
Use R!

Roger D. Peng

Francesca Dominici

Statistical Methods

for Environmental

Epidemiology with R

Statistical M
ethods for Environm

ental Epidem
iology w

ith R
Peng • D

om
inici

A Case Study in Air Pollution and Health



Use R!
Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani



Paradis: Analysis of Phylogenetics and Evolution with R 

Hahne/Huber/Gentleman/Falcon: Bioconductor Case Studies 

Sarkar: Lattice: Multivariate Data Visualization with R
Spector: Data Manipulation with R

Use R!

and GGobi 

Claude:Morphometrics with R

Peng/Dominici: Statistical Methods for Environmental Epidemiology with R:

Bivand/Pebesma/Gomez-Rubio: Applied Spatial Data Analysis with R

Nason: Wavelet Methods in Statistics with R

A Case Study in Air Pollution and Health

´
Albert:  Bayesian Computation with R 

Cook/Swayne: Interactive and Dynamic Graphics for Data Analysis: With R 

 editionPfaff: Analysis of Integrated and Cointegrated Time Series with R, 2nd



ABC

Roger D. Peng  Francesca Dominici

Environmental
Epidemiology

Statistical Methods

with R

A Case Study in Air Pollution and Health

·

for



Giovanni Parmigiani
The Sidney Kimmel Comprehensive 
Cancer Center at Johns Hopkins University
550 North Broadway

USA
Baltimore, MD 21205-2011

Robert Gentleman Kurt Hornik

Division of Public Health Sciences Wirtschaftsuniversität Wien Augasse 2-6
Fred Hutchinson Cancer Research Center A-1090 Wien

USA

Series Editors:

Program in Computational Biology

 

1100 Fairview Avenue, N. M2-B876

Department of Statistik and Mathematik

Austria
Seattle, Washington 98109

Printed on acid-free paper.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

© 2008 Springer Science+Business Media, LLC

Roger D. Peng

Baltimore  MD 
USA
rpeng@jhsph.edu
fdominic@jhsph.edu

ISBN 978-0-387-78166-2 e-ISBN 978-0-387-78167-9
DOI: 10.1007/978-0-387-78167-9

Francesca Dominici
Johns Hopkins Bloomberg School
 of Public Health

Johns Hopkins University
615 N. Wolfe St. 

21205-2179 

Library of Congress Control Number: 2008928295



Preface

As an area of statistical application, environmental epidemiology and more
specifically, the estimation of health risk associated with the exposure to en-
vironmental agents, has led to the development of several statistical methods
and software that can then be applied to other scientific areas. The statis-
tical analyses aimed at addressing questions in environmental epidemiology
have the following characteristics. Often the signal-to-noise ratio in the data
is low and the targets of inference are inherently small risks. These constraints
typically lead to the development and use of more sophisticated (and poten-
tially less transparent) statistical models and the integration of large high-
dimensional databases. New technologies and the widespread availability of
powerful computing are also adding to the complexities of scientific investi-
gation by allowing researchers to fit large numbers of models and search over
many sets of variables. As the number of variables measured increases, so do
the degrees of freedom for influencing the association between a risk factor
and an outcome of interest.

We have written this book, in part, to describe our experiences developing
and applying statistical methods for the estimation for air pollution health
effects. Our experience has convinced us that the application of modern sta-
tistical methodology in a reproducible manner can bring to bear substan-
tial benefits to policy-makers and scientists in this area. We believe that the
methods described in this book are applicable to other areas of environmental
epidemiology, particularly those areas involving spatial–temporal exposures.

In this book, we use the National Morbidity, Mortality, and Air Pollution
Study (NMMAPS) and Medicare Air Pollution Study (MCAPS) datasets and
describe the R packages for accessing the data. Chapters 4, 5, 6, and 7 describe
the features of the data, the statistical concepts involved, and many of the
methods used to analyze the data. Chapter 8 then shows how to bring all of
the methods together to conduct a multi-site analysis of seasonally varying
effects of PM10 on mortality.

A principal goal of this book is to disseminate R software and promote
reproducible research in epidemiological studies and statistical research. As
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a case study we use data and methods relevant to investigating the health
effects of ambient air pollution. Researching the health effects of air pollution
presents an excellent example of the critical need for reproducible research
because it involves all of the features already mentioned above: inherently
small risks, significant policy implications, sophisticated statistical methodol-
ogy, and very large databases linked from multiple sources. The complexity
of the analyses involved and the policy relevance of the targets of inference
demand transparency and reproducibility.

Throughout the book, we show how R can be used to make analyses re-
producible and to structure the analytic process in a modular fashion. We
find R to be a very natural tool for achieving this goal. In particular, for the
production of this book, we have made use of the tools described in Chapter 3.

All of the data described in the book are provided in the NMMAPSlite
and MCAPS R packages that can be downloaded from CRAN.1 We have
developed R packages for implementing the statistical methodology as well as
for handling the databases. Packages that are not available from CRAN can
be downloaded from the book’s website.2

We would like to express our deepest appreciation to the many collab-
orators and students who have worked with us on various projects, short
courses, and workshops that we have developed over the years. In particu-
lar, Aidan McDermott, Scott Zeger, Luu Pham, Jon Samet, Tom Louis, Leah
Welty, Michelle Bell, and Sandy Eckel were all central to the development
of the software, databases, exercises, and analyses presented in this book.
Several anonymous reviewers provided helpful comments that improved the
presentation of the material in the book. In addition, we would like to thank
Duncan Thomas for many useful suggestions regarding an early draft of the
manuscript. Finally, this work was supported in part by grant ES012054-03
from the National Institute of Environmental Health Sciences.

Baltimore, Maryland, Roger Peng
April 2008 Francesca Dominici

1 http://cran.r-project.org/
2 http://www.biostat.jhsph.edu/˜rpeng/useRbook/
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1

Studies of Air Pollution and Health

1.1 Introduction

The material presented in this book is focused on statistical approaches for
air pollution risk estimation in multi-site time series data, and specifically on
the National Morbidity Mortality Air Pollution Study (NMMAPS). Because
the datasets constructed as part of the NMMAPS include only publicly avail-
able data, the NMMAPS constitutes an ideal case study for illustrating the
interdigitation among innovative statistical methods, their implementation in
R, and software tools for reproducible research.

However, it is important to recognize that several other types of epidemio-
logical studies have been introduced for estimating health effects of air pollu-
tion. Most of the air pollution epidemiological study designs have fallen into
four types: ecological time series, case-crossover, panel, and cohort studies.
Conceptually, panel studies collect individual time and space-varying out-
comes, exposures, and confounders and therefore they encompass all other
epidemiological designs which are based on spatially and/or temporally ag-
gregated data. The time series, case-crossover, and panel studies are best
suited for estimating the acute effects of air pollution, wherease cohort stud-
ies estimate acute and chronic effects combined. Acute effects are transient
and due to time-varying exposures. Chronic effects are more likely due to the
cumulative effects of exposure, but could be associated with more complex
functions of lifetime exposure. Outcomes can be major or minor life events
(e.g., death or onset of symptoms) or changes in function (e.g., vital capac-
ity, lung growth, symptom severity). The nature of the outcome (e.g., binary,
continuous, count, or time-to-event) and the structure of the data lead to the
selection of the model and the types of effects to be estimated. Regression
models are generally the method of choice.

This chapter is devoted to a brief description of each study design, identifi-
cation of the corresponding approaches to statistical analysis, and presentation
of examples. It concludes with a comparison of these designs.
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1.2 Time Series Studies

Time series studies associate time-varying pollution exposures with time-
varying event counts [7]. These are a type of ecologic study because they
analyze daily population-averaged health outcomes and exposure levels. If
the health effects are small and the disease outcomes are rare, the bias from
ignoring the data aggregation across individuals should be small [122].

Generalized linear models (GLM) with parametric splines (e.g., natural
cubic splines) [68] or generalized additive models (GAM) with nonparametric
smoothers (e.g., smoothing splines or lowess smoothers) [45], are used to es-
timate effects associated with exposure to air pollution while accounting for
smooth fluctuations in the mortality that confound estimates of the pollution
effect.

The National Morbidity, Mortality and Air Pollution Study (NMMAPS)
[35, 98, 101, 99, 27, 6, 77, 34] is the largest multisite time series study yet con-
ducted. Unlike most other air pollution time series studies that concentrate
on a single city, the goal of NMMAPS is to estimate city-specific, regional,
and national effects of PM10 on mortality. Hierarchical models are particu-
larly suitable for combining relative rates across locations. These methods and
further NMMAPS results are discussed in the following sections of this book.

1.3 Case-Crossover Studies

The case-crossover design was originally proposed by Maclure [65] to study
acute transient effects of intermittent exposures [48]. The case-crossover de-
sign can be viewed heuristically as a modification of the matched case-control
design [8, 105] where each case acts as his or her own control, and the distri-
bution of exposure is compared between cases and controls. More specifically,
the exposure at the time just prior to the event (the case or index time) is
compared to a set of control or referent times that represent the expected dis-
tribution of exposure for non-event follow-up times. In this way, the measured
and unmeasured time-invariant characteristics of the subject (such as gender,
age, smoking status) are matched, minimizing the possibility of confounding.

In the last decade of application, it has been shown that the case-crossover
design is best suited to study intermittent exposures inducing immediate and
transient risk, and abrupt rare outcomes [66, 48]. This design has been found
to be topical for estimating the risk of a rare event associated with a short-
term exposure to air pollution because the widespread availability of ambient
monitoring data presents opportunities to further analyze existing case series
from case-control studies.

Two main sources of potential bias in case-crossover studies have been
identified and discussed in the literature [49, 50]. The first arises from the
trend and seasonality in the air pollution time series. Because case-crossover
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comparisons are made within subjects at different points in time, the case-
crossover analysis implicitly depends on the assumption that the exposure
distribution is stationary. The long-term time trends and seasonal variation
inherent in air pollution time series violate this assumption [73, 4, 64, 5, 60].

The second source of bias is called overlap bias. If the referent sets are
exactly determined by the case period and are not disjoint, then the indepen-
dent sampling inherent in the conditional likelihood approach is invalidated
[1, 64]. Lumley and Levy [64] quantified the overlap bias analytically. Janes
et al. [50] further explored the sources and magnitude of the overlap bias and
concluded that the bias is usually small, although highly unpredictable and
easily avoided.

The case-crossover design has been applied to many single studies of air
pollution and health [111, 74, 81, 61, 22, 117] and to many multisite time
series studies [126, 3, 2, 69] As an example Levy et al. [61] analyzed the effect
of short-term changes in PM exposure on the risk of sudden cardiac arrest.
The sample consisted of cases of paramedic-attended out-of-hospital primary
cardiac arrest who were free of other life-threatening conditions and did not
have a history of clinically detected cardiovascular disease. The cases were
obtained from a previously conducted population-based case-control study
and were combined with ambient air monitoring data. The results did not
show any evidence of a short-term effect of PM air pollution on the risk of
sudden cardiac arrest in people without previously recognized heart disease.

In a second example, Peters, et al. [82] conducted a case-crossover study in
which cases of myocardial infarction were identified in Augsburg, in southern
Germany, for the period from February 1999 to July 2001. There were 691
subjects for whom the date and time of the myocardial infarction were known
who had survived for at least 24 hours after the event, completed the registry’s
standardized interview, and provided information on factors that may have
triggered the myocardial infarction. Data on subjects’ activities during the
four days preceding the onset of symptoms were collected with the use of
patient diaries. They found evidence that transient exposure to traffic may
increase the risk of myocardial infarction in susceptible persons. The time the
subjects spent in cars, on public transportation, or on motorcycles or bicycles
was consistently linked with an increase in the risk of myocardial infarction.

1.4 Panel Studies

Panel studies enroll a cohort or panel of individuals and follow them over
time to investigate changes in repeated outcome measures. They are most
effective for studying short-term health effects of air pollutants, particularly
in a susceptible subpopulation. Traditionally, a panel study design involves
collecting repeat health outcome data for all N subjects over the entire time
period of length T although this can be relaxed with proper accommodation
in the analyses. The most suitable health outcomes vary within a person over
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the time period of observation. The pollution exposure measurement could be
from a fixed-site ambient monitor, as well as personal monitors.

Studies that follow cohorts of individuals over longer time periods, say
multiple years, are typically referred to as cohort or longitudinal studies rather
than panel studies. Although the exposure and outcome characterization will
be different, in general the recommended methods of analysis for longitudinal
studies are similar to those developed for panel studies or cohort studies,
depending upon the goals of the analyses.

The Southern California Children’s Health Study [84, 83, 39] is one exam-
ple of a longitudinal study of air pollution health effects. Children from grades
4, 7, and 10 residing in twelve communities near Los Angeles were followed
annually. Communities were selected based on diversity in their historical air
pollution levels. Longitudinal analyses of lung function growth using linear
mixed models indicated associations of exposure to ambient particles, NO2,
and inorganic acid vapor with reduced lung function growth [39].

1.5 Cohort Studies

Air pollution cohort studies associate long-term exposure with health out-
comes. Either a prospective or retrospective design is possible. In a prospec-
tive design, participants complete a questionnaire at entry into the study
to elicit information about age, sex, weight, education, smoking history, and
other subject-specific characteristics. They are followed over time for mor-
tality or other health events. A measure of cumulative air pollution is often
used as the exposure variable. A key design consideration for air pollution
cohort studies is identifying a cohort with sufficient exposure variation. Indi-
viduals from multiple geographic locations must be studied in order to assure
sufficient variation in cumulative exposure, particularly when ambient air pol-
lution measurements are used. However, by maximizing the geographical vari-
ability of exposure, the relative risk estimates from cohort studies are likely
to be confounded by area-specific characteristics.

Survival analysis tools can evaluate the association between air pollution
and mortality. Typically the Cox proportional-hazards model [16, 14] is used
to estimate mortality rate ratios for airborne pollutants while adjusting for
potential confounding variables. Relative risk is estimated as the ratio of haz-
ards for an exposed relative to an unexposed or reference group.

The epidemiological evidence on the long-term effects of air pollution on
health has recently been reviewed by Pope [85]. The Harvard Six Cities study
and the American Cancer Society (ACS) study [23, 89] are among the largest
air pollution prospective cohort studies. In the Harvard Six Cities study [23,
57, 58] a random sample of 8111 adults who resided in one of the six U.S.
communities at the time of the enrollment was followed for 14 to 16 years. An
analysis of all-cause mortality revealed an increased risk of death associated
with increases in particulate matter and sulfate air pollution after adjusting
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for individual-level confounders. Because of the small number of locations,
findings of this study cannot be generalized easily.

The ACS study [89, 86, 87] evaluated effects of pollution on mortality using
data from a large cohort drawn from 151 metropolitan areas. Ambient air
pollution from these areas was linked with individual risk factors for 552,138
adult residents. The ACS study covered a larger number of areas, however,
the subjects were not randomly sampled as in the Six Cities study. Both
studies reported similar results: the relative risk of all-cause mortality was
1.26 (95% CI 1.08–1.47) for an 18.6 µg/m3 change in fine particulate matter
in the Six Cities study and 1.17 (95% CI 1.09–1.26) for a 24.5 µg/m3 change
in fine particulate matter in the ACS study. A detailed reanalysis of these two
studies [56, 55] and a new ACS study including data for a longer period of time
[86] replicated and extended these results by incorporating a number of new
ecological covariates and applying several models for spatial autocorrelation.

1.6 Design Comparisons

Ultimately, the choice of an optimal design depends upon the research question
and the availability of data. No single design is best for all applications. Each
design targets specific types of effects, outcomes, and exposure sources. An
optimal design should have sufficient power to detect the effect of exposure;
this depends on the variability of exposure and the size of the study.

The panel and cohort studies can study events or continuous outcomes.
Time series and case-crossover studies focus on events, and these events should
be rare. One key difference between the time series and the case-crossover de-
signs is the approach to control for seasonality and long-term time trends.
The case-crossover study controls seasonality and trends by design through
restriction of eligible referent samples. In contrast, time series studies use sta-
tistical adjustment in the regression model by including smooth functions of
calendar time. In a recent paper Lu and Zeger [63] show that case-crossover
using conditional logistic regression is a special case of time series analysis
when there is a common exposure such as in air pollution studies. This equiv-
alence provides computational convenience for case-crossover analyses and a
better understanding of time series models. Time series log-linear regression
accounts for overdispersion of the Poisson variance, whereas case-crossover
analyses typically do not. This equivalence also permits model checking for
case-crossover data using standard log-linear model diagnostics.

Acute effects can be estimated from panel, time series, and case-crossover
studies. These studies rely exclusively on estimating associations between vari-
ation over time in exposure and variation over time in the outcome. Timescale
analyses of time series studies [129, 109, 110, 30] allow estimation of such as-
sociations at different time scales: 1 month to 2 months, 1 to 2 weeks, 1 week
to 3 days, and less than 3 days.
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Cohort studies estimate a combination of acute and chronic effects because
the outcomes accumulate over long time periods and could be triggered by
either cumulative or short-term peak exposures. Thus, although estimation of
chronic effects is one goal of cohort studies, these may not be separable from
the acute effects of exposure [121, 23, 89, 56].

The effect of exposure may vary across susceptible subpopulations. The
case-crossover, panel, and cohort study designs are better suited to directly
assess effect modification across population groups than the time series design.
The time series design aggregates events over a large population. Typically,
individual risk factors or other information about the underlying population
at risk is not available. In contrast, because each case is included individu-
ally in the analysis, the remaining three designs have the advantage of being
able to target well-defined subgroups and to more directly evaluate personal
characteristics as exposure effect modifiers.
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Introduction to R and Air Pollution
and Health Data

2.1 Starting Up R

As of this writing the current version of R is version 2.7.0. In this book we
make use of a number of R packages that do not come with the standard in-
stallation of R but are available elsewhere. The primary resource for obtaining
R packages is the Comprehensive R Archive Network (CRAN) at

http://cran.r-project.org/

In addition to the main Web site, there are a number of mirrors located around
the world which may provide faster access depending on the user’s location.

Upon starting up R, the console prompt is presented to the user and
commands can be input. The workspace can be thought of as an area of
memory that can be used to store R objects or datasets. These objects are
available until you quit R or they are deleted from the workspace. You can
list the names of all the objects in the workspace by running

> ls()

character(0)

Currently, there are no objects in the workspace. Objects can be created via
assignments, that is,

> x <- rnorm(10)
> print(x)

[1] 1.89245635 -1.18982059 -0.01502809
[4] 1.22581882 0.74902839 -0.17905201
[7] 0.91236301 0.42186855 -0.62486494
[10] 0.73979867

and removed with the rm function.

> rm(x)
> ls()
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character(0)

The entire workspace can be saved to a file using the save.image function.
This saved workspace can subsequently be loaded back into R using the load
function. The save function can be used to save individual objects in the
workspace (as opposed to the entire workspace) to a file.

Packages can be loaded into an R session using the library function.
Loading a package makes the exported functions in that package available to
the user. The list of currently loaded packages can be seen with the search
function.

> search()

[1] ".GlobalEnv" "package:datasets"
[3] "package:utils" "package:grDevices"
[5] "package:graphics" "package:stats"
[7] "package:methods" "Autoloads"
[9] "package:base"

R will load a number of packages by default when it starts up. The object
named .GlobalEnv is meant to represent the user’s workspace and it is
always the first element of the search list

Two packages of which we make heavy use in this book are the NMMAP-
Slite package (described below in Section 2.3) and the tsModel package.
These packages provide the datasets and statistical modeling code that we
demonstrate throughout the book. All of the packages referenced in this book
are available from CRAN or from the book’s Web site. A CRAN package can
be installed using the install.packages function. For example, to install
the NMMAPSlite package, you can run in the console window

> install.packages("NMMAPSlite")

On most systems running this command will be sufficient. However, if you
wish to install the package in another directory other than the default, you
can run

> install.packages("NMMAPSlite", "mydirectory")

where mydirectory is the path to the library directory into which you
want to install the package. Subsequently, you can load the package with the
library function

> library(NMMAPSlite)

or

> library(NMMAPSlite, lib.loc = "mydirectory")

if you installed the package in a nonstandard directory.
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2.2 The National Morbidity, Mortality, and Air
Pollution Study

In this book we use as a running example and case study a large epidemio-
logical study of the health effects of air pollution. The data consist of daily
measurements of air pollution levels, meteorological variables, and mortality
from various causes from over 100 cities in the United States. These data
can be used for time series analyses of air pollution and mortality, a type of
analysis that we describe in greater detail later on. Although the techniques
that we describe are particularly useful for analyzing air pollution and health
data, they are certainly applicable in other areas.

The National Morbidity, Mortality, and Air Pollution Study (NMMAPS)
was a large national study of air pollution and health in the United States [98,
99, 101, 46]. The original study examined 90 major cities for the years 1987–
1994, looking at mortality, hospitalizations, and the various ambient air pol-
lution concentrations. The database for NMMAPS has recently been updated
to include mortality and air pollution data for 108 cities spanning the years
1987–2000. Detailed information about the updated database is available on
the Internet-based Health and Air Pollution Surveillance System (iHAPSS)
Web site at

http://www.ihapss.jhsph.edu/

The NMMAPS database includes daily measurements on particulate matter
(both PM10 and PM2.5), ozone (O3), sulphur dioxide (SO2), nitrogen dioxide
(NO2), and carbon monoxide (CO). In our examples here we focus mainly on
particulate matter and ozone. The pollution data were obtained from the Envi-
ronmental Protection Agency’s (EPA) Air Quality System (formerly known as
the AIRS Database). Daily mortality data were compiled using death certifi-
cate data from the National Center for Health Statistics (NCHS). These data
were aggregated into daily counts of mortality from various causes. Note that
although the original NMMAPS examined hospitalization data from Medi-
care, these data are not included in the NMMAPSlite package or on the
iHAPSS Web site.

2.3 Organization of the NMMAPSlite Package

Once all of the dependencies have been installed, the NMMAPSlite package
can be installed and loaded into R in the usual way via library.

> library(NMMAPSlite)
> initDB("NMMAPS")

The NMMAPSlite package provides access to the NMMAPS data which
reside on the iHAPSS server. The package itself does not contain any data, but
rather provides functions for downloading the necessary data. The initDB
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function is called to indicate the directory in which the local cache of the
NMMAPS database will be stored as it is downloaded from the iHAPSS repos-
itory. Here, we use the directory “NMMAPS” for the local cache.

The NMMAPSlite package provides access to data for 108 U.S. cities.
All of the data in NMMAPSlite are split into three databases:

1. outcome: Daily time series of mortality for various causes and other data
related to the outcomes. Each mortality time series is stratified into three
age categories: under 65 years of age (under65), 65–74 (65to74), and
75 and older (75p). The mortality data are stored as an object of class
“site”.

2. exposure: Meteorological and pollution data stored as data frames.
3. Meta: Metadata pertaining to all the sites in the database.

The outcome, exposure, and Meta databases are key-value style databases
stored in a format designated by the stashR package. For the outcome and
exposure databases the key is the name of the city and value is the data
frame associated with that city. Data can be loaded with the readCity
function, which assigns the data being loaded to an R object. The metadata
can be obtained from the Meta database using the getMetaData function.

2.3.1 Reading city-specific data

The data in NMMAPSlite are organized by city and each city’s dataset can
be accessed via its abbreviated name. To list all of the names available in the
database, you can use the listCities function.

> cities <- listCities()
> head(cities, 20)

[1] "akr" "albu" "anch" "arlv" "atla" "aust"
[7] "bake" "balt" "batr" "bidd" "birm" "bost"
[13] "buff" "cayc" "cdrp" "char" "chic" "cinc"
[19] "clev" "clmg"

To load a particular city’s dataset, we can use the readCity function which
has three arguments:

1. name, the abbreviated name of a city, passed as a character string
2. collapseAge, a logical indicating whether the three age categories into

which the outcome data are split should be collapsed (default is FALSE)
3. asDataFrame, a logical indicating if readSite should return a data

frame or not (default is TRUE)

If the asDataFrame argument to readSite is FALSE, readSite returns
a list containing the outcome and exposure data frames. The list has two
elements:

1. outcome, which contains a data frame of the mortality data by time and
age category
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2. exposure, a data frame containing daily time series of weather and air
pollution variables

2.3.2 Pollutant data detrending

The pollutant data for each of the cities in the NMMAPS database has been
processed in a manner that should be useful for the types of modeling we
do in this book. This section gives a brief description of how the pollutant
data series were constructed from the raw monitor data. For each city and
pollutant, the basic algorithm shown below was followed.

1. Each city has associated with it a number of monitors for a given pollutant.
The possible pollutants are PM10, PM2.5, SO2, O3, NO2, and CO.

2. Let Xc
j,t be the raw pollutant value for monitor j in city c at time/day t.

The detrended value X̃c
j,t is defined as

M c
j,t =

1
365

182∑
`=−182

Xc
j,t−`

X̃c
j,t = Xc

j,t −M c
j,t

The values X̃c
j,t are the detrended “residuals” from the raw pollutant series

and M c
j,t is a 365 day moving average for the pollutant.

3. If a city only has one monitor, then the series X̃c
j,t is the final result and

can be used for analysis. Adding the series X̃c
j,t and M c

j,t gives back the
original data.

4. If a city has two monitors, then a final X̄c
t is computed for each time point

t as
X̄c
t =

1
2

(
X̃c

1,t + X̃c
2,t

)
5. If a city has more than two monitors, then a 10% trimmed mean of the
X̃c
j,ts is taken for each day. That is, if there are J monitors in a city, then

for each timepoint t,

X̄c
t = TrimmedMean10%

[
X̃c

1,t, . . . , X̃
c
J,t

]
If there are fewer than ten monitors, the lowest and highest values for each
day are still always discarded. One can see now why the detrending must
be done first in Step 2. If a particular monitor has a higher overall level,
then it will consistently be discarded when the trimmed mean is taken.

6. The series X̄c
t is used as the pollutant measurement for city c on day t.

In each city dataframe, this series is given the name *tmean where “*”
is either pm10, pm25, so2, o3, no2, or co.
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7. The median of the 365-day moving averages are also computed; that is,

M̄ c
t = Median

[
M c

1,t, . . . ,M
c
J,t

]
This series is given the name *mtrend in each dataframe where “*” is
the name of a pollutant. Adding the series X̄c

t and M̄ c
t gives a series that

resembles a standard pollutant series (rather than one centered around
zero) but the series does not correspond to any particular monitor.

The data frames do not contain the original monitor data, but if one wishes
to examine a series that is reminiscent of a true pollutant series, one can add
the *tmean series to the *mtrend series. For example, to construct a PM10

series, one can add the pm10tmean and pm10mtrend variables.

2.3.3 Mortality age categories

The mortality data are split into three age categories. For example, the data
for New York City can be loaded as follows.

> site <- readCity("ny")
> site[1:5, 1:5]

date accident copd cvd death
1 1987-01-01 10 3 22 73
2 1987-01-01 1 1 25 44
3 1987-01-01 2 2 66 105
4 1987-01-02 1 3 34 60
5 1987-01-02 2 3 80 118

Here, we show the first five rows and columns. Note above that the date
“1987-01-01” appears three times. Because the mortality data are split over
multiple strata (i.e., age categories), there is more than one mortality count
per date of observation. If one is not interested in analyzing the mortality
by age category, the argument collapseAge can be set to TRUE which
aggregates the mortality counts across all strata.

> site <- readCity("ny", collapseAge = TRUE)
> site[1:5, 1:5]

date accident copd cvd death
1 1987-01-01 13 6 113 222
2 1987-01-02 7 10 134 246
3 1987-01-03 5 3 123 214
4 1987-01-04 6 5 102 208
5 1987-01-05 4 6 114 228
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2.3.4 Metadata

To see the full mapping between abbreviated city name and full city/state
name, we can load some metadata for the cities. Metadata for the cities
can be loaded using the getMetaData function. Called without arguments,
getMetaData simply lists what metadata objects are available.

> getMetaData()

[1] "agecat" "citycensus" "dow"
[4] "cities" "counties" "latlong"
[7] "regions" "variables" "siteList"

Metadata about each city are available in the citycensus object.

> census <- getMetaData("citycensus")
> head(census[, c("city", "pop100")])

city pop100
1 akr 542899
2 albu 556678
3 amar 217858
4 anch 260283
5 arlv 189453
6 atla 1481871

Here we have listed the first few (abbreviated) city names and their respective
popultations. To find out which cities are available in the state of California,
we can do

> cities <- getMetaData("cities")
> subset(cities, state == "CA", c(city,
+ cityname))

city cityname
7 bake Bakersfield
33 fres Fresno
49 la Los Angeles
64 mode Modesto
72 oakl Oakland
84 rive Riverside
86 sacr Sacramento
89 sanb San Bernardino
90 sand San Diego
91 sanf San Francisco
92 sanj San Jose
96 staa Santa Ana/Anaheim
98 stoc Stockton

The citycensus data frame contains much more information about each
city obtained from the 2000 U.S. Census.
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2.3.5 Configuration options

If the directory for storing the local cache of the database will be the same
across multiple R sessions, it may be more convenient to set a user hook so
that the appropriate directory is set automatically by initDB every time the
NMMAPSlite package is loaded. One can do this by using the setHook
function. For example, if we always wanted to use the “NMMAPS” directory
to store the local cache, then we could call

setHook(packageEvent("NMMAPSlite", "onLoad"),
function(...) NMMAPSlite::initDB("NMMAPS"))

This call to setHook could be placed, for example, in the user’s .Rprofile
file. Then, every time NMMAPSlite is loaded, the hook function is called
and the directory for the local cache is automatically set.

2.4 MCAPS Data

The MCAPS package contains data and results related to the Medicare Air
Pollution Study of Dominici et al. [33]. General information about the study
can be found at

http://www.biostat.jhsph.edu/MCAPS/

This study was a multisite time series study of the short-term health effects of
PM2.5 in the United States. The study examined PM2.5 and hospital admis-
sions data from 204 U.S. counties for the period 1999–2002. The PM2.5 data
were obtained from the EPA’s Air Quality System and the hospitalization
data were obtained from Medicare. The study examined hospital admission
for five cardiovascular outcomes, two respiratory outcomes, and injuries (as a
sham outcome).

The MCAPS package contains maximum likelihood estimates and statis-
tical variances of the county-specific log-relative risks of hospital admissions
for each of the cardiovascular and respiratory diseases associated with lags
0, 1, and 2 exposure to PM2.5. The package also contains air pollution and
weather data used in the study. Figure 2.1 shows the locations of the 204
counties stratified by the seven geographical regions used.

The package can be loaded and initialized much the same way the
NMMAPSlite package is loaded.

> library(MCAPS)
> initMCAPS("MCAPS")

Here, we use the directory MCAPS to store the local cache of the dataset. The
objects that are available for download for this dataset can be listed by calling
the getData function without arguments.

> getData()
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Fig. 2.1. The 204 MCAPS counties, 1999–2002.

MCAPSinfo: APWdata, siteList,
estimates.subset, estimates.full

For example, the estimates.subset object is a data frame containing
the maximum likelihood estimates of the log-relative risks for PM2.5 and all
eight outcomes for each county at the lag for which the largest association
was found. (The estimates.full data frame contains the estimates for
all lags.) We can obtain the estimated log-relative risks for heart failure by
running

> estimates <- getData("estimates.subset")
> head(estimates[, c("CountyName", "outcome",
+ "beta", "var")])

CountyName outcome
1 Jefferson, AL injury
2 Jefferson, AL cerebrovascular disease
3 Jefferson, AL peripheral vascular
4 Jefferson, AL ischemic heart disease
5 Jefferson, AL heart rhythm
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6 Jefferson, AL heart failure
beta var

1 -0.0006943051 0.000003799943
2 0.0011192680 0.000003080890
3 -0.0033530637 0.000010662981
4 -0.0007334413 0.000002514711
5 0.0012438399 0.000005624645
6 0.0014939658 0.000003996805

Here we show some of the estimates (and statistical variances) of the associ-
ation between PM2.5 and various outcomes for Jefferson County, Alabama.

Each county is identifed by a five-digit Federal Information Processing
Standard (FIPS) code and this code can be used to link a county with other
datasets. The list of all the FIPS codes is in the siteList object, which is
a character vector.

> sites <- getData("siteList")
> head(sites)

[1] "01073" "01089" "01097" "01101" "02020"
[6] "04013"

The air pollution and weather data for all 204 counties are stored in the
APWdata object. This object is a list of 204 data frames, one for each county;
the list names are equal to the FIPS codes of the counties. Each data frame
contains the following variables.

• date: the date in YYYY-MM-DD format
• pm25tmean: the trimmed mean of the PM2.5 values across all monitors

in the county
• tmpd: temperature (in degrees Fahrenheit)
• dptp: dewpoint temperature
• rmtmpd: a three-day running mean of temperature
• rmdptp: a three-day running mean of dew point temperature

For example, the Chicago data can be obtained by running

> apw <- getData("APWdata")
> chic <- apw[["17031"]]
> head(chic)

date pm25tmean tmpd dptp rmtmpd
1 1999-01-01 NA 12.357143 7.7 NA
2 1999-01-02 NA 18.142857 21.0 NA
3 1999-01-03 NA 16.285714 8.4 NA
4 1999-01-04 NA 1.642857 -6.9 15.595238
5 1999-01-05 NA -2.000000 -6.1 12.023810
6 1999-01-06 23.9 8.142857 9.8 5.309524

rmdptp
1 NA
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2 NA
3 NA
4 12.366667
5 7.500000
6 -1.533333
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Reproducible Research Tools

3.1 Introduction

The validity of conclusions from scientific investigations is typically strength-
ened by the replication of results by independent researchers. Full replication
of a study’s results using independent methods, data, equipment, and proto-
cols, has long been, and will continue to be, the standard by which scientific
claims are evaluated. In many fields of study, there are examples of scientific
investigations that cannot be fully replicated, often because of a lack of time
or resources. For example, epidemiological studies that examine large popu-
lations and can potentially affect broad policy or regulatory decisions, often
cannot be fully replicated in the time frame necessary for making a specific
decision. In such situations, there is a need for a minimum standard that
can serve as an intermediate step between full replication and nothing. This
minimum standard is reproducible research, which requires that datasets and
computer code be made available to others for verifying published results and
conducting alternate analyses.

There are a number of reasons why the need for reproducible research is
increasing. Investigators are more frequently examining inherently weak asso-
ciations and complex interactions for which the data contain a low signal-to-
noise ratio. New technologies allow scientists in all areas to compile complex
high-dimensional databases and the ubiquity of powerful statistical and com-
puting capabilities allows investigators to explore those databases and identify
associations of potential interest. However, with the increase in data and com-
puting power comes a greater potential for identifying spurious associations.
In addition to these developments, recent reports of fraudulent research being
published in the biomedical literature have highlighted the need for repro-
ducibility in biomedical studies and have invited the attention of the major
medical journals [59].

Interest in reproducible research in the statistical community has been
increasing in the past decade [9, 94, 104]. The area of bioinformatics has
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produced projects such as Bioconductor [42] which promotes reproducible
research as a primary aim [see also 96, 41].

A proposal for making research reproducible in an epidemiological context
was outlined in Peng et al. [78]. The criteria described there include a require-
ment that analytic data and the analytic computer code be made available for
others to examine. The analytic data are defined as the dataset that served as
the input to the analytic code to produce the principal results of the article.
For example, a rectangular data frame might be analytic data in one case,
a regression procedure might constitute analytic code, and regression coef-
ficients with standard errors might be the principal results. Peng et al. [78]
describe the need for reproducible research to be the minimum standard in
epidemiological studies, particularly when full replication of a study is not
possible.

The standard of reproducible research requires that the source materials
of a scientific investigation be made available to others. This requirement is
analogous to the definition of open source software,1 which requires that the
source code for a computer program be made available. However, by using the
phrase “source materials” in the context of reproducible research, we do not
mean simply the computer code that was used to analyze the data. Rather,
we refer more generally to the preferred form for making modifications to
the original analysis or investigation. Typically, this preferred form includes
analytic datasets, analytic code, and documentation of the code and datasets.

The task of making research reproducible is not what one might consider
a traditional statistical problem. However, statisticians are often confronted
with the challenges of reproducing the computational results of others and
statisticians are often the ones challenged with making their own results and
computations reproducible by others. It is in this sense that we consider re-
producible research a statistical problem for which we need to develop models
and methods.

3.2 Distributing Reproducible Research

The distribution of reproducible research is a problem for which the solution
varies depending on the complexity of the research. Small investigations in-
volving moderately sized datasets and standard computational techniques can
be archived and distributed in their entirety. Readers can subsequently rerun
the entire analysis from start to finish to see if they can obtain the same re-
sults as the authors. Complex investigations involving large or multiple linked
datasets and sophisticated statistical computations will be more difficult for
readers to reproduce because of the resources and time required for running
the analysis. In such a situation a method is needed to give readers without
equivalent resources the ability to conduct an initial examination of the details
of the investigation and to reproduce or verify some of the results.
1 see, e.g., http://www.opensource.org/
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A framework in which reproducible research can be distributed using
cached computations is described in Peng and Eckel [79]. Cached computations
are results that are stored in a database as an analysis is being conducted.
These stored results can be distributed via Web sites or central repositories so
that others may explore the datasets and computer code for a given scientific
investigation.

We have developed some tools for assisting authors and researchers in
conducting reproducible research and in writing reproducible packages. The
R package that we describe here is the cacher package which provides tools for
“caching” statistical analyses and for distributing these analyses to others in
an efficient manner. Once distributed, a statistical analysis can be reproduced,
modified, or improved upon. The cacher package is an implementation of the
distributed reproducible research ideas described in Peng and Eckel [79].

At the end of each chapter in this book that contains substantial statistical
analyses, we make reference to a cached package that the reader can down-
load using the cacher package in order to reproduce any of the analyses in
that chapter. The cached packages are hosted on the Reproducible Research
Archive at http://penguin.biostat.jhsph.edu/. For example, in order to down-
load the code and data for reproducing the analyses in chapter 5, the reader
can execute

> clonecache(id = "2a04c4d5523816f531f98b141c0eb17c6273f308")

Partial matching is done with the package identifiers, so that

> clonecache(id = "2a04c4d")

would also download the code and data for chapter 5. This chapter demon-
strates how to use the cacher package for exploring and verifying cached
statistical analyses as well as caching one’s own statistical analyses and dis-
tributing these analyses over the web.

3.3 Getting Started

To illustrate some of the features of the cacher package we use the following
simple statistical analysis of the airquality dataset from the datasets
package that comes with R. The code for the entire analysis is printed below.

library(datasets)
library(stats)

data(airquality)

fit <- lm(Ozone ˜ Wind + Temp + Solar.R, data = airquality)
summary(fit)

## Plot some diagnostics
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par(mfrow = c(2, 2))
plot(fit)

## Interesting nonlinear relationship
temp <- airquality$Temp
ozone <- airquality$Ozone

par(mfrow = c(1, 1))
plot(temp, ozone)

The code is contained in a file called “sample.R” that comes with the cacher
package. The above analysis is fairly simple and not very time-consuming so it
is easily reproduced by anyone who can run R, without any need for caching.
Nevertheless, it is useful for demonstrating how the cacher package works.

The first step is to install the cacher package from the Comprehensive R
Archive Network (CRAN) and load it into R.

> library(cacher)
> setConfig("verbose", TRUE)

For now, we also set the global verbose option to be TRUE, making cacher
be somewhat more “chatty” (the default is FALSE).

3.4 Exploring a Cached Analysis

Once an analysis has been cached using cacher, it can be explored using the
utilities provided in the cacher package. For example, we can download the
analysis based on the “sample.R” file mentioned previously by calling

> clonecache(id = "44bf1c6e")

Because you can cache analyses from multiple files (as we have done here),
we can show which analyses have already been cached using the showfiles
function.

> showfiles()

[1] "sample.R"

If you want to examine an analysis, you can use the sourcefile function to
choose that analysis and showcode will simply display the raw source file.

> sourcefile("sample.R")
> showcode()

library(datasets)
library(stats)

data(airquality)
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fit <- lm(Ozone ˜ Wind + Temp + Solar.R, data = airquality)
summary(fit)

## Plot some diagnostics
par(mfrow = c(2, 2))
plot(fit)

## Interesting non-linear relationship
temp <- airquality$Temp
ozone <- airquality$Ozone

par(mfrow = c(1, 1))
plot(temp, ozone)

You can also use the code function to display the code in a summary form.

> code()

source file: sample.R
1 library(datasets)
2 library(stats)
3 data(airquality)
4 fit <- lm(Ozone ˜ Wind + Temp +
5 summary(fit)
6 par(mfrow = c(2, 2))
7 plot(fit)
8 temp <- airquality$Temp
9 ozone <- airquality$Ozone
10 par(mfrow = c(1, 1))
11 plot(temp, ozone)

The code function truncates expressions to a single line and also shows the
sequence number assigned to each expression in the order that the expression
is encountered in the source file. To see the full code for each expression, you
can set the full = TRUE option to code.

The first thing you might do when exploring a cached analysis is to explore
the elements of the cache database itself. You can list the objects available
using the showobjects function, which returns a character vector of the
names of each object in the database. Passing an expression sequence number
to showobjects via the num argument shows the objects created by that
expression.

> showobjects()

[1] "airquality" "fit" "temp"
[4] "ozone"

> showobjects(8)

[1] "temp"
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> showobjects(1)

character(0)

These objects can be lazy-loaded into the workspace using the loadcache
function.

> loadcache()
> ls()

[1] "airquality" "fit" "ozone"
[4] "temp"

Now, we can print the linear model fit (without actually fitting the model) by
calling

> print(fit)

Call:
lm(formula = Ozone ˜ Wind + Temp + Solar.R, data = airquality)

Coefficients:
(Intercept) Wind Temp
-64.34208 -3.33359 1.65209
Solar.R
0.05982

The loadcache function takes a num argument which can be a vector of
indices indicating code expression sequence numbers. For example, if you want
to load only the objects associated with expression 4 (i.e., the fit object),
then you can call loadcache(4).

In addition to exploring the objects in the cache database, you may wish
to run the analysis on your own computer for the purposes of reproducing the
original results. You can run individual expressions or a sequence of expres-
sions with the runcode function. The runcode function accepts a number
or a sequence of numbers indicating expressions in an analysis. For example,
in order to run the first four expressions in the “sample.R” analysis, we could
call

> rm(list = ls())
> code(1:4)

source file: sample.R
1 library(datasets)
2 library(stats)
3 data(airquality)
4 fit <- lm(Ozone ˜ Wind + Temp +

> runcode(1:4)
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evaluating expression 1
evaluating expression 2
loading cache for expression 3
loading cache for expression 4

> ls()

[1] "airquality" "fit"

In this case, expressions 1 and 2 are evaluated but expressions 3 and 4 are
loaded from the cache. By default, runcode does not evaluate expressions
for which it can load the results from the cache. In order to force evaluation
of all expressions, you need to set the option forceAll = TRUE.

3.5 Verifying a Cached Analysis

Once you have cloned an analysis conducted by someone else, you may wish
to verify that the computation that you run on your computer leads to the
same results that the original author obtained on her computer. This can
be done with the checkcode function. The checkcode function essentially
evaluates each expression locally (if it can) and compares the output with the
corresponding value stored in the cache database.

If the locally created object and the cached object are the same, then that
expression is considered verified. If an expression does not create any objects,
then there is nothing to compare. If the locally created object and the cached
object are different, the verification fails and checkcode will indicate which
objects it could not verify.

For example, we can run the checkcode function on the analysis of the
airquality dataset from before. Here we only check the first four code
expressions.

> clonecache(id = "4eff7470")

created cache directory '.cache'
downloading source file list
downloading metadata
downloading source files
downloading cache database file list
downloading metadata
downloading source files
downloading cache database file list

> sourcefile("sample.R")
> showobjects(1:4)

[1] "airquality" "fit"

> checkcode(1:4)
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evaluating expression 1
evaluating expression 2
checking expression 3
/ transferring cache db file 142d241ba5b4fbb564...
+ object 'airquality' OK
checking expression 4
/ transferring cache db file ad5720cbda29135e84...
+ object 'fit' OK

In the first four expressions, there are two objects created: the dataset
airquality and the linear model object fit. The checkcode function
compares each of those objects with the version stored in the cache database
(which we previously cloned from the web). In this case, the objects match
and the computations are verified. Notice that in expression 3, the database
file for the airquality object had to be downloaded so that it could be
checked against the locally created version.

Consider the following very simple analysis contained in the “bigvector.R”
file that comes with the cacher package.

x <- rnorm(1000000)
s <- summary(x)
print(s)

We can check the code in the “bigvector.R” analysis also. In this analysis there
are two objects that need to be verified: x, the vector of standard Normals
and s the “summary” object.

> sourcefile("bigvector.R")
> checkcode()

checking expression 1
/ transferring cache db file fb877f8375799370ce...
- object 'x' not verified, FAILED
- Mean relative difference: 1.414514
checking expression 2
/ transferring cache db file d7952a4732ffa55c04...
- object 's' not verified, FAILED
- Mean relative difference: 0.0626853
evaluating expression 3

Min. 1st Qu. Median Mean
-4.61500000 -0.67500000 0.00055530 -0.00002724

3rd Qu. Max.
0.67460000 5.02200000

Notice that expressions 1 and 2 failed for a common reason (expression 3 had
no objects to verify). Because the analysis did not set the random number
generator seed in the beginning, the generation of the Normal random vari-
ates on the local machine is not the same as that for the original analysis.
Therefore, the object x is not reproducible (nor is s).
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Of course, there are limitations to verifying statistical analyses. Analyses
may take a long time to run and therefore it may take a long time to verify
a given computation. If one does not have the necessary external resources
(i.e. hardware, software) then it may not be possible to verify an analysis
at all. Currently, verification of analyses is limited to R objects only. We
cannot verify the output of summary or print functions nor can we verify
plots (although lattice plots can be verified if they are stored as R objects).

Certain analyses may load external datasets or inputs that will generally
not be available to the other users. A typical analysis might be of the form

data <- read.csv("faithful.csv")
with(data, plot(waiting, eruptions))

library(splines)
fit <- lm(eruptions ˜ ns(waiting, 4), data = data)

xpts <- with(data, seq(min(waiting), max(waiting), len = 100))
lines(xpts, predict(fit, data.frame(waiting = xpts)))

This analysis reads in the the “Old Faithful” dataset which contains eruption
times and waiting periods for the Old Faithful geyser in Yellowstone National
Park. Although this dataset is available from the R installation, we have
exported it here to a comma-separated-value file for demonstration.

The original author of this analysis can run the cacher function on this
analysis file and distribute it to others.

> cacher("faithful.R")

However, another user (presumably on a different computer) will not be able
to verify all of the code in this analysis

> sourcefile("faithful.R")
> checkcode()

checking expression 1
- problem evaluating expression, FAILED
- simpleWarning: cannot open file
- 'faithful.csv': No such file or directory
- loading objects from cache
/ transferring cache db file 255fb954f855b0e53b...
evaluating expression 2
evaluating expression 3
checking expression 4
/ transferring cache db file a15033591616f8a9b6...
+ object 'fit' OK
checking expression 5
/ transferring cache db file bed8272d401434750a...
+ object 'xpts' OK
evaluating expression 6
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Here, the first expression, which reads the dataset in via read.csv cannot
be verified because the “faithful.csv” file is not available. However, the other
expressions can be run on the local machine and are verifiable because they
can use the cached copy of the dataset.

3.6 Caching a Statistical Analysis

An author can cache an analysis once it is completed and distribute it over
the Web using the facilities in the cacher package. The cacher function
accepts a file name as its first argument. This file should contain the code for
the analysis that you want to cache. Other arguments include the name of the
cache directory (defaults to .cache) and the name of the log file (defaults
to NULL). If logfile = NULL then messages will be printed to a file in the
cache directory. Setting logfile = NA will send messages to the console.

The “sample.R” file containing the above analysis comes with the cacher
package and can be copied into your working directory. Given a file containing
the code of an analysis, you can call the cacher function as

> cacher("sample.R")

Call:
lm(formula = Ozone ˜ Wind + Temp + Solar.R, data = airquality)

Residuals:
Min 1Q Median 3Q Max

-40.485 -14.219 -3.551 10.097 95.619

Coefficients:
Estimate Std. Error t value

(Intercept) -64.34208 23.05472 -2.791
Wind -3.33359 0.65441 -5.094
Temp 1.65209 0.25353 6.516
Solar.R 0.05982 0.02319 2.580

Pr(>|t|)
(Intercept) 0.00623 **
Wind 0.00000151593 ***
Temp 0.00000000242 ***
Solar.R 0.01124 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21.18 on 107 degrees of freedom
(42 observations deleted due to missingness)

Multiple R-squared: 0.6059, Adjusted R-squared: 0.5948
F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16

The cacher function evaluates each expression in the file and prints any
resulting output to the console. For example, the summary of the fitted linear
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model is printed to the console and the two plots are sent to the appropriate
graphics device.

3.7 Distributing a Cached Analysis

If you have access to a Web server you can post your cache directory directly
on the Web server for others to access. Once made available on a Web server,
others can access your cache directory by using the clonecache function in
the cacher package and the URL of the directory on your Web server. For
example, we can download the analysis corresponding to the “bigvector.R”
file by calling

> clonecache
("http://www.biostat.jhsph.edu/rr/bigvector.cache")

created cache directory '.cache'
downloading source file list
downloading metadata
downloading source files
downloading cache database file list

This call to clonecache downloads all of the relevant cache files related
to the analysis except for the cache database files. In order to download the
cache database files, the option all.files = TRUE must be set.

Once a cache package has been downloaded using clonecache you can
use all of the tools described in the previous sections to explore the cache and
then run some of the analyses.

> showfiles()

[1] "bigvector.R"

> sourcefile("bigvector.R")
> code()

source file: bigvector.R
1 x <- rnorm(1000000)
2 s <- summary(x)
3 print(s)

> showobjects()

[1] "x" "s"

> loadcache()
> print(s)

/ transferring cache db file d7952a4732ffa55c04...
Min. 1st Qu. Median Mean

-4.6570000 -0.6737000 0.0006063 0.0012460
3rd Qu. Max.

0.6755000 5.1400000
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By default, clonecache does not download the cache database files until
they are needed in order to minimize the amount of data that is transferred.
Cache database files are only transferred from the remote host when the ob-
jects associated with them are first accessed.

In the above example, the database file corresponding to the object s is
only transferred when we call print(s). When a database object has to
be downloaded from the remote site, a message will be printed to the screen
indicating the transfer.

3.8 Summary

Using the cacher package, authors can cache an analysis and distribute the
analysis over the Web in a standard format. The cacher package also provides
readers tools for downloading these cached analyses and exploring the code
and data within them. Readers can selectively download R objects for inspec-
tion and for reproducing parts of an analysis. In addition, tools are provided
for verifying the computations in an analysis so that readers can be sure that
their calculations match those of the original authors.

Chapters 5, 6, 7, and 8 all have cache packages associated with them and
at the end of each chapter we describe how to download those packages to
reproduce the analyses. In addition, Section 7.2 of Chapter 7 gives a complete
demonstration of how to use the cacher package to reproduce one of the
MCAPS analyses.
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Statistical Issues in Estimating the Health
Effects of Spatial–Temporal Environmental
Exposures

4.1 Introduction

Statistical methods for environmental processes are typically centered around
the idea of building a model that can produce good predictions of the process
itself based on a chosen criterion. For example, in a typical spatial statistics
problem we might be concerned with predicting the mean value of a process
in an unobserved location conditional on the observed data.

However, when analyzing air pollution and health data, we are primarily
interested in estimating and understanding the association between an expo-
sure to an environmental agent and an outcome. For example, we may be
interested in understanding the relationship between day-to-day changes air
pollution levels and day-to-day changes in mortality counts. We are not in-
terested in predicting the mortality count for any given day. In the end, we
would like to “tell a story” about the relationship between an exposure and a
health outcome. The more information we have with which to tell that story,
the better.

Our goals of examining the relationships between environmental exposures
and health events and of summarizing the evidence from the data lead us to
a subtle but distinctly different statistical focus. We largely eschew predic-
tive models and model-building techniques based on optimizing predictive
accuracy and precision. Rather, we focus on methods that allow us to esti-
mate certain parameters of interest and allow us to understand uncertainty
due to adjustment for potential confounders, as opposed to traditional model
uncertainty. In summary, we need useful statistical models for estimating as-
sociations rather than for prediction.

In this chapter we focus on the features of temporal data that allow us to
build good statistical models and to ultimately estimate the health effects of
environmental exposures accounting for all the sources of uncertainty.
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4.2 Time-Varying Environmental Exposures

The statistical methods described in this book will be relevant to the analysis
of spatially or temporally varying environmental agents of interest that might
affect human health. An important aspect of many environmental exposures
is that repeated measurements are taken over time and/or space. This book
in particular examines more carefully environmental exposures that vary in
time and which are most often represented as time series data.

Figure 4.1(a) shows a time series of daily levels of particulate matter less
than 10 µm (PM10) from Salt Lake City, Utah for the years 1998–2000. In
Figure 4.1(b) we have the corresponding daily time series of nonaccidental
mortality for the same city and time period. These data were taken from the
National Morbidity, Mortality, and Air Pollution Study (NMMAPS) database,
a large multicity air pollution and mortality database [99, 101]. Specifically,
the NMMAPSlite package described in Chapter 2 was used to retrieve the
city data.
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Fig. 4.1. (a) Daily PM10 levels and (b) daily nonaccidental mortality counts in Salt
Lake City, Utah, 1998–2000.

The data for both mortality and PM10 exhibit variation on a number of
different timescales, with seasonal patterns as well as day-to-day variability.
We use these variations on different timescales to illustrate our approach to
displaying the evidence of association between PM10 and mortality in the next
sections.



4.3 Estimation Versus Prediction 33

4.3 Estimation Versus Prediction

One question of scientific interest might be, “Are changes in the PM10 series
associated with changes in the mortality series?” This question is fundamen-
tally about the relationship between a time-varying health outcome yt and a
time-varying exposure xt. A simple linear model might relate

yt = β0 + β1xt + εt (4.1)

where β0 is the mean mortality count, β1 is the increase in mortality associated
with a unit increase in PM10, and εt is a stationary mean zero error process.
Such a model certainly describes the association between yt and xt: a positive
value of β1 might indicate evidence of an adverse affect of PM10 whereas a
zero or negative value might indicate that there is a “protective” effect or,
more likely, that something else is going on. For example, in model (4.1) we
have omitted any variables that might explain the covariation in xt and yt.
These potential confounders might produce a negative estimate of β1 if they
are omitted from the model. This is an important issue to which we return
later.

Although model (4.1) appears to serve a useful purpose, perhaps we can
do a little better. For example, suppose we took the exposure series xt and
decomposed it into two parts,

xt = x̄Yt + (xt − x̄Yt )

where x̄Yt is a yearly two-sided moving average of PM10 and (xt − x̄Yt ) is
the deviation of the current value from that yearly average. Using the above
decomposition of xt, we can reformulate (4.1) to get

yt = β0 + β1x̄
Y
t + β2(xt − x̄Yt ) + εt (4.2)

Note that model (4.2) is equivalent to model (4.1) if β1 = β2, however,
model (4.2) does not require them to be equal. Furthermore, model (4.2)
produces the same predictions as model (4.1).

We can continue along these lines by letting zt = xt− x̄Yt and decomposing
zt as

zt = z̄St + (zt − z̄St )

where z̄St is a three-month moving average of zt, representing the seasonal
variation in the zt series. Now we can use the model

yt = β0 + β1x̄
Y
t + β2z̄

S
t + β3(zt − z̄St ) + εt (4.3)

Going one step further, let ut = zt − z̄St and decompose

ut = ūWt + (ut − ūWt )

where ūWt is a weekly moving average of ut. Let rt = (ut− ūWt ) represent the
residual variation in the time series. Then our expanded model is now
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yt = β0 + β1x̄
Y
t + β2z̄

S
t + β3ū

W
t + β4rt + εt (4.4)

We have now decomposed the original exposure series xt into four separate
components representing the yearly, seasonal, weekly, and sub-weekly/daily
variation in the PM10 data. In particular, note that we have preserved the
relationship

xt = x̄Yt + z̄St + ūWt + rt

Why is such a decomposition of xt useful? First, model (4.4) includes
model (4.1) as a special case (where β1 = β2 = β3 = β4) so we have not lost
any information. Rather, we have gained information because with model (4.4)
each of the parameters βi, i = 1, . . . , 4 relates changes in xt to changes in yt
over different timescales.

For example, β1 describes the association between yt and the yearly aver-
age of xt. We might expect this parameter to be large because a unit increase
in the yearly average of PM10 represents a fairly large change in pollution lev-
els for a location. However, we must use caution here because the relationship
between yt and the yearly average of xt could easily be confounded by other
factors in a location that vary smoothly over time. For example, long-term
changes in the population size could affect long-term trends in both pollution
levels and mortality counts. Similarly, general improvements in technology
might decrease overall levels of pollution as well as mortality.

The parameter β4 describes the association between yt and the sub-weekly
fluctuations in xt (adjusted for the yearly, seasonal, and weekly variation). We
might expect β4 to be small relative to β1 because a unit change in PM10 over
the course of a few days does not represent such a dramatic change in pollution
levels as does a unit change in the yearly average. In addition, the factors that
might confound an estimate of β1 would likely not affect our estimate of β4.
However, care must still be taken in interpreting β4 which can be affected by
other factors that vary at similar short-term timescales. One notable example
is temperature, which can be correlated with particular pollutants such as
ozone and PM10 as well as with daily mortality.

An important task for the statistician and the substantive expert is to
identify what might confound the relationship between yt and xt at the differ-
ent timescales. We have given some examples for the yearly and the subweekly
timescales but there are potentially more. The decomposition in model (4.4)
allows us to divide the task of identifying potential confounders into separate
compartments.

The feature of time series exposure data that we have highlighted here
is the possibility of breaking the time axis into meaningful subdivisions or
groupings, what we call timescales. We can look at yearly, quarterly, monthly,
or weekly averages and differences from those averages. These natural subdi-
visions aid us in interpretation and can help us to more usefully categorize
the effects of potential confounders.

Each of models (4.1)–(4.4) produces the same predictions of the outcome
yt. If we were solely interested in predicting the outcome, then it would not
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be of any added benefit to introduce this timescale decomposition. However,
because we are interested in “telling a story” about yt and xt, it is useful to
decompose the exposure variable so that we can see from where the evidence
of an association comes. With model (4.4) we have a richer descriptive model
with which to make decisions about potential confounding and can more fully
understand the relationship between yt and xt. In Section 5.3 we provide
some examples on how to estimate the association between yt and xt at each
timescale of temporal variation in the data.

4.4 Semiparametric Models

The previous section showed how with time series data the exposure can be
decomposed into different timescales to aid us in interpreting the relationship
between the outcome yt and the exposure xt. One important issue that we
did not discuss in the previous section is how to deal with the effects of other
factors that may confound the relationship between yt and xt. The framework
of semiparametric models will allow us to simultaneously adjust for the effects
of multiple potential confounders (including time) while still benefiting from
the timescale decomposition in a slightly different manner.

Whenever we examine the relationship between a health outcome and an
exposure, we must be wary of other factors that might confound the rela-
tionship between the two. Often we have corresponding data for those factors
and can adjust for them directly in a statistical model. For example, when
looking at PM10 and mortality, one important variable to consider is the
weather, which can affect both pollution levels and mortality. Many cities
have meterological measurements such as temperature, dewpoint tempera-
ture, and humidity so that if we take those variables as an approximation of
the “weather”, then we can adjust for them directly in the models.

No matter how many measurements we have on other factors that might
confound the relationship between yt and xt, there will always remain the
possibility of there being yet another confounding factor that is unmeasured.
In time series models, the factors about which we are most concerned are
factors that vary in time in a manner similar to air pollution and health
outcomes. When we have data on these factors we can attempt to adjust for
them directly in models. However, when data are not available, we must resort
to a proxy for those factors.

In a semiparametric linear model we can attempt to adjust for unmeasured
time-varying potential confounders by using a smooth function of time itself.
If yt is the response and xt is the exposure, then we can fit a model of the
form

yt = α+ β xt + η′zt + f(t;λ) + εt

where β is the risk coefficient of interest, z is a vector of measured covariates
that we want to adjust for directly in the model, and f(t;λ) is the smooth
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function of time. The behavior of f is controlled by the smoothing parameter
λ, which can be thought of as the degrees of freedom allowed for f . Larger
values of λ imply a rougher f function wherease smaller values of λ imply a
smoother function.

Air pollution studies commonly involve count data as the response (i.e.,
daily mortality or hospitalization counts), in which case we can use a Poisson
generalized linear model of the form

Yt ∼ Poisson(µt)
logµt = α+ β xt + η′zt + f(t;λ) + εt (4.5)

where µt is the mean response for day t and β is the log-relative risk associated
with the exposure xt.

There have been many different proposals in the literature regarding how
f should be represented and fit to the data, including using natural splines,
penalized splines, smoothing splines, and loess. In addition to the representa-
tion issue is the question of how smooth or rough should f be. Again, there
have been numerous methods developed for determining the optimal smooth-
ness for f . The various advantages and disadvantages of using these methods
are discussed in detail in [76].

4.4.1 Overdispersion

In the previous Section 4.4 we made the assumption that Yt ∼ Poisson(µt),
implying that var(Yt) = µt. This assumption can be easily relaxed by intro-
ducing an overdispersion parameter φ, such that var(Yt) = vt = φµt. In this
way, we are allowing the counts Yt to have variances vt that might exceed their
means µt (i.e., be overdispersed) with overdispersion parameter φ. In prac-
tice, after having fitted the semiparametric (4.5) allowing for overdispersion,
we will often find that the estimated φ is close to one. This is likely due to the
fact that, by including a smooth function of time in (4.5), we are removing
most of the residual outcorrelation in the data. A data analysis example where
we allow for overdispersion is presented in Section 6.6.4.

4.4.2 Representations for f

Two common choices for representing the smooth function f are natural (cu-
bic) splines and penalized splines. Natural splines are piecewise cubic poly-
nomials defined on a grid of knot locations spanning the range of the data.
The function itself, as well as its second derivative, is continuous on the en-
tire range of the data and the function is restricted to be linear beyond the
endpoints. The smoothness of a natural spline fit is controlled by the num-
ber of knots used. Fewer knots represent smoother fits and a large number of
knots will lead to data interpolation. The knot locations are typically chosen
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to be at regressor values associated with equally spaced quantiles but could
be anywhere.

Penalized splines provide an alternate way to model nonlinear relation-
ships. They have been presented in the literature in a number of ways and we
use the general definition η̂

′
B(x), where

η̂ = arg min
η

n∑
i=1

{
yi − η

′
B(xi)

}2

+ αη
′
Hη.

B(x) is a spline basis matrix (evaluated at the point x), α is a penalty (smooth-
ing) parameter, and H is a penalty matrix. Variations of penalized splines
essentially boil down to different specifications of the spline basis matrix B
and the form of the penalty H. Typically, one constructs a natural spline
or B-spline basis using a large number of knots and then shrinks the coef-
ficients to reduce the effective degrees of freedom and increase smoothness
in the overall function estimate [67, 124]. The amount of smoothness in the
estimated curve is controlled by α. As α ↓ 0, the amount of smoothing de-
creases; as α ↑ ∞, the amount of smoothing increases and the estimated curve
approaches a polynomial function.

The most extreme approach to knot placement in the penalized spline
framework is to place the maximum number of knots possible, that is, one knot
at every data point. The resulting fit is then called a smoothing spline. Time
series data are typically regularly spaced and the smoothing spline scheme
leads to n equally spaced knots along the time period of the dataset. Because
smoothing splines can be considered a special case of penalized splines [95],
results obtained using smoothing splines should be similar to those obtained
using penalized splines.

The complexity of a spline basis representation can be measured by its
degrees of freedom. Natural splines, penalized splines, and smoothing splines
all give rise to linear smoothers, thus they can be represented by the n × n
smoother matrix that maps the observed data to the predicted values. The
effective degrees of freedom are computed by the trace of the smoother ma-
trix [10, 45]. For fully parametric fits such as those using natural splines, this
trace equals the number of estimated parameters in the model.

4.4.3 Estimation of β

For the purposes of this section, we focus on the estimation of β and the
smooth function of time f . Using matrix notation, we can rewrite (4.5) as

Y ∼ Poisson(µ)
logµ = Xβ + f (4.6)

where Y = y1, . . . , yn, f is the function f evaluated at t = 1, . . . , n, and X is
the n × 2 design matrix containing a column of ones and the pollution time
series x1, . . . , xn.
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Given an n× d spline basis matrix B, we can rewrite (4.6) as

logµ = Xβ +Bγ

where γ is a d-vector of coefficients. The number of columns of the basis matrix
B will be different depending on whether natural splines, penalized splines,
or smoothing splines are used.

We use iteratively reweighted least squares (IRLS) to fit model (4.6) using
natural splines. Let W be the n × n (diagonal) weight matrix and z the
working response from the last iteration of the IRLS algorithm. Let X∗ be
the complete design matrix (i.e., X∗ = [X | B]). The estimates of β and γ are[

β̂ns
γ̂

]
= (X∗

′
WX∗)−1X∗

′
Wz

For penalized splines, we first need to construct the smoother matrix
for the nonparametric part of the model. Given a value for the smoothing para-
meter α and a fixed (symmetric) penalty matrix H, the smoother matrix for
f is

S = B(B
′
B + αH)−1B

′

and the estimate of β is

β̂ps = (X
′
W (I − S)X)−1X

′
W (I − S)z

It is important to note that the use of natural splines and penalized splines
to represent the smooth functionf should not be considered interchangeable
methods. For example, Rice [92] and Speckman [113] both showed that al-
though the variance of β̂ps converges at the standard parametric rate for
n → ∞, the bias converges to zero at the much slower nonparametric rate.
The slow convergence of the bias comes from the fact that the smoother matrix
S is not a true projection, unlike the hat matrix in parametric regression [113].

4.4.4 Choosing the degrees of freedom for f

Given a particular representation of f described in Section 4.4.2, one must
then choose the degrees of freedom (df) controlling the amount of smoothness
allowed for f . A general strategy is to use a data-driven method and select
a df that optimizes a particular criterion. For example, one approach is to
choose the df that leads to optimal prediction of the health outcome series
and another is to select the df that best predicts the pollution series. With
each of these approaches, a number of Poisson regression models are fit using a
range of df values (other covariates such as weather variables and the pollutant
variable are included). Then, for each fitted model, a model selection criterion
is evaluated with the “optimal” df being that which minimizes the criterion.
In multisite studies, this approach can lead to a different df selected for each
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location, potentially allowing location-specific characteristics of the data to
influence the estimated smoothness of f .

Theoretical analysis has shown that choosing the degrees of freedom that
allows the smooth function of time to best predict the pollution series xt
leads to an estimate of the β that is asymptotically unbiased [28]. Subsequent
simulation studies have generally agreed with the theoretical findings and have
shown choosing the df to best predict the pollution series leads to estimates
with small bias, particularly when the true f and xt are highly correlated [76].

An alternate approach is to use a fixed degrees of freedom, perhaps based
on biological knowledge or previous work. For multisite studies, this approach
leads to fitting the same model to data from each location. One can explore
the sensitivity of β̂ by varying the df used in the model(s) and examining the
associated changes in β̂.

4.5 Combining Information and Hierarchical Models

One of the recent statistical advances in the study of short-term effects of air
pollution on health has been the use of hierarchical models to combine infor-
mation from multiple counties or cities. Such multisite studies have provided
strong evidence of a short-term association between PM10 and mortality. The
combining of information not only increases the power and precision of es-
timates but it can protect those results from the uncertainty due to model
adjustments for potential confounders. We explore the use of hierarchical mod-
els in much greater detail in Chapter 7, but we outline the basic principles
here.

Suppose we have data for multiple cities and those cities are indexed by
c = 1, . . . , n. Then one possible approach we can take is to estimate a location-
specific log-relative risk β̂c using a semiparametric model such as the one
described in Section 4.4. Along with the location-specific risk estimates, we
can estimate a location-specific variance σ̂2

c for that risk estimate. The variance
estimates σ̂2

c can be thought of as the “within-location” statistical uncertainty
associated with β̂c.

In all likelihood, the estimates β̂c will differ from location to location over
a range of values. One explanation of the variation in risk estimates might
be that those cities are different from each other and have very different
qualities and therefore should exhibit different risks. Another possibility is
that although the risk estimates are different, they only appear so because of
the noise in the data and the uncertainty of the estimates themselves. We can
use an hierarchical model to attempt to separate out what might be “true”
variation between cities and what might simply be the noise. A simple model
assumes

β̂c | βc ∼ N (βc, σ̂2
c )

and
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βc ∼ N (µ, τ2).

Here, the estimated location-specific risk estimates β̂c are assumed to be Nor-
mally distributed around an unknown “true” risk estimate βc with variance
σ̂2
c . Then, the true risk estimates are assumed to be Normally distributed

around an overall average µ with variance τ2. The parameter τ2 is sometimes
referred to as the heterogeneity variance.

In some cases we may be interested in examining posterior estimates of
the location-specific risk estimates that borrow information from other loca-
tions. We can produce the shrunken estimates βc as the posterior mean of the
distribution

βc | β̂c ∼ N
(
µ+

τ2

σ̂2
c + τ2

(β̂c − µ),
σ̂2
c τ

2

σ̂2
c + τ2

)
The use of an hierarchical model involves making specific assumptions

about the nature of variation in the location-specific estimates across loca-
tions. For example, the Normal distribution used here allows the βcs to be
negative, which may or may not be plausible depending on the specific appli-
cation. In addition, another assumption that is typically made is the indepen-
dence of estimates from different locations. Of course, hierarchical models are
only useful when data for multiple locations are in fact available. In particular,
the estimation of the heterogeneity variance τ2 depends critically on there be-
ing enough locations to estimate the variation of the “true” log-relative risks
across locations.
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Exploratory Data Analyses

5.1 Introduction

What do time series data look like? The purpose of this chapter is to provide
a number of different answers to this question. In addition, we outline the
rudiments of a time series analysis of air pollution and mortality that can be
used to connect the two to look for interesting relationships.

5.2 Exploring the Data: Basic Features and Properties

5.2.1 Pollutant data

The NMMAPS database has information about six of the criteria pollutants
defined by the United States Environmental Protection Agency. These pol-
lutants are measured by the EPA’s monitoring network and the raw data
are available on the EPA’s Air Quality System Web site. In this section we
describe some of the features of the pollutant data.

Particulate matter

For illustration, we begin with the Baltimore, Maryland data.

> balt <- readCity("balt", asDataFrame = FALSE)

The air pollution and weather data are stored in a data frame called “ex-
posure”. The PM10 time series in particular is stored in a variable named
“pm10tmean”.

> with(balt$exposure, summary(pm10tmean))

Min. 1st Qu. Median Mean 3rd Qu.
-35.1300 -10.7200 -3.1500 -0.1274 7.5330

Max. NA's
94.8700 3173.0000
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There are a number of interesting features of the PM10 data here. First,
notice the large number of missing values (NAs) in this particular variable. The
time series contains daily data for 14 years (January 1, 1987 through December
31, 2000), which means the total length of the series (including missing values)
is 5114. Of those 5114 possible values, 3173 of them are missing. The reason
for this is that PM10 measurements are only made once every three days in
Baltimore. So for every three days of potential measurement, two are always
missing. For the later years, the sampling pattern is changed to be one in six
days, so there are even more missing values for those years. Most cities in the
U.S. have this kind of sampling pattern for PM10 data, although there are a
handful of cities with daily measurements.

Another feature is that the mean and median are close to zero. How can
there be negative PM10 values one might wonder? Each of the pollutant time
series have been detrended so that they are roughly centered about zero.
Details of the detrending can be found in [101] and in Chapter 2. Generally
speaking, the detrending does not have a big impact on potential analyses
because in time series studies we are primarily interested in differences from
day to day, rather than differences between mean levels. If one is interested in
reconstructing approximately the original values, the “median trend” is stored
in a variable called “pm10mtrend” and can be added to the “pm10tmean”
variable.

> with(balt$exposure, summary(pm10tmean +
+ pm10mtrend))

Min. 1st Qu. Median Mean 3rd Qu.
0.5449 21.2300 28.6000 32.1900 40.0800
Max. NA's

130.5000 3173.0000

Another aspect worth noting about the pollutant data is that air pollution
concentrations in the NMMAPS database are averaged across multiple mon-
itors in a given city. When multiple monitor values are available for a given
day, a 10% trimmed mean is taken to obtain the value stored in the database
(hence the “tmean” part of the variable name).

We can plot the data to examine some more features. The resulting plot
is shown in Figure 5.1.

> with(balt$exposure, {
+ plot(date, pm10tmean + pm10mtrend,
+ ylab = expression(PM[10]), cex = 0.6)
+ })

One thing that is clear from the time plot of the data in Figure 5.1 is that the
variability of PM10 has decreased over the 14 year period. After about 1995,
we do not see the same number of very high values as we do before 1995.
Note that here we have plotted the PM10 data with the trend added back in
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Fig. 5.1. PM10 data for Baltimore, Maryland, 1987–2000.

so that we can examine the long-term trends in PM10. To look at the trend
more formally, we can conduct a simple linear regression of PM10 and time.

> library(stats)
> pm10 <- with(balt$exposure, pm10tmean +
+ pm10mtrend)
> x <- balt$exposure[, "date"]
> fit <- lm(pm10 ˜ x)

The table of regression parameter estimates is shown in Table 5.1. The neg-
ative slope parameter indicates a downward linear trend in PM10. If we look

Estimate Std. Error t value Pr(>|t|)
(Intercept) 47.8966 2.3076 20.76 0.0000

x −0.0018 0.0003 −6.89 0.0000

Table 5.1. Regression analysis of long-term trend in PM10.

more closely at a few years, we can see more patterns and trends. In partic-
ular, we can examine differences in these patterns across locations. Here, we
plot the Baltimore, Maryland PM10 data for the years 1998–2000.

> subdata <- subset(balt$exposure, date >=
+ as.Date("1998-01-01"))
> subdata <- transform(subdata, pm10 = pm10tmean +
+ pm10mtrend)
> fit <- lm(pm10 ˜ ns(date, df = 2 * 3),
+ data = subdata)
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> x <- seq(as.Date("1998-01-01"), as.Date("2000-12-31"),
+ "week")
> par(mar = c(2, 4, 2, 2), mfrow = c(2,
+ 1))
> with(subdata, {
+ plot(date, pm10, ylab = expression(PM[10]),
+ main = "(a) Baltimore", cex = 0.8)
+ lines(x, predict(fit, data.frame(date = x)))
+ })

These data are plotted in Figure 5.2(a). In addition to plotting the data, we
have added a simple natural spline smoother to highlight the overall trends.
The smoother uses two degrees of freedom per year of data to capture the
seasonality. There is a clear seasonal pattern in the PM10 data in Figure 5.2(a),
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Fig. 5.2. PM10 data for (a) Baltimore, Maryland, and (b) San Francisco, California,
1998–2000.

where the summer days tend to have higher levels than the winter days.
The Baltimore PM10 data exhibit a common pattern among eastern U.S.

cities, which is a summer increase in PM10 levels and a winter decrease. The
pattern in the western United States is somewhat different. We can take a
look at data from San Francisco, California for the same three year period.

> sanf <- readCity("sanf", asDataFrame = FALSE)
> subdata <- subset(sanf$exposure, date >=
+ as.Date("1998-01-01"))
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> subdata <- transform(subdata, pm10 = pm10tmean +
+ pm10mtrend)
> fit <- lm(pm10 ˜ ns(date, df = 2 * 3),
+ data = subdata)
> x <- seq(as.Date("1998-01-01"), as.Date("2000-12-31"),
+ "week")
> with(subdata, {
+ plot(date, pm10, ylab = expression(PM[10]),
+ main = "(b) San Francisco", cex = 0.8)
+ lines(x, predict(fit, data.frame(date = x)))
+ })

The seasonal pattern for San Francisco in Figure 5.2(b) on the west coast is
the exact opposite of the pattern exhibited for Baltimore on the east coast.
Here, we have winter peaks in PM10 and summer lows. It is useful to note
these patterns when we examine the mortality data in the next section.

Ozone

Another pollutant that is of great interest to many researchers is ozone (O3)
which has been linked to mortality and morbidity in various parts of the
world [e.g., 6, and references therein]. Ozone is a gas that can form primarily
but is usually a result of secondary interactions with other gases and sunlight.
In particular, the formation of ozone is closely related to local meteorology.
In many locations ozone is not measured during the fall and winter months
because of the generally lower levels during that time.

Not every city in the NMMAPS database has ozone measurements. Here
we look at the Baltimore and Chicago data. Ozone is measured in parts per
billion (ppb) and has hourly measurements. The NMMAPSlite package has
the hourly measurements for ozone for each day as well as an aggregate mea-
sure for the entire day. The variable o3tmean is a daily time series of the
trimmed mean of the detrended 24-hour average of ozone. The trend for this
series is stored in the variable o3mtrend.

We plot the ozone data for Baltimore and Chicago in Figure 5.3(a, b).

> balt <- readCity("balt", asDataFrame = FALSE)
> chic <- readCity("chic", asDataFrame = FALSE)

> par(mfrow = c(2, 1), mar = c(3, 4, 2,
+ 2))
> with(balt$exposure, plot(date, o3tmean +
+ o3mtrend, main = "(a) Baltimore",
+ ylab = expression(O[3] * " (ppb)"),
+ pch = "."))
> with(chic$exposure, plot(date, o3tmean +
+ o3mtrend, main = "(b) Chicago", ylab = expression(O[3] *
+ " (ppb)"), pch = "."))
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One can see immediately that ozone, like PM10, is highly seasonal, here with a
summer peak and winter trough in both cities. Baltimore has a different sam-
pling pattern than Chicago in that for Baltimore there are only measurements
between the six months of April through October.

In the United States, when ozone is measured it tends to be measured
every day, so we do not have the kinds of missing data problems that we have
with particulate matter. Ozone tends to be missing in a seasonal way, as with
Baltimore, or sporadically. This pattern of missingness is also present with
the other gases: sulphur dioxide, nitrogen dioxide, and carbon monoxide.
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Fig. 5.3. Daily ozone data for (a) Baltimore and (b) Chicago, 1987–2000

5.2.2 Mortality data

The mortality data are stored in a separate element in the list returned by
readCity. That element is named “outcome” and consists of a data frame.
For the NMMAPS data, the outcomes consist of daily mortality counts start-
ing from January 1, 1987 through December 31, 2000. The mortality counts are
split into a number of different outcomes including mortality from all causes
excluding accidents, chronic obstructive pulmonary disease (COPD), cardio-
vascular disease, respiratory disease, and accidents. Each mortality count
series has an associated “mark” series of the same length which is 1 or 0 de-
pending on whether a given day’s count is seemingly outlying. One may wish
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to exclude very large counts in a given analysis and the “mark” variables are
meant to assist in that.

The mortality data are also stratified into three age categories: mortality
for people under age 65, age 65 to 74, and age over 75. The “outcome” object
has a slot named “strata” which is a data frame containing factors indicating
the different strata for the outcome data. In this case there is only one factor
variable (agecat) indicating the three age categories. Lastly, the “outcome”
object contains a “date” slot which is a vector of class “Date” indicating the
date of each observation.

The outcome data for New York City can be read in via readCity. Here
we have extracted the outcome data frame only. We can plot the mortality
count for all-cause mortality by age group to see the different trends and
seasonal patterns.

> data.split <- split(outcome, outcome$agecat)
> par(mfrow = c(3, 1), mar = c(2, 4, 2,
+ 2) + 0.1)
> with(data.split[[1]], plot(date, death,
+ main = "Under 65", ylab = "Mortality count",
+ pch = "."))
> with(data.split[[2]], plot(date, death,
+ main = "65 to 74", ylab = "Mortality count",
+ pch = "."))
> with(data.split[[3]], plot(date, death,
+ main = "Over 75", ylab = "Mortality count",
+ pch = "."))

The mortality data for the three age categories are shown in Figure 5.4. Notice
in Figure 5.4 that the three age categories have slightly different trends in
mortality. The under 65 group appears to have a decreasing trend, particularly
after 1995. The 64–75 group appears to have a more gradual decrease trend
over the 14 year period and the over 75 group has a relatively stable trend
in mortality. All groups have a strong seasonal pattern with a peak in winter
and a trough in summer. The seasonality seems to be most pronounced in the
over 75 group. The peak in winter mortality is most likely due to the spread of
infectious diseases such as influenza as well as temperature-related phenomena
in cold weather areas. Most important for subsequent health-related analyses,
aside from temperature, data related to the causes of these seasonal changes
in mortality are largely unavailable or unmeasured.

We can examine other features of the data such as the autocorrelation
structure. With time series data such as these, we would expect that neigh-
boring values (in time) would be more similar than distant values. One such
tool for examining this behavior is the autocorrelation function, or acf. The
acf is defined as [13]

r(k) =
1
N

N−k∑
t=1

(xt − x̄)(xt+k − x̄)/c(0)
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Fig. 5.4. New York City daily mortality data by age category, 1987–2000

where

c(0) =
1
N

N∑
t=1

(xt − x̄)2

The integer k indicates the lag of the variable. A plot of r(k) for k = 0, 1, . . . ,K
is called a correlogram. Figure 5.5(a) shows a correlogram for the New York
City mortality data. The correlogram can be computed in R using the acf
function in the stats package.

> library(stats)
> par(mfrow = c(2, 1))
> x <- with(subset(outcome, agecat == "75p"),
+ death)
> acf(x, lag.max = 50, main = "(a) New York City mortality",
+ ci.col = "black")

The very slow decrease in autocorrelation from lag 1 to lag 50 shown in the plot
indicates that there is some nonstationarity in the series. We can remove this
by regressing the values of the series against a smooth function of time. This
smooth function of time can be estimated using natural splines or possibly
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other nonparameteric methods. Here we use a natural spline smoother for
simplicity.

> library(splines)
> fit <- lm(x ˜ ns(1:5114, 2 * 14))
> xr <- resid(fit)
> label <- "(b) New York City mortality (seasonality removed)"
> acf(xr, lag.max = 50, main = label, ci.col = "black")

Figure 5.5(b) shows the correlogram of the residuals after removing some of the
seasonality. There remains some autocorrelation but substantially less than
that exhibited before the seasonality was removed. Season is an important
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Fig. 5.5. Autocorrelation functions for New York City mortality data for (a) raw
data and (b) residuals after removing seasonality.

variable to consider because as shown in Figures 5.4 and 5.2, season is related
very strongly to both mortality and air pollution.
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5.3 Exploratory Statistical Analysis

In many time series analyses, one is often interested in how a single variable,
such as temperature, PM10, or mortality, varies over time. We might be in-
terested in how that variable varies from day to day, month to month, season
to season, or year to year. The particular timescale of interest depends on the
type of scientific question one is interested in addressing.

We may also be interested in examining how two variables co-vary with
each other over time. Such questions may come in the form of, “If X increases
today, does Y also increase today?” or, “If X increases this month, does Y
increase next month?”

In the previous section, we examined individual variables and how they
varied over time. We noticed that both PM10 and mortality have strong sea-
sonal patterns and long-term (generally decreasing) trends. In this section we
look at the relationship between mortality and PM10 and also examine what
other variables might potentially confound that relationship.

5.3.1 Timescale decompositions

Common to all time series data is that we have values that vary over a time
index. In the case of air pollution and mortality data, we have values that
change from day to day. However, we may also be interested in timescales of
variation beyond the day-to-day changes. For example, we may be interested
in looking at the overall 14 year long-term trend of mortality or the seasonal
behavior of PM10. In such cases, it is useful to decompose the time series into
separate components so that we can examine them separately rather than mix
them all together.

We can conceptualize a time series {Yt} as following the model

Yt = trendt + seasonalityt + short-term and other variationt (5.1)

where Yt is either mortality or perhaps PM10. Given access to the separate
timescale components (trend, seasonality, short-term) we could compare them
separately for mortality and PM10.

Table 5.2 gives a schematic of the potentially interesting timescales in
which we may be interested when examining air pollution and mortality. The
three timescales for each variable are labeled generally as “Trend” for trends
spanning across years, “Seasonal” for within-year patterns, and “Short-Term”
for shorter-term fluctuations. Although we are interested in the timescale de-
compositions of both mortality and pollution separately, we are more inter-
ested in looking at how the two variables correlate at different timescales and
in determining what kind of evidence is provided by such correlations.

Timescale decompositions of this kind are common in time series analy-
sis. One example is the STL decomposition of [15] which is implemented in
R in the stl function of the stats package. Cleveland’s STL uses the non-
parameteric smoother loess to decompose a time series into three separate
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components. Another possibility is to compute the Fourier transform of the
time series and group the different frequency components together into trend,
seasonal, and short-term components. The use of the Fourier transform allows
for more precise examination of timescales beyond those already mentioned.

Mortality
Trend Seasonal Short-Term

Trend X
Pollution Seasonal X

Short-Term X

Table 5.2. Example timescales of interest for air pollution and health studies and
the correlations between timescales of interest (marked with Xs)

One question that is useful to ask is how are mortality and air pollution
levels correlated at each of the three different timescales?

In particular, we are potentially interested in estimating the correlations
between the respective long-term trends of mortality and pollution, the sea-
sonal trends, and the short-term fluctuations (the Xs marked in Table 5.2).
Hence, the cells of interest in Table 5.2 are the ones falling on the diago-
nal. Although it is possible to look at other correlations in the table, their
interpretation is less clear.

A related question one needs to ask is what might confound the relation-
ship between mortality and air pollution at different timescales? For example,
long-term decreases in PM10 might be positively correlated with long-term
decreases in mortality, indicating that lowering air pollution levels is ben-
eficial. However, there might be factors explaining both decreases, such as
changes in population demographics and community-level activity patterns.
Weather, and specifically temperature, is a factor that can confound the rela-
tionship between mortality and pollution at both the seasonal timescale and
the short-term timescale because it too has seasonal trends and short-term
flucutations. As with all correlation analyses, any evidence of association at a
given timescale must be interpreted in the context of what might potentially
confound that association.

5.3.2 Example: Timescale decompositions of PM10 and mortality

We use data from Detroit, Michigan to demonstrate the timescale decompo-
sition introduced in the previous section. Here, we use the full 14 year daily
time series available from the NMMAPS database and not the shortened series
shown in Figure 4.1.

We decompose the time series data into three different timescales using
moving averages as defined in Section 4.3. Because our method of using moving
averages does not work well with missing values in the exposure variable, we
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will fill in the missing values with the mean of the entire series. There are only
52 missing values out of 5114 observations, thus this filling-in procedure does
not have an impact on the results.

A simple linear regression of y and x gives us the results in Table 5.3.

> library(NMMAPSlite)
> library(stats)
> initDB("NMMAPS")
> data <- readCity("det", collapseAge = TRUE)
> y <- data[, "death"]
> x <- with(data, pm10tmean + pm10mtrend)
> dates <- data[, "date"]
> x[is.na(x)] <- mean(x, na.rm = TRUE)
> fit <- lm(y ˜ x)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 46.1798 0.2263 204.11 0.0000

x 0.0232 0.0057 4.06 0.0000

Table 5.3. Simple linear regression of PM10 and mortality

There appears to be strong evidence of a positive association between PM10

and mortality. We can conduct a full timescale decomposition of the PM10

data to obtain a more detailed picture of the relationship between mortality
and PM10 in Detroit.

> library(stats)
> x.yearly <- filter(x, rep(1/365, 365))
> z <- x - x.yearly
> z.seasonal <- filter(z, rep(1/90, 90))
> u <- z - z.seasonal
> u.weekly <- filter(u, rep(1/7, 7))
> r <- u - u.weekly

Upon decomposing the data, we can fit the model in (4.4) to obtain estimates
of the yearly, seasonal, weekly, and sub-weekly associations.

> fit <- lm(y ˜ x.yearly + z.seasonal +
+ u.weekly + r)

All of the timescales appear strongly associated with mortality. However,
the seasonal component has a strong negative association. This is because
Detroit’s PM10 levels tend to be higher in the summer season and lower in
the winter. In contrast, mortality is generally higher in the winter and lower
in the summer. This inverse relationship gives us the negative coefficient for
the seasonal component.

We can also produce a timescale decomposition of the mortality data and
then plot the different timescales for mortality and PM10 next to each other to
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.1031 1.3098 26.04 0.0000

x.yearly 0.3783 0.0383 9.88 0.0000
z.seasonal −0.4354 0.0295 −14.76 0.0000
u.weekly 0.0532 0.0123 4.33 0.0000

r 0.0215 0.0070 3.07 0.0022

Table 5.4. Linear regression of PM10 and mortality, full decomposition

check for any interesting relationships. First we can decompose the mortality
time series in to the same yearly, seasonal, weekly, and sub-weekly timescales.

> y.yearly <- filter(y, rep(1/365, 365))
> yz <- y - y.yearly
> yz.seasonal <- filter(yz, rep(1/90, 90))
> yu <- yz - yz.seasonal
> yu.weekly <- filter(yu, rep(1/7, 7))
> yr <- yu - yu.weekly

Figure 5.6 shows a portion of the timescale decompositions for the Detroit
PM10 (left column) and daily mortality data (right column) for the years
1988–2000. Data are shown for the period 1988–2000 because we use the first
year of data to calculate the moving averages. We can see a little more clearly
the strong positive association between the yearly trends and the negative
association between the seasonal components. The less smooth weekly and
residual/subweekly components are difficult to examine by eye and we must
resort to linear regression results in those cases.

5.3.3 Correlation at different timescales: A look
at the Chicago data

Dominici et al.[29] provided software for creating timescale decompositions of
time series data via a Fourier transform. We have packaged their software and
have included it in the tsModel package. The tsdecomp function can be used
to decompose a time series into user-specified timescales. We demonstrate the
use of tsdecomp on mortality and PM10 data from Chicago, Illinois.

> data <- readCity("chic", collapseAge = TRUE)
> death <- data[, "death"]
> is.na(death) <- as.logical(data[, "markdeath"])

The Chicago mortality data contain a few days with extremely high mortality
counts. Although these may be of interest in another analysis, they are outliers
with respect to the other data points and we remove them for the time being
by setting them to be NA. The variable markdeath is an indicator of days
that have outlying mortality counts.

First we can identify important characteristics of the mortality data by
decomposing the series into three different timescales. The timescales include
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Fig. 5.6. Timescale decomposition for Detroit PM10 and mortality data, 1987–2000.

• A single cycle over the entire series
• 2–14 cycles over the entire series
• 15 or more cycles

These timescales correspond roughly to long-term trends, seasonal trends, and
higher frequency short-term trends.

> library(tsModel)
> mort.dc <- tsdecomp(death, c(1, 2, 15,
+ 5114))

The three time scales are plotted in Figure 5.7.

> par(mfrow = c(3, 1), mar = c(3, 4, 2,
+ 2) + 0.1)
> x <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
> plot(x, mort.dc[, 1], type = "l", ylab = "Trend",
+ main = "(a)")
> plot(x, mort.dc[, 2], type = "l", ylab = "Seasonal",
+ main = "(b)")
> plot(x, mort.dc[, 3], type = "l", ylab = "Residual",
+ main = "(c)")

Figure 5.7(a) shows the long-term trend which is generally decreasing, not
unlike the trend observed with the New York City mortality data. Here we
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have collapsed the three age categories and are examining the aggregated se-
ries. Figure 5.7(b) shows the obvious seasonal pattern in the mortality data,
again with a winter peak and summer trough. Figure 5.7(c), the bottom plot,
shows the residual variation in mortality, once the long-term trend and sea-
sonality have been removed. Note that the original series is equal to the sum
of the three plots in Figures 5.7(a–c). A similar timescale decomposition can
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Fig. 5.7. Chicago mortality timescale decomposition, 1987–2000, into (a) long-term
trend, (b) seasonality, and (c) short-term variation.

be conducted for the PM10 data, which we do below.

> pm10 <- with(data, pm10tmean + pm10mtrend)
> poll.dc <- tsdecomp(pm10, c(1, 2, 15,
+ 5114))

Figure 5.8 shows the three timescales for the Chicago PM10 data in the
same format as Figure 5.7.

> par(mfrow = c(3, 1), mar = c(3, 4, 1,
+ 2) + 0.1)
> x <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
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> plot(x, poll.dc[, 1], type = "l", ylab = "Trend")
> plot(x, poll.dc[, 2], type = "l", ylab = "Seasonal")
> plot(x, poll.dc[, 3], type = "l", ylab = "Residual")

Comparing Figures 5.8 and 5.7 visually, we can see that the seasonal compo-
nents of mortality and PM10 do not correspond and in fact appear negatively
correlated. The long-term trend components seem to behave similarly in that
they are both generally decreasing. From the plots alone, it is difficult to tell
if the short-term fluctuations are in fact correlated at all.
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Fig. 5.8. Chicago PM10 timescale decomposition, 1987–2000

We can examine the correlations at different timescales more formally by
actually computing the correlations separately for each timescale.

> c1 <- cor(mort.dc[, 1], poll.dc[, 1],
+ use = "complete.obs")
> c2 <- cor(mort.dc[, 2], poll.dc[, 2],
+ use = "complete.obs")
> c3 <- cor(mort.dc[, 3], poll.dc[, 3],
+ use = "complete.obs")
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Doing so gives us a correlation of 0.65, for the long-term trend component
−0.81 for the seasonal component, and 0.12 for the short-term component.
Hence, the long-term and short-term timescales are positively correlated and
the seasonal timescale has a negative correlation. We had already suspected
the positive correlation in the long-term trends and the negative correlation
in the seasonality, but the positive correlation in the short-term variation is
interesting. Table 5.5 shows the correlations between mortality and PM10 for
each timescale in the context of Table 5.2.

Mortality
Trend Seasonal Short-Term

Trend 0.65
Pollution Seasonal -0.81

Short-Term 0.12

Table 5.5. Correlations for mortality and PM10 at different timescales

An alternative and perhaps more flexible approach is to use linear re-
gression to analyze everything at once and simultaneously conduct tests of
significance (if such tests are of interest).

> library(stats)
> poll.df <- as.data.frame(poll.dc)
> names(poll.df) <- c("Trend", "Season",
+ "ShortTerm")
> fit <- lm(death ˜ Trend + Season + ShortTerm,
+ data = poll.df)

Table 5.6 shows the results of such a regression analysis. Because of the linear
model assumption and the orthogonality of the predictors, the results of the
regression analysis lead us to the same conclusions as the simple correlation
analysis.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 118.5628 1.1507 103.04 0.0000

Trend 0.8299 0.0936 8.87 0.0000
Season −1.2029 0.0375 −32.11 0.0000

ShortTerm 0.0714 0.0099 7.23 0.0000

Table 5.6. Regression of daily mortality on different timescales of PM10

5.3.4 Looking at more detailed timescales

Although the long-term, seasonal, and short-term trends are common timescales
to examine in time series analysis, particular applications may allow for other
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interesting and relevant timescales to examine. For example, in pollution stud-
ies one might be interested in separating out the effects of daily variation in
pollutant levels on mortality counts from the effects of weekly or monthly
variation.

The tsdecomp function can be used to look at more detailed timescales
of either pollution or mortality.

> freq.cuts <- c(1, 2, 15, round(5114/c(60,
+ 30, 14, 7, 3.5)), 5114)
> poll.dc <- tsdecomp(pm10, freq.cuts)
> colnames(poll.dc) <- c("Long-term", "Seasonal",
+ "2-12 months", "1-2 months", "2-4 weeks",
+ "1-2 weeks", "3.5 days to 1 week",
+ "Less than 3.5 days")

We plot these more detailed timescales in Figure 5.9.

> par(mfcol = c(4, 2), mar = c(2, 2, 2,
+ 2))
> x <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
> cn <- colnames(poll.dc)
> for (i in 1:8) {
+ plot(x, poll.dc[, i], type = "l",
+ frame.plot = FALSE, main = cn[i],
+ ylab = "")
+ }

When looking at multiple timescales, it is a little easier to simply conduct
a multiple regression analysis of the outcome versus the timescales of the
pollutant rather than compute individual correlations.

> poll.df <- as.data.frame(poll.dc[, 1:8])
> fit <- lm(death ˜ ., data = poll.df)

Table 5.7 shows the results of regressing all-cause nonaccidental mortality on
the eight timescales shown in Figure 5.9. Notice that the coefficients for the
“Long-term” and “Seasonal” timescales are identical to those in Table 5.6.
This is to be expected because of the linearity assumption and the orthogo-
nality of the different timescales. However, now the short-term timescale has
been broken down even further so that we have estimates of the association
between mortality and timescales ranging from 2–12 months down to <3.5
days. Not all of the timescales could be considered statistically significant with
respect to their relationship with mortality. The summary in Table 5.6 pro-
vides a “breakdown” of the evidence for Chicago and allows for a potentially
more informed discussion of what evidence might be relevant for subsequent
decisions or actions.

Unfortunately, the timescale analysis using tsdecomp() can only be done
with cities that have relatively complete data on PM10. In the next chapter
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Fig. 5.9. Detailed timescale decomposition for Chicago, Illinois PM10 data, 1987–
2000.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 115.1945 0.5491 209.80 0.0000
Long-term 0.8300 0.0935 8.88 0.0000

Seasonal −1.2029 0.0374 −32.15 0.0000
2-12 months −0.0267 0.0363 −0.74 0.4623
1-2 months 0.0670 0.0421 1.59 0.1116

2-4 weeks 0.1251 0.0256 4.90 0.0000
1-2 weeks 0.1040 0.0197 5.27 0.0000

3.5 days to 1 week 0.0638 0.0184 3.46 0.0005
Less than 3.5 days 0.0364 0.0229 1.59 0.1121

Table 5.7. Regression of daily mortality on more detailed timescales of PM10,
Chicago, Illinois, 1987–2000

we use other methods to get around this limitation.
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5.4 Exploring the Potential for Confounding Bias

Under the linear regression model, there is evidence of an association between
mortality and PM10 at all three timescales (yearly, seasonal, and shorter).
However, as noted before, the association is positive in two timescales and
negative in one. How should we interpret these results along with the regres-
sion analysis? If PM10 were truly associated with mortality (either positively
or negatively) we would at least expect that the correlations for each of the
timescales would all be in the same direction.

One possible explanation is that there is some confounding going on. It
is possible that at one or more of the timescales, the relationship is in fact
confounded by a third not-yet-included variable. One such variable is tem-
perature. Temperature has strong seasonal patterns as well as short-term
fluctuations that are often correlated with PM10 and mortality. In addition,
temperature has long-term trends that could potentially affect both PM10 and
mortality. Figure 5.10 shows the daily temperature values for Chicago.

> data <- readCity("chic", collapseAge = TRUE)
> with(data, plot(date, tmpd, type = "l",
+ ylab = "Temperature"))
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Fig. 5.10. Daily temperature for Chicago, 1987–2000.

We can remove the effect of temperature by regressing both mortality and
PM10 on temperature and taking the residuals.

> temp <- data[, "tmpd"]
> pm10.r <- resid(lm(pm10 ˜ temp, na.action = na.exclude))
> death.r <- resid(lm(death ˜ temp, na.action = na.exclude))
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> poll.dc <- tsdecomp(pm10.r, c(1, 2, 15,
+ 5114))

Figure 5.11 shows a timescale decomposition of PM10 after the variation due
to temperature has been removed.

> par(mfrow = c(3, 1), mar = c(3, 4, 1,
+ 2) + 0.1)
> x <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
> plot(x, poll.dc[, 1], type = "l", ylab = "Trend")
> plot(x, poll.dc[, 2], type = "l", ylab = "Seasonal")
> plot(x, poll.dc[, 3], type = "l", ylab = "Residual")
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Fig. 5.11. Timescale decomposition of the residuals of PM10 regressed on temper-
ature.

We can then take the mortality residuals and regress them on the timescale
decomposition of the PM10 residuals.

> poll.df <- as.data.frame(poll.dc)
> names(poll.df) <- c("Trend", "Season",
+ "ShortTerm")
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> fit <- lm(death.r ˜ Trend + Season + ShortTerm,
+ data = poll.df)

Table 5.8 shows the estimated regression coefficients for the relationship
between PM10 and mortality after removing temperature. Notice now in

Estimate Std. Error t value Pr(>|t|)
(Intercept) −0.0988 0.1835 −0.54 0.5902

Trend 0.8829 0.0894 9.88 0.0000
Season 0.3226 0.0661 4.88 0.0000

ShortTerm 0.1061 0.0103 10.29 0.0000

Table 5.8. Regression of mortality on PM10 with temperature removed

Table 5.8 that the regression coefficient for the seasonal timescale has changed
sign whereas the coefficients for the short-term and long-term trend timescales
are relatively unchanged. Clearly temperature has some relationship with both
mortality and PM10 at the long-term and seasonal timescales. The potential
confounding effect of temperature on the short-term timescale is perhaps less
substantial.

Temperature is an example of a measured confounder. We have daily data
on temperature and can adjust for it directly in our models. Often, there
are other potential confounders in time series analysis for which we generally
do not have any data. Such confounders are unmeasured confounders and
an example of one in this application is a group of variables that we might
collectively call “season”.

Season affects mortality because in the winter there is generally thought to
be an increase in the spread of infectious diseases such as influenza. Unfortu-
nately, there is little reliable data on such infectious disease events. Season can
also affect pollution levels via periodic changes in sources such as power plant
production levels or automobile usage. Yet another unmeasured confounder is
the group of variables that might produce long-term trends in both pollution
and mortality. As mentioned before, these include population demographics
and activity patterns.

The potential for confounding from seasonal and long-term trends might
lead us to discount the evidence of association between the trend and seasonal
components found in Tables 5.5 and 5.6. In subsequent analyses we may wish
to completely remove their influence on any assocations we choose to estimate.

We can observe the potential confounding effect of season on the relation-
ship between PM10 and mortality by conducting a simple stratified analysis.
We demonstrate this effect using data from New York City, New York.

> data <- readCity("ny", collapseAge = TRUE)

We can make a simple scatterplot of the daily mortality and PM10 data for
the years 1987–2000.
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> with(data, plot(l1pm10tmean, death,
xlab = expression(PM[10]),

+ ylab = "Daily mortality", cex = 0.6,
+ col = gray(0.4)))

We can also overlay a simple linear regression line on the plot to highlight the
relationship between the two variables.

> f <- lm(death ˜ l1pm10tmean, data)
> with(data, {
+ lines(sort(l1pm10tmean), predict(f,
+ data.frame(l1pm10tmean = sort(l1pm10tmean))),
+ lwd = 4)
+ })

The resulting scatterplot is shown in Figure 5.12. The PM10 data we have
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Fig. 5.12. Scatterplot of daily mortality and lag 1 PM10 for New York City, New
York, 1987–2000.

chosen to plot is the lag 1 PM10 value. This means that for each day’s mortality
count, we plot the previous day’s PM10 value. Time series studies of mortality
and PM10 have shown this to be an important lag structure [101]. The overall
relationship between lag 1 PM10 and mortality in New York City appears to
be negative.
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In Figures 5.13(a–d) we have plotted the New York City mortality and
PM10 data four times, with each plot highlighting a different season of the
year. Within each plot we have overlaid in black the data points correspond-
ing to that season as well as the regression line fit to only the data from
that season. We can see that for each season, the relationship between lag 1
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Fig. 5.13. Simple linear regression of New York City PM10 and mortality data,
stratified by season.

PM10 and mortality is positive, but the overall, the relationship is negative,
as shown in Figure 5.12. This example with New York City data illustrates
how estimated associations between air pollution and mortality can change
depending on whether one decides to adjust for season.

In general, without data on the factors that cause the seasonal and long-
term trends we cannot adjust for them directly when modeling air pollution
and mortality. However, one approach is to make an assumption that these
variables affect mortality and pollution in a smooth manner. Given this as-
sumption we can use a smooth function of time itself to adjust for the various
seasonal and long-term trends that may confound the relationship between air
pollution and mortality. We explore this approach to adjusting for unmeasured
confounding in Chapter 6.
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5.5 Summary

Many standard tools of statistical analysis can be brought to bear when an-
alyzing time series data. Looking at correlations or simple linear regression
models can provide insight into relationships between variables. In addition,
smoothing techniques can be used for exploratory analysis.

With time series data, a feature that we can take advantage of is the
fact that there is an underlying process evolving over time. We can meaning-
fully decompose a time series into a long-term trend, a seasonal pattern, and
residual short-term variation. This kind of timescale decomposition can give
us insight into where the evidence of an association exists. In epidemiologi-
cal studies, there is an added benefit of timescale decompositions in that we
can examine each timescale independently and evaluate the strength of the
evidence.

For example, with air pollution and mortality, even though the associ-
ations at the long-term trend and seasonal timescales may be confounded,
the variation at the short-term timescale is not necessarily confounded by
the same factors and the associations there may still be credible. This fact
highlights the benefits of the timescale decomposition. By decomposing the
predictor into separate long-term trend, seasonal, and short-term timescales,
we can isolate the sources of evidence and use our subject matter knowledge
to upweight or downweight the evidence appropriately.

In any epidemiological study one might reasonably ask, “From where does
the evidence of association come?” In air pollution and health time series
studies it would appear that perhaps the most reliable evidence comes from
the short-term timescale variation. We explore this question in greater depth
in the chapters to follow.

5.6 Reproducibility Package

For the sake of brevity, some of the code for producing the analyses in this
chapter has not been shown for the sake of brevity. However, the full data and
code for reproducing all of the analyses and plots can be downloaded using
the cacher package by calling

> clonecache(id = "2a04c4d5523816f531f98b141c0eb17c6273f308")

which will download the cached analysis from the Reproducible Research
Archive.

5.7 Problems

In this set of problems we explore the daily time series data of air pollu-
tion and mortality and we visually inspect their long-term, seasonal, and
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short-term variation. We also calculate the associations between air pollution
and mortality at these different scales of variation.

The data frames for each of the cities all have the same variable names.
The primary variables we need from each data frame are

• death, daily mortality counts from all-cause non-accidental mortality
• pm10tmean, daily detrended, PM10 values
• pm10mtrend, daily median trend of PM10

• date, the date, stored as an object of class Date
• tmpd, daily temperature

The data for a given city (denoted by its abbreviated name) can be read into
R using the readCity function from the NMMAPSlite package described
in Chapter 2.

1. Load data for Chicago (chic), New York (ny), and Los Angeles (la) into
R.

2. For each city, plot the PM10 data versus date. Try plotting PM10 both
with and without the trend added in. Try plotting the data in smaller
windows of time to see more detail.

3. Using the tsdecomp function, decompose the Chicago PM10 data into
three timescales: long-term variation, seasonal variation short-term vari-
ation. Plot your results.

4. For each of the three cities, plot the all-cause non-accidental mortality
data versus date separately for each of the three age categories: under65,
65to74, and 75p.

5. Using the tsdecomp function, decompose the mortality data into three
timescales (as before).

6. Revisit the timescale decompositions for both PM10 and mortality in
Chicago. Visually compare the long-term trend for mortality with the
long-term trend for PM10. Do the same comparison for the seasonal and
short-term components.

7. Compute the correlation coefficient between the long-term trends for mor-
tality and PM10. Compute the correlation coefficients for both the seasonal
and short-term components of mortality and PM10. If there are any miss-
ing data, set use = "complete" in the call to cor when computing
the correlation.

8. Try the same timescale/correlation analysis with the city of Seattle, WA
(seat). Do you get the same correlations?

9. Try the same timescale/correlation analysis with Pittsburgh, PA (pitt).
10. Fill in the following table with the correlations between PM10 and mor-

tality computed at different timescales in the previous steps:
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Long-Term Seasonal Short-Term
Chicago
Seattle

Pittsburgh

Upon completing the problems above, consider the following questions.

1. What are the main characteristics of the time series data for mortality
and air pollution?

2. What are the long-term, seasonal, and short-term variations in air pollu-
tion in U.S. cities? Are there differences between cities?

3. What are the long-term, seasonal, and short-term variations in mortality
in U.S. cities? Are there differences between cities? Are there differences
between age categories?

4. How do the long-term, seasonal, and short-term variations in PM10 and
mortality relate to each other? How do they relate on different timescales?

5. Is there any evidence of an association between PM10 and mortality in
these cities? Which timescale is more suitable for drawing inferences?

6. How should we weigh the evidence from the different timescales? What
evidence is more important? What evidence should be discounted and
why?
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Statistical Models

6.1 Introduction

In this chapter we cover the array of statistical methods that are now in
widespread use in air pollution and health research. The previous chapter
focused on methods for exploring air pollution and health data and for exam-
ining general trends and associations. This chapter focuses on methods and
models for obtaining risk estimates from time series data and exploring the
sensitivity of those estimates to modeling approaches.

In addition to the NMMAPSlite package and its dependencies, you need
the following packages for the examples in this chapter.

• gam, for generalized additive modeling capabilities, available on CRAN
• tsModel, for various time series modeling support functions

6.2 Models for Air Pollution and Health

In time series studies of air pollution and health, we typically model the out-
come as a time series of counts representing the number of times a particular
event has occurred on a given day. Each observation of the outcome Yt could
be a count indicating the number of deaths that occurred on day t or the
number of hospitalizations for heart failure on day t. At the most basic level,
we are trying to model the relationship between outcome Y and exposure X
in the presence of potential confounding factors Z.

With time series of counts, the most commonly used model is the log-
linear Poisson model. This model takes the outcome Yt to be Poisson with
mean µt and the log of µt is the linear predictor. The linear predictor typi-
cally includes terms for the exposure of interest (e.g., air pollution levels) and
various potential confounders. Models often fall into the form
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Yt ∼ Poisson(µt)
logµt = α+ β xt−`

+ ηmeasured confounderst
+ unmeasured confounderst

(6.1)

where the pollutant xt−` might be included in the model at a lag ` that might
range from 0 for no lag to 13 for a two-week lag. Obviously, “unmeasured
confounders” cannot be included directly in the model but here we take “un-
measured confounders” to mean a suitable proxy for any such variables. We
discuss possible proxies later in this chapter.

In general for a time series model such as in (6.1), the target of inference
is the effect of a unit increase in the exposure on a single day. The parameter
β is the log-relative risk for xt−` and 100 × (eβ − 1) measures the percent
increase in mortality per unit increase in the pollutant. Other elements of the
model, as indicated by their labels in (6.1), are factors that might confound
the relationship between pollutant exposure and the outcome of interest.

In air pollution and health applications, the challenge is to obtain a good
estimate of β in the presence of much more powerful signals. For example,
factors such as temperature and season almost always have a strong rela-
tionship with mortality and so one must take care to remove the potential
confounding effects of these factors. Furthermore, various factors for which no
measurements are available can also confound the relationship between pol-
lution and health so we must also gauge the sensitivity of estimates of β to
potential unmeasured confounding.

Figure 6.1 illustrates the difficulty with estimating the effect of air pollu-
tion on health. Figure 6.1 is simply a plot of the fitted linear predictors for
season, temperature, and PM10 when put in a model to predict daily nonac-
cidental mortality in Chicago, IL.

> chic <- readCity("chic", collapseAge = TRUE)
> fit <- glm(death ˜ l1pm10tmean + ns(date,
+ 4 * 14) + ns(tmpd, 6) + dow, data = chic,
+ na.action = na.exclude, family = poisson)
> pr <- predict(fit, type = "terms")

We can see clearly that season and temperature are very strong predictors
of mortality whereas the PM10 signal is practically buried among the others.
Extracting this PM10 signal is the key to time series modeling of air pollution
and health.

In time series analyses of air pollution and health we must be careful to
control for potential confounding from other time-varying predictors. Factors
that vary across individuals or communities but do not vary substantially
from day to day cannot confound the relationship between daily variation in
air pollution and daily variation in health outcomes.
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Fig. 6.1. Linear predictors for season/trend (dashed), temperature (solid gray), and
PM10 (solid black) for nonaccidental mortality in Chicago, IL, 1987–2000.

6.3 Semiparametric Models

Given the conceptual model in (6.1) which has an outcome, an exposure of
interest, measured confounders, and potential unmeasured confounders, an at-
tractive methodologic framework within which to work is one of semiparamet-
ric models [95]. Semiparametric models combine the advantages of parametric
and nonparametric models by allowing for the inclusion of explicit paramet-
ric terms for certain predictors (such as an exposure of interest) and smooth
nonparametric terms for other predictors.

The specific type of semiparametric model that we use is a generalized
additive model (GAM) where logµt is assumed to be additive in its predictors
but not necessarily linear [45]. GAMs provide some flexibility for using nonlin-
ear or nonparametric terms but do not suffer from the curse of dimensionality
as do other more flexible nonparametric methods such as kernel smoothing
or local polynomial modeling. Although the additivity assumption is strong,
GAMs still provide a very flexible framework for modeling and exploratory
analysis. The use of GAMs in air pollution and health was proposed in [106]
and has since become a standard method in this area.
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Suppose in a given city, county, or geographic region, we observe yt, a
time series of daily mortality counts (t = 1, . . . , n), xt a time series of daily air
pollution levels, and zt a time series of daily temperature. A simple generalized
linear model for the outcome yt would have

Yt ∼ Poisson(µt)
logµt = α+ β xt−` + η zt (6.2)

Again, in this model we are primarily interested in estimating β, the log-
relative risk of the health outcome associated with a one unit increase in
pollution, adjusting for variation in the temperature predictor zt.

Model (6.2) might be reasonable if we believed that there were no other po-
tential time-varying confounders in addition to daily current day temperature.
However, previous studies have shown, for example, that other meteorological
factors such as humidity can be important predictors in such a model. Given
that weather monitoring is common in many areas, measurements of humidity
(or dewpoint temperature) and other meteorological variables will likely be
available for inclusion in model (6.2).

Even with the meteorological variables, there might be other time-varying
factors for which we do not have daily measurements that could confound the
relationship between xt and yt. At a minimum, it would be an incomplete
analysis to estimate β without fully understanding the sensitivity of that
estimate to other possible model formulations. Unfortunately, without direct
measurements, we cannot include such potential confounders into model (6.2).
However, we can make an assumption that these other factors vary smoothly
with time. We may not be able to specify exactly how they vary, however, we
might assume that they are not too wiggly from day to day.

Given this assumption, we can use a smooth function of time itself to serve
as a proxy for those unmeasured confounders, expanding model (6.2) to be

logµt = α+ β xt−` + η zt + s(t, λ) (6.3)

Here, s(t, λ) is used to indicate a smooth function of time t. The smoothness of
the function is controlled by a scalar parameter λ, also known as the smoothing
parameter or degrees of freedom. In this setting, larger values of λ indicate a
less smooth (rougher) function of time and smaller values indicate a smoother
function.

In addition to including a smooth function of time, we may wish to allow
for nonlinear relationships between the outcome and the measured predictors.
For example, temperature is known to have a nonlinear relationship with
mortality in some regions [17]. Such a nonlinear relationship reflects the fact
that in the winter, increases in temperature can be beneficial and decrease
mortality whereas in the summer, temperature increases can be harmful.

With GAMs we can allow for nonlinear relationships between measured
predictors and the outcome by adjusting model (6.3) to be
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logµt = α+ β xt−` + s(zt, λ1) + s(t, λ2) (6.4)

This model indicates that zt (temperature) has a smooth but otherwise un-
specified relationship with mortality. The smoothness is controlled by the
degrees of freedom λ1.

So far, we have provided a basic introduction to how the conceptual model
in (6.1) can be implemented using semiparametric GAMs. In the subsequent
sections we describe how to use various R packages to fit such models to air
pollution and health data and how to interpret the results.

6.3.1 GAMs in R

The world of GAMs in R is varied and diverse with a number of different
packages implementing different approaches. We list a few that are available
as of version 2.7.0 of R.

• mgcv: This package is a “Recommended” package for R and should be
present in every installation. It is written by Simon Wood and it imple-
ments GAMs as well as generalized additive mixed models (GAMMs) via
penalized splines. Smoothing parameters can be estimated using general-
ized cross-validation (GCV) or unbiased risk estimation (UBRE).

• gam: Written by Trevor Hastie, this package provides functions originally
available in S-PLUS and is available from CRAN. GAMs can be fit us-
ing loess or smoothing splines. There are no methods here for smoothing
parameter estimation.

• splines: This package is a base package for R and contains a number of
functions that can be used to fit flexible regression models. For example,
the bs() and ns() functions can be used to set up B-spline or natu-
ral spline bases, respectively. Although these models are strictly speaking
parametric, they still offer far more flexibility than purely linear alterna-
tives. In addition, fully parameteric models can often be faster to fit with
larger datasets.

• mda: This package is available from CRAN and contains the function
bruto that can fit additive models via smoothing splines. However, be-
cause it is limited to fitting Gaussian regression models, it is ultimately
not of much use to us here.

In this chapter we primarily use the gam and splines packages to fit general-
ized additive models. However, most of what we demonstrate here could also
be implemented via the mgcv package.

6.4 Pollutants: The Exposure of Interest

Our ability to estimate the effect of air pollution on daily mortality will typ-
ically depend on the availability of the data. Pollutant data are measured
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according to a variety of sampling schemes, depending on the nature of the
pollutant. Gaseous pollutants tend to be measured every day, although some-
times they are only measured during certain seasons. For example, ozone in
the United States is often only measured during the months of April through
September. Particulate matter (both PM10 and PM2.5) is usually not mea-
sured every day but rather once every three days or once every six days.

6.4.1 Single versus distributed lag

In the model described in (6.1), an assumption is made that the effect of a
unit increase only plays out over a single day, determined by the lag `. A unit
increase in pollution on day t is associated with a change in mortality ` days
later. Model (6.1) is sometimes referred to as a single lag model because of
this assumption. Identifying the appropriate lag of the exposure to include in
the model is a problem that generally needs to be guided by subject matter
knowledge. For example, with a mortality outcome, it is uncommon to see an
association with a pollutant for more than a few days into the future. However,
with hospitalizations or other morbidity outcomes, one can potentially observe
an association extending to a week or more.

An alternative to single lag models is a distributed lag model, where mul-
tiple lags of pollution are included in the model simultaneously. Such a model
typically has the form

logµt = α+
K∑
`=0

β` xt−` + other factorst (6.5)

where K is the maximum lag. Values of K in the literature range from 2 days
up to 40 days [e.g., 128, 6, 33]. Distributed lag models assume that the effect of
a unit increase in pollution on a given day is spread out over K days into the
future. Although such a model is arguably more realistic, there are a number
of challenges to fitting distributed lag models that must be considered.

Single lag models, which assume that a unit increase in pollution affects
mortality a fixed number of days in the future, can be fit as long as pollutant
data are available. Distributed lag models can only be fit if pollutant data
are available every day. Therefore, our ability to fit distributed lag models
for particulate matter is greatly hindered by the sampling scheme for the
pollutant.

As an example, we can fit single lag models to the Chicago, IL data and
list the estimates of the PM10 coefficient by lag.

> data <- readCity("chic")

Here we fit a separate model for PM10 at lag 0, 1, 2, 3, and 4. Each of
the models also includes an age category specific intercept and current day
temperature.
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> f0 <- glm(death ˜ pm10tmean + tmpd + agecat,
+ data = data, family = poisson)
> f1 <- glm(death ˜ Lag(pm10tmean, 1, agecat) +
+ tmpd + agecat, data = data, family = poisson)
> f2 <- glm(death ˜ Lag(pm10tmean, 2, agecat) +
+ tmpd + agecat, data = data, family = poisson)
> f3 <- glm(death ˜ Lag(pm10tmean, 3, agecat) +
+ tmpd + agecat, data = data, family = poisson)
> f4 <- glm(death ˜ Lag(pm10tmean, 4, agecat) +
+ tmpd + agecat, data = data, family = poisson)
> ss <- list(summary(f0), summary(f1), summary(f2),
+ summary(f3), summary(f4))
> models <- lapply(ss, function(x) x$coefficients[2,
+ c("Estimate", "Std. Error")])

Table 6.1 shows the estimates of the PM10 coefficient from five different single
lag models. The estimates for lags 0 and 1 are relatively close but the estimates

Estimate Std. Error

Lag 0 PM10 0.000931 0.000074
Lag 1 PM10 0.000728 0.000073
Lag 2 PM10 0.000164 0.000072
Lag 3 PM10 0.000077 0.000072
Lag 4 PM10 −0.000053 0.000072

Table 6.1. Results from single lag models, Chicago, IL, 1987–2000

for lags 2, 3, and 4 are much smaller (and even negative for lag 4).
Distributed lag models can often be fit to gaseous pollutant data such as

ozone, which has already been done on a national scale [see e.g. 6]. In order
to fit distributed lag models for particulate matter one must resort either to
examining a small subset of cities with everyday PM measurements or filling
in missing PM data via an imputation method. The former has been done in
a few locations [e.g., 112], however, the latter is still an active research area.

Because Chicago, IL has everyday PM10 data, we can fit a distributed
lag model to those data and compare the estimates of the lagged effects with
those from single lag models.

> data <- readCity("chic")
> fit <- glm(death ˜ Lag(pm10tmean, 0:4,
+ agecat) + tmpd + agecat, data = data,
+ family = poisson)
> summ <- summary(fit)

Table 6.2 shows the results from the distributed lag models. Generally, the
estimates for the individual lags tell a similar story as in Table 6.1 in that the
estimated coefficients for lag 0 and 1 are larger than those for lags 2–4. One
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.607541 0.004984 723.88 0.00

Lag(pm10tmean, 0:4, agecat)0 0.000794 0.000084 9.46 0.00
Lag(pm10tmean, 0:4, agecat)1 0.000471 0.000090 5.23 0.00
Lag(pm10tmean, 0:4, agecat)2 −0.000051 0.000090 −0.56 0.57
Lag(pm10tmean, 0:4, agecat)3 0.000197 0.000090 2.20 0.03
Lag(pm10tmean, 0:4, agecat)4 −0.000062 0.000083 −0.74 0.46

tmpd −0.003067 0.000085 −36.24 0.00
agecat65to74 −0.227776 0.004095 −55.63 0.00

agecat75p 0.607963 0.003388 179.43 0.00

Table 6.2. Results from distributed lag model, Chicago, IL, 1987–2000

anomaly is the sudden increase in the estimated coefficient for lag 3, which is
bigger than the single lag estimate for lag 3.

Distributed lag models can be used to estimate the “total” or cumulative
effect of an air pollution episode, which in the context of the log-linear model
can be thought of as the cumultative percent increase in mortality associated
with a unit increase in air pollution on a given day. For example, if we assume
that a unit increase in air pollution on a given day only plays out over K days
into the future, as in (6.5), and if we imagine that x0 = 1, and x1 = x2 =
· · · = 0 (i.e. a spike at t = 0), then the cumulative effect of the unit increase
at time t = 0 is

Cumulative effect = γ =
K∑
`=0

β`

The interpretation of γ is similar to that of β in (6.1); that is, 100× (eγ − 1)
is the percent increase in mortality over K + 1 days associated with a 1 unit
increase in pollution on a single day.

> rn <- rownames(summ$coefficients)
> i <- grep("pm10tmean", rn, fixed = TRUE)
> coefs <- summ$coefficients[i, "Estimate"]
> total <- sum(coefs)

It is not possible to tell beforehand whether the cumulative effect will be
bigger or smaller than the single lag estimate. With more immediate rela-
tionships where most of the association is observed in early lags, the single
lag estimates and cumulative effect estimates will usually be close. However, if
the association plays out over many days, single lag estimates may be smaller.
The estimate of the cumulative effect in the Chicago, IL distributed lag model
in Table 6.2 is 0.00135, which can be interpreted as a 1.35 percent increase in
mortality associated with a 10 µg/m3 increase in PM10. This effect is bigger
than any of the estimates from the single lag models.
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6.4.2 Mortality displacement

There is one scenario where distributed lag estimates of the cumulative ef-
fect may be smaller than estimates from single lag models. The “harvesting
hypothesis” (also known as “mortality displacement”) states that short-term
increases in air pollution only affect a frail pool of individuals that are par-
ticularly susceptible [129, 109, 110, 128, 125, 32]. In the event of an increase
in pollutant levels, these frail people are removed from the population at risk
(either through death or hospitalization), leaving a depleted frail pool. There-
fore, on subsequent days, we might observe lower than expected levels of the
outcome. In such a scenario, the cumulative effect over a short time period
might be zero because the higher than expected response close to the day of
the increased exposure is balanced by the lower than expected response on
subsequent days.

6.5 Modeling Measured Confounders

Measured confounders consist of predictors that vary from day to day in a
manner similar to that of air pollution and mortality. These predictors have
the potential to explain the covariation in pollution and mortality and might
lead us to incorrectly attribute the observed effect to air pollution. With mea-
sured confounders, we have the data required to adjust for the variables di-
rectly in any statistical model, so that we can attempt to remove the variation
attributable to the confounder before examining the relationship of interest.

One important measured variable is the “weather,” which we can crudely
break down into temperature and humidity (or dewpoint temperature). Both
temperature and dewpoint temperature have well-known relationships to both
air pollution and health [54, 97].

Temperature has an interesting relationship with mortality in that an in-
crease in temperature can be harmful or beneficial depending on the time
of the year. In summertime, short-term increases in temperature are gener-
ally associated with increases in mortality whereas in winterime, short-term
increases in temperature are associated with decreases in mortality [17]. Fur-
thermore, mortality in summertime is related to increases in temperature on
the order of 1–2 days. In wintertime, mortality is more closely related to long
stretches of cold days in a row. Therefore, one may need to consider looking
simultaneously at the current day temperature and the temperatures from
previous days. Hence, we may need a distributed lag model for temperature
to capture this phenomenon [123].

We can explore the confounding effect of temperature by including it di-
rectly in our log-linear Poisson model; that is,

logµt = α+ β xt−1 +
K∑
k=0

ηk zt−k (6.6)
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where mortality Yt is distributed as Poisson with mean µt, zt−k is the tem-
perature for day t at lag k, and xt−1 is lag 1 PM10. We can vary the value of
K, the maximum number of temperature lags, to see how the estimate of β
changes as more temperature lags are included. We can illustrate this effect
with data from New York City, New York.

> data.c <- readCity("ny", collapseAge = TRUE)

Using a range of temperature lags ranging from 0 to 13 days, we fit 14 different
models and examine the resulting regression coefficient for the lag 1 PM10

variable.

> maxlag <- 0:13
> models <- sapply(maxlag, function(mlag) {
+ fit <- glm(death ˜ l1pm10tmean + Lag(tmpd,
+ seq(0, mlag)), data = data.c,
+ family = poisson)
+ summ <- summary(fit)
+ summ.coef <- summ$coefficients["l1pm10tmean",
+ 2]
+ c(coef(fit)["l1pm10tmean"], summ.coef)
+ })

Figure 6.2 shows the coefficient for lag 1 PM10 from a Poisson generalized
linear model versus the number of lags of temperature included in the model
(i.e. the value of K).

> rng <- range(models[1, ] - 1.96 * models[2,
+ ], models[1, ] + 1.96 * models[2,
+ ], 0)
> par(mar = c(4, 5, 1, 1))
> plot(maxlag, models[1, ], type = "b",
+ pch = 20, ylim = rng, xlab = "Maximum temperature lag",
+ ylab = expression(hat(beta) * " for " *
+ PM[10] * " at lag 1"))
> lines(maxlag, models[1, ] + 1.96 * models[2,
+ ], lty = 2)
> lines(maxlag, models[1, ] - 1.96 * models[2,
+ ], lty = 2)
> abline(h = 0, lty = 3)

For maximum lag 0, we only include the current day’s temperature; for max-
imum lag 13 we include the previous two weeks’ daily temperature values in
the model. From Figure 6.2 we see that the estimate of the pollution effect
β̂ is strongly affected by the number of lags of temperature included in the
model. In particular, the estimate of the PM10 coefficient drops by almost
50% between one and five lags of temperature.

However, recall that the effect of temperature on mortality can differ by
season. One might think of temperature as having a “cold” relationship and
a “warm” relationship with mortality. Given that, we might want to look
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Fig. 6.2. Association between lag 1 PM10 and mortality (β̂) as the number of lags
of temperature included in the model is increased, New York, NY, 1987–2000.

separately at the warm season and the cold season. We can do this by directly
subsetting the data by season. First we can estimate the model in the “warm”
season (spring and summer),

> data <- readCity("ny", collapseAge = TRUE)
> maxlag <- 0:13
> data.warm <- subset(data, quarters(date) %in%
+ c("Q2", "Q3"))
> models.warm <- sapply(maxlag, function(mlag) {
+ fit <- glm(death ˜ l1pm10tmean + Lag(tmpd,
+ seq(0, mlag)), data = data.warm,
+ family = poisson)
+ summ <- summary(fit)
+ summ.coef <- summ$coefficients["l1pm10tmean",
+ 2]
+ c(coef(fit)["l1pm10tmean"], summ.coef)
+ })

and then we can fit the same models for the “cold” season (fall and winter).

> data.cold <- subset(data, quarters(date) %in%
+ c("Q1", "Q4"))
> models.cold <- sapply(maxlag, function(mlag) {
+ fit <- glm(death ˜ l1pm10tmean + Lag(tmpd,
+ seq(0, mlag)), data = data.cold,
+ family = poisson)
+ summ <- summary(fit)
+ summ.coef <- summ$coefficients["l1pm10tmean",
+ 2]
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+ c(coef(fit)["l1pm10tmean"], summ.coef)
+ })

In Figure 6.3 we have created the same picture that is in Figure 6.2 except
we have created separate pictures for warm and cold seasons.

> trellis.par.set(theme = canonical.theme("pdf",
+ FALSE))
> y <- c(models.warm[1, ], models.cold[1,
+ ])
> xpts <- rep(maxlag, 2)
> f <- gl(2, length(maxlag), labels = c("Warm season",
+ "Cold season"))
> std <- c(models.warm[2, ], models.cold[2,
+ ])
> rng <- range(y - 1.96 * std, y + 1.96 *
+ std, 0)
> rng <- rng + c(-1, 1) * 0.05 * diff(rng)
> ylab <- expression(hat(beta) * " for " *
+ PM[10] * " at lag 1")
> p <- xyplot(y ˜ xpts | f, as.table = TRUE,
+ ylim = rng, subscripts = TRUE, panel = function(x,
+ y, subscripts, ...) {
+ panel.xyplot(x, y, ...)
+ llines(x, y - 1.96 * std[subscripts],
+ lty = 2)
+ llines(x, y + 1.96 * std[subscripts],
+ lty = 2)
+ panel.abline(h = 0, lty = 3)
+ }, xlab = "Maximum temperature lag",
+ layout = c(1, 2), type = "b", ylab = ylab,
+ pch = 20)
> print(p)

The warm season is defined as April through September and the cold season
is defined as October through March. Figure 6.3 shows that for the warm
season, the number of lags of temperature included in the model does not
seem to be related to the estimate of the coefficient for lag 1 PM10. However,
for the cold season, the estimate of the coefficient drops dramatically as the
number of lags of temperature included in the model increases from 1 to 5. For
both seasons, after including five lags of temperature, the association between
PM10 and mortality does not seem to change and is stable at approximately
the same value for both seasons. Here we can see that all of the variation
we observed in Figure 6.2 can be attributed to the variation in the estimate
during the cold season.

For New York City, the effect of PM10 on mortality during cold months
appears to be sensitive to the specification of temperature in the model. How-
ever, in model (6.6) we did not include any terms to control for the possible
seasonal factors that predict PM10 and mortality. When we modify model (6.6)
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Fig. 6.3. Association between PM10 and mortality (β̂) as the number of lags of
temperature included in the model is increased, stratified by warm and cold seasons,
New York City, 1987–2000.

to include a smooth function of time,

logµt = α+ β xt−1 + s(t, λ) +
K∑
k=0

ηk zt−k

the results are different from Figure 6.2. Figure 6.4 shows the estimates of the
PM10 coefficient as the maximum number of lags for temperature included in
the model is increased for the model that includes a smooth function of time.

> data.c <- readCity("ny", collapseAge = TRUE)
> maxlag <- 0:13
> models <- sapply(maxlag, function(mlag) {
+ fit <- glm(death ˜ l1pm10tmean + ns(date,
+ 4 * 14) + Lag(tmpd, seq(0, mlag)),
+ data = data.c, family = poisson)
+ summ <- summary(fit)
+ summ.coef <- summ$coefficients["l1pm10tmean",
+ 2]
+ c(coef(fit)["l1pm10tmean"], summ.coef)
+ })

Now we see that the the estimated coefficient is relatively stable across the
entire range of lags.
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Fig. 6.4. Association between PM10 and mortality (β̂) as the number of lags of
temperature included in the model is increased, New York City, 1987–2000. Here
the model includes a smooth function of time with four degrees of freedom per year
to control for seasonal effects.

In [123] the authors looked extensively at the question of how temper-
ature confounds the effect of PM10 on mortality. By using a vast array of
distributed lag models with flexible specifications, they found that estimates
are relatively insensitive to the choice of temperature model, as long as some
minimal representation is included. Estimates from multisite studies were par-
ticularly robust to the specification of the temperature model.

6.6 Accounting for Unmeasured Confounders

In the previous chapter, we decomposed both the pollution series and the mor-
tality series into three timescales: long-term trend, seasonal, and daily. One
purpose of this decomposition was to identify timescales at which the rela-
tionship between the exposure and response were potentially least confounded
by other time-varying predictors.

As mentioned in Section 6.3, one useful assumption to make about any po-
tential unmeasured confounders is that they vary smoothly in time. With that
assumption we can use a smooth function of time to adjust for those unmea-
sured confounders. In addition, the flexibility of using a smooth function allows
us to gauge the sensitivity of our findings to various model specifications.

Using a smooth function of time to control for unmeasured confounders
is similar in many ways to the timescale analysis that we conducted in the
previous chapter. The inclusion of the smooth term in the model in a sense
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acts as a filter on the exposure and response and removes variation at a
“timescale” determined by the degrees of freedom; our analysis is based on
the residual variation in those variables. Using an arbitrary smooth function of
time is a more flexible approach than using the Fourier basis in the timescale
decomposition because we can choose to use a basis where each component is
localized to a specific area as opposed to the global sine and cosine functions
used in the Fourier basis.

With the smooth function of time the number of degrees of freedom spec-
ified will control the “timescale” at which we compare pollution levels with
mortality counts. Small degrees of freedom, indicating a very smooth function,
allow comparisons at longer timescales. Large degrees of freedom, indicating a
very rough function, allow comparisons at much shorter timescales while set-
ting aside any information at longer timescales. This approach can be thought
of as regressing residuals from the smoothed dependent variable on residuals
from the smoothed regressors. The smooth function of time serves as a linear
filter on the mortality and pollution series and can remove any seasonal or
long-term trends in the data.

The inclusion of a smooth function of time in a regression model intro-
duces important statistical issues. One generally does not know precisely the
complexity of the seasonal and long-term trends in the mortality time se-
ries or in the pollution time series. Therefore, a controversial issue is deter-
mining how much smoothness one should allow for the smooth function of
time. This decision is critical because it determines the amount of residual
temporal variation in mortality available to estimate the air pollution effect.
Over-smoothing the series (thereby under-smoothing the residuals) can leave
temporal cycles in the residuals that can produce confounding bias; under-
smoothing the series (thereby over-smoothing the residuals) can remove too
much temporal variability and potentially attenuate a true pollution effect.
The decision is analogous to the situation in the previous chapter where we
had to choose which timescales we thought would provide the most reliable
evidence (i.e., least confounded). Current approaches to choosing the amount
of smoothness include automatic, data-driven methods that choose the degree
of smoothness by minimizing a goodness-of-fit criterion and methods based on
prior knowledge of the timescales where confounding is more likely to occur.

To summarize, when including a smooth function of time in a time se-
ries model to adjust for potential smoothly varying confounders, the primary
statistical questions of interest are:

1. How should the smooth function of time be represented?
2. Exactly how smooth should this smooth function be?

A number of approaches to representing the smooth functions have been used
in the literature including smoothing splines, penalized splines, and parametric
(natural) splines [31, 91, 112, 120, 46]. Other possibilities include using loess
or kernel smoothers [106].
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6.6.1 Using GAMs for air pollution and health

In this section we demonstrate how GAMs can be used to control for smoothly
varying unmeasured confounders in time series models of air pollution and
health. We make use of the gam and splines packages in our code examples.

To begin with we use the Denver, Colorado data to demonstrate the various
methods. This dataset can be loaded from the NMMAPSlite package.

> data.raw <- readCity("denv", collapseAge = TRUE)

We can use the gam function from the gam package to first smooth the mor-
tality and PM10 data and see the affects of using different degrees of freedom
for the smooth function of time. Figure 6.5 shows the Denver nonaccidental
mortality data (all ages) with two smoothers overlaid, one using 2 degrees of
freedom per year of data and one using 12 degrees of freedom per year of data.
Here we fit the simple model

Yt ∼ Poisson(µt)
logµt = α+ s(t, df × # years of data)

where df is 2 or 12.

> xpts <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
> fit2 <- gam(death ˜ s(date, 2 * 14), family = poisson,
+ data = data.raw)
> p2 <- predict(fit2, data.frame(date = xpts),
+ type = "response")
> fit12 <- gam(death ˜ s(date, 12 * 14),
+ family = poisson, data = data.raw)
> p12 <- predict(fit12, data.frame(date = xpts),
+ type = "response")

Because there are 14 years of data in the dataset this amounts to using 28
and 168 total degrees of freedom in the smoother. We have chosen to use
smoothing splines in this particular example.

The 2 degree of freedom (per year) smoother clearly highlights the long-
term increase in mortality in Denver, most likely due to a corresponding
increase in population. Also, the seasonal pattern of mortality is clear, with
winter peaks and summer troughs. The 12 degree of freedom (per year)
smoother shows some of the more short-term fluctuations in the data and
also more accurately captures the sharp peaks and troughs in the data.

A general principle that applies to nonparametric smoothers is the bias-
variance trade-off with respect to the number of degrees of freedom allowed
in the smoother. Smoothers with small degrees of freedom have difficulty
capturing sharp increases or decreases and are more biased in those areas.
With more degrees of freedom and flexibility, one can reduce the bias in those
areas. However, with fewer degrees of freedom, a smoother is typically less
flexible than a smoother with many degrees of freedom.
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Fig. 6.5. Smooth of nonaccidental mortality for all ages using smoothing splines
with 2 (black) and 12 (gray) degrees of freedom per year as the smoothing parameter,
Denver, Colorado, 1987–2000.

Figure 6.6 shows the PM10 and ozone data for Denver with both 2 and 12
degree of freedom smoothing splines overlaid. We first fit a GAM to the PM10

data as a function of time

> xpts <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
> fit2pm10 <- gam(pm10tmean ˜ s(date, 2 *
+ 14), data = data.raw)
> p2pm10 <- predict(fit2pm10, data.frame(date = xpts))
> fit12pm10 <- gam(pm10tmean ˜ s(date, 12 *
+ 14), data = data.raw)
> p12pm10 <- predict(fit12pm10, data.frame(date = xpts))

and then to the ozone data.

> xpts <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
> fit2o3 <- gam(o3tmean ˜ s(date, 2 * 14),
+ data = data.raw)
> p2o3 <- predict(fit2o3, data.frame(date = xpts))
> fit12o3 <- gam(o3tmean ˜ s(date, 12 *
+ 14), data = data.raw)
> p12o3 <- predict(fit12o3, data.frame(date = xpts))

A similar pattern is observed with these data as with the mortality data. One
feature of interest is the much more obvious seasonal pattern in the ozone data.
Ozone is a pollutant that depends critically on atmospheric conditions for its
formation and is therefore more tightly correlated with seasonal patterns.
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Fig. 6.6. Smooth of (detrended) PM10 and ozone using smoothing splines with
2 (black) and 12 (gray) degrees of freedom per year as the smoothing parameter,
Denver, Colorado, 1987–2000.

Along with bias–variance considerations, in time series applications, one
must also determine which timescale one is interested in to study the pollutant–
mortality relationship. The number of degrees of freedom used in the smoother
for time will determine the nature of the variation left over to estimate the
risk from air pollution.

Our simple model incorporating both mortality and pollution is

Yt ∼ Poisson(µt)
logµt = α+ β xt + η zt + s(t, df) (6.7)

where Yt is the mortality count, xt is our pollutant predictor, zt is temper-
ature, and df is understood to mean df × # years of data. The target of
inference is β and our goal is to estimate it while simultaneously controlling
for measured and unmeasured confounders. We do not include a distributed
lag for temperature here as in model (6.6) because Figure 6.4 indicated that
the estimate of β is not affected much by the inclusion of other temperature
lags once a smooth function of time is included in the model.
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To see the effect of varying the degrees of freedom used in the smooth
function of time, we can fit the model in (6.7) repeatedly, each time with a
different smoothing parameter. Here we repeatedly fit a model nonaccidental
mortality versus lag 1 PM10, temperature, and a smooth function of time.

> dfValues <- c(2, 4, 6, 8, 10, 12, 14)
> control <- gam.control(epsilon = 0.00000001,
+ bf.epsilon = 0.00000001)
> modelsGAM <- sapply(dfValues, function(dfVal) {
+ total.df <- dfVal * 14
+ fit <- gam(death ˜ l1pm10tmean + tmpd +
+ s(date, total.df), data = data.raw,
+ family = poisson, control = control)
+ gamex <- gam.exact(fit)
+ gamex.coef <- gamex$coefficients["l1pm10tmean",
+ "A-exact SE"]
+ c(coef(fit)["l1pm10tmean"], gamex.coef)
+ })

Figure 6.7(a) shows the different values of the PM10 coefficients that are
estimated for each degrees of freedom. One can see that there is almost a two-
fold range in the estimates of the log-relative risk, with the largest estimate
associated with 2 df per year and the smallest estimate associated with 8 df
per year.

From Figures 6.5 and 6.6 we know that at 2 df per year, only the long-term
trend and seasonality are removed from both the PM10 and mortality series.
Other subseasonal and shorter-term variations remain in the data. At 12 or
14 df per year, all variation in mortality and PM10 longer than about a one
week timescale is removed and the log-relative risk is estimated by examining
residual fluctuations on a subweek timescale.

The large estimate at 2 df per year in Figure 6.7 indicates that there is a
1.11 percent increase in mortality for a 10 µg/m3 increase in PM10. Although
this estimate is intriguing, we may choose to discount it because it is more
likely confounded by factors that can covary with mortality and PM10 at the
subseasonal timescale.

As more variation in mortality and PM10 is removed in the 10–14 df per
year range, the log-relative risk estimates appear to change little. There is
certainly the potential for confounding in this range, but one could argue that
there are fewer factors that might covary with both mortality and PM10 at
the subweek/daily timescale. The estimates in this range, one might argue,
are more reliable and less confounded.

The purpose of this analysis is not to conclusively identify the “correct”
amount of smoothing to use, that is, the “right” number of degrees of freedom,
but to show what the data say about the relationship between PM10 and
mortality and to show from where the evidence of association comes. As in the
previous chapter, we might feel more confident with estimates obtained from
looking at shorter timescales than those obtained from looking at longer-term
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trends. However, the decision of what evidence to believe and what evidence
to discount is one that can be made in conjunction with scientific expertise.

6.6.2 Computing standard errors for parametric terms in GAMs

In [31] the authors showed that the default method used by gam for estimat-
ing the standard error of the coefficient of a parametric term can be incor-
rect in the presence of strong concurvity. The gam package has a function
gam.exact which implements the methods of [28] to calculate asymptotically
exact standard errors from a gam model fit. The function can be applied to a
“gam” object after the model has been fit. We used the gam.exact function
for producing the approximate standard errors and confidence intervals shown
in Figure 6.7.

An alternative approach is to use a fully parametric model via natural
splines. With a fully parametric model, one can use standard methods for
obtaining standard errors and approximate confidence intervals.

> dfValues <- c(2, 4, 6, 8, 10, 12, 14)
> modelsGLM <- sapply(dfValues, function(dfVal) {
+ total.df <- dfVal * 14
+ fit <- glm(death ˜ l1pm10tmean + tmpd +
+ ns(date, total.df), data = data.raw,
+ family = poisson)
+ summ <- summary(fit)
+ summ.coef <- summ$coefficients["l1pm10tmean",
+ 2]
+ c(coef(fit)["l1pm10tmean"], summ.coef)
+ })

Figure 6.7(b) shows the estimates of the log-relative risk for PM10 and mor-
tality for Denver. The estimates for 2 df per year are very different for the
natural spline model compared to the smoothing spline model. However, es-
timates for the range 4–14 df per year are all quite similar to those obtained
via smoothing splines.

6.6.3 Choosing degrees of freedom from the data

So far we have shown the effect of varying the degrees of freedom in the smooth
function of time on estimates of the log-relative risk of PM10 on mortality.
Figure 6.7 suggests that estimates can vary dramatically by changing the
degrees of freedom used. However, we have not indicated any way to choose
how many degrees of freedom are appropriate. One possibility is to choose
the estimate that we know to be least confounded based on prior scientific
knowledge. But one might also want a method that allows the data to choose
the appropriate amount of smoothness.

Numerous methods for choosing the amount of smoothness for the smooth
function of time have been proposed in the literature. These methods generally
fall into the categories:
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Fig. 6.7. Estimates of the log-relative risk for (solid circles) PM10 for Denver,
Colorado, 1987–2000, as the number of degrees of freedom per year in the smooth
function of time is varied, using (a) smoothing splines with asymptotically exact
standard errors and (b) parametric natural cubic splines; dashed lines indicate ap-
proximate 95% confidence intervals.

1. Methods based on predicting the outcome variable (i.e., mortality)
2. Methods based on predicting the exposure variable (i.e., PM10)

Methods falling into category 1 include methods that choose a model based
on minimizing the Akaike information criterion (AIC) or the Schwarz Bayes’
information criterion (BIC), or minimizing residual autocorrelation via the
partial autocorrelation function (PACF) or tests for white noise. The one
thing these methods all have in common is that they minimize a criterion
evaluated on models that are constructed to predict the outcome variable
(mortality).

Methods falling into category 2 include those described in [28] and [76]
whereby a criterion such as the generalized cross-validation (GCV) score or
AIC is minimized over a set of models constructed to predict the exposure
(PM10). In [28] the authors showed this class of methods has the specific
advantage that they will produce either unbiased or asymptotically unbiased
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estimates of the pollution log-relative risk, depending on the nature of the
mortality and pollution data.

Although widespread in their use, methods falling into category 1 are gen-
erally flawed because they optimize a criterion based on the wrong target. In
air pollution and health studies we are primarily interested in obtaining ac-
curate and precise estimates of the association between increases in pollution
levels and health outcomes. We are not particulately interested in developing
a model for predicting the health outcome itself.

Therefore, methods such as those in category 1 which attempt to identify
the best model for predicting the outcome, can fail in certain situations. In [76]
Peng and coauthors showed through extensive simulation that these methods
can produce more biased estimates than those based on predicting exposure.
Much of the theoretical basis for this phenomenon is provided in [28].

6.6.4 Example: Semiparametric model for Detroit

We can briefly demonstrate the semiparametric modeling approach using
PM10 and mortality data from Detroit, Michigan.

> data <- readCity("det", collapseAge = TRUE)

This approach chooses the degrees of freedom for the smoother by fitting a
model that predicts the PM10 time series. This model fit will produce an
estimate of the degrees of freedom that we can subsequently use in our health
effects model which uses mortality as the outcome. To estimate the degrees
of freedom for predicting the exposure PM10, we use the bruto function
in the mda package, which estimates the degrees of freedom via generalized
cross-validation [44].

> library(mda)
> pm10 <- data$l1pm10tmean
> x <- unclass(data$date)
> use <- complete.cases(pm10, x)
> br.fit <- bruto(x[use], pm10[use])
> optimal.df <- br.fit$df

Here we can see that the estimated degrees of freedom is 39.1, or approxi-
mately 2.8 degrees of freedom for each of the 14 calendar years of data. Given
the estimated degrees of freedom we can fit our health effects model using
the gam function from the gam package. This function represents the smooth
function of time as a smoothing spline.

> library(gam)
> fit <- gam(death ˜ l1pm10tmean + s(date,
+ optimal.df), data = data, family = quasipoisson)
> v <- gam.exact(fit)

The estimate of the log-relative risk is

> print(v$coefficients["l1pm10tmean", "Estimate"])
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[1] 0.000651555

and the asymptotically exact standard error is

> print(v$coefficients["l1pm10tmean", "A-exact SE"])

[1] 0.0001139625

The standard error computation is computed separately by the gam.exact
function [28]. Because we used the quasipoisson family in the call to gam,
we can check for the presence of overdispersion in the data by taking the
summary of the fitted gam.

> summary(fit)$dispersion

quasipoisson
1.160927

Here we see that the overdispersion is modest, which is common for mortality
data [51].

Continuing this example, we can compare the approaches to choosing the
degrees of freedom from categories 1 and 2. First we calculate the optimal
degrees of freedom that best predicts the PM10 time series.

> pm10 <- data$l1pm10tmean
> x <- unclass(data$date)
> use <- complete.cases(pm10, x)
> br.fit <- bruto(x[use], pm10[use])
> df.pm10 <- br.fit$df

Then we calculate the optimal degrees of freedom for predicting the mortality
time series.

> death <- data$death
> use <- complete.cases(death, x)
> br.fit <- bruto(x[use], death[use])
> df.death <- br.fit$df

Given the optimal degrees of freedom, we can fit a GAM to the mortality and
PM10 data and obtain the corresponding log-relative risk estimates.

> fit1 <- gam(death ˜ l1pm10tmean + s(date,
+ df.pm10), data = data, family = quasipoisson)
> fit2 <- gam(death ˜ l1pm10tmean + s(date,
+ df.death), data = data, family = quasipoisson)
> v1 <- gam.exact(fit1)
> v2 <- gam.exact(fit2)

Table 6.3 shows the estimated percent increase in mortality for a 10 µg/m3

increase in PM10. We can see that the optimal degrees of freedom for predict-
ing PM10 was about 2.8 degrees of freedom per year, which resulted in a risk
estimate of a 0.65% increase in mortality with a 10 µg/m3 increase in PM10.
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The optimal degrees of freedom for predicting mortality was 6 per year, re-
sulting in a slightly higher risk estimate of a 0.74% increase in mortality for
a 10 µg/m3 change. Note that although there is a difference in the degrees of
freedom chosen by the two methods, there is little difference in the standard
errors obtained.

Estimate A-exact SE df/year

Predict PM10 0.65 0.11 2.79
Predict Mortality 0.74 0.11 6.05

Table 6.3. Comparison of methods for choosing the degrees of freedom in the
smooth function of time

6.6.5 Smoothers

Common choices for representing the smooth function of time include nat-
ural splines, penalized splines, and smoothing splines. (Other less common
choices are loess smoothers or sine/cosine functions.) The first is fully para-
metric, wherease the latter two may be considered more flexible. With natural
splines, one constructs a spline basis with knots at fixed locations throughout
the range of the data and the choice of knot locations can have a substantial
impact on the resulting smooth. Smoothing splines and penalized splines cir-
cumvent the problem of choosing the knot locations by constructing a very
large spline basis and then penalizing the spline coefficients to reduce the
effective number of degrees of freedom. Smoothing splines place knots at ev-
ery (unique) data point and are sometimes referred to as full-rank smoothers
because the size of the spline basis is equal to the number of observations.
Penalized splines, sometimes called low-rank smoothers, are more general in
their definition in that both the size of the spline basis and the location of
the knots can be specified. Low-rank smoothers can often afford significant
computational benefits when applied to larger datasets such as those used
here. A comprehensive treatment of the various spline methods can be found
in [95].

In [76] the authors showed that although the choice of the smoother can al-
ter the resulting estimates of the association between air pollution and health,
the particular smoother used has much less of an impact than the choice of
degrees of freedom used in the smoother. In the end, it is often advantageous
to choose the smoother that is most convenient. What matters most is not
“how you smooth” but rather “how much you smooth.”



6.8 Summary 93

6.7 Multisite Studies: Putting It All Together

In this chapter we have focused on building a time series model for estimating
the association between an exposure such as air pollution and an outcome
such as mortality or hospitalization in a single site, city, or location. However,
if we have data for multiple sites, then we would like to combine information
from those multiple sites.

We can fit model (6.7) to each site for which we have data. Here we take
the 20 largest cities (by population) in the NMMAPS database

> meta <- getMetaData("citycensus")
> ord <- order(meta[, "pop100"], decreasing = TRUE)
> sites <- as.character(meta[ord, "city"][1:20])

and independently compute estimates of the association between nonacciden-
tal mortality and lag 1 PM10, adjusting for temperature, age category, and a
smooth function of time.

> r <- lapply(sites, function(site) {
+ sitedata <- readCity(site)
+ fit <- glm(death ˜ l1pm10tmean + agecat +
+ tmpd + ns(date, 8 * 14), data = sitedata,
+ family = poisson)
+ summ <- summary(fit)
+ summ$coefficients["l1pm10tmean", c("Estimate",
+ "Std. Error")]
+ })
> results <- do.call("rbind", r)

Figure 6.8 shows a histogram of the estimates from the 20 cities. We can
see that there is substantial range of variation in the estimates, ranging from
−0.0001 to 0.0011.

The next chapter deals specifically with statistical methods for combin-
ing information across multiple sites and for handling any natural hetero-
geneity of estimates across sites. These methods include hierarchical models
and Bayesian methods of estimation to account for the different sources of
variability.

6.8 Summary

Estimating the health effects associated with short-term exposure to air pollu-
tion poses several statistical challenges. Most of these challenges arise because
we are aiming at estimating a very small relative risk in the presence of several
measured and unmeasured confounders. Semiparametric models are a very
useful tool to adjust for measured confounders when the association between
these confounders and the exposure and the outcome is likely to be nonlin-
ear, as, for example, is the case with weather variables. Adjusting for these
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Fig. 6.8. Histogram of city–specific log-relative risk estimates from 20 NMMAPS
cities, 1987–2000.

nonlinear effects is obtained by including a smooth function of each potential
confounder in the regression model. Semiparametric models are also useful for
estimating the air pollution risk by removing information at the timescales
that are most likely to be affected by unmeasured confounders, such as sea-
sonality and long-term trends. The information at longer timescales can be
removed by including a smooth function of time with df degrees of freedom
in the regression model.

The degrees of freedom df measures the degree of adjustment for confound-
ing bias. Choosing df is itself a very challenging problem. In this chapter we
have reviewed and compared several approaches that have been proposed in
the literature to remove confounding bias. It is important here to make a clear
distinction between prediction and estimation. Previous approaches in the lit-
erature have proposed selecting df to optimize prediction of the outcome. We
argue that in time series studies of air pollution and health we have a different
goal: we are interested in estimating an air pollution coefficient that has the
smallest mean squared error. Thus, the choice of df requires a bias–variance
tradeoff with respect to the estimation of the risk coefficient.

Choosing a large df leads to a very aggressive adjustment for unmeasured
confounding. This will remove the bias, but also will remove most of the
temporal variation in the residuals thus leading to a large variance of the
estimated air pollution coefficient. Choosing a small df corresponds to a weak
adjustment for unmeasured confounding. This might lead to bias but it will
also provide a more precise estimate of the air pollution coefficient. Often the
investigator has some prior knowledge of the timescales that are less likely
to be affected by unmeasured confounding. Under this scenario, it is always
good practice to show the sensitivity of the air pollution risk estimates to the
choice of df .
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6.9 Reproducibility Package

The cacher package associated with all of the analyses and figures in this
chapter can be downloaded from the Reproducible Research Archive by
running

> clonecache(id = "49c090223e7b16d72240a928f69bccd72a0a164c")

which will download all of the relevant code and data files.

6.10 Problems

To begin, we pose the following overall questions.

1. What variables/factors might confound the relationship between air pol-
lution and mortality?

2. What happens to the PM10-mortality relationship when we try to “ad-
just” for season and temperature? Is the relationship consistent across the
various strata?

3. Are the estimates of the association between PM10 and mortality the same
in each city? Why might they be different?

In the problems that follow, the goal is to estimate the risk of mortality
associated with short-term exposure to air pollution adjusted for confounding
by temperature and season. In order to remove the influences of potential
confounders, we need to compare mortality when air pollution is higher to
otherwise similar days where air pollution is lower. A key issue is how to
define “similar”.

One possibility is to match days based on the season or on temperature.
For example, if we estimate the association between air pollution and mortal-
ity by restricting to days where the temperature is the same, then temperature
cannot confound the relationship between air pollution and mortality. Simi-
larly, if we stratify the analysis by season, then season cannot confound the
relationship. Ultimately, the common approach for adjusting for confounding
is to build regression models. In this part, we present some examples on how
to adjust for temporal measured and unmeasured confounders in time series
studies of air pollution and health.

1. We begin with some simple modeling. Use the glm function to fit a log-
linear Poisson generalized linear model of all-cause nonaccidental mortal-
ity (death) versus PM10 exposure at lag 1 (l1pm10tmean). Do this for
Chicago (chic), New York (ny), and Los Angeles (la).

2. For a given city’s data frame, subset the data frame and create four sep-
arate data frames, one for each season/quarter of the year. To create a
“winter” data frame for Chicago, you can do
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load("chic.rda")
winter <- subset(chic, quarters(date) == "Q1")

Data frames for the other three seasons/quarters can be constructed in a
similar fashion.

3. Fit four separate models of nonaccidental mortality versus lag 1 PM10

using the four season-specific data frames.

4. Fit a model of nonaccidental mortality and temperature (tmpd).
5. For each city, divide the temperature range into three categories: cold

(tmpd < 50 degrees), warm (50 ≤ tmpd < 80), hot (tmpd ≥ 80). Create
three new data frames by subsetting the city’s data frame into separate
cold, warm, and hot data frames. (Note: You might want to think up some
other definitions of cold, warm and hot.)

6. Fit three separate models of death ∼ tmpd, one for each temperature
range.

7. Fit three separate models of death ∼ l1pm10tmean, one for each tem-
perature range.

8. Divide the data into 3 × 4 = 12 different temperature-by-season data
frames and fit a model of death ∼ l1pm10tmean within each stratum.

9. Fill in the regression coefficient for l1pm10tmean associated with each
pairwise combination in the following table for each city (Chicago, New
York, LA):

Winter Spring Summer Fall
Cold
Warm
Hot

For the PM10 coefficients, you may want to express them as the percent in-
crease in mortality for a 10 µg/m3 increase in PM10 (a standard reporting
scale).

10. In the previous problems, some of the season × temperature categories
have no data in them. This might cause a problem when you start looking
at many variables at once. One compromise we can make to avoid this
situation is to use a multiple regression model.
Use the glm function to fit the overdispersed Poisson model (6.4) of
nonaccidental mortality and lag 1 PM10 (death ∼ l1pm10tmean) for
Chicago, New York, and Los Angeles.

11. Use the gam function from the gam package to fit the same model as
above and use the gam.exact function to calculate the asymptotically
exact standard error of the air pollution coefficient accounting for the
smooth function of time. Compare the results you obtain using the gam
function with those you obtain using the glm function.
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12. Create two new categorical variables (factors), one named season corre-
sponding to the four seasons/quarters and one named temp corresponding
to three temperature ranges (cold, warm, hot). See what happens to the
coefficient for l1pm10tmean when you add season and temp to the
model.

13. Try adding other variables from the city’s data frame to the model and
see how the log-relative risk for l1pm10tmean changes.

14. Use the glm() and gam() function to fit the overdispersed Poisson mod-
els (6.4) of nonaccidental mortality and ozone (o3tmean) at lags 0, 1,
2, and 3 for Chicago, New York, and Los Angeles. You can use the Lag
function from the tsModel package to fit a distributed lag model.

15. Use the gam.exact function to calculate the asymptotically exact stan-
dard error of the air pollution coefficient accounting for the smooth func-
tion of time.

16. For the ozone analysis, estimate the cumulative effect for lags 0 through 3.
17. Investigate the sensitivity of the single lag and cumulative effects to the

inclusion of lagged temperature variables into the model.
18. Repeat the ozone analysis separately for the “warm” (April–September)

and the “cold” seasons (October–March).
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Pooling Risks Across Locations
and Quantifying Spatial Heterogeneity

7.1 Hierarchical Models for Multisite Time Series
Studies of Air Pollution and Health

In this chapter we illustrate Bayesian hierarchical models for pooling health
risk estimates across locations to produce regional and national average health
risk estimates. We extend the modeling approaches for time series data for a
single location in a hierarchical fashion to analyze multiple time series mea-
sured at several spatial locations. For example, consider a large study region
A (e.g. United States), partitioned into subregions As, s = 1, . . . , S (e.g.,
zipcodes or counties), let Y st be daily time series data of counts of a health
outcome (e.g., daily number of deaths or hospital admissions), let xst be the ex-
posure to an environmental agent (e.g., air pollution levels measured from one
or more monitoring stations), let zst be other time-varying confounders (e.g.,
temperature and humidity), and let βs be the true log-relative rate measuring
temporal associations between Y st and xst adjusted by zst in the subregion s.

The main goal of this chapter is to illustrate how to combine information
across locations for estimating an overall association between daily variations
in exposure and daily variations in the health outcome, by taking into ac-
count time-varying confounders and the variability across locations of the βs.
In addition, we show how borrowing strength across locations can provide
better estimates of location-specific risks. To address these goals we describe
Bayesian hierarchical models for spatial time series data that rely upon dif-
ferent assumptions on the spatial correlation of the βs.

Bayesian hierarchical models provide an unified approach for combining
evidence across locations, quantifying the sources of variability, and identi-
fying effect modification [62, 71, 40, 12]. Hierarchical models have been fa-
miliar to statisticians for the last four decades. Because of the development
of computational tools that facilitate their implementation [118, 43], they
have been applied widely in many disciplines. Recently they have been ap-
plied to analysis of multisite time series data of air pollution and mortality
[11, 53, 93, 35, 127, 108].
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In the remainder of this chapter, we describe and compare three Bayesian
hierarchical models for analyses of spatial time series data characterized by
three different assumptions about the geographical heterogeneity (or spatial
correlation) of the βs. We apply these hierarchical models to the MCAPS
dataset, described in Chapter 2.

We have applied the semiparametric Poisson regression model described
in Chapter 6 to the daily time series (Y st , x

s
t , z

s
t ) for s = 1, . . . , 202. Figure 7.1

shows maximum likelihood estimates and 95% confidence intervals of the log-
relative risk of hospital admissions for heart failure β̂s.

> library(MCAPS)
> initMCAPS("MCAPS")
> mcaps <- getData("estimates.subset")
> r <- subset(mcaps, outcome == "heart failure")
> beta <- r$beta
> std <- sqrt(r$var)
> n <- length(beta)
> rng <- range(beta - 1.96 * std, beta +
+ 1.96 * std)
> plot(beta, seq_len(n), xlim = rng, pch = 20,
+ xlab = expression(hat(beta)), ylab = "County")
> segments(beta - 1.96 * std, seq(n), beta +
+ 1.96 * std, seq(n))
> abline(v = 0, lty = 2)

These estimates denote the percent increase in hospital admissions for heart
failure associated with a 10 µg/m3 increase in PM2.5 at lag 0 in location s.

As you can see, there is large variability of the MLEs (127 are positive, 75
are negative). However, there is also a substantial overlap between the 95%
confidence intervals. The primary statistical questions of interest are:

1. Is there evidence that short-term variations in PM2.5 are associated with
hospitalization risk for cardiovascular and respiratory disease on average
across the nation?

2. Is this evidence the same across geographical regions?
3. Is it reasonable to pool these estimates across geographical locations to

provide a national estimate of risks?
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Fig. 7.1. County-specific log-relative risks for hospital admission for heart failure
for 202 U.S. counties, 1999–2002.
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7.1.1 Two-stage hierarchical model

The two-stage hierarchical model assumes that the true location-specific log-
relative rates βs are independent across locations. More specifically, let βs

and ηs be the regression coefficients corresponding to the environmental ex-
posure xst and to the time-varying confounders zst , in the semiparametric
Poisson regression model described in Chapter 6; that is, E[Y st | xst , zst ] =
exp (βsxst + ηszst ).

When the vector of nuisance parameters ηs is high-dimensional, the com-
putational demand of a full Bayesian approach (i.e., simulating from the joint
posterior distributions of βs and ηs and then integrating over the ηs to obtain
the marginal posterior distributions of the βs) could be extremely laborious.
Let β̂s and vs be the maximum likelihood estimate of βs and its statistical
variance obtained by fitting the Poisson regression model described above to
the data (yst , x

s
t , z

s
t ). We can simplify the computation substantially by replac-

ing the first stage of the model with the MLE-based normal approximation
to the likelihood function:

β̂s | βs ∼ N(βs, vs) (7.1)

For time series of daily number of deaths and pollution data for eight years
of data, we found that the MLE-based normal approximation to the likelihood
is adequate [35, 25].

At the second stage, the information from multiple locations is combined
in a linear regression model where (βs) is the outcome variable and (W s

j )
are explanatory variables that characterize the geographical location s (i.e.,
percentage of people in poverty, median income, average of other pollutants,
etc.). These variables are included in the hierarchical model to explain some
of the geographical heterogeneity of the βs. Formally:

βs | α0, α1, . . . , αp, σ
2 ∼ N(α0 +

p∑
j=1

αjW
s
j , σ

2) (7.2)

If the predictors W s
j are centered about their means, the intercept (α0) can

be interpreted as the overall association between daily changes in exposures
and daily changes in the health outcome for a location with mean predictors.
The regression parameters (αj) measure the change in true log-relative rate
of mortality/morbidity associated with a unit change in the corresponding
location-specific variable (W s

j ).
The sources of variation in the estimation of α0 are specified by the levels of

the hierarchical model. The variation of β̂s about βs is described by the within-
location variance (vs), which depends on the number of days with available
exposure data, and on the predictive power of the location-specific regression
model. The variation of βs about α0 is described by the between-location
variance (σ2) which measures the heterogeneity of the true log-relative rates
across geographical locations unexplained by the covariates W s

j .
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The specification of a Bayesian hierarchical model (7.2) is completed with
the selection of the prior distributions for the parameters at the top level
of the hierarchy. If there is no desire to incorporate prior information into
the analysis, then conjugate priors with large variances are a default choice.
However, it is important to complete the Bayesian analysis by investigating
the sensitivity of the substantive findings to the prior distributions.

In the two stage model without location-specific covariates, a point esti-
mate of the overall effect α0 can be obtained by taking a weighted average
of the location-specific estimates β̂s with weights equal to 1/(vs + σ̂2) [20].
However, this approach relies upon a method of moments estimate of σ2 and
does not take into account the uncertainty of the estimate σ̂2.

We can demonstrate the method of moments estimate by combining es-
timates of the short-term association between PM2.5 and hospital admission
for cerebrovascular disease in the MCAPS study.

> library(tsModel)
> library(MCAPS)
> mcaps <- getData("estimates.subset")
> r <- subset(mcaps, outcome == "cerebrovascular disease")
> p <- with(r, pooling(beta, var))
> print(p)

Estimate Std. Error t value
National avg. 0.00071573 0.00026438 2.7072

Pr(>|t|)
National avg. 0.003686 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The method of moments estimate of the heterogeneity is

> print(p[["het"]])

[1] 0.001330954

The heterogeneity of the effects across locations is more completely assessed
using a Bayesian approach. In fact the inspection of the posterior distribution
of σ2 provides a better characterization of the degree of heterogeneity of the
effects across location than a point estimate of σ2 and/or the classical χ2 test
of σ2 = 0.

Posterior distributions of all parameters of interest specified in the two-
stage can be estimated by using Markov chain Monte Carlo methods [119, 43].
Specifically, we use the computational algorithm by Everson and Morris [38]
known as TLNISE to approximate the posterior distributions of all the un-
known parameters.

Alternatively the two-stage hierarchical model 7.2 can be also fitted by use
of Geobugs [115]. Note that in Geobugs it is straightforward to fit hierachical
models with nonnormal random effect distributions such as the student-t and
mixture of normal distributions.
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7.1.2 Three-stage hierarchical model

The two-stage hierarchical approach described above can be extended to in-
clude additional levels of spatial aggregation (e.g., zip codes within cities,
cities within counties, etc.) which lead to the estimation of additional sources
of variability (within-location, between-location within region, and between
regions), and potential effect modifiers at the location or regional level (see,
e.g., Dominici et al. [25]).

Let β̂sr and vsr be the relative rate estimate and the corresponding statis-
tical variance for areas As nested within a larger geographical area Ar, where⋃
Ar = A. At the first stage we assume that

β̂sr | βsr ∼ N(βsr , v
s
r) (7.3)

At the second stage, we describe the heterogeneity of the location-specific
effects within the geographical area r by assuming:

βsr | α0r, α1r, . . . , αpr, τ
2 ∼ N(α0r +

∑p
j=1 αjrW

s
jr, σ

2) s = 1, . . . , Sr (7.4)

where β1
r , . . . , β

Sr
r is the collection of true log-relative rates for the Sr loca-

tions nested within the geographical region r; W ss are the location-specific
covariates centered with respect to their mean value for the locations belong-
ing to region r; α0r is the overall log-relative rate for the geographical region
r when all the covariates are centered at their mean values; αjr measures the
change in βsr per unit of change in the location-specific covariate W s

jr; and σ2

measures the heterogeneity of the βsrs within each region r unexplained by
the covariates W s

jr.
At the third level of the hierarchy, we model the variability of the regional

log-relative rates of mortality/morbidity (α0r) across regions; we assume:

α0r | α0, τ
2 ∼ N

(
α0, τ

2
)

(7.5)

Here α0 is the overall relative rate, and τ2 measures the variance of α0r across
regions.

The sources of variation in the estimation of α0 are now specified by three
levels of the hierarchical model. As in the two-stage random effect model, the
variation of β̂sr about βsr is described by the within-location variance (vsr),
which depends on the number of days with available exposure data, and on
the predictive power of the location-specific regression model. The variation of
βsr about α0r is described by the between-location within-region variance (σ2).
Finally, the variation of the α0r about α0 is described by the between-region
variance (τ2).

As an exploratory analysis, prior to fitting a full Bayesian hierarchical
model, we can quantify the two sources of variations (within region and across
regions) by running in R an analysis of variance applied to the MLEs β̂.
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> library(MCAPS)
> library(xtable)
> initMCAPS()
> est <- getData("estimates.subset")
> mcaps <- subset(est, outcome == "cerebrovascular disease")
> fit <- lm(beta ˜ region7, data = mcaps,
+ weights = 1/var)
> summary(fit)

Call:
lm(formula = beta ˜ region7, data = mcaps, weights = 1/var)

Residuals:
Min 1Q Median 3Q Max

-3.27220 -0.65297 0.04316 0.64634 2.87122

Coefficients:
Estimate Std. Error t value

(Intercept) -0.001997 0.001417 -1.410
region7Midwest 0.002420 0.001480 1.635
region7Northeast 0.003926 0.001492 2.631
region7Northwest 0.002682 0.002059 1.302
region7South 0.003602 0.001598 2.254
region7Southeast 0.002692 0.001543 1.744
region7West 0.001829 0.001491 1.227

Pr(>|t|)
(Intercept) 0.1602
region7Midwest 0.1037
region7Northeast 0.0092 **
region7Northwest 0.1943
region7South 0.0253 *
region7Southeast 0.0827 .
region7West 0.2213
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.049 on 195 degrees of freedom
Multiple R-squared: 0.07534, Adjusted R-squared: 0.04689
F-statistic: 2.648 on 6 and 195 DF, p-value: 0.01717

The region7 variable indicates in which of seven regions of the United States
each county falls. One can see from the summary output that the region
indicator explains a portion of the variation in the MLEs and its inclusion
into the model is significant.

The specification of the model (7.5) is completed with the selection of the
prior distributions for the parameters at the top level of the hierarchy. We
assume a priori that these parameters are independent and we choose vague
conjugate priors with large variances.
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As for the hierarchical model (7.2), here we also used the TLNISE algo-
rithm of Everson and Morris [38] to approximate the posterior distributions
of all the unknown parameters separately within each geographical region. We
first examine the estimates by the seven regions of the country.
> library(tlnise)

Two-level normal independent sampling
estimation (version 0.2-7)

> library(MCAPS)
> initMCAPS()
> options(scipen = 4)
> est <- getData("estimates.subset")
> mcaps <- subset(est, outcome == "cerebrovascular disease")
> region.ind <- model.matrix(˜region7 -
+ 1, mcaps)
> region7tlnise <- with(mcaps, {
+ initTLNise()
+ tlnise(beta, var, region.ind, intercept = FALSE,
+ prnt = FALSE, seed = 123, labelw = levels(region7))
+ })
> print(round(region7tlnise$gamma, 6))

est se est/se
Central -0.001996 0.001443 -1.383668
Midwest 0.000425 0.000477 0.890275
Northeast 0.001924 0.000484 3.976672
Northwest 0.000628 0.001499 0.418726
South 0.001530 0.000762 2.006147
Southeast 0.000670 0.000622 1.076872
West -0.000054 0.000601 -0.090466

We also examine the estimates when we divide the country into simply “east”
and “west”.
> est <- getData("estimates.subset")
> mcaps <- subset(est, outcome == "cerebrovascular disease")
> region.ind <- model.matrix(˜regionEW -
+ 1, mcaps)
> regionEWtlnise <- with(mcaps, {
+ initTLNise()
+ tlnise(beta, var, region.ind, intercept = FALSE,
+ prnt = FALSE, seed = 123, labelw = levels(regionEW))
+ })
> print(round(regionEWtlnise$gamma, 6))

est se est/se
East 0.001112 0.000282 3.947410
West -0.000222 0.000532 -0.416818

Alternatively we can fit model (7.5) as an unique hree-stage Bayesian
hierarchical model using the Gibbs sampling.
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7.1.3 Spatial correlation model

One limitation of the three-stage hierarchical model described above is that
two locations s, s′ far in terms of their geographical distance but belonging to
the same geographical region r are considered “more similar” than two closer
locations, but belonging to two separate geographical regions.

To overcome such limitation, we can relax the three-stage hierarchical
model described above by the spatial correlation model [30]. Here we assume
that each location-specific relative rate is shrunk toward the average relative
rate in the neighboring locations, where neighboring locations are defined
based on their geographical distance. More specifically, at the second stage of
the hierarchical model, we assume that the βs are normally distributed with
a common mean α0 +

∑p
j=1 αjW

s
j , and variance σ2. Differently from the two-

stage hierarchical model described above where we assume that βs and βs
′

are independent, here we express the degree of similarity of the log-relative
rates in locations s and s′ as function of the Euclidean distance between the
cities. More specifically, we assume that:

cor(βs, βs
′
) = exp(−φ× distance between s and s′). (7.6)

The parameter φ represents the rate of decay to zero of the correlation as
the distance between the two locations increases. Of course, under this model
formulation other types of distances can be considered as alternatives to the
Euclidean distance. The parameter φ is typically unknown and estimated from
the data.

The model specification is completed by assigning prior distributions to
the unknown parameters. As with the two-stage hierarchical model, we can
assign conjugate priors to the α parameters and to σ2. More specifically, we
can assume a priori that α has a Normal distribution with large variance and
that σ−2 has a Gamma distribution with scale and shape parameters both
equal to 0.001. Finally, one possible prior for the parameter φ is a uniform
distribution in the range [φmin, φmax]. For example, the values φmin and φmax

can be selected so that, if φ = φmin, the correlation between the two rela-
tive risks at the maximum distance between the locations is 0.01 and at the
minimum distance between the locations is 0.8. If φ = φmax, the correlation
between the two relative risks at the maximum distance between the locations
is 0 and at the minimum distance between the locations is 0.5. Other ranges
for φ are possible and choosing a reasonable range will depend on the specific
dataset being used.

To approximate the posterior distributions of all the parameters of interest
for the spatial correlation model, one can resort to simulation-based methods,
and in particular the software alma in R [47] which is based on an adap-
tive Metropolis–Hastings algorithm [75]. We demonstrate a simpler approach
below as an example of sensitivity analysis with respect to the correlation
structure of the data.
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We can perform sensitivity analyses of the estimate of the national av-
erage (α0) with respect to modeling assumptions about heterogeneity and
spatial correlation. In the three-stage model, we grouped the 202 counties
(we excluded Honolulu and Anchorage from this analysis) into seven geo-
graphic regions (Northwest, Upper Midwest, Industrial Midwest, Northeast,
Southern California, Southwest, Southeast). We assumed that city-specific es-
timates belonging to a particular region have a distribution with mean equal
to the corresponding regional effect. This assumption implies that there exists
regional heterogeneity: city-specific estimates of the air pollution effects are
shrunk toward their regional means, and regional means are shrunk toward
the national mean, respectively.

We can fit the data to a spatial correlation model, where we assume that
each city-specific air pollution effect is shrunk toward the average air pollution
effects in the neighboring cities, where neighboring cities are defined based on
their geographical distance [21, 30, 27]. We use the correlation function in 7.6
to define the spatial structure and fit the model using the spatialgibbs
function in the tsModel package. This function takes as inputs the relative
rates for each location (along with their estimated variances), the x and y
coordinates for each location, and a value for the parameter φ determining
the strength of spatial correlation. We begin by obtaining the MCAPS relative
rate estimates for the heart failure outcome and merge them with the latitude
and longitude for each of the county locations.

> library(MCAPS)
> initMCAPS()
> est <- getData("estimates.subset")
> mcaps <- subset(est, outcome == "heart failure")
> locations <- read.csv("locations.csv",
+ colClasses = c("character", rep("numeric",
+ 2)))
> mcaps <- merge(mcaps, locations, by = "fips")

We can then fit the spatial Bayesian hierarchical model using different values
of φ to control the strength of spatial correlation. Here, we use values of φ as
1, 0.1, and 0.01, representing weak, moderate, and strong spatial correlation
between neighboring relative rates. The φ = 1 model is very close to an inde-
pendence model wherease φ = 0.01 allows counties that are very far apart to
be correlated. For example, using φ = 0.01, the two counties that are the far-
thest apart in this dataset are allowed to have a correlation of approximately
0.5.

> library(tsModel)
> g1 <- with(mcaps, spatialgibbs(beta, var,
+ long, lat, phi = 1))
> g0.1 <- with(mcaps, spatialgibbs(beta,
+ var, long, lat, phi = 0.1))
> g0.01 <- with(mcaps, spatialgibbs(beta,
+ var, long, lat, phi = 0.01))
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Figure 7.2 shows the marginal posterior distributions of the national av-
erage effect under the three different spatial correlation models. The value
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Fig. 7.2. Marginal posterior distributions of the overall effect α under the weak
(dotted), moderate (dashed), and strong (solid) spatial correlation Bayesian hierar-
chical models for 202 U.S. counties, 1999–2002.

of the national average estimate (i.e., posterior mean) is robust to the dif-
ferent spatial models. As expected, the national average estimate under the
strong correlation model shows a larger posterior interval than the national
average estimate under the weak correlation model because of the assumed
dependence between the estimates.

Figure 7.3 shows the posterior distributions of the heterogeneity parameter
σ under the three different spatial models. Here we see that the mean of the
distribution shifts as we assume more spatial correlation and the uncertainty
increases. The posterior for the weak correlation model shows the weight of the
evidence about the amount of heterogeneity and it gives the largest weights
at values near zero indicating homogeneity or little heterogeneity. The larger
posterior mean of the heterogeneity standard deviation under the moderate
and strong correlation models reflects the assumption of larger total variance.
More details of these types of analyses can be found in [26].
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Fig. 7.3. Marginal posterior distributions of the heterogeneity parameter σ un-
der the weak (dotted), moderate (dashed), and strong (solid) spatial correlation
Bayesian hierarchical models risks for 202 U.S. counties, 1999–2002.

7.1.4 Sensitivity analyses to the adjustment for confounders

We consider the following overdispersed Poisson semiparametric model used
in the NMMAPS analyses

logE[Y ct ] = age-specific intercepts + βc(α)PM c
10t + s(t, α df/year)+

+ s(tempt, 6) + s(dewpointt, 3) + age× s(t, 1 df/year)

where yct is the daily number of deaths in city c, PM10t is the daily level of
PM10, temp and dew are the temperature and dewpoint temperature, and the
age-specific intercepts correspond to the three age groups of younger than 65,
between 65 and 75, and older than 75. Justification for the selection of the
degrees of freedom to control for longer-term trends, seasonality and weather
can be found in Samet et al. [100, 102, 98], Kelsall et al. [54], and Dominici
et al. [35].

Based upon the statistical analyses of the 100 NMMAPS cities and ad-
ditional exploratory analyses, we set α to take values 1, 2, . . . , 20. As in the
previous model formulation, this choice allows the degree of adjustment for
confounding factors to vary greatly.
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We then assume the following two-stage Normal–Normal hierarchical
model: Stage I: β̂c(α) ∼ N(βc(α), vc(α)); Stage II: β?(α) ∼ N(β?(α), τ2(α))
where β?(α) and τ2(α) are the national average air pollution effects and the
variance across cities of the true city-specific air pollution effects, both as a
function of α.

We fit the hierarchical model by using a Bayesian approach, with a flat
prior on β?(α) and uniform prior on the shrinkage factor τ2(α)/

[
τ2(α) + vc(α)

]
[38]. Sensitivity of the national average estimates to the specification of the
prior distribution of τ2 has been explored elsewhere [25].

To investigate sensitivity of the national average estimates to model choice,
for each value of α, we estimate β̂c(α) and vc(α) using three methods:
(1) GAM with smoothing splines and approximated standard errors (GAM-
approx s.e.); (2) GAM with smoothing splines and asymptotically exact
standard errors (GAM-exact); and (3) GLM with natural cubic splines (GLM).
Figure 7.4 shows the national average estimates (posterior means) as a func-
tion of α. Dots, octagons, and triangles denote estimates under GAM-exact,
GAM-R, and GLM, respectively. The shaded region represents 95% posterior
intervals of the national average estimates under GLM. Figure 7.4 provides
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Fig. 7.4. Sensitivity analysis of the national average estimate of the percent increase
in mortality for a 10 µg/m3 increase in PM10 at lag 1. The three fitting methods
used are GLM with natural cubic splines (GLM-NS), GAM with penalized splines
(GAM-R), and GAM with smoothing splines (GAM-S). The shaded region shows
the 95% posterior intervals for the estimates obtained using GLM-NS.
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strong evidence for association between short-term exposure to PM10 and
non-accidental mortality, which persists for different values of α. Consistent
with the results for individual cities, the national average estimates decrease
as α increase, and level off for α larger than 10 with a very modest increase
in posterior variance.

This picture also shows robustness of the results to model choice (GAM
versus GLM). National average estimates under GAM-exact are slightly
smaller than those obtained under GAM-approx, although this difference is
very small. These two sets of estimates are comparable because in hierarchi-
cal models, underestimation of standard errors at the first stage (

√
vc(α))

is compensated by the overestimation of the heterogeneity parameter at the
second stage (τ2(α)). Thus the posterior total variance of the national average
estimates remains approximately constant [19].

7.2 Example: Examining Sensitivity to Prior
Distributions

In this section we illustrate the use of the cacher package to reproduce some
results from a multi-site time series study examining the short-term relation-
ship between particulate matter ≤ 2.5µm in aerodynamic diameter (PM2.5)
and daily hospital admission rates for various cardiovascular and respiratory
diseases [33].

This study produced a county-specific estimate of the log-relative risk re-
lating increases in daily PM2.5 with daily hospital admission rates. These risks
can be found at the study’s Web site at

http://www.biostat.jhsph.edu/MCAPS/

Below, we present a sensitivity analysis of these log-relative risks and demon-
strate how they can be pooled together to obtain a “national average” risk
estimate using a two-level Normal hierarchical model [more details in 35].

First, we can clone the cached analysis by calling clonecache.

> clonecache("http://www.biostat.jhsph.edu/rr/mcaps.cache")

created cache directory '.cache'

Here we see that there is only one source file available, the mcaps.R file.

> showfiles()

[1] "mcaps.R"

> sourcefile("mcaps.R")

We can list the code expressions with the code function.

> code(1:7)
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source file: mcaps.R
1 Sys.setlocale(locale = "C")
2 estimates <- read.csv("http://www.biostat.jh...
3 estimates <- transform(estimates,
4 library(tlnise)
5 HF <- subset(estimates, outcome ==
6 initTLNise()
7 pooled <- with(HF, tlnise(beta,

The first six code expressions read the data from the Web site and pool the
risk estimates for heart failure across the 202 counties in the study. For the
pooling, we use Phil Everson’s TLNISE software [38], an R version of which is
available on CRAN. The first thing we can do is the verify that we are capable
of producing the same results that the original authors did. The checkcode
function can be used to check the first six expressions.

> checkcode(1:7)

evaluating expression 1
checking expression 2
+ object 'estimates' OK
checking expression 3
+ object 'estimates' OK
evaluating expression 4
checking expression 5
+ object 'HF' OK
evaluating expression 6
checking expression 7
+ object 'pooled' OK

Here we see that the six expressions were evaluated properly and the objects
created matched those created by the original authors. Database objects were
downloaded from the archive as needed.

The original pooled national average log-relative risk for hospitalization
for heart failure can be found by loading the cached objects for expression 7.

> loadcache(7)
> pooled$gamma

est se est/se
0 0.001291823 0.0002505152 5.156663

This risk estimate shown in the est column can be interpreted as a 1.29%
increase in admissions of heart failure associated with a 10 µg/m3 increase in
ambient PM2.5.

One important issue in this analysis is the sensitivity of the Bayesian
hierarchical model to the specification of the prior distribution. In particular,
the TLNISE software places a uniform prior on the second-level covariance
matrix, sometimes referred to as the heterogeneity matrix, which describes
the natural variation of the relative risks across counties. The original authors
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used the default settings, thus it is of interest to see if the national average
estimates vary when this prior specification is altered.

The tlnise function has an option called prior which can be used to
change the nature of the prior distribution on the second-level covariance
matrix. Here we try two alternate priors. First, we need to call loadcache
in order to obtain the data frame HF.

> loadcache(1:7)
> library(tlnise)
> p0 <- with(HF, tlnise(beta, var, prnt = FALSE,
+ prior = 0))
> p2 <- with(HF, tlnise(beta, var, prnt = FALSE,
+ prior = 2))

We can now compare the estimates obtained using the two alternative prior
specifications with the original estimates

> rbind(p0$gamma, p2$gamma, pooled$gamma)

est se est/se
0 0.001287913 0.0002499124 5.153457
0 0.001292679 0.0002501618 5.167373
0 0.001291823 0.0002505152 5.156663

Here we see that there is some variation between the estimates but the esti-
mates are qualitatively similar.

7.3 Reproducibility Package

The full data and code for all of the analyses in this chapter (with the excep-
tion of the analysis done in Section 7.2) can be downloaded using the cacher
package by running

> clonecache(id = "fd9f843bd5ad0b9e2265dacf1a8cda3fb813db50")

which will download the cached analysis from the Reproducible Research
Archive.

7.4 Problems

1. Load the estimates.subset dataset from the MCAPS package. Plot
the county-specific estimates of the relative rates for cerebrovascular dis-
ease and their approximate 95% confidence intervals.

2. Try plotting the same data but ranking the estimates from the largest to
the smallest.

3. Apply the function pooling to estimate the national average and the
heterogeneity parameter by using the method of moments. Interpret these
two estimates.



7.4 Problems 115

4. Apply the function lm to estimate an average effect for each of the seven
geographical regions.

5. Apply the function tlnise to estimate the national average and the het-
erogeneity parameter by using Bayesian computation methods. Compare
these estimates with the ones obtained previously.

6. Do the same as the previous problem but separately for the counties lo-
cated in the eastern and western United States.

7. Apply the function tlnise to all the outcomes and produce national
average estimates and their 95% confidence intervals. Do you obtain the
same results as the ones summarized in the Table 1 of the paper by Do-
minici et al. [33]?

8. Apply the function tlnise to the county-specific estimates (MLE) for
cerebrovascular disease and obtain the Bayesian county-specific estimates
(BE) and their 95% posterior intervals.

9. Plot side by side the MLE and the Bayesian estimates with their 95%
uncertainty intervals versus county.

10. Rank the BE and their posterior intervals from the largest to the small-
est estimate. Try to plot the ranked estimates and their 95% posterior
intervals.

11. Plot the MLE county-specific estimates versus the county-specific charac-
teristics found in the file countyinfo.rda.

12. Fit a weighted linear regression model having as dependent variable the
county-specific MLE estimates and as independent variable each of the
county-specific covariate. Weight the observation by 1 divided by the sta-
tistical variance of the MLEs.

13. You have provided evidence of significant adverse health effects that can
occur from exposure to ambient levels of fine particulate matter PM2.5 air
pollution in a large nationwide sample of older adults. The breadth and
size of their Medicare study population, and the recent EPA proposal for
new legal limits for this air pollutant, raise a time-critical question:

Can this study be used to further test the hypothesis that the
EPA proposal to set a maximum daily exposure limit of 35 µg/m3

will be sufficient to eliminate these adverse health effects?
Conduct subset analyses to test whether this newly proposed air pollu-
tion standard, if achieved, could eliminate the public health risk of excess
hospital admissions from exposures to PM2.5 air pollution.

General questions to consider:

• Is there evidence that short-term variations in PM2.5 are associated
with hospitalization risk for cerebrovascular disease on average across the
nation?

• Is this evidence the same across geographical regions and between the east-
ern and western United States? Is there evidence of heterogeneity across
counties and geographical regions of the health effects of air pollution?
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• Are counties with the largest health risks for PM2.5 also the ones with
largest average O3 and NO2? Can we identify county-specific characteris-
tics that might explain why some counties have larger health risks than
others?

• Are the relative risks estimates similar across cities? Is it reasonable to
pool these estimates across geographical locations to provide a national
estimate of risks? If yes, why? If no, why?

• Should we estimate health relative risks in Los Angeles by using data from
Los Angeles only or should we also use data available in the other counties?

• What are the three cleanest counties in the United States (i.e., that have
the smallest health risks associated with air pollution)? Should we move
there? What are the three dirtiest counties in the United States? If you
live in one of them, should you move out?



8

A Reproducible Seasonal Analysis
of Particulate Matter and Mortality
in the United States

8.1 Introduction

Multisite time series studies have provided strong evidence of a positive asso-
ciation between short-term variation in ambient levels of particulate matter
(PM) and daily mortality counts [see, e.g., 88, 24, 7]. The models used in
these studies have typically assumed that the association between PM and
daily mortality is constant over the study interval. However, the short-term
effects of PM on mortality might exhibit seasonal variation. Studies in a num-
ber of locations have shown that the characteristics of the PM mixture change
throughout the year and that the relative and absolute contributions of par-
ticular components to PM mass may be different during different times of
the year [37, Ch. 3 and references therein]. Patterns of human activity also
change from season to season, so that a particular air pollution concentra-
tion in one season may lead to a different exposure in another season. Other
potential time-varying confounding and modifying factors, such as tempera-
ture and influenza epidemics, can also affect estimates of short-term effects
of air pollution on mortality differently in different seasons. All of the issues
described above indicate a need to use alternative models for time series data
on air pollution and health to incorporate time-varying pollution effects.

The composition of particulate matter is known to vary in the spatial
domain as well, suggesting that seasonal patterns should be examined by ge-
ographical region [114]. For example, in the northwest United States, wood
burning is a greater source of PM in the colder seasons than in the warmer
months. The PM mixture in the eastern United States contains a large fraction
of sulfates (almost 40% of total mass) originating from power plants in the
Midwest, wherease PM in areas of the western United States such as South-
ern California and the Pacific Northwest contains more nitrates and organic
compounds (approximately 30% of total mass) [114, 36, 37].

We can show the seasonal pattern of PM10 for different regions of the
country. Here, we divide the United States into seven broad regions [see, e.g.,
101] and show boxplots of the PM10 levels by season. We first need to load
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the NMMAPSdata package [80] and obtain information about the cities in
the database. We have combined some of the city data in a single file that is
available from our Web site.

> library(NMMAPSdata)
> data(cities)
> baseURL <- "http://www.biostat.jhsph.edu/˜rpeng/useRbook"
> load(url(file.path(baseURL, "CityDataCombined.rda")))
> cityList <- dget(file.path(baseURL, "cityList.R"))

We then need to extract the PM10 data from each city and split it by season
so that we can construct the boxplots for each of the regions. The PM10 data
in the NMMAPS database are detrended, with a smooth trend subtracted
out. In order to look at the absolute levels, we need to add the trend back in.

> pm10 <- with(citydata, pm10tmean + pm10mtrend)
> pmCity <- split(pm10, citydata$city)
> pmCity <- pmCity[names(pmCity) %in% cityList]

Using the season indicator variable in the dataset, we can split the PM10 data
by season. We also have a region indicator for each city, allowing us to further
split the data by region. There are seven regions used here, defined in the
original NMMAPS studies.

> SeasonIndicator <- citydata$Season[1:5114]
> regionID <- with(cities, region[match(cityList,
+ city)])
> regionNames <- c("Industrial Midwest",
+ "Northeast", "Northwest", "Southern California",
+ "Southeast", "Southwest", "Upper Midwest")
> pmSeas <- lapply(pmCity, split, f = SeasonIndicator)
> pmSeasRegion <- split(pmSeas, regionID)
> SeasonNames <- c("Winter", "Spring", "Summer",
+ "Fall")
> seasRegion <- lapply(pmSeasRegion, function(reg) {
+ l <- lapply(SeasonNames, function(seas) lapply(reg,
+ "[[", seas))
+ lapply(l, unlist)
+ })

Figure 8.1 shows the mean daily levels of PM10 by season for all cities
in each of the seven regions of the United States. The Southern California,
Northwest, and Southwest regions have their highest mean levels of PM10 in
the fall whereas other regions have their highest levels in the summer.

> par(mar = c(4, 5, 2, 0) + 0.1, las = 2)
> plot(0, 0, xlim = c(1, 35), ylim = c(0,
+ 125), xaxt = "n", xlab = "Season",
+ ylab = expression(paste(PM[10], " level ",
+ bgroup("(", paste(mu, g/mˆ3),
+ ")"))), frame.plot = FALSE,
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+ type = "n")
> for (i in seq(along = seasRegion)) {
+ y <- unlist(seasRegion[[i]])
+ n <- unlist(lapply(seasRegion[[i]],
+ length))
+ f <- factor(unlist(mapply(rep, seq(length(n)),
+ n)))
+ boxplot(y ˜ f, outline = FALSE, add = TRUE,
+ at = seq(length(n)) + ((i - 1) *
+ 5), pars = list(boxwex = 0.5),
+ lty = 1, axes = FALSE)
+ }
> axis(1, at = 1:35, labels = rep(c("Winter",
+ "Spring", "Summer", "Fall", NA), 7),
+ tick = FALSE, cex.axis = 0.7)
> text(seq(2.7, 35, 5), c(100, 100, 100,
+ 120, 100, 100, 100), regionNames)
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Fig. 8.1. Boxplots of regionally averaged daily levels of particulate matter less than
10 µm in aerodynamic diameter (PM10) by season for 100 United States cities,
1987–2000.

Mortality and PM10 levels are known to vary considerably across seasons.
Generally, mortality tends to be higher in the winter and fall and lower in
the summer and spring. To examine the seasonal variability of mortality in
the NMMAPS dataset, we can look at mortality in the top ten largest cities
according to the Census 2000 population.

> cityList <- with(cities, city[order(pop,
+ decreasing = TRUE)])[1:10]
> dCity <- with(citydata, split(death, city))
> dCity <- dCity[names(dCity) %in% cityList]

For each city, we split the mortality time series (death) by season

> SeasonIndicator <- citydata$Season[1:5114]
> dSeas <- lapply(dCity, split, f = SeasonIndicator)
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and order the cities by decreasing population.

> ord <- order(with(cities, pop[match(names(dSeas),
+ city)]), decreasing = TRUE)
> dSeas <- dSeas[ord]

Figure 8.2 shows boxplots of the square root daily mortality counts for the
largest ten cities in the United States, by season. Each city shows a clear
decrease in mortality towards summer and a peak in the winter.

> par(mar = c(4, 4, 2, 0) + 0.1, las = 2)
> plot(0, 0, ylim = c(4, 17), xlim = c(1,
+ 50), xlab = "Season", axes = FALSE,
+ ylab = "Square root daily mortality counts",
+ type = "n")
> for (i in seq(along = dSeas)) {
+ y <- unname(unlist(dSeas[[i]]))
+ n <- unname(unlist(lapply(dSeas[[i]],
+ length)))
+ f <- factor(unlist(mapply(rep, seq(length(n)),
+ n)))
+ boxplot(sqrt(y) ˜ f, outline = FALSE,
+ add = TRUE, at = seq(length(n)) +
+ ((i - 1) * 5), pars = list(boxwex = 0.5),
+ lty = 1, axes = FALSE)
+ }
> SeasonNames <- c("Winter", "Spring", "Summer",
+ "Fall")
> axis(1, at = 1:50, labels = rep(c(SeasonNames,
+ NA), length(dSeas)), tick = FALSE,
+ cex.axis = 0.7)
> axis(2)
> par(las = 1)
> text(seq(2.5, 50, 5), c(8, 10, 8, 11,
+ 10, 10, 10, 10, 10, 10), cityNames)
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Fig. 8.2. Boxplots of square root daily mortality by season for the ten largest United
States cities, 1987–2000.
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In this chapter we outline some statistical methods for estimating seasonal
patterns in the short-term effects of air pollution on mortality in multisite
time series studies. We propose Bayesian semiparametric hierarchical models
for estimating time-varying health effects within each city and for comparing
temporal patterns across cities and geographical regions. Using data from the
National Morbidity, Mortality, and Air Pollution Study (NMMAPS) [101], we
estimate seasonal patterns in the short-term effects of PM less than 10 µm
in aerodynamic diameter (PM10) on daily nonaccidental mortality. The data
have been extended from the original study to include 100 United States
cities for the period 1987–2000, an addition of ten cities and six years of data.
The seasonal patterns are estimated for seven geographical regions and on
average for the entire United States. We explore the sensitivity of estimated
seasonal patterns to temperature adjustment, copollutants, exposure lag, and
adjustments for long-term mortality trends.

8.2 Methods

The NMMAPS database contains daily time series of mortality, weather,
and air pollution assembled from publicly available sources for the largest
100 cities in the United States. A full description of the construction of
the database can be found in [101]. The most recent data are available at
http://www.ihapss.jhsph.edu/.

Within each city, we specify a semiparametric regression model for the
time-varying log-relative rate using a generalized additive model framework
[45]. More specifically, let Y ct be the total number of nonaccidental deaths on
day t in city c. The Y ct are Poisson distributed with expectation µct and with
possible overdispersion φc. The general form of the city-specific model is

Y ct ∼ Poisson(µct)
Var(Y ct ) = φcµct

log(µct) = βc(t)xct−` + confounders (8.1)

where xct−` is the lag ` PM10 level for day t.
The function βc(t) in Equation (8.1) represents the time-varying effect of

PM10 on mortality and is a yearly periodic function for estimating seasonal
patterns. To estimate smooth seasonal patterns in the city-specific log relative
rates, we use a sine/cosine model for βc(t) of the form

βc(t) = βc0 + βc1 sin(2πt/365) + βc2 cos(2πt/365) (8.2)

where βc0, βc1, βc2 are estimated. In this model, the effect of PM10 is allowed
to vary smoothly over the course of a year, but is constrained to be periodic
across years [e.g., 116]. Although it is possible to include higher-frequency
basis terms for the representation of βc(t) in Equation (8.2), there is little
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reason to expect there to be much high-frequency variation in the seasonal
effects of PM10.

To allow for season-specific PM10 log-relative rates, we use a pollutant–
season interaction model with indicator functions for each season:

βc(t) = βcW Iwinter + βcSp Ispring + βcSm Isummer + βcF Ifall, (8.3)

where winter, spring, summer, and fall are defined as beginning on December
21st, March 21st, June 21st, and September 21st, respectively. Although these
seasonal estimates serve as concise summaries, it is unlikely that the effect of
PM10 on mortality is discontinuous across seasons. Furthermore, the estimates
depend on the specification of the season boundaries which are artificial and
can differ considerably across geographic regions.

Our main effect model, which does not contain any adjustment for season
takes βc(t) to be constant across time; that is,

βc(t) = βc. (8.4)

This model assumes a homogeneous log-linear effect of PM10 on mortality, a
condition that was found appropriate in previous NMMAPS analyses [18, 31,
25, 26]. Note that the main effect model is nested within the interaction and
sine/cosine models, so that if βW = βSp = βSm = βF in Equation (8.3) and
βc1 = βc2 = 0 in Equation (8.2), both models reduce to Equation (8.4).

The potential confounders included in equation 8.1 are similar to those
used in previous NMMAPS analyses [e.g., 25, 26] and consist of indicators for
the day of the week; age-specific intercepts corresponding to the categories
of less than 65 years of age, 65–74 years, and 75 years or older; a smooth
function of calendar time; and smooth functions of temperature and dewpoint
temperature. In addition to the overall smooth function of time, two separate
smooth functions of time are included for the older two age groups. All of the
smooth functions are represented by natural cubic splines.

The complexity of each of the smooth functions of time and temperature
is controlled by the numbers of degrees of freedom assigned to each function.
We use seven degrees of freedom per year for the overall smooth function of
time, which removes any fluctuations in mortality at timescales longer than
two months. The separate smooth functions of time for the older two age
categories each receive one degree of freedom per year to capture gradual
trends specific to these age groups. For temperature we use six degrees of
freedom and for dewpoint we use three degrees of freedom. A somewhat larger
number of degrees of freedom is necessary for temperature in order to capture
the well-known “J-shaped” nonlinear relationship between temperature and
mortality. Others have adjusted for temperature simply by doing separate
analyses of the data by season [70, 97, 35, 98, 99, 101].

All of the above models were fit using quasilikelihood methods as imple-
mented in the R statistical software package [90]. The data are available via
the NMMAPSdata package [80] and code for fitting the models is available
on the Web at http://www.ihapss.jhsph.edu/data/NMMAPS/R/.



8.3 Results 123

8.2.1 Combining information across cities

After fitting each of the city-specific models we use a hierarchical normal
model for pooling information and borrowing strength across cities [see 99,
35, 25]. For a particular model, we have a city-specific maximum likelihood
estimate β̂

c
which is a scalar for the main effect model in equation 8.4, a vector

of length four for the pollutant-season interaction model in equation 8.3, and a
vector of length three for the sine/cosine model in equation 8.2. β̂

c
is assumed

to be normally distributed around the true city-specific log relative rates βc

with covariance matrix V c, estimated within each city. In addition, the true
rates are assumed to vary independently across cities according to a normal
distribution, i.e.

β̂
c
| βc ∼ N (βc, V c)

βc | α, Σ ∼ N (Zcα, Σ) (8.5)

where Σ is the covariance matrix describing the between-city variation of
βc and α is the overall mean for the cities. Zc is a matrix of second-stage
covariates for describing possible differences between cities. To characterize
regional differences in seasonal patterns we include as a second-stage covariate
an indicator for the following seven regions (also used in [101]): Industrial
Midwest (19 cities), Northeast (17), Northwest (13), Southern California (7),
Southeast (26), Southwest (10), and Upper Midwest (8).

The final national average estimate α represents the combined information
from all of the cities. The diagonal elements of Σ measure the heterogeneity
across cities and the off-diagonal elements represent the correlation of the
estimates between cities. The hierarchical model is fit using the two level nor-
mal independent sampling estimation (TLNISE) software of [38] with uniform
priors on α and Σ. This software provides a sample from the posterior dis-
tribution of Σ from which one can calculate posterior means and variances of
the overall and city-specific pollution effects.

8.3 Results

The daily mortality counts for the years 1987–2000 include approximately 10
million deaths. By city, the daily average ranged from 2 deaths per day in
Arlington, VA to 190 per day in New York, NY. The daily mean of PM10

ranged from 13 µg/m3 in Coventry, RI to 49 µg/m3 in Fresno, CA.
We would like to obtain national average estimates of the association be-

tween PM10 and daily mortality. These estimates incorporate all of the rel-
evant data in the NMMAPS database and reflect the relevant uncertainties.
In addition to nationally averaged estimates, we would like to obtain national
estimates by season to see if there are any differences in the effects between
seasons.



124 8 A Reproducible Seasonal Analysis of PM and Mortality

We begin by first fitting the city-specific models to the cities in the
NMMAPS database.

> library(NMMAPSdata)

NMMAPS Data (version 0.4-3)
Type citation("NMMAPSdata") for
information on how to cite NMMAPSdata
in publications. Type ?NMMAPS for a
brief introduction to the NMMAPS
database. Type vignette("NMMAPSdata")
to view a short tutorial vignette.

> cityList <- dget(file.path(baseURL, "cityList.R"))

In this analysis we focus on using exposure lags of PM10 of 0, 1, and 2 days,
so that lag 1 exposure indicates that we are comparing today’s mortality with
yesterday’s PM10.

> pollutants <- c("pm10tmean", "l1pm10tmean",
+ "l2pm10tmean")

We then loop over the cities and fit the models using the fitCitySeason
function with the option season = "none". The results are stored in the
list results.nonseasonal.

> library(splines)
> library(tsModel)
> results.nonseasonal <- vector("list",
+ length = length(pollutants))
> extractcoef <- function(x) summary(x)$coefficients
> extractors <- list(coefficients = extractcoef,
+ cov = vcov)
> for (i in seq(along = pollutants)) {
+ lag.results <- vector("list", length = length(cityList))
+ for (l in seq(along = cityList)) {
+ citydata <- readCity(cityList[l])
+ lag.results[[l]] <- try({
+ fitCitySeason(data = citydata,
+ pollutant = pollutants[i],
+ cause = "death", season = "none",
+ extractors = extractors)
+ })
+ }
+ results.nonseasonal[[i]] <- lag.results
+ }

Once the nonseasonal city-specific models have been fit to all the cities for
all three exposure lags, we can move on to fitting the pollutant–season inter-
action model. This process also makes use of the fitCitySeason function
with the option season = "factor2" and stores the results in the list
results.stepfun.
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> results.stepfun <- vector("list", length=length(pollutants))
> for (i in seq(along = pollutants)) {
+ lag.results <- vector("list", length = length(cityList))
+ for (l in seq(along = cityList)) {
+ citydata <- readCity(cityList[l])
+ lag.results[[l]] <- try({
+ fitCitySeason(data = citydata,
+ pollutant = pollutants[i],
+ cause = "death", season = "factor2",
+ extractors = extractors)
+ })
+ }
+ results.stepfun[[i]] <- lag.results
+ }

With the city-specific estimates from both the non-seasonal model and the
pollutant–season interaction model, we can combined the estimates across
cities using a two-level hierachical model. Specifically, we use the two-level
Normal independent sampling estimation software of Everson and Morris [38].
We first combine the nonseasonal estimates

> library(tsModel)
> library(tlnise)

Two-level normal independent sampling
estimation (version 0.2-7)

> betacovTotal <- lapply(results.nonseasonal,
+ extractBetaCov, pollutant = "pm10")
> pooledTotal <- lapply(betacovTotal, poolCoef)

followed by the estimates from the pollutant-season interaction model.

> pooledSeas <- lapply(results.stepfun,
+ coefSeasonal, pollutant = "pm10",
+ method = "factor2")
> pooled <- lapply(seq(along = pooledSeas),
+ function(i) {
+ rbind(pooledSeas[[i]], pooledTotal[[i]])
+ })

The national average estimates of the overall and seasonal short-term ef-
fects of PM10 on mortality for lags 0, 1, and 2 are summarized in Table 8.1.
Across all seasons, we found that the national average estimate of the effect
of PM10 on mortality is largest at lag 1 and equal to an estimated 0.19 (95%
posterior interval of 0.10, 0.28) percent increase in mortality per 10 µg/m3

increase in PM10. Previous NMMAPS analyses using data from the eight-year
period 1987–1994 have reported similar slightly higher national average esti-
mates for PM10 log relative rates [31, 26]. For example, the national average
estimate reported in [26] was a 0.22 (0.03, 0.42) percent increase in mortality
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for a 10 µg/m3 increase in PM10. For PM10 at lag 1, the estimates for winter,
spring, and fall are similar and equal to 0.15 (−0.08, 0.39), 0.14 (−0.14, 0.42),
and 0.14 (−0.06, 0.34), respectively. The estimate for summer is more than
twice as large at 0.36 (0.11, 0.61). PM10 at lag 0 appears to have a larger
effect in the spring and much smaller effects in the other seasons. In addition,
estimates for lag 0 have a much larger between-season difference (e.g., spring
and winter) than those of lag 1. The estimates for lag 2 are generally smaller
than those of lag 0 or 1 and, given the size of the posterior intervals, do not
vary much across seasons.

In order to show smoothly varying estimates of the seasonal effects of
PM10, we fit the sine/cosine model to each city and combine the estimates
across cities. Here, we use the fitCitySeason function with the option
season = "periodic" and df.Season = 1 and store the results in the
list results.smooth.

> library(tsModel)
> results.smooth <- vector("list", length = 3)
> for (k in seq(along = pollutants)) {
+ lag.results <- vector("list", length = length(cityList))
+ for (l in seq(along = cityList)) {
+ citydata <- readCity(cityList[l])
+ lag.results[[l]] <- try({
+ fitCitySeason(data = citydata,
+ pollutant = pollutants[k],
+ cause = "death", season = "periodic",
+ df.Season = 1, extractors = extractors)
+ })
+ }
+ results.smooth[[k]] <- lag.results
+ }

Regional differences in the seasonal patterns of the PM10 relative rates were
explored by including a region indicator variable in the second stage of the
hierarchical model. For PM10 at lag 1, Figure 8.3 shows the results of estimat-
ing separate seasonal trends from the sine/cosine model for the seven regions
of the United States. The Industrial Midwest and the Northeast have seasonal
trends characterized as being lower in the winter and higher in the summer. In
Southern California there is a larger effect (0.5 percent increase in mortality
per 10 µg/m3 increase in PM10) that is constant all year. The effect of PM10

is close to zero all year round in the Northwest, Southeast, Southwest, and
the Upper Midwest, but the Northwest experiences a slight increase during
the summer months. With the exception of Southern California, all regions
have a smaller effect in the winter months. Seasonal analyses for mortality
due to cardiovascular and respiratory diseases (not shown) provided results
that are qualitatively similar to those for total nonaccidental mortality, with
larger summer effects in the Industrial Midwest and the Northeast regions, as
well as overall for the entire United States.
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Fig. 8.3. National and regional smooth seasonal effects of PM10 (particulate matter
less than 10 µm in aerodynamic diameter) at lag 1 for 100 U.S. cities, 1987–2000.
Estimates were obtained by pooling city-specific coefficients from the sine/cosine
model (Equation (8.2)). Dotted lines indicate pointwise 95% posterior intervals.

8.3.1 Sensitivity analyses

We performed several additional analyses to explore the sensitivity of the
estimated seasonal PM10 log-relative rates to model specification. Specifically,
we examined sensitivity to adjustment for long-term trends and seasonality
in PM10 and mortality

> library(NMMAPSdata)
> library(splines)
> library(tsModel)
> cityList <- dget(file.path(baseURL, "cityList.R"))
> dfVec <- seq(3, 13, 2)
> extractcoef <- function(x) summary(x)$coefficients
> extractors <- list(coefficients = extractcoef,
+ cov = vcov)
> lagresults1 <- lapply(cityList, function(city) {
+ cityresults <- multiDFFit(dfVec, city,
+ pollutant = "l1pm10tmean", cause = "death",
+ season = "periodic", df.Season = 1,
+ extractors = extractors)
+ names(cityresults) <- paste("df",
+ dfVec, sep = "")
+ lapply(cityresults, postProcess)
+ })

Selecting the degrees of freedom of the smooth function of time used to
control for long-term trends and seasonality is an important issue in time
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series models of air pollution and mortality because estimates of pollution co-
efficients can change considerably depending on the specification of the num-
ber of degrees of freedom [106, 107, 120]. Our original model used a natural
cubic spline with 7 degrees of freedom per year of data. For PM10 at lag 1,
Figure 8.4 shows the sensitivity of the sine/cosine model to using 3, 5, 7, 9,
and 11 degrees of freedom per year in the smooth function of time. With only
3 degrees of freedom per year the curves deviate considerably from those in
Figure 8.3; for example, the estimate for Southern California exhibits much
more seasonal variation. However, these deviations more likely reflect a lack
of adjustment in the model rather than a real seasonal change. With more
aggressive control for seasonality and long-term trends the estimates appear
to be stable.
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Fig. 8.4. Sensitivity of national and regional estimates of smooth seasonal effects
for PM10 at lag 1 to the degrees of freedom assigned to the smooth function of time,
100 U.S. cities, 1987–2000. The degrees of freedom chosen were 3 (short dashed),
5 (dotted), 7 (solid), 9 (dot-dashed), and 11 (long dashed) degrees of freedom per
year of data.
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8.4 Comments

In this chapter we have used a Bayesian semiparametric hierarchical model
for estimating time-varying effects of air pollution on daily mortality. The
model combines information across multiple cities to increase the precision of
seasonal relative rate estimates. We found seasonal patterns for the national
average effect of PM10 at both lag 0 and lag 1. Seasonal patterns appeared to
vary by geographical region with a strong pattern for lag 1 appearing in the
Northeast region. Equally interesting was the lack of seasonal variation in the
southern regions of the country.

Understanding the health effects of PM components is an increasingly im-
portant research problem, as noted by the National Research Council [72].
Exploration of the spatial–temporal variation of the short-term effects of PM
on mortality is essential to generating (or ruling out) specific hypotheses about
the toxicity of PM components. Data are now available from the Environmen-
tal Protection Agency’s PM2.5 National Chemical Speciation Network which
contain detailed time series information on the composition of PM2.5. Knowl-
edge of the spatial-temporal patterns of the short-term effects of PM will be
necessary for guiding future analyses of these PM constituent data.

Regional differences in the short-term effects of PM10 were explored in
NMMAPS [25, 26] and in the Air Pollution and Health: A European Approach
(APHEA) study [52, 103]. Both studies found regional modification of the
effect of PM10 on daily nonaccidental mortality. The results presented here are
consistent with previous NMMAPS analyses with respect to regional average
PM10 effects. The estimated seasonal patterns for lag 1 appear to have two
distinct shapes. The Industrial Midwest, Northeast, and Northwest regions all
exhibit a larger effect during the summer months wherease the other regions
exhibit little seasonal variation. These patterns are somewhat sensitive to the
lag of pollution used. Therefore, an important question is how the total effect
of PM10 in a distributed lag model would vary by season. Unfortunately, the
United States pollution database has daily PM levels for a small fraction of
cities making it difficult to answer this question.

The results of this analysis admit several competing hypotheses. First, the
PM constituents may vary by season in these regions with the most toxic par-
ticles having a spring/summer maximum. A detailed analysis of the regional
and seasonal variation in PM constituents is needed to better understand these
patterns. Second, even if the constituents do not vary substantially, it is possi-
ble that the higher short-term effect of ambient exposure to PM estimated in
spring and summer in the Northeast regions could be the result of more time
spent outdoors and therefore less exposure measurement error. A third possi-
bility is that the particle effect may be swamped by the more powerful effect
of winter infectious diseases so that it can only be observed when infectious
diseases are less prevalent. This hypothesis does not explain the absence of a
PM10 mortality association in the southern regions where infectious disease
incidence is also seasonal. Finally, this result may reflect seasonally varying
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bias from an, as yet, unidentified source. Having established the pattern of
regional and seasonal variation in the PM10 log-relative rate, a more targeted
investigation of possible sources of such bias is now possible.

8.5 Reproducibility Package

Some of the code for producing the analyses in this Chapter has not been
shown for the sake of brevity. The full data and code for all of the analyses
and figures can be downloaded using the cacher package by calling

> clonecache(id = "6887df7ae339c24c39eaf6b491871fef7518b72f")

which will download the cached analysis from the Reproducible Research
Archive. Some of the analyses in this Chapter, such as fitting the city-specific
models to all of the NMMAPS cities are quite time-consuming and on first
examination the reader might benefit from loading those results directly from
the database rather than trying to reproduce them.
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