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Preface

The 19th Conference of IASC-ERS, COMPSTAT’2010, is held in Paris,
France, from August 22nd to August 27th 2010, locally organised by the
Conservatoire National des Arts et Métiers (CNAM) and the French Na-
tional Institute for Research in Computer Science and Control (INRIA).
COMPSTAT is an initiative of the European Regional Section of the
International Association for Statistical Computing (IASC-ERS), a section of
the International Statistical Institute (ISI). COMPSTAT conferences started
in 1974 in Wien; previous editions of COMPSTAT were held in Berlin (2002),
Prague (2004), Rome (2006) and Porto (2008). It is one of the most pres-
tigious world conferences in Computational Statistics, regularly attracting
hundreds of researchers and practitioners, and has gained a reputation as an
ideal forum for presenting top quality theoretical and applied work, promot-
ing interdisciplinary research and establishing contacts amongst researchers
with common interests.

Keynote lectures are addressed by Luc Devroye (School of Computer Science,
McGill University, Montreal), Lutz Edler (Division of Biostatistics, German
Cancer Research Center, Heidelberg) and David Hand (Statistics section,
Imperial College, London). The conference program includes three tutorials:
”Statistical Approach for Complex data” by Lynne Billard (University of
Georgia, United States), ”Bayesian discrimination between embedded mod-
els” by Jean-Michel Marin (Université Montpellier II, France) and ”Machine
Learning and Association Rules” by Petr Berka and Jan Rauch (University
of Economics, Prague, Czech Republic). Each COMPSTAT meeting is organ-
ised with a number of topics highlighted, which lead to Invited Sessions. The
Conference program includes also contributed sessions and short communi-
cations (both oral communications and posters).

The Conference Scientific Program Committee chaired by Gilbert Saporta,
CNAM, includes:

Ana Maria Aguilera, Universidad Granada
Avner Bar-Hen, Université René Descartes, Paris
Maria Paula Brito, University of Porto
Christophe Croux, Katholieke Universiteit Leuven
Michel Denuit, Université Catholique de Louvain
Gejza Dohnal, Technical University, Prag
Patrick J. F. Groenen, Erasmus University, Rottterdam
Georges Hébrail, TELECOM ParisTech
Henk Kiers, University of Groningen
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Erricos Kontoghiorghes, University of Cyprus
Martina Mittlböck, Medical University of Vienna
Christian P. Robert, Université Paris-Dauphine
Maurizio Vichi, Universita La Sapienza, Roma
Peter Winker, Universität Giessen
Moon Yul Huh, SungKyunKwan University, Seoul, Korea
Djamel Zighed, Université Lumière, Lyon

Due to space limitations, the Book of Proceedings includes keynote speakers’
papers, invited sessions speakers’ papers and a selection of the best con-
tributed papers, while the e-book includes all accepted papers.

The papers included in this volume present new developments in topics
of major interest for statistical computing, constituting a fine collection of
methodological and application-oriented papers that characterize the current
research in novel, developing areas. Combining new methodological advances
with a wide variety of real applications, this volume is certainly of great value
for researchers and practitioners of computational statistics alike.

First of all, the organisers of the Conference and the editors would like to
thank all authors, both of invited and contributed papers and tutorial texts,
for their cooperation and enthusiasm. We are specially grateful to all col-
leagues who served as reviewers, and whose work was crucial to the scientific
quality of these proceedings. A special thanks to Hervé Abdi who took in
charge the session on Brain Imaging. We also thank all those who have con-
tributed to the design and production of this Book of Proceedings, Springer
Verlag, in particular Dr. Martina Bihn and Dr. Niels Peter Thomas, for their
help concerning all aspects of publication.

The organisers would like to express their gratitude to all people from CNAM
and INRIA who contributed to the success of COMPSTAT’2010, and worked
actively for its organisation. We are very grateful to all our sponsors, for
their generous support. Finally, we thank all authors and participants, with-
out whom the conference would not have been possible.

The organisers of COMPSTAT’2010 wish the best success to Erricos Kon-
toghiorghes, Chairman of the 20th edition of COMPSTAT, which will be held
in Cyprus in Summer 2012. See you there!

Paris, August 2010

Yves Lechevallier
Gilbert Saporta
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Alejandro F. Rodŕıguez, Esther Ruiz

Part VI. Computer-Intensive Actuarial Methods

A Numerical Approach to Ruin Models with Excess of Loss
Reinsurance and Reinstatements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Hansjörg Albrecher, Sandra Haas

Computation of the Aggregate Claim Amount Distribution
Using R and Actuar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Vincent Goulet

Applications of Multilevel Structured Additive Regression Mod-
els to Insurance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Stefan Lang, Nikolaus Umlauf

Part VII. Data Stream Mining

Temporally-Adaptive Linear Classification for Handling Pop-
ulation Drift in Credit Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Niall M. Adams, Dimitris K. Tasoulis, Christoforos
Anagnostopoulos, David J. Hand

Large-Scale Machine Learning with Stochastic Gradient De-
scent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
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Hervé Cardot, Peggy Cénac, Mohamed Chaouch

A Markov Switching Re-evaluation of Event-Study Method-
ology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Rosella Castellano, Luisa Scaccia

Evaluation of DNA Mixtures Accounting for Sampling
Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Yuk-Ka Chung, Yue-Qing Hu, De-Gang Zhu, Wing K. Fung

Monotone Graphical Multivariate Markov Chains . . . . . . . . . . . . 445
Roberto Colombi, Sabrina Giordano

Using Functional Data to Simulate a Stochastic Process via a
Random Multiplicative Cascade Model . . . . . . . . . . . . . . . . . . . . . . . 453

G. Damiana Costanzo, S. De Bartolo, F. Dell’Accio, G. Trombetta

A Clusterwise Center and Range Regression Model for Interval-
Valued Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Francisco de A. T. de Carvalho, Gilbert Saporta, Danilo N.
Queiroz

Contributions to Bayesian Structural Equation Modeling . . . . . 469
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Jiř́ı Zelinka

Part XVIII. Supplementary Invited Papers

Heuristic Optimization for Model Selection and Estimation . . .1727
Dietmar Maringer

General Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1737

X



Part I

Keynote



Complexity Questions in Non-Uniform
Random Variate Generation

Luc Devroye

School of Computer Science
McGill University
Montreal, Canada H3A 2K6
lucdevroye@gmail.com

Abstract. In this short note, we recall the main developments in non-uniform
random variate generation, and list some of the challenges ahead.

Keywords: random variate generation, Monte Carlo methods, simulation

1 The pioneers

World War II was a terrible event. But it can not be denied that it pushed
science forward with a force never seen before. It was responsible for the
quick development of the atomic bomb and led to the cold war, during which
the United States and Russia set up many research labs and attracted the
best and the brightest to run them. It was at Los Alamos and rand that
physicists and other scientists were involved in large-scale simulations. John
von Neumann, Stan Ulam and Nick Metropolis developed the Monte Carlo
Method in 1946: they suggested that we could compute and predict in ways
never before considered. For example, the Metropolis chain method developed
a few years later (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller,
1953) can be used to simulate almost any distribution by setting up a Markov
chain that has that distribution as a limit. At least asymptotically, that is.
But it was feasible, because the computers were getting to be useful, with
the creation of software and the fortran compiler.

To drive the Markov chains and other processes, one would need large col-
lections of uniform random numbers. That was a bit of a sore point, because
no one knew where to get them. Still today, the discussion rages as to how
one should secure a good source of uniform random numbers. The scientists
eventually settled on something that a computer could generate, a sequence
that looked random.

The early winner was the linear congruential generator, driven by xn+1 =
(axn+b)modm, which had several well-understood properties. Unfortunately,
it is just a deterministic sequence, and many of its flaws have been exposed
in the last three decades. The built-in linear-congruential generator in the
early fortran package for ibm computers was randu. Consecutive pairs

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 1, c© Springer-Verlag Berlin Heidelberg 2010
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(xn, xn+1) produced by randu fall on just a few parallel lines, prompting
Marsaglia (1968) to write a paper with the ominous title “Random numbers
fall mainly in the plane”. But bad linear congruential or related generators
have persisted until today—the generator in Wolfram’s Mathematica had a
similar problem: their built-in generator Random uses the Marsaglia-Zaman
subtract-with-borrow generator (1991), which has the amazing property that
all consecutive triples (xn, xn+1, xn+2) fall in only two hyperplanes of [0, 1]3, a
fact pointed out to me by Pierre Lecuyer. Many thousands of simulations with
Mathematica are thus suspect—I was made aware of this due an inconsistency
between simulation and theory brought to my attention by Jim Fill in 2010.
The company has never apologized or offered a refund to its customers, but
it has quietly started using other methods, including one based on a cellular
automaton (the default). Hoewever, they are still offering linear congruential
generators as an option. The story is far from over, and physical methods
may well come back in force.

Information theorists and computer scientists have approached random-
ness from another angle. For them, random variables uniformly distributed
on [0, 1] do not and can not exist, because the binary expansions of such
variables consist of infinitely many independent Bernoulli (1/2) random bits.
Each random bit has binary entropy equal to one, which means that its value
or cost is one. A bit can store one unit of information, and vice versa, a
random bit costs one unit of resources to produce. Binary entropy for a more
complex random object can be measured in terms of how many random bits
one needs to describe it. The binary entropy of a random vector of n inde-
pendent fair coin flips is n, because we can describe it by n individual fair
coins.

For the generation of discrete or integer-valued random variables, which
includes the vast area of the generation of random combinatorial structures,
one can adhere to a clean model, the pure bit model, in which each bit
operation takes one time unit, and storage can be reported in terms of bits.
In this model, one assumes that an i.i.d. sequence of independent perfect bits
is available. This permits the development of an elegant information-theoretic
theory. For example, Knuth and Yao (1976) showed that to generate a random
integer X described by the probability distribution

P{X = n} = pn, n ≥ 1,

any method must use an expected number of bits greater than the binary
entropy of the distribution, ∑

n

pn log2(1/pn).

They also showed how to construct tree-based generators that can be imple-
mented as finite or infinite automata to come within three bits of this lower
bound for any distribution. While this theory is elegant and theoretically
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important, it is somewhat impractical to have to worry about the individual
bits in the binary expansions of the pn’s. Noteworthy is that attempts have
been made (see, e.g., Flajolet and Saheb (1986)) to extend the pure bit model
to obtain approximate algorithms for random variables with densities.

For integer-valued random variables with P{X = n} = pn, n ≥ 0, the
inversion method is always applicable:

X ← 0
Generate U uniform [0, 1]
S ← p0 (S holds the partial sums of the pn’s)
while U > S do : X ← X + 1, S ← S + pX

return X

The expected number of steps here is E{X + 1}. Improvements are possible
by using data structures that permit one to invert more quickly. When there
are only a finite number of values, a binary search tree may help. Here the
leaves correspond to various outcomes for X, and the internal nodes are there
to guide the search by comparing U with appropriately picked thresholds. If
the cost of setting up this tree is warranted, then one could always permute
the leaves to make this into a Huffman tree for the weights pn (Huffman
(1952)), which insures that the expected time to find a leaf is not more than
one plus the binary entropy. In any case, this value does not exceed log2N ,
where N is the number of possible values X can take. The difference with
the Knuth-Yao result is that one now needs to be able to store and add real
numbers (the pn’s).

Even when taking bits at unit cost, one needs to be careful about the
computational model. For example, is one allowed to store real numbers, or
should we work with a model in which storage and computation time is also
measured in terms of bits? We feel that the information-theoretic boundaries
and lower bounds should be studied in more detail, and that results like those
of Knuth and Yao should be extended to cover non-discrete random variables
as well, if one can formulate the models correctly.

2 The assumptions and the limitations

Assume that we can indeed store and work with real numbers and that an
infinite source of independent identically distributed uniform [0, 1] random
variables, U1, U2, . . . is available at unit cost per random variable used. The
random source excepted, the computer science community has embraced the
so-called ram (random access memory) model. While it unrealistic, designing
random variate generators in this model has several advantages. First of all, it
allows one to disconnect the theory of non-uniform random variate generation
from that of uniform random variate generation, and secondly, it permits one
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to plan for the future, as more powerful computers will be developed that
permit ever better approximations of the idealistic model. The subject of
non-uniform random generation is to generate random variables with a given
distribution—we call these random variates—, in (possibly random) finite
time. We also assume that computations can be carried out with infinite
precision, and we require that the results be theoretically exact.

For a given collection of operations (a computer language), one can define
the collection of all distributions of random variables that can be generated in
finite time using these operations. Classes of achievable distributions defined
in this manner will be denoted by D. For example, if we only allow addition
and subtraction, besides the standard move, store and copy operations, then
one can only generate the sums

c+
N∑

i=1

kiUi,

where c ∈ R, and N, k1, . . . , kN are finite integers. This is hardly interesting.
An explosion occurs when one allows multiplication and division, and in-
troduces comparisons and loops as operators. The achievable class becomes
quite large. We will call it the algebraic class.

The need for non-uniform random variates in Monte Carlo simulations
prompted the post-World War II teams to seriously think about the problem.
All probabilists understand the inversion method: a random variate with
distribution function F can be obtained as

X = F inv(U),

where U is uniform [0, 1]. This inversion method is useful when the inverse
is readily computable. For example, a standard exponential random variable
(which has density e−x, x > 0), can be generated as log(1/U). Table 1 gives
some further examples.

Table 1. Table 1: Some densities with distribution functions that are explicitly
invertible. Random variates can be generated simply by appropriate transormations
of a uniform [0, 1] random variable U .

Name Density Distribution function Random variate

Exponential e−x, x > 0 1− e−x log(1/U)

Weibull (a), a > 0 axa−1e−xa

, x > 0 1− e−xa

(log(1/U))1/a

Gumbel e−xe−e−x

e−e−x

− log log(1/U)
Logistic 1

2+ex+e−x
1

1+e−x − log((1− U)/U)

Cauchy 1
π(1+x2)

1/2 + (1/π) arctanx tan(πU)

Pareto (a), a > 0 a
xa+1 , x > 1 1− 1/xa 1/U1/a
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However, note that only the Pareto distribution for values of a that are
inverses of an integer is in the algebraic class. One can attempt to create
functions of a finite number of uniforms, and in this way, one notes that the
Cauchy too is in the algebraic class. We leave it as a simple exercise to show
that the following method works. Keep generating independent random pairs
of independent uniforms, (U,U ′), until for the first time U2 + U ′2 ≤ 1 (now
(U,U ′) is uniformly distributed in the positive quarter of the unit circle).
Then set X = SU/U ′, where S ∈ {−1,+1} is a random sign. One can ask if
the normal distribution is in the algebraic class for example. In fact, a good
description of the algebraic class is sorely needed.

Assume now a much more powerful class, one that is based upon all
operations for the algebraic class, plus the standard mathematical functions,
exp, log, sin (and thus cos and tan). Call it the standard class. All inversion
method examples in Table 1 describe distributions in the standard class.

Since we did not add the inverse of the normal distribution function to
the allowed operations, it would appear at first that the normal distribu-
tion is not in the standard class. For future reference, the standard normal
density is given by exp(−x2/2)/

√
2π. This was of great concern to the early

simulationists because they knew how to calculate certain standard functions
very well, but had to make do with approximation formulas for functions like
the inverse gaussian distribution function. Such formulas became very pop-
ular, with researchers outcompeting each other for the best and the latest
approximation.

Amazingly, it was not until 1958 that Box and Müller showed the world
that the gaussian distribution was in the standard class. Until that year,
all normal simulations were done either by summing a number of uniforms
and rescaling in the hope that the central limit theorem would yield some-
thing good enough, or by using algebraic approximations of the inverse of the
gaussian distribution function, as given, e.g., in the book of Hastings (1955).

As in our Cauchy example, Box and Müller noted that one should only
look at simple transformations of k uniform [0, 1] random variates, where k
is either a small fixed integer, or a random integer with a small mean. It is
remarkable that one can obtain the normal and indeed all stable distributions
using simple transformations with k = 2. In the Box-Müller method (1958), a
pair of independent standard normal random variates is obtained by setting

(X,Y ) =
(√

log(1/U1) cos(2πU2),
√

log(1/U1) sin(2πU2)
)
.

For the computational perfectionists, we note that the random cosine can be
avoided: just generate a random point in the unit circle by rejection from the
enclosing square, and then normalize it so that it is of unit length. Its first
component is distributed as a random cosine.

There are many other examples that involve the use of a random cosine,
and for this reason, they are called polar methods. We recall that the beta
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(a, b) density is
xa−1(1− x)b−1

B(a, b)
, 0 ≤ x ≤ 1,

where B(a, b) = Γ (a)Γ (b)/Γ (a+ b). A symmetric beta (a, a) random variate
may be generated as

1
2

(
1 +

√
1− U

2
2a−1
1 cos(2πU2)

)
(Ulrich, 1984), where a ≥ 1/2. Devroye (1996) provided a recipe valid for all
a > 0:

1
2

1 +
S√

1 + 1(
U
− 1

a
1 −1

)
cos2(2πU2)

 ,

where S is a random sign. Perhaps the most striking result of this kind is due
to Bailey (1994), who showed that√

a
(
U
− 2

a
1 − 1

)
cos(2πU2)

has the Student t density (invented by William S. Gosset in 1908) with pa-
rameter a > 0:

1
√
aB(a/2, 1/2)

(
1 + x2

a

) a+1
2

, x ∈ R.

Until Bailey’s paper, only rather inconvenient rejection methods were avail-
able for Student’s t density.

There are many random variables that can be represented as ψ(U)Eα,
where ψ is a function, U is uniform [0, 1], α is a real number, and E is an
independent exponential random variable. These lead to simple algorithms
for a host of useful yet tricky distributions. A random variable Sα,β with
characteristic function

ϕ(t) = exp (−|t|α exp (−i(π/2)β(α− 21α>1) sign(t)))

is said to be stable with parameters α ∈ (0, 2] and |β| ≤ 1. Its parameter α
determines the size of its tail. Using integral representations of distribution
functions, Kanter (1975) showed that for α < 1, Sα,1 is distributed as

ψ(U)E1− 1
α ,

where

ψ(u) =
(

sin(απu)
sin(πu)

) 1
α

×
(

sin((1− α)πu)
sin(απu)

) 1−α
α

.
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For general α, β, Chambers, Mallows and Stuck (1976) showed that it suffices
to generate it as

ψ(U − 1/2)E1− 1
α ,

where

ψ(u) =
(

cos(π((α− 1)u+ αθ)/2)
cos(πu/2)

) 1
α

×
(

sin(πα(u+ θ)/2)
cos(π((α− 1)u+ αθ)/2)

)
.

Zolotarev (1959, 1966, 1981, 1986) has additional representations and a thor-
ough discussion on these families of distributions. The paper by Devroye
(1990) contains other examples with k = 3, including

Sα,0E
1
α ,

which has the so-called Linnik distribution (Linnik (1962)) with characteristic
function

ϕ(t) =
1

1 + |t|α
, 0 < α ≤ 2.

We end this section with a few questions about the size and nature of the
standard class. Let us say that a distribution is k-standard (for fixed integer
k) if it is in the standard class and there exists a generator algorithm that uses
only a fixed number k of uniforms. The standard class is thus the union of
all k-standard classes. Even more restrictive is the loopless k-standard class,
one in which looping operations are not allowed. These include distributions
for which we can write the generator in one line of code. The gaussian and
indeed all stable laws are loopless 2-standard. We do not know if the gamma
density

xa−1e−x

Γ (a)
, x > 0,

is loopless k-standard for any finite k not depending upon the gamma param-
eter a > 0. Similarly, this is also unknown for the general beta family. Luckily,
the gamma law is in the standard class, thanks to the rejection method, which
was invented by von Neumann and is discussed in the next section.

It would be a fine research project to characterize the standard class and
the (loopless) k-standard classes in several novel ways. Note in this respect
that all discrete laws with the property that pn can be computed in finite time
using standard operations are 1-standard. Note that we can in fact use the
individual bits (as many as necessary) to make all the necesary comparisons
of U with a threshold. Only a random but finite number of these bits are
needed for each variate generated. Let us define the class of distributions
with the property that only a (random) finite number of bits of U suffice
0-standard. The full use of all bits in a uniform is only needed to create an
absolutely continuous law.

Are absolutely continuous laws that are describable by standard opera-
tions k-standard for a given universal finite k?
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Finally, it seems that even the simplest singular continuous laws on the
real line are not in the standard class, but a proof of this fact would be
nice to have. Take as an example a random variable X ∈ [0, 1] whose binary
expansion has independent Bernoulli (p) bits. If p = 1/2, X is clearly uniform
on [0, 1]. But when p 6∈ {0, 1/2, 1}, thenX is singular continuous. It is difficult
to see how standard functions can be used to recreate such infinite expansions.
If this is indeed the case, then the singular continuous laws, and indeed many
fractal laws in higher dimensions, have the property that no finite amount of
resources suffices to generate even one of them exactly. Approximations on
the real line that are based on uniforms and standard functions are necessarily
atomic or absolutely continuous in nature, and thus undesirable.

3 The rejection method

The Cauchy method described above uses a trick called rejection. The rejec-
tion method in its general form is due to von Neumann (1951). Let X have
density f on Rd. Let g be another density with the property that for some
finite constant c ≥ 1, called the rejection constant,

f(x) ≤ cg(x), x ∈ Rd.

For any nonnegative integrable function h on Rd, define the body of h as
Bh = {(x, y) : x ∈ Rd, 0 ≤ y ≤ h(x)}. Note that if (X,Y ) is uniformly
distributed on Bh, then X has density proportional to h. Vice versa, if X has
density proportional to h, then (X,Uh(X)), where U is uniform [0, 1] and
independent of X, is uniformly distributed on Bh. These facts can be used
to show the validity of the rejection method:
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repeat
Generate U uniformly on [0, 1]
Generate X with density g

until Ucg(X) ≤ f(X)
return X

The expected number of iterations before halting is c, so the rejection con-
stant must be kept small. This method requires some analytic work, notably
to determine c, but one attractive feature is that we only need the ratio
f(x)/(cg(x)), and thus, cumbersome normalization constants often cancel
out.

The rejection principle also applies in the discrete setting, so a few ex-
amples follow to illustrate its use in all settings. We begin with the standard
normal density. The start is an inequality such as

e−x2/2 ≤ eα2/2−α|x|.

The area under the dominating curve is eα2/2 × 2/α, which is minimized for
α = 1. Generating a random variate with the Laplace density e−|x| can be
done either as SE, where S is a random sign, and E is exponential, or as
E1 −E2, a difference of two independent exponential random variables. The
rejection algorithm thus reads:

repeat
Generate U uniformly on [0, 1]
Generate X with with the Laplace density

until Ue1/2−|X| ≤ e−X2/2

return X

However, taking logarithms in the last condition, and noting that log(1/U)
is exponential, we can tighten the code using a random sign S, and two
independent exponentials, E1, E2:
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Generate a random sign S
repeat Generate E1, E2

until 2E2 > (E1 − 1)2

return X ← SE1

It is easy to verify that the rejection constant (the expected number of iter-
ations) is

√
2e/π ≈ 1.35.

The laws statisticians care about have one by one fallen to the rejection
method. As early as 1974, Ahrens and Dieter showed how to generate beta,
gamma, Poisson and binomial random variables efficiently. All these distri-
butions are in the standard class. However, if the density f or the probability
pn is not computable in finite time using standard functions, then the distri-
bution is not obviously in the standard class.

4 The alternating series method

To apply the rejection method, we do not really need to know the ratio
f(x)/(cg(x)) exactly. Assume that we have computable bounds ξn(x) and
ψn(x) with the property that ξn(x) ↑ f(x)/(cg(x)) and ψn(x) ↓ f(x)/(cg(x))
as n→∞. In that case, we let n increase until for the first time, either

U ≤ ξ(X)

(in which case we accept X), or

U ≥ ψn(X)

(in which case we reject X). This approach is useful when the precise com-
putation of f is impossible, e.g., when f is known as infinite series or when f
can never be computed exactly using only finitely many resources. It was first
developed for the Kolmogorov-Smirnov limit distribution in Devroye (1981a).
For another use of this idea, see Keane and O’Brien’s Bernoulli factory (1994).
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repeat
Generate U uniformly on [0, 1]
Generate X with density g
Set n = 0
repeat n← n+ 1 until U ≤ ξn(X) or U ≥ ψn(X)

until U ≤ ξn(X)
return X

The expected number of iterations in the outer loop is still c, as in the re-
jection method. However, to take the inner loop into account, let N be the
largest index n attained in the inner loop. Note that N is finite almost surely.
Also, N > t implies that U ∈ [ξt(X), ψt(X)], and thus,

E{N |X} =
∞∑

t=0

P{N > t|X} ≤
∞∑

t=0

(ψt(X)− ξt(X))

and

E{N} ≤
∞∑

t=0

E{ψt(X)− ξt(X)}.

We cannot stress strongly enough how important the alternating series
method is, as it frees us from having to compute f exactly. When ξn and
ψn are computable in finite time with standard functions, and g is in the
standard class, then f is in the standard class.

It is indeed the key to the solution of a host of difficult non-uniform ran-
dom variate generation problems. For example, since the exponential, log-
arithmic and trigonometric functions have simple Taylor series expansions,
one can approximate densities that use a finite number of these standard
functions from above and below by using only addition, multiplication and
division, and with some work, one can see that if a law is (k-)standard, then
it is (k-)algebraic. Both gamma and gaussian are algebraic if one invokes the
alternating series method using Taylor series expansions. To the program-
mer, this must seem like’ a masochistic approach—if we have the exponential
function, why should we not use it? But for the information theorist and com-
puter scientist, the model of computation matters, and lower bound theory
is perhaps easier to develop using more restricted classes.

But one can do better. Assume that a given density is Riemann integrable.
Then it can be approximated from below by histograms. It takes only a
moment to verify that such densities can be written as infinite mixtures of
uniforms on given intervals. The mixture weights define a discrete law, which
we know is 0-standard. A random variate can be written as

aZ + bZU,
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where Z is a discrete random variable, and [ai, bi], i ≥ 1, denote the inter-
vals in the mixture decomposition. So, given one uniform random variable,
first use a random number of bits from its expansion to generate Z, and then
note that the unused bits, when shifted, are again uniformly distributed. This
shows that Riemann integrable densities are 1-standard if we can compute
the density at each point using only standard functions. In particular, the
gamma and normal laws are 1-standard. This procedure can be automated,
and indeed, several so-called table methods are based on such mixture de-
compositions. See, e.g., Devroye (1986a), or Hörmann, Leydold and Derflinger
(2004).

5 Oracles

Oracles are a convenient way of approaching algorithms. Engineers call them
“black boxes”. One can imagine that one has an oracle for computing the
value of the density f at x. Armed with one or more oracles, and our infinite
source of uniforms, one can again ask for the existence of generators for
certain dustributions.

For example, given a density oracle, is there an exact finite time method
for generating a random variate with that density? Is there such a method
that is universal, i.e., that works for all densities? The answer to this question
is not known. In contrast, when given an oracle for the inverse of a distribution
function, a universal method exists, the inversion method.

Given that we do not know the answer for the density oracle, it is perhaps
futile at this point to ask for universal generators for characteristic function,
Laplace transform or other oracles. It is perhaps possible to achieve success
in the presence of two or more oracles. In the author’s 1986 book, one can
find partial success stories, such as a density oracle method for all log-concave
densities on the line, or a combined density / distribution function (not the
inverse though) moracle method for all monotone densities.

Complexity is now calculated in terms of the numbers of uniforms con-
sumed and as a function of the number of consultations of the oracle. This
should allow one to derive a number of negative results and lower bounds as
well.

6 Open questions

We discussed the need for descriptions of operator-dependent classes, and
the creation of models that can deal with singular continuity. The rejection
and alternating series methods enable us to generate random variates with
any distribution provided two conditions hold: we have an explicitly known
finite dominating measure of finite, and we can approximate the value of the
density or discrete probability locally by convergent and explicitly known
upper and lower bounds. This has been used by the author, for example,
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to deal with distributions that are given by infinite series (Devroye, 1981a,
1997, 2009), distributions specified by a characteristic function (Devroye,
1981b, 1986b), Fourier coefficients (Devroye, 1989), a sequence of moments
(Devroye, 1991), or their Laplace transforms. It should also be possible to
extend this to laws whose Mellin transforms are known, or infinitely divisible
laws that are specified in terms of Lévy or Khinchin measures (see Sato
for definitions; Bondesson (1982) offers some approximative solutions). In
all these examples, if a density exists, there are indeed inversion formulae
that suggest convergent and explicitly known upper and lower bounds of the
density.

It is hopeless to try to remove the requirement that a dominating measure
be known—a characteristic function of a singular continuous distribution is a
particularly unwieldy beast, for example. Some distributions have asymptotic
distributional limits. As an example, consider

X =
∞∑

i=0

θiξi,

where the ξi are independent Bernoulli (p), and θ ∈ (−1, 1). When p =
1/2, θ = 1/2, X is uniform [0, 1], while for p 6∈ {0, 1/2, 1}, θ = 1/2, X is
singular continuous. Using L= for distributional identity, we see that

X
L= ξ0 + θX.

It seems unlikely that the distribution of X is in the standard class for all
parameter values.

This leads to the question of determining which X, given by simple dis-
tributional identities of the form

X
L= φ(X,U)

are in the standard class. Note that the map X ← φ(X,U) defines in some
cases a Markov chain with a limit. Using cftp (coupling from the past; see
Propp and Wilson (1996), Asmussen, Glynn and Thönnes (1992), Wilson
(1998), Fill (2000), Murdoch and Green (1998)) or related methods, some
progress has been made on such distributional identities if one assumes a
particular form, such as

X
L= Uα(X + 1)

(its solutions are known as Vervaat perpetuities, Vervaat (1979). We refer
to Kendall and Thönnes (2004), Fill and Huber (2009), Devroye (2001), and
Devroye and Fawzi (2010) for worked out examples.

Identities like
X

L= AX +B
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occur in time series, random partitions, fragmentation processes, and as indi-
rect descriptions of limit laws. Solutions are in the form of general perpetuities

X
L= B0 +

∞∑
i=1

Bi

i−1∏
j=0

Aj ,

where (Ai, Bi) are i.i.d. pairs distributed as (A,B). Necessary and sufficient
conditions for the existence of solutions are known (Goldie and Maller, 2000;
see also Alsmeyer and Iksanov, 2009, for further discussion). It suffices, for
example, that

E{log |A|} ∈ (−∞, 0),E{log+ |B|} <∞.

Yet one needs to describe those perpetuities that are in the standard class,
and give algorithms for their generation.

Even more challenging are identities of the form

X
L= ψ(X,X ′, U),

where X and X ′ on the right-hand-side are independent copies of X. Such
identities do not lead to Markov chains. Instead, the repeated application of
the map ψ produces an infinite binary tree. One should explore methods of
random variate generation and constructively determine for which maps ψ,
there is a solution that is in the standard class. A timid attempt for linear
maps ψ was made by Devroye and Neininger (2002).
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Abstract. Computational statistics, supported by computing power and availabil-
ity of efficient methodology, techniques and algorithms on the statistical side and
by the perception on the need of valid data analysis and data interpretation on the
biomedical side, has invaded in a very short time many cutting edge research areas
of molecular biomedicine. Two salient cutting edge biomedical research questions
demonstrate the increasing role and decisive impact of computational statistics.
The role of well designed and well communicated simulation studies is emphasized
and computational statistics is put into the framework of the International Associ-
ation of Statistical Computing (IASC) and special issues on Computational Statis-
tics within Clinical Research launched by the journal Computational Statistics and
Data Analysis (CSDA).

Keywords: computational statistics, molecular biomedical research, simu-
lations, International Association of Statistical Computing, computational
statistics and data analysis

1 Introduction

Statistical methods have been recognized and appreciated as unalterable tool
for the progress of quantitative molecular biology and medicine (molecular
biomedicine) as they were in physics, quantitative genetics and in clinical
drug research. With the emergence of larger biomedical data sets, both in
terms sample size (n) and number of individual characteristics (p), in par-
ticular when p >> n, novel and more efficient computational methods and
data analysis approaches were needed, and valid conclusions and decision
making required the company of statistical inference and statistical theory.
Whereas from the beginning on, when molecular data appeared massively
due to high-throughput techniques, extraordinary efforts and large invest-
ments were put into the quality of biomedical data and bioinformatics, much
less was invested into the computational statistics methods for the informa-
tion extraction. That neglect left gaps in biomedical research projects when
the validity of both methods and results were questioned. Modern emerg-
ing biomedical approaches and complex models in biological, epidemiological
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and clinical studies require high quality computational and statistical sup-
port. We will address below how computational statistics, computing power,
data analysis and data interpretation invaded in a very short time many
cutting edge research areas of modern biomedicine and biomedical research.
Therefore we will elaborate from two biomedical areas a salient cutting edge
research question for which computational statistics plays now an increasing
role with a decisive impact.

A statisticians work for biomedicine - name it biostatistics or biometrics -
is defined by the biomedical problems and hypotheses as well as by the tools
he/she has at hands to solve the corresponding mathematical and statistical
problems. According to Finney (1974) it is the duty of a biostatistician “to
interpret quantitative biomedical information validly and usefully”. He also
noted that that the applied statistician should express him/herself in “terms
intelligible beyond the confines of statistics in varying degrees of collaboration
with persons being expert in the field, and stressing the fact that a “substan-
tial contribution from the statistician is essential” when citing R.A. Fisher
with “when a biologist believes there is information in an observation, it is up
to the statistician to get it out”, one of the first statisticians who heavily calcu-
lated in Rothamsted for his collaborations with agriculture and genetics. This
work has always been initiated and guided by data and required the use of
computational methods for doing the calculations right and efficiently. Com-
putational statistics has been an integral part of statistics from its beginning
when statisticians had to do calculations and needed to simplify the com-
putational work load, starting with numerical calculus using later statistical
tables, mechanical calculators and electronic calculators, called computers,
all overruled now by highly interactive computing systems which integrate
statistics software with an almost uncountable number of applets acting dur-
ing data input, data processing and data output. Victor (1984) discussed in
a highly recognized essay the role of computational statistics for statistics
and statisticians. Although he denied the attribute of a scientific discipline
because of missing own methodology and own subject for investigation, he
acknowledged the high relevance for applied statistics and its undisputable
role for knowledge generation in all sciences. For a discussion of this concept,
see e.g. Lauro (1996), also Nelder (1996), who distinguishes science from
technology and locates computational statistics nearer to latter although it
is performed by scientists. The most conciliatory definition of computational
is found in Chambers (1999) citing John Tukeys defining of computational
statistics as the “peaceful collisions of computing with statistics”.

In its growth period around 1970-1980 it became the irrevocable tool for
statistics. Exact statistical inference methods and permutations, bootstrap-
ping and interactive graphical methods were the dominant tools. The inter-
action of computational statistics with biostatistics from the view point how
it developed in Germany was summarized in Edler (2005). The technological
aspect has been emphasized in the German Region of the International Bio-
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metric Society when personal computers started to take over the main frame
computers in 1990 by Bernd Streitberg. His vision at that time was that
computational statistics has the chance to become the driving force for the
progress of statistics and, in particular for biostatistics, if it will be possible
to overcome fixation to program packages. At that time he already foresaw
the innovative power of personal computers- now notebooks - for software
development. It is fair to say that the R-project for statistical computing
has made this vision coming true. Notably, he denounced software validation
where he rather pessimistically stated that for many users and heads of insti-
tutes and companies that would not be an issue as long as all compute with
the same software, notwithstanding whether that software calculated correct
or incorrect. A second still relevant issue Streitberg indicated in 1989 was the
wish that the computer has to become the standard test for the applicability
and use of a statistical method: If a method cannot be programmed it is not
relevant; if it is not programmed its is useless. This way of thought had been
expressed already in 1981 by Jürgen Läuter who noted in the introduction
to his software development that processes of thinking, decision making and
production can be advanced by mathematics and computing techniques.

Concerning the high-dimensional molecular data all these thoughts seem
to fit well for an intelligible interpretation of the data and the reduction of
the data to their information content.

2 Screening Molecular Data for Predictors

A multitude of biomedical techniques provide high-throughput high-resolution
data on the molecular basis of diseases. Most of these DNA microarray array
data fall into one of the following categories:

• gene or expression
• allelic imbalance
• methylation imbalances.

These investigations aim at a better understanding of the underlying
mechanisms of the genesis of the disease, e.g. of a specific cancer like the
AML out of the class of leukaemia. Current biomedical knowledge postu-
lates for most diseases, in particular for cancer, as of being heterogeneous
and of different subtypes, on the clinical, histo-pathological and the molec-
ular level. Heterogeneity at the molecular level lead to the development of
prognostic and also to predictive gene signatures (also called gene expression
profiles, biomarker sets etc) from which some have already been commercial-
ized (for breast cancer see e.g., ONKOtypeDx, MammPrint, GGI) and used
in attempts to personalize cancer treatment, although there exists still con-
siderable uncertainty on the use of new molecular markers in routine clinical
decision making. The need to examine their role in patient selection and for
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stratification for future clinical trials is obvious. For a review of the situa-
tion in breast cancer therapy see Kaufmann et al (2010). Urgent biomedical
questions concern

• usefulness of currently available molecular biomarkers and biomarker
based,
• the establishment of designs and design strategies which account for clin-

ical, histo-pathological and molecular subtypes at the same time, and
• coherent collection, combination and processing of both biomedical in-

formation, being it collected prospectively or retrospectively.

The challenge for biostatistics arising from these questions is huge and
starts conceptually at a clarification of the difference between prognostic and
predictive markers (Sargent (2005)).

Biomedical research has always been targeted to develop e.g. prognostic
models which may classifiy patients in different risk groups and so called prog-
nostic marker guide therapy of groups of patients in a general way. Another
clinical target is the development of predictive models which guide treatment
and optimize therapy by guiding treatment decision in dependency of so-
called predictive factors. Next to consider is the translation of the medical
task into statistical approaches. For the prognostic models the biostatisticians
task, almost exclusively performed in collaborative projects with biologists
and clinicians is to build prediction models e.g. for classification in different
risk groups based on such molecular data. Whereas formerly the statistical in-
ferences were based on either statstical testing or on class discovery methods
e.g. cluster analyses, regression techniques are now somehow rediscovered as
the more appropriate approach to build those risk prediction models. Regu-
larization methods are now widespread to solve the so called p >> n problem
(penalized regression approaches like the Lasso or the Elastic Net, the use of
Support Vector Machines, Boosting etc.).

For the development of biomarkers as predictive factors guiding the choice
of therapy, regression type analyses are applied on the outcome variable based
on those high-dimensional predictors listed above. Efficient and non-overly
conservative adjustment for multiple testing becomes crucial when focusing
on a gene wise analysis. Multiple adjustments becomes crucial, see e.g. Dudoit
and van der Laan (2007). Simulation studies analyze sample-size determina-
tion for the identification and validation of such predictive markers. The
classical multivariable regression model works well for identifying prognos-
tic factors and with regard to predictive factors one can go back to another
classical tool, interactions between covariables.

2.1 Using the Analysis of Molecular Data for Identifying
Predictive Biomarker

When screening for predictive factors in case of a dichotomous outcome the
method of choice is conditional logistic regression. A gene wise interaction
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model has then the form

Logit(Y = 1|Xg;Z) = β0g + β1gXg + β2gZ + β3gXgZ

where Xg describes the continuous gene expression of gene g, g = 1, . . . ,M ,
and M is the number of gene expression varaiables, i.e. the number of hy-
potheses, analyzed in total Z is a binary treatment variable and Y is a binary
response variable. An interaction effect is then tested with the null hypoth-
esis H0: β3g = 0 using e.g. likelihood ratio (LR) or the Wald test. When
focusing on the multiple testing scenario for the M simultaneous hypotheses
one would prefer to control the false discovery rate (FDR) introduced by
Benjamini and Hochberg (1995) for such gene expression data as a certain
proportion of false discoveries would be accepted. Control of the FDR could
be for example obtained by linear step-up procedures such as the Benjamini-
Hochberg or Benjamini-Yekutieli method. Lately, resampling-based multiple
testing methods for FDR control have become an alternative approach see
e.g. Dudoit and van der Laan (2007).

The next challenge arises when determining a sample size for such screen-
ing methods and when complexity has barricaded an analytical solution. Only
simulations of several scenarios will help to get grip on the sample size esti-
mation which is essential for all trial partners: those investing their time and
career, those who invest resources and those who are responsible the sample
size, namely the trial statistician. Since one is forced to analyze the system
“statistical model” in detail valuable “fall outs” of the simulation approach
can be obtained, e.g. a comparison of the performance of different statistical
test procedures.

Actually there is now a problem of comparability of the results since
the implementation of methods and simulation designs are almost always
different. From a user-friendly point of view usage of available methods is
impaired by different platforms, different implementations etc. Realized as
a Harvest Programme of the PASCAL2 European Network of Excellence
a group of researchers has recently come together for a unified, extensible
interface covering a large spectrum of multiple hypothesis testing proce-
dures in R: µTOSS (multiple hypotheses testing in an open software system),
see Dickhaus et al. (2010). Intended as first step to overcome the problem
of comparability of the results µTOSS aims at unifying implementation of
methods and simulation platforms as an open source package addressing (i)
multiple tests controlling the family wise error rate (single-step and step-
wise rejection methods, resampling-based procedures), (ii) multiple adjust-
ment procedures controlling the false discovery rate (classical and adaptive
methods, Bayesian approaches as well as resampling-based techniques), (iii)
multiplicity-adjusted simultaneous confidence intervals, and (iv) simulation
platform to investigate and compare multiple adjustment methods. Features
of µTOSS (http://mutoss.r-forge.r-project.org/) are

• Open Source code implementation (using R)
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• Well-documented developer interfaces for new procedures to add-on
• Graphical user interface (GUI)
• Online user’s guide on which procedure to use according to the user

specification
• Inclusion of a large part of the known Multiple Comparison Procedure

methods
• Inclusion of tested datasets for verification and exemplary purposes
• Simulation Platform
• Ongoing maintenance

There has been an ongoing discussion in the biomedical community on
the best clinical trial design for the identification and validation of predictive
biomarkers. At this time, there are three major classes of designs proposed for
the evaluation of a biomarker-guided therapy and the assessment of biomark-
ers in clinical practice, see Sargent et al. (2005), Simon (2008), or Freidlin et
al. (2010):

1. Targeted Trial Design (or Enrichment Design)
2. Biomarker Stratified Design
3. Biomarker Strategy Design

Sample size considerations for the biomarker stratified and biomarker
strategy designs to assess the clinical utility of predictive biomarkers have
been made by Richard Simon, see http://linus.nci.nih.gov/brb/samplesize/
index1.html. Current recommendation and practice is to use the biomarker-
stratified design since it validates predictivity of a marker best (Freidlin 2010).
For the validation of predictive biomarkers one should

i. provide reproducible biomarker information
ii. test in a randomized setting before use in clinical practice
iii. apply a biomarker-stratified design.

However, it may take years until biomedicine will know whether the choice
of the design today will have been the best one. Computational statistics
should contribute to make this time span shorter.

2.2 Combining the Analysis of Molecular Data for Prognosis

The standard approach has been so far the application of a regression model
based on a n × p data matrix X representing one single source of data, e.g.
gene expression, where the sample size n range around 102 and the dimension
of the individual observation between 104 and 106. Given the availability of
multiple data sources it would be more awarding when searching for prog-
nostic and predictive factors when all available data would be used in an
integrative approach to generate one single risk prediction model based on
a combination of different sources Xa, Xb, Xc, etc. (e.g. methylation and
gene expression data). Since a solution of this problem might be either not
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feasible at all or may lead to unstable results with unsatisfying prediction per-
formance compared to single data source based prediction a strategy must
be defined on how dealing with more than one data source. In biomedicine
an integrative approach is not new at all. Since decades clinicians combined
several types of data, e.g. data from physical examinations and hematolog-
ical laboratory data. The role of the traditional hematological data can be
thought of being taken over now by the array data, moving the hematological
laboratory nearer to the traditional clinical data.

For future basic medical research it is relevant to know the added value
provided by the molecular data. Since usage of p-values is no longer an op-
tion a measure characterizing prediction accuracy should inform in particu-
lar on the performance of future patients on the treatment selection. Binder
and Schumacher (2008) used the bootstrap sampling without replacement
for efficient evaluation of prediction performance without having to set aside
data for validation. Conventional bootstrap samples, drawn with replace-
ment could be severely biased and such translate to biased prediction error
estimates, often underestimating the amount of information that can be ex-
tracted from high-dimensional data.

Combining clinical data with one high-dimensional data set (Boulesteix et
al. 2008; Benner et al. 2010 or Bovelstad et al 2007) has been quite common
since the availability of microarrays. Methods for pre-processing, dimension
reduction and multivariable analysis are available as well. It has even become
a business in advanced education when e.g. a Cold Spring Harbor Laboratory
conference on “Integrative Statistical Analysis of Genome Scale Data”, June
8 - 23, 2009 educates in a course for about 3500$ on how to combine dif-
ferent genomic data sources, e.g. to model transcriptional networks through
integration of mRNA expression, ChIP, and sequence data.

More appropriate would be a comprehensive integrative approach of risk
predictive modeling that would stepwise narrow down the list of candidate
predictors. An open question is, however, in which order to proceed with the
available data sources. Since the number of sources is small one could try all
possible orderings, however the number of predictors could differ by orders
of magnitude in this case. Another question would be whether it would be
useful to link the data sources sequentially, e.g. by using information from
the analysis of data from a first data source for modeling data from a second
source, or how to analyze them in parallel. One should also not underestimate
technical problems like model misspecification, limited number of replicates,
limited computing time or the use of asymptotical test statistics. One has to
outweigh the influence of the different factors when planning as well as when
interpreting the results, elements of research which are often missing.
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3 Outweighing Flexibility and Complexity Using
Adaptive Designs

For handling an increasing number of new anticancer compounds, clinical
drug testing is pressed by practical, economical and ethical demands for in-
creasing degree of flexibility in the design and the conduct of a clinical study.
Adaptive group sequential designs allowing e.g., sample size recalculation,
have become critical for overcoming the bottleneck of treatment options and
making drugs sooner available to patients. When using adaptive designs, the
further course of the trial depends on the data observed so far, the decision
about how to continue (effecting e.g. final sample size, selection of treatment
arms, choice of data modelling).

Bretz et al. (2009) recommended adaptive designs in confirmatory clinical
trials since “It is a difficult, if not unsolvable problem to completely foresee at
the design stage of a clinical trial the decision processes at an interim analy-
sis since other consideration than the observed efficacy results may influence
the decision”. However, when evolving scientific expert knowledge and addi-
tional unknown background information not available at the planning phase
becomes part of an adaptive design, it is essential to understand the operating
characteristics before the start of an actual trial. Full scale clinical trial simu-
lations are crucial to describe and analyse the features of such designs. Thus
the behaviour of the decision rules can only be described by constructing
“real” data for possible interesting scenarios and estimating design features,
such as e.g. type I error rate, power, average sample number, from iterated
computational simulations of the whole study course. This means there are
three major challenges for computer simulations in evaluating the features of
a specific adaptive design:

1. The potential decisions during the course of the study have to be specified
in advance as detailed as possible to simulate scenarios which depict the
closest the reality and hence will allow valid inferences.

2. Computer programs should be built in modules to allow easy implemen-
tation of different kind of adaptations. So the flexibility of the adaptive
approach will be also maintained in the implementation. Figure 1 displays
a study simulations scheme for two-stage adaptive design where design
adaptations may be executed in one interim analysis.

3. There is an infinite number of scenarios or parameter settings under which
the specific adaptive approach could be simulated. To get relevant results
for the considered clinical study situation one has to identify parameter
settings which will be probable to occur in reality (e.g. realistic accrual
rate, probable true treatment effect, possible loss to follow-up, potential
influence of nuisance covariates).

We report here experience with a simulation set up to enable an investiga-
tional randomized two arm phase II study for the rare subtype of non-clear
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cell renal cell carcinoma (ncc-RCC) when two novel molecularly targeted
agents (Sunitinib and Temsirolinus) were examined for progression-free sur-
vival (PFS) as primary endpoint. At planning of that trial there little was
known on the activity of each of the drugs in ncc-RCC patients as well as
on the achievable difference of the activity between both. A restriction of
the study were limitations in both funds and patient horizon which enforced
a sample size not largely exceeding n = 50 per arm and N = 100 in to-
tal. Further, the study time was limited to three years accrual and one year
follow-up. After about 30 patients, an interim look was foreseen with the pos-
sibility to stop for futility or unfeasibility (if the estimated necessary number
of patients could not be recruited in the remaining accrual time) and with
recalculation of the sample size for the second study stage if the trial con-
tinues. A two-stage group sequential design with type I and type II error
spending was established where the second stage was adapted for sample size
recalculation using the conditional rejection probability principle of Schäfer
and Müller (2001). Since the endpoint of interest was a right-censored failure
time, sample size recalculation for the second study stage has to account for
patients where recruited in the first stage but will still be under observation
the second. The sample size of such a failure time study is determined via the
number of events needed to achieve the overall power 1−β of the study and,
when recalculated after the 1st stage as new number of events ∆d needed to
achieve the conditional power 1 − βcond cond. For details see Wunder et al.
(2010). The study course is depicted in Figure 2.

The restricted number of patients which could be recruited, enforces to ex-
ecute simulations under conventional as well as “investigational” high type I
and type II error probabilities (α, β) ∈ {(0.5, 2), (0.1, 0.2), (0.05, 0.3), (0.1, 0.3),
(0.2, 0.3), (0.2, 0.2), (0.3, 0.3)}. The “traditional” choices for the error proba-
bilities lead to unachievable sample sizes and only when allowing for uncon-
ventionally high error rates the expected sample sizes are near 100 patients.
Interim looks are implemented after 30%, 40% and 50% of the expected total
event number to finally choose an interim analysis after approximately 30 pa-
tients. The uncertainty about the difference between treatment arms causes
the need to simulate under a wide range of true treatment effects, i.e. log
hazard ratios in {0, log(10/7), log(11/7), log(12/7), log(14/7)} to assess the
impact of true hazard ratios which differ from the clinically relevant effect of
log(11/7). This means, to cover all interesting and relevant design settings,
105 different simulation scenarios were executed.

A large scale simulation study was constructed for illustration of the de-
sign and for determining within a set of scenarios that design which meets the
desired properties of the planning agreement between principle investigator,
sponsor, funding partner and biostatistician. When interpreting simulation
results, one has also to keep in mind that simulation results may deal with dif-
ferent sources of inaccuracy. For example, when analyzing type I error rates
in adaptive survival trials there may be potential influence of misspecified
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Fig. 1. Diagram of study simulations for two-stage adaptive designs where design
adaptations may be executed in the interim analysis.



Computational Statistics Solutions for Molecular Biomedical Research 29

Fig. 2. Diagram of two-stage phase II study in ncc-RCC patients with possibility
to stop for futility after the first stage and sample size recalculation for the second
stage.

models (see e.g. Lagakos and Schoenfeld (1984)), simulation error (number
of replicates may be limited by time) or asymptotical effects in the test statis-
tics (e.g. when considering logrank or score tests, see e.g. Tsiatis et al. (1985).
Thus, one has to outweigh the influence of different factors when interpreting
simulation results.

4 Discussion

With the appearance of molecular sequence data and microarray data and
with the intrinsic problems of screening and archiving these new and mas-
sive data sets grew in biomedicine the impression that bioinformatics tools
would be the most appropriate methods to analyze these data. Data mining
and clustering methods were overestimated in their potency and computer
programs were just applied without a thorough statistical analysis of the
research problems and the properties of ad hoc generated optimization al-
gorithms. The two examples used above to illustrate the fruitful interaction
between computational statistics and molecular biomedicine is the tip of the
iceberg. There are many more examples and there are computational meth-
ods which are much more involved in those as well as in the examples above
where one may look forward for further development.

The role of biostatistics and computational statistics has been recognized
also in the bioinformatics community, see e.g. the announcement of courses
in the internet with a list of contents like: Descriptive statistics, Distribu-
tions, Study design, Hypothesis testing/interval estimation, Non-parametric
methods, Analysis of variance, Linear regression, Multiple testing, The statis-
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tical program R. As biostatistician one can be proud about the fact that the
classical disciplines of statistics are taught in bioinformatics departments but
one may also wonder why researchers untrained in statistics actually could
start to work in Bioinformatics. Of more serious concern is however, when
instructors propose the usage of normal distribution theory for analysis of
complex molecular data and define as goal: to “Handle the symbolic language
of statistics and the corresponding formalism for models based on the nor-
mal distribution”. Good is when such a course is committed to a statistical
programming language. In that “computational” respect, bioinformaticians
were from the beginning more determined and more prudent than biostatis-
ticians. As long as leading biomedical researchers confuse biostatistics with
bioinformatics, if they realize statistics at all as necessary for the analysis of
the molecular data, biostatistics and computational statistics has to articu-
late is contribution to biomedical science for better designs and for better
analyses of high-dimensional genomic data. Computational statistics meth-
ods are strongly required for exploratory data analysis and novel means of
visualizing high-dimensional genomic data as well as for quality assessment,
data pre-processing, and data visualisation methods. The R packages and the
Bioconductor project have taken a promising lead to improve the situation.
Yet, one should recognize that computational statistics being it science, tech-
nology or something special in between is still young, below age 50 when one
remembers the start in UK in December 1966 and in the USA on February
1967, and we should give it time.

Recently the journal “Computational Statistics & Data Analysis” (CSDA)
launched a second special issues on “Computational Statistics within Clinical
Research” where the call explicitly asks for submission of work for “under-
standing the pathogenesis of diseases, their treatment, the determination of
prognostic and predictive factors, and the impact of genetic information on
the design and evaluation of clinical outcomes”. Such activities at the inter-
face between biomedicine and computational statistics may add further to
bridge the gaps.

5 First Author’s epilogue

When I started my career in biostatistics at the German Cancer Research
Center three decades ago it took only a few months to realize the importance
and relevance of computational statistics for both the research work in applied
statistics and the biostatistical consulting of clients and partners coming from
all relevant biomedical fields of experimental and clinical cancer research. At
that time - just after the appearance of John Tukeys book on Explorative
Data Analysis (Tukey (1977) resources on computational statistics methods
and literature were rare.

The journal Computational Statistics & Data Analysis (CSDA) which
later became the flagship publication of the International Association of Sta-
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tistical Computing (IASC) as well as the journal “Computational Statistics
Quarterly”, now “Computational Statistics” were then just starting. How-
ever there were two easy accessible resources which imprinted my relationship
with computational statistics for ever: the receipt of the “Statistical Software
Newsletter”(SSN), founded already in 1975, with methods and algorithms at
that time hardly needed for the rising computational needs for the analysis of
clinical survival data (Edler et al. 1980), and the attendance of COMPSTAT
conferences for the exchange with the colleagues interested at the interface
between statistics and computing.

It was the 5th COMPSTAT in Toulouse in 1982 where I started to re-
port methods developed for biostatistical applications and I enjoy now how
COMPSTAT has grown and developed by 2010 and its 19th COMPSTAT
in Paris, again in France. The passage of the years has not diminished my
respect and my inclination to that forum of scientific exchange nor my pride
of having had the honor to serve IASC as officer for some time, our society
IASC which shields as member of the ISI family the COMPSTAT conference.
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Abstract. Anomalous events often lie at the roots of discoveries in science and of
actions in other domains. Familiar examples are the discovery of pulsars, the identi-
fication of the initial signs of an epidemic, and the detection of faults and fraud. In
general, they are events which are seen as so unexpected or improbable that one is
led to suspect there must be some underlying cause. However, to determine whether
such events are genuinely improbable, one needs to evaluate their probability under
normal conditions. It is all too easy to underestimate such probabilities. Using the
device of a number of ‘laws’, this paper describes how apparent coincidences should
be expected to happen by chance alone.

Keywords: anomalies, coincidences, hidden forces

1 Introduction

Coincidence is God’s way of remaining anonymous

Albert Einstein

Statistics is a dynamic discipline, evolving in response to various stim-
uli. One of these is the advent of new application domains, presenting novel
statistical challenges. A glance back at the history of the development of sta-
tistical ideas and methods shows how areas such as psychology, engineering,
medicine, and chemistry have impacted the discipline. However, once a tool
or method has been developed to tackle a problem in one application area, its
use typically spreads out to pervade other domains. We thus have a leapfrog
effect, in which statistical methods enable understanding to grow in the areas
to which they are applied, and then the challenges of these areas promote
the development of new theory and methods in statistics.

More recently, however, a second stimulus has had a dramatic impact on
statistics – an impact which can fairly be characterised as revolutionary. This
is the development of the computer. The computer has completely changed
the face of statistics, transforming it from a dry discipline, requiring substan-
tial tedious effort to undertake even relatively simple analyses, to an exciting
technology, in which the intellectual focus is on the use of high level tools for
probing structure in data. Of course, the general public has not yet caught
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up with this revolution, though I believe we can see green shoots indicative of
a beginning change in perceptions (Hand, 2009). The computer has enabled
older statistical methods, which would have taken months of painstaking ef-
fort, to be applied essentially instantaneously (though this is not without its
dangers - in the past one would have thought carefully about the appropri-
ateness of an analysis before going to the effort of undertaking it). It has
also enabled the development of entirely original methods, methods which
would not have been conceived in earlier days because the computational ef-
fort would have rendered them totally impracticable. This has driven a huge
blossoming of statistical methods.

The impact of the computer has manifested itself in several ways. One
is the fact that huge numbers of (accurate) calculations can now be under-
taken in a split second. Another is that electronic data capture technologies
mean that streaming data are increasingly prevalent (data which are obtained
in real-time, and which simply keep on coming, so that adaptive real-time
analyses are needed). A third is the ability to store, manipulate, search, and
analyse massive data sets. Here are some extreme examples which will convey
this magnitude. The credit scoring company Fair Isaac has sold around 1011

credit scores. The Large Hadron Collider will generate about 15 petabytes of
data per year (a petabyte is 1015 bytes). AT&T transfers around 16 petabytes
and Google processes around 20 petabytes of data per day. To put this in
context, the entire written works of humanity, in all languages, occupy about
50 petabytes. While most problems do not involve data sets quite as extreme
as those, the analysis of gigabytes and terabytes is increasingly common. Such
data sets arise in all applications, from the scientific to the commercial.

Vast data sets, in particular, present opportunities and challenges which
cut across application domains (though always, of course, mediated by the
particular problems and issues of the different domains) – see, for example
Hand et al, 2001; Baldi et al, 2003; Ayres, 2007; Giudici and Figini, 2007.
The opportunities include the potential for discovering structures and re-
lationships which would not be apparent in small data sets. The challenges
include housekeeping ones of efficiently manipulating and searching terabytes
of data, and perhaps even also of accessing it (for example, if it is distributed
over the web). But the challenges also include deep theoretical ones, such as
the role of significance tests when the size of the data set mean that even
very small underlying structures produce highly significant results. Just one
example of the exciting developments which have arisen from such problems
is the work on false discovery rate.

I find it useful to distinguish between two broad kinds of problems in
the analysis of very large data sets. To use data mining analogy, we might
regard these as analogous to coal mining and diamond mining. The first is the
familiar one of modelling, though flavoured by the consequences of the data
set size. The aim of modelling is to construct some kind of global summary
of a set (or subset) of data, which captures its main structures or those
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structures which are relevant to some particular purpose. This is a familiar
one for statisticians, since modern statistics is couched almost entirely in the
language of “models” (just glance at any recent statistics text or journal). In
many situations it is sufficient to work with a relatively small sample from the
entire database – provided this can be drawn in an unbiased way (selectivity
bias is often a danger when large data sets are involved). The required size
of the sample will depend on the level of detail desired in the model. This
relationship is something which merits further research.

The second broad kind of analytic problem is the detection of anoma-
lies. While particular kinds anomaly detection problem have always been of
interest (e.g., outlier detection - the first edition of Barnett and Lewis’s clas-
sic book on outliers appeared in 1978), the advent of massive data sets has
opened up new possibilities. As I have argued elsewhere (Hand and Bolton,
2004), many important discoveries are the consequence of detecting some-
thing unusual – that is, detecting a departure from what was expected or
from the received wisdom – so that this represents a considerable opportu-
nity. Examples of anomaly detection areas on which myself and my research
team have worked include large astronomical data sets, earthquake clusters,
adverse drug reactions, and fraud in credit card usage.

Unfortunately, however, anomalies in data can arise from multiple causes,
not merely because there is some previously unsuspected genuine aspect of
the phenomena under study. These include, but are not restricted to (see also
Hand and Bolton, 2004), the following:

• Ramsey theory. This is a branch of mathematics which tells us that some-
times one is certain to find particular configurations in a data set. A fa-
miliar and trivial example is that, if there are six people in a room, it is
certain that there are three who are either mutual acquaintances or who
do not know each other.
• Data quality. The problems that poor data quality bring to the search

for anomalies in large data sets are illustrated by Twyman’s law, which
states that any figure that looks interesting or different is usually wrong.
Unfortunately, poor quality data are commonplace, to the extent that if
the data appear perfect one might wonder what prior manipulation has
occurred to remove the distortions, fill in the missing values, and so on.
• Chance. Curious configurations do arise by chance, and, as the size of

the data set increases, so the opportunities for such chance occurrences
likewise increase. It is this third of these causes which is the focus of this
paper.

2 Chance and coincidence

To set the scene for how chance can provide anomalies and coincidences, here
some examples.
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Example 1: In the early 1980s, a New Jersey woman won a lottery twice
in just 4 months. The odds of any particular person winning this lottery
twice were reported as being just one in 17 trillion (that is, one in 1012).

Example 2: More recently, on 6th and 10th September 2009, the same six
numbers (4, 15, 23, 24, 35, and 42, though in different orders) were drawn
in the Bulgarian lottery.

Example 3: UK plastic cards have four digit Personal Identification Num-
bers (PINs) associated with each card. Kevin Stokes, from Lancashire in
the UK, had already changed the PIN on his Sainsbury’s card to a num-
ber he could easily remember. By coincidence, when his new Barclaycard
arrived, it had the same PIN as his Sainsbury’s card. Then, when Kevin
and his wife opened an Alliance and Leicester account, it also had the
same PIN. As if this wasn’t enough, in 2004 when Barclays sent Kevin a
new card, it also had the same PIN.

Example 4: Golfers scoring holes in one are the stuff of folklore. But how
about Joan Creswell and Margaret Williams both scoring holes in one,
one immediately after the other, at the 13th hole at the Barrow Golf Club
in 2005? And as if that wasn’t enough, in 2007 Jacqueline Cagne hit her
14th hole in one. Local sportswriter Larry Bohannan had tracked down
witnesses, and the last hole in one even occurred in front of television
cameras, so there appears to be no doubt of the truth of the claim. (There
is a downside to this: Ms Cagne says that she has spent several thousand
dollars on celebratory champagne for her fellow golfers.)

Example 5: Lightning strikes, especially two strikes in the same place, are
paradigms of coincidence. What then of the case of Major Walter Sum-
merford, who was struck by lightning in 1918. Then again in 1924, And
then again in 1930. He died in 1932 (not from a lightning strike). But
then, as if to rectify the oversight, his gravestone was struck by lightning.
And as if his case was not bad enough, Roy C. Sullivan, a park ranger
from Virginia, was struck by lightning seven times.

The anecdotes above are all examples of coincidences. The New Oxford
Dictionary of English defines a coincidence as ‘a remarkable concurrence of
events or circumstances without apparent causal connection’, and Diaconis
and Mosteller (1989) define it as a ‘surprising concurrence of events, per-
ceived as meaningfully related, with no apparent causal connection’. We see
that these definitions contain two components: (i) that the event is highly
improbable (‘remarkable’, ‘surprising’ in the above definitions); (ii) that there
is no apparent causal connection.

The improbability of the concurrence, if one assumes no causal connec-
tion, prompts one to seek such a connection. This is simply a subconscious
application of the law of likelihood, which says that evidence E supports ex-
planation H1 better than explanation H2 whenever the likelihood ratio of
H1 to H2 given E exceeds 1. So, if I obtain twenty heads in a row when
tossing a coin, I might seek an explanation which leads to a greater probabil-



The Laws of Coincidence 37

ity of getting such an outcome (e.g. the coin is double-headed; the observed
outcome would have probability equal to 1) than that the coin is fair (the
observed outcome would have probability of around 10−6). Thus one might
extend the above definitions of coincidence to: a concurrence of events which
is apparently so improbable that one suspects there might be a hidden causal
connection.

The fact that the causal connection is hidden means that one may be
unable to explain what it is – although the human brain seems to have a
remarkable ability to conjure up sensible sounding explanations (even to the
extent of managing to do so when it turns out that the observed data structure
was a consequence of some error in the data).

The suspicion or belief that there may be a hidden causal connection
leading to an anomaly or structure doubtless underlies many pre-scientific
explanations for empirical phenomena – in superstitions, religions, miracles,
Jung’s synchronicity, and so on. And note that the term ‘pre-scientific’ does
not mean that such explanations are no longer believed by many people. And,
of course, it is true that sometimes there are unobserved forces or influences
which manifest themselves without obvious mechanism – magnetism springs
to mind.

In Hand (2009) I pointed out that the notion that statistics is solely
concerned with mass phenomena – with aggregating, summarising, and de-
scribing data – is not really true. Many applications of statistics are aimed
at the individual. In a clinical trial, for example, the ultimate aim is not
really to make some general statement about the average effectiveness of a
drug, but to decide which treatment is best for each individual. Nonetheless,
and even in such applications, a first-stage modelling process is necessary, in
which one tries to construct overall summaries, which can then be combined
with data on the individual to draw some conclusion about the individual.
Such statistical modelling relies on aggregate statistical laws, such as the
law of large numbers and the central limit theorem. They are properties of
multiple observations. Likewise, the laws of statistical physics (the gas laws,
magnetism, heat, etc) are based on the aggregate behaviour of large numbers
of objects. My aim in the next section is to make a first pass at compiling
some ‘laws’ which apply at the other extreme, when we are concerned with
individual unusual events – with anomalies.

3 The Laws of coincidence

The law of total probability: One of an exhaustive set of possible events
must happen.
This law is really a tautology: by the very meaning of the word ‘exhaus-
tive’, one of the events must happen. Thus, in a 6/49 lottery, in which the
winning number is a set of six different numbers random drawn from the
integers 1 to 49, we know that one of the 13,983,816 possible sets of six
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numbers must come up. This means that, if one buys a single ticket, the
probability of winning is roughly 7×108 . It also means that if 13,983,816
individuals each buy tickets with different numbers, then one of them is
certain to win the jackpot.

The law of truly large numbers: With a large enough data set, any data
configuration is likely to occur.
Superficially, this law is straightforward: the more opportunities there are
for an event to happen, the greater is the probability that it will happen,
and this is true even if the probability that the event will happen at any
individual opportunity is very small. While you might be surprised if an
event with a one in a million probability happened to you, you would
not be surprised if such an event happened to someone, somewhere on
the planet. After all, there are around 7 billion people on the planet.
With that sort of number of opportunities, one should expect around
7000 such ‘one in a million’ events to occur. Indeed, what would be really
surprising is if no such events occurred. Such a lack of events would have
a probability of around 10−3040 .

However, where this law really begins to bite as a law of coincidence is
when one underestimates the number of opportunities. Example 2 above
illustrates this. Lottery coincidences are typically calculated based on
ignoring the fact that many lotteries are conducted around the world,
that they take place week after week, and that a huge number of people
buy lottery tickets, often more than one ticket. This means that we might
expect to observe coincidences like the Bulgarian lottery of Example 2
at some time somewhere in the world. Indeed, again, it means it would
be surprising if we did not. And, in fact, on July 9th and 11th 2007, the
sets of five numbers picked in the North Carolina Cash 5 lottery were
identical.

In some situations the underestimation is dramatic since the number
of opportunities increases in an exponential way, and this may not always
be obvious. It is this principle which underlies the counterintuitive nature
of the classic ‘birthday problem’ or ‘birthday paradox’: in a group 23
people, the probability that some pair have a birthday on the same day
is greater than 1/2. The key point here is a confusion between the number
of potential pairs each of which includes a specific individual (which is
just 22 in the case of 23 people in a room), and the total number of
potential pairs (which is 253, more than ten times as many).

The law of near enough: Events which are sufficiently similar are regarded
as identical.
The birthday problem required an exact match, which was achievable
because there is a finite number of discrete days in a year. Often, however,
nature does not partition things up so conveniently, and it is left to us
to decide on the divisions - or to decide if something is sufficiently like
another thing to be regarded as of the same type. Since, in many cases,
there is no hard and fast definition, there is plenty of scope for arbitrarily
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increasing the chance that two events will be concurrent. For example, we
might regard it as a striking coincidence if I unexpectedly and accidentally
meet my only brother in a town neither of us have visited before, but we
would regard it as less of a coincidence if I unexpectedly bump into one
of the set consisting of my several brothers, my cousins, my neighbours,
my old school mates, my work colleagues, and my sports club friends.

Coincidences arising as a combined consequence of the law of truly
large numbers and the law of near enough have been a source of enter-
taining numerology. Examples are Ramanujan’s constant, eπ

√
263, which

is equal to (2 × 100053) + 744 to within 2.9 × 10−30 , eπ − π , which is
very close to 20, and the trio of numbers 1782, 1841, and 1922 which,
with exponent 12, come perilously close to disproving Fermat’s last the-
orem. There is no limit to the number of combinations of mathematical
operators and numbers which may be searched through, and sooner or
later one will find some combination which lies within any specified ac-
curacy limits: a rational number, a ratio of two integers, can be found
which approximates any real number to any degree of accuracy that one
wishes.

The law of search: Keep seeking and you will find.
The law of truly large numbers really comes into its own when the search
space is unlimited. For example, the unlimited set of integers provide
rich grounds in which to search for coincidences: one can fit the integers
together in various ways and simply keep on increasing the size of the
integers. In 2009, on the occasion of the 175th anniversary of the founding
of the Royal Statistical Society, I noticed that 175 = 11+72+53 , but had
it been some other anniversary I am sure we could have found another
combination of the constituent integers which was striking.

The law of the lever: A slight adjustment to a distribution can dramati-
cally alter probabilities.
Much of statistical modelling, whether Bayesian or frequentist, assumes
an underlying distributional form. This might be fairly elaborate (e.g. a
mixture distribution), but it will often belong to a family of distributions.
Such distributional forms are fine for modelling, but, simply because the
data are by definition sparser in the tails, accuracy may break down there.
In particular, small changes to parameter values may have a negligible
effect on the overall shape of a distribution, but a large effect in the tails.

A very simple, and familiar, illustration of this is the effect on the tail
probability of a normal distribution when the mean is slightly shifted. For
example, compare the probability of observing a value below −5 from a
N(0, 1) distribution with the probability of observing such a value from a
N(−0.135, 1) distribution. Although the standardised difference between
the means is only 0.135, the first probability is only a half the size of the
second. To take a more extreme case, the probability of observing a value
below -10 from a N(0, 1) distribution is only a quarter of the probability
of observing so small a value if the mean is shifted by just 0.139.
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This sort of phenomenon has been held to account for breakdowns
in the financial markets, in which extreme events occur more often than
expected. For mathematical convenience, normal distributions are often
assumed to hold for various random variables, and yet empirical obser-
vation shows that the distribution tails are often fat: the probability of
extreme values is much greater than would appear to be the case under
the normal assumption. To illustrate the consequence of the difference,
the ratio of the probability of taking a value greater than 10 for the
lognormal and normal distribution is 1.40× 1021.

The law of the tortoise: All journeys take place one step at at time.
Imagine a square consisting of one million by one million smaller sub-
squares. The chance of alighting on a single specified subsquare at ran-
dom in just one attempt is simply 1012. However, if we randomly pick
some subsquare at random and then walk towards the target, one step at
a time, each step being a move to a neighbouring orthogonal subsquare,
we are certain to arrive there within two million steps. A vanishingly
small probability has become certainty. One can even relax the require-
ment that each step necessarily moves towards the target, and replace it
by a probability greater than a half that each step so moves, and one is
certain ultimately to end at the target.

Creationists often confuse the probability of producing a complex
structure in one step with the probability of producing the structure by
one incrementally step at a time. The ‘miracle of the typing monkeys’, in
which a large enough number of monkeys, randomly hitting the keys of
typewriters, eventually produce the works of Shakespeare, is of this kind.

The law of selection: Paint the target round the arrow.
The name of this law is derived from the story of the man who notices
that the side of a barn has a number of targets painted on it, each of
which has an arrow centred in the bull’s eye. Such a configuration can
be achieved in various ways. At one extreme, one can first paint the
targets on the barn, and then shoot the arrows, hitting all the bull’s
eyes, so demonstrating either superb archery skills or that an event of
extraordinarily low probability has occurred. At the other extreme, one
can shoot the arrows into the barn and then paint the targets around
them.

The latter situation is not all that uncommon and, indeed, to many,
the phrase ‘data mining’ is synonymous with this sort of activity: if one’s
initial hypothesis is not supported by the data, then trawl through the
data to find some unusual data configuration, and then devise a the-
ory which ‘explains’ that configuration. The physicist Richard Feynman
(Feynman, 1998) described such a situation in which a psychologist’s rats
did not behave as the theory predicted, but the psychologist noticed that
they alternated in turning left and right unexpectedly often. For any
experimental results, no doubt if he had searched for long enough, the
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psychologist could have found some configuration in the rats’ behaviour
which seemed non-random.

The law of selection has also been called the Jeane Dixon Effect,
after the American psychic of that name. It refers to the practice of
emphasising a few correct predictions after the fact, while ignoring the
many incorrect predictions.

And finally, a law which does not exist: Borel’s law: Events with a suf-
ficiently small probability never occur.
This ‘law’ was proposed by the eminent mathematician Émile Borel in
a popular book, originally published in 1943 (Borel, 1962). Borel is also
said to be the originator of ‘miracle of the typing monkeys’. This law is
not to be confused with Borel’s ‘law of large numbers’, which lies at the
heart of probability, or the various other discoveries named after him.
It was simply an attempt to communicate the notion of astronomically
improbable events to his lay readers. Indeed, on page 3 of Borel (1962)
he appends the above definition with the words: ‘or at least, we must act,
in all circumstances, as if they were impossible.’

Borel says that if the works of Shakespeare and Goethe comprise
about 10 million letters, the probability of producing them by random
typing is ‘equal to unity divided by a number of more than 10 million
figures’. He then goes on to say:

‘But in concluding from its extremely small probability that the
typist’s miraculous feat is impossible . . . we leave the domain of
mathematical science, and it must be recognised that the asser-
tion, which seems to us quite evident and incontestable, is not,
strictly speaking, a mathematical truth. A strictly abstract math-
ematician could even claim that the experiment need only be re-
peated a sufficient number of times, namely a number of times
represented by a number of 20 million figures, to be sure, on the
contrary, that the miracle will be produced several times in the
course of these inumerable trials. But it is not humanly possible
to imagine that the experiment can be so often repeated.’
To illustrate this, he produces some other small numbers with which

the 20 million digits can be compared. Examples (not the ones he gave)
are that the number of fundamental particles in the universe is estimated
to be around 1080 and that the age of the universe, in seconds, is a
number of around 1018. These are a far cry from a number of the order
of 1020,000,000.

With such numbers as context, he says:
‘It is then clearly absurd to imagine experiments whose number
would extend to more than a million figures; that is a purely
abstract conception, a piece of mathematical juggling of no con-
sequence, and we must trust our intuition and our common sense
which permit us to assert the absolute impossibility of the typists
miracle which we have described. . .
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. . . the single law of chance carries with it a certainty of another
nature than mathematical certainty, but that certainty is compa-
rable to one which leads us to accept the existence of an historical
character, or of a city situated at the antipodes . . . it is compa-
rable even to the certainty which we attribute to the existence of
the external world.’
Another way of looking at this is to note that there are about 30

million seconds in a year. Suppose that our typist types at a rate of ten
characters a second. Then, assuming constant typing (not stopping for
sleep, etc), about 30 documents of the size of Shakespeare’s complete
works could be produced each year. To repeat the exercise 1020,000,000

times would require around 1019,999,980 times the length of the history
of the universe (roughly speaking!). It seems perfectly reasonable, when
one compares that length of time with the length of a human lifespan, to
regard such events as impossible.

Borel’s law then, while false within the abstract world of the pure
mathematician, can only sensibly be regarded as true in anything re-
motely approaching a real world.

4 Conclusion

Borel’s law, saying that events of absurdly small probability are impossible,
implies that events which we actually observe – the coincidence examples in
Section 2, for example – cannot be events of absurdly small probability. The
laws of coincidence in Section 3 show how the probabilities associated with
such events are in fact not absurdly small.

Familiar statistical theory is based on the aggregate behaviour of groups
of objects, each behaving according to the laws of probability. These laws
combine to produce overall laws for the aggregations, such as the laws of large
numbers. However, anomalous behaviour, and in particular coincidences, can
also often be explained in terms of certain laws based on basic probability.
These laws may well remove the (natural, subconscious?) need to find a reason
for apparent coincidences – no reason may be necessary, but just a proper
calculation of the probabilities involved.

Principles similar to those outlined above also apply elsewhere to low
probability events. A familiar one arises in screening for small subsets of a
population (e.g. rare diseases, credit card fraud, terrorists, etc). A screening
instrument which correctly identifies 99% of the rare class and also correctly
identifies 99% of the majority class, when applied to a situation in which the
rare class comprises just one in a million of the population, will be incorrect
for about 99.99% of those it predicts belong to the rare class.

It follows that if unusual or unexpected events are to be used as indicators
of possible unsuspected relationships, then the first step is to examine the
events in the light of the ‘laws’ above. Having decided that the occurrence
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really is a very low probability event, under the standard assumptions, only
then it is worthwhile seeking alternative explanations.
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Abstract. Approximate Bayesian Computation encompasses a family of likelihood-
free algorithms for performing Bayesian inference in models defined in terms of a
generating mechanism. The different algorithms rely on simulations of some sum-
mary statistics under the generative model and a rejection criterion that determines
if a simulation is rejected or not. In this paper, I incorporate Approximate Bayesian
Computation into a local Bayesian regression framework. Using an empirical Bayes
approach, we provide a simple criterion for 1) choosing the threshold above which
a simulation should be rejected, 2) choosing the subset of informative summary
statistics, and 3) choosing if a summary statistic should be log-transformed or not.

Keywords: approximate Bayesian computation, evidence approximation, em-
pirical Bayes, Bayesian local regression

1 Introduction

Approximate Bayesian Computation (ABC) encompasses a family of like-
lihood free algorithms for performing Bayesian inference (Beaumont et al.
(2002), Marjoram et al. (2003)). It originated in population genetics for mak-
ing inference in coalescent models (Pritchard et al. (1999)). Compared to
MCMC algorithms that aim at providing a sample from the full posterior
distribution p(φ|D), where φ denotes a possibly multi-dimensional param-
eter and D denotes the data, ABC targets a partial posterior distribution
p(φ|S) where S denotes a p-dimensional summary statistic S = (S1, . . . , Sp)
typically of lower dimension than the data D. Despite of this approximation
inherent to ABC, its ease of implementation have fostered ABC applications
in population genetics and evolutionary biology.

1.1 Rejection algorithm

To generate a sample from p(φ|S), the original ABC rejection algorithm is
indeed remarkably simple (Pritchard et al. (1999)):

1. Generate a parameter φ according to the prior distribution π;

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 4, c© Springer-Verlag Berlin Heidelberg 2010
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2. Simulate data D′ according to the model p(D′|φ);
3. Compute the summary statistic S′ from D′ and accept the simulation if
d(S, S′) < δ where d is a distance between the two summary statistics
and δ > 0 is a threshold parameter.

It is the user’s task to choose a threshold δ. Rather than choosing explicitly
a threshold value δ, Beaumont et al. (2002) rather set the percentage of
accepted simulations, the acceptance rate pδ, to a given value. For a total
of n simulations, it amounts to setting δ to the pδ-percent quantile of the
distances d(Si, S), i = 1 . . . n. In the following, we choose d(S, S′) = ||S−S′||
where || · − · || denotes the Euclidean distance, and we consider that each
summary statistic has been rescaled by a robust estimate of its dispersion
(the median absolute deviation).

1.2 Regression adjustment

To weaken the effect of the discrepancy between the observed summary statis-
tic and the accepted ones, Beaumont et al. (2002) proposed two innovations:
weighting and regression adjustment. The weighting is a generalization of the
acceptance-rejection algorithm in which each simulation is assigned a weight
Wi = Kδ(||S − Si||) ∝ K(||S − Si||/δ) where K is a smoothing kernel. Beau-
mont et al. (2002) considered an Epanechnikov kernel so that simulations
with ||S − S′|| > δ are discarded as in the rejection algorithm.

The regression adjustment step involves a local-linear regression in which
the least-squares criterion

n∑
i=1

{φi − (β0 + (Si − S)Tβ1)}Wi, β0 ∈ R, β1 ∈ Rp, (1)

is minimized. The least-squares estimate is given by

β̂LS = (β̂0
LS, β̂

1
LS) = (XTWδX)−1XTWδφ, (2)

where Wδ is a diagonal matrix in which the ith element is Wi, and

X =

1 s11 − s1 · · · s
p
1 − sp

... · · ·
. . .

...
1 s1n − s1 · · · sp

n − sp

 , φ =

 φ1

...
φn

 . (3)

To form an approximate sample from p(φ|S), Beaumont et al. (2002)
computed φ∗i = β̂0

LS + εi, where the εi’s denote the empirical residuals of
the regression. This translates into the following equation for the regression
adjustment

φ∗i = φi − (Si − S)T β̂1
LS. (4)

To give an intuition about the benefit arising from the regression adjust-
ment, look at the first and second weighted moments of the φ∗i . The first
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moment of the φ∗i is equal to the local linear estimate β̂0 and therefore pro-
vides an estimate of the posterior mean. Compared to the weighted mean of
the φi’s obtained with the rejection algorithm (the Nadaraya-Watson esti-
mate in the statistics literature), β̂0 is design adaptive, i.e. its bias does not
depend on the design p(S) (Fan 1992). The second moment of the φ∗i is equal
to the second moment of the empirical residuals εi which is inferior to the
total variance of the φi’s. A shrinkage towards β̂0 is therefore involved by
regression adjustment.

1.3 Potential pitfalls of ABC

Assume that we observe a sample of size N = 50 in which each individual
is a Gaussian random variable of mean µ and variance σ2. We are interested
here in the estimation of the variance parameter σ2. We assume the following
hierarchical prior for µ and σ2 (Gelman et al. (2004))

σ2 ∼ Invχ2(d.f. = 1) (5)
µ ∼ N (0, σ2), (6)

where Invχ2(d.f. = ν) denotes the inverse chi-square distribution with ν
degrees of freedom, andN denotes the Gaussian distribution. We consider the
the empirical mean and variance as the summary statistics. The data consists
of the empirical mean and variance of the petal length for the viriginica
species in the iris data.

Fig. 1. Rejection algorithm for estimating σ2 in a Gaussian model. In the left panel,
the empirical variance is the single summary statistic in the rejection algorithm
whereas in the right panel, we considered the five summary statistics. The horizontal
line represents the observed empirical variance s2N = 1.144.
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1.4 Outline of the paper

In this paper, I will provide a criterion for 1) choosing a set of informative
summary statistics among the p summary statistics (S1, . . . , Sp), 2) choos-
ing an acceptance rate pδ, and 3) choosing if a summary statistic should be
transformed or not. Here I will consider only log transformation but square
root or inverse transformations could also be considered. The first section
presents how to compute the (p + 1)-dimensional parameter β of the local
linear regression in a Bayesian fashion. In the context of Bayesian local regres-
sion, we define the evidence function that will provide us a rationale criterion
for addressing questions 1-3. The second section presents two examples in
which we show that the evidence function provides reasonable choices for pδ,
for the selection of the summary statistics, and for the choice of the scale
(logarithmic or not) of the summary statistics.

2 Regression adjustment in a Bayesian fashion

2.1 Local Bayesian regression

Carrying out locally-linear regression in a Bayesian fashion has been studied
by Hjort (2003). The linear regression model can be written as φi = β0+(Si−
S)Tβ1+ε. The points (Si, φi) are weighted by the Wi = Kδ(||Si−S||)/Kδ(0).
By contrast to the least-squares estimate, Bayesian local regression is not
invariant to rescaling of the Wi’s. Here, a weight of 1 is given to a simulation
for which Si matches exactly S and the weights decrease from 1 to 0 as the
||Si − S||’s move from 0 to δ.

Here we assume a zero-mean isotropic Gaussian prior such that β =
(β0, β1) ∼ N (0, α−1Ip+1), where α is the precision parameter, and Id is
the identity matrix of dimension d. The distribution of the residuals is as-
sumed to be a zero mean Gaussian distribution with variance parameter σ2.
With standard algebra, we find the posterior distribution of the regression
coefficients β (Bishop (2006))

β ∼ N (βMAP, V ), (7)

where

βMAP = σ−2V XTWδφ (8)
V −1 = (αIp+1 + σ−2XTWδX). (9)

Bayesian regression adjustment in ABC can be performed with the linear
adjustment of equation (4) by replacing β1

LS with β1
MAP. By definition of the

posterior distribution, we find that βMAP minimizes the regularized least-
squares problem considered in ridge regression (Hoerl and Kennard (1970))

E(β) =
1

2σ2

n∑
i=1

(φi − (Si − S)Tβ)2Wi +
α

2
βTβ. (10)



Choosing the Summary Statistics in ABC 51

As seen from equation (10), Bayesian linear regression shrinks the regression
coefficients towards 0 by imposing a penalty on their sizes. The appropri-
ate value for σ2, α, and pδ, required for the computation of βMAP, will be
determined through the evidence approximation discussed below.

2.2 The evidence approximation

A complete Bayesian treatment of the regression would require to integrate
the hyperparameters over some hyperpriors. Here we adopt a different ap-
proach in which we determine the value of the hyperparameters, by maximiz-
ing the marginal likelihood. The marginal likelihood p(φ|σ2, α, pδ), called the
evidence function in the machine learning literature (MacKay (1992), Bishop
(2006)), is obtained by integrating the likelihood over the the regression pa-
rameters β

p(φ|σ2, α, pδ) =
∫ (

Πn
i=1p(φi|β, σ2)Wi

)
p(β|α) dβ. (11)

Finding the value of the hyperparameters by maximizing the evidence is
known as empirical Bayes in the statistics literature (Gelman et al. (2004)).
Here, we do not give the details of the computation of the evidence and refer
the reader to Bishop (2006). The log of the evidence is given by

log p(φ|σ2, α, pδ) = p+1
2 logα− NW

2 log σ2 − E(βMAP)− 1
2 log |V −1| − NW

2 log 2π,
(12)

where NW =
∑
Wi. By maximizing the log of the evidence with respect to

α, we find that
α =

γ

βT
MAPβMAP

, (13)

where γ is the effective number of parameters (of summary statistics here)

γ = (p+ 1)− αTr(V ). (14)

Similarly, setting δ log p(φ|σ2, α, pδ)/δσ2 = 0 gives

σ2 =
∑n

i=1(φi − (Si − S)Tβ)2Wi

NW − γ
. (15)

Equations (13) and (15) are implicit solutions for the hyperparameters since
βMAP, V , and γ depend on α and σ2. For maximizing the log-evidence, we
first update βMAP and V with equations (8) and (9), then we update γ using
equation (14), and finally update α and σ2 with equations (13) and (15).
This updating scheme is applied in an iterative manner and stopped when
the difference between two successive iterations is small enough. Plugging
the values of these estimates for α and σ2 into equation (12), we obtain the
log-evidence for the acceptance rate log p(φ|pδ).
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Fig. 2. Log of the evidence as a function of the acceptance rate for the generative
model of equation (16). A total of 1, 000 simulation is performed and the optimal
acceptance rate is found for pδ = 37.

3 The evidence function as an omnibus criterion

3.1 Choosing the acceptance rate

To show that the evidence function provide a good choice for the tolerance
rate, we introduce the following toy example. We denote φ, the parameter of
interest and S the data which is equal here to the summary statistic. The
generative model can be described as

φ ∼ U−c,c c ∈ R,

S ∼ N
(

eφ

1 + eφ
, σ2 = (.05)2

)
, (16)

where Ua,b denotes the uniform distribution between a and b. We assume
that the observed data is S = 0.5. For c = 5, Figure 2 displays that the
evidence function has a maximum around pδ = 37%. As seen in Figure 3,
this value of pδ corresponds to a large enough neighborhood around S = 0.5
in which the relationship between S and φ is linear. For increasing values of
c in equation (16), the width of the neighborhood-around S = 0.5-in which
the linear approximation holds, decreases. Figure 3 shows that the evidence
function does a good job at selecting neighborhoods of decreasing widths in
which the relationship between S and φ is linear.

3.2 Choosing the summary statistics

The evidence function can be used to choose a subset of predictor variables in
a regression setting. For example, Bishop (2006) used the evidence to select
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Fig. 3. Plot of the accepted points in the rejection algorithm for four different values
of the parameter c. In the four plots, the acceptance rate is chosen by maximizing
the evidence function p(φ|pδ).

the order of the polynomial in a polynomial regression. Here we show that
the evidence function provides a criterion for choosing the set of informative
summary statistics in ABC.

Plugging the optimal value for pδ in equation (12), we obtain the evi-
dence as a function of the set of summary statistics p(φ|(S1, . . . , Sp)). To
find an optimal subset of summary statistics, we use a standard stepwise
approach. We first include the summary statistic Sj1 (j1 ∈ {1, . . . , p}) that
gives the largest value of the evidence p(φ|Sj1). We then evaluate the evi-
dence p(φ|(Sj1 , Sj2)) (j2 ∈ {1, . . . , p}) and include a second summary statis-
tics if maxj2 p(φ|(Sj1 , Sj2)) > p(φ|Sj1). If a second summary statistics is
not included in the optimal subset, the algorithm is stopped. Otherwise, the
process is repeated until an optimal subset has been found.

To check the validity of the algorithm, we apply this stepwise procedure to
the Gaussian model of Section 1.3 in which there are five different summary
statistics. To estimate the posterior distribution of σ2, we apply the linear
correction adjustment of equation (4) to log σ2 and then use the exponen-
tial function to return to the original scale. This transformation guarantees
that the corrected values will be positive. For each test replicate, we perform
n = 10, 000 simulations of the generative model of Section 1.3 and select an
optimal subset of summary statistics with the stepwise procedure. Perform-
ing a total of one hundred test replicates, we find that the stepwise procedure
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always chooses the subset of summary statistics containing the empirical vari-
ance only. Figure 4 displays summaries of the posterior distribution obtained
with ABC using five summary statistics or with the empirical variance only.
As already suggested by Figure 1, the posterior distribution of σ2 obtained
with the five summary statistics is extremely different from the exact poste-
rior distribution (a scaled inverse chi-square distribution, see Gelman et al.
(2004)). By contrast, when considering only the empirical variance, we find
a good agreement between the true and the estimated posterior.

1 5 1 5 1 5

Number of summary statistics

σσ2

0.
1

1.
0

10
.0

50
.0

2.5% quantile
of the posterior

50% quantile
of the posterior

97.5% quantile
of the posterior

Fig. 4. Boxplots of the 2.5%, 50%, and 97.5% estimated quantiles of the posterior
distribution for σ2. ABC with one summary statistics has been performed with the
empirical variance only. A total of 100 runs of ABC has been performed, each of
which consisting of n = 10, 000 simulations.

3.3 Choosing the scale of the summary statistics

Here we show that changing the scale of the summary statistics can have a
dramatic effect in ABC. We perform a second experiment in which we re-
place the empirical variance by the log of the empirical variance in the set
of five summary statistics. Performing a total of one hundred test replicates,
we find that the stepwise procedure always chooses the subset containing the
log of the empirical variance only. However, by contrast to the previous ex-
periment, we find that the posterior distribution of σ2 obtained with the five
summary statistics is in good agreement with the exact posterior distribution
(see Figure 5). As usual for regression model, this simple experiment shows
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that better regression models can be obtained with a good transformation of
the predictor variables.

1 5 1 5 1 5

1.
05
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1.
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Number of summary statistics

σσ2

2.5% quantile
of the posterior
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of the posterior
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of the posterior

Fig. 5. Boxplots of the 2.5%, 50%, and 97.5% estimated quantiles of the posterior
distribution for σ2. In the ABC algorithms the empirical variance has been log-
transformed.

We test here if the evidence function is able to find a good scale for the
summary statistics. In one hundred test experiment, we compare p(log σ2|s2N )
to p(log σ2| log(s2N )). We find that the evidence function always selects log(s2N )
showing that a good scale for the summary statistics can be found with the
evidence function.

3.4 Using the evidence without regression adjustment

If the standard rejection algorithm of Section 1.1 is considered without any
regression adjustment, it is also possible to use the evidence function. The
local Bayesian framework is now φi = β0 + ε in which each points (Si, φi) is
weighted by Wi = Kδ(||Si − S||)/Kδ(0). Assuming that the prior for β0 is
N (0, α), we find for the evidence function

log p(φ|σ2, α, pδ) = 1
2 logα− NW

2 log σ2 − E(β0,MAP)− 1
2 log |α+ σ−2NW | − NW

2 log 2π,
(17)
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where

β0,MAP =
σ−2

α+ σ−2NW

n∑
i=1

Wiφi (18)

E(β0) =
1

2σ2

n∑
i=1

Wi(φi − β0)2 +
α

2
β0

2. (19)
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Abstract. Multi-scale agent-based models such as hybrid cellular automata and
cellular Potts models are now being used to study mechanisms involved in cancer
formation and progression, including cell proliferation, differentiation, migration,
invasion and cell signaling. Due to their complexity, statistical inference for such
models is a challenge. Here we show how approximate Bayesian computation can be
exploited to provide a useful tool for inferring posterior distributions. We illustrate
our approach in the context of a cellular Potts model for a human colon crypt, and
show how molecular markers can be used to infer aspects of stem cell dynamics in
the crypt.

Keywords: ABC, cellular Potts model, colon crypt dynamics, stem cell mod-
eling

1 Introduction

1.1 Agent-based modeling in cancer research

In recent years, cancer research has become a multi-disciplinary field. As
well as biological and medical advances, mathematical and computational
modeling and advanced statistical techniques have been employed to deal
with the ever-increasing amount of data generated by experimental labs.

Recently, the concept of mathematical oncology has taken shape as an
emerging field that integrates cancer biology with computational modeling,
statistics and data analysis (Anderson and Quaranta (2008)). However, the
use of mathematical modeling in cancer research is not completely new; since
the 1960s population growth models have been developed to explain the
growth kinetics of tumors (cf. Laird (1964), Burton (1966)).

Despite the importance of these models in explaining the basic growth
dynamics of solid malignancies, they often fail to represent the intricate un-
derlying mechanisms involved in the disease. Cancer is in fact driven by
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a large number of complex interactions spanning multiple space and time
scales. All these interactions among molecules, such as transcription promot-
ers and repressors, and among cells, such as cell-to-cell signaling, give rise to
several emergent behaviors of tumors, most importantly tissue invasion and
metastasis (Hanahan and Weinberg (2000)).

In this scenario, multi-scale agent-based models become necessary to study
many of the mechanisms involved in cancer formation and progression. In par-
ticular, hybrid cellular automata models (Anderson et al. (2006), Sottoriva
et al. (2010a)) and cellular Potts models (Jiang et al. (2005), Sottoriva et al.
(2010b)) have proved suitable to model cancer cell proliferation, differentia-
tion, migration, invasion and cell signaling. These models aims to represent
cancer as an evolutionary process (Merlo et al. (2006)) with emergent be-
haviour that results from the interplay of several underlying mechanisms at
the cellular and extra-cellular level.

1.2 Coupling biological data and models with ABC

Approximate Bayesian Computation (ABC) provides a valuable tool to infer
posterior distributions of parameters from biological data when using stochas-
tic models for which likelihoods are infeasible to calculate. Agent-based mod-
els are able to incorporate many of the processes occurring in cancer, most
of which show non-linear behavior and are therefore impossible to treat an-
alytically. The integration of ABC and agent-based models therefore seems
natural, yet there are some important issues to discuss.

In the past ABC has been extensively and successfully employed with
population genetics models (Beaumont et al. (2002), Marjoram and Tavaré
(2006)). In such applications the models are often relatively simple because
they aim to simulate a few crucial underlying processes. In contrast, in some
cancer modeling scenarios the models are complex and computationally ex-
pensive; even with large computational resources simulating the model mil-
lions of times is infeasible. In this paper we discuss how to make use of ABC
with complex agent-based models by exploiting parallelization and by reduc-
ing the complexity of the ABC algorithms to the minimum. We illustrate our
approach using the human colon crypt as an example.

2 Material and methods

2.1 Methylation data

To study the evolutionary dynamics of a human colon crypt we first need
to collect data that contain information about the basic processes occurring
in it, such as proliferation, differentiation and migration of cells. Neutral
methylation patterns have proved to be suitable candidates to be used as
molecular clocks of the cells in the crypt (Yatabe et al. (2001)). By using a
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population genetics model combined with Markov chain Monte Carlo, Nicolas
et al. (2007) showed that it is possible to infer the parameters regulating some
of the mechanisms occurring in the human colon crypt.

Nicolas et al. (2007) collected methylation patterns from a total of 57
colon crypts from 7 male patients aged between 40 and 87 years. The dataset
is divided into two subgroups: the first contains 8 cells sampled from each
of 37 crypts obtained from 5 distinct individuals, the second has 24 cells
sampled from each of 20 crypts taken from 3 individuals; one individual is
common to both subsets. Each sampled pattern is 9 CpGs long and has
been sequenced from a 77 bp locus upstream of the BGN gene on the X
chromosome. Because BGN is not expressed in neoplastic or normal colon
tissue (Yatabe et al. (2001)) we consider it an epigenetically neutral locus.

2.2 Modeling the colon crypt

Colorectal cancer is one of the most common cancers in humans and it is
known to originate from cells in a colon crypt, the units responsible for re-
newing the colon lining (Barker et al. (2009)). These tubular structures form
the colon epithelium and continuously generate new cells that repopulate the
fast-renewing colon tissue. At the base of the colon crypt there are stem cells
that generate a compartment of transient amplifying cells that in turn give
rise to the fully differentiated colon cells. These cells migrate to the top of the
crypt and become part the colon epithelial tissue before being shed into the
colon lumen (Figure 1). Colorectal cancer is triggered by the disruption of
some of the most important pathways that regulate crypt homeostasis, such
as Wnt and APC (Barker et al. (2009), Reya and Clevers (2005)).

Despite the crucial role played by colon crypts in colorectal carcinogen-
esis, several mechanisms and parameters of crypt dynamics are unknown,
including the number of stem cells present in the crypt, the number of tran-
sient amplifying stages and the rate of symmetrical division of stem cells in
the crypt (Potten et al. (2009)).

Here we present a newly developed model that simulates cell proliferation,
differentiation, migration in the colon crypt. In addition to these processes
our model, which we call the VirtualCrypt, simulates the occurrence of methy-
lation mutations at each cell division. To model the colon crypt, we unfold
the crypt and represent it as a two-dimensional sheet of cells with periodic
boundary conditions on the sides and fixed at the bottom (Figure 2A). Cells
that exit the top of the lattice are shed into the colon lumen and are therefore
deleted from the simulation.

The VirtualCrypt is a Cellular Potts Model that models the colon crypt
as a two-dimensional lattice Ω with N ×M sites. Each biological cell in the
crypt has a unique identifier or spin σ, and adjacent lattice sites with the
same spin define a single cell volume Vσ and its shape (Glazier and Graner
(1993)). Each cell has also a type τ(σ) that identifies a cell as a stem cell, a
transient amplifying (TA) cell or a differentiated cell (DC).
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Fig. 1. Cartoon of a colon crypt. DC, differentiated cell; TAC, transient amplifying
cell. Stem cells at the bottom of the crypt spawn all the other crypt cells that
differentiate and migrate towards the top of the crypt to form the colon lining.

The evolution of the system is modeled using a thermodynamical ap-
proach borrowed from statistical mechanics in which all the components of
the system seek the point of lowest energy. In other words, at each step we
propose a large number of random variations to the system and we are more
likely to accept those which are more advantageous, in terms of energy, for
the cells. For example a cell will seek to expand to maintain its original vol-
ume when it is compressed, or it will tend to migrate along a chemotactic
gradient if it is attracted by it.

In summary, we can describe the total energy of the system with a simple
Hamiltonian:

H = Ev + Ea + Ec, (1)

where Ev is the volume elastic energy, Ea is the cell membrane contact energy
and Ec is the chemotactic energy. These values represent the energy cost of
a certain cell state. The Volume Elastic Energy Ev is defined by

Ev =
∑

σ

λτ(σ)|Vσ − VT |, (2)
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Fig. 2. The cellular Potts model. Panel A: stem cells are dark shade, transient
amplifying cells intermediate shade, differentiated cells are white. Panel B: Methy-
lation patterns in the cells in the crypt. Different shades correspond to different
alleles in the BGN locus.

In the absence of external forces the cell volume Vσ is equal to its target
volume VT and therefore the cell elastic energy Ev = 0. When a cell is
compressed or stretched its elastic energy increases proportionally to the
change in volume and its elastic coefficient λτ(σ), which depends on the cell
type. The Cell Adhesion Energy Ea is given by

Ea =
∑

(i,j),(i′,j′) neighbours

J(τ(σi,j), τ(σi′,j′))(1− δσi,jσi′,j′ ) (3)

A certain energy cost or credit J(τ1, τ2) is associated with each contact
point between cells, in a cell type dependent manner. The δ term in (3)
ensures that only contact points between two different cells are considered
and not points within the same cell. In this way we can simulate cell adhesion
to neighboring cells or to other surfaces in an elegant and straightforward
manner. The Chemotactic and Haptotactic Energy is given by

Ec =
∑
(i,j)

ντ(σi,j) C(i, j) (4)

The chemotactic or haptotactic response of cells to underlying concentra-
tion gradients is modeled by assuming that the energy cost of a certain cell
state depends on the cell taxis coefficient ν and on the underlying chemical or
extracellular matrix concentration C(i, j). The higher the gradient and the
migration coefficient, the less it would cost in terms of energy for the cell to
migrate rather than stay still.

To evolve the system, at each time step τ we propose and eventually
accept a certain number of random local changes in a Monte Carlo fash-
ion, proceeding according to the following Metropolis algorithm (Beichl and
Sullivan (2000)):
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1. Compute system energy H
2. Pick a random lattice site (i, j)
3. Set the content σ of (i, j) to that of its neighbor (i′, j′), chosen at random
4. Calculate the new energy ∆H = Hnew −H
5. If ∆H < 0 accept the new state because the total energy is lower
6. If ∆H ≥ 0 accept the new state with probability p = exp(−∆H/(κT )),

where κ is the Boltzmann constant and T is the temperature of the system
7. If the cell is growing, increase the target volume to VT = VT + δV
8. If Vσ > 2VT the cell divides (Vσ automatically tends to VT , for energetic

reasons)
9. Go to 1

In addition to the mechanisms handled by the cellular Potts algorithm,
at each cell division we simulate the occurrence of methylation mutations
with a rate µ (see Table 1). Each of the 9 CpG sites forming the methylation
pattern we collected in the data has a probability µ of being methylated or
demethylated at each cell division. If no methylation error occurs, the original
methylation pattern is carried into the daughter cell from the mother.

2.3 Inferring colon crypt dynamics with ABC

With our cellular Potts model we are able to simulate the evolution of methy-
lation patterns for long periods of time, up to the age of the patient from
which the data have been collected. The two main parameters we are in-
terested in inferring about the colon crypt are the number of stem cells N
present in the bottom of it and their symmetrical division rate ρ. The rest of
the parameters are assumed to be fixed and are reported in Table 1.

Parameter Symbol Value

TACs and DCs migration speed ν 1000 (1 cell position per day)
Cell cycle time tc 24h (Potten and Loeffler (1990))
Methylation rate µ 2× 10−5 (Yatabe et al. (2001))
Methylation pattern length γ 9 CpGs (Nicolas et al. (2007))

Table 1. Fixed parameters in the VirtualCrypt simulations.

To fit the two parameters to our methylation data we use Approximate
Bayesian Computation. The prior distributions are taken to be uniform, with

N ∼ U(2, 30), ρ ∼ U(0, 1).

Initially all cells in the crypts are assumed to be unmethylated (Yatabe et
al. (2001)). To compare the multi-dimensional data from the simulations and
the patients we define a summary measure S(·) by

S(d, p, w, u, g) =
√
d2 + p2 + w2 + u2 + g2, (5)
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where d is the number of distinct patterns, p number of polymorphic sites,
w the average pairwise distance between the patterns, u the number of com-
pletely unmethylated patterns and g the number of singletons (patterns that
appear only once in a crypt). We note that these statistics are normalized
to have common range before use. The ABC algorithm that we applied is as
follows:

1. Sample a parameter set θ from the prior
2. Sample a random seed r for the simulation
3. Run the model until the correct patient age is reached
4. Repeat from step 2. until the number of simulated crypts is the same as

in the data
5. Compute the average summary statistics X = (d, p, w, u, g) of the ob-

served data, averaged over all crypts
6. Compute the average summary statistics X ′ = (d′, p′, w′, u′, g′) from the

simulated crypts
7. If |S(X)−S(X ′)| < ε accept θ as a sample from the posterior distribution
8. Go to 1

This simple ABC approach allows for heavy parallelization due to the inde-
pendence of the simulations and the accept/reject step that can be performed
a posteriori, together with other signal extraction techniques.

3 Results

We generated a total of 80,000 single colon crypt simulations, grouped in
sets of 16 having the same parameter set but different random seeds (5000
different parameter sets in all). This allows us to compare the simulations
with the data by reproducing the sampling performed on the patients, where
up to 14 crypts were analyzed from a single patient. We are assuming crypts
from a single patient have similar parameters. The posterior distributions
obtained from each patient are plotted together in Figure 3.

Due to the heterogeneity of the methylation patterns present in the crypt,
our study suggests a relatively high number of stem cells (Figure 3A). These
findings confirm the results previously reported by our group using a popu-
lation genetics model on the same dataset (Nicolas et al. (2007)).

Therefore, in contrast to the common assumption of a colon crypt driven
by a small number of stem cells, our model indicates a crypt controlled by
quite a large number of stem cells that are responsible for generating the
heterogeneous methylation patterns that we observed. Our model indicates
that the homeostasis in the crypt is rather more complex than expected, in
the sense that it involves a significant number of stem cells, likely between
18 and 25.

Regarding the symmetrical division rate, our study is in agreement with
the common assumption that symmetrical division is a relatively rare event,
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Fig. 3. Posterior histograms of the number of stem cells N and the symmetrical
division rate ρ.

with a probability per cell division of ρ << 1. Our results suggest a value
smaller than 0.02 (Figure 3B). Hence, crypt homeostasis appears to be driven
by a population of stem cells at the bottom of the crypt that most of the time
divide asymmetrically, but occasionally undergo symmetrical division, either
for self-renewal or differentiation, about once in every 400 cell divisions.

4 Discussion

The role of the colon crypt as an initiator of colorectal carcinogenesis makes
it a very important and interesting biological system to study. Nonetheless,
characterizing the types of cells in the crypt using reliable biomarkers is often
a challenging task. Using an in silico approach incorporating modeling and
inference, here using methylation patterns as the marker, has proved a good
complementary approach to wet lab techniques.

In this study we have shown that it is possible to infer biological features
of a structure such as the colon crypt by using agent-based models that reduce
the number of approximations and assumptions we need to make to simulate
a biological system. We found that, in agreement with the classical stochas-
tic model of proliferation in the crypt, the high level of methylation pattern
heterogeneity observed in human colon crypts can be induced only by a rela-
tively high number of stem cells, as also shown using a non-spatial model by
Nicolas et al. (2007). Furthermore, we confirm the common assumption that
stem cells undergo rare (< 0.025 times per cell division) events of symmetri-
cal division that yields either stem cell self-renewal or the differentiation of
both mother and daughter cells.

To our knowledge ABC methods have not previously been used for infer-
ence in agent-based models. This new framework needs a different approach
to modeling and Bayesian inference itself. Agent-based models are often com-
plex and include several processes to simulate; this makes them computation-
ally slow even when extensive computational resources are available. In the
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past ABC has been employed with relatively simple population genetics mod-
els that do not contain complex inter-cellular or spatial communication but
simply a population of individuals evolving in time. Such models are fast
and easy to simulate, and have led to the development of adaptive ABC al-
gorithms that allow posterior distributions to be obtained more rapidly (cf.
Beaumont et al. (2009)).

In a scenario where a single simulation takes tens of minutes instead of
mere seconds, the efficiency of the ABC technique is overwhelmed by the
bottleneck induced by the model. In our study we found that adaptive ABC
methods, developed to work with simple and fast population genetics mod-
els, are not suitable for computationally expensive models due to the slow
convergence caused by the computation of the model.

Instead we found that a more convenient approach was to first run all the
simulations in parallel with the parameters sampled from the priors. Then
once a sufficient number of simulations have been computed, any rejection
algorithm can be used to analyze the data, from a simple threshold method
to more advanced signal extraction techniques.

Another advantage of the simple approach is that it is embarassingly
parallel, and can be directly implemented in a high-performance comput-
ing environment by just scheduling the simulations independently. Using an
adaptive scheme in a computer cluster may require complex job scheduling
scripts that would be able to carry information throughout the process of
adaptation.
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Abstract. We consider the problem of selecting a parsimonious subset of explana-
tory variables from a potentially large collection of covariates. We are concerned
with the case when data quality may be unreliable (e.g. there might be outliers
among the observations). When the number of available covariates is moderately
large, fitting all possible subsets is not a feasible option. Sequential methods like
forward or backward selection are generally “greedy” and may fail to include im-
portant predictors when these are correlated. To avoid this problem Efron et al.
(2004) proposed the Least Angle Regression algorithm to produce an ordered list
of the available covariates (sequencing) according to their relevance. We introduce
outlier robust versions of the LARS algorithm based on S-estimators for regression
(Rousseeuw and Yohai (1984)). This algorithm is computationally efficient and suit-
able even when the number of variables exceeds the sample size. Simulation studies
show that it is also robust to the presence of outliers in the data and compares
favourably to previous proposals in the literature.

Keywords: robustness, model selection, LARS, S-estimators, robust regres-
sion

1 Introduction

As a result of the recent dramatic increase in the ability to collect data,
researchers sometimes have a very large number of potentially relevant ex-
planatory variables available to them. Typically, some of these covariates
are correlated among themselves and hence not all of them need to be in-
cluded in a statistical model with good prediction performance. In addition,
models with few variables are generally easier to interpret than models with
many ones. Model selection refers to the process of finding a parsimonious
model with good prediction properties. Many model selection methods con-
sist on sequentially fitting models from a pre-specified list and comparing
their goodness-of-fit, prediction properties, or a combination of both. In this
paper we consider the case where a proportion of the data may not satisfy the
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model assumptions and we are interested in predicting the non-outlying ob-
servations. Therefore, we consider model selection methods for linear models
based on robust methods.

As it is the case with point estimation and other inference procedures,
likelihood-type model selection methods (e.g. AIC (Akaike (1970)), Mallows’
Cp (Mallows (1973)), and BIC (Schwarz (1978)) may be severely affected
by a small proportion of atypical observations in the data. These “outliers”
may not necessarily consist of “large” values, but might not follow the model
that applies to the majority of the data. Model selection procedures that are
resistant to the presence of outliers in the sample have only recently started
to receive some attention in the literature. Seminal papers include Hampel
(1983), Ronchetti (1985, 1997) and Ronchetti and Staudte (1994). Other pro-
posals include Sommer and Staudte (1995), Ronchetti, Field and Blanchart
(1997), Qian and Künsch (1998), Agostinelli (2002a, 2002b), Agostinelli and
Markatou (2005), Morgenthaler, Welsch and Zenide (2003). See also the re-
cent book by Maronna, Martin and Yohai (2006). These proposals are based
on robustified versions of classical selection criteria (e.g. robust Cp, robust
final prediction error, etc.). More recently Müller and Welsh (2005) proposed
a model selection criterion that combines a measure of goodness-of-fit, a
penalty term to avoid over-fitting and and the expected prediction error con-
ditional on the data. Salibian-Barrera and Van Aelst (2008) use the fast and
robust bootstrap of Salibian-Barrera and Zamar (2002) to obtain a faster
boostrap-based model selection method that is feasible to calculate for larger
number of covariates. Although less expensive from a computational point of
view than the stratified bootstrap of Müller and Welsh (2005), this method,
as the previous ones, needs to compute the estimator on the full model.

A different approach to variable selection that is attractive when the num-
ber of explanatory variables is large is based on ordering the covariates ac-
cording to their estimated “importance” in the full model. Forward stepwise
and backward elimination procedures are examples of this approach, whereby
in each step of the procedure a variable may enter or leave the linear model
(see, e.g. Weisberg (1985) or Miller (2002)). With backward elimination one
starts with the full model and then finds the best possible submodel with
one less covariate in it. This procedure is repeated until we fit a model with
a single covariate or a criterion is reached. A similar procedure is forward
stepwise, where we first select the covariate (say x1) with the highest abso-
lute correlation with the response variable y. We take the residuals of the
regression of y on x1 as our new response, project all covariates orthogo-
nally to x1 and add the variable with the highest absolute correlation to the
model. At the same step, variables in the model may be deleted according to
a criterion. These steps are repeated until no variables are added or deleted.
Unfortunately, when p is large (p = 100, for example), these procedure be-
comes unfeasible for highly-robust estimators, furthermore these algorithms
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are known to be greedy and may relegate important covariates if they are
correlated with those selected earlier in the sequence.

The Least Angle Regression (LARS) of Efron et al. (2004) is a general-
ization of stepwise methods, where the length of the “step” is selected so as
to strike a balance between fast-but-“greedy” and slow-but-“conservative”
alternatives, as those in stagewise selection (see, e.g. Hastie, Tibshirani and
Friedman (2001)). It is easy to verify that this method is not robust to the
presence of a small amount of atypical observations. McCann and Welsch
(2007) proposed to add an indicator variable for each observation and then
run the usual LARS on the extended set of covariates. When high-leverage
outliers are possible, they suggest building models from randomly drawn
subsamples of the data, and then selecting the best of them based on their
(robustly estimated) prediction error. Khan, Van Aelst and Zamar (2007b)
showed that the LARS algorithm can be expressed in terms of the pairwise
sample correlations between covariates and the response variable, and pro-
posed to apply this algorithm using robust correlation estimates. This is a
“plug-in” proposal in the sense that it takes a method derived using least
squares or L2 estimators and replaces the required point estimates by robust
counterparts.

In this paper we derive an algorithm based on LARS, but using a S-
regression estimator (Rousseeuw and Yohai (1984)). Section 2 contains a brief
description of the LARS algorithm, while Section 3 describes our proposal.
Simulation results are discussed in Section 4 and concluding remarks can be
found in Section 5.

2 Review of Least Angle Regression

Let (y1, x1), . . . , (yn, xn) be n independent observations, where yi ∈ R and
xi ∈ Rp, i = 1, . . . , n. We are interested in fitting a linear model of the form

yj = α+ β′ xj + εj j = 1, . . . , n,

where β ∈ Rp and the errors εj are assumed to be independent with zero
mean and constant variance σ2. In what follows, we will assume, without
loss of generality that the variables have been centered and standardized to
satisfy:

n∑
i=1

yi = 0
n∑

i=1

xi,j = 0
n∑

i=1

x2
i,j = 1 for 1 ≤ j ≤ p .

so that the linear model above does not contain the intercept term.
The Least Angle Regression algorithm (LARS) is a generalization of the

Forward Stagewise procedure. The latter is an iterative technique that starts
with the predictor vector µ̂ = 0 ∈ Rn, and at each step sets

µ̂ = µ̂+ δ sign(cj)x(j)
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where j = arg max1≤i≤p cor(y − µ̂, x(i)), x(i) ∈ Rn denotes the i-th column
of the design matrix, cj = cor(y − µ̂, x(j)), and δ > 0 is a “small” constant.
Typically the parameter δ controls the speed and “greediness” of the method:
small values produce better results at a large computational cost, while large
values result in a faster algorithm that may relegate an important covariate
if it happens to be correlated with one that has entered the model earlier.

The LARS iterations can be described as follows. Start with the predictor
µ̂ = 0. Let µ̂A be the current predictor and let

c = X ′ (y − µ̂A) ,

where X ∈ Rn×p denotes the design matrix. In other words, c is the vec-
tor of current correlations cj , j = 1, . . . , p. Let A denote the active set,
which corresponds to those covariates with largest absolute correlations:
C = maxj{|cj |} and A = {j : |cj | = C}. Assume, without loss of gener-
ality, that A = {1, . . . ,m}. Let sj = sign(cj) for j ∈ A, and let XA ∈ Rn×m

be the matrix formed by the corresponding signed columns of the design
matrix X, sj x(j). Note that the vector uA = vA/‖vA‖, where

vA = XA (X ′
AXA)−1 1A ,

satisfies
X ′
A uA = AA 1A , (1)

where AA = 1/‖vA‖ ∈ R. In other words, the unit vector uA makes equal
angles with the columns of XA. LARS updates µ̂A to

µ̂A ← µ̂A + γ uA ,

where γ is taken to be the smallest positive value such that a new covariate
joins the active set A of explanatory variables with largest absolute correla-
tion. More specifically, note that, if for each λ we let µ(λ) = µ̂A+λuA, then
for each j = 1, . . . , p we have

cj(λ) = cor
(
y − µ(λ), x(j)

)
= x′(j)(y − µ(λ)) = cj − γ aj ,

where aj = x′(j)uA. For j ∈ A, equation (1) implies that

|cj(λ)| = C − γ AA ,

so all maximal current correlations decrease at a constant rate along this
direction. We then determine the smallest positive value of γ that makes the
correlations between the current active covariates and the residuals equal to
that of another covariate x(k) not in the active set A. This variable enters
the model, the active set becomes

A ← A ∪ {k} ,

and the correlations are updated to C ← C − γ AA. We refer the interested
reader to Efron et al. (2004) for more details.
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3 LARS based on S-estimators

S-regression estimators (Rousseeuw and Yohai (1984)) are defined as the
vector of coefficients that produce the “smallest” residuals in the sense of
minimizing a robust M-scale estimator. Formally we have:

β̂ = arg min
β∈Rp

σ (β) ,

where σ(β) satisfies
1
n

n∑
i=1

ρ

(
ri(β)
σ(β)

)
= b ,

ρ : R → R+ is a symmetric, bounded, non-decreasing and continuous func-
tion, and b ∈ (0, 1) is a fixed constant. The choice b = EF0(ρ) ensures that the
resulting estimator is consistent when the errors have distribution function
F0.

For a given active set A of k covariates let β̂A, β̂0A, σ̂A be the S-estimators
of regressing the current residuals on the k active variables with indices in
A. Consider the parameter vector θ = (γ, β0, σ) that satisfies

1
n− k − 1

n∑
i=1

ρ

(
ri − x′i,k(β̂Aγ)− β0

σ

)
= b .

A robust measure of covariance between the residuals associated with θ and
the j-th covariate is given by

covj(θ) =
n∑

i=1

ρ′

(
ri − x′i,k(β̂Aγ)− β0

σ

)
xij ,

and the corresponding correlation is

ρ̃j(θ) = covj(θ)

/
n∑

i=1

ρ′

(
ri − x′i,k(β̂Aγ)− β0

σ

)2

.

Our algorithm can be described as follows:

1. Set k = 0 and compute the S-estimators θ̂0 = (0, β̂00, σ̂0) by regressing y
against the intercept. The first variable to enter is that associated with
the largest robust correlation:

λ̂1 = max
1≤j≤p

∣∣∣ρ̃j(θ̂0)
∣∣∣ .

Without loss of generality, assume that it corresponds to the first covari-
ate.
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2. set k = k + 1 and compute the current residuals

ri,k = ri,k−1 − xt
i,k−1(β̂k−1γ̂k−1)− β̂0,k−1 .

3. let β̂k, β̂0k, σ̂k be the S–estimators of regressing rk against xk.
4. For each j in the inactive set find θ∗j such that
• λ∗j = |ρ̃j | = |ρ̃m| for all 1 ≤ m ≤ k,
•
∑n

i=1 ρ
′
(
(ri,k − xt

i,k(β̂kγ
∗
k)− β∗0k)/σ∗k

)
= 0, and

•
∑n

i=1 ρ
(
(ri,k − xt

i,k(β̂kγ
∗
k)− β∗0k)/σ∗k

)
= b(n− k − 1).

5. Let λ̂k+1 = maxj>k λ
∗
j , the associated index, say v corresponds to the

next variable to enter the active set. Let θ̂k = θ∗v .
6. Repeat until k = d.

Given an active set A, the above algorithm finds the length γ∗k such that
the robust correlation between the current residuals and the active covariates
matches that of an explanatory variable yet to enter the model. The variable
that achieves this with the smallest step is included in the model, and the
procedure is then iterated. It is in this sense that our proposal is based on
LARS.

4 Simulation results

To study the performance of our proposal we conducted a simulation study
using a similar design to that reported by Khan et al. (2007b). We generated
the response variable y according to the following model:

y = L1 + L2 + · · ·+ Lk + σ ε ,

where Lj , j = 1, . . . , k and ε are independent random variables with a stan-
dard normal distribution. The value of σ is chosen to obtain a “signal to
noise” ratio of 3. We then generate d candidate covariates as follows

Xi = Li + τ εi , i = 1, . . . , k ,
Xk+1 = L1 + δ εk+1

Xk+2 = L1 + δ εk+2

Xk+3 = L2 + δ εk+3

Xk+4 = L2 + δ εk+4

...
X3k−1 = Lk + δ ε3k−1

X3k = Lk + δ ε3k ,

and Xj = εj for j = 3k, 3k+1, . . . , d. The choices δ = 5 and τ = 0.3 result in
cor(X1, Xk+1) = cor(X1, Xk+2) = cor(X2, Xk+2) = cor(X2, Xk+3) = · · · =
cor(Xk, X3k) = 0.5. We consider the following contamination cases:
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a. ε ∼ N (0, 1), no contamination;
b. ε ∼ 0.90N (0, 1) + 0.10N (0, 1)/U(0, 1), 10 % of symmetric outliers with

the Slash distribution;
c. ε ∼ 0.90N (0, 1) + 0.10N (20, 1), 10 % of asymmetric Normal outliers;
d. 10% of high leverage asymmetric Normal outliers (the corresponding co-

variates were sampled from a N (50, 1) distribution).

For each case we generated 500 independent samples with n = 150, k = 6
and d = 50. In each of these datasets we sorted the 50 covariates in the
order in which they were listed to enter the model. We used the usual LARS
algorithm as implemented in the R package lars, our proposal (LARSROB)
and the robust plug-in algorithm of Khan et al. (2007b) (RLARS).

For case (a) where no outliers were present in the data, all methods per-
formed very close to each other. The results of our simulation for cases (b),
(c) and (d) above are summarized in Figures 1 to 3. For each sequence of
covariates consider the number tm of target explanatory variables included
in the first m covariates entering the model, m = 1, . . . , d. Ideally we would
like a sequence that satisfies tm = k for m ≥ k. In Figures 1 to 3 we plot
the average tm over the 500 samples, as a function of the model size m,
for each of the three methods. We see that for symmetric low-leverage out-
liers LARSROB and RLARS are very close to each other, with both giving
better results that the classical LARS. For asymmetric outliers LARSROB
performed marginally better than RLARS, while for high-leverage outliers
the performance of LARSROB deteriorates noticeably.

5 Conclusion

We have proposed a new robust algorithm to select covariates for a linear
model. Our method is based on the LARS procedure of Efron et al. (2004).
Rather than replacing classical correlation estimates by robust ones and ap-
plying the same LARS algorithm, we derived our method directly following
the intuition behind LARS but starting from robust S-regression estimates.
Simulation studies suggest that our method is robust to the presence of low-
leverage outliers in the data, and that in this case it compares well with
the “plug-in” approach of Khan et al. (2007b). A possible way to make our
proposal more resistant to high-leverage outliers is to downweight extreme
values of the covariates in the robust correlation measure we utilize. Further
research along these lines is ongoing.

An important feature of our approach is that it naturally extends the
relationship between the LARS algorithm and the sequence of LASSO solu-
tions (Tibshirani (1996)). Hence, with our approach we can obtain a resistant
algorithm to calculate the LASSO based on S-estimators. Details of the algo-
rithm discussed here, and its connection with a robust LASSO method will
be published separately.
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Fig. 1. Case (b) - Average number of correctly selected covariates as a function of
the model size. The solid line corresponds to LARS, the dashed line to our proposal
(LARSROB) and the dotted line to the RLARS algorithm of Khan et al. (2007b).
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Fig. 2. Case (c) - Average number of correctly selected covariates as a function of
the model size. The solid line corresponds to LARS, the dashed line to our proposal
(LARSROB) and the dotted line to the RLARS algorithm of Khan et al. (2007b).
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Fig. 3. Case (d) - Average number of correctly selected covariates as a function of
the model size. The solid line corresponds to LARS, the dashed line to our proposal
(LARSROB) and the dotted line to the RLARS algorithm of Khan et al. (2007b).
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Abstract. Many practical data sets in environmental sciences, official statistics
and various other disciplines are in fact compositional data because only the ratios
between the variables are informative. Compositional data are represented in the
Aitchison geometry on the simplex, and for applying statistical methods designed
for the Euclidean geometry they need to be transformed first. The isometric logratio
(ilr) transformation has the best geometrical properties, and it avoids the singu-
larity problem introduced by the centered logratio (clr) transformation. Robust
multivariate methods which are based on a robust covariance estimation can thus
only be used with ilr transformed data. However, usually the results are difficult to
interpret because the ilr coordinates are formed by non-linear combinations of the
original variables. We show for different multivariate methods how robustness can
be managed for compositional data, and provide algorithms for the computation.

Keywords: Aitchison geometry, logratio transformations, robustness, affine
equivariance, multivariate statistical methods

1 Compositional data and logratio transformations

Practical data sets are frequently characterized by multivariate observations
containing relative contributions of parts on a whole. Examples are concen-
trations of chemical elements in a rock, household expenditures on various
commodities from the monthly salary, or representations of various animal
species in a study area in percentages. Often just percentages are used to
express the mentioned relative magnitudes of the parts of the data and thus
the simplex is usually referred to be the sample space. However, the situation
is a more general one, because only the relevant information in the data is
contained in the ratios between the parts. From this point of view, the per-
centages represent only a proper representation of the information, contained
in the multivariate observations. These considerations led John Aitchison at
the beginning of the eighties of the 20th century to introduce the term compo-
sitional data (or compositions for short) to characterize such kind of data and
to propose possibilities for their statistical analysis using so-called logratio
transformations.

The geometry of compositions, later denoted as the Aitchison geometry,
follows their special properties and is based on special operations of perturba-
tion, power transformation and the Aitchison inner product. In more detail,

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 7, c© Springer-Verlag Berlin Heidelberg 2010
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for D-part compositions x = (x1, . . . , xD)′ and y = (y1, . . . , yD)′ and a real
number α, this results in compositions

x⊕ y = C(x1y1, . . . , xDyD), α� x = C(xα
1 , . . . , x

α
D)

and a real number

〈x,y〉A =
1
D

D−1∑
i=1

D∑
j=i+1

ln
xi

xj
ln
yi

yj
,

respectively. Using usual Hilbert space properties, the Aitchison inner prod-
uct also leads to the definitions of the Aitchison norm and distance. Moreover,
the symbol C denotes a closure operation that moves the sum of the com-
positional parts to any chosen constant κ without loss of information. As
mentioned above, the constant κ is usually chosen as 1 or 100 in order to
represent the compositions on the D-part simplex (of dimension D − 1),

SD = {x = (x1, . . . , xD)′, xi > 0,
D∑

i=1

xi = κ}.

From the geometrical properties of compositional data it is easy to see that
using standard statistical methods like principal component analysis, factor
analysis or correlation analysis, designed for Euclidean space properties of
standard multivariate data with absolute scale, can lead (and frequently does)
to meaningless results. This has been demonstrated in various examples, e.g.
the book Aitchison (1986), and further Aitchison et al. (2000), Filzmoser et
al. (2009a), Filzmoser et al. (2009b), Pearson (1897).

Although the Aitchison geometry on the simplex has the usual properties
that are known from the Euclidean geometry (Hilbert space), it is more natu-
ral to directly work in the Euclidean space. This means that a transformation
of the compositional data from the simplex sample space to the Euclidean
space is performed. In the transformed space the standard multivariate meth-
ods can be used. The main idea that leads to such transformations is to find
a basis (or a generating system) and to express compositions in coefficients
of such a basis (coordinate system). This class of mappings is widely known
under the term logratio transformations. Nowadays three main approaches
using the logratio family are used: additive, centered and isometric logratio
transformations (coordinates). All of them move the operations of pertur-
bation and power transformation to the usual vector addition and scalar
multiplication. However, only the latter two transformations move the whole
Aitchison geometry to the Euclidean one, i.e. including the Aitchison inner
product. As the proposed transformations are one-to-one transformations,
the obtained results are usually back-transformed to the simplex in order to
simplify the interpretation.

The additive logratio transformation follows the idea to construct a (non-
orthonormal) basis which is very easy to interpret. Thus, for a composition x,
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a special case of the additive logratio (alr) transformations (Aitchison (1986))
to RD−1, is defined as

alr(x) =
(

ln
x1

xD
, . . . , ln

xD−1

xD

)′
.

It is easy to see that also another part can be used as ratioing part in the
denominator. It is usually chosen in such a way that the interpretation of
the result is facilitated. Note that different alr transformations are related by
linear transformations (see, e.g., Filzmoser and Hron (2008)).

Taking a generating system on the simplex leads to the centered logratio
(clr) transformation (Aitchison (1986)) to RD,

clr(x) =

(
ln

x1∏D
i=1 xi

, . . . , ln
xD∏D
i=1 xi

)′
.

This transformation has also a good interpretability, and the compositional
biplot (Aitchison and Greenacre (2002)), nowadays a very popular exploratory
tool, takes advantage of this property. However, as the dimension of the sim-
plex is only D− 1, the clr transformation is singular, namely, the sum of the
obtained coordinates is equal to zero. As a consequence, this makes the use of
the robust statistical methods mentioned in the following section impossible.

The last proposal refers to the isometric logratio (ilr) transformations
(Egozcue et al. (2003); Egozcue and Pawlowsky-Glahn (2005)) from the sim-
plex to RD−1, where the main idea is to express the coordinates in an or-
thonormal basis on the simplex. However, the corresponding coordinates are
often not easy to interpret; one such choice of the orthonormal basis leads to

z = (z1, . . . , zD−1)′, zi =

√
i

i+ 1
ln

i

√∏i
j=1 xj

xi+1
, i = 1, . . . , D − 1.

Thus, in spite of their advantageous geometrical properties, the ilr transfor-
mations are preferably used for methods where the interpretation is focused
on the objects rather than on the single compositional parts, because in the
latter case a consequent interpretation of the results in coordinates would be
necessary. From the definition it is easy to see that all the ilr coordinates are
mutually joined with orthogonal relations. An intuitive relation can be found
also between clr and ilr transformations. Namely, the ilr coordinates are in
fact coordinates of an orthonormal basis on the hyperplane H, formed by the
clr transformation. Thus also the relation ilr(x) = Uclr(x) holds, where the
(D− 1)×D matrix U contains in its rows the mentioned orthonormal basis
on H, and UU′ = ID−1 (identity matrix of order D − 1) is fulfilled.

Even more general, it has been shown that all three mentioned logratio
transformations are mutually joined with linear relations (see, e.g., Filzmoser
and Hron (2008)). This property is crucial for the robustification of statistical
methods for compositional data.
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2 Robustness for compositional data

Outliers and data inhomogeneities are typical problems of real data sets. This
can severely affect classical multivariate statistical methods that ignore these
problems, and the results might then even become meaningless. For this rea-
son, robust statistical approaches were developed that reduce the influence of
outliers and focus on the main data structure. An example is the estimation
of multivariate location and covariance. The classical estimators, arithmetic
mean and sample covariance matrix, are sensitive to outlying observations
in the data set while robust estimators can resist a certain proportion of
contamination. Among the various proposed robust estimators of multivari-
ate location and covariance, the MCD (Minimum Covariance Determinant)
estimator (see, e.g., Maronna et al. (2006)) became very popular because
of its good robustness properties and a fast algorithm for its computation
(Rousseeuw and Van Driessen (1999)).

Besides robustness properties the property of affine equivariance of the
estimators of location and covariance plays an important role. The location
estimator T and the covariance estimator C are called affine equivariant, if
for a sample x1, . . . ,xn of n observations in RD−1, any nonsingular (D−1)×
(D − 1) matrix A and for any vector b ∈ RD−1 the conditions

T (Ax1 + b, . . . ,Axn + b) = AT (x1, . . . ,xn) + b,

C(Ax1 + b, . . . ,Axn + b) = AC(x1, . . . ,xn)A′

are fulfilled. The MCD estimator shares the property of affine equivariance
for both the resulting location and covariance estimator.

Since robust methods are usually designed for the Euclidean geometry
and not for the simplex, a transformation of the raw compositional data is
required. As mentioned earlier, the clr transformation is not useful for this
purpose because robust estimators cannot deal with singular data. The alr
and ilr transformations are thus possible transformations prior to robust esti-
mation. However, it depends on the multivariate method and on the purpose
of the analysis which of the alr and ilr transformations are useful. This is-
sue will be discussed in more detail in the following sections for multivariate
outlier detection, principal component analysis, and factor analysis.

2.1 Multivariate outlier detection

The Mahalanobis distance, defined for regular (D − 1)-dimensional data as

MD(xi) =
[
(xi − T )′C−1(xi − T )

]1/2
,

is a popular tool for outlier detection (Maronna et al. (2006); Filzmoser et al.
(2008)). Here, the estimated covariance structure is used to assign a distance
to each observation indicating how far the observation is from the center
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of the data cloud with respect to the covariance structure. The choice of
the location estimator T and the scatter estimator C is crucial. In case of
multivariate normal distribution, the (squared) Mahalanobis distances based
on the classical estimators arithmetic mean and sample covariance matrix
follow approximately a χ2 distribution with D − 1 degrees of freedom. In
presence of outliers, however, only robust estimators of T and C lead to a
Mahalanobis distance being reliable for outlier detection. Usually, also in this
case a χ2 distribution withD−1 degrees of freedom is used as an approximate
distribution, and a certain quantile (e.g. the quantile 0.975) is used as a cut-
off value for outlier identification: observations with larger (squared) robust
Mahalanobis distance are considered as potential outliers.

Compositional data need to be transformed prior to computing Maha-
lanobis distances. The linear relations between the logratio transformations
can be used to prove that the Mahalanobis distances are the same for all pos-
sible alr and ilr transformations. This, however, is only valid if the location
estimator T and the covariance estimator C are affine equivariant (Filzmoser
and Hron (2008)). If the arithmetic mean and the sample covariance matrix
are used, this holds also for the alr, clr and ilr transformations, where the in-
verse of the covariance matrix in the clr case is replaced by its Moore-Penrose
inverse.

2.2 Principal component analysis (PCA)

PCA is one of the most popular tools for multivariate data analysis. Its goal
is to explain as much information contained in the data as possible using as
few (principal) components as possible (see, e.g., Reimann et al. (2008)). In
the case of compositional data, it is very popular to display both loadings and
scores of the first two principal components by means of biplots. The com-
positional biplot is usually constructed for clr transformed data, where the
resulting loadings and scores have an intuitive interpretation corresponding
to the nature of compositions (Aitchison and Greenacre (2002)). However, it
is not possible to robustify it because of the mentioned singularity of the clr
transformation. As a way out, the ilr transformation can be used to compute
the robust loadings and scores, which are then back-transformed to the clr
space (Filzmoser et al. (2009a)). In more detail, the n× (D − 1) matrix Zilr

of scores and (D − 1) × (D − 1) matrix Gilr of loadings are transformed to
n×D and D ×D matrices

Zclr = ZilrU and Gclr = U′GilrU,

respectively. Thanks to the properties of the matrix U defined earlier in
Section 1, and the affine equivariance of the MCD estimator, the resulting
principal components correspond to the same nonzero eigenvalues for both
ilr and clr. Thus, such a transformation of the loadings and scores can be
used to obtain a robust compositional biplot of compositional data.
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2.3 Factor analysis

Both PCA and factor analysis are based on the same objection, namely on
reduction of the dimensionality, and the main principle is to decompose the
multivariate data into loadings and scores. However, the more strict defini-
tion of factor analysis implies that the number of factors to be extracted is
defined at the beginning of the procedure. In addition, an estimate of the pro-
portion of variability has to be provided for each variable, which is not to be
included in the factors but is considered unique to that variable (Reimann et
al. (2008)). This often leads to a better interpretation of the (rotated) factors
than (rotated) principal components. However, the definition of factor analy-
sis and the uniquenesses induce problems in case of compositions, where the
treatment of the single compositional parts seems to be questionable. Here
the clr transformation offers again a reasonable solution, however, the proce-
dure to estimate the ‘clr-uniquenesses’ and loadings must be performed in an
iterative manner and also the estimation of scores has to overcome the sin-
gularity of the clr transformed data, see Filzmoser et al. (2009b), for details.
The key to robustness is again contained in the estimation of the covariance
matrix where the same approach as for PCA can be used.

3 Real data example

The methods are demonstrated in the following using a data example of mean
consumption expenditures of households from 2008 in the countries of the Eu-
ropean Union. The data set is available at http://epp.eurostat.ec.europa.eu
at statistics_explained/index.php/Household_consumption_expenditure. The
expenditures on food, alcohol and tobacco, clothing, housing, furnishings,
health, transport, communications, recreation, education, restaurants and ho-
tels, and on other goods and services are reported for the countries Austria
(A), Belgium (B), Bulgaria (BG), Cyprus (CY), Czech Republic (CZ), Den-
mark (DK), Estonia (EST), Finland (FIN), France (F), Germany (D), Greece
(GR), Hungary (H), Ireland (IRL), Italy (I), Latvia (LV), Lithuania (LT),
Luxembourg (L), Malta (M), Netherlands (NL), Poland (PL), Portugal (P),
Romania (R), Slovakia (SK), Slovenia (SLO), Spain (ES), Sweden (S), and
United Kingdom (GB). These are compositional data because the expendi-
tures are parts of the overall household incomes. For example, if more money
is devoted to one part, typically less money will be left for the other parts,
and thus not the absolute number but only their ratios are informative.

At first we apply multivariate outlier detection using Mahalanobis dis-
tances. Location and covariance are estimated in a classical way but also
robustly using the MCD estimator. Both variants are applied to the orig-
inal untransformed data, and to the ilr transformed data. The results are
presented with distance-distance plots (Rousseeuw and Van Driessen (1999))
in Figure 1. The dashed lines correspond to the outlier cut-offs using the



Robust Methods for Compositional Data 85

0 1 2 3 4 5

0
10

20
30

40

MD classical

M
D

 r
ob

us
t

B
BGCZ DKD

EST

IRL

GR

ESF I

CY

LVLT

L

H

M
NL

APL PR SLO
SK

FIN

S

GB

0 1 2 3 4 5

0
5

10
15

MD ilr−classical
M

D
 il

r−
ro

bu
st

B

BG

CZ
DK

D

EST

IRLGR

ESF
ICY

LV LT
L H

M

NLA

PL

P

RSLO
SK

FIN

S

GB

Fig. 1. Distance-distance plots for outlier detection using the untransformed (left)
and the ilr transformed (right) data.

0.975 quantile of the corresponding χ2 distributions. Both figures reveal sev-
eral masked outliers, but they do not indicate the same outliers. Without
any further inspection it would be difficult to interpret the results. Since the
data are of compositional nature, only the distance-distance plot of the ilr
transformed data is reliable.

A deeper insight into the multivariate data structure can be achieved by
a PCA. We want to compare the classical and the robust (MCD) approach,
as well as PCA for the untransformed and the ilr transformed data (back-
transformed to the clr space). The resulting biplots are shown in Figure 2.
We can see a typical phenomenon when analyzing compositional data with
inappropriate methods: all variables are positively correlated for the untrans-
formed data which is an artifact resulting from the underlying geometry. Note
that a robust analysis cannot ‘repair’ this geometrical artifact. In contrast,
the biplots based on the ilr (→ clr) transformed data show quite different
relations between the variables. Using the biplots, it is also possible to ex-
plain the multivariate outliers identified in Figure 1. The robust biplot for
the ilr (→ clr) transformed data shows striking differences for expenditures
on health. It is also interesting to see that on the right-hand side of the plot
we find potentially richer countries (with a higher GDP) whereas on the left-
hand side the poorer countries are located. The latter devote a larger part of
their expenditures to food, communication, and alcohol and tobacco.

Similar to PCA we apply factor analysis to the original and to the ilr
(→ clr) transformed data, and perform in both cases a classical and a robust
analysis. The biplots for the untransformed data show again a degenerated
behavior. The robust biplot for the ilr (→ clr) transformed data shows al-
most contrasting priorities for the expenditures: Positive values on factor 1
are referring to education, while negative values refer to recreation, trans-
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Fig. 2. Principal component analysis classical (left column) and robust (right col-
umn) using the original scaled (upper row) and the ilr (→ clr) transformed data.

port, housing, furnishings, and other goods and services. Of course, expenses
for education are usually set by the political system. Factor 2 reflects the
differences in expenditures for restaurants and hotel, versus expenditures for
more basic needs like food, alcohol and tobacco, communications, and health.
The poorer countries devote a larger proportion of their expenses to these
basic needs.

4 Conclusions

For compositional data an appropriate transformation is crucial prior to per-
forming any multivariate data analysis. In environmental sciences, like typ-
ically in geochemistry, compositional data are frequently simply logarithmi-
cally transformed. This transformation, however, can only achieve symmetry
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Fig. 3. Factor analysis classical (left column) and robust (right column) using the
original scaled (upper row) and the ilr (→ clr) transformed data.

of the single variables, but it does not transform the data from the simplex to
the Euclidean space. Phenomena like positive variable relations as shown in
the upper rows of Figure 2 and 3 are typical outcomes of such an approach.

Generally, the ilr transformation shows the best properties. For a robust
analysis, one important property is that the ilr transformed data are in gen-
eral non-singular, which allows for the application of robust covariance esti-
mators. However, since the ilr variables are difficult to interpret, they usually
need to be back-transformed to the clr space, like it has been demonstrated
for the compositional biplot.

The transformations, the adapted multivariate methods, and various other
representations and statistical methods for compositional data have been
implemented in the R library robCompositions (Templ et al. (2009)).
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Abstract. Detecting outliers in the context of multivariate data is known as an
important but difficult task and there already exist several detection methods.
Most of the proposed methods are based either on the Mahalanobis distance of
the observations to the center of the distribution or on a projection pursuit (PP)
approach. In the present paper we focus on the one-dimensional PP approach which
may be of particular interest when the data are not elliptically symmetric. We give
a survey of the statistical literature on PP for multivariate outliers detection and
investigate the pros and cons of the different methods. We also propose the use
of a recent heuristic optimization algorithm called Tribes for multivariate outliers
detection in the projection pursuit context.

Keywords: heuristic algorithms, multivariate outliers detection, particle
swarm optimization, projection pursuit, Tribes algorithm

1 Introduction

The definition of outliers as a small number of observations that differ from
the remainder of the data is commonly accepted in the statistical literature
(Barnett and Lewis (1994), Hadi et al. (2009)). Most of the detection methods
in continuous multivariate data are based either on the Mahalanobis distance
or on Projection Pursuit. In the first approach, an observation is declared an
outlier if its Mahalanobis distance is larger than a given cut-off value. Be-
cause the classical non-robust Mahalanobis distances suffer from masking,
Rousseeuw and Van Zomeren (1990) propose to use robust location and scat-
ter estimators. Moreover, reliable methods for defining cut-off points have
been recently proposed (Cerioli et al. (2009)). The PP approach consists in
looking for low dimensional linear projections that are susceptible to reveal
outlying observations. In the following, we focus on this second approach
which does not assume that the non-outlying part of the data set originates
from a particular distribution (like elliptically symmetric distributions for the
first approach). In general, exploratory PP gives insight about a multivariate

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 8, c© Springer-Verlag Berlin Heidelberg 2010
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continuous data set by finding and proposing to the analyst high revealing
low-dimensional projections. A projection pursuit method is based on two
ingredients: a projection index which measures the interestingness of a given
projection and a strategy for searching the optima of this index. In the second
section, we give a survey of the different projection indices that are aimed
at detecting multivariate outliers. PP is computationally intensive and the
choice of the strategy of “pursuit” together with the optimization algorithm
are also important. In the third section, we present the existing “pursuit”
strategies and propose a new strategy that relies on a optimization algorithm
that can find several local minima in a reasonable time. We also investigate
the pros and cons of the different strategies. In the fourth section, we present
the Tribes algorithm which is a recent heuristic optimization algorithm (Clerc
(2005), Cooren et al. (2009)). Heuristic optimization methods are attractive
on the one hand, because they don’t rely on strong regularity assumptions
about the index and on the other hand, because they offer an efficient way
to explore the whole space of solutions. But they usually imply the choice of
some parameters. Tribes belongs to the family of Particle Swarm optimiza-
tion (PSO) methods which are biologically-inspired optimization algorithms
based on a cooperation strategy. Its main advantage relies on the fact that it
is a parameter-free algorithm. We give some generalities concerning PSO and
Tribes and propose to use it for the detection of outliers in an exploratory
PP context. In the last section, we present the java interface we are currently
developing for exploratory PP and give some perspectives.

2 Projection indices for detecting outliers

As said above a PP method assigns a numerical value (defined via an index)
to low dimensional projections of the data. The index is then optimized to
yield projections that reveal interesting structure. In the following, we review
several one-dimensional indices that can be useful for the detection of out-
liers. We use the following notations: the data set is a n (observations) by p
(variables) matrix X and Xi denotes the vector in RP associated with the ith
observation. For one-dimension exploratory PP, a real-valued index function
I(a) is defined for all projection vectors a ∈ Rp such that a′a = 1 (where
a′ denotes the transpose of a). This function I is such that interesting views
correspond to local optima of the function.

The most well-known projection index is the variance which leads to Prin-
cipal Component Analysis (PCA). As detailed in Jolliffe (2002, section 10.1),
observations that inflate variances will be detectable on the first principal
components while outliers with respect to the correlation structure of the
data may be detected on the last principal components. PCA is generally the
first step in multivariate continuous data analysis but it is not specifically
designed for the detection of outliers and further exploration with other PP
indices are of interest. Moreover, in order to avoid masking as previously
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mentioned for Mahalanobis distances, it is advisable to consider as a pro-
jection index a robust variance estimator rather than the usual variance (Li
and Chen (1985)). Such a method, called robust PP-based PCA, may de-
tect outliers which inflate the variance (without the possible masking of the
non-robust PCA) but is not aimed at detecting other types of outliers.

The definition of an “interesting” projection has been discussed in the
founding papers on PP (Friedman and Tukey (1974), Huber (1985), Jones
and Sibson (1987), and Friedman (1987)). Several arguments (see Friedman
(1987) for details) have led to the conclusion that gaussianity is uninterest-
ing. Consequently, as noted by Huber (1985), any measure of departure from
normality can be viewed as a measure of interestingness and thus as a PP
index. The objective of measuring departures from normality is more gen-
eral than looking for projections that reveal outlying observations. However,
several indices are very sensitive to departure from normality in the tails of
the distribution which means that they will reveal outliers in priority. We
will focus on such indices. In particular, the Friedman and Tukey (1974) and
Friedman (1987) indices are known to be quite sensitive to the presence of
outliers (see Friedman and Tukey (1974) and Hall (1989)). A detailed pre-
sentation of these indices can be found in Caussinus and Ruiz-Gazen (2009)
and Berro et al. (2009).

As mentioned by Huber (1985, p. 446) and further studied by Peña and
Prieto (2001), the kurtosis of the projected data is an index well adapted
for detecting outliers. While heavy tailed distributions lead to high values
of the kurtosis, bimodality leads to low values of the kurtosis. Thus, Peña
and Prieto (2001) propose to detect outliers by looking at projections that
minimize or maximize the kurtosis.

Recently, the Friedman index (Achard et al. (2004)) and the kurtosis index
(Malpica et al. (2008)) have been used successfully for detecting anomalies
in hyperspectral imagery. We also mention the index proposed in Juan and
Prieto (2001) which is well suited for concentrated contamination patterns
but which does not seem appropriate in other situations as detailed in Smetek
and Bauer (2008) also in the field of hyperspectral imagery.

Another well-known projection index which is dedicated to the research
of outliers is the measure of outlyingness defined independently by Stahel
(1981) and Donoho (1982). For each observation i = 1, . . . , n, we look for a
projection that maximizes

Ii(a) =
|a′Xi −medj(a′Xj)|

madj(a′Xj)

where the “med” (resp. the “mad”) corresponds to the median (resp. the me-
dian absolute deviation) of the projected data. The main difference between
this index and the ones previously introduced is that the search of an optimal
projection has to be done for each observation while the previous proposals
consist in looking for the most interesting projections without refering to any
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particular observation. The Stahel-Donoho index is generally used as a first
step in order to define weights of highly robust location and scatter estima-
tors. But it may be used also in the exploratory PP context when the number
of observations is small.

Finally, Caussinus and Ruiz-Gazen (1990, 2003), and Ruiz-Gazen (1993)
proposed a generalization of PCA designed for the detection and the vizual-
ization of outliers. The methodology is based on the spectral decomposition
of a scatter estimator relative to another scatter estimator and has been re-
cently revisited in a more general framework by Tyler et al. (2009). Contrary
to usual and robust PP-based PCA, Generalized PCA (GPCA) cannot be de-
fined as a problem of optimizing a function I(a) of a projection vector a. Even
if it is detailed as a projection pursuit method in Caussinus and Ruiz-Gazen
(2009), there is no projection index associated with GPCA. Moreover, like
PCA (and unlike robust PP-based PCA), the projections obtained by GPCA
rely on spectral decomposition and do not need any pursuit. In the follow-
ing we do not consider PCA and GPCA any further and focus on possible
strategies for pursuit in the ususal exploratory PP context.

3 Different “pursuit” strategies

The structure of complex data sets in more than two dimensions is usu-
ally observable in many one-dimensional projections. So, as already stated in
Friedman and Tukey (1974), PP should find as many potentially informative
projections as possible. Consequently, the first strategy proposed by Fried-
man and Tukey (1974) and Jones and Sibson (1987) consists in using local
optimization methods with several starting points. Useful suggested initial
directions are the original coordinate axes, the principal axes but also some
random starting points. This strategy is also the one followed by Cook et al.
(1995) in their grand tour proposal but with the difference that the initial
directions are chosen by the viewer in an interactive way. To our opinion,
looking at rotating clouds as in Cook et al. (2007) may be tedious for the
data-analyst.

A second strategy is proposed in Friedman (1987) and most of the litera-
ture on PP focus on this second strategy. The procedure repeatedly invokes
a global optimization method, each time removing from the data the solu-
tions previously found. Several global optimization methods have been con-
sidered in the literature (e.g. Friedman (1987), Sun (1993), Peña and Prieto
(2001)). For continuously differentiable indices, such as the Friedman index
with a smooth kernel or the kurtosis index, the global optimization proce-
dure usually involves a local optimization step based on steepest ascent or
quasi-Newton. Concerning the “structure removal”, the simplest idea is to
consider orthogonal projections as in PCA. This methods used in Peña and
Prieto (2001) is easy to implement and greatly accelerates the procedure.
However, as noticed in Huber (1985) and Friedman (1987), it may miss inter-
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esting oblique projections. Friedman (1987) proposed a more sophisticated
“structure removal” procedure but it is not easy to implement and, as noticed
in Nason (1992), the way it may affect the later application of PP is unclear.

We propose to go back to the first strategy and offer to the data-analyst
several views of the data based on numerous starting directions and an effi-
cient local optimization algorithm. The reasons we advocate for such a choice
are the following:

(i) the aim of PP is to explore several local optima and global optimization
methods that consider non-global local extrema as a nuisance are time
consuming and not adapted,

(ii) the structure removal may miss some interesting projections or/and is
also time consuming,

(iii) by using numerous starting directions and examining the plot of the index
values, we can detect whether an extremum is found by accident (because
of sampling fluctuations) or discovered several times.

The drawback of this strategy, as noticed in Friedman’s discussion of Jones
and Sibson (1987), is that it leads to numerous views of the data that are
not imediately interpretable. One does not know the extent to which a new
view reflects a similar or a different structure compared with the previous
views. As detailed in the perspectives, in order to circumvent the problem,
we propose several simple tools to analyse and compare the different views.

Concerning the Stahel-Donoho index, Stahel (1981) and Maronna and
Yohai (1995) suggest to calculate the maximum over a finite set of vectors.
The vectors are taken at random and there is no local optimization step.
This idea of taking a finite set of projection directions is also used to derive
algorithms for robust PP-based PCA. The Croux and Ruiz-Gazen (2005) al-
gorithm uses the directions of the observations as projection vectors. Because
the index is a (robust) measure of dispersion, directions that are pointing
where the data are, lead to interesting results, at least when n is larger than
p (see Croux et al. (2007) for further improvement). However, this algorithm
is not relevant for other types of indices.

In order to be able to deal with unsmooth indices such as the Stahel-
Donoho index and explore in the most efficient way the whole space of so-
lutions, we propose to use a recent Particle Swarm optimization algorithm
called Tribes.

4 Tribes: a parameter-free Particle Swarm optimization
algorithm

Tribes is a recent heuristic optimization algorithm (Clerc (2005), Cooren et al.
(2009)) which belongs to the family of Particular Swarm optimization (PSO).
As explained in Gilli and Winker (2008) in a statistical context, heuristics
optimization methods can tackle optimization problems that are not tractable
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with classical optimization tools. Moreover, such algorithms usually mimic
some behavior found in nature. In the case of PSO, the algorithm mimics the
behavior of a swarm of insects or a school of fish that is, the collective learning
of individuals when they are in groups. There are two families of heuristic
optimization methods: the trajectory methods (e.g. simulated annealing or
Tabu search) which consider one single solution at a time and population
based methods (e.g. genetic algorithms) which update a whole set of solutions
simultaneously. For the second family of methods to which belongs PSO, the
exploration of the whole search space is sometimes more efficient and this
property is of importance given our objectives in the context of exploratory
PP. Particle Swarm Optimization was introduced by Eberhart and Kennedy
(1995) (see also Kennedy and Eberhart (2001)). The solution vectors of the
population are called particles and the algorithm consists in updating the
position of the particles of the swarm from one generation to another by
adding an increment called velocity. More precisely, a particle is defined by
a current position (which corresponds to a projection vector) and a velocity
of moving in the search space. At each generation, the particle calculates the
value of the function (index value). If this value is the best found so far, the
particle memorizes the current position as the best position. The best value is
called pbest. The particle looks also in its neighborhood the best value found.
This value is called lbest. Then the particle changes its velocity toward its
pbest and lbest positions in a stochastic way. Finally, she updates its position
(which means that the projection vector is updated).

Recently, researchers have used PSO for solving various optimization
problems (e.g. Gilli and Schumann (2009) for robust regression). But like
other heuristics methods, PSO depends heavily on the selection of its pa-
rameter values which may be difficult to tune. In our case, the parameters
depend notably on the number of observations and the number of variables.
As described in Cooren et al. (2009), Tribes is a new adaptive PSO algo-
rithm that avoids manual tuning by defining adaptation rules which aim at
automatically changing the particles behaviors as well as the topology of the
swarm. In particular, the strategies of moving are chosen according to the
performances of the particles. A precise description of the Tribes algorithm
is given in Larabi et al. (2009) for exploratory PP.

In Berro et al. (2009), we propose to use Genetic algorithm and standard
PSO for exploratory PP but Tribes is clearly more adapted to the research of
local optima. This feature is considered a drawback in a global optimization
strategy ; but according to our strategy (see section 3), it is a clear advantage.

5 Perspectives

We are currently developing a java interface in order to propose to the data-
analyst an efficient exploratory tool based on the PP strategy we have detailed
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in the third section and on the heuristics algorithms as detailed in the fourth
section.

In Berro et al. (2009), we stress the importance of using numerous indices
and looking at as many views as possible. Among the implemented indices,
several ones are adapted to the detection of outliers such as the Friedman-
Tukey, the Friedman and the kurtosis indices. The user can center and sphere
the data, a preliminary process which may ease the discovery of interesting
projections (see for instance Cook et al. (1995)). Following the strategy de-
tailed in the third section, we divide the exploratory process in two stages:
the first stage consists in running several times the Tribes algorithm and ob-
tain several projections. This research of several local optima may be time
consuming especially if the number of observations or the number of variables
or the number of runs are large. But the statistician does not need to be in
front of the computer during this first step! Moreover, because the different
runs are independent, one could use parallel computing. During this research
process, the potentially interesting projections obtained by optimization of
a projection index are stored in an output file. At the second stage of the
procedure, the statistician has many one-dimensional views of the data at his
disposal and he can begin the analysis of the potential structure. Note that
at this stage, there is no more need of computing power. The user can display
either histograms or kernel density estimators of the univariate distributions
of the projected data (see Figure 1 for an illustration of the interface on a
simulated data set). These histograms or density estimators can be examined
and outliers can be easily detected by vizualisation. Comparison of the dif-
ferent projections (similarities and differences) is more tricky and we propose
several simple tools to help the user in this process. On Figure 1, some of
the tools can be vizualised. First, the projections are ordered according to
the decreasing values of the projection index and the values of the index are
plotted so that the different local minima are easily detected (see the plot at
the top right of Figure 1). Note that the data analysed on Figure 1 are simu-
lated data with a majority of observations following a standardized gaussian
distribution and a few points following a mean-shifted gaussian distribution
in eight dimensions. For this artificial example, we know that there is only
one interesting projection and if we exclude a small number of runs (see the
right part of the index plot), all the runs have led to almost the same value of
index (see Berro et al. (2009) for more details). By repeating the local search
many times, we avoid considering spurious projections (due to sampling fluc-
tuations) since interesting projections are usually recovered several times and
associated with larger index values. But similar values of the index does not
correspond necessarily to similar projection vectors. We add a plot of the
cosines of the angles between any chosen projection vector and the other
projection directions. This plot is very helpful in order to measure how far
two projection directions are. Note that the different projections are simply
obtained by mouse-clicking on the index or on the cosine plot and a selection
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Fig. 1. A screenshot of the Java interface currently in development.

of the most interesting projections can be stored on the right bottom panel of
the window (see Figure 1). In a general exploratory PP context, the analysis
of many projections may be tricky and need some more dedicated tools that
we are currently developing. But in the context of outliers detection, once
defined an automatic rule to flag one-dimensional outlying observations, it is
easy to save the outlying observations in a file together with the number of
times they have been discovered on the different projections. As can be seen
on Figure 1, the present version of the interface offers the possibility to declare
as outliers, observations with an absolute distance to the mean larger than a
certain number of times the standard deviation. The choice of the number of
standard deviations is based on the vizualization of the histograms and can
be changed interactively (on Figure 1, the choice is two standard deviations
and the observations in yellow on the right of the histograms are identified as
outliers). The interface will be soon available and will offer all the described
possibilities.

Among the perspectives, we also plan to implement the Tribes algorithm
for the Stahel-Donoho index in an exploratory PP context. Finally, in the
context of outliers detection, we would like to compare our proposal with
other existing detection methods on several data sets.
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Abstract. The IMAGEN study—a very large European Research Project—seeks
to identify and characterize biological and environmental factors that influence
teenagers mental health. To this aim, the consortium plans to collect data for more
than 2000 subjects at 8 neuroimaging centres. These data comprise neuroimaging
data, behavioral tests (for up to 5 hours of testing), and also white blood samples
which are collected and processed to obtain 650k single nucleotide polymorphisms
(SNP) per subject. Data for more than 1000 subjects have already been collected.
We describe the statistical aspects of these data and the challenges, such as the
multiple comparison problem, created by such a large imaging genetics study (i.e.,
650k for the SNP, 50k data per neuroimage). We also suggest possible strategies, and
present some first investigations using uni or multi-variate methods in association
with re-sampling techniques. Specifically, because the number of variables is very
high, we first reduce the data size and then use multivariate (CCA, PLS) techniques
in association with re-sampling techniques.

Keywords: neuroimaging, genome wide analyses, partial least squares

1 Neuroimaging genetics and the IMAGEN project

Neuroimaging genetics studies search for links between biological parame-
ters measured with brain imaging and genetic variability. These studies are
based on the hypothesis that the brain endophenotype (e.g., size or activity
of a brain region) is more linked to genetic variations than to behavioral or
clinical phenotypes. There are several kind of neuroimaging genetics studies
depending whether they address clinical or normal populations, which en-
dophenotype is measured, or if family information is used. However, from
both a statistical and a neuroscience point of view, an important classifi-
cation is “how open are the genetic and imaging hypotheses?” Often the
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neuroimaging genetics study considers a specific hypothesis about one poly-
morphism (e.g. the serotonin transporter) and involves few brain images of
a small group of subjects.

The current somewhat low cost of full genome data acquisition makes
possible to perform brain and genome wide analyses (BGWA). Genome wide
analyses (GWA) are already statistically challenging and often require a very
large cohort, but the challenge is even bigger with the large number of poten-
tial endophenotypes (see the description below) associated with a relatively
small number of subjects, as it is time consuming and costly to acquire neu-
roimaging data in a large cohort. In fact, it is practically impossible for a
single neuroimaging center to acquire data on thousands of subjects.

Despite these challenges, several studies are on the way such as the IMA-
GEN project which explores brain-genetic-behavior relations in a population
of 2000 normal adolescents, with an emphasis on addiction disorders, in-
cluding emotional, reward or impulsivity aspects. The consortium comprises
eight Europeans neuroimaging centers, the data are centralized at Neurospin
(CEA, I2BM) which deals with bioinformatics and biostatistics.

1.1 Genetic data: Single Nucleotide Polymorphisms (SNP)

GWAS focuses on the relationships between the genetic sequence information
(i.e., the “genotype”) and a trait or phenotype (e.g., cholesterol level) mea-
sured in vivo or in vitro in unrelated individuals. Single base pair changes
occurring in at least 1% of the population are used as a proxy to reflect spa-
tial loci of variability on the whole genome. In this data one must take into
account the spatial correlation between markers on DNA strands; linkage
disequilibrium (LD), which reflects the association between alleles present
at each of two sites on a genome, because a set of SNPs may not directly
explain the variations observed in the trait under consideration but may be
correlated with a true disease creating variants of a known biomarker instead
(for reviews see Cordell & Clayton (2005), and Ioannidis et al. (2009)).

However, GWAS are considered semi-exploratory and other techniques—
relying on haplotypes, genes, and gene regulation pathways—are necessary to
understand relations b etween genetic polymorphisms and a given phenotype.

To avoid spurious associations between the trait of interest and genetic
data, population substructure are assessed and SNPs with low minor allele
frequency, not in Hardy-Weinberg equilibrium, or with low genotyping rate
are discarded.

1.2 Magnetic Resonance Imaging (MRI) data

We describe below some endophenotypes acquired with MRI.
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T1 images: brain macroscopic structure and the issue of anatom-
ical structures variability. Studies of sulco-gyral anatomical variability
across subjects (Riviere et al. (2002)) established that variability is impor-
tant even for normal subjects, and that the distance between two identical
structures (e.g., sulci) can be as large as a centimeter after spatial normaliza-
tion (i.e., “morphing”) to a common template. These studies also showed that
small structures may or may not be present in the brain of different subjects.
However, characteristics of reproducible sulci can be heritable attributes and
relevant endophenotypes in association studies (Rogers et al. (2010)).

A popular alternative to studying individually identified structures is to
use Voxel-Based Morphometry (VBM). VBM uses a the spatial normalization
of the subjects brains (e.g., the MNI brain template) and then estimates
from the number of voxels quantities such as grey matter density or regional
volume (Ashburner and Friston (2001)). This convenient method is, however,
sensitive to the values of the parameters of spatial normalisation procedures.

Diffusion Weighted Images (DWI) measures, for a voxel, the amount
of water molecule diffusion in several directions. The spatial resolution is
often of the order of 8mm3 and the angular resolution (number of directions)
varies from 6 to hundreds, but is often around 60 in standard settings. DWI
is then used to reconstruct fiber tracks connecting brain regions (Assaf and
Pasternak (2008)). As with T1 images, measurements can be made at the
level of the voxel (mean diffusion, fractional anisotropy) or at the level of
the fiber tracks reconstructed per subjects, or with hybrid strategies. The
usefulness of the endophenotypes derived from DWI is still being assessed.
Depending on the strategy, the number of features per subject ranges from a
few (e.g., length of fiber tracks) to thousands (e.g., voxels).

fMRI processings. The Blood Oxygen Level Dependent (BOLD) signal
measures the amount of brain regional blood flow and blood volume which
correlates with neuronal activity at a spatial resolution of a few mms. In
general, for a subject, an fMRI dataset is composed of several runs, each
consisting of a few hundreds of three-dimensional scans acquired every few
seconds. Prior to statistical analysis proper, a few essential pre-processing
steps are necessary, such as intra-subject motion correction. Subject activa-
tion maps are then estimated (in general with the use of a linear model of the
form Y = Xβ+ε, with several variables included in X to model the expected
time variation of Y). This step is crucial because the results depend strongly
on the model. The model usually includes time courses designed to account
for variation due to experimental conditions and confounding factors (see Po-
line et al (2008)). To compares subjects, a spatial normalization procedure is
applied on each subject data. The group inference results are then obtained
at the voxel level after a spatial smoothing of the individual data using mixed
effect (or simple random effects) models (see, e.g., Mériaux et al. (2006)).
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Group template

Subject 3Subject 2

Subject 1 Subject 5
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Fig. 1. How to build a model of the brain activity at the group level with a subject
per subject representation (Thirion et al (2007)). This may provide more relevant
endophenotypes than region of interest defined solely on the template space.

Parcellisation and functional landmarks techniques A parcellisation
divides the brain into entities which are thought to correspond to well-defined
anatomical or functional regions. In the context of group inference for neu-
roimaging, basing the analysis on parcels amounts to reducing spatial resolu-
tion to obtain a more reliable as well as interpretable matching of functional
regions across subjects. Although atlas-based divisions are frequently used,
their regions do not adapt to the individual functional anatomy.

An alternative to parcellisation is functional brain landmarks. Here, one
searches individual topographical features and estimates their frequencies
in a population of subjects. By contrast with traditional approaches, this
kind of inference follows bottom-up strategy, where objects are extracted
individually and then compared. Typically, structural features or patterns
relevant for descriptions are local maxima of activity, regions segmented by
watershed methods or blob models. Whatever the pattern used, the most
difficult questions are to 1) decide if these patterns represent true activity or
noise, and 2) infer a pattern common to the population of subjects.

Which endophenotype? From the description of fMRI above, it is clear
that a large number of endophenotypes can be chosen from the imaging data.
These endophenotypes can be differentiated into 1) voxel based approaches
which use spatial normalization prior to measuring the activity of brain struc-
tures, and 2) individual landmark/structure approaches that provide individ-
ual measures. Voxel-based approaches have the advantage of being easy to
automatize, but are less precise, and depend on the normalization procedures.
Individual structure detection have the advantage that the endophenotype
defined are more relevant and therefore more sensitive, but they are difficult
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to implement, rely on a model of the correspondence between subjects, and
may not always define one endophenotype per subject.

The research to understand which endophenotypes are heritable, sensitive,
specific and reproducible for association studies is only beginning and will
certainly be a key aspect of imaging genetics in the near future.

Behavioral and clinical data. Clearly, imaging and genetic data have to be
complemented by demographic, behavioral, and clinical data. Summarizing
these data or constructing latent variables (e.g., with SEM or PLS) that can
reveal association with genetic or imaging is also a challenge.

Indeed, using items as manifest variables to uncover the locations of a la-
tent trait (e.g. extraversion, impulsivity) implies a measurement error whose
magnitude depends on the reliability of the measurement scale. As a conse-
quence, for example, correlations between latent constructs should be cor-
rected for attenuation, group comparisons should account for possible differ-
ential item functioning (i.e., conditional on the true latent score, the proba-
bility of endorsing an item differs between the reference and a focal group,
defined by external variables). As pointed by Ioannidis et al. (2009), these
considerations apply when using latent variables in GWAS. However, higher-
order latent variables should give a better account of the inter-subjects vari-
ance when integrated in a conceptual model, and so should constitute more
sensitive indicators.

2 Biostatistics: challenges and methods

There are several challenges for the analyses1 of these large datasets. The first
challenge arises from the specificities of multiple complex types of data. To
integrate these different types of data implies a good understanding of their
acquisition, and pre-processing, as well as the neuroscience or clinical con-
texts. Second, the large number of variables requires appropriate statistical
techniques (e.g., variable selections, use of sparse techniques). Third, there is
an obvious multiple comparison issue. Fourth, it is not clear what should be
the overall strategy of analysis. Figure 2 represents symbolically the data at
hand and how they can be analysed.

2.1 Mappings one to many

Voxel based mappings: BWAS. The aim is to isolate brain regions or
voxels associated with a genetic polymorphism or a trait/phenotype on the
group of subjects. This corresponds to a simple standard statistical paramet-
ric mapping analysis in neuroimaging. The method consists in first computing
1 The bioinformatics (database, computing) aspects of these large studies are not

addressed here, but are vital.
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Fig. 2. The data available and how to combine them in mapping studies (one to
many) or through multivariate PLS (many to many). Three PLS block can be used
to integrate these data. Mappings and multivariate techniques often require variable
selection or regularization because of the N � P problem.

for each subject one brain volume summarizing the metabolic activity in one
experimental condition (the so called contrast maps) and second to regressing
for each voxel v the activity measured Yv on one of the variables of interest
that define the model X. The issue is then to select the brain regions with
significant activity. This is done by first choosing a statistics (e.g., Fisher’s
F ) and then estimating a threshold to correct for multiple comparisons in-
volving 50k to 100k correlated voxels. The multiple comparison problem is
often handled with random field techniques (Worsley (2003)) or permutation
tests (Rorden et al. (2007)). This approach is reasonable only if a limited
number of candidate SNPs or scores are tested against few contrast maps.

Genetic (SNP) based mappings. GWAS analysis seeks to isolate genetic
markers that explain a significant part of the variance of a given trait for
unrelated individuals. Usually, such associations are studied by analyzing
SNPs with a GLM model in which the frequency of the minor allele predicts
the trait under study. However, this amounts to run as many tests as there are
SNPs and creates an obvious problem of multiple comparisons. To control for
inflation of Type I error rate, FWER corrections (e.g., Bonferroni) will only
retain SNP with a p-value as low as 5.10−8. Such a drastically conservative
approach is likely to mask functionally interesting variants with small effect
size. Moreover, tests are not independent because adjacent loci are spatially
correlated. Several authors (for a review, Dudoit and van der Laan (2008))
discussed alternative strategies to enhance signal to noise ratio and increase
the likelihood of tagging reliable markers.
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4D Cluster Distribution under H0

193voxsnp
9 snp
(p< 20%)

199 voxsnp
6 snp
(p< 20%)

Fig. 3. Left: Constructing 4D clusters in a voxel × SNP space and permutation
test. Right: Two blocks PLS. Loadings for the best 100 SNPs associated with 34
brain ROIs: positive (resp. negative) loadings in yellow (resp. red).

The voxels × SNPs challenge. Here we consider the endophenotype of an
individual as the constructed 3D contrast map described above and study the
association between all these voxels (approx. 50k voxel) and with each SNP
within the set of more than 500k polymorphisms. For example the association
of voxels with the allelic dosage (genetic additive model) for each SNP will
generate around 25 billions comparisons per contrast map.

In the QTL association study with SNP data, several techniques have
been designed based on the idea that combining p-values of adjacent SNPs is
more significant and more biologically relevant than considering SNPs inde-
pendently. (e.g., Tippett’s, Fisher’s and Stoufers’ methods). Recent contribu-
tions use a set of tests based on p-values aggregation (sliding window along
the sequence or scan statistics). The multiple comparison issue is dealt with
the usual techniques (e.g., Bonferroni, FDR, permutation tests). Theses ideas
may be applied to imaging genetic data (voxel × SNPs) in order to detect
contiguous brain regions linked to neighboring SNPs. The method detects
clusters defined by a threshold in the product (4D) dataset, and calibrates
the null hypothesis using permutations. While computationally intensive, this
technique is conceptually simple, corrects for multiple comparisons in both
imaging and genetic dimensions, and accounts for the spatial structure of the
data. Preliminary results show that this method—illustrated in Figure 3—
is efficient compared to other procedures.

2.2 Two-blocks methods

The main questions raised by two-blocks datasets with N � P + Q are:
1) how to select the predictors of interest, 2) which multivariate model to
choose, 3) how to evaluate its performance and 4) how to compare models.
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Partial least squares (PLS) regression belongs to the type of methods
used for modeling the association of original variables with latent variables.
PLS builds successive (orthogonal) linear combinations of the variables be-
longing to each block, say X and Y, with uh and vh denoting their associated
canonical variates, such that their covariance is maximal:

max
|uh|=1,|vh|=1

cov(Xh−1uh,Yvh)

where Xh−1 denotes the residuals of X after deflation of component h. In
other words, PLS seeks latent variables that account for the maximum of lin-
ear information contained in the X block while best predicting the Y block.
For applications to genomics see Parkhomenko et al. (2007), to transcrip-
tomics, see Lê Cao et al. (2009), and to SNPs X VBM, see Hardoon et al.
(2009).

When predicting brain activation from SNPs, we face two issues created by
the high-dimensionality of the problem. First we need to reduce the number
of predictors and to design cross-validation procedures which avoid overfitting
and facilitate interpretation of the resulting set of variables (Parkhomenko et
al. (2007), Lê Cao et al. (2008)). Second, we need to evaluate the significance
of the X–Y links (e.g., with appropriate permutation schemes).

Figure 3 (right) illustrates the results obtained when maximizing PLS
criterion across training samples and estimating correlation between factor
scores in test samples. The significance of this test statistic was assessed using
a permutation procedure embracing the whole statistical framework (cross-
validation including feature selection). These preliminary results indicate that
it is possible to spot significant relationships between genetic and MRI data.

2.3 Multi block analyses: RGCCA

To estimate conjointly relationships between 3 or more blocks of variables,
we use Regularized Generalized Canonical Correlation Analysis (RGCCA,
see Tenenhaus & Tenenhaus, submitted). With the following notations:

• J blocks {X1, . . . ,XJ} of centered variables measured on N observations,
• a design matrix C = (cjk) describing a network of connections between

blocks (cjk = 1 for two connected blocks, and 0 otherwise),
• a function g equal to the identity, absolute value or square function,
• shrinkage constants τ1, ..., τJ ,

RGCCA is the solution of the following optimization problem:
argmax

w1,w2,...,wJ

∑
1≤j<k≤J cjkg(cov(Xjwj ,Xkwk))

with the constraints (1− τj)var(Xjwj) + τj‖wj‖2 = 1, j = 1, . . . , J
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RGCCA builds block components (i.e., latent variables) yj = Xjwj , j =
1, ..., J which explain their own block and are well correlated to their con-
nected components. The RGCCA algorithm requires to invert—for each block—
the shrunk estimation of the covariance matrices. This is computationally in-
tractable for large blocks. To overcome this problem, we split the SNP block
in blocks corresponding to chromosomes and add one block for neuroimaging.
The method gives, for each block, the value of the the highest correlations
is then associated to SNPs of interest. Our preliminary results with RGCCA
show good sensitivity and interpretable results.

2.4 Biostatistics challenges and strategies for data analysis

The analysis of a large database such as IMAGEN, is also challenging at the
level of the overall strategy as well as the computational methods and tools.
Specific difficulties methodological, or even sociological are:

• The data are acquired continuously (this is necessarily the case for large
imaging data studies) or by batch (genotyping). What intermediary steps
should be taken, what is the likelihood that those will be confirmed with
the full dataset analyses, how those should influence or not the remaining
cohort recruitment are generally open questions.
• There are several approaches to study a particular neuroscience question,

and controlling for the overall risk of error is difficult.
• While multivariate links may be better investigated first, this approach

is technically challenged by the large number of variables (SNP, voxels)
available; as multivariate variable selection is NP-hard and entails a com-
binatorial explosion, univariate procedures are often used in practice as
initial screening.

3 Conclusions

To conclude, we believe that neuroimaging genetics—a new field that emerges
at the interaction of several domains such as neuroimaging, cognitive neu-
roscience, genetics, experimental psychology—is particularly challenging for
computational statistics, because it requires to adapt, tailor, or even create
statistical methods suitable for high dimensional and heterogeneous data but
also to develop specific software and databasing tools.
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LÊ CAO K.A., ROSSOUW D., ROBERT-GRANIÉ C., and BESSE P. (2008):
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Abstract. We introduce the role of resampling and prediction (p) metrics for
flexible discriminant modeling in neuroimaging, and highlight the importance of
combining these with measurements of the reproducibility (r) of extracted brain
activation patterns. Using the NPAIRS resampling framework we illustrate the use
of (p, r) plots as a function of the size of the principal component subspace (Q) for
a penalized discriminant analysis (PDA) to: optimize processing pipelines in func-
tional magnetic resonance imaging (fMRI), and measure the global SNR (gSNR)
and dimensionality of fMRI data sets. We show that the gSNRs of typical fMRI
data sets cause the optimal Q for a PDA to often lie in a phase transition region
between gSNR ' 1 with large optimal Q versus SNR � 1 with small optimal Q.

Keywords: prediction, reproducibility, penalized discriminant analysis, fMRI

1 Introduction

Mapping of brain function is a major area of brain imaging. In the 1980s it
was dominated by positron emission tomography (PET) and single photon
emission tomography (SPECT) but since the discovery of the blood oxy-
genation level dependent (BOLD) signal in the 1990’s, BOLD functional
magnetic resonance imaging (fMRI) and related techniques now dominate
the brain imaging literature. The early PET-based applications used some
machine learning and neural networks techniques for the analysis of func-
tional neuroimages, but most the current fMRI experimental and analysis
paradigms are still based on simple univariate general linear models with
inferential statistical tests, and in some instances their predictive, machine
learning equivalent (e.g., Gaussian Näıve Bayes, Kjems et al. (2002); Pereira
et al. (2009)). However, there has been a recent explosion of interest in us-
ing related multivariate classification approaches—dubbed “mind reading”
by some.

2 Data-driven performance metrics

In brain mapping it is crucial to optimize and evaluate models and to select
the most salient features. These tasks must be guided by a performance met-

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 10, c© Springer-Verlag Berlin Heidelberg 2010
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ric. A variety of possible performance metrics including crossvalidated pre-
diction (p) are briefly reviewed in Afshinpour et al. (in press). Although pre-
diction accuracy alone can be an effective metric for general machine-learning
problems, neuroimaging also demands that the spatial pattern (encoded by
the predictive model) be reproducible (r) or generalizable between different
groups of subjects or different scans of the same subject. The reproducibil-
ity of models’ estimated parameters when optimizing prediction in such ill-
posed data sets (variables � observations) is a neglected issue in the field
of predictive modeling. In some problems this is unimportant as prediction
performance may be the primary result that matters (Schmah et al. 2008).
However, in high-dimensional brain mapping problems the reliability of the
extracted brain maps and the voxels that influence prediction performance
are often the critical outputs of the modeling process that reflects underlying
brain processes. One approach is to include a greedy search procedure be-
cause this reduces the size of the voxel feature space to the subset relevant for
prediction. This may be iteratively driven by prediction metrics using classi-
cal machine learning approaches or simply based on a subset of voxels that
are detected with a separate voxel-based, general linear model (GLM). Some
tradeoffs of such purely prediction-driven analysis approaches are discussed
in Pereira et al. (2009). Together with prediction accuracy, reproducibility is
an important metric because it provides a data-driven substitute for receiver
operator characteristic (ROC) analysis. We also address model performance
in real data sets where the true SNR structure is unknown and ROC curves
cannot be measured. In particular, we illustrate the use of (p, r) metrics to
optimize the pipeline of image pre-processing steps for fMRI data sets before
data analysis, e.g., scan-to-scan registration, spatial and temporal filtering,
etc. (for a review see Strother (2006)). And we demonstrate the use of (p, r)
metrics to optimize subspace selection for a penalized discriminant analysis
(PDA) model built on a PCA basis.

3 Nonparametric, activation, influence and
reproducibility resampling (NPAIRS)

NPAIRS provides a resampling framework for combining prediction metrics
with the reproducibility of the brain-activation patterns, or statistical para-
metric maps (SPM), as a data-driven substitute for ROCs. However, any
measure of similarity between patterns extracted from independent data sets
is subject to an unknown bias (Afshinpour et al., in press). To obtain com-
bined prediction and reproducibility values Strother et al. (2002); Kjems et
al. (2002) proposed a novel split-half resampling framework dubbed NPAIRS
and applied it first to PET and later to fMRI (see Strother et al. (2004);
LaConte et al. (2003); Yourganov et al., in press). While NPAIRS may be
applied to any analysis model we have focused on LDA built on a regularized
PCA basis (i.e., PDA). This allows us to (1) regularize the model by choosing
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soft (e.g., ridge) or hard thresholds on the PCA eigenspectrum or other basis
set (e.g., tensor product splines) (2) maintain the link to covariance decom-
position previously used with PET for elucidating network structures, and
(3) easily produce robust whole-brain activation maps useful for discovering
features of brain function and/or disease.

The basic outline of NPAIRS follows1. Consider an fMRI data set S of v
voxels byNT scans forN subjects’ data sets of T scans each. The independent
observations of N subjects are split into two independent halves S = [S1,S2]:
training and test sets of size N

2 . This split-half resampling represents a form
of repeated, 2-fold cross-validation that has the benefits of smooth, robust
metrics obtained with delete-d jackknife and the 0.632+ bootstrap (Efron
and Tibshirani (1993, 1997)). Typically in neuroimaging we have v � NT ,
with v = 10k − 100k voxels, and N = 10s of subjects and T = 50 − 100s of
scans/subject. Consequently S is large and ill-posed and cannot be directly
inverted. Therefore, we proceed with an initial dimensionality reduction step
using PCA that also serves as a preliminary denoising process. Further the
PCA ensures that we have captured at least the first order voxel interactions
that represent the important functional connectivity of underlying brain net-
works. We can obtain estimates of the PCA basis components needed using
a singular value decomposition (SVD) or equivalently from the eigenvalue
decomposition (EVD) of the smaller outer-product covariance matrix (which
is considerably faster than an SVD). We proceed as follows

1. Given the singular SVD, S = ULVT , we compute the EVD, ST S =
VL2VT , and proceed with a reduced basis set, X∗ = U∗T S = L∗V∗T ,
where we typically retain 30% of the PCA components so that X∗ has size
(0.3NT ×NT ), assuming v � NT .

2. Randomly partition X∗ into two independent split-half groups across
the subjects to obtain X∗ = [X1,X2] = U∗T [S1,S2], where Xi has size
(0.3NT ×N iT ), Ni = N/2 for N even, or Ni = N/2± 0.5 for N odd.

3. Given the SVD Xi = YiLiRT
i , we compute second-level EVDs X∗

i =
Y∗T

i Xi = L∗i R
T
i , on X1 and X2, and retain Q components from each, so

that X∗
i has size (Q× T i) where Ti =NiT . With Q typically ≤ min(2 −

500, 0.3NT ) we achieve a large dimensionality (and computational) reduc-
tion. For example from Strother et al. (2004) with N = 16, T = 187 scans
and v = 23,389 brain voxels, S is (23,389× 2992), but X∗

i is only Q× 1496,
and for PDA we only calculate (Q×Q) covariances with Q ≤ 500.

4. Now apply the prediction model separately to X∗
1 and X∗

2 using a scan-
label structure. This label structure may directly reflect the experimental
design (i.e., number of experimentally defined conditions or brain states),
or it may be chosen to reflect other possibilities, such as agnostic labels that
will extract an unknown but common, data-driven temporal-covariance across
subjects (e.g., Strother et al. (2004); Kustra and Strother (2001); Kjems et al.
(2002); Evans et al. (2010)). For the rest of this paper we focus on Canonical

1 Software available at http://code.google.com/p/plsnpairs/.
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Variates Analysis (CVA, Mardia et al. (1979)), which reflects a Gaussian
mixture model across classes with the strong regularization constraint that
all class covariances are equal and may therefore be estimated using a pooled,
within-class covariance estimate; this CVA is equivalent to LDA, although we
further regularize by calculating CVA on a subspace of size Q, as in a PDA
(Kustra and Strother (2001)). For g = 1, . . . , G classes, and k = 1, . . . ,Kg,
with Kg the number of scans in class g, let xgk represent a column of X∗

i

with Q component features of the kth scan in class g. We calculate,

Wi =
∑GKg

gk
(xgk − x̄g) (xgk − x̄g)

T (1)

Bi = Kg

∑G

g
(x̄g − x̄) (x̄g − x̄)T (2)

where x̄g = 1
Kg

∑Kg

k xgk is the mean of scans in class g, and x̄ = 1
Ti

∑GKg

kg xgk

is the mean over all scans in split-half X∗
i . The canonical variates that repre-

sent a penalized, generalized likelihood ratio solution of the G-class discrim-
inant problem are obtained by the following EVD:

W−1
i BiCi = CiMi (3)

where Ci has G − 1 columns of canonical variates, cj with dimension Q,
normalized such that CT

i (Wi/(T i−G))Ci = I, and Mi is a (G−1)×(G−1)
diagonal matrix containing eigenvalues, mj . From Ci we obtain PCA-like,
canonical-coordinate time series defined by

Zi = X∗T
i Ci (4)

where Zi hasG−1 columns of zj , with time-series dimension Ti, and zT
j zh = 0

where (j 6= h), and zT
j zj = (Ti −G)(1 +mj), since X∗

i X
∗T
i = Bi + Wi. The

associated canonical eigenimages are given by

Ei = U∗Y∗
i Ci (5)

where Ei has G− 1 columns ej with dimension v.
Prediction accuracy is defined as the posterior probability of a test-scan,

sgk(test), being assigned to its true class label, g, given by p
(
g|sgk(test); θtrain

)
,

where θtrain are model parameters calculated in an independent training set.
Assume the scans represented by the split-half set, X∗

1, form a training set
in which we calculate the PDA model parameters in Eqn. 5. The prediction
accuracy for scans in the test set, X∗

2, is given by

p
(
ggk(2)

∣∣ sgk(2);θ(1)
)

= 1
a exp

{
− 1

2

(
sgk(2) − s̄g(1)

)T
U∗Y∗

1W
−1
1 Y∗T

1 U∗T (sgk(2) − s̄g(1)

)}
p(ggk(2))

= 1
a′ exp

{
− 1

2

(
sgk(2) − s̄g(1)

)T
E1ET

1

(
sgk(2) − s̄g(1)

)}
p(ggk(2))
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from Eqn. 1 with C1CT
1 = (Ti−G)W−1

1 , (a and a′ are normalizing constants).
In practice we swap training and test sets and average across all scans to
obtain the average prediction value for a particular split-half.

Each independent split-half PDA produces a set of canonical eigenim-
ages, Ei, and canonical coordinate time series, Zi, which can have arbitrary
signs and component ordering. To address this before comparing the split-half
eigenimages we perform a PDA on the full data set S from step 1, without
splitting, using 2Q components from the 2nd-level EVD in steps 3 and 4.
This ZS result provides a reference set against which we compare each Zi set
of canonical-coordinate time series using a Procrustes matching procedure
restricted to sign changes and permutations of component order. The oper-
ations performed on the Zi components are then also performed on the Ei

components to match them across the spit-halfs. For a particular canonical
component, the reproducibility of the two split-half eigenimages is defined as
the correlation (r) between all pairs of the spatially aligned voxels. This cor-
relation value r is directly related to the available SNR in each extracted pair
of split-half SPMs. For transformed eigenimages of mean=0, and length=1,
the two eigenvalues are equal to 1 + r (signal) and 1 − r (noise). Therefore,
we define a global SNR metric for each split-half as

gSNR =
√

((1 + r)− (1− r)) /(1− r) =
√

2r/(1− r) (6)

Note that the Procrustes matching procedure is likely to make r positive
but that low-reproducibility components will still reflect the distribution of r
around 0. From Eqn. 6 we see that r maps the [0,∞] range of gSNR to [0, 1].
In general when the number of unique split-resamplings (i.e., 1

2

N
CN/2) is

large enough, we perform� 10 split-halfs and record the average, or median,
of the p and r distributions across for a particular choice of Q. This procedure
is then repeated as a function of Q to obtain the best (p, r) values possible as
a function of Q. We recognize that the resulting p-values are biased upwards
as a result of optimizing model parameters (i.e, Q) using only training and
validation sets, and then biased downwards, relative to leave-one-out cross-
validation, as a result of using split-half resampling. Finally, we obtain a
single Z-scored SPM from each split-half pair of eigenimages (i.e., rSPM(z)).
In the scatter plot used to calculate r we project all pairs of voxel values
onto the principal axis to obtain a consensus rSPM. These projected rSPM
values are then scaled by the pooled noise estimate, (1 − r), from the mi-
nor axis. As this noise estimate is uncorrelated by construction the resulting
rSPM(z) values will be approximately normally distributed; in practice this is
a good approximation for brain imaging. Finally, this procedure is robust to
heterogeneity across the split objects (e.g., subjects) as more heterogeneous
split-half pairs produce smaller r’s and larger (1− r) pooled noise estimates,
and thus lower rSPM(z) values than more homogeneous splits. Then we aver-
age all rSPM(z)’s to obtain a robust, consensus technique for Z-scoring any
prediction model that produces voxel-based parameter estimates.
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4 Measuring pipeline performance

Figure 1 plots NPAIRS (p, r) curves for an 11-class CVA of 2992 fMRI scans
from 16 subjects performing a static force task (Strother et al. (2004)). The
two curves reflect a small change in a single preprocessing step: the number
of half cosines used for removal of low-frequency trends in fMRI time series.
The points on the curves are the number of PCA components from 1 − Q
(Q ∈ {10, 25, 75, 100, 150, 200, 300, 500}). A full NPAIRS analysis with 50
split-halfs was run for each value of Q. In Figure 1 as the PDA parameteriza-
tion initially increases with Q, both p and r (i.e., gSNR(r)) initially increase.
Then at Q = 50, while p continues to slowly increase, r starts to decreases
quite rapidly. This appears to be a fundamental feature of predictive model-
ing in ill-posed neuroimaging data sets. with p typically being optimized at
larger values of Q than for optimal r, but both eventually decreasing. This
(p, r) tradeoff has also been demonstrated in the context of parameterization
of nonlinear hemodynamic models estimated using MCMC, with r replaced
by a Kullback-Leibler measure on posterior distributions (Jacobsen et al.
(2008)). The (p, r) plot provides a data-driven, ROC-like space where perfect
performance is represented by the upper-right-hand corner with perfect pre-
diction (p=1) and infinite gSNR (r = 1). For a given set of preprocessing steps
and parameters our goal is to move the (p, r) curve closer to (1, 1). As this is
a relative change we assume that the p-value bias is approximately constant
when measuring (p, r) curves that lie closer to (1, 1). We have been experi-
menting with using the minimum Euclidian distance from (1, 1) to define an
optimal (p, r) tradeoff and a cost function for processing-pipeline optimiza-
tion. In Fig. 1 if we generate (p, r) curves for each of the 16 subjects and
record their mean distance from (1, 1), M̄, then the change, 4M̄ , across the
16 subjects and their standard deviation may be used to judge improved pro-
cessing choices. In Fig. 1 we see that on average temporal detrending with a
1.5 cycle cosine will slightly improve (p, r) performance over using a 2.0 cycle
cosine.

Zhang et al. (2009) has explored this approach in the context of the same
fMRI data set with both a predictive GLM and two-class PDA analysis mod-
els (2c-CVA). Table 1 summarizes her greedy search results for the impact
of several pipeline processing steps. Slice-timing correction (Step 1) has no
significant impact regardless of analysis model. Within-subject motion cor-
rection (Step 2) significantly improves performance for 2c-CVA, but not for
GLM because of the increased inter-subject heterogeneity. As expected spa-
tial smoothing (Step 3), and high-pass temporal filtering (Step 4) of various
sorts, all significantly improve performance, but with quite different subject
heterogeneity depending on the analysis model and processing technique.
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Fig. 1. NPAIRS split-half prediction (p) vs. rSPM(z) reproducibility (r) for an
11-class PDA model as a function of Q, and for a small change in low frequency
temporal artefact removal: detrending with 1.5 vs. 2.0 cosine cycles per fMRI run.
(Data from Strother et al. (2004)).

Table 1. Average change in optimal (p, r) curve distance from (1, 1) (e.g., Fig. 1)
for turning selected fMRI processing steps on and off across 16 subjects performing
a parametric static force task (Zhang et al, (2008, 2009)). High-pass temporal fil-
tering: detrending ≡ removal of cosine cycles/run; 1Sliding window running means.
2Multi-Taper power spectrum. 3Wilcoxon matched-pair per subject rank sum test

5 Measuring dimensionality

We generated 18 separate (p, r) curves from the multi-task, age-dependent
data set acquired by Grady et al. (2006). The subjects belonged to three
different age groups: young, middle-aged, and old. The experiment consisted
of 6 separate task runs per subject of 4 memory encoding tasks (1-4), and
2 recognition tasks (5, 6). During the two recognition tasks, the subjects
reported whether or not they recognized the presented stimulus. The BOLD
fMRI was measured with a 1.5T MRI scanner. Standard image preprocessing
was applied to the data. For each subject, one run was collected for every
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Fig. 2. NPAIRS (p, r) curves for a group of young subjects performing memory
tasks: 1, 3, 4, 5. < Q is the regularizing PCA subspace of a PDA. (see text for
details).

task (89 volumes for encoding tasks, and 166 volumes for recognition tasks).
Each scan was described 50,308 voxels (for more details see Grady et al.).

Figure 2 shows example (p, r) curves for the 10 young subjects performing
Tasks 1, 3, 4 and 5 and analyzed with a 2-class PDA to discriminate task
from fixation scans. For each analysis the dimensionality of the 2nd-level
PCA subspace on which the PDA was built ranged from Q = 2 to Q = 84
(Encoding tasks), and Q = 168 (Recognition tasks). At the largest values of
Q, the PDA started to become unstable due to the large condition number
(> 1000) of the within-class matrix W.

The (p, r) curves in Fig. 2 display the same features as those in Fig. 1.
For small values of increasing Q, both p and r increase until r is maximized
at: Task 1, Q = 24; Task 3, Q = 24; Task 4, Q = 12; Task 5, Q = 12. In
all cases p continues to rise with increasing Q, but r rapidly decreases as p
is maximized at: Task 1, Q = 76; Task 3, Q = 66; Task 4, Q = 64; Task 5,
Q = 108. We recorded the 18 values of Q that separately maximized r, p,
and the Euclidean distance (M) from (1, 1). These 54 values are plotted as a
function of gSNR(r) in Figure 3. Here we see that dimensionality for optimum
r (circle) andM (cross) values are often very similar, and fall on a curve with a
vertical asymptote of gSNR ' 1 for q >> 1, and a horizontal asymptote with
Q ≤ 20 for gSNR ≥ 1.5. The horizontal asymptote with gSNR large enough
(e.g., > 1.5) indicates that signal and noise eigenvalues are well separated in
the eigenspectra of X∗

i (NPAIRS step 3), and occur in a relatively compact
discrete subspace early in the PCA eigenspectrum. Conversely, the vertical
asymptote indicates that as signal eigenvalues merge into the noise spectrum
a phase transition occurs requiring large numbers of components from which
to extract a discriminant signal, which is now relatively broadly distributed
across many components of the PCA eigenspectrum.

This behavior matches recent analytic results from random matrix the-
ory that indicate that such a phase transition occurs and is governed by the
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Fig. 3. For 18 NPAIRS (p, r) curves (Fig. 2) the PCA subspace size, Q, is plotted
against gSNR(r) for optimal (1) prediction “4”, (2) reproducibility “O,” and (3)
Euclidean distance “X” (see Fig. 1). (see text for details)

ratio of variables (i.e., voxels) to observations (i.e., scans) for a particular sig-
nal strength. We have recently compared measurement of Q, across simulated
and fMRI-data phase transitions with multiple dimensionality estimation ap-
proaches proposed in the literature (e.g., optimization of Bayesian evidence,
Akaike information criterion, minimum description length, supervised and
unsupervised prediction, and Stein’s unbiased risk estimator: Yourganov et
al., in press). None of the alternate approaches detect the phase transition in-
dicating that they are suboptimal to obtain activation maps with v >> NT .

Figure 3 shows that there is a shift of the distribution of Q values for
maximum prediction towards higher dimensionality at a gSNR value of ap-
proximately 1. This suggests that irrespective of the underlying signal eigen-
structure reflected in the possible gSNR (i.e., horizontal asymptote), optimal
prediction tends to select a smaller gSNR with a solution typically built from
a large number of PCA components. Examination of the associated rSPM(z)
for maximum prediction shows that the reduced gSNR is partly a result of
a reduced number of signal voxels (e.g., rSPM(z)> 3) compared to rSPM(z)
for optimal reproducibility. We are exploring the possibly that this reflects
the tendency for prediction to select low reliability voxel sets. It remains
an unresolved and important issue whether or not optimal prediction based
on preliminary voxel-based feature selection or recursive feature selection can
detect highly reliable spatial patterns in neuroimaging. Our PDA results sug-
gest that this may not be the case for linear multivariate models.
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Alejandro F. Rodŕıguez1 and Esther Ruiz1
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Abstract. One advantage of state space models is that they deliver estimates of
the unobserved components and predictions of future values of the observed se-
ries and their corresponding Prediction Mean Squared Errors (PMSE). However,
these PMSE are obtained by running the Kalman filter with the true parameters
substituted by consistent estimates and, consequently, they do not incorporate the
uncertainty due to parameter estimation. This paper reviews new bootstrap proce-
dures to estimate the PMSEs of the unobserved states and to construct prediction
intervals of future observations that incorporate parameter uncertainty and do not
rely on particular assumptions of the error distribution. The new bootstrap PMSEs
of the unobserved states have smaller biases than those obtained with alternative
procedures. Furthermore, the prediction intervals have better coverage properties.
The results are illustrate by obtaining prediction intervals of the quarterly mort-
gages changes and of the unobserved output gap in USA.

Keywords: NAIRU, output gap, parameter uncertainty, prediction intervals,
state space models

1 Introduction

Unobserved component models have proven to be very useful for the descrip-
tion of the dynamic evolution of financial and economic time series; see, for
example, the references in Durbin and Koopman (2001). One of the main
advantages of these models is that they allow to obtain estimates of the un-
derlying components which are often of interest in themselves. Furthermore,
one may also obtain measures of the uncertainty associated with these esti-
mates as their Prediction Mean Squared Errors (PMSE). The estimates of
the underlying components and their PMSE can be obtained by using the
Kalman filter with the true parameters substituted by consistent estimates
and assuming Gaussian innovations. Furthermore, by running the Kalman
filter, we can also obtain forecasts of future values of the observed series
and their PMSE which can then be used to obtain prediction intervals. One
limitation of this approach is that it does not incorporate the uncertainty
due to parameter estimation and it relies on the Gaussianity assumption.
This drawback can be overcome by using bootstrap procedures. In particu-
lar, Pfeffermann and Tiller (2005) proposed several bootstrap procedures to
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obtain the PMSE of the estimates of the unobserved states that incorporates
the parameter uncertainty. However, their bootstrap procedures are based on
obtaining unconditional PMSEs while the Kalman filter is designed to deliver
conditional estimates of the components. In Rodŕıguez and Ruiz (2010), we
propose new bootstrap procedures which simplifies those proposed by Pfef-
fermann and Tiller (2005) by taking into account that the filter is designed
to deliver conditional estimates of the states and their PMSEs.

On the other hand, when dealing with prediction intervals for future values
of the variables, Wall and Stoffer (2002) have also proposed using bootstrap
procedures that incorporate the parameter uncertainty and are not based on
any particular assumption on the error distribution. However, the procedure
proposed by Wall and Stoffer (2002) relies on the backward representation
which implies important limitations from the computational point of view.
Furthermore, the procedure is restricted to models in which such represen-
tation exists. Consequently, Rodŕıguez and Ruiz (2009) propose a new boot-
strap procedure to construct prediction intervals that does not require the
backward representation.

In this paper, we revise the main bootstrap procedures proposed to obtain
prediction intervals of the unobserved components and future observations in
the context of the random walk plus noise model. We show that they deliver
PMSEs of the unobserved components with smaller biases and prediction
intervals with better coverage properties than those obtained with alterna-
tive procedures. Finally, the results are illustrated by obtaining prediction
intervals of quarterly mortgages changes and of the unobserved output gap
in USA.

The rest of the paper is organized a follows. Section 2 describes the ran-
dom walk plus noise model and the Kalman filter. Sections 3 and 4 describe
the bootstrap procedures proposed for PMSE of the unobserved components
and prediction intervals of future observations respectively. The empirical
applications appear in Section 5. Section 6 concludes the paper.

2 The random walk plus noise model and the Kalman
filter

We consider the univariate local level or random walk plus noise model which
has often be successfully considered to represent the dynamic evolution of
many macroeconomic and financial time series; see. for example, Stock and
Watson (2007) for an application to inflation. The local level model is given
by

yt = µt + εt, (1)
µt = µt−1 + ηt, t = 1, . . . , T

where εt and ηt are mutually independent white noises with variances σ2
ε

and σ2
η respectively, and T is the sample size. The Kalman filter equations to
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estimate the underlying level, µt, and their corresponding PMSE are given
by

mt+1|t = mt|t−1 +
Pt/t−1 + σ2

η

Pt/t−1 + σ2
η + σ2

ε

νt (2)

Pt+1|t = (Pt|t−1 + σ2
η)

(
1−

Pt/t−1 + σ2
η

Pt/t−1 + σ2
η + σ2

ε

)
,

where νt are the one-step ahead prediction errors or innovations, given by
νt = yt − mt/t−1; see Harvey (1989) for the starting values of the Kalman
filter in (2).

Then, assuming conditional Gaussianity, the within-sample prediction in-
tervals for the underlying levels are given by the following expression[

mt+1|t ± z1−α/2

√
Pt+1|t

]
, t = 1, . . . , T (3)

where where z1−α/2 is the
(
1− α

2

)
-percentile of the Standard Normal distri-

bution.
Assuming that future prediction errors are Gaussian, the k-step ahead

prediction intervals for yT+k are given by[
ỹT+k|T − z1−α/2

√
FT+k|T , ỹT+k|T + z1−α/2

√
FT+k|T

]
, (4)

where ỹT+k|T and FT+k|T are the k-steps ahead prediction of yT+k and its
PMSE given by

ỹT+k|T = mT , (5)

FT+k|T = PT/T−1 + (k + 1)σ2
η + σ2

ε , k = 1, 2, . . .

Although, the random walk plus noise model in (1) has several distur-
bances, it is also possible to represent it in what is known as the Innovation
Form (IF) which has a unique disturbance, νt. The IF, which will be very
useful for the implementation of the bootstrap procedures described later in
this paper, is given by the first equation in (2) together with

yt+1 = mt+1|t + νt+1. (6)

The estimates of the underlying levels and their corresponding PMSE
in (2) and the predictions in (5) are obtained assuming known parameters.
However, in practice, the parameters are unknown and have to be substituted
by consistent estimates, for example, Quasi Maximum Likelihood (QML)
estimates. In this case, both the PMSE of the unobserved levels and future
observations and, consequently, the corresponding prediction intervals in (3)
and (4) do not take into in account the uncertainty caused by parameter
estimation.
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3 PMSE of unobserved components

Rodŕıguez and Ruiz (2010) propose to implement a very simple bootstrap
procedure to obtain PMSE of the Kalman filter estimator of the underlying
component. Denote by m̂t/t−1 and P̂t/t−1 the estimates of the state and their
PMSE obtained as in (2) with the unknown parameters substituted by their
QML estimates. First of all, it is important to realize that although Pt/t−1 is
the PMSE of mt/t−1, P̂t/t−1 is not the PMSE of m̂t/t−1 because it does not
incorporate the parameter uncertainty of the latter. Note that the conditional
PMSE of m̂t/t−1 can be decomposed as follows

PMSE(m̂t/t−1) = E
θ

{
E

t−1

[
(m̂t/t−1 −mt/t−1)2|θ

]}
+E

θ

{
E

t−1

[
(mt/t−1 − µt)2|θ

]}
(7)

where θ is the vector of unknown parameters. The PMSE in (7) can be ap-
proximated by generating bootstrap replicates of the parameters and taking
the expectations along all these bootstrap replicates. In particular, the proce-
dure proposed by Rodŕıguez and Ruiz (2010) consists on the following steps:

1) Estimate the parameters by QML, θ̂, and compute the corresponding
estimates of the innovations, ν̂t. Obtain a bootstrap replicate of the inno-
vations (ν∗1 , ..., ν

∗
T ) by resampling with replacement from the standardized

innovations.
2) Construct a bootstrap replicate of the series as follows

y∗t = m∗
t|t−1 + ν∗t (8)

m∗
t|t−1 = m∗

t−1|t−2 +
P ∗t−1/t−2 + σ̂2

η

P ∗t−1/t−2 + σ̂2
η + σ̂2

ε

νt

and estimate the parameters by QML, θ̂∗.
3) Using the bootstrap estimates of the parameters and the original obser-

vations, run again the Kalman filter to obtain a bootstrap replicate of the un-
derlying level, (m̂∗

1/0, ..., m̂
∗
T/T−1) and the corresponding (P̂ ∗1/0, ..., P̂

∗
T/T−1).

After repeating steps (1) to (3) a large number B of times, the bootstrap
PMSE is given by

PMSE∗t/t−1 =
1
B

B∑
j=1

P̂
∗(j)
t/t−1 +

1
B

B∑
j=1

(m̂∗(j)
t/t−1 − m̂t/t−1)2. (9)

To illustrate the performance of the bootstrap PMSE in (9), Figure 1
plots the Monte Carlo averages of the relative biases of the bootstrap pro-
cedure proposed by Rodŕıguez and Ruiz (2010) to estimate the PMSE of
m̂t/t−1 together with the biases obtained when the Kalman filter is run with
estimated parameters or when the asymptotic approximation of the param-
eters as proposed by Hamilton (1986) is implemented or when implementing
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the bootstrap procedure proposed by Pfeffermann and Tiller (2005). Figure
1 illustrates that the biases in the estimation of the PMSE of the unobserved
components is clearly reduced when implementing the procedure proposed
by Rodŕıguez and Ruiz (2010).

Fig. 1. Monte Carlo averages of the ratios dt = 100×
(

Pt|t−1
PMSEt

− 1
)

for the RWN

model with homoscedastic Gaussian error and T = 40 (first row), T = 100 (second
row) and T = 500 (third row).

4 Prediction intervals of future observations

Rodŕıguez and Ruiz (2009) propose to construct prediction intervals for yT+k

by approximating directly its distribution using a bootstrap procedure. The
procedure proposed is not based on the backward representation and, con-
sequently, is much simpler than other alternative bootstrap procedures pre-
viously proposed in the literature as, for example, Wall and Stoffer (2002).
The procedure proposed by Rodŕıguez and Ruiz (2009) consists on gener-
ating bootstrap replicates of the parameters as described in steps 1 and 2
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of the previous section. Then, bootstrap replicates of future values of yt are
obtained as follows

ŷ∗T+k/T = m̂∗
T |T−1 +

k−1∑
j=1

K̂∗
T+jF

∗−1
T+jν

∗
T+j + ν∗T+k

where ν∗T = yT − m̂∗
T |T−1 and, consequently, the predictions are conditional

on the available information. The prediction intervals are finally constructed
by the percentile method by considering the corresponding percentiles of the
empirical distribution of ŷ∗T+k/T .

Figure 2 illustrates the performance of the bootstrap procedure proposed
by Rodŕıguez and Ruiz (2009), denoted as SSB, by plotting kernel estimates
of the bootstrap densities of one-step-ahead forecasts of yt generated by the
random walk plus noise model with εt having a standardized χ2

(1) distribution
and ηt a Normal (1,q) for q = 0.1, 1 and 2.

Fig. 2. Kernel estimates densities of yT+k for k = 1. χ2
(1) case.

Figure 2, which also plots the empirical conditional density of yt and the
densities obtained by using the standard Kalman filter based on assuming
Gaussian errors, denoted as ST, and the bootstrap procedure proposed by
Wall and Stoffer (2002), denoted as SW, shows that the density obtained
with the SSB bootstrap procedure, is closer to the empirical mainly when
the signal-to-noise ratio, q, is small and the sample size is large.
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5 Empirical applications

5.1 Estimation of the NAIRU

In this subsection, we consider to implement the bootstrap procedure pro-
posed by Rodŕıguez and Ruiz (2010) to estimate the PMSE associated with
the NAIRU of US using quarterly data of the unemployment rate observed
from 1948 Q1 until 2003 Q1; see Doménech and Gómez (2006) for details
about the unobserved components model and the interest of analyzing the
NAIRU. Figure 3 plots the observed rate of unemployment together the 90%
confidence bounds of the unobserved NAIRU obtained using the PMSE given
by the Kalman filter implemented with estimated parameters and the boot-
strap PMSE. Figure 3 shows that the confidence intervals obtained using
the bootstrap PMSE are clearly wider than the standard intervals. Further-
more, the unemployment rate is always within the bootstrap intervals but
it is clearly out of the standard intervals in some periods of time. The fact
that the unemployment rate is outsides the intervals of the NAIRU has been
interpreted by some authors as the ability of the NAIRU to identify economic
recessions; see Doménech and Gómez (2006). However, one the parameter un-
certainty is taken into account, it seems that the NAIRU has not any ability
as an indicator of economic recessions.

Fig. 3. Estimated of the NAIRU, the unemployment rate and prediction intervals.



130 Rodŕıguez, A.F. and Ruiz, E.

5.2 Prediction of mortgage changes

In this subsection, we consider to illustrate the bootstrap procedure proposed
by Rodŕıguez and Ruiz (2009) by constructing prediction intervals of future
values of quarterly mortgages change in US’s home equity debt outstanding,
unscheduled payments. The data has been observed from Q1 1991 to Q1
2001 (estimation period) and from Q2 2001 to Q2 2007 (out-of-sample fore-
cast period). Figure 4 plots the 95% prediction intervals obtained by using
the standard Kalman filter and the bootstrap intervals obtained using the
procedures proposed by Wall and Stoffer (2002) and by Rodŕıguez and Ruiz
(2009). We can observe that both bootstrap intervals are very similar and
clearly wider than the standard intervals that do not incorporate the param-
eter uncertainty. Furthermore, observe that 2 observations are not included
in the standard intervals while they are contained in the bootstrap intervals.

Fig. 4. Prediction intervals for the out of sample forecasts of the Mortgage series.

6 Conclusions

In this paper we review recently proposed bootstrap procedures to estimate
the PMSE of unobserved components and to construct prediction intervals
of future observations in the context of unobserved components models.

We show, by Monte Carlo experiments an empirical applications, that the
bootstrap procedure proposed by Rodŕıguez and Ruiz (2010) to estimate the
PMSE of the estimates of the underlying states obtained using the Kalman
filter with estimated parameters has a clearly better behavior than alternative
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procedures previously available in the literature. Furthermore, in an empiri-
cal application, it is shown that incorporating the parameter uncertainty of
the estimated unobserved components into their PMSEs may have impor-
tant implications for the conclusions about the behavior of the underlying
components.

We also show that the bootstrap procedure proposed by Rodŕıguez and
Ruiz (2009) to construct prediction intervals of future observations improves
over previous procedures in three ways:

1) It obtains in one-step the density of predictions, simplifying the com-
putations

2) It does not rely on the backward representation so it can be extended
to models without such representation

3) It allows the state to vary among bootstrap replicates incorporating a
further source of uncertainty.
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Abstract. The present paper studies some computational challenges for the deter-
mination of the probability of ruin of an insurer, if excess of loss reinsurance with
reinstatements is applied. In the setting of classical risk theory, a contractive inte-
gral operator is studied whose fixed point is the ruin probability of the cedent. We
develop and implement a recursive algorithm involving high-dimensional integra-
tion to obtain a numerical approximation of this quantity. Furthermore we analyze
the effect of different starting functions and recursion depths on the performance of
the algorithm and compare the results with the alternative of stochastic simulation
of the risk process.

Keywords: reinsurance, integral operator, ruin probability, high-dimensional
integration

1 Introduction

Excess of loss (XL) reinsurance contracts are widely used in insurance practice
and many results on optimal reinsurance schemes under different premium
principles and objective functions can be found in the literature (for a survey,
see for instance Albrecher & Teugels (2010)). In practice, the reinsurer rarely
offers a pure excess of loss contract, but adds clauses, such as limiting his
aggregate liability or adding reinstatements. Clauses limiting the aggregate
claims of the reinsurer and its effects are well understood from a theoretical
perspective. On the other hand, although reinstatements are quite common in
practice (in particular for casualty insurance), literature dealing with a rigor-
ous and quantitative approach to the subject is scarce. The main focus of the
existing literature is on the calculation of premiums for these contracts un-
der different premium principles, see e.g. Sundt (1991) for an early reference.
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Mata (2000) studied the joint distribution for consecutive layers with rein-
statements and applied the PH transform to calculate the premiums for free
and paid reinstatements. For the discrete case, Walhin and Paris (2000) de-
rived a multivariate Panjer’s algorithm in order to approximate the resulting
compound claim distribution for the cedent. A distribution-free approxima-
tion in a market with incomplete information was given by Hürlimann (2005).
Hess and Schmidt (2004) determine an optimal premium plan for reinsurance
contracts with reinstatements by minimizing the expected squared difference
between the loss and the premium income of the reinsurer.

In terms of effects of reinstatements on the solvency of the cedent, Wal-
hin and Paris (2001) calculated the probability of ruin in a discrete-time risk
model using recursive methods.
The goal in this paper is to determine the probability of ruin in a continuous-
time risk model. Since one cannot expect analytical solutions for the resulting
complicated dynamics, numerical techniques have to be applied. We will for-
mulate a contractive integral operator whose fixed point is the required ruin
probability in this model. Iterative application of this integral operator will
lead to a high-dimensional integration problem to approximate the exact so-
lutions. We investigate the feasibility of such an approach and illustrate the
procedure with numerical results for exponentially distributed claim sizes
based on an expected value principle for the calculation of the premiums. Fi-
nally, we compare the results with approximations obtained from stochastic
simulation of the underlying risk process.

2 XL reinsurance with reinstatements

Let the independent and identically distributed random variables Xi (i =
1, . . . , Nt) denote individual claim sizes in an insurance portfolio, where the
random variable Nt is the number of claims up to time t. Nt is assumed to
be Poisson distributed with parameter λ, and Xi and Nt are independent.
The surplus process of the insurance portfolio at time t in the classical risk
model is defined by

R(t) = u+ βt−
Nt∑
i=1

Xi,

where u is the initial capital of the cedent and β is the gross premium income
per time unit.
Let Tu = inf{t : R(t) < 0} denote the time of ruin and ψ(u) = P(Tu < ∞)
the infinite time ruin probability. The finite time ruin probability is defined
by ψ(u, T ) = P(Tu < T ).

In a plain excess of loss contract with retention l, the reinsurer covers the
part of each claim that exceeds l. In practice the reinsurer usually limits the
covered part by an upper bound l+m, such that the reinsurer’s part Zi and
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the cedent’s part Ci, respectively, are

Zi =

0, Xi ≤ l
Xi − l, l ≤ Xi ≤ l +m
m, Xi ≥ l +m

and Ci =

Xi, Xi ≤ l
l, l ≤ Xi ≤ l +m
Xi −m, Xi ≥ l +m

.

The aggregate cover of the reinsurer up to time t is then Z = Z(t) =
∑Nt

i=1 Zi.
In addition, the reinsurer often limits this aggregate liability to an amount
M , which usually is an integer multiple of the individual maximum cover, i.e.
M = (k + 1)m. In this case the reinsurer is said to offer k reinstatements.
Under this setting, the reinsurer’s part becomes Rk = min(Z, (k + 1)m) and
the cover of the j-th reinstatement is therefore rj = min(max(Z−jm, 0),m).

In this paper we assume a pro-rata-capita concept: At the beginning of
the XL reinsurance contract the cedent pays an initial premium p0 for the
reinsurance cover r0 = min(Z,m). If a claim Xi occurs which uses up part of
the cover, the cover is reinstated and the cedent pays at this moment an ad-
ditional premium Pj to reinstate the used up part of the layer. This premium
is a multiple of the fraction of the cover used up of the last reinstatement
rj−1:

Pj =
p0c

m
min(max(Z − (j − 1)m, 0),m),

where c > 0 is a percentage of the initial premium p0.
Therefore it can happen that multiple claims use up one reinstated layer, but
also that one claim uses two reinstatements (rj′−1 and rj′) partly. In this
case the charged premium for the reinstatement of the cover is the sum of
Pj′ and Pj′+1. For a numerical illustration of this procedure see e.g. Mata
(2000).
The surplus process of the cedent is

RXL(t) = u− p0 + βt−
Nt∑
i=1

Ci − PXL(t),

where PXL(t) is the amount of reinstatement premiums paid up to time t.
The total amount of charged reinstatement premiums at the end of the pe-
riod of cover is therefore p0

(
1 + c

m

∑k
i=1 min(max(Z − (k − 1)m, 0),m)

)
.

The resulting ruin probability is denoted by ψXL(u, T ).

In Albrecher et al. (2010) it is shown that the ruin probability is the fixed
point of the following contractive integral operator.

Ah(u, y, T ) =

∫ T

0

λ exp(−λt)
∫ x∗(u,y,t)

0

h
(
u+ βt− x+ l(x, y)k −

cp0

m
l(x, y)k−1,

y + l(x, y)k, T − t) dFXi(x)dt+

∫ T

0

λ exp(−λt)
∫ ∞

x∗(u,y,t)

1dFXi(x)dt,
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where the following definitions are used:

• T is the observation period and t is the realization of the exponential
inter-claim time.
• x denotes the occurred claim size and y is the reinsurance cover already

used up,
• x∗(u, y, t) is the solution (w.r.t. x) of

u+ βt− x+ l(x, y)k −
cp0

m
l(x, y)k−1 = 0, (1)

with

layer = min (max (x− l, 0) ,m) ,
l(x, y)k = min (layer, (k + 1)m− y) .

Indeed, the operator Ah is a contraction, because

‖Ah1(u, y, t)−Ah2(u, y, t)‖∞ =

‖
∫ T

0

λ exp(−λt)
∫ x∗(u,y,t)

0

(h1(k(u, y, t))− h2(k(u, y, t))) dFXi
(x)dt‖∞

≤ ‖h1 − h2‖∞
∫ T

0

λ exp(−λt)dt

= ‖h1 − h2‖∞ · (1− exp(−λT )),

where k(u, y, t) =
(
u+ βt− x+ l(x, y)k − cp0

m l(x, y)k−1, y + l(x, y)k, T − t
)
.

To get an approximation for the ruin probability, the main idea is now to
iterate the operator A d times on some starting function h(0)(u, y, t), i.e.

h(d)(u, y, t) = Adh(0)(u, y, t)

and evaluate the resulting 2d-dimensional integral by Monte Carlo techniques.
The appropriate choice of the starting function is discussed in Section 4.

3 A recursive algorithm for the numerical solution

In the following, we consider exponentially distributed claim sizes (parameter
γ). Then the operator can be written as

Ah(u, y, T ) =

∫ T

0

λ exp(−λt)
∫ x∗(u,y,t)

0

h
(
u+ βt− x+ l(x, y)k −

cp0

m
l(x, y)k−1,

y + l(x, y)k, T − t) γ exp(−γx)dxdt

+

∫ T

0

λ exp(−λt)
∫ ∞

x∗(u,y,t)

γ exp(−γx)dxdt,
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To apply Monte Carlo methods in an effective way, we first transform the in-
tegration domain of the operator to the unit cube by applying the techniques
of Albrecher et al. (2003) to the present set-up. This results in

Ah(u, y, T ) = (1− exp(−λT ))
∫ 1

0

∫ 1

0

(1− exp(−γx∗(u, y, t)))

h
(
u+ βt− x+ l(x, y)k −

cp0

m
l(x, y)k−1, y + l(x, y)k, T − t

)
dvdw

+ (1− exp(−λT ))
∫ 1

0

∫ 1

0

exp(−γx∗(u, y, t))dvdw.

Here t and x are defined by

t = − log(1−w(1−exp(−λT )))
λ

x = − log(1−v(1−exp(−γx∗(u,y,t))))
γ

(2)

and x∗(u, y, t) is the solution of equation (1) and can be calculated in every
iteration step.

The integral operator is now applied d times onto h(0)(u, y, t) and the re-
sulting multidimensional integral h(d)(u, y, t) is approximated by the Monte-
Carlo estimate

h(d)(u, y, t) ≈ 1
N

N∑
n=1

h(d)
n (u, y, t), (3)

where each h(d)
n (u, y, t) is based on a random point xn ∈ [0, 1]2d (note that d

will usually be quite large) and calculated by the recursion

h
(0)
n (u, y, t) = h(0)(u, y, t)
h

(i)
n (u, y, t) = (1− exp(−λt))(1− exp(−γx∗(u, y, tin)))

· h(i−1)
n

(
u+ βtin − xi

n + l(xi
n, y)k − cp0

m l(xi
n, y)k−1, y + l(xi

n, y)k,
t− tin

)
+ (1− exp(−λt)) exp(−γx∗(u, y, tin)).

(4)
Here tin and xi

n are determined according to equation (2) for random deviates
v and w of the uniform distribution in the unit interval.

4 Numerical illustrations

The recursive algorithm in formula (4) is implemented in Mathematica. It
is essential that cp0

m l(xi
n, y)k−1 is always larger or equal to 0, in order to

avoid negative premiums. Therefore cp0
m max

(
l(xi

n, y)k−1, 0
)

instead of purely
cp0
m l(xi

n, y)k−1 is used in the implementation.
We now illustrate the performance of the resulting algorithm for the pa-

rameters λ = 10, γ = 1
5 . Further, the security loading of the cedent is assumed
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to be αced = 0.2 and of the reinsurer αre = 0.3. Both the cedent’s premium
and the reinsurance premium are determined by the expected value principle.
Additionally, the initial capital of the cedent is assumed to be u = 40 and
the covered layer within each reinstatement is [l, l + m] = [6, 6 + 15]. The
reinsurance contract covers one year, i.e. T = 1.
The MC estimates are obtained using N = 75000, the confidence intervals are
calculated to the level 95% and for the recursion depth we use three different
choices (d = 20, d = 35 and d = 70) to assess the effect of the recursion
depth on the performance. Consequently we generate up to 140-dimensional
random numbers xn.
The random numbers are generated using the default algorithm ExtendedCA
in Mathematica 6.0, which uses cellular automata to generate high-quality
pseudo-random numbers. This generator uses a particular five-neighbor rule,
so each new cell depends on five nonadjacent cells from the previous step.

We first choose the trivial starting function h(0) = h(0)(u, y, t) = 0, if
u ≥ 0. For u < 0 we set h(0) = h(0)(u, y, t) = 1. The following table shows
the effect of excess of loss reinsurance (without reinstatements, but an upper
coverage limit of 15) on the probability of ruin for d = 70. So in this case the

Ruin Probability without reinsurance

ψ(u, 1) using formula (5): 0.052907

Ruin Probability with reinsurance

ψXL(u, 1): 0.045820 Confidence interval: [0.044790, 0.046851]

Table 1. Effects of the excess of loss reinsurance on the probability of ruin

classical excess of loss reinsurance layer [6, 21] (i.e. no additional reinstate-
ments are available after the consumption of the reinsurance cover) improves
the probability of ruin by 13%. If we now introduce reinstatement clauses in
the reinsurance contract, this is also mostly an improvement over the case
without reinsurance, but depending on the value of c (and hence the premi-
ums for the additional reinstatement layers) the resulting situation can be
more risky than without reinstatements. The following tables summarize the

ψXL(u, 1) with c = 0.: 0.024310 Confidence interval: [0.023542, 0.025078]
ψXL(u, 1) with c = 0.5: 0.029833 Confidence interval: [0.028979, 0.030686]
ψXL(u, 1) with c = 1.: 0.033785 Confidence interval: [0.032877, 0.034694]
ψXL(u, 1) with c = 1.5: 0.036809 Confidence interval: [0.035860, 0.037758]

Table 2. Effects of k = 1 reinstatements on the probability of ruin

probabilities of ruin of the cedent and the corresponding confidence intervals
for different combinations of offered reinstatements k and charged premium
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percentages c. From Table 2 and 3 one sees that the ruin probability is not

ψXL(u, 1) with c = 0.: 0.014954 Confidence interval: [0.014319, 0.015589]
ψXL(u, 1) with c = 0.5: 0.032902 Confidence interval: [0.031982, 0.033821]
ψXL(u, 1) with c = 1.: 0.046573 Confidence interval: [0.045498, 0.047648]
ψXL(u, 1) with c = 1.5: 0.055864 Confidence interval: [0.054701, 0.057027]

Table 3. Effects of k = 3 reinstatements on the probability of ruin

monotone in k, i.e. an increase of the number of reinstatements does not au-
tomatically decrease ψ(u). This comes from the balance between reduced risk
due to higher reinsurance cover, but at the same time higher costs for the
reinsurance premiums. In a straight-forward implementation of the recursion
algorithm, each value given above needs approximately 1 hour computation
time on a standard PC (this can certainly be improved by a more efficient
vector implementation, but note also that the reinstatement clauses entail
a lot of algebraic operations in each integration run). It is natural to ask
whether a reduction of the recursion depth d (which obviously will decrease
the computation time) can be afforded in this method in terms of accuracy.
Table 4 shows indeed that for d = 35 the obtained results are very similar to
those calculated with recursion depth d = 70 (and the computation time is
approximately halved). One observes that for an increasing number of rein-

k = 1 confidence interval k = 3 confidence interval

c = 0. 0.023953 [0.023192, 0.024715] 0.014829 [0.014203, 0.015455]

c = 0.5 0.029335 [0.028491, 0.030179] 0.032423 [0.031506, 0.033340]

c = 1 0.033265 [0.032365, 0.034165] 0.045881 [0.044811, 0.046951]

c = 1.5 0.036260 [0.035320, 0.037200] 0.055094 [0.053936, 0.056252]

Table 4. The probability of ruin using a recursion depth of d = 35

statements k and fixed c, the difference between the results using d = 70 and
d = 35 becomes smaller.
As Table 5 shows, a further decrease of recursion depth to d = 20 still leads
to comparable results, but the third digit now is not accurate and it will
depend on the concrete application whether this reduced accuracy is still ac-
ceptable. In absence of analytical solutions, we compare these results with
simulated ruin probabilities using stochastic simulation of surplus paths of
the underlying risk process according to the compound Poisson dynamics.
Table 6 depicts the ruin probabilities for several combinations of k and c (in
each case, the estimate is based on 500,000 simulation runs). The ruin prob-
abilities (and corresponding confidence intervals) obtained by the recursive
numerical method above are observed to nicely match the values obtained
by simulation (as long as d is chosen sufficiently high) in the sense that the
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k = 1 confidence interval k = 3 confidence interval

c = 0. 0.023648 [0.022898, 0.024397] 0.014474 [0.013848, 0.015099]

c = 0.5 0.029160 [0.028323, 0.029997] 0.032555 [0.031638, 0.033472]

c = 1 0.033178 [0.032283, 0.034073] 0.046310 [0.045235, 0.047384]

c = 1.5 0.036142 [0.035206, 0.037078] 0.055580 [0.054418, 0.056743]

Table 5. The probability of ruin using a recursion depth of d = 20

k = 1 confidence interval k = 3 confidence interval

c = 0. 0.024016 [0.023587, 0.024446] 0.015116 [0.014775, 0.015457]

c = 0.5 0.029784 [0.029306, 0.030262] 0.032588 [0.032088, 0.033088]

c = 1 0.033298 [0.032792, 0.033804] 0.045988 [0.045394, 0.046582]

c = 1.5 0.036634 [0.036104, 0.037165] 0.055636 [0.054982, 0.056290]

Table 6. The probability of ruin using the simulation of the risk process

obtained estimate is then usually in the simulation confidence interval.

In the following we investigate whether a more sophisticated starting func-
tion h(0)(u, y, t) leads to significantly improved results. A natural choice for
a better starting function are the infinite and finite time ruin probability
without reinsurance, ψ(u) and ψ(u, t). Since the claim size distribution is
exponential (parameter γ), there exist closed-form expressions for the latter,
namely ψ(u) = λ

γβ exp
(
−u
(
γ − λ

β

))
and

ψ(u, t) = 1− exp(−γu− (1 + τ)λt)g(γu+ τλt, λt), (5)

where τ = γβ/λ and

g(z, θ) = J(θz) + θJ (1)(θz) +
∫ z

0

exp(z − v)J(θv)dv

− 1
τ

∫ τθ

0

exp(τθ − v)J(zτ−1v)dv,

with J(x) = I0(2
√
x) and I0(x) denotes the modified Bessel function (see e.g.

Rolski et al. (1999)).
Table 7 gives the resulting ruin probabilities for c = 100% and recursion

depths d = 35 and d = 20.
One can see from Table 7 that this new choice of h(0)(u, y, t) improves the

performance of the algorithm in terms of d, i.e. a lower number of recursion
steps (and hence a faster algorithm) already gives satisfying results.
One observes that for the starting function h(0)(u, y, t) = ψ(u) a recursion
depth of d = 20 leads to slightly over-estimated values for the ruin proba-
bility. Increasing d and using the finite time ruin probability ψ(u, t) as the
starting function significantly improves these results. Note that the resulting
ruin probabilities for this starting function and d = 20 are closer to the results
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d = 35 h(0)(u, y, t) = ψ(u) h(0)(u, y, t) = ψ(u, t)

probability confidence interval probability confidence interval

k = 1 0.033501 [0.032595, 0.034407] 0.033382 [0.032487, 0.034277]

k = 3 0.046526 [0.045451, 0.047601] 0.046435 [0.045363, 0.047506]

d = 20 h(0)(u, y, t) = ψ(u) h(0)(u, y, t) = ψ(u, t)

probability confidence interval probability confidence interval

k = 1 0.034601 [0.033696, 0.035506] 0.033683 [0.032777, 0.034590]

k = 3 0.047735 [0.046652, 0.048818] 0.046518 [0.045445, 0.047592]

Table 7. The probability of ruin using different starting functions h(0)(u, y, t)

of the simulation of the risk process, than the ruin probabilities calculated
with the simple starting function and d = 70.

The numerical recursive method introduced above is a valuable alterna-
tive to stochastic simulation of the risk process which allows to obtain an
independent estimate of the ruin probability in this risk model. In terms of
comparing computation times of the recursive numerical method and simu-
lation of the risk process, it seems that (unlike in the context of dividend
models, cf. Albrecher et al. (2003)) the simulation method is in general more
competitive. However, as shown above, an appropriate choice of the starting
function can considerably decrease the dimension of the resulting integration
and this may be an advantage in certain applications (for instance when us-
ing Quasi-Monte Carlo methods to speed up the simulation efficiency). In
the above example, a 40-dimensional integral was sufficient for the recur-
sive method, whereas simulation of the risk process usually needs dimensions
beyond 100 (as each interclaim time and claim size variable needed for the
simulation of one sample path represents one dimension). Further refinements
in the choice of starting functions may improve this situation even further.
This issue will be addressed in a future study.
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Abstract. actuar is a package providing additional Actuarial Science function-
ality to the R statistical system. This paper presents the features of the package
targeted at risk theory calculations. Risk theory refers to a body of techniques to
model and measure the risk associated with a portfolio of insurance contracts. The
main quantity of interest for the actuary is the distribution of total claims over a
fixed period of time, modeled using the classical collective model of risk theory.

actuar provides functions to discretize continuous distributions and to com-
pute the aggregate claim amount distribution using many techniques, including the
recursive method and simulation. The package also provides various plotting and
summary methods to ease working with aggregate models.

Keywords: risk theory, aggregate models, compound distribution, R, actuar

1 Introduction

Risk theory refers to a body of techniques to model and measure the risk
associated with a portfolio of insurance contracts. A first approach consists
in modeling the distribution of total claims over a fixed period of time using
the classical collective model of risk theory. A second input of interest to
the actuary is the evolution of the surplus of the insurance company over
many periods of time. In ruin theory, the main quantity of interest is the
probability that the surplus becomes negative, in which case technical ruin
of the insurance company occurs.

The interested reader can read more on these subjects in Klugman et al.
(2008), Gerber (1979), Denuit and Charpentier (2004) and Kaas et al. (2001),
among others.

This paper concentrates on the computation of the aggregate claim amount
distribution using the functions found in the package actuar (Dutang et al.
(2008)) for the R statistical system (R Development Core Team (2009)). The

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 13, c© Springer-Verlag Berlin Heidelberg 2010
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package also includes functions to compute ruin probabilities; see Goulet
(2010).

The paper is based on version 1.0-1 of actuar, available from the Com-
prehensive R Archive Network1. The package contains two visible functions
for the calculation of the aggregate claim amount distribution.

2 The collective risk model

Let random variable S represent the aggregate claim amount (or total amount
of claims) of a portfolio of independent risks over a fixed period of time,
random variable N represent the number of claims (or frequency) in the
portfolio over that period, and random variable Cj represent the amount of
claim j (or severity). Then, we have the random sum

S = C1 + · · ·+ CN , (1)

where we assume that C1, C2, . . . are mutually independent and identically
distributed random variables each independent of N . The task at hand con-
sists in evaluating numerically the cumulative distribution function (cdf) of
S, given by

FS(x) = Pr[S ≤ x]

=
∞∑

n=0

Pr[S ≤ x|N = n]pn

=
∞∑

n=0

F ∗nC (x)pn, (2)

where FC(x) = Pr[C ≤ x] is the common cdf of C1, . . . , Cn, pn = Pr[N = n]
and F ∗nC (x) = Pr[C1 + · · ·+ Cn ≤ x] is the n-fold convolution of FC(·). If C
is discrete on 0, 1, 2, . . . , one has

F ∗kC (x) =


I{x ≥ 0}, k = 0
FC(x), k = 1∑x

y=0 F
∗(k−1)
C (x− y)fC(y), k = 2, 3, . . . ,

(3)

where I{A} = 1 if A is true and I{A} = 0 otherwise.

3 Discretization of claim amount distributions

Some numerical techniques to compute the aggregate claim amount distribu-
tion (see Section 4) require a discrete arithmetic claim amount distribution;

1 http://cran.r-project.org
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Fig. 1. Comparison of four discretization methods

that is, a distribution defined on 0, h, 2h, . . . for some step (or span, or lag) h.
actuar provides function discretize to discretize a continuous distribution
with cdf F (x). (The function can also be used to modify the support of an
already discrete distribution, but this requires additional care.)

Currently, discretize supports four discretization methods:

a. upper discretization, or forward difference of F (x);
b. lower discretization, or backward difference of F (x):
c. rounding of the random variable, or the midpoint method;
d. unbiased, or local matching of the first moment method.

See Dutang et al. (2008) and Klugman et al. (2008) for the details. Figure 1
compares the four methods graphically. It should be noted that although very
close in this example, the rounding and unbiased methods are not identical.

Usage of discretize is similar to R’s plotting function curve. For exam-
ple, upper discretization of a Gamma(2, 1) distribution on (0, 17) with a step
of 0.5 is achieved with

> fx <- discretize(pgamma(x, 2, 1), method = "upper",

+ from = 0, to = 17, step = 0.5)
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4 Numerical evaluation of the aggregate claim amount
distribution

The numerical evaluation of the aggregate claim amount distribution is a well
developed topic in the actuarial literature; see, for example, Klugman et al.
(2008), Denuit and Charpentier (2004), Kaas et al. (2001). What actuar
provides is a powerful and consistent interface to this calculation by means
of the function aggregateDist. This function serves as a unique front end for
various methods to compute exactly or to approximate the cdf of the random
variable S. Currently, five methods are supported, but adding other methods
to aggregateDist is simple due to its modular conception.

4.1 Recursive calculation

The most popular technique to compute the cdf of S is recursive calculation
using the algorithm of Panjer (1981). This requires the severity distribution
to be discrete arithmetic on 0, 1, 2, . . . ,m for some monetary unit, and the
frequency distribution to be a member of either the (a, b, 0) or (a, b, 1) family
of distributions (Klugman et al. (2008)). (These families contain the Poisson,
binomial, negative binomial and logarithmic distributions and their exten-
sions with an arbitrary mass at x = 0.) The general recursive formula is:

fS(x) =
(p1 − (a+ b)p0)fC(x) +

∑min(x,m)
y=1 (a+ by/x)fC(y)fS(x− y)

1− afC(0)
,

with starting value fS(0) = PN (fC(0)), where PN (·) is the probability gen-
erating function of N . Probabilities FS(x) are computed until their sum is
arbitrarily close to 1.

actuar implements the recursions in C to dramatically increase speed
compared to a pure R solution. One difficulty the programmer is facing is the
unknown length of the output. This was solved using a common, simple and
fast technique: first allocate an arbitrary amount of memory and double this
amount each time the allocated space gets full. The unused memory space is
flushed at the end of the function call.

The recursive method fails when the expected number of claims is so large
that fS(0) is numerically equal to zero. One solution proposed by Klugman
et al. (2008) consists in dividing the appropriate parameter of the frequency
distribution by 2n, with n chosen such that fS(0) > 0 numerically. One
then computes the aggregate claim amount distribution using the recursive
method as usual, and then convolves the resulting distribution n times with
itself to obtain the final distribution. Function aggregateDist supports this
procedure. The user has to choose n and adjust the frequency distribution
parameter, but the function will carry out the convolutions and adjust the
precision level automatically. Again, computations are done in C using a
simple discrete convolution of two vectors.
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Given a suitable discrete severity distribution, the recursive method is
exact. In practice, severity distributions are rather continuous, but with lower
and upper discretizations of the latter, the recursive method can provide lower
and upper bounds for the true cdf of S.

4.2 Simulation

Another technique to compute the aggregate claim amount distribution that
is gaining popularity with the general availability of fast computers is stochas-
tic simulation. The idea is simple: simulate a sufficiently large random sample
x1, . . . , xn from S and approximate FS(x) by the empirical cdf

Fn(x) =
1
n

n∑
j=1

I{xj ≤ x}. (4)

In actuar, the simulation itself is done with function simul. This function
admits very general compound hierarchical models for both the frequency
and the severity components; see Goulet and Pouliot (2008) for a detailed
presentation.

4.3 Direct calculation

Exact calculation of the compound distribution function by numerical convo-
lutions using (2) and (3) is conceptually feasible. This also requires a discrete
severity distribution, but there is no restriction on the shape of the frequency
distribution. In practice, this approach is limited to small problems only due
to the large number of products and sums to carry out.

Function aggregateDist supports the direct calculation method, but
merely implements the sum (2). The convolutions themselves are computed
with R’s function convolve, which in turn uses the Fast Fourier Transform.

4.4 Approximating distributions

Probably the simplest and easiest technique to compute FS(x) is by means of
approximating distributions. The downside is the unknown level of accuracy
and, usually, crudeness in the tails. Still, aggregateDist() supports two
simple and popular approximating methods:

a. the normal approximation

FS(x) ≈ Φ
(
x− µS

σS

)
, (5)

where µS = E[S] and σ2
S = Var[S];
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b. the Normal Power II approximation

FS(x) ≈ Φ

(
− 3
γS

+

√
9
γ2

S

+ 1 +
6
γS

x− µS

σS

)
, (6)

where γS = E[(S − µS)3]/σ3/2
S . This approximation is valid for x > µS

only and performs reasonably well when γS < 1. See Daykin et al. (1994)
for details.

5 Interface

As mentioned earlier, function aggregateDist provides a unified interface
to the calculation methods presented in the previous sections. Adding other
methods is simple due to the modular conception of the function.

The arguments of aggregateDist() differs depending on the calculation
method; see the help page for details. One interesting argument to note is
x.scale to specify the monetary unit of the severity distribution. This way,
one does not have to mentally do the conversion between the support of
0, 1, 2, . . . assumed by the recursive and convolution methods and the true
support of S. Also, the resulting distribution is convoluted n times with itself
when argument convolve is equal to n > 0.

The result of aggregateDist() is slightly disconcerting at first. The
function returns an object of class "aggregateDist" inheriting from the
"function" class. In other words, the object is a function to compute the
value of FS(x) in any x.

For illustration purposes, consider the following model: the distribution
of S is a compound Poisson with parameter λ = 10 and severity distribution
Gamma(2, 1). To obtain an approximation of the cdf of S we first discretize
the gamma distribution on (0, 22) with the unbiased method and a step of
0.5, and then use the recursive method in aggregateDist:

> fx <- discretize(pgamma(x, 2, 1), from = 0, to = 22,

+ step = 0.5, method = "unbiased", lev = levgamma(x,

+ 2, 1))

> Fs <- aggregateDist("recursive", model.freq = "poisson",

+ model.sev = fx, lambda = 10, x.scale = 0.5)

> summary(Fs)

Aggregate Claim Amount Empirical CDF:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 14.5 19.5 20.0 25.0 71.0

Although useless here, the following is essentially equivalent, except in the
far right tail for numerical reasons:
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Fig. 2. Graphic of the empirical cdf of S obtained with the recursive method

> Fsc <- aggregateDist("recursive", model.freq = "poisson",

+ model.sev = fx, lambda = 5, convolve = 1, x.scale = 0.5)

> summary(Fsc)

Aggregate Claim Amount Empirical CDF:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 14.5 19.5 20.0 25.0 103.0

We now return to object Fs for the rest of our presentation. The object
contains an empirical cdf with support

> knots(Fs)

[1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
[12] 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5
...
[122] 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5
[133] 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 71.0

A nice graph of this function is obtained with a method of plot (see Fig. 2):

> plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 70))

6 Summary methods

The package defines a few summary methods to extract information from
"aggregateDist" objects. A first, simple one is a method of mean to easily
compute the mean of the approximate distribution:

> mean(Fs)

[1] 20
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A second is a method of quantile to obtain the quantiles of the aggregate
distribution:

> quantile(Fs)

25% 50% 75% 90% 95% 97.5% 99% 99.5%
14.5 19.5 25.0 30.5 34.0 37.0 41.0 43.5

For the normal and Normal Power approximations, the quantiles are obtained
by inversion of (5) and (6), respectively. For the other methods, where the
cdf is a step function, the quantile function is itself a step function by default.
With option smooth = TRUE, the quantile function is rather the inverse of
the ogive (Hogg and Klugman (1984)). This amounts to interpolate linearly
between the knots of the cdf. Indeed, given that

> Fs(c(30, 30.5))

[1] 0.8985 0.9076

compare

> quantile(Fs, 0.9)

90%
30.5

with

> quantile(Fs, 0.9, smooth = TRUE)

90%
30.08

A method of diff gives easy access to the underlying probability mass
function:

> diff(Fs)

[1] 6.293e-05 8.934e-05 1.767e-04 2.954e-04 4.604e-04
[6] 6.811e-04 9.662e-04 1.324e-03 1.760e-03 2.282e-03
...

[136] 5.432e-07 4.577e-07 3.854e-07 3.243e-07 2.726e-07
[141] 2.290e-07 1.923e-07 1.613e-07

Of course, this is defined (and makes sense) for the recursive, direct convo-
lution and simulation methods only.

Finally, the package introduces the generic functions VaR and CTE (with
alias TVaR) with methods for objects of class "aggregateDist". The former
computes the value-at-risk VaRα such that

Pr[S ≤ VaRα] = α, (7)
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where α is the confidence level. Thus, the value-at-risk is nothing else than
a quantile. As for the method of CTE, it computes the conditional tail expec-
tation (also called Tail Value-at-Risk)

CTEα = E[S|S > VaRα]

=
1

1− α

∫ ∞

VaRα

xfS(x) dx. (8)

Here are examples using object Fs obtained above:

> VaR(Fs)

90% 95% 99%
30.5 34.0 41.0

> CTE(Fs)

90% 95% 99%
35.42 38.55 45.01

We compute the conditional tail expectation by different means depending
on the method used in aggregateDist(). For the normal approximation, we
use the well known exact formula

CTEα = µ+ σ
φ(Φ−1(α))

1− α
.

For the Normal Power approximation, we evaluate the integral in (8) numer-
ically using R’s function integrate. For the other methods, which yield step
cdfs, we estimate (8) with

ĈTEα =

∑
x>VaRα

xfS(x)∑
x>VaRα

x
.

7 Conclusion

Computation of the cumulative distribution function of the total amount of
claims in an insurance portfolio is central to the risk assessment process con-
ducted by actuaries. Function aggregateDist of the R package actuar offers
a convenient and unified interface to five different computation or approx-
imating methods. Heavy calculations are implemented in C for speed. The
function returns a function object to compute the cdf in any point and for
which one can easily develop summary and plotting methods. The modular
design of aggregateDist() makes extending the software simple.

The actuar package is Free software released under the GNU General
Public License2. Contributions to the project are most welcome.

Finally, if you use R or actuar for actuarial analysis, please cite the
software in publications. Use
2 http://www.fsf.org/licensing/licenses/gpl.html
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> citation()

and

> citation("actuar")

at the R command prompt for information on how to cite the software.
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Abstract. Models with structured additive predictor provide a very broad and
rich framework for complex regression modeling. They can deal simultaneously with
nonlinear covariate effects and time trends, unit- or cluster specific heterogeneity,
spatial heterogeneity and complex interactions between covariates of different type.
In this paper, we discuss a hierarchical version of regression models with structured
additive predictor and its applications to insurance data. That is, the regression
coefficients of a particular nonlinear term may obey another regression model with
structured additive predictor. The proposed model may be regarded as a an ex-
tended version of a multilevel model with nonlinear covariate terms in every level
of the hierarchy. We describe several highly efficient MCMC sampling schemes that
allow to estimate complex models with several hierarchy levels and a large number
of observations typically within a couple of minutes. We demonstrate the usefulness
of the approach with applications to insurance data.

Keywords: Bayesian hierarchical models, multilevel models, P-splines, spa-
tial heterogeneity

1 Introduction

The last 10 to 15 years have seen enormous progress in Bayesian semipara-
metric regression modeling based on MCMC simulation for inference. A par-
ticularly broad and rich framework is provided by generalized structured
additive regression (STAR) models introduced in Fahrmeir et al. (2004) and
Brezger and Lang (2006). STAR models assume that, given covariates, the
distribution of response observations yi, i = 1, . . . , n, belongs to an exponen-
tial family. The conditional mean µi is linked to a semiparametric additive
predictor ηi by µi = h(ηi) where h(·) is a known response function. The
predictor ηi is of the form

ηi = f1(zi1) + . . .+ fq(ziq) + x′iγ, i = 1, . . . , n, (1)

where f1, . . . , fq are possibly nonlinear functions of the covariates z1, . . . , zq

and x′iγ is the usual linear part of the model. In contrast to pure additive
models the nonlinear functions fj are not necessarily smooth functions of

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 14, c© Springer-Verlag Berlin Heidelberg 2010
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some continuous (one-dimensional) covariates zj . Instead, a particular co-
variate may for example indicate a time scale, a spatial index denoting the
region or district a certain observation pertains to, or a unit- or cluster-index.
Moreover, zj may be two- or even three dimensional in order to model in-
teractions between covariates. Summarizing, the functions fj comprise usual
nonlinear effects of continuous covariates, time trends and seasonal effects,
two dimensional surfaces, varying coefficient terms, cluster- and spatial ef-
fects.

The nonlinear effects in (1) are modeled by a basis functions approach, i.e.
a particular nonlinear function f of covariate z is approximated by a linear
combination of basis or indicator functions

f(z) =
K∑

k=1

βkBk(z). (2)

The Bk’s are known basis functions and β = (β1, . . . , βK)′ is a vector of
unknown regression coefficients to be estimated. Defining the n ×K design
matrix Z with elements Z[i, k] = Bk(zi), the vector f = (f(z1), . . . , f(zn))′ of
function evaluations can be written in matrix notation as f = Zβ. Accord-
ingly, for the predictor (1) we obtain

η = Z1β1 + . . .+ Zqβq + Xγ. (3)

In this paper we discuss a hierarchical or multilevel version of STAR models.
That is the regression coefficients βj of a term fj may themselves obey a
regression model with structured additive predictor, i.e.

βj = ηj + εj = Zj1βj1 + . . .+ Zjqj βjqj
+ Xjγj + εj , (4)

where the terms Zj1βj1, . . . ,Zjqj βjqj
correspond to additional nonlinear func-

tions fj1, . . . , fjqj
, Xjγj comprises additional linear effects, and εj ∼ N(0, τ2

j I)
is a vector of i.i.d. Gaussian errors. A third or even higher levels in the hi-
erarchy are possible by assuming that the second level regression parameters
βjl, l = 1, . . . , qj , obey again a STAR model. In that sense, the model is
composed of a hierarchy of complex structured additive regression models.

The typical application for hierarchical STAR models are multilevel data
where a hierarchy of units or clusters grouped at different levels is given. One
of the main aspects of the paper are applications of multilevel STAR models
to insurance data. In a first example, we apply our methods to analyze the
amount of loss and claim frequency for car insurance data from a German
insurance company. In our analysis in section 4.1 we will distinguish three
levels: policyholders (level-1) are nested in districts (level-2) and districts are
nested in counties (level-3). Our second example analyzes time-space trends
for health insurance data.
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2 Priors for the regression coefficient

We distinguish two types of priors: “direct” or “basic” priors for the regres-
sion coefficients βj (or βjl in a second level equation) and compound priors
(4). We first briefly describe the general form of “basic” priors in the next
subsection. Subsection 2.2 shows how the basic priors can be used as building
blocks for the compound priors.

2.1 General form of basic priors

In a frequentist setting, overfitting of a particular function f = Zβ is avoided
by defining a roughness penalty on the regression coefficients, see for instance
Belitz and Lang (2008) in the context of structured additive regression. The
standard are quadratic penalties of the form λβ′Kβ where K is a penalty
matrix. The penalty depends on the smoothing parameter λ that governs the
amount of smoothness imposed on the function f .

In a Bayesian framework a standard smoothness prior is a (possibly im-
proper) Gaussian prior of the form

p(β|τ2) ∝
(

1
τ2

)rk(K)/2

exp
(
− 1

2τ2
β′Kβ

)
· I(Aβ = 0), (5)

where I(·) is the indicator function. The key components of the prior are the
penalty matrix K, the variance parameter τ2 and the constraint Aβ = 0.

The structure of the penalty or prior precision matrix K depends on the
covariate type and on our prior assumptions about smoothness of f . Typically
the penalty matrix in our examples is rank deficient, i.e. rk(K) < K, resulting
in a partially improper prior.

The amount of smoothness is governed by the variance parameter τ2. A
conjugate inverse Gamma prior is employed for τ2 (as well as for the overall
variance parameter σ2 in models with Gaussian responses), i.e. τ2 ∼ IG(a, b)
with small values such as a = b = 0.001 for the hyperparameters a and b
resulting in an uninformative prior on the log scale. The smoothing parameter
λ of the frequentist approach and the variance parameter τ2 are connected
by λ = σ2/τ2.

The term I(Aβ = 0) imposes required identifiability constraints on the
parameter vector. A straightforward choice is A = (1, . . . , 1), i.e. the regres-
sion coefficients are centered around zero. A better choice in terms of inter-
pretability and mixing of the resulting Markov chains is to use a weighted
average of regression coefficients, i.e. A = (c1, . . . , cK). As a standard we use
ck =

∑n
i=1Bk(zi) resulting in the more natural constraint

∑n
i=1 f(zi) = 0.

Specific examples for modeling nonlinear terms are one or two dimensional
P-splines for nonlinear effects of continuous covariates, or Gaussian Markov
random fields and Gaussian fields (kriging) for modeling spatial heterogeneity,
see Brezger and Lang (2006) for details.
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2.2 Compound priors

In the vast majority of cases a compound prior is used if a covariate zj ∈
{1, . . . ,K} is a unit- or cluster index and zij indicates the cluster observation
i pertains to. Then the design matrix Zj is a n ×K incidence matrix with
Zj [i, k] = 1 if the i-th observation belongs to cluster k and zero else. The
K × 1 parameter vector βj is the vector of regression parameters, i.e. the k-
th element in β corresponds to the regression coefficient of the k-th cluster.
Using the compound prior (4) we obtain an additive decomposition of the
cluster specific effect. The covariates zjl, l = 1, . . . , qj , in (4) are cluster
specific covariates with possible nonlinear cluster effect. By allowing a full
STAR predictor (as in the level-1 equation) a rather complex decomposition
of the cluster effect βj including interactions is possible. A special case arises
if cluster specific covariates are not available. Then the prior for βj collapses
to βj = εj ∼ N(τ2

j I) and we obtain a simple i.i.d. Gaussian cluster specific
random effect with variance parameter τ2

j .
Another special situation arises if the data are grouped according to some

discrete geographical grid and the cluster index zij denotes the geographical
region observation i pertains to. For instance, in our applications on insur-
ance data in section 4 for every observation the district of the policyholders
residence is given. Then the compound prior (4) models a complex spatial
heterogeneity effect with possibly nonlinear effects of region specific covari-
ates zjl.

In a number of applications geographical information and spatial covari-
ates are given at different resolutions. For instance, in our case studies on
insurance problems, the districts (level-2) are nested within counties (level-
3). This allows to model a spatial effect over two levels of the form

βj = Zj1βj1 + Zj2βj2 + . . .+ εj ,

βj1 = Zj11βj11 + Zj12βj12 + . . .+ εj1.

Here, the first covariate zj1 in the district specific effect is another cluster
indicator that indicates the county in which the districts are nested. Hence
Zj1 is another incidence matrix and βj1 is the vector of county specific effects
modeled through the level-3 equation.

Other possibilities for compound priors can be found in Lang et al. (2010).

3 Sketch of MCMC Inference

In the following, we will describe a Gibbs sampler for models with Gaussian
errors. The non-Gaussian case can be either traced back to the Gaussian
case via data augmentation, see e.g Frühwirth-Schnatter et al. (2008), or is
technically similar (Brezger and Lang (2006)).
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For the sake of simplicity we restrict the presentation to a two level hierar-
chical model with one level-2 equation for the regression coefficients of the first
term Z1β1. That is, the level-1 equation is y = η+ε with predictor (3) and er-
rors ε ∼ N(0, σ2W−1) with diagonal weight matrix W = diag(w1, . . . , wn).
The level-2 equation is of the form (4) with j = 1.

The parameters are updated in blocks where each vector of regression
coefficients βj (β1l in a second level of the hierarchy) of a particular term
is updated in one (possibly large) block followed by updating the regression
coefficients γ, γ1 of linear effects and the variance components τ2

j , τ2
1l, σ

2.
The next subsection 3.1 sketches updates of regression coefficients βj , β1l of
nonlinear terms. Updates of the remaining parameters are straightforward.

3.1 Full conditionals for regression coefficients of nonlinear terms

The full conditionals for the regression coefficients β1 with the compound
prior (4) and the coefficients βj , j = 2, . . . , q, β1l, l = 1, . . . , q1 with the basic
prior (5) are all multivariate Gaussian. The respective posterior precision
Σ−1 and mean µ is given by

Σ−1 = 1
σ2

(
Z′1WZ1 + σ2

τ2
1
I
)
, Σ−1µ = 1

σ2 Z′1Wr + 1
τ2
1
η1, (β1),

Σ−1 = 1
σ2

(
Z′jWZj + σ2

τ2
j
Kj

)
, Σ−1µ = 1

σ2 Z′jWr, (βj),

Σ−1 = 1
τ2
1

(
Z′1lZ1l + τ2

1
τ2
1l
K1l

)
, Σ−1µ = 1

τ2
1
Z′1l r1, (β1l),

(6)

where r is the current partial residual and r1 is the “partial residual” of the
level-2 equation. More precisely, r1 = β1 − η̃1 and η̃1 is the predictor of the
level-2 equation excluding the current effect of z1l.

MCMC updates of the regression coefficients takes advantage of the fol-
lowing key features:

Sparsity: Design matrices Zj ,Z1l and penalty matrices Kj ,K1l and with
it cross products Z′jWZj ,Z′1lZ1l and posterior precision matrices in (6) are
often sparse. The sparsity can be exploited for highly efficient computation of
cross products, Cholesky decompositions of posterior precision matrices and
for fast solving of relevant linear equation systems.

Reduced complexity in the second or third stage of the hierarchy: Updating
the regression coefficients β1l, l = 1, . . . , q1, in the second (or third level) is
done conditionally on the parameter vector β1. This facilitates updating the
parameters for two reasons. First the number of “observations” in the level-
2 equation is equal to the length of the vector β1 and therefore much less
than the actual number of observations n. Second the full conditionals for
β1l are Gaussian regardless of the response distribution in the first level of
the hierarchy.

Number of different observations smaller than sample size: In most cases
the number mj of different observations z(1), . . . , z(mj) in Zj (or m1l in Z1l in
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the level-2 equation) is much smaller than the total number n of observations.
The fact that mj � n may be utilized to considerably speed up computations
of the cross products Z′jWZj , Z′1lZ1l, the vectors Z′jWr, Z′1l r1 and finally
the updated vectors of function evaluations fj = Zjβj , f1l = Z1lβ1l.

Full details of the MCMC techniques can be found in Lang et al. (2010).

3.2 Alternative sampling scheme based on a transformed
parametrization

An alternative sampling scheme works with a transformed parametrization
such that the cross product of the design matrix and the penalty matrix of a
nonlinear term are diagonal resulting in a diagonal posterior precision matrix.

We describe the alternative parametrization for a particular nonlinear
function f with design matrix Z and parameter vector β with general prior
(5).

Let Z′WZ = RR′ be the Cholesky decomposition of the cross product
of the design matrix and let QSQ′ be the singular value decomposition of
R−1KR−T . The diagonal matrix S = diag(s1, . . . , sK) contains the eigenval-
ues of R−1KR−T in ascending order. The columns of the orthogonal matrix
Q contain the corresponding eigenvectors. Columns 1 through rk(K) form
a basis for the vector space spanned by the columns of R−1KR−T . The
remaining columns are a basis of the nullspace.

Then the decomposition β = R−T Qβ̃ yields

Zβ = ZR−T Qβ̃ = Z̃β̃,

where the transformed design matrix Z̃ is defined by Z̃ = ZR−T Q.
We now obtain for the cross product

Z′WZ = Q′R−1Z′WZR−T Q = Q′Q = I

and for the penalty

β′Kβ = β̃
′
Q′R−1KR−T Qβ̃ = β̃

′
Sβ̃

with the new diagonal penalty matrix S given by the singular value decom-
position of R−1KR−T , see above.

Summarizing, we obtain the equivalent formulation f = Z̃β̃ for the vector
of function evaluations based on the transformed design matrix Z̃ and the
transformed parameter vector β̃ with (possibly improper) Gaussian prior

β̃ | τ2 ∼ N(0, τ2S−).

The result of the transformation is that the prior precision or penalty ma-
trix S is diagonal resulting in a diagonal posterior precision matrix. More
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specifically, the full conditional for β̃ is Gaussian with k-th element µk,
k = 1, . . . ,K, of the mean vector µ given by

µk =
1

1 + λ sk
· uk,

where λ = σ2/τ2 and uk is the k-th element of the vector u = Z̃′Wr with
r the partial residual. The covariance matrix Σ is diagonal with diagonal
elements

Σ[k, k] =
σ2

1 + λ sk
.

More details on this alternative sampling scheme can be found in Lang et al.
(2010).

The main advantage of the transformation is that it provides fast MCMC
inference even in situations where the posterior precision is relatively dense as
is the case for many surface estimators. The prime example is a Gaussian ran-
dom field (kriging) which is almost intractable in the standard parametriza-
tion.

4 Applications to insurance data

4.1 Car insurance data

The analyzed data set contains individual observations for a sample of pol-
icyholders with full comprehensive car insurance for one year. Regression
analyzes for claim probabilities and amount of loss were carried out sepa-
rately for different types of damage: traffic accidents, breakage of glass and
theft. Here we report only results for claim probabilities of one type (specific
type not mentioned to guarantee anonymity of the data source).

Claim probabilities were analyzed with a multilevel structured additive
probit model yi ∼ B(πi) with three hierarchy levels for the probability πi =
Φ(ηi) that a damage occurred:

level-1 η = · · ·+ f1(nclaim) + f2(g) + f3(dist)

= · · ·+ Z1β1 + Z2β2 + Z3β3

level-2 β2 = ε2

level-2 β3 = f31(dist) + f32(county) + f33(dens) + ε3

= Z31β31 + Z32β32 + Z33β33 + ε3

level-3 β32 = ε32

The level-1 equation consists of a nonlinear function f1 of the covariate
“no-claims bonus” (nclaim) and of nonlinear effects of three other contin-
uous covariates (indicated through the dots, results not shown to guarantee
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anonymity of the data provider). All nonlinear effects are modeled using P-
splines. Additionally a random effect of the “car classification” (g) measured
by scores from 10-40 and a spatial random effect of the districts (dist) in Ger-
many is included. For “car classification” a simple i.i.d random effect with
ε2 ∼ N(0, σ2

2) is assumed, see the first level-2 equation. The spatial random
effect is modeled through the other level-2 equation and is composed of a
spatially correlated effect f31 using a Markov random fields prior, another
spatial random effect of the counties, and a smooth nonlinear effect of the
population density (dens). The “error term” in the district effect is a i.i.d ran-
dom effect, i.e. ε3 ∼ N(0, σ2

3). For the county specific effect in the third level
equation a simple i.i.d random effect without further covariates is assumed,
i.e. ε32 ∼ N(0, σ2

32). One of the advantages of our approach is that we are
able to model spatial heterogeneity at different resolutions (here district and
county level). This allows a very detailed modeling of spatial heterogeneity
and provides further insight into the problem.

Results for the effects of “no-claims bonus” and “car classification” are
given in figure 1 showing a monotonically decreasing effect for nclaim. Since
higher scores for car classification roughly correspond to “bigger cars” the
random effect for g is more or less increasing with scores (with notable ex-
ceptions for car groups 32 and 34).

A visualization of the spatial effect β3 can be found in figure 3. It is
composed of the spatially smooth district effect f31(dist), the district i.i.d.
random effect ε3, the county random effect f32(county) and the nonlinear
effect f33(dens) of population density. The i.i.d district random effect is very
small while the other effects are considerably stronger and roughly of equal
size (all effects not shown to save space). Inspecting the total spatial effect in
figure 3 reveals a clear north south pattern with lower damage probabilities
in the north, in particular the less densely populated north eastern part of
Germany, and higher probabilities in the south. We nicely see the effect of
the “population density” dens as the most densely populated urban areas of
Germany are mostly colored in dark grey or black indication higher damage
probabilities as in the rural areas. The effect f33(dens) itself is almost linearly
increasing (not shown).

4.2 Health insurance data

In our second example we exemplify modeling of space-time interactions us-
ing data from a German private health insurance company. In a consulting
case the main interest was on analyzing the dependence of treatment costs on
covariates with a special emphasis on modeling the spatio-temporal develop-
ment. We distinguish several types of treatment costs. In this demonstrating
example, we present results for “treatment with operation” in hospital. We as-
sumed a two level Gaussian model for the log treatment costs Cit ∼ N(ηit, σ

2)
for policyholder i at time t and with predictor

ηit = · · ·+ f1(Ait) + f2(t, countyit) + f3(Dit),
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Fig. 1. Car insurance: Effect of “no claims bonus” and “car classification” random
effect including 80% and 95% pointwise credible intervals.

Fig. 2. Car insurance: Visualization of the spatial random effect.

where f1 is a nonlinear effect of the policyholders age modeled via P-splines,
f2 represents county specific nonlinear time trends modeled again using P-
splines, and f3 is a district specific spatial random effect modeled in a second
level equation (not shown here). The time-space interaction f2 is regularized
by assuming a common variance parameter for the otherwise unrestricted
curves.

Figure 4 displays the county specific time trends showing considerable
variation from county to county. For comparison figure 3 shows for the coun-
ties in the last row of figure 4 the time trend if the different curves are not
regularized through common variance parameters, i.e. different variance pa-
rameters are assumed for each curve. Obviously the curves are much more
wiggled and the credible intervals show some instability.
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Fig. 3. Health insurance: Visualization of the space-time interaction f2(t, countyit).

Fig. 4. Health insurance: Visualization of the space-time interaction for Hamburg,
Bremen, Rheinland-Pfalz and Saarland if different variance parameters are used for
the county specify time trends.
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Abstract. Classification methods have proven effective for predicting the credit-
worthiness of credit applications. However, the tendency of the underlying popu-
lations to change over time, population drift, is a fundamental problem for such
classifiers. The problem manifests as decreasing performance as the classifier ages
and is typically handled by periodic classifier reconstruction. To maintain perfor-
mance between rebuilds, we propose an adaptive and incremental linear classifica-
tion rule that is updated on the arrival of new labeled data. We consider adapting
this method to suit credit application classification and demonstrate, with real loan
data, that the method outperforms static and periodically rebuilt linear classifiers.

Keywords: classification, credit scoring, population drift, forgetting fac-
tor

1 Introduction

An important application of credit scoring is classifying credit applicants as
good or bad risk. In many situations, such as classifying unsecured personal
loans (UPLs) in the UK, there is a legislative requirement to justify the
rejection of applications. Such justifications are easier to make with some
forms of statistical model than others. In particular, if a model is linear in
the predictor variables then the coefficient of each variable can be regarded
as a measure of its importance to the prediction. For this reason, logistic
regression, and to a lesser extent linear discriminant analysis (LDA), are
widely used (Hand and Henley (1997)).

There are a number of outstanding problems related to credit applica-
tion classification (CAC), including reject inference (e.g. Hand (2001)) and
population drift (e.g. Kelly et al. (1999)). The latter problem arises because
the classifier is deployed on data arising from distributions different to the
training data. These distributional changes can be gradual or abrupt, and
can arise for many reasons, including changes in the economic climate and
changing legislation. Population drift is a problem in many areas, including

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 15, c© Springer-Verlag Berlin Heidelberg 2010
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target tracking, spam filtering, user preference tracking, and telecommuni-
cations. There are various proposals for extending conventional classifiers to
handle population drift; Anagnostopoulos et al. (2009) gives a brief review.

Population drift in particular leads to the operational performance of CAC
degrading over time. When this degradation is sufficiently serious the classi-
fier is rebuilt (Lucas (1992)). This classifier rebuilding exercise is expensive,
and while effective, the operational classifier is still subject to performance
degradation between rebuilds. In this paper, we extend a recently developed
incremental and adaptive classifier (Anagnostopoulos et al. (2009)) to ame-
liorate the effect of population drift in CAC, by incorporating new data as
they become available during the operational life of the classifier. We restrict
attention to linear classifiers, in order to match the legacy systems used by
banks, as well as explanatory legislative requirements.

In the next section, we describe how CAC can be treated in the framework
of LDA. In Sec. 3, we employ the method of Anagnostopoulos et al. (2009) to
derive adaptive and online updates for the classifier, with attention to specific
aspects of CAC. The approach is demonstrated on real UPL data in Sec. 4.

2 Classification and credit scoring

CAC is typically a two-class problem, classifying applications as either good
risk or bad risk. Vectors of predictor variables, x, are derived from the loan
application, including information related to applicant’s address and back-
ground, and employment. Usually, components of these vectors are categori-
cal, with continuous variables being divided into categories, and with a wide
range of transformations begin explored (e.g. Siddiqi (2006, Ch. 6)).

The approach we consider is inspired by two-class LDA. Following Webb
(2002, Ch.4), we begin with Fisher’s criterion, which seeks a linear combina-
tion of the predictor variables, w, to maximise

|wT (µ̂(1) − µ̂(2))|2

wT Σ̂W w
(1)

where µ(i) is the sample mean vector of the ith class data, and Σ̂W is the
pooled within-group covariance matrix :

Σ̂W =
1

n− 2

(
n(1)Σ̂1 + n(2)Σ̂2

)
.

Here, Σ̂i and n(i) are the sample covariance matrix and the sample size of
the ith class data set, respectively, and n = n(1) +n(2). These parameters are
computed as

µ̂(j) =
1
n(j)

n(j)∑
t=1

xt, Σ̂(j) =
1
n(j)

n(j)∑
t=1

(xt−µ̂(j))(xt−µ̂(j))T , p̂(j) =
n(j)

n(1) + n(2)

(2)
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Where we additionally compute the estimated prior probabilities, p(i), which
contribute later to the classification threshold. The vector w which maximises
Eq.(1) is proportional to Σ̂−1

W (µ̂1−µ̂2). This provides a quite general formula-
tion, which is simply concerned with the estimated first and second moments
of each class distribution. By adding a threshold related to the prior proba-
bilities (e.g. Webb (2002, Ch.4)), we obtain the linear discriminant function

gj(x) = log(p̂(j))− 1
2
(µ̂(j))T Σ̂−1

W µ̂(j) + xT Σ̂−1
W µ̂(j). (3)

We briefly discuss the complex timing of credit application data. Predictor
vectors, x, arrive when applications are granted credit. Later, the associated
class label arrives. Typical definitions of creditworthiness mean the bad risk
label can often be assigned within a months of the loan commencing, whereas
the good-risk label can only be assigned near the end. As such these popula-
tions may not be comparable. This is a fundamental and difficult point that
is usually overlooked.

Credit application classifiers are built from sets of historic data. These
sets consist of complete (predictor vector and label) observations in a time
window. The timing of predictor vectors and associated class labels, and
other aspects of temporal misalignment, are ignored. Missing data tools and
information fusion are required for a complete treatment of CAC.

Our objective in this paper is to show that adaptive classifiers can im-
prove performance between rebuilds by incorporating new data, during the
operational life of the classifier. As with the conventional approach, we ignore
other aspects of synchronisation.

3 Adaptive Linear Classifier

We outline an efficient and temporally adaptive mechanism for parametric
estimation, which updates parameter estimates for each class when new la-
beled data is available. This updating is implemented in an adaptive way,
involving forgetting factors, for each class. Such parameters control the ex-
tent of the contribution of historical data. Moreover, we develop an adaptive
version that sets forgetting factors in response to changes in the data. This
version provides a potentially useful monitoring tool. The generic approach
is described in detail in Anagnostopoulos et al. (2009), where an adaptive
quadratic discriminant rule is demonstrated to be effective for a variety of
population drift scenarios. This framework is concerned with first and second
moment estimates and is hence applicable in this case. Certain modifications
are required in order to deal with important characteristics of the CAC prob-
lem. We explain these modifications in Sec. 3.2.

First, consider the problem of computing the sample mean vector and
sample covariance matrix of t p-dimensional vectors xi, i = 1, . . . , t. The
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sample estimates are given in Eq. (2). These estimates can be updated with
the following recursions:

mt+1 = mt + xt+1, µ̂t+1 =
mt+1

t+ 1
, m0 = 0,

St+1 = St + (xt+1 − µ̂t+1)(xt+1 − µ̂t+1)
T , Σ̂t+1 =

St+1

t+ 1
, S0 = 0.

This formulation is computationally efficient and requires no data storage.
However, it assumes that the data are identically distributed. If the distri-
bution is changing then this approach is clearly inadequate. To avoid using
an explicit model for this change, we appeal to heuristics. Perhaps the sim-
plest approach is to use a sliding window, and a simple refinement is variable
window size. In either case, selecting the window size is non-trivial.

The more elegant approach developed by Anagnostopoulos et al. (2009),
borrowing ideas from adaptive filter theory (Haykin (2001)), is to incorporate
a forgetting factor, λ, which is responsible for down-weighting older data:

mt+1 = λmt + xt+1, µ̂t+1 = mt+1/nt+1, m0 = 0 (4)

St+1 = λSt + (xt+1 − µ̂t+1)(xt+1 − µ̂t+1)
T , Σ̂t+1 = St+1/nt+1, S0 = 0

(5)

where m and S are not scaled by the number of datapoints, but rather by
the quantity nt, which represents the total amount of information currently
employed, i.e., the effective sample size:

nt+1 = λnt + 1, n0 = 0 (6)

For λ = 1, nt = t, and the entire data history is employed. However, for λ < 1,
the effective sample size remains finite as t increases. This captures the fact
that only a finite amount of the most recent information is employed, i.e., the
algorithm has finite memory. Thus, the forgetting factor can be regarded as a
smoother version of a fixed-size window. In this sense, setting λ is equivalent
to choosing a window-size. However, the fact that this parameter interacts
with the data in a continuous way may be exploited to devise efficient, data-
adaptive tuning methods, as described next. Note that analogous recursive
equations for a multinomial distribution, relevant for tracking the class prior,
p̂(i), are given in Anagnostopoulos et al. (2009).

3.1 Adaptive memory

Extending the above framework to handle a time-varying forgetting factor,
λt, is straightforward. In particular, the effective sample size will be given by

nt = λtnt−1 + 1,

which is analogous to a variable size sliding window.
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The proposal of Haykin (2001) for tuning forgetting factors in recursive
least squares is extended in Anagnostopoulos et al. (2009) to a general like-
lihood framework, which seeks to optimise the model with respect to the
forgetting factor, yielding the following recursion:

λt = λt−1 + αL′t, where L′t :=
L(xt; θ̂t−1)

∂λ

is the partial derivative of the a-priori likelihood at time t wrt the forget-
ting factor λ, and α is a step-size parameter. Within this framework, the
parameters Σ̂W , µ̂(i), and p̂(i), in Eq.(3), can be handled in a fully adaptive
manner.

Detailed calculations in Anagnostopoulos et al. (2009) provide recursions
for both Gaussian and multinomial distributions, implementing the stochas-
tic optimisation above. This framework is very efficient, with a complexity
that may be reduced to O(p2) operations per timepoint. In the context of
CAC, such efficiency may be unnecessary. For brevity, we defer the complete
algorithmic description to Anagnostopoulos et al. (2009).

3.2 Building adaptive classifiers

The key to obtaining an adaptive linear classifier is to replace the parameter
estimates in Eq.(3) with adaptive parameters computed using the framework
above. We now discuss adapting this idea to the CAC, with particular at-
tention to computation of the pooled covariance and the relaxation of the
regular sampling frequency underlying the adaptive framework.

First, we consider how to construct the streaming equivalent of Σ̂W . In
the static case, this matrix is obtained by an average of the class-conditional
covariance matrices, weighted by the respective relative frequencies. These
latter are tracked by the adaptive multinomial model in the streaming case.
This analogy suggests that we should employ the estimated prior probabilities
in order to form the weighted sum that constitutes the pooled covariance.

Another view of the static construction provides an alternative stream-
ing formulation. The static Σ̂W may be obtained by computing the class-
conditional means, then centering all datapoints around their respective means
and finally computing the sample covariance of this novel, zero mean dataset.
Defining a streaming analogue of this procedure is straightforward in our
framework: upon receiving a novel datapoint, we first use it to update the
class-conditional mean vectors. These vectors are tracked via two adaptive
models, one for each class, where the covariance is fixed to the identity matrix.
We then subtract the respective mean estimate from the novel datapoint and
input the residual to a third adaptive model that is responsible for tracking
the within-group covariance, where the mean is fixed to zero.

The most significant difference in the latter approach is that the pooled
covariance matrix has its own forgetting factor, tuned independently of all
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other parameters. Therefore, the objective of adaptive forgetting in the latter
model is not to track the classes as well as possible, and subsequently form the
decision rule, but rather to monitor changes in the parameters that directly
affect the decision boundary, namely the means and pooled covariance.

In summary, we have two distinct streaming implementations of LDA

• LDA-3: (3 forgetting factors) adaptively estimate p̂(i); adaptively esti-
mate parameters for each class; construct Σ̂W using p̂(i).
• LDA-4C: (4 forgetting factors) adaptively estimate p̂(i); adaptively es-

timate µ̂i; adaptively estimate Σ̂W on the Centered datapoints.

The second issue to resolve for CAC relates to sampling frequency. The
adaptive methods in Sec. 3 are built on a constant sampling frequency model,
which is certainly not correct for CAC. To deploy our methodology, we re-
gard both predictor vector and class label as arriving when the class label
arrives. We resort to two simple solutions, immediate updating and periodic
updating, to handle the sampling frequency issue. The former updates every
time a new labeled datum arrives – effectively treating the data sequence as
if it were regularly sampled. Given the complicated structure of the labeling
mechanism, this simple heuristic may not be appropriate. Alternatively, we
may set a certain time period as our fundamental sampling unit. A reasonable
choice would be a working day. In this case, on a given day, there are three
possibilities: (a) a single labeled datum arrives, (b) multiple labeled data ar-
rives or (c) no data arrives. Problems arise with (b) and (c). For (b), consider
that rt labelled accounts arrive on day t. In this case we simply update using
the mean vector of these rt data. In case (c) the corresponding estimated
statistics are not updated. The main difference between immediate and daily
updating is expected to lie in the behavior of the forgetting factors: in the for-
mer case they are meant to react to change between consecutive datapoints,
whereas in the latter they should react to change over regular time periods.

4 Data and Experiments

We experiment with real data previously analysed in Kelly et al. (1999).
This consists of 92258 UPL applications accepted between 1993 and 1997.
The twenty predictor variables are standard for this application, including
age, occupation, income, time at address, and details of the applicant’s rela-
tionship with the lender. These were selected and transformed according to
the data provider’s standard procedures.

Population drifts may manifest differently across the predictor variables.
Fig. 1 gives two examples of drift. The top left plot shows the weekly average
value of a categorical indicator representing credit card ownership, with a
smooth regression estimate. The top right plot of Fig. 1 shows the weekly
average for a repayment method variable. The abrupt change in this plot
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Fig. 1. Population drift examples. Top left and middle show applicants labelled as
good risk and bad risk for two variables. Bottom shows monthly estimated class
prior.

can be accounted for by a change in policy, to discourage non-automatic
repayment.

The bottom plot of Fig. 1 demonstrates changing priors by plotting the
monthly proportion of bad risk customers. The dataset is sufficiently large
that these monthly differences are unlikely to be statistical fluctuations. Thus,
it is reasonable to suppose that the prior for the bad risk class actually varied
between 8% and 14% over the observation period. Note also clear jumps
around the Christmas period each year in the right plot of Fig. 1.

Various modes of population drift are certainly evident in this data set. To
determine its impact on any type of classifier requires an appropriate perfor-
mance measure. Frequently, the area under the ROC curve (AUC) is used as
a performance measure for assessing classifiers. For a variety of reasons (e.g.
Adams and Hand (1999), Hand (2005), Hand (2009)), and for consistency
with Kelly et al. (1999) we prefer to assess performance using the “bad rate
among accepts”. This measure proceeds by giving loans to a fixed proportion,
π, of applications, over a fixed period. These should be the 100π% of applica-
tions predicted as least likely to be bad risk. The performance measure, bad
rate among accepts (BRAA) is then the proportion of these accepted appli-
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cations that become bad risk accounts. Clearly, the objective is to minimise
the BRAA. We report a relative measure derived from monthly BRAA.

We compare a variety of approaches: LDA-S, the S tatic classifier, never
modified after original construction on the first year of data; LDA-W, starting
with the static classifer, incrementally update as new data arrives, while
removing oldest data, corresponding to a fixed size sliding W indow; LDA-
R, Rebuild the model at yearly intervals; LDA-3Fλ, adaptive LDA model
described earlier, with three F ixed forgetting factors, at λt = λ; LDA-4CFλ,
adaptive LDA model with C entering, and four F ixed forgetting factors, λt =
λ; LDA-3A, as LDA-Fλ, with Adaptive forgetting; and LDA-4CA. As in
LDA-CFλ, but with Adaptive forgetting. The latter four methods are variants
of the adaptive approach in Sec. 3.1.

Each method is used to classify the applications, and the BRAA is cal-
culated for each method on a monthly basis. We regard LDA-S as the base
classifier against which we seek improvement. For other classifiers, the dif-
ference to the BRAA of LDA-S, is used as the performance measure. Thus,
negative values indicate that a classifier is performing worse than LDA-S.
Note that this comparison does not really reflect the CAC problem, since
we incorporate rejected applicants. However, this is sufficiently close to still
provide meaningful results.

We assess the performance of the various methods for the final four years
of data. In the left plot of Fig. 2, we employ daily updating for all methods.The
right plot of Fig. 2 reports the results of immediate updating – which im-
proves performance for all algorithms (note scale difference between plots),
but interestingly does not affect the relative qualities of the algorithms.

The primary observation is that all streaming methods outperform the
static classifier considerably, confirming the presence of drift in the data and
the adaptive capacities of streaming methods. Note that 7867 and 6729 bads
have been correctly identified by LDA-S, and the best-performing streaming
classifier, LDA-3F0.9, respectively. Since bad customers are associated with
higher costs, this reduction will be associated with increased profit.

The periodically rebuilt classifier LDA-R performs better than LDA-W,
presumably since it has sufficient sample size to achieve stable estimates.
Nevertheless, LDA-R still experiences long periods of negligible performance

Fig. 2. Relative performance of various methods. Left: Daily update. Right: Imme-
diate update.
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improvement and is greatly outperformed by streaming methods. This is un-
surprising since we would expect that, in the absence of strong prior knowl-
edge, the updating period would in general fail to synchronise with the timing
of the changes in the underlying distributions. This problem is also overcome
with forgetting factors, either fixed or adaptive: the algorithm is capable of
discounting information all the time.

We now compare different streaming methods. The centering approach,
LDA-4C, demonstrates superior performance to LDA-3A, very visibly so in
the case of fixed forgetting (LDA-4CF0.9 vs LDA-3F0.9), but also in the
case of adaptive forgetting (LDA-C vs LDA-A). This confirms our claim that
LDA-C is better suited to accurately track changes in the decision bound-
ary than its counterpart. Note that fixed forgetting is preferable to adaptive
tuning for both models in this experiment. However not all fixed forgetting
factors perform as well as the best choice (not shown). Determining good
fixed choices required offline experimentation. Thus, there is merit in the
adaptive approach, since it requires no tuning from the user.

Another strength of adaptive forgetting is the capacity to reveal aspects
of the drift structure. For example, the left plot in Fig. 3 displays λt for the
two classes (for LDA-CAF) using daily updating. In the right plot of Fig. 3
the same results are shown for immediate updating, smoothed and further
zoomed in. Note that the increased volatility of λt for immediate updating is
expected: drift or changepoints are exacerbated by irregular sampling. In both
plots λ(1) corresponds to the forgetting factor related to the non-defaulting
class, λ(2) for the defaulting class and λ(3) corresponds to the pooled within-
group sample covariance.

Both methods identify a change in January. However, the methodology
yields further insight into how this change unfolds: just before the end of year
the good risk class changes substantially, whereas the bad risk class shows
changes in a relatively uniform manner. However the low values of λ(3) just
after the end of year show that there is a need to change the decision surface
at this point. This phenomenon is confirmed by either daily and immediate
updating.

Fig. 3. Monitoring behaviour of adaptive forgetting factors, July 1995-March 1996,
from LDA-CAF. Left: Daily updating. Right: Immediate updating.
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5 Conclusion

We have shown how to adapt streaming classification technology to the CAC
problem. In experiments, we have shown that some amount of temporal adap-
tion yields improved performance. In particular, for this data set, changing
class-priors and within-group covariance are important sources of population
drift. Our approach is generic however, and can handle other sources of drift,
in addition to providing a means of monitoring which is particularly useful
for data exploration.

Of course, caution suggests that any automatically updated model should
be monitored to check that it is behaving reasonably. For CAC, performance
monitoring tools are in any case in routine use as a matter of course.
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Large-Scale Machine Learning
with Stochastic Gradient Descent
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Abstract. During the last decade, the data sizes have grown faster than the speed
of processors. In this context, the capabilities of statistical machine learning meth-
ods is limited by the computing time rather than the sample size. A more pre-
cise analysis uncovers qualitatively different tradeoffs for the case of small-scale
and large-scale learning problems. The large-scale case involves the computational
complexity of the underlying optimization algorithm in non-trivial ways. Unlikely
optimization algorithms such as stochastic gradient descent show amazing perfor-
mance for large-scale problems. In particular, second order stochastic gradient and
averaged stochastic gradient are asymptotically efficient after a single pass on the
training set.

Keywords: stochastic gradient descent, online learning, efficiency

1 Introduction

The computational complexity of learning algorithm becomes the critical
limiting factor when one envisions very large datasets. This contribution ad-
vocates stochastic gradient algorithms for large scale machine learning prob-
lems. The first section describes the stochastic gradient algorithm. The sec-
ond section presents an analysis that explains why stochastic gradient algo-
rithms are attractive when the data is abundant. The third section discusses
the asymptotical efficiency of estimates obtained after a single pass over the
training set. The last section presents empirical evidence.

2 Learning with gradient descent

Let us first consider a simple supervised learning setup. Each example z
is a pair (x, y) composed of an arbitrary input x and a scalar output y. We
consider a loss function `(ŷ, y) that measures the cost of predicting ŷ when the
actual answer is y, and we choose a family F of functions fw(x) parametrized
by a weight vector w. We seek the function f ∈ F that minimizes the loss
Q(z, w) = `(fw(x), y) averaged on the examples. Although we would like
to average over the unknown distribution dP (z) that embodies the Laws of

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 16, c© Springer-Verlag Berlin Heidelberg 2010
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Nature, we must often settle for computing the average on a sample z1 . . . zn.

E(f) =
∫
`(f(x), y) dP (z) En(f) =

1
n

n∑
i=1

`(f(xi), yi) (1)

The empirical risk En(f) measures the training set performance. The expected
risk E(f) measures the generalization performance, that is, the expected
performance on future examples. The statistical learning theory (Vapnik and
Chervonenkis (1971)) justifies minimizing the empirical risk instead of the
expected risk when the chosen family F is sufficiently restrictive.

2.1 Gradient descent

It has often been proposed (e.g., Rumelhart et al. (1986)) to minimize the
empirical risk En(fw) using gradient descent (GD). Each iteration updates
the weights w on the basis of the gradient of En(fw) ,

wt+1 = wt − γ
1
n

n∑
i=1

∇w Q(zi, wt) , (2)

where γ is an adequately chosen gain. Under sufficient regularity assumptions,
when the initial estimate w0 is close enough to the optimum, and when the
gain γ is sufficiently small, this algorithm achieves linear convergence (Dennis
and Schnabel (1983)), that is, − log ρ ∼ t, where ρ represents the residual
error.

Much better optimization algorithms can be designed by replacing the
scalar gain γ by a positive definite matrix Γt that approaches the inverse of
the Hessian of the cost at the optimum :

wt+1 = wt − Γt
1
n

n∑
i=1

∇w Q(zi, wt) . (3)

This second order gradient descent (2GD) is a variant of the well known
Newton algorithm. Under sufficiently optimistic regularity assumptions, and
provided that w0 is sufficiently close to the optimum, second order gradient
descent achieves quadratic convergence. When the cost is quadratic and the
scaling matrix Γ is exact, the algorithm reaches the optimum after a single
iteration. Otherwise, assuming sufficient smoothness, we have − log log ρ ∼ t.

2.2 Stochastic gradient descent

The stochastic gradient descent (SGD) algorithm is a drastic simplification.
Instead of computing the gradient of En(fw) exactly, each iteration estimates
this gradient on the basis of a single randomly picked example zt :

wt+1 = wt − γt∇w Q(zt, wt) . (4)
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The stochastic process { wt, t=1, . . . } depends on the examples randomly
picked at each iteration. It is hoped that (4) behaves like its expectation (2)
despite the noise introduced by this simplified procedure.

Since the stochastic algorithm does not need to remember which examples
were visited during the previous iterations, it can process examples on the
fly in a deployed system. In such a situation, the stochastic gradient descent
directly optimizes the expected risk, since the examples are randomly drawn
from the ground truth distribution.

The convergence of stochastic gradient descent has been studied exten-
sively in the stochastic approximation literature. Convergence results usually
require decreasing gains satisfying the conditions

∑
t γ

2
t <∞ and

∑
t γt =∞.

The Robbins-Siegmund theorem (Robbins and Siegmund (1971)) provides the
means to establish almost sure convergence under mild conditions (Bottou
(1998)), including cases where the loss function is not everywhere differen-
tiable.

The convergence speed of stochastic gradient descent is in fact limited by
the noisy approximation of the true gradient. When the gains decrease too
slowly, the variance of the parameter estimate wt decreases equally slowly.
When the gains decrease too quickly, the expectation of the parameter es-
timate wt takes a very long time to approach the optimum. Under suffi-
cient regularity conditions (e.g. Murata (1998)), the best convergence speed
is achieved using gains γt ∼ t−1. The expectation of the residual error then
decreases with similar speed, that is, E ρ ∼ t−1.

The second order stochastic gradient descent (2SGD) multiplies the gradi-
ents by a positive definite matrix Γt approaching the inverse of the Hessian :

wt+1 = wt − γtΓt∇w Q(zt, wt) . (5)

Unfortunately, this modification does not reduce the stochastic noise and
therefore does improve the variance of wt. Although constants are improved,
the expectation of the residual error still decreases like t−1, that is, E ρ ∼ t−1,
(e.g. Bordes et al. (2009), appendix).

2.3 Stochastic gradient examples

Table 1 illustrates stochastic gradient descent algorithms for a number of
classic machine learning schemes. The stochastic gradient descent for the
Perceptron, for the Adaline, and for k-Means match the algorithms proposed
in the original papers. The SVM and the Lasso were first described with
traditional optimization techniques. Both Qsvm and Qlasso include a regular-
ization term controlled by the hyperparameter λ. The K-means algorithm
converges to a local minimum because Qkmeans is nonconvex. On the other
hand, the proposed update rule uses second order gains that ensure a fast
convergence. The proposed Lasso algorithm represents each weight as the
difference of two positive variables. Applying the stochastic gradient rule to
these variables and enforcing their positivity leads to sparser solutions.
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Table 1. Stochastic gradient algorithms for various learning systems.

Loss Stochastic gradient algorithm

Adaline (Widrow and Hoff, 1960)

Qadaline = 1
2

(
y − w>Φ(x)

)2
Φ(x) ∈ Rd, y = ±1

w ← w + γt

(
yt − w>Φ(xt)

)
Φ(xt)

Perceptron (Rosenblatt, 1957)

Qperceptron = max{0,−y w>Φ(x)}
Φ(x) ∈ Rd, y = ±1

w ← w + γt

{
yt Φ(xt) if yt w

>Φ(xt) ≤ 0
0 otherwise

K-Means (MacQueen, 1967)

Qkmeans = min
k

1
2
(z − wk)2

z ∈ Rd, w1 . . . wk ∈ Rd

n1 . . . nk ∈ N, initially 0

k∗ = arg mink(zt − wk)2

nk∗ ← nk∗ + 1
wk∗ ← wk∗ + 1

nk∗
(zt − wk∗)

SVM (Cortes and Vapnik, 1995)

Qsvm = λw2 + max{0, 1− y w>Φ(x)}
Φ(x) ∈ Rd, y = ±1, λ > 0

w ← w − γt

{
λw if yt w

>Φ(xt) > 1,
λw − yt Φ(xt) otherwise.

Lasso (Tibshirani, 1996)

Qlasso = λ|w|1 + 1
2

(
y − w>Φ(x)

)2
w = (u1 − v1, . . . , ud − vd)

Φ(x) ∈ Rd, y ∈ R, λ > 0

ui ←
[
ui − γt

(
λ− (yt − w>Φ(xt))Φi(xt)

)]
+

vi ←
[
vi − γt

(
λ+ (yt − w>t Φ(xt))Φi(xt)

)]
+

with notation [x]+ = max{0, x}.

3 Learning with large training sets

Let f∗ = arg minf E(f) be the best possible prediction function. Since we
seek the prediction function from a parametrized family of functions F , let
f∗F = arg minf∈F E(f) be the best function in this family. Since we optimize
the empirical risk instead of the expected risk, let fn = arg minf∈F En(f)
be the empirical optimum. Since this optimization can be costly, let us stop
the algorithm when it reaches an solution f̃n that minimizes the objective
function with a predefined accuracy En(f̃n) < En(fn) + ρ.

3.1 The tradeoffs of large scale learning

The excess error E = E
[
E(f̃n)− E(f∗)

]
can be decomposed in three terms

(Bottou and Bousquet, 2008) :

E = E
[
E(f∗F )− E(f∗)

]
+ E

[
E(fn)− E(f∗F )

]
+ E

[
E(f̃n)− E(fn)

]
. (6)

• The approximation error Eapp = E
[
E(f∗F )− E(f∗)

]
measures how closely

functions in F can approximate the optimal solution f∗. The approxima-
tion error can be reduced by choosing a larger family of functions.
• The estimation error Eest = E

[
E(fn)− E(f∗F )

]
measures the effect of

minimizing the empirical risk En(f) instead of the expected risk E(f).
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The estimation error can be reduced by choosing a smaller family of
functions or by increasing the size of the training set.
• The optimization error Eopt = E(f̃n) − E(fn) measures the impact of

the approximate optimization on the expected risk. The optimization
error can be reduced by running the optimizer longer. The additional
computing time depends of course on the family of function and on the
size of the training set.

Given constraints on the maximal computation time Tmax and the maximal
training set size nmax, this decomposition outlines a tradeoff involving the size
of the family of functions F , the optimization accuracy ρ, and the number of
examples n effectively processed by the optimization algorithm.

min
F,ρ,n

E = Eapp + Eest + Eopt subject to
{

n ≤ nmax

T (F , ρ, n) ≤ Tmax
(7)

Two cases should be distinguished:

• Small-scale learning problems are first constrained by the maximal num-
ber of examples. Since the computing time is not an issue, we can reduce
the optimization error Eopt to insignificant levels by choosing ρ arbitrarily
small, and we can minimize the estimation error by chosing n = nmax. We
then recover the approximation-estimation tradeoff that has been widely
studied in statistics and in learning theory.
• Large-scale learning problems are first constrained by the maximal com-

puting time. Approximate optimization can achieve better expected risk
because more training examples can be processed during the allowed time.
The specifics depend on the computational properties of the chosen op-
timization algorithm.

3.2 Asymptotic analysis

Solving (7) in the asymptotic regime amounts to ensuring that the terms of
the decomposition (6) decrease at similar rates. Since the asymptotic conver-
gence rate of the excess error (6) is the convergence rate of its slowest term,
the computational effort required to make a term decrease faster would be
wasted.

For simplicity, we assume in this section that the Vapnik-Chervonenkis
dimensions of the families of functions F are bounded by a common constant.
We also assume that the optimization algorithms satisfy all the assumptions
required to achieve the convergence rates discussed in section 2. Similar anal-
yses can be carried out for specific algorithms under weaker assumptions (e.g.
Shalev-Shwartz and Srebro (2008)).

A simple application of the uniform convergence results of (Vapnik and
Chervonenkis (1971)) gives then the upper bound

E = Eapp + Eest + Eopt = Eapp + O

(√
log n
n

+ ρ

)
.
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Table 2. Asymptotic equivalents for various optimization algorithms: gradient
descent (GD, eq. 2), second order gradient descent (2GD, eq. 3), stochastic gradient
descent (SGD, eq. 4), and second order stochastic gradient descent (2SGD, eq. 5).
Although they are the worst optimization algorithms, SGD and 2SGD achieve the
fastest convergence speed on the expected risk. They differ only by constant factors
not shown in this table, such as condition numbers and weight vector dimension.

GD 2GD SGD 2SGD

Time per iteration : n n 1 1
Iterations to accuracy ρ : log 1

ρ
log log 1

ρ
1
ρ

1
ρ

Time to accuracy ρ : n log 1
ρ

n log log 1
ρ

1
ρ

1
ρ

Time to excess error E :
1

E1/α log
2 1

E
1

E1/α log 1

E
log log 1

E
1

E
1

E

Unfortunately the convergence rate of this bound is too pessimistic. Faster
convergence occurs when the loss function has strong convexity properties
(Lee et al. (2006)) or when the data distribution satisfies certain assumptions
(Tsybakov (2004)). The equivalence

E = Eapp +Eest +Eopt ∼ Eapp +
(

log n
n

)α

+ ρ , for some α ∈
[1

2
, 1
]
, (8)

provides a more realistic view of the asymptotic behavior of the excess er-
ror (e.g. Massart (2000), Bousquet (2002)). Since the three component of the
excess error should decrease at the same rate, the solution of the tradeoff
problem (7) must then obey the multiple asymptotic equivalences

E ∼ Eapp ∼ Eest ∼ Eopt ∼
(

log n
n

)α

∼ ρ . (9)

Table 2 summarizes the asymptotic behavior of the four gradient algo-
rithm described in section 2. The first three rows list the computational cost
of each iteration, the number of iterations required to reach an optimization
accuracy ρ, and the corresponding computational cost. The last row provides
a more interesting measure for large scale machine learning purposes. Assum-
ing we operate at the optimum of the approximation-estimation-optimization
tradeoff (7), this line indicates the computational cost necessary to reach a
predefined value of the excess error, and therefore of the expected risk. This
is computed by applying the equivalences (9) to eliminate n and ρ from the
third row results.

Although the stochastic gradient algorithms, SGD and 2SGD, are clearly
the worst optimization algorithms (third row), they need less time than the
other algorithms to reach a predefined expected risk (fourth row). Therefore,
in the large scale setup, that is, when the limiting factor is the computing
time rather than the number of examples, the stochastic learning algorithms
performs asymptotically better !
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4 Efficient learning

Let us add an additional example zt to a training set z1 . . . zt−1. Since the
new empirical risk Et(f) remains close to Et−1(f), the empirical minimum
w∗t+1 = arg minw Et(fw) remains close to w∗t = arg minw Et−1(fw). With
sufficient regularity assumptions, a first order calculation gives the result

w∗t+1 = w∗t − t−1 Ψt∇w Q(zt, w
∗
t ) +O

(
t−2
)
, (10)

where Ψt is the inverse of the Hessian of Et(fw) in w∗t . The similarity be-
tween this expression and the second order stochastic gradient descent rule
(5) has deep consequences. Let wt be the sequence of weights obtained by
performing a single second order stochastic gradient pass on the randomly
shuffled training set. With adequate regularity and convexity assumptions,
we can prove (e.g. Bottou and LeCun (2004))

lim
t→∞

t
(
E(fwt

)− E(f∗F )
)

= lim
t→∞

t
(
E(fw∗

t
)− E(f∗F )

)
= I > 0 . (11)

Therefore, a single pass of second order stochastic gradient provides a pre-
diction function fwt

that approaches the optimum f∗F as efficiently as the
empirical optimum fw∗

t
. In particular, when the loss function is the log like-

lihood, the empirical optimum is the asymptotically efficient maximum like-
lihood estimate, and the second order stochastic gradient estimate is also
asymptotically efficient.

Unfortunately, second order stochastic gradient descent is computation-
ally costly because each iteration (5) performs a computation that involves
the large dense matrix Γt. Two approaches can work around this problem.

• Computationally efficient approximations of the inverse Hessian trade
asymptotic optimality for computation speed. For instance, the SGDQN
algorithm (Bordes et al. (2009)) achieves interesting speed using a diag-
onal approximation.

• The averaged stochastic gradient descent (ASGD) algorithm (Polyak and
Juditsky (1992)) performs the normal stochastic gradient update (4) and
recursively computes the average w̄t = 1

t

∑t
i=1 wt :

wt+1 = wt − γt∇w Q(zt, wt) , w̄t+1 =
t

t+ 1
w̄t +

1
t+ 1

wt+1 . (12)

When the gains γt decrease slower than t−1, the w̄t converges with the
optimal asymptotic speed (11). Reaching this asymptotic regime can take
a very long time in practice. A smart selection of the gains γt helps
achieving the promised performance (Xu (2010)).
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Algorithm Time Test Error

Hinge loss SVM, λ = 10−4.
SVMLight 23,642 s. 6.02 %
SVMPerf 66 s. 6.03 %
SGD 1.4 s. 6.02 %

Log loss SVM, λ = 10−5.
TRON (-e0.01) 30 s. 5.68 %
TRON (-e0.001) 44 s. 5.70 %
SGD 2.3 s. 5.66 %

50

100

0.1 0.01 0.001 0.0001 1e−05 1e−07 1e−08 1e−09

Training time (secs)

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost) 

TRON

SGD

0.25 Expected risk

0.20

Fig. 1. Results achieved with a linear SVM on the RCV1 task. The lower half of
the plot shows the time required by SGD and TRON to reach a predefined accuracy
ρ on the log loss task. The upper half shows that the expected risk stops improving
long before the superlinear TRON algorithm overcomes SGD.
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Fig. 2. Comparaison of the test set performance of SGD, SGDQN, and ASGD for
a linear squared hinge SVM trained on the ALPHA task of the 2008 Pascal Large
Scale Learning Challenge. ASGD nearly reaches the optimal expected risk after a
single pass.
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Fig. 3. Comparison of the test set performance of SGD, SGDQN, and ASGD on a
CRF trained on the CONLL Chunking task. On this task, SGDQN appears more
attractive because ASGD does not reach its asymptotic performance.
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5 Experiments

This section briefly reports experimental results illustrating the actual per-
formance of stochastic gradient algorithms on a variety of linear systems. We
use gains γt = γ0(1+λγ0t)−1 for SGD and γt = γ0(1+λγ0t)−0.75 for ASGD.
The initial gains γ0 were set manually by observing the performance of each
algorithm running on a subset of the training examples.

Figure 1 reports results achieved using SGD for a linear SVM trained
for the recognition of the CCAT category in the RCV1 dataset (Lewis
et al. (2004)) using both the hinge loss (Qsvm in table 1), and the log loss,
(Qlogsvm = λw2 + log(1 + exp(−y w>Φ(x))) ). The training set contains 781,265
documents represented by 47,152 relatively sparse TF/IDF features. SGD
runs considerably faster than either the standard SVM solvers SVMLight
and SVMPerf (Joachims (2006)) or the superlinear optimization algorithm
TRON (Lin et al. (2007)).

Figure 2 reports results achieved using SGD, SGDQN, and ASGD for
a linear SVM trained on the ALPHA task of the 2008 Pascal Large Scale
Learning Challenge (see Bordes et al. (2009)) using the squared hinge loss
(Qsqsvm = λw2 + max{0, 1 − y w>Φ(x)}2). The training set contains 100,000
patterns represented by 500 centered and normalized variables. Performances
measured on a separate testing set are plotted against the number of passes
over the training set. ASGD achieves near optimal results after one pass.

Figure 3 reports results achieved using SGD, SGDQN, and ASGD for
a CRF (Lafferty et al. (2001)) trained on the CONLL 2000 Chunking task
(Tjong Kim Sang and Buchholz (2000)). The training set contains 8936 sen-
tences for a 1.68× 106 dimensional parameter space. Performances measured
on a separate testing set are plotted against the number of passes over the
training set. SGDQN appears more attractive because ASGD does not reach
its asymptotic performance. All three algorithms reach the best test set per-
formance in a couple minutes. The standard CRF L-BFGS optimizer takes
72 minutes to compute an equivalent solution.

References

BORDES. A., BOTTOU, L., and GALLINARI, P. (2009): SGD-QN: Careful Quasi-
Newton Stochastic Gradient Descent. Journal of Machine Learning Research,
10:1737-1754. With Erratum (to appear).

BOTTOU, L. and BOUSQUET, O. (2008): The Tradeoffs of Large Scale Learning,
In Advances in Neural Information Processing Systems, vol.20, 161-168.

BOTTOU, L. and LECUN, Y. (2004): On-line Learning for Very Large Datasets.
Applied Stochastic Models in Business and Industry, 21(2):137-151

BOUSQUET, O. (2002): Concentration Inequalities and Empirical Processes The-
ory Applied to the Analysis of Learning Algorithms. Thèse de doctorat, Ecole
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186 Léon Bottou

DENNIS, J. E., Jr., and SCHNABEL, R. B. (1983): Numerical Methods For Un-
constrained Optimization and Nonlinear Equations. Prentice-Hall

JOACHIMS, T. (2006): Training Linear SVMs in Linear Time. In Proceedings of
the 12th ACM SIGKDD, ACM Press.

LAFFERTY, J. D., MCCALLUM, A., and PEREIRA, F. (2001): Conditional Ran-
dom Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.
In Proceedings of ICML 2001, 282-289, Morgan Kaufman.

LEE, W. S., BARTLETT, P. L., and WILLIAMSON, R. C. (1998): The Importance
of Convexity in Learning with Squared Loss. IEEE Transactions on Informa-
tion Theory, 44(5):1974-1980.

LEWIS, D. D., YANG, Y., ROSE, T. G., and LI, F. (2004): RCV1: A New Bench-
mark Collection for Text Categorization Research. Journal of Machine Learn-
ing Research, 5:361-397.

LIN, C. J., WENG, R. C., and KEERTHI, S. S. (2007): Trust region Newton
methods for large-scale logistic regression. In Proceedings of ICML 2007, 561-
568, ACM Press.

MACQUEEN, J. (1967): Some Methods for Classification and Analysis of Multi-
variate Observations. In Fifth Berkeley Symposium on Mathematics, Statistics,
and Probabilities, vol.1, 281-297, University of California Press.

MASSART, P. (2000): Some applications of concentration inequalities to Statistics,
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Abstract. Linear discriminant analysis with binary response is considered when
the predictor is a functional random variableX = {Xt, t ∈ [0, T ]}, T ∈ R. Motivated
by a food industry problem, we develop a methodology to anticipate the prediction
by determining the smallest T ∗, T ∗ ≤ T , such that X∗ = {Xt, t ∈ [0, T ∗]} and
X give similar predictions. The adaptive prediction concerns the observation of a
new curve ω on [0, T ∗(ω)] instead of [0, T ] and answers to the question ”How long
should we observe ω (T ∗(ω) =?) for having the same prediction as on [0, T ] ?”. We
answer to this question by defining a conservation measure with respect to the class
the new curve is predicted.

Keywords: functional data, discriminant analysis, classification, adaptive
prediction

1 Introduction

Statistical methods for data represented by curves (or functions) have re-
ceived much interest in the last years. Random variables taking values into
an infinite dimensional function space are called functional random variables
(Ferraty and Vieu (2006)) and methods dealing with such variables define the
functional data analysis (FDA) framework (Ramsay and Silverman (1997)).
Examples of functional data can be found in several application domains such
as medicine (patient evolution over time), economics (stock-exchange data),
chemometrics (spectrometric data) and many others (for an overview, see
Ramsay and Silverman (2002)).

A well accepted model for univariate functional data is to consider it
as paths of a stochastic process X = {Xt}t∈T taking values into a Hilbert
space of real-valued functions defined over some set T . For example, if T =
[0, T ] with T ∈ R+, a second order stochastic process X = {Xt}t∈[0,T ] L2–
continuous with sample paths in L2([0, T ]) can be used as model for describing
the behavior of some quantitative parameter associated to a process observed
on a time interval of length T .

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 17, c© Springer-Verlag Berlin Heidelberg 2010
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Suppose that for each curve we have a single response variable Y . If Y is cat-
egorical we have a classification (or discrimination) problem and a regression
one if Y is numerical.

In this paper we assume that Y is a binary response and all trajectories
of X are observed continuously on [0, T ] and belong to L2([0, T ]). The main
purpose of discriminant analysis (supervised classification) is to define a dis-
criminant score Φ(X), Φ : L2([0, T ])→ R, such that the prediction of Y using
Φ(X) is as good as possible.

The linear discriminant analysis for functional data considers that

Φ(X) =
∫ T

0

Xtβ(t)dt, β ∈ L2([0, T ]),

and has been addressed by James and Hastie (2001) and Preda et al. (2007).
This problem is not new and comes back to Fisher (1924) who used the expres-
sion integral regression. It is well known that the estimation of this regression
model by least squares criterion yields to an ill-posed problem. Regularization
techniques such as principal component regression (PCR) and partial least
squares regression (PLS) have been proposed in Preda and Saporta (2005).

An estimating procedure of the functional logistic model is proposed by
Escabias et al. (2004, 2005) with environmental applications. Nonparametric
models have been proposed by Ferraty and Vieu (2003), Biau et al. (2005)
and Preda (2007). More details on nonparametric models for functional data
can be found in the recent monograph of Ferraty and Vieu (2006).

In this paper we are firstly interested to the problem of anticipated predic-
tion : find minimal T ∗, T ∗ < T , such that the predictor X observed on [0, T ∗]
gives ”similar results”’, in terms of prediction of Y , as considered on [0, T ].
By ”similar results” we mean, for example, not significantly different results
with respect to some statistical test. This problem comes naturally from the
following practical example : in Preda et al. (2007) we have developed func-
tional discriminant models to predict the quality of cookies at Danone from
curves representing the resistance of dough observed during the first 8 min-
utes of the kneading process (Lévéder et al. (2004)). The discriminant power
of the linear model is satisfactory with a misclassified rate of about 11.2%.
Then, the interest of reducing the observation time and take decision keeping
the same discriminant power is evident.

Secondly, we address the problem of the prediction of Y from X for a
new observation ω in an adaptive way. Usually, the new curve Xω is observed
on the whole interval [0, T ] and then the prediction is made using the score
Φ(Xω). Provided the existence of a good prediction model of Y from X, in
adaptive prediction we are interested to determine a time T ∗(ω) such that
the prediction of Y from the observation X on [0, T ∗ω)] is similar to the
prediction with X on [0, T ]. In other words, to observe X after T ∗(ω) will no
change the prediction.

The paper is organized as follows. In section 2 we present some basics of
the PLS approach for linear discriminant analysis with functional data. The



Anticipated and Adaptive Prediction in FDA 191

anticipated and adapted prediction are introduced in Section 3. The Section 4
presents the results of the anticipated and adaptive prediction for the quality
of cookies to Danone.

2 Linear discriminant analysis on functional data. The
PLS approach

Let X = {Xt}t∈[0,T ] be a second order stochastic process L2-continuous with
sample paths in L2[0, T ] and Y a binary random variable, Y ∈ {0, 1}. Without
loss of generality we assume also that E(Xt) = 0, ∀t ∈ [0, T ]. As an extension
of the classical multivariate approach, the aim of linear discriminant analysis
(LDA) for functional data is to find linear combinations Φ(X) =

∫ T

0
Xtβ(t)dt,

β ∈ L2([0, T ]) such that the between class variance is maximized with respect
to the total variance, i.e.

max
β∈L2[0,T ]

V(E(Φ(X)|Y ))
V(Φ(X))

. (1)

Let {(xi, yi)}i=1,...,n be n observations of random variables (X,Y ) with
xi = {xi(t), t ∈ [0, T ]} and yi ∈ {0, 1}, i = 1, . . . , n. Due to infinite dimension
of the predictor, the estimation of β is in general an ill–posed problem. In
Preda and Saporta (2005) it is shown that the optimization problem (13)
is equivalent to find the regression coefficients in the linear model which
predicts Y (after a convenient encoding) by the stochastic process X under
the least-squares criterion.

Without loss of generality, let us recode Y by : 0 
√

p1
p0

and 1 −
√

p0
p1

,

where p0 = P(Y = 0) and p1 = P(Y = 1). If β is a solution of (1) then β
satisfies the Wiener-Hopf equation

E(Y Xt) =
∫ T

0

E(XtXs)β(s)ds, (2)

which is the equation giving, up to a constant, the regression coefficient func-
tion of the linear regression of Y on X = {Xt}t∈[0,T ]. Equation (14) has an
unique solution under conditions of convergence of series implying the eigen-
values and eigenvectors of the covariance operator of the process X (Saporta
(1981)). These conditions are rarely satisfied. Thus, in practice, the problem
to find β is generally an ill-posed problem. However, if the aim is to find
the discriminant variable (scores), then one can use the above relationship
between LDA and linear regression.

Using this result, there are several ways to approximate the discriminant
score Φ(X). Thus, Φ(X) can be approximate using the linear regression on
the principal components of X. The choice of principal components used for
regression is not easy and should be a trade off between the quality of the
model and the quality of the representation ofX. The PLS approach proposed
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in Preda and Saporta (2005) is an efficient alternative and provides generally
better results. It allows to approximate Φ(X) by ΦPLS(X) =

∫ T

0
βPLS(t)Xtdt

and thus, to compute for a new observation the discriminant score for further
prediction.

2.1 The PLS approximation

The PLS regression is an iterative method. LetX0,t = Xt, ∀t ∈ [0, 1] and Y0 =
Y . At step q, q ≥ 1, of the PLS regression of Y on X, we define the qth PLS
component, tq, by the eigenvector associated to the largest eigenvalue of the
operator WX

q−1W
Y
q−1, where WX

q−1, respectively WY
q−1, are the Escoufier’s

operators (Saporta (1981)) associated to X, respectively to Yq−1. The PLS
step is completed by the ordinary linear regression of Xq−1,t and Yq−1 on
tq. Let Xq,t, t ∈ [0, 1] and Yq be the random variables which represent the
residual of these regressions : Xq,t = Xq−1,t − pq(t)tq and Yq = Yq−1 − cqtq.
Then, for each q ≥ 1, {tq}q≥1 forms an orthogonal system in L2(X) and the
PLS approximation of Y by {Xt}t∈[0,T ] at step q, q ≥ 1, is given by :

ŶPLS(q) = c1t1 + · · ·+ cqtq =
∫ T

0

β̂PLS(q)(t)Xtdt. (3)

In practice, the number of PLS components used for regression is determined
by cross-validation.

2.2 Quality criterion. The ROC curve

Let denote by dT = ΦPLS(X) =
∫ T

0
βPLS(t)Xtdt the approximation for

the discriminant score given by the PLS regression on the process X =
{Xt}t∈[0,T ]. There are several criteria to evaluate the quality of the discrim-
inant model, for example the error rate for a defined threshold, the squared

correlation ration η2(dT |Y ) =
V(E(dT |Y ))

V(dT )
, the ROC curve, etc.

For a binary target Y , the ROC curve is generally accepted as the best
measure of the discriminating power of a discriminant score.

Let dT (x) be the score value for some unit x. Given a threshold r, x is
classified into Y = 1 if dT (x) > r. The true positive rate or ”sensitivity”
is P (dT > r|Y = 1) and the false positive rate or 1 − ”specificity”, P (dT >
r|Y = 0). The ROC curve gives the true positive rate as a function of the false
positive rate and is invariant under any monotonic increasing transformation
of the score. In the case of an inefficient score, both conditional distributions
of dT given Y = 1 and Y = 0 are identical and the ROC curve is the diagonal
line. In case of perfect discrimination, the ROC curve is confounded with the
edges of the unit square.

The Area Under ROC Curve or AUC, is then a global measure of dis-
crimination. It can be easily proved that AUC = P (X1 > X0), where X1 is
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a random variable distributed as d when Y = 1 and X0 is independently dis-
tributed as d for Y = 0. Taking all pairs of observations, one in each group,
AUC is thus estimated by the percentage of concordant pairs (Wilcoxon-
Mann-Whitney statistic).

3 Anticipated and adaptive prediction

3.1 Anticipated prediction

Let denote by dt the approximation for the discriminant score given by PLS
regression on the process X considered on the interval time [0, t], with t ≤ T .
The objective here is to find T ∗ < T such that the discriminant function dT∗

performs quite as well as dT .
The stochastic process {dt}t∈[0,T ] is such that :

• dt = Y − εt, where Y is recoded by 0 
√

p1
p0

and 1 −
√

p0
p1

. E(dt) = 0.

• E(εt, ds) = 0, ∀s ≤ t,
• E(dtds) = E(dsY ) =

√
p0p1(E(ds|Y = 0)− E(ds|Y = 1)), ∀s ≤ t.

Once a quality measure Qs is defined, a solution could be to define T ∗

as the smallest value of s such that Qs is not significantly different from
QT . Since Qs and QT are dependent random variables, we will use a non
parametric paired comparison test.

We will use in the following the AUC criterion for defining the quality of
the discriminant model.

Since the distribution of AUC is not known, we will test the equality
of AUC(s) with AUC(T), by using booststrap methodology: we resample M
times the data, according to a stratified scheme in order to keep invariant the
number of observations of each group. Let AUCm(s) and AUCm(T ) be the
resampled values of AUC for m = 1 to M , and δm their difference. Testing
if AUC(s) = AUC(T ) is performed by using a paired t-test, or a Wilcoxon
paired test, on the M values δm.

3.2 Adaptive prediction

Let Ω = {ω1, . . . , ωn}, n ≥ 1, be a training sample and {(x1, y1), . . . , (xn, yn)}
be the observation of (X,Y ) on Ω, X being considered on [0, T ]. Let also
suppose that one has a good discriminant score dT for the prediction of Y by
{X}t∈[0,T ] with respect to some criterion (misclassified rate, AUC, R2, etc).

Let now consider a new data ω.
By adaptive prediction for ω we understand to find the smallest time

T ∗ = T ∗(ω) such that the prediction of Y (ω) on [0, T ∗] is similar to that
on [0, T ]. Let observe that T ∗ is here a random variable, whereas in the
anticipated approach T ∗ is a constant.
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Let h be the step of a convenient discretisation of [0, T ] and suppose
that for ω the process X is observed until the time t, t < T . It is clear
that the decision to continue the observation X(ω) at t + h or to stop it
(T ∗ = t) depends on the similarity of X(ω) with x1, . . . , xn with respect to
the prediction of Y . We define this similarity at the time t in the following
way :

Let dt be a discriminant score for Y using only the observation inter-
val [0, t] and denote by Ŷt(ω) and Ŷt,i, i = 1, . . . , n the predictions for ω,
respectively Ω, with respect to dt.

Denote by

Ωω(t) = {ωi ∈ Ω|Ŷt(ω) = Ŷt,i} and Ωω(t) = Ω −Ωω(t)

the class of elements having the same prediction as ω, respectively its com-
plement with respect to Ω.

Let

p0|Ωω(t) =

∣∣∣{ω′ ∈ Ω|ŶT (ω′) = 0} ∩Ωω(t)}
∣∣∣

|Ωω(t)|
(4)

be the observed rate of elements in Ωω(t) predicted in the class Y = 0 at
the time T. Similarly, let p1|Ωω(t), p0|Ωω(t)and p1|Ωω(t). Obviously,

p0|Ωω(t) + p1|Ωω(t) = 1 and p0|Ωω(t) + p1|Ωω(t) = 1.

Let define CΩω(t) = max{p0|Ωω(t), p1|Ωω(t)} and CΩω(t) = max{p0|Ωω(t),

p1|Ωω(t)} the conservation rate of prediction group at the time t with respect
to the time T for the elements of Ωω(t), respectively of Ωω(t). As a global
measure of conservation we consider

CΩ(ω, t) = min{CΩω(t), CΩω(t)}. (5)

For each t ∈ [0, T ], CΩ(ω, t) is such that 0.5 ≤ CΩ(ω, t) ≤ 1 and CΩ(ω, T ) = 1.
Given a confidence conservation threshold γ ∈ (0, 1), e.g. γ = 0.90, we

define the following rule :
Adaptive prediction rule for ω and t :

(1) if CΩ(ω, t) ≥ γ then the observation of X for ω on the time interval
[0, t] is sufficient for the prediction of Y (ω). Ŷ (ω) is then the same as the
prediction at time T of the subgroup of Ωω(t) corresponding to CΩω(t).

(2) if CΩ(ω, t) < γ then the observation process of X for ω should continue
after t. Put t = t+ h and repeat the adaptive prediction procedure.

Then, T ∗(ω) is the smallest t such that the condition (1) of the adaptive
prediction rule is satisfied.

An important role in the proposed adaptive prediction methodology is
the observation of the discriminant score process dt, t ≥ 0 for the new data
ω. We propose two approaches to define dt(ω).
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(M1) by completion : Use a functional regression model with functional re-
sponse as in Preda and Saporta (2005) or Lian (2007) and predict X(ω)
on [t, T ]. Then, by completion one obtains a trajectory X(ω) on [0, T ] for
which the score dT (ω) provides a prediction for Y . Put dt(ω) = dT (ω).

(M2) sequential : Construct the discriminant score dt progressively for each
time t and predict Y using dt.

The first approach uses two regression models : one for the completion
step, which is sequently performed for each t, and a second one for discrimina-
tion. The discrimination model concerns the training sample Ω for which X
is considered on the whole interval [0, T ]. The second approach, M2, involves
the estimation of several discriminant models, one for each considered time
t. However, our intuition is that the error associated to M1 is greater than
that given by M2 since the first approach cumulates errors from both models.
Moreover, even for t close to T , the prediction error given by the regression
model used in the completion step of the trajectories in the training sam-
ple (PRESS) could be important and thus misleading for the discrimination
step. For these reasons, we used the sequential approach in our application
on kneading data.

4 Application

We use the anticipated approach for kneading data from Danone. The qual-
ity (Y ) of cookies produced by a set of 90 flours for which one knows the
dough resistance (X) during the first 480 seconds of the kneading process is
evaluated. One obtains 50 flours yielding to good quality of cookies and 40
to a bad one. Because of large local variation, the curves are smoothed using
cubic B-spline basis. Figure 1 shows the set of the 90 flours before and after
smoothing.

Fig. 1. Good (black) and bad (red) flours. Left : original data. Right : smoothed
data

We use for prediction the smoothed curves that we consider as sample
paths of a stochastic process {Xt}t∈[0,480]. Considering Y ∈ {Bad,Good},
the PLS approach for discrimination of Y from {Xt}t∈[0,480] Preda et al.
(2007) yields to a misclassification rate of about 11.2%. For a signification
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level of 5% and using the AUC criterion, the anticipated approach provides
T ∗ = 186.

Thus, the predictive power of the dough curves for the cookies quality
is resumed by the first 186 seconds of the kneading process. In the next
paragraph we extend the anticipated prediction methodology by adapting
the optimal time T ∗ to each new trajectory given its incoming measurements,
in that sense that observation of the trajectory after the time T ∗ does not
change the prediction of Y .

Adaptive prediction 25 new flours have been tested for adaptive prediction.
These flours were classified by Danone as being of quality ”adjustable”, some-
where between ”good” and ”bad”. 12 of these flours are predicted by the PLS
discriminant analysis using the interval time [0, 480] into the ”good” class.
Using as training sample Ω the set of the 90 flours considered in the antici-
pated prediction approach, we perform for each one the adaptive prediction
starting from t = 100.

Fig. 2. Left : new flour ω. Right : CΩ(ω, t), t ∈ [100, 480], γ = 0.90.

In Figure 3 (left), we present one of these flours (ω) which was observed
on the whole interval [0, 480]. The conservation rate evolution CΩ(ω, t) is
presented in Figure 3 (right) t ∈ [100, 480]. For a conservation rate threshold
γ = 0.90, the adaptive prediction rule provides T ∗(ω) = 220 and predicts ω
in the ”good” class of flours.

The empirical cumulative distribution function of T ∗ obtained with the
25 flours is presented in Figure 4. Notice that there are 5 time points which
are earlier than the optimal time for anticipated prediction (T ∗ = 186). 10
flours are predicted in the ”good” class.

5 Conclusions

In this paper we addressed the problem of the prediction of a binary re-
sponse Y using as predictor data of functional type represented by paths
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Fig. 3. Empirical cumulative distribution function of T ∗ (in red, the time point
t=186).

of a continuous–time stochastic process {Xt}t∈[0,T ]. We faced the problem
by means of the PLS approach for which forecasting the binary response is
drawn as ’anticipated prediction’ from the process {Xt}t∈[0,T∗] with T ∗ < T .
Under the hypothesis of existence of an acceptable prediction model, we in-
vestigated the possibility of reducing the length of the observation period
without loss of the quality prediction. We provided methodologies for an-
ticipated and adaptive prediction for preserving the global quality model as
well as the quality prediction of individual curves. An example is provided
on kneading data from Danone.
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Abstract. Our work focuses on the functional linear model given by Y = 〈θ,X〉+ε,
where Y and ε are real random variables, X is a zero-mean random variable valued
in a Hilbert space (H, 〈·, ·〉), and θ ∈ H is the fixed model parameter. Using an
initial sample {(Xi, Yi)}ni=1, a bootstrap resampling Y ∗i = 〈θ̂, Xi〉+ ε̂∗i , i = 1, . . . , n,
is proposed, where θ̂ is a general pilot estimator, and ε̂∗i is a naive or wild bootstrap
error. The obtained consistency of bootstrap allows us to calibrate distributions as
PX{
√
n(〈θ̂, x〉−〈θ, x〉) ≤ y} for a fixed x, where PX is the probability conditionally

on {Xi}ni=1. Different applications illustrate the usefulness of bootstrap for testing
different hypotheses related with θ, and a brief simulation study is also presented.

Keywords: bootstrap, functional linear regression, functional principal com-
ponents analysis, hypothesis test

1 Introduction

Nowadays, the Functional Data Analysis (FDA) has turned into one of the
most interesting statistical fields. Particularly, the functional regression mod-
els have been studied from parametric point of view (see Ramsay and Silver-
man (2002, 2005)) and non-parametric one (see Ferraty and Vieu (2006)).
Our work focuses on the first approach, specifically, on the functional linear
regression model with scalar response given by

Y = 〈θ,X〉+ ε, (1)

where Y is a real random variable, X is a zero-mean random variable valued
in a real separable Hilbert space (H, 〈·, ·〉) such that E(‖X‖4) < +∞ (being
‖·‖ = 〈·, ·〉1/2), θ ∈ H is the model parameter which verifies ‖θ‖2 < +∞ , and
ε is a real random variable satisfying that E(ε) = 0, E(ε2) = σ2 < +∞, and
E(εX) = 0. Many authors have dealt with model (1) in recent papers, and
methods based on functional principal components analysis (FPCA) are one
of the most popular techniques in order to estimate the model parameter (see

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 18, c© Springer-Verlag Berlin Heidelberg 2010
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Cardot et al. (1999, 2003b), Cai and Hall (2006), Hall and Hosseini-Nasab
(2006), or Hall and Horowitz (2007)). That is the reason why the FPCA
approach has been considered here for estimating θ (see Section 2).

The main aim of this work is to present a general bootstrap resampling
which, from an initial sample {(Xi, Yi)}ni=1 of independent and identically
distributed random variables drawn from (X,Y ), builds

Y ∗i = 〈θ̂, Xi〉+ ε̂∗i , for i = 1, . . . , n,

where θ̂ is a FPCA-type pilot estimator, and ε̂∗i is obtained by means of a
naive or wild bootstrap procedure. This kind of methodology allows us to
approximate certain sampling distributions by means of the corresponding
bootstrap distributions. Consequently, bootstrap becomes in an useful tool
when the asymptotics are unknown or inaccurate due to sample size.

Since its introduction by Efron (1979), the bootstrap method resulted in
a new distribution approximation applicable to a large number of situations
as the calibration of pivotal quantities in the finite dimensional context (see
Bickel and Freedman (1981) and Singh (1981)). As far as multivariate regres-
sion models are concerned, its validity for linear and nonparametric models
was also stated (see Freedman (1981) and Cao-Abad (1991)).

Currently, the application of bootstrap techniques to more general func-
tional fields has successfully started. For example, Cuevas et al. (2006) have
proposed bootstrap confidence bands for several functional estimators as the
sample functional mean or the trimmed functional mean. In the regression
context, Ferraty et al. (2009) have shown the validity of the bootstrap in
nonparametric functional regression, and they have constructed pointwise
confidence intervals for the regression operator. Bootstrap can also be very
helpful testing hypotheses, because it can be used to approximate the distri-
bution of the statistic under the null hypothesis. For example, Cuevas et al.
(2004) have developed a sort of parametric bootstrap to obtain quantiles for
an anova test, and Hall and Vial (2006) have studied the finite dimensionality
of functional data using a bootstrap approximation.

Refering to functional linear regression, the most of authors have pro-
posed test methods for which they have derived an asymptotic distribution
approximation: Cardot et al. (2003a) and Kokoszka et al. (2008) have tested
the null hypothesis of lack of dependence between X and Y ; an F-test for
functional linear models with functional response and multivariate predictor
was studied by Shen and Faraday (2004); and the existence of two differ-
ent functional linear models was analysed by Horváth et al. (2009). On the
other hand, Chiou and Müller (2007) have proposed a randomization test for
regression diagnostics by means of the analysis of the residual processes.

In this paper, we present a bootstrap procedure to approximate the dis-
tribution of some statistics and decide if we accept or reject null hypotheses
related with the model parameter. First of all, in Section 2 we introduce some
notation and basic concepts about the linear model (1), and FPCA-type es-
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timates. Section 3 is devoted to several applications of bootstrap calibration.
Besides, the naive and wild bootstrap procedure for each case is described
and the asymptotic validity is shown. Finally, a simulation study is compiled
in Section 4. We should note that, due to space restrictions, the simulation
results have been reduced and the real data applications have been removed.

2 FPCA-type estimates

A natural way to estimate θ in model (1) is to solve the next problem

min
β∈H

E[(Y − 〈β,X〉)2].

For that, the second moment operator Γ , and the cross second moment op-
erator ∆ must be defined. The former is a nuclear, self-adjoint, positive and
linear operator such that Γ (x) = E(〈X,x〉X), and the latter is defined as
∆(x) = E(〈X,x〉Y ), for all x ∈ H. Moreover, {(λj , vj)}j will denote the eigen-
values and eigenfunctions of Γ , assuming that λ1 > λ2 > . . . > 0. Assuming
that

∑∞
j=1 (∆(vj)/λj)2 < +∞ and Ker(Γ ) = {x ∈ H/Γ (x) = 0} = {0},

there is an unique solution for the previous minimization problem (see Car-
dot et al. (2003b)) which can be expressed as

θ =
∞∑

j=1

∆(vj)
λj

vj .

Given that there is no bounded inverse of Γ , Cardot et al. (1999) decided to
project on the subspace spanned by the first kn eigenfunctions of its empirical
counterpart Γn, where Γn(x) = n−1

∑n
i=1 〈Xi, x〉Xi, and estimate θ by

θ̂kn
=

kn∑
j=1

∆n(v̂j)

λ̂j

v̂j , (2)

where ∆n(x) = n−1
∑n

i=1 〈Xi, x〉Yi, and {(λ̂j , v̂j)}∞j=1 are the eigenvalues and
the eigenfunctions of Γn.

Subsequently, the estimator (2) was generalized to a larger class of FPCA-
type estimates by Cardot et al. (2007) who solved the ill-conditioned inverse
problem by means of the next estimator

θ̂c =
n∑

j=1

fc
n(λ̂j)∆n(v̂j)v̂j , (3)

where c = cn is a strictly positive sequence such that c→ 0 and c < λ1, and
{fc

n : [c,+∞) → R}n is a sequence of positive functions, verifying certain
conditions. Let us note that, when fn(x) = x−11{x≥c}, the estimator (3) is
asymptotically equivalent to (2). Besides, when fn(x) = (x + αn)−11{x≥c}
for αn a sequence of positive parameters, the estimator (3) is asymptotically
equivalent to the ridge-type estimator proposed by Mart́ınez-Calvo (2008).
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3 Bootstrap calibration

The bootstrap techniques considered in this work are the adaptation of the
multivariate naive and wild bootstrap procedures to the functional context
defined by (1). They allow us to obtain as bootstrap resamples as we need in
order to approximate sampling distributions in the next subsections. For wild
bootstrap procedure, we will use {Vi}i i.i.d. random variables independent of
{(Xi, Yi)}ni=1, such that

E(V1) = 0, E(V 2
1 ) = 1. (4)

3.1 Building confidence intervals for prediction

For a fixed x, one can be interested in obtain pointwise confidence intervals
for the prediction with a certain confidence level α. When θ and/or x are
very well approximated by the projection on the subspace spanned by the
first kc

n eigenfunctions of Γn, the Central Limit Theorem shown by Cardot
et al. (2007) allows us to evaluate the following approximated asymptotic
confidence interval for 〈θ, x〉

Iasy
x,α = [〈θ̂c, x〉 − t̂cn,xσ̂n

−1/2z1−α/2, 〈θ̂c, x〉+ t̂cn,xσ̂n
−1/2z1−α/2], (5)

with t̂cn,x =
√∑kc

n
j=1 λ̂j [fc

n(λ̂j)]2〈x, v̂j〉2, σ̂2 a consistent estimate of σ2, and
zα the quantile of order α of a Gaussian random variable N (0, 1). The value
kc

n is determined by the eigenvalues of Γ , the distances among them, and the
sequence c (see Cardot et al. (2007)), although it can be interpreted, in a
way, as the number of eigenfunctions involved in the estimator (3).

Alternative confidence intervals can be built using bootstrap. The resam-
pling procedure proceeds as follows (we consider Step 2 or Step 2’ depending
on which bootstrap procedure we have chosen).

Step 1. Obtain a pilot estimator θ̂d =
∑n

j=1 f
d
n(λ̂j)∆n(v̂j)v̂j , and the resid-

uals ε̂i = Yi − 〈θ̂d, Xi〉 for i = 1, . . . , n.
Step 2. (Naive) Draw ε̂∗1, . . . , ε̂

∗
n i.i.d. random variables from the cumula-

tive distribution of {ε̂i − ¯̂ε}ni=1, where ¯̂ε = n−1
∑n

i=1 ε̂i.
Step 2’. (Wild) For i = 1, . . . , n, define ε̂∗i = ε̂iVi, with Vi satisfying (4).
Step 3. Construct Y ∗i = 〈θ̂d, Xi〉+ ε̂∗i , for i = 1, . . . , n.
Step 4. Build θ̂∗c,d =

∑n
j=1 f

c
n(λ̂j)∆∗

n(v̂j)v̂j , where ∆∗
n is defined as ∆∗

n(x) =
n−1

∑n
i=1 〈Xi, x〉Y ∗i .

Theorem 1 ensures that the α-quantiles qα(x) of the distribution of the true
error (〈θ̂c, x〉−〈θ, x〉) can be aproximated by the bootstrap α-quantiles q∗α(x)
of (〈θ̂∗c,d, x〉 − 〈θ̂d, x〉). Hence, we can build the following confidence intervals

I∗x,α = [〈θ̂c, x〉 − q∗1−α/2(x), 〈θ̂c, x〉 − q∗α/2(x)]. (6)
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Theorem 1. Let Π̂kc
n

be the projection on the first kc
n eigenfunctions of Γn.

Under certain hypotheses, for both the naive and the wild bootstrap,

sup
y∈R
|PXY(

√
n{〈θ̂∗c,d, x〉 − 〈θ̂d, x〉} ≤ y)− PX(

√
n{〈θ̂c, x〉 − 〈Π̂kc

n
θ, x〉} ≤ y)| P→ 0,

where PXY denotes probability conditionally on {(Xi, Yi)}ni=1, and PX denotes
probability conditionally on {Xi}ni=1.

Lastly, let us remark that we have to fix the sequences d for θ̂d and c for θ̂∗c,d.
For consistency results, we need that c ≤ d, so the number of principal com-
ponents used for constructing θ̂∗c,d is larger than the number of components
used for θ̂d. Hence, in some way, we should oversmooth when we calculate
the pilot estimator.

3.2 Testing for lack of dependence

Cardot et al. (2003) tested the null hypothesis

H0 : θ = 0,

being the alternative H1 : θ 6= 0. The authors deduced that testing H0 is
equivalent to test H0 : ∆ = 0, so they analysed the cross second moment
operator asymptotics, and proposed as test statistic

T1,n =
1√
kn

(
1
σ̂2
||
√
n∆nÂn||2 − kn

)
where σ̂2 is a estimator of σ2, and Ân(·) =

∑kn

j=1 λ̂
−1/2
j 〈·, v̂j〉v̂j . They ob-

tained that, under H0, T1,n converges in distribution to a centered gaussian
variable with variance equals to 2. Hence, H0 is rejected if |T1,n| >

√
2zα,

and accepted otherwise. Besides, Cardot et al. (2003) also proposed another
calibration of the statistic distribution based on a permutation mechanism.

Bootstrap can also be used to test the lack of dependence, considering

H0 : ||θ|| = 0.

Since ||θ||2 =
∑∞

j=1 (∆(vj))2/λ2
j , we can use the statistic

T2,n =
kn∑

j=1

(∆n(v̂j))2

λ̂2
j

.

Under the null hypothesis, the bootstrap becomes in a very simple algorithm.

Step 1. (Naive) Draw ε̂∗1, . . . , ε̂
∗
n i.i.d. random variables from the cumula-

tive distribution of {Yi − Ȳ }ni=1, where Ȳ = n−1
∑n

i=1 Yi.
Step 1’. (Wild) For i = 1, . . . , n, define ε̂∗i = YiVi, with Vi satisfying (4).
Step 2. Build ∆∗

n(x) = n−1
∑n

i=1 〈Xi, x〉Y ∗i with Y ∗i = ε̂∗i , for i = 1, . . . , n.

As the distribution of T2,n can be approximated by the bootstrap distribu-
tion of T ∗2,n =

∑kn

j=1 (∆∗
n(v̂j))2/λ̂2

j , H0 is accepted when T2,n belongs to the
interval defined by the α/2-quantile and (1− α/2)-quantiles of T ∗2,n.



204 González-Manteiga, W. and Mart́ınez-Calvo, A.

3.3 Testing for equality of model parameters

Let us assume that we have two samples Y 1
i1

= 〈θ1, X1
i1
〉 + ε1i1 , 1 ≤ i1 ≤ n1,

and Y 2
i2

= 〈θ2, X2
i2
〉+ ε2i2 with 1 ≤ i2 ≤ n2. Now the aim is to test

H0 : ||θ1 − θ2|| = 0.

Horváth et al. (2009) proposed several statistics for different cases, even for
the lineal model with functional response.

Let us assume that X1 and X2 have the same covariance operator Γ and
V ar(ε1) = V ar(ε2). Then ||θ1 − θ2||2 =

∑∞
j=1 ((∆1 −∆2)(vj))2/λ2

j where
{(λj , vj)}j are the eigenelements of Γ , and ∆1 and ∆2 are the cross second
moment operator for each sample. Let us introduce the following notation:
Γn(x) = (n1 + n2)−1

∑2
l=1

∑nl

i=1 〈X l
i , x〉X l

i ; {(λ̂j , v̂j)}j are the eigenvalues
and the eigenfunctions of Γn; ∆n(x) = (n1 + n2)−1

∑2
l=1

∑nl

i=1 〈X l
i , x〉Y l

i ;
and ∆l

n(x) = n−1
l

∑nl

i=1 〈X l
i , x〉Y l

i for l ∈ {1, 2}. Using this notation, one can
think of considering the following statistic

T3,n =
kn∑

j=1

((∆1
n −∆2

n)(v̂j))2/λ̂2
j .

Under the null hypothesis, the resampling procedure is the following.

Step 1. Obtain θ̂d =
∑n1+n2

j=1 fd
n(λ̂j)∆n(v̂j)v̂j . Calculate the residuals ε̂li =

Y l
i − 〈θ̂d, X

l
i〉 for all i = 1, . . . , nl, for l ∈ {1, 2}.

Step 2. (Naive) Draw ε̂l,∗1 , . . . , ε̂l,∗nl
i.i.d. random variables from the cumu-

lative distribution of {ε̂li − ¯̂εl}nl
i=1, where ¯̂εl = nl

−1
∑nl

i=1 ε̂
l
i, for l ∈ {1, 2}.

Step 2’. (Wild) For i = 1, . . . , nl, define ε̂l,∗i = ε̂liVi, with Vi satisfying (4),
for l ∈ {1, 2}.

Step 3. Build ∆l,∗
n (x) = nl

−1
∑nl

i=1 〈X l
i , x〉Y

l,∗
i , where Y l,∗

i = 〈θ̂d, X
l
i〉+ ε̂l,∗i ,

for all i = 1, . . . , nl, for l ∈ {1, 2}.

Then, H0 is accepted when T3,n belongs to the interval defined by the α/2
and (1− α/2)-quantiles of T ∗3,n =

∑kn

j=1 ((∆1,∗
n −∆2,∗

n )(v̂j))2/λ̂2
j .

4 Simulation study

To illustrate the behaviour of bootstrap calibration, we have consider the
standard FPCA estimator (2), and we have compared asymptotic and boot-
strap confidence intervals given by (5) and (6). For latter, 1000 bootstrap
iterations were done and wild bootstrap was considered.

We have simulated ns = 500 samples, each being composed of n ∈
{50, 100} observations from the model (1), being X a Brownian motion and
ε ∼ N (0, σ2) with signal-to-noise ratio r = σ/

√
E(〈X, θ〉2) = 0.2. The model
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parameter is θ(t) = sin(4πt) for t ∈ [0, 1], and both X and θ were discretized
to 100 design points. We have fixed six deterministic curves x

x1 = sin(πt/2), x2 = sin(3πt/2), x3 = t, x4 = t2, x5 = 2|t−0.5|, x6 = 2It>0.5,

for which we have obtained confidence intervals, empirical coverage rate and
lenght for two confidence levels: α ∈ {0.05, 0.10}. Let us remark that this
simulation study repeats the conditions of simulations by Cardot et al. (2004).

To select kn, we have usedGCV technique. For the bootstrap intervals (6),
we have considered different pilot values {k̂n−5, . . . , k̂n +2}, where k̂n is the
number of principal components selected by GCV . Moreover, for asymptotic
intervals (5) the estimation for the true variance σ2 is the residual sum of
squares where kn is chosen by GCV .

The empirical coverage rate and the mean length of the intervals for the
different sample size n (in brackets, and multiplied by 102) are presented in
Table 1 and Table 2. To clarify the results, the boldface emphasizes the best
empirical coverage rates for bootstrap intervals.

α CI x1 x2 x3 x4 x5 x6

5% Iasy
x,α 8.8 (1.15) 9.0 (3.44) 10.6 (1.02) 13.2 (1.15) 19.8 (3.83) 23.0 (5.46)

I∗x,α k̂n + 2 10.6 (1.14) 10.8 (3.38) 11.4 (1.01) 13.4 (1.14) 14.4 (4.53) 17.0 (6.33)

I∗x,α k̂n + 1 10.4 (1.15) 10.4 (3.41) 12.0 (1.02) 13.2 (1.14) 15.6 (4.45) 19.6 (6.27)

I∗x,α k̂n 10.6 (1.15) 11.6 (3.43) 11.6 (1.02) 13.6 (1.15) 14.4 (4.41) 18.8 (6.23)

I∗x,α k̂n − 1 6.4 (1.36) 8.8 (4.04) 8.0 (1.21) 10.2 (1.37) 11.2 (4.97) 15.2 (7.11)

I∗x,α k̂n − 2 5.4 (1.67) 5.4 (4.99) 5.8 (1.48) 7.4 (1.67) 7.6 (5.95) 10.8 (8.69)

I∗x,α k̂n − 3 4.4 (2.11) 3.2 (6.33) 4.6 (1.88) 5.8 (2.11) 6.4 (7.33) 9.8(10.97)

I∗x,α k̂n − 4 3.2 (2.62) 2.2 (7.74) 3.8 (2.32) 4.2 (2.59) 5.0 (8.75) 7.2(13.59)

I∗x,α k̂n − 5 2.2 (2.96) 1.8 (8.80) 2.8 (2.63) 2.4 (2.92) 4.2 (9.69) 5.4(15.63)

10% Iasy
x,α 17.4 (0.97) 15.2 (2.89) 18.0 (0.86) 19.2 (0.96) 26.0 (3.21) 29.8 (4.58)

I∗x,α k̂n + 2 17.2 (0.96) 18.0 (2.87) 18.2 (0.86) 19.6 (0.97) 21.0 (3.77) 26.8 (5.29)

I∗x,α k̂n + 1 17.2 (0.97) 18.0 (2.88) 18.8 (0.86) 19.4 (0.97) 20.6 (3.70) 26.2 (5.21)

I∗x,α k̂n 17.4 (0.97) 17.6 (2.89) 18.4 (0.86) 19.2 (0.97) 21.8 (3.66) 27.6 (5.16)

I∗x,α k̂n − 1 12.6 (1.15) 12.0 (3.42) 13.8 (1.03) 14.4 (1.16) 18.6 (4.08) 20.8 (5.87)

I∗x,α k̂n − 2 10.4 (1.41) 10.8 (4.22) 10.0 (1.26) 12.4 (1.41) 14.8 (4.86) 18.2 (7.13)

I∗x,α k̂n − 3 6.6 (1.78) 5.8 (5.35) 6.6 (1.59) 8.0 (1.78) 10.8 (5.92) 13.6 (8.93)

I∗x,α k̂n − 4 5.6 (2.21) 4.6 (6.55) 5.4 (1.96) 5.6 (2.18) 8.0 (7.03) 10.0(10.97)

I∗x,α k̂n − 5 3.8 (2.51) 2.6 (7.44) 4.0 (2.22) 4.8 (2.46) 7.0 (7.71) 7.2(12.58)

Table 1. Empirical coverage rate (lenght×102) for n = 50.

The conclusions that can be derived are the following. Firstly, with a cor-
rect pilot kn selection, the empirical coverage rate of bootstrap intervals is
closer theoretical α than the empirical coverage rate of asymptotic intervals.
Hovewer, these optimal bootstrap intervals tend to be larger than the asymp-
totic ones. In fact, the asymptotic approach tends to give larger coverage rates
and shorter intervals (it looks as if asymptotic intervals were decentered).

On the other hand, the deterministic curves x are ordered from greatest
to least according to their smoothness level. This fact justifies that both
asymptotic and bootstrap intervals give better results for x1, . . . , x4 than for
x5 and x6. Besides, the sample size affects asymptotic intervals seriously: their
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α CI x1 x2 x3 x4 x5 x6

5% Iasy
x,α 6.0 (0.83) 6.8 (2.47) 6.0 (0.74) 6.6 (0.83) 14.6 (2.89) 14.2 (4.13)

I∗x,α k̂n + 2 7.0 (0.82) 7.8 (2.44) 7.6 (0.73) 8.0 (0.84) 8.4 (3.42) 7.4 (4.84)

I∗x,α k̂n + 1 7.4 (0.83) 7.2 (2.44) 8.2 (0.74) 7.8 (0.83) 9.2 (3.37) 8.6 (4.77)

I∗x,α k̂n 7.2 (0.83) 7.6 (2.44) 7.8 (0.74) 8.0 (0.84) 9.0 (3.32) 9.4 (4.72)

I∗x,α k̂n − 1 6.0 (0.90) 6.8 (2.66) 6.2 (0.80) 6.2 (0.91) 8.2 (3.46) 8.8 (4.93)

I∗x,α k̂n − 2 4.2 (1.09) 5.0 (3.20) 4.2 (0.97) 4.8 (1.09) 7.4 (4.03) 7.8 (5.82)

I∗x,α k̂n − 3 1.8 (1.37) 3.0 (4.08) 2.8 (1.22) 3.6 (1.38) 5.8 (5.01) 5.4 (7.41)

I∗x,α k̂n − 4 2.2 (1.69) 2.6 (5.04) 1.6 (1.50) 2.4 (1.69) 4.4 (5.96) 4.4 (9.31)

I∗x,α k̂n − 5 1.4 (1.97) 2.2 (5.87) 1.2 (1.75) 1.4 (1.96) 3.4 (6.69) 3.0(10.94)

10% Iasy
x,α 13.4 (0.69) 12.8 (2.08) 13.0 (0.62) 15.0 (0.70) 22.0 (2.43) 22.6 (3.47)

I∗x,α k̂n + 2 14.2 (0.70) 13.4 (2.06) 14.4 (0.62) 15.2 (0.70) 14.2 (2.85) 16.0 (4.04)

I∗x,α k̂n + 1 14.6 (0.70) 14.0 (2.06) 14.8 (0.62) 15.8 (0.70) 16.4 (2.80) 18.2 (3.96)

I∗x,α k̂n 13.8 (0.70) 14.0 (2.06) 14.8 (0.62) 15.8 (0.70) 17.0 (2.76) 18.2 (3.91)

I∗x,α k̂n − 1 10.8 (0.76) 12.2 (2.25) 11.8 (0.68) 12.0 (0.76) 16.4 (2.86) 17.4 (4.06)

I∗x,α k̂n − 2 8.6 (0.92) 10.0 (2.70) 8.4 (0.82) 9.0 (0.92) 13.6 (3.31) 14.0 (4.78)

I∗x,α k̂n − 3 6.8 (1.16) 5.8 (3.45) 5.8 (1.03) 6.8 (1.16) 10.6 (4.09) 10.2 (6.04)

I∗x,α k̂n − 4 5.4 (1.43) 4.4 (4.25) 4.2 (1.27) 5.2 (1.42) 8.6 (4.82) 7.4 (7.50)

I∗x,α k̂n − 5 3.6 (1.66) 3.2 (4.96) 3.2 (1.47) 3.6 (1.65) 5.6 (5.38) 4.8 (8.76)

Table 2. Empirical coverage rate (lenght×102) for n = 100.

empirical coverage is far from the nominal one when n = 50 (see Table 1).
Nevertheless, bootstrap intervals behave properly for all sample sizes.

With regard to pilot kn for bootstrap procedure, it is not easy to deduce
from simulation which is the best choice of this parameter. However, the
adequate pilot seems to be smaller than the value obtained by GCV and
tends to increase in accordance with the smoothness of x. We must remark
that there are other methods to select the principal components involved
in the estimator construction. For example, one possibility could be to carry
out a cross-validation criterio to choose the principal components with higher
correlation with the response.

To sum up, we can say that bootstrap intervals can be an interesting al-
ternative to the asymptotic confidence intervals, above all when sample size
is small. However, the profit of bootstrap procedure is subject to a correct
choice of pilot kn. This adequate selection seems to be influenced by smooth-
ness of θ and x, and sample size n, and it is still an open question.
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Abstract. We review some recent developments on modeling and estimation of dy-
namic phenomena within the framework of Functional Data Analysis (FDA). The
focus is on longitudinal data which correspond to sparsely and irregularly sampled
repeated measurements that are contaminated with noise and are available for a
sample of subjects. A main modeling assumption is that the data are generated by
underlying but unobservable smooth trajectories that are realizations of a Gaus-
sian process. In this setting, with only a few measurements available per subject,
classical methods of Functional Data Analysis that are based on presmoothing indi-
vidual trajectories will not work. We review the estimation of derivatives for sparse
data, the PACE package to implement these procedures, and an empirically de-
rived stochastic differential equation that the processes satisfy and that consists of
a linear deterministic component and a drift process.

Keywords: dynamics, Gaussian process, drift term

1 Introduction

Functional data analysis (FDA) is a collection of nonparametric statistical
techniques to analyze data that include samples of random functions. In
earlier versions of FDA (Gasser et al. (1984), Gasser and Kneip (1995)) fully
observed or densely sampled functions were typically assumed. More recently,
the analysis of sparsely observed samples of random curves, where observa-
tions may also be contaminated by noise, has found increasing interest, due
to the need for nonparametric methods to analyze such data.

Consider for example longitudinal measurements of Body Mass Index
(BMI) between ages 45 and 70 that were obtained in the Baltimore Longi-
tudinal Study of Aging (BLSA) (Shock et al. (1984), Pearson et al. (1997)).
As typical for many longitudinal data, the BMI measurements were made
at irregular times and contain substantial measurement errors. For further
details, we refer to Müller and Yang (2010). For eight out of a sample of
n = 507 subjects, the longitudinal measurements are shown in Figure 1. As
can be seen, the number of measurements per subject is often quite small
and there is substantial variation across subjects.

A reasonable and often useful assumption is that these and similar types
of data are generated by smooth underlying random trajectories that are
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Fig. 1. Longitudinal measurements of Body Mass Index (BMI) for 8 randomly
selected subjects

not directly observable, but which may be considered to be realizations of
a Gaussian stochastic process, so that each subject is characterized by an
underlying random function. This set-up is more realistic than the traditional
“functional data” assumption of fully observed curves, which is often enforced
through a presmoothing step (Ramsay and Silverman (2005)) that can lead
to suboptimal performance and asymptotic consistency problems.

For an assessment of the underlying dynamics related to longitudinal tra-
jectories such as BMI, a first step is to obtain the derivatives of the tra-
jectories. Due to the sparseness of the data, this is a non-trivial task in the
longitudinal settings we consider here, which requires to borrow strength from
the entire sample, by pooling information across subjects. That this idea ac-
tually works was shown in Liu and Müller (2009) and the consequences of
derivative estimation and linearity of relations between the levels assumed by
Gaussian processes at pre-set times were explored in Müller and Yang (2010).

A more recent development that is based on derivative estimation is an
empirical stochastic differential equation that governs longitudinal data under
weak assumptions (Müller and Yao (2010)). For nonparametric statistical ap-
proaches in which derivatives of stochastic processes constitute central model
components we use the term Empirical Dynamics. Empirical Dynamics draws
on methodology from FDA, and aims at empirically learning the dynamics
of temporal phenomena from a sample of trajectories that are realizations of
an underlying stochastic process.

We provide here a review of these developments, focusing on the estima-
tion of derivatives from sparse data, available software for this and related
tasks, and first order empirical dynamics.
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2 Estimating derivatives from sparsely sampled data

Statistical estimation of derivatives in sparsely sampled data situations can-
not be based on smoothing difference quotients as in Gasser et al. (1984) or
applying derivative kernels (Gasser and Müller (1984)) or similar kernel or
spline based approaches. These methods rely on densely sampled data and
break down if the sampling times have large gaps. Some of these difficul-
ties can be overcome by pooling information across subjects and exploiting
smoothness and differentiability of mean and covariance functions of the un-
derlying stochastic process. This is the approach taken in Liu and Müller
(2009) that we review in this section.

Consider a square integrable Gaussian stochastic process X with mean
function µ(t) = EX(t) and covariance surface G(t, s) = cov(X(t), X(s)),
defined on a domain T , which are smoothly differentiable to an order that
depends on the specific context and may vary in the following. If the linear
operator (AGf)(t) =

∫
T
G(t, s)f(s)ds possesses eigenvalues λ1 ≥ λ2 ≥ . . . ≥

0 with corresponding orthonormal eigenfunctions φk(t), the process X has
a Karhunen-Loève representation X(t) = µ(t) +

∑∞
k=1 ξkφk(t), where the

functional principal components (FPCs) ξk are defined as inner products

ξk =
∫

T

(X(t)− µ(t))φk(t)dt, k = 1, 2, . . . . (1)

These are (in the Gaussian case) independent random variables with zero
mean and variances var(ξk) = λk. Functional principal component analysis
has been a focus of much research in FDA (Rice and Silverman (1991), Bosq
(2000), Mas and Menneteau (2003)).

Differentiating the Karhunen-Loève representation, one obtains a corre-
sponding representation for the ν−th derivative, ν ≥ 0,

X(ν)(t) = µ(ν)(t) +
∞∑

k=1

ξkφ
(ν)
k (t). (2)

By taking the νth derivative on both sides of the eigen-equations that define
the eigenfunctions, one obtains

dν

dtν

∫
T

G(t, s)φk(s)ds = λk
dν

dtν
φk(t). (3)

This relationship can be utilized to obtain estimates for the derivatives of
eigenfunctions, as it implies

φ
(ν)
k (t) =

1
λk

∫
T

∂ν

∂tν
G(t, s)φk(s)ds.

From this relation it emerges that if estimates with good properties can
be constructed for the eigenvalues, eigenfunctions and the partial derivatives
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of the covariance surface, one obtains from these reasonable estimators for
eigenfunction derivatives. Such estimators have been proposed in Liu and
Müller (2009), modifying earlier approaches of Müller and Yao (2005a). In
these developments, the following sparse sampling model was assumed: The
j-th measurement for the i-th individual Yij pertains to an observation of
the random trajectory Xi at a random time Tij , where the number of avail-
able measurements Ni is also random and independent of the other random
variables. The data model then is

Yij = Yi(Tij) = Xi(Tij) + εij = µ(Tij) +
∞∑

k=1

ξikφk(Tij) + εij , (4)

with errors εij that are i.i.d. Gaussian with mean zero and variance σ2.
Within the framework of this model, improved rates of convergence for

covariance surface and eigenfunction estimates, under a somewhat different
set of assumptions regarding the sparse sampling of the random trajectories,
have been derived recently in Müller and Yao (2010). To obtain estimates
for the functional principal components, their definition as inner products in
(1) cannot be directly employed, as due to the sparseness of the data these
integrals cannot be well approximated. An alternative best linear unbiased
prediction (BLUP) approach, developed in Yao et al. (2005a) and modified
in Liu and Müller (2009), aims at estimating the conditional expectation
E(X(ν)

i (t)|Yi1, . . . , YiNi
), for which consistent estimators are available under

Gaussianity assumptions.
These estimates are based on the principle of “Principal Analysis by Con-

ditional Expectation” (PACE) (Yao et al. (2005a)). Letting Xi = (Xi(Ti1),
. . . , Xi(TiNi))

T , Yi = (Yi1, . . . , YiNi)
T , µi = (µ(Ti1), . . . , µ(TiNi))

T , φik =
(φk(Ti1), . . . , φk(TiNi

))T , by Gaussianity

E[ξik|Yi] = λkφT
ikΣ−1

Yi
(Yi − µi), (5)

where ΣYi
= cov(Yi,Yi) = cov(Xi,Xi) + σ2INi .

This conditioning approach has been demonstrated to work well in prac-
tice. Estimates of trajectory derivatives are then obtained by plugging the
estimators for eigenvalues, eigenfunction derivatives and functional principal
components into equation (2). A particularly noteworthy feature is that the
estimates obtained through (2) and those obtained by directly approximat-
ing integrals (1) are practically identical in densely sampled or fully observed
functional designs, so that the PACE method (2) has the advantage that it
always provides reasonable estimates, irrespective of whether the design is
dense or not.

3 The PACE Package

This is a Matlab package that has been developed since 2005, starting with
an initial version that was created by Fang Yao. In early 2010, version 2.11 is
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being released, along with a R version, which currently contains only a small
subset of the procedures. The code and descriptions can be downloaded from
http://anson.ucdavis.edu/~mueller/data/programs.html.

Due to superior precision and much faster run times, the Matlab version
is preferable. The Principal Analysis by Conditional Expectation (PACE)
code implements a number of core procedures for FDA. PACE refers to the
conditioning step (2) on which the estimation of the functional principal
components is based, and which is key to implement the BLUP estimators,
as described in the previous section.

The FDA procedures implemented in PACE are based on functional prin-
cipal component analysis, as described above. For each of a sample of subjects
or experimental units, the input consists of the longitudinal measurements
made for each of the subjects, which can be dense and regularly spaced or
sparse and irregularly spaced. For each subject, one may have more than
one kind of longitudinal data, and also non time-dependent subject-specific
covariates. Basic output includes the mean functions µ̂ of the random tra-
jectories and covariance surfaces Ĝ, as well as the PACE estimates, derived
from (2), for the functional principal components.

In order to obtain this basic output, two smoothing steps are needed,
one for the mean function and one for the covariance surface, and for the
case of derivatives also for partial derivatives of the covariance surface. These
smoothing steps are implemented with local least squares, and the requisite
smoothing bandwidths are selected by generalized cross-validation.

The smoothed covariance surfaces will be symmetric (as the input data,
consisting of raw covariances, are symmetric and it is easy to see that the
smoothed surfaces then also will be symmetric) but not necessarily non-
negative definite. Therefore, after initial estimates of eigenvalues and eigen-
functions have been obtained by numerical linear algebra from the smoothed
discretized covariance matrices, we project on the set of positive definite sym-
metric covariances by means of the projection

Ĝ(s, t) =
K̂∑

k=1,λ̂k>0

λ̂kφ̂k(s)φ̂k(t),

where K̂ is the selected number of included components, for which various
pseudo-likelihood criteria analogous to AIC and BIC have been studied (Yao
et al. (2005a), Liu and Müller (2009)). Both smoothed and projected covari-
ance surface are included in the output.

Basic output also includes the fitted subject-specific trajectories and their
derivatives, based on (2). First and second order derivatives are particularly
useful when one is interested in dynamics. This approach stands in contrast
to usual FDA implementations, where one typically assumes densely sampled
and nearly noise-free trajectory data as input, corresponding to fully observed
functions. Where this is not the case, because the data are noisy or not densely
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sampled, such implementations will include an initial presmoothing step. The
resulting smooth curves are then taken as fully observed sample of functions.

This approach can be problematic for data with large noise or subject
to irregular and sparse sampling, as in the BMI example discussed in the
Introduction. In such cases presmoothing and differentiation may introduce
distortions; while the presmoothing step often has troublesome implications
for the statistical properties of the subsequent FDA procedures, these are of-
ten ignored in the subsequent analysis. As pointed out above, the conditioning
approach (2) implemented in PACE is robust with regard to the design and
works across the common designs one encounters in repeated measurement
situations.

Besides this basic output, PACE offers various results pertaining to the
particular FDA procedure that one chooses. A requirement for this method-
ology to work properly is that the measurement times, pooled across all
subjects, are dense on the domain and the pooled pairs of the locations of
observations made for the same subject are dense on the domain squared
(PACE outputs a two-dimensional design plot that enables a user to check
whether these assumptions are satisfied; in case non-negligible gaps are found
in these plots, the analysis can still proceed if one is willing to choose over-
smoothing bandwidths for the smoothing steps, which may lead to increased
bias).

The following approaches and outputs are included in the PACE package,
among others:

• Fitting of both sparsely and densely sampled random functions and their
derivatives, and spaghetti plots to view the sample of functions. Exam-
ples for such spaghetti plots are the graphs in Figure 1, which would
be overlaid for all subjects in a typical output. This allows to make an
initial assessment about extreme curves, outliers, the general variation
across functions, functional clusters, and the signal-to-noise ratio.
• A variant of interest in many longitudinal studies from the life and social

sciences pertains to the case when the repeated responses correspond to
series of generalized (binary, Poisson etc.) variables. These are modeled
by a latent Gaussian process, the trajectories of which are the underlying
functions that generate the responses (Hall et al. (2008)).
• Time-synchronization based on pairwise warping, as proposed in Tang

and Müller (2008). This method aims to align (register) curves that are
subject to random time deformations, as is typically observed for growth
curves, movement and other biological data, where each individual follows
its own internal clock or “eigenzeit”.
• A generalized functional distance for the case of sparse data, where the

usual L2 distance in function space is not useful, as integration methods
cannot be adapted to the sparse case. This distance has various applica-
tions, including functional clustering, as demonstrated for online auction
data in Peng and Müller (2008).
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• Functional linear regression, fitting functional linear regression models for
both sparsely or densely sampled random trajectories, for cases where the
predictor is a random function and the response is a scalar or a random
function. The details of the implementation are based on the methods in
Yao et al. (2005b) and the version that is implemented is described in
Müller et al. (2008).
• Diagnostic plots based on a residual process, leverage plots and bootstrap

inference for functional linear regression (see Chiou and Müller (2007)).
• Functional quadratic regression, a more flexible model than functional

linear regression, that can lead to substantially improved fitting, as de-
scribed in Yao and Müller (2010).
• Generalized Functional Linear Regression (GFLM), which is an extension

of Generalized Linear Models (GLM) to the functional case. Here the
predictor is a random function and the response is a scalar generalized
variable, such as binary or Poisson. The binary GFLM can be used for
classification of functional data (Müller and Stadtmüller (2005)).
• Functional Additive Modeling (FAM), an additive generalization of func-

tional linear regression, for the case of functional predictors and both
functional and scalar responses; this is a flexible model that easily adapts
to many shapes of the regression relation and efficiently addresses the
curse-of-dimension problem for the case of infinite-dimensional predic-
tors, in analogy to additive models with nonparametric components for
regression with high-dimensional predictors (Müller and Yao, 2008).
• Fitting of the functional variance process, an extension of nonparametric

variance function estimation. This process is based on the assumption
that the random variation in the errors in itself is governed by the re-
alization of a random process, which can then be characterized by its
functional components (Müller et al. (2006)).

These methods include a variety of options that the user can specify.
For the purposes of empirical dynamics, derivative estimation as provided by
PACE is of central interest.

4 Empirical dynamics

In the Gaussian case, the values of trajectories and of their derivatives at a
fixed time t are jointly normal. As was observed in Müller and Yao (2010),
this implies a pointwise relationship between derivative and level that is given
by

X(1)(t)− µ(1)(t) = β(t){X(t)− µ(t)}+ Z(t). (6)

Here the varying coefficient function β, which determines the relationship at
each time t, is found to correspond to

β(t) =
∑∞

k=1 λkφ
(1)
k (t)φk(t)∑∞

k=1 λkφk(t)2
, (7)
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and Z is a Gaussian drift process that is independent of X.
This is a first order stochastic differential equation that is “empirical” in

the sense that beyond Gaussianity and smoothness of trajectories no further
assumptions are needed for its derivation. Dynamic relationships, that similar
to the above equation are the consequence of basic general assumptions but
are not in any way pre-specified, constitute “Empirical Dynamics”.

To study the implications of the dynamic equation (6), it is paramount
to quantify the variance of the drift process Z and to estimate the varying
coefficient function β from the data. The latter can be easily achieved by
truncating the expansion at (7) at an increasing sequence K and to substitute
estimates for eigenvalues, eigenfunctions and eingefunction derivatives. This
procedure is shown to be consistent in Müller and Yao (2010).

The fraction of variance of X(1)(t) that is explained by the fixed part of
the differential equation (6) can be quantified by

R2(t) = 1− var(Z(t))/var(X(1)(t)).

Further calculations lead to more detailed representations and to the deriva-
tion of consistent estimates for R2(t).

If we apply Empirical Dynamics to the BMI data that were described
in the Introduction, the trajectories are found to display sizeable variation
but no clear overall trend. The function R2(t) is large in the beginning and
near the end of the domain, which means that the deterministic part of the
equation is dominant in these areas, while the stochastic drift process is the
main driver in the mid-age range, where also the varying coefficient function
β is seen to hover around relatively small values.

Near both ends the function β is negative, which indicates that for sub-
jects with BMI values away from (either above or below) the overall mean
BMI level, BMI levels at these ages tend to decline if they are above, and
tend to increase if they are below the mean level. It may indicate that there
exist stabilizing mechanisms built into the physiological processes that con-
trol BMI over the age range covered by these data. This phenomenon has
been characterized as “dynamic regression to the mean”.
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Abstract. Kernel methods for data analysis are frequently considered to be re-
stricted to positive definite kernels. In practice, however, indefinite kernels arise
e.g. from problem-specific kernel construction or optimized similarity measures. We,
therefore, present formal extensions of some kernel discriminant analysis methods
which can be used with indefinite kernels. In particular these are the multi-class ker-
nel Fisher discriminant and the kernel Mahalanobis distance. The approaches are
empirically evaluated in classification scenarios on indefinite multi-class datasets.

Keywords: kernel methods, indefinite kernels, Mahalanobis distance, Fisher
Discriminant Analysis

1 Introduction

Kernel methods are powerful statistical learning techniques, widely applied
to various data analysis scenarios thanks to their flexibility and good perfor-
mance, e.g. the support vector machine, kernel principal component analysis
(KPCA), kernel Fisher discriminant (KFD), kernel k-means, etc. We refer to
the monographs of Schölkopf and Smola (2002) and Shawe-Taylor and Cris-
tianini (2004) for extensive presentations. The class of permissible kernels is
often, and frequently wrongly, considered to be limited due to their require-
ment of being positive definite (pd). In practice, however, many non-pd sim-
ilarity measures arise, e.g. when invariance or robustness is incorporated into
the measure. Naturally, indefinite (dis-)similarities arise from non-Euclidean
or non-metric dissimilarities, such as modified Hausdorff distances, or non-pd
similarities, such as Kullback-Leibler divergence between probability distri-
butions. Consequently, there is a practical need to handle these measures
properly. Apart from embedding into Banach spaces or regularizing indefi-
nite kernels, more general approaches are of high interest. A natural extension
of Mercer kernels leads to indefinite kernels and the corresponding learning
methods, cf. Ong et al. (2004), Pekalska and Duin (2005), Haasdonk (2005),
Pekalska and Haasdonk (2009) and references therein.

In the current presentation, we extend two kernel discriminant meth-
ods, known from the positive definite case, to their indefinite counterparts.
First, we focus on the generalized discriminant analysis (Baudat and Anouar

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 20, c© Springer-Verlag Berlin Heidelberg 2010
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(2000)), which is a kernel version of the standard linear discriminant analysis
for feature extraction (Duda et al. (2001)). Secondly, we consider the Maha-
lanobis distance for indefinite kernels, which is an extensions of the pd case
of Haasdonk and Pekalska (2008). For completeness, we also want to mention
other existing approaches for pd kernels of Ruiz and Lopez-de Teruel (2001)
and Wang et al. (2008).

The structure of the paper is as follows. In the next section we provide
the basic notation and background on indefinite kernel spaces, which are the
geometric framework for indefinite kernels. We derive the kernelized versions
of the Fisher discriminant and two versions of the Mahalanobis distance for
indefinite kernels in Sec. 3. We perform classification experiments in Sec. 4
and conclude in Sec. 5.

2 Kernels and Feature Space Embedding

The proper frame for indefinite kernel functions, to be used in the sequel, are
indefinite vector spaces such as pseudo-Euclidean (Goldfarb (1985), Pekalska
and Duin (2005)) or more general Krĕın spaces (Bognar (1974), Rovnyak
(2002)). A Krĕın space over R is a vector space K equipped with a non-
degenerate indefinite inner product 〈·, ·〉K : K×K → R such that K admits an
orthogonal decomposition as a direct sum, K = K+⊕K−, where (K+, 〈·, ·〉+)
and (K−, 〈·, ·〉−) are separable Hilbert spaces with their corresponding pd
inner products. The inner product of K, however, is the difference of 〈·, ·〉+
and 〈·, ·〉−, i.e. for any ξ+, ξ′+ ∈ K+ and any ξ−, ξ′− ∈ K− holds〈

ξ+ + ξ−, ξ
′
+ + ξ′−

〉
K :=

〈
ξ+, ξ

′
+

〉
+
−
〈
ξ−, ξ

′
−
〉
− .

The natural projections P+ ontoK+ and P− ontoK− are fundamental pro-
jections. Any ξ ∈ K can be represented as ξ = P+ ξ+P− ξ, while IK = P++P−
is the identity operator. The linear operator J = P+−P− is called the funda-
mental symmetry and is the basic characteristic of a Krĕın space K, satisfying
J = J−1. The space K can be turned into its associated Hilbert space |K|
by using the positive definite inner product 〈ξ, ξ′〉|K| := 〈ξ,J ξ′〉K. We use
the “transposition” abbreviation ξT ξ′ := 〈ξ, ξ′〉|K| for vectors and now addi-
tionally (motivated by J operating as a sort of “conjugation”) a “conjugate-
transposition” notation ξ∗ξ′ := 〈ξ, ξ′〉K = 〈J ξ, ξ′〉|K| = (J ξ)T ξ′ = ξTJ ξ′.

Finite-dimensional Krĕın spaces with K+ = Rp and K− = Rq are denoted
by R(p,q) and called pseudo-Euclidean spaces. They are characterized by the
so-called signature (p, q) ∈ N2. J becomes the matrix J = diag(1p,−1q)
with respect to an orthonormal basis in R(p,q). Krĕın spaces are important
as they provide feature-space representations of dissimilarity data (Goldfarb
(1985)) or indefinite kernels. In analogy to the pd case, an indefinite kernel
represents an inner product in an implicitly defined Krĕın space. Hence al-
gorithms working with indefinite kernels have a geometric interpretation in
these spaces.
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We assume a c-class problem with n training samples X := {xi}ni=1 ⊂
X and integer class labels {yi}ni=1 ⊂ {1, . . . , c} ⊂ N, where X denotes a
general set of objects. The class labels induce a partition of the training
data X = ∪c

j=1X
[j] with X [j] = {x[j]

i }n
[j]

i=1, i.e. n[j] denoting the number of
samples per class satisfying

∑c
j=1 n

[j] = n. Let ψ : X → K be an embedding
of the sample set X into a Krĕın space K and Ψ := [ψ(x1), . . . , ψ(xn)] be a
sequence of embedded samples. We use natural “sequence-vector-products”
to abbreviate linear combinations, so the empirical mean is defined as ψµ :=
1
n

∑n
i=1 ψ(xi) = 1

nΨ1n with 1n ∈ Rn being the vector of all ones. Similarly,
we adopt “sequence-sequence-product” notation for expressing matrices, e.g.
K := Ψ∗Ψ = ΨTJ Ψ ∈ Rn×n being the kernel-matrix with respect to the
kernel k(x, x′) := 〈ψ(x), ψ(x′)〉K. If Ψ [j] = [ψ(x[j]

1 ), . . . , ψ(x[j]

n[j])] denotes the
sequence of class-wise embedded data, we define the class mean as ψ[j]

µ :=
1

n[j]Ψ
[j]1n[j] and we abbreviate the column-blocks of the kernel matrix as

K [j] := Ψ∗Ψ [j] ∈ Rn×n[j]
. We finally introduce the kernel-quantities kx :=

(ψ(xi)∗ψ(x))n
i=1. In practice, the embedding ψ will not be given for defining

the kernel k. Instead a symmetric kernel function k(x, x′) will be chosen in
a problem-specific way, which then implicitly represents the inner-product
in some Krĕın space obtained via a suitable embedding ψ. The strength of
kernel methods relies in the fact that the computation of this embedding ψ
can mostly be avoided, if the analysis algorithm only requires inner-products
between embedded samples, as these are provided by the given function k.

3 Kernel Discriminant Analysis

3.1 Indefinite Kernel Fisher Discriminant Analysis

We demonstrated in (Haasdonk and Pekalska (2008b)) how the two-class in-
definite Kernel Fisher discriminant classifier can be rigorously derived. This
represents an extension of the KFD (Mika et al. (1999)) to indefinite ker-
nels. Here, we generalize this further to multicategory Fisher Discriminant
Analysis for feature extraction (Duda et. al. (2001)). The within-class scatter
operator Σ[j]

W : K → K for the j-th class is defined by

Σ
[j]
Wϕ :=

n[j]∑
i=1

(
ψ(x[j]

i )− ψ[j]
µ

)(
ψ(x[j]

i )− ψ[j]
µ

)∗
ϕ, ϕ ∈ K (1)

which results in the (normalized) overall within-class scatter ΣW := 1
n

∑c
j=1Σ

[j]
W .

Similarly, the (normalized) between-class scatter operator is defined by

ΣBϕ :=
c∑

j=1

n[j]

n

(
ψ[j]

µ − ψµ

)(
ψ[j]

µ − ψµ

)∗
ϕ, ϕ ∈ K. (2)
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The multiple discriminant analysis problem is then solved by searching a
sequence of vectors W = [w1, . . . , wc−1] ∈ Kc−1 such that

J(W ) :=
det(W ∗ΣBW )
det(W ∗ΣWW )

=
det(WTJΣBW )
det(WTJΣWW )

(3)

is maximized. This is obtained by solving the generalized eigenvalue problem

JΣBwj = λjJΣWwj (4)

for the c−1 largest eigenvalues λj . The practical computation can now be
kernelized similarly to Baudat and Anouar (2000) or Haasdonk and Pekalska
(2008b). First, we note from the eigenvalue equation (4) that the range of
both scatter operators is spanned by embedded training examples, implying
wj ∈ span{ψ(xi)}ni=1. Hence, there exists a matrix α ∈ Rn×(c−1) such that
W = Ψα and the discriminant quotient (3) becomes

J(W ) :=
det(αTΨTJΣBΨα)
det(αTΨTJΣWΨα)

=:
det(αTMα)
det(αTNα)

. (5)

The matrices M,N can now be computed based on the kernel data. We
define c := 1

n1n and c[j] := (c[j]i )n
i=1 with c

[j]
i := 1/n[j] for xi ∈ X [j] and

c
[j]
i := 0 otherwise. Then the between-class scatter is rewritten as ΣB =∑c

j=1
n[j]

n Ψ(c[j]− c)(c[j]− c)TΨ∗. Setting D :=
∑c

j=1
n[j]

n (c[j]− c)(c[j]− c)T ,
we obtain

M = ΨTJΣBΨ = ΨTJ ΨDΨTJ Ψ = KDK. (6)

Note that bothD andM are positive semidefnite by construction. Further, we
introduce the centering matrixH [j] := In[j]− 1

n[j] 1n[j]1T
n[j] ∈ Rn[j]×n[j]

and ob-

tain for the class-specific within-class scatter operatorΣ[j]
W = 1

n[j]Ψ
[j]H [j]Ψ [j]J .

Consequently, ΣW =
∑c

j=1
n[j]

n Σ
[j]
W = 1

n

∑c
j=1 Ψ

[j]H [j]Ψ [j]J . Hence, the de-
nominator matrix of (5) is expressed as

N = ΨTJΣWΨ =
1
n

c∑
j=1

K [j]H [j](K [j])T . (7)

N is positive semidefinite irrespectively of the definiteness of K [j]. To see
this, it is sufficient to remark that K [j]H [j](K [j])T = (K [j]H [j])(K [j]H [j])T

is positive semidefinite as H [j] is idempotent, and N is a positive linear
combination of such matrices. Identical to the pd case, the matrix N will
be singular and maximizing (5) is not well defined. Therefore, the matrix N
is regularized, e.g. by Nβ = N + βIn×n with β > 0. The coefficient matrix
α = [α1, . . . ,αc−1] is then obtained columnwise by solving the following
eigenvalue problem

(N−1
β M)αj = λjαj ,
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Obviously, thanks to the positive semidefiniteness of N−1
β M , the eigenvalues

λj are nonnegative. The normalized eigenvectors αj define the indefinite ker-
nel Fisher (IKF) feature extractors by suitable projections via the indefinite
inner product as follows:

fIKF (x) :=[〈w1, ψ(x)〉K , .., 〈wc−1, ψ(x)〉K]T =W ∗ψ(x)=αTΨ∗ψ(x)=αT kx.

The above formulation is equivalent to the kernel Fisher discriminant analysis
for pd kernels; here, however, K is indefinite.

We now want to note an interesting theoretical fact of the IKF feature
extractor: it is equivalent to embedding the data in the associated Hilbert
space |K| and performing a positive definite kernel Fisher discriminant analy-
sis. The latter approach would be in the spirit of “regularizing” the indefinite
kernel matrix to a pd matrix, but is algorithmically quite cumbersome. After
an eigenvalue decomposition of the possibly huge indefinite kernel matrix the
negative eigenvalues are flipped yielding an explicit feature space embedding,
which enables the traditional discriminant analysis. If we show the equiva-
lence of IKF to this procedure, then IKF is a simple algorithmical alternative
to this regularizing approach. To see this equivalence, we first note with view
on (1) and (2) that the between-class and within-class scatter operators in the
associated Hilbert space are given by Σ|K|

B = ΣBJ and Σ|K|
W = ΣWJ . Then,

the corresponding positive definite Fisher discriminant eigenvalue problem
Σ
|K|
B w

|K|
j = λ

|K|
j Σ

|K|
W w

|K|
j is solved by λ

|K|
j = λj and w

|K|
j = Jwj as can be

seen by (4). Setting W |K| := [w|K|1 , . . . , w
|K|
c−1] allows to define the Fisher dis-

criminant in the associated Hilbert space and gives the equivalence to fIKF :

f
|K|
IKF (x) :=(W |K|)Tψ(x)=(JW )Tψ(x)=WTJψ(x)=W ∗ψ(x)=fIKM (x).

3.2 Indefinite Kernel Mahalanobis Distances

For simplicity of presentation we describe the computation of the Maha-
lanobis distance for the complete dataset and assume that it is centered in
the embedded Krĕın space. This can be obtained by explicit centering oper-
ations, cf. Shawe-Taylor and Cristianini (2004). As a result, K = Ψ∗Ψ is now
a centered kernel matrix. Then, the empirical covariance operator C: K → K
acts on φ∈K as Cφ := 1

n

∑n
i=1 ψ(xi) 〈ψ(xi), φ〉K = 1

nΨΨ
∗φ. We will therefore

identify the empirical covariance operator as

C =
1
n
ΨΨ∗ =

1
n
ΨΨTJ = C |K|J ,

where C |K| = 1
nΨΨ

T is the empirical covariance operator in |K|. The operator
C is not pd in the Hilbert sense, but it is pd in the Krĕın sense. It means that
〈ξ, Cξ〉K ≥ 0 for ξ 6= 0 in agreement with the inner product of that space.
In (Haasdonk and Pekalska (2008)) we presented a kernelized version of the
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Mahalanobis distance for pd kernels. In the case of an invertible covariance
(IC) operator, the derivation directly extends to indefinite kernels resulting
in

d2
IC(x) := ψ(x)∗C−1ψ(x) = n(kx)T (K−)2kx

where the superscript ·− = pinv(·, α) denotes the pseudo-inverse with a
threshold α > 0. This means that in the computation of the inverse singular
values smaller than α are set to zero.

The above distance is evaluated per class and does not involve between-
class information. Hence, alternatively, we also proposed a kernel Maha-
lanobis distance in a full kernel (FK) space, determined via KPCA (Pekalska
and Haasdonk (2009)). This distance for class j is obtained as

(d[j]
FK(x))2 :=

n[j]

2
(k̃

[j]

x )T (K̃ [j]
reg)

−1k̃
[j]

x , (8)

where k̃
[j]

x := kx− 1
n[j]K

[j]1n[j] and K̃
[j]
reg := K̃ [j] + αjIn for some αj > 0

with K̃ [j] := K [j]H [j](K [j])T ∈ Rn×n. The extension to indefinite kernels
is straightforward as the kernel matrices K̃ [j] := K [j]H [j](K [j])T still are
positive semidefinite. As a result, the indefinite kernel Mahalanobis distance
using the full kernel matrix is identical to (8), but based on an indefinite
kernel. See Appendix of Pekalska and Haasdonk (2009) for details.

Since we compute kernel Mahalanobis distances per class, we can now
define the feature representations of a sample x as a c-dimensional vector by
the indefinite kernel Mahalanobis distance with invertible covariance (IKM-
IC) as fIKM−IC(x) := [d[1]

IC(x), . . . , d[c]
IC(x)]T and similarly fIKM−FK using

the full kernel distance d[j]
FK .

4 Classification Experiments

Multi-class problems characterized by indefinite proximity data can now be
approached via the feature representations fIKF , fIKM−IC and fIKM−FK

defined in the previous section. Although the features are extracted from
indefinite kernels, the resulting either c- or (c−1)-dimensional feature vector
spaces are assumed to be equipped with the traditional inner product and
Euclidean metric. As a result, different classifiers can now be trained there.

Table 4 lists basic properties of eight multi-class datasets, i.e. the type of
dissimilarity measure, the class names and sizes and the fraction of data used
for training in the hold-out experiments. Some measures of indefiniteness of
the resulting training kernel matrices are also provided: rneg ∈ [0, 1] denotes
the ratio of negative to overall variance of the centered training kernel ma-
trix and (p, q) indicates the signature of the embedding Krĕın space. These
quantities are averaged over 25 runs based on random drawings of a train-
ing subset. For detailed descriptions and references to the single datasets, we
refer to Appendix of (Pekalska and Haasdonk (2009)).
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Table 1. Characteristics of indefinite datasets, cf. Pekalska and Haasdonk (2009)
for details and references.

Dissimilarity Kernel c (n[j]) β rneg(p, q)

Cat-cortex Prior knowl. −d2 4 (10–19) 0.80 0.19 ( 35, 18)
Protein Evolutionary −d2 4 (30–77) 0.80 0.00 (167, 3)
News-COR Correlation −d2 4 (102–203) 0.60 0.19 (127,208)
ProDom Structural s 4 (271–1051) 0.25 0.01 (518, 90)
Chicken29 Edit-dist. −d2 5 (61–117) 0.80 0.31 (192,166)
Files Compression −d2 5 (60–255) 0.50 0.02 (392, 63)
Pen-ANG Edit-dist. −d2 10 (334–363) 0.15 0.24 (261,269)
Zongker Shape-match. s 10 (200) 0.25 0.36 (274,226)

In our hold-out experiments, each data set is split into the training and
test set of suitable sizes as reported in Table 1. The dissimilarity data set is
first scaled such that the average dissimilarity is 1 on the training set. This
is done in order to have a consistent choice over a range of crossvalidated
parameters. The training kernel matrix based on the kernel k = −d2 is then
centered and used to extract features either by fIKF , fIKM−IC or fIKM−FK .
Next, four classifiers are constructed in the derived feature spaces, namely
the nearest mean classifier (NM), Fisher discriminant (FD), quadratic dis-
criminant (QD) and k-nearest neighbour (KNN) rule. Since we use the same
training data both to extract the features and train the classifiers, simple
classifiers are preferred to avoid the overuse of the data. The classifiers are
then applied to suitably projected test data. This is repeated 20 times and
the results are averaged.

As a reference, we use classifiers that directly work with original proxim-
ity measures as kernels. These are the indefinite kernel Fisher discriminant
(IKFD), indefinite support vector machine (ISVM) and indefinite kernel near-
est neighbour (IKNN) classifier. In particular, FD, IKFD and ISVM are bi-
nary classifiers, which solve the multi-class problems by the one-versus-all
approach. The remaining classifiers are inherently multi-class classifiers.

The free parameters of both feature extractors and classifiers are deter-
mined via a (nested, if necessary) 10-fold crossvalidation. The regularization
parameters of the kernel discriminant feature extractors are selected from
{10−6, 10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 10, 102, 103}. The number of nearest
neighbors is found from 1 to 15. The parameter C for ISVM is found within
{0.01, 0.1, 0.5, 1, 5, 10, 102, 103, 104, 106, 108}.

The classification results are reported in Table 2. Although strong conclu-
sions cannot be drawn due to high standard deviations, the following observa-
tions can be made. The features obtained by fIKM−IC are performing much
worse than all other extracted features. This may be due to two facts. First,
the assumption of an invertible covariance matrix may be wrong, leading to
a degeneration in classification accuracy. Second, this Mahalanobis distance
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Table 2. Average classification errors (and standard deviation) over 20 hold-out
repetitions of data drawing and cross-validated parameter selection.

Classifier+Features Cat-cortex Protein News-COR ProDom

NM+IKM-IC 45.5 (13.2) 21.2 (7.7) 38.6 (2.4) 15.0 (3.5)
NM+IKM-FK 10.9 (6.3) 2.1 (2.6) 24.9 (2.5) 6.4 (2.4)
NM+IKF 12.6 (5.7) 0.1 (0.4) 24.1 (1.8) 2.0 (0.6)
FD+IKM-IC 42.2 (11.3) 25.9 (5.5) 39.7 (2.6) 9.4 (3.0)
FD+IKM-FK 10.3 (5.4) 1.1 (2.0) 24.2 (2.0) 1.7 (0.6)
FD+IKF 11.2 (5.2) 0.2 (0.5) 24.2 (3.1) 1.6 (0.6)
QD+IKM-IC 48.5 (12.4) 11.9 (4.5) 41.4 (3.0) 3.6 (0.9)
QD+IKM-FK 22.7 (6.7) 0.5 (0.8) 25.5 (2.7) 2.0 (0.7)
QD+IKF 18.4 (7.4) 0.5 (1.3) 24.4 (3.1) 1.5 (0.5)
KNN+IKM-IC 43.9 (8.6) 19.8 (7.4) 42.9 (3.1) 5.0 (1.6)
KNN+IKM-FK 11.3 (6.5) 0.6 (1.7) 25.7 (1.7) 2.2 (0.9)
KNN+IKF 11.7 (6.5) 0.2 (0.5) 24.7 (2.2) 1.6 (0.7)

IKFD 10.6 (5.6) 0.3 (0.7) 23.6 (2.4) 2.0 (0.6)
ISVM 16.5 (5.7) 0.5 (0.8) 24.4 (2.3) 1.6 (0.6)
IKNN 15.6 (5.8) 4.7 (5.2) 29.6 (2.3) 3.1 (0.8)

Chicken29 Files Pen-ANG Zongker

NM+IKM-IC 36.1 (5.4) 53.1 (4.4) 32.9 (1.9) 37.6 (2.1)
NM+IKM-FK 20.4 (3.2) 44.4 (3.6) 33.0 (1.6) 14.5 (0.8)
NM+IKF 6.6 (2.3) 5.3 (1.5) 1.3 (0.5) 5.9 (0.6)
FD+IKM-IC 36.9 (2.9) 50.4 (5.1) 11.5 (1.1) 33.5 (1.3)
FD+IKM-FK 8.9 (4.0) 22.3 (3.3) 3.2 (0.9) 6.3 (0.9)
FD+IKF 5.9 (2.3) 5.4 (1.5) 1.5 (0.4) 7.1 (0.8)
QD+IKM-IC 30.1 (3.4) 29.3 (4.5) 4.9 (0.9) 39.3 (2.1)
QD+IKM-FK 6.9 (2.8) 7.7 (2.7) 1.2 (0.3) 6.5 (0.9)
QD+IKF 5.0 (1.5) 6.7 (1.4) 1.5 (0.4) 5.8 (0.6)
KNN+IKM-IC 31.8 (5.0) 30.1 (4.6) 5.7 (0.7) 33.9 (1.6)
KNN+IKM-FK 4.2 (1.3) 8.0 (2.4) 1.8 (0.3) 4.8 (0.5)
KNN+IKF 5.1 (2.2) 4.9 (1.3) 1.2 (0.3) 5.5 (0.8)

IKFD 6.4 (2.2) 5.5 (1.4) 1.4 (0.4) 6.3 (0.7)
ISVM 6.5 (2.2) 11.6 (2.7) 5.0 (0.5) 7.0 (0.5)
IKNN 5.1 (2.0) 36.7 (2.8) 0.9 (0.3) 11.4 (1.4)

misses the between-class correlations of the datasets, which is increasingly
important with higher number of classes. Hence, the full-kernel Mahalanobis
distances fIKM−FK are clearly preferable to the former. Still, the (c − 1)-
dimensional feature spaces fIKF mostly lead to better results than the c-
dimensional feature spaces obtained by the IKM approaches, hence the IKF-
features are overall preferable. Among the chosen classifiers on the extracted
features, KNN is overall the best classifier which suggests that these spaces
benefit from non-linear classifiers. Among the reference classifiers, IKFD is
frequently the best, closely followed by ISVM, but occasionally outperformed
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by IKNN. Overall, the extracted features fIKM−FK and fIKF in combina-
tion with the chosen simple classifiers consistently yield classification results
in the range of the reference classifiers.

5 Conclusion

We presented extensions of kernel Fisher discriminant analysis and kernel
Mahalanobis distances to indefinite kernels. The natural framework for indef-
inite kernels are Krĕın spaces, which give a geometrical interpretation of these
indefinite methods. An interesting theoretical finding for the IKF feature ex-
tractor is that it correspond to its counterpart in the associated Hilbert space.
This implies that the indefinite kernel Fisher discriminant analysis saves the
unnecessary preprocessing step of embedding the data, flipping the negative
eigenvalues and performing an explicit Fisher discriminant in the embedded
space. In particular, the fIKF feature extractor is a real kernel method avoid-
ing the explicit embedding. For the indefinite kernel Mahalanobis distance,
we proposed to use two formulations from the pd case for indefinite kernels.
We performed experiments on indefinite multi-class classification problems,
that demonstrate the applicability of the fIKF and fIKM−FK methods, but
clearly discarded the fIKM−IC features. In particular, the successful features
yield results comparable to standard indefinite kernel classifiers such as IKFD
and ISVM.
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Abstract. One of the central aims of Statistical Learning Theory is the bounding
of the test set performance of classifiers trained with i.i.d. data. For Support Vector
Machines the tightest technique for assessing this so-called generalisation error is
known as the PAC-Bayes theorem. The bound holds independently of the choice of
prior, but better priors lead to sharper bounds. The priors leading to the tightest
bounds to date are spherical Gaussian distributions whose means are determined
from a separate subset of data. This paper gives another turn of the screw by
introducing a further data dependence on the shape of the prior: the separate data
set determines a direction along which the covariance matrix of the prior is stretched
in order to sharpen the bound. In addition, we present a classification algorithm
that aims at minimizing the bound as a design criterion and whose generalisation
can be easily analysed in terms of the new bound.

The experimental work includes a set of classification tasks preceded by a
bound-driven model selection. These experiments illustrate how the new bound act-
ing on the new classifier can be much tighter than the original PAC-Bayes Bound
applied to an SVM, and lead to more accurate classifiers.

Keywords: PAC Bayes Bound, Support Vector Machines, generalization pre-
diction, model selection

1 Introduction

Support vector machines (SVM) (Boser (1992)) are accepted among practi-
tioners as one of the most accurate automatic classification techniques. They
implement linear classifiers in a high-dimensional feature space using the
kernel trick to enable a dual representation and efficient computation. The
danger of overfitting in such high-dimensional spaces is countered by max-
imising the margin of the classifier on the training examples. For this reason
there has been considerable interest in bounds on the generalisation in terms
of the margin.

In fact, a main drawback that restrains engineers from using these ad-
vanced machine learning techniques is the lack of reliable predictions of gen-
eralisation, especially in what concerns worse-case performance. In this sense,
the widely used cross-validation generalization measures say little about the

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
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worst case performance of the algorithms. The error of the classifier on a set
of samples follows a binomial distribution whose mean is the true error of
the classifier. Cross-validation is a sample mean estimation of the true er-
ror, and worst case performance estimations concern the estimation of the
tail of the distribution of the error of these sets of samples. One could then
employ Statistical Learning Theory (SLT) tools to bound the tail of the distri-
bution of errors. Early bounds have relied on covering number computations
(Shawe-Taylor et al. (1998)), while later bounds have considered Rademacher
complexity. The tightest bounds for practical applications appear to be the
PAC-Bayes bound (Langford and Shawe-Taylor (2002)) and in particular the
one given in (Ambroladze et al. (2007)), with a data dependent prior.

Another issue affected by the ability to predict the generalisation capabil-
ity of a classifier is the selection of the hyperparameters that define the train-
ing. In the SVM case, these parameters are the trade-off between maximum
margin and minimum training error, C, and the kernel parameters. Again,
the more standard method of cross-validation has proved more reliable in
most experiments, despite the fact that it is statistically poorly justified and
relatively expensive.

The PAC-Bayes Bounds (overviewed in Section 2) use a Gaussian prior
with zero mean and identity covariance matrix. The Prior PAC-Bayes Bound
(Ambroladze et al. (2007)) tightens the prediction of the generalisation error
of an SVM by using a separate subset of the training data to learn the mean of
the Gaussian prior. The key to the new bound introduced in this work to come
up with even more informative priors by using the separate data to also learn
a stretching of the covariance matrix. Then section 4 presents a classification
algorithm, named η−Prior SVM, that introduces a regularization term that
tries to optimise a PAC-Bayes Bound.

The new bounds and algorithms are evaluated in some classification tasks
after parameters selection in Section 5. The experiments illustrate the capa-
bilities of the Prior PAC-Bayes Bound to (i) select an acceptable model (hy-
perparameter estimation) for an SVM and (ii) to provide tighter predictions
of the generalisation of the resulting classifier.

Finally, the main conclusions of this work and some ongoing related re-
search are outlined in Section 6.

2 PAC-Bayes bound for SVM

This section is devoted to a brief review of the PAC-Bayes Bound of Lang-
ford (2005) and the Prior PAC-Bayes Bound of Ambroladze (2006). Let us
consider a distribution D of patterns x lying in a certain input space X ,
with their corresponding output labels y, y ∈ {−1, 1}. In addition, let us also
consider a distribution Q over the classifiers c. For every classifier c, one can
define the True error , as the probability of misclassifying a pair pattern-label
(x, y) selected at random from D, cD ≡ Pr(x,y)∼D(c(x) 6= y). In addition, the
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Empirical error ĉS of a classifier c on a sample S of size m is defined as the
error rate on S, ĉS ≡ Pr(x,y)∼S(c(x) 6= y) = 1

m

∑m
i=1 I(c(xi) 6= yi), where I(·)

is a function equal to 1 if the argument is true and equal to 0 if the argument
is false.

Now we can define two error measures on the distribution of classifiers:
the true error, QD ≡ Ec∼QcD, as the probability of misclassifying an instance
x chosen uniformly from D with a classifier c chosen according to Q; and
the empirical error Q̂S ≡ Ec∼QĉS , as the probability of classifier c chosen
according to Q misclassifying an instance x chosen from a sample S.

For these two quantities we can derive the PAC-Bayes Bound on the true
error of the distribution of classifiers:

Theorem 1. (PAC-Bayes Bound) For all prior distributions P (c) over the
classifiers c, and for any δ ∈ (0, 1]

PrS∼Dm

(
∀Q(c) : KL(Q̂S ||QD) ≤

KL(Q(c)||P (c)) + ln(m+1
δ )

m

)
≥ 1− δ,

where KL is the Kullback-Leibler divergence, KL(p||q) = q ln q
p +(1−q) ln 1−q

1−p

and KL(Q(c)||P (c)) = Ec∼Q ln Q(c)
P (c) .

The proof of the theorem can be found in Langford (2005).
This bound can be particularised for the case of linear classifiers in the

following way. The m training patterns define a linear classifier that can be
represented by the following equation1:

c(x) = sign(wTφ(x)) (1)

where φ(x) is a nonlinear projection to a certain feature space2 where the
linear classification actually takes place, and w is a vector from that feature
space that determines the separating hyperplane.

For any vector w we can define a stochastic classifier in the following
way: we choose the distribution Q = Q(w, µ) to be a spherical Gaussian with
identity covariance matrix centred on the direction given by w at a distance
µ from the origin. Moreover, we can choose the prior P (c) to be a spherical
Gaussian with identity covariance matrix centred on the origin. Then, for
classifiers of the form in equation (1) performance can be bounded by

Corollary 1. (PAC-Bayes Bound for margin classifiers (Langford (2005)))
For all distributions D, for all δ ∈ (0, 1], we have

PrS∼Dm

(
∀w, µ : KL(Q̂S(w, µ)||QD(w, µ)) ≤

µ2

2 + ln(m+1
δ )

m

)
≥ 1− δ.

1 We are considering here unbiased classifiers, i.e., with b = 0.
2 This projection is induced by a kernel κ(·) satisfying κ(x,y) = 〈φ(x), φ(y)〉
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It can be shown (see Langford (2005)) that

Q̂S(w, µ) = Em[F̃ (µγ(x, y))] (2)

where Em is the average over the m training examples, γ(x, y) is the nor-
malised margin of the training patterns

γ(x, y) =
ywTφ(x)
‖φ(x)‖‖w‖

(3)

and F̃ = 1− F , where F is the cumulative normal distribution

F (x) =
∫ x

−∞

1√
2π
e−x2/2dx. (4)

Note that the SVM is a thresholded linear classifier expressed as (1) com-
puted by means of the kernel trick (Boser et al. (1992)). The generalisation
error of such a classifier can be bounded by at most twice the true (stochastic)
error QD(w, µ) in Corollary 1, (see Langford and Shawne-Taylor (2002));

Pr(x,y)∼D
(
sign(wTφ(x)) 6= y

)
≤ 2QD(w, µ)

for all µ.
These bounds where further refined in Ambroladze et al. (2006) by the

introduction of data dependent priors.

Theorem 2. (Multiple Prior PAC-Bayes Bound) Let {Pj(c)}Jj=1 be a set
of possible priors that can be selected with positive weights {πj}Jj=1 so that∑J

j=1 πj = 1. Then, for all δ ∈ (0, 1],

PrS∼Dm

 ∀Q(c) : KL(Q̂S ||QD) ≤

minj

KL(Q(c)||Pj(c))+ln m+1
δ +ln 1

πj

m

 ≥ 1− δ,

In the standard application of the bound the prior is chosen to be a
spherical Gaussian centred at the origin. We now consider learning a different
prior based on training an SVM on a subset R of the training set comprising
r training patterns and labels. In the experiments this is taken as a random
subset but for simplicity of the presentation we will assume these to be the
last r examples {xk, yk}mk=m−r+1 in the description below. With these left-out
r examples we can determine an SVM classifier, wr and form a set of potential
priors Pj(w|wr) by centering spherical Gaussian distributions along wr, at
distances {ηj} from the origin, where {ηj}Jj=1 are positive real numbers. In
such a case, we obtain
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Corollary 2. (Multiple Prior based PAC-Bayes Bound for margin classi-
fiers) Let us consider a set {Pj(w|wr, ηj)}Jj=1 of prior distributions of clas-
sifiers consisting in spherical Gaussian distributions with identity covariance
matrix centered on ηjw̃r, where {ηj}Jj=1 are real numbers. Then, for all dis-
tributions D, for all δ ∈ (0, 1], we have

PrS∼Dm

∀w, µ : KL(Q̂S\R(w, µ)||QD(w, µ)) ≤

minj

‖ηjw̃r−µw̃‖2

2 +ln( m−r+1
δ )+ln J

m−r

 ≥ 1− δ (5)

3 Stretched Prior PAC-Bayes Bound

The first contribution of this paper consists in a new data dependent PAC-
Bayes Bound where not only the mean, but the covariance matrix of the
Gaussian prior can be shaped by the data distribution. Rather than take a
spherically symmetric prior distribution we choose the variance in the direc-
tion of the prior vector to be τ > 1. As with the Prior PAC-Bayes Bound the
mean of the prior distribution is also shifted from the original in the direction
w̃r.

We introduce notation for the norms of projections for unit vector u,
P
‖
u(v) = 〈u,v〉 and P⊥u (v)2 = ‖v‖2 − P ‖u(v)2.

Theorem 3. (τ -Prior PAC-Bayes Bound for linear classifiers) Let us con-
sider a prior P (w|wr, τ, η) distribution of classifiers consisting of a Gaussian
distribution centred on ηw̃r, with identity covariance matrix in all directions
except w̃r in which the variance is τ2. Then, for all distributions D, for all
δ ∈ (0, 1], for all posteriors (w, µ) we have that with probability greater or
equal than 1− δ

KL(Q̂S\R(w, µ)‖QD(w, µ)) ≤ (6)

0.5(ln(τ2) + τ−2 − 1 + P
‖
wr (µw − ηw̃r)2/τ2 + P⊥wr

(µw)2) + ln(m−r+1
δ )

m− r

Proof. The application of the PAC-Bayes theorem follows that of Langford
(2005) except that we must recompute the KL divergence. Note that the
quantity

Q̂S\R(w, µ) = Em−r[F̃ (µγ(x, y))] (7)

remains unchanged as the posterior distribution is still a spherical Gaussian
centred at w. Using the expression for the KL divergence between two Gaus-
sians

KL(NN (µ0, Σ0)‖NN (µ1, Σ1)) =
1
2

(
ln
(

detΣ1

detΣ0

)
+ tr(Σ−1

1 Σ0) + (µ1 − µ0)TΣ−1
1 (µ1 − µ0)−N

)
, (8)
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we obtain

KL(Q(w, µ)‖P (w|wr, τ, η)) =

1
2

(
ln(τ2) +

(
1
τ2
− 1
)

+
P
‖
wr (µw − ηw̃r)2

τ2
+ P⊥wr

(µw)2
)

and the result follows.

In order to apply the bound we need to consider the range of priors that
are needed to cover the data in our application. The experiments with the
Prior PAC-Bayes Bound required a range of scalings of w̃r from 1 to 100. For
this we can choose η = 50 and τ = 50, giving an increase in the bound over
the factor P⊥wr

(µw)2 directly optimised in the algorithm of

0.5(ln(τ2) + τ−2 − 1 + P
‖
w̃r

(µw − ηw̃r)2/τ2

m− r
≤ ln(τ) + 0.5τ−2

m− r
≈ 3.912
m− r

.

(9)

4 η-Prior SVM

The good performance of the Prior PAC-Bayes bound as a means to select
good hyperparameters for SVMs reported in Ambroladze et al. (2006) moti-
vates the exploration of new classifiers that incorporate the optimisation of
the bound as a design criterion.

The Prior PAC-Bayes Bound defined the prior distribution as mixture of
Gaussians along the direction given by wr and searched for the component in
the mixture that yielded the tightest bound. The τ -Prior PAC-Bayes Bound
presented above replaces the covering of the prior direction with a mixture
of Gaussians by a stretching of the prior along wr. This motivates the intro-
duction of the following classifier, termed η-Prior SVM. The η-Prior SVM is
a combination of a prior classifier, wr and a posterior one, v: w = v + ηw̃r.
The prior wr is determined as in the Prior PAC-Bayes framework, running
an SVM on a subset of r training patterns. The posterior part v and the
scaling of the prior η come out of the following optimisation problem:

min
v,η,ξi

[
1
2
‖v‖2 + C

m−r∑
i=1

ξi

]
(10)

subject to

yi(v + ηw̄r)Tφ(xi) ≥ 1− ξi i = 1, . . . ,m− r (11)
ξi ≥ 0 i = 1, . . . ,m− r (12)

Since the tightness of the bound depend on the KL divergence between the
prior and posterior distribution, the proposed minimisation of the norm of v
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brings the posterior classifier w close to the prior wr. Besides, the constraints
push towards a reduced stochastic training error on the samples used to learn
the posterior. Therefore, these two factors pursue an optimisation of the PAC-
Bayes bound.

The statistical analysis of the η-Prior SVM can be performed in two ways.
On the one hand, one could envisage making a sequence of applications of the
PAC-Bayes bound with spherical priors using the union bound and applying
the result with the nearest prior. On the other hand, the analysis can be
performed based on the τ -Prior PAC-Bayes Bound.

5 Experimental Work

This section is devoted to an experimental analysis of the bounds and algo-
rithms introduced in the paper. The comparison of the algorithms is carried
out on a classification preceded by model selection task using some UCI
(Blake and Merz (1998)) datasets: handwritten digits, waveform, pima,
ringnorm and spam filtering.

For every dataset, we prepare 10 different training/test set partitions
where 80% of the samples form the training set and the remaining 20% form
the test set. With each of the partitions we learn a classifier with Gaussian
RBF kernels preceded by a model selection. The model selection consists in
the determination of an optimal pair of hyperparameters (C, σ). C is the
SVM trade-off between the maximisation of the margin and the minimisa-
tion of the number of misclassified training samples; σ is the width of the
Gaussian kernel, κ(x,y) = exp(−‖x−y‖2/(2σ2)). The best pair is sought in
a 5×5 grid of parameters where C ∈ {1, 10, 100, 1000, 10000} and σ ∈ { 1

4

√
d,

1
2

√
d,
√
d, 2
√
d, 4
√
d}, where d is the input space dimension. With respect

to the parameters needed by the Prior PAC-Bayes bounds, the experiments
reported in Ambroladze (2007) suggest that J = 10 priors and leaving half
of the training set to learn the prior direction lead to reasonable results.

The results presented in the sequel correspond to the combination of
a model selection method plus a classification algorithm. Model selection
methods refer to the fitness function (usually a bound) used in the grid search
for the optimal pair of hyperparameters. The studied combinations are:

• Using the regular SVM as classifier:
PAC-SVM Regular SVM with model selection driven by the PAC-

Bayes bound of Langford (2005).
Prior-PAC Regular SVM and Multiple Prior PAC-Bayes Bound.
2FCV Regular SVM with the model selection made through two fold

cross-validation. This setting involves a computational burden similar
to the bound based ones, where half of the training data are used to
learn the prior and the other half to learn the posterior).

• Using the η-Prior SVM as classifier we have the following two configura-
tions:
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Prior-PAC-η-PSVM η-Prior SVM and Multiple Prior PAC-Bayes Bound
considering η comes from a multiple prior setting of J = 50 priors
ηjwr/‖wr‖ with the ηj equally spaced between η1 = 1 and η50 = 100.
This setting minimises the penalty term in the Prior PAC-Bayes
Bound as we are not actually using these priors to learn the pos-
terior.

τ-PriorPAC η-PSVM η-Prior SVM and the new τ -Prior PAC-Bayes
Bound.

The displayed values of training set bounds (PAC-Bayes and (Multiple)
Prior PAC-Bayes) are obtained according to the following setup. For each
one of the 10 partitions we train an instance of the corresponding classifier
for each position of the grid of hyperparameters and compute the bound.
For that partition we select the classifier with the minimum value of the
bound found through the whole grid and compute its test error rate. Then
we display the sample average and standard deviation of the 10 values of
the bound and of the test error. Note that proceeding this way we select a
(possibly) different pair of parameters for every partition. That is the reason
why we name this task as model selection plus classification.

Moreover, the reported values of the PAC-Bayes and the Multiple Prior
PAC-Bayes bounds correspond to the mean of the true error over the distri-
bution of classifiers QD. The real true error cD could then bounded by twice
this value assuming a Gaussian distribution of variance equal to one.

Table 1 displays values of the bounds for the studied configurations of
bound plus classifier. Notice that most of the configurations involving the new
bounds achieve a significant cut in the value of the PAC-Bayes Bound, which
indicates that learning the prior distribution helps to improve the PAC-Bayes
bound. The tightest values of the bound correspond to the η-Prior SVM, it
was expected since this algorithm aims at optimising the bound as well as
at reducing the classification error. However, for the explored datasets and
range of hyperparameters, the tightness of the bound presented in this paper
acting on the η-Prior SVM is very close to the Multiple Prior PAC Bayes
Bound one.

Table 1 also displays the test error rates averaged over the 10 partitions
plus the sample standard deviation. The results illustrate that although cross-
validation seems to be the safest model selection option, the PAC-Bayes
bounds are catching up. It is remarkable how the η-Prior SVM achieves a
fairly good trade-off between good model selection (reduced test error) and
tightness of the generalisation error prediction (low bound).

6 Concluding remarks

We have presented a new bound (the τ Prior PAC-Bayes Bound) on the
performance of SVMs based on the estimation of a Gaussian prior with an
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Classifier

SVM ηPrior SVM

Problem 2FCV PAC PrPAC PrPAC τ -PrPAC

digits Bound – 0.175 0.107 0.050 0.047
– ± 0.001 ± 0.004 ± 0.006 ± 0.006

CE 0.007 0.007 0.014 0.010 0.009
± 0.003 ± 0.002 ± 0.003 ± 0.005 ± 0.004

waveform Bound – 0.203 0.185 0.178 0.176
– ± 0.001 ± 0.005 ± 0.005 ± 0.005

CE 0.090 0.084 0.088 0.087 0.086
± 0.008 ± 0.007 ± 0.007 ± 0.006 ± 0.006

pima Bound – 0.424 0.420 0.428 0.416
– ± 0.003 ± 0.015 ± 0.018 ± 0.020

CE 0.244 0.229 0.229 0.233 0.233
± 0.025 ± 0.027 ± 0.026 ± 0.027 ± 0.028

ringnorm Bound – 0.203 0.110 0.053 0.050
– ± 0.000 ± 0.004 ± 0.004 ± 0.004

CE 0.016 0.018 0.018 0.016 0.016
± 0.003 ± 0.003 ± 0.003 ± 0.003 ± 0.003

spam Bound – 0.254 0.198 0.186 0.178
– ± 0.001 ± 0.006 ± 0.008 ± 0.008

CE 0.066 0.067 0.077 0.070 0.072
± 0.006 ± 0.007 ± 0.011 ± 0.009 ± 0.010

Table 1. Values of the bounds and Test Classification Error Rates (CE) for various
settings.

stretched covariance matrix of the distribution of classifiers given a particular
dataset, and the use of this prior in the PAC-Bayes generalisation bound.

The new bound has motivated the development of a classification al-
gorithm (η−Prior SVM), that automatically determines the position of the
mean of the prior as part of the optimisation. Empirical results show that the
statistical analysis of this new algorithms yields tighter values of the Multiple
Prior PAC-Bayes Bound, even when compared to this bound applied to a reg-
ular SVM. Moreover, if we use the bounds to guide the model selection (we
select the values of C and σ that yield a minimum value of the bound), the
new algorithms combined with the bound arrive at better models in terms of
classification error that the original SVM and PAC-Bayes Bound. In fact, the
performance of the Multiple Prior PAC-Bayes Bound model selection plus
η−Prior SVM is comparable to that of a regular SVM using cross-validation
for model selection.

The work presented in this paper is being continued in two main di-
rections. On the one hand, we are studying new structures for the prior
along the lines of the bound of equation (6), based on multivariate Gaussian
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distributions with more sophisticate covariance matrices that help tighten
the bounds. On the other hand, we are envisaging the implementation of a
meta-classifier consisting in a series of prior and posterior classifiers within a
dynamic programming framework. This second line of research aims at the
application of these ideas in incremental learning scenarios.
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Abstract. Estimating the unknown parameters of a reliability mixture model may
be a more or less intricate problem, especially if durations are censored. We present
several iterative methods based on Monte Carlo simulation that allow to fit para-
metric or semiparametric mixture models provided they are identifiable. We show
for example that the well-known data augmentation algorithm may be used suc-
cessfully to fit semiparametric mixture models under right censoring. Our methods
are illustrated by a reliability example.

Keywords: reliability, mixture models, stochastic EM algorithm, censored
data

1 The latent data model

Let F be a parametric family of density functions on R, indexed by ξ ∈
Ξ ⊂ R`; f ∈ F means that there exists ξ ∈ Ξ such that f ≡ f(·|ξ).
Let Z be a multinomial distributed random variable with parameters 1 and
λ = (λ1, . . . , λp) ∈ [0, 1]p with

∑p
j=1 λj = 1; we write Z ∼ Mult(1,λ). Let

Y1, . . . , Yp be p random variables with Yi ∼ f(·|ξi) where ξi ∈ Ξ for 1 ≤ i ≤ p.
Let us consider the random variable X = YZ distributed according to the

distribution function

G(x|θ) =
p∑

j=1

λjF (x|ξj),

where F (·|ξj) is the distribution function corresponding to the density func-
tion f(·|ξj), θ = (λ, ξ) where ξ = (ξ1, . . . , ξp). Note that the density function
of X is

g(x|θ) =
p∑

j=1

λjf(x|ξj). (1)

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 22, c© Springer-Verlag Berlin Heidelberg 2010
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Estimating the unknown parameter θ from n i.i.d. values x1, . . . , xn having
the same parent distribution as X is known as the finite (parametric) mixture
model problem (see e.g. McLachlan and Peel (2000)).

However estimating unknown parameters of a reliability mixture model
may be a more or less intricate problem, especially if durations are cen-
sored. In the parametric framework one approach consists in minimizing the
distance between a parametric distribution and its nonparametric estimate.
Several distances may be chosen: e.g. Hellinger in Karunamuni and Wu (2009)
or Cramèr-von Mises in Bordes and Beutner (2009). These methods fail to
account semiparametric mixture models without training data. There are
many iterative algorithms to reach mixture models maximum likelihood es-
timates, mostly in the well-known class of EM algorithms, but few of them
integrate the additional problem of censoring. Chauveau (1995) proposed an
extention of the Stochastic EM algorithm (Celeux and Diebolt (1986)) to
handle Type-I deterministic right censoring. One advantage of the Stochas-
tic EM algorithm is that it can be extended easily to some semiparametric
mixture models provided they are identifiable (see e.g. Bordes et al. (2007)).
We present several iterative methods based on Monte Carlo simulation that
allow to fit identifiable (semi-)parametric right censored reliability mixture
models.

Let C be a random variable with density function q and distribution func-
tion Q. Consider n i.i.d. values c1, . . . , cn having the same parent distribution
as C. In the right censoring setup the only available information is

(T,D) = (min(X,C), 1(X ≤ C)).

Therefore our n i.i.d. observations are (ti, di)1≤i≤n where ti = min(xi, ci) and
di = 1(xi ≤ ci).

The joint distribution of (T,D,Z) is defined by

fT,D,Z(t, d, z|θ) = (λzf(t|ξz)Q̄(t))d(λzq(t)F̄ (t|ξz))1−d,

where z ∈ {1, . . . , p}, d ∈ {0, 1}, t ≥ 0, F̄ (·|ξj) denotes the survival function
of Yj and Q̄ is the survival function of the censoring time. As a consequence
we can compute the “posterior” probability that an observed or censored
observation belongs to component z, which is an essential ingredient of any
EM algorithm:

ηz(t, d|θ) = P (Z = z|(T,D) = (t, d),θ)

=

(
λzf(t|ξz)∑p
j=1 λjf(t|ξj)

)d(
λzF̄ (t|ξz)∑p
j=1 λjF̄ (t|ξj)

)1−d

= λzF̄ (t|ξz)

(
α(t|ξz)∑p

j=1 λjf(t|ξj)

)d
 p∑

j=1

λjF̄ (t|ξj)

d−1

,
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where α(·|ξj) = f(·|ξj)/F̄ (·|ξj) is the hazard rate function of Yj .

Remark: This conditional probability does not depend on the censoring
distribution.
Remark: Under parameters identifiability, one can consider that one or sev-
eral components are nonparametrically unknown.

2 Parametric Stochastic-EM algorithm for model (1)

Let us define by θ0 and θk the initial and current value of θ. Let θ̄
1
, . . . , θ̄

k

be the first k estimates of θ; we write θ̄
k = k−1

∑k
u=1 θu.

Step 1. For each individual i ∈ {1, . . . , n} calculate

η(ti, di|θ̄
k) = (η1(ti, di|θ̄

k), . . . , ηp(ti, di|θ̄
k)),

then simulate
Zk

i ∼Mult(1,η(ti, di|θ̄
k)).

Step 2. For each component j ∈ {1, . . . , p} define the subsets

χk
j = {i ∈ {1, . . . , n};Zk

i = j}. (2)

Step 3. For each component j ∈ {1, . . . , p}

λk+1
j = Card(χk

j )/n,

and
ξk+1
j = arg max

ξ∈Ξ
Lj(ξ)

where
Lj(ξ) =

∏
i∈χk

j

(f(ti|ξ))di(F̄ (ti|ξ))1−di .

Remark: The main advantage of this iterative method is that it does not
require to use some numerical optimization routine; standard maximum like-
lihood programs may be used on each subsample. As a consequence this
method easily handles mixtures of various parametric families of distribu-
tions.
Remark: In Step 1 we can use θk produced by Step 3 instead of θ̄

k. Hence
the sequence (θk) is a Markov chain and the final estimate is the ergodic
mean.
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3 Nonparametric estimation under censoring

Let us introduce the two counting processes N and Y defined by

N(t) =
n∑

i=1

1(ti ≤ t, di = 1) and Y (t) =
n∑

i=1

1(ti ≥ t) t ≥ 0,

counting respectively the number of failures in [0, t] and the set of items at
risk at time t−. The Nelson-Aalen estimator of the cumulative hazard rate
function A is defined by

Â(t) =
∫ t

0

dN(s)
Y (s)

=
∑

{i;ti≤t}

∆N(ti)
Y (ti)

t ≥ 0,

where ∆N(s) = N(s)−N(s−). The Kaplan-Meier estimator of the survival
(reliability) function F̄ is defined by

ˆ̄F (t) =
∏
s≤t

(
1−∆Â(s)

)
=
∏
s≤t

(
1− ∆N(s)

Y (s)

)
t ≥ 0.

Let K be a kernel function and hn a window size satisfying hn ↘ 0 and
nhn ↗ +∞, it is well known that the hazard rate function α can be estimated
nonparametrically by

α̂(t) =
∫ +∞

0

Khn(t− s)dÂ(s) =
n∑

i=1

Khn(t− ti)
∆N(ti)
Y (ti)

,

where Khn
= h−1

n K(·/hn). Because f = α × F̄ it can be estimated by
f̂(t) = α̂(t)× ˆ̄F (t).

Since we considered that the unknown distribution is absolutely contin-
uous with respect to the Lebesgue measure we have ti 6= tj for i 6= j with
probability 1. Let us denote by t(1) < · · · < t(n) the ordered durations, and
write d(i) the corresponding censoring indicators (d(i) = dj if t(i) = tj). The
estimates can be written

Â(t) =
∑

{i;t(i)≤t}

d(i)

n− i+ 1
,

ˆ̄F (t) =
∑

{i;t(i)≤t}

(
1−

d(i)

n− i+ 1

)
,

and

α̂(t) =
n∑

i=1

1
hn
K
(
t− t(i)
hn

)
d(i)

n− i+ 1
.

For more properties about these estimators see, e.g., Andersen et al. (1993).
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4 Semiparametric mixture models

4.1 Identifiability

We say that the density function f is exp-symmetric if f(x;µ) = x−1s(lnx−
µ) for all x > 0 where s is an even density function. Log-normal distributions
are exp-symmetric. More generally if X has a symmetric distribution, exp(X)
has an exp-symmetric distribution. In Bordes et al. (2006) it is shown that s,
µ1 ∈ R, µ2 ∈ R and λ ∈ (0, 1) are identifiable for the following two-component
mixture model:

g(x|λ, µ1, µ2, s) = λf(x;µ1) + (1− λ)f(x;µ2),

whenever µ1 6= µ2. Other semiparametric mixture models have identifiable
parameters; see, e.g., Hall and Zhou (2003), Bordes et al. (2007), Benaglia et
al. (2009). In the next example we consider the following mixture of acceler-
ated lifetime model. It means that we consider a model where two lifetime
populations are mixed with lifetimes distribution equal up to a scale param-
eter. It leads to the following two-component mixture model:

g(x|λ, ξ, f) = λf(x) + (1− λ)ξf(ξx) x > 0. (3)

From a latent variable point of view this model is obtained by considering the
random variable X = UV where V ∼ f is independent of the {1, 1/ξ}-valued
random variable U that satisfies P (U = 1) = λ.

4.2 Semiparametric Stochastic-EM algorithm for model (3)

Without censoring. The unknown parameter is θ = (λ, ξ, f) ∈ (0, 1) ×
R+
∗ ×F where F is a set of density functions. Let us define by θ0 = (λ0, ξ0, f0)

and θk = (λk, ξk, fk) the initial and current values of θ.

Step 1. For each item i ∈ {1, . . . , n} calculate

η(xi|θk) =
λkfk(xi)

λkfk(xi) + (1− λk)ξkfk(ξkxi)
,

then for η(xi|θk) = (η(xi|θk), 1− η(xi|θk)) simulate

Zk
i ∼Mult(1,η(xi|θk)).

Step 2. For each component j ∈ {1, 2} define the subsets χk
j is as in (2).

Step 3. Update parameters:

λk+1 = n1/n where n1 = Card(χk
1),

ξk+1 =
n− n1

n1

∑
i∈χk

1
xi∑

i∈χk
2
xi

fk+1(x) =
1
nh

∑
i∈χk

1

K
(
x− ti
h

)
+
∑
i∈χk

2

K
(
x− ξkti

h

) ,
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where K is a kernel function and h a bandwidth.

Remark: Note that at the third step ξk is updated using a moment estima-
tion method instead of a maximum likelihood principle. This later method
is hard to use here since it requires to estimate nonparametrically the first
derivative of f which generally leads to unstable estimates.

Final estimators for λ and ξ are obtained taking the ergodic mean of
(λk)1≤k≤K and (ξk)1≤t≤K :

λ̂ =
λ1 + · · ·+ λK

K
and ξ̂ =

ξ1 + · · ·+ ξK

K
.

Accounting censoring. Steps 1 and 3 of the above algorithm needs to be
modified in the following way:

Step 1C. Computation of η(ti, di|θk) for i ∈ {1, . . . , n}:
If di = 0 then

η(ti, di|θk) =
λkF̄ k(ti)

λkF̄ k(ti) + (1− λk)F̄ k(ξkti)
,

else

η(ti, di|θk) =
λkαk(ti)F̄ k(ti)

λkαk(ti)F̄ k(ti) + (1− λk)ξkαk(ξkti)F̄ k(ξkti)
,

then set η(ti, di|θk) = (η(ti, di|θk), 1− η(ti, di|θk)).

Step 3C. Calculation of new estimates of α and F̄ : Let tk = (tk1 , . . . , t
k
n) be

the order statistic of {ti; i ∈ χk
1} ∪ {ξkti; i ∈ χk

2}, so that tk1 ≤ · · · ≤ tkn.
Then we have

αk+1(x) =
n∑

i=1

1
h
K
(
x− tki
h

)
1

n− i+ 1
,

and

F̄ k+1(x) =
∏

{i:tk
i≤x}

n− i+ 1− d(i)

n− i+ 1
.

Remark: For the above algorithms several choices have to be made. To
chose the initial values of θ we can start to fit a parametric model where f
belongs, e.g., to the Weibull family of distributions. Concerning the choice of
the bandwidth h we used the usual formula h = σtk(4/3n)1/5 where σtk is
the standard deviation of tk.
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5 Illustrative examples

5.1 A parametric example

We consider lifetimes distributed according to the density function

g(x) = λ1ξ1 exp(−ξ1x) + λ2ξ2 exp(−ξ2x) x > 0,

where λ1 = 1/3, ξ1 = 1 and ξ2 = 0.2. We assume that C is uniformly
distributed on [0, 10]. The censoring rate is about 35%.

Updating at Step 3 is easy since we have

ξt+1
j =

∑
i∈χt

j
di∑

i∈χt
j
xi

for j = 1, . . . , p.

Hereafter are two simulations. Fig. 1 shows that starting from the good
initial values the algorithm is very stable for moderate sample size (n =
200). Fig. 2 shows empirical evidence of convergence for large sample size
(n = 1000) even if the initial values are not well chosen.

5.2 A semiparametric example

We consider lifetimes distributed on R+ according to the density function

g(x) = λf(x) + (1− λ)ξf(ξx)

where λ = 0.3, ξ = 0.1 and f is the density of a lognormal distribution
with parameters (1,0.5) (denoted by LN(1, 0.5) in the sequel). The number
of observations is fixed to n = 100 and the number of iteration is equal to
K = 100. This example does not include censoring, and the algorithm we used
is that of Section 4.2. As we can see on Fig. 3, estimation results based on
ergodic mean are very stable for this example where the mixture components
are well separated. Note that we used the quadratic kernel K(x) = (1 −
x2)1(|x| ≤ 1) with adaptive bandwidth in the neighborhood of 0.
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Abstract. Monitoring plays a key role in today’s business environment, as large
volumes of data are collected and processed on a regular basis. Ability to detect
onset of new data regimes and patterns quickly is considered an important compet-
itive advantage. Of special importance is the area of monitoring product reliability,
where timely detection of unfavorable trends typically offers considerable opportu-
nities of cost avoidance. We will discuss detection systems for reliability issues built
by combining Monte-Carlo techniques with modern statistical methods rooted in
the theory of Sequential Analysis, Change-point theory and Likelihood Ratio tests.
We will illustrate applications of these methods in computer industry.
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1 Introduction

This paper will focus on problems of data monitoring related to so-called
time-managed lifetime data streams that are frequently encountered in re-
liability applications. Specifically, consider a sequence of lifetime tests cor-
responding to points in time t = 1,2,.., T. In what follows we will refer to
these points as ”vintages”. They could, for example, correspond to dates at
which batches of items were produced; as time goes by, these batches generate
lifetime data. In other words, data corresponding to a given vintage can be
viewed as an outcome of a lifetime test (Fig. 1). The results pertain to a spe-
cific point in time (typically, time at which the table has been compiled). For
example, in Fig. 1 the table was compiled on 2007-08-02; however, the most
recent vintage for which data is available is 2009-07-21. The lifetime tests
corresponding to a given vintage typically have a Type-I censoring structure.
For example, for the first vintage the number of items on test is 120; of these,
6 items failed, 2 items got right-censored in midstream, and the remaining
112 items survived till the present point in time and thus are type-1 censored.
The table shows a distinct triangular structure due to the fact that for very
recent vintages only results for relatively short time horizons are available.

In many applications the key problem is one of detection: one is interested
in statistical methodology that enables rapid detection of unfavorable process
conditions that manifest themselves through the data of type shown in Fig.
1. In essence, the situation here is similar to one handled by conventional

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 23, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. A sequence of lifetime tests corresponding to range of vintages (2007-06-15,
2009-07-21), as compiled on 2009-08-02.

Statistical Process Control (SPC) methods: one would like to detect rapidly
unfavorable changes in parameters of the process driving lifetime data, while
keeping the rate of false alarms at some fixed low level. However, the con-
ventional SPC performance measures are not applicable in situations of type
described in Fig. 1 because the central premise of the SPC setup (that re-
quires the observations corresponding to a given time to remain unchanged
as the data is compiled for subsequent points in time) is no longer valid. For
example, for the first vintage in Fig. 1 one could expect to see additional fail-
ures and censored points as we compile data for subsequent points in time.
So, if a given characteristics of a vintage is represented as a point on a control
chart, then this point will continue to change as the new points on the control
chart are coming online. Furthermore, this point will continue to change even
if there are no new data points (vintages) coming online. For example, if we
recompile the data in Fig.1 on the next day (2007-08-03), we could end up
with a situation where the last vintage for which the data is available is the
same as before, i.e., 2009-07-21 (yet, the data for every vintage would need
to be adjusted). Therefore, the concept of Run Length would not be suitable
for assessing the performance of this type of control charts. We call such
setup as ”control charting with dynamically changing observations (DCO)”
to emphasize the fact that the previous data points on a control chart would
continue to change as the new data comes in.

Another practical aspect one has to deal with is the ”time-management”
of the lifetime data: the data corresponding to older vintages is likely to be-
come either gradually underpopulated (especially with respect to items with
longer lifetimes) or become unavailable altogether because of the administra-
tive constraints of the data management. For example, if a machine carrying
a 3-year warranty is introduced into the field at some point in time (corre-
sponding to its ”vintage”), then one could expect to find in the database only
lifetimes occurring in the first 3 years of service. Information on subsequent
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failures would typically be either unavailable or unreliable, in light of missing
infrastructure for keeping track of censoring and failure events beyond a 3-
year horizon. As the vintage becomes too ”old”, it could also disappear from
the ”rolling” database completely - another artifact of a standard warranty
data management policy. For example, after recompiling the data in Fig.1 on
the next day (2007-08-03), one could find that the data for the first vintage
2007-06-15 is no longer available.

The computational challenges in the phases of design, analysis and im-
plementation of this type of control schemes are substantial. In conventional
control charting one can typically convert the sequence of observations to a
sequence of control schemes (e.g., Cusum or EWMA) that obey some form of
a Markov property. This enables one to design and analyze monitoring pro-
cedures by taking advantage of the theory of Markov Chains (though more
complex cases still require Monte Carlo approach). In contrast, in the case
of schemes with DCO, no such Markovian representation is apparent and we
have to rely almost exclusively on simulation.

A number of articles and books have been published that deal with vari-
ous aspects of monitoring lifetime data. For example, likelihood ratio meth-
ods for monitoring parameters of lifetime distributions in non-DCO setting
were discussed in Olteanu and Vining (2009) and Sego et al. (2009). Several
methods for monitoring warranty data by using Shewhart-type procedures
are discussed in Dubois et al. (2008), Wu and Meeker (2002). Steiner and
McKay (2000, 2001) discuss methods and applications related to monitoring
of type I censored data. This type of data (in conjunction with an EWMA
monitoring procedure and Weibull observations) was considered in Zhang and
Chen (2004). Analysis of warranty claims data is discussed in Blischke and
Murthy (2000), Doganaksoy et al. (2006), Kalbfleisch et al. (1991), Lawless
(1998) and Lawless and Kalbfleisch (1992). Methods for analysis of failure
data based on marginal counts of warranty claim (and under incomplete in-
formation about items introduced into the field) are discussed in Karim et
al. (2001). Finally, methods based on change-point analysis for hazard curves
have also be considered by a number of authors, e.g., Patra and Dey (2002).

In the next section we will present the basic approach to design and anal-
ysis of non-DCO control schemes. In Sec. 3 we will focus on computational
and Monte-carlo issues. In Sec. 4 we discuss the problem of detecting wearout
conditions.

2 Basic Approach

The base methodology is based on using a version of the weighted Cusum
approach, e.g. see Yashchin (1993). The key steps are as follows:

1. Sort data in accordance with vintages of interest. This will make sure that
the control scheme is tuned to detect unfavorable changes that happen on
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the time scale of these vintages. Typically, several representations of type
shown in Fig. 1 are available for the same data collection. For example, a
given component of a PC can be associated with a component manufac-
turing vintage, machine ship vintage or calendar time vintage. If one is
interested, for example, in detection of a problem at the component man-
ufacturer’s then the vintages in Fig. 1 should correspond to component
manufacturing dates. If one is interested in detection of problems at the
PC assembly plant then one should organize Fig. 1 so that the vintages
correspond to machine ship dates. To detect changes related to introduc-
tion of a new version of an operating system one should construct Fig. 1
data with vintages corresponding to calendar time (i.e., a row in Fig. 1
represents machines that were in the field at the respective date).

2. Introduce time scale transformation that corresponds to reference haz-
ard behavior, so as to reduce the number of monitored parameters. For
example, let us suppose that one anticipates a hazard curve that is pro-
portional to some known function h0(t) exhibiting complex behaviour
(for example, U-shaped). Then it may be beneficial to switch from the
natural time scale t to a scale determined by

∫ t

0
h0(z)dz. Data presented

on such a scale would generally be easier to model parametrically: for
example, if the anticipated hazard pattern indeed holds exactly then the
lifetimes on the transformed scale are exponentially distributed. If, on
the other hand, the anticipated pattern holds only approximately then
there is a good possibility that one could model lifetimes through one of
numerous extensions of the exponential law, e.g., Weibull family. In what
follows we will assume that we are already working on a scale where a
relatively simple parametric model applies. For the sake of simplicity, we
will assume that the lifetime distribution is Weibull.

3. For every lifetime distribution parameter (or a function of parameters of
interest, say, λ), establish a sequence of statistics Xi, i = 1, 2, . . . to serve
as a basis of monitoring scheme. In general, one should try to use control
sequences that represent unbiased estimates of the underlying parame-
ters. For example, such a parameter could represent the expected lifetime
or an expected rate of failures. Another parameter of interest could be a
measure of wearout (for example, under the Weibull assumption one can
use the shape parameter as such a measure). Yet another one could be
the scale parameter of the lifetime distribution. One will generally choose
parameters that are meaningful to the users and facilitate problem diag-
nostics.

4. For control sequences of interest, obtain corresponding weights. These
weights determine the impact of individual vintages based on inherent
properties of control sequence members (such as number of failures ob-
served for the vintages or number of Machine-Months (MM) for the vin-
tages; we will refer to such weights as wi, i = 1, 2, . . .) or based on desired
properties of the monitoring scheme (such as weights that enhance the
importance of more recent vintages).
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5. For every parameter establish acceptable and unacceptable regions. For
example, if λ represents the expected failure rate (say, expected number
of fails per 1000 MM of service), then we could set the acceptable level
of failure rate to λ0 and the unacceptable rate to λ1 > λ0.

6. For every parameter establish the acceptable rate of false alarms. As
noted earlier, in the context of schemes with DCO we cannot use the
criteria related to Run Length (such as ARL); one reasonable criterion
appears to be related to the probability of flagging of a parameter. One
can control the rate of false alarms in the monitoring system by setting
this probability to a low level that reflects the desirable degree of trade-off
between false alarms and sensitivity.

7. Deploy the designed scheme to every relevant data set; flag this data
set if out-of-control conditions are present. For some monitoring systems
the deployment will involve massive re-computing of control sequences,
thresholds and control schemes on a regular basis. For example, for PC
manufacturing operation it was considered suitable to activate the system
on a weekly basis (note, however, that the vintages in Fig. 1 were still
being summarized on a daily basis). For other systems re-computing could
be, at least in part, event-driven.

3 Computational and Monte-Carlo Aspects

For every monitored parameter we convert the control sequence Xi, i =
1, 2, . . . , N to the values of a control scheme Si, i = 1, 2, . . . , N via the weighed
Cusum algorithm. For example, for a parameter λ we can use the Weighted
Geometric Cusum defined by

S0 = 0, Si = max[0, γSi−1 + wi(Xi − k)], i = 1, 2, . . . , N, (1)

where γ is typically chosen in [0.7, 1] and the reference value k ≈ (λ0 +λ1)/2
(”optimal” values for k are obtained based on behavior of likelihood ratios
for Xi, see Hawkins and Olwell (1998).

For schemes with DCO we define S = max[S1, S2, . . . , SN ] and refer to
the current point in time as T . The data set (i.e., sequence of lifetime tests)
is flagged at time T if S > h, where the threshold h is chosen based on

Prob[S > h|N,λ = λ0] = α0, (2)

where typically α0 < 0.01. Thus, test(1) is a series of repeated Cusum tests
in the sense that at every new point in time the whole sequence (1) is re-
computed from scratch.

We should note immediately that in many cases the scheme (1) alone
is not sufficient for efficient detection of change in the process level, and so
supplemental tests may be needed. For example, consider the situation where
Xi is the replacement rate (number of replacements per 1000 MM for parts
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of vintage i) and wi is the number of MM accumulated by parts of vintage
i. As data for new vintages continues to come in, the value of the threshold
h will be moving up (note that threshold violation could occur not only at
the last vintage, but for some earlier vintages as well) - and this could de-
sensitize the scheme with respect to more recent vintages, especially given
the fact that weights wi will tend to be large for early vintages and small for
recent vintages. Use of γ < 1 will typically help somewhat to ameliorate the
extreme manifestations of this problem - however, supplemental tests specif-
ically geared towards detection of unfavorable events for later vintages are
sometimes needed. Such tests will be discussed later in the section. Anal-
ogously to the case of conventional (non-DCO) schemes, use of γ < 1 is
advisable when the primary mode of change in the process level is in the
form of drifts rather than shifts.

The immediate computational problem spawned by (1) is related to ob-
taining h by solving (2). The algorithm needs to be efficient because in mas-
sive data monitoring systems (such as a warranty data system) the number of
schemes run in parallel can easily reach 100,000 - and the computing opera-
tion typically needs to complete within a narrow time window. For procedures
of type (1) Monte Carlo methods have proven to be effective, provided that
certain measures be taken to enhance their efficiency. For example:

• Use parallel computation and elemental procedures (i.e., procedures de-
signed to be applied to every element of an array simultaneously). In the
PC warranty data application we use a set of K (typically, about 2000)
replications of the trajectory (1). For every replication a value of S is
computed and h is obtained by solving (2) based on the empirical distri-
bution of the K values of S. To reduce the computing time, the values of
K replications for a given point in time are treated as a K-dimensional
vector; its values are computed for i = 1, 2, . . . , N , and the corresponding
vector of S values is computed progressively in time. This is much more
efficient than computing the statistics for every trajectory (1) and repeat-
ing the process K times. What helps us here is that the characteristics S
of every trajectory (1) can be computed recursively in time i.
A key element enhancing the efficiency of this vector-based operation
is also related to generation of random variables Xi. Special algorithms
of random variable generation, optimized for simultaneous production of
K variables simultaneously, enable one to complete the computation of
trajectories for each time i in an efficient manner.
• Take advantage of asymptotic properties of statistics S that can be de-

rived on the basis of theory of stochastic processes. For example, one
can expect that for distributions of Xi that have first two moments, the
distribution of S can be approximated based on the tail property

Prob[S > h|λ = λ0] ∼ A× exp[−ah], h→∞, (3)



Computational and Monte-Carlo Aspects 259

where A is a constant and a is a function of the first two moments and γ.
When γ = 1, relations of type (3) can typically be justified (for analysis
of in-control situations only) based on the approximation of (1) by a
Brownian motion with reflecting barrier at zero (e.g., see Cox and Miller
(1977), Bagshaw and Johnson (1975)). Our experience suggests that (3)
continues to hold even when γ < 1, though we have no proof of it at this
time.
If for a given in-control situation it is known a-priori that (3) holds, one
can reduce substantially the number of replications K that is needed
to achieve the required level of accuracy. In particular, one can use a
relatively low K, obtain the replications and obtain a non-parametric es-
timate of the upper 25-th percentile q̂75 of S. Subsequently, one can fit an
exponential distribution to the excess points above q̂75, taking advantage
of (3). Finally, the equation (2) is solved by using the pair of estimates
(q̂75, â). This approach can be used not only for threshold derivation, but
also for computing the severity of an observed trajectory, expressed in
terms of a p-value corresponding to S observed for the data set at hand.
Note that test based on (1) effectively triggers an alarm if the p-value of
the test falls below α0.
• When ancillary statistics are available, try to condition on them in the

course of Monte-Carlo replications, in line with usual recommendations of
statistical theory. For example, suppose that Xi are rates per 1000 MM.
Then the overall MM observed for a vintage, though a random quantity,
can typically be assumed to have a distribution that does not depend on
λ. It is, therefore, advisable to resample Xi based on the MM in period
i that was actually observed in the data.

Supplemental Tests. As noted above, tests based on (1)-(2) could turn out
to be insensitive to recent unfavorable changes - and such changes could be of
high importance to the users. In the PC warranty data system we introduce
the concept of active component. In particular, we set a threshold of, say,
Da days; a part is considered active if there are vintages present in the data
within the last Da days from the current point in time T . A warranty system
will typically contain many inactive parts that are no longer produced (even
though failures related to older parts of this type are still in the field, continue
to contribute data and could present a risk to the manufacturer). For inactive
parts there is little benefit from emphasis on recent vintages because all the
parts are anyway out of manufacturer’s reach and so there is no longer an
opportunity to prevent an escape of unreliable parts into the field. In contrast,
for active parts such an opportunity does exist. Therefore, supplemental tests
are applied to active parts only.

The first supplemental criterion for currently active part calls for testing
the hypothesis that the collection of Xi observed within the last Da days
correspond to the in-control parameter not exceeding λ0. The corresponding
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p-value can sometimes be computed numerically. The criterion triggers an
alarm if this p-value is smaller than a pre-specified threshold.

The second supplemental criterion is based on the final value SN of the
scheme (1). The corresponding p-value is computed via Monte-Carlo method,
by using the same runs that were used for the analysis of (1). Techniques
described earlier for enhancing efficiency of the computations fully apply to
this criterion; in many situations the relationship of type (3) can also shown
to be relevant for it.

The overall severity (p-value) of the battery of (1) and two supplemental
tests can be approximated by a function of the individual p-values ψ(p1, p2, p3)
of these tests. Typically, correlation between the supplemental test statistics
and S is negligible and can be ignored. However, the supplemental tests do
tend to be correlated - and, therefore, one important issue here is obtaining
a suitable form for ψ.

4 Monitoring of Wearout

One of issues of primary concern to engineers is onset of wearout. Such an
event can substantially damage the reputation of a company - but when
wearout occurs within the warranty period, this could lead to substantial ad-
ditional losses and even to loss of the whole operation. Organizing an effective
system for lifetime data monitoring that detects onset of wearout should,
therefore, be a key priority for many manufacturing operations, especially
those involved in mass manufacturing.

The computational strategy for wearout monitoring could be developed
along the lines of that in Sec. 2. It is important to note, however, that in
many situations it is unpractical to compute the wearout indicator for every
vintage, for example, because of issues of parameter estimability. Therefore,
data is typically grouped by vintages: for example, the rows of Fig. 1 are
consolidated so as to yield just one row per month.

One can use several characteristics that are sensitive to wearout; any
given characteristic can be used as a basis for a monitoring scheme of type
(1). Given that (possibly after time scale transformation as mentioned in
Sec. 1) the data under acceptable conditions is likely to show behavior that is
”similar” to exponential, we could select an index that represents the estimate
of the Weibull shape parameter. Note that we do not really have to believe
that the data is Weibull: the estimated shape parameter can be used as a form
of ”wearout index” even in many situations where the lifetime distribution is
non-Weibull, as it retains a substantial graphical and analytical appeal.

Denoting by c the shape parameter of the Weibull distribution we can
specify the acceptable and unacceptable levels as c0 and c1 > c0 (in many
practical situations, c0 = 1 is a good choice). One way to proceed is to com-
pute consecutive unbiased estimates ĉ1, ĉ2, . . . , ĉM , where M is the number of
months for which data is available. These values are then used in the Cusum
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test:

S0w = 0, Siw = max[0, γwSi−1,w + wiw(ĉiw − kw)], i = 1, 2, . . . ,M, (4)

where γw is the geometric parameter (typically close to 1) and kw ≈ (c0 +
c1)/2. The weight wiw is the number of failures observed in the period i (and
not the overall number of MM for period i, as in (1)). This is because a period
with large MM but very few failures does not contain much information
about c). Now we can see why we want the sequence of estimates ĉi to be
bias-corrected: with such a choice we can use the same reference value kw

for every period. Since we operate under the DCO conditions, the decision
statistics is Sw = max[S1w, S2w, . . . , SMw] and we flag the data set at time
T if Sw > hw, where hw is chosen from the equation:

Prob[Sw > hw|M, c0] = α0. (5)

As before, Monte-Carlo approach is used to derive the threshold hw and
p-value of the test. In the course of replications we assume that the scale
parameter β of the Weibull law can change from period to period, and we
focus our attention entirely on c. Under such an assumption the number
of fails wiw in period i can be treated as an ancillary statistic for c and
we condition the replications for this period on the number of fails being
equal to wiw. For period i we then estimate the scale parameter β̂i under
the hypothesized assumption c = c0 and produce replications of wiw failures
under the assumption that lifetimes for this period are distributed Weibull
(β̂i, c0), taking into account the censoring times. Processing such replications
for our collection of periods enables one to evaluate the null distribution of
Sw and obtain the corresponding threshold hw and a p-value for the observed
value of Sw.

Note that a process similar to that described above can also be used to
deploy schemes for monitoring the scale parameter β.

5 Conclusions

Design and analysis of systems for monitoring reliability, especially in the
DCO environment is a highly complex task, both from the methodological
and computational points of view. The main technical challenges include
(a) establishing ”on the fly” the thresholds for a large number of tests and
efficient use of Monte Carlo techniques (b) establishing ”newsworthiness”
of the detected conditions based on p-values and similar indices of severity
and (c) deployment in the field that satisfies the requirements for low rate
of false alarms, detection capability, user interface and report generation. In
this article we discuss a possible approach that was deployed several years
ago at the IBM PC company. Our impression, based on user feedback, was
that this approach can lead to usable and powerful system for monitoring
massive streams of reliability and warranty data.
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Abstract. In the last decades, there has been a tendency to move away from
mathematically tractable, but simplistic models towards more sophisticated and
real-world models in finance. However, the consequence of the improved sophis-
tication is that the model specification and analysis is no longer mathematically
tractable. Instead solutions need to be numerically approximated. For this task, evo-
lutionary computation heuristics are the appropriate means, because they do not
require any rigid mathematical properties of the model. Evolutionary algorithms
are search heuristics, usually inspired by Darwinian evolution and Mendelian in-
heritance, which aim to determine the optimal solution to a given problem by
competition and alteration of candidate solutions of a population. In this work,
we focus on credit risk modelling and financial portfolio optimization to point out
how evolutionary algorithms can easily provide reliable and accurate solutions to
challenging financial problems.

Keywords: population-based algorithms, multi-objective optimization, clus-
tering, credit risk modelling, financial portfolio optimization.

1 Introduction

Quantitative finance has been a rapidly developing field in the last decades.
The recent financial crises, the new regulations for banks and insurances and
the increasing development of complex financial products have prompted in-
termediaries to promote the use of quantitative tools inside their organiza-
tions in many different sectors, such as risk management, pricing and provi-
sioning of financial products, derivatives accounting. New models have been
developed for portfolio selection, pricing and risk management. Often these
models, even if easily tractable, turn out to be too simplistic and inadequate
as tools to analyze real-world settings (e.g. the Markowitz mean-variance
model for portfolio selection). Hence, they cannot be reliable as decision-
support system for managers. Nowadays, the financial and econometric aca-
demic literature shows a tendency to move towards more complex models
(e.g. Zhao (2008)) that represent the real-world dynamics better. However,
this development poses new challenges. The models become often extremely
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difficult to accurately specify and estimate. There is the need of robust model
selection and estimation methodologies which can provide reliable informa-
tion even when the problem is multivariate and the variables involved are
highly correlated.
Optimization search heuristics have already found application in statisti-
cal modelling and estimation problems (Winker and Gilli (2004) and ref-
erences). Search heuristics, such as trajectory methods (e.g., simulated an-
nealing, threshold accepting, tabu search), evolutionary algorithms (e.g. ge-
netic algorithms, differential evolution) or hybrid methods (e.g., memetic
algorithms), take inspiration from biological processes (Corne at al. (1999),
Michalewich and Fogel (2002)). Their main advantage, compared to standard
optimization approaches, is that they do not require rigid properties of the
optimization problem, such as continuity, linearity, monotonicity or convex-
ity of the objective functions and constraints. Basically, they can tackle a
whole range of problems for which most other optimization methods are not
applicable. Most financial practitioners are not familiar with such method-
ologies, as they have been developed mainly in non-financial research areas.
Nevertheless, their use can lead to impressive results in a number of financial
and econometric applications (see Gilli et al. (2008), Schlottmann and Seese
(2004) for reviews).
In this paper, we plan to provide some insights about using evolutionary
algorithms (EAs), a type of search heuristics, for financial modelling and op-
timization. In particular, Section 2 shortly describes EAs, while Sections 3
and 4 discuss their application in credit risk modelling and portfolio opti-
mization, respectively. Finally, Section 5 concludes.

2 Evolutionary Computation

Stochastic search heuristics work by probabilistic stepwise refinement of so-
lutions. Their main advantages, compared to conventional techniques, are
related to their high generality which allows them to tackle problems as
complex as they are: they can easily deal with plateaus, ridges, multimodal
problems avoiding to get trapped in local optima, they do not require any
rigid assumption about the problem or auxiliary information (e.g. gradient),
they can produce meaningful results if the run is prematurely terminated
and their easy implementation can work for a wide range of problems. On
the other hand, they have been mainly criticized because solutions are not
guaranteed to be optimal, are inferior to conventional techniques for sim-
ple problems and sometimes they require expensive parameter tuning, which
however often allows to better control the trade-off between exploitation and
exploration of the search space and to avoid convergence to local optima.
Evolutionary Algorithms (EAs) are a type of stochastic search heuristics,
which work evolving a population of candidate solutions using operators in-
spired by Darwinian evolution and Mendelian inheritance. The first step to
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implement an EA for a single-objective optimization problem is to decide a
coding scheme in order to represent a candidate solution to the optimization
problem in a binary or real-world string. Each string corresponds to a single
individual of the EA population. The algorithm usually starts with a ran-
domly generated population and each individual’s fitness value is computed.
The fitness value quantifies the goodness of the candidate solution to the
optimization problem at hand. Then, until a given termination criterion is
satisfied, the population is iteratively altered by means of biologically-ispired
operators, such as selection, mutation, crossover and elitism in order to pro-
mote the survival of the fittest. At the end of the run, the string with highest
fitness value encodes the optimal solution of the problem at hand. Figure 1
shows the pseudo-code of a simple evolutionary algorithm.

void EvolutionaryAlgorithm()

{

t = 0;

initialize population P(t); // create random solutions

evaluate population P(t); // calculate fitnesses

while (not termination condition) {

t = t + 1;

select next generation P(t) from P(t-1);

alter P(t); // mutate and recombine genes

evaluate population P(t); // calculate fitnesses

}

}

Fig. 1. Pseudo code of an evolutionary algorithm.

Many different EAs and their variants have been proposed in the litera-
ture (see Corne et al. (1999), Michalewich and Fogel (2002)). Genetic Algo-
rithms (Holland (1975)), Particle Swarm Optimization (Kennedy and Eber-
hart (1995)) and Differential Evolution (Storn and Price (1997)) are prob-
ably the most known and used in scientific literature. Compared to single-
individual search heuristics, one of their main advantages is that they work
by evolving simultaneously a population of candidate solutions and not a
single individual, which result in more efficient runs if implemented in paral-
lel system and also provides a more natural way of tackling multi-objective
optimization problems, given that the whole population at the end of the run
can be used to determine the Pareto front of optimal solutions. This is one
of the most promising field of research in recent years (Deb (2001)). Section
3 focuses on a single-objective optimization problem in credit risk modelling,
while Section 4 describes an application of EAs in multi-objective financial
portfolio optimization.
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3 Clustering in Credit Risk Bucketing

The recent financial crises have pointed out the relevance of credit risk prod-
ucts and their impact on real economy. Basel II requires banks to measure
the probability of default (PD) of single obligors and then to group them
in at least 7 rating classes or buckets (PD buckets), to assign clients in the
same bucket the same PD (i.e. the mean of individual PDs) and to compute
capital charges against the buckets’ PDs. The problem of bucketing clients
can be formulated as a clustering problem with the target of determining a
cluster structure which minimizes the loss in precision when replacing the PD
of each single client by the bucket PD. The partition must also be consistent
with Basel II guidelines regarding the minimum value of each bucket pooled
PDb and avoiding the presence of too large buckets in terms of exposure and
too small buckets in terms of number of obligors for ex-post validation. One
simple approach, proposed by Krink et al. (2007, 2008), is then to determine
the buckets by solving the following optimization problem

min
∑

b

∑
i∈b

(PDb − PDi)2 (1)

such that

• PDb ≥ 0.03%
• Nj > 0
• Nj/N ≥ k, k ∈]0, 1]
•
∑Nj

i=1Eij/ETotal ≤ 0.35%

∀j = 1, .., b, where b is the number of buckets, PDb is the pooled PD for
the b-th bucket, PDi is the individual PD for obligor i, Nj is the number of
clients in bucket j such that

∑b
j=1Nj = N , Eji is the exposure of the i-th

client in bucket j, ETotal is the sum of the exposures of all clients.
Given the presence of many plateaus in the search space (see Figure 3 Krink

Fig. 2. PD bucketing allocation
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et al. (2007)) and of the constraints, Krink et al. (2007, 2008) propose to use
EAs to tackle the PD bucketing problem. In particular, as Figure 2 shows,
each individual of an EA could encode the bucket thresholds (i.e. s1,...,s8
for b=9), which determine in which bucket each obligor should be allocated
depending on the value of her PD. Krink et al. (2007) compare the per-
formance of genetic algorithm, particle swarm optimization and differential
evolution in tackling the PD bucketing problem and show that EAs outper-
form k-means clustering and two other naive approaches, especially when the
problem becomes more challenging (i.e. increase the number of buckets, use
more sophisticated error functions). Furthermore, their analysis suggests that
differential evolution, which is known for little parameter tuning, is superior
to genetic algorithms and particle swarm optimization. Recently, Lyra et al.
(in press) have extended the investigation by introducing new methods to
determine not only the bucketing structure but also the optimal number of
buckets and have also shown that threshold accepting, an individual-based
search heuristic which exploits the inherent discrete nature of the clustering
problem, could outperform differential evolution in this single-objective op-
timization problem.
Other recent studies further show that EAs can be effectively employed in
other credit risk modelling applications, such as in estimating transition prob-
ability matrices (Zhang et al. (2009)) and in multi-objective optimization of
credit portfolios (Schlottmann and Seese (2004b)).

4 Financial Portfolio Optimization

Financial portfolio selection consists of deciding how much of an investor’s
wealth to allocate to different investment opportunities. The problem can be
formulated as an optimization problem, with a single objective (e.g. max-
imize the investor’s utility) or more often multi-objective, as the following
Markowitz mean-variance model

min f1(w) =
N∑

i=1

N∑
j=1

wiwjσ
2
ij (2a)

max f2(w) =
N∑

i=1

wiµi (2b)

subject to
N∑

i=1

wi = 1, 0 ≤ wi ≤ 1 (3)

where wi is the portfolio weight of the i-th asset (i=1,...,N) with w =
[w1, .., wN ], µi the expected return of i-th asset and σij is the expected co-
variance between the i-th and the j-th assets.
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The choice of the optimization algorithm depends on the characteristics
of the objective functions and of the constraints. Hence, while the mean-
variance optimization problem can be easily solved by quadratic program-
ming, this is hardly true when considering real-world portfolio optimization
settings. In particular, the main challenges are usually due to the need to
replace the objective function f1(w) by more realistic but multimodal and
non-convex risk measures, such as Value-at-Risk or Omega, and to the pres-
ence of real-world non linear constraints, such as the cardinality or turnover
constraints. Stochastic search heuristics can then provide a valid alterna-
tive to classic optimization methods for financial portfolio selection, as also
shown by the fast development in the field in the last decade (Chang et al.
(2000), Maringer (2005)). One of the most promising research field in finan-
cial modelling is evolutionary multi-objective portfolio optimization, where
the EAs can better exploit the fact that it is a population-based algorithm
(see Deb (2001), Coello Coello et al. (2002), Coello Coello (1999) for surveys
and http://www.lania.mx/ ccoello/EMOO/EMOObib.html for a repository
of EAs for multi-objective optimization problems). In fact, in most multi-
objective evolutionary algorithms, the population of candidate solutions is
used to search (simultaneously) for a set of solutions that represents the en-
tire Pareto front, i.e. the set of optimal solutions. The EAs allow to determine
the Pareto set in a single run of the algorithm, instead of having to perform
a series of separate runs as in the case of the traditional mathematical pro-
gramming techniques. Furthermore, EAs can better deal with discontinuous
and concave Pareto fronts.
The main challenges when using EAs for multi-objective problems are related
to the mechanism to determine the non-dominated solutions and to keep di-
versity among them, that is to avoid the convergence of the EA population
into a single area of the Pareto front instead of covering all of it.
Let F be a multi-objective minimization problem with p objectives fk with
k = 1,..., p. A candidate solution xi dominates xj if and only if

∀k, fk(xi) = fk(xj)
∃l, fl(xi) < fl(xj)

Then, one can assign a rank to each candidate solution according to how
much it is dominated by others. As Figure 3 shows, solutions that are non-
dominated by any others will receive rank one and then solutions will be
ranked iteratively depending by how many other fronts dominate them. The
EAs selection operator will then prefer the individuals which have a lower
rank and in case they have the same rank, diversity drives the selection pro-
cess. This definition of dominance can also be easily extended to include
constraints and penalize solutions that violates more constraints (Deb et al.
(2002), Krink and Paterlini (in press)).
Diversity preservation is the other operator that drives the selection and the
convergence of the EA population to the Pareto front. Furthermore, diversity
preservation is important not only in multi-objective optimization in order to
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Fig. 3. Determination of non-dominated fronts in a 2-dimensional problem

cover the whole Pareto front, but also in multimodal optimization (to iden-
tify more than one optimum), in constraint optimization (to cover all feasible
regions) and in standard optimization (to prevent premature convergence to
local optima). The main techniques to keep diversity are sharing which works
by punishing individuals for crowding close together by scaling the fitness ac-
cording to the proximity among individuals, and crowding, where each new
candidate solution replaces the most similar solution in the current popula-
tion if it is better. Given that scaling the fitness in the sharing approach can
be difficult, crowding seem to be nowadays preferred within the community,
given that it only requires the definition of a distance measure (see Deb et al.
(2002), Krink and Paterlini (in press)) for examples of EAs using the cuboid
distance measure). Then, if competing solutions have the same rank, the ones
with largest distance to their nearest neighbours are preferred.
Summing up, the algorithm works by first rewarding candidate solutions
that are closer to the Pareto front and then by rewarding solutions that
allow a good coverage of the Pareto front. Figure 4 shows the pseudo-code
of a multi-objective evolutionary algorithm. Recent investigations (Anagnos-
topoulos and Mamanis, in press, Krink and Paterlini, in press) have shown
that multi-objective evolutionary algorithms are efficient and robust strate-
gies to deal with typical real-world multi-objective financial portfolio prob-
lems, which so far have been a major challenge for financial practitioners and
researchers. We believe research in financial multi-objective optimization by
means of EAs and other stochastic search heuristics is just at the beginning
and surely will contribute to the development of fast and reliable quantitative
tools for investment decisions.
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void MultiObjectiveEvolutionaryAlgorithm()

{

t=0;

Initialize population P(t); // create random solutions

Evaluate population P(t); // calculate fitnesses

while (not termination condition){

t=t+1

Determination of the constrained non-dominated fronts {

Calculate non-domination ranks

Diversity preservation }

Multi-objective fitness assignment

Select next generation P(t) from P(t-1);

Alter P(t); // Rand/1/Exp-mutate and recombine genes

Evaluate population P(t); // calculate fitnesses

}

}

Fig. 4. Pseudo code of a multi-objective evolutionary algorithm.

5 Conclusion and Further Research

This paper aims to introduce EAs and to show that challenging optimiza-
tion problems in financial modelling could be easily and reliably tackled by
them. By using two simple examples, PD bucketing in credit risk modelling
and portfolio selection, which typically require optimizing complex functions
(i.e. non-convex, multimodal, non-differentiable) with hard constraints (i.e.
non-linear, non-continuous), we describe the general idea behind the imple-
mentation of two simple EAs to tackle them. In particular, we underline the
difference between an EA to tackle a single-objective optimization problem,
as the PD bucketing, where the fittest solution at the end of the run en-
codes the optimal solution, and one to tackle a multi-objective optimization
problem, as the portfolio optimization, where the whole population at the
end of the run identifies the set of optimal solutions (the so-called Pareto
front). EAs usually allow an easy encoding of the problem at hand no matter
how complex it is, without requiring any rigid assumption about the model.
Hence, compared to conventional methods, they are general in their scope
of application and capable of dealing with challenging optimization set-ups.
Despite they have been criticized because of their speed of convergence, the
recent developments in computing hardware and the possibility of running
them in parallel suggest that the issue is becoming less relevant. Further-
more, even the parameter tuning issue is becoming more an advantage of
EAs rather than a shortcoming, given the fact that it betters allows to tackle
the trade-off between exploration and exploitation and avoid premature con-
vergence. While using EAs in financial modelling is still at an early stage, the
increasing complexity of financial optimization and modelling problems and
the development of the scientific literature in the last decades seem to point
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out that EAs and other stochastic search heuristics will become standard
optimization tools in the very near future.
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Abstract. Standard regression analyses are often plagued with problems encoun-
tered when one tries to make inference going beyond main effects, using datasets
that contain dozens of variables that are potentially correlated. This situation arises,
for example, in environmental deprivation studies, where a large number of depri-
vation scores are used as covariates, yielding a potentially unwieldy set of inter-
related data from which teasing out the joint effect of multiple deprivation indices
is difficult. We propose a method, based on Dirichlet-process mixture models that
addresses these problems by using, as its basic unit of inference, a profile formed
from a sequence of continuous deprivation measures. These deprivation profiles are
clustered into groups and associated via a regression model to an air pollution out-
come. The Bayesian clustering aspect of the proposed modeling framework has a
number of advantages over traditional clustering approaches in that it allows the
number of groups to vary, uncovers clusters and examines their association with
an outcome of interest and fits the model as a unit, allowing a region’s outcome
potentially to influence cluster membership. The method is demonstrated with an
analysis UK Indices of Deprivation and PM10 exposure measures corresponding to
super output areas (SOA’s) in greater London.

Keywords: Bayesian analysis, Dirichlet processes, mixture models, MCMC,
environmental justice

1 Introduction

Many early studies in the USA have highlighted the apparent clustering of
hazardous and polluting sites in areas dominated by ethnic minorities of lower
SES. (See, for example Brown et al. (1998).) A large body of research has re-
sulted, suggesting that people who are socially disadvantaged become subject
to a more polluted and hazardous living environment (Briggs et al. (2008)).
However, SES is a complex concept (Abellan et al. (2007)) and the highly
inter-correlated nature of deprivation metrics makes it difficult to examine
their combined associations with measures of air pollution. As such, epidemi-
ological studies have often focused on models that employ single measures
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of deprivation or on a combined deprivation score. Such combined scores are
useful, but information is lost when an entire pattern of deprivation indices
is reduced to a single number. Thus, the highly correlated nature of measures
of deprivation makes marginal, single deprivation models inadequate.

2 Materials and Methods

Our overall approach is to cluster joint patterns of deprivation, denoted as
a deprivation profile, and relate these clusters to the air pollution expo-
sure, PM10. The methods proposed will utilize recently developed powerful
Bayesian dimension-reduction and clustering techniques that will characterize
the patterns of deprivation. The multi-deprivation profile approach proposed
adopts a global point of view, where inference is based on the joint pat-
tern of deprivation scores. The methodology consists of the following two key
components. First, a Deprivation profile assignment sub-model assigns multi-
deprivation profiles to clusters, and second, an Association sub-model links
clusters of deprivation profiles to measures of air pollution exposure via a
regression model. Since the model is fit in a unified Bayesian manner, the de-
privation cluster assignments will also be informed by the exposure outcome.
Further, all components of the modeling framework will be fitted jointly using
Markov chain Monte Carlo (MCMC) methods (Gilks et al. (1996)). Some of
these methodologies have been developed in a recent paper by Molitor et al.
(2010), where the method was illustrated on an analysis of epidemiological
profiles using data from a children’s health survey, and these profiles were
used to predict the mental health status of the child.

2.1 Deprivation Profile Assignment Sub-Model

Our basic data structure consists of, for each region, a covariate profile, xi =
(x1, x2, . . . , xP ) where each covariate xp, p = 1, . . . , P , within each profile
denotes a measure of deprivation p in area i. We first construct an allocation
sub-model of the probability that a region is assigned to a particular cluster.
The basic model we use to cluster profiles is a standard discrete mixture
model, the kind described in Neal (1998). Our mixture model incorporates
a Dirichlet process prior on the mixing distribution. For further background
information regarding mixture models with Dirichlet process priors, see Green
and Richardson (2001). Profiles of areas are grouped into clusters, and an
allocation variable, zi indicates the cth cluster to which area, i, belongs.

Measures of deprivation will be characterized using a multivariate normal
mixture distribution. Our basic mixture model for assignment is

f(xi) =
C∑

c=1

ψcf(xi|µc, Σc), (1)
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where f(xi|µc, Σc) denotes a multivariate normal distribution with location
parameters µc = (µ1

c , . . . , µ
P
c ) and covariance matrixΣc. The mixture weights

ψc, c = 1, . . . , C will be given a “stick-breaking prior” (Green et al. (2001))
using the following construction. We define a series of independent random
variables, V1, V2, . . . , VC−1, each having distribution Vc ∼ Beta(1, α). Since
we have little a priori information regarding the specification of α, we place
a uniform prior on the interval (0.3, 10). By considering a maximum number
of clusters, C, we have approximated the infinite cluster model with a finite
one. This formulation allows for straightforward parameter estimation while
retaining the flexibility of discovering a variable number of clusters. Note
that for all analyses in this paper, we define C = 20, which we found be be
sufficiently large for our applications.

Since it is possible that a cluster will be empty, we cannot assign non-
informative, “flat” priors to cluster parameters. Therefore, we adopt an em-
pirical Bayes approach and assign a prior for the mean of each deprivation
score, p, across SOA’s in cluster c as, µp

c ∼ N(νp, φp), where each φp is
assigned a vague prior but each νp is set to the observed empirical aver-
age, x̄p. Similarly, we assign a prior of Σc ∼ Wish(R, ρ), where ρ = P + 1,
which sets a uniform prior on within cluster correlation parameters and sets
E(Σc) = R, which is set to equal the empirical covariance matrix. Note that
in our model formulation, cluster hyper-parameters are assumed to come from
distributions centered on empirical averages. Thus cluster specific parameters
are used to represent clusters that deviate from a single empirically derived
“center” population.

2.2 Deprivation Sub-Model

Here, as above, we define for each region, i, an allocation variable, zi = c, c =
1, . . . , C which indicates the cluster to which region i belongs. The cth cluster
is assigned a random-effects parameter that measures the cluster’s influence
on the outcome, denoted as θc, which is given a non-informative prior. Our
association sub-model, which links the deprivation clusters with measures of
PM10 exposure is,

yi = θzi
+ εi, (2)

where εi ∼ N(0, σ2).
In order to examine the level of association between each deprivation

cluster and the deprivation outcome, we rewrite equation (2) using centered
random-effects terms, θ∗c = θc − θ̄ and define α = θ̄, yielding,

yi = α+ θ∗zi
+ εi, (3)

where,
∑C

c=1 θ
∗
c = 0. For each deprivation cluster, c, we can obtain posterior

credible intervals for the corresponding centered random-effects terms, θ∗c .
If both endpoints of this interval are away from zero, we conclude that the
cluster is associated with deprivation in a statistically significant manner.
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2.3 Finding the Clustering That Best Fits the Data

One important aspect of our flexible Bayesian modelling framework is that
our model implementation allows the number of deprivation clusters to change
from iteration to iteration of the sampler. We therefore wish to find the “typ-
ical” manner that the algorithm groups profiles into clusters, and then pro-
cess this best partition of the data using modern Bayesian model-averaing
tecniques that utilize the entire output of the MCMC sampler. The problem
of find a “typical” clustering or partition of the data has been addressed in
the literature by many authors in the context of mixture models; see, for ex-
ample, Medvedovic et al. (2002) and Dahl (2006). The basic procedure, is to
construct, at each iteration of the sampler, a score matrix with each element
of the matrix set equal to 1 if regions i and j belong to the same cluster, and
zero otherwise. At the end of the estimation process, a probability matrix,
S, is formed by averaging the score matrices obtained at each iteration, so
element Sij denotes the probability that regions i and j belong to the same
cluster. The task is then to find the partition, zbest, that best represents the
final average probability matrix, S. Dahl (2006) suggests an approach to find-
ing the best partition by choosing among all the partitions generated by the
sampler the one which minimizes the least-squared distance to the matrix .
We have found this approach useful, however, it requires one to choose one
of the observed partitions as optimal, resulting in a choice that is somewhat
susceptible to Monte-Carlo error. We find that a more robust approach is to
process the similarity matrix, S, through a deterministic clustering procedure
such as the Partitioning Around Medoids (PAM) (Kaufman et al. (2005)), a
deterministic clustering method available in R (R Development Core Team
(2006)), where an optimal number of clusters can be chosen by maximizing
an associated clustering score.

One the best partition is obtained, we wish to find posterior distributions
for cluster parameters corresponding to each cluster in zbest. We do this by
simply computing, at each iteration of the sampler, the average of value for,
say θ∗(equation 3), for all regions within a particular cluster, k, of the best
partition. This average random effect for cluster k is computed as

θ̄∗c =
1
nc

∑
i:zbest

i =c

θ∗zi
, (4)

where nc denotes the number of SOA’s in cluster k of zbest. Posterior distri-
butions for cluster parameter values corresponding to µp

c in equation (1) can
be computed similarly.

3 Example - Association between Deprivation Profiles
and Air Pollution Exposure

Here, we examine the joint effects of multiple measures of deprivation corre-
sponding to 4,742 Super Output Areas (SOA’s) across Greater London with
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exposure to PM10 measured in Tonnes/km2/year as our outcome of inter-
est. Deprivation measures utilize data in the UK based on relatively new
Indices of Deprivation 2004 (Nobel et al. (2004)), which contains measures
of deprivation relating to Income, Employment, Health, Education, Housing,
Crime and living Environment. Values for Income and Employment were log-
transformed to satisfy normality modeling assumptions. In order to facility
comparison across deprivation scores, posterior distributions for deprivation
parameters were standardized. This was achieved for each cluster by sub-
tracting, for deprivation p, the mean of the clusters scores divided by their
standard deviation at each iteration of the sampler.

Results from our analysis are depicted in Table 1 and Figure 1, with
clusters sorted by association with PM10 (θ∗ in equation 3). The “typical”
clustering revealed 6 clusters, each containing several hundred SOA’s except
for the very small cluster 6. (See comments below.) We first note from Figure
1 that the deprivation clusters exhibit a high level of spatial dependency,
with exposure levels increasing as one moves more towards the center of
London, though no explicit spatial structure was included in the model. Table
1 demonstrates a general tendency for more deprived regions to be associated
with higher levels of PM10 exposure, as the largest cluster, cluster 4 (n4 =
1421) is associated with higher than average exposure levels with θ∗4 = 0.03
and consistently positive deprivation scores. Also, the second largest cluster,
cluster 3 (n3 = 1229) is associated with lower than average exposure, with
θ∗3 = −0.04 and generally negative deprivation scores. Further, cluster 1 has
the lowest exposure of all clusters, θ∗1 = −0.11, and consistently has the
lowest deprivation scores.

Nevertheless, clusters 2 and 5 exhibit contrasting patterns of exposure
and deprivation. For example, cluster 2 (n2 = 963) has lower than average
exposure, θ∗2 = −0.06, but is associated with many deprivation scores that are
higher than average. Further, cluster 5 (n5 = 320) is associated with higher
than average exposure, θ∗5 = 0.05, and is associated with many deprivation
scores that are lower than average. This cluster corresponds geographically
to SOA’s around Heathrow Airport, which represent an anomaly in regards
to exposure/deprivation exposure patters. Finally cluster 6 (n6 = 6) is a tiny
cluster in the centre of London which has the highest exposure, θ∗6 = 0.13,
but also is associated with the least deprivation as could be expected for
high-income central London areas.

Clearly there may be a general tendency for more deprived regions to
be more exposed to PM10, as is the case for the largest clusters of SOA’s
depicted in Table 1. However, people living in smaller clusters of SOA’s as-
sociated with wealthier individuals living in the centre of the city also suffer
from pollution exposure, due to the high level of traffic present in expensive
central London locations. Further work is necessary to fully examine the com-
plex associations between deprivation and air pollution exposure in London,
suggesting further analyses using other outcomes, such as NO2. Nevertheless,
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it is clear that analyses conducted using simple, additive linear models will
mask the complex deprivation/exposure associations to be discovered.

Table 1. Association Between Deprivation Profiles and PM10 Exposure

C1 (n1 = 803) C2 (n2 = 963) C3 (n3 = 1229) C4(n4 = 1421) C5 (n5 = 320) C6 (n6 = 6)

PM101 -0.11 -0.06 -0.04 0.03 0.05 0.13
95% C.I. (-0.12,-0.11) (-0.07,-0.05) (-0.05,-0.04) (0.03,0.04) (0.04,0.06) (0.09,0.17)

IncomeD2 -1.46 0.56 -0.42 1.33 -0.51 -0.50
95% C.I. (-1.54,-1.36) (0.37,0.72) (-0.52,-0.31) (1.05,1.51) (-0.66,-0.33) (-0.63,1.06)

EmployD2 -1.24 0.45 -0.49 1.36 -0.78 -0.70
95% C.I. (-1.33,-1.15) (0.28,0.58) (-0.58,-0.40) (1.09,1.56) (-0.92,-0.62) (0.21,1.15)

HealthD2 -1.40 0.21 -0.49 1.27 -0.48 0.90
95% C.I. (-1.49,-1.30) (0.07,0.37) (-0.58,-0.41) (1.00,1.53) (-0.64,-0.31) (0.38,1.30)

EducatD2 -0.87 1.44 -0.94 0.94 -0.43 -0.14
95% C.I. (-1.04,-0.65) (1.19,1.54) (-1.09,-0.72) (0.72,1.07) (-0.60,-0.23) (-0.84,-0.70)

HousingD2 -1.27 -0.48 -0.77 0.72 0.47 1.33
95% C.I. (-1.36,-1.17) (-0.56,-0.40) (-0.84,-0.71) (0.53,0.91) (0.28,0.67) (1.06,1.55)

CrimeD2 -0.41 0.33 0.28 1.16 0.39 -1.75
95% C.I. (-0.89,-0.18) (0.20,0.39) (0.17,0.35) (0.97,1.50) (0.25,0.48) (-1.90,-1.32)

EnvironD2 -1.46 -0.67 -0.33 0.53 0.72 1.21
95% C.I. (-1.54,-1.38) (-0.71,-0.63) (-0.39,-0.28) (0.41,0.66) (0.57,0.89) (0.96,1.42)

1Represents values for θ∗ in equation (3).
2Values have been standardized.

Fig. 1. Deprivation clusters in London sorted by θ∗c (equation 3).
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Abstract. In environmental health studies, health effects, environmental expo-
sures, and potential confounders are seldom collected during the study on the same
set of units. Some, if not all of the variables, are often obtained from existing pro-
grams and databases. Suppose environmental exposure is measured at points, but
health effects are recorded on areal units. Further assume that a regression analysis
the explores the association between health and environmental exposure is to be
conducted at the areal level. Prior to analysis, the information collected on exposure
at points is used to predict exposure at the areal level, introducing uncertainty in
exposure for the analysis units. Estimation of the regression coefficient associated
with exposure and its standard error is considered here. A simulation study is used
to provide insight into the effects of predicting exposure. Open issues are discussed.

Keywords: modified areal unit problem, change of support, errors in vari-
ables

1 Introduction

The U.S. Centers for Disease Control’s (CDC’s) Environmental Public Health
Tracking (EPHT) program uses data from existing databases and on-going
programs to relate public health to environmental exposures and hazards.
The data used in any one study generally come from multiple sources. The
original studies giving rise to the data may have used different observational
units, each of which is different from the one of interest. The process of linking
data on a common spatial scale and then performing a regression to assess the
association between public health and environmental exposures or hazards
presents numerous statistical challenges. Here we focus on the proper measure
of uncertainty associated with the regression coefficient corresponding to the
environmental exposure when that exposure is observed at points (monitors)
but health effects are recorded for areal units (counties) and analysis is to be
conducted at the areal level.

Here we use data collected in support of the EPHT program to motivate
our work. In section 2, a motivating study, typical of those in the EPHT
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program, is presented. A review of the change-of-support problem is given in
Section 3 followed by the resulting analytical challenges it presents in Sec-
tion 4. Based on a small simulation study of the estimation of the regression
coefficient associated with environmental exposure and its standard error,
some of the statistical issues arising when using environmental data collected
at points to draw inference about the association between health and envi-
ronmental exposure at the areal level are highlighted in Section 5. In the
final section, some of the issues that must be resolved before we can reliably
present such analyses as part of EPHT are discussed. Although our focus is
on data collected in support of the EPHT program, the methodology, con-
cepts, and key ideas we present pertain to most studies linking health with
environmental factors.

2 The Study and Supporting Data

Two of the core measures of the EPHT program are ozone and myocar-
dial infarction (MI). Working with the data from August, 2005, we focus on
modeling the association between ozone (environmental exposure) and MI
(health outcome) at the county level. When assessing the potential associ-
ation between ozone and MI, care must be taken to account for potential
confounders. The ozone, MI, and socio-demographic data used in this effort
have been gathered from five different sources.

Ozone measurements, recorded from a network of air monitors placed
throughout the state, were obtained from Floridas Department of Environ-
mental Protection (FDEP). During the study period of August 2005, ozone
data were available from 56 monitors. Thus, some of the 67 counties have
one or more ozone monitors; others have none. The maximum of the daily
maximum 8-hour average ozone values during a month is used as the monthly
data value for a particular monitor.

Florida’s Department of Health (FDOH) has a data-sharing agreement
(DSA) with Florida’s Agency for Health Care Administration (AHCA), pro-
viding us with access to two data sources: confidential hospitalization records
and emergency room records. The hospitalization records contain all admis-
sions to Florida’s public and private hospitals where either the primary or sec-
ondary cause of admission was MI (ICD-10 codes 410.0–414.0). Non-Florida
residents were excluded from the analysis. Consistent with our DSA, AHCA
provided both the zip code and county of residence for each patients record.
Selected patient demographic information is also recorded, including sex, age,
and race/ethnicity.

Meteorological data, such as relative humidity, temperature, and pressure,
were available from the EPA’s space-time Bayesian fusion model (McMillan,
et al. (2009). This model predicts the daily minimum, maximum, and average
value for each variable on a 12-km grid across the U.S.
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Selected sociodemographic data were obtained from two sources: the U.S.
Census Bureau and CDC’s Behavioral Risk Factor Surveillance System
(BRFSS). Census estimates at the state and county level are available on an
annual basis. BRFSS is a state-based system of health surveys that collect
annual information on health risk behaviors, preventive health practices, and
health-care access, primarily related to chronic disease and injury.

Florida’s population was used as the comparison standard to calculate
the number of expected MI cases. This gave an MI standardized event ratio
(MI SER), defined as the ratio of the number of observed MI cases to that
expected among the Florida population, for each county and each month.
The goal of the analysis is to evaluate the association between public health
(MI SER) and environmental exposure (ozone) at the county level, adjusting
for potential confounders. The first step is to link all data at the county level,
a change of support problem as discussed in the next section.

3 Change of Support

As with our motivating study, health data collected for EPHT are routinely
reported for counties so that confidentiality is maintained. Whenever grouped
(or ecological) data are used in an analysis, the assumption made is that the
observed relationships in the aggregated data hold at the individual level.
In numerous epidemiological studies, ecological analyses have proven useful.
Early ecological analyses included works by Snow (1855) who related the inci-
dence of cholera to groundwater and Dean (1938) who studied the association
between dental caries and endemic fluorosis. In 1950, Robinson illustrated the
potential ecological fallacy of assuming that inferences for grouped data hold
for individual data. In exploring the association between being born in a for-
eign country and illiteracy, he found a correlation of 0.118 at the individual
level, but a correlation of −0.526 when working with state-level data, leading
him to question the use of ecological data for inferential purposes.

The broader challenge of drawing inference on one set of units given data
that are collected on another set of units has been discovered by researchers in
numerous disciplines (Gotway and Young (2002)). This problem is prevalent
in the study of human populations, leading geographers Openshaw and Taylor
(1979) to coin the term: the Modifiable Areal Unit Problem (MAUP). Because
our approach is a geostatistical one, we will refer to it as the Change of
Support (COS) problem.

COS has two aspects. The first, called the ”scale effect” or the ”aggre-
gation effect,” is that different results and inferences are obtained when the
same set of data is grouped into increasingly larger areal units. The second,
known as the ”zoning effect” or the ”grouping effect,” is the variability in
results and inference that is due to alternative formations of the areal units.
We will encounter the aggregation effect as we move from points to coun-
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ties, but we must also recognize that the inference could differ if the county
boundaries changed.

4 Spatial regression models with misaligned data

Let x = (x(s1), x(s2), . . . x(sn))′, be the vector of exposure measurements
(ozone) observed at point spatial locations s1, s2, . . . sn, (air quality monitors)
and let y = (y(B1), y(B2), . . . y(Bm))′ be the vector of health observations
associated with counties B1,B2, . . .Bm.

Spatial statistical methods assume that the environmental exposure (ozone)
is a realization of a random spatial process: {X(s)|s ∈ D ⊂ <2}, where X(s)
is a random variable at a known location s, and s varies smoothly over re-
gion D, which is the state of Florida for the motivating study. Assume the
following spatial model for the exposure variable (ozone):

x(s) = µx(s) + ex(s) = T (s)γ + ex(s), (1)

where T (s) is the (n × p) matrix of covariates that depend on spatial loca-
tions s, γ is a (p × 1) vector of parameters, and ex is an (n × 1) vector of
errors. Whereas Madsen, et al. (2008), Gryparis, et al. (2008), and Szpiro,
et al. (2009) assumed that that x has a constant mean in the spatial do-
main (µx(s) = µ, s ∈ D), we assume that µx(s) is a linear combination of
explanatory covariates. Because environmental exposure is measured on the
point scale, but inference is to be conducted for areal units, environmental
exposure must be predicted for the areal units.

This change-of-support problem can be addressed via block kriging (Sch-
abenberger and Gotway (2004)), and has been used in relating public health
to environmental exposures (Gotway and Young (2007), Young and Gotway
(2007), Young, et al. (2009a), and Young, et al. (2009)). In this setting, the
inferential goal in universal block kriging is the prediction of the spatial av-
erage of environmental exposure

xi(B) =
1
|Bi|

∫
Bi

x(s)ds (2)

from the point-support (monitor) measurements x(s1), x(s2), . . . , x(sn), where
|Bi| is the volume of the areal regions (counties) Bi ⊂ D, i = 1, 2, . . . ,m, that
form the spatial support of x(B1), x(B2), . . . , x(Bm).

The moments of x(B) can be derived from the underlying process. Thus,
because E(x(s)) = T (s)γ,

E(x(B)) = T (B)′γ,

and
Tj(B) =

1
| B |

∫
B

Tj(u)du, j = 1, 2, . . . . ,m.



Environmental Exposures and Human Health 289

Note that the regression coefficients γ = (γ1, γ2, . . . γp)′ are invariant to the
change of support if it is also reflected in the explanatory variables (Arbia
(2009), Cressie (1996)). The cov(x(Bi), x(Bj)) may be written as

cov(x(Bi), x(Bj)) = C̄(Bi,Bj) =
1

| Bi || Bi |

∫
Bj

∫
Bi

C(u, v)dudv

(see Schabenberger and Gotway (2004)). Note that the behavior of the co-
variances depends not only on the point suppot covariance, but also on the
specific size, shape, and orientation of the blocks considered.

To predict environmental exposure x(B) from the point samples x(s1),
x(s2), . . . , x(sn), we use the spatial predictor:

x̂(B) =
n∑

k=1

λkx(sk). (3)

Minimizing prediction mean-squared error subject to unbiasedness constraints,
the optimal weights {λi} are obtained by solving

n∑
k=1

λkC(si, sk)−
p∑

j=1

mjxj(si) = C̄(B, si), i = 1, 2, . . . , n (4)

and
n∑

i=1

λixj(si) = xj(B), j = 1, 2, . . . , p. (5)

The mj are Lagrange multipliers from the constrained minimization, and
C̄(B, si) is the point-to-block covariance given by

C̄(B, si) = cov(x(B), x(si)) =
1
| B |

∫
B

C(u, v)dudv (6)

The point-to-point covariance function, C(.), is assumed known for theoret-
ical derivations, but is then estimated and modeled with a valid positive
definite function based on the data. Thus, given environmental exposure ob-
servations at locations (monitors) with point support, block kriging can be
used to predict the average value x̂(B) of the process at a larger scale, ac-
counting for not only the size, bust also the shape of the orientation of the
blocks (counties).

In EPHT and many other programs, the prediction of environmental ex-
posure is only one step toward the final goal. Suppose that for the vector of
observed environmental exposures x, there is a corresponding vector of health
observations, y = (y(s1), y(s2), . . . y(sn))′ associated with spatial locations
s1, s2, . . . sn. For simplicity, we assume a simple linear regression model for
the relationship between environmental exposure and the health outcome:

y(s) = β0j + β1x(s) + e(s) (7)
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where j is a vector of ones, β0 and β1 are unknown regression parameters to be
estimated, and e(s) ∼ N(0, Σe) is the error of the model. However, because
health has been observed for counties and analysis is to be conducted at the
county level, we have

y(B) = β0j + β1x(B) + e(B) (8)

where e(B) = 1
|B|

∫
|B|

e(s)ds. Although, as Robinson (1950) noted, the corre-

lation coefficient tends to increase with aggregation, the regression coefficients
β0 and β1 are invariant under change of support.

Because x(B) is unknown and thus predicted using x̂(B) from observations
at points, the resulting predicted values are generally smoother than the true
ones. Recently, when working with misaligned point data, several (Madsen,
et al. (2008), Gryparis, et al. (2009), Szpiro, et al. (2009)) have found that
this smoothing can lead to bias and impact proper uncertainty assessment
when the predicted values are used to estimate the association between health
effects and environmental exposure. Here we build on the work by Young, et
al. (2009a), which considers the effect of predicting environmental exposure
for areal units based on point support.

Because the environmental exposure x(B) in (8) is more variable than
its smoothed predictor x̂(B), we have x(B) = x̂(B) + u(B), where u(B) =
x(B)−x̂(B) is the error associated with predicting exposure. We assume that
u(B) ∼ N(0,Σu(B)) and is independent of ex(B). Thus the use of x̂(B) for
x(B) in model (8) results in Berkson error (Grpyaris, et al. (2008)). Covariates
are typically used in the regression relating the health outcome values y
to the predicted environmental exposure, thereby adjusting for confounders.
However, a simpler model without covariates is considered for the simulation:

y(B) = β0j + β1x(B) + e(B)
= β0j + β1(x̂(B) + u(B)) + e(B)
= β0j + β1x̂(B) + β1u(B) + e(B)
= β0j + β1x̂(B) + η(B)

(9)

where η(B) = β1u(B) + e(B). Let X̂ = ( j x̂(B) ) and β = (β0, β1). If x̂(B)
is an unbiased predictor of x, then

β̂ols = (X̂
′
X̂)−1X̂

′
y, (10)

the ordinary least squares (OLS) estimator of β, is unbiased. However, as
described in Madsen, et al. (2008) and Gryparis, et al. (2009), substitut-
ing predicted environmental exposures for the true values in the regression
expression leads to a correlated error structure,

var(η(B)) = β2
1Σu(B)Σe(B). (11)
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Thus, the OLS variance of β̂1 is incorrect because it does not utilize the
proper covariance matrix in equation (11) that results from the additional
uncertainty induced by predicting the unknown x values. How important is
it to account for this additional uncertainty? Because our ultimate goal is to
have these methods adopted by state health departments with widely varying
technological capacity, we would prefer to continue to use simple methods.
Here we consider the two methods most commonly used today.

4.1 Traditional Krige and Regress (KR)

This is a common approach in analyses today. Assuming Σe = σ2I, the
predicted values, x̂, of the unknown exposure values x are used in model (8)
as if they were the true values, resulting in the OLS estimates of β1 and its
standard error. No adjustment for the additional uncertainty due to spatial
prediction of x is made.

4.2 Traditional Krige and Regress with a General Covariance
Structure (KRGC)

Using the predicted values x̂ instead of the true environmental exposure val-
ues x leads to a more complex covariance structure as in equation (11).
Perhaps geostatistics and variography can be used to to model the spa-
tial structure in the error term. Thus, this approach uses generalized least
squares with a general variance-covariance matrix inferred through geostatis-
tical techniques (Schabenberger and Gotway (2004)).

In KR, an assumption is that all of the spatial variability in y can be
explained by the spatial variability in x so that, conditional on x, the y’s
are independent, i.e., Σe = σ2I. Often researchers are unwilling to make
that assumption and choose to use a general covariance structure, such as
the exponential or spherical, to account for any additional spatial variability
in the y’s. Notice that this is equivalent to the KRGC. Whether attempting
to account for errors in x or for additional spatial variability in y, the KRGC
is the same, and the cause of the more complex error structure cannot be
attributed to either potential source. Further, because β1 is the unknown
parameter to be estimated and is part of the error structure, proper modeling
of the error structure may be challenging.

KR and KRGC were used to analyze the Florida data discussed in Section
2 (see Table 1). A 12-km grid was used for block kriging.

Table 1. Estimates of β̂1 and the Standard Error of β̂1 for Florida

Estimation Method β̂1 sβ̂1

KR 0.025 0.015

KRGC 0.038 0.017
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5 Simulation Study

A simulation study was conducted to gain insight into the effect of moving
from the point to the areal scale, with emphasis on the application at hand.
When exploring the ozone data described in Section 2, a quadratic trend
surface was estimated so that the estimated mean function based on equation
(1) is

µ̂(s) = −747.71 + 53.77 ∗ l − 0.91l2. (12)

where l is the latitude of an exposure measurement. The error associated with
fitting the trend surface was estimated to have an exponential covariance
function with a scale of 50.1 and a range of 1. To link the MI SER with the
ozone data, block kriging was conducted by predicting ozone onto a 12-km
grid and then the predictions were averaged within each county to obtain an
average maximum ozone value for that county. Then, the natural logarithm
of MI SER, denoted by ln(SER), was modeled. The covariates used in the
analysis were the average monthly temperature, average monthly relative
humidity, percent of county residents who smoke, percent of county residents
with less than a high school education, and an indicator variable of whether
or not the median income for the family was above the median income for
the state. Adjusting for the covariates, the regression of ln(SER) on ozone
produced estimates of the intercept and slope of -0.8 and 0.02, respectively.
Assuming an independent error structure, the variance associated with the
regression was estimated to be 2.32. This analysis and the resulting parameter
estimates serve as the foundation for the simulation study below.

To explore the effect of change of support, the same 12-km grid used for
block kriging was laid over the state of Florida. For each of 1000 simulations,
a realization of ozone at the monitors and grid points was generated assuming
that the estimated parameters were in fact the true values of the parameters,
with one exception. Because the estimated coefficient on ozone, β̂1 was only
0.02, we used 0.2 for that coefficient in the simulation study. Given a realiza-
tion of ozone, the health effects for the areal (county) units were generated in
four different ways. In the first two, data were simulated for environmental
exposure. Then, given a realization of ozone, the health effects were gener-
ated for each grid point according to model (7) with β0 = −0.8, β1 = 0.2,
and normally distributed independent errors, each with a mean of zero and a
variance of (1) 2.32 and (2) 3.22. To move from points to areas, the response
y and the predicted environmental exposures x̂ were block kriged as in equa-
tion (2) to obtain the areal health effects, yB and the areal environmental
exposures, x̂B, respectively. Then yB was regressed on x̂B.

For the other two approaches, the true exposure values x were block-
kriged to the areal level, and yB was generated by conditioning on (1) the
areal value for environmental exposure and (2) the exposure value at the
centroid of the county. Then, for each approach, all but the monitor values
of true exposure values were deleted, ozone was predicted at the areal level
using block kriging, and yB was regressed on x̂B.
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When simulating the data, the true exposure model did not converge for
about 4% of the data sets. We generated simulated data sets until 1000 sets
for which the true exposure model did converge were obtained. For each of
the data sets, we predicted environmental exposure (1) by block kriging and
(2) by predicting exposure at the areal centroid. Then KR and KRGC were
used for each data set. Because the results of KR and KRGC did not differ
appreciably, we include only the results for KR in Table 1.

Table 2. Average
¯̂
β1 and Variance σ̂2

β̂1
of the Estimates of β1 and Average of the

Estimated Variance s̄2
β̂1

of β̂1 for Areal Simulated Data Sets using KR

Model Prediction
¯̂
β1 σ̂2

β̂1
s̄2

β̂1

Conditioning at Points and Kriging 0.198 0.00101 0.000459
Averaging to Areal Level, σ2 = 2.3 Centroid 0.180 0.000901 0.000438

Conditioning at Points and Kriging 0.197 0.00116 0.000678
Averaging to Areal Level, σ2 = 3.2 Centroid 0.179 0.00107 0.000638
Conditioning on Average Kriging 0.197 0.00380 0.00334
Ozone Centroid 0.180 0.00336 0.00304
Conditioning on Ozone Kriging 0.206 0.00832 0.00757
at Centroid Centroid 0.197 0.00670 0.00586

6 Discussion

Regardless of the manner in which y was modeled, the estimates of β1 are
slightly below the true parameter value β1 = 0.2 when block kriging is used
to estimate exposure. This may be the result of classical measurement error
induced by the estimation of the parameters of the environmental exposure
model (1), resulting in an attenuation towards zero (Carroll, et al. (2006),
Szpiro, et al. (2009)). Here the bias is not of practical concern, regardless of
the method by which health is modeled.

Because it is less computationally intensive to predict exposure at the
areal centroid than it is to block krige to predict exposure as the average for
the areal unit, analyses based on centroids are commonly conducted. From
Table 2, it is evident that this is problematic because, unless health effects
are conditional on exposure at the centroids, a downward bias of about 10%
is observed. Thus, it is important to average exposure over the areas and to
not use the simpler method of kriging at centroids.

Whether block kriging or using centroids to predict environmental ex-
posure, the variances, and hence the standard errors of β̂1 exhibit a strong
downward bias. Methods have been proposed for correcting this bias when
exposure and health are observed at misaligned points. These methods need
to be extended for the case where health is observed for area units and trend
is present in exposure.
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Abstract. This paper considers the issue of seasonal cointegrating rank selection
by information criteria as the extension of Cheng and Phillips (The Econometrics
Journal (2009), Vol. 12, pp. S83–S104). The method does not require the specifi-
cation of lag length in vector autoregression, is convenient in empirical work, and
is in a semiparametric context because it allows for a general short memory error
component in the model with only lags related to error correction terms. Some
limit properties of usual information criteria are given for the rank selection and
small Monte Carlo simulations are conducted to evaluate the performances of the
criteria.

Keywords: seasonal cointegrating rank, information criteria, nonparametric,
model selection

1 Introduction

Various procedures have been proposed to determine cointegrating (CI) ranks
in nonseasonal and seasonal models. They are mostly the likelihood ratio type
of tests, considered by Johansen (1996) for nonseasonal cointegration, Jo-
hansen and Schaumburg (1999), Cubadda (2001), and Seong et al. (2006) for
seasonal cointegration, among others. However, these procedures are based on
parametric models which require the specification of a full model such as lag
length in vector autoregression and can occur the misspecification of CI rank
possibly through an inappropriate specification of the lag length. Recently,
the works by Phillips (2008), and Cheng and Phillips (2008, 2009) consider
semiparametric models as alternatives to parametric ones in determining CI
rank. They regard CI rank as an order parameter for which information crite-
ria are particularly well suited since there are only a finite number of possible
choices.

In this paper, we extend the issue of cointegrating rank selection by infor-
mation criteria to seasonal models, by using Gaussian reduced rank (GRR)
procedure of Ahn and Reinsel (1994). The GRR estimation has a special
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characteristic that it simultaneously imposes rank conditions at all existing
seasonal unit roots (Seong and Yi (2008)). If we use a partial regression proce-
dure, often used by the previous literature such as Johansen and Schaumburg
(1999), it is impossible to construct the simultaneous estimation because it
ignores the constraints of reduced ranks (i.e., cointegrated structures) of the
other unit roots except one unit root focused by the partial regression. Note
that seasonal CI rank tests, performed independently by focusing on one unit
root at a time, can result in a seriously inflated Type I error in terms of mul-
tiple hypothesis testing (Seong (2009)). Therefore, this paper combines three
advantages: (i) simultaneous estimation from the GRR, (ii) semiparametric
model without the specification of complete form, and (iii) convenience for
practical implementation.

The paper is organized as follows. In section 2, the semiparametric error
correction model (ECM) is presented for seasonal cointegration. The asymp-
totic results are given in section 3. In section 4, small Monte Carlo simu-
lations are conducted to evaluate performances of the proposed methods.
Conclusions are drawn in section 5.

2 The semiparametric seasonal ECM

We consider the following semiparametric seasonal ECM:

Zt =A1B1Ut−1 +A2B2Vt−1 + (A3B4 +A4B3)Wt−1

+ (A4B4 −A3B3)Wt−2 + et,
(1)

where Xt is an m-vector time series with Zt = (1− L4)Xt stationary,

Ut = (1 + L)(1 + L2)Xt, Vt = (1− L)(1 + L2)Xt,Wt = (1− L2)Xt,

and Aj and Bj are m × r0j and r0j × m matrices, respectively, with rank
equal to r0j for j = 1, · · · , 4, and r03 = r04. The error term et is weakly
dependent stationary time series with zero mean and continuous spectral
density matrix fe(λ). We assume that the initial value X0 is fixed and, for
brevity, Xt is observed on a quarterly basis. Models with the other seasonal
periods, e.g., monthly, can be easily implemented as in Ahn et al. (2004). Note
that r01, r02, and r03(r04) denote the CI ranks at seasonal unit roots 1, −1,
and i(−i), respectively, (i.e., frequencies 0, π, and π/2(3π/2), respectively),
and B1Ut, B2Vt, (B3 +B4L)Wt, and (B4−B3L)Wt are stationary processes,
i.e., CI relationships.

As in Phillips (2008) and Cheng and Phillips (2009), we treat model (1)
semiparametrically with regard to et and identify the seasonal CI ranks r01,
r02, and r03(r04) directly and simultaneously in model (1) by information cri-
teria and the GRR estimation. Specifically, we identify the ranks as follows:
model (1) is estimated by the GRR for all combinations of r = (r1, r2, r3)
with rj = 0, 1, · · · ,m (j = 1, 2, 3) just as if et were a martingale difference,
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and the combination of r = (r1, r2, r3) is chosen to minimize the correspond-
ing information criteria as if model (1) were a correctly specified parametric
framework up to the ranks parameter r. Thus, the selection method is con-
venient for practical implementation in empirical work because no explicit
account is taken of the weak dependence structure of et in the process. The
criterion used to evaluate the seasonal CI ranks takes the following form:

IC(r) = log
∣∣∣Σ̂(r)

∣∣∣+Cnn
−1{(2mr1−r21)+(2mr2−r22)+2(2mr3−r23)}, (2)

where Σ̂(r) denotes the residual covariance matrix from the GRR and coef-
ficient Cn = log n, 2 log log n, or 2 corresponds to the BIC (Schwarz (1978)),
HQ (Hannan and Quinn (1979)), and AIC (Akaike (1973)) penalties, respec-
tively. Note that, in equation (2), the degrees of freedom terms 2mr1 − r21,
2mr2 − r22, and 2(2mr3 − r23) account for the 2mrj(j = 1, 2, 3, 4) elements
of the matrices Aj and Bj that have to be estimated, adjusted for the r2j
restrictions on Bj that ensure a unique parameterization.

For each combination r = (r1, r2, r3) with rj = 0, 1, · · · ,m (j = 1, 2, 3),
we estimate the m× rj matrices Aj and Bj by the GRR estimation, denoted
by Âj and B̂j , and, for use in equation (2), we form the corresponding residual
covariance matrices

Σ̂(r) = n−1
n∑

t=4

êtê
′
t for rj = 0, 1, · · · ,m (j = 1, 2, 3),

where

êt =Zt − Â1B̂1Ut−1 − Â2B̂2Vt−1

− (Â3B̂4 + Â4B̂3)Wt−1 − (Â4B̂4 − Â3B̂3)Wt−2

and rj = 0 and rj = m imply that AjB
′
j = Om and Bj = Im, respectively.

Model evaluation based on IC(r) then leads to the seasonal CI ranks selection
criterion

r̂ = arg min
0≤r1,r2,r3≤m

IC(r). (3)

Similarly in the Cheng and Phillips (2009), the information criterion
IC(r) is expected to be weakly consistent for selecting the CI ranks r =
(r1, r2, r3) provided that the penalty term in equation (2) satisfies the weak
requirements that Cn → ∞ and Cn/n → 0as n → ∞. No minimum expan-
sion rate for Cn such as log log n is required and no more complex parametric
model needs to be estimated. The approach is therefore quite straightforward
for practical implementation.

3 Asymptotic results

We consider the weak consistency of the information criteria for selecting the
true seasonal CI ranks r0 = (r01, r02, r03) under suitable regular conditions
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which are standard in the study of linear process condition of the innovations,
and seasonal cointegration. The following theorem can be conjectured from
that of Cheng and Phillips (2009).

Theorem 1. Under suitable assumptions,
(a) the criterion IC(r) is weakly consistent for selecting the seasonal CI ranks
provided Cn →∞ and Cn/n→ 0 as n→∞;
(b) the asymptotic distribution of the AIC criterion is given by

lim
n→∞

P (r̂AIC = r0) = ξ1 > 0,

lim
n→∞

P (r̂AIC = r|r � r0) = ξ2 > 0,

and lim
n→∞

P (r̂AIC = r|r ≺ r0) = 0,

where r1 � r2 and r1 ≺ r2 denote that all components of the vector r1 − r2

and r2 − r1, respectively, are positive.

Part (a) of theorem implies that all information criteria with Cn → ∞
and Cn/n → 0, such as BIC and HQ, are consistent for the selection of
seasonal CI rank with semiparametric estimation approach, i.e., without the
specification of a full model. Part (b) implies that AIC is inconsistent in
that it asymptotically never underestimates CI ranks and, instead, asymp-
totically overestimates them. This outcome is analogous to the well-known
overestimation tendency of AIC or the result of Cheng and Phillips (2009).

4 Monte Carlo simulations

Monte Carlo simulations are conducted to evaluate the performances of the
information criteria in identifying seasonal CI ranks.

The first data generating process (DGP I) considered is the bivariate
quarterly process modified from that of Ahn and Reinsel (1994):

(1− L4)Xt = A1B1Ut−1 +A2B2Vt−1 +A4B2Wt−1 −A3B2Wt−2 + et,

where

A1 = (0.6, 0.6)′, A2 = (−0.4, 0.6)′, A3 = (0.6, − 0.6)′, A4 = (0.4, − 0.8)′,
B1 = (1, − 0.7), B2 = (1, 0.4).

Note that the characteristic roots are ±1, ±i, 0.9715±0.7328i, and −1.3508±
0.3406i when et is regarded as a martingale difference and, then, Xt is sea-
sonally cointegrated with CI rank of one at unit roots 1, −1, and i each.

In the second data generating process (DGP II), we consider the case
without cointegration at any seasonal unit root,

(1− L4)Xt = et.
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In both DGPs, the error process et is assumed, as in Cheng and Phillips
(2008), to be AR(1), MA(1), and ARMA(1,1) errors, corresponding to the
models

et = ψImet−1 + ηt, et = ηt + φImηt−1, and et = ψImet−1 + ηt + φImηt−1,

where |ψ| < 1, |φ| < 1, and ηt are i.i.d. N(0, Σ) with Σ = diag{1 + θ, 1− θ}.
The parameters are set to ψ = φ = 0.4, and θ = 0.25.

Table 1. Seasonal CI rank selection when DGP I with et ∼ AR(1)

BIC HQ AIC
(r1, r2, r3) T = 100 T = 400 T = 100 T = 400 T = 100 T = 400

(0,0,0) 0 0 0 0 0 0
(0,1,0) 0 0 0 0 0 0
(0,2,0) 0 0 0 0 0 0
(0,0,1) 0 0 0 0 0 0
(0,1,1) 0 0 0 0 0 0
(0,2,1) 0 0 0 0 0 0
(0,0,2) 0 0 0 0 0 0
(0,1,2) 0 0 0 0 0 0
(0,2,2) 0 0 0 0 0 0
(1,0,0) 0 0 0 0 0 0
(1,1,0) 0 0 0 0 0 0
(1,2,0) 0 0 0 0 0 0
(1,0,1) 0 0 0 0 0 0
(1,1,1) 8688 9342 7228 7942 5194 5334
(1,2,1) 177 59 550 358 1050 1059
(1,0,2) 0 0 0 0 0 0
(1,1,2) 605 332 1154 979 1656 1692
(1,2,2) 12 2 83 37 336 319
(2,0,0) 0 0 0 0 0 0
(2,1,0) 0 0 0 0 0 0
(2,2,0) 0 0 0 0 0 0
(2,0,1) 0 0 0 0 0 0
(2,1,1) 474 253 801 589 1145 980
(2,2,1) 14 3 64 21 243 214
(2,0,2) 0 0 0 0 0 0
(2,1,2) 30 9 108 73 293 333
(2,2,2) 0 0 12 1 83 69

Total 10000 10000 10000 10000 10000 10000

We generate 10,000 replications of the sample sizes with T = 100 and
400. We use initial values that are set to zero, but discard the first 50 ob-
servations in order to eliminate dependence on the starting conditions. The
performances of the criteria BIC, HQ, and AIC are investigated for the sam-
ples sizes and the results are summarized in Tables 1 and 2 which show the
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results for DGP I and DGP II, respectively. The tables display the results
for the model with AR(1) error. We omit the tables for that with the other
errors because similar results are observed.

From Tables 1, as expected from Theorem 1, all the information criteria
are generally minimized when selected seasonal CI ranks coincide with true
ranks, i.e., (r1, r2, r3) = (1, 1, 1). An interesting thing is that they never
select the case that at least one rank among CI ranks is underestimated
and, then, the criteria have a tendency to overestimate ranks. The tendency
is strengthened when only one rank is overestimated, such as (r1, r2, r3) =
(1, 1, 2), (1,2,1), and (2,1,1). Nevertheless, BIC performs better than HQ and
AIC which show a strong tendency to overestimate CI ranks.

Table 2. Seasonal CI rank selection when DGP II with et ∼ AR(1)

BIC HQ AIC
(r1, r2, r3) T = 100 T = 400 T = 100 T = 400 T = 100 T = 400

(0,0,0) 6568 8508 2736 4233 526 522
(0,1,0) 543 160 1423 1091 1035 1005
(0,2,0) 5 0 58 38 116 125
(0,0,1) 1540 798 2051 1984 1063 1070
(0,1,1) 64 9 718 464 1819 1865
(0,2,1) 0 0 29 16 197 217
(0,0,2) 127 42 274 217 209 239
(0,1,2) 4 0 76 45 357 406
(0,2,2) 0 0 2 1 30 44
(1,0,0) 824 380 935 878 378 318
(1,1,0) 36 9 425 200 770 660
(1,2,0) 1 0 13 5 92 80
(1,0,1) 133 42 592 352 754 632
(1,1,1) 1 0 152 80 1150 1096
(1,2,1) 0 0 10 0 122 109
(1,0,2) 8 1 71 46 142 129
(1,1,2) 0 0 18 7 230 240
(1,2,2) 0 0 0 0 22 24
(2,0,0) 120 48 191 188 122 131
(2,1,0) 6 2 82 46 213 257
(2,2,0) 0 0 4 1 22 36
(2,0,1) 19 1 90 81 204 225
(2,1,1) 0 0 27 16 278 391
(2,2,1) 0 0 1 0 42 32
(2,0,2) 1 0 16 8 40 47
(2,1,2) 0 0 6 3 62 94
(2,2,2) 0 0 0 0 5 6

Total 10000 10000 10000 10000 10000 10000
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As underestimation of CI ranks cannot occur in DGP II, we can analysis
overestimation better than in DGP I. From Table 2, we observe similar results
to Table 1 but the overestimation by AIC is noticeably strong, especially, in
that AIC selects (r1, r2, r3) = (0, 1, 0), (0, 0, 1), (0, 1, 1), and (1,1,1) compar-
atively often, instead of true ranks (r1, r2, r3) = (0, 0, 0). This tendency is
noticeably attenuated when CI rank is overestimated at unit root 1.

Note that, from Tables 1 and 2, we can conjecture the results that the
information criteria will give when we use the partial regression procedure
by Johansen and Schaumburg (1999) instead of the GRR. As the partial
regression is performed by focusing on one unit root by regarding the ranks
of the other unit roots as full ranks, the selection frequencies at the cases
(r1, r2, r3) = (0, 2, 2), (1,2,2), and (2,2,2) can show the conjecture.

5 Conclusions

In this paper, we show that information criteria can consistently select sea-
sonal CI ranks if they satisfy weak conditions on the expansion rate of the
penalty coefficient, as extension of nonseasonal model in Cheng and Phillips
(2009) to seasonal. The method by the criteria offers substantial convenience
to the empirical researcher because it is robust to weak dependence of error
term.
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Abstract. We introduce an innovation expansion method for estimation of factor
models for conditional variance (volatility) of a multivariate time series. We estimate
the factor loading space and the number of factors by a stepwise optimization
algorithm on expanding the “white noise space”. Simulation and a real data example
are given for illustration.

Keywords: dimension reduction, factor models, multivariate volatility

1 Introduction

Factor modelling plays an important role in the analysis of high-dimensional
multivariate time series( see Sargent and Sims (1977); Geweke (1977)) be-
cause it is both flexible and parsimonious. Most of factor analysis in the
literature is for the mean and conditional mean of a multivariate time series
and panel data, see Pan and Yao (2008) and a series of papers of article by
Forni, Hallin, Lippi and Reichlin (2000,2004), and Hallin and Lǐska (2007).

For the conditional variance, which is so-called volatility, the multivariate
generalized autoregressive conditional heteroskedastic (GARCH) models are
commonly used, see Engle and Kroner (1995), Engle (2002), Engle & Shep-
pard (2001). But a multivariate GARCH model often has too many parame-
ters so that it is difficult to estimate the model, which is a high-dimensional
optimization problem. Factor models for volatility are useful tools to over-
come the overparametrisation problem, e.g. Factor-ARCH (Engle, Ng and
Rothschild 1990).

In this paper, we consider a frame work of factor analysis for the multi-
variate volatility, including factor ARCH as a special case. We introduce a
innovation expansion method for the estimation of the factor loading space
and the number of factors. Our method can change a high-dimensional op-
timization problem to a stepwise optimization algorithm by expanding the
“white noise space” (innovation space) one step each time.

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 28, c© Springer-Verlag Berlin Heidelberg 2010
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2 Models and methodology

Let {Yt} be a d×1 time series, and E(Yt|Ft−1) = 0, where Ft = σ(Yt, Yt−1, · · · ).
Assume that E(YtY

τ
t ) exists, and we use the notation Σy(t) = var(Yt|Ft−1).

Pan et al. (2009) consider a common factor model

Yt = AXt + εt, (1)

whereXt is a r×1 time series, r < d is unknown, A is a d×r unknown constant
matrix, {εt} is a sequence of i.i.d. innovations with mean 0 and covariance
matrix Σε, and εt is independent of Xt and Ft−1. This assumes that the
volatility dynamics of Y is determined effectively by a lower dimensional
volatility dynamics of Xt plus the static variation of εt, as

Σy(t) = AΣx(t)Aτ +Σε, (2)

where Σx(t) = var(Xt|Ft−1). The component variables of Xt are called the
factors. There is no loss of generality in assuming rk(A) = r and requiring
the column vectors of A = (a1, · · · , ar) to be orthonormal, i.e. AτA = Ir,
where Ir denotes the r × r identity matrix.

We are concerned with the estimation for the factor loading spaceM(A),
which is uniquely defined by the model, rather than the matrix A itself. This
is equivalent to the estimation for orthogonal complement M(B), where B
is a d× (d− r) matrix for which (A,B) forms a d× d orthogonal matrix, i.e.
BτA = 0 and BτB = Id−r. Now it follows from (1) that

BτYt = Bτεt. (3)

Hence BτYt are homoscedastic components since

E{BτYtY
τ
t B|Ft−1} = E{Bτεtε

τ
tB} = E{BτYtY

τ
t B} = Bτvar(Yt)B.

This implies that

BτE[{YtY
τ
t − var(Yt)}I(Yt−k ∈ C)]B = 0, (4)

for any t, k ≥ 1 and any measurable C ⊂ Rd.
For matrix H = (hij), let ||H|| = {tr(HτH)}1/2 denote its norm. Then

(4) implies that

k0∑
k=1

∑
C∈B

w(C)
∣∣∣∣ n∑

t=k0+1

E[Bτ{YtY
τ
t − var(Yt)}BI(Yt−k ∈ C)]

∣∣∣∣2 = 0 (5)

where k0 ≥ 1 is a prescribed integer, B is a finite or countable collection
of measurable sets, and the weight function w(·) ensures the sum on the
right-hand side finite. In fact we may assume that

∑
C∈B w(C) = 1. Even

without the stationarity on Yt, var(Yt) in (5) may be replaced by Σ̂y ≡
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(n − k0)−1
∑

k0<t≤n YtY
τ
t . This is due to the fact Bτvar(Yt)B = BτΣεB,

and

(n− k0)−1
n∑

t=k0+1

BτYtY
τ
t B = (n− k0)−1

n∑
t=k0+1

Bτεtε
τ
tB

a.s.→ BτΣεB,

see (3). Therefore Bτ Σ̂yB is a consistent estimator for Bτvar(Yt)B for all t.
Denote

Dk(C) = (n− k0)−1
n∑

t=k0+1

(YtY
τ
t − Σ̂y)I(Yt−k ∈ C).

Now (5) suggests to estimate B ≡ (b1, · · · , bd−r) by minimizing

Φn(B) =
k0∑

k=1

∑
C∈B

w(C)
∣∣∣∣BτDk(C)B

∣∣∣∣2 (6)

=
k0∑

k=1

∑
1≤i,j≤d−r

∑
C∈B

w(C)
{
bτiDk(C)bj

}2

subject to the condition BτB = Id−r. This is a high-dimensional optimization
problem. Further it does not explicitly address the issue how to determine
the number of factors r. We present an algorithm which expands the inno-
vation space step by step and which also takes care of these two concerns.
Note for any bτA = 0, Zt ≡ bτYt(= bτεt) is a sequence of independent ran-
dom variables, and therefore, exhibits no conditional heterosedasticity. The
determination of the r is based on the likelihood ratio test for the null hypoth-
esis that the conditional variance of Zt given its lagged valued is a constant
against the alternative that it follows a GARCH(1,1) model with normal
innovations. See also Remark 1(vii) below.

Put

Ψ(b) =
k0∑

k=1

∑
C∈B

w(C)[bτDk(C)b]2,

Ψm(b) =
k0∑

k=1

{
2

m−1∑
i=1

∑
C∈B

w(C)[b̂τiDk(C) b]2 +
∑
C∈B

w(C)[bτDk(C)b]2
}
.

An Innovation Expansion Algorithm for estimating B and r: let p be
an integer between 1 and k0 and α ∈ (0, 1) specify the level of significance
test.
Step 1. Compute b̂1 which minimises Ψ(b) subject to the constraint bτ b =

1. Let Zt = b̂τ1Yt. Compute the 2log-likelihood ratio test statistic

T = (n−k0)
{
1+log

( 1
n− k0

n∑
t=k0+1

Z2
t

)}
−min

n∑
t=k0+1

{Z2
t

σ2
t

+log(σ2
t )
}
,

(7)
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where σ2
t = α + βZ2

t−1 + γσ2
t−1, and the minimisation is taken

over α > 0, β, γ ≥ 0 and β + γ < 1. Terminate the algorithm
with r̂ = d and B̂ = 0 if T is greater than the top α-point of the
χ2

2-distribution. Otherwise proceed to Step 2.
Step 2. For m = 2, · · · , d, compute b̂m which minimizes Ψm(b) subject to

the constraint

bτ b = 1, bτ b̂i = 0 for i = 1, · · · ,m− 1. (8)

Terminate the algorithm with r̂ = d−m+1 and B̂ = (b̂1, · · · , b̂m−1)
if T , calculated as in (7) but with Zt = |b̂τmYt| now, is greater than
the top α-point of the χ2

2-distribution.
Step 3. In the event that Tp never exceeds the critical value for all 1 ≤

m ≤ d, let r = 0 and B̂ = Id.

Remark 1. (i) The algorithm grows the dimension ofM(B) by 1 each time
until a newly selected direction b̂m being relevant to the volatility dynamics
of Yt. This effectively reduces the number of the factors in model (1) as much
as possible without losing significant information.

(ii) The minimization problem in Step 2 is a d-dimensional subject to
constraint (8). It has only (d − m + 1) free variables. In fact, the vector b
satisfying (8) is of the form

b = Amu, (9)

where u is any (d−m+1)×1 unit vector, Am is a d×(d−m+1) matrix with
the columns being the (d − m + 1) unit eigenvectors, corresponding to the
(d−m+1)-fold eigenvalue 1, of matrix Id−BmB

τ
m, and Bm = (b̂1, · · · , b̂m−1).

Note that the other (m− 1) eigenvalues of Id −BmB
τ
m are all 0.

(iii) We may let Â consist of the r̂ (orthogonal) unit eigenvectors, corre-
sponding to the common eigenvalue 1, of matrix Id−B̂B̂τ (i.e. Â = Ad−r̂+1).
Note that Âτ Â = Ir̂.

(iv) A general formal d × 1 unit vector is of the form bτ = (b1, · · · , bd),
where

b1 =
d−1∏
j=1

cos θj , bi = sin θi−1

d−1∏
j=i

cos θj (i = 2, · · · , d− 1), bd = sin θd−1,

where θ1, · · · , θd−1 are (d− 1) free parameters.
(v) We may choose B consisting of the balls centered at the origin in Rd.

Note that EYt−k = 0. When the underlying distribution of Yt−k is symmetric
and unimodal, such a B is the collection of the minimum volume sets of the
distribution of Yt−k, and this B determines the distribution of Yt−k (Polonik
1997). In numerical implementation we simply use w(C) = 1/K, where K is
the number the balls in B.

(vi) Under the additional condition that

cτA{E(XtX
τ
t |Ft−1)− E(XtX

τ
t )}Aτ c = 0 (10)
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if and only if Aτ c = 0, (4) is equivalent to

E{(bτi YtY
τ
t bi − 1)I(Yt−k ∈ C)} = 0, 1 ≤ i ≤ d− r, k ≥ 1 and C ∈ B.

See model (1). In this case, we may simply use Ψ(·) instead of Ψm(·) in Step
2 above. Note that for b satisfying constraint (8), (9) implies

Ψ(b) =
k0∑

k=1

∑
C∈B

w(C)
(
uτAτ

mDk(C)Amu
)2
. (11)

Condition (10) means that all the linear combinations of AXt are genuinely
(conditionally) heteroscadastic.

(vii) When the number of factors r is given, we may skip all the test
steps, and stop the algorithm after obtaining b̂1, · · · , b̂r from solving the r
optimization problems.

Remark 2. The estimation of A leads to a dynamic model for Σy(t) as
follow:

Σ̂y(t) = ÂΣ̂z(t)Âτ + ÂÂτ Σ̂yB̂B̂
τ + B̂B̂τ Σ̂y,

where Σ̂y = n−1
∑

1≤t≤n YtY
τ
t , and Σ̂z(t) is obtained by fitting the data

{ÂτYt, 1 ≤ t ≤ n} with, for example, the dynamic correlation model of
Engle (2002).

3 Consistency of the estimator

For r < d, let H be the set consisting of all d× (d− r) matrices H satisfying
the condition HτH = Id−r. For H1,H2 ∈ H, define

D(H1,H2) = ||(Id −H1H
τ
1 )H2|| = {d− r − tr(H1H

τ
1H2H

τ
2 )}1/2. (12)

Denote our estimator by B̂ = argminB∈HD
Φn(B).

Theorem 1. Let C denote the class of closed convex sets in Rd. Un-
der some mild assumptions (see Pan et al. (2009)), if the collection B is a
countable subclass of C, then D(B̂, B0)

P→ 0.

4 Numerical properties

We always set k0 = 30, α = 5%, and the weight function C(·) ≡ 1. Let B
consist of all the balls centered at the origin.
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4.1 Simulated examples

Consider model (1) with r = 3 factors, and d×3 matrixA with (1, 0, 0), (0, 0.5, 0.866)
(0,−0.866, 0.5) as its first 3 rows, and (0, 0, 0) as all the other (d − 3) rows.
We consider 3 different settings for Xt = (Xt1, Xt2, Xt3)τ , namely, two sets
of GARCH(1,1) factors Xti = σtieti and σ2

ti = αi +βiX
2
t−1,i +γiσ

2
t−1,i, where

(αi, βi, γi), for i = 1, 2, 3, are

(1, 0.45, 0.45), (0.9, 0.425, 0.425), (1.1, 0.4, 0.4), (13)

or
(1, 0.1, 0.8), (0.9, 0.15, 0.7), (1.1, 0.2, 0.6), (14)

and one mixing setting with two ARCH(2) factors and one stochastic volatil-
ity factor:

Xt1 = σt1et1, σ2
t1 = 1 + 0.6X2

t−1,1 + 0.3X2
t−2,1, (15)

Xt2 = σt2et2, σ2
t2 = 0.9 + 0.5X2

t−1,2 + 0.35X2
t−2,2,

Xt3 = exp(ht/2)et3, ht = 0.22 + 0.7ht−1 + ut.

We let {εti}, {eti} and {ut} be sequences of independent N(0, 1) random
variables. Note that the (unconditional) variance of Xti, for each i, remains
unchanged under the above three different settings. We set the sample size
n = 300, 600 or 1000. For each setting we repeat simulation 500 times.

Table 1. Relative frequency estimates of r with d = 5 and normal innovations

r̂
Factors n 0 1 2 3 4 5

GARCH(1,1) with 300 .000 .046 .266 .666 .014 .008
coefficients (13) 600 .000 .002 .022 .926 .032 .018

1000 .000 .000 .000 .950 .004 .001

GARCH(1,1) with 300 .272 .236 .270 .200 .022 .004
coefficients (14) 600 .004 .118 .312 .500 .018 .012

1000 .006 .022 .174 .778 .014 .006

Mixture (15) 300 .002 .030 .166 .772 .026 .004
600 .000 .001 .022 .928 .034 .014
1000 .000 .000 .000 .942 .046 .012

We conducted the simulation with d = 5, 10, 20. To measure the difference
betweenM(A) andM(Â), we define

D(A, Â) = {|(Id −AAτ )Â|1 + |AAτ B̂|1}/d2, (16)

where |A|1 is the sum of the absolute values of all the elements in matrix A.
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Fig. 1. Boxplots of D(A, Â) with two sets of GARCH(1,1) factors specified, re-
spectively, by (13) and (14), and mixing factors (15). Innovations are Gaussian and
d = 5.

Fig. 2. Boxplots of D(A, Â) with two sets of GARCH(1,1) factors specified in (13)
and (14), normal innovations and d = 10 or 20.

We report the results with d = 5 first. Table 1 lists for the relative fre-
quency estimates for r in the 500 replications. When sample size n increases,
the relative frequency for r̂ = 3 (i.e. the true value) also increases. Even for
n = 600, the estimation is already very accurate for GARCH(1,1) factors
(13) and mixing factors (14), less so for the persistent GARCH(1,1) factors
(14). For n = 300, the relative frequencies for r̂ = 2 were non-negligible,
indicating the tendency of underestimating of r, although this tendency dis-
appears when n increases to 600 or 1000. Figure 1 displays the boxplots of
D(A, Â). The estimation was pretty accurate with GARCH factors (13) and
mixing factors (15), especially with correctly estimated r. Note with n = 600
or 1000, those outliers (lying above the range connected by dashed lines)
typically correspond to the estimates r̂ 6= 3.

When d = 10 and 20, comparing with Table 1, the estimation of r is only
marginally worse than that with d = 5. Indeed the difference with d = 10 and
20 is not big either. Note the D-measures for different d are not comparable;
see (16). Nevertheless, Figure 2 shows that the estimation for A becomes more
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Table 2. Relative frequency estimates of r with GARCH(1,1) factors,
normal innovations and d=10 or 20

r̂
Coefficients d n 0 1 2 3 4 5 6 ≥ 7

(13) 10 300 .002 .048 .226 .674 .014 .001 .004 .022
10 600 .000 .000 .022 .876 .016 .012 .022 .052
10 1000 .000 .000 .004 .876 .024 .022 .022 .052
20 300 .000 .040 .196 .626 .012 .008 .010 .138
20 600 .000 .000 .012 .808 .012 .001 .018 .149
20 1000 .000 .000 .000 .776 .024 .012 .008 .180

(14) 10 300 .198 .212 .280 .248 .016 .008 .014 .015
10 600 .032 .110 .292 .464 .018 .026 .012 .046
10 1000 .006 .032 .128 .726 .032 .020 .016 .040
20 300 .166 .266 .222 .244 .012 .004 .001 .107
20 600 .022 .092 .220 .472 .001 .001 .012 .180
20 1000 .006 .016 .092 .666 .018 .016 .014 .172

Fig. 3. Time plots of the daily log-returns of S&P 500 index, Cisco System and
Intel Coprporation stock prices.

accurate when n increases, and the estimation with the persistent factors (14)
is less accurate than that with (13).

4.2 A real data example

Figure 3 displays the daily log-returns of the S&P 500 index, the stock prices
of Cisco System and Intel Corporation in 2 January 1997 – 31 December
1999. For this data set, n = 758 and d = 3. The estimated number of factors



Factor Models for Multivariate Volatility 313

Fig. 4. Time plots of the estimated factor and two homoscedastic compoments for
the S&P 500, Cisco and Intel data.

Fig. 5. The correlograms of squared and absulote factor for the the S&P 500, Cisco
and Intel data

is r̂ = 1 with Âτ = (0.310, 0.687, 0.658). The time plots of the estimated
factor Zt ≡ ÂτYt and the two homoscedastic components B̂τYt are displayed
in Figure 4. The P -value of the Gaussian-GARCH(1,1) based likelihood ratio
test for the null hypothesis of the constant conditional variance for Zt is
0.000. The correlograms of the squared and the absolute factor are depicted
in Figure 5 which indicates the existence of heteroscedasticity in Zt. The
fitted GARCH(1,1) model for Zt is σ̂2

t = 2.5874 + 0.1416Z2
t−1 + 0.6509σ̂2

t−1.
In contrast, Figure 6 shows that there is little autocorrelation in squared or
absolute components of B̂τYt. The estimated constant covariance matrix is

Σ̂0 =

1.594
0.070 4.142
−1.008 −0.561 4.885

 .

The overall fitted conditional variance process is given with Σ̂z(t) = σ̂2
t .
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Fig. 6. The correlograms of squared and absulote homoscedastic compoments for
the the S&P 500, Cisco and Intel data
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Multivariate Stochastic Volatility Model with
Cross Leverage
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Abstract. The Bayesian estimation method using Markov chain Monte Carlo is
proposed for a multivariate stochastic volatility model that is a natural extension
of the univariate stochastic volatility model with leverage, where we further incor-
porate cross leverage effects among stock returns.

Keywords: asymmetry, Bayesian analysis, leverage effect, Markov chain Monte
Carlo, multi-move sampler, multivariate stochastic volatility, stock returns

1 Introduction

The univariate stochastic volatility (SV) models have been well known and
successful to account for the time-varying variance in financial time series
(e.g. Broto and Ruiz (2004)). Extending these models to the multivariate
SV (MSV) model has become recently a major concern to investigate the
correlation structure of multivariate financial time series for the purpose of
the portfolio optimisation, the risk management, and the derivative pricing.
Multivariate factor modelling of stochastic volatilities has been widely intro-
duced to describe the complex dynamic structure of the high dimensional
stock returns data (Aguilar and West (2000), Jacquier, Polson and Rossi
(1999), Liesenfeld and Richard (2003), Pitt and Shephard (1999), Lopes and
Carvalho (2006), and several efficient MCMC algorithms have been proposed
(So and Choi (2009), Chib, Nardari and Shephard (2006)). On the other hand,
efficient estimation methods for MSV models with cross leverage (non-zero
correlation between the i-th asset return at time t and the j-th log volatility
at time t+ 1 for all i, j) or asymmetry have not been well investigated in the
literature except for simple bivariate models (see surveys by Asai, McAleer
and Yu (2006) and Chib, Omori and Asai (2009)). Chan, Kohn and Kirby
(2006) considered the Bayesian estimation of MSV models with correlations
between measurement errors and state errors, but their setup did not exactly
correspond to the leverage effects. Asai and McAleer (2006) simplified the
MSV model with leverage by assuming no cross leverage effects (no correla-
tion between the i-th asset return at time t and the j-th log volatility at time
t+ 1 for i 6= j) and describe the Monte Carlo likelihood estimation method.

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 29, c© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we consider a general MSV model with cross leverage,
and propose a novel efficient MCMC algorithm using a multi-move sampler
which samples a block of many latent volatility vectors simultaneously. In the
MCMC implementation for the SV models, it is critical to sample the latent
volatility (or state) variables from their full conditional posterior distributions
efficiently. The single-move sampler that draws a single volatility variable
at a time given the rest of the volatility variables and other parameters is
easy to implement, but obtained MCMC samples are known to have high
autocorrelations. This implies we need to iterate the MCMC algorithm a
huge number of times to obtain accurate estimates when we use a single-
move sampler. Thus we propose a fast and efficient state sampling algorithm
based on the approximate linear and Gaussian state space model.

The rest of the paper is organised as follows. Section 2 discusses a Bayesian
estimation of the MSV model using a multi-move sampler for the latent state
variables. Section 3 concludes the paper.

2 MSV model with cross leverage

2.1 Model

Let yt denote a stock return at time t. The univariate SV model with leverage
is given by

yt = exp(αt/2)εt, t = 1, . . . , n, (1)
αt+1 = φαt + ηt, t = 1, . . . , n− 1, (2)

α1 ∼ N (0, σ2
η/(1− φ2)), (3)

where (
εt

ηt

)
∼ N2(0,Σ), Σ =

(
σ2

ε ρσεση

ρσεση σ2
η

)
, (4)

αt is a latent variable for the log-volatility, and Nm(µ,Σ) denotes an m-
variate normal distribution with mean µ and covariance matrix Σ. To extend
it to the MSV model, we let yt = (y1t, . . . , ypt)’ denote a p dimensional
stock returns vector and αt = (α1t, . . . , αpt)′ denote their corresponding log
volatility vectors, respectively. We consider the MSV model given by

yt = V1/2
t εt, t = 1, . . . , n, (5)

αt+1 = Φαt + ηt, t = 1, . . . , n− 1, (6)
α1 ∼ Np (0,Σ0) , (7)

where

Vt = diag (exp(α1t), . . . , exp(αpt)) , (8)
Φ = diag(φ1, . . . , φp), (9)(

εt

ηt

)
∼ N2p(0,Σ), Σ =

(
Σεε Σεη

Σηε Σηη

)
. (10)
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The (i, j)-th element of Σ0 is the (i, j)-th element of Σηη divided by 1−φiφj

to satisfy a stationarity condition Σ0 = ΦΣ0Φ + Σηη such that

vec(Σ0) =
(
Ip2 −Φ⊗Φ

)−1 vec(Σηη).

The expected value of the volatility evolution processes αt is set equal to 0
for the identifiability. Let θ = (φ,Σ) where φ = (φ1, . . . , φp)′ and 1p denote
a p× 1 vector with all elements equal to one. Then the likelihood function of
the MSV model (5)–(7) is given by

f(α1|θ)
n−1∏
t=1

f(yt, αt+1|αt, θ)f(yn|αn, θ)

∝ exp

{
n∑

t=1

lt −
1
2
α′1Σ

−1
0 α1 −

1
2

n−1∑
t=1

(αt+1 −Φαt)′Σ−1
ηη (αt+1 −Φαt)

}
×|Σ0|−

1
2 |Σ|−

n−1
2 |Σεε|−

1
2 , (11)

where

lt = const− 1
2
1′pαt −

1
2
(yt − µt)

′Σ−1
t (yt − µt), (12)

µt = V1/2
t mt, Σt = V1/2

t StV
1/2
t , (13)

and

mt =
{

ΣεηΣ−1
ηη (αt+1 − Φαt), t < n,

0 t = n,
(14)

St =
{

Σεε −ΣεηΣ−1
ηη Σηε, t < n,

Σεε t = n.
(15)

2.2 MCMC implementation

Since there are many latent volatility vectors αt’s, it is difficult to integrate
them out to evaluate the likelihood function of θ analytically or using a high
dimensional numerical integration. In this paper, by taking a Bayesian ap-
proach, we employ a simulation method, the MCMC method, to generate
samples from the posterior distribution to conduct a statistical inference re-
garding the model parameters.

For prior distributions of θ, we assume

φj + 1
2

∼ B(aj , bj), j = 1, . . . , p, Σ ∼ IW(n0,R0),

where B(aj , bj) and IW(n0,R0) denote Beta and inverse Wishart distribu-
tions with probability density functions

π(φj) ∝ (1 + φj)
aj−1 (1− φj)

bj−1
, j = 1, 2, . . . , p, (16)

π(Σ) ∝ |Σ|−
n0+p+1

2 exp
{
−1

2
tr
(
R−1

0 Σ−1
)}

. (17)
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Using Equations (11), (16) and (17), we obtain the joint posterior density
function of (θ, α) given Yn = {yt}nt=1 is

π(θ, α|Yn) ∝ f(α1|θ)
n−1∏
t=1

f(yt, αt+1|αt, θ)f(yn|αn, θ)
p∏

j=1

π(φj)π(Σ), (18)

where α = (α′1, . . . , α
′
n)′. We implement the MCMC algorithm in three blocks:

1. Generate α|φ,Σ, Yn.
2. Generate Σ|φ, α, Yn.
3. Generate φ|Σ, α, Yn.

First we discuss two methods to sample α from its conditional posterior
distribution in Step 1. One is a so-called single-move sampler which samples
one αt at a time given other αj ’s, while the other method is a multi-move
sampler which samples a block of state vectors, say, (αt, . . . , αt+k) given the
rest of state vectors.

Generation of α We propose an efficient block sampler for α to sample a
block of αt’s from the posterior distribution extending Omori and Watanabe
(2008) who considered the univariate SV model with leverage (see also Taka-
hashi, Omori and Watanabe (2009)). First we divide α = (α′1, . . . , α

′
n)′ into

K+1 blocks (α′ki−1+1, . . . , α
′
ki

)′ using i = 1, . . . ,K+1 with k0 = 0, kK+1 = n

and ki − ki−1 ≥ 2. The K knots (k1, . . . , kK) are generated randomly using

ki = int[n× (i+ Ui)/(K + 2)], i = 1, . . . ,K,

where Ui’s are independent uniform random variable on (0, 1) (see e.g., Shep-
hard and Pitt (1997)). These stochastic knots have an advantage to allow the
points of conditioning to change over the MCMC iterations where K is a
tuning parameter to obtain less autocorrelated MCMC samples.

Suppose that ki−1 = s and ki = s + m for the i-th block and consider
sampling this block from its conditional posterior distribution given other
state vectors and parameters. Let ξt = R−1

t ηt, where the matrix Rt denotes
a Choleski decomposition of Σηη = RtR′

t for t = s, s + 1, . . . , s + m, and
Σ0 = R0R′

0 for t = s = 0. To construct a proposal distribution for MH algo-
rithm, we focus on the distribution of the disturbance ξ ≡ (ξ′s, . . . , ξ

′
s+m−1)

′

which is fundamental in the sense that it derives the distribution of α ≡
(α′s+1, . . . , α

′
s+m)′. Then, the logarithm of the full conditional joint density

distribution of ξ excluding constant terms is given by

log f(ξ|αs, αs+m+1,ys, . . . ,ys+m) = −1
2

s+m−1∑
t=s

ξ′sξs + L, (19)

where

L =
s+m∑
t=s

ls −
1
2
(αs+m+1 −Φαs+m)′Σ−1

ηη (αs+m+1 −Φαs+m)I(s+m < n). (20)
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Then using the second order Taylor expansion of (19) around the mode ξ̂, we
obtain approximating normal density f∗ to be used for the MH algorithm as
follows

log f(ξ|αs, αs+m+1,ys, . . . ,ys+m)

≈ const.− 1
2

s+m−1∑
t=s

ξ′tξt + L̂+
∂L

∂ξ′

∣∣∣∣∣
ξ=ˆξ

(ξ − ξ̂) +
1
2
(ξ − ξ̂)′E

(
∂2L

∂ξ∂ξ′

)
(ξ − ξ̂)

= const.− 1
2

s+m−1∑
t=s

ξ′tξt + L̂+ d̂
′
(α− α̂)− 1

2
(α− α̂)′Q̂(α− α̂), (21)

= const. + log f∗(ξ|αs, αs+m+1,ys, . . . ,ys+m) (22)

where Q̂ and d̂ are Q = −E(∂2L/∂α∂α′) and d = ∂L/∂α evaluated at α = α̂

(i.e., ξ = ξ̂). Note that Q is positive definite and invertible. However, when m
is large, it is time consuming to invert the mp×mp Hessian matrix to obtain
the covariance matrix of the mp-variate multivariate normal distribution. To
overcome this difficulty, we interpret the equation (22) as the posterior prob-
ability density derived from an auxiliary state space model so that we only
need to invert p× p matrices by using the Kalman filter and the disturbance
smoother. It can be shown that f∗ is a posterior probability density function
of ξ obtained from the state space model:

ŷt = Ztαt + Gtut, t = s+ 1, . . . , s+m, (23)
αt+1 = Φαt + Htut, t = s+ 1, . . . , s+m− 1, (24)

ut ∼ N2p (0, I2p) ,

where ŷt, Zt, Gt are functions of α̂ (see Appendix), and Ht = [O,Rt]. To
find a mode ξ̂, we repeat following steps until it converges,

a. Compute α̂ at ξ = ξ̂ using (6).
b. Obtain the approximating linear Gaussian state-space model given by

(23) and (24).
c. Applying the disturbance smoother by Koopman (1993) to the approxi-

mating linear Gaussian state-space model in Step 2, compute the poste-
rior mode ξ̂.

since these steps are equivalent to the method of scoring to find a maximiser
of the conditional posterior density. As an initial value of ξ̂, the current
sample of ξ may be used in the MCMC implementation. If the approximate
linear Gaussian state-space model is obtained using a mode ξ̂, then we draw
a sample ξ from the conditional posterior distribution by MH algorithm as
follows.

1. Propose a candidate ξ† by sampling from q(ξ†) ∝ min(f(ξ†), cf∗(ξ†))
using the Acceptance-Rejection algorithm where c can be constructed
from a constant term and L̂ of (21):
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(a) Generate ξ† ∼ f∗ using a simulation smoother (e.g. de Jong and
Shephard (1995), Durbin and Koopman (2002)) based on the ap-
proximating linear Gaussian state-space model (23) - (24).

(b) Accept ξ† with probability min{f(ξ†)/cf∗(ξ†), 1}. If it is rejected, go
back to (a).

2. Given the current value ξ, accept ξ† with probability

min

{
1,
f(ξ†) min(f(ξ), cf∗(ξ))

f(ξ)min(f(ξ†), cf∗(ξ†))

}
if rejected, accept the current ξ as a sample.

Generation of Σ and φ The sampling method for Σ and φ is rather
straightforward as we discuss below.

Generation of Σ. The conditional posterior probability density function of Σ
is

π(Σ|φ, α, Yn) ∝ |Σ|−
n1+2p+1

2 exp
{
−1

2
tr
(
R−1

1 Σ−1
)}
× g(Σ),

g(Σ) = |Σ0|−
1
2 |Σεε|−

1
2 exp

{
−1

2

(
α′1Σ

−1
0 α1 + y′nV−1/2

n Σ−1
εε V−1/2

n yn

)}
,

where n1 = n0 + n− 1, R−1
1 = R−1

0 +
∑n−1

t=1 vtv′t and

vt =
(

V−1/2
t yt

αt+1 −Φαt

)
.

Then, using MH algorithm, we propose a candidate Σ† ∼ IW(n1,R1) and
accept it with probability min{g(Σ†)/g(Σ), 1}.

Generation of φ. Let Σij be a p× p matrix and denote the (i, j)-th block of
Σ−1. Further, let A =

∑n−1
t=1 αtα

′
t, B =

∑n−1
t=1 {αty′tV

−1/2
t Σ12 +αtα

′
t+1Σ

22}
and b denote a vector whose i-th element is equal to the (i, i)-th element of
B. Then the conditional posterior probability density function of φ is

π(φ|Σ, α, Yn) ∝ h(φ)× exp
{
−1

2
tr(ΦΣ22ΦA)− 2tr(ΦB)

}
∝ h(φ)× exp

{
−1

2
(φ− µφ)′Σφ(φ− µφ)

}
,

h(φ) = |Σ0|−
1
2

p∏
j=1

(1 + φj)aj−1(1− φj)bj−1 exp
{
−1

2
α′1Σ

−1
0 α1

}
,

where µφ = Σφb, Σ−1

φ
= Σ22 �A and � denotes a Hadamard product. To

sample φ from its conditional posterior distribution using MH algorithm, we
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generate a candidate from a truncated normal distribution over the region
R, φ† ∼ T NR(µφ,Σφ), R = {φ : |φj | < 1, j = 1, . . . , p} and accept it with

probability min{h(φ†)/h(φ), 1}.

3 Conclusion

This paper proposes efficient MCMC algorithms using a multi-move sampler
for the latent volatility vectors for MSV models with cross leverage. To sam-
ple a block of such state vectors, we construct a proposal density for MH
algorithm based on the normal approximation using Taylor expansion of the
logarithm of the target likelihood and exploit the sampling algorithms which
are developed for the linear and Gaussian state space model.
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Appendix

A Derivation of the approximating state space model

First, noting that E[∂2L/∂αt∂α
′
t+k] = O (k ≥ 2), define At and Bt as

At = −E
[

∂2L

∂αt∂α′t

]
, t = s+ 1, . . . , s+m, (25)

Bt = −E
[

∂2L

∂αt∂α′t−1

]
, t = s+ 2, . . . , s+m, Bs+1 = O, (26)

and let dt = ∂L/∂αt for t = s + 1, . . . , s + m. Using dt,At and Bt (see
Ishihara and Omori (2009) for details), we obtain the approximating state
space model as follows. First evaluate dt,At and Bt at the current mode,
α = α̂. Using d̂t, Ât and B̂t,

a. Set bs = 0 and B̂s+m+1 = O. Compute

Dt = Ât − B̂tD−1
t−1B̂

′
t, bt = d̂t − B̂tD−1

t−1bt−1, γ̂t = α̂t + D−1
t B̂′

t+1α̂t+1,

for t = s+ 1, . . . , s+m, recursively where Kt denotes a Choleski decom-
position of Dt such that Dt = KtK′

t.
b. Define auxiliary vectors and matrices

ŷt = γ̂t + D−1
t bt, Zt = Ip + D−1

t B̂′
t+1Φ, Gt = [K′−1

t ,D−1
t B̂′

t+1Rt],

for t = s+ 1, . . . , s+m.

Then, we obtain the approximating linear Gaussian state-space model given
by (23) and (24).
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Abstract. Sparse coding employs low-dimensional subspaces in order to encode
high-dimensional signals. Finding the optimal subspaces is a difficult optimization
task. We show that stochastic gradient descent is superior in finding the optimal
subspaces compared to MOD and K-SVD, which are both state-of-the art methods.
The improvement is most significant in the difficult setting of highly overlapping
subspaces. We introduce the so-called ”Bag of Pursuits” that is derived from Or-
thogonal Matching Pursuit. It provides an improved approximation of the optimal
sparse coefficients, which, in turn, significantly improves the performance of the
gradient descent approach as well as MOD and K-SVD. In addition, the ”Bag of
Pursuits” allows to employ a generalized version of the Neural Gas algorithm for
sparse coding, which finally leads to an even more powerful method.

Keywords: sparse coding, neural gas, dictionary learning, matching pursuit

1 Introduction

Many tasks in signal processing and machine learning can be simplified by
choosing an appropriate representation of given data. There are a number
of desirable properties one wants to achieve, e.g., coding-efficiency, resistance
against noise, or invariance against certain transformations. In machine learn-
ing, finding a good representation of given data is an important first step in
order to solve classification or regression tasks.

Suppose that we are given data X = (x1, . . . ,xL), xi ∈ RN . We want to
represent X as a linear combination of some dictionary C, i.e., xi = Cai,
where C = (c1, . . . , cM ), cl ∈ RN . In case of M > N , the dictionary is
overcomplete.

In this work, we consider the following framework for dictionary design:
We are looking for a dictionary C that minimizes the representation error

Eh =
1
L

L∑
i=1

‖xi − Cai‖22 (1)

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 30, c© Springer-Verlag Berlin Heidelberg 2010
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where xopt
i = Cai with ai = arg mina ‖xi − Ca‖ ,‖a‖0 ≤ k denotes the best

k-term representation of xi in terms of C. The number of dictionary elements
M and the maximum number of non-zero entries k are user-defined model
parameters.

It has been shown that finding ai is in general NP-hard (Davis et al.
(1997)). Methods such as Orthogonal Matching Pursuit (OMP) (Pati et al.
1993) or Optimized Orthogonal Matching Pursuit (OOMP, Rebollo-Neira and
Lowe (2002)) can be used in order to find an approximation of the coefficients
of the best k-term representation. The Method of Optimal Directions (MOD,
Engan et al. (1999)) and the K-SVD algorithm (Aharon et al. (2006)) can
employ an arbitrary approximation method for the coefficients in order to
learn a dictionary from the data. First, the coefficients are determined, then
they are considered fixed in order to update the dictionary.

Using data that actually was generated as a sparse linear combination of
some given dictionary, it has been shown (Aharon et al. (2006)) that methods
such as MOD or K-SVD can be used in order to reconstruct the dictionary
only from the data even in highly overcomplete settings under the presence
of strong noise. However, our experiments show that even K-SVD which per-
formed best in (Aharon et al. (2006)) requires highly sparse linear combina-
tions for good dictionary reconstruction performance. The SCNG algorithm
does not possess this deficiency (Labusch et al. (2009)), but, unlike MOD or
K-SVD, it is bound to a specific approximation method for the coefficients,
i.e., OOMP.

Here, we propose a new method for designing overcomplete dictionaries
that performs well even if the linear combinations are less sparse. Like MOD
or K-SVD, it can employ an arbitrary approximation method for the coef-
ficients. In order to demonstrate the performance of the method, we test it
on synthetically generated overcomplete linear combinations of known dic-
tionaries and compare the obtained performance against MOD and K-SVD.

2 From vector quantization to sparse coding

Vector quantization learns a representation of given data in terms of so-called
codebook vectors. Each given sample is encoded by the closest codebook
vector. Vector quantization can be understood as a special case of sparse
coding where the coefficients are constrained by ‖ai‖0 = 1 and ‖ai‖2 = 1,
i.e., vector quantization looks for a codebook C that minimizes (1) choosing
the coefficients according to

(ai)m = 1, (ai)l = 0 ∀l 6= m where m = arg min
l
‖cl − xi‖22 . (2)

In order to learn a good codebook, many vector quantization algorithms
consider only the winner for learning, i.e., the codebook vector cm for which
(ai)m = 1 holds. As a consequence of that type of hard-competitive learning
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scheme, problems such as bad quantization, initialization sensitivity, or slow
convergence can arise.

In order to remedy these problems soft-competitive vector quantization
methods such as the NG algorithm (Martinetz et al. (1993)) have been pro-
posed. In the NG algorithm all possible encodings are considered in each
learning step, i.e., a1

i , . . . ,a
M
i with (aj

i )j = 1. Then, the encodings are sorted
according to their reconstruction error

‖xi − Caj0
i ‖ ≤ ‖xi − Caj1

i ‖ ≤ · · · ≤ ‖xi − Cajp

i ‖ ≤ · · · ≤ ‖xi − CajM

i ‖ . (3)

In contrast to the hard-competitive approaches, in each learning iteration, ev-
ery codebook vector cl is updated. The update is weighted according to the
rank of the encoding that uses the codebook vector cl. It has been shown in
(Martinetz et al. (1993)) that this type of update is equivalent to a gradient
descent on a well-defined cost function. Due to the soft-competitive learn-
ing scheme the NG algorithm shows robust convergence to close to optimal
distributions of the codebook vectors over the data manifold.

Here we want to apply this ranking approach to the learning of sparse
codes. Similar to the NG algorithm, for each given sample xi, we consider
all K possible coefficient vectors aj

i , i.e., encodings that have at most k non-
zero entries. The elements of each aj

i are chosen such that ‖xi − Caj
i‖ is

minimal. We order the coefficients according to the representation error that
is obtained by using them to approximate the sample xi

‖xi − Caj0
i ‖ < ‖xi − Caj1

i ‖ < · · · < ‖xi − Cajp

i ‖ < · · · < ‖xi − CajK

i ‖ . (4)

If there are coefficient vectors that lead to the same reconstruction error

‖xi − Cam1
i ‖ = ‖xi − Cam2

i ‖ = · · · = ‖xi − CamV
i ‖ , (5)

we randomly pick one of them and do not consider the others. Note that we
need this due to theoretical considerations while in practice this situation
almost never occurs. Let rank(xi,a

j
i , C) = p denote the number of coefficient

vectors am
i with ‖xi − Cam

i ‖ < ‖xi − Caj
i‖. Introducing the neighborhood

hλt
(v) = e−v/λt , we consider the following modified error function

Es =
L∑

i=1

K∑
j=1

hλt(rank(xi,a
j
i , C))‖xi − Caj

i‖
2
2 (6)

which becomes equal to (1) for λt → 0. In order to minimize (6), we consider
the gradient of Es with respect to C, which is

∂Es

∂C
= −2

L∑
i=1

K∑
j=1

hλt(rank(xi,a
j
i , C))(xi − Caj

i )a
j
i

T
+R (7)

with
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R =
L∑

i=1

K∑
j=1

h
′

λt
(rank(xi,a

j
i , C))

∂rank(xi,a
j
i , C)

∂C
‖xi − Caj

i‖
2
2. (8)

In order to show that R = 0, we adopt the proof given in (Martinetz et al.
(1993)) to our setting. With ej

i = xi − Caj
i , we write rank(xi,a

j
i , C) as

rank(xi,a
j
i , C) =

K∑
m=1

θ((ej
i )

2 − (em
i )2) (9)

where θ(x) is the heaviside step function. The derivative of the heaviside
step function is the delta distribution δ(x) with δ(x) = 0 for x 6= 0 and∫
δ(x)dx = 1. Therefore, we can write

R =
∑L

i=1

∑K
j=1 h

′

λt
(rank(xi,a

j
i , C))(ej

i )
2
∑T

m=1((a
j
i )

T − (am
i )T )δ((ej

i )
2 − (em

i )2) (10)

Each term of (10) is non-vanishing only for those aj
i for which (ej

i )
2 = (em

i )2

is valid. Since we explicitly excluded this case, we obtain R = 0. Hence,
we can perform a stochastic gradient descent on (6) with respect to C by
applying t = 0, . . . , tmax updates of C using the gradient based learning rule

∆C = αt

K∑
j=1

hλt(rank(xi,a
j
i , C))(xi − Caj

i )a
i
j

T
(11)

for a randomly chosen xi ∈ X where λt = λ0 (λfinal/λ0)
t

tmax is an expo-
nentially decreasing neighborhood-size and αt = α0 (αfinal/α0)

t
tmax an expo-

nentially decreasing learning rate. After each update has been applied, the
column vectors of C are renormalized to one. Then the aj

i are re-determined
and the next update for C can be performed.

3 A bag of orthogonal matching pursuits

So far, for each training sample xi, all possible coefficient vectors aj
i , j =

1, . . . ,K with ‖aj
i‖0 ≤ k have been considered. K grows exponentially with

M and k. Therefore, this approach is not applicable in practice. However,
since in (6) all those contributions in the sum for which the rank is larger
than the neighborhood-size λt can be neglected, we actually do not need all
possible coefficient vectors. We only need the first best ones with respect to
the reconstruction error.

There are a number of approaches, which try to find the best coefficient
vector, e.g., OMP or OOMP. It has been shown that in well-behaved cases
they can find at least good approximations (Tropp (2004)). In the follow-
ing, we extend OOMP such that not only the best but the first Kuser best
coefficients are determined, at least approximately.

OOMP is a greedy method that iteratively constructs a given sample x
out of the columns of the dictionary C. The algorithm starts with U j

n = ∅,
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Rj
0 = (r0,j

1 , . . . , r0,j
M ) = C and εj0 = x. The set U j

n contains the indices of those
columns of C that have been used during the j-th pursuit with respect to x up
to the n-th iteration. Rj

n is a temporary matrix that has been orthogonalized
with respect to the columns of C that are indexed by U j

n. rn,j
l is the l-th

column of Rj
n. εjn is the residual in the n-th iteration of the j-th pursuit with

respect to x.
In iteration n, the algorithm looks for that column of Rj

n whose inclusion
in the linear combination leads to the smallest residual εjn+1 in the next
iteration of the algorithm, i.e., that has the maximum overlap with respect
to the current residual. Hence, with

yj
n =

(
(rn,j

1

T
εjn)/‖rn,j

1 ‖, . . . , (r
n,j
l

T
εjn)/‖rn,j

l ‖, . . . , (r
n,j
M

T
εjn)/‖rn,j

M ‖
)

(12)

it looks for lwin(n, j) = arg maxl,l/∈Uj
n
(yj

n)l. Then, the orthogonal projection
of Rj

n to rn,j
lwin(n,j) is removed from Rj

n

Rj
n+1 = Rj

n − (rn,j
lwin(n,j)(R

j
n

T
rn,j

lwin(n,j))
T )/(rn,j

lwin(n,j)

T
rn,j

lwin(n,j)) . (13)

Furthermore, the orthogonal projection of εjn to rn,j
lwin(n,j) is removed from εjn

εjn+1 = εjn −
(
(εjn

T
rn,j

lwin(n,j))/(r
n,j
lwin(n,j)

T
rn,j

lwin(n,j))
)
rn,j

lwin(n,j) . (14)

The algorithm stops if ‖εjn‖ = 0 or n = k. The j-th approximation of the
coefficients of the best k-term approximation, i.e., aj , can be obtained by
recursively tracking the contribution of each column of C that has been used
during the iterations of pursuit j. In order to obtain a set of approxima-
tions a1, ...,aKuser , where Kuser is chosen by the user, we want to conduct
Kuser matching pursuits. To obtain Kuser different pursuits, we implement
the following function:

Q(l, n, j) =


0 :

If there is no pursuit among all pursuits that have
been performed with respect to x that is equal to
the j -th pursuit up to the n-th iteration where in
that iteration column l has been selected

1 : else .

(15)

Then, while a pursuit is performed, we track all overlaps yj
n that have been

computed during that pursuit. For instance if a1 has been determined, we
have y1

0, . . . ,y
1
n, . . . ,y

1
s1−1 where s1 is the number of iterations of the 1st

pursuit with respect to x. In order to find a2, we now look for the largest
overlap in the previous pursuit that has not been used so far

ntarget = arg max
n=0,...,s1−1

max
l,Q(l,n,j)=0

(y1
n)l (16)

ltarget = arg max
l

(y1
ntarget

)l . (17)
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We replay the 1st pursuit up to iteration ntarget. In that iteration, we select
column ltarget instead of the previous winner and continue with the pursuit
until the stopping criterion has been reached. If m pursuits have been per-
formed, among all previous pursuits, we look for the largest overlap that has
not been used so far:

jtarget = arg max
j=1,...,m

max
n=0,...,sj−1

max
l,Q(l,n,j)=0

(yj
n)l (18)

ntarget = arg max
n=0,...,sjtarget−1

max
l,Q(l,n,jtarget)=0

(yjtarget
n )l (19)

ltarget = arg max
l,Q(l,ntarget,jtarget)=0

(yjtarget
ntarget

)l . (20)

We replay pursuit jtarget up to iteration ntarget. In that iteration, we select
column ltarget instead of the previous winner and continue with the pursuit
until the stopping criterion has been reached. We repeat this procedure until
Kuser pursuits have been performed.

4 Experiments

In the experiments we use synthetic data that actually can be represented as
sparse linear combinations of some dictionary. We perform the experiments
in order to asses two questions: (i) How good is the target function (1) min-
imized? (ii) Is it possible to obtain the generating dictionary only from the
given data?

In the following Ctrue = (ctrue
1 , . . . , ctrue

50 ) ∈ R20×50 denotes a synthetic
dictionary. Each entry of Ctrue is uniformly chosen in the interval [−0.5, 0.5].
Furthermore, we set ‖ctrue

l ‖ = 1. Using such a dictionary, we create a training
set X = (x1, . . . ,x1500), xi ∈ R20 where each training sample xi is a sparse
linear combination of the columns of the dictionary:

xi = Ctruebi . (21)

We choose the coefficient vectors bi ∈ R50 such that they contain k non-zero
entries. The selection of the position of the non-zero entries in the coefficient
vectors is performed according to three different data generation scenarios:

Random dictionary elements: In this scenario all combinations of k dic-
tionary elements are possible. Hence, the position of the non-zero entries
in each coefficient vector bi is uniformly chosen in the interval [1, . . . , 50].

Independent Subspaces: In this case the training samples are located in
a small number of k-dimensional subspaces. We achieve this by defining
b50/kc groups of dictionary elements, each group containing k randomly
selected dictionary elements. The groups do not intersect, i.e., each dic-
tionary element is at most member of one group. In order to generate a
training sample, we uniformly choose one group of dictionary elements
and obtain the training sample as a linear combination of the dictionary
elements that belong to the selected group.



Bag of Pursuits and Neural Gas for Improved Sparse Coding 333

Dependent subspaces: In this case, similar to the previous scenario, the
training samples are located in a small number of k-dimensional sub-
spaces. In contrast to the previous scenario, the subspaces do highly in-
tersect, i.e., the subspaces share basis vectors. In order to achieve this, we
uniformly select k−1 dictionary elements. Then, we use 50−k+1 groups
of dictionary elements where each group consists of the k−1 selected dic-
tionary elements plus one further dictionary element. Again, in order to
generate a training sample, we uniformly choose one group of dictionary
elements and obtain the training sample as a linear combination of the
dictionary elements that belong to the selected group.

The value of the non-zero entries is always chosen uniformly in the interval
[−0.5, 0.5].

We apply MOD, K-SVD and the stochastic gradient descent method that
is proposed in this paper to the training data. Let C learned = (clearned

1 , . . . ,
clearned
50 ) denote the dictionary that has been learned by one of these methods

on the basis of the training samples. In order to measure the performance
of the methods with respect to the minimization of the target function, we
consider

Eh =
1

1500

1500∑
i=1

‖xi − C learnedai‖22 (22)

where ai is obtained from the best pursuit out of Kuser = 20 pursuits that
have been performed according to the approach described in section 3. In
order to asses if the true dictionary can be reconstructed from the training
data, we consider the mean maximum overlap between each element of the
true dictionary and the learned dictionary:

MMO =
1
50

50∑
l=1

max
k=1,...,50

|ctrue
l clearned

k | . (23)

k, the number of non-zero entries is varied from 1 to 11. For the stochastic
gradient descent method, we perform 100×1500 update steps, i.e., 100 learn-
ing epochs. For MOD and K-SVD, we perform 100 learning iterations each
iteration using 1500 training samples. We repeat all experiments 50 times
and report the mean result over all experiments.

In the first set of experiments, for all dictionary learning methods, i.e.,
MOD, K-SVD, and stochastic gradient descent, a single orthogonal matching
pursuit is used in order to obtain the dictionary coefficients during learning.
Furthermore, the stochastic gradient descent is performed in hard-competitive
mode, which uses a neighborhood-size that is practically zero, i.e., λ0 = λfinal

= 10−10. The results of this experiment are depicted in table 1 (a)-(c) and (j)-
(l). In case of the random dictionary elements scenario (see (a) and (j)) the
stochastic gradient approach clearly outperforms MOD and K-SVD. From
the mean maximum overlap it can be seen that almost all dictionary ele-
ments are well reconstructed with up to 6 non-zero coefficients in the linear
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Table 1. Experimental results. See text for details. SC-SGD: soft-competitive
stochastic gradient descent (λ0 = 20, λfinal = 0.65). HC-SGD: hard-competitive
stochastic gradient descent (λ0 = λfinal = 10−10).
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combinations. If the dictionary elements cannot be reconstructed any more,
i.e., for k > 6, the mean representation error Eh starts to grow. In case of the
independent subspaces and dependent subspaces scenario the stochastic gra-
dient method also outperforms MOD and K-SVD in terms of minimization
of the representation error (see (b) and (c)) whereas in terms of dictionary
reconstruction performance only in the intersecting subspaces scenario a clear
performance gain compared to MOD and K-SVD can be seen ((k) and (l)).
This might be caused by the fact that in case of the independent subspaces
scenario it is sufficient to find dictionary elements that span the subspaces
where the data is located in order to minimize the target function, i.e., the
scenario does not force the method to find the true dictionary elements in
order to minimize the target function.

In the second experiment for all methods the dictionary coefficients were
obtained from the best pursuit out of Kuser = 20 pursuits that were per-
formed according to the “Bag of Pursuits” approach described in section 3.
The results of this experiment are depicted in table 1 (d)-(f) and (m)-(o).
Compared to the results of the first experiment (see (a)-(c)) it can be seen
that the computationally more demanding method for the approximation of
the best coefficients leads to a significantly improved performance of MOD,
K-SVD and the stochastic gradient descent with respect to the minimization
of the representation error Eh (see (d)-(f)). The most obvious improvement
can be seen in case of the dependent subspaces scenario where also the dictio-
nary reconstruction performance significantly improves (see (l) and (o)). In
the random dictionary elements (see (j) and (m)) and independent subspaces
scenario (see (k) and (n)) there are only small improvements with respect to
the reconstruction of the true dictionary.

In the third experiment, we employed soft-competitive learning in the
stochastic gradient descend, i.e., the coefficients corresponding to each of
the Kuser = 20 pursuits were used in the update step according to (11) with
λ0 = 20 and λfinal = 0.65. The results of this experiment are depicted in table
1 (g)-(i) and (p)-(r). It can be seen that for less sparse scenarios, i.e. k > 6,
the soft-competitive learning further improves the performance. Particularly
in case of the dependent subspaces scenario a significant improvement in
terms dictionary reconstruction performance can be seen for k > 4 (see (r)).
For very sparse settings, i.e. k ≤ 4, the hard-competitive approach seems to
perform better than the soft-competitive variant. Again, in case of the inde-
pendent subspaces only the representation error decreases (see (h)) whereas
no performance gain for the dictionary reconstruction can be seen (see (q)).
Again this might be caused by the fact that in case of the subspace scenario
learning of dictionary elements that span the subspaces is sufficient in order
to minimize the target function.
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5 Conclusion

We proposed a stochastic gradient descent method that can be used either for
hard-competitive or soft-competitive learning of sparse codes. We introduced
the so-called “bag of pursuits” in order to compute a better estimation of the
best k-term approximation of given data. This method can be used together
with a generalization of the neural gas approach to perform soft-competitive
stochastic gradient learning of (overcomplete) dictionaries for sparse coding.

Our experiments on synthetic data show that compared to other state-of-
the-art methods such as MOD or K-SVD a significant performance improve-
ment in terms of minimization of the representation error as well as in terms
of reconstruction of the true dictionary elements that were used to generate
the data can be observed. While a significant performance gain is already ob-
tained by hard-competitive stochastic gradient descend an even better per-
formance is obtained by using the “bag of pursuits” and soft-competitive
learning. In particular, as a function of decreasing sparseness, the perfor-
mance of the method described in this paper degrades much slower than
that of MOD and K-SVD. This should improve the design of overcomplete
dictionaries also in more complex settings.
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Abstract. Similarity-based embedding is a paradigm that recently gained interest
in the field of nonlinear dimensionality reduction. It provides an elegant framework
that naturally emphasizes the preservation of the local structure of the data set.
An emblematic method in this trend is t-distributed stochastic neighbor embedding
(t-SNE), which is acknowledged to be an efficient method in the recent literature.
This paper aims at analyzing the reasons of this success, together with the impact of
the two metaparameters embedded in the method. Moreover, the paper shows that
t-SNE can be interpreted as a distance-preserving method with a specific distance
transformation, making the link with existing methods. Experiments on artificial
data support the theoretical discussion.

Keywords: similarity-based embedding, dimensionality reduction, nonlinear
projection, manifold learning, t-SNE

1 Introduction

Dimensionality reduction is the task of finding faithful, low-dimensional rep-
resentations of high-dimensional data. Although the case of clustered data can
be considered too, dimensionality reduction usually relies on the assumption
that the data are sampled from a smooth manifold. Methods such as prin-
cipal component analysis (PCA) or classical metric multidimensional scaling
(MDS) (Young and Householder (1938)) can be successfully applied when
the manifold is a linear subspace. However, when the manifold is curved or
folded (Tenenbaum et al. (2000)), one should use adapted nonlinear dimen-
sionality reduction (Lee and Verleysen (2007)) (NLDR). Nonmetric MDS
(Shepard (1962), Kruskal (1964)) and Sammon’s nonlinear mapping (SNLM)
(Sammon (1969)) are early methods generalizing MDS, based on the prin-
ciple of distance preservation. Spectral embedding (Saul et al. (2006)) has
emerged since the seminal paper describing kernel PCA (Scholkopf et al.
(1998)). Isomap (Tenenbaum et al. (2000)), locally linear embedding (Roweis
and Saul (2000)), Laplacian eigenmaps (Belkin and Niyogi (2002)), and max-
imum variance unfolding (MVU) (Weinberger and Saul (2006)) are among
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the most representative methods in this category. Spectral methods provide
the guarantee of finding the global optimum of their cost function. In con-
trast, methods based on other optimization techniques generally do not offer
this advantage. However, they usually compensate for this drawback by the
capability of handling a broader range of cost functions. Successful nonspec-
tral methods are among others curvilinear component analysis (CCA) (De-
martines and Herault (1997)), stochastic neighbor embedding (SNE) (Hin-
ton and Roweis (2003)), and its variant t-SNE (Van der Maaten and Hinton
(2008)). CCA has long been considered to be a distance-preserving method
that can be related to SNLM. In contrast, SNE and t-SNE seek to match sim-
ilarities, which are basically decreasing functions of the pairwise distances.
This reformulation provides a more natural way to formalise the importance
of preserving the local structure of data. t-SNE is nowadays considered as an
efficient method for visualizing high-dimensional data (see for example Erhan
et al. (2009), Parviainen and Vehtari (2009)).

This paper aims at analysing the behavior of t-SNE and the key influence
of its two metaparameters, namely the so-called perplexity and the number
of degrees of freedom. It addition, it shows that t-SNE can be cast within the
framework of distance preservation, by means of a distance tranformation;
we identify this transformation, and compare it to other methods.

The remainder of this paper is organized as follows. Section 2 briefly
reviews SNE and t-SNE. Section 3 weaves the connection between distance
preservation and similarity matching. Sections 4 and 5 provide and discuss
the experimental results. Finally, Section 6 draws the conclusions.

2 Stochastic Neighbor Embedding

Let Ξ = [ξi]1≤i≤N denote a data set of N vectors picked in an M dimensional
space. Symbol δij denotes the pairwise distance between data vectors ξi and
ξj . The similarity between ξi and ξj is defined in SNE as:

pj|i(λi)
.=

{
0 if i = j

g(δij/λi)
/∑

k 6=i g(δik/λi) otherwise ,

where g(u) = exp(−u2/2). In Hinton and Roweis (2003), pj|i is referred to as
a conditional probability and represents the empirical probability of ξj to be a
neighbor of ξi. The softmax denominator indeed guarantees that

∑N
j=1 pi|j =

1. Probabilities pj|i(λi) and pi|j(λj) are not equal since they involve kernels
with individual widths. A user-defined metaparameter, the perplexity PPXT,
induces all widths λi through the equation 2H(pj|i) = PPXT, where H(pj|i)

.=∑N
j=1 pj|i log2 pj|i is the entropy of pj|i. Intuitively, the perplexity allows the

Gaussian kernels to adapt their width to the local density of data points.
Within this framework, a symmetric similarity function between ξi and

ξj can be defined by pij(λ) .= 1
2N

(
pj|i(λi) + pi|j(λj)

)
, where λ = [λi]1≤i≤N
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and pij is referred to as a joint probability. As for the conditional probability,
we have pii(λ) = 0 and

∑N
i,j=1 pij(λ) = 1.

In the low-dimensional space, let X = [xi]1≤i≤N denote the embedding to
be found by SNE. If dij is the Euclidean distance ‖xi − xj‖2, then pairwise
similarities in the low-dimensional space can be written as

qij(n) .=

{
0 if i = j

t(dij , n)
/∑

k 6=l t(dkl, n) otherwise , (1)

where t(u, n) = (1 + u2/n)−(n+1)/2. Function t(u, n) is proportional to the
probability density of a Student’s t-distributed variable with n degrees of
freedom; n controls the tail thickness of the similarity kernel. It is notewor-
thy that limn→∞ t(u, n) = g(u). Hence, SNE (Hinton and Roweis (2003)
corresponds to the case n → ∞ whereas t-SNE (Van der Maaten and Hin-
ton (2008), Van der Maaten (2009)) turns out to be the case n = 1 . Like
pij(λ), qij(n) is referred to as a joint probability, although it is differently
defined. Two important differences are the kernel shape and the absence of
scaling parameter. Another difference is that qij(n) can be interpreted as a
(non-conditional) probability, thanks to the single softmax denominator.

The t-SNE method compares pij(λ) and qij(n) by means of a (discrete)
Kullback-Leibler divergence:

E(Ξ,X,λ, n) = DKL(p‖q) .=
N∑

i,j=1

pij(λ) log
pij(λ)
qij(n)

.

The minimization of E can be achieved by gradient descent. In t-SNE, the
gradient of E(Ξ,X,λ, n) with respect to xi can be written as (Van der
Maaten and Hinton (2008), Van der Maaten (2009))

∂E

∂xi
=

2n+ 2
n

N∑
j=1

pij(λ)− qij(n)
1 + d2

ij/n
(xi − xj) . (2)

It is easy to verify that

lim
n→∞

∂E

∂xi
= 2

N∑
j=1

(pij(λ)− qij(n))(xi − xj) ,

which corresponds to the gradient of SNE. In the context of a gradient de-
scent, three factors can be identified in each term of (2). Factor (xi − xj) is
a vector that allows xi to move towards xj . Factor (pij(λ) − qij(n)) varies
between −1 and +1; it is proportional to the similarity error and adjusts the
length and direction (inwards/outwards) of the movement. Finally, factor
(1 + d2

ij/n)−1 varies between 0 and 1 and damps the movement, especially if
xi lies far away from xj . A similar factor can be found in the gradient of CCA



340 Lee, J.A. and Verleysen, M.

(Demartines and Herault (1997)). It provides the capability of ‘tearing’ the
manifold to be embedded. Additional details about t-SNE and the gradient
descent of E can be found in van der Maaten and Hinton (2008).

The discrepancy between the kernels in the high- and low-dimensional
spaces is intended to address the curse of dimensionality. Let us take the
exemple of a curved P -dimensional manifold embedded in an M -dimensional
space (with M > P ). It is easy to see that the Euclidean distance between
any two manifold points shrinks as the curvature increases, especially if they
lie far away from each other. Hence, a strict isometry will not succeed in
embedding the manifold in a low-dimensional space: a poor unfording with
several regions superimposed would result (Hinton and Roweis (2003)). Based
on this observation, the similarity kernels in t-SNE have heavier tails in the
embedding space, to force large distances to grow in order to attain the same
similarity value as in the data space.

3 Connection between similarity and distance
preservation

Let us assume that t-SNE finds an embedding that cancels the gradient of
its objective function. A sufficient condition to obtain such a solution is that
one of the terms in (2) vanishes. A trivial (useless) solution is when dij = 0
for all i and j. Another trivial solution is dij → ∞ for all i and j, because
the damping factor tends to zero. The useful solution consists in satisfying
pij(λ) = qij(n). In this last case, let us approximate the above definition of
pij(λ) with pij ≈ pj|i/N . Using this approximation in conjuntion with the
definition of qij(n) in (1) allows us to write

dij ≈ f(δij)
.=

√√√√nR
2

n+1
i exp

(
δ2ij

(n+ 1)λ2
i

)
− n , (3)

where Ri = N
∑

k 6=i g(δik/λi)/
∑

k 6=l t(dkl, n) is the ratio of the softmax de-
nominators. If we get rid of the difficulty raised by the softmax denominators,
namely if we assume that Ri ≈ 1, then we can see SNE and t-SNE as NLDR
methods that preserve transformed distances. The transformation has an ex-
ponentially increasing shape; its key properties are

• f(0) = 0 and f is monotonically increasing on R+,
• limn→∞ f(δij) = δij/λi,
• if δij � λi, then dij = f(δij) ≈ δij/(λi

√
n+ 1).

Intuitively, t-SNE tries to preserve stretched distances; the stretch is expo-
nential. In the case of SNE, the transformation degenerates and distances are
merely locally scaled by λi. The second property shows that a similar scaling
occurs when δij � λi. What is important to note is that λi and n act more or
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less in the same way in transformation (3), namely they modulate the expo-
nential growth. However, the differences are that (i) n is global whereas the
λi can fluctuate locally, (ii) changing the perplexity (which approximately
amounts to multiplying all λi with approximately the same factor) impacts
the scale of the embedding, while changing n does not have this effect.

The relationship between n and the intrinsic dimensionality of the mani-
fold that is put forward in Van der Maaten (2009) is questioned by the above
analysis. First, because n and the perplexity cannot be studied separately
and, second, because n depends neither on the embedding dimensionality
nor on the data dimensionality. In addition, the optimal distance transfor-
mation depends on the manifold shape: in the above example, changing the
curvature of the manifold should have an impact on the required stretch,
hence on n. This motivates the experiments described in the next section.

4 Experiments

The experiments rely on the widely used Swiss roll (Tenenbaum et al. (2000))
benchmark manifold. A dataset of 750 noisefree vectors is sampled from
ξ = [

√
u cos(3π

√
u),
√
u sin(3π

√
u), πv]T , where u and v have uniform dis-

tributions in [0, 1]. Two reasons justify using the Swiss roll. First, it is a
widespread benchmark that has however not been used in (Van der Maaten
and Hinton (2008), Van der Maaten (2009)). Second, it is a Euclidean mani-
fold, which implies that a linear projection (such as in metric MDS) suffices
to obtain a perfect embedding of the Swiss roll, provided geodesic distances
are used (Tenenbaum et al. (2000), Lee and Verleysen (2007)).

The experiments compare t-SNE, CCA, SNLM, and classical metric MDS,
whose result serves as baseline. Each method is used with both Euclidean and
geodesic distances. The latter are approximated with graph distances, that
is, with shortest paths in a Euclidean graph that stems from 6-ary neighbor-
hoods around each data point. MDS is equivalent to PCA with Euclidean
distances, and to Isomap (Tenenbaum et al. (2000)) with geodesic distances.
CCA with geodesic distances is known as Curvilinear Distances Analysis (Lee
and Verleysen (2004)). The implementation of t-SNE is provided by the au-
thors of Van der Maaten and Hinton (2008); the only extension concerns the
possibility to vary the number of degrees of freedom.

Performance assessment is achieved by means of the criteria proposed
in (Lee and Verleysen (2009). These criteria look at K-ary neighborhoods
around each vector in the data space as well as in the embedding space.
Criterion QNX(K) reflects the overall quality of the embedding; its value
corresponds to the average percentage of identical neighbors in both spaces.
Criterion BNX(K) measures to what extend a NLDR method can be ‘in-
trusive’ or ‘extrusive’. A positive BNX(K) corresponds to an intrusive em-
bedding, wherein many distant points are embedded close to each other; a
negative value corresponds to many extrusions, i.e. to close neighbors em-
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Fig. 1. Quality assessment of the embeddings using Euclidean distances. The num-
bered curves for t-SNE refer to perplexity values equal to 4, 25, 64, 121, 196, and
289 respectively. See text for details.

bedded far away from each other. Both QNX(K) and BNX(K) are shown in
specific diagrams that consist of three panels. The first one spans the inter-
val 1 ≤ K ≤ N − 1, whereas the small ones on the right focus on small
values of K, for each criterion separately. The quality and behavior of the
various methods are depicted in Figs. 1 and 2. Figure 3 shows the evolution
of QNX(K) with respect to the perplexity, for K = {5, 15, 50, 150}.

5 Discussion

Unfolding the Swiss roll with Euclidean distances is a difficult task, as shown
by the low values of QNX(K) produced by MDS, SNLM, and CCA in Fig. 1.
The result of t-SNE largely depends on the value of the perplexity; it ranges
from poorer than MDS to excellent. Looking at the curves for BNX(K) shows
that t-SNE tends to be extrusive or intrusive, depending on the perplexity,
whereas all other methods are rather intrusive. An illustration of the embed-
dings provided by t-SNE with different perplexity values is given in Fig. 4.

Replacing Euclidean distances with geodesic ones obviously facilitates the
task. All methods achieve good results in Fig. 2, the best being CCA. The
variability in t-SNE’s results remains, but one sees that increasing the per-
plexity leads to better performances (see also Fig. 3). As expected, geodesic
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Fig. 2. Quality assessment of the embeddings using geodesic distances. The num-
bered curves for t-SNE refer to perplexity values equal to 4, 25, 64, 121, 196, and
289 respectively. See text for details.

distances do not need to be stretched, what can be achieved with a high (infi-
nite) perplexity. For Euclidean distances, we observe a peak in QNX(K): there
exist an optimal value of the perplexity, such that the transformed distances
approximate as closely as possible the geodesic distances.

At this point, we can state that the distance transformation that is im-
plicitly achieved by t-SNE is not always optimal and that its parameters
must be carefully tuned. More specifically, the perplexity controls the way
distances are stretched. If stretching distances is fundamentally a pertinent
idea when one wishes to unfold a manifold, t-SNE cannot always approximate
the optimal transformation, which can be much more complex than in the
Swiss roll. A positive point for t-SNE is that its gradient includes a damping
factor that diminishes the importance of large distances, whose transformed
value could be inappropriate. Nevertheless, this does not address the issue
raised by non-Euclidean manifolds, such as an half (hollow) sphere. Near the
pole, small distances should shrink or remain unchanged, whereas a stronger
and stronger stretch is required when moving away from the pole. The situ-
ation gets obviously much more favorable with clustered data, as stretching
large distances improves the separation between the clusters; examples can be
found in Van der Maaten and Hinton (2008) and in Van der Maaten (2009).
There is a risk however that too small a value of the perplexity could lead to
an embedding with spurious clusters.
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Fig. 4. Embeddings provided by t-SNE with Euclidean distances, for perplexity
values equal to 4, 25, 64, 121, 196, and 289 (from top left to bottom right).

Finally, the paradigm of distance preservation can be used to compare
t-SNE to other NLDR methods. The comparison is straightforward for many
spectral methods that explicitly use distances, like Isomap and MVU. For
other methods, such as those involving the bottom eigenvectors of some Gram
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matrix, duality (Xiao et al. (2006)) can be invoked in order to first build a
virtual matrix of pairwise distances, on which classical MDS (isometric em-
bedding) is applied. For example, Laplacian eigenmaps and related methods
can be shown to involve commute time distances or random walks in a graph
(Saerens et al. (2004)). Focusing on the transformation we see for instance
that Isomap, MVU, and t-SNE all stretch distances. In this respect however,
MVU proves to be more powerful than Isomap, which in turn is superior to
t-SNE. The transformations in Isomap and MVU are indeed data-driven: any
distance value depends on the shape of the underlying manifold. Moreover,
the semidefinite programming step in MVU adjusts long distances in order
to minimize the embedding dimensionality. In contrast, the transformation
achieved by t-SNE marginally depends on the data density (when the individ-
ualized widths in λ are computed from the perplexity), not on the manifold
shape. Apart from this and a minor impact of the softmax normalizations,
t-SNE achieves an ‘a priori’ distance transformation, which is not data driven.

6 Conclusions

Many methods of nonlinear dimensionality reduction rely on distance preser-
vation. Recent works reveal however a growing interest in similarity matching;
an emblematic method that follows this trend is undoubtedly t-SNE. This
contribution aims at analyzing t-SNE’s properties. Casting t-SNE within the
framework of distance preservation allows a better understanding of its be-
haviour. Specifically, it has been shown that t-SNE can be considered to
preserve transformed distance and the transformation has been identified to
be an exponential stretch. The slope of the transformation turns out to be
controlled by the main two metaparameters of t-SNE, namely the perplex-
ity and the number of degrees of freedom in the Student similarity functions.
Such an exponential stretch increases the separation between clusters and this
explains why t-SNE performs so well with clustered data. On the other hand,
the transformation shape can be suboptimal for manifold data. Experiments
are performed on the Swiss roll, a manifold for which an optimal distance
transformation is known and consists in replacing Euclidean distances with
geodesic distances. In this case, t-SNE requires a careful parameter adjust-
ment and cannot outperform basic methods that preserve geodesic distances.
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Abstract. The increased accessibility and concerted use of novel measurement
technologies give rise to a data tsunami with matrices that comprise both a high
number of variables and a high number of objects. As an example, one may think
of transcriptomics data pertaining to the expression of a large number of genes
in a large number of samples or tissues (as included in various compendia). The
analysis of such data typically implies ill-conditioned optimization problems, as well
as major challenges on both a computational and an interpretational level.

In the present paper, we develop a generic method to deal with these problems.
This method was originally briefly proposed by Van Mechelen and Schepers (2007).
It implies that single data modes (i.e., the set of objects or the set of variables under
study) are subjected to multiple (discrete and/or dimensional) nested reductions.

We first formally introduce the generic multiple nested reductions method. Next,
we show how a few recently proposed modeling approaches fit within the frame-
work of this method. Subsequently, we briefly introduce a novel instantiation of the
generic method, which simultaneously includes a two-mode partitioning of the ob-
jects and variables under study (Van Mechelen et al. (2004)) and a low-dimensional,
principal component-type dimensional reduction of the two-mode cluster centroids.
We illustrate this novel instantiation with an application on transcriptomics data
for normal and tumourous colon tissues.

In the discussion, we highlight multiple nested mode reductions as a key feature
of the novel method. Furthermore, we contrast the novel method with other ap-
proaches that imply different reductions for different modes, and approaches that
imply a hybrid dimensional/discrete reduction of a single mode. Finally, we show
in which way the multiple reductions method allows a researcher to deal with the
challenges implied by the analyis of large data sets as outlined above.

Keywords: high dimensional data, clustering, dimension reduction

1 Introduction

Nowadays many research areas witness an increased accessibility of novel
measurement technologies. This typically gives rise to a data tsunami with
matrices that comprise a high number of variables. Examples include vari-
ous types of ’omics’ data as collected in systems biology research, such as
transcriptomics data pertaining to the expression of large sets of genes in a
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number of tissues or conditions, and metabolomics data pertaining to the con-
centration of hundreds of metabolites. Moreover, the concerted use of those
technologies in different settings or laboratories may yield data matrices that
comprise a very large number of experimental units as well. As an example,
one may think of transcriptomics data pertaining to the genome of some mi-
crobial organism as contained in many compendia that have been collected
by numerous research teams using a broad range of experimental conditions.

The analysis of such data implies at least three groups of major problems.
Firstly, highdimensional data typically suffer from various kinds of between-
variable redundancies and dependencies (e.g., between probes of a single
probe set in transcriptomics research). These redundancies and dependencies
may further imply that optimization problems as included in the data analy-
sis become ill-conditioned (e.g., because of severe (near-)multicollinearities).
Secondly, the analysis of highdimensional data implies major algorithmic
challenges, both in terms of data handling and memory management, and
in terms of computational aspects (e.g., operations such as matrix inversions
are no longer feasible - see, e.g., Drineas et al. (2004)). Thirdly, dealing with
the output of the analysis of large data sets is in may cases prohibitive. For ex-
ample, standard lowdimensional graphical representations will look like dense
clouds at best, and like inkblots if one is somewhat less fortunate; parameter
estimates will typically show up in very large tables that can no longer be
simply read or subjected to standard interpretational techniques.

To deal with the problems as outlined above, one might consider to apply
classical reduction methods to the set of variables (and possibly also to the
set of objects or experimental units), such as various kinds of clustering or
dimension reduction. The problems as implied by the analysis of large data
are often that severe, however, that they lead to a breakdown of classical
(categorical or dimensional) reduction methods.

As a way out, quite a lot of recent research has been devoted to a rescue
mission for classical reduction methods through calling in novel aids, such
as variable selection methods and sparseness constraints. In the present pa-
per, however, we propose a different approach to deal with the breakdown
as outlined above. Our proposal elaborates a suggestion launched earlier by
Van Mechelen and Schepers (2007). This proposal, which is generic in na-
ture, reads that one or two single data modes (i.e., the variable mode or
both variables and objects) are subjected to multiple nested reductions. To
get an intuitive idea of what this is about, one may think of a large set of
variables (e.g., genes) that are clustered into a number of partition classes
(outer reduction, which in this example is categorical in nature); in their turn,
the cluster centroids are subject to a dimension reduction (inner reduction,
which in this example is continuous in nature, and which is ’nested’ in the
outer reduction). To avoid misunderstandings, it is important to emphasize
that in our proposal the different nested reductions are part of a global, si-
multaneous optimization procedure within the framework of fitting a global
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model to the data at hand. (Such an approach is to be distinguished from a
sequential application of different reduction techniques to one and the same
data mode.)

The remainder of this paper is organized as follows. In Section (2), we will
outline the principles of our generic proposal. Subsequently, we will illustrate
in Section (3), both by means of two already existing methods subsumed
by the generic approach, and by means of a novel extension of an existing
method; moreover, we will also illustrate this extension making use of an
analysis of transcriptomics data. Finally, in Section (4), we will highlight the
key feature of our novel method, and contrast it with other approaches that
imply different types of reductions of the data modes; also, we will show in
which way the multiple reductions method allows a researcher to deal with
the challenges implied by the analyis of large data sets as outlined above.

2 Principles

We assume a real-valued I×J object by variable data matrix D with entries
dij . If the set of objects is denoted by O (with elements oi, i = 1, . . . , I) and
the set of variables by V (with elements vj , j = 1, . . . , J), such data can also
be formalized as a mapping from the Cartesian product O×V to R. The sets
O and V are further called the modes of the data.

To introduce the concept of multiple nested reductions, we go back to
a unifying decomposition model as introduced by Van Mechelen and Schep-
ers (2007). This model has a deterministic core, which optionally can be
stochastically extended. In the special case of two-mode data as described
above, the deterministic core of the unifying model first implies a (categor-
ical or dimensional) reduction of each of the two modes as involved in the
data. For the objects, such a reduction can be formalized by means of an
I × P quantification matrix A that is either binary or real-valued. In case
of a binary quantification matrix, the reduction is categorical in nature, and
involves P different clusters (which in the unconstrained case are allowed
to overlap); in particular, aip denotes whether the ith object oi belongs to
the pth cluster or not (p = 1, . . . , P ); special instances of constrained binary
quantification matrices include partitionings and nested clusterings. In case
of a real-valued quantification matrix, the reduction is dimensional in na-
ture, with aip (p = 1, . . . , P ) denoting a representation of the ith object as a
point in a lowdimensional (viz., P -dimensional) space. Similarly, a (categor-
ical or dimensional) reduction of the variables can be formalized through a
J × Q quantification matrix B (with possibly P 6= Q). One may note that
the unifying model allows for some mode not to be reduced; in that case, the
corresponding quantification matrix is put equal to an identity matrix.

To complete the recapitulation of the unifying model, we further need a
P ×Q core matrix W and a mapping f , which are such that:

D = f(A,B,W) + E, (1)
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with E denoting an I × J array with error entries, and with f(A,B,W)ij

not depending on other rows of A than the ith one, nor on other rows of B
than the jth one. The latter means that for each data mode, it holds that
all distinctive information on each element of that mode is contained in its
corresponding row in the mode-specific quantification matrix (which means
that this matrix does represent a reduction of the mode in question, indeed).

To clarify the above, we illustrate with two special cases. The first one
pertains to a situation in which both A and B are binary, and in which f is
an additive function. Equation (1) then reduces to:

f(A,B,W)ij =
P∑

p=1

Q∑
q=1

aipbjqwpq, (2)

which yields a general biclustering model (Van Mechelen et al. (2004); Van
Mechelen and Schepers (2006)).

The second special case involves two real-valued quantification matrices
A and B and a distance-like mapping f :

f(A,B,W)ij =

[
P∑

p=1

Q∑
q=1

(aip − bjq)2wpq

] 1
2

. (3)

In case W is an identity matrix, Equation (3) reduces to:

f(A,B,W)ij =

[
P∑

p=1

(aip − bjp)2
] 1

2

. (4)

This formalizes a model that in the psychological literature is known as mul-
tidimensional unfolding (for a custom-made algorithm to fit this model to
highdimensional data, see Van Deun et al. (2007)).

We are now ready to introduce the concept of multiple nested reductions.
This recursive concept implies that the core matrix W as included in Equa-
tion (1) in its turn is subjected to a decomposition:

W = f∗(A∗,B∗,W∗), (5)

with f∗ denoting a mapping, A∗ a P × P ∗ quantification matrix, B∗ a Q×
Q∗ quantification matrix, and W∗ a P ∗ × Q∗ core matrix. Furthermore,
f∗(A∗,B∗,W∗)pq is not allowed to depend on other rows of A∗ than the pth

one, nor on other rows of B∗ than the qth one. Substitution of (5) in (1) then
yields:

D = f(A,B, f∗(A∗,B∗,W∗)) + E. (6)

When looking at our general multiple nested reductions model (6), two
important remarks are in order. First, each of the quantification matrices
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involved (i.e., A, B, A∗, and B∗) can be an identity matrix (no reduction), a
general binary matrix (categorical reduction into a number of clusters), or a
real-valued matrix (dimensional reduction), with the possibility that different
choices are made for different matrices; this gives room to a broad range
of possible reduction patterns (including different reduction types for the
outer and inner reduction, and even hybrid or mixed categorical-dimensional
reductions within a certain reduction level). Second, although Model (6) is
recursive or two-layered in nature, it is to be estimated as a whole, making
use of one overall objective or loss function (that may, e.g., be of a least
squares or a maximum likelihood type).

3 Examples

In this section we will illustrate the generic multiple nested reductions model
by means of a few specific models subsumed by it. We will start with two
existing models. Subsequently, we will turn to a novel expansion of one of
those models, which we will also illustrate with a short empirical application.

3.1 Existing models

• Van Mechelen and Schepers (2007) briefly introduced a two-mode un-
folding clustering model. The outer reduction as implied by this model is
categorical in nature, both for the objects and the variables, whereas the
inner reduction is dimensional. In particular, the outer reduction is a two-
mode partitioning, which can be formalized by means of Equation (2);
the inner reduction, from its part, is of the unfolding type, as formalized
by Equation (4). Together, this yields the following model equation:

dij =

 P∑
p=1

Q∑
q=1

aipbjq

[
P∗∑

p∗=1

(a∗pp∗ − b∗qp∗)
2

] 1
2
+ eij , (7)

with A and B binary partition matrices, and A∗ as well as B∗ real-valued.
A stochastic variant of this model, in which the outer two-mode partition-
ing is captured by means of a double mixture model, has been introduced
by Vera et al. (2009) under the name of dual latent class unfolding. Be-
fore, the special case that involved an outer reduction of the objects only
(i.e., a mixture version of Model (7) with B being an identity matrix)
was proposed by De Soete and Heiser (1993).
A nice feature of the two-mode unfolding clustering model and its stochas-
tic extension is that they go with an insightful graphical representation,
with both object and variable cluster centroids figuring as points in a
lowdimensional Euclidean space.
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• Recently, Van Mechelen and Van Deun (2010) have proposed principal
component clustering as a family of methods to deal with data sets that
comprise a large number of variables. We limit ourselves here to pre-
senting one method from this family. When using this method, one may
first wish to preprocess the data in terms of centering (or standardizing)
each of the variables. The outer reduction of the method then involves
a partitioning of the variables only, whereas the inner reduction is of
the principal component type. Together, this yields the following model
equation:

dij =

[
P∑

p=1

Q∑
q=1

aipbjq

[
P∗∑

p∗=1

(a∗pp∗b
∗
qp∗)

]]
+ eij , (8)

with A an identity matrix, B a binary partition matrix, and A∗ as well
as B∗ real-valued. Taking into account that A is an identity matrix,
Equation (8) can be further simplified to:

dij =

[
Q∑

q=1

bjq

[
P∗∑

p∗=1

(a∗ip∗b
∗
qp∗)

]]
+ eij . (9)

Without loss of generality, A∗ can be assumed to be columnwise or-
thonormal; this matrix can further be considered to comprise component
scores, whereas B∗ can be considered a matrix of component loadings.
As argued by Van Mechelen and Van Deun (2010), the principal compo-
nent clustering family bears interesting relationships with higher order
component or factor-analytic models. Moreover, the methods of the fam-
ily also go with very insightful graphical biplot representations.

3.2 Novel extension of existing model

The principal component clustering model as described above could be ex-
tended by turning the outer reduction into a two-mode partitioning, that is, a
simultaneous partitioning of objects and variables, rather than a partitioning
of the variables only. Assuming data that have been centered variablewise,
the model equation of the resulting two-mode principal component clustering
model is again Equation (8), but now with both A and B being partition
matrices. In matrix notation this becomes:

D = A A∗ B∗T BT + E, (10)

with T denoting transpose.
In a deterministic scenario, to fit the two-mode principal component clus-

tering model to a data matrix at hand, we may rely on a least squares objec-
tive function,

min
A,B,A∗,B∗

∥∥∥D−A A∗ B∗T BT
∥∥∥2

, (11)
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with ‖.‖ denoting the Frobenius norm. A∗, which can be restricted to be
columnwise orthonormal, contains the component scores of the object cluster
centroids, and B∗ the loadings of the variable cluster centroids.

For the optimization of Loss function (11) we may rely on an alternating
least squares approach. Conditionally optimal estimates of A (resp. B) can be
obtained in a straightforward way. Indeed, the conditional loss functions for
these matrices are rowwise quasi-separable (see Van Mechelen and Schepers
(2007) for a more indepth discussion of this issue); as a consequence, updating
can be pursued row by row (using for each row an enumerative strategy).
Regarding the updating of A∗ and B∗, it can be shown that this can be
achieved through a generalized singular value decomposition (GSVD) in the
metrics

[
diag(AT A)

]−1 and
[
diag(BT B)

]−1 of the matrix of the two-mode
centroids, [

diag(AT A)
]−1

AT D B
[
diag(BT B)

]−1

(for more background on the generalized Eckart-Young theorem in two met-
rics, see, e.g., Appendix A in Gower and Hand (1996)). Three further remarks
are in order. First, the procedure as outlined above may converge to a local
minimum only, and therefore a multistart strategy is needed; for the initial-
ization, one may, for instance, start from A and B matrices resulting from
randomly started k-means analyses on the rows and the columns of D. Sec-
ond, from a computational perspective, the initial estimation and updating
of the score and loading matrices A∗ and B∗ is not too expensive, as the
GSVD involves a matrix of size P × Q only. Third, to satisfy the contraint
of A∗ to be columnwise orthonormal, one may wish to postprocess the score
matrix resulting from the GSVD by subjecting it to a regular SVD (as the
GSVD score matrix is orthonormal in the corresponding metric only).

To illustrate the two-mode principal component clustering model, we ap-
ply it to gene expression data in 40 tumor and 22 normal tissues as collected
by Alon et al. (1999). For this application we retained data on the 400 genes
that maximally differentiated cancer from normal tissues (in terms of corre-
lations). Data were standardized per gene over the tissues. The alternating
least squares algorithm was applied with 500 starts (pertaining to k-means
seeds randomly drawn from the data). We selected a model with 4 tissue
clusters, 5 gene clusters and 2 components; this accounted for 44% of the
variance in the data. Two out of the 4 object clusters largely pertained to
tumor tissues and two to normal ones. Figure 1 contains a biplot representa-
tion of the selected solution. From the figure, it appears that Gene clusters 2
and 5 differentiate most strongly between normal and tumor tissues. Those
clusters appeared to contain several genes involved in an elevated cellular
metabolism, including several serine/threonine protein kinase genes, the ex-
pression of which has been shown to be frequently altered in human cancers.
Interestingly, the normal tissue cluster No1, the centroid of which lies closest
to the tumor cluster centroids in terms of Gene clusters 2 and 5, appeared to
pertain to tissues stemming from patients in a metastatic stage.
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Fig. 1. Biplot representation of two-mode principal component clustering of gene
expression data in tumor and normal colon tissues from a study of Alon et al.
(1999). Tissue cluster centroids are labeled Tu (tumourous tissue) and No (normal
tissue) as a function of the predominant nature of the tissues belonging to the
corresponding cluster. Gene cluster centroids are labeled by numbered asterisks,
and the corresponding biplot axes point at higher expression levels. Also shown
are the predicted expression levels of the tissue clusters for Gene cluster 2 (which
includes, amongst others, several serine/threonine protein kinase genes).

4 Discussion

In this paper we presented a generic modeling approach to deal with large
data sets. The models in question involve a decomposition of the (recon-
structed) data, and the key feature of the proposed approach is that of mul-
tiple nested reductions of one and the same data mode. This feature is nicely
clarified by the matrix form of the model equation of one of the instances
of the generic model (viz., Equation (10)), which renders the idea of inner
and outer reductions immediately visible. From a substantive point of view,
reductions on different levels could fulfill different functions. One possibility
in this regard is that outer reductions could primarily capture redundancies,
whereas inner reductions could capture the core substantive mechanisms un-
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derlying the data. Otherwise, the recursive principle of multiple reductions
can obviously be generalized to more than two reduction levels.

The approach of multiple nested reductions as taken in this paper is to
be clearly distinguished from other reduction approaches that are seemingly
related to ours, but that are in fact quite different. One such an approach
implies several simultaneous reductions, yet with each reduction being applied
to a different mode. As an example, one may think of k-means clustering in a
low-dimensional Euclidean space (De Soete and Carroll (1994)), which implies
a simultaneous partitioning of the objects and a dimension reduction of the
variables. As a second example, one may think of a broad range of two-mode
clustering methods that involve a simultaneous clustering of both objects
and variables (Van Mechelen et al. (2004)). Another approach that is to be
distinguished from ours involves a hybrid dimensional/discrete reduction of
a single mode, rather than multiple nested reductions. As an example, one
may think of disjoint principal component analysis as proposed by Vichi and
Saporta (2009). This method implies a component-like dimensional reduction
of the variables under study along with a partitioning of the variables, which
are such that each component is a linear combination of variables that belong
to a single partition class only. Our generic nested reductions model does
not subsume disjoint principal component analysis, because in that method:
(a) the partitioning of the variables does not imply a full reduction of the
variable mode in the sense that variables are replaced by cluster centroids,
and (b) partitioning and dimension reduction are interwoven rather than
nested reductions.

Finally, it is useful to note that our multiple reductions method allows a
researcher to deal with the challenges implied by the analyis of large data sets
as outlined in the introduction to this paper. Firstly, it allows the researcher
to deal with redundancies and strong dependencies, in particular through
the outer reduction level. Moreover, it can do so without having to discard
information like in variable selection methods. Also, it does not involve many
of the arbitrarities as implied by methods based on sparseness constraints
(although, admittedly, our approach, too, implies quite a few model selection
issues and data-analytic choices that are to be dealt with). Secondly, our ap-
proach allows to deal with some of the computational challenges as implied
by large data. This is exemplified by the algorithm we proposed in Section
3.2 to estimate the two-mode principal component clustering model. In par-
ticular, whereas in case of large data performing an SVD may be prohibitive,
this is no longer the case for the GSVD that is to be applied on the two-mode
cluster centroids. Thirdly, our method also provides a nice way out to deal
with the output of the analysis of large data sets. This is nicely illustrated
by the insightful (and substantively meaningful) biplot representation of the
output of our analysis of the colon cancer data as displayed in Figure 1.
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Abstract. In this paper we present an overview of methods for clustering high
dimensional data in which the objects are assigned to mutually exclusive classes in
low dimensional spaces. To this end, we will introduce the generic subspace clus-
tering model. This model will be shown to encompass a range of existing clustering
techniques as special cases. As such, further insight is obtained into the charac-
teristics of these techniques and into their mutual relationships. This knowledge
facilitates selecting the most appropriate model variant in empirical practice.

Keywords: reduced k-means, common and distinctive cluster model, mixture
model

1 Introduction

In a partitioning model, objects are assigned to a limited number of mutually
exclusive clusters. Often, the partitioning takes place on the basis of high
dimensional data, i.e., the objects’ scores on multiple variables. Traditional
partitioning approaches, like the well-known k-means clustering (MacQueen
(1967)), perform the clustering in the entire space of the high-dimensional
data. However, this approach may fail to yield a correct partition. A first
problem is that the sample size needed to achieve a proper recovery increases
strongly with increasing dimensionality. This phenomenon relates to the curse
of dimensionality (Bellman (1957)). Secondly, the inclusion of variables in a
cluster analysis that hardly reflect the clustering structure may hinder or
even obscure the recovery of this cluster structure (e.g., Milligan (1996)).
The recovery problems exacerbate when different clusters reside in different
subspaces of the high dimensional data.

To deal with these problems, various approaches have been proposed. The
variable importance approach differentially weights the variables in the clus-
ter analysis, where the weights are determined on the basis of observed data
(e.g., DeSarbo, Carroll, Clark & Green (1984); De Soete (1986); see also Mil-
ligan & Cooper (1988)). The variable selection approach aims at determining
the subset of variables that define the clustering (see e.g., Steinley & Brusco
(2008)). In this paper, we focus on the subspace clustering approach, which
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rests on the assumption that the clusters are located in some subspace of the
variables.

The subspace clustering approach has been taken in both deterministic
models (e.g., Bock (1987)) and stochastic models (e.g., Banfield & Raftery
(1993)). Moreover, subspace clustering has been put forward in different
model variants, of which the mutual relationships are not evident. To clar-
ify this issue, we will introduce in this paper the generic subspace clustering
model. This model will be shown to encompass a series of clustering models
proposed so far.

2 Generic subspace clustering model

The generic subspace clustering model is a deterministic model. In this model,
I objects are partitioned into C mutually exclusive clusters on the basis of
their observed multivariate data.

The generic subspace clustering model is founded on a decomposition
of the observed scores of each participant into an off-set term, a between-
cluster part and a within-cluster part, analogously to the decomposition in
analysis of variance. Specifically, the observed scores xi (J × 1) of the ith

object (i = 1, ..., I) on J variables can be written as

xi = m +
C∑

c=1

uic(bc + wc
i ), (1)

where m (J × 1) denotes a vector containing off-set terms, uic denotes the
entries of the binary cluster membership matrix U, which specifies to which
cluster each of the objects belongs (i.e., uic = 1 if object i belongs to clus-
ter c, and uic = 0 otherwise, with

∑C
c=1 uic = 1); bc(J × 1) contains the

centroids of cluster c, with constraint
∑I

i=1

∑C
c=1 uicbc = 0; wc

i (J × 1)
contains the within-cluster residuals of object i in cluster c, with constraint∑I

i=1

∑C
c=1 uicwc

i = 0 and wc
i = 0 if uic = 0. For any arbitrary cluster mem-

bership matrix U, the decomposition in (1) perfectly applies. Therefore, a
least squares loss function for (1) has no unique solution. Unique solutions
can be achieved by imposing constraints on (1), of which different possibilities
will be discussed in the next sections.

The essential feature of the generic subspace clustering model is that the
cluster centroids and the within-cluster residuals may be located in subspaces
of the data, where those subspaces may differ from each other. Thus, in the
model, both the centroids (bc ) and the within-cluster residuals (wc

i ) may be
represented by a low rank approximation. Furthermore, the models for the
within-cluster residuals may differ across clusters.

The generic subspace clustering model can be written as

xi = m +
C∑

c=1

uic(Ab fbc + Awcfwc
i ) + ec

i , (2)
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where fbc (Qb×1) denotes a vector with between-component scores of cluster
c, Ab (J × Qb) a between-loading matrix, and Qb the number of between-
components; fwc

i (Qwc × 1) denotes a vector with within-component scores
of the ith object, with i being a member of cluster c, Awc (J× Qwc) a within-
loading matrix of cluster c, and Qwc the number of within-components for
cluster c; ec

i (J×1) is the error of the ith object (which is a member of cluster
c). To partly identify the model, the between- and within-loading matrices are
constrained to be columnwise orthonormal, i.e., Ab′Ab = IQb and Awc′Awc

= IQwc ; furthermore, the means of the component scores are constrained as∑I
i=1

∑C
c=1 uicfbc = 0 and

∑I
i=1

∑C
c=1 uicfwc

i = 0 with fwc
i = 0 if uic = 0.

Those constraints ensure that Ab fbc provide a model for the centroids of
cluster c, and that Awc fwc

i provide a model for the within-cluster residuals
of object i in cluster c.

2.1 Loss function of the generic subspace clustering model

To fit the generic subspace clustering model to observed data X (I× J), the
following least squares loss function is to be minimized, given specific values of
C, Qb and Qwc (numbers of clusters, and between- and within-components,
respectively):

G(m,U,Fb,Ab,Fwc,Awc) =
I∑

i=1

‖xi −m−
C∑

c=1

uic(Ab fbc + Awcfwc
i )‖2,

(3)
where U (I×C) is the binary cluster membership matrix; the matrix Fb (C×
Qb) the between-component scores matrix, which rows are fbc′ (c=1,..,C );
the matrix Fwc (nc × Qwc) is the within-component matrix of cluster c,
which rows are fwc

i′ (i = 1, ..,nc) with nc the number of objects in cluster
c. To satisfy the constraints on the means of the component scores, it is
required that 1′C diag(n) Fb = 0 and 1′nc

Fwc = 0, with 1C a (C×1) vector
consisting of ones, and diag(n) a diagonal matrix with as diagonal elements
n = [n1,...,nC ].

Because of the constraints on the means of the component matrices, the
optimal offset vector m equals I−

1
1′IX. The remaining parameters could be

estimated with some iterative algorithm that alternatingly updates U, Fb,
Ab, Fwc, Awc.

It is important to note that for a given cluster membership matrix U, the
offset part, the between-part and the within-part of the data matrix X are
orthogonal to each other (see Timmerman (2006), for a proof, in a slightly
different context), and can therefore be separately updated. That is, for a
given U, the observed scores of each object i can be uniquely decomposed as
in Equation (1).

Then, the between-part can be updated by minimizing

g1(Fb,Ab) = ‖W(B− Fb Ab′)‖2, (4)
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subject to Ab′Ab = IQb, with W (C × C) a diagonal cluster size weight
matrix, with wii =

√
nc and B = [b1|...|bC ]′ (C× J).

The within-part can be updated by minimizing

g2(Fwc,Awc) =
C∑

c=1

‖Wc − FwcAwc′‖2, (5)

subject to Awc′Awc = IQwc , and where Wc = [wc
1|...|wc

nc
]′ (nc×J) denotes

the matrix containing the within-cluster residuals of the objects in cluster c.
Different types of iterative algorithms could be proposed for minimizing (3),
but they are beyond the scope of this paper.

3 Positioning of existing subspace clustering
approaches into the generic framework

In this section, it will be shown that a number of clustering models that have
been proposed in the literature, are special cases of the generic subspace
clustering model. Specific model variants appear when a full space rather
than a subspace is used at the between- or within-level, as will be discussed in
Section 3.1. Furthermore, other model variants arise when specific features of
the models for the within-cluster residuals are constrained to be equal across
clusters, to be treated in Section 3.2.

3.1 Model variants: Reduced space at the between-level or
within-level

In the generic subspace clustering model, the centroids and the within-cluster
residuals may be modelled in subspaces of the observed data. However, in
the literature, model variants have been proposed in which the centroids or
within-residuals are modeled in the full space rather than the reduced space.
For the centroids, the full centroid space is used when Qb is taken equal
to min(C,J ). For the within-part of cluster c, the full within-residual space
of cluster c is used when Qwc is taken equal to min(nc,J ). When the full
within-residual space is used for all clusters, they are, obviously, depicted in
the same space.

The generic subspace clustering model variant with centroids constrained
to be in a subspace, while the within-residuals are set to zero, is proposed
twice, namely as Projection Pursuit Clustering (Bock (1987)) and Reduced
k-means analysis (De Soete & Carroll (1994)). The loss function associated
with those analyses boils down to

g3(m,U,Fb,Ab) =
I∑

i=1

‖xi −m−
C∑

c=1

uic(Ab fbc)‖2. (6)
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The variant with centroids in the full space, and the within-residuals in
reduced spaces is proposed by Bock (1987). He put forward the specific case
with Qwc = Qw (i.e., the number of within components is equal across clus-
ters) as PCA-based clustering with class-specific hyperplanes. The algorithm
proposed differs from Equation (3) in that the between-part is in full space,
and hence boils down to

g4(m,U,bc,Fwc,Awc) =
I∑

i=1

‖xi−m−
C∑

c=1

uicbc+
C∑

c=1

uic(Awcfwc
i )‖2. (7)

An even less constrained variant is obtained when the centroids are mod-
elled in full space, and the within-residuals are zero. When the sum of squared
within-residuals is to be minimized, the following loss function results

g5(m,U,bc, ) =
I∑

i=1

‖xi −m−
C∑

c=1

uicbc‖2. (8)

This function is well-known, as it is the one associated with k -means cluster-
ing (MacQueen (1967)).

3.2 Model variants: Common and distinctive models of the
within-residuals

In the models for the within-residuals of each cluster, one may restrict some
or all model features to be the same across clusters. As a result, those models
consist of a common and a distinctive part. In a deterministic model, like our
general subspace model, the common part is modelled by imposing specific
constraints on the model estimates of the within-part. In a stochastic model,
this is approached via assumptions at the population level. In what follows,
we discuss deterministic and stochastic models with common and distinctive
features across the clusters.

Bock (1987) proposed a deterministic model that he referred to as ’PCA-
clustering with common and class-specific dimensions’. In this model, each
cluster is located in a common subspace and a cluster specific subspace,
where the total sizes of the subspaces are equal across clusters. Thus, in
terms of the general subspace model, the within-loading matrix of cluster
c is Awc = [Aw|Awc∗ ], with Aw (J × Qw) the common loading matrix,
and Awc∗ (J × Qwc∗) the class-specific loading matrix, and Qwc = Qw +
Qwc∗ . Restricting some features of the within-cluster models to be equal
is more common in stochastic clustering than in deterministic clustering.
Stochastic clustering models are known as mixture models. In those models,
the observed data xi are assumed to be a random sample from a mixture
of C populations, with mean µc and (within-cluster) covariance matrix Σc.
Furthermore, multivariate normality is commonly assumed, because of the
use of maximum likelihood estimators.
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In mixture modelling, different types of restrictions on the covariance
matrices Σc, c=1,...,C have been proposed. A rather stringent restriction is
equality of covariance matrices across clusters, i.e., Σc = Σ (Friedman &
Rubin (1967); see also Gordon (1981, p. 51)). This implies that the sizes and
shapes of within-cluster residuals are assumed to be equal across clusters.

A more general approach was taken by Banfield and Raftery (1993), who
proposed a class of possible restrictions on Σc. In particular, they proposed
a reparametrization of Σc in terms of its eigenvalue decomposition, namely
as Σc = KcΛcKc′ , with Kc the matrix of eigenvectors of Σc, and Λc =
(λcHc) the matrix with eigenvalues of Σc; λc is the first eigenvalue of Σc

and Hc= diag(h), with h = [h1c, ..., hJc], and 1 = h1c ≥ ... ≥ hJc ≥ 0. The
matrix Kc expresses the subspace of cluster c, λc its size and Hc its shape.
Each of those parameters (Kc, λc and Hc) may be assumed to be equal
across clusters. This implies a series of models, which are associated with
different optimization criteria (Banfield & Raftery (1993)). For example, the
assumption of equality of covariance matrices across clusters (i.e., Σc = Σ) is
attained by the assumption of equality of eigenvectors and eigenvalues across
clusters (i.e., Kc = K, λc = λ and Hc = H).

In the mixtures of factor analyzers model (McLachlan & Peel (2000);
McLachlan, Peel & Bean (2003)), the covariance matrix of each cluster is
assumed to comply with a common factor model. That is, Σc = AcAc′ +Uc,
with Ac (J × q) a factor loading matrix, Uc (J × J) a diagonal matrix with
unique variances of cluster c, and q the number of factors. Note that although
the loadings and unique variances may differ across clusters, the number of
factors is assumed to be equal. Finally, a hybrid variant of mixtures of factor
analyzers and the reparametrization approach (Banfield & Raftery (1993)) is
proposed by Bouveyron, Girard and Schmid (2007). Their models accommo-
date for differences and similarities of common factors in orientations, sizes
and shapes across clusters.

An interesting question is whether the principles behind the various mix-
ture models for the cluster covariance matrices could be usefully applied
in the general subspace model as well. Whereas the reparametrization ap-
proach (Banfield & Raftery (1993)) is naturally covered in the generic sub-
space model, this is much less the case for the mixture of factor analyzers
approaches, because of the unique variances involved.

To see how the reparametrization approach (Banfield & Raftery (1993))
could be adopted in the generic subspace clustering model, we first note
that the within-part of the generic subspace clustering model (see 5) can be
reparametrized in terms of Sc = n−1

c Wc′Wc, the within-cluster covariance
matrix. Then, rather than minimizing (5), the within-loading matrices Awc

and the within-component covariance matrices Sc
Fw = n−1

c Fwc′Fwc can be
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updated by minimizing

g6(Awc,Sc
Fw) =

C∑
c=1

‖Sc −Awc Sc
Fw Awc′‖2. (9)

The natural relationship between the generic subspace clustering model and
the reparametrization approach can be seen by noting that the solution for
Awc is found as the first Qwc eigenvectors of Sc. In the model for the within-
cluster covariance matrices, the subspaces could be constrained to be equal
across clusters by imposing Awc= Aw for each cluster c, c=1,...,C. Then,
the within-component covariance matrix Sc

Fw could be either unconstrained,
or required to be a diagonal matrix. The latter is in analogy with Banfield
and Raftery. Equality constraints on the size and shape of the clusters can
be imposed by requiring that the elements of the diagonal within-component
covariance matrices Sc

Fw would have equal λc and/or Hc, i.e., λc=λ and/or
Hc=H, respectively.

4 Discussion and conclusion

In this paper, we have presented the generic subspace clustering model. In
this deterministic model, the cluster centroids and the within-cluster resid-
uals may be located in subspaces of the data. It has been shown that the
generic subspace clustering model encompasses a variety of clustering models
as special cases, which allows to gain insight into the mutual relationships
between those models. In particular, specific model variants appear when a
full space rather than a subspace is used at the between- or within-level.
Furthermore, in the models for the within-cluster residuals, one may restrict
some or all model features - subspace, size, and/or shape - to be equal across
clusters.

An important question is how the generic subspace clustering model can
be sensibly used in empirical practice. Herewith, the central issue to resolve
boils down to a model selection problem: The key question in each empiri-
cal analysis is which model variant is most appropriate to reflect structural
differences between clusters. Herewith, it is important to note that different
models may capture other types of structural differences between the clusters.
This implies that when these models are fitted to the same empirical data,
different clusterings of the objects may be obtained. For example, objects
may be clustered such that the cluster centroids are optimally separated,
like in k-means clustering (MacQueen (1967)), or such that the clusters are
of equal size and shape (using the reparametrization approach; Banfield &
Raftery (1993)).

Fitting cluster models to empirical data can be burdensome. It might be
tempting to impose constraints on the models to reduce the number of es-
timated parameters and hence relieve the estimation problems. However, as
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different constraints may yield a different clustering, the choice of the im-
posed constraints should be motivated from a substantive point of view. It
is important to carefully consider the distinctive features of the empirical
problem at hand. The generic subspace clustering model can be of help, as
it clarifies the different features relevant in clustering objects. Besides the
substantive, subject-matter related considerations also statistical considera-
tions, like model fit and stability of solutions, should play an important role
to avoid overfitting and overinterpretation. The real challenge apears to be
not so much in defining model variants, but to select in a well-founded way
a sensible model variant for the empirical data at hand.
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Abstract. When clustering discrete choice (e.g. customers by products) data, we
may be interested in partitioning individuals in disjoint classes which are homoge-
neous with respect to product choices and, given the availability of individual- or
outcome-specific covariates, in investigating on how these affect the likelihood to be
in certain categories (i.e. to choose certain products). Here, a model for joint clus-
tering of statistical units (e.g. consumers) and variables (e.g. products) is proposed
in a mixture modeling framework, and the corresponding (modified) EM algorithm
is sketched. The proposed model can be easily linked to similar proposals appeared
in various contexts, such as in co-clustering gene expression data or in clustering
words and documents in webmining data analysis.

Keywords: discrete choice, conditional logit, multinomial logit, co-clustering

1 Motivation

Let Yi, i = 1, . . . , n, be a p-dimensional random vector and let yi, i = 1, . . . , n
represent the corresponding realization in a sample of size n; furthermore,
let Y = (Y1, . . . ,Yn)T be the (n, p) matrix containing the values yij , i =
1, . . . , n, j = 1, . . . , p, which represent the observed values (outcomes). Just
to give and example, we may suppose to consider n customers and p products,
where yij represents the number of items of the j-th product bought by the
i-th customer.

In addition, a set of outcome-specific (i.e. characteristics of the prod-
ucts such as price, weight, type of package, etc.) and individual-specific (for
example, age, gender, education level, income, etc.) covariates, influencing
customers’ choices, may be available. Let xi be a K-dimensional vector con-
taining the characteristics of the i-th individual, i = 1, . . . , n and zj be
an m-dimensional vector containing the characteristics of the j-th product,
j = 1, . . . , p.

In this context, we look for a partition of individuals in disjoint classes
which are homogeneous with respect to product choices; the prior (condi-
tional) probability for an individual to belong to a given class is assumed to
be a function of individual-specific covariates, and we may be interested in
knowing how these characteristics affect the class membership. Furthermore,
we can reasonably imagine that, conditional on the individual-specific class
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(i.e. a class of customers), a partition of the outcomes (products) could also
be identified based on their different characteristics. For example, some in-
dividuals may prefer a certain class of products due to products’ observed
characteristics, and these preferences may vary across classes of customers.
Hence, we are interested in how the individual and product-specific charac-
teristics affect the likelihood to choose certain categories of products.

Here, we are interested in a simultaneous partition of customers and prod-
ucts to investigate about the determinants of customers’ choices. A similar
purpose can be found when looking for a joint partition of genes and tissues
(or experimental conditions) in microarray data analysis (see e.g. Martella
et al. (2008)), of words and documents in web data analysis (see e.g. Li and
Zha (2006)), or, in general, when latent block-based clustering is pursued (see
e.g. Govaert and Nadif (2007)). Further interesting links can be established
with multi-layer mixture, see e.g. Li (2005), and with hierarchical mixture of
experts models, see e.g. Titsias and Likas (2002).

The plan of the paper is as follows. In section 2 the proposed model is
introduced in a general setting. In section 3 a modified EM algorithm for ML
estimation of model parameters is discussed. In section 4 the proposed model
is detailed to analyze the empirical cases where the outcome yij represents the
number of times the i-th individual buys the j-th product, ie a non negative
integer (count) variable. In section 5 the analysis of a benchmark dataset is
described. Concluding remarks and future research agenda are focused on in
the last section.

2 The Model

We adopt a mixture model framework by assuming that the population con-
sists of G classes in proportions π1, . . . , πG,

∑G
g=1 πg = 1, πg ≥ 0,∀g =

1, . . . , G. An unobservable G-dimensional component indicator vector ui =
(ui1, . . . , uiG) is associated to each unit with a unique non null element, denot-
ing whether the i-th unit belongs to class g or not, i = 1, . . . , n, g = 1, . . . , G.
Thus, the unobservable class-specific labels uig are defined to be 1 or 0
whether or not the i-th unit belongs to the g-th class, g = 1, . . . , G, see
e.g. Titterington et al. (1985). In such a mixture sampling scheme, the sam-
ple is obtained by first drawing, independently for each unit, its membership
class label, uig, g = 1, . . . , G from the population with p.d.f. h (ui;π); then,
values of the outcome variables are drawn from the population with p.d.f.

f (yi; θg, | uig = 1) = fg (yi | θg) (1)

where fg (yi | θg) is the g-th class-specific density with indexing parameter
vector given by θg.

In this context, as usual, the individual (class-specific) component indica-
tors ui = (ui1, . . . , uiG) are assumed to be independent multinomial random
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variables with probabilities given by π = (π1, . . . , πG). Thus, each observation
yi, i = 1, . . . , n, is sampled from the finite mixture density

f (yi | π, θ1, . . . , θG) =
G∑

g=1

πgfg (yi | θg) (2)

where π = (π1, . . . , πG) is the prior probability vector, with elements πg ≥ 0,
g = 1, . . . , G,

∑G
g=1 πg = 1. Let (yi,ui), i = 1, . . . , n be a sample drawn under

the above sampling scheme; the (complete data) joint probability density
function is given by:

f (yi,ui | θ, π) = f (yi | θ,ui) g (ui | π) =
G∏

g=1

[πgfg (yi | θg)]
uig (3)

and the resulting complete-data log-likelihood is expressed by

`c (θ1, . . . , θG, π) =
n∑

i=1

G∑
g=1

uig log [πgfg (yi | θg)] (4)

As usual in finite mixture modeling, the estimation of class-specific pa-
rameters θg, g = 1, . . . , G and class-specific priors, π is based on an EM-type
algorithm that allows to identify the class densities and, as a byproduct, to
assign each individual to a class, for instance through a maximum a posteriori
(MAP) rule.

In the present context, however, we may use the available covariates
to model choice behavior, where the explanatory variables may include at-
tributes of the choice alternatives (for example cost) as well as characteristics
of the individuals making the choices (such as income, age, etc.). Let us as-
sume that, within the g-th individual-specific class (g = 1, . . . , G), we can
identify a partition of the outcomes (products) in Kg classes.

For example, we may assume that different classes of individuals present
different propensities towards products and that their choices are influenced
by individual characteristics as well as by the attributes of such products. It
follows that individuals that are similar (belonging to the same g-th class)
make different choices of products, i.e. they behave differently with respect
to such products, defining Kg different classes of products. Let us define an
unobservable Kg-dimensional product-specific component indicator vij|g =(
vij1|g, . . . , vijKg|g

)
indicating the product-specific cluster the j-th product

belongs to, conditional on the i-th individual belonging to the g-th individual-
specific class. Furthermore, let πk|g = Pr

(
vijk|g = 1

)
= Pr (vijk = 1 | uig = 1),

i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . ,Kg, g = 1, . . . , G, denote the prior prob-
ability that the j-th product belongs to the k-th product class conditionally
on the i-th individual belonging to the g-th individual-specific class.
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We also denote with πkg = Pr
(
uigvijk|g = 1

)
= πgπk|g, j = 1, . . . , p the

prior (joint) probability for individual i in class g and product j in class
k within class g. However, due to covariates availability, we do not define
directly the terms πg, g = 1, . . . , G, but rather their conditional counterpart
τig, given the observed individual-specific vector xi, i = 1, . . . , n:

τig = Pr (uig = 1 | xi) ∝ exp
(
xT

i βg

)
i = 1, . . . , n, g = 1, . . . , G (5)

where βg is a class-specific vector of regression coefficients , with βG = 0 to
ensure model identifiability. Furthermore, let

τijk|g = Pr
(
vijk|g = 1 | uig = 1, zj

)
∝ exp

(
zT

j γk|g
)

j = 1, . . . , p, k = 1, . . . ,Kg (6)

denote the conditional counterpart of πk|g, zj be the observed product-specific
covariates vector and γk|g be the product class-specific vector of regression
coefficients, given the class of individuals. The joint probability for the i-th
individual and the j-th product follows: τijkg = Pr

(
uigvijk|g = 1 | xi, zj

)
=

τigτijk|g, i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . ,Kg.
Given such modeling assumptions, the conditional probabilities may be

written as

log(τig) ∝ xT
i βg

log(τijk|g) ∝ zT
j γk|g

log(τijcr) ∝ xT
i βg + zT

j γk|g

Expressions above define multinomial logit models that incorporate both
types of covariates (individual- and product- specific) in order to study how
they affect the probability of the i-th individual and the j-th product to
belong to a certain class (defined by the couple [g, (k | g)] from the whole set
of
∑G

g=1Kg classes. Since each observation is sampled from a finite mixture
density, the marginal density of yi can be written as follows:

f (yi | π, θ) =
G∑

g=1

πg

Kg∑
k=1

πk|gfk|g
(
yi | θk|g

)
=

G∑
g=1

Kg∑
k=1

πgkfk|g
(
yi | θk|g

)
(7)

where θk|g, g = 1, . . . , G, k = 1, . . . ,Kg, is a class-specific parameter set
(indexing the class-specific distribution fk|g), and represents the propensity
that an individual in the g-th class “chooses” a product in the k-th class,
while θ =

{
θk|g, g = 1, . . . , G, k = 1, . . . ,Kg

}
shortly denotes the whole model

parameter set. Thus, the marginal density, if the p products are assumed to
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be independent, can be written as follows:

f (yi | xi, zj , θ) =

=
G∑

g=1

τigfg (yi | uig = 1,xi, θ) =
G∑

g=1

τig

 p∏
j=1

fg (yij | uig = 1,xi, θg)

 =

=
G∑

g=1

τig

 p∏
j=1

Kg∑
k=1

τijk|gfk|g
(
yij | uig = 1, vijk|g = 1,xi, zj , θk|g

)
while the log-likelihood has the following form:

`(·) =
n∑

i=1

log

 G∑
g=1

τig

p∏
j=1

Kg∑
k=1

τijk|gfk|g
(
yij | θjk|g

)
3 ML Parameter Estimation

As usual, the component indicator labels uig, vijk|g, i = 1, . . . , n, j = 1, . . . , p,
g = 1, . . . , G, k = 1, . . . ,Kg are unobservable; thus, they can be considered
as missing data and, naturally, an EM algorithm for parameter estimation
can be adopted. The space of the complete data is given by (yij ,ui,vj),
i = 1, . . . , n, j = 1, . . . , p. Assuming multinomial distributions for both the
ui’s and the vj ’s, the log-likelihood for the complete data can be written as:

`c (·) ∝
∑n

i=1

∑G
g=1 uig log (τig) +

∑n
i=1

∑G
g=1

∑Kg

k=1

∑p
j=1 uigvijk|g

{
log
(
τijk|g

)
+ log

[
fk|g

(
yij | θk|g

)]}
In the t-th step of the EM algorithm, we define the log-likelihood for the

observed data by taking the expectation of the log-likelihood for complete
data over the unobservable class label vectors ui and vj given the observed
data y and the current maximum likelihood estimates of model parameters
Φ(t−1) =

{
Θ(t−1), τ (t−1)

}
.

Let ũ(t)
ig = Pr(uir = 1 | yi, θ

(t−1)
g ) and ṽijk|g = Pr(vijk = 1 | uig =

1,yi, θk|g) denote the posterior probabilities that the i-th individual belongs
to the g-th class and that the j-th product belongs to the k-th class of prod-
ucts nested within the g-th class of individuals, conditional on the observed
data and the current parameter estimates. Note that w̃(t)

ijkg = ũ
(t)
ig ṽ

(t)
ijk|g =

Pr(uigvijk|g = 1 | yi, θk|g) holds, where wijkg = uigvijk|g. Thus, computation
of the expected value of the complete data log-likelihood (in the E step of
the EM algorithm) involves computing these sets of posterior probabilities by
considering an Upward/Downward-type algorithm which takes into account
that product memberships are independent given the memberships of the in-
dividuals within class g, due to local independence assumption within class g.
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Specifically, conditionally on the g-th class, the j-th product is independent
of the other products.

At the t-th step, by replacing uig and vijk|g with their conditional ex-
pectations we may define the conditional expectation of the complete data
log-likelihood given the observed data and the current parameter estimates
as:

Q(t) (·) = EΦ(t−1)

[
`(·) | y, θ(t−1)

]
∝

n∑
i=1

G∑
g=1

ũ
(t)
ig log

[
exp(xT

i βg)

1 +
∑G−1

s=1 exp(xT
i βs)

]
+

∑n
i=1

∑G
g=1

∑Kg

k=1

∑p
j=1 ũ

(t)
ig ṽ

(t)
ijk|g

{
log
[

exp(zT
j γk|g)

1+
∑Kg−1

l=1 exp(zT
j γl|g)

]
+ log

[
fk|g

(
yij | θk|g

)]}
Maximizing Q(t)(·) with respect to Φ =

{
θk|g, βg, γk|g

}
, g = 1, . . . , G,

k = 1, . . . ,Kg, the ML estimates for the class-specific and regression model
parameters may be derived.

3.1 The EM algorithm

The adopted Expectation-Maximization (EM) algorithm requires a special
implementation of the Expectation (E) step where an Upward/Downward-
type algorithm, see e.g. Vermunt (2007, 2008), is used at the t-th step to first
calculate ũ(t)

ig , i = 1, . . . , n, g = 1, . . . , G and ṽ(t)
ijk|g, j = 1, . . . , p, k = 1, . . . ,Kg

within each class g.

E-Step Given current model parameters estimates, calculate

ṽ
(t)
ijk|g =

τ
(t−1)
ijk|g fk|g

(
yij | θ(t−1)

k|g

)
∑Kg

l=1 τ
(t−1)
ijl|g fl|g

(
yij | θ(t−1)

l|g

) =
hijk|g

hij|g

and

ũ
(t)
ig =

τ
(t−1)
ig fg

(
yi | θ(t−1)

g

)
∑G

s=1 τ
(t−1)
is fs

(
yi | θ(t−1)

s

) =
τig
∏p

j=1 hij|g∑G
s=1 τig

∏p
j=1 hij|g

Secondly, the joint posterior of uig and vijk|g, the term that enters in the
expected complete data log-likelihood, is computed:

w̃
(t)
ijkg = ũ

(t)
ig ṽ

(t)
ijk|g = Pr

(
uigvijk|g = 1 | yi, θk|g

)
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M-Step Given the current values of posterior probabilities, find the ML
estimates for model parameters by solving the following score equations

∂Q (·)
∂βg

=
n∑

i=1

ũ
(t)
ig

∂τig(xi)
∂βg

= 0

∂Q (·)
∂γk|g

=
n∑

i=1

ũ
(t)
ig

p∑
j=1

ṽ
(t)
ijk|g

∂τijk|g(zj)
∂γk|g

=
n∑

i=1

p∑
j=1

w̃
(t)
ijkg

∂τijk|g(zj)
∂γk|g

= 0

∂Q (·)
∂θk|g

= 0

g = 1, . . . , G, k = 1, . . . ,Kg = 0.

4 Discrete Choice Count Data

In the case of count data (for example counts of different products bought
by each consumer), the responses yij are assumed to be (conditionally) inde-
pendent Poisson random variables

yij | uig, vijk|g ∼ Poi(θk|g)

in class k of products within class g of consumers. By solving the correspond-
ing M-step equations, at the t-th step the class-specific parameter estimates
are defined by:

θ̂
(t)
jk|g =

∑n
i=1 yijw̃

(t)
ijkg∑n

i=1 w̃
(t)
ijkg

j = 1, . . . , p, g = 1, . . . , G, k = 1, . . . ,Kg

A more parsimonious model can be defined by assuming that the class-
specific parameters are equal, up to a scale product-specific parameter, θjk|g =
θjθk|g, j = 1, . . . , p, g = 1, . . . , G, k = 1, . . . ,Kg. Under such an assump-
tion, at the t-th step the corresponding parameter estimates are calculated,
by adopting an ECM (Expectation-Conditional Maximization) algorithm, as
follows:

θ̂
(t)
k|g =

∑n
i=1

∑p
j=1 w̃

(t)
ijkgyij∑n

i=1

∑p
j=1 w̃

(t)
ijkg θ̂

(t−1)
j

g = 1, . . . , G, k = 1, . . . ,Kg

and, respectively,

θ̂
(t)
j =

∑n
i=1

∑G
g=1

∑Kg

k=1 w̃
(t)
ijkgyij∑n

i=1

∑G
g=1

∑Kg

k=1 w̃
(t)
ijkg θ̂

(t)
k|g

, j = 1, . . . , p
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5 Example: crackers data

We consider an optical scanner panel data set on purchases of four brands
of saltine crackers in the Rome (Georgia) market, collected by Information
Resources Incorporated. The data set contains information on purchases of
crackers made by n = 136 households over about two years (Franses and
Paap (2001). The brands were Nabisco, Sunshine, Keebler and a collection
of private labels. The total number of purchases (3292) has been synthesized
to get the number of purchases of each brand made by each household. The
average actual price (in US$) of the purchased brand and the shelf price of
other brands is available as product-specific covariate. Additionally, we know
whether there was a display and/or newspaper feature of the four brands
at the time of purchase. Hence, we use 3 product-specific covariates, namely
price, newspaper featured only, display and newspaper featured dummies.

We fitted the proposed model for a varying number of individual-specific
(i.e. row-specific) components, G = 1, . . . , 6 and, for each choice of G, for
varying number of product-specific (i.e. column-specific) components, Kg ≡
K = 1, 2. It is worth noting that, in the present context, no individual-
specific covariates have been used; for this reasons, we have covariates-free
prior estimates for the partition of units. The optimal number of components
can be selected by using penalized likelihood criteria, such as AIC or BIC.
Table 1 synthesizes obtained results in terms of row- and column-specific
partitions; moreover, the maximized log-likelihood value `, the number of
estimated parameters d and the penalized likelihood criteria are reported.

K = 1
G 1 2 3 4 5 6

` -2915.6 -2835.4 -2824.2 -2819.9 -2814.9 -2813.8
d 6 9 12 15 18 21

AIC 5843.2 5688.8 5672.4 5669.8 5665.8 5669.6
BIC 5860.7 5715.0 5707.4 5713.5 5718.2 5730.8

K = 2
G 1 2 3 4 5 6

` -1533.9 -1366 -1329.4 -1308.1 -1308.1 -1308.1
d 10 17 24 31 38 45

AIC 3087.8 2766 2706.8 2678.2 2692.2 2706.2
BIC 3116.9 2815.5 2776.7 2768.5 2802.9 2837.3

Table 1. Penalized Likelihood Criteria for the crackers dataset

As can be easily observed by looking at the table above, both penalized
likelihood criteria suggest the use of a solution with G = 4 individual-specific
components and Kg = 2 product components. Component priors can be
interpreted by looking at the model parameter estimates, say βg and γk|g,
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g = 1, . . . , G, k = 1, . . . ,Kg or by looking at averaged τ̂ estimates. As far as
the individual partition is concerned, by using a MAP allocation rule we have
that the size of each component are (n1, n2, n3, n4) = (32, 46, 37, 21), with es-
timated priors (τ̂1, τ̂2, τ̂3, τ̂4) = (0.24, 0.34, 0.27, 0.15). The estimated column
partition is, roughly speaking, composed of two classes: the first includes
Nabisco, the second all the remaining brand. However, posterior product-
specific component memberships vary across individual-specific classes, with
a higher entropy associated to Nabisco and Private, while a smaller entropy is
associated to Keebler and Sunshine. In the following table, we denote with Pg,
g = 1, . . . , 4, the household-specific components (i.e. row-specific clusters),
and with Pk|g, k = 1, 2 the product-specific components (i.e. column-specific
clusters).

Nabisco Private Sunshine Keebler

Comp P1|g P2|g P1|g P2|g P1|g P2|g P1|g P2|g
P1 0.36 0.64 0.68 0.32 0.90 0.10 0.92 0.08
P2 0.75 0.25 0.35 0.65 0.18 0.82 0.17 0.83
P3 0.43 0.57 0.71 0.29 0.90 0.10 0.92 0.08
P4 0.81 0.19 0.35 0.65 0.26 0.74 0.31 0.69

Table 2. Prior estimates for product-specific partition for the crackers dataset

As far as column-specific partition is concerned, one of the two compo-
nents (which vary according to row-specific components, showing some label
switching phenomenon), is mainly linked to brand Nabisco, while the other
component is associated to remaining brands. By a simple descriptive anal-
ysis, Nabisco is clearly the market leader (with a 54% share), while private
labels represent a good second (31 % share). Nabisco is also associated to a
medium-high price and with a higher sample mean for the dummies indicat-
ing whether the brand was on display and newspaper featured, or newspaper
featured only; these covariates, therefore, tend to be significantly associated
to the column-specific components the brand Nabisco belongs to. By look-
ing at the components specific parameter estimates θk|g (not reported here
for sake of brevity), we can notice that households in component 1 tend to
purchase more products from the second class (ie Sunshine, Kleeber and Pri-
vate brands), while households in components 2 and 3 tend to significantly
favor Nabisco, especially in the 2nd column-specific component within the
3rd row-specific component. Row-component 4 mean purchase values are not
far from the whole sample average. The obtained partition could be further
explored, should household-specific covariates be available; this would help
us understand whether the observed component-specific behaviors can be, at
least partially, associated to observed, household-specific, heterogeneity.
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6 Concluding remarks

In this paper, we have proposed a two-level finite mixture model for the clus-
tering of rows (units) and columns (variables) of a data matrix. The proposal
has been sketched in the field of consumers’ behavior, but can be easily ex-
tended to other research context, such as gene expression and text mining
analyses, where a partition of objects and features is of interest. The model
has been proposed in a maximum likelihood framework and the correspond-
ing (modified) EM algorithm has been outlined. Further extensions of this
model can be proposed by looking at different combinations for individual
and product-specific covariates, and by adopting different representations for
component-specific distribution parameters.
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Abstract. This article reports the development of local influence diagnostics of
Buckley-James model consisting of variance perturbation, response variable per-
turbation and independent variables perturbation. The proposed diagnostics im-
proves the previous ones by taking into account both censored and uncensored
data to have a possibility to become an influential observation. Note that, in the
previous diagnostics of Buckley-James model, influential observations merely come
from uncensored observations in the data set. An example based on the Stanford
heart transplant data is used for illustration. The data set with three covariates is
considered in an attempt to show how the proposed diagnostics is able to handle
more than one covariate, which is a concern to us as it is more difficult to identify
peculiar observations in a multiple covariates.

Keywords: Buckley-James model, censored data, diagnostic analysis, local
influence, product-limit estimator

1 Introduction

Considering that researchers normally deal with data sets that contain more
than one covariate, the multivariate censored regression emerges and can be
defined as below

Y = Xβ + ε, ε ∼ F

where

• Y is a n× 1 vector of response variable, which is right censored;
• X is a known n× (p+ 1) matrix as the first column of 1’s to provide an

intercept;
• β is a (p + 1) × 1 vector of parameters where it is estimated by

bT = (b0, b1, . . . , bp);
• ε is n×1 vector of errors and the distribution has an unknown survival

function, S = 1− F .

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 35, c© Springer-Verlag Berlin Heidelberg 2010
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If the matrix, X contains only uncensored observations, then the regression
parameters can be estimated as

b = (XTX)−1XTY. (1)

However, if X contains censored observations, then the regression parameters
cannot be estimated directly as (1). Firstly, one needs to renovate the response
variable for multivariate censored regression based on the censor indicator,
δT = (δ1, δ2, . . . , δn) as the following equation

Y∗(b) = Xb + Q(b)e(b), (2)

where Q(b) = diag(δ) + qik(b), is the upper triangle Renovation Weight
Matrix containing censored status on the main diagonal (Smith (2002)) and
e(b)= Z-Xb where ZT = (Z1, Z2, . . . , Zn) are the observed responses sub-
ject to censoring indicator, δ and qik is

qik(b) =


dF̂ (ek(b))δk(1− δi)

Ŝ(ei(b))
if k > i,

0 if otherwise,
(3)

where dF̂ (ek(b)) is the probability mass assigned by F̂ to ek and Ŝ(ei(b)) is
the Kaplan-Meier estimator applied to the ek(b).

In multivariate censored regression, the iteration concept is applied to
develop the Buckley-James estimators:

bm+1 = (XTX)−1XT (Xbm +Q(bm)(Z −Xbm)). (4)

Note that m = 1, 2, . . . refers to the number of iterations. The solution
of (4) can be obtained as the norm of the left side is small (James and
Smith (1984)) and (Lin and Wei (1992)). Nevertheless if the iteration fails
to converge, one can solve this problem by taking the average of all possible
solutions of β (Wu and Zubovic (1995)). Note that where there is an exact
solution, the Buckley-James estimators are given as below

β̂ = (XTQX)−1XTQZ. (5)

Since QY ∗ = QZ, therefore (5) can be rewritten as the following equation

β̂ = (XTQX)−1XTQY∗. (6)

2 Local Influence Diagnostics for the Buckley-James
model

Local influence diagnostics can be used to discover influential observations in
a data set. Local influence was proposed by Cook in 1986 and it was based on
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likelihood displacement. It is an alternative method to the global influence,
i.e. deletion case, which suffers from a form of the masking effect. Details
regarding diagnostics based on case deletion can be found in Andrews and
Pregibon (1978) and Atkinson (1981).

Even though the local influence approach has been applied mostly to
regression models, it also works well in other statistical areas. As an example,
Shi (1997) studied local influence in a multivariate model. He presented the
idea of combining a general influence function and generalised Cook statistic
as a new concept of local influence. This concept is easier to apply without
considering a likelihood assumption.

In a censored regression, most diagnostic studies based on local influence
have been done for the Cox model and the Kaplan-Meier model (see, Reid
(1981); Pettitt and Daud (1989); Weissfeld (1990)). Studies on influence ob-
servations for the Cox model using the local influence method can be found
in Pettitt and Daud (1989) and Weissfeld (1990). Pettitt and Daud (1989)
proposed an overall measure of influence that uses the asymptotic covariance
matrix, where this measure approximates the change in likelihood displace-
ment if the individual observation is deleted.

The local influence approach proposed by Weissfeld (1990) was different
from Pettitt and Daud (1989) since it was based on perturbation of the
likelihood function and perturbation of covariates included in the model.

To evaluate the local change of small perturbation on some issues, firstly,
one needs to define the general influence function and generalised Cook statis-
tics proposed by Shi (1997). The general influence function of T ∈ Rp+1, can
be displayed as

GIF (T, h) = limε→0
T (wo + εh)− T (wo)

ε

where w = wo + εh ∈ Rn describes a perturbation with the null perturba-
tion, wo fulfils T (wo) = T and h ∈ Rn refers to a unit-length vector. Next,
one can specify generalised Cook statistics to measure the influence of the
perturbations on T as

GC(T, h) =
{GIF (T, h)}T M {GIF (T, h)}

c
,

where M is a p × p positive-definite matrix and c is a scalar. One may find
a direction of hmax(T ) to perturb a datum and maximize local change in T .
The direction of hmax(T ) can be derived by maximizing the absolute value of
GC(T, h) with respect to h. The serious local influence appears if maximum
value GCmax(T ) = GC(T, hmax(T )). Next following sections will present the
local influence diagnostics for the Buckley-James model, which consist of

• variance perturbation;
• response variable perturbation;
• independent variables perturbation.
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2.1 Perturbing the variance for censored regression

By using the Buckley-James estimators as follows

b = (XTQX)−1XTQY ∗ (7)

perturb the variance of the error in (7), by replacing ε as εw ∼ N(0, σ2W−1).
Let W be diagonal matrix

W =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn


and vector wT = (w1, w2, . . . , wn) and w is given by w = w◦ + εh, where
wT
◦ = (1, 1, . . . , 1), the n-vector of ones and hT = (h1, h2, . . . , hn) refers to a

unit-length vector. Hence, W can be written as

W = In + εD(h), (8)

where In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 and D(h) =


h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...
0 0 · · · hn

 .

Now (7) becomes

b(w) = (XTWQX)−1XTWQY ∗. (9)

By replacing W = diag(w1, w2, . . . , wn) in (9), b(w) can be rewritten as
below

b(w) = (XT {In + εD(h)}QX)−1XTWQY ∗

= [(XTQX)−1 − ε
{
(XTQX)−1XTQD(h)X(XTQX)−1

}
]×XTWQY ∗,

where XTWQY ∗ = XT {In + εD(h)}QY ∗ = XTQY ∗ + εXTQD(h)Y ∗.
Therefore, b(w) is given by

b(w) = [(XTQX)−1 − ε
{
(XTQX)−1XTQD(h)X(XTQX)−1

}
]×XTWQY ∗

= b+ ε
{
(XTQX)−1(XTQD(h)e∗)

}
+O(ε2). (10)

where e∗ = Y ∗ − Xb. From (10), the general influence function of b under
the perturbation is obtained as GIF (b, h) = (XTQX)−1XTQD(e∗)h. Next,
the generalised Cook statistic of b is developed. It is scaled by M = XT 4X
in censored regression following that cov(b) = (XT 4X)−1σ2

BJ , where 4 =
diag(δ1, δ2, . . . , δn). Therefore

GC1(b, h) =
hTD(e∗)(H∗)2 4D(e∗)h

ps2
, (11)
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where H∗ = X(XTQX)−1XTQ is renovated leverage for censored regression
and s2 is the estimate variance.

By applying M = XTX to the scaled generalised Cook statistic, which
is based on least square regression framework cov(b) = (XTX)−1σ2, one can
find GC2(b, h) as follows

GC2(b, h) =
hTD(e∗)(H∗)2D(e∗)h

ps2
. (12)

The diagnostic direction hmax can be obtained by calculating the eigenvec-
tor correpsonding to the largest eigen value of matrices D(e∗)(H∗)24D(e∗)
and D(e∗)(H∗)2D(e∗) from (11) and (12) respectively.

2.2 Perturbing response variables for censored regression

The response variable can be perturbed as Y ∗w = Y ∗ + εh, where h ∈ Rn

refers to a unit-length vector. Let equation (XTQX)−1XTQY ∗ become

(XTQX)−1XTQY ∗w = (XTQX)−1XTQ(Y ∗ + εh)

= b+ ε(XTQX)−1XTQh. (13)

Therefore, the general influence function of b under the perturbation can be
shown as

GIF (b, h) = (XTQX)−1XTQh. (14)

Now two generalised Cook statistics can be developed by using the scale
M = XT 4 X and M = XTX based on censored regression and the least
square regression framework (LSR), which are

cov(b) =

{
(XT 4X)−1σ2

BJ if (censored regression),
(XTX)−1σ2 if (LSR).

(15)

respectively, where 4 = diag(δ1, δ2, . . . , δn). Hence, GC1(b, h) =
hT (H∗)2 4 h

ps2

and GC2(b, h) =
hT (H∗)2h

ps2
.

2.3 Perturbing independent variables for censored regression

In global influence, the ith case can be considered as influential on inde-
pendent variables if deleting it from the data set will change the estimated
regression function. This crisis can be seen in local influence by introducing
small perturbations to independent variables. If one perturbs the ith column
of X as

Xw = X + εlihd
T
i ,
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where

• li represents the scale factor, this accounts for the different measurement
units associated with the columns of X. Normally li is the standard de-
viation of the ith coefficient (Weissfeld (1990));
• i = 1, 2, . . . , p and
• di is a p× 1 vector with one in the ith position and zeroes elsewhere.

Therefore,

(XT
wQXw)−1 =

{
(X + εlihd

T
i )TQ(X + εlihd

T
i )
}−1

= (XTQX)−1 − εli(XTQX)−1×
(XTQhdT

i + dih
TQX + dih

ThdT
i )(XTQX)−1 +O(ε2)

and XT
wQY

∗ = (X + εlihd
T
i )TQY ∗ = XTQY ∗ + εlidih

TQY ∗. Later, one can
find (XT

wQXw)−1(XT
wQY

∗) as

(XT
wQXw)−1(XT

wQY
∗) = b+ εli(XTQX)−1

{
dih

TQ(e∗)−XTQhdT
i b
}

+O(ε2).

Thus the general influence function of b under the perturbation can be shown
as

GIF (b, h) = li(XTQX)−1[dih
TQ(e∗)−XTQhdT

i b].

One can replace the ith element of b, therefore dT
i b = bi and now one has

GIF (b, h) = li(XTQX)−1[di(e∗)T − biXT ]Qh. (16)

Then two generalised Cook statistics for b are constructed as:

GC1(b, h) =
l2i h

TH∗ 4
{
e∗dT

i − biX
}

(XTQX)−1
{
di(e∗)T − biXT

}
Qh

ps2
,

(17)

whereas

GC2(b, h) =
l2i h

TH∗ {e∗dT
i − biX

}
(XTQX)−1

{
di(e∗)T − biXT

}
Qh

ps2
. (18)

It is noted that (17) and (18) were developed using similar scales as §2.2
and 4 = diag(δ1, δ2, . . . , δn). One can obtain the diagnostic direction hmax

by computing the eigenvector corresponding to the largest eigenvalue of the
following matrice

H∗ 4
{
e∗dT

i − biX
}

(XTQX)−1
{
di(e∗)T − biXT

}
Q,

or
H∗ {e∗dT

i − biX
}

(XTQX)−1
{
di(e∗)T − biXT

}
Q

from (17) and (18) respectively.
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3 Illustration

This Stanford heart transplant data contains 184 patients with variables such
as survival time(days), censored status, age at time of first transplant (in
years) and T5 mismatch score. The mismatch score refers to the continuous
score derived from antibody responses of pregnant women by Charles Bieber
of Stanford University (Crowley and Hu (1977)). In this article, only 152
patients are considered, corresponding to a survival time equal to at least 10
days and with complete records. From 152 patients, 55 were deceased, i.e.
were uncensored and 97 were alive, i.e. were censored. The Buckley-James
model for this data set was developed as

Y = β0 + β1AGE + β2AGE
2 + β3T5.

First, consider the variance perturbation. The index plot of |hmax| in Fig-
ure 1 shows patients aged below 20 years as the most influential cases. The
plot denote the censored observations as solid circles and uncensored obser-
vations as hollow triangles.This finding agrees well with Reid and Crepeau
(1985), and Pettitt and Daud (1989) where patients aged 13, 15 and 12 years
in order have the greatest influence on variance. Note that the patient aged
15 years old is a censored observation. Next, consider the perturbation of
response variable and individual independent variables. It is obvious that the
most influential patients are aged below 20 years and two patients aged above
60 years. Removal of the patients aged 12 and 13 decreases β̂1 by 0.010 and
0.030 respectively, while removal of the patient aged 15 increases β̂1 by 0.015.
There is no impact on the estimator values in the Buckley-James model when
deleting those observations (one at a time) since the maximum eigenvalues

Fig. 1. Index plots of |hmax| for perturbing variance for Stanford heart transplant
data (n = 152).
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for the perturbation of the variance, response variable, x1 and x2 are small
at 0.142, 0.021, -0.002 and 1.000 respectively. However, when the p-value is
scrutinized, one can find the p-value for x1 is roughly five times larger when
deleting case 1, and triple when deleting case 4, whereas deleting case 2 has
a large effect on the p-value of x2 where the value becomes fourteen times
larger. No attention is given to x3 since this variable is not strongly associated
with survival time.

4 Conclusion

The proposed local influence diagnostics for the Buckley-James model per-
forms very well for identifying influential cases and for assessing the effects
that perturbations to the assumed data would have on inferences. It should
also be noted that the proposed diagnostics is able to easily detects influential
observations from both groups i.e. censored and uncensored observations in
the data set as opposed to the previous diagnostics for Buckley-James model.
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de la Géraudière, BP82225, 44322 Nantes Cedex, France,
elmostafa.qannari@oniris-nantes.fr

Abstract. We address the problem of describing several categorical variables with
a prediction purpose. We focus on methods in the multiblock modelling framework,
each block being formed of the indicator matrix associated with each qualitative
variable. We propose a method, called categorical multiblock Redundancy Analysis,
based on a well-identified global optimization criterion which leads to an eigensolu-
tion. In comparison with usual procedures, such as logistic regression, the method
is well-adapted to the case of a large number of redundant explanatory variables.
Practical uses of the proposed method are illustrated using an empirical example
in the field of epidemiology.

Keywords: supervised classification, discriminant analysis, multiblock re-
dundancy analysis, multiblock PLS, categorical variables

1 Introduction

Research in veterinary epidemiology is concerned with assessing risk fac-
tors of animal health issues, usually manifested as binary variable (unin-
fected/infected) or categorical variable with more than two categories which
cover a spectrum of categories rangin from unapparent to fatal. Explanatory
variables, i.e. potential risk factors for the disease, consist in data gathered
from animal characteristics, farm structure, management practices and labo-
ratory results, among others. These variables are usually measured or coded
as qualitative variables. In a more formal way, we address the problem of
explaining a qualitative variable y with respect to K other qualitative ex-
planatory variables (x1, . . . , xK). All these variables are measured on the
same epidemiological unit, i.e. animals or farms. This problem is related to
discriminant analysis or supervised classification on categorical data. The
statistical procedures usually performed are particular cases of Generalized
Linear Models, especially complex models of logistic regression. These models

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 36, c© Springer-Verlag Berlin Heidelberg 2010
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have appealing advantages that justified their wide use. However, all the po-
tential explanatory variables can usually not be included in a single model.
Moreover, all the potential explanatory variables cannot be included in a
single model because they are usually plagued by redundancy. It is known
that in these circumstances, the relevance and the stability of the results are
impaired. As a consequence, alternative non-parametric procedures, such as
recursive partitioning (decision trees) or artificial neural networks, are also
applied to veterinary epidemiological data. But the performance of such spe-
cific techniques is highly dependent on sample size assumptions. They do
not perform well on veterinary data. Other discrimination methods, such as
Boosting, Bagging or Support Vector Machine can also be applied. Although
their misclassification error rate is small, they do not provide a link between
dependent and explanatory variables to assess the significant risk factors.
Therefore, they are not used for veterinary data, except when no risk factor
assessment is needed, e.g. molecular epidemiology or gene ranking.

Considering the aim and the specificity of veterinary data, our research
work focus on methods related to the multiblock modelling framework, each
block being formed of the indicator matrix associated with each qualitative
variable. The well-known conceptual model is the Structural Equation Mod-
elling (SEM), also known as LISREL. It is extended to categorical data
(Skrondal and Rabe-Hesketh (2005)). As an alternative to LISREL, PLS
Path Modelling is a distribution-free data analysis approach and appears to
be more adapted to biological data. It requires neither distributional nor sam-
ple size assumptions, but lacks a well-identified global optimization criterion.
Moreover, the iterative algorithm convergence is only proven in few particu-
lar cases (Hanafi (2007)). This method is also extended to categorical data
(Lohmöller (1989); Jakobowicz and Derquenne (2007)). For our purpose of
exploring and modelling the relationships between categorical variables, these
problems can be circumvented while using simpler procedures, such as multi-
block (K + 1)−methods. Multiblock Partial Least Squares (Wold (1984)) is
a multiblock modelling technique which is widely used in the field of chemo-
metrics. It is not originally designed as a discrimination tool but it is used
routinely for this purposes in the two-block case (Sjöström et al. (1986);
Barker and Rayens (2003)). We propose a categorical extension of an alter-
native method to multiblock PLS, which gives results more oriented towards
the Y explanation (Bougeard et al. (2008)) and shall refer to it as categorical
multiblock Redundancy Analysis (Cat−mRA).

2 Method

We denote by y the dependent categorical variable measured on N individu-
als, each belonging to one of the classes associated with the Q categories of y.
The associated indicator matrix Y is characterized by a (N×Q) dummy ma-
trix. Let (x1, . . . , xK) be the K explanatory categorical variables measured
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on the same N individuals. Each variable xk has Pk categories and is trans-
formed into a (N × Pk) indicator matrix Xk for k = (1, . . . ,K). The overall
explanatory dataset, segmented intoK blocks, is defined asX = [X1| . . . |XK ]
and, thus, consists of an (N×P ) matrix, where P =

∑
k Pk. Furthermore, let

Dk = X ′
kXk (resp. DY = Y ′Y ) the diagonal matrix whose diagonal elements

are the class size associated with the xk (resp. y) modalities. We denote by
PXk

= XkD
−1
k X ′

k (resp. PY = Y D−1
Y Y ′) the projector onto the subspace

spanned by the dummy variables associated with xk (resp. y). We consider
Ỹ = Y D

−1/2
Y . It is well-known that this standardization restricts the effect

of the class size.

The main idea is that each indicator matrix, Ỹ and Xk for k = (1, . . . ,K),
is summed up with a latent variable, resp. u = Ỹ v and tk = Xkwk, which
represents the coding of the categorical variable, resp. y and xk. This can be
related to the measurement model of SEM , which relates observed indica-
tors to latent variables. In addition, the structural model which specifies the
relations among latent variables is given by the maximization problem (1):

K∑
k=1

cov2(u(1), t
(1)
k ) with t(1)k = Xkw

(1)
k , u(1) = Ỹ v(1), ||t(1)k || = ||v

(1)|| = 1

(1)
We prove that the solution is given by v(1) the eigenvector of

∑
k Ỹ

′PXk
Ỹ

associated with the largest eigenvalue, and that tk = PXk
u(1)/||PXk

u(1)||
(Bougeard et al. (2008)). Actually, the first order solution is proportional to
the constant vector 1 and is therefore removed as it is deemed to correspond
to a trivial solution. From these results, the criterion (1) can be written as
the equivalent maximization problem (2).

K∑
k=1

||PXk
u(1)||2 with t(1)k = Xkw

(1)
k , u(1) = Ỹ v(1), ||t(1)k || = ||v

(1)|| = 1 (2)

As the latent variable u(1) is centered, ||PXk
u(1)||2 is the inter-group variance

of the component u(1), the groups being associated with the modalities of
the variable xk. We recall that u(1) represents the coding of y. Therefore,
it follows that Cat − mRA discriminates the groups associated with the y
modalities on the one hand, and of each xk modalities on the other hand.

As a way to extract a more overall and interpretable information, Cat−
mRA seeks a compromise component t(1) which sums up all the partial cod-
ings (t(1)1 , . . . , t

(1)
K ) associated with the categorical variables (x1, . . . , xK), are

summed up. This global component is sought such as t(1) =
∑

k a
(1)
k t

(1)
k and∑

k a
(1)2

k = 1. This leads to Eq. (3):
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t(1) =
K∑

k=1

||PXk
u(1)||√∑

l ||PXl
u(1)||2

t
(1)
k =

∑
k PXk

u(1)√∑
l ||PXl

u(1)||2
(3)

It follows that t(1) can directly be related to the partial codings (t(1)1 , . . . , t
(1)
K )

on the one hand, and with the coding of the dependent variable y on the other
hand. According to the first equality of Eq. (3), the overall coding t(1) is all
the more related to the codings t(1)k since the normalized squared root of the
inter-group variance is large. In addition, the second equality of Eq. (3) shows
that t(1) is proportional to the average projection of the dependent variable
coding u(1) onto each subspace spanned by the indicator matrix columns of
xk. Moreover, we prove that the overall coding t(1) is also optimum in the
sense that it maximizes the criterion (4), which is equivalent to the previous
criteria (1) and (2).

cov2(u(1), t(1)) with t(1) =
K∑

k=1

a
(1)
k t

(1)
k , t

(1)
k = Xkw

(1)
k , u(1) = Ỹ v(1), (4)

K∑
k=1

a
(1)2

k = 1, ||t(1)k || = ||v
(1)|| = 1

As complex biological issues, such as veterinary epidemiological surveys, are
on the whole not one-dimensional, higher order solutions are provided by con-
sidering the residuals of the orthogonal projections of the indicator matrices
(X1, . . . , XK) onto the subspace spanned by the first global component t(1).
The same maximization is then performed by replacing the matrices with
their residuals. This process is reiterated in order to determine subsequent
components. Moreover, these orthogonal latent variables (t(1), . . . , t(H)) allow
orthogonalised regressions which take in account all the explanatory variables
without any redundancy problem. They also provide the link between depen-
dent and explanatory variables. Bootstrapping simulations (mbt = 500) are
performed to assess standard deviations and tolerance intervals associated
with the regression coefficient matrix. An explanatory variable is considered
to be significantly associated with the dependent variable if the 95% tolerance
interval does not contain 0.

Categorical multiblock Redundancy Analysis can be firstly compared to
logistic regression. Moreover, another usual procedure for categorical dis-
crimination, called Disqual, is also of paramount interest (Saporta, & Niang
(2006)). Cat−mRA can be compared to the categorical extension of multi-
block PLS, called Cat−mPLS, that can be related to PLS path modelling
(PLS − PM) associated with a A mode and a structural scheme. Indeed,
norm constraints and criteria of multiblock methods can respectively be re-
lated to modes and schemes of PLS−PM , although equivalences are proven
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for some specific cases only (Krämer (2007) ; Tenenhaus and Hanafi (2007)).
First of all, the optimal number of components to introduce in the model of
Cat−mRA, Disqual and Cat−mPLS is assessed on the basis of a two-fold
cross-validation procedure (mcv = 500) (Stone (1974)). This led us to provide
fitting and prediction abilities as functions of the number h = (1, . . . ,H) of
latent variables (t(1), . . . , t(H)) used in the model. Then, all the methods are
compared on the basis of their ROC (=Receiver Operating Characteristic)
curves, plots of the sensitivity versus (1-specificity) for a two-class prediction
problem, as the discrimination threshold is varied from 0 to 1. It depicts rel-
ative trade-offs between benefits (true positives) and costs (false negatives).

3 Application

3.1 Epidemiological data and objectives

Data are collected as part of the French antimicrobial resistance monitoring
program. They allow the study of the relationships between antibiotic con-
sumption on farms and antibiotic resistance in healthy slaughtered poultry.
The population consists in a cohort of (N = 554) broiler chickens, randomly
selected from the main slaughterhouses from 1999 to 2002. From each broiler,
Escherichia coli are isolated from pooled cæca and screened for antimicrobial
resistances. The variable of interest (RNAL), i.e. the Nalidixic Acid resis-
tance, is expressed by two classes: RNAL = 0 corresponding to susceptible
E.Coli (n0 = 405) and RNAL = 1 to resistant (n1 = 149). The antimicro-
bial resistance is studied in the light of 14 potential explanatory variables,
related to the chicken production type (one variable coded in three cate-
gories: light, standard, free-range), the previous antimicrobial treatments (7
dichotomous variables: exposed vs non-exposed, to the different antimicro-
bials) and the co-resistances observed (6 dichotomous variables: resistant vs
susceptible, towards the different antimicrobials). Links between explanatory
variables are checked using χ2 tests: 35% of the associations are significant
(pvalueχ2 ≤ 5%); all the variables are involved.

3.2 Selection of the optimal models

The two-fold cross-validation procedure provides fitting and prediction abili-
ties for Cat−mRA, Cat−mPLS and Disqual, as illustrated in Fig. 1. For all
the methods under consideration, best models are obtained with (h = 2) la-
tent variables. Disqual and Cat−mPLS have comparable abilities, whereas
Cat − mRA outperforms both these methods, especially by its ability to
predict susceptible E.Coli (non-presented results).

3.3 Risk factors obtained from Cat − mRA

All the 14 putative explanatory variables are included in the categorical multi-
block Redundancy Analysis. Significant risk factors of the Nalidixic Acid re-
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Fig. 1. Fitting and prediction abilities assessed by a two-fold cross-validation proce-
dure. Comparison of the results obtained from categorical multiblock Redundancy
Analysis, categorical multiblock PLS and Disqual procedure.

sistance are given in Table 1. Chicken exposure to quinolones is found to
increase the risk of isolating a resistant E.Coli strain to the Nalidixic Acid
rather than a susceptible one. Nevertheless, the unrelated antimicrobial usage
would also play a role in selecting resistant E.Coli strains, as other resistances
to chloramphenicol and neomycin are found to be related to the resistance
under study. Moreover, graphical displays of the variable loadings associated
with the first global components may highlight the relationships among the
variable modalities (non-presented results).

3.4 Method comparison

Finally, all the methods are compared on the basis of their ROC curves
(Fig. 2). The logistic regression appears to be the less accurate method, both
in terms of sensibility and specificity. The redundancy between explanatory
variables seems to affect the result stability. The categorical applications of
multiblock methods, i.e. Cat − mRA and Cat − mPLS, give comparable
and correct results. The Disqual procedure provides intermediate results be-
tween logistic regression and multiblock methods, especially for low values of
sensibility and specificity.

4 Concluding remarks

We discuss methods for the analysis of several categorical variables with a
prediction purpose. The key feature is to focus on methods in the multiblock
modelling framework, each block being formed of the indicator matrix of
each qualitative variable. We propose a relevant method, called categorical
multiblock Redundancy Analysis, based on a well-identified global optimiza-
tion criterion with an eigensolution. In comparison with the logistic regression
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Explanatory variables Number of cases Nalidixic Acid resistance

Treatments during rearing:
Tetracyclin 153/554 (27.6%) NS
Beta-lactams 75/554 (13.5%) NS
Quinolones 93/554 (16.8%) 0.0058 [0.0015 ; 0.0101]
Peptids 48/554 (8.7%) NS
Sulfonamides 38/554 (6.9%) NS
Lincomycin 33/554 (6.0%) NS
Neomycin 26/554 (4.7%) NS

Observed co-resistances:
Ampicillin 278/554 (50.2%) NS
Tetracyclin 462/554 (83.4%) NS
Trimethoprim 284/554 (51.3%) NS
Chloramphenicol 86/554 (15.5%) 0.0066 [0.0012 ; 0.0119]
Neomycin 62/554 (11.2%) 0.0094 [0.0037 ; 0.0151]
Streptomycin 297/554 (53.6%) NS

Production:
Export 192/554 (34.6%) NS
Free-range 63/554 (11.4%) NS
Light 299/554 (54.0%) NS

Table 1. Significant contributions of the 14 explanatory variables to the expla-
nation of the Nalidixic Acid resistance, through regression coefficients with their
95% tolerance intervals. Results obtained from categorical multiblock Redundancy
Analysis with (h = 2) latent variables.

Fig. 2. ROC (=Receiver Operating Characteristic) curves of logistic regression, cat-
egorical multiblock Redundancy Analysis, categorical multiblock PLS and Disqual.
The three last methods are based on a model with (h = 2) latent variables.
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procedure, this method is well-adapted to the case of a large number of redun-
dant explanatory variables. Moreover, all the interpretation tools developed
in the multiblock framework can be adapted to enhance the interpretation of
categorical data. Statistical procedures are performed using code programs
developed in Matlab R© and also made available in R. Needless to mention
that multiblock methods can be directly adapted to more complex data, e.g.
several blocks of variables to be explained, thus extending the strategy of
analysis to the prediction of several categorical variables.
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Abstract. The aim of this study is to formulate a suitable Item Response Theory
(IRT) based model to measure HRQoL (as latent variable) using a mixed responses
questionnaire and relaxing the hypothesis of normal distributed latent variable. The
new model is a combination of two models, that is a latent trait model for mixed
responses and an IRT model for Skew Normal latent variable. It is developed in a
Bayesian framework. The proposed model was tested on a questionnaire composed
by 5 discrete items and one continuous to measure HRQoL in children. The new
model has better performances, in term of Deviance Information Criterion, Monte
Carlo Markov chain convergence times and precision of the estimates.

Keywords: IRT model, skew normal distribution, health-related quality of
life.

1 Introduction

Quality of Life (QoL) is an ill-defined term. Although it is not difficult to
intuitively understanding the meaning of quality of life and most people are
familiar with the expression ”quality of life” and have an intuitive under-
standing of what it comprises, there is not still an uniform opinion about it.
The most commonly accepted definition was proposed by the World Health
Organization (WHO) in 1995 (WHOQOL (1995)). They defined QoL as ”in-
dividuals’ perceptions of their position in life, in the context of the culture and
value systems in which they live, and in relation to their goals, expectations,
standards and concerns”. A special aspect of quality of life is Health-Related
Quality of life (HRQoL). The HRQoL is the way, which according to health
of a person, influences his/her capacity to lead with physical and social ”nor-
mal” activities. It is generally accepted that HRQoL is a multidimensional
construct incorporating at least three broad domains: physical, psychologi-
cal and social functioning. Clinicians and policymakers are recognizing the
importance of measuring HRQol to inform patient management and policy
decisions. The advantage of using HRQoL respect to (or in association with)
conventional clinical measurements is the self-perceived point of few. Since
1990 the measurement of HRQoL in adults has seen rapid advances, with
the development of many questionnaires. Two basic approaches to quality of
life measurement are available: generic instruments that provide a summary
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of HRQoL; and specific instruments that focus on problems associated with
single disease states, patient groups, or areas of function. One of the most
commonly used generic measure of HRQoL in the European community is the
EQ-5D. This questionnaire has been advanced by a collaborative group from
Western Europe known as the EuroQol group. The group, originally formed
in 1987, comprises a network of international, multi-disciplinary researchers,
originally from seven centers in England, Finland, the Netherlands, Norway,
and Sweden. More recently, researchers from Spain as well as researchers from
Germany, Greece, Canada, the US, Japan and Italy have joined the group.
The intention of this effort is to develop a generic currency for health that
could be used commonly across Europe (and in other Countries in the World).
It was concurrently developed in many languages by an interdisciplinary team
of European researchers (the EuroQol Group) and published in 1990 (Euro-
Qol Group (1990)). There are official translations in many languages and
more are awaiting official status. The EQ-5D is a brief, standardized, generic
measure of HRQoL that provides a profile of patient function and a global
health state rating (Kind et al. (1998)). The EQ-5D questionnaire was de-
signed for self-administration and simplicity was an important component
of the design. It is intended for use in population health surveys or in com-
bination with a condition-specific instrument for assessment to a specific
condition. It has good reliability and validity and contains five dimensions
(mobility, self-care, usual activity, pain/discomfort and anxiety/depression)
rated on three levels (”no problem,” ”some problem” or ”extreme problem”).
It defines the perceived health status according to five dimensions: mobility,
self care, usual activities, pain/discomfort, and anxiety/ depression. Each di-
mension is described by one specific level of adequacy: no problem, moderate
problems or severe problems. The EQ-5D questionnaire also includes a Visual
Analogue Scale (VAS), by which respondents can attribute their perceived
health status a grade ranging from 0 (the worst possible health status) to
100 (the best possible health status). The responses are classified into one
of 243 possible health state profiles determined by the combinations of the
5 items answers. Each profile can be transformed into the corresponding
preference-based EQ-5D Index, if a valuation study of key health states has
been conducted (Dolan (1997)). The purpose of the study is to use psycho-
metric scaling models (or Item Response Theory models) as an alternative to
preference-based methods to derive HRQoL scores relative to different health
states. IRT models are usually based on the assumption that the observed
items are measuring an underlying (latent) construct, i.e. manifest responses
are assumed to reflect the location of a given subject on a continuum which
is not directly observable (such as intelligence, depressed mood or health-
related quality of life). The parameters of these psychometric measurement
models are estimated by using statistical techniques derived from the specific
assumptions that constitute a particular model. The HRQoL scores are called
person parameters, and the tariffs associated with each level of a given item
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are called item parameters. Item parameters are mathematically treated such
as real parameters of a latent trait model in which person parameters are the
latent trait. The advantage of using psychometric models is that, in contrast
to the techniques used for obtaining preference-based valuations, psychomet-
ric scores can be estimated from existing data without requiring the conduct
of extensive interview studies. However, while preference-based valuations are
measured on a ”natural” scale ranging from perfect health (HRQoL=1) to
death (HRQoL=0) the origin and spread of psychometric category quantifi-
cations are generally defined by suitable but arbitrary scaling parameters.
In this thesis an Item Response Theory (IRT) model for mixed responses (5
polytomous items and the VAS) is proposed to analyzed Italian EQ-5D-Y
questionnaire. The model is developed under the Bayesian framework and it
includes the possibility to suppose Normal or Skew Normal distributions for
the HRQoL latent variable.

2 Material and methods

Item Response Theory (IRT) is usually used as an alternative to Classical
Response Theory (CTT) for analyzing the results of a questionnaire and
improve the instrument. It overcomes the limits of CTT and provides more
information. In this paper, the interest is focused on an aspect of IRT that
usually receives less attention. IRT is explored as a possible alternative to
”conventional” summative scale for the EQ-5D-Y questionnaire answers. The
results of the analysis will furnish also information on the quality of the
measurement, but since the validation procedure is finished in 2007 and it
gave satisfying results, the attention will focused on the ranking ability of the
IRT model. An extensive bibliography is available in this field. IRT originated
in the 1960s (Lord and Novick (1968); Rasch (1960)) and over the years a
large number of researchers have contributed further to the subject. The
general idea is that the probability of a certain answer is a function of a
latent trait value θ, the HRQoL in this case, plus one or more parameters
characterizing the particular item. For each item the probability of a certain
answer as a function of the latent trait is called Item Characteristic Curve
(ICC) or Item Response Function (IRF). The simplest IRT logistic models
for binary items will be presented as a basic introduction. Afterwards, the
dichotomous model is generalized to the Partial Credit Model for polytomous
items, which will be used to analyzed the EQ-5D-Y questionnaire. Estimation
procedures are presented with particular attention to Bayesian techniques.
Let’ θ a latent variable be defined on a scale of minus infinity to plus infinity.
It might be a cognitive ability, a physical ability, a skill, knowledge, attitude,
satisfaction or, more generally, any unobservable variable that describes a
state or condition of a person. The probability of a ”correct response”, or
more generally the answer coded as 1, for subject i on a dichotomous item j,
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given the latent trait (usually called person parameter) is equal to

P (yij = 1|θi) = Pij(θi) = cj + (1− cj)
exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]
(1)

where aj , bj and cj are the item parameters.
bj represents the item difficulty, that is the value of the latent trait for which
the probability of a correct answer is equal to the probability of an incorrect
answer. If an high number of subjects answer an item correctly it is consid-
ered easier than an item to which only a small number of subjects answer
correctly.
aj is the discrimination parameter of item j. In fact, in many tests the item
does not differ only in respect to difficulty but also in respect to discriminat-
ing power. It indicates the degree to which an item distinguishes between the
different levels of latent variable across the continuum.
cj is the pseudo-chance level parameter. It is the probability of answering
correctly when the latent trait level is very low, that is, the probability of
guessing. This parameter is specific for cognitive tests, where there is the
possibility that a student answers item correctly because he/she guesses; in
the context of HrQoL it is more difficult to imagine the use of this kind of
parameter.
The 2 parameter logistic model (2-PLM) is a special case of the 3 parameter
logistic model (3-PLM) with cj = 0 for all items. The 1 parameter logistic
model (1-PLM or Rasch Model) is a special case of the 2 parameter logis-
tic model with aj = 1 for all items. Because of its special properties, it is
not usually considered to be a particular IRT model, but a different kind
of model. The logistic model presented in the previous section is valid only
for tests composed of dichotomous items. Also, the items of a questionnaire
frequently have a polytomous form, that is, more than two possible answers.
The advantage of polytomous items is that, by virtue of their greater number
of response categories, they are able to provide more information over a wider
range of the latent variables than dichotomous items. From the several ex-
isting types of generalized Rasch models for polytomous response categories,
our attention is focused on the Partial Credit Model (PCM), because it will
be used in further parts of the work. The PCM was presented in 1982 by
Master. It can be applied in any situation in which performances on an item
are recorded in two or more ordered categories and there is an intention to
combine results across items to obtain measures on some underlying variable.
The mathematical formulation of the PCM comes from an extension of the
1-PLM. The interpretation of the parameters is similar to the interpretation
of the 1-PLM parameters, except for the fact that in the case of the PCM
the number of item parameters for each item is greater than one. In fact, an
item parameter is obtained for each step (threshold) from a modality to the
one that follows. The total number of thresholds for each item is given by
the number of responses minus 1. The probability of each level answer can be
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plotted as function of the latent variable. One curve for every level will be ob-
tained and they are called Category Characteristic Curves (CCCs). The item
parameter is the latent variable level at which two consecutive CCCs inter-
sect. The main procedures used to estimate the parameters of IRT models are
the Joint Maximum Likelihood (JML) estimation, the Conditional Maximum
Likelihood (CML) estimation and the Marginal Maximum (MML) Likelihood
estimation (Baker (1992)). Further to the methods based on the maximiza-
tion of the likelihood function, Bayesian estimation methods are frequently
used.
A more flexible statistical model then the IRT models already presented is
to theorize to obtain a synthetic score of quality of life (latent variable) from
the EQ-5D-Y questionnaire. Firstly, the model must allow for the analysis
of continuous responses, because the information of the VAS scale could be
included. Secondly, the assumption of normal distribution of the quality of
life score must be relaxed in favour of a skew normal distribution. In fact,
few children coming from a school population are expected to exhibit low
values of quality of life, thus the latent variable is supposed to be skewed to
the right.
Supposing there is a questionnaire composed of r continuous items, s dichoto-
mous items and c polytomous items, where r + s + c = q (total number of
items). Letting wij with j=1...r be the answer of subject i to the continuous
item j, vij with j=1...s being the answer of subject i to the dichotomous item
j and tij with j=1...c being the answer of subject i to the polytomous item
j.
wij ∼ N(µij ,σ2) j=1...r i=1...N vij ∼ Ber(µij) j=1...s i=1...N

tij ∼ Multinomial(µij ,1) j=1...c i=1...N

We assumed the existence of a latent variable θi such that µij=aj θi-bj j=1...r

µij = P (vij = 1) =
exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]
j=1...s (2)

µij = [µijx =
expΣx

t=0[aj(θi − bjt)]

1 + expΣ
kj

k=0[aj(θi − bj)]
, x=1...kjandΣ

0
t=0(θi − bjt) = 0] (3)

It is assumed that θ comes from a generalized normal distribution, the skew
normal distribution θij ∼ SN(α, β, δ) i=1...N. The marginal distribution of
the observed variables yij (wij , tij and vij) is the same as expressed by Mous-
taky (1996) and discussed previously, with the difference that the h(θij), the
prior distribution of the latent variable, is now the Skew Normal distribution
function. Consequently, the log-likelihood can be expressed as

logL = Σn
i=1logf(yj) = Σn

i=1log

∫ +∞

−∞
g(yj |θ)SN(θ)d(θ) (4)
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Considering the likelihood function in equation 4, it is possible to implement a
Bayesian estimation procedure. In fact, having defined priors and hyperpriors
it is possible to write the posterior distribution of the parameters of the model
as

p(ωi|yi) ∝
n∏

j=1

g(wij |ωi)h(σj)
s∏

j=1

g(vij |ωi)
c∏

j=1

g(tij |ωi)
q∏

j=1

h(aj)h(bj)h(θj)(5)

With Gibbs sampling procedures, random samples of person and item pa-
rameters can be drawn from the full conditionals derived from the posterior
distribution specified in equation 5 for this hierarchical model. The validated
Italian EQ-5D-Y questionnaire was included for the first time in a cross-
sectional regional nutritional surveillance study (So.N.I.A) aimed assessing
eating habits in a population of children. Data on HRQoL, nutritional habits
and BMI (calculated from measured weight and height) were collected refer-
ring to a subsample of 13-year old children. The flexible IRT model discussed
above is used principally to obtain a continuum synthetic quality of life score
for each child who compiled the EQ-5D-Y questionnaire. As the item pa-
rameters are also estimates, information on the severity of the items are also
furnished. A Bayesian approach was adopted to obtain the estimates, and
the analyses were carried out using the software WinBUGS 1.4. The results
of the IRT model for mixed items with skew latent variables were compared
with the results obtained using a PCM (only polytomous items) or the IRT
model for mixed items, but not skewed a priori for the latent variable.

3 Results

The posterior estimates for the three models were obtained as the average of
the Gibbs samples. As a rule of thumb, the simulation should be run until
the Monte Carlo error for each parameter of interest is less than about 5%
of the sample standard deviation (Spiegelhalter et al. (2003)). The person
parameters are reported as example for four subjects, three of which have
the same pattern of answers (11111) and different VAS score (θ1 = 11111,
85; θ6 = 11111, 50; θ43 = 11111, 100) and one with a more serious pattern
of answers (31122) and VAS equal to 65 (θ29 = 31122, 65). It is interesting
to consider that Model 1 the HRQoL estimated for the three children with
same pattern but different VAS scores is very similar (θ43 = 1.162, θ1 =
1.146 and θ6 = 1.164), indeed in this case the VAS information is not used.
On the contrary, Model 2 and Model 3 are able to distinguish between the
three children 1, 6, and 43 and they are ranked according to their VAS score
values. This result is particularly interesting because it demonstrated that
the use of the VAS score permits to distinguish between the large number of
children 11111-responders, but with different VAS values. The difference in
their HRQoL is probably due to health problems not covered or not so severe
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as to be caught by the items included in the questionnaire. The VAS score
could be thought as a latent domain, directly measured by the responders,
that contributes together with the five questions in building the main latent
variable measure HRQoL. As concern the HRQoL estimated for the fourth
subject, it is lower for all the three models and it demonstrates that the PCM
is also ranking between subjects if they have different patterns of answers.
Moreover, in Model 3 the distance between child 43 and child 49 is lower than
for the other two models. This is probably due to the fact that for Model 3
the variance of the latent variable a priori distribution is constrained equal
to 1, and in Model 1 and Model 2 it is estimated by the data. In conclusion,
Model 2 and Model 3 are able to distinguish between children in terms of
HRQoL better than the PCM and they should be preferred when analyzing
data from the EQ-5D-Y questionnaire, especially when a large number of
children answer ”No problem” in all the items. Still, some other aspects must
be taken in account when choosing between the three models, particularly
between Model 2 and Model 3 which seem to perform similarly in terms
of subject ranking. The performance in chain convergence is one of these
aspects. The convergence times could be quite long if a lot of children are in
the sample, because an increase in one unit in the sample increases by one
unit the number of parameters to be estimated. Model 2 takes a substantially
longer time to reach convergence than Model 3. The misspecification of the
a priori for the latent variable (assumed to be normal) might be the cause of
the Model 2 delay. Secondly, as introduced at the beginning of this section,
the DIC measure for the fit of the model has been used. Since the lower the
DIC value, the higher the performance of the model, the best is Model 3,
but the difference between Model 2 and Model 3 is lower than 5 and it could
be misleading just to report the model with the lowest DIC (Spiegelhalter
et al. (2002)). In short, the several aspects evaluated in this section suggest
Model 3 as the best of one between the three studied models for analyzing
the EQ-5D-Y questionnaire.

4 Conclusion

In this paper the attention was focused on the measurement and the analysis
of HRQoL in children. The increasing importance acquired in the last years
by HrQoL needs a special attention toward suitable statistical tools for its
measurement. In particular, the attention was paid on the potentialities of
IRT models as an alternative to preference-based methods to derive HRQoL
scores relative to different health states. The EQ-5D-Y questionnaire has
been used as instrument to measure HRQoL in children. Some methodologi-
cal aspects and possible extension of the known IRT models, strongly related
with the applied problem, were studied in-depth. Above all, the problem of
the skewness of the latent variable and the treatment of mixed responses
were investigated. In Chapter 3 an IRT model that combines the possibility
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of analyzing different types of responses at one time and latent variables as-
sumed to be skewed is developed. It arises from the combination in a Bayesian
framework of two different IRT models already known in literature (Mous-
taki (1996); Bazan et al. (2004)). The combined model furnishes the estimates
of HRQoL for every child in a sample, taking in account all the items of a
questionnaire independently of their nature, in this context the five questions
of the EQ-5D-Y and the VAS score. Furthermore, the hypothesis of normal
distribution of the latent variable is relaxed, allowing the analysis of typical
asymmetric and skewed phenomenon like that the HRQoL in a population
of young students. The model was formulated as WINBUGS code and the
estimates of the parameters were obtained using a Bayesian procedure, more
flexible than the likelihood methods and similarly in the results. A compar-
ison between 3 different models showed the qualities of the flexible model
proposed.
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Abstract. Our aim is to explore a structural model: several variable groups de-
scribing the same observations are assumed to be structured around latent dimen-
sions that are linked through a linear model that may have several equations. This
type of model is commonly dealt with by methods assuming that the latent dimen-
sion in each group is unique. However, conceptual models generally link concepts
which are multidimensional. We propose a general class of criteria suitable to mea-
sure the quality of a Structural Equation Model (SEM). This class contains the
covariance criteria used in PLS Regression and the Multiple Covariance criterion
of the SEER method. It also contains quartimax-related criteria. All criteria in the
class must be maximized under a unit norm constraint. We give an equivalent un-
constrained maximization program, and algorithms to solve it. This maximization
is used within a general algorithm named THEME (Thematic Equation Model Ex-
ploration), which allows to search the structures of groups for all dimensions useful
to the model. THEME extracts locally nested structural component models.

Keywords: path modeling, PLS, SEER, SEM, THEME

Introduction

The framework is that of SEM’s: R variable groups X1, . . . , XR describing the
same n observations are assumed structured around few dimensions linked
together through a linear model. SEM´s are usually dealt with according
to the Latent Variable (LV) paradigm: each group Xr is assumed to be the
output of one single LV that is to be estimated. Two approaches are cur-
rently available: the first one, PLS Path Modeling (Lohmöller (1989); Chin
and Newsted (1999); Tenenhaus (2005)), being based on no global criterion
optimization, remains very empirical. The second one consists in optimiz-
ing an interpretable global criterion. According to the chosen criterion, sev-
eral methods have been proposed (Jöreskog and Wold (1982); Smilde et al.
(2000)). This more rigorous approach is often paid for by some difficulty to
deal with small samples. So far, these methods have assumed that each group
is structured around a single underlying dimension. One could object that
if this is the case, all variables in the group being strongly correlated, this
dimension could simply be estimated by the group´s 1st PC. Mark that this
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solution would not take into account the structural model, and so could not
be considered as a proper SEM estimation. The linear model would then
merely link these PC´s. The problem of identifying the dimensions useful to
the conceptual model really arises when variable groups measure out truly
multidimensional concepts; a case most modelers are currently confronted
with, without knowing how many dimensions have to play a role, nor which.
It is then essential to explore the structure of these groups in relation to the
model, so as to extract dimensions useful to it. Such methods as Multiblock
PLS (Wangen and Kowalski (1988); Westerhuis et al. (1998)) try to achieve
that; but, for want of a criterion reflecting properly partial relations between
each explanatory group and the corresponding dependent one, they have to
include recurring deflation steps which remain empirical and arbitrary. In
order to extend PLS Regression to the case where a dependent group is
related to several predictor groups, we proposed in Bry et al. (2009) to max-
imize what we called a multiple covariance criterion. This maximization is
the basis of a single dependent group model exploration method: Structural
Equation Exploratory Regression (SEER). SEER extracts as many compo-
nents per group as wanted, ranked in a clearly interpretable way through a
local nesting principle. The use of a global criterion makes backward com-
ponent selection possible. Here, we extend the multiple covariance criterion
in two ways: 1) The criterion is generalized so as to take into account the
structural strength of a component in a more flexible way, including multiple
covariance, but also variable-bundle-oriented measures; 2) It is also extended
to models having any number of dependent /predictor groups. We then give
algorithms to maximize the criterion.

1 Model and problem:

1.1 Thematic model

Conceptually, any variable group Xr =
(
x1

r, . . . , x
Jr
r

)
may depend on other

groups, or contribute to model other groups. This dependency pattern is the
thematic model (cf. fig. 1). A group may have several models; let Eh

r be model
h for dependent group Xr. In fact, such dependencies concern (unknown)
dimensions underlying in groups. We expect such dimensions to be revealed
in Xr through Kr components f1

r , . . . , f
Kr
r , where ∀r, k : fk

r = Xrv
k
r .

1.2 Problem

Components are wanted to give their model a good fit, and also to have some
structural strength in their group (i.e. account for a non-residual part of ob-
servation discrepancies as coded by the group), so that the final model be
robust and easier to interpret. Let P be the weighting matrix of the obser-
vations. To each group Xr, we associate metric matrix Mr. The structural
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Fig. 1. Thematic model.

strength of component fk
r = Xrv

k
r will be measured by a function of the

form: S(vk
r ) =

∑T
t=1(v

k
r
′
Artv

k
r )a with matrices Art symmetric positive (s.p.)

and a > 0. Generally, vk
r has to be constrained by: vk

r
′
Drv

k
r = 1, where Dr

is an appropriate definite s.p. matrix. As particular instances, we have:

• Component variance: S(vk
r ) = V (fk

r ) = vk
r
′
Xr

′PX rv
k
r ; a = 1 ; T = 1 ;

Ar = Xr
′PXr; Dr = M−1

r .
• Group variance explained by component. All variables being standard-

ized, we consider:

S(vk
r ) =

∑
xj

r∈Xr

ρ2(fk
r , x

j
r) =

∑
xj

r∈Xr

〈fk
r |xj

r〉2P = vk
r

′
(X ′

rPX r)2vk
r

with Dr = Xr
′PXr, so that ‖fk

r ‖2P = 1; a = 1, T = 1, Ar = (XrPXr)2.
• The previous criterion can be extended to:

S(vk
r ) =

∑
xj

r∈Xr

ajρ
2a(fk

r , x
j
r) =

Jr∑
j=1

aj(vk
r

′
Xr

′Pxj
rx

j
r

′
PXrv

k
r )a

withDr = Xr
′PXr. Then: T = Jr, Arj = a

1/a
j wjwj

′ where wj = Xr
′Pxj

r.

The motivation of such a criterion is the same as Quartimax rotation of
PC´s: to make components point to variable bundles instead of original PC´s.
Tuning parameter a allows to draw components more (greater a) or less
(lower a) towards local variable bundles.
Group Xr depending on other groups Xs, . . . , Xt in some model Eh

r , every
component fk

r in Xr will be linearly modeled through components of these
groups {f l

s, s∈Ph
r , l≤Ks}, where Ph

r is the index-set of predictor groups in Eh
r .

Goodness of fit of fk
r
′s model will simply be measured by its R2 coefficient,

denoted R2(fk
r |{f l

s, s∈Ph
r , l≤Ks}) or R2(Eh

r ).
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2 Thematic equation model exploration

2.1 Multiple covariance.

The multiple covariance proposed in Bry et al. (2009) is one possible extension
of the absolute value of the binary covariance.
Definition: y being linearly modeled as a function of x1, . . . , xS , the Multiple
Covariance of y on x1, . . . , xS is defined as:

MC (y|x1, . . . , xS) =

[(
V (y)

S∏
s=1

V (xs)

)
R2(y|x1, . . . , xS)

]1/2

R2(y|x1, . . . , xS) being the multiple determination coefficient of y on {x1, . . . , xS}.

2.2 Multiple co-structure

Given some measure of structural strength S(v) of any component f = Xv,
and given the linear component model: fd =

∑
p∈P (d) bpfp + ε, P (d) being

the index set of predictor components of fd, we term Multiple Co-Structure
(MCS) of fd onto {fp, p∈P (d)}:

MCS (fd|{fp, p ∈ P (d)}) =

S(vd)

 ∏
p∈P (d)

S(vp)

R2(fd|{fp, p ∈ P (d)})

1/2

2.3 THEME criterion for rank 1 components.

Let Er be the set of models involving fr, and er their number. The first
criterion we propose to be maximized by rank 1 components is:

C1 =
R∏

r=1

(S(vr))
er
∏
d,h

R2(fd|{fs, s ∈ Ph
d })

C1 compounds the structural strength of components with the goodness of
fit of component-based regression models.

2.4 Beyond 1 component per group.

When we want to extract Kr components in group Xr, we must account for
the fact that predictor components of model Eh

d : {fk
p ; p∈Ph

d ,∀p : k = 1,Kp}
must predict Kd components {fk

d ; k = 1, Kd} in dependent group Xd. Then,
the search for explanatory components should be based on some optimization
including some compound MCS. Let CMk

d(h) be the component model of fk
d

in thematic equation h:

CMk
d(h) = fk

d |{f l
p|p ∈ Ph

d , l ≤ Kp} and
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Kd∑
k=1

MCS 2(CMk
d(h)) =

∏
p ∈ Ph

d

l ≤ Kp

S(vl
p)

(
Kd∑
k=1

S(vk
d)R2(CMk

d(h))

)

Let us define a nesting principle that makes component ranking interpretable.

2.5 The local nesting principle.

Our Local Nesting Principle (LNP) states that:

• Rank k component in Xr : fk
r , should help best predict - with respect to

MCS - all components of Xd dependent on it in some model Eh
d , when

associated to all components predicting this group in Eh
d except Xr

′s
higher rank components, which are considered not yet available, i.e.:

{f l
r; l < k}∪{f l

t ; r∈Ph
d , t∈Ph

d , t 6=r, l≤Kt}

• Rank k component in Xr : fk
r , should be best predictable - with respect

to the criterion - by all components from groups explanatory of Xr in
some model, under the orthogonality constraint:

∀l < k : fk
r

′
Pf l

r = 0

This sequential principle is not a priori compatible with a global criterion
that the set of all components would maximize. Indeed, the R2 coefficients
in MCS´s change from one rank to another. But it is easy to define, for each
fk

r component, the criterion it should maximize, according to the LNP:

(
S(vk

r )
)er

 ∏
h|P h

r 6=∅

R2(CMk
r (h))

 ∏
(s,h)|r∈P h

s

(
Ks∑
l=1

S(vl
s)R

2(CMk
s(h))

)
(1)

2.6 Generic form of the criterion

Let g be a numeric variable and F = {f1, . . . , fq} the set of its predictors in
a linear model. For any fs∈F , let F−s = F\{fs}. In Bry et al. (2009), we
have shown that, ∀fs∈F ,we can write:

R2(g|F ) =
f ′sAs(g)fs

f ′sBsfs
(2)

with: Bs = PΠF⊥
−s

and As(g) =
1
‖g‖2P

[
(g′PΠF−s

g)Bs +Bs
′gg′Bs

]
where, E being any space, ΠE denotes the orthogonal projector onto E. It
follows that, if g1, . . . , gK are numeric variables linearly modeled using the
same F , we have :

K∑
k=1

ωkR
2(gk|F ) =

f ′sAsfs

fs
′Bsfs

(3)
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with:As = PΠF⊥
−s
tr(GΩG′PΠF−s

)+ΠF⊥
−s

′P (GΩG′)PΠF⊥
−s

,Ω = diag(ωk)k,
G = [g1, . . . , gK ]. Besides, we have that:

R2(g|F ) =
g′(PΠF )g
g′Pg

(4)

It follows from (1) to (4) that the criterion in (1), to be currently maximized
by component fk

r , may be written under the generic form:(
T∑

t=1

(vk
r

′
Arktv

k
r )a

)er er∏
l=1

fk
r
′
Crklf

k
r

fk
r
′
Drklfk

r

To ensure orthogonality constraint: ∀l < k: fk
r
′
Pf l

r = 0, we choose to take
fk

r = Xk−1
r vk

r , where X0
r = Xr and Xk

r = Π〈fk
r 〉⊥X

k−1
r .

So, we end up with the following program yielding current component fk
r :

P : max
vk

r
′Drvk

r =1
C(vk

r ) where C(vk
r ) =

(
T∑

t=1

(vk
r

′
Arktv

k
r )a

)er er∏
l=1

vk
r
′
Trklv

k
r

vk
r
′
Wrklvk

r

2.7 Equivalent unconstrained minimization program.

We can show that, taking:

C(v) =

(
T∑

t=1

(v′Atv)a

)e e∏
l=1

v′Tlv

v′Wlv
and ϕ(v) =

1
2
[ae(v′Dv)− lnC(v)],

P : max
v′Dv=1

C(v) is equivalent to the unconstrained minimization problem:

S : min
v 6=0

ϕ(v)

General minimization software can, and should, be used to solve S.

2.8 An alternative algorithm.

In case no minimization routine is available, we propose the algorithm:

v(t+ 1) = v(t)− h(t)

[
aeD +

e∑
l=1

Wl

v(t)′Wlv(t)

]−1

∇ϕ(v(t)) (5)

where h(t) is a positive parameter to be specified later. Algorithm (5) is
nothing but a descent method to minimize ϕ, with:

d(t) = −

[
aeD +

e∑
l=1

Wl

v(t)′Wlv(t)

]−1

∇ϕ(v(t))
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as a descent direction at point v(t).
General minimization methods (see Bonnans et al. (1997); Nocedal and Wright
(1999); Absil et al. (2005)) grant that: if h(t) is chosen according to the Wolfe,
or Goldstein-Price, rule, then for any initial v(0), algorithm (5) generates a
sequence v(t) that converges to a point v̄ satisfying:

‖v̄‖D = 1, ∇ϕ(v̄) = 0

Numerous simulations have shown that (5) always yields a local minimum
for problem S (hence a local maximum for P).
Although we do not have theoretical arguments for preferring (5) to the plain
gradient iteration:

v(t+ 1) = v(t)− h(t)∇ϕ(v(t))

we have checked that (5) is numerically faster. The reason for choosing d(t)
as a descent direction is the following. A way of expressing ∇ϕ(v̄) = 0 is:[

aeD +
e∑

l=1

Wl

v̄′Wlv̄

]
︸ ︷︷ ︸

T1

v̄ =

[
ae
∑T

t=1 (v̄′Atv̄)a−1At∑T
t=1 (v̄′Atv̄)a

+
e∑

l=1

Tl

v̄′Tlv̄

]
︸ ︷︷ ︸

T2

v̄

This suggests the following fixed point iterative procedure:

v(t+ 1) = T−1
1 T2v(t) (6)

which is (5) with h(t) ≡ 1. Indeed for a = 1, iterations (6) have always proved
numerically convergent ; but to enforce convergence, theoretically and for
a ≥ 1, h(t) has to be chosen according to some adequate rule.
From (5), an iterative process on the unit sphere v′Dv = 1 may be designed.
Suppose ‖v(t)‖D = 1 and let δ(t) = d(t)−v(t)(d(t)′Dv(t)) be the projection of
d(t) onto the plane tangent to the sphere at point v(t). Use δ(t) as a descent
direction to decrease function ϕ on the sphere; i.e., q(θ) = ϕ(v(t)cos(θ) +
w(t)sin(θ)), with w(t) = δ(t)/‖δ(t)‖D, is to be minimized for θ > 0. Let:

v(t+ 1) = v(t)cos(θ(t)) + w(t)sin(θ(t)) (7)

where θ(t) is chosen according to the Wolfe, or Goldstein-Price, rule to de-
crease q. General results (see Lageman (2007)) state that algorithm (7) gener-
ates a sequence that converges to a point v̄ of the sphere verifying ∇ϕ(v̄) = 0.
Numerical experiments showed that iterations (7) are slightly faster than (5).

3 Chemometrical application

We have applied THEME to model the production of Hoffmann compounds
from 52 physical and chemical variables describing n=19 cigarettes. The vari-
ables were partitioned by chemists into 7 thematic groups, linked through 2
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component models: one for the combustion process, and the other for the filter
ventilation process. THEME allowed to separate the complementary roles, on
Hoffmann Compounds, of: tobacco quality, tobacco type, combustion chemi-
cal enhancers or inhibitors, filter retention and ventilation powers. It yielded
a complete and robust model having accuracy within reproducibility limits.

4 Conclusion and perspectives:

Thematic partitioning allows to interpret components conceptually, and also
to analyze the complementarity of thematic aspects. Compared to other
multi-group techniques, THEME: 1) solves the problem of group-weighting;
2) extends PLSR; 3) uses a criterion grounding component backward selec-
tion; 4) allows various measures of component structural strength. Current
research is being carried out to extend THEME to GLM.
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Abstract. This work adopts a survey sampling point of view to estimate the mean
curve of large databases of functional data. When storage capacities are limited,
selecting, with survey techniques a small fraction of the observations is an interest-
ing alternative to signal compression techniques. We propose here to take account
of real or multivariate auxiliary information available at a low cost for the whole
population, with semiparametric model assisted approaches, in order to improve
the accuracy of Horvitz-Thompson estimators of the mean curve. We first estimate
the functional principal components with a design based point of view in order to
reduce the dimension of the signals and then propose semiparametric models to
get estimations of the curves that are not observed. This technique is shown to be
really effective on a real dataset of 18902 electricity meters measuring every half an
hour electricity consumption during two weeks.

Keywords: design-based estimation, functional principal components, elec-
tricity consumption, Horvitz-Thompson estimator

1 Introduction

With the development of distributed sensors one can have access of poten-
tially huge databases of signals evolving along fine time scales. Collecting in
an exhaustive way such data would require very high investments both for
transmission of the signals through networks as well as for storage. As no-
ticed in Chiky and Hébrail (2009) survey sampling procedures on the sensors,
which allow a trade off between limited storage capacities and accuracy of the
data, can be relevant approaches compared to signal compression in order to
get accurate approximations to simple estimates such as mean or total trajec-
tories. Our study is motivated, in such a context of distributed data streams,
by the estimation of the temporal evolution of electricity consumption curves.

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 39, c© Springer-Verlag Berlin Heidelberg 2010
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The French operator EDF has planned to install in a few years more than 30
millions electricity meters, in each firm and household, that will be able to
send individual electricity consumptions at very fine time scales. Collecting,
saving and analysing all this information which can be seen as functional
would be very expensive and survey sampling strategies are interesting to
get accurate estimations at reasonable costs (Dessertaine (2006)). It is well
known that consumption profiles strongly depend on covariates such as past
consumptions, meteorological characteristics (temperature, nebulosity, etc)
or geographical information (altitude, latitude and longitude). Taking this
information into account at an individual level (i.e for each electricity meter)
is not trivial.

We have a test population of N = 18902 electricity meters that have
collected electricity consumptions every half an hour during a period of two
weeks, so that we have d = 336 time points. We are interested in estimating
the mean consumption curve during the second week and we suppose that we
know the mean consumption, Ȳk = 1

336

∑336
j=1 Yk(tj), for each meter k of the

population during the first week. This mean consumption will play the role
of auxiliary information. Note that meteorological variables are not available
in this preliminary study.

One way to achieve this consists in reducing first the high dimension of
the data by performing a functional principal components analysis in a survey
sampling framework with a design based approach (Cardot et al. (2010)). It is
then possible to build models, parametric or nonparametric, on the principal
component scores in order to incorporate the auxiliary variables effects and
correct our estimator with model assisted approaches (Särndal et al. (1992)).
Note that this strategy based on modeling the principal components instead
of the original signal has already been proposed, with a frequentist point of
view, by Chiou et al. (2003) with singel index models and Müller and Yao
(2008) with additive models.

We present in section 2 the Horvitz-Thomposon estimator of the mean
consumption profile as well as the functional principal components analy-
sis. We develop, in section 3, model assisted approaches based on statistical
modeling of the principal components scores and derive an approximated
variance that can be useful to build global confidence bands. Finally, we il-
lustrate, in section 4, the effectiveness of this methodology which allows to
improve significantly more basic approaches on a population of 18902 elec-
tricity consumption curves measured every half an hour during one week.

2 Functional data in a finite population

Let us consider a finite population U = {1, . . . , k, . . . , N} of size N, and sup-
pose we can observe, for each element k of the population U , a deterministic
curve Yk = (Yk(t))t∈[0,1] that is supposed to belong to L2[0, 1], the space of
square integrable functions defined on the closed interval [0, 1] equipped with
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Fig. 1. Mean curve and sample of individual electricity consumption curves.

its usual inner product 〈·, ·〉 and norm denoted by ‖ · ‖. Let us define the
mean population curve µ ∈ L2[0, 1] by

µ(t) =
1
N

∑
k∈U

Yk(t), t ∈ [0, 1]. (1)

Consider now a sample s, i.e. a subset s ⊂ U, with known size n, chosen
randomly according to a known probability distribution p defined on all the
subsets of U. We suppose that all the individuals in the population can be
selected, with probabilities that may be unequal, πk = Pr(k ∈ s) > 0 for all
k ∈ U and πkl = Pr(k & l ∈ s) > 0 for all k, l ∈ U, k 6= l. The Horvitz-
Thompson estimator of the mean curve, which is unbiased, is given by

µ̂(t) =
1
N

∑
k∈s

Yk(t)
πk

=
1
N

∑
k∈U

Yk(t)
πk

1k∈s, t ∈ [0, 1]. (2)
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As in Cardot et al. (2010) we would like to describe now the individual
variations around the mean function in a functional space whose dimension
is as small as possible according to a quadratic criterion. Let us consider a set
of q orthonormal functions of L2[0, 1], φ1, . . . , φq, and minimize, according to
φ1, . . . , φq, the remainder R(q) of the projection of the Yk’s onto the space
generated by these q functions

R(q) =
1
N

∑
k∈U

‖Rqk‖2

with Rqk(t) = Yk(t) − µ(t) −
∑q

j=1〈Yk − µ, φj〉φj(t), t ∈ [0, 1]. Introducing
now the population covariance function γ(s, t),

γ(s, t) =
1
N

∑
k∈U

(Yk(t)− µ(t)) (Yk(s)− µ(s)) , (s, t) ∈ [0, 1]× [0, 1],

Cardot et al. (2010) have shown thatR(q) attains its minimum when φ1, . . . , φq

are the eigenfunctions of the covariance operator Γ associated to the largest
eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ λq ≥ 0,

Γφj(t) =
∫ 1

0

γ(s, t)φj(s)ds = λjφj(t), t ∈ [0, 1], j ≥ 1.

When observing individuals from a sample s, a simple estimator of the co-
variance function

γ̂(s, t) =
1
N

∑
k∈s

1
πk

(Yk(t)− µ̂(t)) (Yk(s)− µ̂(s)) (s, t) ∈ [0, 1]× [0, 1], (3)

allows to derive directly estimators of the eigenvalues λ̂1, . . . , λ̂q and the cor-
responding eigenfuctions φ̂1, . . . , φ̂q.

Remark: with real data, one only gets discretized trajectories of the Yk at d
points, t1, . . . , td, so that we observe Yk = (Yk(t1), . . . , Yk(td)) ∈ Rd. When
observations are not corrupted by noise, linear interpolation allows to get
accurate approximations to the true trajectories,

Ỹk(t) = Yk(tj) +
Yk(tj+1)− Yk(tj)

tj+1 − tj
(t− tj), t ∈ [tj , tj+1]

and to build consistent estimates of the mean function provided the grid of
time points is dense enough (Cardot and Josserand (2009)).

3 Semiparametric estimation with auxiliary
information

Suppose now we have access to m auxiliary variables X1, . . . , Xm that are
supposed to be linked to the individual curves Yk and we are able to observe



Model Assisted Estimation with Functional Data 417

these variables, at a low cost, for every individual k in the population. Taking
this additional information into account would certainly be helpful to improve
the accuracy of the basic estimator µ̂. Going back to the decomposition of
the individual trajectories Yk on the eigenfunctions,

Yk(t) = µ(t) +
q∑

j=1

〈Yk − µ, φj〉φj(t) +Rqk(t), t ∈ [0, 1],

and borrowing ideas from Chiou et al. (2003) and Müller and Yao (2008),
an interesting approach consists in modeling the population principal com-
ponents scores 〈Yk − µ, φj〉 with respect to auxiliary variables at each level j
of the decomposition on the eigenfunctions, 〈Yk − µ, φj〉 ≈ fj(xk1, . . . , xkm)
where the regression function fj can be parametric or not and (xk1, . . . , xkm)
is the vector of observations of the m auxiliary variables for individual k.

It is possible to estimate the principal component scores

Ĉkj = 〈Yk − µ̂, φ̂j〉,

for j = 1, . . . , q and all k ∈ s. Then, a design based least squares estimator
for the functions fj

f̂j = arg min
gj

∑
k∈s

1
πk

(
Ĉkj − gj(xk1, . . . , xkm)

)2

, (4)

is useful to construct the following model-assisted estimator µ̂X of µ,

µ̂x(t) = µ̂(t)− 1
N

(∑
k∈s

Ŷk(t)
πk
−
∑
k∈U

Ŷk(t)

)
(5)

where the predicted curves Ŷk are estimated for all the individuals of the
population U thanks to the m auxiliary variables,

Ŷk(t) = µ̂(t) +
q∑

j=1

f̂j(xk1, . . . , xkm) v̂j(t), t ∈ [0, 1].

4 Estimation of electricity consumption curves

We consider now the population consisting in the N = 18902 electricity
consumption curves measured during the second week very half an hour.
We have d = 336 time points. Note that meteorological variables are not
available in this preliminary study and our auxiliary information is the mean
consumption, for each meter k, during the first week.

We first perform a simple random sampling without replacement (SR-
SWR) with fixed size of n = 2000 electricity meters during the second week
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Fig. 2. Mean curve and sample of individual electricity consumption curves.

in order to get µ̂ and perform the functional principal components analysis
(FPCA). The true mean consumption curve µ(t) during this period is drawn
in Figure 1 whereas Figure 3 (a) present the result of the FPCA. The first
principal component explains more than 80% of the total variance telling us
that there is a strong temporal structure in these data. The associated es-
timated eigenfunction φ̂1 presents strong daily periodicity. Looking now at
the relationship between the estimated first principal components and the
auxiliary variable, we can notice that there is a strong linear relationship
between these two variables and thus considering a linear regression model
for estimating f1 seems to be appropriate.

To evaluate the accuracy of estimator (5) we made 500 replications of the
following scheme

• Draw a sample of size n = 2000 in population U with SRSWR and
estimate µ̂, φ̂1 and Ĉk1, for k ∈ s, during the second week.
• Estimate a linear relationship between Xk and Ĉk1, for k ∈ s where
Xk = 1

336

∑336
j=1 Yk(tj) is the mean consumption during the first week,

and predict the principal component using the estimated relation Ĉk1 ≈
β̂0 + β̂1Xk.
• Estimate µ̂X taking the auxiliary information into account with equation

(5).

The following loss criterion
∫
|µ(t)− µ̂(t)|dt has been considered to evaluate

the accuracy of the estimators µ̂ and µ̂X . We also compare the estimation
error with an optimal stratification sampling scheme in which strata are built
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SAS OPTIM MA1

Mean 4.245 1.687 1.866

Median 3.348 1.613 1.813

First quartile 2.213 1.343 1.499

Third quartile 5.525 1.944 2.097

Table 1. Comparison of mean absolute deviation from the true mean curve for
SRSWR, optimal allocation for stratification (OPTIM) and model assisted (MA1)
estimation procedures.

on the curves of the population observed during the first week. As in Cardot
and Josserand (2009), the population is partitioned into K = 7 strata thanks
to a k-means algorithm. It is then possible to determine the optimal alloca-
tion weights, according to a mean variance criterion, in each stratum for the
stratified sampling procedure during the second week.

The estimation errors are presented in Table 4 for the three estimators.
We first remark that considering optimal stratification (OPTIM) or model
assisted estimators (MA1) lead to a significant improvement compared to
the basic SRSWR approach. Secondly, the performances of the stratification
and the model assisted approaches are very similar in terms of accuracy but
they do not need the same amount of information. The optimal stratification
approach necessitates to know the cluster of each individual of the population
and the covariance function within each cluster whereas the model assisted
estimator only needs the past mean consumption for each element of the
population.

Looking now at the empirical variance, at each instant, of these estima-
tors, we see in Figure (3) that the simple SRSWR has much larger variances,
in which we recognize the first eigenfunction of the covariance operator, than
the more sophisticated OPTIM and MA1. Among these two estimators the
model assisted estimator has a smaller pointwise variance, indicating that it
is certainly more reliable.

Acknowledgment. Etienne Josserand thanks the Conseil Régional de Bour-
gogne, France, for its financial support (FABER PhD grant).
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Abstract. We propose a very simple algorithm in order to estimate the geometric
median, also called spatial median, of multivariate (Small (1990)) or functional data
(Gervini (2008)) when the sample size is large. A simple and fast iterative approach
based on the Robbins-Monro algorithm (Duflo (1997)) as well as its averaged version
(Polyak and Juditsky (1992)) are shown to be effective for large samples of high
dimension data. They are very fast and only require O(Nd) elementary operations,
where N is the sample size and d is the dimension of data. The averaged approach
is shown to be more effective and less sensitive to the tuning parameter. The ability
of this new estimator to estimate accurately and rapidly (about thirty times faster
than the classical estimator) the geometric median is illustrated on a large sample
of 18902 electricity consumption curves measured every half an hour during one
week.

Keywords: geometric quantiles, high dimension data, online estimation al-
gorithm, robustness, Robbins-Monro, spatial median, stochastic gradient av-
eraging

1 Introduction

Estimation of the median of univariate and multivariate data has given rise
to many publications in robust statistics, data mining, signal processing and
information theory. For instance, the volume of data treated and analyzed
by ”Electricité De France” (E.D.F.) is getting increasingly important. The
installation of systems of measurement becoming more and more efficient,
will increase consequently this volume. Our aim will be to have a lighting on
these data and information delivered in a current way for a better reactivity
about some decision-makings. Then, for example, a rise in competence on the
use and modelling of structured data stream should allow the computation
and the analysis of monitoring indicators and performances of the power
stations of production in real time, with a data stream environment. Most of
the data will be functional data, like load curves for example. Thus, there is

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 40, c© Springer-Verlag Berlin Heidelberg 2010
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a need to have fast and robust algorithms to analyse these functional data.
In this context purposes are various, estimation of multivariate central point
in a robust way, clustering data around their median, etc.

Our work is motivated by the estimation of median profiles with online
observations of numerous individual electricity consumption curves which
are measured every days at fine time scale for a large sample of electricity
meters. The median temporal profile is then a robust indicator of habit of
consumption which can be useful for instance for unsupervised classification
of the individual electricity demand.

In a multivariate setting different extensions of the median have been
proposed in the literature (see for instance Small (1990) and Koenker (2005)
for reviews) which lead to different indicators. We focus here on the spatial
median, also named geometric median which is probably the most popular
one and can be easily defined in a functional framework (Kemperman (1987),
Cadre (2001), Gervini (2008)). The median m of a random variable X taking
values in some space H (H = Rd, with d ≥ 2, or a separable Hilbert space)
is

m =: arg min
u∈H

E (‖X − u‖) (1)

where the norm in H, which is the euclidean norm if H = Rd, is denoted by
‖.‖. The median m is uniquely defined unless the support of the distribution
of X is concentrated on a one dimensional subspace of H. Note also that
it is translation invariant. The median m ∈ H defined in (1) is completely
characterized by the following gradient equation (Kemperman (1987),

Φ(m) = −EEE
(

X −m
‖X −m‖

)
= 0. (2)

When observing a sample X1, X2, . . . , XN of N (not necessarily indepen-
dent) realizations of X, a natural estimator of m is the solution m̂ of the
empirical version of (2),

N∑
i=1

Xi − m̂
‖Xi − m̂‖

= 0. (3)

Algorithms have been proposed to solve this equation (Gower (1974), Vardi
and Zhang (2000) or Gervini (2008)). They are needing important compu-
tational efforts and can not be adapted directly when data arrive online.
For example, the algorithm proposed by Gervini (2008) which is a variant of
Gower’s approach requires first the computation of the Gram matrix of the
data and has a computational cost of O(N2d). This also means that a great
amount of memory is needed when the sample size N is large. Furthermore
it can not be updated simply if the data arrive online. We propose here an
estimation algorithm that can be simply updated and only requires O(d) op-
erations at each step in the multivariate setting. Let us also note that when
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the data are functional they are generally observed on a common grid of d
design points, Xi = (Xi(t1), . . . , Xi(td)) and then the algorithm will require
only O(d) operations at each step, so that it has a global computational cost
O(Nd). Let us note that our algorithm is not adapted when one has sparsely
and irregularly distributed functional data and this issue deserves further in-
vestigation. Note also that in such a large samples context, survey sampling
approaches are interesting alternatives (Chaouch and Goga (2010)).

We present in section 2 the stochastic approximation algorithm which is
based on the Robbins-Monro procedure. Note that it is very simple and it
can be extended directly to the estimation of geometric quantiles (Chaud-
huri (1996)). In section 3 a simulation study confirms that this estimation
procedure is effective and robust even for moderate sample size (a few thou-
sands). We also remark averaging produces even more efficient estimations.
We finally present in section 4 a real study in which we have a sample of
N = 18902 electricity meters giving every half and hour, during one week,
individual electricity consumption and we aim at estimating the temporal
median profile.

2 A stochastic algorithm for online estimation of the
median

We propose a stochastic iterative estimation procedure which is a Robbins-
Monro algorithm (Duflo (1997), Kushner and Yin (2003)) in order to find the
minimum of (1). It is based on a stochastic approximation to the gradient of
the objective function and leads to the simple iterative procedure

m̂n+1 = m̂n + γn
Xn+1 − m̂n

‖Xn+1 − m̂n‖
, (4)

where the sequence of steps γn satisfies, γn > 0 for all n ≥ 1,
∑

n≥1 γn =∞
and

∑
n≥1 γ

2
n <∞. Classical choices for γn are γn = g(n+ 1)−α, with 0.5 <

α ≤ 1. The starting point, m0 is arbitrarily chosen to be zero.
When α is close to 1, better rates of convergence can be attained at the

expense of a larger instability of the procedure so that averaging approaches
(Polyak and Juditsky (1992), Kushner and Yin (2003), Dippon and Walk
(2006)) have been proposed to get more effective estimators which are less
sensitive to the selected values for α and g. When the value of g is a bit too
large, averaging also stabilizes the estimator and can reduce significantly its
variance. Thus, we also consider an averaged estimator defined as follows

m̃ =
1

N − n0

N∑
n=n0

m̂n, (5)

where n0 is chosen so that averaging is made on the last ten percent iterations.
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Remark 1. Note that this approach can be extended directly to get stochas-
tic approximations to geometric quantiles which are defined as follows by
Chaudhuri (1996). Consider a vector u ∈ H, such that ‖u‖ < 1, the geomet-
ric quantile of X, say mu, corresponding to direction u, is defined, uniquely
under previous assumptions, by

mu = arg min
Q∈H

E (‖X −Q‖+ 〈X −Q, u〉) .

It is characterized by Φu(mu) = Φ(mu)− u = 0, so that one can propose the
following stochastic approximation

m̂u
n+1 = m̂u

n + γn

(
Xn+1 − m̂u

n

‖Xn+1 − m̂u
n‖

+ u

)
. (6)

Remark 2. It can be shown, under classical hypotheses on the distribution
of X and the sequence γn, that these estimators of the population median
and quantiles are consistent. Rates of convergence can also be obtained in
the multivariate setting as well as the functional one when H is a separable
Hilbert space.

3 A simulation study

We perform simulations in order to check the effectiveness of the algorithm
and to evaluate its sensitivity to the tuning parameter g. We have simulated
samples of N = 5000 brownian motions discretized at d = 100 equispaced
points in the interval [0, 1].We then added the mean functionm(t) = sin(2πt),
t ∈ [0, 1], which is also the median curve for gaussian processes.

Our estimators are defined according (4) and (5) and we take the averaged
estimators m̃ with parameter n0 = 500. They depend on the sequence γn.
We consider, as it is usually done in stochastic approximation, a sequence
defined as follows

γn =
g

(n+ 1)3/4

for few different values of g ∈ {0.1, 0.5, 1, 2, 5, 10}. The estimation procedure
is very fast and computing the geometric median estimator takes less than
one second on a PC with the R language.

We made 100 simulations and evaluate the estimation error with the loss
criterion L(m̂) =

√
1
d

∑d
j=1 (m(tj)− m̂(tj))

2
, with tj = (j − 1)/(d − 1). We

first present in Figure (1) the estimation error for m̂N for different values of
g and compare it to the error of the empirical mean curve. The iterative esti-
mators are always less effective than the mean curve and their performances
depend on the value of the tuning parameter g. In Figure (2) we clearly see
that the averaged estimators m̃ perform really better than the simple ones,
with performances which are now comparable to the empirical mean, and do
not really depend on g provided that g is not too small.
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Fig. 1. Approximation error for the mean and the Robbins-Monro estimator of the
median for different values of the tuning parameter g, when α = 0.75 .

We also considered the case of a contaminated distribution in which 5%
of the observations are also realizations of a brownian with mean function
which is now µc(t) = 5µ(t). The estimation error are presented in Figure (3)
and we clearly see that the empirical mean is affected by contamination or
outliers whereas the performances of the averaged iterative estimators are
still interesting.

As a conclusion of this simulation study, the averaged Robbins-Monro
procedure appears to be effective to estimate the geometric median of high
dimension data when the sample size is large enough and is not really sensitive
to the choice of the tuning parameter g.

4 Estimation of the median electricity consumption
curve

We have a sample of N = 18902 electricity meters that are able to send
electricity consumptions every half an hour during a period of one week,
so that we have d = 336 time points. We are interested in estimating the
median consumption curve. We present in Figure (4) the estimated geometric
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Fig. 2. Approximation error for the mean and the averaged Robbins-Monro esti-
mator of the median for different values of the tuning g when α = 0.75 .

median profile for g = 5 obtained by averaging the 1000 last iterations and
compare it with the mean profile and the pointwise median curve which is
obtained by estimating the median value at each instant tj , j = 1, . . . , 336.
The Robbins-Monro estimators are very similar, when averaging, for g ∈
[1, 10], and different starting points m0 and are not presented here.

We first remark that there is an important difference between the mean
curve and the geometric median curve that is probably due to a small frac-
tion of consumers which have high demands in electricity. There is also a
difference, even if it is less important, between the pointwise median and
the geometric median and this clearly means that pointwise estimation does
not produce the center of our functional distribution according to criterion
(1) which takes the following empirical values, 184.3 for the mean function,
173.3 for the pointwise median and 171.7 for the geometric median. The mul-
tivariate median was also estimated with the algorithm proposed by Vardi
and Zhang (2000) thanks to the function spatial.median from the R pack-
age ICSNP. The estimated median curve is exactly the same as our but the
computation time is much longer (130 seconds versus 3 seconds on the same
computer).

Mean g = 0.1 g = 0.5 g = 1 g = 2 g = 5 g = 10

0.
00

0.
05

0.
10

0.
15

0.
20



Stochastic Approximation for Multivariate and Functional Median 427

Fig. 3. Estimation error for the mean and the averaged Robbins-Monro estimator
of the median for different values of the tuning parameter g when 5% of the data
are contaminated.

References

CADRE, B. (2001): Convergent estimators for the L1-median of Banach valued
random variable. Statistics, 35, 509-521.

CHAOUCH, M., GOGA, C. (2010): Design-Based Estimation for Geometric Quan-
tiles. Accepted for publication in Comput. Statist. and Data Analysis.

CHAUDHURI, P. (1996): On a geometric notion of quantiles for multivariate data.
J. Amer. Statist. Assoc., 91, 862-871.

DIPPON, J., WALK, H. (2006): The averaged Robbins-Monro method for linear
problems in a Banach space. J. Theoret. Probab. 19, (2006), 166-189.

DUFLO, M. (1997): Random Iterative Models. Springer Verlag, Heidelberg.

GERVINI, D. (2008): Robust functional estimation using the spatial median and
spherical principal components. Biometrika, 95, 587-600.

GOWER, J.C. (1974): The mediancentre. Applied Statistics, 23, 466-470.

HUBER, P.J., RONCHETTI, E.M. (2009): Robust Statistics. John Wiley & Sons,
second edition.

Mean g = 0.1 g = 0.5 g = 1 g = 2 g = 5 g = 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25



428 Cardot, H. et al.

Fig. 4. Comparison of the estimated geometric median profile with the mean elec-
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via Crescimbeni 20, 62100 Macerata, Italy, castellano@unimc.it

2 Dip. di Istituzioni Economiche e Finanziarie, Università di Macerata
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Abstract. This paper reconsiders event-study methodology in light of evidences
showing that Cumulative Abnormal Return (CAR) can result in misleading infer-
ences about financial market efficiency and pre(post)-event behavior. In particular,
CAR can be biased downward, due to the increased volatility on the event day and
within event windows. We propose the use of Markov Switching Models to capture
the effect of an event on security prices. The proposed methodology is applied to a
set of 45 historical series on Credit Default Swap (CDS) quotes subject to multi-
ple credit events, such as reviews for downgrading. Since CDSs provide insurance
against the default of a particular company or sovereign entity, this study checks
if market anticipates reviews for downgrading and evaluates the time period the
announcements lag behind the market.

Keywords: hierarchical Bayes, Markov switching models, credit default swaps,
event-study

1 Introduction

An event-study is the name given to the empirical investigation of the rela-
tionship between security prices and economic events. It allows to estimate
and draw inferences about the impact of an event in a particular period
or over several periods. The most common approach involves four steps: 1)
identification of the event dates for a sample of securities subject to the dis-
closure item of interest (i.e. rating announcements) and creation of equally
sized event windows around each event date; 2) selection of an appropriate
reference period preceding each event window (the so-called estimation pe-
riod), used to estimate the mean and standard deviation of the returns of
each security, under normal market conditions; 3) computation of Abnormal
Returns (ARs) on each security supposed to be influenced by the event and
for each event window around the announcement date; 4) computation of
the mean ARs across securities in the sample, possibly cumulated over the
event windows, and comparison with the mean returns estimated under nor-
mal market conditions, through parametric and non parametric test statistics
(Brown and Warner (1985); Kothari and Warner (1997)).

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
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In most situations, event-study tests relying on the Cumulated Abnormal
Return (CAR) methodology may provide misleading results because of the
kurtosis and volatility clustering characterizing financial time series. There-
fore, we propose to incorporate into the classical event-study methodology
the ability of Markov Switching Models, also known as Hidden Markov Mod-
els (HMMs), to model state-dependent means and variances of the ARs.
In practice, instead of performing the hypothesis testing described in the
fourth step of the above illustrated methodology, we model the ARs in each
event window through an HMM characterized by two states, normal and ab-
normal market conditions, and look at the probability that the generating
process is in each of the two states, at any time in the event window. In
this way, we explicitly account for the kurtosis and the volatility clustering
commonly observed in financial time series. We adopt a Bayesian perspective
and rely on the flexibility of hierarchical modeling. It is worth to notice that
HMMs have been successfully applied to financial time series. For instance,
segmented time-trends in the US dollar exchange rates (Engel and Hamilton
(1990), Castellano and Scaccia (2010), Otranto and Gallo (2002)), stylized
facts about daily returns (Rydén et al. (1998)), option prices and stochas-
tic volatilities (Rossi and Gallo (2006)), temporal behavior of daily volatility
on commodity returns (Haldrup and Nielsen (2006)) have been modeled via
HMMs.

In this paper we apply the proposed methodology to study the reactions
of Credit Default Swap (CDS) quotes to reviews for downgrading announced
by three major credit rating agencies (Moody’s, Fitch and Standard&Poor’s),
in order to examine if and to what extent this market responds to these an-
nouncements which should reflect the latest available information. The focal
idea is to analyze if rating agencies have access to non-public information,
implying that their announcements can be viewed as conveying extra in-
formation to the market, and if the size and variance of ARs may provide
information about the creditworthiness of a specific company. Basically, if
reviews for downgrading convey new information to the market, CDS quotes
should react after the announcement and a significant increase in market
volatility should be expected at the event day or after the announcements.
Otherwise, it might be possible that reviews for downgrading only reflect in-
formation already discounted by the market, implying that CDS quotes do
not react to watchlisting and abnormal performances are observed before the
announcements.

Data over the period 2004 - 2009 for 45 international companies belong-
ing to different credit grades are taken into consideration and the effects of
reviews for downgrading on CDS quote generating process are investigated.

The paper proceeds as follows: the Markov Switching re-evaluation of the
classical event-study methodology and the priors on model parameters are
illustrated in Section 7; Section 3 deals with computational implementation;
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Section 4 discusses the application on CDS quotes; conclusions are reported
in Section 5.

2 The revised event-study methodology

The approach proposed in this paper to investigate the above mentioned
hypotheses is based on the Markov Switching re-evaluation of event-study
methodology. In this context, the event window is set equal to almost three
months, starting 60 business days before a review for downgrading and ending
20 business days after the announcement, thus the series considered will be
indexed by t ∈ [−60,+20]. In the following, we will use t0 and T to indicate,
respectively the starting day and the ending day of the event window, so
that t0 = −60 and T = 20. If the announcement is fully anticipated, then
the CDS quote generating process should adjust prior to t = 0, the day
of the announcement. If the rating announcement has a new informational
content, it should have an effect on price at t = 0 and, in the case of post-
announcement effect, the impact of the review for downgrading might be
delayed after t = 0. This choice of the event window aims at analyzing the
reactions of the markets before and around the day of the announcement,
the period in which a potential market reaction is expected, as many studies
have shown (Kliger and Sarig (2000); Steiner and Heinke (2001); Norden and
Weber (2004); Hull et al. (2004); Heinke (2006)).

To examine the impact of reviews for downgrading on the generating
process of CDS quotes, we focus on the daily returns of each CDS, defined
as:

Rt = Pt − Pt−1,

where Pt is the market value of the CDS at time t. Daily returns are then
used to calculate standardized ARs as:

yt =
Rt −R
sR

,

where the sample mean and standard deviation of the returns for each CDS
subject to review for downgrading are estimated over an estimation period
of 100-day preceding each event window, so that R =

∑−61
t=−160Rt/100 and

s2R =
∑−61

t=−160(Rt −R)2/99.
In a HMM formulation, the distribution of each standardized AR, yt, is

assumed to depend on an unobserved (hidden) variable, denoted by st, that
takes on values from 1 to k. The vector of hidden variables s = (st)T

t=t0
characterizes the “state” or “regime” in which the AR generating process is
at any time t. The yt are assumed to be independent, conditional on the st’s:

yt|st ∼ fst(yt) for t = t0, t0 + 1, . . . , T , (1)

with fst
(·) being a specified density function. We further postulate that the

dynamics of s are described by a Markov Chain with transition matrix Λ =
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(λij)k
i,j=1, implying that st is presumed to depend on the past realizations of

y and s, only through st−1:

p(st = j|st−1 = i) = λij .

Since we apply the HMM to ARs of CDSs, we implicitly assume yt to be
normally distributed, so that the model in (1) becomes

yt|s,µ,σ ∼ φ(·;µst
, σ2

st
) (2)

conditional on means µ = (µi)k
i=1 and standard deviations σ = (σi)k

i=1, where
φ(·;µi, σ

2
i ) is the density of the N(µi, σ

2
i ). Thus, if st = i, yt is assumed to be

drawn from a N(µi, σ
2
i ). Notice that, if we let π being the stationary vector of

the transition matrix, so that π′Λ = π′, and we integrate out st in (2) using
its stationary distribution, the model in (2) can be analogously formalized as

yt|π,µ,σ ∼
k∑

i=1

πiφ(·;µi, σ
2
i ) for t = t0, t0 + 1, . . . , T .

In this paper the number of states, k, is assumed equal to 2, as briefly
explained in Section 4. In a forthcoming paper, k will be considered unknown
and subject to inference, as well as the other parameters of the model.

In a Bayesian context, the uncertainty on the parameters of the model is
formalized using appropriate prior distributions. Weakly informative priors
are chosen, by introducing an hyperprior structure. We assume:

a) µi|σ2
i ∼ N (ξ, κσ2

i ), independently for each i = 1, . . . , k.
b) σ−2

i ∼ G(η, ζ), independently for each i = 1, . . . , k, with the mean and
the variance of the Gamma distribution being η/ζ and η/ζ2.

c) κ ∼ IG(q, r), with IG denoting the Inverse Gamma distribution.
d) ζ ∼ G(f, h).
e) λij ∼ D(δj), for i = 1, . . . , k where D denotes the Dirichlet distribution

and δj = (δij)k
i=1.

3 Computational implementation

In order to approximate the posterior joint distribution of all the parameters
of the above HMM, we apply Markov Chain Monte Carlo (MCMC) methods
and exploit the natural conditional independence structure of the model so
that the joint distribution of all variables, conditional to the fixed values of
the hyperparameters, is:

p(y,µ,σ, s,Λ, ζ, κ|δ, f, h, q, r, ξ, η, k)
= p(y|s,µ,σ)p(s|Λ)p(Λ|δ, k)p(µ|σ, ξ, κ, k)p(κ|r, q)p(σ|η, ζ, k)p(ζ|f, h).

To generate realizations from the posterior joint distribution, the parameters
of the model are in turn updated, by means of Gibbs sampler. At each sweep
of the MCMC algorithm, the following steps are performed:
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Updating Λ. The i-th row of Λ is sampled from D(δi1 +ni1, . . . , δik +nik),
where nij =

∑T−1
t=t0

I{st = i, st+1 = j} is the number of transitions from
regime i to regime j and I{·} denotes the indicator function.

Updating s. The standard solution for updating s would be to sample
st0 , . . . , sT one at a time from t = t0 to t = T , drawing values from
their full conditional distribution p(st = i| · · · ) ∝ λst−1iφ(yt;µi, σ

2
i )λist+1

where ‘· · · ’ denotes ‘all other variables’. For a faster mixing algorithm
(Scott (2002)), we instead sample s from p(s|y,Λ) through a stochas-
tic version of the forward–backward recursion. The forward recursion
produces matrices P t0+1,P t0+2, . . . ,P T , where P t = (ptij) and ptij =
p(st−1 = i, st = j|y1, . . . , yt,Λ). In words, P t is the joint distribution of
(st−1 = i, st = j) given parameters and observed data up to time t. P t

is computed from P t−1 as ptij ∝ p(st−1 = i, st = j, yt|y1, . . . , yt−1,Λ) =
p(st−1 = i|y1, . . . , yt−1,Λ)λijφ(yt;µj , σ

2
j ) with proportionality reconciled

by
∑

i

∑
j ptij = 1, where p(st−1 = i|y1, . . . , yt−1,Λ) =

∑
j pt−1,i,j can be

computed once P t−1 is known. The recursion starts computing p(st0 =
i|yt0 ,Λ) ∝ φ(yt0 ;µi, σ

2
i )πi and thus P t0+1. The stochastic backward re-

cursion begins by drawing sT from p(sT |y,Λ), then recursively drawing
st from the distribution proportional to column st+1 of P t+1. In this way,
the stochastic backward recursion samples from p(s|y,Λ), factorizing
this as p(s|y,Λ) = p(sT |y,Λ)

∏T−1
t=t0

p(sT−t|sT , . . . , sT−t+1,y,Λ) where
p(sT−t = i|sT , . . . , sT−t+1,y,Λ) = p(sT−t = i|sT−t+1, yt0 , . . . , yT−t+1,Λ)
∝ pT−t+1,i,sT−t+1 .

Updating µ. Letting ni being the number of observations currently allo-
cated in regime i, the µi can be updated by drawing them independently

from µi| · · · ∼ N
(
κ
∑

t:st=i yt + ξ

1 + κni
,

σ2
i κ

1 + κni

)
.

Updating κ. We sample κ−1 from κ−1| · · · ∼ G
(
q + k

2 , r + 1
2

∑k
i=1

(µi−ξ)2

σ2
i

)
.

Updating σ. For identifiability purpose, we adopt a unique labeling in which
the σi’s are in increasing numerical order. Hence, their joint prior distri-
bution is k! times the product of the individual IG densities, restricted
to the set σ1 < σ2 < . . . < σk. The σi can be drawn independently from

σ−2
i | · · · ∼ G

(
η +

1
2
(ni + 1), ζ +

1
2

∑
t:st=i

(yt − µi)2 +
1
2κ

(µi − ξ)2
)
. The

move is accepted, provided the invariance of the order.
Updating ζ. We sample ζ from ζ| · · · ∼ G

(
f + kη, h+

∑k
i=1 σ

−2
i

)
.

4 An Application

To estimate the parameters of the model and the posterior probabilities of
yt being in each of the states, at any time t ∈ [−60,+20], we performed
100,000 sweeps of the MCMC algorithm, allowing for a burn-in of 10,000
sweeps. Notice that our data set considers 45 historical series of CDSs and



434 Castellano, R. and Scaccia, L.

related reviews for downgrading, leading to 57 non-overlapping events (in
the sense that we only analyze subsequent event time windows including one
event) and, thus, to 57 different ARs series. The MCMC algorithm was run
independently for each of the 57 series of ARs. Since most of the ARs in the
events windows are well represented by two regimes, characterized by high
and low volatility respectively, we set k = 2.

Performing a preliminary analysis, we find that the probability of being in
the high volatility state in each event window of the data base, is characterized
by different patterns. As a consequence, cluster analysis is performed by
applying the k-means algorithm to the event windows. Using the Schwarz
criterion, five clusters were selected.

Figure 1 shows the averaged posterior probabilities of being in the high
volatility regime for the event windows belonging to the first four clusters.
Cluster (a) highlights that reviews for downgrading are fully anticipated by
the market. In this cluster the probability of being in the high volatility
regime is larger than 0.5 almost fifty days before the announcement occurs
and it is relevant the absence of announcement and post-announcement ef-
fects. This cluster is the most interesting among those under consideration,
because it shows that reviews for downgrading announced by rating agencies,
which should reflect the latest available information, are largely anticipated
by an increase in the volatility of ARs and announcements do not convey
new information to the market.

Cluster (b) groups event windows for which the volatility of the abnormal
returns is drawn from the high volatility state almost twenty days before the
event occurrence. This implies that CDS market anticipates the announce-
ments. At the same time, the ARs of the event windows belonging to this
cluster show that volatility remains in the high state also around t = 0 and
for twenty days after the announcements, highlighting also the presence of an-
nouncement and post-announcement effects. From a financial point of view,
it may be useful to note that this behavior is probably due to the specific
nature of the events under consideration, which represent only reviews for
possible downgrades and not effective downgrades, meaning that announce-
ments are not always followed by a reduction in the effective creditworthiness
of the reference entity. Persistence of the high volatility state after t = 0 may
be interpreted as a measure of the market’s expectation regarding the fu-
ture effective downgrading (in the data base under consideration the 65% of
reviews for downgrading is followed by effective downgrading in an average
period of 80 days).

The ARs of the event windows belonging to cluster (c) show that market
volatility anticipates the reviews for downgrading by almost ten days and
decreases very quickly about ten days after the event. For the ARs of the
event windows belonging to this cluster, we can conclude that nevertheless the
rating announcement is anticipated by the market via an increase in volatility,
it is still present an announcement effect, while the post announcement effect
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Fig. 1. Estimated mean posterior probabilities of being in the high volatility regime
for series belonging to four different clusters.

is largely reduced. The fourth cluster (d) collects event windows for which
the mean posterior probability of being in a high volatility state exceeds 0.5
only at t = 0, implying the existence of an announcement effect.

The fifth cluster, not shown here, is a residual cluster which collects event
windows characterized by a higher degree of heterogeneity than those in the
other clusters. In this case, the mean posterior probability of being in a high
volatility regime is not particularly meaningful.

5 Conclusions

This study was conducted to answer fundamental questions about the ef-
fectiveness of event-study methodology in capturing the effect of events on
financial asset behavior. We used a data set on CDS quotes and credit rat-
ing data. It covers the period from June, 2004 to October, 2009. We choose
the five-year CDS quotes since this is the benchmark maturity in the CDS
market. We collected the reviews for downgrading (watchlistings) announced
by three major rating agencies (Fitch, Moody’s and Standard&Poor’s) for
the sample firms in order to verify whether announcements carry new infor-
mation to the CDS market or not. At the end of the sampling period, we
selected 57 non-overlapping events.

Since the estimated effect of events on security behavior investigated by
classic event-study methodology may be biased downward, because of the



436 Castellano, R. and Scaccia, L.

averaging effect and the increased volatility around events, we re-evaluate
the classical approach by introducing a HMM characterized by two volatility
regimes (high and low) to model the ARs of each event window. We find
that CDS market anticipates reviews for downgrading and we show, through
cluster analysis, that the anticipation period can follows different patterns.
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RYDÉN, T., TERÄSVIRTA, T. and rASBRINK, S. (1998): Stylized facts of daily
return series and the hidden Markov model. Journal of Applied Econometrics
13 (3), 217-244.

STEINER, M. and HEINKE, V.G. (2001): Event study concerning international
bond price effects of credit rating actions. International Journal of Finance
and Economics 6 (2), 139-157.



Evaluation of DNA Mixtures Accounting for
Sampling Variability

Yuk-Ka Chung1, Yue-Qing Hu2, De-Gang Zhu3, and Wing K. Fung4

1 Department of Statistics and Actuarial Science, The University of Hong Kong,
Pokfulam Road, Hong Kong, China, yukchung@hku.hk

2 Department of Statistics and Actuarial Science, The University of Hong Kong,
Pokfulam Road, Hong Kong, China, yqhu@hku.hk

3 Nanjing Forestry University, Nanjing, China,
4 Department of Statistics and Actuarial Science, The University of Hong Kong,

Pokfulam Road, Hong Kong, China, wingfung@hku.hk

Abstract. In the conventional evaluation of DNA mixtures, the allele frequencies
are often taken as constants. But they are in fact estimated from a sample taken
from a population and thus the variability of the estimates has to be taken into
account. Within a Bayesian framework, the evaluation of DNA mixtures account-
ing for sampling variability in the population database of allele frequencies are
discussed in this paper. The concise and general formulae are provided for calcu-
lating the likelihood ratio when the people involved are biologically related. The
implementation of the formula is demonstrated on the analysis of a real example.
The resulting formulae are shown to be more conservative, which is generally more
favorable to the defendant.

Keywords: Bayesian inference, Hardy-Weinberg equilibrium, relatedness co-
efficient, likelihood ratio, mixed stain, relative

1 Introduction

Deoxyribonucleic acid (DNA) profiling is widely known as an important tool
for the identification of perpetrator in a crime investigation. The mixed stain
found in the crime scene often contains DNA from more than one contributor.
This kind of mixture complicates the evaluation of weight of DNA evidence
presented in the court. The problem of how to assess the strength of evidence
that connects the offender to the crime case became a challenging task and
attracted a great deal of attention from statisticians over the past decade or
so (Weir et al. (1997), Curran et al. (1999), Fukshansky and Bär (2000), Hu
and Fung (2003, 2005), Cowell et al. (2007), Dawid et al. (2007)). Usually,
the strength of evidence is quantified by the likelihood ratio (LR) of two
probability values under different hypotheses that explain who contribute to
the DNA mixture. Weir et al. (1997) considered the interpretation of DNA
mixtures and derived a general formula for the evaluation of the LR which
was extended by Curran et al. (1999) and Fung and Hu (2000) to allow
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for population substructure. Fukshansky and Bär (1999) also considered the
situation when the contributors of the mixed stains are of different ethnic
origins. Some further contributions have been presented for the evaluation of
DNA mixtures with complicated features. For example, Fukshansky and Bär
(2000) constructed a formula for the evaluation of the LR when the suspect
is not tested but his/her relatives are. Hu and Fung (2003, 2005) developed
general formulae for the calculation of the LR when there are one or two pairs
of related persons involved in determining the source contributors. Mortera
et al. (2003), Dawid et al. (2007) and Cowell et al. (2007) demonstrated
the use of probabilistic expert systems or object-oriented Bayesian network
for evaluating DNA mixtures in complex identification problems involving
unknown number of contributors, missing individuals and unobserved alleles.

In these evaluations of the DNA evidences, the allele frequencies are of-
ten taken as constants. However, they are in fact estimated from a sample
and the uncertainty arises due to sampling error. Ignoring this uncertainty
may lead to unconservative estimates (Balding (1995)) that are not desirable
in analyzing forensic evidence. Balding (1995), Balding and Donnelly (1995)
and Foreman et al. (1997) advocated the use of Bayesian methods modeling
the probability distributions of the relative frequencies of alleles. Their works
dealt with simple identification cases and have demonstrated how the sample
size of the database affects the weight of evidence. In Corradi et al. (2003),
the allele frequency distribution was modeled under a Bayesian hierarchical
framework in their application of the graphical approach to the evaluation of
DNA evidences on various cases including paternity test and missing person
identification. In practical crime cases, there can be many possible alleles
found in the mixed stain with several unknown contributors. This adds com-
plexity to the calculation of the LR under the Bayesian hierarchical approach,
especially when related persons are involved in the hypotheses. This paper
therefore describes how the formulae used in the plug-in approach for gen-
eral identification problems can be modified for calculating the LR within a
Bayesian framework.

In section 2, we present a concise and general formula that can meet most
needs. With the aid of this formula, the plug-in approach for calculating the
LR can be easily transformed into the Bayesian framework without increas-
ing the computational complexity. Section 3 presents the results when the
modified formulae are used on the analysis of a real example in which rela-
tives are considered. Finally, section 4 summarizes our findings and discusses
their implications.

2 Likelihood ratio

Suppose in a crime case two competing hypotheses, the prosecution hypothe-
sis Hp and the defense proposition Hd, about who contribute to the mixture
are raised. In addition to the alleles found in the mixture, some involved
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persons are usually typed, e.g. the victim and the suspect(s). Denote M the
set of alleles present in the mixture and K the set of genotypes typed, then
the evidence can be simply written as (M,K). The likelihood ratio is usually
used to evaluate the weight of the evidence and can be expressed as

LR =
P (Evidence|Hp)
P (Evidence|Hd)

=
P (M,K|Hp)
P (M,K|Hd)

. (1)

Usually, the known contributors and the number of unknown contributors
are specified in the following general hypothesis:

H : some typed persons and x unknowns are contributors of the mixture.

The issue of calculating P (M,K|H) was discussed by many researchers. See
Weir et al. (1997), Fukshansky and Bär (1998, 2000) and Hu and Fung (2003,
2005) among many others.

In the evaluation of the evidence using equation (1), the allele frequencies
are treated as constants. But they are in fact estimated from a sample D with
size n taken from a population θ. The uncertainty is naturally raised in the
process of estimating allele frequencies as the sample size n is usually not very
large. By intuition, the uncertainty of the estimated allele frequencies will
decrease when the sample size n increases. Ignoring this uncertainty is unfair
to the defendant. In order to take account of this uncertainty, suppose that
there are l alleles {1, 2, . . . , l} at an autosomal locus and the corresponding
allele frequencies xθ = (xθ,1, xθ,2, . . . , xθ,l) (

∑l
i=1 xθ,i = 1) has the Dirichlet

prior distribution with parameter α = (α1, α2, . . . , αl), i.e. the corresponding
probability density function is

Dir(xθ|α) =
Γ (α.)∏l

i=1 Γ (αi)

l∏
i=1

xαi−1
θ,i , xθ,i ≥ 0, i = 1, . . . , l,

l∑
i=1

xθ,i = 1,

where α. =
∑l

i=1 αi. In this situation, the LR is assessed as

LR =

∫
Xθ
P (M,K,D|xθ,Hp)Dir(xθ|α) dxθ∫

Xθ
P (M,K,D|xθ,Hd)Dir(xθ|α) dxθ

,

where Xθ is the sample space of parameter xθ. This version of LR is often
more conservative and thus favorable to the defendant. In order to find the
LR, it suffices to calculate

P (M,K,D|H) =
∫
Xθ

P (M,K,D|xθ,H)Dir(xθ|α) dxθ (2)

for the hypothesis H about who the contributors of the mixture are. Since
given xθ, M is independent of D and the probability of observing K and D
does not depend on the hypothesis H, equation (2) can be written as

P (M,K,D|H) =
∫
Xθ

P (M |xθ,K,H)P (K,D|xθ)Dir(xθ|α) dxθ. (3)
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In the general situation with presumably known allele frequencies, the
quantity of P (M |xθ,K,H) is in fact a particular value of the Q-function (Hu
and Fung (2005)):

Q(j, B|xθ) =
∑

M\B⊂C⊂M

(−1)|M\C|

(∑
i∈C

xθ,i

)j

, (4)

where B is any subset of M ; j is a non-negative integer; and |.| is the car-
dinality of a set. This function can be interpreted as the probability of j
alleles taken from the set M that explain all the alleles in the set B. Based
on equations (3) and (4), we introduce the following modified Q-function for
any non-negative integer j and subset B of M :

Q∗(j, B) =
∫
Xθ

Q(j, B|xθ)P (K,D|xθ)Dir(xθ|α) dxθ. (5)

For convenience, let z denote an individual taken from the population θ
and ni,z denote the count of allele i of this individual, 1 ≤ i ≤ l. Obviously,
ni,z can take on only values of 0, 1, and 2. Let ni,K∪D =

∑
z∈K∪D ni,z,

αC =
∑

i∈C αi and nC,K∪D =
∑

i∈C ni,K∪D for any C ⊂ {1, 2, . . . , l}. It
follows that

∑l
i=1 ni,K∪D = 2(k+n), where k is the number of typed persons

whose genotypes compriseK, and n is the number of individuals in the sample
D. For arbitrary j ≥ 0 and B ⊂ M , the following formula is resulted from
equation (5) and the proof is sketched in the Appendix:

Q∗(j, B) =
κ

α(2k+2n+j)
.

∑
M\B⊂C⊂M

(−1)|M\C|(αC + nC,K∪D)(j), (6)

where

κ =
l∏

i=1

Γ (αi + ni,K∪D)
Γ (αi)

∏
z∈K∪D

2!∏l
i=1 ni,z!

,

r(j) = Γ (r + j)/Γ (r) = r(r + 1) · · · (r + j − 1) for any real r and r(0) = 1.
Note that Q∗(0, φ) = κ/α(2k+2n)

. and Q∗(j, B) = 0 for |B| > j. Also note
that κ does not depend on the hypothesis H and hence can be omitted in
the calculation of LR. Throughout all the calculations, the Hardy-Weinberg
equilibrium (p.23, Fung and Hu (2008)) is assumed in the population θ.

In the next section, concise formulae for calculating P (M,K,D|H) in a
real example is presented using the modified Q-function.

3 Case Study

In this section, we demonstrate the application of formula (6) to a rape case
that happened in Hong Kong (Fung and Hu (2000)) where the victim and
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the suspect were typed at three loci D3S1358, vWA and FGA in the Profiler
PCR-STR system. Table 1 shows the alleles detected from the mixed stain
and the two typed persons, as well as the corresponding allele frequencies
estimated from a Chinese population database (Wong et al. (2001)). Note
that for illustrative purpose the genotypes of the victim and the suspect
are slightly modified while the mixture alleles are unchanged. A prosecution
hypothesis and two defense propositions are proposed as follows:

Hp : the victim and the suspect were contributors of the mixture;
Hd1 : the victim and one unknown were contributors;
Hd2 : the victim and one relative of the suspect were contributors.

Table 1. Alleles (modified) detected in a rape case in Hong Kong (Fung and Hu
(2000)).

Locus Mixture Victim Suspect Frequency
(M) (V ) (S)

D3S1358 14 14 0.033
15 15 0.331
17 17 0.239
18 18 0.056

vWA 16 16 0.156
18 18 0.160

FGA 20 20 0.044
24 24 0.166
25 25 0.110

Let us consider the locus FGA for demonstration, where the mixture is
M = {20, 24, 25}, the genotypes of the victim and the suspect are respectively
24/25 and 20/20. Using equation (7.5) in Fung and Hu (2008) and formula
(6), the P (M,K,D|H) under Hp, Hd1 and Hd2 are respectively

P (M,K,D|Hp) = Q∗(0, φ),
P (M,K,D|Hd1) = Q∗(2, {20}),
P (M,K,D|Hd2) = k0Q

∗(2, {20}) + 2k1Q
∗(1, φ) + k2Q

∗(0, φ),

where (k0, 2k1, k2) are the relatedness coefficients between the suspect and
his/her relative. The formulae for the calculation of P (M,K,D|H) for the
other loci can be determined similarly. Based on uniform Dirichlet prior of the
allele frequencies, the LRs for various relationships at all the three loci are
computed and summarized in Table 2. Note that the last row is corresponding
to Hd1 while the other rows are corresponding to Hd2 . As can be seen, there
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is a moderate reduction in the individual and overall LRs when the sample
size is changed from 1000 to 100. For example, at locus D3S1358, the value of
LR1 = 193.31 based on n = 100 is only 74% of 260.46, which is the one based
on n = 1000, and the overall LR1 based on n = 100 is only one half of that
based on n = 1000. Also noted is that the effect of the kinship relationship
between R and S on the evaluation of DNA mixture is remarkable. The
smallest LR always goes to the one corresponding to full siblings relationship.
The overall LR2 in the case of full siblings is less than 0.1% of that in the case
of second cousins. Moreover, LR2 does not constitute a substantial change,
especially when a close relationship is considered in Hd2 . This is due to the
fact that the suspect is homozygous in loci vWA and FGA, so that the same
allele is highly probable to be found in a close relative, e.g. full sibling.

Table 2. The effect of sample size n on the likelihood ratio in a rape case (Fung
and Hu (2000)), where the prosecution proposition is Hp: contributors were the
victim and the suspect and the defense proposition is Hd2 : contributors were the
victim and a relative R of suspect S.

Likelihood ratios
(R,S) n D3S1358 vWA FGA Overall

Parent-child 100 19.17 2.99 2.93 168
1000 22.08 3.15 3.10 216

Full siblings 100 3.61 2.28 2.33 19
1000 3.66 2.34 2.39 20

Half siblings 100 34.89 4.79 5.31 886
1000 40.70 5.09 5.73 1186

First cousins 100 59.11 6.84 8.93 3607
1000 70.41 7.36 9.91 5135

Second cousins 100 123.32 10.08 18.27 22710
1000 155.51 11.07 21.93 37740

Unrelated 100 193.31 11.97 28.08 64960
1000 260.46 13.30 36.82 127536

4 Discussion

In this paper we present a general formula for DNA mixture analysis within
a Bayesian framework, taking into account the uncertainty arise from esti-
mating allele frequencies in a population database. Based on the modified
Q-function Q∗(., .), the existing plug-in approach can be easily modified to
compute the weight of evidence under various prosecution or defense propo-
sitions, in which related persons may be involved. The calculation of Q∗(., .)
does not increase the computational complexity and can be easily imple-
mented. Moreover, our approach asymptotically gives the same results as the
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plug-in approach as n, the sample size of the database from which the allele
frequencies are estimated, goes to infinity.

The case study shows the importance of taking into account the uncer-
tainty in allele frequency estimates. The sample size does affect the likelihood
ratio, especially when rare alleles found in the DNA mixture are included in
the set of alleles with unknown contributors. Using the Bayesian approach,
substantial reduction in the likelihood ratio can be found in some situations
even when a close relationship is considered in the defense proposition. It is
concluded that the Bayesian approach provides a conservative evaluation of
the evidence which would be more desirable in some crime cases.

In this study, all the people involved are assumed to be from the same
population. In practical crime cases, it is not uncommon that the contributors
of the mixed stain may come from different ethnic groups. To handle this,
subpopulation models as suggested by Balding and Nichols (1994) should be
incorporated into the calculation of the weight of evidence. Further extension
of our current approach in this direction constitutes our future work.

Appendix

Proof of equation (6). First consider(∑
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Substituting equation (7) into equation (5) and using equation (4) yields
equation (6) immediately.
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Abstract. In this paper, we show that a deeper insight into the relations among
marginal processes of a multivariate Markov chain can be gained by testing hy-
potheses of Granger non-causality, contemporaneous independence and monotone
dependence coherent with a stochastic ordering. The tested hypotheses associated
to a multi edge graph are proven to be equivalent to equality and inequality con-
straints on interactions of a multivariate logistic model parameterizing the tran-
sition probabilities. As the null hypothesis is specified by inequality constraints,
the likelihood ratio statistic has chi-bar-square asymptotic distribution whose tail
probabilities can be computed by simulation. The introduced hypotheses are tested
on real categorical time series.

Keywords: graphical models, Granger causality, stochastic orderings, chi-
bar-square distribution

1 Introduction

When multivariate categorical data are collected over time, the dynamic char-
acter of their association must be taken into account. This aspect plays an
important role in modelling discrete time-homogeneous multivariate Markov
chains (MMCs). To investigate the underlying dynamic relations among the
marginal processes of a multivariate Markov chain, we employ the multi edge
graph (ME graph, Colombi and Giordano (2009)) which encodes Granger
non-causality and contemporaneous independence conditions among the com-
ponents of an MMC. Moreover, we specify the nature of the dependence, if
any, of the present of a marginal process of the MMC on the past of another,
in terms of stochastic dominance criteria. Our approach enables us to estab-
lish whether the dependence of a component of the MMC on its parents -
according to the graph terminology - satisfies an appropriate stochastic order-
ing by testing equality and inequality constraints on certain parameters. We
start by defining the conditions which specify when an MMC is graphical and
monotone in Sections 2 and 3. In Sections 4 and 5, we illustrate how to test
these hypotheses through equality and inequality constraints on parameters.
The given methodology is applied to real data in the final Section.
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2 Basic notation

Given a set of integers V = {1, ..., q}, let AV = {AV(t) : t ∈ Z} = {Aj(t) :
t ∈ Z, j ∈ V} be a time-homogeneous first order q−variate Markov chain in a
discrete time interval Z = {0, 1, 2, ..., T}. For all t ∈ Z, AV(t) = {Aj(t) : j ∈
V} is a discrete random vector with each element Aj(t) taking values on a
finite set of ordered categories Aj = {aj1, ..., ajsj

}, j ∈ V. The numbering is
assumed to be consistent with the order of the categories. For every S ⊂ V, a
marginal process of the chain is represented by AS = {AS(t) : t ∈ Z} where
AS(t) = {Aj(t) : j ∈ S}. When S = {j} the univariate marginal process is
indicated by Aj = {Aj(t) : t ∈ Z}, j ∈ V. Moreover, we use the notation of
conditional independence X ⊥⊥ Y |W when the random variables X and Y
are independent once the value of a third variable W is given.

3 Monotone and graphical multivariate Markov chains

We provide a graphical representation of the dynamic dependence among the
component processes of an MMC by employing the multi edge graph. This is
a graph that encodes Granger noncausal and contemporaneous independence
statements. Here, we briefly recall some features of the ME graphs and refer
to Colombi and Giordano (2009) for a deeper discussion of its properties.

In the ME graph G = (V, E), each node j belonging to the node set V
corresponds to the univariate marginal process Aj , j ∈ V, of the q-variate
MMC AV , and the edges in the edge set E describe the interdependence
among these processes. A pair of nodes i, k ∈ V of the ME graph may be
joined by the directed edges i→ k, i← k, and by the bi-directed edge i↔ k,
denoted also by (i, k], [i, k) and [i, k], respectively. Each pair of distinct nodes
i, k ∈ V can be connected by up to all the three types of edges. For each single
node i ∈ V, the bi-directed edge [i, i] is implicitly introduced and the directed
edge (i, i] (or equivalently [i, i)) may or may not be present. If (i, k] ∈ E then i
is a parent of k and k is a child of i. The set of parents of the node i is denoted
by Pa(i) = {j ∈ V : (j, i] ∈ E}. Moreover, when [i, k] ∈ E the nodes i, k are
neighbors. Thus, the set of neighbors of i is Nb(i) = {j ∈ V : [i, j] ∈ E}.
Note that the generic node i is neighbor of itself (i ∈ Nb(i)) and may also be
parent and child of itself. More generally, Pa(S) and Nb(S) are the collection
of parents and neighbors of nodes in S, for every non-empty subset S of V
(see the wide ranging literature on graphical models for basic concepts).

ME graphs obey Markov properties which associate sets of G-noncausality
and contemporaneous independence restrictions with missing directed and
bi-directed edges, respectively. In particular, missing bi-directed arrows lead
to independencies of marginal processes at the same point in time; miss-
ing directed edges, instead, refer to independencies which involve marginal
processes at two consecutive instants.



Monotone Graphical MMCs 447

Definition 1. (Graphical MMC). A multivariate Markov chain is graph-
ical with respect to an ME graph G = (V, E) if and only if its transition prob-
abilities satisfy the following conditional independencies for all t ∈ Z \ {0}

AS(t) ⊥⊥ AV\Pa(S)(t− 1)|APa(S)(t− 1) ∀S ∈ P(V) (1)

AS(t) ⊥⊥ AV\Nb(S)(t)|AV(t− 1) ∀S ∈ P(V). (2)

In the context of first order MMC, condition (1) corresponds to the classical
notion of Granger non-causality. Henceforth, we will refer to (1) with the term
Granger non-causality condition saying that AS is not G-caused by AV\Pa(S)

with respect to AV , and use the shorthand notation AV\Pa(S) 9 AS .
Condition (2), on the other hand, is a restriction on marginal transition

probabilities because it does not involve the marginal processes Aj : j ∈
Nb(S)\S, at time t, and more precisely it states that the transition probabil-
ities must satisfy the bi-directed Markov property (Richardson (2003)) with
respect to the graph obtained by removing the directed edges from G. Here,
we will refer to (2) with the term contemporaneous independence condition
using a shorthand notation AS = AV\Nb(S), and say that AS and AV\Nb(S)

are contemporaneously independent.
For example, the graph in Figure 1 displays the contemporaneous inde-

pendence relation A23 = A1 and the G-noncausal restrictions: A3 9 A2;
A1 9 A3; A23 9 A1; A3 9 A12. Note that in this example the presence of
the edges (i, i] is assumed even if these edges are not drawn in Figure 1.

The above definition suggests that the lack of a directed edge from node
i to k, (i, k ∈ V), is equivalent to the independence of the present of the
univariate marginal process Ak from the immediate past of Ai given the
most recent past of the marginal process AV\{i}, that is, for all t ∈ Z \ {0}

(i, k] /∈ E ⇐⇒ Ak(t) ⊥⊥ Ai(t− 1)|AV\{i}(t− 1). (3)

Moreover, from Definition 1, we deduce that a missing bi-directed arrow
between i and k is equivalent to stating that the corresponding marginal
processes are contemporaneously independent given the recent past of the
MMC, that is, for all t ∈ Z \ {0}

[i, k] /∈ E ⇐⇒ Ai(t) ⊥⊥ Ak(t)|AV(t− 1). (4)

The conditional independencies (3) and (4) are interpretable in terms of pair-
wise Granger non-causality and contemporaneous independence conditions,
respectively. However, note that (1), (2) are not equivalent to the implied set
of pairwise conditions.

Beside the Granger non-causality and independence conditions, the form
of dependence of Aj on its parents APa(j), j ∈ V, is also relevant. We ad-
dress the problem of assessing the aforementioned dependencies by using the
concept of monotone dependence.
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2 31

Fig. 1. Example of a multi edge graph

In the ME graph G = (V, E), the hypothesis of monotone dependence of
Aj on its parents APa(j), j ∈ V, states that the distributions of Aj condi-
tioned by APa(j) can be ordered according to a stochastic dominance criterion
in a coherent way with the partial order on ×k∈Pa(j)Ak which is induced by
the orderings on the sets Ak, k ∈ Pa(j).

The dominance criterion can be chosen from the simple, uniform and
likelihood ratio stochastic orderings. Remember that the likelihood ratio is
the strongest stochastic ordering and the simple ordering is the weakest.

A graphical MMC which allows a monotone dependence of at least one
marginal component on its parents is defined below.

Definition 2. (Monotone Graphical MMC). A multivariate Markov chain
is monotone and graphical if and only if it is graphical with respect to an ME
graph G = (V, E) and there exists a set M⊆ V, M 6= ∅, such that for every
j ∈M the dependence of Aj on its parents is monotone.

It is worth noting that the dominance criterion concerns only the marginal
processes in an MMC and does not refer to their joint behavior.

In the next Section, we will show how the conditions of Granger non-
causality, contemporaneous independence and monotone dependence that
specify a monotone graphical MMC can be tested.

4 A multivariate logistic model for transition
probabilities

Here, we clarify that the requirements of Definition 2 are equivalent to equal-
ity and inequality constraints on suitable interactions of a multivariate lo-
gistic model which parameterize the transition probabilities. We remind the
reader that I = ×j∈VAj is the q-dimensional discrete joint state space. The
time-homogeneous joint transition probabilities are denoted by p(i|i′), for
every pair of states i ∈ I, i′ ∈ I. Given a vector i = (i1, i2, ..., iq)′ ∈ I, if
H ⊂ V then iH denotes the vector with components ij , j ∈ H. Any state
which includes categories aji ∈ Aj , for j /∈ S, S ⊂ V, at the baseline value
(usually the first category) is denoted by (iS , i*V \S). Given a state i′, for the
transition probabilities p(i|i′), we adopt the Glonek-McCullagh (1995) multi-
variate logistic model whose marginal interaction parameters are denoted by
ηP (iP |i′), for every non empty subset P of V and for every iP ∈ ×j∈PAj . The
Glonek-McCullagh baseline interactions ηP (iP |i′) are given by the following
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contrasts of logarithms of marginal transition probabilities p(iP |i′) from the
state i′ to one of the states in ×j∈PAj

ηP (iP |i′) =
∑
K⊆P

(−1)|P\K| log p((iK, i*P\K)|i′). (5)

Hence the Glonek-McCullagh interactions are not log-linear parameters be-
cause they are not contrasts of logarithms of the joint transition probabilities
p(i|i′).

The proof of the next proposition follows from classical results on the
logistic regression and a result by Lupparelli et al. (2009).

Proposition 1. For an MMC with positive time-homogeneous transition
probabilities, it holds that: (i) the Granger non-causality condition (1) is true
if and only if ηP (iP |i′) = ηP (iP |i′Pa(P )), P ⊆ V, P 6= ∅, and (ii) the contem-
poraneous independence condition (2) is equivalent to ηP (iP |i′) = 0 for all
P that are not connected sets in the bi-directed graph obtained by removing
every directed edge from the ME graph G.

The Proposition states that requirements (1) and (2) of a graphical MMC
correspond to simple linear constraints on the ηP (iP |i′) parameters. The test-
ing such a hypothesis is a standard parametric problem when the alternative
hypothesis is that at least one constraint is not satisfied.

Hypotheses of monotone dependence hold if and only if inequality con-
straints on certain interaction parameters are satisfied as shown by the next
proposition.

Proposition 2. For a graphical MMC with positive time-homogeneous
transition probabilities, a positive (negative) monotone dependence hypothesis
is true if and only if ηj(ij |i′Pa(j)\k, i

′
k) ≤ (≥)ηj(ij |i′Pa(j)\k, i

′
k +1), k ∈ Pa(j),

j ∈M,M⊆ V,M 6= ∅.
The simple, uniform and likelihood ratio orderings are obtained when the

logits ηj(ij |i′Pa(j)) subjected to inequality constraints are of global, continua-
tion and local types, respectively. For the correspondence between inequality
constraints on different types of interactions and stochastic orderings see
Shaked and Shantikumar (1994), among others.

Following Bartolucci et al. (2007), it can be proved that the set of zero re-
strictions imposed under the G-noncausality and contemporaneous indepen-
dence hypotheses of Proposition 1 can be rewritten in the form C ln(Mπ) =
0, while the inequality constraints of Proposition 2 for monotone dependence
have a compact expression given by K ln(Mπ) ≥ 0, where π is the vector
of all the transition probabilities and C,K are matrices of contrasts and M
is a zero-one matrix.

5 Likelihood ratio tests

Let HG be the hypothesis: C ln(Mπ) = 0, stating that an MMC is graph-
ical, and let HM : C ln(Mπ) = 0, K ln(Mπ) ≥ 0 be the hypothesis of a
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monotone graphical MMC. Let LG, LM and LU denote the maximum of the
log-likelihood functions under the previous constraints and the unrestricted
model. Under the assumptions provided by Fahrmeir and Kaufmann (1987)
for autoregressive categorical time series, the likelihood ratio test (LRT)
statistic 2(LU − LG) for testing HG has the classical chi-square asymptotic
distribution. In contrast, the statistics 2(LG−LM ) and 2(LU −LM ), for HM

against HG and HM against the unrestricted alternative, are asymptotically
chi-bar-square distributed (Silvapulle and Sen (2005)). The chi-bar-square
distribution is a mixture of chi-square random variables. The asymptotic chi-
bar-square distribution follows from the same assumptions of Fahrmeir and
Kaufmann (1987) needed for the asymptotic distribution of 2(LU −LG), and
from the fact that the parametric space under the null hypothesis is defined
by linear inequality and equality constraints on the model parameters. See
Silvapulle and Sen (2005) for the technical details of the maximum likelihood
(ML) estimation under inequality constraints. It may be also interesting to
test the null hypothesis H0 : C ln(Mπ) = 0, K ln(Mπ) = 0 against HM .
In this case, the LRT statistic 2(LM − L0) has a chi-bar-square asymptotic
distribution as well. According to Silvapulle and Sen’s terminology, testing
H0 against HM is a testing problem of type A and in this case the alternative
hypothesis is specified by inequality constraints. Testing HM against HG or
HU is of type B and the inequalities are under the null hypotheses.

The ML estimation methods developed by Cazzaro and Colombi (2009)
for multinomial data under equality and inequality constraints are easily
adapted to the MMC context of this work. Moreover, Monte Carlo methods
can be employed to compute the p-values of the LRT statistics 2(LG −LM ),
2(LU−LM ) and 2(LM−L0). All the procedures for computing ML estimates
and p-values, used in the next example, are implemented in the R-package
hmmm, Cazzaro and Colombi (2008).

6 Example

The introduced hypotheses are tested on a data set that includes a 3-dimen
sional binary time series of sales levels (low, high) of three well-known Italian
brands (Amato, Barilla, Divella) of pasta (spaghetti) sold by a wholesale
dealer operating in a region of Southern Italy. The data were collected on
365 days in the period between December, 2006 and January, 2009. The sale
rate series are reasonably assumed to be modeled by a first order 3-variate
Markov chain. One question that arises in managing the sales inventory of
pasta is whether the quantity of spaghetti sold by one brand depends on the
amount of sales of the two competitors on the same day, given the past sales
of all brands. Moreover, it is also important to ascertain whether the current
sales of one brand of spaghetti are influenced by the previous demand for every
brand of spaghetti. Monotone dependence hypotheses can also be plausible.
For example, we can hypothesize that the probability of selling a high amount
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of spaghetti of a certain brand is greater when a large quantity of spaghetti of
all three companies has been sold in the past. The answer to these questions
can be obtained by testing hypotheses of G-noncausality, contemporaneous
independence and stochastic order. This boils down to testing equality and
inequality constraints on the interactions which parameterize the transition
probabilities of the spaghetti Markov chain and to identifying the ME graph
which encodes the underlying independence conditions.

To this end, various hypotheses associated with edges of the ME graph
G = (V, E), with one node for each brand of pasta V = {1, 2, 3}, have been
tested. In short 1, 2, 3 stand for brands Amato, Barilla, and Divella. In this
example, all the marginal processes have only two states 0, 1 which correspond
to low and high sales level, respectively; thus for every P ⊆ {1, 2, 3} and every
level i′ = (l,m, n), l = 0, 1, m = 0, 1, n = 0, 1, of the past sales, there is
only one Gloneck-McCullagh multivariate logistic interaction ηP (iP |i′) which
will be denoted by ηP (l,m, n). According to Proposition 1, the hypothesis
of contemporaneous independence A1 = A2 = A3 requires that all the
interactions ηP (l,m, n) are null, except the 24 logits ηj(l,m, n), j ∈ {1, 2, 3}
which, instead, are to be constrained to satisfy the Granger non-causality and
the monotone dependence conditions. The hypothesis of contemporaneous
independence can be accepted as LRT = 34.212, df = 32, p− value = 0.362.
The graph corresponding to this accepted hypothesis has all the directed
edges and no bi-directed edges.

An useful restriction that simplifies considerably the monotone depen-
dence constraints of Proposition 2 is the hypothesis of additivity of the
past sale effects on the current sale level. Under this assumption, the log-
its ηj(l,m, n) have the factorial expansion ηj(l,m, n) = θj + θj1

l + θj2
m + θj3

n

in terms of a general effect and three main effects. The previous main effects
are null if their index l, m or n is zero. Note that under this hypothesis,
the 24 logits are parameterized by three general effects θj and nine main
effects θji

1 , moreover the requirements of Proposition 2 are reduced to simple
inequality constraints on the previous main effects. More precisely, assuming
additivity, the main effect θji

1 corresponds bi-univocally to the edge (i, j], and
by Proposition 1 it must be null when this edge is missing in the ME graph
and positive (negative) if the dependence of Aj on Ai is positive (negative)
monotone (Proposition 2).

The hypothesis of contemporaneous independence together with additiv-
ity can be accepted as LRT = 44.81, df = 44, p − value = 0.44. Then, we
add the order-restricted hypothesis that all causal relations are monotone.
In particular, the hypothesis that the monotone dependence associated to all
the edges is positive except for (2, 3] and (3, 2] which correspond to a negative
relation, is not rejected (LRT = 1.24, p − value = 0.86). These properties
impose that the main effects θji

1 are non-negative when associated with the
edges (1, 1], (2, 2], (3, 3], (2, 1], (1, 2], (1, 3] and (3, 1]; while the main effects are
non-positive when related to (2, 3] and (3, 2]. Alternatively, we can proceed
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by considering that the graph which includes all directed and no bi-directed
edges may be simplified since the hypothesis that the edges (2, 1] and (3, 1]
can be removed is accepted (LRT = 4.4, df = 2, p−value = 0.11). Therefore,
the order-restricted hypotheses may be tested on this reduced graph where
(2, 1] and (3, 1] are missing. In this case the hypothesis of monotone depen-
dence of positive type for the edges (1, 1], (2, 2], (3, 3], (1, 2],(1, 3] and negative
for (2, 3] and (3, 2] is clearly accepted, in fact LRT = 0, p− value = 1.

In conclusion, the spaghetti Markov chain can be described by a monotone
graphical model with respect to the ME graph with edges (1, 1], (2, 2], (3, 3],
(1, 2], (1, 3], (2, 3] and (3, 2]. This means that the current sales level of Amato
does not depend on previous sales of either Divella or Barilla. Moreover,
a high level of sales of Barilla and Divella on one day is more probable
when the quantity which Amato previously sold was high. On the contrary,
given previous high sales level of Divella spaghetti, a low level of Barilla sales
is more probable, and vice versa. Moreover, there is no influence between
the contemporaneous sales of all 3 brands, while sales of all brands depend
positively on their own previous sales performance.

References

BARTOLUCCI, F. COLOMBI, R. and FORCINA, A. (2007): An extended class
of marginal link functions for modelling contingency tables by equality and
inequality constraints. Statistica Sinica, 17, 691-711.

CAZZARO, M. and COLOMBI, R. (2008): Hierarchical multinomial marginal mod-
els: the R package hmmm. www.unibg.it/pers/?colombi.

CAZZARO, M. and COLOMBI, R. (2009): Multinomial-Poisson models subject to
inequality constraints. Statistical Modelling, 9(3), 215-233.

COLOMBI, R. and GIORDANO, S. (2009): Multi edges graphs for multivariate
Markov chains. In: J. G. Booth (Eds.): Proceedings of 24th International Work-
shop on Statistical Modelling. Ithaca (NY), 102 – 109.

FAHRMEIR, L. and KAUFMANN, H. (1987): Regression models for nonstationary
categorical time series. Journal of Time Series Analysis, 8(2), 147-160.

GLONEK, G. J. N. and McCULLAGH, P. (1995): Multivariate logistic models.
Journal of Royal Statistical Society, B, 57, 533-546.

LUPPARELLI, M., MARCHETTI, G. M. and BERGSMA, W. P. (2009): Parame-
terization and fitting of discrete bi-directed graph models. Scandinavian Jour-
nal of Statistics, 36, 559-576.

RICHARSON, T. (2003): Markov properties for acyclic directed mixed graphs.
Scandinavian Journal of Statistics, 30, 145-157.

SHAKED, M. and SHANTIKUMAR, J. G. (1994): Stochastic Orders and Their
Applications. MA: Academic Press, Boston.

SILVAPULLE, M. J. and SEN, P. K. (2005): Constrained Statistical Inference.
Wiley, New-Jersey.



Using Observed Functional Data to Simulate a
Stochastic Process via a Random

Multiplicative Cascade Model

G. Damiana Costanzo1, S. De Bartolo2, F. Dell’Accio3, and G. Trombetta3

1 Dip. Di Economia e Statistica, UNICAL, Via P. Bucci, 87036 Arcavacata di
Rende (CS), Italy, dm.costanzo@unical.it

2 Dip. di Difesa del Suolo V. Marone, UNICAL, Via P. Bucci, 87036 Arcavacata
di Rende (CS), samuele.debartolo@unical.it

3 Dip. di Matematica, UNICAL, Via P. Bucci, 87036 Arcavacata di Rende (CS),
fdellacc@unical.it, trombetta@unical.it

Abstract. Considering functional data and an associated binary response, a method
based on the definition of special Random Multiplicative Cascades to simulate the
underlying stochastic process is proposed. It will be considered a class S of stochas-
tic processes whose realizations are real continuous piecewise linear functions with
a constrain on the increment and the family R of all binary responses Y associated
to a process X in S. Considering data from a continuous phenomenon evolving in a
time interval [0, T ] which can be simulated by a pair (X,Y ) ∈ S ×R, a prediction
tool which would make it possible to predict Y at each point of [0, T ] is introduced.
An application to data from an industrial kneading process is considered.

Keywords: functional data, stochastic process, multiplicative cascade

1 Introduction

When data represent functions or curves it is standard practice in the litera-
ture to consider them as paths of a stochastic process X = {Xt}t∈[0,T ] taking
values in a space of functions on some time interval [0, T ]. Functional data has
received in recent years considerable interest from researchers and the classi-
cal tools from finite multivariate analysis have been adapted to this kind of
data. When dealing with functional data a major interest is to develop linear
regression and classification methods (see Escabias et al., 2004, 2007, James,
2002, Ratcliffe et al. 2002a, 2002b, Saporta et al., 2007). In particular, when
predictors are of functional type (generally, curves or real time functions) and
response is a categorical variable Y defining K groups, K ≥ 2, linear discrim-
inant analysis (LDA) models for functional data are considered. Preda and
Saporta (2005) proposed PLS regression in order to perform LDA on func-
tional data. Following this approach, to address the problem of anticipated
prediction of the outcome at time T of the process in [0, T ], in Costanzo et
al. (2006) we measured the predictive capacity of a LDA for functional data

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 44, c© Springer-Verlag Berlin Heidelberg 2010
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model on the whole interval [0, T ]. Then, depending on the quality of predic-
tion, we determined a time t∗ < T such that the model considered in [0, t∗]
gives similar predictions to that considered in [0, T ]. We consider here a new
approach based on the definition of special Random Multiplicative Cascades
(RMC for short) to model the underlying stochastic process. In particular,
we consider a class S of stochastic processes whose realizations are real con-
tinuous piecewise linear functions with a constrain on the increment. Let R
be the family of all binary responses Y associated to a process X in S and
consider data from a continuous phenomenon which can be simulated by a
pair (X,Y ) ∈ S × R, with the same objective of prediction of the binary
outcome earlier than the end of the process, we introduce the adjustement
curve for the binary response Y of the simulated stochastic process X. Such
a tool is a decreasing function which would make it possible to predict Y
at each point in time before time T . For real industrial processes this curve
can be a useful tool for monitoring and predicting the quality of the outcome
before completion. The paper is organized as follows. In Sec. 2 we describe
our method based on the definition of special RMCs. In Sec. 3 we present the
adjustment curve. Finally, in Sec. 4 we illustrate an application.

2 The Random Multiplicative Cascade Model

We start by considering a matrix of data of functional type FD =
[
xi (tj)

]
, i =

1, . . . L, tj = j · T
S for j = 0, . . . , S, where each row represents a continuous

curve observed at discrete time tj , j = 0, . . . , S. Next, we consider the column
vector R = (ri), i = 1, . . . , L, where ri is a binary outcome associated to the
row

(
xi (0) . . . xi (tj) . . . xi (T )

)
for i = 1, . . . , L; for example ri ∈ {bad, good}.

As an example consider the situation depicted in Fig. 1 where dough resis-
tance (density) has been recorded in a time interval [0, T ] during the kneading
process for each type of flour. The achieved dough resistance in T affects the
outcome of the process, that is the quality - good or bad - of the resulting
cookies. The obtained curves could be used to predict the quality of cookies
made with this dough before completion of the kneading. We assume that the
data FD and R jointly arise from a continuous phenomenon which can be
simulated by a pair (X,Y ), where X is a stochastic process whose realizations
are real continuous functions with {x(0) : x ∈ X} =

{
xi

0 : i = 1, . . . , L
}
, lin-

ear on the intervals [tj , tj+1], tj = j · T
S for j = 0, . . . , S−1, with a constraint

on the increment, i.e. |x(tj+1)−x(tj))| ≤M(x, j) for j = 0, . . . , S− 1. In the
simplest case we can assume that the increment does not exceed a certain
mean constant value obtainable from the real data, i.e. M(x, j) = M for
each x ∈ X, j = 0, . . . , S−1. We will denote by S the class of such stochastic
processes, X = {X (t)}t∈[0,T ] a stochastic process in S, x = x (t) (t ∈ [0, T ])
a realization of X. Moreover R will denote the class of all binary responses Y
associated to X. Without loss of generality we can assume Y ∈ {bad, good} .
We propose a method by means of which X and Y can be realized via RMCs
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which depend on a certain number of constants (obtained from the data FD
and R) and real positive parameters.

A multiplicative cascade is a single process that fragments a set into
smaller and smaller components according to a fixed rule and, at the same
time, fragments the measure of components by another rule. The central role
that the multiplicative cascades play in the theory of multifractal measures
is well known. The notion of multiplicative cascades was introduced in the
statistical theory of turbulence by Kolmogorov (1941) as a phenomenological
framework intended to accommodate the intermittency and large fluctuations
observed in flows. RMCs have been used as models to compress, infer future
evolutions and characterize underlying forces driving the dynamics for a wide
variety of other natural phenomena (cfr. Pont et al., 2009) such as rainfall
(see Gupta and Waymire, 1993), internet packet traffic (see Resnick at al.,
2003), market price (see Mandelbrot, 1998). Recently statistical estimation
theory for random cascade models has been investigated by Ossiander and
Waymire (2000, 2002). We defined a RMC generating recursively a multifrac-
tal measure µ on the family of all dyadic subintervals of the unit interval [0, 1].
This measure µ is recursively generated with the cascade that is schemeti-
cally depicted in Fig. 2 and fully detailed in (Costanzo et al., 2009). In this
section we summarize the main steps of our RMC model and describe how
to use it to model a real phenomenon using a pair (X,Y ) ∈ S × R. Let us
consider the FD matrix of functional data and the vector R of the associated
outcome and define sets B =

{
xi(T ) : i = 1, . . . , L and ri = bad

}
and G ={

xi(T ) : i = 1, . . . , L and ri = good
}
. We assume that min(G) > max(B).

Step 1. We use the data FD and R in order to define, among others, the
following constants (|A| denotes the number of elements of the set A):

q0 = |G| / (|G|+ |B|) and 1− q0 = |B| / (|G|+ |B|) ,

p =
(

max
i=1,...,L

(
xi (T )− xi (0)

)
− min

i=1,...,L

(
xi (T )− xi (0)

))
/δ,

δ =

 L∑
i=1

S∑
j=1

|xi(tj)− xi(tj−1)|

 / (LS) .

In particular q0 is the ratio between the number of good realizations of the
real process - that is the number of those curves whose outcome was good at
time T - and the totality of such curves while p determines the number of
stages (steps) of the multiplicative cascade.

Step 2. Let (α, β) be a pair of random generated numbers in the square
[10−1, 10]×[10−1, 10]. For given α, β and q ∈ (0, 1) and for each i ∈ {1, . . . , L},
if ri = good (ri = bad) we start the cascade with q = q0 (q = 1 − q0) by
truncating it at the stage p. To the resulting (p+ 1)-uple of positive integers
we associate a proof of length p + 1 that is a real piecewise linear function
with a constrain on the increment which simulates a single row of the matrix
FD. For each i = 1, . . . , L the set Ep of L proofs of lenght p + 1 is called
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an experiment of size L and length p + 1. Each simulated experiment Ep

is rearranged in a matrix SFDα,β of experiment data (simulated functional
data).

Step 3. The closeness of the functional data FD with the simulated
functional data SFD = SFDα,β evaluated for the same subdivision in K
classes

[
0, 1

K

[
, . . . ,

[
K−1

K , 1
]

of [0, 1] in terms of the frequency distribution
of the original data IFD and the corresponding frequency distribution of
the simulated data ISFDα,β

, allows to define the set Eη,θ of all admissible
experiments Ep of size L and length p+1. The two fixed positive real numbers
η and θ provide a measure of the closeness of the simulated experiment to the
real data. Admissible experiments Ep can be obtained via the Monte-Carlo
method based on the generated random pairs (α, β) ∈ [10−1, 10]× [10−1, 10].

Step 4. Let Eη,θ be the set of all admissible experiments Ep of size L
and length p + 1, denote by S(Ep) the set of L piecewise linear interpolant
the data in each single row of SFD, we define the stochastic process X
as the set X =

⋃
Ep∈Eη,θ

S(Ep). The associated binary response Y : X →

{bad, good} , Y (s) = YEp
(s) is univocally determined since it does not de-

pend on the particular experiment Ep.

3 The Adjustment Curve for Binary Response of a
Simulated Stochastic Process

In Costanzo et al (2009) we introduced the notion of adjustement curve as
a predictive tool of the binary outcome of a process. We first introduced
the definition of the adjustment curve γa,D : [0, T ] → [0, 1] for the binary
outcome R of the functional data FD. We required that for real data the
condition xi(T ) < xj(T ) for each i : ri = bad and j : rj = good, i, j = 1, ..., L
is satisfied. That is, we assumed there exist a value X(T ) ∈ R such that ri =
bad if, and only if, xi(T ) < X(T ) and ri = good if, and only if, xi(T ) ≥ X(T )
for each i = 1, . . . , L. Let si

D : [0, T ]→ R (i = 1, ..., L) be the piecewise linear
functions whose node-sets are N i =

{(
j, xi(tj)

)
: tj = j · T

S for j = 0, . . . , S
}

(i = 1, ..., L). We defined:

bD(j) = max
{
xi(tj) : i = 1, . . . , L and ri = bad

}
(j = 0, . . . , S) (1)

gD(j) = min
{
xi(tj) : i = 1, . . . , L and ri = good

}
(j = 0, . . . , S). (2)

Let i ∈ {1, . . . , L} and ri = bad (or ri = good). The piecewise linear inter-
polant si

D is called adjustable at the time t ∈ [0, T ] (for short t−adjustable) if
there exists tj ≥ t with j ∈ {0, 1, . . . , S} such that si

D(t) ≥ gD(tj) (or si
D(t) ≤

bD(tj)). The adjustment curve γa,D : [0, T ]→ R for the binary outcome R of
the functional data FD is the function

γa,D(t) =

∣∣{si
D(t) : i = 1, . . . , L and si

D(t) is t− adjustable
}∣∣

L
(t ∈ [0, T ]).
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Given a set of curves coming from a real continuous process the adjustment
curve is a decreasing step function which gives the relative frequency of curves
adjustable (with respect to the final outcome in T ) at each time t ∈ [0, T ].
The complementary curve 1 − γa,D(t) gives then, at each time, the relative
frequency of the curves that are definitively good or bad. Let us observe that
by the two data sets (1) and (2) it was possible to deduce the binary response
ri(tj) associated to si

D, i ∈ {1, . . . , L} at each time tj , j = 0, . . . , S − 1,
before time T ; indeed: if si

D(tj) > bD(j) then ri(tj) = good or if si
D(tj) <

gD(j) then ri(tj) = bad otherwise ri(tj) is not yet definite.
By analogy with the case of real data we can introduce the adjustment

curve γa,Ep : [0, p] → [0, 1] for the binary outcome YEp of the admissible

experiment Ep ∈ Eη,θ. We first consider the change of variable τ =
p

T
· t (t ∈

[0, T ]) and obtain, for every Ep ∈ Eη,θ, γa,Ep(t) = γa,Ep(
p

T
· t)(t ∈ [0, T ]).

The set
{
γa,Ep

: Ep ∈ Eη,θ

}
= {γ1, γ2, . . . , γN} is finite. We then consider

the random experiment “obtain an admissible experiment Ep” whose sample
space is the infinite set Eη,θ. We set E i

η,θ =
{
Ep ∈ Eη,θ : γa,Ep = γi

}
(i =

1, . . . , N). Let νi be the frequencies of the curves γi (i = 1, . . . , N). We define
the adjustment curve γa : [0, T ] → [0, 1] for the binary response Y of the

process X as the function γa(t) =
N∑

i=1

νiγi(t)(t ∈ [0, T ]). In practice, given

a couple (X,Y ) ∈ S × R we can choose a tolerance ε > 0 such that, if
E1

p = (x1
1, . . . , x

1
L), E2

p = (x2
1, . . . , x

2
L) are two admissible experiments such

that
L

max
i=1
‖x1

i−x2
i ‖∞ ≤ ε (here ‖·‖∞ denotes the usual sup-norm) then E1

p , E
2
p

can be considered indistinguishable. Therefore X becomes a process with a
discrete number of realizations and thus we can assume that for i = 1, . . . , N ,
νi = lim

n→∞
νn

i , where νn
i is the relative frequency of γi observed on a sample

(γ1, . . . , γn) of size n. We set γn
a =

N∑
i=1

νn
i γi (n = 1, 2, . . . ). The sequence {γn

a }

converges to γa on [0, T ] and the variance V ar(γa) of the random variable
γa is less or equal 2. Consequently the classical Monte Carlo method can be
used to produce approximations of γa with the needed precision.

4 Application

We present an application of our method to a real industrial process; namely
we will show how our model can be used to monitor and predict the qual-
ity of a product resulting from a kneading industrial process. We will use a
sample of data provided by Danone Vitapole Research Department (France).
In kneading data from Danone, for a given flour, the resistance of dough
is recorded during the first 480 seconds of the kneading process. There are
136 different flours and then 136 different curves or trajectories (functions of
time). Each curve is observed in 240 equispaced time points (the same for all
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flours) of the interval time [0, 480]. Depending on its quality, after kneading,
the dough is processed to obtain cookies. For each flour the quality of the
dough can be bad or good. The sample we considered contains 44 bad and 62
good observations. In Fig. 1 grey curves (black curves) are those correspond-
ing to the cookies that were considered of good quality (bad quality) after the
end of the kneading process. In order to introduce the adjustment curve, we
required that with respect to the end values of the process, we have a clear
separation between bad and good curves, that is R must depend only on the
values at the time T of the real process (see Sec.3). To meet such condition
we introduced the concept of ε− (m,n) separability for two sets by means of
which we find the minimum number of bad curves and/or good curves that
can be discarded in such way that the ratio q0 is kept in a prefixed error ε.
For ε = 0.05 we discarded from our analysis eight good curves and six bad
curves; the remaining 54 good curves and 38 bad curves are separated in
T = 480 at the dough resistance’s value c = X(T ) = 505. In Fig. 3 we show
one admissible experiment Ep obtained by the method outlined in Sec.2. In
order to obtain by application of Monte Carlo Method the adjustment curve
γa with an error less than 10−1 and probability greater than 90% we need to
perform n = 4000 admissible experiments. In Fig. 4 we depicted the adjust-
ment curve γa for the binary response Y of the stochastic process X related
to Danone’s data. Such curve has been computed on the basis of n = 1000
admissible experiment Ep, obtained requesting a value of the χ2 index less
or equal to seven. For each t ∈ [0, T ], the standard deviation is not greather
than 0.09 ≈ 10−1. The intervals of one standard deviation from the mean
curve value comprise a frequency of adjustment curves of the Ep’s admissible
experiments which range from a minimum of 65% about - in the time interval
between t = 150 and t = 320 about - to a maximum of 87% about; while in
the intervals of two standard deviation, such frequency range between 92%
and 97%. These last intervals are illustrated in the figure 4 by the plus and
minus signs and they comprise the adjustment curve γa,D of real Danone’s
data. In such figure we can observe that the simulated process prediction
curve gives the same results as the real data one at times near to t = 186,
which was the same time t∗ < T we determined in Costanzo et al. (2006)
on the whole interval [0, 480]; the average test error rate was of about 0.112
for an average AUC(T ) = 0.746. However, in our case we can observe that
after such time and until time t = 326 the γa,D gives an adjustment higher
than γa, which denotes instability for such data since from 65% to 42% of
the curves are not yet definitively bad or good. Let us remark that the mean
absolute difference between the two curves is 0.06 on the whole time inter-
val, while its value is 0.112 in the time interval [186, 326]. Starting from time
t = 330 γa is over γa,D so that such time seems for such data a good time to
start to predict. An adjustment value of about γa = 0.20 implies in fact, that
bad outcomes at such time has a low probability (0.20) of adjustment before
the end of the process and they could be discarded or the process could be



Using Functional Data to Simulate a Stochastic Process 459

modified; while at the same time a good outcome has an high probability
1−γa = 0.80 to remain the same until the end of the process. Further details
on the adjustment curve and its interpretation can be found in Costanzo et
al. (2009).

5 Conclusion and perspectives

The RMC model proposed in this work is characterized by an intrinsic com-
plexity of the recursive relation generating the cascade structure in terms of
multifractal measures. This causes a non immediate (or direct) writing of the
partition function and of so called sequence of mass exponents (Feder, 1988).
The last is very important since it allows the definition, via Legendre trans-
form, of the generalized fractal dimensions that controls the multi-scaling
behaviours of the support of the measures. Works in progress comprise the
formulation of such partition function to obtain, if it exists, the multiplica-
tive processes limit and so way define a multifractal spectrum analitically;
the validation of the multifractality of a kneading industrial process by means
of the analysis of the relative scalings of the observed functional data. For
such validation, in accordance to the standards requested by numerical con-
vergence of the multifractal measures we need however of curves constituted
by a very high number of data points (Fuchslin et al., 2001).
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Fig. 1. Danone’s data
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Abstract. This paper aims to adapt clusterwise regression to interval-valued data.
The proposed approach combines the dynamic clustering algorithm with the center
and range regression method for interval-valued data in order to identify both
the partition of the data and the relevant regression models, one for each cluster.
Experiments with a car interval-valued data set show the usefulness of combining
both approaches.

Keywords: clusterwise regression, interval-valued data, symbolic data anal-
ysis

1 Introduction

There is a large amount of publications on symbolic interval-valued data (see
Billard and Diday (2007)). Symbolic interval-valued data occur in two con-
texts: either when one has uncertainty on individual values, or when one has
variation like eg in medical data such as blood pressure, pulse rate observed
on a daily time period. We will consider here only the second case.

Several methods have been proposed to deal with the case where the
response y as well as the predictors are interval-valued variables. We will
use the centre and range method proposed by Lima Neto and De Carvalho
(2008). Assuming that data are homogeneous (ie there is only one regression
model for the whole data set ) can be misleading. Clusterwise regression has
been proposed long ago, as a way to identify both the partition of the data
and the relevant regression models, one for each class. Clusterwise regression
may be viewed as a particular mixture or latent class model, or from a data
analytic perspective as a combination of cluster and regression analysis.

In this paper we adapt clusterwise regression to interval-valued data. The
paper is organized as follows. Section 2.1 presents approaches for interval
data regression, section 2.2 is a short presentation of clusterwise regression.
Section 3 presents how clusterwise regression is extended to interval data.
Section 4 presents experiments with a car interval-valued data set in order
to show the usefulness of combining both approaches. Finally, section 5 gives
concluding remarks.
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2 A Brief Overview of Regression for Interval-Valued
Data and Clusterwise Linear Regression

2.1 Regression for Interval Data

Billard and Diday (2000) considered the center method where one fits a re-
gression model to the mid-points of the intervals. They predict the bounds of
y by applying the model for the centers to the upper bounds of the predictors
(resp. the lower bounds). The same model is thus applied to predict the cen-
ters and the (upper and lower) bounds. The MinMax method (Billard and
Diday (2002)) consists in fitting two different regressions, one for all upper
bounds, the other for all lower bounds.

Recently Lima Neto and de Carvalho (2008) presented the “center and
range method”: in short, this method consists of fitting two linear models,
one for the centers of the intervals, another one for the range. The prediction
for a new example is given by the prediction of the center ± the half of the
predicted range. In their paper, Lima Neto and de Carvalho (2008) proved
with extensive simulations the superiority of the last method compared to the
centre and the MinMax method, and it is why we will use it in the following.

2.2 Clusterwise Linear Regression

Clusterwise linear regression is a useful technique when heterogeneity is
present in the data. It is a mix of cluster analysis and regression where clus-
ters are obtained in a supervised way in order that for each cluster we have
the “best” regression model.

This “local” regression model may also be viewed as a particular mixture
model (Wayne et al 1988 and Hennig 2000) who used maximum likelihood
estimation. Clusterwise linear regression has been also analyzed in a fuzzy
framework (D’Urso and Santoro (2006)). We focus here on least squares tech-
niques. In the basic model the number of clusters is supposed to be known.

Let y be a response variable and x a p-dimensional vector of regressors.
From an algorithmic point of view the aim is to find simultaneously an opti-
mal partition of the data in K clusters, 1 < K < n and K regression vectors
β(k) (1 < k < K) one for each cluster such that one maximizes the overall
fit or minimize the sum of squared residuals:

K∑
k=1

∑
i∈Pk

(εi(k))2

where Pk is the kth cluster, ŷi(k) is the prediction of y (assuming i ∈ Pk) and

yi = (xi)T β(k) + εi(k) =
p∑

j=1

βj(k)xij + εi(k) = ŷi(k) + εi(k)
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Numerous algorithms have been proposed to solve this problem: some use
combinatorial optimisation techniques like Spaeth (1979) who proposes an
exchange algorithm. We will use here the special case of k-means clustering
which has been proposed by Diday and Simon (1976) and Bock (1989) and
belongs to the family of alternated least squares techniques:
Step 1: Starting from an initial partition, one estimates separately a regression
model for each cluster.
Step 2: Each observation is moved to the cluster (or model) giving the smallest
square residual (i.e, the best prediction). Once all observations have been
reclassified, we obtain a new partition.

Step 1 and 2 are then iterated until convergence (i.e, stability of the parti-
tion), or when the criterium does not decrease enough. It is necessary to have
enough observations in each cluster (Charles (1977)) in order to estimate the
regression coefficients by OLS. Like in k-means clustering, it is possible that
some clusters become empty and that the final number of clusters may be
less than the initial guess K. Choice of K remains difficult: some have advo-
cated for AIC or BIC- like criteria (Plaia 2001)). From a empirical machine
learning point of view, K should be chosen by some validation technique
(cross-validation, bootstrap. etc.). The existence of many local minima have
been stressed by Caporossi and Hansen (2007): this implies to choose wisely
the starting partition.

3 Clusterwise regression on interval-valued data

This section presents a clusterwise regression model based on both the dy-
namic clustering algorithm (Diday and Simon (1976)) and the center and
range regression model for interval-valued data (Lima Neto and De Carvalho
(2008)).

Let E = {1, . . . , n} be a set of observations that are described by p + 1
interval-valued variables z, w1, . . . , wp. Each observation i ∈ E (i = 1, . . . , n)
is represented by a vector of intervals ei = (wi1, . . . , wip, zi), where wij =
[wL

ij , w
U
ij ] (j = 1, . . . , p) and zi = [zL

i , z
U
i ].

Let y and xj (j = 1, . . . , p) be, respectively, quantitative bi-variate vari-
ables that assume as their values the midpoints and half ranges of the interval
assumed by the interval-valued variables z and wj . Thus, each observation
i ∈ E (i = 1, . . . , n) is also represented as a vector of bi-variate quantitative
vectors ti = (xi1, . . . ,xip,yi), with

xij =
(
xc

ij

xr
ij

)
(j = 1, . . . , p) and yi =

(
yc

i

yr
i

)
where xc

ij = (wL
ij + wU

ij)/2, xr
ij = (wU

ij − wL
ij)/2, yc

i = (zL
i + zU

i )/2 and
yr

i = (zU
i − zL

i )/2.
This clusterwise regression model for interval-valued data looks for a par-

tition of E in K clusters P1, . . . , PK , each cluster being represented by a
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prototype, such that an adequacy criterion measuring the fit between the
clusters and their prototypes are locally minimized. The particularity of this
kind of method is that the prototype of each cluster is represented by the
hyper-plane given by the linear regression relationship between the dependent
variable and the independent predictor variables:

yi(k) = β0(k) +

p∑
j=1

βj(k) xij + εi(k) (∀i ∈ Pk) where (1)

β0(k) =

(
βc

0(k)

βr
0(k)

)
, βj(k) =

(
βc

j(k) 0

0 βr
j(k)

)
(j = 1, . . . , p) and

εi(k) =

(
εci(k)

εri(k)

)
=

 yc
i −

(
βc

0(k) +
∑p

j=1 β
c
j(k) x

c
ij

)
yr

i −
(
βr

0(k) +
∑p

j=1 β
r
j(k) x

r
ij

) (∀i ∈ Pk)

The adequacy criterion is defined as:

J =

K∑
k=1

∑
i∈Pk

(εi(k))
T εik =

K∑
k=1

∑
i∈Pk

[
(εci(k))

2 + (εri(k))
2] (2)

=

K∑
k=1

∑
i∈Pk

{[
yc

i −

(
βc

0(k) +

p∑
j=1

βc
j(k) x

c
ij

)]2

+

[
yr

i −

(
βr

0(k) +

p∑
j=1

βr
j(k) x

r
ij

)]2}

This algorithm sets an initial partition and alternates two steps until
convergence when the criterion J reaches a local minimum.

3.1 Step 1: definition of the best prototypes

In the first stage, the partition of E in K clusters is fixed.

Proposition 1. The prototype

ŷi(k) =

(
ŷc

i(k)

ŷr
i(k)

)
=

(
β̂c

0(k) +
∑p

j=1 β̂
c
j(k) x

c
ij

β̂r
0(k) +

∑p
j=1 β̂

r
j(k) x

r
ij

)
(∀i ∈ Pk)

of cluster Pk (k = 1, . . . ,K) has the least square estimates of the parameters
β̂c

j(k) and β̂r
j(k) (j = 0, 1, . . . , p), which minimizes the clustering criterion J ,

given by the solution of the system of 2 (p+ 1) equations:

β̂ =
(
β̂c

0(k), β̂
c
1(k), . . . , β̂

c
p(k), β̂

r
0(k), β̂

r
1(k), . . . , β̂

r
p(k)

)T

= (A)−1b (3)

where A is a matrix 2(p+1)×2(p+1) and b is a vector 2(p+1)×1, denoted
as:
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A =



|Pk|
∑
i∈Pk

xc
i1 · · ·

∑
i∈Pk

xc
ip 0 0 · · · 0∑

i∈Pk

xc
i1

∑
i∈Pk

(xc
i1)2 · · ·

∑
i∈Pk

xc
ipx

c
i1 0 0 · · · 0

...
...

...
...

...
...

...
...∑

i∈Pk

xc
ip

∑
i∈Pk

xc
i1x

c
ip · · ·

∑
i∈Pk

(xc
ip)2 0 0 · · · 0

0 0 · · · 0 |Pk|
∑
i∈Pk

xr
i1 · · ·

∑
i∈Pk

xr
ip

0 0 · · · 0
∑
i∈Pk

xr
i1

∑
i∈Pk

(xr
i1)2 · · ·

∑
i∈Pk

xr
ipx

r
i1

...
...

...
...

...
...

...
...

0 0 · · · 0
∑
i∈Pk

xr
ip

∑
i∈Pk

xr
i1x

r
ip · · ·

∑
i∈Pk

(xr
ip)2



b =

∑
i∈Pk

yc
i ,
∑
i∈Pk

yc
ix

c
i1, . . . ,

∑
i∈Pk

yc
ix

c
ip,
∑
i∈Pk

yr
i ,
∑
i∈Pk

yr
i x

r
i1, . . . ,

∑
i∈Pk

yr
i x

r
ip

T

3.2 Step 2: definition of the best partition

In this step, the prototypes ŷi(k) (k = 1, . . . ,K) are fixed.

Proposition 2. The optimal clusters Pk (k = 1, . . . ,K), which minimize the
criterion J , are obtained according to the following allocation rule:

Pk = {i ∈ E : (εi(k))
T εi(k) ≤ (εi(h))

T εi(h), ∀h 6= k (h = 1, . . . ,K)} (4)

Given a new observation e = (w1, . . . , wp, z) described by the vector of
bivariate quantitative vectors t = (x1, . . . ,xp,y), the interval z = [zL, zU ]
is predicted from the estimated bivariate vector ŷ(k) = (ŷc

(k), ŷ
r
(k)) (k =

1, . . . ,K), as follows

ẑL
(k) = ŷc

(k) − ŷ
r
(k) and ẑU

(k) = ŷc
(k) + ŷr

(k)

where ŷc
(k) = β̂c

0(k) +
∑p

j=1 β̂
c
j(k) x

c
j and ŷr

(k) = β̂r
0(k) +

∑p
j=1 β̂

r
j(k) x

r
j .

“Goodness-of-fit measures” (determination coefficients) for these cluster-
wise regression models are computed, for k=1,. . . ,K, as:

R2
c(k) =

∑
i∈Pk

(
ŷc

i(k) − ȳc(k)

)2
∑

i∈Pk

(
yc

i − ȳc(k)

)2 ; R2
r(k) =

∑
i∈Pk

(
ŷr

i(k) − ȳr(k)

)2
∑

i∈Pk

(
yr

i − ȳr(k)

)2 (5)
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Fig. 1. The car interval-valued data set.

where ȳc(k) =
∑

i∈Pk
yc

i /n, ȳr(k) =
∑

i∈Pk
yr

i /n and R2
c(k), R

2
r(k) are, respec-

tively, the determination coefficient of “center” and “range” models.
Other measures, in order to obtain the performance assessment of these

linear regression models, are the lower (RMSEL) and the upper (RMSEU )
boundaries root-mean-square error. They are computed as

RMSEL =

√√√√ n∑
i=1

(
zL

i − ẑL
i

)2
n

; RMSEU =

√√√√ n∑
i=1

(
zU

i − ẑU
i

)2
n

(6)

4 Application: a car interval-valued data set

The car data set1 (Figure 1) consists of a set of 33 car models described
by 2 interval-valued variables: price y and engine capacity x1. The aim is
to predict the interval values of y (the dependent variable) from x1 through
linear regression models. In this application, the 2 interval-valued variables –
Price and Engine Capacity –, have been considered for clustering purposes.
The clusterwise regression algorithm has been performed on this data set
in order to obtain a partition in K = {1, 2, 3} clusters. For a fixed number
of clusters K, the clustering algorithm is run 100 times and the best result
according to the adequacy criterion is selected.

Table 1 presents the regression equations fitted over the car interval-
valued data set. Table 2 gives the determination coefficients for the 1-cluster,
2-cluster and 3-cluster partitions.

In order to obtain a better preditive model, the estimates of the K regres-
sion models given by the K-cluster partition (K = 1, 2, 3), obtained with this
algorithm, were combined according to the “stacked regressions” approach.
According to Breiman (1996), this approach uses cross validation data and
1 This data set is available with the SODAS software at
http://www.info.fundp.ac.be/asso/index.html.
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Table 1. Fitted regression equations over the whole car interval-valued data set

K − partition cluster k “Center Model” “Range Model”

1 1 ŷc
(1) = −98840.9 + 79.2xc

1 ŷr
(1) = −341.4 + 60.9xr

1

2 1 ŷc
(1) = −63462.2 + 59.6xc

1 ŷr
(1) = −4560.1 + 47.1xr

1

2 ŷc
(2) = −22836.5 + 68.8xc

1 ŷr
(2) = 34563.6 + 68.6xr

1

1 ŷc
(1) = −77422.1 + 82.0xc

1 ŷr
(1) = 2229.7 + 92.2xr

1

3 2 ŷc
(2) = −58484.1 + 71.1xc

1 ŷ
r
(2) = 101952.9− 546.7xr

1

3 ŷc
(3) = −73362.1 + 62.0xc

1 ŷr
(3) = −9755.9 + 53.2xr

1

Table 2. Determination coefficients for the fitted regression equations over the
whole car interval-valued data set

K-partition 1 2 3

cluster k 1 1 2 1 2 3

R2
c(k) 0.93 0.95 0.91 0.97 0.99 0.98

R2
r(k) 0.53 0.79 0.66 0.98 0.98 0.83

least squares under non-negativity constraints for forming linear combina-
tions of different predictors to give improved prediction accuracy.

The car interval-valued data set L was partitioned into 10 folds L(j) (j =
1, . . . , 10) of size as nearly equal as possible. For a fixed number of clusters
K, the clustering algorithm is run 100 times on 9 folds L(j) = L − L(j) and
the best result according to the adequacy criterion is selected. The K regres-
sion models are used to give preditions for the lower and upper boundary of
the dependent variable on the L(j) learning data set. These predictions were
combined according to the “stacked regressions” approach to obtain the pre-
dictions for the observations belonging to the test data set L(j). The RMSEL

and RMSEU measures are computed from the predicted values on the test
data sets L(j) (j = 1, . . . , 10).

This process is repeated 100 times and it is calculated the average and
standard deviation of the RMSEL and RMSEU measures (Table 3). Even
if the observed mean differences are not statistically significant, we can con-
clude that 2 regression models given by the 2-cluster partition give the best
preditive model through the “stacked regressions” approach.

Table 3. Average Root-mean-square error for the combined estimates of the K
regression models

K-partition 1 2 3

RMSEL 96649.28 (13812.49) 90417.42 (13538.22) 94993.75 (11376.24)

RMSEU 143416.6 (17294.02) 135471.4 (17027.49) 137825.9 (14243.29)
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5 Concluding Remarks

This paper introduced a suitable clusterwise regression model for interval-
valued data. The proposed model combines the dynamic clustering algorithm
with the center and range regression model for interval-valued data in order
to identify both the partition of the data and the relevant regression models
(one for each cluster). Experiments with a car interval-valued data set showed
the interest of this approach. Other experiments on medical data sets are in
progress.
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Abstract. Structural equation models (SEMs) are multivariate latent variable
models used to model causality structures in data. A Bayesian estimation and val-
idation of SEMs is proposed and identifiability of parameters is studied. The latter
study shows that latent variables should be standardized in the analysis to ensure
identifiability. This heuristics is in fact introduced to deal with complex identifia-
bility constraints. To illustrate the point, identifiability constraints are calculated
in a marketing application, in which posterior draws of the constraints are derived
from the posterior conditional distributions of parameters.

Keywords: structural equation modeling, Bayesian statistics, Gibbs sam-
pling, latent variables, identifiability

1 Structural equation models

1.1 Context

Structural equation models (SEMs) are multivariate latent variable models
used to represent latent structures of causality in data. The observed (mani-
fest) variables are associated with latent variables in the outer (measurement)
model and causality links are assumed between latent variables in the inner
(structural) model. This situation typically arises with satisfaction surveys
as illustrated in section 3 where the observed variables are the questions and
the latent variables are loyalty, satisfaction and image as in figure 2.

1.2 Model

Denoting Yi the row vector of observed values for individual i on the p man-
ifest variables and Zi the row vector of scores of individual i on the q latent
variables, the measurement model is expressed as

Yi = Ziθ + Ei, 1 ≤ i ≤ n (1)

where Ei is the measurement error term distributed Ei ∼ N (0, Σε) with
Σε diagonal and θ is the q × p matrix of regression coefficients.

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 46, c© Springer-Verlag Berlin Heidelberg 2010
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If Zi were known, the measurement model (1) would reduce to a linear
regression model.

DenotingHi the endogenous latent variables and Ξi the exogeneous latent
variables, the structural equations are equivalently given by the following
expressions

Hi = HiΠ +ΞiΓ +∆i

Hi = ZiΛ+∆i Λt =
(
Πt Γ t

)
Πt

0Hi = Γ tΞi +∆i Π0 = Id−Π
(2)

where Π is the q1 × q1 matrix of regression coefficients between endoge-
neous latent variables , Γ is the q2 × q1 matrix of regression coefficients be-
tween endogeneous and exogeneous latent variables. ∆i is the error term dis-
tributed ∆i ∼ N (0, Σδ), independent with Ξi and Ξi is distributed N (0, Φ).

1.3 The role of latent variables and identifiability constraints

Basically LV are unidimensional concepts, measured on manifest variables
(usually on different scales). They provide practitioners with useful unob-
served information on individuals. Since latent variables are not observed
they are unscaled. Unlike Palomo et al. (2007) who advocate a free mean
and variance model for latent variables, this paper aims to prove that latent
variables should be standardized in the run of the analysis, for identifiabil-
ity concerns, see section 2.6 for a brief overview. This standardization step is
showed to be an heuristics leading to the improved Gibbs sampling algorithm
presented in section 2.4.

2 Bayesian estimation of SEM

2.1 Bayesian estimation

In the latent variable model defined by equations (1) and (2), well-known
techniques of data augmentation and imputation, see Tanner and Wong
(1987), are implemented in a Gibbs algorithm (see section 2.4) under nor-
mality and conjugacy assumptions. See Box and Tiao (1973) for calculations
in multivariate Normal models and Gelman et al.(2004) for Gibbs sampling.

2.2 Conditional posterior distribution of latent variables

Let Θ = {θ,Σε,Π0, Γ,Σδ, Φ}. The conditional posterior distribution of the
latent variables is expressed as

[Zi|Yi, Θ] ∝ [Yi|Zi, Θ] [Zi|Θ]
∝ [Yi|Zi, θ, Σε] [Zi|Π0, Γ,Σδ, Φ]
∝ [Yi|Zi, θ, Σε] [Hi|Ξi,Π0, Γ,Σδ] [Ξi|Φ]

(3)
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where [Yi|Zi, θ, Σε] is the likelihood of individual i computed from the
measurement model (1) and [Zi|Π0, Γ,Σδ] is the joint prior distribution of
latent variables deduced from the structural equations (2)

Zi|Π0, Γ,Σδ, Φ ∼ N (0, ΣZ) (4)

ΣZ =
(

(Πt
0)
−1 (Γ tΦΓ +Σδ)Π−1

0 (Πt
0)
−1
Γ tΦ

ΦΓΠ−1
0 Φ

)
(5)

Immediate computation gives

Zi|Yi, θ, Σε, Λ,Σδ, Φ ∼ N
(
DθΣ−1

ε Yi, D
)

(6)

where D−1 = θΣ−1
ε θt +Σ−1

Z .

2.3 Conditional posterior distributions of parameters

The conditional posterior distribution of parameters is expressed as

[Θ|Y, Z] ∝ [Y, Z|Θ] [Θ]
∝ [Y |Z, θ,Σε] [θ,Σε] [H|Ξ,Λ,Σδ] [Λ,Σδ] [Ξ|Φ] [Φ]

(7)

where prior independance between inner and outer parameters is assumed.
The last expression implies that the posterior distributions of parameters

can be computed separately from the following expressions

[θ,Σε|Y,Z] = [Y |Z, θ,Σε] [θ,Σε]
[Λ,Σδ|Y,Z] = [H|Ξ,Λ,Σδ] [Λ,Σδ]

[Φ|Z] = [Ξ|Φ] [Φ]
(8)

Let θk = (θk1 . . . θknk
), the vector of regression coefficients of block k

where nk is the number of manifest variables in block k with θk1 = 1 for
identifiability (see section 2.6), Λk the kth column of Λ and Σεk and Σδk the
associated error terms. Conjugate prior distributions are

θkj |Σεkj ∼ N (θ0k, ΣεkjΣε0k) , Σ−1
εkj ∼ Gamma (α0εk, β0εk)

Λk|Σδk ∼ N (Λ0k, ΣδkΣδ0k) , Σ−1
δk ∼ Gamma (α0δk, β0δk)

Φ−1 ∼ InvWishart (R0, d0)

(9)

Let Ykj the jth manifest variable of block k, and Zk the associated latent
variable. Combining (8) and (9) gives the posterior distributions
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θkj |Y,Z,Σεkj ∼ N (DkjAkj , ΣεkjDkj)

Σ−1
εk1 ∼ G

(
n

2
+ α0εkj , β0εkj +

1

2
(Ykj − Zk)t (Ykj − Zk)

)
Σ−1

εkj ∼ G
(
n

2
+ α0εkj , β0εkj +

1

2

[
Y t

kjYkj − (DkjAkj)t D−1
kj DkjAkj +

θ20k

Σε0k

])
Dkj =

(
Zt

kZk +Σ−1
ε0k

)−1
, Akj = Σ−1

ε0kθ0k + Zt
kYkj

Λk|Y,Z,Σδk ∼ N
(
D̃kÃk, ΣεkD̃k

)
Σ−1

δk ∼ G
(
n

2
+ α0δk, β0δk +

1
2

[
Y t

kYk −
(
D̃kÃk

)t

D̃k
−1
D̃kÃk + Λt

0kΣ
−1
δk Λ0k

])
D̃k =

(
Zt

kZk +Σ−1
δk

)−1
, Ãk = Σ−1

δk Λ0k + ZtHk

Φ|Z ∼ InvWishart
(
ΞtΞ +R−1

0 , n+ d0

)
2.4 The Gibbs sampler

Gibbs algorithm (see figure 1) alternates sampling in the conditionnal poste-
rior distribution of parameters given data and latent variables (step 1), and
sampling in the conditional posterior distributions of latent variables given
data and parameters (step 3 to 7). Step 2 is the heuristics whose role is to
ensure identifiability of the model by scaling the latent variables.

Initialisation : θ0, Σ0
ε , Λ

0, Σ0
δ , Φ

0

At iteration t :

a. sampling in the conditional posterior distribution of latent variables:
Zt ∼ Z|Y, θt−1, Σt−1

ε , Λt−1, Σt−1
δ , Φt−1

b. standardization of latent variables: define Z∗t the standardized LV
c. Σt

ε ∼ Σε|Y,Z∗t, θt−1, Λt−1, Σt−1
δ , Φt−1

d. θt ∼ θ|Y,Z∗t, Σt
ε, Λ

t−1, Σt−1
δ , Φt−1

e. Σt
δ ∼ Σ

|
δY,Z

∗t, Λt−1, θt, Σt
ε, Φ

t−1

f. Λt ∼ Λ|Y,Z∗t, Σt
δ, θ

t, Σt
ε, Φ

t−1

g. Φt ∼ Φ|Y,Z∗t, θt, Σt
ε, Λ

t, Σt
δ

Fig. 1. Steps of Gibbs algorithm

After enough runs of Gibbs algorithm, conditional posterior simulations
are supposed to be drawn from the marginal distributions of parameters.
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2.5 Validation

Validation is based on Posterior Predictive p-values as developed in Gelman
and al. (1996). PP p-values are derived from posterior predictive distribu-
tions, integrated out both parameters and latent variables. Let yrep be a
simulated dataset under the same model that generated the observed dataset
y, say H0, and the same parameters Θ and latent variables Z. The posterior
predictive distribution of yrep is then defined as:

PH0 (yrep|y) =
∫

PH0 (yrep, Θ, Z|y) dΘdZ

=
∫

PH0 (yrep|Θ,Z) [Θ,Z|y] dΘdZ
(10)

The PP p-value is defined as the tail probability of a given discrepancy
function D (analogous to the use of statistics to compute classical p-values)
under the posterior predictive distribution :

PPp (y) = PH0 (D (yrep, Θ, Z) ≥ D (y,Θ, Z) |y)

=
∫

PH0 (D (yrep, Θ, Z) ≥ D (y,Θ, Z)) [Θ,Z|y] dΘdZ (11)

Lee (2007) selected the following discrepancy function to test SEMs:

D (yrep, Θ, Z) =
n∑

i=1

(
yrepi − Ziθi

)t
Σi

ε

(
yrepi − Ziθi

)
(12)

where θi and Σi
ε are the current values in the run of Gibbs algorithm.

The PP p-value is thus computed as the proportion of runs for which
D
(
yrep, Θ

i, Zi
)

is higher than D
(
y,Θi, Zi

)
. H0 is not rejected if the PP

p-value is near 0.5.

2.6 Identifiability issues

Identifiability of structural equation models is the injectivity of the likelihood
function integrated out the latent variables namely

∀Yi, [Yi|Θ] =
[
Yi|Θ̃

]
=⇒ Θ = Θ̃ (13)

where Yi is marginally distributed as N (0, ΣY ) and ΣY = θtΣZθ +Σε.
With the notations of section 2.3 and denoting ΣZ = {ρij , 1 ≤ i, j ≤ K},

ΣY is the block matrix

ΣY =


ρ11θ1θ

t
1 +Σε1 ρ12θ1θ

t
2 . . . ρ1Kθ1θ

t
K

ρ12θ1θ
t
2 ρ22θ2θ

t
2 +Σε2 . . .

...
...

ρ1Kθ1θ
t
K . . . . . . ρKKθKθ

t
K +ΣεK

 (14)



474 Demeyer, S. et al.

Identifiability constraints are directly derived from definition (13) applied
to the Normal likelihood, giving ΣY = Σ̃Y .

The identifiability equations arising from this equality are

ρkkθ
2
ki + σ2

ki = ρ̃kkθ̃
2
kiσ̃

2
ki, i = 1 . . . nk, k = 1 . . .K (15)

ρkkθkiθkj = ρ̃kkθ̃kiθ̃kj , 1 ≤ i < j ≤ nk, k = 1 . . .K (16)

ρkk′θkiθk′j = ρ̃kk′ θ̃kiθ̃k′j , 1 ≤ i ≤ nk, 1 ≤ j ≤ nk′ , k = 1 . . .K (17)

Equations (15) and (16) are derived from the block diagonal elements of
ΣY and equation (17) is derived from the extra block diagonal elements of
ΣY .

If θk1 = θ̃k1 and ρkk = ρkk′ for a fixed k then equation (16) gives θkj = θ̃kj

for all j. Reporting in equation 15 gives σ2
ki = σ̃2

ki for all k, i. Reporting in
equation (17) gives ρkk′ = ρ̃kk′ for all k, k′. Consequently, a sufficient set of
conditions for identifiability is θk1 = 1 and ρkk = 1 for all k.

The latter constraint is actually expressed in terms of the inner parame-
ters, see the application, obtained by equating to 1 the diagonal elements of
ΣZ given in expression 5. However, posterior sampling of parameters given
these constraints is complicated. The heuristics, consisting in standardizing
latent variable after they have been drawn in their posterior distribution,
should overcome this difficulty, as shown in the application.

3 Application

Consider a part of ECSI model considering only relationships between loyalty,
satisfaction and image (see figure 2), on a subset of n = 202 individuals with
no missing data. The full dataset is the demonstration dataset of XLStat soft-
ware (http://www.xlstat.com/) with ordinal variables treated as continuous
variables. The algorithm is implemented with R software.

Let θ0 and λ0 denote the common prior values of parameters. Priors
on parameters are chosen to reflect confidence in the causality links: θ0 =
0.5, Λ0 = 0.5, Σε0 = 1, Σδ0 = 1 and Φ0 = 1. Early convergence of Gibbs
algorithm for all the parameters and law autocorrelation in posterior samples

is observed. Formula (5) applied to this model with Π0 =
(

1 0
−π12 1

)
and

Γ = (λ1λ2) gives the following expression of ΣZ

λ2
1 +Σδ1 + π12λ1λ2 + π2

12

(
λ2

2 +Σδ2

)
; λ1λ2 + π2

12

(
λ2

2 +Σδ2

)
; Φ (λ1 + λ1λ2)

λ1λ2 + π2
12

(
λ2

2 +Σδ2

)
λ2

2 +Σδ2 Φλ2

Φ (λ1 + λ1λ2) Φλ2 Φ


Identifiability constraints are given by equating to 1 the diagonal elements

(see section 2.6)

a)Φ = 1, b)λ2
2 +Σδ2 = 1, c)λ2

1 +Σδ1 + π12λ1λ2 + π2
12

(
λ2

2 +Σδ2

)
= 1



Contributions to Bayesian Structural Equation Modeling 475

Posterior samples of these constraints are computed from the posterior
samples of parameters. These distributions are centred in 1 with low disper-
sion as showed in figure 2, which tends to support the heuristics.

Fig. 2. Posterior distributions of the constraints a), b) and c) from left to right

Parameters of interest in SEMs are the correlations between manifest
variables and latent variables and between latent variables. In table 1 θ12,
θ22, θ23, θ32, θ33, θ34, θ35 and λ2 are correlation coefficients whereas π12 and
λ1 are coefficients of a multiple regression. For identifiability θ11 = 1, θ21 = 1
and θ31 = 1 (see section 2.6). From table 1, satisfaction and Image are highly
correlated (0.796), meaning that Image has a great influence on Satisfaction.
All the correlations are represented in the summary graph of figure 2.

θ12 θ22 θ23 θ32 θ33 θ34 θ35 π12 λ1 λ2

mean 0.774 0.705 0.784 0.605 0.457 0.732 0.658 0.475 0.307 0.796

sd 0.060 0.051 0.053 0.063 0.067 0.059 0.059 0.127 0.130 0.047

Table 1. Regression coefficients: posterior mean and standard deviation (sd)

The PPp-value 0.37 < 0.5 is due to the poor adjustment of data with
the Normal distribution. This example however shows interesting features of
Bayesian analysis, like hypothesis testing with PPp-values and the possibility
to look at the variability of parameters and to the variability of functions of
parameters.

4 Conclusion and perspectives

Posterior distributions of all the parameters of SEMs are derived under Nor-
mality and conjugacy assumptions. They are useful material to investigate
aspects of the model like the variability of parameters and functions of pa-
rameters and hypothesis testing. The Gibbs algorithm augmented by the
heuristics presented in this paper, converges rapidly, with low autocorrela-
tions in posterior samples, thus reducing the number of iterations needed.
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Fig. 3. Graph of correlations

More generally, this paper advocates systematic computation of identifiabil-
ity constraints. Future work will concern structural equation modelling of
mixed continuous and categorical data.
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Abstract. Statistical computing emerged as a recognised topic in the seventies.
Remember the first COMPSTAT symposium held in Vienna (1974)! But the need
for proper computations in statistics arose much earlier. Indeed, the contributions
by Laplace (1749-1829) and Legendre (1752-1833) to statistical estimation in linear
models are well known. But further works of computational interest originated in
the structuring of the concept of regression during the 19th century. While some
were fully innovative, some appear now unsuccessful but nevertheless informative.
The paper discusses, from a French perspective, the computational aspects of se-
lected examples.

Keywords: history of statistics, regression, statistical computing

1 Introduction

The contributions by Laplace (1749-1829) and Legendre (1752-1833) to the
statistical estimation in linear models are well known: least absolute values
(L1), least squares (L2), and minimax (L∞) for the former and the derivation
of least squares estimates for the latter (end of 18th century to early 19th
century). These are detailed in comprehensive books by Farebrother (1998),
Hald (2007) and Stigler (1990, 2002). The 19th century saw in France many
further interesting developments. Some simply echo Peter Sint’s invited talk
presented at the COMPSTAT meeting held in Prague (1984). Examples in-
clude: Charles Dupin1 reviewing favourably a letter which Charles Babbage
had sent to the Académie des Sciences in support of the computing ma-
chine of the Swedish inventors named Scheutz (Falguerolles (2009)); Jacques
Bertillon2 and Émile Cheysson3 (Peaucelle (2004)) advocating the use of
1 COMPSTAT 2010 takes place in an institution founded in 1794, then called the

Conservatoire des Arts et Métiers, where the first French statistical chair was
created for baron Charles Dupin (1750-1873).

2 Jacques Bertillon (1851-1922), statistician and demographer, not to be confused
with his younger brother Adolphe, is President of the Société de Statistique de
Paris in 1897.

3 Émile Cheysson (1836-1910), a graduate from the École Polytechnique, is the
famous advocate and theoretician of statistical cartography. Cheysson is also a
President of the Société de Statistique de Paris (1883).

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 47, c© Springer-Verlag Berlin Heidelberg 2010



478 Falguerolles, A. de

the Hollerith machine for the French Census; Léon Lalanne4 and Maurice
d’Ocagne5, central characters of the Nomographic School (Hankins (1999)),
designing sophisticated abaci. But the spread of the general ideas of linear
fitting in France during the 19th century go beyond the mere development
of computing means. Specific situations led to interesting statistical develop-
ments. A well known example is given by Legendre6 who considered autocor-
related errors (MA(1) in modern parlance) in his illustrative analysis (1805).
But there are other examples published later than Legendre’s least squares
(from the Thirties to the Nineties). This paper presents a selection of these.

2 Covariance analysis

This section combines approaches in covariance analysis developed in two
different areas, namely the econometry of road building and the metrology
for cartographic triangulation. Let E[Y ] = βG

g0 + βG
g1 x be the full model

for a continuous random response variable given the explanatory variables, a
group factor G (with levels 1, . . . , g, . . . , #G) and a quantitative variable x.

2.1 Constant intercept and different slopes

Georges Müntz (1807-1887), a road engineer who graduated from l’École
Polytechnique and l’École des Ponts et Chaussées, considers a model7 for the
costs of stone transportation where there is a common fixed part, βG

g0 = β0,
and a part proportional to distance which varies across groups (the levels
of factor G), βG

g1. In one of his examples, there are two unbalanced groups
of respective size nG

1 > nG
2 > 0. Müntz uses least squares on the data of

the largest group, (y[G(i) == 1], x[G(i) == 1]), to get estimates b0 and
bG11 of β0 and βG

11. Müntz then estimates βG
21 by computing the mean of the

(y[G(i)==2]−b0)
x[G(i)==2] . Clearly, the estimators thus introduced are linear but do not

4 Léon - Louis (Chrestien -) Lalanne (1811-1892), a graduate from the École poly-
technique, is a recognised theoretician of computing, with definite skills in prob-
ability and statistics. His work on graphical computing was rapidly translated in
English (LALANNE, L.-L. (1846): Explanation and use of the abacus or french
universal reckoner. London: Joseph Thomas).

5 The name of Maurice d’Ocagne (1862-1938), a nomographist in the line of
Lalanne, is often linked to the use of parallel coordinates. He graduated from
l’École polytechnique and l’École des Ponts et Chaussées, where he later taught.
D’OCAGNE, M. (1891): Nomographie: les calculs usuels effectués au moyen des
abaques: essai d’une théorie générale, . . . Paris: Gauthiers-Villars et fils.

6 LEGENDRE, A. M. (1805): Nouvelles méthodes pour la détermination des orbites
des comètes . . . . Paris: Courcier.

7 MÜNTZ, G. (1834): Note sur l’évaluation du prix du transport des matériaux
de construction dans l’arrondissement du Nord, Annales des Ponts et Chaussées,
167, 86-100.
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coincide with the least squares estimators that we would use now. Müntz
had certainly the mathematical ability for solving a 3 × 3 linear system of
normal equations, but the statistical concept of indicator variable had yet to
be invented.

2.2 Different intercept and constant slopes

This problem arose in the calibration of some parts of an apparatus to be
used in geographical triangulation by a Franco-Spanish team8. A leading
French member was Aimé Laussedat (1819-1907), a Military Engineer who
graduated from the École Polytechnique9. The number of levels for the group
factor is large and the design is balanced. A constant slope over groups is
assumed (βG

g1 = β1). Least squares are used. The block pattern of the normal
equations is recognised and closed form estimators are obtained.

3 Cauchy’s heuristic for regression

In a 1835 paper10 Augustin Cauchy (1789-1857) considers a situation in which
the response is a non-linear function of an explanory variable which can be
approximated by a linear combination of the leading terms of a series of
simpler functions; special attention is given to the estimation of the order
of the approximation to be carried out (see p. 195). With this situation in
mind, Cauchy introduces a sequential procedure based on the repeated use
of simple regressions. Although the least squares estimator can be used in
these regressions, Cauchy proposes a heuristic linear estimator for the slope.

3.1 Cauchy’s linear estimators for simple regression

Legendre’s estimator (least squares) for the slope involves 2n multiplications
which are potential sources of numerical errors. Hence, Cauchy proposes a
formula which is less prone to errors:

β̂1 =
∑n

i=1 sign(xi − x)(Yi − Y )∑n
i=1 |xi − x|

.

Note that this formula coincides with a weighted least squares estimator using
weights 1

|xi−x| for xi 6= x and 0 for xi = x. Nevertheless, Cauchy keeps the

intuitive form of the least squares estimator for the intercept, β̂0 = Y − β̂1x.
8 LAUSSEDAT, A. (translator) (1860): Expériences faites avec l’appareil à me-

surer les bases appartenant à la commission de la carte d’Espagne. Paris: Librairie
militaire.

9 Laussedat taught later at the École Polytechnique. He also taught at the Conser-
vatoire des Arts et Métiers and became its director in 1884.

10 CAUCHY, A. (1837): Mémoire sur l’interpolation, Journal de mathématiques
pures et appliquées, Série 1, Tome 2, 193-205. In a note, the Editor (Joseph Liou-
ville) acknowledges that the manuscript was sent to the Académie des Sciences
in 1835.
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3.2 Cauchy’s multiple regression

Cauchy’s approach to multiple regression combines the ideas of triangular-
ization and step by step conditioning of the variables. First, all variables are
centered to their means. Then iteratively at each step, a not-yet-considered
currently revised explanatory variable is introduced; the currently revised
response variable and all other not-yet-considered curently revised variables
are regressed onto this variable according to Cauchy’s formula; the slope co-
efficients thus obtained are stored; the residuals from all these regressions are
computed and constitute the updated revised variables. The inspection of the
values of the revised response variable may tell if the iterative process is to
be stopped; that of the revised explanatory variables may help in finding the
‘best’ explanatory variable to introduce next. When the process is stopped,
back calculation gives the estimated regression coefficients.

The main drawback of Cauchy’s method is that the estimated values for
the regression coefficients may depend on the order of introduction of the
explanatory variables. However, if Legendre’s formula for the slope is used in
place of Cauchy’s formula, the unique solution given by multiple regression
based on least squares is obtained.

Cauchy’s approach is a heuristic which received some attention in France
but was criticized by the aficionados of least squares (see for instance Jules
Bienaymé11). Still, the idea of having a large number of fast simple regressions
computed and combined into a final result can be found in cutting-edge
methods.

3.3 Spurious correlation and differencing

An example of the use of Cauchy’s method is given in an article by Vilfredo
Pareto presented at the Société de Statistique de Paris12. The general prob-
lem addresses the relationship between the number of marriages in England
and economic prosperity, indices for the latter being Exports and Coal ex-
traction. The data are indexed by time (year 1855 to 1895). Pareto recognizes
the problem that arises in the analysis of time series, namely the opportunity
of differencing the series to avoid spurious correlation (see his discussion pp.
376-378). Pareto chooses here not to differentiate the data and presents the
estimates obtained by using Cauchy’s heuristic.

11 BIENAYMÉ, J. (1853): Remarques sur les différences qui distinguent
l’interpolation de M. Cauchy de la méthode des moindres carrés, et qui assurent
la supériorité de cette méthode. Comptes rendus hebdomadaires des séances de
l’Académie des Sciences, 5-13.

12 PARETO, V. (1897): Quelques exemples d’application des méthodes
d’interpolation à la Statistique, Journal de la Société de Statistique de Paris,
58 (novembre), 367-379.
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4 Iteratively weighted least squares

Pareto’s approach to non-linear least squares can be found again in his 1897
article (referenced in note 12). The motivating example consists in the esti-
mation of the coefficients of an evolution curve over time for the population
in England and Wales (Pareto, 1897, pp. 371-372). It turns out Pareto dis-
cusses the direct minimisation of

∑n
i=1(yi − µi)2 where µi = exp ηi with

ηi = β0 + β1xi (a log link function for a normal distribution in modern
notation). The gradient is:

∇S(β0, β1) = −
[ ∑n

i=1(yi − µi)µi∑n
i=1(yi − µi)µixi

]
while the Hessian is:

HS(β0, β1) = −
[ ∑n

i=1

(
(yi − µi)µi − µ2

i

) ∑n
i=1

(
(yi − µi)µixi − µ2

ixi

)∑n
i=1

(
(yi − µi)µixi − µ2

ixi

) ∑n
i=1

(
(yi − µi)µix

2
i − µ2

ix
2
i

) ] .
At a stationary point (β?

0 , β
?
1)′, the Hessian simplifies to:

HS(β?
0 , β

?
1) =

n∑
i=1

µ?
i
2

[
1 xi

xi x
2
i

]
−

n∑
i=1

µ?
i x

2
i

[
0 0
0 yi − µ?

i

]
Pareto proposes to search for a stationnary point by using a Newton-Raphson
algorithm in which a simplified version of the Hessian is used:[

β
(k+1)
0

β
(k+1)
1

]
=

[
β

(k)
0

β
(k)
1

]
−

(
n∑

i=1

µ
(k)
i

2
(
[

1 xi

xi x
2
i

]
)

)−1

∇S(β(k)
0 , β

(k)
1 ).

Has Pareto realized that E[µix
2
i (Yi−µi)] = 0 and that he uses what is called

now Fisher’s scoring method?
However, Pareto finds such an iterative method too burdensome to use

in practice and states that, by properly weighting the regression of the log-
transformed response, a fair approximation to the coefficients can be easily
calculated. Pareto’s proposal is to consider the minimisation of∑n

i=1 y
2
i (log(yi)− (β0 + β1xi))2

How does this relate to the well known iteratively weighted least squares? As-
suming independent observations with constant variance and log link (g(µi) =
log(µi) = ηi = β0 +β1xi), the loss function is

∑n
i=1(yi−exp{β0 +β1xi})2. At

iteration k, the loss function is
∑n

i=1(exp{η(k−1)
i })2(z(k)

i −(β0+β1xi))2 where

the working response is z(k)
i = yi−exp{η(k−1)

i }
exp{η(k−1)

i }
+ η

(k−1)
i . Taking the convenient

starting values η(0)
i = log(yi), the loss function at iteration 1 is exactly what

Pareto has in mind.

5 Unsuccessful attempts

In this section, the two papers under consideration exemplify the case of
modest treatment with genuine intuitions.
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5.1 A weighted mean with data driven weights

In 1821, an anonymous subscriber13 discusses at length the notion of mean.
Among other considerations: expected mean or moyenne absolue versus esti-
mated mean or moyenne relative (p. 188); trimmed means (p.189); weighted
mean with data driven weights (p. 200):

m =

∑n
i=1

xi

(m−xi)2∑n
i=1

1
(m−xi)2

But this choice is rather unfortunate since, as noted by the anonymous au-
thor, the definition can be rewritten as 1

dm

∏n
i=1(m−xi)2 = 0. Still, the idea

of having data driven weights related to |m− xi| remains.

5.2 Fitting a Gamma density

In a talk at the Société de Statistique de Paris14, Lucien March (1859-1933),
a graduate from the École Polytechnique working at the Office du Travail
(Armatte (2008)), introduces a theoretical model for the density of wages
distribution of the form: f(x) = αxβ exp{−γx}. March ascribes the theoret-
ical curve to the German Otto Ammon. (However, Kleiber and Kotz (2003)
claim that they did not trace any such thing in Ammon’s publications!) March
derives two indices of inequality for comparing curves, the mean to mode dif-
ference (δ = 1

γ = Var(X)
E[X] ) and the difference between the two inflexion points

(∆ = 2
√

β
γ = 2

√
Var(X)− (Var(X)

E[X] )2 ) which he estimates using Pearson’s
newly available method of moments. Curiously, March also proceeds to the
estimation of the unknown coefficients by using a regression. Noting the lin-
ear form of the log transformed density, log f(x) = logα+ β log x− γx, and
using grouped data, March considers the regression of the log transformed
empirical density onto the centers of classes and their logarithms. As ex-
pected in France, March uses the two strategies for regression, namely least
squares and Cauchy’s heuristic, and mentions the possible introduction of the
weights suggested by Pareto in these. Nowadays March’s approach is highly
questionable. First, the fact that α is a function of β and γ is not recognised.
Second, empty classes cannot easily be taken into account. The introduc-
tion of null weights for these, which bias the estimations, is a possibility but
there is no justification for using the squared empirical density for non-empty
classes. A constant model for the weighted mid-class values in the generalized
linear model settings for the Gamma distribution would be a starting point
nowadays.
13 ANONYMOUS (1821): Probabilités. Dissertation sur la recherche du mi-

lieu entre les résultats de plusieurs observations ou expériences. Annales de
Mathématiques pures et appliquées, Vol. 12, 6, 1821, 181–204.

14 MARCH, L. (1898): Quelques exemples de distribution des salaires, contribu-
tion à l’étude comparative des méthodes d’ajustement, Journal de la Société de
Statistique de Paris, 1898, 39 (June), 193-206
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6 Concluding remarks

It would be a challenging task to identify all the statistical work introducing
computational innovations between Legendre’s estimation of the shape of the
Earth by generalized least squares15 in 1805 and the Cholesky16 transform
in topography in 1909 (Brezinski (2005)). Statistical computing is scattered
in journals and books which were published under the auspices of a diver-
sity of groups. Bygone Statistical Societies17 had their journals with limited
mathematical contents, the papers by Pareto (1897) and March (1898) being
notable exceptions. Artillery publications offer a genuine blend of probability
and statistics, e.g., Isidore Didion’s curves of equal probability18, published in
1858 and possibly considered as early as 1823 (Bru (1996)), and Paul Henry’s
qnorm plot19 (Crépel (1993)). But the ‘information superhighways’ are the
Comptes rendus hebdomadaires des séances de l’Académie des sciences and
the Journal de mathématiques pures et appliquées (see note 21) with a great
variety of contents. Some publications deal with theoretical matters. An ex-
ample is the report20 made by Gabriel Lamé, Michel Chasles and Joseph
Liouville21, members of the Académie, on a report by Jules Bienaymé22 in
appreciation of the work of Laplace on least squares. Technical pieces of re-
search can also be found. An example of the latter is provided by Auguste(?)
Pont23 who describes how to reduce the computational burden of fitting a

15 See reference in note 6.
16 André-Louis Cholesky (1875-1918), a graduate from the École Polytechnique,

served as an artillery officer and a military geographer. He never published ‘his’
method.

17 During the 19th century several Societies having the word statistique in their
name were founded all over France. The three main statistical Societies created
in Paris (thus with a national dimension) are the Société de Statistique (1802)
with its journal the Annales de statistique, the Société française de Statistique
universelle (1829) with its journal the Journal des travaux de la SfdSu, and the
Société de Statistique de Paris (1860) with its journal the Journal de la SSP. For
this last, see Caussinus and Falguerolles (2006).

18 DIDION, I. (1858): Calcul des probabilités appliqué au tir des projectiles, Paris:
Dumaine, Mallet-Bachelier.

19 HENRY, P. (1894): Cours d’artillerie, Probabilité du Tir (1er Fascicule).
Lithographie de l’École d’Application de l’Artillerie et du Génie.

20 LAMÉ, G., CHASLES, M., and LIOUVILLE, J. (1852): Rapport sur un mémoire
de M. Jules Bienaymé, Inspecteur général des finances, concernant la proba-
bilité des erreurs d’après la méthode des moindres carrés. Comptes rendus heb-
domadaires des séances de l’Académie des Sciences. Bachelier: Paris, 34, 90-92.

21 Joseph Liouville is the founder in 1836 of the Journal de mathématiques pures et
appliquées which is still published.

22 Bienaymé also wrote two papers on least squares in the Journal de mathématiques
pures et appliquées. See also note 11.

23 PONT, A. (1887): Sur la résolution, dans un cas particulier, des équations nor-
males auxquelles conduit la méthode des moindres carrés. Comptes rendus hebdo-
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polynomial regression when the values of the explanatory variable are speci-
fied by an arithmetic progression.

It turns out that most papers mentioned in this article are authored by
former graduates and/or professors from the École Polytechnique. This insti-
tution is certainly the common denominator for mathematical statistics and
statistical computing in the 19th century in France. But the Conservatoire
National des Arts et Métiers is not too far behind.
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mathématiques, 11, 205-238.

BRU, B. (1996): Problème de l’efficacité du tir à l’École d’Artillerie de Metz.
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Abstract. We propose the idea of imputing missing value based on conditional
distributions, which requires the knowledge of the joint distribution of all the data.
The Gaussian copula is used to find a joint distribution and to implement the
conditional distribution approach.

The focus remains on the examination of the appropriateness of an imputation
algorithm based on the Gaussian copula.

In the present paper, we generalize and apply the copula model to incomplete
correlated data using the imputation algorithm given by Käärik and Käärik (2009a).

The empirical context in the current paper is an imputation model using incom-
plete customer satisfaction data. The results indicate that the proposed algorithm
performs well.

Keywords: Gaussian copula, incomplete data, imputation

1 Introduction

Traditionally correlated data analysis deals with repeated measurements over
time or over space (Song (2007)). Here, we look at correlated data in a broader
perspective (for example, battery of tests, etc.) and generalize the results we
have obtained using incomplete repeated measurements.

We consider incomplete correlated data, which may cause complicated
problems in many statistical analyses, especially in the case of small sample
sizes when every value is substantial. So, we can say that we are interested
in missing response values, i.e., in observations that potentially could be ob-
tained and we try to find a reasonable estimation that can be substituted
for a missing value. The basic idea of imputation is to fill in gaps in the in-
complete data using existing observations following certain model with given
assumptions. We focus on an imputation model based on conditional distri-
butions. The main drawback there is that the joint distribution may not exist
theoretically and finding conditional distributions may be therefore impossi-
ble.

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 48, c© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we use copulas to overcome this problem. The term copula
refers to the joining of distributions and copula is a good tool for modeling
dependent data. We do not make assumptions on the functional form of the
marginal distributions. We focus on the Gaussian copula and generalize the
imputation strategy for dropouts which is examined in Käärik (2007), Käärik
and Käärik (2009a).

For incomplete repeated measurements the natural assumption is the
monotone missingness, which means there exists a permutation of the ob-
servations such that if a measurement for a given subject is observed, it is
observed for all preceding measurements for that subject. In the presence of
a monotone missingness pattern, the imputation can be reduced to a series
of single variable imputations, starting with the variable which has the low-
est proportion of missingness and impute variable by variable in a sequential
fashion. For arbitrary missing data, we can order the data from most com-
plete to most incomplete and call them ordered missing data (definition given
in Käärik and Käärik (2009b)). We work iteratively through imputation for
each variable starting from the variable with the least missing data and im-
puting the data by specifying an imputation model based on the conditional
distribution.

2 Preliminaries

Consider random vector Y with correlated components Yj , so Y = (Y1, . . . ,
Ym). We have n observations from Y and data forms the n × m matrix
Y =(Y1, . . . , Ym), Yj = (y1j , . . . ,ynj)T , j = 1, . . . ,m. Usually the data ma-
trix is not complete, that means we have k completely observed variables and
m − k partially observed variables. For simplicity we suppress the subscript
index for individual, writing simply yj instead of yij (usually referring to an
individual i having incomplete data). Assuming ordered missing data means,
that we have the random vector Y = (Y1, . . . , Yk, Yk+1, . . . , Ym) where the
data for first k (k ≥ 2) components are complete. We need to specify the
joint distribution of components. We focus on imputing the first incomplete
variable Yk+1 using the complete part Y1, . . ., Yk, the same idea can be used
later to work iteratively through all variables.

According to complete and incomplete parts of data, we can partition the
correlation matrix of data R as follows

R =
(
Rk r
rT 1

)
, (1)

where Rk is the correlation matrix of the complete part and r = (r1,k+1, . . . ,
rk,k+1)T is the vector of correlations between the complete part and the
incomplete Yk+1.

If the marginal distributions of (Y1, . . . , Yk) and Yk+1 are continuous and
known and the correlation matrix is estimated directly from data, we can use
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a copula model for specifying the joint distribution. Of course, the marginal
distribution functions are not typically known and we have to use some esti-
mation strategy to find them and there may arise serious problems, but here
we do not deal with these questions.

By definition, a (k+1)-variate copula is a joint distribution function with
uniform marginals on the unit interval. If Fj is the marginal distribution
function of a univariate random variable Yj , then C(F1(y1), . . . , Fk+1(yk+1))
is a (k + 1)-variate joint distribution for Y = (Y1, . . . , Yk+1) with marginal
distributions Fj , j = 1, . . . , k + 1 (Nelsen (2006)). We focus on the most fa-
miliar Gaussian copula model because of easy implementation in practice and
handling the dependence in a natural way as pairwise correlations among the
variables (Clemen and Reilly (1999), Schölzel and Friederichs (2008), Song
et al. (2009), etc). Using the Gaussian copula, we obtain the following ex-
pression for the joint multivariate distribution function FY (y1, . . . , yk+1;R) =
C[F1(y1), . . . , Fk+1(yk+1);R] = Φ(k+1)[Φ−1(F1(y1)), . . . , Φ−1(Fk+1(yk+1))].
After some transformations we obtain the conditional probability density
function (see Käärik and Käärik (2009a))

fZk+1|Z1,...,Zk
(zk+1|z1, . . . , zk;R) =

exp{− (zk+1−rT R−1
k zk)2

2(1−rT R−1
k r)

}√
2π(1− rT R−1

k r)
, (2)

where Zj = Φ−1[Fj(Yj)], j = 1, . . . , k + 1, are standard normal random
variables and zk = (z1, . . . , zk)T .

As a result we have the (conditional) probability density function of a
normal random variable with expectation rT R−1

k zk and variance 1−rT R−1
k r,

i.e.,
E(Zk+1|Z1 = z1, . . . , Zk = zk) = rT R−1

k zk, (3)
V ar(Zk+1|Z1 = z1, . . . , Zk = zk) = 1− rT R−1

k r. (4)

3 Imputation algorithms based on Gaussian copula

In this section, we present the strategy of the copula-based imputation method.
The formula (3) leads us to the general formula of replacing the missing

value zk+1 by the estimate ẑk+1 using the conditional mean imputation

ẑk+1 = rT R−1
k zk, (5)

where r is the vector of correlations between (Z1, . . . , Zk) and Zk+1, R−1
k is

the inverse of the correlation matrix of (Z1, . . . , Zk) and zk = (z1, . . . , zk)T is
the vector of complete observations for the subject which has missing value
zk+1.

From expression (4) we obtain the (conditional) variance of imputed value
as follows

(σ̂k+1)2 = 1− rT R−1
k r. (6)
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These results for dropouts are proved by Käärik and Käärik (2009a) and are
generalized in Käärik and Käärik (2009b) for correlated data.

To implement general formulas (5) and (6) we have to specify the struc-
ture of the correlation matrix. The natural start is from a simple correlation
structure, depending on one parameter only.

(1) The compound symmetry (CS) or the constant correlation structure,
when the correlations between all measurements are equal, rij = ρ, i, j =
1, . . . ,m, i 6= j.

(2) The first order autoregressive correlation structure (AR), when the
observations on the same subject that are closer are more highly correlated
than measurements that are further apart, rij = ρ|j−i|, i, j = 1, . . . ,m, i 6= j.

Consider correlated data with ordered missingness, then the simplest CS
structure may be ordinary, but the AR structure may be also suspected in
some situations. Imputation strategy in the case of an existing CS correlation
structure is studied in detail in Käärik and Käärik (2009b). For the ordered
missing data with CS correlation structure, we had the following imputation
formula

ẑCS
k+1 =

ρ

1 + (k − 1)ρ

k∑
j=1

zj , (7)

where z1, . . . , zk are the observed values for the subject with missing value
zk+1.

We will now gather some properties of important characteristics of the
AR structure case into a lemma and apply the results later to our imputation
case.

Lemma 1. Let Z = (Z1, . . . , Zk+1) be a random vector with standard
normal components and let the corresponding correlation matrix have AR
correlation structure with correlation coefficient ρ. Then the following asser-
tions hold:

E(Zk+1|Z1 = z1, . . . , Zk = zk) = E(Zk+1|Zk = zk) = ρzk, (8)

V ar(Zk+1|Z1 = z1, . . . , Zk = zk) = 1− ρ2. (9)

Formula (8) can be proved starting from (5) similarly to incomplete re-
peated measurements (Käärik (2007)); a detailed proof of (9) can be found
in Appendix 1.

By Lemma 1, the conditional mean imputation formula for standardized
measurements with an AR structure has the simple form

ẑAR
k+1 = ρzk, (10)

where zk is the last observed value for the subject, and the corresponding
variance is

(σ̂AR
k+1)

2 = 1− ρ2. (11)

In summary, the implementation of an imputation algorithm based on the
Gaussian copula approach requires the following steps.
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1. Sort the columns of the data matrix to get ordered missing data, and fix
Yk+1 (column with the least number of missing values) as the starting
point for imputation.

2. Estimate the marginal distribution functions of Y1, . . . , Yk, Yk+1. The cop-
ula method works with arbitrary marginal distributions; use a normaliz-
ing transformation, if needed.

3. Estimate the correlation structure between variables Y1, . . . , Yk, Yk+1. If
we can accept the hypothesis of compound symmetry or autoregressive
structure, estimate the Spearman’s correlation coefficient ρ. If there is
no simple correlation structure, estimate R by an empirical correlation
matrix.

4. In the case of CS correlation structure, use imputation formula (7). In
the case of AR correlation structure, use imputation formula (10) and
estimate the variance of the imputed value using formula (11). If there is
no simple correlation structure, then use general formulas (5) and (6).

5. Use the inverse transformation to impute the missing value into initial
data, if needed.

6. Repeat steps 4-5 until all missing values in column Yk+1 are imputed. If
k < m− 1, then take k = k+ 1, take a new Yk+1, estimate the marginal
distribution of Yk+1 and go to step 3. In the following steps the imputed
values are treated as if they were observed.

4 Imputing incomplete customer satisfaction data

Customer satisfaction index (CSI) is an economic indicator that measures the
satisfaction of consumers. This is found by a customer satisfaction survey,
which consists of two main parts: a questionnaire where the respondents
(customers) are requested to give scores (in our example on a scale from 0
to 10, from least to most satisfied), and a structural equation model on the
gathered data to obtain the CSI.

In our particular example each customer actually represents a certain
company. While the overall satisfaction index is still the main focus, the
scores given by individual customers are important for people involved with
each particular customer (especially project managers), but each score also
provides valuable information for division leaders, managers, and decision
makers. Therefore finding reasonable substitutes for missing values in the
survey is of high interest. The whole customer satisfaction survey has usually
several blocks of similar questions. In the current paper we are focusing on
a group of five questions (from 20 customers) directly related to customer
satisfaction.

We have complete data and we will delete the values from one variable step
by step and analyze the reliability of the proposed method. The imputation
study has the following general steps.
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1. Estimation of marginal distributions. We used the Kolmogorov-Smirnov
and Anderson-Darling tests for normality; and, as usual, small samples passed
the normality test, thus we did not reject the normality assumption.

2. Estimation of the correlation structure. It is difficult to specify the cor-
rect correlation structure in practical tasks. Many methods allow the spec-
ification of a ’working’ correlation matrix that intends to approximate the
true correlation matrix. In our correlation matrix, the correlations decreased
monotonically over time, so the natural choice was an autoregressive cor-
relation structure. Calculation of the ’working’ correlation matrix gave us
Spearman’s ρ̂ = 0.784 as an estimate of the parameter of the AR-structure.

3. Estimation of the missing values. To validate the imputation algorithm
we repeat the imputation procedure for every value in the data column Y5.
Here we have nonstandard normal variables and use the following modified
formulas (instead of (10) and (11)):

ẑAR
k+1 = ρ

sk+1

sk
(zk − Z̄k) + Z̄k+1, (12)

where Z̄k and Z̄k+1 are the mean values of data columns Zk+1 and Zk respec-
tively, and sk+1 and sk are the corresponding standard deviations, and

(σ̂AR
k+1)

2 = s2k+1(1− ρ2). (13)

To examine the quality of imputation, the average L1 error (absolute dis-
tance between the observed and imputed value) and L2 error (root mean
square distance) were calculated; the corresponding values are 0.641 and
0.744. Analyzing the values of L1 and L2 errors allows us to conclude that
the proposed imputation method is rather conservative.

4. Estimation of the variance of imputed values. Calculating the variance
of an imputed value by (13) and repeating the imputation process for every
value we obtain following results (see Table 1, where y5 is the observed value,
ẑAR
5 is the corresponding imputed value and 0.95 CI is its 0.95-level confidence

interval based on the normal approximation and calculated in the standard
way).

No y5 ẑ
AR
5 0.95 CI No y5 ẑ

AR
5 0.95 CI

1 6 6.77 (5.12; 8.41) 11 8 7.57 (5.89; 9.24)
2 8 8.52 (6.84; 10.19) 12 4 5.43 (3.89; 6.97)
3 9 8.46 (6.79; 10.13) 13 7 6.68 (5.01; 8.35)
4 6 5.85 (4.21; 7.50) 14 5 6.89 (5.28; 8.49)
5 9 8.46 (6.79; 10.13) 15 10 9.30 (7.66; 10.95)
6 10 9.30 (7.66; 10.95) 16 8 8.52 (6.84; 10.19)
7 10 9.30 (7.66; 10.95) 17 7 6.68 (5.01; 8.35)
8 10 9.30 (7.66; 10.95) 18 8 8.52 (6.84; 10.19)
9 9 8.46 (6.79; 10.13) 19 7 7.62 (5.95; 9.29)
10 9 8.46 (6.79; 10.13) 20 9 9.40 (7.73; 11.07)

Table 1. Results of imputations
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As illustrated by this example, our imputation strategy allows us to obtain
applicable results for practical usage.

5 Concluding remarks

It is important to remember that the imputation methodology does not give
us qualitatively new information but enables us to use all available informa-
tion about the data with maximal efficiency. In general, most of the missing
data handling methods deal with incomplete data primarily from the perspec-
tive of estimation of parameters and computation of test statistics rather than
predicting the values for specific cases. We, on the other hand, are interested
in small sample sizes where every value is essential and imputation results
are of scientific interest itself.

The results of this study indicate that in the empirical context of the
current study the algorithm performs well for modeling missing values in
correlated data.

As importantly, the following advantages can be pointed out.
(1) The marginals of variables do not have to be normal, they can even

be different.
(2) The simplicity of formulas (10)–(13).
The class of copulas is wide and growing, the copula approach used here

can be extended to the case of other copulas. Choosing a copula to fit the
given data is an important but difficult question. These relevant problems
obviously merit further research and we will study them in our future work.

Appendix 1. Proof of Lemma 1

As the proof of formula (8) is discussed before, we only need to prove the
validity of formula (9). Recall the general formula (4) for conditional variance

V ar(Zk+1|Z1 = z1, . . . , Zk = zk) = 1− rT R−1
k r.

According to the partition of the correlation matrix R with autoregressive
correlation structure the vector of correlations between the complete data
and the (k + 1)-th variable is of the form r = (ρk, ρk−1 . . . , ρ)T . The inverse
of the correlation matrix Rk is a three-diagonal matrix. The main properties
of this type of three-diagonal matrices are well-known (Kendall and Stuart
(1976)).

The inverse matrix of the correlation matrix Rk has the following struc-
ture

R−1
k =

1
ρ2 − 1


−1 ρ 0 . . . 0 0
ρ −(1 + ρ2) ρ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −(1 + ρ2) ρ
0 0 0 . . . ρ −1

 .
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Further, using the matrix R−1
k , we attain

rT ·R−1
k =

1
ρ2 − 1

· (0, 0, . . . , 0, ρ(ρ2 − 1)) = (0, 0, . . . , 0, ρ).

Thus considering (4), we have

V ar(Zk+1|Z1 = z1, . . . , Zk = zk) = 1−(0, 0, . . . , 0, ρ)·(ρk, ρk−1, . . . , ρ)T = 1−ρ2.

Lemma is proved.
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Abstract. In this paper, we discuss sensitivity analysis in linear subspace method,
especially on multiple-case diagnostics.

Linear subspace method by Watanabe (1973) is a useful discriminant method
in the field of pattern recognition. We have proposed its sensitivity analyses, with
single-case diagnostics and multiple-case diagnostics with PCA.

We propose a modified multiple-case diagnostics using clustering and discuss
its effectiveness with numerical simulations.

Keywords: CLAFIC, sensitivity analysis, perturbation

1 Introduction

In the field of pattern recognition, Watanabe (1967, 1970, 1973) proposed
linear subspace method which is one of discriminant methods. The perfor-
mance is effective, even if the target dataset was sparse. It and its extensions
have been used in recognition systems. In statistics, sensitivity analysis with
influence functions have been studied in many multivariate methods (Camp-
bell (1978); Radhakrishnan and Kshirsagar (1981); Critchley (1985); Tanaka
(1988)). The main purpose is to evaluate the influence of observations to
the result of analysis and find outliers. We have already proposed sensitivity
analysis in linear subspace method for single-case diagnostics (Hayashi et al.
(2008)). In multiple-case diagnostics, we used PCA to find influence directions
but we do not always find them when the cumulative proportion is low. To
overcome this problem, we propose a multiple-case diagnostics by clustering
based on all dimensions and show its effectiveness through simulations.

2 Sensitivity analysis in linear subspace method

In this section, we briefly give an explanation of sensitivity analysis in lin-
ear subspace method. We especially focus on class-featuring information
compression (CLAFIC) that is one of linear subspace methods (Watanabe
(1973)).

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 49, c© Springer-Verlag Berlin Heidelberg 2010
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2.1 CLAFIC

We suppose that the number of classes is K and denote the number of vari-
ables as p and a training observation in k-th class as xxxk

i (i = 1, 2, . . . , nk, k =
1, . . . ,K), where nk is the number of the samples in k-th class. Then, the au-
tocorrelation matrix of the training data in k-th class is defined as follows:

Ĝk =
1
nk

nk∑
i=1

xxxk
ixxx

k
i

T
. (1)

A covariance matrix is generally calculated from sample observed values with
subtracting a mean, but Ĝk is calculated in the same way without subtrac-
tions. We solve the eigenvalue problem for Ĝk and denote the p eigenvalues
as λ̂k

1 ≥ λ̂k
2 ≥ · · · ≥ λ̂k

p ≥ 0. We denote the eigenvector corresponding to λ̂k
s

as ûuuk
s (s = 1, . . . , p). A projection matrix in k-th class is defined as follows:

P̂k =
pk∑

s=1

ûuuk
sûuu

k
s

T
, (1 ≤ pk ≤ p), (2)

where pk is the minimum value m, satisfied with the following inequation,
τ ≤

∑m
s=1 /

∑p
s=1 λ̂

k
s , (1 ≤ m ≤ p), for given τ , which is a threshold like

cumulative proportion in PCA. We project a test observation xxx∗ into all
subspaces and calculate the squares of the projection norms (xxx∗TP̂kxxx

∗, k =
1, . . . ,K). We classify the test observation into the most appropriate class
that gives the maximum value (max

k
{xxx∗TP̂kxxx

∗}).

2.2 Discriminant score

We define a discriminant score for xxxk
i as follows:

ẑk
i = xxxk

i

T
Q̂kxxx

k
i (1 ≤ i ≤ nk), (3)

where

Q̂k =
1

K − 1

(
KP̂k −

K∑
`=1

P̂ `

)
. (4)

We calculate the average of the discriminant scores in each class,

Ẑk =
1
nk

nk∑
i=1

ẑk
i . (5)

We evaluate the change for the influence of observation with Ẑk because an
average can be greatly affected by outlier.
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2.3 EIF and SIF

We regard vech(Q̂k) (k = 1, . . . ,K) as differentiable functionals of the empir-
ical cumulative distribution functions F̂ g (g = 1, . . . ,K). From the definition
of influence functions (Hampel (1974, 1986)), the empirical influence function
is given by

EIF(xxxg
j ; vech(Q̂k)) =

vech

(∑pg

s=1

∑p
t=pg+1(λ̂

g
s − λ̂

g
t )−1ûuug

s
TĜgj

g ûuu
g
t (ûuug

sûuu
g
t
T + ûuug

t ûuu
g
s
T)

)
(g = k),

vech

(
− 1

K−1

∑pg

s=1

∑p
t=pg+1(λ̂

g
s − λ̂

g
t )−1ûuug

s
TĜgj

g ûuu
g
t (ûuug

sûuu
g
t
T + ûuug

t ûuu
g
s
T)

)
(g 6= k),

(6)

where pg is the number of the basis vectors for the projection matrix in g-th
class. Ĝgj

g is x̂xxg
j x̂xx

gT
j − Ĝg (j = 1, . . . , ng). In the derivation of (6), we can

refer to Tanaka (1988, 1994). The sample influence function is calculated as

SIF(xxxg
j ; vech(Q̂k)) = −(ng − 1) ·

{
vech(Q̂kg(j))− vech(Q̂k)

}
, (7)

where vech(Q̂kg(j)) is vech(Q̂k) by deleting j-th observation in g-th class.
To evaluate the influence of a perturbed observation for Ẑk, we summarize

EIF(xxxg
j ; vech(Q̂k)) and SIF(xxxg

j ; vech(Q̂k)) into scalars according to Tanaka

(1994). We summarize them as Ẑgj
k and Ẑg(j)

k ,

Ẑgj
k =

1
nk

nk∑
i=1

xxxk
i

T
Q̂gj

k xxx
k
i (g 6= k) (8)

Ẑ
g(j)
k =

1
nk

nk∑
i=1

xxxk
i

T
Q̂

g(j)
k xxxk

i , (9)

where Q̂gj
k = − 1

K−1

∑pg

s=1

∑p
t=pg+1(λ̂

g
s−λ̂

g
t )−1ûuug

s
TĜgj

g ûuu
g
t (ûuug

sûuu
g
t
T+ûuug

t ûuu
g
s
T) and

Q̂
g(j)
k = −(ng − 1) · (Q̂kg(j) − Q̂k).

2.4 Diagnostics

On single-case diagnostics in linear subspace method, we use Ẑg(j)
k or Ẑgj

k

to evaluate the influence of each observation. To deal with the influence of
multiple individuals in theoretical influence function (TIF), we consider a
perturbation from F g to F̃ g = (1− ε)F g + εGg, where Gg = α−1

∑
xxxg

i∈Aδxxxg
i

(Tanaka (1994)). A and α represent a set of observations and the number
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of observations belonging to the set, respectively. We can define a general-
ized influence function for A as TIF(A; vech(Qk)) = limε→0[vech(Qk)(F̃ g)−
vech(Qk)(F g)]/ε. This can be rewritten as follows:

TIF(A; vech(Qk)) =
1
α
·
∑

xxxg
i∈A

TIF(xxxg
i ; vech(Qk)). (10)

Equation (10) indicates that the generalized influence function for a sub-
set A is obtained as the average of the influence functions calculated from
observations in the subset A.

We denote F̂ g
(A) as the empirical cumulative distribution function based

on the observations not in the subset A. F̂ g
(A) = (ng − α)−1 · {

∑ng

i=1 δxxxg
i
−∑

xxxg
i∈Aδxxxg

i
}. F̂ (A) can be rewritten as

F̂ g
(A) = 1

ng−α

∑ng

i=1 δxxxg
i
− α

ng−α ·
1
α

∑
xxxg

i∈Aδxxxg
i
. (11)

When we put−α/(ng−α) as ε, F̂ g
(A) is equal to (1−ε)

∑ng

i=1 +εα−1
∑

xxxg
i∈A δxxxg

i
.

Therefore, we can understand that the additive property in TIF is also sat-
isfied in EIF (Critchley (1985); Tanaka (1984)). Based on the additive prop-
erty, Tanaka (1994) proposed the procedure of multiple-case diagnostics using
PCA. When we use SIF in multiple-case diagnostics, the number of all pos-
sible combinations of deleting observations rapidly increases in proportion to
the number of classes and observations. Therefore, in the analysis of tons of
data, we can not generally use SIF in multiple-case diagnostics.

3 A multiple-case diagnostics with clustering

We have developed sensitivity analysis in linear subspace method including
single-case and multiple-case diagnostics. In multiple-case diagnostics, we use
PCA and PCA with metric [âcov(Q̂k)]−1 to search the influential directions
of observations and deleted the observations which have a similar influence
direction, so that we evaluate the change of the result of analysis.

However, if the influence directions of observations can not be represented
with a few dimensions, we have to pick up many dimensions. In addition, there
is not an criterion to measure the similarity of observations. To overcome
these problems, we can apply clustering to influence directions of observa-
tions and can confirm the relationship of them. A multiple-case diagnostics
with PCA is appropriate for searching a few of large influential directions of
observations, but not for searching grouping them. Considering the stability
of statistical model by deleting multiple observations, the main purpose is to
evaluate the changes of the result of analyses by deleting observations based
on all possible combinations of observations. Therefore, in multiple-case di-
agnostics, the technique of clustering is as important as PCA.

Here, we modify the procedure of multiple-case diagnostics with PCA
from a point of view of clustering. In this regard, we particularly focus on
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hierarchical clustering. We denote the eigenvalues calculated in eigenvalue
problem to obtain influence directions of observations as ξ1 ≥ ξ2 ≥ · · · ≥
ξng
≥ 0 and also denote a component of the eigenvectors as aaaji (j, i =

1, . . . , ng). We determine a threshold ρ and pick up ξ1, ξ2, . . . , ξn′g (1 ≤ n′g <

ng) satisfied with
∑n′g

i=1 ξi/
∑ng

i=1 ξi < ρ ≤
∑n′g+1

i=1 ξi/
∑ng

i=1 ξi. Using the
eigenvectors associated with these eigenvalues, we make up A = (aaaji) (j =
1, . . . , ng, i = 1, . . . , n′g).

Before clustering, to get the similarity matrix for A, we calculate the Eu-

clidean norm, djj′ =
√∑n′g

i=1(aaaji − aaaj′i)T(aaaji − aaaj′i) (j, j′ = 1, . . . , ng). We
apply Ward’s method to the matrix D = (djj′) and search the similar influ-
ence patterns of observations. If we can know the number of clusters from the
power of computer and calculation time, we can also adapt a nonhierarchical
clustering like k-means.

Finally, we group the influence patterns of observations and delete the
subsets which have the same influence pattern and evaluate the change of
the result of analysis. This approach in multiple-case diagnostics is superior
to one by deleting observations in all possible combinations. The first reason
is that we can visually find the influence patterns of observations. The second
reason is that we can perform the diagnostics within a reasonable time. In
the following, we summarize the procedure of multiple-case diagnostics with
clustering again.

(Step1) Calculate the eigenvectors aaa·is with EIF and âcov(Q̂k).

(Step2) Determine a threshold ρ from a screeplot and build D = (djj′)
with A = (aaaji).

(Step3) Group the similar influence patterns of observations applying Ward’s
method to D = (djj′).

(Step4) Delete the subsets that have the similar influence pattern and eval-
uete the variant of the result of analysis.

In the next section, we show the effectiveness of the multiple-case diagnostics
with simulations, comparing one by deletion in all possible combinations.

4 Numerical examples

To show the effectiveness of the modified diagnostics in linear subspace method,
we perform simple examples. We set up two datasets generated in multivari-
ate normal distributions and we add noises to them, respectively. We call
them as Group 1 and Group 2 and denote the index of them as 1 and 2,
respectively. Each dataset consists of n = 10 observations and 8 variables.
We set the value of τ up as 0.999 and develop the classifier using the data.
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Fig. 1. Ẑ
1(J)
k in Group1

Fig. 2. Ẑ
2(J)
k in Group2

We firstly perform the multiple-case diagnostics by omitting observations
in all possible combinations. In this case, the number of combinations delet-
ing observations in each class is 1023 (210 − 1). We study the change of
Ẑ

g(J)
k (k, g = 1, 2, J ∈ {xg

1, . . . , x
g
ng
}). Ẑg(J)

k s are shown in Fig. 1 and Fig.
2, respectively.

In Group 1, the four combinations which are No. 255, No. 511, No. 767
and No. 1015 show the large value in Ẑ

1(J)
k . In Group 2, No. 703, No. 831,

No. 895 and No. 959 have the large Ẑ1(J)
k . These numbers correspond to the

subsets of observations (Table 1).

Table 1. Large influential subsets

Group 1 Subset Group 2 Subset

No. 255 { 3, 4, 5, 6, 7, 8, 9, 10 } No. 703 { 1, 3, 5, 6, 7, 8, 9, 10 }
No. 511 { 2, 3, 4, 5, 6, 7, 8, 9, 10 } No. 831 { 1, 2, 5, 6, 7, 8, 9, 10 }
No. 767 { 1, 3, 4, 5, 6, 7, 8, 9, 10 } No. 895 { 1, 2, 4, 5, 6, 7, 8, 9, 10 }
No. 1015 { 1, 2, 3, 4, 5, 6, 8, 9, 10 } No. 959 { 1, 2, 3, 5, 6, 7, 8, 9, 10 }
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Fig. 3. EIF vs SIF

Fig. 4. Clusters of influence directions in each class

Secondly, we carry out the multiple-case diagnostics. The approxima-
tions of EIF and SIF in each class are shown in Fig. 3. From Fig. 3, we
can understand that the approximations are good. According to the pro-
cedure of Section 4, we calculate the influence directions of observations
with EIF and âcov(Q̂k) and determine a threshold ρ(= 0.90). We consti-
tute D = (djj′) (j, j′ = 1, . . . , 10) and apply Ward’s method to D = (djj′).
This result is represented in Fig. 4. Finally, we could reduce 10 observations
to 5 clusters ( { 7, 10 } , { 3, 6, 9 } , { 5, 8 } , { 1 } , { 2, 4 } ) in Group 1 and
can also summarize 10 observations to 4 clusters ( { 5 } , { 9, 10, 3, 6 } , { 1,
2, 7 } , { 4, 8 } ) in Group 2. Using the modified multiple-case diagnostics,
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we could sum up 1023 combinations to 767 combinations in Group 1 and
also sum up 1023 combinations to 383 combinations in Group 2. Using this
multiple-case diagnostics with clustering, we could quickly explore the global
optimal solutions (No. 767 and No. 959).

5 Concluding Remarks

The purpose of multiple-case diagnostics is to evaluate the change of the
result of analysis by deleting multiple observations. In this paper, we modi-
fied the multiple-case diagnostics in linear subspace method and showed the
effectiveness with a small scale simulation data.
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Abstract. We develop a procedure for monitoring changes in the error distribution
of autoregressive time series. The proposed procedure, unlike standard procedures
which are also referred to, utilizes the empirical characteristic function of properly
estimated residuals. The limit behavior of the test statistic is investigated under
the null hypothesis, while computational and other relevant issues are addressed.

Keywords: empirical characteristic function, change point analysis

1 Introduction

Change–point analysis for distributional change with i.i.d. observations and
the study of structural breaks in the parameters of time series has received
wide attention; see for instance Yao (1990), Einmahl and McKeague (2003),
Hušková and Meintanis (2006a), Hušková et al. (2007), Hušková et al. (2008),
Gombay and Serban (2009), to name a few. (For a full–book treatment on
theoretical and methodological issues of change–point analysis the reader is
referred to Csörgő and Horváth (1997)). On the other hand works on struc-
tural breaks due to change in the distribution of a time series are relatively
few. The purpose of this paper is to develop novel sequential procedures for
change in the error distribution of autoregressive models and to compare
these procedures to alternative monitoring schemes.

Testing hypotheses in the context of monitoring schemes assumes that
data arrive sequentially and that an initial subset of these data, termed
‘training data’, involve no change. Then after each new observation we should
decide whether there is evidence of change, and terminate testing in favor of
the alternative hypothesis, or that there is no evidence of change, in which
case we continue the testing procedure.

Let Xt be an AR(p) process defined by the equation

Xt −X′
t−1β = εt, (1)

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 50, c© Springer-Verlag Berlin Heidelberg 2010
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where Xt = (Xt, ..., Xt−p+1)′, and β = (β1, ..., βp)′. In (1) the errors εt are
i.i.d. with distribution function Ft having mean zero and finite variance. Also
the AR process is assumed to be stationary i.e., the characteristic polynomial
P (z) = 1−β1z− ...−βpz

p, is assumed to satisfy P (z) 6= 0,∀|z| ≤ 1. For some
T < ∞, and given the training data X1, ..., XT , we are interested in testing
the hypothesis

H0 : Ft = F0,∀t > T vs. H1 : Ft 6= F0 for some t > T,

where F0 is assumed unknown. In view of the fact that the errors are unob-
served, typically one computes the residuals

ε̂t = Xt −X′
t−1β̂T , (2)

from (1) by using some standard (possibly
√
T consistent) estimator β̂T of β,

such as the least squares (LS) estimator. This estimator is computed on the
basis of the training data X1, ..., XT . Then standard goodness–of–fit statistics
are employed which make use of the empirical distribution function (EDF) of
these residuals. In this paper we deviate from these standard approaches by
proposing a unified method for estimation, and for testing H0 that utilizes the
empirical characteristic function (ECF) of the residuals. The rationale for fol-
lowing this approach is that test statistics analogous to these proposed herein
have been used to test structural change in the context of i.i.d. observations
with satisfactory performance; see Hušková and Meintanis (2006a, 2006b).
Also the estimation method employed here in computing the residuals in (2)
is more general and robust to outliers than least squares and contains the LS
method as a special case.

2 Test statistics

We assume that the chosen estimator β̂T of β, which is computed on the
basis of the training data {Xt}Tt=1, satisfies the property

√
T (β̂T − β) = OP (1), T →∞.

On the basis of the residuals ε̂t defined in (2), classical procedures for
testing the null hypothesis H0 utilize the EDF,

F̂k(z) =
1

k − p

k∑
t=p+1

I(ε̂t ≤ z),

where I(·) denotes the indicator function. In particular the Kolmogorov–
Smirnov (KS) statistic is defined by the critical region

KS := sup
k≥T

TKS(k) ≥ CKS,α, (3)
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where α denotes the nominal level of significance and

TKS(k) = ck,T (γ) sup
−∞<z<∞

|F̂k(z)− F̂T (z)|,

with ck,T (γ) being a normalizing function depending on a parameter γ ≥ 0.
The Crámer–von Mises (CM) statistic is defined likewise by replacing in (3)
TKS(k) by

TCM (k) = ck,T (γ)
∫ ∞

−∞
|F̂k(z)− F̂T (z)|2dF̂T (z).

In the asymptotic behavior for classical statistics one uses functionals of the
processes

ck,T (γ)
[
F̂k(z)− F̂T (z)

]
.

For these processes the limit behavior has been studied by Bai (1994). Follow–
up articles on the KS and CM statistics are by Inoue (2001), and by Lee et
al. (2009), while Ling (2007) studies the behavior of a Wald–type statistic for
the same problem.

It should be pointed out, that in the KS and CM statistics the underlying
distribution function Ft is usually assumed to be absolutely continuous. On
the other hand, the Fourier approach which we advocate does not require
smoothness of Ft since it utilizes the ECF of the residuals

φ̂k1,k2(u) =
1

k2 − k1

k2∑
t=k1+1

eiuε̂t ,

which is continuous regardless of the type of Ft. In the proposed test statistic,
we reject the null hypothesis H0 whenever

CF := sup
1≤k≤LT

TCF (k) ≥ CCF,α (4)

with LT →∞ as T →∞, where

TCF (k) = ρk,T (γ)
∫ ∞

−∞
|φ̂T,T+k(u)− φ̂p,T (u)|2w(u)du.

In the CF–test, and in addition to the normalization ρk,T (γ), w(u) is an
extra weight function introduced to smooth out the periodic components of
the ECF.

3 Sketch of asymptotics

It can be shown that the limit null distribution of the CF–statistic does not
depend on the estimator of β̂T . Moreover the aforementioned limit distri-
bution is the same as if we replace the residuals ε̂t by εt. To get the limit
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distribution of the test statistics with εt we follow the proof of Hušková and
Meintanis (2006a). It can be shown that for k = bTsc , s > 0 fixed , T →∞,
the limit behavior of

kT

k + T

∫ ∞

−∞
|φ̂T,T+k(u)− φ̂p,T (u)|2w(u)du

is the same as∫
w(t)dt− E [hw(ε1, ε2)] +

∞∑
j=1

λj

{ (Wj,1(s)− sWj,2(1))2

s(1 + s)
− 1
}
,

where hw(x, y) := hw(x − y) =
∫

cos(u(x − y))w(u)du, Wj,1(·), j ≥ 1 and
Wj,2(·), j ≥ 1, are independent Wiener processes, and λj , j ≥ 1, are eigen-
values which depend on the underlying distribution function F0 which is
unknown. Hence the limit distribution depends on unknown quantities and
does not provide an approximation for critical values of the CF–statistic. One
can use a special bootstrap for this sequential setup. Possible versions can be
obtained by adapting the procedures suggested by Kirch (2008) and Hušková
and Kirch (2009) to the present situation.

Concerning more general standardized constants ρk,T (γ) we suggest:

ρk,T (γ) =
kT

k + T

(
k/(T + k)

)γ

, 0 ≤ γ < 1.

The proposed procedure based on CF defined in (4) can be used also for sit-
uation when {Xt}t follow either linear regression model or ARMA sequence.

In the following section we examine some aspects of the estimation method
and the new statistics.

4 FLS estimation and ECF statistics

(i) FLS estimation: The proposed estimator is the functional least squares
(FLS) estimator proposed by Heathcote and Welsh (1983). For fixed u ∈ R,
the FLS estimator is obtained by minimizing the loss function

HT (β, u) = − 1
u2

log
∣∣∣φ̂p,T (u)

∣∣∣2 , (5)

where φ̂p,T (u) is the ECF computed from the residuals ε̂t, t = p+1, ..., T . Un-
der standard assumptions the FLS method produces consistent and asymp-
totically normal estimators, which are robust to ‘innovation’ outliers, i.e. to
outliers with respect to the error distribution; see Dhar (1993) and Meinta-
nis and Donatos (1999) . Note also that an efficient FLS estimator can be
adaptively defined by choosing the argument u := ûT so that the estimated
asymptotic variance is minimized; refer to Csörgő (1983).
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The first thing to notice in FLS estimation is that∣∣∣φ̂p,T (u)
∣∣∣2 =

1
(T − p)2

T∑
t,s=p+1

cos [u(ε̂t − ε̂s)] ,

is location invariant and hence the constant term can not be estimated by
FLS. Despite the fact that Welsh (1985), motivated by circular statistics,
proposed an estimator of the intercept based on the FLS–slope estimate, in
what follows we will consider the case of no intercept. It is illuminating to
further investigate which factors play part in the FLS loss function HT (β, u)
in (5). To this end, by the previous equation and by simple Taylor expansions
of cos(u) and log(1 + u) one has after some algebra that

log
∣∣∣φ̂p,T (u)

∣∣∣2 = −u2

2 M2 + u4

24

(
M4 − 3M2

2

)
+ u6

720

(
15M2M4 −M6 − 30M3

2

)
+ . . . ,

(6)
where Mk = (T − p)−2

∑T
t,s=p+1(ε̂t − ε̂s)k, k = 2, 3, ... . Equation (6) con-

tains powers of u and associated contrasts incorporating empirical moments
(in forms reminiscent of V–statistics) computed from the FLS residuals. No-
tice however that as T → ∞, the coefficients of uk in (6) vanish identically
for k > 2, if the corresponding errors follow the normal distribution, since the
aforementioned contrasts hold true for this distribution; for instance the co-
efficient of u4 expresses, the moment relation E(X4) = 3(E(X2))2, while the
coefficient of u6, the moment relation E(X6) = 15E(X4)E(X2)−30(E(X2))2.
Hence from this Taylor approximation, it becomes transparent that when es-
timating β on the basis of the loss function HT (β, u), it is unnecessary, at
least asymptotically, to go beyond u2 in that Taylor expansion when the er-
rors are normal. In fact by replacing (6) in (5) one has limu→0HT (β, u) = M2,
which is the loss function of the LS–slope coefficients in deviation form, and
shows that LS is a special case of the FLS estimator, and recovers the fact
that under normal errors LS estimation is optimal.
(ii) ECF statistics: By similar expansions as in (i) above one has

|φ̂T,T+k(u)− φ̂p,T (u)|2 = u2(m(1)
T,T+k −m

(1)
p,T )2

+
u4

12

[
3(m(2)

T,T+k −m
(2)
p,T )2 − 4(m(1)

T,T+k −m
(1)
p,T )(m(3)

T,T+k −m
(3)
p,T )

]
+
u6

360

[
6(m(1)

T,T+k −m
(1)
p,T )(m(5)

T,T+k −m
(5)
p,T ) + 10(m(3)

T,T+k −m
(3)
p,T )2

−15(m(2)
T,T+k −m

(2)
p,T )(m(4)

T,T+k −m
(4)
p,T )

]
+ o(u6), u→ 0,

where m(ρ)
k1,k2

= (k2 − k1)−1
∑k2

t=k1+1 ε̂
ρ
t , ρ = 1, 2, ... . It is transparent from

this equation that moment matching takes place in the test statistic in (4)
between the sample moments computed from {ε̂t}T+k

t=T+1 and the correspond-
ing sample moments computed from {ε̂t}Tt=p+1. The role then of the weight
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function w(u) is to assign specific weights with which each of these moment–
matching equations enters the test statistic. In this connection, a weight func-
tion with rapid rate of decay assigns little weight to higher sample moments,
and the value of the test statistic is dominated by matching the low–order
moments of {ε̂t}T+k

t=T+1 and {ε̂t}Tt=p+1. In contrast a slower rate of decay of
w(u) allows moments of higher order to also have an significant impact on
the test statistic. Standard choices such as w(u) = exp (−a|u|b), a, b > 0 in
(4), yield for b = 1 the limit statistic

CF (1)
∞ := lim

a→∞
a3CF (1)

a = 4ρk,T (γ) sup
1≤k≤ LT

(m(1)
T,T+k −m

(1)
p,T )2,

and for b = 2 the limit statistic

CF (2)
∞ := lim

a→∞
a3/2CF (2)

a =
√
π

2
ρk,T (γ) sup

1≤k≤LT

(m(1)
T,T+k −m

(1)
p,T )2,

where CF (m)
a , m = 1, 2, denotes the test statistic in (4) with weight function

e−a|u|m . These limit statistics show that extreme smoothing of the periodic
component of the ECF leads to rejection of the null hypothesis for large
values in the sequential matching of the sample means of the residuals before
and after a hypothetical change.

5 Computational issues

The FLS estimating equations are given by hT (β, u) = 0 where hT :=
∂HT /∂β is a vector of dimension p with mth element

hT,m(β, u) =
1

(T − p)2
1
u

T∑
t,s=p+1

Xt−m sin
[
u(Xt −Xs)− u(X′

t−1 −X′
s−1)β

]
,

m = 1, ..., p. The numerical procedure for obtaining the adaptive and ef-
ficient FLS estimate is described in Meintanis and Donatos (1997, 1999).
This procedure is iterative whereby at step j and given the current value

of the estimate β̂
(j)

T , the empirical variance is calculated as V ar(j)T (u) :=
V ar(φ̂(j)

p,T (u), u) where φ̂(j)
p,T (u) denotes the ECF calculated from the current

residuals ε̂t := ε̂t(β̂
(j)

T ) and V ar(u) := V ar(φ(u), u) denotes the asymptotic
variance of the FLS estimator under a hypothesized error distribution with
characteristic function denoted by φ(u). Then the adaptive and efficient FLS
estimator at this step corresponds to the argument u := û

(j)
T which minimizes

V ar
(j)
T (u) over an interval around zero.
Computationally convenient expressions for the ECF test statistic may

be obtained from (4) by straightforward algebra as (see also Hušková and
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Meintanis (2006a)), TCF (k) = ρk,T (γ)Σk where

Σk =
1
k2
S1,k +

1
(T − p)2

S2,T − 2
1

k(T − p)
S3,k,

with

S1,k =
T+k∑

t,s=T+1

hw(ε̂t − ε̂s), S2,k =
k∑

t,s=p+1

hw(ε̂t − ε̂s),

and

S3,k =
T+k∑

t=T+1

T∑
s=p+1

hw(ε̂t − ε̂s).

In fact, some further algebra shows that the computation of the test statistic
is facilitated by the recursive relations

S1,k+1 = S1,k + 2
T+k∑

t=T+1

hw(ε̂t − ε̂T+k+1) + hw(0),

S3,k+1 = S3,k +
T∑

t=p+1

hw(ε̂t − ε̂T+k+1).

(For S2,k the recursive relation is obtained from that of S1,k by simply setting
T = 0).

Preliminary simulations indicate that the proposed test procedure is sen-
sitive w.r.t. a large spectrum of changes, either local or fixed. Results of a
more extensive simulation study will be presented during the talk, along with
a comparison with the procedure suggested by Lee et al. (2009).
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CSÖRGŐ, M. and HORVÁTH, L. (1997): Limit Theorems in Change-point Anal-
ysis. J. Wiley, New York.
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G.Laurent@student.ulg.ac.be

2 QuantOM, HEC-Management School of University of Liège
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Abstract. Consider the regression model Y = m(X) + σ(X)ε, where m(X) =
E[Y |X] and σ2(X) = V ar[Y |X] are unknown smooth functions and the error ε
(with unknown distribution) is independent of X. The pair (X,Y ) is subject to
parametric selection bias and the response to right censoring. We construct a new
estimator for the cumulative distribution function of the error ε, and develop a
bootstrap technique to select the smoothing parameter involved in the procedure.
The estimator is studied via extended simulations and applied to real unemployment
data.

Keywords: nonparametric regression, selection bias, right censoring, boot-
strap, bandwidth selection

1 Introduction and model

Let (X,Y ) be a bivariate random vector, where Y is the unemployment
duration of an individual and X is, for example, his age when he lost his
job. The objective is to study the relation between Y and X. In Figure 1, an
example of a scatter plot with these two variables is displayed. It comes from
the Spanish Institute for Statistics and is completely described in Section 4.
Unfortunately, this kind of data set suffers from some ‘incompleteness’ (due
to sampling), as explained hereunder.

Indeed, (X,Y ) is supposed to be obtained from cross-sectional sampling
meaning that only individuals whose unemployment duration is in progress
at a fixed sampling time are observed and followed. As a result, a bias ap-
pears due to the length of Y : conditionally on X, longer durations have a
larger probability to be observed. Moreover, we assume that durations of the
followed individuals are possibly right-censored; for example, this may hap-
pen if an individual stops the follow-up or if the follow-up itself comes to an
end.

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 51, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Scatter plot of unemployment data

In this context, the following general nonparametric regression model can
be assumed in most applications:

Y = m(X) + σ(X)ε, (1)

where m(X) = E[Y |X] and σ2(X) = V ar[Y |X] are unknown smooth func-
tions and ε (with zero mean, unit variance and distribution Fε) is independent
of X. This enables to define the error ε and estimate its distribution Fε(·).
Indeed, such an estimator can be very useful in the sense that it is naturally
related to the commonly used graphical procedures based on visual exami-
nation of the residuals (see Atkinson (1985)). Furthermore, a complete set of
testing procedures can be based on this estimated distribution (e.g. tests for
the model (1), goodness-of-fit tests for Fε(·), m(·) and σ(·) . . .).

As explained above, the incompleteness of the data is characterized by two
phenomena: cross-sectional sampling and right censoring. We can therefore
model them by using the following variables.

a. T, the truncation variable (duration between the time point when the
individual loses his job and the sampling time) assumed to be here inde-
pendent of Y conditionally on X (usual assumption when truncated data
are present): T is observed if Y ≥ T.

b. C, the censoring variable making Y (larger or equal to T ) observable only
if Y ≤ C. (Y, T ) is assumed to be independent of C −T, conditionally on
T ≤ Y and X (assumption needed to construct conditional distribution
estimators with censored data).

Here, FT |X(y|x) = P(T ≤ y|x) is assumed to be a parametric function.
This assumption is satisfied by classical length-biased data but also by other
types of selection biases where the process that counts individuals who lose
their job can be considered as parametric. By construction, we also impose
that the support of FY |X(y|x) = P(Y ≤ y|x) is included into the support
of FT |X(y|x) and that the lower bound of the support of FT |X(y|x) is zero.
Defining Z = min(C − T, Y − T ) and ∆ = I(Y ≤ C), we therefore obtain
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a sample {(X1, T1, Z1,∆1), . . . , (Xn, Tn, Zn,∆n)} of independent copies of
(X,T, Z,∆) with the same distribution as (X,T, Z,∆) conditionally on Y ≥
T. Special cases of these data have been widely studied in the literature (see,
e.g., de Uña-Alvarez and Iglesias-Pérez (2008) for a literature overview).

The paper is organized as follows. In the next section, we describe the
estimation procedure in detail. Section 3 presents the results of a simulation
study while Section 4 is devoted the analysis of the unemployment data
introduced hereabove.

2 Description of the method

To address the problem introduced in Section 1, we first propose to write

HX,Y (x, y) = P(X ≤ x, Y ≤ y|T ≤ Y ≤ C) =
P(X ≤ x, Y ≤ y, T ≤ Y ≤ C)

P(T ≤ Y ≤ C)
.

We can show that

P(X ≤ x, Y ≤ y, T ≤ Y ≤ C) =∫
r≤x

∫
s≤y

∫
u≤s

(1− G(s− u|r)) dFT |X(u|r)dFY |X(s|r)dFX(r),

where FX(x) = P(X ≤ x) and G(z|x) = P(C − T ≤ z|X = x, T ≤ Y ). That
leads to

HX,Y (x, y) = (E[w(X,Y )])−1
∫

r≤x

∫
s≤y

w(r, s)dFX,Y (r, s), (2)

where FX,Y (x, y) = P(X ≤ x, Y ≤ y) and the weight function is defined by

w(x, y) =
∫

t≤y

(1− G(y − t|x)) dFT |X(t|x). (3)

In particular, a similar expression can be obtained for a constant follow-up τ ,
i.e. C = T+τ where τ is a positive constant. By applying the same reasoning,
it’s easy to check that the weight w(x, y) can be written as

w(x, y) =
∫ y

0∨y−τ

dFT |X(t|x). (4)

Thanks to (2), we have

dFX,Y (x, y) =
E[w(X,Y )]
w(x, y)

dHX,Y (x, y),

leading to

Fε(e) =
∫∫

{(x,y):
y−m(x)

σ(x) ≤e}

E[w(X,Y )]
w(x, y)

dHX,Y (x, y). (5)
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Next, we estimate the unknown quantities in (5). For G(y − t|x), we use the
Beran (1981) estimator, defined by (in the case of no ties):

Ĝ(y − t|x) = 1−
∏

Zi≤y−t
∆i=0

(
1− Wi(x, hn)∑n

j=1 I{Zj ≥ Zi}Wj(x, hn)

)
,

where Wi(x, hn) = K

(
x−Xi

hn

)
/

n∑
i=1

K

(
x−Xi

hn

)
, K is a kernel function

and hn is a bandwidth sequence tending to 0 when n→∞. We thus obtain
for w(x, y)

ŵ(x, y) =
∫

t≤y

(
1− Ĝ(y − t|x)

)
dFT |X(t|x).

For m(·) and σ(·), we use

m̂(x) =

∑n
i=1

Wi(x,hn)Yi∆i

ŵ(x,Yi)∑n
i=1

Wi(x,hn)∆i

ŵ(x,Yi)

, σ̂2(x) =

∑n
i=1

Wi(x,hn)∆i(Yi−m̂(x))2

ŵ(x,Yi)∑n
i=1

Wi(x,hn)∆i

ŵ(x,Yi)

,

obtained by extending the conditional estimation methods introduced in de
Uña-Alvarez and Iglesias-Pérez (2008). Consequently, the estimator of the
error distribution is

F̂ε(e) =
1
M

n∑
i=1

Ê[w(X,Y )]
ŵ(Xi, Yi)

I{ε̂i ≤ e,∆i = 1}, (6)

where

ε̂i =
Yi − m̂(Xi)
σ̂(Xi)

, M =
n∑

i=1

∆i, Ê[w(X,Y )] =

(
1
M

n∑
i=1

∆i

ŵ(Xi, Yi)

)−1

and ĤX,Y (x, y) is the bivariate empirical distribution based on pairs (Xi, Yi)
verifying Ti ≤ Yi ≤ Ci, i = 1, . . . , n.
Remark 2.1 Under some assumptions, weak convergence of F̂ε can be ob-
tained by extensions of the proofs of de Uña-Alvarez and Iglesias-Pérez
(2008), Ojeda-Cabrera and Van Keilegom (2008) and Van Keilegom and Akri-
tas (1999). For more information about that, details can be given on request
to the authors.

3 Practical implementation and simulations

3.1 Bandwidth selection procedure

We want to determine the smoothing parameter hn which minimizes

MISE = E[
∫
{F̂ε,hn

(e)− Fε(e)}2de], (7)
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where F̂ε,hn
(e) denotes F̂ε(e) used with bandwidth hn. Considering asymp-

totic expansions for (7) will lead to complicated expressions with too many
unknown quantities. As a consequence, we propose a bootstrap procedure.
This is an extension of the method of Li and Datta (2001) to the truncation
case.

The bootstrap procedure is as follows.
For b = 1, . . . , B,

a. for i = 1, . . . , n,
Step 1. Generate X∗

i,b from the distribution

F̂X(·) =
n∑

j=1

Ê[w(X,Y )]
Ê[w(X,Y )|X = ·]

I{Xj ≤ ·,∆j = 1},

where Ê[w(X,Y )|X = ·] =
n∑

j=1

Wj(·, gn)∆j/
n∑

j=1

Wj(·, gn)∆j

ŵ(·, Yj)
, gn is a

pilot bandwidth asymptotically larger than the original hn and F̂X(·) is
an extension to the censored case of the estimator of FX(·) found, for
example, in Ojeda-Cabrera and Van Keilegom (2008).
Step 2. Select at random Y ∗i,b from the distribution

F̂Y |X(·|X∗
i,b) =

n∑
j=1

Ê[w(X,Y )|X = X∗
i,b]Wj(X∗

i,b, gn)
ŵ(X∗

i,b, Yj)(
∑n

k=1Wk(X∗
i,b, gn)∆k)

I{Yj ≤ ·,∆j = 1},

where F̂Y |X(y|x) is a straightforward extension of the conditional distri-
bution estimator of de Uña-Alvarez and Iglesias-Pérez (2008).
Step 3. Draw T ∗i,b from the distribution FT |X(·|X∗

i,b). If T ∗i,b > Y ∗i,b, then
reject (X∗

i,b, Y
∗
i,b, T

∗
i,b) and go to Step 1. Otherwise, go to Step 4.

Step 4. Select at random V ∗i,b from Ĝ(·|X∗
i,b) calculated with gn and define

Z∗i,b = min(Y ∗i,b − T ∗i,b, V ∗i,b) and ∆∗
i,b = I(Y ∗i,b − T ∗i,b ≤ V ∗i,b).

b. Compute F̂ ∗ε,hn,b, the error distribution (6) based on the bandwidth hn

and the obtained resample {(X∗
i,b, T

∗
i,b, Z

∗
i,b,∆

∗
i,b) : i = 1, ..., n}.

From this, (7) can be approximated by B−1
B∑

b=1

∫
{F̂ ∗ε,hn,b(e)− F̂ε,gn(e)}2de.

3.2 Simulations

We study the M̂ISE (obtained from (7) where E[·] is estimated by the aver-
age over all the samples and hn is defined by the above bootstrap procedure)
of the error distribution for two homoscedastic and two heteroscedastic mod-
els for random C − T (many other simulations, not reported here, have been
carried out for a constant C − T ). In the homoscedastic cases, we compute



514 Laurent, G. and Heuchenne, C.

Dist. of T Dist. of C − T % Censor. M̂ISE (∗10−3)

T ∼ Unif([0; 4]) C − T ∼ Exp(2/5) 0.37 5.5
T ∼ Unif([0; 4]) C − T ∼ Exp(2/7) 0.28 4.9

T ∼ Unif([0;X + 2]) C − T ∼ Exp(2/7) 0.29 5.0
T ∼ Unif([0;X + 2]) C − T ∼ Exp(2/5) 0.36 5.2
T ∼ 4 ∗ Beta(0.5; 1) C − T ∼ Exp(2/7) 0.34 4.2
T ∼ 4 ∗ Beta(0.5; 1) C − T ∼ Exp(2/9) 0.29 4.0
T ∼ Unif([0; 4]) C − T ∼ Exp(1/(X + 1.5)) 0.28 4.6

T ∼ 4 ∗ Beta(0.5; 1) C − T ∼ Exp(1/(X2 − 1)) 0.34 4.5

Table 1. Results for the M̂ISE for regression model (8)

error distributions based on Yi − m̂(Xi), avoiding the estimation of σ(Xi),
i = 1, . . . , n. For each model, we consider both finite and infinite supports
for the error distribution. We choose to work with the Epanechnikov kernel.
The simulations are carried out for n = 100, B = 250 and the results are
obtained for 250 simulations.

In the first setting, we generate i.i.d. observations from the homoscedastic
regression model

Y = X + ε, (8)

where X and ε have uniform distributions on [1, 7321; 2] and [−
√

3;
√

3] re-
spectively. Table 1 summarizes the simulation results for different FT |X and
G (first and second column respectively). Clearly, the M̂ISE decreases when
the censoring percentage, proportion of censored data in the 250 simulations,
(third column) decreases whatever the distributions of T and C − T . Notice
that, for the same censoring percentage, the M̂ISE is weaker when T has
a beta distribution instead of a uniform distribution. It’s explained by the
shape of the beta distribution.

In the second setting, we consider a heteroscedastic regression model

Y = X2 +X ∗ ε, (9)

where X and ε have uniform distributions on [2; 2
√

3] and [−
√

3;
√

3] respec-
tively. In Table 2, when looking at a heteroscedastic instead of a homoscedas-
tic model, introduced variability seems to increase the M̂ISE in a reasonable
way. The M̂ISE increasing is not surprising because we don’t estimate σ(x)
in the homoscedastic model. If the distributions of T or C−T depend on X,
the M̂ISE doesn’t seem to vary significantly whatever the model.

In the third setting, we study both the homoscedastic and heteroscedastic
models

log(Y ) = X + ε and log(Y ) = X2 +X ∗ ε, (10)

where X has a uniform distribution on [0; 1] and ε has a standard normal
distribution. In this case, Y is submitted to selection bias and right censoring
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Dist. of T Dist. of C − T % Censor. M̂ISE (∗10−3)

T ∼ Unif([0; 18]) C − T ∼ Exp(0.1) 0.34 6.9
T ∼ Unif([0; 18]) C − T ∼ Exp(0.05) 0.19 6.2

T ∼ 18 ∗ Beta(0.5; 1) C − T ∼ Exp(1/12) 0.35 6.3
T ∼ 18 ∗ Beta(0.5; 1) C − T ∼ Exp(1/15) 0.3 6.2
T ∼ Unif([0;X + 16]) C − T ∼ Exp(1/12) 0.3 6.2
T ∼ 18 ∗ Beta(0.5; 1) C − T ∼ Exp(1/(2X2 − 1)) 0.3 6.6

Table 2. Results for the M̂ISE for regression model (9)

Dist. of T Dist. of C − T % Censor. M̂ISE (∗10−3)

T ∼ Exp(2) C − T ∼ Exp(0.25) 0.27 6.6
T ∼ Exp(2) C − T ∼ Exp(2/9) 0.25 6.5
T ∼ Exp(2) C − T ∼ Exp(0.2) 0.23 6.3

Table 3. Results for the M̂ISE for the heteroscedastic regression model (10)

while the error distribution to estimate is here P
(

log(Y )−m(X)
σ(X) ≤ e

)
. This is

achieved by a straightforward transformation of expression (5). Results are
similar to finite supports but generally less good. To illustrate this, Table 3
displays some results for the heteroscedastic model.

When looking at the shape of the estimations of the error distributions,
we observe that the estimations are quite good for ε-values included between
minus 1 and 1 for the homoscedastic models, whatever the support of Fε.
The loss of ε-values in the tails of the distribution is caused by the combined
selection bias and right censoring processes (this loss is slightly harder for
infinite supports). Concerning the heteroscedastic models, this phenomenon
is increased due to local variance estimation.

4 Data analysis

The proposed method is illustrated on the unemployment data set introduced
in Section 1. These data result from the survey, Encuesta de Población Activa
(Labour Force Survey), of the Spanish Institute for Statistics between 1987
and 1997. The available information consists of 1009 unemployment spells of
married women being unemployed at the time of inquiry. Sampled women
were asked to provide the date they started searching a job and their age (in
years) at this date. After, they were followed for 18 months. If they did not
find any job at the end of this period, their unemployment durations were
considered as censored. This results in a constant C−T = τ leading to weights
(4). We consider a uniform distribution for the truncation variable. This
assumption was informally checked through a graphical comparison between
the empirical truncation distribution function and the uniform model (Wang
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Fig. 2. Representation of F̂Y |X for different values of x

(1991)), showing a good fit. The bootstrap approximation gives an optimal
smoothing parameter of seventy months.

The estimator F̂Y |X(·|x) = F̂ε

(
·−m̂(x)

σ̂(x)

)
is displayed in Figure 2 for x =

20, 35 and 50. The 35 years old unemployed women seem to find a job earlier
in the short run and later in the long run than the 50 years old unemployed
women.

Acknowledgements. Thanks to G. Alvarez-Llorente, M. S. Otero-Giráldez,
and J. de Uña-Alvarez (University of Vigo, Spain) for providing the Galician
unemployment data.
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Abstract. Ranking data has applications in different fields of studies, like market-
ing, psychology and politics. Over the years, many models for ranking data have
been developed. Among them, distance-based ranking models, which originate from
the classical rank correlations, postulate that the probability of observing a rank-
ing of items depends on the distance between the observed ranking and a modal
ranking. The closer to the modal ranking, the higher the ranking probability is.
However, such a model basically assumes a homogeneous population, and the sin-
gle dispersion parameter may not be able to describe the data very well.

To overcome the limitations, we consider new weighted distance measures which
allow different weights for different ranks in formulating more flexible distance-
based models. The mixtures of weighted distance-based models are also studied
for analyzing heterogeneous data. Simulations results will be included, and we will
apply the proposed methodology to analyze a real world ranking dataset.

Keywords: ranking data, distance-based model, mixture model

1 Introduction

Ranking data frequently occurs where judges (individuals) are asked to rank
a set of items, which may be types of soft drinks, political goals, candidates
in an election, etc. By studying ranking data, we can understand judges’
perception and preferences on the ranked alternatives. Modeling ranking data
have been a popular topic recently in the data mining field, for example
decision tree models (Yu et al. (2008)).

Over the years, various statistical models for ranking data have been de-
veloped, such as order statistics models, rankings induced by paired compar-
isons (for instance, Bradley-Terry Model), distance-based models and multi-
stage models. See Critchlow et al. (1991) and Marden (1995) for more details
of these models. Among many models for ranking data, distance-based mod-
els have the advantages of being simple and elegant.

Distance-based models (Fligner and Verducci (1986)) assume a modal
ranking π0 and the probability of observing a ranking π is inversely pro-
portional to its distance from the modal ranking. The closer to the modal

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 52, c© Springer-Verlag Berlin Heidelberg 2010
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ranking π0, the more frequent the ranking π is observed. Many distance mea-
sures have been proposed in the literature. Typical examples of distances
are Kendall, Spearman and Cayley distances (see Mallows (1957), Critchlow
(1985) and Diaconis (1988)).

Distance-based models have received much less attention than what they
should deserve, probably because the models are not flexible. With the aim
of increasing model flexibility, Fligner and Verducci (1986) generalized the
one-parameter distance-based models to k − 1-parameter models, based on
the decomposition of a distance measure. However, certain distance property
is lost in the extended models. In this paper, we propose an extension of
distance-based models using new weighted distance measures, which can re-
tain the properties of distance and at the same time increase model flexibility.

In the case of heterogenous data, one can adopt a mixture modeling frame-
work to produce more sophisticated models. EM algorithm (Demster et al.
(1977)) can fit the mixture models in a simple and fast way. Recently, Murphy
and Martin (2003) extended the use of mixtures to distance-based models to
describe the presence of heterogeneity among the judges. In this way, the
limitation of assumption of homogenous population can be relaxed. We will
develop a mixture of weighted distance-based models for ranking data. It
generalized Murphy and Martin’s model by using a weighted distance.

The remainder of this paper is organized as follows. Section 2 reviews
the distance-based models for ranking data and Section 3 proposes the new
weighted distance-based models. To illustrate the feasibility of the proposed
model, a simulation study and a case study of real data are presented in
Sections 4 and 5 respectively. Finally, some concluding remarks are given in
Section 6.

2 Distance-based models for ranking data

2.1 Distance-based models

Some notations are defined here for better description of ranking data. When
ranking k items, labeled 1, ..., k, a ranking π is a mapping function from
1, ..., k to 1, ...k, where π(i) is the rank given to item i. For example, π(2) = 3
means that item 2 is ranked third.

Distance function is useful in measuring the discrepancy in two rank-
ings. The usual properties of a distance function are: (1): d(π,π) = 0, (2):
d(π,σ) > 0 if π 6= σ, and (3): d(π,σ) = d(σ,π). For ranking data, we re-
quire the distance, apart from the usual properties, to be right invariant, i.e.
d(π,σ) = d(π ◦ τ ,σ ◦ τ ), where π ◦ τ (i) = π(τ (i)). This requirement makes
sure relabeling of items has no effect on the distance.

Some popular distances are given in Table 1, where I{} is an indicator
function. Apart from these distances, there are other distances for ranking
data, and readers can refer to Critchlow et al. (1991) for details.
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Table 1. Some distances for ranking data

Name Short form Formula

Spearman’s rho R(π,σ)
(∑k

i=1[π(i)− σ(i)]2
)0.5

Spearman’s rho square R2(π,σ)
∑k

i=1[π(i)− σ(i)]2

Spearman’s footrule F (π,σ)
∑k

i=1 |π(i)− σ(i)|
Kendall’s tau T (π,σ)

∑
i<j I{[π(i)− π(j)][σ(i)− σ(j)] < 0}

Diaconis (1988) developed a class of distance-based models,

P (π|λ,π0) =
e−λd(π,π0)

C(λ)
,

where λ ≥ 0 is the dispersion parameter, and d(π,π0) is an arbitrary right
invariant distance. In particular, when d is Kendall’s tau, the model is named
Mallows’ φ-model (Mallows (1957)). The parameter λ measures how individ-
uals’ preferences differ from the modal ranking π0. The closer to π0, the
higher probability of observing the ranking d(π). When λ approaches zero,
the distribution of a ranking will become uniform.

3 Mixtures of weighted distance-based models

3.1 Weighted distance-based models

We propose an extension of distance-based model by replacing the (un-
weighted) distance with a new weighted distance measure, so that different
weights can be assigned to different ranks.

Motivated from the weighted Kendall’s tau correlation coefficient pro-
posed by Shieh (1998), we define weighted Kendall’s tau distance by

Tw(π,σ) =
∑
i<j

wπ0(i)wπ0(j)I{[π(i)− π(j)][σ(i)− σ(j)] < 0}.

Note that this weighted distance satisfies all the usual distance properties, in
particular, the symmetric property: Tw(π,σ) = Tw(σ,π).

Other distance measures can be generalized to weighted distance in a
similar manner as what we have done in generalizing Kendall’s tau distance.
Some examples are given in Table 2.

Apart from the weighted Kendall’s tau (Shieh (1998)) and weighted Spear-
man rho square (Shieh et al. (2000)), there are many other weighted rank
correlations proposed, see, for example, Tarsitano (2009).

Applying a weighted distance measure dw to distance-based model, the
probability of observing a ranking π under the weighted distance-based rank-
ing model is

P (π|w,π0) =
e−dw(π,π0)

C(w)
.
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Table 2. Some weighted distances for ranking data

Name Short form Formula

Weighted Spearman’s rho Rw(π,σ)
(∑k

i=1 wπ0(i)[π(i)− σ(i)]2
)0.5

Weighted Spearman’s rho square R2
w(π,σ)

∑k
i=1 wπ0(i)[π(i)− σ(i)]2

Weighted Spearman’s footrule Fw(π,σ)
∑k

i=1 wπ0(i)|π(i)− σ(i)|

Generally speaking, if wi is large, few people will disagree the item which
ranked i in π0, because this disagreement will greatly increase the distance
and hence probability of observing it will be very small. If wi is close to zero,
people have no preference about how the item which ranked i in π0 is ranked,
because the change of its rank will not affect the distance at all.

Based on a set of a ranking π of k items, the MLE ŵ of the weighted
distance-based ranking model satisfies the following equation

n∑
i=1

dw(πi,π0) = n
k!∑

j=1

P (πj |w,π0)dw(πj ,π0).

3.2 Mixture models

If a population contains G sub-populations with probability mass function
(pmf) Pg(x), and the proportion of sub-population g equals pg, the pmf of the
mixture model is P (x) =

∑G
g=1 pgPg(x). Hence, the probability of observing

a ranking π under a mixture of G weighted distance-based ranking models
is :

P (π) =
G∑

g=1

pgP (π|wg, πg) =
G∑

g=1

pg
e−dwg (π,πg)

C(wg)

And the loglikelihood for n observations is:

L =
n∑

i=1

log

(
G∑

g=1

pg
e−dwg (πi,πg)

C(wg)

)

Estimating the model parameters by direct maximizing of the loglikeli-
hood function may lead to a high-dimensional numerical optimization prob-
lem. Instead, this can be done by applying the EM algorithm (Demsters et al.
(1977)). In the E-step of an EM algorithm computes, for all observations, the
probabilities of belonging to every sub-population. The M-step maximizes the
conditional expected complete-data loglikelihood given the estimates gener-
ated in E-step.

To derive the EM algorithm, we define a latent variable zi = (z1i, ..., zGi)
as: zgi = 1 if observation i belongs to sub-population g, otherwise zgi = 0.
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The complete-data loglikelihood is:

Lcom =
n∑

i=1

G∑
g=1

zgi[log(pg)−dwg (πi,πg)− log(C(wg))]

In the E-step, ẑgi, g = (1, 2, ..., G) are updated for observations i =
1, 2..., n, by ẑgi = p̂gP (π̂i|ŵg,π̂g)∑G

h=1 p̂hP (π̂i|ŵh,π̂h)
.

In the M-step, model parameters are updated by maximizing complete-
data loglikelihood, zgi replaced by ẑgi. Such maximization can be done similar
to the estimation method described in Section 3.1.

To determine the number of mixtures, we use the Bayesian information
criterion (BIC). BIC equals −2L+ v log(n) where L is the loglikelihood, n is
the sample size and v is the number of model parameters. The model with
the smallest BIC is chosen to be the best model. Murphy and Martin (2003)
showed that BIC worked quite well if there is no noise component in the
mixed population.

4 Simulation Studies

In this section, two simulations results are reported. The first simulation
studies the performance of the estimation algorithm of our weighted distance-
based models, while the second simulation investigates the effectiveness of
using BIC in selecting the number of mixtures.

In the first simulation, ranking data sets of 4 items and sample size 2000
were simulated to test the accuracy of model fitting, using weighted Kendall’s
tau. We use 4 models in simulation, and the parameters of the models are
listed in Table 3. The initial values for ŵ are drawn from uniform (0, 1).
Furthermore, we assume the number of mixtures is known. The simulation
results, based on 30 replications, are summarized in Table 4.

Table 3. Simulation settings

Model π0 w1 w2 w3 w4

1 (1,2,3,4) 2 1.5 1 0.5
2 (1,2,3,4) 1 0.75 0.5 0.25

Model p π0 w1 w2 w3 w4

3 0.5 (1,2,3,4) 2 1.5 1 0.5
0.5 (4,3,2,1) 2 1.5 1 0.5

4 0.5 (1,2,3,4) 2 1.5 1 0.5
0.5 (4,3,2,1) 1 0.75 0.5 0.25

There are two implications from these simulation results. First, The model
estimates are very close to their actual values, therefore we can conclude that
our proposed algorithm works fine for 1 and 2 mixtures cases.Second, by
comparing cases 1 and 2, models with larger weights have smaller standard
deviation. The same conclusion can be drawn by comparing cases 3 and 4.
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Table 4. Simulation results (standard deviation)

Model 1 2 3 4

π̂0 (1,2,3,4) (1,2,3,4) (1,2,3,4) (4,3,2,1) (1,2,3,4) (4,3,2,1)

p̂(s.d.) - - 0.503(0.011) 0.497 0.502(0.026) 0.498
ŵ1(s.d.) 1.985(0.082) 0.985(0.085) 2.004(0.105) 2.005(0.075) 2.070(0.214) 1.041(0.163)
ŵ2(s.d.) 1.523(0.057) 0.782(0.093) 1.525(0.102) 1.534(0.100) 1.441(0.161) 0.752(0.172)
ŵ3(s.d.) 0.997(0.040) 0.491(0.032) 0.969(0.055) 0.983(0.062) 1.037(0.174) 0.499(0.062)
ŵ4(s.d.) 0.495(0.010) 0.247(0.031) 0.497(0.045) 0.509(0.029) 0.493(0.044) 0.255(0.065)

It is because models with larger weights in average have larger distances,
therefore the probability of an observation being modal ranking is higher.
In other words, models with larger weights are more certain at the model
ranking.

In the second simulation, we will use the four models described in the
first simulation. Mixtures of weighted distance-based models were fitted for
mixture number 1 to 3. We repeated this process 50 times and recorded the
frequencies that each type of mixture model was selected (Table 5). The +N
notation indicates an additional noise component (uniform model).The sim-
ulation results show that BIC provides a good estimate of the number of
mixtures, and the performance improves when the weights are larger. How-
ever, occasionally BIC will include a noise component in addition to the true
mixture model, probably because there is only 1 parameter in the noise com-
ponent and hence the improvement in loglikelihood is less penalized.

Table 5. Simulations results

Model N 1 1 +N 2 2 +N 3

1 0 45 5 0 0 0
2 0 37 13 0 0 0
3 0 0 0 49 1 0
4 0 0 0 47 3 0

5 Application to real data: social science research on
political goals

To illustrate the applicability of the weighted distance-based models de-
scribed in Section 3, we have made use of the ranking dataset obtained from
Croon (1989). It is a survey covering topics important for social science re-
search conducted in 5 western countries, however Croon only analyzed 2262
observations from Germany. Respondents were asked to rank the political
goals for their Government from the following four alternatives: (A): main-
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tain order in nation, (B): give people more say in Government decisions,(C):
fight rising prices and (D): protect freedom of speech.

Weighted distance-based models were fitted for four types of weighted
distance(Tw, Rw, R2

w and Fw), with number of mixtures 1 to 4, and the
models’ BIC are listed in Table 6. Among models with same distance mea-
sure, the mixtures models with smallest BIC values are underlined. Our best
model is weighted footrule with 3 classes. The BIC is 12670.82 which is better
than the strict utility (SU) model (12670.87) and Pendergrass-Bradley (PB)
model (12673.07) discussed in Croon (1989), as well as distance-based model
(12733.08). For all types of distances, the mixtures number selected are either
3 or 3+N . However, we can’t draw conclusion about which distance measure
best fit the data.

Table 6. BIC of the models

Weighted Distance Distance

# Mixture Tw Rw R2
w Fw T R R2 F

N 14377.52 14377.52 14377.52 14377.52 14377.52 14377.52 14377.52 14377.52
1 12974.28 13011.22 12951.34 13174.30 13052.58 13001.36 12988.06 13163.26

1 +N 12943.44 13018.94 12863.46 13172.96 13014.91 13009.09 12889.45 13162.11
2 12797.52 12774.10 12864.90 12806.18 12908.05 12848.57 12851.75 12980.63

2 +N 12688.72 12713.96 12691.64 12697.92 12860.70 12856.28 12758.02 12944.18
3 12692.20 12678.88 12671.24 12670.82 12846.88 12832.44 12754.64 12902.74

3 +N 12678.06 12688.20 12673.36 12843.80 12839.56 12733.08 12770.09 12932.52
4 12730.74 12716.28 12709.86 12701.08 12851.53 12847.89 12770.09 12918.19

The model estimates of thae best model, mixtures of 3 weighted footrule
models, are shown in Table 7. The first 2 groups, which comprises 79% of
respondents, ranked (A) and (C) more important than the other 2 goals, and
the third group ranked (B) and (D) more important. For groups 1 and 2,
weights w3 and w3 are very close to zero and w1 and w2 are much larger,
indicating that observations from groups 1 and 2 are mainly (C,A,?,?) and
(A,C,?,?) respectively. As compared with that in groups 1 and 2, the weights
in group 3 are relatively closer to zero, this implies that people belonging to
this group are less certain about their preferences than people in the other
groups.

Table 7. Parameters of weighted footrule mixtures model

Group Ordering of goals in π0 p w1 w2 w3 w4

1 C � A � B � D 0.352 2.030 1.234 ∼ 0 0.191
2 A � C � B � D 0.441 1.348 0.917 0.107 0.104
3 B � D � C � A 0.208 0.314 ∼ 0 0.151 0.552
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6 Conclusion

We propose a new class of distance-based models using weighted distance.
Our weighted distance-based ranking models can keep the nature of distance
and maintain a great flexibility. Our simulations show that the algorithm can
accurately estimate the model parameters. Our real data application shows
that our models can fit the data better than some existing models. Further-
more, the interpretation of the model is kept simple and straightforward too.
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Abstract. A new methodology for solving discrete optimization problems by the
continuous approach has been developed in this study. A discrete Fourier series
method was derived and used for re-formulation of discrete objective functions
as continuous functions. Particle Swarm Optimization (PSO) was then applied to
locate the global optimal solutions of the continuous functions derived. The contin-
uous functions generated by the proposed discrete Fourier series method correlated
almost exactly with their original model functions. The PSO algorithm was ob-
served to be highly successful in achieving global optimization of all such objective
functions considered in this study. The results obtained indicated that the discrete
Fourier series method coupled to the PSO algorithm is indeed a promising method-
ology for solving discrete optimization problems via the continuous approach.

Keywords: discrete optimization, Fourier series, particle swarm optimiza-
tion, simulation, global optimization

1 Introduction

Discrete optimization refers to the maximization or minimization of an ob-
jective function over a set of feasible parameter values where the objective
function cannot be evaluated analytically. In such problems, values of the ob-
jective function may have to be measured, estimated or evaluated from sim-
ulations and the domain(s) of the objective function and/or feasible region is
discrete in nature. Such optimization problems are ubiquitous in engineering,
operations research and computer science.

The solution methods for discrete optimization problems can generally
be classified into combinatorial and continuous approaches. In the former, a
sequence of states is generated from a discrete finite set to represent a partial
solution while in continuous approaches, the discrete optimization problem is
characterized using equivalent continuous formulations or continuous relax-
ations (Pardalos et al. (2000)). There are many methods to formulate discrete
optimization problems as equivalent continuous ones. For example, Goyal and
Ierapetritou (2007) recently proposed combining a simplicial-based approach
and the Sample Average Approximation approach for solving convex stochas-
tic MINLP problems. This was based on the idea of closely describing the
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feasible region by a set of linear constraints representing an approximation
of its convex hull. The objective function was linearized at the simplicial
boundary points and the global optimal solution was obtained using the lin-
ear representation of the feasible space and the linear approximation of the
objective function. Aytug and Sayin (2009) used support vector machines
(SVM) to learn the efficient set of a multiple objective discrete optimization
problem. They conjectured that a surface generated by SVM could provide
a good approximation to the efficient set. To evaluate their idea, the authors
incorporated the SVM-learned efficient set into a multi-objective genetic al-
gorithm through the fitness function to generate feasible solutions that were
representative of the true efficient set.

In this paper, a new continuous approach to the solution of discrete op-
timization problems is presented. The goal of the optimization process is to
obtain the value(s) of the independent variable(s) which will maximize (or
minimize) the objective function, keeping in mind that the optimal solution
may not correspond to any of the available discrete points representing the
objective function. Currently available methods that make use of lineariza-
tion, smoothing or averaging techniques to derive an equivalent continuous
formulation of the discrete objective function tend to distort the objective
function and are approximations to the true analytical model at best. On
the other hand, it is also well-established that a function (continuous or
discontinuous) may be represented as a Fourier series consisting of a large
number of trigonometric terms. In the limit that the number of such terms
approaches infinity, the Fourier series will converge exactly to the original
function it represents, thus making it effectively a universal mathematical re-
gression technique. Based on this premise, it was conjectured that a Fourier
series representation of a discrete objective function may be derived that will
correspond exactly or almost exactly to the true analytical model and which
also effectively converts the discrete optimization problem into a continuous
problem. A stochastic global optimization method may then be applied to
solve the continuous optimization problem. Such an approach that exploits
the superior regression capabilities of the Fourier series method towards solv-
ing discrete optimization problems has not been attempted in the research
literature to date. In the next section, the formulation of the Fourier series
method as applied to discrete functions will be derived and the basic prin-
ciples of a stochastic method, Particle Swarm Optimization, which will be
applied towards solving the resulting continuous optimization problem will
be introduced.

2 Computational method

2.1 Discrete fourier analysis

The sampling theorem states that if the Fourier transform of a function f(x)
is zero for all frequencies greater than a certain frequency fc, then the con-
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tinuous function f(x) can be uniquely determined from a knowledge of its
sampled values. Consider a discrete function containing N data points for
which the corresponding continuous function is to be determined. Without
loss of generality, the smallest interval between any two adjacent data points
may be used to define the highest frequency component of the Fourier trans-
form of the corresponding continuous function. Further, the domain of the
discrete function may be assumed to be one period of a periodic waveform
of the corresponding continuous function. This allows the discrete Fourier
transform of the discrete function to be calculated and by the convolution
theorem, these will be equal to the coefficients of the Fourier series expansion
of the corresponding continuous function. By this argument, the following
expression for the double Fourier sine series of a continuous two-dimensional
function may be derived from its discrete counterpart:

f(x, y) =
M∑

m=1

N∑
n=1

amnsin
mπx

Lx
sin

nπy

Ly
(1)

amn =
4

MN

M∑
h=1

N∑
k=1

f(
h

M
,
k

N
)sin

mπh

M
sin

nπk

N
(2)

2.2 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm is a population based
search algorithm based on the simulation of the social behavior of birds within
a flock (Engelbrecht 2002)). The initial intent of the particle swarm concept
was to graphically simulate the graceful and unpredictable choreography of
a bird flock (Kennedy and Eberhart (1995)), with the aim of discovering
patterns that govern the ability of birds to fly synchronously and to suddenly
change direction with a regrouping in an optimal formation. In PSO, a swarm
of individuals are referred to as particles, with each representing a potential
solution. Each particle is flown through a hyperdimensional search space in
such a manner that the behavior of each particle is influenced by its own
experience as well as those of its neighbors. The concept behind PSO is based
on the social-psychological tendency of individuals to emulate the success of
other individuals and therefore represents a kind of symbiotic cooperative
algorithm. The position of each particle, Pi, in the swarm is updated at each
time step according to the following equation:

xi(t) = xi(t− 1) + vi(t) (3)

where xi(t) and vi(t) are the position and velocity of particle Pi at time step
t respectively.

The velocity of each particle is updated at each time step according to
the following equation:

vi(t) = φvi(t) + ρ1{xpbest,i − xi(t)}+ ρ2{xgbest − xi(t)} (4)
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where φ is an inertia weight, ρ1 and ρ2 are random variables, xpbest,i is the
position giving the best performance of Pi up to time step t and xgbest is the
position giving the globally best performance of the entire swarm up to the
current time step.

3 Results and discussion

Fig. 1 shows an arbitrary two-dimensional function with the gray scale con-
tours representing values of the dependent variable. Here, this function is
used to represent a system or model whose combination of its independent
variables which will result in the global maximum of its dependent variable is
to be located. In principle, the entire contour surface can be constructed by
performing a large number of experiments or simulations at various combina-
tions of values of the independent variables but this is almost never practically
possible in actual practice. Instead, it was assumed that experiments or simu-
lations were performed at values of independent variables indicated by white
dots on the figure so that only a small, finite number of discrete values of
the entire function was known. Treating this set of discrete values as a dis-
crete function whose continuous equivalent was to be derived via the discrete
Fourier series method presented in the previous section, equation (1) was ap-
plied to this discrete function. Fig. 2 shows the resulting continuous function
that was re-constructed from this set of discrete values. On comparison be-
tween the two figures, it may be seen that the major features of the original
two-dimensional function had been re-constructed although quantitative dif-
ferences may also be discerned. The re-constructed two-dimensional function
may be adequate for the current purpose if it allows a good approximate of
the global maximal point of the original function to be located. Otherwise, a
larger number of discrete values of the original function may be required for
a more accurate re-construction.

Fig. 3 shows another arbitrarily generated two-dimensional function which
contains more complex features than the previous one. Correspondingly, as
depicted by the white dots shown on the figure, it was assumed that a larger
number of experiments or simulations was performed to sample this function.
On performing the re-construction process by applying the discrete Fourier
series method to this set of discrete values, Fig. 4 shows that a much more
accurate representation of the original function was obtained. In fact, the
original and re-constructed continuous functions were almost indistinguish-
able from each other. It may then be expected that an accurate approximate
of the global maximum of the original function can be obtained by applying
the PSO algorithm to the re-constructed function and this will be presented
next.

Fig. 5 shows positions of 100 particles randomly distributed over the do-
main of the re-constructed two-dimensional function at the start of the opti-
mization process. The positions of these particles were updated via equations
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Fig. 1. Gray scale contours of a two-dimensional continuous function. White dots
represent positions where sampling are performed via experiments or simulations.

Fig. 2. Gray scale contours of the re-constructed two-dimensional continuous func-
tion.

(3) and (4) presented previously and after 1000 iterations, Fig. 6 shows that
almost all particles converged to a common location on the contour map. It
was verified manually that this final position of all particles was the global
maximal point of both the original and re-constructed two-dimensional func-
tions. This indicates that the PSO algorithm had been successful in achieving
global optimization of these functions. The proposed methodology of deriv-
ing a continuous equivalent of a discrete function via a discrete Fourier series
method and then applying a stochastic global optimization algorithm to lo-
cate the global optimum of this continuous function is thus a promising, novel
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Fig. 3. Gray scale contours of a more complex two-dimensional continuous function.
A larger number of discrete samples was obtained as indicated by the white dots.

Fig. 4. Gray scale contours of the re-constructed two-dimensional continuous func-
tion. A more accurate re-construction has been obtained with the larger number of
sampling points.

methodology for solving discrete optimization problems via the continuous
approach.

4 Conclusions

A new methodology for solving discrete optimization problems by the con-
tinuous approach has been developed in this study. A discrete Fourier series
method was derived from the conventional Fourier series formulation and
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Fig. 5. Initial positions of PSO particles at the start of the optimization process.

Fig. 6. Final positions of PSO particles after 1000 iterations of the optimization
process. The global maximum of the original two-dimensional function has been
successfully located.

principles associated with the discrete Fourier transform and used for re-
formulation of discrete objective functions as continuous functions. A stochas-
tic global optimization technique known as Particle Swarm Optimization
(PSO) was then applied to locate the global optimal solutions of the continu-
ous functions derived. In contrast with conventional linearization, smoothing
or averaging approaches, it was found that the continuous functions generated
by the proposed discrete Fourier series method correlated almost exactly with
their original model functions. The structure of each continuous function was
unknown a priori and always non-convex in nature and the stochastic PSO
algorithm was observed to be highly successful in achieving global optimiza-
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tion of all such objective functions considered in this study. It may thus be
concluded that the discrete Fourier series method coupled to the PSO algo-
rithm is a promising methodology for solving discrete optimization problems
via the continuous approach.
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Abstract. The positive and negative predictive values of a binary diagnostic test
are measures of the clinical accuracy of the diagnostic that depend on the sensitivity
and the specificity of the binary test and on the disease prevalence. Moreover, the
positive predictive value and the negative predictive value are not parameters which
are independent of each other. In this article, a global hypothesis test is studied to
simultaneously compare the positive and negative predictive values of two binary
diagnostic tests in paired designs.

Keywords: binary diagnostic test, predictive values, simultaneously compar-
ison

1 Introduction

The classic parameters to assess the accuracy of a binary diagnostic test with
regard to a gold standard are sensitivity and specificity. The sensitivity (Se)
is the probability of a diagnostic test being positive when the individual is
diseased and the specificity (Sp) is the probability of the diagnostic test being
negative when the individual is not diseased. Other parameters to assess the
accuracy of a binary diagnostic test are the positive predictive value and
the negative predictive value. The positive predictive value (PPV ) is the
probability of a patient being diseased given that the test is positive, and
the negative predictive value (NPV ) is the probability of a patient being
non-diseased given that the test is negative. The predictive values (PV s)
represent the accuracy of the diagnostic test when it is applied to a cohort
of individuals, depend on the sensitivity and specificity of the diagnostic
test and on the disease prevalence, and are easily calculated applying Bayes’
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Theorem, i.e.

PPV =
p× Se

p× Se+ q × (1− Sp)
and NPV =

q × Sp
p× (1− Se) + q × Sp

(1)

where p is the disease prevalence and q = 1− p.
Furthermore, the comparison of the positive predictive values and the

negative predictive values of two binary diagnostic tests in paired designs has
been the subject of several studies (Bennett (1972); Leisenring et al. (2000);
Wang et al. (2006)). Nevertheless, in all of these studies the positive and
negative predictive values are compared independently. A global hypothesis
test is studied to simultaneously compare the positive and negative predictive
values of two binary diagnostic tests when both diagnostic tests and the gold
standard are applied to all of the individuals in a random sample.

2 Global hypothesis test

Let there be two binary diagnostic tests (modeled through the binary vari-
ables T1 and T2, Ti = 1 when the diagnostic test is positive and Ti = 0 when
the diagnostic test is negative) and a gold standard (modeled through the
binary variable D, D = 1 when the gold standard is positive and D = 0 when
the gold standard is negative) which are applied to all of the individuals in a
random sample sized n, producing Table 1.

Table 1. Frequencies observed applying the two diagnostic tests and the gold
standard to a random sample of n individuals.

T1 = 1 T1 = 0
T2 = 1 T2 = 0 T2 = 1 T2 = 0 Total

D = 1 s11 s10 s01 s00 s
D = 0 r11 r10 r01 r00 r
Total n11 n10 n01 n00 n

The data from Table 1 are the product of a multinomial distribution
with probabilities pij for D = 1 and qij for D = 0, with i, j = 0, 1, so that∑1

i,j=0 pij +
∑1

i,j=0 qij = 1. Let π = (p00, p10, p01, p11, q00, q10, q01, q11)T be a
vector sized 8. As π is the probability vector of a multinomial distribution,
the variance-covariance matrix of π̂ is

Σπ̂ =
diag(π)− ππT

n
, (2)

where diag(π) is an 8 × 8 diagonal matrix. In terms of the components of
vector π, the predictive values of diagnostic test 1 are
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PPV1 =
p10 + p11

p10 + p11 + q10 + q11
and NPV1 =

q00 + q01
p00 + p01 + q00 + q01

, (3)

and those of test 2 are

PPV2 =
p01 + p11

p01 + p11 + q01 + q11
and NPV2 =

q00 + q10
p00 + p10 + q00 + q10

. (4)

As pij and qij are probabilities of a multinomial distribution, their maxi-
mum likelihood estimators are p̂ij = sij/n and q̂ij = rij/n, and therefore the
maximum likelihood estimators of the predictive values are

P̂PV1 =
s10 + s11

s10 + s11 + r10 + r11
and N̂PV1 =

r00 + r01
s00 + s01 + r00 + r01

(5)

for test 1, and

P̂PV2 =
s01 + s11

s01 + s11 + r01 + r11
and N̂PV2 =

r00 + r10
s00 + s10 + r00 + r10

(6)

for test 2. The global hypothesis test to simultaneously compare the predictive
values of the two binary tests is

H0 : PPV1 = PPV2 and NPV1 = NPV2

H1 : PPV1 6= PPV2 and/or NPV1 6= NPV2.

Let vector η = (PPV,NPV )T , with PPV = PPV1 − PPV2 and NPV =
NPV1−NPV2. As this vector is the probability function of vector π, applying
the delta method (Agresti (2002)), the variance-covariance matrix of η̂ is

Ση̂ =
(
∂η

∂π

)
Σπ̂

(
∂η

∂π

)T

, (7)

and the statistic for the global hypothesis test is

Q2 = η̂T Σ̂−1
η̂ η̂, (8)

which is distributed asymptotically according to a central chi-square distri-
bution with 2 degrees of freedom.

In the studies carried out by Leisenring et al (2000) and Wang et al
(2006) the comparison of the predictive values is carried out independently
i.e. solving the marginal hypothesis tests

H0 : PPV1 = PPV2 vs H1 : PPV1 6= PPV2
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and
H0 : NPV1 = NPV2 vs H1 : NPV1 6= NPV2,

each of these to an error α, and therefore the comparisons are made assuming
that the positive and negative predictive values are independent parameters.
In our opinion, if the marginal hypothesis tests are carried out, some penaliza-
tion should be made in terms of the error α. Thus, each marginal hypothesis
test could be carried out to an error of α/2 so that the global error would
be α. Therefore, the global hypothesis test could also be solved by applying
marginal hypothesis tests with Bonferroni correction. Consequently, the si-
multaneous comparison of the two positive predictive values and of the two
negative predictive values could also be solved by comparing the two positive
(negative) predictive values applying the method proposed by Leisenring et
al (2000) (Wang et al.(2006)) using Bonferroni correction (carrying out each
marginal test to an error rate α/2, i.e. comparing the positive predictive va-
lues to an error rate α/2 and comparing the negative predictive values to an
error rate α/2).

3 Simulation experiments

Monte Carlo simulation experiments were carried out to study the type I
error and the power of the global hypothesis test and a comparison was
made with the type I errors and the powers of the methods proposed by
Leisenring et al (2000) and Wang et al (2006), both if the marginal hypothesis
tests are carried to an error of α and if they are carried out to an error
of α/2 (applying Bonferroni’s method). These experiments consisted in the
generation of 5000 random samples with multinomial distributions of different
sizes, whose probabilities were calculated through the method proposed by
Vacek (1985) i.e.

P (T1 = i, T2 = j|D = 1) = P (T1 = i|D = 1)× P (T2 = j|D = 1) + δijε1
P (T1 = i, T2 = j|D = 0) = P (T1 = i|D = 0)× P (T2 = j|D = 0) + δijε0,

(9)
where δij = 1 when i = j and δij = −1 when i 6= j, and εk is the dependence
factor between the two diagnostic tests (εk ≥ 0) : ε1 is the dependence factor
between the diagnostic test and the gold standard when D = 1 and ε0 when
D = 0; and it is verified that εk ≤ θ1(1−θ2) when θ2 > θ1 and εk ≤ θ2(1−θ1)
when θ1 > θ2, where θ is the sensitivity or the specificity. For the type I error
we have taken as predictive values

PPV1 = PPV2 = 0.80, NPV1 = NPV2 = 0.70

and
PPV1 = PPV2 = 0.90, NPV1 = NPV2 = 0.80,
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and for the power we have taken the values

PPV1 = 0.85, PPV2 = 0.75, NPV1 = 0.80, NPV2 = 0.70

and

PPV1 = 0.90, PPV2 = 0.80, NPV1 = 0.85, NPV2 = 0.70,

which are common values in clinical practice. For all of the study the nomi-
nal error α was set at 5%. For the type I error, in Table 2 we show some
of the results obtained for PPV1 = PPV2 = 0.8, NPV1 = NPV2 = 0.7
for intermediate values of the dependence factors between the two binary
tests indicating the values of sensitivity, specificity and prevalence which
produce the aforementioned predictive values. From the results obtained in
the simulation experiments the following conclusions are reached:

a. If the global hypothesis test is solved by applying the marginal hypothesis
tests (H0 : PPV1 = PPV2 and H0 : NPV1 = NPV2) applying the
method proposed by Leisenring et al (2000) or the method proposed by
Wang et al (2006) to an error rate α = 5%, the type I error is higher than
the nominal error of 5%, so that the method can give rise to erroneous
results.

b. If the global hypothesis test is solved by applying the marginal hypothesis
tests (H0 : PPV1 = PPV2 and H0 : NPV1 = NPV2) applying the
method proposed by Leisenring et al (2000) or the method proposed by
Wang et al (2006) to an error rate α/2 = 2.5%, i.e. applying Bonferroni
correction, the type I error is always lower than the nominal error α = 5%,
so that it is a conservative method whose type I error has a similar
performance to that of an exact hypothesis test. Therefore, this method
for solving the global hypothesis test has a type I error that does not
usually reach the fixed nominal error.

c. The global hypothesis test to simultaneously compare the two positive
predictive values and the two negative predictive values has a type I error
that fluctuates around the nominal error of 5%, especially for sample sizes
starting from 200− 400 individuals, depending on the disease prevalence
and the dependence factors. Therefore, the global hypothesis test shows
the classic performance of an asymptotic hypothesis test for medium-sized
samples.

Regarding the power of the different methods, in Table 3 we show some of
the results obtained for PPV1 = 0.85, PPV2 = 0.75, NPV1 = 0.80, NPV2 =
0.70, and in general it is observed that it is necessary to have samples of
between 200 and 300 individuals (depending on the factors of dependence
between the two binary tests) so that the power is reasonable (higher than
80%).
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Table 2. Type I error of the hypothesis tests of comparison of predictive values of
two diagnostic tests.

Se1 = Se2 = 0.2286, Sp1 = Sp2 = 0.9692, p = 0.35

ε1 = 0.080, ε0 = 0.013

Leisenring et al Wang et al Global test

n α = 5% α = 2.5% α = 5% α = 2.5% α = 5%

100 0.021 0.005 0.022 0.006 0.003
200 0.056 0.026 0.058 0.027 0.023
300 0.060 0.025 0.062 0.026 0.029
400 0.076 0.037 0.079 0.039 0.043
500 0.086 0.042 0.089 0.043 0.046
1000 0.090 0.045 0.091 0.047 0.053
2000 0.092 0.045 0.092 0.045 0.050

Se1 = Se2 = 0.7273, Sp1 = Sp2 = 0.7778, p = 0.55

ε1 = 0.090, ε0 = 0.080

Leisenring et al Wang et al Global test

n α = 5% α = 2.5% α = 5% α = 2.5% α = 5%

100 0.076 0.034 0.077 0.035 0.039
200 0.083 0.041 0.084 0.041 0.046
300 0.096 0.047 0.097 0.047 0.053
400 0.084 0.042 0.085 0.043 0.045
500 0.090 0.047 0.090 0.047 0.051
1000 0.085 0.044 0.085 0.044 0.049
2000 0.085 0.042 0.085 0.042 0.047

Table 3. Powers of the hypothesis tests of comparison of predictive values of two
diagnostic tests.

Se1 = 0.4048, Sp1 = 0.9615, Se2 = 0.2286, Sp2 = 0.9692, p = 0.35

ε1 = 0.060, ε0 = 0.013

Leisenring et al Wang et al Global test

n α = 5% α = 2.5% α = 5% α = 2.5% α = 5%

100 0.375 0.253 0.375 0.254 0.208
200 0.726 0.619 0.726 0.619 0.635
300 0.881 0.808 0.880 0.809 0.844
400 0.948 0.912 0.948 0.912 0.938
500 0.982 0.963 0.982 0.962 0.978

ε1 = 0.120, ε0 = 0.026

Leisenring et al Wang et al Global test

n α = 5% α = 2.5% α = 5% α = 2.5% α = 5%

100 0.398 0.245 0.399 0.245 0.170
200 0.920 0.853 0.920 0.854 0.832
300 0.987 0.975 0.987 0.975 0.976
400 0.999 0.997 0.999 0.997 0.997
500 1 1 1 1 1
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4 Conclusions

The positive predictive value and the negative predictive value of a binary
test, along with the sensitivity and the specificity, are fundamental values
to assess and compare the classificatory accuracy of binary diagnostic tests.
For the same binary test, both parameters depend on the sensitivity and the
specificity of the test and on the disease prevalence, so that this dependence
should be considered when comparing the predictive values of two binary tests
in paired designs. In this study, we have proposed a global hypothesis test to
simultaneously compare the positive predictive values and the negative pre-
dictive values of two binary diagnostic tests in paired designs. The hypothesis
test proposed is based on the chi-square distribution and on the estimation of
the variance-covariance matrix of the difference between the predictive values
through the delta method. Simulation experiments were carried out to study
the type I error and the power of various methods to simultaneously compare
the predictive values. The type I error of the global hypothesis test fluctuates
around the nominal error starting from sample sizes of between 200 and 400
individuals (depending on the disease prevalence and the dependence factors
between the two binary tests), and is a conservative method (like the other
methods) for small sample sizes. Regarding the power of the global hypoth-
esis test, we need samples of between 200 and 400 individuals (depending
on the prevalence and the dependence factors between the two binary tests)
so that the power is higher than 80%. Based on the results of the simula-
tion experiments, we propose the following method to compare the positive
predictive values and the negative predictive values of two binary diagnostic
tests in paired designs: 1) carry out the global hypothesis test to an error of
α; 2) if the test is not significant, the homogeneity of the predictive values is
not rejected, but if the test is significant to an error of α, the study of the
causes of the significance should be carried out applying marginal hypothesis
tests through the method by Leisenring et al (2000) or the method of Wang
et al (2006) to an error of α/2 (so that the global error is α). The reason why
the marginal hypothesis tests should be carried out to an error of α/2 and
not α is because the method proposed by Leisenring et al (Wang et al) to an
error of α has a type I error that is clearly higher than the nominal error α.
We employed the Bonferroni method because it so commonly used. Other,
less conservative methods could also have been applied, for example, Holm’s
method (1979) or Hochberg’s method (1988).

The method that we propose allows us to simultaneously compare the
positive and negative predictive values of two binary tests in paired designs,
and when the global test is significant to an error rate α the causes of the
significance are investigated applying multiple comparison procedures (such
as the Bonferroni method or another sequential method). If the researcher is
only interested in comparing the two positive (or negative) predictive values,
the problem is solved by applying the method proposed by Leisenring et al
(2000) or the method proposed by Wang et al (2006) to an error rate α.
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Abstract. Being still in its early stages, operational risk modeling has, so far,
mainly been concentrated on the marginal distributions of frequencies and sever-
ities within the context of the Loss Distribution Approach (LDA). In this study,
drawing on a fairly large real–world data set, we analyze the effects of competing
strategies for dependence modeling. In particular, we estimate tail dependence both
via copulas as well as nonparametrically, and analyze its effect on aggregate risk–
capital estimates.

Keywords: operational risk, risk capital, value–at–risk, correlation, tail de-
pendence

1 Introduction

The Basel Committee defines operational risk as “the risk of loss resulting
from inadequate or failed internal processes, people and systems or from
external events”. Based on aggregate losses, L, banks are required to calculate
the minimum capital requirement (MCR) as the 99.9 % Value–at–Risk (VaR)
of the loss distribution, that is,

MCR = VaR.999(L) = VaR.999

(
56∑

i=1

Li

)
, (1)

where Li refers to the aggregate loss of one of 56 event–type/business–line
combinations. In the Loss Distribution Approach (LDA) (see, e.g., Panjer
(2006)), Li is generated by Li =

∑Ni

n=1Xi,n that is, a random number of
events, N , each associated with loss amounts X1, . . . , XN .
The standard LDA approach avoids the complexities of modeling dependen-
cies among aggregate losses. To obtain a conservative risk–capital estimate,
the calculation prescribed by the Basel Committee,

MCR∗ =
56∑

i=1

VaR.999(Li) , (2)

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
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implicitly assumes comonotonicity (and, thus, a perfect positive linear cor-
relation) between all aggregate loss pairs Li and Lj . Nevertheless, under
certain conditions, banks may explicitly model correlations (Basel Commit-
tee on Banking Supervision (2006), p. 148). In this way, the regulators aim
at providing an incentive for a bottom–up development of more sophisticated
modeling approaches.

Based on operational losses from the “Database Italiano delle Perdite
Operative”1 (DIPO) collected between January 2003 and December 2007,
we analyze the effects of different dependency assumptions on risk–capital
estimates. We find that the departure from the comonotonicity assumption
and an explicit modeling of tail dependence, based on the parameter estimates
obtained from our data base, do not always lead, as inuitively expected, to a
decrease in risk–capital estimates.

2 Correlation

Table 5 reports estimates of linear (Pearson) correlations among event types.
The estimates in the upper–right triangle are based on the entire sample
(January 2003 – December 2007); the lower triangular part shows estimates
based only on the first two–thirds of the sample (January 2003 – April 2006).
As is well–known, linear correlation is mainly driven by extreme observations.

ET 1 ET 2 ET 3 ET 4 ET 5 ET 6 ET 7

ET 1 1 0.0454 0.2208 0.0462 0.0098 0.0854 0.2231

ET 2 0.0622 1 0.1624 0.1606 0.0258 -0.0658 0.0523

ET 3 0.1260 0.2830 1 0.5284 0.2954 0.1815 0.4430

ET 4 -0.0281 0.2420 0.5882 1 0.1431 0.0633 0.2012

ET 5 -0.0117 -0.1144 0.2899 0.1765 1 -0.0459 -0.0498

ET 6 0.0302 -0.0388 0.1507 0.0121 -0.0530 1 0.0648

ET 7 0.1550 0.0625 0.3653 0.2017 -0.1036 0.0450 1

Table 1. Linear correlation coefficients for aggregate losses of different event types;
upper part: period 01/03–12/07, lower part: period 01/03–04/06

For example, reducing the sample leads to a change of sign for event types
2 and 5; this is caused by the two most extreme observations dropping out
of the sample. Likewise, the correlation between event types 3 and 4 does
not change substantially when shortening the period, because the common
extremes are present in both samples.

As alternatives to the popular linear correlation, we also consider the
two most commonly used rank correlation measures, namely Kendall’s τ and
1 www.dipo-operationalrisk.it
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Spearman’s ρ. In contrast to Pearson’s linear correlation coefficient, they are
not based on the value of two observations i and j, but rather on their ranks
within the sample. They are thus by their very nature more robust towards
effects of extreme observations.

However, looking at Table 2, which is organized as Table 1, confirms the
high correlations, for example, between event types 3 and 4. Furthermore,
the rank correlation estimates can also change considerably as the sample
varies.2

ET 1 ET 2 ET 3 ET 4 ET 5 ET 6 ET 7

ET 1 1 0.1345 0.2475 0.2136 0.1424 0.1051 0.1898

ET 2 0.0974 1 0.1480 0.2113 0.0045 -0.0237 0.1107

ET 3 0.0641 0.1923 1 0.5096 0.2599 0.2068 0.1831

ET 4 0.0487 0.2179 0.4513 1 0.3073 0.3130 0.0723

ET 5 0.0462 -0.0051 0.1615 0.3564 1 0.0520 -0.0328

ET 6 0.041 0.0974 0.1513 0.2795 0.0513 1 0.1718

ET 7 0.1333 0.0821 0.0897 -0.0436 -0.1385 0.1385 1

Table 2. Kendall’s τ among aggregate losses; upper part: period 01/03–12/07,
lower part: period 01/03–04/06

3 Tail dependence

To account for possibly nonlinear dependencies in extreme observations, we
leave the correlation framework and focus explicitly on modeling joint tail be-
havior. Intuitively, the intention in our context is to capture the joint prob-
ability that, if a loss in one category exceeds a (high) threshold, this also
happens in another category. The concept of tail dependence can be traced
back to Sibuya (1960). Note that we analyze loss distributions, so that only
upper tail dependence needs to be considered. The upper-tail dependence
coefficient, λU , is defined by

λU = lim
t→1−

Pr[F (X) > t|G(Y ) > t] = lim
t→1−

2− 1− C(t, t)
1− t

, (3)

where C(t, t) refers to the copula of X and Y .

3.1 Estimation via copulas

We estimate several popular parametric copulas via Maximum Likelihood, us-
ing the empirical distribution functions of the margins (the so–called Canoni-
cal Maximum Likelihood or CML method). In this way, we avoid any influence
2 The results for Spearman’s ρ are similar and therefore not reported here.
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from misspecifications of the margins on dependency estimation. The copu-
las we consider have different properties with respect to tail dependence. The
Gaussian copula does not imply any tail dependence; the Student–t is able to
model symmetric, i.e., upper and lower tail dependence; and the Archimedean
copulas considered here can capture asymmetric tail dependence structures.

Interestingly, only one of the three parametric copulas, which are able
to capture tail dependence, suggests that the data are characterized by tail
dependence. Whereas the Gumbel and Student–t copula parameter estimates
amount to zero tail dependence, the Clayton survival copula implies positive
values of λU . Table 3 reports strong dependencies between event types 3
and 4 and between event types 4 and 5 which is in line with the results from
linear and rank correlation estimation. However, for many event types, the
estimated parameter values of the Clayton survival copula suggest zero tail
dependence.

ET 1 ET 2 ET 3 ET 4 ET 5 ET 6 ET 7

ET 1 1 0.1017 0.0002 0.0001 0 0.0892 0.0908

ET 2 0.0567 1 0.2295 0.2733 0 0.2212 0.184

ET 3 0.1399 0.1142 1 0.5308 0.0928 0.0534 0.1334

ET 4 0.1687 0.1334 0.5869 1 0.4309 0.2349 0

ET 5 0.0521 0 0.2438 0.4264 1 0 0

ET 6 0.1452 0.0001 0.1222 0.3157 0 1 0.3131

ET 7 0.2281 0.052 0.2781 0 0 0.2564 1

Table 3. Upper tail dependence coefficient implied by the Clayton survival copula;
upper part: period 01/03–12/07, lower part: period 01/03–04/06

3.2 Nonparametric estimation

As seen in the previous subsection, the results from copula fitting do not yield
a clear picture with respect to the presence of upper tail dependence. We
therefore further assess this question without imposing a parametric struc-
ture in the form of a copula. That is, we estimate tail dependence nonpara-
metrically. Several nonparametric estimators of tail dependence inspired by
Equation (3) have been developed. A review of these can be found, for ex-
ample, in Frahm et al. (2005).
The first nonparametric estimator is based on Coles et al. (1999) and defined
by

λ̂LOG
U = 2−

ln Ĉn

(
n−k

n , n−k
n

)
ln
(

n−k
n

) , 0 < k < n ,



Modeling Operational Risk: Estimation and Effects of Dependencies 545

where Ĉn is the empirical copula. From (3), it follows that

λU = lim
t→1−

λ̂LOG
U (t);

but λ̂LOG
U can also be used as a measure of dependence for thresholds t < 1,

whose sign depends on whether the random variables under consideration are
positively or negatively associated at the level t. A similar estimator,

λ̂SEC
U = 2−

1− Ĉn

(
n−k

n , n−k
n

)
1− n−k

n

, 0 < k < n

goes back to Joe et al (1992).
A third nonparametric estimator is developed by Frahm et al. (2005). As-
suming that the empirical copula approximates an extreme value copula,
they propose the estimator

λ̂CFG
U = 2− 2 exp

(
1
n

n∑
i=1

ln
(√

ln(U−1
i ) ln(V −1

i )/ ln(max(Ui, Vi)−2)
))

,

which is based on n random samples Ui and Vi from the copula. Here, no
threshold needs to be chosen; but this advantage comes at the cost of the
extreme–value copula assumption, which induces a bias that increases with
the number of block maxima used.3 In their simulation study, Frahm et al.
(2005) find λ̂CFG

U to be superior to the other nonparametric estimators in
terms of sample variances and root mean square errors. In contrast, λ̂SEC

U is
found to react sensitively to the distribution of extremal data.

Figure 1 shows the empirical results for j = 3 vs. j = 4 and j = 2 vs.
j = 5. We observe that λ̂SEC

U approaches 1 with increasing thresholds. This
effect can be reproduced in a simulation setup which leads us to conclude that
this latter behavior is not due to tail dependence. The estimators λ̂LOG

U and
λ̂SEC

U suggest absence of tail dependence for event types 2 and 5, but suggest
a presence in case of types 3 and 4. We, therefore, consider an additional
estimator. As pointed out by Coles et al. (1999), asymptotic dependence
implies not only that λ̂U > 0, but also that

χ̄ = lim
t→1−

2 ln(1− t)
C̃(t, t)− 1

= lim
t→1−

χ̄(t) = 1 , (4)

where C̃(t, t) denotes the survival copula of C(t, t). We thus include the es-
timator ̂̄χ(t) based on (4), using the empirical survival copula. The results
for event types 3 and 4 suggest that also for this event type combination, no
clear evidence of tail dependence can be found.
3 For our application, due to the small sample, we do not select block maxima. In

other words, we use 60 blocks each containing one observation.
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Fig. 1. Nonparametric estimators of tail dependence for the entire sample (left)
and using 2/3 of the data (right) for event type combinations 2/5 (top) and 3/4
(bottom).

4 Effects on risk–capital estimation

In order to assess the sensitivity of results and the possible range of outcomes,
we estimate 250 VaR.999 figures per model and event type combination, using
different numbers of replications for the estimation, and subtract the result-
ing risk–capital estimate from the sum of the single VaRs. For each model and
event type combination, we use the copula parameter values obtained from
Maximum Likelihood estimation. The results are depicted in Figure 2 for
the Clayton Survival copula—which is the only one implying positive upper
tail dependence—and lognormal margins. We see that using Brc = 10, 000
replications in the Monte Carlo setup can lead to increases in risk capital
compared to those resulting from the comonotonicity assumption: For event
types 1 and 2, the upper boxplots shows that risk capital may increase by
more than 20%.

The fact that the sum of the single VaRs does, in fact, not represent the
most conservative risk–capital estimate has been pointed out, for example,
by Embrechts et al. (2002). The reason for this is the lack of subadditivity
of the VaR measure (see Artzner et al. (1999)). However, and this can be
seen for all models, this effect diminishes as the number of replications in the
VaR simulation is increased. For example, in the lower boxplot of Figure 2,
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Fig. 2. Boxplots of 250 VaR.999 estimates for the Clayton survival copula and
lognormal margins.

which uses 100,000 losses per risk–capital estimate, the maximum increase
observed for event types 1 and 2 is below 5%. Hence, the simulation setup is
of paramount importance to avoid a substantial overestimation of risk.

5 Conclusion

We confirm the well-known finding that linear correlations are unstable and
mainly driven by extreme observations. Rank correlations offer an alterna-
tive, but they do not necessarily provide more stability in case of common
movements of monthly losses. Therefore, we consider copula approaches—a
concept going beyond correlation and being more appropriate for modeling
extremes—as an alternative.

We do, however, not find clear evidence of upper–tail dependence. While
two parametric copulas, which are able to model upper–tail dependence, indi-
cate absence of such dependence, the Clayton survival copula estimates imply
nonzero upper–tail dependence for some event type combinations. As these
combinations coincide with those displaying high correlations, we investigate
tail dependence further and examine several nonparametric estimators. But
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also with these methods, there is no clear–cut evidence regarding tail depen-
dence.

We analyze the ranges of possible risk–capital estimates in a simpli-
fied context using different parametric assumptions for the copula and the
marginals. It turns out that the number of replications in the loss simula-
tion plays a major role in analyzing the changes in risk capital. It has to
be made sure that the number of replications is sufficiently high in order to
avoid severe overestimation of risk. However, our empirical findings suggest
also that for a high number of replications risk–capital estimates could not
only decrease but also increase as compared to the case of comonotonicity.
We thus observe two sources of VaR increases, the first one being purely
computational and the second one being the lack of subadditivity of this risk
measure in connection with the distributional model chosen.
Besides several extensions and modifications to be done in the future, further
investigation of the effects of dependency modeling on risk–capital estimates
is high on our agenda.
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Abstract. We describe a novel probabilistic graphical model customized to repre-
sent the statistical dependencies between genetic markers, in the Human genome.
Our proposal relies on a forest of hierarchical latent class models. The motivation is
to reduce the dimension of the data to be further submitted to statistical association
tests with respect to diseased/non diseased status. A generic algorithm, CFHLC,
has been designed to tackle the learning of both forest structure and probability
distributions. A first implementation has been shown to be tractable on benchmarks
describing 105 variables for 2000 individuals.

Keywords: Bayesian networks, hierarchical latent class model, data dimen-
sionality reduction, genetic marker dependency modelling

1 Introduction

Genetic association studies are designed to identify genes underlying human
complex diseases. Decreasing genotyping costs now enable the generation of
hundreds of thousands of genetic variants, or SNPs, spanning whole Human
genome, accross cohorts of cases and controls. The purpose is to find patterns
of SNPs highly correlated with the diseased status. This scaling up to genome-
wide association studies (GWAS) makes the analysis of high-dimensional data
a hot topic. Yet, the search for associations between single SNPs and the
variable describing case/control status requires carrying out a large number
of statistical tests. Still more worrying, SNP patterns, rather than single
SNPs, are likely to be causal with regard to complex diseases. Therefore, a
high rate of false positives as well as a perceptible statistical power decrease,
not to speak of untractability, are severe issues to be overcome.

To reduce data dimensionality, a promising lead consists in exploiting the
existence of statistical dependencies between SNPs, also called linkage dise-
quilibrium (LD). In eukaryotic genomes, LD is highly structured into the so-
called ”haplotype block structure”: regions where correlation between mark-
ers is high alternate with shorter regions characterized by low correlation.

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 56, c© Springer-Verlag Berlin Heidelberg 2010
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Relying on this feature, various approaches were proposed to achieve data
dimensionality reduction: testing association with haplotypes (i.e. inferred
data underlying genotypic data) (Schaid (2004)); partitioning the genome
according to spatial correlation (Pattaro et al. (2008)); selecting SNPs infor-
mative about their context, or SNP tags, to name but a few. Unfortunately,
these methods do not take into account all existing dependencies, in partic-
ular dependencies between haplotype blocks.

Probabilistic graphical models offer an adapted framework for a fine mod-
elling of dependencies between SNPs. Various models have been used for this
peculiar purpose, mainly Markov fields (Verzilli et al. (2006)) and Bayesian
networks (BNs), with the use of hierarchical latent BNs (embedded BNs (Ne-
fian (2006)); two-layer BNs with multiple latent (hidden) variables (Zhang
and Ji (2009))). Although modelling SNP dependencies through hierarchical
BNs is undoubtedly an attractive lead, there is still room for improvement.
Notably, scalability remains a crucial issue.

In this paper, we propose to use a forest of Hierarchical Latent Class mod-
els (HLCMs) to reduce the dimension of the data to be further submitted
to association tests. Basically, latent variables (LVs) capture the information
born by underlying markers. To their turn, LVs are clustered into groups
and, if relevant, such groups are subsequently subsumed by additional LVs.
Iterating this process yields a hierarchical structure. First, the great advan-
tage to GWASs is that further association tests will be chiefly performed on
LVs. Thus, a reduced number of variables will be examined. Second, the hier-
archical structure is meant to efficiently conduct refined association testing:
zooming in through narrower and narrower regions in search for stronger as-
sociation with the disease ends pointing out the potential markers of interest.

However, most algorithms dedicated to HLCM learning fail the scalability
criterion when data describe thousands of variables and a few hundreds of
individuals. The contribution of this paper is twofold: (i) the modelling of de-
pendencies between clusters of SNPs, (ii) the design of a scalable algorithm,
CFHLC, fitted to learn a forest of HLCMs from spacially-dependent variables.
In the line of a hierarchy-based proposal of Hwang and collaborators (Hwang
et al. (2006)), our method yet implements data subsumption, meeting two
additional requirements: (i) more flexible thus more faithful modelling of un-
derlying reality, (ii) control of information decay due to subsumption. Section
2 recalls some definitions about HLCMs and points out the few anterior works
devoted to HLCM learning. Section 3 focuses on the general description of
our method. In Section 4, we give the sketch of algorithm CFHLC. Section 5
presents experimental results and briefly discusses them.

2 Background for HLC model learning

In the sequel, we will restrain to discrete variables (either observed or latent).
A Latent Class Model (LCM) is defined as containing a unique LV connected
to each of the observed variables (OVs). Each value of the LV defines a
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class. In LCMs, the so-called local independence (LI) assumption states that
the OVs are mutually independent conditional on latent class membership.
Mainly used for data clustering, LCMs are generalized by HLCMs. The latter
are tree-shaped BNs where leaf nodes are observed while internal nodes are
not. HLCMs allow the relaxation of the LI constraint.

As for general BNs, besides learning of parameters (θ), i.e. unconditional
and conditional probabilities, one of the tasks in HLCM learning is structure
(S) inference. The HLCM learning methods fall into one of two categories.
The first category, structural Expectation Maximization (SEM), successively
optimizes θ | S and S | θ. Amongst few proposals, hill-climbing guided by
a scoring function was designed (Zhang (2003)): the HLCM space is visited
through addition or removal of latent nodes and states for existing nodes.
Other authors adapted a SEM algorithm combined with simulated annealing
to learn a two-layer BN with multiple LVs (Zhang and Ji (2009)). Alternative
approaches implement agglomerative hierarchical clustering (AHC). Relying
on pairwise correlation strength, Wang and co-workers first build a binary
tree; then they apply regularization and simplification transformations which
may result in subsuming more than two nodes through an LV (Wang et al.
(2008)). Hwang and co-workers’ approach confines the HLCM search space
to binary trees augmented with possible connections between siblings (nodes
sharing the same parent into immediate upper layer) (Hwang et al. (2006)).
Moreover, they constrain LVs’ arity to binarity. However, the latter approach
is the only one we are aware of that succeeds in processing high-dimensional
data: in an application dealing with a microarray dataset, more than 6000
genes have been processed for around 60 samples. To our knowledge, no
running time was reported for this study.

Nevertheless, the twofold binarity restriction and the lack of control for
information decay as the level increases are severe drawbacks to achieve real-
istic SNP dependency modelling and subsequent association study with suffi-
cient power. Indeed, SNP dependencies would rather be more wisely modelled
through a forest of HLCMs of various heights, best accounting for relevant
higher-order dependencies on the genome. Moreover, not the least advan-
tage of the FHLC model over the HLC model lies in that variables are not
constrained to be dependent upon one another, either directly or indirectly.

3 Constructing the FHLC model

3.1 Principle

Our method takes as an input a matrix DX defined on a finite discrete do-
main, say {0, 1, 2} for SNPs, describing n individuals through p variables
(X = X1, ..., Xp). Algorithm CFHLC yields a forest of LHCMs (abbreviated
as an FHLCM). An FHLCM consists of a Directed Acyclic Graph (DAG),
also called the structure, whose non-connected components are trees, and of
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θ, the parameters of a set of a priori distributions and local conditional dis-
tributions allowing the definition of the joint probability distribution. Two
search spaces are explored: the space of directed forests and the probability
space. In addition, H, the whole LV set of the FHLCM is output, together
with the associated data matrix.

To handle high-dimensional data, our proposal combines two strategies.
The first strategy splits up the genome-scale data into contiguous regions. In
our case, splitting into (large) windows is not a mere implementational trick;
it meets biological grounds: the overwhelming majority of dependencies be-
tween genetic markers (including higher-order dependencies) is observed for
close SNPs. Then, an FHLCM is learnt for each window in turn. Within a
window, subsumption is performed through an adapted AHC procedure: (i)
at each agglomerative step, a partitioning method is used to identify clus-
ters of variables; (ii) each such cluster is intended to be subsumed into an
LV, through an LCM. For each LCM, parameter learning and missing data
imputation (for the LV) are performed.

3.2 Node partitioning

Following Martin and VanLehn (1995), ideally, in the undirected graph of
dependency relations between variables, we would propose to associate an LV
with any clique exhibiting pairwise dependencies whose strengths are above
a given threshold. However, searching for such cliques is an NP-hard task.
Moreover, in contrast with the previous authors’ objective, FHLCMs do not
allow clusters to have more than one parent each: non-overlapping clusters are
required for our purpose. Thus, an approximate method solving a partitioning
problem when provided pairwise dependency measures is required.

3.3 Parameter learning and missing data imputation

A steep task is choosing - ideally optimizing - the cardinality of each LCM’s
LV. Instead of using an arbitrary constant value common to all LVs, we
propose that the cardinality be estimated for each LV through a function of
the underlying cluster’s size.

At each step of the AHC process, parameter learning has to be performed
for as many LCMs as there are clusters of at least two nodes identified.
For each LCM, parameter learning may be performed through a standard
EM procedure. This procedure takes as an input the cardinality of the LV
and yields the probability distributions: prior distribution for the LV and
conditional distributions for the remaining nodes. Once the distributions have
been estimated, a way to impute the missing data corresponding to LVs
may consist in directly inferring them through probabilistic inference in BNs.
Finally, new data are available to seed next step of the FHLCM construction:
LVs identified through step i will be considered as OVs during step i+ 1.
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3.4 Controlling information decay

In contrast with Hwang and co-workers’ approach, whose main aim is data
compression, information decay control is required: any LV candidate H in
step i which does not bear sufficient information about its child nodes must be
unvalidated. As a consequence, such child nodes will be seen as isolated nodes
in step i+ 1. The information criterion, C, relies on average mutual informa-
tion. It is scaled through entropyH: C = 1

sH

∑
i ∈ cluster(H)

I(Xi,H)
min (H(Xi), H(H)) ,

with sH the size of cluster(H).

4 Sketch of algorithm CFHLC

Due to space limitation, in this paper we will only present the sketch of algo-
rithm CFHLC. The node partitioning algorithm chosen is longer discussed in
Mourad et al. (2010), together with the justification for the estimation of LV
cardinalities and the imputation method used by LCM parameter learning.
To run CFHLC, the user has to tune various parameters: s, the window size,
specifies the number of contiguous SNPs (i.e. variables) spanned per window;
t is meant to constrain information dilution to a minimal threshold. Parame-
ters a, b and cardmax participate in the estimation of the cardinality of each
LV. Finally, parameter PartitioningAlg enables flexibility in the choice of the
method devoted to cluster highly-correlated variables into non-overlapping
groups.

Within each successive window, the AHC process is initiated from a first
layer of univariate models. Each such univariate model is built for any OV
in the set Wi (lines 4 to 6). The AHC process stops if all clusters identified
each reduce to a single node (line 10) or if no cluster of size strictly greater
than 1 could be validated (line 23). Each cluster of at least two nodes is
subject to LCM learning followed by validation (line 13 to 22). In order to
simplify the FHLCM learning, the cardinality of the LV is estimated as an
affine function of the number of variables in the corresponding cluster (line
14). Algorithm LCMLearning is plugged into this generic framework (line
15). After validation through threshold t (lines 16 and 17), the LCM is used
to enrich the FHLCM associated with current window (line 18): (i) a spe-
cific merging process links the additional node corresponding to the LV to its
child nodes; (ii) the prior distributions of the child nodes are replaced with
distributions conditional to the LV. In Wi, clusters of variables are replaced
with the corresponding LVs; data matrix D[Wi] is updated accordingly (lines
19 and 20). In contrast, the nodes in unvalidated clusters are kept isolated
for the next step. At last, the collection of forests, DAG, is successively aug-
mented with each forest built within a window (line 26). In parallel, due to
assumed independency between windows, the joint distribution of the final
FHLCM is merely computed as the product of the distributions associated
with windows (line 26).
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Algorithm CFHLC(X,DX , s, t, PartitioningAlg, a, b, cmax)

input:
X,DX: a set of p variables X = X1, ..., Xp and the corresponding data observed for n individuals,
s: a window size,
t: a threshold used to limit information decay while building the FHLC,
a,b, cmax: parameters used to calculate the cardinality of latent variables.

output:
DAG, θ: the DAG structure and the parameters of the FHLC model constructed,
H,DH : the whole set of latent variables identified through the construction (H = {H1, ..., Hm}) and the

corresponding data imputed for the n individuals.

1: numWin← p/s;
2: DAG← ∅; θ ← ∅; H ← ∅; DH ← ∅
3: for i = 1 to numWin
4: Wi ← {X(i−1)×s+1, ..., Xi×s}; D[Wi]← D[(i− 1)× s+ 1 : i× s)]
5: {∪j∈WiDAGunivj , ∪j∈Wiθunivj} ← LearnUnivariateModels(Wi)
6: DAGi ← ∪j∈WiDAGunivj ; θi ← ∪j∈Wiθunivj

7: step← 1
8: while true
9: {C1, ..., Cnc} ← Partitioning(Wi, D[Wi], PartitioningAlg)

10: if all clusters have size 1 then break end if

11: Cj1 , ..., Cjnc2
← ClustersContainingAtLeast2Nodes(C1, ..., Cnc)

12: nc2valid ← 0
13: for k = 1 to nc2
14: cardH ← min(RoundInteger(a ×NumberOfV ariables(Cjk ) + b, cmax)
15: {DAGjk , θjk , Hjk , DHjk} ← LCMLearning(Cjk , D[Cjk ], cardH)
16: if (C(DAGjk , D[Cjk ] ∪DHjk ) ≥ t) /* validation of current cluster - see Section 3.4 */
17: incr(nc2valid)
18: DAGi ←MergeDags(DAGi, DAGjk ); θi ←MergeParams(θi, θjk )
19: H ← H ∪Hjk ; DH ← DH ∪DHjk

20: D[Wi]← (D[Wi] \D[Cjk ]) ∪DHjk ; Wi ← (Wi \ Cjk ) ∪Hjk

21: end if
22: end for
23: if (nc2valid = 0) then break end if
24: incr(step)
25: end while
26: DAG← DAG ∪DAGi; θ ← θ × θi

27: end for

Algorithm LCMLearning(Cr, D[Cr], cardH)

1: Hr ← CreateNewLatentV ariable()
2: DAGr ← BuildNaiveStructure(Hr, Cr)
3: θr ← standardEM(DAGr, D[Cr], cardH)
4: DHr ← Imputation(θr, D[Cr])

Table 1. Sketch of algorithm CFHLC.

5 Experimental results and discussion

Algorithm CFHLC has been implemented in C++, relying on the ProBT li-
brary dedicated to BNs (http://bayesian-programming.org). We have plugged
into CFHLC a partitioning method designed by Ben-Dor and co-authors
(1999). CFHLC was run on a standard PC (3.8 GHz, RAM 3.3 Go). We have
generated simulated genotypic data using software HAPSIMU (http://l.web
.umkc.edu/liujian/). Parameter n was set to 2000. Three sample sizes were
considered: 1k, 10k and 100k (OVs). Here, we show results obtained with
a rough parameter adjustment : a = 0.2, b = 2, cmax = 20, t = 0.5 (see
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Mourad et al. (2010) for investigations about the influence of CFHLC pa-
rameters). Figure 1(a) shows that only 15 hours are required for 105 SNPs,
with the window size s set to 100. For the same dataset processed in the cases
“s = 200” and “s = 600”, running times are 20.5 h and 62.5 h, respectively.
For the same number of OVs (100k), Wang et al. report running times in the
order of two months. Figure 1(b) more thoroughly describes the influence of
window size increase on running time. Interestingly, Figure 1(c) highlights
the decrease in the number of variables to be tested for association with the
disease (from 1000 observed variables to less than 200 forest roots in the case
“s = 100”). In previous case, CFHLC allows a reduction in the number of
variables to be tested of more than 80%. For this same case, Figure 1(d) ex-
hibits the dramatical decrease of the number of LVs per layer (over the whole
FHLCM) with the layer. As most of LVs are present in the first layer (64%),
the information dilution of observed variables is shown to be limited. Finally,
Figure 1(e) displays how information fades while the layer number increases.
In the highest layers, average scaled mutual information is at least equal to
0.52 and 0.56 for the cases “s = 100” and “s = 600” respectively. Therefore,
not only is a major point reached regarding tractability, information dilu-
tion is also controlled in an efficient way. Many more results are presented in
Mourad et al. (2010), together with additional comments.

To our knowledge, our hierarchical model is the first one shown to achieve
fast model learning for genome-scaled data sets. Whereas Hwang and collab-
orators’ purpose is data compression, we are faced with a more demanding
challenge: allow a sufficiently powerful down-stream association analysis. Re-
laxing the twofold binarity restriction of Hwang and collaborators’ model

Figure 1: (a) Running time versus number of variables. (b) Running time versus
window size. (c) Number of roots versus window size. (d) Number of latent variables
per layer over the whole FHLC model. (e) Impact of window size on average scaled
mutual information per layer over the whole FHLC model. N.B.: Boxplots have
been produced from 20 benchmarks (exceptionally 5 in the 100k case of (a)).

(a) (b) (c)

(d) (e)
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(binary trees, binary LVs), the FHLC model is an appealing framework for
GWASs: in particular, flexibility in the cluster size reduces the number of
LVs.

6 Concluding remarks

Our contribution in this paper is twofold: (i) a variant of the HLC model, the
FHLC model, has been described; (ii) CFHLC, a generic algorithm dedicated
to learn such models, has been shown to be efficient when run on genome-
scaled benchmarks. Regarding node partitioning and imputation for LVs, one
of our current tasks is examining which plug-in methods are most relevant,
especially for the purpose of GWASs. Finally, we will evaluate CFHLC as
a promising algorithm enhancing genome wide genetic analyses, including
study and visualization of linkage disequilibrium, mapping of causal SNPs
and study of population structure.
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Abstract. In segmentation problems, inference on change-point position and model
selection are two difficult issues due to the discrete nature of change-points. In a
Bayesian context, we derive exact, non-asymptotic, explicit and tractable formulae
for the posterior distribution of variables such as the number of change-points or
their positions. We also derive a new selection criterion that accounts for the relia-
bility of the results. All these results are based on an efficient strategy to explore the
whole segmentation space, which can be very large. We illustrate our methodology
on both simulated data and a comparative genomic hybridisation profile.

Keywords: change-point detection, posterior distribution of change-points

1 Introduction

Segmentation and change-point detection problems arise in many scientific
domains. In this problem, it is assumed that the observed data {yt}t=1,...,n

is a realization of an independent random process Y = {Yt}t=1,...,n. This
process is drawn from a probability distribution G, which depends on a set
of parameters denoted by θ. These parameters are assumed to be affected
by K − 1 abrupt changes, called change-points, at some unknown positions
τ2, . . . , τK(with the convention τ1 = 1 and τK+1 = n+ 1). Thus, the change-
points delimit a partition m of {1, . . . , n}, called here a segmentation, into
K segments r(k) such that r(k) = [τk, τk+1[= {τk, τk + 1, . . . , τk+1 − 1} and
m = {r(k)}k=1,...,K . The segmentation model has the following general form
for a given m: if t ∈ r and r ∈ m, Yt ∼ G(θr), where θr stands for the
parameters of segment r. In this study, all the change-points are detected
simultaneously. The question of finding the best segmentation in a given
number of segments has already been largely studied (see for example Lavielle
(2005), Braun et al. (2000), Bai and Perron (2003)). Two important issues
remain: assessing the quality of the proposed segmentation and selecting the
number of segments (also called dimension). In both cases, the main problem
is the discrete nature of the change-points, which prevents the use of routine
statistical inference.

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 57, c© Springer-Verlag Berlin Heidelberg 2010
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On the one hand, the quality of a segmentation can be assessed by study-
ing the uncertainty of the change-point positions. From a non-asymptotic
and non-parametric point of view, the likelihood-based inference is intricate,
as the required regularity conditions for the change-point parameters are not
satisfied (Feder (1975)). Different methods to obtain change-point confidence
intervals have been proposed. Most of them are based on the limit distribu-
tion of the change-point estimators (Feder (1975), Bai and Perron (2003))
or the asymptotic use of a likelihood-ratio statistic (Muggeo (2003)), others
are based on bootstrap techniques (Hušková and Kirch (2008)). A practical
comparison of these methods can be found in Toms and Lesperance (2003).

On the other hand, choosing the number of segments is also a critical
issue. This is usually done by minimising a penalised contrast function. Gen-
eral penalized criteria have been developed, such as AIC and BIC but they
are not adapted in the segmentation framework since an exponential model
collection is considered (Birgé and Massart (2007), Baraud et al. (2009)) and
these criteria tend to overestimate the number of segments (Lavielle (2005)).
Some criteria have been proposed specially for the segmentation framework.
Some depend on constants to be calibrated (Lavielle (2005) and Lebarbier
(2005)), but others do not (Zhang and Siegmund (2007)). More precisely,
Zhang and Siegmund (2007) discussed the fact that the classical BIC was
not theoretically justified in the segmentation context.

The purpose of our work is to provide exact, non-asymptotic, explicit
and tractable formulae for both the posterior probability of a segmentation
and that of a change-point occurring at a given position. More specifically,
we consider the segmentation problem in a Bayesian framework so that the
posterior probability of a segmentation is well defined. To tackle the discrete
nature of change-points, we work at the segment level, where statistical in-
ference is straightforward. From these segments, the issue is to get back to
the segmentation or dimension level. If the segments are independent, it will
be necessary to calculate quantities such as:∑

m∈M?

P (Y |m)P (m) =
∑

m∈M?

P (m)
∏
r∈m

P (Y r|r) (1)

where Y r stands for all observations in segment r and M? is usually a very
large set of segmentations. We propose a close-form (in terms of matrix prod-
ucts) and tractable formulation of (1). Some similar quantities were computed
by Guédon (2008) in a non-Bayesian context, using a forward-backward-like
algorithm, but for fixed parameters. From our formula, we derive key quanti-
ties to assess the quality of a segmentation and select the number of segments.

On the one hand, we obtain exact formulae for both the posterior prob-
ability of a segmentation and that of a change-point occurring at a given
position. This enables the construction of credibility intervals for change-
points. Moreover, we retrieve the exact posterior probability of a segment
within a given dimension and the exact entropy of the posterior distribution
of the segmentations within a given dimension.
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On the other hand, we derive a so-called ’exact’ BIC criterion for choosing
the number of segments K, taking M? = MK which is the set of

(
n−1
K−1

)
possible segmentations with K segments. In the same way, we derive the ICL
criterion of Biernacki et al. (2000) in the segmentation framework. This last
criterion takes into account the reliability of the results.

2 Exploring the segmentation space

In this section we propose a tractable and close-form formula of (1). We
denote by MK([i, j[) the set of all possible segmentations of ([i, j[) into K
segments. The simplified notationMK refers to MK([1, n+ 1[).
Factorability assumption: A model satisfies the factorability assumption H if

H : P (Y,m) = C
∏
r∈m

arP (Y r) (2)

where P (Y r) =
∫
P (Y r|θr)P (θr)dθr. This is false for the normal homoscedas-

tic model G(θr) = N (µr, 1/τ). When H holds, we derive an exact matrix
product formulation of (1) enabling its computation in O(Kn2).

Theorem 1. Consider a function F such that, for all k ∈ [1,K] and for all
segmentation m ∈ Mk([1, j[), there exists a function f such that: F (m) =∏

r∈m f(r). Let A be a square matrix with n + 1 columns such that Aij =
f([i, j[) if 1 ≤ i < j ≤ n+ 1 and 0 otherwise. Then all elements of{∑

m∈Mk([1,j[) F (m)
}

k ∈ [1,K] ∩ j ∈ [1,n+1]

can be computed in O(Kn2) using
∑

m∈Mk([1,j[) F (m) = (Ak)1,j.

Theorem 1 will be used many times in the following sections, using a
specific function f(r) for each quantity of interest. Its proof is based on the
following lemma, the proof of which is left to the reader.

Lemma 1. Let A be a n×n square matrix. For all k ∈ N, we define the func-
tion fA,k as: ∀(i, j) ∈ [1, n]2, fA,k(i, j) =

∑t1=i, tk+1=j

(t2···tk) ∈ [1,n]k−1

∏k
i=1 Ati,ti+1

The Kn elements of {fA,k(i, j)}{i ∈ [1,n],k∈[1,K]} can be computed in O(Kn2)
as fA,k(i, j) = (Ak)i,j.

2.1 Calculation of P (Y, m) and P (Y, K)

To calculate P (Y,m) and P (Y,K) =
∑

m∈MK
P (Y,m), we need to define

priors for the segmentation m. We now consider two typical priors.
Uniform conditional on the dimension: For any prior on the dimension P (K),
we define a uniform distribution for m given its dimension K:

P (m|K) =
(
n− 1
K − 1

)−1

⇒ P (m) = P (K(m))
/(

n− 1
K(m)− 1

)
(3)
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that is ar = 1 in (2), denoting K(m) the number of segments of m.
Homogeneous segment lengths: Segmentation with balanced segment lengths
are sometimes desirable. They are favoured by the following prior:

P (m) = C
∏
r∈m

n−1
r , where C ensures that

∑
m∈M

P (m) = 1. (4)

that is ar = n−1
r in (2), where nr is the length of segment r and M the set

of considered segmentations.

Proposition 3. When H holds, for prior distributions (3) and (4), P (Y,K)
can be computed in O(Kn2) as P (Y,K) = C(Ak)1,n+1 with Ai,j = 0 for j ≤ i
and, for j > i, for prior (3): Ai,j = P (Y [i,j[) and C−1 =

(
n−1
K−1

)
; for prior

(4): Ai,j = n−1
[i,j[P (Y [i,j[) and C−1 =

∑
m∈MK

∏
r∈m n−1

r .

Proof. For prior distribution (3), we use Theorem 1 with function f(r) =
P (Y r), implying Ai,j = f([i, j[) = P (Y [i,j[). For prior distribution (4), we
first retrieve C using Theorem 1 with function f(r) = nr. The result follows,
using Theorem 1 again, with function f(r) = n−1

r P (Y r).�
Poisson and Gaussian models. We recall two models that will be used later.
First is the segmentation problem of a piecewise constant Poisson rate model:

Yt ∼ P(µr) if t ∈ r, {µr} i.i.d., µr ∼ Gam(αr, βr); (5)

Second is the segmentation of a piecewise constant mean and variance Gaus-
sian signal:

Yt ∼ N (µr, 1/τr) if t ∈ r,

{
{τr} i.i.d., τr ∼ Gam(ν0/2, 2/s0);
{µr} indep., µr|τr ∼ N (µ0, (n0τr)−1). (6)

2.2 Posterior distribution of the change-points and segments

We first define the corresponding segmentation sets:
BK,k(t) is the set of segmentations from MK such that the k-th segment
starts at position t;
BK(t) is the subset of segmentations having a change-point at position t;
SK,k([t1, t2[) is the subset of segmentations having segment r = [t1; t2[ as
their k-th segment;
SK([t1, t2[) is the subset of segmentations including segment [t1, t2[.

We denote the conditional probability given the data Y and the dimension
K of each of these subsets by the corresponding capital letters with same
indices, e.g. BK,k(t) = Pr{m ∈ BK,k(t)|Y,K}. BK(t), SK,k(t) and SK(t) are
defined similarly. The following proposition gives explicit formulae for these
probabilities.



Posterior distribution over the segmentation space 561

Proposition 4. For all [t1, t2[ such that t1 < t2, we define, for K ≥ 1,
Ft1,t2(K) =

∑
m∈MK([t1,t2[)

P (Y [t1,t2[|m)P (m|K), with Ft1,t2(K) = 0 if t1 ≥
t2. Under assumption H, we have BK,k(t) = P (Y |K)−1F1,t(k−1)Ft,n+1(K−
k + 1) and SK,k(t1, t2) = P (Y |K)−1F1,t1(k − 1)Ft1,t2(1)Ft2,n+1(K − k),
BK(t) =

∑K
k=1BK,k(t) and SK(t1, t2) =

∑
k SK,k(t1, t2).

The proof is mainly based on set decompositions, such as BK,k(t) =
Mk−1([1, t[)×MK−k+1([t, n+1[) and all sums overMk−1([1, t[) andMK−k+1

([t, n+1[) can be obtained with Theorem 1. The credibility of interval [t1, t2]
for change-point τk is CK,k([t1, t2]) = Pr{τk ∈ [t1, t2]|Y,K} =

∑t2
t=t1

BK,k(t).

2.3 Posterior entropy

Segmentation problems are often reduced to choosing the best segmenta-
tion (i.e. the one with maximal posterior probability). Other segmentations
with dimension K are rarely considered. The entropy of the distribution
P (m|Y,K) is H(K) = −

∑
m∈MK

P (m|Y,K) logP (m|Y,K) measures how
the posterior distribution is concentrated around the best segmentation. In-
tuitively, a small entropy H(K) means that the best segmentation is a much
better fit to the data than any other segmentation.

Proposition 5. If H holds, H(K) = logAK −
∑

r SK(r) log f(r). AK =∑
m∈MK

∏
r∈m f(r) is computed with Proposition 3 and f(r) = arP (Y r).

3 Model selection

In a Bayesian framework, the BIC criterion aims to choose the model which
maximises P (M |Y ), where M is the model. To calculate the BIC criterion,
one needs to know P (Y |M). In our case, the word ’model’ is too broad and
we have to distinguish between the selection of the dimension K and the
selection of the segmentation m. However, we can bypass the problem by
working at the segmentation level and going back at the dimension level
using Proposition 3. Thus, the derivation of BIC criteria only requires the
calculation of P (Y r) =

∫
P (Y r|θr)P (θr)dθr, which can be obtained in a

close form for simple models. Moreover, we derive an adaptation of the ICL
criterion, first proposed for mixture models, to the segmentation context.

3.1 Exact BIC criterion

In segmentation problems, the selection of the ’best’ number of segments K
can be addressed per se, or as a first step to select the ’best’ segmentation.
The Bayesian framework suggests to choose K̂ = arg minK BIC(K) where
BIC(K) = − logP (Y,K). The best segmentation can be chosen in two ways.
Two-step strategy: The ’best’ segmentation can be chosen, conditionally to
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the pre-selected dimension K̂ as m̂(K̂) = arg minm∈M
K̂

BIC(m|K̂), where

BIC(m|K̂) = − logP (Y,m|K̂).
One-step strategy: The ’best’ segmentation can be chosen inM =

⋃K
k=1Mk

as m̂ = arg minm∈M BIC(m), where BIC(m) = − logP (Y,m).
BIC(K), BIC(m|K) and BIC(m) can all be computed with Proposition 3.

3.2 ICL criterion for dimension selection

In the framework of incomplete data models (e.g. mixture models), Bier-
nacki et al. (2000) suggest the ICL(M) criterion, which is an estimate of
E[logP (Y, Z,M)|Y ] where Z stands for the unobserved variables. The ICL
criterion tend to select models that provide a reliable prediction of Z, i.e.
with a small entropy. A segmentation m can be considered as an unobserved
data and the dimension K can be chosen as K̂ = arg minK ICL(K) where
ICL(K) = − logP (Y,K) + H(m|Y,K). ICL favours dimensions where the
best segmentation m̂(K) outperforms other segmentations, so that m̂(K) is
more reliable.

4 Applications

4.1 Simulation study

Simulation design. We performed the simulation study in the Poisson model
(5). We simulated a sequence of 150 observations affected by six change-
points. The segments have alternated mean 1 and 1 + λ, where λ varies
between 0 and 10. We set α = β = 1 and simulated 300 sequences.
Model selection. The BIC criterion for dimension selection, BIC(K), almost
never returned the true dimension, even for high values of λ (Figure 1). On
the other hand, both the BIC criterion for model selection, BIC(m), and the
ICL criterion, ICL(K), tend to recover the true dimension more often when λ
became larger. ICL(K) even increased to a maximum of 99% true recoveries
compared to a maximum of 91% for the BIC(m) criterion for model selection.

Fig. 1. Percentage of true dimension recoveries as a function of λ for the three
criteria. BIC(m̂K) : solid, BIC(K) : dashed and ICL(K) : dotted.
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4.2 Analysis of a CGH profile

CGH enables the study of DNA copy number along the genome (Pinkel et al.
(1998)). We used the Gaussian model defined in (6) that is often used for this
type of data (Picard et al. (2005)). The profile shown in Figure 2 represents
the copy number logratio of cell line BT474 to a normal reference sample,
along chromosome 10.

Fig. 2. Left: Chromosome 10 profile of cell line BT474. The DNA copy number
logratio is represented as a function of its position along the chromosome. Right:
(Left axis) BIC(m): triangle, BIC(K): bullet and ICL(K): black square as a function
of the dimension K. (Right axis) H(K)−H(K − 1): circle as a function of K.

Model selection. The ICL(K) criterion selected 4 segments whereas BIC(m)
selected 3 segments (see Figure 2 and 3 (left)). The additional penalty term of
the ICL does not necessarily penalise larger dimensions. Here, ICL selected
a segmentation with a larger dimension because it was more reliable. The
choice of ICL was motivated by the small gain of entropy between K = 3
and 4 and was supported by the posterior distributions of the change-points
and of the segments shown in Figure 3.
Posterior probability of the change-point positions. The distribution of the
change-points for K = 3 and 4 are shown in Figure 3 (middle). For K = 4,
the intervals were [66, 78], [78, 97] and [91, 112] for τ2, τ3 and τ4, respectively.
Posterior probability of a segment. In Figure 3 (Right) each point corresponds
to a segment. The K = 4 model exhibits sharper peaks, which indicates a
more reliable segmentation.
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Abstract. Activation detection in functional Magnetic Resonance Imaging (fMRI)
datasets is usually performed by thresholding activation maps in the brain volume
or, better, on the cortical surface. However, basing the analysis on a site-by-site
statistical decision may be detrimental both to the interpretation of the results and
to the sensitivity of the analysis, because a perfect point-to-point correspondence
of brain surfaces from multiple subjects cannot be guaranteed in practice. In this
paper, we propose a new approach that first defines anatomical regions such as
cortical gyri outlined on the cortical surface, and then segments these regions into
functionally homogeneous structures using a parcellation procedure that includes
an explicit between-subject variability model, i.e. random effects. We show that
random effects inference can be performed in this framework. Our procedure allows
an exact control of the specificity using permutation techniques, and we show that
the sensitivity of this approach is higher than the sensitivity of voxel- or cluster-level
random effects tests performed on the cortical surface.

Keywords: statistical testing, EM algorithm, spatial models, neuroimaging

1 Introduction

In neuroimaging, brain activation detection is traditionally performed through
the thresholding of statistical maps. In contrast with standard volume-based
analyses, cortical surface mapping (CSM) consists in detecting brain activa-
tions on the cortical surface, after projection of the fMRI volume-based data
onto the surface (Fischl et al. (1999), Andrade et al. (2001)). This offers the
advantage of positioning functional activations in the two-dimensional space
where they are indeed generated, as well as a better sensitivity/specificity
compromise due to the limitation of the statistical tests to grey matter only.
Although it has been suggested that CSM could be more sensitive in group
studies than traditional volume-based studies (see e.g. Fischl et al. (1999)),
inter-subject analyses have been limited by the problem of defining properly
brain location on the surface in the absence of a standard coordinate system.
A meaningful solution to this problem consists in defining intermediate rep-
resentations, such as gyri, that represent a delineation of the main regions on
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the cortical surface, as obtained from an atlas, see Fischl et al. 2004. Then,
one still has to decide how to take into account such gyral parcellations when
making statistical tests, or how to test region-specific hypotheses based on the
available data. Because gyri represent the cortex at a very coarse resolution,
functional information should be used to test more precise regions.

A second aspect of the problem is that it is not possible to require a per-
fect match between brain meshes since they have different shapes, as seen
with various sulci or gyrification indexes. But, even assuming that a perfect
anatomical match can be obtained between the brains of several individuals,
it is not clear that functional regions would be matched perfectly. A promis-
ing solution consists in introducing an intermediate representation between
mesh vertices and gyri, for instance through the concept of brain parcellation
(Tucholka et al. (2008)). Conceptually, such parcellations are defined through
the use of both anatomical and functional information. Although this may
provide meaningful entities, it is not clear how these structures can be used
to infer active regions across subjects, i.e. how to make random effects anal-
yses. In this work, we address this particular question by introducing a new
probabilistic parcellation framework that includes random effects, and finally
allows the test of some contrasts of interest. An unbiased assessment of these
tests using permutations is possible thanks to the relatively mild computation
cost of the proposed method.

In Section 2, we develop the random-effects anatomo-functional permuta-
tion model, then we described the validation procedure and give some results
on a real dataset in Section 3.

2 Model

2.1 Inputs and notations

Let Xs = {xs
i}i=1..Is be a set of pre-defined coordinates that represent the

position of cortical sites in a subject s ∈ {1, .., S} in a certain gyrus g ∈
{1, .., G} (in Sections 2.1-2.4, we omit the dependence on the gyrus to keep
notations simple). These coordinates are assumed to yield an approximate
correspondence across individuals. Let Y s = {ys

i }i=1..Is be nf -dimensional
vectors that represent the functional activity related to these sites in subjects
s ∈ {1, .., S}. In this work, we use nf = 1. Let K > 0 be the number of
components of the probabilistic parcellation.

Let (ws
ik)i=1..Is,k=1..K denote the probability that the site i belongs to

component k ∈ {1, ..,K},i.e. p(zs
i = k), given its position. ws

ik are function
of the positions xs

i and a set of two-dimensional coordinates T = (τk)k=1..K

that describe the position of the clusters on the cortex, and a spatial variance
parameter γ:

ws
ik(T ) =

exp(−‖x
s
i−τk‖2
2γ2 )∑K

l=1 exp(−‖x
s
i−τl‖2
2γ2 )

(1)
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Note that the position variables T are shared across subjects.

2.2 Hierarchical parcellations

The parameters Θ = (θk)k=1..K used to model the functional information
(Y s)s=1..S are part of a hierarchical model that includes group-level and
subject-specific activation maps in the chosen gyrus. The activation is as-
sumed to be normally distributed in the population, and then normally dis-
tributed in each subject given the parameters of this subject: ∀k ∈ {1..K}, let
(µk, Σk) be the population parameters, and ((µs

k, Σ
s
k)s=1..S) be the individual

parameters.

p(µs
k|µk, Σk) = N (µs

k;µk, Σk) (2)
p(ys

i |zs
i = k, µs

k, Σ
s
k) = N (ys

i ;µ
s
k, Σ

s
k) (3)

The parameters of the model are thus Θ = (µk, Σk, (Σs
k)s=1..S)k=1..K ,

and the log-likelihood of the data can be written:

L(Y |Θ, T ) =
S∑

s=1

Is∑
i=1

log

(
K∑

k=1

ws
ik(T )N (ys

i ;µk, Σk +Σs
k)

)
(4)

This assumes conditional independence of the functional information given
the parcel parameters, as is classically done for mixture models. The model is
summarized in Fig. 1. The important aspect with the random effects model is
that it allows second level inference: let c be a certain contrast of experimental
conditions; if we define second level statistics as

tRFX(k) =
cTµk√
cTΣkc

√
S − 1 (5)

This statistic is readily computed for each parcel in each gyrus. Note the
distribution of this quantity cannot be assumed as known under the null
hypothesis, but a corrected threshold can be derived through statistical re-
sampling procedures (see Sec. 2.5).

Fig. 1. Generative model of the data used in this work: in each subject s ∈ 1..S, the
observed data Ys, results from a spatial model, shared across subjects, that provides
the probability w that each surface point belongs to a parcel, and a hierarchical
model of the functional parameters, with both subject-specific (µs

k, Σ
s
k) and group-

level (µk, Σk) mean and covariance parameters. The observed variables are shaded.
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2.3 Estimation of the model

We use an alternate optimization scheme, in which Θ and T are optimized
in turn in order to maximize the log-likelihood of the data in Eq. (4).
maxΘ p(Y |Θ, T ) is obtained through the standard EM algorithm while
maxT p(Y |Θ, T ) is obtained through gradient descent performed simultane-
ously.

• E-step: let Zs = (zs
i )i=1..I be the allocation variables of the mixture

model.

p(zs
i = k) =

ws
ikN (ys

i ; θk)∑K
l=1 w

s
ilN (ys

i ; θl)
(6)

• M-step: (µk, Σk, Σ
s
k) = argmaxΘEz log p(Y, Z|θ, T ), which yields an in-

ternal EM algorithm, where µs
k are the hidden variables, while the max-

imization is carried out over the other variables (µk, Σk, Σ
s
k):

p(µs
k|µk, Σk, Σ

s
k, Y

s, Zs) = N (µs
k;Λs

k

[
(Σk)−1µk +ms

k(Σs
k)−1ns

k

]
, Λs

k)
(7)

where ms
k =

∑Is
i=1 p(zs

i =k)yi∑Is
i=1 p(zs

i =k)
, ns

k =
∑Is

i=1 p(z
s
i = k) and

Λs
k =

[
(Σk)−1 + ns

k(Σs
k)−1

]−1. Then the internal M-step is performed:

µk =
1
S

S∑
s=1

µs
k, (8)

Σk =
1
S

S∑
s=1

(µs
k − µk)T (µs

k − µk), (9)

Σs
k =

∑Is

i=1 p(z
s
i = k)(ys

i − µs
k)T (ys

i − µs
k)∑Is

i=1 p(z
s
i = k)

(10)

Eqs. (7) and (8-10) are iterated until convergence. Furthermore, we use
in this algorithm a regularization procedure (Fraley and Raftery (2007))
in order to ensure that the different terms do not converge toward a
degenerated solution (e.g. null variance).
• C-step:

∇L
∇τk

=
1
γ2

S∑
s=1

Is∑
i=1

(xs
i − τk)ws

ik

(
N (ys

i ; θk)∑K
l=1 w

s
ilN (ys

i ; θl)
− 1

)
(11)

We perform parameters updates that are reminiscent of the mean-shift
procedure (Comaniciu and Meer, 2002): τk → τk + δτk, where

δτk =
S∑

s=1

1
Is

Is∑
i=1

(xs
i − τk)ωs

i , and ωs
i = ws

ik

(
N (ys

i ; θk)∑K
l=1 w

s
ilN (ys

i ; θl)
− 1

)
(12)

Alternating these three steps (6,7-10,12) is very effective in practice: the log
likelihood often converges in 5 to 10 iterations.
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2.4 Optimizing the parameters of the model

The two free parameters of the model are the number of parcels K and the
spatial shrinkage parameter γ in each gyrus g. We optimize conjointly these
parameters during a first analysis session using the cross-validated likelihood
as criterion and a grid search approach. To compute the log-likelihood on
a new dataset (Xσ, Y σ), we need to estimate the covariance matrices Σσ

k

within the new subject; we take the maximum likelihood estimator:

L(Y σ|Xσ, Θ, T ) = max
(Σσ

k )k∈{1..K}

Iσ∑
i=1

log

(
K∑

k=1

ws
ik(xσ

i , T )N (yσ
i ;µk, Σk +Σσ

k )

)
(13)

The optimal values (K?(g), γ?(g)) are then retained for the RFX procedure.

2.5 Random-effects (RFX) inference procedure

In order to control the specificity of the parcel-based statistical procedure, we
need to know the distribution of the statistic (5) under the null hypothesis,
i.e. when no activation is present. This cannot be done analytically, because
the value of the statistic depends on the whole parcellation procedure. We
tabulate the distribution of the null hypothesis by randomly swapping the
sign of the data related to the tested contrast across subjects, and then
recomputing the parcels and the associated statistic t̃. Next, this procedure
has to be carried out on the whole volume. After R = 103 randomizations,
the maximal parcel-level statistic across gyri is tabulated:

t̄r = max
g∈1..G

max
k∈{1,..,K?(g)}

t̃k,∀r ∈ {1, .., R} (14)

and the threshold tα for a specificity α (α = 0.05 typically), corrected for
multiple comparisons across parcels and gyri, is chosen as the (1−α) quantile
of the distribution of (t̄r). The probability of a parcel-based t-value being
greater than tα in any parcel of any gyrus by chance is thus lower than α.

3 Results on a real dataset

Dataset. A localizer protocol was acquired on a 1.5T GE MRI scanner. The
Freesurfer package was used to segment different anatomical compartments
from the anatomical image of the brain of each subject, providing white and
grey matter mesh, and segmenting the sulci (Fischl et al. 1999). This sequence
of processing was applied systematically to all available brains and the quality
of resulting segmentation was visually checked. A surface-based coordinate
system that represents sulco-gyral anatomy is finally obtained, and the cor-
tical surface is subdivided into gyri. All cortical meshes are then resampled
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so that the nodes of the mesh are in one-to-one correspondence across sub-
jects. For all subjects a standard preprocessing of fMRI data was performed
using the SPM5 software. Functional images were then projected onto the
grey/white interface using the method described in (Operto et al. (2008)).
Subsequently, on each functional dataset a Linear Model-based analysis was
carried out to obtain task-related activity maps Y for different contrasts of
experimental conditions. We have tested 4 different contrasts related to mo-
tor, auditory, computation and reading functions respectively, but in separate
analyses, so that we always have nf = 1: taking nf > 1 is possible, but would
complicate the permutation framework described in Section 2.5.

Assessment of the PRFX statistic. Average left and right brain hemisphere
meshes have been derived and are used for display. These average meshes are
then parcelled using the maximum a posteriori label of each node given its po-
sition and the T parameters learnt by the algorithm. Our parcel-based infer-
ence (PRFX) is compared to more classical statistical procedures (Hayasaka
etal. 2003, Rocheet al. 2007) used on the cortical surface: i) a vertex- or
node-level control procedure yields the threshold tα so that the probability
of the random effects statistic at a single node being greater than tα is less
than α (0.05 typically); it is obtained by tabulating the maximal t-value of
any node under the null hypothesis by a permutation procedure (VRFX); ii)
a cluster-level procedure(CRFX) that considers all the clusters (connected
components) of nodes with a t values higher than a certain threshold (we
take the threshold corresponding to p < 0.01, uncorrected) and tabulates the
distribution of the largest cluster size under the null hypothesis using the
same permutation approach, so that the risk of detecting one cluster larger
than the size threshold is less than α.

Outcome of the procedure. We concentrate on the contrast sentence reading
minus checkerboard viewing that yields regions specifically involved in the
reading task. Altogether, the parcellation outlines about 500 regions in each
hemisphere. Activation detection images are given in Fig. 2. In the left hemi-
sphere, activation specific to the reading task is found along the Superior
Temporal Sulcus (superior and middle temporal gyrus), in Broca’s area, in
the middle part of the pre-central gyrus, and in the Superior Frontal Gyrus
(Supplementary Motor Areas, SMA) by both PRFX and CRFX. Moreover,
PRFX also detects significant activity in the temporal pole and the inferior
temporal gyrus. VRFX detects tiny spots, barely visible in Fig. 2 in all these
regions, except the superior Frontal region. In the right hemisphere, all three
methods detect some activity in the Superior Temporal Sulcus (middle tem-
poral gyrus), but only PRFX detects activity in the right SMA. Overall, the
PRFX procedure is more sensitive than the other techniques. We also tested
other contrasts and found that the PRFX procedure is at least as sensitive
as the others. The VRFX procedure detects very few active nodes, but with
a stronger control, in the sense that the null hypothesis is indeed rejected in
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Fig. 2. Outcome of the parcel-based (left), cluster-based (middle) and node-based
(right) random effects analyses in the left(top) and right (bottom) hemisphere. All
the maps are corrected at the p < 0.05 parcel-, cluster- and voxel-level, respectively.

each detected node. Nevertheless, it detects at least one active node in almost
all the regions found with the other approaches.

The CRFX procedure detects more extended regions than VRFX, but
rejects only the global null hypothesis in these clusters, i.e. it does not reject
the null hypothesis in any particular node. The same applies for the Parcel-
based random effect procedure: it allows the rejection of the null hypothesis
in a certain portion of a pre-defined gyrus, not on all the nodes of the finally
outlined region.

4 Discussion

This work presents a new procedure to segment brain regions at a spatial
scale that is intermediate between the mesh vertices and the anatomical gyri,
which are too coarse (34 in each hemisphere with Freesurfer in (Fischl et
al. (2004)) for an accurate functional description of the cortical surface. The
main novelty of the presented work is to introduce a probabilistic model with
random effects, which introduces the distinction between two sources of vari-
ance: i) the variance related to the spatial spread of the parcels, and thus
simply represents the resolution which is chosen to analyse the data and ii)
the between-subject variance, that represents the intrinsic functional vari-
ability between individuals, as well as potential spatial misfits. Besides, the
introduction of the different variance components allows group-level infer-
ence, i.e. the computation of statistics that represent the magnitude of the
average effect in the population, when compared to between-subjects fMRI
signal variability.
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As can clearly be seen in the results section, the method compares very
favorably in terms of sensitivity with random effects analyses performed on
the coregistered and resampled meshes, both at the cluster- and vertex- level.
Our interpretation of this gain is that the proposed approach better adapts
to the individual configurations.features. Importantly, the method outlines
extended regions or parcels, which potentially provides a less biased repre-
sentation than a few mesh vertices: indeed, parcels represent the position of a
region in the standard space. Finally, the results are easily interpreted, given
that each region belongs to a pre-defined anatomical gyrus.

The proposed model still requires the calibration of two parameters γ and
K, which can be made automatically using standard model selection proce-
dures (BIC, cross-validation). When these parameters are fixed, the proposed
model is not expensive computationally, so that permutation-based tests re-
main affordable. Moreover, the computation can be performed in parallel for
the different gyri. Using a python implementation, we could run the whole
framework in less than 24 hours.

A relatively straightforward extension of the present framework includes
the adaptation to more complex populations, where behavioural or clinical
score are available to characterize the between subject variability of subgroup
structure in the observed population. This might be particularly useful to de-
rive interpretable, i.e. few discriminative features to separate the populations.
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Abstract. Principal component analysis tries to explain and simplify the struc-
ture of multivariate data. For standardized variables, these principal components
correspond to the eigenvectors of their correlation matrix. To obtain a robust prin-
cipal components analysis, we estimate this correlation matrix componentwise by
using robust pairwise correlation estimates. We show that the approach based on
pairwise correlation estimators does not need a majority of outlier-free observations
which becomes very useful for high dimensional problems. We further demonstrate
that the “bivariate trimming” method especially works well in this setting.

Keywords: principal component analysis, robustness, high dimensional data,
trimming.

1 Introduction

Principal component analysis (PCA) is a data-analytic technique that tries
to explain the structure of multivariate data by means of a small number
of principal components. These principal components are uncorrelated linear
combinations of the original variables. As PCA is often used for data reduc-
tion, it is important to find those principal components that contain most of
the information.

In the classical approach, the first principal component corresponds to the
direction in which the variance of the projected data is maximal. Next, the
second principal component is orthogonal to the first one and again maximizes
the variance of the data projected on it and so on. We assume that the
variables have been standardized. Then, the principal component estimates
correspond to the eigenvectors of the sample correlation matrix.

Unfortunately, the classical correlations are very sensitive to aberrant ob-
servations. Consequently, when outliers are present in the data, the principal
components may be affected by these outlying observations and thus become
unreliable. Therefore, robust methods for PCA have been developed based on
a robust covariance matrix (see e.g. Croux and Haesbroeck (2000), Salibian-
Barrera et al. (2006)) or projection pursuit (see e.g. Croux and Ruiz-Gazen
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(2000)). Hubert et al. (2005) proposed the robpca approach which combines
the advantages of projection pursuit with robust scatter matrix estimation.
Atkinson et al. (2004) developed a method based on the forward search.

To study the performance of robust methods, contamination models are
most often used. The standard contamination model assumes that the major-
ity of the observations comes from a nominal distribution such as a multivari-
ate normal distribution, while the remainder comes from another distribution
that generates outliers (see e.g. Maronna et al. (2006)). This means that each
data set is assumed to consist of at least 50% of uncontaminated observa-
tions. However, such models are not always realistic. In high dimensions, it
can easily happen that an amount of outlying measurements is present in
such a way that the majority of the observations is contaminated in at least
one of their components.

To study robustness properties at high dimensional data, Alqallaf et al.
(2009) proposed a flexible contamination model and discussed in more detail
the independent contamination model which is very useful in this context.
This model assumes that each variable is contaminated independently, which
leads to componentwise outliers. Hence, each variable is assumed to have
a majority of outlier-free values, but there is not necessarily a majority of
outlier-free observations anymore.

In this paper, we standardize the data robustly, using the median and the
median absolute deviation. We then consider several robust pairwise corre-
lation estimators and investigate the robustness of the resulting robust PCA
methods under different types of contamination. By estimating the correla-
tion matrix componentwise, the resulting PCA methods should be able to
resist better independent componentwise contamination.

2 Pairwise correlation estimators

Suppose X = {x1, . . . , xn} ⊂ Rp is a set of n observations. Then, the off-
diagonal elements of the corresponding correlation matrix R ∈ Rp×p are
obtained by pairwise robust correlation estimates Rjk = ρT (Xj , Xk) (j 6= k),
with Xl = {x1l, . . . , xnl} (l = 1, . . . , p). We consider the following four choices
for the robust pairwise correlation estimator ρT .

2.1 Univariate trimming.

An easy way to obtain a robust measure of correlation ρT is to trim the
data componentwise as follows. For each (standardized) observation xi; i =
1, . . . , n we define a vector of componentwise weights (wi1, . . . , wip) with
wij = I(|xij | ≤ 2). Then, ρUni-Tr(Xj , Xk) is defined as the classical correla-
tion coefficient of the weighted measurements of the corresponding variables.
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2.2 Bivariate trimming.

Since the univariate trimming approach does not take into account the ori-
entation of the bivariate data, Khan et al. (2007) developed a bivariate
approach. For each set of variables (Xj , Xk) an initial correlation matrix
R0 ∈ R2×2 is computed by using two different tuning constants to perform
univariate trimming of the data. The size of the tuning constant is large (e.g.
2) for the quadrants of the bivariate space containing the majority of obser-
vations and small for the remaining two quadrants (see Khan et al. (2007)
for details). Next, bivariate Mahalanobis distances are computed based on
R0 and a 95% tolerance ellipse is used to trim possible outliers. The final cor-
relation estimate is the classical correlation of the trimmed bivariate data.
We will refer to this method as ρBi-Tr.

2.3 Gnanadesikan-Kettenring estimator.

Another alternative to define ρT is to use the Gnanadesikan-Kettenring es-
timator (Gnanadesikan and Kettenring (1972)) as used in e.g. Maronna and
Zamar (2002). It is based on the identity

Cor(X,Y ) =
1
4
(σ(X + Y )2 − σ(X − Y )2)

where σ is the standard deviation and X,Y is a pair of standardized random
variables. By using a robust scale estimator to estimate σ, a robust correlation
estimate is obtained. Here, we consider two choices for σ: the τ scale of Yohai
and Zamar (1988) and the Qn estimator of Rousseeuw and Croux (1992).
The corresponding correlation estimates are denoted by ρGK-tau and ρGK-Qn

respectively.

2.4 Quadrant correlation.

Finally, the quadrant correlation (see e.g. Alqallaf et al. (2002)) is defined as
ρQC(Xj , Xk) = sin(π

2 rjk) with

rjk =
∑n

i=1 sgn(xij) sgn(xik)∑n
i=1 |sgn(xij)| |sgn(xik)|

.

Note that the correlation matrix R, obtained by using one of these pair-
wise correlation estimators, is not necessarily positive (semi-)definite. Usu-
ally, this is not a problem because in PCA the focus is on the eigenvectors
corresponding to the largest (positive) eigenvalues. However, if positive defi-
niteness is needed, the techniques mentioned in Alqallaf et al. (2002) can be
used.
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3 Simulation Study

Through simulation we now investigate the effect of different types of outliers
on the estimation of the principal components by classical and robust PCA.
In particular, we present root mean squared errors and mean angles of the
eigenvectors of the correlation matrices.

The study involved samples X = {x1, . . . , xn} of size n = 100 in p = 5
dimensions. The samples were randomly drawn from the multivariate normal
distribution Np(0, R1) or Np(0, R2) where

R1 =


1 .8 .6 .4 .2
.8 1 .8 .6 .4
.6 .8 1 .8 .6
.4 .6 .8 1 .8
.2 .4 .6 .8 1

 and R2 =


1 .9 .9 .9 .9
.9 1 .9 .9 .9
.9 .9 1 .9 .9
.9 .9 .9 1 .9
.9 .9 .9 .9 1


Next, different types of contamination were added in such a way that they
severely affect classical PCA:

• Bivariate correlation outliers: Since X1 and X2 are strongly posi-
tively correlated, for ε% of the data these components were shifted over
a distance of 2.5 in direction (1,−1). Moreover, the variance of these
components was multiplied by 0.1.
• Multivariate correlation outliers: We introduced ε% of contamina-

tion in the direction of the eigenvector with the smallest eigenvalue. For
R1, the data were shifted over a distance of 15 in this direction and for
R2, we shifted the data over a distance of 20. The variance of the outliers
was again multiplied by 0.1.
• Componentwise outliers: For each variable independently, a fraction ε

of univariate outliers was introduced. The outlying values were obtained
by shifting these values to center 10.

We present results for the cases of 0% and 20% outliers. For each setting, we
generated N = 500 samples. For each of these samples X(l); l = 1, . . . , N we
computed the correlation matrix estimates R(l)

T , and its corresponding eigen-
vectors v(l)

T,1, v
(l)
T,2, v

(l)
T,3, v

(l)
T,4, v

(l)
T,5. Next, for each of the eigenvectors v1, . . . , v5

corresponding to R1 or R2 above, the root mean squared error (RMSE) and
the mean angle of the various methods were calculated as

RMSE(vT,k) =
√

ave
j=1,...,p

( ave
l=1,...,N

(v(l)
T,kj − vkj)2)

and
Mean Angle(vT,k) = ave

l=1,...,N
(acos(|vt

kv
(l)
T,k|))

where acos(|vt
kv

(l)
T,k|) ∈ [0; π

2 ] is the angle between the normalized eigenvector

vk and its estimated counterpart v(l)
T,k.
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We first consider the uncontaminated case. The upper row of Figure 1
shows the RMSE of the eigenvectors for the robust pairwise correlation ma-
trices, robpca and the classical PCA method (cpca). The bottom row shows
the mean angle of these eigenvectors. On the left hand side, the result for R1

is shown whereas the right side shows the result for R2.
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Fig. 1. Simulation results for uncontaminated data with correlation matrix R1

(left) and R2 (right): RMSE (upper row) and mean angle (bottom row) of the
eigenvectors for the different methods.

Note that as PCA is a data reduction technique, we focus on the first K
eigenvectors. To find a good value for K, one can make a screeplot of the
eigenvalues or look at the percentage of variance explained by the first K
eigenvectors. For R1, the first three eigenvectors explain already 94.75% of
the total variance so we focus on K = 3. For R2, we use K = 1 as the first
eigenvector explains 92% of the total variance.

When there are no outliers, the classical PCA method clearly performs
best. However, the difference between cpca and the other methods is relatively
small, especially for data with correlation matrix R2.

Figure 2 shows the results for data with 20% of bad bivariate correlation
outliers. We see that the RMSE and the mean angle become large for cpca,
but robpca and Bi-Tr yield a considerable improvement.

The same holds for data with 20% of bad multivariate correlation outliers
as can be seen from Figure 3. This clearly indicates the non-robustness of
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Fig. 2. Simulation results for data with 20% of bad bivariate correlation outliers:
RMSE (upper row) and mean angle (bottom row) of the eigenvectors for the dif-
ferent methods. Results for R1 (left) and R2 (right).

cpca. Also GK-tau, GK-Qn and QC seem to be less robust than robpca and
Bi-Tr, especially when multivariate correlation outliers are present.

Figure 4 shows the results for 20% of componentwise outliers. Now, robpca
clearly performs much worse than the pairwise correlation approach, because
there is no majority of uncontaminated observations anymore. Indeed, with
20% of contamination in each variable independently, there is only a slight
minority of completely clean observations left. As robpca is based on at least
50% of the observations, it is forced to use contaminated observations, which
results in an unreliable estimate. The pairwise correlation approach on the
other hand, does not need a majority of outlier-free observations and thus
better withstands this type of outliers. Of all pairwise correlation estimators,
Bi-Tr performs best. It yields a small RMSE and mean angle, which indicates
that the principal components are estimated accurately.

4 Conclusion

We considered robust PCA based on robust pairwise correlation estimates.
The resulting robust PCA clearly estimates the principal components bet-
ter in settings with independent contamination. It was shown empirically
that the pairwise correlation estimates do not need a majority of outlier-free
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Fig. 3. Simulation results for data with 20% of bad multivariate correlation out-
liers: RMSE (upper row) and mean angle (bottom row) of the eigenvectors for the
different methods. Results for R1 (left) and R2 (right).

observations and hence, can better withstand this type of outliers. The simu-
lation study indicated that PCA based on correlation estimates obtained by
bivariate trimming (Bi-Tr) works well, compared to robpca, when the data
are contaminated and outperforms robpca with componentwise outliers.
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Abstract. Histogram data is a kind of symbolic representation which allows to
describe an individual by an empirical frequency distribution. In this paper we
introduce a linear regression model for histogram variables. We present a new Or-
dinary Least Squares approach for a linear model estimation, using the Wasserstein
metric between histograms. In this paper we suppose that the regression coefficient
are scalar values. After having illustrated the concurrent approaches, we corrobo-
rate the proposed estimation method by an application on a real dataset.

Keywords: probability distribution function, histogram data, ordinary least
squares, Wasserstein distance

1 Introduction

Suppose the population is partitioned into K clusters, sub-populations or
macro-unit observations, each of them consisting of nk (k = 1, . . . ,K) in-
dividuals: for example, studying the income of a region, we may observe
the incomes of those citizens living in the municipalities. The population
is observed with respect to two variables Y and X for which we want to
investigate the causal relationship Y = f(X) + e. For each macro-unit we
assume to know only the marginal distributions of X and Y , that we de-
note by fk(X) and fk(Y ) and in some occasions we may not know the nk

too. Further, we do not know the joint distribution fk(X,Y ). This situa-
tion is quite common in practise. For example, if we browse the SIMBAD
(http://simbad.u-strasbg.fr/simbad/) astronomical database, for the stellar
object SIRIUS A we obtain a Redshift in terms of V(km/s) equal to −7.6±0.9
and a Parallaxes of 379.21±1.58, or in other words, assuming a Gaussian dis-
tribution, we may say that variable RedshiftSIRIUS A ∼ N(−7.6, 0.9) and
ParallaxesSIRIUS A ∼ N(379.21, 1.58), but the database does not report
how many observations have been done (nk) and what is the joint density
function f(Redshift, Parallaxes). Other similar cases occur, when, for con-
fidentiality matters, we obtain descriptions of groups of individuals at an
aggregate level from the Official statistics databases. In particular, the de-
scription of the groups hold the following characteristics:

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 60, c© Springer-Verlag Berlin Heidelberg 2010
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Assumption of error-free representation of macro-units For a macro-
unit, we assume that X1, X2, . . . are i.i.d random variables in R with cu-
mulative distribution function F (x). The empirical distribution function
forX1, . . . , Xn is defined by Fn(x) = 1

n

∑n
i=1 I(−∞,x](Xi) where I(−∞,x] is

the indicator function. Assuming that n is large enough for each macro-
unit, or the sample size in each macro-unit is chosen according to the
Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al. (1956)) derived
from the Glivenko-Cantelli theorem, we assume that the description of a
macro-unit by means of the empirical distribution function is error-free,
i.e., we assume that the observed distribution function (or a model of it)
corresponds to the theoretic distribution of X in the macro-unit.

First two moments are finite for each macro-unit, X and Y have finite
the first two moments.

Internal independence Another assumption is the internal independence
of X and Y ,i.e., fk(x, y) = fk(x) fk(y). This is a common assumption in
Symbolic Data Analysis.

The above conditions are in accordance with the definition of symbolic modal
variable (Bock and Diday (2000)) equipped with a numerical (continuous)
support. Bock and Diday (2000) give three kinds of possible description:

Histogram variable In this case the description is a classic histogram where
the support is partitioned into intervals, where, each of them is weighted
by the observed density (or by the observed frequency if the intervals are
of equal width);

Empirical distribution function variable The description of a macro-
unit is done according to the empirical distribution function Fnk

(x);
Model of distribution variable The macro-unit description is done ac-

cording to a predefined model of random variable. For example, the macro
unit is described by a normal distribution X ∼ N(µk, σk).

After presenting a formalization about histogram data, we introduce the
Wasserstein distance in order to define an OLS criterion for a linear bivariate
model.Considering two histogram variable Y and X observed on N macro-
units, the aim is to find the best linear transformation of X that best (in a
OLS way) fits the Y variable.

2 Histogram Data and Wasserstein Distance

Given a set E = s1, . . . , sn of n macro-units, we assume that each macro-unit
is described by a histogram for the variable X, according to the definition of
histogram variable of Bock and Diday (2000).A histogram can be described
as a density function fi(x) where the support is a partition of a closed subset
of < consisting of intervals of <. With each density fi(x) is associated a

cumulative distribution function Fi(x) =
x∫

−∞
fi(x)dx corresponding to the
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quantile function (qf) is F−1
iX (t) = (x|Fi(x) = t). Quantile functions are non

decreasing functions because they are the inverses of non decreasing functions
(the cdf’s). We must remember that, in general the sum of two qf’s is again
a quantile function. The same it is not true for the difference between two
qf’s. Indeed, the sum of two not decreasing is a not decreasing function too,
while the difference is not monotonic in general. Further, the algebraic sum
of a scalar with a qf is a qf, like the product of a positive real number and a
qf. In order to simplify the notation, we denote the following quantities:

xi(t) = F−1
iX (t)

x̄i =
1∫
0

xi(t)dt and σ2
xi

=
1∫
0

[xi(t)]
2
dt− [x̄i]

2 ⇒
1∫
0

[xi(t)]
2
dt = σ2

xi
+ [x̄i]

2

According to Verde and Irpino (2008), we can write:

x̄(t) = 1
n

n∑
i=1

xi(t) ∀t ∈ [0, 1]; x̄ = 1
n

n∑
i=1

1∫
0

xi(t)dt = 1
n

n∑
i=1

x̄i =
1∫
0

x̄(t)dt

ρ(xi, xj) =

1∫
0

xi(t)xj(t)dt−x̄ix̄j

σxi
σxj

⇒
1∫
0

xi(t)xj(t)dt = ρ(xi, xj)σxi
σxj

+ x̄ix̄j

In order to compare two histograms, the authors propose to use the L2−Was-
serstein-Kantorovich metric:

dW (xi, xj) :=

√√√√√ 1∫
0

(xi(t)− xj(t))
2
dt. (1)

The squared L2 Wasserstein metric can be decomposed (Irpino and Verde
(2008)) as a sum of squared Euclidean distances between the means, the
standard deviations and a residual part that can be assumed as a shape
distance between two distributions:

d2
W = (x̄i − x̄j)2︸ ︷︷ ︸

Location

+(σxi − σxj )
2︸ ︷︷ ︸

Size

+2σxiσxj (1− ρ(xi, xj))︸ ︷︷ ︸
Shape

(2)

where ρ(xi, xj) is the correlation of the quantiles of the two distributions as
represented in a classical QQ plot.
We denote xc

i (t) = xi(t) − x̄i as the centered qf of xi. Under this notation
Cuesta-Albertos et al. (1987) prove that:

d2
W (xi, xj) = (x̄i − x̄j)2 + d2

W (xc
i , x

c
j) (3)

or, in other words, the (squared) Wasserstein distance between two distri-
bution or random variables, is equal to the sum of the squared Euclidean
distance between their means (the first moments) and the squared Wasser-
stein distance between the two centered random variables.
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3 The Model

Given a vector of n histograms (f1(x), . . . , fn(x)) for the X variable and a
vector of n histograms for the Y variable (f1(y), . . . , fn(y)), we propose a
method for the investigation of a casual relationship between their quantile
functions, or in other words, how to predict the quantile function of yi(t),
once we observe the quantile function xi(t):

yi(t) = ϕ (xi(t)) + εi(t) i = 1, . . . , n and t ∈ [0, 1] (4)

such that the error term is the following function:

εi(t) = yi(t)− ϕ (xi(t)) i = 1, . . . , n and t ∈ [0, 1]. (5)

We assume a linear model for ϕ (xi(t)) of such kind:

ϕ (xi(t)) = α+ β1x̄i + β2x
c
i (t) (α, β1, β2) ∈ <3. (6)

The choice of considering two terms for the β’s is founded on the fact a linear
transformation of a quantile function into another can be done in two steps:
we can translate the quantile function by multiplying the mean by a positive
or a negative number and we can shrink or enlarge the quantile function by
multiplying only by a positive number. Considering the linear transformation
of quantile functions, we assume that the distribution functions that are
related to the qf’s should have a similar shape in terms of third (skew) and
fourth (kurtosis) standardized moments (i.e., ρ(xi, xj), ρ(xi, yi) and ρ(yi, yj)
should be close to 1). For example, there is no linear transformation that
can transform a Gaussian variable into a χ2 one. Under this consideration
we express the model as follows:

yi(t) = α+ β1x̄i + β2x
c
i (t) + εi(t). (7)

We propose to estimate the model parameters using the Ordinary Least
Squares minimization problem based on the Wasserstein distance between
yi(t) and ϕ (xi(t)), as follows:

arg min
(α,β1,β2)∈<3

f(α, β1, β2) =
n∑

i=1

d2
W (yi(t), ϕ (xi(t))) (8)

where

f(α, β1, β2) =
n∑

i=1

1∫
0

[yi(t)− α− β1x̄i − β2x
c
i (t)]

2
dt. (9)
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The parameters are obtained according the usual first order conditions:

δf
δα = −2

n∑
i=1

1∫
0

(ȳi + yc
i (t)− α− β1x̄i − β2x

c
i (t)) dt = 0 (I)

δf
δβ1

= −2
n∑

i=1

1∫
0

x̄i (ȳi + yc
i (t)− α− β1x̄i − β2x

c
i (t)) dt = 0 (II)

δf
δβ2

= −2
n∑

i=1

1∫
0

xc
i (t) (ȳi + yc

i (t)− α− β1x̄i − β2x
c
i (t)) dt = 0 (III)

(10)

The solution for α, β1 and β2 are the following:

α = ȳ − β1x̄; β1 =

n∑
i=1

x̄iȳi − nȳ x̄
n∑

i=1

x̄2
i − nx̄2

; β2 =

n∑
i=1

ρi(X,Y )σxiσyi

n∑
i=1

σ2
xi

.

The terms α and β1 are the same of a regression between the means of the
yi(t)’s and the means of the xi(t)’s. The interesting term is the β2: it is al-
ways positive as is the ratio of two positive numbers. This solves naturally
a problem that is presented, for example, in the regression method proposed
by Lima Neto and De Carvalho (2010) for interval data. They propose a re-
gression on midpoints and ranges of intervals using a constrained regression,
where the constraint is the positivity of the coefficient related to the vari-
ability of ranges of the intervals of the explicative variable and that of the
explained one.

3.1 Tools for the evaluation of the Goodness of Fit of the model

Verde and Irpino (2008) proved that the Wasserstein distance can be used
for the definition of an inertia measure, that, for grouped data satisfies the
Huygens theorem of decomposition.

SS(Y ) =
n∑

i=1

d2
W (yi(t), ȳ(t)) =

n∑
i=1

1∫
0

[yi(t)− ȳ(t)]2 dt.

A common tool for the evaluation of a fitting procedure is the well known R2

statistics deriving from the following decomposition of SS(Y ):

SS(Y ) = SSError + SSRegression

where ŷi are the predicted values. In our case, this equality holds only when
the conditions of equality shape and of proportionality hold. In our case we
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may prove that:

SS(Y ) =
n∑

i=1

d2
W (yi(t), ȳ(t)) =

n∑
i=1

1∫
0

[ŷi(t)− yi(t)]
2
dt

︸ ︷︷ ︸
SSError

+

+
n∑

i=1

1∫
0

[ȳ(t)− ŷi(t)]
2
dt

︸ ︷︷ ︸
SSRegression

−2n

1∫
0

ȳ(t)ē(t)dt

︸ ︷︷ ︸
Bias

(11)

where ŷi(t) = α+ β1x̄i + β2x
c
i (t),

bias =

1∫
0

ȳ(t)ē(t)dt =
{
σ2

ȳ − β2ρ(X̄, Ȳ )σx̄σȳ

}
(12)

and ē(t) is the mean (or barycenter) distribution of the distributions of the
errors for each observation. The term in eq. 12 reflects the impossibility of
the linear transformation of x̄(t) of reflecting the variability structure of ȳ(t).
In general, this term goes to zero when histograms have the same shape (i.e.,
from the third ones forward, the standardized moments of the histograms are
equal) and the standard deviations of xi’s are proportional to the standard
deviations yi’s. We assume that this term is related to the capacity of the
model of predict the mean distribution ȳ(t) from the mean distribution x̄(t),
and can be considered as a bias of prediction of the variability of ȳ(t) related
to the linear form of the model. If we rewrite the SSRegression as

SSRegression =
n∑

i=1

(
ȳi − ¯̂yi

)2 +
n∑

i=1

1∫
0

[ȳc(t)− ŷc
i (t)]

2
dt−

1∫
0

ȳ(t)ē(t)dt (13)

In this case, the classical R2 = 1 − SSError

SS(Y ) statistic can be lesser of zero
or greater than 1. This occurs when the shapes (i.e, the internal variability
structures) of the histograms are very different within the X or between the
xi(t)’s and the yi(t)’s. In order to obtain a statistics that does not suffer of
the described drawback, we propose to adopt the following general index that
varies between 0 and 1:

PseudoR2 = min
[
max

[
0; 1− SSError

SS(Y )

]
; 1
]
. (14)

PreudoR2 index should be presented also with the quantity bias
SS(Y ) . Indeed,

the PseudoR2 show the goodness of fit when all the data have the same
shape and a proportional standard deviation, while bias

SS(Y ) shows the effect of
different variability structure in the data on the prediction model. In this for-
mulation, this effect cannot be deleted from the model except if we formulate
a different functional model for the regression problem.
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4 Application

In this section, we show some results of clustering of data describing the
mean monthly temperature, pressure, relative humidity, wind speed and total
monthly precipitations of 60 meteorological stations of the People’s Republic
of China1, recorded from 1840 to 1988. For the aims of this paper, we have
considered the distributions of the variables for January (the coldest month)
and July (the hottest month) as presented in Verde and Irpino (2008). For a
simple comparison, we propose to evaluate if it is possible to predict tempera-
ture, pressure, relative humidity, wind speed and precipitation in January on
the basis of the same histogram variable observed in July. For each bivariate
model we collect the estimated parameters, the correlation among histogram
variables (as proposed in Verde and Irpino, (2008)) and the components of
the sum of squares of the dependent variable. In table 1, we present some

Variable Y X α β1 β2 PseudoR
2 Bias

SS(Y )

Relative Umidity (%) July January 472.52 0.393 0.593 0.1564 -0.0296
Station Pressure (mb) July January 515.31 0.929 0.993 0.9981 0.0007
Temperature (Cel) July January 254.68 0.196 0.521 0.3813 -0.0185
Wind Speed (m/s) July January 7.98 0.638 0.848 0.6563 -0.0564
Precipitation (mm) July January 1337.22 0.617 3.578 0.0000 -0.9275

Table 1. Five bivariate OLS regressions on China dataset. Main Results.

results about five bivariate regressions. In general, α’s and β1’s can be read as
a classic regression result. The β2’s indicates if the predicted histogram vari-
able have a greater (when β2 > 1) or a lower (when 0 < β2 < 1) variability
with respect the explicative one. For example, the Wind speed in July have a
lower variability than the Wind speed in January, while the Station pressure
has the same variability in the two months. Particular attention shold be
paid to the bias factor. For example, considering the variable Precipitation,
the last column indicates that there is a 92.75% of bias due to the different
variability structure of the Y and of the X. In this case, the linear model it is
not useful, i.e., a linear transformation of the histogram variable Precipitation
in January cannot give a good forecast of the Precipitation in July.

5 Conclusions

In the present paper, we have presented a novel method for the estimation of
a linear regression using Ordinary Least Squares method and the Wasserstein
distance for histogram data. The proposed model is evaluated on the basis
of a variability measure based on Wasserstein distance as proposed in Verde

1 Dataset URL: http://dss.ucar.edu/datasets/ds578.5/
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and Irpino (2008). The model has good performance when the bias factor is
low. It occurs when the histograms have a similar shape and the standard
deviation of the xi(t)’s are nearly proportional to the standard deviation
of the yi(t)’s. Considering the nature of data and the state of the art on
histogram data it is not possible to explain the inferential aspect of the model
as in the classic case. Indeed, it is not easy establish the characteristics of
the error term (where errors are functions). The OLS guarantees only that
the mean of the mean values of the error functions are equal to zero. A
resampling technique like bootstrap estimation can allow an estimation of
the variability of estimates. Further, starting from the definition of a scalar
product of functions will be interesting to study the multivariate regression
case.
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Abstract. The minimum covariance determinant (MCD) method is a robust es-
timator of multivariate location and scatter (Rousseeuw (1984)). Computing the
exact MCD is very hard, so in practice one resorts to approximate algorithms.
Most often the FASTMCD algorithm of Rousseeuw and Van Driessen (1999) is
used. The FASTMCD algorithm is affine equivariant but not permutation invari-
ant. Recently a deterministic algorithm, denoted as DetMCD, is developed which
does not use random subsets and which is much faster (Hubert et al. (2010)). In
this paper DetMCD is illustrated in a calibration framework. We focus on robust
principal component regression and partial least squares regression, two very pop-
ular regression techniques for collinear data. We also apply DetMCD on data with
missing elements after plugging it into the M-RPCR technique of Serneels and
Verdonck (2009).

Keywords: deterministic algorithm, outliers, robustness, RPCR, RSIMPLS

1 Introduction

The Minimum Covariance Determinant (MCD) method of Rousseeuw (1984)
is a highly robust estimator of multivariate location and scatter. Given an
n× p data matrix X = (x1, . . . ,xn)T with xi = (xi1, . . . , xip)T , its objective
is to find h observations (with n/2 ≤ h ≤ n) whose covariance matrix has
the lowest determinant. The MCD estimate of location is then the average of
these h points, and the scatter estimate is a multiple of their covariance ma-
trix. The MCD has a bounded influence function and can attain the highest
possible breakdown value (i.e. 50%) when h = b(n+ p+ 1)/2c. In addition
to being highly resistant to outliers, the MCD is affine equivariant, i.e. the
estimates behave properly under affine transformations of the data.

Although the MCD was already introduced in 1984, its practical use
only became feasible since the introduction of the computationally efficient
FASTMCD algorithm of Rousseeuw and Van Driessen (1999). The FASTMCD
algorithm starts by drawing random subsets of size p + 1. It needs to draw
many in order to obtain at least one that is outlier-free.

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT’2010,
DOI 10.1007/978-3-7908-2604-3 61, c© Springer-Verlag Berlin Heidelberg 2010
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Recently, Hubert et al. (2010) have developed a deterministic algorithm
for the MCD, denoted as DetMCD, which does not use random subsets and
runs even faster than FASTMCD. Unlike the latter it is permutation invari-
ant, i.e. the result does not depend on the order of the observations in the
data set. It starts from only a few well-chosen initial estimates. By an ex-
tensive simulation study Hubert et al. (2010) have shown that DetMCD is
as robust as FASTMCD and that the lack of affine equivariance is small.
In Hubert et al. (2010) the performance of the DetMCD algorithm is illus-
trated in the context of principal component analysis, discriminant analysis,
and MCD regression (Rousseeuw et al. (2004)). The latter method is a ro-
bust multivariate regression technique for low-dimensional predictors xi and
vector-valued response variables yi. The MCD regression estimates are ob-
tained by matrix operations on the MCD location and scatter estimates of
the joint (xi,yi) data. In this paper we investigate the use of the DetMCD
algorithm in robust principal component regression (RPCR) and robust par-
tial least squares regression (RSIMPLS). These two regression techniques fit
a linear relationship between two sets of variables and are mostly used when
the number of independent variables xi is very large or when the regressors
are highly correlated (also known as multicollinearity).

In Section 2 we describe the DetMCD algorithm in detail, whereas in
Section 3 we briefly summarize RPCR and RSIMPLS. Section 4 presents the
results of a simulation study in which we investigate the effect of replacing the
FASTMCD algorithm with the DetMCD algorithm. We compare the robust-
ness of the algorithms by adding different percentages of contamination in the
simulated data sets, and we also compare their computation times. Moreover,
both algorithms for MCD are compared on data with missing elements after
plugging them into the M-RPCR method of Serneels and Verdonck (2009).

2 The DetMCD algorithm

In this section we describe the deterministic algorithm to compute the MCD,
developed in Hubert et al. (2010). Given the data matrix X with rows xT

i ,
we denote the columns as Xj (j = 1, . . . , p). For a data set X with estimated
center µ̂ and scatter matrix Σ̂, the statistical distance of the i-th observation
xi is written as

D(xi, µ̂, Σ̂) =
√

(xi − µ̂)T Σ̂
−1

(xi − µ̂).

2.1 General procedure

First, each variable Xj is standardized by subtracting its median and dividing
by the Qn scale estimator of Rousseeuw and Croux (1993). This standard-
ization makes the algorithm location and scale equivariant. The standard-
ized data set is denoted by Z with rows zT

i (i = 1, . . . , n) and columns Zj

(j = 1, . . . , p).
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Next, seven initial estimates µ̂l(Z) and Σ̂l(Z) (l = 1, . . . , 7) are con-
structed for the center and scatter of Z. Apart from the last one, each com-
putes a preliminary estimate Sl of the covariance or correlation matrix of Z.
They will be described in Section 2.2. As these Sl may have very inaccurate
eigenvalues, the following steps are applied to each. The first two steps are
performed to make the robust scatter matrix positive definite and more affine
equivariant. They are similar to steps in the orthogonalized Gnanadesikan-
Kettenring (OGK) algorithm (Maronna and Zamar (2002)).

a. Compute the matrix E of eigenvectors of Sl and put B = ZE.
b. Estimate the covariance of Z by Σ̂l(Z) = ELET where

L = diag
(
Q2

n(B1), . . . , Q2
n(Bp)

)
.

Here Qn(B1) is the Qn scale estimator applied to the first column of B.
c. To estimate the center of Z sphere the data, apply the coordinatewise

median, and transform it back, i.e. µ̂l(Z) = Σ̂
1/2

l (med(ZΣ̂
−1/2

l )).

For all estimates (µ̂l(Z), Σ̂l(Z)) we compute the statistical distances

di,l = D(zi, µ̂l(Z), Σ̂l(Z)).

For each initial estimate l the h observations with smallest di,l are taken and
concentration steps (C-steps) are applied until convergence. (A C-step re-
duces the MCD objective function and is a major component of the FASTMCD
algorithm.) The solution with smallest determinant is called the raw DetMCD.
As in the FASTMCD algorithm, we then compute reweighted estimates to
increase statistical efficiency while retaining high robustness.

2.2 Initial estimates

1) The first initial scatter estimate is obtained by computing the hyperbolic
tangent (sigmoid) of each column of Z, i.e. Yj = tanh(Zj) for j = 1, . . . , p.
Computing the classical correlation matrix of Y yields S1 = corr(Y ).

2) Let Rj be the ranks of the column Zj , and put S2 = corr(R). This is the
Spearman correlation matrix of Z.

3) For S3 normal scores are computed from these ranks, namely Tj =
Φ−1((Rj − 1/3)/(n+1/3)) where Φ(.) is the normal cumulative distribu-
tion function, and then we set S3 = corr(T ).

4) The fourth scatter estimate is based on the spatial sign covariance matrix
of Visuri et al. (2000): define ai = zi/‖zi‖ for all i and let S4 = cov(A).

5) For S5 we take the covariance matrix of the dn/2e standardized observa-
tions zi with smallest norm.

6) The sixth scatter estimate is the raw OGK estimator.
7) Finally the classical mean µ̂7(Z) and covariance matrix Σ̂7(Z) of the

full data set are used.
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3 Robust calibration methods

In practice one often needs to estimate a linear relation between an n × p
predictor data matrix X and an n×q predictand matrix Y . When the errors
are normally distributed, the optimal solution to this problem is to use the
least squares estimator. However, when the number of predictors exceeds the
number of cases the least squares regression estimator cannot be computed,
and when the predictor data matrix X contains highly correlated columns
the method is numerically unstable. Two popular regression techniques that
tackle these problems are principal component regression (PCR) and partial
least squares regression (PLSR).

The idea behind PCR is to replace the original regressors by their principal
component scores (T ). Hubert and Verboven (2003) have proposed a robust
PCR method (RPCR) by robustifying both steps of PCR. First a robust
principal component analysis (PCA) method is applied to the regressors. For
low-dimensional data the MCD estimator is used for this, whereas for high-
dimensional data ROBPCA (Hubert et al. (2005)) is applied. The latter is
a hybrid method that combines projection pursuit with the MCD. Next, a
robust regression is performed with the robust scores as predictor variables.
For a univariate response variable (q = 1) this is done by means of LTS
regression (Rousseeuw (1984)), and for q > 1 by means of MCD regression.

In PLSR the scores are computed by maximizing a covariance criterion be-
tween the x- and y-variables. Unlike PCR, this technique uses the responses
already from the start. A well-known PLSR method is the SIMPLS algorithm
(de Jong (1993)). A robust SIMPLS method, RSIMPLS (Hubert and Vanden
Branden (2003)), starts by applying ROBPCA to the x- and y-variables and
then proceeds analogously to the SIMPLS algorithm. In the second stage of
the algorithm again a robust regression is applied.

Both RPCR and RSIMPLS thus apply the MCD estimator. For RPCR
with q > 1 this is done in the PCA and in the regression step. RSIMPLS uses
MCD in the first stage only, as part of ROBPCA.

When missing values occur in the data, RPCR and RSIMPLS cannot
be applied anymore. However, in Serneels and Verdonck (2009) a method
(M-RPCR) is presented to perform RPCR on data with missing elements
according to the missing at random mechanism (MAR). As the algorithm
is based on the expectation-maximization approach, it is iterative and con-
sequently it applies MCD many times. Note that for RSIMPLS the same
methodology could be applied, but this has not been worked out yet.

4 Simulation study

In this section we first compare RPCR and RSIMPLS using the FASTMCD
and the DetMCD algorithms on several simulated data sets without miss-
ing values. Different types of outliers are added to the data. This allows to
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study the efficiency at uncontaminated data, as well as the robustness at con-
taminated data. Next, we study the M-RPCR method on data with missing
elements.

4.1 Simulation design

A straightforward way to set up a simulation for PCR and SIMPLS is to
generate data according to the bilinear latent variable model (Burnham et
al. (1999)) with given complexity k. We will consider{

X = T kP T
k +Np (0p, 0.1Ip)

Y = T kQT
k +Nq (0q, 0.1Iq)

(1)

where q = 3, k = 2, T k ∼ Nk (0k,Σ), and Σ = diag(6, 2). We will specify p
later. For the matrix Qk we took

Qk =
(
−2 1 2
1 −1 −2

)
.

The loadings P k are defined as the eigenvectors of the covariance matrix of
k independent uniform variables on [0,1]. The vector 0p denotes the vector
of length p with all entries equal to zero, and Ip is the identity matrix of size
p.

The contaminated parts of the data T ε, Xε, and Y ε were constructed as
follows. Bad leverage points were generated as Xε = T εP

T
k +Np(0p, 0.1Ip)

with T ε ∼ Nk (301k, 0.1Σ). Vertical outliers are obtained as Y ε = T kQT
k +

Np (301p, 0.1Ip).
Note that X and Y in the latent variable model (1) satisfy the regression

relation
Y = XB + E

with B = P kQT
k and E normally distributed errors. In order to evaluate the

different methods, the following criteria are used:

• The bias in the regression coefficients:

eB =
1
pq

∥∥∥B− B̂
∥∥∥

F
,

where ‖ · ‖F denotes the Frobenius norm of the matrix.
• The predictive ability for a test set (Xt,Y t) of the same size as (X,Y ):

eP =
1
nq

∥∥∥Y t − Ŷ t

∥∥∥
F
.

• The computation time t (in seconds).
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Each of these performance measures should be as close to zero as possible. We
considered both low-dimensional (n = 100 and p = 6) and high-dimensional
(n = 40 and p = 200) data, and 100 data sets were generated for each
situation. The number of selected components in RPCR and RSIMPLS were
fixed to the actual complexity k = 2.

For the contamination percentage ε we chose the values 0%, 10% and 25%.
The parameter α = (n − h)/n, denoting the fraction of outliers the method
should be able to resist, was set to 25%, 25% and 50% respectively. To study
M-RPCR with FASTMCD and DetMCD we randomly replaced 10% of the
elements of X by missing values.

All simulations were carried out in MATLAB 7.4 (The MathWorks, Nat-
ick, MA). Many functions were taken from LIBRA, the Matlab library for
Robust Analysis (Verboven and Hubert (2005)).

4.2 Results

In the following tables we report for each performance criterion the average
over 100 runs. Tables 1 and 2 show the results for the low-dimensional and
the high-dimensional data without missing elements. We can conclude that
the algorithms perform similarly well for the first two performance criteria,
irrespective of the data dimension. However, we see that the algorithms dif-
fer in computation time. As DetMCD is much faster than FASTMCD, its
computational advantage carries over to RPCR and RSIMPLS. The speedup
is most prominent for RPCR in low dimensions, because MCD is applied
more often there than in RSIMPLS. In high dimensions this effect is reduced
as RPCR then applies ROBPCA to the regressors, and ROBPCA includes
MCD but also a time-consuming projection pursuit part that is not changed.

Clean Bad leverage Vertical outliers
ε 0 0.10 0.30 0.10 0.30

RPCR (FASTMCD) eB 0.0147 0.0144 0.0153 0.0150 0.0175
eP 0.0446 0.0447 0.0450 0.0447 0.0450
t 3.15 3.14 3.13 3.15 3.14

RPCR (DetMCD) eB 0.0143 0.0143 0.0152 0.0147 0.0159
eP 0.0446 0.0447 0.0449 0.0447 0.0449
t 0.51 0.51 0.53 0.51 0.52

RSIMPLS (FASTMCD) eB 0.0147 0.0146 0.0154 0.0149 0.0163
eP 0.0446 0.0447 0.0450 0.0447 0.0449
t 2.42 2.41 2.40 2.41 2.40

RSIMPLS (DetMCD) eB 0.0145 0.0145 0.0153 0.0148 0.0162
eP 0.0446 0.0447 0.0450 0.0447 0.0449
t 1.76 1.75 1.76 1.76 1.76

Table 1. Simulation results for low-dimensional data.
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Clean Bad leverage Vertical outliers
ε 0 0.10 0.30 0.10 0.30

RPCR (FASTMCD) eB 0.0025 0.0026 0.0029 0.0025 0.0025
eP 0.0948 0.0974 0.1072 0.0946 0.0969
t 3.79 3.78 3.78 3.79 3.78

RPCR (DetMCD) eB 0.0025 0.0026 0.0028 0.0025 0.0025
eP 0.0943 0.0976 0.1074 0.0946 0.0959
t 1.90 1.89 1.89 1.90 1.90

RSIMPLS (FASTMCD) eB 0.0027 0.0027 0.0030 0.0027 0.0030
eP 0.0967 0.0979 0.1129 0.0992 0.1125
t 2.38 2.37 2.36 2.38 2.37

RSIMPLS (DetMCD) eB 0.0026 0.0027 0.0030 0.0027 0.0030
eP 0.0962 0.0973 0.1118 0.0983 0.1100
t 1.74 1.73 1.72 1.74 1.73

Table 2. Simulation results for high-dimensional data.

The same conclusions can be drawn when missing values are added to
the data, as seen in Tables 3 and 4. Because the M-RPCR method iterates
RPCR several times, the RPCR speedup is very useful.

Clean Bad leverage Vertical outliers
ε 0 0.10 0.30 0.10 0.30

M-RPCR (FASTMCD) eB 0.0170 0.0170 0.0179 0.0172 0.0199
eP 0.0450 0.0455 0.0457 0.0455 0.0459
t 45.89 44.09 64.11 45.65 69.22

M-RPCR (DetMCD) eB 0.0169 0.0169 0.0180 0.0170 0.0189
eP 0.0450 0.0455 0.0456 0.0455 0.0460
t 5.03 4.91 7.05 4.91 5.59

Table 3. Simulation results for low-dimensional data with missing values.

Clean Bad leverage Vertical outliers
ε 0 0.10 0.30 0.10 0.30

M-RPCR (FASTMCD) eB 0.0027 0.0027 0.0030 0.0027 0.0027
eP 0.1001 0.1022 0.1149 0.0995 0.1005
t 14.81 14.83 18.25 15.19 15.51

M-RPCR (DetMCD) eB 0.0027 0.0027 0.0030 0.0027 0.0027
eP 0.0995 0.1024 0.1147 0.0993 0.1000
t 4.83 4.74 5.83 4.87 4.67

Table 4. Simulation results for high-dimensional data with missing values.
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5 Summary and conclusion

In this paper we have illustrated our recently proposed deterministic algo-
rithm for MCD in a calibration framework. Replacing FASTMCD by DetMCD
in the robust regression techniques RPCR and RSIMPLS gives similar results
concerning robustness and predictive ability, but with improved computation
speed. This becomes even more important when the data also contain missing
elements and the DetMCD algorithm is applied many times in an iterative
way. We conclude that DetMCD is a fast and robust alternative to FASTMCD
in this calibration framework.
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Abstract. Several two-dimensional linear discriminant analysis LDA (2DLDA)
methods have received much attention in recent years. Among them, the 2DLDA,
introduced by Ye, Janardan and Li (2005), is an important development. However,
it is found that their proposed iterative algorithm does not guarantee convergence.
In this paper, we assume a separable covariance matrix of 2D data and propose
separable 2DLDA which can provide a neatly analytical solution similar to that for
classical LDA. Empirical results on face recognition demonstrate the superiority of
our proposed separable 2DLDA over 2DLDA in terms of classification accuracy and
computational efficiency.

Keywords: LDA, 2DLDA, two-dimensional data, face recognition

1 Introduction

Fisher linear discriminant analysis (LDA) is a popular supervised subspace
learning technique and has been widely used in computer vision, patter recog-
nition and machine learning. It looks for a linear transformation such that in
the transformed subspace the between-class covariance is maximized relative
to the within-class covariance.

Since LDA is simply formulated for 1D data (in which observations are
in vector form), when applying LDA for 2D data such as images (in which
observations are in matrix form), the 2D matrix data have to be converted
into 1D vector ones. Unfortunately, the resulting 1D data are easily trapped
into the so-called curse of dimensionality. Although several extensions of LDA
have been proposed to deal with this problem such as high-dimensional LDA
(Bouveyron et al. (2007)), regularized LDA, performing principal component
analysis before LDA (Belhumeur et al. (1997)), pseudo-LDA and so on, such
extensions have to rely on the vectorization of 2D data and the resulting very
high dimension not only degrades the performance of LDA but also incurs
expensive computation cost.
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In recent years, rather than resorting to the vectorization, another group
of researchers have suggested performing LDA using 2D data directly. For
instance, two-dimensional LDA (2DLDA) (Li and Yuan (2005), Liu et al.
(1993), Xiong et al. (2005)) maximizes a generalized Fisher discriminant cri-
terion that restricts the linear transformation to be row or column linear
transformation. A drawback of this method is that it typically requires ex-
tracting much more features than LDA for recognition and representation.
To overcome this disadvantage, Yang et al. (2005) presented a two-stage solu-
tion: finding column and row transformation sequentially, which, however, is
an order-dependent algorithm (Inoue and Urahama (2006)). To find column
and row transformation simultaneously, Ye et al. (2005) proposed a formu-
lation that restricts the linear transformation to be a bilinear one, i.e., a
Kronecker product of column and row linear transformations. Unfortunately,
convergence of the proposed algorithm is not guaranteed (Inoue and Ura-
hama (2006); Luo et al. (2009)). To overcome this problem, a new objective
function is defined in Luo et al. (2009) but maximizing the objective func-
tion has to resort to numerical methods and the computation is much more
complicated than that in Ye et al. (2005).

Compared with LDA, an appealing advantage of these 2DLDA methods
is that the curse of dimensionality is overcome and the computation cost
could be greatly alleviated. Importantly, their empirical results show that
these 2DLDA methods can achieve competitive or better recognition than
LDA, especially in small sample size cases. This advantage should be owed
to the utilization of underlying 2D data structure.

In this paper, we propose utilizing the underlying 2D data structure not
only to restrict the linear transformation but also to model the covariance
matrix of 2D data as separable covariance. Based on this, we propose sepa-
rable 2DLDA. Unlike existing iterative solutions (Luo et al. (2009); Ye et al.
(2005)), a neatly analytical solution to a generalized Fisher discriminant cri-
terion can be obtained as that in classical LDA. Separable covariance models
have been used in many other applications where the structure of the prob-
lem suggests such assumption. Examples include spatial-temporal modeling
for environmental data (Mardia and Goodall (1993)), channel modeling for
multiple-input multiple-out communications (Werner and Jansson (2009)),
signal modeling of MEG/EEG data (de Munck et al. (2002)), etc. In this
paper, we argue that the underlying structure of 2D data suggests such as-
sumption.

The remainder of the paper is organized as follows. Sec. 2 gives a brief
review of LDA and the 2DLDA in Ye et al. (2005). Sec. 3 proposes our sep-
arable 2DLDA (S2DLDA). Sec. 4 constructs an empirical study to compare
S2DLDA and 2DLDA. We end the paper with a conclusion in Sec. 5.
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2 Review of LDA and 2DLDA

2.1 Review of LDA

Let x ∈ Rd be a random vector and πk and µk be the prior probability and
population mean of class Lk, k = 1, . . . ,K, then the global population mean
µ =

∑
k πkµk and between-class and within-class covariance matrices are

Σb =
K∑

k=1

πk(µk − µ)(µk − µ)′, Σw =
K∑

k=1

πkE(x− µk)(x− µk)′|x ∈ Lk).

Consider the linear transformation y = V′mathbfx, where V is a d×q(q < d)
matrix. The within-class and between-class covariance matrices in y-space
become V′ΣwV and V′ΣbV. LDA aims to find V such that between-class
covariance is large while within-class covariance is small. A commonly used
trace ratio criterion (Fukunaga (1990)) is

argmax
V

tr
{
(V′ΣwV)−1(V′ΣbV)

}
(1)

The closed form solution to (1) is given by the eigenvectors of Σw−1Σb corre-
sponding to the largest q eigenvalues. More details can be found in (Fukunaga
(1990)).

Estimation of Σw and Σb can be obtained via maximum likelihood method
under the assumption that all classes follow normal distributions with differ-
ent means but common within-class covariance matrix (Hastie et al. (2009)).
More specifically, given data {x1,x2, . . . ,xN} from K classes and the nk

observations in class k following N (µk,Σ
w), k = 1, . . . ,K. Here, the total

number of observations N =
∑

k nk. The MLE of µk is µ̂k = 1
nk

∑
n∈Lk

xn

and the MLE of µ is µ̂ = 1
N

∑
n xn. The MLE of between-class covariance

matrix Σw is Σ̂w = 1
N

∑K
k=1

∑
n∈Lk

(xn−µ̂k)(xn−µ̂k). On the centroids µk’s
level, it can be regarded that class k has nk copies of µk and µk ∼ N (µ,Σb).
Then the MLE of Σb is Σ̂b = 1

N

∑K
k=1 nk(µ̂k − µ̂)(µ̂k − µ̂).

2.2 Review of 2DLDA

In this section, we briefly review the 2DLDA proposed in Ye et al. (2005).
For a 2D random matrix X ∈ Rdc×dr , 2DLDA seeks a bilinear transforma-
tion Y = U′

cXUr that would maximize the between-class covariance while
minimize the within-class covariance in vec(Y)-space, where Uc and Ur are
dc × qc(qc < dc) and dr × qr(qr < dr) matrices. Denote vectorization opera-
tor as vec(·). Since vec(Y)=(Ur ⊗Uc)′vec(X), this amounts to substituting
x = vec(X) and V = Ur ⊗Uc into (1). Due to the difficulty in solving the
resulting objective function with respect to Uc and Ur simultaneously, Ye
et al. (2005) proposed an iterative algorithm. However, the algorithm does
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not guarantee to converge as detailed in Inoue and Urahama (2006); Luo et
al. (2009). Due to this reason, Ye et al. (2005) suggest performing only one
number of iteration with the iterative algorithm.

Like LDA, 2DLDA tries to maximize the class separability in the low-
dimensional space. Unlike LDA that seeks linear transformation V, 2DLDA
seeks bilinear transformation V = Ur ⊗Uc that utilizes the underlying 2D
data structure. However, the resulting optimization problem is difficult to
solve. We attribute this problem to the fact that Ye et al. (2005) fail to
define a suitable between-class and within-class covariance matrices that will
utilize the underlying 2D data structure. In this paper we propose using
separable covariance matrix to model 2D data, which is justified in Sec. 3.1.
Based on this proposal, a neatly analytical solution similar to that in LDA
can be obtained as detailed in Sec. 3.

3 Separable 2DLDA

3.1 Motivation: Using separable covariance matrix for 2D data

Let C = (c1, c2, . . . , cdc) be a basis in Rdc and R = (r1, r2, . . . , rdr ) be
one in Rdr . For any matrix X ∈ Rdc×dr , one can always find a matrix Z =
C−1XR−1′ ∈ Rdc×dr such that

X = CZR′. (2)

By vectorization operator, (2) can be written as vec(X) = (R ⊗ C)vec(Z).
From a view of generative models, if the covariance matrix of vec(Z) is as-
sumed to be the identity matrix I, i.e., cov(vec(Z))=I, then

cov(vec(X)) = Σr ⊗Σc,

where Σr = RR′ and Σc = CC′ are row and column covariance matrices
respectively. This result reveals that the underlying structure of 2D data
suggests using separable covariance matrix for 2D data X.

3.2 Separable 2DLDA

Under separable covariance assumption, the between-class and within-class
covariance matrices in vec(X)-space are Σb = Σb

r ⊗Σb
c and Σw = Σw

r ⊗Σw
c .

For the bilinear transformation Y = U′
cXUr, the between-class covariance

matrices in vec(Y)-space is (Ur ⊗Uc)′(Σb
r ⊗Σb

c)(Ur ⊗Uc) = (U′
rΣ

b
rUr)⊗

(U′
cΣ

b
cUc), where we have used the property of Kronecker product that

(A⊗B)(C⊗D) = (AB⊗CD). Similarly, the within-class covariance matrices
in vec(Y)-space is (U′

rΣ
w
r Ur)⊗ (U′

cΣ
w
c Uc). Using the property tr(A⊗B) =
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tr(A)tr(B), the objective function (1) can be written as two separable sub-
functions:

max
Ur

{
tr(U′

rΣ
w
r Ur)−1(U′

rΣ
b
rUr)

}
and max

Uc

{
tr(U′

cΣ
w
c Uc)−1(U′

cΣ
b
cUc)

}
,

(3)
each of which solves a similar optimization problem to that in LDA. That
is, Uc and Ur are given by the eigenvectors of Σw

c
−1Σb

c and Σw
r
−1Σb

r cor-
responding to the largest qc and qr eigenvalues, respectively. To sum up,
separable 2DLDA consists of two steps: step 1 estimates separable between-
class and within-class covariance matrices Σb

r ⊗ Σb
c and Σw

r ⊗ Σw
c ; step 2

obtains Ur and Uc using (3). Step 1 is treated in section Sec. 3.3 by using
maximum likelihood estimation method.

3.3 Maximum likelihood estimation of separable covariance
matrix

A natural estimation for separable covariance matrix is maximum likelihood
estimation (MLE). For simplicity, in this paper we focus on matrix-variate
normal distribution, which is a generalization from multivariate normal in
1D space to the one in 2D space. A random matrix X ∈ Rdc×dr is said
to follow a matrix-variate normal with mean matrix W, column and row
covariance matrices Σc and Σr, denoted as Ndc,dr

(W,Σc,Σr), then apart
from a constant term, the log p.d.f is given by Gupta and Nagar (1999)

ln p(X) = −1
2
{
dr ln |Σc|+ dc ln |Σr|+ tr

[
Σ−1

c (X−W)Σ−1
r (X−W)′

]}
.

Like the link between multivariate normals and LDA, we assume that dif-
ferent classes have different means but the same column and row covariance
matrices. In other words, given a set of i.i.d. 2D data {X1,X2, . . . ,XN}, the
nk observations in class k follow N (Wk,Σw

c ,Σ
w
r ), k = 1, . . . ,K. The total

number of observations is
∑

k nk = N . The MLE of Wk is given by the sam-
ple mean of class k: Ŵk = 1

nk

∑
n∈Lk

Xn and the MLE of W is given by
the global population mean: Ŵ = 1

n

∑
n Xn. Given an initial value of Σw

r ,
the separable within-class covariance matrix can be estimated by iterations
of the following two steps until convergence is met (e.g. data log-likelihood):

Step 1. Σ̂w
c = 1

Ndr

∑K
k=1

∑
n∈Lk

(Xn − Ŵk)[Σ̂w
r ]−1(Xn − Ŵk)′.

Step 2. Σ̂w
r = 1

Ndc

∑K
k=1

∑
n∈Lk

(Xn − Ŵk)′[Σ̂w
c ]−1(Xn − Ŵk).

Similarly, to estimate the separable between-class covariance matrix on the
class centroids Wk’s level, we view that class k has nk copies of Wk and
Wk ∼ N (W,Σb

c,Σ
b
r), k = 1, . . . ,K. Then the separable between-class co-

variance matrix can be estimated by iterations of the following two steps
until convergence:

Step 1. Σ̂b
c = 1

Ndr

∑K
k=1 nk(Ŵk − Ŵ)[Σ̂b

r]
−1(Ŵk − Ŵ)′.

Step 2. Σ̂b
r = 1

Ndc

∑K
k=1 nk(Ŵk − Ŵ)′[Σ̂b

c]
−1(Ŵk − Ŵ).
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4 Experiments

In this section, we use real data to compare separable 2DLDA (S2DLDA) and
2DLDA. The performance of Fisherfaces (Belhumeur et al., 1997) is also in-
cluded. For Fisherfaces, the dimension in the PCA stage is N−K. Due to the
non-convergence problem suffered by 2DLDA, we use 1 iteration (2DLDA(1))
as suggested in Ye et al. (2005). To see whether more iterations are useful, we
add the result of 2DLDA using 4 iterations (2DLDA(4)). For S2DLDA, we
stop the iterations for MLE if the change of relative log-likelihood less than
tol=10−5 or the number of iterations larger than 10. In our experiments, we
use the following publicly available face image datasets:

• FRAV2D(http://www.frav.es/databases/FRAV2D/) (Ángel Serrano et
al. (2007)) contains 109 individuals, each of which has 32 images with
size 320×240. The 32 images were classified into six groups according
to the pose and lighting conditions, of which 16 images are used in our
experiment: the first 8 frontal images without gestures but with diffuse
light, the 4 images with gestures and the 4 images with occluded face
features. We subsample the images to the size 96×72.
• ORL(http://www.face-rec.org/databases/) contains 400 images of 40 in-

dividuals taken at different times, lighting, facial expressions and facial
details. The image size is 92×112.
• PIX(http://peipa.essex.ac.uk/ipa/pix/faces/manchester/) consists of the

images in the folder ‘test-easy’, containing 30 individuals. Each person
has 10 images with the size 512×512. We subsample the images to the
size 100×100.

The reduced feature of image X for two methods is computed by Z = U′
cXUr

and the Nearest-Neighbors (NN) classifier based on Frobenius norm is nat-
urally used for classification. To measure the misclassification error rate, we
randomly split each data set into two parts: one part for training and the
other for test. The training part consists of randomly chosen r = 4, 6, 8 or 11
images per individual with labels. We report the results from 50 replications.
Since 2DLDA is an iterative algorithm, to save time we restrict qc = qr = q
and set q to a wide range from 1 to a large value qmax (65 for FRAV2D and 90
for PIX and ORL data.). The optimal averaged misclassification error rates
and their corresponding latent dimensions are collected in Table 1. The main
observations are summarized as follows:

a. S2DLDA and 2DLDA(1). From Table 1, S2DLDA outperforms 2DLDA(1)
in terms of misclassification error and the corresponding optimal latent
dimension qopt by S2DLDA is generally comparable with or smaller than
that by 2DLDA(1).

b. 2DLDA(1) vs. 2DLDA(4). From Table 1, 2DLDA(1) is better than 2DLDA(4),
which indicates that more iterations do not improve the performance of
2DLDA.
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Table 1. The averaged lowest error rates and their corresponding dimensions qopt

shown as mean±std.(qopt) by different methods. Bold face indicates the best one.

Data train S2DLDA 2DLDA(1) 2DLDA(4) Fisherfaces

FRAV2D 8 21.1±9.0(21) 23.5±8.2(38) 24.3±8.8(15) 44.3±6.0(108)
11 16.0±8.0(14) 17.4±8.2(39) 18.7±8.4(31) 42.6±6.6(108)

PIX 4 22.4±5.2(24) 28.4±5.6(66) 40.3±7.2(76) 28.9±5.3(29)
6 15.3±4.3(36) 20.2±3.8(59) 30.2±5.2(61) 21.7±4.1(29)

ORL 4 5.4±1.8(53) 5.9±1.7(45) 7.1±1.9(38) 9.5±2.3(39)
6 2.9±1.2(66) 3.3±1.4(57) 3.3±1.4(35) 6.6±2.2(39)

Table 2. The CPU time (in seconds) required for training all values of q from 1
to qmax by different methods.

Data train S2DLDA 2DLDA(1) 2DLDA(4)

FRAV2D 8 4.5 29.7 118.8

PIX 6 1.8 21.7 86.8

ORL 6 2.2 28.1 112.4

Table 2 collects that some results on computation time by different methods
for training the bilinear transformation Uc and Ur with all values of q from
1 to qmax. It can be seen that the computation of 2DLDA is much heavier
than S2DLDA. For S2DLDA, we only need to run once for qmax and then all
Uc’s and Ur’s with q from 1 to qmax are automatically obtained due to the
separable property. While for 2DLDA, we have to run once for each value
of q and thus run a total of qmax times. This clearly shows the computation
advantage of separable 2DLDA over 2DLDA.

5 Conclusion

In this paper, we propose using separable covariance matrix to model 2D
data. Based on this, we propose separable 2DLDA in which a neatly closed
form solution of 2DLDA is obtained as that in classical LDA. Compared
with the iterative algorithm proposed in Ye et al. (2005), the empirical re-
sults show that the performance of separable 2DLDA is satisfactory in terms
of classification accuracy, the optimal latent dimensions and computation
efficiency.
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