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Preface

Overview

Link prediction problem has been widely studied in the past. It is primarily applied
in recommender systems. The problem deals with predicting new links that are
likely to emerge in a network in the future, given the network at the current time.
Two nodes tend to get connected if they are similar to each other. Hence, it is
important to compute similarity between two nodes to assess the possibility of link
formation between them. Some of the link prediction similarity measures such as
Common Neighbors (CN), Adamic Adar Index (AA), Resource Allocation Index
(RA), Preferential Attachment Index (PA), Katz, and PropFlow use the structure
of the network like the neighborhood information and path information between a
pair of nodes to compute similarity between two nodes. Higher similarity between
two nodes implies higher possibility of link formation between the two nodes.
Although power law degree distribution is an important notion in social networks,
its role has not been explored adequately in the context of link prediction.

In this book, we propose link prediction similarity measures for social networks
which exploit the degree distribution of the networks. In the context of link pre-
diction in dense networks, we propose Markov Inequality Degree Thresholding-
based similarity measure (MIDT), which only considers nodes whose degree is
below a threshold for a possible link. The threshold value is determined using the
Markov Inequality. Next, we present similarity measures based on cliques
(CNC, AAC, RAC), which assigns extra weight between nodes sharing more
number of cliques. Further, we propose a locally adaptive (LA) similarity measure,
which assigns different weights to common nodes based on the degree distribution
of the local neighborhood and the degree distribution of the network. The weight
of the common node varies with the neighborhood under consideration. In the
context of link prediction in sparse networks, we propose a novel two-phase
framework that adds edges to the sparse graph to form a boost graph. We use the
boost graph instead of the original network for link prediction.
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Audience

This book is intended for graduate students and researchers working on the link
prediction problem. Specifically, we present similarity measures in link prediction
by exploiting the power law degree distribution of the network that social networks
typically follow. The techniques could be applied in different areas such as com-
puter science, engineering, etc. It is assumed that the reader has a basic knowledge
of mathematics at the high-school level, as well as a certain background in com-
puting and programming. Although the algorithms can be implemented in
programming languages, such as C++, Java and Python, etc, C++ implementation
renders superior performance in terms of computational speed.

Organization

This book is organized as follows:

1. Literature and Background: Chapter 1 presents the literature and state-of-the-art
techniques in link prediction. Further, we also discuss the relevant background
required for link prediction.

2. Link Prediction in Dense Networks: Chapters 2 and 3 present link prediction
similarity measures based on power law degree distribution of the network in
dense networks.

(a) Degree Thresholding: Chapter 2 presents a node thresholding approach
(MIDT) based on its degree. It assigns a smaller weight to the low-degree
common nodes and ignores the contribution of the high-degree common
nodes. Further, in Chap. 2, we also present a clique-based approach (CNC,
AAC, RAC) to link prediction, which assigns heavier weights to node pairs
that share common neighbors having more number of cliques.

(b) Locally Adaptive Approach: Chapter 3 presents a Locally Adaptive
(LA) Approach wherein the weights to the common nodes for similarity
computation is based on the degree distribution of the local neighborhood
and the degree distribution of the network. Further, the weights assigned to
the common nodes vary with the local neighborhood under consideration.

3. Link Prediction in Sparse Networks: We present a framework for link predic-
tion, a novel two-phase approach, to deal with sparse networks in Chap. 4.

4. Applications of Link Prediction: We present and discuss various applications of
link prediction in Chap. 5.

5. Conclusion: We conclude in Chap. 6 and also present potential future directions
for link prediction based on power law degree distribution of the networks.

Virinchi Srinivas
Pabitra Mitra
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Chapter 1
Introduction

Abstract Link prediction deals with predicting new linkswhich are likely to emerge
in network in the future, given the network at the current time. It has a wide range of
applications including recommender systems, spam mail classification, identifying
domain experts in various research areas, etc. In this chapter, we discuss the prior art
in link prediction literature.

Keywords Social network · Undirected graph · Static · Dynamic link prediction ·
Local similarity measure · Heterogeneous network
Networks have become a part of our day-to-day lives with the advent of internet on
smart phones, tablets, and computers. Any network can be represented as a graph
G = (V, E), where V corresponds to the set of nodes (users) of the network and
E corresponds to set of links between the nodes (users). Online social networks
like Twitter and Facebook allow a user to share messages, pictures, and videos with
other users. Facebook may be viewed as an undirected network while Twitter can be
viewed as a directed network. For example, the Facebook network can be represented
as an undirected graph where nodes correspond to the users of Facebook and an edge
exists between two nodes (users) if they are friends of each other on Facebook. Other
networks can be represented similarly.

It is critical to understand how a network grows; how new nodes and links get
added to the network with time. This problem is often referred to as the “network
evolution problem.” A detailed study of network evolution models can be found
in [31]. However, in this book, we deal only with the link prediction problem, i.e.,
predicting new links that get added to the network over time; it does not consider
addition or deletion of nodes to the network.

1.1 Link Prediction Problem

Given a network Gt = (V, Et) at a given time t, we need to predict the set of new
links E which will most likely emerge in the network in the time interval [t, t′],
where t′ > t. The network Gt′ at time t′ can be represented as Gt′ = (V, Et′) where

© The Author(s) 2016
V. Srinivas and P. Mitra, Link Prediction in Social Networks,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-28922-9_1
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2 1 Introduction

Et′ = Et ∪ E. It is important to note that in the link prediction problem, V remains
static with time. Contrastingly, in the network evolution problem, V varies over time
as new nodes are added to the network.

1.2 Literature Review

The earliest work on link prediction [40, 52–54] was carried out on web networks
for effective web page navigation. Markov models were used alongside the structure
of the web to assist users to navigate from any given web page. Although the link
prediction problem was previously studied, it was formally surveyed, for the first
time, in [21]. It presents similarity measures1 for estimating the similarity of nodes
in a social network.The authors infer that informationpertaining to future interactions
can be extracted from network topology alone.We present a review of link prediction
literature as follows:

• Static Link Prediction: Static link prediction problem considers only a single
snapshot of the network for link prediction. Link prediction algorithms compute
similarity of node pairs; similar nodes tend to connect to each other [41].

– Local Similarity Measures: Local similarity measures compute the similar-
ity between two nodes using local neighborhood features like node degree,
node neighbors, and common neighbors between the two nodes. State-of-the-art
local similarity measures for link prediction include Preferential Attachment
(PA) [21], Common Neighbors (CN) [30], Adamic Adar Index (AA) [1], and
Resource Allocation Index (RA) [51]. PA is the simplest and computation-
ally the least inexpensive similarity measure which is based on the preferential
attachment network evolution model [31]. According to PA, similarity between
two nodes is directly proportional to the product of the degree of the two nodes.
CN assigns a similarity value between two nodes that is directly proportional
to the number of common nodes they share. AA and RA are weighted versions
of CN. They compute similarity between two nodes as a weighted sum of the
inverse of a function of the common nodes’ degree. The weights assigned to
the common nodes are based on the power law degree distribution. Hence, low-
degree common nodes are given higher importance compared to higher degree
common nodes in computing similarity.

Link prediction similarity measures show significant improvement in denser
social networks when using both the graph similarity measures and the weights
of existing links in a social network in [28, 29]. Similarly, in [37], a link
between two nodes is predicted based on the probability of information propa-
gation between the two nodes. Further, link prediction and classification were

1Even though we use the term similarity measure, it is a similarity function and need not be a
measure.
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collectively studied in an algorithm in [4]. Lu and Zhou [26] experimentally
show that weak ties play a significant role in the link prediction problem and
emphasizing the contribution of the weak ties enhances link prediction perfor-
mance. Leroy et al. [19] introduce the cold start link prediction problem of
predicting the complete network structure when the network is totally missing
while additional other information pertaining to the nodes is available. They
propose a two-phase method based on a bootstrap probabilistic graph. The first
phase generates an implicit network; the second phase applies probabilistic
graph-based measures to produce the final prediction. Lee et al. [18] use a
mathematical programming approach for predicting a future network utilizing
the node degree distribution identified fromhistorical observation of the past net-
works. They propose an integer programming problem to maximize the sum of
the link scores respecting the node degree distribution of the networks. Cohen
and Zohar [7] present an axiomatic framework based on property templates,
which analyzes the relevance of vertices to the score and how removal of edges
and vertices affects the score.

– Global Similarity Measures: Global similarity measures compute the simi-
larity between two nodes using more comprehensive global features such as
the number of paths, information flow, etc. between two nodes. Global simi-
larity measures involve higher computation cost compared to local similarity
measures. Katz measure [15] is a global similarity measure which computes
the similarity based on number of paths between two nodes. It assigns larger
weight to shorter paths and smaller weights to longer paths between two nodes.
The major problemwith Katz measure is the amount of computation involved in
similarity computation. Another global measure isRandom Walk with Restart
(RWR) [32], which is based on the popular PageRank metric. RWR computes
the similarity between two nodes as the probability of a random walker start-
ing at the start node and emerging at the destination node at the steady state.
PropFlow [24] is another global similarity measure based on the notion of
information flow. It is very efficient when compared to the Katz and RWR sim-
ilarity measures.

• Dynamic Link Prediction: Dynamic link prediction predicts new links based on a
stream of snapshots of the network over time. As opposed to static link prediction,
it does not consider a single snapshot of the network for predicting new links.
Tylenda et al. [46] propose to incorporate the history information available from
various snapshots over time for predicting new and recurrent links. Results show
that incorporating time-stamps of past interactions significantly improves the link
prediction performance. Rümmele et al. [36] approach solving link prediction
problem by counting 3-node graphlets. Further work in this direction can be found
in [20, 38].

• Link Prediction in Heterogeneous Networks: Data sparsity problem is a main
challenge in link prediction tasks. Cao et al. [5] address this problem by jointly
consideringmultiple heterogeneous link prediction tasks, which they refer to as the
collective link prediction (CLP) problem. CLP problem is solved using a Bayesian
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framework which allows knowledge to be transferred adaptively while taking into
account similarities between tasks. Related work on link prediction in heteroge-
neous networks can be found in [8, 10, 12, 17, 34].

• Link Prediction in Signed Networks: Symeonidis et al. [44] propose a time-
efficient technique using a combination of local and global features for link
prediction in signed networks. Further, significant improvement can be achieved
considering the information from both positive and negative links. Chiang et al.
[6] show a quantitative measure of a social network that can be used to derive a
link prediction algorithm in signed networks. They present a supervised machine
learning algorithm that uses features derived from longer cycles in the network;
using these features enhances the performance against existing algorithms.

• Unsupervised and Supervised-Based Learning Algorithms for Link Predic-
tion: Kashima and Abe [13] present an efficient incremental supervised learning
algorithm based on a probabilistic model. It uses topological features of the net-
work structure for predicting links between the nodes. Miller et al. [27] propose a
nonparametric Bayesian technique to predict links in relational data. The approach
simultaneously infers the number of features and also learns which entities have
each feature. Link prediction performance in co-author network can be substan-
tially enhanced by considering the dual graph obtained by projecting the original
two-mode network over the set of publications alongside the co-authorship net-
work [3]. Sarkar et al. [39] theoretically justify the success of some similarity
measures using a similar class of graph generation models in which nodes are
associated with locations in a latent metric space and connections are more likely
between closer nodes. They also show bounds related to node’s degree that plays
an important role in link prediction, the relative importance of short paths versus
long paths, and the effects of increasing nondeterminism in the link generation
process on link prediction quality. Tasnádi and Berend [45] propose using implicit
information from the restaurant review portal based on the ratings and languages
used by the users. It uses supervised machine learning techniques to use the inde-
pendent information given by the users to test the connectedness of the users.
Further work in this direction can be found in [2, 9, 11, 16, 23, 25, 33, 42, 43].

• Semi-Supervised Learning-Based Algorithms for Link Prediction: A proba-
bility model for estimating the joint probability of occurrence of two nodes was
proposed in [50]. The model when integrated with the existing network features
improves the link prediction performance. A fast semi-supervised algorithm for
link prediction was proposed in [14]. The algorithm predicts unknown parts of
the network structure using auxiliary information such as node similarities and
is applicable to multi-relational domains. Raymond and Kashima [35] propose
fast and scalable algorithms compared to [14] for link propagation by introducing
efficient procedures to solve large linear equations that appear in the method.
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1.3 Background

As discussed previously, similar nodes tend to connect to each other. Hence, higher
similarity between a pair of nodes implies higher chances of an edge emerging
between the two nodes. In this section, we discuss some of the most popular link
prediction similarity measures.

Notation

• V—vertices of the network,
• Et—edges of the network at time t,
• N(a)—neighbors of node a,
• xa—degree of node a.

1.3.1 Link Prediction Similarity Measures

In this section, we discuss the state-of-the-art link prediction similarity measures
and illustrate the behavior of these similarity measures using the example network
shown in Fig. 1.1. Consider computing similarity between nodes a1 and b1 in the
figure. Further, let a and b be any two nodes.

1. Preferential Attachment (PA)
Similarity between nodes a and b is calculated as the product of the degree of
the nodes a and b. Specifically, we illustrate the similarity computation between
nodes a and b in the example network. The higher the degree of both the nodes,
the higher is the similarity between a and b:

PA(a, b) = xa × xb

Fig. 1.1 Example network
for illustration
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The similarity between nodes a1 and b1 using PA similarity measure can be
computed as

PA(a1, b1) = xa1 × xb1 = 2 × 2 = 4

2. Common Neighbors (CN)
Similarity between nodes a and b is calculated as the number of common neigh-
bors between a and b. The higher the number of common nodes shared, the higher
is the similarity between a and b:

CN(a, b) = | N(a) ∩ N(b) |

The similarity between nodes a1 and b1 using CN similarity measure can be
computed as

CN(a1, b1) =| N(a1) ∩ N(b1) |=| {1, 2} ∩ {1, 5} |= 1

3. Adamic Adar Index (AA)
Similarity between nodes a and b is calculated as the sum of inverse of the
logarithm of degree of each common neighbor z between a and b. The more the
number of low degree common nodes shared, the higher is the similarity between
a and b. This is a weighted version of the CN similarity measure:

AA(a, b) =
∑

z∈N(a)∩N(b)

1

log(xz)

The similarity between nodes a1 and b1 using AA similarity measure can be
computed as

AA(a1, b1) =
∑

z∈N(a1)∩N(b1)

1

log(xz)
= 1

log(x1)
= 1

log(3)

4. Resource Allocation Index (RA)
Similarity between nodes a and b is calculated as the sum of inverse of the degree
of each common neighbor z between a and b. This similarity measure is very
similar to AA; it assigns lower weight to the higher degree common nodes when
compared to AA:

RA(a, b) =
∑

z∈N(a)∩N(b)

1

xz
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The similarity between nodes a1 and b1 using RA similarity measure can be
computed as

RA(a1, b1) =
∑

z∈N(a1)∩N(b1)

1

xz
= 1

x1
= 1

3

5. Katz
Similarity between nodes a and b is calculated based on the collection of all the
paths damped by length to assign higher weights to shorter paths. β is a damping
factor; using small values of β ignores longer length paths. | paths〈l〉a,b | represents
the number of paths of length exactly l between a and b. The higher the number
of short-length paths, the higher is the similarity between a and b:

Katz(a, b) =
∞∑

l=1

β l | paths〈l〉a,b |

The similarity between nodes a1 and b1 using Katz similarity measure can be
computed as

Katz(a1, b1) = β2 × | paths〈2〉a,b | +β3× | paths〈3〉a,b |
= β2 × 1 + β3 × 1 = β2 + β3

where β is typically set to 0.005.

6. PropFlow
PropFlow is a similarity measure based on information flow. It represents the
amount of information that flows from the source to the destination node across
different paths. The higher the information gathered, the larger is the similarity
value between source and destination node. The detailed PropFlow algorithm can
be found in [24].

The similarity between nodes a1 and b1 using PropFlow similarity measure
can be computed as the amount of flow at node b1 with 1 unit flow starting at
node a1:

PropFlow(a1, b1) = flow(a1, 1) + PropFlow(1, b1) + flow(a1, 2)

+ PropFlow(2, b1)

where flow(1, b1) is the amount of flow from node 1 to node b1:

flow(a1, 1) = 1

xa1

= 1

2
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Performing similar operations recursively, we can find that

PropFlow(a1, b1) = 1

4
+ 1

6

where flow of 1
4 comes from path {a1, 1, b1} and flow of 1

6 comes from path
{a1, 2, 5, b1}.

1.3.2 Outline of Link Prediction Algorithm

In this section, we present an outline of how a link prediction similarity measure
S can be used to predict the edges that will emerge in the network in the future as
in [21].

Algorithm 1: Outline of Link Prediction Algorithm using S
input : Input Graph Gt = (V, Et)

lp is the number of likely edges we want to predict
Similarity Measure S

output: Predicted Edges Based on Similarity
for (a, b) /∈ Et do1

compute the similarity using similarity measure S.2

end3
Sort the node pairs in descending order based on the computed score.4
Output the the top lp links.5

1.3.3 Power Law Degree Distribution

Power law degree distribution [31] can be defined as follows: The probability of
finding a x degree node in the network, denoted by px, is directly proportional to x−α ,
where α is some positive constant. Hence, we can infer that the probability of finding
a high degree node in the network is very small as the corresponding value of x is
very high and the probability of finding a low degree node is relatively high as the
corresponding value of x is small. We consider the power law degree distribution,
as most of the large-scale networks can be approximated to follow a power law
degree distribution. Further, we observe that AA and RA also obey the power law
distribution by assigning smaller weight to the high-degree common neighbors.



1.3 Background 9

1.3.4 Kullback–Leibler (KL) Divergence

Wedescribe below the notion ofKL divergence (KL) in the context of link prediction.
Consider that graphs Gt and Gt′ (t′ > t) have degree probability distributions q and
p, respectively. Then, the KL divergence denoted by DKL between p and q can be
calculated as follows:

DKL(p||q) =
∑

x

p(x) log
p(x)

q(x)

We use KL divergence (DKL) to measure the distance between two probability dis-
tributions. If DKL is low, it means the distributions are very similar and vice versa.
Analogously, we use KL divergence in the context of link prediction to measure
the distance between degree distributions of the networks. Note that KL divergence
function takes two arguments as input. However, in the rest of the book, we assume
that one of the arguments is fixed; so, we explicitly indicate one argument as input.
The fixed argument is the degree distribution of Gt′ . Hence, KL(G) represents the
KL divergence between the degree distributions of graph G and Gt′ .

1.3.5 Clustering Coefficient

Clustering coefficient (CC) [31] is the average of the local CC of the nodes. The
local CC of a node a is a fraction of the number of links between the neighbors of
node a to the maximum possible number of links between them. Thus, when all the
neighbors of the node a are not linked and are all linked, we attain the minimum and
maximum values for CC(a) as 0 and 1, respectively.

CC(a) = # links between neighbors of a

maximum possible links between neighbors of a

A network has high value of CC when the CC value averaged across all the nodes
is high. When a network has a large CC value, it implies that the network has large
number of triangles (cliques of size 3). Due to the presence of large number of
triangles, the nodes of the network satisfy a transitive relation which would enable a
better performance of the similaritymeasures in link prediction. Hence, the similarity
measures often do not provide good performance on sparse networks.
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Table 1.1 Dataset statistics

Dataset | V | | E | 〈k〉 CC d

Amazon 334,863 925,872 5.529 0.3976 44

CondMat 23,133 93,497 8.083 0.63 14

HepTh 9877 25,998 5.26 0.4714 17

Table 1.2 Running Time (min)

Amazon CondMat HepTh

CN 0.897 0.357 0.038

AA 0.9825 0.3695 0.0395

RA 1.053 0.3825 0.04

PA 0.133 0.0029 0.04

Katz 2000 478.5125 22.989

ProFlow 500.025 131.497 2.5935

1.4 Datasets Used in Experiments

We consider real-world networks that are provided by SNAP database (http://snap.
stanford.edu/data/). The details of the datasets are given in Table1.1. The graph
datasets do not contain time-stamps representing the time at which links are formed
in the network. | V |, | E |, 〈k〉, CC, and d represent the number of nodes, number
of links, average degree, average clustering coefficient, and diameter of the network.
We can observe that Amazon network is much bigger (factor of 10) than HepTh
and CondMat networks in terms of size. However, Amazon and HepTh networks are
much sparser than the CondMat network.

All the experiments were conducted using the Boost graph library (http://www.
boost.org) in C++ on an Intel(R) machine with 2.2 GHz CPU and 8GB RAM
running Windows 8.1. We adopt the C++ implementations of Katz and PropFlow
made available with the Lpmade package in [22]. The average running time (10
iterations) of various similarity measures for link prediction on various datasets is
shown in Table1.2.

Observe that CN, AA, RA, and PA are the fastest similarity measures when com-
pared to Katz and PropFlow. They take approximately 1 minute for running even
on the largest Amazon dataset. On the other hand, observe that Katz and PropFlow
take approximately 500–1000 times in running time when compared to CN, AA,
RA, and PA. On the smallest HepTh dataset, Katz and PropFlow take around 23 and
2.5min running time, respectively. However, on the larger Amazon dataset, Katz and
Proflow take approximately 33 and 8h running time, respectively. It can be observed
that these global measures are not scalable. Hence, from the results perspective, in
the rest of the book we do not consider Katz and PropFlow2 similarities.

2Owing to high computational overhead.

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
http://www.boost.org
http://www.boost.org


References 11

References

1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25, 211–230 (2003)
2. Barbieri, N., Bonchi, F., Manco, G.: Who to follow and why: link prediction with explanations.

In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD’14, pp. 1266–1275. New York, NY, USA, 24–27 August 2014

3. Benchettara, N., Kanawati, R., Rouveirol, C.: A supervised machine learning link predic-
tion approach for academic collaboration recommendation. In: Proceedings of the 2010 ACM
Conference on Recommender Systems, RecSys 2010, pp. 253–256. Barcelona, Spain, 26–30
September 2010

4. Bilgic, M., Namata, G., Getoor, L.: Combining collective classification and link prediction.
In: Workshops Proceedings of the 7th IEEE International Conference on Data Mining (ICDM
2007), pp. 381–386. Omaha, Nebraska, 28–31 October 2007

5. Cao, B., Liu, N.N., Yang, Q.: Transfer learning for collective link prediction in multiple het-
erogenous domains. In: Proceedings of the 27th International Conference onMachine Learning
(ICML-10), pp. 159–166. Haifa, Israel, 21–24 June 2010

6. Chiang, K., Natarajan, N., Tewari, A., Dhillon, I.S.: Exploiting longer cycles for link prediction
in signed networks. In: Proceedings of the 20th ACM Conference on Information and Knowl-
edge Management, CIKM 2011, pp. 1157–1162. Glasgow, United Kingdom, 24–28 October
2011

7. Cohen, S., Zohar, A.: An axiomatic approach to link prediction. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, pp. 58–64. Austin, Texas, USA, 25–30
January 2015

8. Davis, D.A., Lichtenwalter, R., Chawla, N.V.:Multi-relational link prediction in heterogeneous
information networks. In: International Conference on Advances in Social Networks Analysis
and Mining, ASONAM 2011, pp. 281–288. Kaohsiung, Taiwan, 25–27 July 2011

9. De, A., Ganguly, N., Chakrabarti, S.: Discriminative link prediction using local links, node fea-
tures and community structure. In: 2013 IEEE 13th International Conference on Data Mining,
pp. 1009–1018. Dallas, TX, USA, 7–10 December 2013

10. Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N.V., Rao, J., Cao, H.: Link prediction and
recommendation across heterogeneous social networks. In: 12th IEEE InternationalConference
on Data Mining, ICDM 2012, pp. 181–190. Brussels, Belgium,10–13 December 2012

11. Gao, S., Denoyer, L., Gallinari, P.: Link prediction via latent factor blockmodel. In: Proceedings
of the 21st World Wide Web Conference, WWW 2012 (Companion Volume), pp. 507–508.
Lyon, France, 16–20 April 2012

12. Ge, L., Zhang, A.: Pseudo cold start link prediction with multiple sources in social networks.
In: Proceedings of the Twelfth SIAM International Conference on Data Mining, pp. 768–779.
Anaheim, California, USA, 26–28 April 2012

13. Kashima,H., Abe, N.: A parameterized probabilisticmodel of network evolution for supervised
link prediction. In: Proceedings of the 6th IEEE International Conference on Data Mining
(ICDM 2006), pp. 340–349. Hong Kong, China, 18–22 December 2006

14. Kashima, H., Kato, T., Yamanishi, Y., Sugiyama,M., Tsuda, K.: Link propagation: A fast semi-
supervised learning algorithm for link prediction. In: Proceedings of the SIAM International
Conference on Data Mining, SDM 2009, pp. 1100–1111. Sparks, Nevada, USA, 30 April–2
May 2009

15. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43
(1953)

16. Kim, J., Choy,M., Kim,D., Kang,U.: Link prediction based on generalized cluster information.
In: 23rd InternationalWorldWideWebConference,WWW’14 (CompanionVolume), pp. 317–
318. Seoul, Republic of Korea, 7–11 April 2014

17. Kuo, T., Yan, R., Huang, Y., Kung, P., Lin, S.: Unsupervised link prediction using aggregative
statistics on heterogeneous social networks. In: The 19th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD 2013, pp. 775–783. Chicago, IL, USA,
11–14 August 2013



12 1 Introduction

18. Lee, C., Pham, M., Kim, N., Jeong, M.K., Lin, D.K.J., Chaovalitwongse, W.A.: A novel link
prediction approach for scale-free networks. In: 23rd International World Wide Web Confer-
ence, WWW’14 (Companion Volume), pp. 1333–1338. Seoul, Republic of Korea, 7–11 April
2014

19. Leroy, V., Cambazoglu, B.B., Bonchi, F.: Cold start link prediction. In: Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
393–402. ACM (2010)

20. Li, X., Du, N., Li, H., Li, K., Gao, J., Zhang, A.: A deep learning approach to link prediction
in dynamic networks. In: Proceedings of the 2014 SIAM International Conference on Data
Mining, pp. 289–297. Philadelphia, Pennsylvania, USA, 24–26 April 2014

21. Liben-Nowell, D., Kleinberg, J.M.: The link prediction problem for social networks. In: Pro-
ceedings of the 2003 ACM CIKM International Conference on Information and Knowledge
Management, pp. 556–559. New Orleans, Louisiana, USA, 2–8 November 2003

22. Lichtenwalter, R., Chawla, N.V.: Lpmade: Link prediction made easy. J. Mach. Learn. Res. 12,
2489–2492 (2011)

23. Lichtenwalter,R.,Chawla,N.V.:Vertex collocation profiles: subgraph counting for link analysis
and prediction. In: Proceedings of the 21st World Wide Web Conference 2012, WWW 2012,
pp. 1019–1028. Lyon, France, 16–20 April 2012

24. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link pre-
diction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining—KDD’10, p. 243 (2010)

25. Liu, F., Liu, B., Wang, X., Liu, M., Wang, B.: Features for link prediction in social networks: A
comprehensive study. In: Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, SMC 2012, pp. 1706–1711. Seoul, Korea (South), 14–17 October 2012

26. Lu, L., Zhou, T.: Role of weak ties in link prediction of complex networks. In: Proceeding of
the ACMFirst InternationalWorkshop on Complex NetworksMeet Information &Knowledge
Management, CIKM-CNIKM 2009, pp. 55–58. Hong Kong, China, 6 November 2009

27. Miller, K.T., Griffiths, T.L., Jordan, M.I.: Nonparametric latent feature models for link predic-
tion. In: Advances in Neural Information Processing Systems 22: 23rd Annual Conference on
Neural Information Processing Systems 2009, pp. 1276–1284. Vancouver, British Columbia,
Canada, 7–10 December 2009

28. Murata, T., Moriyasu, S.: Link prediction of social networks based on weighted proximity
measures. In: 2007 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2007,
Main Conference Proceedings, pp. 85–88. Silicon Valley, CA, USA, 2–5 November 2007

29. Murata, T., Moriyasu, S.: Link prediction based on structural properties of online social net-
works. New Gener. Comput. 26(3), 245–257 (2008)

30. Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E,
Stat. Nonlinear Soft Matter Phys. 64, 025102 (2001)

31. Newman, M.E.J.: Networks: An Introduction. Oxford University Press Inc, New York (2010)
32. Pan, J.Y., Yang,H.J., Faloutsos, C., Duygulu, P.: Automaticmultimedia cross-modal correlation

discovery. In: Proceedings of theTenthACMSIGKDDInternationalConference onKnowledge
Discovery and Data Mining, pp. 653–658. ACM (2004)

33. Pujari, M., Kanawati, R.: Supervised rank aggregation approach for link prediction in complex
networks. In: Proceedings of the 21st World Wide Web Conference, WWW 2012 (Companion
Volume), pp. 1189–1196. Lyon, France, 16–20 April 2012

34. Qi, G., Aggarwal, C.C., Huang, T.S.: Link prediction across networks by biased cross-network
sampling. In: 29th IEEE International Conference on Data Engineering, ICDE 2013, pp. 793–
804. Brisbane, Australia, 8–12 April 2013

35. Raymond, R., Kashima, H.: Fast and scalable algorithms for semi-supervised link prediction
on static and dynamic graphs. In: Machine Learning and Knowledge Discovery in Databases,
European Conference, ECML PKDD 2010, Proceedings, Part III, pp. 131–147. Barcelona,
Spain, 20–24 September 2010



References 13

36. Rümmele, N., Ichise, R.,Werthner, H.: Exploring supervised methods for temporal link predic-
tion in heterogeneous social networks. In: Proceedings of the 24th International Conference on
World Wide Web Companion, WWW 2015 (Companion Volume), pp. 1363–1368. Florence,
Italy, 18–22 May 2015

37. Saito, K., Nakano, R., Kimura,M.: Prediction of link attachments by estimating probabilities of
information propagation. In: Knowledge-Based Intelligent Information and Engineering Sys-
tems, 11th International Conference, KES 2007, XVII Italian Workshop on Neural Networks,
Proceedings, Part III, pp. 235–242. Vietri sul Mare, Italy, 12–14 September 2007

38. Sarkar, P., Chakrabarti, D., Jordan, M.I.: Nonparametric link prediction in dynamic networks.
In: Proceedings of the 29th International Conference onMachine Learning, ICML 2012, Edin-
burgh, Scotland, UK, 26 June–1 July 2012

39. Sarkar, P., Chakrabarti, D., Moore, A.W.: Theoretical justification of popular link prediction
heuristics. In: IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, pp. 2722–2727. Barcelona, Catalonia, Spain, 16–22 July 2011

40. Sarukkai, R.: Link prediction and path analysis using markov chains. Comput. Netw. 33(1–6),
377–386 (2000)

41. Scholz, M.: Node similarity as a basic principle behind connectivity in complex networks
(2010). ArXiv preprint arXiv:1010.0803

42. Shin, D., Si, S., Dhillon, I.S.: Multi-scale link prediction. In: 21st ACM International Confer-
ence on Information and Knowledge Management, CIKM’12, pp. 215–224. Maui, HI, USA,
29 October–02 November 2012

43. Soundarajan, S., Hopcroft, J.E.: Using community information to improve the precision of link
prediction methods. In: Proceedings of the 21st World Wide Web Conference, WWW 2012
(Companion Volume), pp. 607–608. Lyon, France, 16–20 April 2012

44. Symeonidis, P., Tiakas, E., Manolopoulos, Y.: Transitive node similarity for link prediction in
social networks with positive and negative links. In: Proceedings of the 2010 ACMConference
on Recommender Systems, RecSys 2010, pp. 183–190. Barcelona, Spain, 26–30 September
2010

45. Tasnádi, E., Berend, G.: Supervised prediction of social network links using implicit sources
of information. In: Proceedings of the 24th International Conference on World Wide Web
Companion, WWW 2015 (Companion Volume), pp. 1117–1122. Florence, Italy, 18–22 May
2015

46. Tylenda, T., Angelova, R., Bedathur, S.J.: Towards time-aware link prediction in evolving
social networks. In: Proceedings of the 3rdWorkshop on Social NetworkMining and Analysis,
SNAKDD 2009, p. 9. Paris, France, 28 June 2009

47. Virinchi, S., Mitra, P.: Link prediction using power law clique distribution and common edges
distribution. In: Proceedings of Pattern Recognition and Machine Intelligence—5th Interna-
tional Conference, PReMI 2013, pp. 739–744. Kolkata, India, 10–14 December 2013

48. Virinchi, S., Mitra, P.: Similarity measures for link prediction using power law degree dis-
tribution. In: Proceedings of Neural Information Processing—20th International Conference,
ICONIP 2013, Part II, pp. 257–264. Daegu, Korea, 3–7 November 2013

49. Virinchi, S., Mitra, P.: Two-phase approach to link prediction. In: Proceedings of Neural Infor-
mation Processing—21st International Conference, ICONIP 2014, Part II, pp. 413–420. Kuch-
ing, Malaysia, 3–6 November 2014

50. Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link prediction. In:
Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007), pp.
322–331. Omaha, Nebraska, USA, 28–31 October 2007

51. Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B
71, 623–630 (2009)

52. Zhu, J.: Usingmarkov chains for structural link prediction in adaptiveweb sites. In: Proceedings
of User Modeling 2001, 8th International Conference, UM 2001, pp. 298–302. Sonthofen,
Germany, 13–17 July 2001

http://arxiv.org/abs/1010.0803


14 1 Introduction

53. Zhu, J., Hong, J., Hughes, J.G.: Using markov chains for link prediction in adaptive web sites.
In: Proceedings of Soft-Ware 2002: Computing in an Imperfect World, First International
Conference, Soft-Ware 2002, pp. 60–73, Belfast, Northern Ireland, 8–10 April 2002

54. Zhu, J., Hong, J., Hughes, J.G.: Using markov models for web site link prediction. In: Pro-
ceedings of the 13th ACM Conference on Hypertext and Hypermedia, HYPERTEXT 2002,
pp. 169–170. University of Maryland, College Park, MD, USA, 11–15 June 2002



Chapter 2
Link Prediction Using Thresholding Nodes
Based on Their Degree

Abstract In this chapter, we propose MIDT, a degree threshold-based similarity
measure, for link prediction which exploits the power law degree distribution which
social networks typically follow.We show that, in power law networks, the number of
high-degree common neighbors is insignificant compared to the low-degree common
neighbors. We use this property to assign a zero weight to the high-degree common
neighbors and a higher weight to the low-degree neighbors in computing similarity
between nodes. Experiments on standard benchmark datasets show the superiority
of MIDT similarity measure. Specifically, MIDT shows an improvement of upto 4%
in terms of AUC when compared to the state-of-the-art link prediction similarity
measures.

Keywords Power law degree distribution · Markov inequality · Degree threshold-
ing · Clique-based approach · Area under the curve (AUC)

2.1 Introduction

Most networks can be approximated to follow the power law degree distribution.
Accordingly, the probability of encountering a high-degree node is very small. Sim-
ilarly, the frequency of distinct terms in large-scale collection of documents follows
the Zipfian distribution which is a simple form of the power law degree distribution.
In Information Retrieval, in the well-known technique called stopping, which is used
for indexing document collection, the terms with high-frequency are often removed
or not considered for indexing purpose as the high-frequency terms often lack good
discriminating capability.

Analogously, it is possible that high-degree nodes lack good discriminating capa-
bility; each high-degree node is connected to many other nodes. Hence, we will need
a threshold value on the degree in order to classify a node into low-degree and high-
degree clusters.We use an appropriate threshold to split the set of nodes based on their
degree into low-degree and high-degree node sets. Once, we classify the nodes into

Material in this chapter appeared in [6].

© The Author(s) 2016
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low-degree and high-degree node sets, then, we give different weights to common
nodes in different clusters while computing the similarity between a pair of uncon-
nected nodes. We emphasize the role of low-degree common nodes in terms of their
contribution to the similarity and ignore the contribution of high-degree common
nodes. We formally show that the number of high-degree common nodes between
anypair of nodes is very small.Hence,we justify the proposed scheme formallywhich
de-emphasizes the role of high-degree common nodes in computing similarity
between two nodes. The modified similarity measure shows an improved perfor-
mance on the benchmark datasets.

2.2 Markov Inequality for Determining Threshold

In general, givenGt , it is nontrivial to obtain a threshold for classifyingnodes into low-
degree and high-degree clusters. We use Markov inequality to derive a suitable value
for this threshold. Markov inequality can be stated as follows: if X is a nonnegative
random variable and there exists some positive constant r > 0,

P(X ≥ r) ≤ E[X]
r

We use the above inequality to obtain a threshold value (T ) for dividing the set of
nodes into low-degree and high-degree clusters. In this case, we take degree as the
non-negative random variable (degree of a node is always nonnegative) and T will
be positive. We can rewrite for the required inequality as:

P(degree ≥ T) ≤ E[degree]
T

⇒ T ≤ E[degree]
P(degree ≥ T)

. (2.1)

Thus, from Eq.2.1 we can calculate the required threshold based on the number
of high-degree nodes that we can ignore. We use Eq.2.1 to bound the threshold
value. For conducting experiments, we setP(degree ≥ T) to 0.1.Using the calculated
threshold T , we divide the node set V into low-degree and high-degree node sets.
We justify our de-emphasis of the high-degree common neighbors using the theorem
below.

Notation

• xy—degree of node y
• pk—probability of existence of a k degree node in the graph
• n—number of nodes in the graph
• nL—number of low-degree nodes, nH—Number of high-degree nodes
• L—low-degree cluster {y|xy < T}, H—High-degree cluster {y|xy ≥ T}
• Lavg—average degree of a node in L, Havg—Average degree of a node in H
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• KL—expected number of low-degree common neighbors between any pair of
nodes

• KH—expected number of high-degree common neighbors between any pair of
nodes

• T—degree Threshold, max—Maximum degree of a node in the network

Theorem 2.1 For any pair of nodes a and b, the expected number of high-degree
common neighbors (KH) is very small when compared to expected number of low-
degree common neighbors (KL), i.e., KH � KL.

Proof Consider the possibility that both a, b ∈ L. The probability that a common
neighbor z ∈ L is given by

P(z ∈ L) = nL

n
× pLavg × nL

n
× pLavg × nL

n
× pLavg × nL

n
× pLavg (2.2)

where nL
n accounts for the selection of a node from L and pLavg accounts for the

average probability of existence of a low-degree node. Note that the first four terms
correspond to the probability of existence of a link between a and z and the last four
terms correspond to the probability of existence of a link between b and z.

The above equation can be simplified to the following form:

P(z ∈ L) = nL

n
× pLavg × nL

n
× pLavg ×

(nL

n
× pLavg

)2
(2.3)

In a similar way the probability that a common neighbor z ∈ H is given by

P(z ∈ H) = nL

n
× pLavg × nL

n
× pLavg ×

(nH

n
× pHavg

)2
(2.4)

So,

KL = n × P(z ∈ L) = n × nL

n
× pLavg × nL

n
× pLavg ×

(nL

n
× pLavg

)2
(2.5)

and

KH = n × P(z ∈ H) = n × nL

n
× pLavg × nL

n
× pLavg ×

(nH

n
× pHavg

)2
(2.6)

Thus, the ratio of KH to KL, from Eqs. 2.5 and 2.6 is given by

KH

KL
=

(
nH

nL

)2

×
(

pHavg

pLavg

)2

(2.7)
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a and b can be assigned to L and H in 3 other ways as follows:

1. a ∈ L and b ∈ H
2. a ∈ H and b ∈ L
3. a ∈ H and b ∈ H

Note that in all these 3 cases also, the value of KH
KL

is the same as the one given in
Eq.2.7. Using power law degree distribution property of the network,

pLavg = C × (Lavg)
−α (2.8)

and, pHavg = C × (Havg)
−α

From Eqs. 2.7 and 2.8, we have

KH

KL
=

(
nH

nL

)2

×
(

Lavg

Havg

)2α

(2.9)

Consider nH
nL

which can be simplified as,

nH

nL
= n × ∑max

i=T pi

n × ∑T−1
i=1 pi

(2.10)

Note that

2−α ≤
T∑

i=1

i−α ≤ (T − 1) × 2−α (2.11)

Using power law we can substitute i−α for pi and cancelling out n, we get

nH

nL
=

∑max
i=T i−α

∑T−1
i=1 i−α

≤ (max − T) × T−α

2−α
= (max − T) ×

(
2

T

)α

(2.12)

Also by noting that Lavg < T and Havg > T we can bound Lavg

Havg
as follows,

Lavg

Havg
= T − δ

T + δ
for some 1 < δ < T (2.13)

Lavg

Havg
=

(
1 − 2δ

T + δ

)
< e−( 2δ

T+δ ) (2.14)

So from 2.9, 2.12 and 2.14, we get

KH

KL
≤ (max − T)2 ×

(
2

T

)2α

× e−( 2δ
T+δ

)2α (2.15)
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which is a very small quantity and it tends to 0 as T tends to a large value which
happens when the graph is large. It is intuitively clear that Lavg < Havg. Further,
because of the power law and selection of an appropriate threshold value we can
make nH

nL
as small as possible. For example, by selecting the value of T to be less than

or equal to max
2 we get nH

nL
to range between 0.003 and 0.04 for several benchmark

datasets and for the same threshold the value of Lavg

Havg
ranges from 0.07 to 0.14. So,

the value of KH
KL

ranges from 0.000009 ∗ (0.0049)α to 0.019 ∗ (0.0016)α . Typically,

the value of α lies between 2 and 3. So, KH
KL

can be very small. Thus,

KH � KL �

2.3 Markov Inequality-Based Degree Thresholding
Similarity Measure (MIDT)

Wepresent the proposed similaritymeasure (MIDT)which is based on degree thresh-
olding of nodes. The proposed similarity measure assigns a higher weight to the
low-degree common neighbors and a zero weight to the high-degree common neigh-
bors. Specifically, this idea is similar to stopping, which is used for indexing docu-
ment collection; the terms with high-frequency are often removed or not considered
for indexing purpose as the high-frequency terms often lack good discriminating
capability. Let us represent the weight assigned to a common node z by w(z). As
discussed before, we can observe that PA, CN, AA, and RA maintain weight w(z)
of 0, 1, 1

log(xz)
and 1

xz
, respectively. We show the variation of weight assigned to a

common node z using various similarity measures in Fig. 2.1.
Observe from Fig. 2.1 that the weight assigned to a common node z by AA and

RA fall very steeply with degree and become negligible for high-degree common

Fig. 2.1 Weight of a
common node z using
various similarity measures
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nodes. Now we present MIDT similarity measure. Let N(a) and N(b) represent the
set of neighbors of nodes a and b, respectively. Further, let R = N(a) ∩ N(b).

MIDT(a, b) =
∑

z∈R∧xz<T

1√
xz

(2.16)

Next, we present the outline of the link prediction algorithm using MIDT similarity
measure.

Algorithm 2: Outline of Link Prediction Algorithm using MIDT
input : Input Graph Gt = (V, Et)

lp is the number of likely edges we want to predict
output: Predicted Edges Based on Similarity
for (a, b) /∈ Et do1

2

MIDT(a, b) =
∑

z∈R∧xz<T

1√
xz

end3
Sort the node pairs in descending order based on the computed MIDT score.4
Output the the top lp links.5

In general, we can write the similarity score function as a combination of two
monotonically nonincreasing functions low and high, where low is applied on com-
mon neighbors having degree less than threshold and high is applied on common
neighbors having degree greater than the threshold.

score(a, b) =
∑

z∈R

(low(z) + high(z)) (2.17)

where z is the common neighbor of a and b. MIDT uses 1√
xz
and 0 for functions low

and high respectively. It is clear from our approach that we assign zero weight to
high-degree common nodes.

2.4 Experimental Setup

For conductingour experiments,weused the datasets shown inTable1.1. Thedatasets
do not contain time stamps representing the time at which links are formed in the net-
work. For evaluating the link prediction similarity measures on such graph datasets,
we use the experimental setup as in [3].We conduct experiments on sampled training
and test graphs generated in the following ways:

http://dx.doi.org/10.1007/978-3-319-28922-9_1
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1. Perform edge sampling to divide the dataset into two parts each having 50% links.
We use one part as the training graph (Gt) and the other part as the test graph
(Gt′). We predict the edges of Gt′ . Let us call this 50–50 edge sampling. 50–50
edge sampling indicates that training graph Gt has 50% links and test graph Gt′

has the remaining 50% links. This simulates link prediction on dense networks.
2. Perform edge sampling to divide the dataset into two parts each having 80 and

20% links. We use the larger part as the training graph (Gt) and the smaller part
as the test graph (Gt′ ). We predict the edges of Gt′ . Let us call this 80–20 edge
sampling. 80–20 edge sampling indicates that training graph Gt has 80% links
and test graph Gt′ has the remaining 20% links. This simulates link prediction on
dense networks.

We use randomly sampled Gt as the graph at the current time instance and predict
the links of the test graph (Gt′) to validate the predictions. We repeat this process 10
times to reduce any statistical bias introduced due to sampling.

For evaluating the performance of the link prediction similarity measures, we
present the results in terms of the Area Under Curve (AUC) metric. While accu-
racy, precision, recall, and top-k equivalents are commonly used in link prediction
literature, they are unstable due to class imbalance that arises in the link prediction
problem [2]. We use the robust AUC metric which is stable and measures the area
under the ROC curve for evaluating link predictor performance.

AUC, in the context of link prediction, can be computed as explained. Consider n
random experiments of picking a correctly classified edge and a misclassified edge,
if n1 is the number of times the correctly classified edge has a higher score than the
misclassified edge and n2 is the number of times both have the same score. Then,
AUC score can be computed as:

AUC = n1 + 0.5 × n2
n

For our experiment we choose n to be 10000. AUC score indicates the ranking of the
edges predicted based on the link prediction similarity measure. Higher AUC value
implies that the similarity measure is a better ranking algorithm and yields better
recommendations. We discuss the results in the next section.

2.5 Results

On performing the experiments using the MIDT similarity measures we report the
AUC results in Tables2.1 and 2.2 on various datasets on predicting 50 and 20%
missing links respectively.

From Tables2.1 and 2.2, we observe that MIDT performs better than PA, CN,
AA, and RA. We show the best results on each dataset when performing 50–50 and
80–20 edge sampling in boldface. Note that Gt is more dense in the case of 80–20
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Table 2.1 AUC results for 50–50 edge sampling

Dataset PA CN AA RA MIDT

Amazon 11.49 29.91 69.81 68.47 71.37

CondMat 35.59 65.15 73.53 68.35 73.82

HepTh 49.67 59.46 68.12 66.21 68.82

Table 2.2 AUC results for 80–20 edge sampling

Dataset PA CN AA RA MIDT

Amazon 8.8 29.73 45.97 43.64 48.52

CondMat 55.01 64.42 79.34 81.22 82.78

HepTh 43.34 57.06 74.29 72.64 78.07

edge sampling when compared to 50–50 edge sampling. Hence, we can note that the
link prediction similarity measures show a better performance of AUC in the case of
80–20 edge sampling when compared to 50–50 edge sampling.

Further, note that in general the AUC results of various link prediction similarity
measures show better performance on the CondMat dataset when compared to the
Amazon and HepTh dataset. The performance of link prediction similarity measure
deteriorates with sparsity of training graph (Gt) [1]; CC is a good indicator of the
density of a graph.

We can observe that MIDT performs the best when compared to the existing
similarity measures in both the cases of 50–50 and 80–20 edge sampling. Further,
MIDT performs better in the case of 80–20 edge sampling when compared to 50–50
edge sampling. In other words, MIDT shows better performance when the training
graph is dense. Note that the AUC performance has increased by up to 4%.

2.6 Clique-Based Approach to Link Prediction

Social networks follow the power law degree distribution [4]. We can exploit the
power law degree distribution by ignoring the contribution of edges between a pair
of high-degree nodes.1 We consider the role of common edges between nodes where
one of them is a low-degree node.

A clique in a graph G is any completely connected subgraph of G. In our method,
we use cliques of size 3 to find out the common edges between two unconnected
nodes. Figure2.2 shows a common edge (u, v) shared by nodes a and b. By common
edge (u, v) between two nodes a and b, we refer to the edge that is common to both
the cliques auv and buv of size 3. Further, notice that there can be at most one edge
common to two cliques of size 3. Note that we are considering cliques of size 3 to find
the common edges and we ignore large size cliques as they are infrequent according
to the power law distribution of cliques.

1Material in this chapter appeared in [5].
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Fig. 2.2 Common edge
shared by nodes a and b

a

bu

v

In the proposed algorithm, we make use of cliques for link prediction. The pro-
posed similarity measures compute the similarity between two nodes by computing
the similarity using the common node information and common edge information
which we propose bymaking use of cliques of size 3. Specifically, for common edges
shared we give higher weight to the edge if the endpoints of the common edge are
low-degree nodes. Note that to define the threshold T , we use the same approach as
explained before using Markov Inequality. If the endpoints of the common edge are
high-degree nodes then the similarity contribution from the common edge is 0. Now,
we present the proposed similarity measures which take into account the common
edge information to the existing similarity measures. Let us call them CN Using
Cliques (CNC), AA Using Cliques (AAC), and RA Using Cliques (RAC) which
represent the extension for the existing similarity measures CN, AA, and RA, respec-
tively.

CNC(a, b) = CN(a, b) + CE(a, b), where

CE(a, b) =
{
0 if xu > T and xv > T∑

(u,v) 2 else

AAC(a, b) = AA(a, b) + AE(a, b), where

AE(a, b) =
{
0 if xu > T and xv > T∑

(u,v) 2/(log(xu) + log(xv)) else

RAC(x, y) = RA(x, y) + RE(x, y), where

RE(x, y) =
{
0 if degree(x) > T and xv > T∑

(u,v) 2/(xu + xv) else
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Here, (u, v) refers to the common edge shared by a cliques auv and buv. From our
approach it is clear that we are ignoring the contribution of common edges between
two high-degree nodes (in AE, RE, and CE) and giving more importance to common
edges between two low-degree nodes (in AE and RE). Here, we choose two as a
factor in the expression for CE, AE and RE as each common edge has two end
vertices u and v whose contribution are weighed in a manner similar to to that of CN,
AA and RA respectively. In other words, as there can be one-degree nodes present
in Gt the maximum value of CE, AE or RE will be 1. This avoids the domination of
CE, AE or RE when compared to CN, AA and RA. In CE, we give equal score to
all the edges whereas in AE and RE we give more importance to the edge if one of
the end vertices u and v is of low degree which varies as 2/(xu + xv). The CE, AE,
and RE score is zero if the end vertices u and v both have degrees greater than the
threshold T .

The results can be found in [5]. From the results, we can conclude that clique-
based similarity measures perform better than the original similarity measures in
terms of AUC. Also common edges between high-degree nodes are not so useful
in predicting new links. Thus, we completely ignore the contributions of common
edges between high-degree nodes.

2.7 Summary

In this chapter, we proposed the MIDT similarity measure which is based on thresh-
olding nodes based on their degree. Experiments show that MIDT performs better
than PA, CN, AA, and RA by upto 4% in terms of AUC. Further, it can decrease
time when the contribution of high-degree neighbors is ignored. The MIDT frame-
work shows that low-degree common neighbors matter the most for link prediction
and the high-degree neighbors can be ignored in predicting new links. We can com-
pletely ignore or minimize the contributions of high-degree nodes by making use of
a suitable nonlinear similarity measure to weigh their contributions accordingly. In
the future, we would like to consider other tight bounds to learn the threshold value
(T ); Markov Inequality gives a loose upper bound. Further, we can concentrate on
constructing suitable nonlinear similarity measures. In the next chapter, we present
a generic form of the existing similarity measures like CN, AA, and RA which uses
the degree distribution of the network explicitly.

We can conclude that edge-based similarity measures perform better than the
existing similarity measures in terms of AUC. Also common edges between high-
degree nodes are not so useful in predicting new links. Thus, we completely ignore
the contributions of common edges between high-degree nodes. We would like to
design better similarity schemes that exploit the power law distribution of clique
sizes; we would like to consider the contributions of bigger size (more than size 3)
cliques.
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Chapter 3
Locally Adaptive Link Prediction

Abstract In this chapter, we address the shortcomings of the existing link prediction
similarity measures; every similarity measure assigns the same weight to a node
irrespective of the pair of nodes between which the similarity is being computed. In
contrast, the weight of a node must depend based on the local neighborhood of the
node pair under consideration. In this regard, we propose the Locally Adaptive (LA)
similarity measure, a generic similarity measure, which adapts (assigned weight)
across different local neighborhoods by assigning different weights to the same node
based on the neighborhood. Further, using a smoothening parameter, we can show
that the state-of-the-art similarity measures like CN, AA, and RA are specific forms
of the proposed similarity measure. Experiments on benchmark datasets show an
improvement of upto 6% using the LA similarity measure when compared to the
state-of-the-art link prediction similarity measures.

Keywords Local neighborhood · Power law coefficient ·Maximum likelihood esti-
mate · Bayesian estimate · Prior distribution

3.1 Introduction

In this chapter, by Local neighborhood between two nodes a and b, we mean the set
of nodes adjacent to both a and b. Henceforth, we shall refer to the degree distribu-
tions of the nodes in the local neighborhood and the entire network as local degree
distribution and global degree distribution respectively.

The major limitations of the existing similarity measures are as follows:

1. Identical weight is assigned to a node irrespective of the local neighborhood
between any two nodes in which it is present: Consider two unconnected node
pairs say a1, b1 and a2, b2 both of which have different local neighborhoods but
include a common neighbor z. It is natural to assume that the local neighborhoods
are different between the node pairs a1, b1 and a2, b2. When we compute the
similarity between a1, b1 and a2, b2 the same weight is assigned to z for both the
node pairs. CN assigns to z a weight of 1 for both the node pairs. AA assigns to

© The Author(s) 2016
V. Srinivas and P. Mitra, Link Prediction in Social Networks,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-28922-9_3
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Fig. 3.1 A small example
network

z a weight of 1
log(xz)

for both the node pairs. Similarly, RA assigns to z a weight

of 1
xz
for both the node pairs.

Example: In Fig. 3.1, consider node pairs (1, 2) and (2, 3) and RA similarity
measure. Node 6 is a common node to both the node pairs. In computing the
similarity between nodes 1 and 2, node 6 is assigned a weight which is inversely
proportional to its degree (3). Similarly, even for computing the similarity between
nodes 1 and 3 also node 6 is assigned the same weight ( 13 ) based on its degree.
We observe that even in the presence of other common nodes, node 6 is assigned
a weight of 1

3 while computing similarity between 1 and 2. Further, in the absence
of other common nodes between 1 and 3 also node 6 is assigned a weight of 1

3 .
This may not be appropriate as the importance/influence of a common node varies
across different neighborhoods. In other words, the importance of the common
node depends on its local degree in the neighborhood and also the degrees of the
end nodes between which the local neighborhood is considered. So, we will need
different weights to be assigned to the same common node when considered in
different local neighborhoods.

2. The performance of a similarity measure varies with the local neighborhood:
A similarity measure that has a good performance on a sparse local neighborhood
may fail to do well when the local neighborhood is dense and vice versa. Thus,
different similarity measures may be effective in different local neighborhoods;
we need a similarity measure that can adapt.

Example: In Fig. 3.1, we may have to compute the similarity between node pairs
(1, 2) and (2, 3). We can observe that the size of the neighborhood between the
node pairs is different. Between nodes 1 and 2 the size of the local neighborhood
is high. In such cases, it is better to use weighted similarity functions like AA and
RA to compute similarity compared to CN. However, if we consider computing
similarity for node pair (2, 3) there is only one common node. Hence, we can
simply use the CN similarity measure to compute similarity instead of using
AA and RA. Thus, we observe that different similarity measures can be used
to compute similarity in different neighborhoods. However, as already discussed
sparsity varies across neighborhoods and networks.
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3.2 Generalization of Link Prediction Similarity Measures

In order to compute the similarity between two unconnected nodes a and b, we need
to find the weight assigned to each common node z. Here, by weight we refer to the
amount a common node z contributes to the similarity value between a and b. Hence,
we can write as follows:

s(a, b) =
∑

z∈N (a)∩N (b)

w(z) (3.1)

where s(a, b) represents the similarity between nodes a and b and w(z) represents
the weight assigned to the node z which is a common node. Thus, in general, we can
write the weight of each common node z as follows:

w(z) = β + (1 − β)
1

xz
for β > 0 (3.2)

This is similar to regularization. Overfitting is one of the main problems in building
Machine Learning Models. Regularization is used to compensate for overfitting in
learning models. It introduces a penalty term that penalizes for model complexity.
Similarly, in computing w(z), considering specifically only the degree of z can lead
to overfitting. Hence, we use β to compensate for overfitting and (1 − β)/β is the
regularization parameter. The weight of a common node z for various similarity
measures can be written as follows:

w(z) = 1 (CN)

w(z) = 1

xz
(RA)

w(z) = 1

log(xz)
(AA)

Comparing the above equations with Eq.3.2, we observe the following cases:

1. β = 1:Consideringβ = 1wegive an equalweight to each commonnode ignoring
the local neighborhood in which the node is present. This gives the CN similarity
measure.

2. β = 0: Considering β = 0 we assign to each common node a weight which is
inversely proportional to its degree. This gives the RA similarity measure.

3. (1 − β) > β =⇒ 0 < β < 0.5: we get the AA similarity measure. By choosing
an appropriate β in this range to approximate the logarithm term in the denomi-
nator of the AA similarity measure.

Figure3.2 shows the variation of weight assigned to a common node for various
similarity measures. Note that PA measure assigns a weight of 0 to the common
node; PA computes similarity between two nodes as the product of the degree of
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Fig. 3.2 Weight of a
common node z using
various similarity measures

10 20 30 40 50
0.

0
0.
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5
x z
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CN − 1
PA − 0
AA − 1/log
RA − 1/x z

the two nodes. Hence, we do not explicitly consider the PA similarity measure. The
bottomand the top curve in the figure represent theweight assigned by theRAandCN
similarity measures, respectively, to a common node; these correspond to β equal to
0 and 1, respectively. The middle curve represents the weight assigned to a common
node by the AA similarity measure. From Eq.3.2 and Fig. 3.2, we can be observe
that if the weight assigned to a common node by a similarity measure is closer to the
topmost curve then it implies that the similaritymeasure gives equal importance to all
the nodes in the local neighborhood. Similarly, if the weight assigned to a common
node is closer to the bottom-most curve then the similarity measure gives possibly
different weights to different nodes in the local neighborhood. AA similaritymeasure
assigns weight that falls between these two extremes.

3.3 Locally Adaptive (LA) Similarity Measure

Considering the limitations of the existing similarity measures which we discussed
previously, we propose a similarity measure which we call the locally adaptive
similarity measure (LA). The LA similarity measure is designed based on the
philosophy that the similarity measure adapts across various local neighborhoods,
i.e., a node is assigned different weights across different neighborhoods. Further, we
want the designed similarity measure to depend on the entire network along with the
local neighborhood. The LA similarity measure is defined as follows:

L A(a, b) =
∑

z∈N (a)∩N (b)

1

(xz)
c
(

αl
αg

) (3.3)

where, αl corresponds to the power law coefficient of the local degree distribution,
αg corresponds to the power law coefficient of the global degree distribution and c is
the smoothening parameter (0 ≤ c ≤ αg

αl
). The proposed similarity measure depends



3.3 Locally Adaptive (LA) Similarity Measure 31

on three parameters. The impact of the parameters and their importance is discussed
below:

1. αg: Given a network the global degree distribution is known and hence αg is fixed.
2. αl : It varies across different local neighborhoods. Also,

αl
αg

characterizes the rate
at which the local degree distribution is mimicking the global degree distribution.
Further, αl

αg
(> 0) varies with the local neighborhood. It permits the similarity

function to adapt locally.
3. c: It is a tunable parameter which we call the smoothening parameter. It can be

exploited to realize a broad range of similarity measures including and beyond
CN, AA and RA.

3.3.1 Properties of the LA Similarity Measure

Some of the interesting properties of the LA similarity measure are:

1. Weight (w(z)) assigned to a common node z by the LA similarity measure is
1

(xz)
c
(

αl
αg

) .

2. Parameter estimation techniques to estimate the value of αl and αg are discussed
in Sect. 3.5. The maximum likelihood estimate of α which is represented by α̂

can be written as follows:

α̂ = 1 + k
∑k

i=1 ln
xi

xmin

(3.4)

where, x is the random variable corresponding to the degree of a node in the
network and k represents the size of the local neighborhood. From the above it is
observed that α̂ > 0. Hence, αl/αg > 0.

3. LA is a generic version of the existing similarity measures which
can be realized as follows:

a. c = 0 gives CN as a specific case of LA. Note that without using the tunable
parameter c it is not possible to realize CN from LA because αl

αg
> 0.

b. c = αg

αl
gives RA as a specific case of LA. Here also, without the presence of

c, RA can be realized from LA only if αl = αg for every neighborhood which
is not realistic to assume.

c. 0 < c <
(

αg

αl

)
gives AA similarity measure.

For simplicity, we set c = 1. We leave tuning the c parameter as a part of the
future work.

4. The weight assigned to a common node using LA similarity mea-
sure varies across different local neighborhoods. The value of αl

varies according to the local neighborhood while αg remains constant throughout
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the network. Hence, the locally adaptive similar measure adapts according to the
local neighborhood.

5. Let us represent the average degree of the local and the global neighborhood by
avgl and avgg respectively. Thus, we can simplify the above equation as

αl

αg
∝

k∑k
i=1 ln(xi )

n∑n
j=1 ln(x j )

=
1

E[ln(xi )]
1

E[ln(x j )]
≈

1
ln(E[xi ])

1
ln(E[x j ])

=
1

ln(avgl )

1
ln(avgg)

αl

αg
∝ ln(avgg)

ln(avgl)

Note that for simpler analysis,we assume that ln(E[x]) ≈ E[ln(x)]. Further,avgg

is fixed given the network. Thus, for the average degree of the local neighborhood
there are three possibilities:

a. avgg > avgl =⇒ αl
αg

> 1

b. avgg = avgl =⇒ αl
αg

= 1

c. avgg < avgl =⇒ αl
αg

< 1

Hence, we observe that αl/αg < 1 if the average degree of the local neighborhood
is greater than the average degree of the network. Similarly, αl/αg > 1 if the
average degree of the local neighborhood is less than the average degree of the
network. The value is unity only when both the neighborhoods have the same
average degree.

6. αg is greater than αl with high probability for scale-free networks. Having higher
value of αg compared to αl will ensure that the LA similarity function when
plotted in a similar fashion as compared to Fig. 3.2 the curve lies between CN and
RA. Hence, it means that LA similarity measure will assign a weight (w(z)) less
than 1 for a common node z.

As explained in the previous chapter, MIDT shows the best performance compared
to the existing similarity measures in terms of AUC. The reason for this is that the
proposed similarity measure (MIDT) assigns higher weight to the common nodes
when compared to the existing similarity measures (CN, AA and RA). Thus, it
desirable to have the exponent value of the degree term in the similarity measure
between 0 and 1. We show that the exponent of the degree term of the proposed LA
similarity measure (c αl

αg
) lies between 0 and 1. We do not specifically consider c in

the theorem as 0 ≤ c ≤ 1. Hence, if 0 < αl
αg

< 1 =⇒ 0 < c αl
αg

< 1.

Theorem 3.1 αl is greater than αg with a very small probability for scale-free
networks.
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Proof Using the estimate for αl and αg from Eq.3.4 and using Markov Inequality,
we can write as follows:

p(αl ≥ αg) ≤ E[αl ]
αg

=
E

[
1 + k∑k

i=1 ln(xi )

]

(
1 + n∑n

j=1 ln(x j )

)

where, k refers to the size of the local neighborhood, i.e., the number of nodes in the
local neighborhood and n refers to the number of nodes in the network. We could
use Markov Inequality as αl is random and αg is constant given the network.

As the nodes of the graph are drawn from the samedistribution and are independent
of one another, we can write E[ln(x)] = E[ln(xi )] ∀i, 1 ≤ i ≤ k, where x is the
random variable corresponding to the degree of a node in the graph. Thus, we can
simplify the above equation as,

p(αl ≥ αg) ≤
E

[
1 + k

k×ln(x)

]

(
1 + n∑n

j=1 ln(x j )

) =
E

[
1 + 1

ln(x)

]

(
1 + n∑n

j=1 ln(x j )

)

Note that we can bound ln(x) as,

1

ln(x)
<

1

x
1

e2

Hence, we write as,

p(αl ≥ αg) <

E

[
1 + 1

x
1

e2

]

(
1 + n∑n

j=1 ln(x j )

) =
1 + E

[
1

x
1

e2

]

(
1 + n∑n

j=1 ln(x j )

)

Scale-free network follow power law degree distribution [4]. The density function
of a power law degree distribution can be represented as

f (x) = cx−α

We can compute c by using c
∫ x=max

x=1 f (x) dx = 1 where max represents the maxi-
mum degree of any node in the network. Hence,
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c = (1 − α)

(max1−α − 1)

Further,

E

[
1

x
1

e2

]
= c

∫ x=max

x=1
x−αx− 1

e2 dx = (1 − α)(
1 − α − 1

e2
) ×

(
max

(
1−α− 1

e2

)

− 1

)

(
max (1−α) − 1

)

p(αl ≥ αg) <

⎛

⎜⎝1 + (1−α)(
1−α− 1

e2

) ×

(
max

(
1−α− 1

e2

)

−1

)

(max (1−α)−1)

⎞

⎟⎠

(
1 + n∑n

j=1 ln(x j )

)

p(αl ≥ αg) <

⎛

⎜⎝1 + (1−α)(
1−α− 1

e2

) ×

(
max

(
1−α− 1

e2

)

−1

)

(max (1−α)−1)

⎞

⎟⎠

(
1 + 1

ln(x)

) (3.5)

Equation3.5 shows a bound for p(αl ≥ αg). The bound can be shown to be very
small. Hence, we can conclude that the value of αl is smaller than αg with high
probability. �

3.4 Locally Adaptive Algorithm

Here, we present the outline of the link prediction algorithm using LA similarity
measure. While using LA similarity measure, we will have to compute αl and αg . We
estimate αg using the maximum likelihood estimate (Eq.3.4) as the number of nodes
in the graph is typically high. αl varies with the local neighborhood of nodes a and b.
Hence, for estimating αl , the maximum likelihood estimate value for αl for the local
neighborhood may not be accurate as the local neighborhood may be small. Hence,
we also use Bayesian estimation technique to obtain the Maximum A Posteriori
(MAP) estimate by making use of different prior distributions to estimate αl . We
proceed to estimating the power law coefficient α in the next section.
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Algorithm 3: Outline of Link Prediction Algorithm using LA
input : Input Graph Gt = (V, Et )

lp is the number of likely edges we want to predict
output: Predicted Edges Based on Similarity
for (a, b) /∈ Et do1

Compute αl and αg which represent the power law coefficients for local and global2
degree distribution respectively using Eq.3.4.
Compute the similarity score for node pair (a, b) as shown:3

L A(a, b) =
∑

z∈N (a)∩N (b)

1

(xz)
c
(

αl
αg

)

end4
Sort the node pairs in descending order based on the computed LA score.5
Output the set of the top lp links.6

3.5 Power Law Coefficient Estimation

From Eq.3.3, we can observe that in order to compute the similarity using the LA
similarity measure, we will have to compute αl and αg . We represent both αl and
αg using a variable α and show how to estimate α. Using the same formulae, one
can specifically estimate αl and αg . The degree distribution of a social network
is typically a power law degree distribution. We can write the power law degree
distribution [1] as,

p(x |α) = α − 1

xmin
×

(
x

xmin

)−α

for x > xmin

where,α is the power law coefficient for a given xmin whichwe can consider as 1. This
means that the network follows a power law distribution for x > xmin . The random
variable x1 in the above equation, represents the degree of a node and the degree
distribution describes the possibility of choosing an x degree node from the network.
We must note that we need to estimate the value of the power law coefficient α for
the proposed function. We estimate the parameter α using the standard techniques
namely maximum likelihood and Bayesian estimation, respectively, in the next two
sections.

3.5.1 Maximum Likelihood Estimate of α

In this section, we proceed to estimate the power law coefficient α. The power law
distribution from [1] which is a conditional density function can be expressed as
follows:

1x is a random variable corresponding to the degree of a node.
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p(x |α) = α − 1

xmin
×

(
x

xmin

)−α

for x > xmin

If we have k i.i.d samples which represent k common neighbors between a pair of
nodes, then we can write for the likelihood given α, α, p(D|α) as

p(D|α) =
k∏

i=1

p(xi |α) =
k∏

i=1

α − 1

xmin
×

(
xi

xmin

)−α

where, xi represents the degree of the i th common neighbor andD represents the set
of the common neighbors. Hence,

p(D|α) =
(

α − 1

xmin

)k

×
k∏

i=1

(
xi

xmin

)−α

Instead of maximizing the likelihood function, we can also maximize the log-
likelihood function for simplicity as ln function is monotonic. Hence, we can write
the log-likelihood function L(α) as follows:

L(α) = ln p(D|α)

= k × ln(α − 1) − k × ln(xmin) − α ×
k∑

i=1

ln

(
xi

xmin

)

The maximum likelihood estimate α̂ can be written as,

α̂ = arg max
α

L(α)

Thus, we find α̂ by taking ∂L(α)

∂ α
= 0. Hence,

∂L(α)

∂ α
= k

α − 1
−

k∑

i=1

ln

(
xi

xmin

)
= 0

=⇒ α̂ = 1 + k
∑k

i=1 ln
xi

xmin

(3.6)

The difficulty with the maximum likelihood estimate for α is that in the presence of
a very small number of common neighbors (small k), the estimate for α will not be
accurate. Hence, we will need to make use of the Bayesian technique to estimate α

using various prior probability functions which we consider next.
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3.5.2 Bayesian Estimate of α

We use Bayesian estimation technique to estimate α which we represent by α̂k using
different prior probability functions p(α). Note that α̂k varies with the number of
common neighbors, k. As k tends to larger values, α̂k will tend to the maximum
likelihood estimate α̂ [2]. We use some of the standard probability density functions
for the prior distribution of α.

3.5.2.1 Uniform Prior Distribution

Initially, we use the uniform prior distribution for estimating α assuming that α is
equally likely to be any value between α1 and α2. Here, p(α) is defined as

p(α) =
{ 1

α2−α1
if α1 ≤ α ≤ α2

0 if α < α1 and α > α2

for some known α1. Using Bayes theorem, we can write as follows:

p(α|D) = k1 × p(D|α) × p(α) = k1 × p(α) ×
k∏

i=1

p(xi |α)

where, k1 is a constant for the denominator term p(D) in the Bayes theorem. Hence,

p(α|D) = k1 × 1

α2 − α1
×

k∏

i=1

p(xi |α) = k2 ×
k∏

i=1

p(xi |α)

= k2 ×
k∏

i=1

α − 1

xmin
×

(
xi

xmin

)−α

The MAP estimate α̂k [2] can be written as

α̂k = arg max
α

p(α|D) = arg max
α

ln p(α|D)

Thus, we find α̂k by taking ∂ ln p(α|D)

∂ α
= 0. Hence, we can simplify ln p(α|D) as

follows,

ln p(α|D) = ln(k2) + k ln(α − 1) − k ln(xmin) − α

k∑

i=1

ln

(
xi

xmin

)
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Hence,
∂ ln p(α|D)

∂ α
= k

α − 1
−

k∑

i=1

ln

(
xi

xmin

)
= 0

=⇒ α̂k = 1 + k
∑k

i=1 ln
xi

xmin

(3.7)

We observe that α̂k is same as α̂ for all values of k.

3.5.2.2 Power Law Prior Distribution

Power law prior distribution with power law coefficient value of α1 is used next to
estimate the value of α. Here, p(α) is defined as

p(α) = (α1 − 1) × α−α1

for some known α1. Using Bayes theorem, we can write as follows:

p(α|D) = k1 × p(D|α) × p(α) = k1 × p(α) ×
k∏

i=1

p(xi |α)

where k1 is a constant for the denominator term p(D) in the Bayes theorem. Hence,

p(α|D) = k1 × (α1 − 1) × α−α1 ×
k∏

i=1

p(xi |α)

= k2 × α−α1 ×
k∏

i=1

p(xi |α)

for some constant α1. The MAP estimate α̂k can be written as

α̂k = arg max
α

p(α|D) = arg max
α

ln p(α|D)

Thus, we find α̂k by taking ∂ ln p(α|D)

∂ α
= 0. We can simplify ln p(α|D) as follows:

ln p(α|D) = ln(k2) − α1ln(α) + k ln(α − 1)

− k ln(xmin) − α

k∑

i=1

ln

(
xi

xmin

)
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Hence,
∂ ln p(α|D)

∂ α
= −α1

α
+ k

α − 1
−

k∑

i=1

ln

(
xi

xmin

)
= 0

=⇒ α̂k =
z1 +

√
z21 + 4α1

∑k
i=1 ln

(
xi

xmin

)

2
∑k

i=1 ln
(

xi
xmin

) (3.8)

where z1 = (k + ∑k
i=1 ln

(
xi

xmin

)
− α1). For large values of k, we can write Eq.3.8

as

α̂k = 1

2
(z2 + 1) + 1

2

√
(z2 + 1)2 = 1 + z2

where z2 = k
∑k

i=1 ln
(

xi
xmin

) .

=⇒ α̂k = 1 + k
∑k

i=1 ln
(

xi
xmin

)

We observe that α̂k is same as α̂ for large values of k.

3.5.2.3 Exponential Prior Distribution

Next, we use an exponential distribution as the prior distribution to estimate α. α1 is
used as a prior mean for the exponential distribution. Here, p(α) is defined as

p(α) =
{

α1e−αα1 if α ≥ 0
0 if α < 0

for some known α1. Using Bayes theorem, we can write as follows:

p(α|D) = k1 × p(D|α) × p(α) = k1 × p(α) ×
k∏

i=1

p(xi |α)

where, k1 is a constant for the denominator term p(D) in the Bayes theorem. Hence,

p(α|D) = k1 × α1 × e−αα1 ×
k∏

i=1

p(xi |α)

= k2 × e−αα1 ×
k∏

i=1

p(xi |α)
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for some constant α1. The MAP estimate α̂k can be written as

α̂k = arg max
α

p(α|D) = arg max
α

ln p(α|D)

Thus, we find α̂k by taking ∂ ln p(α|D)

∂ α
= 0. We can simplify ln p(α|D) as follows,

ln p(α|D) = ln(k2) − αα1 + k × ln(α − 1)

−k × ln(xmin) − α ×
k∑

i=1

ln

(
xi

xmin

)

Hence,
∂ ln p(α|D)

∂ α
= −α1 + k

α − 1
−

k∑

i=1

ln

(
xi

xmin

)
= 0

=⇒ α̂k = 1 + k

α1 + ∑k
i=1 ln

xi
xmin

(3.9)

We observe that α̂k is same as α̂ for large values of k.

3.5.2.4 Normal Prior Distribution

We use a normal distribution as the prior distribution to estimate α with a prior mean
α1 and standard deviation σ1. Here, p(α) is defined as,

p(α) = 1

σ1

√
2π

× e
− 1

2

(
α−α1

σ1

)2

for some known α1 and σ1. Using Bayes theorem, we can write as follows:

p(α|D) = k1 × p(D|α) × p(α) = k1 × p(α) ×
k∏

i=1

p(xi |α)

where, k1 is a constant for the denominator term p(D) in the Bayes theorem. Hence,

p(α|D) = k1 × 1

σ1

√
2π

× e
− 1

2

(
α−α1

σ1

)2

×
k∏

i=1

p(xi |α)

= k2 × e
− 1

2

(
α−α1

σ1

)2

×
k∏

i=1

p(xi |α)
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= k2 × e
− 1

2

(
α−α1

σ1

)2

×
k∏

i=1

α − 1

xmin
×

(
xi

xmin

)−α

= k2 × e
− 1

2

(
α−α1

σ1

)2

×
(

α − 1

xmin

)k

×
k∏

i=1

(
xi

xmin

)−α

The Bayesian estimate α̂k can be written as

α̂k = arg max
α

p(α|D) = arg max
α

ln p(α|D)

Thus, we find α̂k by taking ∂ ln p(α|D)

∂ α
= 0. We can simplify ln p(α|D) as follows,

ln p(α|D) = ln(k2) − 1

2

(
α − α1

σ1

)2

+ k × ln(α − 1)

− k × ln(xmin) − α ×
k∑

i=1

ln

(
xi

xmin

)

Hence,
∂ ln p(α|D)

∂ α
= −α − α1

σ 2
1

+ k

α − 1
−

k∑

i=1

ln

(
xi

xmin

)
= 0

Hence, if we substitute for σ 2
1 × ∑k

i=1 ln
(

xi
xmin

)
by some constant k3, we get a

quadratic in α as follows,

α2 + (k3 − α1 − 1)α + (α1 − k3 − kσ 2
1 ) = 0

=⇒ α̂k =
−z3 +

√
z23 − 4(α1 − k3 − kσ 2

1 )

2
(3.10)

where, z3 = (k3 − 1 − α1). As k tends to larger values, we can write the above
equation as,

α̂k =
−k3 +

√
k2
3 + 2(1 − α1)k3 + 4kσ1

2



42 3 Locally Adaptive Link Prediction

Dividing throughout by k3 gives,

α̂k = −1

2
+

√
k2
3 + 2(1 − α1)k3 + 4kσ 2

1

2k3

α̂k = −1

2
+ 1

2

√√√√1 + 4
k

∑k
i=1 ln

(
xi

xmin

)2

From the above discussion, we showed how α parameter is estimated using various
parameter estimation techniques which is used in the LA similarity measure. Let us
call the LA similarity measure which uses the Maximum Likelihood Estimate for
αl by L AM L E . Similarly, let us call the LA similarity measure which uses the MAP
Estimate (Exponential Distribution Prior) for αl by L AE , (Power Law Distribution
Prior) for αl by L AP and (Normal Distribution Prior) for αl by L AN . We ignore
the LA similarity measure which uses the uniform prior probability distribution
to estimate α (Eq. 3.7) as the estimated value is same as the maximum likelihood
estimate of α (Eq. 3.6).

Note that αl valuewhen estimated using uniform, exponential and power law prior
distributions converges to the αl estimated using MLE when the number of common
neighbors is large.

3.6 Experimental Setup

We conduct the experiments in the same way as described in Sect. 2.4. We discuss
the results in the next section.

3.7 Results

In this section, we present results on using LA similarity measure against the exist-
ing popular similarity measures in terms of accuracy. Precisely, we use maximum
likelihood and MAP estimate values for α in the LA similarity measures and present
results using different estimation techniques and prior distributions explicitly.

From Tables3.1 and 3.2, we observe that LA-based measures perform better than
PA, CN, AA, and RA. We show the best results on each dataset when performing
50–50 and 80–20 edge sampling in boldface. Note that Gt is more dense in the case
of 80–20 edge sampling when compared to 50–50 edge sampling. Hence, we can
note that the link prediction similarity measures show a better performance of AUC
in the case of 80–20 edge sampling when compared to 50–50 edge sampling.

http://dx.doi.org/10.1007/978-3-319-28922-9_2


3.7 Results 43

Table 3.1 AUC results for 50–50 edge sampling

Predictor Amazon CondMat HepTh

PA 12.1 36.84 48.78

CN 30.3 64.9 59.13

AA 69.89 73.52 69.65

RA 69.13 68.45 65.65

L AM L E 71.89 75.27 71.53

L AP 71.59 74.64 70.13

L AE 71.85 73.48 69.88

L AN 71.79 75.01 71.93

Table 3.2 AUC results for 80–20 edge sampling

Predictor Amazon CondMat HepTh

PA 8.99 54.36 41.82

CN 29.48 63.86 57.41

AA 46.61 78.78 73.74

RA 43.85 81.53 72.18

L AM L E 48.15 84.54 79.2

L AP 48.2 83.86 74.75

L AE 47.8 84.06 74.96

L AN 47.59 83.61 73.57

We observe that the proposed LA similarity measure performs the best among
all the similarity measures. We observe that in most cases, LA similarity measure
using MLE estimate performs the best. The reason for this could be that the local
neighborhoods are dense on average, ensuring that αl estimated using MLE is good.
Note that theAUCperformance has increased by up to 6%using LA-based similarity
measures.

3.8 Summary

In this chapter, we first discussed the shortcomings of the existing local similarity
measures in link prediction context and proposed a locally adaptive similarity mea-
sure (LA). It addresses many of the limitations associated with the existing similarity
measures. The proposed similarity measure locally adapts by weighing the contribu-
tion of the nodes in computing similarity based on the neighborhood considered. We
further show that it is a generalized form of the existing similarity measures using the
smoothening parameter. Specifically, we observed an improvement of upto 6% in
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terms of AUC on the benchmark datasets. Large scale of experimentation shows that
the LA similarity measure has an effective and consistent performance in terms of
AUC. In the future, we would like to examine the role of the smoothening parameter
to improve the performance of LA-based measures.

Similarity measures perform poorly on sparse graphs, which have a small CC [3]
and the performance increases as the CC of the graph increases and sparseness of
the graph reduces. In the next chapter, we present a two-phase approach which uses
an auxiliary graph to predict links instead of graph Gt to deal with the challenges
posed by sparse networks.
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Chapter 4
Two-Phase Framework for Link Prediction

Abstract In this chapter, we focus only on link prediction in sparse networks. Link
prediction in sparse networks poses a major challenge as link prediction similarity
measures perform poorly on sparse networks (Eur. Phys. J. B, 85(1):3, 2012, [2]).
Similar work has been done earlier in link prediction in (Proceedings of the 16th
ACMSIGKDDInternationalConference onKnowledgeDiscovery andDataMining,
pp. 393–402, 2010, [3]) which they term as “cold start link prediction problem.”
The author considers predicting the network structure using available information
regarding the nodes when the whole network is missing. In a similar manner, we
predict thewhole networkwhen the network is evolving and very sparse. Specifically,
we propose a two-phase framework to predict links in sparse networks. The generality
of our approach makes it feasible to use it along with any link prediction similarity
measures. Experiments on benchmark datasets show the superiority of the framework
as it shows an improvement of upto 47% in terms of AUC.

Keywords Two-phase link prediction · Clustering coefficient · Kullback–Leibler
(KL) divergence · Optimization problem · Boost graph · Sparse network
4.1 Introduction

Social networks are typically sparse in nature. Clustering coefficient is a good indi-
cator of the density of the network. The connectivity structure of a sparse graph does
not provide sufficient local neighborhood information. Hence, using the similarity
function between nodes in a sparse network may not give satisfactory results. It is
also known that similarity measures perform poorly on graphs having a small CC [2].

In this chapter, we propose an approach for predicting links by paying attention
to CC. We do not consider the zero-degree nodes; we preprocess the network data
to remove such nodes. According to [4], in principle a new link is created when it is
likely to form a clique in a given network or which forms as many cliques as possible
in the network. From this we can conclude that new links are added in such a way
that the CC of the network increases. Increase in CC corresponds to an increase

Material in this chapter appeared in [6].
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in the number of cliques or near-cliques in the network. Increase in the number
of cliques models in an appropriate manner the network evolution process. Hence,
preprocessing the network to increase its CC might be the right way to proceed in
link prediction on sparse networks.

Motivated by this idea, in our work, we add some important nonexistent links
to the sparse graph Gt which gives us a new graph Gt∗ which we call as Boost
Graph; Gt∗ has more relevant information pertaining to local neighborhood and
higher clustering coefficient compared to Gt due to addition of relevant new links.
We use the connectivity structure of Gt∗ in computing the similarity between the
node pairs for link prediction.

4.2 Motivation

Consider the following notation for understanding the section better:

Notation

• Gt = (V, Et)—network at the current time
• Gt′ = (V, Et′)—network at a future time (t′ > t)
• Gt∗ = (V, Et∗)—boost network for (t′ > t∗ > t)
• KL1—KL divergence of Gt (KL(Gt))
• α—power law coefficient of graph Gt′

• β—power law coefficient of graph Gt∗

• p(x)—degree distribution of Gt′ ; p(x) ∝ x−α

• q(x)—degree distribution of G; q(x) ∝ x−β

In the link prediction problem, we need to predict the links that are likely to get added
to network Gt at a later point in time, i.e., we need to predict the links present in
Gt′ but not in Gt . In general, the link prediction algorithm uses similarity measures
(CN, AA etc.) to detect the missing links using the structure of graph Gt . Instead, it
would be better to add most likely missing links to Gt which are likely to form in the
future. This gives our boost graph Gt∗ ; Gt∗ will have a smaller KL value compared
to Gt and larger than that of Gt′ . Similarly, Gt∗ will have higher CC value compared
to Gt and smaller than that of Gt′ . Thus, we can use Gt∗ to predict the links of graph
Gt′ more effectively as Gt∗ is better than Gt in terms of CC and KL values for link
prediction. Link prediction similarity measures show good performance when the
CC of the graph is higher. We show the existence of such a Gt∗ theoretically, which
satisfies the properties discussed above.

4.2.1 Theoretical Existence of Gt∗

As discussed above, we need to find a G∗
t which satisfies the following constraints:

CC(Gt) < CC(Gt∗) < CC(Gt′)

KL(Gt) > KL(Gt∗) > KL(Gt′)
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In this section, we show that there exists an optimal Gt∗ which when used for link
prediction can be better than Gt . We formulate it as

Gt∗ = argmax
G

CC(G)

There arises a difficulty with the problem formulation. The reason for this is that the
maximum value of CC(G) is obtained when we reach the complete graph. However,
for a complete graph, the KL divergence value will be very high and link prediction
to form a complete graph is not useful. Hence, we have to optimize in such a way
that CC of Gt∗ increases and KL of Gt∗ reduces compared to Gt .

Hence, this optimization problem can be formulated as follows:

Gt∗ = argmax
G

CC(G)

subject to KL(G) < KL1

We can rewrite the above problem as

Gt∗ = argmax
G

CC(G)

subject to KL(G) + ε ≤ KL1

Solution: The Lagrangian for the above problem can be written as

L(β, λ) = CC(G) + λ(KL1 − ε − KL(G)) (4.1)

From Eq.4.1, we can observe that λ is the balancing factor which controls the rate
of increase of CC value and rate of decrease of KL Divergence. So, we need to find
the optimal λ.

We consider the lower bound as 2 for the degree henceforth as we consider only
nodes having degree of at least 2 in our graph. Now, for sparse graphs, the local
clustering coefficient correlates negatively with the degree [1], i.e., in specific it
varies as k−1 for a k degree node. Thus, we can write the CC value as follows:

CC(G) =
∫ k=∞

k=2

q(k)

k
dk

Scale-free social networks which are usually sparse follow the power law degree
distribution. Thus, q(k) follows a power law degree distribution using which we can
approximately write the above equation as

CC(G) =
∫ k=∞

k=2

k−β

k
dk = k−β

−β

∣∣∣∣
∞

2

= 1

β2β
(4.2)



48 4 Two-Phase Framework for Link Prediction

as max � 2. Similarly, we can solve for KL divergence of G with respect to Gt′ as
follows:

KL(G) =
∫ k=∞

k=2
p(k) log

p(k)

q(k)
dk

Using the power law degree distribution for graphs G and Gt′ , we can rewrite the
above equation as

KL(G) =
∫ k=∞

k=2
k−α log

k−α

k−β
dk = (β − α)

∫ k=∞

k=2
k−α log(k) dk

= (β − α)

[
−k1−α((α − 1) log k + 1)

(α − 1)2

∣∣∣∣
∞

2

]

We can simplify the above equation as follows:

KL(G) = (β − α)α

(α − 1)2 2α−1
= (β − α)C

where, C = α

(α − 1)2 2α−1
(4.3)

From Eqs. 4.1, 4.2 and 4.3 we get,

L(β, λ) = 1

β 2β
+ λ(KL1 − ε − (β − α)C) (4.4)

Partially differentiating L with respect to λ we get

∂L

∂λ
= (KL1 − ε − (β − α)C) = 0

=⇒ (β − α)C = KL1 − ε

We can simplify for optimal β (β∗) as

β∗ = α + (KL1 − ε)

C
(4.5)

Similarly partially differentiating L with respect to β, we get

∂L

∂β
= ∂

∂β

(
1

β2β

)
+ λC = 0

=⇒ − log(2)

β2β
− 1

β2 2β
+ λC = 0
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We can simplify the above equation as

− (1 + β)

β2 2β
+ λC = 0

=⇒ λC = (1 + β)

β2 2β

Thus, we can write λ using optimal value of β as

λ∗ = (1 + β∗)
Cβ∗2 2β∗ (4.6)

From Eqs. 4.5 and 4.6, we can write λ∗ in terms of α and KL1 only and thus we can
find λ∗ so that we can maximize CC(G) and minimize KL(G); and thus end up with
optimal G∗

t having degree distribution coefficient β∗. This shows that there exists a
G∗

t which satisfies the constraints.

4.3 Two-Phase Framework

Note that link prediction similarity measures use the information between node pairs
for similarity computation. Further, in the case of sparse networks or evolving net-
works at an early stage the local neighborhood may not give enough information.
Thus, link prediction similarity measures may have a poor performance.

We propose a two-phase link prediction framework for sparse networks. Let lp-
factor denote a value between 0 and 1 which represents the fraction of missing links
we want to add to graph Gt to construct the boost graph (G∗

t ). Let S be a similarity
measure which takes two nodes x and y as input and returns the similarity between
x and y. The outline of the two-phase framework is presented as follows: From the
point of notation, note that in the two-phase framework a similarity measure S1_S2
means that S1 similarity measure is applied in phase1 and S2 similarity measure is
applied in phase2. Further, observe that instead of using the structure of graph Gt ,
we use graph Gt∗ for link prediction; we compute the similarity for all unconnected
node pairs in Gt even though they are connected in Gt∗ .

4.4 Experimental Setup

For conductingour experiments,weused the datasets shown inTable1.1. Thedatasets
do not contain time stamps representing the time at which links are formed in the net-
work. For evaluating the link prediction similarity measures on such graph datasets,
we employ the experimental setup reported in [5]. We conduct experiments on sam-
pled training and test graphs generated in the following ways:

http://dx.doi.org/10.1007/978-3-319-28922-9_1
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Algorithm 4: Outline of Two-Phase Framework
input : Input Graph Gt = (V, Et)

Boost Graph Gt∗ = (V, Et∗ )
Similarity measure S1_S2
lp is the number of likely edges we want to predict
lp-factor is the fraction of lp links that we add to Gt to generate Gt∗

output: Predicted Edges Based on Similarity

phase1 starts here.1
2

for (a, b) /∈ Et do3
compute similarity as S1(a, b) using the common nodes information from graph Gt .4

end5
Sort the node pairs in descending order based on the computed score.6
Add the top lp-factor × lp number of links to Et to form E∗

t , where 0 ≤ lp-factor ≤ 1.7
8

phase1 ends here.9
10

phase2 starts here.11
12

for (a, b) /∈ Et do13
compute similarity as S2(a, b) using the common node information from graph Gt∗14

end15
phase2 ends here.16

17
Output the top lp links.18

1. Perform edge sampling to divide the dataset two parts each having 10 and 90%
links. We use the smaller part as the training graph (Gt) and the larger part as
the test graph (Gt′ ). We predict the edges of Gt′ . Let us call this 10–90 edge
sampling. 10–90 edge sampling indicates that training graph Gt has 10% links
and test graph Gt′ has the remaining 90% links. This simulates link prediction on
sparse networks.

2. Perform edge sampling to divide the dataset two parts each having 20 and 80%
links. We use the smaller part as the training graph (Gt) and the larger part as
the test graph (Gt′ ). We predict the edges of Gt′ . Let us call this 20–80 edge
sampling. 20–80 edge sampling indicates that training graph Gt has 20% links
and test graph Gt′ has the remaining 80% links. This simulates link prediction on
sparse networks.

We use Gt as the graph at the current time instance and predict the links of the test
graph (Gt′ ) to validate the predictions. We repeat this process 10 times to reduce any
statistical bias introduced due to sampling.

Link prediction similarity measures are evaluated using the AUC metric as
explained in Sect. 2.4. We discuss the results in the next section.

http://dx.doi.org/10.1007/978-3-319-28922-9_2
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Table 4.1 AUC results for 10–90 edge sampling

Predictor Amazon CondMat HepTh

PA 45.68 52.8 51.8

CN 9.47 16.9 19.81

AA 4.31 38.18 14.3

RA 4.42 37.57 14.19

PA_PA 44.82 52.82 51.17

PA_CN 4.45 9.68 12.64

PA_AA 55.66 69.66 52.69

PA_RA 55.73 69.56 51.78

CN_PA 52.81 43.97 44.38

CN_CN 12.21 18.98 20.73

CN_AA 56.02 70.83 51.79

CN_RA 74.39 72.83 62.88

AA_PA 43.26 51.57 49.24

AA_CN 4.47 8.51 13.82

AA_AA 4.39 38.53 13.42

AA_RA 4.16 37.58 12.79

RA_PA 47.32 50.51 48.12

RA_CN 4.22 7.63 12.53

RA_AA 4.36 38.02 14.37

RA_RA 4.51 37.34 14.38

4.5 Results

On performing the experiments using various similarity measures in the two-phase
framework, we report the AUC results in Tables4.1 and 4.2 on various datasets on
predicting 90 and 80% missing links, respectively.

From Tables4.1 and 4.2, we observe that PA performs better than CN, AA, and
RA in the case of sparse networks. Note that for the experiments we set lp-factor
to 0.5. Further, employing the two-phase framework using the existing similarity
measures shows significant improvement when compared to the existing link predic-
tion similarity measures. We show the best results on each dataset when performing
10–90 and 20–80 edge sampling in boldface. We also show in italic font the results
which are better than the existing similarity measures in the tables. Note that Gt

is more dense in the case of 20–80 edge sampling when compared to 10–90 edge
sampling. Hence, we can note that the link prediction similarity measures show a
better performance of AUC in the case of 20–80 edge sampling when compared to
10–90 edge sampling.

We can observe that using PA in phase1 shows improvement in performance when
followed up with AA or RA in phase2. However, best results were attained when
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Table 4.2 AUC results for 20–80 edge sampling

Predictor Amazon CondMat HepTh

PA 24.55 47.51 52.13

CN 34.47 47.97 47.78

AA 16.25 55.48 46.02

RA 15.75 53.05 42.13

PA_PA 24.72 47.7 51.26

PA_CN 13.86 26.32 31.48

PA_AA 59.74 75.93 67.07

PA_RA 59.91 74.97 65.24

CN_PA 46.18 63.72 64.06

CN_CN 33.75 48.21 49.15

CN_AA 81.03 80.07 69.15

CN_RA 45.59 81.43 73.95

AA_PA 45.59 54.45 58.4

AA_CN 15.9 25.72 31.17

AA_AA 16.25 55.51 46.24

AA_RA 15.64 53.06 38.69

RA_PA 51.59 55.07 53.96

RA_CN 15.94 54.99 22.42

RA_AA 15.84 54.99 44.51

RA_RA 16.16 53.22 42.64

we use CN in phase1 and follow it up with AA or RA in phase2. This shows that
CN and PA show good performance in sparse networks and AA and RA show good
performance in denser networks. This is consistent with the results shown in earlier
chapters. Further, two-phase framework enhances the link prediction performance
both in the cases of 10–90 and 20–80 edge sampling. Further, two-phase framework
shows better performance in the case of 20–80 edge sampling when compared to 10–
90 edge sampling. In other words, two-phase framework shows better performance
when the training graph is dense. Note that the AUC performance has increased by
up to 47%. Next, we show how the link prediction performance varies with lp-factor.

4.5.1 Variation of Performance with lp-Factor

We observe from our results that lp-factor is an important parameter in the proposed
approach.We show the results by tabulatingAUCversus lp-factor on various datasets
on predicting 90 and 80% missing links in Tables4.3, 4.4 and 4.5. In general, we
observe that the AUC varies by varying lp-factor uniformly across all the datasets.
Although, the variation in AUC is not very significant, in general, we observe that
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Table 4.3 AUC versus lp-factor for Amazon dataset

lp-factor 10–90 edge sampling 20–80 edge sampling

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

PA_PA 46.54 46.81 46.79 47.21 46.44 25.95 25.29 25.31 24.16 24.61

PA_CN 4.03 4.38 4.05 4.2 4.12 14.05 13.76 13.99 14.38 14.32

PA_AA 56.12 56.88 56.62 56.64 55.69 59.03 58.89 59.66 59.53 60.21

PA_RA 55.69 56.74 56.76 55.13 56.93 59.76 59.21 58.88 59.6 58.54

CN_PA 46.33 46.25 46.78 46.94 47.36 33.53 33.94 34.76 34.26 33.69

CN_CN 5.32 5.82 5.29 5.39 4.95 16.53 17.02 16.19 17.02 17.41

CN_AA 56.69 56.13 56.57 55.99 56.38 55.88 56.12 55.5 55.82 55.94

CN_RA 56.02 56.78 56.71 56.19 57.02 56.98 56.24 57.07 57.14 57.61

AA_PA 47.82 48.45 48.04 48.13 47.05 48.79 50.03 50.25 49.53 50.17

AA_CN 3.64 4.03 3.64 3.88 3.71 15.57 15.37 15.94 15.44 15.86

AA_AA 4.02 3.69 4.03 3.6 4.19 16.86 15.47 16.62 16.02 15.81

AA_RA 3.71 3.82 3.77 3.59 3.7 15.52 15.28 15.1 15.87 15.54

RA_PA 48.12 48.37 47.87 47.8 47.91 50.18 50.09 49.92 49.99 50.63

RA_CN 3.92 3.73 3.56 3.57 4.08 15.2 15.84 15.35 15.42 16.18

RA_AA 4.12 3.66 3.8 3.51 3.63 16.07 16.13 16.03 16.06 16.04

RA_RA 3.74 3.97 3.83 3.65 3.99 15.65 15.76 15.42 15.49 15.91

Table 4.4 AUC versus lp-factor for CondMat dataset

lp-factor 10–90 edge sampling 20–80 edge sampling

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

PA_PA 53.29 53.65 53.7 54.27 53.75 47.59 46.29 48.19 47.55 47.05

PA_CN 9.59 9.43 9.74 9.81 9.97 25.59 26.23 26.11 25.95 25.83

PA_AA 70.12 70.27 70.64 69.75 70.36 73.78 74.32 74.8 74.28 74.65

PA_RA 70.14 69.7 69.59 69.41 69.05 74.07 74.03 73.67 74.4 74.12

CN_PA 49.74 49.83 50.38 50.28 50.36 38.59 37.24 37.85 37.5 39.29

CN_CN 15.42 15.5 14.74 15.33 14.68 45.45 46.02 44.67 44.77 45.78

CN_AA 71.18 71.0 71.78 70.18 71.22 79.08 79.31 79.78 78.62 79.29

CN_RA 71.13 71.76 70.38 70.76 71.03 79.61 79.25 79.16 79.15 79.39

AA_PA 51.95 51.73 51.15 51.7 51.57 55.05 54.62 54.8 55.4 54.51

AA_CN 9.01 8.91 8.61 8.47 9.03 56.68 57.72 57.85 56.42 57.57

AA_AA 37.38 37.56 37.01 36.44 36.73 26.54 26.03 26.08 26.03 26.04

AA_RA 36.34 36.29 36.1 35.83 35.75 55.18 54.31 54.61 54.75 55.18

RA_PA 50.89 51.95 51.21 51.13 51.81 56.16 54.4 54.97 55.68 54.97

RA_CN 7.72 7.73 7.87 7.27 7.95 24.88 24.95 25.92 25.3 24.92

RA_AA 36.45 36.51 36.65 36.94 35.32 56.64 56.05 57.57 56.63 56.42

RA_RA 35.86 36.31 36.23 35.86 36.1 55.18 54.31 54.63 54.18 54.25
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Table 4.5 AUC versus lp-factor for HepTh dataset

lp-factor 10–90 edge sampling 20–80 edge sampling

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

PA_PA 49.8 51.42 48.79 50.54 49.58 48.19 48.03 47.55 47.47 47.89

PA_CN 7.01 7.76 7.24 7.43 7.09 32.98 32.38 32.32 32.53 32.64

PA_AA 51.83 52.58 53.11 53.53 51.51 68.39 69.34 68.3 68.9 68.36

PA_RA 51.94 51.77 51.85 52.38 52.17 66.46 66.02 67.48 66.3 66.37

CN_PA 51.26 52.55 50.58 50.76 50.94 44.82 44.12 45.22 44.39 44.45

CN_CN 8.16 8.16 8.68 9.09 9.12 40.5 40.26 40.48 40.64 41.36

CN_AA 54.44 50.76 53.19 53.6 53.91 70.07 70.17 70.83 69.67 70.42

CN_RA 50.53 50.67 51.29 51.84 50.68 67.66 67.98 67.38 67.81 68.37

AA_PA 48.16 47.31 46.83 47.78 47.96 57.39 57.66 56.91 58.27 57.21

AA_CN 8.2 7.89 8.03 7.8 8.03 32.36 32.88 32.12 32.2 32.19

AA_AA 13.73 13.79 13.83 13.57 13.67 45.86 46.03 45.19 44.73 46.24

AA_RA 14.28 14.48 14.28 14.04 14.09 37.35 37.88 37.86 37.86 38.33

RA_PA 46.83 47.73 48.22 47.78 48.73 53.74 53.5 53.22 53.5 53.58

RA_CN 8.31 8.1 8.56 8.71 8.71 23.3 23.42 23.49 24.38 23.8

RA_AA 14.11 13.84 14.17 14.11 14.17 42.97 43.01 43.78 43.51 43.43

RA_RA 13.63 13.78 14.12 14.19 14.84 40.18 41.79 40.72 41.22 41.32

AUC increases with increasing the value of lp-factor. However, in some cases, AUC
increases till certain point and falls as lp-factor gets increased. Hence, on a safer
note, we set the value of lp-factor to 0.5 for experimentation. The results indicate
that PA and CN are more effective on sparse graphs while AA and RA are effective
on denser graphs.

4.6 Summary

In this chapter, we presented a two-phase framework which shows significant
improvement compared to the standard link prediction approach on sparse networks.
Specifically, in our approach we add missing links which are more likely to occur
in the future to the existing sparse network and make it denser to form the boost
graph. We exploit the connectivity structure of this denser network for effective
link prediction. The exhaustive experimentation using our approach demonstrates
the superiority and robustness of our approach. Specifically, we show a significant
improvement of upto 47% on benchmark datasets. In the future, we would like to
test for the efficacy of this method in terms of increase in the number of phases of
the two-phase algorithm to form a multiphase link prediction. Further, we would like
to work on how to determine the value of lp-factor based on the network at hand as
opposed to setting empirically.
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Chapter 5
Applications of Link Prediction

Abstract Linkpredictionhas awidevariety of applications.Graphsprovide a natural
abstraction to represent interactions between different entities in a network. We can
have graphs representing social networks, transportation networks, disease networks,
email/telephone calls network to list a few. Link prediction can specifically be applied
on these networks to analyze and solve interesting problems like predicting outbreak
of a disease, controlling privacy in networks, detecting spam emails, suggesting
alternative routes for possible navigation based on the current traffic patterns, etc.

Keywords Recommender system · Spam mail detection · Citation network ·
Influence detection · Disease prediction
In this chapter, we discuss the applications of link prediction in practical cases.

5.1 Recommender Systems

Recommender systems are information filtering systems that recommend new prod-
ucts to the users based on the users’ previous rating or preference to similar products.
Although, recommender systems have been approached using classical collaborative
filtering algorithms [21], link prediction has been successfully applied to recom-
mender systems to generate quality recommendations.

Link prediction has been widely applied in recommender systems [6, 11]. Even
though collaborative filtering algorithms have been widely applied in the context of
recommender systems, they are greatly limited by the sparse data problem. Link pre-
diction proximity measures outperformed the standard collaborative filtering algo-
rithms when used for providing recommendations. Li and Chen [14] propose using a
graph kernel-based recommendation framework to predict possible user-item inter-
actions. This framework demonstrates improved performance when a large number
of recommendations are required. Li and Chen [15] map transactions to a bipartite
user-item interaction graph, thereby converting the recommendation problem to a
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link prediction problem. Li et al. [16] calculate domain similarities between prod-
ucts to weigh the product recommendations to customers with larger weights whose
categories are more similar to the users’ preferences to improve recommendation
quality. Further work in this direction can be found in [2, 5, 12, 20, 22, 24, 26].

5.2 Spam Mail Detection

It is common to receive spam mails to ones mail account. These mails are unwanted
mails which are not normal and unexpected for the users soliciting regular mails.
In this context, link prediction has been applied to detect anomalous mails for traf-
fic monitoring purpose over various communication channels in [10] using graph-
theoretic approaches. They specifically model the one-to-many relationship between
a sender and multiple recipients.

5.3 Privacy Control in Social Networks

It is important to preserve privacy in any network by shielding users from unreliable
users. For example, for administrators of social networks like Facebook, it would
be important to hide important user information like email, phone number, photos,
etc. from unreliable users as it can manipulated. Link weight in social networks
indicates the level of trust between two users. Al-Oufi et al. [1] propose a capacity-
based algorithm which adopts Advogato trust metric for identifying people of trust
based on weighted relationships. Thus, for a given user, the proposed method finds
all possible trustworthy users who are connected to the given user in the network,
thereby shielding the given user from unreliable users. This ensures privacy control
for the users in social networks.

5.4 Identifying Missing References in a Publication

A publication might contain link to others work, in such a case, others work must be
cited to acknowledge their contribution. However, it is possible that a publication can
have missing references. In such a case, it is important to identify missing references
in a publication to avoid plagiarism. In this context, Kc et al. [13] provide a framework
for the generation of links between referenced and otherwise interlinked documents.
This framework proposes using the nodes of the graph for documents, and links in
the graph for the references between the documents. Using this graph, it is possible to
obtain a set of possible references for a new document. It can be applied in predicting
missing or useful references for a new document.
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5.5 Expert Detection

This problem deals with identifying expert(s) in a given domain. For example, given
any network which corresponds to links between various researchers, we need to find
the experts from the network in various domains. In this context, link prediction has
been applied in co-authorship networks for finding domain experts in [19]. Liu and
Ning [17] show how link prediction can be used to rank candidates for high-level
government posts.

5.6 Influence Detection

Given a social network, it is important to understand which users are most influential
in the network. For example, in case of sales of a phone, influential users in a network
can have a significant impact on the sales of the product. The impact of a highly
influential user in favor of the phone can incurmore sales of the phone in the network.
In contrast, the impact of a highly influential user who is against the phone can reduce
the sales of the phone in the network. Cervantes et al. [3] introduce local measures to
estimate the influence of users in a collaborative network. Their approach adds and
removes each node iteratively from the network and link prediction is simultaneously
performed to understand the influence of the node in the network. Every collaborator
is represented by a vertex. Similarly, Nguyen et al. [18] estimate a person’s influence
and personality traits using link prediction.

5.7 Routing in Networks

The problem deals with identifying optimal routes in networks to improve rout-
ing performance. Frequent breaks in routes in mobile ad hoc networks adversely
affect the quality of mobile wireless networks thereby posing a challenge. Weiss
et al. [23] and Yadav et al. [25] propose methods to estimate signal strength-based
link availability prediction for routing. Estimate of link breakage time based on link
information allows local route repair or new route discovery for the packets, thereby
reducing packet drops and end-to-end delay. Hu and Hou [9] propose traffic predic-
tion approach using link prediction improving better routing of packets in wireless
networks. Further work in this direction can be found in [4, 8].
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5.8 Disease Prediction

Folino and Pizzuti [7] work on applying link prediction models to predict the onset
of diseases given the current health status of the patients. They propose to construct a
comorbidity network where nodes are the diseases and an edge between two diseases
represents the simultaneous occurrence of the two diseases in a patient. Standard link
prediction techniques are applied on the network to output a ranked list of scores
between two diseases. The higher the link score, the higher is the likelihood of the
co-occurrence of the two diseases. This technique can reveal morbidities a patient
could develop in the future.
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Chapter 6
Conclusion

Abstract Link prediction problemhas been studied extensively in relation to various
applications. However, the role of degree distribution of the networks have not been
explicitly exploited in this context. In this book, we deal with link prediction by
considering the power lawdegree distribution of large-scale networks.We summarize
our key findings and also discuss possible future directions in the context of link
prediction.

Keywords Adamic adar index · Resource allocation index · Hybrid scheme ·
Outlier node · Influential node
In this book, we have examined the link prediction problem using similaritymeasures
which compute closeness of node pairs; two nodes which are similar tend to connect
to each other.We extensively worked on real-world networks. These networks follow
the power-law degree distribution.

We proposed three algorithms that characterize similarity using the proposed
similaritymeasures in link prediction for dense networks: degree-thresholding-based
similarity measures (MIDT), common edge-based measures (CNC, AAC, RAC), and
locally adaptive similarity measure (LA). Further, we present a two-phase-based
framework for link prediction in sparse networks.

We summarize the key findings from our work as follows:

• AA and RAwork well among the existing similarity measures in the case of dense
networks.

• Link prediction in sparse networks is difficult when compared to link prediction in
dense networks; neighborhood information in sparse networksmaynot be adequate
compared to that in dense networks. The other reason could be that link prediction
similarity measures perform poorly on networks having low CC when compared
to networks having high CC.

• In general, all the proposed algorithms perform better than the popular baseline
similarity measures in terms of AUC.

• LA similarity measure is the most generic similarity measure which adapts locally
by taking into consideration the local degree distribution of node pairs. It can be
viewed as a generic form of the existing similarity measures.
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64 6 Conclusion

• The performance ofMIDT similaritymeasures shows that the low-degree common
nodes should be given more weight/importance; high-degree common nodes can
be assigned a lower weight or completely ignored in computing similarity between
unconnected node pairs.

• Increasing the CC of the sparse networks will allow us to capture the similarity
better, thereby, improving the performance of the link prediction similarity mea-
sures. This is the motivation for exploring a two-phase link prediction.

• Among the proposed algorithms, the LA similarity performs the best in terms of
accuracy in dense networks.

Future Work

It would be good to explore the following in the context of link prediction:

• A hybrid scheme that makes use of two-phase link prediction algorithm and the
LA similarity measure.

• Canwe use the proposed similaritymeasures to detect communities, classification,
and identifying influential nodes in networks? This question is meaningful as
similarity forms the basis for the above-mentioned tasks.

• To devise link prediction schemes in networks where the strength/weight associ-
ated with a link varies over time. Specifically, new links could appear in the future,
and the existing links may become weak or vanish in the future.

• Identifying outlier nodes in a network, where any link from any node to an outlier
node is termed as a bad link. Removal of bad links in a network can be analogous
to noise reduction in the classification context.

• Link prediction techniques for multiplex and multilayer networks.



Glossary

α Power law coefficient of network.
αl Power law coefficient of network of local neighborhood.
αg Power law coefficient of network of global neighborhood.
Et Edges of Gt .
Et ′ Edges of Et ′ .
Gt Network at time t .
Gt ′ Network at time t ′ (t ′ > t).
Gt∗ Boost/Auxiliary graph after adding lp-factor edges to Gt .
lp Number of edges needed to predict.
lp- f actor Fraction between 0 and 1 for two-phase framework.
N (a) Neighbors of node a.
T Degree threshold for MIDT and Clique based approach determined

using Markov Inequality.
xa Degree of node a.
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