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Preface

For over twenty years, the Joint Program in Physical Oceanography of MIT and the
Woods Hole Oceanographic Institution has based its education program on a series of
core courses in Geophysical Fluid Dynamics and Physical Oceanography. One of the
central courses in the Core is one on wave theory, tailored to meet the needs of both
physical oceanography and meteorology students. I have had the pleasure of teaching
the course for a number of years, and I have particularly enjoyed the response of the
students to their exposure to the fascination of wave phenomena and theory.

This book is a reworking of course notes that I have prepared for the students, and I
was encouraged by their enthusiastic response to the notes to reach a larger audience
with this material. The emphasis, both in the course and in this text, is twofold: the de-
velopment of the basic ideas of wave theory and the description of specific types of waves
of special interest to oceanographers and meteorologists. Throughout the course, each
wave type is introduced both for its own intrinsic interest and importance and as a ve-
hicle for illustrating some general concept in the theory of waves. Topics covered range
from small-scale surface gravity waves to large-scale planetary vorticity waves. Con-
cepts such as energy transmission, reflection, potential vorticity, the equatorial wave
guide, and normal modes are introduced one step at a time in the context of specific
physical phenomena. Many topics associated with steady flows are also illustrated to
great benefit through a consideration of wave theory and topics such as geostrophic
adjustment, the transformation of scale under reflection, and wave-mean flow interac-
tion. These are natural links between the material of this course and theories of steady
currents in the atmosphere and oceans.

The subject of wave dynamics is an old one, and so much of the material in this book
can be found in texts, some of them classical, and well-known papers on certain aspects of
the subject. It would be hard to claim originality for the standard ideas and concepts, some
of which, like tidal theory, can be traced back to the nineteenth century. Other more recent
ideas, such as the asymptotic approach to slowly varying wave theory found in texts such
as Whitham's or Lighthill’s, have been borrowed and employed to illuminate the subject.
In each case, references at the end of the text for each section indicate the sources that I
found particularly useful. What I have tried to do in the course and in this text is to weave
those ideas together in a way that I personally believe makes the subject as accessible as
possible to first-year graduate students. Indeed, I have tried to retain some of the infor-
mality in the text of the original notes. The text is composed of twenty one “lectures;” and
the reader will note from time to time certain questions posed didactically to the student
and certain challenges to the reader to obtain some results independently. A series of prob-
lem sets, which the students found helpful, are placed at the end of the text.
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Preface

My teaching and research at the Woods Hole Oceanographic Institution has been
generously supported by the Henry L. and Grace Doherty chair in Physical Oceanog-
raphy for wh1ch [am dehghted to express my appreciation. I also am happy to express
my gratitude for years of support from the National Science Foundation, which rec-
ognizes the inextricably linked character of research and teaching.

The waves course has been fun to teach. The fascination of the material seems to

naturally engage the curiosity of the students and it is to them, collectively, that this

Joseph Pedlosky

Woods Hole
May 05, 2003
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Lecture 1

Introduction

A course on wave motions for oceanographers and meteorologists has (at least) two
purposes.

The first is to discuss the important types of waves that occur in the atmosphere
and oceans, in order to understand their properties, behavior,and how to include them
in our overall picture of the ocean and atmosphere. There are a large number of such
waves, each with different physics, and it will be impossible to discuss all of them ex-
haustively.

At the same time, a second purpose of the course is to develop the theory and con-
cepts of waves themselves. What are waves? What does it mean for a wave to move?
What does the wave do to the medium in which it propagates, and vice-versa? How do

waves (if they do) interact with one another? How do they arise? All of these are good
and fundamental questions.

In order to deal with both of these goals, the course will describe a series of differ-
ent waves and use each wave type to describe a different aspect of basic wave theory.
It will then be up to you to form the necessary connections and generalize the ideas to
all waves, at least on a heuristic basis. This will require you to sometimes retroactively
apply some new ideas developed in the discussion of wave type B, for example, back
to the application of wave type A discussed previously in the course.

In general, the physical ingredients will be stratification and rotation. But first, what
is a wave?

A moving signal, typically moving at a rate distinct from the motion of the

medium
m

CUisisiike

A good example is the “wave” in a sports stadium. The pattern o of the wave moves
I'al‘)l("V around the nark. The siognal consists in the coonerative motion of individuals.

SRR SAVBRALL UL PALS. 448 C1HII0L LULISIOW LIl WIL LUUp T e AAAvu ii v;. ALANAL Y ANA A RAS

The s1gnal moves a much greater distance than the motion of any individual. In fact,

while each person moves only up and down, the signal moves laterally (until it gets to
the costly box seats where it
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elevation of the ocean in a gravity wave, the rippling of the 500 mb surface in the tro-
posphere due to a cyclone wave, or the distortion of the deep isopycnals in the ther-
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b |

re nt lv dmcmafm\
~ 1
S 1



Lecture 1 - Introduction

mocline due to internal gravity waves, the wave moves faster and further than the in-
A;‘T;A|10] l‘;f] o]omnnfc T 11¢€ 11011’)]]‘7 ‘;F
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¥« (1.1)

We shall see that this is also equivalent to the condition for the linearization of the
mathematical description of the wave physics.

Wave Kinematics

Before discussing wave physics, it is useful to establish some basic ideas and notational
definitions about the kinematics of waves. A more complete discussion can be found
in the excellent texts by Lighthill (1975) and Whitham (1974).

For simple systems and for small amplitude waves (i.e., when we linearize) we of-
ten can find solutions to the equations of motion in the form of a plane wave. This
usually requires the medium to be, at least locally on the scale of the wave, homoge-
neous. If @(x,,t) is a field variable such as pressure,

O(%,t) = P(xpt) = ReAe EF@) (1.2)

where
. = the w
= K=t
m =t

ave frequency, and

= Re implies that the real part of the following expression is taken

2 i 1 S LA O TAp A TOSiVAL L0 LEASALL

»
»

We can define the variable phase of the wave 6 as
0(%,t)=K-X —wt =k;x; — ot (1.3)

where the summation convention is implied in the second form, that is,
maxdim
kix; & ijxj (1.4)
j=1

In the simplest case, A, w and k; are constants.

This begs the question of why we should ever observe a disturbance with a single
K =K and o. To understand that we must do more work later on. But standing on a
beach and looking at the swell approaching it appears often to be the first order de-
scription of the wave field and a naturally simple case.

Of course, by Fourier’s theorem (look it up now) we can represent any shape by a
superposition of such plane waves.

The function ¢ we have considered above is constant on the surfaces (planes, hence
the name) on which 6 is constant, i.e.,

k;x; — awt = constant (1.5)



Lecture 1 - Introduction

3

N
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0 = constant \ X

KX + I}I_ {nf = COnStant AN

0 = constant

Fig. 1.1. Schematic of wave crest Fig. 1.2. The plane wave showing the crests and
wave vector and wavelength

In two dimensions, for example, these will be the lines
I%-.i’f—a)t=k1x1+k2x2—a)tEkx+ly—a)t (1.6)

tation reg"la 1‘)", kl =k, :’\2 L A K3 = i, in Cartesia

< no 1 1
The directions of h lines of constant phase are given by the normal to those lines
of constant 6 (Fig. 1.1, Fig. 1.2), i.e.,

Vo=V|K i-wt|=K (1.7)

or equivalently

00 o axj

Define

r

K=K| (1.9)

Le., the magnitude of the wave vector. Then

?:‘1

=Ks (1.10)

where s is the scalar distance perpendicular to the line of constant phase, for example
the crests where ¢ is a maximum.

The plane wave is a spatially periodic function so that ¢(Ks) = ¢(K[s + A]) where
KA =2m, since

ei(Ks) =ei(Ks+21c)’ ei(2n) =1

A== (1.11)
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0.0} .
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08} \ / .
0 A \ . , .
Fig. 1.3. 0 1 2 3 4 5 6 7
The wavelength of a plane wave < A >
K
0 =4n
Fig. 1.4. =0
The increase of phase in the direction of the N
wave vector 0=27

is the wavelength. It is the distance along the wave vector between two points of the
same phase (Fig. 1.3).
At any fixed position, the rate of change of the phase with time is given by

9 __ (1.12)
ot '
@ is therefore the rate of decrease of phase (note: as crests arrive, moving parallel to
the wave vector K, the phase will decrease at a fixed point (see Fig. 1.4).

How long do we have to wait until the same phase appears? The shortest wait occurs
when a time T has passed such that @T = 2r. The time T is called the wave period,
and

Il
—~
[a—
.
[—
W
e

What is the speed of movement of the line of constant phase

Note that as t increases, s must increase to keep the phase constant (Fig. 1.5, 1.6).

ﬁ) =90/t & (1.15)
ot ) 06/ds K

o
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o(t>0)
AN
Fig. 1.5. N
The movement with time of the 0(t=0)
line of constant phase in the .
direction of the wave vector X

,,

05 .3 \ // /]

N

W ‘“‘““\\\\\\\\\\{"f’llf””” ////,,,;;'4“
\

Fig. 1.6.
A plane wave in perspective view 00 k=1, 1=0.022

Be sure you understand the reason for the appearance of the minus sign:

{At constant 6, d8=0=Kds - wdt, so thatds/dt= w/K}

We define the phase speed to be the speed of propagation of phase in the direction
of the wave vector.

phase speed: c= w/K

Note that phase speed is not a vector. For example, in two dimensions the phase
speed in the x-direction would be defined such that at fixed y,

dO0=0=kdx - wdt or (1.16a)
10} d00/09t

sz—:— 1.16b
k 06 /0x ( )
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ponent would be
-+ wK:» w
c l—';z"'l——':z—ki(fx (117)

-y

Therefore, it is clear that the phase speed does not act like a vector, and this is

DV TATAYTO MY
110 tlubbbl e UL Ll yvyavye 1

d intuitively want to give to it.
d

Note that ¢, is the speed with which the intersection of the moving phase line with
the x-axis moves along the x-axis (Fig. 1.7):
c
cC.=
* cosa

and as o goes to 1/ 2, c, becomes infinitely large! This makes us suspicious that the
phase may not be the messenger of physical entities like momentum and energy.
In an interval length s perpendicular to the surface of constant phase, the increase
in phase divided by 27 gives us the number of crests in the interval. Thus, Fig. 1.8.
y 4 "
i K

a

Fig. 1.7.
The small arrow shows the intersection point of
the line of constant phase and the x-axis

—
xV

10 i W A WY | R | W

KS/2m = # of crests

0 5 10 15 20 25 30 35

Fig. 1.8. A plane wave and the number of crests along the coordinate s
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Thus also, the increase in phase along the wave vector is

AO= %gds=J‘de (1.18)
S

The more fundamental definitions have already been given; namely,

}—\;: Ve (1.193)
06

=== (1.19b)
ot

The former gives the spatial increase of phase, while the latter gives the temporal
(decrease) of phase.

In all physical wave problems, the dynamics will impose, as we shall see, a relation
between the wave vector and the frequency. This relation is called the dispersion
relation (for reasons that will be made more clear later). The form of the dispersion
relation can be written as:

w=12k;) (1.20)

Note that each wave vector has its own frequency. Often the frequency depends only
on the magnitude of the wave vector, K, rather than its orientation, but this is not al-
ways the case. Up to now, the wave vector, the frequency, the phase speed and the dis-
persion relation have all been considered constants, i.e., independent of space and time.






Lecture 2

Kinematic Generalization

Suppose the medium is not homogeneous. For example, gravity waves impinging on a
beach see of varying depth as the waves run up the beach, acoustic waves see fluid of
varying pressure and temperature as they propagate vertically, etc. Then a pure plane
wave in which all attributes of the wave are constant in space (and time) will not be a
proper description of the wave field. Nevertheless, if the changes in the background
occur on scales that are long and slow compared to the wavelength and period of the
wave, a plane wave representation may be locally appropriate (Fig. 2.1). Even in a ho-
mogeneous medium, the wave might change its length if the wave is a superposition
of plane waves (as we shall see later).

1.0 :

06|

oa] , |

0ol . ' 1 i

) 10 20 30 40 50 60 70 80 90 1

[
[e]
[e]

< Lw >

Fig. 2.1. Schematic of a slowly varying wave
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Thus, locally the wave can still look like

a plane wave if A/ Ly < 1.In that case, we
might expect the wave to be described by the form:

d(x,t) = A(x,1)e?™)  (the real part of the expression is taken for granted),

(2.1)
where A varies on the scale Ly, while the phase varies on the scale A. Thus,
104 (1)
———=0 (2.2a)
A axi LM
08 (1)
T _ol = (2.2b)
dx; \4)
so that
i6 A
Vo = Ae°Ve +0(—} (2.3)
~ M 4
We define (guided by our experience with the plane wave):
K=V6 local spatial increase of phase (2.4a)
- = local increase of phase with time (2.4b)

Since the wave vector is defined as the gradient of the scalar phase, it follows auto-
matically that Vx K =0.

Consider the increase of phase on the curve C; from point A to point B in Fig. 2.2:

15 1 (o
n. =— [K-d¥x=— [K.-d* (2.5)
“oom) 2 g Y
A C,
B
G,
o
Fig. 2.2. A — —_—
Counting crests on two paths
AC,B and AC,B

0 = constant
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11

Now consider the same increase calculated on curve C,:
I
ne, =— |K-dx=— |K-dx (2.6)
2 2m, 21
2

The difference between them is

N~ —Np. = ~ [K-d¥=— §K-dx
“ “ ZTCCI Cjz 2TCC:t§tal
_([UvwK.0d4 (2.7)
JJV/\‘\ [AAS Ve
A
=0

Here we have used Stokes theorem relating the line integral of the tangent compo-
nent of K with the area integral of its curl over the area bounded by the closed con-
tour composed of the sum of the two curves C, and C,. Since the curl is zero, the two
calculations for the increase of phase must be independent of the curve used to do the
calculation.

Note that since

K=Veo (2.8a)

D)

1]

|
o~
%)
0
o
S

it follows by definition that

a—K+Va) =0 (2.9)
ot

in those cases where the wave vector and the wave frequency are slowly varying
functions of space and time (i.e., where it is sensible to define wavelength and frequency).

To better understand the consequences of the above equation, consider the fixed
line element AB in Fig. 2.3.

E
"

ig. 2.3,
Conservation of crests along /\J
the line AB
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Integrate the above conservation equation along the line element from A to B:

a B_. B
—jK-dSc+ij-di=o
ot ; A

(2.10)
Using our previous definitions, in particular that Ks/27 is the number of crests in
the interval s, it follows from the above that
dnug _ 0(A)  @(B)
ot 2n 2;

(2.11)
That is to say, the rate of change of the number of crests in the interval (A,B) is equal

moment. E.g.,

to the rate of inflow of crests at point A minus the outflow of crests at point B, since
the frequency (divided by 27) is equal to the number of crests crossing a point at each

@(A) = rate of decrease of phase at point A (see Fig. 2.4)

Phase increasing in space
20 =T T T T T T T7—< T T
/ \ —> /\ \
\
/ \
18F / .
8 , \ y \
I \ I \
\
1¢ U ! \ ]
1.V \ l 1
\ / \
\ / \
1.4 — \ / \ =
‘t+ 5t / !
\ / \
12F \ / \ T
\ / \
\ / \
1.0F \ / \
t \ / \
\ / \
0.8 I~ \ / \ 1
\ / \
\ / \
06t \ | \ 1
\ / \
\ /
041 \ / .
\ /
\ /
02} \ / 4
\ /
\ /
0.0 1 A ] N 2 1 1 ] ] 1
0 1 2 3 4 5 6 7 3
Fig. 2.4. The movement of the phase through the interval AB

O
—
(@)
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We may think of this as a statement of the conservati

“ [ Dml\l\fl‘\]‘r ‘7“"7:“" F‘1“I‘
11 4 SIMOOUlLY varying iunc

(=}

oo mitmmhao
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change. The number in any local region increases or decreases solely d to the ar-
rival of preexisting crests, not to the creation or destruction of existing crests.

Nnwr lat’
INOW, 181

uuco 11U L
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and wave number but that the relationship slowly changes on scales that are long com-

pared with a wavelength or period due to changes, perhaps, in the nature of the me-
in which the wave emhedded

P ig
UL1ULil 111 vy Nnicn e wave 1S emoeqaaea.

In that case, the natural generalization of the dispersion relation is

£y — Of LY.
w Q& Ny A

J) 2

lg

)
£

—~~
[\
S
b

N’

where the wave vector components and the frequency may themselves be functions
of space and time (slowly), and the dispersion relation is explicitly dependent on space
and time.

Thus,
ow _ 00 042 ok;

il } (2.13)
ot ot ¢z Ok ot

where the first term on the right-hand side is due to the explicit dependence of the
dispersion relation on time, as might happen if the temperature of a region through
which an acoustic wave were traveling were increasing with time.

We define the group velocity by the formula for each of its Cartesian components:

. =982 (2.14)

for the component of the group velocity in the j direction, or
Cg= Vg2 (2.15)

It follows from a fundamental theorem in vector analysis that since the phase
1s a scalar and the gradient operator is a vector, the group velocity is a true vector
(distinct from the phase speed). That is, it follows the law of vector decomposi-
tion.

Since, by our earlier definitions

ok; o
_—J = —-—
3 ax (2.16)

we thus obtain

da) d.(z d!,.) Jw
ot ot ak ax

—~
N
.
i
(]

~—
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It therefore follows that

%E)— +¢,-Vo= %{% & explicit derivative with time (2.18)
t t

Again, by similarly using

ok; Jdw
ki -0
ot ox

ok 92 2 Ik
+ + =
at axi akj axJ

0 or (2.19a)

ok, 002 ok 2%

+ =— (2.19b)
at ak] ax] ax,-
Since the wave vector has no curl, it follows that
7 AL
Ok _ 7
dx;  0x;
so the above equation can be rewritten:
0K - .= .
—aT+(cg -V)K =-V 2 < explicit dependence on space (2.20)

Note that the sum of derivatives on the left in the equations for the rate of change
of wave vector and frequency are the rate of change for an observer moving with the
group velocity.

So,

1. If the medium is independent of time, — @ propagates with the group velocity;
2. If the medium is independent of space, —> K propagates with the group velocity.

If both (1) and (2) are true, both frequency and wave number propagate with the
group velocity:

0
Co. =—/——
8i akl

This is a vector, and we see here that real wave attributes propagate with this velocity. If
the dispersion relation is a function of space and/or time, the above equations tell us how
the frequency and wave number change as we move with the group velocity following a
wave. Further discussion can be found in Bretherton (1971) and Pedlosky (1987).
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Example

We will soon see that free surface gravity waves (short enough so that rotation is
unimportant but long enough so that the wavelength is large) compared to the depth
have a dispersion relation:

—kyJgH

where H is the depth of the fluid and k is the wave number for this one-dimensional
example (Fig. 2.5).
The phase speed and group velocity are equal in this case:

Cg =C=(gH)U2

If the depth is a function of x, then following a signal, since the dispersion rela-
tion is independent of time, the frequency will be constant for an observer moving
with the velocity ¢, = ¢ = (gH)Y2. For such an observer, with frequency constant,
k = const./ H2, which implies that the wave will grow shorter (larger k) as the wave
enters shallow water. (It may become so short that it might break). Note that the
observer, following a particular frequency moving with the group speed will pro-
ceed at a rate:

=(gH(x))"? (2.22)

CL

For example, if H(x) is of the form H = Hy(1 - x/ x;) where x is measured posi-
tive shoreward from some offshore nnmfmn a distance X, from the waterline (see

22202¢€ Qaile 22421 SVALALS VazeaivVa VaiaUAl © LLiorQliNS 4220222 240 WQl212222X%

Fig. 2.5), the signal corresponding to a given frequency W111 proceed onshore such

that at a point x after an elapsed time ¢, the relationship between the elapsed time
and its onshore progress is

SASLVILE PRV 2

t=2x0(1—,/1—x/x0 )/(gHO)”2 (2.23)
Fig. 2.5.

NN AN N\ /
H(x)
Water wave running up a

sloped beach 0 >
P ch x=0 X=Xg X

The above kinematic discussion doesn’t tell us how the amplitude of the wave propa-
gates or, equivalently, how the energy in the wave moves. In some simple cases that

are general enough to be of interest, we can actually describe how the amplitude and
hence energy moves.
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H(a/at,a/ax1)¢(xl,t)20 (224)
where I1 is a polynomial in the partial derivatives with respect to space and time. A
simple example would be the Rossby wave equation:

3 3
2,0 59,

+ 2.25
ox’ot ody’ot = ox (2.25)

no2l2(2), (2|, 52

.
S ax\ax) Ty oy )| o

so that in this case,
d
t

i.e., the polynomial in the partial derivatives are in respect of x, y and .
Suppose we look for an approximate solution of the form

¢=Ae'l

0.4 : :
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Fig. 2.6. A wave packet. The wave has wavelength A while its envelope has a scale Ly
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where A, k and o are slowly varying functions of ti me, i.e., where the solution has the

I narkot {nn Dn ) 11
Iy 5 0/, uienl

PO |
tOI'l’l'l 01 a o1ne- uuucumuucu wave PuLI\CL \3¢C

99 —(ia—HA +—8£13i9
(2.26)

or

H¢=0:>H —i+— ,zk+— A=0 (2.27)
ot ox

Expanding the polynomial using the fact that the time and space derivatives of A

are small compared to @ and k,

31 94 oM 94
—_ ,k+ —+ _ 2.28
Nkt e ¥ 36k) ox (2.28)

1 f o

The dispersion relation for plane waves comes from the disappearance of the first

term (which is the dominant one), namely
(2.29)

I1(-i®w,ik) = 0 — Linear dispersion relation

In the case above, this yields w=-/k.
When this dispersion relation is satisfied, the remaining term yields the condition

dA  J[l/ok 04 _ (2.30)

ot oll/owox

where the derivatives of I'l in the equation occur when IT is evaluated as a function of

frequency and wave number as in Eq. 2.29.

Since
dI1/0k aa))
_ 2.31
oll/ow ok ), (231
it follows that
0A 0A
3t +Cga—0 (2.32)

Thus, the amplitude (and we can suppose) energy will propagate with the group
velocity and not the phase speed. Where the envelope (that is A) of the wave goes,
that is where the energy is. There is clearly no energy outside the wave envelope.
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The reader should calculate the group velocity for this simple case of one-dimensi-

anal Dacehy wavoae +a coe that tha graiin and nhace velacitice are nat thae e

me Similarly
vllali l\UOOUy ywavio LU OCC ulal Liic 6 v P allu Puaoc v&i10Cities are 1not uie saiie. uuuucuxy,

the argument presented here can be extended to any number of dimensions (try it).
It is also clear that one might be able to use similar ideas for inhomogeneous media.

o again we see hovo the ?‘\1‘\17(\‘1‘ nritacu nf tha ogroup ‘Tﬁ]f\f‘!“"f nvar tho mhaca
LIV a5a111 Y¥WC OCC 11C1TC L1110 Pllya Plllllaby UL L11C 6 Uutl CluUulllL UYCl L11C kuxaou
r

speed for the propagation of physical attributes of the wave.
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cm—

Equations of Motion; Surface Gravity Waves

1. Momentum equation:

d—u+2!2><ﬁ =-V +,uV2ﬁ+KV(V-i1) (if 4 constant, k is second viscosity) (3.1)
Y 1 P y

2. Mass conservation:

:)n
3—’;+V-(pﬁ)=0 ; and (3.2)

3. Thermodynamic energy equation:

ds
2 _H

dt
where s is specific entropy and H is the nonreversible heat addition. This can be re-
written, assuming that s is a thermodynamic function of p and p,

k
¢, LB VI LQi (Vi =H 3.3
PR 5 Q+x(V-u) (3.3)

Here, T is temperature, c, is the specific heat at constant pressure, ocis the coeffi-
cient of thermal expansion, and @ is the dissipation function, i.e., the frictional trans-
formation of mechanical to thermal energy. If 7; is the stress tensor and e;; is the rate

of the strain tensor, @ = 7;€; (sums implied). Note that

__1(9p
“ p(aT}p (3.4)

For a perfect gas with a state equation p = pRT, the thermodynamic equation is
usually written in terms of the potential temperature:

R/cp
o-f2)
p

N& 7
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so that the thermodynamic equation becomes

1de _ H

3.5
G)dt cPT (3:5)

while for an incompressible liquid we can approximate the thermodynamic equation with

dn oD
- — - - .
dt Cp

3 at (T _ T ¢ Tnata
Here we have used the approximate state ’c‘q‘datiuu g= ’10\1 - O\i - iy)) to reiate

temperature in the thermodynamic equation to density. Be sure to note that when we
make the approximation of incompressibility in the mass equation (V - i = 0), this does
not imply that dp/dt = 0 is the governing equation for density. Only if the dissipation H
can be neglected will that be true. That is a separate physical statement about the adia-
batic nature of the motion quite apart from the issue of compressibility. For a com-
pressible fluid, we would have, instead of dp/dt = 0, the statement ds/d¢=0. For a
detailed discussion of the formulation of these equations, especially the thermody-
namics, see Batchelor (1967).
First Wave Example: Surface Gravity Waves
Perhaps the most familiar of waves in the ocean are the waves we see on the surface, either
from a ship or from the beach (or from the air). These are waves on the interface between
the water and the air (Fig. 3.1). The latter is so light compared with the former that we will
approximate the air as having zero density to eliminate any dynamical interaction with
the air to begin with. Theories of wave generation must include that coupling.
Consider a layer of liquid of uniform density and uniform depth. We suppose the
scale of the motion is small enough to be able to ignore the Earth’s rotation and the
motion is small enough to be able to linearize this motion. In all such cases, we need
to ask ourselves whether these statements are sensible, and if so, for what range of
parameters? That is, if we ignore rotation, is there a limit, for example on the size of
the wave for which that is appropriate? We might already know, for example, that the
tides, which are a gravity wave response to the sun and the moon, do feel the effects of
the Earth’s rotation, but, of course, they are of planetary scale.

1. Can we ignore rotation, friction and nonlinearity?
- To ignore rotation, compare d/ dt with £2—— this implies that we need @ > Q.
- To ignore friction, compare d/ 0t with uk?,where k is a typical value of wave-
number —> @ > pk?.

Lo
<

e D TN
p ~ e N e ™~
7 ~ 7 ~ v N 7
Fig. 3.1. ~— ~— ~—
The homogeneous layer of p = constant D

fluid supporting surface
gravity waves v
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- To 1gnore nonlinearity, compare d / dt with respect to #i - V—— @ >> uk o
lIllb is Lhc COI‘iduiOﬁ that LhC dmturbance bc wave- hk%, i.e., that t

carried by the wave rather than the advective motion of the fluid.
2. Can we treat the fluid as incompressible?

o )
o v-1

Assume we can linearize. Suppose the motion is adiabatic. In general then, we
have

ds

—?=0, s=s(p,p) (3.7)
el thha linnarizatinn
WIUl Uuic 1iiliCarizZauivil

as_o_as E)p+as op (3.8)

ot dp ot dp ot

Thus,

-~ -~ N ~ /. \ A

9 __3/9p UPZLQJ% (3.9)

dt  0ds/dp dt | dp ) ot

From the theory of acoustics we know (or we can easily find out) that the speed of
sound in any medium is in fact given by the adiabatic compressibility of the medium.
That implies that if c, is the speed of sound in a fluid,

{3
ap ).

(One of the few scientific mistakes Newton made was to imagine that the speed of
sound was this derivative at constant temperature and not entropy).

So we have the estimate for the relation between a perturbation in the density and
the perturbation of the pressure:

d=clop (3.10)

We can, on the other hand, estimate the magnitude of the pressure fluctuation from
the horizontal momentum equation; if

Vp= O[ p g—l:) then

ooz

Irom which it follows from the relation between the pressure and density disturbances:

op uw
2 e
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Thus,
19dp _, uw’
p Ot ’k

We should compare this term, which is the estimate of the size of the local time
derivative in the mass conservation equation with a typical term in the remaining

combination of terms, namely, V - & = O(ku). Their ratio is thus
A 2\ 2/ 2 2
pat _n(uw _0) k c /2 19\
= ul I - 2 — —2 \J.14)
V.u kuk c C
\ J ta a

Thus, as long as the phase speed of the wave is small compared to the speed of sound,
we can approximate the wave motion occurring as in an incompressible fluid for
which the equation for mass conservation reduces to the condition

=0 (3.13)

<

Note again that this does not by itself imply that dp/dt =0. A separate consider-
ation of the thermodynamics and the strength of the dissipation is required for that.

We now have a series of parameter tests we can make after the fact to check to see
whether the approximations of

linear motion

inviscid motion
incompressible motion
nonrotating dynamics

=

will be valid.
Assuming that these conditions will be met by the waves under consideration here,
the equations of motion reduce to the much simpler set:

ou

—=-Vp-pg (3.14a)
P p-pgz ( )
V.i=0 (3.14b)

where z is a unit vector in the direction antiparallel to the direction of the local gravi-
tation.

We could have just waved our hands (perhaps appropriately for a course on waves)
and written down these traditional approximate equations. However, it is impor-
tant for each new investigation of a wave type to carefully consider a priori the condi-
tions required to achieve the approximate dynamics used for the physical description
of the wave to make sure that our physical system is no more complicated than

it need be, while at the same time, it should be consistent with the underlying physics
of the fluid.
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it Aangits tho ctindont 1ic invited ta 11co thae thormadunamic aaiia
stant QEIisSity, UiIC SLUUCIIL 16 HIVICU U UsC ulC Uil iioGyliialilic cgu

condition for the validity of that approximation) yields

The curl of our momentum equation (recall that we are considering a fluid of con-
tio

n tn A tha
I1 10 1i1iG uic

g

, it follows that it remains

motion for which each field goes through zero periodically), i
i 0 zero, it follows from a fundamental fact

-
—+
=
(¢
<
(2]
—
]
O
-
~<
p—

Note that only the spatial gradients of the velocity potential carry physical infor-
mation. Any arbitrary function of time can be added to ¢ without changing the veloc-
ity field.

Since the motion is incompressibie,

V-i=V-(Vg)=V2=0 (3.17)

The equation of motion within the fluid thus reduces to the elliptic problem gov-
erned by Laplace’s equation:

V=0 (3.18)

This is an amazing simplification, and it should be a little disconcerting, because
we are looking to describe a wave motion. Laplace’s equation, by itself, is certainly not
a wave equation. It describes among other things the electrical potential of static
charges as well as certain static gravitational fields but, alone, no dynamical wave
mechanism. The resolution of this seeming paradox is of course connected to the fact
that we have not yet considered the boundary conditions for our problem. There is no
more illuminating example of the importance of boundary conditions in the specifi-
cation of the problem than this case of surface gravity waves. All the dynamics are in
the boundary conditions. The internal equation, i.e., Laplace’s equation merely relates
the horizontal and vertical structure of the motion field.

Boundary Conditions

Tl?e vaious boundary condition at the lower horizontal surface is that the normal
velocity vanishes there, i.e., w=0at z=-D, or

aizor z==D
oz

s

—~~
w
—
\O

p

The boundary conditions at the upper surface are significantly more interesting. Let’s
call the departure of the free surface from its level “rest position” n(x, y, t) (Fig. 3.2),
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e z= niX'_ 'é) P = palx.yt)
/‘( / . P
Fig.3.2. . d \/ \y \/
D
4

A definition figure for variables

describing the motion in the z=-D
surface gravity wave \ A
which must be small (this will presently be made more explicit). Thus, we consider
the rippled free surface to only be slightly in departure from its rest state
At the free surface, the physical boundary conditions are
1. the dynamic condition:
p(xy,z,t) = pa(x,p5t) z=1 (3.20)
and
2. the kinematic condition:
_d¢ _d 0
99 _dn_.9n (3.21a)
0z dr ot
or
9 _ 91 ,_p (3.21b)
oz ot

We must now write these conditions completely in terms of the velocity potential, ¢.
The linearized momentum equation is

ig—l —Q—gvz (3.22a)
ot Jt p
or
{ 6.0, gz}_ (3.22b)
ot p

The integral of the last equation implies that
a¢ . _p T2\ 2 72\
—+=—+gz=F(t) \J.£2)
ot p

where F(t) is an arbitrary function only of time. We can always add a function that is
only of time to the velocity potential without changing the physical meaning of that
potential. Let’s imagine that we have added such an additional term such that its de-
rivative with respect to time is equal to F(¢). This allows us to write this linearized form
of Bernoulli’s equation everywhere in the fluid in the form:
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gfé+£+gz=0 (3.24)

ot p

Now let’s apply this equation to the upper surface where z = 1(x,y,t) and p = p,(x,,t).
Thus,

2¢i+—&‘-+gﬂ=0 (3.25)

ot p

A derivative of thi

o

quation with respect to time yields, using the kinematic con-

__+g__=__a_) at z=n (326)

Note that each term in this boundary condition is linear.

The condition is applied at the unknown location z = 7. Indeed, the position of the
free surface is, after all, one of the principal unknowns of the probiem that we are try-
ing to predict. For the general nonlinear problem, this unknown location of the bound-
ary, at which the important boundary conditions are applied, is one of the most diffi-
cult aspects of the problem. However, we are considering only the linear small ampli-
tude problem, and it turns out that we can apply the boundary condition at the original
position of the interface, i.e., at z = 0. To see this take any term on the left-hand side of
the above boundary condition, generically call it G(x,y,n) and expand it around 1 = 0.

Thus,

Glx.v.MN=G(x. v.0)+n—
N\ V4 17 \"> VAR |

Ns 3

oy
)
L ]
o
L]
Q.
4]
Ln ]
=+
4]
]
w
~~
w
[0
~J
N’

The first term on the right-hand side of the above equation is of the order of the
amplitude of the motion, since G is one of the dynamic variables. Note that all the
dynamical variables are linear in the size of the amplitude of the motion.

The second term is of the order of G times the free surface height and is therefore
of the order of the amplitude squared. To be consistent with our linearization, such
quadratic terms must be neglected. That implies that each term in the boundary con-
dition stated above can be applied at z = 0; thus, we have

a2
9, 99 1

as the boundary condition on the upper surface, while again at the lower surface,

(o8]

=—=0, z=-D
z

—~
E.)J
3]
\D

~—

Q)

Note that the upper boundary condition contains two time derivatives. This is the
Mmathematical source of the wave motion we will be describing. Its physical source is
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the interplay between the gravitational force at the upper boundary providing a re-
storing force and the relation between th e i d
locity at the upper surface.

We must also specify boundary conditions on the lateral boundaries. The simplest

n infinitely broad layer of fluid.

the vertical ve-

o
1<

problem we will consider will be that of a wave in
This is clearly an approximation, and we imagine that such a description will be valid
until the waves to be found propagate and interact with the inevitable lateral bound-
aries of the fluid. Until that time, we may provisionally just insist that the solutions
remain finite as x and y go to infinity. Useful references for formulation of the gravity
wave problem can be found in Kundu (1990), Lamb (1945) and Stoker (1957).

Plane Wave Solutions for Surface Gravity Waves: Free Waves (p,=0)

In Cartesian coordinates, Laplace’s equation can be written as

2 2 2
gx(;) + 3 ? + ng =0 (3.30)
Y

We clearly can’t have a three-dimensional plane wave because

1. the operator (the Laplacian) won’t allow it, since an attempt to Ii 1d such a plane
wave would lead to the condition

k}+k2+k3=0 (3.31)

which is impossible if all three components of the wave vector are real;

2. a plane wave won’t satisfy the boundary condition d¢/dz =0 at z= -D;

3. the boundary conditions of finiteness as x and y get large imply that the horizontal
components of the wave number are real, and thus the vertical component, k; or m,
must be purely imaginary.

We can find solutions, however, that are periodic in x, y, and t of the form
¢ = R(z)e*x+h-on (3.32)

where again, the real part of the above equation is meant. Substitution into Laplace’s
equation yields the ordinary differential equation for R(2),

2
'R x2p=0 (3.33a)
dz?
K2=k24P (3.33b)

. tion will do is determine the structure with depth of
the plane wave solution in x and y.

The solution for R that satisfies the kinematic boundary condition at z = -D, i.e.,
that dR/dz =0, is

<
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R=AcoshK(z+ D) (3.34)

When this form is substituted into the boundary condition at z = 0, we obtain as a
condition for a nonzero solution for A

~wcosh (KD) + gKsinh (KD) = 0 (3.35)

(o)
—t

@=1,/gKtanhKD (3.36)

and

tanhKD|"?
e

There are several important things to note about these results.

w
c=E:i(gD)”2 (3.37)

1. For each wave vector amplitude K, there are two waves propagating in opposite
directions, parallel and antiparallel to the wave vector. The frequency and phase
speed depend only on the wavelength, i.e., K and not on the orientation of the wave
vector.

2. The phase speed is different for different wavelengths in distinction to light waves
or sound waves. A pattern made out of a superposition of plane waves of different
wavelengths will have each component move at a different speed and hence the
pattern will disperse, which is why the relation between frequency and wave num-
ber is called the dispersion relation.

3. There are some important limiting cases to consider.

The maximum phase speed occurs when the wavelength (inverse to K) is long com-
pared to the depth, i.e., when KD < 1. Then the phase speed approaches (gD)"? and is
independent of wavelength in that limit. In that case, when the phase speed is inde-
pendent of wavelength, the wave is called nondispersive. In that long wave limit or
for shallow water waves, = K(gD)"2,

On the other hand, when the wavelength is short compared with the depth, i.e., when
KD >> 1, the dispersion relation becomes independent of depth and @ = (gK)'/2, while
¢=(g/K)"2. These deepwater waves are clearly dispersive. We will have to investi-
gate why the frequency and phase speed become independent of D in this limit.

Now that we have the phase speed, we can check our assumption of incompress-

f!)il%tyi that is, is ¢ < c,. Since the maximum phase speed is given by the shallow water
imit for that condition, it will be satisfied if

\/35« Ca

or

D« Cglg
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For water, the sound speed is of the order of 1400 m s™'. That places a condition
on the depth such that for the incompressibility coaditioa to be valid, we require
D <« 200 km (pretty safe for oceanography, at least E rth)

:,O
"I'J
OQ

The nature of the dispersion relation is evident i showing the frequency,

agraiinh voalacity ag a c11|—1

nase speea ana group vEi1OCity a8 d 1ui

"'h

tinn
Liivil

]

wave num
The dispersive nature of the waves can be contrast
equatlon (which we will see in this course captures onl

anhv and motonralaagv) | PPRN ight

to that of the standard “wave
a small fraction of wave phys-

ics in oceandgrapny ana meweoroidgy). o orl 11gnt waves in a vacuum, sound waves and
waves on a thin string, the governing equation in one dimension is of the form
dp ,d%
>~ ~=0 (3.38)
ot ox
whose general solution is known to be
¢ = F(x + at) + G(x - at) (3.39)

consisting of two pulses traveling with the constant phase speeds *a. The forms F
and G are determined by initial conditions after which the pulses travel without fur-

w, ¢ and ¢y versus kD

3.5 =T T T T -7 | T T =T
]
30F .
25 1 )

w/(g/D)"
20 =
1.5F -
c/(gD)"?

T~ = e— . - —
C /(gD)VZ ...................................................................

00 1 1 1 1 i — 1 1 1

0 1 2 3 4 5 6 7 8 9 10
kD

Fig. 3.3. Curves of frequency, phase speed and group velocity for surface gravity waves
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ther change of shape. These are the classic nondispersive solutions for waves. In our

ase, the waves are highly dispersive and the evolution of the wave shape with time

and unraveling the subsequent propagation of properties in the waves is a problem of

great subtlety and interest. It will eventually, as we might im agme from our earlier

discussion, come to depend on the character of the group veloc city. For gravity waves,

with the dispersion relatlon quoted above

2 VoK Jdw K

¢ = VgK)=— (3.40)

Thus, since the frequency is a function only of K, the group velocity is parallel to
the wave vector and hence parailei to the direction of phase propagation.

A 0 ( 12 oY b
2= = gitanh KD+——} (3.41a)
cosh’ KD
or
K
2cc, = —ﬁg—{tanh KD +—P—l (3.41b)
K| cosh“KD |
and
¢ 1 2KD )
g L) _2KD (3.41¢)
c 2 sin2KD

Thus the group velocity coincides with the phase speed for long waves (KD <« 1),
while for short waves the group velocity is 1/2 the phase speed (see Fig. 3.4).

Wave packet

1

(

p-‘c‘ et pr opagatmg

W 1€ group velocity carries q

a plane w ve with crest moving \ u’ u/
L -

wit

Ve

ii

Wwith the phase speed
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Fig. 3.5. a The group velocity as a function of wave number. b The ratio of the group velocity to
phase speed for surface gravity waves as a function of wave number scaled with fluid depth, i.e., KD
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ose we have a wave packet carrying a s
mplitude and K will move with ‘the grou iile individual crests wiil
move with the phase speed. Since c, is half the phase pe ed for short waves, we will
see individual crests appearing at the rear of the packet and travelling through the
moving packet to disappear at the leading edge of the packet. Where do the crests go?
Well, they are only a feature of the pattern, and they appear and disappear like smiles.
It is the wave envelope moving with the group velocity that has physical content.

The ratio of the group velocity to the phase speed is shown in Fig. 3.5b as a func-
tion of wave number. They are equal for the longest waves, while for short waves the

group velocity is half the phase speed.






Lecture 4

Fields of Motion in Gravity Waves and Energy

Now that we have the dispersion relation, i.e., the dependence of frequency on wave
number (we define the magnitude, K, of the wave vector K to be the wave number),
we can ask what the fluid motion is in the wave field.

Our plane wave solution has been written in the form:

¢ = A KE0D (oo K(z+D) (4.1)

Using the boundary condition at z =0,

d¢
8&n o
since p, has been taken to be zero for these free waves. We can therefore calculate the
free surface elevation from Eq. 4.1 and Eq. 4.2,

nz(i_w\Aei K-%-
vy

and it is understood the real part of each expression is to be taken.
A is an arbitrary amplitude, and it will be useful to consider the amplitude of

the disturbance in terms of the amplitude of the free surface perturbation. So, let’s
define

—~

wt) WK
“cosh KD

M= i(A—w]cosh KD
4

and take it to be real (this only defines the zero of the spatial phase, the point where
the free surface elevation is a maximum). This yields

N =n,cos(K - ¥ —wt) (4.3a)

. @wcoshK(z+D) . - .
P=1,— sin(K-x - wt) (4.3b)

T

|78 s 1
N Sinn Kp

From the velocity potential, we can calculate each velocity component, since i = V.
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for ¢, we calculate the horizontal velocity vector and the

Uy = noa{E-Jcos(I% X—wt) COS}} K(z+D) (4.4a)

ot sinhK(z+ D) _a_TlsinhK(z+D)

1 74 oY

sinh KD ot sinhKD

(4.4b)

From the Bernoulli equation

p=-pgz=p %

ot
we can calculate the pressure field in the wave. (Note that part of the pressure field has
nothing to do with the wave. That is the first term on the right-hand side; it is present even
in the abgence of the disturbance). From the result from the velocity potential we obtain

coshK(z+ D)
coshKD

p=—pgz+pgn,cos(K - X —wt)

|: coshK(z+ D) }
= T’ —-Z
cosh KD

There are some very important qualitative features to note before moving on.

1. The horizontal velocity, iy, is in the direction of the wave vector and hence in the
direction of the propagation of the wave. This is not surprising for anyone who has
lolled in the surf and felt himself move back and forth in the direction of a wave as
it has passed by;

2. Each perturbation variable is proportional to the amplitude of the free surface el-
evation. That is, in this linear problem, the amplitude of every aspect of the motion
is proportional to the free surface elevation. This implies that products of any two
motion variables must be quadratic in the surface elevation (this is what we used to
linearize the surface boundary condition);

3. In the limit of deep water or equivalently short waves for which KD > 1, the as-
ymptotic forms of the hyperbolic functions imply that

K(z+D)
cos}.lK(z+D) _e —ek2 <0 (4.6a)
sinhKD kP

sinhK(z+D) KD Kz
. = =e (4.6b)
sinh KD kD

so that all the dynamical variables decrease exponentially from the free surface.
The scale of decrease, as imposed by Laplace’s equation, is just the wavelength.
Hence, for waves whose wavelength is short compared to the depth, the motion
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decays long before the bottom is reached. The wave field then does not sense the

comre nftha hattan Thic ig why tha fraaniancv/wayve nitmber vralatinm

pI'ebCllLC of tne oottom. 1nis is Wiy tie ucniucu\,yl wave Nuinoer 1c1c1uU11 becomes
independent of D as KD gets large. It’s a good rule of thumb to remember for grav-
ity waves; the depth of influence of the wave is its wavelength.

4. For very long waves, or equivalently, for shallow water, such that KD—> 0, the
limiting form of the hyperbolic functions yields
_ K
Uy = (—TI—)C— (4.7a)
D) K
)
w=2L(z+D) (4.7b)
ot
p=pg\n-z) (4.7¢)

In this limit, the horizontal velocity is independent of depth. Its magnitude is the ratio
of the free surface elevation to the depth multiplied by the phase speed. Thus, as long as
N/ D < 1, it will follow that i/ ¢ < 1, which is the condition for linearization. The verti-
cal velocity is proportional to the rate of displacement of the free surface, linearly dimin-
ishing to zero at the bottom, and the pressure field is in hydrostatic balance in this limit.

It is left to the student to show that in the short wave limit, KD < 1, the condition
for linearization, u < c, leads directly to the condition 7),K < 1. That is, the free sur-
face displacement divided by the wavelength must be small, i.e. the slope of the free
surface must be small.

Energy and Energy Propagation

The kinetic energy in a gravity wave per unit volume is simply
12
pli
2

where the magnitude of the velocity is denoted by the vertical bars. Integrated over
depth we have the kinetic energy per unit horizontal area,

T Pl
KE= | dz—_- (4.8)
The potential energy per unit horizontal area is
PE = ngzdz :%(ﬂz —Dz) (4.9)

-D

Note that the term proportional to D? in the PE is an irrelevant constant. Note, too,
that we have integrated to the free surface elevation 7 in the expression for PE but only
t0 z=0in the expression for KE. The reason for this is that we are calculating the en-
€Igy to the second order in the wave amplitude, and to do this for the PE we must in-
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clude the free surface displacement If we were to extend the integral for KE to include n

1 + lini ~ e tho aynrace] for T wai 1d ke of N ~f
in the upper luuu, the correction to the €xXpression 1or KE would be of U\u ll), i. €., 01

third order in the small wave amplitude and hence negligible. So the above integrals
as stated are each of order amplitude squared.
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from the governing equation, which is Laplace’s equation for the velocity potential.

An excellent discussion of wave energy and its propagation can also be found in Kundu

100N and Cealne /1QE7)
\177VU) ailld OlOKCI \1707/ ).

We multiply that equation by the time derivative of the potential, viz.

00 _, 0 F)Vfb
0=2v%=v Ly, I—
ot ot ot
(4.10)
- 2O |,y (205,)
o 2 T\ ?

We recognize that the first term is (minus) the rate of change of kinetic energy per
unit volume.
Let’s now integrate the above equation over the depth of the fluid.

~ 0 0 7 ~N N\ 0

J " ) Y d¢ y 00 d¢

—— |dz(Vg) 12+ | Vy-| Vo— |dz+ dz=0 4.11
at_{f‘ 7 _£) HL ¢atJ2 _{)azLaz ath (.10

Here the symbol V| is the portion of the divergence in the horizontal plane, i.e.,

- 9Q, 9IQ,
v..0=20% ., "%
R T

where Q is any vector.
The last term in the equation above can be integrated, and the resulting terms evalu-
ated using the boundary conditions. Since d¢/0dz = 0 at z = -D, while

9¢ _9n (4.12a)
0z ot
g
L =—97, z=0 4.12b
5 8 2 ( )
we obtain
dz(V Vy (vp22 4 o )
-= 2+ e /A 4.13
jz( o) {) ("’athg”a or (4.132
a_,,f = o
—|KE+PE|+Vy{-3=0 (4.13b)
at
0
= [ 29 paz (4.130)

U'
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That is, the rate of ¢ hange, locally, of the total energy per unit horizontal area is bal-

tha fliga Afrwave puor & ) I 1 srortne
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This horizontal ﬂu x can be easily interpreted physically, since

L

A
011/ _ —
5 Vuo=(p+ pgzluy (4.14)
and (p + pgz) = p',which is the part of the pressure field due to the wave activity. There-
is t e pressure field in the wave is

_ amnt ~F tha fliy r‘ +tNn ann
one Pdlt 01 e niul LU dliuul

doing work on the surrounding fluid. That
oar h Py
for energy balance equations of the above type, i.e.,

v ch
y 11UuA. YVYC Ol l 11 UJ.L 1

OE
ot

9= 1 V.3 =sources+ dissipation

that is, the rate of change of wave energy locally and its flux to other parts of the fluid
balanced by sources and sinks of energy. In the present case of a free, inviscid gravity
wave, both the sources and sinks are zero.

An interesting question arises here. If, as we believe, the important physical at-
tributes in the wave field propagate with the group velocity, can we relate the energy
flux vector to the group velocity?

First, let us calculate the kinetic and potential energy in the field of motion of the
plane wave we have been discussing. To make life easier for ourselves (always a good
idea) let us orient our x-axis to coincide with the direction of the wave vector. Then,
since the horizontal velocity is in the direction of the wave vector as shown above, there
will be only the x-component of the horizontal velocity to deal with along, of course,
with w. In this coordinate frame, K = k.

The potential energy is easy to calculate:

PE= pg”O P20 cos? (kx - ) (4.15)

This form oscillates between its maximum and zero during a wave period. The signifi-
Cant quantity for our purposes is the average over a wave period, denoted by brackets, i.e.,

@m:%%

E) (4.17)
4
For KE we have
~ ) _
cosh” k(z+D
0 0 cos’(kx—at) 2( )
KE= fdznh 24-1,112\1’): f A2 Slnh kD 1~ /9 (A 1Ra)
J ,/\vl- v jl 4 J ,.IIIOW Lz 1 I n\ NALC [ L \1 LUal
-D -D ] sinh” kK{(z+D
+sin?(kx—awt) - .
L sinh? kD

and
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o ‘-costh(z+D)d ot sinh2kD
p 4sinh®kD o Sksinh? kD

(KE)=pn

(4.18b)
sinhkDcoshkD pgﬂg'

4sinh® kD 4

In deriving this result, we have first used the averaging of the cosine and sine terms
Over a wave period then the 1dcuut‘y’ relaung the square of the cosh and sinh terms to
cosh of twice the argument and then finally the dispersion relation itself to write @?
in terms of the wave number.

We note the important fact that averaged over a wave period (or a wavelength if we
were to average in x instead of t), the kinetic and potential energies are equal; that is,
there is equipartition of energy in the wave field between potential and kinetic en-
ergy exactly as in the oscillation of a pendulum.

The total energy averaged over a period is

2
(E)=KE) +(pE) =& (4.19)
A/ \ / \ / 2

Now let’s calculate the energy flux vector in the x-direction and its average over a
period.

0p0¢, _1_pPm@’

—zcosz(kx —wt)cosh? k(z+ D)dz
b Ot E)x _Dksinh kD

5,=—p 2

,0770 1 cosh 2k(z+D)
(Sx 2 I "y Z
2ksinh“ kD 2

2

n
—4i

P’ [ D sinh 2kD}

~ 2ksinh?kD ak
2 .
_ Pﬂocsz gtanh kD[l+ smh2kD:|
2sinh“kD 2 4kD

__P8Nyck(D/2) [ 1, sinh2kD

- (note that 2sinhkDcoshkD =sinh2kD)
sinhkDcoshkD| 2 4kD

1 kD
= pgige [ —}

4 2sinh2kD

2
_Pgm [1, kD
2 2 sinh2kD

_ P8R

={c.E) (4.20)
\ /
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The important result obtained here is that for a plane gravity wave, the horizontal

flux of energy is equal to the energy itself multiplied by the group velocity. That

is equivalent to saying that the energy in the wave propagates with the group velocity.
That is, the energy equation may be written:

L4V (E)=0 (4.21)

In a uniform medium where the frequency and wave number are essentially con-
stant, the group velocity will be independent of position. Thus for a wave packet, whose

:
averaged energy just depends on the distribution of its envelope of free surface height,

the above equation can be rewritten

%?*QV(EH (4.22)

which states that for an observer moving laterally with the group velocity, the energy
averaged over one phase of the wave is constant. The energy in a slowly varying
packet travels with the group velocity in a homogeneous medium.

We will generalize this result to cases in which the energy is not simply contained
in a compact packet, and we will see that the generalization also allows us to think of
sequences of energy packets, each propagating with a group velocity appropriate for
the wave number of that particular packet, which together with its companions rep-
resents an arbitrary disturbance.

Addendum to Lecture

With the velocity field given by the velocity potential, we can calculate the trajecto-
ries of fluid elements in the plane wave. Let & and { be the x and z displacements of
the fluid elements around some original position (x,, z,). Then if the displacements
are small, we can linearize the Lagrangian trajectory equations:

coshk(z+D)
m =u(xy+&,2y +,t) = u(x,,2y,t) = 1], cos(kx—w)—m— (4.23a)
and similarly
. sinhk(z + D)

——=w(x,,2,,t) = wn, sin(kx —ot) ———M= 4.23b

dt (%0229,1) = 7o sin( ) sinh kD ( )
Integration yields

& =1, sin(kx — a,)w (4.24a)

sinh kD :
{= 1], cos(kx — M)M (4.24b)

sinh kD
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It follows that the trajectories are ellipses, i.e.,

S

L_2 LZ (4.253.)
coshk(z+ D)
L =p,— "7/ 4.25b
x = sinhkD ( )
sinhk(z+ D)
L = 4.25¢
==l sinhkD ( )

Thus, the orbits are flat at the bottom of the fluid layer where L,= 0. For deep wa-
ter, the two axes of the ellipse are equal (7€), so the orbits are circularly shrinking
in radius as z becomes more negative. For shallow water, the orbits reduce to essen-
tially horizontal lines parallel to the bottom. The student is asked to discuss the direc-
tion of motion along the ellipse as the wave passes overhead.
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The Initial Value Problem

It is not easy to see how a uniform or nearly uniform wave train can realistically emerge
from some general initial condition or from a realistic forcing unless the initial condition
or the forcing is periodic. That turns out not to be the case, and the ideas we have so far
developed about group velocity and energy propagation turn out to be invaluable in get-
ting to the heart of the general question of wave signal propagation. Indeed, it is the very
dispersive nature of the wave physics (i.e., the dependence of the phase speed on the wave
number) that is responsible for the emergence of locally nearly periodic solutions. This
can be seen by examining the solution to the general initial value problem. This was first
done by Cauchy in 1816. It was also solved at the same time by Poisson. The problem was
considered so difficult at that time that the solution was in response to a prize offering of
the Paris Académie (French Academy of Sciences). Now it is a classroom exercise.

We will again consider a disturbance that is a function only of x and z (and ¢ of course),
and we will consider the problem unforced by a surface pressure term, i.e., p, = 0.

The layer is again of depth D and it is initially at rest.

As initial conditions, we will take

1(x,0) = N(x) (5.1a)
U(x,2,0)=0 = ¢(x,2,0)=0 (5.1b)

The governing equation for the velocity potential is Laplace’s equation, which for
two dimensions is

o 9%
— 4+ 7 =0 .
dx? dy* (5.2)

with boundary conditions:

Q
N
N
I
|
>
~~
192}
(OM)
<™
~—

)
l N2 o
5 0z dtjz=0:>M+g_¢=0’ 2=0 (5.3b,c)
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Since the region is infinitely long in the x-direction (in our approximation of abroad
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conditions are independent of x, it is appropriate and useful to represent the solution
as a Fourier Integral. You may want to brush up on the Fourier integral by looking at

anrir nmnao ~nf smitmmmhoan Af atanmdawd mratha atiral tavte o Mnaven anA Ennl\l\nrl\ {1 Q:Q\
all VUl11C U1l 11u111uc1 Ul stalilialu 111aLuc1uaL \,cu LCALYy 906. AVIUL1OC aAllul 1'Lolluvanill \LJJJ}-
Thus, we write the velocity potential as
1 tkx
P(x,2,t) = [@(k,z,1)e™dk (5.4a)
v2m 2,
writh tha A11al vati1vrn ralatiann
¥viill L11C Uludl 1Cilulll 1clatlivll
1 % -
Phs)=— [o(x,2,1)e ™ dx (5.4b)
2017,

Note that the placement of the factors 21 is somewhat arbitrary, and different con-
ventionsare used. The only requirement is that the product of the constant before each
integral multiplies to am.

Similarly for the free surface elevation,

7(x1) j N(k,t)e™*dk (5.52)
«/Er_m

N(kB) = [nk.ne=*q (5.5b)

AV \Ivyt ) \vré v NN \Jvy

What we are doing is representing an arbitrary disturbance by an infinite sum of
plane waves in x, whose wave numbers are a continuous distribution over all k, which
is why an integral is required for the representation.

If the above representation for the potential is put into Laplace’s equation, we ob-
tain as a condition for the solution that at each wave number k,

o’

——k’®=0 (5.6)

Jz

UL

while the boundary conditions become

2

aaT?_}. %g:(), z=0 (5.73.)
z

aaf 0, z=-D (5.7b)

and the similarity to the plane wave problem should be apparent. Indeed, the solution
for @ can be written:

d(k,z,t) = A(k,t)coshk(z + D) / sinhkD (5.8)
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This satisfies the boundary condition at z = -D. Satisfying the boundary condition
on z = 0 requires
2
i-’3—+a)(k)2A=0 (5.9)
dt
where
w(k)* = gktanhkD (5.10)

A(t)=a(k)e Pt 4 p(k)eiek) (5.11)
so that
—iwt~COshk(z+D
@ =(ae'” +be™') m.f:,n ) (5.12a)
=
p=— [lacier + perior Joir OSRZED) o (5.12b)

NG a sinhkD

—00

The solution for the velocity potential consists of a sum of waves. For each k, one is
movmg to the left (the first term in square brackets) and the other is moving to the
right (the second term). Each one is moving with the frequency associated with the plane
wave at that k and with the vertical structure function of the plane wave at that k. The

total solution is the integral sum of all the plane waves excited by the initial conditions.
Since

M(x,t)=— j[ae"‘” be™ ' ]ia)eikxcotthdk (5.13b)

gﬂ

at =0 the velocity potential and its derivatives vanish. Thus for all k,
a(k) = -b(k) (5.14)

and using the dispersion relation ¢? = gk tanh kD,

__1 ib(k)kdk ot | -iet
n=—o [ Dkdk
Jﬂ_{, @ [ ] (5.15)
att:()
1

n=1,(x)= TNO(k)eik"dk (5.16)

21 _



44

Lecture 5 - The Initial Value Problem

which implies that

Ny(k)w
b(k) =0 (5.17)
2ik
or
1% No(k)r 1t —ion | ikx
n(x,t)= J' e +e Je dk (5.18)
N2m o, 2
which has a simple interpretation, namely, that half of the initial condition at each k

propagates to the left and the ther half propagates to the right, each with the phase
speed, frequency, and wave number relation of the plane wave of that k. We might have
written down the above equation directly from our knowledge of the plane wave phys-
ics, but it is useful to go through the formal derivation at least once. Incidentaily, now
that b(k) is known,

- G 4

t [ ; Zior | ik cOShk(z+ D)
J' _Zilezax _e it ezkx ( )

=i
¢ «/ﬂ_ sinhkD

This yields the formal solution to the probiem, but it doesn’t take much to realize
that a solution written as an infinite integral is not very revealing, and our real work
in understanding the physical nature of the initial value problem has just begun.

But first, to simplify things, let’s assume that the initial condition on the free sur-
face height is an even function of x around the origin, namely, 1,(x) = 1,(-x). It fol-
lows from this that the Fourier transform of the initial condition, Ny(k) is an even func-
tion of k. To show this,

(5.19)

(=]

I_’kxﬂ( )Jdx letx=—¢, then (5.20a)

1
Vom .,
N Te""fn(—r:)d5=7;=n JeOin(e)ag

—o00o

Ny (k)=

Ny(k)=

=N, (-k) (5.20b)

where in the last step we have used the evenness of 1(x). Since N,(k) is an even func-
tion of k,

l (e =]
PO {ar 11\---,‘L-ikXJ1.
n= JINglK)cos aKk
N2T S,
1 (e =]
_ (AT (LN e rixt e Lard L
—_ /— JLV O\I\)LUDLUI CUOOAAUN
V2T _,

=+/2/T JNO(k)cosaxcoskxdk (5.21)
0
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interval to the range (0,o0) in our k integra-

a well-known identity for the unctions

P35 i L 9 LV i1 ARe [ 9%

n= \'E;j.No(k)[cos(kx +wt)+ cos(kx — a)t)]dk

ZRC‘E J.No(k)[el(kx+ax) +ei(kx—a)t)]dk (5.22)
Vit

. \

i 1e solution in the above formulae).

——d wae g
L

1
At this point, we are still in the position of having our solution given in terms of an
infinite integral. What can we say about the solution? Will some useful approximation
teach us anything?
For short times, i.e., for a very small £, we could expand the expression for 17as a power
series in t, the first term of which is the known initial condition. That can allow us to ex-
amine the initial evolution of the disturbance. We might rightly object, saying that the ini-

)

be much more illuminating to ask about the solution after a long time has passed so that

the wave field can evolve to a state that reflects the general properties of the gravity wave

field. Can we say something more useful, then? It turns out we can, using a classical method

of approximating integrals of the type we have above: the method of stationary phase.
Our integrals for the free surface height are of the form

ne E?No(k) itz +eity/(k)]dk (5.23a)
ny 2

x(k)=k(x/t) + w(k)t (5.23b)

w(k) =k(x/t) - w(k)t (5.23¢)

and we would like to evaluate the integrals above for a large t and with the ratio x/t
fixed. This is equivalent to saying that for a large ¢, we are evaluating the integrals
moving away from the origin at the speed (arbitrary) U= x/t. So, for a large t, an
arbitrary x should be chosen, which is also large. That determines U = x/ t,and we want
to find the value of the integral at that time and at that point.

The disturbance for x > 0 will be given by the second term in the above integral, so
consider the second integral in the equation for 7. Suppose that the function y(k) does
10t vanish on the semi-infinite k interval. Then we could change the dependent vari-
able of the integral from k to y, and obtain

‘ (=] - -
< N ;
77: — 0 Itl,l/d
\/n OI 2dy/dl)° Y (5.24)

tacswasl

tiegration by parts yields

Tr
aL

U Y L.

it dy/dk it

_— 25
it dy dy/dk (5.25)
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so that the disturbance would decay at least as fast as 1/t (in fact it will decrease much
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(1962) or Stoker (1957).
This rapid decay with time is due to the fact that while Ny(k) is a smooth function

~illatoe vory
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rapidly when t is large as a function of k, so that contributions to the integral from
some interval in k are cancelled at k + Ak by a factor of the opposite sign, as shown in
Fig. 5.1

Thus, as long as y(k) increases smoothly with k, the factor e¥(¥) will oscillate very
rapidly as a function of k for a large t, unless in the neighborhood of some point k, the

frimrtinn urfle) Aape mn-f svrvpoace with kb 10 snloce that bnint 1¢c a1 ctntinnavry bnint at
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. 1
which
E?%kﬂ (5.26)

At such points, the phase function y will not increase with k, and there is an op-
portunity for the integral to accumulate value in that neighborhood.
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Fig. 5.1. The behavior of the exponential factor for a large ¢ showing the interval of stationary phase
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To find such points of stationary phase:

y=kU-w(k), U=x/t (5.27a)
d 174 - -
_,%zozU—aw/ak:x/t—cg(k) (5.27b)
Thus at a given x and ¢, or for an observer moving away from the origin at a speed x/t,
the wave number of stationary phase, k; is given by that wave number whose group
velocity matches the velocity U= x/t (Fig. 5.2).
We note that for a ngn x/t, a stationary phase wave number can be found as
i s than the maximum value of ¢; in the whole k interval. Since the

long as x/tis less
maximum value of the group velocity occurs for the longest wave and this maxi-
mum is \/—D we ant1c1pate that for time ¢, the disturbance will be limited to a region
x < WgU Thus, there will be a front moving out from the origin at the speed \ng),

ahead of which the fluid will be essentially undisturbed and behind which the solu-
tion will be given by the asymptotic approximation to the integral we will now de-

¢y as a function of kD
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Fig. 5.2. The curve of group velocity versus KD. The point of stationary phase corresponds to x/t =,
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Front
<
| Disturbance limited to this region {
. | {
Fig. 5.3. Xx=0
The interval for which the }
disturbance can be found e
for a large t x=4/gDt
Consider the integral:
"t ity No(k)
1= [e"V dk (5.28)
0 2

As we have argued, for a large ¢, the major contribution from this integral comes
from the interval in k near the stationary point k. Near that point, we can write

d

2
mm:m@n(fuﬁ(kk)+dwm)m k) + (5.29)

H_/
= 0by defn.

Thus the integral can be approximated as

<, o 2
[~ Ieltl//(ks)eltl// (ks)(k—ks) /2N0(ks)dk/2

y =dy/de

Note that we have replaced Ny(k) by its value at the stationary point. This is valid
since only in this vicinity will the integral have an asymptotic value greater than 1/t
and N, is assumed to be a smooth function of k and hence much more slowly varying
than ty for a large t.

Thus,

~
U
oY
()

N

_ Ny(k.) ; < R,
[~ 0; s)em//(ks) Jrem// (ks )k—ks)? 123

—~
w
w

~—

0

where the integral really extends over a region centered on k.

Let
1..7/1 \I(k_ks)2 2
W e t=0 (5.33a)
or
(/ \\1/2
ek, =} —— (5.33b)
v (k, )|t
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This allows the integral to be written:

3 Ny (k) eitviks)

i sgny” (k)
— j ds (5.34)

2 {t ]
where the extension of the limits to plus and minus infinity follows from the relation
between k and @ for alarge t. The remaining integral is a standard one and can be found

in almost all integral tables:

‘]’.ewz sgn'//'(ks)dﬂz_\/Eei("/‘l)sgn'//(ks) (5.35)

—00

Putting these resuits together leads us to our final formuia for the asymptotic solu-
tion for the initial value problem for x > 0 and for a large #:

N K ; ”
n~ 0\ i/z ez(ty/(ks)+[‘itl4]sgn1,y (ks)) (5.36a)
AUN
W=i:—k-—(1)(k) (5.36b)
Discussion

Now let’s try to interpret the solution, valid for a large x and ¢, shown in the boxed
equation above.

We can think of the solution in the vicinity of the point (x,t) as a plane wave with
amplitude:

N, (k)
A=—0Ts/ (5.37)
vy (k)
and a phase
O(x,t) =ty = kx —w(kg)t (5.38)

Notice that since the wave number k; is a function of x and t through the station-
ary phase condition

@
m (k)=x/t

the dependence of the phase of x and ¢ can be rather complicated.
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However, consider our generalized definition of wave number:

26 aks 8(0 ok
s HX
ox ox ak o0x

ok,
—k, +—a-x—[x—cg(ks)t] (5.39)

Hence, the local variation of phase in x is equal to k for x/ t = ¢,(k,), i.e., for an ob-
server moving away from the origin of the disturbance with the group velocity asso-

~1atod with that vwave niimhe v Ciivthor t+that ~anctant ecnond the wave nitmhe
ClalCul vviill Lllal wave llulllucl rur Lllcl, llluvllls aL lllat Luiliolalit DPLCU) Ul wave 11u111uc1

remains constant if the observer moves with that group velocity. Similarly,

_99_ s [e—c k] (5.40)
ot ot °

so that the frequency will be equal to w(k,) for an observer moving at the group speed
at the stationary wave number.

Thus, at some point in the wave train, the disturbance will look like a plane wave
with the wave number and frequency (@, k) related by the dispersion relation, and these
local parameters will remain constant as the point moves away from the origin with
the group speed. In other words, the wave number and frequency propagate with the
group speed even though the original disturbance need not be anything close to a peri-
odic form. This is a result valid for a large t. What has happened is that the spectrum of
the disturbance sorts itself out wave number by wave number such that the part of the
disturbance with wave number k, propagates with its group velocity to the position
x = c,t. This happens for each k. The part of the spectrum with the fastest group veloc-
ity (the long waves in this case) will be found out in front and the slow waves will bring
up the rear. This explains why, although the initial disturbance may be quite different
from a plane wave (e.g., a gaussian in x), the disturbance with time can be locally ap-
proximated by a plane wave, justifying our earlier concentration on the properties of
plane and nearly-plane waves. It is the dependence of the phase speed and group speed
on k that disperses the original signal into a parade of local plane wave perturbations.

At any fixed x, the wave number will change with time as slower, shorter waves ar-
rive at that x.

Again, let’s consider the phase

0=ty =kx—awk,)t= kt{’t‘ k)

J kt[x/t—c(k,)] (5.41)

S

Thus, if we move in such a way as to keep the wave number constant, x / = c,(k) # c(k,);
then the phase will change for the observer. Such an observer will see individual crests
and troughs moving past at a rate that depends on the difference between the group
and phase velocities. If, on the other hand, one wishes to follow an individual crest, so
that we set x/t = c¢(k), then from our above results,
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kz_aﬁ_k +aks t[c c ] (5.42)
ox ox
so th

at following an individual crest implies that the wavelength associated with that

will he changoino w1 ith time Tn thic nhvcicre vair ~an aluwave
YVilii U \.«11(41161 16 ¥Y1lll Lilliu, 111 L1110 1}11] Ol\r\)) ]Uu vall alyvy u]o

you want, but it may be repeatedly changing size if you insist on staying on the same
horse. In order to ride a horse that is always the same size, you will need to constantly

o Qa o
11C oallic

We can work this out analytically and explicitly in the limit when the water is so
at

deep that for all wave numbers possessing any reasonable amount of energy in the
cmartriim kD >1.Int ie lhmit
hPC\,Ll Ullly NS de L1l LALLD 1111111y
w=(gk)"'? (5.43a)
1/g\l/Z c
==& - (5.43b)
8 ZLkJ 2
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Fig. 5.4, The uppe

r panel (a) shows the free surface at a fixed time. Note the long waves out in front
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f AL PRI AN S1IUWD LU Sullalt ITIEIHIL 1ICIU ad a 1UllCUIUI1 U1 LIC al a4 11ACU PUllll 111C 1UW
requency waves (small k) arrive frst and the hisher freaiiencies arrive later cimee thev have <lower
vvvvvv \vilidll Ay @alllve 1110t aliud Ut IIELHCl 1IICHUCTICICS al11VEe 14l J1IILC UICY 1lave dluwll



52

Lecture 5 - The Initial Value Problem

To find what the wave number of stationary phase is at the point x at time ¢,

1 1/2
Cg=x/t=— £ (5.44a)
2\ k,
k=180 ok y=Lgt/x (5.44b)
54 42 2
9(k8)=ksx—(gks)mtz—igtzlx (5.44¢)
(k) =2/t (5.44d)

Note that at a fixed position, the wave number increases (waves get shorter) with
time, while the waves with the slower group velocities arrive later. At any given time,
the waves get longer (k gets smaller) as x increases. Note that the phase at any x and ¢
will change with time according to the ratio gt*/ x. To ride a particular crest, an ob-
server must then move so that x o< t2, that is, the observer must accelerate with time to
keep up with a particular phase. To follow a particular wave number, the observer must
move at a constant speed equal to the group velocity for that wave number. Hence, for
dispersive waves, one can not simultaneously keep to the same phase and the same
wavelength, since the phase speeds and group velocities are not the same (Fig. 5.4).



We have seen that the initial spectrum of the waves, which is initially localized
in space, gets strung out with time so that at time ¢, each wave number appears at
x = cg(k)t. We might expect that the energy, if conserved, would also be distributed
by wave number, so that the amount of energy at wave number k in the original
spectrum at wave number k would also be found at the position x = cg(k)t for a large
enough time. This is as if the original disturbance is composed of an infinite number
of packets of constant wave number, each of which moves away from the origin of
the disturbance with its own group velocity. Each satchel of energy moves with
the group velocity (Fig. 6.1).

Let’s try to make this more quantitative, and we will at the same time be able to
explain the inverse dependence of the amplitude on the square root of time found

in the last lecture. The energy in the gravity wave field is, as we have seen, propor-

PRI P, I oI IR Y U LU DU » YN S [N TP T o
toildl 10 Ul€ S5(uUdIic Ol LIC 11CC SUIldCC AISPlaCCIliciit. by d4 1ullddIinciitdl ticorein ol
Fourier analysis,
(=] o0
Pg (.2 P8 2
E="% |n’dx fIN(K)|"dk (6.1)
2
—-—00 —00
which only states that we can count the energy in space or with the wave number spec-

Now, following an argument due originally to Rossby (1945) consider the energy
in a spatial interval between x, and x, + Ax, such that the center of this infinitesimal
interval is the place where the wave number k, is found at time t.

Again, x = cglks)t.

tcg(k1) tcg(k2)
R AN
I Ve > X

:'9- 6.1(: A disturbance initiated by an initial source of energy, S, propagates away and is distributed
mong “suitcases” of energy, each moving with its group velocity



54

Lecture 6 - Discussion of Initial Value Problem (Continued)

original spectrum by the relaticn
dc 0w
Ax,=t—2| Ak =t— Ak, (6.2)
Ok )y ok

The energy in that spatial interval from our asymptotic formula for the wave height

will be (assuming N, is an even and real function)
2 NO(ks )2
N Ax=— —cos(B(k,)+isgn(a’ (kg )T/ 4)Ax, (6.3)
(192 1)~

N

Averaging over a period and using the above expression for the interval length,

PAx = No(k,)’

——3~Ak, (half goes the other direction) (6.4)

The above expression is a function only of k, and so will remain constant for an
observer moving at the group velocity. Thus, the energy in the original spectrum in
the wave number interval Ak is conserved as it propagates outward with the group
velocity. The length of the interval that energy is contained in continuously and lin-
early extends with time, because the group velocity is slightly different at the leading
and trailing edges of the interval, since k is a continuous function of x at a given time.
In order to have the energy conserved, the product of the amplitude squared times
the interval length must be constant. Since the latter increase linearly with ¢, the am-
plitude must decrease like t/? to conserve energy. This explains the square root fac-
tor in the result of the previous lecture. Note that the contribution to the wave ampli-
tude for those parts of the integral not near the stationary phase point will decline at
least as fast as 1/t. Then as time goes on, the stationary phase contribution will be-
come increasingly dominant.

In the sense described above, the energy propagates with the group velocity. That
is, energy present in the original spectrum at a given k finds itself at a position con-
sistent with the group velocity as the propagation speed for energy.

Looking carefully at the result for the amplitude, we note that there is a potential
difficulty with the expression for those values of k corresponding to the maximum (or
minimum, should one exist) of the group velocity. At such values of k,

’w Odcg
= — :U

ok ok

—
.Cl\
w

~—

and a singularity occurs. This, of course, coincides with a particularly interesting po-
sition in the wave train corresponding to (in the case of the maximum) the very front
of the wave train where the fastest group can be found. Since the second derivative of
frequency with respect to k vanishes at that k (this would be k = 0 for the gravity wave
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case), the expansion of @ as a function of k around k, must be carried to a higher or-

tn nrdoe (I 1 \3 A Aicriieginn AfFtha aguvrmntntis ~an ha fatinnAd Tn ‘Mf\“‘v +nwta
uCl, l C o U VUILUCL \AMNT N } o L) \.uox,uooxuu UJ. l.llc aoyluytuu\,o Lail vC 1uuliu 11 1auy LCAL

(e.g.» Whitham 1974 or Stoker 1957). As one might imagine, since the group Velocity is
changing much more slowly where the derivative of the group velocity is nearly zero,

sLa ntarval enraade mara clawly and tha amnlitinds dAarvraacoe marae olawrlyr in tha
L11< /\ llll\'l val Ot]l\.’auo 111VU1C Dluvvly allu Liio alllyllluu‘ uUltulicaoco 111u1C DJUWI)’ 111 LllC

local area near the front, i.e., like t V3. Indeed, it is easy to show that for the front of the
gravity wave train, the asymptotic formula previously derived must be replaced by

1 N (O) T X —cot
n= A. , Co=+/gD (6.6)
2 D (ct/2D)”* ' Dcyt/2D}? )
where A, is the first Airy function that is a solution of the ordinary differential equation
d’4
21 —xAi =0 (67)
dx

so that it is oscillatory for negative values of its argument but exponentially decreas-
ing for positive values of its argument, as shown in Fig. 6.2.

Airy function representation of wave train near leading edge

o
o

I 1 I T Ll | I T T

04 L e a e e . P . - _4

0.2 ’[\

0.0}

-0.8 1 1 1 1 1
=10 -8 -6 -4 -2 0 2 4 6 8 10
X — Cot

-

Fig. 6.2. The Airy function describing the behavior of the wave amplitude near the leading edge of
the advancing wave front
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Wave packet
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Fig. 6.3. The wave packet described by Eq. 6.8

Another example that is also illuminating occurs when the initial spatial perturba-
tion is nearly a plane wave. Suppose that at time ¢ =0, the spatial distribution of 7 is of
the form (Fig. 6.3)

1= Nye ™ xo)zcoskox (6.8)

The wave packet is shown above. By using standard tables of integrals, it is easy to
show that the Fourier amplitude of the disturbance is

N(k)= 71_2—x0e_(k_k°)2 x5 /4 (6.9)

and is shown in Fig. 6.4.

Notice that the confinement length in x is x,, while the width of the spectrum is of
order 1/ x,. Thus, if the disturbance is broad in x, approximating a plane wave slowly
modulated by the long envelope, the spectrum is ver‘,; narrow in k space. This, of course,
is the basic content of the quantum mechanical uncertainly principle, where k and x
are the momentum and position coordinates. We do not need to get very fancy here,
but it is important to note that with an N(k) so sharply peaked, the formula we previ-
ously derived for the evolution of the free surface,
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Fourier amplitude xo = 15, ko = 6.2832

Fig. 6.4. The Fourier amplitude of the wave packet of Eq. 6.8

1 J- Nz(k)[ iot +e—ia)t]eikxdk (6.10)

77(x t)_ ,\/_

can be evaluated using the fact that for k distant from the spectral peak at k = ky (noth-
ing whatever here to do with stationary phase), the integrand is essentially zero.

No Je~tkokoP*sd r4ihx-00) g

77:
N

~_No oi(kox—a(ko)t) J‘e—(k—ko)2x§/4 ei([k—ko][x—cgt]—i(k—ko)Zw’(ko)/2) dk

N (6.11)

The integral is a standard one and the result is

n = XoNo _itkox-aky)t) ~(x—cg(ko)t)? 14(Ax)?
H 2Ax A%

—~~
(@)
:—.l
5%

N—

where

(Ax)*=x}/4 + iw"(ko)t (6.13)
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The origin of the Gaussian packet is now centered on the position c,(ko)t, and it
spreads (a little more algebra is needed to put this in real form, but the result is clear)
linearly in time, yielding an amplitude that decays like the inverse of the square root
of t. This is very similar to our stationary phase result for an arbitrary initial condi-
tion and emphasizes that the result we achieved there can be thought of as an infinite

collection of packets of the type described in this idealize example.



Lecture 7

cm——— —

Internal Gravity Waves

In both the atmosphere and the ocean, the fluid is density stratified, i.e., p = p(z) (it is
also a function of horizontal coordinates and time) so that usually dense fluid under-
lies lighter fluid. This stratification supports a new class of waves called internal waves.
Internal waves are designated as such, because the vertical structure of the waves is
oscillatory in z (contrast with the surface gravity wave) and most of the vertical dis-
placement occurs within the fluid as opposed to the upper boundary, as in the gravity
wave example we have just studied.

We will consider the problem in the simpler incompressible case appropriate for
the ocean. The generalization to the atmosphere is straightforward if a bit more com-
plicated (see, for example, Gill 1982 and also Lighthill 1978, for the generalization).

For an incompressible, stratified, nonrotating fluid that experiences small pertur-
bations about a state of rest, the rest state is characterized by

u=20 » P= pO(z) > P :PO(Z) (7.1a—c)
Po__pg (7.1d)
0z

If we examine small perturbations about a state of rest, the equations of motion,
assuming that the motion is frictionless and adiabatic’, are

ou op

= __YF 7.2
T T ax (7.22)

ov ap

U 7.2b
Py py ay ( )

ow op

T __Zr _ 2
Po o 2 2,4 (7.2¢)
al, ay a‘w
ou, ov 9w _ 7.2d
ox dy ¥ 0z 0 (7.2d)
-E9£+” apo =0 (7.2¢e)
ot z \ J

The stu dent is asked to remind him(her) self what is required to make these assumptions in a
consistent fashion.
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where we have written the total dynamical fields for density and pressure as

Protal=Pot+ P> P <Py (7.3a)

4+ +“~

Ftrotal — PO TV >» VPO (7.3b)

so that all the non-subscripted variables in the above equations are perturbation

ntiti Ra 1
quantities. Be sure to note again that the last equation is the equation for adiabatic

motion, i.e., the energy equation. The condition for incompressibility is expressed
by Eq. 7.2d.

A 1 1 1al f +h K
A very simple special case of t 7

1 . . 1 7 .1

locities are identically zero, and when the pressure perturbation is also zero and the
vertical velocity is independent of z. In that case, the first, second and fourth equations
are trivially satisfied, and the combination of the third and fifth equation leads di-
rectly to

2 L od
0w —0 (7.4a)
ot*
N:="89P (7.4b)
Py 0z

For consistency, the quantity N must in this special case be independent of z to al-
low w to remain independent of z. N is called the buoyancy frequency, or sometimes
the Brunt-Viisild frequency or simply the Brunt frequency (depending on your na-
tional prejudice). Whatever it is called, the simple motion we have examined, columns
of vertical motion rising or falling with no variation in the vertical direction, oscillate
with the frequency N, which depends on the degree of vertical stratification. It is helpful
to compare this frequency with the frequency of surface gravity waves. For deep wa-
ter waves of wave number k for example (these are the relatively slow surface waves),
the ratio of the surface to internal wave frequencies is

Oy N 2(—8/)0 Y/Zz(:ﬁ&ﬂm

— =73 =
Wy, \/gk \ KPp0Z ) \Poz ) 7 5)
1/2 |
(80

LA )

Here we have used the fact that the vertical scale of the surface gravity wave is its
wavelength A, and that scale times the vertical derivative of the density gives an esti-
mate of the overall change of density on that scale. Since, in the ocean, the density
changes by less than 0.001 over the total depth, the ratio of the frequencies is such that
the internal wave frequencies are always smaller than the surface wave frequencies.
This makes sense, since the gravitational restoring force for surface waves depends on
the difference between the density of air and water, while for the internal waves it de-
pends on the slight difference of density between adjacent strata of fluid.



Lecture 7 - Internal Gravity Waves

61

We can derive a more general equation for the internal wave field. Taking the hori-

zontal divergence of the horizontal momentum equations yields

with the aid of the continuity equation. In the above equation, the subscript & refers
to the two-dimensional operator in the horizontal plane. z is the vertical coordinate
antiparallel to gravity, and x and y are the horizontal coordinates.

Thus,

o*w

0zot

=Vip!p (7.7)

vith the aid of the adiabatic

=N
-
5
Q
.
o
=
3

The time derivative of the vertical equation o
equation yields

2 , 82
a_’z"+N~w=__1_ 0°p (7.8)
ot Py 0toz

Note that for zero pressure fluctuation, the problem reduces to the case of the os-
cillation at frequency N.
Eliminating the pressure between the last two equations yields

2 . 1 2/( 2]

g 2 1 (0] uw 2v72

F[Vhw+p ngO—ZJJ-*-N VhWZO (798.)
0

s aZ 82

Vh Ea‘x“2+é)},‘2 (79b)

, solutions, let’s examine the last term in the square bracket
on the left-hand side of the equation. This is

aw)__1_ap0 aw+82w
Po0z\""dz) p, 0z 9z oz

—~~
N
:_a
(=)

j ——

EF—x1 (7.12)

?Vhere d is the vertical scale of the vertical velocity w. Since that scale for internal waves
1s less than the total depth of the ocean (it is usually of the order of the thickness of
the thermocline or less) the ratio is less than the total density change from top to bot-
om in the ocean, a term, again, very much less than unity. Thus, in the governing equa-
tion for density, the derivative of the background density with respect to z may be ig-
Nored, leading to the simpler governing equation:
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2
EE[VZW]“L N*Viw=0 (7.13)

where the Laplacian following the second time derivative is now the full, three-dimen-

01.1\11 1T anlacian Nate that tha ctriiots i nnt onnf1d]]17 ientranie Tha torm

olVvl Cll uatllablau LVUI.C ‘-llal. Lllc oLl u\,tulc 10 11UL tlallally IDULIUPl\, Lllc LC1111 lllultl-
plying N? involves only horizontal derivatives. In the presence of stratification, hori-
zontal and vertical directions have dynamlcally different significance. Note also that

1f N ig 7ovrn wo nhtain agai T anlarade aaiatinn for tha ve t

11 1V 10 LC1Uy YVO UULalll, asalu, Layla\,co C\iuaLlUll 101 tne ve
absence of stratification, the flow would be irrotational.
In fact it is left to the student to show that the three components of the vorticity

0

E(vx—uy)=0 (7143)
J P

Oy —y )=e 14
at(w)ﬁ,r vz) g o, ) (7.14b)
0

E(”Z Wx)=g(—f (7.14¢)
% \Po Jy

for the z-,x- and y-components of the vorticity equation (subscripts in the above equa-
tions denote partial differentiation). If the perturbation density is zero, which will occur
if there were no density variation in the basic state, each component of vorticity would
be zero if initially so. Thus for internal gravity waves, we can anticipate that the rela-
tive vorticity will be different from zero.

Let us try to find plane wave solutions in three dimensions, i.e., we write

w =w, cos(K - X — ot)

—~~
~J
;—l
wn

~—

K-X=kx+ly+mz

Inserting this trial solution in the governing partial differential equation yields as
the condition for nontrivial solutions

w*K? = N*K} = N*(kX + 1) (7.16)
or
n__ LAT Kh 7 17)
W=TIN— \/.17)
K

Since K?= k*+ I*+ m?, the frequency can be written:
®=*Ncosd (7.18)

where ¥} is the angle between the wave vector K and the horizontal plane (Fig. 7.1).
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The frequency depends only on the orientation of the wave vector and not its mag-
nitude. The frequency is therefore independent of the wavelength.

To get a better appreciation for the reason for this rather bizarre dispersion rela-
tion, consider a balance of forces along a line of constant phase, for example the crests
of the waves, as shown in Fig. 7.2.

Let {'be the displacement of a fluid element along the line of constant phase. If the
Wave vector is tilted to the horizontal at an angle ¢, a displacement of an amount 4
along the phase line yields a vertical displacement dz = {cos #. This in turn yields a

1IN A v ~cr £

~noyancy force in the vertical direction (positive upward) of

E, =—Apg=%—'ozodz=%§cos 0y

The component of this force along the direction of the phase line is just

F{ :%;COSZ 19
0z

%

~ L__ 1

. SHice, by definition, there can be no variation of pressure along a phase line (noth-
108 in the wave field varies along a line of constant phase for a plane wave), there is no
Pressure force along the phase line and the force balance reduces to
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2
i£=gip—°§ or

Po—=2 (7.19a)
dJt
25
2cos 194’ 0 (7.19b)
dt'

which recovers our dispersion relation for frequency of a harmonic oscillation. No-

o that vahoan 2Qie N wra »ar- ar tho fivet cimnloe co 1in whi

tice that when s U, We recover tine 1irst siimpi€ ¢ase in wiiilil ui€ irequeénc
lation is exactly N. To understand the reason for that, note that for a plane wave, such
that all fields are of plane wave type

Lot sms )
Ty T ]

(u,v,w) = (g, Vg, W) e =TT (7.20)
the continuity equation imposes the condition

kuy+ l?0+ mwy=0 or (7.21a)

K-i=0 (7.21b)

Thus, the fluid velocity in the three-dimensional plane wave is perpendicular to the
wave vector. The fluid velocity is along the crests of the waves, i.e., for internal waves,
the wave motion is transverse; that is, it is perpendicular to the direction of phase
propagation. Thus when the wave vector is horizontal, the motion of fluid elements in
the wave is purely vertical and with no variation of phase in z (m = 0) the vertical
motion will be independent of z. Those were the conditions of our introductory ex-
ample, and we see here that this is obtained when the wave vector is horizontal. It also
yields the maximum frequency for internal waves, i.e. @_,,= N.

Note too that the frequency is a constant on a cone in three-dimensional wave
number space (Fig. 7.3) where the elements of the cone make an angle ¢ to the hori-
zontal. The frequency increases as the cone opens up, i.e., when the elements of the
cone are closer to the horizontal plane. This has important consequences for the di-
rection of the group velocity, since the frequency is a function only of 9.

m
A

v
w/

increasing

Fig. 7.3. AN ¢
The cone of constant frequency and the

direction of the group velocity
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Group Velocity for Internal Waves
By definition, the three-dimensional group velocity is

200 0@ 0@
=1 tj——+A 7.22
87 ok 1ol om (7.22)

!

()

where 1, j, k are the three unit vectors along the x-, y- and z-axes, respectively. Let ¢ be
the angle in the x-y-plane between the horizontal projection of the wave vector and
the x-axis (Fig. 7.4).
Then a simple calculation using
k2 +12
ot =N? — _ (7.23)
k“+1°+m
yields
do _Nm*> k N . .. 1
=— mz =—sinsin cos P} (7.24a)
ok KK*K, K
o Nm* 1 N _ .
do _N m =—sin#}sin Isin @} (7.24b)
ol KK?K, K
d K N :
“a) =-N h:n =——cos¥sin} (7.24¢)
am K- K
In particular, note that
wdw  N?
———=——-cos’ (7.25)
mom K

so that the vertical phase velocity is always opposite to the vertical group velocity. Waves
that appear to be propagating their phase upwards will be propagating their energy
downwards, and vice versa. This is evident from examining the dispersion cone in three
dimensions, keeping in mind that the frequency increases in a direction perpendicu-
lar to the elements of the cone as shown in Fig. 7.3.
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The orientation of the wave vector
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Fig. 7.5.
The orientation of the group velocity with
respect to the wave vector K
Finally, note that
= N’m® 2 2 2
K-cg=kcgy +lcg, +mcg, = e (k" +1I°=Kj)=0 (7.26)

so that the group velocity is perpendicular to the wave vector and therefore in
the direction of the fluid velocity. Energy travels along the crests and troughs and
not perpendicular to them. For surface gravity waves, we had to get used to the fact that
the group velocity was not equal in magnitude to the phase speed. Now, for internal
gravity waves, we have to adjust to the remarkable fact that the group velocity is not
even in the same direction as the propagation of phase but at right angles to it (Fig. 7.5).



Lecture 8

—

Internal Waves, Group Velocity and Reflection

The rather unusual dispersion relation and the nonintuitive relation between group
velocity and the wave vector lead to some very unusual physical consequences.

Figure 8.1 is from Lighthill’s book (1978) taken from a paper by Mowbray and Rar-
ity (1967). It shows the result of an experiment in which a small disk is oscillated in a
stratified fluid with a constant N at a constant frequency, @. We know that in such a case
the wave vectors will be aligned in a direction such that cos¢’= +w/ N. There are four
such angles. The disturbance is limited to narrow bands leading away from the oscil-
lating disk. Since the energy must be moving away from the disk, it is not too hard to
see that starting with the band in the upper right hand quadrant, the direction of the
band must correspond to the direction of the outgoing group velocity moving upward
and to the right. Since this must be perpendicular to the wave number, and since the
vertical group velocity and phase speeds must be oppositely directed, it follows that
the dark bands in the figure are actually the crests of the internal waves, which form a
cross intersecting the little disk. A movie of the experiment would show those crests
moving rightward and downward in the upper right band corresponding to energy
moving upward and to the right. The situation is sketched schematically at the right
side. The student is invited to complete the picture for the other four quadrants. One
has to admit that the physics here seems very strange. But you'll get used to it.

Fig.8.1, A photograph showing the lines of constant phase produced by a small disk oscillating with

:9nstant frequency. Below a diagram is shown, indicating the lines of constant phase and the direc-
lon of the group velocity of the radiated waves (from Lighthill 1978)
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Note that since the fluid element velocities are at right angles to the wave vector,
the pressure work term pii is perpendicular to the wave vector. Since we expect the
e

energy flux to be given by th p essure work term, this explains the perpendicular

orientation of K and ¢ s (Can you r1ve the energy equation from the momentum and
thermodynamic equations we used at the beginning?).

Somethmg even stranger appears to happen if we ask about the reflection of inter-
nal gravity waves from a solid boundary. Let us suppose we have a lower boundary
sloping upward to the right at an angle 8. We will suppose the incident wave and re-

ﬂected wave are in the plane of the slope. It is easy to consider the generalization in

w = Weilkeetmz-or) (8.1)

where the I subscripts refer to the incident wave field.
For this two dimensional problem (no y wave number), the continuity equation is
simply

Ju oJw

=0 8.2
ox = oz 0z (82)

so that a stream function can be used, where

QU
<
~~

U=— 8.3a)
0z
-l (8.3b)
ox
and the incident wave, represented in terms of its stream function is
W= ﬁei(klnmlz—a)lt) - S"Iei(klx+mlz_a)[t) (8.4)

ik;

The solid boundary at which the reflection takes place satisfies z= x tan B so that
the unit vector parallel to the boundary is iz = x cosf + z sinfB, where x and z are unit
vectors in the x- and z-direction, respectively.

Now the reflected wave will have x and z wave numbers and a frequency that are
not known a priori. How are they determined?,

Fig. 8.2.

A wave packet with wave
number K| is incident on a
sloping surface
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We can write the reflected wave, generally, as

=y i(kyx+m.z—-t) 8.5
v, = Ve .
r r
The total wave field during the reflection process is the sum of the two waves,
V=t (8.6)

On the boundary where z = x tan f3, the total stream function must be a constant.
Without loss of generality, let that constant be zero. Thus, on z = x tan 8 we have

0= s pillk +my tan B)x—ant] ¥ oillky +m, tan B)x—et] (8.7)

This must be true for all t and for all x along the boundary. Clearly a single relation
between the amplitudes of the incoming and reflected waves will be unable to satisfy
Eq. 8.7, unless

W= o, (8.8a)
k;+ m;tanf=k,+ m tanf3 or (8.8b)
K ig=K, iy (8.8¢)

Thus, the frequency and the component of the wave vector parallel to the boundary
are both conserved under reflection. This is a general result for plane waves. What
is special for internal gravity waves is that the conservation of frequency implies that
since w= N cos ¥, the angle of the wave vector with the horizontal must be preserved
under reflection, regardless of the orientation with the boundary. For more familiar
problems where the reflection is specular, the wave vector component perpendicular
to the boundary is preserved. This is not the case here. Thus, under reflection both
the component of wave vector along the boundary and the horizontal component of
the wave vector must be preserved.

We can use a geometrical construction to see how this occurs (see Fig. 8.3).

In the construction, the reflected wave vector is determined by three considerations:

1. The component along the slope must be the same for both incident and reflected
wave;

2. The angle of the reflected wave vector to the horizontal must have the same magni-

tude as for the incident wave so that the cosine of the angle (frequency) is pre-

served under reflection;

The direction of the reflected wave vector must be such that the associated group

velocity is directed away from the slope.

We note that in this example, the magnitude of the reflected wave vector is much
greater than that of the incident wave. Therefore, the wavelength of the wave is not

Preserved under reflection; indeed, the wavelength shortens as a consequence of the
reflection process.
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Ki

N \
Fig. 8.3.
A sketch showing the wave
numbers of the incident and
reflected internal gravity waves
from a sloping surface K,

To determine the result analytically, let the magnitude of the incident wave vector
be K;. Then the component of the incident wave vector along the slope is K, cos( - B),
while that of the reflected wave along the siope is K, cos(¢} + 3). Note that we have used
the fact that ¢ is preserved under reflection. Since these two terms must be equal to
satisfy the condition of no flow through the solid surface of the slope,

K;cos(¥ - B) = K.cos(U+ fB) (8.9)
Now define
a=7n/2-9

Here o is the angle with respect to the horizontal of the group velocity of the inci-
dent packet and also the angle with respect to the horizontal of the reflected packet
(see Fig. 8.4). Note too that w= Nsina.

If the definition of aris used in the equation for the equality of the along-slope com-
ponents of the wave vectors, we obtain

K, _sin(@+f)
K; - sin(a— f)

—~
o
——
D

~—

Note that as the angle of the incident group velocity approaches the angle of the
slope, the magnitude of the reflected wave number becomes infinite. Thus, as the fre-
quency is lowered, a gets smaller; when it coincides with 3, K. becomes infinite. We
would anticipate that such short scales would be affected by friction and are likely to
be efficiently dissipated. So, B is a critical angle for the incident packet.

There is also a problem when o is less than § according to the above formula; since
neither of the wave number magnitudes can be negative, the left-hand side is always
positive, but the right-hand side becomes negative when « < . Clearly, the situation
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Fig. 8.4. A sketch showing the relation of the incident and reflected wave vectors
Fig. 8.
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The reflection process when
the slope is steep (o < 8)

Fig. 8.6.

The reflection in a shallow B
Wwedge -

Must be reconsidered in that case. Figure 8.5 shows the geometry of the reflection proc-
ess, then (see also Fig. 8.6). We see that when o > B, as in the previous case, the reflec-
tion is forward along the slope. Now, when o < B, the reflection must be backward (and
Since o is preserved, forward reflection would put the wave packet inside the slope,

Which is an impossibility). The back reflection leads to the relation (try it)

&2 sin(a + f3)
K; sin(f-o)

a result one might have guessed.
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Fig. 8.7.
The reflection in a large, open / /
wedge

Qs thao vofla~tine Foonias
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a
forms a wedge-shaped region wi th an upper horizontal surface, the reflection process
can lead to further surprises If, for example, a wave packet enters the wedge with a
afla

£ y h tha tha +3 £
frequency such that &> f, the reflection from both the bottom slope and the top sur-

face will be forward. The wave packet will bounce back and forth, advancing towards
the apex of the wedge, becoming shorter at every bottom reflection, and finally dissi-
pating in the apex of the wedge (Fig. 8.7).

If, on the other hand, the bottom slope is strong enough so that > « (in the limit
it could be a vertical wall), the reflection from the bottom will be backward, and the
wave willdeave the region of the wedge (Fig. 8.7).

Recall that all of these bizarre properties are due entirely to the fundamental phys-
ics of the wave that determines its frequency only in terms of the angle the wave vec-
tor makes to the horizontal, and since the frequency must be preserved under reflec-
tion, this places a terrific constraint on the reflection kinematics.

Up to now we have dealt with fluids in which the buoyancy frequency has been in-
dependent of z. In the ocean, N is certainly a function of z. It is large in the thermo-
cline and small in both the mixed layer and in the abyss. Before dealing with that vari-
ation, it is useful to discuss the equation for the energy in the wave field.

Multiplying each momentum equation by the velocity component in that direction,
we obtain

JKE dp dp Op

ot ox oy oz % (8.11)
=V-pu-wpg
where
KE = f;‘) lu +v +wJ (8.12)

The step between the first and second equations uses the condition of incompress-
ibility, i.e., the divergence of the velocity vanishes. The last term on the right-hand side
of the equation for the kinetic energy is the transformation of potential to kinetic
energy. If heavy fluid sinks (p > 0, w < 0) or light fluid rises (p <0, w > 0) (where we
recall that p is the density perturbation), then the kinetic energy will increase by the
conversion of gravitational potential energy. This last term can be written in conser-
vation form using the adiabatic equation, since from that equation it follows that
P8P8 (8.13)

w
re= o N2 Ot 2p,N? o
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Thus,
0 2 2 2 -
a[KE+g p*/2p,N ]+V-pu—0 (8.14)

It is tempting to consider the second term in the square bracket as potential en-
ergy. To see that in fact it is, it is useful to use the relationship between the Lagrangian

vertical displacement { and the vertical velocity. For small displacements,
w= (8.15)
dat

(Large displacements would require the total derivative in the above equation).
If this is used in the adiabatic equation, we obtain

N2
P=Po—F¢ (8.16)
g
by a simple integration. We can therefore think of { as the vertical displacement of
each isopycnal surface, such that the perturbed fluid element remains on its original
ity surface. In turn, we can now write the energy equation as

252
a—t{KE+Mzi1+V-piZ=0 (8.17)

so that the second term in the square bracket has exactly the same form as the poten-
tial energy of an extended spring in which the spring constant per unit mass measur-
ing the restoring force is the buoyancy frequency squared, i.e., N2,

It will be left for the student to show that for a plane wave, there is equipartition
between kinetic and potential energy and that the energy flux vector

pu=c,E (8.18)
where E is the sum of the kinetic and potential energy.

Note that for a plane wave in two dimensions, we can always align our coordinate
System for a single plane wave to align the wave vector in the x-z-plane.

Suppose the plane wave has the form

W=w,cosO (8.19a)

O=kx+ mz- ot (8.19b)

Then from the continuity equation,

u =w0%c039 (8.20)



74 Lecture 8 - Internal Waves, Group Velocity and Reflection

(note that this satisfies the condition that the fluid velocity be perpendicular to the

wave vector). From the relation between w and the vertical displacement £, (or from
the adiabatic equation),
Wy . ,
{ =——2Lsin@ (8.21)
@
Thus, the kinetic and potential energies averaged over a wave period are
2 2
m” N
<E>=&w§\[1+ - l (8.22a)
4 L kl. a)L J
k2 +m?
(B)=Low2{ =T (8.22b)
2 k
from which it follows that the horizontal and vertical components of the energy flux
are
powi (0 \m?
Cor(E) =222 — (8.23a)
gx 2 k k2
powi (@ \m*
Coz (E)=—F22| = |— (8.23b)
2 \m)k

Note again that the direction of the vertical energy flux is opposite to that of the
vertical phase speed @/ k. Indeed, the energy flux is perpendicular to the wave vector
as can be immediately verified.



The buoyancy frequency is never really constant. Indeed, in the ocean there is a
significant variation of N from top to bottom. Figure 9.1 (next page) from the Levitus
Atlas (1982) shows the distribution of N of the zonally averaged global ocean.

By assuming that N is constant in our calculations to this point, we have been say-
ing effectively that over the vertical distance A, =21/ m, N* changes only slightly. Al-
ternatively, we can state equivalently that N is a slowly varying function with respect

to the phase of the wave over which

oN 5 R
N2=—-1 <N (9.1)

-
oK -
o +Cg VK=-VQ (9.2)
Whern ic the lacal dienercinn relatinn If we concider N to he a function anlv of ~
vy ~ ma 10 L1V 1V VAl ulot/\-lolull AVIALIUVILIL, 11 VYL LUILIIUIWIVL UY LU VLY 4 LudllviiviL v Vi Ly

this equation implies that the vertical component m will be the only component
of the wave vector that will alter as the wave traverses a region of variable N. Fur-
thermore, if we assume that N is independent of time, the dual equation for the
frequency

5
7“’+c V=992 (9.3)

° ot

shows that the frequency will be independent of time for an observer moving with
the group velocity. Since the wave packet itself will move with the group velocity, this
Mmeans that (k, [, w) will be constant. It remains to be determined how m changes and

how the amphtude will vary ina reglon of varying N.

Thp any 7 Ning anitatinm 1o again
T HuUYv uus ct.luauuu Lb 454111
82
2
?V w+N*(z)Viw=0 (9.4)
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Let’s try to find a solution in the form

i(kx+ly—ax+6
w = A(z)e' Y (2)) (9.5)
and we will assume that the vertical variation of the phase is much larger that the ver-

tical variation of A; that is, we will assume that N is varying slowly enough in z so that
locally our solution will look like a plane wave.

We define
06
m(z)=— (9.6)
0z
(Note that for a pure plane wave, 6 would be simply mz)
Inserting the hypothesized solution in the governing equation yields (z subscripts
denote differentiation)
—w* [—(k2 +1)A+A,, —ajA] -N*(k* +1*)A~iw?(26,A,+6,,4)=0 or (9.7)
2_ 2\ g2
(N"—@)Kj; 2| .. 21/23(1/2 )
AZZ+A —-——'—2_—92 -2iw Hz — gz A)=0 (9.8)
10 0z
We have assumed that 6, is order one while A_ /A <« 1 and that the variation of 9,

and A are also small (the local plane wave approximation. This implies that the domi-
nant term in the equation is the curved bracket in the second term. This yields an ex-
pression for m or equivalently,

2 2
N -w
62 =m? =———Kj or (9.9a)
@
1/2
m(z)— 86‘ _i-IVYZ(Z)_wZ_Il o 01N
‘71__2__|\ a)z J np \y yD)

0r, equivalently, one may think of this relation as the necessary condition that the fre-
quency both satisfy the plane wave dispersion relation

2 2
2 N7(2)K
w0 =— 2h (9.10)
m +K:"i
while at ¢ dent of z. This yields for the vertical phase factor
z
o= [K, (9.11)
20
) !:ng 9.1. Upper panel: Annual mean global potential density distribution in depth and latitude for
.- World ocean. Lower panel: Annual mean of the buoyancy frequency as a function of latitude and

Gepth (reworked after Levitus 1982)
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With the differential equation in the form

d’w N?-@?

2
2 KhWZO

(9.12)
dz? 11}

we might naively have expected the vertical structure for slowly varying N to look like

Kt tand 3 tha + 1
but instead it is the integral that enters the phase so that the vertical component of

the wave number vector is given by its local plane wave value.
The imaginary part of the equation for A (or equivalently, the next order term is
the slow variation with z) yields the constraint

0
—[Am1/2]=0 (9.13)
0z
or
(z)=— Alz) (9.14)
ll\‘rl 1/2 \/ L_Il
(m/my)

so that z, and m, are evaluated at some arbitrary constant value of depth. As m gets
larger, i.e.,in a region of larger N, the amplitude diminishes. This is easy to understand
physically. As the wave propagates vertically, the flux of energy must remain the same
at each z to avoid the pile up of energy and the local increase of amplitude with time.
We saw in the last lecture that the vertical energy flux could be written

- P0A2 mao
ng <E> o 2 k2

using A instead of w, for the amplitude. To keep the energy flux independent of z, and
since both frequency and horizontal wave number are independent of z, it follows
that A must go inversely with m!/2, which is the result we have already achieved. Thus
that behavior is simply a consequence of energy conservation.

If the wave propagates to an elevation where the frequency is greater than the local
value of N, the vertical wave number becomes purely imaginary and the disturbance
exponentially decays beyond that location. We can say then that the wave will be
trapped between regions in z where N matches the frequency of the wave.

To find the path of the wave packet in the vicinity of such a region, we can use the
ray equations, which for two dimensions are

L Nk (9.15a)
dt 8z 3

hadd AN

dx m?
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The path of the ray in the x-z-plane is given by

C
A R (9.16)
dx ng 1\72—0)2

Consider the region near the point z* where N(z*) = . Expanding N2 around z* yields

N%(2)=N¥z*)—(z*-2)(N?) +... (9.17a)
& e or (9.17b)
dx \,/(—dNZ/dz)z,, (z*—2)

Z¥—7 = @ (x*_x)2/3 (9.18)

J-(dN%/dz),.

The ray path has a cusp at the turning point (x*, z¥) as shown in Fig. 9.2.
Normal Modes (Free Oscillations)

Consider a fluid bounded below by a flat bottom at z = —D and with a free surface whose
Y§St position is z=0 (Fig. 9.3). Again, the fluid is incompressible and stratified. This
Situation is a combination of the two problems previously studied. There should be
the Possibility of surface gravity waves as well as internal waves due to the stratifica-
tl?nL- The issue here is how they relate to each other and in addition, what the nature
Ol the internal waves in this bounded domain is.

Again, the governing equation is

22
hd 2 2 2 (G )
372 Vw+N*(z)Viw=0 (9.19)

for unforced motions.
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z=n

=0
: \ z=-D
Fig. 9.3. The definition figure for determining the normal modes of a stratified fluid with a free surface
The boundary conditions are
1. At the bottom,
w=0, z=-D (9.20)

2. At the free surface, we have both the kinematic condition
w=— (9.21a)

where 7 is the free surface elevation, and

plx, y,2=1)=0 (9.21b)

Since 7 is supposed to be small (linear, small amplitude motions),

iy v .z
FP\"™ )Hr~

—~~
\O
o
[3®)

~—

MN=dlv v n\-l._aﬁ’n_l-
"l tl\/\v’/’u’ azl, LRI

We only want to keep terms that are linear in the amplitude of the motion on the
right-hand side of the above equation, since we are doing a consistent linearization of
the dynamics. Since the linearized form of the vertical momentum equation is

3z \PoTFIE~Fo Y

—~~
O
[
W

N’

each term in the above equation is of the order of the amplitude of the motion and so would
yield a quadratic term when multiplied by 77 in the expansion of the boundary condi-
tion, except the first term on the right-hand side of the equation for the vertical pressure
gradient, which yields dp/ 0z in the absence of motion. Thus, considering only terms
that are linear in the perturbation amplitude, the pressure condition on the free surface is

(%, y,2=1)=0=p(x, y,0)— pog7 (9.24)
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It is important to realize that we are not assuming the motion is hydrostatic; all

i i 3 : n A3 nt hore 44 armel <
we have used is the small amplitude approximation. We did not have to work very

hard in the surface gravity wave problem, because we had the Bernoulli equation

at our disposal to use at the surface. Since the fluid is stratified, the motion is no
lgngpr irrotational and the vp]nritv Nnotoants

19 Nwer e
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ting Bernoulli equation no
longer exist.
Thus at the upper boundary,

p(x,¥,0)=pogn, z=0 (9.25a)

Q)
SIS

Il

3
~
0
N
1)
=2
N

Eliminating the free surface elevation between the two conditions,

d
gp(x,y,o) =pogW, z=0 (9.26)
We can operate on the above equation with the horizontal Laplacian

An
V%,a—f;= PogViw (9.27)

and use the previously derived relation (from the divergence of the horizontal mo-
mentum equations and the continuity equation)

2
Vip=p, o (9.28)
77 0zot
to obtain for the upper boundary condition in terms of w:
0% ow
—_— VZW:O, z=0 (9.29)
ot oz §

We will particularly be interested in the oceanographically relevant case where the
Parameter DN?/ g < 1. This parameter can be interpreted in several ways. First of all,
it gives a measure, as we have seen before, of the total density difference over the depth
f)f the fluid divided by the mean density. This is very small for the ocean. Second, us-
Ing our previous results, it can be seen as the ratio of the (square) of the maximum
Internal gravity wave frequency to the surface wave frequency (squared) for a wave
WhOSe wavelength is of the order of the depth of the fluid. We are interested, as noted,
In the case when this ratio is small, i.e., when the surface waves have higher frequency
and phase speeds than the internal waves. This helps separate the two wave types that
are described by the same set of equations given above. There is a hint then that in the
“ase when DN?/ g « 1, approximations to the governing equation will be in order if
We want to concentrate on one or the other of the waves.
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Since the fluid is unbounded in the x and y-

look for plane wave solutions in the horizontal 1rect10'1 Oriefitmg the x-axis to be in
the direction of the horizontal wave number, this implies that we can look for solu-
tions of the form
w=W(z)e k¥ (9.30)
and insertion in the equation for w and its boundary conditions yields
2 2
dw N
—+ k| —-1[W=0 (9.31a)
dz* | o™ |
W=0, z=-D (9.31b)
dw
a)z—g—ngWZO, z=0 (9.31C)

Consider the case where N is constant and N? > @’. The solution of the W equation
will be oscillatory in z and the solution that satisfies the boundary condition at z = -D

will be
W= Asinm(z + D) (9.32a)
2
m? 2(N__1] (9.32b)

Note that the latter definition implies that were m known, the corresponding fre-
quency would be

Nk
VK2 +m?

which is a familiar result from our work on plane internal gravity waves. We can ex-
pect the above eigenvalue problem to yield quantized values of m so that the equa-
tion for the frequency in terms of k and m will be as in the plane wave case except that
m will no longer be a continuous variable but quantized.

The upper boundary condition yields the eigenvalue relation:

m =+
W = =

—~~
\O
|95
W

N’

w*mcosmD = gk* sinmD (9.34)

or using the relationship between frequency and wave number written above,

Z
o
3
—~
}O
W
(%)
~—r

It is useful to write the above condition in terms of non-dimensional wave num-
bers.
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e

Let

'
m'=mD

: (9.36)
k'=kD
Then the eigenvalue relation becomes
[ND] m ,

——— =tanm (9.37)
g |k“+m

Tha rante nf thic can ho faiind niimarically oaran nf aa~ cida nf tha aaniatinn ic
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1

helpful in understanding the results (Fig. 9.4).

Figure 9.4 shows both the left- and right-hand sides of the dispersion relation for
the case where the parameter N?D/ g is artificially large (0.1) and kD = 1. Still, the roots
of the relation corresponding to the intersections of the two curves are very ciose to
an integral multiple of 7. In the above case, the first two are at mD = 3.1562 and 6.2947.
For smaller values of the parameter N2D/ g, it is not possible to distinguish the curve
of the left-hand side of the equation from zero, in which case we can see either graphi-
cally or analytically from the equation itself that in the limit N2D/g— 0, the roots
approach

IGW dispersion relation kD = 1 N*D/g = 0.1

T T T T ]

041 -

0.2 .

0.0 / ‘ /

-0.5 1 I / 1 1 [ [ 4
2 3 4 5 6 7
First two eigenvalues at mD =3.1562 6.2947

(e
Py

Fig. 9.4, The dispersion relation 9.37
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mD=jn, j=1,23... (9.38a)

kN
A=Q; :i (9.38b

In this limit, W(z) is very nearly

. % i . jmz
W(z)zAs1nJ—(z+D)=A(—l)J sin= (9.39)

D D
so that w vanishes on both the lower and upper surfaces. For these internal gravity wave
modes for which @ < N, the free surface dynamically acts as if it were rigid and the
eigensolutions are the same as if the upper surface were simply a rigid lid on which

w=0.

Now let’s examine if there are solutions of the problem for @ > N. If that is the case,
we can still use the same solutions and dispersion relation but we must realize that m
will now be purely imaginary. It might be clearer to just go back and rewrite the solu-
tion in terms of real variables. So for @ > N, we write

2
g’ = kzﬁ —N—ﬂ (9.40)
" |

in terms of which the solution satisfying the lower boundary condition is
w= Asinhq(z + D) (9.41)

which should look familiar from our surface wave studies. The upper boundary con-
dition now yields

2 12
{NDJ p zq - =tanhgq' (9.42a)
g 1 q'
q'=qD (9.42b)
2,2
W= kI;f k : (9.42¢)
-9

When the parameter N2D/ g is small, the left-hand side will be small except in the
vicinity of g' = k', which yields the only eigenvalue for which > N (see Fig. 9.5).

This is the graph of the two sides of the eigenvalue relation when N < o. Thereis a
single root for gD which in the case when N’D/ g =0.01 is equal to 0.9884kD, q is very
nearly k.

This yields a frequency using the upper boundary condition:

w*q cosh gD = gk? sinh gD (9.43)

or since q is very nearly k,
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Dispersion relation for surface IGW mode N*D/g = 0.01
2.0 1 1 1 T
1.5F -
101 g
/______,,__.———4
/
0.5 . / -
-05F { 7
-1.0 1 1 1 1 1
0.0 0.2 04 0.6 0.8 1.0 1.2
Root at gD = 0.98841
Fig. 9.5. The dispersion relation for the external mode
N
@ = *,/gk tanh kD (9.44) /

and the eigenfunction is,
W(z) = sinhk(z + D) (9.45)

Both the eigenfunction and the eigenvalue in this limit are precisely the values ob-
tained for the surface gravity wave problem for a homogeneous fluid.

Thus, the full spectrum of oscillatory modes splits into two (unequal) parts. There is
ﬁrst of all the free surface mode, which, when N?D/ g < 1, does not even notice the strati-
fication. This is because the depth of penetration is of the order of the wavelength, and for
Small values of N2D /g, the fluid motion in the wave, maximum at the surface and
€Xponentially decreasing into the fluid, does not encounter the density variation. The sec-
ond class of solutions whose frequencies are all less than N consist of internal gravity waves
whose vertical motion at the upper surface is negligible. Compared to w within the fluid,
the vertical velocity at the free surface is negligible and the frequencies of the modes and
their structures are approximately those for a fluid contained within two horizontal rigid
Surfaces. It is left to the student to show that for eigenfunctions of the same amplitude, the
free surface displacement of the internal gravity wave compared to that of the free surface
Wave is small, and this smallness is of the ratio of the respective frequencies.
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For the internal gravity wave part of the spectrum using the rigid lid approxima-
tion,

w=W(z)e! =) (9.46)

where W satisfies

For N constant, the eigensolutions are the sine functions sin (jnz/ D) and for the jt
mode,

;I N =kD/\K?D*+j*1? j=1,23... (9.48)

Note that for large k, the frequencies of all the modes approach N (the student should
think about the dispersion relation for plane internal gravity wave m
stand why this is so)(Fig. 9.6).

1.0 i I 1 1 I 1 i 1 1

0.8

§
\

o
N
T
|

0.0F i i 1 1 ! 1 1 ! 1
6 8 10 12 14 16 18 20

o/N as a quction of kD

J
EiY
N

Fig. 9.6. The dispersion relation showing the frequency as a function of wave number for the first
ei al gravity wave modes
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The normal modes, of course, do not propagate energy vertically. Each mode in z

~ ho Aorarmnnead i tvarn nlana waraxr g sarh v +th wravtiral wratsra nitmhoe AF

a ll UL uLbUlllt)UOLu lllLU LVVU Hlallc WaVCO u01115 Cabll Vvllll v¥Cl leal V‘Vavc lluulUCL vl
opposite sign so that the eigenfunction can be thought of as the sum of an upward
and downward propagating mode whose energy fluxes vertically cancel.

There is energy propagation in the horizontal direction, and for each vertical mode:
=ND/ A A n\’%l7-’=1’2’3 (9 49)
VA A M
o \i'n“+k°D)
Note that for very large kD, the group velocity in the horizontal 1rect10n goes to

morna The mavimiim orann valacit tv for osacrh mnde ic ~ — RTnlﬂ'r wr
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the long waves, i.e., as kD— 0.

Since N is a relatively strong function of z in the natural ocean, it is important to
point out that qualitatively the eigenfunctions and eigenvalues of the more general
problem are similar to the case of constant N. There are, however, a few important fea-
tures of the solution to consider when N is variable.

Consider again the governing equation for the eigenfunction, W(z):

-
-
-,
-
I
o
(@)
-
s
o
(@)
(@)
&

d*w  ,| N?

+k ~1|W=0 (9.50a)
dz? [a)2 }
W=0, z=-D,0 (9.50b)

It should be clear that the solutions of the above problem satisfying the homoge-
neous boundary conditions on W must have frequencies less than the maximum value
of N in the interval -D < z <0. This follows intuitively from the nature of the equa-
tion, for if the frequency is greater than N, ,,, the coefficient in front of the last term
in the equation is always negative and the character of the solutions will be exponen-
tial rather than wavelike, and it will be impossible to satisfy the two homogeneous
boundary conditions. This also follows from multiplication of the W equation by W,
which with integration by parts and use of the boundary conditions yields

0 2 2

I[_(d_vq + kZ(N__l}szdzzo (9.51)
nl \dz, w?

Dl \ /]

If > N everywhere in the depth interval, both terms in the integral would be nega-
tively definite, and there would be no way to satisfy the condition that the integral
vanish. Similarly, it follows from the theory of standard Sturm-Liouville problems that
the eigenfunctions corresponding to different eigenvalues are orthogonal:

0
IWWN*(2)dz=0, i#j (9.52)

-D

In addition, the eigenfunction corresponding to each higher eigenvalue has one
more zero of the function W(z) in the depth interval.

The character of the eigenfunctions are of interest. If

Nin <@’ <NZ,. (9.53)
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the character of W will be oscillatory in the depth interval in which Nis greater than
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1
energy trapped in the region where the stratification is greatest, and these will be the
s

with the highest frequencies. There is a very good discussion of the general
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The figures on the left of the figure are essentially W;. The second ﬁgure is essen-
tially the form of the solution in the long wave limit ( \more of this will be discussed

i L1l 4 WL AVilg Vvay

1ater), and the last figure is the shape of the pressure or horizontal velocity in each
mode, really the derivative of the function W. Note, as expected the n=1 mode has

no zeros for W (just like sinm z/ D), while the second mode has a single zero (like
sin2n z/ D). However, the location of the zero and maxima differ from the constant N

case. Note too that at great depth where N is small the elgenfunctlon
tory in agreement with out gualitative disc reri

e bt AV NaiS

are not oscilla-

Z4 W z?
— ~——"
n=2 %
n=1
/’:— /-
=2

Vo=

a

\

>

C

I

Fig. 9.8. Eigenfunctions for the buoyancy profile of Fig. 9.7 (from Gill 1982)






Lecture 10

S

Vertical Propagation of Waves:
Steady Flow and the Radiation Condition

There are numerous situations in which fluid flows over an obstacle, say a mountain
in the atmosphere, a sea mount, or a ridge in the ocean, and we would imagine that

e a2l VLN Qil; QA apriiv wia ‘.

internal gravity waves, if the fluid is stratlﬁed, would be generated. Such situations

are of interest in their own right, but additionally they force us to carefully examine
the radiative properties of the waves, which must be understood, sometimes, to actu-

ally solve the problem.

Consider the case of a stratified, incompressible fluid as studied in the preceding
lectures, except now we will imagine that the background state includes a mean ve-

locity in the x-d1rect1on, which is also a functlon of depth, z. If the dynamics are
inviscid, such unidirectional flows are themselves exact solutions of the equations of

motion. Indeed con51der the equat10n of motlon in the zonal direction. In the absence

T+u7+w—=——7 (10'1)

(10.2)

To obtain this equation, we have used the continuity equation and the assumption
that the x-average of all terms of the form 9/ dx[finite] will be zero. The equation above
describes how the mean current can change if there is a convergence of the flux of
X-momentum carried by vertical motion uw. Note that this term can be different from
zero even zf uandw separately have zero x- -average. It is therefore possible for the waves
that we will consider to alter the very flow that constitutes the character of the back-
ground in which the waves are embedded, but note that the change will be quadratic
in the amphtude of the wave motions (if the flux #w is due to the waves). Thus, in lin-
ear theory for the waves, the background flow can be approximated by its initial value,
but the above equation can be used to consistently calculate the small, second order

changes in the mean due to the waves, and sometimes we are very interested in that
Change
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To linearize the equations of motion, we write all variables as a sum of the order

one basic state plus a small perturbation. For our fields, that will be

Uporal =U(2) +u(x,2,)+... (10.3a)
Wiotal = W(X,251) +... (10.3b)
Protal = Po(2)+ p(x,2,8)+... (10.3c)
Drotal = Po(2)+ px,2,8) +... (10.3d)

where the lower case variables are the wave fields, and each is the order of the wave
amplitude and hence is small compared with the basic state. Again, the basic state
density and pressure fields, denoted by a subscript 0 satisfy the hydrostatic relation.

The linearized equations of motion, when the above decomposition is inserted into
the equations of motion and only terms that are linear in the wave amplitude are re-
tained, are~

3 9 v dp

—+U— — =" 10.4
Pl o T TP T o (1042)

[0 0 | op
Polar o T o (10.4b)
du W _, (10.4¢)
ox 0z
[.i+Uij|p+W§@_=() (10.4d)
ot ox 0z

Once again, we have assumed that the motion is incompressible and adiabatic
(Eq.10.4d). In the continuity equation, we have assumed that the basic state density
changes by a very small amount over the vertical scale of the motion. Except for the
presence of terms proportional to U(z), this set of equations is identical to the equa-
tions we used to study internal gravity waves. Note that the last equation could be re-
written in the form

0 0 )

—+U—|b—wN“=0 10.5a)
[aﬁ 8x} " (
b=gp/po (10.5b)

It is convenient to introduce a compact notation for the linearized advective op-

ﬁs[%+ugax—} (10.6)
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in terms of which our equations are

p05u+p0WUz =—Px (10.7a)

poDw=—p, ~bp, (10.7b)

u, +w,=0 (10.7¢)

Db=wN?* (10.7d)
where, for ease, subscripts have been used to denote differentiation

Note that using the linearized Lagrangian relation between vertical displacement §

and the vertical velocity

DE=w (10.8)
the adiabatic equation yields

b=¢N? (10.9)

Multiplying each momentum equation by its velocity component and the adiabatic
equation by the buoyancy, b, with the aid of the continuity equation, we obtain the
energy equation

(

~{u2+w2+é«2N2

A

}+V~pz’2=—p0uwd—U (10.10)

D
Po 2 2 dz

If the vertical shear of the basic state velocity U is zero, then we obtain the usual
conservation statement for the sum of the kinetic and potential energies. However, when
the shear is different from zero, there is a source term for the perturbation wave energy.
This source is proportional to the shear and its product with the product -pyuw, the
Reynolds stress. We are particularly interested in the sign of this term when averaged
over a wave period or wavelength, -p,uw. Consider the situation depicted in Fig. 10.1.

| U(2) U(2)

4|

‘—/
,/wu

Fig. 10.1. Ilustrating the flux of momentum in the Reynolds stress. The velocity profile is smoothed
by the transfer of momentum by the waves

e N
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Think about a region in which dU/dz > 0. If, on average, the perturbation zonal velo-

ic nAcititre sl A asrae aa magatisrza tha onty

o o mr warill o eanoition and ¢ha o
Lu. / U 1S POSITIVE WNIENEVET W m Icgative, Ui SO
b
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of the wave field will tend to increase (of course the energy so produced could be locally
fluxed away). Is that likely? If a fluid element has w < 0 with dU/dz > 0, then it is coming

1 a roginnt where TTic lavrger than whaors i+ ar Q If.+ rataing tn enme dogre

froma Iregion wii€rc v 1S 1arger uiail wiicic it arrives. If it retains to some ucslc" its Gi'igi-
nal x-momentum, it will show up at its new location with a perturbation u, which is posi-
tive. Now the “if” of the last sentence is a big one, since there is no guarantee that other fac-

=t
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In fact, it often occurs that the Reynolds stress turns out to be zero even in the presence of
shear and perturbations u and w. When that correlation —p,uw is different from zero, it

rid £, ' £ 1 1+ th Tfthat £l d ihed ah
proviaes a iiuXx o1 uU- momentum irom one z-ievel to another. if that TiuX,as aescriced acove,

is downgradient, i.e., from larger U to smaller U, the perturbation energy will increase.
However, in fluxing mean momentum down the gradient it will tend to locally “flatten”
the profile of mean velocity as shown in the figure. Now from elementary considerations,
this internal mechanism cannot aiter the overall mean momentum of the flow; that is,

jUdz =constant (10.11)

all z

However, the mean kinetic energy is

[U*pydz/2

all z

It is easy to see that if the integral of U is fixed and the profile of U is made more
flat, the variance of U, i.e., the kinetic energy of the mean flow will decrease.

This can also be seen directly by considering the momentum equation for the mean
flow in x as written above:

gu __duw (10.12)
ot 0z
Multiplication by u yields
10u®  _duw  duuw —ou
- =-u =— +uw (10.13a)
2 ot 0z 0z 0z
or

—2 =
10u”  duuw —du (10.13b)
2 ot 0z 0z

The first term in the above equation is the rate of change of the kinetic energy asso-
ciated with the mean flow (per unit mass). The second term on the left is a flux term,
which will integrate to zero if the flow is contained between horizontal plates where w
vanishes. The term on the right-hand side is a source or sink of kinetic energy of the
mean. Comparing it to the equation for the perturbation energy we see that if the
Reynolds stresses increase the energy of the perturbation wave field, they must at the
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same time be decreasing the energy of the mean flow. (Note in our identification we
are using the fact that to order amplitude squared, # = U.) Thus, this term is an energy
transformation term representing an energy transfer between the mean (over a pe-
riod or wavelength) and the perturbations.

The vertical flux of wave energy is again pw.What can we say about it and its rela-
tion to the Reynolds stress? The earliest treatment of the problem can be found in
Eliassen and Palm (1960) and the student is referred to it for an fuller understanding

of the historical cantevt

RJ/L viaNv 22a0 UL AVGL VULILUAL,

We are going to be especially interested in steady flows over bumps and the result-
ing steady wave field generated by the interaction of the flow and the topography.

In the steady state in which there is no secular increase in the wave energy, the en-
ergy equation reduces, when averaged in x, to

d — Jduw

—a—{‘w+pvu Ul=pU = (10.14)
z

after a simple integration by parts of the source term.

On the other hand, the steady momentum equation in the x-direction is
d dU

3 PV Pl pw——=0 (10.15)
X

Since the motion is two-dimensional and nondivergent, we can introduce a stream
function y such that

u:-—wz (10.163)

w=y, (10.16b)

~

which allows the momentum equation to be rewritten as

a[poUu+p+p0l//Uz] =0

ox

If the motion is periodic in x or if it vanishes as x —> infinity, then the quantity
Inside the square bracket must itself vanish, so that

[PoUu+P+pol//Uz]=0 (10.18)
If this equation is multiplied by w,

10y  du
PouwU + =—— —
0 pv 2 Ox Po dz

f':‘fhere the relation between vand w has been u;
then yields the important result:

»

"

£

[4

»
02

pw+ pyUuw =0 (10.20)
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From this it follows from the energy equation that

9w (10.21)
0z

This implies that even if uw #0, its derivative with z must be zero if the wave field is
steady and there is no dissipation. Returning to the first equation of this lecture for the
mean flow, it also means that the wave field will not, under these circumstances, alter
the mean. This will occur only for that part of the wave field that has its quadratic prop-
erties varying with time, for example at the front of an otherwise steady wave field.

The relationship of the vertical energy flux and the Reynolds stress allows a simple
interpretive tool to characterize the sign of the energy flux. From pw + pouw =0, it
follows that

P (10.22)

If the vertical energy flux is positive, this implies that the slope in the x-z-plane of
the lines of constant y (these are the phase lines of the wave) must be negative if U is
positive (Fig. 10.2).

Now let’s derive the governing equation for steady perturbations. By taking the
,-derivative of the x-momentum equation and subtracting from that the x-derivative
of the vertical momentum equation, we obtain

p{)ﬁ[wx - uz]— PoU Uy — .p()szz - pOWUzz = —p()bx (10.23)
which is the equation for the y-component of vorticity. The term on the right-hand
side represents the baroclinic production of relative vorticity by horizontal density
gradients in the wave (this is the linearized part of Vp x Vp). With the aid of the con-
tinuity equation, this becomes

(wh]

\72}’/_ ur 171 :_bx (10.24)

Yx“zz
while the adiabatic equation is

Db = Ny, (10.25)
~ __y = constant

/ P >0
\

N, . | .

N N
Fig. 10.2. \\
The orientation of wave crests
to yield upward wave radiation
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Ehmlnatlng b between the two equations yields the final equation for the stream

DV?’w+N*y, =Dy, U,, (10.26)

We note that if U =0, the equation reduces to the equation for internal gravity waves
we obtained in the last lecture, since now D = 9/9t if U is zero.

TT + h h tha A1 A
HG‘v‘v'e‘v’er, we are interested in the case where U 18 not zero but where the flow and

the wave field are steady. In the steady state, D = U9/ 9x, and so the governing equa-
tion for y can be written in the compact form

az [ /NZ U \ ]
U2§[V2W+L?— I;ZJWJ-:O (10.27)

For motion that is periodic in x (or which vanishes at infinity) we can integrate the
above equation twice to obtain

/N2 U 3\
VZI/I+L?—#J =0 (10.28)

For solutions that are periodic in x with wave number k, we can look for solutions
of the form

w=g(z)e’* (10.29)

where it is understood that we take the real part of the solution.
Thus, ¢ satisfies

2

37?+(£2(z)—k2)¢=0 (10.30a)
N* U,

??= {UZ 7} (10.30b)

A particularly illuminating example occurs when we consider the flow over a bumpy
lower boundary, whose elevation is given by the periodic form

h=hycoskx

(Which is why we chose k for the wave number of our solution).
The lower boundary condition is

[o—
o
W

(
—
[
N’

Where the last equality depends on the solution being steady and linear.
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We will imagine that the upper boundary is very far away and idealize that by con-
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Since w = dy/ 0x, an integration of the lower boundary condition in x yields

n
v

~

—T - —
V=vun, Z=

or

or

In the former case, the solutions will be oscillatory in z, while in the latter case they
will be exponential in z. For the simple case of constant U, this change in character has
a simple physical interpretation. In this case, £>= N?/ U2 In the frame in which the lower
boundary is fixed and the flow is moving to the right with speed U, the motion is steady.
Let’s put ourselves in a frame moving to the right with the basic flow. Then the unper-
turbed fluid appears to be at rest, but it is being disturbed by a lower boundary with a
ripple of wave number k moving to the right at speed U. This will force a response with
the forcing frequency of the boundary disturbance, which is Uk. If that frequency is
greater than the maximum internal gravity wave frequency, N, we clearly can’t have a
wavelike response in z. The condition that Uk < N is simply £2= N%/ U?> k.

Let us first examine the other case where ¢2 < k2.

In this case, the solution for ¢ is

¢=Ae ™ + Be'™

_ . (10.33)
= lkz —EZJUZ >0

Now, for large positive z, we would like the solution to remain bounded, i.e., as
z—> o0, we want ¢ to remain finite. This clearly requires that we choose B =0. The
remaining constant is determined by the condition at z = 0, namely,

A=Uh, (10.34)
Thus,
w =ReUhye ™e** = Uhye ™ coskx = Ue ™ h(x) (10.35)

from which we obtain
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w =y, =—Uhyke ™ sinkx (10.36a)
u=-y, =-Uhyme ™ coskx (10.36b)
W, =Uhmke ™ sinkxcoskx =0 (10.36¢)

Note that the streamlines are in phase with the topography and simply diminish
exponentially with height above the bottom. Furthermore, the last equation tells
us that the Reynolds stress and hence the vertical energy flux are identically zero
when averaged over a wave period. That seems reasonable. In this parameter regime,
no internal gravity wave can be excited (the frequency is too large), and without a wave
response there is no upward radiation of energy. Note also that the vertical displace-

= Y_ hye ™ coskx = h(x)e ™ (10.37)

PR 1

is exactly in phase with the topography. Where the bottom goes up, the streamline
follows it.

Let’s calculate the drag on the mountain by the pressure in the wave field. For a
bottom with a relief h = h(x),

2w/ k oh
Drag= | pgzdx (10.38)
0

That s, the drag is the pressure times the projection of the topography that presents
a face perpendicular to the x-axis. There will be a drag if there is higher pressure
on the face of the slope upstream compared to the pressure on the face downstream.
We can easily calculate the pressure from the steady zonal momentum equation when
dU/dz =0. In that case,

Px=—pUuy = p=-pUu=p Uy, (10.39)
from which it follows in the present case,
p=—p,U’mh(x)e™™ (10.40)

Note that for this case, the pressure is in phase with the topography. The lowest
Pressure (the largest negative anomaly) occurs over the ridge crest, and the pressure
1S symmetric about the crest; indeed,

2r/ k 2w/ k

Drag= " [p(x,0)h,dx = —p,U’m [nhdx=0 (10.41)
0 0

Thus, in this parameter regime there is no wave radiation and no drag on the to-
Pography. The absence of drag is not too surprising. We know that for a homogene-
Ous, incompressible, irrotational flow in the absence of friction there is no drag. Clearly,
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if Uk is much greater than N, the fluid will respond as if the stratification were zero
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that this result holds up to the equality (at least) where Uk = N, but as we shall see, the
drag is directly related to the ability of the flow to support a wave, and the threshold
Uk = N is precisely that boundary between wave and no wave.

Now let’s consider the more interesting case when Uk < N. This puts the fluid in the
parameter regime in which internal gravity waves can be generated. In this case, we define

N2
m?=¢*—k*= — ~k*>0 (10.42)
U

so that the solution for the wave is
#(z)= Ae™ + Be ™ (10.43)
We still have the boundary condition at z= 0 that
¢=Uh,, z=0 (10.44)

However, the condition that the solution be finite at infinity is no help at all in re-
jecting either the A or B solution for ¢, so that with the boundary condition at z=0,
we will have one condition (equation) for the two unknowns, A and B. How did we get
into this pickle?

The essence of the difficulty is related to the two infinities we have introduced into
our problem by our simplifications. First, we have assumed that since the upper bound-
ary is so far away, we may idealize the region as infinite in z. Of course, for waves radi-
ating upward, that will hold only for a finite time. Second, we have decided to exam-
ine the steady problem after all transients have radiated away and that requires that
in principle, an infinite amount of time has passed so there is clearly a conflict be-
tween the two assumptions. Had we solved the initial value problem, i.e., if we had
considered the problem for finite ¢ while the z-domain was infinite, it would be clear
that since the group velocity is finite, for all finite t the disturbance should go to zero
as z goes to infinity. However, in the problem what we have done is to invert this limit.
By examining the steady problem, we let time go to infinity first and then we must ask
how the solution looks for large z. Stated this way, it is clear that we are asking for the
partial solution that is valid within the advancing front that was set up long ago by
the initial disturbance. Inside that front the solution may be steady, but without con-
sidering the initial value problem, there seems no way, with the boundary conditions
so far applied, to specify the steady solution (find A and B). Because we have chosen
to solve a simple, physically incomplete problem, we must add some physics to take
the place of the initial value problem we have chosen not to solve (because it would be
so complicated). Indeed, it would be a pity to have to go through the whole initial value
problem just to determine which combination of A and B is correct in the steady state.

The physics that we must add is called the radiation condition.Simply put, it states
that we must decide on the direction of the wave radiation in the steady state that is
physically pertinent for our problem. If we consider the problem as one in which a
disturbance is formed at the topography by its interaction with the current and then
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radiates upward, the condition should be that the radiation be outgoing radiation;

1 3 oo Airactioas Lo 111 ...
that is, the energy flux in the z-direction should be positive.

We have seen before that the vertical energy flux is

pw :IO‘Vhll’rx!/’,z (10 45)
where again an overbar denotes an average in x over a wavelength.

With the above solution for ¢, we have

w= Aei(kx+mz) + Bei(kx—mz) (10.46)

The part of the solution with coefficient A has its phase lines tilting upstream (for

U> 0), while the B solution has its phase lines tilting downstream (Fig. 10.3).

We saw earlier that the energy flux would be upward for phase lines tilting upstream
so we would expect the A solution to be the one that gives us the physically acceptable
solution of outgoing radiation. Let’s calculate the energy flux explicitly.

With pw = p,Up,y,, we first calculate the energy flux in the A solution. Recall that
we must use the real part of the solution. Thus, using * to denote complex conjugation,

*

W= é pilketmz) AT o-ilkxtmz) (10.47)
so that with O=kx + mz
pw=pUv,y, =§%E[Ai9 +A*e"'6’]i—'2"—[Ae"" ~A'e™ ]
— —7“"'; 2 [—ZJAV + A2e216 A*ze—Zie] (10.48)

koo
== P4l >0

It is important to note that in calculating the quadratic product of pw, we had to
use the real part of y, which involves both the linear solution and its complex conju-
gate. Had we erroneously used only the term proportional to e, we would have ob-
tained only terms like €% from the product, and these have zero average over a wave-
length. The correct answer given above, whose average is different from zero, depends
on using the full real parts to calculate the flux terms.

A} ~

Fig. 10.3. N /
The tilt of the wave crests in \ g

the two solutions. The

NN\
4 solution has energy \ \ /
NN\

Propagating upward; the
solution has energy
Propagating downward "A" solution "B" soluti
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If we were to make the same calculation with the B solution, the result would be

ﬁ:—mTk poU|B* <0 (10.49)

Since by convention both m and k are positive, it is the A solution that represents
outgoing radiation, and the B solution represents incoming radiation from infinity.
Consistent with our physical description, it is the A solution which is appropriate to
our problem, since that is the solution that satisfies the radiation condition of out-
going energy flux.It is important to realize that the B solution is a perfectly fine so-
lution physically. It represents, in the context of the steady problem, wave energy mov-
ing downward from some source far away and above the topography. There may in-
deed be problems in which that radiation would be appropriate, but our specification
of outward radiation is the additional condition that we must add to render our solu-
tion both unique and appropriate to the physical problem we have in mind.

Using the condition that z = 0 yields A = Uh, so that

w=Re Ae""* ") =Uh, cos(kx +mz) (10.50)

this yields, as expected, phase lines tilting upstream (Fig. 10.4).
From the earlier result (Eq. 10.39),

p=—p,Uu=pUy, =—pUhymsin(kx +mz) (10.51)

Thus on z = 0, p = -p,Uhym sin kx, which is now 90° out of phase with the topogra-
phy. High pressure now occurs on the upstream face of each ridge (where x is -1t/ 2)
while the downstream face has low pressure. This leads to a net force on the topogra-
phy so that (Fig. 10.5)

v

\ \ kx + mz = constant
/

Fig. 10.4. A schematic of the solution satisfying the radiation condition. The phase lines tilt against
the current
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Fig. 10.5. The pressure distribution with respect to the topography for the case where waves are radiated

Drag= j p%gdxzpoU?‘ ZKTm (10.52)

Note that for km > 0, the correct choice of the phase orientation, the drag is posi-
tive. This drag has nothing to do with friction; it is simply the response to the wave
energy that is radiated away to infinity by the topography. Indeed, in the case where
there was no wave radiation, there was no drag. Note the relation between the wave
drag on the topography and the flux of energy; using our result for the amplitude A,

xU (10.53)

so that the rate at which energy is radiated away from the topography is precisely equal
to the rate at which the drag is doing work on the topography and thus is equal to the
rate at which the topography is doing work on the fluid.

There have been other techniques introduced to deal with the apparent indetermi-
nacy of the solution for which we have used the radiation condition. An alternative is
to introduce a small amount of friction, for ease, proportional to the velocity, and re-
calculate the constant m. With the presence of friction, m will be complex and one
solution will exponentially increase with z, while the other decreases. Choosing the
solution with the exponential decrease and then letting the size of the friction go to
zero reproduces the solution found here by the radiation condition. The student should
think through the physical reason for why this is true, and those with a background
that includes the Laplace transform should also see why it is equivalent to the steady
State chosen by the initial value problem.

We noted above that the choice of solution by the radiation condition is equivalent
to choosing the solution that has the energy flux upwards. Let’s spend a moment re-
viewing how that would enter explicitly in the steady problem.

Let prime variables denote velocities and positions seen by an observer moving to
the right at the speed U. For such an observer, there will be no mean flow and as al-
ready mentioned, that observer will see a rippled lower boundary moving to the left
with speed - U forcing the fluid with a frequency Uk.
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To move into the primed frame, we introduce the relations

x=x"+ Ut
(10.54)
t=t

so that the phase in the resting frame e~ becomes e/***1*U=¢I") in the moving
frame. We define the intrinsic frequency as the frequency seen in the frame moving

with the mean flow so that it is the frequency with respect to a locally stationary fluid:
w,=w—kU or (10.55a)
w=Uk+a, (10.55b)

Thus, in the original frame in which the lower boundary is at rest, the frequency is
the sum of the intrinsic frequency plus the Doppler shift Uk. We know that the in-
trinsic frequency for internal gravity waves, i.e., in the absence of a mean flow, is

gy =+ (10.56)

k* +m?

In the case under consideration, we are taking into account a disturbance which is
steady in the rest frame so that the frequency @ must be zero. This means we must
choose the negative sign in the above equation for the intrinsic frequency so that the
Doppler shift downstream cancels the phase propagation upstream.

The condition of zero frequency chooses the wave number component m such that

2
N
m2 Z—Z—kz
U

a result already obtained from our differential equation for ¢. Although the frequency
is zero, its derivative with respect to wave number is different from zero. Therefore
the group velocity in the resting frame is

0w Nm?
=2 =V —un (10.57a)
k*+m”|
Nkm
ng :W (1057b)
\k*+m~)
Using the above results for m yields
2
Cax =% (10.58a)
K
Lfkm 71n caok)
Cor = = (1U.J0U)
b KL
so that the direction of the group velocity is downstream and upwards even though
the phase lines are tilting upstream.
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Thus,

C
;ziz% (10.59)

ng

so that Eg is parallel to the wave vector K. In the frame in which there is no mean flow,
our earlier results (or a recalculation using the intrinsic frequency) yield

2
Nm
C,, ————— (10.60a)
8X0 3/2
K
Nkm
Cozo = 372 (10.60b)
K

so that in the frame of no mean flow, as previously noted, the group velocity is at right
angles to the wave vector

C
o __ K (10.61)
C m

8%o

The relation between the two is illustrated in Fig. 10.6. It is a simple matter to show
that the two group velocities are orthogonal to one another; that is, ¢, ¢zo= 0.

The difference between the two group velocities is precisely equal to the mean flow
in the x-direction U, which carries energy of the wave field downstream. The two wave
vectors and their relation to the mean flow are shown in Fig. 10.7. A very clear discus-
sion of the relationship is to be found in Lighthill (1978).

A final remark is in order about the relation between the drag and the effect on the
mean flow. Since the drag represents a force on the fluid by the topography, one ex-

o\ "

- -

Fig. 10.6.

The wave vector and the \
direction of the group velocity
for the steady, radiated internal

gravity wave

Fig. 10.7.

The relationship between the
group velocity vector for the
Steady wave and the wave in a
resting medium Um*/K UK*/K*

Y

b o o o - ———————
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pects that the mean flow will decelerate as a consequence. However, we earlier noted

that for steady waves in the absence of dissipation,

duw =0 and since
0z

u_ duw

ot 0z

where the right-hand side is calculated from the wave field, there is apparently no
deceleration of the mean flow. How is this apparent paradox resolved? (Note: usually
a paradox is a sign of incomplete thought, not an out and out error).

As mentioned above in our discussion of the radiation condition, there will be an out-
going front, ahead of which there is no wave signal, behind which we will have established
the steady wave field of our calculation. At a time ¢, the front will have moved to a
distance c, t above the topography into the fluid. At the position of the front, the above
momentum'balance holds. So ahead of the front zZw = 0 while behind the front (Fig.10.8)

;«;zuzhgm_k
2
Thus,

uw

<0

S
(0)4

and is large at the front. It is at the front that the deceleration occurs, and only there.
Integrating across the front yields a local change in the mean

Note that the change is of the order of the small parameter (hoK)?, which is the
square of the steepness of the topography.

...................................... Y i
AN t
aw = U2 1K
2
Cort
M T >~ v



Lecture 11

Rotation and Potential Vorticity

For motions whose time scales are of the order of a day or greater, or more precisely
when the frequency of the wave motion is of the order of the Coriolis parameter or
less, the effects of the Earth’s rotation can no longer be ignored. Such waves are evi-
dent in both oceanic and atmospheric observational spectra. Figure 11.1 taken from
the article of Garrett and Munk (1979) shows a power spectrum of vertical displace-
ment of an isotherm. We see a great deal of variance at frequencies less than N (as we
might expect) with a peak near the Coriolis frequency f= 2sin 6.

Some waves, such as gravity waves, are affected by rotation while others are prima-
rily due to rotation, and of these there are different types with different characteristic
time scales.

Consider first an unbounded fluid. To simplify the analysis, we will start by assum-
ing that it is incompressible, inviscid and uniformly rotating. We will also assume that
the vertical scale of the motion is much smaller than the scale over which the density

103 T T
N\
10° | .
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Q
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would change by an O(1) amount, i.e., we assume that if m is the vertical wave num-
ber of the motion,

Lipi«m (11.1)

Po 0z

For small perturbations we write, as before,

Protal =Po+ P> P <o (11.2a)
Protal =Po+ P> P<Po (11.2b)
2p—°=—/30g (11.2¢)
0z

Then the linearized equations of motion for a fluid whose rotation axis is anti-par-
allel to the direction of gravity are

[ ou op
__ N 11.3
Potat f"} ax (11.3a)
[ ov op
Pl ¢ fu] PN (11.3b)
ow  op
A . 11.3
Py ™o 2 (1139
du v ow_, (11.3d)
ox dy 0z
9% _ . N?=0 (11.3e)
ot
b:gp/po, sz—iﬂ (11.3f)
Po 02

Our goal is to derive a single equation for either the pressure or vertical velocity to
serve as our wave equation. To start,we take the x-derivative of the y-momentum equa-
tion and subtract from that the y-derivative of the x-momentum equation; that is, we
are taking the curl of the horizontal momentum equations to obtain
o 14 ow
9% __fu +v.)=fX (11.4)
a f( X y) f az

t

Ve

Note that the Coriolis parameter in this study is assumed independent of position;
an assumption that will be relaxed later in the course. The component of vorticity
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£=v,-u, (11.5)

It is important to note that in the presence of the background rotation, z-de-
pendent vertical motion will give rise to relative vorticity by stretching the vortex

Linng ncenciatod with tha Aavarall vratatinn Af tha flivid Tf ingtond Af talring tha ~uivl
J111CTO aoovllialvu Vvvilil LUllv Uyviildll 1vialluvll Ul LIL 11uUly,. 11 11i1otvau vl Lal\llls L1lL Lul11l

of the horizontal momentum equations we take the divergence, i.e., the x-derivative
of the x-momentum equation and the y-derivative of the y-momentum equation,

wra nhtain
WE Uuiaiil

2

%(Mﬁv_y) fé= V/;’OP (11.6a)
or

o'w +f;=v—% (11.6b)

otdz Lo

if we eliminate w between the vorticity and the divergence equation,

é_zé+f2["=fv_%lp (11.7)

] N 2
while eliminating the vorticity between the same two equations yields

0 aw+f28w fo,p (1L8)

ot* 0z oz 2o

If the perturbation is independent of horizontal position, the right-hand side of
the above equation would be identically zero, and that would give rise to a harmonic
oscillation at the Coriolis frequency f. This is analogous to the situation we saw for a
nonrotating fluid in which disturbances independent of z gave rise to oscillations with
frequency N. In the latter case, we discovered N as a limiting frequency of oscillation.
We shall discover the same thing in the presence of rotation for oscillations with
frequency f.

If we take the time derivative of the vertical momentum equation and use the adia-
batic equation to eliminate the buoyancy b,

w +N2w =—L azp
ot? pp 0oz

(11.9)

So that again, disturbances independent of z will oscillate with frequency N. We now
have two limiting cases to keep an eye on. If we eliminate the pressure between Eq. 11.1
and Eq. 11.2, we obtain a single equation for w (take the horizontal Laplacian of Eq. 11.2
and the vertical derivative of Eq. 11.1):

82 aZ
ﬁ[vzw]+fza—;:+N2V%w =0 (11.10)
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When f is zero, this recovers the wave equation for internal gravity waves studied
earlier. To derive this equation, we have used repeatedly the approximation that the

vertical derivative of the background density is small with respect to the vertical de-
rivative of w, i.e.,

—I——a’—og«ia—w (11.12)
Po 0z W 0z

Before proceeding to the solution of the wave equation for w, it is illuminating to
examine the equations of motion a bit more carefully.
First of all, note that if we knew the pressure, we could easily find the horizontal

velocity #, from the easily derived equation

0% - 10 .
. .Jzu_hz————Vhp+—f—szp (11.13)

ot? po Ot Po

where z i$ the unit vector in the z-direction parallel to the rotation (and anti-parallel
to gravity).

Second, we can find an equation for the pressure by eliminating w between Eq. 11.8
and Eq. 11.9 instead of the other way around. We obtain

9| o 9’
— —7V2p+f2—€—+N2Vip =0 (11.14)
ot| ot 0z

This is almost the same equation we obtained for w. There is an extra time deriva-
tive operating on the whole equation. For motions of nonzero frequency that would
make no difference, but we must be careful. A first integral of the equation yields

0? o*p
5;vﬁ“fzg?uz\rzv%,p=Q(x,y,z) (11.15)

The question is what is Q? Its existence is connected with the conservation equa-
tion, whose first integral is the above equation. It is also clear that it ought to be de-
termined by initial data since it is independent of time. Clearly, then, it should be re-
lated to some quantity that is conserved during the motion.

If we return to the vorticity equation

9 _ oW (11.16)
ot 0z
and use the adiabatic equation to eliminate w, we obtain
2
%l(g_fi@éy_ﬂlzg (11.17)
ot \ oy4 )

This is, for the simple model we are considering, the form of the conservation of
potential vorticity q, where
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batic equation, Z = b/ N? so that
0Z
q=¢-f— (11.19)
0z
T1f the natential varticity (nv) 1ie concarved the enreadine anart of doncity ciirface
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.»0Z/0z > 0 in the presence of background planetary vorticity, f, will give rise to a

correspondmg increase in relative vorticity to keep g constant. This should be famil-
iar from simple layer model treatments of pv.

It seems likely that our conserved quantity €2is related to q. Can we show what the
relation is? To simplify the derivation, we will take N constant.

From
2
f§=m—wzt (11.20a)
Po
Wit :bzzt/N2 (11.20b)
2 2
:,\Jfé';vhp— L 90 (——Pz——wt] (11.20c)
po N?oz atzk Po J
ViP 1 Pooe 1 w (11.20d)
s N2 0 N2 At
and
f*b,IN? f w,,) (11.21)

2 2
fjév f bzl=‘7ip/ 0y + ! p f—l—w tt-'rf—p /p0+f—wt or (11.22)
tt t 4 .
[\ N2p, TN T NPT
2
f"i':ViZ:P'I Po + f Pzl Po+ a —a‘('"’tt +f2W' )
N2T# N2 ot z
2 2
1
—Vﬁp/pn+f—._o-,/on+—,a—,(v%n/ ) (11.23)
25225 1°G N2 atz\ ne - r’oy
1 | 9*V?




112

Lecture 11 - Rotation and Potential Vorticity

so that comparing with the earlier equation, we have, finally,

_ 2
2=(p,fN°)q (11.24)
Thus, the conserved quantity in the wave equation for the pressure is a simple

multiple of the potential vorticity. This has very important consequences

1. Since dg/dt = 0, the initial data that gives the pv is sufficient to determine €2, and it
remains unaltered throughout the motion;

2. The oscillating part of the wave field has no potential vorticity. This also follows
from the conservation of potential vorticity, since if the motion is periodic, the
conservation equation dq/dt =0 becomes simply @q = 0. If the frequency is not

zero, the potential vorticity must be zero.

Therefore, the pressure and velocity field may be divided into two parts. There is a
wave part that carries no potential vorticity and a steady part, which is a steady par-
ticular solution of the p Eq. 11.3.

Let’s write the total solution for p, b and the velocity:

png(xa)’:z)'*'Pw(x,)’)Z)t)
b=b,(x, y,2) + b, (%, y,2,1) (11.25)
u =i2g(x,y,z) +u,, (x, y,2,t)

where the g subscripted variables are independent of time and the w subscripts refer
to the wave-like part of the motion.
For the steady, linear part of the motion, the balances are

0
fvg =;1""ap7g (11.26a)
0
1 9p,
fug=——"-—> (11.26b)
Po 9y
wg =0 (11.26¢)
dp,
by =— > (11.26d)

that is, for the steady part of the solution, the horizontal velocity is in geostrophic and
hydrostatic balance, the vertical velocity is zero and most importantly,

ob 1 0%p
1=0s—f=, g/N — Vipg + 1\{ azg (11.27)

(Note, it is because the geostrophic w is zero that the wave equation for w does not
contain the extra time derivative that the pressure equation does, because there is n0
nontrivial steady solution for w).
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Thus, if the potential vorticity is determined by the initial conditions, the above
elliptic equation for the geostrophic pressure completely determines the steady part
of the solution, since once the geostrophic pressure is determined, both the steady
density perturbation and the geostrophic horizontal velocities can be calculated from
the geostrophic pressure. Note that the vertical velocity in the steady geostrophic so-
lution is zero as a consequence of the steady form of the adiabatic equation. Thus, the
steady geostrophic part of the solution can be determined independently of the wave
part, in terms of the initial value of the potential vorticity.

Since the wave field carries no pv, the wave part of the pressure field is determined
from the homogeneous part of Eq. 11.3; thus,

-

0% _ 20°p,
= vzpw+]2 DPw + N2
t

o2
= Vip, =0 (11.28)

The initial conditions on the wave pressure must satisfy that part of the initial pressure
field, which contains no pv. Thus, if the total initial perturbation pressure is p; (%, y,z,0),

Pw(%:7,2,0) = Prorar(x, ¥,2,0) — py(x, y,2) (11.29)

We will see later how to exploit the potential vorticity conservation for the initial
value problem, but now let’s return to the wave problem. Let

W= Woei(kx+ly+mz—(ut) (11.30)

substitution in the wave equation yields the dispersion relation,

2 2 2
ke +1
O =[N (11.31)
k“+1“+m k" +1"+m

Note that if m were zero, the frequency would be N, while if k and I were zero, the
frequency would be f. Let K}, be the magnitude of the horizontal component of the wave
vector , i.e., K, = Vk?+ 2, such that (see Fig. 11.2)

sinf=m/K (11.32a)

cosf=K, /K (11.32b)

K=l +12 +m? )" (11.32¢)
S0 that

a)2=fzsin2¢9+N2coszl9 (11.33)

Since

N?— g =N>-f2sin 90— N2cos? 0
=(N* - f?)sin’6 (11.34)

@~ f2=(N?= f?)cos2 0
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Fig. 11.2. The three-dimen-

sional wave vector, whose
orientation determines the / \:
frequency of the inertial-

gravity wave X Kn

and since almost everywhere in the ocean N > f; it follows that the frequency of the
plane wave will satisfy f< @< N, which explains the rapid fall off of the spectrum of
observed internal waves at N. The observed peak at fis related to the geometrical prop-
erties of the forcing. Usually, the horizontal scale is much greater than the vertical scale.
In this case, a convenient way to write the frequency relation is

K? K}
w2=f2+(N2_f2)‘2—h_2‘zf2+N2—2
Kh+m m

so if K, < m, the excited frequencies will be close to f.
With the dispersion relation for the frequency, the student should check that the pv
in the wave is zero by calculating both the relative vorticity and b,as well as forming g.
Now let us orient the coordinate system so that the wave vector lies in the x-z-plane.
This makes the y-wave number zero. Note that velocity in the y-direction will be dif-
ferent from zero, since

M _

—W ——fu
if 1 is zero.
Then
2 2
2_pa_m kK (11.353)
2, 12 2 12
m-+k m-+k
ow 5, 4
a)a—k=Nz/cm2/1<‘*—lecmziK‘1 (11.35b)

so that
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aw i (11.36a)
and similarly,
ow 2 2 kzm
—=—|N"—f"|— 11.36b
Thus the components of the group velocity are
— 3
(cmcm)— —~ mk(m,—k) (11.37)
wK*

Once again, the vertical component of the group velocity is opposite to the vertical
phase speed

[0
—Cy, <O
m

and the group velocity is perpendicular to the wave vector (because, again, with an incom-
pressible fluid, a three-dimensional plane wave has its fluid velocity orthogonal to the wave
vector, and the group velocity will be in the direction of the energy flux vector pu).

In the limit where k < m, the dispersion relation is

2 _ r2 2 k2
@’ =f*+N — (11.38)

and waves with such frequencies are called Poincaré waves.

Now that w or the wave pressure is determined, it is easy to calculate each of the other
velocity components and the density perturbation so that the energy in the plane wave
may be found. The student should check whether equipartition between kinetic and

Potential energy obtains for the internal gravity waves in the presence of rotation.
If

w =W, cos(kx+mz—wt)

it follows that

2 2
L=—Mwocos(kx+mz—a)t) (11.39a)
Po mao
u=—%w=—%wocos(kx+mz—wt) (11.39b)
il —fumy=LT W, sin(k 1.39
at f v—;? o Sin(kx +mz — wt) (11.39¢)

b=—(N?/ @)W, sin(kx+mz— wr) (11.39d)
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Hodograph of horizontal velocity
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Fig. 11.3. The ellipse traced out by the position of the horizontal velocity vector during one wave period

Note that the relations for # and v imply that the horizontal velocity vector will rotate
in the horizontal plane clockwise with time for @ > 0 and m > 0, i.e., for downward
energy propagation. Indeed, the horizontal velocity vector traces out an ellipse
(Fig. 11.3)

2 2
R A—Y L (11.40)
fZ / a)2 k2
whose major axis is along the x-axis and whose minor axis, along the y-axis, is smaller
by a factor f/ w.
Finally, note that if the fluid is contained between two lateral boundaries a distance D
apart, the equation for the normal modes in that region will be (with the rigid lid ap-
proximation)

w=W(z)e'k¥tly-en (11.41a)
2 2 2

d W+K§(N —O) g (11.41b)
dZZ (a)szZ)

W=0, z=0,—D (11.41¢)
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Fig. 11.4. Normal modes for three frequencies. The density distribution and the distribution of N(z)
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The mode shapes will depend on the frequency, and the discussion of the domains
of oscillation and evanescence in z are similar to the nonrotating case. Figure 11.4, taken
from the previously referenced article by Garrett and Munk (1976), shows some ex-
amples.






Lecture 12

Large-Scale Hydrostatic Motions

For many motions in both the ocean and the atmosphere, the horizontal scale far ex-
ceeds the vertical scale of the motion. For example, motions in the ocean occurring in
the thermocline will have a vertical scale of a kilometer or less, while the horizontal
scales might be of the order of hundreds of kilometers. Motions in the ocean induced
by traveling meteorological systems will have such large scales. If the motion has such
disparate scales in the vertical and horizontal, we can expect important influences on
the dynamics. First of all, we would expect that the vertical velocity will be small com-
pared with the horizontal velocity, since the motion consists of nearly flat trajecto-
ries. That in turn could mean that the vertical acceleration is small. Such dynamical
consequences often allow simplifications to our treatment of the physics, and we are
always looking for such simplifications so that we can make progress with more diffi-
cult problems; not just make life easier for ourselves.

We need to define clearly what “small” means in a dynamical context. As an example,
let’s review the results of the plane internal gravity wave with rotation. As we saw in
the last lecture, if

w =W, cos(kx +mz—wt) (12.1)

then the pressure and horizontal velocity is

22
Lz—MWO cos(kx+mz—at) (12.2a)
Po ma
m
u=—?W0 cos(kx+mz—wt) (12.2b)

Therefore, the ratio of the vertical acceleration to the vertical pressure gradient is

2 2 2
M=O —2(0—2] while .I.)Z:Nzk— fzm— or (12.3)
)2 N _a)J K? K?
P _ o 2N = FOREIK?)
8 (N = fym?IK? )

(12.4)
2 2

=k—2+f—2K2/m2

m- N

i
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Now consider the case where the horizontal scale is much larger than the vertical
scale of the motion. This implies that k < m, and so K%/ m?=1.Since k/m is small and
in oceanographic settings f/ N is small, we see that the vertical acceleration is small
compared to the vertical pressure gradient. Later we will see more directly how this

comes about by scaling the equations of motion, but here we can see it from the solu-
tion of our problem. This implies that to

[d 2 2 -
kY f
ol| —| "=
m) N
max
the vertical acceleration in the vertical momentum equation can be ignored comp
S| 5 1%
r

with the vertical pressure gradient so that to this order, that equatio
the hydrostatic approximation

=
=

9@ __

12.5
0, P8 (12.5)

for the perturbation as well as the mean resting state. That is, the motion has such a
weak vertical acceleration that although the fluid is in motion, the pressure can be
calculated from the hydrostatic equation as if the fluid were at rest. This is character-
istic of motions whose horizontal length scales for the motion are large compared to
the vertical scales of the motion.

However, note that although w is small with respect to 4,

a_w_zo(mWO) (12.6a)
0z

gu =O(Wyk(m/k))= O[a—w-) (12.6b)
o0x 0z

so that w cannot be neglected in the continuity equation. The vertical velocity is small
with respect to the horizontal velocity, but the fast derivative in z in comparison with
x compensates.

We will examine such hydrostatic motions and waves starting with a simple ho-
mogeneous model.

Potential Vorticity: Layer Model

Consider a layer of inviscid fluid with, to begin with, a flat bottom and a uniform
density p. The fluid is rotating with a constant angular velocity £2 - f/2, whose axis i
opposite to the gravitational force (see Fig. 12.1).

This is meant to be a model for a small segment of the ocean, whose lateral scale,
while being much greater than the depth, is small enough so that the dynamical ef-
fects of the Earth’s sphericity can be ignored. We therefore use Cartesian coordinates.
Further, it is convenient to define P=p/p in terms of which the linearized equations
of motion are, when the hydrostatic approximation is used,
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From the hydrostatic equation, it follows that

P=g(n—2z)+P,(x, y,t)

(12.7a)

(12.7b)

(12.7¢)

(12.7d)

(12.8)

where 7 is the free surface height and P, is the atmospheric pressure field at the free
surface. Using the result of the calculation of the pressure, the horizontal momentum

equations become (subscripts for derivatives)
U _fv:_gnx — Py

Vs +fu:_g77y _Pay

(12.9a)

(12.9b)

~ Since the forcing terms on the right-hand side of the momentum equations are in-
dependent of z, it is consistent to look for solutions for u and v that are also indepen-
dent of z. This allows us to integrate the continuity equation immediately to obtain

D(uy+v,) + w(h) = w(~D) = 0

Since wis zero at the bottom (z = -D) and is equal to 977/ 9t at the free surface, the

quation for mass conservation is simply

. _
35 (ux+vy)—0

(12.10)
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The horizontal convergen of velocity times D yields the horizontal conver-
gence of volume. This must t be compensated for by an increase in the free surface
elevation 7).

The elimination of the pressure from the horizontal momentum equations leads
to the vorticity equation

=V, —u, (12.11a)
9% __ _fon
== f(”x+Vy)— 5 (12.11b)
or
i{f_f_n_l—
atLb D"J_O (12.11¢)

which is the statement of potential vorticity co nservation for the linear, single layer
model when fis constant. We define the pv as

—

q=¢{—=n (12.12)

o

To obtain a wave equation for disturbance, we start by taking the divergence of the
horizontal momentum equations:

Sat—[ux+vy]—f§:—gV277—V2Pa (12.13)
which with the continuity equation yields

19°n 2
——- V2p-V*P (12.14)
Sl == a

The vorticity can be eliminated from this equation with the aid of the equation re-
lating the vorticity to the potential vorticity so that

Vig-— =55 1=V'F /5L (12.15)

where c,= VgD is the gravity wave speed for long waves in a nonrotating ﬂuzd

Note that the potential vorticity is, by the conservation statement, independent t of
time. Thus, once again we can separate the solution for 7 into a steady part (whichw ill
be in geostrophic balance) and an unsteady part associated with the waves and which
will carry no potential vorticity. The geostrophic part of the field will absorb the CO;'}'

sequences of the initial distribution of potential vorticity, while the remainder oI ti¢
initial conditions, the part containing no pv will radiate away as gravity waves. Again
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the steady part can be calculated independently of the wave part so that the final steady
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SldlC allvl Uil yvvayve 1iao 1audiailcu avvay Lall UL Laituialcul IJI.UCPCU.UCIIU.)’ Ul L1IC L1111C~UC-
1

pendent wave problem.” Historically, this has given rise to a set of interesting adjust-
ment problems, starting with the classical paper of Rossby (1938) (see also Gill 1982).

T thaco invoctiontinne th
11 UITOU 1UIVUS LA tIUILS,

tion of velocity and free surface elevation not in geostrophic balance. How does the fluid
adjust to eventual geostrophic balance, and what is the final geostrophically balanced
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(not easy), while the second part, the ultimate geostrophic state, is very easy because of

the conservation of pv. We will give a classical example here to see how this works. It
<hanld he r]oar that t]ﬁo 1 1 1
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Rossby Adjustment Problem

Consider a layer of fluid in which at time ¢ =0, a slab of fluid occupying the range
between a and -a is set into motion with a uniform velocity U along the x-axis, and at
the same initial instant the free surface elevation is zero (Fig. 12.2). Suppose the at-
mospheric pressure forcing is zero. We would expect, somehow, that eventually the free
surface will deform, producing a pressure gradient in the y-direction to balance at least
part of the initial x-velocity. The question is of the original motion: how much ends
up in steady geostrophic balance and how much of the original energy is radiated away
in the form of gravity waves? Thus,

v=n=0’ t=0 (12.163)
U <
u:{ yl<a (12.16b)
\0 !_y!>a
'
pd A e
u=0 u=U ,// u=0
Y < -
a -a

Fig. 12.2. The initial condition in a homogeneous layer of fluid before geostrophic adjustment

1 AT,

Ve are assuming that the atmospheric pressure forcing has no steady part. Otherwise it is easy to
show that the response to such forcing is just an inverted barometer response in which the velocity
1S zero and n = -P,/ g, a rather dull solution from the point of view of wave dynamics.
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The potential vorticity, g, at £ =0 can be easily calculated. The initial free surface
height is zero, so the only contribution to the potential vorticity comes from the rela-
tive vorticity:

™y
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where 8(x) is the Dirac delta function. It is zero except where its argument is zero,
where its value is infinite and has the property that its integral over the origin of its
argument is one. It is the derivative of the step function H(x). Since the original zonal
velocity can be written as the sum of two step functions

-t

u=U[H(y+a)—H(y—a)]

(see Fig. 12.3) the result for the vorticity follows directly.
The potential vorticity is thus

r
4

r N\
_le-Lp| =-U@(y+a)-6(y-a).
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Fig. 12.3. The initial velocity as a function of y showing the two delta functions in the vorticity



Lecture 12 - Large-Scale Hydrostatic Motions

125

In the steady state in which the final adjusted state is to be calculated,
2

Vzn—j:—zn=—%f[5(y+a)—§(y—a)] (12.19)
0

Note that the problem is forced entirely by the distribution of pv. Since we expect u
and 7 to be functions only of y in the final state, the equation can be simplified to

2
nyy—{—gﬂ=—%f[5(y+a)—5(y—a)] (12.20)

which must be solved on the infinite y-interval between pius and minus infinity. Since
the delta functions are zero except at the zeros of their arguments, the right-hand side
of the above equation is zero except at the two points *a. Note that what we are really
doing is finding the Greens function response for 7 to two point sources of pv at the
two points *a.

The velocity field u is initially even about the origin y = 0, and there is nothing in
the linear problem above that will break that symmetry for u. If u is an even function
of y, n, whose derivative with respect to y yields the geostrophic u, must be an odd
function of y.

Thus the solution can be written

Asinh(y/A) [ylSa

n=44e V"% sinh(a/l) y=>a (12.21)
— A Aginh(al )  y<-a

where A is the deformation radius defined by

1=50 (12.22)

f

The deformation radius is an intrinsic length scale and measures the tendency for
gravity to smooth disturbances out horizontally against the tendency for rotation to
link the fluid together vertically along the rotation axis. If the fluid were stratified,
instead of c, the appropriate speed for defining the deformation radius would be the
internal gravity wave speed for a particular vertical mode. Hence, for a stratified fluid
there will in general be an infinite number of deformation radii. In the present case,
we have only one for the homogeneous layer. Like many other fundamental quantities
In GFD, this one is named after Rossby and is often called the Rossby deformation
radius. We will shortly see why the word deformation is used.

We have used the anticipation of antisymmetry for 7 to write the solution in terms
of a single unknown constant A. We have also chosen the solution so that the free sur-
face elevation is continuous at the point +a. Otherwise, since u is proportional to the
Y-derivative of 7, we would generate infinite velocities at those points.
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To determine the constant A, we return to the differential equation for 7 and
integrate it over a small neighborhood around the point y =4, ie., fromy=a-¢€to

y=a+ & We will then let e— 0. Carrying out the integration and remembenng that

the integral of the delta function is unity when the interval includes the zero of its

) PR

argument, we oDtain
ny(a+8)—ny(a—e)=Uf/g (12.23)

In the limit where e— 0, this yields, using the limits of the solutions on each side
of the point y = a,

A

—ésinh(all)—%COSh(a/ﬂ) =Uf/g

A
(12.24)
:/_\A:_A’Uf p—a/l
g
This completes the solution. Collecting our results, we have
_e™%sinh(y/A)  |y|<a
L N
n/D=—q—¢€ 7 %sinh(a/A)  y=za (12.25)
e?'*sinh(a/A) y<-a
from which the geostrophic zonal velocity of the final state can be calculated from
__8.
u=——7Ij
f Y
—all
(74! cosh(y/ A) ly|<a
u/U= —_e ¥ *sinh(alA) y=a (12.26)
—e’!'*sinh(a/A) y<-a

Note that u is not continuous as the point +a and -a; the jumps in the velocity of
the initial conditions persist to the final steady state that is forced the by delta func-
tion sources of potential vorticity at *a, which give rise to “kinks” in the free surface
elevation at those points where the slope of 7 is discontinuous. Note that v is zero in
the steady state, although it is certainly not zero in the waves whose radiation is es-
sential to reach the steady state.

The solution for the adjusted steady state has some curious and nonintuitive prop-
erties.

Figure 12.4 shows the solution for 7 and u for the case where a = 1 and A is 10,1.€»
when the deformation radius is large compared to the geometrlcal scale of the flow-

Note that in the figures the zonal velocity, whose profile is shown coming out of

the paper, is Dosmve
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Fig. 12.4. The free surface height (solid) and the x-velocity (dashed) for the case where the deforma-
tion radius is ten times the current half width a

The velocity profile has not changed much; it is still nearly the sum of step func-
tions of the initial data, but the free surface elevation that was initially zero has changed.
The fluid, under the influence of the Coriolis force, has slid to the right of the direc-
tion of flow to set up a pressure gradient with high pressure to the right of the current
and low pressure to the left of the current (looking downstream). This final adjusted
state seems intuitively attractive, and indeed is often the example used for illustrative
purposes and close to the one Rossby originally used (note: the free surface height
has been multiplied by 5 for clarity).

The results become a good deal stranger when the deformation radius is as small or
smaller than the geometrical scale, i.e., when A < a. For example, when A is equal to a,
we get the situation shown in Fig. 12.5.

Note that now the reduction of the zonal velocity in the center of the region is much
more evident. The free surface is tilting to support the flow geostrophically, but note the
Teverse flow in the region beyond +a. Also note that the characteristic decay scale for the
deformed free surface is just the deformation radius, hence the name. The really fun-
damental role of the potential vorticity is particularly evident when the deformation
radius is small with respect to the scale a. Figure 12.6 shows the case when A is 0.1a.

In this limit, the final flow consists of two vortex sheets limited to regions of the
order of the deformation radius around each edge where the delta functions of the pv
are maintained. The free surface elevation is symmetric about each delta function, and
the two are nearly nonoverlapping. The structure is very distant from the original pic-
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ture of the first figure and emphasizes that the resulting adjusted geostrophic flow is
determined by the distribution of pv, not by the original distribution of momentum.

Given the remarkable difference between the final states and the initial state, it is
important to realize that it is the waves, which are not described, that radiate away that
part of the initial condition that will not move to geostrophic balance. One measure
of the amount of radiation is the difference between the injtial energy and the final
energy in the adjusted state.

Energy
By forming the product of the horizontal momentum equations with each velocity
component and the product of the continuity equation with the free surface height, it
is easy to show that the equation for the energy per unit horizontal area is (in the ab-
sence of atmospheric pressure forcing)

d u’ +v? 2 _

a— D " +g;7 +V.-(gnu)D=0 (12.27)

t

Note that the kinetic energy involves only the horizontal velocity. Consistent with
the hydrostatic approximation, the vertical velocity is too small to contribute. The
energy flux term is the horizontal velocity times the pressure, which in this case is given
hydrostatically by the free surface elevation.

In the adjustment problem just discussed, the initial energy is all kinetic energy,
since the initial free surface elevation is zero. That initial total energy is

D 2
Einitial = Tsza = DUZa (1228)

We could compute the final energy by using our results for u and 7 and integrating
over the whole y-interval. There is, though, an easier indirect way to do the calculation.
Starting from the equation relating 7 and the potential vorticity,

&Vzn_iﬂzq (12.29)

2 D
D%V-(Wﬂ)—D%(Vn)z—gn2 i (12.30)

the disturbance vanishes at infinity, the divergence term, the first term on the
left- hand side of the equation, will have zero integral over the whole domain. Recog-
Nizing that the kinetic energy of the geostrophic velocities is given by the second term

(divided by 2), we finally obtain for the geostro hically balanced state
y P )
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where th

o

integral is over the whole domain. In the case just considered, g is the sum
Ita functions, so

[Egeosdy = —f—"[ [nuls(y—a)- 6(y+a)ldy
. 2f

oo

2
=5 (@) -(-a) (12.31)

2f

_UD (1 ea12)

~
Z

The ratio of the final energy to the initial energy will give us a measure of how much
is retained in the geostrophic state and how much is radiated away by the gravity waves.
That ratio is

Egeos. _J_e—Za/i

- (12.32)
E 2al A

initial

so that the ratio is a function only of the parameter a/A = fa/c, i.e., the ratio of the
width of the current to the deformation radius. The energy ratio as a function of that
parameter is shown in Fig. 12.7.

Egeostrophic / Einitial

T T T
Ll ' 1

5
al/A=fal/co

Fig. 12.7. The ratio of the final geostrophic energy to the initial energy
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The energy ratio is unity when the deformation radius is large, i.e., when the rota-
tion is negligible. That limit is easy to understand, since if there were no rotation, the
initial state of no free surface elevation and a uniform flow in the region between y = +a
and -a would be an exact steady solution. Nothing would happen,and no

be radiated. At the other extreme. when the deformation radite is small with res

wAARI 2225 YV AANAL RAAN NRAVI LA UIVIL 1auluy

to a, the motion is limited to a narrow region around the end points at *a, and the

energy, almost all of which is kinetic, is of the order of U?D*), i.e., it is of the order
of A. As the deformation radius becomes small. the enerov retained in the eostrophic

Hus DELOIIES SHIdlL, The energy retained in the geos iropn

motion becomes small, and in this limit, most of the energy of the initial state is radi-
ated away as gravity waves.

~
a
(@)
(o

The complete problem was studied by Cahn (1945), an associate of Rossby’s. Cahn
presents the full-time dependent solution showing the evolution to the time indepen-

1%
dent state. The analysis is more complicated than we have space for, but I encourage
you to at least examine the graphical results of his calculation.
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We now examine the nature of the waves which serve, among other things, to sculpt
the geostrophic final state from an arbitrary initial state. These waves, as we noted
earlier, have no potential vorticity, because in the simple models we are examining,

the conservation of pv is simply the statement:

aq . _
=0 (13.1a)
ot
q=6 -1 (13.1b)
D
Thus, for periodic motion for which the time derivative can be replaced by multi-
nlhicatinn hu tha franiiancyw 2 rmiier vanich Tha urawva nart thaon caticfioe tha urawa an1tia
prilauliil Oy Uil iICQUCTICY, § ITiusSt Vaiilon. 111 Wwdve pait Uil 5atisils uil wave C{jua
tion derived in the last lecture
1 3% f —
"5 o7 5 1=0 G =ygD (13.2)
0 0
Tft ere were no rotat;op wo wnnld aot tho rlacciral nandicnarcive wave sanatinn
41 Lliu 1 L 1 L P s 1, YYL yyuuiu 6\/[. L1l \;1“001\;“1, J.lULluLUtJ\rLULV\r Yyyavse \r\luul.l\}lll
In one dimension that equation would be
2= (13.3)
Mex =Mt [ Co = :
Its well-known solution is
A __ T . . o2\ . M/ . PAY 17 AN
M=F(x—cyt)+G(x+cyt) (13.4)

Where Fand G are arbitrary functions of their arguments The functions can be deter-
mined by initial data. The important thing to note here is that the shape of the distur-
bance remains fixed with time, and each function translates F to the right and G to

the left with the speed c,. The unchanging shape is a reflection of the fact that for
Orretatmg shallow water, the phase speed is independent of wave number; the wave
1s nondispersive, and so no change of shape occurs.

Returning to the case where the rotation is different from zero, we can find plane

Wwave solutions in the x-y-plane of the form
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7= Aik+ly—a) (13.5a)
K = xk + yl (13.5b)
K=vk*+I (13.5¢)

which yields for the frequency the dispersion relation:

12

o=t{f2+ 2k +1} (13.6)

4 2o femmen et nu\

- 1
V .u=__
h D’?t

so the group velocity does not have to be perpendicular to the wave vector. Indeed, we
can tell immediately from the dispersion relation that the group velocity will be in the
direction pf the wave vector.

Note that the frequency has a minimum value of +f. That is, these waves all have
frequencies greater than the Coriolis parameter. If A is the wavelength, the increase of
the frequency of the wave above f will depend on the ratio of the wavelength to the
deformation radius, ¢,/ f. If the wavelength is large compared to the deformation ra-
dius, the frequency will be close to f.

We may easily calculate the two components of the group velocity:

Jw =62£= 2 k. (13.7a)
ok 0 0 2, 2.2

o f +cK
_a_a_)zczizcz_l_ (13.7b)
ol 0 0 2, 2.2

w f 4K

Thus, the group velocity is in the direction of the wave vector and in the same direc-
tion as the phase speed. Note that while the group velocity goes to zero as the wave
number goes to zero (large wavelengths), the phase speed becomes infinite in that limit;
this is another indication of the physical irrelevance of the phase speed as a messenger
of real information.

By eliminating v between the two horizontal momentum equations, one obtains a
simple relation between u and 7, i.e.,

2 2
§-—+f L _fga” (13.8)
8 3xar
similarly for v,
+fv o rgf 21 . (13.9)
' dtdy

This allows us to solve for u and v in terms of 1) unless the operator of the left-hand
side is null, which will happen for oscillations exactly at the inertial frequency,i.€-
when w==f.
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For all other frequencies, we have the relations (after aligning the x-axis with the

n=r1,cos(kx—wt) (13.11a)
u=%%cos(kx—a)t) (13.11b)
v=%%sin(kx—a)t) (13.11¢)

so that again the velocity vector traces out an ellipse in the x-y-plane whose major axis
is in the direction of the wave vector, and its minor axis shorter by an amount w/ fis at
right angles. For positive frequency and wave number, the velocity vector in the wave
moves clockwise as the wave progresses through a period. Note that the fluid velocity
is smaller than the phase speed by the (small) parameter 7,/ D.

We also note that the maximum group velocity is c,, and this occurs for the short-
est waves. The longest waves have the slowest group velocity. Therefore, were we to do
the adjustment problem, we would expect that we would see the short waves speed
away from the adjusting current first, and after a long time, a long swell of waves would
finally move away from the vicinity of the current. This is exactly what Cahn found as
seen in Fig. 13.1 redrawn from his paper.

1.0 I | I |

(y<0) . ﬂ
0.5

|
|
\
)

I
oo
U

(=]
(=)

Departure of D from D,
S
(9,]

(@)

L

d # < (y>0)

Horizontal unit = deformation radius ¢y / f

Fig. 13.1. The free surface height as a function of time showing at first the passage of the fast short
Waves and then the longer waves with slower group velocities (after Cahn 1945)
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Channel Modes and the Kelvin Wave

Up to now, we have not considered waves in a domain bounded horizontally. Normally,
what that does is introduce certain conditions that quantize the horizontal wave num-

heor Hawover tha race AF 2 ratatin id thova are cam wrricnge (nngcidas tha

URCl1. 11UVUL VL], 1].1 UJ.C Laol Ul a 1Uldl.111g IIUIU, lllClC are SOIfie sur Pl ioca UILIDIUCT LI.I.C

wave motion in a channel of width L (Fig. 13.2).
Again, the equation of motion for the wave is

2, 10% f° [
\Y T]—C—287—6—27720, €= gD (13.12)
0 0

On the boundaries of the channel, which have been oriented along the x-axis, the
y-component of the velocity, v, must vanish. Since

N2 2 -~
oV a‘n on
4 V=—¢g————+ —_— 13.13
32 8, T, (13.13)
the bounéizry condition becomes
2
0=—g 0T, g7 (13.14a)
otdy ox
y=0,L (13.14b)

The domain is infinite in the x-direction, and so we can look for wave modes of the form

n=1(y)elF*) (13.15)

so that 77(y) satisfies the ordinary differential equation:

2

~__ ( 2_ 2 h
d"%“’ f _kZ}-ﬁ:o (13.16)

dy? c

this is subject to the boundary conditions;

d_j+k£ﬁ:0 (13.17a)
y=0,L (13.17b)
y=L

O Q
— -0

Fig. 13.2. The channel of width L in plan view in which gravity modes occur
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Note that if there were no rotation f 0, a possible solution would be 7 indepen-
dent of y with &= *kc;. This would be the lowest cross stream mode and the solution
with the lowest frequency. Higher modes of the form cos jny | L would also be possible

with frequencies

W =tcyy kK + j*n? 1 I

It will be of intere

ct t £aY
i1 v U ALvoL L vAal

,..
)
1

1ine how the rotation alters this simple structure of the
problem (see also Gill 1982 and Pedlosky 1987). The cause of the change will be found

)-
in the mixed boundary condition at y = 0 and L, which mixes the function and its de-

tha fenmiom~<r
rnratvm and which exphatly involves the frequency.

It is useful to define the constant

2 2
a) J—
€2= zf _k2
Co

—~~
[
W
Y
(<]

g

so that £ is something like a y-wave number. The solution can then be written
n(y) = Asinly + Bcos/y (13.19)

The constants A and B are not both free but must be chosen to satisfy the bound-
ary conditions. Applying the boundary condition on y = 0 first yields

arsB g g2, (13.20)
10 kf
The same boundary condition applied at y = L yields
: kfy .
Afcos(L—BEsme+—{Asm€L+Bcos€L}=O (13.20)
@
which when combined with the first equation relating A and B yields
f_(&ﬂ kf 1
sinLf ——+-- =0 (13.21)
kf o

When the definition of / is used to evaluate the square bracket in the condition above,
We obtain the final eigenvalue relation for the modes in the rotating channel, i.e.,

[ 2 2
sin(L[a)zéz +k? f2]= sin/L wz(ﬁ‘z—fj— Ko? +K*f?

Co

2k2J(w ~f2)=0

Co

~~
[y
(93]
N
[\®]
—

r

=sin/L
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There are apparently three possible ways in which this eigenvalue relation, or dis-
persion relation linking and k, can be found.

l. o=%f
2. a)=i’kC0
3. sinf/L =0

The first of these is immediately suspicious, since as we have noted, when the fre-

quency is exactly equal to f, we can no longer use Eqgs. 13.8 and 13.9 that relate the
velocities to the free surface elevation. We will have to examine this case very care-

fully, and in fact, it will turn out that this is a spurious root.
The second possibility does not look much more promising, since it appears to yield
the frequency relation for a y-independent mode for a nonrotating fluid. Note that the

boundary conditions

d—”+kiﬁ=o, y=0,L (13.23)
dy o

do not allow a nontrivial y-independent solution if f is not zero.
With all this doubt in mind, let’s start with the term that looks like the most ordi-
nary of eigen conditions, namely

sin/L=0 (13.24)
The solution of this condition is
/L=nm, n=123... (13.25)

where we note that we have started with n= 1. The solution corresponding to n=0
would yield, from the boundary condition at y =0, B=0. But if ¢ =0, the remaining

term proportional to A would be the sine of a zero argument. Hence, the whole solu-
tiaon becomes triviallv zero.

LIVIL ULVULIAL U ta iy asisy &

The physical reason why this occurs is related to the relation between 7 and v. If
the free surface height were independent of y, we would have

__gf 9nixt) 3.26
’ fP-w* Ox (13.26)

which would be nonzero at the boundaries y = 0,L, unless 7 were identically zero ev-
erywhere. Hence, the first nontrivial term must be n = 1.Using the definition

|
>
(%]
~~
[y
W
[\S)
~~
p

ields the dispersion relation for @ for each n,
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a),2,=f2+co[ +n*n? /12 ] (13.28)

This is exactly the dispersion relation for the plane Poincaré wave we deduced ear-

lior ovront that tho AI_TATAYTO nimmhor ie Atltantizad 1 munltinlac af /T swith tho mmaine
11C 1y \vA\/\rtlL uiatl uule )’ yvavue 11uliilvel 190 Hualllll:\'u lll lllulllyl‘o Ul V] L, VV‘L”» l-’lc ’Ilujul

exception that the n = 0 mode is not allowed. Now, in the unbounded case, there is such
a y-independent mode. In addition, when fis zero there is such a mode allowed. What

hac hannened tna that 1n rocf mndoe? Camothing ic miccing cinca it alraec na nhveiral
11ao llut’y\rll\ru LU LiiQau IUV VOL 111U . UUJIL\«LILLII& 10 llll\)\)llls, OlllLy 1L 111(11\\.0 11V Fll} vlivail

sense that the addition of the smallest rotation of the system can eliminate the lowest
mode previously allowed. We have a problem here we must be sure to clear up. For

now thonioh let’e on ahead ac if we have not noticed thic veving anna
11V YY bllvubll, AL U 6\/ QAlilvaul Qu 11 YYL 11Aayv\uw 11U L 11V LIVLUGL Lo v\'A].lls at}tla

examine what the modes that are allowed are like.
Using the relation between A and B and choosing A to measure the elevation of the
free surface,

nzno[cos(nny/L)— kfL
wnm

sin(nmy/ L)}cos(kx—a)t) (13.29)

Note that the y-structure depends on the phase speed of the mode; that is, in the
square bracket the relative importance of the sine term with respect to the cosine term
depends on w/ k. To keep the equations uncluttered, the subscript n on the frequency
has been suppressed, but the student should recall that for each n, the frequency is
given from the dispersion relation above. Since for each k there are two roots for w
differing in sign, it follows that the cross channel structure will differ for waves going
to the right and waves going to the left. Using the relations between the velocities and
the free surface height

on _d'n
v(f2-w*)=gf —— 13.30
U-o=85. 7850, (13:30)
one easily finds that
_ + 2.2 L2
y= ’70[[ o' 11 sin(nmy / L)sin(kx — o) (13.31)

onm/ L

The y-component of velocity contains only the sine term, since of course it has to
vanish on y = 0 and L. Similarly, the velocity in the x-direction can be found and is

2
u =77—£l’ “ cos(mcy/L)—ﬁsm(nny/L)—‘cos(kx wt) (13.32)
Iy |_ nmn J

Looking back at the formula for the free surface elevation (Eq. 13.29), we note that 7
will vanish for those values of y for which

tan(nmy/L)=

2012, 2.2 22
a)nf,,:ﬂ{l+co(k +n*n? /[ )} (1333

kf L | f2



140  Lecture 13 - Shallow Water Waves in a Rotating Fluid; Poincaré and Kelvin Waves

].0 TTTITITIT T TTITTTT T T ] Il'lll T T TTITITIT ]
g 1111111 1 it
Pttt T ,,!i,:’“ NN

o9l 1 T 1y oty vy

1 r i PV PRI IR
s NI R A P NHNERN

A Py T RN R
08F 7 rirnin v N HTV AN S
S oriidiii EERR S p VAN /T AN

WY /’I Iy Piiva g
AYNNNNY RR RN r4! EERRR
- \ -7 Ly ~

07*_////:” [N NANEN SPETY Py N

SES s sy S =7 0 vy S
=77 AN~ -7 |\\\\\\
7

-~ sy ‘\‘\ ~ oo - ,/’ v N T~
- ’ N O Y- -~ // NS~
OSt_’/ \\—__’/ \\_—
I ’———ﬁa\ — ’—‘—_~;‘\ —
0—4:\\ ,:, — T T~ N //’\\ 1/ — T T~ N /ﬁ

= ~
™ LA A [ I N A A A N U U U O O O LR / <N i
02} sy, \\“\"I'I i 4,7 \\“\‘I'l:
IRV N TR A N R
ey \\\‘|"' iy v
el o~ vt el o, ~ vtk
0-]\ RN, \\||','“ terrer o N byt
ITIITREN, Lol TR, Vot
\\\HHHIIHIHII Vgt ””” AN Vgt “
0.0 IS B R LA [TER NN N S W L
-2.0 -1.5 -10 -0.5 0.0 0.5 1.0 15 20

n=1, kL=3.1416, c3/fL*=10, o /f=14.0852

Fig. 13.3. The elevation of the free surface for a low rotation mode, @/ f = 14.0852. The gravest mode
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n L
cosine modes of cross stream wave number n7/ L for n > 0. So, once more we are per-
plexed to find that even though we have an infinite number of modes, we are missing
the lowest mode corresponding to n = 0.

Let’s first look at the structure of the modes we have found. First let’s look at the mode
for small for when the deformation radius is much larger than the channel width. For
co/ fL = 10, the contours of the free surface height are shown in Fig. 13.3 for an x-wave

4y AL

number /L.

way point in y in the channel. On the other hand, when the rotation rate is large so
e deformation length is about a third (actually 0.316) of the channel width, the

form of the free surface is as shown in Fig. 13.4, and we note that now the zero level is

much closer to the lower boundary.

Both of the cases above are for wave patterns propagating to the right. If the fre-
quency is negative so that the pattern propagates to the left with the same speed as
the above example, the free surface height instead looks like in Fig. 13.5.

The pattern is essentially the same except that the nodal line in y has shifted to-
wards the boundary at y =L as the pattern propagates to the left.

The student is left to discuss the group velocity in these modes in the x-direction.

Note that there is no energy flux in the y-direction, and it is left to the student to ex-

plain why that is in terms of individual plane Poincaré waves.
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Fig. 13.5, As in the previous figure but for a wave propagating to the left
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The Kelvin Mode

Let’s now examine the second possibility as a solution of the eigenvalue condition,
namely that

w="1ke, (13.34)

A e bt ot o al o i n e abnd nnocihility of it 1 i 1
As we noted, this is a rather unexpected possibility, since it is the dispersion rela-
r

tion for y-independent, nonrotating, long surface gravity waves. Ou

and as we noted above, no solution independent of y is a possible solution in the chan-
nel. So, it is of interest to examine the possibility with some care. Using the definition
2 2
2_W — 2
2= ——zf——k (13.35)
‘o

we find that for this case,

(=zif/c, (13.36)

so that the cross channel wave number is purely imaginary. Let’s look at the solution

corresponding to the positive imaginary root (it is left to the student to repeat the analy-

sis for the negative root to demonstrate that nothing new is discovered; the negative

root only serves to interchange the identity of the two solutions we will shortly find).
Using the relation between A and B from the boundary condition at y =0,

A€+B—]i=0, :>B=—%A (13.37)

w kf

o

and writing the sine and cosine in their exponential form, we obtain
' . . R \
T =m1e ' 1+ w/key|-e”'[1-w/key |§ (13.38)

Here we have redefined A = in,.

The solution consists of two parts. The first term exponentially decreases from the
lower boundary at y = 0. The second term exponentially decreases in the -y-direction
from boundary happens at y = L. The scale for the exponential decrease from either
boundary is the deformation radius. Note that this solution can occur only in the pres-
ence of lateral boundaries in order to keep the solution finite for all y.

For the solution propagating to the right for which = ke, the second term vanishes,
and the total solution restoring the x- and t-dependence is the right moving Kelvin
wave:

7_7=7_70e_ﬁ'/c° cos(kx—at) (13.39)
Note that such a solution would be valid for the region y > 0 if only a single wall

were present and the fluid were semi-infinite in the +y-direction. We obtained the
solution using only the boundary condition at y =0, and we must check that it also
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satisfies the v =0 condition at y = L. In fact, let’s calculate v for all y in the channel
s1Qin tha ralatinn

uollls Lll atlivil

-

v(f*-w)=gfn, —gn,

=—gfksin(kx—kc()t)wtgikc0 sin(kx—kcyt) (13.40)
Co
=Q!

e

The cross channel velocity is identically zero for all values of y in the channel, and

so of course this satisfies the boundary conditions trivial y =0 and L. Moreover,
calculating u,
2 2y
u(f*-w")=-gfn, —gn,,
f? 2
=g—1n-gk“cyn
g ¢ 8 (13.41)
8,2 122 8,2 2
==(f"=-k‘cgn==-(f"-0")n
Co Co
or
0
u=-3291 (13.42)
f oy

so that the long channel velocity is in geostrophic balance with the pressure field, al-
though the motion is unsteady and the frequency is not small with respect to f.

If we choose the other root = ~kc, so that the wave is traveling to the left, the so-
lution consists of the same wave, now a maximum at the boundary at y = L exponen-
tially decreasing in the direction towards the lower boundary at y = 0. Again, as you
can check, the cross channel velocity is exactly zero, and the long channel velocity is
in geostrophic balance. Note that in regions where the free surface elevation and the
u-velocity are in phase and if one is positive, so is the other.

Note that as f—— 0, the mode becomes independent of y and

n — ny cos(kx — wt)
which is the “missing” lowest mode of the nonrotating case. That mode in the pres-
ence of rotation maintains its character of having no cross channel velocity and does
s0 by introducing a sloping free surface elevation that exactly balances geostrophi-

cally the Coriolis acceleration of u. Indeed, it is illuminating to examine the original
€quations using the a priori condition that v is identically zero, i.e.,

fu=—gn, (13.43a)
Uy =—g1jy (13.43b)
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Combining the last two of these equations yields

st =C§nxx (13.44)

one solution of which is 17 = F(x - ¢,t, y) where F is an arbitrary function. The first

equation determines the y-structure of F. Since from that equation fu,= -g1,,, we find

that from the second equation -fgn, = -g7,, = g€, the second equality follows from
T Ade tho diffe 1

P I - chsenc mdocan ~E tlin Losemn ~b3 e 10 Yrin a
the x - cot structure of the function F. This ymluo the difterentia

INND e (13.45)
ay ¢y

from which the exponential y-structure of the solution follows immediately. An im-
portant consequence of this approach is that we see that the form of the Kelvin wave
in x is arbitrary. Any function of the argument x - ¢yt is legitimate for the x-t-struc-
ture, and as we could see from its dispersion relation, the form in x is unchanging with
time as the wave propagates, because the frequency relation is nondispersive, i.e., the
frequency is a linear function of k.

While the Poincaré waves have a minimum frequency

I-_,z 2.2 ,,2]1/2 f1A ar\
Opin =Uf " +con™ /L7 | 13.46)

the Kelvin wave has no minimum. As k— 0, the frequency will go to zero. So if we
had a rather narrow channel for which the minimum frequency was quite a bit higher
than f, a forcing at or below the inertial frequency would not be possible in the chan-
nel for Poincaré waves. The dynamical equations (linear, rotating shallow water) we
have been studying are often called the Laplace Tidal Equations, because they are
exactly those used to discuss the tidal response to solar and lunar forcing. Naturally,
one has to include the effects of sphericity, which we have not done, but qualitatively
we can see there would be difficulty of the tidal forcing at semi-diurnal or diurnal
periods to effective produce a Poincaré wave response in a narrow sea. Instead, the
response is more likely to be a Kelvin wave signal propagating around the boundary
of the sea.

To get a feeling what that might look like, consider the superposition of two Kelvin
waves of equal amplitudes propagating on both boundaries of the channel represent-
ing an incoming wave on one boundary balanced by an outgoing wave on the other
boundary. We are neglecting the (difficult) problem of the reflection of the Kelvin wave
at one of the ends of the channel if it is close, but we will assume it is far enough away
to ignore.

The sum of the two Kelvin waves would be

n =1, lcos(k[x—ct] Je /% + cos(k[x +cyt] Je-L=2)f < ] (13.47)

where we have introduced a constant term in the second wave so that each wave has
the same maximum amplitude. Note that the second wave is decreasing as y diminishes.
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Note that at y = L/2, the channel mid-point, the free surface height is

n=n, [cos(k[x —cot])+cos(k[x+cyt] )] e fL1% (13.48)
=277, cos kx cos kc,te L/ 20 .

so that for all ¢ the free surface elevation vanishes and is therefore fixed in time at the
points

. :
y=LI2, kx=jrn/2, j=12,3... (13.49)
These fixed points for the elevation are called amphidromic points in tidal theory.

perlod The asterlsks mark the amphidromic points.

Figure 13.6 shows the case where kL is m and the figure is drawn for the time t=T/4
where T is the wave period 21t/ kc,. Figure 13.7 shows the free surface elevation some
time before when t = 0.245T.

Note that the amphidromic points on the zero contour of free surface height have
remained stationary as the phase of the disturbance rotates around it. Figure 13.8 shows
the situation at the later time ¢ = 2.55T.

Again, note that although the phase lines have altered their tilt considerably, the
amphidromic points remain stationary.
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We now turn our attention to the third possibility for an eigen solution, namely

= 1f, and we noticed that in this case it was not possible to solve directly for the ve-
city field from the free surface height, since for examnle

~7 SEVR2L RAIL 22NN OGN LINiIDAY DALY IVL VAaQilipad

azv 2 77
o fv=—g o gf (13.50)
ot otay

the operator on the left-hand side is trivially zero and would give an infinite ampli-
tude for v. We must return to the original equations, i.e.,

v+ fu=—gn, (13.51a)
u, —fv=—gn, (13.51b)

iR

Let’s examine a solution oscillating like e, i.e., with @ = f, and see if it is possible.
Then

—ifv+ fu=—g7], (13.52a)
(13.52b)

Note that the determinant of the coefficients of u and v is zero, but if the second
equation is multiplied by i and subtracted from the first, we obtain

dn

—L k7 =0 (13.53a)
dy

so that
T=1e ™ (13.53b)

At the same time using one of the two momentum equations,

u=—iv+ Sk (13.54)

If this is placed in the equation for mass conservation,

My +D(u, +v,)=0 (13.55)
we obtain
—if77—+ikD(iku+vy) =0 (13.56a)
—ifﬁ+ikD!ﬁ=ﬂl+Dv., =0 (13.56b)
2 A
= 2
= v, —kv= zf”( ] 'f”(’( k ) (13.56¢)
Dy f ) 20 J5)
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which yields the solution for v:

. 212
v= AeD _ if 1 1— Colz ek
2Dk f

(13.57)

However, v must vanish on y = 0 and L. We can make v vanish on y = 0 by the proper
choice of A so that

. 2,2
v=lf—n°— 1—% sinhky (13.58)
Dk f

The only way v can vanish on y = L is if the coefficient in front of the sinh term van-
ishes, in which case v is identically zero and the exponential decay rate for 7 is e /<0,
while the frequency, f, is also kc,. Thus, there is no possible wave solution with fre-
quency f except at a single wave number at which point the solution is indistinguish-
able from a Kelvin wave. We conclude that the full solution of the problem consists of
an infinite pumber of Poincaré waves plus the Kelvin wave. The dispersion diagram
for the complete problem is shown in Fig. 13.9.

Note that for very large k, all the modes approach the dispersion curve for the Kelvin
wave. Note that there are two Kelvin modes, one for each boundary.

w/ fvs. kL for rotating channel Poincare and Kelvin modes

fL/COzzl kL

Fig. 13.9. The full dispersion relation of the Poincaré and Kelvin waves
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Rossby Waves

When we consider waves of large enough scale, the sphericity of the Earth can no longer
be ignored. Rossby was the first to point out that the most significant effect of the
Earth’s sphericity is that it rendered the Coriolis parameter f=2£2sin#, a function of
latitude. Since the large scale motions in the ocean are nearly horizontal, the only com-
ponent of the Coriolis acceleration that really matters is the one involving the hori-
zontal velocities, and therefore only the local vertical component of the Coriolis pa-
rameter is dynamically significant. Otherwise, for scales that are large but still sub-
planetary, a Cartesian coordinate system can be used to obtain at least a qualitatively
correct view of the dynamics. Such an approximation in which the variation of the
Coriolis parameter with latitude is treated but in which the geometry is otherwise
Cartesian is called the beta-plane approximation,and we shall use it without a de-
tailed justification. The student is referred to Pedlosky (1987) for a careful derivation.
In this course, we will use the heuristic approach outlined above.
In this way, we take as the governing linear equations of motion

w — fv=—gn, (14.1a)

v+ fu=-gn, (14.1b)

f=2802sin0 =282sinf MR(G G))+...
0 R 0
(14.2)
=f0+,[ﬁ’) f0=2.(?sin(90, ﬁzzgisg{)

where 6, is a mid-latitude point about which we have expanded the Coriolis param-

tla s 4y wrazad a1, £

" Lin Darthe wad o TatttAa a ] 1
efer, a ’1 Rist t tween iatituae ana tne y-variaoie 10i-

R PUCSUNE N
eter, and R is the Earth’s radius. The relation b

lows from (see Fig. 14.1)

y=R(6- and notethat S=9f/dy (14.3)

If L is a characteristic magnitude of the north-south scale of the motion, then the
change of f compared to its characteristic value is

BAy ! fo=0(L/R) <1 (14.4)

as the principle parameter restriction for the validity of the beta-plane approximation.
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Fig. 14.1.
The tangent -plane at the
central latitude 6,

/ Do

Fig. 14.2. The homogeneous layer of fluid on the B-plane

At the same time, we will let the depth of the fluid in the absence of motion, which
we have called D, be a function of position as well (Fig. 14.2). Thus,

D=Dy—hy(x,y) (14.5)
Returning to the continuity equation and integrating it over the depth of the fluid,

assuming again that since the pressure gradient is independent of depth, we may take
the horizontal velocities independent of depth:

D(u, +vy)+ w(top) —w(bottom) =0 (14.6a)
w(top) =1, (14.6b)
w(bottom) = i -Vh, (14.6¢)

The last condition follows from the kinematic condition that at the bottom, the
velocity must be parallel to the bottom so that a horizontal velocity flowing across the
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gradient of the bottom depth produces a vertical velocity in order that the total veloc-
ity is parallel to the bottom. Putting the equations together yields the equation for mass
conservation:

M +D(u,+v,)+u-VD=0 (14.7a)
or

n,+V-(Du)=0 (14.7b)
(note that VD =-Vh.)
(note that VD hy).

Now let’s form the vorticity equation by cross-differentiating the momentum equa-
tions to eliminate the pressure term. We obtain, remembering that fis a function of y,

e+ flug+vy)+ fr=0 (14.8)

and then with the mass conservation equation we can eliminate the horizontal diver-
gence of velocity:

(,+f(——‘—1‘—- D\+,Bv=0 (14.9)
D D )

or
o nl - _
—[g’—f—Jﬂt-Vf—uf-VD/D:O (14.10a)
ot D

or equivalently,
af( fﬂu)ﬁ-vi:o (14.10b)
Jot|” ~ D] D

The first term in this equation is the rate of change of the potential vorticity. The
second term is the inner product of the mass flux with the gradient of the ambient
potential vorticity f/D.Up to now,with constant fand constant D that term has been
zero, and the potential vorticity has been constant at each point. However, in the pres-
ence of a gradient of the potential vorticity preexisting in the absence of motion, the
Potential vorticity will not be constant at each point, even though it will be conserved
following a fluid element. When the background potential vorticity is not constant,
waves may now possess nonzero potential vorticity.

Let’s try to estimate the order of magnitude of the frequency of such a wave in which
the rate of change of pv is produced by motion in the field of varying ambient poten-
tial vorticity. The magnitude of the rate of change of pv can be estimated as:

* U/L, where U is the characteristic fluid velocity in the wave and L is the charac-
teristic horizontal scale of the wave (so that derivatives in x and y go like 1/L).The
last term we can estimate as BU, and this yields an estimate of the frequency;
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= @= O(PL), that is, of the order of the gradient of ftimes the north-south excursion

af tha fliiid 2loment Tho vatin nf mtn Furill than koo
O1 Ul 11uia CICIILCIIL 111€ ratio 01 W LU] VvViil L1C11l UG,

= /f=0(BL/f,) < 1, if the beta plane approximation holds. That is, these waves, in
distinction to the Poincaré waves, will have frequencies less than the Coriolis param-

atare thav will hava timao eralac lang cammnarad ta o Aav and ha naramatrically canaratad
LLLL Lll‘y yvil liavye Lilllv csvaillo lUlls \,\.uu.tlcubu tva uay aliul vuL }_JaL allivil lbally OLFGJ- alcll

from the spectrum of gravity waves. Note, too, that this wave, again in distinction to the
Poincaré and Kelvin waves, owes its very existence to the presence of rotation. We need

tn diccnvar tha ralatinnchin haturaan tha Racchvwave acthic Rdanandoent wavaic ~allad
LU UloLUYVYLl L1y L\.«latl\lllollltl ULLYVYLLULL ULV l\UODUy ¥ywavi,ao tiiio H uuy\,xlu\dlt yvyavye 1o bmlLu,

and the earlier gravity waves we have discussed. We must formulate an equation that
governs both and then see how each wave type emerges from the governing equation.
To do so, it is helpful to introduce the transport variables

U=uD (14.11a)
V=vD (14.11b)

where D is the undisturbed depth. In terms of these variables,

U, - fV =—gDn, (14.12a)
V. +fU=—gDn, (14.12b)
77t+Ux+Vy =0 (14.12¢)

Cross-differentiating the momentum equations yields

(V,-U )t+f(U +V )+,BV D.n Dynx) (14.13)

The divergence of the momentum equations yields

(V, +U,), - f(V,~U )+ BU =—g|(Dn,), +(Dn,), ] (14.14)

We can eliminate the vorticity-like term between the two equations by taking the
time derivative of the divergence equation and adding to it the vorticity equation
multiplied by f to obtain

A
RV, +U, )+ AU, +fV)=~g =V -(DV )+ 8f (1, D) (14.15)
In the above equation, we have introduced two new operators,
R
R(a) = ——2+f a (14.16a)
\at /
J(a,b)=a.b,—a b, (14.16b)

where a and b are arbitrary functions of x, y and ¢.
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The equation for mass conservation allows us to eliminate the divergence of the
transport 1

vaRaao

to obtai

~R7, + BlU, + fV]=—gV-(DV )+ gl (1, D) (14.17)

Note that were 8 = 0, we would have a single equation in 7, and it would in fact be

the equation previously derived for gravity waves in the presence of rotation with the
1mnnrf2nt exception of the derivatives of D on the richt-hand side To abtain a cincle

VS EEISE RALLY AV AL AL RRAAVAUNVIO VL LS VAL UL LigTHIaliU iU, iU UUdlil a OIIISIL

equation in 7], we must work a little harder.

As before, we can derive equations relating U and V to the free surface elevation.
From manipulating the momentu

eqala
211 Aldillpeiallllp At AR S S

RU=—gDn,, —gDf n,
RV =-gDn , +gDfn,

Using these relations, we can eliminate U and V from the previous equation for 7
to finally obtain

ations we obtain

(14.18)

—%[gV {(DV1)- %n] &RJ(1,D)+ (=gl )=28gDf,e + BgDf 'n =0 (14.19)

9 : 5 3a >

This is a single equation for the free surface height. It is valid (or should be) for
both Poincaré and Rossby waves, but given that the former have frequencies greater
than f and the latter have frequencies less than f, some terms in the equation may be
important for one wave and not for the other.

Let’s estimate the various bracketed terms in the above equation for the case of the
waves that have frequencies greater than f. We will estimate each term separately and
then their ratios:

) =0(@’ct 11*)n (2)=0(gfw’*h, I I*)n
Ba)=0(fcjw’ L)y (3b)=0(Bcifwll)y  (3c)=0(Bf2IL)y

Here we have estimated the operator R = O(@?) and have used L to estimate hori-
zontal derivatives.
The ratio (2)/(1) is

Q) _fgo’ml’ _fhy

_ (14.21
1) rao’t oD :

For waves that have frequencies > f, it follows that for such waves the second term
will be small with respect to the first term, since we have assumed hy, < D. Similarly,

D

(3a):&<££<<1 (14.22)
(1) f '

a$ a consequence of the beta plane approximation.
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It also follows that

(3b) pLf _pL
(Bc) PL o, _pL
_(1) ___3f g_f <1 (14.23b)

Thus, for waves whose frequencies exceed f, the governing equation within an er-
ror of the order of (BL/f;, hy/ D,) remains the same equation as before; namely,

~ T
d| 2v2
R—| c;Vn-
a{o n

A2 _]
a7 2
atz fO J )

=

so that we will obtain the same Poincaré and Kelvin waves as before and
in the governing equation will give rise, at most, to small corrections to
and structure (one might be interested in finding those corrections bu
ceptual point here is that they are just corrections to the basic rotational -gravity waves
we have already found).

On the other hand, for @ < f, the balance of terms will be quite differen
ample, the operator R = O(f?) and each term can be estimated to have the order

—*
o
=
-
=
e.
5
O
S
o

o
i
@]
=
[¢]
o

W=(af’c3 /P @)=(fghy 1L
Ga)=(B2w® 1Ly (3b)=(Besaf 1Ly (30)=(feof 1L
Therefore, for frequencies in the range of the estimated Rossby wave frequency,

@ _fh o

1) wD
(3_0)_=£2<<1
1
W s (14.25)
(3b) _pL
=<
o f
G _A o
1 w

so that for low frequency motions, the approximation to the governing equation is

f*= V- f 277]— £3gJ(n, D)+ KDf*n, =0 (14.262)

@]
-

2
%[Vz _‘jciz‘”.l“Lﬁ”x“L‘g—](”’hb):O (14.26b)
L 0 . 0
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Recalling that f= f,+ By and that the second term is much smaller than the first,
+n havr e au nifAarm annravimatinn +tn tha ahAave aAtvatinn ac
C i11ave a uuxxu 111 GPYLUMIIIGLIUII LU L11U AUuUVvYCy E\iuallull ao
0| o2 2
0
—|V'n—-=-n +](77af+fohb/Do) 0 (14.27)
ot | Co

where we have also used the smallness of h, with respect to D,,. Note that in this equa-

tion, supposedly valid for low frequency waves, fand D are c0n51dered constants ex-

cept in places where they are spatially differentiated. We will have to work a little harder
to justify this heuristic derivation, but the outlines of the scaling justification should

. .
ha cloar at thic nnint
UL Lvivdal Al uiiiv t}v‘lltn

Let’s look for plane wave solutions, and to make the notation simple to begin
with let’s examine the simple case where h, is a function only of y and such that its
derivative with respect to y is constant, i.e., a constant bottom slope. Plane waves of
the form

n=Ae k- (14.28)
will be a solution of the above equation, if
w=- (Rossby wave dispersion relation). (14.29)
R+P+f2c Y P
Here we have defined
oh
B=p+ O : (14.30)

as an “effective .”

There are a number of astonishing properties of the dispersion relation. The dis-
persion relation itself is shown in Fig. 14.3.

In Fig. 14.3, the frequency is scaled by fc,/ f, and the wave numbers by the defor-
mation radius ¢,/ f;, and the y wave number has been chosen to be f/ c,.

First of all and most striking is that for each positive k there is only one value of @ and
it is always < 0. So, the phase speed of Rossby waves is always towards negative x (in this
case where the bottom slope is in the y-direction and where we assume that 8 > 0). The
topographic slope could have the opposite sign, and the wave could have its phase propa-
gate to positive x, but the important thing is that there is only one value for the phase
speed. Previously, for all the gravity waves we have studied, for each wave propagating
to the right, there was one propagating to the left with a frequency of the same mag-
nitude. This is not true for the Rossby wave. Space is no longer dynamically isotropic.
The dynamics recognizes, for example, which way north is by the direction of the in-
Crease of f. Once there is a special direction in space picked out for the wave, all its
Properties will manifest that non-isotropy.

The phase of the wave propagates in such a way that an observer, riding on the wave

Crests and looking in the direction of propagation, would see higher ambient poten-
tial vorticity on his right.
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Fig. 14.3. The dispersion relation for Rossby waves

The maximum frequency (numerically) as a function of k will occur when

/

k=(12+f02/c§)1 ’ (14.31a)
A

~w £ (14.31b)

a1

Over both k and I, the maximum frequency will occur when the y wave number is
zero (i.e., when the y wavelength is very much less than the deformation radius) sO
that the overall maximum of the Rossby wave frequency and thus the minimum of
the Rossby wave period is

—w =70
max(all k,I) 2f()
Second, it is dynamically impossible at this level of approximation to distinguish
between the effect of the Earth’s sphericity and the effect of a uniform bottom slope
on a flat Earth in providing the necessary ambient potential vorticity gradient to sup-
port the Rossby wave. This fact has often been used with profit to construct labora-
tory models of oceanic waves or circulations that depend on the effect of by instead
introducing a uniformly sloping bottom.
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The fact that the phase speed is always directly to the west (if we think about the

.
lanetary beta factor) seems puzzling. What would happen to wave energy in a basin

if it always moved westward and never had a chance to return eastward? Of course,
we are already alert to the fact that the energy moves with the group velocity and not

"'ES

o+

e nhace ecnead. co it ic imnartant tao calenlate the aronn velacity
~ YAL“U D 4
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From the dispersion relation (and for now we will simply write 3 for the effective
ambient pv gradient),

K2—(P+ f21cd)

5 (14.33a)
K22+ f2/c2]

c — 2Kl > (14.33b)
[k2+12+f02/c§J

The group velocity in the x-direction is of two signs, although the phase speed is
always negative. For k2> 2+ f2/ c3, i.e., for waves that are short in the x-direction, the
group velocity component in the x-direction is positive, while for long waves in x, that
is, k2 < 2+ f#/c2, the group velocity is negative, i.e., westward. Long waves have their
energy propagating westward, and short waves have their energy propagating east-
ward.

Figure 14.4 shows the group velocity in the x-direction as a function of k (scaled
with the deformation radius).

0.2 | | | T T ! | T T

-03 | e e |
04l : L : i
-05 L ! 1 1 1 ] 1 |
O 2 4 6 8 10 i2 14 16 18 20
iCo / ’o =1 kip —»

Fig. 14.4. The group velocity in the x-direction for the Rossby wave
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The group velocity in the x-direction is, of course, zero when k*= P+ f2/c3, and it
. . )

has its positive maximum at
1/2
2, £24.2
k=3[P + f; |
That maximum positive group velocity in the x-direction is
___ B (
Cgxmax = > 2 (14.34)
8[1 +fo ! co]

while its minimum group velocity, or equivalently, its maximum negative group ve-

€ =— % =— B4 (14.35)

where we have introduced the notation Ly, = ¢,/ f, for the deformation radius. Note that
the maximum speed to the west is eight times greater than the speed to the east. The
westward moving long waves have a much swifter speed of energ ropagation than
the shorter waves, whose energy moves eastward.

The group velocity in the y-direction can have either sign, depending on the sign
of the product of k and I. Note that since

<
ae]

~
[ =

Y

% (14.36a)

¢, /c,=— 2’ <0 (14.36b)
& (K +1P+1/1%) '

the group velocity in the y-direction is oppositely directed to the phase speed in the
y-direction. This is reminiscent of the oppositely opposed phase and group speeds in
the vertical direction for internal gravity waves, and it is left to the student to develop
and complete the analogy.



Lecture 15

Rossby Waves (Continued), Quasi-Geostrophy

For the Poincaré wave, @=>f, and so the wave motion is not in geostrophic balance,
while for the Rossby wave,

< Ld:&O/f (15°1)
so that
a)/f:&sﬁi (15.2)

where L is the scale of the motion. Thus, for Rossby waves, the frequency is less than f
so that in the x-momentum equation, for example,
1 2

Uy _fV:_gﬂx (153)

term (1) will be less than term (2) by the order of w/ f. The velocity will be in approxi-
mate geostrophic balance to that order. This is similar to the hydrostatic approxima-
tion in which the vertical pressure gradient can be calculated as if the fluid were at
rest, even though it is motion, because the vertical accelerations are very small when
the aspect ratio D/ L of the motion is small. Here the horizontal pressure gradient is
given by the Coriolis acceleration as if there were no acceleration of the relative ve-
locity, i.e., as if the flow were uniform in space and time even though it is not because
that acceleration is very small compared to the Coriolis acceleration.

These simple intuitive ideas form the basis of a formal theory, quasi-geostrophy, that
Systematizes that idea (Pedlosky 1987). The reason why we have to be formal is that other-
wise (and brutal historical experience shows the foolishness of taking the careless path) it
is not clear how to proceed in the approximation beyond its initial step to arrive at an equa-
tion of motion that is dynamically consistent and conserves in appropriate approximate
form all the conservation principles present in the original, more complex set of equa-
tions. We want the simplified set so that we can penetrate more deeply into the low fre-
quency limit of the dynamics, which is of special interest in oceanography and meteorol-
0gy, but we clearly want to do it right. It is always easy to do it wrong,

For example, if the Coriolis parameter varies, where can that variation be ignored
and where must it be maintained? The same question will hold with regard to the varia-
tion of the depth, which we saw in the last lecture acted dynamically similarly to the
B-effect. If the motion is in geostrophic balance at the lowest order, how can we con-
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sistently calculate its evolution in time or its structure in space? Geostrophy only tells

that 1 fwral +h 1 + 1141 +h Kt 1+ A4
us uiatl if we KiiOw uic 'v'elOClL'y', we Can caicuiate tne pressure, Or vice-ve 1sa, out it does

not tell us how to calculate either of them from initial or boundary data. Our task now
is to take up this question, and our goal is to derive a set of equations for the low fre-

At ftha flisid 1n thi hn~ 1 £ fla13 1 3
quency motion of the 11uiq, in mis exampxe a 10MOgeneodus 1ayer o1 u'\.lld, that is sim-

pler than the initial set but rich enough to allow us to go beyond the investigation of

simple plane wave theory.

To do so, we must bring to th

e s
begin with, automatic. Based on our experience, we describe a set of consistent pre-

sumptions and find the dynamics consistent with those presumptions. If those a priori
ideas are valid and physically interesting, the resulting equations will give us interest-

ing results; otherwise, they will not.

We presume, a priori that the time scales of the motions of interest are long com-
pared to 1/f. Or, more formally, if T (think of a wave period) is the time scale of the
motion such that

i:0(1,'/T) (15.4)
ot

then we presume
fT>1, ie (0/f)<l (15.5)

We also assume that there is a length scale, L, which characterizes the horizontal
scale of the motion such that horizontal derivatives can be estimated by 1/ L. Further,
we assume that there is a scale for the fluid velocity, U, which characterizes the mo-
tion of the fluid. This means that the nonlinear part of the total derivative, i.e., terms
like uv,, will be of the order of U?/L, and this introduces an advective time scale,
T =L/ U. The condition that the advective time scale be long compared to the

advective

rotation period is fT 4 ective > 1 OF equivalently that
U
=—<1 (15.6)
fL

where € is the Rossby number. Actually, we will define the Rossby number in what
follows in terms of the constant value of f at the reference latitude so that

_U
fol

will be a constant.

We need to carefully estimate all the terms in the equations of motion and obtain an
easy way to keep track of their relative sizes. That is most efficiently done by introduc-
ing non-dimensional variables. These non-dimensional variables will be O(1) if we have
chosen the scale for time, length and velocity correctly for the motion of interest.

(15.7)
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We introduce non-dimensional variables as follows; they will temporarily be denoted

vV primes.
s I

(x,y)=L(x", y") (15.8a)
(u,v) = U(u', v) (15.8b)
t=Tt (15.8¢)

We must also scale the free surface height 1. How should we do that in a way that is
consistent with our scales for velocity, length, and time and our presumption that the
motion is of low frequency? We anticipate that the motion to the lowest order will be
both hydrostatic and geostrophic (almost; that is where the quasi comes in) so that to
the lowest order we expect that

S
C

gvn = 0(f,U) (15.9)
but if our estimates of spatial scale are correct,

gvVn=0(gn/L) (15.10)
therefore,

”=O(MW (15.11)

\ g )
and so
272 2
i:O(fOUL]#foL :8[}_] (15.12)
Dy 8Dy 8Dy Lp

where the deformation radius is, as it was defined earlier,

LD:Co/foz(gDo)llz/fo (15.13)

For motions whose lateral scale is of the order of the deformation radius, we can
expect that the proportional change in layer thickness due to the motion, i.e., 77/ D will
be of the order of the Rossby number and hence small. If L is much larger than the
deformation radius, we may still be able to consider the proportional change in layer
thickness due to the motion as small, if the product is

2
gD, Lp

ie., for a small enough €.
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We therefore formally introduce the scaling for the free surface height,

1 =DyeFn'
[2 12 /
Jo L

gD,

F=

and we will assume throughout that

h
b «1

D,

and we assume that the parameter SL/f, < 1.

(15.14a)
(15.14b)
(15.15)
atation of f, we take
(15.16)

Now we insert each of these relations into the equations of motion; for example, in

the x-momentum equation we have

Dividing by the factor f,U yields

ou'
Er——+EUU o+ u'y-]— 1+ﬂy' v'=—1'y
ot fo
where
1 .
Er=——+ <1
fo
Similarly for the y-momentum equation we obtain
av' 1,0 1., ﬂL 1 1 1
ET—37+8 uv vy yv]+ 1+~Ty u=-1y
o AN [ /

The conservation of mass equation in dimensional units is

7 + (D), +(vD), =0

(15.17)

(15.18)

1JJ:17)

(15.20)
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and by inserting the scaling variables above and the form for D, i.e.,

D=DO[1+8F77'—Z—"]
0

we obtain
D Ul - B R
T"an't-+D0 I ' 1+ €Fn'—hy I Dy)f,. + ' (1+ €F 'y, /DO)}y, |=0 (15.21a)
erFn' y+u"V'(eFn'=hy, I Dy)+(1+ €Fn'—hy | D)V -u'=0 (15.21b)

At this point, our equations look as if they have come down with a bad case of acne;
the primes make the equations look very ugly. The traditional thing to do at this point
is to improve the aesthetic quality of the development by dropping primes. Henceforth,
unless otherwise noted, unprimed variables will be non-dimensional, and we will use
asterisks to denote dimensional variables, e.g., x* = Lx.

Our dynamical system of equations can now be neatly written as

ET%+8&-V{2+(1+£)/J2X&:—V77 (15.22a)
0

ST%?+ﬁ-V(€Fﬂ—hb/D0)+(1+€F77—hb/Do)V'a=0 (15.22b)

These equations contain several small parameters. There are the two Rossby num-
bers e and ¢, as well as a measure of the sphericity factor BL/f,, and of course, the de-
viation of the rest thickness of the layer in absence of motion from the constant mea-
sured by hy/ D,. We will assume that the parameter F is order one, i.e., that the hori-
zontal length scale is of the order of the deformation radius. We will expand the equa-
tions of motion in an asymptotic series in € and assume that each of the Rossby num-
bers is of the same order, that is, that

r L

™

and if we want to subsequently linearize the resulting equations, we can assume at the
end of our labors that this parameter is small with respect to one. We will also assume
that BL/f, is of order &, which implies that

=—— =01
L)

—~
o
w
N
N

p—2

The Rossby number, ¢, is a ratio of the relative vorticity, of the order U/ L to the plan-
etary vorticity, f. It is assumed small. The ratio above U/ BL? is the ratio of the relative
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vorticity gradient to the planetary vorticity gradient and that can be order one. That is

. .« . 1 . .
hacatica tha ralative varticity varioece ralativaely fact an tho crala T whila tha nlanotary
OCLAUST UIT ICiatlve VUL LIy Valito Itiauivily ldot Ull Uit Staill L, wWillit uic pialitialy

vorticity varies more slowly on the scale of the Earth’s radius, R. The factisthat L/R <« 1
is a requirement of the beta-plane apprommatlon

Qn TATO nvnanr] DQ{"]’\ IIQYIQI'\]A 1
VU VYL LAapdliv vavil valiauviv i ul

u(x, y,t,€)=uy(x, y,t)+euy(x, y,t) +... (15.25a)
n(x, y,t,€)=1,(x, y,t)+ M (x, y,t)+... (15.25b)
Note that each subscripted variable is independent of €. Thus, when this series is
inserted in the equations of motion, like orders in € must balance for the equations to

be valid for € small, but arbitrary. This leads to the following set of equations.
Collecting the O(1) terms in the momentum equation,

zX 1y =-Vny (15.26)
or in component form,

Up=-Toy (15.27a)

Vo= Tox (15.27b)

which is simply the geostrophic balance at the lowest order (note that the variation of
the Coriolis parameter does not enter at this order; it as if f were constant in the low-
est order geostrophic balance). Note that as a consequence of geostrophy,

Oty , Vo _ (15.28)

The geostrophic velocity, with constant f, is horizontally nondivergent.

When we look for order one terms in the mass conservation equation, the develop-
ment depends on whether h, / D, is order one or less. We will assume it is O(¢) so that,
as the beta effect, that variation does not enter at the lowest order. It is left for the stu-
dent to discover what the dynamics will look like if /D, is O(1). If h,/ D, is O(€),
then all terms in the equation for 7 are of order &, noting that the horizontal diver-
gence of the O(1) velocity vanishes.

We then are left at order one, with only the diagnostic relation between the pres-
sure gradient and the geostrophic velocity with no way, at this order, to calculate the
evolution of the fields, e.g., to discuss Rossby waves. We must go to a higher order in
our expansion to do so. It is precisely for this reason that higher order small terms
must be considered and that we must be exquisitely careful to consider all small terms
that are of the same order. It is for this reason that we have gone through the scaling
and the non-dimensionalization so that we can be sure we are not leaving a small term
out while considering others. We need to keep the dynamics consistent if the final re-
sult is to be physically sensible.
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At O(g),i.e., keeping terms of O(¢), the conservation of mass and momentum equa-

tions vield

LIVLLS yivile

C Ui 0
2

gy, +Vollg, =V — Y Vo =—T];, (15.29b)

fad +

TT
c Ui [V

8T aVo 2

5, THoVox HVoVoy T+ y—uy =1}, (15.29¢)
Ui

TTY
C (9

Here we have used the fact that

r r2
efy U
and that
h
—==0(1)
€D,

in identifying terms of order €. Note that these O(€) equations describe the rate of
change with time of the O(1) velocities and free surface elevation. However, the equa-
tions contain the O(€) variables as well, and so the system does not seem closed at this
order. This is a little bit worrisome. Let us press on, though, by eliminating the O(g)
free surface elevation from the momentum equations by cross differentiating. Using
the fact that the O(1) velocities have zero divergence, we obtain an equation for the
evolution of the relative vorticity:

a2
4

& 1h
?T§0t+u0§0x+"0§0y+%"o=—(V1y+u1x) (15.30)

where {,= v, - u, is the relative vorticity.

The interpretation of the above equation is rather interesting. The left-hand side
of the equation yields the total rate of change of the sum of the relative plus planetary
vorticity following a fluid element; in dimensional variables this would just be

df+f
dt

The right-hand side of the equation is minus the product of the Coriolis parameter
at the reference latitude, fo and the divergence, i.e., —fo(t, + v,). In our scaling universe, the
Coriolis parameter is order one, and the horizontal divergence is O(€), so the product is of
the same order as the rate of change O(€) of the order one relative vorticity. Note that this
source of vorticity normally would contain the convergence not only in the presence of
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the reference Coriolis parameter but of the full vorticity f+ . However, those corrections

ava nf a hicheor ardar 311 RDacchyr nitmhaor it wwrnnild mat ha ~Ancictont Trannm +

are 61 a 111511:1 VUlucCl 111 I\UDOU)’ uu1uuc1, it wioulG 110U O¢ COIisSistent l.U I\CCP thcxu, dlld
indeed, they do not appear in the non-dimensional vorticity equation we have derived.
This is one of the advantages of the careful bookkeeping that the method does for us.

difE e th + £ ~h f+h Tatisr
We still are in some difficulty, apparently, because the rate of change of the relative

vorticity is given by the higher order divergence, which we don’t know. We can elimi-

nate the divergence, though, through the use of the equation for mass conservation.
Tl’\‘

1Q
11us,

j‘; (JO—Fn0)+ﬁ0-V{ﬁy+hb/eD0}=0 (15.32)

We have defined

l, & 0 .
—0="T _ 4 (4,-V) (15.33a)
dt eoat
s AL
= (15.33b)
A U
Indeed, the equation can'be written in conservation form more simply as
el-rn+ by ehfen)]
Et—é’O—Fn0+@/+hb/€D0 =0 (15.34)

All variables in the above equation are O(1), and the equation is a conservation
equation for an O(1) variable. What is that quantity? By now you should have the feel-
ing from its form that is the potential vorticity or some suitable approximation to it
valid for a small Rossby number. We shall check that shortly, but first we need to make
a very important point. The equation is a single equation in several variables, &, 7,
and the two velocity components. However, the O(1) geostrophic relation allows us to
write all the variables in terms of the free surface elevation, since

Uy =—Thy, (15.35a)
Vo =Tlox (15.35b)
Go =Vox ~Uoy =Tloxx +7loyy = V21, (15.35¢)

Noting that the lowest order free surface elevation plays the role of a stream func-
tion for the O(1) geostrophic velocities, we define

in terms of which the above equation can be rewritten:
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d R

,12 [sz/—Fy/+,By+hb/8D0]=O (15.37a)

(S %1
or

Er 0 0

—~[V2w —Fw] +y —[Vzw—Fw]— !//y[Vzw —Fw]

¢ ot o4 . ] ] (15.37b)

+ e |By +hy [eDo], ~yr | By +hy [2Dy), =0

Thus, we have attained a governing equation in the single variable y. We introduce
the notation for the jacobian, J(a,b), of any two functions a and b:

J(a,b)= axby - aybx

The equation of motion is thus

ST a [ 2 1 2 A

?glv w—Fy |+ J(w, Vi —Fy+ fy+hy |€D,)=0 (15.38)

hic Amicatl Lo o2l 1

This equation forms the heart of our analysis of quasi-geostrophic motion, but
before we proceed to its analysis and in particular its role in wave theory, it is useful
to understand the origin of the equation in a more heuristic manner than our careful
asymptotic derivation.

For a single layer of fluid, in dimensional units, the equation for conservation of
potential vorticity, assuming only that the motion is hydrostatic and the horizontal
velocities are independent of z, is

i{ﬂ}ﬂ (15.39a)
dt| D
D=Dy+n-h (15.39b)

D is the total depth, and it departs from a constant value by a small amount; in-
deed, we can approximate the potential vorticity

g:§+f;é,+f0+@/z#(/'+;
"D Dy+n-h, D, v

ByY(1—{n—hy}I Dy +...)

[=]
+
N
—~
[S—y
2
NS
(=}
N—

using the expansion for 1/(1+€)=1- £+ O(¢)>.
Keeping only those terms in the above product that are of either order one or of
the same order as the relative vorticity, we get

f:’o% [éu‘*',@’_foﬂlDo +f0hb/D0]
D, D,

o 1
1

(15.41)



168  Lecture 15 - Rossby Waves (Continued), Quasi-Geostrophy

The first term in this approximation for g is an irrelevant constant. The conservation

equation then applies to the second term, which aside froma multiplicative constant yields
U py gy S ) (15.42)

e\~ '~ Dy, Dy )

At the same level of approximation, the geostrophic relationyields, in d imensional units,

g
u=—=-n7 (15.43a)
fo?
g
y==1p, (15.43b)
fo

Thus, the pv equation becomes

ii[vzn_ f0277+ﬁf0y+f02hb—|=0 (15.44)
fo dtL " gb, g 8D |

Defining (remember these are in dimensional units)

g
y==-1n (15.45)
fo
the potential vorticity equation becomes
dg d 1 h
—q:_|7‘72;//_2”1+ fO b +/~3}""]_0 (15.46)
dt dt| ' 14 D

If we were to scale x and y as we did earlier in the lecture, the above equation would
become the dimensionless dynamical equation we obtained earlier in our more care-
ful scaling and asymptotic expansion method. That care allowed us to be sure that in
our estimate of potential vorticity we included all the correct terms (and no more)
and that we could replace f with its reference value in the geostrophic relation and
definition of stream function.

The end result is that for low frequency motions with a small Rossby number,
the governing equation of motion is the potential vorticity equation in which
all terms are evaluated using their hydrostatic and geostrophic approximations
in terms of the pressure field, in this case, the free surface height.

Note that the total derivative in dimensional units is

d_0 dyd dyod (15.47)

df 9t ox dy Ody ox

As we remarked earlier, for quasi-geostrophic motions the role of the bottom slope
mimics that of the beta effect, and one can use a constant bottom slope in the labora-
tory to model the dynamical effect of the Earth’s sphericity. We can see, perhaps more
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easily from the non-dimensional form of the equation, that the relative importance of
the beta effect and the bottom slope depend on the ratios
2
BL fohy
TT ’ TTIT
U /L

The first is the ratio of the planetary vorticity gradient to the relative vorticity gra-

dient, and that ratio is typically unity, although as the horizontal scale grows larger the

beta effect tends to dominate, because for a given scale for U, the relative vorticity and
its gradient decrease with L. The topographic term can also be thought of as a ratio of

the contribution by the topography to the potential vorticity gradient (fyh,/D,)/L to

the relative vorticity gradient U/ L% and again as L increases, the topographic term
tends to dominate (Note that the equivalent topographic beta is of the order

so the ratio given above can be written

2
ﬂtopogL
U

to complete the analogy). These terms are the contributions to the ambient poten-
tial vorticity,that is, the potential vorticity preexisting in the absence of any motion.
When the ambient potential vorticity dominates, i.e., when the above ratios become
very large, the first approximation to the potential vorticity equation is just

22O

]()//, ﬂv-kM\ =0 (15.48)

The stream function must then be constant along lines of constant ambient pv in
the x-y-plane, which is an extraordinarily strong constraint. Breaking that constraint
requires either a source of potential vorticity that will nudge fluid elements off the
lines of constant ambient pv or regions in which dissipation (hitherto ignored) or
nonlinearity become important. These considerations are of vital importance in the
theory of the general circulation of the ocean, but pursuing them further here would
divert us from our goal of understanding the physics of waves. Therefore, we return
to the quasi-geostrophic potential vorticity equation (qgpve) given above. We will
work in dimensional units, although our systematic derivation leaned heavily on our
scaling and asymptotic approximations for a small Rossby number.

Quasi-Geostrophic Rossby Waves
We return to the qgpve and examine the nature of Rossby waves in the presence of an

ambient potential vorticity gradient. For simplicity, we will take the ambient gradient
to be a constant. We define the ambient pv as

Q=/fy+ fohy, / Dy (15.49)



170

Lecture 15 - Rossby Waves (Continued), Quasi-Geostrophy

and assume its gradient is constant. The linearized form of the qgpve is then

0
E[sz//—azz//]ﬂ//xQ},—y/ny =0 (15.50)

The quantity a? is 1/ L} and has the dimensions of a wave number (squared). With

i(kx+ly—at)

w=Ae (15.60)

which requires that

—io(—k* —I* —a*)+ikQ, —ilQ, =0

kol Tkxva]

K*+a® l_K2+a2J (15.61)
__g|#xva]
| K2 +a? |

where K is the two-dimensional wave vector, K2 = k? + 2, while z is the vertical unit vec-
tor. Finally, the frequency can be written

wz%:(_—ZZQ—) (15.62)

So the frequency depends on the projection of the wave vector on the direction
perpendicular to VQ, i.e., it depends on the projection of the wave vector along the
lines of constant ambient pv. Since the geostrophic velocity is perpendicular to the
wave vector (why is this so?), the frequency depends on the degree to which fluid ele-

ments cross ambient pv contours. If the fluid flows along pv contours, i.e.,if i - VQ =0,
the time derivative in the linearized qgpve would be zero: no wave (Fig. 15.1).

y —

vQ K
'Y <
c
x
X

Fig. 15.1.
The relation between the wave ~
vector, the ambient pv gradient R &
and the direction of the phase 2xVQ
speed



Lecture 15 - Rossby Waves (Continued), Quasi-Geostrophy

171

Note that the phase speed in the direction of the wave vector is

c=

~ | =

@
K

and the inner product of this pseudo vector with the vector 2 x VQ yields

20 (15.63)

hat an observer riding on a
arger values of Q on her right. As discussed earlier, the phase propaga-

e direction, essentially such as to make an acute angle with the isop-
leths of ambient pv and to be guided by its gradient.

The case of a flat bottom arose when VQ = j3 jwas discussed in the last lecture. What
we need to do now is to develop a clear picture of the direction and magnitude of en-
ergy propagation in the Rossby wave. This is rendered a bit tricky because of the dis-
concerting fact that the obvious candidate for the energy flux at the lowest order in
Rossby number pii is horizontally nondivergent. That is, if the velocity is geostrophic,
both its divergence and its inner product with grad p vanish identically. That is not a
useful tool for calculating the transfer of energy. The difficulty is only resolved by
noting that as in the case of the dynamics, the energy flux will involve the O(g) contri-
butions of the pressure to calculate its gradient and O(e) contributions to the velocity
to calculate the velocity’s horizontal divergence. That awkwardness can be avoided by

dealing directly with the qgpve, as we shall show in the next lecture.

3
™
-

- b






Lecture 16

Energy and Energy Flux in Rossby Waves

In discussing the energy and its flux for Rossby waves, we encounter the problem that
the natural definition of the energy flux at the lowest order pii is horizontally non-di-
vergent and therefore has no effect on the wave energy. To discuss the real energy flux,
one has to include the divergent, non-geostrophic O(€) part of the velocity field as well
as the pressure contribution at this order. This would be a messy business, and what is
worse is that the solution of the quasi-geostrophic potential vorticity equation doesn’t
give us these quantities as part of the solution. Is there a way we can describe the en-
ergy flux entirely within the quasi-geostrophic framework? The answer is yes, and it
follows from a direct consideration of the linear quasi-geostrophic equation. First,
though, let us orient the y-axis in the direction of the gradient of the ambient potential
vorticity, VQ, and call the magnitude of the gradient 3 for obvious reasons. As long as
the gradient is a constant, there is no loss of generality. It will be up to the student to try
to generalize these results when the gradient is not constant. The linear qgpve is

0 oy
— |V —a? il 16.1

If we multiply the equation by the stream function, we obtain

V-Wy,)-Vy -V, —a’yy, + Byy, =0 (16.2)

which can be rewritten:

—

A (Vy) | L gyt
at[ o aE +V-{—Wy/t—5xﬂl//}—0 (16.3)

where x is a unit vector in the x-direction. From the definition of the stream function,
1t is clear that the first term in the square brackets is the kinetic energy

1 .
5(u2+v2)

which is associated with the O(1) geostrophic motion. The second term is potential
energy, since

= (16.4)
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(multiplication of the whole equation by DO is necessary to give the total energy in the

caym b s e 2o nher 10 gtan trivrial)

wdlcr (,Uluum, UuL uub UUVLUua Sicp m trividij.

Therefore, the first term in the above equation will be the sum of the kinetic and
potential energies in the wave field. The term in the curly bracket is a vector, S, whose
divergence alters the local wave energy. Note that Si
geostrophic stream function, y.

Thus, we have the usual energy flux equation:

1 lT 'l
10 61'\111 wiivi

oE
—+V-S$=0 (16.5a)
ot
S=-yVy, - xBy?i2 (16.5b)

To get a better feeling for the flux vector S, consider a Rossby wave packet
v =Acos(kx + Iy - wt) (16.6)

where the amplitude A is a slowly varying function of space and time. Let’s calculate
the energy. The kinetic energy is

- ~ .2
KE =—12-lwi Wj]:%(kz +12)sin?(kx +ly—ot) (16.7)

and averaged over a period,
A2
(KE) :T(k2 +1%) (16.8)
while the potential energy, which similarly averaged, is
A2
(PE)="—a" (16.9)
4
Thus, the total energy in the Rossby wave averaged over a period (or wavelength) is
A2
(E>=T(K2+a2), K*=k*+I (16.10)
Now we need to calculate the flux vector S. Using the notation

O=kx+ly- wt

(16.11)
2

=—Acos(3){wKAcos()} —ﬁ%cosz(ﬁ)
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this becomes, when averaged over a wave period,

<> ﬁATZ(KKf —ﬂ—x (16.12)

To arrive at this, we have used the dispersion relation

along the x-axis. It i
If y is the unit vector along the y-axis,

AN

Y 5 5 5 . 1
< A% [ 2k*—k"—1"—a" | . 2kl
S)=p—|x +
< > - [ [ K*+a* J y[K2+a2)J

a2, Ll (-r-a?) . 2k )] (16.14)
=f— (K" +a")| x +
o [ L(K2+az)2 N &+

=Eg§E>

where we have used the formula derived earlier for the group velocity of Rossby waves;
namely,

. N ]
=0l x + (16.15)
g ’B[ (K2+a2)2 y(K2+a2)2_.

o

This allows us to write the energy equation:

NS —

ﬂw.gg(E):O (16.16)

The Energy Propagation Diagram

As noted earlier, to obtain the full energy flux written in terms of the pressure work
term, one would have to include the effects of the order Rossby number (¢€) velocity.
That velocity is not horizontally nondivergent. Therefore, the total velocity required
for the calculation of the energy flux does not satisfy the condition that it would be
Perpendicular to the wave vector. That in turn implies that the group velocity will not
be perpendicular to the wave vector (nor parallel to it). To discuss the relation between
the wave vector’s direction and the direction of the group velocity (which is, from above,
the direction of the energy flux), we will employ a graphical development due origi-
nally to Longuet-Higgins (1964). Consider waves of frequency

o= Pk

Y s 16.17
k2 +1% +a? ( )
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onvention that k > 0, so that @ is < 0. For a given o, the possible

nva 1o +laa L
ers in tne K- Pla“e sa

(16.18)

i"

with radius

[ .2
b 2
~—a

4w

Note that for the circle’s radius to exist, the frequency has to less than the maxi-
mum Rossby wave frequency 3/2a.
The point of the circle closest to the origin lies on the k-axis at a distance

2
km=_fw—‘/£02 —a? (16.19)
IA
w
—,B/Za)
km \
\ /

\_‘_/

Fig. 16.1. The energy propagation diagram
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When the deformation radius c,/f,=1/a is very large so that a—— 0, the point

Now let’s calculate the energy flux vector YS{. From our earlier results,

_Az(—w)[:, B
2 L 2(_w)J (16.20)
) :
_A B 1l
2A-w)| (-20) |
_ A o
" 2A-w)

where the vector OW shown in Fig. 16.1 is directed from the origin of the wave num-
ber circle to the point on the circle corresponding to wave number K. Note that the
length of the vector is constant for all wave numbers on the circle, and of course, so is
the frequency, so that for all waves with waves at that frequency, the magnitude of the
energy flux is constant as long as the amplitude is the same for the waves. The dia-
gram is very helpful in visualizing the relation between wave number vector and group
velocity, and it is immediately apparent that that relation is not a simple one. The group
velocity is neither perpendicular nor parallel to K,and indeed in some cases, it is nearly
in the opposite direction. This is particularly helpful in visualizing the process of re-
flection.

The Reflection of Rossby Waves
Consider a straight western boundary of a basin sloping at an angle 6 with respect to

the x-axis as shown in Fig. 16.2. Suppose a Rossby wave in the form of a packet of a
beam of energy impinges on the wall from the right (the east).

Fig. 16.2. The reflection of Rossby waves from a western wall oriented at an angle 6 with respect to
the x-axis. The energy propagation diagram is shown adjacent

N
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Tio A the segment ~F th ,-...,-ln noarag
11€ 01 wne SEgit Iit O1 ul€ Circic niéarces

gin. That is, the wave must be a relatively long wave. For each frequency and y wave
number, [, there are two choices of k, determined by the dispersion relation:

Q
L]
ooy
/
o
-
=i
»

The root with the plus sign corresponds to shorter waves and a larger k and hence
with group velocities to the east, while the root with the minus sign corresponds to a

arniin valAac~ityr r] rar f-or] ATOQ 7nvr] nnf] 1c tha rant fl'\af- 1ot l\a rhAcoan tn ranvroacant +h .
6 UUP VDLULLL’ uxl(,\,u,u VV\'OLV Al dlliul 10 U110 1 UVUL LliAal 111Ul UL Ll11uUolll W l\aFIEDDIIL L11C
incident wave. We represent the incident wave as
i(k:x+L y—a:t
V/i =Aie( i iV~ ) (16.33&)
and the reflected wave has the form
ik x+l y—@.t) PPIPIPUSIN
W, =Ae " 7T (16.33b)

and during the time of interaction with the wall, the total stream function for our linear
problem is the simple sum of the two waves:

V=i +y, (16.34)

y‘

N e
\_—/

Fig. 16.3. The incident and reflected wave numbers and their position on the wave propagation circle
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Let  be the tangent vector to the boundary (see Fig. 16.3):
t =xcosf+ ysind

1.

re relate he to-

On the boundary, x an

il 2 seal Jr v Ga

1d
tal stream function must b

v 7 1
J
€

a constant (and we may choos

-

1. +
n 6. Thus, on the wall where t

he constant to be zero),

bl
A

o

wr=0= Aiei[(ki+li tan @) x—w;t] + Arei[(kr +, tan ) x—w,t]

{1£ 2\
T ~ \10.00)

For this to be true for all x along the wall and for all time, it is necessary that

w, =@, (16.36a)
k.+Il tan@ =k +I tan6 (16.36b)
= A, =-A, (16.36¢)
The first condition that the frequency be conserved under reflection (which we have

seen before in our study of internal waves) means that both the incident and reflected
wave must lie on the same wave number circle. The second condition requires that the
component tangent to the wall of both the incident and reflected waves must be equal.
These, plus the radiation condition that the reflected wave has its energy directed away
from the wall is sufficient to determine the position of the reflected wave on the wave
number circle. Note that the magnitude of the wave number is not conserved under
reflection. Indeed, the wave number vector is lengthened in the reflection process, i.e.,
the reflected wave has a shorter wave length than the incoming wave. Note that since
the amplitude is conserved, the energy of the reflected wave per unit horizontal area
is larger than the energy of the incoming wave. Yet energy must be conserved. Since
both the incoming and outgoing waves are on the same wave number circle and the
amplitude of the wave is preserved, the magnitude of the vector OW is preserved un-
der reflection. Thus, the energy flux of the reflected and incident waves must be the
same. High-energy, slow-moving wave packets leaving the wall are balanced by rela-
tively low energy, rapidly moving packets impinging on the wall. It is left for the stu-
dent to verify that the group speeds meet that condition. It is also left as an exercise
for the reader to show that the angle of incidence of the group velocity is equal to the
angle of reflection of the reflected wave packet with respect to the boundary. That is,
the reflection process is specular.

In the special case when 6=1/2,i.e., a wall along a longitude, the y wave number
is conserved under reflection and the incident and reflected x-wave numbers satisfy

L \//ﬂ 2

(20) \4a?

N
w
~

—
[—
S~

- T
o B8

= a
(2w) \40?
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For very low frequency waves, the discrepancy for the x wave number will be very

+ A +h + h A £ tc th £ 3
greau, ana e westiern uOUﬂuarY O1 an oceéan acis tnen as a source o1 Vei"y' Sh\’)i’t (lﬁ X)

scale of energy. The reflected wave will have the same zonal velocity as the incident

2
k
and is directed eastward. In the presence of a large-scale (Sverdrup dynamics) zonal
current drift, U, the net group velocity will be
Connat — U + Y
5.&11\'[ kz

If U were negative, all scales with k larger than v3/U would not escape from the
generation region. This gives, as a characteristic length scale for a zone of high wave
number energy near the western boundary, 8, =vU/f, which is the characteristic scale
of the western boundary current in the inertial theory of the Gulf Stream. When the
large-scale flow is directed eastward, U is positive and the energy is not trapped. This
corresponds to the fact that purely inertial models for the Gulf Stream fail in regions
of eastward Sverdrup flow. It is left to the student to calculate the characteristic dis-
tance over which the eastward propagating energy, when U < 0, would decay in the
presence of lateral friction (by calculating the diffusion time for wave number k and
using the group velocity) to deduce the scale of frictional models of the Gulf Stream.
This is a good example of how an understanding of fundamental wave dynamics can
give us insight into even the problems of steady circulation theory.

The Spin-Down of Rossby Waves

In regions far from lateral boundaries, the principal dissipative agent is bottom friction. It
is beyond the scope of this course to review in a complete fashion the nature of the viscous
boundary layer, the Ekman layer, and the student can refer to several texts (e.g-
Greenspan 1968 or Pedlosky 1987) for a full discussion. Physically, and for simplicity
let’s think of a flat bottom there will exist a region of the order of &= (A,/f,)/> near
the bottom boundary where the vertical shear of the velocity will be strong so as to
allow the fluid to satisfy the no-slip condition at the bottom. The thickness of this re-
gion, &;, depends on the Coriolis parameter and the coefficient of vertical mixing of
momentum A,.,and it is generally very thin. In that layer, the fluid dynamics is no longer
geostrophic, and the presence of friction allows fluid to flow across lines of constant
pressure from high pressure to low pressure. Under a region of cyclonic vorticity where
there will be a low pressure center, the flow in the boundary layer will converge to-
wards the cyclone’s center. Since the flow is incompressible, that lateral convergence
must lead to a vertical flux of fluid out of the boundary layer into the geostrophic re-
gion above. That vertical velocity is given by the relation:
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where ( is the vorticity of the geostrophic flow. Note that since { is of the order U/L,
the vertical velocity satisfies our general scaling expectation between w and the hori-

zontal velocity, i.e., that w = O(Ud/ L) where d is the vertical scale of the motion. In
the bmlndarvlaver dis 5.=(A If‘\l/2 and so the result is certain . .

1Iec uliddal eyLL e U \2yi g0 QLI OV UIT IO
dent is encouraged to examine the cited reference for details.
For the purposes of the wave problem in quasi-geostrophic flow, th

)
ter the equation for mass conservation for the layer of geostrophic flow. That comprises
most of the layer (see Fig. 16.4) except for the boundary layer.

ey

Redoing the vertical integral of the continuity equation now yields

D(u, +v,)=-w(top)+w(bottom)
x T Vy P

dt (16.39)
__ﬂ (Av ]1/2;
dt \2f0 )

Redoing the steps leading to the potential vorticity equation then yields an extra
term on the right-hand side of the vorticity equation and the potential vorticity equa-
tion such that now we have

ﬁzi(\\—/zw fg ) _lz__fi(_Ai\l/zﬁg
drdr| "D, e Y (16.40)
=_lv2,/,
n
\A\/ ,/ .
\__/
X4 Do
N
AN ,
v v

Fig. 16.4. The genesis of vertical motion pumped out of the bottom Ekman layer by cyclonic geo-
Strophic motion above the bottom
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where T is a characteristic decay time for the system due to bottom friction:

D
T=—9 (16.41
NNADE )

Note that this time, called the spin-down time (or spin-up time for optimists),
increases with the depth and decreases as the mixing coefficient and the rotation get

1'(1[ Ll

For linear Rossby waves, the wave equation becomes
d w2 2 1 o2
—[Viy-a’yl+ By, =——Vy (16.42)
ot T,
Solutions for plane waves can be found in the form:
w=Ae pilkrtly-o)

yields, after equating real and imaginary parts of the dispersion relation,

K_?_ / i N\
O=———|= (16.44a)
K*+a"\ T
wz—/}% (16.44b)
K +a

The frequency wave number relation is unchanged, and the decay rate is in fact one
over the spin-down time slightly modified by the scale. Note that when the horizontal
scale is very large compared to the deformation radius, K < a, the decay rate is small,
while for short length scales for which the above equality is reversed, i.e., when the
scale is small compared to a deformation radius, the decay rate becomes independent
of scale (This would exactly occur if there were an upper rigid lid instead of a free
surface. Why?).

For our previous work on waves to have relevance it is necessary that we can ob-
serve at least several oscillations before the wave decays. That is the basis of our ap-
proximation that inviscid theory is pertinent to the wave problem. So we have been
implicitly assuming all along that

T, =2n—-£_—— >1 (16.45)
Tperiod
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Laplace Tidal Equations
and the Vertical Structure Equation

Let’s return to the linearized wave equations before the gravity waves are filtered out by
the quasi-geostrophic approximation. What we will see now is that the analysis of the ho-
mogeneous model can be carried over, in important cases, to the motion of a stratified
fluid. A vertical modal decomposition can be done for these cases, and we will be able to
show that the equations for each vertical mode are analogous to the equations for the single
layer. Exactly what that relationship is will be the subject of our development that follows.

To keep the discussion simple, we will consider hydrostatic motion but not necessar-
ily geostrophic motion. We will also relax the 3-plane approximation and consider lin-
earized motion on the sphere. Our coordinates will be 8 for latitude, ¢ for longitude,
and z for the elevation above the Earth’s spherical surface as seen in Fig. 17.1. The ve-
locities in the zonal, meridional and vertical directions will be u, v and w. As before, we
will separate the pressure and density into the values those variables have in the rest
state plus a small perturbation due to the motion

Protal = Po(2) + p(#,6,2,1) (17.1a)
Protal = Po(2) + p($,6,2,1) (17.1b)
and we will assume that the density field of the basic state p, changes only slightly

over the vertical extent of the fluid (for a compressible fluid like the atmosphere, see
Andrews et. al. 1987), i.e.,

Dapo <1
Pz
W,z
V\/!
// \.

]

\ /
Fig.17.1.

The coordinate system for the hydrostatic
€quations of motion on the sphere
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For linearized, inviscid motion, the equations for the perturbations become

a b P
Pol U, —282sinBv+202cosfw |=— g (17.2a)
o Rcos@
polv; +22sin6u ]=—£Ri (17.2b)
¢ d
—N N A
— Po282cosbu=—p,—gp (17.2¢)
i { A\
Yo (0% 4y —0 (17.2d)
Rcos€®  Rcosé
pt+w%p—°:0 (17.2¢)
z

We have used subscripts for differentiation. R is the (constant) Earth’s radius. We have
also assumed in the last equation that the motion is adiabatic. In the momentum equa-
tions, we have included each of the components of the Coriolis acceleration, 2Qx i,and
please note that while the contribution in Eq. 17.2a of the component of the Earth’s ro-
tation that is tangent to the Earth’s surface, 2£2 cos6, involves the weak vertical velocity
(we are assuming the vertical scale of the motion is much less than its horizontal scale),
its contribution in the vertical equation of motion depends on the much stronger zonal
velocity. The issue here is if we ignore this contribution in the zonal momentum equa-
tion, can we also consistently ignore it in the vertical equation of motion? It is often
said that if one approximation is made, the other must be made; otherwise if term (b)
is absent but term (c) retained, the dot product of the velocity with the momentum equa-
tions would have the Coriolis force doing work on the fluid, an obvious absurdity since
it is always perpendicular to the velocity. But saving us from absurdity is not a justifica-
tion for an approximation. We must show term (c) is small if term (b) is. Moreover, the
smallness of term (c) in its equation must be measured by the same parameter of small-
ness as term (b) is measured in its equation. If there were different parameters that
measured the relative smallness of those terms in each of their equations, we might find
a situation where one parameter was small and the other O(1). So, we must see whether
a sensibility scaling argument will let us always ignore both terms simultaneously.

The ratio of term (b) to term (a) is obviously of the order of the vertical to horizon-
tal velocity. If the scale of the former is W and that of the latter is U, we know from the
continuity equation that

K = 0(2) «1
U L

where D and L are the vertical and horizontal scales of motion. Thus if §=D/L < 1,
we can ignore term (b) compared to term (a) in the zonal momentum equation. If the
Coriolis acceleration enters at the lowest order into the dynamics, then this tells us
that the scale of the pressure field, P, must be P = p,2Q2UL.
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This does not imply that there is a balance between the horizontal pressure gradient

and the Coriolis acceleration, only that they are both O(1) terms in the momentum equa-

tion. With that scaling for the pressure, the vertical pressure gradient will be of the order

so that the ratio of term (c) to term (d) will be
=0(D/L) (17.4)

Thus, if D/L « 1, the horizontal component of the Earth’s rotation can be ignored
I set of approximate equa-
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Polu; —22sin6v]=— R;(‘)”Se (17.5a)
100 Lvt +2QSin6u]=—% (17.510\
0=-p,—gp (17.5¢)
/ A\
u vcosd
o W7 w, =0 (17.5d)
Rcos@  Rcos@
pt+waf)° =0 (17.5e)
gz

As before, we can write the last equation as

pi—wpoN*[g =0, sz—pi‘;—’j’ (17.6)
0

and the use of the hydrostatic equation allows us to eliminate p completely from the
equations by writing the adiabatic equation as

Pu+ PowN2=0 (17.7)

We will consider only those situations in which the bottom of the fluid is flat at z = D
and the top consists of a free surface. When the bottom is flat,we can separate the variables
in the problem into a function of z and a function of horizontal and time variables. Fol-
1Owing the treatment in Moore and Philander (1977) and Pedlosky (1987), we write,

/-.\ Mrrs 2 A .\

0,1
Sl=| e g (17.82)
4 V(,0,t)
w=W(e, 6,t)G(2) (17.8b)
P
——=g1(p,0,t)F(z) (17.8¢)
Po



186

Lecture 17 - Laplace Tidal Equations and the Vertical Structure Equation

be confused with our earlier use of the same symbol for the
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tal momentum equations, since F(z) is a common factor,
87y
U, - fV=—-2"2_ (17.92)
Rcos@
U/
l@+ﬂ]=—g—R‘9— (17.9b)

Aside from the use of spherical coordinates to represent the horizontal pressure
gradient, these are exactly the linearized momentum equations for a single layer of
fluid whose velocity components are U and V and whose free surface elevation is 7.

The same process for the continuity equation is not so simple: w depends on the
function G while u and v are proportional to F. This leads to

U Vcos8@
o WVeosO)y G (17.10)
Rcos@ Rcosé F

All terms except the ratio of G,/ F are independent of z, while each term in this ratio
is a function only of z. The only way this can be consistent (this is familiar from the
standard separation of variables) is if the ratio is a constant. We define the constant as

Z — ronctant
WwAJALAULALLL

F h

(1711)

al.2 21/

The constant A is called the equivalent depth (we shall see why shortly) but at this
stage of our analysis, it is only a separation constant. This allows us to write the conti-
nuity equation in the suggestive form:

Uy (V cos 9) w
4
RcosH Rcos@ h

~
[u—
~J
[—y
135
~—

—_nNn
=V

Inserting the forms into the adiabatic equation in its form involving the vertical
pressure gradient Eq. 17.7 yields

2 ° (17.13)




Lecture 17 - Laplace Tidal Equations and the Vertical Structure Equation

187

and it is clear, as in our discussion of the continuity equation, that the coefficient of
the term W in the last equation must be a constant. We choose that constant to be -1.
There is no loss of generality in doing this. Choosing any other constant would only
alter the definition of h. The properly skeptical student should try it.

With this choice, the adiabatic equation becomes
n=w (17.14)

which is not a boundary condition but is rather the separated form of the adiabatic
equation, although the form is delightfully suggestive of the boundary condition for a
single homogeneous layer. With the above choices for the separation constant, the

s

satisfies (and it is here that it would be clear that any other choice than -1
would only alter the definition of k)

o S (T
function G now

I~
<
(8]

G

zz

. G=0 (17.15)

This is a homogeneous differential equation with, generally, nonconstant coeffi-
cients, since N is a function of z and with a free parameter h. The problem is not com-
plete until the boundary conditions are established.

In order to have w vanish on z = -D, we must take

G(z)=0, z=-D (17.16)

At the free surface, the conditions are that the free surface displacement, which here
we will call z, satisfies

w=WG(zT)daitT (17.17)

while the total pressure is atmospheric pressure, which we will take to be a constant
(zero), thus

Ptotal = Polzr)+ gNF(zy)

d (17.18)
zp0(0)+dLZ°zT +...+gnF(0)

keeping only linear terms.

A time derivative of the last equation combined with the kinematic condition then
yields

gWG(0)=gn,F(0) (17.19)

but from the continuity equation, this implies that z = 0:

G(0)=F(0)=hG,(0)=G,~G/h=0, z=0 (17.20)
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which is the final condition for G. We the hav
tion G(z), whose eigenvalues are h.Note that th
of F(z).

Using the above relations between F and G, we obtain as an equally valid alterna-
tive problem:

(—\ +L =0 (17.21a)

\N*), gh

F,=0, z=-D (17.21b)
N2

F,+—F=0, z=0 (17.21¢)
g

The advantage of the second formulation is that the eigenvalue £ is not in the bound-
ary condition.

The equations for either G or Fcan be solved numerlcally, and the eigenvalue is found
along with the structure of the solution in z. Insight into the nature of the problem can
be gained by examining the case for the constant N.

In that case, the solution for G(z), which satisfies the boundary condition at
z=-D,is

2

N
G =Asinm(z+D), mZE——h (17.22)
g

(&4

m is the vertical wave number of the solution (it will be quantized since the region is
finite), and

A === (17.23)

will be the vertical scale of the motion in the mode that has that value of m as the ver-
tical wave number. Note that the vertical scale of the motion is not h. Indeed, if we
define the vertical scale helght fOT‘ the denszty

ho———Po__ (17.24)
4 do. /dz
U.ljo/ (S V4
as the scale over which the density changes by its own magnitude (this is much greater
than the depth of the ocean for realistic oceanic density gradients), the vertical scale

of the motion is given by

/'lz _ 21’5\/% (1725)
so that the vertical scale of the motion is essentially the geometric mean of the equiva-
lent depth and the density scale height.
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The eigenvalue relation for h is obtained from the final boundary condition at z=0
d

1
mcost—;sin mD =0 (17.26a)
N2
tan(mD)=mh=— (17.26b)
gm
or
(N2D) 1
tan(mD) =| I (17.27)
k g ) mD
We note as we have before that
D D A
NZD/g=——%=—zﬂ<<1 (17.28)

Po dz hp pO

Thus the roots of the dispersion relation split into two classes. The first class has roots
for which mD is O(1). In that case, the right-hand side of the dispersion relation is es-
sentially zero, and the solutions correspond to the zeros of the tangent function, or

mD=jr, j=123,... (17.29)

There are an infinite number of such roots corresponding to

m=I" (17.30)

D

and since m?= N?/ gh, the associated equivalent depth for mode j is

212
gn D

j (17.31)

i
Note that for this mode, the horizontal equations will contain an equivalent long
wave gravity wave speed:

—— ND =
C]:Vghj :—'n <<VgD (1
J

These equivalent speeds are the long wave speeds for internal gravity modes of ver-
tical mode number j and are much slower than the homogeneous phase speed for long
Wwaves gD,

The modal structures for each j are simply
GJ-:sin(jnz/D), j=12,3... (17.33a)

Fj=cos(jnz/D), j=1,2,3 (17.33b)
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and although these form a complete set for the representation of w (the sine series is
complete), it is clear that the set of functions Fj, while containing an infinite number
of functions, which are all orthogonal, is not complete, since the cosine series lacks
the constant term. In other words, we have not found the barotropic mode that con-
tains zero vertical velocity.

We must reexamine the dispersion relation. We previously assumed that mD was
0(1). That may not always be the case. Indeed, as mD— 0, the dispersion relation
becomes

2
tanmD=mD = N°D
gmD
- {177 24\
(1/.04)
N2D
—m?D?=""
g
but by definition,
N2
m* = (17.35)
gh
or for this mode subscripted zero,
hy=D (17.36)
or
[
0 V D
and so
N2D?
moD = «1 (17.37)
gD
so that the function
E, =cosmy(z+D) (17.38)

hardly varies at all in z, i.e., the function is very nearly z-independent. This is the
barotropic mode.

To sum up, for linear, inviscid motion of a stratified fluid on the sphere, when the
fluid has a flat bottom, we can separate the motion into an infinite number of vertiCé‘l1
modes. Each mode satisfies a set of equations for its horizontal structure, which 1i
identical to that of a homogeneous layer of fluid possessing a long gravity wave speet
¢, = (gh;)V2 That is, it behaves as a homogeneous layer with the equivalent depth h;
which itself is one of the eigenvalues of the vertical structure equation. This is the only
way stratification enters the problem, i.e., by determining the equivalent depths and
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or dissipates as time progresses. Thus, all our previous work on th
Poincaré, Kelvin and Rossby waves for a homogeneous layer can be c

ture 1s maintained as tha

] ; ; A tat4 A tho hatt ;
by mode, to a stratified layer as long as the motion is hydrostatic and the bottom is flat.

If the bottom is not flat, it is not possible to separate the motion into individual modes.
The topography will mix the modes together, and the modal description is no longer
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tions, because in their original application to a homogeneous fluid, they are with ap-

onnatinne we avo
\'\iuull\lllu YVW 114V
87y
U —fV=— (17.3%9a
=V Rcosé )
v, +fuz_% (17.39b)
U \% e w
o Vcost)y + 2 =0 and (17.39¢)
Rcos@ Rcosé
n =W (17.39d)

Note that if the last two equations are combined,

U
n+h —2—+ (V.cos6)y =0 (17.40)
_RcosH Rcosé

and the correspondence to the dynamics of a shallow layer of fluid of depth h is
complete.






Lecture 18

Equatorial Beta-Plane and Equatorial Waves

The equator is a special region dynamically, most obviously because there the vertical
component of the Earth’s rotation vanishes. It turns out to be, in consequence, a re-
gion in which certain linear waves have unusually strong signals and are involved in
some important atmospheric and oceanic phenomena such as the Quasi-Biennial
Oscillation in the atmosphere and the El Nifio (ENSO) phenomenon in the ocean (and
atmosphere). Good, useful references that describe in detail those phenomena are
Andrews et al. (1987) for the former and Philander (1990) for the latter.

To see intuitively why the equator might be such as special zone, consider heuristi-
cally a Poincaré wave packet near the equator with frequency

o= +2k+1))"” (18.1)

and we note that near the equator where f vanishes, the y-dependence of the Coriolis
parameter cannot be neglected. The dispersion relation is of the class of relations
discussed in our first lecture where the relation between frequency and wave num-
ber also explicitly includes a dependence on a spatial variable, in this case latitude or
locally, y, i.e.,

0=Q(K, f()) (18.2)

As we noted in the first lecture, the wave vector for a slowly varying packet satisfies

—

K__va--pL (18.3)
dt 1) .

where y is a unit vector in the meridional direction. Remember that the gradient on
the r1ght -hand side of the equation for the rate of change of the wave vector is the
gradient with respect to the explicit dependence of the dispersion relation on spatial
variables, in this case only y.

That means that as the packet propagates, the frequency and x-wave number, k, will
be constant in the packet; only ! will change. The dispersion relation for Poincaré waves

implies that as the packet moves to higher latitudes where f? is larger, the y-wave num-

bPT‘ must ﬂprrpacp to lrppr\ ﬂ'\p ‘Frpnnpnrv constant 1:'17\9"‘7 at ﬂ'\n Iahfnﬂn v cnr]'\ that
r’ ﬂu J L L LiiA L

Tiivy Vvl i1le X XXiICRL LUy gy ouvis

fo=lo? — ] (18.4)
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the y wave number vanishes. Beyond that point, I becomes imaginary, leading to spa-
tial decay with y for y > y.. This produces a trapping zone around the equator in which

the wave energy, which would normally disperse in two dimensions, is trapped within
a wave guide as a consequence of the increase with latitude of the square of the Co-

1 .
riolis parameter, an effect that is clearly symmetric about the equator. Similarly, for
Rossby waves where
—_B k
w=- (18.5)

/J
K2+ 12+ ¢t
the same trapping effect must occur. Note that for both Poincaré and Rossby waves, the

n tho 1 wave niimhar van

maoridin ant nf tha A1 velaci anichaog o
Civ valllolivy VYvi1iCll Lu1lv )’ yvvave l1lullluvll vali-

meridional component of the group veloci
ishes so that the wave energy will not cross the critical latitude and will be reflected
back into the equatorial wave guide. Also note that as the Coriolis parameter van-
ishes, the minimum frequency of Poincaré waves approaches the maximum frequency
of Rossby waves, and so the two wave types cannot be expected to be as well-separated
in the frequency domain as they are in mid-latitudes.

Thus, overall, the equatorial band will act as a wave guide for both gravity and
Rossby waves. We expect the wave modes to be trapped meridionally and the prop-
agation to be basically along the equator. This means the waves will generally not
disperse their energy over more than the zonal direction, and consequently the
amplitude of the waves and their influence can be anticipated to be more impor-
tant for equatorial dynamics in general than in mid-latitudes. It remains for us to
move beyond this heuristic discussion to find the nature of the waves in the equa-
torial zone.

+xr 7
L

The Equatorial Beta-Plane

We will assume that the wave motions have a large enough horizontal scale to ensure
that the wave motion is hydrostatic. We will also only consider cases in which the ocean
bottom is considered flat, and in fact, we will not consider any interaction with the
bottom. In that case, as we saw in the last lecture, we can resolve the wave motion on a
set of vertical normal modes, each mode yielding an equivalent depth h, and a corre-
sponding long wave speed c,, both of which come from the eigenvalue problem de-
scribed in the previous lecture.
For the linear inviscid problem, the equations of motion are

aUn onr o g ann /1Q Aa)
_]Vn = \10.va)
ot ~ Rcosf 0@
Vo _py —_8 9 (18.6b)
ot " R 06
aﬂn I— 1 aUn + 1 d (v ,-,ma\—lzn (18.6¢)
n W, 050 v 18 )
at LRcosv d¢ Rcosf 96 _!

If the motion is limited to a narrow region, L, around the equator such that L/ R < 1,
we can expand the trigonometric functions in the above equations, i.e.,
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f=£(9+ﬁy+...=@+0(L/R)3 (18.7a)
cos@=1+0(L/R)? (18.7b)

This allows us to define the local Cartesian coordinate system:

x = Reosblp— gy |=R(p— )+ O(L/ RY? (18.8a)
y=RO+0(L/R)? (18.8b)
In these terms, the equations become the simpler set, valid on the equatorial beta-plane:
Uy, —ByV, =g, (18.9a)
Vi +ByU==g1,, (18.9b)
Ty + Uy +V,, 10 (18.9¢)

Of course, we must check after the fact that our solution does satisfy the condition of
being localized in the vicinity of the equator. It is also easy to add forcing terms to each of
the momentum equations to represent the action of a wind stress, and the exercise is left
to the student to trace the development of the equations with such forcing terms present.

Now the heuristic discussion at the start of the lecture leads us to anticipate that the
wave modes will be contained in a wave guide, a sort of naturally produced equatorial
channel. In that case, we might anticipate that the modes will be analogous to the modes
we found in the channel problem for mid-latitudes. In that case, we found Poincaré, Kelvin
and Rossby modes. It was a straightforward business in the mid-latitude case to write the
problem in terms of the free surface height. With the strong variation of fin the equatorial
case, it turns out be far simpler to pose the problem in terms of the meridional velocity
(we noted in the mid-latitude case that the eigenstructure for the meridional velocity was
far simpler than for either the free surface perturbation or the zonal velocity). How-
ever, based on our experience in the mid-latitude channel, we also might anticipate that
we should be alert to a wave mode for which the meridional velocity is identically zero,
for that is one of the chief characteristics of the Kelvin wave. Hence, before we formu-
late the wave problem in terms of the meridional velocity, we should check to see whether
a mode exists in which V,, is identically zero. If that were so, we would have

U,=—gn, (18.10a)
U =—g1, (18.10b)
n,+hU, = (18.10¢)

We have suppressed the explicit subscript notation, and the student is expected to
realize that the following development is pertinent to each mode n, each with its own
equivalent depth k.
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Eliminating the free surface elevation between the first and third equations yields

which is again the classical one-dimensional wave equation whose general solution is
+ _ ot
U™ =U"(x*ct,y) (18.12)

One solution, U = U*(x + ct, y), propagates to the west with no change of shape,
while the other solution, U= U~(x - ct, y), propagates eastward with no change of

shape. These are reminiscent of the Kelvin waves in a channel. In that case, the right-

L s = e

moving wave “leaned” against the lower wall, and the left-moving wave “leaned” against
the upper wall. In the present case, there are no walls, only the equator itself, and we
have to check whether either of these solutions has a y- structure consistent with equa-
torial trapping of the disturbance. The y-derivative of the x-momentum equation and
the x-derivative of y-momentum equation to eliminate the free surface term yields

U, =By, (18.13)
Now for each possible solution we have
UF =+cU; (18.14)

which when inserted in U, = fyU, yields

a—ay—(Uf )+ %(Uf)z 0 and

2
:>Uf=ei(ﬂ)' OEE(x +ct) (18.15)

where F is an arbitrary function.
Thus, if the region is unbounded in y only, the (-) solution is acceptable, since the
(+) solution diverges at {y| = oo, There is only an eastward moving Kelvin wave mode:

UKelvin ze_(lByLIC)F(x_Ct) (18.16)
with a corresponding free surface height,
c _ 2
TIKelvin =_g—e B /C)F(x_Ct) (18.17)

The mode moves eastward with the long wave speed. For each vertical mode 1, that
wave speed is ¢ = ¢, = Vgh,,. The decay scale is

b}
14

which is the equatorial deformation radius.
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Table 18.1. n h, (cm) Cplems™) Lo (km)  T(days)
Quantities for the first five
baroclinic modes (Moore and 1 60 240 325 1.5
Philander 1977) 5 20 140 247 50

3 88 177 2.6

4 4 63 165 3.1

5 44 138 36

der 1977) givee the nertinent aniantitiec for the firet five vert
AL LT T I 6‘.'\'0 Liiv r’\rl Liliv 11 HuullLlLL\'\J AUL L1lL 11100 11¥VYOL Yol L

1 . 1

modes. The quantities refer to the Equatorial Atlantic but are typical.
The appropriate time scale is determined by the relation

Note that the equatorial deformation radius depends on the square root of the long
wave speed, not on the speed itself as in mid-latitudes. In mid-latitudes, the deforma-
tion radius is

Lp= 7" (18.18)
but at the equator f= By. If we set y to be of the order of the equatorial scale, this yields
C?’l
L= (18.19)
Pleg

whose solution yields our previous definition. Note that the time scale above satisfies
T=fLe, (18.20)

as in Rossby waves.
For the barotropic mode, the equivalent depth & is of the order of the fluid depth, D.
This yields

Co=+/gD =0(200) ms™ (18.21a)
Le, =3000km (18.21b)

so that the “trapping” scale is of the order of the planetary scale. In that case, the equa-
torial wave guide has little sense, since it is global and the barotropic mode must be
considered separately. Fortunately, most of the equatorial response that seems to be
relevant is in the baroclinic modes, and indeed the equatorial Kelvin wave has been
clearly identified in the equatorial regions (Eriksen et al. 1983).

Note that the y-structure of the Kelvin mode is a Gaussian and that U is in geo-
strophic balance with the pressure field.
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We now return to the task of deriving aw
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tion equation yields

Utt _/'/.’Zth =—8Mxt = "h(Uxx + ny)
:[Utt_ghUxxzﬂ)"/t+gthx] (18.22)

Vi + U, =g, =ghlU,, +V,,)
:>[Vtt _gthy =_@/Ut+ghny] (1823)

Id

We now operate on the above equation for V (Eq. 18.23) with the operator

A
Latz ‘ E)sz

and use the equation for U (Eq. 18.22) to obtain

2 2 2 2 2 2
(.(? _Cz?o)(?z_cz-\a')wvz_ﬂy(%_cz aZ}U

ot>  ox> )\ ot oy* ot? ox
\ N V) \ 2 2 2 (18.24)
+c? J (a —c2 J WU
Adas | N2 1,2
UA«U)’ \UL UA /
or
¢ L, 09t ) o9* 9 ol oV , 9%
- - V=—__3— +
[E)tz ‘ axz](atz ) TP Pt ey
(18.25)
5 &2 [ AV E)ZV—I

Carrying out the algebra implied by the above products yields the final equation
for V:

r g N |

J| o 1 2y2
E{g{vﬁf_c_zvﬁ __’BCT}’V}-F'BV’CJ:O (18.26)

Note that the final equation is a local conservation statement for the quantity in
the square bracket. The student at this point is allowed to guess what that quantity
really is and to verify the presumption. Also note the similarity of the equation to the
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wave equation at mid-latitude where the factor 322 is replaced by ﬁ Also be sure to

[y 13 ith o A
recall that this equation holds for each vertical mode, i.e., for each n with a correspond-

ing vertical structure function and a corresponding equivalent depth.
Let’s try to find plane wave solutions in x and ¢ of the form

V=AM (y) (18.27)
where y satisfies the ordinary differential equation:
dzl// a)z ﬂzyz 5 k
- 2+ T_ 3 —k _ﬂ_,—‘ W:O (18.28)
dy” | ¢ c @ |

Note that beyond a certain critical value of y, the form of the equation implies eva-
nescent (or exponentially growing) behavior. Equatorward of that latitude, the func-
tion y will be oscillatory in y. We can put the equation in standard form by introduc-
ing a meridional coordinate scaled on the equatorial deformation radius:

/o \1/2

y =L%J £ (18.29)

In terms of which,

dZV/ o’ 2C___2
e {ﬂc o~ 4 (18.30)

This, interestingly enough, is exactly the Schroedinger equation for the quan-
tum mechanical oscillator, and the solutions have been extensively studied. In the
mathematics of special functions, this is the Hermite equation. It is well-known
(see for example Schiff 1955) that the only solution that is bounded at infinity is of
the form

-£212
V/=¥/j(§)=—e,—H,-(r§) (18.31)

This, aside from the complicated constant in the denominator to make the func-
tions orthonormal, is a Gaussian in the meridional coordinate multiplied by one of
an infinite set of polynomials H(¢) called the Hermite polynomials. The orthogonal-
ity condition is

. (12 29\
Y ¥ 7] \10.04)
The Hermite polynomials are generated according to the rule:
2 i
Hi(&)=(-1Yet nd en (18.33)

d&i
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The first few polynomials are

H0=1
H1=2§
H2=4§ —2
H3=8§3— 126
H4= 1654

(18.34)

Note that the solutions divide into odd and even functions because of the symmetry
in y of the governing equation for y. Each of these functions, finite at infinity, satisfy

The first four of the eigenfunctions are shown In Fig. 18.1.

dy

&

2

+[(2j+1)—§2]1//=0

1

2

4

(18.35)

1.5

MRV
-6 1 ! 1 ]
-4 -2 0 2 4

Fig. 18.1. The first four eigenfunctions for the equatorial wave amplitude with latitude
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2 2
o k°c kc
—————=2j+1, j=123,... or 18.36
& B o J J ( )
w2=c2(k2+(2j+1)/Lﬁq)+ﬁc2 (18.37)
)

This should be compared to the dispersion relation at mid-latitude for Poincaré
waves for a value of f— 0, while the last term on the right-hand side is similar to the
effect produced by the beta term at mid-latitudes.
bic fo 1ency in terms of x-wave number, and it is easier to solve the

This is a cubic uency
quadratic for k in terms of . This yields the dispersion relation in the form

I ireguen

R D_] /2
L= —8jﬁJ (18.38)
0] Cc c

Before discussing the full form of this relation, it is useful to discuss limiting cases.
If @ = O(kc), the last term in Eq. 18.37 would then be of O(Bc), which compared to the

first term is

{)

Thus, if the gravity wave speed is much greater than the Rossby wave speed, ¢ > 8/ k2,
then the last term can be neglected and we obtain the approximate dispersion rela-
tion for the Poincaré waves:

Lo
1

—

o=tclk? +@j+1)"” (18.39)

On the other hand, if @ is small, we would obtain a balance between the last term
in Eq. 18.37 or the approximate equation for the equatorial Rossby mode, i.e.,

b
k' +(2j+1)/ L2,

~~
—
co
e
(=)

N’

w=-

It is also easy to solve Eq. 18.38 when j = 0. In that case,

k=-ﬁ+1(ﬁ—2_“’J (18.41)

20 2\w ¢

The two roots are then

k=2 (18.42a)
c

k=_B.2 (18.42b)
(0] c
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The first root yields a wave moving with the gravity wave speed to the west, and
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and must be rejected. The other root does yield a bounded solution. At low frequen-

cies it looks like a Rossby wave; that is

B

w=—

1ty wrava lr
L vwave, w n

Thus, there are two classes of solutions for each wave number. T here is a set of higher
frequency modes similar to the mid-latitude Poincaré modes and a set of low frequency
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exists only in its eastward traveling form. A single wave, which is discussed above, is
often called the mixed Rossby-gravity wave or the Yanai wave, which straddles the
two wave types. Each mode corresponding to a different j index goes along with the
eigenfunction, y;(y/L,,) for its V-field except the Kelvin mode that has only a zonal
velocity whose shape is given by y,, the Gaussian.

The full dispersion relation is shown in Fig. 18.2.1t is standard practice for the equa-
torial problem to consider only positive frequencies and to let the x-wave number run
over positive and negative values.

4 ek
w

4.0

20

1.0

0.5 F ; : i
- _  _j=1 / Keivin
———

? — - wave
0.0 1 1= 3 1
-4 -3 -2 -1 2
kLequatorlal

Fig. 18.2. The dispersion diagram for equatorial waves. The line bending upwards connects the ex-
trema in the curve of frequency vs. wave number
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In Fig. 18.2, the wave number is scaled with the equatorial deformation radius and
the frequency is scaled with the characteristic time scale so that the frequency is given
in units VBc. Note that both the Yanai wave and the Kelvin wave have only positive
group velocity in the x-direction. Indeed from Eq. 18.37 it is easy to show that

0|20 ke |_ 2k, 1 (18.43)
ok | fc w? g o
or
[2keo ]
am | g T
—=_L 7 (18.44)
2 2

The group velocity vanishes on the line

o= (18.45)

i

2k

This line in the (@k)-plane separates westward from eastward group speeds and
also marks the locus of the extrema in the frequency wave number plane.

If we insert the above condition in the dispersion relation, we obtain the value of
the minimum Poincaré frequency for each J:

e 1/2
wmin=(7) [(j+1)1/2+j”2], Poincare (18.46a)
and
/ De\l/zr ~
wmax=L%J G+DY2= 2| Rossby (18.46b)

For each j, these give the points of reversal of the sign of the group velocity. Note
that the minimum of the Poincaré frequency is not at k = 0 but slightly displaced to
Negative k as a consequence of the beta effect. Note that the difference between the
minimum Poincaré frequency for J =1 and the maximum Rossby wave frequency for
J =1 satisfy

wminPoincaré _ \/—2_+1

Omax Rossby \/2 -1

=5.828. .. (18.47)

S0 that both groups of waves are in the same range of parameter space. Any attempt
to plot the Rossby waves and Poincaré waves of the same diagram in mid-latitude would
o¢ nearly impossible, since the frequencies are so disparate in size (this is, after all,

the basis of quasi-geostrophy in mid-latitudes).
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orresponding eigenfunction for the V-field from which the

nnv\a] wralA~itxr F10o1A ~n m~al~salatad 1 A
Lulldl VCIUDILY 11CTIU Ldll Lalluiaicu, l-c-,
v, = Ay(E)e (18.482)
N\1/2 . 1/2
. l//_l(f) j+1 l//+1(§)
U.=A#i(Bo)?| | L] 2l J (18.48b
=AY ) ok U ) Tookd] )

and this holds for the Poincaré, Rossby and Yanai waves. It is left to the student to work

out the corresponding free surface elevations. The Kelvin wave of course has only a
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consists of two eigenfunctions, y for j’s one greater and one less than the j for V, ren-
ders the reflection problem rather complex. That, plus the physical fact that the Kelvin
mode only exists in its eastward form makes the reflection problem from the eastern
and western boundaries quite different, and the student is referred to the references
given above for a detailed description of that problem.

Finally, we recall that each of the solutions above represents the contribution of a
particular vertical mode with mode number n. Hence, each frequency and eigenfunction
really should carry two indices, one for its horizontal structure (j) and one for its verti-
cal structure (n).
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Stratified Quasi-Geostrophic Motion
and Instability Waves

We return from our brief visit to the equator and investigate the low frequency mo-
tions in mid-latitudes that occur in a stratified fluid. The motion we consider will be in
near (quasi-)geostrophic balance, but we will develop the equations in an informal,
heuristic way, leaning heavily on the formal analysis of Lecture 15. We will also employ
the beta-plane approximation so that we are assuming that two parameters, e= U/ foLs
b= BL/f,, are both small. That being the case, the lowest order balances in the horizon-
tal momentum equation imply that

u=-— by ==y, (19.1a)
Pofo
y= Px =y, (19.1b)
Pofo

Note the beta-plane use of the constant reference value of the Coriolis parameter.
As a consequence of that balance, it follows that at O(1), the horizontal velocity is non-
divergent, so that for an incompressible fluid,

b) (19.2)

If wvanishes at any z at the lower or upper boundary or approximately vanishes there,
it follows that w itself is small. Indeed, w is smaller by a factor of £ or b compared to its
geometrical scaling UD/ L. In that case, the vorticity equation that arises at order £ can
be written

I TI)S

ow
o o TV, T I, (15.3)
In the vorticity equation, the contribution to the advection of vorticity due to w is neg-
ligible, since wis of a higher order in Rossby number than u and v, but its influence is felt
by the stretching term on the right-hand side. Small as w is, the weak stretching is ampli-
fied by the large Coriolis parameter, the planetary vorticity, which is O(¢™) larger than the
relative vorticity, which makes up for the smallness of win the vorticity budget. In the above,

§=vx—u},=V21// (19.4)
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At the same time, the motion, which is assumed as usual to be adiabatic, satisfies
0
Lty +yv—+w—=0 (19.5)

Again, the vertical velocity is negligible in providing a contribution to the advec-
tion of the perturbation density, but it does enter the advection term by its contribu-
tion to the advection of the large background density gradient, dp,/ 0z (large, that is,
with respect to the density gradients associated with the motion; we shall still assume
that the background density varies slowly compared to the vertical scale of the motion).

Using the hydrostatic equation and the standard definition of the buoyancy fre-

quency allows us to write the density equation as

d (ap \ N2 0

— =1+ wN" . =U 19.6

dt k 0z d (1962

dt o9t oJx dy

N2=_8 9P (19.6¢)
p, dz

Eliminating w between the adiabatic equation and the vorticity equation and tak-
ing care to use the properties of the geostrophic velocity, we obtain as the governing
equation for the geostrophic stream function

—ll— 0 [ £2 alf\—l

[ ) )

ag g g 2 Jo y’z PRSI
9w 2w LV L | |+ =0 19.7
[8t Y dy Y axJL v 8:«:LN2 0z JJ Py i

This is the quasi-geostrophic potential vorticity equation (qgpve).Itis impor-
tant to note that although the motion is three-dimensional, i.e.,a function of x, y and 2,
the advective term in the equation only reflects the effects of horizontal advection due
to the rotation-induced smallness of w. A more systematic derivation is given in
Pedlosky (1987).

At the lower boundary, the kinematic condition is

1 dop

- < (19.8)
N2p0 dt oz

w=uhy_ +vhby =—

Using the geostrophic relations for the horizontal velocities and the relation
between p and y, we obtain for the boundary condition at z=-D

D )+ ) =0 (19.92)
ot 0z TE A
](gib)z b —a.b (199b)
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Ignoring the deviation of the free surface with respect to that of the internal iso-
pycnals (the same discussion as for internal waves), the boundary condition at z=0is
just w = 0, which in terms of the geostrophic stream function is

0 Yy . i . .

———+](l//,l//z)=0, z=0 (19.20)

ot dz

Let’s examine that approximation a bit more carefully. From the adiabatic equation,
the characteristic size of w generated within the fluid is of the order

w,. =0 UfUL (19.20)
\LN?D)

where we have used the geostrophic scaling for p and the scaling U/L for the advective
time derivative. On the other hand, the vertical velocity at the free upper surface will
be of the order

o= dpjde=of 2 )=of UVL) (1921)
\ Lo ) \ Lo )

The ratio is of the order

2
Wy _ N°D
Wint 4

and so to the lowest order, w is zero at the free surface, which is the condition used above.
Let’s look first for baroclinic Rossby waves. Let the bottom be flat and assume the motion
is small amplitude so that we can linearize the dynamics. The problem then becomes

(19.22)

—&—rvz +i/foz 8‘/"'ﬂqu/:?&i/’?o (19.23a)
at[ v azLNz azJJ ox '
0’y

~0 19.23b
0z0t ( )
2=0,-D (19.23¢)

We can find plane wave solutions in the form

i(kx+ly—at) 5,

M —

O

Ao~
nce

[\
Ve
N’

&(z) (1

where @ satisfies the ordinary differential equation

2
df fo d@ + pk K -IPlo=0 (19.25a)
dz| N? dz (—w)
do _, 19.25b
o (19.25b)

z=0,-D (19.25¢)
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This is a standard Sturm-Liouville eigenvalue problem, and indeed it is the
camia nrahlam wa dicriigcge A farthavartical ot 11re aanatinon far T anlaca’e +ida
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tions. For the simple case where N is a constant, the solutions can be found imme-

diately as

&(z)=cos(nnz/D), n=0,12,... (19.26)

(19.27)

The n = 0 mode is the barotropic mode. The horizontal motion is independent of z.
The higher modes, each with a lower frequency for the same horizontal wave number,
have zero vertically averaged horizontal velocity. For each n, the dispersion relation is
exactly what we found for a homogeneous layer of fluid, except that now the term in-
volving the deformation radius is the baroclinic deformation radius, and the barotropic
mode is approximated by the limit where the deformation radius of the free surface is
considered infinitely large compared to the L}, given above. This is the same approxi-
mation that aliowed us to ignore w at z = 0. Again, mode by vertical mode, we can apply
all the results of our investigations of the Rossby wave in a homogeneous layer to each
vertical baroclinic mode.

Topographic Waves in a Stratified Fluid

Consider now the case where N is again constant, but a bottom slope exists and we
ignore the beta effect. This last condition implies that the horizontal length scale is
small enough that in the linear vorticity balance, K?>> Sk, which we must check af-
ter the fact. In this case, the potential vorticity equation (linearized) is merely, for the
same periodic plane wave in x and y,

2 2
_im[d cD_N_K gp—‘:o, K2=Kk24]? (19.28)

dz?  f?
L Jo ]

We assume for simplicity that the bottom is sloping uniformly in the y-direc-
tion and that the upper surface at z = 0 is very far away (we have to quantify this idea
shortly) so that the region can be considered infinite in z. Then the lower boundary
condition is

2
iwd, +ik Db, @=0, z=-D (19.29)
fo 7

The solution that decays away from the lower boundary and so remains finite with
distance from the lower boundary is

@ = Ae KN(z+D) fo (19.30)
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(the student should now show that the condition that the upper surface appears to be

7 1gQ ey I . R Ry I
infinitely far away from the lower boundary is simply KL, > 1, i.e., that the wavelength

be short compared to the deformation radius).
Using this solution in the lower boundary condition yields the dispersion relation

ki, N
K

O=— (19.31)

This is actually a very remarkable result. It has some similarities to the dispersion rela-
tion for the Kelvin wave. Here we have a single boundary at z = -D and a wave with a smgle

Walirin sarave
direction of propagation. The frequency, as in the case of the Kelvin wave, is indepen-

e A

dent of the rotation. On the other hand, again like the Kelvin wave, the trapping scale
depends on f; only now, the trapping increases as fdecreases. This bottom trapped wave
has a vertical trapping scale d such that if 4 is the wavelength, fA/ N§= 1. Another way
to look at the wave is to note that the bottom slope introduces a topographic beta effect:

fohs,
D

IB topog

in terms of which

kLp

= _:Btopog ?

which has something of the character of a Rossby wave.

Waves in the Presence of a Mean Flow

Instead of linearizing about a state of rest, let’s return to the full, quasi-geostrophic
potential vorticity equation

2 a9 f
9 | y2 0 ~0 19.32
[8t P "’yax} v az{NZ 9z ]Jrﬁ% (19:32)

and imagine that the wave is embedded in a mean zonal flow. That is, we will write the
stream function as ¥/(y, z), which represents a mean zonal flow that is an exact solu-
tion of the qgpve, and add to it a wave perturbation so that

v=¥(y,2) + ¢(x,5,2,1) (19.33)

Note that in the basic wave-free state, the zonal flow and the accompanying density
anomaly are

U(y,z)=-¥, (19.34a)

\

JoPo ¥

p(y,z)=— (19.34b)
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From these definitions or equivalently the thermal wind equation,

U,= 8 9% (19.34c)

B foPo 9y

0 ) | 2 O ,for2 an\_l dp d [ 5 ( 2 9y
vl A EWES A v =0 (1935
[8t+ ax}{ ox azLN2 oz + ox oy| 7 oz| N? oz + o, ( a)

f[ ﬂ_Uﬂ_%( f022 ?6_") ~0 (19.35b)

This equation is the perturbation form of the qgpve. The presence of the mean flow
has produced two very important changes. First, the local time derivative has been
changed to a linearized form of the advective derivative in which the additional term

v

ox

represents the advection by the mean flow. Equally important (if not more so) is the
fact that the planetary gradient of vorticity, f, is now supplemented by the contribu-
tion of the mean flow to the potential vorticity gradient of the basic state. That is, the
meridional potential vorticity gradient is now

7 N\

g J( fo
A-p-U, ——| 2 19.36
ay 'H Yy 82LN2 Z ( )

This is analogous to the way, for a homogeneous fluid, the bottom topography
supplements the beta effect to provide an altered potential vorticity gradient in which
the wave propagates. However, as we shall see, the effect of the mean flow can do more
than simply alter the frequency.

The boundary condition at z = -D in this linearized problem becomes

(0 0 ) N?

L@t axJ¢z Py zy ﬁ) Dy b}, \

(0 0 ) N?

v g +o|-U,+—h, |=0, z=-D (19.37b)
Lat a ¢Z ¢x[ VA fo b J \

—~
(=Y
\O
W
w0
p
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so that the boundary condition contains terms involving the difference betwee the

1 f+ho k A A +h f+ha
S10p€ O1 ine uG‘dﬂuar‘y’ and tne SlOye of the basic SLaLc S 1SGPYCF1&1 ourfaces as ’“y’ in-

tersect the boundary. At the upper boundary, which we assume is flat,

4 3\ . .
U -U,|=0, z=0 19.39
5+ Usfesrelulo, 2 (1939

Consider the situation in which for simplicity we ignore beta completely and suppose

that the bottom boundary is flat, i.e,, b = 0. Instead we will consider the case whe

tne mean flow in tne X- (111'6Ct10n is snearea in the vertzcat SO tnat
U=U,+U,{z+D} (19.40)

where U, is a constant, i.e., a flow with constant vertical shear. This is supported by a
horizontal density gradient and hence a sloping density surface in the y-z-plane. In-
stead of the bottom sloping and the basic state density surfaces being flat, as in the
case of the bottom trapped topographic wave we studied earlier, we now have the bot-
tom flat and the density surfaces sloping. From the form of the boundary condition,
however, these might have some equivalence. Let’s see. For the case where N is con-
stant and where the lower and upper boundaries are well-separated (in the sense of
the topographic boundary wave discussed above), the qgpve is again, for @,

(—za)+Uzk){d ?_ N
dz?

-
qu 0, K:=Kk*+I2 (19.41)
O

leading again to the interior solution:

0= Aeikx+ly=ar) o ~KN(z+D)/ fo (19.42)
The boundary condition at z=-D now yields the relation

~(Uyik—iw)KN | f,—ikU, =0 or (19.43a)
w=U,k +E%U (19.43b)
=2 _y, + 1% (19.43¢)

k KN

The propagation consists of two parts. The first is a simple advection by U, which
is the basic state velocity at z = -D. The more interesting contribution is from the ver-
tical shear, or equivalently, the slope of the isopycnals relative to the lower surface.
Indeed, the result for the frequency can be written as

k(dz/o
w—Uokz(%y)pN (19.44)



212

Lecture 19 - Stratified Quasi-Geostrophic Motion and Instability Waves

which should be compared to the relation for the bottom trapped topographic wave,
T thic cirnnla ~ace thic chawre tha canivalanca hatwrann thaadlaning icanvrnale and +
1in Llllb bllllylc Ladol, llllb SI1IOWS e cqu1va1cu\,c UCLWCCII LJJ.C blUl}lllB muyyk,uam allll LllC

sloping surface (the change in sign is prefigured by the differing signs in the bound-
ary term)

2
N { oz
—| by —— (19.45)
fol 7 9y).
L P
Now let’s instead consider a wave localized near the upper boundary. The potential
vorticity equation is the same, but the solution decaying away from the boundary is
The boundary condition on z = 0 now yields
. . 1KN ,
(U, + UV, D)ik—iw]|—-U,ik=0 (19.47a)
0
kU
=>w=U,+ UZD)k——ZE (19.47b)

Comparing this result to the case where the wave is trapped near the lower bound-
ary, we see two differences. First, the advective velocity is different because the shear
makes the advecting velocity larger at z = 0 (assuming positive shear). Second, the
intrinsic frequency, i.e., the frequency seen by an observer moving with the local ba-
sic flow, had the opposite sign compared to the former case. It is the slope of the
isopycnals relative to the boundary, and this has changed from the previous situation.

It is interesting to ask whether there is any wave number for which the two frequen-
cies or the two phase speeds of these apparently independent waves could be equal. If
that were the case, it could be possible for the two waves to effectively interact. Equat-
ing the two phase speeds in the two cases leads to

o Ui fe o UL Sy
U, +U,D)——£28 =y —220
(Uo+U.D) KN K

N

(19.48)
ND L,

When the wave number is twice the inverse of the deformation radius, both bound-
ary waves, one moving towards positive x relative to the local flow at its boundary and
one moving towards negative x relative to the local flow at its boundary, are moving at
the same speed relative to a fixed frame. In that case, we might wonder whether a par-
ticular mode can be produced from the interaction of these two waves. Note that when
KL= O(1), the assumption that the two boundaries are well-separated fails, and we
have to consider the solution from first principles. A surprise results when we do.
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Baroclinic Instability and the Eady Model

We return to our stratified layer with the shear flow previously described. The layer

has an overall thickness D, and N is constant as well as the shear U,. Again, we ignore

th 143 ftha ~vi
the beta effect. The algebra is a bit more standard if we move the position of the ori-

gin in z to the lower boundary so that 0 <z < D. The basic flow is thus

Uu=U J (1949)
The boundary conditions are
(~iw+ik(U,+U, 2))@, -U, ik@=0 (19.50a)
z=0,D (19.50b)
while the equation for @ is
d’@ N’
. K*®=0 (19.51)
z 0
The general solution for @is
@ = Acosh(uz) + Bsinh(uz) (19.52a)
NK
U=—— (19.52b)
fo

Applying the boundary conditions at z=0 and z = D yields two equations for A
and B:

z=0, —cuB—uA=0 and (19.53a)

z=D, (UZD—E)[ﬂAsinh(ﬂDH uBcosh(uD)]

a1 (19.53b)
-U, [Acosan)+ Bsinh(uD)|=0

c=—-U, (19.53¢)
The equations above are two homogeneous, linear, algebraic equations for the

constants A and B. The condition for nontrivial solutions is that the determinant of
the coefficients vanishes. This yields a quadratic equation for &:

'52—UZDE'+U22L2coth(,uD)——17J=O (19.54)
H H
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This yields two solutions:

1/2
= U,D 4 UZD[1_4coth(ﬂD) ‘4 1 :
2 2 (uD) (uD)
or
5 1/2
c= U.D i&[@——ﬂDcoth(ﬂDH{l
2 y7i 4

The useful identity

cothx = %{tanh(x/Z) + coth(xlz)}

finally allows us to write the equation for the phase speed as

1/2
c=2= Uyt UL, gi’-[(ﬂg — coth(ﬁlz)J(E - tanh(ﬁlz)ﬂ
k 2 T ul\ 2 2 '\ 2 2

(19.55a)

(19.55b)

(19.56)

7 \ T T T T T T T T

w
T

N
1

UO.O | 0.5 1.0 15 2.0 25 3.0 3.5 40
u*D

Fig. 19.1. A graphical solution of Eq. 19.57. Each term is plotted versus its argument

45 5.0
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Since x 2 tanh x for all x, the second factor in the square bracket is always positive.
The first factor will change sign where
D
uD /2= coth| - (19.57)
\ <)

The graphical construction of the intersection (Fig. 19.1) shows that the critical
valun nf #D ~ 2 2004

W UL htod /7 Ko

Note that this corresponds to a value of K =2.3997/ L, rather close to the heuristi-
cally motivated value from the previous discussion. For wave numbers less than this

critical K, the frequency will be complex.
1

When ¢ is complex, i.e., when ¢ = ¢, + ic, the behavior in time consists of an osciilation
and an exponential growth for positive c, i.e., the time factor becomes e~ = e-ert gkcit
with a growth rate

kU,

@, =—%[(coth(uD/2)— uD/2)(1D /2 —tanh(uD/2)]"'? (19.58)

Figure 19.2 below shows the real part of the phase speed measured with respect to U,
and scaled by U,D. The dotted line shows the imaginary part of ¢ also scaled with U,D,

0.8 T T T T T T T

| 1 | Lnounoin o L)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
puD—»

Fig. 19.2. The Eady dispersion relation K scaled on deformation radius. The thin curves show the
real and imaginary parts of the phase speed. The heavy line made of “0’s” shows the growth rate
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while the imaginary part of the frequency, the growth rate scaled by U, or the shear, is shown
to be the line formed by the circles. The figure is drawn for the case where [ =
Note that for each wave number for which a positive imaginary part of ¢ exrst s, there

is another solution with the same real part of ¢ but whose imaginary part is negative.
MLt L1 o L al L. . ‘.L PR | Ll o e L et L 1T 2 am~ L _‘[
1 111S 10110WS II0I11 u1€ 1aCt udtl tne equauon O1 e PCI LUI DdLIOI1 1ICLAU 1S ICdl, SU L1 d

@ is a solution with eigenvalue c, its complex conjugate @* will be a solution with
eigenvalue c*. Since the dynamics is inviscid and thus reversible in time, the physics
must include the possibility for a cunningly chosen initial condition to return a dis-
turbance to zero amplitude (exponentially slowly).

The model described above was initially described by E. T. Eady (1949). This ex-
planation and the paper by Jule Charney (1947) were the first to correctly describe
the instability process now known as baroclinic instability of which the Eady model
is perhaps the simplest example. The accomplishments of both these independent
analyses are staggering. Not only did Eady and Charney, who were working indepen-
dently, correctly identify the physical process responsible for synoptic scale waves in
the atmosphere (and ocean), but they had to derive a version of quasi-geostrophy at
the same time. For those of you starting graduate school, it will give you a standard to
strive for to know that this represented Charney’s Ph.D. thesis.

Eady eigenfunctions uD = KND / f,
10 I I I I 1 T T I |

0.9
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—0;6 -0.5 -0.4 -03 -0.2 -0.1 0.0
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Fig. 19.3. The stable Eady eigenfunction for KL, =6
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one of the boundaries at z=0 or z=1, and the eigenfunction resembles the trapped
boundary wave of the semi-infinite interval model. Figure 19.3 shows an example when

KLy=6.The eigenfunction with ¢ / (U,D) about 0.8 is shown. Note its intensification
near the upper boun ary.

In thb 111111!., LhClC 1S no lIlLCfd(.LlUIl UCLWCCII lllt: UPPCSI rld 10Wer UUUIlUdfle d.Il(.l
the wave is stable. We shall see later a theorem that will explain why, in the Eady model,
such an interaction is necessary for instability.

As K approaches its critical value from above, the two roots for ¢ coalesce. For K
less than the critical value, there are two roots which are complex conjugates.

The growth rate is

bl

I O e
o =ke;(K)=ke;| VK2 +17 | (19.59)
\ )

That is, the complex phase speed, as we can see from the original eigenvalue prob-
lem is a function only of the total wave number. The growth rate is the imaginary part
of that phase speed multiplied by the x-wave number, i.e., by the component of the
wave vector in the direction of the basic velocity. The largest growth rate will there-
fore occur for a given K when k is largest, i.e., when the y-wave number, I, is zero. In
the figure showing the growth rate, I have chosen the case where [ = 0. The maximum

orowth rato acriire faor b an the arder ~f 1 sl 3 agiire Avtaw vraralan gtl

H Tt . ~F
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just under Ly, itself. This is the basic explanation for the presence in both the atmo-
sphere and the ocean of synoptic scale eddies with the scale, preferentially, of the de-
formation radius.

The fact that the instability is maximized for I =0 is related to the energy source
for the waves. Since the motion is horizontally divergent to the lowest order (geo-
strophic), the perturbation velocity is perpendicular to the wave vector. With the wave
vector oriented in the x-direction, the perturbation velocity will be directed across the
current in the y-direction.

Now from the thormal wind rol
ANVUYY 1LAVULLL LILIN VIR T HTROAL VY BIEWAA 13

ry foU,

Po g

and using the relation

2

P, N
Dn g
5y o

it follows that the slope of the isopycnals in the basic state is

9z | _ fU, (19.60)
8yp N2

Motion in the y-direction will therefore move fluid down the density gradient and

1mid moatinn hac a chanco ta vroloacoe tho natantial anaroeyr o etnvad i +thn olAn
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o
ing density surfaces, a siope required to balance the vertical shear of the current in
which the wave is embedded.
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The important point to keep in mind is that these waves are self-excited; since they
are unstable, the slightest perturbation of the basic flow will produce a spectrum of
growing waves,and we anticipate that at least until the amplitude becomes large enough
for nonlinearity to be important, we will see the most unstable wave dominate the spec-
trum. That is, we don’t need an external forcing mechanism to produce the wave, in
distinction to all the wave types we have discussed before. We will have to discuss more
completely the energy source for the waves that is in the basic current, but it should be
intuitively clear that the sloping density surfaces are a potential source of energy if the
perturbations on average can level those surfaces releasing potential energy to pertur-
bation kinetic energy.

For the unstable wave, the function @will be com e
will thus be complex. It is useful to recognize this and write the stream function:
W= D(z)ei k=)

. (19.61)
:l¢(z)lex(kx+a(z)—wt)

In the above, we have separated the amplitude function ®into its modulus and its phase

o(z)=arg(P) (19.62)

V4V

Eady eigenfunctions y =KND/ fo
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.19.4. The modulus (solid) and phase (dashed) for the stable (¢;<0) and unstable (¢;> 0) waves:
hase of t able mode increases with height
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A line of constant phase in the x-z-plane will be a line on which

ph = kx + a(z) = constant (19.63)

0z k
= == (19.64)
V.. i R I
\ 9% Jpp aa/az
Figure 19.4 shows the modulus of the eigenfunction and its phase for a wave num-
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to
its complex conjugate are shown. Of course, the modulus of @ is the same for both.

Note that the function o increases with z for the unstable wav.
for the stable wave.

a
o
o
oo

nd decreases with z

For the unstable wave, the fact that « increases with z means that a line of constant
phase of the unstable wave has a negative slope in the x-z-plane; that is, it leans against
the current shear. Intuitively, for a passive tracer we would expect isolines of the tracer
to be pitched over in the direction of the shear. The unstable wave has an active structure,
and to extract energy from the basic flow it must lean against the shear in the current.






Lecture 20

Energy Equation
and Necessary Conditions for Instability

To get a better feeling for where the source of the instability is, it is useful to develop
an equation for the perturbation energy for waves in the presence of a mean flow that
contains both horizontal and vertical shear. This entire subject is enormous, and we
will only scratch the surface in our discussion. The text by Gill (1982) and Pedlosky
(1987) contain ample discussion for further reading.

We start with the governing equation for the linear perturbations derived in the
last lecture:

{i+Ui—|[V2,m+ (foz a(oﬂ a(p{aq—l (20.1)
| ot 8xj|_ dz| N* az)J ox | 9y |

where the term in the last bracket is the potential vorticity gradient in the y-direction
associated with the basic flow. It contains contributions from f, the relative vorticity
gradient and the gradient of the thickness between isopycnal surface in the basic state

J9q

97 _, . 9 fau)
dy

=ﬁ_uyy_8zLF azJ

(20.2)
5 ((az) )

A=~ {5 |

where z(y) is the position of an isopycnal in the basic state.

To derive the energy equation, we follow the steps we took earlier in finding the
energy flux vector for quasi-geostrophic Rossby waves. We multiply the qgpve by the
stream function and manipulate the derivatives to work the form into a budget for
the energy. The details are a good deal more tedious here, because U is a function of y
and z and there are many “extra” terms. It is these terms that are the most illuminat-
ing. The details of the derivation will be left for the student. The result with no fur-
ther approximation can be written

) poy.§42 [ plo ) 5
_E+V.S += Ves) 0 I/n 1. TTmn 1 ——m 0 TT _n n 0 TT 7N 2.\
¢ ;)7I ¥ N2 Wzt TY¥ax | I Yx¥yYy —¥x¥z A2 Yz \&V.0d)
e (4 \ iV / Fa

(V )2 2 2




222

Lecture 20 - Energy Equation and Necessary Conditions for Instability

— 2
+Ui\V(p—l+5cj—iq—¢—+UE+(p(V,m-VU)L+mUaV(p (20.3¢)
o0 ox) | | dy 2 ] ox ’

A 11nit vort in th
L L

£2 42 o2 (nl )2
JOY¥Yz _ & \VM'FQ/
2N? 2N? (204

potential energy in the wave field. The horizontal flux vector is similar to that which
we found for Rossby waves. The local time derivative in the first term is replaced by the
linearized advective derivative, and the beta term is replaced by the full potential vor-
ticity gradient. This is supplemented by the advection of energy in the x-direction by
the mean flow plus two other terms. These terms are more difficult to interpret easily,
but they are related to corrections to the higher order work terms done by the geo-
strophic pressure correction. The horizontal divergence of this flux vector has its com-
panion in the z-direction.

If the fluid is contained within solid walls in z and y so that the boundary conditions
at z=0 and z = -D are as described in the previous lecture, and if the perturbation is
either periodic in x or vanishes for large positive and negative x, then the volume integral
of the flux terms will contribute no net term to the energy balance for the perturbation
energy. This is really just a consequence of the definition of energy flux. The flux vector
moves the energy from one place to another without creating or destroying energy.

However, there are two terms: these terms are on the right-hand side of the
energy equation that in general, do not integrate to zero when the volume integral
is carried out. The first of these is already familiar from our discussion of the en-
ergy flux in internal gravity waves in a mean current. Using a bracket to denote a
volume integral, this term is

(0,0,) =(w0,)

and thus is the integral of the horizontal Reynolds stress times the horizontal shear of
the basic current. If the perturbation carries larger values of zonal momentum to re-
gions of lower momentum tending to smooth out the mean lateral shear, i.e., if when
U,>0andv <0wealso have u > 0 so that the perturbations ‘remember” that they have
come from a region of large zonal momentum compared to their destination, the mean
shear will be flattened with a consequent increase in wave energy as the energy of the
basic current is reduced. Such an energy transfer requiring only horizontal motions
occurs in ordinary shear flow instability of a homogeneous fluid with lateral shear and
is termed barotropic instability.

In the Eady model we discussed in the last lecture, the basic current has no hori-
zontal shear so that this energy transformation process is absent. The remaining term
on the right-hand side is the pertinent one for that process. Using the relation between
geostrophic stream function and density perturbation,
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c y tion term is proportional to the transport in
the y-direction, i.e., in the direction of the density gradient of perturbation density.
If, for example ﬁy >0, < U,> 0, on average (when integrated over the volume of the
fluid) parcels moving to positive y carry a negative density anomaly and fluid elements
moving from positive y carry a positive density anomaly. The product -vp > 0 and so
the energy of the wave field will increase. That is, if the wave field produces a flux of
density from regions of h t

This baroclini

i Qi otats 4o A L L1 .
gh to low density of the basic state, tending to smooth out

of hi
I density gradient, this will flatten the slope of the mean isopycnal
surfaces and release energy for the perturbations.

It is really a form of convection. In ordinary convection in which fluid is heated
from below, energy is released by having warm, light fluid rise and cold, heavy, dense
fluid sink. Here the situation is a bit more complex, but fluid coming from the region
of larger mean density moving to smaller mean density will tend to sink as it moves
laterally and vice-versa for the fluid moving in the opposite direction.

Notice that to have this transformation term positive, we need

the basic horizonta

n AN\
0<U g =U.0l b=l 0| < | (20.6)
, 0x ),

so that the product of the basic vertical shear multiplied by the slope of the isolines
of constant ¢ in the x-z-plane must be negative. That is, the phase lines of constant
perturbation of the geostrophic stream function must lean against the shear, as
we already noted from the Eady model. Here we see that it is a necessity to release
the potential energy locked up in the sloping isopycnal surfaces of the basic state.
Figure 20.1 shows a cross-section in the x-z-plane of a growing Eady mode. The solid
lines are the geostrophic stream function, and the dashed curves yield contours of
perturbation density. Note that the former lean against the shear, and the latter lean
with the shear. This phasing assures that on average the density flux is down the mean
density gradient.

In both the ocean and the atmosphere, horizontal density gradients are sources
of baroclinic eddy energy, and the eddies springing from the self-excited baroclinic
unstable waves typically have scales of the order of the appropriate deformation
radius.

Eady himself introduced a very simple argument to make plausible the con-
vective nature of the instability. He suggested considering the virtual displacement
of a fluid element in the y-z-plane. The isopycnals are sloping with an angle y
such that

s0 that the slope is due to the existence of the vertical shear (Fig. 20.2).
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Eady mode for uD=KND/f, = 1.66
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Fig. 20.1. A cross-section in the x-z-plane of the growing Eady mode. The solid lines are isolines of
perturbation pressure, while the dashed lines show isolines of perturbation density
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Fig. 20.2.
The Eady wedge of instability
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Consider a displacement of a fluid parcel from point A to point B as indicated ifl
the figure. Assuming the fluid parcel at A preserves its density when it arrives at B, 1t

will arrive there with a density anomaly:

P =pPr—Ps

(20.7)
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But if the displacement is small,

PB=Pa +a—pAz +a—'0Ay (20.8a)
0z dy

so that the anomaly of buoyancy will be

5p RS
g—=N2Az1- 2P (20.9)
Po Az/Ay

If Ay is zero or if the slope of the basic isopycnals is zero, this reduces to the result
we obtained in reasoning out the restoring force for internal gravity waves. In that case,
we had a restoring force (a positive density anomaly for a positive Az) giving rise to a
force proportional to Az and with N? as the spring constant (per unit mass). Now, how-
ever, 1f

osfs%)

Ay dy),

the buoyancy anomaly will be negative and the arriving fluid parcel will have lower den-
sity than its surroundings. The resulting buoyancy force will then encourage a continued
displacement and the release of energy. That is, if the motion occurs so that on average
the fluid elements slope upwards within a wedge determined by the slope of the den-
sity surfaces with respect to the horizontal, the gravitational energy available will power
continued displacement rather than restoration to its initial position —> instability.
From this point of view, the instability is a type of slanted convection requiring vertical
shear to yield the slope of the isopycnals and allowing the existence of the wedge of
instability.

This simple explanation has been criticized (Heifetz et al. 1998), since the wave func-
tion is not a plane wave in the x-z-plane, so it is not possible to avoid considering the pres-
sure perturbation in the force balance on the parcel. However, the basic argument on
the basis of the buoyancy force is compelling and, I feel, illuminating. In Fig. 20.3 we
show a snapshot of the v and w velocities in the Y-z-plane at a particular value of x (quarter
wavelength). The solid lines are the isopycnals, and the arrows show the trajectory in
the y-z-plane.
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Eady vand w for uD =KND/fy =1.66, p*x=0.7854
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Fig. 20.3. The instantaneous perturbation velocities in the y-z-plane are shown as arrows. The solid
lines are the basic state isopycnals

It is of interest to try, on the basis of our work up to this point and general di-
mensional analysis ideas, to estimate the characteristic growth rate of baroclinic,
unstable waves. In the presence of a vertical shear, a layer of depth D might be ex-
pected to have the imaginary part of its phase speed to scale with U,D. The growth
rate would then be

@, =kc; =0(kDU ) (20.10)

and if the wavelength is of the order of the deformation radius,

k=O(f0/ND) (20.11)
so that
. :()( foUz\:N( az\ (20.12)
1 \ N ) I v I
4V J \U/ /p

(note in the last form its apparent independence of f).
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For mid-ocean flows, we might estimate

The Eady model is a very simple one and hardly realistic. The investigation of more
realistic velocity structures usually requires considerable numerical work, and it is hard
to make general statements. It is useful to have some a priori ideas of when self-ex-
cited waves can be expected within geostrophic flows. There are a series of theorems
giving necessary conditions for instability. The student is referred to Chapter 7 of
GFD for a detailed discussion. Here we present only the most well-known theorems.
This class of theorem dates back to the original work of Lord Rayleigh.

Let us assume that our basic current is again directed in the zonal direction, but
imagine that it is now a function of both y and z and that the beta effect is not negli-
gible. It is important to note that once the current is not zonal, there are very few theo-
rems that are directly applicable.

However, the case is of interest, and it may be provide some general picture of what
is required even in the nonzonal case.

Again, if we look for plane waves in x (not y, since now the linearized potential vor-
ticity equation has nonconstant coefficients in y) the governing equation

) _
[9_+Ui}[v2(p+_a_(fo a‘ﬂﬂﬁ‘/’[a_q]:o (20.13)
Jat  ox dz\ N? oz dx | dy

L \ /] [ -

admits solutions of the normal mode form
¢ — y/(y’z)eik(x—ct)

where W satisfies

2 2 —
(U-¢ 9 fozaw +a¥'—k2w1+a—qW=o (20.14)
dz{ N* 0z | oy’ dy

[ ~ i

subject to boundary conditions on the bottom (which we take to be z = 0) and the top
(z = D):
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and we insist that there exist two lateral boundaries at y = +L where the disturbance
vanishes. Of course, L could be infinite.

If we multiply the equation for ¥ by its complex conjugate after having divided by
(U -¢), and if we then integrate over the region of the problem in the y-z-plane, we
obtain, with the aid of the above boundary conditions

D L rfoz , : 27
~ [dz Idytp|¥’z| +f, |+ J
0 -L

D L = /) ] L
+ dz [dy- —oq/ﬁr fay—2E1 fu,},_, (20.16)
0 -L L - ¢

L fﬁ.yllz ( N2 3
- dy—o | {UZ— hby} =0
z=0

N*(U-c) fo

The first term in this integral condition is always real and negative definite. if c is
complex, the remaining terms will have an imaginary part. Indeed, if we just write down
the imaginary part of the above equation using

1 =(U—cr+ici) 20.17)
V-0  |ju- (
we obtain
. -
dez fd J'W’ aq/ayL j i {U.},p
0 L |U c‘ J N"‘|U—c
¢ =0 (20.18)

L
- |d U,——h
_{y NU - I2 f b’)

For instability to occur, i.e., for the imaginary part of ¢ to be different from zero,
the collection of integrals in the square bracket must add to zero.

For example in the Eady problem, the potential vorticity gradient in the interior of
the fluid is exactly zero, i.e.,

Y ) (20.19)
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For instability to occur, the two boundary terms must be able to cancel each other.

For the Eady problem, there is no topography and U, is positive at both b

arindarics o
€ dl UUUL DOUILGAriIEs SO

w

that the cancellation is possible. However, as we saw, it is necessary that the wave number
be small enough so that the wave extends to both boundaries. If the eigenfunction were

zero at one of the boundaries, only one of the boundary terms in the above constraint
would survive, and it would be impossible to satisfy the condition for instability.

We noted earlier the term

N2
0

Thus, if the topography of the lower boundary were sloping upward more steeply
than the isopycnals (which have constant slope in the Eady model), the contribution
from the lower boundary term would add to that of the upper boundary, and instabil-
ity would be impossible. Topography can thus eliminate the instability and stabilize
the flow.

If both boundaries are boundaries of constant density, the boundary terms in the
integral condition vanishes. In that case, for instability, the gradient of the potential
vorticity must be both positive and negative in the y-z-plane. Potential vorticity of a
single sign would be (in the absence of the boundary contributions) a stable distribu-
tion. The simple exemplar is, naturally, pure Rossby waves.

In Charney’s model, there is no contribution from the upper boundary (it is infi-
nitely far away) and the potential vorticity gradient is positive. Instability is possible
because the positive contribution from the pv integral is cancelled by the contribu-
tion from the lower boundary. Note that these conditions are necessary conditions for
instability, not sufficient conditions. It sometimes occurs that the necessary condition
is met and the flow is still stable. There are very few useful sufficient conditions that
can be found.






Lecture 21

Wave-Mean Flow Interaction

We have been considering the dynamics of waves in this course and have remarked
several times on the linearization restriction we have normally placed on the dynam-
ics to make progress, and we have skirted rather completely the role of nonlinearity
on the dynamics of the waves themselves. It is a difficult subject.

At the same time, even small amplitude waves, for which linear theory might be a
good first approximation, can have an effect on the mean state of the medium through
which the waves are propagating. If the waves have small amplitude, we would antici-
pate that since the fluxes of momentum and density by the waves are of O(amplitude)?,
the effect on the mean will be similarly small. That doesn’t mean that alteration is
unimportant or uninteresting, and the calculation of that change often can give in-
sight into how the waves can have an effect on the mean fields in which they are em-
bedded. The role of waves in altering the mean is clearly of importance in questions
concerning the general circulation or even current systems of smaller scales, e.g.
coastal currents.

How then can we calculate the effect of waves on the mean field? This, too, is a very
complicated subject, and in this lecture we will just touch on a special case but one
which is both revealing and often used as a model for more general situations. We will
consider the effects of waves on the mean for low-frequency large-scale motions gov-
erned by quasi-geostrophic dynamics. Even with these restrictions, the issue is com-
plicated, and we will simplify further by considering mean states that correspond to
zonal flows that are functions of y, z and ¢ but that are independent of x. The waves, of

course, will be functions of all three spatial variables. We will define the mean by the
spatial average
_ X
P=lim |Pdx (21.1)
——
X—>eo _x
by an average in x where P is any dependent variable. It would appear that this defini-
tion is more suitable for atmospheric flows, and it is certainly true that the discussion
that follows came first from the meteorological literature, but one can imagine strong
currents that are nearly zonal such as the Gulf Stream after separation, the equatorial
Frriveante at~ Fase cirhat Al L0 2 ab Vanct m cmmad Ll £t e~ L
LULICIILW, CLL. 10U WILICLL ULIS 15 dl 1CdSL d SCIISIDIC LIS dpPpPIOdlil.

tential vorticity equation, which in quasi-geostrophy is
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L/ Tq+v7q=0 (21.2a)
Jat  ox dy

u= _W}’ (2 1 .2b)
V= l//x (2 1 .2C)
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We will assume that the wave field is periodic in x with no mean so that the x-aver-

1

21

age of any variable associated with the wave field will be zero. Furthermore, the x-aver-
age of the geostrophic meridional velocity must itself be zero, if the flow is periodic
in x or independent of x.

We can therefore write all variables as a mean plus a wave part:

P=P+P (21.3a)

P'=0 (21.3b)
Noting first that the pv equation can be written

a_q+aﬂ+aﬂ:0

21.4
ot dx Oy @14

since the geostrophic flow has zero horizontal divergence, an x-average of the
pv equation yields, using v =0,

Jat  dy
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The rate of change of the mean potential vorticity is given entirely in terms of the
potential vorticity flux of the waves. Using the above equation, assuming the pv flux is
known, one can simply calculate g. Since the variable part of g satisfies the relation
with the stream function

___ o[ fiow
_ 9| Jo oV (21.6)
1 "'”Jraz N? oz

it is with appropriate boundary conditions possible to invert to find y, once qis known.
In this sense, the problem of wave mean flow interaction is straightforward. First, one
calculates the linear wave field. Then, one finds the average flux of pv in the wave field.
Its meridional divergence yields the change in the mean pv. Once computed, that, with
the inversion of the elliptic problem for stream function in terms of g, completes the
specification of the change in the mean. Note that the forcing of that change is due

entirely to the pv flux in the waves.
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While the problem is formally complete, the approach leaves two important issues

unclear. First, what can we say, a priori, about the pv flux in the wave field? Second, is

there a more direct and physically intuitive way we can understand how the waves al-
ter the mean momentum and density distribution other than the inversion of the above

equation relating stream function and potential vorticity?

Let’s take up the second question first. We note that

r [ N ]
V'q'ZV"\{'*{%W’ZJ J’ {‘:v‘x—u'}, (21.7a)
z
VIS =V Vi, ==V, =—(v'd), (21.7b)

where we have repeatedly used the fact that P, =0 for any variable P. With the geo-
strophic and hydrostatic approximations, this allows the pv wave flux to be written

-, [

PoN )Z

The potential vorticity flux is therefore the divergence in the y-z-plane of the
vector

F=—uvj-v ook (21.9)
PoN

where j and k are unit vectors in the y- and z-directions, respectively. The vector F is
the Eliassen and Palm (EP) flux vector. Its horizontal component is the meridional
wave flux of zonal momentum per unit mass, or equivalently the Reynolds stress, while
its vertical component is, aside from a factor, the horizontal meridional density flux by
the waves. The direction of F in the y-z-plane gives us an immediate sense of whether
the meridional pv flux is due to momentum or density fluxes. For example, in the Eady
problem, the resulting unstable waves would have a purely vertical EP vector.

Note that the mean pv equation is simply

%‘tL=_ag—y'F (21.10)

This is not apparently a great advance over our previous formulation, but it again
emphasizes the point that the change in the mean fields will be due entirely (with the
appropriate analysis of boundary effects skipped over here) to the divergence of the
EP vector.

This somewhat new formulation is of great assistance when we examine the x-av-
erage of the momentum equation itself. If we take the x-average of the x-momentum
equation and remember that the x-average of the geostrophic v is zero, we obtain

%%—f(ﬁ:—(u'v')/v (21.11)
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Note that on the left-hand side of the equation, there is an x- averaged meridional
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number velocity that remains in the equation, because it is multiplied by the relatively

large Coriolis parameter and is thus of the same order as the (weak) acceleratlon of
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the O(1) geostrophic velocity.
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+ 1 +
momentum is actually only altered by the Reynolds stress provid

while the change in the mean density is associated with the x-averaged wave flux of
perturbation density. If this were the case, it would not be consistent with our earlier
view that it is the wave pv flux that is responsible for the change of all quantities in
the mean state. How can we resolve that apparent discrepancy?

It is important to note that the eddy fluxes as written drive not just the mean u and p
but also the x-averaged v and w, i.e., the mean circulation in the y-z-plane. Indeed, in
principle it is possible that the wave fluxes might produce a balancing meridional cir-
culation with no change in the mean zonal velocity and density. There are problems
where that is the case, and we shall shortly see how we can predict that. So, the above
formulation is not quite a precise enough picture.

We can attempt to deal with the possibility mentioned above by splitting the mean
vertical velocity into a part that may be balanced by the wave flux of density plus a
residual circulation, which we will indicate with an asterisk, i.e., we write

W:ai(v'_p' § 4w (21.13)

and we define w* as the residual mean vertical velocity (residual in the sense that
it is the mean vertical velocity after having accounted for what may be the purely wave
driven part. In terms of which, the adiabatic equation becomes

a_ﬁ_w*._.g_l\lz_

=0 21.14
s p (21.14)

In this formulation, the change of the mean density field is due entirely to the ver-
tical velocity in the residual meridional circulation. If there had been a non-adiabatic
source term for density on the right-hand side of the density equation, it would be the
residual vertical velocity that would balance that heating or cooling term in the steady
state for the mean. Experience has shown that in the presence of the time varying wave
fields, it is the residual velocities that most closely resemble the Lagrangian pathways
of the fluid in the meridional plane.

We would also like to define a residual mean meridional velocity, and here we
have to be a bit careful. When the x-average of the continuity equation is taken, we
have, in terms of original variables,

V""‘_ :O (21.15)

z
Z
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That is, the mean circulation is nondivergent in the y-z-plane. If we are substitut-
ing the residual circulation velocities v* and w* for the x-averages of v and w, we wou
like to make sure that v* and w* also satisfy the same divergence-free condition. That
suggests defining

_ gv'p'

v:_L 2J +p* (21.16)

PoN" J,

N\

for then it follows that

VA, Hwr, =0 (21.17)

If this definition for v* is used in the x-averaged momentum equation,

?—a—fgvu—(ﬁ)y —(&VJ _V.F (21.18)
t \AoN? )

Thus, now the forcing term due to the wave flux in the x-momentum equation is
imply the divergence of the EP vector, or as we have seen, the wave pv flux. This is a
promising advance, since we anticipate that the changes in the mean fields are given
entirely in terms of the pv flux. Note, however, that the divergence of the EP vector
drives not only the time derivative of the mean zonal velocity but also the mean re-
sidual meridional velocity. How can we sort out one from the other?

The mean density equation, as derived above is

z

w

Y] o N2
— x0T (21.19)
ot g

Let’s take advantage of the thermal wind relation as applied to the mean flow, i.e.,
8Py

0

fou, = (21.20)

Take the z-derivative of the mean momentum equation and the y-derivative of the
mean adiabatic equation to obtain

Since the residual velocities are nondivergent in the y-z-plane, they can be written
in terms of a stream function:

VI=—Y,, wr=yx, (21.22)

which automatically satisfies the continuity equation for the residual velocities. This
in turn leads to the elliptic problem for the stream function:

N2 1 0, =
Zyy__i'lzz =

£2 fo 0z

S

(21.23)
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Therefore, if the EP vector is known, this elliptic problem (with appropriate bound-

dits \ he tod + ( \ d th idiial lacits N
ary CGI‘LuquﬁS; can be inverted to find X\, 2) and tne resiauai velocities. Note agam

that it is determined entirely in terms of the divergence of the EP vector. Once the re-
sidual circulation is known, the x-momentum equation yields the change in the mean

zonal momentum and the mean density. Of course, this inversion is no simpler than
the inversion of the original x-averaged pv equation:
g
——=——(v " (21.24a)
ot  dy
with
__— o[ fo¥
q=,, +—| “%— (21.24b)
dz| N° 0z

which can be obtained by taking the y-derivative of the x-momentum equation and the
z-derivative of the density equation, which is nothing more than a re-derivation for the
mean fields of the potential vorticity equation. This more indirect approach has the
conceptual advantage of showing in detail how the mean field changes as a consequence
of the wave fluxes. It does not change, indeed it emphasizes, the fact that the change
comes about only due to fluxes by the waves of potential vorticity. What then, return-
ing to our first question, can we say a priori about the wave flux of potential vorticity?

If the wave amplitude is small so that the waves satisfy linear pv dynamics, we could
suppose that we would calculate the wave field from the linear equation:

9 ;99,99 _
o +U ™ +v'— 5 =Diss(q') (21.25)
Here I have added on the right-hand side of the equation a dissipation term, of arbi-
trary form, for potential vorticity assuming only that it is linear in q' and has zero x-aver-
age. We shall shortly see why this might be an interesting addition to the dynamics.
To find the meridional pv flux, we multiply the above perturbation equation by 4'
and average in x to obtain

99

- 99 /2

21.26
» (21.26)

The potential vorticity flux, when x-averaged, is therefore proportional to the av-
erage increase with time of the variance of the wave pv and to the correlation of the
pv with its own dissipation. For steady, inviscid waves, both terms will be zero and the
wave pv flux will vanish. In this case, it follows immediately that there will be no change
in the mean zonal velocity or density fields due to the waves. The mean residual circu-
lation will be zero. There can be a mean Eulerian circulation

V=—[LA¢2-J and (21.27)
Po z
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W:a%(;?) f;ﬂ (21.28)
0

so that the wave fluxes of momentum and density yield only a balancing Eulerian v
and w but no change in the zonal velocity or its supporting density field. We saw some-
thing like this when we looked at the steady internal wave field radiated by the inter-
action of a current with a rippling topography, and we argued that the only change in
the current would occur at

thP front of the radiatine wave ﬁo]d "\!’here the time depen_

2% 2ANVAA8 A iV A““A“&LLJ& vvavse 11\l

dence of the wave envelope would be strong. We see here a similar situation for geo-
strophic flow. This was first noticed, with some expression of amazement, by Charney
and Drazin (1961) in their pioneering paper on the propagation of planetary waves
ne upper atmosphere. They carefully caiculated the wave
field and its effects on the mean field and found the effect was zero. Since that time, a
good deal of effort has gone into sharpening the theory to describe in detail the role
of dissipation and time dependence in describing how the waves can affect the mean.
A good example of this is found in a very nice paper by Edmond, Hoskins,and McIntyre
(1980). The resulting theory is by now rather vast, and further discussion is beyond
the scope of this course.

Further efforts to develop the theory for more oceanographically pertinent situa-
tions attempt to replace the zonal average (not terribly apt for the ocean) with a time
average. The resulting equations are complex, and it is still hard to see clear concep-
tual progress.

Avn Tt~ 4
from the troposphere into t






Problems

Problem Set 1

1. As discussed in the text we can consider the generalization of a plane wave to have
the form for waves of slowly varying properties;

W — A(i)eie(x’)”"’t)

and we have defined the wave number vector as the gradient of the phase ©.

n CQher thoat tho core 1o £ T ahak thn s caratn rinhan fo oot <ra i o
a oShow tnat the condition, for example, that the x-wave number is slowly varying

(i.e., that the local definition of a wave number makes sense) is that:

—X 1

e,
and carefully interpret this result, i.e., what does the condition mean and why
should the condition be imposed? Do the same for the frequency.

b Consider a circular water wave, perhaps formed by a stone thrown in a pond,
whose free surface elevation is given by:

—
_ T i(xr-ot)
n=A,]—e
r
where 7, is a constant and r is the circular radius
2, 2412
r=(x"+y)

Assuming the wave is slowly varying, find the x- and y-wave numbers of the
wave field at each point in the x-y-plane.
¢ Using your results in (a), under what circumstances will the assumption in (b)
be sensible? This should depend on xand r.

2. The dispersion relation for Rossby waves which we will derive later, might be ap-
proximated as

___ Bk
(K2 +12)°
where k and ] are the x- and y-wave number components. 3is a parameter. For the plan-
etary problem, it can be shown that 8is a measure of the Earth’s rotation and sphericity
or it also could be related to the slight slope of the bottom of the fluid (as we shall see).
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Let’s suppose it is the latter, and in our lab we have let

B=PB(y)=B0-[y/L])

e compared to a wavelength of the wave.
of the group velocity.
he ray equations for the variation for k, l and @.
t and @ are constant so that

d Find the position y, where the group velocity in the y-direction vanishes. Note
from the ray equation for [ that I continues to decrease at that point (i.e., be-
comes negative). Discuss the implications of that for the trajectory of a wave

packet which initially starts near y = 0. Sketch the path in the x-y-plane.
3. A particular wave has the form

b= AelO%)

0=—gt*/4x

What is the x-wave number?

What is the frequency?

Under what conditions is it sensible to talk about a slowly varying frequency?
At what speed need you move to see a constant frequency and wave number?
Moving at that speed, what is the relation between frequency and wave number?
At what speed do you have to move at to see a constant phase, 6, (i.e., stay on a
particular crest)? Is that speed constant with time?

o a6 o e

Problem Set 2

1. Acoustic waves in their pure form are small, adiabatic perturbations of a medium
of otherwise uniform density and pressure. Assuming that the specific entropy can
be written as s = s(p, p), show that the governing equations of inviscid motion for
disturbances propagating in the x-direction are

au__@_
¢ Po ot ox
p Ju
o%p__, 9% d
o P

9s) dp_ 0s) 9
apJOat dp ), ot

where 0 subscripts denote variables in the uniform, unperturbed state.
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b Then show that p satisfies

2 2
op_20p

o ox?

Identify the sound speed ¢, and discuss the nature of the solutions of the
equation. Do signals disperse? What significance does this have for communica-

tion bv eneech?
DA o

viviL v ~ULile

For a perfect gas like air, p = pRT, and under adiabatic transformation it fol-
lows from the standard thermodynamic relations that (dp / dp),= 1T, y=c,/ c,.

w}'\af ic the sound eneed at room temnberatiire?

AAQL A0 LIS OUKLIL OPLLM QU LUVILL thap il L.

2. Consider the atmospheric pressure field

n s

P, =Bycos(kx—ot)

moving over an infinite body of water of depth D. Find the resulting periodic solu-
tion of the water after all initial transients have decayed.

3. Consider a small circular pond of depth D. Suppose the radius of the pond is R. Find
the free modes of oscillation for the free surface under gravity. Be sure to carefully
state the boundary conditions at the lateral boundary of the basin. Which mode has
the lowest frequency? If D = 3 meters and R is 10 meters, find that frequency. What
is the corresponding frequency in a small water glass (give an estimate)?

(Hint: Find solutions in the form ¢ = F(r) cosh K(z + D) e™%e %, and you may
be surprised to discover which m yields the lowest frequency.)

Probiem Set 3
1. For a plane gravity wave of the form
n =1, cos(kx—wt)

we assumed in the text that we could neglect (a) nonlinearity, (b) friction, (c) com-
pressibility, and (d) planetary rotation.

Check these assumptions and discuss, in each case, what non-dimensional pa-
rameter measures the goodness of the approximation. Make sure you write the
condition in terms of quantities given in terms of 7, k, D and properties of the
fluid such as g and v. Be careful to distinguish the conditions when kD is both large
and small. You may use sensible values of the wavelength, depth, etc. to get an idea
of what limits these parameters set.

2. Consider a rectangular tank of sides L,, L, and depth D filled with homogeneous,
incompressible fluid. Suppose the fluid in this small basin is forced by a surface
pressure of the form

pa =By cos(kx—ot)
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Find the linear, forced solution (note: Since the problem is linear, the response

+tho ncrillating at tha fAarcing franttoncy hiit tho anatial ctriictiire wrill he 1Al
must be on,xuauus at uic J.Ulbllls Irequency, out the oyaual Struciure wiii o€ imodai-

fied by the geometry of the basin). Be sure to carefully pose the boundary condi-
tions on the side walls. What Fourier series in x and y is appropriate for the bound-

avrir fnﬂf]:f;nﬂc?
al y CUILIULILIULLIO.

When will resonance occur?
What is the solution for small o?

What do we mean by small ¢?
In class we derived an energy equation for a layer of fluid supporting gravity waves
‘:ﬂ fl‘\ﬂ ~aon Y Yl'\clﬂ +]ﬁﬂ ﬂﬂﬂ]‘al] ﬂ"ml\(‘ﬂl‘\ﬂ";l‘ MNMYAQQIIYA YATALQ 7T AV DI)AI\ + l‘ﬂ]t‘ ] + i VaSal
111 L11C LAOoVU VvVliUlil Lo atjt}ll(,u aLlllUDt}llEl iv Plcooulc yWwao 4LC1VU. INCUU L1 bal\,ulaLlUII

Problem Set 4

1. Consider the motion of a homogeneous layer of fluid of constant density and of

depth D. At t = 0, the surface of the fluid is flat but there is a vertical velocity such
that

w(x,z=0)=W,(x)
Formulate the initial value problem and find the solution for 7n(x, t) in terms of

a Fourier integral and discuss the solution without reproducing the details of the
derivation of the stationary phase argument.

. Energy in the internal gravity wave frequency range is generated at z = z, with an

x-wave number k and a z-wave number m.

a Find the path of such a packet of energy in the x-z-plane (i.e., find dz/ dx for the
group velocity ray). Estimate the time it would take the packet to reach a depth D
if it starts near the surface and if you assume N is independent of z.

b Discuss how you would do the problem in part (a) if N* = N3 exp(z/ d), where d is
the thermocline scale (about 1000 meters) and the vertical wavelength of the
gravity wave is much less than d.

. Consider a stratified fluid with constant N in an infinitely long channel of width L

with a rigid lid. Suppose that at t =0,

w=wqy(x)sinmtz/D

w; =0

Find the solution of the initial value problem if wy is an even function of x (hint:
Note that with the initial condition as given, a solution for all ¢ > 0 can be found in
the form w = W(x, t) sin(n z/ D)). Qualitatively discuss the solution after you have
obtained it.
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Problem Set 5

1. Consider a plane, internal gravity wave in a fluid with a constant buoyancy fre-
quency. Calculate both the kinetic and potential energies and discuss whether there
is equipartition of the energy (note, it is convenient to choose a coordinate system
so that the wave vector lies in the x-z-plane).

2. The vorticity components along the three coordinate axes are

0

b

ow 9v

0, =———
dy dz

_ou_ow

Y 0z ox
v du

@ = ox _5

Derive, from the linear equa

tions of motion, equations for the rate of change of
these vorticity components. In particular, show how the horizontal gradients of
density produce vorticity and physically interpret your result.

ic1 3 smtarnmal Gratritr arars o . . ;
Calculate the vorticity in a plane internal gr: vity wave when N is constant.

3. Consider the reflection of an internal gravity wave from a sloping surface. Show
that the energy flux normal to the surface of the incident wave is equal to the en-
ergy flux of the reflected wave. We showed in class that the energy densities of the
incident and reflected waves were not equal. Is energy conserved?

nt . PN <N
Problem Set 6

1. Reconsider the normal mode problem for internal waves in the case where N2 < 0, i.e.,
when heavy fluid is initially on top of lighter fluid so that dp,/ dz > 0. Let the fluid be
contained in a layer of depth D between two rigid surfaces and let N? be constant.

a

b
c

What are the frequencies of the normal modes? Are they real? Interpret your
result in terms of growth of the disturbance.

For what wavelengths will the perturbations grow the fastest?

Given the length scale for maximum growth rate, what effect do you think fric-
tion or heat conduction would have in determining the wavelength of maximum
growth?

2. Calculate the normal modes of internal gravity waves for a stratified fluid with N2> 0
when the fluid is contained in a box with sides of length L_ and L, and with depth D.
You may assume the upper boundary is a rigid lid. Find the free modes of oscillation
and their frequencies (hint: The boundary condition on x =0, say, is u=0. That
implies that dp / dx = 0 there for all z and so that (9/0dx) (dp/dz) =0 on x = 0. You
can use that to write the condition in terms of w).
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. Find an expression for the frequency leading to critical angle reflection of internal

waves in terms of the local value of @, N and the slope of the topography.

Calculate the condition on frequency for realistic oceanic values. Do you believe
the Coriolis effect can be ignored for such frequencies? How would you decide?

Problem Set 7

Pmd
.

N

Consider a layer of fluid with a buoyancy frequency N (constant). T

the positive x-direction with constant velocity U. The base of the fluid is rippled such that
h=

h_coskx
m

where h is the (small) departure of the bottom of the fluid from a flat surface. The upper

surface of the fluid is level and rigid at a distance D from the bottom.

a Find the cfpadv solution for the flow (it is nnnrn’rm‘mo\

b Discuss whether resonance can occur and interpret your result.

¢ Calculate the drag on the rippled boundary. Are you surprised (hint: Consider an
explanation in terms of the net radiation of energy and the relation between

work done and drag)?

. A channel, semi-infinite in the x-direction (0 < x < oo) of depth Dand width L(0<y <L),

AR LRV =

contains a stratified fluid of constant buoyancy frequency N. The fluid is contained
between two level, rigid horizontal boundaries. At x = 0, a wave maker continuously
imparts to the fluid a velocity in the x-direction,

u =R, U,cos(nz/D)e'®*

Find the periodic response of the fluid to the periodic forcing. If @is less than N,
carefully describe how you determine the proper condition on the solution for
large x (hint: You may have to apply a radiation condition).

. Consider a plane wave in an unbounded, stratified fluid with constant buoyancy

frequency N and constant Coriolis parameter f. For simplicity, align the x-axis of
the system so that the wave vector has no y-component.

a Is the energy equipartitioned between kinetic and potential ener

particular wavelength for which equipartition occurs?
b In terms of the stream function amplitude, determine the vorticity and the po-
f

.'.
.._.
A
~
Q
-
=

Problem Set 8

1.

Consider the motion of a rotating, homogeneous layer of water of depth D. Let the

layer be infinite in horizontal extent. Suppose that at t = 0, the elevation of the free
urface above its resting value is given by

Wi AGSS KUV S 2RSR222D o YLl Uy

h=h,, -a<y<a

and is zero elsewhere. The velocity at t = 0 is also zero.
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N

[ %)

a Find the equation governing the free surface displacement in the steady geo-

stronhic hnrhnn of the caluition

CLAVPpAUIL PUL LAVIL Ul UIL OVLIULLIVLL.

b Show that at y = +a, both 7 and its first derivative are continuous in the geo-
strophic solution.

Find the steadv solution for the x-velocity.

225 UL oAy i i AVUL il v

(@]

d Using the relatlon between the free surface elevation and the potential vorticity,

find the energy in the steady geostrophic state. Discuss, as a function of the
ratio of the deformation radius to the length in

SEREV VL UL MLAVLALGUIVAL LAWY U Wb aviguil 1

initial energy radiated away by gravity waves.

terval 2a t

Show that for the linearized motion of a layer of homogeneous, rotating fluid, that
the relation between the free surface height and the velocities can be written:
o’ 0 :
2 -
—+ flU=-g—Vn+gfkxVn
ot* ot
(you may find it useful to write the above in component form).

What happens for an oscillation for which the frequency exactly matches the
Coriolis parameter?

th D contained in the region x = 0, —oo < y < oo, Sup-
he velocity in the x-direction is given by

where it is understood that the real part of the above term is relevant.
Find the solution for the free surface height in x > 0. Distinguish the case when
the frequency is greater or less than f.

Problem Set 9

1.

2.

Consider the Kelvin wave in a channel of width L. If the free surface elevation has
the form

n=n,cos(kx— wt)e”f /o

a Find the relative vorticity in the wave and its potential vorticity.
b Calculate the kinetic and potential energy in the wave and check for equipartition.
c Discuss the trajectory of fluid elements as the wave passes.

A Poincaré wave with x-wave number k; (<0) and y wave number ¢; approaches a

wall at x = 0 from the right.

a What angle does the group velocity make with the x-axis?

b What is the frequency of the wave?

c If the amplitude of the free surface height in the incident wave is Aj, find the com-
plex amplitude of the free surface height of the reflected wave and its x- and y-
wave numbers (hint: Be sure to carefully write out the condition u = 0 at the wall).
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3.

a Derive the governing equation for the velocity component, v, in for a layer of

vratating flinid Aaf canctant donth in thoa ~han nne al aga Aicrticend in
lULaLllls 11Ul Ul Lvllolallt uClJLll. 111 LII.C LlialllilTl ao uUloL uodool U 111

its solutions of the form v = v(y)e’(kx‘“").

b From v,how would you find u and 1?2 For what frequencies does this relation fail?

(Hints Ta find 171 in torme nf v talra tha timmoe darivative nf tha »v_an11n+1.nn nf ™o
\llllll.. 1AV 1111\ 4 111 LC11110 Ul ¥y tanU LIV L1I1ILC Jlllvallvye Ul UIv A LLiuaLu.ul VUl 111V

tion and use the continuity equation to eliminate 7),, then use that relation to
find 7 in terms of v)

Problem Set 10

Pk
.

n=m,cos(kx+{y—awt)

a Calculate the kinetic and potential energy in the wave. Check for equipartition.
Is there a particular wavelength for which equipartition obtains if it is not true
generally?

b Calculate ¢, _as a function of k. Where does it have its largest positive and nega-
tive values? Where is it zero? For a wave with a wavelength A =50 km, estimate
the period of the wave for a fluid of depth 4 km (the precise value will depend
on the orientation of the wave vector).

a Show that a single plane Rossby wave is an exact solution of the nonlinear quasi-
geostrophic potential vorticity equation (qgpve) (hint: First calculate the relative
vorticity in the wave and show it is a constant multiple of the stream function).

b Show that an arbitrary sum of plane Rossby waves will be a solution of the non-
linear qgpve if the magnitude of the wave vector of each wave is identical. Note
that the frequencies of the waves will differ. Suppose, instead, you have a set of
waves of varying wavelengths but whose wave vectors are co-linear?

Consider a channel of width L on the beta plane, i.e.,0 < y < L. The bottom is flat. At
x =0, a wave maker produces a zonal velocity of the form

—iat

u=U,cos(my/L)e

a Find the resulting Rossby wave for the region x > 0.
b Do the same for the region x < 0.

Problem Set 11

1. Reconsider the development of the quasi-geostrophic equations when

E—O(l) 2 -0(1) and exl
f D

Derive the governing potential vorticity equation in this limit. Under what cir-
cumstances could the Rossby wave frequency satisfy o << f?



Fig. p.01.
A definition figure for problem 2. The arrow
shows the direction of the incident wave energy
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/

Consider the reflection of a westward propagating Rossby wave. Its group velocity
is directed west-northwestward in a direction that slopes 45° to the northeast from
a latitude circle (see Fig p.01).

IJ,,

a If the frequency is given, how would you determine the wave number vector of

the incident wave?
b Discuss the reﬂectio of the w.

‘.__9 TATL.

e.In what d rection is the reflected group veloc-
ity? What is the wave vector o I tea

wave ?

. Suppose we model the southern boundary y, of the Gulf Stream as a rippling sur-

face propagating eastward. We prescribe that boundary as
y=y,+Yysink(x—ct), Y, <<y,
Now consider the oceanic region south of that boundary (i.e., y <y,).

Describe the resulting possible wave radiation in the region y < 0. Consider both
positive and negative values of c.

Problem Set 12

1.

Consider the dynamics of a Rossby wave triad as discussed in class. From the prop-
erties of the function P(K,, K,,), show that the enstrophy in the triad

is conserved where E; is the energy in each wave component (note: This implies
that '

3
VE K2
Ay J

=1

.

is also conserved).
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N

Consider the reflection of a linear Rossby wave from a western boundary oriented
in the north/south direction (parallel to the y-axis). Calcula the strophy of the
incident and reflected waves. Is the emerging enstrophy flux equa 1 the incident
flux? If not, what is the mechanism for the nonconservation? Discuss your result
and its implications. What is the situation if the reflection occurs at a northern

boundary that lies along a latitude circle?
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