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Preface

The 19th Conference of TASC-ERS, COMPSTAT 2010, is held in Paris,
France, from August 22nd to August 27th 2010, locally organised by the
Conservatoire National des Arts et Métiers (CNAM) and the French Na-
tional Institute for Research in Computer Science and Control (INRIA).
COMPSTAT is an initiative of the European Regional Section of the
International Association for Statistical Computing (IASC-ERS), a section of
the International Statistical Institute (IST). COMPSTAT conferences started
in 1974 in Wien; previous editions of COMPSTAT were held in Berlin (2002),
Prague (2004), Rome (2006) and Porto (2008). It is one of the most pres-
tigious world conferences in Computational Statistics, regularly attracting
hundreds of researchers and practitioners, and has gained a reputation as an
ideal forum for presenting top quality theoretical and applied work, promot-
ing interdisciplinary research and establishing contacts amongst researchers
with common interests.

Keynote lectures are addressed by Luc Devroye (School of Computer Science,
McGill University, Montreal), Lutz Edler (Division of Biostatistics, German
Cancer Research Center, Heidelberg) and David Hand (Statistics section,
Imperial College, London). The conference program includes three tutorials:
"Statistical Approach for Complex data” by Lynne Billard (University of
Georgia, United States), ”Bayesian discrimination between embedded mod-
els” by Jean-Michel Marin (Université Montpellier II, France) and ”Machine
Learning and Association Rules” by Petr Berka and Jan Rauch (University
of Economics, Prague, Czech Republic). Each COMPSTAT meeting is organ-
ised with a number of topics highlighted, which lead to Invited Sessions. The
Conference program includes also contributed sessions and short communi-
cations (both oral communications and posters).

The Conference Scientific Program Committee chaired by Gilbert Saporta,
CNAM, includes:

Ana Maria Aguilera, Universidad Granada

Avner Bar-Hen, Université René Descartes, Paris
Maria Paula Brito, University of Porto

Christophe Croux, Katholieke Universiteit Leuven
Michel Denuit, Université Catholique de Louvain

Gejza Dohnal, Technical University, Prag

Patrick J. F. Groenen, Erasmus University, Rottterdam
Georges Hébrail, TELECOM ParisTech

Henk Kiers, University of Groningen



VI Preface

Erricos Kontoghiorghes, University of Cyprus

Martina Mittlbock, Medical University of Vienna
Christian P. Robert, Université Paris-Dauphine

Maurizio Vichi, Universita La Sapienza, Roma

Peter Winker, Universitat Giessen

Moon Yul Huh, SungKyunKwan University, Seoul, Korea
Djamel Zighed, Université Lumiere, Lyon

Due to space limitations, the Book of Proceedings includes keynote speakers’
papers, invited sessions speakers’ papers and a selection of the best con-
tributed papers, while the e-book includes all accepted papers.

The papers included in this volume present new developments in topics
of major interest for statistical computing, constituting a fine collection of
methodological and application-oriented papers that characterize the current
research in novel, developing areas. Combining new methodological advances
with a wide variety of real applications, this volume is certainly of great value
for researchers and practitioners of computational statistics alike.

First of all, the organisers of the Conference and the editors would like to
thank all authors, both of invited and contributed papers and tutorial texts,
for their cooperation and enthusiasm. We are specially grateful to all col-
leagues who served as reviewers, and whose work was crucial to the scientific
quality of these proceedings. A special thanks to Hervé Abdi who took in
charge the session on Brain Imaging. We also thank all those who have con-
tributed to the design and production of this Book of Proceedings, Springer
Verlag, in particular Dr. Martina Bihn and Dr. Niels Peter Thomas, for their
help concerning all aspects of publication.

The organisers would like to express their gratitude to all people from CNAM
and INRIA who contributed to the success of COMPSTAT 2010, and worked
actively for its organisation. We are very grateful to all our sponsors, for
their generous support. Finally, we thank all authors and participants, with-
out whom the conference would not have been possible.

The organisers of COMPSTAT’ 2010 wish the best success to Erricos Kon-
toghiorghes, Chairman of the 20th edition of COMPSTAT, which will be held
in Cyprus in Summer 2012. See you there!

Paris, August 2010

Yves Lechevallier
Gilbert Saporta
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Complexity Questions in Non-Uniform
Random Variate Generation

Luc Devroye

School of Computer Science
McGill University
Montreal, Canada H3A 2K6
lucdevroye@gmail.com

Abstract. In this short note, we recall the main developments in non-uniform
random variate generation, and list some of the challenges ahead.

Keywords: random variate generation, Monte Carlo methods, simulation

1 The pioneers

World War II was a terrible event. But it can not be denied that it pushed
science forward with a force never seen before. It was responsible for the
quick development of the atomic bomb and led to the cold war, during which
the United States and Russia set up many research labs and attracted the
best and the brightest to run them. It was at Los Alamos and RAND that
physicists and other scientists were involved in large-scale simulations. John
von Neumann, Stan Ulam and Nick Metropolis developed the Monte Carlo
Method in 1946: they suggested that we could compute and predict in ways
never before considered. For example, the Metropolis chain method developed
a few years later (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller,
1953) can be used to simulate almost any distribution by setting up a Markov
chain that has that distribution as a limit. At least asymptotically, that is.
But it was feasible, because the computers were getting to be useful, with
the creation of software and the FORTRAN compiler.

To drive the Markov chains and other processes, one would need large col-
lections of uniform random numbers. That was a bit of a sore point, because
no one knew where to get them. Still today, the discussion rages as to how
one should secure a good source of uniform random numbers. The scientists
eventually settled on something that a computer could generate, a sequence
that looked random.

The early winner was the linear congruential generator, driven by x,, 11 =
(az,,+b)modm, which had several well-understood properties. Unfortunately,
it is just a deterministic sequence, and many of its flaws have been exposed
in the last three decades. The built-in linear-congruential generator in the
early FORTRAN package for IBM computers was RANDU. Consecutive pairs

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT 2010,
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(Zny Tny1) produced by RANDU fall on just a few parallel lines, prompting
Marsaglia (1968) to write a paper with the ominous title “Random numbers
fall mainly in the plane”. But bad linear congruential or related generators
have persisted until today—the generator in Wolfram’s Mathematica had a
similar problem: their built-in generator Random uses the Marsaglia-Zaman
subtract-with-borrow generator (1991), which has the amazing property that
all consecutive triples (Z,,, ¥n41, Znt2) fall in only two hyperplanes of [0, 1]3, a
fact pointed out to me by Pierre Lecuyer. Many thousands of simulations with
Mathematica are thus suspect—I was made aware of this due an inconsistency
between simulation and theory brought to my attention by Jim Fill in 2010.
The company has never apologized or offered a refund to its customers, but
it has quietly started using other methods, including one based on a cellular
automaton (the default). Hoewever, they are still offering linear congruential
generators as an option. The story is far from over, and physical methods
may well come back in force.

Information theorists and computer scientists have approached random-
ness from another angle. For them, random variables uniformly distributed
on [0,1] do not and can not exist, because the binary expansions of such
variables consist of infinitely many independent Bernoulli (1/2) random bits.
Each random bit has binary entropy equal to one, which means that its value
or cost is one. A bit can store one unit of information, and vice versa, a
random bit costs one unit of resources to produce. Binary entropy for a more
complex random object can be measured in terms of how many random bits
one needs to describe it. The binary entropy of a random vector of n inde-
pendent fair coin flips is n, because we can describe it by n individual fair
coins.

For the generation of discrete or integer-valued random variables, which
includes the vast area of the generation of random combinatorial structures,
one can adhere to a clean model, the pure bit model, in which each bit
operation takes one time unit, and storage can be reported in terms of bits.
In this model, one assumes that an i.i.d. sequence of independent perfect bits
is available. This permits the development of an elegant information-theoretic
theory. For example, Knuth and Yao (1976) showed that to generate a random
integer X described by the probability distribution

P{X =n}=p,,n>1,

any method must use an expected number of bits greater than the binary
entropy of the distribution,

> pnlogs(1/ps)-

They also showed how to construct tree-based generators that can be imple-
mented as finite or infinite automata to come within three bits of this lower
bound for any distribution. While this theory is elegant and theoretically
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important, it is somewhat impractical to have to worry about the individual
bits in the binary expansions of the p,’s. Noteworthy is that attempts have
been made (see, e.g., Flajolet and Saheb (1986)) to extend the pure bit model
to obtain approximate algorithms for random variables with densities.

For integer-valued random variables with P{X = n} = p,,n > 0, the
inversion method is always applicable:

X0

Generate U uniform [0,1]

S <« pyo (S holds the partial sums of the p,’s)
while U > S do : X—X+1, S S+px
return X

The expected number of steps here is E{X + 1}. Improvements are possible
by using data structures that permit one to invert more quickly. When there
are only a finite number of values, a binary search tree may help. Here the
leaves correspond to various outcomes for X, and the internal nodes are there
to guide the search by comparing U with appropriately picked thresholds. If
the cost of setting up this tree is warranted, then one could always permute
the leaves to make this into a Huffman tree for the weights p, (Huffman
(1952)), which insures that the expected time to find a leaf is not more than
one plus the binary entropy. In any case, this value does not exceed log, N,
where N is the number of possible values X can take. The difference with
the Knuth-Yao result is that one now needs to be able to store and add real
numbers (the p,’s).

Even when taking bits at unit cost, one needs to be careful about the
computational model. For example, is one allowed to store real numbers, or
should we work with a model in which storage and computation time is also
measured in terms of bits? We feel that the information-theoretic boundaries
and lower bounds should be studied in more detail, and that results like those
of Knuth and Yao should be extended to cover non-discrete random variables
as well, if one can formulate the models correctly.

2 The assumptions and the limitations

Assume that we can indeed store and work with real numbers and that an
infinite source of independent identically distributed uniform [0, 1] random
variables, Uy, Us, ... is available at unit cost per random variable used. The
random source excepted, the computer science community has embraced the
so-called RAM (random access memory) model. While it unrealistic, designing
random variate generators in this model has several advantages. First of all, it
allows one to disconnect the theory of non-uniform random variate generation
from that of uniform random variate generation, and secondly, it permits one
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to plan for the future, as more powerful computers will be developed that
permit ever better approximations of the idealistic model. The subject of
non-uniform random generation is to generate random variables with a given
distribution—we call these random variates—, in (possibly random) finite
time. We also assume that computations can be carried out with infinite
precision, and we require that the results be theoretically exact.

For a given collection of operations (a computer language), one can define
the collection of all distributions of random variables that can be generated in
finite time using these operations. Classes of achievable distributions defined
in this manner will be denoted by D. For example, if we only allow addition
and subtraction, besides the standard move, store and copy operations, then
one can only generate the sums

N
ety kil
i=1

where ¢ € R, and N, k1, ..., ky are finite integers. This is hardly interesting.
An explosion occurs when one allows multiplication and division, and in-
troduces comparisons and loops as operators. The achievable class becomes
quite large. We will call it the algebraic class.

The need for non-uniform random variates in Monte Carlo simulations
prompted the post-World War II teams to seriously think about the problem.
All probabilists understand the inversion method: a random variate with
distribution function F' can be obtained as

X = F™(U),

where U is uniform [0, 1]. This inversion method is useful when the inverse
is readily computable. For example, a standard exponential random variable
(which has density e™*,x > 0), can be generated as log(1/U). Table 1 gives
some further examples.

Table 1. Table 1: Some densities with distribution functions that are explicitly
invertible. Random variates can be generated simply by appropriate transormations
of a uniform [0, 1] random variable U.

Name Density Distribution function Random variate
Exponential e ", x>0 1—e™" log(1/U)
Weibull (a), a >0 az® te™®" 2 >01—e " (log(1/U))"/*
Gumbel e e " e " —loglog(1/U)
Logistic ﬁ H_% —log((1—-U)/U)
Cauchy m 1/24 (1/7)arctanz tan(wU)

Pareto (a), a >0 —%r,z>1 1—1/z° 1/ut/e
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However, note that only the Pareto distribution for values of a that are
inverses of an integer is in the algebraic class. One can attempt to create
functions of a finite number of uniforms, and in this way, one notes that the
Cauchy too is in the algebraic class. We leave it as a simple exercise to show
that the following method works. Keep generating independent random pairs
of independent uniforms, (U, U’), until for the first time U2 4+ U"? < 1 (now
(U,U") is uniformly distributed in the positive quarter of the unit circle).
Then set X = SU/U’, where S € {—1,+1} is a random sign. One can ask if
the normal distribution is in the algebraic class for example. In fact, a good
description of the algebraic class is sorely needed.

Assume now a much more powerful class, one that is based upon all
operations for the algebraic class, plus the standard mathematical functions,
exp, log, sin (and thus cos and tan). Call it the standard class. All inversion
method examples in Table 1 describe distributions in the standard class.

Since we did not add the inverse of the normal distribution function to
the allowed operations, it would appear at first that the normal distribu-
tion is not in the standard class. For future reference, the standard normal
density is given by exp(—x2/2)/v/2n. This was of great concern to the early
simulationists because they knew how to calculate certain standard functions
very well, but had to make do with approximation formulas for functions like
the inverse gaussian distribution function. Such formulas became very pop-
ular, with researchers outcompeting each other for the best and the latest
approximation.

Amazingly, it was not until 1958 that Box and Miiller showed the world
that the gaussian distribution was in the standard class. Until that year,
all normal simulations were done either by summing a number of uniforms
and rescaling in the hope that the central limit theorem would yield some-
thing good enough, or by using algebraic approximations of the inverse of the
gaussian distribution function, as given, e.g., in the book of Hastings (1955).

As in our Cauchy example, Box and Miiller noted that one should only
look at simple transformations of k uniform [0, 1] random variates, where k
is either a small fixed integer, or a random integer with a small mean. It is
remarkable that one can obtain the normal and indeed all stable distributions
using simple transformations with & = 2. In the Box-Miiller method (1958), a
pair of independent standard normal random variates is obtained by setting

(X,Y) = (\/log(l/Ul) cos(2mUs), \/log(1/U1) sin(27TU2)> .

For the computational perfectionists, we note that the random cosine can be
avoided: just generate a random point in the unit circle by rejection from the
enclosing square, and then normalize it so that it is of unit length. Its first
component is distributed as a random cosine.

There are many other examples that involve the use of a random cosine,
and for this reason, they are called polar methods. We recall that the beta
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(a,b) density is
xafl(l _ x)bfl
B(a,b)
where B(a,b) = I'(a)'(b)/I"(a+ b). A symmetric beta (a, a) random variate
may be generated as

1 2
B (1 +\1-U" cos(?wUQ))

(Ulrich, 1984), where a > 1/2. Devroye (1996) provided a recipe valid for all
a>0:

,0< 2 <1,

1+ 5

1
5 )
\/1 * (Ul‘lll>1cos2(27TU2)

where S is a random sign. Perhaps the most striking result of this kind is due
to Bailey (1994), who showed that

a (Uf% - 1) cos(21U3)

has the Student t density (invented by William S. Gosset in 1908) with pa-

rameter a > 0: 1

VaB(a/2,1/2) (1+ %)
Until Bailey’s paper, only rather inconvenient rejection methods were avail-
able for Student’s t density.

There are many random variables that can be represented as ¢(U)E<,
where ¢ is a function, U is uniform [0, 1], « is a real number, and F is an
independent exponential random variable. These lead to simple algorithms
for a host of useful yet tricky distributions. A random variable S, g with
characteristic function

() = exp (—[t|* exp (—i(m/2)(a — 21451) sign(t)))

is said to be stable with parameters o € (0,2] and || < 1. Its parameter o
determines the size of its tail. Using integral representations of distribution
functions, Kanter (1975) showed that for o < 1, S,,1 is distributed as

z € R.

a+1
2

Y(U)E" =,

where

sin(mu) sin(amu)

vl =
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For general a, 8, Chambers, Mallows and Stuck (1976) showed that it suffices
to generate it as

Y(U - 1/2)B"%,

where

u) = cos(m((a — Du + ab)/2) a sin(ra(u + 0)/2)
v(w) ( cos(mu/2) ) x (COS(’]T((Oé - 1)u—|—a9)/2)> '

Zolotarev (1959, 1966, 1981, 1986) has additional representations and a thor-
ough discussion on these families of distributions. The paper by Devroye
(1990) contains other examples with k& = 3, including

1
Saﬁlaa7

which has the so-called Linnik distribution (Linnik (1962)) with characteristic

function
1

)= —
wlt) 1+ [t

We end this section with a few questions about the size and nature of the
standard class. Let us say that a distribution is k-standard (for fixed integer
k) if it is in the standard class and there exists a generator algorithm that uses
only a fixed number k£ of uniforms. The standard class is thus the union of
all k-standard classes. Even more restrictive is the loopless k-standard class,
one in which looping operations are not allowed. These include distributions
for which we can write the generator in one line of code. The gaussian and
indeed all stable laws are loopless 2-standard. We do not know if the gamma
density

0<a<2.

xa—le—$

I'(a)
is loopless k-standard for any finite k not depending upon the gamma param-
eter a > 0. Similarly, this is also unknown for the general beta family. Luckily,
the gamma law is in the standard class, thanks to the rejection method, which
was invented by von Neumann and is discussed in the next section.

It would be a fine research project to characterize the standard class and
the (loopless) k-standard classes in several novel ways. Note in this respect
that all discrete laws with the property that p,, can be computed in finite time
using standard operations are 1-standard. Note that we can in fact use the
individual bits (as many as necessary) to make all the necesary comparisons
of U with a threshold. Only a random but finite number of these bits are
needed for each variate generated. Let us define the class of distributions
with the property that only a (random) finite number of bits of U suffice
0-standard. The full use of all bits in a uniform is only needed to create an
absolutely continuous law.

Are absolutely continuous laws that are describable by standard opera-
tions k-standard for a given universal finite k7

,x >0,
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Finally, it seems that even the simplest singular continuous laws on the
real line are not in the standard class, but a proof of this fact would be
nice to have. Take as an example a random variable X € [0, 1] whose binary
expansion has independent Bernoulli (p) bits. If p = 1/2, X is clearly uniform
on [0, 1]. But when p ¢ {0,1/2,1}, then X is singular continuous. It is difficult
to see how standard functions can be used to recreate such infinite expansions.
If this is indeed the case, then the singular continuous laws, and indeed many
fractal laws in higher dimensions, have the property that no finite amount of
resources suffices to generate even one of them exactly. Approximations on
the real line that are based on uniforms and standard functions are necessarily
atomic or absolutely continuous in nature, and thus undesirable.

3 The rejection method

The Cauchy method described above uses a trick called rejection. The rejec-
tion method in its general form is due to von Neumann (1951). Let X have
density f on R%. Let g be another density with the property that for some
finite constant ¢ > 1, called the rejection constant,

f(z) < eg(z),z € RY

For any nonnegative integrable function h on R, define the body of h as
By = {(v,y) : € R4,0 < y < h(z)}. Note that if (X,Y) is uniformly
distributed on By, then X has density proportional to h. Vice versa, if X has
density proportional to h, then (X,Uh(X)), where U is uniform [0,1] and
independent of X, is uniformly distributed on Bj. These facts can be used
to show the validity of the rejection method:
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repeat
Generate U uniformly on [0,1]
Generate X with density g
until Ucg(X) < f(X)
return X

The expected number of iterations before halting is ¢, so the rejection con-
stant must be kept small. This method requires some analytic work, notably
to determine ¢, but one attractive feature is that we only need the ratio
f(x)/(cg(x)), and thus, cumbersome normalization constants often cancel
out.

The rejection principle also applies in the discrete setting, so a few ex-
amples follow to illustrate its use in all settings. We begin with the standard
normal density. The start is an inequality such as

e—w2/2 < ea2/2—(x|w\.
The area under the dominating curve is e’ /2 x 2 /a, which is minimized for
a = 1. Generating a random variate with the Laplace density e~|*l can be
done either as SE, where S is a random sign, and E is exponential, or as

FEy — Es, a difference of two independent exponential random variables. The
rejection algorithm thus reads:

repeat

Generate U uniformly on [0, 1]

Generate X with with the Laplace density
until Uel/21X] < ¢ X7/2
return X

However, taking logarithms in the last condition, and noting that log(1/U)
is exponential, we can tighten the code using a random sign S, and two
independent exponentials, Ey, Es:
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Generate a random sign S
repeat Generate Fq, F»
until 2F5 > (E1 — 1)2
return X «— SFE;

It is easy to verify that the rejection constant (the expected number of iter-
ations) is /2e/m =~ 1.35.

The laws statisticians care about have one by one fallen to the rejection
method. As early as 1974, Ahrens and Dieter showed how to generate beta,
gamma, Poisson and binomial random variables efficiently. All these distri-
butions are in the standard class. However, if the density f or the probability
Py, is not computable in finite time using standard functions, then the distri-
bution is not obviously in the standard class.

4 The alternating series method

To apply the rejection method, we do not really need to know the ratio
f(x)/(cg(x)) exactly. Assume that we have computable bounds &, (z) and

¥n(x) with the property that &,(z) T f(z)/(cg(z)) and ¢n(z) | f(z)/(cg(2))
as n — oo. In that case, we let n increase until for the first time, either

U < {(X)
(in which case we accept X), or
U 2 ¢n(X)

(in which case we reject X). This approach is useful when the precise com-
putation of f is impossible, e.g., when f is known as infinite series or when f
can never be computed exactly using only finitely many resources. It was first
developed for the Kolmogorov-Smirnov limit distribution in Devroye (1981a).
For another use of this idea, see Keane and O’Brien’s Bernoulli factory (1994).
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repeat

Generate U uniformly on [0,1]

Generate X with density g

Set n=20

repeat n«—n+1 until U < &, (X) or U > ¢, (X)
until U < &,(X)
return X

The expected number of iterations in the outer loop is still ¢, as in the re-
jection method. However, to take the inner loop into account, let N be the
largest index n attained in the inner loop. Note that N is finite almost surely.
Also, N > t implies that U € [§(X),1¢(X)], and thus,

E{N|X} = ZP{N > X} < Z(%(X) —&(X))
=0

t=0
and

E{N} < Y E{¢(X) - &(X)}.

We cannot stress strongly enough how important the alternating series
method is, as it frees us from having to compute f exactly. When &, and
1, are computable in finite time with standard functions, and g is in the
standard class, then f is in the standard class.

It is indeed the key to the solution of a host of difficult non-uniform ran-
dom variate generation problems. For example, since the exponential, log-
arithmic and trigonometric functions have simple Taylor series expansions,
one can approximate densities that use a finite number of these standard
functions from above and below by using only addition, multiplication and
division, and with some work, one can see that if a law is (k-)standard, then
it is (k-)algebraic. Both gamma and gaussian are algebraic if one invokes the
alternating series method using Taylor series expansions. To the program-
mer, this must seem like’ a masochistic approach—if we have the exponential
function, why should we not use it? But for the information theorist and com-
puter scientist, the model of computation matters, and lower bound theory
is perhaps easier to develop using more restricted classes.

But one can do better. Assume that a given density is Riemann integrable.
Then it can be approximated from below by histograms. It takes only a
moment to verify that such densities can be written as infinite mixtures of
uniforms on given intervals. The mixture weights define a discrete law, which
we know is O-standard. A random variate can be written as

az +bzU,
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where Z is a discrete random variable, and [a;,b;], ¢ > 1, denote the inter-
vals in the mixture decomposition. So, given one uniform random variable,
first use a random number of bits from its expansion to generate Z, and then
note that the unused bits, when shifted, are again uniformly distributed. This
shows that Riemann integrable densities are 1-standard if we can compute
the density at each point using only standard functions. In particular, the
gamma and normal laws are 1-standard. This procedure can be automated,
and indeed, several so-called table methods are based on such mixture de-
compositions. See, e.g., Devroye (1986a), or Hormann, Leydold and Derflinger
(2004).

5 Oracles

Oracles are a convenient way of approaching algorithms. Engineers call them
“black boxes”. One can imagine that one has an oracle for computing the
value of the density f at . Armed with one or more oracles, and our infinite
source of uniforms, one can again ask for the existence of generators for
certain dustributions.

For example, given a density oracle, is there an exact finite time method
for generating a random variate with that density? Is there such a method
that is universal, i.e., that works for all densities? The answer to this question
is not known. In contrast, when given an oracle for the inverse of a distribution
function, a universal method exists, the inversion method.

Given that we do not know the answer for the density oracle, it is perhaps
futile at this point to ask for universal generators for characteristic function,
Laplace transform or other oracles. It is perhaps possible to achieve success
in the presence of two or more oracles. In the author’s 1986 book, one can
find partial success stories, such as a density oracle method for all log-concave
densities on the line, or a combined density / distribution function (not the
inverse though) moracle method for all monotone densities.

Complexity is now calculated in terms of the numbers of uniforms con-
sumed and as a function of the number of consultations of the oracle. This
should allow one to derive a number of negative results and lower bounds as
well.

6 Open questions

We discussed the need for descriptions of operator-dependent classes, and
the creation of models that can deal with singular continuity. The rejection
and alternating series methods enable us to generate random variates with
any distribution provided two conditions hold: we have an explicitly known
finite dominating measure of finite, and we can approximate the value of the
density or discrete probability locally by convergent and explicitly known
upper and lower bounds. This has been used by the author, for example,
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to deal with distributions that are given by infinite series (Devroye, 1981a,
1997, 2009), distributions specified by a characteristic function (Devroye,
1981b, 1986b), Fourier coefficients (Devroye, 1989), a sequence of moments
(Devroye, 1991), or their Laplace transforms. It should also be possible to
extend this to laws whose Mellin transforms are known, or infinitely divisible
laws that are specified in terms of Lévy or Khinchin measures (see Sato
for definitions; Bondesson (1982) offers some approximative solutions). In
all these examples, if a density exists, there are indeed inversion formulae
that suggest convergent and explicitly known upper and lower bounds of the
density.

It is hopeless to try to remove the requirement that a dominating measure
be known—a characteristic function of a singular continuous distribution is a
particularly unwieldy beast, for example. Some distributions have asymptotic
distributional limits. As an example, consider

X = i 0°¢;,
i=0

where the &; are independent Bernoulli (p), and 8 € (—1,1). When p =
1/2,0 = 1/2, X is uniform [0, 1], while for p ¢ {0,1/2,1}, 0 = 1/2, X is

singular continuous. Using £ for distributional identity, we see that

X £ 40X

It seems unlikely that the distribution of X is in the standard class for all
parameter values.

This leads to the question of determining which X, given by simple dis-
tributional identities of the form

X £ 6(X,U)

are in the standard class. Note that the map X «— ¢(X,U) defines in some
cases a Markov chain with a limit. Using CFTP (coupling from the past; see
Propp and Wilson (1996), Asmussen, Glynn and Thoénnes (1992), Wilson
(1998), Fill (2000), Murdoch and Green (1998)) or related methods, some
progress has been made on such distributional identities if one assumes a
particular form, such as

X E£U*(X +1)

(its solutions are known as Vervaat perpetuities, Vervaat (1979). We refer
to Kendall and Thénnes (2004), Fill and Huber (2009), Devroye (2001), and
Devroye and Fawzi (2010) for worked out examples.

Identities like

X£AX+B
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occur in time series, random partitions, fragmentation processes, and as indi-
rect descriptions of limit laws. Solutions are in the form of general perpetuities

[e%e} 1—1
X£B,+Y B [[ 4
i=1  j=0

where (A;, B;) are i.i.d. pairs distributed as (A, B). Necessary and sufficient
conditions for the existence of solutions are known (Goldie and Maller, 2000;
see also Alsmeyer and Iksanov, 2009, for further discussion). It suffices, for
example, that

E{log|Al} € (—00,0), B{log" |B} < ox.

Yet one needs to describe those perpetuities that are in the standard class,
and give algorithms for their generation.
Even more challenging are identities of the form

X £9(X, X', U),

where X and X’ on the right-hand-side are independent copies of X. Such
identities do not lead to Markov chains. Instead, the repeated application of
the map 1 produces an infinite binary tree. One should explore methods of
random variate generation and constructively determine for which maps 1,
there is a solution that is in the standard class. A timid attempt for linear
maps ¢ was made by Devroye and Neininger (2002).
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Abstract. Computational statistics, supported by computing power and availabil-
ity of efficient methodology, techniques and algorithms on the statistical side and
by the perception on the need of valid data analysis and data interpretation on the
biomedical side, has invaded in a very short time many cutting edge research areas
of molecular biomedicine. Two salient cutting edge biomedical research questions
demonstrate the increasing role and decisive impact of computational statistics.
The role of well designed and well communicated simulation studies is emphasized
and computational statistics is put into the framework of the International Associ-
ation of Statistical Computing (IASC) and special issues on Computational Statis-
tics within Clinical Research launched by the journal Computational Statistics and
Data Analysis (CSDA).

Keywords: computational statistics, molecular biomedical research, simu-
lations, International Association of Statistical Computing, computational
statistics and data analysis

1 Introduction

Statistical methods have been recognized and appreciated as unalterable tool
for the progress of quantitative molecular biology and medicine (molecular
biomedicine) as they were in physics, quantitative genetics and in clinical
drug research. With the emergence of larger biomedical data sets, both in
terms sample size (n) and number of individual characteristics (p), in par-
ticular when p >> n, novel and more efficient computational methods and
data analysis approaches were needed, and valid conclusions and decision
making required the company of statistical inference and statistical theory.
Whereas from the beginning on, when molecular data appeared massively
due to high-throughput techniques, extraordinary efforts and large invest-
ments were put into the quality of biomedical data and bioinformatics, much
less was invested into the computational statistics methods for the informa-
tion extraction. That neglect left gaps in biomedical research projects when
the validity of both methods and results were questioned. Modern emerg-
ing biomedical approaches and complex models in biological, epidemiological
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and clinical studies require high quality computational and statistical sup-
port. We will address below how computational statistics, computing power,
data analysis and data interpretation invaded in a very short time many
cutting edge research areas of modern biomedicine and biomedical research.
Therefore we will elaborate from two biomedical areas a salient cutting edge
research question for which computational statistics plays now an increasing
role with a decisive impact.

A statisticians work for biomedicine - name it biostatistics or biometrics -
is defined by the biomedical problems and hypotheses as well as by the tools
he/she has at hands to solve the corresponding mathematical and statistical
problems. According to Finney (1974) it is the duty of a biostatistician “to
interpret quantitative biomedical information validly and usefully’. He also
noted that that the applied statistician should express him/herself in “terms
intelligible beyond the confines of statistics in varying degrees of collaboration
with persons being expert in the field, and stressing the fact that a “substan-
tial contribution from the statistician is essential’ when citing R.A. Fisher
with “when a biologist believes there is information in an observation, it is up
to the statistician to get it out”, one of the first statisticians who heavily calcu-
lated in Rothamsted for his collaborations with agriculture and genetics. This
work has always been initiated and guided by data and required the use of
computational methods for doing the calculations right and efficiently. Com-
putational statistics has been an integral part of statistics from its beginning
when statisticians had to do calculations and needed to simplify the com-
putational work load, starting with numerical calculus using later statistical
tables, mechanical calculators and electronic calculators, called computers,
all overruled now by highly interactive computing systems which integrate
statistics software with an almost uncountable number of applets acting dur-
ing data input, data processing and data output. Victor (1984) discussed in
a highly recognized essay the role of computational statistics for statistics
and statisticians. Although he denied the attribute of a scientific discipline
because of missing own methodology and own subject for investigation, he
acknowledged the high relevance for applied statistics and its undisputable
role for knowledge generation in all sciences. For a discussion of this concept,
see e.g. Lauro (1996), also Nelder (1996), who distinguishes science from
technology and locates computational statistics nearer to latter although it
is performed by scientists. The most conciliatory definition of computational
is found in Chambers (1999) citing John Tukeys defining of computational
statistics as the “peaceful collisions of computing with statistics”.

In its growth period around 1970-1980 it became the irrevocable tool for
statistics. Exact statistical inference methods and permutations, bootstrap-
ping and interactive graphical methods were the dominant tools. The inter-
action of computational statistics with biostatistics from the view point how
it developed in Germany was summarized in Edler (2005). The technological
aspect has been emphasized in the German Region of the International Bio-
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metric Society when personal computers started to take over the main frame
computers in 1990 by Bernd Streitberg. His vision at that time was that
computational statistics has the chance to become the driving force for the
progress of statistics and, in particular for biostatistics, if it will be possible
to overcome fixation to program packages. At that time he already foresaw
the innovative power of personal computers- now notebooks - for software
development. It is fair to say that the R-project for statistical computing
has made this vision coming true. Notably, he denounced software validation
where he rather pessimistically stated that for many users and heads of insti-
tutes and companies that would not be an issue as long as all compute with
the same software, notwithstanding whether that software calculated correct
or incorrect. A second still relevant issue Streitberg indicated in 1989 was the
wish that the computer has to become the standard test for the applicability
and use of a statistical method: If a method cannot be programmed it is not
relevant; if it is not programmed its is useless. This way of thought had been
expressed already in 1981 by Jiirgen Lauter who noted in the introduction
to his software development that processes of thinking, decision making and
production can be advanced by mathematics and computing techniques.

Concerning the high-dimensional molecular data all these thoughts seem
to fit well for an intelligible interpretation of the data and the reduction of
the data to their information content.

2 Screening Molecular Data for Predictors

A multitude of biomedical techniques provide high-throughput high-resolution
data on the molecular basis of diseases. Most of these DNA microarray array
data fall into one of the following categories:

e gene or expression
e allelic imbalance
e methylation imbalances.

These investigations aim at a better understanding of the underlying
mechanisms of the genesis of the disease, e.g. of a specific cancer like the
AML out of the class of leukaemia. Current biomedical knowledge postu-
lates for most diseases, in particular for cancer, as of being heterogeneous
and of different subtypes, on the clinical, histo-pathological and the molec-
ular level. Heterogeneity at the molecular level lead to the development of
prognostic and also to predictive gene signatures (also called gene expression
profiles, biomarker sets etc) from which some have already been commercial-
ized (for breast cancer see e.g., ONKOtypeDx, MammPrint, GGI) and used
in attempts to personalize cancer treatment, although there exists still con-
siderable uncertainty on the use of new molecular markers in routine clinical
decision making. The need to examine their role in patient selection and for
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stratification for future clinical trials is obvious. For a review of the situa-
tion in breast cancer therapy see Kaufmann et al (2010). Urgent biomedical
questions concern

e usefulness of currently available molecular biomarkers and biomarker
based,

e the establishment of designs and design strategies which account for clin-
ical, histo-pathological and molecular subtypes at the same time, and

e coherent collection, combination and processing of both biomedical in-
formation, being it collected prospectively or retrospectively.

The challenge for biostatistics arising from these questions is huge and
starts conceptually at a clarification of the difference between prognostic and
predictive markers (Sargent (2005)).

Biomedical research has always been targeted to develop e.g. prognostic
models which may classifiy patients in different risk groups and so called prog-
nostic marker guide therapy of groups of patients in a general way. Another
clinical target is the development of predictive models which guide treatment
and optimize therapy by guiding treatment decision in dependency of so-
called predictive factors. Next to consider is the translation of the medical
task into statistical approaches. For the prognostic models the biostatisticians
task, almost exclusively performed in collaborative projects with biologists
and clinicians is to build prediction models e.g. for classification in different
risk groups based on such molecular data. Whereas formerly the statistical in-
ferences were based on either statstical testing or on class discovery methods
e.g. cluster analyses, regression techniques are now somehow rediscovered as
the more appropriate approach to build those risk prediction models. Regu-
larization methods are now widespread to solve the so called p >> n problem
(penalized regression approaches like the Lasso or the Elastic Net, the use of
Support Vector Machines, Boosting etc.).

For the development of biomarkers as predictive factors guiding the choice
of therapy, regression type analyses are applied on the outcome variable based
on those high-dimensional predictors listed above. Efficient and non-overly
conservative adjustment for multiple testing becomes crucial when focusing
on a gene wise analysis. Multiple adjustments becomes crucial, see e.g. Dudoit
and van der Laan (2007). Simulation studies analyze sample-size determina-
tion for the identification and validation of such predictive markers. The
classical multivariable regression model works well for identifying prognos-
tic factors and with regard to predictive factors one can go back to another
classical tool, interactions between covariables.

2.1 Using the Analysis of Molecular Data for Identifying
Predictive Biomarker

When screening for predictive factors in case of a dichotomous outcome the
method of choice is conditional logistic regression. A gene wise interaction
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model has then the form
LOgit(Y = 1|Xg; Z) = ﬂog + ﬁngg + ﬁng + ﬂgngZ

where Xg describes the continuous gene expression of gene g, g =1,..., M,
and M is the number of gene expression varaiables, i.e. the number of hy-
potheses, analyzed in total Z is a binary treatment variable and Y is a binary
response variable. An interaction effect is then tested with the null hypoth-
esis HO: ff3;, = 0 using e.g. likelihood ratio (LR) or the Wald test. When
focusing on the multiple testing scenario for the M simultaneous hypotheses
one would prefer to control the false discovery rate (FDR) introduced by
Benjamini and Hochberg (1995) for such gene expression data as a certain
proportion of false discoveries would be accepted. Control of the FDR, could
be for example obtained by linear step-up procedures such as the Benjamini-
Hochberg or Benjamini-Yekutieli method. Lately, resampling-based multiple
testing methods for FDR control have become an alternative approach see
e.g. Dudoit and van der Laan (2007).

The next challenge arises when determining a sample size for such screen-
ing methods and when complexity has barricaded an analytical solution. Only
simulations of several scenarios will help to get grip on the sample size esti-
mation which is essential for all trial partners: those investing their time and
career, those who invest resources and those who are responsible the sample
size, namely the trial statistician. Since one is forced to analyze the system
“statistical model” in detail valuable “fall outs” of the simulation approach
can be obtained, e.g. a comparison of the performance of different statistical
test procedures.

Actually there is now a problem of comparability of the results since
the implementation of methods and simulation designs are almost always
different. From a user-friendly point of view usage of available methods is
impaired by different platforms, different implementations etc. Realized as
a Harvest Programme of the PASCAL2 European Network of Excellence
a group of researchers has recently come together for a unified, extensible
interface covering a large spectrum of multiple hypothesis testing proce-
dures in R: pTOSS (multiple hypotheses testing in an open software system),
see Dickhaus et al. (2010). Intended as first step to overcome the problem
of comparability of the results 4TOSS aims at unifying implementation of
methods and simulation platforms as an open source package addressing (i)
multiple tests controlling the family wise error rate (single-step and step-
wise rejection methods, resampling-based procedures), (ii) multiple adjust-
ment procedures controlling the false discovery rate (classical and adaptive
methods, Bayesian approaches as well as resampling-based techniques), (iii)
multiplicity-adjusted simultaneous confidence intervals, and (iv) simulation
platform to investigate and compare multiple adjustment methods. Features
of uTOSS (http://mutoss.r-forge.r-project.org/) are

e Open Source code implementation (using R)
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e Well-documented developer interfaces for new procedures to add-on

e Graphical user interface (GUI)

e Online user’s guide on which procedure to use according to the user
specification

e Inclusion of a large part of the known Multiple Comparison Procedure
methods

e Inclusion of tested datasets for verification and exemplary purposes

e Simulation Platform

e Ongoing maintenance

There has been an ongoing discussion in the biomedical community on
the best clinical trial design for the identification and validation of predictive
biomarkers. At this time, there are three major classes of designs proposed for
the evaluation of a biomarker-guided therapy and the assessment of biomark-
ers in clinical practice, see Sargent et al. (2005), Simon (2008), or Freidlin et
al. (2010):

1. Targeted Trial Design (or Enrichment Design)
2. Biomarker Stratified Design
3. Biomarker Strategy Design

Sample size considerations for the biomarker stratified and biomarker
strategy designs to assess the clinical utility of predictive biomarkers have
been made by Richard Simon, see http://linus.nci.nih.gov/brb/samplesize/
index1.html. Current recommendation and practice is to use the biomarker-
stratified design since it validates predictivity of a marker best (Freidlin 2010).
For the validation of predictive biomarkers one should

i. provide reproducible biomarker information
ii. test in a randomized setting before use in clinical practice
iii. apply a biomarker-stratified design.

However, it may take years until biomedicine will know whether the choice
of the design today will have been the best one. Computational statistics
should contribute to make this time span shorter.

2.2 Combining the Analysis of Molecular Data for Prognosis

The standard approach has been so far the application of a regression model
based on a n x p data matrix X representing one single source of data, e.g.
gene expression, where the sample size n range around 102 and the dimension
of the individual observation between 104 and 106. Given the availability of
multiple data sources it would be more awarding when searching for prog-
nostic and predictive factors when all available data would be used in an
integrative approach to generate one single risk prediction model based on
a combination of different sources Xa, Xp, X¢, etc. (e.g. methylation and
gene expression data). Since a solution of this problem might be either not
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feasible at all or may lead to unstable results with unsatisfying prediction per-
formance compared to single data source based prediction a strategy must
be defined on how dealing with more than one data source. In biomedicine
an integrative approach is not new at all. Since decades clinicians combined
several types of data, e.g. data from physical examinations and hematolog-
ical laboratory data. The role of the traditional hematological data can be
thought of being taken over now by the array data, moving the hematological
laboratory nearer to the traditional clinical data.

For future basic medical research it is relevant to know the added value
provided by the molecular data. Since usage of p-values is no longer an op-
tion a measure characterizing prediction accuracy should inform in particu-
lar on the performance of future patients on the treatment selection. Binder
and Schumacher (2008) used the bootstrap sampling without replacement
for efficient evaluation of prediction performance without having to set aside
data for validation. Conventional bootstrap samples, drawn with replace-
ment could be severely biased and such translate to biased prediction error
estimates, often underestimating the amount of information that can be ex-
tracted from high-dimensional data.

Combining clinical data with one high-dimensional data set (Boulesteix et
al. 2008; Benner et al. 2010 or Bovelstad et al 2007) has been quite common
since the availability of microarrays. Methods for pre-processing, dimension
reduction and multivariable analysis are available as well. It has even become
a business in advanced education when e.g. a Cold Spring Harbor Laboratory
conference on “Integrative Statistical Analysis of Genome Scale Data”, June
8 - 23, 2009 educates in a course for about 35008 on how to combine dif-
ferent genomic data sources, e.g. to model transcriptional networks through
integration of mRNA expression, ChIP, and sequence data.

More appropriate would be a comprehensive integrative approach of risk
predictive modeling that would stepwise narrow down the list of candidate
predictors. An open question is, however, in which order to proceed with the
available data sources. Since the number of sources is small one could try all
possible orderings, however the number of predictors could differ by orders
of magnitude in this case. Another question would be whether it would be
useful to link the data sources sequentially, e.g. by using information from
the analysis of data from a first data source for modeling data from a second
source, or how to analyze them in parallel. One should also not underestimate
technical problems like model misspecification, limited number of replicates,
limited computing time or the use of asymptotical test statistics. One has to
outweigh the influence of the different factors when planning as well as when
interpreting the results, elements of research which are often missing.
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3 Outweighing Flexibility and Complexity Using
Adaptive Designs

For handling an increasing number of new anticancer compounds, clinical
drug testing is pressed by practical, economical and ethical demands for in-
creasing degree of flexibility in the design and the conduct of a clinical study.
Adaptive group sequential designs allowing e.g., sample size recalculation,
have become critical for overcoming the bottleneck of treatment options and
making drugs sooner available to patients. When using adaptive designs, the
further course of the trial depends on the data observed so far, the decision
about how to continue (effecting e.g. final sample size, selection of treatment
arms, choice of data modelling).

Bretz et al. (2009) recommended adaptive designs in confirmatory clinical
trials since “It is a difficult, if not unsolvable problem to completely foresee at
the design stage of a clinical trial the decision processes at an interim analy-
sis since other consideration than the observed efficacy results may influence
the decision”. However, when evolving scientific expert knowledge and addi-
tional unknown background information not available at the planning phase
becomes part of an adaptive design, it is essential to understand the operating
characteristics before the start of an actual trial. Full scale clinical trial simu-
lations are crucial to describe and analyse the features of such designs. Thus
the behaviour of the decision rules can only be described by constructing
“real” data for possible interesting scenarios and estimating design features,
such as e.g. type I error rate, power, average sample number, from iterated
computational simulations of the whole study course. This means there are
three major challenges for computer simulations in evaluating the features of
a specific adaptive design:

1. The potential decisions during the course of the study have to be specified
in advance as detailed as possible to simulate scenarios which depict the
closest the reality and hence will allow valid inferences.

2. Computer programs should be built in modules to allow easy implemen-
tation of different kind of adaptations. So the flexibility of the adaptive
approach will be also maintained in the implementation. Figure 1 displays
a study simulations scheme for two-stage adaptive design where design
adaptations may be executed in one interim analysis.

3. There is an infinite number of scenarios or parameter settings under which
the specific adaptive approach could be simulated. To get relevant results
for the considered clinical study situation one has to identify parameter
settings which will be probable to occur in reality (e.g. realistic accrual
rate, probable true treatment effect, possible loss to follow-up, potential
influence of nuisance covariates).

We report here experience with a simulation set up to enable an investiga-
tional randomized two arm phase II study for the rare subtype of non-clear
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cell renal cell carcinoma (ncc-RCC) when two novel molecularly targeted
agents (Sunitinib and Temsirolinus) were examined for progression-free sur-
vival (PFS) as primary endpoint. At planning of that trial there little was
known on the activity of each of the drugs in ncc-RCC patients as well as
on the achievable difference of the activity between both. A restriction of
the study were limitations in both funds and patient horizon which enforced
a sample size not largely exceeding n = 50 per arm and N = 100 in to-
tal. Further, the study time was limited to three years accrual and one year
follow-up. After about 30 patients, an interim look was foreseen with the pos-
sibility to stop for futility or unfeasibility (if the estimated necessary number
of patients could not be recruited in the remaining accrual time) and with
recalculation of the sample size for the second study stage if the trial con-
tinues. A two-stage group sequential design with type I and type II error
spending was established where the second stage was adapted for sample size
recalculation using the conditional rejection probability principle of Schéfer
and Miiller (2001). Since the endpoint of interest was a right-censored failure
time, sample size recalculation for the second study stage has to account for
patients where recruited in the first stage but will still be under observation
the second. The sample size of such a failure time study is determined via the
number of events needed to achieve the overall power 1 — 3 of the study and,
when recalculated after the 15¢ stage as new number of events Ad needed to
achieve the conditional power 1 — B.onq cond. For details see Wunder et al.
(2010). The study course is depicted in Figure 2.

The restricted number of patients which could be recruited, enforces to ex-
ecute simulations under conventional as well as “investigational” high type I
and type IT error probabilities («, ) € {(0.5,2),(0.1,0.2), (0.05,0.3), (0.1,0.3),
(0.2,0.3),(0.2,0.2), (0.3,0.3)}. The “traditional” choices for the error proba-
bilities lead to unachievable sample sizes and only when allowing for uncon-
ventionally high error rates the expected sample sizes are near 100 patients.
Interim looks are implemented after 30%, 40% and 50% of the expected total
event number to finally choose an interim analysis after approximately 30 pa-
tients. The uncertainty about the difference between treatment arms causes
the need to simulate under a wide range of true treatment effects, i.e. log
hazard ratios in {0,log(10/7),log(11/7),log(12/7),log(14/7)} to assess the
impact of true hazard ratios which differ from the clinically relevant effect of
log(11/7). This means, to cover all interesting and relevant design settings,
105 different simulation scenarios were executed.

A large scale simulation study was constructed for illustration of the de-
sign and for determining within a set of scenarios that design which meets the
desired properties of the planning agreement between principle investigator,
sponsor, funding partner and biostatistician. When interpreting simulation
results, one has also to keep in mind that simulation results may deal with dif-
ferent sources of inaccuracy. For example, when analyzing type I error rates
in adaptive survival trials there may be potential influence of misspecified
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Example: Survival Trial

Data Matrix for Study Population « censored survival times with staggered
N patient entry
in Study Stage 1

« Cox model

« generated by suited data model  exponential oss to follow-up

« adapted to general study framework

« administrative censoring (prespecified
time under observation)

« potential covariates - binary or normal
(survival relevant or not survival relevant)

| Interim Analysis |

(N
test statistic « e.g. logrank or score statistic
« e.g. early stopping for futility (‘no effect”)
to study plan or efficacy

design adaptations « e.g. sample size recalculation or

« covariate selection

diagnostics f’f « e.g. proportion of early stops
adaptive design
| N —
Data Matrix for Study Population « censored survival times with staggered
in Study Stage 2 patient entry (as in stage 1)

« include patients from stage 1 who are still

« generated by suited data model n
alive

« adapted to general study framework

| Final Analysis |

test statistic « e.g. logrank or score statistic
« e.g. acceptance or rejection of null
to study plan hypothesis acc. to adapted boundaries
diagnostics of « type | error rate
adaptive design

« estimated power

design - specific relevant features e.g.:
« average sample number
« proportion of early stops

« truly selected covariates

Fig. 1. Diagram of study simulations for two-stage adaptive designs where design
adaptations may be executed in the interim analysis.
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Sample Size Calculation | 2-stage group sequential design |
' with a-, B-spending H

Test 2-sided alternative H, Study Stage |
<b f i b i
1L " RejectH; | | Stop early for futility !
zb,
Sample Size Recalculation
H 1 b Study Stage Il
{ significance levela | | Test2-sided altemative H, | ! significance level ¢ :
T

i (,conditional rejection probability”) |

with L; logrank statistics
in i-th analysis (i = 1,2)

Fig. 2. Diagram of two-stage phase II study in ncc-RCC patients with possibility
to stop for futility after the first stage and sample size recalculation for the second
stage.

models (see e.g. Lagakos and Schoenfeld (1984)), simulation error (number
of replicates may be limited by time) or asymptotical effects in the test statis-
tics (e.g. when considering logrank or score tests, see e.g. Tsiatis et al. (1985).
Thus, one has to outweigh the influence of different factors when interpreting
simulation results.

4 Discussion

With the appearance of molecular sequence data and microarray data and
with the intrinsic problems of screening and archiving these new and mas-
sive data sets grew in biomedicine the impression that bioinformatics tools
would be the most appropriate methods to analyze these data. Data mining
and clustering methods were overestimated in their potency and computer
programs were just applied without a thorough statistical analysis of the
research problems and the properties of ad hoc generated optimization al-
gorithms. The two examples used above to illustrate the fruitful interaction
between computational statistics and molecular biomedicine is the tip of the
iceberg. There are many more examples and there are computational meth-
ods which are much more involved in those as well as in the examples above
where one may look forward for further development.

The role of biostatistics and computational statistics has been recognized
also in the bioinformatics community, see e.g. the announcement of courses
in the internet with a list of contents like: Descriptive statistics, Distribu-
tions, Study design, Hypothesis testing/interval estimation, Non-parametric
methods, Analysis of variance, Linear regression, Multiple testing, The statis-
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tical program R. As biostatistician one can be proud about the fact that the
classical disciplines of statistics are taught in bioinformatics departments but
one may also wonder why researchers untrained in statistics actually could
start to work in Bioinformatics. Of more serious concern is however, when
instructors propose the usage of normal distribution theory for analysis of
complex molecular data and define as goal: to “Handle the symbolic language
of statistics and the corresponding formalism for models based on the nor-
mal distribution”. Good is when such a course is committed to a statistical
programming language. In that “computational” respect, bioinformaticians
were from the beginning more determined and more prudent than biostatis-
ticians. As long as leading biomedical researchers confuse biostatistics with
bioinformatics, if they realize statistics at all as necessary for the analysis of
the molecular data, biostatistics and computational statistics has to articu-
late is contribution to biomedical science for better designs and for better
analyses of high-dimensional genomic data. Computational statistics meth-
ods are strongly required for exploratory data analysis and novel means of
visualizing high-dimensional genomic data as well as for quality assessment,
data pre-processing, and data visualisation methods. The R packages and the
Bioconductor project have taken a promising lead to improve the situation.
Yet, one should recognize that computational statistics being it science, tech-
nology or something special in between is still young, below age 50 when one
remembers the start in UK in December 1966 and in the USA on February
1967, and we should give it time.

Recently the journal “Computational Statistics & Data Analysis” (CSDA)
launched a second special issues on “Computational Statistics within Clinical
Research” where the call explicitly asks for submission of work for “under-
standing the pathogenesis of diseases, their treatment, the determination of
prognostic and predictive factors, and the impact of genetic information on
the design and evaluation of clinical outcomes’. Such activities at the inter-
face between biomedicine and computational statistics may add further to
bridge the gaps.

5 First Author’s epilogue

When I started my career in biostatistics at the German Cancer Research
Center three decades ago it took only a few months to realize the importance
and relevance of computational statistics for both the research work in applied
statistics and the biostatistical consulting of clients and partners coming from
all relevant biomedical fields of experimental and clinical cancer research. At
that time - just after the appearance of John Tukeys book on Explorative
Data Analysis (Tukey (1977) resources on computational statistics methods
and literature were rare.

The journal Computational Statistics & Data Analysis (CSDA) which
later became the flagship publication of the International Association of Sta-
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tistical Computing (IASC) as well as the journal “Computational Statistics
Quarterly”, now “Computational Statistics” were then just starting. How-
ever there were two easy accessible resources which imprinted my relationship
with computational statistics for ever: the receipt of the “Statistical Software
Newsletter” (SSN), founded already in 1975, with methods and algorithms at
that time hardly needed for the rising computational needs for the analysis of
clinical survival data (Edler et al. 1980), and the attendance of COMPSTAT
conferences for the exchange with the colleagues interested at the interface
between statistics and computing.

It was the 5 COMPSTAT in Toulouse in 1982 where I started to re-
port methods developed for biostatistical applications and I enjoy now how
COMPSTAT has grown and developed by 2010 and its 19th COMPSTAT
in Paris, again in France. The passage of the years has not diminished my
respect and my inclination to that forum of scientific exchange nor my pride
of having had the honor to serve IASC as officer for some time, our society
TASC which shields as member of the ISI family the COMPSTAT conference.
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Abstract. Anomalous events often lie at the roots of discoveries in science and of
actions in other domains. Familiar examples are the discovery of pulsars, the identi-
fication of the initial signs of an epidemic, and the detection of faults and fraud. In
general, they are events which are seen as so unexpected or improbable that one is
led to suspect there must be some underlying cause. However, to determine whether
such events are genuinely improbable, one needs to evaluate their probability under
normal conditions. It is all too easy to underestimate such probabilities. Using the
device of a number of ‘laws’, this paper describes how apparent coincidences should
be expected to happen by chance alone.

Keywords: anomalies, coincidences, hidden forces

1 Introduction
Coincidence is God’s way of remaining anonymous

Albert Einstein

Statistics is a dynamic discipline, evolving in response to various stim-
uli. One of these is the advent of new application domains, presenting novel
statistical challenges. A glance back at the history of the development of sta-
tistical ideas and methods shows how areas such as psychology, engineering,
medicine, and chemistry have impacted the discipline. However, once a tool
or method has been developed to tackle a problem in one application area, its
use typically spreads out to pervade other domains. We thus have a leapfrog
effect, in which statistical methods enable understanding to grow in the areas
to which they are applied, and then the challenges of these areas promote
the development of new theory and methods in statistics.

More recently, however, a second stimulus has had a dramatic impact on
statistics — an impact which can fairly be characterised as revolutionary. This
is the development of the computer. The computer has completely changed
the face of statistics, transforming it from a dry discipline, requiring substan-
tial tedious effort to undertake even relatively simple analyses, to an exciting
technology, in which the intellectual focus is on the use of high level tools for
probing structure in data. Of course, the general public has not yet caught
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up with this revolution, though I believe we can see green shoots indicative of
a beginning change in perceptions (Hand, 2009). The computer has enabled
older statistical methods, which would have taken months of painstaking ef-
fort, to be applied essentially instantaneously (though this is not without its
dangers - in the past one would have thought carefully about the appropri-
ateness of an analysis before going to the effort of undertaking it). It has
also enabled the development of entirely original methods, methods which
would not have been conceived in earlier days because the computational ef-
fort would have rendered them totally impracticable. This has driven a huge
blossoming of statistical methods.

The impact of the computer has manifested itself in several ways. One
is the fact that huge numbers of (accurate) calculations can now be under-
taken in a split second. Another is that electronic data capture technologies
mean that streaming data are increasingly prevalent (data which are obtained
in real-time, and which simply keep on coming, so that adaptive real-time
analyses are needed). A third is the ability to store, manipulate, search, and
analyse massive data sets. Here are some extreme examples which will convey
this magnitude. The credit scoring company Fair Isaac has sold around 10!
credit scores. The Large Hadron Collider will generate about 15 petabytes of
data per year (a petabyte is 10'° bytes). AT&T transfers around 16 petabytes
and Google processes around 20 petabytes of data per day. To put this in
context, the entire written works of humanity, in all languages, occupy about
50 petabytes. While most problems do not involve data sets quite as extreme
as those, the analysis of gigabytes and terabytes is increasingly common. Such
data sets arise in all applications, from the scientific to the commercial.

Vast data sets, in particular, present opportunities and challenges which
cut across application domains (though always, of course, mediated by the
particular problems and issues of the different domains) — see, for example
Hand et al, 2001; Baldi et al, 2003; Ayres, 2007; Giudici and Figini, 2007.
The opportunities include the potential for discovering structures and re-
lationships which would not be apparent in small data sets. The challenges
include housekeeping ones of efficiently manipulating and searching terabytes
of data, and perhaps even also of accessing it (for example, if it is distributed
over the web). But the challenges also include deep theoretical ones, such as
the role of significance tests when the size of the data set mean that even
very small underlying structures produce highly significant results. Just one
example of the exciting developments which have arisen from such problems
is the work on false discovery rate.

I find it useful to distinguish between two broad kinds of problems in
the analysis of very large data sets. To use data mining analogy, we might
regard these as analogous to coal mining and diamond mining. The first is the
familiar one of modelling, though flavoured by the consequences of the data
set size. The aim of modelling is to construct some kind of global summary
of a set (or subset) of data, which captures its main structures or those
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structures which are relevant to some particular purpose. This is a familiar
one for statisticians, since modern statistics is couched almost entirely in the
language of “models” (just glance at any recent statistics text or journal). In
many situations it is sufficient to work with a relatively small sample from the
entire database — provided this can be drawn in an unbiased way (selectivity
bias is often a danger when large data sets are involved). The required size
of the sample will depend on the level of detail desired in the model. This
relationship is something which merits further research.

The second broad kind of analytic problem is the detection of anoma-
lies. While particular kinds anomaly detection problem have always been of
interest (e.g., outlier detection - the first edition of Barnett and Lewis’s clas-
sic book on outliers appeared in 1978), the advent of massive data sets has
opened up new possibilities. As I have argued elsewhere (Hand and Bolton,
2004), many important discoveries are the consequence of detecting some-
thing unusual — that is, detecting a departure from what was expected or
from the received wisdom — so that this represents a considerable opportu-
nity. Examples of anomaly detection areas on which myself and my research
team have worked include large astronomical data sets, earthquake clusters,
adverse drug reactions, and fraud in credit card usage.

Unfortunately, however, anomalies in data can arise from multiple causes,
not merely because there is some previously unsuspected genuine aspect of
the phenomena under study. These include, but are not restricted to (see also
Hand and Bolton, 2004), the following:

e Ramsey theory. This is a branch of mathematics which tells us that some-
times one is certain to find particular configurations in a data set. A fa-
miliar and trivial example is that, if there are six people in a room, it is
certain that there are three who are either mutual acquaintances or who
do not know each other.

e Data quality. The problems that poor data quality bring to the search
for anomalies in large data sets are illustrated by Twyman’s law, which
states that any figure that looks interesting or different is usually wrong.
Unfortunately, poor quality data are commonplace, to the extent that if
the data appear perfect one might wonder what prior manipulation has
occurred to remove the distortions, fill in the missing values, and so on.

e Chance. Curious configurations do arise by chance, and, as the size of
the data set increases, so the opportunities for such chance occurrences
likewise increase. It is this third of these causes which is the focus of this

paper.

2 Chance and coincidence

To set the scene for how chance can provide anomalies and coincidences, here
some examples.
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Example 1: In the early 1980s, a New Jersey woman won a lottery twice
in just 4 months. The odds of any particular person winning this lottery
twice were reported as being just one in 17 trillion (that is, one in 10'2).

Example 2: More recently, on 6th and 10th September 2009, the same six
numbers (4, 15, 23, 24, 35, and 42, though in different orders) were drawn
in the Bulgarian lottery.

Example 3: UK plastic cards have four digit Personal Identification Num-
bers (PINs) associated with each card. Kevin Stokes, from Lancashire in
the UK, had already changed the PIN on his Sainsbury’s card to a num-
ber he could easily remember. By coincidence, when his new Barclaycard
arrived, it had the same PIN as his Sainsbury’s card. Then, when Kevin
and his wife opened an Alliance and Leicester account, it also had the
same PIN. As if this wasn’t enough, in 2004 when Barclays sent Kevin a
new card, it also had the same PIN.

Example 4: Golfers scoring holes in one are the stuff of folklore. But how
about Joan Creswell and Margaret Williams both scoring holes in one,
one immediately after the other, at the 13th hole at the Barrow Golf Club
in 20057 And as if that wasn’t enough, in 2007 Jacqueline Cagne hit her
14th hole in one. Local sportswriter Larry Bohannan had tracked down
witnesses, and the last hole in one even occurred in front of television
cameras, so there appears to be no doubt of the truth of the claim. (There
is a downside to this: Ms Cagne says that she has spent several thousand
dollars on celebratory champagne for her fellow golfers.)

Example 5: Lightning strikes, especially two strikes in the same place, are
paradigms of coincidence. What then of the case of Major Walter Sum-
merford, who was struck by lightning in 1918. Then again in 1924, And
then again in 1930. He died in 1932 (not from a lightning strike). But
then, as if to rectify the oversight, his gravestone was struck by lightning.
And as if his case was not bad enough, Roy C. Sullivan, a park ranger
from Virginia, was struck by lightning seven times.

The anecdotes above are all examples of coincidences. The New Ozxford
Dictionary of English defines a coincidence as ‘a remarkable concurrence of
events or circumstances without apparent causal connection’, and Diaconis
and Mosteller (1989) define it as a ‘surprising concurrence of events, per-
cewed as meaningfully related, with no apparent causal connection’. We see
that these definitions contain two components: (i) that the event is highly
improbable (‘remarkable’, ‘surprising’ in the above definitions); (ii) that there
is no apparent causal connection.

The improbability of the concurrence, if one assumes no causal connec-
tion, prompts one to seek such a connection. This is simply a subconscious
application of the law of likelihood, which says that evidence E supports ex-
planation H1 better than explanation H2 whenever the likelihood ratio of
H1 to H2 given E exceeds 1. So, if I obtain twenty heads in a row when
tossing a coin, I might seek an explanation which leads to a greater probabil-
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ity of getting such an outcome (e.g. the coin is double-headed; the observed
outcome would have probability equal to 1) than that the coin is fair (the
observed outcome would have probability of around 10~°¢). Thus one might
extend the above definitions of coincidence to: a concurrence of events which
18 apparently so improbable that one suspects there might be a hidden causal
connection.

The fact that the causal connection is hidden means that one may be
unable to explain what it is — although the human brain seems to have a
remarkable ability to conjure up sensible sounding explanations (even to the
extent of managing to do so when it turns out that the observed data structure
was a consequence of some error in the data).

The suspicion or belief that there may be a hidden causal connection
leading to an anomaly or structure doubtless underlies many pre-scientific
explanations for empirical phenomena — in superstitions, religions, miracles,
Jung’s synchronicity, and so on. And note that the term ‘pre-scientific’ does
not mean that such explanations are no longer believed by many people. And,
of course, it is true that sometimes there are unobserved forces or influences
which manifest themselves without obvious mechanism — magnetism springs
to mind.

In Hand (2009) I pointed out that the notion that statistics is solely
concerned with mass phenomena — with aggregating, summarising, and de-
scribing data — is not really true. Many applications of statistics are aimed
at the individual. In a clinical trial, for example, the ultimate aim is not
really to make some general statement about the average effectiveness of a
drug, but to decide which treatment is best for each individual. Nonetheless,
and even in such applications, a first-stage modelling process is necessary, in
which one tries to construct overall summaries, which can then be combined
with data on the individual to draw some conclusion about the individual.
Such statistical modelling relies on aggregate statistical laws, such as the
law of large numbers and the central limit theorem. They are properties of
multiple observations. Likewise, the laws of statistical physics (the gas laws,
magnetism, heat, etc) are based on the aggregate behaviour of large numbers
of objects. My aim in the next section is to make a first pass at compiling
some ‘laws’ which apply at the other extreme, when we are concerned with
individual unusual events — with anomalies.

3 The Laws of coincidence

The law of total probability: One of an exhaustive set of possible events
must happen.
This law is really a tautology: by the very meaning of the word ‘exhaus-
tive’, one of the events must happen. Thus, in a 6/49 lottery, in which the
winning number is a set of six different numbers random drawn from the
integers 1 to 49, we know that one of the 13,983,816 possible sets of six
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numbers must come up. This means that, if one buys a single ticket, the
probability of winning is roughly 7 x 10® . It also means that if 13,983,816
individuals each buy tickets with different numbers, then one of them is
certain to win the jackpot.

The law of truly large numbers: With a large enough data set, any data

configuration is likely to occur.

Superficially, this law is straightforward: the more opportunities there are
for an event to happen, the greater is the probability that it will happen,
and this is true even if the probability that the event will happen at any
individual opportunity is very small. While you might be surprised if an
event with a one in a million probability happened to you, you would
not be surprised if such an event happened to someone, somewhere on
the planet. After all, there are around 7 billion people on the planet.
With that sort of number of opportunities, one should expect around
7000 such ‘one in a million’ events to occur. Indeed, what would be really
surprising is if no such events occurred. Such a lack of events would have
a probability of around 1073040

However, where this law really begins to bite as a law of coincidence is
when one underestimates the number of opportunities. Example 2 above
illustrates this. Lottery coincidences are typically calculated based on
ignoring the fact that many lotteries are conducted around the world,
that they take place week after week, and that a huge number of people
buy lottery tickets, often more than one ticket. This means that we might
expect to observe coincidences like the Bulgarian lottery of Example 2
at some time somewhere in the world. Indeed, again, it means it would
be surprising if we did not. And, in fact, on July 9th and 11th 2007, the
sets of five numbers picked in the North Carolina Cash 5 lottery were
identical.

In some situations the underestimation is dramatic since the number
of opportunities increases in an exponential way, and this may not always
be obvious. It is this principle which underlies the counterintuitive nature
of the classic ‘birthday problem’ or ‘birthday paradox’: in a group 23
people, the probability that some pair have a birthday on the same day
is greater than 1/2. The key point here is a confusion between the number
of potential pairs each of which includes a specific individual (which is
just 22 in the case of 23 people in a room), and the total number of
potential pairs (which is 253, more than ten times as many).

The law of near enough: Events which are sufficiently similar are regarded

as identical.

The birthday problem required an exact match, which was achievable
because there is a finite number of discrete days in a year. Often, however,
nature does not partition things up so conveniently, and it is left to us
to decide on the divisions - or to decide if something is sufficiently like
another thing to be regarded as of the same type. Since, in many cases,
there is no hard and fast definition, there is plenty of scope for arbitrarily
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increasing the chance that two events will be concurrent. For example, we
might regard it as a striking coincidence if I unexpectedly and accidentally
meet my only brother in a town neither of us have visited before, but we
would regard it as less of a coincidence if I unexpectedly bump into one
of the set consisting of my several brothers, my cousins, my neighbours,
my old school mates, my work colleagues, and my sports club friends.
Coincidences arising as a combined consequence of the law of truly
large numbers and the law of near enough have been a source of enter-
taining numerology. Examples are Ramanujan’s constant, €™ 263, which
is equal to (2 x 10005%) + 744 to within 2.9 x 10730 | e™ — 7 | which is
very close to 20, and the trio of numbers 1782, 1841, and 1922 which,
with exponent 12, come perilously close to disproving Fermat’s last the-
orem. There is no limit to the number of combinations of mathematical
operators and numbers which may be searched through, and sooner or
later one will find some combination which lies within any specified ac-
curacy limits: a rational number, a ratio of two integers, can be found
which approximates any real number to any degree of accuracy that one
wishes.
The law of search: Keep seeking and you will find.
The law of truly large numbers really comes into its own when the search
space is unlimited. For example, the unlimited set of integers provide
rich grounds in which to search for coincidences: one can fit the integers
together in various ways and simply keep on increasing the size of the
integers. In 2009, on the occasion of the 175th anniversary of the founding
of the Royal Statistical Society, I noticed that 175 = 1'+72452 , but had
it been some other anniversary I am sure we could have found another
combination of the constituent integers which was striking.
The law of the lever: A slight adjustment to a distribution can dramati-
cally alter probabilities.
Much of statistical modelling, whether Bayesian or frequentist, assumes
an underlying distributional form. This might be fairly elaborate (e.g. a
mixture distribution), but it will often belong to a family of distributions.
Such distributional forms are fine for modelling, but, simply because the
data are by definition sparser in the tails, accuracy may break down there.
In particular, small changes to parameter values may have a negligible
effect on the overall shape of a distribution, but a large effect in the tails.
A very simple, and familiar, illustration of this is the effect on the tail
probability of a normal distribution when the mean is slightly shifted. For
example, compare the probability of observing a value below —5 from a
N(0,1) distribution with the probability of observing such a value from a
N(—0.135, 1) distribution. Although the standardised difference between
the means is only 0.135, the first probability is only a half the size of the
second. To take a more extreme case, the probability of observing a value
below -10 from a N(0, 1) distribution is only a quarter of the probability
of observing so small a value if the mean is shifted by just 0.139.
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This sort of phenomenon has been held to account for breakdowns
in the financial markets, in which extreme events occur more often than
expected. For mathematical convenience, normal distributions are often
assumed to hold for various random variables, and yet empirical obser-
vation shows that the distribution tails are often fat: the probability of
extreme values is much greater than would appear to be the case under
the normal assumption. To illustrate the consequence of the difference,
the ratio of the probability of taking a value greater than 10 for the
lognormal and normal distribution is 1.40 x 10%.

The law of the tortoise: All journeys take place one step at at time.

Imagine a square consisting of one million by one million smaller sub-
squares. The chance of alighting on a single specified subsquare at ran-
dom in just one attempt is simply 10'2. However, if we randomly pick
some subsquare at random and then walk towards the target, one step at
a time, each step being a move to a neighbouring orthogonal subsquare,
we are certain to arrive there within two million steps. A vanishingly
small probability has become certainty. One can even relax the require-
ment that each step necessarily moves towards the target, and replace it
by a probability greater than a half that each step so moves, and one is
certain ultimately to end at the target.

Creationists often confuse the probability of producing a complex
structure in one step with the probability of producing the structure by
one incrementally step at a time. The ‘miracle of the typing monkeys’, in
which a large enough number of monkeys, randomly hitting the keys of
typewriters, eventually produce the works of Shakespeare, is of this kind.

The law of selection: Paint the target round the arrow.

The name of this law is derived from the story of the man who notices
that the side of a barn has a number of targets painted on it, each of
which has an arrow centred in the bull’s eye. Such a configuration can
be achieved in various ways. At one extreme, one can first paint the
targets on the barn, and then shoot the arrows, hitting all the bull’s
eyes, so demonstrating either superb archery skills or that an event of
extraordinarily low probability has occurred. At the other extreme, one
can shoot the arrows into the barn and then paint the targets around
them.

The latter situation is not all that uncommon and, indeed, to many,
the phrase ‘data mining’ is synonymous with this sort of activity: if one’s
initial hypothesis is not supported by the data, then trawl through the
data to find some unusual data configuration, and then devise a the-
ory which ‘explains’ that configuration. The physicist Richard Feynman
(Feynman, 1998) described such a situation in which a psychologist’s rats
did not behave as the theory predicted, but the psychologist noticed that
they alternated in turning left and right unexpectedly often. For any
experimental results, no doubt if he had searched for long enough, the
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psychologist could have found some configuration in the rats’ behaviour
which seemed non-random.

The law of selection has also been called the Jeane Dixon Effect,
after the American psychic of that name. It refers to the practice of
emphasising a few correct predictions after the fact, while ignoring the
many incorrect predictions.

And finally, a law which does not exist: Borel’s law: Fvents with a suf-

ficiently small probability never occur.

This ‘law’ was proposed by the eminent mathematician Emile Borel in
a popular book, originally published in 1943 (Borel, 1962). Borel is also
said to be the originator of ‘miracle of the typing monkeys’. This law is
not to be confused with Borel’s ‘law of large numbers’, which lies at the
heart of probability, or the various other discoveries named after him.
It was simply an attempt to communicate the notion of astronomically
improbable events to his lay readers. Indeed, on page 3 of Borel (1962)
he appends the above definition with the words: ‘or at least, we must act,
in all circumstances, as if they were impossible.’

Borel says that if the works of Shakespeare and Goethe comprise
about 10 million letters, the probability of producing them by random
typing is ‘equal to unity divided by a number of more than 10 million
figures’. He then goes on to say:

‘But in concluding from its extremely small probability that the

typist’s miraculous feat is impossible ...we leave the domain of

mathematical science, and it must be recognised that the asser-
tion, which seems to us quite evident and incontestable, is not,
strictly speaking, a mathematical truth. A strictly abstract math-
ematician could even claim that the experiment need only be re-
peated a sufficient number of times, namely a number of times
represented by a number of 20 million figures, to be sure, on the
contrary, that the miracle will be produced several times in the
course of these inumerable trials. But it is not humanly possible

to imagine that the experiment can be so often repeated.’

To illustrate this, he produces some other small numbers with which
the 20 million digits can be compared. Examples (not the ones he gave)
are that the number of fundamental particles in the universe is estimated
to be around 1080 and that the age of the umiverse, in seconds, is a
number of around 10'®. These are a far cry from a number of the order
of 1020:000,000

With such numbers as context, he says:

‘It is then clearly absurd to imagine experiments whose number

would extend to more than a million figures; that is a purely

abstract conception, a piece of mathematical juggling of no con-
sequence, and we must trust our intuition and our common sense
which permit us to assert the absolute impossibility of the typists

miracle which we have described. . .
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... the single law of chance carries with it a certainty of another
nature than mathematical certainty, but that certainty is compa-
rable to one which leads us to accept the existence of an historical
character, or of a city situated at the antipodes ...it is compa-
rable even to the certainty which we attribute to the existence of
the external world.’

Another way of looking at this is to note that there are about 30
million seconds in a year. Suppose that our typist types at a rate of ten
characters a second. Then, assuming constant typing (not stopping for
sleep, etc), about 30 documents of the size of Shakespeare’s complete
works could be produced each year. To repeat the exercise 100,000,000
times would require around 1019999980 times the length of the history
of the universe (roughly speaking!). It seems perfectly reasonable, when
one compares that length of time with the length of a human lifespan, to
regard such events as impossible.

Borel’s law then, while false within the abstract world of the pure
mathematician, can only sensibly be regarded as true in anything re-
motely approaching a real world.

4 Conclusion

Borel’s law, saying that events of absurdly small probability are impossible,
implies that events which we actually observe — the coincidence examples in
Section 2, for example — cannot be events of absurdly small probability. The
laws of coincidence in Section 3 show how the probabilities associated with
such events are in fact not absurdly small.

Familiar statistical theory is based on the aggregate behaviour of groups
of objects, each behaving according to the laws of probability. These laws
combine to produce overall laws for the aggregations, such as the laws of large
numbers. However, anomalous behaviour, and in particular coincidences, can
also often be explained in terms of certain laws based on basic probability.
These laws may well remove the (natural, subconscious?) need to find a reason
for apparent coincidences — no reason may be necessary, but just a proper
calculation of the probabilities involved.

Principles similar to those outlined above also apply elsewhere to low
probability events. A familiar one arises in screening for small subsets of a
population (e.g. rare diseases, credit card fraud, terrorists, etc). A screening
instrument which correctly identifies 99% of the rare class and also correctly
identifies 99% of the majority class, when applied to a situation in which the
rare class comprises just one in a million of the population, will be incorrect
for about 99.99% of those it predicts belong to the rare class.

It follows that if unusual or unexpected events are to be used as indicators
of possible unsuspected relationships, then the first step is to examine the
events in the light of the ‘laws’ above. Having decided that the occurrence
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really is a very low probability event, under the standard assumptions, only
then it is worthwhile seeking alternative explanations.
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Abstract. Approximate Bayesian Computation encompasses a family of likelihood-
free algorithms for performing Bayesian inference in models defined in terms of a
generating mechanism. The different algorithms rely on simulations of some sum-
mary statistics under the generative model and a rejection criterion that determines
if a simulation is rejected or not. In this paper, I incorporate Approximate Bayesian
Computation into a local Bayesian regression framework. Using an empirical Bayes
approach, we provide a simple criterion for 1) choosing the threshold above which
a simulation should be rejected, 2) choosing the subset of informative summary
statistics, and 3) choosing if a summary statistic should be log-transformed or not.
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1 Introduction

Approximate Bayesian Computation (ABC) encompasses a family of like-
lihood free algorithms for performing Bayesian inference (Beaumont et al.
(2002), Marjoram et al. (2003)). It originated in population genetics for mak-
ing inference in coalescent models (Pritchard et al. (1999)). Compared to
MCMC algorithms that aim at providing a sample from the full posterior
distribution p(¢|D), where ¢ denotes a possibly multi-dimensional param-
eter and D denotes the data, ABC targets a partial posterior distribution
p(¢|S) where S denotes a p-dimensional summary statistic S = (S!,..., SP)
typically of lower dimension than the data D. Despite of this approximation
inherent to ABC, its ease of implementation have fostered ABC applications
in population genetics and evolutionary biology.

1.1 Rejection algorithm

To generate a sample from p(¢|S), the original ABC rejection algorithm is
indeed remarkably simple (Pritchard et al. (1999)):

1. Generate a parameter ¢ according to the prior distribution r;

Y. Lechevallier, G. Saporta (eds.), Proceedings of COMPSTAT 2010,
DOI 10.1007/978-3-7908-2604-3_4, (© Springer-Verlag Berlin Heidelberg 2010
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o

Simulate data D’ according to the model p(D’|¢p);

3. Compute the summary statistic S’ from D’ and accept the simulation if
d(S,S") < § where d is a distance between the two summary statistics
and 6 > 0 is a threshold parameter.

It is the user’s task to choose a threshold §. Rather than choosing explicitly
a threshold value §, Beaumont et al. (2002) rather set the percentage of
accepted simulations, the acceptance rate ps, to a given value. For a total
of m simulations, it amounts to setting J to the ps-percent quantile of the
distances d(S;, S), ¢ = 1...n. In the following, we choose d(S,S") = ||S—5"||
where || - — - || denotes the Euclidean distance, and we consider that each
summary statistic has been rescaled by a robust estimate of its dispersion
(the median absolute deviation).

1.2 Regression adjustment

To weaken the effect of the discrepancy between the observed summary statis-
tic and the accepted ones, Beaumont et al. (2002) proposed two innovations:
weighting and regression adjustment. The weighting is a generalization of the
acceptance-rejection algorithm in which each simulation is assigned a weight
Wi = Ks(||S — Sil|]) o< K(||S — Si||/9) where K is a smoothing kernel. Beau-
mont et al. (2002) considered an Epanechnikov kernel so that simulations
with ||.S — S’|| > § are discarded as in the rejection algorithm.

The regression adjustment step involves a local-linear regression in which
the least-squares criterion

> {di = (Bo+ (Si = S)"B)IW;, By €R, Py €RP, (1)
=1

is minimized. The least-squares estimate is given by
Bus = (Bls. is) = (XTWsX) T XT Wi, (2)

where W is a diagonal matrix in which the i*" element is W;, and

1st—sto sl —sP P
1Tsh—stoosP —gP On

To form an approximate sample from p(¢4|S), Beaumont et al. (2002)
computed ¢; = BES + €;, where the ¢;’s denote the empirical residuals of
the regression. This translates into the following equation for the regression
adjustment

o = ¢i — (5 = 5)" Bis. (4)
To give an intuition about the benefit arising from the regression adjust-
ment, look at the first and second weighted moments of the ¢;. The first
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moment of the ¢} is equal to the local linear estimate Bo and therefore pro-
vides an estimate of the posterior mean. Compared to the weighted mean of
the ¢;’s obtained with the rejection algorithm (the Nadaraya-Watson esti-
mate in the statistics literature), 30 is design adaptive, i.e. its bias does not
depend on the design p(S) (Fan 1992). The second moment of the ¢ is equal
to the second moment of the empirical residuals ¢; which is inferior to the
total variance of the ¢;’s. A shrinkage towards B() is therefore involved by

regression adjustment.

1.3 Potential pitfalls of ABC

Assume that we observe a sample of size N = 50 in which each individual
is a Gaussian random variable of mean p and variance o2. We are interested
here in the estimation of the variance parameter o2. We assume the following
hierarchical prior for p and 02 (Gelman et al. (2004))

o? ~ Invy?(d.f. = 1) (5)
w~ N(Ov 02); (6)
where Invx?(d.f. = v) denotes the inverse chi-square distribution with v

degrees of freedom, and N denotes the Gaussian distribution. We consider the
the empirical mean and variance as the summary statistics. The data consists
of the empirical mean and variance of the petal length for the viriginica
species in the iris data.

1 summary statistic 5 summary statistics
» 3 - 1 ® 3 -
- ® Accepted -
% s | Rejected .g s | :
> >
®© ©
O o | O o | $
23 23 ,
W e - T T T T We - T T -.'.\ T
01 10 100 100.0 01 10 100 100.0
6? o?

Fig. 1. Rejection algorithm for estimating ¢ in a Gaussian model. In the left panel,
the empirical variance is the single summary statistic in the rejection algorithm
whereas in the right panel, we considered the five summary statistics. The horizontal
line represents the observed empirical variance s3, = 1.144.
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1.4 Outline of the paper

In this paper, I will provide a criterion for 1) choosing a set of informative
summary statistics among the p summary statistics (S1,...,SP), 2) choos-
ing an acceptance rate ps, and 3) choosing if a summary statistic should be
transformed or not. Here I will consider only log transformation but square
root or inverse transformations could also be considered. The first section
presents how to compute the (p + 1)-dimensional parameter 8 of the local
linear regression in a Bayesian fashion. In the context of Bayesian local regres-
sion, we define the evidence function that will provide us a rationale criterion
for addressing questions 1-3. The second section presents two examples in
which we show that the evidence function provides reasonable choices for ps,
for the selection of the summary statistics, and for the choice of the scale
(logarithmic or not) of the summary statistics.

2 Regression adjustment in a Bayesian fashion

2.1 Local Bayesian regression

Carrying out locally-linear regression in a Bayesian fashion has been studied
by Hjort (2003). The linear regression model can be written as ¢; = 3°+(S; —
S)T 31 +e. The points (S;, ¢;) are weighted by the W; = Ks(||S; —S||)/K5(0).
By contrast to the least-squares estimate, Bayesian local regression is not
invariant to rescaling of the W;’s. Here, a weight of 1 is given to a simulation
for which S; matches exactly S and the weights decrease from 1 to 0 as the
[|S; = S||’s move from 0 to 6.

Here we assume a zero-mean isotropic Gaussian prior such that § =
(8%, 8Y) ~ N(0,a™'I,+1), where a is the precision parameter, and I is
the identity matrix of dimension d. The distribution of the residuals is as-
sumed to be a zero mean Gaussian distribution with variance parameter o?.
With standard algebra, we find the posterior distribution of the regression
coefficients 3 (Bishop (2006))

B~ N(Brap, V), (7)

where
Briap = 0 VX TWso (8)
V= (alpi + o 2 XTWX). (9)

Bayesian regression adjustment in ABC can be performed with the linear
adjustment of equation (4) by replacing 3{ 4 with 3i;,p. By definition of the
posterior distribution, we find that Gyap minimizes the regularized least-
squares problem considered in ridge regression (Hoerl and Kennard (1970))

B(B) = 5og 3 (61— (55— $)TBWi + 275, (10)
i=1
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As seen from equation (10), Bayesian linear regression shrinks the regression
coefficients towards 0 by imposing a penalty on their sizes. The appropri-
ate value for 02, o, and ps, required for the computation of Byap, will be
determined through the evidence approximation discussed below.

2.2 The evidence approximation

A complete Bayesian treatment of the regression would require to integrate
the hyperparameters over some hyperpriors. Here we adopt a different ap-
proach in which we determine the value of the hyperparameters, by maximiz-
ing the marginal likelihood. The marginal likelihood p(¢|o?, @, ps), called the
evidence function in the machine learning literature (MacKay (1992), Bishop
(2006)), is obtained by integrating the likelihood over the the regression pa-
rameters

p(6l0%, a, ps) = / (216418, )™ p(Bla) dB. (11)

Finding the value of the hyperparameters by maximizing the evidence is
known as empirical Bayes in the statistics literature (Gelman et al. (2004)).
Here, we do not give the details of the computation of the evidence and refer
the reader to Bishop (2006). The log of the evidence is given by

log p(¢lo?, a, ps) = B3t loga — 2% log 0 — E(Buap) — 3 log |V~ — 5¥ log 2,
(12)
where Ny = > W;. By maximizing the log of the evidence with respect to

«, we find that

a=— 1 (13)

 BliapBuap’
where v is the effective number of parameters (of summary statistics here)
vy=(p+1)—aTr(V). (14)
Similarly, setting & log p(¢|o?, o, ps)/d0? = 0 gives

o iz = (Si = S)TB)*W;
o° = N —~ . (15)

Equations (13) and (15) are implicit solutions for the hyperparameters since
Buap, V, and v depend on « and ¢2. For maximizing the log-evidence, we
first update Byap and V' with equations (8) and (9), then we update v using
equation (14), and finally update o and o2 with equations (13) and (15).
This updating scheme is applied in an iterative manner and stopped when
the difference between two successive iterations is small enough. Plugging
the values of these estimates for @ and o2 into equation (12), we obtain the
log-evidence for the acceptance rate log p(¢|ps)-
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Fig. 2. Log of the evidence as a function of the acceptance rate for the generative
model of equation (16). A total of 1,000 simulation is performed and the optimal
acceptance rate is found for ps = 37.

3 The evidence function as an omnibus criterion

3.1 Choosing the acceptance rate

To show that the evidence function provide a good choice for the tolerance
rate, we introduce the following toy example. We denote ¢, the parameter of
interest and S the data which is equal here to the summary statistic. The
generative model can be described as

o Nu—c,c ceR,

e?
S~N (w o? = (.05)2> , (16)
where U, denotes the uniform distribution between a and b. We assume
that the observed data is S = 0.5. For ¢ = 5, Figure 2 displays that the
evidence function has a maximum around ps = 37%. As seen in Figure 3,
this value of ps corresponds to a large enough neighborhood around S = 0.5
in which the relationship between S and ¢ is linear. For increasing values of
¢ in equation (16), the width of the neighborhood-around S = 0.5-in which
the linear approximation holds, decreases. Figure 3 shows that the evidence
function does a good job at selecting neighborhoods of decreasing widths in
which the relationship between S and ¢ is linear.

3.2 Choosing the summary statistics

The evidence function can be used to choose a subset of predictor variables in
a regression setting. For example, Bishop (2006) used the evidence to select
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Fig. 3. Plot of the accepted points in the rejection algorithm for four different values
of the parameter c. In the four plots, the acceptance rate is chosen by maximizing
the evidence function p(d|ps).

the order of the polynomial in a polynomial regression. Here we show that
the evidence function provides a criterion for choosing the set of informative
summary statistics in ABC.

Plugging the optimal value for ps in equation (12), we obtain the evi-
dence as a function of the set of summary statistics p(¢|(St,...,SP)). To
find an optimal subset of summary statistics, we use a standard stepwise
approach. We first include the summary statistic S (j; € {1,...,p}) that
gives the largest value of the evidence p(¢|S7!). We then evaluate the evi-
dence p(¢|(S7,572)) (ja € {1,...,p}) and include a second summary statis-
tics if max;, p(¢](S71,592)) > p(¢[S71). If a second summary statistics is
not included in the optimal subset, the algorithm is stopped. Otherwise, the
process is repeated until an optimal subset has been found.

To check the validity of the algorithm, we apply this stepwise procedure to
the Gaussian model of Section 1.3 in which there are five different summary
statistics. To estimate the posterior distribution of o2, we apply the linear
correction adjustment of equation (4) to logo? and then use the exponen-
tial function to return to the original scale. This transformation guarantees
that the corrected values will be positive. For each test replicate, we perform
n = 10,000 simulations of the generative model of Section 1.3 and select an
optimal subset of summary statistics with the stepwise procedure. Perform-
ing a total of one hundred test replicates, we find that the stepwise procedure
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always chooses the subset of summary statistics containing the empirical vari-
ance only. Figure 4 displays summaries of the posterior distribution obtained
with ABC using five summary statistics or with the empirical variance only.
As already suggested by Figure 1, the posterior distribution of o2 obtained
with the five summary statistics is extremely different from the exact poste-
rior distribution (a scaled inverse chi-square distribution, see Gelman et al.
(2004)). By contrast, when considering only the empirical variance, we find
a good agreement between the true and the estimated posterior.
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Fig. 4. Boxplots of the 2.5%, 50%, and 97.5% estimated quantiles of the posterior
distribution for 2. ABC with one summary statistics has been performed with the
empirical variance only. A total of 100 runs of ABC has been performed, each of
which consisting of n = 10,000 simulations.

3.3 Choosing the scale of the summary statistics

Here we show that changing the scale of the summary statistics can have a
dramatic effect in ABC. We perform a second experiment in which we re-
place the empirical variance by the log of the empirical variance in the set
of five summary statistics. Performing a total of one hundred test replicates,
we find that the stepwise procedure always chooses the subset containing the
log of the empirical variance only. However, by contrast to the previous ex-
periment, we find that the posterior distribution of o2 obtained with the five
summary statistics is in good agreement with the exact posterior distribution
(see Figure 5). As usual for regression model, this simple experiment shows
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that better regression models can be obtained with a good transformation of
the predictor variables.
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Fig. 5. Boxplots of the 2.5%, 50%, and 97.5% estimated quantiles of the posterior
distribution for 2. In the ABC algorithms the empirical variance has been log-
transformed.

We test here if the evidence function is able to find a good scale for the
summary statistics. In one hundred test experiment, we compare p(log o2|s%;)
to p(log 0%| log(s%)). We find that the evidence function always selects log(s%;)
showing that a good scale for the summary statistics can be found with the
evidence function.

3.4 Using the evidence without regression adjustment

If the standard rejection algorithm of Section 1.1 is considered without any
regression adjustment, it is also possible to use the evidence function. The
local Bayesian framework is now ¢; = o + € in which each points (S;, ¢;) is
weighted by W; = Ks(||S; — S||)/Ks