$activity contains the number of acres harvested
in each stand for each period.

The get.col.report function provides the basic information on the
columns in the solution. The function returns a data frame object that
contains the output from the lpx_ wrapper functions lpx_get_col_name,
lpx_get_col_stat, lpx_get_col_prim, lpx_get_col_lb, lpx_get_col_ub,
lpx_get_col_dual, lpx_get_col_type, which return the column name, sta-
tus, primary activity, lower bounds, upper bounds, dual value, and column
type for each column in the problem. The get.row.report returns similar
information for each row.

9.3.8.3 Harvested Area

To extract the harvest activity, we create a T ×A matrix of the column ac-
tivities. This object contains the area harvested from each stand over all
periods,

> ac.per <-

+ matrix(as.numeric(as.matrix(I(leusch.col.rpt$activity))),

+ 6, 8)

> ac.per

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0 0 0 12000 2000

[2,] 0 0 0 0 0 14000 0 0

[3,] 0 0 0 0 8000 6000 0 0

[4,] 0 0 0 0 14000 0 0 0

[5,] 0 0 1000 5000 8000 0 0 0

[6,] 5000 5000 4000 0 0 0 0 0

where the rows represent the periods and the columns represent the stands.
For example, A x

5 = (0,0,8000,14000,8000,0), meaning that stand five is to
have 8000, 14000, and 8000 acres harvested in periods three, four, and five,
respectively.



9.3 Strict Area Harvest Schedule 319

To check the solution, we can now determine the total acres harvested in
each period obtained by summing the rows of ac.per,

> rowSums(ac.per)

[1] 14000 14000 14000 14000 14000 14000

which, upon inspection, matches our policy objectives, as defined in equa-
tion (9.5).

9.3.8.4 Woodflow

Next, compute the woodflow in each period, which can be calculated by hand.
Computing the total volume in each period requires that we sum the products
of the acres harvested by the yields per acre in each period.

The resulting vector is

> vol.cut.a <- c(199.4,197.4,203.4,211.4,217.6,195.4)

Then, plot the woodflow along with the results reported by Leuschner
(1990) for even-flow constraints (Figure 9.1). The plot demonstrates that al-
though an equal area is harvested over the planning horizon (equation (9.5)),
the rate of volume extraction is not even over the planning horizon, which is
in contrast to the strict volume control.

9.3.8.5 Reduced Costs

The reduced cost of a decision variable is the amount by which the objective
function must change before that decision variable will enter the optimal so-
lution (Leuschner, 1990). It provides information about the decision variables
with a value of zero (Davis et al., 2001) and represents the opportunity cost
of forcing a unit (e.g., an acre of Ab=1) of the decision variable (e.g., a11)
into the solution.

To obtain the reduced costs for the first period that stand 1, denoted Ab=1,
can be cut, we use the get.col.report function and return the first row,

> leusch.col.rpt[1,]

name status activity lb ub dual b_ind type

1 a11 141 0 0 0 -4.8 0 111

which means that the yield per acre in Ab=1 must increase from 3.2 to 8.0
hundred cubic feet (8.0 = 3.2+4.8), in order for it to be harvested in cutting
period 1 (Leuschner, 1990).
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Fig. 9.1: Woodflow from the strict area control problem (Leuschner, 1990), where
the strict area control represents the volume harvested given that a fixed proportion
of the area is harvested each period. The flat line represents the even-flow solution,
for which the harvest volume is 203.79×103 ft3, presented in Leuschner (1990).

9.3.8.6 Slack/Surplus

The slack value is the amount on the right-hand side for a row constraint
that is not used in the optimal solution, with a zero value indicating that
the row is limiting or binding the solution (Davis et al., 2001). When this
value is non-zero, a surplus of the constraint exists and the constraint does
not influence the objective function value.

To obtain the slack and surplus values, use the get.row.report, which as
does the get.col.report function in Section 9.3.8.2, returns a data frame
that contains slack, surplus, and dual values (see Section 9.3.8.7), represented
by the lb, ub, and dual columns of the data frame.

> leusch.row.rpt <- get.row.report(leusch.lp)

> leusch.row.rpt

name status prim lb ub dual strerr

1 s1 142 5000 0 5000 12.9 variable with upper bound
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2 s2 142 5000 0 5000 14.1 variable with upper bound

3 s3 142 5000 0 5000 15.1 variable with upper bound

4 s4 142 5000 0 5000 16.1 variable with upper bound

5 s5 142 30000 0 30000 17 variable with upper bound

6 s6 142 20000 0 20000 18 variable with upper bound

7 s7 142 12000 0 12000 19 variable with upper bound

8 s8 142 2000 0 2000 20 variable with upper bound

9 tac1 144 14000 14000 14000 -4.9 fixed variable

10 tac2 144 14000 14000 14000 -3.9 fixed variable

11 tac3 144 14000 14000 14000 -2.9 fixed variable

12 tac4 144 14000 14000 14000 -1.9 fixed variable

13 tac5 144 14000 14000 14000 -1 fixed variable

14 tac6 140 14000 14000 14000 0 fixed variable

From the printout, it appears that all stands have a zero upper bound for
the slack/surplus entries for the rows that define total possible areas that
can be harvested in each stand. Recall that in this case we used an equality
constraint so that all of the land was harvested (that is, a strict area control
schedule), so all of the slack variables for stand acres should be zero.

9.3.8.7 Shadow Prices

The shadow, or dual, price is the maximum amount the objective function
would change if one more unit of a constraint were included (Davis et al., 2001,
Chapter 6). In this case, the shadow price would represent our willingness to
pay for the ability to harvest an additional acre of land.

For example, there are physical constraints that limit the amount of land
available to the current landscape (84000 acres total, eight stands). What if
another acre of A1, or something very close to it, were available for harvest?
The shadow price would tell us how much an additional acre of land would
need to be worth in order to increase the objective function by including that
one additional acre.

To obtain the shadow prices, examine the column labeled dual in the out-
put of the get.row.report function. We print the first row, which represents
the total land in A1,

> leusch.row.rpt[1,]

name status prim lb ub dual strerr

1 s1 142 5000 0 5000 12.9 variable with upper bound

The resulting value for leusch.row.rpt$dual is 12.9, which means that a
one acre increase in A1 harvested in the first period will increase the objective
function by 12.9 ×103ft3.
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9.3.9 Archiving Problems

We have now formulated, generated, and solved the strict area schedule prob-
lem, and we now need to create a machine-readable archive of our model and
solution. The glpk package has functions that can be used to archive prob-
lems, solve previously archived problems using glpk, and translate archived
problems between solver formats like CPLEX (CPLEX Optimization Inc.,
2003) and MathProg, which is a subset of AMPL (Fourer et al., 2003).

To archive the leuschner problem object, save the problem object to your
hard drive as an MPS file

> lpx_write_mps(leusch.lp, "leuschner.mps")

lpx_write_mps: writing problem data to �leuschner.mps�...

[1] 0

function
or as a file that can be read by CPLEX (Figure 9.2)

> lpx_write_cpxlp(leusch.lp, "leuschner.xlp")

lpx_write_cpxlp: writing problem data to �leuschner.xlp�...

[1] 0

function
which matches the example presented by Leuschner (1990, see Table 4.3).

The resulting files (leuschner.mps and leuschner.xlp) can then be im-
ported and solved from many solvers. For example, to solve and generate a
machine-readable solution file for the same problem using the command-line
solver glpsol, use

$ glpsol --cpxlp leuschner.xlp -w leuschner.sln

9.3.10 Cleanup

Our final step is to make sure that we free up the memory allocated for the
problem by using the lpx_delete_prob function

> lpx_delete_prob(leusch.lp)

> leusch.lp

<pointer: 0x0>

which deletes the data associated with the problem object and sets an internal
pointer to null (0x0).
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\* Problem: leuschner *\

Maximize

obj: + 3.2 a11 + 6.1 a12 + 8.3 a13 + 10.1 a14 + 11.6 a15 + 12.9 a16

+ 6.1 a21 + 8.3 a22 + 10.1 a23 + 11.6 a24 + 12.9 a25 + 14.1 a26

+ 8.3 a31 + 10.1 a32 + 11.6 a33 + 12.9 a34 + 14.1 a35 + 15.1 a36

+ 10.1 a41 + 11.6 a42 + 12.6 a43 + 14.1 a44 + 15.1 a45 + 16 a46

+ 11.6 a51 + 12.6 a52 + 14.1 a53 + 15.1 a54 + 16 a55 + 16.9 a56

+ 12.9 a61 + 14.1 a62 + 15.1 a63 + 16 a64 + 16.9 a65 + 17.7 a66

+ 14.1 a71 + 15.1 a72 + 16 a73 + 16.9 a74 + 17.7 a75 + 18.4 a76

+ 15.1 a81 + 16 a82 + 16.9 a83 + 17.7 a84 + 18.4 a85 + 19.1 a86

Subject To

s1: + a16 + a15 + a14 + a13 + a12 + a11 <= 5000

s2: + a26 + a25 + a24 + a23 + a22 + a21 <= 5000

s3: + a36 + a35 + a34 + a33 + a32 + a31 <= 5000

s4: + a46 + a45 + a44 + a43 + a42 + a41 <= 5000

s5: + a56 + a55 + a54 + a53 + a52 + a51 <= 30000

s6: + a66 + a65 + a64 + a63 + a62 + a61 <= 20000

s7: + a76 + a75 + a74 + a73 + a72 + a71 <= 12000

s8: + a86 + a85 + a84 + a83 + a82 + a81 <= 2000

tac1: + a81 + a71 + a61 + a51 + a41 + a31 + a21 + a11 = 14000

tac2: + a82 + a72 + a62 + a52 + a42 + a32 + a22 + a12 = 14000

tac3: + a83 + a73 + a63 + a53 + a43 + a33 + a23 + a13 = 14000

tac4: + a84 + a74 + a64 + a54 + a44 + a34 + a24 + a14 = 14000

tac5: + a85 + a75 + a65 + a55 + a45 + a35 + a25 + a15 = 14000

tac6: + a86 + a76 + a66 + a56 + a46 + a36 + a26 + a16 = 14000

End

Fig. 9.2: Archive for the problem presented by Leuschner (1990) in CPLEX format.

9.4 Summary

In this chapter, we presented and solved a simple linear programming forest
estate planning model problem. For the problem, we presented procedures
to 1) load the glpk package, 2) create the glpk problem object, 3) add deci-
sion variables (columns), 4) add constraints (rows), 5) solve the problem, 6)
extract details about the solution directly, and finally 7) generate a machine-
readable archive to create a complete digital record. These tasks are part of
any estate planning problem and are commonly much more complex than
the example that we have presented here. The techniques that we have de-
scribed can be used to examine many forest estate planning and optimization
problems, and readers are encouraged to apply them to their own data.
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Garćıa, O., 1992. What is a diameter distribution? In: Minowa, M., Tsuyuki,
S. (Eds.), Proceedings of the Symposium on Integrated Forest Management
Information Systems. Japan Society of Forest Planning Press, Tokyo, pp.
11–29.

Gelman, A., 2005. Analysis of variance — why it is more important than
ever. The Annals of Statistics 33, 1–31.

Gelman, A., Hill, J., 2007. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press, Cambridge.

Goodman, L. A., 1960. On the exact variance of products. Journal of the
American Statistical Association 55, 708–713.

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Applied
Geostatistics Series. Oxford University Press, New York, New York.

Goutis, C., Casella, G., 1999. Explaining the saddlepoint approximation.
American Statistician 53 (3), 216–224.

Gove, J. H., 2003. Moment and maximum likelihood estimators for Weibull
distributions under length- and area-biased sampling. Environmental and
Ecological Statistics 10, 455–467.

Haara, A., Maltamo, M., Tokola, T., 1997. K-nearest-neighbor method for
estimating basal-area diameter distribution. Scandinavian Journal of Forest
Research 12, 200–208.

Hafley, W. L., Schreuder, H. T., 1977. Statistical distributions for fitting
diameter and height data in even-aged stands. Canadian Journal of Forest
Research 7, 481–487.

Hall, P., 1992. The Bootstrap and Edgeworth Expansion. Springer-Verlag,
New York.

Hamann, J. D., Ritchie, M. W., 2009. rconifers: R interface to the CONIFERS
forest growth model. R package version 1.0.0.

Hann, D. W., Wang, C. H., 1990. Mortality equations for individual trees in
southwest Oregon. Tech. Rep. Research Bulletin 67, Oregon State Univer-
sity, Forest Research Laboratory, Corvallis, OR.

Hanus, M. L., Marshall, D. D., Hann, D. W., 1999. Height–diameter equations
for six species in the coastal regions of the Pacific Northwest. Research Con-
tribution 25, Forest Research Laboratory, Oregon State University, Corval-
lis, OR.



References 329

Harrell, F. E., 2001. Regression Modeling Strategies: With Applications to
Linear Models, Logistic Regression and Survival Analysis. Springer, New
York.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edition. Springer,
New York.

Holmström, H., 2002. Estimation of single-tree characteristics using the knn
method and plotwise aerial photograph interpretations. Forest Ecology and
Management 167, 303–314.

Holmström, H., Kallur, H., Støahl, G., 2003. Cost-plus-loss analyses of forest
inventory strategies based on kNN-assigned reference sample plot data.
Silva Fennica 37 (3), 381–398.

Horvitz, D., Thompson, D., 1952. A generalization of sampling without re-
placement from a finite population. Journal of the American Statistical
Association 47, 89–96.

Husch, B., Beers, T., Kershaw Jr., J., 2003. Forest Mensuration. John Wiley
and Sons, Hoboken, NJ.

Ihaka, R., Gentleman, R., 1996. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics 5 (3), 299–314.

Iles, K., 2003. A Sampler of Inventory Topics. K. Iles and Associates, Inc.,
Nanaimo.

Isaaks, E. H., Srivastava, R. M., 1989. An Introduction to Applied Geostatis-
tics. Oxford University Press, Inc., New York.

James, D. A., DebRoy, S., 2009. RMySQL: R interface to the MySQL
database. R package version 0.7-4.

Jensen, J. L., 1906. Sur les fonctions convexes et les inégualités entre les
valeurs moyennes. Acta Mathematica 30, 175–193 (in French).

Johnson, N. L., Kotz, S., Balakrishnan, N., 1994. Continuous univariate dis-
tributions, 2nd Edition. Wiley–Interscience, New York.

Jones, H. L., 1956. Investigating the properties of a sample mean by employ-
ing random subsample means. Journal of the American Statistical Associ-
ation 51, 54–83.

Jones, L. V. (Ed.), 1986. Data analysis and behavioral science or learning
to bear the quantitative man’s burden by shunning badmandments. The
Collected Works of John W. Tukey, Philosophy and Principles of Data
Analysis 1949–1964, Volume III. Chapman and Hall/CRC, Boca Raton,
FL., pp. 187–390.

Journel, A., Huijbregts, C., 1978. Mining Geostatistics. Academic Press, Lon-
don.

Karush, W., 1939. Minima of functions of several variables with inequalities as
side constraints. Master’s thesis, Department of Mathematics, University
of Chicago.

King, J. E., 1966. Site index curves for douglas-fir in the pacific northwest.
Weyerhaeuser Forestry Paper 8, Weyerhaeuser Co. Centralia, WA.



330 References

Kline, K., Kline, D., 2001. SQL in a Nutshell. O’Reilly & Associates, Inc.,
Sebastapol, CA.

Korhonen, K., Kangas, A., 1997. Application of nearest-neighbor regression
for generating sample tree information. Scandinavian Journal of Forest
Research 12, 97–101.

Kozak, A., 1988. A variable-exponent taper equation. Canadian Journal of
Forest Research 18, 1363–1368.

Kozak, A., Munro, D. D., Smith, J., 1968. Taper functions and thier appli-
cation in forest inventory. Forestry Chronicle 45, 278–283.

Kuhn, H. W., Tucker, A. W., 1951. Nonlinear programming. In: Neyman, J.
(Ed.), Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, Berkeley, 1950. University of California Press,
Berkeley, CA., pp. 481–492, reprinted in: Readings in Mathematical Eco-
nomics, Vol 1, Value Theory, (P. Newman, Ed.), The Johns Hopkins Uni-
versity Press, Baltimore, 1968, pp. 3–14.

Kuroda, M., 2004. Markov Chain Monte Carlo. In: Watanabe, M., Yam-
aguchi, K. (Eds.), The EM Algorithm and Related Statistical Models. Mar-
cel Dekker, Inc., New York, Chapter 9.

Laird, N. M., Ware, J. H., 1982. Random-effects models for longitudinal data.
Biometrics 38, 963–974.

Landsat Project Science Office, 2005. The Landsat-7 science data user’s hand-
book [online]. Landsat Project Science Office, NASA Goddard Space Flight
Center, Greenbelt, MD, http://ltpwww.gsfc.nasa.gov/IAS/handbook/
handbook_toc.html. Accessed December 28, 2005.

Lee, L., Luangkesorn, L., 2010. glpk: GNU linear programming kit. R package
version 4.8-0.5.

Lee, Y., Nelder, J. A., Pawitan, Y., 2006. Generalized Linear Models
with Random Effects: Unified Analysis via H-likelihood. Chapman and
Hall/CRC, Boca Raton, FL.

Leuschner, W. A., 1990. Forest Regulation, Harvest Scheduling, and Planning
Techniques. John Wiley and Sons, Inc., New York.

Lewin-Koh, N. J., Bivand, R., 2010. maptools: Tools for reading and handling
spatial objects. R package version 0.7-34.

Little, R. J. A., Rubin, D. B., 2002. Statistical Analysis with Missing Data.
John Wiley and Sons, Inc., New York.

Longford, N. R., 1993. Random Coefficient Models. No. 11 in Oxford Statis-
tical Science Series. Oxford University Press, Inc., New York.

Lumley, T., 2004. Analysis of complex survey samples. Journal of Statistical
Software 9 (8), 1–19.

Lumley, T., 2010. survey: Analysis of complex survey samples. R package
version 3.22-1.

Madras, N., 2002. Lectures on Monte Carlo Methods. No. 16 in Fields Insti-
tute Monographs. American Mathematical Society, Providence, RI.



References 331

Magnussen, S., 2001. Saddlepoint approximations for statistical inference of
PPP sample estimates. Scandinavian Journal of Forest Research 16 (2),
180–192.

Makhorin, A., 2009. GNU linear programming kit, version 4.9. GNU Software
Foundation, http://www.gnu.org/software/glpk/glpk.html.

Manly, B. F., 1997. Randomization, Bootstrap, and Monte Carlo Methods in
Biology, 2nd Edition. Chapman and Hall, London.

Marti, K., 2005. Stochastic Optimization Methods. Springer, New York.
McArdle, R. E., Meyer, W. H., Bruce, D., 1949. The yield of Douglas-fir in the
Pacific Northwest. Technical Bulletin No. 201, United States Department
of Agriculture, Washington, D.C.

McLachlan, G. J., Krishnan, T., 2008. The EM Algorithm and Extensions.
John Wiley & Sons, Inc., Hoboken, NJ.

Miller, Jr., R. G., 1964. A trustworthy jackknife. The Annals of Mathematical
Statistics 35 (4), 1594–1605.

Moeur, M., Stage, A. R., 1995. Most similar neighbor: An improved sampling
inference procedure for natural resource planning. Forest Science 41 (2),
337–359.

Nelder, J. A., Mead, R., 1965. A simplex algorithm for function minimization.
Computer Journal 7, 308–313.

Neteler, M., Mitasova, H., 2002. Open Source GIS: A GRASS GIS approach.
Kluwer Academic Publishers, Dordrecht.

Newton, M., Hanson, T. J., 1998. Bias in site estimation from early compe-
tition. In: 19th Forest Vegetation Management Conference. Redding, CA.,
pp. 78–84.

Nocedal, J., Wright, S. J., 2006. Numerical Optimization, 2nd Edition.
Springer-Verlag, New York.

Novo, A. A., Schafer, J. L., 2002. norm: Analysis of multivariate normal
datasets with missing values. R package version 1.0-9.

Ohmann, J. L., Gregory, M. J., 2002. Predictive mapping of forest composi-
tion and structure with direct gradient analysis and nearest-neighbor im-
putation in coastal Oregon, USA. Canadian Journal of Forest Research
32 (4), 725–741.

Okabe, A., Boots, B., Sugihara, K., Chiu, S. N., 2000. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, 2nd Edition. John Wiley
and Sons, Inc., New York.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O’Hara, R. B., Simp-
son, G. L., Solymos, P., Stevens, M. H. H., Wagner, H., 2010. vegan: Com-
munity Ecology Package. R package version 1.17-2.

Pawitan, Y., 2001. In All Likelihood: Statistical Modelling and Inference Us-
ing Likelihood. Clarendon Press, Oxford.

Pebesma, E. J., 2004. Multivariable geostatistics in S: the gstat package.
Computers & Geosciences 30 (7), 683–691.

Pinheiro, J. C., Bates, D. M., 2000. Mixed-effects models in S and Splus.
Springer-Verlag, New York.



332 References

Pocewicz, A. L., Gessler, P., Robinson, A. P., 2004. The relationship between
effective plant area index and landsat spectral response across elevation,
solar insolation, and spatial scales in a northern Idaho forest. Canadian
Journal of Forest Research 34, 465–480.

Prayaga, S. K., Eddelbuettel, D., Tiffin, N., Conway, J., 2009. RPostgreSQL:
R interface to the PostgreSQL database system. R package version 0.1-6.

Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., 2007. Nu-
merical Recipes: The Art of Scientific Computing, 3rd Edition. Cambridge
University Press, Cambridge.

Quenouille, M. H., 1949a. Approximate tests of correlation in time-series.
Journal of the Royal Statistical Society Series B 11, 68–84.

Quenouille, M. H., 1949b. Problems in plane sampling. Annals of Mathemat-
ical Statistics 20, 355–375.

Quenouille, M. H., 1956. Notes on bias in estimation. Biometrika 43, 353–360.
R core members, DebRoy, S., Bivand, R., et al., 2010. foreign: Read Data
Stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase, . . . . R package
version 0.8-40.

R Development Core Team, 2010. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna.

Ratkowsky, D. A., 1983. Nonlinear Regression Modeling: A Unified Practi-
cal Approach. Vol. 48 of Statistics, Textbooks and Monographs. Marcel
Dekker, Inc., New York.

Reid, N., 1988. Saddlepoint methods and statistical inference. Statistical Sci-
ence 3, 213–238.

Reid, N., 2003. Asymptotics and the theory of inference. Annals of Statistics
31 (6), 1695–1731.

Reid, N., Fraser, D. A. S., 2000. Higher-order asymptotics: costs and bene-
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