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Preface 

For over twenty years, the Joint Program in Physical Oceanography of MIT and the 
Woods Hole Oceanographic Institution has based its education program on a series of 
core courses in Geophysical Fluid Dynamics and Physical Oceanography. One of the 
central courses in the Core is one on wave theory, tailored to meet the needs of both 
physical oceanography and meteorology students. I have had the pleasure of teaching 
the course for a number of years, and I have particularly enjoyed the response of the 
students to their exposure to the fascination of wave phenomena and theory. 

This book is a reworking of course notes that I have prepared for the students, and I 
was encouraged by their enthusiastic response to the notes to reach a larger audience 
with this material. The emphasis, both in the course and in this text, is twofold: the de- 
velopment of the basic ideas of wave theory and the description of specific types of waves 
of special interest to oceanographers and meteorologists. Throughout the course, each 
wave type is introduced both for its own intrinsic interest and importance and as a ve- 
hicle for illustrating some general concept in the theory of waves. Topics covered range 
from small-scale surface gravity waves to large-scale planetary vorticity waves. Con- 
cepts such as energy transmission, reflection, potential vorticity, the equatorial wave 
guide, and normal modes are introduced one step at a time in the context of specific 
physical phenomena. Many topics associated with steady flows are also illustrated to 
great benefit through a consideration of wave theory and topics such as geostrophic 
adjustment, the transformation of scale under reflection, and wave-mean flow interac- 
tion. These are natural links between the material of this course and theories of steady 
currents in the atmosphere and oceans. 

The subject of wave dynamics is an old one, and so much of the material in this book 
can be found in texts, some of them classical, and well-known papers on certain aspects of 
the subject. It would be hard to claim originality for the standard ideas and concepts, some 
of which, like tidal theory, can be traced back to the nineteenth century. Other more recent 
ideas, such as the asymptotic approach to slowly varying wave theory found in texts such 
as Whitham's or Lighthill's, have been borrowed and employed to illuminate the subject. 
In each case, references at the end of the text for each section indicate the sources that I 
found particularly useful. What I have tried to do in the course and in this text is to weave 
those ideas together in a way that I personally believe makes the subject as accessible as 
possible to first-year graduate students. Indeed, I have tried to retain some of the infor- 
mality in the text of the original notes. The text is composed of twenty one "lectures:' and 
the reader will note from time to time certain questions posed didactically to the student 
and certain challenges to the reader to obtain some results independent1y.A series of prob- 
lem sets, which the students found helpful, are placed at the end of the text. 
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My teaching and research at the Woods Hole Oceanographic Institution has been 
generously supported by the Henry L. and Grace Doherty chair in Physical Oceanog- 
raphy for which I am delighted to express my appreciation. I also am happy to express 
my gratitude for years of support from the National Science Foundation, which rec- 
ognizes the inextricably linked character of research and teaching. 

The waves course has been fun to teach. The fascination of the material seems to 
naturally engage the curiosity of the students and it is to them, collectively, that this 
book is dedicated. 

Joseph Pedlosky 

Woods Hole 
May 05,2003 
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Lecture 1 

Introduction 

A course on wave motions for oceanographers and meteorologists has (at least) two 
purposes. 

The first is to discuss the important types of waves that occur in the atmosphere 
and oceans, in order to understand their properties, behavior, and how to include them 
in our overall picture of the ocean and atmosphere. There are a large number of such 
waves, each with different physics, and it will be impossible to discuss all of them ex- 
haus t ively. 

At the same time, a second purpose of the course is to develop the theory and con- 
cepts of waves themselves. What are waves? What does it mean for a wave to move? 
What does the wave do to the medium in which it propagates, and vice-versa? How do 
waves (if they do) interact with one another? How do they arise? All of these are good 
and fundamental questions. 

In order to deal with both of these goals, the course will describe a series of differ- 
ent waves and use each wave type to describe a different aspect of basic wave theory. 
It will then be up to you to form the necessary connections and generalize the ideas to 
all waves, at least on a heuristic basis. This will require you to sometimes retroactively 
apply some new ideas developed in the discussion of wave type B, for example, back 
to the application of wave type A discussed previously in the course. 

In general, the physical ingredients will be stratification and rotation. But first, what 
is a wave? 

There is no definition of a wave that is simple and general enough to be useful, but 
in a rough way we can think of a wave as: 

A moving signal, typically moving at a rate distinct from the motion of the 
medium. 

A good example is the "wave" in a sports stadium. The pattern of the wave moves 
rapidly around the park. The signal consists in the cooperative motion of individuals. 
The signal moves a much greater distance than the motion of any individual. In fact, 
while each person moves only up and down, the signal moves laterally (until it gets to 
the costly box seats where it frequently dissipates). 

Similarly in a fluid whose signal could be an acoustic pressure pulse, the surface 
elevation of the ocean in a gravity wave, the rippling of the 500 mb surface in the tro- 
posphere due to a cyclone wave, or the distortion of the deep isopycnals in the ther- 
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mocline due to internal gravity waves, the wave moves faster and further than the in- 
dividual fluid elements. Thus, usually if 

u = the characteristic velocity of the fluid element in the wave, and 
c = the signal speed of the wave, 

We shall see that this is also equivalent to the condition for the linearization of the 
mathematical description of the wave physics. 

Wave Kinematics 

Before discussing wave physics, it is useful to establish some basic ideas and notational 
definitions about the kinematics of waves. A more complete discussion can be found 
in the excellent texts by Lighthill (1975) and Whitham (1974). 

For simple systems and for small amplitude waves (i.e., when we linearize) we of- 
ten can find solutions to the equations of motion in the form of a plane wave. This 
usually requires the medium to be, at least locally on the scale of the wave, homoge- 
neous. If $(xi,t) is a field variable such as pressure, 

$(?,t) = $(xi,t) = ReAe i(l?.i-of) 

where 
A = the wave amplitude (complex so it includes a constant phase factor), 
K = the wave vector, 
w = the wave frequency, and 
Re implies that the real part of the following expression is taken. 

We can define the variable phase of the wave 8 as 

where the summation convention is implied in the second form, that is, 

maxdim 
kixi o c k j x j  

In the simplest case, A, w and kj are constants. 
This begs the question of why we should ever observe a disturbance with a single 

K = l? and w. To understand that we must do more work later on. But standing on a 
beach and looking at the swell approaching it appears often to be the first order de- 
scription of the wave field and a naturally simple case. 

Of course, by Fourier's theorem (look it up now) we can represent any shape by a 
superposition of such plane waves. 

The function $we have considered above is constant on the surfaces (planes, hence 
the name) on which 8 is constant, i.e., 

kixi - wt = constant 
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Fig. 1 .l. Schematic of wave crest Fig. 1.2. The plane wave showing the crests and 
wave vector and wavelength 

In two dimensions, for example, these will be the lines 

(We will use the notation regularly, k, = k, k, = 1, k, = m, in Cartesian coordinates). 
The directions of the lines of constant phase are given by the normal to those lines 

of constant 8 (Fig. 1.1, Fig. 1.2), i.e., 

or equivalently 

Define 

i.e., the magnitude of the wave vector. Then 

where s is the scalar distance perpendicular to the line of constant phase, for example 
the crests where 4 is a maximum. 

The plane wave is a spatially periodic function so that ~ ( K s )  = $(K[s + A]) where 
Ka = 2n, since 

Thus, 
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0 
Fig. 1.3. 0 1 2 3 4 5 6 7 
The wavelength of a plane wave 4 A b 

wave vector 8 = 2 n  

is the wavelength. It is the distance along the wave vector between two points of the 
same phase (Fig. 1.3). 

At anyfixed position, the rate of change of the phase with time is given by 

o is therefore the rate of decrease of phase (note: as crests arrive, moving parallel to 
the wave vector K, the phase will decrease at a fixed point (see Fig. 1.4). 

How long do we have to wait until the same phase appears? The shortest wait occurs 
when a time T  has passed such that o T  = 2n. The time T  is called the wave period, 
and 

What is the speed of movement of the line of constant phase 

Note that as t increases, s must increase to keep the phase constant (Fig. 1.5, 1.6). 
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Fig. 1.5. 
The movement with time of the 
line of constant phase in the I - -- 

direction of the wave vector x 

Fig. 1.6. 
A plane wave in perspective view 

Be sure you understand the reason for the appearance of the minus sign: 

{At constant 8, d 8  = 0 = Kds - wdt, so that ds 1 dt  = wl K) 

We define the phase speed to be the speed of propagation of phase in the direction 
of the wave vector. 

phase speed: c = w l  K 

Note that phase speed is not a vector. For example, in two dimensions the phase 
speed in the x-direction would be defined such that at fixed y, 

d e = O = k d x -  wdt or (1.16a) 
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Note that if the phase speed were a vector directed in the direction of K, its x-com- 
ponent would be 

Therefore, it is clear that the phase speed does not act like a vector, and this is a 
clue that this speed, by which the pattern of the wave propagates, may have less physi- 
cal meaning that we would intuitively want to give to it. 

Note that cx is the speed with which the intersection of the moving phase line with 
the x-axis moves along the x-axis (Fig. 1.7): 

and as a goes to n:/ 2, cx becomes infinitely large! This makes us suspicious that the 
phase may not be the messenger of physical entities like momentum and energy. 

In an interval length s perpendicular to the surface of constant phase, the increase 
in phase divided by 2n: gives us the number of crests in the interval. Thus, Fig. 1.8. 

Fig. 1.7. 
The small arrow shows the intersection point of b 
the line of constant phase and the x-axis 1 x 

-0.2 

KS I 27c = # of crests -,, 

-1 .o 
0 5 10 15 20 25 30 35 

Fig. 1.8. A plane wave and the number of crests along the coordinate s 
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Thus also, the increase in phase along the wave vector is 

The more fundamental definitions have already been given; namely, 

The former gives the spatial increase of phase, while the latter gives the temporal 
(decrease) of phase. 

In all physical wave problems, the dynamics will impose, as we shall see, a relation 
between the wave vector and the frequency. This relation is called the d i s p e r s i o n  
re 1 a t i o  n (for reasons that will be made more clear later). The form of the dispersion 
relation can be written as: 

Note that each wave vector has its own frequency. Often the frequency depends only 
on the magnitude of the wave vector, K, rather than its orientation, but this is not al- 
ways the case. Up to now, the wave vector, the frequency, the phase speed and the dis- 
persion relation have all been considered constants, i.e., independent of space and time. 





Lecture 2 

Kinematic Generalization 

Suppose the medium is not homogeneous. For example, gravity waves impinging on a 
beach see of varying depth as the waves run up the beach, acoustic waves see fluid of 
varying pressure and temperature as they propagate vertically, etc. Then a pure plane 
wave in which all attributes of the wave are constant in space (and time) will not be a 
proper description of the wave field. Nevertheless, if the changes in the background 
occur on scales that are long and slow compared to the wavelength and period of the 
wave, a plane wave representation may be locally appropriate (Fig. 2.1). Even in a ho- 
mogeneous medium, the wave might change its length if the wave is a superposition 
of plane waves (as we shall see later). 

4 LM 

Fig. 2.1. Schematic of a slowly varying wave 
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Thus, locally the wave can still look like a plane wave if A/ L, << 1. In that case, we 
might expect the wave to be described by the form: 

$(Z,t) = A(x,t)e ' 8 ( x ~ t )  (the real part of the expression is taken for granted), (2.1) 

where A varies on the scale L, while the phase varies on the scale A. Thus, 

so that 

We define (guided by our experience with the plane wave): 

i?= V 9  local spatial increase of phase (2.4a) 

- ae m=- local increase of phase with time (2.4b) 
a t  

Since the wave vector is defined as the gradient of the scalar phase, it follows auto- 
matically that V x i? = 0. 

Consider the increase of phase on the curve C, from point A to point B in Fig. 2.2: 

Fig. 2.2. 
Counting crests on two paths 
AC,B and AC,B 8 = constant 
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Now consider the same increase calculated on curve C,: 

The difference between them is 

Here we have used Stokes theorem relating the line integral of the tangent compo- 
nent of K with the area integral of its curl over the area bounded by the closed con- 
tour composed of the sum of the two curves C, and C,. Since the curl is zero, the two 
calculations for the increase of phase must be independent of the curve used to do the 
calculation. 

Note that since 

it follows by definition that 

in those cases where the wave vector and the wave frequency are slowly varying 
functions of space and time (i.e., where it is sensible to define wavelength and frequency). 

To better understand the consequences of the above equation, consider the fixed 
line element AB in Fig. 2.3. 

B 

Fig. 2.3. 
Conservation of crests along 
the line AB A 
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Integrate the above conservation equation along the line element from A to B: 

Using our previous definitions, in particular that Ks l2x  is the number of crests in 
the interval s, it follows from the above that 

That is to say, the rate of change of the number of crests in the interval (A,B) is equal 
to the rate of inflow of crests at point A minus the outflow of crests at point B, since 
the frequency (divided by 2n) is equal to the number of crests crossing a point at each 
moment. E.g., 

w(A) = rate of decrease of phase at point A (see Fig. 2.4) 

Phase increasing in space 

Fig. 2.4. The movement of the phase through the interval AB 
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We may think of this as a statement of the conservation of wave crests. Namely, 
the number of wave crests in a smoothly varying function @ as given above does not 
change. The number in any local region increases or decreases solely due to the ar- 
rival of preexisting crests, not to the creation or destruction of existing crests. 

Now, let's suppose that we still have a local dispersion relation between frequency 
and wave number but that the relationship slowly changes on scales that are long com- 
pared with a wavelength or period due to changes, perhaps, in the nature of the me- 
dium in which the wave is embedded. 

In that case, the natural generalization of the dispersion relation is 

where the wave vector components and the frequency may themselves be functions 
of space and time (slowly), and the dispersion relation is explicitly dependent on space 
and time. 

Thus, 

am - an) a n a k j  +-- 

where the first term on the right-hand side is due to the explicit dependence of the 
dispersion relation on time, as might happen if the temperature of a region through 
which an acoustic wave were traveling were increasing with time. 

We define the group velocity by the formula for each of its Cartesian components: 

for the component of the group velocity in the jth direction, or 

It follows from a fundamental theorem in vector analysis that since the phase 
is a scalar and the gradient operator is a vector, the group velocity is a true vector 
(distinct from the phase speed). That is, it follows the law of vector decomposi- 
tion. 

Since, by our earlier definitions 

we thus obtain 
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It therefore follows that 

aw , aa - + cg - V o  = - e explicit derivative with time 
at at 

Again, by similarly using 

it follows that 

Since the wave vector has no curl, it follows that 

so the above equation can be rewritten: 

aE - + (Zg .V)Z = -VR explicit dependence on space (2.20) 
at 

Note that the sum of derivatives on the left in the equations for the rate of change 
of wave vector and frequency are the rate of change for an observer moving with the 
group velocity. 

so, 

1. If the medium is independent of time, + o propagates with the group velocity; 
2. If the medium is independent of space, + K propagates with the group velocity. 

If both ( I )  and (2) are true, both frequency and wave number propagate with the 
group velocity: 

This is a vector, and we see here that real wave attributes propagate with this velocity. If 
the dispersion relation is a function of space and/or time, the above equations tell us how 
the frequency and wave number change as we move with the group velocity following a 
wave. Further discussion can be found in Bretherton (1971) and Pedlosky (1987). 
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Example 

We will soon see that free surface gravity waves (short enough so that rotation is 
unimportant but long enough so that the wavelength is large) compared to the depth 
have a dispersion relation: 

where His the depth of the fluid and k is the wave number for this one-dimensional 
example (Fig. 2.5). 

The phase speed and group velocity are equal in this case: 

If the depth is a function of x, then following a signal, since the dispersion rela- 
tion is independent of time, the frequency will be constant for an observer moving 
with the velocity cg= c = ( g ~ ) l / ~ .  For such an observer, with frequency constant, 
k = const. I H1I2, which implies that the wave will grow shorter (larger k) as the wave 
enters shallow water. (It may become so short that it might break). Note that the 
observer, following a particular frequency moving with the group speed will pro- 
ceed at a rate: 

For example, if H(x) is of the form H = Ho(l - x l  x,) where x is measured posi- 
tive shoreward from some offshore position a distance x, from the waterline (see 
Fig. 2.5), the signal corresponding to a given frequency will proceed onshore such 
that at a point x after an elapsed time t, the relationship between the elapsed time 
and its onshore progress is 

Fig. 2.5. 
Water wave running up a 
sloped beach 

The above kinematic discussion doesn't tell us how the amplitude of the wave propa- 
gates or, equivalently, how the energy in the wave moves. In some simple cases that 
are general enough to be of interest, we can actually describe how the amplitude and 
hence energy moves. 
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Consider the case of a homogeneous medium in which the governing equation for 
the wave function @ is of the form 

where I3 is a polynomial in the partial derivatives with respect to space and time. A 
simple example would be the Rossby wave equation: 

so that in this case, 

i.e., the polynomial in the partial derivatives are in respect of x , y  and t .  
Suppose we look for an approximate solution of the form 

Fig. 2.6. A wave packet. The wave has wavelength ;1 while its envelope has a scale L, 
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  here A, k and w are slowly varying functions of time, i.e., where the solution has the 
form of a one-dimensional wave packet (see Fig. 2.6), then 

= &A+- e , etc. ( 2)  i6 

Expanding the polynomial using the fact that the time and space derivatives of A 
are small compared to o and k, 

n(-iw, ik) + an aA an aA -+--=o 
a(-iw) a t  a(ik) ax 

The dispersion relation for plane waves comes from the disappearance of the first 
term (which is the dominant one), namely 

TI(-icu,ik) = 0 +Linear dispersion relation (2.29) 

In the case above, this yields o = -PI k. 
When this dispersion relation is satisfied, the remaining term yields the condition: 

where the derivatives of TI in the equation occur when TI is evaluated as a function of 
frequency and wave number as in Eq. 2.29. 

Since 

it follows that 

Thus, the amplitude (and we can suppose) energy will propagate with the group 
velocity and not the phase speed. Where the envelope (that is A) of the wave goes, 
that is where the energy is. There is clearly no energy outside the wave envelope. 
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The reader should calculate the group velocity for this simple case of one-dimensi- 
onal Rossby waves to see that the group and phase velocities are not the same. Similarly, 
the argument presented here can be extended to any number of dimensions (try it). 

It is also clear that one might be able to use similar ideas for inhomogeneous media. 
Once again we see here the physical primacy of the group velocity over the phase 

speed for the propagation of physical attributes of the wave. 
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Equations of Motion; Surface Gravity Waves 

For a rotating stratified fluid, the general equations of motion can be written as: 

1. Momentum equation: 

p - + 2Q x ii = -Vp + ,uv2ii + d ( V V  ii) (if ,u constant, K is second viscosity) (3.1) [: I 
2. Mass conservation: 

aP -+V.(pti)=O ; and 
at 

3. Thermodynamic energy equation: 

where s is specific entropy and H is the nonreversible heat addition. This can be re- 
written, assuming that s is a thermodynamic function of p and p, 

Here, T is temperature, cp is the specific heat at constant pressure, a is the coeffi- 
cient of thermal expansion, and @is the dissipation function, i.e., the frictional trans- 
formation of mechanical to thermal energy. If zii is the stress tensor and eii is the rate 
of the strain tensor, @ = zijeg (sums implied). Note that 

For a perfect gas with a state equation p = pRT, the thermodynamic equation is 
usually written in terms of the potential temperature: 
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. 

so that the thermodynamic equation becomes 

while for an incompressible liquid we can approximate the thermodynamic equation with 

Here we have used the approximate state equation p = po(l - a(T - To)) to relate 
temperature in the thermodynamic equation to density. Be sure to note that when we 
make the approximation of incompressibility in the mass equation (V 6 = 0), this does 
not imply that dp /  dt = 0 is the governing equation for density. Only ifthe dissipation H 
can be neglected will that be true. That is a separate physical statement about the adia- 
batic nature of the motion quite apart from the issue of compressibility. For a com- 
pressible fluid, we would have, instead of dp /  dt = 0, the statement ds / dt = 0. For a 
detailed discussion of the formulation of these equations, especially the thermody- 
namics, see Batchelor (1967). 

First Wave Example: Surface Gravity Waves 

Perhaps the most familiar of waves in the ocean are the waves we see on the surface, either 
from a ship or from the beach (or from the air). These are waves on the interface between 
the water and the air (Fig. 3.1). The latter is so light compared with the former that we will 
approximate the air as having zero density to eliminate any dynamical interaction with 
the air to begin with. Theories of wave generation must include that coupling. 

Consider a layer of liquid of uniform density and uniform depth. We suppose the 
scale of the motion is small enough to be able to ignore the Earth's rotation and the 
motion is small enough to be able to linearize this motion. In all such cases, we need 
to ask ourselves whether these statements are sensible, and if so, for what range of 
parameters? That is, if we ignore rotation, is there a limit, for example on the size of 
the wave for which that is appropriate? We might already know, for example, that the 
tides, which are a gravity wave response to the sun and the moon, do feel the effects of 
the Earth's rotation, but, of course, they are of planetary scale. 

1. Can we ignore rotation, friction and nonlinearity? 
- To ignore rotation, compare a / at  with R + this implies that we need o >> R. 
- To ignore friction, compare a /  a t  with pk2,where k is a typical value of wave- 

number + o >> pk2. 

Fig. 3.1. 
The homogeneous layer of p = constant 
fluid supporting surface 
gravity waves 
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- To ignore nonlinearity, compare a 1 at with respect to ii . V - o >> uk or c >> u e: 
this is the condition that the disturbance be wave-like, i.e., that the signal is 
carried by the wave rather than the advective motion of the fluid. 

2. Can we treat the fluid as incompressible? 
Assume we can linearize. Suppose the motion is adiabatic. In general then, we 

have 

with the linearization 

Thus, 

From the theory of acoustics we know (or we can easily find out) that the speed of 
sound in any medium is in fact given by the adiabatic compressibility of the medium. 
That implies that if c, is the speed of sound in a fluid, 

(One of the few scientific mistakes Newton made was to imagine that the speed of 
sound was this derivative at constant temperature and not entropy). 

So we have the estimate for the relation between a perturbation in the density and 
the perturbation of the pressure: 

We can, on the other hand, estimate the magnitude of the pressure fluctuation from 
the horizontal momentum equation; if 

v ~ = o [ ~ $ )  then 

from which it follows from the relation between the pressure and density disturbances: 
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Thus, 

We should compare this term, which is the estimate of the size of the local time 
derivative in the mass conservation equation with a typical term in the remaining 
combination of terms, namely, V ii = O(ku).  Their ratio is thus 

Thus, as long as the phase speed of the wave is small compared to the speed of sound, 
we can approximate the wave motion occurring as in an incompressible fluid for 
which the equation for mass conservation reduces to the condition 

Note again that this does not by itself imply that dp/  dt = 0. A separate consider- 
ation of the thermodynamics and the strength of the dissipation is required for that. 

We now have a series of parameter tests we can make after the fact to check to see 
whether the approximations of 

1. linear motion 
2. inviscid motion 
3. incompressible motion 
4. nonrotating dynamics 

will be valid. 
Assuming that these conditions will be met by the waves under consideration here, 

the equations of motion reduce to the much simpler set: 

dii A 

p -= - v p  - p g z  
d t 

where 2 is a unit vector in the direction antiparallel to the direction of the local gravi- 
tation. 

We could have just waved our hands (perhaps appropriately for a course on waves) 
and written down these traditional approximate equations. However, it is impor- 
tant for each new investigation of a wave type to carefully consider a priori the condi- 
tions required to achieve the approximate dynamics used for the physical description 
of the wave to make sure that our physical system is no more complicated than 
it need be, while at the same time, it should be consistent with the underlying physics 
of the fluid. 
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The curl of our momentum equation (recall that we are considering a fluid of con- 
stant density; the student is invited to use the thermodynamic equation to find the 
condition for the validity of that approximation) yields 

So, if the vorticity is zero initially or at any instant (as it would be for an oscillatory 
motion for which each field goes through zero periodically), it follows that it remains 
zero for all time. If the curl of the velocity is zero, it follows from a fundamental fact 
of vector calculus that the velocity can be represented by a velocity potential, @, 

Note that only the spatial gradients of the velocity potential carry physical infor- 
mation. Any arbitrary function of time can be added to @without changing the veloc- 
ity field. 

Since the motion is incompressible, 

The equation of motion within the fluid thus reduces to the elliptic problem gov- 
erned by Laplace's equation: 

This is an amazing simplification, and it should be a little disconcerting, because 
we are looking to describe a wave motion. Laplace's equation, by itself, is certainly not 
a wave equation. It describes among other things the electrical potential of static 
charges as well as certain static gravitational fields but, alone, no dynamical wave 
mechanism. The resolution of this seeming paradox is of course connected to the fact 
that we have not yet considered the boundary conditions for our problem. There is no 
more illuminating example of the importance of boundary conditions in the specifi- 
cation of the problem than this case of surface gravity waves. All the dynamics are in 
the boundary conditions. The internal equation, i.e., Laplace's equation merely relates 
the horizontal and vertical structure of the motion field. 

Boundary Conditions 

The obvious boundary condition at the lower horizontal surface is that the normal 
velocity vanishes there, i.e., w = 0 at z = -D, or 

The boundary conditions at the upper surface are significantly more interesting. Let's 
call the departure of the free surface from its level "rest position" q(x,y, t )  (Fig. 3.2), 
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Fig. 3.2. 
A definition figure for variables 
describing the motion in the z=-D 
surface gravity wave 

which must be small (this will presently be made more explicit). Thus, we consider 
the rippled free surface to only be slightly in departure from its rest state. 

At the free surface, the physical boundary conditions are 

1. the dynamic condition: 

and 
2. the kinematic condition: 

We must now write these conditions completely in terms of the velocity potential, @. 
The linearized momentum equation is 

The integral of the last equation implies that 

where F(t) is an arbitrary function only of time. We can always add a function that is 
only of time to the velocity potential without changing the physical meaning of that 
potential. Let's imagine that we have added such an additional term such that its de- 
rivative with respect to time is equal to F(t). This allows us to write this linearized form 
of Bernoulli's equation everywhere in the fluid in the form: 
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NOW let's apply this equation to the upper surface where z = q(x,y,t) andp = pa(x,y,t). 
Thus, 

A derivative of this equation with respect to time yields, using the kinematic con- 
dition on the upper surface, 

Note that each term in this boundary condition is linear. 
The condition is applied at the unknown location z = q. Indeed, the position of the 

free surface is, after all, one of the principal unknowns of the problem that we are try- 
ing to predict. For the general nonlinear problem, this unknown location of the bound- 
ary, at which the important boundary conditions are applied, is one of the most diffi- 
cult aspects of the problem. However, we are considering only the linear small ampli- 
tude problem, and it turns out that we can apply the boundary condition at the original 
position of the interface, i.e., at z = 0. To see this take any term on the left-hand side of 
the above boundary condition, generically call it G(x,y,q) and expand it around q = 0. 

Thus, 

G(x, y, 7 )  = G(x, y,O) + 77- + higher order terms :lz=o 
The first term on the right-hand side of the above equation is of the order of the 

amplitude of the motion, since G is one of the dynamic variables. Note that all the 
dynamical variables are linear in the size of the amplitude of the motion. 

The second term is of the order of G times the free surface height and is therefore 
of the order of the amplitude squared. To be consistent with our linearization, such 
quadratic terms must be neglected. That implies that each term in the boundary con- 
dition stated above can be applied at z = 0; thus, we have 

as the boundary condition on the upper surface, while again at the lower surface, 

Note that the upper boundary condition contains two time derivatives. This is the 
mathematical source of the wave motion we will be describing. Its physical source is 
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the interplay between the gravitational force at the upper boundary providing a re- 
storing force and the relation between the free surface elevation and the vertical ve- 
locity at the upper surface. 

We must also specify boundary conditions on the lateral boundaries. The simplest 
problem we will consider will be that of a wave in an infinitely broad layer of fluid. 
This is clearly an approximation, and we imagine that such a description will be valid 
until the waves to be found propagate and interact with the inevitable lateral bound- 
aries of the fluid. Until that time, we may provisionally just insist that the solutions 
remain finite as x andy go to infinity. Useful references for formulation of the gravity 
wave problem can be found in Kundu (1990), Lamb (1945) and Stoker (1957). 

Plane Wave Solutions for Surface Gravity Waves: Free Waves (pa= 0) 

In Cartesian coordinates, Laplace's equation can be written as 

We clearly can't have a three-dimensional plane wave because 

I. the operator (the Laplacian) won't allow it, since an attempt to find such a plane 
wave would lead to the condition 

which is impossible if all three components of the wave vector are real; 
2. a plane wave won't satisfy the boundary condition a#/ az = 0 at z = -D; 
3. the boundary conditions of finiteness as x and y get large imply that the horizontal 

components of the wave number are real, and thus the vertical component, k3 or m, 
must be purely imaginary. 

We can find solutions, however, that are periodic in x, y, and t of the form 

where again, the real part of the above equation is meant. Substitution into Laplace's 
equation yields the ordinary differential equation for R(z), 

Note that all Laplace's equation will do is determine the structure with depth of 
the plane wave solution in x and y. 

The solution for R that satisfies the kinematic boundary condition at z = -D, i.e., 
that dR / dz = 0, is 
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When this form is substituted into the boundary condition at z = 0, we obtain as a 
condition for a nonzero solution for A 

-dcosh (KD) + gKsinh (KD) = 0 (3.35) 

w = &,/gK tanh KD (3.36) 

and 

tanh KD 112 
W 

c=-=&(~D)"'[ K KD ] 
There are several important things to note about these results. 

1. For each wave vector amplitude K, there are two waves propagating in opposite 
directions, parallel and antiparallel to the wave vector. The frequency and phase 
speed depend only on the wavelength, i.e., K and not on the orientation of the wave 
vector. 

2. The phase speed is difierent for different wavelengths in distinction to light waves 
or sound waves. A pattern made out of a superposition of plane waves of different 
wavelengths will have each component move at a different speed and hence the 
pattern will disperse, which is why the relation between frequency and wave num- 
ber is called the dispersion relation. 

3. There are some important limiting cases to consider. 

The maximum phase speed occurs when the wavelength (inverse to K) is long com- 
pared to the depth, i.e., when KD << 1. Then the phase speed approaches (g~)1 i2  and is 
independent of wavelength in that limit. In that case, when the phase speed is inde- 
pendent of wavelength, the wave is called nondispersive. In that long wave limit or 
for shallow water waves, w = K(~D)'". 

On the other hand, when the wavelength is short compared with the depth, i.e., when 
KD >> 1, the dispersion relation becomes independent of depth and w = (gKI1", while 
C = (g l  K)'". These deepwater waves are clearly dispersive. We will have to investi- 
gate why the frequency and phase speed become independent of D in this limit. 

Now that we have the phase speed, we can check our assumption of incompress- 
ibility, that is, is c << c,. Since the maximum phase speed is given by the shallow water 
limit for that condition, it will be satisfied if 
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For water, the sound speed is of the order of 1400 m s-'. That places a condition 
on the depth such that for the incompressibility condition to be valid, we require 
D << 200 km (pretty safe for oceanography, at least on Earth). 

The nature of the dispersion relation is evident in Fig. 3.3 showing the frequency, 
phase speed and group velocity as a function of wave number. 

The dispersive nature of the waves can be contrasted to that of the standard "wave 
equation" (which we will see in this course captures only a small fraction of wave phys- 
ics in oceanography and meteorology). For light waves in a vacuum, sound waves and 
waves on a thin string, the governing equation in one dimension is of the form 

whose general solution is known to be 

cp=  F(x + at) + G(x - at) (3.39) 

consisting of two pulses traveling with the constant phase speeds f a .  The forms F 
and G are determined by initial conditions after which the pulses travel without fur- 

O, c and c, versus kD 
3.5 I I I I I I I I I 

kD 

Fig. 3.3. Curves of frequency, phase speed and group velocity for surface gravity waves 
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ther change of shape. These are the classic nondispersive solutions for waves. In our 
case, the waves are highly dispersive and the evolution of the wave shape with time 
and unraveling the subsequent propagation of properties in the waves is a problem of 
great subtlety and interest. It will eventually, as we might imagine from our earlier 
discussion, come to depend on the character of the group velocity. For gravity waves, 
with the dispersion relation quoted above 

Thus, since the frequency is a function only of K, the group velocity is parallel to 
the wave vector and hence parallel to the direction of phase propagation. 

With d = gK tanh KD, 

and 

Thus the group velocity coincides with the phase speed for long waves (KD << I), 
while for short waves the group velocity is 112 the phase speed (see Fig. 3.4). 

Wave packet 

Fig. 3.4. 
A wave packet propagating 
with the group velocity carries 
a plane wave with crest moving 
with the phase speed 
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Fig. 3.5. a The group velocity as a function of wave number. b The ratio of the group velocity to 
phase speed for surface gravity waves as a function of wave number scaled with fluid depth, i.e., KD 
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Suppose we have a wave packet carrying a short wave, KD << 1. 
The amplitude and Kwill move with the group velocity, while individual crests will 

move with the phase speed. Since cg is half the phase speed for short waves, we will 
see individual crests appearing at the rear of the packet and travelling through the 
moving packet to disappear at the leading edge of the packet. Where do the crests go? 
Well, they are only a feature of the pattern, and they appear and disappear like smiles. 
~t is the wave envelope moving with the group velocity that has physical content. 

The ratio of the group velocity to the phase speed is shown in Fig. 3.5b as a func- 
tion of wave number. They are equal for the longest waves, while for short waves the 
group velocity is halfthe phase speed. 





Lecture 4 

Fields of Motion in Gravity Waves and Energy 

Now that we have the dispersion relation, i.e., the dependence of frequency on wave 
number (we define the magnitude, K, of the wave vector K to be the wave number), 
we can ask what the fluid motion is in the wave field. 

Our plane wave solution has been written in the form: 

= Aei(f i - o t )  cosh K(z + D) (4.1) 

Using the boundary condition at z = 0, 

since pa has been taken to be zero for these free waves. We can therefore calculate the 
free surface elevation from Eq. 4.1 and Eq. 4.2, 

cosh KD 

and it is understood the real part of each expression is to be taken. 
A is an arbitrary amplitude, and it will be useful to consider the amplitude of 

the disturbance in terms of the amplitude of the free surface perturbation. So, let's 
define 

and take it to be real (this only defines the zero of the spatial phase, the point where 
the free surface elevation is a maximum). This yields 

w cosh K(z + D) 
'=" F sinhKD 

sin(K.2 - m) 

From the velocity potential, we can calculate each velocity component, since ii = V$ 
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From the above formula for 4, we calculate the horizontal velocity vector and the 
vertical component of velocity: 

coshK(z + D) 
sinh KD 

sinhK(z+D) 377 sinhK(z+D) 
w =qowsin( i . i -ut)  - - 

sinh KD at sinhKD 

From the Bernoulli equation 

we can calculate the pressure field in the wave. (Note that part of the pressure field has 
nothing to do with the wave. That is the first term on the right-hand side; it is present even 
in the ab~ence of the disturbance). From the result from the velocity potential we obtain 

1 

cosh K(z + D) p =-pgz +pgtl, cos(k -2-wt) 
cosh KD 

cosh KD 

There are some very important qualitative features to note before moving on. 

1. The horizontal velocity, iiH, is in the direction of the wave vector and hence in the 
direction of the propagation of the wave. This is not surprising for anyone who has 
lolled in the surf and felt himself move back and forth in the direction of a wave as 
it has passed by; 

2. Each perturbation variable is proportional to the amplitude of the free surface el- 
evation. That is, in this linear problem, the amplitude of every aspect of the motion 
is proportional to the free surface elevation. This implies that products of any two 
motion variables must be quadratic in the surface elevation (this is what we used to 
linearize the surface boundary condition); 

3. In the limit of deep water or equivalently short waves for which KD >> 1, the as- 
ymptotic forms of the hyperbolic functions imply that 

coshK(z+ D) e K(z+D) - - =eKz, Z < O  
sinh KD e KD 

sinhK(z+ D) e K(z+ D) 
- - = e  Kz 

sinh KD eKD 

so that all the dynamical variables decrease exponentially from the free surface. 
The scale of decrease, as imposed by Laplace's equation, is just the wavelength. 
Hence, for waves whose wavelength is short compared to the depth, the motion 



Lecture 4 . Fields of Motion in Gravity Waves and Energy 35 

decays long before the bottom is reached. The wave field then does not sense the 
presence of the bottom. This is why the frequencylwave number relation becomes 
independent of D as KD gets large. It's a good rule of thumb to remember for grav- 
ity waves; the depth of influence of the wave is its wavelength. 

4. For very long waves, or equivalently, for shallow water, such that KD 0, the 
limiting form of the hyperbolic functions yields 

In this limit, the horizontal velocity is independent of depth. Its magnitude is the ratio 
of the free surface elevation to the depth multiplied by the phase speed. Thus, as long as 
q 1 D << I, it will follow that ZH/ c << 1, which is the condition for linearization. The verti- 
cal velocity is proportional to the rate of displacement of the free surface, linearly dimin- 
ishing to zero at the bottom, and the pressure field is in hydrostatic balance in this limit. 

It is left to the student to show that in the short wave limit, KD << 1, the condition 
for linearization, u c< c, leads directly to the condition qoK << 1. That is, the free sur- 
face displacement divided by the wavelength must be small, i.e. the slope of the free 
surface must be small. 

Energy and Energy Propagation 

The kinetic energy in a gravity wave per unit volume is simply 

where the magnitude of the velocity is denoted by the vertical bars. ~ntegrated over 
depth we have the kinetic energy per unit horizontal area, 

O Plii12 KE = 1 dz- 

The potential energy per unit horizontal area is 

Note that the term proportional to D~ in the PE is an irrelevant constant. Note, too, 
that we have integrated to the free surface elevation in the expression for PE but only 
to z = 0 in the expression for KE. The reason for this is that we are calculating the en- 
ergy to the second order in the wave amplitude, and to do this for the PE we must in- 
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clude the free surface displacement. If we were to extend the integral for KE to include q 
in the upper limit, the correction to the expression for KE would be of O(u2q), i.e., of 
third order in the small wave amplitude and hence negligible. So the above integrals 
as stated are each of order amplitude squared. 

Now let's try to develop an equation for the propagation of wave energy. We start 
from the governing equation, which is Laplace's equation for the velocity potential. 
An excellent discussion of wave energy and its propagation can also be found in Kundu 
(1990) and Stoker (1957). 

We multiply that equation by the time derivative of the potential, viz. 

We recognize that the first term is (minus) the rate of change of kinetic energy per 
unit volume. 

Let's now integrate the above equation over the depth of the fluid. 

Here the symbol VH is the portion of the divergence in the horizontal plane, i.e., 

where Q is any vector. 
The last term in the equation above can be integrated, and the resulting terms evalu- 

ated using the boundary conditions. Since a$/  az = 0 at z = -D, while 

we obtain 
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That is, the rate of change, locally, of the total energy per unit horizontal area is bal- 
anced by the horizontal divergence of the f lux  of wave energy, 3, a horizontal vector. 

This horizontal flux can be easily interpreted physically, since 

and ( p  + pgz) = p', which is the part of the pressure field due to the wave activity. There- 
fore, the energy flux vector is just the rate at which the pressure field in the wave is 
doing work on the surrounding fluid. That rate of work yields the energy transfer from 
one part of the fluid to another and hence the energy flux. We shall often be looking 
for energy balance equations of the above type, i.e., 

aE - + V - 5  = sources + dissipation 
at 

that is, the rate of change of wave energy locally and its flux to other parts of the fluid 
balanced by sources and sinks of energy. In the present case of a free, inviscid gravity 
wave, both the sources and sinks are zero. 

An interesting question arises here. If, as we believe, the important physical at- 
tributes in the wave field propagate with the group velocity, can we relate the energy 
flux vector to the group velocity? 

First, let us calculate the kinetic and potential energy in the field of motion of the 
plane wave we have been discussing. To make life easier for ourselves (always a good 
idea) let us orient our x-axis to coincide with the direction of the wave vector. Then, 
since the horizontal velocity is in the direction of the wave vector as shown above, there 
will be only the x-component of the horizontal velocity to deal with along, of course, 
with w. In this coordinate frame, K = k. 

The potential energy is easy to calculate: 

2 

P E = -  @'lo cos2 (kx  - G%) 
2 

This form oscillates between its maximum and zero during a wave period. The signifi- 
cant quantity for our purposes is the average over a wave period, denoted by brackets, i.e., 

For KE we have 

and 
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- 

sinh kDcoshkD pgv; 
= pvigk t a n h k ~  - - 

4sinh2 kD 4 

In deriving this result, we have first used the averaging of the cosine and sine terms 
over a wave period, then the identity relating the square of the cosh and sinh terms to 
cosh of twice the argument and then finally the dispersion relation itself to write d 
in terms of the wave number. 

We note the important fact that averaged over a wave period (or a wavelength if we 
were to average in x instead oft), the kinetic and potential energies are equal; that is, 
there is equipartition of energy in the wave field between potential and kinetic en- 
ergy exactly as in the oscillation of a pendulum. 

The total energy averaged over a period is 

Now let's calculate the energy flux vector in the x-direction and its average over a 
period. 

- - p g d c k ( ~ 1 2 )  1 sinh2kD 

sinhkDcoshkD [Ti 4kD ] (note that 2sinhkDcoshkD = sinh2kD) 
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The important result obtained here is that for a plane gravity wave, the horizontal 
flux of energy is equal to the energy itself multiplied by the group velocity.That 
is equivalent to saying that the energy in the wave propagates with the group velocity. 

That is, the energy equation may be written: 

In a uniform medium where the frequency and wave number are essentially con- 
stant, the group velocity will be independent of position. Thus for a wave packet, whose 
averaged energy just depends on the distribution of its envelope of free surface height, 
the above equation can be rewritten 

which states that for an observer moving laterally with the group velocity, the energy 
averaged over one phase of the wave is constant. The energy in a slowly varying 
packet travels with the group velocity in a homogeneous medium. 

We will generalize this result to cases in which the energy is not simply contained 
in a compact packet, and we will see that the generalization also allows us to think of 
sequences of energy packets, each propagating with a group velocity appropriate for 
the wave number of that particular packet, which together with its companions rep- 
resents an arbitrary disturbance. 

Addendum to Lecture 

With the velocity field given by the velocity potential, we can calculate the trajecto- 
ries of fluid elements in the plane wave. Let 5 and be the x and z displacements of 
the fluid elements around some original position (xo,zo). Then if the displacements 
are small, we can linearize the Lagrangian trajectory equations: 

d c  cosh k(z + D) -= u(xo +5,z0 + <,t) = u(xdo , t )  = wqo cos(kx-OX) 
dt sinh kD 

and similarly 

d 5 - = ~ ( x ~ , ~ ~ , t ) = ~ q , s i n ( k x - ~ ~ )  sinh k(z + D) 
dt sinh kD 

Integration yields 

cosh k(z + D) e = -qo sin(kx - wt) 
sinh kD 

< = % cos(kx - OX) 
sinh k(z + D) 

sinh kD 



40 Lecture 4 . Fields of Motion in Gravity Waves and Energy 

It follows that the trajectories are ellipses, i.e., 

cosh k(z + D) 
L, = 770 

sinh kD 

sinh k(z + D) 
L, =% 

sinh kD 

Thus, the orbits are flat at the bottom of the fluid layer where Lz = 0. For deep wa- 
ter, the two axes of the ellipse are equal (qoekz), so the orbits are circularly shrinking 
in radius as z becomes more negative. For shallow water, the orbits reduce to essen- 
tially horizontal lines parallel to the bottom. The student is asked to discuss the direc- 
tion of motion along the ellipse as the wave passes overhead. 
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The Initial Value Problem 

~t is not easy to see how a uniform or nearly uniform wave train can realistically emerge 
from some general initial condition or from a realistic forcing unless the initial condition 
or the forcing is periodic. That turns out not to be the case, and the ideas we have so far 
developed about group velocity and energy propagation turn out to be invaluable in get- 
ting to the heart of the general question of wave signal propagation. Indeed, it is the very 
dispersive nature of the wave physics (i.e., the dependence of the phase speed on the wave 
number) that is responsible for the emergence of locally nearly periodic solutions. This 
can be seen by examining the solution to the general initial value problem. This was first 
done by Cauchy in 1816. It was also solved at the same time by Poisson. The problem was 
considered so difficult at that time that the solution was in response to a prize offering of 
the Paris Academie (French Academy of Sciences). Now it is a classroom exercise. 

We will again consider a disturbance that is a function only of x and z (and t of course), 
and we will consider the problem unforced by a surface pressure term, i.e., pa = 0. 

The layer is again of depth D and it is initially at rest. 
As initial conditions, we will take 

W,z,O) = 0 * @(x,z,O) = 0 (5. lb) 

The governing equation for the velocity potential is Laplace's equation, which for 
two dimensions is 

with boundary conditions: 
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Since the region is infinitely long in the x-direction (in our approximation of a broad 
swath of open water) and the coefficients of the differential equations and boundary 
conditions are independent of x, it is appropriate and useful to represent the solution 
as a Fourier Integral. You may want to brush up on the Fourier integral by looking at 
any one of number of standard mathematical texts, e.g. Morse and Feshbach (1953). 
Thus, we write the velocity potential as 

with the dual return relation: 

Note that the placement of the factors fi is somewhat arbitrary, and different con- 
ventions,are used. The only requirement is that the product of the constant before each 
integral multiplies to Y2n. 

Similarly for the free surface elevation, 

What we are doing is representing an arbitrary disturbance by an infinite sum of 
plane waves in x, whose wave numbers are a continuous distribution over all k, which 
is why an integral is required for the representation. 

If the above representation for the potential is put into Laplace's equation, we ob- 
tain as a condition for the solution that at each wave number k, 

while the boundary conditions become 

and the similarity to the plane wave problem should be apparent. Indeed, the solution 
for @ can be written: 
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This satisfies the boundary condition at z = -D. Satisfying the boundary condition 
on z = 0 requires 

where 

m(k12 = gk tanh kD 

Thus, we can write 

so that 

0 = (aeiw + be-iw) 
cosh k(z + D) 

sinh kD 

1 iwt + be-iwt )],ikx C O S ~ ~ ( Z  + D) 
sinh kD 

dk 

The solution for the velocity potential consists of a sum of waves. For each k, one is 
moving to the left (the first term in square brackets) and the other is moving to the 
right (the second term). Each one is moving with the frequency associated with the plane 
wave at that k and with the vertical structure function of the plane wave at that k. The 
total solution is the integral sum of all the plane waves excited by the initial conditions. 

Since 

at t = 0 the velocity potential and its derivatives vanish. Thus for all k, 

and using the dispersion relation 3 = gk tanh kD, 
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which implies that 

which has a simple interpretation, namely, that half of the initial condition at each k 
propagates to the left and the other half propagates to the right, each with the phase 
speed, frequency, and wave number relation of the plane wave of that k. We might have 
written down the above equation directly from our knowledge of the plane wave phys- 
ics, but it is useful to go through the formal derivation at least once. Incidentally, now 
that b(k) is known, 

1 " NO i, -i,] eikx ~oshk(z+D) e=i- lT[e -e 
6 -m sinh kD 

This yields the formal solution to the problem, but it doesn't take much to realize 
that a solution written as an infinite integral is not very revealing, and our real work 
in understanding the physical nature of the initial value problem has just begun. 

But first, to simplify things, let's assume that the initial condition on the free sur- 
face height is an even function of x around the origin, namely, qO(x) = qO(-x). It fol- 
lows from this that the Fourier transform of the initial condition, No(k) is an even func- 
tion of k. To show this, 

1 
) - e i k X ( x )  let x = -5, then 

JZ;; -, 
1 

m 1 00 

No (k)  = - IeikCq(- 5)d5 = - je -"-k)C(~)dt  
f i  -" f i  -, 

where in the last step we have used the evenness of 77(x). Since No(k) is an even func- 
tion of k, 

1 
M 

- - jN0(k)cos cut cos kxdk 
- JZ;E-_ 

m 

= f i  ~ ~ ~ ( k ) c o s w t c o s  kxdk 
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~ h u s ,  we have succeeded in reducing the interval to the range (0,m) in our k integra- 
tion. Using a well-known identity for the product of cosine functions, 

where again we recall that = (gk tanh kII) l t2  (here we can take the positive root since 
we have explicitly included both signs of the solution in the above formulae). 

At this point, we are still in the position of having our solution given in terms of an 
infinite integral. What can we say about the solution? Will some useful approximation 
teach us anything? 

For short times, i.e., for a very small t, we could expand the expression for 17 as a power 
series in t, the first term of which is the known initial condition. That can allow us to ex- 
amine the initial evolution of the disturbance. We might rightly object, saying that the ini- 
tial evolution will depend very heavily on the arbitrary form of the initial condition. It will 
be much more illuminating to ask about the solution after a long time has passed so that 
the wave field can evolve to a state that reflects the general properties of the gravity wave 
field. Can we say something more useful, then? It turns out we can, using a classical method 
of approximating integrals of the type we have above: the method of stationary phase. 

Our integrals for the free surface height are of the form 

and we would like to evaluate the integrals above for a large t and with the ratio x / t  
fixed. This is equivalent to saying that for a large t, we are evaluating the integrals 
moving away from the origin at the speed (arbitrary) U = x / t. So, for a large t, an 
arbitrary x should be chosen, which is also large. That determines U = x I t, and we want 
to find the value of the integral at that time and at that point. 

The disturbance for x > o will be given by the second term in the above integral, so 
consider the second integral in the equation for q. Suppose that the function y(k) does 
not vanish on the semi-infinite k interval. Then we could change the dependent vari- 
able of the integral from k to W, and obtain 

Integration by parts yields 
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so that the disturbance would decay at least as fast as 1 / t (in fact it will decrease much 
more rapidly, exponentially. See Lighthill, Waves in Fluids (1978) Jeffreys and Jeffreys 
(1962) or Stoker (1957). 

This rapid decay with time is due to the fact that while &(k) is a smooth function 
of k, the sinusoidal behavior of the exponential produces a factor that oscillates very 
rapidly when t is large as afunction of k, so that contributions to the integral from 
some interval in k are cancelled at k + Ak by a factor of the opposite sign, as shown in 
Fig. 5.1. 

Thus, as long as W(k) increases smoothly with k, the factor eitNk) will oscillate very 
rapidly as a function of k for a large t, unless in the neighborhood ofsome point k ,  the 
function ~ ( k )  does not increase with k, i.e., unless that point is a stationary point at 
which 

At such points, the phase function v will not increase with k, and there is an op- 
portunity for the integral to accumulate value in that neighborhood. 

Fig. 5.1. The behavior of the exponential factor for a large t showing the interval of stationary phase 
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To find such points of stationary phase: 

T ~ U S  at a given x and t, or for an observer moving away from the origin at a speed x / t, 
the wave number of stationary phase, k, is given by that wave number whose group 
velocity matches the velocity U = X I  t (Fig. 5.2). 

We note that for a given X I  t, a stationary phase wave number can be found as 
long as X I  t is less than the maximum value of cg in the whole k interval. Since the 
maximum value of the group velocity occurs for the longest wave and this maxi- 
mum is GD, we anticipate that for time t, the disturbance will be limited to a region 
x 5 t c ~ .  Thus, there will be a front moving out from the origin at the speed CD, 
ahead of which the fluid will be essentially undisturbed and behind which the solu- 
tion will be given by the asymptotic approximation to the integral we will now de- 
velop (Fig. 5.3). 

c, as a function of kD 

Fig- 5.2. The curve of group velocity versus KD. The point of stationary phase corresponds to x 1 t = c, 
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Front 

3 

Fig. 5.3. 
The interval for which the 
disturbance can be found 
for a large t 

Consider the integral: 

Disturbance limited to this region 

t 

As we have argued, for a large t, the major contribution from this integral comes 
from the interval in k near the stationary point k,. Near that point, we can write 

= 0 by defn. 

Thus the integral can be approximated as 

Note that we have replaced No(k)  by its value at the stationary point. This is valid 
since only in this vicinity will the integral have an asymptotic value greater than 1 1 t 
and is assumed to be a smooth function of k and hence much more slowly varying 
than ty/for a large t. 

Thus, 

where the integral really extends over a region centered on k,. 
Let 
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This allows the integral to be written: 

where the extension of the limits to plus and minus infinity follows from the relation 
between k and 8 for a large t. The remaining integral is a standard one and can be found 
in almost all integral tables: 

Putting these results together leads us to our final formula for the asymptotic solu- 
tion for the initial value problem for x > 0 and for a large t: 

Discussion 

Now let's try to interpret the solution, valid for a large x and t, shown in the boxed 
equation above. 

We can think of the solution in the vicinity of the point (x,t) as a plane wave with 
amplitude: 

and a phase 

Notice that since the wave number k, is a function ofx and t through the station- 
ary phase condition 

the dependence of the phase of x and t can be rather complicated. 
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However, consider our generalized definition of wave number: 

Hence, the local variation of phase in x is equal to ks for x I t = cg(ks), i.e., for an ob- 
server moving away from the origin of the disturbance with the group velocity asso- 
ciated with that wave number. Further, moving at that constant speed, the wave number 
remains constant if the observer moves with that group velocity. Similarly, 

so that thg frequency will be equal to d k , )  for an observer moving at the group speed 
at the stationary wave number. 

Thus, at some point in the wave train, the disturbance will look like a plane wave 
with the wave number and frequency (us, k,) related by the dispersion relation, and these 
local parameters will remain constant as the point moves away from the origin with 
the group speed. In other words, the wave number and frequency propagate with the 
group speed even though the original disturbance need not be anything close to a peri- 
odic form. This is a result valid for a large t. What has happened is that the spectrum of 
the disturbance sorts itself out wave number by wave number such that the part of the 
disturbance with wave number ks propagates with its group velocity to the position 
x = cgt. This happens for each k. The part of the spectrum with the fastest group veloc- 
ity (the long waves in this case) will be found out in front and the slow waves will bring 
up the rear. This explains why, although the initial disturbance may be quite different 
from a plane wave (e.g., a gaussian in x), the disturbance with time can be locally ap- 
proximated by a plane wave, justifying our earlier concentration on the properties of 
plane and nearly-plane waves. It is the dependence of the phase speed and group speed 
on k that disperses the original signal into a parade of local plane wave perturbations. 

At any fixed x, the wave number will change with time as slower, shorter waves ar- 
rive at that x. 

Again, let's consider the phase 

Thus, if we move in such a way as to keep the wave number constant, x I t = c (k ) # c(k,), 8. 
then the phase will change for the observer. Such an observer will see individual crests 
and troughs moving past at a rate that depends on the difference between the group 
and phase velocities. If, on the other hand, one wishes to follow an individual crest, so 
that we set x I t = c(k), then from our above results, 
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so that following an individual crest implies that the wavelength associated with that 
crest will be changing with time. In this physics, you can always ride the same horse if 
ou want, but it may be repeatedly changing size if you insist on staying on the same Y 

horse. In order to ride a horse that is always the same size, you will need to constantly 
change horses (crests). 

We can work this out analytically and explicitly in the limit when the water is so 
deep that for all wave numbers possessing any reasonable amount of energy in the 
spectrum, kD >> 1. In this limit, 

a Free surface as function of x, t = 10 

b Free surface as function of t,x = 1009 = 10 m s-2 

Fig* 5.4. The upper panel (a) shows the free surface at a fmed time. Note the long waves out in front. 
The bottom panel (b) shows the surface height field as a function of time at a fixed point.   he low 
frequency waves (small k) arrive first and the higher frequencies arrive later, since they have slower 
group velocities 
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To find what the wave number of stationary phase is at the point x at time t, 

Note that at afixed position, the wave number increases (waves get shorter) with 
time, while the waves with the slower group velocities arrive later. At any given time, 
the waves get longer (k  gets smaller) as x increases. Note that the phase at any x and t 
will change with time according to the ratio gt2/x. To ride a particular crest, an ob- 
server must then move so that x = t2, that is, the observer must accelerate with time to 
keep up with aparticularphase. To follow a particular wave number, the observer must 
move at a constant speed equal to the group velocity for that wave number. Hence, for 
dispersive waves, one can not simultaneously keep to the same phase and the same 
wavelength, since the phase speeds and group velocities are not the same (Fig. 5.4). 
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we have seen that the initial spectrum of the waves, which is initially localized 
in space, gets strung out with time so that at time t, each wave number appears at 
x = c,(k)t. We might expect that the energy, if conserved, would also be distributed 
by wave number, so that the amount of energy at wave number k in the original 
spectrum at wave number k would also be found at the position x = c,(k) t for a large 
enough time. This is as if the original disturbance is composed of an infinite number 
of packets of constant wave number, each of which moves away from the origin of 
the disturbance with its own group velocity. Each satchel of energy moves with 
the group velocity (Fig. 6.1). 

Let's try to make this more quantitative, and we will at the same time be able to 
explain the inverse dependence of the amplitude on the square root of time found 
in the last lecture. The energy in the gravity wave field is, as we have seen, propor- 
tional to the square of the free surface displacement. By a fundamental theorem of 
Fourier analysis, 

which only states that we can count the energy in space or with the wave number spec- 
trum. 

Now, following an argument due originally to Rossby (1945) consider the energy 
in a spatial interval between x, and x, + Ax, such that the center of this infinitesimal 
interval is the place where the wave number k, is found at time t. 

Again, x = cg(kS)t. 

Fig- 6.1. A disturbance initiated by an initial source of energy, S, propagates away and is distributed 
among "suitcases" of energy, each moving with its group velocity 
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The x interval Ax, will, for long times, be related to a wave number interval in the 
original spectrum by the relation 

The energy in that spatial interval from our asymptotic formula for the wave height 
will be (assuming N ,  is an even and real function) 

Averaging over a period and using the above expression for the interval length, 

v2dr,,t N0(ks)2 3 Aks (half goes the other direction) 

The above expression is a function only of k,  and so will remain constant for an 
observer moving at the group velocity. Thus, the energy in the original spectrum in 
the wave number interval Ak is conserved as it propagates outward with the group 
velocity. The length of the interval that energy is contained in continuously and lin- 
early extends with time, because the group velocity is slightly different at the leading 
and trailing edges of the interval, since k is a continuous function of x at a given time. 
In order to have the energy conserved, the product of the amplitude squared times 
the interval length must be constant. Since the latter increase linearly with t, the am- 
plitude must decrease like t-'" to conserve energy. This explains the square root fac- 
tor in the result of the previous lecture. Note that the contribution to the wave ampli- 
tude for those parts of the integral not near the stationary phase point will decline at 
least as fast as 1 1 t. Then as time goes on, the stationary phase contribution will be- 
come increasingly dominant. 

In the sense described above, the energy propagates with the group velocity. That 
is, energy present in the original spectrum at a given k finds itself at a position con- 
sistent with the group velocity as the propagation speed for energy. 

Looking carefully at the result for the amplitude, we note that there is a potential 
difficulty with the expression for those values of k corresponding to the maximum (or 
minimum, should one exist) of the group velocity. At such values of k, 

and a singularity occurs. This, of course, coincides with a particularly interesting po- 
sition in the wave train corresponding to (in the case of the maximum) the very front 
of the wave train where the fastest group can be found. Since the second derivative of 
frequency with respect to k vanishes at that k (this would be k = 0 for the gravity wave 
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case), the expansion of o as a function of k around k, must be carried to a higher or- 
der, i.e., to order (k - k,)3. A discussion of the asymptotics can be found in many texts 
(e.g., Whitham 1974 or Stoker 1957). As one might imagine, since the group velocity is 
changing much more slowly where the derivative of the group velocity is nearly zero, 
the x-interval spreads more slowly, and the amplitude decreases more slowly in the 
local area near the front, i.e., like t-'I3. Indeed, it is easy to show that for the front of the 
gavity wave train, the asymptotic formula previously derived must be replaced by 

where Ai is the first Airy function that is a solution of the ordinary differential equation 

so that it is oscillatory for negative values of its argument but exponentially decreas- 
ing for positive values of its argument, as shown in Fig. 6.2. 

Airy function representation of wave train near leading edge 

Fig. 6.2. The Airy function describing the behavior of the wave amplitude near the leading edge of 
the advancing wave front 
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Wave packet 

Fig. 6.3. The wave packet described by Eq. 6.8 

Another example that is also illuminating occurs when the initial spatial perturba- 
tion is nearly a plane wave. Suppose that at time t =0, the spatial distribution of q is of 
the form (Fig. 6.3) 

The wave packet is shown above. By using standard tables of integrals, it is easy to 
show that the Fourier amplitude of the disturbance is 

and is shown in Fig. 6.4. 
Notice that the confinement length in x is x,, while the width of the spectrum is of 

order 1 I x,. Thus, if the disturbance is broad in x, approximating a plane wave slowly 
modulated by the long envelope, the spectrum is very narrow in k space. This, of course, 
is the basic content of the quantum mechanical uncertainly principle, where k and x 
are the momentum and position coordinates. We do not need to get very fancy here, 
but it is important to note that with an N(k) so sharply peaked, the formula we previ- 
ously derived for the evolution of the free surface, 
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0 
4.0 4.5 5 .O 5.5 6.0 6.5 7.0 7.5 8.0 

Fourier amplitude xo = 15, ko = 6.2832 

Fig. 6.4. The Fourier amplitude of the wave packet of Eq. 6.8 

can be evaluated using the fact that fork distant from the spectral peak at k = ko (noth- 
ing whatever here to do with stationary phase), the integrand is essentially zero. 

The integral is a standard one and the result is 

where 
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The origin of the Gaussian packet is now centered on the position c,(k,)t, and it 
spreads (a little more algebra is needed to put this in real form, but the result is clear) 
linearly in time, yielding an amplitude that decays like the inverse of the square root 
of t. This is very similar to our stationary phase result for an arbitrary initial condi- 
tion and emphasizes that the result we achieved there can be thought of as an infinite 
collection of packets of the type described in this idealized example. 
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internal Gravity Waves 

In both the atmosphere and the ocean, the fluid is density stratified, i.e., p = p(z) (it is 
also a function of horizontal coordinates and time) so that usualZy dense fluid under- 
lies lighter fluid. This stratification supports a new class of waves called internal waves. 
~nternal waves are designated as such, because the vertical structure of the waves is 
oscillatory in z (contrast with the surface gravity wave) and most of the vertical dis- 
placement occurs within the fluid as opposed to the upper boundary, as in the gravity 
wave example we have just studied. 

We will consider the problem in the simpler incompressible case appropriate for 
the ocean. The generalization to the atmosphere is straightforward if a bit more com- 
plicated (see, for example, Gill 1982 and also Lighthill 1978, for the generalization). 

For an incompressible, stratified, nonrotating fluid that experiences small pertur- 
bations about a state of rest, the rest state is characterized by 

(7. ld) 

If we examine small perturbations about a state of rest, the equations of motion, 
assuming that the motion is frictionless and adiabatic1, are 

- 
1 

The student is asked to remind him(her) self what is required to make these assumptions in a 
consistent fashion. 
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where we have written the total dynamical fields for density and pressure as 

so that all the non-subscripted variables in the above equations are perturbation 
quantities. Be sure to note again that the last equation is the equation for adiabatic 
motion, i.e., the energy equation. The condition for incompressibility is expressed 
by Eq. 7.2d. 

A very simple special case of the above equations occurs when the horizontal ve- 
locities are identically zero, and when the pressure perturbation is also zero and the 
vertical velocity is independent of z. In that case, the first, second and fourth equations 
are trivially satisfied, and the combination of the third and fifth equation leads di- 
rectly to 

For consistency, the quantity N must in this special case be independent of z to al- 
low w to remain independent of z. N is called the buoyancy frequency, or sometimes 
the Brunt-Vaisala frequency or simply the Brunt frequency (depending on your na- 
tional prejudice). Whatever it is called, the simple motion we have examined, columns 
of vertical motion rising or falling with no variation in the vertical direction, oscillate 
with the frequency N, which depends on the degree of vertical stratification. It is helpful 
to compare this frequency with the frequency of surface gravity waves. For deep wa- 
ter waves of wave number k for example (these are the relatively slow surface waves), 
the ratio of the surface to internal wave frequencies is 

Here we have used the fact that the vertical scale of the surface gravity wave is its 
wavelength A, and that scale times the vertical derivative of the density gives an esti- 
mate of the overall change of density on that scale. Since, in the ocean, the density 
changes by less than 0.001 over the total depth, the ratio of the frequencies is such that 
the internal wave frequencies are always smaller than the surface wave frequencies. 
This makes sense, since the gravitational restoring force for surface waves depends on 
the difference between the density of air and water, while for the internal waves it de- 
pends on the slight difference of density between adjacent strata of fluid. 
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We can derive a more general equation for the internal wave field. Taking the hori- 
zontal divergence of the horizontal momentum equations yields 

~ i t h  the aid of the continuity equation. In the above equation, the subscript h refers 
to the two-dimensional operator in the horizontal plane. z is the vertical coordinate 
antiparallel to gravity, and x and y are the horizontal coordinates. 

Thus, 

The time derivative of the vertical equation of motion with the aid of the adiabatic 
equation yields 

Note that for zero pressure fluctuation, the problem reduces to the case of the os- 
cillation at frequency N. 

Eliminating the pressure between the last two equations yields 

Before continuing to find solutions, let's examine the last term in the square bracket 
on the left-hand side of the equation. This is 

The ratio of the two terms on the right-hand side is 

where d is the vertical scale of the vertical velocity w. Since that scale for internal waves 
is less than the total depth of the ocean (it is usually of the order of the thickness of 
the thermocline or less) the ratio is less than the total density change from top to bot- 
tom in the ocean, a term, again, very much less than unity. Thus, in the governing equa- 
tion for density, the derivative of the background density with respect to z may be ig- 
nored, leading to the simpler governing equation: 



62 Lecture 7 . Internal Gravity Waves 

where the Laplacian following the second time derivative is now the full, three-dimen- 
sional Laplacian. Note that the structure is not spatially isotropic. The term multi- 
plying N2 involves only horizontal derivatives. In the presence of stratification, hori- 
zontal and vertical directions have dynamically different significance. Note also that 
if N is zero, we obtain, again, Laplace's equation for the vertical velocity, i.e., in the 
absence of stratification, the flow would be irrotational. 

In fact, it is left to the student to show that the three components of the vorticity 
equation in this linearized example are 

for the z-,x- and y-components of the vorticity equation (subscripts in the above equa- 
tions denote partial differentiation). If the perturbation density is zero,which will occur 
if there were no density variation in the basic state, each component of vorticity would 
be zero if initially so. Thus for internal gravity waves, we can anticipate that the rela- 
tive vorticity will be different from zero. 

Let us try to find plane wave solutions in three dimensions, i.e., we write 

Inserting this trial solution in the governing partial differential equation yields as 
the condition for nontrivial solutions 

Since K2 = k2 + I2 + m2, the frequency can be written: 

where 6 is the angle between the wave vector K and the horizontal plane (Fig. 7.1). 
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Fig. 7.1. 
Schematic of wave vector orientation 

Fig. 7.2. 
The force diagram along 
a wave crest 

Thefrequency depends only on the orientation of the wave vector and not its mag- 
nitude. The frequency is therefore independent of the wavelength. 

To get a better appreciation for the reason for this rather bizarre dispersion rela- 
tion, consider a balance of forces along a line of constant phase, for example the crests 
of the waves, as shown in Fig. 7.2. 

Let <be the displacement of a fluid element along the line of constant phase. If the 
wave vector is tilted to the horizontal at an angle 8, a displacement of an amount < 
along the phase line yields a vertical displacement dz = ccos zY. This in turn yields a 
buoyancy force in the vertical direction (positive upward) of 

The component of this force along the direction of the phase line is just 

Since, by definition, there can be no variation of pressure along a phase line (noth- 
ing in the wave field varies along a line of constant phase for a plane wave), there is no 
Pressure force along the phase line and the force balance reduces to 
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which recovers our dispersion relation for frequency of a harmonic oscillation. No- 
tice that when 6 is 0, we recover the first simple case in which the frequency of oscil- 
lation is exactly N. To understand the reason for that, note that for a plane wave, such 
that all fields are of plane wave type 

the continuity equation imposes the condition 

Thus, the fluid velocity in the three-dimensional plane wave is perpendicular to the 
wave vector. The fluid velocity is along the crests of the waves, i.e., for internal waves, 
the wave motion is transverse; that is, it is perpendicular to the direction of phase 
propagation. Thus when the wave vector is horizontal, the motion of fluid elements in 
the wave is purely vertical and with no variation of phase in z (m = 0) the vertical 
motion will be independent of z. Those were the conditions of our introductory ex- 
ample, and we see here that this is obtained when the wave vector is horizontal. It also 
yields the maximum frequency for internal waves, i.e. urn,, = N. 

Note too that the frequency is a constant on a cone in three-dimensional wave 
number space (Fig. 7.3) where the elements of the cone make an angle 19 to the hori- 
zontal. The frequency increases as the cone opens up, i.e., when the elements of the 
cone are closer to the horizontal plane. This has important consequences for the di- 
rection of the group velocity, since the frequency is a function only of I9. 

Fig. 7.3. 
The cone of constant frequency and the 
direction of the group velocity 
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Group Velocity for Internal Waves 

BY definition, the three-dimensional group velocity is 

. . A A  

where i, j, k are the three unit vectors along the x-, y- and z-axes, respectively. Let $be 
the angle in the x-y-plane between the horizontal projection of the wave vector and 
the x-axis (Fig. 7.4). 

Then a simple calculation using 

yields 

In particular, note that 

so that the vertical phase velocity is always opposite to the vertical group velocity. Waves 
that appear to be propagating their phase upwards will be propagating their energy 
downwards, and vice versa. This is evident from examining the dispersion cone in three 
dimensions, keeping in mind that the frequency increases in a direction perpendicu- 
lar to the elements of the cone as shown in Fig. 7.3. 

Fig. 7.4, 
The orientation of the wave vector 
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Fig. 7.5. 
The orientation of the group velocity with 
respect to the wave vector 

Finally, note that 

so that the group velocity is perpendicular to the  wave vector and therefore in  
the direction of the  fluid velocity. Energy travels along the crests and troughs and 
not perpendicular to them. For surface gravity waves, we had to get used to the fact that 
the group velocity was not equal in magnitude to the phase speed. Now, for internal 
gravity waves, we have to adjust to the remarkable fact that the group velocity is not 
even in the same direction as the propagation of phase but at right angles to it (Fig. 7.5). 
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(nternal Waves, Group Velocity and Reflection 

The rather unusual dispersion relation and the nonintuitive relation between group 
velocity and the wave vector lead to some very unusual physical consequences. 

Figure 8.1 is from Lighthill's book (1978) taken from a paper by Mowbray and Rar- 
ity (1967). It shows the result of an experiment in which a small disk is oscillated in a 
stratified fluid with a constant N at a constant frequency, w. We know that in such a case 
the wave vectors will be aligned in a direction such that cos6 = +_@IN. There are four 
such angles. The disturbance is limited to narrow bands leading away from the oscil- 
lating disk. Since the energy must be moving away from the disk, it is not too hard to 
see that starting with the band in the upper right hand quadrant, the direction of the 
band must correspond to the direction of the outgoing group velocity moving upward 
and to the right. Since this must be perpendicular to the wave number, and since the 
vertical group velocity and phase speeds must be oppositely directed, it follows that 
the dark bands in the figure are actually the crests of the internal waves, which form a 
cross intersecting the little disk. A movie of the experiment would show those crests 
moving rightward and downward in the upper right band corresponding to energy 
moving upward and to the right. The situation is sketched schematically at the right 
side. The student is invited to complete the picture for the other four quadrants. One 
has to admit that the physics here seems very strange. But you'll get used to it. 

Fib 8.1. A photograph showing the lines of constant phase produced by a small disk oscillating with 
Cpnstant frequency. Below a diagram is shown, indicating the lines of constant phase and the direc- 
b ~ n  of the group velncity of the radiated waves (from Lighthill 1978) 
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Note that since the fluid element velocities are at right angles to the wave vector, 
the pressure work term pii is perpendicular to the wave vector. Since we expect the 
energy flux to be given by the pressure work term, this explains the perpendicular 
orientation of K and Zg (Can you derive the energy equation from the momentum and 
thermodynamic equations we used at the beginning?). 

Something even stranger appears to happen if we ask about the reflection of inter- 
nal gravity waves from a solid boundary. Let us suppose we have a lower boundary 
sloping upward to the right at an angle P. We will suppose the incident wave and re- 
flected wave are in the plane of the slope. It is easy to consider the generalization in 
Fig. 8.2. 

Suppose the incident wave has the representation 

where the I subscripts refer to the incident waveFeld. 
For this two dimensional problem (no y wave number), the continuity equation is 

simply 

so that a stream function can be used, where 

and the incident wave, represented in terms of its stream function is 

The solid boundary at which the reflection takes place satisfies z = x tanP so that 
the unit vector parallel to the boundary is % = ; cosp + ; sinj3, where ; and are unit 
vectors in the x- and z-direction, respectively. 

Now the reflected wave will have x and z wave numbers and a frequency that are 
not known a priori. How are they determined? i 

Fig. 8.2. 
A wave packet with wave 
number K, is incident on a 
sloping surface 
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We can write the reflected wave, generally, as 

ly,= Y/,e 
i(k,x+m,z- q t )  (8.5) 

The total wave field during the reflection process is the sum of the two waves, 

On the boundary where z = x tanfi, the total stream function must be a constant. 
Without loss of generality, let that constant be zero. Thus, on z = x tanfi we have 

This must be true for all t and for all x along the boundary. Clearly a single relation 
between the amplitudes of the incoming and reflected waves will be unable to satisfy 
Eq. 8.7, unless 

kI + m, tanp = k, + m, tanp or (8.8b) 

Thus, the frequency and the component of the wave vector parallel to the boundary 
are both conserved under  reflection. This is a general result for plane waves. What 
is special for internal gravity waves is that the conservation of frequency implies that 
since u = Ncos 19, the angle of the wave vector with the horizontal must be preserved 
under reflection, regardless of the orientation with the boundary. For more familiar 
problems where the reflection is specular, the wave vector component perpendicular 
to the boundary is preserved. This is not the case here. Thus, under reflection both 
the component of wave vector along the boundary and the horizontal component of 
the wave vector must be preserved. 

We can use a geometrical construction to see how this occurs (see Fig. 8.3). 
In the construction, the reflected wave vector is determined by three considerations: 

1. The component along the slope must be the same for both incident and reflected 
wave; 

2. The angle of the reflected wave vector to the horizontal must have the same magni- 
tude as for the incident wave so that the cosine of the angle (frequency) is pre- 
served under reflection; 

3- The direction of the reflected wave vector must be such that the associated group 
velocity is directed away from the slope. 

We note that in this example, the magnitude of the reflected wave vector is much 
greater than that of the incident wave. Therefore, the wavelength of the wave is not 
Preserved under reflection; indeed, the wavelength shortens as a consequence of the 
refection process. 
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Fig. 8.3. 
A sketch showing the wave 
numbers of the incident and 
reflected internal gravity waves 
from a sloping surface 

To determine the result analytically, let the magnitude of the incident wave vector 
be KI. Then the component of the incident wave vector along the slope is KI cos(6 - P), 
while that of the reflected wave along the slope is Krcos(6 + P). Note that we have used 
the fact that 6 is preserved under reflection. Since these two terms must be equal to 
satisfy the condition of no flow through the solid surface of the slope, 

Now define 

Here a is the angle with respect to the horizontal of the group velocity of the inci- 
dent packet and also the angle with respect to the horizontal of the reflected packet 
(see Fig. 8.4). Note too that c ~ ,  = N sin a. 

If the definition of a is used in the equation for the equality of the along-slope com- 
ponents of the wave vectors, we obtain 

Note that as the angle of the incident group velocity approaches the angle of the 
slope, the magnitude of the reflected wave number becomes infinite. Thus, as the fre- 
quency is lowered, a gets smaller; when it coincides with P, Kr becomes infinite. We 
would anticipate that such short scales would be affected by friction and are likely to 
be efficiently dissipated. So, P is a critical angle for the incident packet. 

There is also a problem when a is less than P according to the above formula; since 
neither of the wave number magnitudes can be negative, the left-hand side is always 
positive, but the right-hand side becomes negative when a c P. Clearly, the situation 
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Fig. 8.4. A sketch showing the relation of the incident and reflected wave vectors 

Fig. 8.5. 
The reflection process when 
the slope is steep (a  < P) 

Fig. 8.6. 
The reflection in a shallow 
wedge 

must be reconsidered in that case. Figure 8.5 shows the geometry of the reflection proc- 
ess, then (see also Fig. 8.6). We see that when a > P, as in the previous case, the reflec- 
tion isforward along the slope. Now,when a < P, the reflection must be backward (and 
since a is preserved, forward reflection would put the wave packet inside the slope, 
which is an impossibility). The back reflection leads to the relation (try it) 

K sin(a+P) L= a result one might have guessed. 
K, sin(p-a) 
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Fig. 8.7. 
The reflection in a large, open 
wedge 

Since the reflection from a horizontal surface will be specular if the bottom slope 
forms a wedge-shaped region with an upper horizontal surface, the reflection process 
can lead to further surprises. If, for example, a wave packet enters the wedge with a 
frequency such that a > P, the reflection from both the bottom slope and the top sur- 
face will be forward. The wave packet will bounce back and forth, advancing towards 
the apex of the wedge, becoming shorter at every bottom reflection, and finally dissi- 
pating in the apex of the wedge (Fig. 8.7). 

If, on the other hand, the bottom slope is strong enough so that P > a (in the limit 
it could be a vertical wall), the reflection from the bottom will be backward, and the 
wave willdeave the region of the wedge (Fig. 8.7). 

Recall that all of these bizarre properties are due entirely to the fundamental phys- 
ics of the wave that determines its frequency only in terms of the angle the wave vec- 
tor makes to the horizontal, and since the frequency must be preserved under reflec- 
tion, this places a terrific constraint on the reflection kinematics. 

Up to now we have dealt with fluids in which the buoyancy frequency has been in- 
dependent of z. In the ocean, Nis certainly a function of z. It is large in the thermo- 
cline and small in both the mixed layer and in the abyss. Before dealing with that vari- 
ation, it is useful to discuss the equation for the energy in the wave field. 

Multiplying each momentum equation by the velocity component in that direction, 
we obtain 

where 

The step between the first and second equations uses the condition of incompress- 
ibility, i.e., the divergence of the velocityvanishes. The last term on the right-hand side 
of the equation for the kinetic energy is the transformation of potential to kinetic 
energy. If heavy fluid sinks (p > 0, w < 0) or light fluid rises (p < 0, w > 0) (where we 
recall that p is the densityperturbation), then the kinetic energy will increase by the 
conversion of gravitational potential energy. This last term can be written in conser- 
vation form using the adiabatic equation, since from that equation it follows that 
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Thus, 

It is tempting to consider the second term in the square bracket as potential en- 
ergy. To see that in fact it is, it is useful to use the relationship between the Lagrangian 
vertical displacement and the vertical velocity. For small displacements, 

(Large displacements would require the total derivative in the above equation). 
If this is used in the adiabatic equation, we obtain 

by a simple integration. We can therefore think of ( as the vertical displacement of 
each isopycnal surface, such that the perturbed fluid element remains on its original 
density surface. In turn, we can now write the energy equation as 

so that the second term in the square bracket has exactly the same form as the poten- 
tial energy of an extended spring in which the spring constant per unit mass measur- 
ing the restoring force is the buoyancy frequency squared, i.e., N2. 

It will be left for the student to show that for a plane wave, there is equipartition 
between kinetic and potential energy and that the energy flux vector 

where E is the sum of the kinetic and potential energy. 
Note that for a plane wave in two dimensions, we can always align our coordinate 

system for a single plane wave to align the wave vector in the x-z-plane. 
Suppose the plane wave has the form 

Then from the continuity equation, 
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(note that this satisfies the condition that the fluid velocity be perpendicular to the 
wave vector). From the relation between w and the vertical displacement (, (or from 
the adiabatic equation), 

Thus, the kinetic and potential energies averaged over a wave period are 

from which it follows that the horizontal and vertical components of the energy flux 
are 

Note again that the direction of the vertical energy flux is opposite to that of the 
vertical phase speed m /  k. Indeed, the energy flux is perpendicular to the wave vector 
as can be immediately verified. 



Lecture 9 

WKB Theory for Internal Gravity Waves 

The buoyancy frequency is never really constant. Indeed, in the ocean there is a 
significant variation of N from top to bottom. Figure 9.1 (next page) from the Levitus 
Atlas (1982) shows the distribution of N of the zonally averaged global ocean. 

By assuming that N is constant in our calculations to this point, we have been say- 
ing effectively that over the vertical distance Lz = 2rr I rn, N~ changes only slightly. Al- 
ternatively, we can state equivalently that N is a slowly varying function with respect 
to the phase of the wave over which 

The major change in N occurs in the vertical; that is, it is a stronger function of z 
than of the horizontal coordinates. We already know from our earlier work on waves 
in slowly varying media that 

where R is the local dispersion relation. If we consider N to be a function only of z, 
this equation implies that the vertical component rn will be the only component 
of the wave vector that will alter as the wave traverses a region of variable N. Fur- 
thermore, if we assume that N is independent of time, the dual equation for the 
frequency 

shows that the frequency will be independent of time for an observer moving with 
the group velocity. Since the wave packet itself will move with the group velocity, this 
means that (k, 1, w) will be constant. It remains to be determined how rn changes and 
how the amplitude will vary in a region of varying N. 

The governing equation is again 
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~et ' s  try to find a solution in the form 

and we will assume that the vertical variation of the phase is much larger that the ver- 
tical variation of A; that is, we will assume that N is varying slowly enough in z so that 
locally our solution will look like a plane wave. 

We define 

(Note that for a pure plane wave, 6 would be simply mz). 
Inserting the hypothesized solution in the governing equation yields (z subscripts 

denote differentiation) 

We have assumed that 6, is order one while A,,IA << 1 and that the variation of 0, 
and A are also small (the local plane wave approximation. This implies that the domi- 
nant term in the equation is the curved bracket in the second term. This yields an ex- 
pression for m or equivalently, 

or, equivalently, one may think of this relation as the necessary condition that the fre- 
quency both satisfy the plane wave dispersion relation 

while at the same time be independent of z. This yields for the vertical phase factor 

- ' Fig. 9-1- Upper panel: Annual mean global potential density distribution in depth and latitude for 
the world ocean. Lowerpanel: Annual mean of the buoyancy frequency as a function of latitude and 

(reworked after Levitus 1982) 
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With the differential equation in the form 

we might naively have expected the vertical structure for slowly varying N to look like 

but instead it is the integral that enters the phase so that the vertical component of 
the wave number vector is given by its local plane wave value. 

The imaginary part of the equation for A (or equivalently, the next order term is 
the slow variation with z )  yields the constraint 

so that 2, and m, are evaluated at some arbitrary constant value of depth. As m gets 
larger, i.e., in a region of larger N, the amplitude diminishes. This is easy to understand 
physically. As the wave propagates vertically, the flux of energy must remain the same 
at each z to avoid the pile up of energy and the local increase of amplitude with time. 
We saw in the last lecture that the vertical energy flux could be written 

using A instead of w, for the amplitude. To keep the energy flux independent of z, and 
since both frequency and horizontal wave number are independent of z, it follows 
that A must go inversely with ml", which is the result we have already achieved. Thus 
that behavior is simply a consequence of energy conservation. 

If the wave propagates to an elevation where the frequency is greater than the local 
value of N, the vertical wave number becomes purely imaginary and the disturbance 
exponentially decays beyond that location. We can say then that the wave will be 
trapped between regions in z where N matches the frequency of the wave. 

To find the path of the wave packet in the vicinity of such a region, we can use the 
ray equations, which for two dimensions are 
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Fig. 9.2. 
The ray path near a turning 
point where the frequency o 
equals N 

The path of the ray in the x-z-plane is given by 

Consider the region near the point z* where N(z*) = w Expanding N2 around z* yields 

z*-z= W 213 (9.18) 
(X * 

The ray path has a cusp at the turning point (x*, z*) as shown in Fig. 9.2. 

Normal Modes (Free Oscillations) 

Consider a fluid bounded below by a flat bottom at z = -D and with a free surface whose 
rest position is z = o (Fig. 9.3). Again, the fluid is incompressible and stratified. This 
situation is a combination of the two problems previously studied. There should be 
the possibility of surface gravity waves as well as internal waves due to the stratifica- 
tion. The issue here is how they relate to each other and in addition, what the nature 

the internal waves in this bounded domain is. 
Again, the governing equation is 

for unforced motions. 
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Fig. 9.3. The definition figure for determining the normal modes of a stratified fluid with a free surface 

The boundary conditions are 

1. At the bottom, 

2. At the free surface, we have both the kinematic condition 

where q is the free surface elevation, and 

p(x,y,z = 77) = 0 

Since q is supposed to be small (linear, small amplitude motions), 

We only want to keep terms that are linear in the amplitude of the motion on the 
right-hand side of the above equation, since we are doing a consistent linearization of 
the dynamics. Since the linearized form of the vertical momentum equation is 

each term in the above equation is of the order of the amplitude of the motion and so would 
yield a quadratic term when multiplied by q in the expansion of the boundary condi- 
tion, except the first term on the right-hand side of the equation for the vertical pressure 
gradient, which yields ap 1 az in the absence of motion. Thus, considering only terms 
that are linear in the perturbation amplitude, the pressure condition on the free surface is 
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~t is important to realize that we are not assuming the motion is hydrostatic; all 
we have used is the small amplitude approximation. We did not have to work very 
hard in the surface gravity wave problem, because we had the Bernoulli equation 
at our disposal to use at the surface. Since the fluid is stratified, the motion is no 
longer irrotational and the velocity potential and resulting Bernoulli equation no 
longer exist. 

Thus at the upper boundary, 

Eliminating the free surface elevation between the two conditions, 

We can operate on the above equation with the horizontal Laplacian 

and use the previously derived relation (from the divergence of the horizontal mo- 
mentum equations and the continuity equation) 

to obtain for the upper boundary condition in terms of w: 

We will particularly be interested in the oceanographically relevant case where the 
Parameter DN2/g  << 1. This parameter can be interpreted in several ways. First of all, 
it gives a measure, as we have seen before, of the total density difference over the depth 
of the fluid divided by the mean density. This is very small for the ocean. Second, US- 

"g our previous results, it can be seen as the ratio of the (square) of the maximum 
internal gravity wave frequency to the surface wave frequency (squared) for a wave 
whose wavelength is of the order of the depth of the fluid. We are interested, as noted, 
in the case when this ratio is small, i.e., when the surface waves have higherfrequency 
andphase speeds than the internal waves. This helps separate the two wave types that 
are described by the same set of equations given above. There is a hint then that in the 
Case when DN21g << 1, approximations to the governing equation will be in order if 
we want to concentrate on one or the other of the waves. 
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Since the fluid is unbounded in the x and y-directions in this simple model, we can 
look for plane wave solutions in the horizontal direction. Orienting the x-axis to be in 
the direction of the horizontal wave number, this implies that we can look for solu- 
tions of the form 

and insertion in the equation for w and its boundary conditions yields 

(9.3 la) 

Consider the case where N is constant and N~ > d. The solution of the W equation 
will be oscillatory in z and the solution that satisfies the boundary condition at z = -D 
will be 

Note that the latter definition implies that were rn known, the corresponding fre- 
quency would be 

which is a familiar result from our work on plane internal gravity waves. We can ex- 
pect the above eigenvalue problem to yield quantized values of m so that the equa- 
tion for the frequency in terms of k and m will be as in the plane wave case except that 
m will no longer be a continuous variable but quantized. 

The upper boundary condition yields the eige nva 1 ue relation: 

or using the relationship between frequency and wave number written above, 

It is useful to write the above condition in terms of non-dimensional wave num- 
bers. 
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Let 

Then the eigenvalue relation becomes 

= tan rn' (9.37) 

The roots of this can be found numerically. A graph of each side of the equation is 
helpful in understanding the results (Fig. 9.4). 

Figure 9.4 shows both the left- and right-hand sides of the dispersion relation for 
the case where the parameter N ~ D  lgis  artificiallylarge (0.1) and kD = 1. Still, the roots 
of the relation corresponding to the intersections of the two curves are very close to 
an integral multiple of 7c. In the above case, the first two are at mD = 3.1562 and 6.2947. 
For smaller values of the parameter N 2 ~ I g ,  it is not possible to distinguish the curve 
of the left-hand side of the equation from zero, in which case we can see either graphi- 
cally or analytically from the equation itself that in the limit PD 19- 0, the roots 
approach 

IGW dispersion relation kD = 1 N ~ D I ~  = 0.1 

First two eigenvalues at mD = 3.1 562 6.2947 

9.4. The dispersion relation 9.37 
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In this limit, W(z) is very nearly 

so that w vanishes on both the lower and upper surfaces. For these internal gravitywave 
modes for which w < N, the free surface dynamically acts as if it were rigid and the 
eigensolutions are the same as if the upper surface were simply a rigid lid on which 
w=o.  

Now let's examine if there are solutions of the problem for o > N. If that is the case, 
we can still use the same solutions and dispersion relation but we must realize that m 
will now be purely imaginary. It might be clearer to just go back and rewrite the solu- 
tion in terms of real variables. So for w > N, we write 

in terms of which the solution satisfying the lower boundary condition is 

which should look familiar from our surface wave studies. The upper boundary con- 
dition now yields 

= tanhq' (9.42a) 

When the parameter N'D lg is small, the left-hand side will be small except in the 
vicinity of q' = k', which yields the only eigenvalue for which w > N (see Fig. 9.5). 

This is the graph of the two sides of the eigenvalue relation when N < w. There is a 
single root for qD which in the case when N ~ D / ~  = 0.01 is equal to 0.9884kD, q is very 
nearly k. 

This yields a frequency using the upper boundary condition: 

w~~ cosh qD = gk2 sinh qD 

or since q is very nearly k, 
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Dispersion relation for surface IGW mode N ~ D I ~  = 0.01 

Fig. 9.5. The dispersion relation for the external mode 

w = f Jgk tanh kD 

and the eigenfunction is, 

W ( z )  = sinh k(z + D) (9.45) 

Both the eigenfunction and the eigenvalue in this limit are precisely the values ob- 
tained for the surface gravity wave problem for a homogeneous fluid. 

Thus, the full spectrum of oscillatory modes splits into two (unequal) parts. There is 
first of all the free surface mode, which, when N ~ D  1 g << 1, does not even notice the strati- 
fication. This is because the depth of penetration is of the order of the wavelength, and for 
small values of N ~ D I ~ ,  the fluid motion in the wave, maximum at the surface and 
exponentially decreasing into the fluid, does not encounter the density variation. The sec- 
ond class of solutions whose frequencies are all less than Nconsist of internal gravitywaves 
whose vertical motion at the upper surface is negligible. Compared to w within the fluid, 
the vertical velocity at the free surface is negligible and the frequencies of the modes and 
their structures are approximately those for a fluid contained within two horizontal rigid 
Surfaces. It is left to the student to show that for eigenfunctions of the same amplitude, the 
free surface displacement of the internal gravity wave compared to that of the free surface 
wave is small, and this smallness is of the ratio of the respective frequencies. 
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For the internal gravity wave part of the spectrum using the rigid lid approxima- 
tion, 

where W satisfies 

For N constant, the eigensolutions are the sine functions sin (jnz 1 D )  and for the jth 
mode, 

Note that for large k, the frequencies of all the modes approach N (the student should 
think about the dispersion relation for plane internal gravity wave modes to under- 
stand why this is so)(Fig. 9.6). 

0.0 
0 2 4 6 8 10 12 14 16 18 20 

olN as a function of kD 

Fig. 9.6. The dispersion relation showing the frequency as a function of wave number for the first 
three internal gravity wave modes 



Lecture 9 . WKB Theory for Internal Gravity Waves 87 

The normal modes, of course, do not propagate energy vertically. Each mode in z 
can be decomposed into two plane waves using each with vertical wave number of 
opposite sign so that the eigenfunction can be thought of as the sum of an upward 
and downward propagating mode whose energy fluxes vertically cancel. 

There is energy propagation in the horizontal direction, and for each vertical mode: 

Note that for very large kD, the group velocity in the horizontal direction goes to 
zero. The maximum group velocity for each mode is c,,, = ND I jn, which occurs for 
the long waves, i.e., as kD- 0. 

Since N is a relatively strong function of z in the natural ocean, it is important to 
point out that qualitatively the eigenfunctions and eigenvalues of the more general 
problem are similar to the case of constant N. There are, however, a few important fea- 
tures of the solution to consider when N is variable. 

Consider again the governing equation for the eigenfunction, W(z): 

It should be clear that the solutions of the above problem satisfying the homoge- 
neous boundary conditions on W must have frequencies less than the maximum value 
of N in the interval -D < z < 0. This follows intuitively from the nature of the equa- 
tion, for if the frequency is greater than N,,, the coefficient in front of the last term 
in the equation is always negative and the character of the solutions will be exponen- 
tial rather than wavelike, and it will be impossible to satisfy the two homogeneous 
boundary conditions. This also follows from multiplication of the W equation by W, 
which with integration by parts and use of the boundary conditions yields 

If o > N everywhere in the depth interval, both terms in the integral would be nega- 
tively definite, and there would be no way to satisfy the condition that the integral 
vanish. Similarly, it follows from the theory of standard Sturm-Liouville problems that 
the eigenfunctions corresponding to different eigenvalues are orthogonal: 

0 

,W~W,N~(Z)~Z  =o, i# j (9.52) 
-D 

In addition, the eigenfunction corresponding to each higher eigenvalue has one 
more zero of the function W(z) in the depth interval. 

The character of the eigenfunctions are of interest. If 
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the character of W will be oscillatory in the depth interval in which N is greater than w 
and evanescent outside that interval. We can therefore expect some modes to have their 
energy trapped in the region where the stratification is greatest, and these will be the 
modes with the highest frequencies. There is a very good discussion of the general 
problem in Gill's book, and Fig. 9.7 and 9.8 are taken from that book. 

Figure 9.7 shows a characteristic profile of Nin the subtropical North Atlantic. Note 
the maximum of N in the region of the thermocline at about 750 meters. Figure 9.8 
shows the first two eigenfunctions for that profile. 

Potential temperature ("Cldbar) x 10' 
-0.10-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 

I I I I I I I I 1 

Brunt-Vaisala frequency (cph) 
0 1 2 3 4 5 6 7 8 9 1 0  

0 ,  I I I I I I I I I I 

Fig. 9.7. 
The distribution of N ( z )  in the 
North Atlantic (from Gill 1982) 
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The figures on the left of the figure are essentially Wj. The second figure is essen- 
tially the form of the solution in the long wave limit (more of this will be discussed 
later), and the last figure is the shape of the pressure or horizontal velocity in each 
mode, really the derivative of the function W. Note, as expected, the n = 1 mode has 
no zeros for W (just like sinlr z t  D), while the second mode has a single zero (like 
sin27~ z I D). However, the location of the zero and maxima differ from the constant N 
case. Note too that at great depth where N is small, the eigenfunctions are not oscilla- 
tory in agreement with out qualitative discussion of the governing equation. 

Fig. 9.8. Eigenfunctions for the buoyancy profile of Fig. 9.7 (from Gill 1982) 





Lecture 10 

Vertical Propagation of Waves: 
Steady Flow and the Radiation Condition 

There are numerous situations in which fluid flows over an obstacle, say a mountain 
in the atmosphere, a sea mount, or a ridge in the ocean, and we would imagine that 
internal gravity waves, if the fluid is stratified, would be generated. Such situations 
are of interest in their own right, but additionally they force us to carefully examine 
the radiative properties of the waves, which must be understood, sometimes, to actu- 
ally solve the problem. 

Consider the case of a stratified, incompressible fluid as studied in the preceding 
lectures, except now we will imagine that the background state includes a mean ve- 
locity in the x-direction, which is also a function of depth, z. If the dynamics are 
inviscid, such unidirectional flows are themselves exact solutions of the equations of 
motion. Indeed, consider the equation of motion in the zonal direction. In the absence 
of rotation and friction, and for motion in the x-z-plane, 

Before we start to examine the wave problem, first note that if the flow is periodic 
in the x-direction, the x-average denoted by an overbar will yield 

aii auw - = -- 
at a~ 
To obtain this equation, we have used the continuity equation and the assumption 

that the x-average of all terms of the form a I ax[finite] will be zero. The equation above 
describes how the mean current can change if there is a convergence of the flux of 
x-momentum carried by vertical motion G. Note that this term can be different from 
zero even i f u  and w separate/) have zero x-average. It is therefore possible for the waves 
that we will consider to alter the very flow that constitutes the character of the back- 
ground in which the waves are embedded, but note that the change will be quadratic 
in the amplitude of the wave motions (if the flux G is due to the waves). Thus, in lin- 
ear theory for the waves, the background flow can be approximated by its initial value, 
but the above equation can be used to consistently calculate the small, second order 
changes in the mean due to the waves, and sometimes we are very interested in that 
change. 
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To linearize the equations of motion, we write all variables as a sum of the order 
one basic state plus a small perturbation. For our fields, that will be 

where the lower case variables are the wave fields, and each is the order of the wave 
amplitude and hence is small compared with the basic state. Again, the basic state 
density and pressure fields, denoted by a subscript 0 satisfy the hydrostatic relation. 

The linearized equations of motion, when the above decomposition is inserted into 
the equations of motion and only terms that are linear in the wave amplitude are re- 
tained, are-. 

Once again, we have assumed that the motion is incompressible and adiabatic 
(Eq.lO.4d). In the continuity equation, we have assumed that the basic state density 
changes by a very small amount over the vertical scale of the motion. Except for the 
presence of terms proportional to U(z), this set of equations is identical to the equa- 
tions we used to study internal gravity waves. Note that the last equation could be re- 
written in the form 

It is convenient to introduce a compact notation for the linearized advective op- 
erator, i.e., 
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in terms of which our equations are 

where, for ease, subscripts have been used to denote differentiation. 
Note that using the linearized Lagrangian relation between vertical displacement 6 

and the vertical velocity 

the adiabatic equation yields 

Multiplying each momentum equation by its velocity component and the adiabatic 
equation by the buoyancy, b, with the aid of the continuity equation, we obtain the 
energy equation 

If the vertical shear of the basic state velocity U is zero, then we obtain the usual 
conservation statement for the sum of the kinetic and potential energies. However, when 
the shear is different from zero, there is a source term for the perturbation wave energy. 
This source is proportional to the shear and its product with the product -pouw, the 
Reynolds stress. We are particularly interested in the sign of this term when averaged 
over a wave period or wavelength, -p0E.  Consider the situation depicted in Fig. 10.1. 

Fig. 10.1. Illustrating the flux of momentum in the Reynolds stress. The velocity profile is smoothed 
by the transfer of momentum by the waves 



94 Lecture 10 . Vertical Propagation of Waves: Steady Flow and the Radiation Condition 

Think about a region in which dU1 dz > 0. If, on average, the perturbation zonal velo- 
city u is positive whenever w is negative, the source term will be positive and the energy 
of the wave field will tend to increase (of course the energy so produced could be locally 
fluxed away). Is that likely? If a fluid element has w < 0 with dU1 dz > 0, then it is coming 
from a region where U is larger than where it arrives. If it retains to some degree its origi- 
nal x-momentum, it will show up at its new location with a perturbation u, which is posi- 
tive. Now the "if" of the last sentence is a big one, since there is no guarantee that other fac- 
tors, such as the perturbation pressure, might not intervene to alter that simple prediction. 
In fact, it often occurs that the Reynolds stress turns out to be zero even in the presence of 
shear and perturbations u and w. When that correlation -p0E is different from zero, it 
provides a flux of u-momentum from one z-level to another. If that flux, as described above, 
is downgradient, i.e., from larger U to smaller U, the perturbation energy will increase. 
However, in fluxing mean momentum down the gradient it will tend to locally "flatten" 
the profile of mean velocity as shown in the figure. Now from elementary considerations, 
this internal mechanism cannot alter the overall mean momentum of the flow; that is, 

I ~ d z  = constant 
all z 

However, the mean kinetic energy is 

Iu2podz 12 
all z 

It is easy to see that if the integral of U is fixed and the profile of U is made more 
flat, the variance of U, i.e., the kinetic energy of the mean flow will decrease. 

This can also be seen directly by considering the momentum equation for the mean 
flow in x as written above: 

- 
aii auw 

Multiplication by ii yields 

The first term in the above equation is the rate of change of the kinetic energy asso- 
ciated with the mean flow (per unit mass). The second term on the left is a flux term, 
which will integrate to zero if the flow is contained between horizontal plates where w 
vanishes. The term on the right-hand side is a source or sink of kinetic energy of the 
mean. Comparing it to the equation for the perturbation energy we see that if the 
Reynolds stresses increase the energy of the perturbation wave field, they must at the 
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same time be decreasing the energy of the mean flow. (Note in our identification we 
are using the fact that to order amplitude squared, 2 = U.) Thus, this term is an energy 
transformation term representing an energy transfer between the mean (over a pe- 
riod or wavelength) and the perturbations. 

The vertical flux of wave energy is again p. What can we say about it and its rela- 
tion to the Reynolds stress? The earliest treatment of the problem can be found in 
Eliassen and Palm (1960) and the student is referred to it for an fuller understanding 
of the historical context. 

We are going to be especially interested in steady flows over bumps and the result- 
ing steady wave field generated by the interaction of the flow and the topography. 

In the steady state in which there is no secular increase in the wave energy, the en- 
ergy equation reduces, when averaged in x, to 

after a simple integration by parts of the source term. 
On the other hand, the steady momentum equation in the x-direction is 

Since the motion is two-dimensional and nondivergent, we can introduce a stream 
function y such that 

which allows the momentum equation to be rewritten as 

If the motion is periodic in x or if it vanishes as x--+ infinity then the quantity 
inside the square bracket must itself vanish, so that 

If this equation is multiplied by w, 

where the relation between yand w has been used. An average over a wavelength in x 
then yields the important result: 
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From this it follows from the energy equation that 

This implies that even if EGTi, its derivative with z must be zero if the wavefield is 
steady and there is no dissipation. Returning to the first equation of this lecture for the 
mean flow, it also means that the wave field will not, under these circumstances, alter 
the mean. This will occur only for that part of the wave field that has its quadratic prop- 
erties varying with time, for example at the front of an otherwise steady wave field. 

The relationship of the vertical energy flux and the Reynolds stress allows a simple 
interpretive tool to characterize the sign of the energy flux. From pw + p o G  = 0, it 
follows that 

If the vertical energy flux is positive, this implies that the slope in the x-z-plane of 
the lines of constant y (these are the phase lines of the wave) must be negative if U is 
positive (Fig. 10.2). 

Now let's derive the governing equation for steady perturbations. By taking the 
z-derivative of the x-momentum equation and subtracting from that the x-derivative 
of the vertical momentum equation, we obtain 

which is the equation for the y-component of vorticity. The term on the right-hand 
side represents the baroclinic production of relative vorticity by horizontal density 
gradients in the wave (this is the linearized part of Vp x V p ) .  With the aid of the con- 
tinuity equation, this becomes 

while the adiabatic equation is 

Fig. 10.2. 
The orientation of wave crests 
to yield upward wave radiation 
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Eliminating b between the two equations yields the final equation for the stream 
function: 

We note that if U = 0, the equation reduces to the equation for internal gravity waves 
we obtained in the last lecture, since now 5 = a I at if U is zero. 

However, we are interested in the case where U is not zero but where the flow and 
the wave field are steady. In the steady state, 5 = Ua I ax, and so the governing equa- 
tion for I,Y can be written in the compact form 

For motion that is periodic in x (or which vanishes at infinity) we can integrate the 
above equation twice to obtain 

For solutions that are periodic in x with wave number k, we can look for solutions 
of the form 

where it is understood that we take the real part of the solution. 
Thus, @ satisfies 

A particularly illuminating example occurs when we consider the flow over a bumpy 
lower boundary, whose elevation is given by the periodic form 

(which is why we chose k for the wave number of our solution). 
The lower boundary condition is 

where the last equality depends on the solution being steady and linear. 
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We will imagine that the upper boundary is very far away and idealize that by con- 
sidering that z runs between 0 at the lower boundary and .. for large positive z. 

Since w = ay// ax, an integration of the lower boundary condition in x yields 

A glance at the differential equation for Q, shows that the character of the solution 
depends on whether 

In the former case, the solutions will be oscillatory in z, while in the latter case they 
will be exponential in z. For the simple case of constant U, this change in character has 
a simple physical interpretation. In this case, e2 = N2 I u2. In the frame in which the lower 
boundary is fuced and the flow is moving to the right with speed U, the motion is steady. 
Let's put ourselves in a frame moving to the right with the basic flow. Then the unper- 
turbed fluid appears to be at rest, but it is being disturbed by a lower boundary with a 
ripple of wave number k moving to the right at speed U. This will force a response with 
the forcing frequency of the boundary disturbance, which is Uk. If that frequency is 
greater than the maximum internal gravity wave frequency, N, we clearly can't have a 
wavelike response in z. The condition that Uk < N is simply e2 = N2/ u2 > k2. 

Let us first examine the other case where t2 < k2. 
In this case, the solution for @ is 

Now, for large positive z, we would like the solution to remain bounded, i.e., as 
z-+ .., we want Q, to remain finite. This clearly requires that we choose B = 0. The 
remaining constant is determined by the condition at z = 0, namely, 

Thus, 

-mz ikx - i,u = Re Uh,-,e e - cos kx = Ue-mzh(x) 

from which we obtain 
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w = vx = -Uh,,ke-mz sin kx (10.36a) 

u = -v/, = -Uh,,me-mz cos kx (10.36b) 

-2mz vxtyz = u2gmke sin kxcos kx = 0 

Note that the streamlines are in phase with the topography and simply diminish 
exponentially with height above the bottom. Furthermore, the last equation tells 
us that the Reynolds stress and hence the vertical energy flux are identically zero 
when averaged over a wave period. That seems reasonable. In this parameter regime, 
no internal gravity wave can be excited (the frequency is too large), and without a wave 
response there is no upward radiation of energy. Note also that the vertical displace- 
ment 

v -  < = - - cos kx = h ( ~ ) e - ~ "  
U 

is exactly in phase with the topography. Where the bottom goes up, the streamline 
follows it. 

Let's calculate the drag on the mountain by the pressure in the wave field. For a 
bottom with a relief h = h(x), 

That is, the drag is the pressure times the projection of the topography that presents 
a face perpendicular to the x-axis. There will be a drag if there is higher pressure 
on the face of the slope upstream compared to the pressure on the face downstream. 
We can easily calculate the pressure from the steady zonal momentum equation when 
dU/ dz = 0. In that case, 

from which it follows in the present case, 

Note that for this case, the pressure is in phase with the topography. The lowest 
pressure (the largest negative anomaly) occurs over the ridge crest, and the pressure 
is symmetric about the crest; indeed, 

Thus, in this parameter regime there is no wave radiation and no drag on the to- 
pography. The absence of drag is not too surprising. We know that for a homogene- 
ous, incompressible, irrotational flow in the absence of friction there is no drag. Clearly, 
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if Uk is much greater than N, the fluid will respond as if the stratification were zero 
and the zero drag result of potential flow is anticipated. It is perhaps a little strange 
that this result holds up to the equality (at least) where Uk = N, but as we shall see, the 
drag is directly related to the ability of the flow to support a wave, and the threshold 
Uk = N is precisely that boundary between wave and no wave. 

Now let's consider the more interesting case when Uk < N. This puts the fluid in the 
parameter regime in which internal gravity waves can be generated. In this case, we define 

so that the solution for the wave is 

@(z) = Ae imz + Be-imz 

We still have the boundary condition at z = 0 that 

However, the condition that the solution be finite at infinity is no help at all in re- 
jecting either the A or B solution for @, so that with the boundary condition at z = 0, 
we will have one condition (equation) for the two unknowns, A and B. How did we get 
into this pickle? 

The essence of the difficulty is related to the two infinities we have introduced into 
our problem by our simplifications. First, we have assumed that since the upper bound- 
ary is so far away, we may idealize the region as infinite in z. Of course, for waves radi- 
ating upward, that will hold only for a finite time. Second, we have decided to exam- 
ine the steady problem after all transients have radiated away and that requires that 
in principle, an infinite amount of time has passed so there is clearly a conflict be- 
tween the two assumptions. Had we solved the initial value problem, i.e., if we had 
considered the problem for finite t while the z-domain was infinite, it would be clear 
that since the group velocity is finite, for allfinite t the disturbance should go to zero 
as z goes to infinity. However, in the problem what we have done is to invert this limit. 
By examining the steady problem, we let time go to infinity first and then we must ask 
how the solution looks for large z. Stated this way, it is clear that we are asking for the 
partial solution that is valid within the advancing front that was set up long ago by 
the initial disturbance. Inside that front the solution may be steady, but without con- 
sidering the initial value problem, there seems no way, with the boundary conditions 
so far applied, to specify the steady solution (find A and B). Because we have chosen 
to solve a simple, physically incomplete problem, we must add some physics to take 
the place of the initial value problem we have chosen not to solve (because it would be 
so complicated). Indeed, it would be a pity to have to go through the whole initial value 
problem just to determine which combination of A and B is correct in the steady state. 

The physics that we must add is called the radiation condition. Simply put, it states 
that we must decide on the direction of the wave radiation in the steady state that is 
physically pertinent for our problem. If we consider the problem as one in which a 
disturbance is formed at the topography by its interaction with the current and then 
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radiates upward, the condition should be that the radiation be outgoing radiation; 
that is, the energy flux in the z-direction should be positive. 

We have seen before that the vertical energy flux is 

where again an overbar denotes an average in x over a wavelength. 
With the above solution for 0, we have 

The part of the solution with coefficient A has its phase lines tilting upstream (for 
U > 0), while the B solution has its phase lines tilting downstream (Fig. 10.3). 

We saw earlier that the energy flux would be upward for phase lines tilting upstream 
so we would expect the A solution to be the one that gives us the physically acceptable 
solution of outgoing radiation. Let's calculate the energy flux explicitly. 

With f% = poUyiji,  we first calculate the energy flux in the A solution. Recall that 
we must use the real part of the solution. Thus, using * to denote complex conjugation, 

so that with 8= kx + m z  

It is important to note that in calculating the quadratic product of pw, we had to 
use the real part of * which involves both the linear solution and its complex conju- 
gate. Had we erroneously used only the term proportional to eiO, we would have ob- 
tained only terms like eZiO from the product, and these have zero average over a wave- 
length. The correct answer given above, whose average is different from zero, depends 
on using the full real parts to calculate the flux terms. 

Fig. 10.3. 
The tilt of the wave crests in 
the two solutions. The 
A solution has energy I 
Propagating upward; the 
B solution has energy 

"A" solution "B" solution Propagating downward 
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If we were to make the same calculation with the B solution, the result would be 

Since by convention both m and k are positive, it is the A solution that represents 
outgoing radiation, and the B solution represents incoming radiation from infinity. 
Consistent with our physical description, it is the A solution which is appropriate to 
our problem, since that is the solution that satisfies the radiation condition of out- 
going energy flux. It is important to realize that the B solution is a perfectly fine so- 
lution physically. It represents, in the context of the steady problem, wave energy mov- 
ing downward from some source far away and above the topography. There may in- 
deed be problems in which that radiation would be appropriate, but our specification 
of outward radiation is the additional condition that we must add to render our solu- 
tion both unique and appropriate to the physical problem we have in mind. 

Using the condition that z = 0 yields A = Uh, so that 

y =  ReAe i (kx+mz) - - U b  cos(kx + mz) (10.50) 

this yields, as expected, phase lines tilting upstream (Fig. 10.4). 
From the earlier result (Eq. 10.39), 

Thus on z = 0,p = -p0Uhom sin kx, which is now 90" out of phase with the topogra- 
phy. High pressure now occurs on the upstream face of each ridge (where x is -n: 12)  
while the downstream face has low pressure. This leads to a net force on the topogra- 
phy so that (Fig. 10.5) 

Fig. 10.4. A schematic of the solution satisfying the radiation condition. The phase lines tilt against 
the current 
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p high p low 

Fig. 10.5. The pressure distribution with respect to the topography for the case where waves are radiated 

Note that for km > 0, the correct choice of the phase orientation, the drag is posi- 
tive. This drag has nothing to do with friction; it is simply the response to the wave 
energy that is radiated away to infinity by the topography. Indeed, in the case where 
there was no wave radiation, there was no drag. Note the relation between the wave 
drag on the topography and the flux of energy; using our result for the amplitude A, 

so that the rate at which energy is radiated away from the topography is precisely equal 
to the rate at which the drag is doing work on the topography and thus is equal to the 
rate at which the topography is doing work on the fluid. 

There have been other techniques introduced to deal with the apparent indetermi- 
nacy of the solution for which we have used the radiation condition. An alternative is 
to introduce a small amount of friction, for ease, proportional to the velocity, and re- 
calculate the constant m. With the presence of friction, m will be complex and one 
solution will exponentially increase with z, while the other decreases. choosing the 
solution with the exponential decrease and then letting the size of the friction go to 
zero reproduces the solution found here by the radiation condition. The student should 
think through the physical reason for why this is true, and those with a background 
that includes the Laplace transform should also see why it is equivalent to the steady 
state chosen by the initial value problem. 

We noted above that the choice of solution by the radiation condition is equivalent 
to choosing the solution that has the energy flux upwards. Let's spend a moment re- 
viewing how that would enter explicitly in the steady problem. 

Let prime variables denote velocities and positions seen by an observer moving to 
the right at the speed U. For such an observer, there will be no mean flow and as al- 
ready mentioned, that observer will see a rippled lower boundary moving to the left 
with speed -U forcing the fluid with a frequency Uk. 
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To move into the primed frame, we introduce the relations 

so that the phase in the resting frame ei(kx-mt) becomes ei(kx'+[ku-dt') in the moving 
frame. We define the intrinsic frequency as the frequency seen in the frame moving 
with the mean flow so that it is the frequency with respect to a locally stationary fluid: 

Thus, in the original frame in which the lower boundary is at rest, the frequency is 
the sum of the intrinsic frequency plus the Doppler shift Uk. We know that the in- 
trinsic frequency for internal gravity waves, i.e., in the absence of a mean flow, is 

In the case under consideration, we are taking into account a disturbance which is 
steady in the rest frame so that the frequency w must be zero. This means we must 
choose the negative sign in the above equation for the intrinsic frequency so that the 
Doppler shift downstream cancels the phase propagation upstream. 

The condition of zero frequency chooses the wave number component m such that 

a result already obtained from our differential equation for @ Although the frequency 
is zero, its derivative with respect to wave number is different from zero. Therefore 
the group velocity in the resting frame is 

Using the above results for m yields 

so that the direction of the group velocity is downstream and upwards even though 
the phase lines are tilting upstream. 
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Thus, 

so that 2, is parallel to the wave vector I?. In the frame in which there is no mean flow, 
our earlier results (or a recalculation using the intrinsic frequency) yield 

- - -- 
' Po  K312 

so that in the frame of no mean flow, as previously noted, the group velocity is at right 
angles to the wave vector 

The relation between the two is illustrated in Fig. 10.6. It is a simple matter to show 
+ 

that the two group velocities are orthogonal to one another; that is, cgO = 0. 
The difference between the two group velocities is precisely equal to the mean flow 

in the x-direction U, which carries energy of the wave field downstream. The two wave 
vectors and their relation to the mean flow are shown in Fig. 10.7. A very clear discus- 
sion of the relationship is to be found in Lighthill (1978). 

A final remark is in order about the relation between the drag and the effect on the 
mean flow. Since the drag represents a force on the fluid by the topography, one ex- 

Fig. 10.6. 
The wave vector and the 
direction of the group velocity 
for the steady, radiated internal 
gravity wave 

Fig. 10.7. 
The relationship between the 
group velocity vector for the 
Steady wave and the wave in a 
resting medium urn2//? 
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pects that the mean flow will decelerate as a consequence. However, we earlier noted 
that for steady waves in the absence of dissipation, 

duw -- - -0  and since 

where the right-hand side is calculated from the wave field, there is apparently no 
deceleration of the mean flow. How is this apparent paradox resolved? (Note: usually 
a paradox is a sign of incomplete thought, not an out and out error). 

As mentioned above in our discussion of the radiation condition, there will be an out- 
going front, ahead of which there is no wave signal, behind which we will have established 
the steady wave field of our calculation. At a time t ,  the front will have moved to a 
distance cVt above the topography into the fluid. At the position of the front, the above 
momentum~balance holds. So ahead of the front TiK = 0 while behind the front (Fig.lO.8) 

Thus, 

duw -- <o az 
and is large at the front. It is at the front that the deceleration occurs, and only there. 
Integrating across the front yields a local change in the mean 

Note that the change is of the order of the small parameter ( h , ~ ) ~ ,  which is the 
square of the steepness of the topography. 

Fig. 10.8. The waves radiated from the topography and the Reynolds stress developed behind the 
advancing front 
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Rotation and Potential Vorticity 

For motions whose time scales are of the order of a day or greater, or more precisely 
when the frequency of the wave motion is of the order of the Coriolis parameter or 
less, the effects of the Earth's rotation can no longer be ignored. Such waves are evi- 
dent in both oceanic and atmospheric observational spectra. Figure 11.1 taken from 
the article of Garrett and Munk (1979) shows a power spectrum of vertical displace- 
ment of an isotherm. We see a great deal of variance at frequencies less than N (as we 
might expect) with a peak near the Coriolis frequency f = 2Qsin 8. 

Some waves, such as gravity waves, are aflected by rotation while others are prima- 
rily due to rotation, and of these there are different types with different characteristic 
time scales. 

Consider first an unbounded fluid. To simplify the analysis, we will start by assum- 
ing that it is incompressible, inviscid and uniformly rotating. We will also assume that 
the vertical scale of the motion is much smaller than the scale over which the density 

Fig. 1 1 .I.  
A power spectrum of internal 
wave energy (after Cairns and 
Williams 1976) 

0.01 f 0.1 1 .o N 10 
cph 
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would change by an O(1) amount, i.e., we assume that if m is the vertical wave num- 
ber of the motion, 

For small perturbations we write, as before, 

Then the linearized equations of motion for a fluid whose rotation axis is anti-par- 
allel to the direction of gravity are 

Our goal is to derive a single equation for either the pressure or vertical velocity to 
serve as our wave equation. To start, we take the x-derivative of they-momentum equa- 
tion and subtract from that the y-derivative of the x-momentum equation; that is, we 
are taking the curl of the horizontal momentum equations to obtain 

Note that the Coriolis parameter in this study is assumed independent of position, 
an assumption that will be relaxed later in the course. The component of vorticity 
parallel to the z-axis is 
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It is important to note that in the presence of the background rotation, z-de- 
pendent vertical motion will give rise to relative vorticity by stretching the vortex 
lines associated with the overall rotation of the fluid. If instead of taking the curl 
of the horizontal momentum equations we take the divergence, i.e., the x-derivative 
of the x-momentum equation and the y-derivative of the y-momentum equation, 
we obtain 

If we eliminate w between the vorticity and the divergence equation, 

while eliminating the vorticity between the same two equations yields 

If the perturbation is independent of horizontal position, the right-hand side of 
the above equation would be identically zero, and that would give rise to a harmonic 
oscillation at the Coriolis frequency$ This is analogous to the situation we saw for a 
nonrotating fluid in which disturbances independent of z gave rise to oscillations with 
frequency N. In the latter case, we discovered N as a limiting frequency of oscillation. 
We shall discover the same thing in the presence of rotation for oscillations with 
frequency$ 

If we take the time derivative of the vertical momentum equation and use the adia- 
batic equation to eliminate the buoyancy b, 

so that again, disturbances independent of z will oscillate with frequency N. We now 
have two limiting cases to keep an eye on. If we eliminate the pressure between Eq. 11.1 
and Eq. 11.2, we obtain a single equation for w (take the horizontal Laplacian of Eq. 11.2 
and the vertical derivative of Eq. 11.1): 
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When f is zero, this recovers the wave equation for internal gravity waves studied 
earlier. To derive this equation, we have used repeatedly the approximation that the 
vertical derivative of the background density is small with respect to the vertical de- 
rivative of w, i.e., 

Before proceeding to the solution of the wave equation for w, it is illuminating to 
examine the equations of motion a bit more carefully. 

First of all, note that if we knew the pressure, we could easily find the horizontal 
velocity iih from the easily derived equation 

where z is the unit vector in the z-direction parallel to the rotation (and anti-parallel 
to gravity). 

Second, we can find an equation for the pressure by eliminating w between Eq. 11.8 
and Eq. 11.9 instead of the other way around. We obtain 

This is almost the same equation we obtained for w. There is an extra time deriva- 
tive operating on the whole equation. For motions of nonzero frequency that would 
make no difference, but we must be careful. A first integral of the equation yields 

The question is what is a? Its existence is connected with the conservation equa- 
tion, whose first integral is the above equation. It is also clear that it ought to be de- 
termined by initial data since it is independent of time. Clearly, then, it should be re- 
lated to some quantity that is conserved during the motion. 

If we return to the vorticity equation 

and use the adiabatic equation to eliminate w, we obtain 

This is, for the simple model we are considering, the form of the conservation of 
potential vorticity q, where 
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this form can be easily interpreted. Let's call (to avoid confusion with the symbol for 
vertical relative vorticity) the vertical displacement of a fluid parcel, Z. From the adia- 
batic equation, Z = b 1 N2 SO that 

If the potential vorticity (pv) is conserved, the spreading apart of density surface, 
i.e., 321 az > 0 in the presence of background planetary vorticity,f, will give rise to a 
corresponding increase in relative vorticity to keep q constant. This should be famil- 
iar from simple layer model treatments of pv. 

It seems likely that our conserved quantity l2 is related to q. Can we show what the 
relation is? To simplify the derivation, we will take N constant. 

From 

and 

it follows that 
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so that comparing with the earlier equation, we have, finally, 

Thus, the conserved quantity in the wave equation for the pressure is a simple 
multiple of the potential vorticity. This has very important consequences: 

1. Since aq I a t  = 0, the initial data that gives the pv is sufficient to determine R, and it 
remains unaltered throughout the motion; 

2. The oscillating part of the wave field has no potential vorticity. This also follows 
from the conservation of potential vorticity, since if the motion is periodic, the 
conservation equation aq l  a t  = 0 becomes simply wq = 0. If the frequency is not 
zero, the potential vorticity must be zero. 

Therefore, the pressure and velocity field may be divided into two parts. There is a 
wave part that carries no potential vorticity and a steady part, which is a steady par- 
ticular solution of the p Eq. 11.3. 

Let's write the total solution for p, b and the velocity: 

where the g subscripted variables are independent of time and the w subscripts refer 
to the wave-like part of the motion. 

For the steady, linear part of the motion, the balances are 

that is, for the steady part of the solution, the horizontal velocity is in geostrophic and 
hydrostatic balance, the vertical velocity is zero and most importantly, 

(Note, it is because the geostrophic w is zero that the wave equation for w does not 
contain the extra time derivative that the pressure equation does, because there is no 
nontrivial steady solution for w). 
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Thus, if the potential vorticity is determined by the initial conditions, the above 
elliptic equation for the geostrophic pressure completely determines the steady part 
of the solution, since once the geostrophic pressure is determined, both the steady 
density perturbation and the geostrophic horizontal velocities can be calculated from 
the geostrophic pressure. Note that the vertical velocity in the steady geostrophic so- 
lution is zero as a consequence of the steady form of the adiabatic equation. Thus, the 
steady geostrophic part of the solution can be determined independently of the wave 
part, in terms of the initial value of the potential vorticity. 

Since the wave field carries no pv, the wave part of the pressure field is determined 
from the homogeneous part of Eq. 11.3; thus, 

The initial conditions on the wave pressure must satisfy that part of the initial pressure 
field, which contains no pv. Thus, if the total initial perturbation pressure is piotd(x,y, z, O), 

We will see later how to exploit the potential vorticity conservation for the initial 
value problem, but now let's return to the wave problem. Let 

substitution in the wave equation yields the dispersion relation, 

Note that if rn were zero, the frequency would be N, while if k and 1 were zero, the 
frequency would be& Let Kh be the magnitude of the horizontal component of the wave 
vector , i.e., Kh = d w ,  such that (see Fig. 11.2) 

so that 

Since 
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Fig. 1 1.2. The three-dimen- 
sional wave vector, whose 
orientation determines the 
frequency of the inertial- 
gravity wa* X 

and since almost everywhere in the ocean N >>f, it follows that the frequency of the 
plane wave will satisfy f 5 w 5 N, which explains the rapid fall off of the spectrum of 
observed internal waves at N. The observed peak at f is related to the geometrical prop- 
erties of the forcing. Usually, the horizontal scale is much greater than the vertical scale. 
In this case, a convenient way to write the frequency relation is 

so if Kh << m, the excited frequencies will be close to$ 
With the dispersion relation for the frequency, the student should check that the pv 

in the wave is zero by calculating both the relative vorticity and b, as well as forming q. 
Now let us orient the coordinate system so that the wave vector lies in the x-z-plane. 

This makes the y-wave number zero. Note that velocity in the y-direction will be dif- 
ferent from zero, since 

if I is zero. 
Then 

so that 
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and similarly, 

Thus the components of the group velocity are 

Once again, the vertical component of the group velocity is opposite to the vertical 
phase speed 

and the group velocity is perpendicular to the wave vector (because, again, with an incom- 
pressible fluid, a three-dimensional plane wave has its fluid velocity orthogonal to the wave 
vector, and the group velocity will be in the direction of the energy flux vector F). 

In the limit where k << rn, the dispersion relation is 

and waves with such frequencies are called Po incari  waves.  
Now that w or the wave pressure is determined, it is easy to calculate each of the other 

velocity components and the density perturbation so that the energy in the plane wave 
may be found. The student should check whether equipartition between kinetic and 
potential energy obtains for the internal gravity waves in the presence of rotation. 

If 

it follows that 

b = - ( N 2  i w)Wo sin(kx + rnz - W )  
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Hodograph of horizontal velocity 
I I I I I I I I I 

0.6 - 
i 

Fig. 11.3. The ellipse traced out by the position of the horizontal velocity vector during one wave period 

Note that the relations for u and Y imply that the horizontal velocity vector will rotate 
in the horizontal plane clockwise with time for 0> 0 and m > 0, i.e., for downward 
energy propagation. Indeed, the horizontal velocity vector traces out an ellipse 
(Fig. 11.3) 

whose major axis is along the x-axis and whose minor axis, along the y-axis, is smaller 
by a factor f 1 0. 

Finally,note that if the fluid is contained between two lateral boundaries a distance D 
apart, the equation for the normal modes in that region will be (with the rigid lid ap- 
proximation) 
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Fig. 1 1.4. Normal modes for three frequencies. The density distribution and the distribution of N(z) 
are shown in the first two panels on the left (redrawn from Garrett and Munk 1976) 

The mode shapes will depend on the frequency, and the discussion of the domains 
of oscillation and evanescence in z are similar to the nonrotating case. Figure 1 1.4, taken 
from the previously referenced article by Garrett and Munk (1976), shows some ex- 
amples. 





Lecture 12 

Large-Scale Hydrostatic Motions 

For many motions in both the ocean and the atmosphere, the horizontal scale far ex- 
ceeds the vertical scale of the motion. For example, motions in the ocean occurring in 
the thermocline will have a vertical scale of a kilometer or less, while the horizontal 
scales might be of the order of hundreds of kilometers. Motions in the ocean induced 
by traveling meteorological systems will have such large scales. If the motion has such 
disparate scales in the vertical and horizontal, we can expect important influences on 
the dynamics. First of all, we would expect that the vertical velocity will be small com- 
pared with the horizontal velocity, since the motion consists of nearly flat trajecto- 
ries. That in turn could mean that the vertical acceleration is small. Such dynamical 
consequences often allow simplifications to our treatment of the physics, and we are 
always looking for such simplifications so that we can make progress with more diffi- 
cult problems; not just make life easier for ourselves. 

We need to define clearly what "small" means in a dynamical context. As an example, 
let's review the results of the plane internal gravity wave with rotation. As we saw in 
the last lecture, if 

then the pressure and horizontal velocity is 

p (N2-w2)  -=- Wo cos(kx + mz - cut) (12.2a) 
Po rnw 

Therefore, the ratio of the vertical acceleration to the vertical pressure gradient is 

w2 2 2 k2 2m2 
m = O [  2 )  while w = N  ,+f 7 or 
Pz N -&I K K 
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Now consider the case where the horizontal scale is much larger than the vertical 
scale of the motion. This implies that k << m, and so K~ / m2 = 1. Since k I m is small and 
in oceanographic settings f l N  is small, we see that the vertical acceleration is small 
compared to the vertical pressure gradient. Later we will see more directly how this 
comes about by scaling the equations of motion, but here we can see it from the solu- 
tion of our problem. This implies that to 

o[($,'&] max 

the vertical acceleration in the vertical momentum equation can be ignored compared 
with the vertical pressure gradient so that to this order, that equation is replaced by 
the hydrostatic approximation 

for the perturbation as well as the mean resting state. That is, the motion has such a 
weak vertical acceleration that although the fluid is in motion, the pressure can be 
calculated from the hydrostatic equation as ifthefluid were at rest. This is character- 
istic of motions whose horizontal length scales for the motion are large compared to 
the vertical scales of the motion. 

However, note that although w is small with respect to u, 

so that w cannot be neglected in the continuity equation. The vertical velocity is small 
with respect to the horizontal velocity, but the fast derivative in z in comparison with 
x compensates. 

We will examine such hydrostatic motions and waves starting with a simple ho- 
mogeneous model. 

Potential Vorticity: Layer Model 

Consider a layer of inviscid fluid with, to begin with, a flat bottom and a uniform 
density p. The fluid is rotating with a constant angular velocity R - f l 2 ,  whose axis is 
opposite to the gravitational force (see Fig. 12.1). 

This is meant to be a model for a small segment of the ocean, whose lateral scale, 
while being much greater than the depth, is small enough so that the dynamical ef- 
fects of the Earth's sphericity can be ignored. We therefore use Cartesian coordinates* 
Further, it is convenient to define P = p I p in terms of which the linearized equations 
of motion are, when the hydrostatic approximation is used, 
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Fig. 12.1. A shallow layer of fluid rotating and of constant density 

From the hydrostatic equation, it follows that 

where is the free surface height and Pa is the atmospheric pressure field at the free 
surface. Using the result of the calculation of the pressure, the horizontal momentum 
equations become (subscripts for derivatives) 

Since the forcing terms on the right-hand side of the momentum equations are in- 
dependent of z, it is consistent to look for solutions for u and v that are also indepen- 
dent of z. This allows us to integrate the continuity equation immediately to obtain 

Since w is zero at the bottom (z = -D) and is equal to aq / at at the free surface, the 
equation for mass conservation is simply 
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The horizontal convergence of velocity times D yields the horizontal conver- 
gence of volume. This must be compensated for by an increase in the free surface 
elevation q. 

The elimination of the pressure from the horizontal momentum equations leads 
to the vorticity equation 

which is the statement of p.otent ial vort ic i ty  conservation for the linear, single layer 
model when f is constant. We define the pv as 

To obtain a wave equation for disturbance, we start by taking the divergence of the 
horizontal momentum equations: 

which with the continuity equation yields 

The vorticity can be eliminated from this equation with the aid of the equation re- 
lating the vorticity to the potential vorticity so that 

where c, = @ is the gravity wave speed for long waves in a nonrotatingfluid. 
Note that the potential vorticity is, by the conservation statement, independent of 

time. Thus, once again we can separate the solution for q into a steady part (which will 
be in geostrophic balance) and an unsteady part associated with the waves and which 
will carry no potential vorticity. The geostrophic part of the field will absorb the con- 
sequences of the initial distribution of potential vorticity, while the remainder of the 
initial conditions, the part containing no pv, will radiate away as gravity waves.  gain, 
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the steady part can be calculated independently of the wave part so that the final steady 
state after the wave has radiated away can be calculated independently of the time-de- 
pendent wave problem.' Historically, this has given rise to a set of interesting adjust- 
ment problems, starting with the classical paper of Rossby (1938) (see also Gill 1982). 
In these investigations, the question is asked: suppose we start with an initial distribu- 
tion of velocity and free surface elevation not in geostrophic balance. How does the fluid 
adjust to eventual geostrophic balance, and what is the final geostrophically balanced 
state? The first part of the question requires the solution of the wave radiation problem 
(not easy), while the second part, the ultimate geostrophic state, is very easy because of 
the conservation of pv. We will give a classical example here to see how this works. It 
should be clear that the process is of general application when pv is conserved. 

Rossby Adjustment Problem 

Consider a layer of fluid in which at time t = 0, a slab of fluid occupying the range 
between a and -a is set into motion with a uniform velocity U along the x-axis, and at 
the same initial instant the free surface elevation is zero (Fig. 12.2). Suppose the at- 
mospheric pressure forcing is zero. We would expect, somehow, that eventually the free 
surface will deform, producing a pressure gradient in the y-direction to balance at least 
part of the initial x-velocity. The question is of the original motion: how much ends 
up in steady geostrophic balance and how much of the original energy is radiated away 
in the form of gravity waves? Thus, 

Fig- 12.2. The initial condition in a homogeneous layer of fluid before geostrophic adjustment 

- 
1 

We are assuming that the atmospheric pressure forcing has no steady part. Otherwise it is easy to 
show that the response to such forcing is just an inverted barometer response in which the velocity 
is zero and q = -P,lg, a rather dull solution from the point of view of wave dynamics. 
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The potential vorticity, q, at t = 0 can be easily calculated. The initial free surface 
height is zero, so the only contribution to the potential vorticity comes from the rela- 
tive vorticity: 

where S ( x )  is the Dirac delta function. It is zero except where its argument is zero, 
where its value is infinite and has the property that its integral over the origin of its 
argument is one. It is the derivative of the step function H ( x ) .  Since the original zonal 
velocity can be written as the sum of two step functions 

(see Fig. 12.3) the result for the vorticity follows directly. 
The potential vorticity is thus 

4-' 

Fig. 12.3. The initial velocity as a function of y showing the two delta functions in the vorticity 
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In the steady state in which the final adjusted state is to be calculated, 

Note that the problem is forced entirely by the distribution of pv. Since we expect u 
and to be functions only of y in the final state, the equation can be simplified to 

which must be solved on the infinite y-interval between plus and minus infinity. Since 
the delta functions are zero except at the zeros of their arguments, the right-hand side 
of the above equation is zero except at the two points f a .  Note that what we are really 
doing is finding the Greens function response for q to two point sources of pv at the 
two points f a .  

The velocity field u is initially even about the origin y = 0, and there is nothing in 
the linear problem above that will break that symmetry for u. If u is an even function 
of y, q, whose derivative with respect to y yields the geostrophic u,  must be an odd 
function of y. 

Thus the solution can be written 

where il is the deformation radius defined by 

The deformation radius is an intrinsic length scale and measures the tendency for 
gravity to smooth disturbances out horizontally against the tendency for rotation to 
link the fluid together vertically along the rotation axis. If the fluid were stratified, 
instead of c,, the appropriate speed for defining the deformation radius would be the 
internal gravity wave speed for a particular vertical mode. Hence, for a stratified fluid 
there will in general be an infinite number of deformation radii. In the present case, 
We have only one for the homogeneous layer. Like many other fundamental quantities 
in GFD, this one is named after Rossby and is often called the Rossby deformation 
radius. We will shortly see why the word deformation is used. 

We have used the anticipation of antisymmetry for q to write the solution in terms 
of a single unknown constant A. We have also chosen the solution so that the free sur- 
face elevation is continuous at the point *a. Otherwise, since u is proportional to the 
Y-derivative of q, we would generate infinite velocities at those points. 
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To determine the constant A, we return to the differential equation for and 
integrate it over a small neighborhood around the pointy = a, i.e., from y = a - E to 
y = a + E. We will then let E--+ 0. Carrying out the integration and remembering that 
the integral of the delta function is unity when the interval includes the zero of its 
argument, we obtain 

In the limit where E--+ 0, this yields, using the limits of the solutions on each side 
of the pointy = a, 

This completes the solution. Collecting our results, we have 

from which the geostrophic zonal velocity of the final state can be calculated from 

Note that u is not continuous as the point +a and -a; the jumps in the velocity of 
the initial conditions persist to the final steady state that is forced the by delta func- 
tion sources of potential vorticity at f a ,  which give rise to "kinks" in the free surface 
elevation at those points where the slope of 17 is discontinuous. Note that v is zero in 
the steady state, although it is certainly not z'ero in the waves whose radiation is es- 
sential to reach the steady state. 

The solution for the adjusted steady state has some curious and nonintuitive prop- 
erties. 

Figure 12.4 shows the solution for 17 and u for the case where a = 1 and A is 10, i.e., 
when the deformation radius is large compared to the geometrical scale of the flow. 

Note that in the figures the zonal velocity, whose profile is shown coming out of 
the paper, is positive. 
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Fig. 12.4. The free surface height (solid) and the x-velocity (dashed) for the case where the deforma- 
tion radius is ten times the current half width a 

The velocity profile has not changed much; it is still nearly the sum of step func- 
tions of the initial data, but the free surface elevation that was initially zero has changed. 
The fluid, under the influence of the Coriolis force, has slid to the right of the direc- 
tion of flow to set up a pressure gradient with high pressure to the right of the current 
and low pressure to the left of the current (looking downstream). This final adjusted 
state seems intuitively attractive, and indeed is often the example used for illustrative 
purposes and close to the one Rossby originally used (note: the free surface height 
has been multiplied by 5 for clarity). 

The results become a good deal stranger when the deformation radius is as small or 
smaller than the geometrical scale, i.e., when A, < a. For example, when A is equal to a, 
we get the situation shown in Fig. 12.5. 

Note that now the reduction of the zonal velocity in the center of the region is much 
more evident. The free surface is tilting to support the flow geostrophically, but note the 
reverse flow in the region beyond +a. Also note that the characteristic decay scale for the 
deformed free surface is just the deformation radius, hence the name. The really fun- 
damental role of the potential vorticity is particularly evident when the deformation 
radius is small with respect to the scale a. Figure 12.6 shows the case when A, is 0 .1~.  

In this limit, the final flow consists of two vortex sheets limited to regions of the 
order of the deformation radius around each edge where the delta functions of the pv 
are maintained. The free surface elevation is symmetric about each delta function, and 
the two are nearly nonoverlapping. The structure is very distant from the original pic- 
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Fig. 12.5. As in Fig. 12.4, except that the deformation radius equals the current half width 

Fig. 12.6. As in Fig. 12.4 except that the deformation radius is small with respect to the current half 
width, i.e., 0.1 
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ture of the first figure and emphasizes that the resulting adjusted geostrophic flow is 
determined by the distribution of pv, not by the original distribution of momentum. 

Given the remarkable difference between the final states and the initial state, it is 
important to realize that it is the waves, which are not described, that radiate away that 
part of the initial condition that will not move to geostrophic balance. One measure 
of the amount of radiation is the difference between the initial energy and the final 
energy in the adjusted state. 

Energy 

By forming the product of the horizontal momentum equations with each velocity 
component and the product of the continuity equation with the free surface height, it 
is easy to show that the equation for the energy per unit horizontal area is (in the ab- 
sence of atmospheric pressure forcing) 

Note that the kinetic energy involves only the horizontal velocity. Consistent with 
the hydrostatic approximation, the vertical velocity is too small to contribute. The 
energy flux term is the horizontal velocity times the pressure, which in this case is given 
hydrostatically by the free surface elevation. 

In the adjustment problem just discussed, the initial energy is all kinetic energy, 
since the initial free surface elevation is zero. That initial total energy is 

We could compute the final energy by using our results for u and q and integrating 
over the whole y-interval. There is, though, an easier indirect way to do the calculation. 

Starting from the equation relating q and the potential vorticity, 

Multiplication by gD?7 1 f yields 

If the disturbance vanishes at infinity, the divergence term, the first term on the 
left- hand side of the equation, will have zero integral over the whole domain. Recog- 
nizing that the kinetic energy of the geostrophic velocities is given by the second term 
(divided by 2), we finally obtain for the geostrophically balanced state 
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where the integral is over the whole domain. In the case just considered, q is the sum 
of two delta functions, so 

The ratio of the final energy to the initial energy will give us a measure of how much 
is retained in the geostrophic state and how much is radiated away by the gravity waves. 

That ratio is 

so that the ratio is a function only of the parameter a / A  =fa / c,, i.e., the ratio of the 
width of the current to the deformation radius. The energy ratio as a function of that 
parameter is shown in Fig. 12.7. 

Fig. 12.7. The ratio of the final geostrophic energy to the initial energy 
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The energy ratio is unity when the deformation radius is large, i.e., when the rota- 
tion is negligible. That limit is easy to understand, since if there were no rotation, the 
initial state of no free surface elevation and a uniform flow in the region between y = +a 
and -a would be an exact steady solution. Nothing would happen, and no energy would 
be radiated. At the other extreme, when the deformation radius is small with respect 
to a, the motion is limited to a narrow region around the end points at fa ,  and the 
energy, almost all of which is kinetic, is of the order of u~D*A., i.e., it is of the order 
of A. As the deformation radius becomes small, the energy retained in the geostrophic 
motion becomes small, and in this limit, most of the energy of the initial state is radi- 
ated away as gravity waves. 

The complete problem was studied by Cahn (1945), an associate of Rossby's. Cahn 
presents the full-time dependent solution showing the evolution to the time indepen- 
dent state. The analysis is more complicated than we have space for, but I encourage 
you to at least examine the graphical results of his calculation. 
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Shallow Water Waves in a Rotating Fluid; 
Poincare and Kelvin Waves 

We now examine the nature of the waves which serve, among other things, to sculpt 
the geostrophic final state from an arbitrary initial state. These waves, as we noted 
earlier, have no potential vorticity, because in the simple models we are examining, 
the conservation of pv is simply the statement: 

Thus, for periodic motion for which the time derivative can be replaced by multi- 
plication by the frequency, q must vanish. The wave part then satisfies the wave equa- 
tion derived in the last lecture: 

If there were no rotation, we would get the classical, nondispersive wave equation, 
In one dimension that equation would be 

(13.3) vxx -vt,/.i' = 0 

Its well-known solution is 

where F and G are arbitrary functions of their arguments. The functions can be deter- 
mined by initial data. The important thing to note here is that the shape of the distur- 
bance remains fixed with time, and each function translates F to the right and G to 
the left with the speed c,. The unchanging shape is a reflection of the fact that for 
nonrotating shallow water, the phase speed is independent of wave number; the wave 
is nondispersive, and so no change of shape occurs. 

Returning to the case where the rotation is different from zero, we can find plane 
wave solutions in the x-y-plane of the form 
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which yields for the frequency the dispersion relation: 

It is important to note that the horizontal velocity has a nonzero divergence, since 

so the group velocity does not have to be perpendicular to the wave vector. Indeed, we 
can tell immediately from the dispersion relation that the group velocity will be in the 
direction gf the wave vector. 

Note that the frequency has a minimum value of kJ That is, these waves all have 
frequencies greater than the Coriolis parameter. If A is the wavelength, the increase of 
the frequency of the wave above f will depend on the ratio of the wavelength to the 
deformation radius, colJ If the wavelength is large compared to the deformation ra- 
dius, the frequency will be close to$ 

We may easily calculate the two components of the group velocity: 

Thus, the group velocity is in the direction of the wave vector and in the same direc- 
tion as the phase speed. Note that while the group velocity goes to zero as the wave 
number goes to zero (large wavelengths), the phase speed becomes infinite in that limit; 
this is another indication of the physical irrelevance of the phase speed as a messenger 
of real information. 

By eliminating v between the two horizontal momentum equations, one obtains a 
simple relation between u and q, i.e., 

similarly for v, 

This allows us to solve for u and v in terms of q unless the operator of the left-hand 
side is null, which will happen for oscillations exactly at the inertial frequency, i.e., 
when w = kf. 
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For all other frequencies, we have the relations (after aligning the x-axis with the 
wave vector): 

so that again the velocity vector traces out an ellipse in the x-y-plane whose major axis 
is in the direction of the wave vector, and its minor axis shorter by an amount ol f is at 
right angles. For positive frequency and wave number, the velocity vector in the wave 
moves clockwise as the wave progresses through a period. Note that the fluid velocity 
is smaller than the phase speed by the (small) parameter qO/ D. 

We also note that the maximum group velocity is co, and this occurs for the short- 
est waves. The longest waves have the slowest group velocity. Therefore, were we to do 
the adjustment problem, we would expect that we would see the short waves speed 
away from the adjusting current first, and after a long time, a long swell of waves would 
finally move away from the vicinity of the current. This is exactly what Cahn found as 
seen in Fig. 13.1 redrawn from his paper. 

Horizontal unit = deformation radius co / f 

Fig. 13.1. The free surface height as a function of time showing at first the passage of the fast short 
waves and then the longer waves with slower group velocities (after Cahn 1945) 
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Channel Modes and the Kelvin Wave 

Up to now, we have not considered waves in a domain bounded horizontally. Normally, 
what that does is introduce certain conditions that quantize the horizontal wave num- 
ber. However, in the case of a rotating fluid, there are some surprises. Consider the 
wave motion in a channel of width L (Fig. 13.2). 

Again, the equation of motion for the wave is 

On the boundaries of the channel, which have been oriented along the x-axis, the 
y-component of the velocity, v, must vanish. Since 

the boun&ry condition becomes 

The domain is infinite in the x-direction, and so we can look for wave modes of the form 

77 = m y  )e 
( ikx-ut  ) 

so that q(y) satisfies the ordinary differential equation: 

this is subject to the boundary conditions; 

Fig. 13.2. The channel of width L in plan view in which gravity modes occur 
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Note that if there were no rotation, f = 0, a possible solution would be 77 indepen- 
dent of y with w = f kc,. This would be the lowest cross stream mode and the solution 
with the lowest frequency. Higher modes of the form cosjny I L would also be possible 
with frequencies 

It will be of interest to examine how the rotation alters this simple structure of the 
problem (see also Gill 1982 and Pedlosky 1987). The cause of the change will be found 
in the mixed boundary condition at y = 0 and L, which mixes the function and its de- 
rivative, and which explicitly involves the frequency. 

It is useful to define the constant 

so that ! is something like a y-wave number. The solution can then be written 

q(y) = A sin !y + B cos 4y (13.19) 

The constants A and B are not both free but must be chosen to satisfy the bound- 
ary conditions. Applying the boundary condition on y = 0 first yields 

The same boundary condition applied at y = L yields 

which when combined with the first equation relating A and B yields 

When the definition o f t  is used to evaluate the square bracket in the condition above, 
we obtain the final eigenvalue relation for the modes in the rotating channel, i.e., 
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There are apparently three possible ways in which this eigenvalue relation, or dis- 
persion relation linking w and k, can be found. 

The first of these is immediately suspicious, since as we have noted, when the fre- 
quency is exactly equal tof,  we can no longer use Eqs. 13.8 and 13.9 that relate the 
velocities to the free surface elevation. We will have to examine this case very care- 
fully, and in fact, it will turn out that this is a spurious root. 

The second possibility does not look much more promising, since it appears to yield 
the frequency relation for a y-independent mode for a nonrotating fluid. Note that the 
boundary conditions 

do not allow a nontrivial y-independent solution iff is not zero. 
With all this doubt in mind, let's start with the term that looks like the most ordi- 

nary of eigen conditions, namely 

The solution of this condition is 

where we note that we have started with n = 1. The solution corresponding to n = 0 
would yield, from the boundary condition at y = 0, B = 0. But if l=0 ,  the remaining 
term proportional to A would be the sine of a zero argument. Hence, the whole solu- 
tion becomes trivially zero. 

The physical reason why this occurs is related to the relation between q and v. If 
the free surface height were independent ofy, we would have 

which would be nonzero at the boundaries y = O,L, unless 77 were identically zero ev- 
erywhere. Hence, the first nontrivial term must be n = 1.Using the definition 

this yields the dispersion relation for w for each n, 



Lecture 13 . Shallow Water Waves in a Rotating Fluid; Poincare and Kelvin Waves 139 

This is exactly the dispersion relation for the plane Poincark wave we deduced ear- 
lier, except that the y-wave number is quantized in multiples of n/ L with the major 
exception that the n = 0 mode is not allowed. Now, in the unbounded case, there is such 
ay-independent mode. In addition, when f is zero there is such a mode allowed. What 
has happened to that lowest mode? Something is missing, since it makes no physical 
sense that the addition of the smallest rotation of the system can eliminate the lowest 
mode previously allowed. We have a problem here we must be sure to clear up. For 
now though, let's go ahead as if we have not noticed this vexing apparent paradox and 
examine what the modes that are allowed are like. 

Using the relation between A and B and choosing A to measure the elevation of the 
free surface, 

Note that the y-structure depends on the phase speed of the mode; that is, in the 
square bracket the relative importance of the sine term with respect to the cosine term 
depends on w l  k. To keep the equations uncluttered, the subscript n on the frequency 
has been suppressed, but the student should recall that for each n, the frequency is 
given from the dispersion relation above. Since for each k there are two roots for w 
differing in sign, it follows that the cross channel structure will differ for waves going 
to the right and waves going to the left. Using the relations between the velocities and 
the free surface height 

one easily finds that 

The y-component of velocity contains only the sine term, since of course it has to 
vanish on y = 0 and L. Similarly, the velocity in the x-direction can be found and is 

Looking back at the formula for the free surface elevation (Eq. 13.29), we note that 17 
will vanish for those values of y for which 



140 Lecture 13 . Shallow Water Waves in a Rotating Fluid; Poincare and Kelvin Waves 

Fig. 13.3. The elevation of the free surface for a low rotation mode, o /  f = 14.0852. The gravest mode 
corresponding to n = 1 is shown 

Fig. 13.4. The gravest mode for the case of large rotation. wl f = 1.7245 and the deformation radius is 
about 113 of the channel width 
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When f = 0, these coincide with the infinities of the tangent function, i.e., at y at 
odd half multiples of-L. So, in the limit as f-+ 0, all these modes coincide with the 
cosine modes of cross stream wave number nx I L for n > 0. So, once more we are per- 
plexed to find that even though we have an infinite number of modes, we are missing 
the lowest mode corresponding to n = 0. 

kt's first look at the structure of the modes we have found. First let's look at the mode 
for small f or when the deformation radius is much larger than the channel width. For 
c,lft  = 10, the contours of the free surface height are shown in Fig. 13.3 for an x-wave 
number IT I L. 

Note that for this case, at low rotation the lowest mode has a node at about the half- 
way point iny in the channel. On the other hand, when the rotation rate is large so 
that the deformation length is about a third (actually 0.316) of the channel width, the 
form of the free surface is as shown in Fig. 13.4, and we note that now the zero level is 
much closer to the lower boundary. 

Both of the cases above are for wave patterns propagating to the right. If the fre- 
quency is negative so that the pattern propagates to the left with the same speed as 
the above example, the free surface height instead looks like in Fig. 13.5. 

The pattern is essentially the same except that the nodal line in y has shifted to- 
wards the boundary at y = L as the pattern propagates to the left. 

The student is left to discuss the group velocity in these modes in the x-direction. 
Note that there is no energy flux in the y-direction, and it is left to the student to ex- 
plain why that is in terms of individual plane Poincare waves. 

Fig. 13.5. As in the previous figure but for a wave propagating to the left 
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The Kelvin Mode 

Let's now examine the second possibility as a solution of the eigenvalue condition, 
namely that 

As we noted, this is a rather unexpected possibility, since it is the dispersion rela- 
tion for y-independent, nonrotating, long surface gravity waves. Our fluid is rotating, 
and as we noted above, no solution independent of y is a possible solution in the chan- 
nel. So, it is of interest to examine the possibility with some care. Using the definition 

we find that for this case, 

so that the cross channel wave number is purely imaginary. Let's look at the solution 
corresponding to the positive imaginary root (it is left to the student to repeat the analy- 
sis for the negative root to demonstrate that nothing new is discovered; the negative 
root only serves to interchange the identity of the two solutions we will shortly find). 

Using the relation between A and B from the boundary condition at y = 0, 

and writing the sine and cosine in their exponential form, we obtain 

Here we have redefined A = i q .  
The solution consists of two parts. The first term exponentially decreases from the 

lower boundary at y = 0. The second term exponentially decreases in the -y-direction 
from boundary happens at y = L. The scale for the exponential decrease from either 
boundary is the deformation radius. Note that this solution can occur only in the pres- 
ence of lateral boundaries in order to keep the solution finite for ally. 

For the solution propagating to the right for which w = kc,, the second term vanishes, 
and the total solution restoring the x- and t-dependence is the right moving ~ e l v i n  
wave: 

Note that such a solution would be valid for the region y > 0 if only a single wall 
were present and the fluid were semi-infinite in the +y-direction. We obtained the 
solution using only the boundary condition at y = 0, and we must check that it also 
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satisfies the v = 0 coradition at y = L. In fact, let's calculate v for ally in the channel 
using the relation 

f = -gfk sin(kx - kcot) + g- kc, sin(kx - kcot) 
co 

= O! 

The cross channel velocity is identically zero for all values of y in the channel, and 
so of course this satisfies the boundary conditions trivially at y = 0 and L. Moreover, 
calculating u, 

so that the long channel velocity is in geostrophic balance with the pressurefield, al- 
though the motion is unsteady and the frequency is not small with respect to$ 

If we choose the other root w = -kc, so that the wave is traveling to the left, the so- 
lution consists of the same wave, now a maximum at the boundary at y = L exponen- 
tially decreasing in the direction towards the lower boundary at y = 0. Again, as you 
can check, the cross channel velocity is exactly zero, and the long channel velocity is 
in geostrophic balance. Note that in regions where the free surface elevation and the 
K-velocity are in phase and if one is positive, so is the other. 

Note that as f+ 0, the mode becomes independent of y and 

which is the "missing" lowest mode of the nonrotating case. That mode in the pres- 
ence of rotation maintains its character of having no cross channel velocity and does 
so by introducing a sloping free surface elevation that exactly balances geostrophi- 
tally the Coriolis acceleration of u. Indeed, it is illuminating to examine the original 
equations using the a priori condition that v is identically zero, i.e., 
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Combining the last two of these equations yields 

one solution of which is q = F(x - cot,y) where F is an arbitrary function. The first 
equation determines the y-structure of F. Since from that equation fu, = -gq,, we find 
that from the second equation -fgqx = -gqyt = gcoqyx, the second equality follows from 
the x - cot structure of the function F. This yields the differential equation 

from which the exponential y-structure of the solution follows immediately. An im- 
portant consequence of this approach is that we see that the form of the Kelvin wave 
in x is arbitrary. Any function of the argument x - cot is legitimate for the x-t-struc- 
ture, and as we could see from its dispersion relation, the form in x is unchanging with 
time as the wave propagates, because the frequency relation is nondispersive, i.e., the 
frequency is a linear function of k. 

While the Poincard waves have a minimum frequency 

the Kelvin wave has no minimum. As k+ 0, the frequency will go to zero. So if we 
had a rather narrow channel for which the minimum frequency was quite a bit higher 
than5 a forcing at or below the inertial frequency would not be possible in the chan- 
nel for Poincari waves. The dynamical equations (linear, rotating shallow water) we 
have been studying are often called the Laplace Tidal Equations, because they are 
exactly those used to discuss the tidal response to solar and lunar forcing. Naturally, 
one has to include the effects of sphericity, which we have not done, but qualitatively 
we can see there would be difficulty of the tidal forcing at semi-diurnal or diurnal 
periods to effective produce a Poincard wave response in a narrow sea. Instead, the 
response is more likely to be a Kelvin wave signal propagating around the boundary 
of the sea. 

To get a feeling what that might look like, consider the superposition of two Kelvin 
waves of equal amplitudes propagating on both boundaries of the channel represent- 
ing an incoming wave on one boundary balanced by an outgoing wave on the other 
boundary. We are neglecting the (difficult) problem of the reflection of the Kelvin wave 
at one of the ends of the channel if it is close, but we will assume it is far enough away 
to ignore. 

The sum of the two Kelvin waves would be 

where we have introduced a constant term in the second wave so that each wave has 
the same maximum amplitude. Note that the second wave is decreasing as y diminishes- 
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Note that at y = L 12, the channel mid-point, the free surface height is 

7 = 7, [cos(k[x - cot]) + cos(k[x + cot])] e -JZI 2c0 

= 277, cos kx cos kcote - f l12co 

so that for all t the free surface elevation vanishes and is therefore fixed in time at the 
points 

These fixed points for the elevation are called amphidromic points in tidal theory. 
Figures 13.6-13.8 show the sum of the two Kelvin waves at several times over a wave 
period. The asterisks mark the amphidromic points. 

Figure 13.6 shows the case where kL is n and the figure is drawn for the time t = TI4 
where T is the wave period 2nl kc,. Figure 13.7 shows the free surface elevation some 
time before when t = 0.245T. 

Note that the amphidromic points on the zero contour of free surface height have 
remained stationary as the phase of the disturbance rotates around it. Figure 13.8 shows 
the situation at the later time t = 2.55T. 

Again, note that although the phase lines have altered their tilt considerably, the 
amphidromic points remain stationary. 

fL l co = 0.5, t l period = 0.25, kL = 3.1 41 6 

Fig. 13.6. The superposition of a left and right traveling Kelvin wave of equal amplitude in the chan- 
nel. Note the amphidromic points marked by the asterisks. The pattern is shown at a time where the 
phase lines in y are vertical 
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fL l co = 0.5, t l period = 0.245, kL = 3.1 41 6 

Fig. 13.7. As in the previous figure but at a later time. The phase lines have moved but the amphidromic 
points are fixed on the phase line 

fL l co = 0.5, t l period = 0.255, kL = 3.1 41 6 

Fig. 13.8. The same Kelvin wave superposition at a later time 
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We now turn our attention to the third possibility for an eigen solution, namely 
o = kf; and we noticed that in this case it was not possible to solve directly for the ve- 
locity field from the free surface height, since for example 

the operator on the left-hand side is trivially zero and would give an infinite ampli- 
tude for v. We must return to the original equations, i.e., 

Let's examine a solution oscillating like e-*, i.e., with w =f, and see if it is possible. 
Then 

Note that the determinant of the coefficients of u and v is zero, but if the second 
equation is multiplied by i and subtracted from the first, we obtain 

so that 

- 
'1 - ge-ky 

At the same time using one of the two momentum equations, 

If this is placed in the equation for mass conservation, 

+ D(ux + v Y ) = 0  

we obtain 

-ifif + ikD(iku + vy ) = 0 
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which yields the solution for v: 

However, v must vanish ony = 0 and L. We can make v vanish ony = 0 by the proper 
choice of A so that 

The only way v can vanish on y = L is if the coefficient in front of the sinh term van- 
ishes, in which case v is identically zero and the exponential decay rate for is e-fyl*, 
while the frequency,f, is also kco. Thus, there is no possible wave solution with fre- 
quency f except at a single wave number at which point the solution is indistinguish- 
able from a Kelvin wave. We conclude that the full solution of the problem consists of 
an infinitepumber of Poincari waves plus the Kelvin wave. The dispersion diagram 
for the complete problem is shown in Fig. 13.9. 

Note that for very large k, all the modes approach the dispersion curve for the Kelvin 
wave. Note that there are two Kelvin modes, one for each boundary. 

wlfvs. kL for rotating channel Poincare and Kelvin modes .. 

Fig. 13.9. The full dispersion relation of the Poincard and Kelvin waves 
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Rossby Waves 

When we consider waves of large enough scale, the sphericity of the Earth can no longer 
be ignored. Rossby was the first to point out that the most significant effect of the 
Earth's sphericity is that it rendered the Coriolis parameter f = 2 0  sine, a function of 
latitude. Since the large scale motions in the ocean are nearly horizontal, the only com- 
ponent of the Coriolis acceleration that really matters is the one involving the hori- 
zontal velocities, and therefore only the local vertical component of the Coriolis pa- 
rameter is dynamically significant. Otherwise, for scales that are large but still sub- 
planetary, a Cartesian coordinate system can be used to obtain at least a qualitatively 
correct view of the dynamics. Such an approximation in which the variation of the 
Coriolis parameter with latitude is treated but in which the geometry is otherwise 
Cartesian is called the beta-pla ne approxima tion, and we shall use it without a de- 
tailed justification. The student is referred to Pedlosky (1987) for a careful derivation. 
In this course, we will use the heuristic approach outlined above. 

In this way, we take as the governing linear equations of motion 

ut - fv = -gq x (14. la) 

where now 

where 8, is a mid-latitude point about which we have expanded the Coriolis param- 
eter, and R is the Earth's radius. The relation between latitude and the y-variable fol- 
lows from (see Fig. 14.1) 

y = R(O - 8,), and note that P = af lay (14.3) 

If L is a characteristic magnitude of the north-south scale of the motion, then the 
change off compared to its characteristic value is 

as the principle parameter restriction for the validity of the beta-plane approximation. 
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Fig. 14.1. 
The tangent P-plane at the 
central latitude 8, 

.- JI 
Fig. 14.2. The homogeneous layer of fluid on the P-plane 

At the same time, we will let the depth of the fluid in the absence of motion, which 
we have called D, be a function of position as well (Fig. 14.2). Thus, 

Returning to the continuity equation and integrating it over the depth of the fluid, 
assuming again that since the pressure gradient is independent of depth, we may take 
the horizontal velocities independent of depth: 

D(u, + v,) + w(top) -  bottom) = 0 (14.6a) 

The last condition follows from the kinematic condition that at the bottom, the 
velocity must be parallel to the bottom so that a horizontal velocity flowing across the 
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gradient of the bottom depth produces a vertical velocity in order that the total veloc- 
ity is parallel to the bottom. Putting the equations together yields the equation for mass 
conservation: 

(note that V D  = -Vhb). 
Now let's form the vorticity equation by cross-differentiating the momentum equa- 

tions to eliminate the pressure term. We obtain, remembering that f is a function ofy, 

and then with the mass conservation equation we can eliminate the horizontal diver- 
gence of velocity: 

or equivalently, 

The first term in this equation is the rate of change of the potential vorticity. The 
second term is the inner product of the mass flux with the gradient of the ambient 
potential vorticity f/D. Up to now, with constant f and constant D  that term has been 
zero, and the potential vorticity has been constant at each point. However, in the pres- 
ence of a gradient of the potential vorticity preexisting in the absence of motion, the 
potential vorticity will not be constant at each point, even though it will be conserved 
following a fluid element. When the background potential vorticity is not constant, 
waves may now possess nonzero potential vorticity. 

Let's try to estimate the order of magnitude of the frequency of such a wave in which 
the rate of change of pv is produced by motion in the field of varying ambient poten- 
tial vorticity. The magnitude of the rate of change of pv can be estimated as: 

oU1 L, where U is the characteristic fluid velocity in the wave and L is the charac- 
teristic horizontal scale of the wave (so that derivatives in x andy go like 1 1 L).The 
last term we can estimate as pQ and this yields an estimate of the frequency; 
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w = O(PL), that is, of the order of the gradient off times the north-south excursion 
of the fluid element. The ratio of w to f will then be: 
wl f = O(PL If,) << 1, if the beta plane approximation holds. That is, these waves, in 
distinction to the Poincark waves, will have frequencies less than the Coriolis param- 
eter; they will have time scales long compared to a day and be parametrically separated 
from the spectrum of gravity waves. Note, too, that this wave, again in distinction to the 
Poincark and Kelvin waves, owes its very existence to the presence of rotation. We need 
to discover the relationship between the Rossbywave, as this Pdependent wave is called, 
and the earlier gravity waves we have discussed. We must formulate an equation that 
governs both and then see how each wave type emerges from the governing equation. 

To do so, it is helpful to introduce the transport variables 

where D is the undisturbed depth. In terms of these variables, 

Cross-differentiating the momentum equations yields 

(14.1 la) 

(14.11b) 

The divergence of the momentum equations yields 

We can eliminate the vorticity-like term between the two equations by taking the 
time derivative of the divergence equation and adding to it the vorticity equation 
multiplied by f to obtain 

In the above equation, we have introduced two new operators, 

where a and b are arbitrary functions of x,y and t. 
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The equation for mass conservation allows us to eliminate the divergence of the 
transport to obtain 

Note that were j3 = 0, we would have a single equation in 77, and it would in fact be 
the equation previously derived for gravity waves in the presence of rotation with the 
important exception of the derivatives of D on the right-hand side. To obtain a single 
equation in 77, we must work a little harder. 

As before, we can derive equations relating U and V to the free surface elevation. 
From manipulating the momentum equations we obtain, as before, 

Using these relations, we can eliminate U and V from the previous equation for 77 
to finally obtain 

This is a single equation for the free surface height. It is valid (or should be) for 
both Poincare and Rossby waves, but given that the former have frequencies greater 
than f and the latter have frequencies less than f, some terms in the equation may be 
important for one wave and not for the other. 

Let's estimate the various bracketed terms in the above equation for the case of the 
waves that have frequencies greater thanf. We will estimate each term separately and 
then their ratios: 

Here we have estimated the operator % = ~ ( d )  and have used L to estimate hori- 
zontal derivatives. 

The ratio (2) I (1) is 

For waves that have frequencies 2f; it follows that for such waves the second term 
will be small with respect to the first term, since we have assumed h, << D. Similarly, 

as a consequence of the beta plane approximation. 
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It also follows that 

Thus, for waves whose frequencies exceed5 the governing equation within an er- 
ror of the order of (PL 1 f,, h,l 4) remains the same equation as before; namely, 

so that we will obtain the same Poincare and Kelvin waves as before and the new terms 
in the governing equation will give rise, at most, to small corrections to the frequency 
and structure (one might be interested in finding those corrections but our main con- 
ceptual point here is that they are just corrections to the basic rotational-gravity waves 
we have already found). 

On the other hand, for o ccf, the balance of terms will be quite different. For ex- 
ample, the operator % = O r )  and each term can be estimated to have the order 

Therefore, for frequencies in the range of the estimated Rossby wave frequency, 

SO that for low frequency motions, the approximation to the governing equation is 
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Recalling that f = fo + by and that the second term is much smaller than the first, 
we have a uniform approximation to the above equation as 

where we have also used the smallness of hb with respect to Do. Note that in this equa- 
tion, supposedly valid for low frequency waves, f and D are considered constants ex- 
cept in places where they are spatially differentiated. We will have to work a little harder 
to justify this heuristic derivation, but the outlines of the scaling justification should 
be clear at this point. 

Let's look for plane wave solutions, and to make the notation simple to begin 
with let's examine the simple case where hb is a function only of y and such that its 
derivative with respect to y is constant, i.e., a constant bottom slope. Plane waves of 
the form 

will be a solution of the above equation, if 

w=-  Bk (Rossby wave dispersion relation). 
k2+12+ f2lc; 

Here we have defined 

as an "effective P." 
There are a number of astonishing properties of the dispersion relation. The dis- 

persion relation itself is shown in Fig. 14.3. 
In Fig. 14.3, the frequency is scaled by pcolf, and the wave rmmbers by the defor- 

mation radius col fo, and they wave number has been chosen to be fol c,. 
First of all and most striking is that for each positive k there is only one value of a and 

it is always < 0. So, the phase speed of Rossby waves is always towards negative x (in this 
case where the bottom slope is in the y-direction and where we assume that f l >  0). The 
topographic slope could have the opposite sign, and the wave could have its phase propa- 
gate to positive x, but the important thing is that there is only one value for the phase 
speed. Previously, for all the gravity waves we have studied, for each wave propagating 
to the right, there was one propagating to the left with a frequency of the same mag- 
nitude. This is not true for the Rossby wave. Space is no longer dynamically isotropic. 
The dynamics recognizes, for example, which way north is by the direction of the in- 
crease off. Once there is a special direction in space picked out for the wave, all its 
Properties will manifest that non-isotropy. 

The phase of the wave propagates in such a way that an observer, riding on the wave 
crests and looking in the direction of propagation, would see higher ambient poten- 
tial vorticity on his right. 
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0 2 4 6 8 10 12 14 16 18 20 
Rossby dispersion relation lco 1 f = 1, w,in = -0.35355 kco 1 f -+ 

Fig. 14.3. The dispersion relation for Rossby waves 

The maximum frequency (numerically) as a function of k will occur when 

Over both k and I ,  the maximum frequency will occur when they wave number is 
zero (i.e., when the y wavelength is very much less than the deformation radius) so 
that the overall maximum of the Rossby wave frequency and thus the minimum of 
the Rossby wave period is 

LJo  

Second, it is dynamically impossible at this level of approximation to distinguish 
between the effect of the Earth's sphericity and the effect of a uniform bottom slope 
on aflat Earth in providing the necessary ambient potential vorticity gradient to sup- 
port the Rossby wave. This fact has often been used with profit to construct labora- 
tory models of oceanic waves or circulations that depend on the effect of p by instead 
introducing a uniformly sloping bottom. 
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The fact that the phase speed is always directly to the west (if we think about the 
planetary beta factor) seems puzzling. What would happen to wave energy in a basin 
if it always moved westward and never had a chance to return eastward? Of course, 
we are already alert to the fact that the energy moves with the group velocity and not 
the phase speed, so it is important to calculate the group velocity. 

From the dispersion relation (and for now we will simply write P for the effective 
ambient pv gradient), 

The group velocity in the x-direction is of two signs, although the phase speed is 
always negative. For k2 > l2 +h21 ci, i.e., for waves that are short in the x-direction, the 
group velocity component in the x-direction is positive, while for long waves in x, that 
is, k2 < l2 + fO2/ci, the group velocity is negative, i.e., westward. Long waves have their 
energy propagating westward, and short waves have their energy propagating east- 
ward. 

Figure 14.4 shows the group velocity in the x-direction as a function of k (scaled 
with the deformation radius). 

Ic0 / fo = 1 

Fig. 14.4. The group velocity in the x-direction for the Rossby wave 
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The group velocity in the x-direction is, of course, zero when = l2 +h2/ ci, and it 
has its positive maximum at 

That maximum positive group velocity in the x-direction is 

while its minimum group velocity, or equivalently, its maximum negative group ve- 
locity occurs at k = 0, the longest waves in x, and is equal to 

where we have introduced the notation L, = c,lf, for the deformation radius. Note that 
the rnaxikum speed to the west is eight times greater than the speed to the east. The 
westward moving long waves have a much swifter speed of energy propagation than 
the shorter waves, whose energy moves eastward. 

The group velocity in the y-direction can have either sign, depending on the sign 
of the product of k and 1. Note that since 

the group velocity in the y-direction is oppositely directed to the phase speed in the 
y-direction. This is reminiscent of the oppositely opposed phase and group speeds in 
the vertical direction for internal gravity waves, and it is left to the student to develop 
and complete the analogy. 
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Rossby Waves (Continued), Quasi-Geostrophy 

For the Poincard wave, w 2f; and so the wave motion is not in geostrophic balance, 
while for the Rossby wave, 

so that 

where L is the scale of the motion. Thus, for Rossby waves, the frequency is less than f 
so that in the x-momentum equation, for example, 

term (1) will be less than term (2) by the order of wlf .  The velocity will be in approxi- 
mate geostrophic balance to that order. This is similar to the hydrostatic approxima- 
tion in which the vertical pressure gradient can be calculated as if the fluid were at 
rest, even though it is motion, because the vertical accelerations are very small when 
the aspect ratio D 1 L of the motion is small. Here the horizontal pressure gradient is 
given by the Coriolis acceleration as ifthere were no acceleration of the relative ve- 
locity, i.e., as if the flow were uniform in space and time even though it is not because 
that acceleration is very small compared to the Coriolis acceleration. 

These simple intuitive ideas form the basis of a formal theory, quasi-geostrophy, that 
systematizes that idea (Pedlosky 1987). The reason why we have to be formal is that other- 
wise (and brutal historical experience shows the foolishness of taking the careless path) it 
is not clear how to proceed in the approximation beyond its initial step to arrive at an equa- 
tion of motion that is dynamically consistent and conserves in appropriate approximate 
form all the conservation principles present in the original, more complex set of equa- 
tions. We want the simplified set so that we can penetrate more deeply into the low fre- 
quency limit of the dynamics, which is of special interest in oceanography and meteorol- 
ogy, but we clearly want to do it right. It is always easy to do it wrong. 

For example, if the Coriolis parameter varies, where can that variation be ignored 
and where must it be maintained? The same question will hold with regard to the varia- 
tion of the depth, which we saw in the last lecture acted dynamically similarly to the 
Peffect. If the motion is in geostrophic balance at the lowest order, how can we con- 



160 Lecture 15 . Rossby Waves (Continued), Quasi-Ceostrophy 

sistently calculate its evolution in time or its structure in space? Geostrophy only tells 
us that if we know the velocity, we can calculate the pressure, or vice-versa, but it does 
not tell us how to calculate either of them from initial or boundary data. Our task now 
is to take up this question, and our goal is to derive a set of equations for the low fre- 
quency motion of the fluid, in this example a homogeneous layer of fluid, that is sim- 
pler than the initial set but rich enough to allow us to go beyond the investigation of 
simple plane wave theory. 

To do so, we must bring to the analysis certain physical ideas. Nothing here is, to 
begin with, automatic. Based on our experience, we describe a set of consistent pre- 
sumptions and find the dynamics consistent with those presumptions. If those a priori 
ideas are valid and physically interesting, the resulting equations will give us interest- 
ing results; otherwise, they will not. 

We presume, a priori that the time scales of the motions of interest are long com- 
pared to 1 If. Or, more formally, i f  T (think of a wave period) is the time scale of the 
motion such that 

then we presume 

We also assume that there is a length scale, L, which characterizes the horizontal 
scale of the motion such that horizontal derivatives can be estimated by 1 1 L. Further, 
we assume that there is a scale for the fluid velocity, U, which characterizes the mo- 
tion of the fluid. This means that the nonlinear part of the total derivative, i.e., terms 
like uv,, will be of the order of u2/  L, and this introduces an advect ive t ime scale, 
Tadvective = L / U. The condition that the advective time scale be long compared to the 
rotation period is fradvective >> 1 or equivalently that 

where E is the Rossby number. Actually, we will define the Rossby number in what 
follows in terms of the constant value off at the reference latitude so that 

will be a constant. 
We need to carefully estimate all the terms in the equations of motion and obtain an 

easy way to keep track of their relative sizes. That is most efficiently done by introduc- 
ing non-dimensional variables. These non-dimensional variables will be O(1) if we have 
chosen the scale for time, length and velocity correctly for the motion of interest. 
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We introduce non-dimensional variables as follows; they will temporarily be denoted 
by primes. 

(u, v) = U(u', v') (15.8b) 

t = Tt' (15.8~) 

We must also scale the free surface height q. How should we do that in a way that is 
consistent with our scales for velocity, length, and time and our presumption that the 
motion is of low frequency? We anticipate that the motion to the lowest order will be 
both hydrostatic and geostrophic (almost; that is where the quasi comes in) so that to 
the lowest order we expect that 

but if our estimates of spatial scale are correct, 

therefore, 

and so 

where the deformation radius is, as it was defined earlier, 

For motions whose lateral scale is of the order of the deformation radius, we can 
expect that the proportional change in layer thickness due to the motion, i.e., 77 / D will 
be of the order of the Rossby number and hence small. If L is much larger than the 
deformation radius, we may still be able to consider the proportional change in layer 
thickness due to the motion as small, if the product is 

i.e., for a small enough E. 
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We therefore formally introduce the scaling for the free surface height, 

This allows us to write for the total thickness of the fluid 

and we will assume throughout that 

hb  < < 1  
Do 

Similarly, with the beta-plane approximation in the representation off, we take 

and we assume that the parameter DL l fo << 1. 
Now we insert each of these relations into the equations of motion; for example, in 

the x-momentum equation we have 

Dividing by the factorf,U yields 

where 

Similarly for the y-momentum equation we obtain 

The conservation of mass equation in dimensional units is 
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and by inserting the scaling variables above and the form for D, i.e., 

we obtain 

At this point, our equations look as if they have come down with a bad case of acne; 
the primes make the equations look very ugly. The traditional thing to do at this point 
is to improve the aesthetic quality of the development by droppingprimes. Henceforth, 
unless otherwise noted, unprimed variables will be non-dimensional, and we will use 
asterisks to denote dimensional variables, e.g., x* = Lx. 

Our dynamical system of equations can now be neatly written as 

aii 
~ ~ - + ~ i i . V i i +  

at  

These equations contain several small parameters. There are the two Rossby num- 
bers E~ and E, as well as a measure of the sphericity factor PL 1 fo, and of course, the de- 
viation of the rest thickness of the layer in absence of motion from the constant mea- 
sured by hbl Do. We will assume that the parameter F is order one, i.e., that the hori- 
zontal length scale is of the order of the deformation radius. We will expand the equa- 
tions of motion in an asymptotic series in E and assume that each of the Rossby num- 
bers is of the same order, that is, that 

and if we want to subsequently linearize the resulting equations, we can assume at the 
end of our labors that this parameter is small with respect to one. We will also a~sume  
that PL If, is of order E, which implies that 

The Rossby number, E, is a ratio of the relative vorticity, of the order U/ L to the plan- 
etary vorticity,f: It is assumed small. The ratio above U/ P L ~  is the ratio of the relative 
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vorticity gradient to the planetary vorticity gradient and that can be order one. That is 
because the relative vorticity varies relatively fast on the scale L, while the planetary 
vorticityvaries more slowly on the scale of the Earth's radius, R. The fact is that L 1 R << 1 
is a requirement of the beta-plane approximation. 

So we expand each variable in the series: 

Note that each subscripted variable is independent of E. Thus, when this series is 
inserted in the equations of motion, like orders in E must balance for the equations to 
be valid for E small, but arbitrary. This leads to the following set of equations. 

Collecting the O(1) terms in the momentum equation, 

or in component form, 

which is simply the geostrophic balance at the lowest order (note that the variation of 
the Coriolis parameter does not enter at this order; it as i f f  were constant in the low- 
est order geostrophic balance). Note that as a consequence of geostrophy, 

The geostrophic velocity, with constant f, is horizontally nondivergent. 
When we look for order one terms in the mass conservation equation, the develop- 

ment depends on whether hbl Do is order one or less. We will assume it is O(E) so that, 
as the beta effect, that variation does not enter at the lowest order. It is left for the stu- 
dent to discover what the dynamics will look like if hb 1 Do is O(1). If hb l Do is O(E), 
then all terms in the equation for 77 are of order E, noting that the horizontal diver- 
gence of the O(1) velocity vanishes. 

We then are left at order one, with only the diagnostic relation between the pres- 
sure gradient and the geostrophic velocity with no way, at this order, to calculate the 
evolution of the fields, e.g., to discuss Rossby waves. We must go to a higher order in 
our expansion to do so. It is precisely for this reason that higher order small terms 
must be considered and that we must be exquisitely careful to consider all small terms 
that are of the same order. It is for this reason that we have gone through the scaling 
and the non-dimensionalization so that we can be sure we are not leaving a small term 
out while considering others. We need to keep the dynamics consistent if the final re- 
sult is to be physically sensible. 
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At O(E), i.e., keeping terms of O(E), the conservation of mass and momentum equa- 
tions yield 

Here we have used the fact that 

and that 

in identifying terms of order E. Note that these O(E) equations describe the rate of 
change with time of the O(1) velocities and free surface elevation. However, the equa- 
tions contain the O(E) variables as well, and so the system does not seem closed at this 
order. This is a little bit worrisome. Let us press on, though, by eliminating the O(E) 
free surface elevation from the momentum equations by cross differentiating. Using 
the fact that the O(1) velocities have zero divergence, we obtain an equation for the 
evolution of the relative vorticity: 

where c0 = vox - uOy is the relative vorticity. 
The interpretation of the above equation is rather interesting. The left-hand side 

of the equation yields the total rate of change of the sum of the relative plus planetary 
vorticity following a fluid element; in dimensional variables this would just be 

The right-hand side of the equation is minus the product of the Coriolis parameter 
at the reference latitude,fo and the divergence, i.e., -f,(ux + v,,). In our scaling universe, the 
Coriolis parameter is order one, and the horizontal divergence is O(E), so the product is of 
the same order as the rate of change O(E) of the order one relative vorticity. Note that this 
source of vorticity normally would contain the convergence not only in the presence of 



166 Lecture 15 . Rossby Waves (Continued), Quasi-Geostrophy 

the reference Coriolis parameter but of the full vorticity f + c. However, those corrections 
are of a higher order in Rossby number, it would not be consistent to keep them, and 
indeed, they do not appear in the non-dimensional vorticity equation we have derived. 
This is one of the advantages of the careful bookkeeping that the method does for us. 

We still are in some difficulty, apparently, because the rate of change of the relative 
vorticity is given by the higher order divergence, which we don't know. We can elimi- 
nate the divergence, though, through the use of the equation for mass conservation. 

Thus, 

We have defined 

Indeed, the equation cansbe written in conservation form more simply as 

All variables in the above equation are 0(1), and the equation is a conservation 
equation for an O(1) variable. What is that quantity? By now you should have the feel- 
ing from its form that is the potential vorticity or some suitable approximation to it 
valid for a small Rossby number. We shall check that shortly, but first we need to make 
a very important point. The equation is a single equation in several variables, To, q0 
and the two velocity components. However, the O(1) geostrophic relation allows us to 
write all the variables in terms of the free surface elevation, since 

Vo = Vex (1 5.35b) 

Noting that the lowest order free surface elevation plays the role of a stream func- 
tion for the O(1) geostrophic velocities, we define 

in terms of which the above equation can be rewritten: 
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Thus, we have attained a governing equation in the single variable ty. We introduce 
the notation for the Jacobian, J(a,b), of any two functions a and b: 

The equation of motion is thus 

This equation forms the heart of our analysis of quasi-geostrophic motion, but 
before we proceed to its analysis and in particular its role in wave theory, it is useful 
to understand the origin of the equation in a more heuristic manner than our careful 
asymptotic derivation. 

For a single layer of fluid, in dimensional units, the equation for conservation of 
potential vorticity, assuming only that the motion is hydrostatic and the horizontal 
velocities are independent of z, is 

D is the total depth, and it departs from a constant value by a small amount; in- 
deed, we can approximate the potential vorticity 

using the expansion for 1 1 (1 + E )  = 1 - E + O(E)~. 
Keeping only those terms in the above product that are of either order one or of 

the same order as the relative vorticity, we get 
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The first term in this approximation for q is an irrelevant constant. The conservation 
equation then applies to the second term,which aside from a multiplicative constant yields 

for] fohb = o  ++@--+-) d t Do Do 

At the same level of approximation, the geostrophic relation yields, in dimensional units, 

Thus, the pv equation becomes 

Defining (remember these are in dimensional units) 

the potential vorticity equation becomes 

If we were to scale x and y as we did earlier in the lecture, the above equation would 
become the dimensionless dynamical equation we obtained earlier in our more care- 
ful scaling and asymptotic expansion method. That care allowed us to be sure that in 
our estimate of potential vorticity we included all the correct terms (and no more) 
and that we could replace f with its reference value in the geostrophic relation and 
definition of stream function. 

The end result is that for low frequency motions with a small Rossby number, 
the governing equation of motion is the potential vorticity equation in  which 
all terms are evaluated using their hydrostatic and geostrophic approximations 
in terms of the pressure field, in  this case, the free surface height. 

Note that the total derivative in dimensional units is 

As we remarked earlier, for quasi-geostrophic motions the role of the bottom slope 
mimics that of the beta effect, and one can use a constant bottom slope in the labora- 
tory to model the dynamical effect of the Earth's sphericity. We can see, perhaps more 
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easily from the non-dimensional form of the equation, that the relative importance of 
the beta effect and the bottom slope depend on the ratios 

U ' UIL 

The first is the ratio of the planetary vorticity gradient to the relative vorticity gra- 
dient, and that ratio is typically unity, although as the horizontal scale grows larger the 
beta effect tends to dominate, because for a given scale for U, the relative vorticity and 
its gradient decrease with L. The topographic term can also be thought of as a ratio of 
the contribution by the topography to the potential vorticity gradient Cfohbl Do) 1 L to 
the relative vorticity gradient UI L ~ ,  and again as L increases, the topographic term 
tends to dominate (Note that the equivalent topographic beta is of the order 

so the ratio given above can be written 

to complete the analogy). These terms are the contributions to the ambient poten- 
tial vorticity, that is, the potential vorticity preexisting in the absence of any motion. 
When the ambient potential vorticity dominates, i.e., when the above ratios become 
very large, the first approximation to the potential vorticity equation is just 

The stream function must then be constant along lines of constant ambient pv in 
the x-y-plane, which is an extraordinarily strong constraint. Breaking that constraint 
requires either a source of potential vorticity that will nudge fluid elements off the 
lines of constant ambient pv or regions in which dissipation (hitherto ignored) or 
nonlinearity become important. These considerations are of vital importance in the 
theory of the general circulation of the ocean, but pursuing them further here would 
divert us from our goal of understanding the physics of waves. Therefore, we return 
to the quasi-geostrophic potential vorticity equation (qgpve) given above. We will 
work in dimensional units, although our systematic derivation leaned heavily on our 
scaling and asymptotic approximations for a small Rossby number. 

Quasi-Geostrophic Rossby Waves 

We return to the qgpve and examine the nature of Rossby waves in the presence of an 
ambient potential vorticity gradient. For simplicity, we will take the ambient gradient 
to be a constant. We define the ambient pv as 
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and assume its gradient is constant. The linearized form of the qgpve is then 

The quantity a2 is 1 I LA and has the dimensions of a wave number (squared). With 
the above assumptions on Q, the equation has constant coefficients, and if we consider 
an infinite region, we can find plane wave solutions in the form 

which requires that 

where Zis the two-dimensional wave vector, K2 = k2 + 12,while i is the vertical unit vec- 
tor. Finally, the frequency can be written 

So the frequency depends on the projection of the wave vector on the direction 
perpendicular to VQ, i.e., it depends on the projection of the wave vector along the 
lines of constant ambient pv. Since the geostrophic velocity is perpendicular to the 
wave vector (why is this so?), the frequency depends on the degree to which fluid ele- 
ments cross ambient pv contours. If the fluid flows along pv contours, i.e., if ii VQ = 0, 
the time derivative in the linearized qgpve would be zero: no wave (Fig. 15.1). 

Fig. 15.1. 
The relation between the wave 
vector, the ambient pv gradient 
and the direction of the phase 
speed 1 
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Note that the phase speed in the direction of the wave vector is 

and the inner product of this pseudo vector with the vector i x VQ yields 

Thus, the phase always moves in the direction such that an observer riding on a 
crest will see larger values of Q on her right. As discussed earlier, the phase propaga- 
tion is in a single direction, essentially such as to make an acute angle with the isop- 
leths of ambient pv and to be guided by its gradient. 

The case of a flat bottom arose when VQ = pjwas discussed in the last lecture. What 
we need to do now is to develop a clear picture of the direction and magnitude of en- 
ergy propagation in the Rossby wave. This is rendered a bit tricky because of the dis- 
concerting fact that the obvious candidate for the energy flux at the lowest order in 
Rossby number pii is horizontally nondivergent. That is, if the velocity is geostrophic, 
both its divergence and its inner product with grad p vanish identically. That is not a 
useful tool for calculating the transfer of energy. The difficulty is only resolved by 
noting that as in the case of the dynamics, the energy flux will involve the O(E) contri- 
butions of the pressure to calculate its gradient and O(E) contributions to the velocity 
to calculate the velocity's horizontal divergence. That awkwardness can be avoided by 
dealing directly with the qgpve, as we shall show in the next lecture. 
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Energy and Energy Flux in Rossby Waves 

In discussing the energy and its flux for Rossby waves, we encounter the problem that 
the natural definition of the energy flux at the lowest order pii is horizontally non-di- 
vergent and therefore has no effect on the wave energy. To discuss the real energy flux, 
one has to include the divergent, non-geostrophic O(E) part of the velocity field as well 
as the pressure contribution at this order. This would be a messy business, and what is 
worse is that the solution of the quasi-geostrophic potential vorticity equation doesn't 
give us these quantities as part of the solution. Is there a way we can describe the en- 
ergy flux entirely within the quasi-geostrophic framework? The answer is yes, and it 
follows from a direct consideration of the linear quasi-geostrophic equation. First, 
though, let us orient the y-axis in the direction of the gradient of the ambient potential 
vorticity, VQ, and call the magnitude of the gradient P for obvious reasons. As long as 
the gradient is a constant, there is no loss of generality. It will be up to the student to try 
to generalize these results when the gradient is not constant. The linear qgpve is 

If we multiply the equation by the stream function, we obtain 

which can be rewritten: 

where xis a unit vector in the x-direction. From the definition of the stream function, 
it is clear that the first term in the square brackets is the kinetic energy 

which is associated with the O(1) geostrophic motion. The second term is potential 
energy, since 
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(multiplication of the whole equation by Do is necessary to give the total energy in the 
water column, but this obvious step is trivial). 

Therefore, the first term in the above equation will be the sum of the kinetic and 
potential energies in the wave field. The term in the curly bracket is a vector, 3, whose 
divergence alters the local wave energy. Note that is given entirely in terms of the 
geostrophic stream function, y. 

Thus, we have the usual energy flux equation: 

To get a better feeling for the flux vector 3, consider a Rossby wave packet 

where the amplitude A is a slowly varying function of space and time. Let's calculate 
the energy. The kinetic energy is 

and averaged over a period, 

while the potential energy, which similarly averaged, is 

Thus, the total energy in the Rossby wave averaged over a period (or wavelength) is 

Now we need to calculate the flux vector 3. Using the notation 
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this becomes, when averaged over a wave period, 

To arrive at this, we have used the dispersion relation 

Part of the energy flux vector is in the direction of the wave number, and a part lies 
along the x-axis. It is useful to decompose the flux vector into its x and y components. 
~ f j  is the unit vector along the y-axis, 

where we have used the formula derived earlier for the group velocity of Rossby waves; 
namely, 

This allows us to write the energy equation: 

The Energy Propagation Diagram 

As noted earlier, to obtain the full energy flux written in terms of the pressure work 
term, one would have to include the effects of the order Rossby number ( E )  velocity. 
That velocity is not horizontally nondivergent. Therefore, the total velocity required 
for the calculation of the energy flux does not satisfy the condition that it would be 
Perpendicular to the wave vector. That in turn implies that the group velocity will not 
be perpendicular to the wave vector (nor parallel to it). To discuss the relation between 
the wave vector's direction and the direction of the group velocity (which is, from above, 
the direction of the energy flux), we will employ a graphical development due origi- 
nally to Longuet-Higgins (1964). Consider waves of frequency 
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We will use the convention that k > 0, so that o is < 0. For a given a, the possible 
locus of wave numbers in the k-1-plane satisfies 

The wave vector must therefore lie on a circle (see Fig. 16.1) in the k-1-plane cen- 
tered at the point 

with radius 

Note that for the circle's radius to exist, the frequency has to less than the maxi- 
mum Rossby wave frequency P / 2a. 

The point of the circle closest to the origin lies on the k-axis at a distance 

Fig. 16.1. The energy propagation diagram 
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When the deformation radius cot fo = 1 1 a is very large so that a- 0, the point 
k,- 0. 

Now let's calculate the energy flux vector )S(. From our earlier results, 

where the vector a shown in Fig. 16.1 is directed from the origin of the wave num- 
ber circle to the point on the circle corresponding to wave number I?. ~ o t e  that the 
length of the vector is constant for all wave numbers on the circle, and of course, so is 
the frequency, so that for all waves with waves at that frequency, the magnitude of the 
energy flux is constant as long as the amplitude is the same for the waves. The dia- 
gram is very helpful in visualizing the relation between wave number vector and group 
velocity, and it is immediately apparent that that relation is not a simple one. The group 
velocity is neither perpendicular nor parallel to k, and indeed in some cases, it is nearly 
in the opposite direction. This is particularly helpful in visualizing the process of re- 
flection. 

The Reflection of Rossby Waves 

Consider a straight western boundary of a basin sloping at an angle 8 with respect to 
the x-axis as shown in Fig. 16.2. Suppose a Rossby wave in the form of a packet of a 
beam of energy impinges on the wall from the right (the east). 

16.2. The reflection of Rossby waves from a western wall oriented at an angle 6 with respect to 
the x-axis. The energy propagation diagram is shown adjacent 
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In order for the wave energy to be moving eastward and northward as in the fig- 
ure, the incident wave vector zi must lie on the segment of the circle nearest the ori- 
gin. That is, the wave must be a relatively long wave. For each frequency and y wave 
number, I, there are two choices of k, determined by the dispersion relation: 

The root with the plus sign corresponds to shorter waves and a larger k and hence 
with group velocities to the east, while the root with the minus sign corresponds to a 
group velocity directed westward and is the root that must be chosen to represent the 
incident wave. We represent the incident wave as 

and the reflected wave has the form 

and during the time of interaction with the wall, the total stream function for our linear 
problem is the simple sum of the two waves: 

Fig. 16.3. The incident and reflected wave numbers and their position on the wave propagation circle 
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Let i be the tangent vector to the boundary (see Fig. 16.3): 

On the boundary, x and y are related by y = x tan 0. Thus, on the wall where the to- 
tal stream function must be a constant (and we may choose the constant to be zero), 

For this to be true for all x along the wall and for all time, it is necessary that 

The first condition that the frequency be conserved under reflection (which we have 
seen before in our study of internal waves) means that both the incident and reflected 
wave must lie on the same wave number circle. The second condition requires that the 
component tangent to the wall of both the incident and reflected waves must be equal. 
These, plus the radiation condition that the reflected wave has its energy directed away 
from the wall is sufficient to determine the position of the reflected wave on the wave 
number circle. Note that the magnitude of the wave number is not conserved under 
reflection. Indeed, the wave number vector is lengthened in the reflection process, i.e., 
the reflected wave has a shorter wave length than the incoming wave. Note that since 
the amplitude is conserved, the energy of the reflected wave per unit horizontal area 
is larger than the energy of the incoming wave. Yet energy must be conserved. Since 
both the incoming and outgoing waves are on the same wave number circle and the 
amplitude of the wave is preserved, the magnitude of the vector 3 is preserved un- 
der reflection. Thus, the energyflux of the reflected and incident waves must be the 
same. High-energy, slow-moving wave packets leaving the wall are balanced by rela- 
tively low energy, rapidly moving packets impinging on the wall. It is left for the stu- 
dent to verify that the group speeds meet that condition. It is also left as an exercise 
for the reader to show that the angle of incidence of the group velocity is equal to the 
angle of reflection of the reflected wave packet with respect to the boundary. That is, 
the reflection process is specular. 

In the special case when 6 = nI2, i.e., a wall along a longitude, they wave number 
is conserved under reflection and the incident and reflected x-wave numbers satisfy 
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For very low frequency waves, the discrepancy for the x wave number will be very 
great, and the western boundary of an ocean acts then as a source of very short (in x) 
scale of energy. The reflected wave will have the same zonal velocity as the incident 
wave, but its meridional velocity will be much larger. 

The group velocity in the x-direction in the limit of very short x wave number will 
be of the order 

and is directed eastward. In the presence of a large-scale (Sverdrup dynamics) zonal 
current drift, U, the net group velocity will be 

If U were negative, all scales with k larger than ~P/u would not escape from the 
generation region. This gives, as a characteristic length scale for a zone of high wave 
number energy near the western boundary, 6, = dm, which is the characteristic scale 
of the western boundary current in the inertial theory of the Gulf Stream. When the 
large-scale flow is directed eastward, U is positive and the energy is not trapped. This 
corresponds to the fact that purely inertial models for the Gulf Stream fail in regions 
of eastward Sverdrup flow. It is left to the student to calculate the characteristic dis- 
tance over which the eastward propagating energy, when U < 0, would decay in the 
presence of lateral friction (by calculating the diffusion time for wave number k and 
using the group velocity) to deduce the scale of frictional models of the Gulf Stream. 
This is a good example of how an understanding of fundamental wave dynamics can 
give us insight into even the problems of steady circulation theory. 

The Spin-Down of Rossby Waves 

In regions far from lateral boundaries, the principal dissipative agent is bottom friction. It 
is beyond the scope of this course to review in a complete fashion the nature of the viscous 
boundary layer, the Ekman layer, and the student can refer to several texts (e.g., 
Greenspan 1968 or Pedlosky 1987) for a full discussion. Physically, and for simplicity 
let's think of a flat bottom there will exist a region of the order of 6,= (~, l fo) ' '~  near 
the bottom boundary where the vertical shear of the velocity will be strong so as to 
allow the fluid to satisfy the no-slip condition at the bottom. The thickness of this re- 
gion, 6, depends on the Coriolis parameter and the coefficient of vertical mixing of 
momentum A,, and it is generally very thin. In that layer, the fluid dynamics is no longer 
geostrophic, and the presence of friction allows fluid to flow across lines of constant 
pressure from high pressure to low pressure. Under a region of cyclonic vorticity where 
there will be a low pressure center, the flow in the boundary layer will converge to- 
wards the cyclone's center. Since the flow is incompressible, that lateral convergence 
must lead to a vertical flux of fluid out of the boundary layer into the geostrophic re- 
gion above. That vertical velocity is given by the relation: 
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where is the vorticity of the geostrophic flow. Note that since [is of the order UI L, 
the vertical velocity satisfies our general scaling expectation between w and the hori- 
zontal velocity, i.e., that w = O(Ud I L) where d is the vertical scale of the motion. In 
the boundary layer, d is 4 = ( A , I ~ ) ~ ' ~ ,  and so the result is certainly plausible. The stu- 
dent is encouraged to examine the cited reference for details. 

For the purposes of the wave problem in quasi-geostrophic flow, the effect is to al- 
ter the equation for mass conservation for the layer of geostrophicflow. That comprises 
most of the layer (see Fig. 16.4) except for the boundary layer. 

Redoing the vertical integral of the continuity equation now yields 

Redoing the steps leading to the potential vorticity equation then yields an extra 
term on the right-hand side of the vorticity equation and the potential vorticity equa- 
tion such that now we have 

Fig. 16.4. The genesis of vertical motion pumped out of the bottom Ekman layer by cyclonic gee- 
Strophic motion above the bottom 
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where Ts is a characteristic decay time for the system due to bottom friction: 

Note that this time, called the spin-down time (or spin-up time for optimists), 
increases with the depth and decreases as the mixing coefficient and the rotation get 
larger. 

For linear Rossby waves, the wave equation becomes 

Solutions for plane waves can be found in the form: 

where o is the frictional decay rate. Inserting the above form in the wave equation 
yields, after equating real and imaginary parts of the dispersion relation, 

The frequency wave number relation is unchanged, and the decay rate is in fact one 
over the spin-down time slightly modified by the scale. Note that when the horizontal 
scale is very large compared to the deformation radius, K << a, the decay rate is small, 
while for short length scales for which the above equality is reversed, i.e., when the 
scale is small compared to a deformation radius, the decay rate becomes independent 
of scale (This would exactly occur if there were an upper rigid lid instead of a free 
surface. Why?). 

For our previous work on waves to have relevance it is necessary that we can ob- 
serve at least several oscillations before the wave decays. That is the basis of our ap- 
proximation that inviscid theory is pertinent to the wave problem. So we have been 
implicitly assuming all along that 

wTs = 2n Ts >> 1 
Tperiod 



Lecture 17 

Laplace Tidal Equations 
and the Vertical Structure Equation 

kt's return to the linearized wave equations before the gravity waves are filtered out by 
the quasi-geostrophic approximation. What we will see now is that the analysis of the ho- 
mogeneous model can be carried over, in important cases, to the motion of a stratified 
fluid. A vertical modal decomposition can be done for these cases, and we will be able to 
show that the equations for each vertical mode are analogous to the equations for the single 
layer. Exactly what that relationship is will be the subject of our development that follows. 

To keep the discussion simple, we will consider hydrostatic motion but not necessar- 
ily geostrophic motion. We will also relax the P-plane approximation and consider lin- 
earized motion on the sphere. Our coordinates will be 8 for latitude, $ for longitude, 
and z for the elevation above the Earth's spherical surface as seen in Fig. 17.1. The ve- 
locities in the zonal, meridional and vertical directions will be u, v and w. As before, we 
will separate the pressure and density into the values those variables have in the rest 
state plus a small perturbation due to the motion 

and we will assume that the density field of the basic state po changes only slightly 
over the vertical extent of the fluid (for a compressible fluid like the atmosphere, see 
Andrews et. al. 1987), i.e., 

Fig. 17.1. 
The coordinate system for the hydrostatic 
equations of motion on the sphere 
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For linearized, inviscid motion, the equations for the perturbations become 

We have used subscripts for differentiation. R is the (constant) Earth's radius. We have 
also assumed in the last equation that the motion is adiabatic. In the momentum equa- 
tions, we have included each of the components of the Coriolis acceleration, 2d x ii, and 
please note that while the contribution in Eq. 17.2a of the component of the Earth's ro- 
tation that is tangent to the Earth's surface, 2l2 cos8, involves the weak vertical velocity 
(we are assuming the vertical scale of the motion is much less than its horizontal scale), 
its contribution in the vertical equation of motion depends on the much stronger zonal 
velocity. The issue here is if we ignore this contribution in the zonal momentum equa- 
tion, can we also consistently ignore it in the vertical equation of motion? It is often 
said that if one approximation is made, the other must be made; otherwise if term (b) 
is absent but term (c) retained, the dot product of the velocity with the momentum equa- 
tions would have the Coriolis force doing work on the fluid, an obvious absurdity since 
it is always perpendicular to the velocity. But saving us from absurdity is not a justifica- 
tion for an approximation. We must show term (c) is small if term (b) is. Moreover, the 
smallness of term (c) in its equation must be measured by the same parameter of small- 
ness as term (b) is measured in its equation. If there were different parameters that 
measured the relative smallness of those terms in each of their equations, we might find 
a situation where one parameter was small and the other O(1). So, we must see whether 
a sensibility scaling argument will let us always ignore both terms simultaneously. 

The ratio of term (b) to term (a) is obviously of the order of the vertical to horizon- 
tal velocity. If the scale of the former is Wand that of the latter is U, we know from the 
continuity equation that 

where D and L are the vertical and horizontal scales of motion. Thus if 6 = D I L << 1, 
we can ignore term (b) compared to term (a) in the zonal momentum equation. If the 
Coriolis acceleration enters at the lowest order into the dynamics, then this tells US 
that the scale of the pressure field, P, must be P = po2QUL. 
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This does not imply that there is a balance between the horizontal pressure gradient 
and the Coriolis acceleration, only that they are both O(1) terms in the momentum equa- 
tion. With that scaling for the pressure, the vertical pressure gradient will be of the order 

so that the ratio of term (c) to term (d) will be 

Thus, if D I L << 1, the horizontal component of the Earth's rotation can be ignored 
in both the zonal and vertical momentum equations. Our final set of approximate equa- 
tions is therefore 

Po[~t  - 2 ~ s i n ~ v ] = -  P4 
R cos 8 

Po po [v, +ZR sin OU]= -- 
R 

(17.5b) 

As before, we can write the last equation as 

and the use of the hydrostatic equation allows us to eliminate p completely from the 
equations by writing the adiabatic equation as 

We will consider only those situations in which the bottom of the fluid is flat at z = -D 
and the top consists of a free surface. When the bottom isflat, we can separate the variables 
in the problem into a function of z and a function of horizontal and time variables. Fol- 
lowing the treatment in Moore and Philander (1977) and Pedlosky (1987), we write, 



186 Lecture 17 Laplace Tidal Equations and the Vertical Structure Equation 

Note that U should not be confused with our earlier use of the same symbol for the 
horizontal velocity scale. It is now a variable and a function of horizontal coordinates 
and time. The functions F and G are functions only of z, and they must be determined 
by the physics. Our first goal is to derive the governing structure equations for those 
functions. Finally, the variable q is a function that represents the horizontal structure 
of the pressure field. At this stage, it has nothing at all to do with the actual elevation 
of the fluid's free surface. 

If we insert these forms in the equations of motion, we find first from the horizon- 
tal momentum equations, since F(z) is a common factor, 

u t -p=- gv4 
R cos e 

Aside from the use of spherical coordinates to represent the horizontal pressure 
gradient, these are exactly the linearized momentum equations for a single layer of 
fluid whose velocity components are U and V and whose free surface elevation is q. 

The same process for the continuity equation is not so simple: w depends on the 
function G while u and v are proportional to F. This leads to 

All terms except the ratio of Gz/ F are independent of z, while each term in this ratio 
is a function only of z. The only way this can be consistent (this is familiar from the 
standard separation of variables) is if the ratio is a constant. We define the constant as 

1 
= constant = - 

F h 

The constant h is called the equivalent depth (we shall see why shortly) but at this 
stage of our analysis, it is only a separation constant. This allows us to write the conti- 
nuity equation in the suggestive form: 

Inserting the forms into the adiabatic equation in its form involving the vertical 
pressure gradient Eq. 17.7 yields 
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and it is clear, as in our discussion of the continuity equation, that the coefficient of 
the term W in the last equation must be a constant. We choose that constant to be -1. 
There is no loss of generality in doing this. Choosing any other constant would only 
alter the definition of h. The properly skeptical student should try it. 

With this choice, the adiabatic equation becomes 

which is not a boundary condition but is rather the separated form of the adiabatic 
equation, although the form is delightfully suggestive of the boundary condition for a 
single homogeneous layer. With the above choices for the separation constant, the 
function G now satisfies (and it is here that it would be clear that any other choice than -1 
would only alter the definition of h) 

Iv2 
G,, +-G = 0 

gh 

This is a homogeneous differential equation with, generally, nonconstant coeffi- 
cients, since Nis a function of z and with a free parameter h. The problem is not com- 
plete until the boundary conditions are established. 

In order to have w vanish on z = -D, we must take 

At the free surface, the conditions are that the free surface displacement, which here 
we will call z, satisfies 

while the total pressure is atmospheric pressure, which we will take to be a constant 
(zero), thus 

keeping only linear terms. 
A time derivative of the last equation combined with the kinematic condition then 

yields 

but from the continuity equation, this implies that z = 0: 
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which is the final condition for G. We then have an eigenvalue problem for the func- 
tion G(z), whose eigenvalues are h. Note that the problem could also be written in terms 
of F(z). 

Using the above relations between F and G, we obtain as an equally valid alterna- 
tive problem: 

The advantage of the second formulation is that the eigenvalue h is not in the bound- 
ary condition. 

The equqtions for either G or F can be solved numerically, and the eigenvalue is found 
along with the structure of the solution in z. Insight into the nature of the problem can 
be gained by examining the case for the constant N. 

In that case, the solution for G(z), which satisfies the boundary condition at 
z = -D, is 

m is the vertical wave number of the solution (it will be quantized since the region is 
finite), and 

will be the vertical scale of the motion in the mode that has that value of m as the ver- 
tical wave number. Note that the vertical scale of the motion is not h. Indeed, if we 
define the vertical scale height for the density 

as the scale over which the density changes by its own magnitude (this is much greater 
than the depth of the ocean for realistic oceanic density gradients), the vertical scale 
of the motion is given by 

so that the vertical scale of the motion is essentially the geometric mean of the equiva- 
lent depth and the density scale height. 
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The eigenvalue relation for h is obtained from the final boundary condition at z = 0 
and yields 

We note as we have before that 

Thus the roots of the dispersion relation split into two classes. The first class has roots 
for which mD is O(1). In that case, the right-hand side of the dispersion relation is es- 
sentially zero, and the solutions correspond to the zeros of the tangent function, or 

There are an infinite number of such roots corresponding to 

dnd since m2 = NZ/ gh, the associated equivalent depth for mode j is 

Note that for this mode, the horizontal equations will contain an equivalent long 
wave gravity wave speed: 

These equivalent speeds are the long wave speeds for internal gravity modes of ver- 
tical mode number j and are much slower than the homogeneous phase speed for long 
waves @. 

The modal structures for each j are simply 
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and although these form a complete set for the representation of w (the sine series is 
complete), it is clear that the set of functions 5, while containing an infinite number 
of functions, which are all orthogonal, is not complete, since the cosine series lacks 
the constant term. In other words, we have not found the barotropic mode that con- 
tains zero vertical velocity. 

We must reexamine the dispersion relation. We previously assumed that mD was 
O(1). That may not always be the case. Indeed, as mD+ 0, the dispersion relation 
becomes 

but by definition, 

or for this mode subscripted zero, 

and so 

so that the function 

hardly varies at all in z, i.e., the function is very nearly z-independent. This is the 
barotropic mode. 

TO sum up, for linear, inviscid motion of a stratified fluid on the sphere, when the 
fluid has a flat bottom, we can separate the motion into an infinite number of vertical 
modes. Each mode satisfies a set of equations for its horizontal structure, which is 
identical to that of a homogeneous layer of fluid possessing a long gravity wave speed 
cj = (ghj)lt2. That is, it behaves as a homogeneous layer with the equivalent depth hp 
which itself is one of the eigenvalues of the vertical structure equation. This is the only 
way stratification enters the problem, i.e., by determining the equivalent depths and 
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phase speeds and by determining the vertical structure of the modes. Note that for 
each mode in z, the vertical structure is maintained as that mode propagates, reflects 
or dissipates as time progresses. Thus, all our previous work on the dynamics of 
Poincari, Kelvin and Rossby waves for a homogeneous layer can be carried over, mode 
by mode, to a stratified layer as long as the motion is hydrostatic and the bottom isflat. 
If the bottom is not flat, it is not possible to separate the motion into individual modes. 
The topography will mix the modes together, and the modal description is no longer 
useful. The equations for the horizontal structure are called Laplace's t idal equa- 
t ions,  because in their original application to a homogeneous fluid, they are with ap- 
propriate added forcing terms the equations for the ocean tides. To recapitulate those 
equations we have 

u t -p=- 8% 
R cos B 

+ (vcose), w +-- -0  and 
RcosB RcosB h 

Note that if the last two equations are combined, 

(v cos s), ]=o 
Rcos8 RcosB 

and the correspondence to the dynamics of a shallow layer of fluid of depth h is 
complete. 





Lecture 18 

Equatorial Beta-Plane and Equatorial Waves 

The equator is a special region dynamically, most obviously because there the vertical 
component of the Earth's rotation vanishes. It turns out to be, in consequence, a re- 
gion in which certain linear waves have unusually strong signals and are involved in 
some important atmospheric and oceanic phenomena such as the Quasi-Biennial 
Oscillation in the atmosphere and the El Niiio (ENSO) phenomenon in the ocean (and 
atmosphere). Good, useful references that describe in detail those phenomena are 
Andrews et al. (1987) for the former and Philander (1990) for the latter. 

To see intuitively why the equator might be such as special zone, consider heuristi- 
cally a Poincard wave packet near the equator with frequency 

and we note that near the equator where f vanishes, the y-dependence of the Coriolis 
parameter cannot be neglected. The dispersion relation is of the class of relations 
discussed in our first lecture where the relation between frequency and wave num- 
ber also explicitly includes a dependence on a spatial variable, in this case latitude or 
locally, y, i.e., 

As we noted in the first lecture, the wave vector for a slowly varying packet satisfies 

where j is a unit vector in the meridional direction. Remember that the gradient on 
the right-hand side of the equation for the rate of change of the wave vector is the 
gradient with respect to the explicit dependence of the dispersion relation on spatial 
variables, in this case only y. 

That means that as the packet propagates, the frequency and x-wave number, k, will 
be constant in the packet; only l will change. The dispersion relation for PoincarC waves 
implies that as the packet moves to higher latitudes where f is larger, the y-wave num- 
ber must decrease to keep the frequency constant. Finally at the latitude yc such that 
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they wave number vanishes. Beyond that point, I becomes imaginary, leading to spa- 
tial decay with y for y > y,. This produces a trapping zone around the equator in which 
the wave energy, which would normally disperse in two dimensions, is trapped within 
a wave guide as a consequence of the increase with latitude of the square of the Co- 
riolis parameter, an effect that is clearly symmetric about the equator. Similarly, for 
Rossby waves where 

the same trapping effect must occur. Note that for both Poincari and Rossby waves, the 
meridional component of the group velocity vanishes when they wave number van- 
ishes so that the wave energy will not cross the critical latitude and will be reflected 
back into the equatorial wave guide. Also note that as the Coriolis parameter van- 
ishes, the minimum frequency of Poincari waves approaches the maximum frequency 
of Rossby waves, and so the two wave types cannot be expected to be as well-separated 
in the frequency domain as they are in mid-latitudes. 

Thus, overall, the equatorial band will act as a wave guide for both gravity and 
Rossby waves. We expect the wave modes to be trapped meridionally and the prop- 
agation to be basically along the equator. This means the waves will generally not 
disperse their energy over more than the zonal direction, and consequently the 
amplitude of the waves and their influence can be anticipated to be more impor- 
tant for equatorial dynamics in general than in mid-latitudes. It remains for us to 
move beyond this heuristic discussion to find the nature of the waves in the equa- 
torial zone. 

The Equatorial Beta-Plane 

We will assume that the wave motions have a large enough horizontal scale to ensure 
that the wave motion is hydrostatic. We will also only consider cases in which the ocean 
bottom is considered flat, and in fact, we will not consider any interaction with the 
bottom. In that case, as we saw in the last lecture, we can resolve the wave motion on a 
set of vertical normal modes, each mode yielding an equivalent depth h, and a corre- 
sponding long wave speed c ,  both of which come from the eigenvalue problem de- 
scribed in the previous lecture. 

For the linear inviscid problem, the equations of motion are 

If the motion is limited to a narrow region, L, around the equator such that L I R << 17 
we can expand the trigonometric functions in the above equations, i.e., 
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This allows us to define the local Cartesian coordinate system: 

In these terms, the equations become the simpler set, valid on the equatorial beta-plane: 

Of course, we must check after the fact that our solution does satisfy the condition of 
being localized in the vicinity of the equator. It is also easy to add forcing terms to each of 
the momentum equations to represent the action of a wind stress, and the exercise is left 
to the student to trace the development of the equations with such forcing terms present. 

Now the heuristic discussion at the start of the lecture leads us to anticipate that the 
wave modes will be contained in a wave guide, a sort of naturally produced equatorial 
channel. In that case, we might anticipate that the modes will be analogous to the modes 
we found in the channel problem for mid-latitudes. In that case, we found Poincart5, Kelvin 
and Rossby modes. It was a straightforward business in the mid-latitude case to write the 
problem in terms of the free surface height. With the strong variation off in the equatorial 
case, it turns out be far simpler to pose the problem in terms of the meridional velocity 
(we noted in the mid-latitude case that the eigenstructure for the meridional velocity was 
far simpler than for either the free surface perturbation or the zonal velocity). How- 
ever, based on our experience in the mid-latitude channel, we also might anticipate that 
we should be alert to a wave mode for which the meridional velocity is identically zero, 
for that is one of the chief characteristics of the Kelvin wave. Hence, before we formu- 
late the wave problem in terms of the meridional velocity, we should check to see whether 
a mode exists in which Vn is identically zero. If that were so, we would have 

We have suppressed the explicit subscript notation, and the student is expected to 
realize that the following development is pertinent to each mode n, each with its own 
equivalent depth h. 
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Eliminating the free surface elevation between the first and third equations yields 

U,, - gh Uxx = 0 (18.1 1) 

which is again the classical one-dimensional wave equation whose general solution is 

One solution, LP = U+(x + ct,y), propagates to the west with no change of shape, 
while the other solution, U- = U-(x  - ct,y), propagates eastward with no change of 
shape. These are reminiscent of the Kelvin waves in a channel. In that case, the right- 
moving wave "leaned" against the lower wall, and the left-moving wave "leaned" against 
the upper wall. In the present case, there are no walls, only the equator itself, and we 
have to check whether either of these solutions has a y-structure consistent with equa- 
torial trapping of the disturbance. The y-derivative of the x-momentum equation and 
the x-derivative of y-momentum equation to eliminate the free surface term yields 

Now for each possible solution we have 

which when inserted in U,, = Py Ux yields 

a - ( u ~ ) T  @ ( ~ f ) =  0 and 
ar C 

where F is an arbitrary function. 
Thus, if the region is unbounded in y only, the (-) solution is acceptable, since the 

(+) solution diverges at bl= m. There is only an eastward moving Kelvin wave mode: 

with a corresponding free surface height, 

The mode moves eastward with the long wave speed. For each vertical mode n, that 
wave speed is c - c, = a. The decay scale is 

which is the equatorial deformation radius. 
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Table 18.1. n h, (cm) c, (cm 5-'I Leq (km) T (days) 
Quantities for the first five 
baroclinic modes (Moore and 1 60 240 325 1.5 
Philander 1977) 2 20 140 247 2.0 

To get a feeling for the quantities involved, Table 18.1 (from the article by Moore 
and Philander 1977) gives the pertinent quantities for the first five vertical baroclinic 
modes. The quantities refer to the Equatorial Atlantic but are typical. 

The appropriate time scale is determined by the relation 

Note that the equatorial deformation radius depends on the square root of the long 
wave speed, not on the speed itself as in mid-latitudes. In mid-latitudes, the deforma- 
tion radius is 

but at the equator f = py. If we set y to be of the order of the equatorial scale, this yields 

whose solution yields our previous definition. Note that the time scale above satisfies 

as in Rossby waves. 
For the barotropic mode, the equivalent depth h is of the order of the fluid depth, D. 

This yields 

so that the "trapping" scale is of the order of the planetary scale. In that case, the equa- 
torial wave guide has little sense, since it is global and the barotropic mode must be 
considered separately. Fortunately, most of the equatorial response that seems to be 
relevant is in the baroclinic modes, and indeed the equatorial Kelvin wave has been 
dearly identified in the equatorial regions (Eriksen et al. 1983). 

Note that the y-structure of the Kelvin mode is a Gaussian and that U is in geo- 
strophic balance with the pressure field. 
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We now return to the task of deriving a wave equation for the rest of the wave modes. 
Taking a time derivative of the x-momentum equation and using the mass conserva- 
tion equation yields 

while operating in the same way on the y-momentum equation yields 

We now operate on the above equation for V (Eq. 18.23) with the operator 

and use the equation for U (Eq. 18.22) to obtain 

Carrying out the algebra implied by the above products yields the final equation 
for V: 

Note that the final equation is a local conservation statement for the quantity in 
the square bracket. The student at this point is allowed to guess what that quantity 
really is and to verify the presumption. Also note the similarity of the equation to the 
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wave equation at mid-latitude where the factor P2f is replaced by f .  Also be sure to 
recall that this equation holds for each vertical mode, i.e., for each n with a correspond- 
ing vertical structure function and a corresponding equivalent depth. 

Let's try to find plane wave solutions in x and t of the form 

where I+V satisfies the ordinary differential equation: 

Note that beyond a certain critical value of y, the form of the equation implies eva- 
nescent (or exponentially growing) behavior. Equatorward of that latitude, the func- 
tion  will be oscillatory in y. We can put the equation in standard form by introduc- 
ing a meridional coordinate scaled on the equatorial deformation radius: 

In terms of which, 

This, interestingly enough, is exactly the Schroedinger equation for the quan- 
tum mechanical oscillator, and the solutions have been extensively studied. In the 
mathematics of special functions, this is the Hermite equation. It is well-known 
(see for example Schiff 1955) that the onEy solution that is bounded at infinity is of 
the form 

This, aside from the complicated constant in the denominator to make the func- 
tions orthonormal, is a Gaussian in the meridional coordinate multiplied by one of 
an infinite set of polynomials Hj({)  called the Hermite polynomials. The orthogonal- 
ity condition is 

The Hermite polynomials are generated according to the rule: 
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The first few polynomials are 

Note that the solutions divide into odd and even functions because of the symmetry 
in y of the governing equation for y/. Each of these functions, finite at infinity, satisfy 

The first four of the eigenfunctions are shown In Fig. 18.1. 

Fig. 18.1. The first four eigenfunctions for the equatorial wave amplitude with latitude 
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For our solution to correspond to one of these eigenfunctions and hence satisfy a 
condition of finiteness at infinity, we must have 

This should be compared to the dispersion relation at mid-latitude for Poincark 
waves for a value off- 0, while the last term on the right-hand side is similar to the 
effect produced by the beta term at mid-latitudes. 

This is a cubic for frequency in terms of x-wave number, and it is easier to solve the 
quadratic for k in terms of m. This yields the dispersion relation in the form 

Before discussing the full form of this relation, it is useful to discuss limiting cases. 
If m = O(kc), the last term in Eq. 18.37 would then be of O(pc), which compared to the 
first term is 

Thus, if the gravity wave speed is much greater than the Rossby wave speed, c > PI k2, 
then the last term can be neglected and we obtain the approximate dispersion rela- 
tion for the Poincard waves: 

On the other hand, if m is small, we would obtain a balance between the last term 
in Eq. 18.37 or the approximate equation for the equatorial Rossby mode, i.e., 

It is also easy to solve Eq. 18.38 when j = 0. In that case, 

The two roots are then 
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The first root yields a wave moving with the gravity wave speed to the west, and 
this yields as we have seen before an unbounded solution for the zonal velocity in y 
and must be rejected. The other root does yield a bounded solution. At low frequen- 
cies it looks like a Rossby wave; that is 

while for large frequencies, it looks like a pure gravity wave, w =: kc. 
Thus, there are two classes of solutions for each wave number. There is a set of higher 

frequency modes similar to the mid-latitude PoincarC modes and a set of low frequency 
modes corresponding to the Rossby modes. In addition, there is the Kelvin mode that 
exists only in its eastward traveling form. A single wave, which is discussed above, is 
often called the mixed Rossby-gravity wave or the Yanai wave, which straddles the 
two wave types. Each mode corresponding to a different j index goes along with the 
eigenfunction, 6 ( y l  Leq) for its V-field except the Kelvin mode that has only a zonal 
velocity whose shape is given by y/,, the Gaussian. 

The full dispersion relation is shown in Fig. 18.2. It is standard practice for the equa- 
torial problem to consider only positive frequencies and to let the x-wave number run 
over positive and negative values. 

Fig. 18.2. The dispersion diagram for equatorial waves. The line bending upwards connects the ex- 
trema in the curve of frequency vs. wave number 
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In Fig. 18.2, the wave number is scaled with the equatorial deformation radius and 
the frequency is scaled with the characteristic time scale so that the frequency is given 
in units $&. Note that both the Yanai wave and the Kelvin wave have only positive 
group velocity in the x-direction. Indeed from Eq. 18.37 it is easy to show that 

" [ 'w  -+- k c ]  =c [; -+- :] 
ak pc Lo2 

The group velocity vanishes on the line 

This line in the (m,k)-plane separates westward from eastward group speeds and 
also marks the locus of the extrema in the frequency wave number plane. 

If we insert the above condition in the dispersion relation, we obtain the value of 
the minimum Poincari frequency for each j: 

and 

For each j, these give the points of reversal of the sign of the group velocity. Note 
that the minimum of the Poincari frequency is not at k = 0 but slightly displaced to 
negative k as a consequence of the beta effect. Note that the difference between the 
minimum PoincarC frequency for j = 1 and the maximum Rossby wave frequency for 
j = 1 satisfy 

so that both groups of waves are in the same range of parameter space. Any attempt 
to plot the Rossby waves and Poincari waves of the same diagram in mid-latitude would 
be nearly impossible, since the frequencies are so disparate in size (this is, after all, 
the basis of quasi-geostrophy in mid-latitudes). 
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For each j, there is a corresponding eigenfunction for the V-field from which the 
zonal velocity field can be calculated, i.e., 

112 
vj-l(&) j + 1 'I2 '+!'j+l(&) 

uj=Aji(@)112[(i) [w + kc]  +(i) [a- kc]  ] 
and this holds for the Poincark, Rossby and Yanai waves. It is left to the student to work 
out the corresponding free surface elevations. The Kelvin wave of course has only a 
zonal component, and its amplitude is proportional to yo({). The fact that each j mode 
consists of two eigenfunctions, y for  j's one greater and one less than the j for V, ren- 
ders the reflection problem rather complex. That, plus the physical fact that the Kelvin 
mode only exists in its eastward form makes the reflection problem from the eastern 
and western boundaries quite different, and the student is referred to the references 
given above for a detailed description of that problem. 

Finally, we recall that each of the solutions above represents the contribution of a 
particular vertical mode with mode number n. Hence, each frequency and eigenfunction 
really should carry two indices, one for its horizontal structure (j) and one for its verti- 
cal structure (n). 
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Stratified Quasi-Geostrophic Motion 
and Instability Waves 

We return from our brief visit to the equator and investigate the low frequency mo- 
tions in mid-latitudes that occur in a stratified fluid. The motion we consider will be in 
near (quasi-)geostrophic balance, but we will develop the equations in an informal, 
heuristic way, leaning heavily on the formal analysis of Lecture 15. We will also employ 
the beta-plane approximation so that we are assuming that two parameters, E = UI foL, 
b = DL l fo, are both small. That being the case, the lowest order balances in the horizon- 
tal momentum equation imply that 

Note the beta-plane use of the constant reference value of the Coriolis parameter. 
As a consequence of that balance, it follows that at 0(1), the horizontal velocity is non- 
divergent, so that for an incompressible fluid, 

If w vanishes at any z at the lower or upper boundary or approximatelyvanishes there, 
it follows that w itself is small. Indeed, w is smaller by a factor of E or b compared to its 
geometrical scaling UD/ L. In that case, the vorticity equation that arises at order E can 
be written 

In the vorticity equation, the contribution to the advection of vorticity due to w is neg- 
ligible, since w is of a higher order in Rossby number than u and v, but its influence is felt 
by the stretching term on the right-hand side. Small as w is, the weak stretching is ampli- 
fied by the large Coriolis parameter, the planetary vorticity, which is o ( F ~ )  larger than the 
relative vorticity,which makes up for the smallness of w in the vorticity budget. In the above, 
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At the same time, the motion, which is assumed as usual to be adiabatic, satisfies 

Again, the vertical velocity is negligible in providing a contribution to the advec- 
tion of the perturbation density, but it does enter the advection term by its contribu- 
tion to the advection of the large background density gradient, apo/dz (large, that is, 
with respect to the density gradients associated with the motion; we shall still assume 
that the background density varies slowly compared to the vertical scale of the motion). 

Using the hydrostatic equation and the standard definition of the buoyancy fre- 
quency allows us to write the density equation as 

Eliminating w between the adiabatic equation and the vorticity equation and tak- 
ing care to use the properties of the geostrophic velocity, we obtain as the governing 
equation for the geostrophic stream function 

This is the quasi-geostrophic potential  vorticity equat ion (qgpve).  It is impor- 
tant to note that although the motion is three-dimensional, i.e., a function of x, y and 2, 
the advective term in the equation only reflects the effects of horizontal advection due 
to the rotation-induced smallness of w. A more systematic derivation is given in 
Pedlosky (1987). 

At the lower boundary, the kinematic condition is 

Using the geostrophic relations for the horizontal velocities and the relation 
betweenp and I,V, we obtain for the boundary condition at z = -D 
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Ignoring the deviation of the free surface with respect to that of the internal iso- 
pycnals (the same discussion as for internal waves), the boundary condition at z = 0 is 
just w = 0, which in terms of the geostrophic stream function is 

Let's examine that approximation a bit more carefully. From the adiabatic equation, 
the characteristic size of w generated within the fluid is of the order 

where we have used the geostrophic scaling for p and the scaling UIL for the advective 
time derivative. On the other hand, the vertical velocity at the free upper surface will 
be of the order 

The ratio is of the order 

and so to the lowest order, w is zero at the free surface, which is the condition used above. 
Let's look first for baroclinic Rossby waves. Let the bottom be flat and assume the motion 

is small amplitude so that we can linearize the dynamics. The problem then becomes 

We can find plane wave solutions in the form 

where @ satisfies the ordinary differential equation 
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This is a standard Sturm-Liouville eigenvalue problem, and indeed it is the 
same problem we discussed for the vertical structure equation for Laplace's tidal equa- 
tions. For the simple case where N is a constant, the solutions can be found imme- 
diately as 

(note that n = 0 is a nontrivial case) from which it follows that for each n, 

The n = 0 mode is the barotropic mode. The horizontal motion is independent of z. 
The higher modes, each with a lower frequency for the same horizontal wave number, 
have zero vertically averaged horizontal velocity. For each n, the dispersion relation is 
exactly what we found for a homogeneous layer of fluid, except that now the term in- 
volving the deformation radius is the baroclinic deformation radius, and the barotropic 
mode is approximated by the limit where the deformation radius of the free surface is 
considered infinitely large compared to the L, given above. This is the same approxi- 
mation that allowed us to ignore w at z = 0. Again, mode by vertical mode, we can apply 
all the results of our investigations of the Rossby wave in a homogeneous layer to each 
vertical baroclinic mode. 

Topographic Waves in a Stratified Fluid 

Consider now the case where N is again constant, but a bottom slope exists and we 
ignore the beta effect. This last condition implies that the horizontal length scale is 
small enough that in the linear vorticity balance, WK* >> pk, which we must check af- 
ter the fact. In this case, the potential vorticity equation (linearized) is merely, for the 
same periodic plane wave in x and y, 

We assume for simplicity that the bottom is sloping uniformly in the y-direc- 
tion and that the upper surface at z = 0 is very far away (we have to quantify this idea 
shortly) so that the region can be considered infinite in z. Then the lower boundary 
condition is 

The solution that decays away from the lower boundary and so remains finite with 
distance from the lower boundary is 
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(the student should now show that the condition that the upper surface appears to be 
infinitely far away from the lower boundary is simply KLD >> 1, i.e., that the wavelength 
be short compared to the deformation radius). 

Using this solution in the lower boundary condition yields the dispersion relation 

This is actually a very remarkable result. It has some similarities to the dispersion rela- 
tion for the Kelvin wave. Here we have a single boundary at z = -D and a wave with a single 
direction of propagation. The frequency, as in the case of the Kelvin wave, is indepen- 
dent of the rotation. On the other hand, again like the Kelvin wave, the trapping scale 
depends on$ only now, the trapping increases as f decreases. This bottom trapped wave 
has a vertical trapping scale Ssuch that if A. is the wavelength,fillNS= 1. Another way 
to look at the wave is to note that the bottom slope introduces a topographic beta effect: 

in terms of which 

which has something of the character of a Rossby wave. 

Waves in the Presence of a Mean Flow 

instead of linearizing about a state of rest, let's return to the full, quasi-geostrophic 
potential vorticity equation 

and imagine that the wave is embedded in a mean zonal flow. That is, we will write the 
stream function as Y(y, z), which represents a mean zonal flow that is an exact solu- 
tion of the qgpve, and add to it a wave perturbation so that 

Note that in the basic wave-free state, the zonal flow and the accompanying density 
anomaly are 
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From these definitions or equivalently the thermal wind equation, 

This equation is the perturbation form of the qgpve. The presence of the mean flow 
has produced two very important changes. First, the local time derivative has been 
changed to a linearized form of the advective derivative in which the additional term 

represents the advection by the mean flow. Equally important (if not more so) is the 
fact that the planetary gradient of vorticity, f i  is now supplemented by the contribu- 
tion of the mean flow to the potential vorticity gradient of the basic state. That is, the 
meridional potential vorticity gradient is now 

This is analogous to the way, for a homogeneous fluid, the bottom topography 
supplements the beta effect to provide an altered potential vorticity gradient in which 
the wave propagates. However, as we shall see, the effect of the mean flow can do more 
than simply alter the frequency. 

The boundary condition at z = -D in this linearized problem becomes 

The last term in the square brackets can be written in a rather suggestive form: 
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so that the boundary condition contains terms involving the difierence between the 
slope of the boundary and the slope of the basic state's isopycnal surfaces as they in- 
tersect the boundary. At the upper boundary, which we assume is flat, 

Boundary Waves in a Stratified Fluid 

Consider the situation in which for simplicity we ignore beta completely and suppose 
that the bottom boundary is flat, i.e., hb = 0. Instead we will consider the case where 
the mean flow in the x-direction is sheared in the vertical so that 

where U, is a constant, i.e., a flow with constant vertical shear. This is supported by a 
horizontal density gradient and hence a sloping density surface in the y-z-plane. In- 
stead of the bottom sloping and the basic state density surfaces being flat, as in the 
case of the bottom trapped topographic wave we studied earlier, we now have the bot- 
tom flat and the density surfaces sloping. From the form of the boundary condition, 
however, these might have some equivalence. Let's see. For the case where N is con- 
stant and where the lower and upper boundaries are well-separated (in the sense of 
the topographic boundary wave discussed above), the qgpve is again, for @, 

leading again to the interior solution: 

The boundary condition at z = -D now yields the relation 

The propagation consists of two parts. The first is a simple advection by Uo, which 
is the basic state velocity at z = -D. The more interesting contribution is from the ver- 
tical shear, or equivalently, the slope of the isopycnals relative to the lower surface. 
Indeed, the result for the frequency can be written as 
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which should be compared to the relation for the bottom trapped topographic wave. 
In this simple case, this shows the equivalence between the sloping isopycnals and the 
sloping surface (the change in sign is prefigured by the differing signs in the bound- 
ary term) 

Now let's instead consider a wave localized near the upper boundary. The potential 
vorticity equation is the same, but the solution decaying away from the boundary is 

The boundary condition on z = 0 now yields 

Comparing this result to the case where the wave is trapped near the lower bound- 
ary, we see two differences. First, the advective velocity is different because the shear 
makes the advecting velocity larger at z = 0 (assuming positive shear). Second, the 
intrinsic frequency, i.e., the frequency seen by an observer moving with the local ba- 
sic flow, had the opposite sign compared to the former case. It is the slope of the 
isopycnals relative to the boundary, and this has changed from the previous situation. 

It is interesting to ask whether there is any wave number for which the two frequen- 
cies or the two phase speeds of these apparently independent waves could be equal. If 
that were the case, it could be possible for the two waves to effectively interact. Equat- 
ing the two phase speeds in the two cases leads to 

When the wave number is twice the inverse of the deformation radius, both bound- 
ary waves, one moving towards positive x relative to the localflow at its boundary and 
one moving towards negative x relative to the localflow at its boundary, are moving at 
the same speed relative to a fixed frame. In that case, we might wonder whether a par- 
ticular mode can be produced from the interaction of these two waves. Note that when 
KLD = 0(1), the assumption that the two boundaries are well-separated fails, and we 
have to consider the solution from first principles. A surprise results when we do. 
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Baroclinic Instability and the Eady Model 

We return to our stratified layer with the shear flow previously described. The layer 
has an overall thickness D, and N is constant as well as the shear U,. Again, we ignore 
the beta effect. The algebra is a bit more standard if we move the position of the ori- 
gin in z to the lower boundary so that 0 I z I D. The basic flow is thus 

The boundary conditions are 

while the equation for @ is 

The general solution for @ is 

Applying the boundary conditions at z = 0 and z = D yields two equations for A 
and B: 

- 
z = 0 ,  -c@-pA=O and (19.53a) 

where 

The equations above are two homogeneous, linear, algebraic equations for the 
constants A and B. The condition for nontrivial solutions is that the determinant of 
the coefficients vanishes. This yields a quadratic equation for 2: 
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This yields two solutions: 

112 - U D  U,D 
C=L+- [I-4 coth(pD) 1 

- 
2 2 (pD) 

The useful identity 

1 
cothx = -{tanh(xl2) +coth(x12)} 

2 

finally allows us to write the equation for the phase speed as 

P*D 

Fig. 19.1. A graphical solution of Eq. 19.57. Each term is plotted versus its argument 
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Since x 2 tanh x for all x, the second factor in the square bracket is always positive. 
The first factor will change sign where 

The graphical construction of the intersection (Fig. 19.1) shows that the critical 
value of pD = 2.3994. 

Note that this corresponds to a value of K = 2.3997 I L, rather close to the heuristi- 
cally motivated value from the previous discussion. For wave numbers less than this 
critical K, the frequency will be complex. 

When c is complex, i.e., when c = cr + iciJ the behavior in time consists of an oscillation 
and an exponential growth for positive c, i.e., the time factor becomes e-ikCt = e-ikcrtekcit 
with agrowth rate 

Figure 19.2 below shows the real part of the phase speed measured with respect to U, 
and scaled by Up .  The dotted line shows the imaginary part of c also scaled with UpJ 

Fig. 19.2. The Eady dispersion relation K scaled on deformation radius. The thin curves show the 
real and imaginary parts of the phase speed. The heavy line made of "0's" shows the growth rate 
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while the imaginary part of the frequency, the growth rate scaled by U, or the shear, is shown 
to be the line formed by the circles. The figure is drawn for the case where 1 = 0. 

Note that for each wave number for which a positive imaginary part of c exists, there 
is another solution with the same real part of c but whose imaginary part is negative. 
This follows from the fact that the equation of the perturbation field is real, so that if 
@ is a solution with eigenvalue c, its complex conjugate @* will be a solution with 
eigenvalue c*. Since the dynamics is inviscid and thus reversible in time, the physics 
must include the possibility for a cunningly chosen initial condition to return a dis- 
turbance to zero amplitude (exponentially slowly). 

The model described above was initially described by E. T. Eady (1949). This ex- 
planation and the paper by Jule Charney (1947) were the first to correctly describe 
the instability process now known as baroclin ic instability of which the Eady model 
is perhaps the simplest example. The accomplishments of both these independent 
analyses are staggering. Not only did Eady and Charney, who were working indepen- 
dently, correctly identify the physical process responsible for synoptic scale waves in 
the atmosphere (and ocean), but they had to derive a version of quasi-geostrophy at 
the same time. For those of you starting graduate school, it will give you a standard to 
strive for to know that this represented Charney's Ph.D. thesis. 

For K greater than the critical value Kc = 2.3999 1 L,, both roots for the phase speed 
are real. As K gets very large, each root approaches the value of the zonal velocity at 

Eady eigenfunctions pD = KND / fo 

pD = 6, crl = 0.83333, cr2 = 0.1 6667, Cil = O 

Fig. 19.3. The stable Eady eigenfunction for KLD = 6 



Lecture 19 Stratified Quasi-Geostrophic Motion and Instability Waves 217 

one of the boundaries at z = 0 or z = 1, and the eigenfunction resembles the trapped 
boundarywave of the semi-infinite interval model. Figure 19.3 shows an example when 
KL, = 6.  The eigenfunction with c" / (Up) about 0.8 is shown. Note its intensification 
near the upper boundary. 

In this limit, there is no interaction between the upper and lower boundaries and 
the wave is stable. We shall see later a theorem that will explain why, in the Eady model, 
such an interaction is necessary for instability. 

As K approaches its critical value from above, the two roots for c coalesce. For K 
less than the critical value, there are two roots which are complex conjugates. 

The growth rate is 

That is, the complex phase speed, as we can see from the original eigenvalue prob- 
lem is a function only of the total wave number. The growth rate is the imaginary part 
of that phase speed multiplied by the x-wave number, i.e., by the component of the 
wave vector in the direction of the basic velocity. The largest growth rate will there- 
fore occur for a given K when k is largest, i.e., when the y-wave number, 1, is zero. In 
the figure showing the growth rate, I have chosen the case where 1 = 0. The maximum 
growth rate occurs for k on the order of 1.6 / L,, which gives a quarter wavelength of 
just under L, itself. This is the basic explanation for the presence in both the atmo- 
sphere and the ocean of synoptic scale eddies with the scale, preferentially, of the de- 
formation radius. 

The fact that the instability is maximized for 1 = 0 is related to the energy source 
for the waves. Since the motion is horizontally divergent to the lowest order (geo- 
strophic), the perturbation velocity is perpendicular to the wave vector. With the wave 
vector oriented in the x-direction, the perturbation velocity will be directed across the 
current in the y-direction. 

Now from the thermal wind relation, 

and using the relation 

it follows that the slope of the isopycnals in the basic state is 

Motion in the y-direction will therefore move fluid down the density gradient, and 
the fluid motion has a chance to release the potential energy that is stored in the slop- 
ing density surfaces, a slope required to balance the vertical shear of the current in 
which the wave is embedded. 
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The important point to keep in mind is that these waves are self-excited; since they 
are unstable, the slightest perturbation of the basic flow will produce a spectrum of 
growing waves, and we anticipate that at least until the amplitude becomes large enough 
for nonlinearity to be important, we will see the most unstable wave dominate the spec- 
trum. That is, we don't need an external forcing mechanism to produce the wave, in 
distinction to all the wave types we have discussed before. We will have to discuss more 
completely the energy source for the waves that is in the basic current, but it should be 
intuitively clear that the sloping density surfaces are a potential source of energy if the 
perturbations on average can level those surfaces releasing potential energy to pertur- 
bation kinetic energy. 

For the unstable wave, the function @will be complex, since c is complex and A and B 
will thus be complex. It is useful to recognize this and write the stream function: 

In the above, we have separated the amplitude function @into its modulus and its phase 

Fig. 19.4. The modulus (solid) and phase (dashed) for the stable (ci < 0) and unstable (ci > 0) waves. 
The phase of the unstable mode increases with height 
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A line of constant phase in the x-z-plane will be a line on which 

ph = kx + a ( z )  = constant 

The slope of a line of constant phase is therefore 

Figure 19.4 shows the modulus of the eigenfunction and its phase for a wave num- 
ber very near the wave number of maximum growth rate. Both the unstable wave and 
its complex conjugate are shown. Of course, the modulus of @ is the same for both. 
Note that the function a increases with z for the unstable wave and decreases with z 
for the stable wave. 

For the unstable wave, the fact that a increases with z means that a line of constant 
phase of the unstable wave has a negative slope in the x-z-plane; that is, it leans against 
the current shear. Intuitively, for a passive tracer we would expect isolines of the tracer 
to be pitched over in the direction of the shear. The unstable wave has an active structure, 
and to extract energy from the basic flow it must lean against the shear in the current. 





Lecture 20 

Energy Equation 
and Necessary Conditions for Instability 

To get a better feeling for where the source of the instability is, it is useful to develop 
an equation for the perturbation energy for waves in the presence of a mean flow that 
contains both horizontal and vertical shear. This entire subject is enormous, and we 
will only scratch the surface in our discussion. The text by Gill (1982) and Pedlosky 
(1987) contain ample discussion for further reading. 

We start with the governing equation for the linear perturbations derived in the 
last lecture: 

where the term in the last bracket is the potential vorticity gradient in the y-direction 
associated with the basic flow. It contains contributions from /3, the relative vorticity 
gradient and the gradient of the thickness between isopycnal surface in the basic state 

where Z(y) is the position of an isopycnal in the basic state. 
To derive the energy equation, we follow the steps we took earlier in finding the 

energy flux vector for quasi-geostrophic Rossby waves. We multiply the qgpve by the 
stream function and manipulate the derivatives to work the form into a budget for 
the energy. The details are a good deal more tedious here, because U is a function of y 
and z and there are many "extra" terms. It is these terms that are the most illurninat- 
ing. The details of the derivation will be left for the student. The result with no fur- 
ther approximation can be written 
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where i is a unit vector in the x-direction. The energy E is the sum of the kinetic en- 
ergy and the potential energy. The second term in E is the potential energy, since 

which we recognize from our discussion of internal waves as the representation of the 
potential energy in the wave field. The horizontal flux vector is similar to that which 
we found for Rossby waves. The local time derivative in the first term is replaced by the 
linearized advective derivative, and the beta term is replaced by the full potential vor- 
ticity gradient. This is supplemented by the advection of energy in the x-direction by 
the mean flow plus two other terms. These terms are more difficult to interpret easily, 
but they are related to corrections to the higher order work terms done by the geo- 
strophic pressure correction. The horizontal divergence of this fluxvector has its com- 
panion in the z-direction. 

If the fluid is contained within solid walls in z and y so that the boundary conditions 
at z = 0 and z = -D are as described in the previous lecture, and if the perturbation is 
either periodic in x or vanishes for large positive and negative x, then the volume integral 
of the flux terms will contribute no net term to the energy balance for the perturbation 
energy. This is really just a consequence of the definition of energy flux. The flux vector 
moves the energy from one place to another without creating or destroying energy. 

However, there are two terms: these terms are on the right-hand side of the 
energy equation that in general, do not integrate to zero when the volume integral 
is carried out. The first of these is already familiar from our discussion of the en- 
ergy flux in internal gravity waves in a mean current. Using a bracket to denote a 
volume integral, this term is 

and thus is the integral of the horizontal Reynolds stress times the horizontal shear of 
the basic current. If the perturbation carries larger values of zonal momentum to re- 
gions of lower momentum tending to smooth out the mean lateral shear, i.e., if when 
U, > 0 and v < 0 we also have u > 0 so that the perturbations "remember" that they have 
come from a region of large zonal momentum compared to their destination, the mean 
shear will be flattened with a consequent increase in wave energy as the energy of the 
basic current is reduced. Such an energy transfer requiring only horizontal motions 
occurs in ordinary shear flow instability of a homogeneous fluid with lateral shear and 
is termed barotropic instability. 

In the Eady model we discussed in the last lecture, the basic current has no hori- 
zontal shear so that this energy transformation process is absent. The remaining term 
on the right-hand side is the pertinent one for that process. Using the relation between 
geostrophic stream function and density perturbation, 
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This baroclinic energy transformation term is proportional to the transport in 
the y-direction, i.e., in the direction of the density gradient of perturbation density. 
If, for example py > 0, tl Uz > 0, on average (when integrated over the volume of the 
fluid) parcels moving to positive y carry a negative density anomaly and fluid elements 
moving from positive y carry a positive density anomaly. The product -vp > 0 and so 
the energy of the wave field will increase. That is, if the wave field produces a flux of 
density from regions of high to low density of the basic state, tending to smooth out 
the basic horizontal density gradient, this will flatten the slope of the mean isopycnal 
surfaces and release energy for the perturbations. 

It is really a form of convection. In ordinary convection in which fluid is heated 
from below, energy is released by having warm, light fluid rise and cold, heavy, dense 
fluid sink. Here the situation is a bit more complex, but fluid coming from the region 
of larger mean density moving to smaller mean density will tend to sink as it moves 
laterally and vice-versa for the fluid moving in the opposite direction. 

Notice that to have this transformation term positive, we need 

so that the product of the basic vertical shear multiplied by the slope of the isolines 
of constant 4 in the x-z-plane must be negative. That is, the phase lines of constant 
perturbation of the geostrophic stream function must lean against the shear, as 
we already noted from the Eady model. Here we see that it is a necessity to release 
the potential energy locked up in the sloping isopycnal surfaces of the basic state. 
Figure 20.1 shows a cross-section in the x-z-plane of a growing Eady mode. The solid 
lines are the geostrophic stream function, and the dashed curves yield contours of 
perturbation density. Note that the former lean against the shear, and the latter lean 
with the shear. This phasing assures that on average the density flux is down the mean 
density gradient. 

In both the ocean and the atmosphere, horizontal density gradients are sources 
of baroclinic eddy energy, and the eddies springing from the self-excited baroclinic 
unstable waves typically have scales of the order of the appropriate deformation 
radius. 

Eady himself introduced a very simple argument to make plausible the con- 
vective nature of the instability. He suggested considering the virtual displacement 
of a fluid element in the y-z-plane. The isopycnals are sloping with an angle y 
such that 

SO that the slope is due to the existence of the vertical shear (Fig. 20.2). 
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Fig. 20.1. A cross-section in the x-z-plane of the growing Eady mode. The solid lines are isolines of 
perturbation pressure, while the dashed lines show isolines of perturbation density 

Fig. 20.2. 
The Eady wedge of instability 

Consider a displacement of a fluid parcel from point A to point B as indicated in 
the figure. Assuming the fluid parcel at A preserves its density when it arrives at B, it 
will arrive there with a density anomaly: 
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But if the displacement is small, 

so that the anomaly of buoyancy will be 

If Ay is zero or if the slope of the basic isopycnals is zero, this reduces to the result 
we obtained in reasoning out the restoring force for internal gravity waves. In that case, 
we had a restoring force (a positive density anomaly for a positive Az) giving rise to a 
force proportional to Az and with lV2 as the spring constant (per unit mass). Now, how- 
ever, if 

the buoyancy anomaly will be negative and the arriving fluid parcel will have lower den- 
sity than its surroundings. The resulting buoyancy force will then encourage a continued 
displacement and the release of energy. That is, if the motion occurs so that on average 
the fluid elements slope upwards within a wedge determined by the slope of the den- 
sity surfaces with respect to the horizontal, the gravitational energy available will power 
continued displacement rather than restoration to its initial position+ instability. 
From this point of view, the instability is a type of slanted convection requiring vertical 
shear to yield the slope of the isopycnals and allowing the existence of the wedge of 
instability. 

This simple explanation has been criticized (Heifetz et al. 1998), since the wave func- 
tion is not a plane wave in the x-z-plane, so it is not possible to avoid considering the pres- 
sure perturbation in the force balance on the parcel. However, the basic argument on 
the basis of the buoyancy force is compelling and, I feel, illuminating. In Fig. 20.3 we 
show a snapshot of the v and w velocities in the y-z-plane at a particular value of x (quarter 
wavelength). The solid lines are the isopycnals, and the arrows show the trajectory in 
the y-z-plane. 
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Eady v and w for pD = KND/ fo = 1.66, p*x = 0.7854 

0.0 0.5 1 .O 1.5 2.0 2.5 3.0 3.5 
mi = 0.30924, = 0.1 8629, C, = 0.5 y /  Ld--+ 

Fig. 20.3. The instantaneous perturbation velocities in the y-z-plane are shown as arrows. The solid 
lines are the basic state isopycnals 

It is of interest to try, on the basis of our work up to this point and general di- 
mensional analysis ideas, to estimate the characteristic growth rate of baroclinic, 
unstable waves. In the presence of a vertical shear, a layer of depth D might be ex- 
pected to have the imaginary part of its phase speed to scale with UzD. The growth 
rate would then be 

and if the wavelength is of the order of the deformation radius, 

so that 

(note in the last form its apparent independence off). 



Lecture 20 . Energy Equation and Necessary Conditions for Instability 227 

For mid-ocean flows, we might estimate 

which yields an e-folding time of about 60 days. 

General Conditions for Instability 

The Eady model is a very simple one and hardly realistic. The investigation of more 
realistic velocity structures usually requires considerable numerical work, and it is hard 
to make general statements. It is useful to have some a priori ideas of when self-ex- 
cited waves can be expected within geostrophic flows. There are a series of theorems 
giving necessary conditions for instability. The student is referred to Chapter 7 of 
GFD for a detailed discussion. Here we present only the most well-known theorems. 
This class of theorem dates back to the original work of Lord Rayleigh. 

Let us assume that our basic current is again directed in the zonal direction, but 
imagine that it is now a function of both y and z and that the beta effect is not negli- 
gible. It is important to note that once the current is not zonal, there are very few theo- 
rems that are directly applicable. 

However, the case is of interest, and it may be provide some general picture of what 
is required even in the nonzonal case. 

Again, if we look for plane waves in x (not y, since now the linearized potential vor- 
ticity equation has nonconstant coefficients in y) the governing equation 

admits solutions of the normal mode form 

where Y satisfies 

subject to boundary conditions on the bottom (which we take to be z = 0) and the top 
( z  = D): 
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and we insist that there exist two lateral boundaries at y = +L where the disturbance 
vanishes. Of course, L could be infinite. 

If we multiply the equation for Y by its complex conjugate after having divided by 
( U -  c), and if we then integrate over the region of the problem in the y-z-plane, we 
obtain, with the aid of the above boundary conditions 

The first term in this integral condition is always real and negative definite. If c is 
complex, the remaining terms will have an imaginary part. Indeed, if we just write down 
the imaginary part of the above equation using 

we obtain 

For instability to occur, i.e., for the imaginary part of c to be different from zero, 
the collection of integrals in the square bracket must add to zero. 

For example in the Eady problem, the potential vorticity gradient in the interior of 
the fluid is exactly zero, i.e., 
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For instability to occur, the two boundary terms must be able to cancel each other. 
For the Eady problem, there is no topography and U, is positive at both boundaries so 
that the cancellation is possible. However, as we saw, it is necessary that the wave number 
be small enough so that the wave extends to both boundaries. If the eigenfunction were 
zero at one of the boundaries, only one of the boundary terms in the above constraint 
would survive, and it would be impossible to satisfy the condition for instability. 

We noted earlier the term 

Thus, if the topography of the lower boundary were sloping upward more steeply 
than the isopycnals (which have constant slope in the Eady model), the contribution 
from the lower boundary term would add to that of the upper boundary, and instabil- 
ity would be impossible. Topography can thus eliminate the instability and stabilize 
the flow. 

If both boundaries are boundaries of constant density, the boundary terms in the 
integral condition vanishes. In that case, for instability, the gradient of the potential 
vorticity must be both positive and negative in the y-z-plane. Potential vorticity of a 
single sign would be (in the absence of the boundary contributions) a stable distribu- 
tion. The simple exemplar is, naturally, pure Rossby waves. 

In Charney's model, there is no contribution from the upper boundary (it is infi- 
nitely far away) and the potential vorticity gradient is positive. Instability is possible 
because the positive contribution from the pv integral is cancelled by the contribu- 
tion from the lower boundary. Note that these conditions are necessary conditions for 
instability, not sufficient conditions. It sometimes occurs that the necessary condition 
is met and the flow is still stable. There are very few useful sufficient conditions that 
can be found. 





Lecture 21 

Wave-Mean Flow Interaction 

We have been considering the dynamics of waves in this course and have remarked 
several times on the linearization restriction we have normally placed on the dynam- 
ics to make progress, and we have skirted rather completely the role of nonlinearity 
on the dynamics of the waves themselves. It is a difficult subject. 

At the same time, even small amplitude waves, for which linear theory might be a 
good first approximation, can have an effect on the mean state of the medium through 
which the waves are propagating. If the waves have small amplitude, we would antici- 
pate that since the fluxes of momentum and density by the waves are of  amplitude)^, 
the effect on the mean will be similarly small. That doesn't mean that alteration is 
unimportant or uninteresting, and the calculation of that change often can give in- 
sight into how the waves can have an effect on the mean fields in which they are em- 
bedded. The role of waves in altering the mean is clearly of importance in questions 
concerning the general circulation or even current systems of smaller scales, e.g., 
coastal currents. 

How then can we calculate the effect of waves on the mean field? This, too, is a very 
complicated subject, and in this lecture we will just touch on a special case but one 
which is both revealing and often used as a model for more general situations. We will 
consider the effects of waves on the mean for low-frequency large-scale motions gov- 
erned by quasi-geostrophic dynamics. Even with these restrictions, the issue is com- 
plicated, and we will simplify further by considering mean states that correspond to 
zonal flows that are functions ofy, z and t but that are independent of x. The waves, of 
course, will be functions of all three spatial variables. We will define the mean by the 
spatial average 

by an average in x where P is any dependent variable. It would appear that this defini- 
tion is more suitable for atmospheric flows, and it is certainly true that the discussion 
that follows came first from the meteorological literature, but one can imagine strong 
currents that are nearly zonal such as the Gulf Stream after separation, the equatorial 
currents, etc. for which this is at least a sensible first approach. 

The governing equation for the full system of waves and the mean flow is the po- 
tential vorticity equation, which in quasi-geostrophy is 
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We will assume that the wave field is periodic in x with no mean so that the x-aver- 
age of any variable associated with the wave field will be zero. Furthermore, the x-aver- 
age of the geostrophic meridional velocity must itself be zero, if the flow is periodic 
in x or independent of x. 

We can therefore write all variables as a mean plus a wave part: 

Noting first that the pv equation can be written 

since the geostrophic flow has zero horizontal divergence, an x-average of the 
pv equation yields, using 5 = 0, 

The rate of change of the mean potential vorticity is given entirely in terms of the 
potential vorticityflux of the waves. Using the above equation, assuming the pv flux is 
known, one can simply calculate q. Since the variable part of ij satisfies the relation 
with the stream function 

it is with appropriate boundary conditions possible to invert to find ij7, once 4 is known. 
In this sense, the problem of wave mean flow interaction is straightforward. First, one 
calculates the linear wave field. Then, one finds the average flux of pv in the wave field. 
Its meridional divergence yields the change in the mean pv. Once computed, that, with 
the inversion of the elliptic problem for stream function in terms of q, completes the 
specification of the change in the mean. Note that the forcing of that change is due 
entirely to the pv flux in the waves. 
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While the problem is formally complete, the approach leaves two important issues 
unclear. First, what can we say, a priori, about the pv flux in the wave field? Second, is 
there a more direct and physically intuitive way we can understand how the waves al- 
ter the mean momentum and density distribution other than the inversion of the above 
equation relating stream function and potential vorticity? 

Let's take up the second question first. We note that 

where we have repeatedly used the fact that = 0 for any variable P. With the geo- 
strophic and hydrostatic approximations, this allows the pv wave flux to be written 

The potential vorticity flux is therefore the divergence in the y-z-plane of the 
vector 

where j and k are unit vectors in they- and z-directions, respectively. The vector g is 
the Eliassen and Palm (EP) f l ux  vector. Its horizontal component is the meridional 
wave flux of zonal momentum per unit mass, or equivalently the Reynolds stress, while 
its vertical component is, aside from a factor, the horizontal meridional density flux by 
the waves. The direction of in the y-z-plane gives us an immediate sense of whether 
the meridional pv flux is due to momentum or density fluxes. For example, in the Eady 
problem, the resulting unstable waves would have a purely vertical EP vector. 

Note that the mean pv equation is simply 

This is not apparently a great advance over our previous formulation, but it again 
emphasizes the point that the change in the mean fields will be due entirely (with the 
appropriate analysis of boundary effects skipped over here) to the divergence of the 
EP vector. 

This somewhat new formulation is of great assistance when we examine the x-av- 
erage of the momentum equation itself. If we take the x-average of the x-momentum 
equation and remember that the x-average of the geostrophic v is zero, we obtain 
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Note that on the left-hand side of the equation, there is an x-averaged meridional 
velocity. From our earlier scaling exercise, we recognize that this in an order Rossby 
number velocity that remains in the equation, because it is multiplied by the relatively 
large Coriolis parameter and is thus of the same order as the (weak) acceleration of 
the O(1) geostrophic velocity. The adiabatic equation when x-averaged is 

A superficial glance at these equations appears to suggest that the mean zonal 
momentum is actually only altered by the Reynolds stress provided by the wave field, 
while the change in the mean density is associated with the x-averaged wave flux of 
perturbation density. If this were the case, it would not be consistent with our earlier 
view that it is the wave pv flux that is responsible for the change of all quantities in 
the mean state. How can we resolve that apparent discrepancy? 

It is important to note that the eddy fluxes as written drive not just the mean u and p 
but also the x-averaged v and w, i.e., the mean circulation in the y-z-plane. Indeed, in 
principle it is possible that the wave fluxes might produce a balancing meridional cir- 
culation with no change in the mean zonal velocity and density. There are problems 
where that is the case, and we shall shortly see how we can predict that. So, the above 
formulation is not quite a precise enough picture. 

We can attempt to deal with the possibility mentioned above by splitting the mean 
vertical velocity into a part that may be balanced by the wave flux of density plus a 
residual circulation, which we will indicate with an asterisk, i.e., we write 

and we define w* as the residual mean vertical velocity (residual in the sense that 
it is the mean vertical velocity after having accounted for what may be the purely wave 
driven part. In terms of which, the adiabatic equation becomes 

In this formulation, the change of the mean density field is due entirely to the ver- 
tical velocity in the residual meridional circulation. If there had been a non-adiabatic 
source term for density on the right-hand side of the density equation, it would be the 
residual vertical velocity that would balance that heating or cooling term in the steady 
state for the mean. Experience has shown that in the presence of the time varying wave 
fields, it is the residual velocities that most closely resemble the Lagrangian pathways 
of the fluid in the meridional plane. 

We would also like to define a residual mean meridional velocity, and here we 
have to be a bit careful. When the x-average of the continuity equation is taken, we 
have, in terms of original variables, 
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That is, the mean circulation is nondivergent in the y-z-plane. If we are substitut- 
ing the residual circulation velocities v* and w* for the x-averages of v and w, we would 
like to make sure that v* and w* also satisfy the same divergence-free condition. That 
suggests defining 

for then it follows that 

If this definition for v* is used in the x-averaged momentum equation, 

Thus, now the forcing term due to the wave flux in the x-momentum equation is 
simply the divergence of the EP vector, or as we have seen, the wave pv flux. This is a 
promising advance, since we anticipate that the changes in the mean fields are given 
entirely in terms of the pv flux. Note, however, that the divergence of the EP vector 
drives not only the time derivative of the mean zonal velocity but also the mean re- 
sidual meridional velocity. How can we sort out one from the other? 

The mean density equation, as derived above is 

Let's take advantage of the thermal wind relation as applied to the mean flow, i.e., 

Take the z-derivative of the mean momentum equation and the y-derivative of the 
mean adiabatic equation to obtain 

Since the residual velocities are nondivergent in the y-z-plane, they can be written 
in terms of a stream function: 

which automatically satisfies the continuity equation for the residual velocities. This 
in turn leads to the elliptic problem for the stream function: 
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Therefore, if the EP vector is known, this elliptic problem (with appropriate bound- 
ary conditions) can be inverted to find ~ ( y ,  z) and the residual velocities. Note again 
that it is determined entirely in terms of the divergence of the EP vector. Once the re- 
sidual circulation is known, the x-momentum equation yields the change in the mean 
zonal momentum and the mean density. Of course, this inversion is no simpler than 
the inversion of the original x-averaged pv equation: 

with 

which can be obtained by taking the y-derivative of the x-momentum equation and the 
z-derivative of the density equation, which is nothing more than a re-derivation for the 
mean fields of the potential vorticity equation. This more indirect approach has the 
conceptual advantage of showing in detail how the mean field changes as a consequence 
of the wave fluxes. It does not change, indeed it emphasizes, the fact that the change 
comes about only due to fluxes by the waves of potential vorticity. What then, return- 
ing to our first question, can we say a priori about the wave flux of potential vorticity? 

If the wave amplitude is small so that the waves satisfy linear pv dynamics, we could 
suppose that we would calculate the wave field from the linear equation: 

Here I have added on the right-hand side of the equation a dissipation term, of arbi- 
trary form, for potential vorticity assuming only that it is linear in q' and has zero x-aver- 
age. We shall shortly see why this might be an interesting addition to the dynamics. 

To find the meridional pv flux, we multiply the above perturbation equation by q' 
and average in x to obtain 

7 a4 v'q - = q' Diss(ql ) - 
aqT2 12 

ay a t  

The potential vorticity flux, when x-averaged, is therefore proportional to the av- 
erage increase with time of the variance of the wave pv and to the correlation of the 
pv with its own dissipation. For steady, inviscid waves, both terms will be zero and the 
wavepvflux will vanish. In this case, it follows immediately that there will be no change 
in the mean zonal velocity or densityfields due to the waves. The mean residual circu- 
lation will be zero. There can be a mean Eulerian circulation 
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so that the wave fluxes of momentum and density yield only a balancing Eulerian v 
and w but no change in the zonal velocity or its supporting density field. We saw some- 
thing like this when we looked at the steady internal wave field radiated by the inter- 
action of a current with a rippling topography, and we argued that the only change in 
the current would occur at the front of the radiating wave field where the time depen- 
dence of the wave envelope would be strong. We see here a similar situation for geo- 
strophic flow. This was first noticed, with some expression of amazement, by Charney 
and Drazin (1961) in their pioneering paper on the propagation of planetary waves 
from the troposphere into the upper atmosphere. They carefully calculated the wave 
field and its effects on the mean field and found the effect was zero. Since that time, a 
good deal of effort has gone into sharpening the theory to describe in detail the role 
of dissipation and time dependence in describing how the waves can affect the mean. 
A good example of this is found in a very nice paper by Edmond, Hoskins, and McIntyre 
(1980). The resulting theory is by now rather vast, and further discussion is beyond 
the scope of this course. 

Further efforts to develop the theory for more oceanographically pertinent situa- 
tions attempt to replace the zonal average (not terribly apt for the ocean) with a time 
average. The resulting equations are complex, and it is still hard to see clear concep- 
tual progress. 





Problems 

Problem Set 1 

1. As discussed in the text we can consider the generalization of a plane wave to have 
the form for waves of slowly varyingproperties; 

and we have defined the wave number vector as the gradient of the phase O. 
a Show that the condition, for example, that the x-wave number is slowly varying 

(i.e., that the local definition of a wave number makes sense) is that: 

and carefully interpret this result, i.e., what does the condition mean and why 
should the condition be imposed? Do the same for the frequency. 

b Consider a circular water wave, perhaps formed by a stone thrown in a pond, 
whose free surface elevation is given by: 
I 

where r, is a constant and r is the circular radius: 

Assuming the wave is slowly varying, find the x- and y-wave numbers of the 
wave field at each point in the x-y-plane. 

c Using your results in (a), under what circumstances will the assumption in (b) 
be sensible? This should depend on K and r. 

2. The dispersion relation for Rossby waves which we will derive later, might be ap- 
proximated as 

where k and 1 are the x- and y-wave number components. P is a parameter. For the plan- 
etary problem, it can be shown that Pis a measure of the Earth's rotation and sphericity 
or it also could be related to the slight slope of the bottom of the fluid (as we shall see). 
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Let's suppose it is the latter, and in our lab we have let 

where L is large compared to a wavelength of the wave. 
a Find the x- and y-components of the group velocity. 
b Derive the ray equations for the variation for k, I and w. 
c Show that along the ray path k and OI are constant so that 

d Find the position yo where the group velocity in the y-direction vanishes. Note 
from the ray equation for I that I continues to decrease at that point (i.e., be- 
comes negative). Discuss the implications of that for the trajectory of a wave 
packet which initially starts near y = 0. Sketch the path in the x-y-plane. 

3. A particular wave has the form 

a What is the x-wave number? 
b What is the frequency? 
c Under what conditions is it sensible to talk about a slowly varying frequency? 
d At what speed need you move to see a constant frequency and wave number? 
e Moving at that speed, what is the relation between frequency and wave number? 
f At what speed do you have to move at to see a constant phase, 8, (i.e., stay on a 

particular crest)? Is that speed constant with time? 

Problem Set 2 

1. Acoustic waves in their pure form are small, adiabatic perturbations of a medium 
of otherwise uniform density and pressure. Assuming that the specific entropy can 
be written as s = s(p, p), show that the governing equations of inviscid motion for 
disturbances propagating in the x-direction are 

a~ akJ --pop and 
at ax 

where 0 subscripts denote variables in the uniform, unperturbed state. 
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b Then show that p satisfies 

Identify the sound speed c, and discuss the nature of the solutions of the 
equation. Do signals disperse? What significance does this have for communica- 
tion by speech? 

For a perfect gas like air, p = pRT, and under adiabatic transformation it fol- 
lows from the standard thermodynamic relations that (ap I ap), = @T, y= c, I c,. 
What is the sound speed at room temperature? 

2. Consider the atmospheric pressure field 

pa = Po cos(kx - o t )  

moving over an infinite body of water of depth D. Find the resulting periodic solu- 
tion of the water after all initial transients have decayed. 

3. Consider a small circular pond of depth D. Suppose the radius of the pond is R. Find 
the free modes of oscillation for the free surface under gravity. Be sure to carefully 
state the boundary conditions at the lateral boundary of the basin. Which mode has 
the lowest frequency? If D = 3 meters and R is 10 meters, find that frequency. What 
is the corresponding frequency in a small water glass (give an estimate)? 

(Hint: Find solutions in the form @ = F(r) cosh K ( z  + D) eimOe-iw, and you may 
be surprised to discover which m yields the lowest frequency.) 

Problem Set 3 

1. For a plane gravity wave of the form 

we assumed in the text that we could neglect (a) nonlinearity, ( b )  friction, (c) com- 
pressibility, and (d) planetary rotation. 

Check these assumptions and discuss, in each case, what non-dimensional pa- 
rameter measures the goodness of the approximation. Make sure you write the 
condition in terms of quantities given in terms of qO, k, D and properties of the 
fluid such as g and v. Be careful to distinguish the conditions when k D is both large 
and small. You may use sensible values of the wavelength, depth, etc. to get an idea 
of what limits these parameters set. 

2. Consider a rectangular tank of sides L,, L, and depth D filled with homogeneous, 
incompressible fluid. Suppose the fluid in this small basin is forced by a surface 
pressure of the form 

pa =Po cos(kx- o t )  
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Find the linear, forced solution (note: Since the problem is linear, the response 
must be oscillating at the forcing frequency, but the spatial structure will be modi- 
fied by the geometry of the basin). Be sure to carefully pose the boundary condi- 
tions on the side walls. What Fourier series in x and y is appropriate for the bound- 
ary conditions? 

When will resonance occur? 
What is the solution for small o? 
What do we mean by small o? 

3. In class we derived an energy equation for a layer of fluid supporting gravity waves 
in the case when the applied atmospheric pressure was zero. Redo the calculation 
when pa ;t 0. 

Problem Set 4 

1. Consider the motion of a homogeneous layer of fluid of constant density and of 
depth D. At t F 0, the surface of the fluid is flat but there is a vertical velocity such 
that 

Formulate the initial value problem and find the solution for 77(x, t) in terms of 
a Fourier integral and discuss the solution without reproducing the details of the 
derivation of the stationary phase argument. 

2. Energy in the internal gravity wave frequency range is generated at z = zo with an 
x-wave number k and a z-wave number m. 
a Find the path of such a packet of energy in the x-z-plane (i.e., find dz I dx for the 

group velocity ray). Estimate the time it would take the packet to reach a depth D 
if it starts near the surface and if you assume N is independent of z. 

b Discuss how you would do the problem in part (a) if N2 = Ni exp(z I d), where d is 
the thermocline scale (about 1000 meters) and the vertical wavelength of the 
gravity wave is much less than d. 

3. Consider a stratified fluid with constant N in an infinitely long channel of width L 
with a rigid lid. Suppose that at t = 0, 

Find the solution of the initial value problem if wo is an even function of x (hint: 
Note that with the initial condition as given, a solution for all t > 0 can be found in 
the form w = W(x, t )  sin(nz1 D)). Qualitatively discuss the solution after you have 
obtained it. 
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Problem Set 5 

1. Consider a plane, internal gravity wave in a fluid with a constant buoyancy fre- 
quency. Calculate both the kinetic and potential energies and discuss whether there 
is equipartition of the energy (note, it is convenient to choose a coordinate system 
so that the wave vector lies in the x-z-plane). 

2. The vorticity components along the three coordinate axes are 

a Derive, from the linear equations of motion, equations for the rate of change of 
these vorticity components. In particular, show how the horizontal gradients of 
density produce vorticity and physically interpret your result. 

b Calculate the vorticity in a plane internal gravity wave when N is constant. 

3. Consider the reflection of an internal gravity wave from a sloping surface. Show 
that the energy flux normal to the surface of the incident wave is equal to the en- 
ergy flux of the reflected wave. We showed in class that the energy densities of the 
incident and reflected waves were not equal. Is energy conserved? 

Problem Set 6 

1. Reconsider the normal mode problem for internal waves in the case where NZ < 0, i.e., 
when heavy fluid is initially on top of lighterfluid so that ap, / az > 0. Let the fluid be 
contained in a layer of depth D between two rigid surfaces and let N~ be constant. 
a What are the frequencies of the normal modes? Are they real? Interpret your 

result in terms of growth of the disturbance. 
b For what wavelengths will the perturbations grow the fastest? 
c Given the length scale for maximum growth rate, what effect do you think fric- 

tion or heat conduction would have in determining the wavelength of maximum 
growth? 

2. Calculate the normal modes of internal gravity waves for a stratified fluid with N2 > 0 
when the fluid is contained in a box with sides of length L, and LY and with depth D. 
You may assume the upper boundary is a rigid lid. Find the free modes of oscillation 
and their frequencies (hint: The boundary condition on x = 0, say, is u = 0. That 
implies that ap 1 ax = 0 there for all z and so that (8 lax) (ap l az) = 0 on x = 0. You 
can use that to write the condition in terms of w). 
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3. Find an expression for the frequency leading to critical angle reflection of internal 
gravity waves in terms of the local value of m, N and the slope of the topography. 
Calculate the condition on frequency for realistic oceanic values. Do you believe 
the Coriolis effect can be ignored for such frequencies? How would you decide? 

Problem Set 7 

1. Consider a layer of fluid with a buoyancy frequency N (constant). The fluid is flowing in 
the positive x-direction with constant velocity U. The base of the fluid is rippled such that 

h = h, cos kx 

where h is the (small) departure of the bottom of the fluid from a flat surface. The upper 
surface of thefluid is level and rigid at a distance Dfrom the bottom. 
a Find the steady solution for the flow (it is nonrotating). 
b Discuss whether resonance can occur and interpret your result. 
c Calculate the drag on the rippled boundary. Are you surprised (hint: Consider an 

explanation in terms of the net radiation of energy and the relation between 
work done and drag)? 

2. A channe1,semi-infinite in the x-direction (0 I x I -) of depth D and width L (0 I y I L), 
contains a stratified fluid of constant buoyancy frequency N. The fluid is contained 
between two level, rigid horizontal boundaries. At x = 0, a wave maker continuously 
imparts to the fluid a velocity in the x-direction, 

u = R,U, cos (xz l D) eiax 

Find the periodic response of the fluid to the periodic forcing. If m is less than N, 
carefully describe how you determine the proper condition on the solution for 
large x (hint: You may have to apply a radiation condition). 

3. Consider a plane wave in an unbounded, stratified fluid with constant buoyancy 
frequency N and constant Coriolis parameter$ For simplicity, align the x-axis of 
the system so that the wave vector has no y-component. 
a Is the energy equipartitioned between kinetic and potential energy? Is there a 

particular wavelength for which equipartition occurs? 
b In terms of the stream function amplitude, determine the vorticity and the po- 

tential vorticity. 

Problem Set 8 

1. Consider the motion of a rotating, homogeneous layer of water of depth D. Let the 
layer be infinite in horizontal extent. Suppose that at t = 0, the elevation of the free 
surface above its resting value is given by 

and is zero elsewhere. The velocity at t = 0 is also zero. 
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a Find the equation governing the free surface displacement in the steady geo- 
strophic portion of the solution. 

b Show that at y = f a ,  both and its first derivative are continuous in the geo- 
strophic solution. 

c Find the steady solution for the x-velocity. 
d Using the relation between the free surface elevation and the potential vorticity, 

find the energy in the steady geostrophic state. Discuss, as a function of the 
ratio of the deformation radius to the length interval 2a the percentage of the 
initial energy radiated away by gravity waves. 

2. Show that for the linearized motion of a layer of homogeneous, rotating fluid, that 
the relation between the free surface height and the velocities can be written: 

(you may find it useful to write the above in component form). 
What happens for an oscillation for which the frequency exactly matches the 

Coriolis parameter? 

3. Consider a rotating fluid of depth D contained in the region x 2 0, -- l y I -. Sup- 
pose that along a wall at x = 0, the velocity in the x-direction is given by 

where it is understood that the real part of the above term is relevant. 
Find the solution for the free surface height in x > 0. Distinguish the case when 

the frequency is greater or less than f. 

Problem Set 9 

1. Consider the Kelvin wave in a channel of width L. If the free surface elevation has 
the form 

a Find the relative vorticity in the wave and its potential vorticity. 
b Calculate the kinetic and potential energy in the wave and check for equipartition. 
c Discuss the trajectory of fluid elements as the wave passes. 

2. A Poincark wave with x-wave number k, ( ~ 0 )  and y wave number CI approaches a 
wall at x = 0 from the right. 
a What angle does the group velocity make with the x-axis? 
b What is the frequency of the wave? 
c If the amplitude of the free surface height in the incident wave is A,, find the com- 

plex amplitude of the free surface height of the reflected wave and its x- and y- 
wave numbers (hint: Be sure to carefully write out the condition u = 0 at the wall). 
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3. a Derive the governing equation for the velocity component, v, in for a layer of 
rotating fluid of constant depth in the channel as discussed in class and discuss 
its solutions of the form v = v(y) ei('U-@. 

b From v, how would you find u and q? For what frequencies does this relation fail? 
(Hint: To find u in terms of v, take the time derivative of the x-equation of mo- 
tion and use the continuity equation to eliminate q,, then use that relation to 
find 77 in terms of v) 

Problem Set 10 

1. Consider a plane Rossby wave with a free surface 

a Calculate the kinetic and potential energy in the wave. Check for equipartition. 
Is there a particular wavelength for which equipartition obtains if it is not true 
generally? 

b Calculate cgx as a function of k. Where does it have its largest positive and nega- 
tive values? Where is it zero? For a wave with a wavelength A = 50 km, estimate 
the period of the wave for a fluid of depth 4 km (the precise value will depend 
on the orientation of the wave vector). 

2. a Show that a single plane Rossby wave is an exact solution of the nonlinear quasi- 
geostrophic potential vorticity equation (qgpve) (hint: First calculate the relative 
vorticity in the wave and show it is a constant multiple of the stream function). 

b Show that an arbitrary sum of plane Rossby waves will be a solution of the non- 
linear qgpve if the magnitude of the wave vector of each wave is identical. Note 
that the frequencies of the waves will differ. Suppose, instead, you have a set of 
waves of varying wavelengths but whose wave vectors are co-linear? 

3. Consider a channel of width L on the beta plane, i.e., 0 < y I L. The bottom is flat. At 
x = 0, a wave maker produces a zonal velocity of the form 

a Find the resulting Rossby wave for the region x > 0. 
b Do the same for the region x < 0. 

Problem Set 11 

1. Reconsider the development of the quasi-geostrophic equations when 

rn - = O(1) , hb -=0(1) and ~ < < 1  
f D 

Derive the governing potential vorticity equation in this limit. Under what cir- 
cumstances could the Rossby wave frequency satisfy w << f? 
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Fig. p.01. 
A definition figure for problem 2. The arrow 
shows the direction of the incident wave energy 

2. Consider the reflection of a westward propagating Rossby wave. Its group velocity 
is directed west-northwestward in a direction that slopes 45" to the northeast from 
a latitude circle (see Fig. p.01). 
a If the frequency is given, how would you determine the wave number vector of 

the incident wave? 
b Discuss the reflection of the wave. In what direction is the reflected group veloc- 

ity? What is the wave vector of the reflected wave? 

3. Suppose we model the southern boundaryy, of the Gulf Stream as a rippling sur- 
face propagating eastward. We prescribe that boundary as 

Now consider the oceanic region south of that boundary (i.e.,y ly,). 
Describe the resulting possible wave radiation in the region y < 0. Consider both 

positive and negative values of c. 

Problem Set 12 

1. Consider the dynamics of a Rossby wave triad as discussed in class. From the prop- 
erties of the function P(K,, K,), show that the enstrophy in the triad 

is conserved where Ej is the energy in each wave component (note: This implies 
that 

is also conserved). 
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2. From the quasi-geostrophic equations, show that for a fluid in an infinite region 
whose motion is limited to the finite part of the x-y-plane, the total enstrophy 

is conserved. 

3. Consider the reflection of a linear Rossby wave from a western boundary oriented 
in the northlsouth direction (parallel to the y-axis). Calculate the enstrophy of the 
incident and reflected waves. Is the emerging enstrophyflux equal to the incident 
flux? If not, what is the mechanism for the nonconservation? Discuss your result 
and its implications. What is the situation if the reflection occurs at a northern 
boundary that lies along a latitude circle? 
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acceleration, vertical 11 9,120 
adjustment 

-, geostrophic 123 
-, problem 123 

advection 205,206,211 
-, horizontal 206 
-, of energy 222 

Airy function 55 
amphidromic point 145 
approximation 

-, beta-plane 183,205 
-, hydrostatic 120 
-, geostrophic 123, 168 

background 
-, density 206 
-, flow 91 

balance 
-, geostrophic 123, 143 
-, hydrostatic 35 
-, quasi-geostrophic 205 

basic 
-, current, energy 222 
-, flow 221 
-, state 221 

Bernoulli equation 24,34,81 
beta effect 227 

-, topographic 209 
beta factor, planetary 157 
beta plane 205,246 

-, approximation 149, 150, 152, 153, 162, 
164,183,205 

-, equatorial 193-195,204 
bottom friction 180, 182 
boundary 

-, condition 23,25,26 
-, mixed 137 

-, lateral 26,142 
-, wave 21 1 

Brunt-Vaisala frequency 60 
buoyancy 109,225 

-, anomaly 225 
-, force 63,225 

-, frequency 60,72,73,75,243,244 
-, distribution 75 
-, standard definition 206 

-, profile, eigenfunction 89 

Cartesian coordinate system 3,26, 149 
channel 

-, mode 136 
-, problem, mid-latitudes 195 
-, rotating 137 
-, velocity 143 

Charney model 229 
circulation 

-, Eulerian 236 
-, residual 234,236 

-, mean 236 
-, meridional 234 

-, velocity, residual 235 
compressibility 20,241 

-, adiabatic 21 
condition 

-, arbitrary initial 58 
-, boundary 23,25,26 
-, dynamic 24 
-, kinematic 24 

cone of constant frequency 64 
conservation equation 110 
continuity equation 61,68,91-93,96,120,150, 

186,187 
convection 223 
coordinates, Cartesian 3,26, 149 
Coriolis 

-, acceleration 143, 149, 159, 184, 185 
-, effect 244 
-, force 127,184 
-, frequency 107,109 
-, parameter 107,108,134,149, 152,159, 

165,180,193,194,205,244,245 
crest 6,3 1 
current 

-, basic, energy 222 
-, equatorial 231 

cyclone 
-, center 180 
-, wave 1 
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data, initial 133 
decay 

-, rate 182 
-, with time 46 

deep water wave 60 
deformation 

-, length 141 
-, radius 125-128,131,134,140-142,158, 

161,177,208,215,217 
-, baroclinic 208 
-, equatorial 196,197,199,203 
-, ROSS~Y 125 

density 21 
-, anomaly 225 
-, background 206 
-, basic state 92 
-, distribution 117,233 

-, annual mean 77 
-, disturbance 21 
-, flux 223 

-, horizontar meridional 233 
-, gradient, horizontal 21 1,223 
-, mean 236 
-, perturbation 222 
-, surface 73 

-, sloping 218 
-, vertical scale height 188 
-, wave flux 237 

depth, equivalent 186 
Dirac delta function 124 
dispersion 

-, diagram 202 
-, Eady 215 
-, relation 7,13,17,27,33,43,50,63,64,67, 

83,113,138,190,203,209 
-, Kelvin wave 209 
-, linear 17 
-, local 75 
-, Poincard wave 193 
-, Rossbywave 156 

displacement, vertical 73,111 
-, power spectrum 107 

dissipation function 19 
disturbance 48,50,53,67,78 

-, Fourier amplitude 56 
-, initial 50 
-, shape 133 
-, wave equation 122 

domain 136 
Doppler shift 104 
drag 99,103,105 

-, on mountain 99 
-, on topography 99,103 
-, positive 103 

dynamics, nonrotating 22 

Eady 
-, dispersion relation 215 

-, eigenfunction 216 
-, mode 223,224 
-, model 213,216,217,222,223,227,229 
-, problem 228,229,233 

Earth 
-, rotation 20, 107, 185,239 

-, equatorial 193 
-, sphericity 120,149, 156,239 

eddy 
-, energy, baroclinic 223 
-, synoptic scale 217 

eigenfunction 85,88 
eigensolution 84 
eigenvalue 84,85 

-, condition 138,142 
-, problem 82,217 
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energy 17,53,129,131,173,222 

-, advection 222 
-, baroclinic transformation 223 
-, budget 221 
-, conservation 78,243 
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-, thermodynamic 19 
-, equipartition 38,73 
-, fields of motion 33 
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-, gravitational 225 
-, gravity wave field 53 
-, kinetic 37,72-74,94,129,173,222,245, 

246 
-, change 94 
-, equation 72 
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-, potential 35,37,72-74,173,222,245,246 
-, propagation 35,41,54 

-, diagram 175,176 
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-, transfer 171,222 
-, transformation 19,72 

-, term 95 
enstrophy flux 248 
entropy 21 

-, specific 19 
equation 

-, adiabatic 61,74 
-, motion 60 

-, Bernoulli 24,34,81 
-, continuity 61,91-93,120,186 
-, energy 19,73,93,96,129,221,222 
-, free surface elevation 139 
-, Hermite 199 
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-, hydrostatic 185,206 
-, internal wave field 61 
-, Laplace 23,26,36,41,42 

-, tidal 183 
-, mass conservation 151,153 
-, mode, vertical 183 
-, momentum 19,23,93,95 

-, horizontal 12 1 
-, linearized 186 

-, motion 19,91,92 
-, hydrostatic 183 
-, linearized 92 
-, vertical 61 

-, perturbation energy 221 
-, potential vorticity 181,23 1,246 
-, ray 240 
-, Schroedinger 199 
-, structure, vertical 183 
-, thermodynamic 20 
-, vorticity 62, 122,151,205 
-, wave energy propagation 36 
-, wind, thermal 210 

equator 193,196,197 
-, trapping zone 194 

equatorial 
-, beta-plane 193,195,204 
-, current 231 
-, deformation radius 196 
-, wave 

-, dispersion diagram 202 
-, eigenfunctions 200 
-, guide 194 

equipartition 245,246 
-, energetical 38,73 

equivalent depth 186 
Eulerian circulation 236 
evanescence 1 17 
expansion, thermal 19 

fields of motion 33 
flow 

-, basic 98,221 
-, geometrical scale 126 
-, geostrophic 129,227,237 

-, vorticity 181 
-, mean 105,221,235 

-, momentum 94 
-, quasi-geostrophic 181 
-, unidirectional 91 

fluctuation, zero pressure 61 
fluid 

-, compressible 20 
-, density stratified 59 
-, element, trajectories 39 
-, incompressible 21,22 
-, motion 33,217 

-, low frequency 160 
-, nonrotating 109,122 
-, rotating 120,121,136,142,245 
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-, stratified 205,208,211 
-, motion 183 

-, unbounded 107 
-, velocity 135 

flux 
-, enstrophy 248 
-, incident 248 
-, momentum 93 
-, vector 174,175,222 

-, horizontal 222 
force 

-, buoyancy 63 
-, gravitational 26 

-, restoring 60 
forcing 41 
Fourier 

-, amplitude 56,57 
-, analysis 53 
-, integral 42,242 
-, theorem 2 
-, transform 44 

free surface 51,127 
-, deformation radius 208 
-, displacement 36,187,245 

-, rate 35 
-, elevation 33-35,81, 127,129,135, 139, 

140,161,162,245 
-, amplitude 34 
-, equation 139 

-, height 45, 127,129,245 
free wave 33 
French Academy of Sciences 41 
frequency 7,209,240 

-, conservation 69 
-, dependence on wave number 33 
-, intrinsic 104 

-, definition 104 
-, propagation 50 
-, rate of change 14 
-, relation to wave number 35 
-, slowly varying 240 
-, wave orientation 63 

friction 20,91,103,180,241,243 
function, dissipation 19 

gas, perfect 19,24 1 
geostrophic 

-, approximation 123 
-, state, ultimate 123 
-, stream function 206,207,222 

gradient, horizontal density 96 
gravitational restoring force 60 
gravity wave 1,9,15 

-, field 33 
-, energy 53 
-, equation 61 
-, properties 45 

-, internal 59,66,67,69,82,91,92,243 
-, crest 67 
-, energy 242 
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-, generation 100 
-, group velocity 65 
-, incident 70 
-, maximum frequency 81 
-, mode 86,243 
-, reflection 68,70,243,244 
-, rotation 119 
-, theory 75 

-, speed 201 
Greens function 125 
group velocity 13, 14, 17,30,39,41,47,50,52, 

54,66,67,105,115,157 
-, as function of wave number 30 
-, definition 13 
-, direction 64, 175 
-, internal wave 65 
-, maximum 158 
-, minimum 158 
-, Poincard wave 134 
-, orientation 66 
-, ray 242 
-, relation to wave vector 67 
-, Rossby wave' 157,158 
-, three-dimensional 65 
-, versus KD 47 
-, vertical 67 

growth rate 215,217,219 
-, maximum 219 

Gulf Stream 180,231,247 

heat 
-, conduction 243 
-, nonreversible addition 19 
-, specific 19 

Hermite equation 199 

incompressibility 72 
initial value problem 41,53,100,103,242 

-, solution 49 
instability 225,228,229 

-, baroclinic 213,216 
-, barotropic 222 
-, conditions 22 1,227 
-, source 221 

interaction, wave-mean flow 231 
isopycnal 1,207,2 1 1 

-, sloping 212 
-, surface 221 

Kelvin 
-, mode 142,148,195,202 
-, wave 133,136,142,144,148,152,154, 

191,195,203,245 
-, dispersion relation 209 
-, superposition 144-146 

Lagrangian 
-, pathway 234 
-, trajectory equations 39 

Laplace 
-, equation 23,26,36,42,81 

-, two-dimensional 41 
-, vertical velocity 62 

-, operator 26 
-, tidal equations 144, 183,191,208 
-, transformation 103 

layer 
-, stratified 213 
-, geostrophic flow 181 

line of constant phase 63 
linearization 2,21,25,35,80 

-, restriction 231 
linearized momentum equation 186 
Lord Rayleigh 227 

mass conservation 19,151 
maximum phase speed 27 
mean 

-, definition 231 
-, flow 209,221,231,235 
-, momentum 233 
-, potential vorticity, rate of change 
-, state 231 

medium, homogeneous 2,9,16 
mode 137,139-141,189,191 

-, baroclinic 197,208 
-, barotropic 190,197,208 
-, channel 136 
-, external, dispersion relation 85 
-, internal gravity 189 

-, wave 86 
-, normal 79,117,227 

-, definition 80 
-, frequency 243 
-, problem 243 

-, phase speed 139 
-, vertical 183 

model, homogeneous 183 
momentum 

-, equation 19,23,93,95 
-, horizontal 121,205 
-, vertical 96 

-, mean 233 
-, zonal 234,236 

-, wave flux 237 
motion 

-, adiabatic 20, 184 
-, equation 60 

-, cooperative 1 
-, cyclonic geostrophic 181 
-, equation 19,91,92 

-, linearized 92 
-, rotating stratidied fluid 19 
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-, geostrophic 131,183 
-, hydrostatic 120,183 

-, equations 183 
-, large-scale 119 

-, in ocean 1 19 
-, incompressible 22 
-, inviscid 22,184,190 
-, linear 22 

-, equations 243 
-, linearized 183 
-, low frequency 154,160,168,205 
-, oscillatory 23 
-, quasi-geostrophic 167 

-, stratified 205 
-, vertical 

-, equation 61 
-, genesis 181 
-, scale 119 

nondispersive wave equation 133 
nonlinearity 20,231,241 

operator, Laplacian 26 
oscillation 38,61, 117,215,245 

-, free 79 
-, modes 241,243 

-, frequency 64,109 
-, harmonic 109 

-, dispersion relation 64 

period 246 
-, definition 4 

perturbation 34,72,92,94,108,109,120,183 
-, density 62,223,224 
-, energy 93,94 

-, equation 221 
-, initial spatial 56 
-, linear 221 
-, pressure 94,224 

-, initial 113 
-, steady 96 
-, velocity 2 17,226 
-, wave energy 93 

phase 
-, constant 5,6,67 
-, decrease 4 1 2  
-, increase 4,7,11 
-, orientation 103 
-, scalar, gradient 10 
-, speed 5, 13, 17,30,52,65,133,171 

-, definition 5 
-, direction 170 
-, vertical 74 

-, stationary 46,47 
-, condition 49 

-, method of 45 
-, wave number 47,52 

-, variable 2 
plane, equatorial 193,204 
plane wave 2,3,5,9 

-, dispersion relation 17,77 
-, field of motion 37 
-, generalization 239 
-, solution 26,33 

-, tree-dimensional 62 
-, two-dimensional 73 
-, wavelength 4 

PoincarC 
-, mode 195,202 
-, wave 115,133,139,141,144,148,152-154, 

159,194,201,204,245 
-, dispersion relation 193 
-, minimum frequency 203 

point 
-, amphidromic 145 
-, stationary 48 

Poisson 41 
position, fixed 52 
potential vorticity 107, 110-1 13, 122-124, 127, 

129,133,166,210,229,245 
-, adjustment problem 123 
-, ambient 169,173 
-, conservation 112,113,122 
-, equation 169,181,208,212,231,246 
-, flux 233,236 
-, gradient 2 10,22 1,222,228,229 
-, layer model 120 
-, rneridional gradient 210 
-, rate of change 151 
-, Rossby wave 156,166,168,169,173 

pressure 2,2 1,112 
-, distribution 103 
-, disturbance 21 
-, equation 112 
-, field 34,37, 11 3, 143 

-, atmospheric 121 
-, basic state 92 
-, horizontal structure 186 
-, initial 113 
-, scale 184 

-, fluctuation 21 
-, geostrophic 113 
-, gradient 

-, vertical 119,120,159 
-, horizontal 159, 185 

quantum mechanical 
-, oscillator 199 
-, uncertainly principle 56 

Quasi-Biennial Oscillation 193 
quasi-geostrophic approximation 183 
quasi-geostrophic potential vorticity equation 

206,209-21 1,221,246 
quasi-geostrophy 159 
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radiation 
-, condition 91,100,102,103,106 
-, incoming 102 
-, outgoing 101,102 
-, outward 102 

ray 
-, equation 78,79,240 
-, path 79 

reflection 67,69,72,179,243,247 
-, of internal gravity wave 68 

-, at a steep slope 71 
-, at solid boundary 68 
-, in a open wedge 72 
-, in a shallow wedge 71 

-, of Rossby wave 11 7,247,248 
-, kinematics 72 

relation 
-, dispersion 83 
-, eigenvalue 83 
-, Lagrangian, linearized 93 
-, thermal wind 217 

resonance 242 
Reynolds stress 93-96,99,222,233,234 
Rossby 149 

-, adjustment problem 123 
-, deformation radius 125 
-, mode 195 

-, equatorial 201 
-, number 160,161,163,166,168,171,205, 

234 
-, velocity 175 

-, wave 18,149,152,153,156,159,171,174, 
177,191,194,204,208,222,229,246,247 
-, baroclinic 207 
-, barotropic 239 
-, dispersion relation 155,156 
-, energy 173 
-, equation 16 
-, frequency 154 
-, group velocity 157 
-, maximum frequency 156,203 
-, minimum period 156 
-, phase speed 155 
-, quasi-geostrophic 169,221 
-, reflection 1 17,247,248 
-, speed 201 
-, spin-down 180 
-, total energy 174 

Rossby-gravity wave, mixed 202 
rotation 1,20,91,107,108,110, 119,131,137, 

152,153 
-, large 140 
-, planetary 241 

rotation mode 140 

scalar phase, gradient 10 
Schroedinger equation 199 
shallow water wave 133 

shear 94 
-, horizontal 221,222 
-, mean 222 
-, vertical 221,225,226 

signal speed 2 
simplification 119 
singularity, stationary phase 54 
sound, speed 21,241 

-, water 28 
specific entropy 240 
sphericity factor 163 
spin-down time 182 
state 

-, basic 221 
-, geostrophic 123,130 
-, geostrophically balanced 129 
-, mean 231 
-, of rest 59 

steady 
-, circulation theory 180 
-, density perturbation 113 
-, flow 91 
-, perturbation 96 
-, problem 100,103 
-, solution 244,245 
-, state 100, 126 

Stokes theorem 11 
strain tensor 19 
stratification 1,79 

-, vertical 60 
stream function 69,97,173, 178,218,235,246 

-, geostrophic 174,206,207,222,223 
streamline 99 
stress tensor 19 
structure, vertical 183, 190,191 
Sturm-Liouville eigenvalue problem 208 
surface 

-, elevation, free 33 
-, gravity wave 20,60 

-, frequency 28 
-, group velocity 28 
-, phase speed 28 
-, variables 24 
-, vertical scale 60 

-, height field as function of time 51 
-, isopycnal 73 
-, pressure 241 
-, sloping 212 
-, wave 

-, frequency 81 
-, phase speed 81 

Sverdrup 
-, dynamics 180 
-, flow, eastward 180 

synoptic scale eddy 217 

T 

temperature, potential 19 
thermocline 2,119 
thickness, gradient 221 
tide 20 
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time scale 107 
-, advective 160 

topography 99 
-, force on 102 
-, potential vorticity 162, 169 

trajectory 39,40,119,225,240 
-, Lagrangian equation 39 

transformation, adiabatic 241 
transport variables 152 
trapping 

-, vertical scale 209 
-, zone 194 

turning point 79 

variable 
-, dimensional 163 
-, dynamical 34 
-, non-dimensional 161 

velocity 
-, advective 212 
-, field 23,39,112, 125, 173 
-, fluid element 68 
-, geostrophic 164,170,206,232 

-, zonal 126 
-, horizontal 34, 119,120, 184,205 

-, divergence 134 
-, geostrophic 113 
-, vector 34 

-, initial 124 
-, meridional 

-, residual 235 
-, perturbation 217 
-, potential 23,33,36,39 

-, equation 41 
-, solution 43 

-, profile 127 
-, residual 234-236 

-, mean meridional 234 
-, mean vertical 234 

-, vector 135 
-, vertical 35,73, 120, 129, 184,206 

-, component 34 
-, Laplace equation 62 
-, residual 234 
-, scale 61 

-, zonal 126 
viscosity 19,20,182 

-, second 19 
vortex line 109 
vorticity 23,96,108, 109, 122,243 

-, budget 205 
-, components 243 
-, cyclonic 180 
-, equation 62, 122,151,205 
-, planetary 163,205 

-, gradient 169,210 
-, potential 107, 110-1 13, 122, 124, 127, 

129,133,166,210,229,245 
-, ambient 169,173 
-, conservation 112,113,122 

-, equation 169,181,208,212,231,246 
-, flux 233,236 
-, gradient 2 10,22 1,222,228,229 
-, layer model 120 
-, meridional gradient 2 10 
-, rate of change 15 1 

-, relative 109,ll1,163,165,167,205,245 
-, gradient 169,22 1 

wave 
-, acoustic 9,240 
-, amplitude 2,92 
-, concept 1 
-, crest 3 

-, conservation 13 
-, force diagram 63 
-, number 6,13 
-, tilt 101 

-, cyclone 1 
-, deepwater 27 
-, definition 1 
-, depth of influence 35 
-, dispersive 52 
-, effect on mean field 231 
-, energy 178,222 

-, change 37 
-, downward 102 
-, flux 37,95 
-, propagation equation 36 
-, source 218 

-, equation, disturbance 122 
-, equatorial 193,204 

-, dispersion diagram 202 
-, eigenfunctions 200 

-, field 33 
-, energy equation 72 
-, first order description 2 
-, incident 68 
-, oscillating 112 
-, pressure 99 

-, free 26,33 
-, frequency 2 
-, function, equation 16 
-, generation, theory 20 
-, gravity 1,9 
-, guide 194 
-, in ocean 20 
-, incident 68,69,179 

-, energy flux 179 
-, interaction 1 
-, internal 59,79 

-, normal mode problem 243 
-, structure 59 

-, Kelvin 133,136,142,144,148,152,154, 
191,195,203,245 
-, equatorial 195-197 

-, kinematics 2 
-, light, equation 28 
-, linear theory 91 
-, local energy 174 



260 Index 
.- 

-, low frequency 180 
-, mean flow 209,232 
-, mode 195 
-, motion 159 
-, nature of 133 
-, nondispersive 27, 133 

-, equation 133 
-, solution 29 

-, number 33,47,50,52, 133,240 
-, constant 50 
-, generalized definition 50 
-, incident 178 
-, non-dimensional 82 
-, propagation 50 
-, refelcted 178 
-, spectrum 53 
-, vector 247 

-, on a string 28 
-, packet 16,17,56,68 

-, energy, averaged 39 
-, Fourier amplitude 57 
-, one-dimensional 17 

-, pattern 6 
-, period 4,9 
-, plane 2,3,5,9 

-, three-dimensional 26 
-, wavelength 4 

-, Poincark 115,133,139,141,144,148, 
152-154,159,194,201,204,245 
-, equatorial 192-195 

-, potential vorticity flux 232 
-, pressure 113 

-, field 34 
-, propagation, vertical 91 
-, properties, radiative 91 
-, radiation 96,99,103 
-, reflected 179 

-, energy flux 179 
-, reflection 69 
-, ROSS~Y 16,18 

-, equatorial 194-196,201 
-, self-excited 218,227 
-, shallow water 27,133 
-, signal 

-, propagation 41 
-, speed 2 

-, slowly varying 9 
-, small amplitude 2 
-, solution 148 
-, sound, equation 28 
-, spectrum, initial 53 
-, stable 218,219 
-, standard equation 28 
-, surface gravity 20,26,79 

-, frequency 28 
-, group velocity 28 
-, phase speed 28 
-, variables 24 

-, synoptic scale 216 
-, theory 1 

-, basic 1 
-, topographic 208 

-, bottom trapped 212 
-, train 50,54 
-, unstable 218,219 
-, variable phase, definition 2 
-, vector 2,3,4,66,67,105,170,171,176 

-, conservation 69 
-, direction 4,175 
-, frequency 7 
-, incident 71 
-, magnitude 3 
-, orientation 63,65 
-, rate of change 14 
-, reflection 69,71 
-, relation to frequency 7 

-, velocity of element 2 
-, wavelength 3,9 

wavelength 4,34,52,60 
-, definition 4 

wedge of instability 225 
western boundary current 180 
wind 

-, thermal 
-, equation 210 
-, relation 217,235 

-, stress 195 
WKB Theory 75 

Yanai wave 202-204 
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