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Foreword

As wireless communication systems continue to grow, their designs are becoming
increasingly complex, whereas the problem of identifying better system designs is
posing severe challenges not only to the academia but also to the industry. Specif-
ically, as the number of mobile subscribers has been increasing at an incredible
speed in recent years, services have rapidly diversified to meet widely divergent
user needs and a variety of stringent requirements. This exacerbates the difficulty of
the problem, since analyzing the complexity of systems where various services are
involved is very difficult, as such systems cannot be decomposed into sub-systems
that exhibit linear properties. Likewise, interferences caused by the coexistence of
different elements in the same physical channel makes the wireless environment
harsher than ever, highlighting the uncertainty issues in wireless transmission. As a
result, the classic communication theory has reached its limits.

This brief presents an alternative viewpoint on processing technologies for wire-
less communications based on recent findings. The structure perspective presented
acts as a lever in enabling emerging processing technologies and helps to cope
with the aforementioned challenges. Unlike classic processing methods that are
mainly element based (they operate on elements such as bits or samples), in this
brief, wireless multimedia communication, channel coding and pre-coding methods
are designed with different structures as intermediate processing units. Based
upon mathematical analysis and simulation results, the proposed technologies are
convincingly shown with promising performance in broadband wireless multimedia
systems. I personally believe that the idea of structural processing is unique and
innovative and hope this brief may boost the development of new theories and
technologies with this perspective, which would likely open up a new trend in
wireless communications research.

With a great pleasure, I highly recommend this brief to everyone in the area of
information and communication technology.

Hong Kong, China Khaled B. Letaief
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Preface

In the early twentieth century, the revolution in wireless communication began
with the pioneering attempt of long-distance radio communications by Guglielmo
Marconi, who performed the famous transatlantic transmissions in 1901 from
Newfoundland, Canada, to Cornwall, Britain. Other great pioneers include Samuel
Morse (telegraph), Alexander G. Bell (telephone), as well as Edwin Armstrong
(radio).

The greatest breakthrough in theory emerged with the publication of Claude
Shannon’s theorems in 1948. These theorems underlay the performance limits
in encoded transmission, which catalyzed the development of a new area in
science currently known as information theory. Under the effective guidance from
Shannon’s theorems, processing technologies have been designed for compressing
data, increasing link speed, reducing transmission errors and so on. There have been
much efforts to push the performance closer to the Shannon limit, but challenges
continue to exist when facing the ever-growing complexity of systems. Indeed,
one necessary prerequisite of applying Shannon’s theorems is that the source and
the channel models should both possess independent identical distributions (i.i.d.).
When the complexity and uncertainty issues in wireless systems get so severe
that this assumption deviates too greatly from the truth, the classic processing
technologies will meet difficulties in achieving high transmission performance.

To address the problems caused by complexity and uncertainty, we hereby
attempt to develop an alternative processing method called structural processing.
Instead of operating on bits or samples based on the i.i.d. model, structural
processing tries to handle grouped bits or samples, namely, structures. The study
of structural processing should be traced back to 18 years ago when I started my
research as a PhD student, under the supervision of Prof. Khaled Ben Letaief and
Prof. Ming L. Liou at The Hong Kong University of Science and Technology in
1996. At the very beginning, we found that the impact on the perceptive image
quality caused by bit errors with a fixed error rate in the transmission of JPEG files
varied greatly across different trial runs. The uncertainty of the effect of the errors
was mainly due to the complexity of the underlying data structure being corrupted
by the errors. By learning the data structure of the JPEG format, the concept called
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x Preface

minimum data unit (MDU) was proposed, which grouped the related encoded bits
representing an image block. Once MDU is transmitted as an entity, its error rate,
i.e., Er.MDU /, may act as a bridge between received image quality and bit error
rate, or, BER, performance. This is in fact an initiation to have the idea of structural
processing. In the meantime, a block shuffling scheme was proposed, together by
Mr. I. P. Chan, Prof. J. C.-I. Chuang and myself, as a structural processing method
in order to enhance the error resilience of image transmission. Part of this work is
introduced in Chap. 3.

Later on, Prof. Ning Ge, Dr. Liuguo Yin, Dr. Yukui Pei and Dr. Xiaoming
Tao joined our group in Tsinghua University, continuing the research on structural
processing. It was noted that IP over SDH and IP over ATM faced a similar
issue regarding the high variability of the effect of errors as that which MDU was
proposed to solve in data communications. We studied the framing procedure on
the data link layer which prevented IP structure corruption from transmission errors
to protect the integrity of variable-length IP packets. This further generalized our
research on wireless transmission based on structures. Some important ideas are
included in Chap. 2.

Channel coding is an important part of a communication system to combat errors
in transmission. It is well known that conventional LDPC code design is usually
a bit-based random search for a coding matrix, where the number of bit-element
combinations is usually huge. To address this complicated matrix optimization
problem, we proposed a structured method based on Galois field sub-matrices,
which decomposed the huge matrix design problem into a succession of sub-
matrix design problems. This structured coding design is another demonstration of
structural processing, which is introduced in Chap. 4.

In 2007, Mr. Weiliang Zeng started his study in our group. We carried on
a collaborative research on pre-coding design together with Prof. Chengshan
Xiao from Missouri University. Although classic pre-coding design may achieve
optimal system capacity, yet it is nearly infeasible for practical implementations,
for its derivation is based on the assumption of Gaussian signals, which are both
unbounded and undetectable. Considering a finite-alphabet constellation structure of
the modulation signal, we proposed a structured pre-coding design with a two-step
iterative optimization algorithm. Benefiting from the merit of structural processing,
the developed algorithm may provide a performance gain that brings the system
capacity close to the optimum with acceptable computing complexity. Part of this
work is presented in Chap. 5.

Since 2010, Mr. Yang Li, Mr. Yipeng Sun and Mr. Shaoyang Li have joined us to
conduct research of structural processing towards their respective PhDs. Instead of
finding and utilizing structures constructed by correlated bits, we have then focused
on a structural perspective inspired by the cognition of human brains. Specifically,
images and videos are modeled based on high-level perceptions and represented
with structural decomposition. Consequently, dictionary learning methods for image
representation and model-based approaches for face video communications are
studied with improved transmission efficiency and perceptive quality. As a matter of
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fact, these technologies deal with the non-i.i.d. sources and channels without simple
transformation or approximation to i.i.d. ones. Some interesting results are briefly
presented in Chap. 6.

In this brief, we have therefore assembled exemplar works from our 18 years of
team research, where methods of source coding, channel coding and pre-coding
are presented with structure perspectives. Specifically, the concept of MDU is
introduced to help redesign the compressed wireless multimedia data, so as to
significantly curb the impact of both random and burst errors. Likewise, a gradual
construction scheme of structured LDPC codes is found, having near-optimal error-
correction performance but much lower complexity than the conventional LDPC
coding. Moreover, pre-coding for high-dimension constellation consisting of the
basic QPSK structure is designed, achieving near-optimal capacity in harsh wireless
environments. Further studies on information representation, such as dictionary
learning and model-based video coding, are introduced as potential interesting
areas to the development of advanced structural processing technologies for future
wireless communications.

This brief only showcases some recent processing technologies with structural
perspective. Hence, more research work is encouraged to follow up. Although
the introduced technologies belong to different parts of the wireless system, the
theme is unified: structure. It is the structure that enables the processing complexity
of non-i.i.d. systems may be decomposed, facilitating further studies on more
general methods to tackle the complexity and uncertainty issues in modern wireless
communication systems. We hope that this brief may provide alternative ideas to the
researchers and also be used as a reference for both post and undergraduate students
who major in wireless communication, information theory or related areas. Our
research thus far constitutes preliminary explorations into their respective topics,
with inevitable flaws and limitations. Much work remains to be done toward the
eventual formulation of a comprehensive theoretical framework.

In the meantime of writing this brief, some members in our group in Tsinghua
University participated in preparing the materials and provided valuable assistance.
Specifically, Dr. Linhao Dong assisted in editing Chap. 1; Dr. Yukui Pei provided
simulation results and helped edit Chap. 4; Mr. Shaoyang Li prepared part of Chap. 2
and helped edit Chap. 6; Dr. Rui Shi helped edit Chap. 3 and part of Chap. 4; Mr.
Hongliang Mao helped complete Chap. 5; and Mr. Yang Li helped improve the
quality of presentation of the brief. We highly appreciate their excellent work.

Beijing, China Jianhua Lu
January 2015
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Chapter 1
Revisiting Wireless Communications

1.1 Overview

There is no doubt that wireless communication technology has vastly improved
the quality of our daily life. For short-range communications, Wi-Fi (IEEE
802.11a/b/g/n) has been widely incorporated in many gadgets such as laptops,
tablet computers, and digital cameras for efficient Internet access required by
many interesting applications. For telecommunication services, smart phones have
dominated the mobile market recently with the full deployment of the 3G/4G mobile
networks. Integrating both short-range and cellular wireless transceivers, smart
phones provide a dynamic platform for various services such as instant messaging,
Internet access, business applications, on-line gaming, multimedia services, video-
conferencing, and of course, voice telephony. Consequently, more system capacity
in wireless networks is demanded. Since its launch in 2010 [1], 4 G network has
become the technology where most place their hope for the continued enlargement
of current network capacities in the coming years, offering a target data rate up to
1 Gbps [2].

Apart from telecommunication services, wireless communication is also utilized
in other fields. In astronomical research, wireless communication plays a unique
part for building links between ground stations and thousands of artificial satellites,
space probes, and spacecrafts in outer space. Usually, the ground station sends
control signals to the unmanned spacecraft, and the spacecraft returns data in
various forms such as images and waveforms to the ground station. In military and
modern warfare, the role of wireless communications is irreplaceable. For example,
precision-guided munitions, such as cruise missiles, are largely equipped in many
troops to maximize the operational efficiency while minimizing civilian casualties.
Airborne Warning and Control System (AWACS) and satellite communication
systems are also introduced for command and control.

© The Author(s) 2015
J. Lu et al., Structural Processing for Wireless Communications, SpringerBriefs
in Electrical and Computer Engineering, DOI 10.1007/978-3-319-15711-5_1
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2 1 Revisiting Wireless Communications

In a word, wireless communication has long become an essential part in every
facet of our lives, and will continue to be one of dominant technologies in the
following decades.

While an astonishing number of different systems have been invented and
deployed, the basic principle is mostly same. Namely, original information passes
through a series of processing units, followed by transformation to electromagnetic
(EM) waves for delivery. In the early years of communications, scientists and
engineers started to realize the necessity of measuring the quantity of information
in transmissions. In 1948 [3], Claude Shannon published his theorems for the
communications of discrete messages, based on previous works by Harry Nyquist
and Ralph Hartley. Now these theorems are commonly known as source coding
theorem, rate-distortion theorem and noisy-channel coding theorem, which are
briefly described as follows:

• Source coding theorem [4]: if N random variables follow independent identical
distribution (i.i.d.) p.x/ with entropy H.X/, the minimum expected length L in
bits to represent each variable satisfies L ! H.X/ as N ! 1. On the contrary,
if they are compressed into bits that are fewer than H.X/ per variable on average,
it is virtually certain that information will be lost.

• Rate-distortion theorem: for an i.i.d. source X with distribution p.x/ and
bounded distortion function d.x; Ox/, the minimal number of bits per data sample,
measured as rate R, can be determined, where the input signal can be approxi-
mately reconstructed at the receiver without exceeding a given distortion D. R is
equal to the associated information rate distortion function, which is

R.D/ D R.I/.D/ D min I.X I OX/; (1.1)

where I.X I OX/ is the mutual information between X and OX , and the minimiza-
tion is over all conditional distribution p. Oxjx/ satisfying the expected distortion
constraint d.x; Ox/ � D.

• Noisy-channel coding theorem [5]: for a discrete memoryless channel, it is
possible to communicate digital information nearly error-free at any rate blow
the channel capacity.

These theorems draw quantitative boundaries on data compression and reliable
transmission. Thanks to them, a 60-year prosperity of wireless communications has
been witnessed.

From a system point of view, Fig. 1.1 shows the block diagram of a general
wireless communication system in the unidirectional transmission. If the input
is analog, it is usually sampled and quantized. This procedure, called sampling,
serves as a very important step to convert the analog signals to digitalized source
information. If the input is digital, it may be converted to a certain binary sequence
directly. However, the raw binary data is typically too massive to be stored or
transmitted; therefore, lossless or lossy compression is usually applied to reduce
the size of the data meanwhile maintaining an acceptable level of fidelity.
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Fig. 1.1 Diagram of a general wireless communication system, where the transmission and
reception can be reciprocal

At this stage, the compressed output is stored as bit sequences in a storage
medium. These bit sequences contain the principal information of the original
data. To combat the errors from transmission over noisy channels, channel coding
or forward error correction (FEC) is applied, where a code-word is generated in
a redundant way by adding checking bits. If enough checking bits are used, it
is possible to decode the original sequence without error. This is de facto the
main point of noisy-channel coding theorem. Usually, the design of the code
determines the performance of error correction. General channel coding methods
may be categorized into block codes and convolutional codes, where block codes
are memoryless and convolutional codes are typically designed with finite-state
machines. Amongst these, low density parity check (LDPC) codes may exhibit
performance approaching the Shannon limit [6] in additive white Gaussian noise
(AWGN) channel transmission. However, the large scale of its random-like genera-
tor matrix significantly increases the complexity of design. Therefore, the problem
of finding a code with good performance as well as low complexity always attracts
researchers’ attention. After channel coding, the bit sequences are mapped to
symbols, and these symbols are converted to signals with digital modulation. After
mixing and amplification, a continuous waveform is generated and then emitted
from an antenna.

At the receiver, the waveform is firstly picked up by an antenna before passing
through the low-noise amplifier and the RF downconvertor, and then passes blocks
such as matched filter, sampler, and decision devices inside a demodulator. After
demodulation, the waveform is converted back to bit sequence, which may contain
errors caused by transmission impairments such as multi-path fading, interferences,
carrier frequency offset, noise, and so on, in propagation. To recover the transmitted
bit sequences, the decoder utilizes either hard or soft decision algorithms to
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eliminate the errors introduced by the channel. Following channel decoding, the
original data may be reconstructed by source decoding from the compressed data.
Now the whole process of wireless transmission is completed from the transmitter
to the receiver.

If a system is simple enough, the source and channel may be considered as i.i.d..
However, many kinds of sources and channels often possess properties that show
non-i.i.d. characteristics, such as memory. For example, multimedia signals such as
videos have correlations cross a series of consecutive frames. Existing processing
methods typically attempt to transform non-i.i.d. sources and channels to i.i.d. ones
with certain simplifications or approximations (shown in Fig. 1.2), but may suffer
from conflict between precision and computational complexity. Hence, exploring
new methods that deal with the non-i.i.d. systems, denoted as gray-lined regions, is
meaningful in information theory.

i.i.d. Non-i.i.d.

i.i.d.

Non-i.i.d.

Source

Channel

Intrinsic characteristics

Representation and 
processing methods

Region where Shannon’s
theorems applied

Region where traditional
methods are infeasible

Fig. 1.2 An illustration of the relationship between processing methods and the properties of
source and channel, where the white-lined and gray regions represent the intrinsic characteristics
of source and channel and corresponding processing methods, respectively. Conventional methods
likely transform non-i.i.d. source or channel to i.i.d. ones, where Shannon’s theorems can be readily
applied

In the following sections, we will discuss the challenges in wireless communica-
tions through an analysis of the issues arising from complexity and uncertainty.

1.2 Challenges in Emerging Wireless Systems

1.2.1 Difficulties in Wireless Multimedia Communications

The early 2000s have witnessed the breakthrough of the development in mobile
communications. In particular, two 3G standards, universal mobile telecommunica-
tions system (UMTS) [7] and code division multiple access 2000 (CDMA2000) [8]
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were deployed. One of the outstanding features of the 3G standards is multimedia
service support. The latest addition to the 3G standards, evolved high-speed packet
access (HSPAC), may provide an average data rate of approximate 85 Mbps in
downlink (Release 9) [9]. Meanwhile, the rising popularity of smart phones sup-
porting high-speed mobile network standards fuels customers’ increasing needs for
wireless multimedia services.

It is noted that, early research on wireless communications did not distinguish
multimedia communication from conventional data communication; they are simply
considered to be a simple combination of two individual parts: multimedia and
communication. The differences and correlations among bits are usually neglected
in the design of multimedia transmission systems.

Under the assumption of ideal error-free transmission, Shannon’s rate-distortion
theorem is an efficient guide to the design of source coders for multimedia signals.
With such design, an optimal trade-off between reconstruction quality and compres-
sion efficiency may be achieved [10]. However, in practical wireless transmission,
the compressed data are rather sensitive to transmission errors due to the inter-
correlation property. When transmission errors exceed a certain threshold and cause
significant data to become corrupted, the quality of multimedia reconstruction may
be drastically decreased, leading to a cliff effect [11], which does not follow the
rate-distortion theorem. The method of dealing with this cliff effect in multimedia
communication is one of the great challenges in contemporary research [11].

1.2.2 Complex Interferences in Harsh Radio Environments

Differing from wireline communications, interferences are present whenever fre-
quency resources are shared by multiple users. The current trend of development in
wireless sees a shrinkage of individual cell coverage, and a growth of the number
of antennas. For instance, Long-Term Evolution (LTE) system applies techniques
such as multiple-input and multiple-output (MIMO) and orthogonal frequency-
division multiplexing (OFDM) to meet the growing needs in data services from
new consumers with increased system capacity [12]. However, the interferences
from multiple antennas and users are often difficult to be removed completely,
preventing improvement in system capacity from reaching theoretically expected
effectiveness. Furthermore, as the numbers of nodes and antennas increase, more
spectrum overhead is required for channel estimation and feedback links carrying
channel state information (CSI).

Likewise, modern military communications face harsh EM environments as well.
Tactical schemes such as frequency hopping, radar detection, and EM attacking
introduce dense and dynamic overlaps at spatial, time, and frequency domains. As a
result, problems including inconsistent transmission, high bit-error rate (BER), and
low spectral efficiency are often encountered.
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1.2.3 The Challenge of Distance in Deep Space
Communications

Since the launch of the first artificial satellite Sputnik 1 by the Former Soviet
Union in 1957, thousands of satellites have been launched to provide services in
communication, navigation, remote sensing, weather forecast, etc. Modern wireless
technologies are able to cope with communications over long distances (e.g., low
Earth orbit (LEO) satellites at about 1,000 km and geosynchronous orbit (GEO)
satellites at about 36,000 km). Certain man-made objects such as space probes
and spacecrafts launched for astronomical research travel an extraordinarily long
distances from the earth into deep space far beyond this range. Since path loss (PL)
of wireless signals in free space is in proportion to the square of the transmission
distance [13], the received signal-to-noise ratio (SNR) of the transmitted signals
in deep space communication may be very low. For instance, lunar probes need to
combat 21 dB more attenuation in transmission than the GEO satellites [14]. In such
cases, noise may be dominant in the received signal, resulting in a severe issue of
uncertainty to robust reception.

To enhance the capability of deep space communications, various approaches
have been studied and successfully applied, including enlarging the aperture of
antennas, increasing transmission power, reducing thermal noise at the receiv-
ing end, increasing the frequencies of carriers, and designing efficient channel
codes, etc.. Nevertheless, as the transmission distance becomes longer and longer,
the effects of communication uncertainty will be more and more severe, which will
continue to reduce the maximum achievable transmission rate. For example, by June
19, 2014, Voyager 1 has traveled around 127.34 AU .1:9 � 1010 km/ from the earth,
at the boundary between heliopause and bow shock [15].

Also, deep space communications may encounter complex EM environments due
to burst interferences from solar wind, plasma, geomagnetic storm and other EM
waves, which likely cause unpredictable burst errors during data transmission over
space. In 1997, the Jet Propulsion Laboratory (JPL)-launched robotic space probe
NEAR-Shoemaker suffered from fierce solar scintillation at a place 3.17 AU away
from earth, resulting in a frame-correction rate down to 3 % [16].

Although hundreds of pictures in detail of other planets of the solar system had
been transmitted back to Earth during the past 30 years, the data rate is currently
limited to the level of Kbps, and will be further shrunk with the fast increase of
spacecraft range in the future.

These challenges in the aforementioned emerging systems have obstructed the
application progress of wireless communications.
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1.3 The Issues of Complexity and Uncertainty

1.3.1 The Ever-Increasing Complexity in Wireless Systems

Generally, the analysis of the complexity in wireless communications depends on
two crucial system properties: the decomposability of systems and the stationary
ergodicity of processes throughout systems.

Decomposability here means that a system can be decomposed into several
simple and mutually independent sub-systems for individual study and analysis,
by which the overall system performance may be obtained accordingly [17]. One
classic example is a linear time-invariant (LTI) system, whose output may be
described as the weighted sum of a series of impulse responses, thus a firm
theoretical foundation may be established for its system design and optimization.
Similarly, classic wireless communication theory thoroughly adopts this idea.
For instance, the separate source-channel coding theorem by Shannon indicates that,
if the source follows a certain i.i.d., and the channel is stationary, designing source
and channel coding schemes separately can achieve the equivalent optimality as
joint source-channel coding [5]. Base on this idea, the complexity in design and
application of communication processing algorithm may be significantly reduced.
However, separate coding theorem is not always applicable. The multiple access
channel is a typical exception [5].

Assuming that two sources U and V send binary sequences to one destination
simultaneously via an abstract multiple access channel. The joint distribution
p.u; v/ is f1=3; 1=3; 0; 1=3g for f.0; 0/; .0; 1/; .1; 0/; .1; 1/g respectively. The
multiple access channel is discrete additive noiseless, and the output of
the destination is the sum of the sources. In this case, the capacity region of
the multiple access channel does not intersect with the Slepian-Wolf rate region
of the distributed source encoding [5]. The source with Slepian-Wolf encoding
to achieve the best source encoding performance will not use the multiple access
channel efficiently, because the capacity of the multiple access channel increases
with the correlation between the inputs. But if the source and the channel are jointly
considered, a simple scheme that directly sends the two sources’ data to the channel
will reach the destination without error.

In practical wireless networks, we have to face the difficulties arisen from
indecomposable complexity when calculating the channel capacity. For a long time,
researchers had attempted to analyze the capacity in wireless networks. However,
closed-form expressions or upper/lower capacity bounds have only been found for a
few particular network models. In 1971, R. Ahlswede derived the capacity region of
multiple access channels (many-to-one) [18]. Regarded as the reciprocal case of the
multiple access channel, the capacity region of the broadcast channel (one-to-many)
was obtained afterwards [19]. E. C. van der Meulen and T. Cover further derived the
capacity bounds for three-terminal channels [20, 21], which are considered as one
of the most influential outcomes in channel capacity.
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Results for more general models still remain unknown. For example, although
Shannon defined the duplex channel, we still have not yet found the explicit expres-
sion of capacity for this channel. Due to the fact that one wireless network cannot
be decomposed into several individual point-to-point links under the existence of
coupling, even the capacity of the two-user Gaussian interference channel remains
open. The research in channel capacity is still in progress.

The stationary ergodicity of the signal processes in wireless communications is
widely utilized to simplify optimization. In other words, assumption of stationary
ergodicity ensures optimality in conventional communication systems. Taking the
resource allocation problem as an example, classic methods allocate available
channel or network bandwidth resources (spectrum, time, spatial resources, etc.)
based on the need of data services [5], and often simplify complex models of
services, channels and networks with several parameters such as bandwidth and
delay. In fact, the common foundation of these methods is the stationary ergodicity
of the processes of services and channels, such that the characteristic parameters
may be collected from the statistical averages of a few samples during a unit
time. As a result, the models built accordingly are only suitable for a single pair
of stationary link and service, since their optimization only focus on individual
samples.

However, it must be noted that the requirements on bandwidth, delay, and
error rate control of mobile multimedia services are very different from those of
conventional data communication services. For example, the rule in time-space
variation of end-to-end quality of service (QoS), and the characteristics of group
distribution in different time and space scales make multi-service oriented resource
allocation as a difficult multi-parameter dynamic optimization problem. Very often,
such problem is NP-hard in terms of computational complexity. Moreover, it is
very unlikely for these kinds of services to possess stationary ergodicity so that
they cannot be optimized simply with statistical averages. Therefore, instantaneous
optimal results should be found in accordance with time-varying services and
resources, making the optimization problem very hard to solve.

1.3.2 Uncertainty in Wireless Communications

The core of communication tasks is to tackle the uncertainty and eliminate its
effects on information transmission. Shannon proposed entropy as a measurement of
uncertainty. According to Shannon’s definition, the entropy H of a random variable
X can be written as:

H .X/ D �
X

x2X
p.x/ log p.x/; (1.2)

where X is the value space of x, with p.x/ as its probability density function (PDF),
i.e., p.x/ D PrfX D xg; x 2 X. Uncertainty in wireless communications include
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both source and channel uncertainty. Source uncertainty is expressed by the source
entropy, which draws the lower bound on compression coding rate.

Shannon’s source coding theorem [5] suggests that, when the source Xn D
fX1; : : :; Xng follows i.i.d. (assuming each element of Xn has the same distribution
with random variable Q), and as long as the compression coding rate RS is under
RS > H.Q/, where H.�/ denotes the entropy, it is possible to recover Xn with an
arbitrary small error rate. The prerequisite of i.i.d. ensures that 2nH.Q/ sequences
can represent all possible source sequences with a large probability. In other words,
Shannon’s coding theorem is applicable to stationary ergodic sources, but not to
most of the multimedia sources that are neither stationary nor ergodic.

Uncertainty in channels usually comes from some factors such as noise, interfer-
ence, channel fading, etc., and is measured by the channel capacity. For instance,
the normalized capacity of AWGN channel can be written as:

C D max
p.x/

I.X I Y / D 1

2
log

�
1 C P

�2
0

�
; (1.3)

where p.x/ is the probability density of input sources, and I.X I Y / the average
mutual information between the input X and output Y . P is defined as the average
power of received symbols, and �2

0 the average noise power. Uncertainty introduced
from the channel may be, in certain situations, removed by the use of error correction
codes. The noisy-channel coding theorem points out that, when the transmit rate is
less than the channel capacity, there must exist a certain error correction method to
make the decoding error converge to zero [5]. Note that the channel here is assumed
to be a stationary random process with ergodicity, and the channel code must be long
enough. However, for wireless communications with mobility, time-varying fading
is unlikely to exhibit stationary ergodicity.

1.3.3 The Issues of Complex Uncertainty

As complexity and uncertainty coexist in a system, the issue of complex uncertainty
arises.

Figure 1.3 depicts a general analytical model of wireless communication
systems. As shown, a non-stationary random sequence represents the information
source, such as multimedia data after compression. Likewise, a random process
of time-varying fading caused by multi-path and mobility is used to model the
channel, along with random noise, burst interferences from other systems, and
internal interferences among users when sharing spectrum resources.

The complex uncertainty of multimedia sources are often reflected by their non-
stationary randomness. In particular, in network environments, the time distribution
of compressed multimedia sources is likely non-stationary, whose asymptotic
separability cannot be guaranteed. It is difficult to define the typical sequences in
the length of 2nH.Q/ bits, and the lower bound of the acceptable error probability
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Fig. 1.3 An analytical model of wireless communication systems, where the transmission perfor-
mance is mainly affected by both interferences and noise

may not be determined [5]. Besides, rate-distortion in wireless multimedia trans-
mission has closed-form expressions only for a few of source models with specific
distributions (e.g., Gaussian source, Bernoulli source, etc.).

Complex uncertainty in wireless channels are holistically affected by random
noise, non-stationary fading, and complex interferences among multiple users.
Fading caused by multi-path, scattering, reflection, and shadowing varies from time
to time, and is likely a random process without ergodicity. Moreover, in mobile
scenarios, Doppler shifts cause inter-carrier interference (ICI), delay spread causes
inter-symbol interference (ISI), and multi-path propagation causes spatial coupling
interference. Additionally, spectrum resources sharing among multiple nodes and
multiple links brings about more complex spatial, time and frequency interferences,
which are difficult to describe using simple statistical models [22, 23].

Complex uncertainty issues are almost everywhere in wireless communications.
They are usually suggestive of a complex multiple-variable random process, for
which a general and effective analytical model is often difficult to be built. The
solution to this long-standing open problem would be a welcome breakthrough in
wireless communication processing technology.

In conventional communications, the processing unit is bit, which matches
the prerequisite, i.e., i.d.d., of applying Shannon’s theorems. Besides, for non-
stationary but cyclic random processes, a concept of cyclostationary was proposed
[24] to handle the random process with a relative invariance property per a cyclic
granularity. However, a fixed granularity, either with bits or cycles, are suitable
for ergodic process, but not for problems with complex uncertainty encountered
in today’s wireless communications.
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Fig. 1.4 Illustration of the “Marginal Effect”. Although the budget of wireless resources can keep
on increasing, the system capacity will meet its limit eventually

To be fair, conventional processing methods are very effective when processing
simple data in simple systems subject to i.i.d., as indicated in Fig. 1.2. Nevertheless,
with a continuous increase of complexity and uncertainty in services and systems,
the deviation of sources and channels from i.i.d. distributions cannot be ignored, due
to the significant observed decrease in the efficiency of such processing technology
with i.i.d. models. In fact, a marginal effect has emerged in a variety of wideband
services. As shown in Fig. 1.4, the increment of efficiency will be very marginal
after a certain point although the cost of wireless resources continuously grows.

From our discussion, it is clear that a new breakthrough in the development of
emerging wireless communications is urgently needed; and its realization hinges
around the development of new processing technologies.
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Chapter 2
Principle Shift: From Bit to Structure

2.1 On the Bit Representation

2.1.1 Representing Information with Bits

In the early twentieth century, as telegraph and telephone systems were being widely
deployed in many countries around the world, researchers and scientists started to
think about the speed and quality of message propagation. In 1924, H. Nyquist
defined “intelligence” and proposed that the transmission speed of intelligence is
proportional to the logarithm of the number of signal levels in a unit duration [1].
Let m denote the number of signal levels within each unit duration, the transmission
speed of intelligence, W , can be expressed as

W D K log m; (2.1)

where K is a constant value. In addition, he also mentioned the possibility of the
improvement in transmission rate using a certain “optimum” code.

In 1928, R. Hartley extended the concept of intelligence to “information” [2].
He introduced the “quantitative measure of information”, and then concluded that
the capacity is proportional to the bandwidth of the channel based on the observation
with RLC circuits. Defining s as the number of symbols in each selection, the
amount of information H can be written as

H D n log s; (2.2)

where n is the total number of selections. Besides, Hartley further confirmed the
principle that the information is the outcome of a selection among a finite number
of possibilities.

© The Author(s) 2015
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A general form of information representation is defined as entropy by Shannon
in his notable work A Mathematical Theory of Communication in 1948 [3], where
the entropy H.X/ is given by (1.2) in Chap. 1.

It is noted that, if the base of the logarithmic operation in (1.2) is 2, the unit
of H.X/ is bit. That is to say, the information source X can be represented by
H.X/ bits.

Furthermore, for continuous signal waveforms in wireless communications, they
may be transformed to sequences of discrete samples by Nyquist-Shannon sampling
theorem and then be represented in bits as well.

2.1.2 Channel Capacity by Bits

In fact, the bit representation aims not only to measure the uncertainty of infor-
mation sources, but also to provide a measurement of capacity of communication
channels.

Statistically, a communication channel is usually modeled as a triple consisting
of an input alphabet, an output alphabet, and for each pair .i; o/ of input and output
elements a transition probability p.i; o/. Semantically, the transition probability is
the probability that the symbol o is received given that i was transmitted over the
channel.

In information theory, the channel capacity of a communication channel is the
least upper bound on the data rate that can be reliably transmitted [4]. As early as in
1948, Shannon derived this upper bound for both discrete and continuous channels
[3], which is called Shannon capacity nowadays. According to his results, capacity
of a channel is given by the maximum of the average mutual information between
the source and destination.

Now let us revisit the basic diagram of a wireless communication system as
shown in Fig. 1.1 and consider a simplest channel model. Here, we use X and
Y to denote discrete random variable spaces representing the input and output of
the channel, respectively. p.xjy/ is defined as the conditional probability density
function of x given y, which is determined by the channel. Let p.y/ be the marginal
probability density of y, and p.x; y/ be the joint probability density, where

p.x; y/ D p.xjy/p.y/: (2.3)

From [5], it is known that H.X jY / is defined as the conditional entropy of X

over the joint XY ensemble, which can be expressed as

H.X jY / D �
X

x2X;y2Y
p.x; y/ log p.xjy/: (2.4)
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Since the entropy of X can be written as

H.X/ D �
X

x2X
p.x/ log p.x/; (2.5)

the average mutual information can be written as

I.X I Y / D H.X/ � H.X jY /

D
X

x2X

X

y2Y
p.x; y/ log

p.xjy/

p.x/

D
X

x2X

X

y2Y
p.x; y/ log

p.x; y/

p.x/p.y/
:

(2.6)

If variables X and Y are continuous, (2.6) can be rewritten as

I.X I Y / D
Z

X

Z

Y

p.x; y/ log
p.x; y/

p.x/p.y/
dxdy: (2.7)

When the variables X and Y are mutually independent, the joint probability density
can be written as p.x; y/ D p.x/p.y/. As a result, (2.7) becomes zero. This
implies that, if the channel quality is extremely bad, it is impossible to transmit
any information from the source to destination. In other words, mutual information
describes how much information can be shared between two communication nodes.
The channel capacity thus may be defined as

C D max
p.x/

I.X I Y /; (2.8)

where C and I.X I Y / are all measured by bits.

2.1.3 The Limitation of Bit Representation

As discussed in Chap. 1, the conventional bit representation is confronted with
challenges of complexity and uncertainty. To arrive at a fundamental understanding
of the issues, we need to first revisit the general process of wireless communications
in terms of space representation and mapping [6, 7].

As shown in Fig. 2.1, three spaces, consisting of information, coding, and
signal spaces, are often involved in a communication system. Firstly, starting
from the information space, a processing unit transforms the raw input data into
representations suitable for transmission. Secondly, in coding space, a channel
coding scheme transforms the information representation into a redundant form
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Fig. 2.1 Three spaces involved in wireless communications

capable of correcting errors caused by transmission. Finally, coded information is
mapped to signal space with modulation, where new waveforms may be constructed
through pre-coding to adapt to channel propagation conditions. In fact, information
representation, channel coding and modulation are the three main aspects of the
task of adapting services to wireless propagation environments undergoing dynamic
changes.

It should be noted that the adoption of the bit representation in the information
space suggests that the processing methods in the following steps are likely all based
on bits. More importantly, the representation was originally proposed based on
the assumption that the information source and the transmission channel are both
independent stationary stochastic processes. Accordingly, errors occurring in the
transmission process are also assumed independent. However, the burst of errors
and the unequal relevance of source data will lead to the formation of complex
uncertainty, which results in error propagation which may seriously degrade the
quality of communications.

Besides, when channel coding is mainly designed based on the bit representation,
the combination of bits is extremely huge even under moderate length of code-word.
Design complexity and transmission performance may not be well balanced. While
algebraic coding has low processing complexity, its performance is often limited,
making it difficult to eliminate the influences of noises and interferences effectively.

It turns out that the uncertain errors and the complex processing scale that
we have to face are often far beyond the processing capability of conventional
communications with bit representations. This in turn provides us an impetus to
develop a more reliable processing method to replace the bit representation in order
to deal with issues of complexity and uncertainty.

2.2 Inspirations from Other Fields: A Structural Perspective

All along, engineers and technicians are very good at imitating nature to handle
diverse complex design tasks. It has been noted that structures, of different kinds
mimicked from or inspired by nature, often play important roles in transforming
complex problems into those relatively easy to treat. For instance, in the history
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of development of the airplane, learning from birds helped the airplane pioneers
to avoid solving from scratch many complex issues on aerodynamic analysis and
design. Faced with the issues of complexity and uncertainty in wireless commu-
nication systems, some existing research results in other research areas may offer
valuable inspirations.

2.2.1 Structure Design in Architecture

In architecture, structures are fundamental elements whose combinations form
various elegant buildings. Figure 2.2 shows two representative examples of archi-
tecture structures, from ancient to modern.

Fig. 2.2 Two examples of architecture structures: (a) the Colosseum from Ancient Rome; (b) the
Petronas Twin Towers in Kuala Lumpur, Malaysia

In the history of architecture, it may be seen that bricks have been used for
thousands of years as the main building material. In artifices ranging from the
ancient Roman Colosseum shown in Fig. 2.2a to 19-century Victorian houses in
Britain, bricks can always be found. Bricks, stacked up piece by piece, form the
basic elements in many of these structures. However, when it comes to a large and
complex buildings, construction by these “bricks” requires large labor force over a
long period; worse yet, the whole body of such buildings may be unstable.

In modern architecture, steel-frame structural frameworks are vital indeed to the
construction of large-spanned buildings and skyscrapers such as the Petronas Twin
Towers in Kuala Lumpur shown in Fig. 2.2b. These frameworks usually consist of
steel-framing with a few basic structures, and the design of the basic structures may
change according to the target height of the skyscrapers. The building style where
“bricks” were treated as basic elements has been abandoned, and the structural
frameworks are instead regarded as whole entities when designing and constructing
these skyscrapers. In this manner, large labor forces had been saved, while and more
stable architecture at extreme heights sprung up to astound the world.
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It is obvious that the design of structures is a major task in the construction
of buildings. Is it possible to extend and generalize this structural perspective in
architecture to other fields?

2.2.2 Structural Biology

Structural biology [8–10] is another excellent example where complex problems are
solved effectively by adopting the structural perspective.

It is known that the real world is composed of various kinds of atoms, and one
of the goals of biology is to analyze the inherent characters of organisms. However,
due to the countless combinations of atoms, researches that regard atoms as basic
units must be very complex and thus difficult.

Fig. 2.3 An example for illustration of the basic principles of structural biology where the amino
acids are the basic units for analyzing the properties of organisms

As an important milestone, structural biology provides us a new perspective by
which many breakthroughs in the development of biology were made possible.
In particular, the composition of organisms is based on specific elementary struc-
tures, namely, amino acids which consist of carbon, hydrogen, oxygen, nitrogen
atoms with well-organized structures. The beauty is that, albeit the arbitrary
combinations of atoms is nigh infinite, the number of types of amino acids we
have discovered is quite limited, and the structures of amino acids are meaningful
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enough when used to explain the principle of the biosphere. As Fig. 2.3 shows, the
basic structures of amino acids may further form hierarchical structures, including
primary, secondary, tertiary, and quaternary structures. As the level of biological
structures increases, they embody more complex parts and even macroscopic
biological structures of living things such as various body cells, tissues, and organs,
until forming the whole bodies of animals or plants.

Biological analysis based on specific finite structures will not only be working
with much smaller numbers of possible instances, but will also exhibit meaningful
rules [11, 12]. For example, if we know that some proteins are composed of certain
amino acids, the biological function of those proteins will be correspondingly
revealed to some extent. As we know, such methodology with structural perspective
has already accomplished some major achievements in biology.

Can this structural perspective enlighten us when considering the design of
structural information for communication systems? Intuitively, atoms in biology
may regard as analogous to bits in communications, while the molecular structure of
amino acids may be considered as analogous to hypothetical information structures,
which we expect to discover or design to establish a new perspective of processing
technology for wireless communication systems.

2.2.3 Cellular Structure

The structural perspective can already be found in the field of wireless communica-
tion networks. As is well known, supporting large numbers of concurrent mobile
users over the radio is a very complex problem due to very limited spectrum
and mutual interference among the users (as shown in Fig. 2.4a). Thanks to the
introduction of cellular networks [13], this complex problem is quickly simplified
with cellular structures.

As shown in Fig. 2.4b, the cellular structure divides randomly distributed users
into hexagonal regions (cells), thus the number of users in each cell becomes limited,
while frequency resource may also be reused among different cells. Exploiting the
attenuation characteristics of radio communications, interference amongst cells may
be reduced and that between users may be restricted within single cell. As such,
the complexity of multi-user communications is decomposed by base stations
which are only in charge of limited numbers of users in the corresponding cellular
structure; in this manner, the processing scale for interference cancelation, etc., may
be significantly reduced with the help of the cellular structure. The cellular structure
has been proven to be effective in overcoming the problems of spectrum resource
shortage and mobile handset power limitations.

The concept of cellular networks, as one of the top ten inventions that affect
the communication area throughout, still dominates architecture design in com-
munication networks. Its continued success serves as an inspiring proof for the
effectiveness of a structural approach in response to the complexity and uncertainty
of communication problems.
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2.3 From Bit to Structure

As of now, is it possible to make the structural perspective applicable, and to herald
a new era of prosperity in wireless communications research?

2.3.1 The Structure of IP Packets

In mobile Internet, the basic units transmitted between mobile nodes are IP packets
rather than bits [14]. An IP packet complies with the principal Internet protocol
for relaying data across network boundaries. Its routing function underlies every
function of the Internet; it essentially establishes the Internet and keeps it together.
In particular, IP has the task of delivering packets from the source host to the
destination host solely based on the IP addresses in the packet headers.

As is shown in Fig. 2.5, an IP packet defines a packet structure that encapsulate
the data to be delivered. It also defines addressing methods that are used to label
the datagram with source and destination information. Although each IP packet is
composed of bits, the function and importance of different bits in the packet may be
different. Therefore, one may observe that IP groups some correlated bits and forms
an intermediate layer structure, rather than treating bits independently.

Fig. 2.4 Multi-user communications in wireless networks: (a) without cellular structure; (b) with
cellular structure

Accordingly, the measurement of reliability in mobile Internet is packet loss rate
rather than bit-error rate (BER). Hence, it is obvious that protecting the structure
of IP packets is much more critical than protecting single bits. It will be seen from
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Fig. 2.5 A structure of an IP packet which consists of header and payload data

this case that bits are not necessarily the most effective processing units in practical
information communications. Instead, some structures that are made up of bits may
really be used to measure the reliability of communications. In other words, to better
understand the essence and requirements of practical communication systems, it
may be suggested that one should focus more on specific structures that capture the
properties of wireless transmissions.

2.3.2 The Structure of Multimedia Streams with H.264

Similarly, transport of multimedia streaming data also relies on specific structures
such as the example depicted in Fig. 2.6. In fact, the data structures for multimedia
are carefully designed. For instance, the real time transport protocol (RTP) likely
utilizes the structure of multiple layers which assume different responsibilities [15].

Due to the special header structure for multimedia streaming data, the importance
of different bits varies based on their functions. If some bits in the structured
header are lost or incorrect, the quality of source image or voice may suffer
serious degradation. Hence, the structures of multimedia streams not only provide an
effective way to represent data in a structured style, but also imply the significance
of protecting the data structure rather than individual bits.
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Start Code NAL Unit … RTP Packet

NALU Header NALU Main Body

Slice Header Slice Data

Flags Macroblock Layer Macroblock Layer

…

…

Mb_type PCM Data Mb_type Sub_mb_pred or mb_pred Residual Data

… …

Layer 1: A. Annexb Format B. RTP Format

Layer 2: NALU

Layer 3: Slice

Layer 4: Slice Data

Layer 5: PCM

Layer 6: Residual Data

Fig. 2.6 A structure of multimedia streams with the H.264 standard

2.3.3 Additional Inspirations

In the classic Shannon information theory, bit is the minimum unit of information
processing, and source or channel is simplified by the assumption of the asymptotic
equipartition property (AEP)[3]. This assumption is based on a consideration of
“statistical average” processing which encodes information as bits with equal status.
As a result, the evaluation criteria of transmission performance is mostly BER.

However, most of transmitted information possess physical significance,
especially in the case of multimedia information. Recent studies [16, 17]
show that people are usually much more concerned with the subjective audio-
visual experience, which often do not agree with the objective indicators of
a communication system, such as BER. More importantly, processing methods
one the bit level cannot effectively deal with the sources and channels with non-
stationary and non-independent statistical characteristics due to the typical huge
processing scales.

In analogy to the hierarchical concept in structural biology as shown in Fig. 2.7a,
the amino acids on the “intermediate level” form an effective bridge between the
copious number of combinations of and the characteristics of proteins. In like
manner, one may also explore an “intermediate level” between the original bits and
the information contents to form a similar hierarchical framework. Note that, the
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intermediate units, as shown in Fig. 2.7b, may be regarded as a processing structure
in wireless communications. If appropriate intermediate units may be found for
information processing, the corresponding processing scale may be greatly reduced.

Proteins
in Organisms

a b

Amino Acids
(20 Kinds to Form Proteins)

Atoms with
Countless Combinations

Information
Contents

Intermediate Units
with Limited Number

Bits in Huge Data Space

Fig. 2.7 An analogy between the hierarchical frameworks for structural biology and for informa-
tion processing: (a) despite of the countless combinations of atoms in the natural world, only 20
kinds of amino acids are used to form the proteins in organisms, and limited combinations of amino
acids may correspond to the functions of proteins; (b) to build a bridge between the bits in data
space and the contents of information, intermediate units for information processing may also be
necessary with significantly reduced processing scale

In summary, if a transition from bits to structures can be discovered and
realized, the principles of contemporary communications will be shifted to the one
where information structures form the basis of communication theories. However,
the structures of IP packets and multimedia streams mentioned above are only
simple concrete examples. More general theoretical problems need to be considered
for a comprehensive study of structural processing technology.

In the following chapters, we will introduce some examples of structural
processing technologies with promising and meaningful research results in wireless
communications.

2.4 Conclusions

To address the issues of complexity and uncertainty in wireless communications,
this chapter begins by reviewing the conventional bit representation of information
and its associated problems. After clarifying the necessity of introducing the
structural perspective for information processing, some existing approaches using
structures are presented as references for stimulating a new framework of structural
processing technology for future wireless communications.
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Chapter 3
Processing Based on Information Structure

3.1 Structure Representation and Processing Method

3.1.1 The Design of Information Structure for Transmission

With reference to Fig. 2.7, “intermediate units” are desired such that the quality
of communications can be closely controlled. The core of the problem of finding
these units is to design a structure reflecting the inherent structural property of
information to be transmitted. This kind of structure should be associated not
only with service quality, but also with bit error distribution in transmissions.
Nevertheless, multimedia data stream, for instance, usually has complex data
structures which cannot largely be altered. The designed information structure has
to fit the information features as well as to adapt to the channel characteristics.
Moreover, the error rate of information structures may be calculated through the
distribution of bit errors. As a result, it is possible to convert a non-i.i.d. problem
into an i.i.d. like one.

As discussed in the preceding chapters, there exist logical structures in data
communications. However, these structures may not suit harsh mobile environments
well. In fact, their processing methods are likely based on the manipulation of bits;
thus the structures may not be well protected, resulting in serious error propagation.
It turns out that a proper design of structure is quite desirable. As one of the key
design factors, the scale of structures must be taken into consideration, as it should
not be too large or too small. If it is too large, the impact of channel impairments
will be severe. However, if it is too small, the required processing complexity may
be challenging. To strengthen the structural property, it is necessary to design such
a universal and optimal data structure by considering the correlation of bit-streams,
effectively improving the transmission efficiency and reliability as well as mitigating
the problems with complexity and uncertainty in wireless communications.

© The Author(s) 2015
J. Lu et al., Structural Processing for Wireless Communications, SpringerBriefs
in Electrical and Computer Engineering, DOI 10.1007/978-3-319-15711-5_3
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3.1.2 A Definition of MDU in Transmission

Note that, in conventional digital communications, a data unit is just a single bit
or a single symbol; thus system performance is often measured by the use of
bit-error rate (BER) or symbol-error rate (SER). However, in many cases, overall
performance is eventually measured using word-error rate (WER) such as in speech
communication [1] and in data communication [2]. If a transmission channel is
memoryless and binary symmetric so that errors occur independently, there is
a unique equivalence between BER/SER and WER. Such equivalence, on the
other hand, does not exist if the transmission channel is subject to burst errors.
As mentioned above, for highly compressed multimedia data, even a single bit error
may corrupt a bundle of data such as in image transmission [3, 4] and in video
transmission [5, 6]. In such case, BER or SER does not correlate well with the
overall system performance. Instead, we need a more general form of WER which
can serve as an excellent measure of the system performance.

To better represent such correlation, we introduce the work in [7], where an
minimum data unit (MDU) is defined with the following features:

1. An MDU contains a number of bits which are not separable. That is, any residual
errors, no matter how many, inside an MDU may cause the entire MDU to be
destroyed or re-transmitted;

2. Different MDUs are well-separated in the sense that errors do not propagate
across different MDUs;

3. The error rate of an MDU, denoted by Er.MDU /, is indicative of the system
performance.

Some examples are given to illustrate how the above defined MDU represents
correlated data well. Consider a low bit-rate speech coder which encodes a block of
speech, also known as a frame, at a time. In such case, an MDU contains the data
of a speech frame, i.e., a speech word [1], and Er.MDU /=WER. For image/video
transmission, an MDU may be the interval between two consecutive synchroniza-
tion flags in a compressed bit stream. Then, Er.MDU / is indicative of picture-block
loss rate, which is a critical parameter to the received visual quality [8]. Likewise, in
the transmission of raw data, an encoded packet can be considered as an MDU, and
Er.MDU / is thus the probability of retransmission, which determines transmission
throughput given a re-transmission protocol. Thereby, in general, MDU may better
represent correlated data, and Er.MDU / may be a better performance measure
accordingly.

3.1.3 Performance Analysis Based on MDU

Computation of the Error Rate of Minimum Data Unit, Er.MDU /

Without loss of generality, consider a practical situation of channel coding based
on systematic BCH codes, which are specified as BCH.L.B/; L.B 0/; t/, where
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B denotes a block code, B 0 is the information field of B , and their lengths are
represented by L.B/ and L.B 0/, respectively, t is the error-correcting capability.
Throughout, a wireless channel is modeled as a slow fading channel [9]. Note that
most of the applications are likely to be in slow fading environments. Furthermore,
assuming that the fading effects are approximately equal over a code-word, then
the instantaneous bit error rate at time � , denoted by Pe.�/, is approximately the
same over the code-word after demodulation, no matter what kind of demodulator
is used. Consequently, let Pr.�; B; i/ denote the probability that i errors occur in B

at time � . Then, it can be expressed as [7]

Pr.�; B; i/ D
�

L.B/

i

�
Pe.�/i Œ1 � Pe.�/�L.B/�i : (3.1)

To calculate Er.MDU /, specifically, one shall study the relationship between the
error rate of block codes and that of MDUs. Define L.MDU / as the length of
MDU and let Er.B/ denote the error probabilities of B . For the case of L.B/ <

L.MDU /, it follows that [7]

Er.MDU / D 1 � .1 � Er.B//
L.MDU /

L.B0/ : (3.2)

For small Er.B/, one has [7]

Er.MDU / � L.MDU /

L.B 0/
Er.B/: (3.3)

Then, consider the case of L.B/ > L.MDU /, which is as,

Er.MDU / D
L.B/X

iDtC1

Er.MDU ji /Pr.�; B; i/

�
L.MDU /X

iDtC1

Er.MDU ji /Pr.�; B; i/

(3.4)

where Er.MDU ji / is the error probability of MDU given that the block B contains
i bit errors. The approximation is due to the fact that Pr.�; B; i/ becomes extremely
small as i becomes very large. In order to compute Er.MDU ji /, the following
theorem is needed.

Theorem 3.1. Let B be a block code, MDU be a minimum data unit with
L.MDU / < L.B/. Assuming that B contains i error bits which are uniformly
located in B with i � min.L.MDU /; L.B/ � L.MDU //, then [7]
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Er.MDU ji / D i

i C � � 1
(3.5)

where Er.MDU ji / denotes the error probability of MDU under the condition of B
containing i error bits and � D L.B/

L.MDU /
.

Consequently, by substituting (3.5) into (3.4), one has [7]

Er.MDU / �
L.MDU /X

iDtC1

i

i C � � 1
Pr.�; B; i/: (3.6)

To clearly understand the effect of different block codes on Er.MDU / in this
case, consider the following numerical examples. Assume that L.B/ D 255,
� D 1; 2; 3; 4 (In practice, � should not be very large) and that different codes are
constructed with different values of t . Then, a comparison in terms of Er.MDU / is
shown in Fig. 3.1 using two different values of instantaneous BER, Pe.�/. A close
observation of this figure indicates that with different values of � , Er.MDU / is very
close for the same block code. In particular, the larger the t is, the smaller the relative
difference. Therefore, for L.B/ > L.MDU /, in a noisy fading channel which
usually requires a large value of t , an important approximation can be obtained
as [7]

Er.MDU / � Er.B/: (3.7)

Transmission Reliability

Basically, transmission reliability, denoted by �, refers to the percentage of informa-
tion transmitted without loss. Since Er.MDU / is the probability of an MDU being
destroyed or re-transmitted, it follows that [7]

� D 1 � Er.MDU /: (3.8)

From the above discussion, it turns out that Er.MDU / is determined by a
block-code channel coding design. Now, it is necessary to discuss the reliability of
block codes over correlated fading channels. Here, the reliability of block codes
refers to the percentage of successfully transmitted code-words. Specifically, a
wireless channel based on the GSM system configuration is considered, where the
transmission rate Rt D 270:83 kbit=s and the carrier frequency, fc , is 900 MHz [10].
In addition, assuming vehicle speeds v of 2 and 50 miles/h, which corresponds
to normalized Doppler frequencies, denoted by fd =timesT , of 2:0 � 10�5 and
5:0 � 10�4, respectively, where fd is the maximum Doppler frequency, and 1=T is
the symbol rate which is 135 ksps for the Gaussian minimum shift keying (GMSK)
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being used. Note that, both cases refer to very slow (or, highly correlated) fading
conditions. Furthermore, suppose that the fading is subject to Rayleigh distribution.

Fig. 3.1 Reliability of block codes. fd T D 2:0 � 10�5, SNR D 18 dB. The solid
lines denote block code reliability versus t ; the dash-dot lines are the “equal” coding
efficiency lines

Figures 3.1 and 3.2 show the block codes reliability of different BCH codes
over the above specified channels with an signal-to-noise ratio (SNR) of 18 dB.
In particular, note that the equal-efficiency lines along with coding efficiencies are
plotted in the figures. It is shown that, in both slow fading channels, the reliability
becomes worse as the block code size becomes larger at the same coding efficiency.
This phenomenon becomes more explicit when the coding efficiency is higher.
Likewise, Figs. 3.3 and 3.4 show the block codes reliability of different BCH codes
over the specified mobile channels with an SNR of 9 dB and two-branch selection
diversity. From these two figures, similar observation can be obtained. That is,
longer codes tend to have lower reliability under the condition of the same coding
efficiency.



30 3 Processing Based on Information Structure

Fig. 3.2 Reliability of block codes. fd T D 5:0 � 10�4, SNR D 18 dB. The solid
lines denote block code reliability versus t ; the dash-dot lines are the “equal” coding
efficiency lines

Transmission Efficiency

The bit-expansion caused by channel coding overhead is one of the effect factor
of overall transmission efficiency. As long as different channel coding schemes
with different error-correcting capabilities achieves corresponding amount of bit-
expansion, in a consideration of the simplicity problem, binary BCH codes are again
used as the channel codes in [2]. BCH codes combine both reasonable burst error
correction capability and dependable error detection. The ability of error detection is
a significant factor for invoking re-transmission and/or post-processing. Moreover,
the parameters of binary BCH code are given bellow [7]:

• Block length: 2m � 1;
• Number of parity-check digits: �mt ;
• Minimum distance: �2t C 1,

where m.m � 3/ is a positive integer and t .t < 2m�1/ is the error-correcting
capability. When the value of t is low (otherwise, the detection will have very low
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Fig. 3.3 Reliability of block codes. fd T D 2:0 � 10�5, SNR D 9 dB. Two-branch
diversity is included. The solid lines denote block code reliability versus t ; the dash-
dot lines are the “equal” coding efficiency lines

coding efficiency), the number of parity-check digits are determined by mt [2].
ˇ indicates the normalized bit-expansion that results from channel coding, this
gives [7],

ˇ � 2m � 1

2m � mt � 1
� 1 D mt

2m � mt � 1
: (3.9)

Further, ˛ is the normalized bit-expansion required for error-resilience enhancement
in source coding, such as with re-synchronization insertion. Then, the overall
normalized bit-expansion is given by [7]

.1 C ˛/ � .1 C ˇ/ � 1 D ˛ C ˇ C ˛ˇ (3.10)

and the transmission efficiency is [7]

� � 1

.1 C ˛/ � .1 C ˇ/
: (3.11)
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Fig. 3.4 Reliability of block codes. fd T D 5:0 � 10�4, SNR D 9 dB. Two-branch
diversity is included. The solid lines denote block code reliability versus t ; the dash-
dot lines are the “equal” coding efficiency lines

In the equation above, it could be noticed that when the value of t is low, the
equalities in (3.9) and thus in (3.11) are true.

Using the Eqs. (3.9)–(3.11), the scheme of designing a block code is discussed,
like whether the given coding efficiency Er.MDU / should be minimized or
maximized.

Consider an MDU with certain length. If L.B/ > L.MDU /, then according
to (3.7) it is better to have a small value of L.B/ if we want to achieve a small
Er.MDU / for a given channel coding efficiency or to improve the coding efficiency
for a given Er.MDU /. For L.B/ < L.MDU /, L.B/ tends to be larger. This can be
best explained by an example: assuming that L.MDU / D 255 and channel coding
efficiency is 80 %, then according to (3.3) and Fig. 3.2 (by referring to Figs. 3.1, 3.3,
or 3.4),

Er.MDU /jL.B/D63 � L.MDU /

L.B 0/
Er.B/ D 5:0 � 2:71 % D 13:55 %
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Er.MDU /jL.B/D127 � L.MDU /

L.B 0/
Er.B/ D 2:58 � 3:23 % D 8:33 %

Er.MDU /jL.B/D255 � L.MDU /

L.B 0/
Er.B/ D 1:23 � 4:39 % D 5:40 %

In the conclusion of the above, the block code best contains one MDU where

L.B 0/ D L.MDU / (3.12)

to minimize Er.MDU / for a given coding efficiency or to maximize transmission
efficiency under a certain Er.MDU /. This result is found to be used for various
correlated fading channel model with corresponding normalized Doppler spreads,
SNR, and a limited number of diversity branches where N � 3.1

As long as the MDU have different values of length, different block codes may
be found for revelent MDU lengths in terms of Eq. (3.12). The codes with minimal
Er.MDU / or the maximal efficiency would be selected at the optimal ones.

The results are significantly useful for making a tradeoff between transmission
efficiency �, and transmission reliability �. In this case, due to error-resilience
enhancement, if a source coding algorithm using fixed length coding with no extra
bit-expansion, � is only determined by the channel coding efficiency, and Eq. (3.12)
provides a method for finding the optimal combined source-channel coding (CSCC).
Meanwhile, if variable length coding is used, where an extra error-resilience
capability is required, CSCC would be affected by the other factors.

3.2 Wireless Multimedia Transmission Based
on the MDU Structure

3.2.1 The Effect of Errors on Multimedia Transmission

It is noted that multimedia data is usually compressed before transmission to
save bandwidth, but being highly sensitive to channel errors. In the case of
image transmission, for example, standards of compression, such as the JPEG,
typically employ variable length coding (VLC) to achieve high-compression ratios.
A characteristic of VLC is that a bundle of picture blocks (PBs) may be destroyed
by the occurrence of even a single bit error. This is the well-known error propa-
gation property of variable length coding. Furthermore, when the image data are
transmitted over fading channels, such error propagation will become much more
severe due to burst errors. As a result, lots of consecutive PBs may be corrupted at

1N � 4 is considered impractical in this study.
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the same time. Figures 3.5 and 3.6 show a consecutively compressed bit-stream,
and its corresponding original image, respectively. In fact, there exist structures
inside the bit-stream, as indicated by the boundary lines. However, no clear intervals
defined among them. As shown in Fig. 3.7, once errors occur, the boundaries may
be shifted, eventually leading to error propagation and accumulation. It can be
further observed from Fig. 3.8 that, burst channel errors corrupt almost entire rows
of consecutive PBs.

In the case of video, there has been considerable interest in the transmission
of H.264 coded video sequences over mobile network. This is mainly due to the
excellent performance of H.264 in low-bit-rate video applications, which are very
suitable for bandwidth-limited mobile networks. However, H.264 coded video data
are also extremely sensitive to channel errors, especially to burst errors. Due to the
use of predictive coding in H.264, channel errors may cause an entire frame or even
consecutive frames to be lost, resulting in transmission interruptions.

Fig. 3.5 A compressed image bit-stream

The complex effects of channel errors on multimedia transmission are yet to
be comprehensively studied. Practical wireless communication often involves non-
stationary and multi-variate random processes. As such, errors do not independently
occur. For example, the errors caused by burst interference in space communi-
cations, and deep fading in mobile communications, often appear continuously
with a strong correlation. Hence, the average BER may not be a good indicator
of the quality of the communication. Moreover, the effects of errors are likely
not isolated. Even a single bit error may cause a loss of data synchronization or
error propagation, resulting in large segments of corrupted data, even leading to a
communication interruption. It is worth noting that conventional communication
processing is bit-based, with BER minimization as the design target; thus it is
difficult to provide a remedy to this difficulty. In order to effectively achieve a
reliable and efficient multimedia transmission under complex error environments,
new processing methods must be explored.



3.2 Wireless Multimedia Transmission Based on the MDU Structure 35

Fig. 3.6 The original image corresponding to the bit-stream shown in Fig. 3.5

Fig. 3.7 The received bit-stream with bit errors

3.2.2 Structure Protection to Combat Error Propagation

As mentioned above, with the conventional bit-based information representation, the
compressed bit-stream without clear defined intervals may lead to error propagation
when bit errors occur. The utilization of structure representation may alleviate
this problem. In Fig. 3.9, a consecutive compressed bit-stream is separated into
units of grouped bits using characteristic markers, whereas the units correspond
to PBs within an image, as shown in Fig. 3.10. Note that, the sizes of all PBs may be
the same, but the length of corresponding units are likely different due to the usage
of VLC. Each unit is an MDU, as defined in the previous section [7]. In Fig. 3.11,
once bit errors occur in an MDU, error propagation is confined to the MDU, only
affecting the corresponding PB of the image, as shown in Fig. 3.12.
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Fig. 3.8 The corrupted image due to error propagation

0100...100 101...01 100100...101010...10 110011100...011 110...01 ...

MDU MDUMDU
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Mark

Fig. 3.9 MDU based structure representation of compressed image bit-stream

The idea of MDU-based representation is known as error isolation, which tries to
restrict errors within limited areas. On the other hand, a difficult problem one has to
face is finding a method to construct such a structure so as to adapt to both services’
own data structure and the channel statistics.

In MPEG-4 (moving picture experts group phase 4) and H.264 standards,
resynchronization marker and data partitioning methods are used for error isolation.
These markers can be easily distinguished from all other code words, which are
usually followed by header information. So long as the resynchronization marker is
detected, the decoder can correctly decode the received information. However, the
structure simply formed by the resynchronization markers may not be well suited to
wireless channels.

In order to achieve better error isolation, data partitioning may be employed such
that data between two synchronization markers can be further divided into smaller
logical unit by inserting secondary synchronization codes. That is, for a given
slice or a group of blocks (GOB), all macro-block headers, motion vectors, and
discrete cosine transform (DCT) coefficients of macro blocks are placed in different
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Fig. 3.10 A sample image segmented with PBs

Fig. 3.11 The received MDU represented bit-stream with errors

logical units. If error occurs in the logical unit which contains DCT coefficients, the
preceding logical units which contains header and motion information can still be
decoded. With the use of resynchronization markers and data partitioning, different
structures may be designed to fit wireless channels in order to improve the reliability
and quality of transmission. Nevertheless, as analyzed in Sect. 3.1.3, proper design
of MDU, or a structure, should also be able to effect a good tradeoff between
transmission reliability and efficiency.

3.3 Block Shuffling as a Structure Processing Method
for Image Transmission

The block shuffling technique intends to isolate erroneous image blocks even in
correlated fading channels, in order to reduce the difficulty of error concealment at
the decoder. Typically, block shuffling may be performed either in the spatial domain
or in the transform domain. Wang et al. suggested that block shuffling should be
performed in the transform domain to prevent degradation of the compression ratio
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Fig. 3.12 The image with erroneous blocks corresponding to the erroneous MDUs
in Fig. 3.11

[11]. However, when VLC is used, shuffling becomes more complicated. Spatial
shuffling has the advantage of simpler implementation, and could be an excellent
choice if the degradation in compression ratio is negligible. From now on, we refer
to spatial shuffling simply as “block shuffling”.

3.3.1 Block Shuffling with Random Re-ordering

The basic idea of block shuffling is to re-order the PBs within an image frame
based on a specific pre-defined “shuffling pattern”. This shuffling pattern could be
designed such that neighboring PBs are separated as far as possible after shuffling.
Once channel errors happen, consecutive shuffled PBs might be destroyed. After
de-shuffling, these corrupted blocks are spread across the entire image. This is
significant, since most error concealment methods inpaint the destroyed PBs by
exploiting the spatial correlations among neighboring PBs. Therefore, if de-shuffled
corrupt PBs are spread out and surrounded by good PBs, they can be concealed with
much greater effectiveness. In this study, the shuffling pattern is created through
adopting the algorithm shown below:

1. Generate a sequence of random numbers corresponding to all PBs inside the
input image.

2. Scan the PBs in the image by the ascending order of these random numbers.
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Note that the PB size used in block shuffling should be the same as that applied in
the image codec. For example, if the JPEG codec employs 8 � 8 DCT, then a PB
should contain 8 � 8 pixels.

As the JPEG baseline coding standard is generated according to PB, the DCT
coefficients of a PB are assumed to be independent of those of other PBs. While
block shuffling is operating, the transformed coefficients within each block are not
altered. Moreover, the DCT coefficients of every PB are further categorized into the
DC coefficient (the top-left one) and the AC coefficients (all other coefficients)[12].
Based on the JPEG standard, the DC and AC coefficients are conveyed individually.
Particularly, zigzag scanning and run-length coding are the two main steps in
the processing of the AC coefficients within every PB. Hence, block shuffling
will not influence the compression ratio of the AC coefficients as the blocks are
encoded regardless of their locations in the image. Whereas after quantization,
the DC coefficient of every PB is extracted and subjected to differential pulse-code
modulation (DPCM). While block shuffling is operating, the relative locations of
the DC coefficients will change. Therefore, the redundancy between continuous
DC coefficients might be reduced, decreasing the compression ratio of the DC
coefficients.

3.3.2 Block Shuffling Versus Bit-Interleaving

Superficially, block-shuffling and bit-interleaving are both methods adopted to
mitigate the impacts of burst errors on image transmission. However, they differ
in three aspects, namely implementation, functionality, and performance.

There is extremely little extra hardware complexity owing to block shuffling.
It can be simply obtained through reordering the interaction between video camera
and the memory address of the image. Unless the image format is changed, the
shuffling pattern does not need to be altered during image transmission. Thus, no
additional transmission overhead is demanded for block shuffling. Furthermore,
as block-shuffling operates before source encoding and de-shuffling after source
decoding, no additional delay is involved.

On the contrary, bit-interleaving/de-interleaving normally occurs in the trans-
mission phase (after channel coding and before channel decoding). Specifically, the
I/O bandwidth of bit-interleaving is restricted by the transmission rate. In case of a
low transmission rate, a large interleaving depth would necessitate excessive delay.
Moreover, extra memory is demanded for interleaving and de-interleaving. Thus,
block-shuffling is much more resource-efficient in image transmission.

Simulations are performed over the channels specified in Sect. 3.1.3. Image
LENA with 256 � 256 pixels coded at 0.85 bit/pixel is used to test the proposed
system, which is depicted in Fig. 3.13 from [7]. Moreover, the parameters of the
slow Rayleigh fading channels are generated using Jakes’ model [13].

Figures 3.14–3.17 show the simulation results of transmitting image LENA over
the proposed system with vehicle speeds of 5 and 30 miles/h, which correspond
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Fig. 3.13 A block diagram of the mobile image transmission system [7]

Fig. 3.14 Image LENA with 256 � 256 pixels at 0:85 bit/pixel through a mobile
channel with fd T D 5 � 10�5. Er.MDU / D 2:7 %, PSNR D 23:13 dB

to fd T D 5 � 10�5 and 3 � 10�4, respectively. Let Resyn denotes the
re-synchronization interval in terms of PBs. BCH.255; 191; 8/ and Resyn D 4,
which implies a transmission efficiency as high as 70 % with Er.MDU /

being below 4 %, are selected. From Figs. 3.14 and 3.16, it is observed that
the Er.MDU /s in both fading channels are well controlled under a predefined
value of 4 %, thereby, confirming the validity of the design of information structure.
By incorporating an error concealment algorithm, the reconstructed images in
Figs. 3.15 and 3.17 present very good visual quality with peak signal-to-noise ratio
(PSNR) of around 29 dB, verifying the usefulness of structure processing.
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Fig. 3.15 Image LENA with 256 � 256 pixels at 0:85 bit/pixel through a mobile
channel with fd T D 5 � 10�5 using error concealment. PSNR D 28:62 dB

Fig. 3.16 Image LENA with 256 � 256 pixels at 0:85 bit/pixel through a mobile
channel with fd T D 3 � 10�4. Er.MDU / D 2:4 %, PSNR D 23:89 dB
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Fig. 3.17 Image LENA with 256 � 256 pixels at 0:85 bit/pixel through a mobile
channel with fd T D 3 � 10�4 using error concealment. PSNR D 29:19 dB

3.4 Conclusions

In this chapter, MDU is defined as a universal structure representation of data, which
is well suited to the wireless channels and the inherent source data structures. It is
shown that structures could be protected to combat error propagation, where the
effects of bit errors may be fully controlled within the MDUs. As an example,
a generalized representation of correlated multimedia data is provided, and a
combined source and channel coding scheme with simple BCH codes is designed to
account for both the coded image characteristics and the wireless channel statistics,
thereby achieving a good trade-off between transmission efficiency and information
loss. Furthermore, block-shuffling and error-concealment techniques are included
as essential means of structure processing to compensate for the information loss so
as to guarantee acceptable visual quality of reconstructed images.
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Chapter 4
An LDPC Code Design with Sub-matrix
Structure

4.1 Revisiting LDPC Code and Its Construction

Per the classical noisy-channel coding theorem [1], namely, the random coding
theorem, an error correction code should be long enough with a well-selected gen-
erator matrix in order to achieve optimal performance. Accordingly, LDPC codes
were invented by Robert Gallager in 1963 [2], and several types of construction
methods were also proposed afterwards. Meanwhile, different decoding algorithms,
including the famous belief propagation algorithm, were given. Nevertheless, due
to very limited computational capability of computers in the 1960s, it was very
difficult to evaluate and verify the performance of LDPC codes via computer
simulations. In fact, LDPC codes were almost “forgotten” for quite a while after
their birth. Until 1996, inspired by the invention of Turbo codes [3], and thanks to a
significant progress in computer technology, LDPC codes were “rediscovered” [4]
and attracted more and more researchers’ interests thereafter.

Aided by the Gaussian approximation method, the performance of LDPC codes
have been proven to approach the Shannon limit [5]. It is noted that various
LDPC codes have already been adopted in several standards, such as DVB-S2 [6],
CCSDS [7], and 802.11n/ac [8], etc. Different from codes which use simple coding
polynomial, such as convolution code, RS code, and Turbo code, LDPC codes are a
kind of linear block codes based on large-scale sparse random matrices, which are
typically difficult to construct with both good performance and low complexity.

An LDPC coding matrix often contains thousands of rows and thousands of
columns. As shown in Fig. 4.1, the elements of the matrix are represented by binary
numbers, with bit “1” being sparsely and randomly located in each row and each
column, resulting in a huge number of possible coding matrices to be evaluated.
However, since the relationship between a sparse matrix and its coding performance
has not yet been clearly revealed, there does not exist an established methodology
for the optimal design of high performance LDPC codes. Instead, an LDPC code
design usually relies on extensive computer search.
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Fig. 4.1 An LDPC code matrix

Theoretically speaking, in order to find an LDPC code matrix with optimal
performance, complete traversal through all the possible distributions of bit “1”
elements in the matrix is required; but the construction time of such a code would
be unbearable. For example, a common LDPC code with a block length of 2;000,
a code rate of 1=2, and an average degree distribution of .3; 6/, may require a huge
number of searches as given by,

.C 3
1;000/2;000 � 1016;000 (4.1)

Even using the partition method with cyclic identity sub-matrix1 size 125, the
number is still high. That is,

.C 3
1;000=125/2;000=.2�125/ � 1013 (4.2)

Assuming that we use a powerful computer to evaluate the performance of the
LDPC code matrices with a simulation speed at 1 min per matrix, the overall time
for construction and evaluation will be about 18 million years. In fact, this bit-based
construction method makes an optimal LDPC code search a nearly impossible task.

What’s more, the implementation complexity for a bit-based construction is often
too high to be applicable in practice due to a big resource consuming including
storage and computation. Kim et al. [9] proposed a completely random constructor,
and the constructed code-word is only 0.04 dB apart from the Shannon limit which
is shown in Fig. 4.2. In this figure, the code length is 107 in bits, the column weight
is 200, the maximum number of iterations is 2,000, and the average number of
iterations is of 800–1,100. Considering its encoding or decoding complexity based

1Without loss of generality, we also classify cyclic identity sub-matrix as a bit-based method.
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on the above parameters, both may exceed the computational capability of existing
devices, and the above LDPC code-word with good performance is de facto difficult
to be practical in reality.

0 0.1 0.2 0.3 0.4 0.5

10−2

10−3

10−4

10−5

10−6

Eb/N0 [dB]

B
E

R

Threshold
(d

l
=100)

Threshold (d
l
=200)

Threshold (d
l
=8000)

dl=100dl=200

Shannon Limit

Fig. 4.2 The performance of Kim’s LDPC code-word which is 0.04 dB apart from Shannon
limit [9], and dl denotes the maximum column weight of the code matrix

As a result, it is hard to effect a good trade-off between performance and
complexity using the bit-based construction method.

4.2 Structured LDPC Code Design

Optimized LDPC code matrix design is typically a large scale combinatorial
optimization problem with millions of variables. Conventional bit-based construc-
tion methods for LDPC codes often focus on low-level individual elements with
reference to Fig. 2.7; but the coding performance is very difficult to control. In fact,
the relationship between the distribution of bit-elements and coding performance is
very complex and yet to be discovered. The question then is that, is it possible to
design an intermediate element, a structure instead of bit, to balance the performance
and complexity? Figure 4.3 shows an illustrative example of a simple fractal
transform, which uses a series of binary trees, structures, as the intermediate level
to compose a complex tree.
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Fig. 4.3 An illustrative example of a simple fractal transform, where the complex tree of the right
most may be constructed from the left structures progressively

Inspired by the idea of fractal transform, sub-matrix structures may be introduced
to reduce the scale of the combinatorial optimization problem. Then, the problem
is translated to the one of how to construct sub-matrix structures guaranteeing
the coding performance while keeping the design complexity acceptable. If the
sub-matrices are designed with random parameters, it is very hard to evaluate the
performance during the course of code construction process since the search space is
huge and the design complexity is extremely high. If the sub-matrices are designed
with fixed parameters, it is difficult to make the constructed code matrix random
enough, usually leading to poor coding performance.

With reference to [10–12], an LDPC code design methodology was formulated
towards an excellent tradeoff between complexity and performance. As shown
in Fig. 4.4, the right part of the coding matrix is a pre-defined structure that
may achieve a low complexity, while the left part is a pseudo-random structure
constructed gradually from sub-matrices designed with variable parameters in
Galois field (GF), GF sub-matrices for simplicity, in order to obtain good coding
performance. This way, the performance evaluation is more efficient when the sub-
matrices based construction is combined with the pre-defined structure. Besides, the
girth constraint may be well met by the design freedom of the GF sub-matrices. It is
noted that the freedom of a GF sub-matrix of two dimensional structure may be
about 100 times more than the one dimensional structure of a cyclic identity matrix
[13–16], likely guaranteeing coding performance with sufficient randomness of a
code matrix.

The design procedure may be described in detail as follows in Fig. 4.5. First,
a pseudo-random sub-matrix is designed with two parameters in GF, determining
bit locations within a permutation matrix. Using this sub-matrix as the basic
structure, different sub-matrices may be composed with altering parameters in GF.
Second, a base matrix is designed such that a complete LDPC code matrix may be
constructed through a progressive expansion with the constructed GF sub-matrices.
It is well verified that, LDPC codes that consist of GF sub-matrices may have
excellent features of high coding performance and low complexity. This method
based on GF sub-matrices, or, structures, may evolve an LDPC coding construction
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Matrix with pseudo-
random GF sub-matrices

Matrix with deterministic
dual-diagonal structure 

Fig. 4.4 An illustrative diagram of structured LDPC code design: left part with GF sub-matrices
for good performance, and right with a regular structure for low complexity

from a generally extensive search to a structured design with significantly reduced
complexity.

As a comparison, an LDPC code with the same parameters of the one in Sect. 4.1
is redesigned with GF sub-matrices. Since the entire matrix is symmetrical, the
search space by the use of the structured method may be reduced to

.
1

1;000=125
C 3

1;000=125/2;000=.2�125/ � 106 (4.3)

Because of the freedom extension of GF sub-matrix structures, the girth constraint
may be used to filter out those combinations of low coding performance. For the
number of candidate matrices is reduced greatly with the structured design [17], a
traverse search and corresponding performance evaluation may be conducted with
an ordinary personal computer. As such, an LDPC code of good performance and
low complexity may be obtained. An example LDPC code has been well designed
and successfully applied to the mission of Chang E II lunar exploration.

Fig. 4.5 An illustration of GF sub-matrices extension (left part of Fig. 4.4) with a high dimen-
sional and nonlinear constraint
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4.3 Examples and Performance Evaluation

First of all, a super-sparse semi-random check matrix H is established as.

0

BBBBBB@

::: E127�127 0 0 0

A1;016�1;016

::: 0 E127�127 0 0
::: 0 0

: : : 0
::: 0 0 0 E127�127

1

CCCCCCA
; (4.4)

where

E127�127 D

2

666664

1 0 0 � � � 0

1 1 0 � � � 0

0 1 1 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � 0 1 1

3

777775

127�127

; (4.5)

And A1;016�1;016 comes from an extension of the basis matrix Ab , with an
expansion coefficient L of 127. Basis matrix Ab can be expressed as

Ab D

0

BBBBBBBBBBB@

1 1 0 0 1 0 1 1

0 1 1 0 1 1 1 0

0 0 1 1 1 1 0 1

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

0 0 1 0 1 1 1 1

0 1 0 0 1 1 1 1

1 0 0 1 0 1 1 1

1

CCCCCCCCCCCA

8�8

: (4.6)

Each zero element of Ab is extended to a 127 � 127 dimension all-zero matrix,
while each one element is extended to a 127 � 127 dimensions matrix designed as a
GF sub-matrix.

Let ˛ denote a primitive element of a Galois field represented as GF.2m/,
and L D 2m � 1 denote the spreading coefficient, where m is a prime number.2

Then, all the elements in the field GF.2m/ may be expressed as 0 D ˛1, 1 D
˛0; ˛1; ˛2; : : : ; ˛L�1. In addition, since m is the prime number, from the theorems
of Galois field, the sequence ˛i � .˛j /0; ˛i � .˛j /1; : : : ; ˛i � .˛j /L�1 comprises all the
non-zero elements of the field GF.2m/, where 0 < i < L; 0 � j < L and both i , j

are integers. If irreducible polynomial f .x/ with power m is a primitive polynomial
in GF.2/, let f .˛/ D 0, then GF.2m/ can be constructed accordingly.

2With some constraints, m can be a positive integer.
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Table 4.1 GF sub-matrix parameters of an example LDPC code

Row
Column

0
1
2
3
4
5
6
7

0

111,3

13,91

103,69

1

114,39
35,112

51,101

2

7,103
20,67

35,125

3

24,134
33,47

93,107

4

69,23
57,12
91,33
9,133
68,10
38,95
103,52

5

14,89
7,49
57,28
39,95
54,44
24,115
18,123

6

11,50
10,58

26,3
13,45
12,79
46,88
17,50

7

33,77

127,11
5,48

121,92
4,46
56,67
104,85

The corresponding value of the field element sequence ˛i � .˛j /0; ˛i �
.˛j /1; : : : ; ˛i � .˛j /L�1 may be written as f .˛i � .˛j /0/; f .˛i � .˛j /1/; : : : ; f .˛i �
.˛j /L�1/, which is a pseudo-random permutation of the positive integer sequence
1; 2; : : : ; L. Denote the pseudo-random permutation as .f .˛i /; f .˛j //, where
f .˛i / is the shifting factor, and f .˛j / is the interleaving factor. By using the
pseudo-random permutation sequence f .˛i � .˛j /0/; f .˛i � .˛j /1/; : : : ; f .˛i �
.˛j /L�1/, an extended matrix may be obtained with L � L dimension, where
L � 1 and f .˛i � .˛j /L�1/ are the row and column numbers of non-zero elements,
respectively.

As a result, once the shifting and interleaving factors are given, a pseudo-random
matrix of L�L dimensions may be obtained for a non-zero element of Ab . For zero
element of Ab , they can be directly extended to an L�L dimensions all-zero matrix.
That is, an LDPC code matrix A may be systematically designed by its base matrix
Ab as well as the corresponding shifting and interleaving factors for individual non-
zero elements of Ab .

In Table 4.1, the detailed parameters of the above example LDPC code are given.
The first element is the shifting factor, and the second element is the interleaving
factor. Slash lines imply those shifting and interleaving factors unavailable, corre-
sponding to the zero elements of the base matrix Ab .

The code constructed with parameters in Table 4.1 is further evaluated with
simulations. In particular, binary phase-shift keying (BPSK) is used to modulate the
LDPC code with additive white Gaussian noise (AWGN), and belief prorogation
algorithm is adopted to decode the LDPC code with maximum number of iterations
of 32. It is shown in Fig. 4.6 that the constructed LDPC code with structured sub-
matrices has excellent performance.

Furthermore, in order to accommodate multi-purpose applications, multi-length,
multi-rate LDPC codes may be constructed based on structured GF sub-matrices
(Table 4.2), including 8 code rates and 40 different codes as an example. Specif-
ically, there are five sizes of sub-matrices, namely, 31 � 31, 63 � 63, 127 � 127,
255 � 255, and 511 � 511, in the code group. Each sub-matrix may correspond two
different block lengths, and each code rate includes five different block lengths.
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Fig. 4.6 Performance of a structured LDPC code with GF sub-matrices, with similar coding gain
but much less construction complexity, as compared with the one defined in the CCSDS standard

Table 4.2 Multi-length multi-rate LDPC codes based on GF sub-matrices

Sub-matrix size

Code length
1
4

1
3

1
2

2
3

3
4

4
5

5
6

7
8

31 992 930 992 930 992 930 930 992

63 2,016 1,890 2,016 1,890 2,016 1,890 1,890 2,016

127 4,064 3,810 4,064 3,810 4,064 3,810 3,810 4,064

255 8,160 7,650 8,160 7,650 8,160 7,650 7,650 8,160

511 16,352 15,330 16,352 15,330 16,352 15,330 15,330 16,352

Performance of the above mentioned code group in Table 4.2 is depicted in
Fig. 4.7. In simulations, BPSK modulation is employed and an AWGN channel
is assumed. For simplicity, the values of energy per bit to noise power spectral
density ratio, Eb=N0, corresponding a bit-error rate (BER) of 106 of each code with
a code length of about 16K, 4K, or 2K are given. For comparison, the theoretical
performance of BPSK is also given as the dashed line.

4.4 Conclusions

In this chapter, the basic method of structured design for LDPC coding is introduced.
Compared with conventional bit-based LDPC code construction, which usually
relies on a heavy search, the proposed structured LDPC code with GF sub-matrices
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Fig. 4.7 Performance of structured multi-length and multi-rate LDPC codes with GF matrices

may achieve much better tradeoff between coding performance and complexity. It is
noted that, the structured LDPC coding method takes advantage of both random
coding and algebraic coding, resulting in near-optimal performance in terms of BER
with low construction complexity.
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Chapter 5
Pre-coding Design with Constellation Structures

5.1 Pre-coding in MIMO Systems

Equipping multiple antennas on both transmitter and receiver, MIMO may
dramatically improve system performance. In particular, with spatial diversity,
multiplexing, and interference mitigation, MIMO embodies a great breakthrough
for wireless communication technology. As a result, MIMO has been widely
adopted in various standards, e.g., IEEE 802.11, IEEE 802.16.

Nevertheless, in MIMO systems, the existence of space correlation and
interference necessitates high processing complexity in the receiver. Via
preprocessing at the transmitter based on full or partial channel state information
(CSI), pre-coding may effectively reduce the interference among multiple streams or
multi-users. Hence, research on pre-coding design algorithms and related techniques
has attracted great attention in the regime of MIMO systems.

With a geometrical characterization, pre-coding refers to placing points in
O.Nt /-dimensional space in such a way to optimize the corresponding criteria, as is
shown in Fig. 5.1, where Nt is the number of transmit antennas. There may be three
different possible limitations on the output of the pre-coder:

1. All pre-coding outputs are required to have exactly the same power P . It is
required to choose points lying on the surface of a sphere of radius

p
Nt P .

2. All pre-coding outputs have power P or less. In this case, all points are required
to lie interior to or on the surface of a sphere of radius

p
Nt P .

3. The average power of all pre-coding outputs is P or less. Obviously, individual
output may have a greater squared distance than Nt P but the average of the set
of squared distances cannot exceed Nt P .

The first two conditions are simpler and the third condition is somewhat more
general. In this brief, we derive the structured pre-coding algorithm based on these
conditions.

© The Author(s) 2015
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Fig. 5.1 Illustration of the
pre-coding design in the
geometrical view. The sphere
represents the
O.Nt /-dimensional space
with given power constraint.
The radius of the sphere isp

Nt P . The points in the
sphere represent the probable
output of the pre-coder.
The distance between any two
points denotes the Euclid
distance

Actually, similar geometrical representation of mapping has been used since
Shannon [1, 2]. In [2], a code-word of length n is thought of geometrically as a
point in a n-dimensional Euclidean space. An optimal decoding system for a code is
one which minimizes the probability of error, Pe , for the code. With the geometrical
approach, finding the good codes is equivalent to placing points in the n space in
such a way to minimize Pe . Exploiting the fact that the minimal probability of
error, namely Pe;opt, is a function of a quotient A (the root square of the signal
power divided by the noise power) by change of scale in the geometrical picture,
the upper and lower bounds on Pe;opt are obtained. These bounds are reasonably
close together over an important range of values and give good estimates of Pe;opt.

From the above description, one can see clearly that the pre-coding design and
[2] share a similar basic idea, i.e., a vector of points should be placed in a way
to optimize some given criteria; the job is to design the placement method. For
example, if the criteria is to maximize the achievable rate, the principle should be to
place as many points in the sphere as possible while guaranteeing given probability
of error.

Similarly, if the criteria is to minimize the probability of error, then the principle
should be to make the distance between the points as large as possible with a given
number of points. However, one may notice that, while they share similar basic idea,
a fundamental difference lies with the channel matrix H of a MIMO system, which
causes distortion to the transmitted signal, such that the sphere may be turned into
an ellipsoid in the multi-dimensional space. Hence, during the pre-coding design
for a MIMO system, the placement of the points needs to match the channel matrix
while giving consideration to an additive noise.

In MIMO systems, the pre-coding algorithm can be divided into two categories:
linear and nonlinear. Linear pre-coding algorithms include zero-forcing, minimum
mean squared error (MMSE), Block Diagonalization, etc. Typical representation
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of a nonlinear pre-coding algorithm is the dirty paper coding (DPC). Due to
the extremely high implementation complexity of DPC, a series of sub-optimal
algorithms such as Tomlinson-Harashima, Channel Inversion, and Regularized
Inversion are proposed. In comparison with many nonlinear pre-coding techniques,
linear pre-coding is a good choice considering both capacity performance and
implementation complexity [3]. Hence, we mainly consider the linear pre-coder in
this brief.

As to the classification based on CSI, two cases are usually considered. On the
one hand, the transmitter may have full knowledge of the CSI. In this case, the
transmitter can make full use of the CSI to design proper transmit signal and
optimally mitigate the spatial interference. On the other hand, the transmitter may
have only partial CSI. In this case, one of the most effective methods is the finite
rate feedback pre-coding design. Based on the statistical information of the channel,
a group of optimized pre-coding matrices form a codebook, which is known at
both transmitter and receiver. The receiver selects the proper pre-coding matrix
from the codebook based on the estimation of the channel realization and given
performance metric. The index of the selected pre-coding matrix is then fed back to
the transmitter. In this chapter, we focus on the linear pre-coding design with full
CSI, and the extension to the case with partial CSI is discussed in the conclusion.

For the linear pre-coder in a MIMO system with Nt transmit antennas and
Nr receive antennas, the output of the pre-coding is the transmit signal x D
Œx1; � � � ; xNt �

T . An illustration of a linear pre-coder is given in Fig. 5.2, where P
denotes a linear pre-coding matrix. Passing through the channel matrix H and noise
n, the received signal is given by y D Hx C n.

In order to achieve channel capacity, the mutual information

I D H .y/ � H .yjx/ D H .y/ � H .n/ (5.1)

P

Tx

Rx
s x

H

Fig. 5.2 Illustration of a linear pre-coder in a MIMO system

needs to be maximized. With the channel state information known at the transmitter,
maximizing the mutual information is equivalent to maximizing the entropy of y.
The extension of Shannon information theory in multiple antenna systems [4, 5]
shows that two conditions need to be satisfied to reach the capacity:
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1. The transmit signal x is Gaussian distributed;
2. The covariance matrix of x satisfies the structure:

˙x D VHD2VH
H (5.2)

where VH is the right eigenmatrix of channel matrix H, and D is the diagonal
matrix derived by the water-filling algorithm [6].

Fig. 5.3 Comparison of probability density function between Gaussian signal and QPSK signal.
Clearly, the four black discrete points represent the QPSK constellation. And the colored
continuous mesh represents the probability density function of Gaussian signal

While the discussion above shows that linear pre-coding may reach the capacity,
it is obvious that one fundamental problem is still not solved, i.e., the transmit signal
needs to be Gaussian distributed. However, Gaussian distributed signal cannot be
realized in practical systems. The most important reason is that Gaussian signals
are continuous and have no upper bound. Its lack of an upper bound means that
its transmission requires unlimited power, whereas its continuity makes detection
very difficult. In contrast, practical modulation signals, e.g., binary phase-shift
keying (BPSK), pulse-amplitude modulation (PAM), QPSK, QAM, are bounded
and discrete, ensuring their realizability with limited transmit power and easy
detection. Figure 5.3 shows the probability density function comparison between
the QPSK signal and the Gaussian signal. One can notice the tremendous difference
between the two.

The obvious difference on the signal format brings great difference to the system
performance. Figure 5.4 compares the spectral efficiency of QPSK signal and
Gaussian signal respectively in a 2 � 2 MIMO Rayleigh channel. Two dashed lines
are Gaussian input with and without pre-coding according to (5.2). And two solid
lines are QPSK input with and without pre-coding. Comparing these two solid lines,



5.2 The Idea of Structured Pre-coding 59

one can see that employing the capacity achievable pre-coding design for Gaussian
signal to practical modulation signal brings performance degradation instead of
performance improvement.
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Fig. 5.4 Comparison of spectral efficiency between Gaussian signal and QPSK signal

This phenomena implies that it is of great importance to design effective pre-
coding algorithm based on the constellation structure of practical modulation
signals.

5.2 The Idea of Structured Pre-coding

Researchers have done some jobs in finding pre-coding design methods to tackle
the problem shown above. One method is to maximize the diversity gain. This
mainly involves maximizing the slope of the pairwise error probability but obviously
cannot guarantee approaching the optimal performance. Another method aims at
maximizing the minimum distance between constellations, i.e.,

dmin D min
m¤k

m;kD1;��� ;M Nt

���HP .xm � xk/
���

2

(5.3)
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where xm and xk denote the mth and kth probable constellation vector at the MIMO
transmitter, respectively [7]. Since the minimum distance between constellation
vectors has no closed form expression, finding the minimum distance pair needs
exhaustive search and hence is very complicated. Although progress has been made
in [7–9], the corresponding method has not been found for general modulation
signals and arbitrary numbers of antenna.

In recent years, the pre-coding design that treats the mutual information with
constellation constraints as the optimization criteria is becoming attractive. It has
been known that, early in 1968, Robert G. Gallager introduced the concept of
mutual information with constellation structures in his book Information Theory and
Reliable Communication [10], though no specific expression was given. In 2005,
Ezio Biglieri emphasized the importance of this concept for transmitter design in
his book Coding for Wireless Channels [11]. In the book MIMO Transceiver Design
via Majorization Theory [12], Paloar listed this concept as one of the seven most
important unsolved problems in MIMO technology.

In the remainder of this chapter, we discuss a structured pre-coding design by
treating the mutual information with constellation constraints as the optimization
criteria. As we mentioned in the geometrical interpretation, the basic problem
is designing the optimal placement method by structured signal constellation
transformation. As is shown in Fig. 5.5, this transformation mainly involves multi-
dimensional rotation and scaling, while a detailed mathematical explanation is given
in below. Structured pre-coding makes use of the channel state information and
designs the optimal point placement before transmission. Simulation results show a
significant performance gain from the utilization of this method.

5.3 Pre-coding Optimization Algorithm
with Constellation Structures

Consider a MIMO system with Nt transmit antennas and Nr receive antennas.
x 2 C

Nt denotes the transmitted signal with zero mean and identity covariance. The
received signal can be expressed as,

y D HPx C n (5.4)

where H 2 C
Nr�Nt is the channel response matrix, P 2 C

Nt�Nt the linear pre-
coder matrix, and n 2 C

Nr the zero-mean circularly-symmetric Gaussian noise with
covariance �2I, where I denotes the identity matrix. Moreover, the channel response
matrix is assumed to be constant and known at both the transmitter and the receiver.

With finite-alphabet modulation, x is drawn from equiprobable constellation set
with cardinality M . Then, the mutual information between x and y can be expressed
as [13]
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Fig. 5.5 Illustration of the idea of structured pre-coding design

I ŒH; P� D Nt log M � 1

M Nt

M NtX

mD1

En log
M NtX

kD1

exp .�dmk/ (5.5)

where

dmk D .kHPemk C nk2 � knk2/=�2 (5.6)

and emk D xm � xk . xm and xk contain Nt independent symbols from the M -ary
signal constellation.

The objective is to design a linear pre-coder, P, that maximizes the mutual
information. Considering the conditions shown in the geometrical representation,
the optimization constraint is given by Tr.PPH / � Nt , which is equivalent to
Tr.PPH / D Nt since I ŒH; P� is an increasing function of the transmit power. Hence,
the limit on the mutual information with finite-alphabet inputs is given by

I ŒH� D max
PWTr.PPH /DNt

I ŒH; P� (5.7)

As mentioned above, it is desirable to derive the optimal placing method with multi-
dimensional rotation and scaling. In the view of mathematics, we denote the singular
value decomposition (SVD) of the pre-coding matrix as P D UPDiag.

p
�/VP

H .
For simplicity, let UP D U, VP

H D V. Clearly, U and V are unitary matrices and
represent the multi-dimensional rotation of the precoder; Diag.

p
�/ represents the

scaling operation.
Similarly, the SVD of the channel matrix is given by H D UHDiag.� /VH

H .
Substituting the SVD decomposition of the pre-coding matrix and the channel
matrix into (5.4) yields

y D UHDiag.� /VH
HUDiag.

p
�/Vx C n (5.8)
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Accordingly, one may make several observations. First, the right singular matrix V
of the pre-coding matrix mainly involves reorganizing the constellation vector x.
Second, Diag.

p
�/ mainly involves a multi-dimensional scaling via power alloca-

tion. Finally, the major task for the left singular matrix U is to match the channel
characterization in the form of multi-dimensional space.

In the following, we discuss the pre-coding design algorithm by iteratively
optimizing the three elements, i.e., the left singular matrix U, the right singular
matrix V and the power allocation vector �.

Observing (5.5), one can see that given the signal constellation and the signal-to-
noise ratio (SNR), I ŒH� is a function of

kHP .xm � xk/ C nk2 D Tr
h
emkeH

mkPH HH HP C 2< �
eH

mkPH HH n
� C nnH

i

where < denotes the real part of a complex number. Obviously I changes based on
the distribution of kHP .xm � xk/ C nk2 depending on P through PH HH HP. As is
shown in [14], setting the left singular vectors of P equal to the right singular vectors
of H maximizes the mutual information for general channel conditions and arbitrary
inputs with a given matrix PH HH HP and a specific power constraint. Hence, the
optimal left singular vectors U D VH is adopted. As a result, the signal model can
be simplified to

y D Diag.� /Diag.
p

�/Vx C n: (5.9)

Given U, the optimization problem is addressed over �:

maximize I.�/

subject to Tr
�
PPH

� D 1T � � Nt

� � 0
(5.10)

where 1 and 0 denote the column vector with all entries being one and zero,
respectively.

In order to make the inequality constraints implicit in the objective function, the
problem formulation may be rewritten as,

minimize f .�/ D �I .�/ C
NtP

iD1

�.�	i / C �.1T � � Nt / (5.11)

where

�.u/ D
(

�.1=t/ ln.�u/; u < 0

C1; u � 0

t > 0 sets the accuracy of the approximation [15].
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Algorithm 1 Maximize mutual information over the power allocation Vector [16]:
1. Given a feasible vector �, t WD t .0/ > 0, ˛ > 1, tolerance 
 > 0.
2. Compute the gradient of f at �,r�f .�/, as (5.12) and the descent direction �� D �r�f .�/.
3. Evaluate k��k2. If it is sufficiently small, then go to Step 6; else go to Step 4.
4. Choose step size � so that f .�C ���/ < f .�/ by backtracking line search.
5. Set � WD �C ���. Go to Step 2.
6. Stop if 1=t < 
, else t WD ˛t , and go to step 2.

According to Proposition 1 in [16], the gradient of the objective function (5.11)
is given by

r�f .�/ D �R � vec
�
Diag2.� /VEVH

� � 1

t

�
q � 1

Nt � 1T �

�

where E , E

n
Œx � E .xjy/� Œx � E .xjy/�H

o
is the MMSE matrix, E .xjy/ denotes

the conditional expectation of x given y, and R 2 R
Nt�N 2

t is a reduction matrix with
entries given by ŒR�i;Nt .j�1/Ck D ıijk . If i D j D k, ıijk D 1. Otherwise, ıijk D 0.
qi D 1=	i is the i -th element of vector q. Thus, the steepest descent direction is
chosen as

�� D �r�f .�/:

Combining this search direction with the backtracking line search conditions [15],
Algorithm 1 for the optimal power allocation vector, is developed. Convergence is
ensured due to the concavity.

Finally comes the maximization of the mutual information over the right singular
vectors V for a given �, i.e.,

maximize I.V/

subject to VH V D V VH D I
(5.12)

It can be formulated as an unconstrained optimization in a constrained search space:

minimize g.V/

with domain restricted to the Stiefel manifold St.n/ [17]

dom g D fV 2 St.n/g

and

St.n/ D ˚
V 2 C

n�njVH V D I
�
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Algorithm 2 Maximize the mutual information on complex Stiefel manifold [16]:
1. Given a feasible V 2 C

n�n such that VH V D I.
2. Compute the descent direction �V as (5.13). Set the step size � WD 1.
3. Evaluate k�Vk2 D Trf.�V/H �Vg. If it is sufficiently small, then stop; else go to Step 4.
4. Choose step size � so that g.
.VC ��V// < g.V/ by backtracking line search.
5. Set V WD 
.VC ��V/. Go to Step 2.

Algorithm 3 Two-step algorithm to maximize the mutual information for a
generalized pre-coder [16]:
1. Initialization. Set the left singular vectors of the pre-coder U WD VH. Specify a feasible � and

V.
2. Update power allocation vector: Run Algorithm 1 given V.
3. Update right singular vectors: Run Algorithm 2 given the obtained � in Step 2.
4. Repeat Step 2 and Step 3 until convergence.

where the function g.V/ is defined as �I.V/. For each point V 2 St.n/, the search
direction is given by [18]

�V D �rVg.V/ D rVI.V/ � V.rVI.V//H V (5.13)

where rVI.V/ is the gradient of mutual information with respect to V, given by
Diag2.� /Diag.�/VE.

For an arbitrary matrix W 2 C
n�n, its projection 
.W/ on the Stiefel manifold

is defined as the point closest to W in the Euclidean norm


.W/ D arg min
Q2St.n/

kW � Qk2

If the SVD of W is W D UW˙ VW, the projection can be expressed by UWVW [19,
Sec. 7.4.8].

Combining the search direction and the projection with the backtracking line
search condition, Algorithm 2 which maximizes the mutual information over the
right singular vectors V is given.

By combining Algorithms 1 and 2, the complete two-step approach is developed
in Algorithms 3.

In the low SNR region, the algorithm may converge to the global optimum.
Whereas for medium to high SNR, the method may converge to a local maximum
theoretically, thus yielding near optimal performance.

5.4 Numerical Results

Figures 5.6 and 5.7 show the mutual information of the structured pre-coding
algorithm versus SNR for BPSK and QPSK inputs, respectively. The performance
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is compared with other schemes such as those with maximum diversity in [20],
maximum coding gain in [20, 21], and maximum capacity assuming Gaussian inputs
in [22, 23].

From Figs. 5.6 and 5.7, one may see that the mutual information can achieve the
upper bounded 1 and 2 bps/Hz, respectively, for BPSK and QPSK with high SNR.
Although the maximum coding gain method [20] performs better than the maximum
diversity method and the transmission without pre-coding, it is valid only for
several kinds of antenna number and modulation type. In comparison, the structured
design method may be used for an arbitrary antenna number and modulation type.
Likewise, exploiting the degrees of freedom in the optimal left singular vectors,
the optimal power allocation vector, and the local optimal right singular vectors
simultaneously, the structured pre-coding algorithm may provide significant gains
of mutual information in a wide range of SNR. For example, with input BPSK
and 3/4 channel coding rate, the performance is about 4, 5.5, and 6 dB better than
those of the maximum coding gain, the one without pre-coding, and maximum
diversity methods, respectively. Moreover, it is observed that the structured pre-
coding method achieves mutual information very close to maximum capacity with
Gaussian inputs when the channel coding rate is below 0.6 for both BPSK and
QPSK. This also outperforms the case of Gaussian inputs without pre-coding when
the channel coding rate is below 0.9.
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Fig. 5.6 Mutual information versus the SNR in the case of BPSK being employed [16]
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5.5 Conclusions

This chapter introduces a pre-coding design with constellation structures. In partic-
ular, a two-step iterative optimization algorithm that maximizes mutual information
is given. Compared with other pre-coding schemes, the structured pre-coding design
algorithm may provide a significant gain in terms of mutual information in a wide
range of SNR.

Moreover, the method may be extended to be employed in a variety of appli-
cations. From the standpoint of structured finite-alphabet inputs, considering the
case where only statistical channel state information is known at the transmitter, the
linear pre-coder design that maximizes the average mutual information of multiple-
input multiple-output fading channels is investigated, and lower and upper bounds
for the average mutual information are derived [24]. It has been proven that the
lower bound offers a very accurate approximation to the average mutual information
for various fading channels, and accordingly, a two-step algorithm is developed
to get a near global optimal pre-coder. Likewise, a linear pre-coder design with
structured finite-alphabet inputs for spectrum sharing in multi-antenna cognitive
radio networks is studied [25], where the proposed Branch-and-bound Aided Mutual
Information Optimization (BAMIO) algorithm may offer a near global optimal
solution with only several iterations.
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One may expect that the idea of structured pre-coding design will be applicable to
various aspects of wireless communication scenarios, such as cooperative systems,
virtual MIMO, etc.
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Chapter 6
Emerging Research on Information Structures

6.1 Attempting to Find Structures in Images

With reference to Sect. 1.1, Shannon’s rate-distortion theorem describes a relation-
ship between information rate and degree of distortion. In order to reduce the degree
of distortion, high information rate is usually required. However, bandwidth is often
limited in practical wireless multimedia communication systems, which cannot
always afford a high-rate transmission for data streams such as real-time videos
with acceptable perceptive qualities.

In practice, it is easy to see that pixels in videos and images receive drastically
different amounts of attention from the viewers. As information of videos and
images is received, what the human mind is concerned with is likely focused upon
the intrinsic contents. Interestingly, a recent finding indicates that the human mind
perceives information typically based on structural representations [1]. As a matter
of fact, the amount of information that the brain needs to process may be very minor.
Thus we are confronted with the question: is it possible to represent information
from a cognitive view which may help to reduce the required transmission data
rate?

For a sample “puma” image shown in Fig. 6.1 with the resolution of 300 � 198,
6.95 Kb of data was generated after compression using the JPEG2000 standard. How
can we find a method to represent this image with a process similar to that of human
cognition?

When one recognizes the content of the image, color information may be a kind
of a prior semantic knowledge, i.e., white for the background, light brown for the
puma, dark brown for the branch, and so on. Accordingly, apart from the color
information, texture, shape, and other aspects of the semantic categories may also
be used to represent the puma image. Referring to Fig. 2.7b, these representations
may also be considered as intermediate structures. It is noted that the structures
here are constructed from the viewpoint of human recognition which proceeds
from top to bottom. By analyzing the input image based on these structures rather

© The Author(s) 2015
J. Lu et al., Structural Processing for Wireless Communications, SpringerBriefs
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Color Texture Shape Semantic 
Category

1 0 1 1 0 0 1 0 …Bits

Image

Pixels
(R,G,B)

(47,52,4)(45,63,7) (28,4,49)…

(39,57,6)(38,60,5) (22,3,57)…

(72,5,22)(78,6,17) (6,63,72)…

… … …

Fig. 6.1 An example “puma” image in multiple levels. The bottom layer is the quantized bits
for transmission, and the layer above contains the pixels’ values of the image. Between the
pixel representation and the image, intermediate units may be discovered for a compact image
representation

than pixels, if databases containing different structures and their properties, such
as colors, textures and shapes are pre-built, only the labels and parameters of the
structures are required to represent the original image. Thus, the amount of data
used to characterize the specific image may be significantly reduced compared to
those with existing standards.

Assuming that the transmitter and receiver share the pre-built databases before
transmission, only the labels and parameters of intermediate structures need to
be transmitted, greatly reducing the required transmission bandwidth. As such,
by the use of structural representations, some emerging multimedia processing
approaches may be incorporated to improve the efficiency of wireless multimedia
communications.
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6.2 Structural Image Coding with Learned Dictionaries

6.2.1 Learning Basic Structures from Images

As mentioned in Chap. 3, conventional compression methods, such as H.264/
MPEG4 and JPEG2000, mainly utilize orthogonal bases for signal transform to
remove spatial correlation inside and between images [2, 3].

All these image and video coding approaches depend on pre-defined signal
transform bases, such as discrete wavelet transform (DWT) and discrete cosine
transform (DCT) in Fig. 6.2a, while ignoring different properties or structures of
different kinds of images. While algorithms for linear transforms may be designed to
make hardware distinguish between different amplitudes and frequencies of signals,
machines cannot understand the high-level semantic contents of images since they
do not have the required structural processing capabilities.

Recently, with the development of neural networks, machine learning, as well
as semi-conductor technology, computers are becoming able to conduct training-
based algorithms for classification and analysis similar to those realized by the
human brain. Hence, it may be possible to learn specially optimized bases to
represent specific kinds of images. These bases referred to as learned dictionaries,
are learned from large numbers of sample images of the same class with common
structures, as shown in Fig. 6.2b. Similar to dictionaries for human languages, a
learned dictionary should be designed according to image categories and structures,
and such dictionary may be regarded as a set of intermediate structures for the
images. In the following parts, we illustrate a case of dictionary design for images.

Fig. 6.2 An illustration of a learned dictionary. (a) A complete DCT bases. (b) A set of learned
dictionary from some kind of image patches
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6.2.2 Image Coding Based on Dictionary Learning

For an efficient image representation model [4], the target of sparse representation
with learned dictionary is to describe a signal as the linear combinations of few
elements, which are chosen from a large collection of bases. These signal bases
may be learned from a variety of image samples, referred to as redundant or
over-complete dictionary. Benefitting from sparse representation algorithms, the
proposed approach in [5] focuses on the image coding problem using learned dictio-
naries rather than fixed signal bases. In order to encode image patches effectively, a
multi-sample sparse representation (MSR)-based image coding approach is derived
with basic elements from collections of natural images. Moreover, the proposed
learning algorithm and MSR are incorporated into an image coding framework,
which further reduces the reconstructed errors.

As shown in Fig. 6.3, the framework mainly consists of three parts including
the MSR-based dictionary learning, MSR-based image encoding, and its decoding
counterparts. Before encoding images, the dictionary is trained by the MSR-based
dictionary learning algorithm. The MSR-based image coding and decoding are
described below.

With reference to some other image compression approaches with block pro-
cessing, e.g., JPEG, an input image is sliced into non-overlapping image patches
over a regular grid. As illustrated in the encoding framework shown in Fig. 6.3, the
mean values of image patches and the mean-removed patches fxj gJ

jD1 are separately
encoded, where xj D Œx1j ; : : : ; xnj�

T 2 R
n�1 denotes the vectorized version of an

image block. The DC components of an image patch, i.e., the mean value of patch
uj D 1

n

Pn
iD1 xij , is quantized and coded by differential pulse-code modulation

(DPCM) prediction and Huffman coding, removing the statistical redundancy. More
specifically, it indicates that the residual ej D uj � uj�1 between DC-values is
quantized by round.

ej

scalar / and entropy encoded by Huffman coding, where scalar
is a pre-defined constant in the quantization step.

Rather than utilizing the DCT or wavelets transform coding, the approach in [5]
utilizes MSR to encode the patches fxj gJ

jD1 to achieve sparse coefficients f˛j gJ
jD1

with respect to the learned dictionary D. This dictionary has been trained from a
large number of samples chosen from a collection of training images. Moreover,
in order to encode the coefficients, the values of non-zero coefficients and the
corresponding index of non-zero values are encoded. The non-zero values are
quantized and encoded using a Huffman entropy coder, which is similar as the one
used for DC values. Then, the indices of the corresponding non-zero coefficients are
further coded by fixed length codes using log2 m bits, where m denotes the number
of dictionary elements. Note that the Huffman table utilized above is constructed
off-line and pre-stored at both encoder and decoder sides. This encoding module
shares some similarities to the one designed for intra-frame video coding [6, 7].

The compressed image data are mainly composed of the encoded coefficients
f Ǫ j gJ

jD1 and the corresponding DC values in the decoding counterpart. At the
decoder side, the compressed image data may be inversely quantized and decoded
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Fig. 6.3 The framework of MSR-based image coding, including the dictionary learning, encoding
and its decoding counterparts

according to the Huffman table. The non-overlapped image patches may be
recovered with respect to the learned dictionary Oxj D D Ǫ j . Note that these coded
coefficients of patches are followed by the EOB (end of block) symbol as in the
JPEG standard. Therefore, the total bit rate consumption of a compressed image is
calculated as

Rtotal D
JX

jD1

fR. Ǫ j / C R.DCj / C R.EOBj /gC M; (6.1)

where R.�/ is the length in bits of the codeword representing the corresponding
symbol. Note that the symbol M represents the additional bits that include the size
of Huffman table, even though the overhead may be ignored.
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6.2.3 Performance Validation

To examine the performance of the method with learned dictionary, natural images
which are taken by cameras for normal scenery are employed. Three-hundred
natural image samples are randomly chosen to form the training set for performance
validation in terms of the number of training patches and computation time. The
related parameters are shown in Table 6.1. To set up the experiments on rate-
distortion performance, several baseline algorithms are tested for performance
comparison, including JPEG2000,1 JPEG,2 K-SVD[8] and the online dictionary[9]
based schemes. The testing images used in the experiments include several standard
ones, e.g., Lena, barbara, couple, hill, bridge, etc. These gray-scale images contain
human figures, natural scenes, as well as man-made objects, which cover most
typical cases. Other parameters utilized in the experiments for dictionary learning
and image compression are also listed in Table 6.1.

Table 6.1 Parameters used in experiments for dictionary learning
and image compression

Image block size 8� 8 n D 64

Dictionary size 64� 256 m D 256

The batch size P D 8

Total number of images for training 300

Total number of image patches for training I D 30;000

The number of batches N D I
P
D 3;750

Testing image size 512� 512

Number of blocks to encode an image J D 512�512
n

Regularization parameter 	 D C
p

m
, C D 1:2

Experiments are conducted on these standard gray-scale images to evaluate the
rate distortion performance. Figure 6.4 shows the performance comparison between
the MSR-based image coding and other methods in terms of PSNR. For typical
bit-rate cost, it is shown that there is about 1:98 dB improvement on average
over JPEG2000 and 1:04 dB improvement on average over conventional online
learning approach. Moreover, compared with the K-SVD dictionary based image
compression scheme, the proposed approach is slightly better in the rate distortion
performance by 0:61 dB, yet it runs much faster than K-SVD in dictionary training.

From these figures, one may observe that the conventional online dictionary
learning based image compression likely induces larger reconstructed errors com-
pared to the globally learned K-SVD dictionary. This validates the disadvantage of
online dictionary learning in general. To better fix the problem, MSR is incorporated

1OpenJPEG, an open-source JPEG2000 codec, http://www.openjpeg.org.
2JPEG free library is available at http://www.ijg.org.

http://www.openjpeg.org
http://www.ijg.org
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Fig. 6.4 The rate-distortion performance of the proposed algorithm compared with JPEG2000,
JPEG, K-SVD and online dictionary based image coding methods in terms of peak signal-to-noise
ratio (PSNR) using several test images (size 512�512, gray-level). Note that the curves with circle
markers show the performance of the proposed MSR-based image coding approach. (a) Lena. (b)
Barbara. (c) Hill. (d) Boat

into online dictionary to compress natural images, thus achieving much reduced
reconstructed errors while maintaining the benefits of online dictionary learning.
These results demonstrate the efficiency of the proposed learning algorithm. For
subjective quality assessment, the visual results of barbara, boat, hill, etc., are shown
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Fig. 6.4 (continued)

in Fig. 6.5. All of these images are encoded at the same bit-rate of 0:25 bpp (bit-per-
pixel), and the corresponding PSNR and SSIM [10] values are also listed. From
these figures, the recovered images by the MSR-based image coding approach
appear more clearly and naturally, and details are much better preserved. In contrast,
other methods, e.g., JPEG and JPEG2000, likely induce more blocky or blurring
artifacts. This is mainly due to the over-complete dictionary with fewer non-zero
coefficients and reduced reconstruction errors that is used for the MSR-based image
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Fig. 6.5 Visual results for a subjective quality comparison. All encoded at 0:25 bpp bit-rate (best
viewed by zoom-in). The 1st column on the left: original images, the 2nd column: with JPEG,
the 3rd column: with JPEG2000 and the last column: with the proposed approach. Note that the
PSNR and structural similarity index measure (SSIM) values are listed below the images. (a)
Barbara, original. (b) 24:35 dB, 0:803. (c) 27:30 dB, 0:885. (d) 28:82 dB, 0:958. (e) Boat, original.
(f) 27:32 dB, 0:845. (g) 29:50 dB, 0:895. (h) 32:00 dB, 0:971. (i) Hill, original. (j) 28:61 dB, 0:871.
(k) 30:01 dB, 0:900. (l) 32:84 dB, 0:972. (m) Couple, original. (n) 27:23 dB, 0:856. (o) 28:78 dB,
0:883. (p) 31:76 dB, 0:970

coding and dictionary learning approach. The visual quality of images may be
further improved at low bit-rate region, and some band limited mobile applications,
e.g., mobile image browsing and sharing, may better showcase the advantages of
the proposed method.
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6.3 Structural Video Coding Based on Learned Models

6.3.1 Model-Based Video Coding

For decades, long-distance face-to-face conversation has been an important aspi-
ration of multimedia communication systems. Unfortunately, its utility is hindered
by its stringent delivery requirements including low latency, high reconstruction
quality, and the ability to scale well over a channel with highly variable capacity.

Fig. 6.6 The block diagram of a conventional video transmission system, where the video codec
is H.264 and the quality of raw video sequence is 352� 288@25 fps

Figure 6.6 illustrates the conventional video transmission, where H.264 codec is
taken as an example. It can be seen that the images after compression are blurry,
because conventional video coding schemes seldom consider the content of the
video and regard all pixels on an image as random variables. In other words,
the face enjoys the same fidelity as the less important parts in the background.
Therefore, high data rate is necessary to support high definition (HD) video streams
at professional video conferences. For instance, Cisco R� TX9000TM requires at least
8.8 Mbps of transmission data rate to support 1080p@30 HD conversational video
under H.264 codec [11]. Hence, applications with real-time conversational video
have not yet achieved wide-spread adoption due to the limited system throughput of
current wireless networks.

Based on the viewpoint of human cognition, a face video transmission approach
that utilizes model-based video coding (MBVC) scheme [12] is introduced in this
section. Different from conventional video coding, MBVC makes full use of face
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structural information to abstract the parameterized variation of each individual
face. This coding scheme involving training the computer to recognize the shapes
of objects such as eyes, nose, and mouth. The changes of shapes can be then
represented by a small number parameters. In addition, the characteristics of these
objects can be learned for recognizing new faces. The whole procedure is indeed a
mimicry of the face perception function of the human brain. Intuitively, the more
training data there are available, the more accurate faces can be represented and
reconstructed. Imagine two participants of a video chat sharing the same pair of
training set, only labels that indicates the changes on faces need to be sent instead
of the whole compressed video, reducing the data rate dramatically. MBVC may
represent human faces and other common objects with extremely low bit-rates,
which has a potential in wireless multimedia communications.

6.3.2 Learning Structural Information by Face Modeling

It is known that the principle of acquisition in the human brain is making comparison
between prior knowledge and the newly arrived information [13]. If someone meets
a new face, there is no prior knowledge available. Hence, the brain starts to collect
all the structural information on the face including the color of skin, the shape of
the nose, the size of eyes, etc., and then to memorize this group of information
as database. In computer vision research, it has been shown that by normalizing
facial appearances against their shapes, both the shape and the appearance variations
of a specific person may be well modeled by linear subspaces [14]. As shown in
Fig. 6.7, given an image of a face annotated with the locations of a pre-defined set
of landmarks, the shape s of the face is defined as the concatenation of the landmark
coordinate values, and the shape-normalized appearance g is obtained by piecewise
affine warping of the face image onto a frontal reference shape. Here Ns and Ng may be
defined as the reference shape and appearance, respectively, which are usually taken
from a frontal neutral face. Performing this procedure on an annotated set of face
images results in a shape training set and a shape-normalized appearance training
set. From their respective training sets, principal component analysis (PCA) [15]
may be used to identify the shape and appearance variations Ps and Pg as subspaces,
respectively.

Once the linear subspace model has been trained, an annotated face image I0 with
shape s0 may be warped to form a shape-normalized appearance patch g0. Both s0

and g0 can be projected onto the corresponding subspace to obtain a small set of
parameters bs and bg as follows:

bs D Ps
T .s0 � Ns/

bg D Pg
T .g0 � Ng/:

(6.2)
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Fig. 6.7 The structural information consisting of shapes and appearances abstracted from a face

Note that bs and bg may fully represent the spatio-temporal variation of the face.
An approximate facial image reconstruction OI0 can be synthesized by the following
synthesis equations:

OS0 D Ns C Psbs

Og0 D Ng C Pgbg

OI0 D W.Og0 W bs/;

(6.3)

where W.Og0 W bs/ denotes the warping operation which warps the shape-normalized
texture Og0 onto the shape determined by parameters bs. By representing a face image
with a few parameters, subspace models can radically reduce the dimensionality
of the representation. They provide the theoretical basis to the utilization of prior
structural information on face images in the task of conversational video coding.
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6.3.3 MBVC in Video Communications

Since video reconstruction only requires the model parameters, it is only necessary
to transmit these parameters instead of the compressed video sequences from the
transmitter to the receiver. Note that Ps, Pg, s0, and g0 should be shared and stored
as parts of face models at both the transmitter and receiver before transmission.
This process is illustrated in Fig. 6.8. Clearly, in this case MBVC cannot reconstruct
any non-face objects. However, this is a strength instead of a shortcoming: coded
face representations are much more compact, and high-quality face video may be
maintained even over an unpredictable channel.

Fig. 6.8 The model-based video communication architecture which only needs to transmit the
model parameters

The efficiency of MBVC for conversational video depends critically on the
quality of the face model used in the coding process. The typical model training
approach outlined in the previous section is unappealing for face MBVC due to
its laborious training set collection and annotation process. Works such as [16]
have shown that the automatic annotation of landmarks on a given face image
(also known as face alignment) can be formulated as a regularized constrained
optimization problem by attempting to find a most likely configuration of facial
landmarks given the face image over all possible facial shapes (See (6.4), where
kqk� denotes the Mahalanobis norm of the non-rigid parameters q, and � denotes
the diagonal matrix formed by the eigenvalues of the non-rigid modes of variations
according to the shape subspace model).
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Q.p/ D
nX

iD1

log.P.li D 1jx; I// � kqk�; (6.4)

where I is the face image. The positions of the landmarks, denoted by x, are
constrained by the shape subspace model as follows:

x D sR.Nx C ˚q/ C t; (6.5)

where Nx is the mean shape vector of the shape subspace model, and the vector of
shape subspace parameters p D fs; R; q; tg consists of scaling factor s, rotation
matrix R, translation vector t, and non-rigid parameters q, where ˚ is a column-
orthogonal matrix whose columns are the principal modes of non-rigid shape
variation. Such face alignment algorithms have demonstrated good performance on
faces in conversational video. By incorporating automatic face alignment into the
training process, and proposing an online shape and appearance subspace training
algorithm, the used method successfully achieved fully automatic training without
the need to acquire labeled training sets in advance. Structural information on the
facial shapes and appearances may be effectively stored in the model for use during
video coding. The overall MBVC algorithm with automatic incremental training is
outlined in Algorithm 1.

Algorithm 1 MBVC algorithm
Input: V D fIig, i 2 f1; : : : ; N g: an input face video sequence
Input: Ps; Pg: linear shape and appearance subspace models

Output: OV D fOIg: the reconstructed video sequence
1: Share Ps and Pg between the sender and the receiver before hand.
2: Ps0  Ps; Pg0  Pg.
3: while i < N do
4: Use the i th frame Ii to incrementally update the subspace models Ps0 and Pg0.
5: Align the face in Ii , compute bi D Œbsi I bgi � according to (6.2).
6: Transmit bi from the sender to the receiver.
7: Reconstruct OIi at the receiver according to (6.3).
8: end while
9: if Ps0 and Pg0 give better performance than Ps and Pg then

10: Ps  Ps0; Pg  Pg0.
11: end if
12: return f OVg

To evaluate the above coding method, it is applied to two 25 fps CIF (352 �
288) conversational video sequences, akiyo3 and Franck.4 These experiments aim
to study the performance characteristics of the MBVC method by comparing the

3http://trace.eas.asu.edu/yuv/akiyo/akiyo_cif.7z.
4http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking_face.html.

http://trace.eas.asu.edu/yuv/akiyo/akiyo_cif.7z
http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking_face.html
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results to generic high efficiency video coding (HEVC), region-of-interest (ROI)
based HEVC (as proposed in [17]), as well as mesh-based coding (as proposed in
[18], with HEVC-coded residuals).

In addition to the coding of faces, the overall conversational video coding system
must also code the rest of the visible parts of the body, as well as the background.
Inspired by advances in specialized segmentation algorithms such as [19], an
automatic head-shoulder segmentation algorithm is implemented here based on the
face location reported by the face coding step.

After the segmentation, the background may often be assumed static; thus an
extremely low frame-rate (even a still image) suffices for the background. Since
the viewer’s sensitivity to reconstruction errors in the rest of the visible body parts
is relatively low, more distortion can be tolerated, leading to a significantly lower
overall bit-rate. In summary, the coding system here consists of three coded video
layers:

• The face layer, coded with MBVC to maintain high quality at low bit-rate by
utilizing extensive prior structural information;

• The visible body parts layer, coded with a generic video codec on low-quality
setting; and

• The background layer, coded with either (a) a generic video codec at a very low
frame-rate, or (b) substituted by a still image.

Experiments and real-life application have shown that this layer-wise coding of
conversational video consistently yields a 50–70 % reduction in required bit-rate
for a given subjective quality level over conventional generic video codes.

Due to the real-time nature of our application, B-frames were disabled in all
HEVC-coded sequences in our experiments; the x265 implementation5 of the
HEVC encoder is capable of achieving real-time encoding with the “medium” preset
on PCs with Intel R� CoreTM i7 Processors. The Rate-Distortion (R-D) characteristics
of the four coding methods on each of the testing sequences in terms of the PSNR are
shown in Fig. 6.9. In addition to overall R-D, R-D curves for the face region alone
are also shown. Figure 6.10 shows still frames from the test sequences, encoded
with all four methods at similar bit-rates.

It is observed that, at low bit-rates, the MBVC method exhibits superior R-
D performance, especially for the face region. The face region R-D curves for
both mesh-based and generic HEVC are actually below their respective overall
R-D curves, implying that they coded the face region at a lower quality than the
rest of the video, likely due to its high-frequency details and frequent movements.
The ROI-based HEVC improves face region performance for Akiyo at the cost of
reduced non-face reconstruction quality; however, for Franck, its effectiveness is
very limited since the talker is much closer to the camera; consequently, the resultant
ROI constitutes a large portion of the screen. By utilizing prior structural informa-
tion, MBVC may achieve greatly improved performance in the face region, thus

5http://x265.org/.

http://x265.org/
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enhancing perceived quality. It should be noted that due to inevitable unmodeled
dynamics and noise in the video sequence, the gain of MBVC diminishes as bit-rate
increases; at high bit-rates, it may even become negative compared to HEVC owing
to its additional transmission of model parameters and mesh vertex motion vectors.
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Fig. 6.9 The comparisons for the R-D curves on testing sequences (a) Akiyo and (b) Franck
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A simple codec selection mechanism may be designed to switch between MBVC
and HEVC to ensure optimal performance across all bit-rates.

Fig. 6.10 The subjective quality comparisons of the codecs on testing sequences (a) Akiyo and
(b) Franck

6.4 Computational Communication Architecture Based
on Structural Processing

In previous sections, cognition-oriented information representations have been
shown to exhibit better perceptive quality than conventional ones especially at low
transmission data rates. Furthermore, if one can exploit the structural information
to obtain a highly efficient representation, the amount of data to be transmitted in
wireless communication systems should be much reduced.

Stimulated by the ideas in Sects. 6.2 and 6.3, one may establish an innovative
computational communication architecture for wireless communications based on
structural processing, as is shown in Fig. 6.11. To incorporate structural information,
a structure base is built and shared at both transmitter and receiver as the prior
information to represent images or videos likely as those stored in human brains.
By the use of strong computing capability in networks, the input information is
expressed by the prior structural information units stored in the structure base at the
transmitter and is reconstructed by the aid of corresponding units at the receiver.
Based on this architecture, the data transmitted via the wireless channels are only
the indexes and parameters of the structural units, and the transmission efficiency of
wireless communications may be dramatically improved.

Assume that the messages at the transmitter and the receiver are expressed as X

and Y , respectively. According to information theory, the minimal information to be
transmitted via channel should be equal to the mutual information between X and
Y , i.e., I.X; Y /. However, if a structure base of prior structural information used for
signal representation is pre-stored at both ends, the information to be transmitted
would be a conditional mutual information M which exhibits a property as:
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Computing
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Fig. 6.11 A diagram of the computational communication architecture based on structural
processing

M 	 I.X; Y /: (6.6)

As a result, the bandwidth for transmission may by effectively saved.
Thanks to the idea with the structural priori knowledge, one may make a

breakthrough to the bottleneck of conventional methods, and open up a new trend
for the development of processing technologies. In future wireless communications,
such a computational communication architecture may have a great potential to be
applicable in enhancing transmission efficiency, effectively solving the seemingly
insurmountable problems of complexity and uncertainty.

6.5 Conclusions

In this chapter, in order to find efficient methods of information representations
for multimedia, dictionary learning and model-based coding methods are both
introduced to abstract prior structural information such that the efficiency of
wireless multimedia communications may be significantly improved. Based on
such emerging research on structural information, a computational communication
model is further introduced to provide a feasible structural processing architecture
greatly reduced transmission bandwidth requirement. Further research on structural
processing technology is a promising direction, from which a new theory for modern
wireless communications may eventually emerge.



References 87

References

1. J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman, “How to grow a mind:
Statistics, structure, and abstraction,” Science, vol. 331, no. 6022, pp. 1279–1285, 2011.

2. D. Marpe, “The H.264/MPEG4 advanced video coding standard and its applications,” in IEEE
Communications Magazine, vol. 44, no. 8, pp. 134–143, Aug. 2006.

3. ISO/IEC 15444-1, “JPEG 2000 Part I Final Committee Draft Version 1.0”, 2000.
4. R. Rubinstein, “Dictionaries for Sparse Representation Modeling,” Proc. IEEE, vol. 98, no. 6,

pp. 1045–1057, Jun. 2010.
5. Y. Sun, X. Tao, Y. Li, and J. Lu, “Dictionary learning for image coding based on multi-sample

sparse representation,” IEEE Trans. Circ. Syst. Video Technol., vol. 24, no. 11, pp. 2004–2010,
Apr. 2014.

6. Y. Sun, M. Xu, X. Tao, and J. Lu, “Online dictionary learning based intra-frame video coding
via sparse representations,” in Proc. WPMC’12, pp. 16–20, Sep. 2012.

7. Y. Sun, M. Xu, X. Tao, and J. Lu, “Online Dictionary Learning Based Intra-frame Video
Coding,” Springer Wireless Personal Communications, vol. 74, no. 4, pp. 1281–1295, 2014.

8. M. Aharon, and M. Elad, “K-SVD: An Algorithm for Designing Overcomplete Dictionaries
for Sparse Representation,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov.
2006.

9. J. Mairal, and F. Bach, “Online Learning for Matrix Factorization and Sparse Coding,” Journal
of Machine Learning Research, vol. 11, pp. 19–60, 2010.

10. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4,
pp. 600–612, 2004.

11. Cisco Systems, Cisco TelePresence Product Catalog, 2013. [Online]. Avialable: http://www.
cisco.com/c/en/us/products/collaboration-endpoints/telepresence-tx9000-series/brochure-
listing.html. [Accessed Apr. 15, 2014].

12. Aizawa, Kiyoharu and Huang, Thomas S, “Model-based image coding advanced video coding
techniques for very low bit-rate applications,” Proceedings of the IEEE, vol. 83, no. 2,
pp. 259–271, 1995.

13. J. D. Weiland, M. S. Humayun, “Visual prosthesis,” Proc. IEEE, vol. 96, no 7, pp. 1076–1084,
July 2008.

14. R. Gross, I. Matthews, and S. Baker, “Generic vs. person specific active appearance models,”
Image Vis. Comput., vol. 23, no. 12, pp. 1080–1093, Nov. 2005.

15. I. T. Jolliffe, Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed.,
Springer, NY, 2002.

16. J. M. Saragih, S. Lucey, and J. F. Cohn, “Deformable Model Fitting by Regularized Landmark
Mean-Shift,” Int. J. Comput. Vis., vol. 91, no. 2, pp. 200–215, Sep. 2011.

17. L. S. Karlsson, and M. Sjostrom, “Improved ROI video coding using variable Gaussian pre-
filters and variance in intensity,” in Proc. IEEE ICIP’05, Genoa, Italy, pp. 313–316, Sep. 2005.

18. P. van Beek, A. M. Tekalp, N. Zhuang, and I. Celasun, “Hierarchical 2-D Mesh Representation,
Tracking, and Compression for Object-based Video,” in IEEE Trans. Circ. Syst. Video Technol.,
vol. 9, no. 2, pp. 353–369, Mar. 1999.

19. H. Xin, H. Ai, H. Chao, and D. Tretter, “Human Head-shoulder Segmentation,” in Proc. IEEE
FG’11, Santa Barbara, USA, pp. 227–232, Mar. 2011.

http://www.cisco.com/c/en/us/products/collaboration-endpoints/telepresence-tx9000-series/brochure-listing.html
http://www.cisco.com/c/en/us/products/collaboration-endpoints/telepresence-tx9000-series/brochure-listing.html
http://www.cisco.com/c/en/us/products/collaboration-endpoints/telepresence-tx9000-series/brochure-listing.html

	Foreword
	Preface
	Acknowledgements
	Contents
	Acronyms
	1 Revisiting Wireless Communications
	1.1 Overview
	1.2 Challenges in Emerging Wireless Systems
	1.2.1 Difficulties in Wireless Multimedia Communications
	1.2.2 Complex Interferences in Harsh Radio Environments
	1.2.3 The Challenge of Distance in Deep Space Communications

	1.3 The Issues of Complexity and Uncertainty
	1.3.1 The Ever-Increasing Complexity in Wireless Systems
	1.3.2 Uncertainty in Wireless Communications
	1.3.3 The Issues of Complex Uncertainty

	References

	2 Principle Shift: From Bit to Structure
	2.1 On the Bit Representation
	2.1.1 Representing Information with Bits
	2.1.2 Channel Capacity by Bits
	2.1.3 The Limitation of Bit Representation

	2.2 Inspirations from Other Fields: A Structural Perspective
	2.2.1 Structure Design in Architecture
	2.2.2 Structural Biology
	2.2.3 Cellular Structure

	2.3 From Bit to Structure
	2.3.1 The Structure of IP Packets
	2.3.2 The Structure of Multimedia Streams with H.264
	2.3.3 Additional Inspirations

	2.4 Conclusions
	References

	3 Processing Based on Information Structure
	3.1 Structure Representation and Processing Method
	3.1.1 The Design of Information Structure for Transmission
	3.1.2 A Definition of MDU in Transmission
	3.1.3 Performance Analysis Based on MDU
	Computation of the Error Rate of Minimum Data Unit, Er(MDU)
	Transmission Reliability
	Transmission Efficiency


	3.2 Wireless Multimedia Transmission Based on the MDU Structure
	3.2.1 The Effect of Errors on Multimedia Transmission
	3.2.2 Structure Protection to Combat Error Propagation

	3.3 Block Shuffling as a Structure Processing Method for Image Transmission
	3.3.1 Block Shuffling with Random Re-ordering
	3.3.2 Block Shuffling Versus Bit-Interleaving

	3.4 Conclusions
	References

	4 An LDPC Code Design with Sub-matrix Structure
	4.1 Revisiting LDPC Code and Its Construction
	4.2 Structured LDPC Code Design
	4.3 Examples and Performance Evaluation
	4.4 Conclusions
	References

	5 Pre-coding Design with Constellation Structures
	5.1 Pre-coding in MIMO Systems
	5.2 The Idea of Structured Pre-coding
	5.3 Pre-coding Optimization Algorithm with Constellation Structures
	5.4 Numerical Results
	5.5 Conclusions
	References

	6 Emerging Research on Information Structures
	6.1 Attempting to Find Structures in Images
	6.2 Structural Image Coding with Learned Dictionaries
	6.2.1 Learning Basic Structures from Images
	6.2.2 Image Coding Based on Dictionary Learning
	6.2.3 Performance Validation

	6.3 Structural Video Coding Based on Learned Models
	6.3.1 Model-Based Video Coding
	6.3.2 Learning Structural Information by Face Modeling
	6.3.3 MBVC in Video Communications

	6.4 Computational Communication Architecture Based on Structural Processing
	6.5 Conclusions
	References


