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Preface

This is a book about regression analysis, that is, the situation in statistics
where the distribution of a response (or outcome) variable is related to ex-
planatory variables (or covariates). This is an extremely common situation in
the application of statistical methods in many fields, and linear regression, lo-
gistic regression, and Cox proportional hazards regression are frequently used
for quantitative, binary, and survival time outcome variables, respectively.

Several books on these topics have appeared and for that reason one may
well ask why we embark on writing still another book on regression. We have
two main reasons for doing this:

1. First, we want to highlight similarities among linear, logistic, proportional
hazards, and other regression models that include a linear predictor. These
models are often treated entirely separately in texts in spite of the fact that
all operations on the models dealing with the linear predictor are precisely
the same, including handling of categorical and quantitative covariates,
testing for linearity and studying interactions.

2. Second, we want to emphasize that, for any type of outcome variable,
multiple regression models are composed of simple building blocks that
are added together in the linear predictor: that is, t-tests, one-way analyses
of variance and simple linear regressions for quantitative outcomes, 2× 2,
2× (k +1) tables and simple logistic regressions for binary outcomes, and
2- and (k+1)-sample logrank tests and simple Cox regressions for survival
data. This has two consequences. All these simple and well known methods
can be considered as special cases of the regression models. On the other
hand, the effect of a single explanatory variable in a multiple regression
model can be interpreted in a way similar to that obtained in the simple
analysis, however, now valid only for the other explanatory variables in
the model “held fixed”. Note the important point that addition of simple
terms in the linear predictor will imply an assumption of no interaction;
that is, the effect of an explanatory variable is the same for all values of
other explanatory variables in the model. This is an assumption that often
needs careful consideration as part of the analysis.

In Chapter 1 the basic ideas are set up and the examples to be used
throughout the book are introduced. Chapter 2 presents a review of back-
ground material on probability distributions and the principles of statistical
inference. In Chapter 3 the simple building blocks for categorical explana-
tory variables are introduced for the three main types of outcome variables.
Chapter 4 deals with one quantitative explanatory variable, first when a lin-
ear effect can be assumed and, next, certain models with a nonlinear effect of
the covariate (still described by a linear predictor, however) are introduced.
A very common example of such a nonlinear effect is a polynomial.
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Having presented the building blocks, Chapter 5 discusses multiple regres-
sion models (i.e., models with several explanatory variables). We focus on
models with two covariates and introduce the concepts of confounding and
interaction (“effect modification”). In Chapter 6 we discuss model building
strategies, in particular selection of explanatory variables for answering a spe-
cific research question and illustrate the strategies by thorough analyses of
three specific examples.

Whereas Chapters 3 through 6 primarily deal with examples of linear mod-
els for quantitative outcomes, logistic models for binary data, and Cox models
for lifetimes, Chapter 7 presents a number of other regression models with a
linear predictor. These include the logistic models for ordinal and multino-
mial data, Poisson-type models for counts as well as alternative models for
quantitative, binary, and lifetime data. Chapter 8 briefly mentions a number
of extended models all involving a linear predictor. These include multivari-
ate models with more than one response variable per individual, for example
repeated measurements and other types of correlated outcomes, and models
with covariate measurement errors. The multivariate models include random
effect models and marginal models. The treatment of these topics is by no
means meant to be exhaustive but to serve mainly as a warning that mod-
els more complicated than the ones treated earlier in this book occur quite
frequently and will produce erroneous conclusions if not analyzed properly.
The book is concluded with four appendices summarizing notation, the use of
logarithms, some recommendations, and simple programming, respectively.

It is important to notice that some sections of the book are more difficult
to read than others, simply because of the varying level of complexity for the
different methods we wish to cover.

The book is based on our personal experience as teachers, consultants, and
researchers in biostatistics for more than three decades and all data examples
are based on this.

Our intended readers are primarily researchers from scientific areas where
statistics is being applied to analyze numerical data, for example, fields such
as medicine, public health, dentistry, agriculture, and so on. For that rea-
son we do not expect readers to have a strong background in mathematics.
We limit the amount of mathematical formulas used, and we avoid the use
of Greek letters in formulas altogether. We do, however, expect readers to
have some familiarity with basic statistical terms but, to set a common level,
Chapter 2 gives an overview of the necessary concepts. Although we have
mainly written the book for applied scientists it is our hope that readers with
a more mathematical background who wish to enter the field of biostatistics
will also benefit from studying the book. We intend to provide a book that can
both serve as a reference source and a course textbook. For the last purpose,
chapters conclude with a series of exercises all dealing with data analysis.

The mainstream of our text presents aspects of the methods that are
important for building regression models, yet we have in some places found
it natural to add brief discussions of related concepts that are less important
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for regression analysis. Such digressions are marked in the text as Digression

and also include some historical and more technical remarks.
An applied statistical text such as the present book, obviously includes a

large number of practical examples, and computational aspects are crucial.
We have chosen not to base the presentation of examples in the book on
a single piece of software. Instead, the book is accompanied by Web pages
documenting examples by including computer code for the computations in
R and SAS. It is our intention to supplement the Web pages with code in
STATA as well but we have chosen not to include SPSS code because it is our
impression that most users of this program use the menu interface rather than
writing program code. In addition, a brief appendix (Appendix D) includes
very simple and “raw” commands for fitting the basic types of regression
models in R, SAS, and STATA.

It has been our ambition that the Web pages should be user-friendly with
facilities for making an entry based on both book chapters and on the different
examples. The pages can be found at

www.biostat.ku.dk/~linearpredictors

We would like to thank our medical colleagues who have granted us per-
mission to use their data as illustrations. We also wish to thank colleagues at
the Department of Biostatistics, University of Copenhagen, Denmark, for cre-
ating a friendly and productive working environment. In particular, we thank
Ørnulf Borgan, Bendix Carstensen, Saskia le Cessie, Thomas Gerds, Niels Kei-
ding, Kajsa Kvist, Maja Olsbjerg Larsen, Henrik Ravn and Willi Sauerbrei
for comments, advice, assistance or encouragement. Part of the manuscript
was written during a week-long workshop in Oberwolfach, Germany, and we
wish to thank Mathematisches Forschungsinstitut, Oberwolfach, for hospital-
ity during that week.

Last, but definitely not least, our most sincere thanks go to Therese Gra-
versen. Not only did she design the accompanying Web pages and produce
all the graphics in the manuscript but she also gave valuable and thoughtful
comments to both contents and lay-out. Without her skillful input this book
would never have become what it is now.

Copenhagen, June 2010 Per Kragh Andersen, Lene Theil Skovgaard
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1

Introduction

Suppose we are studying blood pressure in humans based on a random sample
from a specific population, say, inhabitants of some larger city. The very first
step in such a study may be to get a summary of the level and variation
of blood pressure, subject to criteria such as ethnicity, gender or age. The
purpose of studying blood pressure may be to establish normal references to
serve as future guidelines for when to start treatment for either too high or
too low a blood pressure.

In order to illustrate the distribution of the blood pressure measurements
from this sample, we usually calculate average and standard deviation and
possibly produce a histogram or some other graphical illustration. These quan-
tities are examples of descriptive statistics.

A small part of the variation in the blood pressure measurements can prob-
ably be ascribed to measurement error, however, a larger part of the variation
is more likely due to individual fluctuations over time and to population vari-
ation, the true differences between subjects. Part of this population variation
may be due to characteristics of the subjects that are easily recognized. For
instance, men frequently have a somewhat higher blood pressure than women,
and older people tend to have a higher blood pressure than younger people.

The example illustrates that, in many fields of research, information may
be collected on various features in a number of experimental units. Other
examples may be the serum bilirubin level in male and female patients with
liver cirrhosis, whether persons in different job categories working in a given
company have suffered from severe headaches in some specified period, the
survival time from diagnosis of cancer patients in different stages of disease,
the rise in blood glucose in experimental animals after feeding with different
diets, the number of claims in a year for insurance policies of different types,
the yield of some crop in differently treated field plots in an agricultural
experiment, or the annual cancer rates in successive years in some country.

In the last three examples the experimental units are the insurance policy,
the field plot, and the country. However, in this book we are mainly using
examples from medical and public health research and we denote the experi-
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mental units by individuals and the features that are observed in the individ-
uals as variables. Frequently, the aim of research is to study the distribution
of one of the variables and to compare this distribution among subgroups of
the individuals or, more generally, to relate this distribution to other features
of the individuals. Thus, in the blood pressure example, we may wish to com-
pare the blood pressure distributions between the groups of men and women
and/or to relate the blood pressure distribution to the age of the individuals.

This illustrates the situation that we focus on in this book. We denote
the variable whose distribution is under study as the response or outcome
variable and that or those variables giving rise to the subgroups as explanatory
variables or covariates. Alternative names for the response variable include
dependent variable or y-variable and alternative names for the explanatory
variables include independent variables or x-variables. However, we do not
use the latter names in this book. In the blood pressure example the response
variable is blood pressure whereas gender and age are explanatory variables.

Statistical techniques for studying the distribution of the response vari-
able in relation to one or more explanatory variables are known as regression
methods and if we manage to specify the dependence of blood pressure on
gender, age, or other characteristics, we have performed a regression analy-
sis and explained some of the population variation. (We later (Section 1.4.2)
explain why the name “regression”, meaning “decline”, has been attached
to this situation.) The unknown quantities involved in the description of the
relation between outcome and covariates are denoted parameters . We aim
at providing estimates, that is, “informed guesses” of these parameter values
when analyzing the data.

A regression model may result in better diagnostics regarding too high
or too low blood pressure and, as a consequence, we have better results in
the overall treatment of abnormal blood pressure because the correct patients
may be identified for treatment.

The specification of a useful regression model must rely on two compo-
nents: theoretical knowledge of the problem at hand and graphical represen-
tations of the data. It cannot be emphasized too much that graphics are an
extremely important part of regression analysis and, whenever possible, data
and results from analyses should be illustrated graphically. Therefore, graph-
ical displays of various sorts are used throughout the text.

Following a regression analysis for the problem just described, we can
give sex- and age-specific reference values for normal blood pressure. In the
former case, we have two sets of references, whereas in the latter case we
get a reference curve covering an appropriate age range reflecting the age
distribution in our sample.

When performing a regression analysis and thereby studying the distribu-
tion of a (response) variable, the relevant techniques to use depend on the type
of this variable. Thus, methods for studying the distribution of a quantitative
or numerical variable (i.e., a variable that may take (several) numerical val-
ues) are different from methods for studying the distribution of a categorical
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variable which may take few, and not necessarily numerical, values. However,
it is one of the main purposes of this book to highlight similarities among
a number of different regression methods, all of which are frequently applied
in medical and public health research, as well as in several other scientific
branches.

The rest of Chapter 1 is organized as follows. In Section 1.1 we introduce
three examples from medical research with different types of outcome vari-
ables. Both these examples and those introduced in Section 1.5 are based on
our own experience and are used as illustrations throughout the book. Hav-
ing introduced these examples we next summarize the characteristics of the
distribution of the outcome variable which is the focus for regression mod-
eling when, as in these examples, the outcome is either quantitative, binary,
or a survival time. These characteristics are the mean value, the failure risk,
and the survival function, respectively. In Section 1.2 we discuss models with
a single covariate and in Section 1.3 we explain how this covariate is re-
lated to the relevant outcome characteristic via the link function. In Section
1.4 we demonstrate how, for all types of outcome, covariates are combined
into a linear predictor when building a regression model for the outcome. In
these sections we illustrate the basic ideas in regression analysis using these
three examples. As part of the illustration, some parameter estimates in sim-
ple regression models are presented without specifying details about how the
estimates are obtained. Such details are given later in the book. Thus, the
general ideas of estimation are presented in Chapter 2 (Section 2.3.1) and
specific methods are discussed systematically in subsequent chapters. Section
1.5 presents other examples to be used for illustration and the final Section
1.6 summarizes how the rest of the chapters of the book are organized.

1.1 Introductory examples and types of outcome

The following examples are used for illustration throughout the book.

1. A substudy of a European investigation of vitamin D status where the
outcome variable is quantitative

2. A substudy of the Danish National Birth Cohort Study where the outcome
variable is binary

3. The PBC-3 trial in liver cirrhosis where the outcome variable is a survival
time

1.1.1 Introductory examples

Example 1.1. Body mass index and vitamin D status

The data presented here come from a larger study on vitamin D status in four
European countries (Ireland, Poland, Finland, and Denmark) conducted by
Andersen et al. (2005). The data provide age, body mass index, and vitamin
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D status for 420 females (girls and elderly women). Body mass index (BMI) is
a height-corrected weight measure defined as weight (in kg) divided by height
(in m) squared. BMI is considered normal when between 18.5 and 25 (kg/m2),
underweight when below 18.5 and overweight when above 25. The group of
overweight individuals may be further subdivided into slight overweight and
obese (> 30 kg/m2). Vitamin D status is given via a measurement of 25-
hydroxy-vitamin D (25OHD) in serum (nmol/l). Among the questions to be
addressed using these data is whether the 25OHD-level depends on BMI and
on age and how these levels vary between countries. There were 41 adult Irish
women who were not underweight and where both BMI and 25OHD were
available. Table 1.1.1 presents average 25OHD values for these women. There
are 16 normal weight women and 25 overweight women. For the latter group
the averages are also given separately for the 16 slight overweight and the
9 obese women. It seems as if the vitamin D measurements decrease with
increasing body mass index.

Table 1.1.1. Average 25OHD vitamin D values for 41 adult Irish women in sub-
groups given by body mass index.

BMI Group n Vitamin D

Normal 16 56.138
Overweight 25 42.804

Slight overweight 16 45.831
Obese 9 37.422

This example is used as an illustration in Sections 1.2, 1.4, 2.2.2, 2.3.2,
3.1.1, 3.2.1, 4.1.1, 5.1.1, 5.1.2, 5.2.1, 5.2.2, 5.3.1, 6.2.1, 7.3, and 8.2.

Example 1.2. Fever in early pregnancy and risk of fetal death — A
substudy of The Danish National Birth Cohort Study

The Danish National Birth Cohort Study was a nationwide study of pregnant
women and their offspring (Olsen et al., 2001) . Between 1997 and 2002 more
than 100,000 women were recruited to the study at their first antenatal visit to
the general practitioner. When an informed consent form was received by the
study secretariat, the women were invited to complete a computer-assisted
telephone interview, scheduled to take place in pregnancy weeks 12–16 (al-
though, for a number of women, the interview took place a little later). The
interview provided information on a number of “exposures” suspected to be
related to subsequent health outcomes in the child. Andersen et al. (2002a)
analyzed a subsample of the cohort, consisting of women recruited before
March 31, 1999, with the aim of studying the relation between fever in early
pregnancy and fetal death. Here we present data on women interviewed before
pregnancy week 17, who were still pregnant at week 17, and for whom infor-
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mation on episodes of fever in pregnancy was obtained. The average number
of pregnancy weeks at interview was 14. These women were then followed
from week 17, with the response variable of interest being fetal death.

Table 1.1.2. Distribution of fetal death by number of fever episodes before preg-
nancy week 17 in 11,778 women recruited to the Danish National Birth Cohort
Study.

Number of Fever Episodes
Fetal Death 0 1 2 3+ Total

No 9595 1852 182 30 11659
Yes 98 20 1 0 119

Total 9693 1872 183 30 11778

Table 1.1.2 shows the distribution of the response variable, fetal death, in
subgroups given by the explanatory variable, number of fever episodes, for the
11,778 women included in our substudy. Thus, among women without fever
episodes before the 17th week of pregnancy, 98/9693 = 1.0% experienced a fe-
tal death after week 17; among women with one or more fever episodes the cor-
responding number was roughly the same: (20 + 1 + 0)/(1872 + 183 + 30) =
1.0%. However, a number of other explanatory variables may confound this
simple comparison between the groups. We study the influence of smoking, al-
cohol consumption, coffee consumption, age, number of previous pregnancies,
and number of previous spontaneous abortions.

Even though the main question addressed using these data deals with the
risk of fetal death following fever in early pregnancy, it is also of interest to
study predictors for the number of fever episodes.

This example is used as illustration in Sections 1.3, 2.2.1, 2.3.2, 3.1.2, 4.1.2,
5.1.1, 7.4, and 7.2.

Example 1.3. The PBC-3 trial in liver cirrhosis

PBC-3 was a multicenter randomized clinical trial conducted in six European
hospitals (Lombard et al., 1993). Between January 1, 1983 and January 1,
1987, 349 patients with the liver disease primary biliary cirrhosis (PBC) were
randomized to treatment either with Cyclosporin A (CyA, 176 patients) or
placebo (173 patients). The purpose of the trial was to study the effect of
treatment on the survival time. However, during the course of the trial an
increased use of liver transplantation for patients with this disease made the
investigators redefine the main response variable to be time to “failure of
medical treatment” defined as either death or liver transplantation. Patients
were then followed from randomization until treatment failure, drop-out or
January 1, 1989; 61 patients died (CyA: 30, placebo: 31), another 29 were
transplanted (CyA: 14, placebo: 15) and 4 patients were lost to follow-up
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before January 1, 1989. In this example, the response variable, time to failure
of medical treatment, is not observed in all patients. For patients lost to
follow-up and for those alive without having had a liver transplantation on
January 1, 1989, only a lower limit of the response variable is observed, namely
time from randomization to end of follow-up. These incomplete observations
of the response are denoted right-censored observations. The presence of such
observations in the dataset prevents the use of simple means (as in Example
1.1) or simple percentages (as in Example 1.2) when describing the data. The
simple descriptive method that is used instead for right-censored data is the
empirical Kaplan–Meier survival curve where the probability of staying event-
free is estimated as a function of follow-up time. This is introduced in Section
2.2.3 with details deferred to Section 3.1.3. Figure 1.1.1 shows the estimated
survival curves in the two treatment groups. It is seen that the two curves are
nearly identical; for example at three years the fraction of event-free patients
in both groups is estimated to be slightly below 80%. However, a number
of other explanatory variables, including serum bilirubin, serum albumin, sex,
and age are strong prognostic factors. Imbalances with respect to these factors
among the treatment groups, which may exist in spite of the randomization,
may affect the simple treatment comparison between the survival curves.
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Fig. 1.1.1. Comparison of estimated survival curves for CyA (dashed) and placebo
(solid) treated patients with PBC.

This example is used as an illustration in Sections 1.3, 3.1.3, 3.2.3, 4.1.3,
4.2, 5.1.1, 5.1.2, 5.2.2, and 6.2.3.
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1.1.2 Types of outcome

We now revisit the examples from the previous section with the purpose of
emphasizing the three main types of outcome variable. The mathematical
symbol for the response variable is y, and the value observed in individual i
is yi. The explanatory variable is denoted x and the value for subject i is xi.

Quantitative outcome

In Example 1.1 the outcome y is the quantitative variable vitamin D status
measured by the concentration of 25OHD. When we talk about quantitative
responses we often think of the situation where y is in fact continuous, (i.e.,
the outcome may take on any value in some interval). For such an outcome
variable, the object for regression modeling is the level of y, typically taken to
be the mean (or expected) value which we formally introduce in Section 2.1.
It is denoted E(y) where E(· · · ) stands for “expectation”. The mean values of
25OHD in subgroups given by categorization (grouping) of the explanatory
variable body mass index (BMI) x are estimated by the averages shown in
Table 1.1.1. For the level of the outcome to be described adequately by the
mean, the distribution of y should be reasonably symmetric. If the distribution
of y is skewed, the mean may provide a poor description of the level and it may
be advantageous to transform y prior to regression modeling. For instance, if a
logarithmic transformation of y gives rise to a distribution closer to symmetry
then the object for regression modeling may be taken to be instead the mean
value E(log(y)) of the transformed variable. In such situations, a suitable
back-transformation is crucial for interpreting the results as we do in later
chapters.

The grouping of BMI in Table 1.1.1 provides an example of a categorical
covariate. Another categorical covariate from Example 1.1 is country. Com-
paring the 25OHD mean values in two BMI groups (overweight versus normal
weight) typically leads to the t-test (Section 3.1.1) whereas comparison among
several groups is carried out using ”one-way analysis of variance” (Section
3.2.1). We show in these sections how these simple methods are special cases
of linear regression. However, avoiding categorization of BMI and treating it
instead as a quantitative covariate x may often be advantageous. This leads
to simple linear regression (Section 4.1.1) where E(yi) is related directly to xi

assuming a linear relationship. Modeling E(yi) by means of several covariates
(e.g., both BMI and country) is done using multiple linear regression (the
general linear model)(Chapter 5).

Binary outcome

In Example 1.2 the response variable, fetal death, is binary (i.e., with two
levels: fetal death versus no fetal death) and we may code it as yi = 1 if woman
i experiences fetal death and yi = 0 otherwise . For this binary outcome the
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object of regression analysis will typically be the risk of fetal death: pr(yi = 1)
where pr(· · · ) stands for “probability” (cf. Section 2.1). The probabilities of
fetal death in subgroups given by the covariate x, number of fever episodes
in early pregnancy, are estimated by the relative frequencies shown in Table
1.1.2. Comparison of the risk of fetal death between two groups (e.g., no fever
episodes versus some) is often carried out using the chi-square test for a two
by two table (Section 3.1.2) and a comparison among several groups (e.g.,
the four categories of number of fever episodes from Table 1.1.2 is done via
the chi-square test for a two by four table (Section 3.2.2). The small numbers
of fetal deaths in the categories 2 and 3+ fever episodes may prevent one
from doing that comparison in a meaningful way, however. We show in these
sections that both chi-square tests are closely connected to logistic regression
analysis including the categorical covariate number of fever episodes .

Relating the risk of fetal death to the quantitative covariate alcohol con-
sumption is performed using simple logistic regression (Section 4.1.2). As men-
tioned in Example 1.2 adjusting for other covariates, such as alcohol consump-
tion, may be needed to obtain an unconfounded comparison between women
with or without fever episodes. Relating the risk of fetal death to both of these
covariates is carried out using multiple logistic regression (Chapter 5) .

Survival time outcome

In Example 1.3 the response variable y is a survival time; time to failure of
medical treatment (death or liver transplantation) . Recall that for patients
dropping out of the PBC-3 trial as well as for patients still alive without a
transplantation on January 1, 1989, the exact value of y is not observed and
only a lower limit (the time of right-censoring) is known. This has important
consequences for the way in which the distribution of y may be described and
related to explanatory variables. For example, the mean time to failure of
medical treatment E(y) may not be estimated as a simple average as used in
Example 1.1 due to the censored observations. Also, for any fixed value t of
time since randomization the probability pr(y > t) of surviving time t may not
be estimated as a simple relative frequency (as used in Example 1.2) if there
are censored observations less than t. We extend the discussion of this problem
in later sections (Sections 2.2.3 and 3.1.3) and here just briefly mention that
the characteristic of the distribution of a survival time response variable y
that is most frequently used for relating y to covariates is the whole survival
function, that is, the survival probability pr(y > t) studied as a function of
time, t.

Note that, although pr(y > t) may not be estimated as a simple relative
frequency when there are censored observations, it may be estimated using
the so-called Kaplan–Meier estimator (Section 2.2.3 and 3.1.3). Figure 1.1.1
shows Kaplan–Meier estimates of the survival function for PBC-3 patients
in the groups given by the binary covariate treatment (CyA versus placebo).
Comparison of the survival function between the two treatment groups may
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be carried out by the two-sample logrank test or using a Cox regression model
(Section 3.1.3) . Also quantitative covariates such as bilirubin may be relevant
to study in the PBC-3 trial for which purpose the “simple” Cox regression
model may be used (Section 4.1.3) . Treatment comparisons after adjustment
for prognostic variables such as bilirubin are carried out using the multiple
Cox regression model (Chapter 5) .

1.2 Covariates

In Section 1.1 we showed how different types of response variables (quantita-
tive, binary, survival time) appeared in different studies and how the charac-
teristics used both to describe the distributions and to relate them to explana-
tory variables differed among them. However, we also saw how the structure of
the covariates (any combination of categorical and quantitative explanatory
variables) was the same, no matter the type of the outcome variable and we
exemplified how regression techniques were relevant in Examples 1.1 to 1.3.
In this section focus is on the two types of explanatory variables, categorical
(Section 1.2.1) and quantitative (Section 1.2.2), and we exemplify simple re-
gression models with a single covariate. For a quantitative outcome variable
we show that such models may be obtained in a rather direct way whereas,
for binary and survival time outcomes, it is advantageous to introduce link
functions (Section 1.3).

For notation, index i always refers to individuals, y is always the outcome
variable, and the explanatory variable is x. Sometimes a basic explanatory
variable is used directly in the regression models, however, frequently cate-
gorized, or otherwise transformed, versions of x are also used. Other math-
ematical symbols are model parameters or indices for groupings other than
individuals. The notation used in the book is summarized in Appendix A.

1.2.1 Categorical covariates

To describe the distribution of y in the x-subgroups, certain summary mea-
sures were used depending on the type of response variable. Thus, for the
quantitative outcome in Example 1.1 the average was used as an estimate of
the mean (or expected) value E(yi) of the vitamin D status measured as the
concentration of 25OHD. For the binary outcome variable in Example 1.2 the
relative frequency was used as an estimate of the probability pr(yi = 1) of
fetal death. For the survival time outcome in Example 1.3 the empirical sur-
vival curve (the Kaplan–Meier estimator) was used as an estimate of survival
probabilities pr(yi > t) for relevant values of time t.

To be more specific, we assumed in Example 1.1 that there were separate
mean values, say m0 and m1, in the two groups defined from BMI; that is

E(yi) =

{
m0 if xi = 0
m1 if xi = 1,

(1.2.1)
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where xi = 1 if woman no. i is overweight and xi = 0 if she is normal weight.
The similar assumption in Example 1.2, defining the explanatory variable xi

as 1 if woman i had fever before week 17 and xi = 0 if not, was that there
were separate risks of fetal death, say p0 and p1, in the two groups; that is

pr(yi = 1) =

{
p0 if xi = 0
p1 if xi = 1.

(1.2.2)

Finally, in Example 1.3, defining the explanatory xi as 1 if patient i was
treated with CyA and xi = 0 if not, we assumed that there were separate
survival functions, say S0(t) and S1(t), in the two groups, i.e.

pr(yi > t) =

{
S0(t) if xi = 0
S1(t) if xi = 1.

(1.2.3)

Focusing on Example 1.1, Equation (1.2.1) may be rewritten as

E(yi) = m0 + (m1 − m0)xi, (1.2.4)

or

E(yi) = a + bxi. (1.2.5)

In the linear regression model (1.2.5) we have introduced the standard re-
gression parametrization where a = m0, the intercept or constant term, is the
mean response in the reference group corresponding to x = 0, and b = m1−m0

is the effect of the explanatory variable or the regression coefficient for the
explanatory variable, x, that is, the difference between the mean responses
for individuals with xi = 1 and individuals with xi = 0. The effect b of
x is sometimes denoted the “slope” (for reasons that should become appar-
ent when quantitative explanatory variables are introduced below). Note that
when b = 0 the mean of y does not depend on x. (In Section 1.4.2 we give
some cautionary remarks concerning the use of the word “effect”.) In Exam-
ple 1.1 we find from Table 1.1.1, denoting the estimate of a parameter by a
“hat”, that the estimate of b is b̂ = −13.334 and â = 56.138; both estimates
are measured in the same units as the outcome variable.

For the other types of outcome variables, binary in Example 1.2 and sur-
vival time in Example 1.3, Equations (1.2.2) and (1.2.3) may be rewritten in
a similar fashion. However, it turns out that the convenient way of doing this
is after having introduced link functions which we do in Section 1.3.

In Equations (1.2.1)–(1.2.3) the basic covariate xi was defined to take
values 0 or 1 whereby xi could be used directly as the explanatory variable
in Equations (1.2.4) and (1.2.5). If a binary covariate xi more generally takes
values g0 and g1, say, then (1.2.4) and (1.2.5) are applicable when replacing
xi by the indicator or dummy variable defined by

I(xi = g1) =

{
1 if xi = g1

0 if xi = g0.
(1.2.6)



1.2 Covariates 11

This approach is also used for a general categorical explanatory variable, that
is, with possibly more than two categories. Here, the model formulation (1.2.1)
is directly applicable: if xi takes the k + 1 values g0, g1, . . . , gk, say, we may
write

E(yi) =

⎧⎪⎪⎨
⎪⎪⎩

m0 if xi = g0

m1 if xi = g1

. . . . . .
mk if xi = gk.

(1.2.7)

To rewrite equation (1.2.7) like (1.2.4) or (1.2.5) we then introduce the k
indicator variables I(xi = gj), j = 1, . . . , k and Equations (1.2.4) and (1.2.5)
become

E(yi) = m0 + (m1 − m0)I(xi = g1) + (m2 − m0)I(xi = g2)

+ · · · + (mk − m0)I(xi = gk)

and

E(yi) = a + b1I(xi = g1) + b2I(xi = g2) + · · · + bkI(xi = gk), (1.2.8)

respectively. Again, Equation (1.2.8) uses standard regression parametriza-
tion, where a = m0, the intercept, is the mean response in the reference cate-
gory corresponding to x = g0, and the regression coefficients bj = mj−m0, j =
1, . . . , k, represent the effects of x with the interpretation that bj is the dif-
ference between the means when x = gj and x = g0, respectively. Note again
that if b1 = b2 = · · · = bk = 0 then the mean of y does not depend on x.

In Example 1.1 we may study the body mass index divided into three
groups: 0: normal, 1: slight overweight, and 2: obese, and from Table 1.1.1 we
find the estimates â = 56.138 and we get b̂1 = −10.307 for the comparison of
slight overweight and normal weight and b̂2 = −18.716 for the comparison of
obese and normal weight.

1.2.2 Quantitative covariates

Frequently, the groups are ordered (e.g., the categories may be obtained by
grouping a quantitative explanatory variable x into certain intervals). Thus, in
Example 1.1 we were studying the subgroups: “normal,” “slight overweight,”
and “obese” given by the BMI cutpoints 25 and 30 kg/m2. In Example 1.2, the
risk of fetal death may be related to alcohol consumption whereas in Example
1.3 the distribution of time to treatment failure is likely to depend on the
patients’ serum bilirubin levels.

In such examples it is often a plausible a priori assumption that the level
of the response variable varies in a monotonic way among the groups: the
response level either increases or decreases through the ordered groups. Often
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a natural score s(xi) can be attached to each group. Thus, if the groups
correspond to intervals of a quantitative explanatory variable x, the score
attached to interval j could be a typical x-value (like the midpoint) from
that interval. Otherwise one may simply use the group numbers 0, 1, . . . , k as
scores.

In Figure 1.2.1 the averages of the response variable y (25OHD) in Example
1.1 are plotted against the BMI scores defined as the midpoints 21.75 and 27.5
for the first two intervals and 32.5 for the last.
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Fig. 1.2.1. Average 25OHD-values plotted against the BMI scores 21.75, 27.5, and
32.5 in Example 1.1.

A graphical representation such as Figure 1.2.1 may (as we show below)
be well suited for illustration for other types of outcome variables. However,
for a quantitative outcome it is more natural to use a scatterplot where the
individual response yi is plotted against the explanatory variable xi, in partic-
ular if xi is ”truly quantitative” or continuous (i.e., if it takes many different
values). In Figure 1.2.2 this is done for the data from Example 1.1.

A simple way of describing a relation like the one we see in Figure 1.2.2 is
to assume a linear relation between x and the expected value, E(y) of y, that
is,

E(yi) = a + bxi. (1.2.9)

Equation (1.2.9) expresses that the scatterplot, on average, is a straight line
with slope b (hence the name “slope” for this parameter introduced above)
and intercept a (which is the mean value when xi = 0). The interpretation of
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Fig. 1.2.2. Scatterplot: values of the quantitative outcome y (25OHD) plotted
against the quantitative covariate x (BMI) in Example 1.1.

b is the difference in mean response between subjects whose difference in x is
one unit. That is, if b = 0 then the line is horizontal and the mean of y does
not depend on x.

The straight line in Figure 1.2.2 has slope b̂ = −2.388 and intercept â =
110.941. Note that the interpretation of a as the mean 25OHD value for women
with a BMI of zero is not very useful and a reparametrization of the model
(1.2.9) is advantageous for presentation purposes. One solution could be to use
the explanatory variable xi−25 instead of xi in (1.2.9). Thereby, the intercept
in the reparametrized model would be the expected 25OHD value for women
with a BMI value of 25 kg/m2 and the estimate of this new intercept would

be â + 25 · b̂ = 110.941− 25 · 2.388 = 51.241 which is certainly a more typical
value for observed 25OHD values. The model as such and the slope are not
affected by the reparametrization as is further illustrated in Section 4.1.1.

1.3 Link functions

In (1.2.9) the line will (if b > 0) take arbitrarily large (positive) values for
large positive values of x and arbitrarily small (i.e., large negative) values
for large negative values of x (vice versa if b < 0). For this to be a sensi-
ble model for E(yi) it is implicitly assumed that the quantitative outcome
variable y may take both positive and negative values with no strict limita-
tions. If, however, the range of y is restricted to positive values, for example,
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then extreme predictions from the model (1.2.9) may become meaningless if
the covariate is unrestricted because such predictions eventually may become
negative. Whether this is a serious problem will depend on the range of the
explanatory variable x and the range of a + bx for reasonable values of x.

For binary and lifetime outcomes, however, the range restriction of the pa-
rameter is a serious challenge. This is because, for both the failure probability
for a binary y, p = pr(y = 1), and for the survival probability, S(t) = pr(y > t)
for lifetime data, the parameter is restricted to the interval from 0 to 1. There-
fore, for these types of outcome, one typically does not assume that it is the
basic parameter (p or S(t)) which is, itself, a linear function of x but rather
that some function of p or S(t) depends linearly on x. This function is known
as the link function. In the remainder of this section we introduce the most
common link functions for binary responses and for survival times. Finally,
we return to the situation with a quantitative outcome variable. When study-
ing the link function, material concerning logarithmic functions collected in
Appendix B is useful.

Binary outcomes

Let us begin by considering the simple case of a binary outcome as in Example
1.2 (cf. Equation (1.2.2)). The link function most frequently used for binary
outcomes is the logit link function which relates to the odds parameter. When
p is the failure probability then p/(1 − p) is the odds of failure, that is, the
ratio between the failure probability and its complementary probability (the
“success” probability, 1−p). The odds is just another measure of the frequency
of a failure. It is nonnegative; it is 0 if p = 0 and undefined or “plus infinity”
if p = 1. This means that the log(odds)

� = logit(p) = log

(
p

1 − p

)
(1.3.10)

can be both negative and positive; it is undefined or “minus infinity” if p = 0
and undefined or “plus infinity” if p = 1. Equation (1.2.2), dealing with a
binary covariate x, can then be rewritten as

�i = logit(pr(yi = 1)) =

{
logit(p0) if xi = 0
logit(p1) if xi = 1

(1.3.11)

and the equation equivalent to (1.2.5) becomes the logistic regression model

�i = a + bI(xi = 1) = a + bxi. (1.3.12)

The function logit(p) is shown graphically in Figure 1.3.3 (left panel). In
(1.3.12) the interpretation of the intercept parameter a is log(p0/(1 − p0)),
the log(odds) in the reference group of women without fever episodes, and the
slope b is
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b = logit(p1) − logit(p0) = log

(
p1/(1 − p1)

p0/(1 − p0)

)

the log(odds ratio) between women with and women without fever episodes.
Thus b = 0 again corresponds to no dependence on x of the distribution of y.
Note that, as a consequence of (1.3.10), the failure probability is given by the
logistic function

p =
exp(�)

1 + exp(�)
(1.3.13)

shown in Figure 1.3.3 (right panel).
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Fig. 1.3.3. Left: the logit function � = logit(p) = log(p/(1− p)). Right: the logistic
function p = exp(�)/(1 + exp(�)).

In Example 1.2, the estimate for p0 was p̂0 = 98/9693 = 0.01; that is,
the estimate for a becomes log(p̂0/(1 − p̂0)) = −4.584 whereas that for b is
log(p̂1/(1 − p̂1)) − log(p̂0/(1 − p̂0)) = −4.588 − (−4.584) = −0.004. These
estimates are in a scale that is hard to interpret and, instead, the estimated
odds ratio exp(̂b) is usually quoted. For this example the value is 0.996, close
to the null value of 1 for an odds ratio, meaning that the odds of fetal death
are practically the same for women with or without fever episodes.

For a categorical explanatory variable expressions like (1.2.7) and (1.2.8)
may be set up for the log(odds) parameter leading to regression coefficients
b1, . . . , bk which are log(odds ratios) for categories 1, . . . , k in relation to the
reference category 0.

As an illustration we study Example 1.2 and the reported weekly alcohol
consumption during pregnancy. Table 1.3.1 presents the data. It is seen that
the risk of fetal death is rather constant over alcohol categories. The table also
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Table 1.3.1. Distribution of fetal death by reported number of drinks per week
during pregnancy in 11,778 women recruited to the Danish National Birth Cohort
Study. (One woman had missing value for the alcohol consumption.)

Number of drinks per week
Fetal death 0 0.5–1 1.5–2 2.5–3 3.5+ Total

(0) (0.73) (1.85) (2.83) (4.89)

No 6954 3241 962 308 193 11,658
Yes 68 34 12 3 2 119

Total 7022 3275 974 311 195 11,777

Risk (bp) (%) 0.97 1.04 1.23 0.96 1.03 1.01
log(odds) (log(bp/(1 − bp))) –4.63 –4.56 –4.38 –4.63 –4.57 –4.58
log(odds ratio) 0 0.07 0.24 0.00 0.06
odds ratio 1 1.07 1.28 1.00 1.06

gives the estimated log(odds) parameters and the corresponding odds ratio
estimates relative to the reference category of nondrinkers.

Again, an analogue to Equation (1.2.9) may be considered for binary out-
comes. Here the model is the simple logistic regression model

�i = a + bxi, (1.3.14)

where xi denotes the weekly alcohol consumption reported by woman i. In
(1.3.14), the intercept a is the log(odds) for individuals with x = 0 and the
slope or regression coefficient b is the difference in the log(odds) between
subgroups whose difference in their values of x is one unit (i.e., the log(odds
ratio) associated with one x-unit). This means that the most natural regression
parameter to quote is exp(b), the odds ratio associated with one x-unit. Again
b = 0 (or exp(b) = 1) corresponds to the situation where the distribution of y

is independent of x. In this model the estimates become â = −4.627, b̂ = 0.078.
Thereby, exp(̂b) = 1.08 meaning that the odds of fetal death are 8% higher
for women who have one more drink per week.

To evaluate the model (1.3.14) we may define the score s(xi) = x̄(j), the
average number of weekly drinks for women in alcohol category j, if woman
i belongs to that category. These averages are shown in brackets in Table
1.3.1 and in Figure 1.3.4 the log(odds) estimates are plotted against these
averages. Note that this figure is analogous to Figure 1.2.1 for the example
with a quantitative outcome variable (Example 1.1). Also note that, for a
binary outcome, the scatterplot used in Figure 1.2.2 for a quantitative outcome
is not very informative, although adding a scatterplot smoother (introduced
more formally in Section 4.2) aids the interpretation. We do that in Section
4.1.2. For the model

�i = a + bs(xi)
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we find b̂ = 0.0455, not dramatically different from the slope estimated in
model (1.3.14). The line in Figure 1.3.4 has this slope corresponding to an

estimated odds ratio per weekly drink of exp(̂b) = 1.05. The interpretation is
that the odds of fetal death increase by 5% for each extra weekly drink in the
sense that the estimated odds ratio for women differing by 1 drink per week
is 1.05. The intercept is â = −4.609.
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Fig. 1.3.4. Log(odds) of fetal death (and fitted regression line) for categories of
weekly alcohol consumption in the Danish National Birth Cohort Study.

We later (Section 6.1.3) return to a general discussion concerning merits
and drawbacks of the grouping of a quantitative explanatory variable.

Survival time outcomes

For the survival data in Example 1.3 we also have the restriction 0 ≤ S(t) ≤ 1
similar to the restriction on p in Example 1.2. This means that one possi-
ble link function to use for survival data would be the logit transformation.
However, because of its relation to the log(hazard ratio) parameter (defined
shortly), a different link function has been used more frequently for survival
data.

The hazard rate is defined, intuitively, in the following way. If y is a survival
time outcome then the survival function, as explained above, is

S(t) = pr(y > t),
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the probability that the outcome exceeds time t. The hazard rate h(t) (which is
also a function of time t) is then given as follows. The conditional probability
that the survival time y is between t and t + dt given that y exceeds t is,
approximately, for small dt > 0, equal to h(t)dt. This conditional probability,
defined properly in Section 2.1, is written as

pr(t < y < t + dt | y > t)

where “|” is to be read as “given that.” The hazard rate gives a “dynami-
cal” description of the distribution of y in that its value at time t gives the
instantaneous failure rate per time unit; see Figure 1.3.5.

�� � �

0 t t + dt Time

Fig. 1.3.5. Illustration of the interpretation of a hazard rate.

Because the hazard rate can be any nonnegative number the log(hazard
rate) can be both positive and negative and has no range restrictions. If we
let h0(t) be the hazard rate corresponding to the survival function S0(t) and
h1(t) that corresponding to S1(t) then, defining li(t) as the log(hazard rate)
for the distribution of yi, we can rewrite Equation (1.2.3), dealing with a
binary covariate, as

li(t) =

{
log(h0(t)) if xi = 0
log(h1(t)) if xi = 1.

(1.3.15)

The equation analogous to (1.2.5) then becomes

li(t) = log(h0(t)) + bI(xi = 1) = log(h0(t)) + bxi; (1.3.16)

that is, the hazard rate for individual i is given by the Cox regression model

h0(t) exp(bxi). (1.3.17)

In Equation (1.3.16) the crucial assumption that the difference b = log(h1(t))−
log(h0(t)) does not depend on t has been imposed. This is known as the pro-
portional hazards assumption as it implies that the hazard ratio h1(t)/h0(t) =
exp(b) is constant; see (1.3.17). This may be a severe restriction that may
simply be inadequate in certain examples and, at any rate, it is a model
assumption which must be checked carefully in actual data analyses. If the
proportional hazards model fits the data then the hazard ratio exp(b) is the
natural parameter to quote and exp(b) = 1 (or log(hazard ratio), b = 0) corre-
sponds to the situation where the distribution of y does not depend on x. Note
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that, as a consequence of the proportional hazards assumption, the intercept
term in (1.3.16), that is, the log(baseline hazard rate) log(h0(t)), is not a sin-
gle number (like a in (1.2.5) or (1.3.12)) but itself a function of time, t. The
baseline hazard rate h0(t) is the hazard rate in the reference group, x = 0. For
the PBC-3 data from Example 1.3 the estimated hazard ratio for treatment
is 0.94 close to the null value of 1 indicating, as shown in Figure 1.1.1, that
there is no substantial difference in time to treatment failure between the two
treatment groups.

For a categorical explanatory variable, following the approach for quantita-
tive and binary outcome variables, expressions like (1.2.7) and (1.2.8) may be
set up for the log(hazard rate) l(t) leading to regression coefficients b1, . . . , bk

which are log(hazard ratios) for categories 1, . . . , k in relation to the reference
category 0. Under the assumption of proportional hazards between all k + 1
groups we then get the equation

li(t) = log(h0(t)) + b1I(xi = 1) + b2I(xi = 2) + · · · + bkI(xi = k). (1.3.18)

As an example we again study the PBC-3 trial and the explanatory variable
serum bilirubin recorded at entry into the trial. This is a strong prognostic
factor as indicated by Table 1.3.2 which presents the number of patients and
observed number of treatment failures in bilirubin quintile groups (i.e., di-
viding patients into five (approximately) equal-size groups according to their
value of bilirubin). The same tendency is seen in Figure 1.3.6 which shows the
estimated survival curves in the same five groups.

Table 1.3.2. Number of patients and observed (“expected”) number of treatment
failures in serum bilirubin quintile groups in the PBC-3 trial in liver cirrhosis.

Serum Bilirubin (μmol/L)
Interval ≤10.3 10.3–16 16–26.7 26.7–51.4 >51.4 Total
Average (7.66) (13.26) (20.23) (37.32) (148.83)

Patients 70 73 66 70 70 349
Treatment failures 6 3 13 23 45 90
(“Expected”) (23.26) (20.34) (16.78) (16.89) (12.73) 90
Hazard rate ratio 1 0.57 3.00 5.28 13.70

The numbers given in the last row of Table 1.3.2 estimate exp(b1), exp(b2),
exp(b3), exp(b4), the hazard rate ratios for the last four bilirubin groups com-
pared to the first (cf. Equation (1.3.18)). (These estimates may be based on
the “expected” numbers of treatment failures; see Section 3.2.3.) A general
increase of the hazard rate with bilirubin is seen and it may be advantageous
to treat bilirubin as a quantitative explanatory variable, that is, to study a
model like the simple Cox regression model
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Fig. 1.3.6. Comparison of estimated survival curves for patients with PBC in quin-
tile groups of serum bilirubin: first quintile (solid), second (upper dashed), third
(dotted), fourth (dotted-dashed), fifth (lower long-dashed).

li(t) = log(h0(t)) + bxi, (1.3.19)

where xi is the bilirubin value at entry for patient i. To evaluate this model let
us first define the score s(xi) to be the average bilirubin value for the quintile
group to which individual i belongs:

s(xi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

7.66 if xi ≤ 10.3
13.26 if xi ∈ (10.3, 16]
20.23 if xi ∈ (16, 26.7]
37.32 if xi ∈ (26.7, 51.4]
148.83 if xi > 51.4.

In Figure 1.3.7 the estimated log(hazard ratios) b0 = 0, b̂1, . . . , b̂4 are plotted
against the scores s(xi). We may note that, also for survival time data, due to
the presence of right-censored observations, scatterplots analogous to Figure
1.2.2 are not available. Instead in later chapters we introduce “scatter-type
plots” based on so-called pseudo-observations for survival data (Section 3.1.3).

Although, according to Figure 1.3.7, linearity of the log(hazards) is ques-
tionable, we consider the model

li(t) = log(h0(t)) + bs(xi), (1.3.20)

where exp(b) is the hazard rate ratio between groups differing by 1 μmol/L
for their values of bilirubin. The estimate becomes exp(0.0150) = 1.02. In this
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example it is more informative to quote the hazard rate ratio associated with
a bilirubin difference of 10 μmol/L. This is exp(0.150) = 1.16. Replacing s(xi)
by each patient’s individually recorded serum bilirubin value at entry xi the
estimate corresponding to 10 μmol/L is exp(0.093) = 1.10, the discrepancy
partly arising from the nonlinearity seen in Figure 1.3.7.
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Fig. 1.3.7. Estimated log(hazard ratios) plotted against average bilirubin value
s(x) in quintile groups of serum bilirubin.

Quantitative outcomes. Transformations

We now return to a quantitative outcome variable y as discussed in the intro-
duction to this section. For a positive y an obvious link function to use would
be log, that is, to study a model like

log(E(yi)) = a + bxi. (1.3.21)

In Equation (1.3.21) a is the log of the mean value of yi for individuals with
xi = 0 and b is the difference in the log of the mean response between indi-
viduals with a difference in their value of x equal to one unit; that is, b = 0
corresponds to no dependence on x for the mean of y. For this model the
parameter exp(b) is the one with the most obvious interpretation being the
ratio between mean responses in subjects whose difference in their values of
x is one unit.
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However, for a positive quantitative outcome variable it is often simpler
to log-transform y before the analysis than to apply a model such as (1.3.21)
with the log link function. This transformation leads to considering a linear
model for the log-transformed outcome log(y):

E(log(yi)) = a + bxi. (1.3.22)

In Equation (1.3.22), a is the mean value of log(yi) for individuals with xi = 0
and b is the difference in mean log-response between subjects whose difference
in their values of x is one unit. Thereby, exp(b) is the ratio between so-called
“geometric means” for such subjects as explained in Appendix B.

We return to the problem of transforming a quantitative outcome variable
in Sections 3.1.1 and 3.2.1 where we also illustrate this approach using the
data from Example 1.1.

Digression. Transformations versus link functions

Using a log-transformation of the quantitative outcome y and using a log link

for E(y) may, at first glance, look rather similar. The main difference between the

two approaches has to do with an aspect of the linear model that we have not

mentioned yet, namely the random variation of y. The linear model is usually (see,

e.g., Sections 3.1.1 and 4.1.1) accompanied by an assumption of a constant random

variation for y (“variance homogeneity”). That is, when log-transforming y, it is for

the transformed scale that we assume to have variance homogeneity and a linear

model for the mean, whereas, using a log link for E(y), it is y that is assumed to

have constant random variation, but it is the log mean value that depends in a linear

way on x. In Section 7.3 we contrast the use of a log link with a log-transformation. �

1.4 Building a regression model

In the previous sections we introduced ways in which the distribution of an
outcome variable y may be related to a single explanatory variable x. We
were dealing with outcome variables of different types: quantitative, binary,
and survival times, and both situations where x was categorical and situations
where x was quantitative were studied. Different statistical models were rele-
vant for different types of outcomes. However, both for categorical explanatory
variables and for quantitative explanatory variables, the ways in which a co-
variate was dealt with were quite similar for the three types of outcome. Thus,
a categorical x with k + 1 different values (g0, g1, . . . , gk) gave rise to adding
terms of the form

b1I(xi = g1) + b2I(xi = g2) + · · · + bkI(xi = gk) (1.4.1)

to the intercept a. In particular, for a binary x a single term
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b1I(xi = g1) (1.4.2)

was added to a. Furthermore, a quantitative x gave rise to adding a term of
the form

bxi (1.4.3)

to a. Recall that, for survival data, the intercept a is to be understood as
the log(baseline hazard rate), that is, the function that expresses how the
log(hazard rate) depends on time t for covariates equal to 0.

In the three examples introduced in Section 1.1 focus was on a single ex-
planatory variable at a time: body mass index in Example 1.1, fever or alcohol
in early pregnancy in Example 1.2, and treatment or bilirubin in Example 1.3.
Nevertheless, other explanatory variables may be of interest or adjustment for
such variables may be warranted to obtain an accurate estimate of the effect
of the explanatory variable of primary interest. This may, for instance, be the
case in the second example where fever episodes may be more prevalent in
women with a high alcohol consumption during pregnancy. A simple compar-
ison of the risk of fetal death between women with or without fever episodes
may, therefore, be confounded by the possibly different levels of alcohol con-
sumption in the two groups. Thus, we can see that there is a need for studying
multiple regression models , that is, models with several simultaneous explana-
tory variables.

In Section 1.4.1 we present the basic idea for doing this, namely simply to
add terms of the form (1.4.1)–(1.4.3) to the model, thereby obtaining the linear
predictor. We show what the corresponding consequences of doing this are in
relation to the interpretation of the regression coefficients in the model. We
do this in detail for the case of modeling the mean of a quantitative outcome
as a function of two explanatory variables that are either both binary or one
is binary and the other is quantitative. Other situations are just mentioned
briefly with details deferred to later chapters. An important feature is that
the linear predictor in all cases is linked to the distribution of the response
variable via the link function as explained in Section 1.3.

In Section 1.4.2 we discuss a number of different purposes for undertaking
a regression analysis and give some cautionary remarks about difficulties in
attaching causal interpretations to the results from a regression analysis.

The notation when there are several, say nc, explanatory variables is that,
for individual i, the observed value of the first of these is denoted xi,1, the
second xi,2, and so on; the last one is xi,nc

. Recall that sometimes these
basic explanatory variables are used directly in the regression models however,
frequently categorized, or otherwise transformed, versions of the xs are also
used.
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1.4.1 The linear predictor and the link function

Our starting point for the discussion is the women from Ireland and Poland
in Example 1.1 and the quantitative outcome variable yi, 25OHD measure-
ment of vitamin D status for woman no. i. For this study we have the two
explanatory variables:

xi,1 = BMI for woman i.

and

xi,2 =

{
1 if individual i is from Ireland
0 if individual i is from Poland.

We first consider a model with the two binary explanatory variables I(xi,1 ≥
25) (overweight versus normal weight) and xi,2. Adding terms of the form
(1.4.2) for these two variables leads to the model

E(yi) = a + b1I(xi,1 ≥ 25) + b2xi,2 (1.4.4)

for the expected value of yi. In tabular form, the model is presented in Table
1.4.1.

Table 1.4.1. Expected values in four groups according to model (1.4.4).

Normal Weight Overweight

Poland a a + b1

Ireland a + b2 a + b1 + b2

From (1.4.4) and Table 1.4.1 we can compute the effect of the dichotomized
body mass index, I(x1 ≥ 25), for women from Ireland (x2 = 1) and for women
from Poland (x2 = 0). The former is

(a + b1 + b2) − (a + b2) = b1

and the latter is
(a + b1) − a = b1.

Thus, the interpretation of the regression coefficient b1 for the dichotomized
body mass index in the model which also includes country x2, is an effect of
body mass index for separate values of country. Furthermore, it is seen that
this effect is assumed to be the same for all values of x2, that is, both for
Ireland and for Poland. Similarly, we can compute the effect of country x2,
that is, a difference between countries for overweight women and for normal
weight women. The former is

(a + b1 + b2) − (a + b1) = b2
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and the latter is
(a + b2) − a = b2.

It is seen that the interpretation of the regression coefficient b2 for country x2

in the model which also includes body mass index x1 is the effect of country
for separate values of body mass index and, again, this effect is assumed to
be the same for all values of x1, that is, for normal weight and for overweight
women. We say that the effects of body mass index and country are mutually
adjusted.

In conclusion, a consequence of simply adding the terms for the explana-
tory variables is that the effect of one explanatory variable is assumed to be
the same no matter the value of the other explanatory variable(s). We say that
there is no interaction between the explanatory variables. This is a crucial as-
sumption and it is often part of the regression analysis to examine whether
such an assumption is reasonably fulfilled.

For the vitamin D study (cf. Example 1.1) we find â = 42.298, b̂1 =

−11.942, b̂2 = 12.990. We can compare these estimates with the average
25OHD values computed in each of the four countries by BMI groups (cf.

Table 1.4.2). The estimate b̂1 = −11.942 is an average of the two differences
between averages for overweight and normal weight: 30.613 – 41.167 = –10.554
in Poland and 42.804 – 56.138 = –13.334 in Ireland, weighted according to group
size. Similarly, b̂2 = 12.990 is a weighted average of the differences between av-
erages for Ireland and Poland: 56.138 – 41.167 = 14.971 among normal weight
women and 42.804 – 30.613 = 12.191 among overweight women. The fact that
these differences in rows and columns, respectively, are not very different sug-
gests that the additive model (1.4.4) provides a satisfactory fit to the data
and, hence, there seems to be no interaction between country and BMI. We
return to a more careful evaluation of this in Section 5.2.1.

We can also illustrate the concept of confounding by comparing these mu-
tually adjusted effects of BMI (̂b1 = −11.942) and country (̂b2 = 12.990) with
the corresponding unadjusted estimates. For BMI the latter is the difference
between the “marginal averages”: 34.520− 49.722 = −15.201 and for country
it is the difference 48.005 − 32.561 = 15.444. The difference between the ad-
justed and unadjusted estimates is due to confounding and we can say that
the unadjusted effect of BMI “does not provide a fair comparison” between
overweight and normal weight women because of the influence of country: the
group of overweight women is dominated by the women from Poland (Polish
women constitute 53/(53 + 25) = 68% of the overweight women and only
12/(12+16) = 43% of the normal weight women) and the Polish women tend
to have lower 25OHD-values than the Irish. Therefore the adjusted BMI esti-
mate is smaller in absolute terms than the unadjusted. We can interpret the
change in the estimated effect of country similarly. However, the differences
are not great so there is not much confounding in this example.
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Table 1.4.2. Average 25OHD values (and number of women) in four groups defined
acccording to country and BMI.

Normal weight Overweight Total

Poland 41.167 (12) 30.613 (53) 32.561 (65)
Ireland 56.138 (16) 42.804 (25) 48.005 (41)

Total 49.722 (28) 34.520 (78) 38.536 (106)

If we replace the binary I(xi,1 ≥ 25) by the quantitative explanatory
variable xi,1 (BMI for woman i) and study a model including this variable
and country xi,2, we get the following expression for the expected value of
vitamin D for woman i:

E(yi) = a + b1xi,1 + b2xi,2. (1.4.5)

Considering two women with the same BMI xi,1, one from Ireland (i.e., with
xi,2 = 1), and one from Poland (xi,2 = 0) the difference between their expected
y-values is

a + b1xi,1 + b2 − (a + b1xi,1) = b2

no matter the value of xi,1. That is, b2 is again the effect of country (Ireland
versus Poland) adjusted for BMI. Similarly, b1 is the difference in expected
vitamin D value for two women from the same country whose BMIs differ
by 1 unit (kg/m2). Note that this is true for women from Ireland as well as
for women from Poland; also in model (1.4.5) there is no interaction between
country and body mass index. The effect of country does not depend on the
level of BMI and vice versa.

Fitting the model (1.4.5) to the data from Example 1.1 we find the es-

timates â = 70.156, b̂1 = −1.299, b̂2 = 12.084. The expected y-values in this
model can be displayed graphically as done in Figure 1.4.1. We see that the
two lines are parallel, both with slope b̂1 = −1.299, and with (constant) verti-

cal distance b̂2 = 12.084. The intercepts for the two lines are â = 70.156 (for

the line corresponding to women from Poland) and â + b̂2 = 82.240 (for the
line corresponding to Irish women), respectively. As in Section 1.2 it may be
advantageous to reparametrize the model to obtain an intercept correspond-
ing to the expected 25OHD value for a sensible BMI value, for example 25
kg/m2 instead of 0. Such a reparametrization does not affect the estimates
of b1 and b2 but the estimate of the intercept in the reparametrized model
becomes â + 25b̂1 = 70.156− 25 · 1.299 = 37.681 and has the interpretation as
the expected 25OHD value among Polish women with a BMI of 25.

Again, we can illustrate the concept of confounding by comparing with
unadjusted estimates. For country this is (again) 15.446 whereas for BMI it
is −1.698, both numerically slightly larger than the unadjusted effects as ex-
plained when studying the model with two binary covariates.
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Fig. 1.4.1. Expected values from the model (1.4.5): two parallel lines with slope b1

and vertical distance b2. Dashed curve is for Ireland, solid for Poland.

The assumption of no interaction is crucial and in actual data analysis it
is often important to examine the hypothesis more closely. In Section 5.2.2 we
return to a closer discussion of the concept of interaction in multiple regression
models.

We have presented linear regression models with two binary explanatory
variables (1.4.4) and with one binary and one quantitative explanatory vari-
able (1.4.5) and we have seen that a consequence of simply adding the terms
for each variable is a model with no interaction between the two variables. We
have also seen consequences of potential confounding by comparing adjusted
and unadjusted estimates. In a similar vein we could study linear models for
the log(odds) of a binary outcome and for the log(hazard rate) for a survival
time outcome. In both cases, terms for the explanatory variables can be added
leading to models where there is no interaction and where the effects of the
variables are mutually adjusted. Also, for all types of outcome variables, other
kinds of explanatory variables can be combined in multiple regression models
by adding their corresponding terms. This includes general categorical and
quantitative covariates.

This leads us to a way of building regression models. When we want to
relate the distribution of a single outcome variable yi to explanatory variables
xi,1, . . . , xi,nc

for subject i, terms bjxi,j (or bjf(xi,j) for some transformation,
f(·) when xj is used in a transformed fashion) are added to a common in-
tercept, a. Each term then depends on a separate regression parameter (or
regression coefficient) bj . Common to the models obtained in this way is their
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linear structure because an expression that is linear in the parameters is ob-
tained. This is the kind of model we study in the rest of this book and for all
models the expression

LPi = a + b1xi,1 + b2xi,2 + · · · + bnc
xi,nc

(1.4.6)

is denoted the linear predictor for individual i. The regression coefficient bj is
also denoted the effect of xi,j although, as we discuss in the next section, this
terminology should be used with some caution.

Depending on the type of response the linear predictor (1.4.6) is then linked
to the distribution of the outcome variable using the proper link function.
Thus, for a quantitative outcome y (possibly transformed; see Section 1.3) we
typically have

E(yi) = LPi,

(i.e., “the link is the identity function”), whereas for a binary y the link is the
log(odds) �i; that is,

�i = log

(
pr(yi = 1)

1 − pr(yi = 1)

)
= LPi.

For a survival time y the linear predictor will depend on time t, and LPi(t) is
introduced via the log(hazard rate)

li(t) ≈ log(
1

dt
pr(t < yi < t + dt | yi > t) = LPi(t).

Here, the linear predictor is

LPi(t) = log(h0(t)) + b1xi,1 + b2xi,2 + · · · + bnc
xi,nc

where “the intercept a”in (1.4.6) is now the log(baseline hazard rate) log(h0(t))
as explained in Section 1.3.

1.4.2 Regression models and their interpretation

The word “effect” introduced in the previous section should be used with
some caution because the regression models under study do not necessarily
allow us to make “causal” interpretations of the results. We can take gender
as an example of a very common explanatory variable that is observable, but
not controllable. This means that whenever we study sex differences for the
distribution of a particular outcome variable, we must be aware that men
and women differ in a lot of respects that may or may not account for the sex
difference for this particular outcome. If we mean to quantify the sex difference
as such, we should include no such “intermediate covariates” in the model.
However, if we want to see whether, for example, height, is the true cause
of the difference and gender only appears important because of its obvious
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relation to height then we are in a situation where both covariates should be
taken into account simultaneously.

On the other hand, in a clinical trial where two or more treatments are
compared we have an example of an explanatory variable, treatment, which
can be controlled in the sense that the experimenter can decide which patients
are to receive which treatment. Such a subjective choice is not advisable be-
cause it will almost inevitably lead to selection differences in the treatment
groups (differences in stage of illness, age, etc.) causing possible bias in the
treatment comparisons. Instead, it is common practice to randomize patients
to the treatment groups in order to ensure that the groups become comparable.
An example of such a situation is provided by the PBC-3 study in Example
1.3. Any differences (apart from the treatment itself) that may be present
after (proper) randomization may be ascribed to chance and for large group
sizes, such differences will therefore on average be small. This ensures that a
simple comparison between treatment groups (i.e., with treatment group as
the only covariate) will be valid and will even allow us to make causal in-
terpretations. However, inclusion of other explanatory variables in the model
may still often be advisable, for example, if a study is not sufficiently large to
ensure identical covariate distributions among the treatment groups or, more
important, at least for quantitative outcomes, to reduce the unexplained vari-
ation and thereby obtain increased precision for the estimation of treatment
differences.

This leads us to a discussion of the different scientific purposes for per-
forming a regression analysis. One such purpose could be a simple prediction:
given a number of potential explanatory variables, how well are we then able
to predict the outcome? In such a case the interpretation of a single “effect”
is not crucial; it is merely the joint contribution of all predictors that matters.
In our discussion of models in subsequent chapters, in particular in Chapter
6, prediction is not what we primarily have in mind. In fact, for the purpose
of pure prediction, a number of other approaches (including neural nets and
classification trees; see e.g. Hastie, Tibshirani, and Friedman, 2001, Ch. 9 and
11) may be superior to the kinds of linear models that are our focus, although
models with a linear predictor have the advantage of providing a simple and
explicit “prediction rule.”

A second major purpose of a regression analysis is to understand a rela-
tionship between one or few explanatory variables and the outcome. However,
to obtain an accurate estimate of such a relationship it is often necessary to
account for a number of other covariates, the effects of which are not of pri-
mary interest. Such a point of view is the core of most observational studies in
epidemiology. Here, interest frequently focuses on an exposure variable, such
as fever in early pregnancy in the study introduced in Example 1.2. However,
due to the observational design where, obviously, exposure groups are not ran-
domized, a number of confounding factors must be taken into consideration in
order to obtain a “fair” comparison between exposure categories. This is the
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kind of situation which we will often have in mind when discussing regression
models in the following.

Digression. The word “regression”

Finally, a brief remark on the term “regression” itself; why is a word meaning

“decline” attached to this extremely common analytical approach to statistics? The

explanation seems to date back to Francis Galton (1822–1911) who noticed a ten-

dency to “mediocrity” (i.e., “more like average”) in the offspring compared to the

parents. In particular he, and later Karl Pearson, observed that the height of sons

whose fathers were very tall tended to be closer to the mean height and similarly for

sons of fathers with small heights. This situation of “regression towards the mean” is

still an important one in many studies, however, the word also seems to be stuck to

the kind of models that we work with in this book; see for example, Farewell (2005). �

1.5 Further examples

In this section, more examples used for illustration in subsequent chapters are
introduced.

Example 1.4. Surgery complications

The study conducted by Berg et al. (1997) was concerned with postsurgery
pulmonary complications. The investigation included 691 patients undergoing
either orthopedic, gynecological or abdominal surgery. The number of com-
plications in the three groups (the actual counts as well as the percentage of
the corresponding group) are shown in Table 1.5.1.

Table 1.5.1. Complications in relation to type of surgery.

Complications %
Operation Type No Yes Total

Orthopedic 200 6 206 2.9
Gynecological 235 5 240 2.1
Abdominal 210 35 245 14.3

Total 645 46 691 6.7

This table suggests that abdominal surgery is more subject to compli-
cations than the other types of surgery. However, for each patient we have
additional information about age and duration of anesthesia, and these may
account for some of the discrepancy, inasmuch as abdominal patients may be
older and the surgery may last longer.
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The main purpose of the study, however, was to determine whether some
types of neuromuscular blocking agents (NBA) were more prone to complica-
tions than others. Furthermore, it was of interest to know whether residual
neuromuscular block (RNB, here quantified by the “TOF-ratio”, a measure
of neuromuscular function) was a mediating risk factor in this connection.

This example is used as an illustration in Sections 3.1.2, 3.2.2, and 6.2.2.

Example 1.5. Fatty acids

An experiment studying lymphatic absorption of fatty acids was conducted
(Fruekilde and Høy, 2004) by feeding 40 rats with different dairy products.
The rats were subdivided into five groups and each group was fed one specific
dairy product (I: cream cheese, II: sour cream, III: cream, IV: mixed butter,
V: butter). The rats were fed at time 0 and, after 8 hours, the accumulated
lymphatic absorption of fatty acids (in mg) was measured.

The aim of the experiment was to study the effect of diet on uptake of
fatty acids. We may get a first idea about the possible differences by simply
looking at a scatterplot of accumulated lymphatic absorption versus diet type,
as seen in Figure 1.5.1. The absorption of mixed butter and butter (products
4 and 5) seems to be at a lower level than the other three types of fatty acids.

This example is used as illustration in Section 3.2.1.
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Fig. 1.5.1. Absorption of fatty acids for five dairy products, I: cream cheese, II:
sour cream, III: cream, IV: mixed butter, V: butter.
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Example 1.6. Cell concentration of tetrahymena

In an experiment with the unicellar organism tetrahymena (Hellung-Larsen
et al., 1990), we are interested in determining how cell concentration (number
of cells in 1 mL of the growth media) may affect the cell size (average cell
diameter, measured in μm).

Moreover, the effect of adding glucose to the growth media is investigated,
by studying 19 cell cultures with no glucose added and comparing to 32 cell
cultures grown with glucose added. The relation between cell size and cell
concentration for the group without glucose is seen in Figure 1.5.2. We note
that the effect of an increased concentration is to decrease cell size and that
this effect diminishes for large concentrations leading to an apparent nonlinear
relationship between cell concentration and cell size.
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Fig. 1.5.2. Cell diameter (μm) as a function of cell concentration (cells per mL)
for media without glucose.

This example is used as illustration in Section 4.1.1.

Example 1.7. The CSL1 liver cirrhosis trial

CSL1 was a randomized clinical trial where, in the period 1962–1969, 488
patients with liver cirrhosis were treated with either the active drug prednisone
(251 patients) or placebo (237 patients) (Copenhagen Study Group for liver
diseases, 1969; Schlichting et al., 1983). After randomization patients were
followed to either death, drop-out, or end of study (September, 1974): 142
prednisone patients and 150 placebo patients died. The survival times for
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the remaining patients are right-censored. An important prognostic factor for
these patients is ascites, that is, excess fluid in the abdomen. The presence
of ascites at entry was recorded as absent, slight, or moderate/marked. The
numbers of patients and deaths are given in Table 1.5.2. The fraction of deaths
is seen to increase with the amount of ascites whereas the treatment seems to
have a minor influence on mortality.

Table 1.5.2. CSL1 trial: number of patients (% deaths) in six treatment by ascites
groups.

Ascites
Treatment No Slight Moderate/Marked Total

Prednisone 191 (49%) 34 (71%) 26 (92%) 251 (57%)
Placebo 195 (60%) 20 (75%) 22 (82%) 237 (63%)

Total 386 (55%) 54 (72%) 48 (88%) 488 (60%)

This example is used as illustration in Sections 5.2.1, 5.2.4, and 5.3.2.

Example 1.8. Birthweight and ultrasound measurements

The birth weight (BW) in grams for 107 babies was ascertained. For all babies,
both the abdominal (AD) and biparietal (BPD) diameters (in mm) were mea-
sured shortly before birth using ultrasound (Secher et al., 1987). The purpose
of this study was to describe the relationship between birthweight and these
two ultrasound measurements in order to establish a way to predict birth-
weight (or fetus weight). For a preliminary examination, Figures 1.5.3 and
1.5.4 show the scatterplots of birthweight versus AD and BPD, respectively.
It is seen that birthweight, as expected, increases with both of the measured
diameters.

This example is used as an illustration in Sections 5.1.3 and 5.2.3.

Example 1.9. Identifying markers for liver fibrosis

For patients with liver diseases, an important part of the diagnostic procedure
can be to quantify the degree of liver fibrosis. However, this requires a liver
biopsy which is an invasive and time-demanding procedure with potentially
serious side effects. It would therefore be advantageous to replace such a biopsy
with something simpler, preferably some markers that may be quantified from
blood samples.

An investigation was carried out by Nøjgaard et al. (2003) among 127
patients with liver problems. Based on a liver biopsy, the degree of fibrosis
was determined on a four-point scale (0: “no,” 1: “slight,” 2: “modest,” 3:
“severe” occurrence of granulation tissue) and from blood samples, three dif-
ferent markers: “hyaluronan” (ha), “type III procollagen peptide” (p3np), and
“human cartilage glycoprotein 39” (ykl40) were measured. The task is to use
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Fig. 1.5.3. Birthweight study: scatterplot of BW (g) versus AD (mm) with esti-
mated regression line.
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Fig. 1.5.4. Birthweight study: scatterplot of BW (g) versus BPD (mm) with esti-
mated regression line.
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one or more of these markers to predict the degree of fibrosis, so that in the
future, a liver biopsy may be replaced by a simple blood test. A preliminary
look at the data is presented in Table 1.5.3 as medians and ranges, subdivided
according to the degree of fibrosis. The levels of all three markers seem to in-
crease with the degree of fibrosis.

Table 1.5.3. Median of blood markers in the four fibrosis groups.

Median (Range)
Degree of Fibrosis Count ha p3np ykl40

0 27 27.5 (21.0–126.0) 5.00 (1.7–25.0) 174.0 (50.0–408.0)
1 40 42.0 (25.0–2920.0) 5.90 (2.6–27.0) 270.0 (111.0–967.0)
2 42 211.5 (25.0–3060.0) 15.85 (3.8–62.0) 466.0 (82.0–2430.0)
3 20 242.5 (105.0–4730.0) 14.55 (8.2–70.0) 676.0 (180.0–4850.0)

This example is used as an illustration in Section 7.1.

Example 1.10. Survival with malignant melanoma

In the period 1962–1977, 205 patients with malignant melanoma (cancer of
the skin) had a radical operation performed at Odense University Hospital,
Denmark (Drzewiecki and Andersen, 1982). All patients were followed until
the end of 1977 by which time 134 were still alive and 71 had died (out of
whom 57 had died from cancer and 14 from other causes).

The object of the study was to assess the effect of risk factors on sur-
vival. Among such risk factors were the sex and age of the patients and the
histological variables tumor thickness and ulceration (absent versus present).
For a preliminary presentation of the data, Table 1.5.4 shows the number of
patients and the number of deaths according to thickness and ulceration. It
is seen that the fraction of deaths seems to increase with thickness and with
presence of ulceration.

Table 1.5.4. Number of deaths/number of patients (%) by thickness and ulceration
for the malignant melanoma survival data.

Thickness 0–2 mm 2–5 mm 5+ mm

Ulceration absent 14/87 (16%) 7/21 (33%) 2/7 (29%)
Ulceration present 6/22 (27%) 26/43 (60%) 16/25 (64%)

This example is used as an illustration in Sections 7.5 and 8.1.3.
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Example 1.11. Cardiac output

Measuring cardiac output requires an invasive procedure and to minimize
discomfort for the patients, the time involved in the measuring process should
be minimized. However, the precision of the measurement is important and
several consecutive measurements are needed in order to limit the estimation
uncertainty.

An investigation was carried out by Nilsson et al. (2004) in order to study
the number of measurements required, and to determine possible explanatory
variables for the standard deviation of the measurements. The study involved
80 patients, who each had eight consecutive measurements of cardiac output
(in L/min) taken (except for a single patient where one observation is missing
for technical reasons). One additional measurement was deleted because of an
obvious error in measurement.

A within-patient standard deviation based on the eight consequtive mea-
surements was calculated for each patient and in Figure 1.5.5 these are plotted
against the corresponding average value of cardiac output.
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Fig. 1.5.5. SD of eight consecutive measurements of cardiac output (L/min) plotted
against the mean.

This example is used as an illustration in Section 7.3.

Example 1.12. Tryptase and allergic reactions

Tryptase is found in mast cells in the human body and all individuals have
a baseline level of tryptase in the blood (serum tryptase). The tryptase level
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can increase in connection with severe allergic reactions and is used to confirm
these reactions.

Garvey et al. (2010a,b) conducted investigations of serum tryptase with
the following purposes.

• To determine possible predictors for the baseline level of serum tryptase
• To determine the effect of general anesthesia and surgery on serum tryptase
• To investigate possible increases in serum tryptase in patients with sus-

pected allergic reactions during anesthesia

In one study (study 1) serum tryptase was measured in 120 patients im-
mediately before and after orthopedic surgery in general anesthesia. None of
these patients experienced any signs of allergy during anesthesia. For these
patients, age, sex, and physical status (according to the ASA classification)
is known. Figure 1.5.6 shows the tryptase values after surgery plotted against
those before.

A second study (study 2) concerns patients with a suspected allergic reac-
tion during anesthesia. For these patients, a blood sample for serum tryptase
is measured 1–4 hours after the reaction and a baseline level is taken after
more than 24 hours when the suspected allergic reaction has disappeared. For
these patients, we have additional information regarding the severity of the
reaction (1: mild, 2: more serious, 3: severe life-threatening reaction (anaphy-
lactic shock), 4: cardiac arrest) and information on the result of subsequent
allergy testing (0: negative, 1: positive).

The “before surgery” values from study 1 and the after 24-hour values for
the suspected allergy patients in study 2 can be treated as baseline tryptase
measurements. The values measured after surgery in study 1 can be used for
studying the effect of surgery and anesthesia (an expected decrease due to
dilution), whereas the values measured after the suspected allergic reaction
in study 2 can be thought of as a combined effect of dilution and a possible
allergic reaction.

These data are mostly used for exercises in the book and to ease data
handling, they have been organized as three datasets as follows.

1. Before and after tryptase values for 120 orthopedic patients with no sus-
pected allergic reaction (study 1).

2. Tryptase values taken in connection with a suspected allergic reaction
for 318 patients undergoing various kinds of surgery. This dataset also
includes subsequent baseline values (study 2).

3. Baseline tryptase values for 438 patients (study 1 and 2 combined).

This example is used as an illustration in Section 5.4.

1.6 The scope of this book and how to read it

This section summarizes how the rest of the book is organized and at the same
time it provides some guidance on how to read it. Some sections are more
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Fig. 1.5.6. Tryptase data: measurements after surgery plotted against measure-
ments before; the line is the identity line.

difficult to read than others, simply because they deal with more complicated
topics. Recall from the preface that our main readership is intended to be
researchers from scientific areas where statistics are being used as a tool.
However, it is our hope that also people with a more mathematical background
who wish to enter into the field of biostatistics will benefit from using the book,
for example, for self-study.

Chapter 2 first presents a review of background material on the principles
of probability and distributions. Some of the material covered may be familiar
to some readers but we have chosen to present it for completeness. Next follow
sections on descriptive statistics and on statistical inference. The latter has
separate subsections presenting the main ideas for the three steps of inference:
estimation, model checking, and hypothesis tests. This section concludes with
a subsection on the most important principle for inference, the likelihood
principle. That subsection is more difficult to read than the rest of Chapter 2
as it contains more mathematical details. It may be skipped without missing
the main flow of the book.

In Chapter 3 the simple building blocks for categorical explanatory vari-
ables are introduced for the three main types of outcome variable. We first
deal with the simplest such covariate with only two levels and, subsequently,
we discuss the general case with any number of levels. The chapter explains
how simple, perhaps well-known, statistical techniques such as the t-test, the
chi-square test for frequency tables, the logrank test for survival data, and
others can be considered special cases of regression analysis.
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Chapter 4 deals with one quantitative explanatory variable, first when a
linear effect can be assumed. As is the previous chapter, Section 4.1 is subdi-
vided according to the three types of outcome variables and the special cases of
simple linear, logistic, and Cox proportional hazards regression, respectively,
are presented. In Section 4.2 certain models with a quite flexible, nonlinear
effect of the covariate (still described by a linear predictor) are introduced.
A very common example of such a nonlinear effect is a polynomial but mod-
els using “splines” are also discussed. This section is more difficult to read
because the models discussed are more complicated than those presented in
previous sections.

Having presented the building blocks, Chapter 5 discusses multiple regres-
sion models, that is, models with several explanatory variables. For ease of
presentation and interpretation we focus on models with two covariates and
introduce the concepts of confounding and interaction. We emphasize that,
although both of these concepts become relevant when studying multiple co-
variates, they have absolutely nothing in common. If we study the effect of an
explanatory variable x1 on an outcome y, then confounding by another covari-
ate x2 means that the effect of x1 on y differs with or without adjustment for
x2. On the other hand, interaction means that the effect of x1 on y depends
on the value of x2; that is, the effect varies between x2-subgroups. We study
models with and without interactions for combinations of the two covariates:
two categorical, one categorical and one quantitative, and two quantitative.
The chapter continues with a brief section discussing models with any number
of covariates, introducing the rather technical concept of “higher-order inter-
actions,” and concludes with a brief section dealing with the situation where
observations are paired or matched.

In Section 6.1 we discuss model-building strategies, in particular selection
of explanatory variables for answering a given research question, and principles
for model checking. We illustrate these principles in Section 6.2 via three
worked examples (Examples 1.1, 1.4, and 1.3), and Chapter 6 concludes with
a brief section dealing with sample size determination useful in the planning
stage of a study.

Whereas Chapters 3 – 6 primarily deal with examples of linear models
for quantitative outcomes, logistic models for binary data, and Cox models
for lifetimes, Chapter 7 presents a number of other regression models with a
linear predictor. These include the logistic models for ordinal and multino-
mial data and Poisson-type models for counts. Also models for quantitative,
binary, or survival time data with other link functions than those studied in
Chapters 3–6 are discussed. Sections 7.3 – 7.5 are more technical than most
previous sections. Chapter 8 briefly mentions a number of extended models
all involving a linear predictor. These include models with more than one
response variable per individual, including repeated measurements and other
types of correlated outcomes, for example random effect models and models
with covariate measurement errors. The treatment of these topics is by no
means meant to be exhaustive but serve mainly as a warning that models
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more complicated than the ones treated in this book occur quite frequently
and will produce erroneous conclusions if not analyzed properly.

We conclude with four appendices summarizing: the notation used in the
book (Appendix A), the use of logarithms (Appendix B), a number of rec-
ommendations otherwise “hidden” in the text (Appendix C), and very simple
commands in R, SAS, and STATA for performing analyses like those reviewed
in Tables 1.6.1–1.6.2 below (Appendix D).

Examples 1.1 – 1.3 from Section 1.1.1 and Examples 1.4 – 1.12 from Section
1.5 are referred to throughout all chapters. However, only in Section 6.2 are the
examples meant to be exhaustive and to cover all aspects of the data analysis
whereas, in other sections, the examples are merely meant to illustrate the
methods under current discussion. Most chapters end with a section containing
exercises dealing with additional analyses of the data from the examples.

We mentioned in Section 1.4.2 that our main motivation for doing regres-
sion analysis is to understand a relationship between one or a few explanatory
variables and the outcome, rather than to make an accurate prediction of the
outcome based on a set of explanatory variables. However, this point of view is
most important for the discussion of model selection in Chapter 6 and we be-
lieve that the methods discussed in other chapters are relevant no matter the
purpose of the regression analysis. In that respect, Chapters 3 – 5 constitute
the core of the book, introducing the building blocks of a regression model,
and Tables 1.6.1 and 1.6.2 summarize those three chapters. Thus, Table 1.6.1
presents, perhaps well-known, names of methods for simple regression (i.e.,
including only one covariate) with references to the relevant sections of Chap-
ters 3 and 4. Table 1.6.2 does the same for multiple regression (Chapter 5).
As mentioned above, Appendix D presents very simple commands (in R, SAS,
and STATA) for doing most of the analyses reviewed in these tables.

A main feature of this book is that Chapters 3 to 5 correspond to rows
of Tables 1.6.1 and 1.6.2, that is, taking types of covariates as a starting
point and discussing analyses with various outcome types subsequently. Other
books on regression models highlight the columns of Tables 1.6.1 and 1.6.2.
Thus Hosmer and Lemeshow (2000) and Kleinbaum and Klein (2002) concen-
trate on logistic regression, Kleinbaum and Klein (2005), Collett (2003), and
Kalbfleisch and Prentice (2002) on survival analysis, and Draper and Smith
(1998) and Panik (2009) on linear regression. Also more general books, treat-
ing more than one class of regression model, tend to divide chapters according
to outcome type rather than covariate type. This includes both the more tech-
nical books on “generalized linear models” by McCullagh and Nelder (1989)
and Dobson (2002) and the more applied book by Vittinghoff et al. (2005).
Among the books listed, the latter is probably the one that comes closest in
aim and scope to this book.
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2

Statistical models

Research begins with theories and hypotheses. For instance, it may have been
noted that many people experiencing a stroke tend to have high blood pres-
sure. You get the idea that medication aimed at lowering blood pressure may
therefore also reduce the risk of a stroke. However plausible this sounds, it
requires an investigation (a study) to confirm or reject this suspicion. For in-
stance, the apparent connection between high blood pressure and stroke may
be simply due to the fact that people experience stroke at an older age where
blood pressure is also increased and hence that lowering of blood pressure has
no effect on the risk of a stroke because it does not change the age of the indi-
vidual. Thus, empirical studies are needed in order to show which hypotheses
are reasonable and which ones have to be abandoned. Studies create obser-
vations that show variation (people at identical ages differ in blood pressure,
and people with identical blood pressure may or may not experience a stroke).
Statistics is the discipline dealing with the interpretation of such observations
in the search for overall patterns, for example, a description of the risk of a
stroke as a function of age and blood pressure.

In this chapter, we describe the most fundamental mathematical concepts
used in this process. We abstain from a thorough treatment that would require
a solid mathematical training. We believe that this is not necessary in order
to appreciate the ideas and logic behind the most commonly used statistical
procedures.

Statistics uses probabilities and probability distributions to describe varia-
tion between the observations and to build models that enable us draw con-
clusions about the scientific problem in the presence of this variation. These
concepts are introduced in Section 2.1.

Having obtained data, the next step is to make relevant summaries (fre-
quencies, averages, etc.) and produce informative plots. Even though the type
of data analysis may already have been more or less decided upon before
data collection, it is very important not to skip this initial step of getting
acquainted with your collected data. This process may reveal data errors or
unexpected values that may lead to slight changes in the perspective of the
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analysis, for example, introducing a safety aspect. These topics are treated in
Section 2.2 under the heading descriptive statistics.

The models specified for the data will typically contain one or more un-
known quantities of interest, called parameters, for example, describing the
relation (if any) between blood pressure and risk of experiencing a stroke.
Analysis of the collected data will aim at deriving informative statements
about these, as well as about other parts of the specified model, for example,
the distribution. The principles behind data analysis (called statistical infer-
ence) are the focus of Section 2.3. That section is again subdivided according
to the main steps of statistical inference, namely

1. Model checking; evaluation of the adequacy of the model to describe the
data reasonably

2. Parameter estimation; finding the values of the parameters that provide
the best model fit, according to some criteria

3. Hypothesis testing; to assess whether the data are compatible with sim-
plified models with fewer unknown parameters

Several general principles for parameter estimation and testing exist, by
far the most important one being the likelihood principle. This principle lies
behind most of the procedures used in the remaining chapters and is there-
fore important to understand. It is described briefly in the introduction to
Section 2.3 and this should be sufficient for appreciation of the ideas. Readers
interested in a more detailed description of the idea and use of the likelihood
function may find this in the separate Section 2.3.4, but material in this sec-
tion may be skipped with no consequences for understanding the rest of the
book.

2.1 Random variables and probability

Few things are certain or identical in all situations or units (a couple of ex-
ceptions being that all life must die or that the number of legs in humans or
hearts in octopuses is rather constant).

The concept of probability expresses uncertainty, using numbers between 0
and 1. These two extremes denote certainty, either that an event will not occur
(0) or that it will occur (1). Values between 0 and 1 denote varying degrees of
uncertainty, the uncertainty being largest in the case of probabilities around
0.5 (the fifty–fifty situation; we have no idea whatsoever whether the event will
occur). For instance, we could be interested in the probability of a pregnant
woman experiencing fetal loss in pregnancy, the probability of a woman in
Poland having an adequate level of vitamin D (above some fixed threshold)
or the probability of surviving ten years or more following treatment of liver
cirrhosis. We denote such probabilities as pr(· · · ), for example, pr(fetal loss).

Uncertainty and variation are two closely related concepts. The presence of
uncertainty implies that units (subjects, animals, etc.) may behave differently
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even if the circumstances are identical (same country, identical treatments,
etc.). When variation is present, we may look for an explanation (a “cause”)
for the differences. Some characteristics (good health, low blood pressure) are
more desirable than others and we may search for predictors of such character-
istics with the aim of understanding the relationship and eventually perhaps
to be able to perform an intervention to change things to the better.

In statistical terminology, we consider the observations or data as a sam-
ple from a large (in fact, infinite) population . Hypothetical repetitions of the
experiment would lead to similar, but not identical observations. We refer to
the uncertain events about to occur (or about to be observed) as random vari-
ables (random because we cannot predict the outcome before we observe it
and variable because the outcomes will in general be different between units).
Random variables are typically denoted by y. The collection of possible val-
ues for a random variable y is denoted the sample space. For instance, in
the fetal death Example 1.2, the sample space may be seen as the “values”
{no, yes} or converted to numerical values, for example, {0,1}. If we instead
count the number of fever episodes for each woman, we have the sample space
{0, 1, 2, . . .}, because in principle there is no upper limit to the number of
possible fever episodes (although we would probably demand a fever episode
to have a certain extent so that in practice there will be an upper limit). In
the vitamin D Example 1.1, as well as in Example 1.3 concerning survival
for patients with liver cirrhosis, the sample space is an interval of nonnega-
tive numbers (vitamin D level, respectively, years of survival). For remaining
lifetime, the obvious lower endpoint is zero (patients dying immediately fol-
lowing treatment) whereas the upper endpoint is more uncertain (although
most certainly no more than a hundred years). For the vitamin D example,
the endpoints are not known, although experts in the field may be able to set
some limits. At the very least, we know that vitamin D concentration can-
not be negative, so the sample space is restricted to the positive axis. This
fact should lead to a consideration as to whether it is necessary to adjust
the analyses accordingly, typically by using a logarithmic transformation as
mentioned in Section 1.3 and further explained in Appendix B.

Each possible outcome u in the sample space has a certain probability
pr(y = u) of occurring. Some will be more probable than others. For instance,
in the fetal death Example 1.2, it is most likely to experience no fetal death and
in the vitamin D example, it is most likely to have a value in the neighborhood
of 30–60 nmol/l. A distribution or a probability distribution is a description of
the way in which the total probability (which is always 1) is distributed over
the sample space (the collection of possible outcome values). This means that
to each possible outcome we specify the associated probability. We introduce
this concept through a couple of common examples in the subsections that
follow.

The expected value of a numerical random variable is defined to be the
weighted mean of all possible outcomes, weighted according to the probability
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of occurrence. We denote the expectation of a random variable y as E(y), that
is,

m = E(y) =
∑

u pr(y = u), (2.1.1)

where we have used the symbol
∑

as representing a sum over all possible
values of y (i.e.. all us in the sample space). We also refer to this expectation
as the mean value of y. Note that the mean has the same units as the variable
itself.

The expected value tells us about the general level of the possible outcome
values, but it tells us nothing about the amount of variation (variance or stan-
dard deviation, defined below). There are several reasons why it is important
to have a measure of variation. First of all, it may be of scientific interest
in its own right to know whether the phenomenon under study is stable or
variable in the population. If it is very stable (number of legs in humans),
it may be futile to study group differences, age effects, and so on, whereas a
highly variable phenomenon such as vitamin D status suggests the presence
of predictors associated with it. Moreover, we need a measure of variation to
use for stating the precision of the conclusions that will follow from statistical
analyses. For instance, if we claim that alcohol consumption has an impact
on the probability of fetal death, we need to quantify this, for example, as a
risk ratio, equipped with a measure of precision or uncertainty.

In mathematical terms, the variance of a random variable y is defined as
the expected squared distance from its mean:

s2 = Var(y) = E(y − m)2. (2.1.2)

Because this is a quadratic expression, it has (inexplicable) quadratic units,
so for practical use this variance is most often quoted as a standard deviation
instead. This is simply the square root s of s2 with units identical to the
variable itself; that is,

s = SD(y) =
√

Var(y) =
√

E(y − m)2. (2.1.3)

The interpretation of variance or equivalently of standard deviation is not
as intuitive as for the mean. Whereas the mean is often used and understood
as a sort of theoretical average (that we would get as an actual average if we
had an unlimited number of observations), the corresponding interpretation
of the variance as a theoretical average of squared distance does not help us
very much. Also, the practical use of the standard deviation (or variance) will
in general depend on the specific distribution for the observations.

In the subsections that follow, we introduce the most common types of
distributions, namely the Bernoulli, Binomial, Poisson, and Normal distribu-
tions. Other distributions are only briefly mentioned.
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2.1.1 The Bernoulli distribution

The simplest situation for illustration of a probability distribution is Example
1.2 concerning fetal death. For each single woman (or, rather, pregnancy), the
random variable y can take on only two different values, 0 (no fetal death) and
1 (fetal death). We denote this a binary variable or Bernoulli variable. The
probability distribution in this case simply consists of specifying, for example,
the probability p of a 1-outcome, because then the probability of a 0-outcome
must be 1−p. In this simple case, the parameter p is also the mean value (the
expected value) of y so that E(y) = m = p. This very simple distribution on
the numbers 0 and 1 is known as the Bernoulli distribution. The number p is
an unknown parameter. We can think of it as the fraction of all pregnancies
(in the past, now and in the future) resulting in fetal death.

The standard deviation of a Bernoulli variable is SD(y) =
√

p(1 − p), a
quantity which as a function of the unknown p looks like an extremely steep
hill (in fact, it is the upper part of a circle), as seen in Figure 2.1.1. This
reflects the fact that if p is very close to either 0 or 1, we are pretty sure
about the outcome previous to observing it (small standard deviation, i.e.,
low uncertainty), whereas a p close to 0.5 reflects a lot of uncertainty (large
standard deviation).
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Fig. 2.1.1. The Bernoulli standard deviation
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2.1.2 The Binomial distribution

In the fetal loss example, a possible predictor for fetal death is the num-
ber of fever episodes during early pregnancy (before pregnancy week 17). We
might take an interest in this predictor in its own right (i.e., consider it as
the response variable of interest) and study the distribution of the number of
fever episodes. As long as we limit ourselves to considering only whether such
episodes occur at all, we are conceptually in the exact same situation as in Sec-
tion 2.1.1 concerned with the occurrence of fetal death. However, if we count
the number of fever episodes rather than just noting whether any occurred,
the probability distribution becomes more complex, because we now have to
prescribe the probabilities for all nonnegative integer numbers: 0, 1, 2, . . .. In
principle, we could introduce parameters p0, p1, p2, . . . (with the restriction
that these should sum to 1) but this would lead to many parameters (in prin-
ciple infinitely many, if no upper bound to the number of fever episodes is
specified) and in practice be untractable and uninformative. Instead, we show
below how to use probabilistic (logical) arguments to derive a prescription for
these probabilities, involving only a single parameter.

Suppose first that we have an upper limit on the number of fever episodes.
To achieve this, let us assume that we count the weeks in which the woman
experiences fever. As mentioned in Section 1.1, the average number of preg-
nancy weeks (before week 17) for the women was close to 14, so we assume
here a maximum of 14 fever episodes for each single woman. In practice, this
upper limit varies among women, so this fixed value serves only as an ap-
proximation. We denote this maximum by c for count, so that here, c = 14.
Now, for each of the 14 weeks, the probability of a fever episode is denoted
p. We assume these probabilities to be identical for all weeks, that is, fever is
unrelated to gestational age. If we further assume that fever episodes occur
independently of each other in different weeks (a disputable assumption that
needs investigation in practice), we may calculate the probability of any given
number u of fever episodes during a whole pregnancy. If we are talking about
u specific weeks, this is simply pu(1− p)c−u, because of the assumed indepen-
dence, because we have u weeks of fever (each with probability p) and the
remaining c−u weeks without fever (each with probability 1− p). This quan-
tity does not depend on the specific weeks involving a fever episode, thus the
only thing left is to figure out the number of ways in which we may choose the
u weeks with fever out of the total c = 14 weeks of pregnancy. This number
is called the binomial coefficient (or “c choose u”) and is denoted

(
c
u

)
. If we

let y denote the observed number of weeks with fever episodes during c = 14
pregnancy weeks then the total probability of having fever in exactly u weeks
therefore becomes

P (u) = pr(y = u) =

(
c

u

)
pu(1 − p)c−u. (2.1.4)
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The binomial coefficient
(

c
u

)
may be calculated as

(
c
u

)
= c!/(u!(c−u)!), where

c! = 14! denotes the factorial of c, that is, the product 14 · 13 · 12 · · · 1.
The distribution (2.1.4) is called the Binomial distribution with probabil-

ity parameter p and count parameter c = 14 and is denoted Bin(c, p). The
point probabilities for a Binomial distribution with count parameter 14 and
probability p = 0.015 (a hypothetical value, indicating a probability of 1.5%
for a fever episode in any given week of pregnancy) are illustrated graphically
in Figure 2.1.2.
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Fig. 2.1.2. The Binomial distribution Bin(14,0.015).

We see that most outcomes have very low probability and that the model
predicts the number of fever episodes to be less than three for all practical
purposes. This corresponds well with the observed data where only a tiny
fraction (30/11778 = 0.0025) of the women experienced three or more episodes
(cf. Table 1.1.2). Hence, p = 0.015 seems to be a plausible value for the
unknown parameter.

In the Binomial distribution, the mean and standard deviation are given
by

E(y) = cp, SD(y) =
√

cp(1 − p).

The above specification (2.1.4) of a Binomial distribution constitues a
model for the number of fever episodes. It may or may not fit the data, but if it
fits, it may serve as a mathematical/probabilistic description that is tractable
and useful for stating conclusions. Naturally, though, it should be checked in
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the light of data and rejected if it fails to describe the patterns of data that
we see in practice. We deal with principles for model checking later in this
chapter, in Section 2.3.2, where we return to this example.

In practice, the binomial coefficent (2.1.4) is cumbersome to calculate espe-
cially when the count parameter c gets large. Fortunately, in such situations,
approximations to the Binomial distribution exist, namely the Poisson distri-
bution (when p is close to either 0 or 1; see Section 2.1.3) and the Normal
distribution (when p is not close to either 0 or 1; see Section 2.1.4).

2.1.3 The Poisson distribution

When counting the number of fever episodes for each pregnant woman in
Section 2.1.2, we had an upper limit for each count, defined as the number of
pregnancy weeks before week 17; c = 14.

In other situations we may be interested in counts with no well-defined
upper limit, such as the number of cancer cases in a specific community dur-
ing a specific year or the number of metastases following an experimentally
induced cancer in laboratory rats. In order to describe such situations we have
to specify point probabilities for all nonnegative numbers (0, 1, . . . ). We can
do so by thinking of these counts as binomially distributed with an unknown,
large count parameter c (corresponding to the number of inhabitants in the
specific community or the number of places in the mouse where cancer may
occur) and a very small probability p (the probability that a single individual
develops cancer during a specific year or the probability of a metastasis in a
precisely defined spot on the mouse).

As the count parameter c in a Binomial distribution gets larger and the
parameter p gets close to either 0 or 1, the Binomial probabilities from (2.1.4)
approximate

P (u) = pr(y = u) =
mu

u!
exp(−m), (2.1.5)

where the parameter m is given by the product m = cp. The distribution
described by the point probabilities 2.1.5 is denoted the Poisson distribution.
The parameter m is the mean value, interpreted as the expected count, and
the standard deviation equals

√
m. This approximation to the Binomial dis-

tribution is sometimes referred to as the law of rare events, referring to p
being close to 0. Note that in the case of an abundant event, we might sim-
ply shift the definition of an “event” to denote the opposite of before. The
approximation will work quite well for combinations like (p < 0.05, c > 20)
and (p < 0.1, c > 100). The larger the p, the larger c also has to be for the
approximation to be reasonable.

For the number of fever episodes during pregnancy, the count parameter
c = 14 was somewhat arbitrarily chosen, by defining the number of fever
episodes to be the number of weeks in which the woman experienced fever. If
we instead regard a fever episode to last only one or two days, c would be larger
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and the associated probability p of a fever episode in any one of these periods
would be smaller. If we can still trust our assumptions regarding independence
between fever episodes, we may therefore also describe the number of fever
episodes as being Poisson distributed.

Figure 2.1.3 shows the Poisson distribution with mean value m = 0.21,
chosen to match the mean value in the Binomial distribution from Figure 2.1.2
(0.21 = 14 · 0.015). We see a close resemblance between the two distributions;
in fact, we can hardly see a difference at all.

We return to modeling of fever episodes as a Poisson variable in Section
7.2.
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Fig. 2.1.3. The Poisson distribution with mean m = 0.21.

2.1.4 The Normal distribution

In the vitamin D Example 1.1 we were interested in the vitamin D levels for
women in four European countries. Vitamin D concentration is an example of
a quantitative and continuous variable, in the sense that any value (in some
interval on the positive axis, not needed be specified further) is a possible value
for a vitamin D concentration. This means that the sample space for vitamin
D concentration is an interval on the positive axis and the distribution of
vitamin D therefore in principle has to describe the probability for each single
value in this interval. This would involve uncountably many values, therefore
we instead specify a probability density (or just a density) as a function on the
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sample space, that expresses the expected denseness of observations around
each value.

By far the most common distribution for continuous quantitative variables
is the Normal distribution (also often called the Gaussian distribution). The
sample space of the Normal distribution is not limited to the nonnegative
integers but rather covers all numbers, nonintegers as well as integers, negative
values as well as positive values.
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Fig. 2.1.4. Two examples of normal densities, N(45,82) and N(70,152).

Figure 2.1.4 shows examples of densities corresponding to Normal distribu-
tions with various means and standard deviations (e.g., densities correspond-
ing to vitamin D concentrations for women in two hypothetical countries).
The densities determine the probability of any given interval (e.g., values be-
tween 80 and 100) as the area below the curve in this interval (the hatched
area for the rightmost density in Figure 2.1.4). The Normal distribution is
seen to have a symmetrical, bell-shaped appearance, with its mean m (the ex-
pectation) in the center and with tails that approach 0 at a rate determined
by the standard deviation SD, often denoted by s. The density is denoted
N(m, s2). The larger the standard deviation, the heavier the tails are, that
is, the wider is the distribution. In fact, we can give a precise definition of
standard deviation in relation to the density, inasmuch as the interval

(E(y) − 1.96 SD(y),E(y) + 1.96 SD(y)) (2.1.6)
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covers approximately 95% of the probability mass, that is, an area of 0.95,
shown as the shaded area in the leftmost density of Figure 2.1.4.

The Normal distribution may serve as an approximation to the Binomial
distribution in situations where the probability p of a particular event is not
too close to either 0 or 1. For instance, assume that we perform a study among
subjects with asthma and ask them about the number of days in a specific
month that they have had to take asthma medicine. If we fix the probability
(for having a need for asthma medicine on a particular day) arbitrarily to 0.3,
we would get a distribution like the one in Figure 2.1.5.
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Fig. 2.1.5. Hypothetical distribution for frequency of asthma medication,
Bin(31,p = 0.3).

Comparing Figures 2.1.4 and 2.1.5, we see that the number of asthma
episodes may well be approximated by a Normal distribution. This approx-
imation is based on a probabilistic result referred to as the Central Limit
Theorem . In brief, this theorem says that a sum (or average) of many “well-
behaved” independent quantities will have a distribution resembling the Nor-
mal. Because the Binomial variable as introduced above was exactly of the
form “a sum of many independent, identically distributed quantities” (a sum
of binary variables indicating fever episodes in each specific week of pregnancy,
or the need to take asthma medicine on each day in a given period), it follows
from this theorem that the Normal distribution may in “well-behaved” cases
be used as an approximation to a Binomial distribution. The term “well-
behaved” refers to a demand that the products cp as well as c(1 − p) (the
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expected counts of zeroes and ones, respectively) are both sufficiently large
(at least 5–10, according to the desired closeness of approximation). Figure
2.1.6 shows examples of Binomial distributions that illustrate the approxima-
tion of the Normal distribution. Each row of pictures corresponds to identical
count parameters, but varying probabilities p = (0.2, 0.5, 0.8). The count pa-
rameters are chosen as c = (5, 10, 20, 50). Note that a Normal approximation
for modeling the number of fever episodes during pregnancy is not warranted,
because the expected number of episodes is only around 0.21, that is, far below
the required threshold of 5–10.
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Fig. 2.1.6. Examples of binomial distributions.
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2.1.5 Other common distributions

indexdistribution!MultinomialIn the above Subsections 2.1.1 – 2.1.4, we de-
scribed three discrete distributions (Bernoulli, Binomial, and Poisson) and one
continuous (Normal). These are the distributions most often used to describe
response variables. In this subsection, we introduce a few more that are also
used in subsequent chapters. The Multinomial distribution is a discrete dis-
tribution used for classifications into more than two categories, (e.g., degree
of pain on four levels: no pain, moderate pain, heavy pain, and unbearable
pain) or choice of health plan among three different possibilities (A, B, and C,
say). The former is an example of an ordinal variable (an ordered categorical
variable, inasmuch as pain has a natural ordering by severity) whereas the
latter is an example of a nominal (unordered) categorical variable. In both
situations, in the case of k+1 categories, 0, 1, . . . , k, we specify the distribution
through the probabilities p1, . . . , pk of categories 1, . . . , k and the probability
of category 0, p0, is defined so that the sum is 1.

The Multinomial distribution may be seen as a generalization of the Bi-
nomial distribution, because focusing on any given category (i.e., considering
the outcome to be the number of occurrences in this particular category) will
lead to a Binomial distribution. We discuss models for Multinomial data in
Section 7.1.

The only distribution for continuous data considered so far is the Normal
distribution. As mentioned, this distribution has positive probability for all
values, negative as well as positive. Therefore, in principle, it is theoretically
unjustified to use it for random variables that can take only positive values
and such positive (or at least nonnegative) variables are abundant in applied
contexts such as medicine, economics, and even physics. For variables such
as birthweight of babies or blood pressure among 40-year-old women, the
Normal distribution may still serve as a very good description because for all
practical purposes, the probability mass below zero will be negligible. For a
variable such as blood concentration of some hormone, however, the Normal
distribution may be a very poor description, inasmuch as most values will be
very small (close to zero, perhaps even truly zero, but never negative), whereas
a few will be rather large. The distribution used to describe such data should
therefore not be symmetrical.

To describe nonsymmetrical skewed data, we briefly mention the following
possibilities

• The log-Normal distribution:
A logarithmic transformation of the data follows a Normal distribution.
We use logarithmic transformations in several examples throughout the
book, for example in Chapters 3, 4, and 7 (see also Appendix B).

• The Weibull distribution:
Derived to describe the distribution of particle sizes, but most commonly
used for survival data because of its flexibility to model increasing as well
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as decreasing hazard rates over time. We deal with this distribution in
Section 7.5.

• The Exponential distribution:
A specific form of the Weibull distribution assuming constant failure rate
and, therefore, some times used to model waiting times.

• The Gamma distribution:
A family of distributions including the Exponential as well as the Chi-
squared distributions that appear in connection with variances. We deal
with models of this kind in Section 7.3.

2.1.6 Conditional probability

In all the above subsections, we have been concerned with probability dis-
tributions that may be used as theoretical models for the variation in the
response variable under consideration, for example, the occurrence of fetal
death (Bernoulli), the number of fever episodes during pregnancy (Binomial
or Poisson), or the level of vitamin D (Normal).

However, most often, in fact nearly always, the observed quantities will ap-
pear to have distributions that are rather mixtures of such distributions, for
example, a mixture of Binomial distributions with different ps (corresponding
to, e.g., different alcohol groups) or a mixture of several Normal distribu-
tions (levels of vitamin D in different countries). We express this by saying
that the conditional probability of a certain outcome y, given the value of a
covariate x (or many such covariates) can be described by a certain prob-
ability distribution. We use the notation pr(y | x) for such a conditional
probability (e.g., pr(fetal loss | alcohol consumption)) or pr(vitamin D < 30 |
overweight Irish woman).

The conditional probability of fetal loss given either none, moderate, or
high alcohol consumption may be described as a Binomial distribution, in
which the parameter p depends on the alcohol consumption, that is, varies
between the three subgroups,

pr(fetal loss | alcohol consumption group j) = pj .

In the vitamin D example, we may specify that the conditional distribu-
tion of the vitamin D level given the country is a Normal distribution, with
parameters (mean and standard deviation) that depend on the specific coun-
try. If we condition also on the body mass index, we could even specify the
mean to depend linearly on some function of body mass index.

Actually, this whole book can be said to be concerned with specification of
conditional probability distributions and in particular how aspects of these
distributions (e.g., mean value, the probability of a specific event, or the haz-
ard rate) relate to various explanatory variables through a link function and
a linear predictor.
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2.2 Descriptive statistics

Even before data collection we may have certain ideas concerning the distri-
bution of the response variable in question. At least we know what kind of
response (categorical, counts, or continuous) we are dealing with and we have
some ideas about relationships of interest between the response variable and
possible explanatory variables.

Nevertheless, it is important to make informative plots and calculate key
statistics before undertaking the actual data analysis, partly to become ac-
quainted with the data and detect abnormalities of any kind and partly to
get an initial idea of possible patterns in the data. This initial step in data
analysis is known as descriptive analysis and although the basic principles for
this are universal, the precise contents depend on the nature of the variables.

This section is therefore subdivided in three, according to the type of the
outcome variable: categorical, quantitative, and survival time.

2.2.1 Binary outcome

So far, the categorical variable that we have mainly focused on is very simple,
namely a Bernoulli variable taking only values 0 (no fetal loss) and 1 (fetal
loss). The obvious way to summarize this variable is of course to sum up the
number of 0s and 1s and possibly present these sums in a (very simple) table.
We see this information as the margin of Table 2.2.1 which just tells us that
119 pregnancies resulted in fetal loss whereas 11,659 did not.

Table 2.2.1. Distribution of fetal death by number of fever episodes before preg-
nancy week 17 in 11,778 women recruited to the Danish National Birth Cohort
Study.

Number of Fever Episodes

Fetal Death 0 1 2 3+ Total

No 9595 1852 182 30 11659
Yes 98 20 1 0 119

Total 9693 1872 183 30 11778

Yes, in % 1.01 1.07 0.55 0 1.01

If our only aim were to count the number of failed pregnancies, we would
hardly present it as a table and descriptive statistics in this setting would
simply consist of the numbers 11,659 and 119, or the proportion 111/11,778,
often expressed as the percentage 1.01%. For research purposes, we are typ-
ically more interested in studying the conditional distribution of fetal loss
(as introduced in Section 2.1.6), given some explanatory variable such as the
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number of fever episodes during pregnancy. The body of Table 2.2.1 illustrates
this conditional distribution through observed counts of fetal deaths in each
group separately (groups being defined by the number of fever episodes in
early pregnancy). In the absence of any other relevant explanatory variables
for the probability of fetal loss, this table summarizes all the relevant infor-
mation available from our study. To facilitate interpretation, the table also
contains percentages computed within the columns because we are interested
in the conditional distribution of fetal loss, given the number of fever episodes.

Small tables such as Table 2.2.1 are clear in their message simply because
of their small size. For larger tables and in situations where the explanatory
variable is quantitative, it can be an advantage to present the information
in graphical form. For instance, if we relate fetal loss to alcohol consumption
instead, we could subdivide alcohol consumption into five groups as shown
in Table 1.3.1 in Section 1.3 and presented in graphical form in Figure 1.3.4.
Here, we present Figure 2.2.1, showing simply the observed percentages of
fetal loss in the five alcohol groups.
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Fig. 2.2.1. Observed percentages of fetal loss, according to alcohol consumption
during pregnancy.

If the covariate is subdivided into many (naturally ordered) groups, we
saw in Section 1.3 that parsimonious models may be constructed by assuming
linearity on the logit scale. In Section 4.1.2, we treat such models in detail.
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2.2.2 Quantitative outcome

A quantitative variable takes on values for which it is meaningful to carry
out arithmetric operations such as addition, subtraction, and so on. As such,
the number of fever episodes also qualifies as a quantitative variable. How-
ever, unless specifically stated otherwise, we think of quantitative outcomes
as variables that can take on any value in some interval, that is, variables such
as the vitamin D concentration in blood, the birthweight of a newborn baby
or the lung capacity, measured as forced expiratory flow rate. As mentioned
in Section 2.1.4, we denote such variables as continuous.

Whereas for categorical outcomes, Section 2.2.1 described the natural form
of presentation as tables of counts in various categories, perhaps converted
into figures, for quantitative outcomes, figures are mandatory. Any table or
summary statistic (such as an average) will necessarily throw away a lot of
information whereas a plot will retain much more, if not even all. Moreover,
the human eye is very efficient in detecting patterns and abnormalities in a
graphical display.

As an example of a quantitative outcome, let us consider Example 1.1
concerned with vitamin D levels among Irish women. We may investigate
the distribution of this variable by constructing a histogram (i.e., a picture
of the empirical (the actually observed) distribution). This is constructed as
follows. Observe that the range of the 41 observations is from 17.0 to 110.4.
Subdividing into intervals of length 10, with midpoints ranging from 15 to
115 and counting the number of observations in each interval gives us the
histogram as shown in Figure 2.2.2, with columns indicating the counts in
each interval.

Because of the limited amount of information available from only 41
women, the histogram looks a bit rough and not at all like the nice curves from
Figure 2.1.4, although the shape of the histogram bears some resemblance to
these.

It can be quite difficult to judge the adequacy of an assumption of a
Normal distribution from a histogram. Figure 2.2.3 shows three simulated
data sets of size 25, 75, and 200, respectively, from a Normal distribution,
with superimposed probability densities. We see that for small sample sizes,
the histogram may well show signs of deviation from Normality, even though
we know that this is not the case. An alternative way of judging Normality is
to produce a Normal quantile plot. We introduce this kind of plot in Section
2.3.2 in connection with model checks in order to stress that a Normality
assumption in general refers to the residuals (defined in Section 2.3.2) and
not to the outcome variable as such.

Whether or not the distribution looks like a Normal density, we need to
define descriptive statistics as a way of summarizing such a collection of quan-
titative observations. Typically, we want to specify a location (i.e., a center or
a typical value) along with some sort of measure of the variation in the data.
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Fig. 2.2.2. Histogram of vitamin D for 41 Irish women.
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Fig. 2.2.3. Histograms for simulated observations from Normal distributions, with
sample size 25, 75, and 200, respectively. Theoretical Normal probability densities
are superimposed.

As a measure of location, there are two main alternatives, the average and
the median. The average is the observed counterpart of the theoretical mean,
and is simply defined as the sum of all observations, divided by the total
number of observations. If yi denotes the vitamin D level for the ith woman,
we denote the average as ȳ (called y-bar) so that

ȳ =
1

41
(y1 + y2 + · · · + y41) =

1

41

41∑
i=1

yi.
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The average represents the center of gravity, which for symmetrical distri-
butions is the intuitive center of the observations. For skewed distributions,
however, the average may be pushed towards one of the tails, as a conse-
quence of the fact that extreme observations have a pronounced influence on
the center of gravity (a well-known fact that may be observed when children
are playing on a seesaw).

For skewed distributions it is therefore often more meaningful to report
instead the empirical median, defined as a “value” that cuts the observations
in two halves, one containing smaller values and the other containing larger
values. For odd-sized samples, this value is uniquely determined but for even-
sized samples, various interpolation methods exist. For practical purposes, the
choice of interpolation method will rarely give substantially different results;
averaging the middle two values is typically appropriate.

The median is also denoted the 50% quantile (or the 50th percentile, due
to the fact that 50% of the values fall below this value. In a similar way,
we may define quantiles corresponding to any other fraction of the data, for
example, the lower and upper quartiles, defined as the 25% and, respectively,
the 75% quantile. Because 25% of the data fall below the lower quartile and
25% of the data fall above the upper quartile, we conclude that the interval
between the lower and upper quartiles contains the central half of the data.
This interval is known as the inter-quartile range (IQR). In a similar way, we
may construct an interval containing, for example, 95% of the observations
by choosing the lower endpoint as the 2.5% quantile and the upper endpoint
as the 97.5% quantile. Now, 2.5% of the observations will fall below this
interval, and another 2.5% will fall above, that is, a total of 5% outside of the
interval. The resulting interval is denoted a 95% reference interval, because by
construction it contains the 95% most typical observations, that is, those that
one would normally see (also in the future) and therefore use for reference
when diagnosing abnormalities.

The quantiles tell us something about the distribution of the observations,
location as well as variation, but they are cumbersome to report and com-
pare between groups. For location, we have the average or the median, but
we also need a single quantity describing variation. For this purpose, we have
the empirical counterpart of the variance from Equation (2.1.2) or preferably
the square root of this, the standard deviation from Equation (2.1.3). Tradi-
tionally, the standard deviation is estimated by

ŝ =

√√√√ 1

n − 1

n∑
i=1

(yi − ȳ)2 (2.2.1)

a formula that is further explained in Section 2.3.1.
For the vitamin D observations on the 41 Irish women, summary statistics

include the average (48.01), the standard deviation (20.22), and the quantiles
given in Table 2.2.2.
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Table 2.2.2. Quantiles for vitamin D observations, calculated from 41 Irish women.

Percentage point, p 0% 1% 2.5% 5% 25% 50%
Minimum Lower Quartile Median

pth quantiles 17.0 17.0 18.0 18.5 34.4 44.8

Percentage point, p 100% 99% 97.5% 95% 75% 50%
maximum upper quartile median

pth quantiles 62.7 75.7 89.1 110.4 110.4 44.8

As seen from Table 2.2.2, we have some difficulties with the outermost
quantiles, because these are found to be identical to the absolute extremes:
minimum and maximum. This is due to the small sample size in this example.
Taking a fraction corresponding to 1% of 41 observations is not meaningful
and hence this quantile should not be reported. We may say almost the same
thing about the 2.5% and 97.5% quantiles, because the calculation of these
involves an attempt to divide the sample into groups of 1 and 40, a division
that is hardly very robust and trustworthy.

Digression. Precision of quantile estimation

A sufficient sample size for estimation of quantiles is hard to determine inasmuch

as it depends, not only on the quantile itself (a 1% quantile demands a larger sam-

ple size than a 5% quantile) but also on the shape of the distribution (a skewed or

heavy-tailed distribution may demand a larger sample size than does a distribution

close to a Normal). We would recommend a minimum of 200 observations when

estimating the 2.5% and 97.5% quantiles. �

Hence, because of an insufficient sample size, we cannot sensibly report
a 95% reference interval based on quantiles, unless we are willing to make
some assumptions, for example, that the vitamin D level among Irish women
follows a Normal distribution. In this case, a 95% reference interval may be
constructed from the average and standard deviation, using the empirical
counterpart of equation (2.1.6)

ȳ ± 1.96ŝ = 48.01 ± 1.96 · 20.22 = (8.38, 87.64).

We note that in this example, the upper endpoint is close to the 97.5%
quantile, whereas the lower endpoint is somewhat smaller than the 2.5% quan-
tile, reflecting the fact that the distribution as seen in Figure 2.2.2 is not
entirely symmetric. In Section 2.3.2 we discuss methods for checking the ade-
quacy of a Normal distribution. However, with a limited amount of informa-
tion (such as in the present example), such methods are only rough guidelines.
This is unfortunate because it is precisely in these situations with a limited
number of observations that we may need this extra assumption in order to
construct a 95% reference interval. The solution to this apparent dilemma
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is, however, quite simple. Do not construct reference intervals for clinical use
based on so few observations!

In this discussion of Normality, it is to be stressed that in most situa-
tions involving quantitative outcomes, we do not assume the observations to
follow the same Normal distribution marginally (i.e., that the observations
as a whole come from the same Normal distribution), but only conditionally
upon the relevant explanatory variables. In the case of vitamin D according
to BMI groups, this means that we assume Normal distributions within each
group, but quite possibly with different parameters in the two groups and thus
marginally a more involved (possibly bimodal) distribution. In more complex
situations, the assumption can be formulated as a Normal distribution for
the residuals that we have not yet introduced but which are a part of all
subsequent models for quantitative outcomes.

2.2.3 Survival time outcome

When the outcome variable y is a survival time or a time to treatment failure
(indicated by a liver transplantation), as in the PBC3 study, Example 1.3,
the data will almost certainly contain censored observations, either because
subjects disappear or because we cannot wait for all events to occur before
we start analyzing our data. Thus, in the PBC3 study, 4 patients were lost to
follow-up before 1 January 1989 and 255 were alive without a liver transplan-
tation at that date. For those 259 patients only a lower limit for the time to
treatment failure was observed. This has the consequence that data cannot be
described in a simple and meaningful way using averages. The averages for the
patients with a treatment failure are likely to underestimate the true mean
times to treatment failure (we are more likely to observe the short durations
because the longer durations have not yet resulted in a failure). Also, the
average of all observation times (observed treatment failures as well as cen-
sorings) will depend strongly on the fraction of censored observations and, at
any rate, these averages will also underestimate the true mean values because
the censored observation time for a specific subject by definition is smaller
than the unobserved, true failure time.

Likewise, the presence of censored observations prevents us from making
histograms and, in many situations, even medians cannot be calculated. We
therefore have to look for a totally different approach for describing the distri-
bution of survival times. This is achieved by looking at the process of deaths
and censorings evolving dynamically over time. The risk of death at successive
time points t is estimated and summarized by the empirical counterpart of
the survival function S(t) = pr(y > t), called the Kaplan–Meier curve.

The Kaplan–Meier curve is a stepwise constant, nonincreasing curve, de-
scribing the fraction of individuals still alive at the current time. It has initial
value 1 (all patients are alive) and has a downwards step at each observed
failure time tj . The relative height of such a step is given by a factor
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1 − 1

R(tj)
,

where R(tj) is the number of subjects at risk or in therisk set at time tj (i.e.,
the subjects that have not already died or been censored).

Note that a person with a censored time of observation t0 is part of the risk
set R(t) for all times t ≤ t0 where, if that patient had experienced a treatment
failure, this would have been observed. A censored observation does not give
rise to a step in the Kaplan–Meier curve.

In Figure 1.1.1 in Section 1.1, we have already seen the Kaplan–Meier
curves for the two treatment groups separately and we noted that these looked
quite alike, suggesting no large discrepancy between the treatments. More
details on Kaplan–Meier curves and their construction and use, including how
the median survival time may (sometimes) be estimated, are given in Section
3.1.3.

2.3 Statistical inference

The purpose of statistical inference is to produce statements concerning the
mechanisms generating the data, that is, to determine a plausible statistical
model for our data.

In the previous sections, we have seen examples of such statistical mod-
els for various types of observed data. We have seen that the concept of a
statistical model involves a specification of the probability distribution of the
outcome referring to the population from which the sample was drawn, or at
least some aspects of this, such as the effect of certain covariates on the mean
value or the probability of surviving beyond some specific time.

We saw through examples that the interesting aspects of the models are
given as certain parameters, such as a mean value of vitamin D concentration,
the probability of fetal death, or more interestingly, parameters specifying the
effects of certain covariates on these quantities. Examples include the number
of fever episodes as a possible explanatory variable for the probability of fetal
death, or the body mass index as an explanatory variable for the mean vitamin
D concentration.

A particularly well-known scenario could be a model describing systolic
blood pressure y for men of all ages, including age as an explanatory variable
x. The mean value of systolic blood pressure might be specified as a linear
function of age:

E(yi) = mi = a + bxi. (2.3.1)

We call this model a linear regression model and models of this kind are
treated in Section 4.1.1. Here we just note that the mean value is characterized
through two parameters, the intercept a and the slope b of the line relating
systolic blood pressure to age. We also use this kind of model to describe
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the relationship between vitamin D level and body mass index for the Irish
women.

Typically, specific scientific questions have been formulated prior to data
collection and the data serve as evidence for the answers to these questions.
Through a model for the data, we reformulate our scientific questions in terms
of model parameters and the statistical analysis of the data at hand. Inference
will, as pointed out in the introduction to this chapter, consist of three steps:
parameter estimation, model checking and hypothesis testing, each treated here
in separate subsections.

The results of a statistical analysis can only be trustworthy if the model
fits the data adequately. Therefore, it would seem that model checks should
be the first issue to consider. However, for technical reasons (inasmuch as
model checks often involve the residuals, discrepancies between observed and
predicted outcomes), estimation has to be performed before such model checks
can be made.

We therefore begin with Subsection 2.3.1 on estimation, in which we briefly
mention various principles for estimation, referring details on the likelihood
principle to a subsection of its own. The focus in Section 2.3.1 is instead the
distribution of the estimates. This is a very important concept to understand
because it provides the foundation for deriving statements of uncertainty, that
is, judging the trust that we can have in a parameter estimate or the confidence
with which we can state whether a hypothesis is true or false. We therefore
advise the readers to go through this subsection in full.

Section 2.3.2 deals with general principles for model checking. Because the
specific techniques depend on the type of outcome and model, the readers
may want to read this section only cursorily and concentrate on the topic in
later chapters dealing with specific models.

In Subsection 2.3.3 on testing statistical hypothesis, we focus on the gen-
eral idea behind hypothesis testing and the errors that may result from judg-
ing a hypothesis to be true or false. Understanding these very general ideas
is important whereas details of the derivation of test statistics are not.

At the end of this chapter, the separate Subsection 2.3.4 has been devoted
to the most important inference principle, the likelihood principle. This sec-
tion is rather technical and not necessary for understanding the subsequent
chapters. It may therefore be skipped by readers not interested in theoretical
details.

2.3.1 Estimation

Recall that statistical models involve parameters (i.e., unknown quantities that
we want to learn about by conducting studies). Examples include a probability
of fetal death or the increase in blood pressure for a one-year increase in age.

Obviously, we rarely get to actually know the true value of such parameters
(inasmuch as this would have to involve observation of every single subject in
the population), and we have to be satisfied with intelligent guesses based on
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observations for a sample of subjects. However, through lots of observations,
our guesses will generally get close to the true value (provided of course that
the model is sensible). We use the term estimation of the unknown parameter
for this guessing process and obviously we want it to be as informative as
possible.

Several objective estimation principles have been suggested, each leading
to estimating equation that have to be solved to give the parameter estimate. In
general, iterative methods (and thereby computers) will be necessary to solve
such equations. Only in the simplest cases do the methods produce explicit
solutions useful for illustrating the general logic behind the principles. Such
simple situations include estimation of the mean in a Normal distribution and
the estimation of a probability in a Bernoulli or Binomial distribution.

By far the most important general estimation principle is the likelihood
principle. The likelihood principle builds upon the likelihood function which
reflects the probability of the observed data as a function of the unknown
parameters. Specifically, for each possible value of the parameters, we have an
associated value of the likelihood function, namely the probability of observ-
ing what we actually did observe, under the assumption that this particular
parameter value was the true one. The law of likelihood says that a parameter
value (or in the case of more than one unknown parameter; a set of parameter
values) is more credible than another if it has a larger value of the likelihood
function. Hence, the most credible parameter value is the one that maximizes
the likelihood function, the maximum likelihood estimate . If the parameter is
called a, the estimate is commonly denoted by â. The likelihood function and
its use for estimation and testing is discussed in more detail and exemplified
in Section 2.3.4.

No matter which principle lies behind the estimate of the unknown pa-
rameters, the result will be a function of the observations and therefore ob-
viously subject to a certain degree of variability. The larger the sample size,
the smaller this variability is and consequently the greater confidence in the
stated estimate. In the remainder of this section, we are concerned with the
interpretation of these statements.

Distribution of estimates

In a specific investigation, we only have one single estimate of a particular
parameter, and therefore the concept of a distribution for this estimate leads
to some confusion. How can we talk about a distribution when we only have
one single number? The answer is that we mean the distribution of estimates
obtained from hypothetical repetitions of the experiment. Such hypothetical
repetitions would give similar but not identical values of the estimate, and
from the model specifications we may infer properties of this (unobserved)
distribution.

Consider once more the fetal death example, where among 11,778 women
we observed 119 cases of fetal death, corresponding to an estimated prob-



2.3 Statistical inference 67

ability of approximately 1%. Suppose we performed the investigation many
more times (the following years, in other countries, etc.), taking every time a
sample of 11,778 pregnant women. Which values of the estimated probability
p̂ would we expect to see in such investigations? Provided that there are no
changes over time or between countries, we would surely anticipate estimated
probabilities in the vicinity of 1%, although they may vary somewhat due to
natural variability between the women.

If we assume a known probability of fetal death (1.2%, say), we may simu-
late such a hypothetical investigation, or better yet, we may simulate a thou-
sand such investigations in order to see what the distribution of p̂ would look
like. In this way, we can picture the distribution of the estimate of a known
value, see if it is centered around this true value, notice the variability, and so
on, and we may then use this theoretical knowledge to make inference about
the parameter, also in practical situations, where we of course do not know
the true value.

In Figure 2.3.1 we show a histogram of estimated fetal death probabilities,
based on a thousand simulated hypothetical replications corresponding to
the fetal death example, each with a sample size of n = 11, 778 and a true
probability p, chosen to be p = 0.012. We note that the distribution of the
estimate p̂ is quite symmetric and centered around the true value of 0.012
(which was chosen for simulation). Actually, the mean and standard deviation
in the distribution of p̂ can be shown (theoretically) to be

E(p̂) = p,

SD(p̂) =

√
p(1 − p)

n
.

The bias of an estimate is defined as the difference between the mean value of
the estimate and the true value of the parameter that we are trying to esti-
mate: the discrepancy between our best guess and the truth. In this particular
situation, the bias becomes 0, because the mean value of p̂ is seen to equal
the true unknown value p. This property is called unbiasedness and we say
that the estimate is unbiased (as opposed to biased). The uncertainty in the
estimate p̂ is reflected in the standard deviation, and from the above formula,
we see that this decreases with the square root of the sample size (n, the
number of women in the study, here n = 11, 778). This means that the more
women we include in our study, the more certain we will be that the resulting
estimate p̂ for the probability of fetal death is very close to the true value p.
This property is called consistency, and the estimate is said to be consistent
for the unknown parameter p.

We can illustrate this by performing simulations for sample sizes other than
11,778. In Figure 2.3.2 we have illustrated a thousand simulations for sample
sizes of 100, 1000, 1000 repeated with a new scaling of the horizontal axis, and
10,000, all with an assumed true probability of 0.012. The figure illustrates
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Fig. 2.3.1. Simulated distribution of estimated fetal death probability, assuming
the true probability to be 1.2%.

the decrease in standard deviation (increase in precision) and the gradually
centering around the true value, according to the increase in sample size. It
also illustrates the Central Limit Theorem (CLT), which says that a sum of n
(“many”) single independent components with identical distributions will have
a distribution that tends to look more and more like a Normal distribution,
the bigger n is. We say that when n tends to infinity (n → ∞, i.e., it becomes
bigger and bigger), the distribution of the quantity will resemble a Normal
distribution more and more closely. In the present case, we have a sum of
many Bernoulli observations (i.e., a sum of either zeros or ones).

The distribution of an estimator is important because it can provide a
confidence interval for the parameter. Confidence intervals are constructed
to have a suitable probability, called the coverage probability, of containing
the true, but unknown, parameter. Most often, this is chosen to be 95%,
although other coverages may be reasonable in specific situations according
to the nature of the problem (e.g., taking safety considerations into account).
As the name suggests, we may be 95% confident that such a 95% confidence
interval contains the true value.

A confidence interval can be thought of as a reference interval, only now
for an estimate of some unknown parameter rather than for individual obser-
vations of some quantity. We are looking for a region covering the middle part
of the distribution of the estimate. If the distribution of the estimate is close
to Normal then a confidence interval may be constructed from the standard
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Fig. 2.3.2. Simulations of estimated fetal death probability, assuming p = 0.012,
for sample sizes of 100 (upper left), 1000 (upper right), 1000 repeated with a new
scaling of the x-axis (lower left), and 10,000 (lower right).

deviation in the distribution of the estimate. In a Binomial situation, such as
the example concerning fetal death, we get the estimated standard deviation

SD(p̂) =

√
p̂(1 − p̂)

n
= 0.00092.

This quantity is often referred to as the standard error of the estimate (if the
parameter to be estimated is a mean, the quantity is called the standard error
of the mean). We, however, avoid these names altogether because they seem
to introduce rather than eliminate confusion, and we simply use the term
standard deviation of the estimate. As a standard deviation, it is only truly
meaningful if the distribution is symmetric and only easily interpretable if it
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is also reasonably Normal. Fortunately, estimators based on large amounts of
information (i.e., many observations) often have distributions that are close to
Normal, thanks to the Central Limit Theorem and we may therefore use the
standard deviation of the estimate for construction of a confidence interval in
a way similar to that of Equation (2.1.6), namely

(”estimate - 1.96 SD(estimate)”, ”estimate + 1.96 SD(estimate)”). (2.3.2)

In the example concerning fetal death, this interval becomes (0.0083, 0.0119),
with the interpretation that we are 95% certain that the true probability of
fetal death is somewhere between 0.83% and 1.19%. The precise interpretation
is that if we repeat the experiment in an identical fashion a large number of
times, the confidence interval constructed in this way will contain the true
parameter in 95% of the cases.

For quantitative data, the number 1.96 will usually be replaced by an ap-
propriate quantile in a t-distribution (details follow in later chapters). When
reporting an estimate, it is general practice to quote its corresponding stan-
dard deviation in brackets, so that the reader may use it for such confidence
interval calculations. We follow this practice in subsequent chapters.

As mentioned above, many estimators may be written as large sums (each
observation providing one item to the overall sum), and we therefore have
a theoretical justification for the abundant use of the Normal distribution
in the context of confidence intervals for parameters. However, in practical
situations, the number of observations n may not be large enough to warrant
the use of a Normal approximation, and transformations of the estimators
may be needed in order to improve the approximation.

Probability theory offers another theorem, called the Law of Large Num-
bers (which is a consequence of the above CLT). It says that the average of
many such single independent items with identical means will be consistent
for this mean, that is, get closer and closer to the true unknown parameter
that we wish to estimate. This property was mentioned above for the estimate
p̂ (the estimate of probability of fetal death).

Digression. Properties of estimators

We may ask whether such properties (unbiasedness, consistency, high precision,
and so on) are important when choosing estimators. And what properties do we get
by using the maximum likelihood principle described briefly above and in greater
detail in Section 2.3.4? The answer to the last question is that the maximum likeli-
hood estimate will in general be consistent and asymptotically Normal with a “high”
precision, although it will not always be unbiased. This means that its mean value
will not always be identical to the quantity that we aim at estimating, although the
consistency implies that for large sample sizes, it will be approximately unbiased.
In the fever example, the estimate bp is seen to be unbiased. On the other hand, the
maximum likelihood estimate for the variance in the Normal distribution, as given
in Section 2.3.4 later in this chapter, is not unbiased, only consistent, inasmuch as
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E(bs2) =
n − 1

n
s2.

Because unbiasedness is intuitively considered to be a very attractive property, we
may want to modify the above estimate to achieve the correct mean value. This is
precisely why we use the estimate from Equation (2.2.1) instead of the maximum
likelihood estimate. For practical purposes, this correction is unimportant, unless the
sample size is very small. However, the very same problem appears for many other
models considered in this book and the correction may not always be negligible.
The general principle for correction involves using a slightly modified version of
the likelihood function, the so-called residual (or restricted) maximum likelihood
principle. A complete description of this principle is technical and beyond the scope
of this book, but it has to do with accounting for the fact that whenever we estimate
one parameter, we “use” one unit of information (called “a degree-of-freedom”).
You could say, that we start out with n degrees-of-freedom (equal to the number of
observations) but after estimation of the mean, we only have n−1 degrees-of-freedom
left and hence we should divide by n − 1 instead of n.

For small sample sizes, the asymptotic results do not apply and in general,
simulations have to be performed in order to judge the appropriateness of a partic-
ular estimation method. If our sample in the fetal death example had consisted of
only 100 pregnant women with a single incident of fetal death, we would still have
had an estimated p of 0.01, although now with a much larger standard deviation,
SD(bp) = 0.0099 and a corresponding confidence interval based on a Normal ap-
proximation would be calculated to be (−0.0095, 0.0295). We immediately see that
this is a ridiculous answer, because we cannot have a confidence interval including
negative numbers when we are estimating a (nonnegative) probability! The problem
is that a sample of only 100 women, in combination with such a small probability
of the event under consideration (fetal death), does not warrant the use of a Nor-
mal approximation for the distribution of bp, as we could see from the simulation in
the upper left panel of Figure 2.3.2. Therefore, the confidence interval constructed
above is not valid and we have to use another method to construct an appropriate
(asymmetric) interval.

An obvious way of constructing confidence intervals is to use the likelihood
function. The maximum likelihood estimate is the best, in the sense that it gives
maximum credibility to the observations that we actually got, therefore another
value of the parameter with almost as high a likelihood value must be almost as
likely as the best one. Therefore, we can construct a confidence interval consisting
of all those parameter values that have a likelihood value above a certain value.
The problem now changes to that of determining which threshold will result in a
coverage of 95% and this is not always an easy task.

As mentioned above, small sample problems or problems involving very compli-
cated models will often benefit from simulations. The idea is to fix the parameters
and create a series of hypothetical datasets (as many as you like) of the same size
as the original one and perform the estimation for each of these. By studying the
resulting distribution of the estimates, we can get useful information regarding the
shape (possible asymmetry) and size of confidence intervals. We have already used
this approach above to illustrate the distribution of the estimate for the fetal death
example. In this case, we assured ourselves that the distribution looked a lot like
a Normal distribution so that we might use the simple way of constructing a con-
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fidence interval. If we instead simulate a small sample version of the fetal death
example, such as the above-mentioned scenario with only 100 pregnancies, we get
the simulated distribution of estimates as seen in Figure 2.3.3, which is seen to be
far from Normal.
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Fig. 2.3.3. Simulated distribution of estimated fetal death probability, based on
100 pregnancies, assuming the true probability to be 1.2%.

Simulations require full specification of the model and therefore cannot be used if the
probabilistic mechanism is unknown, or partially unknown, and we are not willing
to make assumptions. In such a case, we may instead use a resampling method.
The idea is to create new (hypothetical) samples by taking a sample of the original
data, in a sense as if we were simulating from the empirical distribution. These new
samples are handled in exactly the same way as described above for simulations.

Two resampling methods are often used: Jackknife and Bootstrap. In the Jack-
knife method, we create new samples simply by deleting one observation at a time,
so that all the new samples will contain one less observation compared to the orig-
inal. On the other hand, the Bootstrap method may create samples of any size by
randomly picking from the data at hand, with replacement (i.e., the chosen obser-
vation is re-entered into the pool from which we pick new observations). This means
that a Bootstrap sample will (for all practical purposes) contain some observations
multiple times, whereas others do not appear at all (e.g., Efron and Tibshirani, 1998,
Ch. 6).

A very precise and slightly biased estimator may be preferable to an unbiased
and imprecise estimate; see Figure 2.3.4 illustrating theoretical distributions of two
possible estimators of the same unknown quantity, indicated by the vertical dashed
line.
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Fig. 2.3.4. Bias versus precision of estimates; see text.

In this fictive example, we want to estimate the unknown true value a = 40. One
estimate (A) is rather precise (SD= 2) but has a small bias (1), whereas the other
one (B) is unbiased, although with a larger SD(5). In most situations, estimate A
will be closer to the true value, which may be seen by calculating the mean squared
error, that is, the mean squared deviation from observation to true value

E(y − a)2 = (SD(y))2 + (E(y) − a)2 =

j

22 + 12 = 5 for estimate A
52 + 02 = 25 for estimate B

. (2.3.3)

�

2.3.2 Model checking

Statistical inference is based on a model for the data from our scientific investi-
gation. Such a model can involve assumptions concerning type of distribution,
specification of dependence upon covariates, and so on. In a particular study,
model assumptions may be based on previous knowledge of the scientific sub-
stance, justified by previous data, but may also be based on the data gathered
at present.

Conclusions derived from the model of course rely (at least to some extent)
on these assumptions, and if they are not met to a reasonable degree, the
conclusions may be imprecise or even erroneous and misleading.

Therefore, models should be checked before making conclusions and ideally
even before we estimate in the model because otherwise this may not be
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worthwhile. However, the methods for model checking require calculation of
quantities involving estimates from the model, and therefore in practice, the
model checking cannot be performed before the estimation has been carried
out.

Methods for model checking depend on the nature of the model, so only
a flavor of the principles can be given in this introductory section whereas
details are given in subsequent chapters. The techniques may be divided into
two main categories: graphical and numerical.

Graphical model checking

Graphical methods of model checking involve the residuals, constructed to
reflect the discrepancy between individual observations and their predicted
(expected) values. For quantitative (continuous) observations yi with mean
value mi, the residual is simply the difference

ri = yi − m̂i (2.3.4)

or a normalized verison of this obtained by dividing by SD(y). For Bernoulli
(binary) or Binomial data yi ∼ Bin(c, pi) the residuals (also denoted the
Pearson residuals) are defined as

ri =
yi − cp̂i√
cp̂i(1 − p̂i)

, (2.3.5)

whereas for a Poisson distributed variable the definition is (yi − m̂i)/
√

m̂i.
That is, Pearson residuals are also normalized by dividing by SD(yi). For
survival time outcomes, definition of residuals pose some nontrivial prob-
lems because of the presence of censored observations. Instead we use the
so-called pseudo-residuals, defined from pseudo-observations, introduced in
Section 3.1.3.

Digression. Other types of residuals

For quantitative observations, the residuals are defined as simple differences
between observations and predicted values, and therefore measured in the same units
as the observations themselves. This is convenient for interpretation when these
units are intuitively interpretable. However, for identifying unusual observations,
it is advisable to use instead studentized residuals, constructed from the ordinary
residuals by dividing by their standard deviation (which need not be the same for
all residuals).

In the search for outliers and influential observations, it may be even more

revealing to use instead the leave-one-out residuals, in which the residual for an

observation is calculated using a predicted value from an estimation in which this

particular observation has not been included. This means that the predicted val-

ues are all based on different samples, using one observation less in the estimation.

These leave-one-out residuals may also be standardized, so that we have a total of
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four different types of residuals (see, e.g., Cook and Weisberg, 1982). �

No matter which kind of outcome we are dealing with (and which partic-
ular kind of residuals we have chosen), the use of residuals for model checking
is based on identical principles, although the specific appearance will depend
on the nature of the outcome. We illustrate the idea behind residuals and
their graphical use in the model relating vitamin D levels (y) for the 41 Irish
women (from Example 1.1) to their body mass index x through the linear
regression model (2.3.1); that is, E(yi) = mi = a + bxi.

Figure 2.3.5 shows the observations and the fitted regression line, repre-
senting the expected values for any given body mass index. The residuals (i.e.,
the difference between observed and expected values), are therefore the ver-
tical distances from observation to line, as also shown in Figure 2.3.5. This
vertical distance is unexplained by the linear regression model. The model
says that people with a high body mass index will generally have a low vita-
min D level but it does not explain the discrepancies from this general line of
trend. This discrepancy is interpreted as the biological variation, that is, the
variation present among women with identical body mass indices.
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Fig. 2.3.5. Residuals for regression of vitamin D on body mass index.

Having calculated residuals, we proceed by looking for patterns in them.
For instance, we may produce plots of residuals against predicted values (to
see whether the variation is homogeneous), against body mass index (to see,
whether the specified linearity was reasonable), against various other charac-
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teristics of the women in the study, such as age (to see whether this variable
can account for some of the unexplained variation), or we may make his-
tograms of the residuals to check their distribution.

If we, for instance, find that residuals vary with age of the individual, we
should take this as an indication that an age dependence should be included
in the model. If it has already been included, the form of the dependence has
to be changed.

The left-hand side of Figure 2.3.6 shows a plot of residuals of vitamin D
plotted against body mass index, which was the only covariate in the model.
If any clear systematic pattern seems to be present, we should consider aban-
doning the assumption of a linear relation between vitamin D and body mass
index. The definition of the residuals ensures that they will have an average of
zero, and a reference line at zero has been added to the plot. In this example,
there does not seem to be any systematic pattern, so we may conclude that
the linearity is reasonable.
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Fig. 2.3.6. Left panel shows residuals for regression of vitamin D on BMI, plotted
against BMI. Right panel is a normal quantile plot for investigation of the Normal
distribution assumption.

The right-hand side of Figure 2.3.6 shows a Normal quantile plot for the
residuals for vitamin D, after regression on body mass index (i.e., the very
same residuals as in the left-hand side plot). The idea behind this plot is
to compare the observed distribution of the residuals with the best fitting
Normal distribution (i.e., a Normal distribution with mean 0 and a standard
deviation equal to that of the residuals themselves). For a specific residual,
the vertical axis on this plot shows the value of the actual residual, whereas
the horizontal axis shows the corresponding predicted residual in the best
fitting Normal distribution scaled to a SD of 1. A systematic deviation from
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a straight line indicates that the Normality assumption is unreasonable, and
more so if the sample is large.

This figure suggests a reasonable resemblance to a Normal distribution,
although not perfect. A small systematic departure from the straight line is
obvious, because points fall above the line in both ends (and tend to fall
below the line in the middle). This is a very typical finding for positive data
due to the fact that the range of possible values is limited by 0 to the left
but with no fixed upper limit. In later chapters, we look into remedies for
such discrepancies, such as a transformation of the original outcome variable,
typically with a logarithm.

Numerical model checking

Even if graphs are most useful for spotting deviations from the stated model,
it will sometimes be useful to add an objective decision as to whether deviating
patterns are signs of real discrepancies between data and model or whether
they may merely be a result of randomness.

A general idea for such a numerical model check is to build a larger (i.e.,
more general) model, for instance, by including an extra covariate or speci-
fying a quadratic relationship instead of a linear and then making a formal
hypothesis test (see Section 2.3.3 below) for reduction to the simpler model.
The simpler model is then said to be nested in the larger model. For instance,
the above-mentioned possible dependence between residuals and age may be
too weak to be convincing and should therefore not be relied upon before ad-
ditional evidence has been collected. We may investigate the strength of the
observed pattern by including age in the model and perform a numerical test
for significance of its effect.

A word of warning is that hypothesis tests driven by ideas arising in the
analysis phase (i.e., generated by looking at the data) are to be regarded as
fishing expeditions and possible findings should be regarded as spurious until
they have been confirmed in future investigations.

To supplement the quantile plot in the right-hand side of Figure 2.3.6, a
numerical test for Normality is sometimes carried out. We believe such tests
to be of limited value because small samples will rarely reject Normality (we
have too little information) whereas large samples will reject even small and
unimportant deviations from Normality.

In situations involving categorical data, the information available may be
too limited to warrant the use of graphical methods altogether. In such situa-
tions, a comparison of observed and expected values may be performed using
simple tables. In Example 1.2 concerning fetal death, we discussed in Section
2.1.2 the distribution of the number of fever episodes and based on theoretical
arguments, we found it to be Binomially distributed, Bin(c, p), with c = 14.
We now investigate the appropriateness of this assumption.

First of all, we realize that Table 2.2.1 falls short of detailed information
concerning the number of fever episodes, because it only states that 30 women
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experienced three or more such episodes. Table 2.3.1 gives the full information
on fever episodes, from which we can calculate the total number of fever
episodes to be 2358, corresponding to an average number of fever episodes
(per woman) to be

2358

11, 778
= 0.200

Equating this to the expected mean cp = 14p in the Binomial distribution,
we get an estimate of p to be

p̂ =
0.200

14
= 0.0143

If we calculate the expected number of subjects in each category (number of
fever episodes) according to this estimate, we get the results stated in the last
row of Table 2.3.1.

Table 2.3.1. Comparison of observed and expected numbers of fever episodes before
pregnancy week 17 in 11,778 women recruited to the Danish National Birth Cohort
Study.

Number of Fever Episodes
0 1 2 3 4 5 6 7 8 9 10

Observed 9693 1872 183 20 3 3 1 1 0 0 2
Expected 9627.2 1955.3 184.4 10.7 0.43 0.01 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

The comparison of observed and expected counts constitutes a numerical
model check. We note that there is a large discrepancy between observed and
expected counts for both 0 and 1 fever episode, because we observe far too
many women with zero episodes and far too few with a single fever episode.
We cannot directly compare the discrepancies, however, because the expected
counts are very different across fever episode classes. Instead, we must compare
the normalized discrepancies

(observed-expected)
2

expected

but in order to calculate these in a meaningful way (avoiding very small ex-
pected values, inasmuch as these appear in the denominator of the above
ratio), we must again collapse the columns corresponding to three or more
fever episodes. Doing this, we get Table 2.3.2. From this table, it is seen that
the tail of the distribution is in fact where we see the most pronounced dis-
crepancies between the observed and expected counts.



2.3 Statistical inference 79

Table 2.3.2. Observed and expected numbers of fever episodes.

Number of Fever Episodes
0 1 2 3+ Total

Observed (O) 9693 1872 183 30 11778
Expected (E) 9627.1 1955.3 184.4 11.1 11778

O − E +65.9 -83.3 -1.4 +18.9 0

(O−E)2

E
0.45 3.55 0.01 31.92 0

The discrepancies seen in Table 2.3.2 may be summed up to 35.9, a number
that can be used to assess the adequacy of the Binomial distribution in the
present context.

Digression. Test for goodness of fit

The sum of the (O − E)2/Es in the above example is known as a test statistic

for goodness-of-fit , and it should be compared to a Chi-squared distribution with

two degrees-of-freedom. This will result in an extreme low P-value, indicating a very

bad description. The theory behind tests and P-values is given in Section 2.3.3. �

When (as is the case here) there is a large discrepancy between the ob-
served and expected findings, we must conclude that one or more assumptions
regarding the Binomial distribution must be flawed. Two assumptions were
made: (1) equal probability for fever episodes for all subjects and in all weeks
of pregnancy, and (2) independence between the occurrence of fever episodes
(i.e., the occurrence of fever in one specific week does not affect the probabil-
ity of fever in any other week). Intuitively, both of these may be wrong: some
individuals are more fragile than others, violating the first assumption (we
look into this possibility by introducing covariates in Section 7.2) and, more-
over, having had one fever episode may very well increase the vulnerability
and make the individual more susceptible of getting another episode.

2.3.3 Hypothesis testing

When a suitable model for the data has been established and estimates with
corresponding confidence intervals have been derived for the unknown param-
eters, we may consider one or more hypotheses of interest. Hypotheses are
statements regarding the nature of the model, making it simpler, typically by
fixing one or more parameters at specific values (often zero).

To illustrate the ideas, consider a simple example with a cross-over study
comparing two pain killers, A and B. All subjects are randomized to receive
one of the drugs in the first period and the other drug in the second period.
A simple outcome could be the preferred drug, as stated by each individual in
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the study, so that our data would result in a list A,B,A,A,A,B,B, and so on. If
we focus on a drug A preference as the event, we could represent this outcome
as a 1 and a drug B preference as a 0. In this way, the situation can be seen to
be totally equivalent to that of fetal death. The number of subjects preferring
A to B is the number of 1s, and this sum will be Binomially distributed
with some unknown probability parameter p and count parameter equal to
the total number of subjects in the study. The parameter p will reflect the
relative benefit of A (in relation to B), so that a large p (close to 1, or at
least convincingly greater than 0.5) will make us conclude that A is the more
effective painkiller of the two.

Suppose that we have 40 subjects in our study (n = 40), and that y = 28
of these prefer drug A. Then we know from Section 2.3.1 that p is to be
estimated as p̂ = 28/40 = 0.7. The standard deviation of this estimate is
SD(p̂) =

√
0.7(1 − 0.7)/40 = 0.072, yielding a 95% confidence interval of

approximately (0.56, 0.84).
Because 0.5 is not included in this confidence interval, we can say that

0.5 is not a likely value for p and hence that there is in fact evidence that A
is a better drug than B. The confidence interval provides further information
about the likely discrepancy between the two drugs, indicating that there may
be as many as 84% preferring drug A, but probably not more.

Even though the information contained in the confidence interval answers
our scientific question, it is nevertheless very common also to perform a test
of the hypothesis that the two drugs perform equally well (i.e., a hypothesis
that p = 0.5). Such a hypothesis is often called the “null hypothesis” (for
obscure mathematical reasons, probably because it often involves testing that
“something” is equal to zero). We just use the word hypothesis, but we use
the traditional notation

H0 : p = 0.5.

The collected data may be used to assess the credibility of this hypothesis.
If a vast majority of the subjects prefer drug A, it does not seem reasonable
to think that p = 0.5, but rather that p > 0.5 and we therefore reject the
hypothesis, whereas if there is more or less the same number of subjects pre-
ferring each of the two drugs, then we have to accept that p = 0.5 is a plausible
value. For a hypothesis like this, involving only a single parameter, there can
be a one-to-one correspondence between the test and the confidence interval:
If the hypothesized value of the parameter is not enclosed in the confidence
interval, the test should reject the hypothesis, and vice versa. Note that even
though the simplification implied by H0 is denoted “the hypothesis,” it does
not mean that we hypothesize this to be the truth. Actually, the scientific
hypothesis that we believe to be true is more often the alternative hypothesis
(here p �= 0.5, often denoted HA), and we carry out the investigation in order
to gain support for this by rejecting H0.

It is important to realize that a failure to reject the hypothesis does not
mean that the two drugs are proven to be identical, only that we do not have
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enough evidence (at this stage at least) to conclude that they are different.
Hence, also in the case of an acceptance of the hypothesis of no drug difference,
we have to supplement with a confidence interval in order to be aware of the
possible differences that might be between the drugs. This is very important
because such a confidence interval tells us whether it is worthwhile continuing
to investigate the problem and collect more data. If the confidence interval for
the probability contains only values very close to 0.5 we may safely conclude
that any difference between the two drugs is too small to be of any practical
importance.

Similarly, in the hypothetical example concerned with systolic blood pres-
sure as a function of age, we may be concerned with the hypothesis that there
is no age dependency at all (b = 0 in Equation (2.3.1)). The idea is that if
there is no actual dependence on age, it would be unnecessarily complicated to
work with a model specifying such a dependency, whereas on the other hand,
we want to be confident that we do not overlook any important dependence
simply due to a small sample size.

Digression. Occam’s razor

The underlying philosophy of hypothesis testing is that we are eager to find

the most parsimonious model still consistent with our observed data, that is, the

simplest mechanism that may possibly have generated our data. This philosophy,

known as Occam’s razor (e.g., Clayton and Hills, 1993, Ch. 24), has been applied

to natural sciences through the centuries and may be formulated as a reluctance to

assume more causes of the various phenomena than those that are necessary and

sufficient to explain their appearances. The name comes from the fourteenth century

English logician, William of Ockham, and has been frequently referred to later in

history, for example by the twentieth century Austrian and British philosopher Karl

Popper. �

We cannot trustworthily say that the simplest sufficient explanation is
also necessarily the right one, or even the best one (whatever we mean by
best) but it will often be the most robust and the one that gives the most
precise estimates. Introducing unnecessary explanatory variables in a model
will generally decrease precision in the individual estimates even though it
gives a somewhat closer fit to our data. We discuss these issues to a greater
extent in Section 6.1.

A model can be thought of as a collection of possible mechanisms that may
have generated our data. All the mechanisms within the model will act more or
less alike (they will have identical structures) but will correspond to different
values of one or more parameters. For instance, the model for the hypothetical
cross-over trial involving the drugs A and B consists of mechanisms specifying
the subjects to behave independently of each other and having identical prob-
abilities p of preferring drug A to B, in the sense that we have no knowledge
of explanatory variables for this situation. However, the p will be different for
the various mechanisms in the model. Identifying the mechanism most likely
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to have generated our data is another way of expressing the estimation of the
unknown parameter p.

A hypothesis is simply a submodel, “nested” in the original model, that is,
a specification that the true generating mechanism is to be found in a smaller
subset than originally specified. For instance, in the cross-over example the
hypothesis that the drugs perform equally well corresponds to the submodel
consisting of a single mechanism, where p = 0.5.

The strategy for testing statistical hypotheses is to find a test statistic that
reflects the discrepancy between the observations and the hypothesis to be
investigated. There are several general principles for deriving reasonable test
statistics, the most important one being the likelihood ratio statistic, which
is defined as the ratio of the maxima of the likelihood function, taken in
the submodel (defined by the hypothesis), respectively, in the original model.
Other principles may also be derived from the likelihood function and more
details can be found in Section 2.3.4. Having chosen a reasonable test statistic,
we subsequently have to derive the distribution of this test statistic under the
assumption that the hypothesis H0 is true. For instance, the test statistic (T ,
say) could be large (numerically) when the hypothesis is not reasonable(H0

false) and the distribution of the test statistic under H0 (i.e., assuming that
H0 is true) tells us how large it may be due to randomness alone. If it is
larger than what may typically be found due to randomness, we conclude
that it reflects true discrepancy between data and hypothesis and hence that
we have to reject the hypothesis.

Now the question remains to determine what we mean by “larger than what
may typically be found due to randomness.” A keyword in this connection is
the tail probability which is defined as the probability that a test statistic
(under H0) reflects a larger discrepancy from the hypothesis than actually
observed. More specifically, let Tobs denote the observed value of the test
statistic T . If a large numerical value reflects discrepancy from the hypothesis,
we calculate the tail probability

P = prH0
( |T | > |Tobs| ) (2.3.6)

and we denote this tail probability the P-value for the hypothesis. Note that
we use a capital P in order to distinguish it from a possible parameter p.
We have here used the notation prH0

(...) to indicate that the probability has
to be calculated under the assumption that H0 is true. In order to calculate
the P -value (2.3.6) we, therefore, have to know the distribution of the test
statistic T under the hypothesis H0. It will often be a hard task to derive
this distribution and we may have to rely on “asymptotic” results (i.e., an
approximative result), appropriate only for large sample sizes. The idea is
that if the P -value is low (e.g., 0.001), it is highly unlikely to observe such
a large discrepancy between data and hypothesis just by coincidence (i.e.,
due to randomness alone). Hence we conclude that the hypothesis must be
rejected. Now, precisely how small should the P -value be in order for us
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to reject the hypothesis? This question is hard to answer, because it really
ought to depend on the circumstances: what kind of consequences a rejection
versus a nonrejection might have. However, it has become common practice
to consider 0.05 as a “small” value, so that we reject the hypothesis whenever
the tail probability (the P -value) is less than 0.05. We denote this value the
significance level and it is often written as 5% instead of 0.05.

Table 2.3.3. Classification of conclusions versus truth.

Statement/Conclusion
Truth Accept H0 Reject H0

H0 true 1-α α
error of type I

level of significance

H0 false β 1-β
error of type II power

Two desirable situations may occur in a testing situation: accepting a true
hypothesis and rejecting a false hypothesis. On the other hand, there are also
two types of error, namely rejecting a true hypothesis (error of type I, with
a probability equal to the chosen level of significance) and accepting a false
hypothesis (error of type II, typically not fixed). These possible scenarios have
been arranged in the two by two Table 2.3.3. The rows correspond to the two
possible truths: H0 true or false, whereas the two columns correspond to the
two possible conclusions: acceptance or rejection.

The risk of a type I error is often believed to be more serious and is there-
fore fixed at a low level (typically 5%). For instance, a comparison favoring
a new expensive treatment to a traditional one (rejecting the hypothesis that
they are equally good) may result in markedly increased expenses for the
health care system and should therefore be based on very conclusive evidence
(a low significance level). We may, however, also imagine a quite different sit-
uation in which a new and cheaper treatment is compared to the traditional
one and found to be no worse than this. This is a very typical situation with
small studies; they may fail to show anything significant simply because of a
much too low power (insufficient ability to reject a false hypothesis).

With a fixed amount of information (the available data), we cannot have
it both ways: an attempt to reduce the risk of a type I error is invariably
associated with an increase in the risk of a type II error (a reduction of power),
or vice versa. We may, however, at the planning stage of the investigation,
perform a power analysis, that is, attempt to estimate the power to detect a
certain difference of interest, as a function of the sample size. Better yet to do
it the other way around and determine a sufficient sample size for avoiding
an inconclusive study. We look into these matters in Section 6.3.
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It is intuitively clear that for a fixed level of significance, power will in-
crease with sample size. However, power is not a single number, but a function
of the true discrepancy between model and submodel (the hypothesis). For
instance, in the hypothetical drug preference example, the power will be high
for rejecting the hypothesis H0 : p = 0.5 if the true p is close to either 0 or
1, whereas it will be very low (close to the significance level of 5%) when the
true p is close to 0.5. We may formulate this to say that the power depends
on the alternative: “if p is not 0.5, what is it then?”

Some test statistics may have high power against some alternatives and
low power for others, so it is not always easy to say which test statistic is the
best. In general, however, testing a hypothesis regarding a submodel “close to”
the original model (e.g., involving only one parameter less than the original
model) will be more powerful than testing a much more restrictive submodel.
We may formulate this as general advice about trying to avoid tests with too
many degrees-of-freedom.

In the light of the possible erroneous conclusions that could arise from hy-
pothesis testing, we once more stress the opinion that P -values should serve
merely as a supplement to confidence intervals rather than the other way
around. The P -value indicates only the strength of the evidence against a cer-
tain hypothesis, for example a difference between two groups (low P -values
indicating strong evidence) and is not a measure of the difference itself. There-
fore, a low P -value is not necessarily the same as a substantial difference and
vice versa. In the same way, a high P -value does not ensure absence of differ-
ences, merely an absence of evidence of a difference and we need a confidence
interval in order to see whether important differences might have gone unde-
tected because of a bad study design or a small sample size (low power).

Recall the fact that for tests of simple one-degree-of-freedom hypotheses
(i.e., for testing submodels that include just one parameter less than the orig-
inal model), there is a close correspondence between P -value and confidence
interval: If the hypothesized value of the parameter is enclosed in the con-
fidence interval, the test statistic will not be significant, and vice versa. For
testing more complicated hypotheses (such as the simultaneous equality of
three means), no such correspondence exists.

2.3.4 The likelihood function

When data have been collected, we may calculate the probability (or proba-
bility density) for these particular data, based on the model for the situation.
This probability will, of course, be a function of the unknown parameters,
and we denote this function the likelihood function. The likelihood principle
for estimation of the unknown parameter(s) is based on maximization of this
function, that is, to find the values of the unknown parameters that maximize
the probability of observing precisely what we actually did observe. In other
words, we believe the parameters to have values that make the observed data
the most plausible. We review some examples in order to explain the ideas.
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In the fetal death example, we know that out of a total of 11,778 pregnan-
cies, 119 resulted in fetal death. We wish to estimate the probability p of fetal
death using the likelihood principle. If we let yi denote the binary outcome
for woman i (1 indicating fetal death), the probability of observing yi may be
written as

pr(yi = u) =

{
p if u = 1
1 − p if u = 0

}
= pu(1 − p)1−u. (2.3.7)

All women must be assumed to behave independently of each other, thus
the probability of observing exactly the sequence y1, y2, . . . , y11,778 becomes
the product of n = 11, 778 such terms. With the notation

∏n
i=1 for such a

product, we may write the probability of the observed data as

L(p) = pr(observed ys) =

n∏
i=1

(
pyi(1 − p)1−yi

)
= pS × (1 − p)n−S , (2.3.8)

where S denotes the total number of fetal deaths; that is, S =
∑11778

i=1 yi = 119,
implying that n − S = 11, 778 − 119 = 11, 659.

This function L(p) is the likelihood function and it describes the probabil-
ity of observing the actually observed yis if p is the true probability of fetal
death, that is, a function of the unknown parameter p. For some values of p,
it will be very small (it is highly unlikely to observe only 119 fetal deaths, if
p were as large as, e.g., 10%, or 0.1), whereas for other values of p it will be
larger. We wish to determine the value of p that makes this probability the
largest possible, and we denote this value p̂, the maximum likelihood estimate
of p .

In Figure 2.3.7, the likelihood function is seen for values of p between 0
and 0.02. Beyond this value, the likelihood function is vanishing, and we see a
maximum around 0.01. The maximum of the function L(p) is to be looked for
among values that have a horizontal tangent, that is, points where the deriva-
tive L′(p) is zero. Because likelihood functions involve products and most often
powers, it is analytically more tractable to find the maximum of the logarith-
mic transform of the likelihood function, the so-called log-likelihood function,
l(p) = log L(p). Hence, we may find the maximum likelihood estimate by
solving the estimating equation

l′(p) = 0, (2.3.9)

where the derived function l′(p) is also denoted the score function. In our
problem, we have the log-likelihood function

l(p) = S log(p) + (n − S) log(1 − p) (2.3.10)

and therefore the score function
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Fig. 2.3.7. Likelihood function for fetal death example.

l′(p) =
S

p
− n − S

1 − p
. (2.3.11)

The log-likelihood function has a horizontal tangent at the maximum, thus
we have by definition, that l′(p̂) = 0, and the maximum likelihood estimate is
therefore a solution to the equation

0 =
S

p
− n − S

1 − p
=

S − np

p(1 − p)
(2.3.12)

which is seen to give

p̂ =
S

n
=

119

11, 778
≈ 0.010.

In Figure 2.3.8, the log-likelihood function as well as the score function is
plotted as a function of the unknown parameter p. We see the horizontal
tangent for the log-likelihood function at p̂, corresponding to a score function
value of zero.

The resulting estimate of p as the fraction of fetal deaths comes as no
surprise in this context, because it is the natural way that one would proceed
even in the absence of a principle. This is because the situation is so simple.
It is, however, reassuring to see that in such a simple situation, the principle
agrees with common sense.

When applying the maximum likelihood principle to models involving the
Normal distribution, we need the mathematical description of the Normal
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Fig. 2.3.8. Log-likelihood function and score function for fetal death example.

density for the distribution N(m, s2) with mean value m and standard devi-
ation s, as a function of the observed u of y (cf. Figure 2.1.4). This is given
by

1√
2πs2

exp(− 1

2s2
(u − m)2).

When observing y1, . . . , yn, assumed to come from this distribution, the like-
lihood function is therefore given by a product of such terms

L(m, s2) = pr(observed ys)

=

n∏
i=1

1√
2πs2

exp(− 1

2s2
(yi − m)2) (2.3.13)

= (
1√

2πs2
)n exp(− 1

2s2

n∑
i=1

(yi − m)2).

Mathematical theory tells us that the values of m and s2 maximizing this func-
tion of two parameters (or equivalently, its logarithm) are ȳ and 1/n

∑n
i=1(yi−

ȳ)2, respectively. Thus, the maximum likelihood estimate of the mean value,
m is simply the average of the observed yi-values, whereas the variance is
estimated as the average squared distance from this average. Note that these
estimates deviate somewhat from the usual estimate of standard deviation
(2.2.1), a fact that we have already discussed in Section 2.3.1.

If we consider the more complicated situation of the linear regression model
(blood pressure as a linear function of age, or vitamin D level as a linear
function of body mass index), we find the likelihood function similarly to be
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L(a, b, s2) = pr(observed ys) =

n∏
i=1

1√
2πs2

exp(− 1

2s2
(yi − a − bxi)

2)

= (
1√

2πs2
)n exp(− 1

2s2

n∑
i=1

(yi − a − bxi)
2).

This situation is discussed in Section 4.1.1. It suffices here to note that the
estimates for a and b based on maximization of this likelihood function are
also those that result from the minimization of the sum of squared deviations
(sum of squared residuals)

n∑
i=1

(yi − a − bxi)
2.

As a consequence of this, the estimation procedure is also known as the method
of least squares . This latter estimation method also works adequately in more
general situations, that is, with no particular distributional assumptions.

The likelihood function may also be used for construction of test statistics
for a hypothesis H0. Most commonly, one considers the likelihood ratio statistic

Q =
max. Likelihood under H0

max. Likelihood under model
. (2.3.14)

Because the hypothesis is a submodel of the original model, it is obvi-
ous that the value in the denominator of Equation (2.3.14) will be greater
than or equal to the value of the numerator and therefore the ratio Q will
always be smaller than 1. For the likelihood ratio statistic, therefore, a small
test statistic reflects an unreasonable hypothesis. Most often, it will not be
possible to determine the exact distribution of Q. The logarithm of Q will
usually be more tractable inasmuch as it is a sum instead of a product, and
in particular, the quantity −2 log Q can be shown (under certain, not very
restrictive, circumstances) to have an asymptotic Chi-squared distribution,
with degrees-of-freedom equal to the difference in the number of parameters
in model and hypothesis. A collection of distributions of this type, with vary-
ing degrees-of-freedom can be seen in Figure 2.3.9. These distributions arise
quite commonly in connection with tests of hypotheses, but rarely as distri-
butions for primary observations (see, however, Section 7.3). The Chi-squared
distribution of −2 log Q is, as stated above, only asymptotic, meaning that the
approximation gets better as the sample size increases. For hypotheses such
as H0 : p = 0.5, H0 : b = 0 or H0 : m1 = m2 (the identity of two means), it
will have only one degree-of-freedom, corresponding to the upper-left panel of
Figure 2.3.9.

In the hypothetical cross-over example with the two drugs, we test the
hypothesis H0 : p = 0.5 and letting again S be the number of preferences for
drug A, we get the likelihood ratio
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Fig. 2.3.9. Chi-squared distributions with 1, 2, 5, and 10 degrees-of-freedom.

Q =
L(0.5)

L(p̂)
=

0.5S(1 − 0.5)n−S

p̂S(1 − p̂)n−S
, (2.3.15)

or rewritten as the quantity −2 log Q:

−2 log Q = 2n(log 2 + p̂ log p̂ + (1 − p̂) log(1 − p̂)). (2.3.16)

We reject the hypothesis if −2 log Q is too large, that is, when the quantity

p̂ log p̂ + (1 − p̂) log(1 − p̂)

is too large. This function can be shown to be U-shaped and symmetric around
p̂ = 0.5 (see Figure 2.3.10) and hence, we simply reject the hypothesis, if p̂ is
too far from 0.5, that is, when |p̂− 0.5| or equivalently |S − n/2| is too large.

In the hypothetical drug example, we get p̂ = 0.7 and, thereby, |p̂− 0.5| =
0.2 and |S−n/2| = |28−20| = 8. It seems quite sensible to reject the hypothe-
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Fig. 2.3.10. The function p log p + (1 − p) log(1 − p).

sis if the estimated value is too far away from 0.5, which was the hypothesized
value. But how far is too far? To determine this, we look at the hypothesized
distribution for the number of drug A preferences. This is a Binomial distri-
bution with count parameter n = 40 and probability parameter p = 0.5. This
distribution is shown in Figure 2.3.11 and we see that an observation of 28
drug A preferences is rather far out in the tail of this distribution indicating
that it is not a particularly likely outcome if we are to postulate that the two
drugs are equally effective. Rather, we are more inclined to believe that drug
A is the more effective of the two drugs.

We can formalize this by calculating the tail probability (2.3.6) which in
this case is the probability of observing a discrepancy of eight or more pref-
erences either way if the drugs were truly equally effective. In Figure 2.3.11,
such discrepancies are marked in bold, and their corresponding probabilities
sum up to 0.0094, that is, less than 1% of the total probability. This means
that the observed number of drug A preferences is too large to be a plausible
observation if the hypothesis (p = 0.5) is true. Because we have actually ob-
served this many drug A preferences, we choose to believe that the hypothesis
is not true. We reject the hypothesis (with the P -value 0.0094) and declare A
to be the more effective drug.

If we use the −2 log Q approach to the test, we get −2 log Q = 6.58 which
compared to a Chi-squared distribution with one degree-of-freedom gives a
tail probability (P -value) of 0.0103, that is, very close to the above finding.
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Fig. 2.3.11. Point probabilities for the Binomial distribution with n = 40 and
p = 0.5.

Another quite general principle for deriving test statistics is to reformulate
(if possible) the hypothesis to say that one (or more) parameter functions
should be zero. In the examples considered thus far, this quantity could be
p − 0.5, b itself, or m1 − m0. If comparing mean values of three groups, we
would have a hypothesis of m0 = m1 = m2 which may be reformulated as
m1 −m0 = m2 −m0 = 0, that is, two parameter functions should be equal to
zero.

In the case of a single parameter function which is hypothesized to be zero,
the Wald test statistic is defined as the squared ratio between an estimate of
this quantity (using the maximum likelihood estimate or any other sensible
estimate) and its corresponding standard deviation

W = (
Estimate

SD(Estimate)
)2. (2.3.17)

In situations where the Central Limit Theorem applies, the estimate will
have an approximate Normal distribution. Therefore, the quantity W will
be approximately distributed as a Chi-square with one degree-of-freedom and
large values will lead to a rejection of the hypothesis. In the hypothetical
drug example, we had p̂ − 0.5 = 0.2, and SD(p̂ − 0.5) = 0.072, which gives
W = (0.2/0.072)2 = 7.72. This is a little more than we got from the two
approaches considered so far, and hence the P -value is a little lower, here
0.0055.
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In more complex situations where several parameter functions are involved,
similar constructions may be derived, although these will involve more com-
plex mathematical computations.

One last general way of constructing a test statistic needs to be men-
tioned. This is based on the score statistic, defined as the derivative of the
log-likelihood function, taken in the value of the hypothesis H0. The score test
statistic is the square of the normalized score statistic and rejects if the value
is numerically large. In the cross-over drug example, the statistic l′(p) from
Equation (2.3.11) taken in p = 0.5 yields

l′(0.5) = 4(S − n

2
) = 4n (p̂ − 0.5) . (2.3.18)

We see that in this example, we again have to reject, if |p̂ − 0.5| is large:
exactly the same conclusion that we got from the likelihood ratio test.

The three general ways of constructing test statistics (the likelihood ra-
tio test, the Wald test, and the score test) are illustrated in Figure 2.3.12.
This figure shows the logarithm of the likelihood function for the fetal death
example, and the values of the maximum likelihood estimate, p̂ ≈ 0.010 as
well as a hypothesized value p0 are indicated. For all three principles of de-
riving test statistics, we look at the discrepancies between these two values,
although in different respects: the likelihood ratio statistic looks at the ver-
tical distance, that is, the difference between the values of the log-likelihood
function itself, the Wald statistic looks at the horizontal distance, that is,
the distance between the estimated and the hypothesized parameter values
(squared and properly normalized), and the score test statistic looks at the
slope of the curve in the hypothesized value (squared and properly normal-
ized) and contrasts it to zero, which is the slope at the maximum likelihood
estimate. Note that when calculating the score test we only need to estimate
in the submodel given by the hypothesis and not in the original model. This
may be a computational advantage in complicated situations. In the present
example, this implies no estimation at all, because we have only the single
parameter p, which under the hypothesis is fixed to 0.5.

No matter how we construct our test statistic, the idea behind the test will
be the same: is it plausible that the simpler model may have generated our
observed data, or can we reject this hypothesis? We do not know the truth
but we use our observed data to make a statement about the perceived truth.
Our statement may be correct or it may be wrong, and we can formulate the
various possibilities in the two-way Table 2.3.3, which was discussed in Section
2.3.3.

2.4 Exercises

Exercise 2.1. Use the tryptase datayset 3 from Example 1.12 for investigat-
ing the distribution of baseline tryptase:
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Fig. 2.3.12. Illustration of likelihood ratio test, Wald test, and score test. The
notation Q, W , and S refers to the characteristics used for defining the likelihood
ratio test, the Wald test, and the score test, respectively. For more information, see
text.

1. Make a histogram and comment on the symmetry of the distribution. Cal-
culate the average and the median and comment upon their discrepancy.

2. Try a logarithmic transformation of baseline tryptase and again make a
histogram and calculate summary statistics.

3. How would we report a 95% reference interval for baseline tryptase values?
4. Based on the most appropriate scale as found from the above exercise,

make a comparison between men and women, in terms of histograms as
well as summary statistics and reference intervals.

Exercise 2.2. Use the vitamin D data for the girls from Example 1.1 and
investigate the distribution of vitamin D levels, both graphically and by cal-
culation of appropriate summary statistics.

Exercise 2.3. Use the PBC data from Example 1.3 to describe the distribu-
tion of bilirubin.

1. Calculate the average and the SD and use these to calculate a 95% refer-
ence region based on an assumption of Normality for bilirubin.

2. Compare this reference region to the empirical 2.5% and 97.5% quantiles
and comment on the discrepancy.

3. Draw a histogram for bilirubin, as well as for a logarithmic transform of
this. Is it reasonable to assume Normality for any of these two scales?
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4. Show that a 95% reference region based on the assumption of Normality
on a logarithmic scale is given by the interval (3.3,182.1) and compare
this to the empirical quantiles.

Exercise 2.4. Use the CSL data from Example 1.7 to describe the distribu-
tion of ascites in each of the two treatment groups:

1. Make a three by two table and calculate relevant percentages.
2. Does it look as if there is an even distribution of ascites in the two groups?

(To answer this properly, see Exercise 3.14 in Chapter 3.)

Exercise 2.5. Use the tryptase dataset 2 from Example 1.12 for investigating
the distribution of the reaction classes (the type of allergic reaction) for men
and women separately:

1. Make a four by two table and calculate relevant percentages.
2. Does it look as if there is a genuine sex difference in the severity of the

allergic reactions? (To answer this precisely, see Exercise 3.10 in Chapter
3.)
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One categorical covariate

In this chapter, we discuss one of the two building blocks of regression models,
namely models including only a single categorical covariate. This means that
we compare groups, such as treatments, countries, stature groups based on
body mass index, diet types, age groups, and so on.

Even if, in practice, it is often considered relevant or necessary to include
the effect of other covariates as well, an initial comparison of groups is often
called upon. This is particularly so in clinical trials, where a randomization
secures an unbiased comparison between treatment groups.

We have divided the chapter into sections according to the nature of the
covariate (binary or with more than two categories). For a binary covariate,
the task is simply to compare two groups, and the challenge is to provide an
interpretable measure of discrepancy between these, with a confidence interval.
For covariates with more than two levels, a complicating feature is that we
now have many possible group contrasts to look at, and we must take care
to avoid spurious significances (if we ask too many questions, we will get too
many wrong answers).

Each section is again divided into subsections according to the nature of
the outcome. For quantitative outcomes, we look at differences in mean values,
for binary outcomes, the focus is on odds ratios, whereas for survival data, the
discrepancies are most naturally described as hazard ratios. However, as we
show, the basic ideas are the same whatever the nature of the outcome, only
the techniques differ according to the mathematics of the models. Along the
way, simple and classical techniques are shown as special cases of regression.
These include the t-test and one-way analysis of variance for quantitative
outcomes, the Chi-square tests for 2 × 2- and 2 × (k + 1)-tables for binary
outcomes, and the 2- and (k + 1)- sample logrank tests for survival data. It
is important to notice that we do not assume that readers are familiar with
these methods in advance.

For notation, let y1, . . . , yn denote the measured outcome values for the n
subjects in the sample and let x1, . . . , xn denote the corresponding covariate
values. We wish to specify how various aspects of the distribution of the ys
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may depend upon a single categorical covariate x in a way that is linear in
the parameters, cf. Section 1.4.2.

3.1 Binary covariate

Categorical covariates with two levels are often called dichotomous or binary.
Such variables are extremely common, an obvious example being gender. As
mentioned in Section 1.4.2 gender is an example of a variable that is ob-
servable, but not controllable, and this means that whenever we study sex
differences for a particular outcome variable, we must be aware that men and
women differ in many respects and that some of these may account for the gen-
der difference in this particular outcome. On the other hand, in a clinical trial
the typical situation is a comparison of two treatments. The treatment is then
another example of a dichotomous or binary variable, this time controllable,
because we have the opportunity to choose, in particular by randomization,
which patients receive which treatment.

For a categorical covariate with only two levels, the statistical problem
becomes that of comparing two groups. For instance, we could be interested in
estimation of the difference in mean blood pressure between men and women,
the mean percentage of blood pressure reduction following an active drug
compared to placebo, the odds ratio of fetal death for women experiencing
fever during pregnancy in relation to those who do not, or the hazard ratio
of treatment failure for cirrhosis patients receiving CyA compared to patients
in the placebo group.

The precise way of summarizing the discrepancy between two groups will
depend on the nature of the outcome but also on the particular problem at
hand. Of primary importance is to derive a quantity that has a sensible and
intuitive interpretation for the subject matter, and to provide a measure of
uncertainty for this quantity, preferably in the form of a confidence interval.

Such a confidence interval summarizes our knowledge about the differ-
ence between the groups in an interpretable way, but may be supplemented
(although not replaced) by a significance test, the hypothesis being that the
groups are identical. It is important to note, however, that the result of a
significance test is a P -value, indicating the strength of the evidence of a
difference between the groups (low P -values indicating strong evidence) and
not a measure of the difference itself. Thus, as mentioned in generality in
Section 2.3.3, a low P -value is not necessarily the same as a substantial differ-
ence between the two groups but may simply reflect a large sample or a low
variability, whereas the estimated difference itself may not be impressive nor
of any practical importance. Likewise, a high P -value (indicating nonsignifi-
cance) does not necessarily imply that the two groups are identical but may
instead merely indicate that we do not have enough evidence to conclude with
any confidence.
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3.1.1 Quantitative outcome: t-tests

In Chapter 1, we have mentioned examples of a quantitative outcome, for
example, blood pressure measurements. If we combine this with a categorical
covariate with two levels, we have the problem of comparing blood pressure
in two groups. We look at data from a similar example, namely the vitamin D
Example 1.1 concerned with body mass index (BMI) and vitamin D status.

You may recall that body mass index is a height-corrected measure of
weight, defined as

BMI =
weight in kg

height in m, squared
.

According to the predominant interpretation of this quantity, an individual
is considered to be of normal weight if BMI is between 18.5 and 25, whereas
we denote the individual as underweight (respectively, overweight), if BMI
is below 18.5 (respectively, above 25). The group of older Irish women from
the vitamin D example consists of 41 individuals, among whom we have 16
normal weight and 25 overweight women.

We are concerned here with the association (if any) between BMI and
vitamin D status, as measured by 25-hydroxy vitamin D (25OHD) in serum
(in nmol/L), and more specifically, we compare vitamin D status for normal
weight and overweight women.

A graphical presentation of the S25OHD according to body stature group
is given as a scatterplot in Figure 3.1.1.

From Figure 3.1.1 we note that in this particular example the distribution
of S25OHD is quite symmetric, although perhaps with a slight tendency to
right-skewness (tail of large values). The mean and standard deviation in each
group are therefore meaningful quantities (Section 2.2.2).

We let yi denote the outcome (S25OHD) for the ith woman, xi the corre-
sponding body mass index (BMI) for the ith woman and assume all the yis
to be independent with mean values given by

E(yi) =

{
m0 if subject i is normal weight (18.5 < BMI < 25),
m1 if subject i is overweight (BMI ≥ 25).

(3.1.1)

In terms of the covariate xi, we may write the mean value structure in the
regression form as

E(yi) = m0 + (m1 − m0)I(xi ≥ 25) = a + bI(xi ≥ 25), (3.1.2)

where we have defined new parameters as

a = m0, b = m1 − m0.

From Figure 3.1.1, we get the impression that overweight women have a
slightly inferior vitamin D status compared to normal weight women: that
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Fig. 3.1.1. The S25OHD in two stature groups, cutpoint body mass index= 25.

m1 is slightly smaller than m0, corresponding to a negative b-coefficient in
the above notation (3.1.2). We quantify this difference in means between the
two groups with a confidence interval and give a formal P -value for test of
equality.

The estimates for the two means (simple averages for S25OHD in each
group separately; cf. Section 2.3.1) are given in Table 3.1.1, together with the
medians and the standard deviations, ŝ0 and ŝ1.

Table 3.1.1. Summary statistics for S25OHD according to BMI.

Group, j Number, nj Average, bmj Median, cMj Standard Deviation, bsj

0: Normal weight 16 56.138 52.350 21.941
1: Overweight 25 42.804 41.100 17.562

The average and the median in each group look quite similar, indicating
no large deviation from symmetrical distributions. The standard deviations in
the two groups also look reasonably equal, with only a slightly larger variation
in the normal weight group. When comparing mean values in two groups, it
is common to assume such an equality between the population variations in
the two groups as a prerequisite and initially, we follow this tradition. Later
in this section, we return to a discussion on checks of the model assumptions
as well as remedies for important violations of these.
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Note that at this stage we have not made any assumptions of Normality
or any other particular distributional form. The only distributional assump-
tion so far lies in the demand that mean and standard deviation have to be
meaningful quantities and this means that the distributions should be reason-
ably symmetric. As a consequence of this lack of distributional assumptions,
the procedures derived are only approximate and may not be trustworthy
for small samples. For large samples, however, the Central Limit Theorem as
presented in Section 2.3.1 assures that the procedures will be valid.

Because the averages, ȳ0 and ȳ1 in the two stature groups are estimates of
the two means, it follows that we may estimate the regression coefficient (the
difference in means) b = m1 − m0 as

b̂ = ȳ1 − ȳ0

and that this quantity has mean value

E(̂b) = E(ȳ1 − ȳ0) = m1 − m0 = b

and a standard deviation, estimated by

SD(̂b) = SD(ȳ1 − ȳ0) = ŝ

√
1

n0
+

1

n1
, (3.1.3)

where n0 and n1 denote the two group sizes, and ŝ denotes the pooled estimate
of the common standard deviation in the two stature groups

ŝ =

√
(n0 − 1)ŝ2

0 + (n1 − 1)ŝ2
1

(n0 − 1) + (n1 − 1)
= 19.296. (3.1.4)

For large samples, the Central Limit Theorem ensures that b̂ = ȳ1 − ȳ0 will
have an approximate Normal distribution, and an approximate 95% confidence
interval for the difference b = m1 − m0 can therefore be calculated as

b̂ ± 1.96 · SD(̂b) = ȳ1 − ȳ0 ± 1.96 · SD(ȳ1 − ȳ0) (3.1.5)

where the term SD(̂b) = SD(ȳ1 − ȳ0) is taken from Equation (3.1.3).

Table 3.1.2. Summary statistics for the comparison of the two stature groups.

Parameter Estimate SD of Estimate 95% Confidence Interval

m0 56.138 5.485 (45.387, 66.889)
m1 42.804 3.512 (35.920, 49.688)

b = m1 − m0 -13.334 6.199 (-25.484, -1.184)

As mentioned, the above construction (3.1.5) of the confidence interval is

based on an assumption of Normality of b̂ = ȳ1 − ȳ0 that will be reasonable
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for large datasets. However, even if this assumption is exactly fulfilled (i.e.,
if 25OHD is itself Normally distributed within each group), the construction

is still only approximate, because the quantity SD(̂b) is merely an estimate
and not the true standard deviation. This means that for small samples, the
interval above will have a slightly smaller coverage than the required 95%. In
practice, this is most often of minor importance and need not lead to worries.
For quantitative, Normally distributed observations it has, however, become
tradition (in textbooks as well as in standard statistical software packages)
to correct for this bias, and we therefore describe such a correction below,
following the test for equal means.

Even though a confidence interval provides all necessary information to
make conclusions about the discrepancy between the two groups, it is never-
theless common (and in connection with publications, often even mandatory)
to assess the strength of the difference by performing an additional formal
test of the hypothesis of identical means. We may formulate this as a test of
the regression coefficient b being equal to zero:

H0 : b = 0or, equivalentlyH0 : m0 = m1.

In analogy with the above construction (3.1.5) of a confidence interval we get
an intuitively interpretable test statistic (the signed square root of the Wald
test statistic)

t =
b̂

SD(̂b)
=

ȳ1 − ȳ0

SD(ȳ1 − ȳ0)
. (3.1.6)

In the case of a Normal distribution assumption this also corresponds to the
likelihood ratio test as well as the score test. For large samples, this quantity
will have an approximate N(0, 1) distribution and we therefore judge the test
to be significant if its absolute value exceeds 1.96. This is in agreement with the
confidence intervals constructed above, in the sense that a confidence interval
excluding zero corresponds to a significant test statistic and vice versa.

Here, the test statistic becomes

t =
−13.334

6.199
= −2.15

which evaluated in a Normal distribution gives us a P -value of 0.032, that is,
formally significant, corresponding to the confidence interval of (−25.484,−1.184)
found above in Table 3.1.2, not including zero. It is worth noticing that, in Ta-
ble 3.1.2, the confidence intervals for m0 and m1 overlap: values betwen 45.387
and 49.688 belong to both intervals. It is a common mistake to conclude that
two parameters do not differ at the 5% level if their 95% confidence intervals
overlap but, as we can see from this example, this is, indeed, a mistake. How-
ever, arguing “the other way around,” that is, concluding that two parameters
differ at the 5% level if their 95% confidence intervals do not overlap is, in
fact, correct. We show an example of that situation in Section 3.1.2.
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In the construction of confidence limits and in the interpretation of the
test statistic above, we have made use of a Normal approximation to the test
statistic (3.1.6). However, due to the inherent uncertainty in the estimated

standard deviation SD(̂b), this may be an inaccurate approximation for small

samples, even if the estimate b̂ can be taken to be Normally distributed. In-
stead, we may base our inference on the so-called t-distribution (also known
as the Student-distribution). If the observations are actually Normally dis-
tributed within each group, it can be shown that t from Equation (3.1.6)
will follow such a t-distribution. This is slightly more heavy-tailed than the
Normal distribution. Hence, the quantiles in the t-distribution are slightly
(numerically) larger than the corresponding Normal quantiles, and more so
the smaller the sample size. The t-distribution is characterized by a parameter
called the degrees-of-freedom (df), reflecting the sample size (the degrees-of-
freedom may be calculated as the number of observations minus the number
of mean value parameters) .

In the case of comparison of two groups, the degrees-of-freedom become

df = (n0 − 1) + (n1 − 1) = (16 − 1) + (25 − 1) = 39

and the upper 2.5% quantile in the t-distribution with 39 degrees-of-freedom
(i.e., the 97.5% quantile) is given by 2.023. Hence, the test statistic should
only be judged significant, if the absolute value exceeds 2.023, rather than
1.96, and the confidence limit for b = m1 − m0 should correspondingly be
calculated as

ȳ1 − ȳ0 ± 2.023 · ŝ
√

1

n0
+

1

n1
. (3.1.7)

We have summarized the results in Table 3.1.3.

Table 3.1.3. Comparison of S25OHD in two BMI groups.

b = m1 − m0 Estimate SD 95% Confidence Interval Test Statistic P -Value

Normal –13.334 6.199 (–25.484, –1.184) 2.15 0.032
t –13.334 6.199 (–25.875, –0.793) 2.15 0.038

We again note the correspondence between confidence limits and tests in the
sense that confidence intervals, which almost include zero, correspond to P -
values close to 5%. We also note that evaluation of the test statistic in a
t-distribution instead of a Normal distribution gives rise to a slightly larger
P -value and a slightly wider confidence interval. This is a consequence of the
t-distribution being more dispersed than the Normal distribution. Intuitively
speaking, we do not have quite as much precision as we think, inasmuch as ŝ
is only an estimate, not the true value.
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The confidence interval for the difference in means lies just below zero, in-
dicating that formally, we have a significant difference between the two stature
groups on a 5% level. On the other hand, compared to the range of values for
S25OHD, the confidence interval is rather wide, so that our knowledge about
the actual difference between the two groups is weak. There may be almost
no difference, or there may be a difference as large as 25 units.

The assumption of Normality

The calculation of confidence intervals and the interpretation of the test statis-
tic are often believed to rely heavily on the assumption of Normality in the
original sample. It is true that the formula for the confidence intervals (3.1.5)
and the test statistic (3.1.6) can be derived from the general likelihood theory
presented in Section 2.3.1 when the original observations are Normally dis-
tributed within each group. A closer look at the calculations, however, shows
that in order to obtain reasonable confidence limits and validity of the t-test,
the Normality assumption needs only be fulfilled for the averages, ȳ0 and ȳ1,
or rather, for the difference between these, ȳ1 − ȳ0. If the group sizes n0 and
n1 are not too small, this will in most cases be a reasonable assumption due
to the Central Limit Theorem, as described in Section 2.3.1, even if the dis-
tributions within groups deviate somewhat from Normality. We conclude that
for large investigations, the procedures are quite robust to deviations from
Normality, as long as the distributions are still reasonably symmetric.

On the other hand, as was also pointed out in Section 2.1, the interpre-
tation of averages and standard deviations for descriptive purposes becomes
doubtful if the distributions deviate systematically from Normality (e.g., if
they are not reasonably symmetric). In such situations, confidence intervals
for differences between means may also be hard to interpret. It is therefore of
some value to have procedures for checking the closeness to Normality or at
least for checking that Normality is not systematically wrong, for example in
the form of a highly asymmetrical distribution.

Several procedures could be considered:

• Visual inspection of observations in each group separately
• Numerical tests of observations in each group
• Visual inspection of all residuals simultaneously
• Numerical tests of all residuals simultaneously

Recall from Section 2.3.2 that a residual is defined as an observation (yi)
minus its expected value (m̂i); that is,

ri = yi − m̂j(i),

the original observation minus the group average. We have here used the
notation j(i) to denote the number of the group containing subject i.



3.1 Binary covariate 103

Investigating the Normality assumption for each group separately requires
larger sample sizes than looking at pooled residuals and is not generally rec-
ommended because it may lead to conflicting results for the two groups and
hence to an unclear conclusion.

Visual inspection of residuals follows the same lines as described for the
one-sample situation in Section 2.3.2. In Figure 3.1.2, we show a sample of
possible plots. We may or may not supplement these graphical displays with
a formal test for Normality, but as mentioned in Section 2.3.2 we believe such
tests to be of limited value, because small samples will often fail to reject
Normality (even if it is far from fulfilled) whereas large samples will often
reject Normality (even if deviations from this are small and unimportant).
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Fig. 3.1.2. Residual plots for model check.
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The graphical displays show a slight tendency towards a heavy tail to
the right, indicating a possible profit from a logarithmic transformation (Ap-
pendix B). We look into this possibility later in this section.

Digression. Nonparametric comparison

If the assumption of Normality is far from fulfilled, or if the sample size is very
small, so that a justification of Normality is impossible, we may instead perform
a nonparametric test of identity of the distribution of S25OHD for the two BMI
groups. The term “nonparametric” may be slightly misleading, because it is often
interpreted as free from assumptions of any kind. This is not the case, inasmuch
as formally, the only assumption that is abandoned is the Normality assumption.
We still assume the distributions to have the same shape in the two groups. The
most traditional nonparametric test is the Mann–Whitney U-test, also known as the
unpaired Wilcoxon test (e.g., Altman, 1991, Ch. 9; Armitage, Berry, and Matthews,
2002, Ch. 10).

The result of such a test is merely a P -value and no parameter estimates or
confidence intervals are provided. Furthermore, the test cannot be used in general
regression situations and it is therefore beyond the scope of this book to discuss
the derivation or properties of this. In the present example, the test results in a
P -value of 0.058, or with a continuity correction, 0.059. This is slightly higher than
for the corresponding t-test due to the fact that a nonparametric test is generally
less powerful than the parametric counterpart.

Due to the absence of a relevant estimate with an associated confidence interval,

we are often reluctant to use the nonparametric approach. If the Normality assump-

tion is clearly inadequate, another possibility may be to transform the outcome. In

case of heavy right tails, the proper transformation will usually be the logarithm.

As mentioned above, we return to this possibility later in this section. �

The assumption of equal standard deviations

The derivation of confidence limits and test statistic outlined above relies on
the traditional assumption of identical standard deviations in the two groups.
If this assumption is not reasonably fulfilled, we have to modify the 95%
confidence interval for b = m1 − m0 to be

ȳ1 − ȳ0 ± t97.5%(df)

√
ŝ2
1

n1
+

ŝ2
0

n0
, (3.1.8)

where t97.5%(df) denotes the 97.5% quantile for the t-distribution with df
degrees-of-freedom. This df will most often not be an integer, and the cor-
responding t-distribution is only an approximation to the distribution of the
corresponding test statistic, given by

t =
b̂

SD(̂b)
=

ȳ1 − ȳ0

SD(ȳ1 − ȳ0)
=

ȳ1 − ȳ0√
bs2

1

n1

+
bs2

0

n0

. (3.1.9)
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This version of the t-test is also denoted the Welch test (Armitage, Berry, and
Matthews, 2002, Ch. 4), and the formula for the degrees-of-freedom is

df =
(

bs2

0

n0

+
bs2

1

n1

)2

bs4

0

n2

0
(n0−1)

+
bs4

1

n2

1
(n1−1)

.

In this particular example, the approximating number of degrees-of-freedom
is 27.0, and the corresponding 97.5% quantile is 2.052, so that the confi-
dence limit for the difference between means (b = m1 − m0) would become
(−26.700, 0.032), to be compared with the former result of (−25.875,−0.793),
that is, slightly wider. This is due to the fact that the largest standard devi-
ation corresponds to the group with smallest size.

The test statistic changes similarly:

t =
−13.334

6.513
= −2.05 ∼ t(27.0), P = 0.051

and formally, no significance is obtained.
Of course, the fact that the two approaches (standard deviations either

equal or different) lead to different formal conclusions should not be regarded
too seriously, because this is mainly due to the fact that we have made an ar-
bitrary cutoff value (the significance level) of 5%. The standard deviations for
the estimates differ by only 5% ((6.513−6.199)/6.199 = 0.05; cf. Table 3.1.4),
and the actual P -values do not differ substantially (P = 0.038, respectively,
P = 0.051).

The results based on the t-distribution are summarized in Table 3.1.4.

Table 3.1.4. Estimated differences in S25OHD in two BMI groups, according to
whether the SDs are assumed equal.

b = m1 − m0 Estimate SD 95% Confidence Interval Test Statistic P -Value

SDs equal –13.334 6.199 (–25.875, –0.793) 2.15 0.038
SDs different –13.334 6.513 (–26.700, 0.032) 2.05 0.051

In a practical situation, one would be reluctant to strongly emphasize a real
difference between the groups based on this evidence alone. However, we would
not be able to rule out a difference of the order of magnitude 25 units, a fact
that at the same time prevents us from concluding that the two groups have
identical means.

In the above presentation, we have looked at confidence intervals and test
statistics both with and without assuming equal standard deviations in the
two groups. We have noted that often it will be harder to obtain a significant
result without an assumption of equal standard deviations and the corre-
sponding confidence interval will be wider, in the spirit of “fewer assumptions
lead to more vague conclusions.”
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It is very common to see conclusions based solely on the results relying
on the assumption of equal standard deviations. This is especially true for
the more complex situations where alternatives either do not exist or require
specific programming. As we noted from Figure 3.1.1, the assumption of equal
standard deviations seems reasonable in the present example, but we may
consult a formal test in order to more safely conclude whether we may base
our conclusion on this assumption. The traditional test for comparing two
standard deviations is given by the squared ratio between the two:

F =
ŝ2
1

ŝ2
0

=
21.9412

17.5622
= 1.56. (3.1.10)

If the two standard deviations were actually identical, and if the S25OHD
values could be assumed to be Normally distributed within each group, then
this F -quantity would be distributed as an F-distribution, with 15 degrees-
of-freedom for the numerator and 24 degrees-of-freedom for the denominator.
We write this as F ∼ F (15, 24) . In the present example, the test statistic
1.56 corresponds to a P -value of 0.32, indicating that there is no real reason to
doubt the hypothesis of equal standard deviations. On the other hand, with
the limited amount of information available in these data, we cannot rule
out quite large differences. Actually, a 95% confidence interval for the ratio
s2
1/s2

0 is from 1.56/2.11 = 0.74 to 1.56 · 2.11 = 3.29, where 2.11 is the 95%-
quantile in the F (15, 24)-distribution. This wide confidence interval suggests
that there is quite large uncertainty as to whether the two variances differ.
It is, therefore, advisable to examine how much the conclusion concerning
equality or not between the two mean values relies on the assumption of
variance homogeneity.

Digression. The case of more than two groups

The above F -test for identical standard deviations does not generalize to more

complex models (e.g., involving more than two possibly different standard devia-

tions). Instead, such situations offer approximate solutions, valid for large samples

that are not too non-Normally distributed. The most commonly used tests are Lev-

ene’s test which here gives 0.87 ∼ F (1, 39), P = 0.36 and Bartlett’s test , which

gives 0.91 ∼ χ2(1), P = 0.34 (e.g., Draper and Smith, 1998, Ch. 2). We present more

on this topic in Section 3.2.1. �

Transformation

As promised, we now return to the possibility of transformation. As we noted
from the residual plots in Figure 3.1.2, there is a tendency to a skewness in
the distribution of S25OHD within each group. A logarithmic transformation
(cf. Appendix B) will help making the distributions more symmetric. We also
saw that even though the standard deviations are not significantly different,
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the group with the highest average also has the highest standard deviation.
This is typical for data with heavy right-hand tails, and standard deviations
for log-transformed data will often tend to be (even) more similar. Hence we
define

y∗
i = log10(yi)

and repeat all of the above assumptions and calculations with yi replaced by
y∗

i .
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Fig. 3.1.3. The logarithmic S25OHD in two stature groups, cutpoint body mass
index= 25.

The estimates for the means of the logarithmically transformed variables
are shown in Table 3.1.5, together with the medians and the standard devia-
tions.

Table 3.1.5. Summary statistics for log10(S25OHD) according to BMI.

Group Number Average Median (cM) SD

Normal weight 16 1.720 1.719 0.164
Overweight 25 1.593 1.614 0.193

We note that the averages agree even better with the medians for the
logarithmically transformed variables than for the original observations, as
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shown in Table 3.1.1. This means that transforming with the logarithm has
produced distributions that are more symmetric than before. The standard
deviations are again quite similar although now the largest group also has the
largest variation. If we back-transform the averages and the medians to the
original scale (e.g., 101.720 = 52.481), we get Table 3.1.6.

Table 3.1.6. Back-transformed summary statistics for S25OHD, according to BMI

Group Number Geometric Average Median (M)

Normal weight 16 52.481 52.360
Overweight 25 39.174 41.115

Note that the back-transformed medians are identical to the original me-
dians (this is simply a consequence of the definition of medians as the 50%
quantile of the distribution; the small discrepancies are due to rounding er-
rors and interpolations due to an even sample size). On the other hand, the
back-transformed averages are called the geometric averages and these are
seen not to be identical to the ordinary averages.

The graphical illustrations in Figures 3.1.3 and 3.1.4 show that the assump-
tions regarding distributional symmetry and equality of standard deviations
have improved following the logarithmic transformation.

The estimated difference in means (overweight versus normal weight
women), on the logarithmic scale, is −0.127, with a 95% confidence inter-
val of (−0.245,−0.009). This refers to a construction on the logarithmic scale,
therefore we cannot readily interpret it nor compare it to the confidence in-
terval for the difference between means, as obtained for the untransformed
data.

Instead, because averages and medians are very similar on this logarithmic
scale, we may also interpret this difference as a difference between logarithms
of medians on the untransformed scale; that is,

log10(M̂1) − log10(M̂0) = log10

(
M̂1

M̂0

)
= −0.1268

and hence

M̂1

M̂0

= 10−0.1268 = 0.75.

This means that we estimate the overweight women to have a 25% lower me-
dian S25OHD compared to the normal weight women. The confidence interval
becomes (10−0.245, 10−0.009) = (0.57, 0.98), so that we cannot rule out that
overweight women may have a substantially (43%) lower S25OHD than nor-
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Fig. 3.1.4. Residual plots for model check after log transformation.

mal weight women, but at the same time, we also cannot rule out that there
is hardly any difference at all (only 2% lower).

Digression. The paired t-test

Throughout this section we have assumed that the n = n0 + n1 observations

come from different subjects and this led to the unpaired t-test (3.1.6). When the

two groups to be compared arise by observing the same subjects twice (e.g., before

and after an intervention), data are paired and the relevant method of comparison

is the paired t-test . We return to that situation in Section 5.4. �
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3.1.2 Binary outcome: (2×2)-tables and the chi-square test

When the outcome is binary, such as an event that may or may not occur, the
probability of occurrence may depend on certain characteristics of the setting.
In medical terms, the event may, for example, be complications after surgery,
and the probability that a complication occurs may depend on the age of the
patient, the type and duration of operation, and the like.

In the case of a single binary explanatory variable, the problem simplifies to
that of comparing two probabilities, such as the probabilities of a complication
in two surgery groups (Example 1.4 from Section 1.5) or the probabilities of
fetal death, according to whether the pregnant woman has experienced a fever
episode (Example 1.2 from Section 1.1). We illustrate the methods using the
surgery example and afterwards present the results for the fever example.

Inasmuch as this section is concerned with a binary explanatory variable,
we restrict ourselves to looking at two of the three surgery groups from Exam-
ple 1.4, namely the 485 patients undergoing either gynecological or abdominal
surgery. For each individual, we have information on postsurgery complica-
tions, a binary outcome, defined as the indicator

yi =

⎧⎨
⎩

1, if subject i experienced a postsurgery complication,

0, otherwise

whereas the explanatory variable xi denotes the type of operation

xi =

⎧⎨
⎩

0, if subject i had gynecological surgery,

1, if subject i had abdominal surgery.

We may summarize our information in a two-by-two table, for example with
the surgery types as rows and the outcome (complication, yes or no) as
columns, see Table 3.1.7.

Table 3.1.7. Complications in relation to operation type.

Complications
Operation Type No Yes Total %

Gynecological 235 5 240 2.1
Abdominal 210 35 245 14.3

Total 445 40 485 8.2

Note from this table that in the gynecologic group, we have 5 complications
out of 240 individuals, corresponding to only 2.1%, whereas in the abdominal
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group, we have 35 complications out of 245, that is, 14.3%. These numbers
suggest that abdominal surgery is more subject to complications than gyne-
cological surgery, but before we can safely conclude this, we have to convince
ourselves that such a discrepancy would not often arise by chance alone. To
do so, we need a statistical model.

Each yi is a binary variable, therefore the distribution of the variable is
fully determined by specifying its mean value, which is also the probability of
a 1-outcome, that is, the probability of a complication

E(yi) = pr(yi = 1).

We assume that these failure probabilities are identical for all patients with
the same covariate value, that is, all patients undergoing gynecological surgery
will have identical probabilities of a postsurgery complication (p0, say) and
all patients undergoing abdominal surgery will similarly have the same prob-
ability (p1, say) for postsurgery complications (although probably one that
differs from the previous, p0) .

Our model thus specifies the two mean values

pr(yi = 1) =

{
p0 if xi = 0 (gynecological patients),
p1 if xi = 1 (abdominal patients).

(3.1.11)

The task is to estimate these two failure probabilities and compare them in
order to determine whether (and to which extent) the probability of compli-
cations depends on type of surgery.

Because patients belonging to the same group are considered identical (or
interchangeable) with respect to the risk of postsurgery complication, it is
natural to sum up the number of failures in each group

S0 =
∑

i:xi=0

yi = 5

S1 =
∑

i:xi=1

yi = 35;

that is, S0 is a sum of n0 = 240 binary observations and S1 a sum of n1 = 245
binary observations. We may summarize Table 3.1.7 in terms of theoretical
quantities in two different ways as shown in Table 3.1.8.
The notation in the left-hand table respects the fundamental asymmetry of
the problem: we study the probability of a complication as a function of the
type of operation and not the other way around.

However, a more widely used notation is the one to the right. This notation
is very convenient for certain formulas to follow below, but it is not suitable
for supporting the intuition of the problem, inasmuch as it treats outcome
and explanatory variable in a symmetric fashion.
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Table 3.1.8. Typical notation for a two-by-two table.

Complications
Group No Yes Total

0 n0 − S0 S0 n0

1 n1 − S1 S1 n1

or

Outcome
Group 0 1 Total

0 na nb na + nb = n0

1 nc nd nc + nd = n1

Total na + nc nb + nd n

Estimation

From the general likelihood theory in Section 2.3.1, we have the estimated
failure probabilities

p̂0 =
S0

n0
=

5

240
= 0.021

p̂1 =
S1

n1
=

35

245
= 0.143,

that is, the observed proportions of postsurgery complications in each of the
two groups. At first glance, these two estimates look quite different, and in
fact, they do provide us with enough information to safely conclude that
complications are more common for abdominal patients, as we show below.
However, the very same estimates might have been found just by chance in a
smaller study and only the relatively large size of the present study allows us
to interpret the result as a real difference between the two groups.

The problem of quantifying the difference between complication proba-
bilities in the two surgery groups is, however, not entirely straightforward.
Even though we use the term difference, we do not necessarily imply that
p1−p0 is the relevant measure of discrepancy. Whereas such an estimated dif-
ference may be useful for health economists, alternative expressions may be
more suited as patient information or for scientific purposes. More specifically,
patients may think in terms of risk ratios, whereas important mathematical
conveniences are connected to the use of odds ratios, as briefly mentioned in
Section 1.3. We focus on this latter approach here and only briefly comment
upon the other possibilities.

The logit transformation of a probability was defined in Section 1.3 as the
logarithm of the odds

logit(p) = log

(
p

1 − p

)
.

Using this scale to perform comparisons between groups offers the following
advantages
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• With probabilities p strictly between 0 and 1, the odds p/(1 − p) will be
strictly positive and unbounded above, and its logarithm, the log(odds),
will have no range restrictions.

• The discrepancy between two groups is not limited in value, that is, it may
be arbitrarily large (positive or negative).

• The difference simply changes sign, when we switch groups in the compar-
ison.

• The difference remains unchanged if we switch to consider the opposite
event (except for a change in sign).

• The scale allows linear dependence on quantitative covariates (discussed
in the next chapter).

In the surgery Example 1.4, we define the logits

�i = logit(pr(yi = 1)) =

{
logit(p0) if xi = 0 (gynecological patients)
logit(p1) if xi = 1 (abdominal patients)

(3.1.12)
and may now write the model as a regression model with logit link

�i = logit(p0) + (logit(p1) − logit(p0))xi = a + bxi, (3.1.13)

where we have defined new parameters as

a = logit(p0), b = logit(p1) − logit(p0).

Here the intercept a is to be interpreted as the log(odds) of a complication
for the gynecological group. The regression parameter b is the change in logits
when the explanatory variable increases one unit (i.e., from 0 to 1), to be inter-
preted as the difference in logits between the abdominal and the gynecological
group.

Using this logit scale, the comparison of the probabilities of complication
in the two surgery groups becomes

b = logit(p1) − logit(p0) (3.1.14)

(3.1.15)

= log

(
p1

1 − p1

)
− log

(
p0

1 − p0

)
= log(OR), (3.1.16)

where the odds ratio OR is defined as

OR =

(
p1

1 − p1

)
/

(
p0

1 − p0

)
=

p1(1 − p0)

(1 − p1)p0
.

The quantity may be estimated by simply inserting the estimates of p0 and
p1 to give
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ÔR =
p̂1(1 − p̂0)

(1 − p̂1)p̂0
(3.1.17)

or, using the notation from Table 3.1.8,

ÔR =
nand

nbnc
.

For the surgery example we get

ÔR =
0.143(1 − 0.021)

0.021(1 − 0.143)
= 7.83

suggesting that the odds of getting a complication are almost eight times
higher following an abdominal surgery compared to a gynecological surgery.
However, this is only our best guess and it is associated with a standard
deviation that reflects the sample size.

In order to construct a 95% confidence interval for this estimate, we note
that on the logit scale, a symmetric confidence interval is not contraindicated.
We may therefore use an approximate standard deviation for logit(p̂j), given
as

SD(logit(p̂j)) =

√
1

Sj
+

1

nj − Sj
, j = 0, 1

to calculate the confidence intervals given in Table 3.1.9. Here, if the confidence
interval for � = logit(p) is from �L to �U , say, then that for

p =
exp(�)

1 + exp(�)

is from

exp(�L)

1 + exp(�L)
to

exp(�U )

1 + exp(�U )
.

Table 3.1.9. Probability of complications in relation to surgery type.

Surgery Type j logit(bpj) SD(logit(pj)) CI for logit(pj) CI for pj

Gynecological 0 –3.850 0.452 (–4.736, –2.964) (0.0087, 0.0491)
Abdominal 1 –1.792 0.183 (–2.150, –1.434) (0.1044, 0.1925)

Furthermore, we may calculate an approximate standard deviation for the
log(odds ratio) b̂ as
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SD(̂b) = SD(log(ÔR))

=

√
1

S0
+

1

n0 − S0
+

1

S1
+

1

n1 − S1
(3.1.18)

=

√
1

na
+

1

nb
+

1

nc
+

1

nd
= 0.4874

and use this to calculate a symmetric confidence interval for b

b̂ ± 1.96 · SD(̂b). (3.1.19)

This gives us the interval (1.103, 3.014) and transforming back to the OR-
scale, it becomes (3.01, 20.36). Note that because the interval is constructed to
be symmetric on the logit scale (the log(OR) scale), it will not be symmetric
on the OR-scale. We also note that due to the relatively small number of
complications, the confidence interval is rather wide and tells us that the
odds of getting a postsurgery complication may be as much as 20 times bigger
following an abdominal surgery as compared to a gynecological surgery. On
the other hand, they may also be as low as 3.

The odds ratio derived from the logit link is invariant with respect to the
choice of 0 and 1. For instance, in this example, we saw that the odds ratio for
complications in the abdominal group compared to the gynecological group
was 7.83. Likewise, the odds of avoiding complications in the gynecological
group are 7.83 times higher than in the abdominal group.

Whether or not we can establish a difference between the groups, the
quantifications above serve an important purpose. Actually, one might argue
that for studies showing no convincing differences, such quantifications are
even more important because they convey the information on the size of a
possible effect that may have gone undetected because of limited information
(small sample size). We return to this point in the fever example to follow.

Digression. Other contrast measures

Readers familiar with horse race betting may readily understand the concept of
an odds ratio, but for many, the concept is more or less interpreted as a relative risk
(or risk ratio). This is reasonable for small risks, where the approximation is

1 − p0 ≈ 1 and 1 − p1 ≈ 1

and, therefore

p1

1−p1

p0

1−p0

≈ p1

p0
.

For larger ps, the approximation can be very bad, as seen in the comparison in
Figure 3.1.5.

Note that the relative risk corresponds to a comparison of probabilities on a
log-scale (a log-link), because
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Fig. 3.1.5. The relation between odds ratio and relative risk, for values of the lowest
risk equal to 0.02 to 0.2 in steps of 0.02. Lowest curve corresponds to lowest risk
level.

log(RR) = log

„

p1

p0

«

= log(p1) − log(p0).

We may estimate the relative risk directly as the ratio of estimated probabilities;
that is,

dRR =
bp1

bp0
=

0.1429

0.0208
= 6.86

so that complications are estimated to be almost seven times as likely following an
abdominal surgery as opposed to a gynecological surgery, a result, that resembles
the OR above due to the relatively small failure probabilities in this study.

For the relative risk, we can construct an approximate 95% confidence interval
based on an approximate standard deviation on a logarithmic scale

SD(log(dRR)) ≈
r

1

S0
− 1

n0
+

1

S1
− 1

n1

=

r

1

nb
− 1

na + nb
+

1

nd
− 1

nc + nd

and when we transform back to the relative risk itself, we get a confidence interval
of (2.73, 17.21).

However appealing the above relative risk may seem, it nevertheless has certain
limitations. One of these is that it is not invariant with respect to the choice of
“success,” that is, it depends upon what we define to be 0 and 1 in the outcome. For
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instance, the chance of avoiding a complication following a gynecological surgery as
compared to an abdominal surgery is not 6.86, but rather

1 − bp0

1 − bp1
=

1 − 0.0208

1 − 0.1429
= 1.14,

a drastically different result, interpreted to say that the probability of avoiding
a complication following a gynecological surgery is only estimated to be a factor
1.14 bigger than the corresponding probability following an abdominal surgery. The
reason for this discrepancy lies in the magnitude of the probabilities as such. The
estimated risk of a complication in the gynecological group is only 2.1% which
leaves plenty of room for a tenfold increase, whereas the probability of avoiding a
complication in the abdominal group is as high as 85.7%, not leaving much room
for improvement.

Whereas this choice of outcome is rarely a problem in daily life, where “good”
and “bad” outcomes are almost always agreed upon, it becomes an issue in the
mathematical setting because of the limited range of the relative risk. We may
formulate this by noting that the log-link gives quantities that have no lower limit,
but has an upper limit of 0 (we take the logarithm of a number between 0 and 1).
Hence, this scale is not suited for linear models which of course do not respect such
an upper bound. As we have seen above, the odds ratio, defined through a logit link,
solves this problem and is hence regarded as the natural choice of link function for
building linear models. This is, indeed, the main reason for choosing to work with
OR rather than RR.

In many circumstances neither of the above two measures of discrepancy are
used, and instead the simple difference between complication probabilities, p1 − p0,
(the risk difference) is estimated

bp1 − bp0 = 0.143 − 0.021 = 0.122.

For reasonably large n, we saw in Section 2.1 that the Central Limit Theorem ensures
that the Binomial distribution will tend to look like a Normal distribution. This in
turn implies that the distribution of the estimate bp is also approximately Normal

S ∼ Bin(n, p) ≈ N(np, np(1 − p)) or bp =
S

n
≈ N(p,

p(1 − p)

n
).

Therefore, approximate confidence limits for each of these probabilities can be cal-
culated as

bp ± 1.96 ·
r

bp(1 − bp)

n
, (3.1.20)

which results in the intervals given in Table 3.1.10.

Table 3.1.10. Complications in relation to surgery type.

Surgery Type j nj Sj bpj SD(bpj) Approx. CI

Gynecological 0 240 5 0.021 0.0092 (0.0028, 0.0389)
Abdominal 1 245 35 0.143 0.0224 (0.0990, 0.1867)
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In the same spirit, we may write the confidence limits for the difference in probabil-
ities as

bp1 − bp0 ± 1.96

r

bp1(1 − bp1)

n1
+
bp0(1 − bp0)

n0
,

which in this situation amounts to the interval (0.071, 0.174).
We summarize the various comparisons of the two groups in Table 3.1.11. All

quantification methods agree that the discrepancy between complication risks in the
two groups is substantial and sufficiently accurately estimated to allow us to infer
with 95% confidence that the true (unknown) complication probabilities in the two
groups differ. We infer this from the fact that the values corresponding to equality (1
for OR and RR, 0 for p1−p0) are not included in the respective confidence intervals.

Table 3.1.11. Estimates of complications in relation to surgery type.

Type of Comparison Estimate Confidence Interval

Odds ratio OR 7.83 (3.01, 20.36)
Risk ratio p1

p0
6.86 (2.73, 17.21)

Risk difference p1 − p0 0.122 (0.071, 0.174)

The different ways of quantification of the magnitude of the discrepancy between

the two groups are not in contradiction with each other but give rise to different

interpretations. For instance, the difference in probabilities lies between 7.1% and

17.4%; that is, out of every two groups of 100 patients, we would expect 7−17 extra

complications in the abdominal group as compared to the gynecological group. Or,

using the mathematically convenient logit scale, we can say, that the odds for expe-

riencing a complication are almost 8 times bigger in the abdominal group compared

to the gynecological group, although the uncertainty in this estimate indicates that

the odds may well be as high as 20 or as low as 3. In Section 7.4 we study models

for both relative risks and risk differences. �

Testing the hypothesis of equality

In Table 3.1.11, summarizing different ways of measuring the discrepancy
between surgery complications, we see unanimous agreement that there is
indeed greater risk of complications following abdominal surgery compared to
gynecological surgery.

However, we often wish to perform a formal test for the hypothesis of
identical probabilities, that is, the hypothesis

H0 : p1 = p0 (= p, say).

Testing this hypothesis implies that we have to compare the model considered
so far with a simpler model where the two surgery groups have been lumped
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together as a consequence of the assumption of equal failure probabilities. In
Table 3.1.7, the numbers for the combined group are shown in the last row.
We note that the overall estimate of failure probability is pretty much the
average of the two group-specific ones, due to the fact that the two surgery
groups are of almost equal size.

From the general likelihood theory, we know that a reasonable way of
testing the hypothesis of equal failure probabilities will be to compare the
maximum likelihood for the model with group-specific failure probabilities
to the corresponding one based on the model with only one common failure
probability. This results in a ratio,

Q =
L(p̂, p̂)

L(p̂0, p̂1)

and as the general theory of Section 2.3.4 prescribes, we should reject the
hypothesis of equal complication probabilities if Q falls below a certain value.

However, the exact distribution of Q is rather intractable and an approxi-
mation has to be relied upon. To be specific, the general theory from Section
2.3.4 tells us that for large n, “n → ∞,” the quantity −2 log Q will be approx-
imately Chi-squared distributed with one degree-of-freedom. Moreover, it will
asymptotically become equal to the quantity

z2 =
∑ (O − E)2

E
,

where O, respectively, E denotes the observed, respectively, expected (under
H0) counts in each cell, and we are summing over all four cells.

Under H0, where the two groups have the same complication probabil-
ity, the expected values can be calculated by simply distributing the failures
between groups according to the group sizes, see Table 3.1.12.

Table 3.1.12. Calculation of expected counts under assumption of equality, H0.

Outcome
Group 0 1 Total

0 (na+nb)(na+nc)
n

(na+nb)(nb+nd)
n

na + nb = n0

1 (nc+nd)(na+nc)
n

(nc+nd)(nb+nd)
n

nc + nd = n1

Total na + nc nb + nd n

In the example the values are shown in Table 3.1.13.
Hence, the above statistic z2 may be calculated as
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Table 3.1.13. Expected counts in the two surgery groups, assuming equal proba-
bilities of a complication.

Expected
Surgery Type No Yes Total

Gynecological 220.21 19.79 240
Abdominal 224.79 20.21 245

Total 445 40 485

z2 =
(235 − 220.21)2

220.21
+

(5 − 19.79)2

19.79
+

(210 − 224.79)2

224.79
+

(35 − 20.21)2

20.21

= 0.99 + 11.06 + 0.97 + 10.83 = 23.86.

Because z2 was asymptotically equal to −2 log Q, which was known to have
an asymptotic Chi-squared distribution with one degree-of-freedom, thus this
also applies to z2 itself. Therefore, if the criteria for the approximation to
work sufficiently well are satisfied, the quantities −2 log Q or z2 are considered
significant (at a 5% level) if they exceed 3.84. The value of 23.86, which we
have here, corresponds to an extremely low P -value of 1.036×10−6, indicating
a genuine difference between the complication probabilities for the two types
of surgery.

A rule of thumb is that the approximation may be reasonably trusted
whenever all expected values are above 5. In our situation, the smallest ex-
pected value is 19.79 for complications in the gynecological surgery group, so
we may trust the approximation and therefore the conclusion above. For com-
parison purposes, the likelihood ratio test results in −2 log Q = 26.66, that is,
a somewhat larger value, leading of course to the same conclusion.

The statistic z2 may be rewritten in the computationally simple form

z2 =
n(nand − nbnc)

2

(na + nb)(na + nc)(nb + nd)(nc + nd)
.

Following up the discussion from Section 3.1.1 we notice that the significant
(at the 5% level) difference between p0 and p1 is in accordance with the
observation that the 95% confidence intervals for these two parameters do not
overlap (Table 3.1.10).

Digression. Tests for small samples

In small samples, the approximation to the Chi-squared distribution may be
improved by using a continuity adjusted version of z2 defined as

z2

adj =
n(|nand − nbnc| − n

2
)2

(na + nb)(na + nc)(nb + nd)(nc + nd)
,
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which here gives 22.27, that is, a slightly smaller value than the unadjusted value.
The reasoning behind this improved approximation has to do with the approximation
of a continuous distribution (the Normal) to a discrete distribution (the Binomial).

Because, in large samples, z2 and z2
adj are indistinguishable and because, in small

samples, the approximation using the Chi-squared distribution is better for z2
adj, one

could argue that the continuity-adjusted version of the test statistic should always
be used.

In the case of truly small samples (one or more expected counts below 5), even
this adjustment method cannot be trusted and we have to use exact methods based
directly on the Binomial distribution. The exact comparison of two Binomial prob-
abilities is known under the name “Fisher’s exact test” after the famous British
statistician R. A. Fisher. The method involves computation of probabilities of all
possible two-by-two tables with the same margins as the observed table. The P -
value corresponding to the hypothesis H0 of identical probabilities is then the sum
of the probabilities of all those tables showing more evidence against H0 than the
observed one. In this case, such tables are those that have even more than 35 of
the 40 complications occurring in the abdominal group, or the ones that reverse
this situation and have a more extreme distribution of complications in the opposite
direction. Such an exact test may require heavy computations for large sample sizes
(when, fortunately, it is not needed, because the approximative methods will work),
especially when the covariate has more than two levels, as in Section 3.2.2.

In the present situation, we get these probabilities summing to 5.44×10−7 which

is therefore the exact P -value. �

In the surgery example, we have seen that the conclusion concerning com-
parison of groups is extremely clear: there is indeed a significant difference
between the complication probabilities for gynecological and abdominal pa-
tients, a difference that will most often be quoted as an odds ratio of 7.83,
with confidence interval from 3.01 to 20.36. We note that even though the
evidence of a difference between the groups is overwhelming, the confidence
interval indicates quite a large uncertainty as to the size of this difference. We
stress that stating this confidence interval is crucial for interpretation of the
results.

Reporting the confidence interval of the odds ratio (or some other measure
of discrepancy between two groups) becomes even more important in situa-
tions where we find no significant difference between the groups. This is due
to a fundamental asymmetry in the testing of statistical hypotheses: when a
hypothesis is rejected, we may conclude that groups are different, but when we
fail to reject a hypothesis, we cannot conclude that the groups are equal, only
that the present sample size was not able to detect any significant difference.

Fetal death

In Example 1.2, we looked at fetal deaths as the binary outcome in relation to
the number of fever episodes during early pregnancy (cf. Table 1.1.2 ). If we
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dichotomize this covariate according to whether a fever episode has occurred
at all, we get Table 3.1.14.

Table 3.1.14. Fetal death according to experience of fever in early pregnancy.

Fever Episodes
Fetal Death No Yes Total

No 9595 2064 11659
Yes 98 21 119

Total 9693 2085 11778

As already noted in Example 1.2, the probability of fetal death is close to
1% whether or not the woman has experienced a fever episode, so obviously,
there will be no significant association between fever episodes and fetal death.
In fact, the test statistic z2 here yields the value 0.0003, with an associated
P -value of 0.99.

However, even a P -value so close to 1 (i.e., no indication whatsoever of
a difference between groups) should not stand alone, especially not in small
sample situations. A high P -value cannot be taken as an indication of absence
of differences, merely as absence of evidence of a difference. We need to sup-
plement with confidence intervals for the appropriate quantities, as given in
Table 3.1.15.

Table 3.1.15. Association between fever episodes and fetal death.

Type of Comparison Estimate Confidence Interval

Odds ratio OR 0.996 (0.620, 1.600)
Risk ratio p1

p0
0.996 (0.623, 1.592)

Risk difference p1 − p0 -0.0000 (-0.0048, 0.0048)

We note that there is a tiny difference in observed risk in the two groups, in
the direction opposite to the expected. However, as the confidence intervals
show, we cannot rule out that the odds of fetal death could be 60% increased
in the group experiencing fever episodes! Fetal death is a very rare fatality,
therefore this coincides very closely with the interpretation in terms of rel-
ative risk: we cannot rule out that there might be a 59% increased risk of
fetal death following fever episodes during early pregnancy. However, such an
increased risk would amount to less than one half percent (the upper endpoint
of the confidence limit for the difference in probability is 0.48%) of the total
population of pregnant women.



3.1 Binary covariate 123

Digression. McNemar’s test

Throughout this section we have assumed that the n = n0 + n1 observations

come from different subjects and this led to the Chi-square test, z2. When the two

groups to be compared arise by observing the same subjects twice (e.g., before and

after an intervention), data are paired and the relevant method of comparison is

McNemar’s test . We return to that situation in Section 5.4. �

Digression. Case-control studies

We have everywhere in this section (as well as in most other sections of the book)

assumed that sampling is prospective in the sense that subjects are ascertained for

the study before the possible occurrence of the event of interest. For binary data,

a frequently used design, in particular for rare outcomes, is the case-control design

where subjects are sampled conditionally on having (“cases”) or not having (“con-

trols”) experienced the outcome. We return to case-control studies in Section 7.4.2. �

3.1.3 Survival time outcome: the 2-sample logrank test

When the outcome variable y is a survival time, as in the PBC3 study, Ex-
ample 1.3, the data will inevitably contain censored observations. Thus, as
discussed earlier, the dataset from the PBC3 study contains 4 patients who
were lost to follow-up before the end of study and another 255 who were
alive without a liver transplantation at the end of study. For those 259 pa-
tients only a lower limit for the time to treatment failure was observed and,
therefore, data cannot be described using averages (as in Section 3.1.1) or
counts/percentages (as in Section 3.1.2). Table 3.1.16 shows an attempt to
use averages anyway.

Table 3.1.16. Average observation times in years (and numbers of patients) by
treatment group and failure status in the PBC3 trial in liver cirrhosis.

Treatment Failure
Treatment No Yes Total

Placebo 2.86 1.80 2.58
(127) (46) (173)

CyA 2.77 2.02 2.58
(132) (44) (176)

Total 2.81 1.91 2.58
(259) (90) (349)

As expected, the average observation times for patients experiencing a
treatment failure are considerably smaller than those for the patients with
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censored observation times. The averages for the patients with a treatment
failure are likely to underestimate the true mean times to treatment failure
(because we are more likely to observe the short durations). On the other hand,
the size of the average observation times (for failures as well as for censorings)
in each treatment group (both equal to 2.58 years) will depend strongly on
the fraction of censored observations in the dataset and, furthermore, these
averages will underestimate the true mean values because the censored obser-
vation times are known to be smaller than the unobserved, true failure times.
Using counts or percentages is not optimal, either. Table 3.1.17 shows the
number of patients with observation times less than 2 years.

Table 3.1.17. Number (%) of observation times less than two years by treatment
group and failure status in the PBC3 trial in liver cirrhosis.

Treatment Failure All
Treatment No Yes Observation Times Patients

Placebo 40 27 67 173
(23%) (16%) (39%) (100%)

CyA 41 24 65 176
(23%) (14%) (37%) (100%)

Total 81 51 132 349
(23%) (15%) (38%) (100%)

Here, the total percentages of observation times less than two years (39
and 37 in the two treatment groups, respectively) are not reasonable estimates
of the two year failure probabilities because the majority of the observations
are censored. Counting only the observed failures before two years (27/173 =
16% for placebo, 24/176 = 14% for CyA), on the other hand, will likely
underestimate the true failure probabilities.

For survival times y we therefore need another way of describing the dis-
tribution and, typically, data in a group are summarized using an estimate
of the survival function S(t) = pr(y > t) for relevant values of time t. In

this section we first describe the Kaplan–Meier estimator Ŝ(t) for the survival
function. As a measure of discrepancy between the distributions in the two
groups we introduce the hazard ratio, briefly mentioned in Section 1.3, and
we show how to compare the two distributions using the logrank test.

In Section 1.3, we briefly introduced the hazard rate h(t) with the inter-
pretation that, when dt > 0 is small,

h(t)dt ≈ pr(t < y < t + dt | y > t).

Thus, h(t) specifies the instantaneous risk of treatment failure per time unit.
The hazard rate may, equivalently, be written as
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h(t) ≈ −S(t + dt) − S(t)

dt

1

S(t)

and, using the rules of calculus, the precise definition (“letting dt → 0”) is

h(t) = −S′(t)
1

S(t)

or
h(t) = −(log(S))′(t).

From this it follows that the cumulative hazard is

H(t) =

∫ t

0

h(u)du = − log(S(t)) (3.1.21)

or, equivalently, the survival function may be written as

S(t) = exp(−H(t)).

The Kaplan–Meier estimator

We consider the PBC3 study with the binary covariate:

xi =

{
0 if individual i is in the placebo group
1 if individual i is in the CyA group.

To describe the distribution of the time y to treatment failure in these two
x-subgroups we define the survival functions

pr(yi > t) =

{
S0(t) if xi = 0
S1(t) if xi = 1.

(3.1.22)

We may then, as an alternative to (3.1.22), specify the model via the hazards,
h0(t) for the placebo group, and h1(t) for the CyA group.

To introduce the notation for defining the Kaplan–Meier estimator Ŝ(t)
we consider one treatment group and define

0 < t1 < t2 < · · · < tN

to be the distinct ordered times of observation (either time to treatment failure
or to right-censoring) in that group and we let

d(t1), d(t2), . . . , d(tN )

be the observed numbers of treatment failures at these time points. (If all
times of observation are different then these will all be either 0 or 1 and N
will be the number of subjects in the group considered.) Finally, we let

R(t1), R(t2), . . . , R(tN )
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be the numbers of patients at risk at the times of observation; that is, R(tj)
is the number of patients from the group with an observation time ≥ tj (the
“risk set”).

Based on these data we estimate S(t). The basic idea leading to the
Kaplan–Meier estimator is to build recursively using the fact that for tj2 > tj1
we have pr(y > tj2) = pr(y > tj2 | y > tj1)pr(y > tj1). We estimate the condi-
tional probability pr(y > tj | y > tj−1) of surviving beyond tj given survival
beyond the previous observation time tj−1 simply as the relative frequency

R(tj) − d(tj)

R(tj)
= 1 − d(tj)

R(tj)
.

This means that if the time point t is < tj and ≥ tj−1 then

Ŝ(t) =

(
1 − d(t1)

R(t1)

)
× · · · ×

(
1 − d(tj−1)

R(tj−1)

)

or in shorthand notation using the “product symbol”
∏

:

Ŝ(t) =
∏
tj≤t

(
1 − d(tj)

R(tj)

)
. (3.1.23)

This is a decreasing step function with steps at the observed times of treatment
failure. Notice the way in which the censored observations are used. A person
with a censored time of observation t is part of the risk set R(tj) for all times
tj ≤ t where, if that patient had experienced a treatment failure, this would
have been observed. A censored observation does not give rise to a step in
(3.1.23). A condition for using the censored observations in this way is that
the only information available for a person censored at t is that the true
time to treatment failure for that person exceeds t. That is, a situation where
censored observations are known to belong to patients with a particularly good
prognosis or to patients with a particularly bad prognosis (e.g., if seriously ill
patients were forced out of the study) is not allowed. This crucial condition on
the censoring mechanism is known as independent censoring. If censoring is
caused by patients being alive at the closing date of a follow-up study then the
assumption of independent censoring is usually not controversial. However, if
many patients leave the study prematurely then one must be more suspicious
and it is advisable always to collect information on why patients leave a study
.

The standard deviation of Ŝ(t) may be evaluated using the simple formula

Ŝ(t)

√
(1 − Ŝ(t))/R(t), or using Greenwood’s formula

SDG(Ŝ(t)) = Ŝ(t)

√√√√∑
tj≤t

d(tj)

R(tj)(R(tj) − d(tj) + 1)
. (3.1.24)
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As an example, for the placebo group at t = 366 days, Ŝ(t) = 0.9110. Green-
wood’s formula (3.1.24) gives 0.0220 and the simpler formula gives almost the
same value: 0.9110 ·√(1 − 0.9110)/145 = 0.0226. The simple formula has the
advantage that the standard deviation can be estimated from the value of
Ŝ(t) once the number at risk, here R(t) = 145, is also known. Therefore, this
information is sometimes added to the Kaplan–Meier plot (cf. Figure 3.1.6).
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Fig. 3.1.6. Comparison of survival curves for CyA (dashed) and placebo (solid)
treated patients with PBC. The numbers R(t) at selected timepoints are:

t (Years) 1 2 3 4 5

Placebo 145 105 69 28 7
CyA 147 110 68 27 6

The simple, “naive” 95% confidence limits obtained from one of these
standard deviation estimates are Ŝ(t)± 1.96 · SD(Ŝ(t)). These may have poor
properties when S(t) is close to 0 or 1 (cf. the discussion in Section 3.1.2).
Better limits are obtained considering the log(cumulative hazard) or log(–
log(survival)) scale which has no upper or lower limits. For this scale, obtained
by using the “cloglog” link , the standard deviation is given by

SD(log(−log(Ŝ(t)))) = SD(Ŝ(t))/[−log(Ŝ(t))]

and a symmetric 95% confidence interval for the log cumulative hazard rate
transforms to the following (asymmetric) interval for S(t),

(Ŝ(t))L(t) ≤ S(t) ≤ (Ŝ(t))U(t), (3.1.25)
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where U(t) = 1/L(t) and L(t) = exp
(
1.96 · SD(Ŝ(t))/[− log(Ŝ(t))]

)
.

Using Greenwood’s estimate of the standard deviation of Ŝ(366) for the
placebo group, the naive 95% confidence interval is (0.868, 0.954) whereas
(3.1.25) yields (0.857,0.945) (because a(366) = 1.662), so in this case the
difference is not great.

Estimating median survival times and other percentiles

As mentioned in Section 2.2.3, the median survival time may not be estimated
simply as the “middle observation” because of censoring. However, recalling
that the median is the value for the outcome for which there is both a 50%
probability of observing a smaller and a larger value, we see that the median
M has the property that S(M) = 0.5. We can, therefore, estimate the median

survival time as the timepoint where Ŝ(t) crosses 0.5. For the PBC3 data,
neither of the Kaplan–Meier curves in the two treatment groups crosses this
value, so the rates of treatment failure are too low to permit estimation of
median times to treatment failure. However, the lower quartiles may be esti-
mated as the timepoints where the Kaplan–Meier curves cross the level 0.75:
3.2 years for the CyA group and 3.0 years for the placebo group.

Estimating the ratio between two hazard functions

When analyzing survival data one is usually interested in supplementing plots
of estimated survival functions in various groups of patients by computing
statistics summarizing differences between the groups and by testing whether
the survival time distributions in the groups are identical.

To summarize the differences between two survival curves in a simple way
a proportional hazards model is frequently studied, that is the model

h1(t) = c · h0(t) for all t. (3.1.26)

Proportionality between the hazard rates can alternatively be formulated as

S1(t) = S0(t)
c
;

that is, the survival function for group 1 is obtained by raising that for group
0 to the power c (the hazard ratio). This implies, in particular, that the
survival functions do not cross when there are proportional hazards. Finally,
the proportional hazards assumption may be written as the Cox regression
model for the log(hazard rate), li(t) = log(hi(t)), for individual i

li(t) = log(h0(t)) + bxi, (3.1.27)

where b = log(c).
If the model (3.1.26) holds, at least approximately, then it will be informa-

tive to present an estimate of c, the constant ratio between the two hazards,
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which is a natural measure of the “excess” mortality in one group compared
to the other. Note that the proportional hazards relation may, alternatively,
be expressed in terms of cumulative hazards as

H1(t) = cH0(t).

It can be checked graphically whether the assumption of proportional hazards
is tenable by plotting an estimate of H1(t) versus an estimate of H0(t) for all
values or for selected values of t. The points in such a diagram should then
approximate a straight line through the point (0, 0) with slope c. Figure 3.1.7
shows the plot for the PBC3 data and proportional hazards does not seem to
be contraindicated.
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Fig. 3.1.7. Cumulative hazard for CyA patients plotted against that for placebo-
treated patients with PBC.

It can be shown that the maximum likelihood estimator for c is the solution
ĉ to the equation

O1 =

D∑
j=1

d(tj)
cR1(tj)

R0(tj) + cR1(tj)
. (3.1.28)

Here, t1 < t2 < . . . < tD denote the different times of treatment failures in
the two groups of patients and d(tj) is the total number of treatment failures
observed at time tj ; that is, d(tj) = d1(tj) + d0(tj) where d1(t), d0(t) are
the numbers of treatment failures at t in the CyA and the placebo group,
respectively. Furthermore, R1(t) and R0(t) are the numbers of patients known
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to survive without liver transplantation at least until time t in treatment
groups 1 and 0, respectively, and O1 is the observed number of treatment
failures in group 1. For later use we also define R(t) = R1(t)+R0(t) to be the
total number of patients “at risk” just before time t. The contribution to the
likelihood function for an uncensored time to treatment failure t is the density
function evaluated in t (Section 2.3.4). The contribution for a censored time
to treatment failure t is the survival function evaluated in t because all we
know about the true unobserved time yi to treatment failure in that case is
that yi > t, the probability of which is given by the survival function.

For the PBC3 data we find ĉ = 0.943 = exp(−0.0585) close to the null
value of 1 and with a 95% confidence interval (0.624, 1.426) indicating that
there is no significant difference in survival between the two treatment groups.
However, the wide CI suggests that the CyA-treated patients may have a
hazard which can be 38% smaller or 43% larger than that in the placebo
group. The confidence interval is obtained by estimating a standard deviation
(found as explained in Chapter 2; see (2.3.2)) for the log(hazard ratio) estimate

b̂ = −0.0585, and transforming a symmetric 95% confidence interval for b:
b̂ ± 1.96 · SD(̂b) by the exponential function (Appendix B). The Wald test is
W = (−0.0585/0.211)2 = 0.077, P = 0.78; the same value is obtained for the
likelihood ratio test. The results are summarized in Table 3.1.19.

Pseudo-observations

For quantitative outcomes (Section 3.1.1) various scatterplots and residual
plots were useful for assessment of the model fit and for binary outcome
data we illustrate similar techniques in Section 4.1.2. For survival data, Ŝ(t)
predicts the failure status I(yi > t) at time t for all individuals i. Without
censoring, this failure status would be observed for all i and for all values of
t and graphical methods for binary outcome data could be used for each t or
for selected values of t.

For censored data the failure status I(yi > t) can be replaced by its pseudo-
observation defined as follows (for the PBC-3 study). To evaluate how much
each individual i affects the estimated survival probability (i.e., the overall

Kaplan–Meier estimator Ŝ(t) based on all n = 349 patients), individual i is
temporarily deleted from the sample and the Kaplan–Meier estimator, say
Ŝ(−i)(t), based on the remaining n − 1 = 348 patients is computed. The

pseudo-observation, Ŝi(t) for patient i at time t is now defined as

Ŝi(t) = nŜ(t) − (n − 1)Ŝ(−i)(t). (3.1.29)

Using (3.1.29) the pseudo-observation for every individual can be calculated.

If the dataset contains no censored observations at all then Ŝi(t) will equal the
observed failure status I(yi > t). For a closer discussion concerning definition
and uses of pseudo-observations, see for example Pohar Perme and Andersen
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(2008) or Andersen and Pohar Perme (2010).

A further evaluation of the proportional hazards assumption in Model
(3.1.27) may now be obtained by plotting pseudo-residuals from the model,

that is, the pseudo-observation Ŝi(t) minus the predicted survival probability

(say, pi(t)) which is Ŝ0(t) if i is a placebo-treated patient and Ŝ0(t)
bc if i is

a CyA-treated patient. We usually standardize the residual by dividing this
difference by an approximate standard deviation

√
pi(t)(1 − pi(t)). In Figure

3.1.8 this is done at the quintiles of the observed times of treatment failure:
0.71, 1.18, 2.16, 3.19 years. The distribution of these pseudo-residuals is not
simple. The negative residuals at a given time point t correspond to those
patients failing before t, the actual value depending on the exact time of
failure. The origin of a positive residual at time t is either a patient still at
risk at t or a patient censored before t. However, the average of the pseudo-
residuals may be useful to study and we see that these averages at the four
selected timepoints are close to zero, thereby giving no indication of deviations
from the proportional hazards assumption.

The 2-sample logrank test

In the present section we still consider the PBC3 study with its two treatment
groups in which the survival functions are S1(t) and S0(t). We wish to compare
these two functions, that is, to test the hypothesis

H0 : S1(t) = S0(t) for all t.

We discuss a simple nonparametric test for H0, that is, a test which is not
based on an assumption of the survival functions having a particular shape.

Digression. Nonparametric tests

The arguments for using nonparametric tests are usually that nonparametric
methods rely on fewer assumptions than parametric models and hence are more
robust. Being more robust, however, does not mean that the methods are univer-
sally applicable and certainly not that they are optimal. Even though the statistics
are nonparametric in the sense that their approximate distribution (under the hy-
pothesis of identical survival time distributions in the two groups of patients) can
be derived no matter the shape of the survival time distributions, they are usually
designed to be able to detect particular deviations from this hypothesis (cf. the
discussion in Section 3.1.1). In other words, the various tests have different power
against different alternative hypotheses, a fact which we may express by saying that
“different tests evaluate differences differently!”

It should be noticed that classical nonparametric tests such as the Wilcoxon

test cannot be used when there are censored observations although modifications to

these tests have been developed for this situation (e.g., Andersen et al., 1993, Ch.

5). �
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Fig. 3.1.8. Pseudo-residuals from a proportional hazards model for CyA- and
placebo-treated patients with PBC. The crosses denote average values.

In the following we introduce the logrank test which is sensitive against
deviations from the null hypothesis given by the Cox proportional hazards
model (3.1.27): the logrank test examines the hypothesis b = 0 in this model.
In fact it is the score test (cf. Section 2.3.3) based on this model. The main rea-
sons why this test has become standard in survival analysis (instead of using
parametric models) are that standard parametric models using, for example,
the log-Normal or Weibull distributions, often do not provide a satisfactory fit
to survival data and that the logrank test is almost as powerful as a paramet-
ric test against proportional hazards. In Section 7.5 we briefly discuss some
parametric models for survival data.

The basic idea in the logrank test is easy to explain and at the same time
the derivation of the test gives a flavor of its properties. At each time of failure,
a two-by-two table can be set up summarizing the changes that happened at
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that time. Let us consider the PBC3 data at t = 366 days where d0(366) = 1
patient failed in the placebo group and R0(366) = 145 patients were still at
risk. In the CyA group no patients failed at that time (d1(366) = 0) and
R1(366) = 147 patients were still at risk. At this time t we consider data as
shown in Table 3.1.18.

Table 3.1.18. Contributions to the 2-sample logrank test at t = 366 days in the
PBC-3 trial in liver cirrhosis.

Placebo CyA Total

Failed d0(t) = 1 d1(t) = 0 d(t) = 1
Survived R0(t) − d0(t) = 144 R1(t) − d1(t) = 147 R(t) − d(t) = 291

At risk just before R0(t) = 145 R1(t) = 147 R(t) = 292

The idea behind the logrank test is to calculate an “expected” number of
deaths in group 0, e0(t), and in group 1, e1(t), at each time (t) of failure given
the total number d(t) = d0(t) + d1(t) of failures observed at time t and the
numbers of patients at risk at time t in group 0, R0(t), and in group 1, R1(t),
when (under the hypothesis H0) the two groups have identical failure risks.
Therefore, following the derivations in Section 3.1.2, we let

e0(t) = d(t)
R0(t)

R(t)
(3.1.30)

and

e1(t) = d(t)
R1(t)

R(t)
.

Notice that, inasmuch as R(t) = R0(t) + R1(t), we always have that

e0(t) + e1(t) = d(t).

In the example, Equation (3.1.30) simply states that when the number d(t) =
1 of failures was observed at time t = 366 days and when R0(t) = 145 out of
the total number R(t) = 292 of the patients at risk at that time belonged to
group 0 then we expect that the fraction

R0(t)

R(t)
=

145

292

of the d(t) = 1 deaths took place in group 0, and hence that the fraction

R1(t)

R(t)
=

147

292

of the failures took place in group 1.
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The idea behind the logrank test is to add the observed number of deaths
and the expected number of deaths for instance in group 1 from each of the
D two-by-two tables, that is, to calculate the quantities

O1 =

D∑
j=1

d1(tj)

and

E1 =

D∑
j=1

e1(tj).

Here O1, as above, is the total number of observed failures in group 1 whereas
E1 may be interpreted as the total “expected” number of failures in group 1
under the hypothesis. Thus the difference O1−E1 is a measure of the (positive
or negative) excess mortality in group 1 compared to what one would expect
if the survival were the same in both groups. It can now be shown that by
normalizing the squared difference (O1 − E1)

2 by a variance V , where

V =
D∑

j=1

v(tj)

and

v(tj) = d(tj) · R0(tj)R1(tj)(R(tj) − d(tj))

(R(tj))2(R(tj) − 1)
(3.1.31)

is the variance (of di(tj)) from the two-by-two table at time tj , the logrank
test statistic

X2
lr =

(O1 − E1)
2

V
(3.1.32)

is approximately Chi-squared distributed with one degree of freedom under
the null hypothesis. Large values of X2

lr are significant and the approximation
with the Chi-squared distribution improves when the observed numbers O1

and O2 are large.
Equation (3.1.32) shows that a large value of X2

lr is obtained if the dif-
ference between the observed and the expected number of deaths is large
compared to the variance V . Because O1 − E1 =

∑
d1(tj) − ∑

e1(tj) =∑
(d1(tj) − e1(tj)) such a large difference is obtained if, in the majority of

the two-by-two tables, either a larger or a smaller number of failures is ob-
served compared to the expected number. If, on the other hand, there are
more deaths than expected for small values of time and less than expected for
large values of time then the difference O1 − E1 may be close to 0 showing
that the logrank test is insensitive in situations where the tendency changes.
This will, for instance, be the case when the survival curves cross within the
time interval considered.

It should be noted that O0 + O1 = E0 + E1 and, therefore, the same test
statistic would result from considering O0−E0 in (3.1.32). For the PBC3 data
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the observed and expected numbers are given in Table 3.1.19. The value of V
is 22.48 leading to X2

lr = 0.077.
The logrank test statistic is frequently presented in a different form:

X2
lr,c =

(O0 − E0)
2

E0
+

(O1 − E1)
2

E1
(3.1.33)

which is easier to compute than (3.1.32) as it is based solely on the observed
and expected numbers of deaths in the two groups (and not on the separately
calculated variance V ). It can be shown that we always have the inequality

(O1 − E1)
2

V
≥ (O0 − E0)

2

E0
+

(O1 − E1)
2

E1
.

Thus, the statistic X2
lr,c given by (3.1.33) is conservative and will always give

larger P -values than the “correct” version (3.1.32). This will, particularly, be
the case if the censoring patterns are markedly different in the two groups.

For the PBC data we found above that O0 = 46, O1 = 44, E0 = 44.7, E1 =
45.3, and X2

lr = 0.077. With three decimals X2
lr,c takes the same value leading

to an insignificant P -value of 0.78. The similarity between the two versions of
the test in this example is owing to the fact that this is a randomized study
where most censoring is caused by patients being alive at the closing date of
the trial. Recall that the same values were obtained for both the Wald test
and the likelihood ratio test.

Digression. A simple, explicit hazard ratio estimator

When, in later chapters, we extend (3.1.27) to more general regression models
we use the maximum likelihood estimator and its associated standard deviation
throughout. However, for the simple 2-sample situation studied in this section a
simpler and explicit estimator for the hazard ratio c is given by

ec =
O1/E1

O0/E0
. (3.1.34)

For the PBC data we find, based on the observed and expected numbers of
treatment failures given above, that (3.1.34) gives the value ec = 0.944 close to the
maximum likelihood estimator. A confidence interval for ec may be based on the
following standard deviation estimate for eb = log(ec),

SD(eb) =

r

1

O0
+

1

O1
.

A symmetric confidence interval for b leads to a 95% confidence interval for c from

ec/ exp(1.96 · SD(eb)) = 0.624 to ec × exp(1.96 · SD(eb)) = 1.427, again close to that

based on the maximum likelihood estimate; see Table 3.1.19. �



136 3 One categorical covariate

Table 3.1.19. Analysis of the treatment effect in the PBC-3 study.

CyA Placebo Total

Patients 176 173 349
Observed failures 44 46 90

Expected 45.3 44.7 90

Hazard ratio bc 0.943 1
(0.624, 1.426)

Hazard ratio ec 0.944 1
(0.624, 1.427)

LR test 0.077
Wald test 0.077

Logrank test X2
lr 0.077

Logrank test X2
lr,c 0.077

The proportional hazards assumption

The survival experience in the two treatment groups can always be summa-
rized using the survival curves (cf. Figure 3.1.6). To obtain a one-number
summary of the difference between the two curves, we imposed the propor-
tional hazards assumption in the Cox regression model (3.1.27) and used the
hazard ratio c = exp(b). The proportional hazards assumption is restrictive,
the hazard ratio may be misleading if the model fits poorly, and methods to
check the assumption are crucial. However, the desire to get a one-number
summary for the difference between two groups is not unique for survival
data. For quantitative outcome data, (Section 3.1.1), we used the difference
between mean values as the corresponding summary, and this may be equally
misleading if the positions of the two distributions to be compared are poorly
described by their means.

Digression. A note on notation

To describe the Kaplan–Meier estimator, the Cox estimator for the hazard ratio,
and the logrank test, we introduced the special notation used above. A notation more
in line with other sections of the book would be to represent the outcome observed
for individual i as

(yi, di(yi)). (3.1.35)

Here yi is the time of observation and di(yi) = 1 if yi is a failure time and di(yi) = 0

if yi is a censoring time. In subsequent chapters, we frequently use the notation in

(3.1.35). �
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3.2 Categorical covariate with more than two levels

When the covariate is dichotomous, the situation may be described as the
comparison between two groups, and as we have seen above, the conclusion
can be stated as a certain measure of discrepancy between the two groups,
equipped with a confidence interval.

For the quantitative outcome in the example in Section 3.1.1, we found an
estimate of either difference in — or ratios of — vitamin D status for groups
defined according to body mass index (overweight versus normal weight).
In the example in Section 3.1.2 we found an estimate of the odds ratio for
complication in the two surgery groups, and for the survival data in Section
3.1.3, the key result was an estimated hazard ratio between the Cyclosporin
A-treated and the placebo-treated patients with primary biliary cirrhosis.

In all of these situations, there was a correspondence (although not always
exact) between testing the hypothesis of equality between the two groups, and
interpreting a confidence interval for the relevant parameter.

When shifting to a categorical covariate with more than two levels, we
are dealing with the comparison of three or more groups, so that now we do
not have a single difference between groups and also no longer an equivalence
between test of equality of groups and construction of confidence intervals.

Whereas overall tests of equality between three or more groups is concep-
tually simple to derive by generalizing ideas from Section 3.1, the pairwise
comparison between any two groups and the construction of confidence in-
tervals for measures of discrepancy between pairs of groups create some fun-
damentally new issues for consideration, namely those of chance significance
due to many tests of individual hypotheses (multiple comparisons).

In this section x denotes a categorical covariate, and the value xi may,
for instance, specify the treatment received by the ith patient. We refer to
individuals with the same value of x as belonging to the same group. Our
model specifies the linear predictor to have separate values for each such
group.

If we have a total of k + 1 different groups, labeled 0, 1, . . . , k, it is often
convenient to specify k + 1 dummy variables, as described in Section 1.2,
Equation (1.2.6):

I(xi = j) =

⎧⎨
⎩

1 if subject i belongs to group j

0 otherwise
j = 0, 1, · · · , k.

If cj denotes some characteristic of the distribution in the jth group (e.g.,
mean value, log(odds) of some event, log(hazard rate)), the linear predictor
for the outcome yi may then be written as
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LPi =

⎧⎪⎪⎨
⎪⎪⎩

c0, if subject i belongs to group 0
c1, if subject i belongs to group 1
... ...
ck, if subject i belongs to group k

or

LPi = c0I(xi = 0) + c1I(xi = 1) + · · · + ckI(xi = k) (3.2.1)

and because

I(xi = 0) + I(xi = 1) + · · · + I(xi = k) = 1

we may write the above Equation (3.2.1) as

LPi = c0I(xi = 0) + c1I(xi = 1) + · · · + ckI(xi = k)

+(c0 − c0(I(xi = 0) + I(xi = 1) + · · · + I(xi = k))

= c0 + (c1 − c0)I(xi = 1) + · · · + (ck − c0)I(xi = k)

or, with a different parametrization

LPi = a + b1I(xi = 1) + · + bkI(xi = k), (3.2.2)

where we have defined new parameters as

a = c0, bj = cj − c0, j = 1, . . . , k.

In this formulation, we have treated the groups in an asymmetrical fashion,
because we have chosen one of them (group zero) to be the reference group,
represented by the parameter a = c0, whereas the rest of the groups are rep-
resented by their discrepancy to this reference group, on a specific scale; that
is, bj = cj − c0. In practical situations, the choice of reference group will often
be noncontroversial: a control group, a group of normal subjects (compared
to some genetic variant), nonsmoking individuals, the largest group, and so
on. In some situations, however, the choice may be more arbitrary, and it is
important to realize, that even if a change of reference group will affect the
parameters (they will get a new interpretation, and the estimates will differ
from the previous ones with an amount that equals the discrepancy between
the two alternative reference group candidates), the model itself (and in par-
ticular the test of no effect of x) will be invariant to the choice of reference
group and hence all conclusions will remain the same.

The above equation (3.2.2) is seen to be linear in the parameters bj and
hence the model belongs to the class of linear regression models. Note that
the exact interpretation of this linear predictor depends on the nature of the
outcome through the link function.
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Digression. Relation to multiple regression

We note that even though the above model has only one explanatory variable

(the group x), the linear model above takes the form of a multiple regression model

(described in full in Chapter 5), with the derived variables I(xi = 1), . . . , I(xi = k)

as covariates or explanatory variables. Furthermore, with the parametrization in

(3.2.2) (a reference group and contrast to this reference group), the resulting pa-

rameter estimates are correlated (a concept dealt with in more detail in Chapter 5).

Intuitively, this correlation can be explained as follows. If the reference group has,

for example, a low level (c0 = a small), the remaining groups will tend to be larger

than this (b1, . . . , bk all large). �

The results from estimation in a model specified as in (3.2.2) implies esti-
mation of the parameter a (with the interpretation as the level for the reference
group 0) and, most important, the parameters b1, . . . , bk (with the interpre-
tation as discrepancies between each single group and the reference group).

Testing the overall hypothesis of equality between all groups simultane-
ously is seen to correspond to testing all bjs to be 0 simultaneously. Whereas
this is by no means uninteresting, it still in many cases does not answer the
fundamental research question of similarities and dissimilarities between var-
ious treatment groups. Thus there is a need for posthoc tests or multiple
comparisons, where groups are compared pairwise or in various subsets.

Multiple comparisons

If we compare all groups one by one to the reference group, we make a total
of k comparisons, but if we perform pairwise comparisons between all k + 1
groups, we make a total of K = k(k + 1)/2 comparisons. Each time we test
a hypothesis, we have a small risk of a type I error (a false significance, i.e.,
declaring a difference to be present when, in fact, there is no difference). As
discussed in Section 2.3.3 this corresponds to the significance level, usually
5%. This means that, if we test a series of K true hypotheses, we have a
probability of 95% of a correct answer for each of these. Assuming all tests
were independent, this means that the probability of obtaining the correct
conclusion for all hypotheses is 0.95K .

Even though 95% is a high level of security, the number 0.95K will decrease
quickly with k + 1 (the number of groups to be compared), or with K, the
number of hypotheses to be tested, as illustrated by Figure 3.2.1. This is
the problem of mass significance, implying a high risk of detecting a false
significance (a type I error).

Still assuming the tests to be independent, and all hypotheses of equality to
be true (i.e., no difference between any groups), we may correct for this mass
significance simply by lowering the level of significance to obtain an overall
level of significance of α (usually α = 0.05), that is, choose the significance
level as αK , so that
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Fig. 3.2.1. Type I error rate for multiple comparisons. Upper curve refers to pair-
wise comparisons of all groups, lower curve to reference group comparisons.

1 − (1 − αK)K = α, that is, αK = 1 − (1 − α)1/K . (3.2.3)

or the simple approximate solution

αK ≈ α

K
. (3.2.4)

The method of Equation (3.2.3) is known as the Sidak correction, whereas the
simple approximation of equation (3.2.4) is known as the Bonferroni correction
. It follows from the derivation above, that the Sidak correction gives the exact
significance level α, provided that the model assumptions are met and the
tests are independent. We say that we control the experimentwise error rate
(EERC) under the complete null hypothesis of all means being equal. Actually,
we have obtained more than this. Consider the situation where one or more of
the means differ from the rest, so that the complete null hypothesis is no longer
true. What can we then say about the risk of detecting false differences? It is
easily seen, that the two methods of significance level correction as presented
above still keep this probability at an upper bound of α (because we now need
to control for a smaller number of comparisons in the above formulas) and we
say that we have in fact controlled the maximum experimentwise error rate
(MEER) under any partial null hypothesis as well.

The above considerations tell us how to judge whether we have signifi-
cance, because they state the appropriate adjusted threshold for the P -value.
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However, they do not provide a P -value for each of the hypotheses. The P -
value obtained by a simple comparison of two groups will be too low and has
to be adjusted upwards so as to avoid too many false significances. The obvi-
ous adjustment corresponding to the Bonferroni correction would seem to be
to simply multiply the P -value by the number of comparisons made. This is in
fact what is often done in practice, but it is immediately clear that this cannot
be an exact procedure because we may easily get a result above 1 (which is
clearly nonsense for a probability). Instead, we could use the Sidak correction
and quote the adjusted P -value 1− (1−P )K (which can never be larger than
1). However, for small P -values (which is after all our main concern), sim-
ple multiplication with the number of hypotheses under consideration works
quite satisfactorily. The effect of this safeguard procedure is clearly to reduce
power, which is intuitively reasonable, inasmuch as “you cannot play it both
ways:” with a fixed amount of information (data), you can only reduce the
risk of a type I error by increasing the risk of a type II error, or vice versa.
For definitions of errors of type I and II, see Section 2.3.3.

What is being said about hypothesis tests may be said in a similar fashion
about confidence intervals. Each confidence interval is constructed to have
an (approximate) coverage of 95%. If this confidence interval is the only one
under consideration, we can say that the coverage is indeed 95% but if we
construct many such confidence intervals, the probability that they will all
cover the respective true parameters will be less than 95%, and it will be
appreciably less if many intervals are involved. In the spirit of the above
considerations regarding lowering of the significance level, we should adjust
the confidence intervals by using alternative quantiles. For constructing two-
sided 95% limits, we use the 97.5% quantile, but if K simultaneous intervals
are to be constructed, we should instead use the (1 − αK/2) quantile, where
αK is an adjusted significance level according to some rule.

Considering the pairwise comparisons of a number of groups, we do have
a problem, though, because the tests performed are not independent. This
can be seen intuitively from the fact that if two groups look alike, they both
resemble a third group equally much. This dependence between test statistics
implies that an exact way of retaining an overall significance level of a pre-
specified size α does not exist. The methods suggested above are still valid in
the sense that they do control the EERC and even the MEER, but they are
conservative, meaning that the resulting significance level may be well below
the desired level α, which again has the consequence that true differences will
be harder to detect (we have low power). It is not an easy task to correct for
this dependency, but approximate solutions have been suggested in various
contexts, and we look into these possibilities in the appropriate subsections
to follow, with most details for quantitative data.

One useful piece of advice in the planning stage of an experiment is to
avoid many categories for the covariates of primary interest, if at all possi-
ble. Comparing many groups simultaneously will lead to weak overall tests
of significance (when testing whether several regression coefficients equal zero



142 3 One categorical covariate

simultaneously, some nonzero parameters may be disguised among many zero
parameters) and some groups may not be detected to deviate from the main-
stream. Pairwise comparisons will often be uninformative in these situations,
with wide confidence limits, due to the necessary correction for multiple com-
parisons. If many groups have to be included in the investigation, the protocol
should include statements regarding importance of various comparisons, so
that fishing expeditions may be replaced by confirmative analyses.

3.2.1 Quantitative outcome: One-way analysis of variance

In Section 3.1.1 we revisited Example 1.1 and compared the S25OHD levels for
normal weight women with overweight women and found a marginally signif-
icant difference, indicating a slightly inferior vitamin D status for overweight
women.

The outcome, S25OHD, was quantitative, and the comparison between
overweight and normal weight women resulted in a quantification of the dif-
ference in mean S25OHD levels, with confidence interval, and in a t-test for
testing identity of the two means.

We are concerned here with a similar situation, only with more than two
groups involved, and we look at the overall test of equality between the groups
as well as the comparison between specific groups, taking proper precautions
to avoid mass significance, as outlined in Section 3.2 above.

This setup is often denoted as the one-way analysis of variance situation,
a somewhat strange name, which is explained below.

To illustrate the ideas in this section, we use Example 1.5 from Section
1.5, concerned with the accumulated lymphatic absorption of fatty acids in
40 rats, subdivided into five groups that received diets with different dairy
products, labeled I–V.

A graphical presentation of this absorption is seen in Figure 3.2.2.
We note that the distribution of acid absorption is sufficiently symmetrical
to justify the calculation of averages and standard deviations, although the
amount of information for making this judgement is rather limited. Following
the lines of Section 3.1.1, we let yi denote the outcome (fatty acid absorption)
for the ith rat, and let xi denote the corresponding dairy product, defined as

xi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if rat i was fed with cream cheese, I
1, if rat i was fed with sour cream, II
2, if rat i was fed with cream, III
3, if rat i was fed with mixed butter, IV
4, if rat i was fed with butter, V

We assume all the yis to be independent with mean values given by
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Fig. 3.2.2. Absorption of fatty acids for five dairy products, I: cream cheese, II:
sour cream, III: cream, IV: mixed butter, V: butter.

E(yi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m0 if xi = 0 (cream cheese)
m1 if xi = 1 (sour cream)
m2 if xi = 2 (cream)
m3 if xi = 3 (mixed butter)
m4 if xi = 4 (butter)

(3.2.5)

and identical standard deviations. Summary statistics are presented in Table
3.2.1.

Table 3.2.1. Summary statistics for fatty acid absorption according to diary prod-
uct.

Product j nj Average (bmj) SD (bsj)

Cream cheese 0 8 153.02 41.905
Sour cream 1 6 210.40 28.212
Cream 2 12 193.04 36.275
Mixed butter 3 6 106.38 17.200
Butter 4 8 111.13 12.034

The pooled estimate of standard deviation is given by a generalization of
Equation (3.1.4)
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ŝ =

√√√√
∑4

j=0(nj − 1)s2
j∑4

j=0(nj − 1)
= 30.817, (3.2.6)

where the denominator
∑4

j=0(nj − 1) = n − 5 = 35 denotes the degrees of
freedom in the estimation of the common standard deviation, and n denotes
the total number of observations.

From Figure 3.2.2, as well as from the summary statistics, we note a dif-
ference in the level of absorption in the five groups, but also a difference in
variation. We investigate whether these immediate findings can be said to
represent true differences between groups.

Following the general outline of Section 3.2 above, the mean value may be
written in regression form as

E(yi) = a + b1I(xi = 1) + · · · + bkI(xi = k). (3.2.7)

with the parameters

a = m0, bj = mj − m0, j = 1, . . . , k,

and with dummy variables I(xi = j) defined as 1, if subject i belongs to group
j and 0 otherwise. In the example we have k = 4.

Traditionally, the research question leading to a design of this type is
whether there are any real differences between groups. This can be formu-
lated as the hypothesis that all groups have the same distribution. Typically,
the focus is primarily on an overall (omnibus) test for equality of all means
simultaneously, that is, a test for the hypothesis of all regression coefficients
bj being equal to zero simultaneously:

H0 : m0 = m1 = · · · = mk

or
H0 : b1 = b2 = · · · = bk = 0.

The overall hypothesis is that all regression coefficients are zero, thus it is
intuitively reasonable that we have to look at the size of the estimates b̂j in
order to quantify how close these are to zero. However, due to the correlation
between these, it is not simple to write up an intuitive test statistic and
we instead argue using as a basis the general situation described in Section
2.3.3. The issue here is to compare two competing models, one specifying five
different mean values and the simpler one specifying only one common mean.
The residual sums of squares from these two models may be written as

SSW =

n∑
i=1

(yi − â − b̂1I(xi = 1) − · · · − b̂kI(xi = k))2 =

n∑
i=1

(yi − m̂j(i))
2,

respectively,
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SST =
n∑

i=1

(yi − ȳ)2,

where the subscripts W and T represent the within group variation (sum of
squared deviations from group-specific averages), respectively, the total vari-
ation (sum of squared deviations from overall averages corresponding to the
model with identical means).

These two sums of squares reflect the unexplained variation in each of the
two models (or the model and the hypothesis). If they are almost identical,
the hypothesis is reasonable, but if SST is much larger than SSW , we must
reject the hypothesis.

The difference between the two may be calculated as

SST − SSW =

n∑
i=1

(m̂j(i) − ȳ)2 = SSB ,

where the subscript B represents the between group variation (sum of squared
deviations between group-specific averages and overall average).

Based on a Normal distribution assumption, the likelihood ratio test statis-
tic is given by

Q =

(
SSW

SST

)n/2

and general theory tells us to consider the test statistic −2 log Q. Furthermore,
it tells us that for large samples, this will have an approximate Chi-squared
distribution with degrees of freedom equal to the difference in number of mean
value parameters in the two models; that is, df = (n − 1) − (n − k − 1) = k.

For Normally distributed data (i.e., when the observations are Normally
distributed within each group), we need not use the asymptotic version of the
likelihood ratio test, but may instead look at another transformation of Q:

F =

(
n − k − 1

k

)
1 − Q2/n

Q2/n
=

MSB

MSW
, (3.2.8)

where MSB and MSW are the mean squares, defined by dividing the sums
of squares by their respective degrees-of-freedom, that is, the mean squares
between groups,

MSB =
SSB

k

and the mean squares within groups,

MSW =
SSW

n − k − 1
.
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We note that the test statistic (3.2.8) for testing equality of means is a
ratio between two variances, the variance between groups and the variance
within groups, and under the assumption of equal means given by H0, these
two variances ought to be identical. We would therefore expect the ratio to
be close to one, the closeness depending upon the amount of information (i.e.,
the degrees of freedom). It can be shown that under H0 the distribution of
F is F (k, n − k − 1). We reject the hypothesis of equal means if F is large,
that is, if the variation between groups is too large compared to the variation
within groups.

At this point, the origin of the name analysis of variance should be clearer,
because we compare two estimates of variance, which ideally should be iden-
tical under H0. The reason for the term one-way is that we only have one
classification criterion in this case, namely dairy product. If we had also in-
cluded the sex of the rat in our analysis, we would have been in a two-way
analysis of variance situation with a possibility to determine the effect of
gender as well as dairy product. We treat this situation in Section 5.1.1 as a
special case of a multiple regression model, namely one with two categorical
explanatory variables.

In our example, we get the quantities as presented in Table 3.2.2, and the
two alternative test statistics become

Table 3.2.2. Decomposition of the variation in the fatty acids Example 1.5

Variation SS df MS

Total 39
Within group 33239.12 35 949.69
Between groups 64960.46 4 16240.12

−2 log Q = 43.33 ∼ χ2(4), P <0.0001

F = 17.10 ∼ F (4, 35), P <0.0001

agreeing on an overwhelmingly significant rejection of the hypothesis of equal-
ity of all five means.

Traditionally, the F -test as derived above, is shown as part of an analysis
of variance table, showing the decomposition of the variation with associated
degrees of freedom, much as the information in Table 3.2.2. In general, we do
not want to present such tables inasmuch as we do not believe that they add
any important information. It is included here only to illustrate the way in
which the test statistic is derived.
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Digression. The case k = 1

Note that in the case of only two groups, k = 1, the F -statistic reduces to

the square of the test statistic (3.2.12) in accordance with the fact that the square

of a t-distributed quantity with df degrees-of-freedom has an F (1, df)-distribution.

Using a Normal approximation to the t-distribution reflects that for large df , the

F (1, df)-distribution will look approximately like a Chi-squared distribution with a

single degree-of-freedom. �

Now that we have established beyond much doubt that the five dairy prod-
ucts differ with respect to accumulated lymphatic absorption, a very natural
question arises as to which groups differ from which.

We may estimate the parameters of model (3.2.7) using the least squares
method (derived from the likelihood principle for Normally distributed data)

to obtain â = ȳ0 and b̂j = ȳj − ȳ0 with mean value

E(̂bj) = E(ȳj − ȳ0) = mj − m0 = bj

and a standard deviation estimated by

SD(̂bj) = SD(ȳj − ȳ0) = ŝ

√
1

n0
+

1

nj
. (3.2.9)

As a direct generalization of the results from Section 3.1.1, the Central Limit
Theorem ensures that for large samples, b̂j = ȳj− ȳ0 will have an approximate
Normal distribution, and an approximate 95% confidence interval for bj may
therefore be calculated as

b̂j ± 1.96 · SD(̂bj) = ȳj − ȳ0 ± 1.96 · SD(ȳj − ȳ0), (3.2.10)

where the term SD(̂bj) = SD(ȳj − ȳ0) is given by (3.2.9). The estimates are
shown in Table 3.2.3.
For small samples, this construction of confidence limits based on an asymp-
totic Normal distribution will result in a smaller coverage than the nominal
95% and we should instead use the appropriate t-quantile.

The upper 2.5% quantile in the t-distribution with 35 degrees of freedom
is 2.030, thus the confidence limits should therefore be calculated as

ȳj − ȳ0 ± 2.030ŝ ·
√

1

n0
+

1

nj
. (3.2.11)

This construction ensures confidence limits with an individual coverage of
95%, but the chance that all confidence intervals simultaneously include the
true value will be less (cf. the discussion in Section 3.2). Following the Bon-
ferroni or Sidak approach to correction for multiple comparisons, we should
adjust the significance level from α = 0.05 to α/4 = 0.0125 (Bonferroni) or to
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Table 3.2.3. Parameter estimates in the fatty acids Example 1.5.

Product Parameter Estimate SD 95% Confidence Interval

Cream cheese a = m0 153.02 10.90 (130.91, 175.14)

Sour cream b1 = m1 − m0 57.37 16.64 (23.58, 91.16)
vs. cream cheese

Cream b2 = m2 − m0 40.01 14.07 (11.46, 68.57)
vs. cream cheese

Mixed butter b3 = m3 − m0 -41.90 15.41 (-73.18, -10.61)
vs. cream cheese

Butter b4 = m4 − m0 -46.64 16.64 (-80.43, -12.86)
vs. cream cheese

the more exact 1 − (1 − α)1/4 = 0.0127 (Sidak) . The corresponding quantile
should therefore be 2.63 instead of 2.030.

This situation of comparing k means to a single control group may be
performed also using the procedure suggested by Dunnett which takes corre-
lation between the individual difference estimates b̂j into account. Dunnett’s
test keeps the MEER to a level not exceeding the nominal level of α = 0.05.

In order to show the effect of these corrections, we have calculated the var-
ious intervals resulting from two (cream and butter) of the four comparisons
to the control group receiving cream cheese (group 0). The estimates are

b̂2 = ȳ2 − ȳ0 = 40.01, b̂4 = ȳ4 − ȳ0 = −46.64

and the four different types of confidence limits are shown in Table 3.2.4.

Table 3.2.4. Comparisons to a reference group in the fatty acids Example 1.5

Method Cream vs. Cream Cheese Butter vs. Cream Cheese

Individual comparisons
Normal approx. (12.44, 67.58) (–72.10, –11.70)

t approx. (11.46, 68.57) (–73.18, –10.61)

Comparisons to reference
Bonferroni/Sidak (2.97, 77.05) (–82.47, –1.32)

Dunnett (3.99, 76.03) (–81.36, –2.44)

The confidence limits constructed above may be used for assessing differences
between the various groups to the reference group. A group can be declared
significantly different from the reference group if zero is not included in the
corresponding confidence interval. In analogy with the above construction of
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a confidence interval (and following from our general theory of maximum
likelihood in the case of a Normal distribution assumption) we may also look
at the intuitively interpretable Wald-type test statistic

t =
b̂j

SD(̂bj)
=

ȳj − ȳ0

SD(ȳj − ȳ0)
. (3.2.12)

For large samples, this quantity will have an approximate N(0, 1) distribution,
whereas for smaller samples, we should instead use the t-distribution. This
gives us tests for comparing individual groups to the reference group.

Comparing all groups pairwise

In the above model, we estimated a total of k + 1 parameters, the mean
for the reference group, a and k regression parameters bj . These regression
parameters represent the comparison of k groups with a single control group,
and we have discussed ways of correcting for these k comparisons in order to
obtain confidence limits which have a certain simultaneous coverage.

In the present example, the reference group was chosen more or less ar-
bitrarily and we might be interested in even more pairwise comparisons than
the ones considered so far. In the absence of preplanned comparisons, we may
simply want to compare all groups to each other in a pairwise manner, result-
ing in a total of K = k(k + 1)/2 = 10 comparisons. If we make a Bonferroni
(or a Sidak correction) for all of these comparisons, the relevant quantile to
use would correspond to αK = 0.005 (or αK = 1 − (1 − 0.05)1/10 = 0.0051),
which in a t-distribution with 35 degrees of freedom is 3.00. The correspond-
ing adjustment of a P -value would be to multiply it by a factor 10, which of
course weakens our possibility of finding the true differences (lower power).

Table 3.2.5. Comparison of all groups in the fatty acids Example 1.5.

method Cream vs. Cream Cheese Butter vs. Cream Cheese

A single comparison
t approx. (11.46, 68.57) (–73.18, –10.61)

All pairwise comparisons
Bonferroni/Sidak (–2.13, 82.15) (–88.06, 4.27)
Tukey-Kramer (–0.43, 80.45) (–86.20, 2.40)

We note a drastic inflation of the confidence interval when correcting for all
pairwise comparisons. The Bonferroni/Sidak intervals are 47.6% wider than
the traditional intervals based on individual t-distributions. We can do some-
what better (in terms of narrow confidence intervals and higher power) by
applying instead the Tukey–Kramer correction. This is based on the stan-
dardized maximum difference between the group means and generally yields
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a significance level (MEER; see Section 3.2) closer to the nominal (and never
larger than this) as compared to the Bonferroni/Sidak procedure (meaning
that it is generally less conservative). Here, we note that the intervals shrink
by approximately 4% and hence provide slightly tighter bounds while still
controlling the MEER. For a more detailed discussion on methods for mul-
tiple comparisons following a one-way analysis of variance, see, for example,
Miller (1981)

The assumption of Normality

Just as in the two-sample situation of Section 3.1.1, the above results regarding
confidence limits and test statistics are approximate unless we have Normally
distributed data within each group. However, for reasonably large samples,
deviations from Normality are not so crucial, at least if they are not too
systematic. Obvious deviations from symmetry (heavily skewed distributions)
make comparisons of means and standard deviations doubtful because these
quantities do not characterize skewed distributions. Thus, we have to demand
the distributions to be reasonably symmetric in order for mean and standard
deviation to make sense, and it is therefore necessary to get an idea of the
distributional shape.

Following the procedure from Section 3.1.1, we make a visual inspection
of the residuals

ri = yi − ŷi = yi − m̂j(i).

In Figure 3.2.3, we have collected a sample of such possible plots. These graph-
ical displays, in particular the quantile–quantile plot, show a tendency towards
a heavy right tail.

If the assumption of Normality is far from fulfilled, we may instead perform
a nonparametric test of identity of the distribution of fatty acid absorption for
the five dairy products. For comparing five groups as here, the most traditional
test is the Kruskal–Wallis test, but using this, we merely get the conclusion
that the five dairy products cannot be assumed to act identically, P <0.0001,
based on a Chi-squared distributed test statistic of 27.85 with four degrees of
freedom.

We might now proceed to make nonparametric pairwise comparisons be-
tween groups, again properly adjusted to avoid mass significance, but inas-
much as such tests provide no quantifications and confidence limits, we would
rather try to improve model assumptions through transformation, as shown
briefly below.

The assumption of equal standard deviations

The derivation of confidence limits and test statistics outlined above relies on
the traditional assumption of identical standard deviations in all groups. If
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Fig. 3.2.3. Residual plots for model check in the fatty acids Example 1.5.

this assumption is not reasonably fulfilled, we may modify the 95% confidence
interval for bj = mj − m0 using a formula equivalent to (3.1.8). A Welch
test statistic relaxing the assumption of equal standard deviations also exists
using reciprocal variances as weights in the analysis (cf. Section 3.1.1). This
test statistic here takes the value F = 26.03 ∼ F (4, 15.22) which is highly
significant (P <0.0001) to confirm our previous conclusion.

We may note from Figure 3.2.2 that the assumption of equal variances
seems to be not entirely reasonable, because two groups appear to have a
larger variation than the remaining. We can make a formal test for variance
homogeneity in several ways, the most commonly used being the Levene’s test
and Bartlett’s test. For robustness reasons we prefer to use the Levene’s test
(least sensitive to deviations from Normality), which is based on an anova-
type model for the squared residuals. We get a test statistic of 1.32 ∼ F (4, 35)
giving a P -value of 0.28 and hence no indication of variance inhomogeneity.
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However, comparing many groups at the same time is not very powerful
and differences in variation may well go undetected, especially in small sam-
ples. Thus, we should not necessarily be content with an insignificant Levene
test but supplement this with a search for sytematic patterns. One very com-
mon pattern is for groups with large averages also to have large standard
deviations. This pattern may be checked by looking at a plot of residuals ver-
sus predicted values (group averages), which is found in the upper-right panel
of Figure 3.2.3. From this plot (as well as from Table 3.2.1), we indeed see
that the two groups with the low averages also have small standard deviation,
so that standard deviations may perhaps be better quoted as a percentage.
This could be a reason for transformation by logarithms (Appendix B).

Transformation

Because of the tendency to skewness in the distribution of residuals and be-
cause of the positive relation between group averages and standard deviations,
we may choose to make a logarithmic transformation and define

y∗
i = log10(yi).

We can then in principle repeat all of the above, assumptions and calculations,
with yi replaced by y∗

i . The graphical illustration in Figure 3.2.4 shows that
the assumptions regarding distributional symmetry have improved slightly fol-
lowing the logarithmic transformation and the pattern in the variance inhomo-
geneity seems to have disappeared. The Levene test of variance homogeneity
is almost unchanged, F = 1.40 ∼ F (4, 35) with a corresponding P -value of
0.25.

The estimates following the logarithmic transformation are shown in Table
3.2.6.

Table 3.2.6. Parameter estimates in the fatty acids Example 1.5 after logarithmic
transformation.

Product Parameter Estimate SD 95% Confidence Interval

Cream cheese a = m0 2.172 0.0270 (2.117, 2.227)

Sour cream b1 = m1 − m0 0.148 0.0413 (0.064, 0.232)
vs. cream cheese

Cream b2 = m2 − m0 0.107 0.0349 (0.036, 0.178)
vs. cream cheese

Mixed butter b3 = m3 − m0 –0.128 0.0382 (–0.206, –0.051)
vs. cream cheese

Butter b4 = m4 − m0 –0.150 0.0413 (–0.233, –0.066)
vs. cream cheese
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Fig. 3.2.4. Residual plots for model check following logarithmic transformation of
outcome in the fatty acids Example 1.5.

As explained in Section 3.1.1, the interpretation of group differences changes
when we make a logarithmic transformation. Instead of quoting ordinary dif-
ferences on the original units as in Table 3.2.6, we should quote relative dif-
ferences, in percentages. We calculate these percentages by transforming back
with the appropriate antilogarithm (here using the estimate as a power to
base 10, because we used a base 10 logarithm). Here, we get the estimated
relative differences as seen in Table 3.2.7. As an example, for the cream group,
we get a fatty acid uptake which is a factor 1.28 larger than that of cream
cheese, whereas for mixed butter, the uptake is only 0.74 times that of cream
cheese, that is, 26% smaller. The confidence limits for this latter estimate are
seen to be (0.62, 0.89) indicating that the uptake for mixed butter may be as
much as 38% smaller than that for cream cheese, but also, that it may only
be 11% smaller.
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Table 3.2.7. Back-transformation of parameter estimates, obtained from logarith-
mic transformation in the fatty acids Example 1.5.

Product Estimated Ratio 95% Confidence Interval

Sour cream 1.41 (1.16, 1.71)
vs. cream cheese

Cream 1.28 (1.09, 1.51)
vs. cream cheese

Mixed butter 0.74 (0.62, 0.89)
vs. cream cheese

Butter 0.71 (0.58, 0.86)
vs. cream cheese

When we correct for multiple comparisons in order to avoid mass signif-
icance, we get slightly wider confidence intervals for these ratios, as seen in
Table 3.2.8.

Table 3.2.8. Correction for multiple comparison in logarithmic analysis of the fatty
acids Example 1.5.

Method Cream vs. Cream Cheese Mixed Butter vs. Cream Cheese

A single comparison
t approx. (1.09, 1.51) (0.62, 0.89)

Comparisons to
cream cheese only

Bonferroni/Sidak (1.04, 1.58) (0.59, 0.94)
Dunnett (1.04, 1.57) (0.59, 0.93)

All comparisons
Bonferroni/Sidak (1.01, 1.63) (0.57, 0.97)
Tukey–Kramer (1.02, 1.61) (0.58, 0.96)

The vitamin D example revisited

We now return to the vitamin D example, this time with three groups, because
we subdivide the overweight group into two (a redefined overweight group and
an obese group) by introducing a second cutpoint of 30. The regression model
relating vitamin D level yi for the ith woman to her body mass index xi then
becomes

E(yi) = a + b1I(25 ≤ xi < 30) + b2I(xi ≥ 30). (3.2.13)
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Figure 3.2.5 shows the scatterplot of vitamin D levels in these three groups.
From this, we note the same tendency for heavy-tailed distributions as was
the case in the fatty acids Example 1.5 and in our previous analysis of the
vitamin D example in Section 3.1.1, and we therefore proceed by analyzing
logarithmic observations.
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Fig. 3.2.5. The S25OHD in three stature groups, cutpoints BMI= 25 and 30.

The statistical model for logarithmic vitamin D levels is now exactly the
same as for the example above on fatty acids, except that we only have three
and not five groups.

The overall hypothesis of identical means is

H0 : m0 = m1 = m2

and we get the test statistic

−2 log Q = 6.26 ∼ χ2(2), P = 0.044

F = 3.13 ∼ F (2, 38), P = 0.055.

Although these two tests do not formally agree on a rejection of the hypothesis
of equal means, this must be seen as a formality, because the P -values come
close to the significance level for both tests.

In Section 3.1.1 we found a P -value of 3.6% when comparing two body
mass groups (overweight and obese women in one single group, compared to
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normal weight women, on a logarithmic scale). W here maintain the trend in
the association between body mass index and S25OHD, therefore it may at
first glance seem contradictory to get a less significant result now (formally
even insignificant as judged by the F -test)

This seeming paradox comes from a misinterpretation of an insignificant
result. As was pointed out in Section 2.3.3, an insignificant result does not
indicate that the groups are equal, but only that we do not have sufficient
evidence of a difference, and this is by no means the same thing! Evidently,
very small studies will most often fail to provide significant results for any
hypothesis, and this can hardly be taken as evidence of equality, but rather
as an absence of conclusion.

The logical next question might be: why do we have less evidence now,
compared to the situation with only two groups? The answer to this has to do
with the power of tests, that is the ability to detect real differences. Remember
the fact that when we perform a test we are in fact comparing two competing
models for our data: the most general one (our initial model) and the more
specific one (the simplified model, defined by our hypothesis). Because the two
models are nested, the most general one will always give the best fit, but it
also uses the largest number of parameters. In general, we may say that when
the number of parameters in the two models is very different, we get low power
whereas comparing two models that only differ by one single parameter, will
result in a high power. Of course, sample size also has an effect on power, but
this is quite another discussion which has been touched upon in Section 2.3.3
and is further discussed in Section 6.3.

When testing equal means for the vitamin D example, we compare a model
with three mean values to a model with only a single mean value (i.e., a
difference of two parameters), whereas in the t-test situation (with only two
groups based on body mass index), we compare two models differing by only
a single parameter. Therefore, comparing three groups simultaneously is not
as powerful as comparing only two groups and we expect to have a harder
time establishing a difference, even if there actually is one.

This gives us some valuable information concerning design of experiments:
if we are interested in comparing two specific groups, we should not carelessly
design an experiment comparing more than these two groups.

A tempting solution to this problem of low power seems to be to compare
the three groups in a pairwise manner, that is, perform three comparisons
among the three groups. As we have discussed above, such multiple compar-
isons should, however, be adjusted for the risk of mass significance, whereby
power is again lost. Hence, there is no way to retrieve power from a poorly
designed study unless specific subhypotheses have been specified in advance

In the present situation with three ordered groups, we may have specified
in advance that we wanted to compare only successive differences, that is, the
difference between normal weight and overweight women and the difference
between overweight and obese women. If this is the case, we will only have to
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perform two pairwise comparisons and therefore only adjust the P -values by
a factor two.

After back-transformation to ratios, we get the results presented in Table
3.2.9.

Table 3.2.9. Multiple comparisons in logarithmic analysis of the vitamin D Exam-
ple 1.1.

Method Overweight vs. Normal weight Obese vs. Overweight

Individual comparisons 0.806 (0.598, 1.086) 0.809 (0.569, 1.150)

Adjusted for two comparisons 0.806 (0.571, 1.137) 0.809 (0.540, 1.214)

The results suggest an approximate 20% reduction in vitamin D level from
one weight category to the next, although with quite a bit of uncertainty.

Another approach for comparing the three ordered BMI groups is to assign
a score to each category (see, e.g., Figure 1.2.1) and to apply instead a trend
test. We illustrate such an approach in Sections 4.1.2 and 4.1.3 in connection
with other examples .

3.2.2 Binary outcome: The 2 × (k + 1)-table

In Section 3.1.2, we looked at Example 1.4 from Section 1.5, concerning com-
plications following different types of surgery. We compared two of the three
groups and found a significantly elevated risk of complications following ab-
dominal surgery as compared to gynecological surgery. In this section, we
include also the third kind of surgery patients, the orthopedic patients, and
the total data are shown in Table 3.2.10, together with estimated probabilities
of complications.

Table 3.2.10. Complications in relation to operation type.

Complications
Operation Type No Yes Total Risk

Gynecological 235 5 240 0.021 (0.009)
Abdominal 210 35 245 0.143 (0.022)
Orthopedic 200 6 206 0.029 (0.012)

Total 645 46 691 0.067 (0.009)

We again define the outcome variable as the indicator of postsurgery compli-
cation for the ith patient:
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yi =

⎧⎨
⎩

1 if subject i experiences a postsurgery complication

0 otherwise,

whereas the explanatory variable xi denotes the type of operation, now with
three levels, of which we again choose the gynecological group as our reference:

xi =

⎧⎨
⎩

0 if subject i had gynecological surgery,
1 if subject i had abdominal surgery,
2 if subject i had orthopedic surgery.

Recall that, inasmuch as yi is a binary variable, the distribution is fully de-
termined by its mean value, the probability of a complication

E(yi) = pr(yi = 1).

The model specifies each surgery group to have a specific mean value

pr(yi = 1) =

⎧⎨
⎩

p0 if xi = 0 (gynecological patients)
p1 if xi = 1 (abdominal patients)
p2 if xi = 2 (orthopedic patients)

(3.2.14)

and following the approach from Section 3.1.2 we define the logits of these
probabilities

logit(pj) = log

(
pj

1 − pj

)
.

With dummy covariates defined as indicators of belonging to group 1 and 2,
as outlined in Section 3.2 and used in Section 3.2.1, we can write up the model
as a regression model with logit link as

�i = logit(pr(yi = 1)) = a + b1I(xi = 1) + b2I(xi = 2), (3.2.15)

where we have defined new parameters as

a = logit(p0), b1 = logit(p1) − logit(p0), b2 = logit(p2) − logit(p0).

Here, the intercept a is the logit for the gynecological group. The regression
parameters bj denote the changes in logits from the reference group of gyne-
cological patients to either the abdominal or the orthopedic group, that is,
log(odds ratios); see Equation 3.1.16.

From Table 3.2.10, we see that the complication risks in the gynecological
and orthopedic groups are pretty much the same (2–3%), whereas the risk is
remarkably higher among abdominal patients (14.3%).

Following the lines of Section 3.2.1, the usual approach in a situation
such as this is to perform an overall test of equality for all three groups. The
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hypothesis is that the risk of complication does not depend on type of surgery;
that is,

H0 : p0 = p1 = p2 (= p, say).

As was described in Sections 2.3.4 and 3.1.2, the likelihood ratio statistic for
testing this hypothesis

Q =
L(p̂, p̂, p̂)

L(p̂0, p̂1, p̂2)

may be used in the form −2 log Q, but now that we are comparing three
groups, this will for large samples have an approximate Chi-squared distribu-
tion with two degrees of freedom.

It is common to use instead the approximation

z2 =
∑ (O − E)2

E
≈ −2 log Q,

where O and E denote the observed, respectively, expected, number of counts
in each cell (calculated under H0), and we are summing over all six cells. The
observed and expected numbers of complications are shown in Table 3.2.11.

Table 3.2.11. Observed (O) and expected (E) numbers of complications in relation
to operation type.

Complications
Operation Type No Yes Total

O E O E

Gynecological 235 224.0 5 16.0 240
Abdominal 210 228.7 35 16.3 245
Orthopedic 200 192.3 6 13.7 206

Total 645 645.0 46 46.0 691

In our situation, we get z2 = 35.67 whereas −2 log Q = 34.32. Thus both
quantities clearly indicate that the hypothesis of equal complication probabili-
ties does not fit the observed data particularly well. In fact, the corresponding
P -value is less than 0.0001, so that the observed distribution of complications
is very unlikely to occur in situations with three identical complication prob-
abilities.

We recall that the Chi-squared approximation is reasonable when all ex-
pected values (expected number of complications in each cell under the null
hypothesis) are at least five, as is indeed the case here. Otherwise, we may
use Fisher’s exact test as mentioned in Section 3.1.2. This will here result



160 3 One categorical covariate

in the P -value 4.03 × 10−8, confirming our overall conclusion of a significant
difference among the three groups.

In view of this overwhelmingly significant result, we may proceed to evalu-
ate pairwise differences between surgery groups. As pointed out in Section 3.2,
comparing groups in a pairwise manner may too often (i.e., more often than
predetermined by the significance level) lead to false detection of discrepan-
cies as well as too narrow confidence intervals for the relevant contrasts. To
avoid this mass significance problem, we should make proper corrections of
the significance level in the construction of confidence limits as well as in the
evaluation of test statistics.

Some attempts to handle multiple comparisons for binary outcomes have
been taken (e.g., Horn and Vollandt, 2000). Here, we stick to the general
Bonferroni/Sidak corrections which can always be used but are based on an
independence assumption for the comparisons and hence give conservative
conclusions.

In this situation, we have to correct for three pairwise comparisons, so we
adjust from a significance level of α = 0.05 to α3 = 0.017 by using 2.39 as the
corresponding quantile for construction of confidence intervals of the form

b̂j ± 2.39 · SD(̂bj), (3.2.16)

where log(ÔR) = b̂j and SD(̂bj) are given by formulas analogous to Equations
(3.1.17) and (3.1.18). Transforming back to confidence intervals for the odds
ratio, we get the results in Table 3.2.12.

Table 3.2.12. Odds ratio estimates in the surgery Example 1.4.

Abdominal vs. Orthopedic vs. Abdominal vs.
Method Gynecological Gynecological Orthopedic

Individual comparisons
Normal approx. 7.83 (3.01, 20.36) 1.41 (0.42, 4.69) 5.56 (2.29, 13.49)

Comparisons to reference
Bonferroni/Sidak 7.83 (2.44, 25.16) 1.41 (0.32, 6.12) 5.56 (1.88, 16.42)

We note the inflation of the confidence intervals due to correction for three
simultaneous comparisons, although in this situation, the conclusions remain
the same.

Digression. A word of warning

It might be tempting to pool the two low-complication surgery groups and subse-

quently establish a significance between this pooled group and the high-complication

abdominal surgery group. This is, however, not advisable, because such a hypothesis

is data-driven and only one of many possible hypotheses that could be considered
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for these data. The additional problem here is that we cannot identify the pool of

such possible hypotheses and consequently we cannot adjust for the mass signifi-

cance problems that arise. �

3.2.3 Survival time outcome: The (k + 1)-sample logrank test

The results from Section 3.1.3 are easily extended to the case where a survival
time outcome is related to a single categorical explanatory variable with k+1
levels. More specifically we discuss the use of the Kaplan–Meier estimator,
Ŝj(t), for the survival function Sj(t) = pr(y > t) in group j and revisit
estimation of the hazard ratios in relation to a chosen reference group as a
measure of discrepancy between the groups. Finally we introduce the (k + 1)-
sample logrank test for comparison of the Sj(t) for j = 0, . . . , k. We also
briefly discuss the problem of multiple comparisons for this situation.

As an example we again use the PBC3 study with the explanatory variable
xi = bilirubin for patient i. We divide xi into quintiles (cf. Section 1.3); that
is, we have k = 4 and define the group, j, to which patient i belongs by:

j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if xi ≤ 10.3
1 if xi ∈ (10.3, 16]
2 if xi ∈ (16, 26.7]
3 if xi ∈ (26.7, 51.4]
4 if xi > 51.4.

The Kaplan–Meier survival curves for the five groups are shown in Figure
3.2.6 which suggests that survival deteriorates with increasing values of serum
bilirubin.

Proportional hazards

To quantify differences among the groups we study a Cox proportional hazards
model and introduce the hazard functions for the k+1 groups by defining the
hazard for patient i as hj(t) if patient i belongs to group j = 0, 1, . . . , k. The
proportional hazards model may now, following (3.1.26) be formulated as

hj(t) = cj · h0(t), j = 1, . . . , k, for all t. (3.2.17)

To rewrite equation (3.2.17) as one regression model (such as (3.1.27)) we
follow the previous two sections using k indicator or dummy variables so that
the proportional hazards model for the k + 1 = 5 groups becomes

li(t) = log(h0(t))+b1I(xi ≤ 10.3)+b2I(10.3 < xi ≤ 16)+ · · ·+b4I(xi ≥ 51.4),
(3.2.18)

where li(t) = log(hi(t)) is the log(hazard rate) for individual i and bj =
log(cj), j = 1, . . . , k.
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Fig. 3.2.6. Survival curves for patients with PBC in quintile groups of serum biliru-
bin: first quintile (solid), second (upper dashed), third (dotted), fourth (dotted-
dashed), fifth (lower long-dashed).

The maximum likelihood estimators ĉ1, . . . , ĉk for the hazard ratiosc1, . . . , ck

are solutions to equations like (3.1.28) and we use such estimators for general
Cox regression models discussed in subsequent chapters. The estimates are
shown in Table 3.2.14.

Digression. A simple hazard ratio estimator

For the present situation with a single categorical explanatory variable, a simpler
estimator is given as

ecj =
Oj/Ej

O0/E0
(3.2.19)

(cf. (3.1.34)). Furthermore, the standard deviation of ebj = log(ecj) can be evaluated
as

SD(ebj) =

s

1

O0
+

1

Oj
.

For the PBC3, data the hazard ratios estimated from the Os and Es are given in

Table 3.2.14. �

To evaluate the assumption of proportional hazards we follow the approach
of Section 3.1.3: that is, we plot the estimated cumulative hazards for the
groups 1 to 4 against that of the baseline group (group 0) (cf. Figure 3.2.7).
These plots appear to be reasonably linear, thus no systematic deviations from
proportional hazards are indicated.
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Fig. 3.2.7. Cumulative hazard for PBC3 patients in second, third, fourth, and fifth
bilirubin quintile plotted against that for the first quintile.

Furthermore, still following Section 3.1.3, we plot pseudo-residuals from
the proportional hazards model (see Figure 3.2.8). Recall that the negative
values for the plot at a time point t correspond to patients with a failure time
less than t. Because average residual values are close to 0, the figure suggests
that proportional hazards are not contraindicated.

The logrank test

To compare the k + 1 = 5 survival functions for the five bilirubin groups in
the PBC study, that is, to test the hypothesis

H0 : S0(t) = . . . = Sk(t) for all t,
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Fig. 3.2.8. Pseudo-residuals for PBC3 patients in first, second, third, fourth, and
fifth bilirubin quintile plotted for four values of time. Crosses indicate average values.

we follow the derivation in Section 3.1.3 to introduce the (k+1)-sample logrank
test. In the proportional hazards model this test examines the hypothesis
b1 = · · · = bk of identical hazards in all groups versus the alternative that at
least one bj is different from 0.

We introduce notation similar to that used for the 2-sample case and let
t1 < t2 < . . . < tD denote the different times of treatment failures for all
patients. We let d(t) be the total number of treatment failures observed at
time t; that is, d(t) = d0(t) + d1(t) + · · · + dk(t) where dj(t), j = 0, . . . , k is
the number of treatment failures at t in group j. Finally, Rj(t) is the number
of patients known to survive at least until time t in patient group j and
R(t) = R0(t) + · · · + Rk(t) is the total number of patients in the risk set just
before time t.
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At each time of failure, a 2-by-(k + 1) table can be set up summarizing
what happened at that time; see Table 3.2.13.

Table 3.2.13. Contributions to the (k + 1)-sample logrank test at time t.

Group 0 1 . . . k Total

Failed d0(t) d1(t) . . . dk(t) d(t)

Survived R0(t) − d0(t) R1(t) − d1(t) . . . Rk(t) − dk(t) R(t) − d(t)

At risk just before R0(t) R1(t) . . . Rk(t) R(t)

The (k+1)-sample logrank test is based on calculating an “expected” number
of deaths, ej(t), in each group j at each time t of failure given the total number
d(t) of failures observed at time t and given the numbers of patients Rj(t) at
risk at time t in group j when (under the hypothesis H0) the k + 1 groups
have identical failure risks. This expected number, following (3.1.30), is given
as

ej(t) = d(t)
Rj(t)

R(t)
. (3.2.20)

As for the 2-sample case we add the observed numbers of deaths and the
expected numbers of deaths in each group j from each of the (D) 2× (k + 1)
tables; that is, the quantities

Oj =

D∑
u=1

dj(tu)

and

Ej =

D∑
u=1

ej(tu)

are calculated. Here Oj is the total number of observed failures in group j
and Ej has an interpretation as the total “expected” number of failures in
group j under the null hypothesis and the difference Oj − Ej is a measure of
the excess mortality in that group compared to what one would expect if the
survival were the same in all groups.

A (k + 1)-sample logrank test may now, following (3.1.33), be defined by

X2
lr,c =

k∑
j=0

(Oj − Ej)
2

Ej
(3.2.21)

and under H0, X2
lr,c is approximately Chi-squared distributed with k degrees

of freedom.
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An alternative form of the test in the spirit of (3.1.32) is more frequently
used. That version, in fact the score test (Section 2.3.4) based on the propor-
tional hazards model (3.2.18) requires inversion of a (k × k)-matrix. As for
the 2-sample situation, however, the simple version (3.2.21) is conservative if
the censoring patterns in the groups to be compared are markedly different.

Table 3.2.14. Number of patients, observed and “expected” numbers of treatment
failures and hazard ratio estimates in serum bilirubin quintile groups in the PBC3
trial in liver cirrhosis.

Serum bilirubin (μmol/L)
Interval ≤10.3 10.3–16 16–26.7 26.7–51.4 >51.4 Total
Mean (7.66) (13.26) (20.23) (37.32) (148.83)

Patients 70 73 66 70 70 349
Treatment failures 6 3 13 23 45 90
“Expected” 23.26 20.34 16.78 16.89 12.73 90
Hazard ratio bcj 1 0.57 3.07 5.46 14.44
95% CI (0.14,2.28) (1.17,8.08) (2.22,13.45) (6.13,34.01)
Hazard ratio ecj 1 0.57 3.00 5.28 13.70

For the PBC3 data, the observed and expected numbers are given in Table
3.2.14 and the simple version of the logrank test is 112.5. For comparison, the
more complicated statistic in this case takes the value 113.8 and the likelihood
ratio test statistic is 94.9. All are highly significant (P <0.001) when evaluated
in the χ2(4)-distribution. Note the similarity between the two versions of the
logrank test owing to the fact that the censoring patterns in the five groups
are very similar.

Multiple comparisons

For survival data with a categorical covariate, adjustment for multiple com-
parisons is usually performed (if at all), using the Bonferroni/Sidak correction.
In the current PBC3 example with bilirubin quintile groups, all pairwise com-
parisons are not warranted. If pairwise comparisons are, at all, to be carried
out then comparing only neighboring categories is probably the most obvious
approach. However, for a (semi-)quantitative variable, such as bilirubin quin-
tile groups, a test for the effect of the covariate on the outcome may instead
be performed using the one-degree-of-freedom trend test discussed in the next
chapter (Section 4.1.3).

3.3 Exercises

Exercise 3.1. Use the tryptase dataset 3 from Example 1.12 for investigating
the difference in baseline tryptase for men and women.
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1. Show that men have an average tryptase 1.00 above that of women. Find
the standard deviation of this estimate and construct a 95% confidence
interval.

2. Draw a histogram for the tryptase values, separately for the two sexes.
Comment upon the adequacy of an assumption of Normality for tryptase
values.

3. Make a logarithmic transformation of tryptase and compare the means of
these transformed values for men and women. Show that the difference
can be formulated as “Median tryptase values for men are 19.1% higher
than for women” and find a 95% confidence interval for this percentage.

4. Can we conclude that men have a higher level than women? What is the
P -value for this comparison?

Exercise 3.2. Use the tryptase dataset 3 from Example 1.12 for investigating
whether baseline tryptase is related to the degree of illness (as specified by
the ASA classification).

1. Make a two by four table of counts for gender and ASA group.
In the following we collapse categories 3 and 4 of ASA.

2. Do we see any overall difference in untransformed baseline values among
the three ASA groups? What is the P -value for a test of identical means?

3. Make residual plots (residuals plotted against predicted values and his-
togram of residuals) and comment upon the appearance of these. Is it
reasonable to assume a common SD for the three groups? Do we have a
reasonably symmetrical distribution for the residuals?

4. Make a logarithmic transformation (e.g., log10) and perform the analyses
and model checks again. Comment on the comparison between the two
approaches. What is the conclusion?

5. Find a 95% confidence interval for the difference between ASA class 2 and
3–4, with Bonferroni adjustment. Is it reasonable to lump categories 2–4
into one? If so, perform a revised analysis comparing the resulting two
ASA groups.

Exercise 3.3. Baseline tryptase is considered “elevated” if it is above 11.4.
Use the tryptase dataset 3 from Example 1.12 for investigating the probability
of this event.

1. Estimate the probability (with confidence interval) of an elevated tryptase
value, for each sex separately. Show that the Chi-squared test statistic for
comparison of these two is 0.51 and find the associated P -value. Can we
detect a difference between men and women?

2. Calculate the confidence interval for the difference between these sex-
specific probabilities, with a 95% confidence interval. Formulate the con-
clusions in words.

3. Show that the relative risk of an elevated tryptase value for men compared
to women is 1.28, with a confidence interval of (0.65, 2.53). Find the
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corresponding odds ratio for this comparison and compare to the value of
the relative risk.

4. Make a three by two table with classifications according to ASA group
(categories 3 and 4 taken together) and elevated tryptase (no/yes).

5. Estimate the probability (with confidence interval) of an elevated tryptase
value, for each ASA group and look at the pattern of these estimates. Do
we see any differences or tendencies?

Exercise 3.4. Use the tryptase dataset 3 from Example 1.12 for the assess-
ment of an age effect in baseline tryptase values.

1. Compare the distribution of baseline tryptase values for patients below
and above 60 years of age. In particular, test whether the mean values are
identical for the two groups.

2. Compare the results with those obtained by performing the analysis on
logarithmic values.

Exercise 3.5. The tryptase dataset 2 from Example 1.12 contains informa-
tion on tryptase values reported for cases with suspicion of allergy (reaction
tryptase).

1. Do we see evidence of different reaction tryptase levels for the three dif-
ferent ASA classification groups (collapsing groups 3 and 4)?

2. Can we rule out a difference of 30% between ASA 1 and 2?
Calculate the difference between the reaction tryptase values and the sub-
sequent baseline values (untransformed as well as on a logarithmic scale)
and answer the following question.

3. Show that men have a larger difference than women and that this may
be formulated as a mean difference (between differences) of 6.8. Calculate
the corresponding confidence interval.

4. Make a logarithmic transformation of tryptase values, the baseline as well
as the reaction, and calculate the individual differences between these. Use
these to estimate the ratio of reaction tryptase and baseline tryptase for
each sex separately. How can we express the discrepancy between these
two ratios?

5. Make a scatterplot of differences versus type of surgery. How can we pro-
ceed to compare these surgery groups?

Exercise 3.6. The tryptase dataset 2 from Example 1.12 contains informa-
tion on the result of an allergy test (the variable “positive” which may be 0
or 1).

1. Make a two by two table relating the result of the allergy test to age groups
below and above 60. Estimate the difference between the probabilities of
a positive test, as well as the relative risk and the odds ratio. Remember
to quote confidence intervals also.
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2. Investigate similarly whether the probability of a positive test is related
to the ASA classification group. How can we report such a possible de-
pendence?

3. Do we have evidence that the probability of a positive allergy test is related
to whether the reaction tryptase value was elevated (>11.4)?

Exercise 3.7. The tryptase dataset 2 from Example 1.12 contains informa-
tion on the type of allergic reaction, classified into four groups. Collapse the
two groups with highest levels (life-threatening reactions and cardiac arrest).

1. Make a three by two table relating the reaction class to the subsequent re-
sult of an allergy test (the variable “positive”) and estimate the difference
of the probabilities of a positive test, using reaction class 1 as reference
group.

2. Show that the Chi-square statistic for comparing these three probabilities
is 8.07, and find the corresponding P -value. Can we conclude that there
is a difference among the three groups?

3. Show that the estimate of the odds ratio for a positive test in reaction class
3–4 compared to reaction class 1–2 is 1.93. Find the confidence interval
for this quantity.

4. Investigate whether the type of reaction is related to age group or ASA
classification group.

Exercise 3.8. Use data from the fever in pregnancy Example 1.2 to describe
and compare the distribution of birthweight between women with or without
fever in early pregnancy.

1. Estimate the mean difference in birthweight for the two groups, with 95%
confidence interval.

2. Comment on the possibility of making a logarithmic transformation of
birthweight.

Exercise 3.9. Use data from the fever in pregnancy Example 1.2 to compare
the risk of fetal death between women with and without previous abortions.
Show that the Chi-square statistic for comparing these two probabilities is
0.006. Find the corresponding P -value and make a conclusion.
Find the estimate of the odds ratio for fetal death for a woman with previous
abortions compared to a woman without previous abortions. Calculate the
95% confidence interval for this quantity and reformulate your conclusion, if
necessary.

Exercise 3.10. In Exercise 3.7 we looked at dataset 2 from Example 1.12, and
more specifically at the type of allergic reaction, classified into three groups,
obtained by collapsing the two groups with highest levels (life-threatening
reactions and cardiac arrest).

1. Make a three by two table relating the reaction class to gender. Calculate
relevant percentages.
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2. Do we see a genuine gender difference in the severity of the allergic reac-
tions?

Exercise 3.11. Use data from the CSL1 Example 1.7 to compare the survival
for patients treated with prednisone and placebo.

1. Limit the follow-up period to two years after treatment and define the
binary outcome “died before two years” (yes/no). Make the two by two
table relating this outcome to treatment. How do the censored patients
appear in this table?

2. In order to distinguish between survivors and censored patients, make in-
stead an outcome variable with three categories: dies, censored, and sur-
vives, again for the first two years of observation. Make the corresponding
two by three table and comment.

3. Would it be sensible to make any formal comparisons between treatment
based on either of these two tables?

4. Compare the two treatment groups using the whole observation period.
Do we see a significant difference between the two Kaplan–Meier curves?

Exercise 3.12. Use data from the PBC-3 Example 1.3 to compare the sur-
vival functions for male and female patients.

1. Estimate the hazard ratio with 95% confidence limit and state your con-
clusion.

2. Perform a model check of the assumption of proportional hazards.

Exercise 3.13. Use data from the fever in pregnancy Example 1.2 to describe
and compare the distribution of birthweight among women with parity 0 or
above 0.

1. Show that birthweight is significantly higher for women with previous
children as compared to women with no previous children.

2. Find the estimated difference in birthweight for these two groups, with
95% confidence interval.

Exercise 3.14. Use the CSL data from Example 1.7 to compare the distri-
bution of ascites in each of the two treatment groups.

1. Make a three by two table and calculate relevant percentages.
2. Comment on the relevance of calculating a Chi-squared test for identical

distributions of ascites in the two groups.

Exercise 3.15. Use data from the CSL1 Example 1.7 to compare the survival
functions for varying degree of ascites.

Exercise 3.16. Use data from the PBC-3 Example 1.3 to compare the sur-
vival functions for groups with albumin values defined as five quintile groups.

Exercise 3.17. Use the surgery data from Example 1.4 to compare the du-
ration of anesthesia in the three surgery groups.
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1. Show that the difference in duration for the abdominal and gynecologi-
cal patients is estimated to be approximately 39 minutes, with an SD of
5.5. State the confidence interval and test the hypothesis of equal mean
duration in these two groups, adjusting for multiple comparisons.

2. Perform the same comparison, only on a logarithmic scale for the duration,
and formulate the conclusion.

Exercise 3.18. Use the surgery dataset to compare the level of TOF-ratio
for the three groups defined by the neuromuscular blocking agent.

1. Do we see any significant differences?
2. Find a confidence interval for the difference between Atracurium and Ve-

curonium and decide whether it is reasonable to collapse these two groups.
If so, then compare the resulting two groups.

3. How could we improve the comparison of these three groups? See Exercise
5.7 in Chapter 5.

4. Explain why it does not make sense to perform a logarithmic transforma-
tion of this outcome.



4

One quantitative covariate

In this chapter we study models with a single quantitative covariate, that is,
a covariate measured on a numerical scale. Some quantitative variables are
continuous, meaning that they can take on any value (in principle infinitely
many but in practice at least “many” values) in some interval, finite or in-
finite. Typical examples could be age and body mass index. The number of
fever episodes for a pregnant woman is not a continuous variable, but still
obviously quantitative. Ordered categorical variables, such as (underweight,
normal weight or overweight) can also be thought of as quantitative variables,
if each category can be assigned a meaningful score.

The typical models considered in this chapter assume the effect of the
covariate to be continuous in the sense that relevant properties of the outcome
(the mean, the expected probability of a success, or the survival function,
according to the nature of the outcome) are expected to change gradually
with the covariate, so that any two units differing in their covariate value will
also differ in the expected value of the outcome. These models constitute one
of the two building blocks of all regression models with a linear predictor.

In the previous chapter, we discussed the other building block of linear re-
gression models, namely models including a single categorical covariate. These
models typically involved comparisons of groups, for example, characterized
by partitioning body mass index into separate intervals, as in Example 1.1.
When the number of groups is large, the groups will typically be small and the
model treating each such group as a separate entity becomes unstable due to
the large number of parameters. If, for instance, we have a random sample of
an adult population and wish to establish a relation between blood pressure
and age, we could divide the sample into age groups and compare these with
the analysis of variance techniques as described in the previous chapter. We
are then faced with the dilemma of making the groups sufficiently narrow,
so that they become almost homogeneous (and hence numerous and sparse,
with many parameters in the model) or limit the number of groups, thereby
implicitly making an assumption about a constant blood pressure over, for
example, decades of a life span.
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When the groups arise from a partition of an underlying continuous scale,
a natural solution to this dilemma is to imagine the construction of numerous,
very narrow, homogeneous groups. Each of these will be very sparse, and if
covariate values are unique in the sample, in the limit they will consist of
only a single observation. The simplifying approach is now to make a further
assumption about the characteristics of all these groups, namely to specify the
linear predictor to be a specific continuous function of the covariate values,
characterized by only a few parameters. In its simplest form, the predictor
could be specified as a linear function of the covariate, that is, a constant linear
increase or decrease, involving only one parameter apart from the general level
of the outcome. This is the starting point of the present chapter.

We have divided the chapter into two main sections, the distinction being
the complexity of the relation between the linear predictor and the covariate.
Section 4.1 is concerned with the simplest models where the quantitative co-
variate (or some simple transformation of this, such as the logarithm) enters
directly in the linear predictor, giving rise to the classical forms of simple
linear regression, logistic regression, and Cox regression. In Section 4.2 we
study models where the relation between the linear predictor and the quanti-
tative covariate is nonlinear in a way that calls for construction of several new
covariates derived from the original one, typically involving partition into in-
tervals (groups), polynomial effects, and the combination of these in the form
of splines. Remember from Section 1.4.2 that the term “linear predictor” refers
to a construct that is linear in the unknown parameters. Therefore, in spite
of the nonlinear nature of the relation between outcome and covariate in Sec-
tion 4.2, we are in fact still dealing with linear predictors. This is important
because all models with a linear predictor can be fitted quite simply using the
same type of general software.

Section 4.1 is divided into subsections according to the nature of the out-
come. However, as was also the case in the previous chapter, it turns out that
the basic ideas are the same whatever the nature of the outcome; only the
techniques differ according to the mathematics of the models. In Section 4.2
subdivision according to outcome type is not performed.

The models in Section 4.1 are conceptually much simpler than the ones in
Section 4.2, but the assumption of a direct linear relation between covariate
and predictor is not one to be taken lightly. If it is not fulfilled to a reasonable
extent, the model will be inappropriate and perhaps totally useless.

Therefore, a check of the linearity assumption should be an integral part
of any analysis involving quantitative covariates, along with checks of other
parts of the model (which we have already encountered; cf. Chapter 3). We
may follow two general strategies. One is graphical, displaying the lack of fit
for each individual observation and searching for patterns in these deviations
(residuals). The other is numerical, focusing on an extension of the model
relaxing the linearity assumption and judging whether this leads to a signifi-
cantly improved fit. The precise nature of the methods depends on the nature
of the outcome and is therefore discussed in the appropriate subsections.
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Closely related to the model check is the discussion of model stability or
robustness based on regression diagnostics. This topic is new to this chap-
ter because of the quantitative nature of the covariate which may give rise
to very influential observations (typically the ones with extreme values of
the covariate). Note the distinction between an outlier (an observation that
is numerically farther away from its expected value than considered reason-
able) and an influential observation (an observation that has an unduly large
impact on the conclusion of the analysis). Influential observations may be
detected by a leave-one-out technique, that is, by studying the change in es-
timated parameter values resulting from omitting each single observation at
a time. Although no precise threshold for importance is given, the relative
importances may offer substantial insight and create new ideas.

4.1 Linear effect

This section discusses models where the linear predictor is a direct linear
function of the covariate itself (or some simple transformation of this), that
is, where

LPi = a + bxi. (4.1.1)

Here the parameter a denotes the intercept (the value of the linear predictor
when the covariate x is zero), and the parameter b denotes the slope of the
linear relationship (the expected difference in the linear predictors for two
individuals differing one unit in x).

Note that this model may be inadequate for xi itself, but useful for a
transformed covariate: x∗

i = f(xi) where f(·) is a completely specified trans-
formation, for example, the logarithm f(x) = log(x) or the inverse f(x) = 1/x.

This section is divided into subsections according to the nature of the
outcome yi, which may be quantitative (ordinary linear regression, the least
squares method), binary (logistic regression), or a survival time (Cox regres-
sion), respectively.

Describing the linear predictor as a simple linear function of the covariate
is an obvious first step in many applications, because all smooth continuous
functions may be approximated by a linear function, at least locally (i.e., for
a limited range of covariate values). This is, however, no guarantee that such
a model will fit the data, and check of this assumption is mandatory in order
to prevent erroneous and misleading conclusions.

The check of linearity is part of the general model checking, which as
already mentioned, follows two general strategies, a graphical and a numerical,
the precise nature of which depends on the type of outcome. We mostly focus
on graphical methods, displaying the lack of fit for each individual observation
and searching for patterns in these deviations (residuals or “pseudo”-residuals;
see Section 3.1.3). In the search for patterns in scatterplots or residual plots,
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a strong tool is the concept of smoothing. Various forms of smoothing have
been developed, but a common feature is that observations corresponding to
covariate values in the vicinity of each other are pooled to form a local average
and that these averages are combined to give a hint of the common trend in
the association, if any (e.g., Hastie and Tibshirani, 1990, Ch. 2–3).

If xi has few possible values, for example, if the covariate is ordered cat-
egorical, then the test for linearity is particularly simple. This is because
model (4.1.1) is then nested in the model treating xi as a categorical variable
(as in Chapter 3). However, inference in this case may depend critically on the
scores attached to each category. Special attention is devoted to that situation
in Sections 4.1.2 and 4.1.3.

4.1.1 Quantitative outcome: Simple linear regression

In Section 3.1.1, we compared the vitamin D level for Irish women, in groups
defined by body mass index (BMI). Specifically, we defined two groups using
the threshold 25 kg/m2 and in Section 3.2.1, we extended this to three groups
using an additional threshold of 30 kg/m2.

When comparing vitamin D status in such groups, the within-group vari-
ation is regarded as biological variation in vitamin D for women having the
same body stature. However, even within each group, the body mass indices
may be quite different. In the normal weight group, a woman may have a body
mass index of 19 kg/m2 but equally well of 24 kg/m2, whereas in the group
of obese women, the lower threshold for body mass index is 30 kg/m2 with
no upper threshold to limit the degree of overweight. If the expected vitamin
D is related to body mass index in a continuous way, any two individuals
differing in body mass index will also differ in their expected vitamin D level,
even if they belong to the same body mass index group. This heterogeneity
within groups makes it more difficult to detect the possible systematic differ-
ences between stature groups. Expressed in another way: some of the possible
systematic effect of body mass index on vitamin D is erroneously regarded as
noise or unsystematic variation between individuals within each group. Thus,
grouping of a quantitative covariate may not always be wise and may, indeed,
lead to a substantial loss of information.

In order to study a continuous relationship between vitamin D and body
mass index, a natural first step is to look at a scatterplot of the individual
observations. This was already introduced in Chapter 1 for the group of Irish
women, but is reproduced in Figure 4.1.1 below. We note from this figure
that there is a tendency for women with a high body mass index to have
a somewhat inferior vitamin D status compared to women with a low body
mass index. This is in accordance with the result from Section 3.1.1 where
we found that overweight women had an inferior vitamin D status compared
to normal weight individuals, quantified as -13.33 nmol/l with the confidence
interval (−25.87,−0.79) nmol/l.
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Fig. 4.1.1. Scatterplot of vitamin D concentration versus body mass index for Irish
women.

Relating the vitamin D concentration to the quantitative information in
body mass index may be thought of as a comparison of very many body
mass groups, one for each particular value of body mass index. Each of these
groups has a particular mean value of vitamin D concentration but because the
number of groups is so large, we need a description of the relation between
these mean values in order to get a parsimonious model. Superimposed on
Figure 4.1.1 is a scatterplot smoother. This figure suggests that it is reasonable
to specify the mean values to lie on a straight line, the line of means for varying
body mass index.

If we let yi denote the vitamin D concentration for the ith individual and
let xi denote the corresponding body mass index, we write this model as

E(yi) = mi = a + bxi (4.1.2)

and denote it as a simple linear regression model, “simple” because we only
have one predictor, x. In model (4.1.2) the parameter a denotes the intercept
(the expected value of y when x is zero), and the parameter b denotes the
slope of the linear relationship (the expected difference in y for two individuals
differing one unit in x). Note that even for cross-sectional studies such as this,
where we have no longitudinal information on any single individual we still
often refer to the slope as the expected change in y corresponding to a one-
unit increase in x. This is so, even if we do not necessarily assume a causal
effect of x.
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Estimation of the parameters a and b from Equation (4.1.2) may be per-
formed by the method of least squares, which consists in minimizing the resid-
ual sum of squares (RSS) , defined as

RSS =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − â − b̂xi)
2, (4.1.3)

residuals here being the vertical distance from the observation yi to the line
ŷi = â + b̂xi, as shown in Figure 4.1.2.
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Fig. 4.1.2. Definition of residuals for regression of vitamin D on BMI.

The least squares method is derived from the maximum likelihood prin-
ciple when the observations are Normally distributed with equal standard
deviations (variance homogeneity) , but it can be shown to be sensible even
when these assumptions are not fulfilled. We return to a discussion of this
below, together with the assumption of linearity.

In this simple linear regression situation with only one covariate, it is
possible to derive explicit formulas for the parameter estimates. In order to
facilitate a subsequent discussion on design, precision, and the concept of
correlation, we choose to do so.

The parameter of most interest is usually the slope b, which has the least
squares estimate

b̂ =
ŝxy

ŝ2
x

, (4.1.4)
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where

ŝxy =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ)

is the empirical covariance between x and y (body mass index and vitamin
D),

ŝ2
x =

1

n − 1

n∑
i=1

(xi − x̄)2

is the empirical variance of the xs, and x̄, respectively, ȳ denote the average
values of the observed xs and ys. Note that even though the variance of the
covariate enters into the formulas, there will be no assumptions about the
distributional form of these measurements. This is an important fact to keep
in mind during the subsequent discussion of design, correlation, and sensitivity
analysis.

The estimate b̂ is an unbiased estimate of the slope. Furthermore, when we
can assume variance homogeneity (all observations have the same standard
deviation - or variance), it can be shown to be the most efficient unbiased
estimate, that is, the one with the lowest standard deviation. The standard
deviation of this estimate is given by

SD(̂b) =
ŝy|x√

n − 1ŝx

, (4.1.5)

where

ŝ2
y|x =

RSS

n − 2

is the estimated residual variance: a scaled version of the residual sum of
squares (4.1.3) around the regression line.

The Central Limit Theorem ensures that, for large samples, b̂ will have
an approximate Normal distribution, and an approximate 95% confidence
interval for b may therefore be calculated as

b̂ ± 1.96 · SD(̂b) (4.1.6)

although for moderate-sized samples, we usually replace 1.96 by the appro-
priate t-distribution quantile (usually somewhat above 2). In this example,
we have 41 observations (n = 41), 2 parameters and therefore 39 degrees of
freedom (n − 2 = 39) and the appropriate t quantile is 2.023.

We may also write a formula for the estimate of the intercept as well as
its standard deviation, but inasmuch as these formulas do not contribute with
any important insight, they are omitted.

For the vitamin D data we get the estimates: â = 111.05(18.40), b̂ =
−2.392(0.690), and ŝy|x = 17.91. Here, a and s are measured in the units of
the outcome variable (nmol/l), and b is measured in units of “outcome per
explanatory variable”((nmol/l)/(kg/m2)).
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The parameter a denotes the intercept. Although this does not always
have a sensible interpretation (that depends on whether x = 0 is a sensible
covariate value), it is nevertheless necessary to report this in order to use the
model for predictions. In this example, it refers to the vitamin D concentration
for a hypothetical individual with a zero body mass index, that is, weighing
nothing. Using a simple reparametrization of body mass index, for example
using the new covariate x∗ = x − 25 and thus writing the (very same) model
as

E(yi) = a∗ + bx∗
i (4.1.7)

will not change the slope, but will change the intercept to

a∗ = a + 25b,

now interpreted as the expected level of vitamin D for an individual with a
body mass index of 25. Here, we get â∗ = 51.244(2.948), leading to a 95%
confidence interval of (45.280, 57.207).

The parameter b is the focus of interest, denoting the slope of the linear
relationship between body mass index and vitamin D concentration. Based on
the above estimate, b̂ = −2.392(0.690), we may calculate the 95% confidence
interval to (−3.788,−0.996). The interpretation is that the expected difference
in vitamin D concentration for two individuals differing one unit in body mass
index (corresponding to a weight difference of approximately three kilos for
individuals of height 1.75 m) is (in round figures) 2.4 nmol/l. However, this
is only our best guess and it might as well (with 95% credibility) be as much
as 3.8 nmol/l or as little as 1.0 nmol/l.

The confidence interval for the slope contains only negative values (it does
not include zero), thereforewe are reasonably convinced that there is indeed
a (negative) relationship between body mass index and vitamin D.

A formal test for no relation between body mass index and the level of vi-
tamin D may be performed using the Wald Test W = (−1.952/0.657)2 = 8.82
which according to the general theory of Section 2.3.4 follows an approximate
Chi-squared distribution with a single degree-of-freedom and leads to a P -
value of 0.003, that is, a clear indication of a relation between body mass
index and vitamin D, under the assumption of linearity. In this simple situa-
tion we may also choose to use the t-test: t = (−1.952/0.657) = −2.97, which
in the case of a Normally distributed outcome follows a t-distribution with 39
degrees of freedom and yields a P -value 0.005. The same P -value is obtained
from the F (1, 39)-distributed statistic t2 = 8.82.

Confidence and prediction limits

Based on the parameter estimates above, we may construct predicted values
for the outcome (vitamin D concentration) for a whole series of values of body
mass indices, with confidence limits. The predicted value of vitamin D for the
ith individual is given by the straight line
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ŷi = â + b̂xi (4.1.8)

and the standard deviation of this prediction may be calculated and used to
construct confidence limits.

All these predicted values will of course lie on a straight line (as specified
by our model) and the lower and upper confidence limits become symmetric
curves around this line, as shown in the left panel of Figure 4.1.3. The limits
are most narrow around the average body mass index and become wider as
we move towards either small or large values of body mass index. The width
of the limits is inversely proportional to the square root of the number of
observations, so when the sample size becomes large, the limits narrow and
may eventually become indistinguishable from the line itself.

Confidence limits may be used as a visualization of the evidence of a
relationship between two variables, or they may be used for an immediate
comparison between two such relationships in subgroups (we show an example
of this in Section 5.2.2). It is important, however, that they may not be used
for diagnosing single individuals, inasmuch as they do not reflect the biological
variation around the regression line.

For diagnostic purposes, we should instead use the prediction limits, as
seen in the right-hand panel of Figure 4.1.3. These limits are constructed to
include 95% of future observations (using an assumption of Normality for the
biological variation) and may therefore be used as a diagnostic tool to identify
individuals with an uncommon level of vitamin D as compared to their body
mass index. The width of these reflects the biological variation around the
regression line as well as the uncertainty of the line itself. This means that
including a lot of individuals in the investigation will cause these limits to
narrow, but only to a certain extent, because a large sample size has no impact
on the biological variation of vitamin D for individuals with a common body
mass index (variation around the regression line). We notice that these limits
are almost straight lines. This is because the biological variation is of larger
magnitude than the uncertainty of the estimated line (due to a relatively large
sample size).

The prediction limits may be thought of as a continuous collection of
reference regions, one for each value of body mass index, that is, reference
regions “moving along” the regression line.

Check of model assumptions

The results and interpretation of a simple linear regression relies (to different
extents) on various assumptions. Some of these have been discussed previ-
ously, in Chapter 3 (variance homogeneity, Normality) whereas linearity is
new. Another new consideration deals with examination of the influence of
individual observations.

The most fundamental assumption is of course that of linearity between
the outcome (vitamin D concentration) and the covariate (body mass index).
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Fig. 4.1.3. Confidence and prediction limits (reference region), vitamin D concen-
tration versus body mass index.

If this is not a reasonable approximation, the results become uninterpretable
and therefore useless. We may judge this linearity assumption by looking
at the scatterplot Figure 4.1.1. If this scatterplot had shown clear evidence
against linearity we should not have proceeded with the analysis but rather
tried to modify our model to describe the actual relationship. We present an
example of this later in this section.

In some situations, a small systematic curvature may go undetected, espe-
cially if the range of the covariate is large and observations are abundant. The
visual inspection of the original scatterplot should therefore be supplemented
by a residual plot, showing residuals (vertical distances form observations to
line; cf. Figure 4.1.2) against the covariate. In later chapters where we have
two or more covariates in the model, such a plot becomes mandatory because
the dependencies in the data can now no longer be displayed as a simple
scatterplot.

The residual plot in question is shown in the upper-left panel of Figure
4.1.4. Deviations from linearity between vitamin D and body mass index will
display themselves as curved shapes in such a residual plot. We do not see any
such clear tendencies from the smoothing, therefore we conclude once again
that linearity is reasonable in this situation.

If we detect a clear deviation from linearity, it would make little sense
to continue making conclusions from the present model. Instead, a remedy
may be to perform a transformation of the outcome, the covariate, or both.
Alternatively, a nonlinear relation could be formulated (cf. Section 4.2 and
Appendix B).

A requirement for the least squares method to produce the optimal es-
timates (in the sense of a small SD) is variance homogeneity, that is the
assumption that all residuals have the same standard deviation. A trained
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Fig. 4.1.4. Model check for vitamin D concentration versus body mass index.

eye may judge this assumption directly from the scatterplot in Figure 4.1.1 or
Figure 4.1.2 by noting whether the observations form a band of approximately
constant width around the regression line. More often, a residual plot is used,
and even though we may use the same plot as described above, it is more
common (for reasons that become clear in the next chapter concerned with
multiple covariates) to display the residuals against the predicted values of the
outcome ŷi, as shown in the upper right panel of Figure 4.1.4. Because we only
have a single covariate, there is a one-to-one correspondence between values of
the covariate and predicted values of the outcome (given by the line), and the
residual plots discussed thus far contain exactly the same information. Apart
from a linear transformation of the horizontal axis (here involving a change of
direction), the two plots will always be identical. However, a deviation from
the assumption of variance homogeneity will not show itself as curves but
rather as trumpet- or funnel-shaped patterns. If the assumption of variance
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homogeneity is well in agreement with the data, the plot should look like a
horizontal band of approximately constant width. This is more or less what
we see here, therefore we conclude that variance homogeneity is reasonable.

If we detect a clear deviation from variance homogeneity, it does not inval-
idate the model completely although we will lose efficiency. A transformation
may make the assumption more reasonable, although one should take care not
to destroy the linearity at the same time. The commonly seen funnel-shaped
pattern is often remedied by a logarithmic transformation of the outcome
(Appendix Figures B.3 and B.4), whereas scrutinizing influential observations
may help in understanding more irregular deviations from homogeneity.

The fulfillment of the assumption of linearity ensures that the estimates are
interpretable and the variance homogeneity ensures that the precision of the
estimates is optimal. Traditionally, this precision is quoted either as the stan-
dard deviation of the estimate or as a confidence interval for the parameter.
We have done both in this presentation. When using the standard deviation
for construction of a confidence interval, we must be able to assume that the
distribution of the estimate is reasonably close to a Normal distribution. This
follows directly if we assume the observations themselves to be Normally dis-
tributed (around the regression line), but in practice this assumption may
be relaxed because increasing the number of observations in the investigation
will make up for (small) deviations from Normality, due to the Central Limit
Theorem (cf. Chapter 2).

However, the assumption of Normality for the observations (or more pre-
cisely, for the deviations around the regression line) becomes important if the
aim of the investigation is to construct prediction limits as described above.
These limits are constructed to cover 95% of future individual observations
and hence utilize the distribution of outcome values for given values of the
covariate in the form of a population standard deviation. This means that a
deviation from Normality in the variation around the regression line will have
a direct effect on the prediction limits and make them inaccurate and possi-
bly useless. If a proper transformation cannot solve this problem, one should
abandon the use of these prediction limits altogether.

Diagnostics

Above, we investigated the appropriateness of various model assumptions.
We checked whether the assumptions underlying the linear regression model
were reasonable for describing the data at hand. Now we look at the situation
from a different perspective and ask whether all observations support the
model to the same extent. We discuss terms such as outliers and influential
observations. In this setting of a simple linear regression, these ideas are easily
illustrated but they become even more important in the subsequent chapters
where graphical illustrations can no longer display all data simultaneously.

An outlier is an observation that is numerically farther away from its
expected value than considered reasonable. Whether such an observation is
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also influential depends on the sample size as well as the focus of interest.
For instance, in the vitamin D example, a subject may have a moderate body
mass index (e.g., 25 kg/m2), but a very high vitamin D concentration (e.g.,
130 as for the hypothetical point labeled with a star in the upper-right panel
of Figure 4.1.5). Whereas this observation will tend to pull the regression
line upwards, the effect is very small due to the size of the sample. Likewise,
the influence on the slope is also very limited, because a body mass index
of 25 kg/m2 is close to the average value in the sample. On the other hand,
if a subject with a high body mass index (e.g., 50 kg/m2) has a moderate
vitamin D concentration (i.e., not as low as expected, e.g., 80 nmol/l), she
will pull the line to make it less steep, that is, exert an influence on the
slope, as shown in the lower-left panel of Figure 4.1.5). This generalizes to say
that an observation with an extreme value of a covariate will be a potentially
influential observation concerning the effect of this variable. If the outcome
corresponds well to this extreme value (i.e., if the subject with the extremely
high body mass index has a correspondingly low vitamin D concentration, e.g.,
10 as in the lower-right panel of Figure 4.1.5), it will, however, not have any
particular effect on the slope itself, only on its standard deviation, which will
become smaller because this subject increases the variation in the covariate.
The results for these hypothetical extra observations are presented in Table
4.1.1. In this table, we have also included the results obtained from retaining
a single underweight Irish woman (with body mass index 15.9) in the analysis.

Table 4.1.1. Influence of single hypothetical observations for S25OHD according
to BMI (cf. Figure 4.1.5).

Panel BMI VitD Intercept, ba “Level,” ba∗ Slope, bb
(kg/m2) at BMI =25

Upper left — — 111.05 (18.40) 51.24 (2.95) –2.392 (0.690)
Upper right 25 130 116.98 (22.07) 53.32 (3.50) –2.546 (0.829)
Lower left 50 80 68.02 (16.08) 50.14 (3.35) –0.715 (0.586)
Lower right 50 10 102.03 (14.00) 51.01 (2.92) –2.041 (0.510)
With under-
weight woman 15.9 39.2 98.76 (17.39) 49.95 (2.92) –1.952 (0.657)

Note that seemingly large changes in the intercept estimates occur, es-
pecially for the observation (50 kg/m2, 80 nmol/l) in the lower-left panel of
Figure 4.1.5. This is due to the fact that the intercept gives an extrapolated
value of vitamin D for a hypothetical value of body mass index (zero), a value
far from all observed values in the sample and therefore irrelevant. We there-
fore included also the more realistic parameter a∗, defined in Equation (4.1.7)
as the expected level of vitamin D corresponding to a body mass index of 25
kg/m2. This parameter is seen to be more stable.
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Fig. 4.1.5. Hypothetical observations in vitamin D concentration versus body mass
index. Upper-left panel: the original data: all other panels: one hypothetical obser-
vation (∗) added and new regression line shown as a dashed line.

One may investigate the influence of each individual observation simply by
performing the analysis in a dataset where we omit the observation in question
and observe the change from the original estimates. Omitting the ith individ-
ual from the analysis will result in new estimates, say â(−i), respectively,

b̂(−i) and relevant measures of change, dev(a)i and dev(b)i are the differences,

â − â(−i) and b̂ − b̂(−i) normalized by the standard deviation of the estimate.
The squared influence (or deletion) diagnostics, (dev(a)i)

2 and (dev(b)i)
2 may

be combined into a single diagnostic, Cook’s distance Cook(a, b)i.
In Figure 4.1.6 these diagnostic measures are shown graphically. The fig-

ure gives the impression that there may be a couple of slightly influential
subjects (the largest Cook distances) characterized as having either large val-
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ues of vitamin D and/or a body mass index in the lower or upper end of the
population values.
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Fig. 4.1.6. Diagnostics (dev(a)i, dev(b)i, and Cook(a, b)i) plotted against body
mass index and/or vitamin D concentration.

Identifying the reason why a subject is influential is important in order to
take proper action. In particular, note that being influential is not a sufficient
cause for omittance from the data analyses!

Observations with extreme values of the covariate should often be con-
sidered excluded from the analysis, no matter if they are influential or not,
simply because they may give rise to an increased precision in the slope esti-
mate which is not warranted because we have little support for the relation
in these extreme regions, based on a single observation only. Note that the
exclusion of such covariate values corresponds to an exclusion criterion which
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could have been stated before data collection and that conclusions should be
limited accordingly.

On the other hand, observations with extreme values of the outcome vari-
able, that is, outcome values that do not correspond well to the covariate
values, cannot be removed from the analysis by just referring to exclusion
criteria, because this would lead to a circular argument such as “we want to
predict y but only for those y-values that correspond well to the average linear
trend.”

The only reasonable action in this situation is to investigate the possible
causes for such an observation to deviate from the rest. A simple error of course
should be corrected: a flaw or deviation from the routines or circumstances
concerning this observation should be investigated further and could possibly
lead to an exclusion of the observation altogether. In such a case, however,
all observations should be investigated in this respect and all those that were
subject to deviations from routine should be eliminated whether or not they
were found to be influential or outlying. Also, the conclusions should be lim-
ited accordingly. If deviations from routine are expected to be unavoidable in
practice, it does not serve as a proper reason to exclude observations.

Digression. Diagnostics and pseudo-observations

In Section 3.1.3 we introduced pseudo-observations. We did this based on the
Kaplan–Meier estimator for the survival function, S(t) = pr(y > t) = E(I(y > t)),
as

bSi(t) = nbS(t) − (n − 1)bS(−i)(t),

where bS(−i)(t) was the Kaplan–Meier estimator based on the sample obtained by
leaving subject i out. Pseudo-observations can be defined from any estimator, say
bc, of an expected value parameter, c, as

nbc − (n − 1)bc(−i) = bc + (n − 1)(bc − bc(−i)).

It is seen that the pseudo-observation is the estimator bc, based on the full sample

of n observations plus the “leave-i-out-diagnostic”, bc − bc(−i) (multiplied by n − 1).

Pseudo-observations and leave-one-out diagnostics, however, tend to be used for

somewhat different purposes in statistical inference. �

Design and correlation

The primary focus of a linear regression will typically be either estimation of
the slope or prediction of outcome for a given covariate value. In either case, it
is important to obtain as precise an estimate of the slope as possible. Looking
at the formula (4.1.5) for the standard deviation of the estimated slope, we
see that this is small when the residual variation is small and the variation in
the covariate is large.

The residual variation is an intrinsic property of the subject matter that
cannot be controlled by design because it reflects the biological variation in
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the outcome variable for subjects with a common value of the covariate. On
the other hand, the variation in the covariate may sometimes be a matter of
choice by the investigator.

In the vitamin D example, the covariate is body mass index. If subjects
are enrolled in the study through a mechanism that allows the investigator
to meet the subjects before possible enrollment, it is possible to ensure a
large variation in body mass index within the study group. Likewise, if age
or height were the covariate in question, subjects might be chosen with the
aim of ensuring a large variation in this respect. For other types of covariates,
such as the level of cholesterol, it requires a blood sample to determine the
covariate which makes it less convenient for composing the study group in a
particular way.

If the subjects are chosen in a nonrandom fashion in order to increase
the precision of the slope estimate, it is important to note that the sample
will not be representative for the outcome! For instance, if we include many
overweight individuals in the vitamin D investigation, we will expect to see
a vitamin D distribution shifted somewhat to the left (towards small values)
as compared to the population in general. The primary object of the present
study was to assess the vitamin D status in different countries, therefore this
could have been fatal if no adjustment was made for BMI.

Digression. The correlation coefficient

Linear regression is concerned with evaluating and quantifying a linear relation-
ship between two quantitative variables. However, the correlation coefficient is often
used in this situation as well, and although there is a strong resemblance between
the two approaches, there are certainly also important differences, unfortunately
often overlooked in practical situations.

The correlation coefficient between two quantitative variables, such as vitamin
D concentration (y) and body mass index (x), is a dimensionless quantity that can
be estimated, symmetrically in x and y, as

br =
bsxy

bsxbsy
. (4.1.9)

It may be seen that this coefficient can take on values between –1 and 1, and
that these extremes are attained when the relationship between the two variables is
exactly linear (either with a negative or a positive slope). A coefficient of 0 indicates
no linear relationship between the variables.

Comparing the definition (4.1.9) to the formula (4.1.4) for the estimated slope,
we see that there is a simple relationship between the two, given by

br = bb
bsx

bsy
, (4.1.10)

so that the correlation coefficient is simply a scaled version of the slope (or vice
versa). In particular, the two quantities are zero in the same situations, and the test
of zero slope is identical to the test of zero correlation.

Actually, the correlation coefficient can be interpreted as the slope of the regres-
sion line between a normalized y and a normalized x, both being normalized to have
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standard deviation 1 (by dividing all observations of y by bsy and all observations
of x by bsx). This implies that r may be interpreted as the expected change in y (in
units of bsy) when x is changed by one (in units of bsx).

The fact that the correlation coefficient r is dimensionless and always takes on
values in the range [–1,1] has led to various rules of thumb for interpretation (in
the sense of defining what is meant by a low, a moderate, and a high correlation,
respectively). Whereas this may seem useful for practical purposes, we claim that
this is often illusory and may lead to erroneous conclusions.

The problem is that the correlation coefficient is highly dependent on the chosen
sampling strategy, that is, the distribution of the covariate. If subjects are chosen
deliberately with the aim of providing a precise estimate of the slope of the regression
line, bsx will be large, and this has the effect of increasing the correlation. In fact,
rearranging the equation (4.1.10) leads to the equation

1 − br2 =
bs2
y|x

bs2
y|x

+ n−1
n−2

bb2
bs2
x

.

Keeping the sample size (n) as well as the intrinsic properties of the problem

(bb, bs2
y|x) fixed, we see from this equation, that increasing the variation bs2

x in the
covariate x makes the right hand side tend to zero which in turn makes the correla-
tion approach either 1 or –1. This means that designing the investigation in a clever
way to obtain a precise estimate of slope will inevitably lead to a high correlation
(except if there is no relation whatsoever between the two quantities). Consequently
the magnitude of the correlation coefficient is not useful for designed investigations.

If the variables x and y follow a bivariate Normal distribution and sampling is
performed in a random fashion, the correlation has a very concise meaning. If the
distribution cannot be assumed to be Normal, but we still sample randomly from
a well-defined population, we may use a nonparametric version of the correlation.
For quantitative data, the most commonly used nonparametric correlation is the
Spearman correlation coefficient, which utilizes rank values for computation. In con-
trast, the correlation (4.1.9) is also called the Pearson correlation. The Spearman
correlation is affected by the chosen sampling strategy in the same way as described
above for the Pearson correlation and should, therefore, also be avoided in case of
selective (nonrandom) sampling .

In the vitamin D example, we obtained the Pearson correlation br = −0.425.
For the reasons described above, we abstain from an interpretation of this quantity,
but we may test whether it deviates significantly from zero. As mentioned, this
is precisely equivalent to testing for zero slope in the linear regression model, so
that once again we get P = 0.005. The Spearman rank correlation coefficient is
brS = −0.435, equally significant (P = 0.004).

Note that apart from telling us that there is a significant association between

body mass index and vitamin D status, the value of a correlation does not provide

much insight into the subject matter. An exception to this is the situation where we

have actually been sampling randomly from a well-defined population. In this case,

the squared Pearson correlation coefficient may be stated as a measure of explained

variation, often referred to as R2 or the coefficient of determination. If the sampling

is anything less than completely random, this quantity will suffer from the same

objections as stated for the correlation coefficient itself, and should not be used,
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except for internal comparisons of models for the same data. �

Cell concentration of tetrahymena

Recall from Example 1.6 that in an experiment with the unicellar organism
tetrahymena grown in two different media, we were interested in determining
how cell concentration x (number of cells in 1 ml of the growth media) may
affect the cell size y (average cell diameter, measured in μm). We here look into
the relationship between y and x for the media without glucose, the graphical
presentation of which is shown in Figure 4.1.7.
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Fig. 4.1.7. Cell diameter as a function of cell concentration.

We note that the effect of an increased concentration is to decrease cell size
and that this effect diminishes for large concentrations. Such a relationship is
fairly typical for positive quantities and it may often be reasonably described
by a power relationship, such as

y = axb (4.1.11)

of which a hyperbola is a special case, setting b = −1. In (4.1.11), a is a
parameter denoting the cell size for a concentration of x = 1, an extrapolation
to the extreme lower end of the concentration range as seen from Figure 4.1.7.

If we had performed a linear regression analysis without realizing that
the relation does not at all look linear, we would have had a plot for model
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checking look like Figure 4.1.8. Note the curved shape indicating that linearity
between cell diameter and concentration is not appropriate.
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Fig. 4.1.8. Model check for the naive linear model for the tetrahymena example.

We see from the postulated model (4.1.11), that a logarithmic transforma-
tion of the diameter yields the new theoretical relationship

log10(y) = log10(a) + b log10(x). (4.1.12)

The observed relation between these logarithmically transformed variables
is seen in Figure 4.1.9. This figure appears to support the model (4.1.11)
because the average of the logarithm of cell diameter seems to be reasonably
well described as a linear function of the logarithmic cell concentration.

The model checking plots for this transformed model are shown in Figure
4.1.10, which shows a much better fit to the data inasmuch as most of the
systematic trends of Figure 4.1.8 have now gone.

If we let y∗
i = log10(yi) denote the logarithm of the cell size for the ith

suspension and let x∗
i = log10(xi) denote the corresponding logarithm of the

cell concentration, we may now write the model in the form (4.1.2) (i.e., as
E(y∗

i ) = a∗+bx∗
i ) and perform the estimation as a linear regression, estimating

a∗ = log10(a) as the intercept and b as the slope.

We get the slope estimate to be b̂ = −0.0597 with an estimated standard
deviation of 0.0041 and a corresponding confidence interval from –0.0684 to
–0.0510. The intercept estimate is â∗ = 1.635, with an estimated standard de-
viation of 0.0202, and a corresponding confidence interval of (1.5921, 1.6774).
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Fig. 4.1.9. Log cell diameter as a function of log cell concentration.

4.0 4.5 5.0 5.5

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

log10(Concentration)

R
es

id
ua

l

−2 −1 0 1 2

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

Normal quantile

R
es

id
ua

l

Fig. 4.1.10. Model checking for the linear model on logarithmic scale for the
tetrahymena example.
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The intercept must, however, be back-transformed to an estimate of the pa-
rameter a from (4.1.11) in order to make sense. We get â = 10ba∗

= 43.15 with
confidence interval (101.5921, 101.6774) = (39.09, 47.58).

The interpretation of the parameters in this model is not quite as straight-
forward as in the linear model for the vitamin D example. However, it only
takes a small effort to get quite useful interpretations from this model as well.
The model is multiplicative in nature and may be characterized by the ef-
fect of, for example, a doubling of concentration. This effect is estimated to

2
bb = 2−0.0597 = 0.959, a 4.1% reduction of diameter.

The estimated relation between diameter and concentration is shown in
Figure 4.1.11, together with 95% prediction intervals. Note the asymmetric
appearance of these limits. This is due to the fact that they have been con-
structed on the double logarithmic scale (where they are symmetric) and
transformed back to the original scale in order to give an immediate interpre-
tation.
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Fig. 4.1.11. Model fit for the power model in the tetrahymena example.

4.1.2 Binary outcome: Simple logistic regression

In this section we consider binary outcomes y1, . . . , yn whose distribution we
want to relate to a single quantitative explanatory variable x with observed
values x1, . . . , xn. As an example we consider the fever in pregnancy Example
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1.2 where the outcome is fetal death and where an interesting covariate is the
reported weekly alcohol intake for the women in the study (cf. Table 1.3.1).

In the previous Section 4.1.1 an initial graphical representation of outcome
and covariate was given as a scatterplot, Figure 4.1.1. The corresponding plot
in the present example is not very useful due to the fact that the outcome is
binary. However, by adding a scatterplot smoother to the graph (as we have
done in Figure 4.1.12), it is seen that there is a clear tendency to higher risk
of fetal death with increasing alcohol consumption. (Note that the individual
yi-values (0 or 1) are not given in the figure.)

0 5 10 15

0.
00

0.
01

0.
02

0.
03

0.
04

Drinks per week

P
ro

ba
bi

lit
y 

of
 fe

ta
l d

ea
th

Fig. 4.1.12. Scatterplot smoother for the binary outcome y (fetal death) when plot-
ted against the covariate x (alcohol consumption) in Example 1.2. The distribution
of x is indicated along the horizontal axis.

To introduce the simple logistic regression model we define the failure prob-
ability

pi = pr(yi = 1)

for individual i and the corresponding log(odds)

�i = log

(
pi

1 − pi

)
.

Recall from Sections 1.3 and 3.1.2 that the log(odds) �i is unbounded. This
makes a linear relationship more suitable for this transformed scale and the
model is then
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�i = a + bxi. (4.1.13)

Here a is the log(odds) when xi = 0 and b is the log(odds ratio) associated
with xi-values differing 1 unit; that is, exp(b) is the odds ratio between any
two individuals whose x-values differ by 1. The basic modeling assumption
in (4.1.13) is that this odds ratio does not depend on x: the log(odds) de-
pends linearly on x. A preliminary evaluation of this assumption was already
obtained in Figure 1.3.4. We may obtain further information regarding the
shape of this relation by transforming the smoother from Figure 4.1.12, and
in Figure 4.1.13 this smoother is displayed using the log(odds) transforma-
tion. The figure shows that, except for x = 0, the logit-linear relationship is
reasonable. Because the effect of alcohol consumption is small, this tendency
may be unimportant even though the majority of women reported no alcohol
consumption. The importance of this potential deviation from linearity may
be studied using the methods discussed in the next section (Section 4.2).
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Fig. 4.1.13. Scatterplot smoother (solid curve) and fitted straight line (dashed)
in log(odds) scale when the binary outcome y, fetal death, is plotted against the
covariate x, alcohol consumption, in Example 1.2. The distribution of x is indicated
along the horizontal axis.

The maximum likelihood estimates â, b̂ in the model (4.1.13) cannot be
presented as explicit expressions. They are given as the solutions to the two
equations ∑

i

xi(yi − pi(a, b)) = 0,
∑

i

(yi − pi(a, b)) = 0, (4.1.14)
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where pi = pi(a, b), following (4.1.13), is given by

pi =
exp(a + bxi)

1 + exp(a + bxi)
. (4.1.15)

The relationship between pi and xi in (4.1.15) is known as the logistic curve,
hence the name logistic regression (see Figure 1.3.3) For the fever data the

estimates â and b̂ are shown in Table 4.1.2. The estimates correspond to a risk
when x = 0 of exp(â)/(1+exp(â)) = 0.0097 and an odds ratio of exp(̂b) = 1.08
per weekly drink.

Table 4.1.2. Logistic regression models for the log(odds), �i, of fetal death according
to the individually recorded alcohol consumption xi or a scored version of that, s(xi).

Model ba bb W P

�i = a + bxi -4.627 (0.105) 0.078 (0.087) 0.81 0.37
�i = a + bs(xi) -4.609 (0.107) 0.046 (0.099) 0.21 0.65

Note the appearance of the residuals yi − pi(a, b) from the model in the

equations (4.1.14). These residuals (inserting the estimates (â, b̂)) may be used
to evaluate the fit of model (4.1.13), as follows. Simply plotting the residu-
als against the covariate alcohol consumption will not be very informative
inasmuch as the residuals will fall in two groups depending on the outcome.
Adding a smoother to the plot may be helpful to see whether residuals, on
average, are around 0. In Figure 4.1.14 the residuals yi −pi(â, b̂), as explained
in Section 2.3.2 (Equation (2.3.5)), have been standardized by dividing by the

standard deviation

√
pi(â, b̂)(1 − pi(â, b̂)).

In Section 6.2.2 we introduce more methods for checking the fit of logistic
regression models based on comparing observed and expected counts (see, e.g.,
Table 6.2.14).

Although no explicit expression is available for the estimated odds ratio
in (4.1.13), a simple explicit score test for the hypothesis b = 0 of no effect of
x on y is available. This so-called trend test statistic is given by

T =
(
∑

i xi(yi − ȳ))2

ȳ(1 − ȳ)
∑

i(xi − x̄)2
, (4.1.16)

where ȳ = 1/n
∑

i yi and x̄ = 1/n
∑

i xi. Under the hypothesis b = 0 the
distribution of T is approximately χ2(1). For the fever data, T takes the value
0.81 corresponding to P = 0.37, almost identical to the Wald test statis-
tic (̂b/SD(̂b))2 = 0.81. Note the similarity between (4.1.16) and the squared
Pearson correlation coefficient (Section 4.1.1).

As we did in the previous section (Section 4.1.1), we now study influential

observations for b̂. Figure 4.1.15 shows the deletion diagnostics dev(b)i plotted
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Fig. 4.1.14. Residuals plotted against the covariate x, alcohol consumption, in
Example 1.2: + indicates fetal death, o indicates no fetal death. A smoother has
been added to the plot.

against alcohol consumption xi. Different symbols are used for observations
with yi = 1 and yi = 0. The diagnostics are seen to be quite small and
everywhere smaller than 0.02; that is, no observations will change the estimate
by more than 2% of the standard deviation when deleted. In fact, the presence
of highly influential points is not expected in very large datasets. The figure
also shows the similar diagnostics for the intercept, a.

Digression. Computation of dev(b)i

For linear regression of a quantitative outcome (Section 4.1.1), the deletion diag-

nostic dev(b)i may be computed explicitly without having to refit the model n times.

For logistic regression (and for Cox regression; see Section 4.1.3), however, this is

not the case and an approximation is frequently used in software implementations.

We have also done so everywhere in the book. �

An ordered categorical explanatory variable

We now pay special attention to the situation where the quantitative covariate
only takes k + 1 (k “small”) different values. This may be the case when x is
categorical with ordered categories and a score s(x) is attached to category
j, j = 0, 1, . . . , k. For example, these categories may be obtained by grouping
a continuous covariate into k + 1 intervals and attaching a score to each
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Fig. 4.1.15. Deletion diagnostics dev(b)i for the effect of alcohol consumption plot-
ted against the covariate in Example 1.2: + indicates fetal death, o indicates no fetal
death.

interval; for example, s(xi) = j, s(xi) = midpoint in interval j, or s(xi) = x̄j ,
the average x-value in interval j, when i belongs to interval j.

We can now obtain a simpler graph by plotting the average outcome, that
is, the empirical failure probability in each group, against the score for the
group. Again, it may be advantageous to transform the vertical axis using the
logit function as we did in Figure 4.1.13 and also in Figure 1.3.4. That figure
also suggests a modest increase in risk with increasing alcohol consumption.

In this situation we can still consider a linear logistic model

�i = a + bs(xi)

as in (4.1.13) and the interpretation of a and b is similar to that in (4.1.13).
What makes this situation somewhat simpler than when x is truly quantita-
tive is the fact that the linear logistic model �i = a + bs(xi) is now nested
in the model considered in Section 3.2.2 with separate failure probabilities
p0, p1, . . . , pk in the k + 1 categories. This, first of all, means that a simple
graphical representation such as in Figure 1.3.4 is available but, furthermore,
a simple test for the linear model is possible by comparing with the model
with the k + 1 categories.

This test statistic for linearity may be obtained using the general princi-
ples of likelihood ratio tests introduced in Section 2.3.4. However, a simple
approximation to this goodness-of-fit test for the linear logistic model may
be obtained as the difference between the general k degree-of-freedom chi-
squared statistic for the k +1 categories (cf. Section 3.2.2), and the trend test
statistic (4.1.16) (using the covariate s(xi)). This difference

L = X2 − T
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follows approximately a Chi-squared distribution with k−1 degrees-of-freedom
when the linear logistic model holds.

The three models under consideration and the corresponding test statistics
are shown schematically in Figure 4.1.16.

� � �

(3) (2) (1)

L = X2 − T

��

T

��

��

X2

Fig. 4.1.16. Illustration of the three models where, (1) all pjs are equal, (2) logit(pj)
depend linearly on the covariate, (3) no restriction on the pj .

As an example we once more consider the fever in pregnancy study (Ex-
ample 1.2) with the covariate xi =reported weekly alcohol consumption for
woman i. In Section 1.3 we studied five groups (i.e., k = 4): 0, (0,1], (1,2],
(2,3],and 3+ (cf. Table 1.3.1). The scores, s(xi) attached to these groups were
the averages 0, 0.73, 1.85, 2.83, 4.89.

The estimates in the model with a linear effect of s(xi) are shown in
Table 4.1.2. It is seen that the Wald test for no effect of the covariate is
W = (0.046/0.099)2 = 0.21 which evaluated in the χ2(1)-distribution gives
the insignificant P -value of 0.65. The corresponding likelihood ratio test statis-
tic is 0.20. Considering instead the model where the five alcohol groups are
treated as a categorical explanatory variable, the likelihood ratio test statistic
(with four degrees-of-freedom) is 0.60 and the likelihood ratio test statistic
for linearity is, therefore, 0.60−0.20 = 0.40. The corresponding P -value when
evaluated in the χ2(3)-distribution is 0.94.

The conclusion is that the model with a linear effect of s(xi) cannot be
rejected when compared to the model with alcohol as a categorical covariate,
and in the model assuming a linear effect of alcohol its effect is insignificant.

For comparison, we finally present the tests where all computations can be
presented explicitly. The chi-square test on 4 d.f. based on the data in Table
1.3.1 takes the value X2 = 0.63, the trend test statistic (4.1.16) is T = 0.21,
and the test for linearity then becomes L = X2 −T = 0.42 close to the values
based on the likelihood ratio tests.

Digression. Nomenclature
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The test statistic for linearity is also known as a test for departures from trend

although the hypothesis is the model with a linear trend. Similarly, the hypothesis

for the trend test statistic is actually the model with no trend. �

4.1.3 Survival time outcome: Simple Cox regression

We now turn to (possibly censored) survival time outcomes y1, . . . , yn and
the problem of relating their distribution to a single quantitative explanatory
variable x with observed values x1, . . . , xn. The motivating example is the
PBC-3 study, Example 1.3, and the covariate bilirubin (cf. Table 1.3.2).

To introduce the simple Cox proportional hazards model for the covariate
x we let hi(t) be the hazard function for individual i and recall from Sections
1.2 and 3.1.3 that because the log(hazard), li(t) = log(hi(t)), is unbounded
this makes a linear relationship more suitable for the transformed scale and
the model is then

li(t) = log(h0(t)) + bxi. (4.1.17)

Here, log(h0(t)) is the log(hazard) at time t when xi = 0 and b is the
log(hazard ratio) associated with xi-values differing 1 unit; that is, exp(b)
is the hazard ratio between any two individuals whose x-values differ by 1.
The basic modeling assumptions in (4.1.17) are the proportional hazards as-
sumption and the fact that the log(hazard) depends linearly on x (i.e. x has
the same multiplicative effect on the hazard throughout its entire range).

The maximum likelihood estimates in the model (4.1.17) cannot be pre-
sented as explicit expressions. However, b is estimated by the solution to the
equation ∑

i

d(yi)(xi − x̄(yi, b)) = 0, (4.1.18)

where d(yi) = 1 if yi is a failure time, d(yi) = 0 if yi is a censoring time, and
x̄(yi, b) is a weighted average of x-values among individuals j still at risk at
time yi (i.e.; individuals for whom yj ≥ yi). Here, the weights are exp(bxj)
and this weighted average is, therefore, given by

x̄(yi, b) =

∑
j:yj≥yi

xj exp(bxj)∑
j:yj≥yi

exp(bxj)
.

For the PBC-3 data the estimate b̂ is shown in Table 4.1.3. This estimate
corresponds to a hazard ratio of exp(10b̂) = 1.10 per 10 μmol/L of bilirubin,
that is, a 10% increase in hazard whenever individuals differing 10 μmol/L
are compared.

Like the case of binary outcomes in the previous section, a simple explicit
test for the hypothesis, b = 0, of no effect of x on y is available. This logrank
trend test statistic, the score test based on model (4.1.17), is given by



202 4 One quantitative covariate

Table 4.1.3. PBC-3 study: Cox regression models for the log(hazard) li(t) according
to the individually recorded bilirubin level xi or a scored version of that, s(xi).

Model bb W P

li(t) = log(h0(t)) + bxi 0.00934 (0.000891) 109.7 <0.001
li(t) = log(h0(t)) + bs(xi) 0.0150 (0.0016) 82.7 <0.001
li(t) = log(h0(t)) + b log(xi) 1.009 (0.099) 103.9 <0.001
li(t) = log(h0(t)) + bs(log(xi)) 0.993 (0.109) 82.6 <0.001

T =
(
∑

i d(yi)(xi − x̄(yi, 0)))2∑
i d(yi)Vx(yi)

, (4.1.19)

where x̄(yi, 0) and Vx(yi) are the mean and variance, respectively, of x-values
among individuals still at risk at time yi. Under the hypothesis b = 0 the
distribution of T is approximately χ2(1). For the PBC3 data T takes the
highly significant value 160.6 yielding the same conclusion as the Wald test
statistic (̂b/SD(̂b))2 = 109.7 (Table 4.1.3).

The differences xi − x̄(yi, b̂) appearing, for example, in (4.1.18) are known
as the Schoenfeld or score residuals for the Cox regression model and may be
used for assessment of the proportional hazards assumption (e.g., Therneau
and Grambsch, 2000, Ch. 6) . However, because of the more general na-
ture of pseudo-residuals and because of the close resemblance of residual- and
scatterplots based on pseudo-observations to graphical goodness-of-fit check-
ing methods for quantitative and, in particular, binary outcome variables we
have chosen not to illustrate the use of Schoenfeld residuals and instead con-
centrate on pseudo-observations.

Figure 4.1.17 shows a scatterplot of pseudo-observations against biliru-
bin for four time points chosen as the quintiles of the observed event times. A
smoother has been added to the plot. Under the model (4.1.17), the smoothers
for the four situations should be straight lines (linearity) that are parallel (pro-
portional hazards) on the log(hazard) scale or equivalently (see Section 3.1.3)
on the log(–log(survival function)) (“cloglog”) scale. The fact that this does
not seem to be the case (see Figure 4.1.18 where the plot of the transformed
smooth curve is shown) suggests a poor fit of (4.1.17). Also, the pseudo-
residuals, Figure 4.1.19, where residuals do not seem to be 0 on average,
suggest a poor fit. The model, therefore, needs to be improved and we do this
below using a transformation of the covariate.

An ordered categorical explanatory variable

As in the section on binary outcomes we now pay special attention to the
simpler situation where the quantitative covariate only takes k+1 (k “small”)
different values, for example, when x is categorical with ordered categories and
a score, s(xi) is attached to individuals i from category j, j = 0, 1, . . . , k.
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Fig. 4.1.17. Pseudo-observations and scatterplot smoother for the PBC3 study
plotted against bilirubin for quintiles of observed event times.

.

For survival data we can consider the proportional hazards model

li(t) = log(h0(t)) + bs(xi), (4.1.20)

where the interpretation of b is similar to that in (4.1.17), namely that exp(b)
is the hazard ratio between any two individuals whose s(x)-values differ by 1.
We continue the PBC3-example and use the scores for bilirubin from Table
3.2.14, and fitting the model (4.1.20) we get b̂ = 0.0150 (0.0016) (Table 4.1.3).
This model is nested in the model considered in Section 3.2.3 with separate
survival functions in the k + 1 categories satisfying the proportional hazards
assumption. This means that a simple test for the linear model is available by
comparing with the model with the k + 1 categories.



204 4 One quantitative covariate

0 100 200 300 400

−
4

−
3

−
2

−
1

0
1

2

Bilirubin

tim
e=

 0
.7

1

0 100 200 300 400

−
4

−
3

−
2

−
1

0
1

2

Bilirubin
tim

e=
 1

.1
8

0 100 200 300 400

−
4

−
3

−
2

−
1

0
1

2

Bilirubin

tim
e=

 2
.1

6

0 100 200 300 400

−
4

−
3

−
2

−
1

0
1

2

Bilirubin

tim
e=

 3
.1

9

Fig. 4.1.18. Scatterplot smoother for the pseudo-observations in the PBC study
plotted in cloglog scale against bilirubin for quintiles of observed event times.

.

This test is known as the logrank test for linearity and it is obtained as the
difference L between the k+1 sample logrank test and the logrank trend test.
The latter is given by (4.1.19) (using the covariate s(xi)) and the numerator
can be shown to take the simple form

(
k∑

j=0

sj(Oj − Ej))
2,

where sj is the score attached to group j and Oj and Ej are defined in Section
3.2.3. The difference L follows approximately a Chi-squared distribution with
k−1 degrees-of-freedom when the model with a linear effect of s(x) holds, see
the illustration in Figure 4.1.16. Alternative trend tests and tests for linearity,
in fact used more often than the logrank tests, are the likelihood ratio tests.
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Fig. 4.1.19. Pseudo-residuals from model (4.1.17) and scatterplot smoother for the
PBC study plotted against bilirubin for quintiles of observed event times.

For the PBC3 data and the five bilirubin groups considered in Section 3.2.3
we get, using the scores 7.66, 13.26, 20.23, 37.32, and 148.83 from Table 3.2.14,
that the logrank trend test statistic takes the highly significant value 109.2
whereas the corresponding Wald test (Table 4.1.3) is W = (0.0150/0.0016)2 =
82.7 and the likelihood ratio test is 75.9. The likelihood ratio test for linearity
is then 19.0 which evaluated in the χ2(3)-distribution gives P = 0.003. Judged
from these tests, the model with a linear effect of s(xi) is clearly rejected when
compared to the model with bilirubin as a categorical covariate. In the model
assuming a linear effect of bilirubin its effect is strongly significant but this
linear model needs further investigation.
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Transformation of the covariate

One way of improving on the fit of an assumed linear model, as already dis-
cussed in the section dealing with quantitative outcome variables, Section
4.1.1, is to transform the explanatory variable x. This amounts to studying a
model such as

li(t) = log(h0(t)) + bf(xi), (4.1.21)

for some known transformation, f(·), for example, f(x) = log(x) or f(x) =
1/x. We return to this problem in a more general setting in the next section
(Section 4.2) but, based on Figure 1.3.7 and on the scatter- and residual plots
based on pseudo-observations, Figures 4.1.17 and 4.1.19, we can already now
see that a transformation of bilirubin in the PBC3 example with a concave
function (i.e., a “downward bending” function whose slope decreases), like the
logarithm (Figure B.1), may improve the linear fit.

We use here the natural logarithm, log(x), because that was done in the
original publication by Lombard et al. (1993). However, interpretation of the
resulting regression coefficient would be simpler if, instead, bilirubin were
transformed by, for example, log2(x). As a preliminary investigation we re-
define the scores for the quintile bilirubin groups using instead the average
log(bilirubin) values: 2.00, 2.58, 3.00, 3.60, and 4.84. Figure 4.1.20 shows the
log(hazard ratios) log(1), log(0.57), log(3.00), log(5.28), and log(13.70) plotted
against these new scores. It is seen that (apart from the nonmonotonicity for
small bilirubin values) the association now seems more closely approximated
by a straight line when we compare with Figure 1.3.7.

Letting f(xi) = log(xi) and fitting the model (4.1.21) we get b̂ =

1.009(0.099) (Table 4.1.3) and thereby exp(̂b) = 2.74. This value has the inter-
pretation that every time we compare two patients whose log(x)-values differ
by 1, or equivalently the ratio of their bilirubin values is exp(1) = 2.718, the
associated hazard ratio is 2.74. This somewhat awkward interpretation has to
do with the use of the natural logarithm log(·). Had we instead transformed
bilirubin using base-2 logarithms we would have estimated the hazard ratio as-
sociated with a doubling of bilirubin. The corresponding b-estimate, however,
is easily obtained from our results because it is simply given by b̂ · log(2) = 0.70

and thereby exp(̂b · log(2)) = 2.01. This result is very easy to communicate:
every time bilirubin is doubled the hazard rate is doubled. The 95% confidence
limits for this hazard ratio are from exp(1.009 · log(2)−1.96 · 0.099 · log(2)) =
1.76 to exp(1.009 · log(2) + 1.96 · 0.099 · log(2)) = 2.30.

Figure 4.1.21 shows a scatterplot of pseudo-observations against logarith-
mic values of bilirubin for the same four time points as above. A smoother
has been added to the plot. Under the model (4.1.21) (with f(·) = log(·)),
the smoothers for the four situations should be parallel straight lines on the
cloglog scale; see Figure 4.1.22. Compared to Figure 4.1.17 this now looks
more reasonable and also the pseudo-residuals, Figure 4.1.23, where residuals
now do seem to be 0 on average, suggest a much better fit of the model after
log-transformation of bilirubin.
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Fig. 4.1.20. Estimated log(hazard ratios) for the PBC study for quintiles of serum
bilirubin plotted against average log(bilirubin) in quintile groups.

.

In Section 6.2.3 we discuss more ways of checking the proportional hazards
assumption based on either adding time-dependent covariate effects to the
model (Table 6.2.19) or using the stratified Cox model (6.2.2) introduced in
Section 5.1.1; see (5.1.4).

Alternatively, we may treat log(bilirubin) as an ordered categorical co-
variate by defining s(xi) to be the average log-bilirubin value in group
j = 0, 1, . . . , k, when i belongs to category j. This model, as we noted above,
is nested in the proportional hazards model treating bilirubin as a categori-
cal covariate. For the covariate scored using average log–bilirubin values we
find the regression coefficient estimate b̂ = 0.993, (0.109) giving a Wald test
statistic of W = 82.6 (Table 4.1.3). The corresponding score test, the logrank
trend test, takes the value 102.6 and the likelihood ratio test statistic is 88.7.
For the log-scores the likelihood ratio test for linearity is 6.2 and, evaluated in
the χ2(3)-distribution, the P -value is 0.10, so, in this case, the linear model
for log(bilirubin) is not rejected. The example illustrates the important fact
that trend tests depend on the chosen scores.

Influential observations

As in Section 4.1.1 we supplement the fit of the model by studying influential
points using the deviation diagnostics dev(b)i for b which show (in units of
the standard deviation) how much the estimate of b changes by eliminating
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Fig. 4.1.21. Pseudo-observations and scatterplot smoother for the PBC study plot-
ted against log(bilirubin) for quintiles of observed event times.

.

observation i from the sample. In Figure 4.1.24 (left panel), dev(b)i values are
plotted against log(bilirubin) and, in the right panel, they are plotted against
time. In the figures, three fairly large negative values (≈ −0.3) appear. It is
seen that these all correspond to censored patients with rather large bilirubin
values, observations that, if deleted, would increase the large positive value
of b̂ because they have survived for “too long” considering their large values
of bilirubin. However, none of these observations appears to be a suspiciously
large outlier.

Let us, finally, return to the untransformed bilirubin covariate. This has,
as can be seen from Figures 4.1.17 and 4.1.19, a highly skewed distribution
with few very large values. Such outlying covariate values have, as discussed
in Section 4.1.1, the potential of being strongly influential on the estimate of
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Fig. 4.1.22. Scatterplot smoother for the pseudo-observations in the PBC study
plotted in cloglog scale against log(bilirubin) for quintiles of observed event times.

.

the effect of the covariate. Figure 4.1.25 shows the diagnostic plots without
tranforming bilirubin. It is seen that some observations have a relatively large
influence on the estimate (e.g., ≈ −0.5 for the patient with the largest observed
bilirubin value with a treatment failure at about 1 year, and -0.6 for a patient
with bilirubin about 350, censored after 2.3 years), both with somewhat larger
diagnostics than seen for the log-transformed covariate.

Although there are no distributional assumptions for covariates, it is of-
ten advisable to make a transformation to make the covariate distribution
more symmetric, partly to avoid very influential values. It should be kept in
mind, however, that what matters most is whether the assumption of linear-
ity for the covariate is reasonable. Fortunately, quite often, for example, a
log-transformation of a highly skewed covariate at the same time reduces the
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Fig. 4.1.23. Pseudo-residuals from model (4.1.21) and scatterplot smoother for the
PBC study plotted against log(bilirubin) for quintiles of observed event times.

amount of influential points and improves on the linearity. Bilirubin in the
PBC-3 study provides such an example.

4.2 Nonlinear effect

In the previous section we dealt with regression models with a single quan-
titative explanatory variable x assuming its effect on the linear predictor to
be linear, possibly through transformation by a known function f(x). Both
models for quantitative, binary, and survival time outcome variables y were
studied and in all cases the effect of x was expressed by one parameter, b.
This has the simple interpretation as the difference in values of the linear
predictor for individuals differing in 1 unit for x (or f(x)). For the three types
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Fig. 4.1.24. Deviation diagnostics for model (4.1.21) for the PBC3 study plotted
against log(bilirubin) (left panel) and against time (right panel); +: observed event
times, o: censored observations.
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Fig. 4.1.25. Deviation diagnostics for model (4.1.17) for the PBC3 study plotted
against bilirubin (left panel) and against time (right panel); +: observed event times,
o: censored observations.

of outcome considered this parameter could further be interpreted as either a
mean value difference, a log(odds ratio), or a log(hazard ratio).

Thus, linear effects of x are simple and easy to interpret, however, the
assumption of linearity is restrictive and may give misleading results if the
model specifying a linear effect fits poorly (see, e.g., Example 1.6 in Section
4.1.1). It is, therefore, of great importance both to check this assumption
properly and to have alternative models that may be used when linearity fails.
This is the topic of the present section where we discuss nonlinear effects of a
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quantitative explanatory variable. We still restrict attention to the case where
only a single such covariate is considered and return to multiple regression
models in the next chapter (although some of the advantages of applying the
methods of the current section become more apparent for multiple regression;
see Section 6.1.3).

We study two main classes of nonlinear effects, one based on a choice of
intervals for x and one that is not. To get a feeling for the models used when
intervals for x are studied, Figure 4.2.1 shows the linear predictor for some
simulated data. Here the true model specifies the mean of yi as log(xi)−log(6)
(the distribution of x is uniform on the interval (1,11)) and this relationship is
shown in the first panel together with the best fitting straight line for the 250
observations generated. In the second panel the relationship is approximated
by a step function with steps between the intervals (1,3), (3,5), (5,7), (7,9), and
(9,11). It is seen that the step function indicates a concave relationship much
like the true logarithmic function. The step function is not continuous and,
therefore, often not biologically plausible. In the third panel the relationship
is approximated by a piecewise linear function where the slope changes when
moving from one interval to the next, that is, at the x-values 3, 5, 7, and
9. This linear spline function is seen to follow the true relationship fairly
closely. It is continuous but it is not smooth and, therefore still not always
biologically plausible. In the fourth panel a smooth function of x, a quadratic
spline function, is used to approximate the relationship

In the next section (Section 4.2.1) such models are presented and discussed
in more detail. The presentation is in general terms for the linear predictor
and not specific to any particular type of outcome variable y, however, our
main example is the PBC3 trial and the effect of bilirubin on the time to
treatment failure.

Alhough, as noted in the introduction to this chapter, a model with a linear
effect of xi, itself, may be inappropriate, a model with a linear effect of some
transformation f(xi) of xi may provide a better fit. Such a transformation
may be identified using the methods discussed in this section.

Scatterplot smoothers

The models discussed all have the property that the linear predictor can be
expressed using simple explanatory variables and, as mentioned in the intro-
duction to the current chapter, such models can all be fitted quite simply
using standard software. Smooth regression functions may also be obtained
using lowess or other nonparametric scatterplot smoothers (e.g., Hastie and
Tibshirani, 1990, Ch. 2). We have illustrated the use of such smoothers in
a number of examples (e.g., Figures 4.1.1, 4.1.12, and 4.1.17) and seen that
these are useful tools when assessing assumptions of regression models. How-
ever, because the curve obtained using a scatterplot smoother does not have a
simple mathematical representation, it is less useful for inference on the curve
than for a description.
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Fig. 4.2.1. Illustration of models for the linear predictor that are alternatives to
the simple linear model from Section 4.1. The dotted curve represents the true
relationship.

Digression. Truly nonlinear models

Let us finally mention that the nonlinear models discussed in this section all
include a linear predictor; that is, the models are “linear in the parameters.” How-
ever, other nonlinear models without a linear predictor exist. One example of such
a model for a quantitative outcome yi is the Gompertz model with the mean given
by

E(yi) = a + b exp(cxi).

For c > 0 such a model may be used in studies of growth curves whereas, also for

c < 0, the model has applications in enzyme kinetics; see, for example, Seber and

Wild (1989, Ch. 7–8). Inference in intrinsically nonlinear regression models is con-

siderably more complicated than regression models with linear predictors and is not
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discussed further. �

4.2.1 Dividing the covariate range into intervals

Models with piecewise constant effects

A simple way of modeling a non-linear effect of bilirubin was, in fact, already
studied in Section 3.2.3. Here, bilirubin values were divided into quintiles
and we studied a proportional hazards model where the hazard rate hi(t) for
individual i was given as

hi(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h0(t) if xi ≤ 10.3,
h0(t) exp(b1) if xi ∈ (10.3, 16],
h0(t) exp(b2) if xi ∈ (16, 26.7],
h0(t) exp(b3) if xi ∈ (26.7, 51.4],
h0(t) exp(b4) if xi > 51.4.

(4.2.1)

We now define dummy variables I(xi ≤ 10.3), . . . , I(xi > 51.4) for each of
these bilirubin intervals. Omitting the dummy variable corresponding to the
desired reference level, here the first interval, we can write the linear predictor
for individual i as the piecewise constant function :

LPi(t) = log(h0(t)) + b1I(10.3 < xi ≤ 16) (4.2.2)

+ b2I(16 < xi ≤ 26.7) + · · · + b4I(xi > 51.4);

that is, for each time point t the linear predictor is a step function of the
quantitative covariate x with steps between each of the chosen intervals (cf.
Figure 4.2.2). In the figure, for the sake of presentation, the value of log(h0(t))
has been set to 0 such that the value of the linear predictor for each step, j =
1, 2, 3, 4, is simply b̂j . The estimates for b1, b2, b3, b4 are: –0.537 (0.708), 1.120
(0.494), 1.698 (0.460), and 2.670 (0.437), respectively. The scores previously
used (cf. Sections 3.2.3 and 4.1.3) have been indicated on the figure and the
values of the linear predictor in these points have been connected with straight
lines. This gives a rough idea about the fit of the model where xi enters
linearly. As discussed in Section 4.1.3, the model where the levels of the factor
corresponding to the five intervals for bilirubin have been coded using the
scores

s(xi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

7.66 if xi ≤ 10.3
13.26 if xi ∈ (10.3, 16]
20.23 if xi ∈ (16, 26.7]
37.32 if xi ∈ (26.7, 51.4]
148.83 if xi > 51.4

(and where the linear predictor is log h0(t) + bs(xi)) is nested in the model
including bilirubin as a categorical explanatory variable . Thereby, a formal
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goodness-of-fit test for the model including s(xi) can be carried out. In this
case the likelihood ratio test statistic comparing the two models is 19.0, which
evaluated in a χ2(3) distribution gives a P -value of 0.0003, thereby clearly
rejecting the linear model. The figure suggests that very low bilirubin values
are associated with somewhat higher hazard rates than for the interval from
10.3 to 16. The linear predictor increases from this interval and up according
to a nonlinear (concave) function.
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Fig. 4.2.2. Estimated linear predictor (solid curve) for the PBC study assuming an
effect of serum bilirubin that is piecewise constant in quintile groups. The dashed
curve joins values of the linear predictor for the scores attached to each interval of
bilirubin. The distribution of bilirubin is shown on the horizontal axis.

General formulation

In general, we have the following situation: x is a quantitative covariate and
k cutpoints r1 < r2 < . . . < rk are studied. For individual i we define k + 1
dummy variables by

I(rj < xi ≤ rj+1), j = 0, 1, . . . , k

(where, formally, r0 = −∞, rk+1 = ∞). A model where the effect of x is
piecewise constant has the linear predictor

LPi = a + b1I(r1 < xi ≤ r2) + · · · + bkI(xi > rk) (4.2.3)
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if the first interval is chosen as the reference. Here, a is the value of LP for
the reference interval x ≤ r1 and for j = 1, . . . , k, bj is the difference between
the linear predictor for the interval rj <x ≤ rj+1 (which is a + bj) and that
for the reference interval (a). The hypothesis b1 = · · · = bk = 0 corresponds
to a constant linear predictor (i.e., no effect of x on y), and may be tested by
the standard k-degree-of-freedom likelihood ratio test.

Note that the same model may be parametrized differently. In (4.2.3) the bj

parameters are differences compared to a fixed reference group. An alternative
parametrization may be obtained by replacing the dummy variables above by
I(xi > rj), j = 0, 1, . . . , k, that is, indicators of exceeding the left points of
the respective intervals. The model (4.2.3) may then be rewritten as

LPi = a + b∗1I(xi > r1) + · · · + b∗kI(xi > rk),

where the parameters b∗j now correspond to differences between values of the
linear predictor for successive intervals. The hypothesis b∗1 = · · · = b∗k = 0 still
corresponds to no effect of x on y.

For the PBC3 example the alternative parametrization of the piecewise
constant effect of bilirubin gives the following parameter estimates: b̂∗1 = b̂1 =

−0.537(0.708), b̂∗2 = b̂2 − b̂1 = 1.657(0.641), b̂∗3 = b̂3 − b̂2 = 0.578(0.348),

b̂∗4 = b̂4 − b̂3 = 0.972(0.257).
The model (4.2.3) can be presented graphically by plotting the piecewise

constant function against x. This corresponds to the second panel of Figure
4.2.1. If the outcome y is quantitative then this plot may be superimposed on
the y versus x scatterplot and, in any case, the piecewise constant function
may be compared to a scatterplot smoother. In the present example, dealing
with survival data, such a plot may be based on pseudo-observations. Fig-
ure 4.2.3 shows the piecewise constant linear predictor added to the scatter-
plot smoother of the pseudo-observations plotted against bilirubin (cf. Figure
4.1.17). For small values of bilirubin the piecewise constant curve approxi-
mates the curve reasonably for all of the four time points. However, for large
bilirubin values the fit is not good. Figure 4.2.4 presents the corresponding
figure for log(bilirubin) and shows a better fit.

When scores, s(x) like midpoints, are attached to each interval one may
further plot the broken line connecting the values of the linear predictor for
these points and thereby obtain a graphical evaluation of the fit of the model
where x enters linearly. However, an obvious drawback of the model (4.2.3)
is that the linear model LPi = a + bxi is not nested in it and, thereby, the
model does not provide a formal test of a linear effect of x. Furthermore, the
linear predictor in (4.2.3) is not a continuous function of x, a fact which will
often make that model biologically implausible. Finally, x has no effect within
intervals, only between intervals.

We now turn to models based on regression splines where these drawbacks
are no longer an issue.
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Fig. 4.2.3. The estimated linear predictor for the PBC3 study (assuming an effect
of serum bilirubin which is piecewise constant in quintile groups) plotted against
bilirubin together with smoothed pseudo-observations. The four panels correspond
to quintiles of observed event times.

Regression splines

A model where the relation between y and x is continuous and contains the lin-
ear relationship as a special case may be based on a flexible class of functions
called local polynomials or regression splines. Among these, linear regression
splines are the simplest. In a model with a linear regression spline the rela-
tionship between the linear predictor and x is a broken line with breaks at
each interval endpoint as depicted in the lower-left panel of Figure 4.2.1.

The model is defined by including the explanatory variables

x+
ij = (xi − rj)I(xi > rj), (4.2.4)

j = 0, 1, . . . , k, so that the linear predictor becomes
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Fig. 4.2.4. The estimated linear predictor for the PBC3 study (assuming an ef-
fect of log(serum bilirubin) which is piecewise constant in quintile groups) plotted
against log(bilirubin) together with smoothed pseudo-observations. The four panels
correspond to quintiles of observed event times.

LPi = a + bxi + b1x
+
i1 + · · · + bkx+

ik. (4.2.5)

This model (4.2.5) obviously contains the simple linear model a + bxi as a
special case (when b1 = · · · = bk = 0) and it thereby provides a way of
testing the fit of the linear model. Also, the parameters have a rather simple
interpretation in that a is the value of the linear predictor when x = 0, b is
the slope of the linear predictor for x ≤ r1, that is, in the first interval, and
bj , j = 1, . . . , k, is the change of slope of the linear predictor when x “passes”
rj . (The slope is b in the reference interval, b + b1 in the next, b + b1 + b2 in
the next, etc.)
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For the PBC3 example we get the estimates b̂ = −0.245(0.182), b̂1 =

0.460(0.309), b̂2 = −0.122(0.185), b̂3 = −0.0592(0.0654), b̂4 = −0.0278(0.0174),
and the resulting linear spline function (set to be 0 for bilirubin= 7.66) is
shown (as the dashed line) in Figure 4.2.5. For bilirubin values above 10.3
the curve is concave. The likelihood ratio test for linearity is 39.13 which,
evaluated in the χ2(4)-distribution gives P <0.001.
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Fig. 4.2.5. Estimated linear predictor for the PBC3 study assuming an effect of
serum bilirubin modeled as a linear spline (dashed), an unrestricted quadratic spline
(solid), or a quadratic spline restricted to be linear for bilirubin values above 51.4
(dotted). The distribution of bilirubin is shown on the horizontal axis.

Although the linear predictor for model (4.2.5), as mentioned, is continuous
and, therefore, more plausible than a model with jumps at the interval end
points it is still not a smooth function of x: it has a break at each rj . A smooth
regression spline curve may be obtained using “splines of higher order,” for
example, quadratic or cubic splines. Such a model may also be seen as an
extension of polynomial models discussed in the next section but we prefer to
discuss these models now as they do rely on a choice of intervals .

For simplicity, attention is restricted to a model with quadratic regres-
sion splines. This model is easily defined based on the explanatory variables
introduced in (4.2.4) by having the linear predictor

LPi = a + b1xi + b2x
2
i + b1,1(x

+
i1)

2 + · · · + b1,k(x+
ik)2. (4.2.6)
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It can be shown that this is a smooth function of xi (even at the interval
endpoints r1, . . . , rk) and furthermore (4.2.6) contains both the linear model
a + b1xi and the quadratic model a + b1xi + b2x

2
i (discussed in the next

section) as special cases (corresponding to b2 = b1,1 = · · · = b1,k = 0 and
b1,1 = · · · = b1,k = 0, respectively).

For the PBC3 example the resulting quadratic spline is also shown in
Figure 4.2.5 (as a solid line). This curve corresponds to the lower-right panel
in the earlier Figure 4.2.1. In this model, the likelihood ratio test statistic for
linearity is 40.97 on five degrees-of-freedom, again highly significant.

Restricted splines

As further discussed in the next section, the model (4.2.6) may give extreme
values of the linear predictor for the last interval (x > rk) and also for the
first interval if the range of x is unrestricted. A slightly modified model is,
therefore, frequently considered, in which the linear predictor is assumed to
be linear in x for large or for small values of x (or both). Restricting LPi to
be linear for small values of x is obtained by deleting the term b2x

2
i from the

model; that is,

LPi = a + b1xi + b1,1(x
+
i1)

2 + · · · + b1,k(x+
ik)2.

A model restricted to be linear in x for large values is obtained by deleting
b1,k(x+

ik)2 and replacing x2
i by x2

i −(x+
ik)2 and (x+

ij)
2 in (4.2.6) by (x+

ij)
2−(x+

ik)2

for j = 1, . . . , k − 1. Thereby, the linear predictor becomes

LPi = a + b1xi + b2

(
x2

i − (x+
ik)2

)
+ b1,1

(
(x+

i1)
2 − (x+

ik)2
)

+ · · · + b1,k−1

(
(x+

ik−1)
2 − (x+

ik)2
)
.

To obtain linearity for both small and large values of x we do both to obtain
the linear predictor

LPi = a + b1xi + b1,1

(
(x+

i1)
2 − (x+

ik)2
)

+ · · · + b1,k−1

(
(x+

ik−1)
2 − (x+

ik)2
)
.

For the PBC3 example the quadratic spline restricted to be linear only for
large values of bilirubin (above 51.4) is also shown in Figure 4.2.5 (as a dotted
line) not changing the shape of the curve dramatically.

The cubic model is dealt with analogously and the two models are likely
to provide quite similar results, particularly if the linear restrictions for both
small and large x are imposed. Although these models have the advantage of
providing a linear predictor that is a smooth function of x, a drawback is that
the coefficients in (4.2.6) no longer have simple interpretations. Rather, it is
the shape of the whole function LPi which is of interest and therefore such
models are most suited for descriptive purposes.
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4.2.2 Polynomials

This section deals with models where the linear predictor, as was the case for
the higher-order spline models in the previous section, is a smooth function
of x. The models we study all contain the simple linear model as a special
case and they are not based on any selection of intervals covering the range
of x. More specifically, we consider models where the linear predictor is a
polynomial in x.

One of the simplest mathematical extensions of the linear model LPi =
a + bxi is the quadratic model

LPi = a + b1xi + b2x
2
i , (4.2.7)

where the linear predictor is a second-order polynomial (“a parabola”). This
model provides a simple alternative to the linear model and testing the hy-
pothesis b2 = 0 gives a test for linearity. Because of its simplicity the model
(4.2.7) has been much used, although it certainly has a number of disadvan-
tages. Thus, the coefficients b1, b2 have no simple interpretation and numeri-
cally large values of x may have a large influence of the estimates. Note that
when b2 > 0, (4.2.7) is a convex function (a “happy parabola”) with minimum
at x = − b1

2b2
whereas the situation b2 < 0 corresponds to a concave function

(a “bad-tempered parabola”) with maximum at x = −b1/(2b2). In both cases
the curve is symmetric around x = −b1/(2b2).

For the PBC3 example, with x representing (untransformed) bilirubin,

the estimates in model (4.2.7) are b̂1 = 0.0227 (0.0031), b̂2 = −0.0000369
(0.00000871), and the likelihood ratio test statistic for linearity is 20.82 which
evaluated in a χ2(1)-distribution gives P <0.0001. The significantly negative

sign of b̂2 again signals a concave relationship between bilirubin and LP. The
curve has a maximum point at bilirubin= 0.0227/(2 × 0.0000369) = 307.6.
The values of the regression coefficients would change if x were centered by
subtracting a suitable reference value, whereas the model as such would not
change.

Figure 4.2.6 shows Cook’s distance based on devi(b1) and devi(b2) plotted
against bilirubin and against time. The most influential points correspond
to three censorings among patients with a large value of bilirubin (Cook’s
distance above 0.12). These are the same three observations that were seen to
be mostly influential in Figure 4.1.24 where the covariate was log(bilirubin).

Fractional polynomials

Much more flexibility (however, with some of the same disadvantages as just
mentioned for (4.2.7)) is obtained by introducing more powers q of x than just
q = 2. In particular the use of the function class called fractional polynomi-
als (e.g., Royston and Altman, 1994; Royston and Sauerbrei, 2008) provides
flexible models. With fractional polynomials, powers of x are usually chosen
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Fig. 4.2.6. Cook’s distance for the model with a quadratic effect of bilirubin plotted
against bilirubin and time: +: observed failure times, o: censored observations.

from the limited set q = 0,±0.5,±1,±2,±3 where q = 0 is taken to mean the
natural logarithm log(x). Note that this power and q = ±0.5 (i.e.,

√
x and

1/
√

x) are only valid for positive x and, therefore, the method of fractional
polynomials is most often used in this situation, inasmuch as then, the whole
range of powers is available. For similar reasons, centering of covariates by
subtracting a suitable reference value is usually not considered for the class
of models based on fractional polynomials.

Models with fractional polynomials are purely descriptive with no simple
parameter interpretation, thus one often simply seeks the best fitting model
with a given number of terms. As becomes apparent in the next chapter on
multiple regression (see also the discussion in Section 6.1.3), the method is
most useful when the desire is to obtain an effective adjustment for a con-
founder variable when studying the effect on an exposure of primary interest.
We exemplify fractional polynomials using the PBC3 example and fit models
that extend the simple linear one corresponding to q = 1. Thus, we fit all
eight 2-term models and all 28 3-term models including a linear term plus one
or two more terms chosen from the set of eight additional powers mentioned
above. The results in terms of likelihood ratio tests compared with the simple
linear model are found in Table 4.2.1.

It is seen from Table 4.2.1 that, according to the one-degree-of-freedom
test statistics, the “best fitting model” with one additional term (i.e., the one
with the largest test statistic, marked in bold in the table) is the one including
log(bilirubin). This model has estimates –0.000723 (0.00222) for the linear
term and 1.0661 (0.202) for the log term (q1 = 0). Thus, in this model the
linear effect is insignificant and the log term highly significant. The resulting
linear predictor is shown in Figure 4.2.7 (as a dashed line) and is seen to
be concave in the entire range considered. In a similar vein, the best fitting
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Table 4.2.1. Likelihood ratio tests comparing fractional polynomial models for the
effect of bilirubin in the PBC3 study to a model with a linear effect. First column:
one additional term in the model; next columns two additional terms in the model.

q2

q1 — –3 –2 –1 –0.5 0 0.5 2

–3 4.29
–2 12.10 19.10
–1 25.51 29.32 32.38

–0.5 30.69 32.75 34.12 34.09
0 32.32 33.10 33.24 32.57 32.35

0.5 30.56 30.68 30.57 31.08 31.77 32.42
2 20.82 21.47 23.65 28.69 31.17 32.50 32.44
3 16.59 17.88 21.19 28.00 31.06 32.46 32.00 26.59

model with two additional terms corresponds to q1 = −0.5, q2 = −2 (also
marked with bold in the table). In this model the linear term is insignificant
with an estimated coefficient of 0.00242 (0.00165) whereas both the term
for the power –0.5 and that for –2 are significant. The estimated coefficients
are 40.301 (13.889) and –12.575 (2.372), respectively. The estimated linear
predictor is also shown in Figure 4.2.7 (as a solid line) and it is seen that
this estimate, like those based on the quintile division of bilirubin, has a
minimum around a bilirubin value of 5 whereas for larger values it has a
concave shape. The two models that are highlighted in Table 4.2.1 are not
nested so they cannot be compared using, for example, the likelihood ratio
test statistic. However, they are both nested in the model with the four terms
corresponding to q ∈ {0, 1,−0.5,−2} and the likelihood ratio tests for the
reduction from this model to q ∈ {0, 1} or q ∈ {1,−0.5,−2} are 1.81 (2 d.f.,
P = 0.40) and 0.01 (1 d.f., P = 0.92), respectively. Hence, both models are
clearly acceptable compared to the extended 4-term model, however, based
on P -values the model corresponding to q ∈ {1,−0.5,−2} may be preferable.

4.2.3 Other nonlinear models with a linear predictor

In this section we leave the general theme of studying alternatives to models
with a simple linear effect of a quantitative explanatory variable. We study two
special situations where the effect of a quantitative covariate x can be expected
to have a particular nonlinear effect on the linear predictor: first when x
has a particular value (or a certain interval) corresponding to ”nonexposed
individuals” and, second, when the effect of x may be periodic, that is, repeat
itself in certain intervals, for example, calendar time periods.
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Fig. 4.2.7. Estimated linear predictor for the PBC study assuming an effect of
serum bilirubin which is modeled either as a fractional polynomial with powers 1
and 0 (dashed) or with powers 1, –0.5, and –2 (solid). The distribution of bilirubin
is shown on the horizontal axis.

Models with a zero exposure category

In this section, x is a quantitative explanatory variable and we study models
for the effect of x on an outcome variable y where one particular value (or
perhaps an interval) of x is considered special and therefore treated separately.
For simplicity we assume that x is nonnegative although similar models may
be considered for any quantitative x.

Motivation comes from epidemiological studies where x is an “exposure”
and where, among the exposed, a dose–response relationship may be expected
but where the nonexposed may fall outside this dose–response relationship.
We again for the sake of simplicity, restrict attention to linear dose–response
relationships although models with nonlinear effects of positive xs (cf. Sections
4.2.1–4.2.2) may also be of interest in some situations. Let x = 0 indicate no
exposure and consider the dummy variable for being exposed: I(xi > 0). We
then look at models where the linear predictor for individual i is given by

LPi = a + b1xi + b0I(xi > 0). (4.2.8)

In (4.2.8), a is the value of the linear predictor when x = 0, b1 is the slope of the
linear dose–response relationship for positive xs (i.e., the difference between
values of LP for groups with positive exposure differing one unit in x), and b0

is the difference between the LP-value for x = 0 and the extrapolation into
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x = 0 of the line for the exposed. The test for the hypothesis b1 = 0 is a trend
test among exposed, only .

As an example of this kind we once more consider the PBC3 trial and the
explanatory variable xi =bilirubin for patient i. Bilirubin has an upper limit
for “normal” values at 17.1 μmol/L and a model where the linear effect of
log(bilirubin) only applies above the normal range may be of interest. Using
a model like (4.2.8) we can estimate how the hazard function for values of
bilirubin in the normal range are compared to the assumed linear function for
values outside that range. To do this we consider the indicator for the abnor-
mal range; that is I(xi > 17.1). We then study a model such as (4.2.8) with
xi replaced by (log(xi) − log(17.1)) · I(xi > 17.1) = (log(xi) − log(17.1))+

(and where, as usual, a is the log(baseline hazard), log(h0(t)), here the
log(hazard) for bilirubin values in the normal range, including 17.1). The

estimates in this model are b̂1 = 0.858(0.129) and b̂0 = 1.296(0.397) (Ta-
ble 4.2.2). Thus, for values above the normal range the linear predictor in-
creases highly significantly with log(bilirubin) (Wald test for the hypothe-
sis b1 = 0 is (0.858/0.129)2 = 43.9). Furthermore, the step of the linear
predictor from the normal range to values above (i.e., at log(17.1); see Fig-

ure 4.2.8) is b̂0 = 1.296(0.397) and yields a significant Wald test statistic
(1.296/0.397)2 = 10.65.
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Fig. 4.2.8. Estimated linear predictor for the PBC study assuming a log-linear
effect of serum bilirubin for values outside the normal range (>17.1 μmol/L) and
constant within the normal range. The distribution of log(bilirubin) is shown on the
horizontal axis.
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Because the model (4.2.8) is not nested in the simple model with a linear
effect of log(bilirubin), these two models cannot be formally compared using,
for example, the likelihood ratio test statistic. However, both models can be
nested in the three-parameter model allowing for a linear effect of log(xi)
also within the normal range but with a different slope than outside the nor-
mal range. This extended model may be obtained by adding the covariate
log(xi) (or preferably, log(xi) − log(17.1) to keep a reasonable interpretation
of the baseline hazard as the hazard function, now as that for patients with
a bilirubin value of 17.1) to (4.2.8). Note that the effect of log(xi)− log(17.1)
determines the slope of the linear predictor within the normal range. The re-
sults from such an analysis are also shown in Table 4.2.2. Here it is seen that
the extended model may be reduced to (4.2.8) (LR-test statistic is 1.66 with
1 d.f., P = 0.20) but not to the simple model containing only log(xi) (LR-test
statistic is 10.58 with 2 d.f., P = 0.005). We may thus conclude that the sim-
ple model including log(bilirubin) may be improved by considering different
effects of bilirubin inside and outside the normal range.

Table 4.2.2. PBC3 study: analysis of the effect of bilirubin xi within and outside
the normal range (<17.1 μmol/L).

Covariate Model (4.2.8) Extended Model Reduced Model

I(xi ≥ 17.1) 1.296 (0.397) 1.964 (0.699)
I(xi ≥ 17.1)(log(xi) − log(17.1)) 0.858 (0.129) 1.930 (0.821)
log(xi) − log(17.1) –1.073 (0.811) 1.009 (0.0985)

−2 log(L) 836.43 834.77 845.35
LR-test 1.66 10.58

Models with periodic effects

Sometimes, particularly in longitudinal studies, there may be (time) effects
that are likely to be periodic. For example, the incidence of certain diseases
may show the same pattern over the calendar year in successive years. If
this periodic pattern can be modeled as a harmonic function then interesting
quantities such as the phase (i.e., the time of maximal incidence) and the
amplitude (i.e., the height of the maximal incidence) can be estimated quite
simply, as follows.

The generic harmonic function is the cosine

cos(x).

This function has a period of 2π and takes its maximal value at x = 0.
Therefore, if x is in months and a yearly period (i.e., 12 months) is expected
then the scaled cosine function
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cos(
2π

12
x)

may be used. This function still has maximum for x = 0 and to allow for an
unknown phase f the translated cosine function

cos(
2π

12
(x − f))

with maximum at x = f is the choice. Finally, allowing for an unknown
amplitude A a term like

A cos(
2π

12
(x − f)) (4.2.9)

can be added to the intercept a in the linear predictor. The trick is now to
apply the formula for the cosine of a difference to get

A cos(
2π

12
(x − f)) = A cos(

2πf

12
) cos(

2πx

12
) + A sin(

2πf

12
) sin(

2πx

12
). (4.2.10)

Because x is the observed month of the year both cos(2πx/12) and sin(2πx/12)
are observable explanatory variables and the corresponding regression co-
efficients b1 = A cos(2πf/12) and b2 = A sin(2πf/12) may be estimated
because the linear predictor is linear in these two parameters. Because
cos2(t) + sin2(t) = 1, we can then estimate the amplitude A by

Â =

√
b̂2
1 + b̂2

2

and the phase f (because tan(t) = sin(t)/ cos(t)) can be estimated by

f̂ =
12

2π
tan−1(̂b2/b̂1).

Digression. Standard deviations

Inference for b1, b2 also yields estimated standard deviations for bb1 and bb2 and an
estimated correlation between bb1 and bb2. From these quantities standard deviations
for bA and bf may be obtained using the ”delta-method.” This yields the following
expressions:

(SD( bA))2 =
bb2
1(SD(bb1))

2 +bb2
2(SD(bb2))

2 + 2bb1
bb2SD(bb1)SD(bb2)corr(bb1,bb2)

bb2
1 +bb2

2

and

(SD( bf))2 =

„

12

2π

«2
bb2
1(SD(bb1))

2 +bb2
2(SD(bb2))

2 − 2bb1
bb2SD(bb1)SD(bb2)corr(bb1,bb2)

bb2
1 +bb2

2

.

�
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4.3 Exercises

Exercise 4.1. Use the tryptase dataset 3 from Example 1.12 for the following:

1. Perform an analysis relating baseline tryptase values to a linear predictor
LPi = a+b × age. Perform model checks to see whether age and/or base-
line tryptase should be transformed in order to better meet the traditional
assumptions of a simple linear regression.

2. Try a model where the effect of age is modeled by a linear spline with
thresholds at the age of 60. Show that there is a significant change of
slope at 60 years and describe the conclusion.

3. Do we see a change of slope already at the age of 40?

Exercise 4.2. Use the tryptase dataset 2 from Example 1.12 to investigate
the relationship between baseline tryptase value and tryptase value in the
allergic situation.

1. Make a scatterplot and comment on a reasonable model for describing
reaction tryptase as a function of baseline tryptase.

2. Estimate the parameters in a linear relation between logarithmic values of
reaction tryptase and logarithmic values of baseline tryptase. Transform
back to original scale to get a power relation between the two. Does it fit
well?

Exercise 4.3. Use the tryptase dataset 2 from Example 1.12 and look at the
patients that have been subjected to a test for allergy following the surgery
(tested = 1).

1. Relate the probability of a positive test result to the value of the reaction
tryptase, using a logit link and a linear effect of tryptase value.

2. Show that the Wald test statistic for this relationship is 25.46 and state
the conclusion.

3. Show that the odds ratio for a positive test is 2.66 for an increase of 10
units in reaction tryptase, and find the associated confidence interval for
this quantity.

4. Do we see any signs of deviation from linearity in reaction tryptase? Try,
for example, including a squared term in reaction tryptase.

5. Perform a model check by making a residual plot of Pearson residuals
against reaction tryptase.

Exercise 4.4. Use the tryptase dataset 1 from Example 1.12 to compare the
tryptase value before and after surgery.

1. Estimate a linear relationship between the tryptase value before (x) and
after (y) surgery.

2. Compare with the line obtained by switching the roles of the outcome and
the covariate.

3. Comment upon the fact that these two lines are not identical.
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Exercise 4.5. The tryptase dataset 2 from Example 1.12 contains informa-
tion on the type of allergic reaction, classified into four groups. Collapse these
into a binary outcome by combining categories 1–2 and 3–4.

1. Perform a logistic regression relating the probability of a severe reaction
to age.

2. Investigate whether the effect of age is linear by including a quadratic
term and testing its significance.

Exercise 4.6. Use the tryptase dataset 2 from Example 1.12 for relating
tryptase values during the allergic reaction (reaction tryptase values) to age.

1. Try the linear predictor LPi = a + b × age as well as a linear spline with
threshold in 60 years.

2. Show that at 60 years, the line bends in an upward direction, with an
estimated change of slope of 0.16.

3. Is this change significant, or could we just as well use the simpler model
with a linear effect of age?

Exercise 4.7. Baseline tryptase is considered “elevated” if it is above 11.4.
Use the tryptase dataset 2 from Example 1.12 for investigating whether the
probability of this event (during the suspected allergic reaction) depends on
the age of the patient.

1. Calculate the confidence interval for the odds ratio for the occurrence, for
a ten-year increase in age. Show that the confidence interval for this odds
ratio is (1.2,1.7). Formulate an appropriate conclusion.

2. Make a residual plot (Pearson residuals) to investigate the appropriateness
of the linearity in age.

3. Try including a quadratic term in age and test whether it improves the
model significantly.

Exercise 4.8. Use the vitamin D dataset to investigate whether body mass
index for girls is an important explanatory variable for vitamin D level.

1. Make a simple linear regression without transforming either of the two
variables and perform model checks to investigate the appropriateness of
this model.

2. Make a logarithmic transformation of the vitamin D concentration and
perform the regression again. Compare with the above results and com-
ment on which analysis to prefer.

Exercise 4.9. Use the surgery data from Example 1.4 to investigate whether
age is an important predictor for the duration of anesthesia.

1. Estimate in the model relating mean duration to age through a linear
predictor with age as a linear effect.

2. Perform model checks to investigate the appropriateness of the assumed
linearity in age, graphically as well as numerically.
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3. What could be a possible explanation for a poor model fit? See Exercise
5.6 from Chapter 5.

Exercise 4.10. Use data from the PBC-3 Example 1.3 to investigate the
importance of aspartate transaminase for the survival after treatment of liver
cirrhosis.

1. Estimate the hazard ratio corresponding to a doubling of aspartate
transaminase, with 95% confidence limits.

2. Perform a model check for the linearity assumption corresponding to the
chosen scale of aspartate transaminase, by categorization of the covariate
into quintile groups.

Exercise 4.11. Use data from the PBC-3 Example 1.3 to investigate the
effect of age on the survival after treatment of liver cirrhosis.

1. Choose a spline function with thresholds 50 and 60 years and investigate
whether these thresholds give rise to significant changes in the effect of
age on the logarithmic hazard rate.

2. Make a plot describing the estimated effect of age.

Exercise 4.12. Use the data from the study of malignant melanoma, Exam-
ple 1.10, to study the effect of tumor thickness on the survival.

1. Categorize the tumor thickness into four categories of approximately the
same size (quartiles), and compare the survival curves in these four groups.
Do we see a trend?

2. Use the tumor thickness as a quantitative covariate with a linear effect on
the log hazard rate. Is survival significantly related to tumor thickness in
this model?

3. Perform a model check for the effect of tumor thickness.

Exercise 4.13. Use the data from the study of malignant melanoma, Exam-
ple 1.10, to study the effect of age on the survival.

1. Choose a spline function with a single threshold at 60 years to investigate
whether age has a linear effect on the logarithmic hazard rate.

2. Could the effect of age be due to other possible covariates, such as tumor
thickness, as studied in Exercise 4.12? (See also Exercise 5.8 in Chapter
5.)



5

Multiple regression, the linear predictor

In the previous two chapters we studied regression models where the linear
predictor depended on a single explanatory variable, x. In Chapter 3, x was
categorical and for a binary variable (Section 3.1) with values g0, g1 we added

bI(xi = g1)

to the intercept a, whereas in general, for a variable with k +1 levels (Section
3.2) we added instead the expression

b1I(xi = g1) + b2I(xi = g2) + · · · + bkI(xi = gk),

with dummy variables for all categories except the reference category (xi = 0).
In Chapter 4, x was quantitative and we added a term (Section 4.1)

bxi

to a if a linear effect was to be obtained or we could model nonlinear effects
(Section 4.2) by adding instead terms of the form

b1f1(xi) + b2f2(xi) + · · · + brfr(xi),

where f1(x), f2(x), . . . , fr(x) are given functions of x (e.g., polynomials or
dummy variables).

In some studies only one explanatory variable needs to be considered. Typ-
ical examples are randomized experiments with two or more treatment groups,
such as a number of dose groups. In such situations relevant models for quan-
titative, binary, or survival time outcomes have been discussed in Chapters
3 and 4. However, more often several explanatory variables are required. In
some experiments, subjects may be randomized to combinations of different
treatments, or practical considerations may force researchers to randomize
within a number of blocks, for example, hospitals, which need to be taken
into account when analyzing effects of treatments. Furthermore (and this is
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in fact our main motivation), in observational studies conducted in, for exam-
ple, epidemiology, some risk factors associated with the explanatory variable
of primary interest (the exposure) must be considered in order to achieve a
“fair comparison” between exposure groups. This may, in fact, also be rele-
vant in randomized studies where, in spite of the randomization, important
factors may not be quite balanced between the treatment groups.

In this chapter multiple regression models (i.e., regression models with
several explanatory variables) are studied. We do this by adding the simple
building blocks from the previous chapters to the model intercept. The linear
predictor obtained in this way is then linked to the mean value, the failure
probability, or to the hazard rate. That is, we focus on the linear predictor in
general and exemplify using concrete types of outcome y.

Studying two or more explanatory variables in the same model has two
important consequences. First of all, the interpretation of a regression param-
eter bj is now the “effect” of the corresponding covariate “adjusted for” other
covariates or “for any given values of” other covariates. This means that the
effect of a particular explanatory variable describes the expected difference in
outcome for groups of subjects differing one unit in this particular explana-
tory variable, when all other covariates are “held fixed.” Note that (unless
the link function is the identity function and covariates are independent) this
interpretation is different from the marginal interpretation and an estimate of
the effect of an explanatory variable should, therefore, always be accompanied
by a list of the remaining explanatory variables in the model. For example, in
an analysis of weight as outcome variable and gender as explanatory variable
the effect of gender will depend strongly on whether adjustment for height is
carried out. The phenomenon that adjusted and unadjusted effects may differ
is the concept of confounding: if we want to study the effect of an explana-
tory variable x1 on an outcome variable y and if x1 is unevenly distributed
in subgroups of another important covariate x2, then the unadjusted effect of
x1 is confounded by x2.

Second, the consequence of simply adding terms for the covariates to be
included in the model is that the effect of each variable is assumed to be the
same for all values of the other covariates: the assumption of no interaction
between the covariates. This is a critical assumption which often requires care-
ful examination as part of the statistical analysis and, obviously, more general
regression models allowing for interaction are needed. Presence of interaction
complicates the analysis and, for that reason, an attempt to eliminate inter-
action parameters from the model is often done. It should be noted, however,
that interaction is not always just a nuisance for the researcher. In many cases
it may be of considerable interest to study whether the effect of an explana-
tory variable differs, for example, between men and women, in which case the
examination of a possible interaction is an important part of the scientific
questions addressed. An alternative name for interaction, frequently used in
epidemiology is “effect-modification”. However, we have chosen to stick to the
classical statistical phrase, “interaction.”
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Interaction and confounding have nothing in common as the following
hypothetical example illustrates; see Figure 5.0.1. Here, the quantitative co-
variate x1 and the categorical variable x2 are highly (positively) correlated.
There is a negative x1-effect marginally (see the dashed line in the figure);
there is a marginal effect of x2 (see the averages of y in x2-groups indicated
on the vertical axis). Adjusting for x2 there is a positive effect of x1 (see the
four parallel solid lines corresponding to the four values of x2) and a some-
what increased effect of x2 (vertical distance between the parallel lines, not
shown in the figure). However, there is no interaction: for any given x2-group
the effect (slope) for x1 is the same.
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Fig. 5.0.1. Illustration of a confounding categorical variable x2 when the effect of
a quantitative variable x1 on y is studied; see text.

Recall that, in spite of our use of the term “effect”, we do not necessarily
assume explanatory variables and outcome to be causally related.

The structure of this chapter is as follows. In Sections 5.1 and 5.2 we study
models with only two explanatory variables: in Section 5.1 models without in-
teraction and in Section 5.2 models with interaction. We consider the different
combinations of covariate types: two categorical covariates in Section 5.1.1,
one categorical and one quantitative with a linear or a nonlinear effect in
Section 5.1.2, and two quantitative covariates (with linear or nonlinear ef-
fects) in Section 5.1.3. In each section the model is exemplified using outcome
variables of different types, with emphasis on parameter interpretation and
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signs of possible confounding. In Section 5.2 we return to all the examples
from Section 5.1 and supplement with examination and discussion of interac-
tion. For each combination of types of explanatory variables different ways of
parametrizing the model are possible and may play various roles for testing
the hypothesis of no interaction or for presenting the results from a model
with interaction. Again, focus is on interpreting models and results. The rea-
son why we concentrate on situations with only two covariates in Sections 5.1
and 5.2 is that this is, one the one hand, the simplest extension of the simple
regression models considered in Chapters 3 and 4 and, at the same time, it
still illustrates most of the new problems encountered in multiple regression
models. Therefore, in Section 5.3 where we discuss general models including
any number of explanatory variables, we emphasize that such models in many
aspects are not more complicated than models with only two covariates. How-
ever, the problem of higher-order interactions does become relevant in models
with several covariates. The chapter is concluded (Section 5.4) by a brief dis-
cussion of the situation where responses are paired or matched and where it
is crucial, during the analysis, to keep track of which observations come from
the same matched group.

In Chapters 3 and 4 we have been quite careful checking all model assump-
tions, however, in the present chapter less emphasis is put on that aspect of
inference. This is of course not because we find model checking unimportant
but only to save space and to concentrate on what is new in this chapter. In
the discussion in Chapter 6 we return to model checking in connection with
general model building procedures as well as in the worked examples.

5.1 Two covariates: Models without interaction

As mentioned in the introduction to this chapter, we first study models with
only two explanatory variables and without interaction. In separate subsec-
tions we consider the different combinations of covariate types: two categorical
covariates in Section 5.1.1, one categorical and one quantitative with a linear
or nonlinear effect in Section 5.1.2, and two quantitative covariates (with lin-
ear or nonlinear effects) in Section 5.1.3. We concentrate on the situation with
two covariates to keep the discussion as simple as possible while at the same
time illustrating the consequences of adjusting the effect of one explanatory
for that of another.

5.1.1 Two categorical covariates

This section deals with a regression model with two explanatory variables,
both of which are categorical. As our primary example we return to the
study of vitamin D status for women from different European countries
(cf. Example 1.1), that is, the outcome variable is quantitative. Following
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the discussion in Section 3.1.1 we use the log-transformed values and de-
fine yi = log10(25OHD measurement for woman no. i). The main question
addressed is how body mass index, denoted by xi,1, dichotomized into over-
weight versus normal weight, is related to vitamin D status and it is of interest
to see if this relation is stable over countries, denoted by xi,2.

Two binary covariates

We first include only women from Ireland and Poland and study the two
binary explanatory variables:

I(xi,1 ≥ 25) and I(xi,2 = Ireland).

The model specifies the mean E(yi) of yi to be

E(yi) = LPi = a + b1I(xi,1 ≥ 25) + b2I(xi,2 = Ireland). (5.1.1)

Note that the linear predictor in (5.1.1) is obtained by adding the terms,
b1I(xi,1 ≥ 25) and b2I(xi,2 = Ireland) to the model intercept, a. Thereby the
expected values, given in tabular form in Table 5.1.1 are obtained.

Table 5.1.1. Expected values in four groups according to model (5.1.1).

Normal Weight Overweight

Poland a a + b1

Ireland a + b2 a + b1 + b2

These satisfy that:

1. The effect of body mass index for women from Ireland is the same as that
for women from Poland. (The former is (a + b1 + b2) − (a + b2) = b1 and
the latter is (a + b1) − a = b1.)

2. The difference between countries for overweight women is the same as that
for normal weight women. (The former is (a+ b1 + b2)− (a+ b1) = b2 and
the latter is (a + b2) − a = b2.)

We see that the interpretation of the regression coefficient b1 for body
mass index x1 in the model which also includes country x2 is an effect of
body mass index for separate values of country and this effect is assumed to
be the same for all values of x2, that is, both for Ireland and for Poland. In a
similar vein, the interpretation of the regression coefficient b2 for country x2 in
the model that also includes body mass index x1, is the effect of country, that
is, the difference between countries, for separate values of body mass index
and, again, this effect is assumed to be the same for all values of x1, that is,
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for normal weight and for overweight women. We say that the effects of body
mass index and country are mutually adjusted and that the model assumes
there is no interaction between body mass index and country .

Table 5.1.2 shows the number of women and the average log10(25OHD
values) in each of the four country by BMI groups and Figure 5.1.1 shows
these numbers graphically.

Table 5.1.2. Average log10(25OHD values) (and numbers of women) in four country
by BMI groups.

Normal Weight Overweight Difference

Poland 1.598 (12) 1.443 (53) –0.155
Ireland 1.720 (16) 1.593 (25) –0.127

Difference 0.121 (28) 0.150 (78) 0.028

1.
4

1.
5

1.
6

1.
7

1.
8

lo
g 1

0(
vi

ta
m

in
 D

)

Normal weight Overweight

IRL

IRLPOL

POL

Fig. 5.1.1. Average log10(25OHD values) in four country by BMI groups. The size
of a bar reflects the sample size.

Fitting the additive model (5.1.1) to the data we find the estimates: â =

1.587(0.043), b̂1 = −0.141(0.044), and b̂2 = 0.142(0.039). The interpretation of
these estimates is that â is the expected log10(25OHD) value in the combined
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reference group for both covariates, that is, for Polish women with normal
BMI. Furthermore, b̂1 is the (assumed common) effect of BMI for both Polish
and Irish women. It is an average of the two differences between averages
for overweight and normal weight: 1.443 − 1.598 = −0.155 in Poland and
1.593 − 1.720 = −0.127 in Ireland (cf. Table 5.1.2 and Figure 5.1.1) weighted

according to group size. Finally, b̂2 is the (assumed common) effect of country
for both normal weight and overweight women, and it is an average of the
differences between averages for Ireland and Poland: 1.720 − 1.598 = 0.121
among normal weight women and 1.593 − 1.443 = 0.150 among overweight
women, again weighted according to group size.

Table 5.1.3 shows the estimated expected log10(25OHD) values according

to the additive model. Note that, because by coincidence b̂1 + b̂2 ≈ 0, two of
these values are almost identical.

Table 5.1.3. Expected values in four groups after fitting model (5.1.1).

Normal Weight Overweight

Poland 1.587 1.446
Ireland 1.729 1.588

We say that the estimates b̂1 and b̂2 are mutually adjusted or that b̂1 is the
effect of BMI for given values of the other explanatory variables in the model,
here for given country (and vice versa for b̂2). We can compare these values
with the unadjusted estimates for BMI and country. These are −0.177(0.045)
for BMI (overweight versus normal weight) and 0.171(0.040) for country (Ire-
land versus Poland). The difference between the adjusted and unadjusted es-
timates is due to confounding. The unadjusted effect of BMI does not provide
a fair comparison between overweight and normal weight women because of
the influence of country: the group of overweight women is dominated by the
women from Poland (Polish women constitute 53/(53+25) = 68% of the over-
weight women and only 12/(12+16) = 43% of the normal weight women) and
the Polish women tend to have lower y-values than the Irish. Therefore the
adjusted BMI estimate is smaller than the unadjusted. We can interpret the
difference between the estimated effects of country similarly, however, these
are not great. From the standard deviations we can see that both covariates
have highly significant effects on the outcome even after mutual adjustment:
the Wald test for no effect of BMI is (−0.141/0.044)2 = 10.46 and for country
it is (0.141/0.039)2 = 12.88 both providing small P -values when evaluated
in the F (1, 75) (or χ2(1))-distribution. Alternatively, the square root of the
statistic may be evaluated in the t(75) (or the standard Normal) distribution.

The estimates presented all relate to the scale of log10(25OHD). As dis-
cussed in Section 3.1.1, a simpler interpretation in terms of ratios of me-
dians in the original (25OHD) scale is available if the distribution of the



238 5 Multiple regression, the linear predictor

log-transformed values is roughly symmetric. These are simply

10
bb1 = 0.72, 10

bb2 = 1.39

with the interpretation that for given country, median 25OHD-values among
overweight women are about 72% of those for normal weight women. Similarly,
for a given BMI group. Irish women have median 25OHD values about 39%
larger than Polish women. Confidence intervals with 95% coverage for such a
transformed parameter are simply from

10
bb−1.96·SD to 10

bb+1.96·SD

and for the effect of BMI we get the interval (0.59,0.88). That is, the median
25OHD values for overweight women is between 59% and 88% of that for nor-
mal weight women. For country we get the interval (1.16,1.65) meaning that
Irish women have median 25OHD values between 16 and 65% larger than Pol-
ish women. When calculating the confidence interval one could, alternatively,
have replaced the Normal quantile 1.96 by the corresponding t(75)-quantile
1.99, or one could simply take the estimate plus or minus “about 2” standard
deviations.

Interaction

Turning to the assumption of no interaction we can give an initial evaluation
of this by calculating differences in rows and columns as we did above. These
represent BMI effects for each country separately and country effects for each
BMI group separately, respectively. The fact that these are not very different
(row differences are: –0.155 for Poland and –0.127 for Ireland, column differ-
ences are 0.121 for normal weight women and 0.150 for overweight women)
suggests that the additive model (5.1.1) provides a satisfactory fit to the data
(cf. Table 5.1.2 and Figure 5.1.1). We return to a more careful evaluation of
interaction in Section 5.2.

Two-way ANOVA

The model (5.1.1) with two categorical explanatory variables and a quantita-
tive outcome, y, is known as the 2-way analysis of variance (ANOVA) model.
This model is usually discussed for planned experiments with balanced data,
for example, when the numbers of observations in all cells of a table like Ta-
ble 5.1.2 are the same. In this case, estimators in the model can be presented
as simple explicit expressions. However, we consider the model in generality
as a special case of a regression model without paying specific attention to
balanced data.
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Normal distribution and variance homogeneity

The model only specifies how the mean response depends on the two cate-
gorical covariates, so for the model to make sense the mean value parameter
should be a useful characteristic of the distribution. This is definitely the case
if yi follows a Normal distribution, but as discussed in, for example, Section
3.1.1, the model may be relevant without the assumption of normality . How-
ever, variance homogeneity should be reasonably fulfilled, an assumption that
may be evaluated graphically using, for example, residual plots as exemplified
in Chapters 3 and 4. In the present situation with relatively few (four) groups,
variance homogeneity may also be checked simply by computing the empirical
standard deviations in each group and applying formal test statistics such as
Levene’s test.

Figure 5.1.2 shows the residuals from the additive model plotted against
the fitted values in the four groups and this figure does not speak strongly
against variance homogeneity. (Note that, according to Table 5.1.3, two of
the fitted values are almost identical.) Variance homogeneity is supported by
Levene’s test for comparison of the standard deviations in the four groups
giving the P -value 0.37 for homogeneity. The four SDs are shown in Table
5.1.4.

It can be noticed that without the log-transformation of the 25OHD values,
variance homogeneity is rejected using Levene’s test with a P -value of 0.027.
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Fig. 5.1.2. Residuals from model (5.1.1) in four country by BMI groups plotted
against fitted values: x: Ireland, o: Poland.
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Table 5.1.4. SDs of log10(25OHD values) (and numbers of women) in four country
by BMI groups.

Normal Weight Overweight

Poland 0.126 (12) 0.213 (53)
Ireland 0.164 (16) 0.192 (25)

General categorical covariates

To illustrate two-way analysis of variance with more than two levels of the
two categorical explanatory variables we study a more complete version of
the vitamin D dataset, that is, including women from all four countries (Den-
mark, Finland, Ireland, and Poland) and considering BMI in three categories:
normal weight, slight overweight, and obese. Table 5.1.5 shows the average
log10(25OHD) values and the numbers of women in these 12 categories. The
general picture seems to be that, in all countries, normal weight women have
higher values than those who are overweight or obese and that Polish women
have lower values than what is seen in the other three countries.

Table 5.1.5. Average log10(25OHD) values (and numbers of women) in four coun-
tries and three BMI groups.

Normal Slight
Weight Overweight Obese

Denmark 1.692 (20) 1.545 (21) 1.603 (12)
Finland 1.664 (9) 1.665 (32) 1.562 (13)
Ireland 1.720 (16) 1.626 (16) 1.534 (9)
Poland 1.598 (12) 1.393 (25) 1.488 (28)

The main question to be addressed using these data is whether there is a
relation, across countries, between BMI and vitamin D. In Figure 5.1.3 the
three averages for each country are plotted against the BMI categories. In the
additive model for the mean of yi depending on country and BMI category,
the profiles for each country should be parallel. This, to some extent, seems
to be a tenable hypothesis. To formulate the additive model for these two
categorical covariates we need to introduce two sets of dummy variables, one
set for each of the covariates xi,1 = BMI for woman i and xi,2 = country for
woman i. These are

I(18.5 ≤ xi,1 < 25), I(25 ≤ xi,1 < 30), I(30 ≤ xi,1)

and

I(xi,2 = Denmark), I(xi,2 = Finland), I(xi,2 = Ireland), I(xi,2 = Poland),
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Fig. 5.1.3. Average OHD-values in four countries plotted against BMI group.

respectively. We then study the additive model

E(yi) = a + b1,1I(25 ≤ xi,1 < 30) + b1,2I(30 ≤ xi,1) (5.1.2)

+b2,1I(xi,2 = Denmark) + b2,2I(xi,2 = Finland) + b2,3I(xi,2 = Ireland).

Here the intercept a is the expected log10(25OHD) value for women in the
combined reference category (normal weight women from Poland). Further-
more, b1,1 is the difference in expected values between slight overweight and
normal weight women from the same country, b1,2 is the difference in expected
values between obese and normal weight women from the same country, b2,1 is
the difference in expected values between women from Denmark and women
from Poland belonging to the same BMI category, b2,2 is the difference in ex-
pected values between women from Finland and women from Poland belonging
to the same BMI category, and b2,3 is the difference in expected values be-
tween women from Ireland and women from Poland belonging to the same
BMI category.

The estimates from the model (5.1.2) are shown in Table 5.1.6 (left panel).
We see that the expected log10(25OHD) values are largest for the normal
weight women and that Poland seems to have values at a lower level than
the other three countries. The likelihood ratio tests in this model are strongly
significant for both explanatory variables: 11.67 which evaluated in the χ2(2)
distribution gives P = 0.003 for BMI and 21.78, ∼ χ2(3), P < 0.0001 for
country. The corresponding F -statistics are 5.83 ∼ F (2, 207) for BMI and
7.43 ∼ F (3, 207) for country giving rise to similar P -values. The estimated
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intercept is â = 1.565(0.038).

Table 5.1.6. Adjusted and unadjusted effects of country and BMI group.

Adjusted Unadjusted
Parameter Estimate SD Estimate SD

b1,1: slight overweight vs. normal weight –0.116 0.036 –0.116 0.037
b1,2: obese vs. normal weight –0.113 0.040 –0.143 0.040

b2,1: Denmark vs. Poland 0.120 0.040 0.142 0.040
b2,2: Finland vs. Poland 0.171 0.039 0.168 0.040
b2,3: Ireland vs. Poland 0.147 0.043 0.171 0.043

To evaluate the amount of confounding we can study the estimates ob-
tained by analyzing two models each with just one explanatory variable, coun-
try or BMI; see right part of Table 5.1.6. The unadjusted country and BMI
effects tend to be numerically larger than those that are mutually adjusted,
and so do the likelihood ratio tests for no effect of the covariates: 14.07 with
2 d.f., P = 0.001 for BMI and 24.18, 3 d.f., P <0.0001 for country. The cor-
responding F -statistics are 7.17 ∼ F (2, 210) for BMI and 8.38 ∼ F (3, 209)
for country. However, the confounding is not great because the distribution
of BMI is fairly stable over countries. We return to a general discussion of
confounding in Chapter 6.

Digression. Stratified “Mantel–Haenszel”-type analysis

For a binary outcome variable, a classical way of dealing with one binary “expo-
sure” and one categorical “confounder” variable in epidemiology has been to conduct
stratified analysis according to the “Mantel–Haenszel” approach. That is, to study
the effect of the binary exposure xi,1, adjusting for the confounder xi,2, the associ-
ation between the exposure and the binary outcome yi is assessed, first by separate
(2×2)-tables within strata defined by the values of the confounder and, next, results
from the separate strata are summarized to obtain a single measure of the effect of
the exposure on the outcome.

As an example we consider the fever in pregnancy study (Example 1.2). Recall
that no association between fever in early pregnancy and fetal death was seen (OR=
0.996(0.620, 1.600)), however, this lack of association could be due to confounding by,
for example, the women’s alcohol consumption. Table 5.1.7 shows the basic two by
two table of fever episodes versus fetal death together with the same data stratified
by alcohol consumption. To avoid too “thin” strata, alcohol consumption has been
divided into only three categories. It is seen that the odds ratios for the association
between fever episodes and risk of fetal death do not vary systematically between the
three alcohol strata (i.e., no interaction) and, furthermore, that the three separate
odds ratios have wide confidence limits due to the rareness of the outcome, fetal
death.
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Table 5.1.7. Analysis of the effect of fever episodes on the odds of fetal death:
marginally and stratified by alcohol assumption.

Drinks per Week 0 0.5–1 1.5+ Total
Stratum s = 0 s = 1 s = 2 All strata
Fever episodes No Yes No Yes No Yes No Yes

No fetal deaths 5701 1253 2692 549 1201 262 9595 2064
Fetal deaths 56 12 29 5 13 4 98 21

Odds ratio 0.975 0.845 1.411 0.996
95% CI (0.521,1.824) (0.326,2.194) (0.456,4.360) (0.620,1.600)

Based on these observations, a common odds ratio across strata is not contra-
indicated and the so-called “Mantel–Haenszel” estimator provides such an adjusted
estimate which may be calculated by a simple, explicit expression:

dORMH =

P

s
nasnds

ns
P

s
nbsncs

ns

. (5.1.3)

In (5.1.3), nas, nbs, ncs, nds, following the notation introduced in Section 3.1.2 are
the cell counts in stratum s = 0, 1, 2 and ns is the total count in that stratum.
The estimator, a weighted average between the separate stratum-specific odds ra-
tios, takes the value dORMH = 0.997 not much different from the crude odds ratio
without adjustment for alcohol consumption. An explicit significance test for no as-
sociation between exposure and outcome adjusted for the potential confounder is
also available, namely the “Mantel–Haenszel” test:

X2
MH =

X

s

(nas − (nas+nbs)(nas+ncs)
ns

)2

nasnbsncsnds

n2
s(ns−1)

.

The test statistic takes the value X2
MH = 0.0002 which is highly nonsignificant when

evaluated in the χ2(1)-distribution. Thus, there is absolutely no indication of an
effect of fever episodes on the risk of fetal death even after adjustment for alco-
hol consumption, a fact which is further illustrated by the 95% confidence interval
(0.621,1.601) for the commom odds ratio.

The Mantel–Haenszel technique is an old-fashioned method for assessment of the
effect of a binary exposure on a binary outcome adjusting for a potential confounder
which is categorical. It has the advantage that all computations are explicit (though
this is of course of minor importance because computations are carried out using
some computer package, anyway) but it also has the advantage that it “forces” the
user to study the tabulated stratified data. This may be forgotten when the more
obvious method, logistic regression, is used. However, our general recommendation
is always to study tables such as those in Table 5.1.7 also when regression models
are used. In the present example, results for the fever effect based on the relevant
logistic model are very close to those reported above. This model is given by

�i = a + b1I(xi,1 ≥ 1) + b2,1I(xi,2 = 0.5 or xi,2 = 1) + b2,2I(xi,2 ≥ 1.5),

where �i is the log(odds) for fetal death for woman i and xi,1 and xi,2 are, respec-
tively, her reported number of fever episodes and her reported number of drinks per
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week. The estimated odds ratio for fever is exp(bb1) = 0.997(0.621, 1.601); that is,
with three decimal places the maximum likelihood estimate based on the logistic
regression model as well as the associated 95% confidence interval is identical to
the results from the Mantel–Haenszel analysis. In fact, it can be shown that the
Mantel–Haenszel method is almost fully efficient for OR-values close to 1.

For a survival time outcome similar techniques, the “stratified Cox regression
model” and the “stratified logrank test,” are available. We explain these techniques
in the context of the PBC3 study (Example 1.3) evaluating the treatment effect
adjusting for bilirubin by stratification. We have seen previously (Section 3.1.3)
that without adjustment for bilirubin the treatment effect is small and insignificant:
estimated hazard ratio 0.943 (0.624,1.426). The analyses reported in Section 5.1.2
show that adjusting in various ways for bilirubin as a quantitative covariate will
change this hazard ratio considerably, the magnitude of change depending on the
exact way in which the effect of bilirubin is modeled.

To get a preliminary view of the data, Table 5.1.8 shows the number of treat-
ment failures for CyA- and placebo-treated patients stratified by bilirubin quintiles.
It is seen that the number of treatment failures increases dramatically with biliru-
bin and that, in the highest quintile group, the treatment allocation is somewhat
uneven (42 out of 70 patients, 60%, were in the CyA group). That is, in spite of the
randomization, bilirubin may confound the simple treatment comparison.

Table 5.1.8. Numbers of patients with or without treatment failure by treatment
and bilirubin quintile group.

Bilirubin ≤ 10.3 (10.3,16] (16,26.7] (26.7,51.4] > 51.4
Stratum s = 0 s = 1 s = 2 s = 3 s = 4

Treatment
group Plac. CyA Plac. CyA Plac. CyA Plac. CyA Plac. CyA

No treatment
failure 33 31 37 33 24 29 25 22 8 17
Treatment
failure 3 3 2 1 7 6 14 9 20 25

Hazard ratio 1.235 0.500 1.012 0.748 0.532
95% CI (0.249,6.129) (0.045,5.524) (0.325,3.144) (0.321,1.743) (0.291,0.973)
“Expected”
Es

tment 3.3 2.7 1.5 1.5 7.0 6.0 12.4 10.6 13.7 31.3

In strata with many treatment failures, CyA treatment tends to be beneficial and
in strata with few failures the stratum-specific treatment effect has wide confidence
limits. Therefore, an evaluation of the effect adjusted for the bilirubin strata is likely
to show a treatment effect that differs from the marginal insignificant effect quoted
above. The significance of such an adjusted effect may be tested using the stratified
logrank test based on observed and “expected” numbers of treatment failures (and
variances) within strata (s) (cf. Section 3.1.3 ). The expected numbers of treatment
failures by treatment group Es

tment are also given in Table 5.1.8 and the version
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of the stratified logrank test statistic using a variance estimator (cf. (3.1.31) and
(3.1.32)), is

X2
lr,strat =

`P

s(O
s
CyA − Es

CyA)
´2

P

s V s
,

where Os
CyA denotes the observed number of treatment failures in stratum s in the

CyA group. An alternative version (see Section 3.1.3) uses only the observed and
expected numbers of treatment failures. The first test statistic takes the value 3.24
which, evaluated in the χ2(1)-distribution gives P = 0.07. This test is the score test
for the hypothesis b1 = 0 in the stratified Cox model

li(t) = log(hs0(t)) + b1I(xi,1 = CyA), (5.1.4)

where, as previously li(t) is the log(hazard rate) for individual i belonging to stratum
s. Note that in (5.1.4), the baseline hazards hs0(t) are allowed to vary between strata
in an unspecified way, in particular, they are not assumed to be proportional. Such a
model may be used for evaluating the proportional hazards assumption as we show
in Section 6.2.3.

The estimated hazard ratio for treatment is exp(bb1) = 0.671(0.435, 1.036) with

associated Wald and likelihood ratio tests both equal to 3.24(P = 0.07). �

Matched studies

A special situation arises when data are matched or paired, for example, when
the same subject is observed both before and after an intervention. Such
matched studies may be handled by including “subject” as a categorical co-
variate in the linear predictor as we show in Section 5.4.

5.1.2 One categorical and one quantitative covariate

In this section we study the situation with two explanatory variables one of
which is categorical (in fact, binary) and the other is quantitative. We study
both the situation where the effect of the latter is assumed to be linear and
the situation where this assumption is not made.

Linear effect of the quantitative covariate: the vitamin D study

Our first illustrative example is a continuation of the vitamin D study (Exam-
ple 1.1) with the quantitative outcome variable yi = log10(25OHD measure-
ment for woman i). The quantitative covariate, the effect of which is assumed
to be linear, is BMI xi,1 measured in kg/m2 and the binary covariate is country
xi,2 (Ireland versus Poland). The questions addressed include a comparison
of the vitamin D status in these two countries taking potential differences in
BMI into account and a study of the relationship between BMI and vitamin
D status and its stability over countries.



246 5 Multiple regression, the linear predictor

The simple additive model for these two explanatory variables then states
the mean of yi to have the form

E(yi) = a + b1xi,1 + b2I(xi,2 = Ireland). (5.1.5)

Model (5.1.5) is obtained, in the now usual way, by adding the linear effect,
b1xi,1 of BMI, and that of country, b2I(xi,2 = Ireland) to the intercept a.
The interpretation of the parameters in the model are as follows: a is the
expected log10(25OHD) value for individuals with both covariates equal to 0;
that is, Polish women with BMI= 0, b1, the effect of BMI, is the expected
difference in log10(25OHD) values for women from the same country differing
1 kg/m2 in BMI, and b2, the effect of country, is the expected difference in
log10(25OHD) values between women from Ireland and women from Poland
with the same BMI. Because of the awkward interpretation of the intercept,
the model is often reparametrized by replacing xi,1 by, for example, xi,1−25. In
the reparametrized model, the intercept is the expected log10(25OHD) value
for Polish women with BMI= 25 and interpretations (and estimates) of b1, b2

are unchanged. In short, model (5.1.5) states that the relationship between
BMI and yi is linear within both countries, with the same slope b1 and with
the distance b2 between the two parallel lines.

The estimates in model (5.1.5) (with BMI centered around 25) are b̂1 =

−0.0152(0.0045), b̂2 = 0.131(0.040), â = 1.532(0.030). The estimated mean
values (regression lines) are shown, together with the scatterplot of yi versus
BMI, in Figure 5.1.4. That is, the lines here have the common slope −0.0152
and their vertical distance is 0.131. The value of the line for Poland at BMI=
25 is 1.532. Apart from some outliers for the Polish data the figure does not
speak strongly against the model.

We can compare these mutually adjusted estimates b̂1, b̂2 with the
unadjusted estimates to evaluate the amount of confounding. The unad-
justed estimate for country is b̂2 = 0.171(0.040) whereas that for BMI

is b̂1 = −0.0195(0.0045); that is, adjustment has changed both estimates
towards 0 due to the fact that Polish women have lower y-values than
those from Ireland while, at the same time, they tend to have higher BMI
(x̄1,Irl = 26.36, x̄

1,Pol = 28.94). The unadjusted estimate for country is sim-
ply the difference between average y-values:

ȳIrl − ȳPol = 1.643 − 1.472 = 0.171.

The BMI-adjusted estimate is the difference between adjusted average y-
values:

ȳadj
Irl = 1.643 − (−0.0152)(26.36 − 27.94) = 1.618

and
ȳadj
Pol = 1.472 − (−0.0152)(28.94 − 27.94) = 1.487.

Here, the value 27.94 is the overall average BMI-value in Ireland and Poland
and the numbers 1.618 and 1.487 have, therefore, been adjusted to that value
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Fig. 5.1.4. Scatterplot of log10(25OHD values) by BMI for women from Ireland
(dots) or Poland (circles). Fitted parallel regression lines are added.

of BMI. However, because the adjusted estimate for country is simply the
(vertical) difference between the two regression lines, adjustment to any other
value for BMI would have resulted in the same difference. Thus, adjustment to
BMI= 25 would give adjusted averages 1.664 for Poland and 1.532 for Ireland,
respectively. The discrepancy between adjusted and unadjusted average values
is illustrated in Figure 5.1.5. The procedure by which we compare countries
after adjustment for the quantitative covariate BMI is known as analysis of
covariance (ANCOVA) but as we have seen this is simply a regression model
for parallel regression lines .

It is important to note that if the true model is (5.1.5) then the “marginal”
model only studying the relationship between yi and BMI need not be lin-
ear. Linearity of the marginal model will depend on the relationship between
country and BMI. It will hold if the distribution of BMI is the same in both
countries, however, even without this assumption being formally fulfilled, the
marginal linear relationship with BMI may provide a satisfactory approxima-
tion for practical purposes.

As in the previous section, estimates with simpler interpretations than
b̂1, b̂2 can be obtained by back-transformation with antilog10. Thus, the ad-
justed ratio between medians for Irish and Polish women with the same BMI
is 100.131 = 1.35 with 95% confidence limits from 100.131−1.96·0.040 = 1.13 to
100.131+1.96·0.040 = 1.62. Similarly, the ratio between medians for women from
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Fig. 5.1.5. Illustration of adjusted country effect (vertical difference between regres-
sion lines for Ireland and Poland) and unadjusted country effect (difference between
marginal averages, that is, vertical distance between the left (26.36,1.643) and the
right (28.94,1.472) “x”). The middle “x” (27.94,1.538) indicates overall averages for
BMI and log10(vitamin D).

the same country differing, for example, 5 kg/m2 in BMI, is 10−0.0152·5 = 0.84
with 95% confidence interval (0.76,0.93).

Model assumptions

The results presented rely on a number of model assumptions:

• Linear effect of BMI on log10(25OHD)
• No interaction between BMI and country (i.e., parallel regression lines)
• Variance homogeneity
• Symmetric distributions of residuals

To investigate some of these model assumptions, Figure 5.1.6 shows the
scatterplot of yi versus BMI for both countries with separate regression lines
for Ireland and Poland added and Figure 5.1.7 shows the same scatterplot,
now with separate smoothers for Ireland and Poland added. In Section 5.2.2
we return to formal tests of no interaction. Here we just notice that the as-
sumption of parallel curves is not strongly contraindicated. The assumption
of linearity may be formally tested as described in Section 4.2, for example,
by adding linear splines to the model. We have done that using the cutpoints
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25 and 30 corresponding to the categories previously used. Table 5.1.9 shows
the results. There is no evidence against linearity in either country.
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Fig. 5.1.6. Scatterplot of log10(25OHD values) by BMI for women from Ireland
(dots) and Poland (circles). Fitted regression lines are added separately for the two
countries.

Table 5.1.9. Tests for linearity (i.e., estimates in both columns 3 and 4 equal to
0), separately in the two countries, based on linear splines.

Country BMI (BMI-25)I(BMI≥ 25) (BMI-30)I(BMI≥ 30) P for
linearity

Poland –0.0422 (0.0301) 0.0393 (0.0412) –0.0033 (0.0248) 0.53

Ireland –0.0221 (0.0201) –0.0084 (0.0348) 0.0203 (0.0430) 0.89

Figure 5.1.8, showing residuals plotted against fitted values, also suggests
a reasonable fit of the model with residuals being symmetrically distributed
around 0. The variation for Polish and Irish data seems to be of the same order
of magnitude, a fact which is also illustrated by a formal test for variance
homogeneity:

F =
s2
Pol

s2
Irl

=
0.2052

0.1662
= 1.53.
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Fig. 5.1.7. Scatterplot of log10(25OHD values) by BMI for women from Ireland
(dots) and Poland (circles). Scatterplot smoothers are added separately for the two
countries.

When evaluated in the F (63, 39) distribution this gives a P -value of 0.16 and
the common estimate for the residual standard deviation is 0.192.

Nonlinear effect of the quantitative covariate: The PBC3 trial

This section, thus far, has dealt with the situation where the effect of the
quantitative covariate x1 was assumed to be linear, whereby it is described
by a single-slope parameter b1. In our example, the vitamin D study, this
assumption was examined and it was found to provide a reasonable data
description. In the remaining part of the section we briefly discuss the situation
with one categorical covariate and one quantitative covariate whose effect
cannot be assumed to be linear. Our example is the PBC3 liver cirrhosis
trial with the binary covariate treatment xi,2 and the quantitative covariate
bilirubin xi,1. The analyses in Section 4.2 showed that the effect of the latter
could not reasonably be described as a linear function and a number of models
with transformations of bilirubin were studied. The question addressed in the
following is how the treatment groups differ when adjusting for bilirubin and
in Section 5.2.2 we continue this example with an evaluation of a possible
interaction between treatment and bilirubin.

In spite of the randomization, the distributions of bilirubin differ some-
what between the two treatment groups. Table 5.1.10 presents average values
and SD for both bilirubin and log10(bilirubin) for placebo- and CyA-treated
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Fig. 5.1.8. Scatterplot of residuals by fitted values for women from Ireland (dots)
and Poland (circles).

patients. It is seen that CyA-treated patients tend to have higher bilirubin
values than those from the placebo group. Note the large standard deviations
compared to the averages for the untransformed values indicating a strongly
right-skewed distribution, that is, with a heavy right-hand tail. Because of
the strong association between bilirubin and survival this difference may con-
found the treatment comparison. Note that a significance test for comparing
the mean values makes no sense. Such a test would examine whether the
differences are larger than explained by chance; however, if randomization is
performed properly, chance is in fact the only possible explanation for the
differences. What matters is not statistical significance of the difference but
rather the size of the difference in absolute terms combined with the prognos-
tic influence of bilirubin.

Table 5.1.10. PBC3: distribution of bilirubin in the CyA and placebo treatment
groups.

Treatment Bilirubin (SD) log10(Bilirubin) (SD)

CyA 48.56 (69.38) 3.26 (1.05)
Placebo 42.34 (65.90) 3.14 (0.99)

Recall from Section 3.1.3 that unadjusted for bilirubin, that is, in the model
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log(hi(t)) = log(h0(t)) + b2xi,2,

the estimated log(hazard ratio) for treatment was b̂2 = −0.0585(0.210) lead-
ing to a 95% confidence interval for the hazard ratio exp(b2) from 0.624 to
1.426 (P = 0.78); see first row of Table 5.1.11. We now assess the treatment
effect using three different ways of adjustment for bilirubin, all of which were
discussed in Section 4.2. The simplest adjustment considered a linear effect
of the single transformed covariate log(xi,1). Alternatives were based on the
fractional polynomials x−0.5

i,1 and x−2
i,1 and a third way of adjustment (Section

4.2.3) involved the range of normal values (0,17.1) μmol/L by including the
two covariates I(xi,1 > 17.1) and I(xi,1 > 17.1)(log(xi,1) − log(17.1)). The
latter covariate may also be written as I(xi,1 > 17.1) log(xi,1/17.1). Table
5.1.11 also shows the results of fitting these models which all have the form

log(hi(t)) = log(h0(t)) + b2xi,2 +

r∑
j=1

b1,jfj(xi,1). (5.1.6)

That is, in (5.1.6) the effect of bilirubin xi,1 is modeled by including r nonlinear
functions, f1, f2, . . . , fr of xi,1 and the model is obtained in the usual way by
adding the treatment effect b2xi,2 to the effect,

∑
j b1,jfj(xi,1) of bilirubin. In

the first model, we have r = 1 and f1(x) = log(x), in the second, r = 2 and
f1(x) = x−0.5, f2(x) = x−2, whereas in the third, r = 2 and f1(x) = I(x >
17.1), f2(x) = I(x > 17.1) log(x/17.1).

Table 5.1.11. PBC3: treatment effects: unadjusted and from models (5.1.6) with
nonlinear adjustment for bilirubin. Effects of bilirubin are also shown.

Adjustment for Bilirubin Effect of Bilirubin Effect of Treatment

f1(xi,1) f2(xi,1) bb1,1
bb1,2

bb2 P
for b2 = 0

— — — — –0.0585 0.78
(0.210)

log(xi,1) — 1.040 — –0.399 0.064
(0.210) (0.215)

x−0.5
i,1 x−2

i,1 –15.705 50.829 –0.424 0.050

(1.689) (11.265) (0.217)

I(xi,1 > 17.1) I(xi,1 > 17.1) 1.292 0.896 –0.387 0.073
· log(xi,1/17.1) (0.396) (0.130) (0.216)

It is seen that the adjustment in all cases has a considerable influence
on the treatment effect which changes from a marginal hazard ratio of
exp(−0.0585) = 0.94 to hazard ratios in the neighborhood of exp(−0.4) = 0.67
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indicating a beneficial effect of treatment for a given value of bilirubin. Also,
in all adjusted models, the effect is borderline significant.

As discussed in Chapter 4, the parameters for bilirubin are not all easy
to interpret. What matters is the shape of the relationship between bilirubin
and the linear predictor; see Figures 5.1.9 and 5.1.10 which show the linear
predictors (“parallel response curves”; i.e., the linear predictor as a function
of log(bilirubin)), for the fractional polynomial model and for that based on
the normal range. It is seen that the difference between the two types of
models has to do with the effect of low values of bilirubin where the model
using fractional polynomials predicts a higher mortality. However, for very
low values of bilirubin this high mortality may be implausible as it has the
same order of magnitude as that for the highest bilirubin values. Note that,
for the model in the second row of Table 5.1.11, the linear predictor is simply
two parallel lines (as in Figure 5.1.4) when plotted against log(bilirubin).

All (adjusted) treatment and bilirubin effects in Table 5.1.11 rely on the
assumption of no interaction between the two covariates. In Section 5.2.2 we
return to an evaluation of this hypothesis.
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Fig. 5.1.9. The PBC study: parallel linear predictors as a function of bilirubin
in treatment groups (CyA: solid line, placebo: dashed line) modeled as fractional
polynomials with powers –0.5 and –2.
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Fig. 5.1.10. The PBC study: parallel linear predictors as a function of bilirubin in
treatment groups (CyA: solid line, placebo: dashed line) modeled as constant within
the normal range (0,17.1).

5.1.3 Two quantitative covariates

Finally, we turn to the situation with two quantitative explanatory variables,
xi,1 and xi,2. An example is the birthweight study, Example 1.8 of the birth-
weight (BW) for 107 babies for whom both the abdominal (AD) and biparietal
(BPD) diameters were measured shortly before birth using ultrasound. Re-
call that the purpose of this study was to describe the relationship between
birthweight and these two ultrasound measurements and thereby to predict
birthweight.

Because of the “geometry” of the problem, AD and BPD are likely to
affect birthweight multiplicatively and in order to prepare for a linear model we
therefore define both the response variable and the two explanatory variables
in terms of log-transformations: yi = log10(BWi), xi,1 = log10(ADi), xi,2 =
log10(BPDi). Figures 5.1.11 and 5.1.12 show the scatterplots of yi versus xi,1

and xi,2, respectively. It is seen that the relationship with xi,1 seems roughly
linear whereas that with xi,2 may have some deviation from linearity, however,
mostly owing to the relatively high value of yi for the observation with the
lowest value of xi,1. The fitted straight lines are

E(yi) = −1.062 + 2.237xi,1

and
E(yi) = −3.077 + 3.332xi,2,
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respectively, the standard deviation of the coefficient for log10(AD) is 0.111,
that for log10(BPD) is 0.202, and the residual standard deviations in the two
models are 0.0554 and 0.0646.
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Fig. 5.1.11. Birthweight study: scatterplot of log10(BW) versus log10(AD) with
estimated regression line.

Two linear effects

The simplest case with two quantitative explanatory variables is when both
can be assumed to have a linear effect. In this case the linear predictor can
be written in the form

LPi = a + b1xi,1 + b2xi,2, (5.1.7)

where, again, the linear effects of xi,1 and xi,2 are simply added. Figure 5.1.13
shows the three-dimensional scatterplot where yi is plotted against both xi,1

and xi,2 and, graphically, the linear predictor can be represented as a plane
in the three-dimensional space. The estimated parameters in (5.1.7) then
characterize the plane that fits the scatterplot best. For a quantitative outcome
variable, as in the current example, the parameters for the best fitting plane
minimize the residual sum of squares

∑
i

(yi − (a + b1xi,1 + b2xi,2))
2
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Fig. 5.1.12. Birthweight study: scatterplot of log10(BW) versus log10(BPD) with
estimated regression line.

and, in general, parameter estimates are obtained using the likelihood princi-
ple. For the birthweight example the fitted plane is

L̂Pi = −2.546 + 1.467xi,1 + 1.552xi,2

with a residual standard deviation of 0.0464. The standard deviations of the
parameter estimates are SD(̂b1) = 0.147,SD(̂b2) = 0.229. Results are summa-
rized in Table 5.1.12.

Table 5.1.12. Birthweight study: adjusted and unadjusted effects of log10(AD) and
log10(BPD) on log10(BW ).

Model log10(AD) log10(BPD) Residual SD
bb SD bb SD

Mutually adjusted 1.467 0.147 1.552 0.229 0.0464
Unadjusted 2.237 0.111 3.332 0.202 0.0554, resp. 0.0646

The fitted plane has the property that for fixed value, say x0,1, for the
first covariate (i.e., when intersecting the plane for the linear predictor with
a vertical plane at x0,1 in the direction of the second covariate) we obtain

a straight line with slope b̂2 = 1.552 (and intercept â + b̂1x0,1 = −2.546 +
1.467x0,1) (Figure 5.1.14). Thus, the slope b2 represents the effect of xi,2 for
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Fig. 5.1.13. Birthweight study: scatterplot of log10(BW) versus log10(BPD) and
log10(AD) with fitted plane and “residual needles” added.

any given value of xi,1 showing once more that a consequence of adding the
effects of the two explanatory variables to the intercept a is an assumption
of no interaction between xi,1 and xi,2: the effect of one covariate is the same
for all values of the other. A consequence of Equation (5.1.7) is, therefore,
that for a given value of one covariate the effect of the other is linear. It is
important to notice that it does not follow from (5.1.7) that the (“marginal”)
relation between the linear predictor and just one of the covariates is linear.
The structure of this marginal relationship depends on the structure of the
relation between xi,1 and xi,2.

Figure 5.1.15 shows the scatterplot of log10(BPD) versus log10(AD) and
because this is roughly linear and we are studying a linear model for the mean
of a quantitative outcome, the scatterplots of log10(BW) versus either of the
two explanatory variables should also be roughly linear as seen in Figures
5.1.11 and 5.1.12.

Confounding in this example is quite obvious. The two explanatory vari-
ables are strongly interrelated and also both strongly related to the outcome.
Therefore, the effect of, say xi,1, depends on whether we adjust for xi,2: the
unadjusted coefficient is 2.237 (0.111) and the adjusted coefficient is 1.467
(0.147) (Table 5.1.12). The inadequacy of a model including only log10(BPD)
may be seen by plotting the residuals from this model against log10(AD); see
Figure 5.1.16. A scatterplot smoother has been added that clearly shows a
tendency to large residuals for large values of log10(AD). However, residual
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Fig. 5.1.14. Birthweight study: fitted plane for the linear predictor and its intersec-
tion with a vertical plane through x0,1 = 1.95 in the direction of xi,2 = log10(BPDi).
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Fig. 5.1.15. Birthweight study: scatterplot of log10(BPD) versus log10(AD).
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plots from model (5.1.7) including both covariates (see Figure 5.1.17) show no
clear systematic pattern. The strong reduction in residual standard deviation
when adding log10(AD) to the model including only log10(BPD) should also
be noted. In the one-covariate model this is 0.0646 whereas after adjustment
it reduces to 0.0464 (Table 5.1.12). The interpretation is that inclusion of
log10(AD) has explained some of the residual variation (Figure 5.1.16) when
only taking log10(BPD) into account. Note, however, that the standard de-

viation of the estimated effect b̂2 of log10(BPD) does not decrease. This is
because the SD of the estimated effect not only depends on the residual SD
but also on the joint distribution of the explanatory variables. In this case,
adjustment for a covariate log10(AD) which is rather strongly correlated with

log10(BPD) (Figure 5.1.15), increases SD(̂b2) in spite of the fact that the resid-
ual SD decreases. We return to a more general discussion of this phenomenon
in Section 6.1.
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Fig. 5.1.16. Birthweight study: scatterplot of residuals (with smoother) from re-
gression of log10(BW) on log10(BPD) plotted against log10(AD).

The assumptions of linearity for both covariates can be examined as ex-
plained in Section 4.2 by adding nonlinear functions of xi,1 and xi,2 to the
linear predictor, for example (log10(AD))2 or (log10(BPD))2. The results ob-
tained by doing this are shown in Table 5.1.13 which also repeats the estimates
from the model (5.1.7) with two linear effects.

The (Wald) P -value for linearity is 0.16 for log10(AD), however, it is 0.04
for log10(BPD) suggesting some deviations as also indicated in Figure 5.1.17
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Fig. 5.1.17. Birthweight study: plots of residuals from regression of log10(BW) on
both log10(BPD) and log10(AD).

Table 5.1.13. Tests for linearity for log10(AD) and log10(BPD) based on quadratic
functions.

log10(AD) log10(BPD) (log10(AD))2 (log10(BPD))2

1.467 (0.147) 1.552 (0.229)

–5.688 (5.098) 1.699 (0.251) 1.785 (1.271)

1.418 (0.146) –18.933 (9.852) 5.354 (2.574)
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via the relatively high birthweight for the baby with the lowest observed BPD.
However, looking at Cook’s distance (Section 4.1.1) for the model including
(log10(BPD))2, Figure 5.1.18, it is seen that this observation has by far the
largest influence on the estimates. If we leave out this observation from the
dataset and refit the model with linear effects of both covariates as well as that
with a quadratic effect of log10(BPD) the results are as follows. The estimates

in the linear model do not change dramatically b̂1 = 1.432, b̂2 = 1.818 whereas,
in the latter model, the quadratic term completely loses its significance, P =
0.96. Thus, the evidence against linearity is not strong because it seems to
come from a single observation, and a larger study including more small fetuses
would be useful to shed further light on this question.

1.80 1.85 1.90 1.95 2.00

0.
0

0.
5

1.
0

1.
5

log10(biparietal diameter)

C
oo

k’
s 

di
st

an
ce

Fig. 5.1.18. Birthweight study: Cook’s distance for the model with quadratic effect
of log10(BPD) plotted against log10(BPD).

Nonlinear efects

When one covariate has a nonlinear effect, say xi,2 with an effect of
∑

j b2,jfj(xi,2),
the situation is to some extent similar. The linear predictor

LPi = a + b1xi,1 +
∑

j

b2,jfj(xi,2)

is now a surface in the three-dimensional space with the property that its
intersection with a vertical plane at a fixed value x0,2 of the second covariate
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x0,2 in the direction of the first covariate is a straight line with slope b1 (and
intercept a +

∑
j b2,jfj(x0,2)); that is, all such lines are parallel. On the other

hand, the intersection of the surface of the linear predictor with a vertical
plane at x0,1 in the direction of the second covariate is a curve of the form
a + b1x0,1 +

∑
j b2,jfj(xi,2); that is, all such curves are also parallel. This,

again, signals no interaction as a consequence of adding the terms for the two
covariates in the linear predictor.

As an illustration, we fit a model for the entire birthweight dataset (i.e.,
including the observation with the lowest BPD) where the effect of xi,1 is kept
linear and that of xi,2 is described as a quadratic spline with knots at 85, 90,
and 95 mm. That is, the linear predictor is now

LPi = a + b1xi,1 + b2,1xi,2 + b2,2x
2
i,2 + b2,3(xi,2 − log10(85))2I(xi,2 ≥ 85)

+ b2,4(xi,2 − log10(90))2I(xi,2 ≥ 90) + b2,5(xi,2 − log10(95))2I(xi,2 ≥ 95).

In this model, the linear effect of xi,1 is b̂1 = 1.384(0.145) whereas, as noted
in Section 4.2, the b2,j-coefficients are difficult to interpret directly. What
matters is the shape of the estimated linear predictor. This is shown as a 3D
plot in Figure 5.1.19 and Figure 5.1.20 shows it as a function of xi,2 for three
fixed values (90, 100, and 110 mm) of AD. It is seen, as expected, that the
deviations from linearity are not great.
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Fig. 5.1.19. Birthweight study: 3D plot of the linear predictor (when the effect of
log10(BPD) is a quadratic spline) against log10(AD) and log10(BPD).



5.2 Two covariates: Models with interaction 263

1.80 1.85 1.90 1.95 2.00

3.
0

3.
1

3.
2

3.
3

3.
4

3.
5

3.
6

log10(biparietal diameter)

Li
ne

ar
 p

re
di

ct
or

Fig. 5.1.20. Birthweight study: the linear predictor when the effect of log10(BPD)
is a quadratic spline plotted against log10(BPD) for values 90, 100, 110 mm of AD.

5.2 Two covariates: Models with interaction

In the previous Section 5.1 a number of regression models with two explana-
tory variables were discussed. Situations with different types of covariates
were studied: two categorical ones (Section 5.1.1), one categorical and one
quantitative (Section 5.1.2), and two quantitative (Section 5.1.3). Common
to all these situations was the assumption of no interaction between the two
explanatory variables: the effect of one variable was constant over all values of
the other. This assumption was imposed when simply adding the terms for the
two covariates in the linear predictor. We did some preliminary examinations
of that assumption, and in the present section we conduct careful studies of
interaction in all these examples. We discuss in each situation how interaction
is interpreted as well as ways of parametrizing models with interaction. It is
important to note that some parametrizations may be useful for testing for no
interaction and others more useful for reporting estimates when interaction is
present. Reparametrizations do not change the model, only the way in which
the results appear.

It is also important to note that interaction is a symmetrical concept: if the
effect of x1 depends on the level of x2 then, also, the effect of x2 will depend on
x1. How to report the results from a model with interaction will depend on the
scientific purpose of the analysis and the status of x1 and x2. Furthermore,
interaction is scale-dependent: for a quantitative outcome interaction may
be quite apparent when data are analyzed in the original scale whereas it
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may disappear after a log transformation. For binary outcomes, a logistic
regression model may show no interaction but for a model with another link
function (studied in Section 7.4.1), adding interaction terms may improve the
fit. Our general attitude is that identifying a scale with no interaction gives
interpretative advantages due to increased simplicity; see also the discussion
in Section 2.3.3.

Interaction means that the effect of x1 depends on the level of x2, therefore
an obvious introductory approach to studying interaction is subgroup analy-
sis. Here, after stratification on x2, separate models for the effect of x1 are
fitted within strata. However, in spite of the simplicity, we do not, in gen-
eral, recommend such an approach, for several reasons. First of all, for models
with other explanatory variables, x3, x4, . . ., stratification on x2 will not only
provide the desired interaction with x1 but also different effects of x3, x4, . . .
in the different strata. Second, after stratification on x2, separate x1-effects
will be estimated in strata and, therefore, it is possible to perform as many
tests for the effect of x1 as there are strata, which will considerably inflate the
type I error risk. Our recommendation is not to overemphasize that x1-effects
may be significant for some values of x2 and insignificant for others, unless
rejection of an overall test for no interaction or, more important, a careful
evaluation of confidence intervals has signaled that the separate x1-effects do,
indeed, seem to be different.

A final remark is that, in general, it makes no sense to interpret a main
effect, or to test for such an effect when interaction is present. We discuss all
these aspects of interaction in connection with the concrete examples in the
following sections.

5.2.1 Two categorical covariates

In Section 5.1.1 we discussed the vitamin D study, Example 1.1. Focus was on
the relation between log10(25OHD) measurements of vitamin D, yi, in women
and groups of BMI, xi,1 (normal weight, 18.5 ≤ xi,1 < 25, versus overweight,
xi,1 ≥ 25) and country, xi,2 (Ireland or Poland). The model (5.1.1) which we
studied specified the mean E(yi) of yi to be

E(yi) = a + b1I(xi,1 ≥ 25) + b2I(xi,2 = Ireland).

In this model the effect b1 of body mass index for women from Ireland is
the same as that for women from Poland and the effect b2 of country for
overweight women is the same as that for normal weight women. The average
values in the four groups are shown in Table 5.2.1 and the estimates in the
additive model are: â = 1.587(0.043), b̂1 = −0.141(0.044), b̂2 = 0.142(0.039).

To evaluate the assumption of no interaction we computed differences in
rows and columns and noted that these were not very different: row differences
are –0.155 for Poland and –0.127 for Ireland, and column differences are 0.121
for normal weight women and 0.150 for overweight women; see the graphical
illustration in Figure 5.1.1.
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Table 5.2.1. Average 25OHD values (number of women) in four country by BMI
groups.

Normal Weight Overweight Difference

Poland 1.598 (12) 1.443 (53) –0.155
Ireland 1.720 (16) 1.593 (25) –0.127

Difference 0.121 (28) 0.150 (78) 0.028

Testing for no interaction

As an alternative to the additive model (5.1.1) we now introduce the corre-
sponding model with interaction between BMI and country, that is, a model
where BMI effects are, indeed, different in the two countries and where differ-
ences between countries depend on BMI group.

Let us first recall that in the model without interaction the expected values
in the four groups were as presented in Table 5.2.2.

Table 5.2.2. Expected values in four groups according to model (5.1.1).

Normal Weight Overweight

Poland a a + b1

Ireland a + b2 a + b1 + b2

One way of parametrizing the model with interaction is shown in Table
5.2.3. Here, the effect of BMI (overweight versus normal weight) for Polish
women (the reference group for country), is still (a + b1)− a = b1 whereas, in
Ireland the BMI effect is now (a+b1+b2+b1,1)−(a+b2) = b1+b1,1. Similarly,
the effect of country (Ireland versus Poland) for normal weight women (the
reference group for BMI), is still (a + b2) − a = b2 whereas for overweight
women it is now (a + b1 + b2 + b1,1) − (a + b1) = b2 + b1,1. Thus, the new
parameter b1,1 is the difference between the BMI effects for Ireland and for
Poland (the reference group for country) and, at the same time, b1,1 is the
difference between the country effects for overweight women and for normal
weight women (the reference group for BMI).

Table 5.2.3. Expected values in four groups according to model (5.2.2).

Normal Weight Overweight

Poland a a + b1

Ireland a + b2 a + b1 + b2 + b1,1
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Note the symmetry: when the effect of country depends on BMI then, at
the same time, the effect of BMI depends on country. From both points of view
the magnitude of the interaction is described by the interaction parameter,
b1,1. With this parametrization the model with interaction is

E(yi) = a + b1I(xi,1 ≥ 25) + b2I(xi,2 = Ireland) (5.2.1)

+ b1,1I(xi,1 ≥ 25 and xi,2 = Ireland).

Note that the added dummy variable is simply the product of the two separate
dummy variables

I(xi,1 ≥ 25 and xi,2 = Ireland) = I(xi,1 ≥ 25) · I(xi,2 = Ireland)

and that the hypothesis of no interaction can be formulated simply as

H0 : b1,1 = 0.

That is, with this parametrization testing for no interaction is simple, whereas
the interpretation of the parameter b1,1, is less direct: it is a “difference be-
tween differences.” In fact, in this simple situation with no other covariates
in the model the maximum likelihood estimates of the regression parameters
b1, b2, b1,1 are obtained simply as differences that may be computed directly
from Table 5.2.1.

• Intercept, level of log10(25OHD) in “combined reference group” (normal
weight women from Poland): â = 1.598 (0.056).

• Effect of BMI in the reference group for country: b̂1 = 1.443 − 1.598 =
−0.155 (0.062).

• Effect of country (i.e., difference between countries) in the reference group

for BMI: b̂2 = 1.720 − 1.598 = 0.121 (0.074).
• Interaction parameter, difference between BMI effects in Poland and in

Ireland = difference between country effects among overweight and normal
weight women: b̂1,1 = (1.593−1.720)− (1.443−1.598) = (1.593−1.443)−
(1.720 − 1.598) = 0.028 (0.088).

In general, neither the estimates nor the standard deviations can be calculated
explicitly but will be part of the regression output. The Wald test statistic
for no interaction, b1,1 = 0, takes the value (0.028/0.088)2 = 0.11 which,
evaluated in the χ2(1)-distribution gives the P -value of 0.75. Thus, in this
example there is no indication of different effects of BMI in Ireland and in
Poland. The test for no interaction has one degree-of-freedom because it deals
with a single parameter b1,1. In general, for two categorical variables with, say
k1+1 and k2+1 categories, respectively, the number of degrees-of-freedom for
the no interaction test is k1 · k2. Examples are provided later in this section.

Note that in this model one can also test the hypotheses b1 = 0 or b2 = 0.
These hypotheses, however, no longer correspond to tests for no overall effects
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of BMI and country, respectively, but relate to effects of one covariate only in
the reference group for the other.

Also note that the discussion of a possible interaction between the two
explanatory variables has nothing to do with the fact that the effect of one of
them may be confounded by the other. In fact, the concepts of confounding
and interaction have nothing in common (although they are often mixed up);
see also Figure 5.0.1.

Presenting estimates in models with interaction

If there is indication of an interaction between two explanatory variables then
alternative parametrizations to (5.2.2) are advantageous. Recall that presence
of interaction means that the effect of one covariate depends on the value
of another, so to report a model with interaction an obvious possibility is to
present these different effects. To exemplify, we first study presentation of BMI
effects separately for women from Ireland and from Poland and parametrize
the model with interaction between BMI and country as:

E(yi) = a + b2I(xi,2 = Ireland)

+ b1,0I(xi,1 ≥ 25 and xi,2 = Poland) (5.2.2)

+ b1,1I(xi,1 ≥ 25 and xi,2 = Ireland).

The expected values from model (5.2.2) are shown in Table 5.2.4. Here, a is
still the expected log10(25OHD) level in the combined reference group (normal
weight Polish women), b2 is again the effect of country (Ireland versus Poland)
in the reference group (normal weight) for BMI, and b1,0 and b1,1, respectively,
are the effects of BMI for Poland and for Ireland. With this parametrization,
the hypothesis of no interaction is:

H0 : b1,0 = b1,1.

Note that the interpretation of b1,1 has changed from (5.2.2) to (5.2.2). This
illustrates the important fact in multiple regression models that the interpre-
tation of the parameter corresponding to any explanatory variable depends on
which other covariates are included in the model (even though, in this case,
we do not even change the model as such).

Note that the added dummy variable may, again, be computed simply as
a product of two dummy variables

I(xi,1 ≥ 25 and xi,2 = Poland) = I(xi,1 ≥ 25) · I(xi,2 = Poland)

= I(xi,1 ≥ 25) · (1 − I(xi,2 = Ireland)).

The maximum likelihood estimates may again be computed directly from
Table 5.2.1:

• Intercept, level of log10(25OHD) in “combined reference group” (normal
weight women from Poland): â = 1.598 (0.056).
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• Effect of country in the reference group for BMI: b̂2 = 1.720−1.598 = 0.121
(0.074).

• Effect of BMI for women from Poland: b̂1,0 = 1.443 − 1.598 = −0.155
(0.062).

• Effect of BMI for women from Ireland b̂1,1 = 1.593 − 1.720 = −0.127
(0.062),

where â and b̂2 are unchanged compared to the previous parametrization. Note
that in the model with interaction, the estimates corresponding to one par-
ticular parametrization can always be computed directly from the estimates
in another parametrization of the same model. However, this is not the case
for their standard deviations.

Table 5.2.4. Expected values in four groups according to model (5.2.2).

Normal Weight Overweight

Poland a a + b1,0

Ireland a + b2 a + b2 + b1,1

Because, as mentioned previously, interaction is a symmetric concept the
model may also be reparametrized to focus on effects of country within BMI
categories. To this end the model is written as

E(yi) = a + b1I(xi,1 ≥ 25)

+ b0,1I(xi,1 < 25 and xi,2 = Ireland) (5.2.3)

+ b1,1I(xi,1 ≥ 25 and xi,2 = Ireland)

and the expected values are shown in Table 5.2.5. Here a is still the expected
log10(25OHD) level in the combined reference group (normal weight Polish
women), b1 is again the effect of BMI (overweight versus normal weight) in
the reference group for country, Poland, whereas b0,1 and b1,1, respectively,
are the effects of country (Ireland versus Poland) for normal weight and for
overweight women. With this parametrization, the hypothesis of no interaction
is:

H0 : b0,1 = b1,1

and once more the interpretation of b1,1 has changed. Note that again the new
dummy variable may be computed simply as a product of two other dummy
variables

I(xi,1 < 25 and xi,2 = Ireland) = I(xi,1 < 25) · I(xi,2 = Ireland).

The maximum likelihood estimates in (5.2.3) are obtained from Table 5.2.1:

• Intercept, level of log10(25OHD) in “combined reference group” (normal
weight women from Poland): â = 1.598 (0.056).
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• Effect of BMI in the reference group for country: b̂1 = 1.443 − 1.598 =
−0.155 (0.062).

• Effect of country for normal weight women: b̂0,1 = 1.720 − 1.598 = 0.121
(0.074).

• Effect of country for overweight women: b̂1,1 = 1.593 − 1.443 = 0.150
(0.047).

Table 5.2.5. Expected values in four groups according to model (5.2.3).

Normal Weight Overweight

Poland a a + b1

Ireland a + b0,1 a + b1 + b1,1

Alternative parametrizations of model with interaction

One final way of parametrizing the model with interaction treats the four com-
binations of BMI group and country as levels of a new categorical covariate.
Here, the model is specified as

E(yi) = a + b1,0I(xi,1 ≥ 25 and xi,2 = Poland)

+ b0,1I(xi,1 < 25 and xi,2 = Ireland) (5.2.4)

+ b1,1I(xi,1 ≥ 25 and xi,2 = Ireland)

giving expected values as presented in Table 5.2.6. The regression parameters
now give differences between three of the categories for the combined variable
and the reference category (0,0) (normal weight Polish women), as follows:
b1,0 for the category (1,0), overweight Polish women, b0,1 for the category
(0,1), normal weight Irish women, and b1,1 for the category (1,1), overweight
Irish women.

Table 5.2.6. Expected values in four groups according to model (5.2.4).

Normal Weight Overweight

Poland a a + b1,0

Ireland a + b0,1 a + b1,1

The maximum likelihood estimates in (5.2.4) are, again, obtained from
Table 5.2.1.

• Intercept, level of log10(25OHD) in “combined reference group” (normal
weight women from Poland): â = 1.598 (0.056).
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• Effect of BMI in the reference group for country, that is, difference between
averages for overweight Polish women and normal weight Polish women:
b̂1,0 = 1.443 − 1.598 = −0.155 (0.062).

• Effect of country for normal weight women, that is, difference between
averages for normal weight Irish women and normal weight Polish women:
b̂0,1 = 1.720 − 1.598 = 0.121 (0.074).

• Difference between averages for overweight Irish women and normal weight
Polish women: b̂1,1 = 1.593 − 1.598 = −0.005 (0.068).

With this parametrization the hypothesis of no interaction is not so simple:

H0 : b1,1 = b0,1 + b1,0

and in many situations this “corner parametrization” may not be very useful.
However, if both x1 and x2 are treatment or exposure variables, and if they
do exhibit an interaction then it may be advantageous to consider their com-
bination as a single treatment or exposure variable and study the outcome for
its various categories compared to a chosen reference category.

In this section we have presented models with interaction between two
categorical explanatory variables using dummy variables. This is a very flexible
approach that can be applied in all computer programs for multiple regression.
However, specific programs frequently offer possibilities for specifying model
formulas using a notation such as “x1∗x2” or “x1.x2” for interaction terms and
the user then has to determine which parametrization was actually applied.
We have chosen the dummy variable approach because of its generality.

Stratification

As mentioned in the introduction to Section 5.2, interaction can be handled
by stratifying the data, for example by analyzing data from Ireland and from
Poland separately, thereby automatically getting stratum- (country) specific
effects of BMI. In the simple model with no other covariates included, this
would correspond closely to the analysis presented above (except for also get-
ting separate SD estimates in the two strata). However, with more covariates
in the model, as we study in Section 5.3, the difference between stratifying and
introducing interaction terms in the model becomes more prominent. This is,
as already noted in the introduction to Section 5.2, because stratifying on one
covariate because of its potential interaction with another will introduce not
only the desired interaction but at the same time interactions among the strat-
ification variable and all other covariates in the model. Because of this, and
even though stratification is an intuitively simple approach, we recommend
studying interactions as exemplified above, and as we further demonstrate in
the next sections (i.e., by adding interaction terms to the model).

Another difference between stratification and modeling using interaction
terms has to do with the type of hypotheses that are typically tested and the
order in which this is done. When stratifying on country in the vitamin D
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example one would test for no effect of BMI in Poland and Ireland separately.
Such a test could lead to the conclusion that BMI is of importance in only
one of the countries, typically that with the largest sample or the smallest SD,
whereas no difference may be identified in the other group. However, by first
testing for no interaction and thereby “borrowing strength from one group
when analyzing the other,” the conclusion could rather be that there is no
interaction and that BMI thus might affect vitamin D in both groups. We
show an example of this phenomenon in the next Section 5.2.2.

The CSL1 liver cirrhosis trial

Recall from Section 1.5 that CSL1 was a randomized clinical trial where 488
patients with liver cirrhosis were treated with either the active drug prednisone
(251 patients) or placebo (237 patients). The outcome of interest was death,
whereas patients who dropped out or were alive at the closing day of the study
were censored: 142 prednisone patients and 150 placebo patients were observed
to die. An important prognostic factor for these patients is ascites, that is,
excess fluid in the abdomen, categorized as: no, slight, or moderate/marked.
The numbers of patients and deaths classified by treatment and ascites are
given in Table 1.5.2.

The survival data from the trial were analyzed using Cox regression models
with treatment and ascites as categorical explanatory variables. Table 5.2.7
shows estimated log(hazard ratios), both marginally and mutually adjusted
in a model with no interaction. It is seen that there is no effect of treatment,
whereas the hazard rate increases with amount of ascites. There is not much
confounding: marginal estimates and adjusted estimates are almost identical.
This is no surprise because of the randomization that should result in similar
distributions of ascites in both treatment groups (although this did not quite
happen for bilirubin in the PBC3 trial, Example 1.3); see Section 5.1.2.

Table 5.2.7. CSL1 trial: unadjusted and adjusted log(hazard ratios) of treatment
and ascites.

Unadjusted Adjusted
b b

Treatment: prednisone vs. placebo –0.010 (0.117) –0.034 (0.118)

Ascites: slight vs. no 0.584 (0.175) 0.583 (0.175)
Ascites: moderate/marked vs. no 1.301 (0.171) 1.296 (0.172)

However, the insignificant treatment effect conceals that there is an in-
teraction between treatment and ascites; see Table 5.2.8. Patients without
ascites seem to benefit significantly from prednisone treatment whereas the
very same treatment seems to be harmful for patients with ascites. The table
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shows the parametrization where the treatment effects in subgroups of ascites
are seen directly; see also Table 5.2.4. With this parametrization, the effects
of ascites are those in the reference group (placebo) for treatment. To ob-
tain those for the prednisone group, the treatment effects in the upper panel
of the table should be added in the appropriate way. Table 5.2.9 shows the
parametrization using the parameters useful for testing; see also Table 5.2.3.
Note that the new parameters (but not their SD) can be calculated from Ta-
ble 5.2.8: 0.875 = 0.560 − (−0.315) and 1.171 = 0.856 − (−0.315). Also note
that 2 = (3− 1)(2− 1) interaction parameters are needed because ascites has
three categories and treatment has two.

Table 5.2.8. CSL1 trial: log(hazard ratios) for treatment and ascites in model with
interaction.

b

Treatment: prednisone vs. placebo,
patients with no ascites –0.315 (0.139)
Treatment: prednisone vs. placebo,
patients with slight ascites 0.560 (0.330)
Treatment: prednisone vs. placebo,
patients with moderate/marked ascites 0.856 (0.314)

Ascites: slight vs. no
placebo-treated patients 0.129 (0.275)
Ascites: moderate/marked vs. no
placebo-treated patients 0.764 (0.254)

Table 5.2.9. CSL1 trial: model with interaction between treatment and ascites,
interaction parameters.

b

Treatment: prednisone vs. placebo in reference group,
(i.e., patients with no ascites) -0.315 (0.139)
Treatment: prednisone vs. placebo, difference between
effects for patients with slight ascites and for reference group 0.875 (0.359)
Treatment: prednisone vs. placebo, difference between
effects for patients with moderate/marked ascites and reference group 1.171 (0.344)

Ascites: slight vs. no
placebo-treated patients 0.129 (0.275)
Ascites: moderate/marked vs. no
placebo-treated patients 0.764 (0.254)
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Table 5.2.10 presents likelihood ratio test statistics. It is seen that in mod-
els without interaction, ascites is highly significant (model 2 versus 0 or model
3 versus 1) whereas treatment is not (model 1 versus 0 or 3 versus 2). These
test statistics, however, are not relevant to quote because of the highly signif-
icant interaction between treatment and ascites (model 4 versus 3). Thus the
best way to summarize the results of the analyses is provided by the parame-
ters in Table 5.2.8, in particular, when transforming to the hazard ratio scale.
Thus the hazard ratios for treatment (prednisone versus placebo) are (with
95% confidence intervals): 0.73 (0.56,0.96) for patients without ascites, 1.75
(0.92,3.34) for patients with slight ascites, and 2.35 (1.27,4.36) for patients
with moderate/marked ascites.

Table 5.2.10. CSL1 trial: LR tests for treatment, ascites and interaction.

Model −2 log L Test LR Test df P

0: no covariates 3178.11
1: only treatment 3177.38 1 vs. 0 0.73 1 0.39
2: only ascites 3128.48 2 vs. 0 49.63 2 <0.0001
3: treatment and ascites 3128.40 3 vs. 1 48.98 2 <0.0001

3 vs. 2 0.08 1 0.78
4 interaction 3112.93 4 vs. 3 15.47 2 0.0004

5.2.2 One categorical and one quantitative covariate

Linear effect of the quantitative covariate: The vitamin D study

In Section 5.1.2 we discussed the vitamin D study, Example 1.1. Focus was on
the relation between log10(25OHD) measurements of vitamin D, yi, and the
quantitative covariate xi,1(= BMI− 25) and country xi,2 (Ireland or Poland).
The model (5.1.5), that we studied specifies the mean E(yi) of yi to be

E(yi) = a + b1xi,1 + b2I(xi,2 = Ireland).

In model (5.1.5) the linear effect (slope) b1 of body mass index for women
from Ireland is the same as that for women from Poland and the effect b2 of
country is the same for all values of BMI. The estimates in this additive model
are: â = 1.532(0.030), b̂1 = −0.0152(0.0045), b̂2 = 0.131(0.040).

To evaluate the assumption of no interaction we studied the scatterplot of
yi versus BMI, Figure 5.1.6, with separate regression lines for Poland and Ire-
land added. We now evaluate the hypothesis of no interaction more carefully.
As in the previous subsection we show that different parametrizations of the
model with interaction are useful for testing the hypothesis and for presenting
results allowing for interaction, respectively.
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Testing for no interaction

As an alternative to the additive model (5.1.5) we now introduce the cor-
responding model with interaction between BMI and country. One way of
parametrizing this model is:

E(yi) = a + b1xi,1 + b2I(xi,2 = Ireland) + b1,1xi,1 · I(xi,2 = Ireland), (5.2.5)

where xi,1 is now BMI-25 for the ith woman. In (5.2.5), the intercept a is
then the expected log10(25OHD)-value for Polish women with BMI= 25, b2

the expected difference between log10(25OHD) values in Ireland and Poland
when BMI= 25, b1 is the slope of the regression line for Polish women, and
b1,1 the difference between the slopes of the regression lines for Ireland and
Poland. Thus, the effect of BMI for Polish women is b1 and for Irish women it
is b1+b1,1. The effect of country (Ireland versus Poland) is b2+b1,1(BMI−25)
for a woman with a given BMI. Note that the added covariate is the product
of the two covariates from the additive model and that the hypothesis of no
interaction can be formulated simply as no effect of this covariate:

H0 : b1,1 = 0.

With this parametrization, testing for no interaction is simple, whereas the
interpretation of the parameter, b1,1, is less direct: it is a “difference be-
tween slopes.” The maximum likelihood estimates of the regression param-
eters, b1, b2, b1,1, are:

• Intercept, level of log10(25OHD) in the reference group for country (Poland)
when BMI= 25: â = 1.512 (0.033)

• Effect of BMI in the reference group for country (Poland): b̂1 = −0.0101
(0.0057)

• Effect of country (i.e., difference between countries) for BMI= 25: b̂2 =
0.163 (0.045)

• Interaction parameter, difference between BMI effects (slopes) in Ireland

and in Poland: b̂1,1 = −0.0135 (0.0093)

The Wald test statistic for no interaction, b1,1 = 0, takes the value
(−0.0135/0.0093)2 = 2.10 which, evaluated in the χ2(1)-distribution (or the
F (1, 102)-distribution) gives a P -value of 0.15. Thus in this example there is
no indication of different effects of BMI in Ireland and in Poland. The test
for no interaction has one degree-of-freedom because it deals with a single pa-
rameter b1,1. In general, for the test for no interaction between a categorical
variable with, say k + 1 categories, and a quantitative covariate with a linear
effect, the number of degrees of freedom is k.

Note that, in this model one can also test the hypotheses b1 = 0 or b2 = 0.
These hypotheses, however, no longer correspond to tests for no overall effects
of BMI and country, respectively, but relate to effects of one covariate only for
a particular value for the other. In particular, the parameter b2 for country



5.2 Two covariates: Models with interaction 275

relates to the value 25 for BMI and for other ways of centering BMI; that is,
by subtracting values other than 25, this parameter would have been different.
For example, without centering, the country effect (now for BMI= 0) would
be 0.500 (0.257). Note that the standard deviation is considerably increased
due to the fact that the parameter now corresponds to a heavy extrapolation
outside the BMI range observed in the data. The test for no interaction,
however, is not dependent on possible centering of BMI.

Presenting estimates in models with interaction

If there is indication of an interaction between the two explanatory variables
then an alternative parametrization to (5.2.6) is to be preferred. Presence
of interaction means that the effect of one covariate depends on the value
of another, so, to report a model with interaction an obvious possibility is
to present these different effects. In the previous Section 5.2.1 several such
possibilities were available. With a binary and a quantitative covariate the
relevant parametrization of the model with interaction, for the purpose of
presenting estimates, is:

E(yi) = a + b2I(xi,2 = Ireland) (5.2.6)

+b1,0xi,1I(xi,2 = Poland) + b1,1xi,1I(xi,2 = Ireland).

In (5.2.6), a is still the expected log10(25OHD) level for BMI= 25 in the
reference group for country (Poland), b2 is again the effect of country (Ireland
versus Poland) for BMI= 25, and b1,0 and b1,1, respectively, are the effects of
BMI for Poland and for Ireland. With this parametrization, the hypothesis of
no interaction is:

H0 : b1,0 = b1,1.

The maximum likelihood estimates in this parametrization may be com-
puted directly from the previous ones:

• Intercept, level of log10(25OHD) in the reference group for country (Poland)
when BMI=25: â = 1.512 (0.033)

• Effect of BMI for Poland: b̂1,0 = −0.0101 (0.0057)

• Effect of BMI for Ireland: b̂1,1 = −0.0101 − 0.0135 = −0.0236 (0.0074)

• Effect of country for BMI=25: b̂2 = 0.163 (0.045)

Note that â and b̂2 are unchanged compared to the previous parametrization,
that the new b̂1,0 is identical to the old b̂1, and that the interpretation (and

value) of b̂1,1 has changed.
Even though interaction is a symmetric concept, a reparametrization with

focus on effects of country for different values of BMI is less appealing because
there are, in fact, infinitely many country effects b2 +(b1,1 − b1,0)(BMI −25).
However, the estimated country effect as a function of BMI can be shown



276 5 Multiple regression, the linear predictor

graphically; see Figure 5.2.1 where this straight line is shown with 95% confi-
dence limits. The horizontal line in the figure represents the (constant) effect
of country, 0.131, from the model with no interaction.
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Fig. 5.2.1. Estimated country effect (difference between countries) as function of
BMI.

In Section 5.1.2 we noticed that the log-transformation simplified the anal-
ysis in the sense that variance homogeneity was not rejected. Similarly, the
transformation has simplified the model in the sense that the model with no
interaction gave an adequate description of the data. Indeed, with the orig-
inal 25OHD-values as outcome variable estimates in the model (5.2.5) with
interaction are:

• Intercept, level of 25OHD in the reference group for country (Poland) when
BMI= 25: â = 35.115 (2.508)

• Effect of BMI in the reference group for country (Poland): b̂1 = −0.647
(0.437)

• Effect of country (difference between countries) for BMI= 25: b̂2 = 16.131
(3.483)

• Interaction parameter, difference between BMI effects (slopes) in Ireland

and in Poland: b̂1,1 = −1.741 (0.715)

On this scale the Wald test statistic for no interaction, b1,1 = 0, takes the
significant value (−1.741/0.715)2 = 5.93 (P = 0.017).
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Stratification

We now illustrate how interaction can be handled by stratifying the data, that
is, by analyzing data from Ireland and from Poland separately. Hereby, we
automatically get country-specific effects of BMI whereas country effects are
not presented explicitly. Thereby, an asymmetry between the two covariates is
introduced. Note that stratification only works for a categorical covariate. As
mentioned in the introduction to Section 5.2, in the simple model with no other
covariates included this corresponds closely to the analysis presented above.
The estimates are presented in Table 5.2.11. It is seen from the Wald tests that
one could now conclude that the effect of BMI is only important in Ireland
and not in Poland. However, our recommendation would be first to examine
a possible interaction and next, if interaction does not seem important, to
estimate the BMI effect jointly based on data from both countries, thereby
obtaining a more precise estimate. With such an approach, simpler models
are usually obtained and our recommendation, therefore, closely follows the
principles discussed in Section 2.3.3.

Table 5.2.11. Vitamin D study: Estimates in country-specific models for BMI.

Country Intercept BMI-25 Wald (P ) Residual SD

Poland 1.511 (0.035) –0.0101 (0.0061) 2.76 (0.10) 0.205
Ireland 1.675 (0.027) –0.0236 (0.0064) 13.66 (0.0007) 0.166

Nonlinear effect of the quantitative covariate: the PBC3 trial

In Section 5.1.2 we studied the effect of treatment x2, CyA versus placebo, in
the PBC3 liver cirrhosis trial after adjustment for the effect of bilirubin x1.
We saw that, in spite of the randomization, bilirubin confounded the simple
marginal comparison of the treatment groups because CyA-treated patients
tended to have a somewhat higher bilirubin value than patients from the
control group and because of the overwhelming effect of bilirubin. Previous
analyses had shown that the effect of bilirubin was not linear thus we studied
a hazard model of the form

log(hi(t)) = log(h0(t)) + b2xi,2 +

r∑
j=1

b1,jfj(xi,1)

(cf. (5.1.6)). Here, we used a number of different functions of x1. In the sim-
plest adjustment we considered the single transformed covariate f1(xi,1) =
log(xi,1) and alternatives were based on the fractional polynomials f1(xi,1) =
x−0.5

i,1 and f2(xi,1) = x−2
i,1 . A third way of adjustment involved the range of nor-

mal bilirubin values by including the two covariates f1(xi,1) = I(xi,1 > 17.1)
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and f2(xi,1) = I(xi,1 > 17.1) log(xi,1/17.1). The adjusted treatment effects
obtained from these models were all hazard ratios on the order of magnitude
of exp(̂b2) ≈ 0.67 and relied on the assumption of no interaction between
treatment and bilirubin imposed by simply adding the terms for the two vari-
ables. In what follows we evaluate this assumption more systematically by
extending model (5.1.6) with interaction terms. The simplest way of doing
that (although notation is a bit involved, anyway) is to add covariates of the
form fj(xi,1)xi,2, that is, product terms for the covariates from the additive
model:

log(hi(t)) = log(h0(t)) + b2xi,2 +

r∑
j=1

(b1,jfj(xi,1) + b1,j,1fj(xi,1)xi,2). (5.2.7)

In (5.2.7) the hypothesis of no interaction is

H0 : b1,1,1 = · · · = b1,r,1 = 0

and b1,j,1 is the difference between the effect of fj(xi,1) for CyA patients
(xi,2 = 1) and placebo patients (xi,2 = 0). Test statistics for H0 have r
degrees-of-freedom. The treatment effect b2 is the log(hazard ratio) when all
fj(xi,1) = 0 and b1,j is the effect of fj(xi,1) for placebo-treated patients.

Table 5.2.12 shows the results from fitting these models and it is seen
that the tests for no interaction are nowhere near significance. The coef-
ficients b1,j and b1,j,1, j = 1, . . . , r are hard to interpret but Figures 5.2.2
and 5.2.3 show the fitted linear predictors as a function of bilirubin, that is,∑

j b̂1,jfj(xi,1) for placebo and b̂2 +
∑

j (̂b1,j + b̂1,j,1)fj(xi,1) for CyA. The fig-
ure for f1(xi,1) = log(xi,1) is omitted because this is just (much like Figure
5.1.6) two straight lines when plotted against log(bilirubin). Figures 5.2.2 and
5.2.3 show the nonparallel linear predictors (“response curves”) and can be
compared to the parallel curves in Figures 5.1.9 and 5.1.10. Although the tests
for no interaction show that the extra flexibility in Figures 5.2.2 and 5.2.3 is
not really needed, Figures 5.2.4 and 5.2.5 present the estimated treatment ef-
fects b̂2 +

∑
j b̂1,j,1fj(xi,1) as functions of bilirubin (xi,1) with 95% confidence

limits. These figures also show the (constant) treatment effect estimated from
the corresponding models with parallel “response curves,” that is, without
interaction. For both sets of curves the difference lies in the predicted effect of
treatment for low values of bilirubin (cf. the discussion in Section 5.1.2 where
we concluded that the predictions from the model using fractional polynomi-
als might be implausible for low values of bilirubin). Therefore, this model is
included here only for purely illustrative purposes.

5.2.3 Two quantitative covariates

Two linear effects

In Section 5.1.3 we studied the data regarding birthweight (BW) and its
relation to ultrasound measurements of abdominal diameter (AD) and bi-
parietal diameter (BPD). We saw that, assuming no interaction between the
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Fig. 5.2.2. The PBC-3 study: nonparallel linear predictors in treatment groups
modeled using fractional polynomials.
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Fig. 5.2.3. The PBC-3 study: nonparallel linear predictors in treatment groups
modeled as constant within the normal range (0,17.1).
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Fig. 5.2.4. The PBC3 study: estimated treatment effect by log(bilirubin) when the
effect of bilirubin is modeled using fractional polynomials.
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Fig. 5.2.5. The PBC3 study: estimated treatment effect by log(bilirubin) when the
effect of bilirubin is modeled as constant within the normal range (0,17.1)
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Table 5.2.12. PBC3: treatment effects and effects of bilirubin in models with in-
teraction and nonlinear effects of bilirubin.

Bilirubin Interaction Treatment

f1(xi,1) f2(xi,1) bb1,1
bb1,2

bb1,1,1
bb1,1,2

bb2 LR Test
(SD) (SD) (SD) (SD) (SD) (P )

log(xi,1) 1.111 –0.154 –0.209 0.63
(0.134) (0.193) (0.320) (0.43)

x−0.5
i,1 x−2

i,1 –19.160 91.748 5.443 –53.794 –1.124 3.13

(2.623) (24.742) (3.537) (32.138) (0.528) (0.21)

I(xi,1 > 17.1) I(xi,1 > 17.1) 1.281 0.996 0.036 –0.220 –0.131 0.89
· log(xi,1/17.1) (0.428) (0.171) (0.799) (0.255) (0.671) (0.64)

two covariates, the mean value of yi = log10(BWi) could reasonably be de-
scribed as increasing linearly with xi,1 = log10(ADi) for any fixed value of
xi,2 = log10(BPDi) and, at the same time, it could be assumed to increase
linearly with log10(BPD) for any fixed value of log10(AD). In this additive
model

LPi = E(yi) = a + b1xi,1 + b2xi,2

the estimates were b̂1 = 1.467, b̂2 = 1.552. A single strongly influential point
with a low value of BPD was, however, discovered.

To examine a possible interaction between the two covariates a model
describing departures from additivity is needed. In Section 5.1.3 we noted
the geometric interpretation of additivity: the linear predictor described a
plane in the three-dimensional space and for any fixed value, x0,1, of the first
covariate the intersection of that plane with one in the x2-direction which is
vertical and passes through x0,1 is a line with slope b2. If, more generally, the
second covariate had a nonlinear effect then such an intersection would always
provide a curve with the same shape. To model interaction between x1 and x2

corresponds to modeling how, for example, the effect of x2 for given x1 = x0,1

varies among different choices of x0,1 or, stated geometrically, to describing
how such intersections vary from plane to plane.

Returning to the case with linear effects of both covariates and borrow-
ing ideas from previous sections, a model allowing for interaction could be
obtained by simply adding a product term to the linear predictor

LPi = a + b1xi,1 + b2xi,2 + b1,1xi,1xi,2. (5.2.8)

In (5.2.8), the hypothesis
b1,1 = 0

corresponds to no interaction, so, testing for no interaction in this model is
quite simple. The interpretation of the interaction parameter b1,1 is, however,
less intuitive. The effect of xi,2 for given value, x0,1, of the first covariate is



282 5 Multiple regression, the linear predictor

(b2 + b1,1x0,1)xi,2;

that is, for given value (x0,1) of the first covariate, the effect of the second is
linear with a slope that varies smoothly (in fact, linearly) with x0,1.

For the birthweight data estimates from model (5.2.8) are: b̂1 = −7.119

(4.052), b̂2 = −6.963(4.025), b̂1,1 = 4.400(2.077); that is, the Wald test for
no interaction is (4.400/2.077)2 = 4.49 which, evaluated in the χ2(1)- (or
F (1, 103)-) distribution gives P = 0.037 indicating a significant interaction
between log10(AD) and log10(BPD) on the effect of log10(BW). Table 5.2.13
presents the coefficients for the fitted lines giving the dependence of the linear
predictor on log10(BPD) for fixed values of AD= 90, 100, 110 mm, respec-
tively. Figure 5.2.6 presents the results graphically. It is seen that the slope
for log10(BPD) increases with AD.

Table 5.2.13. Fitted linear effects of x2 = log10(BPD) for given values of x1 =
log10(AD) according to model (5.2.8).

AD log10(AD) Intercept Slope

ba +bb1 log10(AD) bb1 +bb1,1 log10(AD)

90 mm 1.954 0.151 1.637
100 mm 2.000 –0.175 1.838
110 mm 2.041 –0.470 2.020

We see that, inasmuch as the interpretation of the interaction parameter
b1,1 is not very intuitive, it is not quite obvious how to present the results from
a model including the product term xi,1xi,2 of two quantitative explanatory
variables. Ease of interpretation may be obtained by categorizing, for example,
xi,1, and fitting separate linear effects for xi,2 in each category (cf. Section
5.2.2). We did this using the cutpoints 95 and 105 mm for AD; that is, we
fitted the model with the linear predictor

LPi = a + b1,1I(95 ≤ AD < 105) + b1,2I(105 ≤ AD)

+ b2,1xi,2I(AD < 95) + b2,2xi,2I(95 ≤ AD < 105) (5.2.9)

+ b2,3xi,2I(105 ≤ AD).

In (5.2.9), the parameters b2,1, b2,2, and b2,3 are the slopes for log10(BPD)
in each of the three intervals for AD and a is the intercept for the line for
the first AD-interval (< 95 mm), b1,1 the difference between intercepts for
the second (95 to 105 mm) and the first AD-intervals, and b1,2 the difference
between intercepts for the third (≥ 105 mm) and the first AD-intervals. The
estimated slopes: 2.113 (0.273), 1.940 (0.477), 2.436 (0.510) are not signifi-
cantly different (P = 0.77) and the estimated lines are shown in Figure 5.2.7.
With this approach, estimates in the model with interaction are easier to in-
terpret, however, the approach has a number of drawbacks. First, the choice
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Fig. 5.2.6. Birthweight study: estimated linear effect of log10(BPD) for three dif-
ferent values of AD (90, 100, 110 mm).

of cutpoints for xi,1 is not obvious: we chose “nice” values of AD close to
tertiles in the distribution; second, the estimated linear predictor (5.2.9) is
not a smooth function of xi,1 which makes it less biologically plausible and,
third, the test for no interaction is likely to be less powerful than when using
xi,1 as a quantitative variable.

All in all, the evidence against a model without interaction between xi,1

and xi,2 is not strong and, in fact, when studying Cook’s distance for the
model including the product term (Figure 5.2.8) it is seen that the same
single observation which strongly affected the linearity of log10(BPD) (Section
5.1.3) is responsible for the significance of the product term. When removing
this observation from the dataset, the product term is no longer significant
(P = 0.64).

Nonlinear effects

In models where, for example, xi,1 has a linear and xi,2 a nonlinear effect,
similar techniques for examining interaction may be applied. Thus, for a model
with an effect

r∑
j=1

b2,jfj(xi,2) (5.2.10)

of the second covariate one may add a product term between xi,1 and (5.2.10),
thereby obtaining a test for no interaction with as many degrees of freedom
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Fig. 5.2.7. Birthweight study: linear effects of log10(BPD) fitted separately for
three different intervals of AD (< 95, 95 − 105,≥ 105 mm).
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Fig. 5.2.8. Birthweight study: Cook’s distance for the model with interaction be-
tween log10(AD) and log10(BPD) plotted against log10(BPD).
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(r) as there are terms in the sum. Alternatively, one may categorize the first
covariate and fit separate functions of the form (5.2.10) for the second covari-
ate for each category. With, say k, categories for xi,1 the resulting test for no
interaction will have r(k − 1) degrees of freedom. Arguments for or against
such approaches follow those for the situation with two linear effects closely.

5.2.4 Saving degrees-of-freedom

When examining interactions between two categorical explanatory variables,
x1, x2, with k1 + 1 and k2 + 1 categories, respectively, we saw in Section 5.2.1
that the number of degrees-of-freedom in the test for the hypothesis of no
interaction between x1 and x2 is k1k2. Furthermore, in Section 5.2.2 we saw
that the number of degrees-of-freedom when testing for no interaction between
a categorical covariate x1 with k1 + 1 categories and a quantitative covariate
x2 with an effect modeled using k2 functions was also k1k2. Thus, when k1

and k2 are not small such tests will have many degrees-of-freedom .
Tests with many degrees-of-freedom tend to lack power (Section 2.3.3)

because deviations from the hypothesis to be tested (here: the hypothesis of
no interaction between x1 and x2) can be “in many directions.” It is, therefore,
of interest to reduce this number of degrees-of-freedom. That is the topic for
the current section.

To illustrate ideas we continue the discussion of the CSL1 example (Ex-
ample 1.7) from Section 5.2.1. We do this in spite of the fact that, in that
example, the number of degrees-of-freedom when testing for no interaction
between treatment (prednisone versus placebo) and ascites (no, slight, mod-
erate/marked) was only two. However, the CSL1 example has already been
introduced and the interaction is quite easy to understand. One way of pre-
senting these two degrees-of-freedom is via parameters describing differences
between the treatment effect for patients with slight ascites and for patients
with no ascites and, on the other hand, the treatment effect for patients with
moderate/marked ascites and for patients with no ascites. The estimates (on
the log(hazard ratio) scale) for these two interaction parameters (Table 5.2.9)
are 0.875 (0.359) and 1.171 (0.344), respectively, and the LR test for no in-
teraction (Table 5.2.10) is 15.47 with two degrees-of-freedom (P = 0.0004).

One way of reducing the number of degrees-of-freedom (from 2 to 1) is to
replace the categorical covariate ascites with a cruder version with only two
categories: ascites absent versus ascites present, when describing the interac-
tion while keeping the original covariate with three categories when describing
the “main effect.” That is, the model without interaction (Table 5.2.7) in-
cludes the same three indicator covariates as before: I(prednisone treatment),
I(slight ascites), I(moderate/marked ascites), and the model with interac-
tion is obtained by adding the single indicator variable I(prednisone, ascites
present). Note that this variable can be obtained as



286 5 Multiple regression, the linear predictor

I(prednisone, ascites present)

= I(prednisone)(I(slight ascites) + I(moderate/marked ascites)).

The results from fitting the model with only one interaction parameter are
found in Table 5.2.14. Minor changes are seen for the estimated main effects
of ascites and the new interaction parameter 1.033, as expected, is between
those quoted above (0.875 and 1.171) with a smaller SD signaling the gain
in power. The LR test for no interaction is 15.05 with one degree-of-freedom
(P = 0.0001).

Table 5.2.14. CSL1 trial: model with interaction between treatment and ascites
including only one interaction parameter.

b

Treatment: prednisone vs. placebo in reference group,
(i.e., patients with no ascites) -0.315 (0.139)
Treatment: prednisone vs. placebo, difference between
effects for patients with ascites and for reference group 1.033 (0.269)

Ascites: slight vs. no
placebo-treated patients 0.0292 (0.237)
Ascites: moderate/marked vs. no
placebo-treated patients 0.840 (0.218)

Although the technique of reducing the number of degrees-of-freedom when
testing the hypothesis of no interaction between two categorical covariates was
not really needed in the CSL1 example, the idea can be used quite generally:
keep the “detailed” covariates with “many” categories for modeling the main
effects but use cruder versions with some categories collapsed for describing
the interaction. For example, in the vitamin D study (Example 1.1), when test-
ing for no interaction between the four countries and BMI in three categories,
the test would have six degrees-of-freedom. This number could be reduced
to three if two BMI categories were collapsed (e.g., those slightly overweight
and those who are obese). Thereby the test would only examine whether the
difference between vitamin D levels for women with or without a normal BMI
differs between countries (assuming that the difference between the levels for
obese and slightly overweight women was the same in all countries).

However, for the vitamin D study a more natural way of saving degrees-
of-freedom would be to treat BMI as a quantitative covariate when testing
for no interaction. This would also reduce the number of degrees-of-freedom
to three. This idea seems most obvious to use when the main effect of BMI
is also quantitative but it can, in fact, also be used when the main effect is
categorical.

Let us finally study the situation with a categorical covariate (e.g., treat-
ment: CyA versus placebo in the PBC-3 study, Example 1.3) and a quan-
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titative covariate with a nonlinear effect (e.g., bilirubin in the PBC-3 study
modeled using quadratic splines, Equation (4.2.6)). Here, the effect of biliru-
bin is modeled using six terms: a linear effect, a quadratic effect, and four
quadratic splines, one for each quintile. Modeling interaction as described in
Equation (5.2.7) would require another six parameters and the number of
degrees-of-freedom for the test for no interaction is six. This number could
be reduced to one if attention for the interaction were restricted to the linear
term. That is, the main effect of bilirubin is then still modeled “detailed”
using the six-parameter spline function but only a simplified version of this,
the linear term, is allowed to interact with treatment, the idea being that
this single degree-of-freedom may catch major deviations from parallel linear
predictors.

5.3 Several covariates

In Section 5.1 we showed how to take the step from a model with a linear
predictor with just one explanatory variable (as discussed in Chapters 3 and
4) to models with two. The basic idea consists of adding the building blocks
for the two covariates. This results in a model without interaction between
the two covariates and in Section 5.2 the discussion was extended to cover the
situation where the study of such an interaction is in focus.

In this section, models with any number of explanatory variables are intro-
duced. A main conclusion is that the step of extending the model from two to
more covariates is as simple as the step of going from one to two. Therefore,
this section is rather brief with many references to the two previous sections,
however, as we show, a new concept of higher-order interactions (in particu-
lar, three-factor interactions) becomes relevant . To set ideas, we take as our
starting point, a model with two covariates as discussed in Sections 5.1 and
5.2 and add further covariates (in fact, most often one covariate!) to this basic
model. However, we emphasize that this is just to set the ideas and, in gen-
eral, we do not recommend this kind of “forward selection” of variables into
the models. In Chapter 6, we return to a more detailed discussion on when
and why to include more covariates as well as to the interpretation of results
from models with several covariates (Sections 6.1 and 6.2). We first, in Section
5.3.1, look at the situation where, in the initial model, the two covariates do
not interact and study the consequences of adding further covariates to the
linear predictor. In Section 5.3.2 we study the much more complex situation
where the initial model contains an interaction.

5.3.1 Models without higher-order interactions

Let us, as our starting point, take the model for the vitamin D study
(Example 1.1) considered in Section 5.1.2 where the outcome yi is the
log10(25OHD for woman i) and where two covariates were included: xi,1 is
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BMI (measured in kg/m2) minus 25, and xi,2 is country (Ireland versus
Poland). We studied the additive model (cf. Equation (5.1.5)),

E(yi) = a + b1xi,1 + b2I(xi,2 = Ireland)

and obtained the estimates â = 1.532, b̂1 = −0.0152, and b̂2 = 0.131. That is,
for given BMI, women from Ireland have on average a value of the outcome
that is 0.131 larger than in Poland. Let us pose the question of how much this
difference between countries is affected by also adjusting for age. We introduce
the covariate xi,3 defined as the age (in years) of woman i minus 70 years.
Women from both countries are between 69 and 76 years old and they have
similar average values (72.2 in Ireland and 71.6 in Poland). Furthermore, the
distribution of BMI is not much related to age (see Figure 5.3.1) and therefore
when adding age to the model, that is, studying the model

E(yi) = a + b1xi,1 + b2I(xi,2 = Ireland) + b3xi,3, (5.3.1)

we do not expect large changes in estimated values of b1, b2.

69 70 71 72 73 74 75 76

20
25

30
35

40

Age

B
M

I

Fig. 5.3.1. Vitamin D study: BMI plotted against age for women from Ireland
(circles) or Poland (dots).

This is, indeed, what we see when fitting (5.3.1) where the estimates

are â = 2.310(0.539), b̂1 = −0.0149(0.0045), b̂2 = 0.143(0.041), and b̂3 =
−0.0187(0.0130). The interpretation of these values are as follows. The aver-
age value of the outcome for women from Poland, aged 70 years and with a
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BMI of 25 is â = 2.310; comparing women from the same country and with
the same age and with body mass indices that differ by 1 kg/m2 the average

difference for the outcome is b̂1 = −0.0149; for women with the same BMI
and same age, those from Ireland have average y-values that are b̂2 = 0.143
larger than for those from Poland and, finally, comparing women from the
same country and with the same BMI and with ages that differ by 1 year
the average difference for the outcome is b̂3 = −0.0187. Thus, the intercept is
still the value of the linear predictor in (5.3.1) when all covariates are equal
to 0, and regression coefficients are effects of the corresponding explanatory
variables for given fixed values of all other covariates. In that respect, nothing
is new here! Note, however, the new assumptions for the model.

• The effect of age is linear (when adjusting for country and BMI).
• There is no interaction between age and BMI (when adjusting for country).
• There is no interaction between age and country (when adjusting for BMI).

Also, the previous assumptions of no interaction between country and BMI
and linear effect of BMI for given country should now be qualified as

• The effect of BMI is linear (when adjusting for country and age).
• There is no interaction between BMI and country (when adjusting for age)

The new assumptions (and the modifications of the old ones) can be ex-
amined using the type of methods that we have described previously. Thus,
adding a quadratic term in age gives an F (1, 101) distributed Wald test for
linearity of (−0.00446/0.00774)2 = 0.34 (P = 0.57). Furthermore, following
the approach of Section 5.2.2, the test for no interaction between country and
age gives P = 0.55, whereas that for no interaction between age and BMI (us-
ing a “linear-by-linear” interaction term, Section 5.2.3) gives P = 0.72. Thus,
assumptions behind (5.3.1) seem not to be violated. This may be further illus-
trated via residual plots as exemplified in previous sections. The conclusion is
that, for given age and BMI, Irish women have average log10(25OHD) values
which are 0.143 higher than Polish women. This value is close to what we
saw without age adjustment and, in fact, age is insignificant in (5.3.1): Wald
test for no age effect is (−0.0187/0.0130)2 = 2.07, P = 0.15. The simplest

interpretation of b̂2 = 0.143 is that 10
bb2 = 1.39 is the ratio between median

25OHD values for women from Ireland compared to those from Poland for
given values of BMI and age.

5.3.2 Models with higher-order interactions

Following the approach of the previous section one could add further covariates
in the vitamin D example and study how the effect of country is affected.
However, the situation is more complicated when the starting model contains
interaction terms.

To illustrate this we study the CSL1 trial in liver cirrhosis (Example 1.7)
discussed in Section 5.2.1. There we demonstrated that the effect of treatment
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(prednisone versus placebo) on survival depends on the level of ascites; see
Tables 5.2.8 and 5.2.9. In the present section, for the sake of simplicity, we
study a simpler version of the ascites variable with only two levels: absent
versus present. To do this we define two explanatory variables:

xi,1 = I(patient i is treated with prednisone),

xi,2 = I(patient i has ascites)

and consider the following model for the log(hazard) for patient i:

li(t) = l0(t) + b1,0xi,1(1 − xi,2) + b1,1xi,1xi,2 + b2xi,2.

Fitting this model we get b̂1,0 = −0.313(0.139) as the estimated log(hazard
ratio) for treatment (prednisone versus placebo) for patients without ascites,

b̂1,1 = 0.616(0.227) as the estimated log(hazard ratio) for treatment (pred-

nisone versus placebo) for patients with ascites, and b̂2 = 0.425(0.197) as the
estimated log(hazard ratio) for ascites (present versus absent) for patients
treated with placebo. Wald tests for all three parameters are significant; that
is, prednisone significantly reduces the hazard for patients without ascites and
prednisone is significantly harmful for patients with ascites. Finally, presence
of ascites increases the hazard for placebo-treated patients. The likelihood
ratio test for no interaction between xi,1 and xi,2 is 12.33 which evaluated in
the χ2(1) distribution gives P <0.0001.

With this model as our starting point, we now study the effect of also
including the covariate gender

xi,3 = I(patient i is a man).

Simply adding b3xi,3 to the linear predictor gives estimates similar to those

above: b̂1,0 = −0.302(0.139), b̂1,1 = 0.612(0.228), and b̂2 = 0.437(0.197), and

the effect of gender (male versus female) is b̂3 = 0.223(0.121) with a Wald test
of 3.40 (1 degree-of-freedom, P = 0.07). When adding this covariate, however,
its potential interaction with both treatment and ascites should be considered.
This leads to a number of different questions involving either “higher- (third)
order interactions” or several two-factor interactions.

We discuss these issues by focusing on the effect of treatment and start by
considering the most general model where this effect is allowed to differ among
all four combinations of ascites and gender. This corresponds to treating these
four combinations as the values of a single categorical explanatory variable,
as discussed in Section 5.2.1, and allow an interaction between this covariate
and treatment. The parametrization of the resulting model is shown in Table
5.3.1. In the “overall reference group,” placebo-treated women without ascites
(xi,1 = xi,2 = xi,3 = 0), the log(hazard) is the baseline, log(h0(t)) and for
other combinations of the three covariates, the parameters shown in the table
should be added to the log(baseline hazard). For men, b3 is added, for women
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with ascites, b2,0 is added, for men with ascites, b2,1 is added, and finally, for
prednisone-treated patients, the relevant “b1,j1,j2”-parameter is added when
ascites, xi,2 = j1 and gender, xi,3 = j2, for j1, j2 = 0 or 1.

Table 5.3.1. CSL1 trial: parameters in model with interaction between treatment
and combinations of gender and ascites.

Placebo: xi,1 = 0 Prednisone: xi,1 = 1
Gender No Ascites: Ascites: No Ascites: Ascites:

xi,2 = 0 xi,2 = 1 xi,2 = 0 xi,2 = 1

Women:
xi,3 = 0 Reference b2,0 b1,0,0 b2,0 + b1,1,0

Men:
xi,3 = 1 b3 b3 + b2,1 b3 + b1,0,1 b3 + b2,1 + b1,1,1

Table 5.3.2 shows the explanatory variables one needs to include to fit
this model. The table also shows estimates and SD. These estimates have the
following interpretations.

• b3: The hazard ratio between placebo-treated men and women without
ascites is exp(−0.017) = 0.983.

• b2,0: The hazard ratio between placebo-treated women with and without
ascites is exp(0.335) = 1.397.

• b2,1: The hazard ratio between placebo-treated men with and without as-
cites is exp(0.495) = 1.640.

• b1,0,0: The hazard ratio between prednisone- and placebo-treated women
without ascites is exp(−0.594) = 0.552.

• b1,1,0: The hazard ratio between prednisone- and placebo-treated women
with ascites is exp(0.439) = 1.551.

• b1,0,1: The hazard ratio between prednisone- and placebo-treated men
without ascites is exp(−0.123) = 0.884.

• b1,1,1: The hazard ratio between prednisone- and placebo-treated men with
ascites is exp(0.719) = 2.052.

It is seen that there is one effect of gender in the combined reference group
for ascites and treatment, there are two effects of ascites, for women and men,
respectively, in the reference group for treatment, and as discusssed above,
there are four effects of treatment, one for each combination of gender and
ascites. It should be emphasized that this is only one out of several possible
ways of parametrizing the model with a three-factor interaction. It focuses
on the treatment effect because this is the covariate of primary interest in
the CSL1 study. For placebo-treated patients, there is an interaction between
ascites and gender parametrized as separate ascites effects for women and
men. For this interaction other parametrizations (as discussed in Section 5.2.1)
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Table 5.3.2. CSL1 trial: covariates and estimates in model with interaction between
treatment and combinations of gender and ascites.

Parameter Covariate Estimate, bb SD

b3 xi,3 –0.017 0.188
b2,0 xi,2(1 − xi,3) 0.335 0.304
b2,1 xi,2xi,3 0.495 0.259
b1,0,0 xi,1(1 − xi,2)(1 − xi,3) –0.594 0.227
b1,1,0 xi,1xi,2(1 − xi,3) 0.439 0.367
b1,0,1 xi,1(1 − xi,2)xi,3 –0.123 0.176
b1,1,1 xi,1xi,2xi,3 0.719 0.291

could have been studied. The interaction between gender and ascites in the
placebo group is far from significant (the LR test statistic for no interaction
is 0.17 with 1 d.f., P = 0.68) and the two covariates xi,2(1− xi,3) and xi,2xi,3

could be replaced by ascites xi,2 without changing the results for the treatment
presented in the following. However, we have chosen to keep the interaction
in the model.

To study the structure of the four treatment effects, a number of model
reductions can be considered. Treatment effects in these reduced models are
all shown in Table 5.3.3. First, one could ask whether the four treatment ef-
fects can be replaced by one common effect, that is, replacing the last four
covariates in Table 5.3.2 by xi,1. In this reduced model the treatment effect

(log(hazard ratio) for prednisone versus placebo) is b̂1 = −0.052(0.118) (see
lower-right corner of the table) but, as expected because of the interaction
between treatment and ascites, the test for this model reduction is highly sig-
nificant: LR test 15.0, 3 d.f., P = 0.002. Two alternative and “smaller” model
reductions to study are those where either the treatment effect only depends
on ascites or it only depends on gender. To fit the former, the last four co-
variates in Table 5.3.2 are replaced by xi,1(1 − xi,2) and xi,1xi,2, whereas,
to fit the latter, they are replaced by xi,1(1 − xi,3) and xi,1xi,3. The esti-
mated treatment effects for both submodels are shown in Table 5.3.3 (bottom
line and rightmost column, respectively). When removing the interaction be-
tween treatment and gender, the estimated hazard ratios for treatment are
exp(−0.303) = 0.738 and exp(0.610) = 1.841 for patients without and with
ascites, respectively. The test for reducing to this model is insignificant: LR
test 3.08, 2 d.f., P = 0.21. The test for reducing to the model where treatment
only interacts with gender (i.e., no interaction between treatment and ascites)
is, however, highly significant as expected: LR test 11.97, 2 d.f., P = 0.003.

Let us, finally, mention that still another reduction of the model may be
studied, namely one where the four treatment effects for the ascites by gender
combinations are additive in ascites and gender. The test for this reduction
is insignificant: LR test 0.13, 1 d.f., P = 0.72. However, the interpretation of
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the estimates in the resulting model is rather complicated and therefore is not
presented.

Table 5.3.3. CSL1 trial: treatment effects (SD) depending on gender and/or ascites.

No Ascites Ascites Both Ascites P for Model
Gender xi,2 = 0 xi,2 = 1 and no Ascites Reduction

Women: xi,3 = 0 –0.594 (0.227) 0.439 (0.367) –0.315 (0.193)
Men: xi,3 = 1 –0.123 (0.176) 0.719 (0.291) 0.108 (0.149) 0.002

Both sexes –0.303 (0.139) 0.610 (0.227) –0.052 (0.118)
P for Model Reduction 0.21 0.002

All in all, as illustrated by the CSL1 example, models with higher-order
interactions are complex and, in general, we recommend not to focus too much
on examining such interactions when analyzing regression models.

Digression. Using “interaction notation”

As mentioned in Section 5.2, a special notation for interactions is sometimes used
both in textbooks discussing the topic (e.g., Clayton and Hills, 1993, Ch. 24). Thus,
an interaction term between two (categorical) explanatory variables A (ascites) and
T (treatment) is denoted A.T (or A ∗ T ) and a three-factor interaction between A,
G (gender) and T is A.G.T . Using this notation, we first fitted the seven-parameter
model including the three-factor interaction:

A + G + T + A.G + A.T + G.T + A.G.T

whereas the model excluding the interaction between ascites and gender for placebo-
treated patients is the six-parameter model

A + G + T + A.T + G.T + A.G.T.

Furthermore, the reduced model taking the interaction between treatment and gen-
der out is the five-parameter model

A + G + T + A.G + A.T

and allowing for no ascites–gender interaction it is the four-parameter model

A + G + T + A.T.

Leaving instead the interaction between ascites and treatment out, the five-parameter
model becomes

A + G + T + A.G + G.T,

or, when also the ascites–gender interaction is eliminated, it is

A + G + T + G.T.
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The final model where the gender–ascites interaction with treatment is additive is
the six-parameter model

A + G + T + A.G + A.T + G.T

and, again, the ascites–gender interaction may be eliminated leading to

A + G + T + A.T + G.T.

However, as also discussed in Section 5.2, we have chosen not to highlight this nota-

tion because we believe that using indicator variables is a more direct way to set up

the models parametrized in the most convenient way both when discussing them in

mathematical terms and when implementing them in computer programs. Further-

more, different computer programs may use the interaction notation differently. �

This section and the previous one have shown that including more ex-
planatory variables than two in multiple regression models is quite simple as
long as no higher-order interactions are studied. This section has also shown
how higher-order interactions may become relevant in such models but that
this will complicate the models and their interpretation considerably. For this
reason we believe that one should, in general, be reluctant to focus on higher-
order interactions. In the next chapter (Section 6.1.7) as part of a discussion
of general principles for model building, we also discuss principles more sys-
tematically for when to include interactions in models with a linear predictor.

5.4 Matched studies

Previously, we have studied the situation where only one response variable yi

was observed for the ith experimental unit (typically, the ith subject/patient).
However, in many situations the same unit may provide several observations,
often as a consequence of a paired or otherwise matched design. A special case
of paired observations is one where the same response variable is recorded in
the same subjects before and after an intervention or, more generally, several
repeated measurements are taken over time in the same subjects. In such
examples, independence between observations from the same subject or from
the same matched set will most often be an unreasonable assumption.

In this section we discuss a simple approach to solve this problem, namely
to include “subject” or “matched set” as a categorical covariate. We demon-
strate how this works for both quantitative outcomes (the paired t-test), bi-
nary outcomes (conditional logistic regression, McNemar’s test) as well as for
survival times (the Cox regression model for survival in matched pairs). In
Section 8.1, some more advanced techniques for how to address this problem
are briefly introduced without going into details, as such details are beyond
the scope of the book.
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For notation, let yi,j , i = 1, . . . , n, j = 1, . . . , Ni be the observations of the
response, where i refers to the subject (or matched set) and j = 1, . . . , Ni to
the observations for the ith subject (or individuals in the ith matched set). We
focus on paired data, that is, all Ni = 2, and for the three types of outcome
variable we study the situation with a single binary covariate in detail and
briefly discuss how to add more explanatory variables.

Quantitative outcomes

In Example 1.12 (“study 1”), 120 patients had their serum tryptase (in μ
g/L) measured before and after orthopedic surgery and it is of interest to
study whether the level of tryptase is affected by surgery. Thus, n = 120
patients provide N = 2 measurements each, yi,1 =”tryptase before surgery”
and yi,2 =”tryptase after surgery” and we define the binary covariate xi,1 = 0
(∼ “before”) and xi,1 = 1 (∼ “after”). The two repeated measurements from
patient i cannot reasonably be considered independent but the deviations
of the responses yi,1, yi,2 from a patient-specific level ai may. We therefore
consider the following model for the mean response

E(yi,j) = ai + b2xi,j (5.4.1)

or written in a more familiar form, explicitly treating “patient” as a categorical
covariate with reference level i = 1,

E(yi,j) = a + b1,iI(patient = i) + b2xi,j ,

where a = a1 and b1,i = ai − a1, i = 2, . . . , n. That is, the ai- (or a, b1,i-)
parameters describe the patient-specific tryptase levels and b2 is the expected
change in response from before to after surgery for any given patient. The
assumption of no interaction between patient and covariate, that is, the same
mean change in tryptase for all patients cannot be formally tested inasmuch
as the model with interaction contains as many parameters as there are obser-
vations. However, it may be examined by plotting the “after” measurements
yi,2 against the “before” measurements yi,1, or by plotting the within-patient
differences against the patient averages (the “Bland–Altman plot”; see Alt-
man and Bland, 1983); see Figure 5.4.1. In the figure, we have used the log-
transformed tryptase measurements because the points on the after versus
before plot seem to approximate a straight line with slope 1 closer when
studying the log-transformed values than when using the raw data (Figure
1.5.6 in Section 1.5). We therefore restrict attention to the log-transformed
values in the following and for those data the assumption of no interaction is
not contraindicated.

The estimated effect of x is b̂2 = −0.0953(0.0195) and the Wald test for
no effect is (−0.0953/0.0195)2 = 23.80 giving a P -value less than 0.0001. This
shows that the level of tryptase decreases highly significantly (by about 9.5%)
during surgery, likely owing to the fact that fluid is given to patients during
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Fig. 5.4.1. Tryptase data, log scale. Left: measurements after surgery plotted
against measurements before; the line is the identity line. A threshold at 11.4 μ
g/L has been indicated. Right: difference between measurements after surgery and
measurements before plotted against patient averages.

anesthesia. The intercept and the effects of “patient” are usually not given
because there is one parameter estimate for each of the n = 120 subjects and,
therefore, these estimates are of no interest, so-called “nuisance” parameters.

These results correspond to the paired t-test. The estimate is simply the
mean difference between after and before measurements

b̂2 =
1

n

n∑
i=1

(yi,2 − yi,1)

and SD(̂b2) the empirical standard deviation of this mean

SD(̂b2)
2 =

1

n − 1

n∑
i=1

(yi,2 − yi,1)
2.

If the differences are Normally distributed with a common SD the signed
square root of the Wald test statistic follows a t-distribution with n−1 degrees
of freedom when there is no effect of the covariate.

Writing the model as the linear model (5.4.1), it is simple to adjust the
comparison between means of before and after measurements for other co-
variates by adding more terms to the linear predictor. Note, however, that
the effect of covariates which are constant within pairs cannot be estimated
when, as in (5.4.1) each pair has its own fixed, unknown level, ai. To es-
timate such effects, “random effects models,” studied in Section 8.1.1, may
be applied. Also, note that the model formulation (5.4.1) immediately gen-
eralizes to more than two measurements per subject by including ai in the
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linear predictor for all measurements from subject i. The inference, however,
becomes more complicated and can no longer be based on a single set of dif-
ferences. In fact, when several measurements are taken over time, it is crucial
to take the temporal aspects of the data into account and allow for a possible
autocorrelation between repeated measurements; see Section 8.1.3 .

Binary outcomes

A completely analogous situation occurs for binary outcome data. We first
study the situation with paired data; that is, yi,1 and yi,2 are now binary
outcomes observed before (xi,1 = 0) or after (xi,2 = 1) intervention. In Ex-
ample 1.12 we could have yi,j = 1 if the tryptase measurement for patient
i taken at occasion j (before or after surgery) were above the threshold for
normal values, 11.4 μg/L; see Figure 5.4.1 where this threshold has been in-
dicated. (Note that y now denotes this binary outcome and the y above was
the tryptase measurement, possibly log-transformed.) We can then study the
“standard” logistic regression model including the covariates x and the cate-
gorical covariate “patient”:

logit(pr(yi,j = 1)) = ai + b2xi,j . (5.4.2)

Here, exp(b2) is the ratio for any given patient between the odds of having
tryptase above normal after surgery compared to before. However, inference
for (5.4.2) turns out (e.g., Clayton and Hills, 1993, Ch. 29) to be complicated
by the presence of the many nuisance parameters (one ai parameter for each
of the n patients), and maximum likelihood estimates based on this model
are not consistent: even for large n, the parameter estimates do not get close
to the true population values. Instead, conditional logistic regression may
be used. Intuitively, pairs where either yi,1 = yi,2 = 0 or yi,1 = yi,2 = 1
do not provide any information on how x affects the outcome as long as the
probability in (5.4.2) has an arbitrary level given by the parameter ai. This
means only pairs that are discordant with respect to the outcome contribute
to the inference. Conditional logistic regression then amounts to studying the
conditional likelihood where the contribution from such a discordant pair is
the conditional probability of observing the configuration of outcomes seen in
the data (either yi,1 = 0, yi,2 = 1 or yi,1 = 1, yi,2 = 0) given that one response
was 0 and the other was 1. It turns out that this conditional probability does
not depend on ai and, thereby, “the nuisance parameters a1, . . . , an have been
eliminated by conditioning.”

Digression. Conditioning

Note that the problem of inconsistency of bb2 in the presence of n nuisance pa-

rameters did not occur for quantitative outcomes. However, conditioning on the sum

yi,1 + yi,2, as we just did for binary outcome data, would also lead to the paired

t-test for quantitative data. �
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For the tryptase data little information is left when dichotomizing the
outcome as seen in Table 5.4.1 that includes only three pairs which are dis-
cordant on the outcome. The following analyses are, therefore, included only
as an illustration and should not be taken as a serious analysis of these data.

Table 5.4.1. Tryptase data: numbers of patients according to normal (≤ 11.4 μ
g/L) or increased (> 11.4 μ g/L) tryptase level before and after surgery.

After
Before ≤ 11.4 > 11.4 Total

≤ 11.4 n0,0 = 112 n1,0 = 1 113
> 11.4 n0,1 = 2 n1,1 = 5 7

Total 114 6 n = 120

In Table 5.4.1, the following notation is introduced: n0,1 = 2 is the number
of discordant pairs of observations where yi,1 = 1, that is, tryptase was raised
before surgery but not after, and n1,0 = 1 is the number of discordant pairs
of observations where yi,2 = 1, that is, tryptase was raised after surgery but
not before. The conditional maximum likelihood estimator for the odds ratio
exp(b2) is extremely simple in this two sample situation

exp(̂b2) =
n1,0

n0,1
=

1

2
= 0.5

and so is the score test for the hypothesis b2 = 0

(n1,0 − n0,1)
2

n1,0 + n0,1
=

1

3
= 0.33.

This test is known as McNemar’s test for paired binary data and has in
large samples (which is hardly the situation here) an approximate Chi-squared

distribution with one degree-of-freedom. The standard deviation of b̂2 is

SD(̂b2) =

√
1

n0,1
+

1

n1,0
=

√
1.5 = 1.22.

In particular in small samples, the hypothesis b2 = 0 may be more reliably
examined using a test for a probability of 0.5 based on observing n0,1 (or n1,0)
in the Binomial distribution with count parameter c = n0,1 + n1,0 (Section
2.3.3). However, for the tryptase example where c = 3 it makes no sense to
present the details.

As for quantitative responses, adjustment for other covariates is possible
simply by adding the appropriate terms to the linear predictor in (5.4.2).
Note, however, that the conditional inference prevents estimation of effects



5.4 Matched studies 299

of covariates which are constant within pairs. This is similar to the case of
quantitative data and, as for those, estimation of such effects may be per-
formed using random effects models (Section 8.1.1). Finally, again similarly
to the case of quantitative responses, more than two binary responses may be
handled using (5.4.2), although the contributions to the conditional likelihood
become more complicated in that case.

Another example of paired binary responses appears in an individually
matched case-control study (introduced in Section 7.4.2).

Survival time outcomes

For survival data, a model for matched pairs similar to (5.4.1) and (5.4.2) is
the highly stratified Cox model for the log(hazard rate)

li,j(t) = log(h0,i(t)) + b2xi,j (5.4.3)

(Holt and Prentice, 1974) where we first study the case where the covari-
ate x is a binary exposure. Note that (5.4.3) is simply (5.1.4) but now, each
matched pair i has a separate completely unspecified baseline hazard h0,i(t)
and, obviously, it is impossible to estimate this based on only two possibly
censored, survival times yi,1, yi,2. However, the effect of x is estimable us-
ing methods similar to what we saw above for binary responses based on a
so-called “partial likelihood”. Note that exp(b2) is the ratio between the haz-
ard rates for the two subjects from the same matched pair where one has
x = 1 and the other has x = 0. Only pairs where the smaller of yi,1, yi,2 is
an uncensored failure time provide information on b2 because otherwise we
have no information on the order in which the two subjects in a pair fail.
Furthermore, among such pairs, only those that are discordant on exposure
contribute. The estimator is exp(̂b2) = n1,0/n0,1, the score test for no effect

of x is (n1,0 −n0,1)
2/(n1,0 + n0,1), and SD(̂b2) =

√
1/n1,0 + 1/n0,1 just as for

binary outcomes where now

n1,0 = number of pairs, discordant on exposure, where the smaller of

yi,1, yi,2 is a failure time for an exposed subject,

and

n0,1 = number of pairs, discordant on exposure, where the smaller of

yi,1, yi,2 is a failure time for an unexposed subject.

Digression. Partial likelihood

The arguments leading to the estimate for b2 in (5.4.3) requires the concept of a

“partial likelihood”. This concept can also lead to the estimating equations for the

standard Cox regression model that we have seen in previous chapters (e.g. (3.1.28)
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and (4.1.18)). However, as those equations also have more traditional likelihood in-

terpretations (e.g., Andersen et al., 1993, Ch. 7) we have chosen not to introduce

partial likelihood earlier. �

As for quantitative and binary responses adjustment for covariates that are
not constant within pairs is performed by adding the proper terms to the linear
predictor in (5.4.3). Also, extension to the case of more than two subjects per
matched set is obvious. However, the fact that few out of the n matched
sets contribute to the inference for b2 (as a consequence of the completely
unspecified baseline hazard) somewhat reduces the usefulness of (5.4.3) and,
more often, random effects (or “frailty”) models, briefly introduced in Section
8.1.1, are applied.

5.5 Exercises

Exercise 5.1. Use the tryptase data set 3 from Example 1.12 for identifying
explanatory variables for baseline tryptase.

1. Include age as a linear spline with thresholds at 40 and 60, and with an
interaction with gender.

2. Make model checks and consider the possibility of a logarithmic transfor-
mation of the baseline value.

3. Do we see a significant interaction between gender and age?
4. Is it necessary to include the bends in the effect of age, or can we reduce

it to a linear effect?
5. Is the ASA classification significantly related to the baseline value?

Exercise 5.2. Use the tryptase data set 2 from Example 1.12 for identifying
explanatory variables for reaction tryptase, on a logarithmic scale.

1. Include gender and ASA (categories 3 and 4 taken together) as categorical
covariates and age as a linear effect.

2. What happens when we also include baseline tryptase (on a logarithmic
scale) as an explanatory variable? Do we still see an effect of gender?

3. Does it make sense to include also the binary covariate “positive” that
indicates whether the patient does in fact experience an allergic reaction?
If it is included, what happens to the effects of age and gender? And why?

Exercise 5.3. The data set 2 from Example 1.12 contains information on
the type of allergic reaction, classified into four groups. Collapse these into a
binary outcome by joining categories 1–2 and 3–4.

1. Perform a logistic regression relating the probability of a severe reaction
to age and gender.

2. Investigate whether the effect of age is linear, by including a quadratic
term and testing its significance, and by using a linear spline with thresh-
old in 60 years. Is the linearity a sufficiently good description?
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3. Are baseline tryptase and/or reaction tryptase significant when entered
into the model?

Exercise 5.4. Use the patients that have been subjected to a test for allergy
following the surgery (tested= 1) in the tryptase data set 2 from Example
1.12.

1. Relate the probability of a positive test result to ASA class (three groups,
combining class 3 and 4) and age, using a linear effect of age with a logit
link.

2. Show that the interaction between ASA class and age is not significant.

Exercise 5.5. Use the tetrahymena data from Example 1.6 In Section 4.1.1
relating average cell diameter to cell concentration for the media without
glucose. We now also include the media with glucose for comparison.

1. For the glucose media, make a logarithmic transformation of cell diame-
ter and relate it to the logarithmic transformation of cell concentration
through a simple linear regression.

2. Include both media in the model and compare the effect of cell concen-
tration in the two media. Do we see the same effect?

Exercise 5.6. Use the surgery data from Example 1.4 for investigating the
possible explanatory variables for the duration of anesthesia.

1. Include type of surgery and age as explanatory variables in a logistic
regression.

2. Perform model checks for the assumption of a linear age effects, using
residual plots as well as a numerical check by including a quadratic term
in age.

3. Do we see any effect of the neuromuscular blocking agent?

Exercise 5.7. In Exercise 3.18 we used the surgery data from Example 1.4
for comparison of TOF-ratios for the three neuromuscular blocking agents.
We now investigate this difference further.

1. Include blocking agent, type of surgery, and duration of anesthesia (linear
effect) as explanatory variables in a logistic regression.

2. Perform model checks for the assumption of a linear effect of duration,
using residual plots as well as a numerical check by including a quadratic
term.

3. Do we see any effect of the neuromuscular blocking agent?

Exercise 5.8. Use the data from Example 1.10 to study possible covariates
for the survival after malignant melanoma.

1. Include age and tumor thickness as quantitative covariates with linear
effects in a Cox regression model.
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2. How can we investigate a possible interaction between these two quanti-
tative variables?

Exercise 5.9. Use data from the PBC-3 Example 1.3 to investigate the dif-
ference between the two treatments of liver cirrhosis.

1. Estimate the treatment effect, when adjusting for a linear effect of biliru-
bin, on a logarithmic scale and a linear effect of albumin on the untrans-
formed scale.

2. Perform a model check for the linearity assumption corresponding to the
untransformed albumin, by categorization of the covariate into quintile
groups.



6

Model building: From purpose to conclusion

To investigate a scientific question, data are needed. Sometimes, data may
already be available, but in many situations new data have to be collected be-
cause the question is concerned with a new procedure or treatment or requires
new covariates to be considered for a previously studied phenomenon.

Careful planning before data collection may prevent a waste of time and
money and help increase the probability that the investigation will be suf-
ficiently informative to actually answer our questions. The first step after
formulating the idea for the new scientific question is to study the literature
to see if anything has been published regarding this matter. Previous studies
related to the subject may help in developing your own idea into a plan for a
new investigation that can provide the necessary information, for example, a
list of outcome variables and explanatory variables that should be obtained in
order to shed light on the problems at hand. Take care to think through the
possible mechanisms involved in your problem in order to make sure that all
relevant variables will be measured. Do not measure “everything” but at the
same time, do not be too restrictive because obtaining information afterwards
may be impossible or at least very cumbersome and perhaps expensive.

The design of a new investigation must be considered in combination with
the available resources. For example, a prospective study will have a long time
horizon before the study can be finished whereas a case-control study (see
Section 7.4.2 for definition) may require data that can be hard to obtain. If
possible (e.g., if comparing two treatments that are both considered adequate
in a given situation), the investigation may be carried out as a randomized
study, assigning the treatments randomly to each patient. In some situations,
groups to be compared may be matched (so that two individuals who are
identical on some prechosen characteristics such as gender and age are assigned
to different treatment groups) or even paired (so that the same individual
receives both treatments, separated adequately in time); see, for example,
Section 5.4. For further discussion of such design questions, see standard text
books such as Altman (1991, Ch. 5) or Senn (2002, Ch. 9).
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If there exist known predictors for the outcome, you should consider mak-
ing inclusion and/or exclusion criteria based on these variables. It is advan-
tageous to choose subjects in such a way that the covariates of main interest
show large variability, such as a large age range if you study the increase of
blood pressure with age and both skinny and fat people when studying the
relation between body mass index and vitamin D status. However, such a
selection is of course only possible when the size of the explanatory variable
is easily detectable, either by simple inspection (body mass index) or from
previously registered data (age).

In the planning stage it is highly recommended to perform a power anal-
ysis, that is, to investigate the probability of getting an informative answer,
as a function of the effect size and the sample size. From such an analysis a
reasonable sample size can be determined before initiating the investigation,
thereby avoiding a waste of time on an investigation that has a large risk of
getting you nowhere. We deal with sample size determination in Section 6.3.

Before the collected data can be analyzed, it is necessary to have decided
upon a reasonable initial model for the data, that is, which covariates first
must be considered. In the previous chapters, we have seen examples where
covariates have been combined into a linear predictor, which has subsequently
been related to the outcome of interest through an appropriate link function,
taking the nature of the outcome into account. This linear predictor and its
relation to the outcome of interest are the basic ingredients of a regression
model.

We believe model building to be a scientific process that is unique for
each separate question. Hence, we do not advocate the use of expert systems
or automatic model selection procedures. Instead, we summarize our own
experiences into some general principles for the process, and these are collected
in Section 6.1.

To illustrate the principles as well as the uniqueness of each new problem,
Section 6.2 contains three detailed examples, the vitamin D Example 1.1, the
surgery Example 1.4, and the PBC3 Example 1.3, all introduced in Chapter 1
and used as illustrations in various contexts in the previous chapters (as well
as in the chapters to follow).

Finally, in Section 6.3 we look at an important part of the planning of a
new investigation, namely the determination of an adequate sample size, that
is, the necessary number of individuals to include in the study in order to
have a good chance of providing a useful conclusion.

6.1 General principles for model selection

When data collection has been finalized and data have been made electroni-
cally available for statistical analysis, it is very tempting to start performing
all kinds of analyses that apply to the kind of data obtained. At this stage,
however, it is strongly advisable to initially stick to very simple explorative



6.1 General principles for model selection 305

analyses such as illustrative figures and summary statistics as discussed in
Section 2.2.

Before proceeding to proper analyses, it is necessary to go through a few
steps in order to ensure the appropriateness of the scientific process. First,
the problem needs to be defined precisely: what is already known and what
would we like to know? It must be kept in mind that the more precisely the
question is posed, the better are the chances of designing an investigation
able to answer it. Also, the questions ought to be kept few, simple, and to
the point (avoiding, if possible, comparison of several treatments in one single
investigation).

The question that you want to address determines which variables you
need to consider for each individual in your investigation. Each new question
may require consideration of a different set of covariates and covariates may
have different status as described in Section 6.1.1. A helpful graphical tool for
determining a reasonable model for answering a specific problem is presented
in Section 6.1.2.

Having decided upon the basic structure of the model (i.e. the outcome
and the covariates) the next step is to build the linear predictor and choose an
appropriate link function, that is, to build an initial model from which to start
your analyses. This process is treated in Section 6.1.3, whereas Section 6.1.4
is concerned with the analysis of this initial model, leading up to final models
on which to base your conclusion. Special topics in this analysis are treated
in Sections 6.1.5 (model checks and diagnostics), Section 6.1.6 (how to detect
and deal with collinearity), and Section 6.1.7 (how to deal with interactions
between explanatory variables).

We emphasize that this chapter does not pretend to give an exhaustive
account of the strategies and problems involved in the selection of an appro-
priate model. Our focus is to build models that facilitate the understanding
of the relation between one or more explanatory variables of interest, and an
outcome, rather than models that give accurate and precise predictions of
the future or unmeasured variables. For an in-depth treatment of the latter
approach, we refer to Harrell (2001).

6.1.1 Identification of covariates

As we have seen from previous chapters, an important part of model building
is to identify possible explanatory variables for the outcome under study (i.e.,
the covariates of the problem). Some covariates may be known from previous
studies (e.g., cigarette smoking when the outcome is lung function, age if the
outcome is blood pressure, or gestational age if the outcome is birthweight),
whereas others are the main focus of the current investigation. Furthermore,
there may be potential covariates that are not considered of primary interest
but which we may have to take into account to avoid confounding or to reduce
standard deviation.
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A very important exception from the general rules to follow in this section
is the randomized clinical trial. When individuals have been randomized to
treatment, the two (or perhaps more) treatment arms are by definition iden-
tical with respect to the distribution of all explanatory variables. This means
that a simple comparison among the treatment groups creates valid conclu-
sions, at least for large sample sizes. For small to moderate sample sizes there
may, however, be chance differences among the distributions of some explana-
tory variables and if these have a strong effect, they should be taken into
consideration in the models. Moreover, inclusion of explanatory variables in
the model may in some situations (even for large randomized studies) provide
more precise conclusions due to the elimination of random variation.

We may formulate the principles for inclusion of covariates as follows.

1. Variables in focus in the present investigation, such as a treatment, an
exposure, or a new potential risk factor for development of some disease.
These will typically have some theoretical justification but the form of
their effect (if any) will usually not be known. The choice of how to include
such covariates therefore involves careful considerations.

2. Variables known from previous investigations to have an effect on the out-
come under study. As a basic principle, such covariates should be included
in an initial model and should as a general rule also stay in the model,
provided that their effect is not explained by some newly included covari-
ates. However, there may be deviations from this principle according to
the purpose of the investigation as explained in Section 6.1.2.

3. Very basic variables such as gender and age, which should almost always
be considered for possible effect on any outcome.

4. A list of other potential explanatory variables. This list may be long and
it will often not be reasonable, or even possible, to include all of these
simultaneously in the model. However, a screening process may be un-
dertaken, investigating each (or a few) of the variables in turn to get an
idea of their possible importance. This activity is sometimes denoted a
fishing expedition, and the results gathered in this fashion may need to be
confirmed in future studies.

Note that covariates may also show interactions and we give some general
advice on the inclusion of interactions in Section 6.1.7.

The decision on how many and which covariates to include in a model
is not at all an easy one. It is important to stress that the interpretation of
the effect of one covariate may depend strongly on which other covariates are
included in the model. This is because the effect of a covariate is conditional
upon all other covariates being held fixed, as explained in Chapter 5. For
instance, an effect of body mass index on the level of vitamin D may change
substantially if age is entered as another explanatory variable. This is because
there may be some relation between age and body mass index (people tend
to get a little heavier with age, although they do not grow in height) and also
some connection between age and the level of vitamin D (e.g., due to different
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sun habits). This concept is known as confounding and is discussed further in
Section 6.1.2.

The choice of covariates is also a choice of which scientific question to
answer. This fact should be taken seriously although the order should be the
reverse such that you include those covariates that are necessary for answering
your question. Before you start your analyses, you should therefore carefully
specify the question that you want to answer instead of performing any possi-
ble analysis and interpreting the results from these. A useful graphical tool in
the process of determining a reasonable model for answering a specific problem
is presented in Section 6.1.2.

In almost any investigation of a sufficient size, there will be missing val-
ues of one or more of the variables under study. We denote such subjects as
incomplete cases. This is of course very annoying inasmuch as subjects with
missing values on any one of the variables entering the model (be it the out-
come or any one of the covariates) cannot be used in traditional analyses.
Indeed, standard statistical software will automatically perform a complete
case analysis, that is, leave out these subjects, hopefully making a note in the
output that this has been done. Increasing the complexity of the models by
adding more explanatory variables will increase the probability of encounter-
ing subjects with missing values and thus lead to loss of efficiency (power).
Moreover, different models for the same data cannot be truly compared unless
they are based on the same subjects.

Moreover, missingness may create bias problems because there may be a
reason for their missingness that relates to the value that would have been
seen if it had been measured. For instance, in an investigation of lung function,
an observation may be missing because the patient was too ill to come to the
hospital, or in an investigation involving questionnaires asking, for example,
questions on alcohol consumption, subjects with a high consumption may
tend to either lie about it (thus creating measurement error in a covariate,
discussed in Section 8.2) or choose not to answer at all.

If missing values occur in the outcome variable, things may become crit-
ical. If the missing value occurs because somebody accidentally dropped a
test tube, we should only be concerned with the loss of efficiency due to the
smaller sample size. But if a selection takes place as a consequence of the way
in which the measurement of the outcome variable is performed (such as in
the above imaginary investigation involving patients coming to the hospital
to have their lung function measured and where, for example, small values of
the outcome may be systematically missing) a bias in the analysis will be the
result. Typically, in such a situation, the estimated effect of a covariate will
be biased towards zero.

If the missing values occur in one or more covariates, the situation need
not be serious, even if we are dealing with selection that causes bias in the
resulting distribution of the covariate. This is due to the fact that in regression
models we are only concerned with the conditional distribution of the outcome
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given the values of all the covariates, not in the distribution of the covariates
themselves.

The important consideration here is to make sure that the reason for the
missingness is not related to the outcome. If this is the case, the consequence
will be a bias, precisely as when the missing values occur in the outcome itself,
simply because such incomplete cases will not be part of the analyses.

Digression. Imputation

An alternative to a complete case analysis is to perform imputation which means

that values are filled in for the missing data. A simple approach is to fill in the ap-

propriate sample average value instead of the missing value, but it is more common

to impute by using the conditional mean of the variable given all the other variables

in the problem. Note that this requires a model for the interdependencies among the

covariates. After filling in the unobserved data, the analyses are carried on as if all

data were observed, and this results in a downward bias of the standard deviations

(because the data looks “nicer” than what would probably have been observed).

Methods for correction of such a bias exist, but a safer approach is to perform in-

stead “multiple imputation,” which means that you create new datasets, each time

imputing single values simulated from the conditional distribution (but not being

identically equal to the conditional mean). The results from the analysis of all these

different datasets are subsequently combined to obtain an appropriate measure of

standard deviation (see, e.g. Harrell (2001, Ch. 3) or Rubin (1987). �

6.1.2 Model diagrams

As explained in Section 6.1.1, the interpretation of the effect of a covariate
changes according to which other covariates are included in the model, because
the effect of a covariate in a multiple regression model is conditional upon all
other covariates being held fixed. The task of determining which covariates
to include when answering a specific question should therefore not be taken
lightly, and the purpose of the investigation should constantly be kept in mind.
A useful tool may be to arrange the variables in a partially ordered (causal)
chain (e.g., a chain referring to time), as explained below.

We consider a simple example involving a study of lung function, where we
imagine that we want to compare two groups, say men and women. The out-
come could be fev1 (forced expiratory volume in one second) and the covariate
of primary interest is gender. Next, consider other possible explanatory vari-
ables for fev1. Variables such as age or height come to mind. We arrange these
covariates in a diagram with arrows indicating influences from one variable to
another, such as depicted in Figure 6.1.1.

We see from the diagram that there are arrows from all covariates to the
outcome because we argue that all covariates have a potential influence on
fev1. Moreover, there are arrows between some of the covariates, namely from
gender to height and from age to height because we believe both gender and
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Fig. 6.1.1. Path diagram for imaginary investigation of lung function.

age to have an effect on height. These arrows have a direction because the
effects obviously cannot be turned around, because height obviously has no
effect on either gender or age. On the other hand, the line between gender
and age has no arrow, indicating an association that may happen to show in
the data but has no causal interpretation.

If we performed a simple comparison of lung function for men and women
(typically a t-test) we imagine that we will get a result indicating that men
have a somewhat higher value of fev1 than women. This corresponds to looking
at the simple model illustrated by the diagram:

This sex difference may well be caused by the inherent difference in height
between men and women so that the model

may in fact be simplified to

indicating that gender may have no independent effect on fev1, that is, no
effect that does not “pass through” the variable height. In such a situation,
we say that height is an intermediate variable (or a mediator) for the effect of
gender on fev1.

If we include age in the analysis, the diagram becomes that of Figure 6.1.1
and the difference between men and women as expressed by the direct effect
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of gender on fev1 may change somewhat unless the age distribution for the
two sexes are similar.

Diagrams as the one in Figure 6.1.1 are known as directed acyclic graphs
(DAGs), although the connections between variables in DAGs are always di-
rected. Such diagrams have been introduced to depict conditional indepen-
dence properties of models for high-dimensional outcomes (e.g., Lauritzen,
1996) and have later found their way into epidemiology (Pearl, 1995; Jewell,
2004, Ch. 8). Construction of such a diagram, of course demands a theoretical
knowledge of the problem under investigation and of the various explana-
tory variables under consideration. Some general guidelines can be given by
considering a time-aspect of the covariates. This can give rise to hierarchical
categories of covariates such as

1. Very basic-type data: gender, age, number of siblings, hair color etc.
2. Acquired demographic-type data: social group, working status, marital

status, number of children
3. Height, weight, health measurements, treatment, exposure
4. Outcome

This hierarchy is constructed so that we may expect arrows from lower
levels to higher levels, whereas between variables on the same level, we may
or may not see chance relations. Following the definition of an intermediate
variable above, we see that covariates on a higher level may be intermediate
variables for those at a lower level.

If there is an arrow from a particular covariate pointing directly towards
the outcome, we say that the covariate has a direct effect on the outcome. It
may also have indirect effects going through intermediate variables on its way
to the outcome. The sum of the direct and indirect effects is called the total
effect. Based on the above considerations we can say that the direct effects
may change according to which other covariates are included in the model
whereas the total effect will be more stable.

When conducting an investigation and analyzing the collected data, some
covariates are of primary interest (e.g., an exposure of some kind), as explained
in Section 6.1.1, whereas others are more of a nuisance that have to be dealt
with in an appropriate fashion. A covariate related both to the exposure of
interest as well as to the outcome is called a confounder, provided that it
is not a mediator for the exposure. For instance, in Figure 6.1.1, age is a
confounder for the effect of gender, whereas height is not. Confounders should
be corrected for when evaluating the effect of an exposure, in fact, Clayton
and Hills (1993, Ch. 14) discuss a confounder as a variable one would have
controlled for, had one been able to design the proper experiment. Failure
to do so will result in biased estimates because the effects from uncontrolled
confounders will contaminate the estimate of the exposure. Unfortunately,
we never know if we have managed to identify all possible confounders and,
therefore, the research process may continue to refine the models and create
more precise results.
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6.1.3 Initial model building

Having identified covariates of interest and examined a diagram of interdepen-
dencies, we are now ready to form an initial model, relating the outcome to
those covariates that can answer our specific question and fulfill the purpose
of the investigation. A warning is in order here: if you use models with too
many covariates (or covariates with very flexible effects using many parame-
ters) the results may become very imprecise. On the other hand, leaving out
potential confounders may result in bias. The dilemma is to find a reasonable
trade-off between bias and precision, a task that is impossible with few ob-
servations. A rule of thumb says that for quantitative outcomes you have to
have as least ten times as many observations as parameters in your model.
For a binary outcome the factor 10 should refer to the size of the smallest
category (either 0 or 1) whereas in survival analysis, it refers to the number
of failures (e.g., Harrell, 2001, Ch. 4). The factor is therefore often denoted
“events per variable,” abbrieviated EPV. We believe such a strict lower limit
to be unwise because it may prevent proper adjustment for important con-
founders. If the choice is between abstaining from the inclusion of important
explanatory variables and violating this rule, we believe the latter choice to be
the more sensible, although the results should be accompanied by a cautious
remark on the possible instability of results. According to simulation stud-
ies (Vittinghoff and MacCulloch, 2006), the rule may be relaxed without any
drastic consequences in the form of bias or misleading confidence intervals.
In particular, identification of important predictors seems to be trustworthy
even if the EPV factor is halved.

The next question is how to enter each covariate in the linear predictor
and how to relate the linear predictor to the outcome. The last question is
the most straightforward to answer inasmuch as the possibilities are limited
to specific link functions, that is, known functions including no parameters
(the identity function, the logarithm, the logit etc.). Important issues to keep
in mind are that the link function corresponds well with the type of outcome
and that it leads to useful and simple interpretations. Chapters 3 – 5 have
discussed the most common choices of link function for quantitative, binary,
and survival time responses whereas in Chapter 7 we introduce a number of
alternatives.

The combination of covariates into a linear predictor is a more difficult
task and it is impossible to lay out quite general principles for this process.
Some examples have been given throughout the previous chapters and we
here summarize some of the issues. First, we must differentiate between the
different types of covariates, that is, binary, categorical with more than two
categories, or quantitative.

For binary covariates, there is only one possibility, namely to introduce a
parameter to describe the difference in the linear predictor between its two
levels. For categorical covariates with more than two levels (say k + 1, e.g.,
0, 1, · · · , k), we likewise generally introduce k parameters, each describing the
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difference in the linear predictor between level j (j = 1, · · · , k) and level 0 (the
chosen reference level). Recall from Section 3.2 that the choice of reference
category does not affect the model as such but only its appearance (i.e., which
estimates appear in the output). For covariates with sparse categories, how-
ever, we should consider the possibility of collapsing some of the categories in
order to avoid very unreliable results. Which categories to consider collapsing
should be determined according to a combination of two aspects: the distri-
bution of subjects in the categories (i.e., the number in each category) and
theoretical knowledge of the meaning of these categories so as to make sure
that categories will only be collapsed if it makes sense in connection with the
problem under investigation. For instance, for the categorized version of body
mass index considered in Section 3.2.1, it obviously does not make sense to
collapse categories “normal weight” and “obese” while keeping “overweight”
as a separate category.

Including quantitative covariates as part of the linear predictor is more
tricky and may involve many considerations of theoretical as well as practical
issues. It is advisable to treat covariates somewhat differently according to
their status, that is, whether they are covariates with a known effect from
previous studies, covariates of primary interest in the present investigation,
or possible confounders of no particular interest in their own right.

A covariate known previously to have an effect on the outcome under con-
sideration should (at least as a starting point) be included in the way that
it has been used previously. Alternative descriptions of the effect of such a
covariate should only be considered if the previously used approach can be
demonstrated to be erroneous or suboptimal (either due to previous incon-
sistencies or due to changes in the interpretation because of inclusion of new
covariates related to it).

For the covariates of main interest in the present investigation, we may
have some theoretically justified anticipation of the sign or even the size of a
possible effect, but usually we have very little knowledge about the specific
form of the relationship (notable exceptions being problems from physiology or
pharmacokinetics). We advise the first step to be construction of informative
plots to give a first impression of the relationship, if any, for the whole dataset
or in each of the treatment groups separately. Such pictures, typically in the
form of scatterplots or plots of averages for one or more groupings of the
covariate, have been discussed in Chapter 4 in connection with the various
types of outcomes. It should be borne in mind, though, that such pictures
represent only marginal relationships between covariate and outcome and may
be changed (a little or quite considerably) by the various other covariates to
be included in the model. In order to judge the proper form of the conditional
relationship between the two, given other relevant covariates, we instead use
residual plots to see whether we need to modify the model; see Section 6.1.5.

When modeling the effect of a quantitative covariate of main interest, it is
generally recommended to keep it as simple as possible, at least initially. For
quantitative covariates, the simplest possible effect is a linear effect. Slight
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deviations from linearity in marginal plots do not necessarily indicate true
deviations from linearity but may simply be due to a disturbing effect from
other covariates associated with the one under consideration. Residual plots
will have to be examined to see if the deviation persists.

If deviations from linearity are strong and of a systematic nature (a clear
bending downwards or upwards), a transformation of the covariate may be
considered necessary. Theoretical knowledge of the problem may give a rea-
sonable suggestion as to which kind of transformation to use, but in the ab-
sence of such knowledge, the covariate may be categorized in a number of
categories and its effect visualized by a step function. The number of cate-
gories may depend upon the number of subjects in the sample as well as on
theoretical arguments concerning the covariate itself (e.g., traditional thresh-
olds for body mass index in the definitions of overweight and obesity as used
in Sections 3.1.1 and 3.2.1, or thresholds for the normal range of bilirubin
as used in Section 4.2.3). The form of the step function may now indicate
which kind of transformation is reasonable. The advice is to stick to simple
transformations, typically logarithms (of any base, Appendix B) or the square
root, but in special situations functions such as the reciprocal (the function
f(x) = 1/x) or functions of exponential type (such as f(x) = 10x) may be
used. If we have many observations, we may even use the categorized version
of the covariate in an initial model or a spline function or fractional polyno-
mials as discussed in Section 4.2. For the covariates of primary interest, we
do not recommend to present the estimates using automatic smoothing such
as a Lowess curve, because this will prevent a simple communication of the
effect.

Finally we have to deal with a number of possible confounders (as de-
fined in Section 6.1.2) or simply other covariates with a possible effect on the
outcome. We have to adjust effectively for confounders because any residual
influence may be mistaken as an effect of one of the main covariates of inter-
est, because of the correlation to the confounder (by definition). Therefore,
flexible smooth curves may be considered here (e.g., linear splines or frac-
tional polynomials). Whereas this may provide a fairly accurate adjustment,
we should at the same time take care to avoid overfitting inasmuch as this
may cause effects to be “stolen” from the covariates of interest (e.g., Harrell,
2001, Ch. 5).

As discussed in Section 6.1.2, confounders are defined to be predictors
of the outcome as well as associated with the covariate of interest (e.g., an
exposure). This, formally, means a predictor of the outcome that is not si-
multaneously correlated to the exposure is not a confounder. However, as
demonstrated by, for example, Gail, Wieand, and Piantadosi(1984), failure to
include a predictor for the outcome in a model with a nonlinear link func-
tion may still lead to bias in the exposure effect. It may, further lead to a
decreased precision: a larger standard deviation for the estimated effect of
the exposure. We, therefore, expand the general advice on which variables to
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include in an initial model to all possible predictors of the outcome, unless
they are intermediate variables from the exposure to the outcome.

6.1.4 Strategy of analysis

Having decided upon a reasonable functional form for the effect of the relevant
explanatory variables (e.g., simple linear, linear spline, step function according
to the choice of some thresholds, etc.) the next step will be to build a model
with some or all of these variables as covariates.

Many statistical software packages offer automatic covariate selection,
based on different philosophies: forward selection, backward elimination, or
the “best subset” model. We do not recommend these methods and only de-
scribe them in a digression at the end of this section. Instead, an initial model
may be built by performing steps fully controlled by the investigator and sup-
plemented by model checks and diagnostics along the way (see Section 6.1.5).
For convenience, the variable of main interest in the following is denoted “a
treatment” or “an exposure” even though it may as well be some characteristic
of the subjects.

One preliminary step in the model-building process is to enter each covari-
ate in turn in a model together with the treatment and perhaps also including
important covariates known from previous studies to have an effect. In this
initial step we may identify variables with a possible effect on the outcome. By
comparing the effects of treatment in each of these models (as well as in the
model including only treatment) we also get an idea of possible confounding.
We recommend all of the variables found of importance in such a screening
to be entered in an initial model, along with the variables known previously
to have an effect. Also, variables of primary interest in the investigation may
be entered even if found nonsignificant in such an initial screening.

The model derived in this fashion should then be subjected to model check-
ing and diagnostics along the lines of Section 6.1.5 before proceeding. This
is important in order to identify possible misspecifications of the covariate
effects, remembering that the functional form of these effects was determined
from simpler investigations not including other covariates.

If the model is found to be a reasonable description of the data, the next
step may be to make certain model simplifications, typically deletion of co-
variates from the model. From Section 2.3.3 we know the general ideas and
traditional methods regarding the technical aspects of testing hypotheses. We
have seen that testing involves choosing a level of significance and that this
level of significance may be interpreted as the risk of rejecting a true hypoth-
esis (error of type I), that is, the risk of finding an effect that in fact is not
present. On the other hand, an often much greater risk is that of accepting a
false hypothesis (error of type II), failing to detect an effect that is actually
present but may be too small to be identified with the given amount of data.

A common strategy in statistical analyses of multiple regressions models,
(i.e., models including many covariates) is to exclude any covariate with no
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significant effect on the outcome, at least if they are not predefined to be
variables of special interest. However, because a nonsignificant covariate is
not necessarily without effect on the outcome (seen in the light of a type II
error as explained above), this may be a dangerous route to follow. Each time
we eliminate a covariate on the basis of a test, we run the risk of leaving out
a potentially important predictor, and more so if we have a limited amount of
data. Part of the effect otherwise explained by this covariate is now explained
by the remaining covariates in the model and another part of the effect will not
be explained at all. If the covariate eliminated is closely correlated with one
or more covariates remaining in the model, almost all of its predictive ability
will be “taken over” by these, leading to a bias in the resulting estimates.
Simulation studies show this effect to be substantial especially in situations
with many covariates (e.g., Harrell, 2001, Ch. 4). A sound principle is to keep
the covariates of interest in the model, at least until it feels safe to conclude
that their effect, if any, is too small to be of any substantial interest.

This risk of bias has led to a general recommendation of not reducing the
model at all, but to stick to the initial model (of course provided that model
checks do not contradict this). Whereas this will, indeed, reduce the risk of
bias, it may on the other hand give rise to larger standard deviations of the
estimates leading to the traditional dilemma with a trade-off between bias
and precision.

We recommend a compromise between the two extremes in which we re-
duce the model by omitting insignificant variables provided that this does not
induce substantial changes in the effects of the covariates of interest. It then
remains to be determined what is meant by a substantial change and this may
to some extent depend on the circumstances. A threshold of 10% seems to be
reasonable in most situations (e.g., Jewell, 2004, Ch. 9).

Moreover, in the model selection process, model checks should be routinely
performed to ensure that omission of covariates does not induce violations of
assumptions. We collect principles for model checks in Section 6.1.5.

Digression. Automatic variable selection

In the forward selection procedure, the process starts out with an empty initial
model. All covariates are now screened one at a time for effect on the outcome and
the one found to be the most significant is entered into the model. In this process it
is assumed that all covariates are transformed in a way so that they can be entered
directly in the linear predictor. Also note that including interactions in this process
requires that they are constructed as new covariates and that inclusion of such
interaction covariates is extremely dangerous and may lead to all kinds of ridiculous
results.

Having identified the most significant covariate, the next step is to look through
all models with two covariates, namely the one found in the previous step plus
one of the remaining. Again the choice is to include the covariate that has the
most significant effect on the outcome, only now adjusted for the first covariate.
This iterative process of selecting the most significant covariate from the remaining
variables is continued until none of the remaining covariates is found significant.
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The level of significance in this iterative process is often somewhat higher than the
usual, meaning that variables enter the model even if they are nonsignificant at the
traditional level.

In the backward elimination procedure, the process is the opposite. The pro-
cess starts with an initial model including all possible covariates considered to be
relevant for the specific question (a “full model”, although we should take proper
precautions not to include more than the amount of data can support). The vari-
ables are now removed sequentially from the model, in each step eliminating the one
with the largest P -value. This process stops when all covariates left in the model are
significant at some prechosen level. A hybrid process is to allow either an exclusion
or an inclusion in each step.

A competing procedure for model selection is simply fit all possible models con-
structed from the available covariates (“all subsets regression”) . If there are nc

possible covariates to choose from, this gives a total of 2nc different models to con-
sider (if only models without interactions are considered). Each model can then be
evaluated according to some criterion (of which several exist) and the most successful
candidate chosen for interpretation and future use. The most widely used criterion
is the Akaike’s information criterion (abbreviated AIC; see, e.g., Harrell, 2001, Ch.
9), a measure of the goodness-of-fit of the model, that is, a trade-off between com-
plexity of the model and precision of the estimates. The determination coefficient
that describes the amount of explained variation (the quantity R2, as discussed in
Chapter 4), should under no circumstances be used for this purpose inasmuch as
model complexity does not influence this quantity and hence it will always point to
the most complicated model (i.e., the one including all covariates) as the best one.

If applying an automatic procedure it is strongly recommended to use only part
of the available data, say two thirds, and leave the last third for evaluation of
the selected model. This cross-validation principle will most often show that the
covariates in the model are not quite as strong predictors as they were first seen
to be, a phenomenon called shrinkage. If the predictive ability of the model on the
remaining third of the data is very different from expected (based on the findings
from the dataset used for identification of the model), it is a hint that we should
not trust our model.

Automatic model-finding processes suffer from high instability, in the sense that
a particular transformation of a single covariate or a slight change in a few ob-
servations may lead to a completely different model. Furthermore, such automatic
procedures run a high risk of identifying covariates to be important predictors even
though they are in fact of little or even no importance at all.

However, the worst “feature” of the automatic selection procedures is that they

treat all covariates in the same manner, no matter whether they are variables of

main interest, basic-type variables, or covariates that are tried out for the sake of

completeness. This means that in the process of comparing P -values for entering or

eliminating covariates from the model, a truly important variable of main interest

(e.g., the exposure itself) may disappear from a model with too many interrelated

covariates. �
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6.1.5 Model checks and diagnostics

In Chapters 3 to 5, we have shown a number of examples of various types of
models and analyses of these. In this connection it was emphasized that it
ought to be an integral part of any statistical analysis to examine the appro-
priateness of the model because gross deviations from the model assumptions
may lead to unreasonable and erroneous conclusions.

We here briefly sum up the various ways that such model checks can be
carried out. They are to a certain extent dependent upon the type of outcome,
thus not all methods described below are equally informative or even appli-
cable in all situations. In Sections 6.2.1–6.2.3 some of the most important of
these methods are used in examples covering the three main types of outcome:
quantitative, binary, and survival time.

Our opinion is that the most important tool for assessment of the model is
diagnostic plots and, in particular, plots of residuals against covariate values.
Such plots are used to check whether the covariate effect is correctly spec-
ified. Whereas these may be readily constructed for quantitative data, they
demand a little extra for binary data and for survival times, as explained
in Section 4.1.2, respectively, 4.1.3. These residual plots should ideally look
chaotic, that is, with no obvious systematic structure such as trends (linear or
curved), trumpets and the like. For binary data and survival times, this assess-
ment requires that the plots are supplemented with a smoothing curve, but a
smoother is also useful (though not mandatory) for quantitative outcomes.

Other types of residual plots are also called for in particular situations. For
instance, for quantitative data, we may investigate an assumption of constant
standard deviation by plotting residuals against predicted values. For more
information, the reader is referred to the relevant sections such as Sections
4.1.1, 5.1.1 and 5.1.2.

Residual plots may be supplemented by numerical tests for model fit. The
specific nature of such tests depends on the particular type of model, but the
general idea is to look at a more general model (relaxing one or more of the
assumptions of your original model) and then perform a test for the reduction
from the general model to the more restrictive model. Such tests, as well as
tests based on “(O − E)2/E”, are referred to as a goodness-of-fit test.

If clear systematic structures are present in any of the residual plots, or
if a goodness-of-fit test shows inadequacy of the proposed model, it must be
revised. The residual plots will show which aspects should be modified and
the process of modification can then follow the general rules as laid out in
Section 6.1.3.

Whereas residual plots may detect an inadequacy of the proposed model to
describe the collected data, we may also reverse the concepts and ask if there
are observations that do not fit well with the model. This is done by mak-
ing diagnostic plots, the nature of which will depend on the particular kind
of model. The general idea is to look for observations with large residuals.
Such observations may be called outliers and they ought to be investigated
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more closely, partly because they may provide new information (we may dis-
cover that they were taken under special circumstances, the effect of which
we had not thought about previously) and partly because they may distort
the conclusion by having an unduely large influence.

What to do about such outliers is another matter. Some general rules
apply, however. Do not exclude outliers simply because they are “misbehaved”
but exclude them only:

• If they are erroneous
• If the circumstances are so special that it might have been used as an exclu-

sion criterion (and then remember to leave out also all other observations
with the same circumstances) and limit the conclusions accordingly

• If they have an unduly large influence on the results due to an extreme
value of a covariate (or perhaps an extreme combination of covariate val-
ues), in which case all other observations showing this type of covariate
pattern should be excluded (this is actually just another form of an inclu-
sion criterion).

Observations may be influential without showing up as outliers. In small to
moderate-sized samples, it is therefore wise to investigate the influence of each
single observation and take action as mentioned above if very influential ob-
servations are detected. For detection of outliers and influential observations,
it is generally advisable to use the leave-one-out residuals as described in Sec-
tion 2.3.2. These exist for quantitative and binary outcomes and are better
suited for detection of atypical/unusual observations although the similarity
to traditional residual plots will often be close, especially for large datasets.

If outliers are retained in the data, the model may have to be modified, for
example, by including an extra covariate describing the special circumstances
found in the outlying observations. However, because this may be a chance
finding, it should be investigated further in a subsequent study before we can
really trust such an effect.

6.1.6 Collinearity

During the analyses of data, including changes made in the model as a con-
sequence of model checks and testing of preplanned hypotheses, one may en-
counter problems of various kinds such as large changes in parameter esti-
mates when removing (or changing the scoring of) another covariate, ridicu-
lously large standard deviations for estimated parameters, or signs of a few
extremely influential observations. Such problems make it very hard to draw
precise conclusions regarding the effects of any particular covariate and, in
extreme situations, computer programs may even issue a warning saying that
some numerical instability has occurred, for example, division by a near-zero
value.

A model exhibiting such problems may still be perfectly valid for pre-
diction purposes, at least when the covariate values for the new subject are
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comparable to those that appear in the dataset used for estimation. It may,
however, at the same time be totally useless for the scientific purpose of de-
termining whether it is covariate x1 or x2 that carries the effect. This problem
occurs in situations where x1 and x2 are highly correlated and in that case it
is easily detectable. However, it may also occur in situations where no single
correlation between any two covariates is exceptionally large, for example, if
one variable is approximately the sum of two of the others. We say that we
have an approximate linear constraint between the covariates in this case,
x1 + x2 − x3 ≈ 0, and we use the term ill-conditioned or collinearity for the
data at hand. Such a situation may easily go undetected and only present itself
as increased standard deviations for the estimated parameters. If a few ob-
servations deviate from the near-constraint, these will have an overwhelming
effect on the result of the estimation, because these observations will carry the
only available information on how to separate the influence of the variables in
question.

A quite common situation is a multiple regression analysis with too many
covariates in the model, showing all covariates to be insignificant when evalu-
ated by separate tests but, at the same time, clearly demonstrating the ability
to predict the observed outcome. This tells us that at least some of the covari-
ates carry information, perhaps in unison, but that at the same time, every
single one of them may be dispensed with as long as we keep all the others in
the model.

For scientific purposes, such ill-conditioned data are annoying. Various
methods have been implemented in the main statistical software packages to
allow for detection of problems. Typically, they pinpoint certain near-to-linear
constraints on the covariates and the next step must be either to eliminate
some of those covariates involved in such a linear constraint or perhaps com-
bine closely related covariates into a common scale (e.g., frequency of intake
of a number of food items). An example may be a study on children where it
may be extremely difficult to single out the effects of age, height, and weight
inasmuch as they more or less increase at the same rate during childhood.
Shifting focus to age and body mass index (combining the two correlated co-
variates height and weight into one single new covariate, body mass index)
may help somewhat, although not entirely, because body mass index is known
to be increasing with age in childhood as well. A possible solution could be to
use weight or body mass index in the form of a Z-score, indicating the nor-
malized deviation from an age-dependent average body mass index. However,
such an approach requires that the dependence between body mass index and
age is considered known (or can be estimated sufficiently precisely from the
data).

6.1.7 Interactions

In all of the above subsections, we have discussed only models in which each
covariate enters additively. That is, even if the effect of a single covariate
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may be described by a complicated spline function, this spline function is
subsequently added to the effects of all the other covariates to form the linear
predictor. In other words, the effect of one covariate is assumed to stay the
same no matter how the values of all the remaining covariates change. This
assumption is the assumption of no interaction as explained in detail in Section
5.2.

Models with no interactions are relatively simple because the effect of each
covariate can be interpreted independently of the value of every other. The
effect of a covariate may depend upon other variables being present in the
model (confounding) but it does not change according to the value of these
other covariates. For instance, the effect of the mother’s weight on the weight
of a newborn may diminish if we also include parity in the model, but this
does not mean that the effect of mother’s weight changes with parity.

Models with interactions are more complicated to understand and com-
municate because they involve specification of effects that vary according to
the value of one or more other covariates. Also, the diagrams (DAGs) in-
troduced in Section 6.1.2 do not immediately accomodate interactions. For
these reasons, interactions should not be entered uncritically in the model.
They make the models much more complicated and put a higher demand on
the sample size because they include more parameters. Only prespecified in-
teractions should be considered: interactions that have an intuitive scientific
interpretation (experience shows a formidable ability to explain chance inter-
actions found to be significant). Often, interactions with basic variables such
as exposure, treatment, gender and age may be worthwhile considering. When
entering interactions in the model, take care to be parsimonious in order to
obtain a test with reasonable power. This may, for instance, imply collapsing
some categories of a categorical covariate in the specification of an interac-
tion between this and other covariates (see Section 5.2.4 for more details and
examples).

6.2 Examples

In this section, the principles for model building, outlined in Section 6.1, are
illustrated by discussing three examples in detail. These three examples have
all been used for illustration and motivation in previous chapters and rep-
resent the three main types of outcome variables covered. Thus, in Section
6.2.1 we study Example 1.1 including the quantitative outcome, vitamin D,
Section 6.2.2 discusses Example 1.4 with the binary outcome postsurgery com-
plications, and in Section 6.2.3 we go through Example 1.3 dealing with the
survival time outcome, time to treatment failure, among patients with PBC.
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6.2.1 The vitamin D example

In the previous chapters we have repeatedly returned to Example 1.1 from
Section 1.1 concerned with body mass index and vitamin D concentration for
women.

The objectives of this study were to determine the vitamin D status among
women from different countries in Europe, and in particular to identify deter-
minants that could explain the discrepancy among the four countries. Such
determinants could be age, body mass index, sun exposure habits, and intake
of vitamin D (from the food and from possible supplements).

Table 6.2.1. Median values for vitamin D concentration and potential explanatory
variables for the women in four European countries

Country Number Vitamin D Age Body Mass Index Vitamin D Intake

Denmark 53 47.80 71.51 25.39 8.29
Finland 54 46.60 71.92 27.98 12.41
Ireland 41 44.80 72.05 26.39 5.46
Poland 65 32.50 71.69 29.37 5.16

Table 6.2.1 shows medians (nmol/L) for vitamin D concentration, as well
as for age, body mass index (BMI) (kg/m2), and vitamin D intake (nmol/L).
We saw in Sections 3.1.1, 3.2.1, and 4.1.1 that body mass index was negatively
associated with vitamin D status. This fact is also reflected in Table 6.2.1 from
which we see that the Polish women have the highest level of BMI and by far
the lowest level of vitamin D. We may therefore conjecture that the difference
between countries is caused by this difference in body mass index.

Following the arguments from Section 3.1.1 (regarding symmetric distri-
butions and constant standard deviation) we use a logarithmic transform of
vitamin D in the analyses to follow. The model for comparing the four coun-
tries (C) with respect to logarithmic vitamin D concentration (Y) is described
by the very simple diagram

Country → Vitamin D

and applying methods from Section 3.2.1 yields a highly significant result
(P < 0.0001), stating that Poland has indeed a lower mean than the other
three countries.

If we assume that all of the difference among countries is mediated by
BMI, the model would be

Country → BMI → Vitamin D

but it is probably more realistic to assume that body mass index can only
account for some of the discrepancy between countries, so that we are rather
dealing with the model
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BMI: Body mass index
C: Country
Y: Vitamin D

In fact, the results from this latter model show that only a small part of
the difference between vitamin D concentrations in the four countries may be
accounted for by the differences in body mass index even though the body
mass index is a strong predictor (̂b = −0.0115(0.0035), P = 0.0012). Table
6.2.2 shows that the estimated differences among countries, adjusted for body
mass index (i.e., differences among women in different countries conditioned
to have the same body mass index) are only moderately different from the
estimated marginal differences. Likewise, there is still a highly significant dif-
ference among countries (P = 0.0002), so there is plenty of room for looking
for other explanatory variables.

Table 6.2.2. Marginal estimated differences among countries and estimated differ-
ences adjusted for the effect of body mass index.

Comparison Marginal Differences Adjusted Differences

Denmark vs. Poland 0.142 (0.063, 0.221) 0.114 (0.035, 0.193)
Finland vs. Poland 0.168 (0.090, 0.246) 0.161 (0.084, 0.238)
Ireland vs. Poland 0.171 (0.086, 0.256) 0.141 (0.056, 0.226)

As mentioned previously, such explanatory variables could be age (A),
sun exposure habits (S), and intake (I) of vitamin D (from food and possible
supplements). These may all be influenced by the country of residence, so they
are to be regarded as intermediate variables between country (C) and outcome
(Y, i.e., vitamin D concentration). The diagram for the situation would be as
illustrated in Figure 6.2.1.

A: Age
BMI: Body mass index

C: Country
I: Intake of vitamin D
S: Sun exposure habits
Y: Vitamin D

Fig. 6.2.1. Diagram of model for explanation of country differences in vitamin D
concentration.
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In order to pursue the search for variables that can explain the differences
among countries, we try to include all of the variables from Figure 6.2.1. Three
of the variables are quantitative: body mass index (BMI), age (A), and vitamin
D intake (I) and we have to decide how to model the effects of these. Figure
6.2.2 shows initial (marginal) graphical investigations where the logarithmic
vitamin D concentration (the outcome) is plotted against each quantitative
covariate, without adjustment for other potential covariates. For body mass
index, it seems reasonable to start with a linear effect (as we have previously
done in Section 5.3.1) and likewise for age (which hardly has an effect at all
in this narrow age range). For vitamin D intake, the effect seems to level off
for large values and a logarithmic transformation of this explanatory variable
seems to be more reasonable if the effect is to be modeled linearly. This is in
some sense also more “logical” inasmuch as the units for this variable are the
same as for the outcome.

Sun exposure habits is a categorical variable with three levels (prefer stay-
ing in the sun, stay sometimes in the sun, avoid staying in the sun). Table
6.2.3 shows median values of body mass index and vitamin D concentration,
subdivided according to sun habits. We note a tendency for higher vitamin D
levels for women preferring to stay in the sun and likewise, the lowest vitamin
D level is found for women avoiding the sun. There does not seem to be any
clear association between body mass index and sun habits.

Table 6.2.3. Median values for vitamin D and body mass index, according to sun
exposure habits.

Sun Habits Number Vitamin D Body Mass Index

Prefer sun 39 43.70 28.78
Sometimes in sun 104 41.30 26.90
Avoid sun 70 38.30 27.28

We may also investigate the association between country and sun habits. If
Polish women tended to avoid the sun, this could be the explanation for their
lower level. In Table 6.2.4 this is actually seen to be the case although Irish
women show the same pattern. The conjecture could be that the combination
of avoiding sun and having a high body mass index could account for the low
level among Polish women.

Table 6.2.5 shows the estimates in the model including all of the above
mentioned covariates (Model 1). Age has next to no effect at all, thus we
choose to exclude this from the analysis. The resulting estimates appear in
Table 6.2.5 in the column “Model 2” and we note that this hardly changes the
estimates. In Model 2, the variable “sun” has a P -value of 0.25 and in Model
3, it is excluded. Note that this exclusion leads to a rather large change in the
estimated difference between Finland and Poland ((0.0860−0.0747)/0.0747 =
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Fig. 6.2.2. Scatterplot, with superimposed smoother, of vitamin D concentration
(log10-transformed) versus each of the quantitative variables (in addition plotted
against logarithmic (base 10) values of vitamin D intake).

Table 6.2.4. Number of women according to country and sun exposure habits

Sun habits Denmark Finland Ireland Poland

Prefer sun 15 (28.3%) 15 (27.8%) 4 (9.8%) 5 (7.7%)
Sometimes in sun 24 (45.3%) 25 (46.3%) 21 (51.2%) 34 (52.3%)
Avoid sun 14 (26.4%) 14 (25.9%) 16 (39.0%) 26 (40.0%)

Total 53 41 65 54
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15%), and we may, therefore, want to retain it in the model, if this parameter
is of main interest.

Table 6.2.5. Estimates from the model indicated by the diagram in Figure 6.2.1
(Model 1), and simplifications of this (Model 2 and Model 3).

Model 1 Model 2 Model 3

Variable bb SD bb SD bb SD

Body mass index –0.00978 0.00317 –0.00983 0.00316 –0.00927 0.00313

Age –0.00394 0.00948

Vitamin D intake (log10) 0.255 0.036 0.255 0.036 0.258 0.035

Sun
Prefer sun 0.0430 0.0368 0.0435 0.0367
Sometimes 0 — 0 —
Avoid sun –0.0195 0.0301 –0.0215 0.0297

Country
Denmark 0.0964 0.0367 0.0959 0.0366 0.1090 0.0357
Finland 0.0764 0.0373 0.0747 0.0370 0.0860 0.0362
Ireland 0.1408 0.0389 0.1382 0.0384 0.1407 0.0385
Poland 0 — 0 — 0 —

All models from Table 6.2.5 show — not very surprisingly — that the
intake of vitamin D has a very significant positive effect on the outcome.
However, inclusion of this important covariate still cannot account for the
differences between the countries (P = 0.0013 for the effect of country in the
adjusted model).

Before we proceed we have to make sure that Model 3 from Table 6.2.5 is
reasonable. Figure 6.2.3 shows residual plots for all the explanatory variables
considered, as well as residuals plotted against predicted values. For the quan-
titative covariates, a smoother has been added to aid the search for patterns of
deviations from the model. We find all plots to show no structure at all, indi-
cating that the model has no obvious flaws. A few outliers are present, though.
In particular one woman from Finland and one from Poland have rather large
negative residuals. Both women tend to avoid the sun but otherwise there are
no common characteristics for the two. Note that the residuals used in these
plots are the ordinary residuals yi−m̂i with units identical to the units of the
outcome. We have also made plots using other kinds of residuals, and their
appearance is similar (not shown).

We now turn to consider possible interactions. With a total of six covari-
ates there may be many of these but we remember from Section 6.1.7 only
to consider those that may be anticipated from a theoretical point of view.
Two of these come into mind, involving country on the one hand and sun
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Fig. 6.2.3. Residual plots for model 3 from Table 6.2.5. Symbols used: Denmark
(×), Finland (�), Ireland (•) and Poland (◦).

exposure habits (S) or vitamin D intake (I) on the other hand. Inasmuch as
the aim is to explain the differences among countries, it may at first seem
somewhat strange to include interactions involving country. However, such an
interaction (or two) may actually (provided that it is big enough) be the very
explanation of the differences among countries. This is most easily seen in the
case of interaction between country and sun exposure habits: the effect of sun
exposure habits is expected to vary among countries because the sun is not
equally strong in all countries. If the differences among countries were only
present among women who preferred to stay in the sun, and if the difference
were compatible with weather conditions in the countries, this might explain
the differences.

The same arguments may hold for vitamin D intake (I). Due to possible
differences in the vitamin content of otherwise identical food items we could
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expect this variable to have different impacts in different countries. In order
to see whether this can explain the differences in different countries, we need
very precise measurements of food consumption, presumably also concerning
other vitamins or tracers.

In order to investigate graphically whether such interactions may be
present and how they are to be modeled, we may use two approaches. The first
one inspects the marginal relationship between vitamin D concentration and
the covariate whereas the other looks at residuals from Model 3 above. The
former approach is more directly interpretable in terms of relation between
covariate and outcome. For vitamin D intake, this is seen in the left panel
of Figure 6.2.4 which indicates slightly different effects of vitamin D intake
among the four countries. However, this approach suffers from the fact that
we have not adjusted for any other covariates (in this case body mass index).
Therefore, the residual approach shown in the right panel of Figure 6.2.4 is
to be preferred. Here, the residuals are plotted against logarithmic vitamin
D intake for each country and the figure seems to show no clear systematic
patterns.
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Fig. 6.2.4. Scatterplot investigating a possible interaction between country and
logarithmic vitamin D intake, with smoothers according to country. Left panel:
Marginal effect. Right panel: Residual effect, adjusted according to Model 3 from
Table 6.2.5. Symbols used: Denmark (×), Finland (�), Ireland (•) and Poland (◦).

Likewise, we could investigate a possible interaction between country and
sun exposure habits but inasmuch as these are both categorical we do not have
to investigate the functional form. We may, however, argue that an interaction
between four countries and three levels of sun exposure habits involves several
degrees of freedom and, following the lines of Section 5.2.4, we may therefore
want to collapse categories (for sun habits) when looking at interactions. In
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the light of the numbers in Table 6.2.3 there is, however, no obvious choice
for this collapsing so we stick to the full representation of the interaction.

Table 6.2.6 shows the estimates from the model with both of the above
mentioned interactions. The results show that the effect of vitamin D intake
is stronger in Denmark than for the rest of the countries. In particular, Fin-
land and Ireland show small and insignificant effects. The overall interaction
between country and vitamin D intake is strongly significant (P = 0.0031).
The interaction between sun habits and country is also significant, although
only borderline (P = 0.026). Figure 6.2.5 shows a graphical illustration of the
estimates, and the effect is seen to be quite difficult to interpret. A cautious
interpretation might be that the effect of sun habits is only seen for Finland
and Poland, and in somewhat different ways (Finnish women having large
values for both “sometimes” and “prefer” whereas Polish women only have
large values for “prefer”; there are only five women in this group). For Den-
mark we see hardly any effect but for Ireland the relationship between sun
exposure and vitamin D seems to be reversed. We can offer no explanation for
this except for the fact that the group “prefer sun” contains only four Irish
women.

Table 6.2.6. Estimates from the model (Model 4) including two interactions: Coun-
try with sun habits and intake. The common effect of body mass index is estimated
to –0.0090 (0.0031).

Vitamin D Sun Habits
Intake Sometimes Prefer vs. Avoid vs.
(log10) in Sun Sometimes Sometimes

Variable bb SD bb SD bb SD bb SD

Denmark 0.4365 0.0617 1.6318 0.0369 0.0699 0.0594 0.0042 0.0616
Finland 0.1321 0.0869 1.6724 0.0400 –0.0191 0.0588 –0.1425 0.0612
Ireland 0.1149 0.0810 1.6207 0.0395 –0.093 0.0998 0.0960 0.0613
Poland 0.2453 0.0574 1.5266 0.0312 0.1737 0.0886 –0.0424 0.0475

The conclusion to our analysis of the vitamin D study is somewhat unsat-
isfactory because we have not been able to explain the differences in vitamin
D concentration between the four countries. We have found body mass index
and vitamin D intake to be important predictors, the latter with an effect de-
pending on country. Even though sun habits were not marginally important,
it showed significance in an interaction with country. However, there is still a
large difference between countries even for women who avoid staying in the
sun, therefore this does not help in explaining the differences among countries.
On the contrary, it seems to suggest even bigger differences among countries
if we try to explain the very different patterns according to sun habits.

Finally, we investigate whether there are influential observations in the
dataset. Figure 6.2.6 shows a plot of Cook’s distance (the combined measure
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Fig. 6.2.5. Illustration of the interaction between sun habits and country, from
Model 4 in Table 6.2.6. Predicted values for median body mass index and vitamin
D intake. Symbols used: Denmark (×), Finland (�), Ireland (•) and Poland (◦).

for changes in the estimated effects due to deletion of individual observations;
see, e.g., Section 4.1.1). We note a single somewhat influential subject (the
largest Cook distance, approximately 0.1). This is a woman from Finland
avoiding the sun and we have discussed her previously in connection with
the residual plots in Figure 6.2.3. She has a much lower observed vitamin D
concentration (5.2) than predicted (33.3). Her influence is particularly large
for the interaction parameters involving Finland, that is, the parameters de-
scribing the differences among Finland and the other countries regarding the
effect of vitamin D intake (left panel of Figure 6.2.7) and “avoiding sun” (right
panel of Figure 6.2.7).

Conclusion

The overall conclusion from this example is that we have not been able to
explain the differences among countries. We have detected an interaction be-
tween country and sun habits, with no clear interpretable pattern. Because
of this unconvincing pattern, we here report the results from a model exclud-
ing this interaction. Apart from a difference among countries, the final model
therefore includes an effect of body mass index with b̂ = −0.0096(0.0031) and
an effect of vitamin D intake that varies from one country to another. The
estimates of this latter effect are seen in Table 6.2.7. Because all of the anal-
yses were carried out on a logarithmic scale for level of vitamin D, it remains
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Fig. 6.2.7. Influence measures for selected estimated effects: interactions among
Finland and the other countries regarding effect of vitamin D intake and “avoiding
sun”. Symbols used: Denmark (×), Finland (�), Ireland (•) and Poland (◦).
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to transform back to the original scale (see Appendix B). The effect of a one-
unit increase in body mass index corresponds to multiplying the vitamin D
level by 10−0.0096 = 0.978, with a corresponding 95% confidence interval of
(10−0.0157, 10−0.0036) = (0.965, 0.992). This means that, for women from all
countries, an increase in body mass index of one unit (e.g., approximately 3
kg for a women measuring 1.65 m) gives an estimated decrease in vitamin D
level of 2.2%, with confidence interval from 0.8% to 3.5%.

For the effects of vitamin D intake, the estimates are recalculated in Table
6.2.7 to give the effect of doubling vitamin D intake. An example of this

calculation, for Danish women, is 2
bb = 20.4349 = 1.352.

Table 6.2.7. Estimated effects on the original scale, ignoring the interaction be-
tween country and sun habits.

Estimate Effect of Doubling
for Vitamin D the Vitamin D

Intake Intake

Country bb 95% CI Ratio 95% CI

Denmark 0.4349 (0.3126, 0.5571) 1.352 (1.245, 1.468)
Finland 0.1744 (0.0028, 0.3461) 1.129 (1.005, 1.267)
Ireland 0.0918 (-0.0671, 0.2507) 1.066 (0.957, 1.186)
Poland 0.2263 (0.1140, 0.3386) 1.170 (1.085, 1.262)

Table 6.2.7 shows that a doubling of the vitamin D intake would on average
increase the vitamin D level in the blood by only 6.7% for an Irish woman
but with 35.2% for a Danish woman.

6.2.2 The surgery example

Recall Example 1.4 from Section 1.1 involving 691 patients, undergoing either
orthopedic, gynecological or abdominal surgery. The purpose of the study was
to determine whether some types of neuromuscular blocking agents (NBA)
were more prone to postsurgery pulmonary complications than others. Fur-
thermore, it was of interest to know whether residual neuromuscular block
(RNB, measured by some clinical tests following operation, but here indi-
cated by a measure of neuromuscular function called TOF-ratio) was a risk
factor for complications, and in particular so for Pancuronium (which, by the
way, is the only long-acting drug among the three).

The outcome of interest is the binary variable

yi =

⎧⎨
⎩

1, if subject i experiences a postsurgery complication,

0, otherwise.
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The number of complications (the actual counts as well as the percentage of
the corresponding group) for each of the three neuromuscular agent groups
appear in Table 6.2.8. Based on this table, the three agents appear to have
quite similar risks of postoperative complications, perhaps with a slightly
increased risk for Pancuronium.

Table 6.2.8. Complications in relation to type of neuromuscular blocking agent
(NBA).

NBA Number Complications (%)

Pancuronium 230 19 (8.3)
Vecuronium 230 14 (6.1)
Atracurium 231 13 (5.6)

Total 691 46 (6.7)

The study was conducted as a block randomized study with surgery groups
as blocks. This means that patients from each surgery group were randomized
to receive one of the three neuromuscular blocking agents (Pa, At, or Ve).
In principle, therefore, there should be no relation between type of surgery
and blocking agent and a valid inference for assessing the effect of NBA is
to follow the discussion of Section 3.2.2 and do a simple comparison of the
three estimated probabilities of Table 6.2.8. This results in a chi-squared test
statistic of 1.466, which under the hypothesis of no difference between the
three neuromuscular blocking agents is distributed as χ2(2), giving P = 0.48,
that is, no detectable difference.

Due to drop-outs there is, however, a tiny difference in the distribution
of NBA in the three surgery groups as seen in Table 6.2.9. We may therefore
see a slight confounding from type of surgery on the effect of NBA because
we know from Sections 3.1.2 and 3.2.2 that type of surgery (S) has a clear
impact on the risk of complications (Y) in the sense that abdominal surgery
has a larger risk of complications than the two other surgery groups.

Table 6.2.9. Number of patients according to surgery type and neuromuscular
agent.

Neuromuscular Blocking Agent Total
Surgery Group Pancuronium Atracurium Vecuronium

Orthopedic 72 (35.0%) 66 (32.0%) 68 (33.0%) 206 (100%)
Gynecological 75 (31.3%) 84 (35.0%) 81 (33.8%) 240 (100%)
Abdominal 83 (33.9%) 80 (32.7%) 82 (33.5%) 245 (100%)

Total 230 230 231 691
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It is also suspected that age (A) and the duration of the anesthesia (D)
could also affect the probability of a complication. Further variables that might
come into consideration (but are not considered here) include gender, general
health status of the patient, weight, smoking habits, and body temperature.

Our main interest lies in the effect of the neuromuscular blocking agent
(NBA) and residual neuromuscular block (RNB) on the risk of complications
(Y), and because it is likely that NBA may influence RNB, the diagram will
initially look like:

RNB is an intermediate variable for the effect of NBA on the risk of compli-
cation, therefore it should not be entered in the model when the aim is to
evaluate the effect of NBA. On the other hand, including RNB in the model
can answer our second question, namely whether a difference between NBA
groups (had there been any) could be explained by an induced risk of RNB.
Expanding the model with all of the covariates mentioned so far, we get the
diagram:

A: Age
D: Duration of surgery

NBA: Neuromuscular
blocking agent

RNB: Residual neuro-
muscular block

S: Surgery type
Y: Complications

For assessment of the effect of NBA, we should omit the intermediate
variables D and RNB, so that the model becomes that of Figure 6.2.8.

Because the outcome is a binary variable (complication 0: no, 1: yes), we
model the expectation E(yi) = pr(yi = 1) using the traditional logit link, as
explained in detail in Sections 3.1.2 and 4.1.2. The linear predictor on this
logit scale has to be a function of the three variables in Figure 6.2.8 (i.e., A,
S, and NBA). The categorical variables S and NBA each have three levels and
their effects are modeled by choosing a reference category and estimating the
difference between this reference level and the other two levels. The variable
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A: Age
NBA: Neuromuscular

blocking agent
S: Surgery type
Y: Complications

Fig. 6.2.8. Model diagram for initial model without intermediate covariates.

age (A) is a quantitative variable, and we must decide how to enter it into
the linear predictor. It is a common belief that older patients have a higher
risk of complications, but whether this effect is gradual (so that age could be
modeled as having a linear effect) or whether it is only an effect seen above
some threshold (such as, e.g., 60 years, a commonly chosen threshold) remains
to be investigated.

We therefore initially choose the effect of age as a linear spline (i.e., a
broken line; see Section 4.2.1), with a break at the age of 60. This means that
age gives rise to two covariates, namely age xi itself as well as the variable
defined from age as

x+
i = (age − 60)I(age > 60).

When these two age-related covariates are included in a model for the
risk of complications, along with the two categorical variables surgery type
and NBA, we get the results presented as Model 1 in Table 6.2.10. We see
that the effect of a ten-year increase in age before the age of 60 is estimated
as an odds ratio of 1.78. However, for ages beyond 60, a ten-year increase
only gives an estimated odds ratio of 1.45. Thus, the extra component in
age (corresponding to the break at the age of 60) makes the curve bend in a
somewhat unexpected downwards direction but because it is not significant
(P = 0.58) we are content with the initial choice of modeling age by a linear
effect. This changes our results to those of Model 2 in 6.2.10.

We see that both age and surgery type are very significant predictors
for the probability of a complication. For abdominal patients the odds of a
complication are estimated to be six to eight times as high as for the other
two surgery groups, and ten years of age increase the odds by more than 50%.
These effects are conditional upon the other two covariates being held fixed,
but irrespective of the value of these fixed values. For instance, the effect of
age is interpreted as the odds ratio for complication between two individuals
with an age difference of ten years having had the same type of surgery (S)
and the same type of neuromuscular blocking agent (NBA). We have included
no interactions in the model, therefore this odds ratio is assumed to be the
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Table 6.2.10. Estimates from Model 1 with linear spline (break at 60 years) in age,
and from Model 2 with linear effect of age.

Model 1 Model 2
Variable OR (CI) P OR (CI) P

Surgery type <0.0001 <0.0001
Abdominal vs. Orthopedic 8.11 (3.22, 20.45) <0.0001 8.32 (3.31, 20.95) <0.0001
Gynecological vs. Orthopedic 1.25 (0.36, 4.29) 0.73 1.27 (0.37, 4.37) 0.81

NBA type 0.48 0.45
Atracurium vs. Vecuronium 1.02 (0.45, 2.33) 0.96 1.03 (0.45, 2.34) 0.95
Pancuronium vs. Vecuronium 1.51 (0.71, 3.24) 0.29 1.52 (0.71, 3.26) 0.28

Age, 10 years increase 1.61 (1.30, 1.98) <0.0001
before age 60 1.78 (1.16, 2.74) <0.0088
beyond age 60 1.45 (0.95, 2.21)

same no matter at which surgery type and which blocking agent (NBA) we
are looking.

We may well question such an assumption of no interaction, in particular
between the two important covariates, age and type of surgery. Figure 6.2.9
shows residuals from Model 2 of Table 6.2.10, plotted against age and with
a superimposed smoother for each of the three types of surgery. We are con-
cerned about a possible pattern in these residuals and whether such a pattern
might be different in the three groups.

Figure 6.2.9 does not suggest any clear patterns in age and neither does
it suggest that the age effects differ from one surgery group to another. In-
cluding an interaction between age and surgery type in our model yields the
separate estimates of the age effect in the three surgery groups as shown in
Table 6.2.11, and even if these seem to be quite different, this difference does
not reach significance (P = 0.45), possibly because we have too few observed
complications. Note that, in this situation, it would be considered a fishing ex-
pedition to perform a subgroup analysis and interpret the formal significances
in two of the surgery groups and the nonsignificance in the third. Actually,
from Table 6.2.11 we see that even if the insignificant age effect in the gyneco-
logical group corresponds to the lowest estimated effect among the three, the
highly significant age effect in the abdominal group is only estimated a little
larger whereas the boundary significant effect in the orthopedic group is by
far the largest of the three. This has to do with the age distribution among
the patients experiencing complications in the three groups.

Even though the interaction between surgery and age is not significant,
this is not the same as saying that the age effects are necessarily identical in
the three groups. The reason is of course that we may well have overlooked
something due to too small a sample size (a type II error). In order to decide
whether anything important may have been overlooked we instead have to
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Fig. 6.2.9. Scatterplot of residuals from the model of the right-hand panel of Table
6.2.10 versus age, with superimposed smoothers according to surgery type.

look at estimated differences between age effects. For instance, the difference
between the age effect in the orthopedic group and the gynecological group is
estimated to be 0.591 with an estimated SD of 0.539 (i.e., with the confidence
interval (–0.466, 1.647)). This means that the age effect could have an odds
ratio up to a factor exp(1.647) = 5.19 higher in the orthopedic group compared
to the gynecological group. We are not in a position to decide whether this
may be important but it looks like a large possible discrepancy that cannot
be ruled out.

Table 6.2.11. Estimated age effects for each surgery group separately, adjusted for
NBA.

Surgery Group bb (SD) OR (CI) for 10 Years of Age P

Orthopedic 0.947 (0.459) 2.58 (1.05, 6.34) 0.039
Gynecological 0.356 (0.283) 1.43 (0.82, 2.48) 0.21
Abdominal 0.446 (0.122) 1.56 (1.23, 1.98) 0.0003

Inasmuch as the principal aim of this study was to evaluate the perfor-
mances of the three different NBA, it is of primary interest to see to which
extent this is affected by the modeling of the age effect, especially because
we have seen that we cannot feel certain about the modeling of the age ef-



6.2 Examples 337

fect due to an insufficient amount of data. Table 6.2.12 summarizes the odds
ratio estimates between the three neuromuscular blocking agents for different
models, and fortunately, we notice a very stable estimation of the differences
between the three blocking agents.

Table 6.2.12. Estimated odds ratios between NBA groups from models with dif-
ferent age adjustments.

Atracurium vs. Pancuronium vs. Pancuronium vs.
Model Vecuronium Vecuronium Atracurium

Linear age effect 1.03 (0.45, 2.34) 1.52 (0.71, 3.26) 1.48 (0.68, 3.20)
Linear spline for age 1.02 (0.45, 2.33) 1.51 (0.71, 3.24) 1.48 (0.68, 3.20)
Age–surgery interaction 1.03 (0.45, 2.35) 1.52 (0.71, 3.25) 1.47 (0.68, 3.18)

The tempting conclusion seems to be that there is no difference among
the three neuromuscular blocking agents. However, as always this conclusion
should not be taken on the basis of a significance test alone but always sup-
plemented with a careful consideration of the confidence intervals from Table
6.2.12. If these include values of interest (i.e., values that would have been in-
teresting if they were actually the true differences) our conclusion must be that
the study is inconclusive. For example, the comparison between Pancuronium
and Atracurium includes an odds ratio of more than three which can hardly
be called a small effect. In this situation, therefore, the conclusion is not just
that there are no significant differences among the neuromuscular blocking
agents but rather that, based on these data, there is insufficient information
to conclude whether there might be a difference among the neuromuscular
blocking agents.

Among the three NBA, it is known that Pancuronium behaves differently
from the other two by being of a so-called long-acting type whereas the other
two are short-acting. This makes it interesting to look specifically at two
of the three differences and maybe even collapse the two short-acting into
one group (seen from Table 6.2.12 that this is at least not spoken against).
This does not change the results much, though. We find an estimated OR for
complications for long-acting drug versus short-acting drugs to be 1.50 with
confidence intervals (0.78, 2.87) and P = 0.22.

This seems to conclude our assessment of differences among NBA and
at this stage, it would be sensible to perform a model check and search for
influential observations. In order not to overload this section with information,
we have chosen to present this only for the model that follows after including
additional covariates.
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Intermediate explanatory variables

In this example, we have two explanatory variables that are intermediate for
the neuromuscular blocking agent (which is the covariate of primary interest),
namely RNB (residual neuromuscular blockade) and duration of anesthesia.
Even if the general recommendation is to avoid the inclusion of such inter-
mediate covariates, the idea pops up that the different NBA may modify the
effect of one of these variables. It might, for example, be the case that the
long-acting drug Pancuronium could be especially hazardous in terms of com-
plication risk in the presence of RNB, even if Pancuronium as such did not
imply an increased risk of getting a RNB. Such a result would be of clinical
relevance because it would mean that one should be especially observant with
patients receiving this particular neuromuscular blocking agent. Therefore,
even if RNB is an intermediate variable for NBA, it may be relevant for the
evaluation of the NBA to include it in an interaction with RNB.

Because of the similarity between the two short-acting blockers Atracurium
and Vecuronium, we simplify the analyses that follow by collapsing these into
one, so that instead of NBA, we now have the categorical covariate long-act
on two levels (Pancuronium or one of the other two).

Residual neuromuscular blockade may be modeled in different ways. It
originates from a quantitative variable (called TOF-ratio) measuring the de-
pression of nerve stimulation on a scale between 0 and (ideally) 1. However,
from clinical experience, it is often dichotomized with a threshold of 0.7, values
below this threshold being considered dangerous for subsequent development
of complications. We therefore start out by modeling this covariate as a linear
spline with a break at 0.7.

Unfortunately, 15 patients have missing values for this covariate and be-
cause it is an intermediate variable, this could have potentially harmful con-
sequences for the analyses. As mentioned in Section 6.1.1, the important con-
sideration here is to make sure that the cause is not related to the outcome.
Unfortunately, we do have a problem here, because 4 of the 15 missing values
(26.7%) occur among the patients with a complication. In the total sample,
we see complications for only 46 patients out of 691 (only 6.7%).

We might, therefore, consider imputation of these values. This would re-
quire modeling of the TOF-ratio, with covariates such as age, duration of
anesthesia, and so on, and subsequently sampling from the resulting condi-
tional distribution. However, we choose not to do so. This is partly in the
light of the small proportion of missing values (approximately 2%) and partly
because such an imputation would be beyond the scope of this book. We
do, however, emphasize that the analyses including this intermediate variable
should be interpreted cautiously.

It turns out that the break at 0.7 in the linear model for the effect of RNB
(TOF-ratio) does not show an interaction with long-act, P > 0.2. Nor is it
significant, so we proceed with a model including both TOF-ratio and duration
as linear effects, the former with an interaction with long-act. The estimates
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from this model appear in Table 6.2.13. The interaction between long-acting
and TOF-ratio gives P = 0.007 and it is seen to be the long-acting drug
Pancuronium, which shows a somewhat stronger effect of TOF-ratio than the
other two drugs.

Table 6.2.13. Estimates in a model including duration of anesthesia and TOF-ratio,
the latter with an interaction with long-act.

Variable bb (SD) OR (CI) P

Surgery type <0.0001
Abdominal vs. Orthopedic 2.274 (0.506) 9.71 (3.60, 26.18) <0.0001
Gynecological vs. Orthopedic 0.789 (0.671) 2.20 (0.59, 8.20) 0.24

Age, 10 years 0.459 (0.116) 1.58 (1.26, 1.98) <0.0001

Duration of anesthesia, 1 hour 0.470 (0.160) 1.60 (1.17, 2.19) 0.0033

Long-act vs. short-act
at TOF-ratio 0.7 1.055 (0.571) 2.87 (0.94, 8.80) 0.065

TOF-ratio, 0.1 increase
Pancuronium –0.501 (0.163) 0.61 (0.44, 0.83) 0.002
Other two 0.344 (0.257) 1.41 (0.85, 2.33) 0.18

Residual plots for this model are shown in Figure 6.2.10. We note a down-
wards slope for the residuals in the Pancuronium group when TOF-ratio be-
comes small and when duration of anesthesia becomes large. This suggests
that we have overfitted these effects because we observe fewer complications
than expected under these circumstances otherwise considered to be danger-
ous. However, as apparent from Figure 6.2.10, the effect is due to very few
observations. As was the case for the example in the previous Section 6.2.1,
we also here made plots based on leave-one-out residuals with almost identical
results (not shown).

An overall goodness-of-fit test may be performed by subdividing the ex-
pected probabilities from the final model into 10 groups and comparing ob-
served and expected number of complications in these groups by a chi-squared
test. The observed and expected numbers are given in Table 6.2.14. The re-
sulting test statistic is 3.877 which evaluated in a Chi-squared distribution
with 8 degrees-of-freedom gives P = 0.87. This test is known as the Hosmer
and Lemeshow goodness-of-fit test (Hosmer and Lemeshow, 2000, Ch. 5). Note
that it may depend somewhat on the precise categorization into ten groups
and may be implemented a little differently in different statistical software.

Because of the relatively large size of the dataset we do not expect any
single observation to have a large influence on the results. However, we briefly
investigate this by looking at a plot of Cook’s distance (upper-left corner of
Figure 6.2.11) and changes in selected estimated parameters, namely for the
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Fig. 6.2.10. Residual plots for model from Table 6.2.13.

Table 6.2.14. Observed and expected number of complications in ten subgroups
according to predicted values.

Deciles of Predicted Number of Number of Complications
Probabilities of Complication Subjects Observed (O) Expected (E) O−E√

E

1 67 0 0.208 -0.456
2 68 0 0.458 -0.676
3 68 0 0.779 -0.883
4 67 1 1.093 -0.089
5 68 3 1.571 1.140
6 68 3 2.189 0.548
7 67 2 3.118 -0.633
8 68 4 4.895 -0.405
9 68 10 8.518 0.508
10 67 19 19.171 -0.0390

effect of age, duration of anesthesia, and the interaction between TOF-ratio
and long-acting NBA. We note a single quite influential observation with a
Cook value above 0.1. This corresponds to an abdominal patient aged 67,
with a duration of anesthesia of 255 minutes. In spite of a TOF-ratio of only
0.13 and the fact that Pancuronium (the long-acting neuromuscular blocking
agent) was used, this patient experienced no complication. We therefore see
the large influence on the interaction term (≈1) in the lower-right corner. We
also note that practically all the subjects with any noteworthy influence on
the estimated effect of age (and most of those with an influence on the effect
of duration) are subjects experiencing a complication. This is because compli-
cations occur rather rarely so that conclusions rely more on these than on the
noncomplications. We may want to take the consequence of the single very
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influential observation and limit the analysis to the subjects with TOF-ratio
above, say 0.2. However, because the TOF-ratio is an intermediate variable,
that would be questionable and such a selection may lead to biased results.
Intuitively, if the long-acting drug leads to many low TOF-ratios (with com-
plications) and these were all removed from the dataset, the long-acting drug
would no longer seem dangerous. Instead, the consequence of such an influen-
tial observation should be to carry out a larger investigation and thereby, it
is hoped, be able to model the effect of TOF-ratio in a more satisfactory way.
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Fig. 6.2.11. Influence diagnostics. Cook’s distance and influence on selected param-
eter estimates: the effect of age, duration of anesthesia, and the interaction between
long-act and TOF-ratio; ×: patients with complications, ◦: patients without com-
plications.
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Conclusion

Because the model checks and the search for influential observations revealed
no drastic problems with our model, we conclude that the results stated in
Table 6.2.13 could be the final results from these analyses. The differences
among the three neuromuscular blocking agents was the focus of the analysis,
thus the main finding is that Pancuronium increases the risk of a complication
for patients having a low TOF-ratio. If we remove the insignificant effect of
the TOF-ratio for the short-acting drugs, we get slightly modified odds ratio
estimates as seen in Table 6.2.15.

Table 6.2.15. Odds ratios for the final model including only effect of TOF-ratio
for Pancuronium.

Variable OR (CI) P

Surgery type <0.0001
Abdominal vs. Orthopedic 9.15 (3.42, 24.48) <0.0001
Gynecological vs. Orthopedic 2.02 (0.55, 7.46) 0.29

Age, 10 years 1.55 (1.24, 1.94) <0.0001

Duration of anesthesia, 1 hour 1.52 (1.12, 2.06) 0.0072

Long-act vs. short-act
at TOF-ratio 0.7 1.62 (0.82, 3.23) 0.17

TOF-ratio, 0.1 increase, Pancuronium 0.61 (0.45, 0.84) 0.0024

The six curves in Figure 6.2.12 illustrate the estimated probability of a
complication for the three surgery groups, two curves for each according to
whether Pancuronium (the long-acting drug) had been used. The estimated
probabilities are calculated for a patient aged 60 years having had surgery for
two hours, and they are plotted against the value for the TOF-ratio. Note that
corresponding to the results from Table 6.2.15, only the curves corresponding
to Pancuronium show an effect of the TOF-ratio. We investigated whether
the structure of those curves was much affected by the single influential ob-
servation and, fortunately, that turned out not to be the case.

6.2.3 The PBC-3 trial

Recall from Section 1.1.1 that PBC-3 was a multicenter randomized clinical
trial conducted in six European hospitals with patient accrual between Jan-
uary 1983 and January 1987. In this period, 349 patients with the liver disease
primary biliary cirrhosis (PBC) were randomized to either treatment with Cy-
closporin A (CyA, 176 patients) or placebo (173 patients). PBC is a slowly
progressing liver disease with patients diagnosed at varying disease stages,
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Fig. 6.2.12. Illustration of estimated probabilities of a complication, for the three
surgery groups, according to whether Pancuronium has been used. Estimated prob-
abilities are plotted against values of the TOF-ratio. Solid line: Pancuronium, from
top to bottom: abdominal, gynecological, orthopedic.

thereby making populations of patients with PBC rather heterogeneous. The
purpose of the trial, as explained in Section 1.1.1, was to study the effect of
treatment on “time to failure of medical treatment” defined as either death or
liver transplantation. Patients were followed from randomization until treat-
ment failure, drop-out, or 1 January 1989; 90 patients (CyA: 44, placebo: 46)
had an observed treatment failure and 4 patients were lost to follow-up before
1 January 1989. For the sake of simplicity, we will “no treatment failure” by
“survival” in what follows.

At time of entry, a number of clinical and biochemical variables were sched-
uled to be recorded in all patients, however, some laboratory tests are missing
in a few patients as further described below. At the same time, a liver biopsy
was also scheduled but this was for various reasons only taken in 82% of the
patients in the placebo group and 85% of the CyA-treated patients. Missing
data was therefore more severe for histological variables (i.e., those obtained
from the liver biopsy).

Inasmuch as this is a randomized study, a simple and “correct” analysis of
the data would be that of a simple comparison between the survival times in
the two treatment groups (taking proper account of censoring as explained in
earlier chapters). Thus, the two-sample logrank test and the Cox regression
model including treatment as the only covariate were discussed in Section
3.1.3 and showed no difference in survival between CyA- and placebo-treated
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patients. The estimated hazard ratio for treatment was exp(−0.059) = 0.943
(0.624, 1.426) and the logrank test 0.077, P = 0.78. These analyses assume
the simple diagram:

Treatment → Time to failure.

The resulting treatment effect can be considered the marginal effect, that is,
(literally) comparing randomly selected CyA-treated patients with randomly
selected placebo patients. In fact, the randomization allows this effect to be
interpreted causally.

Even though one could argue that this is the correct analysis, it should be
kept in mind that randomization only ensures complete balancing of treat-
ment groups for very large trials, or if the current trial is considered one of
many potential replications of similar trials. In the current trial, in spite of
the randomization, patients in the CyA group tended to be more severely ill
than those in the placebo group. We have already seen consequences of this
in Section 5.1.2 where we noted that, adjusted for bilirubin, the estimated
treatment effect was much more pronounced than without adjustment. Thus
Table 5.1.11 showed hazard ratios for treatment around 0.67. These effects
are now to be interpreted conditionally on bilirubin, that is, comparing ran-
domly selected CyA and placebo patients with the same level of bilirubin,
and assuming that this effect is the same no matter the bilirubin value (the
assumption of no interaction as discussed in Section 5.2.2). This leads us to
consider the “natural history of PBC,” that is, what we would expect to see
in the placebo group. Survival will be affected by liver function, L:

Liver function → Time to failure

and possibly also by the basic variables gender, G, age, A, and hospital, H.
However, although gender and age may affect the outcome, time to treatment
failure (Y) both directly and via liver function, it is likely that the only effect
of hospital on the outcome will be through liver function, gender, and age.
This is because hospitals may recruit from different patient populations, but
given liver function, gender and age there should be no effect of hospital on
the outcome. This leads us to the diagram:

A: Age
G: Gender
H: Hospital
L: Liver function
Y: Time to failure

Next, we wish to add treatment (T) to the diagram. Treatment will affect
the survival time (the effect of interest) and if randomization were completely
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succesful then treatment should have no association with other explanatory
variables, leading to the diagram:

A: Age
G: Gender
H: Hospital
L: Liver function
T: Treatment
Y: Time to failure

According to this diagram, the effect of treatment on survival time can be
studied without consideration of other explanatory variables. However, in the
current study, treatment may be associated with both age and liver function
due to incomplete randomization. Randomization was blocked on both gender
and hospital therefore there is by definition no association between treatment
and these two variables. This leads to the diagram in Figure 6.2.13.

A: Age
G: Gender
H: Hospital
L: Liver function
T: Treatment
Y: Time to failure

Fig. 6.2.13. Model diagram for the PBC-3 study.

According to the diagram in Figure 6.2.13, an initial analysis of the effect
of treatment on the outcome should take liver function and age into account
but not gender and hospital. However, because gender may have a direct
effect on the survival time, we would recommend (see Section 6.1.4) evaluating
how sensitive the estimated treatment effect is to deletion of gender from
the model. Liver function is not measured directly but only via biochemical
markers such as bilirubin, albumin, alkaline phosphatase (alkph), aspartate
transaminase (ast), and via histological stage. Therefore, we consider how the
distribution of these variables may differ between the two treatment groups
and, on the other hand, how these variables affect survival.

Table 6.2.16 shows the results for histological stage and 6.2.17 for the
other variables. It can be deduced from Table 6.2.16 that out of those with
a biopsy, 58.4% of CyA-treated patients are in the more severe stages 3 or 4
whereas that is only the case for 50% in the placebo group. Also, that table
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shows that patients in stages 2 or 3 have significantly better survival than the
reference group, stage 4. Note also the ridiculously small b̂ and large SD for
stage 1. This is because no treatment failures were seen in that stage, making
the estimated hazard ratio 0 and, therefore, the log(hazard ratio) is “minus
infinity.” The numbers for stage 1 that come out of the program in that case
have no meaning (but the other log(hazard ratios), stage 2 versus 4 and stage 3
versus 4 are not affected by this). Adjusted for stage, the estimated treatment

effect is b̂ = −0.092(0.229) based on the 291 patients with a liver biopsy (77
treatment failures).

Table 6.2.16. PBC-3 study: distribution (%) of histological stage in treatment
groups and its (unadjusted) effect on survival.

Placebo CyA Cox Model

Stage (%) (%) bb SD

1 14.5 13.6 –16.48 609.6
2 26.6 21.6 –1.67 0.32
3 17.9 21.0 –0.98 0.28
4 23.1 28.4 Reference

No biopsy 17.9 15.3 Not included

Total 100 100

Table 6.2.17 shows that all the liver markers are worse among CyA-treated
patients than in the placebo group (lower albumin and higher values for the
other three markers). Note that, due to very skewed distributions, not only
bilirubin, as discussed in Section 4.1.3, but also alkaline phosphatase and
aspartate transaminase have been log-transformed. Although, as mentioned
earlier, there are no requirements on the distribution of a covariate, in the ini-
tial modeling of the effects of those markers we use log-transformed versions.
Subsequently, during the model checking, we study whether this provides a
reasonable description of the hazard rate. As expected, the fraction of females
is about the same in both groups. The table also shows the estimated treat-
ment effect after adjustment for each of the other variables. Albumin, bilirubin
(as we know), ast and gender are significantly associated with survival whereas
alkph and age are not. The treatment effect after adjustment is everywhere
increased compared to the unadjusted estimate of b̂ = −0.059 (0.211), most
pronounced after adjustment for bilirubin. The numbers of missing values are
small: albumin (6), bilirubin (0), alkph (0), and ast (1).

Returning to the diagram in Figure 6.2.13, and interpreting “liver func-
tion”, L as joint effects of the markers bilirubin, albumin, alkph, and ast
(and, perhaps, histological stage), we estimate the treatment effect adjusted
for these covariates and for age (although the age distributions seem rather
similar in the two treatment groups). Note that, even though gender according
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Table 6.2.17. PBC-3 study: distribution of covariates in treatment groups, their
(unadjusted) effect on survival, and the treatment effect after adjustment for each
covariate.

Placebo CyA Covariate Effect Treatment Effect

Variable Mean SD Mean SD bb SD bb SD

Albumin(g/L) 39.3 5.3 37.5 5.8 –0.129 0.020 –0.294 0.218
log(bilirubin)(μmol/L) 3.14 0.99 3.26 1.05 1.01 0.099 –0.399 0.215
log(alkph)(IU/L) 6.64 0.76 6.66 0.71 0.246 0.145 –0.073 0.211
log(ast)(IU/L) 4.39 0.57 4.43 0.56 0.968 0.205 –0.104 0.212
Age (years) 54.0 10.0 54.2 10.0 0.0124 0.0109 –0.056 0.211
Gender (% females) 85.6 85.2 –0.674 0.249 –0.065 0.211

to Table 6.2.17 is significant, this need not have consequences for evaluation
of the treatment effect, inasmuch as gender is, formally, not a confounder
(because of the lack of association between gender and treatment). As a safe-
guard, however, as recommended, we evaluate how sensitive the estimated
treatment effect is to inclusion of gender in the model. Table 6.2.18 shows the
results. A number of models were fitted. In Model 1 both age and the four
biochemical markers were included. This model, based on 341 patients with
87 treatment failures, gave a treatment effect of –0.568 whereas, in Model 2,
eliminating age which has similar distributions in the two treatment groups
changed this to –0.604. In Model 3, age is included and the two insignificant
markers, alkph and ast, are eliminated. Here, the estimated treatment effect
is –0.544 (based on 343 patients with 88 events). Keeping only bilirubin and
albumin as adjustment variables (Model 4) the treatment effect is –0.574.
Model 5 includes all markers, age, and histological stage (dichotomized as 3
or 4 versus 1 or 2) and is based on only 285 patients with 74 events. Here,
the estimated treatment effect is –0.543 with a SD somewhat larger than in
Models 1–4, namely 0.243. Adding gender to Model 1, the treatment effect
changes from a hazard ratio of exp(−0.568) = 0.57 to exp(−0.531) = 0.59, a
change of only 3.7% on the hazard ratio scale. Therefore, gender is, indeed,
not needed as an adjustment variable when assessing the effect of treatment.

Because no interactions were considered of special interest in this study, we
do not pursue a study of interactions between treatment and other variables.
Note that, even though bilirubin has a profound influence on survival this
does not call for a special investigation of a potential treatment interaction.

Model checking

To evaluate the results, the assumptions of the models must be checked. We
focus on Model 1 and examine the assumptions of proportional hazards and
linear effects on the log(hazard rate) of the quantitative covariates. Because
treatment is the covariate of primary interest we first study the proportional
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Table 6.2.18. PBC-3 study: effects on survival of covariates and treatment.

Model 1 Model 2 Model 3 Model 4 Model 5

Variable bb bb bb bb bb
(SD) (SD) (SD) (SD) (SD)

Treatment –0.568 –0.604 –0.544 –0.574 –0.544
(0.224) (0.227) (0.223) (0.224) (0.243)

Albumin –0.070 –0.086 –0.073 –0.091 –0.060
(0.024) (0.023) (0.023) (0.022) (0.026)

log(bilirubin) 1.036 0.974 1.071 0.959 0.962
(0.128) (0.127) (0.112) (0.107) (0.157)

log(alkph) –0.111 –0.146 –0.053
(0.160) (0.161) (0.180)

log(ast) 0.290 0.122 0.335
(0.243) (0.132) (0.270)

Age (years) 0.039 0.038 0.039
(0.013) (0.012) (0.015)

Stage (3–4 vs. 1–2) 0.809
(0.348)

hazards assumption for treatment. The assumption is that the hazard ratio for
treatment is constant over time or, in other words, that there is “no interaction
between treatment and time.” Therefore, one way of checking this assumption
is to introduce such an interaction and study whether the added flexibility
provides a model with better fit. A simple way of doing this is to add a
covariate of the form

I(i is treated with CyA)f(t) (6.2.1)

to Model 1. The results from this approach will to some extent depend on
the choice of the function f(t) in (6.2.1), however, the sensitivity tends not
to be great; see Table 6.2.19. According to this table, the proportional haz-
ards assumption is not questionable for any of the covariates. The table also
shows the treatment effects estimated allowing the effect of each covariate
(except treatment), in turn, to have a time-varying effect. It is seen that these
treatment effects are quite insensitive to this extra flexibility of the model.

For treatment we further evaluate the assumption graphically without hav-
ing to specify a parametric alternative to proportionality via a function f(t).
This builds on another way of relaxing the proportional hazards assumption
for treatment, which is to study the stratified Cox model (5.1.4) where the
log(hazard rate) for patient i is

li(t) = log(h0j(t)) + balbAlbumini + · · · + bageAgei, j = 0, 1, (6.2.2)

where j = 1 if i was treated with CyA and j = 0 if i belonged to the placebo
group. In (6.2.2), h00(t) is an unspecified baseline hazard for placebo-treated
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Table 6.2.19. PBC-3 study: tests for proportional hazards for treatment and other
covariates.

.

Covariate, x f(t) Effect of xf(t) Treatment Effect
bb SD (bb/SD)2 P bb SD

Treatment log(t) 0.093 0.257 0.13 0.72
Treatment t 0.031 0.180 0.03 0.86
Albumin log(t) 0.034 0.027 1.54 0.22 –0.573 0.224
log(bilirubin) log(t) –0.092 0.130 0.51 0.48 –0.553 0.225
log(bilirubin) t –0.073 0.092 0.62 0.43 –0.548 0.225
log(alkph) log(t) –0.023 0.172 0.02 0.89 –0.568 0.224
log(ast) log(t) –0.402 0.268 2.25 0.13 –0.550 0.224
Age log(t) 0.024 0.013 3.62 0.06 –0.570 0.225

Model 1 –0.568 0.224

patients (with all other covariates being 0), just like the baseline hazard in
Model 1. However, in (6.2.2) the baseline hazard for CyA-treated patients is
no longer bound to h00(t) as exp(bCyA)h00(t) but instead it is allowed to vary
freely; that is, no restrictions are imposed on h01(t). The stratified Cox model
was fitted to the data which provided effects for the five quantitative covari-
ates close to those shown in Table 6.2.18. Figure 6.2.14 shows a plot of the
estimated cumulative baseline hazard Ĥ01(t) for CyA against that for placebo

Ĥ00(t) just as the corresponding Figure 3.1.7 which showed unadjusted cu-
mulative hazards. When proportional hazards is a reasonable assumption,
the plot will approximate a straight line through the point (0,0) with slope
≈ exp(bCyA). This is more or less what we see in Figure 6.2.14. Similar plots
could be made for each of the five quantitative covariates from Model 1. To do
so would require stratification into suitable intervals (as we did for bilirubin
in Figure 3.2.7) and fitting a stratified model allowing an unspecified baseline
hazard in each stratum. We have chosen not to present these graphs in the
text but leave this investigation as an exercise.

Digression. Time-dependent covariates

The added covariate in (6.2.1) is an example of a time-dependent covariate and
one important feature of the Cox regression model (and other hazard regression
models; see Section 7.5) is its ability to cope with such covariates. The variable
“treatment ×f(t)” is a very simple example of a time-dependent covariate because,
for a given treatment group, its value at any time t is known in advance; that
is, it is nonrandom. Another example of a time-dependent covariate that develops
deterministically over time would be “current age” which is simply “age at entry
+t.”

In the PBC-3 study, patients were scheduled to be seen at follow-up visits to the
treating hospital during the course of the trial. At such visits, blood samples were
taken and updated measurements of the biochemical variables, such as bilirubin and
albumin, are therefore available. However, when evaluating the effect of treatment,
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Fig. 6.2.14. PBC-3 stratified Cox model: cumulative baseline hazard for CyA pa-
tients plotted against that for placebo-treated patients.

.

which is the main purpose of the trial, such time-dependent covariates should not
be considered because they may be intermediate variables between treatment and
survival (Section 6.1.2). Analysis of the effect of such variables may, on the other
hand, be very useful in understanding both the natural course of the disease and how
treatment may affect survival. A further difficulty in connection with this kind of
truly random time-dependent covariate is that the survival probability can no longer
be computed from the hazard function: equations such as (3.1.21) no longer hold.
This is because the probability of still being alive at some later point in time will
depend not only on current values of covariates but also on their future development,
so, a joint model for the time-dependent covariate and its effect on the hazard
function is needed. Such joint models are beyond the scope of the present book and
the reader is referred to Wulfsohn and Tsiatis (1997) or Henderson, Diggle, and
Dobson (2000).

Notice the difference between a time-dependent covariate and a covariate with

a time-dependent effect. The basic assumption in the Cox regression model is pro-

portional hazards, that is, a time-constant hazard ratio for each covariate. Such an

assumption may still be valid even though a covariate may depend on time. In Sec-

tion 7.5.2, we study a hazard model where the effects of covariates are allowed to

be time-varying (on an additive scale). �

We next turn to an examination of linearity of the effects of the quan-
titative covariates. We examine this assumption by adding a linear spline
function (Section 4.2.1) to Model 1 for each covariate, in turn, and study how
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this affects both the fit of the model and the estimated treatment effect. The
covariate intervals in which the effect is assumed linear were chosen to have
endpoints (r1, r2) close to the tertiles of the covariate distribution. That is,
for a covariate x we include the term

b0xi + b1(xi − r1)I(xi > r1) + b2(xi − r2)I(xi > r2)

in the linear predictor. Table 6.2.20 shows the results. Although the linearity
assumption is, formally, rejected at the 5% level for log(ast), it is seen that
nowhere does the inclusion of the linear splines change the treatment effect
much.

Table 6.2.20. PBC-3 study: tests for linearity for quantitative covariates.

.

Covariate bb0 (SD) bb1 (SD) bb2 (SD) P for bbCyA

(Cutpoints) Linearity (SD)

Albumin –0.054 (0.122) –0.034 (0.145) 0.067 (0.092) 0.77 –0.572
(30,40) (0.225)

log(bilirubin) –1.226 (1.055) 2.821 (1.288) –0.696 (0.480) 0.09 –0.568
(10,40) (0.225)

log(alkph) 0.456 (0.654) –0.647 (0.924) –0.079 (0.749) 0.61 –0.577
(500,1200) (0.225)
log(ast) 3.273 (1.318) –3.986 (1.685) 0.695 (0.963) 0.047 –0.533
(60,120) (0.226)

Age 0.024 (0.035) 0.039 (0.065) –0.043 (0.065) 0.79 –0.572
(50,60) (0.226)

As an overall evaluation of the model, Figures 6.2.15 – 6.2.19 show plots of
standardized pseudo-residuals against covariates for the timepoints 0.71, 1.18,
2.16, and 3.19 years. It is seen that the smooth curves through the residuals
are close to 0 with few exceptions for the largest timepoint (3.19 years) and
for the most extreme values of albumin, log(bilirubin), and log(ast).

We, finally, looked at deletion diagnostics for Model 1 and a single influ-
ential point for the effect of albumin was detected, Figure 6.2.20. This is a
patient failing at 2.5 years with a high albumin level of 56.7 g/L. Eliminating

this observation would reduce the effect of albumin by 0.46× SD(̂balb) = 0.011;
see Figure 6.2.20. No other estimates would be affected by more than about
0.3 SD, if deleted.

Conclusion

In the models analyzed in Table 6.2.18, the insignificant marginal haz-
ard ratio for treatment, 0.943, changed into significant values ranging from
exp(−0.604) = 0.55 to exp(−0.544) = 0.58. Even though the marginal esti-
mate is a valid one due to the randomized design we would argue that the



352 6 Model building: From purpose to conclusion

20 30 40 50

−
8

−
6

−
4

−
2

0
2

Albumin

P
se

ud
o−

re
si

du
al

, t
im

e=
 0

.7
1

20 30 40 50

−
8

−
6

−
4

−
2

0
2

Albumin
P

se
ud

o−
re

si
du

al
, t

im
e=

 1
.1

8

20 30 40 50

−
8

−
6

−
4

−
2

0
2

Albumin

P
se

ud
o−

re
si

du
al

, t
im

e=
 2

.1
6

20 30 40 50

−
8

−
6

−
4

−
2

0
2

Albumin

P
se

ud
o−

re
si

du
al

, t
im

e=
 3

.1
9

Fig. 6.2.15. PBC-3: pseudo-residuals from Model 1 plotted against albumin for the
timepoints 0.71, 1.18, 2.16, and 3.19 years.

adjusted estimates are more correct because they address the influence of the
not quite successful randomization. Based on the model diagram and on the
fact that removing age (which has little association with treatment) from the
model, the treatment effect changes somewhat, we prefer the fully adjusted
Model 1. Alternatively, one could quote Model 5 also adjusting for histological
stage. However, in that case one would have to address the large number of
missing values, for example, via some sort of multiple imputation. Table 6.2.21
shows hazard ratios with confidence limits for the covariates in Model 1. For
the three covariates that have been log-transformed, hazard ratios and confi-
dence limits corresponding to a doubling of the covariate have been calculated
from Table 6.2.18 as explained in Appendix B.
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Fig. 6.2.16. PBC-3: pseudo-residuals from Model 1 plotted against log(bilirubin)
for the timepoints 0.71, 1.18, 2.16, and 3.19 years.

Table 6.2.21. PBC-3 study: estimated hazard ratios (with 95% confidence limits)
for covariates in Model 1.

.

Covariate Hazard Ratio (95% Confidence Limits)

Treatment (CyA vs. placebo) 0.567 (0.365,0.879)
Albumin (per 10 g/L) 0.494 (0.310,0.789)
Bilirubin (per doubling) 2.05 (1.72,2.44)
Alkaline phosphatase (per doubling) 0.924 (0.745,1.150)
Aspartate transaminase (per doubling) 1.22 (0.872,1.72)
Age (per 10 years) 1.48 (1.16,1.89)
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Fig. 6.2.17. PBC-3: pseudo-residuals from Model 1 plotted against log(alkaline
phosphatase) for the timepoints 0.71, 1.18, 2.16, and 3.19 years.

6.3 Sample size determination

So far, n has just denoted the number of individuals in our dataset and not
much attention has been devoted to the way in which this sample size was
determined. However, when planning investigations, it is important to assess
the “necessary” size of the study. If new data collection is involved, costs will
increase with sample size. If treatments are being compared in a clinical trial
then it would be unethical to let the trial continue for such a long period
that too many patients are treated with an inferior drug. Even if an existing
database is going to be used to study a new question, then it is important to
evaluate whether the question may, at all, be satisfactorily addressed.

By “necessary” size we mean that the sample should be sufficiently large
to address the scientific question of interest. Technically, this means that the
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Fig. 6.2.18. PBC-3: pseudo-residuals from Model 1 plotted against log(aspartate
transaminase) for the timepoints 0.71, 1.18, 2.16, and 3.19 years.

power for a relevant alternative of interest, that is, an important difference
not to be overlooked, should be sufficiently large. We focus on the simple
two-sample situation (Section 3.1) and only add a few remarks on a sin-
gle quantitative covariate with a linear effect (Section 4.1). In both of these
situations, only one parameter is involved. It may seem rather modest and
unrealistic to focus on such simple situations but we do, in fact, recommend
to base sample size determination on the identification of one (or a few) core
two-sample problem(s) to make sure that the sample size suffices to address
those satisfactorily. This is also in line with our recommendation not to de-
sign too complicated studies attempting to answer many questions at a time
(Section 6.1).

The sample size may, alternatively, be determined to obtain a desired pre-
cision (SD) of a parameter estimate. In our opinion, this situation occurs quite
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Fig. 6.2.19. PBC-3: pseudo-residuals from Model 1 plotted against age for the
timepoints 0.71, 1.18, 2.16, and 3.19 years.

infrequently in practice and is not further discussed. We only briefly comment
on situations where the effect of interest is adjusted for other covariates, sit-
uations that will typically require larger samples. It is a consequence of the
fact that adjustments require larger samples that a randomized study is to
be preferred to an observational study. This is because a randomized study
will reduce or even eliminate the need for adjustment for other covariates, and
thereby also reduce the demand on the sample size. Even more important, it
will increase the validity of the conclusions from the study. However, random-
ized designs are of course not always feasible, for example, in investigations
aimed at studying a harmful effect of a substance such as tobacco.

For the one-parameter situation, a simple formula is available for the nec-
essary sample size n as a function of the desired power 1−β, and the relevant
effect size b0 (and a few more quantities; see below). For more complicated
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Fig. 6.2.20. PBC-3: deletion diagnostics from Model 1 for the effect of albumin
plotted against albumin or against time.

situations, no general formulas exist and the necessary sample size will de-
pend on many more aspects of the data, including the joint distribution of all
covariates and their postulated effects on the outcome. In such situations, a
general way of approaching the problem is to use simulations, that is, to ran-
domly generate many datasets with the required specifications, to compute
the relevant test statistic on each generated dataset, and simply evaluate the
fraction of repetitions for which the test statistic is significant. This fraction
will estimate the power for the chosen sample size. Even though this sounds
easy in principle, it may be difficult in practice to specify all aspects of the sit-
uation. Of course, simulations may also be used in the simple one-parameter
situation as an alternative to using the formulas presented in the following. In
addition, many computer programs are available (both commercial and freely
available) for doing sample size calculations.

As in earlier chapters, we highlight similarities among the techniques for
quantitative, binary, and survival time outcome variables and present test
statistics for these three types of data with exactly the same structure. This
means that the way in which the necessary sample size is determined based
on the formulas follows precisely the same pattern in all cases. We therefore
first present the formulas and subsequently explain how they are used.

Quantitative outcome

The two-sample problem is here the comparison of two mean values. For equal
group sizes the relevant t-test statistic (3.1.6) from Section 3.1.1 is

t =
ȳ1 − ȳ0

s
√

1
n/2 + 1

n/2

=
√

n
b̂

2s
, (6.3.1)



358 6 Model building: From purpose to conclusion

where b̂ = ȳ1− ȳ0, the difference between the average outcome in groups 1 and
0, is the estimated effect of the binary covariate under study. Furthermore, s
is the (assumed common) SD in the two groups.

If the two groups have different sizes, n0, n1 with f = n1/n0, the factor 2
in the denominator of (6.3.1) should be replaced by (1 + f)/

√
f .

Digression. Where did that come from?

This is because the expression

1

n0
+

1

n1

in the t-test denominator is
1

n/2
+

1

n/2
=

4

n

if the sample sizes are both n/2, but when n0 = n/(1+ f) and n1 = fn/(1+ f), the
expression becomes

1 + f

n
+

1 + f

fn
=

(1 + f)2/f

n
.

�

Binary outcome

For binary data, the most obvious way to compare the outcome in two groups
is directly to use the two proportions of 1-outcomes, p̂0 and p̂1. The resulting
test statistic follows from the construction of a confidence interval for the risk
difference (Section 3.1.2). In the case of equal group sizes, the test statistic is

p̂1 − p̂0√
bp0(1−bp0)

n/2 + bp1(1−bp1)
n/2

=
√

n
b̂√

2
√

p̂0(1 − p̂0) + p̂1(1 − p̂1)
≈ √

n
b̂

2s
. (6.3.2)

In (6.3.2), b̂ = p̂1 − p̂0 is the estimated risk difference, and s =
√

p̄(1 − p̄)
(with p̄ = (p0 + p1)/2, the average probability of a 1-outcome). In previous
chapters, focus has been on log(odds ratios) when analyzing binary outcomes.
The corresponding test statistic follows directly from the confidence interval
(3.1.19) for the log(odds ratio)

log
(

bp1

1−bp1

)
− log

(
bp0

1−bp0

)
√

2/n
bp1(1−bp1)

+ 2/n
bp0(1−bp0)

≈ √
n

b̂

2s
, (6.3.3)

where now b̂ is the estimated log(odds ratio) and s = 1/
√

p̄(1 − p̄).
In the case of different group sizes, n1 = fn0, the factor 2 in the denom-

inators of (6.3.2) and (6.3.3) should be replaced by (1 + f)/
√

f , similarly to
the case of quantitative data.
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Survival data

For survival data, the two-sample logrank test (3.1.32) cannot directly be
written in the same form as (6.3.1)–(6.3.3). However, a simple approximation
(Schoenfeld, 1983) based on a model with a constant hazard (see Section 7.5.1)
is available. As above, we study two groups where (possibly censored) survival
times are observed, and we wish to compare the survival time distributions in
the groups via the log(hazard ratio). Let b̂ be the estimated log(hazard ratio)
and q the average failure probability. This will depend on a number of aspects
of the study. First, it depends on the survival functions in the two groups to
be compared, for example, expressed as the median survival times. Typically,
patients are recruited to a survival study over a certain accrual period and
subsequently followed through a follow-up period and q also depends on the
lengths of these accrual and follow-up periods as explained in more detail
below; see Equation (6.3.7). In the case of equal sample sizes, the test statistic
that approximates the logrank test is simply:

√
n

b̂

2s
(6.3.4)

with s = 1/
√

q. For different group sizes, n1 = fn0, we again replace the
factor 2 in the denominator of (6.3.4) by (1 + f)/

√
f .

General approach

We have seen that the relevant test statistic for the two-group comparison in
all cases takes the same simple form (6.3.1)–(6.3.4). This test statistic follows
approximately a standard Normal distribution under the hypothesis H0 of no
difference between the two groups (b = 0), and it is approximately Normal
with mean

√
nb0/(2s) and SD= 1 under the alternative hypothesis b = b0. It

follows that the same approach for sample size calculations can be used, at
least approximately, for all three types of outcome. This approximation turns
out to be sufficiently good for practical purposes, partly because the n that
comes out of a sample size determination should always be considered “an
order of magnitude” and not a precise number. Thus, sample size calculations
leading to, for example, n = 120 or n = 150 should not be considered en-
tirely different. This has to do with the uncertainty attached to some of the
quantities that enter into the considerations introduced in what follows.

This is the general approach common to the three types of outcome con-
sidered: for a given level of significance, α (in practice almost always α = 0.05)
we wish to address one of the following problems.

1. For given effect size b0 and given power 1 − β, find the sample size n for
which the power is 1 − β.

2. For given sample size n and effect size b0 find the power of the test for
this alternative.
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3. For given sample size n and power 1 − β find the effect size b0 for which
the power is 1 − β.

The three quantities n, b0, and β are related through the formula

n =
(z1−α/2 + z1−β)2 (1+f)2

f s2

b2
0

. (6.3.5)

Digression. From where does that formula come?

We want, for all types of outcome, the sample size n (for equal-sized groups,
f = 1) to be so large that the test statistic

tn =
√

n
bb

2s

is (numerically) larger than z1−α/2 with probability 1 − β when the true effect size
is b0. We look at the case where b0 > 0 (the case b0 <0 is completely analogous). In
this case

pr(|tn| > z1−α/2) ≈ pr(tn > z1−α/2) = pr(tn −√
n

b0

2s
> z1−α/2 −

√
n

b0

2s
). (6.3.6)

When b = b0, the distribution of tn −√
nb0/(2s) is standard Normal, so the proba-

bility in (6.3.6) is 1 − β when

z1−α/2 −
√

n
b0

2s
= zβ = −z1−β ,

and (6.3.5) follows (for f = 1). �

In (6.3.5), zp is the pth percentile in the standard Normal distribution (i.e.,
z0.975 = 1.96 when α = 0.05) and the factor depending on f (ratio between
the two sample sizes) is equal to 4 when f = 1 (equal group sizes). This means
that it is easy to find n from b0 and β, and b0 from n and β whereas finding β
from n and b0 involves solving an equation based on z1−β . We see that using
(6.3.5) requires specification of f, α, and s plus two of the three quantities n,
b0, and β. In randomized studies, f will usually be set to f = 1 because this
will minimize the total number of subjects to be recruited. In observational
studies, f will reflect the exposure distribution which, obviously, need not be
a 50–50 distribution. The significance level α is, as mentioned, almost always
set to α = 0.05 (see also Section 2.3.3).

The value of s has quite different meanings for the three types of outcome.
For quantitative data, s is the standard deviation in each group, so, in order
to determine the necessary sample size, a value of s must be set. Some times, s
may be known from previous research in the area. Alternatively, a pilot study,
that is, a small study such as the one planned with, say 5–20 individuals, may
be performed from which s may be estimated. It is seen that, not surprisingly,
a larger s leads to a higher necessary sample size n, as it is more difficult
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to see a difference between two groups when the outcome is highly variable
within groups.

For binary data, s depends on p̄, the average outcome probability. This
means that an estimate of p̄ is needed to do the sample size calculation (we
need to know approximately how frequent is the outcome under study). Again,
previous knowledge or pilot studies may provide an estimate for this. Finally,
for survival data, the situation is more complicated and the quantity, s = 1/

√
q

is a bit harder to assess. As for binary data, one needs to evaluate the absolute
failure risk, for example, expressed as the median survival time M0 in the
control group . The median survival time in group 1 is then approximately
(if the hazard rates are constant) M1 = M0/ exp(b0) and the average median
survival time is M̄ = (M0 + M1)/2. If patients are accrued for a period of
length A and subsequently followed up for a period of (at least) length F (so
that the total study time is F + A), then the average failure probability is

q = 1 − exp

(
− log(2)

F

M̄

)
1 − exp(− log(2) A

M̄
)

log(2) A
M̄

. (6.3.7)

It follows from (6.3.7) that small M̄ (short time to failure, i.e., many observed
failures) and large A,F (longer study duration) will increase the average fail-
ure probability; see Figure 6.3.1 which shows q as a function of M̄ for selected
values of A,F .

If the sample size n is to be determined based on relevant values for b0

and for the power 1− β, then it is usually required that the power should be
no smaller than 0.8. If 1 − β = 0.8 then, after all, the study has a “1 in 5
risk” of being inconclusive, that is, to yield an insignificant result even if the
alternative hypothesis b = b0 is true, because the type II error probability β
is 0.2 in this case. It will, therefore, rarely be relevant to conduct a study if
the power is below 0.8.

The parameter for which it is most difficult to assign a value is probably the
effect size b0 which should be a “relevant” difference, “not to be overlooked”
and is often referred to as the minimum relevant difference, MIREDIF. As
seen in (6.3.5), only the ratio between b0 and s is needed. Therefore, for
quantitative data one sometimes specifies b0 as a multiple of the standard
deviation, for example, one argues that a relevant difference could be one or
1.5 times the SD.

Digression. Other designs

Closely connected to the determination of sample size is the possibility of choos-

ing a design in which the subjects act as their own control (e.g., a cross-over study

with two treatments given in two consecutive periods of time, a before-and-after

treatment study, or a comparison of measuring techniques applied simultaneously,

e.g., on each arm or leg). Such a paired design will decrease the demand on sample

size because the relevant measure of variation s for quantitative outcomes changes

from the between-subject variation to the within-subject variation (multiplied by
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Fig. 6.3.1. Average failure probability, q (6.3.7) as a function of (average) median
survival time M̄ for different values of accrual period A and follow-up time F (from
top to bottom): A = F = 4, A = F = 3, A = 3, F = 2, A = 2, F = 3, and
A = F = 2. The cross marks a point referred to in the example below.

√
2), which is typically smaller. However, a paired design may not always be feasi-

ble. This is not the kind of study of primary interest in this book where we focus on

situations with only one response variable observed in each individual (see, however,

Sections 5.4 and 8.1). �

Examples

We now go through a few worked examples of sample size or power calculations
based on Equation (6.3.5).

1. Suppose that some quantitative outcome variable has a standard deviation
of 40 in the relevant patient population and that a clinically relevant
difference between a treated group and an untreated control group is b0 =
15. If half the patients are treated f = 1, then the necessary total sample
size to detect this difference with a power of 0.80 (i.e., z1−0.8 = z0.2 = 0.84)
is

n =
(1.96 + 0.84)24(40)2

152
≈ 223.

If, instead the relevant difference had been expressed (more modestly) as
one half SD the required sample size would have been
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n =
(1.96 + 0.84)24

0.52
≈ 125.

2. Suppose that 75% of a given population are nonsmokers and have a 5-year
risk of developing a given disease of about 0.1. We wish to design a cohort
study to assess whether the risk among smokers could be 0.05 higher than
for nonsmokers. We want the power to detect this difference to be as high
as 0.9 (i.e., z1−0.9 = z0.1 = 1.28). In this case, only f = 1/3 of the subjects
will be exposed, p̄ = (0.10 + 0.15)/2 = 0.125, and s2 becomes 0.125 times
0.875. The required sample size is

n =
(1.96 + 1.28)2 42

3 (0.125 · 0.875)

(0.15 − 0.10)2
≈ 2449.

Had the same effect size instead been formulated as an odds ratio of 1.59
(=(0.15/0.85)/(0.1/0.9)) then we would have found the similar result

n =
(1.96 + 1.28)2 42

3

(0.125 · 0.875)(log(1.59))2
≈ 2380.

This means that ≈ 600 smokers and 1800 nonsmokers should be recruited
and followed for 5 years.
Had we only been able to recruit, say 80% of the required individuals (i.e.,
480 smokers and 1440 nonsmokers) then the power β (based on the risk
difference) would have been the solution to the equation

480 + 1440 =
(1.96 + z1−β)2 42

3 (0.125 · 0.875)

(0.15 − 0.10)2
,

that is, z1−β = 0.91 or 1− β = 0.82. Similarly, we can compute the effect
size for which we would still have 90% power based on the smaller sample
size as the value of the risk difference b0, solving

480 + 1440 =
(1.96 + 1.28)2 42

3 (0.125 · 0.875)

b2
0

,

that is, b0 = 0.056, so that we would only be able to detect a somewhat
larger difference.

3. Suppose that the median lifetime with traditional treatment is M0 = 3
years and that a relevant treatment effect to detect is a hazard ratio of
exp(b0) = 1/1.5 leading to M1 = 4.5 years and M̄ = 3.75 years. If the
study is planned with A = 3 years of accrual and a further F = 3 years
of follow-up then the average failure probability (6.3.7) is 0.559 (see the
cross in Figure 6.3.1), and the required sample size for a power of 80%
becomes

n =
(1.96 + 0.84)24

(0.559 · log(1.5))2
≈ 341

or 341/36 = 9.5 new patients per month during the accrual period.
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A single quantitative covariate with a linear effect

In our view, the two-sample problem discussed above is the most important
situation for sample size calculations. As mentioned in the introduction to
this section, a relevant two-sample problem may often be identified even in
studies focusing on more complicated situations. However, if a study deals
with a linear effect of a quantitative covariate then the relevant sample size
formula can be rewritten into an expression like (6.3.5) (Vaeth and Skovlund,
2004). This amounts to setting f = 1 and b0 equal to 2sxbx where sx is the SD
of the quantitative covariate x, and bx is the effect size for the slope parame-
ter. In addition to the parameters that must be identified before sample size
determination in the 2-sample problem, the variation of the covariate sx must
be assessed (or the x-values may be determined by design). A pilot study may
be one way of setting a value for sx. Finally, instead of evaluating a relevant
difference b0 between two groups, a relevant slope bx must be evaluated.

Adjustment for confounders

For a situation where the effect of interest is to be adjusted for nc − 1 other
explanatory variables the sample size calculations presented above tend to
give too small a value. If that calculation results in a certain value n then
according to Hsieh, Bloch, and Larsen (1998) the necessary sample size should
approximately be n/(1−r2

nc
) where rnc

is the“multiple correlation coefficient”
between the covariate of interest and the remaining nc − 1 covariates. This
parameter will often not be easy to specify in advance. However, when a study
is to be conducted in a population where the confounder distribution is known
then it may be possible to approximate rnc

.

Digression. “Post hoc” power calculations

Sometimes, it is advocated that power calculations are useful when reporting

results from a study. We believe this to be fundamentally wrong. In our view, power

and sample size calculations are important when planning studies as discussed in the

beginning of this section whereas, for reporting results, confidence intervals should

be used to quantify the uncertainty associated with the conclusions from the study.

By definition, a confidence interval gives the range of parameter values compatible

with the data observed and with this knowledge it is unimportant to assess what

the power would have been, had the true parameter value been this or that. In fact,

Hoenig and Heisey (2001) showed that giving the power corresponding to the esti-

mated parameter value provides no extra information than presenting the P -value. �
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6.4 Exercises

Exercise 6.1. Draw a model diagram for the fetal death Example 1.2 from
Section 1.1.1, using the variables age, number of fever episodes and parity,
and fetal death as outcome.

Exercise 6.2. Draw a model diagram for the tryptase dataset 3 from Exam-
ple 1.12, using the variables age, gender, and ASA as covariates and using the
baseline tryptase as outcome.

Exercise 6.3. Draw a model diagram for the tryptase dataset 2 from Exam-
ple 1.12, using the variables age, gender, control, ASA, and reaction tryptase
as covariates and using “positive” as outcome variable.

1. If we aim at investigating the effect of ASA group and age on the probabil-
ity of a positive allegy test, should we then include gender in the model?

2. Same question for reaction tryptase.

Exercise 6.4. Recall the surgery Example 1.4. Assume that we want to set
up a new investigation to study the difference in complication probabilities
for Pancuronium and Atracurium. Find the number needed in each group if
the specifications are:

1. Power 80% to detect an odds ratio of 2 between the two blocking agents,
assuming the complication risk for Atracurium to be 2%.

2. Power 90% to detect if the risk for the Pancuronium group is 50% in-
creased in relation to the risk for Atracurium (which is again assumed to
have a complication risk of 2%).

Exercise 6.5. Recall the tryptase Example 1.12 and suppose that we are
going to design a new study for studying the age effect on the baseline tryptase
value.

1. Find the power for detection of a difference in baseline tryptase of a size
equal to 25% of its SD, when comparing two age groups of size 50.

2. Find the power for detecting a slope of 0.05 for the relation between age
and baseline tryptase in a linear regression analysis, using a total of 100
patients, with an age distribution corresponding to the one observed in
the tryptase dataset 3.

Exercise 6.6. Recall the study of malignant melanoma Example 1.10 and
consider designing a new study aimed at determining a possible effect of rad-
ical surgery (as in the example) versus conservative surgery.

1. How many patients must be recruited per year to two groups of equal size
for detecting a difference corresponding to a hazard ratio of 1.5 with a
power of 80%, assuming an accrual period of 3 years, a subsequent follow-
up period of 3 years, and assuming that the median survival time for the
radical surgery group is as in the example.



366 6 Model building: From purpose to conclusion

2. If randomization is planned to be unequal by recruiting twice as many
patients to the conservative group as to the radical group how much would
we then have to increase the total number of patients recruited per year
in order to achieve the same goals as in the above question?

Exercise 6.7. Use data from the PBC-3 Example 1.3 to perform a model
check in Model 1 from Table 6.2.18.

1. Stratify into suitably chosen intervals for albumin and study the cumula-
tive baseline hazards.

2. Do the same for age and bilirubin.
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Alternative outcome types and link functions

In previous chapters we have focused on quantitative data with a linear mean,
binary data with a logistic link, and proportional hazards models for survival
data. In this chapter we first study two “new” datatypes. The first is multino-
mial data (Section 7.1) where the outcome is a categorical variable with more
than two levels. This includes both the case where the categories are ordered
(ordinal data, Section 7.1.1) and where they are unordered (nominal data,
Section 7.1.2). The second type is counts (Section 7.2) and we study models
based on both the Poisson and the Binomial distribution.

Next, we briefly discuss alternative models for both quantitative (Section
7.3) and binary data (Section 7.4), as well as for survival data (Section 7.5).
Sections 7.3–7.5 may be a bit more difficult to read than most previous sec-
tions because our focus is now on more technical aspects of the models to be
presented.

Common to all of the models studied in this chapter is the presence of a
linear predictor. This means that much of the discussion can build on previous
chapters.

7.1 Multinomial outcome

One of the main examples of outcome types we have discussed in previous
chapters is binary data, that is, a categorical variable with two categories, and
logistic regression has been a major topic. (In Section 7.4 we study models
for a binary outcome with link functions other than the logit function.) The
present section introduces a new type of outcome: a categorical variable with
three or more categories. We refer to such data as multinomial.

For multinomial data one distinguishes between the two situations where
either the categories are ordered, or they are not. These two situations are re-
ferred to as ordinal and nominal data, respectively. An example of an ordinal
variable is a disease stage that can be seen as a categorization of a quantita-
tive variable which is impossible — or at least very hard or expensive — to
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quantify numerically, such as progression of cancer. Another example could
be a variable with levels fatal stroke, nonfatal stroke, or no stroke. In both
examples, categories are ordered but it is not obvious how to assign a mean-
ingful numerical value to each subject. Examples of nominal variables include
blood type according to the AB0 system (types A, B, AB, or 0), job cate-
gory, and choice of health insurance plan. In practical applications, ordinal
outcome variables seem to be much more frequent, and in Section 7.1.1 that
situation is covered in detail. Nominal outcome data are then discussed more
briefly in the subsequent Section 7.1.2. We show that, in both sections, the
simple logistic regression model from previous chapters constitutes an impor-
tant starting point and, in fact, both ordinal logistic regression (Section 7.1.1)
and polychotomous logistic regression (Section 7.1.2) can be approximated by
a number of ordinary logistic regressions. In fact, in practical applications
reported in the literature, multinomial outcome data have often been trans-
formed to binary data by combining categories. The current section discusses
potential models where this simplification need not be done .

7.1.1 Ordinal outcome

Examples of ordinal data were given in the introduction to Section 7.1. We saw
that, even though we cannot assign a meaningful number to each category,
we can at least rank them (i.e., arrange them, e.g., in an increasing order
according to degree of severity). In general, however, we cannot say anything
about the distance between successive levels. When the levels originate from
categorization of a measured quantitative variable, we may of course allocate
meaningful numbers to each category, for example, the midpoint of the interval
for that category, or the average of the observations belonging in the interval.

In Example 1.9 in Section 1.5, we described an investigation of 127 subjects
with liver disease. For each of these subjects, the degree of fibrosis yi was
determined on a four-point scale (0,1,2,3). Because these four categories are
only verbally described (i.e., with no quantitative assessment), we regard the
scale as ordinal.

An assessment of liver fibrosis involves a liver biopsy which is an invasive
procedure with potentially serious side effects, thus we are very motivated to
replace this with markers that may be quantified from blood samples. Three
such markers are available in this study: ha, p3np, and ykl40. In Figure 7.1.1
the distribution of these markers is seen to be fairly skewed, so that averages
and standard deviations will not be reasonable summary statistics. Instead,
Table 7.1.1 presents medians and quartiles for these markers. Figure 7.1.1 and
Table 7.1.1 both indicate a trend in the distributions of the markers, such that
high values seem to be associated with higher degrees of fibrosis. We seek a
model to describe this relation, so that we may use the values of the three
markers for prediction of the degree of liver fibrosis.

The blood markers are of a quantitative nature, so an obvious first choice
for a linear predictor would be



7.1 Multinomial outcome 369

0 1000 2000 3000 4000

0
1

2
3

HA

F
ib

ro
si

s 
st

ag
e

0 10 20 30 40 50 60 70

0
1

2
3

P3NP

F
ib

ro
si

s 
st

ag
e

0 1000 2000 3000 4000 5000

0
1

2
3

YKL−40

F
ib

ro
si

s 
st

ag
e

Fig. 7.1.1. Distribution of blood markers according to degree of fibrosis.

Table 7.1.1. Medians and interquartile ranges of three blood markers according to
degree of fibrosis.

Median (Interquartile Range)
Degree of Fibrosis Count ha p3np ykl40

0 27 27.5 (25.0–37.0) 5.00 (3.2–6.2) 174.0 (135.0–270.0)
1 40 42.0 (27.0–94.5) 5.90 (4.6–8.4) 270.0 (150.0–498.0)
2 42 211.5 (109.0–460.0) 15.85 (9.7–24.6) 466.0 (330.0–1067.0)
3 20 242.5 (148.5–954.5) 14.55 (11.3–30.7) 676.0 (327.5–1137.5)

LPi = a + b1xi,1 + b2xi,2 + b3xi,3, (7.1.1)

where the explanatory variables x1, x2 and x3 denote the value of the mark-
ers ha, p3np, and ykl40, respectively. These markers appear only as covari-
ates, therefore there is no formal requirement regarding their distributions.
Concerns regarding influential observations and/or the linearity assumption
implied in (7.1.1) may, however, require transformation of the explanatory
variables as we show below.

In order to build a model for the degree of liver fibrosis, we have to establish
a link between this linear predictor and the ordinal outcome yi. Because the
categories 0 through 3 do not contain quantitative information, it makes little
sense to consider the mean value of y. On the other hand, the information
contained in y is more refined than that of a binary variable, so we are faced
with a dilemma. If we stick to the models considered so far in this book, we
may either reduce y to a binary variable by collapsing categories (but note
this may be done in three distinctly different ways) or we may pretend that we
are dealing with quantitative information (which may be reasonable in some
situations with many response categories that may more or less be considered
equidistant).

None of these possibilities is optimal in this example. The former implies
a loss of information and a choice of threshold, whereas the latter assumes
that it makes sense to speak about a mean value of the degree of fibrosis,
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based on the categories 0 to 3 (or some other arbitrarily chosen scoring, e.g.,
0,1,4,9, leading to different models). Later in this section, we compare results
obtained using two different ways of scoring these categories.

The main focus of this section, however, is to illustrate some possibilities
for analyzing the data directly as ordinal outcomes. In order to specify the
distribution of y on a four-point scale, we need a total of three probabilities
(because the probability of the last category will then be determined from the
fact that the probabilities have to sum to one).

We let pi,j denote the probability that patient i is observed as having liver
fibrosis on level j (i.e., pi,j = pr(yi = j)) and define the cumulative probabil-
ities “from the top” as

qi,3 = pi,3 probability of category 3,
qi,2 = pi,2 + pi,3 probability of category 2 or above,
qi,1 = pi,1 + pi,2 + pi,3 probability of category 1 or above.

Each of these three cumulative probabilities corresponds to a chosen
threshold for y: qi,3 corresponds to cutting between categories 2 and 3, qi,2

corresponds to cutting between categories 1 and 2, and qi,1 corresponds to
cutting between categories 0 and 1. Therefore, we have a choice of three dif-
ferent logistic regressions, linking one of the above probabilities to the linear
predictor using a logit link, as outlined in Section 4.1.2. This corresponds to
a dichotomization of y according to the chosen threshold. Any of these lo-
gistic regressions may be worthwhile considering, but the amount of results
and conclusions may be a bit overwhelming. However, if the three analyses
differ only slightly, we can condense and strengthen the information and at
the same time retain important results.

Let us review the results that we get from a single logistic regression, for
example, the one based on cutting between categories 1 and 2. The obser-
vations are then binary and the model can be formulated as a single linear
predictor for the logit-transformed probability of a 1 (here chosen to be the
highest categories, i.e., categories 2 and 3)

LPi = logit(qi,2) = log

(
qi,2

1 − qi,2

)

= a + b1xi,1 + b2xi,2 + b3xi,3 (7.1.2)

and the results are stated in Table 7.1.2.
We note that for two of the covariates, we get estimates extremely close

to zero and correspondingly, the odds ratios associated with these covariates
are very close to 1. This does not necessarily mean that these covariates do
not contribute to the prediction of the outcome but may simply be due to
an inappropriate scaling of the covariates. If we look at the distribution of
the covariates as illustrated in Figure 7.1.1, we note two important features.
One of these is the skewness in the covariate distributions that was already
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Table 7.1.2. Estimates in a logistic regression, using threshold between 1 and 2.

ha p3np ykl40

Estimate, bbj –0.0002 (0.0007) 0.2298 (0.0525) 0.0028 (0.0009)

Odds ratio, exp(bbj) 0.9998 1.2583 1.0028
CI for Odds ratio (0.9985, 1.0011) (1.1353, 1.3947) (1.0011, 1.0045)

mentioned above. The second feature is that the covariates have very different
ranges, two of them (ha and ykl40) having maximum values around 5000
and the third (p3np) having a maximum of approximately 70. The estimates
from Table 7.1.2 refer to the change in outcome for a one unit change in the
covariate, thus we certainly would expect the coefficients of ha and ykl40 to
be very close to zero inasmuch as a one-unit change on a scale up to 5000
hardly matters at all, even though the covariate might be closely related to
the outcome.

A simple remedy would be to scale the covariates, for example, dividing
each covariate value by 100 or even 1000. This would correspond to simply
multiplying the estimates and the SD by the same factor and change the
interpretation accordingly. Thus, for a change of 100 units in ykl40, we would
have an estimate of 0.28(0.09), corresponding to an odds ratio of 1.32, that
is, a 32% increased odds of having fibrosis above the chosen threshold.

An alternative to a simple rescaling of the covariates would be to use
percentage scales, that is, to perform a logarithmic transformation of the co-
variates so that a one unit change will correspond to multiplication of the
covariate by some constant (which is the base of the chosen logarithm, Ap-
pendix B). Making a logarithmic transformation of the covariates also has the
effect of making the distributions more symmetric as seen from Figure 7.1.2.
This limits the influence of single observations, as discussed in Section 4.1.3.
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Fig. 7.1.2. Distribution of the logarithm of the blood markers according to degree
of fibrosis.
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Based on these arguments, we prefer to use all three covariates on a loga-
rithmic scale. However, because this choice has implications for the model fit
(it is a new model assuming linearity on a new scale), we should, as always,
perform model checks. We return to this below. In order to ease the later
interpretation, we choose logarithms with base 2, so that a “one-unit increase
in the logarithm” corresponds to multiplication by a factor 2 on the original
scale.

Using these log2 transformed covariates, we get the estimates as presented
in Table 7.1.3. We see that a doubling of a single covariate yields odds ratios
of 1.79, 3.57, and 1.69 respectively, so that a doubling of all three covariates
simultaneously gives an odds ratio of 1.79 × 3.57 × 1.69 = 10.80.

Table 7.1.3. Estimates in a logistic regression, using threshold between 1 and 2,
with logarithmic covariates (log2).

ha p3np ykl40

Estimate bbj 0.584 (0.064, 1.104) 1.272 (0.437, 2.106) 0.526 (0.018, 1.035)

Odds ratio exp(bbj) 1.79 (1.07, 3.02) 3.57 (1.55, 8.21) 1.69 (1.02, 2.81)

In the above analysis we chose a specific threshold in order to make a
simple logistic regression. However, this choice was arbitrary and could have
been made in two other ways, producing three sets of such estimates as shown
in Table 7.1.4 and illustrated graphically in Figure 7.1.3.

Table 7.1.4. Estimates in separate logistic regressions for different thresholds, using
logarithmic covariates (log2).

Odds Ratios
Threshold ha p3np ykl40

3 vs. 0–2 1.30 (0.88, 1.91) 1.62 (0.82, 3.21) 1.52 (0.95, 2.42)
2–3 vs. 0–1 1.79 (1.07, 3.02) 3.57 (1.55, 8.21) 1.69 (1.02, 2.81)
1–3 vs. 0 2.09 (0.89, 4.90) 1.75 (0.69, 4.40) 1.98 (1.01, 3.89)

We note from Table 7.1.4 and Figure 7.1.3 that even though the odds ratios
for the three different choices of the threshold seem rather different (especially
for p3np), compared with the uncertainty in the estimates as illustrated by the
confidence intervals, they are not that different. We can obtain more precise
estimates if we are willing to assume that the odds ratios for each covariate do
not depend on the chosen threshold. This corresponds to looking at a single
model, in which the linear predictor in (7.1.2) is extended to all thresholds,
by changing only the intercept term and letting the influence of the covariates
(the coefficients b1, b2, and b3) be identical for all thresholds.
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Fig. 7.1.3. Odds ratio estimates (with 95% confidence intervals) for separate logistic
regressions.

The resulting model is the proportional odds model for cumulative logits,
specified for j = 1, 2, 3 by

LPi,j = logit(qi,j) = log

(
qi,j

1 − qi,j

)
= log

(
pr(yi ≥ j)

pr(yi < j)

)

= aj + b1xi,1 + b2xi,2 + b3xi,3, (7.1.3)

or, on the original probability scale:

qi,j = qj(xi) =
exp(aj + b1xi,1 + b2xi,2 + b3xi,3)

1 + exp(aj + b1xi,1 + b2xi,2 + b3xi,3)
. (7.1.4)

Note that in this model, the bs are independent of j (the threshold),
whereas the intercept a is not! This means that on the logit scale, the linear
predictors corresponding to the three possible thresholds are parallel (with
a suitable high-dimensional definition of parallel), with levels defined by the
a-parameters, which simply reflect the distribution between low and high cat-
egories in relation to the chosen threshold. These will therefore be monotoni-
cally decreasing with j, because the probability of being above the threshold
decreases with increasing threshold. This ensures that the probabilities of the
individual categories, given as successive differences between the qs as shown
in (7.1.5) are all positive, so that the model is well defined:
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pi,3 = qi,3,

pi,2 = qi,2 − qi,3, (7.1.5)

pi,1 = qi,1 − qi,2,

pi,0 = 1 − qi,1.

The results from model (7.1.3) are presented in Table 7.1.5. The inter-
cepts bear no relation to the effect of the covariates, but merely reflect
the distribution of subjects over categories. They are needed for predicting
probabilities and in order for them to make sense, we have centered the co-
variates so that a zero value of all covariates corresponds to an individual
with ha= 100, p3np= 10 and ykl40= 500. The estimated intercepts are then
â1 = 2.592(0.343), â2 = 0.173(0.253), and â3 = −2.592(0.347).

Table 7.1.5. Estimates from the proportional odds model (7.1.3), using logarithmic
covariates (log2).

Effect of Effect of 1 SD P -Value
Marker Doubling on log-scale

ha 1.48 (1.07, 2.04) 1.52 0.019
p3np 2.28 (1.37, 3.79) 1.69 0.0016
ykl40 1.72 (1.24, 2.39) 1.46 0.0011

The results in Table 7.1.5 indicate that all three blood markers make an
independent contribution to the prediction of degree of liver fibrosis. We may
formulate the effect of a single blood marker (e.g., ykl40) to say that a patient
with a value of ykl40 twice as high as another patient has a 72% increased
odds for having fibrosis of a high degree, provided that the two subjects are
identical with respect to the two other blood markers.

Comparison of the odds ratios for the three markers suggests that p3np is
the most important one for predicting liver fibrosis. This cannot be inferred
from these crude estimates, however, because a factor two may not be re-
garded as the same amount for all blood markers. Actually, from Figure 7.1.2,
we note that on the logarithmic scale, the range of ha and ykl40 is approxi-
mately twice as large as for p3np and doubling of p3np is therefore a priori
expected to produce a larger effect. If a comparison has to be made, it is
therefore customarily done by considering standardized coefficients produced
by converting the covariates into Z-scores by scaling them with their own
standard deviation. The corresponding odds ratios are shown in the middle
column of Table 7.1.5. These should be used for comparison only, and only if
the data have been chosen randomly from a well-defined population, inasmuch
as they have a correlationlike interpretation and therefore depend on the dis-
tribution of the covariates (see Section 4.1.1). If we believe the subjects to
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be sampled randomly from the population of liver patients, we may compare
the three estimates, and based on these, we still find p3np to be the most
important predictor, although the difference is now very small.

Note, however, that based on the P -values, ykl40 seems to be the most
important predictor. It should be borne in mind, though, that the P -value is
merely an indication of the strength of the evidence of a relationship, not of
its size.

Now we turn to model checking. We have several features that we should
investigate: the linearity of the effect of the covariates (on the logarithmic
scale), the proportional odds assumption (the assumption that odds ratios
are identical for all thresholds), and the ability of the model to predict the
degree of fibrosis (a goodness-of-fit check).

Scale of the covariates

We have already discussed the choice of scale for the covariates and chosen
the logarithmic scale due to ease of interpretation and as a way to avoid
problems with undue influence from single observations. We have no knowl-
edge, however, of whether the model with untransformed covariates (or some
other covariate transformation than the logarithm) performs better in this
particular situation.

In order to investigate the adequacy of the chosen scale, we could either
construct residual plots, model the covariate effects using splines as discussed
in Section 4.2.1, or calculate numerical tests for goodness-of-fit in competing
models.

Residuals for ordinal regression models generalize those from logistic re-
gressions that have been presented in Section 4.1.2. We are now dealing with a
set of k+1 indicators, one for each attainable category I(yi = 0), . . . , I(yi = k),
therefore we define k+1 standardized residuals (i.e., divided by their estimated
standard deviation) for each subject by

ri,j =
I(yi = j) − p̂r(yi = j)√

p̂r(yi = j)(1 − p̂r(yi = j))
.

Here, p̂r(yi = j) is obtained by substituting estimated values for the a− and
b− parameters into Equations (7.1.4) and (7.1.5). These residuals may be ex-
amined graphically using methods illustrated previously for binary outcomes.

Because of these several categories, residual plots become numerous. Thus
in our situation we have 4 residuals for each individual and each of these has
to be plotted against 3 covariates, giving a total of 12 plots, which are shown
in Figures 7.1.4–7.1.6. These figures do not suggest any major violations of the
model assumptions, possibly with an exception for p3np (Figure 7.1.5) which
shows a slight increasing tendency for large values, indicating that the proba-
bility of having fibrosis of degree 2 is estimated a little too low for high values
of p3np. In the upper-left panels of each of these three figures, we see (the
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same) three large residuals. These correspond to three patients with fibrosis
degree 0, having rather large values for all three blood markers and therefore
predicted to have a higher degree of fibrosis. A similar explanation holds for
the one or two large values for fibrosis degree 1 (upper-right panels) whereas
for the lower-left panels, the two largest residuals correspond to patients with
fibrosis degree 2, having rather low values of all three markers and therefore
expected to have also a lower degree of fibrosis. For the lower-right panels,
the many large residuals correspond to patients with fibrosis of degree 3, and
their large size reflects the fact that the estimated probability for this stage
does not become very large even for high values of the markers.
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Fig. 7.1.4. Residuals plotted against the blood marker log2(ha).

Also, based on −2 log L, the model with logarithmic covariates performs
much better than the one with untransformed covariates (246.466 versus
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Fig. 7.1.5. Residuals plotted against the blood marker log2(p3np).

271.42). Goodness-of-fit tests may be performed for each fibrosis category j
separately, by dividing the predicted probabilities p̂r(yi = j) into, for example,
decile intervals (i.e., containing approximately one tenth of the total number
of observations, here 13) and comparing the observed and expected number
of cases with this particular fibrosis degree as described in Section 6.2.2. It
may also be performed for the three cumulated probabilities q̂i,j = p̂r(yi ≥ j)
giving a more direct connection to the estimated parameters. For the sake of
brevity, we refrain from performing these tests.

The proportional odds assumption

The proportional odds assumption claims that no matter which of the three
thresholds we choose as a cutpoint for a logistic regression model, the effect
of the covariates will be the same. This assumption can be checked by testing
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Fig. 7.1.6. Residuals plotted against the blood marker log2(ykl40).

the model against a more liberal alternative. The obvious choice of model
extension would be to relax the assumption of identical covariate effects for
all thresholds, to give the more general linear predictor

LPi,j = logit(qi,j) = log

(
qi,j

1 − qi,j

)

= aj + b1,jxi,1 + b2,jxi,2 + b3,jxi,3, (7.1.6)

in which the three regression coefficients are allowed to depend on the thresh-
old. In Table 7.1.4, we presented estimates obtained from the separate logistic
regressions, carried out successively for each choice of threshold. Because this
involves the fitting of three different models to the same data by defining three
different versions of the same outcome variable, it will not be the same as fit-
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Fig. 7.1.7. Residuals for cumulative probabilities, plotted against the blood mark-
ers.

ting the single model (7.1.6) to all data, because this provides a model for all
four probabilities simultaneously without combining any of the categories.

Unfortunately, model (7.1.6) has some built-in problems, inasmuch as the
estimated probabilities obtained by successive differencing as shown in (7.1.5)
are now not guaranteed to produce positive values.

This is due to the fact that the linear predictors on the logit scale, cor-
responding to the three possible thresholds are no longer parallel and, there-
fore, intersect at some point. If an intersection occurs in the observed range
of the covariates, negative estimated probabilities will occur. In the fibrosis
example, we get one such negative probability corresponding to the individ-
ual with the lowest value of p3np. Even if we can perform the estimation
under restrictions to ensure positivity of all probabilities, it clearly shows
the inadequacy of model (7.1.6). The estimates (without imposing this re-
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striction) are nevertheless shown in Table 7.1.6. The estimated intercepts are
â1 = 2.947(0.611), â2 = 0.284(0.285), and â3 = −2.054(0.246).

Table 7.1.6. Estimates from model (7.1.6), with separate parameters for each
threshold, using logarithmic covariates (log2).

Estimates Odds Ratios
Threshold ha p3np ykl40 ha p3np ykl40

3 vs. 0–2 0.2931 0.4573 0.4057 1.34 1.58 1.50
2–3 vs. 0–1 0.4373 1.2712 0.4529 1.55 3.57 1.57
1–3 vs. 0 0.5828 0.7471 0.6596 1.79 2.11 1.93

If we ignore the problems of estimated negative probabilities, we can use
Model (7.1.6) to make tests of proportionality, for each covariate separately
and for all of them simultaneously. These tests appear in Table 7.1.7, together
with a score test for the overall hypothesis of proportional odds. This score
test is based upon the local change in likelihood in Model (7.1.6). It therefore
does not involve actual estimation in this model, thus avoiding the problem
of negative probabilities.

Table 7.1.7. P -values for the hypothesis of proportional odds using logarithmic
covariates (log2).

Test ha p3np ykl40 Simultaneously

Wald, one at a time 0.085 0.024 0.55 —
Wald, one at a time, with restriction — <0.0001 — —
Wald, all 0.79 0.22 0.69 0.12
Wald, all, with restriction 0.82 0.21 0.66 <0.0001
Likelihood ratio 0.57 0.31 0.97 0.185
Likelihood ratio, with restriction — 0.31 — 0.197
Score — — — 0.138

The conclusion seems to be that proportional odds are reasonable, al-
though some deviation is seen for the predictor p3np. Table 7.1.4 tells us that
p3np gives by far the best discrimination when the threshold is between 1
and 2, although the confidence intervals are rather wide. This difference in
performance for the different thresholds is the cause of the (slight) problems
with proportional odds for this covariate.

Using the proportional odds model, we can calculate predicted probabil-
ities for each subject and category, that is, estimates of pi,j . If the model is
adequate for the data, p̂i,j should be large whenever the subject has fibrosis
of category j. In Figure 7.1.8, we have, for each category j, taken averages
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over p̂i,j for each group of patients according to their actual degree of fibrosis.
This gives four averages for each category, one corresponding to the correct
category and the three remaining corresponding to misclassification probabil-
ities. In the figure, the averages corresponding to the same actual degree of
fibrosis are connected and the values corresponding to the correct degree are
marked with a dot. For instance, we see that patients having fibrosis of degree
0 have the highest average estimated probability for this stage (immediately
followed by patients with actual degree 1) and that they are lowest in esti-
mated probability for degree 3. This is what we would hope for for all of the
estimated probabilities but, unfortunately, it is not quite the case because the
average of the estimated probabilities for degree 3 is largest for patients with
actual degree 2.
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Fig. 7.1.8. Average probabilities of the different degrees of fibrosis, contrasted to
the actual observed degrees. Correctly classified groups are marked with a dot.

The continuation ratio

Thus far, we have only discussed the proportional odds model (and extensions
of this to nonproportional odds) where the link function is the cumulative logit
(i.e., the logit of the successively cumulated probabilities). Another approach
to ordinal data is to look at the continuation ratio approach in which we are
modeling the conditional probabilities of each category, given that we are not
in a category below; that is,
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hi,j = pr(yi = j|yi ≥ j)

=
pr(yi = j)

pr(yi ≥ j)
, j = 1, 2, 3.

In this case the most obvious link function to use is the logarithm leading to

log(hi,j) = LPi,j = aj + b1xi,1 + b2xi,2 + b3xi,3.

The resulting model may be thought of as a discrete time survival analysis
where the conditioning is translated to a discrete hazard; that is, given that
you are alive up to now, what is the risk of dying in the next time interval. This
gives an interpretation of a regression coefficients b as a log(discrete hazard
ratio) for the corresponding covariate x.

It should be noticed that, in the continuation ratio model, the direction of
the ordering is now used explicitly (conditioning is on “the past”).

Linear models for mean fibrosis grade

Let us finally study a linear model for the “mean fibrosis” value. This, obvi-
ously, requires that a numerical score is attached to each category, a procedure
that cannot be done in a unique way due to the semiquantitative nature of
the four categories. To illustrate the method and its simplicity and short-
comings, two such scorings are considered: a linear score where the categories
are equidistant (yi = 0, 1, 2, or 3) and an exponential score where they are
equidistant on a log-scale (yi = 1, 2, 4, or 8). Table 7.1.8 shows the results
from fitting the model

E(yi) = a + b1xi,1 + b2xi,2 + b3xi,3 (7.1.7)

for the logarithmic covariates x1 = log2(ha/100), x2 = log2(p3np/10), and
x3 = log2(ykl40/500). It is seen that, in a qualitative sense, the results resem-
ble those obtained from fitting the ordinal logistic regression model (7.1.3), in
that all three markers significantly raise the mean fibrosis grade. The P -values
in this table tend to be smaller than those obtained from ordinal logistic re-
gression.

Figure 7.1.9 shows the estimated probabilities of exceeding each of the
three thresholds based on the model (7.1.7) plotted against the estimated
probabilities based on the ordinal logistic regression model (7.1.3). For those
based on the model for E(yi), the probabilities pr(y ≥ j | x1, x2, x3) were
calculated assuming a Normal distribution for the fibrosis grade with a mean
equal to the linear predictor and using the residual SD given in the table. It
is seen that, for the score 0, 1, 2, 3, the predicted probabilities are close to
those obtained using the more satisfactory model (7.1.3) and those based on
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Table 7.1.8. Results from fitting linear regression models for the mean fibrosis
score.

Score: 0, 1, 2, 3 Score: 1, 2, 4, 8

Covariate bb SD P bb SD P

Intercept 1.534 0.068 3.583 0.172
lha 0.141 0.053 0.009 0.337 0.136 0.014
lp3 0.295 0.083 0.0006 0.583 0.212 0.007
lyk 0.201 0.056 0.401 0.0005 0.143 0.006

Residual SD 0.677 1.719
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Fig. 7.1.9. Fibrosis data: estimated probability of exceeding each of the three
thresholds (from left to right: 1, 2, and 3) based on linear models for the mean
fibrosis grade plotted against those based on ordinal logistic regression: o = linear
score, x = exponential score. The dashed line is the identity line.

the score 1, 2, 4, 8 seem to differ showing the sensitivity of the results to the
chosen way of assigning numerical values to the categories.

To further evaluate the model based on the most obvious choice of scores,
0, 1, 2, 3, Figure 7.1.10 shows residuals from that model plotted against each
of the three covariates lyk, lp3, and lha, respectively. Based on these figures,
the model seems to provide a satisfactory fit to the data.

In conclusion, the ordinal regression model (7.1.3) is the most natural
choice of a model for the fibrosis data and any score attached to the categories
is more or less arbitrary. However, the simplicity of a linear model for the mean
fibrosis grade remains appealing and even the estimates (at least for the linear
score) are easily interpretable, for example, for the p3np marker a doubling
increases the mean fibrosis grade by approximately 0.3.

7.1.2 Nominal outcome

As mentioned in the introduction to Section 7.1, ordinal outcome data seem
to be more frequent in applications than nominal outcome data (although
nominal variables may be common as explanatory variables). For that rea-
son we use the fibrosis example from the previous Section 7.1.1 to introduce
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Fig. 7.1.10. Fibrosis data: residuals from Model (7.1.7) (using scores 0, 1, 2, 3)
plotted against the covariates lha, lp3, and lyk.

the polychotomous logistic regression model for nonordinal multinomial data
although the outcome, degree of fibrosis (0, 1, 2 or 3) is, indeed, ordinal. How-
ever, in cases where the assumptions of the proportional odds model (7.1.3)
are not reasonably fulfilled, the model introduced in the following may serve
as an alternative even for ordinal data.

We therefore consider an outcome variable yi with (k + 1) values g0, g1,
. . . , gk which need not be ordered. Our aim is to specify the distribution of
yi in relation to explanatory variables xi,1, . . . , xi,nc

and the polychotomous
logistic regression model specifies this using the following log(odds).

log
(pr(yi = gj)

pr(yi = g0)

)
= aj + b1,jxi,1 + · · · + bnc,jxi,nc

= LPi,j , j = 1, . . . , k.

(7.1.8)
In (7.1.8) all parameters are interpreted in relation to the same category (g0)
for the outcome yi. That is, aj is the log of the odds (when all xi,u = 0) that
yi takes the value gj rather than the reference value g0, and bu,j is the log
of the ratio between odds (associated with a 1-unit increase in xi,u) that yi

takes the value gj , rather than the reference value g0. Note the difference from
(7.1.3) where, for an ordinal yi (i.e., g0 <g1 <. . .<gk) we studied the model

log
(pr(yi ≥ gj)

pr(yi < gj)

)
= aj + b1xi,1 + · · · + bnc

xi,nc
, j = 1, . . . , k

for the odds that yi exceeds the jth threshold gj . In (7.1.3), the further assump-
tion that the log(odds ratio) parameters bu were the same for all thresholds
(j) was imposed.

For k = 1, (7.1.8) is just the familiar logistic regression model and, in fact,
the parameters in the model may be estimated consistently (as defined in
Section 2.3) by fitting k simple logistic regression models for binary outcomes
(e.g., Begg and Gray, 1984). As an illustration we consider the fibrosis data
(Example 1.9), analyzed in Section 7.1.1 and described in Table 7.1.1 and Fig-
ures 7.1.1 and 7.1.2. For those data, the intercept a1 and the three log(odds
ratios) b1,1, b1,2, b1,3 may be estimated based on a data subset consisting of
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all patients with fibrosis degree 0 or 1 and, similarly, a2, b2,1, b2,2, b2,3 may be
estimated by restricting to patients with fibrosis degree 0 or 2, and so on.
Table 7.1.9 shows the results. For the 1 versus 0 and the 2 versus 0 contrasts,
estimates are in agreement with what we saw using the ordinal logistic re-
gression model in the sense that higher marker values increase the risks of
higher levels of fibrosis. For the contrast between 3 and 0, the simple logistic
regression model including all three markers did not converge because of the
fact that the distributions of the ha marker in these two fibrosis categories
almost do not overlap.

Table 7.1.9. Estimates in a polychotomous logistic regression model for the fibrosis
data using logarithmic covariates (log2). Estimates for 2 versus 0 and 1 versus 0 are
obtained via separate simple logistic regressions. The model for 3 versus 0 did not
converge; see text.

Odds Ratios (95% ci)
Fibrosis Grade Intercept (SD) ha p3np ykl40

3 vs. 0
2 vs. 0 –17.67 (4.85) 5.00 (1.47, 16.95) 1.63 (0.48, 5.49) 2.30 (0.88, 5.97)
1 vs. 0 –7.90 (2.92) 1.37 (0.58, 3.23) 1.57 (0.63, 3.94) 2.03 (0.98, 4.19)

At first glance, it may seem surprising that consistent estimates can be
obtained by separate binary logistic regressions because, in general, it is not
advisable to select subjects for regression analysis based on their observed out-
comes and our recommendation is, indeed, to estimate all parameters simul-
taneously. It is a consequence of (7.1.8) that the probabilities for the different
outcome categories are

pr(yi = gj) =
exp(LPij)

1 +
∑k

w=1 exp(LPi,w)
, (7.1.9)

for j = 1, . . . , k, and

pr(yi = g0) =
1

1 +
∑k

w=1 exp(LPi,w)
.

When observations of the outcome yi and explanatory variables (xi,1, . . . , xi,nc
)

are available for independent individuals, i = 1, . . . , n, the likelihood function
(Section 2.3.4) is easily derived and maximization provides parameter esti-
mates for (aj , (b1,j , . . . , bnc,j), j = 1, . . . , k). To exemplify, we consider the fi-
brosis data and, using fibrosis grade 0 as the reference, the estimates in model
(7.1.8) including the three markers log2(ha), log2(p3np), and log2(ykl40) are
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shown in Table 7.1.10. It is seen that, for all three markers, the odds ra-
tio increases with the degree of fibrosis. This is to be expected judged from
the results from Section 7.1.1 because a higher degree of fibrosis corresponds
to “crossing more thresholds” as a consequence of the ordinal nature of the
outcome variable.

Table 7.1.10. Estimates in a polychotomous logistic regression model for the fibro-
sis data using logarithmic covariates (log2).

Fibrosis Odds Ratios (95% ci)
Grade Intercept (SD) ha p3np ykl40

3 vs. 0 –22.10 (4.32) 3.08 (1.14, 8.30) 4.77 (1.31, 17.39) 3.22 (1.34, 7.78)
2 vs. 0 –17.76 (3.71) 2.66 (1.03, 6.89) 4.26 (1.32, 13.80) 2.61 (1.17, 5.83)
1 vs. 0 –7.65 (2.87) 1.67 (0.69, 4.07) 1.34 (0.51, 3.54) 1.80 (0.90, 3.60)

LR test 9.35 15.79 8.09
(P -value) (0.025) (0.0013) (0.044)

It should be emphasized that the parameter estimates obtained from sep-
arate simple logistic regressions will not be identical to those obtained by
estimating all parameters simultaneously. For the 1 versus 0 contrast, esti-
mates are close to those shown in Table 7.1.9 whereas, for the 2 versus 0
contrast, discrepancies are larger. Estimating all parameters simultaneously
will generally provide smaller standard deviations and, more important, it
enables comparison of estimates for different levels of fibrosis and provides
simultaneous (likelihood ratio) tests for all categories for each of the covari-
ates adjusted for the other covariates. Thus, the last line in Table 7.1.10 shows
(three-degree-of-freedom) tests for ha, p3np, and ykl40 showing that all mark-
ers are significant at the 5% level, most so p3np. It would not be immediate
how to conduct such tests if parameter estimates (see Table 7.1.9) were ob-
tained via three separate logistic regression models. Finally, in the fibrosis
example, separate estimation had the additional disadvantage that one of the
simple logistic regressions could not be fitted.

The fact that parameters in (7.1.8) may be estimated using simple logistic
regression models for binary data has the consequence that model checking
may, in principle, be performed in those simple models. However, because in
general we recommend to fit the model using the likelihood method based on
all data, the polychotomous regression model (7.1.8) is the one that should be
subject to model checking. For that purpose the multinomial outcome yi may
be transformed into k + 1 indicators I(yi = g0), . . . , I(yi = k) and, thereby
defining k + 1 residuals for each subject by

ri,j = I(yi = gj) − p̂r(yi = gj).
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Here, p̂r(yi = gj) is obtained by substituting estimated values for a− and b−
parameters into (7.1.9). These residuals, possibly standardized by dividing by
their estimated standard deviation

√
p̂r(yi = gj)(1 − p̂r(yi = gj)) may be ex-

amined graphically using methods illustrated previously for binary outcomes.
Let us finally comment on the two different models that we have fitted to

the fibrosis data: the proportional odds model (7.1.3) in Section 7.1.1 and the
polychotomous logistic regression model (7.1.8) in the current section. Both
models specify the probabilities pr(yi = gj), however (because of the non-
linearity of the logit function), the two models are not nested and, therefore,
they cannot be compared via a likelihood ratio test. For an ordinal outcome,
we prefer (7.1.3) because it utilizes the ordinal structure in y and always has
fewer parameters than (7.1.8). Therefore, it provides a more parsimonious
description of the data with parameters that tend to be easier to interpret.
On the other hand, the proportional odds assumption may be too restrictive
and (7.1.3) may not provide a satisfactory fit to the data, in which case (7.1.8)
is an alternative.

7.2 Count outcome

In the fever in pregnancy Example 1.2 in Section 1.1.1, we have thus far
studied possible explanatory variables for the risk of fetal death, one of these
being the number of fever episodes during pregnancy. In this section we look
at the number of fever episodes as the outcome variable and describe analyses
relating this to possible explanatory variables.

If a fever episode is regarded as a pregnancy week with occurrence of fever,
we can think of the number of fever episodes as a sum of zeros and ones, a one
for each week where the woman experienced fever and a zero for each week
without fever. For each week, we denote the probability of a fever episode by
p (assumed to be identical for all weeks, i.e., independent of gestational age)
and if fever episodes occur independently of each other in separate weeks,
the resulting sum will follow a Binomial distribution Bin(c, p), as described
in Section 2.1.2, where c denotes the number of weeks available for possible
fever episodes.

The probability p is small, therefore the Binomial distribution may be
approximated by a Poisson distribution, as described in Section 2.1.3, so that
the probability that y, the number of fever episodes during c = 14 weeks of
pregnancy, takes the value u may be written as

pr(y = u) =
mu

u!
exp(−m), (7.2.1)

where the parameter m is the mean value m = cp. We are looking for explana-
tory variables for this mean value m. One such variable that in particular could
be expected to have an effect is the parity (i.e., the number of previous preg-
nancies for the woman), because children are known to bring home a lot of
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germs and expose family members to all sorts of common infections. Other
possible explanatory variables could be age (which is presumably closely as-
sociated with parity) and alcohol and smoking habits.

Table 7.2.1 lists the number of fever episodes according to a simplified de-
scription of parity (0: no previous children, 1: one or more previous children).
Moreover, the average and squared SD is given, allowing for an immediate
assessment of the effect of parity as well as a superficial check of the Poisson
assumption (because in a Poisson distribution, the mean equals the squared
standard deviation). This table seems to support our suspicion about children
attracting infections because the average number of fever episodes is 0.223 for
parity ≥ 1 and only 0.172 for parity 0 mothers (P < 0.0001). This apparent
difference might, however, be due to other reasons, such as older age or higher
alcohol consumption.

Table 7.2.1. Number of fever episodes during pregnancy, according to parity. Ad-
ditional summary statistics.

Number of Fever Episodes Average
Parity 0 1 2 3 4 5 6 7 8 9 10 ≥ 12 Average SD2 Age

0 4474 731 69 10 2 1 0 0 0 0 0 0 0.172 0.189 27.88
≥ 1 5219 1141 114 10 1 2 1 1 0 0 2 0 0.223 0.264 31.06

Total 9693 1872 183 20 3 3 1 1 0 0 2 0 0.200 0.231 29.63

Let yi denote the number of fever episodes for the ith woman. We relate
mi = E(yi) to a linear predictor, including some of the above-mentioned
explanatory variables. The number of fever episodes is obviously nonnegative,
thus it is natural to use a logarithmic transformation. However, a large fraction
of women will experience no fever episode during pregnancy, that is, yi = 0 (see
Table 7.2.1), thus preventing a logarithmic transformation of the observations.
The natural choice is therefore to use instead a logarithmic link: define

log(E(yi)) = log(mi) = LPi = a + b1xi,1 + · · · + bnc
xi,nc

. (7.2.2)

Due to the logarithmic link, we cannot use the method of least squares to
estimate the parameters. Instead we use a full maximum likelihood approach
so we have to specify the distribution of yi, that is, the point probabilities given
in Equation (7.2.1) for varying mi. Subsequently we compare with the results
obtained from a Binomial distribution assumption and an approximation with
a Normal distribution.

As mentioned above, the mean of a Poisson distributed variable equals
the squared standard deviation. Hence we could get a rough idea about the
appropriateness of the Poisson distribution from Table 7.2.1. The total average
is 0.200 and the squared standard deviation is 0.231 so we have a slightly
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larger standard deviation than prescribed by a Poisson distribution (the ratio
between squared standard deviation and average is 0.231/0.200 = 1.155). The
goodness-of-fit test for the Poisson distribution actually gives a significant
result, P <0.0001, stating that the description is not good (a similar result was
found for the Binomial distribution in Section 2.3.2). This is to be expected,
however, because the mean may depend on covariates (as specified in Equation
(7.2.2)) so that the yis are not identically distributed.

Subdividing according to parity, we get averages and standard deviations
as seen in Table 7.2.1 and we note that for parity 0 the correspondence be-
tween squared standard deviation and average is now better (the ratio between
squared standard deviation and average being 0.189/0.172 = 1.099), whereas
for parity ≥ 1 it is somewhat worse (the ratio being 0.264/0.223 = 1.184).
If it were feasible to subdivide also according to age and alcohol habits, we
could imagine that the observed averages and squared standard deviations
(variances) would become closer in each stratum. Actually, if the squared
standard deviation is much larger than the average in one or more strata, it
could well be a sign of an important explanatory variable that was not (yet)
taken into account.

Digression. Overdispersion

Inasmuch as the standard deviation is directly linked to the mean in a Poisson

distribution, there is no concept such as a residual variation as we have seen it in

the case of Normal distributions. Actually this means that we trust the models to

include all relevant explanatory variables such that the conditional distributions for

given values of all explanatory variables can be taken to be Poisson and show no

variation beyond that specified by the mean value. If this is not the case, we talk

about overdispersion. Such an overdispersion can be incorporated into the model by

assuming the Poisson means mi (after adjustment for covariates) to have a Gamma

distribution. This introduces an additional free parameter to describe the variation,

and the resulting marginal distribution is called a Negative Binomial distribution .

This may also be thought of as adding an error term to the linear predictor from

Equation (7.2.2), and assuming that this error is distributed as the logarithm of

a Gamma distribution. Gamma distributions resemble logarithmic Normal distri-

butions, thus an assumption of Normality for the error term will result in similar

results. �

An analysis including alcohol habits (either in five categories or as a quan-
titative variable with a linear effect), age at conception (as a quantitative
variable with a linear effect), and parity (binary variable as described above)
showed alcohol habits to be without any effect, probably because very few
women drink more than one or two units a week. We therefore only present
the results from an analysis with parity and age, as shown in Table 7.2.2.

When fitting the model, we scaled the age variable to be centered at the age
of 30 and increasing in units of 10 years. Therefore, the intercept corresponds
to the level for a women who got pregnant at the age of 30 and had one or
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Table 7.2.2. Estimates in a model with parity and age as explanatory variables for
the number of fever episodes during pregnancy.

Estimate (CI) Ratio Estimate (CI) P

Intercept –1.488 (–1.541, –1.436) — —

Parity
0 –0.300 (–0.390, –0.211) 0.741 (0.677, 0.810) <0.0001
≥ 1 0 1 —

Age, 10 years –0.140 (–0.244, –0.035) 0.870 (0.783, 0.965) 0.0088

more previous children. She has an estimated mean number of fever episodes
equal to exp(−1.4882) = 0.226.

We note that both parity and age are significant predictors for the number
of fever episodes. Thus, women with no previous children have a mean number
of fever episodes which is approximately 25% less than women with one or
more previous children (the factor being 0.74, i.e., 26% lower), provided that
they have the same age. The confidence interval ranges from 19% to 32%
lower. Because of the approximate relation between the mean number of fever
episodes and the probability of a fever episode in any given week (m ≈ cp), the
same ratio applies to the interpretation of the probability of a fever episode
in any given period of pregnancy (e.g., a week).

Similarly, we find that older women have a somewhat lower level of fever
episodes. A ten-year increase in age yields an estimated decrease in the mean
number of fever episodes of approximately 13% (CI 4–22%), for women with
identical parities.

Note that this is in apparent contradiction with the effect of parity because
the parity 0 women have an average age of 27.9 whereas the women with
parity ≥ 1 have an average age of 31.1 years (see Table 7.2.1). Actually, it is
precisely this association between parity and age that results in a significant
age effect when adjusting for parity. We have an example of two closely related
explanatory variables that have opposite effects on the outcome: parity has
a positive effect (women with previous children have more fever episodes)
whereas age has a negative effect (older women have fewer fever episodes). If
we did not adjust for parity and studied the number of fever episodes solely as
a function of age, the effect of age would disappear (estimated effect in that
model is −0.010 for 10 years of age, P = 0.84). The reason is that for this
marginal model the mean number of fever episodes for the youngest mothers is
lowered because most of them are nulliparous whereas, for the older mothers
it is increased because more of these tend to have previous children.

Likewise, in a model including parity as the only explanatory variable,
the effect of this would be somewhat less pronounced compared to the model
adjusted for age. We can see this from Table 7.2.1 because the effect of parity
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is here simply estimated as the ratio 0.172/0.223 = 0.7713, a little closer to 1
than 0.7407 from Table 7.2.2.

Note that the situation described here with effects being present only when
adjusting also for other effects is a classical example of confounding and has
nothing to do with interaction. There may or may not also be an interaction
between parity and age but we have not investigated this yet. Including an
interaction term between parity and the linear age effect gives an estimated
difference in the age effect of 0.0047 (0.0109), in the sense that the age effect
is somewhat more pronounced for the women without previous children. The
difference is, however, not significant (P = 0.66).

15 20 25 30 35 40 45
Age at conception

A
ve

ra
ge

 n
o.

 o
f f

ev
er

 e
pi

so
de

s
0.

05
0.

1
0.

2
0.

4
0.

8
1.

6
3.

2

15 20 25 30 35 40 45
Age at conception

P
re

di
ct

ed
 n

o.
 o

f f
ev

er
 e

pi
so

de
s

0.
05

0.
1

0.
2

0.
4

0.
8

1.
6

3.
2

Fig. 7.2.1. Left panel: average number of fever episodes in two-year age groups, with
symbols according to parity (parity 1: dots, parity 0: circles). Right panel: predicted
values for age effects in the two parity groups as a linear spline with breaks at age
20 and 30 (parity 1: solid curve, parity 0: dashed curve).

We, therefore, conclude that a reasonable model for the number of fever
episodes during pregnancy is given by Equation (7.2.3).

log(E(y)) = LP = a + b1I(parity = 0) + b2Age. (7.2.3)

Model checks

The conclusions presented above rely (as always) on the adequacy of the
chosen model. We therefore have to perform model checks to assure ourselves
that we have not overlooked important features.

The left panel of Figure 7.2.1 shows the average number of fever episodes
in two-year age groups (the outermost age groups cover larger age ranges, 16–
20 and 40–45 respectively). We note from this figure that the decline in mean
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fever episodes with age is not entirely apparent except for the outermost age
groups. It is not surprising that the very young mothers may have an infection
pattern quite different from more mature mothers thus in order to investigate
this effect further, we model age effect as a linear spline with breaks at age 20
and 30. Furthermore, we allow the age effect to be different for the two parity
groups, and the resulting predicted mean number of fever episodes is shown
in the right panel of Figure 7.2.1. There is found no significant interaction
between parity and age in this extended model, either, and the breaks are not
significant.

The left panel of Figure 7.2.2 shows a residual plot for the model with a
linear effect of age and a parity effect, with no interaction between the two.
There are no obvious trends in this figure but the question is whether we would
be able to see such a trend because of the large number of observations. In
the right panel we have therefore shown a smoothed version of the residual
plot, with axes scaled so that possible patterns may appear. We see no such
clear patterns to suggest a systematic deviation from our model, apart from
very young mothers who have more fever episodes than expected.
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Fig. 7.2.2. Residual plots for the model (7.2.3) Left panel: parity 1: dots, parity
0: circles; right panel: smoothed version according to parity, parity 1: solid curve,
parity 0: dashed curve.

We may also perform a goodness-of-fit test for model (7.2.3), along the
lines used in Section 6.2.2, by grouping the women according to their predicted
mean number of fever episodes. Taking 10 equally sized groups and compar-
ing observed and expected number of fever episodes (totally for women in the
group), we get Table 7.2.3 and an overall chi-squared statistic of 7.02. When
this is evaluated in a χ2 distribution with 8 degrees-of-freedom, it yields a
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P -value of 0.53 and therefore no indication that the linear predictor is inade-
quate.

Table 7.2.3. Observed and expected number of fever episodes in ten subgroups
according to predicted values.

Predicted Mean Number of Number of Number of Fever Episodes
Fever Episodes Women Observed (O) Expected (E) O−E√

E

0.138–0.166 1176 188 187.57 0.031
0.166–0.172 1179 197 199.18 –0.154
0.172–0.177 1179 212 205.56 0.449
0.177–0.183 1177 196 211.40 –1.059
0.183–0.207 1178 239 229.77 0.609
0.207–0.215 1179 273 249.63 1.479
0.215–0.221 1177 229 257.01 –1.747
0.221–0.227 1179 265 264.13 0.054
0.227–0.234 1176 272 270.54 0.088
0.234–0.267 1178 287 283.20 0.226

We may also compare observed and expected values of fever episodes di-
rectly in the marginal distribution, as seen in Table 7.2.4. We here get an
overall test statistic of 19.97 which is significant in a chi-squared distribution
with 2 degrees of freedom (P < 0.0001). This means that we do find some
signs that the observed number of fever episodes has a distribution which is
too wide compared to a Poisson distribution, that is, signs of an overdisper-
sion. This may be explained either by covariates not yet taken into account or
by correlation between the occurrence of fever episodes for the same womanin
successive weeks.

Table 7.2.4. Observed and expected number of women according to number of
fever episodes.

Number of Number of Women
Fever Episodes Observed (O) Expected (E) O−E√

E

0 9693 9644.63 0.492
1 1872 1923.71 –1.179
2 183 194.44 –0.890

≥ 3 30 14.21 17.545
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Comparison to other approaches

As mentioned in the beginning of this section, the Poisson distribution is used
here as an approximation to the Binomial distribution. We compare here the
above results obtained from the Poisson model (7.2.3) with a similar one as-
suming the distribution to be Bin(c = 14, p) and choosing the link function to
be the logit, with the same linear predictor as given in (7.2.3). Even though
the number of fever episodes is restricted to nonnegative integers, we neverthe-
less also compare to a model assuming Normality, with log-link. The results
are shown in Table 7.2.5 which also includes the results from the Poisson
model for comparison. We note that there is hardly any difference between
the estimates. In fact, the discrepancy between the model fits amounts to less
than a quarter of a percent. We could proceed by comparing also with other
link functions (e.g., the identity link or a square root link) but by now it has
become clear that this will hardly change anything at all.

Table 7.2.5. Comparison of estimates in models assuming Poisson, Normal, and
Binomial distributions.

Parity 0 vs. ≥ 1 Age, 10 Years Prediction for
Model Estimate (SD) P -Value Estimate (SD) P -Value Age 30, Parity 1

Poisson –0.300 (0.046) <0.0001 –0.140 (0.053) 0.0088 0.226 (0.214, 0.238)

Binomial –0.300 (0.045) <0.0001 –0.139 (0.053) 0.008 0.222 (0.211, 0.234)

Normal, log-link –0.300 (0.050) <0.0001 –0.141 (0.058) 0.015 0.226 (0.214, 0.238)

7.3 Quantitative outcome

The models for quantitative outcomes studied thus far have all linked the
mean value directly to the linear predictor (i.e., using the “identity link”),
perhaps after transformation of the outcome variable. When quantitative co-
variates are present, this formally has the consequence that negative mean
values may be anticipated. In many practical examples the range of the out-
come and covariates may prevent this from happening but in some situations,
an outcome with positive values can take on values very close to zero (an ex-
ample might be the concentration of some hormone) and the problem becomes
highly relevant.

A possible solution to this problem is to make a transformation of the
outcome, typically using a logarithm before linking to the linear predictor and
thereby ensuring the positivity of predicted values. This changes the relation
between covariate and outcome, because the relation will now be linear on
the transformed scale but of exponential type on the original scale. At the
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same time it will affect the assumption of constant standard deviation of the
outcome (we cannot have a constant standard deviation on both scales). It
may so happen that these considerations (sensible description of mean and
constant standard deviation) are somewhat contradictory. This may be solved
by choosing another link function.

The approach using a logarithmic transformation of vitamin D (yi) when
modeling the effect of body mass index xi has been used previously (e.g.,
Section 6.2.1). The model can be written as

E(log(yi)) = LPi = a + bxi. (7.3.1)

In this section, we compare this with the approach just mentioned, in
which we do not transform the outcome, but rather use the logarithm as link
function to the linear predictor LPi, that is, the model

log(E(yi)) = LPi = a + bxi. (7.3.2)

In a digression in Section 1.2.2 it was mentioned that the two approaches
corresponding to Equations (7.3.1) and (7.3.2) are not identical even though
they look rather similar. The difference has to do with the distribution of
the outcome y and, as mentioned above, the assumption of constant standard
deviation; see also Appendix B. Note that (7.3.2) corresponds to the model
(7.2.2) for a Poisson outcome in Section 7.2.

Estimation in regression models with quantitative outcome variables is
traditionally carried out using the method of least squares, which is identical
to the maximum likelihood method when the outcome is Normally distributed
with constant standard deviation. These two assumptions relate to different
scales in Equations (7.3.1) and (7.3.2). In Equation (7.3.1) the standard devia-
tion is assumed constant on the logarithmic scale (corresponding to a standard
deviation proportional to the mean value on the original scale, i.e., a constant
coefficient of variation; see the digression below), whereas in Equation (7.3.2)
the standard deviation itself is assumed constant on the original scale. Model
(7.3.1) may be analyzed using the method of least squares (on the logarith-
mic scale) whereas in model (7.3.2) the likelihood method will yield another
approach (because the mean value is not linearly related to the covariate on
the scale of constant standard deviation).

Digression. The coefficient of variation

When measurement error or other types of variation are expressed as percent-

ages, there is an implicit assumption that large levels are associated with large

standard deviations, in fact that these are proportional. The coefficient of variation

is defined as this constant ratio between standard deviation and mean. Thus, if yi is a

variable measured for subject i with mean value mi and standard deviation si, then

expressing si as a percentage implies that si = CVmi, and the ratio CV = si/mi is

denoted the coefficient of variation. It can be shown that if the yis have a constant
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coefficient of variation CV (e.g., 8%), then log(yi) will have an approximately con-

stant standard deviation equal to 0.08. The approximation is best for small values

of CV and becomes unreasonable for values above 25–30%. �

We once again use Example 1.1 from Section 1.1 for illustrating the dif-
ference between the two approaches corresponding to Equations (7.3.1) and
(7.3.2). Furthermore, the simple model relating vitamin D concentration (yi)
to body mass index (xi), by the formula

E(yi) = LPi = a + bxi (7.3.3)

is also included in the comparison. Thus, we use the linear predictor in three
different ways, namely as either the simple mean E(yi), the logarithm of the
mean log(E(yi)), or the mean of the logarithm E(log(yi)). Note that because
we are estimating different models, the parameters a and b in the three linear
predictors will not have the same interpretation and their estimates can there-
fore not be directly compared. However, the parameters in the models (7.3.1)
and (7.3.2) involving logarithms will be very close if the standard deviation
is small. If we center the covariate at a body mass index of 25, the estimated
intercept in the untransformed model with linear predictor (7.3.3) will be the
expected vitamin D concentration for a woman with body mass index 25,
whereas for the other two models it will be the estimated logarithmic value
for such a woman.

The estimate for the untransformed model (7.3.3) with identity link has
already been discussed in Section 4.1.1. The estimates were found to be
â = 111.05(18.40) and b̂ = −2.392(0.690), using an uncentered version of
body mass index. With the body mass index centered at 25, we get instead
â = 51.24(2.95). Thus, with the ordinary linear regression on an untrans-
formed scale, the predicted vitamin D concentration for a woman with a body
mass index of 25 is 51.24. The estimates from all of the three regressions are
collected in Table 7.3.1, along with the estimates from three more models,
where body mass index has also been subjected to a logarithmic transforma-
tion before entering as a covariate. Moreover, Figure 7.3.1 shows the corre-
sponding estimated relations based on these six models.

We note that all approaches yield very similar descriptions of the relation
between vitamin D concentration and body mass index. This is because the
outcome as well as the covariate vary in a quite narrow range away from zero,
so that the logarithm is reasonably linear in the observed range (Figure B.1).

In Table 7.3.1 we can compare the estimates of the intercept â from rows
1 and 2. For the remaining models, we should compare to exp(â), which are
(47.27, 46.58, 50.40, 49.67), respectively. This means that the models using a
logarithmic transformation of the vitamin D as outcome predict a lower value
for women with a body mass of 25. Actually, they predict lower values in the
entire range but because we compare so many similar models in Figure 7.3.1, it
is hard to really tell the difference (even more so because of the scaling needed
to include the data in the picture as well). We therefore take a closer look at
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Table 7.3.1. Parameter estimates in six different models relating concentration of
vitamin D (yi) to body mass index (xi).

Estimates

Model ba bb s

1: E(yi) = a + b(xi − 25) 51.24 (2.95) –2.392 (0.690) 17.91
2: E(yi) = a + b (log(xi) − log(25)) 50.61 (2.89) –63.53 (18.23) 17.88

3: E (log(yi)) = a + b(xi − 25) 3.8558 (0.0629) –0.0545 (0.01473) 0.3821
4: E (log(yi)) = a + b (log(xi) − log(25)) 3.8411 (0.0618) –1.4414 (0.3896) 0.3821

5: log (E((yi)) = a + b(xi − 25) 3.9199 (0.0557) –0.0515 (0.0151) 17.88
6: log (E((yi)) = a + b (log(xi) − log(25)) 3.9054 (0.0562) –1.3068 (0.3759) 17.91
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Fig. 7.3.1. Comparison of estimated curves from the six models in Table 7.3.1.

the two graphs corresponding to rows 3 (Equation (7.3.1), dashed line) and
5 (Equation (7.3.2), solid line) of Table 7.3.1. These two curves can be seen
in Figure 7.3.2 without the actual data in order for the differences to stand
out more clearly. We see that the two curves have almost identical shapes and
that the one with a log link on the untransformed outcome is higher for all
values of body mass index. This is because the mean is here applied to slightly
skewed data, giving higher values.

The estimated standard deviations from Table 7.3.1 can be compared in
rows (1,2,5,6) and the standard deviations in rows (3,4) are to be interpreted
as coefficients of variation (CV). The average vitamin D concentration is ap-
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Fig. 7.3.2. Comparison of estimated relations corresponding to models in rows 3
and 5.

proximately 48, thus a CV of 38% corresponds roughly to a standard deviation
of 18.24, that is,i.e. only slightly higher than for the rest of the models in Table
7.3.1.

Cardiac output example

We now turn to Example 1.11 from Section 1.1 concerned with the precision
in the measurement of cardiac output. This investigation involved 80 patients,
and the outcome of interest is the within-patient standard deviation based on
N = 8 consecutive measurements for each patient.

The ultimate aim of this investigation was to make it possible to reduce the
number of successive measurements (N) for each patient without losing too
much information regarding the level of cardiac output. The standard devia-
tion of the average of N successive measurements is given by s/

√
N , therefore

we may use a smaller N if the standard deviation on single measurements s
is small itself. Hence it is of interest to identify possible predictors for the size
of this standard deviation. If certain covariate values predict a high standard
deviation, we can react by taking more observations on these patients than
on others.

In the left panel of Figure 7.3.3 the subject-specific standard deviations
are plotted against the corresponding average values of cardiac output, with
symbols indicating sex. The positive relation between standard deviations
and levels seen in this figure suggests a constant coefficient of variation rather
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than a constant standard deviation, leading us to perform a logarithmic trans-
formation of the cardiac output measurements and calculating the standard
deviation on this scale instead. If we performed the analysis for the standard
deviations on the original scale, we would run the risk of identifying covariates
associated with the level instead of the measurement uncertainty. Gender may
be such a variable. Table 7.3.2 shows medians for levels (individual averages)
and standard deviations for the untransformed data, subdivided according to
sex. We note that both standard deviations and levels are lower for women
than for men. However, in the left panel of Figure 7.3.3 we can see that this
sex difference is not the only reason for the positive association between stan-
dard deviation and level, because this association is present for both sexes
separately.
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Fig. 7.3.3. Subject-specific standard deviations plotted against level of cardiac
output. Left panel: SD on original scale; right panel: SD on logarithmic scale (circles:
males; dots: females).

Table 7.3.2. Medians of individual cardiac output (average of N = 8 measure-
ments) and standard deviations.

Medians
Gender Average Cardiac Output Standard Deviation

Female 4.0875 0.1852
Male 4.6125 0.2070
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In the right panel of Figure 7.3.3, the standard deviations on the logarith-
mic scale are plotted against the levels. The positive association from the left
panel is seen not to present on this scale.

The standard deviations are all obviously positive, but a few are very close
to zero. Including a linear effect on such a scale may not be wise inasmuch as
estimated values will run a high risk of becoming negative. However, in this
example it creates no problems because the only quantitative explanatory
variable is age (as shown later, this does not seem to have any effect). On the
other hand, the distribution of the standard deviations is obviously skewed,
with a heavy tail to the right suggesting that a logarithmic transformation
may be a better idea for these data. We compare the two approaches from
Equation (7.3.1) and (7.3.2), that is, models assuming the linear predictor to
be either E(log(yi)) or log(E(yi)) where we let

yi = ŝ2
i

be the squared standard deviation (the variance) for patient i. Following this
comparison, we compare with a third (and probably more realistic) model
taking into account the specific distribution of ŝ2

i .
The covariates that were believed to be of importance for the size of the

standard deviation were primarily the age of the patient and whether the pa-
tient had a pacemaker. Gender was not a priori considered to be of importance
but could not be ruled out either.

A preliminary investigation of the effect of age can be seen in Figure 7.3.4
where the logarithm of the SD (for logarithmic cardiac outputs) are plotted
against age of the patient. This figure shows that we cannot expect any effect
of age. This was confirmed in later analyses (not shown here), therefore we
are not concerned with the effect of this covariate here.

We therefore look at a model including only the two categorical covariates
gender and presence of pacemaker. Table 7.3.3 shows medians of logarithmic
standard deviations according to these two categorical covariates. We notice
that patients with a pacemaker seem to have a somewhat lower variation than
patients without a pacemaker and that women tend to have a smaller variation
than men. We also recognize that pacemaker and gender are related because
the data include only a single woman with a pacemaker. Note, however, that
in this situation the association between the covariates leads to an enhanced
effect for each covariate when the other is also included (the difference between
the pacemaker groups is larger for each of the gender groups separately than
for the sexes combined). We return to a comment on this below.

The estimated contrast between the two categories for each of the two
covariates is given in the first two rows of Table 7.3.4. We see that patients
without a pacemaker have a somewhat higher standard deviation than pa-
tients with a pacemaker but that this difference does not reach statistical sig-
nificance. If we estimate using the log-link, we have to multiply the squared
SD by exp(0.319) = 1.38, that is, a 38% increased squared standard deviation
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Fig. 7.3.4. Preliminary investigation of the effect of age on standard deviation.

Table 7.3.3. Median standard deviations for logarithmic cardiac output (number
of subjects), according to gender and pacemaker use.

Pacemaker Use
Gender No Yes All

Female 0.0429 (14) 0.0283 (1) 0.0417 (15)
Male 0.0471 (46) 0.0410 (19) 0.0426 (65)

All 0.0455 (60) 0.0399 (20) 0.0426 (80)

for patients without pacemaker. For the log-transformed outcome, the multi-
plication factor is exp(0.252) = 1.29, somewhat lower (precisely as we found
it in the vitamin D example above).

Performing a logarithmic transformation and using the least squares
method on this scale corresponds to assuming the distribution of the loga-
rithms of the squared standard deviations to be symmetric or even Normal.
In this particular situation we can do something a little closer to reality be-
cause we know that the outcome is a squared standard deviation. If we can
assume the eight successive measurements (on the logarithmic scale) for each
patient to be Normally distributed around some (patient-dependent) mean
then it can be shown that the distribution of the quantity 7× ŝ2

i will be Chi-
squared with 7 degrees of freedom and scale parameter s2

i (the true squared
standard deviation for this patient). This distribution is a specific form of a
Gamma distribution (with shape parameter 7/2 and scale parameter s2

i ), and
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Table 7.3.4. Parameter estimates in different models with gender and presence of
pacemaker as covariates.

Estimates
Gender Pacemaker

Model Male vs. Female No vs. Yes

Untransformed yi

log-link 0.261 (0.203) 0.319 (0.188)
P -value 0.20 0.09

Log-transformed log(yi)
identity link 0.248 (0.169) 0.252 (0.153)
P -value 0.15 0.10

Gamma model log(yi)
log link 0.280 (0.163) 0.333 (0.147)
P -value 0.086 0.023

this fact may be incorporated into the model so that likelihood methods can
be used for estimation. Formally, the model is said to be a Gamma model
with log-link and mean value mi = 7s2

i . A linear predictor with log-link now
specifies

log(E(7ŝ2
i )) = log(mi) = log(7) + log(s2

i ) (7.3.4)

= a + b1I(patient i is a man)

+ b2I(patient i has a pacemaker)

and the estimates from the model are added as the last row of Table 7.3.4.
As mentioned, the log-transformed model in the second row of Table 7.3.4
corresponds to an assumption that the standard deviations are log-Normally
distributed. Because the difference between a Gamma distribution and a log-
Normal distribution is not that big, we should expect results to be rather
close. It seems, however, that they are not any more similar than the other
models.

We notice that the Gamma model actually makes the use of a pacemaker
significant, and the estimated effect is a factor exp(0.333) = 1.40 on the
squared standard deviation. However, this significance is only present as long
as we adjust for gender. This is due to the confounding mentioned above (i.e.,
that we only have a single woman with a pacemaker). Figure 7.3.5 attempts to
give an illustration of this situation. We see that in the marginal pacemaker
categories (labeled “All”), the “no pacemaker” category is a mixture of 46
men (with a relatively high SD) and 14 women (with a lower SD), whereas
the “pacemaker” category is a mixture of 19 men and only a single woman.
Hence the average of the “no pacemaker” category is lowered more than the
“pacemaker” category due to the presence of relatively more women, and in
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the marginal comparison, the difference between the two groups will therefore
not be quite as big as when adjusting for gender.
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Fig. 7.3.5. Estimated means (of logarithmic standard deviation) in groups accord-
ing to gender (horizontal axis) and presence of pacemaker (open circles: no pace-
maker, shaded circles: pacemaker). The vertical lines illustrate the estimated effect
of a pacemaker.

7.4 Binary outcome

In previous chapters, binary data have been analyzed using the logit link
(log(p/(1 − p))) when relating the mean of the binary outcome y (i.e., pi =
pr(yi = 1)), to the linear predictor LPi. This provided regression parameters
to be interpreted as odds ratios (or log(odds ratios)).

In Section 7.4.1 we study two classes of alternative link functions. One
class, like the logistic function, has the desirable property that estimated prob-
abilities always stay between 0 and 1. These models have the interpretation
that the binary outcome yi can be defined via a latent, that is, unobserved,
variable y∗

i such that yi = 1 whenever y∗
i is below some threshold c:

I(yi = 1) = I(y∗
i ≤ c).

We mostly discuss one model of this kind, namely the probit model where
the latent variable has a Normal distribution. The logistic model, discussed in
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earlier chapters, has a similar interpretation with a latent variable following
the Logistic distribution (similar in shape to the Normal) . However, we also
briefly mention the cloglog link and its relation to the proportional hazards
model for survival data.

The second class of link functions discussed does not guarantee that pre-
dicted probabilities stay between 0 and 1. At first glance it may seem that such
models are of no interest, however, as discussed in Section 3.1.2, alternatives
to the log(odds ratio) are frequently used as effect measures in epidemiology
when quantifying the discrepancy between the event probabilities, p0 and p1

in two groups. One such measure is the log(relative risk) = log(p1/p0), the
other is the risk difference p1 − p0. Because of the simple interpretation of
risk ratios and risk differences it is of interest to have methods by which one
can relate them to covariates. Generally, risk ratios are easier to communicate
than odds ratios and only when the outcome is “rare” can the odds ratio be
interpreted as an approximate risk ratio (Figure 3.1.5). The risk difference,
on the other hand, has the nice property that it immediately quantifies effects
on the absolute risk scale in contrast to both the risk ratio and the odds ra-
tio. This may be an important feature in applications in fields such as health
economics.

We illustrate the models using the fever in pregnancy Example 1.2. The
interpretation of regression coefficients of the models introduced is illustrated
using the binary outcome fetal death as used previously. However, because
fetal death is a rather rare outcome, some further aspects of the models are
illustrated using a more frequent binary outcome variable for this dataset,
namely small for gestational age, sga. This is defined as the birthweight being
below the fifth percentile in the distribution of birthweights for each given
gestational week. Details follow below.

In Section 7.4.2 we briefly discuss inference for binary data sampled in a
case-control study. Here, instead of following a “cohort” of individuals and
observing the binary outcome yi, data are sampled depending on the out-
come. That is, cases are sampled among individuals in whom yi = 1 and
controls among those where the outcome is yi = 0. This is a very useful way
of ascertaining individuals to a study of the relationship between covariates
and disease risks when the disease outcome is rare. Whereas, for cohort data,
several link functions can be applied (as discussed in Section 7.4.1), logistic
regression is the only binary regression model feasible for case-control stud-
ies. Use of the other link functions (introduced below) is simply incorrect in
case-control studies or requires further information in the form of selection
probabilities for both cases and controls.

7.4.1 Alternatives to the logit link

To illustrate the alternative link functions we recall the fever in pregnancy
Example 1.2. Table 7.4.1 shows the distribution of the binary outcome fetal
death yi in relation to smoking and to the number of fever episodes in early
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pregnancy. It is seen, as noted earlier, that fetal death is a very rare event
occurring in only 1% of the women.

Table 7.4.1. Fever in pregnancy study: distribution of fetal death by smoking and
by number of fever episodes in early pregnancy.

Category Women Fetal %
Deaths

No smokers 8647 81 0.94
1–10 cigarettes/day 1760 19 1.08
11+ cigarettes/day 1371 19 1.39

No fever episodes 9693 98 1.01
1 fever episode 1872 20 1.07
2 fever episodes 183 1 0.55
3+ fever episodes 30 0 0

Total 11778 119 1.01

We look at models where the linear predictor LPi depends on each of the
two categorical covariates from Table 7.4.1. The reference categories are no
smokers and no fever episodes, respectively, and the four models for pi =
pr(yi = 1) considered are:

logit(pi) = LPi, (7.4.1)

probit(pi) = LPi, (7.4.2)

log(pi) = LPi, (7.4.3)

pi = LPi. (7.4.4)

In (7.4.2), probit(p) denotes the pth percentile in the standard Normal distri-
bution, that is, the value (zp) satisfying pr(u ≤ zp) = p when u is a standard
Normally distributed random variable. The probit function has a very similar
form to the logit function, shown in Figure 1.3.3. In (7.4.3) and (7.4.4), the
link functions are log and the identity function, respectively. Table 7.4.2 shows
the results. For the variable smoking we can interpret the estimates in relation
to the relative frequencies in the three categories shown in Table 7.4.1, 0.94%,
1.08%, and 1.39%, respectively. Thus for the logit link, the coefficients are

log
( ( 0.0108

1−0.0108 )

( 0.0094
1−0.0094 )

)
= 0.143, log

( ( 0.0139
1−0.0139 )

( 0.0094
1−0.0094 )

)
= 0.396,

(as explained in earlier chapters) whereas, for the log link, they are

log
(0.0108

0.0094

)
= 0.142, log

(0.0139

0.0094

)
= 0.392.
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These two sets of parameter estimates are very close because the log(odds ra-
tio) and the log(risk ratio) are almost identical for rare events. The intercepts
are logit(0.0094) = −4.66 and log(0.0094) = −4.67 for the logit and log links,
respectively. For the identity link the estimates are simply

0.0108 − 0.0094 = 0.0014, 0.0139 − 0.0094 = 0.0045

and the intercept is 0.0094. For the probit link, the interpretation is as fol-
lows. As mentioned in the introduction to this section, we should imagine a
latent variable y∗

i for each woman (her “health”) and if this latent variable is
smaller than some threshold c then the woman experiences a fetal loss. The
latent variable is assumed to follow a standard Normal distribution in the
reference group (no smokers) and, in the two other smoking categories, the
“mean health”, that is, the mean value of y∗

i is reduced by 0.053 and 0.150,
respectively. In the probit model, the intercept is –2.35, the percentile in the
standard Normal distribution with the property that pr(u ≤ −2.35) = 0.94%,
the relative frequency of fetal deaths in the reference group.

Table 7.4.2. Fever in pregnancy study: effects on fetal death of smoking and number
of fever episodes in early pregnancy estimated using different link functions.

Link Function Logit Probit Log Identity

0 cigs/day 0 (ref) 0 (ref) 0 (ref) 0 (ref)
1–10 cigs/day 0.143 (0.256) 0.053 (0.096) 0.142 (0.254) 0.0014 0.003)
11+ cigs/day 0.396 (0.257) 0.150 (0.098) 0.392 (0.253) 0.0045 (0.003)
Intercept –4.66 (0.11) –2.35 (0.041) –4.67 (0.11) 0.0094 (0.0010)

0 episodes 0 (ref) 0 (ref) 0 (ref) 0 (ref)
1 episode 0.056 (0.247) 0.0208 (0.092) 0.055 (0.244) 0.0006 (0.0026)
2 episodes –0.620 (1.01) –0.223 (0.350) –0.615 (1.00) –0.0046 (0.0056)
3+ episodes –19.78 (35670) –4.17 (4256) –19.69 (34198) –0.0101 (0.0010)
Intercept –4.58 (0.10) –2.32 (0.038) –4.59 (0.10) 0.010 (0.0010)

For the number of fever episodes the interpretation of the regression co-
efficients are of course similar for the 1 versus 0 and 2 versus 0 comparisons.
Note, however, the “strange” results for the 3+ versus 0 comparison for the
logit, probit, and log links. Here, the regression coefficient is “−∞” with a
ridiculously large standard deviation. This is because there are no events in
the 3+ category making both the odds ratio and the risk ratio 0. For the
probit link the explanation is that “the value zp for which the probability
that a standard Normal variable, u is less than p = 0 is −∞.” However, as
we see, the other comparisons between categories are not affected by this.
This problem does not occur for the identity link because subtraction from
0 is not problematic (but analysis using this link may imply some numerical
instability for other reasons).
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We next study the quantitative covariate, age of the mother, which has
an average of 29.6 years (SD=4.2 years). Smoking and fever episodes did not
affect the risk of fetal death much, thus we fit models including only age.
Models with a linear effect of age-25 gives the results shown in Table 7.4.3. It
is seen that, for all link functions, the risk of fetal death increases significantly
with mother’s age. For the logit and log links, as above, results are very close:
the odds ratio and the risk ratio are both around exp(0.72) ≈ 2 for every
ten years of mother’s age. According to the probit model, the mean of the
latent variable y∗

i decreases by 0.269 for every ten years, and the model with
the identity link suggests that the absolute risk of fetal death increases by
0.0059 for every ten years. This means that for mothers below 25 years of
age, the predicted risk of fetal death according to the model with identity
link (the “additive risk” model) is below the intercept 0.0074. Indeed, for
mothers below 13 years of age, the predicted probability is negative. Because
the youngest mother in the dataset was 16 years, the negative predicted risk
is an unjustified extrapolation outside the range of covariate values observed.
However, this finding does highlight that problems may occur when using the
additive risk model.

Table 7.4.3. Fever in pregnancy study: effects on fetal death of mother’s age esti-
mated using different link functions.

Link Function Logit Probit Log Identity

Intercept –4.967 –2.462 –4.974 0.0074

Age-25 (per 10 years) 0.726 0.269 0.718 0.0059
(SD) (0.216) (0.081) (0.213) (0.0018)

Digression. The cloglog link

Let us, finally, briefly comment on still another link function, the “complemen-
tary log–log” link, cloglog. It also has the nice property that predicted probabilities
stay within the interval (0,1). This is given by

cloglog(p) = log(− log(1 − p)).

If we think of a latent “time to event” y∗
i then, as discussed above,

p = pr(yi = 1) = pr(y∗
i ≤ c)

for some threshold c. If the latent variable follows a Cox regression model with
hazard rate function h0(t)exp(b1xi,1 + · · · + bncxi,nc) then

pr(y∗
i > c) = exp

`−H0(t) exp(b1xi,1 + · · · + bncxi,nc)
´

,

where H0(t) is the cumulative baseline hazard rate and, therefore,
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log(− log(pr(y∗
i > c))) = log(H0(c)) + b1xi,1 + · · · + bncxi,nc

showing that the cloglog link for the binary outcome variable yi arises from a Cox

proportional hazards model for the latent variable y∗
i . This motivates the use of this

link function for certain applications and parameter estimates based on this model

will have a log(hazard ratio) interpretation. �

Small for gestational age

To study multiple regression models using the alternative link functions, as
mentioned above we turn to a more common outcome than fetal death, namely
“small for gestational age,” sga. Having a low birthweight is, generally, an
unfavorable condition for the child, however, how low a birthweight should be
to be considered too low will depend on the gestational age of the fetus, that is,
the number of weeks elapsed from conception to birth. Sga is therefore defined
as having a birthweight below a given percentile for given value of gestational
age, for example, below the fifth percentile. To define sga we therefore divided
the data according to gestational weeks, as follows: ≤ 31, 32, 33, . . . , 40,≥ 41,
and identified the fifth percentile in the distribution of birthweights for each
of the resulting 11 categories. The distribution of sga for given combinations
of smoking and parity (number of previous births, 0 or 1+) is shown in Table
7.4.4. It is seen that the risk of sga increases with smoking and it is larger for
first-time pregnancies (parity 0) than for those with previous births (parity
1+).

Table 7.4.4. Fever in pregnancy study: Distribution of small for gestational age
(sga) by parity and smoking.

Cigarettes/Day
0 1–10 11+ Total

Fraction % Fraction % Fraction % Fraction %

Parity 0 223/3635 6.1 77/855 9.0 58/584 9.9 358/5074 7.1
Parity 1+ 115/4637 02.5 42/830 5.1 59/726 8.1 216/6193 3.5

Total 338/8272 4.1 119/1685 7.1 117/1310 8.9 574/11267 5.1

We analyze models using all four link functions including these two covari-
ates. Table 7.4.5 shows the results. It is seen that, for all four link functions,
both parity and smoking affect the risk of sga quite significantly and in the
expected directions based on the information in Table 7.4.4. However, when
examining whether there is an interaction between the two covariates, the
results differ. According to the logit, probit, and log-link models there is a
significant interaction although this is not at all the case for the identity link.
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This shows that interaction is scale-dependent (see also Section 5.2). In
order to evaluate whether there is an interaction between smoking and parity,
the choice of model, including a choice of link function, has to be addressed.
Such a choice is based on a number of aspects, such as how well do the compet-
ing models fit judged from certain criteria and how easy are the interpretations
of results from the models. For the present study, choosing the model on the
basis of simplicity points to the additive risk model with the identity link
because this is the model where no interaction seems to be needed. This is
also the choice of link function for which the largest value of the likelihood
function is achieved. However, the choice of link function is not at all easy and
we would argue that model fit and convenient interpretation of parameters
are the most important criteria for this choice.

Table 7.4.5. Fever in pregnancy study: effects on small for gestational age of parity
and smoking estimated using different link functions.

Link Function Logit Probit Log Identity

Parity 1+ vs. 0 –0.730 (0.089) –0.344 (0.041) –0.683 (0.084) –0.0357 (0.0041)
Smoking 1–10 vs. 0 0.434 (0.111) 0.253 (0.053) 0.499 (0.103) 0.0271 (0.064)
Smoking 11+ 3 vs. 0 0.836 (0.112) 0.407 (0.055) 0.768 (0.103) 0.0499 (0.0080)

LR test for 10.58 8.1 11.7 1.32
no interaction 0.005 0.017 0.003 0.52

Digression. “Biological interaction”

In the epidemiological literature, it has been argued that for risk models such

as those discussed in the present section, interaction should be assessed on the risk

difference scale because, for this scale, interaction can be interpreted “biologically”

(Rothman and Greenland, 1998, Ch. 18). However, we do not find the arguments put

forward in this literature sufficiently convincing to abandon studies of interaction

for other scales. In fact, we believe that if presentation of a given effect measure is

relevant then, more or less by definition, a study of how this effect measure varies

between relevant subgroups will also be relevant. �

7.4.2 Case-control studies

In previous examples dealing with binary data, the design has been prospective
in the sense that individuals were selected for the study before the possible
occurrence of the event of interest. This was the case in the fever in pregnancy
Example 1.2 where pregnant women were ascertained and followed up for the
events under study, fetal death or small for gestational age, and it was also
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the case in the surgery Example 1.4 where patients were recruited before
operation and observed for the occurrence of postsurgery complications.

However, when the outcome is rare such a design may be costly if suf-
ficiently many individuals are to be recruited and followed, perhaps for an
extended follow-up period, before the event can be observed. In such a situ-
ation, an alternative to the prospective cohort design is a case-control design
where typically, subjects are selected for study retrospectively, that is, after
the possible occurrence of the event. Thus, cases are selected randomly among
those with yi = 1 and controls among those with yi = 0 . A difficulty is how to
define the population from which cases and controls are selected. We do not go
into detail here but refer to Clayton and Hills (1993, Ch. 16) for further discus-
sion. However, we wish to emphasize that there are methodological advantages
if both cases and controls can be selected from a well-defined “underlying co-
hort,” leading to a nested case-control study. This underlying cohort could be
an entire country or region if, for example, population and disease registries
are available from which one may sample, for instance, all cases of a certain
disease during a specific period and a random sample of disease-free individ-
uals from the population as controls. When cases and controls are identified,
covariate information must be obtained by interviews, registry data, or from
other sources.

Inasmuch as researchers choose the numbers of cases and controls, one can,
obviously, not estimate the absolute disease risk based on a simple relative fre-
quency for the retrospectively ascertained cases and controls. In what follows,
we explain when one, for a simple binary covariate x, may still estimate the
odds ratio as a measure of association between the covariate and the binary
(disease) outcome y (and, thereby, use logistic regression for analysis). The
data may then be displayed in a two-by-two table just as in Table 3.1.8. See
Table 7.4.6 where notation has been adapted to the current situation. The
number of exposed (unexposed) cases is d1 (d0), and the number of exposed
(unexposed) controls is c1 (c0).

Table 7.4.6. The basic two-by-two table for a case-control study with a single
binary exposure, x.

Group Controls (y = 0) Cases (y = 1)

Unexposed x = 0 c0 d0

Exposed x = 1 c1 d1

Denote the probability that a diseased subject is sampled as a case by
qd and the probability that a disease-free subject is sampled as a control
by qc. The crucial assumption is that both of these sampling probabilities
are independent of exposure x; that is, the exposure distribution among all
diseased subjects in the population should be represented by the sampled
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cases and, similarly, the exposure distribution among all disease-free subjects
in the population should be represented by the sampled controls. Our goal is
to estimate the odds ratio

OR =

p1

1−p1

p0

1−p0

,

where p0 and p1, as previously, are the disease risks given no exposure, x = 0,
and given exposure, x = 1, respectively. Now, the case-control ratio, d1/c1

among exposed estimates p1qd/((1−p1)qc) and similarly, the case-control ratio
among unexposed d0/c0 estimates p0qd/((1−p0)qc). In the ratio between these
case-control ratios, the sampling probabilities qc, qd cancel

p1qd

(1−p1)qc

p0qd

(1−p0)qc

= OR,

showing that this ratio estimates OR.
This is illustrated graphically in Figure 7.4.1. Here, a population consisting

of N0 = C0+D0 unexposed and N1 = C1+D1 exposed individuals is depicted.
Here, one should think of both N0 and N1 as large numbers. After a certain
follow-up period, D0 = p0N0 unexposed individuals develop the disease and
D1 = p1N1 exposed individuals develop the disease (i.e., the split of N0 into
C0 and D0 is only realized after the follow-up period and similarly for N1).
The population value for the odds ratio is then OR = (D1/C1)/(D0/C0). At
the end of follow-up, c0 +c1 = qc(C0 +C1) controls are sampled and d0 +d1 =
qd(D0 +D1) cases are sampled, and their values of exposure, that is, the splits
into c0, c1 and d0, d1, are ascertained. If, as assumed, cases and controls are
sampled independently of exposure, then cj ≈ qcCj = qc(1 − pj)Nj , j = 0, 1
and dj ≈ qdDj = qdpjNj , and the “observed odds ratio” estimates OR.

Letting b = log(OR) be the log(odds ratio) and a = log(p0/(1 − p0)) the
log(odds) among unexposed, the logistic regression model in the population
is

�i = a + bxi,

where �i is the log(odds), and xi the exposure for individual i. The argument
shows that the log(odds) of being a case among those sampled in the case-

control study �̃i is
�̃i = ã + bxi, (7.4.5)

where the intercept is

ã = a + log

(
qd

qc

)
.

It follows that, under the assumption that sampling probabilities for both
cases and controls do not depend on exposure, logistic regression of the case-
control data allows consistent estimation of the log(odds ratio), b for exposure,
but not of the intercept, a (and thereby not of the absolute risks, p0, p1). The
argument may be extended to cover a multiple logistic regression model
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Fig. 7.4.1. Illustration of case-control sampling from a population with C0 + D0

unexposed and C1 + D1 exposed individuals.

�i = a + b1xi,1 + · · · + bnc
xi,nc

,

where b1, . . . , bnc
, but not a may be estimated consistently based on case-

control data, provided that the sampling probabilities qd, qc for cases and
controls are independent of all covariates. Note that in matched studies (de-
fined below) the sampling probability for controls will depend on covariates
because, in such studies, controls are selected in such a way that, for example
their age distribution is the same as for cases.

If qc and qd are known (as may be the situation in a nested case-control
study, as discussed above) then also the intercept and the absolute risks may
be estimated. As a consequence, effect measures other than the odds ratio
(i.e., risk ratio, risk difference) may be estimated. But for unknown sampling
probabilities it is only the odds ratios that are estimable.

We use the fever in pregnancy study for illustration and create a case-
control study nested in the Danish National Birth Cohort Study (see Section
1.1.1 for details). The underlying cohort here consists of women recruited to
the study before April 1999. We select as cases all sga cases, that is, those
with a birthweight below the fifth percentile for given gestational week, and
we sample controls among those without sga. More specifically, we randomly
select 15% of those without sga as controls, leading to 574 cases and 1562
controls, that is, approximately three controls per case. In general, such choices
will be based on a sample size calculation as described in Section 6.3. We fit
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the model including smoking and parity as covariates to these case-control
sampled data. Table 7.4.7 shows the case-control ratios according to these
two covariates and Table 7.4.8 shows the results from fitting a model with
interaction between smoking and parity to both the case-control sample and
to the entire dataset.

Table 7.4.7. Fever in pregnancy study: distribution of sga cases and controls by
parity and smoking: cases/controls.

No Smokers 1–10 Cigarettes/Day 11+ Cigarettes/Day Total

Parity 0 223/498 77/113 58/86 358/697
Parity 1+ 115/668 42/114 59/83 216/865

Total 338/1166 119/227 117/169 574/1562

Table 7.4.8. Fever in pregnancy study: logistic regression models for case-control
sample and for the entire dataset.

Effect Case-Control Sample Full Dataset

Parity 0 vs 1+, No Smokers 0.956 (0.129) 0.944 (0.117)
Smoking 1–10 vs. 0, Parity 0 0.420 (0.168) 0.415 (0.138)
Smoking 1–10 vs. 0, Parity 1+ 0.761 (0.207) 0.740 (0.184)
Smoking 11+ vs. 0, Parity 0 0.410 (0.188) 0.523 (0.155)
Smoking 11+ vs. 0, Parity 1+ 1.418 (0.198) 1.247 (0.165)
Intercept –1.76 (0.10) –3.67 (0.094)

From Table 7.4.8 we first notice the large similarity between covariate
effects estimated from the case-control sample and from the full dataset, how-
ever, with a somewhat larger SD for the case-control study. This is to be
expected because the case-control data set has 574 cases and 1562 controls
whereas the full dataset has 11,267 subjects out of whom 574 experienced the
sga event. That is, the full dataset has the same number of cases and more
noncases, however, these extra noncases do not increase precision much. The
test for no interaction is highly significant, also for the case-control study: the
LR test statistic is 13.85 with 2 df (P = 0.001). In this example, the sampling
fractions are known: qd = 100% of the diseased are sampled as cases and
qc = 1562/(11, 267 − 574) = 14.6% of the disease-free as controls. This fits
nicely with the two intercepts (Table 7.4.8), inasmuch as

̂̃a − â = −1.76 + 3.67 = 1.91 ≈ log
qd

qc
= log

( 1

0.146

)
.
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Digression. Exposure odds ratio; sample size determination

In the two by two table, Table 7.4.6, the numbers of cases (d0 +d1) and controls
(c0 + c1) are fixed by design and it is the exposure distribution that varies randomly.
This means that what can immediately be estimated from the case-control data is
the exposure odds ratio

pr(x = 1 | d = 1)/pr(x = 0 | d = 1)

pr(x = 1 | d = 0)/pr(x = 0 | d = 0)

for which the estimate is simply (d1/c1)/(d0/c0). The exposure odds ratio is not a
quantity of primary interest and the crucial (and clever) feature of the case-control
design is its ability to estimate the disease odds ratio

pr(d = 1 | x = 1)/pr(d = 0 | x = 1)

pr(d = 1 | x = 0)/pr(d = 0 | x = 0)
=

p1/(1 − p1)

p0/(1 − p0)
,

the parameter of primary interest. In fact, this will equal the exposure odds ratio
under the crucial assumption that selection probabilities for cases and controls (qd

and qc) are independent of exposure. Furthermore, case-control studies are often
conducted when the disease is rare, in which case the disease odds ratio provides an
excellent approximation to the easier interpretable risk ratio p1/p0.

However, the exposure odds ratio may be useful for planning purposes where
sample size determination may be based on a prespecified value of the fraction of
exposed individuals in the disease-free population and on the minimum relevant
odds ratio. Suppose, for example, that a case-control study with equal numbers of
cases and controls is to be planned and suppose that the exposure is present in 10%
of the disease-free population (i.e. the odds of exposure is 0.1/0.9). If we want the
study to be large enough to detect an odds ratio of 1.5 with 80% power, then the
relevant exposure fraction among cases to consider is given by the odds

1.5 · 0.1

0.9
= 0.167;

that is, the fraction 0.167/(1 + 0.167) = 0.143. We can then use (6.3.5) with f = 1

(same numbers of cases and controls), s2 = p̄(1 − p̄) (with p̄ = (0.1 + 0.143)/2 =

0.1215) and b0 = 0.143 − 0.1 = 0.033 to get n = 3074, that is, 1537 cases and 1537

controls. �

Matched case-control studies

In some case-control studies, controls are not sampled randomly among all
disease-free individuals but rather, to adjust for confounding, an equal distri-
bution of, for example, age and gender, is ensured by matching controls to
cases. This is known as frequency matching. Alternatively, to each case, one
or more controls can be individually matched on characteristics such as fam-
ily membership or neighborhood. Frequency matched case-control studies can
be analyzed using standard logistic regression as indicated above. However,
to ensure consistent estimates for the exposure effect, the matching variables
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must be included in the model even though matching on, for example, age
prevents the age effect from being estimated (see, e.g., Clayton and Hills,
1993, Ch. 18). This is because the sampling frequencies depend on age in this
situation. However, interactions between match variables and other covariates
(most important exposure) are estimable.

If controls are matched individually to each case then we are in the same
situation as described in Section 5.4 and in the simplest case of individual one-
to-one matching, the ith pair consists of one case, yi,1 = 1 and one control
yi,2 = 0. For a binary exposure x the relevant model to consider is (5.4.2):

logit(pr(yi,j = 1)) = ai + b2xi,j ,

where the pair-specific intercept ai can be interpreted as the joint effect of all
match variables. Data can be summarized in a table such as Table 5.4.1; see
Table 7.4.9.

Table 7.4.9. Data from n = n0,0 + n1,0 + n0,1 + n1,1 pairs in an individually
one-to-one matched case-control study with a single binary exposure, x.

Cases
Controls x = 0 x = 1

x = 0 n0,0 n1,0

x = 1 n0,1 n1,1

Only the n0,1 + n1,0 case-control pairs that are discordant on exposure
contribute to the conditional likelihood and inference proceeds as described
in Section 5.4 . Adjustment for confounders x3, x4, . . . that are not constant
within pairs can be performed using conditional logistic regression by adding
the relevant terms to the linear predictor leading to

logit(pr(yi,j = 1)) = ai + b2xi,j + b3x3,i,j + b4x4,i,j ... (7.4.6)

Also, the common situation with “one-to-many” matching (one case and sev-
eral matched controls) and the less common situation with “many-to-many”
matching (several cases and several matched controls) can be handled using
conditional logistic regression.

Model (7.4.6), analyzed using conditional logistic regression, is the appro-
priate technique to apply in case-control studies matched on truly individual
characteristics. Examples of such characteristics could be family membership
or neighborhood, that is, variables that are difficult to adjust for in a regres-
sion model (because of the large numbers of categories). The same situation
arises in a nested case-control study where controls are sampled from the co-
hort at the specific times at which cases fail, that is, individually matched
on time. However, when controls are matched to cases on “less individual”
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characteristics such as age and gender, we find the use of conditional logistic
regression unjustified, for a number of reasons. First, efficiency may be lost be-
cause only discordant pairs provide information and inasmuch as incomplete
pairs due to missing values provide no information at all. Second, standard
“unconditional” logistic regression for frequency-matched case-control stud-
ies, that is, simply including the match variables such as age and gender as
covariates can be used as indicated above.

7.5 Survival time outcome

When, in previous chapters, we have discussed survival analysis, focus has
been on the Cox proportional hazards model

li(t) = log(h0(t)) + b1xi,1 + b2xi,2 + · · · + bnc
xi,nc

= LPi(t), (7.5.1)

where the log(hazard rate) li(t) was given by the linear predictor LPi(t), that
is, the link function was the cloglog. In Equation (7.5.1), the baseline hazard,
h0(t) is left completely unspecified and the effect bj of the jth covariate is the
log(hazard ratio) associated with a one-unit increase for xi,j .

In the present section we first (Section 7.5.1) look at alternative propor-
tional hazards models where, in contrast to (7.5.1), the baseline hazard is
specified as a particular function of time t. One such example is a power
function leading to the Weibull distribution for the survival time y. Another
important special case (discussed in Section 7.5.1) is the so-called Poisson
regression model where h0(t) is a piecewise constant function of t. In Section
7.5.2 focus is on additive hazard models where it is the hazard rate itself that
is written as the linear predictor. In these models, the interpretation of the
regression coefficients bj appearing in LPi(t) is that of hazard differences,
rather than exp(bj) being hazard ratios. Finally, in Section 7.5.3, we study
the accelerated failure time model. This provides a model for the expected
survival time rather than specifying the hazard rate. However, because the
survival time yi is positive, it is the mean of the log survival time E(log(yi))
that is written as the linear predictor. We return to the interpretation of the
resulting regression coefficients in Section 7.5.3.

The Cox model (7.5.1) has gained a very dominating role in survival anal-
ysis but, as we show, the models discussed in the present section all have
various desirable features, not all shared by (7.5.1).

7.5.1 Multiplicative hazard models

In the Cox model, the shape of the baseline hazard h0(t) is not specified and
this semiparametric feature of the model has the advantage that covariate ef-
fects (hazard ratios, exp(bj)) may be estimated in the same way no matter the
functional form of the survival time distribution, as long as the assumption of
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proportional hazards is reasonable. However, for purposes of, for example, pre-
diction and simulation, the nonparametric h0(t) is a drawback. Also, if a given
parametric shape of the baseline hazard fits the data well, then, using this in-
formation for inference may provide estimates of the hazard ratios associated
with the explanatory variables with (slightly) smaller standard deviations.
In the present section we briefly study a number of parametric proportional
hazards models.

The simplest such model is one where the baseline hazard is constant,
for example, log(h0(t)) = a. The resulting survival distribution is known as
the Exponential distribution and is the simplest of all possible models for
survival data. Being a very simple model, the Exponential model is also quite
restrictive and two important extensions are considered in the following. One
is the Weibull distribution given by

log(h0(t)) = a + (c − 1) log(t), (7.5.2)

or equivalently, the baseline hazard is a power function of time, h0(t) =
exp(a)tc−1. In (7.5.2) the Exponential model is the special case where the
shape parameter c is equal to 1 making the dependence on t disappear. For
c > 1 the hazard rate increases with time whereas, for c<1 it decreases. An-
other important extension of the simple Exponential model is the piecewise
Exponential model also known as the Poisson regression model (for reasons
explained in a digression below) . Here it is assumed that there exist a num-
ber of time intervals [tj−1, tj), j = 1, 2, . . . , k, given by interval endpoints
0 = t0 < t1 < . . . < tk = ∞, such that the baseline hazard rate is constant
within each interval:

log(h0(t)) = aj when tj−1 ≤ t < tj .

The Exponential model is the special case corresponding to only k = 1 time
interval (from t0 = 0 to t1 = ∞).

We illustrate these parametric proportional hazards models using the ma-
lignant melanoma data, Example 1.10. For comparison we first study a stan-
dard Cox model (as discussed in earlier chapters) for these data. Table 7.5.1

shows parameter estimates, log(hazard ratios) b̂, with corresponding SD in
a model including the four covariates; gender (male= 1, female= 0), tumor
thickness (mm), ulceration (absent= 0, present= 1), and age (per 10 years).
The quantitative covariates were centered by subtracting 3 mm from tumor
thickness and 50 years from age to obtain an intercept (baseline hazard) with
a sensible interpretation (women without ulceration with age 50 and thick-
ness 3). Proportional hazards and linearity of the two quantitative covariates
were examined as exemplified in earlier chapters and found not to be clearly
violated. It is seen that males have an insignificantly higher hazard rate than
females when adjusting for the other covariates and thickness, ulceration, and
age are highly significant with effects in the expected directions; that is, the
hazard rate increases with both age and tumor thickness and patients with
ulceration have a higher hazard rate than those without.
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Table 7.5.1. Results from fitting a Cox regression model to the malignant melanoma
survival data.

Covariate bb SD (bb/SD)2 P

Gender 0.413 0.240 2.96 0.09
Tumor thickness 0.0994 0.0345 8.32 0.004
Ulceration 0.952 0.268 12.62 0.0004
Age 0.218 0.0775 7.94 0.005

Weibull models

To evaluate whether a Weibull model with log(hazard rate)

li(t) = a + (c − 1) log(t) + b1xi,1 + b2xi,2 + · · · + bnc
xi,nc

(7.5.3)

fits the melanoma data we consider the Cox model just fitted and its estimated
cumulative baseline hazard. If h0(t) = exp(a)tc−1, the cumulative baseline
hazard is

H0(t) =

∫ t

0

h0(s)ds =
exp(a)

c
tc

and it follows that the log(cumulative hazard), log(H0(t)) is linear in log(t)
(Appendix B). To evaluate the Weibull model, Figure 7.5.1 shows a plot of

log(Ĥ0(t)) against log(t) (with 95% confidence limits). It is seen that the curve
is roughly linear, thereby not contradicting the Weibull model. In fact, an Ex-
ponential distribution seems to provide a good fit to these data because the
slope c is close to 1. Table 7.5.2 shows the results from fitting both Weibull and
Exponential regression models including the same four explanatory variables
as above. It is seen that both estimates and standard deviations are close to
what we saw in Table 7.5.1. The LR test for the Exponential model, that is,
the hypothesis H0 : c = 1, is 1.10 (P = 0.29).

Table 7.5.2. Results from fitting Weibull and Exponential regression models to the
malignant melanoma survival data.

Weibull Exponential

Covariate bb SD bb SD

Gender 0.397 0.240 0.395 0.240
Tumor thickness 0.0967 0.0346 0.0932 0.0344
Ulceration 0.969 0.269 0.953 0.269
Age 0.231 0.0758 0.216 0.0741

Intercept (ba) –4.724 0.463 –4.963 0.460
Shape parameter (bc) 1.119 0.118 1 (fixed)
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Fig. 7.5.1. Melanoma data: log(cumulative baseline hazard) plotted against
log(time). The upper scale for the horizontal axis is time in years.

For a parametric model such as (7.5.3) it is simple to predict the survival
probability, S(t) for all values of t and for given covariates as this is simply
given by

S(t) = exp(−H0(t) exp(b1x1 + b2x2 + · · · + bnc
xnc

))

= exp(−exp(a)

c
tc exp(b1x1 + b2x2 + · · · + bnc

xnc
)).

In fact, the expected failure time may also be estimated from estimates of
a, b1, . . . , bnc

, c. For the Exponential model (c = 1) this is particularly simple:

E(yi) =
1

exp(a + b1x1 + b2x2 + · · · + bnc
xnc

)
.

Also for the general Weibull distribution (c �= 1) this may be done. This is
because the parametric model also predicts the behavior of the hazard rate for
“large” values of t, even beyond the range of the available data. This may be
considered an advantage of the parametric models because such predictions
are not possible to perform based on a Cox regression model. However, we
recommend not to put too much emphasis on model predictions beyond the
range of the observed data. Often, it is more relevant to consider median
survival time than mean survival time inasmuch as the median is not sensitive
to the right tail of the distribution. For the Exponential model with constant
hazard rate h, the median survival time is simply
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M =
log(2)

h
,

an equation which was useful for sample size determination, Section 6.3.

Poisson regression

Poisson regression relies on a choice of timeintervals in which the baseline haz-
ard rate is assumed to be constant. That is, compared to the Cox model, the
baseline hazard is approximated by a piecewise constant function. The choice
of intervals may not always be obvious and results may, to some extent, vary
according to this choice. In general, however, results from Poisson regression
tend to be rather robust to “sensible” choices of intervals and, at the same
time, they tend to be similar to results from analysis of a Cox regression
model. We now illustrate these points using the melanoma data.

Two choices of intervals are studied: one with cutpoints at 2.5 and 5 years,
and one with a single cutpoint at 4 years; both choices provide reasonable num-
bers of deaths in all intervals. Table 7.5.3 shows the results. It is seen that, once
again, these are very similar to those from the Cox (and Weibull/Exponential)
model. For both choices of cutpoints, the LR test for reducing to the simple
Exponential model is clearly insignificant (0.36, 2 d.f., P = 0.83 and 0.55, 1
d.f., P = 0.46, respectively).

Table 7.5.3. Results from fitting piecewise Exponential (Poisson) regression models
to the malignant melanoma survival data. Two choices of time intervals are studied:
3 intervals with cutpoints at 2.5 and 5 years, and 2 intervals with cutpoint at 4
years.

3 intervals 2 intervals

Covariate bb SD bb SD

Gender 0.396 0.240 0.395 0.240
Tumor thickness 0.0964 0.0346 0.0950 0.0346
Ulceration 0.960 0.269 0.962 0.269
Age 0.222 0.0763 0.227 0.0757

Intercept (ba1) –5.093 0.523 –5.107 0.503
Intercept (ba2) –4.936 0.506 –4.919 0.464
Intercept (ba3) –4.963 0.476

Thus, for the melanoma data the choice of intervals has little influence on
results. However, in this example the hazard is nearly constant, and in cases
with a less regular hazard rate, sensitivity to the choice of intervals may be
greater. General advice is to choose few (and thereby fairly wide) intervals
in areas where the hazard rate is expected to vary slowly and more (and
narrower) intervals where the hazard rate varies more rapidly.
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Due to the potential dependence on the arbitrary choice of cutpoints one
may well ask why one should consider using Poisson regression instead of the
Cox model where choice of intervals is not an issue. Poisson regression has
a great advantage (of technical character) over the Cox model in the case
where all covariates are categorical. Even though (as we show in a moment)
this advantage is most apparent for large datasets, it is illustrated using the
melanoma data. For the purpose of illustration, we consider a Poisson model
for these data with the two covariates tumor thickness, categorized into the
intervals [0, 2mm), [2mm,5mm) and from 5 mm and up, and ulceration. Time
is categorized as in the example above, with cutpoints at 2.5 and 5 years.
Table 7.5.4 shows the number of deaths and the number of person-years at risk
according to the two categorical covariates and time. The advantage is that
the information in these two tables is sufficient to estimate the parameters in
the Poisson model. This means that, instead of having to work with the entire
melanoma dataset and its n = 205 records, it is possible first to preprocess
the data by computing the tables of failure counts and person-years, here two
3 × 3 × 2 tables.

Table 7.5.4. Failure counts/person-years at risk for the malignant melanoma sur-
vival data according to tumor thickness, ulceration, and three time intervals.

Time < 2.5 years Tumor thickness

Ulceration 0–2 mm 2–5 mm 5+ mm
Absent 1/53.47 11/96.12 12/47.12
Present 3/212.30 3/50.00 0/17.50

Time 2.5–5 years Tumor thickness

Ulceration 0–2 mm 2–5 mm 5+ mm
Absent 4/47.13 9/64.54 4/26.91
Present 4/193.60 2/42.88 1/15.35

Time ≥ 5 years Tumor thickness

Ulceration 0–2 mm 2–5 mm 5+ mm
Absent 1/44.88 6/38.87 0/28.88
Present 7/151.97 2/59.44 1/17.32

For the melanoma data, this is not a great data reduction. However, in
large cohort studies the entire dataset may contain hundreds of thousands
of records and the sufficient tables (like those illustrated in Table 7.5.4) be
considerably smaller. This will provide important savings of computing time
compared to using the Cox model when analyzing survival data from large
cohorts. Another nice feature of the Poisson regression model is that it works
directly with the “epidemiological rate,” that is, the ratio between cases and
person-years at risk for a group of subjects. These are exactly the numbers
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presented in Table 7.5.4 which thus represent thickness-, ulceration-, and time-
specific mortality rates for the melanoma patients. The multiplicative Poisson
model describes how such rates vary according to factors depending on the
explanatory variables.

Digression. The name “Poisson” regression

Readers may wonder why the model with a piecewise constant baseline hazard
rate is called Poisson regression inasmuch as we nowhere mentioned the Poisson
distribution (Section 2.1.3). The reason for the name is that the likelihood func-
tion (Section 2.3.4) derived from the piecewise Exponential model is proportional
to the likelihood one would obtain if the failure counts (as those in Table 7.5.4)
were formally treated as independent and Poisson distributed with a mean that is
the product of the person-years (from that same table) and the hazard rate. The
intuition is as follows. In each cell (j1, j2, j3) in the table, the log(rate) is written as
a sum of terms

log

 

cases(j1,j2,j3)

pyrs(j1,j2,j3)

!

≈ a + b1,j1I(time-interval = j1)

+ b2,j2I(thickness category = j2) + b3,j3I(ulceration = j3).

This means that cases(j1,j2,j3) are linked to the linear predictor and to log(pyrs(j1,j2,j3))

via the logarithmic function. It has the pleasant consequence that the model may

be analyzed using software for the Poisson distribution including log(person-years)

as an “offset”(e.g., McCullagh and Nelder, 1989, Ch. 6). In Section 7.2, we studied

Poisson regression for truly Poisson distributed count data. �

7.5.2 Additive hazard models

The class of multiplicative hazard models discussed in the previous section
is the natural choice for a hazard regression model because, as already noted
in Section 1.3, taking the exponential function of the linear predictor ensures
positivity. However, as we already saw for binary data in Section 7.4.1, other
link functions may be considered to obtain regression parameters with alter-
native interpretations. One of the models studied for binary data in Section
7.4 was the additive risk model where the link is “the identity function,” that
is, pr(yi = 1) = LPi. Regression parameters in that model are risk differences.

In a similar vein, we now briefly look at additive hazard models and thereby
obtain parameters that are hazard rate differences. A simple such model,
directly inspired by the Cox model, is

hi(t) = h0(t) + b1xi,1 + · · · + bnc
xi,nc

= LPi(t), (7.5.4)

where the hazard rate hi(t) for individual i is written directly as the linear
predictor. In (7.5.4), the regression coefficient bj associated with the jth co-
variate xi,j is the difference between the hazard rates for two subjects differing
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one unit for their values for covariate j and having identical values for all other
covariates in the model. This means that if only a single binary covariate xi

is included in (7.5.4) then the hazard rate would be equal to the baseline
hazard h0(t) if xi = 0, and equal to h0(t) + b when xi = 1. It is seen that the
“standard” proportional hazards assumption from the Cox model is replaced
by a “time-constant hazard difference” assumption.

It is possible to estimate the parameters in (7.5.4) using the likelihood
principle. However, one may quite simply handle a quite flexible extension of
that model, namely Aalen’s nonparametric additive hazard model given by

hi(t) = h0(t) + b1(t)xi,1 + · · · + bnc
(t)xi,nc

. (7.5.5)

In (7.5.5) the regression parameters, b1(t), . . . , bnc
(t) are unspecified functions

of time t and one may estimate the cumulative regression functions

Bj(t) =

∫ t

0

bj(s)ds, j = 1, . . . , nc.

These are then typically plotted against time to see how the effect of each
covariate varies over time. The steepness of the estimate B̂j(t) around time
point t indicates the influence of the corresponding covariate on the hazard
rate at that timepoint. If B̂j(t) is roughly linear then this signals that the effect
is time-constant and, therefore, the regression function bj(t) may be replaced
by a constant bj as in (7.5.4). In fact, inference in (7.5.5) may result in a model
“intermediate between (7.5.4) and (7.5.5)” where some, but not necessarily
all, regression functions are replaced by constants. This will typically result
in reduced standard deviations for the parameter estimates.

For the malignant melanoma survival data, Example 1.10, Table 7.5.5
shows results from fitting a model of the form (7.5.4) including the same
four covariates as in the previous section: gender, tumor thickness, ulceration,
and age. The direction of the effects are, obviously, the same as seen for the
multiplicative models in the previous section. The interpretation, however, is
different. Thus, for ulceration the coefficient b̂ = 0.0592 tells us that if we
observe a group of patients with ulceration for, say, a total of 100 years then
we would expect to see 100b̂ = 5.9 more deaths compared to observing a group
of patients without ulceration for 100 years (if other covariates do not differ
between the two groups). This interpretation in absolute numbers of failures
is useful from, for example, public health or health economics perspectives (cf.
the discussion in Section 7.4).

Figure 7.5.2 shows the cumulative baseline hazard from model (7.5.4) (with
95% confidence limits). It is seen that, in accordance with the analyses of mul-
tiplicative hazard models, the baseline hazard seems to be roughly constant
(the cumulative baseline hazard is close to linear as we also noted in connec-
tion with Figure 7.5.1).

We further fitted the nonparametric Aalen model (7.5.5). The estimated
cumulative baseline hazard and the cumulative regression coefficients are
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Table 7.5.5. Results from fitting an additive hazard regression model to the ma-
lignant melanoma survival data.

Covariate bb SD (bb/SD)2 P

Gender 0.0241 0.0162 2.22 0.14
Tumor thickness 0.00954 0.00436 4.80 0.03
Ulceration 0.0592 0.0173 9.42 0.002
Age 0.0127 0.00502 6.36 0.01
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Fig. 7.5.2. Melanoma data: cumulative baseline hazard from additive model.

shown in Figures 7.5.3 and 7.5.4, respectively (with 95% confidence limits).
The cumulative baseline hazard is close to that from model (7.5.4) (see Fig-
ure 7.5.2), and the cumulative regression coefficients seem to indicate that,
at least for gender, age, and ulceration, the effects are roughly time-constant
on the additive hazard scale (close to linear curves). For tumor thickness, the
effect (the slope of the cumulative curve) tends to decrease after more than
five years of follow-up time. These tendencies are confirmed by formal tests for
constant effects; see Table 7.5.6. As a result, one may consider fitting a model
with time-constant effects of gender, ulceration, and age and a time-varying
effect of tumor thickness.

Let us add a few comments to Aalen’s model. The model attempts to
extract more information from the data in the sense that, instead of provid-
ing constant regression coefficients, the model gives functions to describe the
covariate effects. This results, as we can see in Figure 7.5.4, in very wide con-
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fidence limits. The way to interpret the estimated functions is by thinking
of smoothed versions of the curves in that figure. Also, in Figure 7.5.3 it is
seen that the rough estimate is not always increasing in time which makes the
interpretation as a cumulative hazard difficult. Therefore, one should again
think of adding a smooth curve.

Table 7.5.6. Results from fitting Aalen’s additive hazard regression model to the
malignant melanoma survival data.

Covariate P : No Effect Time-Constant Effect

Gender 0.19 0.58
Tumor thickness 0.008 0.03
Ulceration 0.006 0.83
Age 0.05 0.33
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Fig. 7.5.3. Melanoma data: cumulative baseline hazard from Aalen’s additive
model.

Digression. Additive Poisson models

The “multiplicative Poisson model” studied in Section 7.5.1 is the most often
used model with a piecewise constant hazard rate. However, additive Poisson models
may also be studied. Because this is most often done in situations with categorical
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Fig. 7.5.4. Melanoma data: cumulative regression functions from Aalen’s additive
model.

covariates we exemplify additive Poisson regression using the tabulated melanoma
data and the two categorical covariates ulceration and (categorized) tumor thickness,
Table 7.5.4. The intuition is, as follows. In each cell (j1, j2, j3) in the table, the rate
is written as a sum of terms

cases(j1,j2,j3)

pyrs(j1,j2,j3)

≈ a + b1,j1I(time-interval = j1)

+b2,j2I(thickness category = j2) + b3,j3I(ulceration = j3).

The model can then be fitted treating cases(j1,j2,j3) as independent Poisson variates
with mean given by the linear predictor

pyrs(j1,j2,j3)(a + b1,j1I(time-interval = j1)

+ b2,j2I(thickness category = j2) + b3,j3I(ulceration = j3)).
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�

In conclusion, additive hazard models with time-constant effects have re-
gression coefficients with quite simple interpretations. Furthermore, Aalen’s
nonparametric model (7.5.5) provides a flexible extension of the simple ad-
ditive hazard model (7.5.4) by means of which one can get an idea (on the
additive hazard scale) of how covariate effects may change over time. How-
ever, the curves tend to be rather variable and, due to a hazard rate being
nonnegative, the identity link function is not the most “natural” one to use,
inasmuch as predictions from an additive hazard model may become mean-
inglessly negative. More details on additive hazard model are provided by
Martinussen and Scheike (2006, Ch. 5).

7.5.3 Accelerated failure time models

Formally, survival data are nothing but nonnegative quantitative outcomes
but, as discussed in previous chapters, the inevitable presence of censored
observations has the consequence that special methods are needed for survival
analysis. This has also led to using special models for survival data. However,
in principle, one could also build on ideas for quantitative outcome variables
and study a linear model

E(log(yi)) = a + b1xi,1 + · · · + bnc
xi,nc

(7.5.6)

for the mean of the logarithm of the survival time yi.
If the survival function for a subject with all covariates equal to 0 is S0(t)

then it can be shown that, according to model (7.5.6), the survival function
for a subject with covariates xi,1, . . . , xi,nc

is given by

Si(t) = S0(t exp(−b1xi,1 − · · · − bnc
xi,nc

)).

If (7.5.6), therefore, includes only a single binary covariate x, then subjects
with x = 1 have the survival function S0(t exp(−b)); that is, time is accelerated
by a factor exp(−b) compared to the reference group (x = 0). Hence the name,
the accelerated failure time model. It has been argued (e.g., Kalbfleisch and
Prentice, 2002, Ch. 7) that this interpretation of the regression coefficients
in (7.5.6) is simpler than that of the hazard ratios obtained from the Cox
proportional hazards model and, furthermore, model (7.5.6) may be used in
cases where the proportional hazards assumption of the Cox model is not
reasonably fulfilled. It should be realized, however, that in the accelerated
failure time model this assumption is replaced by another model assumption,
namely linearity on the mean log(survival time) scale.

Even though (7.5.6) is the well-known multiple linear regression model for
log(yi), estimation of the parameters a, b1, . . . , bnc

cannot be performed using
the ordinary least squares method (e.g., Section 4.1.1) due to the presence of
censored observations. The model is specified as having the mean (7.5.6) equal
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to the linear predicto LPi and a specified “error” distribution around that
mean. This complete model specification allows parameters to be estimated
using the likelihood principle as in Section 7.3. Frequent choices for the error
distribution are

• The Normal distribution
• The Logistic distribution (briefly mentioned in Section 7.4)
• The Extreme Value distribution (leading to a Weibull distribution for yi)

We illustrate accelerated failure time models for the malignant melanoma
survival data, Example 1.10. Table 7.5.7 shows parameter estimates and as-
sociated SD from models with Normal and Extreme Value error distributions
including the same four covariates as in the previous two sections: gender,
ulceration, tumor thickness, and age. It is seen that the results using the two
different error distributions are numerically similar and qualitatively they are
quite similar: effects are in the same directions and of similar significance. It
is seen that, according to the interpretation explained above, the estimated
acceleration factor for ulceration is exp(1.001) = 2.7 according to the Normal
model and exp(0.866) = 2.4 according to the Extreme Value model.

Table 7.5.7. Results from fitting accelerated failure time regression models to the
malignant melanoma survival data.

Error Distribution Normal Extreme Value Buckley–James

Covariate bb SD bb SD bb SD

Gender –0.522 0.262 –0.355 0.218 –0.504 0.269
Tumor thickness –0.103 0.0438 –0.0864 0.0314 –0.0947 0.0407
Ulceration –1.001 0.285 –0.866 0.252 –0.911 0.299
Age –0.194 0.0786 –0.206 0.0669 –0.174 0.0794

SD parameter (bs) 1.463 0.134 0.893 0.0939 1.112

As mentioned above, choosing an Extreme Value distribution for the error
term is completely equivalent to fitting a Weibull proportional hazards model.
In fact, the relation between the estimates in Table 7.5.7 and those in Table
7.5.2 is as follows.

ĉ = 1.119 =
1

ŝ
=

1

0.893

and for all regression effects

b̂WeibullPH = − b̂ExtremeValueAFT

ŝ
,

for example, for ulceration
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0.969 = −−0.866

0.893
.

The Extreme Value error distribution is the only distribution with this prop-
erty; that is, for other distributions no equivalent proportional hazards model
exists.

Because of the censored observations it is difficult to define residuals to
study how a given error distribution fits the data. It is, therefore, of interest
to consider whether the regression parameters b1, . . . , bnc

in (7.5.6) may be
estimated without having to provide a parametric specification of the shape
of the error distribution. Estimation algorithms (not based on the likelihood
principle, but generalizing ordinary least squares) for this purpose have been
developed, one such procedure leading to the so-called Buckley–James esti-
mator (e.g., Kalbfleisch and Prentice, 2002, Ch. 7). Table 7.5.7, last columns,
shows the results which are seen to be comparable with those based on either
Normal or Extreme Value errors, however, with a tendency to larger standard
deviations.

Accelerated failure time models are in a way the most “natural” regression
models for survival data if the aim is to generalize methods for uncensored
quantitative outcome variables and they give easily interpretable parameter
estimates. However, the models do specify the mean of a distribution, the tail
of which is not observed because of censoring and, therefore, it is difficult to
assess how well such a model fits a given set of survival data.

7.6 Exercises

Exercise 7.1. Draw a model diagram for the fibrosis Example 1.9, corre-
sponding to the analyses as presented in Section 7.1.1.

Exercise 7.2. Baseline tryptase is considered elevated if it is above 11.4. Use
the tryptase dataset 2 from Example 1.12 for investigating the relation be-
tween the probability of this event (during the suspected allergic reaction)
and age of the patient.

1. In Exercise 4.7 the odds ratio for the occurrence was studied as a function
of age. If you have not done this exercise, do it now.

2. Compare the result of the above question with an analysis using instead
a logarithmic link, or an identity link.

Exercise 7.3. Use the tryptase dataset 2 from Example 1.12 and look at the
patients that have been subjected to a test for allergy following the surgery
(tested= 1).

1. Relate the probability of a positive test result to the value of the reaction
tryptase, using a logit link and a linear effect of logarithmic tryptase value.

2. Compare to Exercise 4.3 from Chapter 4 where reaction tryptase was used
on the untransformed scale.
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3. Show that problems arise if we try to use instead a log link or an identity
link.

4. Make a scatterplot of the test result (converted into a binary variable)
against reaction tryptase and explain the problems encountered in the
previous question.

Exercise 7.4. Use data from the fever in pregnancy Example 1.2 to study
the number of fever episodes in pregnancy.

1. Make a Poisson regression for the number of fever episodes, as a function
of alcohol habits and parity, using a log link.

2. Compare the results from using an identity link.

Exercise 7.5. Use data from the study of malignant melanoma Example 1.10
to perform a model check of a Cox regression model of time to death.

Exercise 7.6. Use data from the PBC-3 Example 1.3 to evaluate the treat-
ment effect using alternative models for time to treatment failure.

1. Fit an accelerated failure time model assuming a log-Normal distribution
with inclusion of
• Only treatment
• The covariates from Model 1 in Table 6.2.18

2. Do the same for a Poisson regression model assuming the baseline hazard
to be constant in the three timeintervals 0–2, 2–4 and 4–6 years.
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Further topics

In this final chapter we briefly mention a number of topics related to the gen-
eral class of regression models with a linear predictor. This chapter is mainly
meant as a precaution because some of the assumptions made throughout
earlier chapters are now relaxed. Section 8.1 discusses the situation where re-
sponses are multivariate, often as a consequence of having several response
variables observed in the same subjects. In such cases, the assumption of
independence between all the responses needs to be relaxed, because obser-
vations from the same subject tend to be more alike than observations from
different subjects and this intrasubject correlation must be accounted for to
obtain valid inference. Another assumption from all previous chapters is that,
although responses are considered random, the covariates have been assumed
to be observed “precisely” (i.e. with no error). Section 8.2 discusses the situa-
tion where covariates are, indeed observed with error. We discuss consequences
of this and ways to adjust for it.

This chapter is only meant as a brief introduction to these topics, a thor-
ough discussion of which goes beyond the scope of the book.

8.1 Multivariate outcome

An important assumption from previous chapters is independence between
outcome variables y1, . . . , yn. However, frequently situations are met where
such an assumption is not justified. These include both clustered data (that
is, data on related individuals such as siblings, patients treated by the same
general practitioner, or students from the same class, and longitudinal data
where the same experimental unit gives rise to a series of measurements of the
response variables, typically over time (“repeated measurements”). A special
case is paired observations (see also Section 5.4) where the same response vari-
able is recorded, for example, before and after an intervention. A final situation
is simultaneous measurement of different, and possibly correlated, outcomes
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in the same individuals, such as serum albumin and serum bilirubin in pa-
tients with liver cirrhosis. For notation, let yi,j , i = 1, . . . , n, j = 1, . . . , Ni be
the observations of the response, where i refers to the independent individuals
or clusters, Ni is the size of the ith cluster, and j = 1, . . . , Ni refers to obser-
vations within the ith cluster. The important feature is that, within cluster i,
the observations yi,1, . . . , yi,Ni

cannot reasonably be considered independent.
Such data are denoted multivariate meaning that the outcome for each of the
experimental units (subject, cluster,· · · ) is more-than-one-dimensional.

Digression. Nomenclature

Note the difference between the notion of “multivariate”, (high-dimensional out-

come), and that of “multiple” regression, used in earlier chapters (high-dimensional

covariates). This is our preferred terminology although multivariate in some texts is

taken to mean more-than-one-dimensional covariates and although the name “mul-

tivariable” has been proposed to mean exactly the same as “multiple”. For that

reason, we find the attempts to introduce the notion “multivariable” an unneces-

sary reinvention of the wheel! �

One approach to the problem with multivariate outcomes was discussed in
Section 5.4 where an intercept parameter for each cluster was introduced into
the linear predictor. For quantitative outcomes these cluster-specific intercepts
were estimated jointly with the other parameters in the linear predictor and,
for binary and survival time outcomes, the cluster-specific intercepts were
eliminated when estimating the remaining parameters using a conditional or
a partial likelihood, respectively.

However, because these cluster-specific, “fixed” effects parameters are usu-
ally of no interest, it seems reasonable to consider models for multivariate
responses that avoid introducing them altogether. Furthermore, when one is
interested in studying effects of between-cluster covariates, it is necessary to
go beyond the fixed effects models. In this section, two such approaches for
handling the within-cluster dependence: random effects models and marginal
models are briefly discussed. For linear models for a quantitative outcome
(and for other models with an identity link) these two approaches are equiv-
alent. However, for logistic regression and other models with a nonlinear link
function they generally estimate different parameters.

In Section 8.1.1 we study random effects models (“variance component
models”), a special case of which is also known as “multilevel models”. Com-
pared to the models studied in Section 5.4, the fixed, cluster-specific intercept
ai is replaced by a common fixed intercept a plus a zero-mean unobserved ran-
dom variable ri. This random effect shared by all members of cluster i creates
a (nonnegative) within-cluster dependence and by assuming that r1, . . . , rn

follow some distribution, likelihood methods may often be applied for param-
eter estimation. In Section 8.1.2 we consider marginal models where focus in
on the marginal distribution of yi,j . Here, parameters are estimated by solving
generalized estimating equations (GEE) that allow for the interdependence of
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observations from the same cluster when assessing the effects and their SD. Fi-
nally, Section 8.1.3 treats the situation of longitudinal data where individuals
are observed over time. Special attention is paid to life history data (or “gen-
eralized survival analysis”) where the outcome consists of events occurring at
random points in time.

8.1.1 Random effects models

In this section we briefly consider random effects models for the multivariate
outcomes yi,j , i = 1, . . . , n, j = 1, . . . , Ni. Most attention is devoted to the
situation where the outcome is quantitative but we also add comments on
binary and survival time outcomes.

Quantitative responses

We assume that observations from different clusters are independent. Further-
more, the unobserved random effects ri, i = 1, . . . , n are assumed to be inde-
pendent and to follow the same distribution with E(ri) = 0 and SD(ri) = v.
Conditionally on the random effects, the relation between the expected value
and the linear predictor is written as

E(yi,j | ri) = LPi,j + ri = a + b1xi,j,1 + · · · + bnc
xi,j,nc

+ ri. (8.1.1)

The idea is that the random effect ri shared by all subjects from cluster i
explicitly creates a (positive) within-cluster dependence because, for example,
for a large ri, all responses from that cluster (yi,j , j = 1, . . . , Ni) will tend to
be large. By taking expectation over the distribution of the random effects in
(8.1.1), it follows that the marginal mean of yi,j is simply

E(yi,j) = LPi,j

and if the residual SD for yi,j for given ri is denoted s, then the marginal SD
of yi,j is

SD(yi,j) =
√

v2 + s2.

For different clusters, i1 and i2, yi1,j1 and yi2,j2 are independent whereas the
correlation between observations yi,j1 and yi,j2 from the same cluster i is

ICC =
v2

v2 + s2
. (8.1.2)

This intraclass correlation coefficient, ICC, gives the fraction of the total
variation v2 + s2 which stems from the variation v2 between clusters. Inas-
much as this is the same for all pairs of observations from the same cluster,
the correlation structure is called exchangeable or compound symmetric. The
coefficient b for a given covariate in the linear predictor has the interpretation
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that b = E(yi1,j1 − yi2,j2) if subjects i1, j1 and i2, j2 have values for that co-
variate that differ by one unit and have identical values for all other covariates
in the linear predictor; that is, the interpretation of b is exactly the same as
discussed in earlier chapters. This interpretation holds no matter whether the
two subjects come from the same cluster (i1 = i2) or not. This is because of
the linear model (8.1.1) (i.e., the use of the identity link) and, as we show
below, the interpretation of b for a nonlinear link is different. Often both yi,j

and ri are assumed to be Normally distributed.
We now study the simple 2-sample situation in more detail; first when

the mean value is constant within clusters but differs between clusters (a
between-cluster covariate) and next when all clusters have size Ni = 2 (that
is, when data are paired) and one member of the pair has mean a and the other
a + b. An example of the first situation could be a cluster-randomized study
among general practitioners, where clusters (general practices) were randomly
sampled and all patients from a given cluster randomized to the same group
and the latter situation is what was studied for matched or paired data in
Section 5.4 (e.g., a situation where the same subject is measured before and
after treatment).

For simplicity we assume that all clusters have the same size Ni = N
and that, in clusters i = 1, . . . , n0, we have E(yi,j) = a whereas, for clusters
i = n0 + 1, . . . , n = n0 + n1, we have E(yi,j) = a + b. In other words, we
have a single binary covariate xi,j taking the value 0 in the first n0 clusters
and 1 in the last n1, so the covariate varies between clusters whereas it is
constant within clusters. If there were no clustering at all then we would be
in the simple 2-sample situation studied in Section 3.1.1. As in that section
we estimate b as the difference between the averages

ȳ0 =
1

n0N

n0∑
i=1

N∑
j=1

yi,j , ȳ1 =
1

n1N

n0+n1∑
i=n0+1

N∑
j=1

yi,j .

A simple calculation now shows that for b̂ = ȳ1 − ȳ0 we have

SD(̂b)2 =

(
1

n0N
+

1

n1N

)
SD(y)2 (1 + ICC(N − 1))

with ICC given by (8.1.2). If all observations were independent (Section 3.1.1),
we would have ICC= 0 and

SD(̂b)2 =

(
1

n0N
+

1

n1N

)
SD(y)2

showing that
VIF = 1 + ICC(N − 1) (8.1.3)

is a variance inflation factor arising from the within-cluster correlation. Equa-
tion (8.1.3) shows that VIF increases with both ICC and with N ; that is, larger
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clusters and/or a larger intraclass correlation will lead to a relatively larger

SD for the estimated effect b̂ of the between-cluster, binary covariate x. The
intuition for the example is that adding a new patient from a practice that is
already included in the study does not give rise to as much extra information
as when a patient from a new practice is added.

This has important consequences for inference on clustered data and the
precision of parameter estimates will be overestimated if the effect of clus-
tering is not properly accounted for, not only for a 2-sample situation but
also more generally for other between-cluster covariates. Note that inference
for the random effects model (8.1.1) will consist in estimating both the mean
value parameters in the linear predictor and the variance components s2, v2

(and thereby ICC). Also note that, for sample size calculations (Section 6.3),
an estimate of the intraclass correlation is needed to adjust the computations
performed for independent observations.

Let us next look at a situation where the binary covariate is no longer
constant within clusters (a within-cluster covariate). An example is paired
data, that is, all Ni = 2 where, for all pairs, i, E(yi,1) = a and E(yi,2) = a+ b.
This is the situation studied in Section 5.4. The effect b of the binary covariate
with values xi,1 = 0, xi,2 = 1 is estimated as the average of the differences:

b̂ =
1

n

n∑
i=1

(yi,2 − yi,1) = ȳ2 − ȳ1

(which is also the difference between the averages ȳj , j = 1, 2). Now

SD(̂b) =

√
2

n
s

only depends on the residual (within-cluster) SD, s and not on the variation
between clusters v. This means that if v is considerably larger than s then the
paired design will be efficient; see also Section 6.3. Note that the argument
leads to the paired t-test studied in Section 5.4 which is then seen to be valid
both for the fixed effects model studied there and for the random effects model
.

In general, more levels of clustering could be relevant (e.g., students in
classes in schools in districts), and hierarchical models could be of inter-
est with variance components associated with each level of the clustering.
Also, covariates could refer to different levels (e.g., some covariates could be
student-specific, some could be school-specific, etc.). Such multilevel models
are beyond the scope of this book but it is worth noticing that, because of
the shared random effects, the (intraclass) correlation between subjects from
the same cluster is explicitly modeled. Random effects models may be more
general than multilevel models, for example, allowing for random interactions
or random effects of quantitative covariates. If all random effects (and the
residual variation) are assumed to be Normally distributed then parameter
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estimates may be obtained using (restricted) maximum likelihood (Diggle et
al., 2002, Ch. 4).

Binary responses and survival data

For multivariate binary data, yi,j , i = 1, . . . , n, j = 1, . . . , Ni from independent
clusters the linear predictor, conditionally on the random effects, may be
written in a way similar to (8.1.1); that is,

logit(pr(yi,j = 1 | ri)) = LPi,j + ri. (8.1.4)

Again, the random effects ri follow some distribution with E(ri) = 0 and
SD(ri) = v across the population. Expressed on the probability scale we have:

pr(yi,j = 1 | ri) =
exp(LPi,j + ri)

1 + exp(LPi,j + ri)
; (8.1.5)

see also (1.3.13) and (4.1.15). The marginal distribution of yij,, that is, the un-
conditional probability pr(yi,j = 1), is now the expectation of the probabilities
in (8.1.5) taken over the distribution of the random effects ri. This marginal
probability no longer follows a logistic regression model. Figure 8.1.1 illus-
trates the situation. The model is (8.1.4) with a single quantitative covariate,
x with an effect b = 1, and an intercept a = 0. The ri are standard Normal;
that is, v = 1. The conditional probabilities given the random effects are logit
curves with “slope” parameter b = 1 and the marginal probability is a curve
with a smaller slope. This is the population-averaged value of the conditional
probabilities given r where the average is taken over the standard Normal
distribution of r. This is not a logit curve (although the approximation may
be close as we show in Section 8.1.2).

It follows that, as a consequence of the nonlinear logit link, we need to
make within-cluster comparisons when interpreting the parameters. For the
coefficient b for a given covariate in the linear predictor we, therefore, consider
the conditional probabilities given the random effects. That is, we look at yi,j1

and yi,j2 from the same cluster, i such that subjects i, j1 and i, j2 have values
for that covariate which differ by one unit and have identical values for all
other covariates in the linear predictor. For such a comparison the random
effect ri cancels out and the odds ratio between these two subjects is exp(b)
leading to a within-cluster interpretation for b.

A similar situation arises for survival data models. Here, the log(hazard
rate) li,j(t), conditionally on the random effect is typically written

li,j(t | ri) = LPi,j(t) + ri (8.1.6)

where, most often, the random effects are assumed to follow some distribu-
tion with E(exp(ri)) = 1 across the population. For survival data, the random
effect exp(ri) is often denoted the “frailty”. For mathematical convenience, a
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Fig. 8.1.1. Conditional probabilities that yi,j = 1 given random effects of
±1.96,±1.645,±1, 0 plotted against the covariate x (solid curves) and population-
averaged, marginal probability (dashed curve).

Gamma distribution with mean 1 is often assumed for the frailty but also a
log-Normal distribution; that is, a Normal distribution for ri has been stud-
ied (e.g., Duchateau and Janssen, 2008, Ch. 4). In this model, parameters in
LPij(t) are again conditional on ri: they compare individuals from the same
cluster. This is because the marginal hazard is no longer log-linear in covari-
ates. In fact, if the conditional hazard given ri, following (8.1.6) is

hi,j(t | ri) = h0(t) exp(bxi,j + ri)

then the marginal hazard, if ri is Gamma distributed with mean 1 and SD = v,
is given by

h0(t) exp(bxi,j)

1 + v2H0(t) exp(bxi,j)
,

where H0(t) denotes the cumulative (conditional) baseline hazard. That is, the
marginal distribution of yi,j does not follow a proportional hazards model.

As for quantitative data, failure to account for the within-cluster correla-
tion will lead to an underestimation of the variability, SD(̂b)2, of a between-
cluster covariate by a factor of the form

VIF = 1 + ICC(N̄ − 1),

where N̄ is the average cluster size and ICC an intraclass correlation coeffi-
cient. Ways of estimating ICC for simple situations with binary outcome data
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(e.g., the 2-sample situation), were discussed by Fleiss, Levin, and Paik (2003,
Ch. 15).

8.1.2 Marginal models

Marginal models for clustered multivariate outcomes yi,j , i = 1, . . . , n, j =
1, . . . , Ni are specified via the linear predictor in exactly the same way as we
have seen for independent data in previous chapters. That is, for quantitative
outcomes we write

E(yi,j) = LPi,j

and for binary data the log(odds) is

logit(pr(yi,j = 1)) = LPi,j .

Finally, for survival data the log(hazard rate) is specified as

li,j(t) = LPi,j(t).

The new feature of the models is that when estimating the parameters in
the linear predictor and assessing their SD, allowance is made for the non-
independence between observations from the same cluster. This is done via
generalized estimating equations and robust SD estimation as briefly ex-
plained below.

In marginal models, parameters in LPij have a marginal interpretation;
that is, they compare subpopulations defined by specific covariate patterns.
In particular, the coefficient b for a given covariate in the linear predictor
for a quantitative outcome has the interpretation that b = E(yi1,j1 − yi2,j2) if
subjects i1, j1 and i2, j2 have values for that covariate which differ by one unit
and have identical values for all other covariates in the linear predictor. Note
that this interpretation holds no matter whether the two subjects come from
the same cluster (i1 = i2) or not and, thus, for a linear model for quantita-
tive data, parameters have the same interpretation in random effects models
as in marginal models. For binary data and survival data, interpretations of
parameters in the marginal models are similar to those for quantitative out-
comes and for the models considered in all previous chapters, that is, they are
marginal log(odds ratios) and log(hazard ratios), respectively. Thereby the
interpretation differs from that seen in random effects models, the magnitude
of the difference depending on the effect of the clustering. Thus, under inde-
pendence they are identical, and, for binary data, the two sets of parameters
(bcond for the random effects model and bmarg for the marginal model) are
approximately related as

bcond ≈ bmarg

√
0.346v2 + 1 (8.1.7)

when random effects are Normally distributed with SD = v (Diggle et al.,
2002, Ch. 9). This is exactly the relation we saw in Figure 8.1.1. Figure 8.1.2
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shows the same relationship, now in logit scale (and now with v = 3). Note
that, because the conditional model is logistic, the corresponding curves are
straight lines, however, the marginal model is not logistic and the relation-
ship (8.1.7) between the two sets of parameters is only approximate. The
approximation with a straight line will be better for smaller values of v. The
logit-transform of the marginal probability in Figure 8.1.2 is seen to be close
to a straight line. The slope of this is approximately 0.47, in nice accordance
with (8.1.7) which for v = 3 gives the ratio 1/

√
0.346 · 9 + 1 = 0.49 between

bmarg and bcond = 1.
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Fig. 8.1.2. Conditional probabilities that yi,j = 1 given random effects of ±v ·
1.96,±v · 1.645,±v, 0 plotted against the covariate, x (solid lines) and population-
averaged, marginal probability (dashed curve); logit scale. The distribution of the
random effects is Normal with mean 0 and SD = v = 3.

The situation is similar for survival data where, except for special choices
of the frailty distribution, we typically do not have proportional hazards both
conditionally and marginally.

For marginal models the full distribution of data is often not specified
and, in such situations, parameters cannot be estimated via maximum likeli-
hood. Instead, they are estimated by solving unbiased generalized estimating
equations (GEE). Often, the equations are those that one would have ob-
tained from the likelihood function if all observations were independent, in
which case the GEE are said to be derived under “a working independence
assumption.” However, other working correlations may increase efficiency if
they are closer to the true correlation structure. The SD for the parameter
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estimates are obtained via “robust” (or “sandwich”) estimators. Thus, GEE
and sandwich SDs work in spite of the within-cluster correlation and with-
out specifying this correlation which is treated as a “nuisance”. This is in
contrast to the random effects models where the correlation structure follows
from the specification of the random effects. It has, therefore, been argued
(e.g., Lin, 1994) that marginal models are more robust than random effects
models and, indeed, estimation procedures are simpler, relying on fewer ap-
proximations, and software tends to be more reliable. However, it should be
kept in mind that, for nonlinear links, different parameters are estimated from
the two classes of models and, for some applications, one set of parameters
may be more relevant than the other. Furthermore, estimates from marginal
models using simple GEE do not provide information on variance components
and within-cluster correlations, parameters which in many applications are of
interest.

The bottom line is that if data are clustered then naive inference neglecting
the within-cluster correlation may lead to incorrect conclusions, for example,
caused by an underestimation of SDs of parameter estimates for between-
cluster covariates.

8.1.3 Longitudinal and life history data

Much of what was said in Sections 8.1.1 and 8.1.2 is also relevant for longi-
tudinal data, that is, when repeated measurements are taken over time in the
same individuals. Here, “clusters” i refer to individuals and j = 1, . . . , Ni to
times, ti,j at which measurements are made. Data for individual i consist of

ti,1 < · · · < ti,Ni
: the times at which measurements are taken,

yi,1, . . . , yi,Ni
: the outcome measurements,

and

(xi,1,u, u = 1, . . . , nc), . . . , (xi,Ni,u, u = 1, . . . , nc) : covariates.

The covariates are allowed to depend on time, in fact, often the values of the
timepoints ti,j are taken to be part of the covariates. The clustering struc-
ture imposed by a shared random effect will, as mentioned in Section 8.1.1
make all pairs of observations within each cluster equally correlated (the so-
called exchangeable or compound symmetry situation). For longitudinal data,
the temporal aspects will typically call for alternative correlation structures:
observations in the same subject made closer in time should be more closely
correlated than measurements taken farther apart. This leads to studying var-
ious autoregressive correlation structures where, for example, yi,1 and yi,2 are
allowed to be more closely correlated than yi,1 and yi,3. A consequence of the
longitudinal structure is the possible existence of a baseline value observed
before any intervention. It is often advisable to include such a baseline value
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as a covariate rather than studying it as a part of the outcome. A simple
approach to longitudinal data is often to base analysis on summary features
of the data for each subject, (e.g., individually estimated slopes; Crowder and
Hand, 1990, Ch. 2; Matthews et al., 1990).

In longitudinal studies it is a crucial assumption that the times, ti,j of mea-
surements are independent of the measurements themselves: measurements
should not be taken when individuals are particularly ill or the opposite.
Otherwise, parameter estimates are likely to be biased. When planning longi-
tudinal studies, attempts are therefore made to examine all individuals at the
same inspection times (ti,j = tj for all i). This will also produce clusters of the
same size and structure. However, drop-out often complicates analysis; that
is, individuals may leave the study before its planned time of termination.
In this case, joint models for the repeated measurements and the drop-out
mechanism are needed if the drop-out mechanism depends on the outcomes.
Such a joint analysis is often based on a model where subject-specific random
effects affect both the repeated measurements and the drop-out mechanism.
In fact, marginal models are likely to provide inconsistent estimates when the
drop-out mechanism is not “completely random.” The topic of joint model-
ing was briefly touched upon in Section 6.2.3 in connection with discussion
of time-dependent covariates in survival analysis but a detailed account goes
beyond the scope of this book (see, e.g., Diggle et al., 2002, Ch. 13 for further
information). In addition to dropping out completely, individuals may skip
intermediate planned examinations and/or show up for unscheduled visits. In
such cases, one should be suspicious about the assumption of independence
between times and values of measurements and, at any rate, it is always ad-
visable in the dataset to keep track of which measurements are taken at a
planned follow-up visit and which are not.

Life history analysis

A slightly different situation occurs in life history analysis (or event history
analysis) where, again, individuals are followed over time but where the re-
sponses are the times at which events occur for the individuals. That is,
data consist of the times of events (y) and the type of event (d(y)) occur-
ring at y: (yi,1, d(yi,1)) . . . , (yi,Ni

, d(yi,Ni
)) for subject i. In addition, covari-

ates may be observed. In simple situations, the covariates could be time-fixed,
xi,u, u = 1, . . . , nc, but also models allowing for time-dependent covariates
xi,u(t), u = 1, . . . , nc may be studied.

The simplest example of event history data is encountered in survival
analysis as discussed in earlier chapters where only a single type of event,
failure (death) is studied. In this case, Ni = 1 time of observation yi is seen
for subject i, either corresponding to a failure (d(yi) = 1) or a censoring
time (d(yi) = 0) and most often (see, however Section 6.2.3) only time-fixed
covariates, recorded at “time zero” are available.
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This example illustrates that incomplete observation of the life histories
in the form of censoring must be accounted for. In life history analysis, other
kinds of data-incompleteness may be relevant. Sometimes, individuals are not
observed from “time zero” but only from some later point in time, leading
to delayed entry (or left-truncation). It is then a crucial assumption that
censoring and truncation are independent in the sense discussed in Section
3.1.3. This means that selection out of the sample (censoring) and into the
sample (left-truncation) at any time t should be unbiased in such a way that
the available sample at all times should be representative of the underlying,
potentially completely observed population. Whether there is delayed entry
may depend on the time variable chosen for the analysis. In a study of mor-
tality among diabetics there would be no delayed entry if the survival time y
were taken to mean the disease duration at death and if all diabetics in the
study were ascertained at the time of diagnosis. On the other hand, had y
been taken to be the age at death then individuals would not be at risk of
dying as a diabetic before their age at diagnosis and the survival time would
be left-truncated at age at diagnosis.

It is seen that in life history analysis it is important to keep track of when
each subject is at risk for each type of event and one way of depicting this
is to look at life history analysis via multistate models. The simple survival
data situation may be represented as the two-state model shown in Figure
8.1.3. The idea is that an individual is in state 0 “Alive” when recruited to
the study and followed over time. The event, death is a transition from state
0 to state 1 “Dead” and the rate or intensity at which such transitions occur
is given by the hazard rate, h(t) = h01(t) which is a function of a chosen time
variable t. Recall from Section 3.1.3 that the interpretation of a hazard rate
is the instantaneous rate of mortality

h01(t)dt ≈ pr(t < y < t + dt | y > t)

which, using the notation from Figure 8.1.3, may be rewritten as

h01(t)dt ≈ pr(state 1 at time t + dt | state 0 at time t).

The individual is at risk for a 0 → 1 transition whereas in state 0 and if
recruitment takes place at time 0 then there is no delayed entry. If, when last
seen, the individual is still in state 0, then the time of transition to state 1 is
censored.

A simple extension of the survival model from Figure 8.1.3 is the competing
risks model; see Figure 8.1.4. This is a model for several (here: two) causes
of failure and, again, individuals are recruited to the study in state 0 “Alive”
and followed over time. There are now two types of event, one for each cause
of death corresponding to a transition from state 0 to either state 1, “Dead
from cause 1” or to state 2, “Dead from cause 2.” The rates or intensities
at which transitions occur are given by the hazard rates, h01(t) or h02(t),
respectively. The hazard rates are here denoted cause-specific hazards and
have interpretations similar to the hazard rate for survival data; that is,
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Alive

10

Dead�h01(t)

Fig. 8.1.3. The two-state model for survival data.

h01(t)dt ≈ pr(state 1 at time t + dt | state 0 at time t)

and similarly for h02(t). Individuals are at risk for both of the transitions,
0 → 1 and 0 → 2 while in state 0 and both censoring and delayed entry are
possible. As for survival analysis, data for individual i will include a single
observation time yi and a failure indicator d(yi) = 1 if failure from cause 1,
d(yi) = 2 if failure from cause 2, and d(yi) = 0 if i was censored. Extension
to more than two causes of death is obvious.

Alive
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Dead, cause 1

Dead, cause 2
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h01(t)

h02(t)

Fig. 8.1.4. The competing risks model.

Another extension of the simple model for survival data is the illness–death
or disability model; see Figure 8.1.5. Here, disease-free individuals (state 0)
are recruited and followed over time. Transitions to state 1 (“Diseased”) or
to state 2 (“Dead”) may be observed and the rates at which they occur are
h01(t) and h02(t), respectively. Diseased individuals, that is, those in state
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1, may die with intensity h12(t) and, for a nonchronic disease as depicted in
Figure 8.1.5, the disease may disappear with rate h10(t) (the “cure rate”)
whereas, for a chronic disease, h10(t) = 0. For the chronic disease model, data
will include the time yi,0 last seen in state 0, and the failure indicator d(yi,0)
for that timepoint (a 0 → 1 transition, a 0 → 2 transition or a censoring). If
a 0 → 1 transition was observed then data would also include the time yi,1

last seen in state 1 and the corresponding failure indicator d(yi,1) (a 1 → 2
transition a or censoring). If delayed entry is possible, then, in principle, an
individual may be in state 1 at the time of entry into the study.

Ignoring the “Dead” state, the model may be used for describing recurrent
events, for example, admissions to (0 → 1) and discharges from (1 → 0) hospi-
tals. In this case, data consist of transition times and the corresponding event
indicators. The number of observed transition times for different subjects will
usually be random as it depends on the individual’s life course.

Disease-free
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Diseased

Dead
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h01(t)

h10(t)

h02(t) h12(t)

Fig. 8.1.5. The illness–death model with recovery.

Studying life history data as multistate models, the basic parameters are
the transition rates. Therefore, models for life history data may be analyzed
using models based on hazard rates as exemplified in previous chapters, for ex-
ample, Section 7.5. Other parameters of interest are the state occupation prob-
abilities. For the simple two-state model for survival data (Figure 8.1.3) the
state occupation probabilities pr(state 0 at time t) and pr(state 1 at time t)
are simple functions of the hazard rate. In fact, as seen in Section 3.1.3,

pr(state 0 at time t) = S(t) = exp(−H(t)),

where S(t) is the survival function and H(t) the cumulative hazard whereas,
obviously, pr(state 1 at time t) = 1 − S(t). This means that a model for the
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hazard rate h(t) = h01(t) directly imposes a model for the state occupation
probability. However, for more complicated multistate models, such a simple
relationship does not exist. This has the consequence that, although transition
rate models may be analyzed quite simply, it is more difficult to estimate state
occupation probabilities. A thorough discussion of life history analysis based
on multistate models is beyond the scope of the book (see, e.g., Andersen and
Keiding, 2002, for more details) but to illustrate the concepts we have a closer
look at the competing risks model (Figure 8.1.4).

Recall Example 1.10 from Section 1.5 concerning survival with malig-
nant melanoma. Here, 205 patients were followed after operation; 57 died
from the disease and 14 died from other causes. That is, we have two
causes of death and, thereby, two cause-specific hazards, h01(t) = hazard
rate of dying from malignant melanoma and h02(t) = hazard rate of dying
from other causes. There are three state occupation probabilities, Pj(t) =
pr(state j at time t), j = 0, 1, 2. Here, P0(t) = S(t) is the survival probability,
and the state occupation probabilities for states 1 and 2 are known as the
cumulative incidences. They describe, as functions of time t, the probabilities
of having died from cause 1 or 2 before time t:

P1(t) = pr(state 1 at time t), P2(t) = pr(state 2 at time t).

It is important to note that even though P1(t) describes the probability of
death from cause 1, it also depends on the cause-specific hazard rate for cause
2. The intuition is that a high cause 2 hazard rate will have the consequence
that “fewer subjects are left to die from cause 1.” Failure to realize this is
a frequent mistake in the analysis of competing risks data and not rarely
has the risk of dying from cause 1 mistakenly been estimated by “1 minus the
Kaplan–Meier estimator corresponding to cause 1 events” (see, e.g., Andersen,
Abildstrom, and Rosthøj, 2002b).

Digression. Cumulative incidences

The expression for the way in which a cumulative incidence depends on the
cause-specific hazards is not too complicated. To die from cause 1 before time t,
the failure from cause 1 must take place on some day between time 0 and time t.
The probability of dying from cause 1 on a particular day u between 0 and t is
the probability of surviving both causes of failure till just before day u times the
conditional probability of failing from cause 1 on day u given survival till just before
day u. The first factor is the survival probability

S(u) = exp(−H01(u) − H02(u))

with H0j(u), j = 1, 2 being the cumulative cause-specific hazards, and the latter,
by the interpretation of a cause-specific hazard, is h01(u)du where du = 1 day. The
cumulative incidence at time t is now the “sum over all days between 0 and t,” that
is, the integral

P1(t) =

Z t

0

S(u)h01(u)du (8.1.8)



446 8 Further topics

which is seen, via S(u) to depend also on the cause-specific hazard, h02(u) for the

competing cause. �

For the melanoma data, we studied in Section 7.5 a number of models
for the total hazard rate, and covariates such as age, tumor thickness, and
ulceration were identified as important prognostic factors. It is to be expected
that tumor-specific risk factors such as thickness and ulceration are likely to
mostly affect the rate of dying from the disease whereas a covariate such as
age is likely to mostly affect the rate of dying from other causes. To study
such questions, separate Cox regression models for the two cause-specific haz-
ards were fitted (although the model for the rate of dying from other causes
should be interpreted with caution because of the small number of events).
The model for a cause-specific hazard is fitted by only treating failures from
the relevant cause as failures. The results in Table 8.1.1 support that thickness
and ulceration significantly affect the cause-specific hazard of dying from the
disease and age that of dying from other causes whereas gender has an in-
significant effect on both cause-specific hazards. This illustrates that a study
of cause-specific mortality may provide a different insight compared to mod-
eling the total mortality. (It should be kept in mind, however, that formally
all models in Table 8.1.1 cannot hold at the same time. This is because the
total hazard is the sum of the two cause-specific hazards and “the sum of two
Cox models is not a Cox model” because of the nonlinear log-link.)

Table 8.1.1. Results from fitting Cox regression models for the cause-specific haz-
ards in the malignant melanoma study.

All Causes Disease Other Causes

Covariate bb SD bb SD bb SD

Gender 0.413 0.240 0.433 0.267 0.358 0.549
Tumor thickness 0.0994 0.0345 0.109 0.0377 0.0496 0.0879
Ulceration 0.952 0.268 1.164 0.310 0.109 0.591
Age 0.218 0.0775 0.121 0.0830 0.725 0.217

Based on (e.g., Cox regression) models for the cause-specific hazards it
is possible to predict the cumulative incidences. Here, it should be noted
that because the cumulative incidences depend on both cause-specific hazards
then, for the melanoma data, it follows that even though the hazard for death
from the disease is not much affected by age, then the risk of dying from the
disease will depend on age via the cause-specific hazard for other causes. The
relationship between a covariate and the cumulative incidences is complicated
based on Cox models for the cause-specific hazards; see Equation (8.1.8).
Therefore, direct regression models for the cumulative incidences have been
proposed, mostly based on the cloglog link; that is, the linear predictor is
log(− log(1 − P1(t))), the “Fine–Gray model” (Fine and Gray, 1999).
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8.2 Errors in covariates

In all of the preceding chapters, we have tacitly assumed that explanatory
variables are measured without error. This is of course not correct in a strict
sense inasmuch as almost all measuring processes involve some kind of mea-
surement uncertainty, exceptions being demographic data such as gender, age,
and education. Such a contamination will most often, although not always,
lead to a less pronounced effect of the relevant covariate.

In Chapter 4 we related the vitamin D status of 41 Irish women to their
body mass index (BMI), using traditional linear regression. This model as-
sumes that for a fixed body mass index, the distribution of vitamin D status
has a mean value linearly related to body mass index, and a standard deviation
which is constant (i.e., independent of body mass index). This variation seen
in vitamin D concentration for women with identical body mass index was
interpreted as biological variation and it reflects that other (measured as well
as unmeasured) explanatory variables may be relevant to explain the vitamin
D status of an individual woman. However, some of the variation may also be
due to uncertainty in the measuring process itself. Assessment of vitamin D
status involves measuring the concentration of 25OHD in some form of assay
and several sources of uncertainty may enter this process, giving a somewhat
imprecise measurement. Traditionally, such an imprecision is assumed to be
very small compared to the true biological variation but the important fact
is that the presence of measurement error in the outcome variable does not
induce bias in the estimates, although it will increase the standard deviation
of all estimated effects and may therefore make us overlook weak effects. If
the measurement error on the outcome is substantial, we may consider taking
double or even triple measurements of the same quantity (if possible) and use
the average or median of these in the subsequent analysis.

For regression models, inference is made conditional upon fixed true val-
ues of the explanatory variable and consequently, a measurement error in an
explanatory variable is assumed to be nonexistent. In the vitamin D exam-
ple, the assessment of body mass index involves measurement of height and
weight, both of which are probably subject to small errors. As a matter of
fact, we should be concerned not only with the pure measurement errors for
body mass index but also with short-term fluctuations, because there will
typically be a time gap between the measurement of body mass index and
the measurement of vitamin D status or between the time of measurement
and the time of effect. Such an “error” in body mass index cannot just be
absorbed in the biological variation of body mass index between individuals
inasmuch as this variation does not enter the model at all.

In contrast to measurement errors in the outcome, the presence of such
errors (combined measurement errors and short-term fluctuations) in explana-
tory variables does in general induce bias in the estimated parameters. As
mentioned, this bias will usually be towards zero so that the effect of the
explanatory variable will be underestimated. In multiple regression, however,
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the relations between the covariates may reverse the effect, so that we may
experience an overestimated effect of some covariates.

Most often, such a measurement error is not taken into account in the
literature. The reasoning behind this neglect of possible problems is twofold:

• The magnitude is believed to be small in comparison with the biological
variation in the explanatory variable and therefore of minor influence on
the results (as appears from Equation (8.2.3) below).

• The magnitude of the error/uncertainty is most often not known and re-
peated observations required to give an estimate may not be available
and/or hard to obtain.

A third argument for disregarding errors in the covariates is often given,
namely that the model is intended for prediction purposes only. In this case,
the uncertainties in the explanatory variables are expected to be of the same
magnitude when the model is to be used for prediction of an unmeasured
outcome of a new subject and it can be shown that the resulting prediction
will therefore be unaffected by this uncertainty, in the sense that the prediction
disregarding the errors in the covariates is still valid. The main focus of this
book is not prediction, thus this argument is, however, not so relevant here.

It should be stressed that even if the uncertainties in the explanatory
variables are often too small to be of any importance, there may also be
situations in which they play an important role and may be a potential threat
to the validity of the conclusions by producing serious bias in the estimates.
Therefore, a thorough analysis should at least consider the potential problem
and make a qualified (theoretical) guess concerning the importance.

In the vitamin D example, we have looked at covariates such as coun-
try, body mass index, vitamin D intake, and sun habits (see Section 6.2.1).
Surely, country is measured without error and body mass index with a small
error. The vitamin D intake, however, is based on the reporting of food items
eaten over some period of time and will probably be subject to a consider-
able amount of error. Likewise, the covariate “sun habits” with three levels
(“avoiding sun”, “sometimes in sun”, “prefer sun”) may contain an apprecia-
ble amount of error due to individual interpretations of the categories. For
such a categorical variable the measurement error is referred to as a classifi-
cation error.

A full treatment of methods for correcting for measurement errors in co-
variates is beyond the scope of this book. We only give a sketch here of two
possible approaches and illustrate using the vitamin D example. We also con-
centrate on quantitative covariates and only comment briefly on categorical
covariates in the end of the section.

8.2.1 Regression dilution

For ease of reading we need some notation that is not quite identical to what
we have used in the previous sections and chapters. This is because we need
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to distinguish between covariates measured with error (denoted x) and those
measured without error (denoted z).

Furthermore, we assume that the relationship between the observed xi for
subject i and the corresponding true (error-free, but unobservable) value x∗

i

is given by adding an error term ei to x∗
i ; that is,

xi = x∗
i + ei. (8.2.1)

We assume this error ei to have mean zero and standard deviation se and to
be independent of both the true value x∗

i and the error-free covariate value
zi. We further assume that the outcome yi can be described through a linear
predictor depending upon the explanatory variables x∗

i and zi, as described in
the previous chapters in this book although here with a notation that explicitly
refers to either an error-prone covariate (b∗x) or an error-free covariate (bz):

LPi = a + b∗xx∗
i + bzzi. (8.2.2)

Note that we could have several x∗s as well as several zs but for notational
convenience we stick to the simple notation of one of each.

Digression. Latent variable models

The true unobserved values x∗
i are also denoted latent variables and the models

are called latent variable models if distributional assumptions are imposed on these

latent variables. �

We take as example the simple linear regression of vitamin D (transformed
with the base 10 logarithm) for the 41 Irish women, with body mass index
as explanatory variable. In this case we have only a single x∗ and no z. If we
include also vitamin D intake as an explanatory variable, we have two x∗s and
still no z but if we include women from all countries, we have country as an
example of a z.

For the surgery example from Section 6.2.2, the zs would be type of surgery,
age, and type of neuromuscular agent, whereas the x∗s would be duration of
anesthesia and TOF-ratio.

For a quantitative outcome y, such as vitamin D concentration, and a
single explanatory variable, an explicit formula for the estimated slope exists
(see (4.1.4) in Section 4.1.1). If b∗x (as above) denotes the true slope in the
linear relation between the outcome and the hypothetical error-free values x∗

i

of the covariate (body mass index), it can be shown that the slope calculated
using the error-prone covariate xi (the so-called naive model) will instead be
bx, given by

bx =
s2

x − s2
e

s2
x

b∗x = rxb∗x, (8.2.3)

where sx denotes the standard deviation of the observed covariate x and rx

is the reliability coefficient for the covariate x, defined as
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rx =
s2

x − s2
e

s2
x

< 1. (8.2.4)

Because the reliability coefficient rx from Equation (8.2.4) is always less
than 1, we conclude that the slope will always be downward biased, so that
it will be closer to zero than the true value, and more so, if the reliability
coefficient is small, that is, if the uncertainty se is large compared to the nat-
ural biological variation for the unobserved x∗ (the quantity

√
s2

x − s2
e). This

downward bias in (8.2.3) is called regression dilution or regression attenuation.

Even if the estimated slope is biased due to the presence of measurement
error, it should be noted that the test for “no relation” between vitamin D
and body mass index (the Wald test for H0 : b = 0) remains valid. This is
because the standard deviation of the estimated slope is biased towards zero
by the same amount, leaving the test statistic unchanged.

Let us look a little closer at the example with body mass index as an
explanatory variable for vitamin D concentration for the 41 Irish women. The
observed body mass index has a standard deviation ŝx = 4.10. We have no
validation datasets (no true values of body mass index and no repetitions) but
we may use common knowledge to come up with a guess at the size of the error
involved in this variable. Body mass index is calculated as a height-corrected
measure of weight,

BMI =
weight in kg

height in m, squared
.

Weight is most often measured with an error within 50–100 g and height
within 0.5–1 cm. It can be shown that this will result in a standard deviation
of up to approximately 0.3 in body mass index. However, as explained above,
these estimates concern the pure measurement error and do not take into
account the natural variation over the course of the day or even a time span
of a week or month which may be a more relevant time horizon considering
that weight measurements are often collected only through a questionnaire.
Taking this into account, the relevant figures are more likely to be variations
of 1 kg in weight and maybe 1–2 cm in height, giving absolute deviations on
body mass index up to approximately 0.7. Hence (assuming that the error
distribution is approximately Normal) we may guess that a reasonable value
for se is ŝe = 0.35. This gives us an estimated reliability coefficient of

r̂x =
4.102 − 0.352

4.102
= 0.993, (8.2.5)

corresponding to a downward bias in slope of less than one percent.
Because of the small error involved in measurements of body mass in-

dex, the regression attenuation is only slight. If vitamin D intake were to be
included in the model, the bias in the corresponding estimated regression co-
efficient would be larger. If we assume the error of the vitamin D intake to
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be up to a factor 2, corresponding to a standard deviation of the logarithmic
(base 10) vitamin D uptake of 1

2 log10(2) = 0.15, we would get the reliability
coefficient (0.362 − 0.152)/0.362 = 0.82, a downward bias of 18% (assuming
the error in body mass index to be negligible).

If we consider the model with one single error-prone covariate x and one
single error-free covariate z, the bias in the estimated regression coefficient for
x will be given as

bx = rx|zb
∗
x, (8.2.6)

which is similar to (8.2.3), only with the reliability coefficient rx replaced by
the reliability coefficient in the conditional distribution given the error-free
covariate z

rx|z =
s2

x|z − s2
e

s2
x|z

, (8.2.7)

where sx|z denotes the standard deviation in the conditional distribution of x
given z. Because sx|z ≤ sx (z will explain some of the variation in x if they
are related), the conditional reliability coefficient rx|z will be smaller than or
equal to rx and the consequence of the error in x will therefore be larger in
the presence of z in the model.

Moreover, the estimate b̂z for the coefficient of the error-free covariate z
will also be biased

E(̂bz) = bz + (1 − rx|z)bx|zb
∗
x. (8.2.8)

Equation (8.2.8) shows that the estimated regression coefficient for the error-
free covariate has been augmented by a fraction of the indirect effect of z (the
effect of z on the outcome y passing through x in the model diagram of Figure
8.2.1). This means that the effect of an increasing measurement error in x will
be to transfer more and more of the “explanatory ability” onto z and in the
limit, the coefficient for z will be more or less identical to what we would get
by eliminating x from the model altogether. This means of course that error
in x may change bz in either direction and by any magnitude, depending on
the specific problem. Only if x and z are unrelated, will there be no bias in
the estimated effect of z.

In multiple regression situations, with several error-prone covariates and
several error-free covariates, it is impossible in general to predict the conse-
quences of the errors, because this will depend strongly on the interdependen-
cies among the various covariates.

When the outcome variable is not quantitative, the effect of measurement
error in a covariate is more difficult to ascertain. In the case of a single explana-
tory variable, the typical effect will still be an attenuation of the relationship
between the covariate and the outcome but no explicit formulas such as (8.2.6)
and (8.2.8) exist.
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Fig. 8.2.1. Model diagram for outcome y and two covariates x and z.

Digression. Berkson model

In some situations the roles of the error-free covariate x∗ and the error-prone
covariate x are reversed, in the sense that we aim at a covariate value xi (controlled
by the investigator, e.g., a concentration of a drug) but we do not quite obtain
that value. Instead, we obtain x∗

i which we cannot observe. The equation (8.2.1) is
therefore replaced by

x∗
i = xi + ei. (8.2.9)

Note that even if this relation between latent and observed variables may look

quite similar to (8.2.1), the assumption of independence now applies to xi and ei

instead of between x∗
i and ei. This has consequences for the way of correcting for

the error, but a treatment of this situation is beyond the scope of this book; see

Carroll et al. (2006, Ch. 2). �

8.2.2 Correction for measurement error in covariates

Basically, there exist two approaches for handling this problem of error in
covariate values, the regression calibration method and the Simex (simulation
and extrapolation method); see Carroll et al. (2006, Ch. 4–5).

Regression calibration

The idea in regression calibration is to replace the error-prone covariate val-
ues xi by predictions of the true (but unobserved) covariate values x∗

i . More
specifically, the predicted covariate value for a single subject is taken to be
the estimated conditional mean of x∗

i given xi and zi, that is,

x̂∗
i = E(x∗

i |xi, zi) (8.2.10)

and we therefore need to specify the joint distribution of (xi, x
∗
i , zi). This re-

quires additional information, either in the form of a reliability study (a study
measuring the covariates xi and zi repeatedly in order to obtain information
on their joint distribution) or a validation study (a study with joint mea-
surements of all quantities (xi, zi) as well as x∗

i ). Such studies may involve a
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subsample of the present sample (internal validation) or a sample of different
subjects (external validation) and it will usually be much smaller because of
the extra cost involved.

In the special case with only a single error-prone covariate x and no error-
free covariates, Equation (8.2.10) gives an explicit expression

x̂∗
i = E(x∗

i |xi) (8.2.11)

= (1 − r̂x)x̄ + r̂xxi,

where r̂x is the estimated reliability coefficient from (8.2.4). Equation (8.2.11)
shows that the predicted true covariate value is slightly shrunk in the direction
of the overall average value. Inserting the estimated values x̂∗

i of body mass
index into the formula (4.1.4) for the slope of the simple linear regression we
get a correction formula for the slope that precisely corresponds to eliminating
the bias from Equation (8.2.3):

b̂∗x = b̂x
ŝ2

x

ŝ2
x − ŝ2

e

=
b̂x

r̂x
, (8.2.12)

which is an unbiased estimate of the true regression coefficient b∗x and therefore

here denoted b̂∗x. In the vitamin D example we have estimated the effect of the

error-prone body mass index as b̂x = −0.0237 so the effect of the error-free
body mass index is estimated as b̂∗x = b̂x/0.993 = −0.0238.

Returning to the general situation that may involve several error-prone
covariates x and several error-free covariates z, the proposed method of cor-
rection for measurement errors was to substitute the estimated conditional
means (8.2.10) for the error-prone values xi. When doing so, the estimated
standard deviation on the resulting parameter estimates will be too small.
This may be dealt with using resampling methods such as the Bootstrap or
the Jackknife but a discussion of this is beyond the scope of this book.

The Simex procedure

In the Simex method the trick is to impose further measurement error on the
error-prone covariates (x), the simulation step, to study the consequences of
this in the form of new estimates for the regression coefficients and use these
estimates to extrapolate back (the extrapolation step) to the situation with
error-free covariates. The method requires knowledge of the magnitude of the
errors in the error-prone covariates so that additional error may be simulated.

For simplicity of notation, we again consider only one covariate x, mea-
sured with error (having a standard deviation se). Now suppose that we sim-
ulate a large number of new datasets (e.g., 1000) where we add extra error
to x with a squared standard deviation (a variance) of λs2

e so that the total
variance of the measurement error in x is now (1+λ)s2

e. (For several covariates
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measured with error, the λ above refer to the same factor for each of these
variables.) From each of the simulated datasets, we estimate the parameters
in the model and we then compute the average over all 1000 simulations.

This is repeated for several values of λ (e.g., λ = 0.5, 1, 1.5, 2), each re-
sulting in an average of 1000 estimated regression coefficients. Note that for
λ = 0 we have the estimates from the original data and that we are seeking
estimates for the value λ = −1 corresponding to the unobserved situation
with error-free covariates.

In the extrapolation steps, these averages for the different λs (λ =
0, 0.5, 1, 1.5, 2) are related to λ using, for example, quadratic regression. Ex-
trapolating back to λ = −1 yields the desired estimate. The result will of
course depend on the way in which the extrapolation is carried out.

The standard deviation of the resulting estimate requires resampling, typi-
cally by means of a Jackknife procedure, but we consider a detailed description
of this to be beyond the scope of this book and again refer the reader to Carroll
et al. (2006, Ch. 5).

We illustrate the Simex procedure with the vitamin D concentration for
the 41 Irish women, including both body mass index and intake of vitamin
D as covariates, both with errors. Following the results in Section 6.2.1 we
take the logarithm (base 10) of the vitamin D concentration (the outcome) as
well as of the vitamin D intake. The standard deviations for the errors in the
covariates are taken as described above: 0.3 for body mass index and 0.35 for
logarithmic vitamin D intake.

Choosing the factors for the squared standard deviations of the measure-
ment error to be (1 + λ) with λ = 0.5, 1, 1.5, 2 we get the results presented
in Figure 8.2.2. Here, the average of the estimated parameters (intercept as
well as estimated effects of body mass index and logarithmic intake of vita-
min D) are plotted against the factor (1 + λ), that is, the ratio of the current
measurement error and the measurement error in the original data. Superim-
posed on the graphs are the quadratic curves used for back-extrapolation to
the situation where both covariates are error-free.
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Fig. 8.2.2. Effects of error in vitamin D intake as well as in body mass index.



8.2 Errors in covariates 455

In Table 8.2.1 the estimated effects of the two covariates are presented, for
the naive model using the error-prone covariates and for the corrected model,
where the extrapolation is carried back to the error-free situation correspond-
ing to λ = −1. We note that the effect of body mass index is only slightly
corrected, from –0.0224 to –0.0217, and the estimated effect of vitamin D
intake is corrected much more, from 0.0540 to 0.0798 (i.e., almost a 50% in-
crease). Note also that the slight correction of the estimated effect of body
mass index is actually towards zero. This can only happen because we have
two covariates measured with error and because body mass index is virtually
error-free (at least seen in comparison with vitamin D intake), such that the
bias in bx is here more along the lines of that of an error-free covariate (8.2.8).

Note also from Table 8.2.1 that the estimated standard deviations for the
two estimated regression coefficients are corrected to an extent that closely
resembles that of the regression coefficients themselves, leaving the Wald tests
approximately unchanged.

Table 8.2.1. Estimated regression coefficients for the naive model (λ = 0) and the
corrected model (λ = −1).

Covariate
Model Body Mass Index log10(Vitamin D Intake)

Estimated Effect Wald Test Estimated Effect Wald Test

Naive model –0.0224 (0.0067) 11.15 0.0540 (0.0754) 0.52
Corrected model –0.0217 (0.0072) 9.06 0.0798 (0.1159) 0.48

For a binary outcome such as the occurrence of complications in the
surgery Example 1.4 we could also apply the Simex method, provided that
we could come up with reasonable estimates of the standard deviation of
the measurement error in one or more covariates. In Section 6.2.2 we found
the important explanatory variables to be type of surgery, age, duration of
anesthesia, and an interaction between the TOF-ratio and the neuromuscular
blocking agent (in a dichotomized form indicating whether the agent was of a
long-acting type). Out of these covariates, there is likely a small measurement
error in the duration of anesthesia and perhaps a somewhat larger error in
the TOF-ratio. We do not pursue this example any further here.

If the explanatory variable is categorical, measurement error amounts to
misclassification of the subjects into wrong categories, in general with the
effect of making the categories look more alike, that is, with a bias towards
zero in the estimate of group differences, much as in the above simple linear
regression situation. The situation can be handled by the Simex procedure by
specifying the classification errors. These have to be estimated from additional
information precisely as for quantitative covariates.
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Appendix: Notation

Greek letters

Writing a text using mathematical symbols requires a certain amount of no-
tation. As mentioned in the preface, we have striven to avoid the use of Greek
letters and have succeeded, with the following exceptions.

α level of significance (or the type I error rate), usually set to 0.05
β type II error rate that is, 1 − β is the power
χ2(df) Chi-squared distribution with df degrees of freedom
λ multiple of error variance in SIMEX procedure
π 3.1415926535. . .∏

product symbol∑
sum symbol

Having abandoned Greek letters, our notation then uses the Roman alpha-
bet. This resulted in some letters being used as symbols for the same concepts
throughout the book, but the Roman alphabet is not sufficiently rich to avoid
that some letters were used for different purposes in different sections. Be-
low, we present the list of letters that have been used as symbols, indicating
whether they have been used for different purposes in different sections.

Parameter estimates

The estimate of a parameter a, b, or S(t) is typically denoted â, b̂, Ŝ(t). Occa-
sionally, when different estimators for the same parameters are discussed, the
alternative estimators may be denoted ã, b̃, and so on.
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List of symbols

Symbol Section
a intercept in a linear predictor;

if more than one intercept is needed, it is in-
dexed by i or j

A 4.2.3 amplitude of harmonic function
6.3 length of accrual period

b regression coefficient, bj is the regression coef-
ficient for covariate j;
coefficients with a double index, e.g., b1,0, are
occasionally used

B(t) cumulative regression function at time t
c 2.1.2–2.1.3, 7.2 count parameter in Binomial distribution

3.1.3, 3.2.3 hazard ratio
3.2 cj characteristic of outcome in group j
4.1.1 parameter in discussion of pseudo-

observations
4.2 parameter for Gompertz curve
7.4 threshold for latent variable
7.4.2 number of controls in case-control study
7.5.1 Weibull shape parameter
App. B base for logarithmic function

C number of disease-free in population
d number of cases in case-control study
d(y) number of events at time y in survival analysis
dt length of a (small) time interval when defining

the hazard rate
D total number of failure times in survival anal-

ysis
7.4.2 number of diseased in population

e error term for covariate
e(t) expected number at time t in logrank test
E expected number of events/failures
E(y) expected value of y
f 4.2.3 phase of harmonic function

6.3 ratio between sample sizes
f(·) some function of covariate x, outcome y or

time t
F length of follow-up period
g value of categorical variable
h discrete hazard
h(t) hazard rate at time t
H(t) cumulative hazard rate at time t
H0 hypothesis to be tested
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List of symbols (ctd.)

Symbol Section
i indexes (independent) individuals (or clusters)
I(...) indicator function, i.e., I(...) = 1 if ... is true

and I(...) = 0 if ... is false
j indexes something other than independent in-

dividuals
k k + 1 is the number of categories for a cate-

gorical variable
K number of (multiple) comparisons
l 2.3.4 log(likelihood function)
l(t) All other chapters log(hazard rate) at time t
l′ derivative of log(likelihood function)
� log(odds), i.e., � = log(p/(1 − p)) where p is

the probability
�L, �U confidence limits for log(odds)
L 2.3.4, 3.1.2, 3.2.2 likelihood function

4.1.2, 4.1.3 test statistic for linearity
L(t) lower confidence limit for log(cumulative haz-

ard)
m mean value, e.g., m = E(y) is the mean value

of y
M median
n number of (independent) individuals (or clus-

ters)
n → ∞ means “n tends to infinity,” grows
larger and larger

na, nb etc. 3.1.2 observed number in a cell in the 2 × 2-table
5.1.1 observed number in a cell for the Mantel–

Haenszel test
nc All other chapters number of covariates in a multiple regression

model
n0,1 etc. number of pairs in matched pair study
N 3.1.3, 3.2.3 number of distinct times of observation in sur-

vival analysis
5.4, 7.3, 8.1 number of observations in matched set, clus-

ter, etc.
7.4.2 size of population

O observed number of events/failures
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List of symbols (ctd.)

Symbol Section
p probability: pj is the probability of an event

in group j
pi is the probability of an event for individual
i

7.1.1 pi,j probability of outcome category j for in-
dividual i

P P -value when testing a hypothesis
P (t) state occupation probability at time t
q 4.2.2 power for fractional polynomial

6.3 average failure probability
7.4.2 selection probability in case-control study
7.1.1 cumulative probability for ordered outcome

Q Q or −2 log Q is a likelihood ratio test statistic
r 2.3.2, 3.1.1, 3.2.1, 7.1 residual, i.e., “observed – predicted value”

4.1.1 correlation coefficient
4.2.1, 6.2.3 cutpoint for intervals
5.1.2, 5.2.2 number of nonlinear functions
6.3 multiple correlation coefficient
8.1 random effect
8.2 reliability coefficient

R(t) number of subjects at risk at time t in survival
analysis

s standard deviation, e.g., s = SD(y) is the
standard deviation of y

4.1.1 sxy covariance between x and y, sy|x residual
SD

s(x) score attached to individual with covariate x
S 2.3.4, 3.1.2 sum of observations
S(t) survival function, i.e. S(t) = pr(y > t) for a

survival time outcome y
t 3.1.1, 6.3 t-test statistic

7.5.1 cutpoint for time in Poisson regression
8.1.3 timepoint of measurement
All other chapters timepoint in survival analysis

T 2.3.3 general test statistic
4.1.2, 4.1.3 trend test statistic
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List of symbols (ctd.)

Symbol Section
u 2.1 possible outcome value for variable y

7.1.2, 8.1 index
7.4.1 standard Normal variable
App. B positive number

U(t) upper confidence limit for log(cumulative haz-
ard)

v App. B positive number
between-cluster SD

V variance in logrank test
w index
W Wald test statistic
x covariate (explanatory variable), xi is its value

for individual i;
xi,j is covariate j for individual i (multiple
regression)

x̄ average covariate value
x+ spline function for covariate x (x+ = (x −

r)I(x > r))
x∗ 4.1.3 transformed covariate

8.2 true (unobserved) covariate value
X 3.1.3, 3.2.3, 5.1.1 X2 is the logrank or Mantel–Haenszel test

statistic
y outcome (response) variable, yi is its value for

individual i
5.4, 8.1 yi,j is the jth response variable for individual

(cluster) i
ȳ average outcome value
y∗ 3.1.1 transformed outcome

7.4 latent variable
z 3.1.2, 3.2.2 z2 is the chi-square test in 2 × 2-table

6.3, 7.4.1 quantile in standard Normal distribution
8.2 error-free covariate

Z Z-score
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Abbreviations

In addition to the separate symbols, a number of abbreviations are used.

AIC Akaike’s information criterion
CI confidence interval
cloglog cloglog(p) = log(− log(1 − p)) for a probability p
CLT Central Limit Theorem
Cook Cook’s distance
CV coefficient of variation
DAG directed acyclic graph
dev(b)i deviation diagnostic when deleting the ith observation
df degrees of freedom
EERC experimentwise error rate under the complete null hypoth-

esis
EPV events per variable
exp exponential function
F (df1, df2) the F -distribution with df1 and df2 degrees of freedom
ICC intraclass correlation
IQR interquartile range
log the natural logarithm (loge)
logc the logarithm with base c, e.g., c = 2 or 10
logit logit(p) = log(p/(1 − p)) for a probability p
LP linear predictor
LR-test likelihood ratio test
MEER maximum experimentwise error rate
MIREDIF minimum relevant difference
MS mean square
N(m, s2) the Normal distribution with mean m and standard devia-

tion s
OR odds ratio
pr pr(. . . ) is the probability of . . . , pr(A | B) is the probability

of A given B
probit probit(p) is another name for the pth percentile in the stan-

dard Normal distribution
R2 the coefficient of determination
RR relative risk
RSS residual sum of squares
SD standard deviation
SS sum of squares
t(df) the “Student-”t distribution with df degrees of freedom
Var variance
VIF variance inflation factor
± A ± B is the interval from A − B to A + B
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Appendix: Use of logarithms

Throughout this book, logarithms have been applied in various contexts and
with different purposes. We review these uses after a brief introduction to the
logarithmic functions and their inverses, the exponential functions.

The logarithmic functions were originally introduced in order to ease the
task of multiplication and division by translating it into addition and sub-
traction, respectively. The demand was that the functions should satisfy the
equations

log(1) = 0 (B.1)

log(uv) = log(u) + log(v)

for arbitrary positive numbers u and v.
It can be shown that Equation (B.1) has a continuum of solutions, called

logarithmic functions, each with a different (positive) base c, characterized as
the argument giving the logarithmic value 1. If we write the base explicitly as
a subscript, we thus have logc(c) = 1 for all choices of c > 0.

The definition in Equation (B.1) leads to a few more important equalities

logc(uc) = logc(u) + logc(c) = logc(u) + 1

logc(ucv) = logc(u) + logc(c
v) = logc(u) + v

logc(
u

v
) = logc(u) − logc(v) (B.2)

logc(u
v) = v logc(u).

In particular, the last equation in (B.2) implies that for powers of the base,
we have

logc(c
u) = u logc(c) = u. (B.3)
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For instance, log10(100) = 2, log10(1000) = 3 whereas log2(4) = 2, log2(8) = 3.
Thus, for a number u, the logarithm with base c returns the power that we
have to raise c to in order to get the value u; that is,

clogc(u) = u. (B.4)

Figure B.1 shows the logarithms with base values 2 and 10, respectively.
Furthermore, the figure also shows the natural logarithm, with base equal to
e ≈ 2.718 (sometimes called Euler’s number, not to be confused with Euler’s
constant). This logarithm has nice mathematical features (its derivative is the
reciprocal function 1/x) and it is the standard choice of logarithm in mathe-
matics where it is often denoted ln(·). However, we have followed the common
practice from statistics and computer terminology and denote it simply as
log(·) without an explicit reference to the base e.
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Fig. B.1. Functional form of logarithmic functions, for a selection of base values:
2, e = 2.718 and 10.

As mentioned, the logarithms are defined only on the positive axis, but
take on values in the entire range from minus to plus infinity (see Figure B.1).
All logarithmic functions are proportional, because we have the relation

logc(u) =
log10(u)

log10(c)
. (B.5)
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This means that modeling is invariant to the choice of base, in the sense
that it does not matter which logarithm we choose when transforming the
variables of the model or choosing a logarithm as link function. The estimates
will of course depend on this choice but we can always make calculations back
and forth and get the same answer. However, in certain situations, the choice
has been made for us (built-in link functions in statistical software typically
use the natural logarithm) and for some purposes, a specific choice of base
value may facilitate interpretation of the results on the original scale.

The inverse of a logarithmic function is a function of exponential type,
taht is, a function where the argument is used as the power (exponent). Such
functions are defined on the entire axis but take on only positive values. For
the various choices from Figure B.1, we have the corresponding relations

v = log2(u) ⇔ u = 2v > 0 (B.6)

v = log10(u) ⇔ u = 10v > 0

v = loge(u) ⇔ u = ev = exp(v) > 0

or in general, v = logc(u) ⇔ u = cv > 0. Note that the inverse of the natural
logarithm is simply called the exponential function and denoted exp(·). The
exponential functions corresponding to the logarithms in Figure B.1 are shown
in Figure B.2.

−6 −4 −2 0 2 4
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Fig. B.2. Functional form of the exponential functions, for a selection of base values:
2, e, and 10.
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Equation (B.7) states the properties of the exponential functions, exem-
plified by the function exp(·) but true in general for all choices of base value.
Being the inverse functions of the logarithms, these properties are “the oppo-
site” of the properties of the logarithmic functions.

exp(0) = 1

exp(u) > 0 (B.7)

exp(u + v) = exp(u) exp(v)

exp(u − v) =
exp(u)

exp(v)
.

A number of particularly interesting features for applications in model
specifications and interpretation of results are

0 <
exp(u)

1 + exp(u)
< 1

exp(log(u) − log(v)) =
u

v
(B.8)

exp(u) ≈ 1 + u for small values of u.

Uses of logarithms in model specifications

Probabilities are by definition limited to the interval between 0 and 1, thus
the first property in (B.8) is particularly important for modeling probabilities,
for example, the probability of a complication following surgery. In logistic
regression, the relation between such a probability pi for subject i is related
to the covariate value xi as

pi =
exp(a + bxi)

1 + exp(a + bxi)
⇒

LPi = log(
pi

1 − pi
) = a + bxi ⇒ (B.9)

pi

1 − pi
= exp(a + bxi) = exp(a) exp(b)xi .

As seen from (B.9), the resulting estimate b̂ quantifies the effect of a one-
unit increase in x on the log(odds) for a complication (i.e., a difference on a

logarithmic scale). The quantity exp(̂b) is therefore the odds ratio correspond-
ing to this one-unit increase in x.

For the fever in pregnancy example, Section 4.1.2 stated the estimate b̂ =
0.078 for the effect on the probability of fetal death of an extra weekly drink.
Because 0.078 is close to 0, this corresponds roughly to an odds ratio of 1.078
according to the last property in (B.8). More precisely, we find the odds ratio
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to be exp(̂b) = 1.081 per weekly drink. The estimated SD of b̂ was 0.087, so
that a 95% confidence interval is (–0.093, 0.249). Transforming the endpoints
of this interval with the exponential function gives us the interval for the odds
ratio (exp(−0.093), exp(0.249)) = (0.912, 1.282) so that we conclude that the
increase in the odds of fetal death corresponding to an extra weekly drink
may be as large as 28.2%.

Note that (B.9) involves the specific exponential function exp(·) with
base e = 2.718. This is the standard choice built into the logistic re-
gression procedure and the subsequent transformation back to the origi-
nal scale therefore also involves this particular exponential function. Be-
cause 10x = exp(x log(10)), this choice is, however, arbitrary and choosing
base 10 instead of base e would only result in estimates that were scaled
down by a factor log(10). Back-transformation of such estimates would give

10
bb/ log(10) = exp(̂b), exactly the same result for the odds ratio.
For survival time outcomes, we relate the hazard rate at time t, h(t) to

covariates. The hazard rate is positive, therefore the natural choice is a mul-
tiplicative model (the Cox regression model)

hi(t) = h0(t) exp(bxi) ⇒ (B.10)

log(hi(t)) = log(h0(t)) + bxi, .

where h0(t) denotes the hazard at time t when xi = 0 and b is the log(hazard
ratio) associated with a one-unit increase in xi. Consequently, exp(b) is the
hazard ratio between any two individuals whose x-values differ by one. For
instance, in the example concerned with a randomized clinical trial of treat-
ment of primary biliary cirrhosis (PBC) in Section 6.2.3, the regression co-
efficient corresponding to age in years in a Cox model (with time to treat-

ment failure as outcome) was b̂ = 0.039, corresponding to the hazard ratio

exp(̂b) = exp(0.039) = 1.040 (i.e., a 4% increased hazard). The estimated

SD of b̂ was 0.015, giving a 95% confidence interval for the hazard ratio of
(exp(0.039− 1.96× 0.015), exp(0.039 + 1.96× 0.015)) = (1.01, 1.07), that is, a
hazard which increases between 1% and 7% for each year of age.

Uses of logarithms for transformations

Because of the proportionality (B.5) between logarithmic functions with dif-
ferent base values, it does not matter which logarithm we choose when trans-
forming the variables of the model. The estimates will of course depend on
this choice but the actual relation between the outcome and the explanatory
variables and therefore the conclusions do not. However, for certain purposes,
a specific choice of base value may facilitate interpretation of the results on
the original scale.

Basically, choosing to apply a transformation to one or more variables
entering a statistical model (be it as an outcome or as an explanatory variable)
has to do with trying to meet the assumptions in the model.



468 B Appendix: Use of logarithms

Logarithmic transformation of an explanatory variable x can be conve-
nient in situations where the effect of x tends to level off for higher values
as seen, for example for the effect of bilirubin in Section 4.1.3. The relation
between outcome y and covariate x may then look like the curves in Figure
B.1, corresponding to a linear predictor of the form

LPi = a + b log(xi). (B.11)

The interpretation of the regression coefficient b is the effect on the outcome
(an increase of a mean value, a log(odds) or a log(hazard rate)) of a one unit
increase in the covariate, in this case the covariate log(x). As seen from the first
equation in (B.2), this corresponds to multiplying x by the base c. Therefore,
when using a logarithmic transformation of an explanatory variable, it is most
appropriate to choose, for example, a base 2, so that the interpretation will
be the effect of a doubling of x. A base 10 logarithmic transformation will
estimate the effect of a tenfold increase in x which may be outside the limit
of the explanatory variable. If a doubling is also outside the limits of the
explanatory variable, the base may be chosen as, for example, c = 1.1, leading
to an estimated coefficient b corresponding to an increase in x of 10% (a factor
1.1). The natural base e is not particularly useful for interpretational purposes
because it yields an estimate of the effect of multiplying the covariate x by
2.718. However, as pointed out previously, the choice of base is not crucial. If
we have used a natural logarithm as covariate transformation and wish instead
to get an estimate of the effect of a 10% increase in the covariate, this may
simply be estimated as log(1.1)b = 0.0953b, remembering of course to use the
same multiplication factor for the SD of the estimate. We have used this in
connection with analyses of the PBC-3 study.

Logarithmic transformation of a (quantitative) outcome may be used for
several reasons:

1. To make an assumption of linearity reasonable, in the case of an expo-
nentially increasing relation such as those in Figure B.2, that is, when
E(logc(y)) = a + bx. Note that a similar effect (although not quite iden-
tical; see Section 7.3) can be obtained by using instead a log link (i.e.,
logc(E(y)) = a + bx). The result from the model states that a one-unit
increase in x will increase logc(y) by the amount b, which according to
(B.2) corresponds to multiplying y by the factor cb. For example, in the
final model of the vitamin D example in Section 6.2.1, the effect of body
mass index on log10(y) yielded the estimate −0.0096(0.0031). Because
here c = 10, this means that a one-unit increase in body mass index has
the effect of multiplying vitamin D level by 10−0.0096 ≈ 0.98, that is, a
2% reduction in vitamin D level.

2. To make a heavily (right-)tailed distribution on the positive axis more
symmetric or even Normal, in order to make reference regions (regions of
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“normal” values used as a reference in a clinical setting) trustworthy and
comparisons more meaningful.
For such a skewed distribution the average is not the best estimate of the
“central tendency” due to influential large observations. Instead, we use
a geometric average. Formally, it is defined as the exponential function of
the average of the logarithmic transformed observations (i.e., transform,
take the average, and transform back again). In this way, the average is
taken on a scale where the distribution is more symmetric and therefore
avoiding the influence of extreme observations. This was used in Section
3.1.1 when comparing two groups (overweight versus normal weight Irish
women) with respect to vitamin D concentration, on a logarithmic scale.
Using a base 10 logarithm, we obtain an estimated difference in means
(on the logarithmic scale) of –0.127, with a 95% confidence interval of
(–0.245, –0.009). According to the rules of the exponential functions (B.8)
such a difference transforms back to a ratio 10−0.127 = 0.75 with the
interpretation that overweight women have a level of S25OHD equal to
75% of the level for normal weight women, that is, a 25% lower level
compared to the normal weight women. The confidence interval becomes
(10−0.245, 10−0.009) = (0.57, 0.98), indicating that our knowledge of the
size of the difference is not very precise.

3. To stabilize variance in the quite common situation where the standard
deviation increases proportionally to the level. When interpretation of the
variation is in focus, there is an argument for using the natural logarithm,
because it yields the approximate relation

SD(loge(y)) ≈ SD(y)

m(y)
= CV, (B.12)

where m(y) denotes the mean value of y and CV is the coefficient of
variation (see Section 7.3). Thus, if we estimate the standard deviation in
a model for loge(y) to, for example, 0.18, we may conclude that the CV
of y (after adjusting for various explanatory variables) is 18%.

Sometimes, a logarithmic transformation is required for both outcome and
explanatory variable. On the original scale, this corresponds to a power rela-
tion y = axb (see, e.g., the Tetrahymena example analyzed in Section 4.1.1.

Why it is not cheating

Using logarithmic transformation of either outcome or explanatory variables
is often thought of as cheating by nonstatisticians. We strongly stress that
this is not the case. Indeed, if the assumptions in a specific model are not
sufficiently accurate according to the nature of the data, it will be simply
wrong not to do something about this. Transformation of one or more of the
variables is a way to specify a model relying on other assumptions which
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may be more appropriate in the situation. Choosing another link function is
an alternative option. Some typical situations are illustrated in Figures B.3
and B.4, using simulated data with clear deviations from one or more of the
traditional assumptions of linearity, variance homogeneity, and Normality of
residuals.

In the left panels of Figure B.3, the mean value structure is wrong (i.e.,
nonlinear). In the upper-left panel, the functional relation resembles that of
the logarithmic functions in Figure B.1 and making a logarithmic transforma-
tion of x yields the figure to the right where all assumptions seem to be met.
In the lower-left panel, the relation looks more like an exponential function
(a vertically mirrored version of Figure B.2, i.e., like exp(−x)) and therefore
requiring a logarithmic transformation of y. Note that this transformation
makes the standard deviation constant at the same time.

In Figure B.4, the assumption of constant SD is wrong in both left-hand
panels, because SD is increasing proportionally to the mean, so that we have
a constant coefficient of variation, requiring a logarithmic transformation of
y. In the upper panel, the relation between y and x is a power function, which
can be linearized by a simultaneous logarithmic transformation of y and x.
The situation in the lower-left panel is more tricky because a logarithmic
transformation of y will destroy the linear relationship between the untrans-
formed y and x, no matter whether we use a logarithmic transformation of x
or not. This is a situation where the sensible choice is a log-link, as discussed
in Section 7.3.

Note that there may sometimes be a conflict between the three traditional
requirements of linear regression: the linearity, the constant standard devia-
tion, and the Normality. We saw an example of this in the lower-left panel
of Figure B.4. In these situations, priority must be given to the linearity as-
pects because fitting a model with an erroneous systematic structure creates
an obvious problem. The possibility of choosing between transformations and
nonlinear links adds to the flexibility in this respect. With respect to con-
flicts between constant standard deviation and Normality, we find in practice
that this is rarely the case. These assumptions concerning variation are most
critical when constructing reference charts for clinical use, for example for
monitoring hormone levels during pregnancy.
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Fig. B.3. Examples of violated assumptions: upper left has nonlinear mean with
constant SD, requiring a logarithmic transformation of x. Lower left has nonlinear
mean and nonconstant SD, requiring logarithmic transformation of y.
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Fig. B.4. Examples of violated assumptions: upper left shows a power relation with
constant CV, requiring a logarithmic transformation of both y and x. Lower left has
a linear structure with constant CV and should be handled without transforming,
by specifying a log-link.
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Appendix: Some recommendations

Throughout the book we have given various recommendations which are now
summarized under a number of headings. This appendix is not meant to be
exhaustive, rather, it is intended to give an overview of some advice that may
otherwise be “hidden” in the text. For a full discussion we refer the reader to
earlier chapters.

Planning and analysis

Investigations should be planned to address one or a few simple questions,
preferably comparing two groups or studying a single dose–response relation-
ship. Thereby, difficulties in connection with multiple comparisons when test-
ing hypotheses with many degrees of freedom are avoided (Section 3.2). Such
tests also tend to lack power (Section 2.3.3). Sample size calculations should
be performed for the main research question keeping in mind that the result
of such a calculation should be regarded as an order of magnitude rather than
an exact number of subjects to be recruited. Pilot studies may be a useful aid
when assessing values of unknown quantities that appear in the calculations
(Section 6.3).

It should be kept in mind that the interpretation of a covariate effect
depends on which other explanatory variables are included in the model and it
should, therefore, be carefully considered which covariates need to be adjusted
for when addressing the primary research questions (Section 6.1). Typically,

SD(̂b) will increase when many confounders are included, unless these are
very strong predictors of the outcome and have only a moderate correlation
with the exposure variable. The main analyses should concentrate on the
primary research questions to reduce the amount of testing of data-generated
hypotheses. However, science would not proceed if analyses of questions not
stated in the protocol were not allowed so, obviously, new ideas generated
from the data can be pursued as long as conclusions based on such additional
analyses are suitably calibrated.
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Selection of subjects for analysis

In regression models, there are no assumptions concerning the distribution of
covariates and selecting subjects for regression analysis on the basis of their co-
variate values is perfectly valid (Section 6.1). As a consequence, it is important
to realize that subjects will no longer be representative for the distribution of
the response variable in the population and that this reduces the usefulness of
quantities such as correlation coefficients, coefficients of determination (R2),
and Z-scores. (Sections 4.1.1 and 7.1.1).

Selection of individuals from their outcome variables will grossly compli-
cate analysis and is not recommended. The only such situation that we have
touched upon in the book is case-control studies. For such studies, it facil-
itates interpretation if both cases and controls are sampled from the same
underlying cohort (a nested case-control study) (Section 7.4.2). When study-
ing diagnostics (such as dev(b)i or Cook’s distance) it is important to realize
that large values of the diagnostics are not sufficient reason to exclude the
subject from analysis (Section 4.1.1).

Reporting results

Power calculations are useful when planning studies, however, they have no
role to play when reporting results (Section 6.3). Reporting should include
estimates (equipped with confidence limits) for the parameters relating to the
main research question. One should usually supplement with the associated
P -values but it should be kept in mind that P -values quantify the strength of
evidence against a hypothesis rather than the size of difference itself. Thus, the
most useful tool when reporting results is the confidence interval. In particular,
when reporting statistically insignificant results, the CI gives the limits for
the group differences that are compatible with the data in spite of having
too little evidence against the hypothesis of no difference. Note that the one-
to-one correspondence between P -value and CI that exists for tests with one
degree-of-freedom are no longer present when investigating tests with more
degrees-of-freedom (Sections 2.3.3, 3.1.1).

When comparing two groups it is incorrect to infer from overlapping 95%
confidence intervals for the levels (e.g., mean values or log(odds)) in the sep-
arate groups to nonsignificance at the 5% level of the difference between the
groups. However, arguing the other way, that is, from nonoverlap of 95% con-
fidence intervals to significant difference at 5% level between the groups, is
correct (Sections 3.1.1, 3.1.2).

Parametrizations and choice of link function

When building the linear predictor for a regression model it should be
parametrized in such a way that the intercept can be interpreted as the level
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of LPi for a meaningful combination of values for the explanatory variables.
The model itself is not affected, neither by this choice of parametrization, nor
by the choice of reference group for a categorical covariate, only its appear-
ance in the form of estimated coefficients (Sections 3.1.1, 3.2). When choosing
the link function, the most important aspects to consider are model fit and
interpretation of model parameters (e.g., Section 7.4).

Interactions

First of all, it should be recalled that the concepts of interaction and confound-
ing have nothing in common (introduction to Chapter 5). Interactions com-
plicate the models and only interactions that are prespecified as being of spe-
cial scientific interest should be studied in the analysis (Section 6.1.7). This is
particularly important for higher-order interactions (Section 5.3). Interactions
should be studied by including the proper parameters in the linear predictor
and not by making separate analyses in strata. Different parametrizations of
LPi are useful for testing for no interaction and for presenting results from a
model including interaction terms and both types of parameters can conve-
niently be obtained using dummy variables (e.g., Section 5.2.1). When testing
for no interaction it should be considered how to save degrees-of-freedom to
obtain more powerful tests (e.g., linear-by-linear interactions may be useful
for testing, whereas parameters in a model including such terms are difficult to
interpret (Section 5.2.4)). In a model including interaction terms, care should
be exercised if interpreting main effects (Section 5.2).

Interactions are scale-dependent and may appear or disappear with trans-
formations and/or change of link functions (e.g., Section 7.4.1).

Importance of Normality

The 2-sample t-test compares the mean values between two independent
groups, and the most important aspects are relevance of mean values and
Normality of the two averages to be compared. Normality of averages is en-
sured in not too small samples by the Central Limit Theorem and relevance of
mean values may be improved by proper transformations of the data. When
reporting results obtained by carrying out the t-test on log-transformed obser-
vations it is convenient to back-transform to a ratio between medians. Testing
for Normal distributions in the two samples is not recommended because, in
small samples, Normality is rarely rejected and, in large samples, small and
unimportant deviations may lead to rejection. Instead, we recommend visual
inspection of residual plots (Section 3.1.1). Reference intervals should not be
used based on sparse data (Section 2.2.2).
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Survival analysis

To evaluate the crucial assumption of independent censoring one should always
keep close track of why individuals are censored before the planned end of
study (Section 3.1.3). In studies with repeated follow-up visits one should
keep track of which visits are scheduled and which are not (Section 8.1.3).
Although parametric models for survival data allow estimation of mean values,
such extrapolation beyond the range of observed data is not recommended.
Poisson regression based on a piecewise constant hazard function is a useful
alternative to the Cox regression model, in particular in large samples with
categorical covariates. The choice of time intervals should be based on the
way in which the hazard is expected to vary with time (Section 7.5.1).

Miscellaneous

Graphical displays are extremely useful for presentation of data and evalua-
tion of model assumptions. Smoothing of residuals is crucial for binary data
and survival analysis. In linear models for a quantitative outcome, it is the dis-
tribution of the residuals (and not the marginals) that should be Normal (or
symmetric). Tabulations of categorical data should always be studied before
regression analysis (Section 5.1.1). A sharp distinction between a “standard
error” of an estimate and a “standard deviation” is rarely useful and SD can
be used as the generic concept thereby avoiding introduction of standard er-
rors altogether (Section 2.3.1). In randomized studies it makes no sense to use
significance tests to compare distributions of pretreatment variables between
treatment groups (Section 5.1.2).
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Programming in R, SAS and STATA.

This appendix contains a set of simple coding statements for performing a
regression with a linear predictor in the three statistical packages R, SAS, and
STATA.

The programs are only meant to show the most fundamental code for
obtaining parameter estimates with confidence intervals and associated tests
of significance, and only for simple situations where all quantitative covariates
enter untransformed into the linear predictor.

Each model has a linear predictor with four covariates, two categorical and
two quantitative. In all models, treatment and gender are categorical covari-
ates, whereas age and bmi (body mass index) are quantitative covariates. If
some covariates are not needed, the corresponding terms should simply be
deleted from the model-statements. This may lead to simpler types of models
that may also be analyzed by correspondingly simpler procedures in the three
languages. For the sake of clarity, however, we have chosen to highlight the
fact that even such simpler models are part of the common theme of regression
and therefore also just special cases of the more general procedures.

The linear predictor built from the four covariates mentioned above is used
in two ways, either without adding any interactions and with the addition
of a single interaction between the categorical covariate treatment and the
quantitative covariate age, to show an example of how this is done.

Three different procedures are used for each type of software, correspond-
ing to the three different main types of outcome. We have chosen different
names for the corresponding three data sets, even if we have kept the names
for the covariates identical to ease the reading of the programs.

The outcome bloodpressure is quantitative (dataset quantout), complication
is a binary outcome (dataset binout) and failuretime is a survival time
outcome (dataset survout), with an associated variable status, indicating
whether the observed timepoint is indeed a failure (status=1) or a censoring
(status=0).
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The names of outcomes as well as covariates are identical to those used
in Tables 1.6.1 and 1.6.2. In these tables, the special names associated with
simplifications of the models shown here are also given, for example, t-test,
logrank test, and so on. These tables also include reference to nonlinear effects
of quantitative covariates. However, this option is not part of this appendix
due to the fact that it requires programming statements for construction of
derived or transformed variables and therefore involves too many software
details to be practical for this basic overview.
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R code

Quantitative outcome

Without interaction:

model <- lm(bloodpressure ~ factor(gender)+factor(treatment)+

age+bmi,data=quantout)

summary(model)

With interaction:

model <- lm(bloodpressure ~ factor(gender)+factor(treatment)+

age+bmi+factor(treatment):age,data=quantout)

summary(model)

Binary outcome

Without interaction:

model <- glm(complication ~ factor(gender)+factor(treatment)+

age+bmi,family=binomial(link="logit"),data=binout)

summary(model)

With interaction:

model <- glm(complication ~ factor(gender)+factor(treatment)+

age+bmi+factor(treatment):age,

family=binomial(link="logit"),data=binout)

summary(model)

Survival time outcome

Without interaction:

model <- coxph(Surv(failuretime, status==1) ~ factor(gender)+

factor(treatment)+age+bmi,data=survout)

summary(model)

With interaction:

model <- coxph(Surv(failuretime, status==1) ~ factor(gender)+

factor(treatment)+age+bmi+

factor(treatment):age,data=survout)

summary(model)
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SAS code

Quantitative outcome

Without interaction:

PROC GLM DATA=quantout;

CLASS gender treatment;

MODEL bloodpressure = gender treatment age bmi /

SOLUTION CLPARM;

RUN;

With interaction:

PROC GLM DATA=quantout;

CLASS gender treatment;

MODEL bloodpressure = gender treatment age bmi

treatment*age / SOLUTION CLPARM;

RUN;

Binary outcome

Without interaction:

PROC GENMOD DATA=binout;

CLASS gender treatment;

MODEL complication = gender treatment age bmi

/ DIST=BINOMIAL LINK=LOGIT;

RUN;

With interaction:

PROC GENMOD DATA=binout;

CLASS gender treatment;

MODEL complication = gender treatment age bmi treatment*age

/ DIST=BINOMIAL LINK=LOGIT;

RUN;

Survival time outcome

Without interaction:

PROC PHREG DATA=survout;

CLASS gender treatment;

MODEL failuretime*status(0) = gender treatment age bmi /

RISKLIMITS;

RUN;
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With interaction:

PROC PHREG DATA=survout;

CLASS gender treatment;

MODEL failuretime*status(0) = gender treatment age bmi

treatment*age / RISKLIMITS;

RUN;
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STATA code
Quantitative outcome

Without interaction:

use quantout, clear

regress bloodpressure i.gender i.treatment age bmi

With interaction:

use quantout, clear

regress bloodpressure i.gender i.treatment age bmi

i.treatment#c.age

Binary outcome

Without interaction:

use binout, clear

glm complication i.gender i.treatment age bmi,

family(binomial) link(logit)

With interaction:

use binout, clear

glm complication i.gender i.treatment age bmi i.treatment#c.age,

family(binomial) link(logit)

Survival time outcome

Without interaction:

use survout, clear

stset failuretime, failure(status==1)

stcox failuretime i.gender i.treatment age bmi

With interaction:

use survout, clear

stset failuretime, failure(status==1)

stcox failuretime i.gender i.treatment age bmi i.treatment#c.age
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Bernoulli distribution, see distribution
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saving, 285
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change in, 315
distribution of, 66
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goodness of fit test

Hosmer–Lemeshow, 339
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hazard
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cause-specific, 442
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discrete, 382
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Jackknife, see resampling
joint model, 350, 441

Kaplan–Meier estimator, 8, 63, 125

large samples, 89
latent variable, 403, 449
law of large numbers, 70
least squares estimation, 88
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Levene’s test, 106, 151
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likelihood, 44

function, 66, 85
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partial, 299
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linear
effect, see effect
predictor, 23, 28, 175, 214, 232, 255,
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regression, 7, 10

multiple, 7, 321

simple, 7, 177
spline, 212

linearity
test, 199, 204, 211
transformation to, 468

link function, 13
cloglog, 127, 404, 407, 416, 446
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probit, 403

local polynomial, see spline
location, 59
log link, see link function
log-Normal distribution, see distribution
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natural, 464
logistic

function, 15, 197, 436
regression, 8, 14, 466

conditional, 297, 415
multiple, 8, 331
ordinal, 368
polychotomous, 384
simple, 8, 16, 195

Logistic distribution, see distribution
logit link, see link function
logrank test, 9

2 sample, 9, 131
k+1 sample, 164
stratified, 244
trend, 201

longitudinal data, 440

main effect, 264, 285
malignant melanoma study, 35, 417,

445
Mann–Whitney test, 104
Mantel–Haenszel

estimator, 243
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mean

comparison of means, 97, 142
geometric, 22
marginal, 433
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value, 7, 45
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in covariate, 448
in outcome, 1, 447

median, 60
survival time, 128, 361
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MIREDIF, 361
misclassification, 455
missing values

covariate, 307
imputation, 308
outcome variable, 307

model, 64
building, 311
check, 44, 73, 317
diagram, 308

PBC-3 study, 345
surgery study, 333
vitamin D study, 322

hierarchical, 435
multilevel, 435
multistate, 442
nested models, 77, 199, 214
random effects, 433

multilevel model, 435
Multinomial distribution, see distribu-

tion
multiple

comparisons, 139, 147
Bonferroni correction, 140, 148, 166
Dunnett correction, 148
Sidak correction, 140, 148, 166
Tukey–Kramer correction, 149

Cox regression, see Cox regression
linear regression, see linear regression
logistic regression, see logistic

regression
regression, see regression

multiplicative hazard, see hazard rate
multistate model, 442
multivariable, 432
multivariate data, 432

necessary sample size, see sample size
nested

case-control study, see case-control
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models, 77, 199, 214
nonlinear effect, see effect
nonparametric test, 104, 131
Normal

distribution, see distribution
quantile plot, 59, 75

Normality assumption, 102, 150, 181,
239, 248

notation, 7, 9, 23, 95, 136, 295, 432, 457
interaction, 270, 293

null hypothesis, see hypothesis

Occam’s razor, 81
odds, 14, 28, 112, 195
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exposure, 414

offset, 422
one-way ANOVA, 7, 146
ordinal

logistic regression, see logistic
regression

outcome, see outcome variable
outcome variable, 2

binary, 7, 14, 47, 57, 110, 157, 194,
297, 331, 358, 403, 436

continuous, 51
count, 50, 387
missing values, 307
multinomial, 367
nominal, 367, 383
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quantitative, 7, 21, 51, 59, 97, 142,
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P-value, 82
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regression, 10
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PBC-3 study, 5, 17, 123, 161, 201, 212,
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conclusion, 351
model diagram, 345

percentile, 61
periodic effect, 226
piecewise constant, 214, 417
pilot study, 360
plot

histogram, 59
Normal quantile, 59, 75
residual, 75
scatter-, 12

Poisson
distribution, see distribution
regression, 416, 417, 420

additive model, 425
polychotomous logistic regression, see

logistic regression
polynomial, 219, 221
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local, see spline
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pooled SD estimate, 99, 143
population, 45
post hoc power, see power
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post hoc, 364
prediction, 29, 305

limits, 181, 194
probability, 8, 43, 44, 111

comparison of probabilities, 110, 157
conditional, 56
coverage, 68
density, 51
distribution, 43, 45
state occupation, 444
tail, 82

probit link, see link function
programming, 477
proportion, 57
proportional
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odds
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-residual, see residual

quadratic
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quantile, 61
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quartile, 61

R, 477
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random

allocation, see randomization
effect, 433
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variable, 45

randomization, 29, 356
recurrent events, 444
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regression, 30
analysis, 2
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coefficient, 10, 27
Cox, see Cox regression
dilution, 448, 450
linear, see linear regression
logistic, see logistic regression
multiple, 23, 232, 432
ordinal logistic, 368
parameter, 27
parametrization, 10
plane, 255
Poisson, see Poisson
spline, see spline
towards the mean, 30

relative risk, 115, 404
relevant effect size, see effect
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corner, 270
repeated measurements, 440
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resampling, 72, 453
residual, 74, 317



Index 493

leave-one-out, 75
Pearson, 74
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Schoenfeld, 202
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sum of squares, 178

response variable, see outcome variable
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retrospective study, see case-control

study
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risk, see probability

difference, 117, 404
ratio, see relative risk
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robust SD estimate, 440

sample, 45
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case-control, 410
cluster, 434
necessary sample size, 356
random, see random sample
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sandwich SD estimate, 440
SAS, 477
saving degrees of freedom, 285
scatter-plot, 12

smoother, see smoother
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function, 86
residual, see residual
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Sidak correction, see multiple compar-
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Cox regression, see Cox regression
linear regression, see linear regression
logistic regression, see logistic

regression
size of investigation, see sample size
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comparison of slopes, 273
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Lowess, 313
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linear, 212
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regression, 217
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standard
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statistical

inference, see inference
model, see model

strategy of analysis, 314
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stratified

Cox model, see Cox regression
logrank test, see logrank test
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sum of squares
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summary statistic, 61
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model diagram, 333

survival
function, 8, 124
time outcome, see outcome variable

t-distribution, see distribution
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tail probability, see probability
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Bartlett’s, 106, 151
conservative, 135, 141
F, see F-test
for linearity, see linearity
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Mann–Whitney, 104
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nonparametric, 104, 131
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statistic, 82
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trend, see trend test
Wald, 92
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explanatory, see covariate
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