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Preface

Variable-power distributed energy resources, such as solar photovoltaic and storage
systems, and high-power elastic loads, such as electric vehicle chargers, are being
installed at a phenomenal rate in power distribution systems. Such active end-nodes
can affect the reliable operation of the grid if they are not controlled properly. Yet
there is no consensus among various stakeholders in the power industry on the
significance and impacts of these cutting-edge technologies. This brief focuses on
the challenges of integrating active end-nodes into low-voltage distribution grids
and the potential for pervasive measurement and control to address these chal-
lenges. A mathematical framework is presented for the joint control of active
end-nodes at scale, and it is shown through extensive numerical simulations that
proper control of active end-nodes can significantly enhance reliable and eco-
nomical operation of the power grid.

Berkeley, USA Omid Ardakanian
Waterloo, Canada S. Keshav
Waterloo, Canada Catherine Rosenberg
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Symbols

αc
i Rated charge capacity of storage i

αd
i Rated discharge capacity of storage i

βi Rated capacity of EV charger i
ηci Charge efficiency of storage i
ηdi Discharge efficiency of storage i
γc
i Charge efficiency of EV battery i

Ab Bus association matrix for storage systems
Ae Bus association matrix for EV chargers
Al Bus association matrix for inelastic loads
As Bus association matrix for PV systems
B Set of buses
BZ Set of buses that represent balancing zones
Bi Set of buses downstream of bus i
E Set of EV chargers
I Set of inelastic loads
J Set of PV systems
L Set of primary distribution lines
Li Set of lines located on the unique path from the substation to bus i
S Set of battery storage systems
T Set of time slots
�ci Maximum SOC of storage i
�pbi ðtÞ Maximum acceptable discharge power of storage i in time slot t
�pei ðtÞ Maximum acceptable charge power of EV charger i in time slot t
�psi ðtÞ Available real power at PV system i in time slot t
�ssi Apparent power rating of inverter i
τ Length of a time slot
ci Minimum SOC of storage i
pb
i
ðtÞ Maximum acceptable charge power of storage i in time slot t

pe
i
ðtÞ Minimum acceptable charge power of EV charger i in time slot t

xiii



ξij Setpoint associated with a line or a transformer located
between bus i and j

ciðtÞ SOC of storage i in time slot t
di Charging deadline of EV charger i
eiðtÞ Energy required to fulfill charging demand of EV i in time slot t
pbi ðtÞ Real power contribution of storage i in time slot t
pei ðtÞ Charge power of EV charger i in time slot t
pliðtÞ Real power consumption of inelastic load i in time slot t
psi ðtÞ Real power contribution of solar inverter i in time slot t
piðtÞ Total real power consumed at bus i in time slot t
PijðtÞ Real power flow from bus i to downstream bus j in time slot t
qcj ðtÞ Reactive power provided by capacitors at bus j in a given time slot

qliðtÞ Reactive power consumption of inelastic load i in time slot t
qsi ðtÞ Reactive power contribution of solar inverter i in time slot t
qiðtÞ Total reactive power consumed at bus i in time slot t
QijðtÞ Reactive power flow from bus i to downstream bus j in time slot t
rij Resistance of line connecting bus i to bus j
SijðtÞ Apparent power flow from bus i to downstream bus j in time slot t
v0 Voltage magnitude at the substation bus
vmax Upper voltage limit in the distribution network
vmin Lower voltage limit in the distribution network
viðtÞ Voltage magnitude at bus i in time slot t
xij Reactance of line connecting bus i to bus j
zij Impedance of line connecting bus i to bus j

Note that the upright boldface letters represent matrices.
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DC Direct current
DER Distributed energy resources
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DR Demand response
DSO Distribution system operator
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GHG Greenhouse gas
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LP Linear programming
LPWAN Low-power wide area networks
LTC Transformer load tap changer
MIP Mixed integer programming
MPC Model predictive control
NUM Network utility maximization
OPF Optimal power flow
PEV Plug-in electric vehicle
PV Photovoltaics
SAE Society of Automotive Engineers
SOC Battery state of charge
TCL Thermostatically controlled load
TCP Transmission control protocol
V2G Vehicle-to-grid
VAR Volt-ampere reactive
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Chapter 1
Introduction

Abstract Large-scale integration of variable-power distributed energy resources
(DER), such as solar photovoltaics and storage systems, and high-power elastic
loads, such as electric vehicle chargers, into low-voltage distribution grids can pose
serious challenges to power system operators. This chapter discusses how pervasive
measurement and control can be used to address these challenges and enhance the
reliable and economical operation of the grid. It also specifies design goals for future
grid control mechanisms, and proposes a new approach to the control of DER and
elastic loads.

1.1 Traditional Grid

The North American power grid is one of the largest machines ever built. This gigan-
tic, carbon-intensive legacy system comprises thousands of power stations producing
electricity to serve demands of millions of geographically dispersed electrical loads,
and has an enormous number of transmission and distribution lines and transform-
ers connecting the power stations to distribution substations and downstream loads.
Despite the scale and complexity of the power grid, its fundamental task is surpris-
ingly simple: it delivers power to loads while ensuring reliability1 and low cost.
From the early days of the grid, reliability has always been of utmost importance and
this perspective has been reflected in its planning and operation. In particular, elec-
tric utilities size and operate the grid in a way that the available generation capacity
almost always2 exceeds demand peaks and the transmission and distribution capacity
is almost always sufficient to deliver power to the loads. The success of this approach
is reflected in the fact that today customers in many parts of the world take it for

1Power system reliability generally describes the continuity of electric service to customers with a
voltage and a frequency within prescribed ranges.
2Awidely accepted benchmark value for reliability in the United States is the “one-day-in-ten-years
criterion”, whichmeans that the system-wide generation capacity is expected to fall short of demand
once every ten years [21].
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2 1 Introduction

granted that lights turn on as they flip a switch. They do not even notice that power
system operators are taking measures to constantly and precisely balance supply and
demand.

The traditional power grid has the following characteristics that are relevant to
the discussion of distribution grid control, the focus of this chapter:

• Generation—Power stations are typically centralized and dispatchable, i.e., their
power output can be adjusted at the request of system operators, though some
are more responsive than others. In many countries, most power stations burn
fossil fuels to produce electricity, contributing to carbon emissions. Power stations
are interconnected by high voltage transmission lines forming a mesh network
with many redundant pathways. Hence, there is a clear physical and structural
separation between generation resources and loads, which are typically connected
to distribution feeders.

• Loads—Residential and commercial loads are mostly inelastic, i.e., their demand
cannot be controlled or shaped. Although it is difficult to accurately predict the
demand of a single load at a given time, the aggregate demand of a large number
of loads across the grid behaves in a relatively predictable manner. This enables
the system operators to schedule generation units a day or an hour in advance.

• Customers—In the traditional power grid, customers are information poor, control
poor, yet energy rich. That is, they do not receive real-time electricity price or other
signals that indicate the state of the power system, they have no means to control
or schedule their loads, yet they are permitted to consume electricity at will as
long as their demand is lower than a limit enforced by a circuit breaker.

• Storage—Physical energy storage is expensive and scarce. Thus, electricity must
be produced and consumed instantaneously.3

• Distribution networks—Unlike transmission networks, legacy distribution net-
works are equipped with little instrumentation beyond the substation for cost rea-
sons. Hence, distribution system operators (DSOs) have no way of determining
the state of the network and cannot initiate remote remedial actions. Even the loca-
tion of an outage in the distribution network is often determined by customer calls,
unless it affects amanned substation [21].Given that the grid is over-provisionedby
design and traditional distribution networks are mostly radial with unidirectional
power flow, service reliability is not at risk, despite having poorly monitored and
controlled circuits.

3A small amount of energy storage in the form of rotational inertia is implicit in the traditional grid.
This helps the operators to balance load and generation within a short time scale.
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The consequence of these characteristics is that uncertainties are minimal and
manageable in traditional power systems. This is becausemost generation units
are dispatchable, and the overall demand does not vary drastically over a short
period of time and can be predicted with sufficient accuracy several hours in
advance.

However, the century-old grid is extremely under-utilized and inefficient; it
is sized to meet the peak demand, which tends to occur only a few hours a year.
This design principle is essential to preserve reliability when demand elasticity
and storage capacity are very limited, but leads to a large carbon footprint.

1.2 Drivers of Change

In recent years, the traditional grid has undergone substantial changes due to the inte-
gration of several demand-side technologies into low-voltage distribution networks.
This section introduces these low-carbon technologies and their potential impact on
the grid, highlighting the growing need for control in distribution systems. A more
comprehensive impact study is presented in Chap.2. Our focus is restricted to the
three most important technologies in distribution systems, namely renewable energy
systems such as solar photovoltaics (PV) and wind turbines, electric vehicles (EVs),4

and battery storage systems.

1.2.1 Renewable Energy Systems

Renewable generation costs have declined substantially in many parts of the world
mainly due to sustained technology progress and improved financing conditions. For
example, solar power has reached grid parity5 in several jurisdictions today and is
expected to soon become competitive with retail electricity in many other jurisdic-
tions, even if existing investment tax credits expire [9]. This has led to increased
deployment of rooftop solar panels in residential and commercial sectors, making
solar PV distributed generation one of the fastest-growing renewable generation
technologies at the present time.

Unfortunately, a high concentration of inherently-variable solar generation (and
other types of renewable generation) in distribution networks is a mixed

4This work focuses on plug-in electric vehicles (PEVs), which are a subset of EVs that can be
charged from the grid. But, for convenience, these two terms are often used interchangeably.
5Grid parity occurs when the levelized cost of solar PV (over a 20–25 year horizon) becomes less
than or equal to the retail electricity price.

http://dx.doi.org/10.1007/978-3-319-39984-3_2
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blessing. First, increased uncertainty in generation capacity both complicates
generation planning [23] and increases the need for frequency regulation by fast-
ramping fossil fuel power plants, which can actually increase overall carbon emis-
sions.6 Second, solar PV generation can surpass the feeder loading in some periods,
resulting in reverse power flow and voltage rise toward the end of the feeder [15].
Reverse flows can cause protection coordination problems and the overuse of volt-
age regulating devices and circuit breakers, shortening their expected life cycle.
Third, curtailing inexpensive solar power, i.e., accepting less solar power than what
is available and displacing it by higher-priced resources, might be necessary to avoid
distribution network problems in some situations [18]. However, in many jurisdic-
tions, electric utilities need to pay for solar generation even if it is curtailed. This
leads to the paradox of a large installed base of solar generation with small actual
usage of solar power, yet with higher electricity bills for all.

Growing concerns over the impacts of distributed renewable generation on power
system planning and operation have led to the design of sophisticated inverters that
are capable of on-demand curtailment of real power and reactive power adjustment
in addition to their basic task of converting direct current output of renewable energy
systems to alternating current [16]. These smart inverters can be controlled to tackle
overvoltage and unbalance conditions and prevent reverse flow [12, 27, 32]. Hence,
a measurement, communication, and control infrastructure is essential for taking full
advantage of the smart inverters.

1.2.2 Electric Vehicles

The transportation sector is by far the largest consumer of petroleum, and the sec-
ond largest contributor to global greenhouse gas (GHG) emissions, accounting for
about 23% of the global GHG emissions in 2012 [14]. Transportation electrification
could alleviate growing concerns over climate change and petroleum scarcity. There-
fore, many governments have issued mandates to incentivize the adoption of electric
vehicles so as to reduce their reliance on petroleum and cut down GHG emissions.

The EVmarket is growing fast. Global EV stock exceeded 665,000 in 2014, which
is about 0.08% of the total passenger car stock at present [10], and it is anticipated
that EVs will account for 64% of U.S. light-vehicle sales and will comprise 24%
of the U.S. light-vehicle fleet by 2030 [4]. Several automakers, including Nissan,
Chevrolet, Toyota, General Motors, Ford, Honda, Audi, BMW, Renault, BYD, and
Tesla, have embraced this technological shift and have released all-electric and plug-
in hybrid EV models for the mass-market.

However, widespread EV adoption poses several new challenges for electric
utilities and distribution system operators. At moderate to high penetration levels,
uncontrolled electric vehicle charging can increase the peak load and energy losses,
overload or congest distribution lines and transformers, and cause voltage swings and

6Germany has already encountered this problem, known as the Energiewende paradox [11].
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phase imbalance in the distribution system [7, 20, 26]. Unrelieved congestion can
overheat transformer windings and accelerate degradation of line and transformer
insulation, leading to premature equipment failure. Excessive voltage drop can cause
damage to electrical appliances.

Even at low penetration levels, there are likely to be certain neighbourhoods
with high penetration levels [8]. For instance, the state of California’s share of total
nationwide plug-in EV registrations reached 45% in 2014, accounting for 129,470
units out of the 286,842 PEVs registered in the U.S. since 2010 [5]. Uncoordinated
EV charging could have detrimental impacts on the distribution network in these eco-
friendly and eco-trendy neighbourhoods, even if the EV penetration level is relatively
low in the entire distribution network.

To accommodate the EV charging load, utilities can take either of two approaches.
The first approach is to make the required investment to upgrade distribution circuits
as they become overloaded. The second approach is to exploit the elasticity of the EV
charging load and a broadband communication network overlaid on the distribution
network to directly control smart EV chargers.7 The second approach significantly
reduces the required reinforcement investment to accommodate higher EV pene-
tration levels [25], assuming that the required measurement, communication, and
control infrastructure is already in place.

1.2.3 Battery Storage Systems

With the growing interest in battery storage systems, especially when paired with
solar PV installations, and the announcement of Tesla’s Gigafactory, the world’s
largest lithium-ion battery factory, the cost per kilowatt-hour of battery storage sys-
tems is expected to fall dramatically by 2020 [30].8 This will increase the number of
battery storage systems connected to distribution feeders, as well as those integrated
into the transmission network.

Battery storage systems offer several benefits to many aspects of the grid. For
example, storage can be used to shave peaks and level loads, reducing carbon emis-
sions, and transmission and distribution losses. It can also help operators better
match supply with demand to maintain frequency. Indeed, the charge and discharge
powers of storage systems can be adjusted even faster than the operating setpoint
of fast-ramping generators that provide regulation service, making them excellent
alternatives for balancing the future grid [6]. As a third example, storage can reduce
the curtailment of renewable energy, which is necessary when there is a risk of

7Smart EV chargers choose a charging power/rate based on control signals that they receive from
the grid. They are capable of charging EVs at any rate below the maximum charge power that they
support.
8The cost per kilowatt-hour of battery packs used bymarket-leading EVmanufacturers was approx-
imately US$300 in 2014 [24].
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over-generation or the network access link from a solar or a wind farm is overly
congested and therefore cannot transmit excess power to other locations.

It should be clear that the careful control of storage can reduce reverse power
flow, the need for frequency regulation from the grid, wasteful and expensive renew-
able generation curtailment, and overall carbon emissions. Whether storage systems
actually offer any of these benefits depends on how they are owned and operated
in practice. For example, a control strategy that tries to minimize solar curtailment
would charge storage only from solar panels and not from the grid to ensure that
storage capacity is available when the sun is shining, whereas a control strategy that
provides frequency regulation services would keep storage roughly half-full at all
times to support both up and down regulation. Thus, choosing the correct storage
operation strategy is a complex problem that we consider later in this brief.

1.2.4 Emerging Challenges and Opportunities

The three demand-side technologies presented in the prior section can be classified
into two major types. The first type introduces uncertainties in generation and load at
various time scales. These uncertainties threaten the overall reliability of the grid and
mitigating them is quite costly, requiring additional operating reserves. Renewable
generation technologies are examples of this type. The second type provides addi-
tional control flexibility to the operators, thereby enabling operators to quickly react
to operating conditions. Electric vehicle chargers, smart renewable power invert-
ers, and storage systems, collectively referred to henceforth as active end-nodes,
are examples of this type. The synergy between these two types of technology could
enhance system reliability if they are carefully controlled by the grid; otherwise, these
technologies impose new challenges to grid operators and can impair reliability. We
now consider this synergy in more detail.

1.3 Enabling Technologies for the Control of Active
End-Nodes

Addressing the challenges posed by the integration of the disruptive load and gener-
ation technologies discussed in Sect. 1.2 requires the sophisticated control of active
end nodes, which is the focus of our work. The introduction of these controls will
morph the traditional grid into an intelligent, more reliable and economical, and less
carbon-intensive network, referred to as the “smart grid”.
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1.3.1 Pervasive Measurement and Communication

The smart grid heavily relies on the availability of pervasive measurement, commu-
nications, and computation in distribution networks to support two-way flow of infor-
mation between the grid and its customers. The possibility of receiving near real-time
information enables seamless control of active end-nodes at scale to ensure reliability
and efficiency. Hence, pervasive measurement and communication, especially in the
last mile of distribution networks, are the key enabling technologies for preventing
loss of grid reliability due to the widespread adoption of the active end-nodes. To
this end, several utilities in the United States have begun to install relatively inex-
pensive, high-precision phasor measurement units, called micro-synchrophasors, to
monitor their distribution circuits. A micro-synchrophasor device provides high-
sample-rate synchronized voltage and current magnitude and angle measurements;
these measurements can be used in various diagnostic and control applications [22].
It is anticipated that many more distribution networks will soon be equipped with
such measurement devices [31].

In addition to the synchrophasor technology, millions of smart meters have been
rolled out around the world in recent years to collect more frequent electricity con-
sumption data from customers and, in return, receive price and other signals from the
grid. The two-way communication between meters and the grid can be used to shave
demand peaks through time-of-use pricing and demand response (DR) programs.9

Pervasive communication is possible using either existing cellular networks or new
low-power wide area networks (LPWAN) [33].

1.3.2 Pervasive Control

Smart grid operators have to deal with fast-timescale dynamics that were absent
in the traditional grid. These dynamics are introduced by fluctuating supply and
demand and are observed even at low penetrations of active end-nodes. Thus, fast-
timescale control is necessary to counteract these fluctuations, averting reliability
and power quality problems. This is made possible by the deployment of pervasive
control elements, in the form of embedded processors, that can be co-located with
the element to be controlled. For example, pervasive control allows us to control EV
charging rates at a fine timescale, on the order of seconds.

Smart grid customers can receive price and control signals from the grid and will
be capable of setting and enforcing preferences and deadlines for their elastic loads.

9Note that the advanced metering infrastructure (AMI) deployed in some jurisdictions for billing
purposes operate at at time scale of 10min to an hour, and therefore are unable to support applications
that require frequent communications between the electric utility and customers, such as demand
response.
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Elastic loads are defined as a class of loads that can be controlled within
a limited range. Examples include dedicated storage, electric vehicles, and
thermostatically controlled loads (TCLs) with inherent thermal energy storage.
Depending on the jurisdiction, elastic loads might be controlled directly by
electric utilities or the customers who own these loads. In the latter case,
signals issued by the utility along with customers’ input can be incorporated
into the control process.

1.4 Need for a New Approach for Control of Active
End-Nodes

Traditionally, control has focused on generation, since loads are viewed as being
uncontrollable. Cost-effectively scheduling dispatchable generation units to meet
forecasted load and reserve requirements involves solving security-constrained unit
commitment10 and security-constrained economic dispatch optimization problems.
Unit commitment and economic dispatch are performed in day-ahead and real-time
electricity markets, respectively [34].11 Both problems incorporate a set of compli-
cated constraints, including generating unit and transmission network constraints,
and are cast as optimal power flow (OPF) problems [1]. However, these optimization
problems do not include numerous distribution network constraints; this is because
distribution networks are typically over-provisioned and unlikely to be stressed by
a specific dispatch decision. Moreover, it is quite difficult to incorporate end-node
objectives in the objective functions of these problems since theymight be competing
with the objectives of grid operators. Thus, traditional grid operation cannot be easily
extended to control solar PV inverters, EV chargers, and storage systems which are
connected to distribution networks [28], although this is necessary to ensure that
distribution network constraints are not violated.

At the same time, using ad hoc controls in the distribution network can make
the distribution control system unsustainable and insecure, potentially leading to
chaotic situations [29].Hence, newmechanisms are required to control the active end-
nodes at scale in the distribution network. These mechanisms should be developed
as extensions of the mechanisms that are already in place for balancing the grid.

10Unit commitment is a mixed integer programming (MIP) problem with many variables and
constraints. The current leading algorithm to solve this optimization problem is NP-hard [19]. The
Lagrangian relaxation of this problem can be solvedmore efficiently; however, the obtained solution
is suboptimal because of a nonzero duality gap [13, 19].
11In some jurisdictions, the predicted output of large-scale renewable generators, such as wind
and solar farms connected to the transmission network, is also considered in the real-time market.
Short-term predictions of renewable generation are relatively accurate and, therefore, incorporating
them in the real-time market could reduce the need for operating reserves.
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The following section specifies the design goals for future distribution grid control
mechanisms and describes a new approach to the control of a vast number of active
end-nodes.

1.4.1 Goals

Control mechanisms for active end-nodes should prevent line and transformer over-
loads, mitigate large voltage fluctuations, and avoid reverse flows towards primary
distribution feeders. Additionally, an admissible control must satisfy the following
design goals:

• Be legacy compatible: Given the tremendous investments that have been made in
the infrastructure of the grid, new control mechanisms should be compatible with
existing components and operation rules of the grid.

• Increase utilization: To assure high reliability, the power system is traditionally
designed and operatedwith a substantial operatingmargin.12 The smart grid should
maintain reliability while improving the utilization of generation, transmission,
and distribution assets, for example by supplying elastic loads during off-peak
periods.

• Reduce carbon footprint: Control mechanisms should support large-scale inte-
gration of low-carbon technologies into distribution networks with minimal cur-
tailment, thereby minimizing the overall carbon footprint of the grid.

• Be cost efficient: The smart grid control architecture must be cost-effective. For
example, it should improve the economics of demand-side technologies, thereby
increasing their adoption.

• Be fair: End-nodes in the smart gridmay differ in their types, technologies, and ser-
vice requirements. In such a heterogenous systemwith limited available resources,
fair power allocation is of paramount importance to avoid starvation. Control
mechanisms should provide some notion of fairness to the end-nodes such as
proportional fairness [17].

• Be scalable: Given the number of active end-nodes that will be connected to
the smart grid, the underlying control system must be scalable. This is because
computing a control decision that applies to these end-nodes is a computationally
intensive task.

• Be responsive: To ensure reliability in the face of increased variability and uncer-
tainty in the smart grid, control mechanisms should rapidly respond to contin-
gencies and operator requests. Moreover, control mechanisms should not result
in unnecessary invocation of existing protection mechanisms, which could cause
service interruption and reduce the life cycle of protection equipment.

• Be resilient: Grid control mechanisms are expected to fail gracefully and auto-
matically recover from a fault condition.

12For example, the notion of n-1 reliability requires the system to reliably withstand the failure of
any one of its elements.
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• Be non-disruptive: Control mechanisms should have an imperceptible impact on
end users’ performance, e.g., the time taken to charge an EV.

Note that a control mechanism should balance system-level objectives such as
scalability with user-level objectives such as fairness. These objectives are often
competing, and therefore, cannot be satisfied at the same time. A control mechanism
must necessarily make trade-off between these competing objectives.

1.4.2 Optimal Control in Quasi Real-Time

We now discuss the broad outlines of a control scheme that meets the criteria set out
above. To begin with, it is obvious that the control of active end-nodes in the distribu-
tion grid based on day-ahead predictions cannot reliably and efficiently deal with the
stochastic nature of renewable generation and EV mobility. This is because control
decisions that are computed based on day-ahead forecasts are very likely to be either
infeasible or suboptimal at the time of their execution because of prediction errors;
infeasible control decisions can put power system reliability at risk. Maintaining a
conservative operating margin to accommodate these prediction errors results in low
system utilization. Thus, the growing penetration of active end-nodes motivates the
need for quasi real-time control based on fast timescale measurements.

Active end-nodes in the distribution network can be controlled in near real-time
using two different approaches. The first approach relies on real-time measurements
of the distribution network state, instead of proactive power flow calculations. Given
the availability of measurement nodes in the distribution network and a reliable
broadband communication network that connects them to the end-nodes, the end-
nodes can learn of changes in the grid state (such as transformer and line loadings)
in real-time and adjust their power consumption or production accordingly, just as
the TCP endpoints in the Internet can learn of the congestion state of the network
after a small delay and back off in case of congestion without having a model of
the underlying network [2, 3]. However, due to the uncoordinated actions of the
end-nodes, it is possible for the system to transiently move into an overload state,
resulting in physical stress to grid elements such as transformers.

The second approach relies on power flowcalculations,which incorporate amodel
of the distribution network, to compute a feasible and optimal control. An optimiza-
tion problem formulated for the distribution network is solved in near real-time, using
measurements of elastic and inelastic loads as well as available renewable power.
This approach also requires the knowledge of real and reactive power consumption
at different buses, which can be obtained through real-time measurements of the
end-nodes. Chapter 4 describes this novel approach which guarantees that control is
almost always admissible unlike the first approach.

http://dx.doi.org/10.1007/978-3-319-39984-3_4
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1.5 Chapter Summary

The century-old power grid has witnessed profound changes recently due to the con-
fluence of the following factors: (1) advances in battery and renewable technologies
and the subsequent reduction in their prices, (2) introduction of high-power elas-
tic loads, such as PEVs, into distribution systems, (3) strategic decisions made by
governments to reduce reliance on fossil fuels in favor of renewable energy sources,
and (4) the availability of inexpensive sensing, communication, and control devices,
which paved theway for pervasivemeasurement and control in distribution networks.
Some of these changes may subject the grid to excessive amounts of variability and
uncertainty that threaten its reliability and reduce its efficiency under existing grid
control paradigms. This imminent threat can be addressed by harnessing the flex-
ibility offered by elastic loads. In particular, control of active end-nodes in quasi
real-time could enable operators to meet their efficiency and fairness requirements,
accommodate a higher penetration of PV generation in existing distribution systems,
and enhance service reliability by preventing network overloads, reverse flows, and
voltage deviations beyond operating limits.
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Chapter 2
Related Work

Abstract The increased adoption of active end-nodes can negatively impact the
reliable and economical generation, transmission, and distribution of power. This
chapter gives an overview of these potential impacts and surveys related work on
direct control of elastic loads to achieve both user-level and system-level objectives.
Balancing these two types of objectives is nontrivial, giving rise to the design of
various control architectures and many plausible control schemes as discussed in
this chapter.

2.1 The Impact of Active End-Nodes
on the Distribution Grid

Active end-nodes are becoming ubiquitous in distribution system [10, 11]. In view
of this, many studies have explored the potential impacts of large-scale integration
of these technologies on the electrical grid through the intensive use of steady-state
and dynamic simulations [2, 24]. Performing these impact studies for a given power
system is indeed quite complex owing to uncertainties about their point of connection
and their size, and also the degree of correlation that might exist between loads and
local renewable generation.1

Itmust be remarked that elastic loads, except for EVs, have been connected in large
numbers to distribution feeders for a long time and operators have never considered
them a threat to system reliability. With the availability of low cost communications
in recent years, elastic loads, such as air conditioners, and space and water heaters,
have been even utilized in some jurisdictions to shave the peak demand and to provide
regulation service to the grid (see for example thepeaksaver program inOntario [22]).
But unlike these loads, demands of EV chargers can be significant, and are relatively
unpredictable and highly correlated. For example, EVs can be charged at up to 80A
at 240V with AC Level 2 charging [37, 52], an instantaneous demand of 19.2kW,

1For example, the workplace EV charging load is strongly correlated with solar generation, while
the home-level EV charging load is usually correlated with wind generation.
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which is equivalent to the average demand of about ten average homes in North
America. We therefore next discuss the potential impacts of EV and PV adoption on
the distribution system.

2.1.1 Impact of EV Adoption

Studies on the impact of EV charging on distribution, transmission, and generation
systems go back to the 1980s. An early paper by Heydt in 1983 [19] anticipates that
the load increase due to the future penetration of EVs would fall within generation
planning limits; however, distribution circuits may be inadequate to accommodate
the charging of EVs; therefore, transformer overloading and voltage deviations are
expected. In this regard, load management strategies are necessary to alleviate peak
loading stresses. A similar observation is made by Rahman et al. [32]. The authors
anticipate that with future penetration of EVs, certain distribution branches may be
subject to significant overloads, even if the entire system has sufficient capacity.
This is attributed to the expected nonuniform growth of the EV charging load in a
distribution network.

The potential impacts of EV integration into the distribution network, including
increased energy losses, transformer and branch congestion, voltage deviations that
affect power quality, and phase imbalance, have been explored extensively in the
literature [8, 16, 21, 27, 30, 31]. In recent work, Fernández et al. [30] assess the
impact of uncontrolled EV charging on large-scale distribution system planning in
two different case studies. They show that the minimum reinforcement investment
required to accommodate 62% EV penetration can increase the total network costs
by up to 19% compared to a situation without EVs. Furthermore, energy losses
increase by up to 20 and 40% of actual values in off-peak hours for 35 and 62% EV
penetration respectively. The incremental investment can be reduced by 60–70% if
a smart charging strategy is adopted.

In an effort to underscore the need for coordinated charging, Qian et al. [31] ana-
lyze the impact of four different EV charging strategies on a typical UK distribution
system. In the case of uncontrolled domestic charging, where EVs start charging
nearly simultaneously, the daily peak load increases by 17.9 and 35.8% for 10 and
20% EV market penetration levels respectively. This drastic increase in the peak
load overloads several branches and transformers, emphasizing the need for control.

In a similar line of work, Lopes et al. [27] evaluate the impact of EV integration
into a typical medium voltage distribution network in terms of branch congestion
levels and voltage profiles for different charging strategies. The authors show that
the voltage lower limit is almost reached at several distant buses in the scenario with
10% EV penetration and uncoordinated charging. However, the lower voltage limit
is reached only when EV penetration reaches 52% if a smart charging strategy is
adopted. The branch congestion level, i.e., the ratio of the line loading to its rating, is
only slightly higher for the case of 52% EV penetration and smart charging than the
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case of 10%EVpenetration and uncoordinated charging, indicating the effectiveness
of a smart charging strategy in relieving congestion.

ClementNyns et al. [8] also study the impact of low tomoderate EVpenetration on
distribution system losses and voltage deviations. Their results imply that with 30%
EV penetration, uncoordinated charging leads to more than 10% voltage deviations,
whereas coordinated charging keeps voltage deviations below 10% at all times.
Moreover, for all charging periods and seasons, power losses noticeably decrease
with coordinated charging.

The impact of EV adoption on aging of distribution transformers is explored by
Gong et al. [16] and Hilshey et al. [21]. In [16], a transformer thermal model is used
to study the impact of Level 2EV charging on aging of the distribution transformers
installed at residential neighbourhoods. Monte Carlo simulation results show that
with poor coordination of charging times, the transformer insulation life is greatly
affected at relatively high EV penetration rates. Simulation results presented in [21]
indicate that coordinated charging of EVs can reduce the annual transformer aging
rate by more than 12.8 and 48.9% compared to uncoordinated charging when EV
chargers are Level 1 and Level 2 (as established in [37]), respectively.

The above studies show that uncoordinated charging of a large population of
EVs could have detrimental impacts on the existing distribution networks. Upgrad-
ing distribution circuits alone, would be quite costly for DSOs as discussed in [30].
Therefore, DSOs must incorporate a control strategy to reduce the required distri-
bution reinforcement investment. Some of these control strategies are discussed in
Sect. 2.2.

2.1.2 Impact of PV Adoption

The exponential growth of global PV cumulative installed capacity [11] has given
impetus to the study of solar integration into power distribution networks and of the
resultant architectural, technical, and operational problems, such as adverse impacts
on power quality, protection coordination, voltage profiles, and feeder and trans-
former loading [24, 49]. The potential steady-state and transient impacts of PV sys-
tems on volt/var control, power quality, and power system operation depend on the
penetration level and interconnection of PV units, and their interactions with loads
and distribution equipment, making it extremely complex to evaluate these impacts.

Several attempts have been made to quantify the extent of local and system-wide
problems associated with PV integration. In [45], it has been shown using simula-
tions of a test network with rooftop PV systems connected to secondary distribution
lines that a 30% penetration of PV systems can be accommodated without any
change to voltage control systems. Should the PV penetration increase to 50%, over-
voltage is observed in simulations; this suggests that the voltage control systems
must be adjusted or re-engineered at this penetration. Another study examines the
impacts of high penetration of residential PV systems on distribution system protec-
tion and voltage control [5]. The conclusion is that high PV penetration complicates
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the coordination of protection equipment and creates unacceptable voltage swings
(beyond pre-defined limits) on feeders. In [20], a control methodology is described
for grid-scale battery storage systems to address the negative impacts of PV inte-
gration; this methodology enables storage systems to provide voltage stability and
frequency regulation, and improves the economics of distributed solar generation.

2.2 Control of EV Chargers

The control of smart EV chargers is essential to address the potential distribution
network problems discussed in Sect. 2.1, while satisfying user-level objectives. Addi-
tionally, smart EV chargers and other elastic loads can be controlled to support higher
penetrations of distributed renewable generation, achieve a desired response to power
system dynamics, or provide system services such as frequency regulation [1, 6, 15,
17, 25, 42]. This section only surveys control mechanisms that aim to mitigate the
negative impacts of EVs on the distribution network and to optimize certain user-level
objectives; thus, it does not touch upon control mechanisms for delivering electricity
to the grid in vehicle-to-grid (V2G) applications.

The main focus of this section is on control schemes that do not put customers
in the control loop, meaning that the customers may specify charging deadlines and
preferences but cannot impede or delay the execution of control decisions that are
computed by the utility based on their input. These schemes are referred to as direct
control schemes. Unlike direct load control schemes, price-based schemes assume
some specific response from the customers to changes in the electricity price. This
assumption does not necessarily hold in practice and the demand response is neither
predictable nor immediate, rendering these schemes of limited practical value [6].
For this reason, these control schemes are not discussed in this section.

Existing work can be categorized into two based on the objectives they seek to
achieve. The first category encompasses approaches that take the perspective of the
electric utility and satisfy one or several system-level objectives, whereas the second
category encompasses approaches that take the perspective of users and satisfy one
or several user-level objectives, where users are either EV owners or charge service
providers (CSPs). These control objectives can be myopic or defined over a finite
or infinite time horizon. Furthermore, there are several possible approaches to con-
trol EV chargers. In particular, EV chargers have been controlled using a schedule
computed the prior day (known as pre-dispatch scheduling) or in near real-time.
Control decisions can be made independently by EV chargers (a fully distributed
approach), jointly by EV chargers and intermediate control nodes installed at trans-
formers (a decentralized approach), or entirely by a computer cluster at the utility
control center (a centralized approach). Finally, the control scheme may require the
precise model of the distribution network along with load and generation forecasts,
or only rely on recent measurements of certain network parameters. Thus, the exten-
sive body of literature that has been developed around the control of elastic loads
can be divided into several categories based on the following criteria:
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Table 2.1 Taxonomy of related work

Objective Pre-dispatch Real-time
Centralized Decentralized

Utility Avoid network congestion [36] [34, 35] [18, 21, 50]

Improve voltage profiles [8, 48] [4, 9]

Minimize losses [8, 36, 38] [9]

Flatten the load [14, 38] [14, 26]

Shave the peak load [29, 43] [46] [12]

Minimize the cost of generation [9]

Users Minimize charging cost [28, 33, 36, 43] [51] [23]

Minimize charging time [53] [39]

Maximize EV owners’
convenience

[50] [50]

Maximize CSP’s revenue [7]

Fair power allocation to EVs [40] [12]

• Time of control: The control algorithm can run in near real-time or several hours
in advance of power delivery.

• Information needs: The control algorithm may require the precise model of the
distribution network along with load and generation forecasts, or rely on recent
measurements of certain network parameters only.

• Decision-making approach: Control decisions can be computed in a centralized
or decentralizedmanner. The computation and communication overhead of control
greatly depends on this.

• Optimization horizon: Control objectives can be myopic or defined over a finite
or infinite time horizon.

Table2.1 shows a taxonomy of existing work on coordinated charging according to
their objectives and control approaches.

2.2.1 Pre-Dispatch Scheduling

Pre-dispatch scheduling approaches compute charging schedules for EVs by solving
an optimization problem in advance of power delivery. In some cases, this opti-
mization problem falls within the general class of optimal power flow problems
[8, 29, 36, 48]. Solving the OPF problem requires a precise model of the distribu-
tion network and inelastic loads, as well as the knowledge of the point of connection
of chargers and arrival and departure patterns of EVs. These parameters are difficult to
determine or estimate in practice. Hence, pre-dispatch scheduling approaches either
maintain a conservative operating margin to accommodate estimation uncertainties
or perform power flow calculations for numerous instantiations of random variables,
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e.g., EV arrival and departure times, their initial state of charge (SOC), and their
point of connection. The former typically results in system under-utilization and the
latter significantly increases the computation time.

For example, Mehboob et al. [29] solve a distribution optimal power flow (DOPF)
problem to determine the hourly EV charging schedule and hourly tap and capacitor
settings that minimize the system peak. This optimization problem incorporates volt-
age and feeder capacity constraints as well as EV charging constraints. They employ
a genetic algorithm based approach to solve this DOPF problem. This approach gen-
erates many feasible EV load samples and performs power flow calculations for each
set of samples to find a day-ahead most likely solution.

A DOPF problem is also formulated in [36] to control EV charging loads, taps,
and capacitor switching decisions for the next day in an unbalanced three-phase
distribution system. The authors consider various objectives and incorporate the
distribution substation capacity constraint in the nonlinear programming problem.
Specifically, they minimize the total energy drawn by the local distribution company
and its cost, the total feeder losses, and the total cost of EV charging over the period
of a day. The proposed day-ahead hourly scheduling approach is evaluated on the
IEEE 13-node test feeder and a real distribution feeder. Compared to the uncontrolled
charging case, their approach prevents undervoltage conditions and reduces the peak
demand and losses.

Several other pre-dispatch scheduling approaches simply use the optimal control
framework without relying on power flow calculations. In these cases, control might
be computed more efficiently; however, it does not necessarily respect distribution
network constraints such as voltage limits. Following is an overview of the most
relevant work in this area.

In recent work, Gan et al. [14] and Ma et al. [28] use distributed control to obtain
a day-ahead charging schedule for EVs. In [14], the EV charging control problem
is formulated as a discrete optimization problem with the objective of flattening
the aggregate demand served by a transformer. A stochastic decentralized control
algorithm is proposed to find an approximate solution to this optimization problem.
It is shown that this algorithm almost surely converges to one of the equilibrium
charging profiles. To facilitate real-time implementation of this controlled charging
scheme, the authors also propose an online version of their decentralized control
algorithm in which EVs participate in negotiation on their charging profiles as they
plug in for charging, over time. In [28], a decentralized algorithm is proposed to
find the EV charging strategy that minimizes individual charging costs. It is shown
that the optimal strategy obtained using this algorithm converges to the unique Nash
equilibrium strategy when there is an infinite population of EVs. In the case of
homogeneous EV populations, this Nash equilibrium strategy coincides with the
valley-filling maximizing strategy, i.e., the globally optimal strategy.

In [43], a deterministic optimization problem is formulated to find a fleet charging
schedule which minimizes the overall charging cost, subject to the available power,
the battery capacity, and the charging power constraints. The optimization problem
is deterministic because it is assumed that the connection and disconnection times
of EVs, their energy demands, the price of electricity, and the total wind generation
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are known a priori. The authors also compare linear and quadratic approximations of
the EV battery behavior in terms of violations of the battery boundaries (minimum
and maximum charge levels) for the obtained charging schedule.

A similar line ofwork byRotering et al. [33] explores the possibility of using plug-
in hybrid EVs for regulation and ancillary services while charging their batteries with
minimum cost. Specifically, dynamic programming is employed to find a charging
schedule that minimizes the EV charging cost based on forecasts of the electricity
price, EV driving patterns, and energy demands in three different scenarios. If the
control is incapable of supplying the energy demand, it is assumed that the lack
of charge is fulfilled by the internal combustion engine consuming gas, which is
presumably more expensive than electricity.

The relationship between the objectives that are based on load factor, load vari-
ance, and losses is investigated in [38]. The authors formulate three optimization
problems to minimize the load variance, to maximize the load factor, and finally to
minimize losses. These optimization problems are solved by a centralized approach
using day-ahead load predictions, noting that the first two problems are convex and
can be solved more efficiently compared to the third one. It is shown through sim-
ulations on practical distribution systems that solutions to these three problems are
close, motivating the use of load factor or load variance as the objective function
rather than losses. In any case, for practical systems the performance of the algo-
rithm that minimizes the load variance is quite similar to the one that minimizes
losses.

2.2.2 Near Real-Time Control

The near real-time computation of charging schedules improves utilization and relia-
bility of the power system compared to the pre-dispatch computation of the schedules
by continuously adapting the charging rate of EV chargers to the available capacity
of the network. Hence, smart EV chargers use higher rates when the distribution
network has sufficient capacity, reducing these rates once the network becomes con-
gested. The real-time charging schedule could be computed using either a centralized
or a decentralized/distributed approach. The following surveys related work in each
category.

2.2.2.1 Centralized Approaches

Coordinated charging of EVs at parking facilities with a maximum total available
amount of power is the focus of [7, 40, 51, 53]. In [53], the problemoffinding a sched-
ule in a charging station with stochastic EV arrivals, variable electricity prices, and
intermittent renewable generation is modelled as a constrained stochastic optimiza-
tion problem which can be studied using the Markov decision process framework.
The objective is to minimize the mean waiting time of EVs. In [51], the scheduling
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problem of EV charging with stochastic arrivals and renewable generation is formu-
lated as an infinite-horizon Markov decision process. The objective is to maximize a
social welfare function that takes into account the total utility of customers, the elec-
tricity cost associated with the charging schedule, and the penalty for failing to meet
the deadlines. In [7], it is assumed that there is a CSP that uses collocated renewable
sources and supplements the renewable with the energy purchased from the grid. The
authors formulate an online scheduling problem with the objective of maximizing
the operating profit of the CSP while meeting the charging deadlines. This optimiza-
tion problem is a mixed integer program. A subset of EVs are selected for charging
through an admission control process and admission decisions are made based on
EV arrivals, output of renewable sources, and the electricity price. The scheduler can
further optimize on the time and quantity of the energy purchased from the grid.

In an effort to provide a notion of fairness, an optimization problem is formulated
in [40] that maximizes a weighted average of the state of charge of parked EVs in the
next time step, subject to the amount of energy available from theutility, themaximum
energy that can be absorbed by EVs, and the ramp rate of EV batteries. Each weight
term incorporated in the objective function is a function of the energy price, and
the remaining charging time and the present SOC of the corresponding EV. The
authors use four computational intelligence-based algorithms, namely the estimation
of distribution algorithm, the particle swarm algorithm, the genetic algorithm, and
the interior point method, to solve this optimization problem and compare their
performance.

A DR strategy is proposed in [34, 35] to avoid transformer and feeder overloads
by controlling non-critical and controllable loads, including EVs. This strategy deter-
mines household demand limits using a simple algorithm which protects the distrib-
ution network from congestion, and issues the obtained limits to in-home controllers.
Subsequently, every in-home controller determines which appliances should be on
based on the priorities and preferences set by users in advance. The effect of the
proposed DR on consumers comfort is quantified using comfort indices introduced
in [35]. Nevertheless, the proposed DR strategy does not guarantee congestion pre-
vention because appliances might be turned on to satisfy users’ preferences even
when the transformer is congested.

Deilami et al. [9] propose a real-time smart load management algorithm to coor-
dinate EV chargers; this algorithm minimizes the total cost of generation and antici-
pated losses, while respecting user preferences. To solve this problem, their approach
is to use the maximum sensitivities selection method, which selects EVs for charg-
ing from a queue sorted based on the sensitivity of the loss function to EV charging
loads. A load flow analysis is performed in each time step to evaluate the objective
function and ensure that system constraints, including voltage limits and the avail-
able generation capacity, are not violated. Nevertheless, this approach does not deal
with the distribution network problems, such as line and transformer congestion, and
does not provide fairness.
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A two-stage controller based on a model predictive control (MPC) formulation
is designed in [4] to regulate charging of a time-varying number of EVs and con-
trol a fixed number of distributed generation inverters under the assumption that the
load is periodic with period length of 24h. Using approximate power flow equations
for radial distribution networks, the proposed controller charges EV batteries to a
desired SOCwhile tracking an optimal reachable reference voltage at every bus. The
proposed scheme handles plug-and-play charging requests (as EVs join or leave the
system) by updating reference voltages to ensure stability and reliability under the
new dynamics. This plug-and-play operation comes at the price of delaying charging
of EVs that have arrived recently until bus voltages converge to the updated refer-
ence values. Note that this control scheme does not address branch and transformer
congestion problems in the distribution network.

Turitsyn et al. [46] aim at maximizing the utilization of the excess distribution
circuit capacity while keeping the probability of a circuit overload negligible by con-
trolling EV chargers. Using one-way broadcast communication, the authors regulate
EV charging start times by computing a single EV connection rate and sending it
periodically to the chargers. This rate determines, on average, howmany EV chargers
can start charging per unit time.

In summary, most existing work on real-time centralized control of EV charg-
ers suffers from a scalability problem since computing the charging schedule for a
vast number of connected EVs is computationally expensive in a centralized fash-
ion. Moreover, centralized control schemes may require communication of sensitive
information, such as EV departure times, to a central controller. The central con-
troller is also a single point of failure in the distribution network. These issues can be
addressed by distributing control among the EV chargers and possibly other control
nodes as suggested in [44]. Real-time decentralized control schemes are reviewed
next.

2.2.2.2 Decentralized Approaches

This section describes decentralized and fully distributed control schemes that run
in near real-time. These schemes are scalable, robust, and use real-time information
instead of long-term predictions. However, they suffers from three major shortcom-
ings. First, they do not use a realistic model of the distribution network, which
includes all branches and transformers and their operational constraints. Second,
they do not evaluate the proposed solution using power flow analysis when it is
not originally found using power flow calculations. Instead, many of them focus on
flattening the demand of the entire distribution network, ignoring bus voltages and
loading of distribution lines and transformers. Third, they do not balance efficiency
and fairness of the control algorithm. In fact, fairness is not a design goal of most of
these approaches. These schemes are discussed in the following.
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Wen et al. [50] propose a novel approach to the EV charging control problem,
where a subset of EVs are selected for charging in every time slot such that user
convenience is maximized and branch flow constraints are met. This selection prob-
lem is posed as a combinatorial optimization problem, whose convex relaxation can
be solved in a control center using linear programming. An efficient decentralized
algorithm is then proposed based on the alternating direction method of multipli-
ers to determine the set of EVs that must be charged in a given time slot. Using
numerical simulations for different EV penetration levels, the proposed centralized
and decentralized approaches are compared in terms of performance, computational
complexity, and communication overhead. The authors study the effects of the con-
trol timescale and the rounding method, which maps continuous selection variables
into 0 and 1, on the performance of the decentralized algorithm. Nevertheless, this
paper only addresses branch congestion and ignores other operational constraints of
the distribution network, does not use power flow analysis to validate that computed
charging schedules are feasible, and finally does not attempt to allocate power to
connected EVs based on a well-established notion of fairness.

Fan [12] borrows the notion of congestion pricing from the Internet to reduce the
peak load while providing weighted proportional fairness to end users. Exploiting
two-way communications between the utility and users, congestion prices are sent to
users, enabling them to adapt their demands to the capacity of the market in a fully
distributed fashion. The user preference is modelled as a willingness-to-pay para-
meter, i.e., the weight factor in the utility function of users. The proposed algorithm
is then applied to EV charging to obtain a charging rate allocation. Interestingly, the
total EV charging load varies with the range from which the weight factors can be
chosen. Thus, the utility has to limit this range to ensure that the total load is not
greater than the market capacity. Convergence behavior of the algorithm is studied
using both an analytical approach and a simulation-based approach. Note that this
work does not model the distribution network and does not incorporate the capacity
constraints of distribution lines and transformers and the charge rate constraints of
EV chargers.

In [39], several additive-increase multiplicative-decrease (AIMD) based algo-
rithms are used for distributed control of a set of EV chargers that share a single
constrained resource. The EV chargers independently increase their demands by an
additive factor until the shared resource becomes congested; following this event, they
reduce their demands by a multiplicative factor to relieve congestion. The authors
study the problem from the user perspective rather than the utility perspective; they
consider various scenarios and user-level objectives, and propose an AIMD-like con-
gestion control algorithm for each scenario. Moreover, this work does not investigate
the potential distribution network problems and is not based on the theory of net-
work utility maximization (NUM); it instead relies on an arbitrary choice of AIMD
parameters.

In [18] a control mechanism is designed to deal with transformer overloading by
modelling the transformer thermal limit as a constraint. Specifically, the authors for-
mulate the EV charging problem as an open-loop centralized control problem with
the objective of minimizing the SOC deviations from 100% and also minimizing
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the control effort subject to the capacity constraint of batteries and EV chargers, the
temperature constraint of the substation transformer, and the target SOC specified
by EV owners. Using the dual decomposition method, an iterative price-coordinated
implementation of this control mechanism is proposed which allows EV owners
to compute their charging rate locally. A receding-horizon feedback mechanism is
employed to account for unexpected disturbances, including fluctuations in inelastic
demands, changes in the number of connected EVs, changes in the ambient tempera-
ture, and modelling errors. Note that this work deals with the substation transformer
overloading problem and cannot prevent distribution line overloads. Furthermore, it
does not use power flow analysis to validate the operation of the proposed algorithm
in a test distribution network.

Li et al. [26] aimat flattening the load at the distribution network level by extending
the “max-weight algorithm” to the EV charging control problem. Control rules solve
an optimization problem thatminimizes theL2normof the aggregate load. It is shown
that, in the long term, the solution to this optimization problemcan bemade arbitrarily
close to the solution of the optimization problem that minimizes the variance of the
aggregate load. The former problem can be solved in real-time. Using numerical
simulations of the IEEE 37-bus and 123-bus test feeders, the performance of the
algorithm is compared with static charging algorithms that use perfect knowledge
and imperfect forecast of the base load for different penetration levels. Note that
the authors do not attempt to address the distribution network problems due to the
simultaneous charging of EVs and their objective is merely to flatten the load.

Jin et al. [23] propose an EV charging scheduling algorithm to minimize the
energy bill of users, and, at the same time, flatten the aggregated load imposed on
the power grid. The authors employ a grouping algorithm and a sliding window
iterative scheduling algorithm. The grouping algorithm reduces the computation
and communication overhead of the scheduling algorithm. It runs at a centralized
coordinator, which is called the information center, and classifies the EV population
into several groups based on a similarity metric defined in terms of the start and
end charging times, the energy requirement of an EV, and the maximum charge rate
of its charger. Once EV groups are formed, the information center computes and
broadcasts the charging characteristic of every group. The charging schedule is then
computed using a sliding window iterative scheduling algorithm. Specifically, EVs
belonging to each group solve an optimization problem to minimize the group bill
and compute their charging schedule locally in a specific slot of every cycle, while
charging schedules of other groups remain unchanged. When the charging rates
of EVs within a group are determined, they send their updated charging profiles
to the information center. The information center broadcasts real-time price/load
information at the beginning of each slot of each cycle to coordinate EV chargers.
When the algorithm converges, the obtained charging schedule also optimizes the
total generation cost. This work does not take fairness into account, does not address
distribution network problems due to the simultaneous charging of EVs, and does
not validate the results through power flow analysis of a test distribution system.

Hilshey et al. [21] propose two automaton-based strategies for coordinating EV
charging to limit the power supplied by transformers and decelerate their aging.
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Their approach is to compare the transformer aging status against four thresholds to
determine whether the number of EVs being charged should be increased, decreased,
or held constant in the next time period. Once the number of active chargers is
determined, one of the proposed decentralized automaton-based strategies is used
for admission control. The first strategy is a first-come first-served strategy in which
every EV sends a charge request to the transformer. If the request is denied due to
congestion, it is queued and processed again in the next time slot. The second strategy
is probabilistic; it allows chargers to specify urgency by agreeing to pay a higher rate.
If charging is not urgent and the request is denied, the charge request is sent to the
transformer in the next time slot with a probability p. If charging is urgent and the
request is denied, a request is sent to the transformer in every future time slot until
it is admitted. Note that both control strategies do not provide fairness, and are only
applicable to a single transformer supplying fixed-rate EV chargers. Moreover, the
aging thresholds are chosen in an ad hoc manner.

2.3 Control of Renewable Inverters

Control will not be limited to elastic loads in the smart grid. Smart inverters, which
are capable of injecting and consuming reactive power and curtailment of real power,
can also be controlled by the utility to address growing concerns over widespread
adoption of PV systems, and also achieve several system-level objectives. The opti-
mal control of PV inverters has received increased attention in recent years. For
example, Farivar et al. [13] propose the fast timescale control of the reactive power
injection of PV inverters to minimize line and inverter losses as well as the energy
consumption through voltage optimization. This problem is formulated as an OPF
for a radial distribution system and the optimal voltage regulation operation is eval-
uated on a distribution feeder on the Southern California Edison system. Similarly,
the authors of [3] propose a real-time distributed control of the reactive power output
of smart inverters to minimize feeder head real power consumption. They utilize a
model-free control algorithm that relies on periodic measurements of the feeder head
real power broadcast by the substation.

An OPF problem is formulated in [41] to determine an PV inverter control strat-
egy that improves voltagemagnitude and balance profiles, whileminimizing network
losses, inverter losses, and solar generation curtailment. This multi-objective opti-
mization problem is solved using a sequential quadratic programming approach. The
performance of this control strategy is evaluated through power flow analysis in a
real unbalanced three-phase low-voltage distribution system inAustralia. In a similar
line of work, Turitsyn et al. [47] find the optimal dispatch of the inverter’s reactive
power to minimize line losses and maintain the voltage within an acceptable range
in a radial distribution system. None of these control schemes takes advantage of
elastic loads to minimize the curtailment of solar power.
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2.4 Joint Control of Elastic Loads and Renewable
Energy Systems

The impact studies presented in Sect. 2.1 suggest that PV systems and elastic loads
might have opposite impacts on distribution circuits. Specifically, the uncontrolled
charging of a large population of EVs can result in undervoltage and equipment
overloading, whereas the uncontrolled operation of a large number of solar inverters
can cause overvoltage and reverse power flow toward the distribution substation.
Thus, it is reasonable to extend the optimal control framework to jointly control
smart inverters and elastic loads. This control scheme enables the grid to safely
accommodate higher penetrations of renewable generation and elastic loads, while
enhancing the overall reliability and cost-effectiveness of the power system. Despite
the significance of such a control scheme in future distribution systems, the synergy
between inverter-based renewable energy systems and elastic loads has not been
exploited in the literature to stabilize voltage, relieve congestion, prevent reverse
flows, and minimize curtailment in a distribution system with a high concentration
of renewable generation. Chapter 4 expands on this idea.

2.5 Chapter Summary

Large-scale integration of elastic loads and renewable energy systems can negatively
impact reliable and economical generation, transmission, and distribution of power if
these end-nodes are not controlled properly. This has given impetus to the design of
mechanisms to control elastic loads and renewable inverters. However, most related
work focuses on controlling elastic loads, very littlework focuses on controlling smart
inverters, and practically no work explores the joint control of these technologies.
The extensive body of literature that has been developed around the control of elastic
loads can be divided into several categories based on the following criteria:

• Time of control: The control algorithm can run in near real-time or several hours
in advance of power delivery.

• Information needs: The control algorithm may require the precise model of the
distribution network along with load and generation forecasts, or rely on recent
measurements of certain network parameters only.

• Decision-making approach: Control decisions can be computed in a centralized
or decentralizedmanner. The computation and communication overhead of control
greatly depends on this.

• Optimization horizon: Control objectives can be myopic or defined over a finite
or infinite time horizon.

A control scheme that fully meets the design goals specified in Chap.1 must be
decentralized and based on real-time measurements. This scheme should enhance
power system reliability and efficiency, reduce its carbon emissions, satisfy user-level

http://dx.doi.org/10.1007/978-3-319-39984-3_4
http://dx.doi.org/10.1007/978-3-319-39984-3_1
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objectives, and mitigate adverse impacts of large-scale adoption of solar PV systems
and EVs, including large voltage fluctuations, network congestion, reverse flow, and
violation of voltage limits. None of the control schemes surveyed in this chapter can
satisfy all of these objectives while meeting the design goals specified in the previous
chapter.
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Chapter 3
System Model

Abstract This chapter presents models and operating constraints for inelastic loads,
PV systems, EV chargers, and dedicated storage systems connected to distribution
feeders, along with a linear branch flow model for power flow analysis in radial
distribution systems. These models can be used to formulate a control problem for
active end-nodes. A plausible fairness criterion is also introduced in this chapter.

3.1 Power Distribution System

The power distribution system comprises a large number of lines, transformers,
and other devices that are essential for reliable delivery of electricity to customers
in urban and rural areas [12]. A radial distribution system1 typically has a single
source of supply, i.e., the distribution substation, delivering power to residential
and commercial loads through feeders radiating from the substation and laterals
(or secondary distribution lines) branching from these feeders at certain points,
known as buses. Figure3.1 depicts the one-line diagram2 of a three-phase distri-
bution network interfacing with the transmission network and power stations at the
substation. The voltage is initially reduced by the substation transformer and later
by pad-mount and pole-top transformers, which feed a small number of customers
in a neighbourhood, to the nominal supply voltage.

A radial distribution system has a logical tree topology. The substation is the root
of this tree, and electrical loads, such as homes and businesses, are its leaves. Radial
systems have been designed with the assumption that real power flows always in
the same direction, from the substation to loads. Reverse power flow can negatively
affect the operation of voltage regulators and protective devices [15], and is therefore
not allowed in the distribution system beyond balancing zone.

1Most distribution systems are radial. Even in some cases where the network topology is a mesh,
switches are often operated in a way that power flows only on a radial sub-graph of the network.
2A one-line diagram represents all phase conductors between two buses by a single line.
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Fig. 3.1 A schematic diagram of a radial distribution network that emanates from a distribution
substation and consists of a number of balancing zones, one of which is illustrated here. Rooftop
PV panels, storage systems, and EV chargers are connected to secondary distribution lines, similar
to residential and commercial buildings

A balancing zone is defined as a subtree in which reverse flow does not cause
any problem for voltage regulators, circuit breakers, and other distribution
equipment. Thus, loads can be supplied by any distributed generation resource
within the same balancing zone even if this results in reverse flow in some
part of the zone. In most distribution systems today, a balancing zone is rooted
at a distribution transformer and encompasses the low-voltage residential dis-
tribution network fed from a distribution transformer and the loads that are
connected to it, as shown in Fig. 3.1. However, in some jurisdictions that have
invested in grid modernization, such as in many parts of Germany, power flow
is permitted in both directions in the entire distribution network, and therefore,
nearly the entire network, including the substation, is contained in a single
balancing zone.

3.1.1 Network Model

Consider a tree graph G = {B,L} that represents the topology of a radial system,
comprising a set B of buses3 and a set L of primary distribution lines that connect
these buses. Let BZ ⊂ B be the set of buses at the root of each balancing zone, Bi

be the set of buses located downstream of bus i, excluding bus i itself, and Li be the
set of lines located on the unique path from the substation to bus i.

To simplify the model, the radial system is studied on a per-phase basis, ignor-
ing the dependency between phases. Additionally, homes, businesses, and other

3We consider a load bus, laterals radiating from it, and service transformers as a single unit. Thus,
downstream loads are aggregated at the load bus as discussed in Sect. 3.2.5.
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end-nodes connected to laterals aremodelled as single-phase constant complexpower
loads, i.e., their power consumption is voltage-independent.

A time-slotted model with time slots of equal length τ (typically of the order of
several seconds) is used to study the dynamics of the system. The set of time slots is
denoted T and it is assumed that the network configuration, the demand of inelastic
loads, the solar power generated by each panel, the storage output, and the number
of plugged-in EVs and their charge power do not change during a time slot. This
assumption is necessary to study a dynamical system as a sequence of time slots. To
simplify the conversion between energy and power units, Watt-τ is used as the unit
of energy transmitted, produced, or consumed. For instance, if an EV is charged at
the constant rate of 1Watt in a 1minute time slot, it consumes 1W-min of energy.

Consider the distribution system in a time slot t. For a bus i ∈ B, the bus voltage
magnitude measured on a per unit basis is denoted vi(t) and the aggregated real and
reactive power consumed at this bus are denoted pi(t) and qi(t), respectively.4 Let
bus 0 be the substation (source) bus and v0 be its voltage, which is assumed to be
known. The substation bus voltage is used as the base voltage value in the per-unit
system; hence, v0 is equal to 1 p.u. here. The impedance of a line connecting bus i
to bus j is denoted zij = rij + jxij, where j is the imaginary unit, and rij and xij are the
line resistance and reactance, respectively. Furthermore, the sending-end apparent
power flow from bus i to bus j is denoted Sij(t) = Pij(t) + jQij(t), where Pij(t) and
Qij(t) are the sending-end real and reactive power flowing between these two buses.
Hence, we have Pij(t) = −Pji(t), Qij(t) = −Qji(t), and Sij(t) = −Sji(t).

3.1.2 Operating Constraints

Equipment LoadingResistive heating limits the capability of lines and transformers
to transmit power. Hence, every line or transformer in a distribution network has a
nameplate rating that represents its load carrying capability without overheating.5

Equipment loading must not exceed its nameplate rating over an extended period of
time [8].

An electric utility can specify a control setpoint, i.e., a desired loading level, for
each line or transformer below its nameplate rating to reduce the risk of equipment
overloading by the control system. The aggregate equipment loading, i.e., the sum of
elastic and inelastic demands that it supplies, should converge to this setpoint with
only a limited number of excursions above the nameplate rating. A conservative
utility can ensure a very low congestion level by choosing an appropriately low
setpoint. Thus, the setpoints permit the utility to balance utilization and reliability in
a distribution network.

4Note that pi and qi are zero if no load is attached to bus i.
5Line ratings are usually expressed in terms of ampacity, whereas transformer ratings are expressed
in terms of apparent power.
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Let ξij be the setpoint associated with a line connecting bus i to j or a transformer
installed between bus i and j. It is assumed that the setpoints are expressed in Watts
for distribution lines and transformers because the electric utility can easily translate
line and transformer ratings, which are expressed in Amperes and Volt-amperes,
respectively, into the setpoints using a conservative estimate of the power factor and
the operating voltage at corresponding nodes. Thus, the following constraint can be
written for distribution lines and transformers,6 including the substation transformer
which is located between bus 0 and the next bus:

Pij(t) ≤ ξij ∀ (i, j) ∈ L, t ∈ T (3.1)

Voltage Limits The distribution system code requires the actual service voltage to
be maintained within a tolerance band, typically ±5% of the nominal voltage [13].
To ensure that the service voltage stays within these strict bounds, electric utilities
indirectly control voltage on the primary circuit, taking into account the expected
voltage drop along feeders. This involves the control of transformer load tap changers
(LTCs), voltage regulators, and switched capacitor banks. The constraint on the bus
voltage can be written as:

v2min ≤ vi(t)
2 ≤ v2max ∀ i ∈ B, t ∈ T (3.2)

where vmin and vmax are the lower and the upper voltage limits that are set to 0.95 p.u.
and 1.05 p.u., respectively. Note that this constraint is written in a quadratic form to
emphasize that it is linear in vi(t)2, which appears in (3.15).

FlowDirectionReversal of real power flow can negatively impact protection coordi-
nation and operation of voltage regulators as distribution circuits are designed with
the assumption that the direction of power flow is from the substation to loads at
all times. For example, reverse flow conditions can cause network protectors, which
are installed at distribution transformers, to open unnecessarily and create problems
when they reclose [5]. To avoid these problems, many utilities strictly forbid reverse
flows outside a balancing zone, meaning that real power cannot be injected to the
network at a load bus that represents the root of a balancing zone. This constraint
can be written as:

pi(t) ≥ 0 ∀ i ∈ BZ , t ∈ T (3.3)

6We are abusing notation here by referring to the real power supplied by the substation transformer
or a service transformer as Pij , which also denotes the real power flow at the sending end of a line.
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3.2 End-Node Models and Constraints

This section presents time-slottedmodels and operating constraints of inelastic loads,
solar inverters, battery storage systems, and EV chargers connected to distribution
feeders. These models describe their operation and their state evolution.

3.2.1 Inelastic Loads

Inelastic (residential and commercial) loads are connected to the lateral feeders
branching from the buses. The real power and reactive power consumed by an inelas-
tic load i in time slot t are denoted pli(t) and qli(t), respectively, and the set of all
inelastic loads connected to the distribution network is denoted I. The demand of
inelastic loads must be met at all times, unlike the power consumption of elastic
loads that can be controlled by the utility within some bounds.

3.2.2 Solar Photovoltaic Systems

Consider a rooftop PV system that is connected via a smart inverter to the electrical
service panel of a building. This small-scale PV system is single phase and does not
need an interconnection transformer. The smart inverter converts the DC output of
the system to AC at nominal supply voltage and frequency and provides a wide range
of capabilities. These capabilities include injecting or absorbing reactive power and
on-demand curtailment of real power7 [10].

The inverter model adopted here is similar to the models described in [6, 14]
and assumes that real and reactive power outputs of an inverter can be controlled
independently and simultaneously. Note that inverter losses are ignored here. Let
J denote the set of PV systems in the distribution network, and psi (t), s

s
i , p

s
i (t), and

qsi (t) denote the available solar power, the inverter’s rated apparent power capacity,
the real power output, and the reactive power output of the PV system i in a time slot
t, respectively. Given that the rated apparent power capacity of the inverter is known
and the available solar power is measured in this time slot, the following constraints
can be written for real and reactive power contributions for this PV system:

0 ≤ psi (t) ≤ psi (t) ∀ i ∈ J , t ∈ T (3.4)

psi (t)
2 + qsi (t)

2 ≤ ssi
2 ∀ i ∈ J , t ∈ T (3.5)

7Modern inverters can synthesize reactive power just as they produce real power. Despite the fact
that the current IEEE 1547 standard for integration of distributed energy resources requires inverters
to operate at unity power factor, the use of inverters to assist with voltage regulation is currently an
active area of research as they can be controlled on a faster timescale compared to load tap changers
and switched capacitors. This possibility is indicated in the proposed IEEE 1547.8 standard.
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Note that a negative value of qsi (t) means that the inverter is consuming reactive
power, while a positive value means that it is injecting reactive power in that time
slot. Also note that the second constraint defines a convex set although it is a nonlinear
constraint.

3.2.3 Battery Storage Systems

Battery storage systems are connected via an interface for AC/DC conversion and
a battery management system (BMS) to the electrical service panel of residential
and commercial buildings and distribution feeders. The BMS monitors the battery
SOC, communicates with external devices, and ensures that charge and discharge
operations are within limits of its safe operating area. It is assumed that the storage
system can immediately adopt any feasible charge or discharge power desired by the
controller.

Our battery model, which is similar to one used in [9], assumes that the battery
is only capable of absorbing or injecting real power (not reactive power). Let S be
the set of battery storage systems in the distribution network and pbi (t) be the real
power injection of the battery storage system i in time slot t. A negative value of
pbi (t) indicates that the battery is charging in this time slot (acting as a load) and
a positive value indicates that it is discharging (acting as a generator). A feasible
pbi (t) is required to be between the effective maximum charge and discharge powers,
denoted pb

i
(t) and pbi (t):

− pb
i
(t) ≤ pbi (t) ≤ pbi (t) ∀ i ∈ S, t ∈ T (3.6)

In this model, the effective maximum charge and discharge powers of the bat-
tery depend on its SOC (a number in [0 1] interval), and the maximum charge and
discharge powers supported by the BMS, denoted αc

i and αd
i . The following two

constraints prevent storage from overflowing or underflowing:

pb
i
(t) = min{αc

i , (ci − ci(t)) × bi
ηc
i

}
pbi (t) = min{αd

i , (ci(t) − ci) × bi × ηd
i }

where bi is the energy capacity of the battery, ηc
i and ηd

i are its charge and discharge
efficiencies (≤ 1), and ci(t), ci, and ci are its current, minimum, and maximum states
of charge (∈ [0 1]), respectively. Hence, the energy content of the battery in time slot
t is ci(t) × bi.
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The state of charge evolution of the battery can be written as:

ci(t) =
⎧
⎨

⎩

ci(t − 1) − ηc
i × pbi (t−1)

bi
if − pb

i
(t − 1) ≤ pbi (t − 1) ≤ 0

ci(t − 1) − pbi (t−1)
ηd
i ×bi

if 0 < pbi (t − 1) ≤ pbi (t − 1)

3.2.4 Electric Vehicle Chargers

Smart EV chargers connect to the electric circuit of residential and commercial
buildings. It is assumed that chargers only consume real power and EV batteries
cannot be discharged to offer system services as in the V2G case; the energy stored
in the EV battery is solely used by the motor to drive the vehicle. This is the main
difference between EVs and dedicated storage systems; the other difference being
that EVs can drive away, unlike stationary storage systems.

A smart charger is called activewhen an EV is plugged in and ready to be charged.
An active smart charger can provide any feasible charge power desired by the oper-
ator. The charge power is assumed to be independent of the SOC of the connected
EV.8 Let E be the set of EV chargers connected to the distribution network. The
charging load of an EV i is characterized by its maximum and minimum demands
in a given time slot t, which are denoted pei (t) and pe

i
(t) and are defined as:

pei (t) = min{βi, ei(t)}
pe
i
(t) = min{pei (t),

ei(t)

di
}

where ei(t) is the amount of energy required to fill the battery,9 βi is the maximum
charge power supported by the charger, and di is the charging deadline of the EV
expressed in number of time slots. Hence, a feasible charging rate for this time slot,
denoted pei (t), must be between the maximum and minimum demands:

pe
i
(t) ≤ pei (t) ≤ pei (t) ∀ i ∈ E, t ∈ T (3.7)

In this work the minimum demand of a charger, pe
i
, is set to zero10 since the proposed

charging scheme is best-effort and does not guarantee to fulfill the charging demand
before the deadline (it might be infeasible to meet the deadline).

8This is a simplification. In fact, when the SOC is high, charge power must be limited to prevent
overvoltage.
9A charger i sets ei(t) to zero if it is inactive at the beginning of time slot t. Hence, pe

i
(t) = pei (t) = 0

in that time slot.
10This is similar to the case that di = ∞ for every charger i.
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Finally, the amount of energy required to fill the battery evolves according to the
following equation:

ei(t) = ei(t − 1) − γc
i × pei (t − 1)

where γc
i is the charge efficiency of the battery.

3.2.5 Load Aggregation at Buses

Given the models of loads and active end-nodes, it is straightforward to derive the
total real and reactive power consumed at each bus. LetAl,Ae,As, andAb encode the
point of connection of inelastic loads, EV chargers, PV systems, and battery storage
systems. For example, Al

ij is 1, if an inelastic load indexed by i is connected under a
load bus j, and is 0 otherwise. The other matrices are defined in a similar way. Thus,
the total real and reactive power consumed at bus j in time slot t can be obtained as
follows:

pj(t) =
∑

i:Al
ij=1

pli(t) +
∑

i:Ae
ij=1

pei (t) −
∑

i:As
ij=1

psi (t) −
∑

i:Ab
ij=1

pbi (t) (3.8)

qj(t) =
∑

i:Al
ij=1

qli(t) −
∑

i:As
ij=1

qsi (t) − qcj (t) ∀ j ∈ B, t ∈ T (3.9)

where qcj (t) represents the total reactive power provided by shunt capacitors con-
nected to bus j in time slot t. Hence, qcj is zero when no shunt capacitor is connected
to a bus. Note that battery storage systems and EV chargers are assumed to operate
at unity power factor.

3.3 Power Flow Model

Power flow in a balanced radial distribution system can be approximated with single-
phase recursive branch flow equations, known as DistFlow equations [2–4]. This
specific formulation leads to efficient solution methods for computing bus voltages
and branch flows, given the real and reactive power drawn from or injected to every
load bus. This section presents theDistFlowmodel and a linearized power flowmodel
based on an approximation that ignores power losses.
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The DistFlow model can be described with the following equations:

Pij(t) = pj(t) +
∑

k �=i:(j,k)∈L
Pjk(t) + rij

Pij(t)2 + Qij(t)2

vi(t)2
(3.10)

Qij(t) = qj(t) +
∑

k �=i:(j,k)∈L
Qjk(t) + xij

Pij(t)2 + Qij(t)2

vi(t)2
(3.11)

vj(t)
2 = vi(t)

2 − 2(rij(t)Pij(t) + xij(t)Qij(t)) + (r2ij + x2ij)
Pij(t)2 + Qij(t)2

vi(t)2
(3.12)

where Pij(t)2+Qij(t)2

vi(t)2
is the square of the current magnitude that is being carried by the

line connecting bus i to bus j, meaning that the quadratic terms in the above equations
represent line losses. Note that anOPF problem that incorporates theDistFlowmodel
is not convex and, therefore, finding its solution(s) will be of exponential complexity
in the number of nodes.

Since losses are typically quite smaller than the real and reactive power flow
components, an approximation that ignores the higher order loss terms introduces
only a small error on the order of 1%. This approximate power flowmodel is referred
to as the simplified DistFlow. This model was originally proposed in [4] and has been
used several times to formulate convex optimal control problems for distribution
networks, see for example [1, 7, 14]. The simplified DistFlow equations can be
written as follows after unfolding the recursions:

Pij(t) =
∑

k∈Bi

pk(t) ∀ (i, j) ∈ L, t ∈ T (3.13)

Qij(t) =
∑

k∈Bi

qk(t) ∀ (i, j) ∈ L, t ∈ T (3.14)

vj(t)
2 = vi(t)

2 − 2(rijPij(t) + xijQij(t)) ∀ j ∈ B, t ∈ T

= v20 − 2

( ∑

k∈B
pk(t)

∑

(m,n)∈Lj
⋂Lk

rmn +
∑

k∈B
qk(t)

∑

(m,n)∈Lj
⋂Lk

xmn

)

(3.15)

where Bi is the set of buses downstream of bus i and Lj
⋂

Lk is the set of lines that
supply both bus j and bus k. Observe that these equations are linear in the squared
voltage magnitudes, and real and reactive power flows. Also remark that the linear
branch flow equations (3.13)–(3.15) make it possible to enforce capacity and voltage
limits in optimal control problems without losing computational tractability.
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3.4 Fairness and Resource Allocation

It is crucial for an allocation policy to ensure that users are treated fairly and no user
is starved of service in a system with constrained resources that are shared by many
users. Fairness can be defined in different ways depending on the context. This has
motivated the development of an optimization framework to unify various fairness
criteria for systems with single or multiple types of resources.

The idea is to attribute a utility, i.e., a measure of satisfaction, to every user,
assuming that users are greedy (in terms of the resources they want) and their utility
increases with the amount of resources allocated to them in an interval that spans
over one or several time slots. A proportionally fair allocation is an allocation that
maximizes a global objective function defined as the sum of the logarithm of the
utility function of all users [11].

A fair allocation is a socially optimal allocation, i.e., an allocation that max-
imizes a utilitarian criterion which is a function of the utilities of individuals
and can be defined in many different ways. There are several well-established
axiomatically justified notions of fairness, such as max-min fairness, propor-
tional fairness, minimum potential delay fairness, and the more general notion
of utility proportional fairness; these notions of fairness differ in the choice
of the global objective function. This work adopts the notion of proportional
fairness since it is the only one that provides a scale invariant Pareto optimal
solution, which is consistent with axioms of fairness in game theory [16].

In Chap.4, the notion of fair resource allocation is extended to power distribution
systems with a certain population of controlled loads, such as EV chargers. The
goal is to allocate the total available real power to EV chargers in a fair and efficient
manner. A utility is attributed to each EVowner, which is defined as the instantaneous
charge power of their EV.

3.5 Chapter Summary

In this chapter, simplified time-slotted models are presented for conventional loads
and the active end-nodes, and an approximate linear branch flowmodel is introduced
for radial distribution systems. These branch flow equations can be incorporated
in the formulation of convex optimal control problems, as discussed in the next
chapter. Finally, the notion of proportionally fairness is described in the context of
the allocation of real power to EV chargers in the distribution system.

http://dx.doi.org/10.1007/978-3-319-39984-3_4
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Chapter 4
Optimal Control of Active End-Nodes

Abstract This chapter studies a radial distribution system, which is divided into a
number of balancing zones, and proposes a decentralized scheme for the joint control
of EV chargers, PV inverters, and storage systems that are under the exclusive control
of the utility. The proposed open-loop control scheme exploits the synergy between
EV chargers and PV inverters to cancel out their effects on distribution circuits,
and relies on a sophisticated distribution system model and near real-time measure-
ments of the end-nodes to simultaneously achieve the utility-defined objectives. Our
decentralized control scheme is compared to two conservative, fully distributed con-
trol schemes that enable customers to control the active end-nodes installed in their
premises without the benefit of coordination from the utility.

4.1 The Synergy Between EV Chargers and PV Inverters

Many utilities have begun to experience the impacts of a high concentration of PV
systems and an increasing number of EV chargers on their distribution circuits.
As discussed in Chap. 2, overvoltage and undervoltage conditions, transformer and
feeder overloads, and reverse power flow are more likely to happen in these distri-
bution networks. Reverse flow, which occurs when solar generation exceeds feeder
loading, could cause protection coordination problems and overuse of voltage regu-
lators and switched capacitors, shortening their expected life cycle [1].

To mitigate these problems, utilities can limit PV and EV charger installations in
size and number; but this comes at the price of a significant reduction in the efficiency
of the grid and theflexibility that it offers to its customers.Amore promising approach
would be to exploit the synergy between EV chargers, storage systems, and PV
inverters to reliably accommodate a higher penetration of these active end-nodes
in existing distribution systems. For example, the charge power of EV chargers
and storage systems located in a balancing zone can be controlled to absorb solar
generation locally when it peaks. Similarly, real and reactive power outputs of PV
inverters can be adjusted tomatch demands of EV chargerswithin the same balancing
zone. This enhances reliability, enables charging a larger population of EVs, reduces

© The Author(s) 2016
O. Ardakanian et al., Integration of Renewable Generation and Elastic Loads
into Distribution Grids, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-39984-3_4
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Fig. 4.1 A schematic diagram of a small business with a rooftop PV system, a battery storage
system, a PEV, and other inelastic loads that are connected to the mains via an electrical service
panel. The smart inverter, the smart EV charger, and the battery management system communicate
with the upstream controller(s) over a broadband communication network, depicted by dashed lines

wasteful and expensive solar generation curtailment and overall carbon emissions,
and most importantly eliminates the trade-off between reliability and efficiency.

Consider a radial distribution system that supplies homes and small businesses
constituting a number of balancing zones. The active end-nodes, including solar
inverters, storage systems, and EV chargers, are assumed to be installed at small busi-
nesses1 and EVs are assumed to be parked and connected at these small businesses
during business hours. Hence, the chargers are likely to be active during the daywhen
solar energy can be harnessed. The active end-nodes connect to the electrical service
panel of the building and communicate with an upstream controller, which will be
discussed in Sect. 4.2, over a proprietary network as illustrated in Fig. 4.1. Assuming
that the utility is granted remote control andmonitoring of active end-nodes2 and pays
for solar generation even if it is curtailed, we design an optimal control scheme for
EV chargers, PV inverters, and storage systems to simultaneously achieve multiple
utility-defined objectives,subject to the network and end-node constraints described

1A business does not necessarily install all three technologies.
2Customers may relinquish control of active end-nodes in exchange for a fixed reduced electricity
price. In this case, any control signal issued by the utility is assured of an immediate cooperative
response.
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in Sects. 3.1.2 and 3.2. This scheme enables sharing of solar generation and stored
energy within each balancing zone.

The utility has four kinds of control knobs in the last mile of the distribution
network, namely the charge power of EV chargers, pe(t), the real and reactive power
outputs of inverters, ps(t) and qs(t), and the real power contribution of storage sys-
tems, pb(t). The optimal control is found by solving a sequence of two optimization
problems for every time slot in a decentralized fashion (at the level of the substa-
tion and the level of balancing zones), where the length of each time slot is 1min
during which the number of active end-nodes and household and business demands
are assumed to be constant. The proposed control is myopic as the objective func-
tions depend only on the charge power of EV chargers, real and reactive outputs of
inverters, and storage operations in the current time slot, ignoring their future and
past dynamics. The myopic approach is reasonable given that EVs are unpredictable
and can drive off at any time.

4.2 Control Objectives

The utility must meet the demand of homes and businesses at all times. Additionally,
it seeks to operate active end-nodes so as to maximize its revenue, assuming that it
has full control over EV chargers, PV inverters, and battery management systems.
The utility is also required to implement government mandates, such as expanding
renewable energy generation and cutting emissions. This leads to a multi-objective
optimization problem that can be solved to obtain the optimal control.

These objectives are conflicting, so any controller design will need to make a
trade-off between the objectives. Our approach is to put the objectives into a total
ordering, as described next. Note that a different ordering would result in a different
control system. The control objectives thatwe consider are listed below in descending
order of importance to the utility: (1) maximize the utility’s revenue by maximizing
the total power delivered to elastic loads from different sources and, in particular,
by allocating the available power to connected EVs in a fair manner, (2) minimize
the curtailment of solar power, (3) minimize the use of conventional power from the
grid, thereby reducing carbon emissions. The following sections discuss these control
objectives and argue that this particular ordering is both reasonable and necessary.
Section4.3 then formulates a series of two optimization problems to achieve these
objectives in the order specified above.

Note that we did not take into account other plausible objectives such as minimiz-
ing energy losses, minimizing the peak-to-average ratio, or minimizing the amount
of storage needed in the system. These objectives would form a fruitful avenue for
future work.

http://dx.doi.org/10.1007/978-3-319-39984-3_3
http://dx.doi.org/10.1007/978-3-319-39984-3_3
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4.2.1 Objective 1—Maximizing Revenue Through Fair Power
Allocation to EV Chargers

Webelieve that the primary objective of the electric utilitywill always be tomaximize
its revenue.3 Assuming that the revenue is a strictlymonotone function of the supplied
power, maximizing the revenue is the same as maximizing the total supplied power.
Since the demand of inelastic loads must be met at all times, a revenue-maximizing
strategy is the one that maximizes the total real power allocated to elastic loads in
every time slot.4

There are possibly many feasible revenue-maximizing power allocations in every
time slot, since real power can be distributed among active chargers in different ways,
all having the same total use of real power. We prefer the allocation that is fair to
the connected EVs. As discussed in Sect. 3.4, it can be assumed that EV owners are
greedy and want to finish charging their EVs as soon as possible; therefore, at time t,
the utility attributed to the EV owner i is equal to the charge power currently adopted
by its charger, pei (t).

A global optimization problem is formulated tomaximize the sumof the logarithm
of the utility function for EV owners. This choice of the objective function guarantees
that real power is allocated in a proportionally fair manner among active EV charg-
ers. Note that the logarithm of the utility function of each user, i.e., log(pei (t)), is an
infinitely differentiable, increasing, and strictly concave function in its domain, and
therefore, the global objective function is also concave. Also note that the proportion-
ally fair allocation is indeed a revenue-maximizing allocation. This is an appealing
property of proportional fairness in that it utilizes all available resources.

4.2.2 Objective 2—Minimizing Solar Curtailment

Curtailing solar generation is a forfeiture of inexpensive green energy. This moti-
vates our choice of minimizing the curtailment of distributed solar generation, which
is equivalent to maximizing the use of solar power, as the secondary objective of
the electric utility. Even when solar generation exceeds the aggregate demand of
a balancing zone the excess energy can be used to charge storage systems within
the same balancing zone. Nevertheless, curtailment cannot be avoided at all times;
excess solar generation must be curtailed when it cannot be stored or exported due to
the constraints presented in Chap.3. Smart inverters are capable of curtailing solar
generation in these occasions.

3Recall that it is assumed that the utility pays for solar generation even if it is curtailed. Thus, its
revenue only depends on the amount of energy delivered to the customers.
4We do not take into account the energy that can be charged into storage systems when defining
the revenue-maximizing control strategy for a time slot. This is because this energy is not actually
consumed and will be used at some point to supply loads (with some losses). Hence, the utility does
not increase its revenue in the long run by storing energy in the distribution network.

http://dx.doi.org/10.1007/978-3-319-39984-3_3
http://dx.doi.org/10.1007/978-3-319-39984-3_3
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Note that there are, in general, many possible ways, i.e., many combinations of
conventional, solar, and stored powers, to deliver the computed maximum supplied
power. This objective forces the selection of the one that uses as much solar power
as available. Hence, it is not redundant given the revenue maximization objective.

4.2.3 Objective 3—Minimizing the Use of Conventional
Power

Displacing conventional power supplied by the substation with solar power produced
instantaneously by rooftop PV systems or stored in battery storage systems in previ-
ous time slots reduces the overall cost and carbon emissions of electricity generation
as well as transmission losses. Hence, the utility would strive to minimize the use
of conventional power to improve the power system efficiency, reduce transmission
losses, and comply with external mandates. The use of conventional power is there-
fore restricted to when household and business demands cannot be met entirely by
PV and storage systems.

Note that this objective is not redundant given the first two objectives because
conventional power can be displaced with discharged power from storage systems
without having any impact on the first two objectives.

4.3 Optimal Control

This section describes a series of two optimization problems that generate the optimal
control in every time slot, and discusses how the second problem can be decomposed
into a number of decoupled problems. A decentralized control scheme that solves
these optimization problems at two different levels is proposed in the next section.

4.3.1 Optimization Problems

A multi-step optimization is required to satisfy the three objectives specified in
Sect. 4.2 without using an arbitrary scalarization, i.e., a weighted sum of the objec-
tives. In particular, reducing the use of conventional power is in conflict with the
revenue-maximization objective because it can reduce the total supplied power;
therefore, a two-step optimization is inevitable. These two optimization problems
are discussed next.
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4.3.1.1 Revenue-Maximizing Fair Allocation with Minimum Solar
Curtailment

The first optimization problem aims at minimizing the solar curtailment and maxi-
mizing the revenue,while being fair to the active chargers. Since thefirst twoobjective
functions of Sect. 4.2 are not conflicting, it is possible to optimize them at the same
timewithout introducingweight terms. Specifically, increasing the use of solar power
does not negatively impact the optimal power allocation to EV chargers. Hence, the
optimizer of the sum of these two objectives is the solution to any weighted sum of
these two objectives.5

Assuming that the impedance of the main feeders, real and reactive power con-
sumption of homes and businesses, the setpoint of feeders and transformers, the
available solar power at the point of connection of PV systems, and the set of active
end-nodes and their parameters are known in the beginning of every time slot, Prob-
lem 1 can be posed as a nonlinear optimization problem, where the control variables
are pe(t),pb(t),ps(t),qs(t).

(4.1)

Problem 1 is subject to the linearized power flow equations, the real and reactive
power injection equations for buses, the distribution systems constraints, and the
end-node constraints. Note that this nonlinear optimization problem is convex as it
maximizes a concave function which is the sum of two concave functions, one linear
and one nonlinear, subject to affine equality constraints and linear and quadratic
inequality constraints6 that define a convex set. Therefore, it has a unique solution.
The unique proportionally fair power allocation to EV chargers in time slot t is
represented by p̃e(t), and the optimal real and reactive power contributions of PV
inverters are represented by p̃s(t) and q̃s(t), respectively. Here the upright boldface
letters represent vectors.

5Nevertheless, algorithmically weight terms are important because they influence how fast the
optimal solution is found.
6The quadratic constraints pertain to the apparent power capacity of solar inverters.
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4.3.1.2 Minimizing the Use of Conventional Power

Given p̃e(t), p̃s(t), and q̃s(t), the second optimization problem, called Problem 2,
aims at minimizing the power supplied by the grid in a time slot, which can be
written as:

Pgrid(t) =
∑

i∈I
pli(t) +

∑

i∈E
p̃ei (t) −

∑

i∈J
p̃si (t) −

∑

i∈S
pbi (t)

Since the three first terms in the right hand side of this equation are fixed, maximizing
the total power discharged from storage systems minimizes the use of conventional
power supplied by the grid. Given real and reactive power consumption of homes
and businesses, the setpoints of feeders and transformers, the solution to the first
optimization problem, the available solar power at the point of connection of PVs in
each time slot, the set of active end-nodes, and their parameters, Problem 2 is posed
to determine the optimal control of storage systems. This problem includes only the
end-node constraints that pertain to storage systems (Constraints 4.3 and 4.4) as the
operations of other active end-nodes have been determined already.

As a practical matter, all storage systems located in the same balancing zone
must be either charging or discharging in a given time slot; otherwise, control may
discharge one storage system and use the energy stored in that system to charge
another storage system in the same zone. This would be neutral in terms of the
objective function but would affect the amount of energy that can be discharged
from the storage systems in the future time slots. Particularly, energy transfer between
storage systems that arewithin the same zone results inwaste of energy due to storage
charge and discharge inefficiencies. To rule out such controls, all storage systems
located in the same zone are forced to either charge or discharge in each time slot,
thereby maximizing the system efficiency implicitly.

(4.2)

(4.3)

(4.4)
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Let us denote the set of storage systems that must be charged and the set of storage
systems that must be discharged by SC and SD, respectively, which are defined as:

SC =
{

i ∈ S|Ab
ij = 1, j ∈ BC

}

(4.5)

SD =
{

i ∈ S|Ab
ij = 1, j ∈ BD

}

(4.6)

whereBC andBD are balancing zones inwhich every storage systemmust be charged
and discharged, respectively. These two sets are defined as:

BC =
{

j ∈ BZ |
∑

i:As
ij=1

p̃si (t) >
∑

i:Al
ij=1

pli(t) +
∑

i:Ae
ij=1

p̃ei (t)

}

(4.7)

BD =
{

j ∈ BZ |
∑

i:As
ij=1

p̃si (t) ≤
∑

i:Al
ij=1

pli(t) +
∑

i:Ae
ij=1

p̃ei (t)

}

(4.8)

Problem 2 can have multiple solutions, each minimizing the use of conventional
power. An optimal control for storage systems in time slot t is denoted p̃b(t).

Observe that Problem2 is separable because no constraint couples storage systems
that belong to two different balancing zones.7 Thus, this problem can be decom-
posed into smaller subproblems of the forms (4.9) and (4.10) for “charging” and
“discharging” balancing zones, respectively. These subproblems are LP. Solving
each of these subproblems can be delegated to a controller installed at the edge of
the corresponding balancing zone as discussed in the next section.

(4.9)

7Line and transformer capacity constraints that are outside balancing zones can be ignored in
Problem 2. This is because storage systems are not charged from the grid due to the third objective
and their optimal control, i.e., the solution of Problem 2, does not overload any line or transformer
if the capacity constraints are ignored because Problem 1 had a feasible solution.
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(4.10)

4.4 Multi-Tier Control Architecture

An electric utility may control thousands of PV panels, storage systems, and EV
chargers. Critical to the control scheme are the measurements that are used as input
to the optimization problems. Getting these measurements requires a measurement
infrastructure that can be combined with the control infrastructure. This calls for
the design of an overall architecture that enables scalable, robust, timely, and secure
data transfer between measurement and control nodes. To this end, a multi-tier con-
trol architecture that consists of a centralized substation controller that coordinates
control with a set of controllers corresponding to balancing zones is adopted here.

A reliable communication network connects the substation controller to the
balancing zone controllers and to measurement devices installed at all homes and
businesses. These devicesmeasure residential and commercial demands and the para-
meters of the active end-nodes, and send them periodically (once every time slot of
length 1min) to their upstream controller as illustrated in Fig. 4.2. Specifically, each
balancing zone controller receives near real-time measurements (i.e., with a delay
much smaller than 1 second) of the real and reactive power consumption of inelastic
loads, the maximum demand of active EV chargers, the available real power at PV
systems, and the maximum feasible charge and discharge powers of storage sys-
tems from downstream active end-nodes. The controllers treat these measurements
as estimates of the corresponding values in the next time slot.

Decentralized Algorithm Control actions are computed jointly by the substation
controller and balancing zone controllers as follows:

Step 1: active end-nodes communicate their latest measurements to the substation
controller via their zone controller

Step 2: the substation controller runs Algorithm 1.
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Fig. 4.2 A schematic of the
multi-tier control
architecture showcasing the
substation controller and two
balancing zones with their
controller and measurement
devices installed at the
end-nodes. Communication
links between measurement
nodes and upstream
controllers are depicted by
dashed arrows

Step 3: every balancing zone controller runs Algorithm 2 upon receiving control
decisions from the substation controller.

Step 4: every active end-node carries out the optimal control received from its
upstream zone controller in the beginning of the next time slot.

Algorithm 1: Algorithm run by the substation controller
Data: ξij , vmin, vmax, BZ , zij , ss

while true do
Receive recent measurements of pl,ql,ps,pe,pb,pb from end-nodes;

Estimate pl,ql,ps,pe,pb,pb for the next time slot;
Solve Problem 1 for the next time slot;
Send p̃e, p̃s, q̃s to downstream controllers of BZ ;
Wait until the next clock tick;

end

4.5 Benchmarks

To compare the performance of the decentralized control scheme with schemes that
are already used in the field, two fully distributed control schemes (one that utilizes
local storage and one that does not) are used as benchmarks. These controllers run
at individual businesses to control the operation of active end-nodesthat are installed
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Algorithm 2: Algorithm run by a zone controller
Data: ξij , vmin, vmax, zij , ss

while true do
Receive recent measurements of pl,ql,pb,pb from end-nodes;
Receive computed p̃e, p̃s, q̃s from substation controller;
Estimate pl,ql,pb,pb for the next time slot;

if zone ∈ BC then
Solve Problem 2-1 for the next time slot;

else
Solve Problem 2-2 for the next time slot;

end
Send p̃e, p̃s, q̃s, p̃b to downstream end-nodes;
Wait until the next clock tick;

end

there (i.e., local resources), using local measurements only. Both schemes aim to
limit the output of solar inverters to meeting the local demand; thus, they curtail
solar generationwhen it exceeds the aggregate local demand and do not allow sharing
within the balancing zones. These schemes cannot control the reactive power output
of inverters or adjust the charge power of EV chargers because they are not aware of
the distribution network model and also cannot observe voltage and power flow at
upstream buses. Thus, voltage and congestion problems are still possible due to the
operation of EV chargers. Nevertheless, these schemes serve as benchmarks for the
proposed control scheme as discussed in the next chapter.

In some jurisdictions, less conservative schemes can be used to control the output
of inverters. These schemes permit the export of excess solar generation to the grid
as long as the voltage level at inverters’ point of connection stays within some bound.
These control schemes are not used as our benchmarks since calculating the voltage
at the point of connection of inverters requires the knowledge of the impedance of
secondary distribution lines, which was not available to us as academic researchers.

4.5.1 Without Local Storage

Thefirst schemeassumes that small businesses donot havededicated storage systems,
and therefore, solar generation must be curtailed when it exceeds the aggregate local
demand, which is the sum of the demand of the small business and the maximum
demand of the EV charger installed at the small business. Each controller aims at (1)
charging the EV at the maximum rate, and (2) minimizing solar curtailment from
the local PV system, subject to the constraint that there is no export of real power to
the grid. Thus, the controller implements the following rules in the given order:
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pei (t) = pei (t) (4.11)

psi (t) = min{psi (t), pli(t) + pei (t)} (4.12)

To simplify the presentation, it is assumed here that all end-nodes indexed by i are
connected to the small business i.

4.5.2 With Local Storage

The second scheme assumes that storage systems are installed at some small busi-
nesses and can be charged using solar power generated by the local PV system.
However, excess solar production cannot be shared with other loads, even in the
same balancing zone. Each controller aims at (1) charging the EV at the maximum
rate, (2) minimizing curtailment of solar power produced by the local PV system, and
(3) minimizing the use of conventional power from the grid, subject to the constraint
that there is no export of real power to the grid. Thus, the controller implements the
following rules in the given order:

pei (t) = pei (t) (4.13)

psi (t) = min{psi (t), pli(t) + pei (t) + pb
i
(t)} (4.14)

pbi (t) = min{pbi (t), pli(t) + pei (t) − psi (t)} (4.15)

As before, all end-nodes indexed by i are connected to the small business i.
In the next chapter, we evaluate the performance of our control scheme, comparing

it with these two benchmarks.

4.6 Chapter Summary

Many utilities in Europe and North America are experiencing the effects of high
penetration of distributed PV systems and EVs on their radial distribution systems.
Future distribution systems are anticipated to accommodate even higher penetrations
of these technologies, threatening service reliability, impairing power quality, and
reducing the efficiency of these systems under existing planning and operation para-
digms. The synergy between EV chargers and PV inverters can be used to cancel out
their effects on distribution feeders and simultaneously achieve the objectives defined
by the utilities. An optimal control framework is proposed from which a decentral-
ized scheme is derived to control EV chargers, PV inverters, and storage systems that
are connected to low-voltage distribution networks. The proposed control is myopic,
relies on end-node measurements, and requires a model of the distribution network.
It enables power sharing within the balancing zones and is designed to address
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potential voltage, reverse flow, and congestion problems in distribution systems. The
next chapter evaluates the efficiency and feasibility of the proposed control through
power flow analysis.

Reference

1. Katiraei F, Sun C, Enayati B (2015) No inverter left behind: Protection, controls, and testing for
high penetrations of PV inverters on distribution systems. IEEE Power EnergyMag 13(2):43–49



Chapter 5
Evaluation

Abstract This chapter introduces an extensible, platform independent, smart grid
simulation framework that combines discrete event and power flow simulation build-
ing blocks with AMPL, an optimization environment allowing the use of many com-
mercial solvers. Extensive simulations are then performed using this framework to
confirm that the proposed control scheme satisfies the operating constraints of the
distribution system, and compare its efficiency with the two benchmark schemes
presented in the previous chapter.

5.1 Simulation Framework

Evaluating the mechanisms devised for the control of a vast number of active end-
nodes connected to low-voltage distribution feeders requires a simulation framework
that supports

(a) creating large-scale simulation scenarios, each corresponding to a particular
realization of several stochastic processes,

(b) jointly simulating the models developed for different aspects of the grid and
the communication between measurement devices, active end-nodes, and con-
trollers, considering its latency,

(c) solving various optimization problems formulated for the grid, and
(d) performing (multi-phase) power flow analysis.

Several commercial and open source software packages have been developed to
perform each of these functions; however, no existing software fully supports the
features required for running a large-scale smart grid simulation [5]. It is also not
straightforward to piece together off-the-shelf simulators since they are not nec-
essarily built for the same platform or have compatible input and output formats.
Moreover, it is necessary to update the parameters of the power system simulator
based on optimal control decisions computed by an external optimizer. This calls
for the design of an extensible, platform independent simulation framework that
couples the existing simulators and numerical computing environments, facilitates
the exchange of intermediate results between these packages, and provides a unified

© The Author(s) 2016
O. Ardakanian et al., Integration of Renewable Generation and Elastic Loads
into Distribution Grids, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-39984-3_5
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API for defining various simulation scenarios. This section presents such a simulation
framework. This framework was originally developed to validate the decentralized
control scheme proposed in Chap.4; however, it can be used to assess other schemes
aiming to optimize and control distribution grids.

5.1.1 Architecture

Figure5.1 depicts the simulation framework developed in this work, which com-
bines a simulation tool for power distribution systems, called OpenDSS [7], with
AMPL® [2], a powerful optimization environment. The simulation engine, devel-
oped in MATLAB® [10], coordinates the execution of these two software systems
and provides a simple API which enables the users to load a test distribution net-
work, upload or generate synthetic EV mobility and renewable energy traces, create
models for loads and active end-nodes, define a control scheme, run discrete-time
simulations, and collect performance results.

Figure5.2 shows data and control flow between different parts of this simulation
framework. An arrow depicts data/control flow, and a box represents a MATLAB

Fig. 5.1 Architecture of the simulation framework

Fig. 5.2 Data and control flows between components of the simulation framework

http://dx.doi.org/10.1007/978-3-319-39984-3_4
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function, a simple script that initiates some operation in AMPL or OpenDSS, or a
data file stored on the disk. The arrows are numbered according to their execution
order and those that must be executed in every simulation time slot are labeled with a
number followed by ‘t’. Note that this architecture allows OpenDSS, AMPL solvers,
and the simulation engine to run on different platforms communicating over TCP
sockets.

5.1.2 Interactions Between Software Components

Consider a simulation run that involves solving a sequence of optimization prob-
lems in every time slot to determine the optimal control of a certain population of
active end-nodes connected to a power distribution system. TheMATLAB simulator
builds the network model, describing the topology of the distribution system and
points of connection of loads and active end-nodes, and can generate load, solar irra-
diance, and EV mobility traces based on some stochastic models. Once the models
are loaded and traces are generated, the simulator creates the network.dss file
which contains an OpenDSS-compilable network model, and several data files of the
form problemX-t.dat, each containing AMPL parameters for an optimization
problem, X, in a time slot, t.

In the next step, AMPL is called to load the optimization problems from
problemX.mod files and assign values to the optimization parameters using data
provided in problemX-t.dat. An AMPL-interfaced solver is then invoked to
solve an optimization problem in a given time slot and append the optimal solution
to the data file pertaining to the next optimization problem of this time slot, if there
is any.

Once the optimization problems are solved for a time slot, the obtained solutions
are used to update the data files corresponding to the next time slot. Finally, the
MATLAB simulator updates the network.dss file with the optimal solutions, i.e.,
the control decisions, and calls the compile script in OpenDSS. The power flow
simulator then compiles the distribution network model defined in network.dss,
runs the power flow simulation for every time slot, and stores bus voltages and branch
flows in pf.out. The simulation engine is notified when power flow simulations
end to corroborate the feasibility of the control decisions and perform other post-
processing steps. This concludes the simulation run.

5.1.3 Programming Interface

The following functions have been implemented in MATLAB to run a simulation
scenario and analyze the results:
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Load Traces Read data files from the disk. These files include load profiles for res-
idential and commercial customers, and randomly generated solar and EV mobility
traces. Note that these traces can either be generated by the simulator using some
models or come from existing data sets.

DefineTest SystemBuild the distribution networkmodel and createnetwork.dss
which will be compiled by OpenDSS.

Create AMPL Input Files Create AMPL data files, each describing parameters of
an optimization problem.

SolveOptimizationProblems Invoke the solver suitable for solving the optimization
problem in a given time slot.

UpdateVariables Fetch optimal control decisions found byAMPL, update variables
in the MATLAB environment, and modify the network.dss file.

Run Power Flow Call OpenDSS to preform power flow calculations for every time
slot and write back the complex bus voltages and branch flows.

AnalyzeResultsExamine voltage profiles and branchflows andwrite the final results
to the disk.

The Bash scripts defined in the AMPL environment are as follows:

Solve Load the optimization problem model from problemX.mod, initialize its
parameters by reading the data provided in problemX-t.dat, configure the
selected solver, solve the optimization problem, and store the optimal solution.

Update Data Files Append the solution to the data file corresponding to the next
time slot.

Finally, the OpenDSS COM interface provides these methods:

Compile Compile the distribution network model described in network.dss.

Solve Run power flow analysis to compute bus voltages and power flows given real
and reactive power injected or consumed at each bus.

5.2 Simulation Scenarios

This section describes simulation scenarios that are used in the rest of this chapter.
A scenario describes the number of inelastic loads and active end-nodes that are
connected to each bus of a given distribution network. To obtain concrete simulation
results, it is necessary to make numerous assumptions about the distribution system.
We have tried our best to be as realistic as possible in the choice of these simulation
parameters, recognizing that the results may change if these parameters are modified.
Nevertheless, conclusions and insights gained from these simulations are relatively
insensitive to the actual parameter choices.
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The results of extensive simulations are presented in Sect. 5.3. For every penetra-
tion level of active end-nodes, 7 simulations are performed using traces obtained for
7 days in the summer (i.e., one simulation per day), and the average and the standard
deviation of the parameters of interest are computed across these runs. The length of
each time slot is set to 1min in all simulations.

5.2.1 Test Distribution System

The proposed control scheme is evaluated on a variant of the IEEE 13-bus test
feeder [9], which is a three-phase unbalanced radial distribution system supplied
by a 5MVA substation transformer stepping down the voltage from 115 to 4.16kV.
This radial system is modified as explained below. Recall that the proposed control
scheme relies on amodel that considers loads and active end-nodes connected to each
phase separately, ignoring the coupling between phases. However, to understand how
far this approach can be pushed, we evaluate it in Sect. 5.3 in a three-phase system
through power flow simulations that take into account the coupling between phases.

Figure5.3 shows primary distribution feeders and buses that comprise this radial
system. A load bus represents a transformer connection where a distribution trans-
former supplies a low-voltage distribution network and downstream household and
business loads. It is assumed that each low-voltage distribution network consti-
tutes a balancing zone, depicted by dashed boxes in Fig. 5.3. Hence, distribution

Fig. 5.3 The one-line diagram of our radial test system, where slashes across each line indicate
the number of phases. Balancing zones are depicted by dashed boxes connected to selected load
buses. A low-voltage distribution network within a balancing zone is connected to each load bus. A
communication network that forms a logical tree (dotted lines) over the distribution system connects
the substation controller to balancing zone controllers, depicted by circles, and also to end-nodes
(not represented here)
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transformers are installed at the edge of balancing zones. This implies that real power
cannot be injected into the network at load buses (but reverse flowswithin the balanc-
ing zones may be permitted, depending on the nature of the control scheme). Due to
the lack of a realistic model for low-voltage distribution networks, it is assumed that
demands of end-nodes within a balancing zone are aggregated at the corresponding
load bus. Nevertheless, this approach can be extended to study the entire distribution
grid if the low-voltage distribution network model is available.

In these scenarios the switch between buses 671 and 692 is closed, and shunt
capacitors connected to buses 675 and 611 are switched on at all times. It is assumed
that loads are single-phase connected between a phase and neutral. The single-phase
power flow model discussed in Sect. 3.3 is incorporated into the optimization prob-
lems; hence, the coupling between phases is ignored in the computation of optimal
controls (though not in the simulations). To simplify the model of the test system that
is used in these optimization problems, the following assumptions are made: (a) the
voltage magnitude at bus 650 is fixed at 4.16kV, (b) the substation voltage regulator
tap setting is fixed and known, and (c) the 500kVA three-phase transformer between
buses 633 and 634 is replaced with three 167kVA single-phase transformers. Note
that power flow simulations are performed on the standard test system without mak-
ing these simplifying assumptions. The setpoint associated with a line is 90% of its
ampacity at 50 ◦C and the setpoint associated with a transformer is 90% of its rated
capacity. Following current practices, bus voltage magnitudes are required to stay
within ±5% of the nominal distribution voltage.

We adopt a plausible layout of loads at the distribution level, which can be viewed
as educated guesses. Table5.1 specifies how inelastic loads, including homes and
businesses, are connected to the test system, noting that the figures provided in this
table are per phase and node, and EV chargers, PV inverters, and storage systems are
installed only at small businesses. We considered scenarios with 100, 200, 300, 400,
and 500PV systems and the same number of storage systems which are distributed
in the distribution system according to Table5.1.

A communication network connects the measurement devices installed at house-
holds and businesses with active end-nodes to the controller of the corresponding
balancing zone, and also balancing zone controllers to the substation controller as
depicted in Fig. 5.3.

5.2.2 Load Profiles

The test distribution network supplies a total of 3300 households and small businesses
connected to selected buses as described in Table5.1. It is assumed that demands
of households and small businesses are approximately the same so we treat them
interchangeably. To evaluate the decentralized control algorithm and examine its
impacts on fast timescale dynamics of the grid, high-frequency electricity demand
data of a large number of households are required. However, this data set is not
publicly available owing to regulations that prevent utilities from sharing fine-grained

http://dx.doi.org/10.1007/978-3-319-39984-3_3
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current measurements from individual premises. Therefore, synthetic load profiles
are used for the purpose of simulation. In particular, the load profiles are generated
using the Markov models developed in [3] for household electricity consumption
during on-peak, mid-peak, and off-peak periods. These models are derived from
fine-grained measurements of electricity consumption in 20 Ontario homes over
four months. A 1-min time resolution is chosen for synthesizing the load profiles to
match the time resolution of our solar traces.

Using identical Markov models to generate the load profile of all homes and
businesses results in a relatively smooth substation load during on-peak, mid-peak,
and off-peak periods. However, the load abruptly changes at period boundaries. To
avoid these abrupt transitions, we modulate the mean power consumption levels
of our reference Markov models in every time slot such that the aggregate load at
the substation resembles the Ontario demand in the first seven days of July 2014,
which is shown in Fig. 5.4. Specifically, a correction factor is computed for every
time slot by comparing the sum of all load profiles with the Ontario demand. The
consumption level of all loads in every time slot is then multiplied by the correction
factor computed for that time slot. This eliminates the abrupt changes.

The reactive power consumption of every home or business is assumed to be
30% of its real power consumption in every time slot. This corresponds to a power
factor of about 0.95 at the loads, which is typical for residential loads. Power flow
calculations indicate that the peak demand of inelastic loads at the substation is 4.50
and 4.23MWwith and without losses, respectively. Thus, distribution losses amount
to approximately 6% of the demand. It also shows that the substation transformer is
not congested over the simulation interval, in the absence of the active end-nodes.

Fig. 5.4 The Ontario
demand (5-min resolution) in
the first week of July 2014
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Fig. 5.5 Solar irradiance
data from a measurement site
in Southern Great Plains

5.2.3 Solar Traces

Lacking high resolution solar data from Ontario, we obtained one-minute solar irra-
diance data for the week of July 1–July 7, 2003 from the Southern Great Plains
atmospheric radiation measurement site in north-central Oklahoma [12], as shown
in Fig. 5.5. This data set is used as a reference to generate solar traces for the installed
panels. Specifically, the reference is scaled up such that the peak available power of
a single PV installation is uniformly distributed in the range 4–5kW, which is rea-
sonable for a rooftop solar system, while the rated apparent power capacity of PV
inverters is set to 5kVA. Simulations are carried out for 100, 200, 300, 400, and 500
panels which are distributed in the network as described in Table5.1.

5.2.4 Storage

Storage systems are assumed to be installed at every small business with a PV instal-
lation so that the excess solar generation can be stored locally. Hence, the number
of storage systems is always equal to the number of PV systems in every simulation
scenario. Table5.1 describes the distribution of storage systems in the test system.
Themaximum charge and discharge powers of storage systems are set to 10kW, their
capacity is set to 5kWh, and their charge and discharge efficiencies are assumed to
be 95%. At the beginning of every simulation, the SOC of all storage systems is
assumed to be zero.

5.2.5 EV Model

Table5.1 describes how 200 Level 2 EV chargers are connected to load buses. It is
assumed that EV chargers are only installed at businesses (and not at homes) that
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also have PV installations and storage systems.1 Amaximum of one EV is connected
to each charger at a time, a Level 2 charger imposes a maximum load of 7.2kW on
the distribution network, the capacity of an EV battery is 24kWh (i.e., the capacity
of a Nissan Leaf [11]), its charge efficiency is 95%, and the SOC of all EVs is 0.5
upon arrival. Hence, the initial energy demand of every EV is 12kWh.

It is assumed that EVs arrive and connect to the chargers (located at businesses)
every day starting from 8am, following a Poisson distribution with parameter µ =
200
90 = 2.2 arrivals per minute. Poisson arrivals have also been used by other work in
the literature [4]. It is also assumed that EVs disconnect from the chargers 8h after
their arrival. Thus, the number of active chargers varies over time starting from 0 at
8am, rising to the full number by approximately 9:30am and starting to decline at
4pm, reducing to 0 by approximately 5:30pm.

5.3 Results

To examine the effects of uncontrolled EV charging and solar generation, power flow
simulations are performed on the modified IEEE 13-bus test system in Sect. 5.3.1
and Sect. 5.3.2, respectively. Distribution network problems that arise in these cases
motivate the design of a scheme that jointly controls EV chargers, PV inverters, and
storage systems to achieve the utility-defined objectives,while addressing these prob-
lems. Section5.3.3 validates the feasibility of the proposed control through power
flow analysis, and quantifies the benefits of sharing and using storage within a bal-
ancing zone by comparing the efficiency of the decentralized control scheme with
the two benchmarks defined in the previous chapter.

The integrated simulation framework presented in Sect. 5.1 is used to perform sim-
ulations for the specific scenarios that are described earlier. It is worth noting that all
simulations are preformed on a dedicated optimization server with a 12-core proces-
sor and 500GB of memory, and CPLEX® andMINOS solvers are employed to solve
the linear and nonlinear convex optimization problems described in Sect. 4.3. The
OpenDSS simulator is configured to automatically control tap settings in power flow
simulations to limit voltage fluctuations, as would be the case in normal operation,
unless otherwise stated.

5.3.1 The Effect of Uncontrolled EV Charging

Wefirst consider the casewhere only 200EVchargers (and no PVor storage systems)
are installed at small businesses, as described in Table5.1. Hence, the distribution

1The only exception is the scenario inwhich there are 100PVpanels and 100 storage systems; hence,
PV panels are fewer than EV chargers. In this scenario, the other 100EV chargers are installed at
randomly selected businesses.

http://dx.doi.org/10.1007/978-3-319-39984-3_4
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substation serves 3300 homes and businesses and 200 chargers in this case. Two
uncontrolled EV charging scenarios are studied here; the first scenario assumes that
all chargers are Level 1 (a maximum load of 1.8kW per charger) and the second one
assumes that all of them are Level 2 (a maximum load of 7.2kW per charger). In both
scenarios chargers start charging at their maximum rate upon arrival of vehicles.

We run power flow analysis for both scenarios to obtain branch flows and bus
voltages. Figure5.6 shows the effect of uncontrolled EV charging on the substation
transformer loading in both scenarios in the first day of our simulation. It can be seen
that uncontrolled charging of EVs in the Level 2 charging scenario overloads the
substation transformer once most chargers become active. Should Level 1 charging
be adopted, the transformer loading does not exceed its nameplate rating. However,
Level 1 charging extends the average charging time from 100 to 400min (which is
still acceptable). Expectedly, uncontrolled charging of EVs does not result in reverse
power flow in both scenarios.

We now focus on the impact of uncontrolled charging on voltage profiles. One
aspect we need to take into account is that voltage drop along the feeder can be
remedied by careful choice of the voltage regulator tap position. To study this, we
compare the voltage drop when tap positions can and cannot be changed every
minute. First consider the case where regulator taps cannot be controlled at a fast
timescale. In this case, the taps need to be fixed to a position at which bus voltages
will remain within the tolerance limits over the simulation interval, when the grid
only supplies household and business demands. We specifically use the tap setting
+8, neutral, and+10 (each step is 0.625%) for phase a, b, and c, respectively, which
is a plausible setting for this loading condition. Table5.2 shows the minimum and
maximumvoltage levels recorded in our power flow simulations for both scenarios. It
can be seen that uncontrolled Level 2 EV charging results in undervoltage at bus 646.
Should tap operations be permitted as fast as once per minute (or several minutes)
to restore load voltage to normal, simultaneous charging of the entire EV population

Fig. 5.6 The effect of
uncontrolled Level 1 and
Level 2 EV charging on the
substation transformer load
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Table 5.2 Voltage magnitudes (p.u.) per phase and node for uncontrolled EV charging scenarios
without optimizing voltage regulator tap settings

200 L1 chargers 200 L2 chargers

Max Min Max Min

650a 1.000 1.000 1.000 1.000

650b 1.000 1.000 1.000 1.000

650c 1.000 1.000 1.000 1.000

632a 1.038 1.025 1.038 1.021

632b 0.985 0.969 0.985 0.968

632c 1.046 1.025 1.046 1.015

671a 1.025 0.998 1.025 0.992

671b 0.983 0.959 0.983 0.959

671c 1.036 0.998 1.036 0.980

680a 1.020 0.990 1.020 0.982

680b 0.980 0.953 0.980 0.953

680c 1.031 0.990 1.031 0.971

633a 1.038 1.024 1.038 1.019

633b 0.984 0.968 0.984 0.967

633c 1.046 1.024 1.046 1.013

634a 1.033 1.018 1.033 1.008

634b 0.979 0.962 0.979 0.956

634c 1.042 1.018 1.042 1.002

692a 1.025 0.998 1.025 0.992

692b 0.983 0.959 0.983 0.959

692c 1.036 0.998 1.036 0.980

675a 1.023 0.995 1.023 0.989

675b 0.982 0.956 0.982 0.956

675c 1.035 0.996 1.035 0.977

645b 0.978 0.959 0.978 0.955

645c 1.042 1.019 1.042 1.007

646b 0.974 0.954 0.974 0.949

646c 1.040 1.015 1.040 1.004

684a 1.023 0.995 1.023 0.988

684c 1.034 0.995 1.034 0.974

652a 1.018 0.988 1.018 0.979

611c 1.033 0.993 1.033 0.971

Voltage limit violations are printed in boldface

would not result in any voltage problem in both scenarios. Nevertheless, this would
cause excessive wear on the voltage regulator, which translates into higher operation
and maintenance costs, and is therefore not desirable [1, 14].
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5.3.2 The Effect of Uncontrolled Solar Generation

We now study the case where a certain population of PV panels is installed at small
businesses, as described in Table5.1. We assume that no storage or EV charger is
installed in this network, PV inverters only produce real power, their real power output
is not throttled by the operator, and excess solar generation can be transferred to loads
in the same balancing zone. We gradually increase the number of PV installations
from 0 to 500 (0–15% penetration) and perform power flow studies for each case.
Note that, in some jurisdictions, even in 2014, a penetration rate of 20% has already
been achieved [13].

We first focus on the impact of uncontrolled solar generation on voltage profiles.
Similar to the case of uncontrolled EV charging, we assume that regulator taps cannot
be controlled on a fast timescale. We fix the taps using the same setting described in
Sect. 5.3.1. Table5.3 shows the minimum and maximum voltage levels recorded in
our power flow simulations. It can be seen that overvoltage occurs at several buses,
such as 634 and 645, when the number of PV installations exceeds 400. Should tap
operations be permitted as fast as once per minute, our studies show that voltage
does not increase beyond the permissible threshold at these penetration rates, even
in the case of 500PV systems. Again, recall that voltage regulators are meant to be
controlled infrequently and this would cause excessive wear on them.

As we expected, distribution lines and transformers are not overloaded in these
simulations because distributed solar generation reduces their load. Instead, reverse
flow is observed at buses 634, 645, and 684 when the number of PV installations
exceeds 200. Figure5.7 shows the effect of uncontrolled solar generation on the
substation transformer load for different penetration rates and the direction of power
flow at bus 634 in the case of 500PV systems. It can be seen that the net load decreases
drastically during the day when solar power is available and ramps up again in the
evening; this is widely known as the ‘duck curve’ [6]. Furthermore, it can be seen
that real power flows from bus 634 towards bus 632 in most time slots when the
sun is shining. This reverse flow can cause severe problems discussed in [8, 15].
Interestingly, most EVs are connected to chargers at small businesses in this time
interval, suggesting that the synergy between EV chargers and PV inverters could
enhance power system reliability and address network problems that are likely to
occur at high EV and PV penetration rates. This motivates the design of the proposed
control scheme.

5.3.3 Evaluating the Proposed Control

This section compares the decentralized control scheme with the two benchmark
schemes defined in Sect. 4.5. Recall that in all three schemes, both EVs and PV
systems are present. In the benchmark schemes, only local observations are used
to make control decisions, whereas in our scheme, a central controller coordinates

http://dx.doi.org/10.1007/978-3-319-39984-3_4
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Table 5.3 Voltagemagnitudes (p.u.) per phase and node for uncontrolled solar generation scenarios
without optimizing voltage regulator tap settings

100 PVs–3% 200 PVs–6% 300 PVs–9% 400 PVs–12% 500 PVs–15%

Max Min Max Min Max Min Max Min Max Min

650a 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

650b 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

650c 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

632a 1.038 1.025 1.038 1.025 1.038 1.025 1.040 1.025 1.041 1.025

632b 0.985 0.969 0.985 0.969 0.985 0.969 0.987 0.969 0.989 0.969

632c 1.046 1.025 1.046 1.025 1.049 1.025 1.053 1.025 1.056 1.025

671a 1.025 0.998 1.025 0.998 1.025 0.999 1.026 0.999 1.028 0.999

671b 0.983 0.959 0.983 0.959 0.983 0.959 0.983 0.959 0.984 0.959

671c 1.036 0.998 1.036 0.998 1.041 0.998 1.047 0.998 1.053 0.998

680a 1.020 0.990 1.020 0.990 1.020 0.990 1.021 0.990 1.023 0.990

680b 0.980 0.953 0.980 0.953 0.980 0.953 0.980 0.953 0.981 0.953

680c 1.031 0.990 1.031 0.990 1.036 0.990 1.043 0.990 1.049 0.990

633a 1.038 1.024 1.038 1.024 1.038 1.024 1.040 1.024 1.041 1.024

633b 0.984 0.968 0.984 0.968 0.985 0.968 0.987 0.968 0.989 0.968

633c 1.046 1.024 1.046 1.024 1.049 1.024 1.053 1.024 1.056 1.024

634a 1.033 1.018 1.034 1.018 1.037 1.018 1.039 1.018 1.042 1.018

634b 0.979 0.962 0.981 0.962 0.984 0.962 0.987 0.962 0.990 0.962

634c 1.042 1.018 1.043 1.018 1.048 1.018 1.053 1.018 1.058 1.018

692a 1.025 0.998 1.025 0.998 1.025 0.999 1.026 0.999 1.028 0.999

692b 0.983 0.959 0.983 0.959 0.983 0.959 0.983 0.959 0.984 0.959

692c 1.036 0.998 1.036 0.998 1.041 0.998 1.047 0.998 1.053 0.998

675a 1.023 0.996 1.023 0.996 1.023 0.996 1.025 0.996 1.027 0.996

675b 0.982 0.956 0.982 0.956 0.982 0.956 0.982 0.956 0.983 0.956

675c 1.035 0.996 1.035 0.996 1.040 0.996 1.046 0.996 1.052 0.996

645b 0.978 0.959 0.978 0.959 0.980 0.959 0.983 0.959 0.986 0.959

645c 1.042 1.019 1.042 1.019 1.046 1.019 1.051 1.019 1.053 1.019

646b 0.974 0.954 0.974 0.954 0.977 0.954 0.980 0.954 0.983 0.954

646c 1.040 1.015 1.040 1.015 1.044 1.015 1.048 1.015 1.052 1.015

684a 1.023 0.995 1.023 0.995 1.023 0.996 1.025 0.996 1.027 0.996

684c 1.034 0.995 1.034 0.995 1.040 0.995 1.047 0.995 1.054 0.995

652a 1.018 0.988 1.018 0.988 1.019 0.988 1.022 0.988 1.025 0.988

611c 1.033 0.993 1.033 0.993 1.040 0.993 1.047 0.993 1.054 0.993

Voltage limit violations are printed in boldface

decisions. Moreover, in the benchmark schemes, PV panels are not allowed to inject
power into the balancing zone, but in our scheme, power sharing is allowed within
each balancing zone. Figure5.8 shows the total available solar power and the total
real power output of PV inverters for different control schemes, when 100PV panels
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Fig. 5.7 The effect of solar
generation with uncontrolled
inverters on the substation
transformer load for different
PV penetration rates for a
typical day
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Fig. 5.8 Total power output
of PV inverters over a day
for different control schemes
in the case that 100PV
panels are deployed in the
distribution network
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and 100 storage systems are connected to the test distribution network. It can be seen
that with the decentralized control it is possible to use all of the solar energy available
in every time slot. This is because excess solar generation can always be stored or
consumed by loads that are in the same balancing zone at this PV penetration rate.
Observe, also, that the two benchmark schemes use much less solar power due to
curtailment, especially when storage is unavailable.

When the number of PV installations (and the number of storage systems)
increases to 400, the decentralized scheme would have to curtail solar generation
in some time slots to prevent reverse flow and maintain voltage within the bounds.2

2We attribute abrupt changes in the total real power output of PV inverters when our control is
implemented to changes in the number of active chargers, load fluctuations, reverse flow restrictions,
and storage capacity constraints.



70 5 Evaluation

Fig. 5.9 Total power output
of PV inverters over a day
for different control schemes
in the case that 400PV
panels are deployed in the
distribution network
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This can be seen in Fig. 5.9, where after all the EVs have been charged, no more
than 0.4MW of solar capacity can be used. In contrast, our control results in much
less curtailment compared to the other two schemes as shown in Fig. 5.10. The same
observation is made when the number of PV installations increases to 500.

We now compare the performance of the proposed control scheme in two cases,
where storage is available and unavailable, with the two benchmark schemes.
Figure5.10 shows that the average amount of solar energy curtailed by different
schemes over the period of a day. The proposed control does not result in solar cur-
tailment when there are fewer than 300 PV/storage systems, or when there are fewer
than 200PV systems (but no storage). Even when the number of PV installations
increases to 400 and 500, respectively, the proposed control results in, on average,
90.9% and 78.3% less curtailment compared to the first local control scheme, and
85.3% and 65.7% less curtailment compared to the second local control scheme.
Furthermore, simulation results suggest that sharing ismore effective in reducing cur-
tailment than using even 5kWh storage per PV location. This result is very insightful
for electric utilities in that sharing is cost-free unlike expensive storage systems.

Control schemes can also be compared in terms of their use of conventional power
supplied by the grid. Figure5.11 shows that the proposed control scheme reduces
the use of conventional power (by up to 5%) by displacing it with solar power. Note
that the studied control schemes are similar in terms of the energy supplied to EVs
since all of them manage to fully charge EVs before they leave in our simulation
scenarios. However, if the EVs left earlier (for example after 6h instead of 8h), the
proposed scheme would allocate power to connected EVs in a proportionally fair
manner, while benchmark schemes would not provide fairness and could result in
starvation.
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Fig. 5.10 Average solar
energy curtailed by different
control schemes over the
period of a day (lower is
better). Error bars represent
one standard error
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Fig. 5.11 Average use of
conventional energy by
different control schemes
over the period of a day
(lower is better). Error bars
represent one standard error
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Finally, power flow studies find that the proposed open-loop controller does not
cause any voltage, congestion, or reverse flow problem in all simulation scenarios.
As an example of the resulting operation, Fig. 5.12 shows the substation loading over
the first day of our simulation. It can be seen that our control successfully prevents
overloads, confirming that using setpoints that are 10% below the nameplate ratings
is sufficient to compensate for inaccuracies of the simplified DistFlow model.3 We
caution that, we did see that higher equipment setpoints, e.g., setting them equal to
the nameplate ratings and 5% below the nameplate ratings, often led to infeasible
optimization problems. Thus, the results are sensitive to the choice of using 90% of
the rated equipment capacity as the setpoint.

3Electric utilities have a rough estimate of resistive losses in their distribution circuits, enabling
them to appropriately choose the equipment setpoints.
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Fig. 5.12 Substation
transformer loading over a
day for 200EV chargers and
different PV and storage
penetration rates using the
proposed control
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5.3.3.1 Scalability of the Proposed Control Scheme

This section briefly discusses scalability of the proposed control scheme. The opti-
mal control is computed efficiently (in less than 1s) on a single machine in scenarios
with less than 400PV installations and 400 storage systems. However, should the
number of active end-nodes increase even further, solving the first (substation level)
optimization problem takes up to 30s, while the second (balancing zone level) opti-
mization problem is still solved efficiently, in less than a few seconds. This implies
that a fully distributed control scheme in which decision making is delegated to
the end-nodes might be required to control active end-nodes when their penetration
increases to a certain level. The design of this scheme is quite complex and requires
exploiting the hidden decomposition structure of the optimization problems.

5.4 Chapter Summary

Assessing the advanced optimization and control schemes developed for power sys-
tems requires an integrated simulation framework capable of performing power flow
analysis, solving the underlying optimization problems in a decentralized manner,
and simulating arrivals and departures of EVs and the communications between
measurement devices, controlled nodes, and controllers. A powerful smart grid sim-
ulator that performs all these functions is introduced in this chapter and is used
later to validate the decentralized control scheme developed in Chap.4. It is shown
through extensive simulations and power flow studies on a radial test system that
this scheme successfully addresses voltage, reverse flow, and congestion problems,
allocates available power in a proportionally fair manner among active EV charg-
ers, harnesses as much solar energy as possible using storage and sharing, and

http://dx.doi.org/10.1007/978-3-319-39984-3_4
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minimizes the use of conventional power. Moreover, simulation results corroborate
that the decentralized control scheme,which stores and shares solar generationwithin
balancing zones, significantly reduces solar curtailment compared to the benchmark
schemes.
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Chapter 6
Conclusion

Abstract The focus of this brief has been on a control framework for active
end-nodes to mitigate emerging operational and technical problems and fulfill var-
ious environmental, societal, and business objectives. This chapter summarizes the
achieved goals, highlights the limitations of this framework, and suggests several
avenues for future work.

6.1 Summary of Achieved Goals

This brief investigated the challenges of integrating variable-power DER, such as
renewable energy systems and storage technologies, and high-power elastic loads,
such as plug-in electric vehicles, into low-voltage distribution grids and the pivotal
role of information and communications technology (ICT) in overcoming these chal-
lenges. Leveraging low-cost broadband communications and pervasive monitoring
of the end-nodes in distribution networks, a control framework is proposed to solve
multi-objective multi-constraint control problems in quasi real-time. A decentral-
ized control mechanism capable of simultaneously achieving various user-level and
system-level objectives is then developed as an extension of the mechanisms that are
currently in place for balancing the grid. This is a nontrivial task as these objectives
are often competing.

In particular, the synergy between solar PV generation and EV chargers is used to
tackle distribution system problems, increasing the degree of penetration of both PV
systems and EVs that can be reliably accommodated in existing power systems. The
active end-nodes are controlled using a decentralized scheme that solves linearized
power flow equations using real-time measurements of the demand of inelastic loads
and the state of the active end-nodes. Since the underlying optimization problems are
convex, the optimal control can be found both quickly and efficiently. This control
scheme is fair to active EV chargers, and permits sharing of solar power and the use
of storage systems within a balancing zone, thereby reducing solar curtailment and
the use of conventional power from the grid. It has been shown using numerical sim-
ulations, which are based on realistic load and solar generation traces and stochastic
EV arrivals and departures, that this control outperforms the schemes that limit solar

© The Author(s) 2016
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generation to the local demand in terms of solar curtailment and conventional energy
use. The power flow analysis confirmed that the proposed control does not cause
overloads, overvoltage and undervoltage conditions, or reverse flows as long as the
setpoints are selected judiciously.

The control framework proposed in this work is inspired by the design of well-
established resource allocation and flow control algorithms that have been originally
developed for the Internet. For example, the notion of proportional fairness often
used in scheduling problems has been extended to the EV charging problem.

6.2 Limitations and Future Work

This section presents existing challenges and limitations of the proposed control
framework that could be addressed in future work.

6.2.1 TCP-Style Control for Active End-Nodes

In Chap.4, exploiting real-time measurements of the demand of inelastic loads and
the state of active end-nodes, two optimization problems are solved to obtain the
optimal control in every iteration. Unlike the second optimization problem which is
decomposed and solved independently for each balancing zone, the first optimiza-
tion problem cannot be solved in a fully distributed fashion. This is because some
constraints, such as the simplified DistFlow equations, couple the active end-nodes
connected to different balancing zones. Thus, the proposed algorithm for solving the
first problem does not scale with the size of the distribution network and the number
of active end-nodes. Specifically, we have seen that solving the first optimization
problem takes several seconds once the number of PV systems and the number of
storage systems exceed 400.

What is needed is a TCP-like feedback control mechanism for active end-nodes.
A potential solution, similar to what has been done in [1], would be to decompose the
centralized optimization problem, which relates real and reactive power injections to
bus voltages, into several subproblems, each solved independently by an active end-
node. Thedecoupled problems are coordinated by amaster problemusingLagrangian
multipliers [3]. This makes it possible to develop a simple feedback control mecha-
nism for active end-nodes based on in-network rather than end-node measurements.
Control would be fully distributed and is therefore more scalable compared to the
proposed open-loop control mechanism. Designing this control mechanism is com-
plicated because there are many coupled variables and coupling constraints.

http://dx.doi.org/10.1007/978-3-319-39984-3_4
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6.2.2 Generalizing to Unbalanced Multi-Phase
Distribution Systems

The power flow equations are solved separately for each phase of the distribution
network to obtain optimal control decisions. However, distribution networks are
usually unbalanced and ignoring the coupling between different phases introduces
some error into our analysis. A possible direction for future work is to substitute this
model with a distribution power flow model for unbalanced multi-phase networks,
similar to the linear approximation proposed in [2] or the generic distribution power
flow model proposed in [4].

Note that loads are typically modelled as voltage dependent components in dis-
tribution systems. To simplify power flow calculations, a constant complex power
load model is used in Chap.4. A better load model is also a fruitful avenue for future
work.

6.2.3 Optimizing Capacitor Banks and Load Tap
Switching Operations

Conventional distribution system operation has been chiefly concerned about voltage
and reactive power control using local measurements with distribution loss mini-
mization being the operational objective in most cases. This is generally achieved
by solving a distribution optimal power flow problem to control operations of trans-
former LTCs and switched capacitors [4].

Recall that the optimizationproblems solved inChap.4 to compute optimal control
of active end-nodes also involves power flow calculations for the distribution sys-
tem. This indicates the possibility of incorporating transformer LTCs and switched
capacitors into our control problem to jointly optimize operations of EV charg-
ers, solar PV inverters, storage systems, and switching of taps and capacitor banks.
A similar approach has been taken in [5] to control EV chargers and taps and capaci-
tor switching decisions. The main challenge here is that active end-nodes, and LTCs
and capacitors must be controlled on two different timescales; thus, combining them
into a single control problem requires careful consideration of the control timescales.

6.3 Concluding Remarks

The increasing penetration of elastic loads and distributed renewable generation,
along with the introduction of measurement, communication, and control technolo-
gies in power distribution systems has several implications. Specifically, pervasive
measurement and communication increases interactions between customers, sys-
tem operators, and independent producers, providing new opportunities to improve

http://dx.doi.org/10.1007/978-3-319-39984-3_4
http://dx.doi.org/10.1007/978-3-319-39984-3_4
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reliability, as well as cost and carbon efficiency of the grid. Additionally, the integra-
tion of active end-nodes into low-voltage residential distribution networks enables
the introduction of several new environmental, societal, and business objectives for
which the grid has not been designed originally. Control, especially in the last mile
of the distribution network, plays a key role in accomplishing these goals. However,
existing grid controls are incapable of solving multi-objective multi-constraint prob-
lems that involve a large number of active end-nodes and new control solutions have
not been defined yet to achieve recently introduced objectives of the active end-nodes.
This work attempted to fill this gap in the literature by developing a decentralized
algorithm for the control of active end-nodes in quasi real-time.

Despite the novelty of this approach, it has certain limitations. Firstly, the pro-
posed control scheme could result in suboptimal or infeasible control decisions in
unbalanced, three-phase radial and mesh distribution systems. Secondly, it relies
on power flow calculations to obtain a feasible control, and therefore, assumes the
knowledge of the system admittance matrix, which might not be available in some
cases. Lastly, the substation controller is still a bottleneck, limiting the scalability of
the control algorithm. These limitations present ample opportunities for future work.
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