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Preface

This book is a monograph on practical aspects of probabilistic networks (a.k.a.
probabilistic graphical models) and is intended to provide a comprehensive
guide for practitioners that wish to understand, construct, and analyze de-
cision support systems based on probabilistic networks, including a number
of different variants of Bayesian networks and influence diagrams. The book
consists of three parts:

Part I: Fundamentals of probabilistic networks, including Chapters 1-5,
covering a brief introduction to probabilistic graphical models, the basic
graph-theoretic terminology, the basic (Bayesian) probability theory, the
key concepts of (conditional) dependence and independence, the different
varieties of probabilistic networks, and methods for making inference in
these kinds of models. This part can be skipped by readers with funda-
mental knowledge about probabilistic networks.

Part II: Model construction, including Chapters 68, covering methods and
techniques for elicitation of model structure and parameters, a large num-
ber of useful techniques and tricks to solve commonly recurring modeling
problems, and methods for constructing probabilistic networks automat-
ically from data, possibly through fusion of data and expert knowledge.
Chapters 6 and 7 offer concrete advice and techniques on issues related
to model construction, and Chapter 8 explains the theory and methods
behind learning of Bayesian networks from data.

Part III: Model analysis, including Chapters 9-11, covering conflict analy-
sis for detecting conflicting pieces of evidence (observations) or evidence
that conflicts with the model, sensitivity analysis of a model both with
respect to variations of evidence and model parameters, and value of in-
formation analysis. This part explains the theory and methods underlying
the three different kinds of analyses.

Probabilistic networks have become an increasingly popular paradigm for

reasoning under uncertainty, addressing such tasks as diagnosis, prediction,
decision making, classification, and data mining. From its infancy in the mid-
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1980s till today there has been a rapid development of algorithms for construc-
tion, inference, learning, and analyses for probabilistic networks, and since the
turn of the millennium there has been a steep increase in the number of new
applications of probabilistic networks. Its popularity stems from a number of
factors. The graphical-based language for probabilistic networks is a power-
ful tool for expressing causal interactions while in the same time expressing
dependence and independence relations among entities of a problem domain.
Being graphical and compact the language furthermore provides an excel-
lent intuitive means of communication of ideas among knowledge engineers
and problem domain experts. Although inference in complex probabilistic
networks can be quite demanding (or even intractable), the fact that infer-
ence can be performed efficiently in models of hundreds or even thousands
of variables is another contribution to the popularity of probabilistic net-
works. Another important factor is that inference in probabilistic networks
is based on a well-established theoretical foundation of probability calculus
and decision theory, and hence provides mathematically coherent methods for
deriving conclusions under uncertainty, where multiple sources of information
and complex interaction patterns are involved. The existence of efficient al-
gorithms for learning and adaptation of probabilistic networks from data and
the possibility of fusing data and expert knowledge are yet other attractive
features. Finally, probabilistic networks are “white boxes” in the sense that
the model components (variables, links, probability and utility parameters)
are open to interpretation, which makes it possible to perform a whole range
of different analyses of the networks (e.g., conflict analysis, (in)dependence
analyses, sensitivity analysis, and value of information analysis).

As mentioned above, this book takes a practical outset, and is intended
primarily for those who wish to construct and analyze probabilistic networks
without necessarily having a deep understanding neither of the underlying
theory and methods for inference, learning, analyses, etc. nor of alternative
paradigms for reasoning under uncertainty. Hence, the scope of this book is
quite narrow, focusing almost exclusively on issues relevant for understanding,
constructing, and analyzing the different variants of Bayesian networks and
influence diagrams. Other methods for inference and decision making under
uncertainty, therefore, get very limited attention.

The intended audience of this book is practitioners rather than students
of artificial intelligence. Despite this fact, exercises have been included in
all chapters (except Chapter 1) for the reader to check his/her level of
understanding. Answers to selected exercises and more can be found at
http://developer.hugin.com/Publications/BNID/.

For a quick overview, the different kinds of probabilistic network models
considered in this book can be characterized very briefly as follows:

e Discrete Bayesian networks represent factorizations of joint probability
distributions over finite sets of discrete random variables. The variables
are represented by the nodes of the network, and the links of the network
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represent the properties of (conditional) dependences and independences
among the variables. For each variable is specified a set of local probability
distributions conditional on the configuration of its conditioning (parent)
variables.

e Conditional linear Gaussian (CLG) Bayesian networks represent factor-
izations of joint probability distributions over finite sets of random vari-
ables where some are discrete and some continuous. Each continuous vari-
able is assumed to follow a linear Gaussian distribution conditional on the
configuration of its discrete parent variables.

e Discrete influence diagrams are (discrete) Bayesian networks augmented
with (discrete) decision variables and (discrete) utility functions. An influ-
ence diagram is capable of computing expected utilities of various decision
options given the information known at the time of the decision.

e Conditional linear-quadratic Gaussian (CLQG) influence diagrams com-
bine CLG Bayesian networks, discrete influence diagrams, and quadratic
utility functions into a single framework supporting decision making under
uncertainty with both continuous and discrete variables.

o Limited-memory influence diagrams (LIMIDs) relax two fundamental as-
sumptions of influence diagrams: the no-forgetting assumption implying
perfect recall of past observations and decisions, and the assumption of
a total order on the decisions. LIMIDs allow us to model more types of
decision problems than the ordinary influence diagrams.

o Object-oriented probabilistic networks are hierarchically specified proba-
bilistic networks (i.e., one of the above), allowing the knowledge engineer
(model builder) to work on different levels of abstraction, as well as ex-
ploiting the usual concepts of encapsulation and inheritance known from
object-oriented programming paradigms.

The book provides numerous examples, hopefully helping the reader to
gain a good understanding of the various concepts, some of which are known
to be hard to understand at a first encounter.

Even though probabilistic networks provide an intuitive language for con-
structing knowledge-based models for reasoning under uncertainty, knowledge
engineers can often benefit from a deeper understanding of the principles un-
derlying these models. For example, knowing the rules for reading statements
of dependence and independence encoded in the structure of a network may
prove very valuable in evaluating whether the network correctly models the
dependence and independence properties of the target problem. This, in turn,
may be crucial to achieving, for example, correct posterior probability distri-
butions from the model. Also, having a basic understanding of the relations
between the structure of a network and the complexity of inference may prove
useful in the model construction phase, avoiding structures that are likely to
result in problems of poor performance of the final decision support system.

We present such basic concepts, principles, and methods underlying prob-
abilistic models that practitioners need to acquaint themselves with.
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In Chapter 1, we provide a bit of background and contextual introduction
to Bayesian networks and influence diagrams. To give the reader a first under-
standing of probabilistic networks, we present a very simple Bayesian network
and shown how it can be augmented with explicit representation of decision
options and a utility function, turning it into an influence diagram. Also, we
discuss briefly the notions of causality, construction of probabilistic networks,
and applicability (i.e., when to use probabilistic networks).

In Chapter 2, we describe the fundamental concepts of the graphical lan-
guage used to construct probabilistic networks as well as the rules for reading
statements of (conditional) dependence and independence encoded in network
structures. We present two equivalent criteria for reading these statements,
namely Pearl’s (Pearl 1988) d-separation criterion and the criterion of directed
Markov property by Lauritzen, Dawid, Larsen & Leimer (1990a).

In Chapter 3, we present the uncertainty calculus used in probabilistic
networks to represent the numerical counterpart of the graphical structure,
namely classical (Bayesian) probability calculus. We shall see how a basic ax-
iom of probability calculus leads to recursive factorizations of joint probability
distributions into products of conditional probability distributions, and how
such factorizations along with local statements of conditional independence
naturally can be expressed in graphical terms.

In Chapter 4, we see how putting the basic notions of Chapters 2 and 3
together we get the notion of discrete Bayesian networks. Also, we present
a range of derived types of network models, including conditional Gaussian
models where discrete and continuous variables co-exist, influence diagrams
that are Bayesian networks augmented with decision variables and utility
functions, limited-memory influence diagrams that allow the knowledge engi-
neer to reduce model complexity through assumptions about limited memory
of past events, object-oriented models that allow the knowledge engineer to
construct hierarchical models consisting of reusable submodels, and dynamic
Bayesian networks that provide a framework for modeling phenomena evolv-
ing over time.

In Chapter 5, we explain the principles underlying inference in these dif-
ferent kinds of probabilistic networks.

In Chapter 6, we discuss the art of constructing a probabilistic network,
and the characteristics of problem domains that can be successfully modeled
by probabilistic networks. The different phases of model construction is dis-
cussed, including design (how to identify the right set variables, how to elicit
the structure of a probabilistic network, and the how to verify a network struc-
ture), implementation (elicitation of probability and utility parameters), test,
and analysis (i.e., troubleshooting the model).

In Chapter 7, we present a large number of techniques and tricks for solving
commonly occurring modeling problems in probabilistic networks. The set
of techniques and tricks include various structure related techniques (parent
divorcing, temporal transformation of causal relations, modeling of structural
and functional uncertainty, modeling of undirected dependence relations and
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bidirectional relations), probability distribution related techniques (modeling
of measurement error, (different) expert opinions, node absorption, value set
by intervention, and independence of causal influence), and decision related
techniques (modeling of test decisions, missing informational links, missing
observations, hypothesis of highest probability, and constraints on decisions).

In Chapter 8, we describe how probabilistic networks can be constructed
automatically from a database of cases or from a combination of data and
problem domain expertise. The underlying theory of structure learning is ex-
plained and different constraint-based learning algorithms are presented. The
expectation-maximization (EM) algorithm is described for learning the val-
ues of probability parameters from data as well as from data and problem
domain expertise (penalized EM). Finally, we describe how the values of the
probability parameters of a probabilistic network can be learned sequentially
(adaptation).

In Chapter 9, we describe a method for performing conflict analysis in a
probabilistic network, which aims at detecting pieces of evidence that might be
in conflict with one another (i.e., pointing in different directions with respect
to output from the network) or in conflict with the network model. Also the
topics of tracing and resolution of conflicts are discussed.

In Chapter 10, we describe how to analyze the sensitivity of the output of
a probabilistic network (e.g., diagnosis, classification, etc.) to changes in the
values of observed variables (evidence) as well as probability parameters.

Finally, in Chapter 11, we describe methods for performing value-of-
information analyses in Bayesian networks as well as influence diagrams.

Aalborg, Uffe B. Kjerulff
September 2007 Anders L. Madsen
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Fundamentals



1

Introduction

The desire to have computers perform intellectually challenging tasks has
existed ever since the invention of the general-purpose computer that could
be programmed to execute an arbitrary set of manipulations on numbers and
symbols. Solving an intellectually challenging task can be characterized as a
process of deriving conclusions (new pieces of knowledge) by manipulating a
(large) body of knowledge, typically including definitions of entities (objects,
concepts, events, phenomena, etc.), relations among them, and observations
of states (values) of some of the entities.

As a prototypical example of a decision problem, imagine a physician who
is consulted by a patient complaining about stomach pain. The physician then
conducts an interview of the patient and possibly makes some investigations
to localize the origin of the pain, to find other symptoms of the disorder, etc.
Based on her knowledge about pathophysiological cause—effect mechanisms
involving stomach pain as well as on the information revealed from the pa-
tient’s medical records, from the interview, from the symptoms observed, etc.,
the physician makes a diagnosis and a treatment plan.

By formulating the physician’s knowledge in an appropriate formal (com-
puter) language for which there exist methods for making inferences to manip-
ulate pieces of knowledge formulated in this language, the reasoning conducted
by the physician can be automated and carried out by a computer. Proba-
bilistic networks is an example of such a language that has gained a lot of
popularity over the last couple of decades.

This chapter provides brief accounts on the context of probabilistic net-
works, what they are, and when to use them.

1.1 Expert Systems

A system that is able to perform tasks that are supposed to be intellectually
demanding is often said to exhibit artificial intelligence (AI) or to be an expert
system if the system’s problem solving ability is restricted to a particular area
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of expertise. Many definitions of artificial intelligence have been proposed. In
this book, we shall consider techniques that enable us to construct devices
and services that are able to

e perform reasoning and decision making under uncertainty,
e acquire knowledge from data/experience, and
e solve problems efficiently and respond to new situations.

We shall refrain from discussing whether or not this makes the devices or
services exhibit AI, and leave this decision to the reader.

In any case, a probabilistic network is always constructed to solve a par-
ticular problem within a given problem domain (area of expertise). Therefore,
the label “expert system” can often be attached to systems that perform
reasoning and decision making by means of probabilistic networks.

The motivation for constructing an expert system is typically to automate
some recurring task involving reasoning and decision making under uncer-
tainty, possibly involving extraction of information/knowledge from data.

Several other expert system paradigms have been suggested. This book is
not intended to provide accounts on such competing paradigms, but for the
sake of historical context of probabilistic networks, we shall briefly mention
some of the important and well-known alternatives to probabilistic networks.

1.1.1 Representation of Uncertainty

Randomness and uncertain judgment is inherent in most real-world decision
problems. We therefore need a method (paradigm) that supports represen-
tation of quantitative measures of uncertain statements and a method for
combining the measures such that reasoning and decision making under un-
certainty can be automated.

Probability theory is the prevailing method for dealing with uncertainty,
and it is the one in focus in this book. However, other methods have been
proposed, as some researchers find probability theory inappropriate for pre-
senting some forms of quantitative uncertainty. Probability theory deals with
uncertainty of well-defined occurrences; i.e., the source of ambiguity is occur-
rence. Situations involving ambiguously and/or vaguely defined occurrences
might be better represented by other methods. Let us very briefly mention the
two most prominent alternative methods for dealing with uncertainty. Readers
interested in more detailed accounts are referred to the literature.

Dempster and Shafer (Dempster 1968, Shafer 1976) developed belief the-
ory to be able to assign measures of uncertainty to sets of events without
necessarily having to assign or assess uncertainty for single events. For exam-
ple, if you receive a message that your golf partner is free for a match of golf
“next Sunday”, you might be willing to assign a measure of uncertainty to the
pair of (mutually exclusive) events that you and your partner will be playing
this Sunday or Sunday next week, but unwilling to assign measures to the two
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individual possibilities. Rather than focusing on events, belief theory focuses
on evidence (on sets of events).!

Fuzzy methods (Zadeh 1965, Zadeh & Kacprzyk 1992) address situations
where the ambiguity lies in the nature of events rather than in their occur-
rence. Typical examples of ambiguous concepts include everyday concepts like
beauty, intelligence, size, speed, etc. For example, both the statement “Paul
is tall” (S) and the statement “Paul is not tall” (—S) might be plausible, and
we therefore wish to assign some degree of plausibility to S A =S, which is
in contrast with ordinary logic where S A —S is always false. Expert systems
based on fuzzy logic have achieved some popularity, maybe especially so in
applications involving control loops (fuzzy control).

1.1.2 Normative Expert Systems

The objective in some early attempts to construct expert systems was to create
a model of the decision making performed by some (human) expert and let a
system containing such a model perform tasks that previously needed human
expertise. Today, a more realistic approach is normally taken where a model
of the problem domain is created rather than a model of the expert such that
systems containing such a model support experts in performing their tasks
rather than substituting them.

Systems containing models of problem domains that use classical proba-
bility calculus and decision theory as their basis for reasoning and decision
making under uncertainty are often referred to as normative expert systems,
as their behavior is governed by a set of fundamental rules (or axioms).

In some sense, Bayesian networks can be seen as an extension of one of
the earliest methods for knowledge representation and manipulation, namely
logical rules. Let us therefore dwell a little on rule-based systems.

1.2 Rule-Based Systems
One of the earliest methods for knowledge representation and manipulation
was logical rules of the form

Ry: if s1 then s,

where statement s, (the consequence) can be concluded with certainty when-
ever statement s; (the condition) is observed to hold. If another rule states
that

Ry: if s, then s3,

then s3 can be concluded through forward chaining involving rules Ry and R;
once s7 is known to hold.

! Adapted from example by Bender (1996).
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Notice that such rules are asymmetric in the sense that the condition and
consequence statements are not interchangeable; observing the consequence
statement does not allow us to conclude that the condition statement holds.

1.2.1 Causality

Assume that the occurrence of some event ¢ is known to cause the effect e and
that the relationship between ¢ and e is known to be deterministic (logical).
Then, obviously, observing ¢ we can conclude e. Observing e, on the other
hand, does not make us able to conclude c, unless c is known to be the only
cause of e. Thus, in formulating the causal relationship between ¢ and e as a
rule we would obviously want to formulate it as “if ¢ then e” rather than “if
e then c”.

From this insight we conclude that rules like Ry and R, express causal
relationships, where sy, say, plays the role of the cause and s, the role of the
effect, the only possible exception being if s1, as an effect, only can be caused
by $2.

A rule-based system, like any other knowledge representation scheme, rep-
resents a certain part of the world (the problem domain) only up to some
precision. This implies that certain (causal) mechanisms might be ignored as
being unimportant for the precision (or level of detail) at which conclusions
need to be drawn. For example, in a medical expert system, a disorder caus-
ing some symptom, s, might be ignored if it only appears in, say, less than
one out of a million cases. If ignoring such a rare explanation for s leaves
only one possible cause (disorder), say d, for the symptom, it might at a first
consideration seem reasonable to state a rule like “if s then d”.

Violating the “causal direction” in formulating rules is, however, not ad-
visable. For example, in a medical expert system consider the causal chain

smoking — bronchitis — dyspnoea,

denoting the concatenation of rules

Rj3: if smoking then bronchitis,
and

R4: if bronchitis then dyspnoea,

Here bronchitis is a disorder, dyspnoea (a medical term for shortness of breath)
a symptom of bronchitis, and smoking a cause of bronchitis; sometimes referred
to as a piece of background information. Assume that instead of R4 we for-
mulated the rule

Rj: if dyspnoea then bronchitis,

which would make smoking and dyspnoea be competing explanations for
bronchitis. Then upon observing that the patient smokes we would be able
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to conclude only that the patient might suffer from bronchitis, but would not
be able to conclude anything about the patient’s breathing characteristics. In
effect, rules R3 and R} collectively express independence between smoking and
dyspnoea, which is obviously wrong.

1.2.2 Uncertainty in Rule-Based Systems

As clearly demonstrated by rules Rz and R4, crisp logic is inappropriate for
representing the nature of the causal relations among smoking, bronchitis, and
dyspnoea. Only a certain proportion of the smoking patients entering a chest
clinic suffer from bronchitis. Similarly, dyspnoea appears as a symptom only
for some of the patients suffering from bronchitis. In terms of having uncer-
tainty associated with the (cause—effect) rules, these examples are by no means
exceptional. The vast majority of cause—effect mechanisms of interest in our
attempts to model parts of the world in expert (or AI) systems are uncertain.

In order to make up for this fact, a method for rule-based systems with
uncertainty was developed in the 1970s by the team behind the medical expert
system MYCIN (Shortliffe & Buchanan 1975). Associated with each rule in
MYCIN is a numerical value in the interval [—1,41], called a certainty factor
(CF). This factor indicates the strength of the conclusion of the rule whenever
its condition is satisfied. In particular, given the evidence available,

+1  when the conclusion is certainly true,
CF = —1  when the conclusion is certainly false,
0  when no information about the conclusion can be derived.

Certainty factors are, however, nothing but an ad hoc device for dealing with
uncertainty. Heckerman (1986) proved that certainty factors cannot be defined
consistently if the domains of the variables have more than two elements.
More precisely, certain factors can be proved to be consistent only for binary
variables, where the rules induce a singly connected tree in which there is
exactly one variable with no parents.?

1.2.3 Explaining Away

Consider the small rule system depicted in Figure 1.1, where C; can cause
E; and E,, and C, can cause E;. The CF method provides a formula for
combining evidence from E; and E, and applying it to C;. Unfortunately,
however, the CF method provides no mechanism for applying E; to C,, which

2 The variables in the condition of a rule are often referred to as the “parents”
of the consequence variable, which is often referred to as the “child” variable.
For example, variables temperature and humidity in rule “if temperature = high
and humidity = high then comfort = low” are parents of comfort. A parent—child
relation is depicted by two nodes in a graph (or tree) interconnected by a directed
link from the parent to the child.
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E/\/z

Fig. 1.1. Graphical representation of rules “if C; then E;” and “if C; and C, then
Ey”.

is needed to implement the “explaining-away” mechanism, where evidence on
E; makes C; more probable, in turn making the competing explanation C,
for E; less probable.

1.3 Bayesian Networks

Having realized that rule-based systems with certainty factors have serious
limitations as a method for knowledge representation and reasoning under un-
certainty, researchers turned their attention towards a probabilistic interpre-
tation of certainty factors, leading to the definition of Bayesian networks (Kim
& Pearl 1983, Pearl 1988). A Bayesian network can be described briefly as an
acyclic directed graph (DAG) which defines a factorization of a joint proba-
bility distribution over the variables that are represented by the nodes of the
DAG, where the factorization is given by the directed links of the DAG. More
precisely, for a DAG, § = (V, E), where V denotes a set of nodes (or vertices)
and E a set of directed links (or edges) between pairs of the nodes, a joint
probability distribution, P(Xy), over the set of (typically discrete) variables
Xy indexed by V can be factorized as

P(Xv) = ] PXo 1 Xparw)), (1.1)
vev

where X,,(y) denotes the (preferably small) set of parent variables of variable
X, for each node v € V. The factorization in Equation 1.1 expresses a set
of independence assumptions, which are represented by the DAG in terms of
pairs of nodes that are not directly connected to one another by a directed
link. It is the existence of such independence assumptions and the small set
of parents for each node that makes it possible to specify the conditional
probabilities and to perform inference efficiently in a Bayesian network.

Each conditional probability distribution, P(X,|Xpa(y)), represents a set
of “rules”, where each “rule” (conditional probability) takes the form

Rs: if Xpa(v) = Xpa(v) then X, = x, with probability z,

where x,, and x,,(,) denote, respectively, a value assigned to X, and a vector
of values assigned to the parent variables of X,. For example, if one of five
possible values can be assigned to X, and it has four parents each of which



1.3 Bayesian Networks 9

can be assigned one of three possible values, then P(X, |X,,(v)) represents a
collection of 5 x 3% = 405 rules of the kind shown in rule Rs.

Actually, the notion of rules is only implicitly apparent in Bayesian net-
works. The explicit notion is that of conditional probability distributions,
P(X, [ Xpa(v)), where, rather than as in rule Rs, each term is formulated as a
conditional probability (parameter) of the form

P(Xv = Xv|Xpa(v) = Xpa(v)) =z

or even simpler as
P(Xv |Xpa(v]) =Z.

1.3.1 Inference in Bayesian Networks

Contrary to rule-based systems with certainty factors, inference in Bayesian
networks is always consistent and the ability to handle the explaining-away
problem is embedded naturally in the way in which inference is performed
in Bayesian networks. However, in general, it is an NP-hard task to solve
the inference problem in Bayesian networks (Cooper 1990); even approximate
inference is NP-hard (Dagum & Luby 1993). Fortunately, efficient inference
algorithms have been developed such that inference in Bayesian networks can
be done in fractions of a second even for large networks containing hundreds of
variables (Lauritzen & Spiegelhalter 1988, Jensen, Lauritzen & Olesen 1990).
Efficiency of inference, however, is highly dependent on the structure of the
DAG, so networks with a relatively small number of variables sometimes resist
exact inference, in which case approximate methods must be applied.

As Bayesian networks most often represent causal statements of the kind
X — Y, where X is a cause of Y and where Y often takes the role of an observ-
able effect of X, which typically cannot be observed itself, we need to derive
the posterior probability distribution P(X|Y = y) given the observation Y =y
using the prior distribution P(X) and the conditional probability distribution
P(Y|X) specified in the model. Reverend Thomas Bayes (1702-1761) provided
the famous Bayes’ rule for performing this calculation:

P(Y =y|X)P(X)
P(Y=y)

where P(Y =y) =) | P(Y =y[X =x)P(X =x). This rule (or theorem) plays
a central role in statistical inference because the probability of a cause can
be inferred when its effect has been observed. Olmsted (1983) and Shachter
(1986) developed a method for inference in Bayesian networks, which involved
multiple applications of Bayes’ rule. Lauritzen & Spiegelhalter (1988) and
Jensen et al. (1990) developed inference methods for Bayesian networks based
on message passing in a tree structure (junction tree) derived from the struc-
ture of the Bayesian network. The latter approach is the prevailing inference
method used in modern software packages for inference in probabilistic net-
works.

PIX|Y =y) =



10 1 Introduction
1.3.2 Construction of Bayesian Networks

As described above, a Bayesian network can be described in terms of a qualita-
tive component, consisting of a DAG, and a quantitative component, consist-
ing of a joint probability distribution that factorizes into a set of conditional
probability distributions governed by the structure of the DAG.

The construction of a Bayesian network thus runs in two phases. First,
given the problem at hand, one identifies the relevant variables and the
(causal) relations among them. The resulting DAG specifies a set of depen-
dence and independence assumptions that will be enforced on the joint proba-
bility distribution, which is next to be specified in terms of a set of conditional
probability distributions, P(X, |Xpa(v)), one for each “family”, {v} U pa(v), of
the DAG.

A Bayesian network can be constructed manually, (semi-)automatically
from data, or through a combination of a manual and a data driven process,
where partial knowledge about structure as well as parameters (i.e., condi-
tional probabilities) blend with statistical information extracted from data-
bases of cases (i.e., previous joint observations of values of the variables).

Manual construction of a Bayesian network can be a labor-intensive task,
requiring a great deal of skill and creativity as well as close communication
with problem domain experts. Extensive guidance on how to manually con-
struct a probabilistic network is the core of this book. This includes methods
and hints on how to elicit the network structure (with emphasis on the impor-
tance of maintaining a causal perspective), methods for eliciting and specifying
the parameter values of the network, and numerous tricks that can be applied
for solving prototypical modeling problems.

Once constructed (be it manually or automatically), the parameters of a
Bayesian network may be continuously updated as new information arrives.
Thus, a model for which rough guesses on the parameter values are provided
initially will gradually improve itself as it gets presented with more and more
cases.

1.3.3 An Example

As a simple example, let us consider a problem concerning reasoning about
starting problems for a car. Assume for simplicity that we only consider two
competing causes for starting problems, namely no fuel and dirty spark plugs.
Also assume that, apart from starting problems, the only observation we can
make is reading the fuel gauge. Now, if the car will not start and the fuel gauge
reads “empty”, then we conclude that “no fuel” is probably is the cause of the
problem, and we strongly reduce our suspicion that dirty spark plugs might
be causing the problem.

Let us see how to automate that reasoning process in a Bayesian network.
First, we identify four variables and the possible values (states) that they may
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Variable Possible states
Start? {no, yes}
Spark_plugs  {dirty, clean}
Fuel? {no, yes}

Fuel_gauge  {empty, not_empty}

Table 1.1. The four variables and their possible states for the “car won’t start”
problem.

attain (in this case no more than two states for each variable is necessary).
The variables and their possible states are shown in Table 1.1.

Figure 1.2 shows the structure of the Bayesian network for this simple
problem, where Fuel? and Spark_plugs have causal influences on Start?, and

Fuel? has a causal influence on Fuel_gauge.
Spark_plugs

Fuel_gauge

Fig. 1.2. Bayesian network for the “car won’t start” problem.

A (conditional) probability table needs to be specified for each variable.
Assume that when knowing nothing about the states of the other variables
we would expect that there is fuel on the car (i.e., Fuel? = yes) in 999 out of
1000 cases. Therefore, respecting the order of states in Table 1.1, we specify
the probability distribution for Fuel? as

P(Fuel?) = (0.001,0.999).

Similarly, expecting that the spark plugs are clean in 95 out of 100 cases, we
specify
P(Spark_plugs) = (0.05,0.95).

For Fuel_gauge we need to specify two conditional probability distributions,
one for each possible state of Fuel?. For Start? we need to specify four con-
ditional probability distributions, one for each combination of possible states
of Fuel? and Spark_plugs. These probability distributions appear in the condi-
tional probability tables shown in Table 1.2 and Table 1.3, respectively, where
we expect the fuel gauge to read empty with probability 0.995 if there is no
fuel, the car to start with probability 0.99 when there is fuel on the car and the
spark plugs are clean, etc. In Table 1.3, the probability of 0.01 for Start? = no
when Fuel? = yes and Spark_plugs = clean captures other causes not explicitly
considered in our simple model.
From the probabilities specified we can compute that
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Fuel?
Fuel_gauge no yes
empty | 0.995 0.001
not_empty | 0.005  0.999

Table 1.2. Conditional probability distributions for Fuel_gauge given Fuel?,
P(Fuel_gauge|Fuel?).

Start?
Fuel?  Spark_plugs no yes
no dirty 1 0
no clean 1 0
yes dirty 0.1 0.9
yes clean 0.01  0.99

Table 1.3. Conditional probability distributions for Start? given Fuel? and
Spark_plugs, P(Start?|Fuel?, Spark_plugs).

P(Start? = no) = 0.016,

i.e., we expect the car to start in 984 out of 1000 cases (or with probability
0.984). Now, if we fix the value of Start? to no, then, using Bayes’ rule, we get

P(Fuel? = no|Start? = no) = 0.065

and
P(Spark_plugs = dirty|Start? = no) = 0.326.

Thus, our best guess is that dirty spark plugs are causing the problem, al-
though the probability of dirty spark plugs might not be high enough and
the probability of “no fuel” not low enough to settle with the conclusion
that dirty spark plugs are causing our problem. Making the observation that
Fuel_gauge = empty and repeating the computations, we find that

P(Fuel? = no|Start? = no, Fuel_gauge = empty) = 0.986
and
P(Spark_plugs = dirty|Start? = no, Fuel_gauge = empty) = 0.054.

The observation Fuel_gauge = empty thus makes us strongly believe that “no
fuel” is the cause of the problem, as we see a dramatic increase in the proba-
bility of Fuel? = no and a (somewhat less dramatic) decrease in the probability
of Spark_plugs = dirty. The decrease in the probability of Spark_plugs = dirty
illustrates the explaining-away effect.
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1.4 Bayesian Decision Problems

Most often, the outputs of interest of a Bayesian network are the posterior
probabilities of the variables representing the problem that we wish to reason
about (e.g., possible diagnoses). These probabilities are often combined with
costs and benefits (utilities) of performing one or more actions to solve the
problem. That is, from the posterior probabilities and the utilities we compute
expected utilities for each possible decision option (e.g., different treatment
alternatives). The decision option with the highest expected utility should
then be selected. Based on a number of studies, Tversky & Kahneman (1981)
have shown that people usually do not make decisions that maximize their
expected utility.

A Bayesian network can be augmented with decision variables, represent-
ing decision options, and utility functions, representing preferences, that may
depend on both random (or chance) variables and decision variables. Networks
so augmented are called influence diagrams, and can be used to compute ex-
pected utilities for the various decision options given the observations (and
decisions) made.

Assume that we wish to augment our Bayesian network in Figure 1.2 with a
decision variable, say Action, with states {no_action, add_fuel, clean_spark_plugs}
and a utility function, say U, that depends on the states of chance variables
Fuel? and Spark_plugs and on our decision variable. Figure 1.3 shows the struc-
ture of the augmented network, where the links from Fuel_gauge and Start?
to Action indicates that the states of Fuel_gauge and Start? are known prior
to making the decision on which action to perform. Table 1.4 shows our util-

Spark_plugs

Fuel_gauge

Action

Fig. 1.3. Influence diagram for the “car won’t start” problem.

ity function, where we assign a utility value of 1 to combinations of states of
Action, Fuel?, and Spark_plugs where the action is supposed to solve a problem;
otherwise, we assign a value of 0 to the utility function.

With the evidence that Start? = no and Fuel_gauge = empty we find that

EU(Action) = (0.009,0.986,0.054),

meaning that the expected utilities of decision options no_action, add_fuel, and
clean_spark_plugs are 0.009, 0.986, and 0.054, respectively. Since EU(add_fuel)
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Action
Fuel?  Spark_plugs | no_action add_fuel clean_spark_plugs
no dirty 0 1 1
no clean 0 1 0
yes dirty 0 0 1
yes clean 1 0 0

Table 1.4. Utility function for the “car won’t start” decision problem.

is greater than both EU(no_action) and EU(clean_spark_plugs), we select deci-
sion option add_fuel.

Note that, coincidentally, P(Fuel? = no) = EU(add_fuel) because of the
way in which we have defined the utility function. In general, the domain of
a utility function is the set of real numbers. If one defines the utility values
on, say, a monetary scale, the expected utilities of one’s decision options can
be interpreted directly as expected gains or losses on the chosen scale, say
dollars.

1.5 When to Use Probabilistic Nets

There are many good reasons to choose probabilistic networks as the frame-
work for solving inference and decision problems under uncertainty. As indi-
cated above, these include (among others)

coherent and mathematically sound handling of uncertainty,

normative decision making,

automated construction and adaptation of models based on data,
intuitive and compact representation of cause—effect relations and (condi-
tional) dependence and independence relations, and

e efficient solution of queries given evidence.

There are, however, some requirements to the nature of the problem that
should be fulfilled for probabilistic networks to be an appropriate choice of
method. Here, we shall just briefly mention some key requirements:

e The variables and events (i.e., possible values of the variables) of the prob-
lem domain must be well-defined.

e Knowledge should be available about the (causal) relations among the
variables, the conditional probabilities quantifying the relations, and the
utilities (preferences) associated with the various decision options.

e Uncertainty should be associated with at least some of the relations among
the variables.

e The problem at hand should most probably contain an element of decision
making involving a desire to maximize the expected utility of a decision.
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Data are often available in the form of joint observations of a subset of
the variables pertaining to the problem domain. Each set of joint observations
pertains to a particular instance (case) of the problem domain. For example,
data can be extracted from a database of customers, where a lot of features
(e.g., gender, age, marital status, income, etc.) are recorded for each customer
(case), and analyzed statistically to derive both structure and parameters of
a probabilistic network. Such automatically generated models can reveal a lot
of information about dependence and independence relations (and sometimes
even causal mechanisms) among the variables, and thus provide new knowl-
edge about the problem domain. Sometimes, however, the available data do
not originate from variables with clearly understood semantics or the pat-
terns of interactions among variables are complex. In such cases, a neural
network model might be better suited, where the model consists of a function
that attempts to match each input case with a desired output by iteratively
tweaking a large number of coefficients (weights) until convergence (i.e., until
the distance between the desired and the actual outputs is sufficiently small).

1.6 Concluding Remarks

In this brief introduction we have only touched superficially upon a few key
characteristics of probabilistic networks. These and many more will be pre-
sented in much greater detail in the chapters to come.

Careful introductions to the fundamental concepts, theories, and methods
underlying probabilistic networks as well as definitions of Bayesian networks,
influence diagrams, and their variants are provided in the remaining chapters
of Part I; i.e., Chapters 2-5. These chapters can be skipped if you already know
enough about the basics of probabilistic networks and wish to dive directly
into Part II covering topics on model elicitation, modeling techniques, and
learning models from data, or Part III covering topics on model analysis.
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Networks

Probabilistic networks are graphical models of (causal) interactions among
a set of variables, where the variables are represented as vertices (nodes) of
a graph and the interactions (direct dependences) as directed edges (links
or arcs) between the vertices. Any pair of unconnected vertices of such a
graph indicates (conditional) independence between the variables represented
by these vertices under particular circumstances that can easily be read from
the graph. Hence, probabilistic networks capture a set of (conditional) depen-
dence and independence properties associated with the variables represented
in the network.

Graphs have proven themselves an intuitive language for representing such
dependence and independence statements, and thus provide an excellent lan-
guage for communicating and discussing dependence and independence rela-
tions among problem-domain variables. A large and important class of as-
sumptions about dependence and independence relations expressed in fac-
torized representations of joint probability distributions can be represented
compactly in a class of graphs known as acyclic, directed graphs (DAGs).

Chain graphs are a generalization of DAGs, capable of representing a
broader class of dependence and independence assumptions (Frydenberg
1989, Wermuth & Lauritzen 1990). The added expressive power comes, how-
ever, with the cost of a significant increase in the semantic complexity, making
specification of joint probability factors much less intuitive. Thus, despite their
expressive power, chain graph models have gained little popularity as practical
models for decision support systems, and we shall therefore focus exclusively
on models that factorize according to DAGs.

As indicated above, probabilistic networks is a class of probabilistic models
that have gotten their name from the fact that the joint probability distri-
butions represented by these models can be naturally described in graphical
terms, where the vertices of a graph (or network) represent variables over
which a joint probability distribution is defined and the presence and ab-
sence of edges represent dependence and independence properties among the
variables.
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Probabilistic networks can be seen as compact representations of “fuzzy”
cause—effect rules that, contrary to ordinary (logical) rule-based systems, is ca-
pable of performing deductive and abductive reasoning as well as inter-causal
reasoning. Deductive reasoning (sometimes referred to as causal reasoning)
follows the direction of the causal links between variables of a model; e.g.,
knowing that a patient suffers from angina we can conclude (with high
probability) the patient has fever and a sore throat. Abductive reasoning
(sometimes referred to as diagnostic reasoning) goes against the direction of
the causal links; e.g., observing that a patient has a sore throat provides sup-
porting evidence for angina being the correct diagnosis.

The property, however, that sets inference in probabilistic networks apart
from other automatic reasoning paradigms is its ability to make inter-causal
reasoning: Getting evidence that supports solely a single hypothesis (or a sub-
set of hypotheses) automatically leads to decreasing belief in the unsupported,
competing hypotheses. This property is often referred to as the explaining
away effect. For example, there is a large number of possible causes that a car
will not start; one being lack of fuel. Observing that the fuel gauge indicates
no fuel provides strong evidence that lack of fuel is the cause of the problem,
while the beliefs in other possible causes decrease substantially (i.e., they are
explained away by the observation). The ability of probabilistic networks to
automatically perform such inter-causal inference is a key contribution to their
reasoning power.

Often the graphical aspect of a probabilistic network is referred to as its
qualitative aspect, and the probabilistic, numerical part as its quantitative
aspect. This chapter is devoted to the qualitative aspect of probabilistic net-
works. In Section 2.1 we introduce some basic graph notation that will be
used throughout the book. Section 2.2 discusses the notion of variables, which
is the key entity of probabilistic networks. Another key concept is that of
“evidence”, which we shall touch upon in Section 2.3. Maintaining a causal
perspective in the model construction process can prove valuable, as men-
tioned briefly in Section 2.4. Sections 2.5 and 2.6 are devoted to an in-depth
treatment on the principles and rules for flow of information in DAGs. We
carefully explain the properties of the three basic types of connections in a
DAG (i.e., serial, diverging, and converging connections) through examples,
and show how these combine directly into the d-separation criterion and how
they support inter-causal (explaining away) reasoning. We also present an al-
ternative to the d-separation criterion known as the directed global Markov
criterion, which in many cases proves to be a more efficient method for reading
off dependence and independence statements of a DAG.

2.1 Graphs

A graph is a pair § = (V,E), where V is a finite set of distinct vertices and
E C VxVisaset of edges. An ordered pair (u,v) € E denotes a directed edge
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from vertex u to vertex v, and u is said to be a parent of v and v a child of u.
The set of parents and children of a vertex v shall be denoted by pa(v) and
ch(v), respectively.

As we shall see later, depending on what they represent, vertices are dis-
played as labelled circles, ovals, or polygons, directed edges as arrows, and
undirected edges as lines. Figure 2.1(a) shows a graph with 8 vertices and 8
edges (all directed), where, for example, the vertex labeled E has two parents
labeled T and L. The labels of the vertices are referring to (i) the names of
the vertices, (ii) the names of the variables represented by the vertices, or (iii)
descriptive labels associated with the variables represented by the vertices.!

e

(a) (b)

Fig. 2.1. (a) An acyclic, directed graph (DAG). (b) Moralized graph.

We often use the intuitive notation 1 -5 v to denote (u,v) € E (or just

u — v if G is understood). If (u,v) € E and (v,u) € E, the edge between u

and v is an undirected edge, denoted by {u,v} € E or u 2 v (or just u — V).

We shall use the notation u ~ v to denote that w — v, v — u, or u — v.

Vertices 1 and v are said to be connected in G if u g v.Ifu—vand w—v,
then these edges are said to meet head-to-head at v.

If E does not contain undirected edges, then G is a directed graph and if E
does not contain directed edges, then it is an undirected graph. As mentioned
above, we shall not deal with mixed cases of both directed and undirected

edges.

A path (v1,...,vn) is a sequence of distinct vertices such that vi ~ viiq
foreachi=1,...,n—1; the length of the path is n—1. The path is a directed
path if vi = viyq foreachi=1,...,n—1;v; is then an ancestor of v; and v;

a descendant of vi for each j > 1. The set of ancestors and descendants of v
are denoted an(v) and de(v), respectively. The set nd(v) = V \ de(v) U{v} are

! See Section 2.2 for the naming conventions used for vertices and variables.
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called the non-descendants of v. The ancestral set An(U) C Vofaset UCV
of a graph § = (V,E) is the set of vertices U U J, o an(u).

A path (vy,...,vy) from v; to v, of an undirected graph, § = (V,E), is
blocked by a set S C V if {va,...,van_1}NS # 0. There is a similar concept for
paths of acyclic, directed graphs (see below), but the definition is somewhat
more complicated (see Proposition 2.4 on page 32).

A graph § = (V,E) is connected if for any pair {u,v} C V there is a path
(u,...,v)in G. A connected graph § = (V, E) is a tree if for any pair {u,v} CV
there is a unique path (u,...,v) in G.

A cycle is a path, (vq,...,vn), of length greater than two with the excep-
tion that vi = vy ; a directed cycle is defined in the obvious way. A directed
graph with no directed cycles is called an acyclic, directed graph or simply a
DAG; see Figure 2.1(a) for an example. The undirected graph obtained from
a DAG, G, by replacing all its directed edges with undirected ones is known
as the skeleton of G.

Let § = (V,E) be a DAG. The undirected graph, §™ = (V,E™), where

E™ ={{u,v} | u and v are connected or have a common child in G},

is called the moral graph of G. That is, §™ is obtained from § by first adding
undirected edges between pairs of unconnected vertices that share a com-
mon child, and then replacing all directed edges with undirected edges; see
Figure 2.1(b) for an example.

2.2 Graphical Models

On a structural (or qualitative) level, probabilistic network models are graphs
with the vertices representing variables and utility functions, and the edges
representing different kinds of relations among the variables and utility func-
tions.

2.2.1 Variables

A chance variable represents an exhaustive set of mutually exclusive events,
referred to as the domain of the variable. These events are also often called
states, levels, values, choices, options, etc. The domain of a variable can be
discrete or continuous; discrete domains are always finite.

Ezample 2.1. Some sample variable domains can be

{false, true}

{red, green, blue}
{1,3,5,7}
{-1.7,0,2.32,5}
{<0,0—5,>5}

] — o0; 00|

{l = 00;01,10;5],15; 101}
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The penultimate domain in the above list represents a domain for a continuous
variable; the remaining ones represent domains for discrete variables.

Throughout this book we shall use capital letters (possibly indexed) to
denote variables or sets of variables and lower case letters (possibly indexed)
to denote particular values of variables. Thus, X = x may either denote the
fact that variable X attains the value x or the fact that the set of variables
X = (Xj,...,Xy) attains the (vector) of values x = (x1,...,%n). By dom(X) =
(x1,...,%|x)) we shall denote the domain of X, where ||X|| = [dom(X)] is the
number of possible distinct values of X. If X = (X1,...,Xn), then dom(X) is
the Cartesian product (or product space) over the domains of the variables
in X. Formally,

dom(X) = dom(X;) x -+ x dom(Xy,),

and thus |IX][ = J]; IIXill. For two (sets of) variables X and Y we shall write
either dom(X UY) or dom(X,Y) to denote dom(X) x dom(Y). If z € dom(Z),
then by zx we shall denote the projection of z to dom(X), where X N Z # ().

Example 2.2. Assume that dom(X) = {true, false} and dom(Y) = {red, green,
blue}. Then dom(X,Y) = {(true, red), (true, green), (true, blue), (false, red), (false,
green), (false, blue)}. For z = (true, blue) we get zx = true and zy = blue.

Chance Variables and Decision Variables

There are basically two categories of variables, namely variables representing
random events and variables representing choices under the control of some,
typically human, agent. Consequently, the first category of variables is often
referred to as chance variables (or random variables) and the second category
as decision variables. Note that a random variable can depend functionally
on other variables in which case it is sometimes referred to as a deterministic
(random) variable. Sometimes it is important to distinguish between truly
random variables and deterministic variables, but unless this distinction is
important we shall treat them uniformly, and refer to them simply as “random
variables”, or just “variables”.

The problem of identifying those entities of a domain that qualify as vari-
ables is not necessarily trivial. Also, identifying the “right” set of variables
can be non-trivial. These questions, however, will not be further touched upon
in this chapter, but will be discussed in detail in Chapter 6.

2.2.2 Vertices vs. Variables

The notions of variables and vertices (or nodes) are often used interchangeably
for models containing no decision variables and utility functions (e.g., Bayesian
networks). For models that contain decision variables and utility functions it
is convenient to distinguish between variables and vertices, as a vertex does



22 2 Networks

not necessarily represent a variable. In this book we shall therefore maintain
that distinction.

As indicated above, we shall use lower-case letters like u,v,w (or some-
times «, 3,7y, etc.) to denote vertices, and upper-case letters like U, V,W to
denote sets of vertices. Vertex names will sometimes be used in the subscripts
of variable names to identify the variables corresponding to vertices. For ex-
ample, if v is a vertex representing a variable, then we denote that variable
by X,. If v represents a utility function, then X,,(,) denotes the domain of
the function, which is a set of chance and/or decision variables.

2.2.3 Taxonomy of Vertices/Variables

For convenience, we shall use the following terminology for classifying variables
and/or vertices of probabilistic networks.

First, as discussed above, there are three main classes of vertices in proba-
bilistic networks, namely vertices representing chance variables, vertices rep-
resenting decision variables, and vertices representing utility functions. We
define the category of a vertex to represent this dimension of the taxonomy.

Second, chance and decision variables as well as utility functions can be
discrete or continuous. This dimension of the taxonomy will be characterized
by the kind of the variable or vertex.

Finally, for discrete chance and decision variables, we shall distinguish
between labeled, Boolean, numbered, and interval variables. For example, re-
ferring to Example 2.1 on page 20, the first domain is the domain of a Boolean
variable, the second and the fifth are domains of labeled variables, the third
and the fourth are domains of numbered variables, and the last is the domain
of an interval variable. This dimension of the taxonomy is referred to by the
subtype of discrete variables, and is useful for providing mathematical expres-
sions of specifications of conditional probability tables and utility tables, as
discussed in Chapter 6.

Table 2.1 summarizes the variable/vertex taxonomy.

Category Kind Subtype
Chance Discrete Labeled
Decision  Continuous Boolean
Utility Numbered
Interval

Table 2.1. The taxonomy for variables/vertices. Note that the subtype dimension
only applies for discrete chance and decision variables.
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2.2.4 Vertex Symbols

Throughout this book we shall be using ovals to indicate discrete chance
variables, rectangles to indicate discrete decision variables, and diamonds to
indicate discrete utility functions. Continuous variables and utility functions
are indicated with double borders. See Table 2.2 for an overview.

Category  Kind Symbol
Chance Discrete O
Continuous (@)
Decision  Discrete [
Continuous =
Utility Discrete <>
Continuous <>

Table 2.2. Vertex symbols.

2.2.5 Summary of Notation

Table 2.3 summarizes the notation used for vertices (upper part), variables
(middle part), and utility functions (lower part).

2.3 Evidence

A key inference task with a probabilistic network is computation of posterior
probabilities of the form P(x|e), where, in general, € is evidence (i.e., infor-
mation) received from external sources in the form of a likelihood distribution
over the states of a set of variables, X, of the network; also often called an
evidence function (or potential?) for X. An evidence function, €x, for a set,
X, of variables is a function €x : dom(X) — R*.

Ezxample 2.3. If dom(X) = (x1,x2,x3), then Ex = (1,0,0) is an evidence func-
tion indicating that X = x; with certainty. If Ex = (1, 2,0), then with certainty
X # x3 and X = x2 is twice as likely as X = x;.

An evidence function that assigns a zero probability to all but one state
is often said to provide hard evidence; otherwise, it is said to provide soft evi-
dence. We shall often leave out the “hard” or “soft” qualifier, and simply talk
about evidence if the distinction is immaterial. Hard evidence on a variable
X is also often referred to as instantiation of X or we say that X has been
observed.

2 See Section 3.3 on page 44.
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S,U,V,W | sets of vertices
A\ set of vertices of a model
Va the subset of V that represent discrete variables
Vr the subset of V that represent continuous variables
u,v,w,... | vertices
«,B,Yv,... | vertices
X, Yi, Zx variables or sets of variables
Xw subset of variables corresponding to set of vertices W
X the set of variables of a model; note that X = Xy
Xw subset of X, where W C V
X, X variables corresponding to vertices u and «, respectively
X, Yi, Zk configurations/states of (sets of) variables
Xy projection of configuration x to dom(Y), XNY # ()
Xc the set of chance variables of a model
Xp the set of decision variables of a model
Xa the subset of discrete variables of X
Xr the subset of continuous variables of X
U the set of utility functions of a model
Vu the subset of V representing utility functions
u(X) utility function u € U with the set of variables X as domain

Table 2.3. Notation used for vertices, variables, and utility functions.

We shall attach the label (€] to vertices representing variables with hard

hard evidence. For example, hard evidence on variable X (like Ex = (1,0,0)
in Example 2.3 on the preceding page) is indicated as shown in Figure 2.2(a)
and soft evidence (like Ex = (1,2,0) in Example 2.3 on the previous page) is
indicated as shown in Figure 2.2(b).

tEi

) (b)

(a
Fig. 2.2. (a) Hard evidence on X. (b) Soft (or hard) evidence on X.

2.4 Causality

Causality plays an important role in the process of constructing probabilistic
network models. There are a number of reasons why proper modeling of causal
relations is important or helpful, although, in a Bayesian network model, it is
not strictly necessary to have the directed links of the model follow a causal
interpretation. In models with explicit representation of decisions (influence
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diagrams), the directed links must represent causal relations. We shall only
briefly touch upon the issue of causality, and stress a few important points
about causal modeling. The reader is referred to Pearl’s work for an in-depth
treatment of the subject (Pearl 2000).

A variable X is said to be a direct cause of Y if setting the value of X by
force, the value of Y may change and there is no other variable Z that is a
direct cause of Y such that X is a direct cause of Z; see Pearl’s work for details.

As an example, consider the variables Flu and Fever. Common sense tells
us that flu is a cause of fever, not the other way around. This fact can be
verified from the thought experiment of forcefully setting the states of Flu
and Fever: Killing fever with an aspirin or by taking a cold shower will have
no effect on the state of Flu, whereas eliminating a flu would make the body
temperature go back to normal (assuming flu is the only effective cause of
fever).

To correctly represent the dependence and independence relations that
exist among a set of variables of a problem domain it is useful to have the
causal relations among the variables represented in terms of directed links
from causes to effects. That is, if X is a direct cause of Y, we should make sure
to add a directed link from X to Y. If done the other way around (i.e., Y — X),
we may end up with a model that does not properly represent the dependence
and independence relations of the problem domain. In subsequent sections, we
shall see several examples of the importance of respecting the causal relations
in this sense.

That said, however, one does not have to construct a model where the
links can be interpreted as causal relations, it just makes the model much
more intuitive, eases the process of getting the dependence and independence
relations right, and significantly eases the process of eliciting the conditional
probabilities of the model. In Section 2.5.4 on page 30, we shall briefly return
to the issue of the importance of correctly modeling the causal relationships
in probabilistic networks.

2.5 Flow of Information in Causal Networks

As mentioned above, the DAG of a probabilistic network model is a graphical
representation of the dependence and independence properties of the joint
probability distribution of the model. In this section we shall see how to read
these properties from a DAG. In doing this, it is convenient to consider each
possible basic kind of connection that can exist in a DAG.

To illustrate the different kinds of connections, consider the example in
Figure 2.3 on the next page, which shows the structure of a probabilistic
network for the following small fictitious example, where each variable has
two possible states, no and yes.

Ezample 2.4 (Burglary or Farthquake (Pearl 1988)). Mr Holmes is working in
his office when he receives a phone call from his neighbor Dr Watson, who tells
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him that Holmes’ burglar alarm has gone off. Convinced that a burglar has
broken into his house, Holmes rushes to his car and heads for home. On his
way, he listens to the radio, and in the news it is reported that there has been
a small earthquake in the area. Knowing that earthquakes have a tendency to
make burglar alarms go off, he returns to his work.

ONO
®» ®
O

Fig. 2.3. Structure of a probabilistic network model for the “Burglary or Earth-
quake” story of Example 2.4 on the previous page.

W: Phone call from Watson
A: Burglary alarm

B: Burglary

R: Radio news

E: Earthquake

Notice that all of the links in the network of Figure 2.3 are causal: Burglary
or earthquake can cause the alarm to go off, earthquake can cause a report
on earthquake in the radio news, and the alarm can cause Dr Watson to call
Mr Holmes.

We see three different kinds of connections in the network of Figure 2.3:

two serial connections B—- A - Wand E—- A - W,
one diverging connection A «+— E — R, and
one converging connection B — A «+ E.

In the following sub-sections we discuss each of these three possible kinds
of connections in terms of their ability to transmit information given evidence
and given no evidence on the middle variable, and we shall see that it is the
converging connection that provides the ability of probabilistic networks to
perform inter-causal reasoning (explaining away).

2.5.1 Serial Connections

Let us consider the serial connection (causal chain) depicted in Figure 2.4 on
the facing page, referring to Example 2.4 on the previous page.

We need to consider two cases, namely with and without hard evidence
(see Section 2.3 on page 23) on the middle variable (Alarm).

First, assume we do not have definite knowledge about the state of Alarm.
Then evidence about Burglary will make us update our belief about the state
of Alarm, which in turn will make us update our belief about the state of
Watson_calls. The opposite is also true: If we receive information about the
state of Watson_calls, that will influence our belief about the state of Alarm,
which in turn will influence our belief about Burglary.
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CBurgary D> Carm > Watson.calls >

Fig. 2.4. Serial connection (causal chain) with no hard evidence on Alarm. Evidence
on Burglary will affect our belief about the state of Watson_calls and vice versa.

So, in conclusion, as long as we do not know the state of Alarm for sure,
information about either Burglary or Watson_calls will influence our belief on
the state of the other variable. This is illustrated in Figure 2.4 by the two
dashed arrows, signifying that evidence may be transmitted through a serial
connection as long as we do not have definite knowledge about the state of
the middle variable.

13

Fig. 2.5. Serial connection (causal chain) with hard evidence on Alarm. Evidence
on Burglary will have no affect on our belief about the state of Watson_calls and vice
versa.

Next, assume we do have definite knowledge about the state of Alarm (see
Figure 2.5). Now, given that we have hard evidence on Alarm any informa-
tion about the state of Burglary will not make us change our belief about
Watson_calls (provided Alarm is the only cause of Watson_calls; i.e., that the
model is correct). Also, information about Watson_calls will have no influence
on our belief about Burglary when the state of Alarm is known for sure.

In conclusion, when the state of the middle variable of a serial connec-
tion is known for sure (i.e., we have hard evidence on it), then transmission
of evidence between the other two variables cannot take place through this
connection. This is illustrated in Figure 2.5 by the two dashed arrows ending
at the observed variable, indicating that transmission of evidence is blocked.

The general rule for transmission of evidence in serial connections can thus
be stated as follows:

Proposition 2.1 (Serial connection). Information may be transmitted
through o serial connection X — Y — Z unless the state of Y is known.
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2.5.2 Diverging Connections

Consider the diverging connection depicted in Figure 2.6, referring to Exam-
ple 2.4 on page 25.

Earthquake

Fig. 2.6. Diverging connection with no evidence on Earthquake. Evidence on Alarm
will affect our belief about the state of Radio_news and vice versa.

Again, we consider the cases with and without hard evidence on the middle
variable (Earthquake).

First, assume we do not know the state of Earthquake for sure. Then
receiving information about Alarm will of course influence our belief about
Earthquake, as earthquake is a possible explanation for alarm. The updated
belief about the state of Earthquake will in turn make us update our belief
about the state of Radio_news. The opposite case (i.e., receiving information
about Radio_news) will, of course, lead to a similar conclusion. So, we get a
result that is similar to the result for serial connections, namely that evidence
can be transmitted through a diverging connection if we do not have definite
knowledge about the state of the middle variable. This result is illustrated in
Figure 2.6.

Next, assume the state of Earthquake is known for sure (i.e., we have re-
ceived hard evidence on that variable). Now, if information is received about
the state of either Alarm or Radio_news, then this information is not going to
change our belief about the state of Earthquake, and consequently we are not
going to update our belief about the other, yet unobserved, variable. Again,
this result is similar to the case for serial connections, and is illustrated in
Figure 2.7.

Earthquake

Fig. 2.7. Diverging connection with hard evidence on Earthquake. Evidence on
Alarm will not affect our belief about the state of Radio_news and vice versa.
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The general rule for transmission of evidence in diverging connections can
be stated as follows:

Proposition 2.2 (Diverging connection). Information may be transmitted
through a diverging connection X «— Y — Z unless the state of Y is known.

2.5.3 Converging Connections

Consider the converging connection depicted in Figure 2.8, referring to Ex-
ample 2.4 on page 25.

Fig. 2.8. Converging connection with no evidence on Alarm or any of its descendants.
Information about Burglary will not affect our belief about the state of Earthquake
and vice versa.

First, if no evidence is available about the state of Alarm, then information
about the state of Burglary will not provide any derived information about the
state of Earthquake. In other words, burglary is not an indicator of earthquake,
and vice versa (again, of course, assuming correctness of the model). Thus,
contrary to serial and diverging connections, a converging connection will not
transmit information if no evidence is available for the middle variable. This
fact is illustrated in Figure 2.8.

Second, if evidence is available on Alarm, then information about the state
of Burglary will provide an explanation for the evidence that was received
about the state of Alarm, and thus either confirm or disconfirm Earthquake
as the cause of the evidence received for Alarm. The opposite, of course, also
holds true. Again, contrary to serial and diverging connections, converging
connections allow transmission of information whenever evidence about the
middle variable is available. This fact is illustrated in Figure 2.9 on the fol-
lowing page.

The rule illustrated in Figure 2.8 tells us that if nothing is known about
a common effect of two (or more) causes, then the causes are independent;
i.e., receiving information about one of them will have no impact on the belief
about the other(s). However, as soon as some evidence is available on a com-
mon effect the causes become dependent. If, for example, Mr Holmes receives
a phone call from Dr Watson, telling him that his burglar alarm has gone
off, burglary and earthquake become competing explanations for this effect,
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Fig. 2.9. Converging connection with (possibly soft) evidence on Alarm or any of
its descendants. Information about Burglary will affect our belief about the state of
Earthquake and vice versa.

and receiving information about the possible state of one of them obviously
either confirms or disconfirms the other one as the cause of the (possible)
alarm. Note that even if the information received from Dr Watson might not
be totally reliable (amounting to receiving soft evidence on Alarm), Burglary
and Earthquake still become dependent.

The general rule for transmission of evidence in converging connections
can then be stated as:

Proposition 2.3 (Converging connection). Information may only be
transmitted through a converging connection X — Y « Z if evidence on Y or
one of its descendants is available.

Inter-causal Inference (Explaining Away)

The property of converging connections, X — Y « Z, that information about
the state of X (Z) provides an explanation for an observed effect on Y, and
hence confirms or disconfirms Z (X) as the cause of the effect, is often referred
to as the explaining away effect or as inter-causal inference. For example,
getting a radio report on earthquake provides strong evidence that the earth-
quake is responsible for a burglar alarm, and hence explaining away a burglary
as the cause of the alarm.

The ability to perform inter-causal inference is unique for graphical models,
and is one of the key differences between automatic reasoning systems based
on probabilistic networks and systems based on, for example, production rules.
In a rule-based system we would need dedicated rules for taking care of inter-
causal reasoning.

2.5.4 The Importance of Correct Modeling of Causality

It is a common modeling mistake to let arrows point from effect to cause, lead-
ing to faulty statements of (conditional) dependence and independence and,
consequently, faulty inference. For example, in the “Burglary or Earthquake”
example on page 25 one might put a directed link from W (Watson_calls) to
A (Alarm) because the fact that Dr Watson makes a phone call to Mr Holmes
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“points to” the fact that Mr Holmes’ alarm has gone off, etc. Experience shows
that this kind of reasoning is common when people are building their first
probabilistic networks, and is probably due to a mental flow-of-information
model, where evidence acts as the “input” and the derived conclusions as the
“output”.

Using this faulty modeling approach, the “Burglary or Earthquake” model
in Figure 2.3 on page 26 would have all its links reversed (see Figure 2.10).
Using Proposition 2.2 on page 29 on the model in Figure 2.10 we find that
B and E are dependent when nothing is known about A, and, using Proposi-
tion 2.3 on the preceding page, we find that A and R are dependent whenever
evidence about E is available. Neither of these conclusions are, of course, true,
and will make the model make wrong inferences.

W: Watson_calls
A: Alarm

B: Burglary

R: Radio_news
E: Earthquake

Fig. 2.10. Wrong model for the “Burglary or Earthquake” story of Example 2.4
on page 25, where the links are directed from effects to causes, leading to faulty
statements of (conditional) dependence and independence.

Having the causal relations among domain variables be mapped to directed
links X — Y, where X is a cause of Y, is thus (at least) helpful, if not crucial,
to having the model correctly represent the dependence and independence
properties of the problem domain.

Another reason why respecting a causal modeling approach is important
stems from the potential difficulties in specifying the conditional probability
of X =x given that Y =y when Y — X does not reflect a causal relationship.
For example, it might be difficult for Mr Holmes to specify the probability
that a burglar has broken into his house given that he knows the alarm has
gone off, as the alarm might have gone off for other reasons. Thus, specifying
the probability that the alarm goes off given its possible causes might be
easier and more natural, providing a sort of complete description of a local
phenomenon. We shall leave the discussion of this important issue for now
and resume in Chapter 4 and Chapter 6.

2.6 Two Equivalent Irrelevance Criteria

Propositions 2.1-2.3 comprise the components needed to formulate a general
rule for reading off the statements of relevance and irrelevance relations for
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two (sets of) variables, possibly given a third variable (or set of variables).
This general rule is known as the d-separation criterion and is due to Pearl
(1988).

In Chapter 3 we show that for any joint probability distribution that fac-
torizes according to a DAG, G, (see Chapter 3 for a definition) independence
statements involving variables X;, and X, (again, see Chapter 3 for a defin-
ition) are equivalent to similar statements about d-separation of vertices u
and v in G.

Thus, the d-separation criterion may be used to answer queries of the
kind “are X and Y independent given Z” (in a probabilistic sense) or, more
generally, queries of the kind “is information about X irrelevant for our belief
about the state of Y given information about Z”, where X and Y are individual
variables and Z is either the empty set of variables or an individual variable.

The d-separation criterion may also be used with sets of variables, although
this may be cumbersome. On the other hand, answering such queries is effi-
cient using the directed global Markov criterion (Lauritzen, Dawid, Larsen
& Leimer 1990b), which is a criterion that is equivalent to the d-separation
criterion.

As statements of (conditional) d-separation/d-connection play a key role
in probabilistic networks, some shorthand notation is convenient. We shall use
the standard notation u Lg v to denote that vertices u and v are d-separated
in DAG G, or simply u L v if § is obvious from the context. By u L viw
we denote the statement that u and v are d-separated given (hard) evidence
on w. By U L V we denote the fact that u L v for each u € U and each
v € V. We shall use [ to denote d-connection.

Ezample 2.5 (Burglary or Earthquake, page 25). Some of the d-separation/d-
connection properties observed in the “Burglary or Earthquake” example are:

(1) Burglary L Earthquake

(2) Burglary [ Earthquake | Alarm
(3) Burglary L Radio_report

(4) Burglary L Watson_calls | Alarm

Also, notice that d-separation and d-connection depends on the informa-
tion available; i.e., it depends on what you know (and do not know). Also,
note that, d-separation and d-connection relations are always symmetric; i.e.,
ulv=v.lu

2.6.1 d-Separation Criterion

Propositions 2.1-2.3 can be summarized into a rule known as d-separation
(Pearl 1988):

Proposition 2.4 (d-Separation). A path m = (u,...,v) in a DAG, § =
(V,E), is said to be blocked by S C V if 7w contains a vertex w such that either
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o w < S and the edges of m do not meet head-to-head at w, or
e w¢&S, de(w)NS =0, and the edges of T meet head-to-head at w.

For three (not necessarily disjoint) subsets A,B,S of V, A and B are said to
be d-separated if all paths between A and B are blocked by S.

Proposition 2.4 on the facing page says, for example, that two vertices u
and v are d-separated if for each path between u and v there is a vertex w
such that the edges of the path meet head-to-head at w.

Ezample 2.6 (d-Separation). We may use Proposition 2.4 to determine if, for
example, variables C and G are d-separated in the DAG in Figure 2.11; that
is, are C and G independent when no evidence about any of the variables is
available? First, we find that there is a diverging connection C «+— A — D
allowing transmission of information from C to D via A. Second, there is a
serial connection A — D — G allowing transmission of information from A
to G via D. So, information can thus be transmitted from C to G via A and
D, meaning that C and G are not d-separated (i.e., they are d-connected).

a E (1)
(2) C and E are d-separated
e Q e (3) C and E are d-connected given evidence on G
(4)

4) A and G are d-separated given evidence on D

oot

(5) A and G are d-connected given evidence on
() ’
Fig. 2.11. Sample DAG with a few sample dependence (d-connected) and indepen-
dence (d-separated) statements.

1) C and G are d-connected

C and E, on the other hand, are d-separated, since each path from C to
E contains a converging connection, and since no evidence is available, each
such connection will not allow transmission of information. Given evidence
on one or more of the variables in the set {D, F, G, H}, C and E will, however,
become d-connected. For example, evidence on H will allow the converging
connection D — G « E to transmit information from D to E via G, as His a
child of G. Then information may be transmitted from C to E via the diverging
connection C + A — D and the converging connection D — G « E.

2.6.2 Directed Global Markov Criterion

The directed global Markov criterion (Lauritzen et al. 1990b) provides a cri-
terion that is equivalent to that of the d-separation criterion, but which in
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some cases may prove more efficient in terms of requiring less inspections of
possible paths between the involved vertices of the graphs.

Proposition 2.5 (Directed Global Markov Criterion). Let § = (V,E)
be a DAG and A,B,S be disjoint sets of V. Then each pair of vertices (o €
A, B € B) are d-separated by S whenever each path from « to B is blocked by
vertices in S in the graph

(SAH(AUBUS))m .

Although the criterion might look somewhat complicated at a first glance,
it is actually quite easy to apply. The criterion says that A Lg B|S if all paths
from A to B passes at least one vertex in S in the moral graph of the sub-DAG
induced by the ancestral set of AUBUS.

Ezample 2.7 (Directed Global Markov Criterion). Consider the DAG, § =
(V,E), in Figure 2.12(a), and let the subsets A, B,S C V be given as shown in
Figure 2.12(b). That is, we ask if A Lg B|S. Using Proposition 2.5, we first

): SAn(AUBUS) 9An AUBUS)

Fig. 2.12. (a) A DAG, G. (b) G with subsets A, B, and S indicated, where the
variables in S are assumed to be observed. (c) The subgraph induced by the ancestral
set of AUBUS. (d) The moral graph of the DAG of part (c).

remove each vertex not belonging to the ancestral set An(AUBUS). This gives
us the DAG in Figure 2.12(c). Second, we moralize the resulting sub-DAG,
which gives us the undirected graph in Figure 2.12(d). Then, to answer the
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query, we consult this graph to see if there is a path from a vertex in A to a
vertex in B that do not contain a vertex in S. Since this is indeed the case,
we conclude that A Lg BJS.

2.7 Summary

In this chapter we first defined some key concepts used to describe the qual-
itative part (i.e., the graphical structure) of probabilistic networks that are
given by acyclic, directed graphs (DAGs). We defined the notion of the moral
graph of a DAG, which plays an important role in understanding the inde-
pendence properties represented by a DAG and in generating a junction tree
for making inference in a probabilistic network (cf. Chapter 5).

We introduced the taxonomy of variables and vertices (the nodes of the
DAG of a probabilistic network that represent the chance and decision vari-
ables and the utility functions of the network) and discussed the notions of
product spaces over the domains of variables and projections down to smaller-
dimensional spaces, which play a crucial role in inference processes (in Chap-
ter 3 we shall see how the operation of projection is defined for probability
functions). Also, the notion of evidence was briefly touched upon, including
the distinction between hard and soft evidence.

To understand the notion of (conditional) independence in probabilistic
networks, we discussed the three fundamental constructs (serial, diverging,
and converging connections), in terms of which any path X ~Y ~ Z of a DAG
can be described. When the directed links of a DAG can be interpreted as
causal links the three fundamental constructs have clear relevance properties,
which can be described collectively by means of the d-separation criterion that
can be used to determine if information about one set of variables is relevant
to another set of variables, possibly given information about the states of a
third set of variables (i.e., can information flow from the first set to the second
set given the third set). An equivalent criterion (the directed, global Markov
criterion), which uses the notion of moral graphs, was also presented.

In Chapter 3 we shall see that if a joint probability distribution factorizes
according to the structure of a DAG, then the DAG is a graphical representa-
tion of the independence properties of the distribution. We briefly discussed
the importance of having the directed edges of a DAG of a probabilistic net-
work represent causal relations (i.e., the directed links should point from cause
to effect). Otherwise, problems might arise both in terms of getting the right
(conditional) independence properties of the network and in terms of ease of
specification of the conditional probabilities (parameters) of the network. This
important issue will be further discussed in Chapter 4 and Chapter 6.
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Exercises

Exercise 2.1. For the discrete variables X, Y, and Z assume that dom(X) =
{0, 1}, dom(Y) = {good, bad}, and dom(Z) = {low, average, high}.

(a) What is [[(X,Y, Z)[|?
(b) Specify dom(X,Y = good, Z).
(c) Let w = (1, good, high). Specify wx 71 and wy.
(d) Specify evidence functions for Z that indicate
(i) Z = low with certainty,
(ii) Z # low and Z = high is three times as likely as Z # average.

Exercise 2.2. Direct the links below such that the parent nodes represent
the causes and the child nodes represent the effects.

Age — Number_of _children
) Occupation — Education
) Fake_die — Number_of _6s

Exercise 2.3. Consider the DAG in Figure 2.11 on page 33. Use the d-
separation criterion to test which of the following statements are true.

(a)ALB
(b)A L B|C

(¢c) A L B|{C,D}
(A)BLF
(e) B L F|E

(f) B L F|{D, E}
() FLG
(h)F L G|E

(i) F L G|{A,E}

Exercise 2.4. Draw the graphs (SAH(Augus))m with G given by the DAG
in Figure 2.11 on page 33 and A, B, S given in Exercise 2.3(a)—(i), and verify
your answers in Exercise 2.3 using the directed global Markov criterion.
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Probabilities

As mentioned in Chapter 2, probabilistic networks have a qualitative aspect
and a corresponding quantitative aspect, where the qualitative aspect is given
by a graphical structure in the form of an acyclic, directed graph (DAG)
that represents the (conditional) dependence and independence properties of
a joint probability distribution defined over a set of variables that are indexed
by the vertices of the DAG.

The fact that the structure of a probabilistic network can be character-
ized as a DAG derives from basic axioms of probability calculus leading to
recursive factorization of a joint probability distribution into a product of
lower-dimensional conditional probability distributions. First, any joint prob-
ability distribution can be decomposed (or factorized) into a product of con-
ditional distributions of different dimensionality, where the dimensionality of
the largest distribution is identical to the dimensionality of the joint distri-
bution.! This gives rise to a densely connected DAG. Second, statements of
local conditional independences manifest themselves as reductions of dimen-
sionalities of some of the conditional probability distributions. Most often,
these independence statements give rise to dramatic reductions of complexity
of the DAG such that the resulting DAG appears to be quite sparse.

In fact, a joint probability distribution, P, can be decomposed recursively
in this fashion if and only if there is a DAG that correctly represents the
(conditional) dependence and independence properties of P. This means that
a set of conditional probability distributions specified according to a DAG,
S = (V,E), (i.e., a distribution P(A|pa(A)) for each A € V) define a joint
probability distribution.

Therefore, a probabilistic network model can be specified either through
direct specification of a joint probability distribution, or through a DAG (typ-
ically) expressing cause—effect relations and a set of corresponding conditional

' The dimensionality of a function is defined as the number of variables over which
the function is defined.
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probability distributions. Obviously, a model is almost always specified in the
latter fashion.

This chapter presents some basic axioms of probability calculus from which
the famous Bayes’ rule follows as well as the chain rule for decomposing a
joint probability distribution into a product of conditional distributions. We
shall also present the fundamental operations needed to perform inference in
probabilistic networks.

3.1 Basics

This section defines some basic concepts and axioms of Bayesian probability
theory. These include events, conditional probability, and three basic axioms.

3.1.1 Events

The language of probabilities consists of statements (propositions) about prob-
abilities of events. The probability of an event a is denoted P(a). An event can
be considered as an outcome of an experiment (e.g., a coin flip), a particular
observation of a value of a variable (or set of variables), an assignment of a
value to a variable (or set of variables), etc. As a probabilistic network define
a probability distribution over a set of variables, V, in our context an event is
a configuration, x € dom(X), (i.e., a vector of values) of a subset of variables
XCV.

Ezample 3.1 (Burglary or Earthquake, page 25). Assume we observe W = yes
and R = yes. This evidence is given by the event ¢ = (W = yes,R = yes),
and the probability, P(e) denotes the probability of this particular piece of
evidence, namely that both W = yes and R = yes are observed.

3.1.2 Conditional Probability

The basic concept in the Bayesian treatment of uncertainty is that of condi-
tional probability: Given event b, the conditional probability of event a is x,
written as

P(alb) =x.

This means that if b is true and everything else known is irrelevant for a, then
the probability of a is x.

Ezample 3.2 (Burglary or Earthquake, page 25). Assume that the alarm
sounds in eight of every ten cases when there is an earthquake but no
burglary. This fact would then be expressed as the conditional probability
P(A = yes|B = no,E = yes) = 0.8.
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3.1.3 Axioms

The following three axioms provide the basis for Bayesian probability calculus.

Axiom 3.1. For any event, a, 0 < P(a) < 1, with P(a) =1 if and only if a
occurs with certainty.

Axiom 3.2. For any two mutually exclusive events a and b the probability
that either a or b occur is

P(a or b) =P(aVb) =P(a) + P(b).

In general, if events ay,...,an are pairwise incompatible, then

P (U ai> —P(a1) +---+Plag) = Y_ Play).

i

Axiom 3.3. For any two events a and b the probability that both a and b
occur s

P(a and b) =P(a,b) =P(bla)P(a) = P(a|b)P(b).
P(a,b) is called the joint probability of the events a and b.

Axiom 3.1 simply says that a probability is a non-negative real number
less than or equal to 1, and that it equals 1 if and only if the associated event
has happened for sure.

Axiom 3.2 says that if two events cannot co-occur, then the probability
that either one of them occurs equals the sum of the probabilities of their
individual occurrences.

Axiom 3.3 is sometimes referred to as the fundamental rule of probability
calculus. The axiom says that the probability of the co-occurrence of two
events, a and b can be computed as the product of the probability of event
a (b) occurring conditional on the fact that event b (a) has already occurred
and the probability of event b (a) occurring.

Example 3.3. Consider the events “The cast of the die gives a 1”7 and “The
cast of the die gives a 6”. Obviously, these events are mutually exclusive, and
the probability that one of them is true equals the sum of the probabilities
that the first event is true and that the second event is true. Thus, intuitively,
Axiom 3.2 makes sense.

Note that if a set of events, {a,...,an}, is an exhaustive set of outcomes
of some experiment (e.g., cast of a die), then ) ; P(a;) =1.

Ezample 3.4 (Balls in An Urn). Assume we have an urn with 2 red, 3 green,
and 5 blue balls. The probabilities of picking a red, a green, or a blue ball are

>

10 =0.5.

2
P(red) = 0= 0.2, P(green) = % =0.3, P(blue) =
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By Axiom 3.2 on the previous page we get the probability of picking either a
green or a blue ball:

P(green or blue) = P(green) + P(blue) = 0.8.

Similarly, the probability of picking either a red, a green, or a blue is 1.
Without replacement, the color of the second ball depends on the color of the
first ball. If we first pick a red ball (and keep it), then the probabilities of
picking a red, a green, or a blue ball as the next one are, respectively,

. 2-1 1
P(2nd-is-red| 1st-was-red) = 07" 9
P(2nd-is-green|1st I‘d)—i—é
-is-green|Ist-was-red) = 55— = 5,
P(2nd-is-blue| 1st-was-red) = > — >
nd-is-blue| Ist-was-red) = 75— = 5.

By Axiom 3.3 on the preceding page we get the probability that the 1st ball
is red and the 2nd is red:

P(1st-was-red, 2nd-is-red) = P(2nd-is-red|1st-was-red)P(1st-was-red)
_ 11_1
9 5 45

Similarly, the probabilities that the 1st ball is red and the 2nd is green/blue
are

P(1st-was-red, 2nd-is-green) = P(2nd-is-green|1lst-was-red)P(1st-was-red)
11
- 35 15
P(1st-was-red, 2nd-is-blue) = P(2nd-is-blue|lst-was-red)P(1st-was-red)
5 1
559
respectively.

3.2 Probability Distributions for Variables

Probabilistic networks are defined over a (finite) set of variables, each of which
represents a finite set of exhaustive and mutually exclusive states (or events);
see Section 2.2 on page 20. Thus, (conditional) probability distributions for
variables (i.e., over exhaustive sets of mutually exclusive events) play a very
central role in probabilistic networks.

If X is a (random) variable with domain dom(X) = (x1,...,%)x|), then
P(X) denotes a probability distribution (i.e., a vector of probabilities summing
to 1), where
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P(X) = (P(X :X1),...,P(X :XHXH)) .

If no confusion is possible, we shall often use P(x) as short for P(X = x), etc.
If the probability distribution for a variable Y is given conditional on a
variable (or set of variables) X, then we shall use the notation P(Y|X). That is,
for each possible value (state), x € dom(X), we have a probability distribution
P(Y|X = x); again, if no confusion is possible, we shall often write P(Y]|x).

Ezample 8.5 (Balls in An Urn, page 39). Let X; represent the following ex-
haustive set of mutually exclusive events:

dom(X7) = {“Ist ball is red”, “1st ball is green”, “Ist ball is blue”}.

If we define X; to denote the random variable “The color of the 1st ball drawn
from the urn”, then we may define dom(X;) = {red, green, blue}. Similarly, if
we define X, to denote the random variable “The color of the 2nd ball drawn
from the urn”, then dom(X,) = dom(Xj). From Example 3.4 on page 39 we
get

P(X2|X7) can be described in terms of a table of three (conditional) distrib-
utions:

X1 =red X;=green X;=blue
1 2 2
X, = — Z <
5 = red 5 5 5
P(X2[Xq) = o — 3 2 3
2 = green § § §
5 5 4
X5 = bl — - =
2= blue 9 9 9

Note that the probabilities in each column sum to 1.

3.2.1 Rule of Total Probability

Let P(X,Y) be a joint probability distribution for two variables X and Y
with dom(X) = {x1,...,xm} and dom(Y) = {y1,...,yn}. Using the fact that
dom(X) and dom(Y) are exhaustive sets of mutually exclusive states of X and
Y, respectively, Axiom 3.2 on page 39 gives us the rule of total probability:

n
Vi:P(xi) =Plxi,u1) + -+ P(xi,yn) = ) Plxi,u5). (3.1)
j=1

Using Equation 3.1, we can calculate P(X) from P(X,Y):
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n
ZP X1,Y5), ,ZP Xm, Uj)
j=1

In a more compact notation, we may write P(X) as

n
=2 P,

or even shorter as
P(X) =) P(X,Y), (3.2)
Y
denoting the fact that we sum over all indices of Y. We shall henceforth refer
to the operation in Equation 3.2 as marginalization or projection.? Also, we
sometimes refer to this operation as “marginalizing out Y” of P(X,Y).

Ezample 3.6 (Balls in An Urn, page 39). Using Axiom 3.3 on page 39 for each
combination of states of X; and X; of Example 3.5 on the preceding page, we
can compute

P(X; =red, Xy =red) = P(X; =red)P(X2 =red|X; =red)
_ 21
10 9
- 1
457
ete. That is, we get P(X7,X2) by combining P(X7) and P(X2|X7):
X1 =red X;=green X;=blue
1 1 1
Xz = red E E §
P(X1,Xz) = X 1 1 1
2 = green ﬁ E g
1 1 2
Xz = blue § g §

(Note that the numbers in the table sum to 1.) Now, through marginalization
we get

P(X2) = P(X; =red, Xz2)+ P(Xy = green, X2) + P(X; = blue, X3)
1 1 1 1
45 15 9 5
1 1 1 3
Sl s | BT e || 10
1 1 2 1
9 6 9 2

2 See Section 3.3.3 on page 46 for more on marginalization.
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That is, the probabilities of getting a red, a green, and a blue ball in the second
draw are, respectively, 0.2, 0.3, and 0.5, given that we know nothing about
the color of the first ball. That is, P(X2) = P(X7) = (0.2,0.3,0.5), whereas,
for example, P(X2| X7 =red) = (0.1111,0.3333,0.5556); i.e., once the color of
the first ball is known, our belief about the color of the second changes.

3.2.2 Graphical Representation

The conditional probability distributions of probabilistic networks are of the
form
P(X]Y),

where X is a single variable and Y is a (possibly empty) set of variables. X and
Y are sometimes called the head and the tail, respectively, of P(X|Y). If Y =
(i.e., the empty set), P(X]Y) is often called a marginal probability distribution
and is then written as P(X). This relation between X and Y = {Y7,...,Yn}
can be represented graphically as the DAG illustrated in Figure 3.1, where
the child vertex is labelled “X”and the parent vertices are labelled “Y;”, “Y,”,
etc.

Fig. 3.1. Graphical representation of P(X|Y7,...,Yn).

Ezample 3.7 (Burglary or Earthquake, page 25). Consider the variables B
(Burglary), E (Earthquake), and A (Alarm), where B and E are possible causes
of A. A natural way of specifying the probabilistic relations between these
three variables, would be through a conditional probability distribution for A
given B and E. Thus, for each combination of outcomes (states) of B and E,
we need to specify a probability distribution over the states of A:

B =no B = yes
A|E=n0o E=yes E=no E=yes
P(A[B,E) =
no | 0.99 0.1 0.1 0.01
yes | 0.01 0.9 0.9 0.99

This conditional probability table expresses the probability (whether obtained
as an objective frequency or a subjective belief) of an alarm if either a burglary
or an earthquake has taken place (but not both) to be 0.9, etc.
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3.3 Probability Potentials

In working with probabilistic networks the notion of “potentials” often ap-
pears to be convenient. Formally, a probability potential is a non-negative
function defined over the product space over the domains of a set of variables.
We shall use Greek letters (¢, 1, etc.) to denote potentials, and sometimes
use subscripts to identify their domain (e.g., ¢x denotes a potential defined
on dom(X)) or to indicate that a potential ¢px is a marginal potential of ¢.>

3.3.1 Normalization

A (probability) potential, ¢x defined on dom(X), is turned into a probability
distribution, P(X), through the operation known as normalization. We shall
use the notation n(¢px) to denote normalization of ¢x, where n(¢px) is defined

as d)
a X
n(dx) = S ox

Hence, P(X) =n(dx). The conditional probability distribution P(X]|Y) can be
obtained from the joint distribution P(X,Y) through conditional normalization
with respect to X:

(3.3)

s PXY)
IX(POXY)) £ Sy = PYIX)
In general,
L PX) el
Mo (PO)) £ == T = PXAX'IX) (3.49)

where X’ is a subset of the set of variables X. In particular,
n(P(X)) =ng(P(X)) = P(X),

whenever P(X) is a probability distribution over X. This also holds true for
conditional distributions:

Ny (P(X]Y)) = P(X]Y),

since
D PX|Y) =1y, (3.5)
X

where 1y denotes a vector of 1s over dom(Y). A uniform potential, e.g. 1y, is
called a vacuous potential. Intuitively, a vacuous potential can be thought of
as a non-informative (or superfluous) potential.

We shall be using the notion of potentials extensively in Chapters 4 and 5,
but for now we will just give a couple of simple examples illustrating the
usefulness of this notion.

3 Note that the two interpretations are consistent. See Section 3.3.3 on page 46 for
details on marginalization.
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Ezample 3.8. Let P(A,B) = P(A)P(B|A) be a factorization of the joint distri-
bution for the Boolean variables A and B, and assume that P(A) and P(B|A)
are given by the potentials ¢ and 1, respectively, where

B ‘ A =false A =true

¢ =(1,2) and P = false 5 7
true 3 1
Then -
P = — JE—
) =) = (3.3)
and

B ‘ A =false A = true
P(BIA) =na(p) = false

true

| Co|U1
Oo|— 00N

Also, P(A,B) =n(¢ *1).* Note, however, that for non-uniform normalization

constants ) P inna (), in general, P(A,B) #n(db=*). Inour case, ) ph =
(8,8), and hence P(A,B) =n(¢ = ¥).

3.3.2 Evidence Potentials

As indicated in Section 2.3 on page 23, evidence functions are actually poten-
tials. To compute the joint posterior distribution resulting from incorporating
a set of observations in the form of evidence functions, we simply extend the
set of probability function constituents (possibly in the form of potentials)
with corresponding evidence potentials, multiply, and normalize the product.

Before any evidence has been taken into account the probability distrib-
ution P(X’) for a subset X’ C X of variables is referred to as the prior prob-
ability distribution for X’. The conditional probability distribution P(X’|e),
where € denotes evidence, is referred to as the posterior probability distrib-
ution for X’ given ¢. Given an evidence potential g on a subset E C X\ X’
(expressing ¢), the posterior joint distribution is obtained as

P(X &)= > P(X)*E,
X\ X’

and the posterior conditional distribution is achieved through normalization
P(X'[e) =n(P(X,¢)).

We define P(X) % Eg to have dimensionality [X \ E|. Thus, multiplication of
P(X) with &g gives rise to a dimensionality decrease by |E|.

4 See Section 3.3.3 for a definition of combination of potentials.
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Ezample 3.9 (Ezample 3.8 continued). Assume that we observe B = true, rep-
resented by the evidence potential Eg = (0,1). Then the posterior marginal
distribution, P(A|¢), is given by

32
P(A‘E):n((b*ll’*el%): = e |
5'5
where the two-dimensional potential {p on A and B reduces to the one-
dimensional potential (3,1) on A when multiplied by the evidence poten-
tial 8]3.

3.3.3 Potential Calculus

To perform inference in probabilistic networks we only need a few simple oper-
ations, namely multiplication (combination), division, addition, and marginal-
ization (projection). These are all defined very straightforwardly as follows.
Let ¢ and VP be potentials defined on dom(X) and dom(Y), respectively,
and let z € dom(X UY) be an arbitrary element (configuration).
We then define ¢ *1 as

(b *W)(z) = dlzx)(zy), (3.6)

where zx and zy are projections of z to dom(X) and dom(Y), respectively.®
Addition is defined analogously. We need to take special care to avoid division
by zero, but otherwise division is defined in the obvious way:

0 if d(zx) =0
(b/W)(z) = { dlzx)/Pl(zy) ifP(zy) #0 (3.7)
undefined otherwise.

As we shall see later, for all relevant operations involved in inference in prob-
abilistic networks, ¢(zx) = 0 implies VP (zy) = 0 upon division of ¢ by P, and
thus, defining 0/0 = 0, the division operator is always defined.

Let X’ C X and let ¢ be a potential defined on dom(X). Then ¢px/ =
ZX\X/ ¢ denotes the marginalization (or projection) of ¢ to dom(X’) and is
defined as

oxx) 2 Y dlzx), (3.8)

z€dom (X\X")

where z.x is the element in dom(X) for which (z.x)x\x = z and (z.x)x’ = x.

Exzample 3.10. Let X = {A,B} and Y = {B,C, D}, where A,B,C,D are all
binary variables with dom(A) = {aj, az}, etc. Let ¢px and ¢y be potentials
defined over dom(X) and dom(Y), respectively, where

> As defined in Section 2.2 on page 20.
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| a a 1 co
o 1 2 4o d; dz d; d,
= Il — .
h E] 81 82 * YT e o001 014 006 0.09
e by | 023 007 0.18 0.12

From Equation 3.6 we get 1 = bx * ¢y to be

C1 C2
lj)— d1 dz d] d2
"~ by | (0.011,0.099) (0.014,0.126)  (0.006,0.054)  (0.009,0.081)
b, | (0.092,0.138) (0.028,0.042) (0.072,0.108) (0.048,0.072)

where (dx * ¢py)(ar, by, c1,d1) = dx(ar,br)dy(by,c1,di) = 0.1-0.11 =
0.011, (bx * dy)(az,by,c1,d1) = dx(az,br)dy(by,cq,d1) = 0.9-0.11 =
0.099, etc.

Now, if Z = {A, D}, then from Equation 3.8 we get the marginal of { with
respect to Z to be

d] dZ

Yz = a; | 0.011+0.092+0.006 +0.072  0.014 + 0.028 + 0.009 + 0.048
ay | 0.099+40.138 4 0.054 +0.108  0.126 + 0.042 + 0.081 + 0.072

d; ds

= ap | 0.181 0.099 ,
ay | 0.399 0.321

where, for example, Pz (aq,dr) = P((bq,c1).(ar,dq)) +P((bz,c1).(ar,d1))+
¥((b1,c2).(a1,d1)) + ((bz,c2).(ar,dr)) = 0.011 + 0.092 + 0.006 + 0.072 =
0.181. Note that ¢ (and hence also {Pz) is a probability distribution (i.e.,
> . WP(x) =1), since dx is a conditional probability distribution for A given
B and ¢v is a joint probability distribution for {B, C, D}.

Distributive Law

Let ¢ and ¢ be potentials defined on dom(X) = {x1,...,%xm} and dom(Y) =
{y1,...,Yn}, where XNY = (). Using the distributive law, we then get
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> D (bx) > > )

X\X/ Y\Y’ x€dom(X\X’) yedom(Y\Y’)
= ox1)d(y1) +--+dxa)Plyn) +--- +
GOem)b(yr) + -+ d(xm )P (yn)
= o) Wyr) +--- +P(yn)]
( )l

G(xm) Mply1) +--- +d(yn

= > ) Y by
x€dom(X\X’) yedom(Y\Y’)

= ) b W (3.9)
X\X’!  Y\Y’

where X" € X, Y CY,and )} y &) U is short for } (¢ * (3_y ). Thus,
if we wish to compute the marginal distribution (¢ *)x.uy. and XNY = (),
then using the distributive law may help significantly in terms of reducing the
computational complexity.

Example 3.11. Let ¢, P, and & be potentials defined on dom(A, B, C), dom(B,
D), and dom(C, D, E), respectively, and let E¢ be an evidence potential defined
on dom(E), where the variables A, ..., E are all binary. Assume that we wish
to compute P(A]e), where ¢ denotes the evidence provided through g. A
brute-force approach would be simply to combine all potentials, marginalize
out variables B, ..., E, and normalize:

P(Ale) = (%ZZZ ¢ * w*a*eE)>

Combining potentials & and Eg requires 8 multiplications. Next, combining 1
and &« Eg requires 16 multiplications, and, finally, combining ¢ and P * &+ Eg
requires 32 multiplications. Marginalizing out E, D, C, and B, respectively,
require 16, 8, 4, and 2 additions.

Alternatively, we could take advantage of the distributive law to compute
the same thing:

P(Ale) = (ZZcwaZ 5*8E>

First, combining & and £ requires 8 multiplications. Then, marginalizing
out E requires 4 additions. Multiplying the resulting potential by 1 requires
8 multiplications, and marginalizing out D requires 4 additions. Next, mul-
tiplying the resulting potential by ¢ requires 8 multiplications, and finally,
marginalizing out C and B requires 4 and 2 additions, respectively.
Summing up the number of arithmetic operations used in the two com-
putations we find that the brute-force approach takes 56 multiplications and
30 additions, whereas the one exploiting the distributive law takes only 24
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multiplications and 14 additions, less than half of what the brute-force ap-
proach requires. (On top of these numbers we should also count the number
of operations needed to normalize the final marginal, but that is the same in
both cases.)

Note that the ordering (B, C,D,E) is just one out of 4! = 24 different
sequences in which we might marginalize out these four variables, and to each
ordering is associated a certain number of arithmetic operations required to
compute P(A|¢g).

The single most important key to efficient inference in probabilistic net-
works is the ability to take advantage of the distributive law (i.e., to find
optimal (or near optimal) sequences in which the variables are marginalized
out). We shall return to this issue in Chapter 5.

3.3.4 Barren Variables

Variables of a probabilistic network that have no descendants and are never
observed are called barren variables, as they provide no information relevant
for the inference process. In fact, they provide “information” in the form of
vacuous potentials (cf. Equation 3.5 on page 44), and may hence be removed
from the network.

Ezample 3.12. Consider a model P(X,Y,Z) = P(X)P(Y|X)P(Z|Y) over the
variables X, Y, and Z. Following the discussion in Section 3.2.2 on page 43,
this model can be represented graphically as indicated in Figure 3.2(a). Let
Evy and €7 be evidence potentials for Y and Z, respectively, but where £,
is always vacuous. Then the posterior probability distribution for X can be
calculated as

P(X|e) = n<ZP(YX)*8yZP(ZY)*82>
Y Z
= n(ZP(YX)*SYZP(ZYJ)
Y VA
= n(ZP(YX)*Eyﬂy)

Y

n <ZP(YX) *8Y>,
Y

where ) , P(Z]Y) = 1y follows from Equation 3.5 on page 44 and ¢ de-
notes the evidence. This means that the term P(Z|Y) can be neglected in
the inference process, and the model can be simplified to the one shown in
Figure 3.2(b), as variable Z is barren.

We shall return to the issue of barren variables in more detail in Sec-
tion 5.1.1 on page 108.
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(a) (b)

Fig. 3.2. (a) Model for P(X,Y,Z). (b) Equivalent model when Z is barren.

3.4 Fundamental Rule and Bayes’ Rule

Generalizing Axiom 3.3 on page 39 to arbitrary (random) variables X and Y
we get the fundamental rule of probability calculus:

P(X,Y) =P(X|Y)P(Y) = P(Y|X)P(X). (3.10)
Bayes’ rule follows immediately from Equation 3.10:

PXIY)P(Y)

PIYIX) = =

(3.11)

Using Axiom 3.3 on page 39 and the rule of total probability, Equation 3.11
can be rewritten as

P(X]Y)P(Y)
(XIY=y1)P(Y=y1)+---+PX|Y=yn)P(Y =y)v))

PYIX) =

That is, the denominator in Equation 3.11 can be derived from the numerator
in Equation 3.11. Since, furthermore, the denominator is obviously the same
for all states of Y, we often write Bayes’ rule as

P(Y|X) x P(X|Y)P(Y), (3.12)

read as “P(Y|X) is proportional to P(X|Y)P(Y)”. Note that the proportionality
factor P(X)~ is in fact a vector of proportionality constants, one for each state
of X, determined in a normalization operation.

Division by zero in Equation 3.11 is not a problem if we define 0/0 = 0,
since for

P(xi) = ) Plxily;)Ply;)
j

to be zero at least one of P(x; |y;) and P(y;) must be zero for each j, and if this
is the case then both the numerator term, P(xi|y;)P(yj), and the denominator
term, P(x;), of Equation 3.11 will be zero.
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Ezample 8.13 (Burglary or Earthquake, page 25). Given P(E) = (0.01,0.99),
P(B) = (0.1,0.9), and the conditional probability table (CPT) for P(A|B,E)
from Example 3.7 on page 43, we can use Bayes’ rule to compute P(B|A), the
conditional probability distribution for burglary (B) given alarm (A):

P(B|A) x ZP(AIB,E)P(B)P(E) =P(A,B).
E

First, we compute the joint distribution for A, B, and E:

P(A,B,E) = P(A[B,E)P(B)P(E)
B =no B = yes
B A| E=no E=yes E=no E=yes
B no | 0.88209 0.0009 0.0099 0.00001
yes | 0.00891  0.0081  0.0821 0.00099

Next, we marginalize out E of P(A, B, E) to obtain

A| B=no B=yes

P(A,B)=) P(A,B,E)= o | 0.88299 0.00991
E yes | 0.00991  0.09009

Finally, we normalize P(A, B) with respect to A, and get

B|A=no A=yes

P(B|A) =na(P(A,B)) = no | 0.9889  0.1588
yes | 0.0111 0.8412

3.4.1 Interpretation of Bayes’ Rule

Since Bayes’ rule is so central to inference in Bayesian probability calculus, let
us dwell a little on how Bayes’ rule can be used and understood. Assume that
we have two (possibly, sets of) variables X and Y, a model P(X,Y) given in
the factorized form P(X|Y)P(Y), and that we observe X = x. We would then
typically want to compute P(Y|x).

The prior distribution, P(Y), expresses our initial belief about Y, and the
posterior distribution, P(Y|x), expresses our revised belief about Y in light
of the observation X = x. Bayes’ rule tells us how to obtain the posterior
distribution by multiplying the prior P(Y) by the ratio P(x|Y)/P(x), known
as the normalized likelihood of Y given x. Again, since P(x) is a constant for
each y € dom(Y), we get

P(Y|x) o< P(Y)P(x]Y).

The quantity P(x|Y) = L(Y|x) is called the likelihood of Y given x. Hence, we
have
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P(Y|x) oc P(Y)L(Y]x). (3.13)

In general,
posterior o prior x likelihood.

In a machine learning context, Bayes’ rule plays an important role. For
example, consider a prior distribution, P(M), for a random variable M, ex-
pressing a set of possible models. For any value d of another variable D,
expressing data, the quantity P(d|M) — considered as a function of M — is
the likelihood function for M given data d. The posterior distribution for M
given the data is then

P(M|d) < P(M)P(d|M),
which provides a set of goodness-of-fit measures for models M (i.e., we obtain

a conditional probability P(m|d) for each m € dom(M)).

Arc Reversal

Application of Bayes’ rule can also be given a graphical interpretation. Con-
sider, for example, two variables A and B and a model P(A,B) = P(A)P(B|A).
Again, following the discussion in Section 3.2.2 on page 43, this model can be
represented graphically as indicated in Figure 3.3(a). Applying Bayes’ rule on

%

P(A,B) =P(A)P(BIA) P(B)P(A[B)
(a) (b)

Fig. 3.3. Two equivalent models that can be obtained from each other through arc
reversal.

this model:
P(A)P(BIA)  P(A,B)

> AP(AP(BIA)  P(B) ’

we obtain an equivalent model shown in Figure 3.3(b). Thus, one way of
interpreting the application of Bayes’ rule is through so-called arc reversal.
As the typical inference task in probabilistic networks can be described as
computing P(X|e), inference in probabilistic networks can be thought of as
(repetitive) application of Bayes’ rule or, in other words, as a sequence of
arc reversals. Olmsted (1983) and Shachter (1990) have exploited this view of
inference in his arc reversal algorithm for inference in probabilistic networks.

P(A|B) =
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Ezample 3.14 (Arc Reversal). Consider the model in Figure 3.4(a), and as-
sume that we wish to calculate the posterior marginal distribution for X given
evidence, €z, on Z. Using Shachter’s arc reversal procedure we may proceed
as follows:

P(Xle) = n(ZZP(X)P(YX)P(ZY)€z>

Y Z

— n(ZZP(X)P(Y,Z|X)€Z> (3.14)
Y Z

— n(;gp(X)ZYY\Z(;X > PV, Z|X)E ) (3.15)

= n(ZZP(X)P(YX,Z)P(ZX)8Z> (3.16)
Y Z

- n(ZP(X)P(ZlX)SZZP(WX,Z)) (3.17)
VA Y

= n(ZP(X)P(zmaZ) (3.18)
Z

P(X)P(Z|X

- n<§WZP P(Z|X)E ) (3.19)

3 n(ZP(XIZ) (Z)ez> (3.20)
Z

where we combine P(Y|X) and P(Z]Y) into P(Y,Z|X) (3.14), use Bayes’ rule
to reverse Y — Z (3.15), which induces a new edge X — Z (3.16), use the
distributive law (3.17), eliminate barren variable Y (3.18), and finally use
Bayes’ rule to reverse X — Z (3.19). Now, if €7 represent hard evidence (i.e.,
Z =z), (3.20) reduces to

P(X|e) =P(X|Z = z),
i.e., a simple look-up.

We shall return to the arc reversal approach in more detail in Section 5.1.1
on page 111.

3.5 Bayes’ Factor

To calculate the relative support provided by an observation, Y =y, for two
competing hypotheses, Hp : X = xo and H; : X = x1, the notion of Bayes’
factor is useful:
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%%»@:) —>
@ @

(a) (b) (c) (c)

Fig. 3.4. (a) Model for P(X,Y, Z). (b) Equivalent model obtained by reversing Y —
Z. (c) Equivalent model provided Y is barren. (d) Equivalent model obtained by
reversing X — Z.

_ posterior odds _ P(xoly)/P(x1]y) _ P(ylxo) _ Lixoly)
prior odds P(xo)/P(x1) Plylx1)  Lixily)’

(3.21)

that is, the ratio of the likelihoods of the two hypotheses given the observation.
Bayes’ factor is also known as the Bayesian likelihood ratio.
From Equation 3.21 we see that

B > 1 if the observation provides more support for Hy than for Hy,

B < 1 if the observation provides less support for Hy than for Hy, and

B =1 if the observation does not provide useful information for differentiating
between Hog and Hj.

Ezample 3.15 (Balls in An Urn, page 39). Let hypotheses Hp and H; be given

as
Ho : The second ball drawn will be green: X, = green

H; : The second ball drawn will be blue: X, = blue,

and assume we observe that the first ball drawn is blue (i.e., X1 = blue). Now,
using the numbers calculated in Example 3.5 on page 41, we get the Bayes’
factor

4
/3
5
10/ 70
That is, since the posterior odds (3/4) is greater than the prior odds (3/5),
the observation provides more support for Hy than for Hy. Still, however, the

probability that Hy is going to be true is greater than the probability that Hg
is going to be true, as P(Hp|X; = blue) = 3/9 and P(H;|X; = blue) =4/9.

B P(X; = green|X; = blue)/P(X, = blue|X; = blue) B
n /P(X2 = blue)

o‘“’ olw
NS

P(X; = green)

3.6 Independence

A variable X is independent of another variable Y with respect to a probability
distribution P if
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P(x|y) = P(x), ¥x € dom(X), Yy € dom(Y). (3.22)

Using standard notation, we express this property symbolically as X 1lp Y,
or simply as X 1L Y when P is obvious from the context. Symmetry of inde-
pendence (i.e., X 1L Y=Y 1 X) can be verified from Bayes’ rule:

Plxly) = Pix) = T by = Pyl

The statement X Ll Y is often referred to as marginal independence between
X and Y.

A variable X is conditionally independent of Y given Z (with respect to a
probability distribution P) if

P(x|y,z) = P(x|z), Vx € dom(X), Vy € dom(Y), Vz € dom(Z). (3.23)

The conditional independence statement expressed in Equation 3.23 is indi-
cated as X UL Y|Z in the standard notation. With a slight misuse of notation,
we shall also express this as P(X|Y,Z) = P(X|Z).5

Ezxample 3.16 (Conditional Independence). Consider the Burglary or Earth-
quake example from page 25. With P(R|E) given as

R ‘ E=no E=yes
PRIE)= " no| 0999 0.1
yes | 0.001 0.99

and P(A,E) given as in Example 3.13 on page 51 we get

P A E)P(RIE
PARR =y Pa (R|)E)
AP
R =no R =yes
B A|E=no E=yes E=no E=yes
~ no| 0901  0.091 0901  0.091
yes | 0.099 0.909 0.099 0.909

and

PRIE) A|E=no E=yes

P(AIE)—ZZR TPRIE] © Mo | 0901 0.091
ARP yes | 0.099  0.909

Obviously, P(A|E,R) = P(A|E). Thus, we conclude that A 1Lp R|E.

® The misuse is concerned with differences in dimensionalities of P(X]|Y,Z) and
P(X|Z).
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3.6.1 Independence and DAGs

Let P be a probability distribution over a set of variables V and let § = (V, E)
be a DAG. Then § is said to be a correct representation of the independence
properties of P if Xa 1lp Xpg|Xs whenever A Lg B|S for subsets A, B,S of V.
In other words, if for each pair of unconnected variables u,v € V in G (i.e.,

u g/v) it holds true that there is a set S C V such that X, 1Lp X,|Xs, then
G is a correct representation of the independence properties of P. For brevity
we shall then say that “G is correct with respect to P”.

Note that a DAG that is correct with respect to a distribution P does not
necessarily represent all independence properties of P. In fact, the complete
graph is correct with respect to any distribution.

Definition 3.1 (Correctness and Completeness). Let P be a probability
distribution over a set of variables Xy, where § = (V,E) is a DAG over the
vertices that indexes these variables. Correctness and completeness of G with
respect to P are then defined as follows:

Correctness of G with respect to P: AlgB|IS = Xa llp Xg|Xs.
Completeness of § with respect to P: A Lg B|S <= Xa 1llp Xp|Xs.
If G is correct with respect to P, then G is said to be an I-map of P. If G is
complete with respect to P, then G is said to be a D-map of P. If G is both

correct and complete with respect to P, then G is said to be a perfect map of
p.7

Ezxample 3.17. Let X, Y, and Z be three variables for which X 1Lp Y|Z. Follow-
ing the ordering (X,Y,Z) and using the fundamental rule (see Equation 3.10
on page 50) twice yields

P(X,Y,Z) = P(X|Y, Z)P(Y[Z)P(Z).
Since X 1Lp Y|Z, this can be simplified to

P(X,Y,Z) =P(X|Z)P(Y|Z)P(Z). (3.24)
Similarly, following the orderings (X, Z,Y) and (Y, Z, X) we get, respectively,

P(X,Y,Z) = P(X|Z)P(Z|Y)P(Y) (3.25)
and

P(X,Y,Z) =P(Y|Z)P(Z|X)P(X). (3.26)

Equations (3.24)—(3.26) have graphical representations as shown in Fig-
ures 3.5(a)—(c) (see Section 3.2.2 on page 43).

Only a subset of the independence properties that can exist in a probability
distribution can be represented by a DAG. That is, the DAG language is not
rich enough to simultaneously capture all sets of independence statements.

7«17 stands for “independence” and “D” stands for “dependence”.
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&b b b

(b)

Fig. 3.5. Graphical representations of X 1Lp Y|Z, representing, respectively, Equa-
tions (3.24)—(3.26).

Ezxample 3.18. Consider the following set of independence statements for a
probability distribution P:

CID] . X(x J_Lp XB
CID;:  Xa Alp Xs1{Xp, Xy}
CID3: Xp Alp Xy [{Xa, Xs}.

From these statements we can conclude that a DAG, G, over {«, 3,v, d}
must include edges between each pair of vertices except («, ), («,0), and
(B,7v), as at least one independence statement has been specified for each of
the variable pairs {X«, X}, {X«, X5}, and {Xg, X, }, respectively. A preliminary
skeleton of the possible DAGs therefore appears as shown in Figure 3.6(a).

OCHOENO
O—©  O<® —©
()

(b) (¢)

Fig. 3.6. (a) Preliminary skeleton for the independence statements of Example 3.18.
(b) DAG representing CID; and CID3. (¢) DAG representing CID; and CID;.

Recalling the d-separation criterion or the directed global Markov criterion
(see Section 2.6 on page 31) we see that for CID; to hold true there must be
a converging connection at y or 6. However, a converging connection at e.g.
v implies & Lg 8, violating correctness of §. To remedy that, we will have to
include an edge between o and 8. Now, to ensure o« L g 3, the edges o« — 6 and
B — 6 must meet head-to-head at & (i.e., must converge at b). The resulting
DAG in Figure 3.6(b) is correct with respect to P but not complete as CID,
is not represented. Similarly, the DAG in Figure 3.6(c) represents CID; and
CID; but not CIDs3.
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The DAGs in Figures 3.6(b) and 3.6(c) correctly represent the indepen-
dence statements of P; neither of the DAGs, however, represents all three
statements.

3.7 Chain Rule

For a probability distribution, P(X), over a set of variables X = {X7,..., X},
we can use the fundamental rule repetitively to decompose it into a product
of conditional probability distributions:

P(X) = P(X1 ‘XZ)“-)XTL)P(XZ)'-')XTI)
= P(X1I1Xz, ..., X0)P(X21X3,..., Xn) -+ - P(Xu_1 | Pn)P(XR)

P(Xi [ X1, 000y Xn). (3.27)

|
.::

Notice that the actual conditional distributions that comprise the factors
of the decomposition are determined by the order in which we select the head
variables of the conditional distributions. Thus, there are n factorial different
factorizations of P(X), and to each factorization corresponds a unique DAG,
but all of these DAGs are equivalent in terms of dependence and indepen-
dence properties, as they are all complete graphs, and hence represent no
independence statements.

Ezample 8.19 (Chain Decomposition and DAGs). Let V = {«, ,v,d}. Then
P(Xy) factorizes as

P(Xv) = PXx, Xp,Xy,Xs) =P(XalXp, Xy, Xs)P(Xp, Xy, Xs)
= P(X«lXp, Xy, Xs)P(Xp Xy, Xs)P(Xy,Xs)
= P(X«lXp, Xy, Xs)P(Xp Xy, Xs)P(Xy | Xs)P(X5) (3.28)
( )

= P Xﬁ|XOC)X‘Y)X5 P(XB‘Xoc»X ) (X’Y‘XO()P(X(X) (329)

The DAGs corresponding to Equations (3.28) and (3.29) appear in Fig-
ures 3.7(a) and 3.7(b), respectively.

Assume that G is a DAG that correctly represents the (conditional) de-
pendence and independence properties of P (if any), and that the order in
which we select the head variables of the conditional distributions respect a
topological ordering (Xy,, ..., Xy, )® with respect to G: pa(vi) C {v1,...,vi_1}
for all i = 1,...,n (i.e., the parents of each variable are selected before the
variable itself). That is, the tail variables always include the parents.

8 For notational convenience, we assume (without loss of generality) that vi,...,vn
is a topological ordering.
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Fig. 3.7. (a) DAG corresponding to Equation (3.28). (b) DAG corresponding to
Equation (3.29).

It follows easily from the d-separation criterion or the directed Markov
criterion (Section 2.6 on page 31) that for any vertex v of a DAG, G,
v L g nd(v)|pa(v).” Since G correctly represents the dependence and indepen-
dence properties of P, it follows that X, ILp nd(X,)[Xpa(y). Therefore, each
term P(Xy, [Xy,,...,Xy,) can be reduced to P(X,, |Xpa(v,))- The product in
Equation 3.27 then simplifies to the chain rule:

n

P(Xv) = P(Xy, Xpawi))- (3.30)

i=1
Ezxample 3.20 (Example 3.19 continued). Assume that the complete set of in-

dependence properties that P satisfies comprises {Xg lp X, |X«,Xs LLp
Xs {Xg, Xy ). Then the DAG in Figure 3.8 correctly (and completely) repre-

Fig. 3.8. DAG that correctly (and completely) represents the set of independence
properties {Xpg 1lp Xy [Xu, X Llp Xs5[{Xp,Xy}} of a distribution P; see Exam-
ple 3.20.

sents this set of independence properties. From the chain rule we can therefore
write the joint distribution as

? This result is probably easiest to acknowledge from the directed Markov criterion:
The graph (G an({vjund(viupa(v))) " obviously excludes all descendants of v forcing
all paths to v to go through pa(v).
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P(XV) = P(ch)P(X[S |Xoc)P(Xy |X“)P(X5 |X(3>Xy)a

where the tail variables are exactly the set of parents for each head variable.

3.8 Summary

Bayesian probability calculus is based on a few very simple and intuitive
axioms that express ground statements of probability about the occurrence
of a single event, the occurrence of mutually exclusive events, and the co-
occurrence of events. Being defined, basically, as exhaustive lists of mutually
exclusive events, (discrete) variables hence provide an excellent concept on
which to base a calculus of distributions of probabilities. For example, we saw
how the axiom on mutually exclusive events implies the rule of total probabil-
ity, which is the basis for computing a (lower-dimensional) marginal probabil-
ity distribution through projection from a (higher-dimensional) distribution.
Together with the straightforward operations of multiplication (combination),
division, and addition, the projection (or marginalization) operation provide
a complete set of operations for probabilistic inference.

As a matter of convenience, the notion of probability potentials was in-
troduced as a generalization of probability distributions in the sense that the
elements of a probability potential do not necessarily sum to 1. Probability
distributions are restored through the operation of normalization, where the
normalization constant expresses the reciprocal value of the probability of the
evidence.

The fundamental trick in making efficient probabilistic inference with a
joint probability distribution over a (possibly large) collection of discrete ran-
dom variables lies in the ability to exploit the (conditional) independence
properties of the distribution. The extent to which these properties allow
a factorization of the distribution into lower-dimensional distributions (i.e.,
distributions defined on subsets of the variables) determines how efficiently
inference can be performed. Basically, this gain in efficiency is realized through
the exploitation of the distributive law, which implies interleaving of the oper-
ations of combination and marginalization. Allowing a marginalization opera-
tion (dimensionality decrease) to be performed before a combination operation
(dimensionality increase) reduces the total amount of arithmetic operations
needed.

The ability to perform abductive reasoning in probabilistic inference (e.g.,
to compute P(X|Y = y) given P(Y|X) and P(X)) follows from Bayes’ rule,
which in turn follows from the fundamental rule of probability calculus that
is a generalization of the axiom on the co-occurrence of events. An often-
used interpretation of Bayes’ rule states that the posterior probability of an
event given some observation, say P(X = x|Y = y) (i.e., our belief about the
probability of the occurrence of the event X = x after the event Y = y has been
observed), is proportional to the prior probability of the event, P(X = x) (i.e.,
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our belief about the probability of the occurrence of the event X = x before
observing Y = y), times the likelihood of the event given the observation,
defined as L(X =x|]Y=y) =P(Y =y|X =x).

We saw how to establish the important connection between the notion of
d-separation (and the equivalent directed, global Markov property) defined
on a DAG, § = (V,E), as discussed in Chapter 2, and the independence prop-
erties of a joint probability distribution, P, defined over variables represented
by V, where the directed edges, E, lead from nodes representing tail variables
to nodes representing head variables of conditional probability distributions
constituting a factorization of P. In fact, with G so defined, there is a one-
to-one correspondence between the statements of d-separation in § and the
(conditional) independence statements of P (i.e., G is a correct and complete
representation of the independence properties of P). This correspondence be-
tween d-separation and (conditional) independence is expressed in the chain
rule on page 59.1°

On the basis of the fundamental concepts introduced in Chapters 2 and 3
we shall see in Chapters 4 and 5, respectively, how different kinds of proba-
bilistic networks can be defined and how inference in these can be performed.

Exercises

Exercise 3.1. Assume that a non-red ball is removed from the urn in Exam-
ple 3.4 on page 39. What is then the probability of picking a blue ball from
the urn?

Exercise 3.2. Assume that smoking (S = true) causes lung cancer (L = true)
in one out every ten cases and that non-smokers (S = false) get lung cancer
in one out of 500 cases.

(a) Specify the probability table for P(L|S).

(b) Assuming that smoking is the only cause of lung cancer, what is then the
frequency of lung cancer in a population, where one third of the population
are smokers?

Exercise 3.3. Suppose we have the simple model X — Y, and are given P(X),
P(Y|X), and evidence Y = y.

(a) Indicate a minimal-cost procedure for computing P(X]Y =vy).
(b) Use the procedure to compute P(S|L = true) in Exercise 3.2.

10 Special cases in which variables are independent only for particular values of
some other variable(s) might exist. Such contezt-specific independence properties
obviously cannot be captured by a DAG. Thus, the one-to-one correspondence
should be understood with respect to independence statements on the “level of
variables”.
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Exercise 3.4. Normally, John arrives on time at his office. If, however, the
roads are icy, there is a chance that he will be late. Let I = icy denote the
event that the roads are icy, and let L = late denote the event that John is late.
Assume that our prior knowledge about road conditions (i.e., without knowing
when John arrives) is given by P(I) = P(I = icy,I = —icy) = (0.01,0.99).
Also, assume our experience tells us that P(L = late|icy) = 0.9 and P(L =
late|—icy) = 0.2.

(a) What is the likelihood for icy roads given that John arrives late?
(b) What is the probability of icy roads given that John arrives late?

Exercise 3.5. Assume that the complete list of conditional independence
statements satisfied by a probability distribution P(A,B,C, D, E) is given by:

A 1L D|{B,C} Bl CIA D 1 E|C

A 1l D|{B,C,E} B 1L C|{A,E} D 1L E|{B,C}
Al EIC B E|A D 1L E|{A,C}
A 1l E|{B,C} B 1 EIC D 1L E|{A,B,C}
A 1 E|{C,D} B L E|{A,C}

A 1L E|{B,C,D} B 1L E|{C,D}

B 1 E|{A,C,D}

(a) Draw a DAG fulfilling the assumptions.
(b) How many DAGs fulfill the assumptions?
(c) Make factorizations of P corresponding to the DAGs.

Exercise 3.6. Let W C U, and let ¢ = ¢y be a potential defined on dom(U),
where U = {A,B,C,D}, W = {A, C}, and all four variables are binary, where
dom(A) ={aq, az}, etc. Let ¢y be given by the following table:

C1 C1 C2 C2
d] dz d] dZ

a; by | 0.0957 0.0672 0.0341 0.0513
a; by | 0.1021 0.0162 0.0634 0.1287
a; by | 00174 0.1297 0.0040 0.1089
a by | 0.0624 0.0776 0.0307 0.0107

(a) Compute dw .

(b) Indicate the table for the evidence function £p (defined on dom(D)), rep-
resenting the evidence “D is in state d;”.

(¢) Compute by * Ep.

(d) Compute the normalization constant, w, in P(Ule) = ux ¢y * Ep.
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Probabilistic Networks

In this chapter we introduce probabilistic networks for reasoning and decision
making under uncertainty.

Many real-life situations can be modeled as a domain of entities repre-
sented as random variables in a probabilistic network. A probabilistic network
is a clever graphical representation of dependence and independence relations
between random variables. A domain of random variables can, for instance,
form the basis of a decision support system to help decision makers identify
the most beneficial decision in a given situation.

A probabilistic network represents and processes probabilistic knowledge.
The representational components of a probabilistic network are a qualitative
and a quantitative component. The qualitative component encodes a set of
(conditional) dependence and independence statements among a set of ran-
dom variables, informational precedence, and preference relations. The state-
ments of (conditional) dependence and independence, information precedence,
and preference relations are visually encoded using a graphical language. The
quantitative component, on the other hand, specifies the strengths of depen-
dence relations using probability theory and preference relations using utility
theory.

The graphical representation of a probabilistic network describes knowl-
edge of a problem domain in a precise manner. The graphical representation
is intuitive and easy to comprehend, making it an ideal tool for communi-
cation of domain knowledge between experts, users, and systems. For these
reasons, the formalism of probabilistic networks is becoming an increasingly
popular knowledge representation for reasoning and decision making under
uncertainty.

Since a probabilistic network consists of two components, it is customary
to consider its construction as a two-phase process: The construction of the
qualitative component and subsequently the construction of the quantitative
component. The qualitative component defines the structure of the quanti-
tative component. As the first step, the qualitative structure of the model
is constructed using a graphical language. This step consists of identifying
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variables and relations between variables. As the second step, the parameters
of the quantitative part as defined by the qualitative part are assessed.

In this book, we consider the subclass of probabilistic networks known as
Bayesian networks and influence diagrams. Bayesian networks and influence
diagrams are ideal knowledge representations for use in many situations in-
volving reasoning and decision making under uncertainty. These models are
often characterized as normative expert systems as they provide model-based
domain descriptions, where the model is reflecting properties of the problem
domain (rather than the domain expert) and probability calculus is used as
the calculus for uncertainty.

A Bayesian network model representation of a problem domain can be
used as the basis for performing inference and analysis about the domain.
Decision options and utilities associated with these options can be incorpo-
rated explicitly into the model, in which case the model becomes an influence
diagram, capable of computing expected utilities of all decision options given
the information known at the time of decision. Bayesian networks and influ-
ence diagrams are applicable for a large range of domain areas with inherent
uncertainty.

Section 4.1 considers Bayesian networks as probabilistic models for rea-
soning under uncertainty. We consider Bayesian network models containing
discrete variables only and models containing a mixture of continuous and
discrete variables. Section 4.2 considers influence diagrams as probabilistic
networks for decision making under uncertainty. The influence diagram is
a Bayesian network augmented with decision variables, informational prece-
dence relations, and preference relations. We consider influence diagram mod-
els containing discrete variables only and models containing a mixture of
continuous and discrete variables. In Section 4.3 object-oriented probabilistic
networks are considered. An object-oriented probabilistic network is a flexible
framework for building hierarchical knowledge representations using the no-
tions of classes and instances. In Section 4.4 dynamic probabilistic networks
are considered. A dynamic probabilistic network is a method for representing
dynamic systems that are changing over time.

4.1 Reasoning Under Uncertainty

A probabilistic interaction model between a set of random variables may be
represented as a joint probability distribution. Considering the case where
random variables are discrete, it is obvious that the size of the joint probability
distribution will grow exponentially with the number of variables as the joint
distribution must contain one probability for each configuration of the random
variables. Therefore, we need a more compact representation for reasoning
about the state of large and complex systems involving a large number of
variables.
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To facilitate an efficient representation of a large and complex domain with
many random variables, the framework of Bayesian networks uses a graphi-
cal representation to encode dependence and independence relations among
the random variables. The dependence and independence relations induce a
compact representation of the joint probability distribution. By representing
the dependence and independence relations of a domain explicitly in a graph,
a compact representation of the dependence and independence relations is
obtained.

4.1.1 Discrete Bayesian Networks

A (discrete) Bayesian network, N = (X, G, P), over variables, X, consists of
an acyclic, directed graph § = (V,E) and a set of conditional probability
distributions P. Each node v in G corresponds one-to-one with a discrete
random variable X, € X with a finite set of mutually exclusive states. The
directed links E C V x V of G specify assumptions of conditional dependence
and independence between random variables according to the d-separation
criterion (see Proposition 2.4 on page 32).

There is a conditional probability distribution, P(X, [X,a(v)) € P, for each
variable X,, € X. The set of variables represented by the parents, pa(v), of v €
Vin § = (V,E) are sometimes called the conditioning variables of X, — the
conditioned variable.

Definition 4.1. (Jensen 2001) A (discrete) Bayesian network N = (X, G, P)
consists of

e aDAGS = (V,E) with nodes V ={v1,...,vn} and directed links E

e qa set of discrete random variables, X, represented by the nodes of G

e a set of conditional probability distributions, P, containing one distribu-
tion, P(X, [Xpa(v)), for each random variable X, € X.

A Bayesian network encodes a joint probability distribution over a set of
random variables, X, of a problem domain. The set of conditional probability
distributions, P, specifies a multiplicative factorization of the joint probability
distribution over X as represented by the chain rule of Bayesian networks (see
Section 3.7 on page 58):

P(X) = [ [ PO Xpaw))- (4.1)

vev

Even though the joint probability distribution specified by a Bayesian net-
work is defined in terms of conditional independence, a Bayesian network is
most often constructed using the notion of cause-effect relations, see Sec-
tion 2.4. In practice, cause—effect relations between entities of a problem do-
main can be represented in a Bayesian network using a graph of nodes repre-
senting random variables and links representing cause—effect relations between
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the entities. Usually, the construction of a Bayesian network (or any proba-
bilistic network for that matter) proceeds according to an iterative procedure
where the set of nodes and their states, and the set of links are updated it-
eratively as the model becomes more and more refined. In Chapters 6 and 7,
we consider in detail the art of building efficient probabilistic network repre-
sentations of a problem domain.

To solve a Bayesian network N = (X, G, ?P) is to compute all posterior
marginals given a set of evidence ¢, i.e., P(X]|¢) for all X € X. If the evidence
set is empty, i.e., ¢ = (), then the task is to compute all prior marginals,
i.e., P(X) for all X € X.

Ezxample 4.1 (Apple Jack (Madsen, Nielsen €& Jensen 1998)). Consider the
small orchard belonging to Jack Fletcher (let us call him Apple Jack). One
day Apple Jack discovers that his finest apple tree is losing its leaves. Apple
Jack wants to know why this is happening. He knows that if the tree is dry
(for instance, caused by a drought) there is no mystery as it is very common
for trees to lose their leaves during a drought. On the other hand, the loss of
leaves can be an indication of a disease.

Fig. 4.1. The Apple Jack network.

The qualitative knowledge about the cause—effect relations of this situ-
ation can be modeled by the DAG G shown in Figure 4.1. The graph con-
sists of three nodes: Sick, Dry, and Loses that represent variables of the
same names. Each variable may be in one of two states: no and yes, i.e.,
dom(Dry) = dom(Loses) = dom(Sick) = {no, yes}. The variable Sick tells us
that the apple tree is sick by being in state yes. Otherwise, it will be in state no.
The variables Dry and Loses tell us whether or not the tree is dry and whether
or not the tree is losing its leaves, respectively.

The graph, G, shown in Figure 4.1 models the cause—effect relations be-
tween variables Sick and Loses as well as between Dry and Loses. This is
represented by the two (causal) links (Sick, Loses) and (Dry, Loses). In this
way Sick and Dry are common causes of the effect Loses.

Let us return to the discussion of causality considered previously in Sec-
tion 2.4. When there is a causal dependence relation going from a variable A
to another variable B, we expect that when A is in a certain state this has an
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impact on the state of B. One should be careful when modeling causal depen-
dence relations in a Bayesian network. Sometimes it is not quite obvious in
which direction a link should point. In the Apple Jack example, we say that
there is a causal impact from Sick on Loses, because when a tree is sick this
might cause the tree to lose its leaves. Why can we not say that when the tree
loses its leaves it might be sick and turn the link in the other direction? The
reason is that it is the sickness that causes the tree to lose its leaves and not
the lost leaves that causes the sickness.

Figure 4.1 shows the graphical representation of the Bayesian network
model. This is referred to as the qualitative representation. To have a complete
Bayesian network, we need to specify the quantitative representation. Recall
that each variable has two states, no and yes.

The quantitative representation of a Bayesian network is the set of con-
ditional probability distributions, P, defined by the structure of G. Table 4.1
shows the conditional probability distribution of Loses given Sick and Dry,
i.e., P(Loses|Dry,Sick). For variables Sick and Dry we assume that P(S) =
(0.9,0.1) and P(D) = (0.9,0.1) (we use D as short for Dry, S as short for Sick,
and L as short for Loses).

D S no yes

no no | 098 0.02
no vyes | 0.1 0.9
yes no | 0.15 0.85
yes yes | 0.05 0.95

Table 4.1. The conditional probability distribution P(L|D,S).

Note that all distributions specify the probability of a variable being in
a specific state depending on the configuration of its parent variables, but
since Sick and Dry do not have any parent variables, their distributions are
marginal distributions.

The model may be used to compute all prior marginals and the posterior
distribution of each non-evidence variable given evidence in the form of ob-
servations on a subset of the variables in the model. The priors for D and S
equals the specified marginal distributions, i.e., P(D) = P(S) = (0.9,0.1),
while the prior distribution for L is computed through combination of the dis-
tributions specified for the three variables, followed by marginalization, where
variables D and S are marginalized out. This yields P(L) = (0.82,0.18) (see
Example 3.10 on page 46 for details on combination and marginalization).
Following a similar procedure, the posteriors of D and S given L = yes can be
computed to be P(D|L = yes) = (0.53,0.47) and P(S|L = yes) = (0.51,0.49).
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Thus, according to the model the tree being sick is the most likely cause of
the loss of leaves.

The specification of a conditional probability distribution P(X,, |X,a(v)) can
be a labor-intensive knowledge acquisition task as the number of parameters
grows exponentially with the size of dom(Xg,(y)), where fa(v) = pa(v) U {v}.
Different techniques can be used to simplify the knowledge acquisition task,
assumptions can be made, or the parameters can be estimated from data.

The complexity of a Bayesian network is defined in terms of the family fa(v)

with the largest state space size || Xg(y)|| = |dom (Xga(v))|. As the state space
size of a family of variables grows exponentially with the size of the family,
we seek to reduce the size of the parent sets to a minimum. Another useful
measure of the complexity of a Bayesian network is the number of cycles and
the length of cycles in its graph.

Definition 4.2. A Bayesian network N = (X, G, P) is minimal if and only
if, for every variable X, € X and for every parent Y € Xpan), Xv 15 not
independent of Y given Xpa(v) \ {Y}.

Definition 4.2 says that the parent set Xp,(,) of X, should be limited to
the set of variables with a direct impact on X,,.

Ezample 4.2 (Chest Clinic (Lauritzen € Spiegelhalter 1988)). A physician at
a chest clinic wants to diagnose her patients with respect to three diseases
based on observations of symptoms and possible causes of the diseases. The
fictitious qualitative medical knowledge is the following.

The physician is trying to diagnose a patient who may be suffering from
one or more of tuberculosis, lung cancer, or bronchitis. Shortness-of-breath
(dyspnoea) may be due to tuberculosis, lung cancer, bronchitis, none of them,
or more than one of them. A recent visit to Asia increases the chances of
tuberculosis, while smoking is known to be a risk factor for both lung cancer
and bronchitis. The results of a single chest X-ray do not discriminate be-
tween lung cancer and tuberculosis, as neither does the presence or absence
of dyspnoea.

From the description of the situation it is clear that there are three possible
diseases to consider (lung cancer, tuberculosis, and bronchitis). The three
diseases produce three variables Tuberculosis (T), Cancer (L), and Bronchitis
(B) with states no and yes. These variables are the targets of the reasoning and
may, for this reason, be referred to as hypothesis variables. The diseases may
be manifested in two symptoms (results of the X-ray and shortness-of-breath).
The two symptoms produce two variables X_ray (X), and Dyspnoea (D) with
states no and yes. In addition, there are two causes or risk factors (smoking
and a visit to Asia) to consider. The two risk factors produce variables Asia
(A) and Smoker (S) with states no and yes

An acyclic, directed graph, G, encoding the above medical qualitative
knowledge is shown in Figure 4.2, where the variable Tub_or_cancer (E) is a
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Tuberculosis
Tub_or_cancer

Fig. 4.2. A graph specifying the independence and dependence relations of the Asia
example.

mediating variable (modeling trick, see Section 6.2.2 on page 150) specifying
whether or not the patient has tuberculosis or lung cancer (or both).

Using the structure of §, we may perform an analysis of dependence and
independence properties between variables in order to ensure that the quali-
tative structure encodes the domain knowledge correctly. This analysis would
be based on an application of the d-separation criterion.

Figure 4.2 only presents the qualitative structure § (and the variables)
of N = (X,G,P). In order to have a fully specified Bayesian network, it is
necessary to specify the quantitative part, P, too.

The quantitative domain knowledge is specified in the following set of
(conditional) probability distributions P(A) = (0.99,0.01), P(S) = (0.5,0.5),
and the remaining conditional probability distributions, except P(E|L, T), are
shown in Tables 4.2 and 4.3.

P(L|S) S =no S = vyes P(BIS) S=no S=yes

L=no 0.99 0.9 B =no 0.7 0.4
L =yes 0.01 0.1 B = yes 0.3 0.6

P(TIA) A=no A =yes P(X|E) E=no E=yes
T=no 0.99 0.95 X =no 0.95 0.02
T = yes 0.01 0.05 X = yes 0.05 0.98

Table 4.2. The conditional probability distributions P(L|S), P(B|S), P(T|A),
and P(X|E).

The conditional probability table of the random variable E can be gen-
erated from a mathematical expression. From our domain knowledge of the
diagnosis problem we know that E represents the disjunction of L and T. That
is, E represents whether or not the patient has tuberculosis or lung cancer.
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From this we can express E as E = T V L. This produces the conditional
probability P(E =yes|L =1,T =t) = 1 whenever 1 or t is yes.

B =no B = yes
E=no E=yes E=no E=yes
D =no 0.9 0.3 0.2 0.1
D =yes 0.3 0.7 0.8 0.9

Table 4.3. The conditional probability distribution P(D|B,E).

We will in a later section consider in more detail how to build mathematical
expressions for the generation of conditional probability distributions (see
Section 6.5.3 on page 166).

€ ‘ P(B=yes|le) P(L=yesle) P(T=yes|e)
0 0.45 0.055 0.01
{S = yes} 0.6 0.1 0.01
{S = yes, D = yes} 0.88 0.15 0.015
{S = yes, D = yes, X = yes} 0.71 0.72 0.08

Table 4.4. Posterior distributions of the disease variables given various evidence
scenarios.

Using the Bayesian network model just developed, we may compute the
posterior probability of the three diseases given various subsets of evidence
on the causes and symptoms as shown in Table 4.4.

4.1.2 Conditional Linear Gaussian Bayesian Networks

Up until now, we have considered Bayesian networks over discrete random
variables only. However, there are many reasons for extending our considera-
tions to include continuous variables. In this section we will consider Bayesian
networks consisting of both continuous and discrete variables. For reasons to
become clear later, we restrict our attention to the case of conditional linear
Gaussian (also known as Normal) distributions and the case of conditional
linear Gaussian Bayesian networks. We refer to a conditional linear Gaussian
Bayesian network as a CL.G Bayesian network.

A CLG Bayesian network N = (X, G, P, F) consists of an acyclic, directed
graph § = (V,E), a set of conditional probability distributions P, and a set
of density functions F. There will be one conditional probability distribution
for each discrete random variable X of X and one density function for each
continuous random variable Y of X.
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A CLG Bayesian network specifies a distribution over a mixture of discrete
and continuous variables (Lauritzen 1992b, Lauritzen & Jensen 2001). The
variables, X, are partitioned into the set of continuous variables, X, and
the set of discrete variables, XA. Each node of G represents either a discrete
random variable with a finite set of mutually exclusive and exhaustive states or
a continuous random variable with a conditional linear Gaussian distribution
conditional on the configuration of its discrete parent variables. This implies
an important constraint on the structure of G, namely that a discrete random
variable X, may only have discrete parents, i.e., Xpa(v) € X for any X, € Xa.

Any Gaussian distribution function can be specified by its mean and vari-
ance parameter. As mentioned above, we consider the case where a continuous
random variable can have a single Gaussian distribution function for each con-
figuration of its discrete parent variables. If a continuous variable has one or
more continuous variables as parents, the mean may depend linearly on the
state of the continuous parent variables. Continuous parent variables of dis-
crete variables are disallowed.

A random variable, X, has a continuous distribution if there exists a non-
negative function p, defined on the real line, such that for any interval J:

POX e T) = | px)ax,
J
where the function p is the probability density function of X (DeGroot 1986).
The probability density function of a Gaussian (or Normal) distributed vari-
able, X, with a mean value, u, and a positive variance, o2, is (i.e., X ~ N(u, 02)
or L(X) = N(y, 0%))

2
p(x; 1, 0%) = N(n, o) L (x— 1) }

= ex —
Qnod) ¥ { 202

where x € R.!

A continuous random variable, X, has a conditional linear Gaussian distri-
bution (or CLG distribution), conditional on the configuration of the parent
variables (Z C X, 1 C Xa) if

L(X|Z=1z1=1) =N(A(i) +B(i)"z C()), (4.2)

where A is a table of mean values (one value for each configuration i of
the discrete parent variables I), B is a table of regression coefficient vectors
(one vector for each configuration i of I with one regression coefficient for
each continuous parent variable), and C is a table of variances (one for each
configuration i of I). Notice that the mean value A(i) + B(i)"z of X depends
linearly on the values of the continuous parent variables Z, while the variance
is independent of Z. We allow for the situation where the variance is zero such
that deterministic relations between continuous variables can be represented.

T £(X) should be read as “the law of X”.
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The quantitative part of a CLG Bayesian network consists of a conditional
probability distribution for each X € X4 and a conditional Gaussian distribu-
tion for each X € Xr. For each X € X with discrete parents, I, and continuous
parents, Z, we need to specify a one-dimensional Gaussian probability distri-
bution for each configuration i of I as shown in Equation 4.2.

Definition 4.3. A CLG Bayesian network N = (X, G, P, F) consists of

a DAG G = (V,E) with nodes V and directed links E
a set of random variables, X, represented by the nodes of G
a set of conditional probability distributions, P, containing one distribu-
tion, P(X, | Xpa(v)), for each discrete random variable X,

e a set of conditional-linear Gaussian probability density functions, F, con-
taining one density function, p(Yy|Xpa(v)), for each continuous random
variable Y, .

The joint distribution over all the variables in a CLG Bayesian network
has the form P(Xa = 1) * N|xr‘(u(i),62(i)), where Ny (p, 02) denotes a k-
dimensional Gaussian distribution. The chain rule of CLG Bayesian networks
is

P(Xa = 1) % N, (1d), 0(1) = [T Plivlipaw) * [T Puw Xpaow)),

vEVA weVr

for each configuration i of Xa.
Recall that in the graphical representation of a CLG Bayesian network,
continuous variables are represented by double ovals.

Example 4.3. Figure 4.3 shows an example of the qualitative specification of
a CLG Bayesian network, N, with three variables, i.e., X = {Xj7,X3, X3},
where XA = {X7}and Xr = {X3, X3}. Hence, N consists of a continuous random
variable X3 having one discrete random variable X; (binary with states false
and true) and one continuous random variable X, as parents.

QO

Fig. 4.3. CLG Bayesian network with X; discrete, and X2 and X3 continuous.

To complete the model, we need to specify the relevant conditional proba-
bility distribution and density functions. The quantitative specification could,
for instance, consist of the following conditional linear Gaussian distribution
functions for X3
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L(X3lfalse,x2) = N(=5+(—2%x3),1.1)
L(X3|true,x2) = N(5+(2xx2),1.2).

The quantitative specification is completed by letting X, have a standard
Normal distribution (i.e., X3 ~ N(0,1)) and P(X;) = (0.75,0.25).

The qualitative and quantitative specifications complete the specification
of N. The joint distribution induced by N is

0 110
P(X; = false) % p(X2,X3) =0.75 %N ((5) ’ (10 5.1))’

P(X; =true) * p(Xz,X3) =0.25% N ((g) ’ (110 5]%)> ’

Determining the joint distribution induced by N requires a series of non-
trivial computations. We refer the reader to the next chapter for a brief treat-
ment of inference in CLG Bayesian networks. A detailed treatment of these
computations is beyond the scope of this book.

Ezample 4.4 (Adapted from Lauritzen (1992a)). Consider a banker who is
monitoring her clients in order to limit future loss from each client account.
The task of the banker is to identify clients who may have problems repaying
their loans by predicting potential future loss originating from each individual
customer based on demographic information and credit limit.

Figure 4.4 shows a simple CLG Bayesian network model for this scenario.
Loss is a linear function of variables Income (I) given variable WillToPay
(W). CreditLimit (C) is a linear function of Income given Housing (H) and
MaritalStatus (M). In addition MaritalStatus is also a causal factor of Housing
and WillToPay, while Profession and Employment are causal factors of Income.

Profession

Housing

MaritalStatus

Fig. 4.4. CLG Bayesian network for credit account management.

With the model, the banker may enter observations on each client and
compute an expected loss for that client. The model may be extended to
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include various risk indicators and controls in order to facilitate a scenario-
based analysis on each client.

The reason for restricting our attention to the case of conditional linear
Gaussian distributions is that only for this case is exact probabilistic inference
feasible by local computations. For most other cases it is necessary to resort
to approximate reasoning.

4.2 Decision Making Under Uncertainty

The framework of influence diagrams (Howard & Matheson 1981) is an effec-
tive modeling framework for representation and analysis of (Bayesian) decision
making under uncertainty. Influence diagrams provide a natural representa-
tion for capturing the semantics of decision making with a minimum of clutter
and confusion for the decision maker (Shachter & Peot 1992). Solving a deci-
sion problem amounts to (i) determining an optimal strategy that maximizes
the expected utility for the decision maker and (ii) computing the maximal
expected utility of adhering to this strategy.

An influence diagram is a type of causal model that differs from a Bayesian
network. A Bayesian network is a probabilistic network for reasoning under
uncertainty, whereas an influence diagram is a probabilistic network for rea-
soning about decision making under uncertainty. An influence diagram is a
graphical representation of a decision problem involving a sequence of inter-
leaved decisions and observations. Similar to Bayesian networks, an influence
diagram is a compact and intuitive probabilistic knowledge representation (a
probabilistic network). It consists of a graphical representation describing de-
pendence relations between entities of a problem domain, points in time where
decisions are to be made, and a precedence ordering specifying the order on
decisions and observations. It also consists of a quantification of the strengths
of the dependence relations and the preferences of the decision maker. As such,
an influence diagram can be considered as a Bayesian network augmented with
decision variables, utility functions specifying the preferences of the decision
maker, and a precedence ordering.

As decision makers we are interested in making the best possible decisions
given our model of the problem domain. Therefore, we associate utilities with
state configurations of the network. These utilities are represented by wtility
functions (also known as value functions). Each utility function associates a
utility value with each configuration of its domain variables. The objective of
decision analysis is to identify the decision options that produce the highest
expected utility.

By making decisions, we influence the probabilities of the configurations of
the network. To identify the decision option with the highest expected utility,
we compute the expected utility of each decision alternative. If A is a decision
variable with options aj,...,amn, H is a hypothesis with states hy,..., hn,
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and ¢ is a set of observations in the form of evidence, then we can compute
the utility of each outcome of the hypothesis and the expected utility of each
action. The utility of an outcome (ay, hy) is U(ay, hy) where U(-) is our utility
function. The expected utility of performing action a; is

EU(ai) = ) U(as, hy)P(hyle),
j

where P(-) represents our belief in H given ¢. The utility function U(-) encodes
the preferences of the decision maker on a numerical scale.

We shall choose the alternative with the highest expected utility; this is
known as the maximum expected utility principle. Choosing the action, which
maximizes the expected utility amounts to selecting an option a* such that

a* = argmax EU(a).
acA

There is an important difference between observations and actions. An
observation of an event is passive in the sense that we assume that an ob-
servation does not effect the state of the world whereas the decision on an
action is active in the sense that an action enforces a certain event. The event
enforced by a decision may or may not be included in the model depending on
whether or not the event is relevant for the reasoning. If the event enforced by
an action A is represented in our model, then A is referred to as an intervening
action, otherwise it is referred to as a non-intervening action.

4.2.1 Discrete Influence Diagrams

A (discrete) influence diagram N = (X, G, P, U) is a four-tuple consisting of a
set, X, of discrete random variables and discrete decision variables, an acyclic,
directed graph G, a set of conditional probability distributions P, and a set
of utility functions U. The acyclic, directed graph, § = (V, E), contains nodes
representing random variables, decision variables, and utility functions (also
known as value or utility nodes).

Each decision variable, D, represents a specific point in time under the
model of the problem domain where the decision maker has to make a de-
cision. The decision options or alternatives are the states (dj,...,dn) of D
where n = ||D||. The decision options are mutually exclusive and exhaus-
tive. The usefulness of each decision option is measured by the local utility
functions associated with D or one of its descendants in §. Each local utility
function w(Xpa(v)) € U, where v € Vy is a utility node, represents an additive
contribution to the total utility function w(X) in N. Thus, the total utility
function is the sum of all the utility functions in the influence diagram, i.e.,
u(X) =2 vevy, WXpav))-

Definition 4.4. A (discrete) influence diagram N = (X, G, P, U) consists of
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e a DAG G = (V,E) with nodes, V, and directed links, E, encoding depen-
dence relations and information precedence including a total order on de-
c1810MS

e qa set of discrete random variables, X ¢, and discrete decision variables, Xp,
such that X = Xc U Xp represented by nodes of G

e a set of conditional probability distributions, P, containing one distribu-
tion, P(X, [ Xpa(v)), for each discrete random variable X,

e a set of utility functions, U, containing one utility function, uw(Xpa(v)), for
each node v in the subset Vi C V of utility nodes.

An influence diagram supports the representation and solution of sequen-
tial decision problems with multiple local utility functions under the no-
forgetting assumption (Howard & Matheson 1981) (i.e., perfect recall is as-
sumed of all observations and decisions made in the past).

An influence diagram, N = (X, G, P, U), should be constructed such that
one can determine exactly which variables are known prior to making each
decision. If the state of a variable X, € X¢ will be known at the time of
making a decision D,, € Xp, this will (probably) have an impact on the
choice of alternative at D. An observation on X, made prior to decision D,,
is represented in N by making v a parent of w in G. If v is a parent of w
in § = (V,E) (ie, (v,w) € E, implying X, € Xpa(w)), then it is assumed
that X, is observed prior to making the decision represented by D.,. The
link (v,w) is then referred to as an informational link.

In an influence diagram there must also be a total order on the decision
variables Xp = {Dg,...,Dn} C X. That is, there can be only one sequence in
which the decisions are made. We add informational links to specify a total
order (Dq,...,Dy) on Xp = {D1,...,Du}. There need only be a directed
path from one decision variable to the next one in the decision sequence in
order to enforce a total order on the decisions.

In short, a link, (w,v), into a node representing a random variable, X,,,
denotes a possible probabilistic dependence relation of X, on Y,, while a link
from a node representing a variable, X, into a node representing a decision
variable, D, denotes that the state of X is known when decision D is to be
made. A link, (w,v), into a node representing a local utility function, u,
denotes functional dependence of u on X, € X.

The chain rule of influence diagrams is

EUX) = [T PG IXpan)) ) wlXpagw))-

X,e€Xc weVy

An influence diagram is a compact representation of a joint expected utility
function.

In the graphical representation of an influence diagram, utility functions
are represented by rhombuses (diamond-shaped nodes), whereas decision vari-
ables are represented as rectangles.
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Ezample 4.5 (Oil Wildcatter (Raiffa 1968)). Consider the fictitious example
of an oil wildcatter about to decide whether or not to drill for oil at a specific
site. The situation of the oil wildcatter is the following.

An oil wildcatter must decide either to drill or not to drill. He is uncertain
whether the hole will be dry, wet, or soaking. The wildcatter could take seismic
soundings that will help determine the geological structure of the site. The
soundings will give a closed reflection pattern (indication of much oil), an
open pattern (indication of some oil), or a diffuse pattern (almost no hope of
oil).

The qualitative domain knowledge extracted from the above description
can be formulated as the DAG shown in Figure 4.5. The state spaces of the
variables are as follows dom(Drill) = {no, yes}, dom(Qil) = {dry, wet, soaking},
dom(Seismic) = {closed, open, diffuse}, and dom(Test) = {no, yes}.

Fig. 4.5. The Oil Wildcatter network.

Figure 4.5 shows how the qualitative knowledge of the example can be
compactly specified in the structure of an influence diagram N = (X, G, P, U).

The quantitative probabilistic knowledge as defined by the structure of G
consists of P(Qil) and P(Seismic|Qil, Test), while the quantitative utility knowl-
edge consists of Uy (Test) and U, (Drill, Qil).

The cost of testing is 10k whereas the cost of drilling is 70k. The utility
of drilling is Ok, 120k, and 270k for a dry, wet, and soaking hole, respectively.
Hence, Uq(Test) = (0,—10) and U, (Drill = yes, Qil) = (—70,50,200). The test
result Seismic depends on the amount of oil Oil as specified in Table 4.5. The
prior belief of the oil wildcatter on the amount of oil at the site is P(Qil) =
(0.5,0.3,0.2).

Seismic
Oil diffuse open closed
dry 0.6 0.3 0.1
wet 0.3 0.4 0.3

soaking 0.1 0.4 0.5
Table 4.5. The conditional probability distribution P(Seismic|Qil, Test = yes).
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This produces a completely specified influence diagram representation of
the oil wildcatter decision problem. The decision strategy of the oil wildcatter
will be considered in Example 4.7 on the facing page.

As a consequence of the total order on decisions and the set of informa-
tional links, the set of discrete random variables and decision variables are
subjected to a partial ordering. The random variables are partitioned into
disjoint information sets Jo,...,In (i.e., Iy NJ; = O for i # j) relative to the
decision variables specifying the precedence order. The information set J; is
the set of variables observed after decision D; and before decision Dy, 1. The
partition induces a partial ordering, <, on the variables X. The set of variables
observed between decisions D; and Diyq precedes Di;1 and succeeds Dj in
the ordering

Jo <Dy <71 <+ <Dp <y,

where Jo is the set of discrete random variables observed before the first
decision, J; is the set of discrete random variables observed after making
decision D; and before making decision Diyq, for alli=1,...,n—1, and J,
is the set of discrete random variables never observed or observed after the
last decision Dy, has been made. If the influence diagram is not constructed
or used according to this constraint, the computed expected utilities will (of
course) not be correct.

Example 4.6. The total order on decisions and the informational links of Ex-
ample 4.5 on the previous page induce the following partial order:

{} < Test < {Seismic} < Drill < {Qil}.

This partial order turns out to be a total order. In general, this is not the case.
The total order specifies the flow of information in the decision problem. No
observations are made prior to the decision on whether or not to Test. After
testing and before deciding on whether or not to Drill, the oil wildcatter will
make an observation on Seismic, i.e. the test result is available before the Drill
decision. After drilling Oil is observed.

To solve an influence diagram N = (X, G, P, U) with decision variables, Xp,
is to identify an optimal strategy, A, over Xp maximizing the expected utility
for the decision maker and to compute the mazimum expected utility MEU(A)
of A. A strategy, A, is an ordered set of decision policies A = (d7,...,0n)
including one decision policy for each decision D € Xp. An optimal strat-
eqy A= (81 Yoo ,311), maximizes the expected utility over all possible strate-
gies, i.e., it satisfies

EU(A) > EU(a),

for all strategies A.
The decision history of Dy, denoted H(Dy), is the set of previous decisions
and their parent variables
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i—1

i—2
H(D:) = | J({D;) U Xpavy)) = D1, DU | J 95,
j=1 j=0

where vj denotes the node that represents Dj.

The decision past of Dj, denoted J(Dy), is the set of its parent variables
and the decision history H(Dj)

IDi) = Xpap) YUH(Dy)
i1

Xpatvo) U [ JUD51U Xparv,))
i=1

i—1
= {D;,...,Di_1}U Ujj.
=1

Hence, J(D;) \ H(D;) = Ji_7 are the variables observed between D;_;
and Dj.

The decision future of Dy, denoted F(D;) is the set of its descendant
variables

n
FDi) = iy U ({Dj} U Xpa(v;))
j=it1

n
= {le,-.-,Dn}UUjj-
j=i

A policy 6; is a mapping from the information set J(D;) of D; to the state
space dom(Dy) of Dy such that ; : J(D;) — dom(Dy). A policy for decision D
specifies the optimal action for the decision maker for all possible observations
made prior to making decision D.

It is only necessary to consider ; as a function from relevant observations
on J(Di) to dom(Dy), i.e., observations with an unblocked path to a utility
descendant of Dj. Relevance of an observation with respect to a decision is
defined in Section 4.2.3 on page 89.

Example 4.7. After solving the influence diagram, we obtain an optimal strat-
egy A = {87est, S0l - Hence, the optimal strategy A (we show how to identify
the optimal strategy for this example in Example 5.11 on page 126) consists
of a policy STest for Test and a policy gDri” for Drill given Test and Seismic
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Orest = yes

yes Seismic = closed, Test = no
yes Seismic = open, Test = no
SDrm(Seismic, Test) — yes Seismfc = diffuse, Test = no
yes Seismic = closed, Test = yes
yes Seismic = open, Test = yes

no Seismic = diffuse, Test = yes

The policy for Test says that we should always test, while the policy for Drill
says that we should drill except when the test produces a diffuse pattern
indicating almost no hope of oil.

An intervening decision D of an influence diagram is a decision that may
impact the value of another variable X represented in the model. In order
for D to potentially impact the value of X, X must be a descendant of D in G.
This can be realized by considering the d-separation criterion (consider the
information blocking properties of the converging connection) and the set of
evidence available when making the decision D. Consider, for instance, the
influence diagram shown in Figure 4.5. The decision Test is an intervening
decision as it impacts the value of Seismic. It cannot, however, impact the
value of Oil as Qil is a non-descendant of Test and we have no down-stream
evidence when making the decision on Test. Since decision D may only have a
potential impact on its descendants, the usefulness of D can only be measured
by the utility descendants of D.

A total ordering on the decision variables is usually assumed. This assump-
tion can, however, be relaxed. Nielsen & Jensen (1999) describe when decision
problems with only a partial ordering on the decision variables are well-defined.
In addition, the limited memory influence diagram (Lauritzen & Nilsson 2001)
and the unconstrained influence diagram (Vomlelové & Jensen 2002) support
the use of unordered decision variables.

Ezample 4.8 (Apple Jack). We consider once again the problems of Apple Jack
from Example 4.1 on page 66. A Bayesian network for reasoning about the
causes of the apple tree losing its leaves was shown in Figure 4.1 on page 66.

We continue the example by assuming that Apple Jack wants to decide
whether or not to invest resources in giving the tree some treatment against
a possible disease. Since this involves a decision through time, we have to
extend the Bayesian network to capture the impact of the treatment on the
development of the disease. We first add three variables similar to those al-
ready in the network. The new variables Sick™, Dry™, and Loses™ correspond
to the original variables, except that they represent the situation at the time
of harvest. These variables have been added in Figure 4.6 on the facing page.

The additional variables have the same states as the original variables:
Sick®, Dry*, and Loses™ all have states no and yes. In the extended model, we
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Dry >( Dry”

=

Fig. 4.6. We model the system at two different points in time (before and after a
decision) by replicating the structure.

expect a causal influence from the original Sick variable on the Sick® variable
and from the original Dry variable on the Dry* variable. The reason is the
following. If, for example, we expect the tree to be sick now, then this is also
very likely to be the case in the future and especially at the time of harvest.
Of course, the strength of the influence depends on how far out in the future
we look. Perhaps one could also have a causal influence from Loses on Loses™,
but we have chosen not to model such a possible dependence relation in this
model.

Dry >( Dry

Sick*

Y

Sick

Fig. 4.7. Addition of a decision variable for treatment to the Bayesian network in
Figure 4.6.

Apple Jack may try to heal the tree with a treatment to get rid of the
possible disease. If he expects that the loss of leaves is caused by drought, he
might save his money and just wait for rain. The action of giving the tree a
treatment is now added as a decision variable to the Bayesian network, which
will then no longer be a Bayesian network. Instead it becomes the influence
diagram shown in Figure 4.7.

The treat decision variable has the states no and yes. There is a causal
link (Treat, Sick®) from the decision Treat to Sick® as we expect the treat-
ment to have a causal impact on the future health of the tree. There is an
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informational link from Loses to Treat as we expect Apple Jack to observe
whether or not the apple tree is losing its leaves prior to making the decision
on treatment.

We need to specify the utility functions enabling us to compute the ex-
pected utility of the decision options. This is done by adding utility functions
to the influence diagram. Each utility function will represent a term of an
additively decomposing utility function and each term will contribute to the
total utility. The utility functions are shown in Figure 4.8.

Fig. 4.8. A complete qualitative representation of the influence diagram used for
decision making in Apple Jack’s orchard.

The utility function C specifies the cost of the treatment while utility
function H specifies the gain of the harvest. The latter depends on the state
of Sick®, indicating that the production of apples depends on the health of
the tree.

Sick*
Treat Sick no yes
no no 0.98 0.02
no yes | 0.01 0.99
yes no 0.99 0.01
yes yes 0.8 0.2

Table 4.6. The conditional probability distribution P(Sick*|Treat, Sick).

Figure 4.8 shows the complete qualitative representation of the influence
diagram N = (X, G, P, U). To complete the quantitative representation as well,
we need to specify the conditional probability distributions, P, and utility
functions, U, of N. Recall that a decision variable does not have any distribu-
tion. The appropriate probability distributions are specified in Tables 4.6-4.8.
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Dry*
Dry | no yes

no 0.95 0.05
yes 0.4 0.6

Table 4.7. The conditional probability distribution P(Dry*|Dry).

If we have a healthy tree (Sick™ is in state no), then Apple Jack will get
an income of € 200, while if the tree is sick (Sick™ is in state yes) his income is
only € 30, i.e., H(Sick™) = (200, 30). To treat the tree, he has to spend € 80,
i.e., C(Treat) = (0,—80).

Fig. 4.9. A simplified influence diagram for the decision problem of Apple Jack.

Since Dry* and Loses™ are not relevant for the decision on whether or not
to treat and since we do not care about their distribution, we remove them
from our model producing the final model shown in Figure 4.9. Variables Dry*
and Loses™ are in fact barren variables, see Section 3.3.4 on page 49. In an
influence diagram a variable is a barren variable when none of its descendants
are utility nodes and none of its descendants are ever observed.

Loses™
Dry*  Sick™ no yes

no no 0.98 0.02
no yes 0.1 0.9
yes no 0.15 0.85
yes yes 0.05 0.95

Table 4.8. The conditional probability distribution P(Loses™|Dry™*, Sick*).

The purpose of our influence diagram is to be able to determine the optimal
strategy for Apple Jack. After solving N, we obtain the following policy (8reat :
Loses — dom(Treat)) for Treat
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no Loses =no

6Trea\t(l—oses) = {

yes Loses = yes

Hence, we should only treat the tree when it loses its leaves. In Section 5.2,
we describe how to solve an influence diagram.

Notice that since a policy is a mapping from all possible observations to
decision options, it is sufficient to solve an influence diagram once. Hence, the
computed strategy can be used by the decision maker each time she or he is
faced with the decision problem.

Implications of Perfect Recall

As mentioned above, when using influence diagrams to represent decision
problems we assume perfect recall. This assumption states that at the time of
any decision, the decision maker remembers all past decisions and all previ-
ously known information (as enforced by the informational links). This implies
that a decision variable and all of its parent variables are informational parents
of all subsequent decision variables. Due to this assumption it is not necessary
to include no-forgetting links in the DAG of the influence diagram as they —
if missing — will implicitly be assumed present.

Fig. 4.10. An influence diagram representing the sequence of deci-
SiODSD],Dz,D3,D4.
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Ezample 4.9. (Jensen, Jensen & Dittmer 1994) Let N be the influence dia-
gram in Figure 4.10 on the preceding page. This influence diagram represents
a decision problem involving four decisions D1, D, D3, and D4 in that order.

From the structure of N, the following partial ordering on the random and
decision variables can be read

(B} <Dy <{E,F} <Dy, <{} <D3 <{G}<D4 <{A,C,D,H,1,],K,L}

This partial ordering specifies the flow of information in the decision prob-
lem represented by N. Thus, the initial (relevant) information available to the
decision maker is an observation of B. After making a decision on D1y, the
decision maker observes E and F. After the observations of E and F a decision
on D; is made, and so on.

Notice that no-forgetting links have been left out, e.g., there are no links
from B to D3, D3, or Dy4. These links are included in Figure 4.11. The differ-
ence in complexity of reading the graph is apparent.

Fig. 4.11. The influence diagram of Figure 4.10 with no-forgetting links.

As this example shows, a rather informative analysis can be performed by
reading only the structure of the graph of N.

4.2.2 Conditional LQG Influence Diagrams

Conditional linear-quadratic Gaussian influence diagrams combine conditional
linear Gaussian Bayesian networks, discrete influence diagrams, and quadratic
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utility functions into a single framework supporting decision making under
uncertainty with both continuous and discrete variables (Madsen & Jensen
2005).

Definition 4.5. A CLQG influence diagram N = (X, G, P, F, U) consists of

e a DAG G = (V,E) with nodes, V, and directed links, E, encoding depen-
dence relations and information precedence including a total order on de-
cisions

e a set of random variables, X¢c, and decision variables, Xp, such that X =
Xc UXp represented by nodes of G

e a set of conditional probability distributions, P, containing one distribu-
tion, P(Xy|Xpa(vy), for each discrete random variable X,

e a set of conditional linear Gaussian probability density functions, F, con-
taining one density function, p(Yaw [ Xpa(w)), for each continuous random
variable Y,,

e a set of linear-quadratic utility functions, U, containing one utility func-
tion, W(Xpa(vy), for each node v in the subset Vy C V of utility nodes.

We refer to a conditional linear-quadratic Gaussian influence diagram as
a CLQG influence diagram. The chain rule of CLQG influence diagrams is

BU(Xa =1,Xr) = P(Xa=1) N (ni),o*([1) * ) wXpa(z)
zeVy

H P(ivhpa(\)))* H p(yw‘xpa(w)) *

VEVA weVr

Z u(Xpa(z) )a

zEVy

for each configuration i of Xa.

Recall that in the graphical representation of a CLQG influence diagram,
continuous utility functions are represented by double rhombuses and contin-
uous decision variables as double rectangles.

A CLQG influence diagram is a compact representation of a joint expected
utility function over continuous and discrete variables, where continuous vari-
ables are assumed to follow a linear Gaussian distribution conditional on a
subset of discrete variables while utility functions are assumed to be linear-
quadratic in the continuous variables (and constant in the discrete). This
may seem a severe assumption which could be limiting to the usefulness of
the CLQG influence diagram. The assumption seems to indicate that all local
utility functions specified in a CLQG influence diagram should be linear-
quadratic in the continuous variables. This is not the case, however, as the
following examples show. We will consider the assumption in more detail in
Section 5.2 on solving decision models.
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Fig. 4.12. A CLQG influence diagram for a simple guessing game.

Ezxample 4.10 (Guessing Game (Madsen € Jensen 2005)). Figure 4.12 illus-
trates a CLQG influence diagram, N, representation of a simple guessing game
with two decisions.

The first decision, represented by the discrete decision variable Play with
states reward and play, is to either accept an immediate reward or to play
a game where you will receive a payoff determined by how good you are
at guessing the height of a person, represented by the continuous random
variable Height, based on knowledge about the sex of the person, represented
by the discrete random variable Sex with states female and male. The second
decision, represented by the real-valued decision variable Guess, is your guess
on the height of the person given knowledge about the sex of the person.

The payoff is a constant (higher than the reward) minus the distance of
your guess from the true height of the person measured as height minus guess
squared.

To quantify N, we need to specify a prior probability distribution for Sex,
a conditional Gaussian distribution for Height and a utility function over Play,
Guess, and Height. Assume the prior distribution on Sex is P(Sex) = (0.5, 0.5)
whereas the distribution for Height is

L(Height|female) = N(170,400)
L(Height|male) = N(180,100).
We assume the average height of a female to be 170 cm with a standard
deviation of 20 cm and average height of a male to be 180 cm with a standard
deviation of 10 cm. The utility function over Play, Guess, Height is
u(play,dz,h) = 150 — (h—d2)?
u(reward,d,h) = 100.

We assume the immediate reward is 100. After solving N, we obtain an optimal
strategy A= {5P|ay> 5Guess}

dplay = play
dGuess(play, female) = 170
OGuess(play, male) = 180.
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The optimal strategy is to guess that the height of a female person is 170 cm
and the height of a male person is 180 cm.

In this example the policy for Guess reduces to a constant for each config-
uration of its parent variables. In the general case, the policy for a continuous
decision variable is a multi-linear function in its continuous parent variables
given the discrete parent variables.

As another example of a CLQG influence diagram consider a revised exten-
sion of the Oil Wildcatter problem of Raiffa (1968) (Example 4.5 on page 77).
The revised Oil Wildcatter problem, which is further revised here, is due
to Cobb & Shenoy (2004).

Ezample 4.11 (0il Wildcatter (Madsen & Jensen 2005)). The network of the
revised version of the Oil Wildcatter problem is shown in Figure 4.13. First,
the decision maker makes a decision on whether or not to perform a test Test
of the geological structure of the site under consideration. When performed,
this test will produce a test result, Seismic depending on the amount of oil Qil.
Next, a decision Drill on whether or not to drill is made. There is a cost Cost
associated with drilling, while the revenue is a function of oil volume Volume
and oil price Price.

Fig. 4.13. A revised version of the Oil Wildcatter problem.

We assume the continuous random variables (i.e., cost of drilling, oil price,
and oil volume) to follow (conditional) Gaussian distributions. The utility
function can be stated in thousands of euros as U;(Test = yes) = —10,
U, (Cost = ¢, Drill =yes) = —c, Usz(Volume = v, Price = p, Drill = yes) = v xp,
and zero for the no drill and no test situations.

If the hole is dry, then no oil is extracted: L(Volume|Qil = dry) =
N(0,0). If the hole is wet, then some oil is extracted: L(Volume|Oil =
wet) = N(6,1). If the hole is soaking with oil, then a lot of oil is ex-
tracted: L(Volume|Oil = soaking) = N(13.5,4). The unit is a thousand bar-
rels. The cost of drilling follows a Gaussian distribution L(Cost|Drill =yes)
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= N(70,100). We assume that the price of oil Price also follows a Gaussian
distribution L(Price) = N(20,4).

Notice that the continuous utility functions U, and Uz are not linear-
quadratic in their continuous domain variables.

4.2.3 Limited Memory Influence Diagrams

The framework of influence diagrams offers compact and intuitive models for
reasoning about decision making under uncertainty. Two of the fundamen-
tal assumptions of the influence diagram representation are the no-forgetting
assumption implying perfect recall of the past and the assumption of a to-
tal order on the decisions. The limited memory influence diagram framework
(LIMID) (Lauritzen & Nilsson 2001) relaxes both of these fundamental as-
sumptions.

Relaxing the no-forgetting and the total order (on decisions) assumptions
largely increases the class of multistage decision problems that can be mod-
eled. LIMIDs allow us to model more types of decision problems than the
ordinary influence diagrams.

The graphical difference between the LIMID representation and the or-
dinary influence diagram representation is that the latter representation (as
presented in this book) assumes some informational links to be implicitly
present in the graph. This assumption is not made in the LIMID represen-
tation. For this reason it is necessary to explicitly represent all information
available to the decision maker at each decision.

The definition of a limited memory influence diagram is as follows.

Definition 4.6. A LIMID N = (X, G, P,U) consists of

e a DAGS = (V,E) with nodes V and directed links E encoding dependence
relations and information precedence

e a set of random wvariables, Xc, and discrete decision variables, Xp, such
that X = X¢c U Xp represented by nodes of G

e a set of conditional probability distributions, P, containing one distribu-
tion, P(X, [ Xpa(v)), for each discrete random variable X,

o a set of utility functions, U, containing one utility function, uw(Xpa(v)), for
each node v in the subset Vi C V of utility nodes.

Using the LIMID representation it is possible to model multistage deci-
sion problems with unordered sequences of decisions and decision problems
in which perfect recall cannot be assumed or may not be appropriate. This
makes the LIMID framework a good candidate for modeling large and com-
plex domains using an appropriate assumption of forgetfulness of the decision
maker. Notice that all decision problems that can be represented as an ordi-
nary influence diagram can also be represented as a LIMID.
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Fig. 4.14. A LIMID representation of a decision scenario with two unordered deci-
sions.

Example 4.12. Figure 4.14 shows an example of a LIMID representation N =
(X,G,P,U) of a decision scenario with two unordered decisions. Prior to de-
cision Dj observations on the values of A and C are made, while prior to
decision Dj an observation on the value of E is made. Notice that the obser-
vations on A and C made prior to decision D; are not available at decision Dj;
and vice versa for the observation on E.

Ezample 4.13 (Breeding Pigs (Lauritzen € Nilsson 2001)). A pig farmer is
growing pigs for a period of four months and subsequently selling them. During
this period the pigs may or may not develop a certain disease. If a pig has the
disease at the time it must be sold for slaughtering, its expected market price
is €40. If it is disease free, its expected market price as a breeding animal is
€135.

Once a month, a veterinarian inspects each pig and makes a test for pres-
ence of the disease. If a pig is ill, the test will indicate this with probabil-
ity 0.80, and if the pig is healthy, the test will indicate this with probabil-
ity 0.90. At each monthly visit, the doctor may or may not treat a pig for the
disease by injecting a certain drug. The cost of an injection is €13.

A pig has the disease in the first month with probability 0.10. A healthy
pig develops the disease in the following month with probability 0.20 with-
out injection, whereas a healthy and treated pig develops the disease with
probability 0.10, so the injection has some preventive effect. An untreated pig
that is unhealthy will remain so in the following month with probability 0.90,
whereas the similar probability is 0.50 for an unhealthy pig that is treated.
Thus, spontaneous cure is possible, but treatment is beneficial on average.

The qualitative structure of the LIMID representation of this decision
problem is shown in Figure 4.15 on the facing page. Notice that we make
the assumption that the test result R; is only available for decision Dj. This
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Fig. 4.15. Three test-and-treat cycles are performed prior to selling a pig.

implies that the test result is not taken into account for future decisions as it
is either forgotten or ignored.

The above example could be modeled as a standard influence diagram,
but if more test-and-treat cycles must be performed, the state space size
of the past renders decision making intractable. Therefore, it is appropriate
to make the decision on whether or not to treat based on the current test
result (and not considering past test results and possible treatments) — in this
case, individual records for the pigs need not be kept. In short, the example
illustrates a situation where instead of keeping track of all past observations
and decisions, some of these are deliberately ignored (in order to maintain
tractability of the task of computing policies).

4.3 Object-Oriented Probabilistic Networks

As large and complex systems are often composed of collections of identical or
similar components, models of such systems will naturally contain repetitive
patterns. A complex system will typically be composed of a large number of
similar or even identical components. This composition of the system should
be reflected in models of the system to support model construction, mainte-
nance, and reconfiguration. For instance, a diagnosis model for diagnosing car
start problems could reflect the natural decomposition of a car into its engine,
electrical system, fuel system, etc.

To support this approach to model development, the framework of object-
oriented probabilistic networks has been developed, see e.g. (Koller & Pfeffer
1997, Laskey & Mahoney 1997, Neil, Fenton & Nielsen 2000). Object-orienta-
tion may be defined in the following way

object-orientation = objects + inheritance,



92 4 Probabilistic Networks

where objects are instances of classes and inheritance defines a relationship be-
tween classes. Thus, we need to introduce the notion of objects and classes. In
this section, we introduce the notion of object-oriented probabilistic networks
(OOPNs).

The basic OOPN mechanisms described below support a type of object-
oriented specification of probabilistic networks, which makes it simple to reuse
models, to encapsulate sub-models (providing a means for hierarchical model
specification), and to perform model construction in a top-down fashion, a
bottom-up fashion, or a mixture of the two (allowing repeated changes of
level of abstraction).

An object-oriented modeling paradigm provides support for working with
different levels of abstraction in constructing network models. Repeated
changes of focus are partly due to the fact that humans naturally think about
systems in terms of hierarchies of abstractions and partly due to lack of ability
to mentally capture all details of a complex system simultaneously. Specify-
ing a model in a hierarchical fashion often makes the model less cluttered,
and thus provides a better means of communicating ideas among knowledge
engineers, domain experts, and users.

In the OOPN paradigm we present, an instance or object has a set of
variables and related functions (i.e., probability distributions, probability den-
sities, utility functions, and precedence constraints). This implies that in ad-
dition to the usual types of nodes, the graph of an OOPN model may contain
nodes representing instances of other networks encapsulated in the model. A
node that does not represent an instance of a network class is said to represent
a basic variable.

An instance represents an instantiation of a network class within another
network class. A network class is a blueprint for an instance. As such, a net-
work class is a named and self-contained description of a probabilistic net-
work, characterized by its name, interface, and hidden part. As instances can
be nested, an object-oriented network can be viewed as a hierarchical descrip-
tion of a problem domain. In this way, an instance M is the instantiation
(or realization) of a network class Cyp¢ within another network class Cy;, see
Figure 4.16 on the next page.

An instance connects to other variables via some of its (basic) variables.
These variables are known as its interface variables. As we wish to support
information hiding, the interface variables usually only constitute a subset of
the variables in the network class.

Let us be more precise. A network class C is a DAG over three pairwise
disjoint sets of nodes Z(C), H(C), @(C) where Z(C) are the input nodes, H(C)
are the hidden nodes, and ((C) are the output nodes of C. The set Z(C)u®(C)
is the interface of C. Interface nodes may represent either decision or random
variables, whereas hidden nodes may be instances of network classes, decision
variables, random variables, and utility functions.

Definition 4.7. An OOPN network class C = (N, Z,O) consists of



4.3 Object-Oriented Probabilistic Networks 93

I N VRS
O 0 2

Fig. 4.16. M is an instance of a network class Cyp¢ within another network class Cy.

e a probabilistic network N over variables X with DAG G
a set of basic variables T C X specified as input variables and a set of
basic variables © C X specified as output variables such that TNO =
and H =X\ (ZUO).

In the graphical representation of an OOPN instances are represented as
rectangles with arc-shaped corners whereas input variables are represented
as dashed ovals and output variables are represented as bold ovals. If the
interface variables of a network instance are not shown, then the instance is
collapsed. Otherwise it is expanded.

Since an OOPN implements information hiding through encapsulation, we
need to be clear on scope rules. First, we define the notations of simple and
qualified names. If X is a variable of a network instance N, then X is the simple
name of the variable, whereas N.X is the qualified name (also known as the
long name) of the variable. The scope S(X) of a variable X (i.e., a basic variable
or an instance) is defined as the part of a model in which the declaration of X
can be referred to by its simple name.

The (internal) scope S(C) of a network class C is the set of variables
and instances which can be referred to by their simple names inside C. For
instance, the internal scope of the network Co in Figure 4.16 is S(Cy) =
{C1,C3,Co,M}. The scope of an instance M of a network class Cy, i.e.,
class(M) = Cyy, is defined in a similar manner.

The interface variables Z(C) U @(C) of C are used to enlarge the visibility
of basic variables in the instantiations of C. The visibility of a variable X can
be enlarged by specifying it as either an input or an output variable of its
class.

An input variable X of an instance M is a placeholder for a variable (the
parent of X) in the encapsulating class of M. Therefore, an input variable has
at most one parent. An output variable X of an instance M, on the other
hand, enlarges the visibility of X to include the encapsulating network class
of M.
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Notice that the scope of a variable is distinct from visibility of the variable.
In Figure 4.16, the scope of output variable Cz is M whereas its visibility is
enlarged to include N by defining it as an output variable of M.

An input variable I of an instance M of network class C is bound if it
has a parent X in the network class encapsulating M. Each input random
variable I of a class C is assigned a default prior probability distribution P(I),
which becomes the probability distribution of the variable I in all instances
of C where I is an unbound input variable. A link into a node representing an
input variable may be referred to as a binding link.

Let M be an instance of network class C. Each input variable I € 7(C)
has no parent in C, no children outside C, and the corresponding variable
of M has at most one parent in the encapsulating class of M. Each output
variable O € @(C) may only have parents in Z(C) U H(C). The children and
parents of H € H(C) are subsets of the variables of C.

Example 4.14. Figure 4.16 shows a class instance M of a network class Cyy
instantiated within another network class Cy. Network class Cy has input
variable Cq, hidden variables C3 and M, and output variable C,. The network
class Cy¢ has input variables C; and C;, output variable C3, and unknown
hidden variables. The input variable C; of instance M is bound to C; of Cy
whereas C; is unbound.

Since C; € Z(Cy) is bound to C; € Z(M), the visibility of C; € 7(Cx)
is extended to include the internal scope of M. Hence, when we refer to C; €
Z(Cyy) inside Cy¢, we are in fact referring to C; € Z(Cy) as C1 € Z(Cyy) in in-
stance M is a placeholder for C; € Z(Cy) (i.e., you may think of C; € Z(Cyy)
as the formal parameter of Cyp; and C; € Z(Cyx) as the actual parameter
of M).

Since an input variable I € 7(M) of an instance M is a placeholder for
a variable Y in the internal scope of the encapsulating instance of M, type
checking becomes important when the variable Y is bound to I. The variable I
enlarges the visibility of Y to include the internal scope of M and it should
therefore be equivalent to Y. We define two variables Y and X to be equivalent
as follows.

Definition 4.8. Two variables X and Y are equivalent if and only if they are
of the same kind, category, and subtype with the same state labels in the case
of discrete variables.

This approach to type checking is referred as strong type checking .

If a model contains a lot of repetitive structure, its construction may be
tiresome and the resulting model may even be rather cluttered. Both issues
are solved when using object-oriented models. Another key feature of object-
oriented models is modularity. Modularity allows knowledge engineers to work
on different parts of the model independently once an appropriate interface
has been defined. The following example will illustrate this point.
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Ezample 4.15 (Apple Jack’s Garden). Let us assume that Apple Jack from
Example 4.1 on page 66 has a garden of three apple trees (including his finest
apple tree). He may want to reason about the sickness of each tree given
observations on whether or not some of the trees in the garden are losing
their leaves.

—_————

~

-~
\\Drought 0

—_—_—

Fig. 4.17. The Apple Tree network class.

Figure 4.17 shows the Apple Tree network class. The prior of each tree
being sick will be the same while the dryness of a tree is caused by a drought.
The drought is an input variable of the Apple Tree network class. If there
is a drought this will impact the dryness of all trees. The prior on drought
is P(Drought) = (0.9,0.1) while the conditional distribution of Dry conditional
on Drought is shown in Table 4.9.

Dry
Drought no yes
no 0.85 0.15
yes 0.35 0.65

Table 4.9. The conditional probability distribution P(Drought|Dry).

Figure 4.18 shows the network class of the Apple Garden. The input vari-
able Drought of each of the instances of the Apple Tree network class is bound
to the Drought variable in the Apple Garden network class. This enlarges the
visibility of the Drought variable (in the Apple Garden network class) to the
internal scope defined by each instance.

The two instances Tree; and Tree, are collapsed (i.e., not showing the
interface variables) while the instance Trees is expanded (i.e., not collapsed)
illustrating the interface of the network class.

The Drought variable could be an input variable of the Apple Garden
network class as well as it is determined by other complex factors. For the
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Drought
Y \, N
Tree, \ Drought 2
Trees

Fig. 4.18. The Apple Garden network consisting of three instantiations of the Apple
Tree network.

sake of simplicity of the example, we have made it a hidden variable of the
Apple Garden network class.

As mentioned above, a default prior distribution P(X) is assigned to each
input variable X € Z(C) of the class C = (N, 0, 7). Assigning a default po-
tential to each input variable X implies that any network class is a valid
probabilistic network model.

4.3.1 Chain Rule

It should be clear from the above discussion that each OOPN encodes either a
probability distribution or an expected utility function. For simplicity we will
discuss only the chain rule for object-oriented (discrete) Bayesian networks.
The chain rule of an object-oriented Bayesian network reflects the hierarchical
structure of the model.

An instance M of network class C encapsulates a conditional probabil-
ity distribution over its random variables given its unbound input nodes.
For further simplicity, let C = (N,Z, @) be a network class over basic dis-
crete random variables only (i.e., no instances, no decisions, and no utili-
ties) with N = (X, G,P) where X € X is the only input variable, i.e., X € T
and |Z| = 1. Since X has a default prior distribution, N is a valid model
representing the joint probability distribution

X) TT PO% 1 Xpa))-
Y, #X

In general, an instance M is a representation of the conditional probability
distribution P(© | Z’) where 7’ C 7 is the subset of bound input variables of M

O|I H P ) H P(lexpa(v))~

XezZ\1’ Y €T

4.3.2 Unfolded OOPNs

An object-oriented network N has an equivalent flat or unfolded network model
representation M. The unfolded network model of an object-oriented net-
work N is obtained by recursively unfolding the instance nodes of N. The
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unfolded network representation of a network class is important as it is the
structure used for inference.

The joint distribution of an object-oriented Bayesian network model is
equivalent to the joint distribution of its unfolded network model

PX) = J] PXelXparw),

Xy €Xo

where M = (X, G, P) is the unfolded network.

4.3.3 Instance Trees

An object-oriented model is a hierarchical model representation. The instance
tree T of an object-oriented model N is a tree over the set of instances of classes
in N. Two nodes v; and v; in T (with v; closer to the root of T than vj) are
connected by an undirected link if and only if the instance represented by v;
contains the instance represented by vj. The root of an instance tree is the
top level network class not instantiated in any other network class within the
model. Notice that an instance tree is unique.

In addition to the notion of default potentials there is the notion of the
default instance. Let C be a network class with instance tree T. Each non-root
node v of T represents an instance of a class C, whereas the root node r of T
represents an instance of the unique class C;, which has not been instantiated
in any class. This instance is referred to as the default instance of C,.

Ezxample 4.16. Figure 4.19 shows the instance tree of a network class N where
the root is the default instance of N.

Fig. 4.19. An instance tree.

Each node v of T represents an instance M and the children of v in T
represents instances in M.
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4.3.4 Inheritance

Another important concept of the OOPN framework is inheritance. For sim-
plicity, we define inheritance as the ability of an instance to take its interface
definition from another instance. Let C; be a network class with input vari-
ables I(Cy) and output variables O(Cy), i.e., C; = (N7,7Z7,®1). A network
class C; = (N2,72,02) may be specified as a subclass of C; if and only
if 71 C 7> and 01 C ;. Hence, subclasses may enlarge the interface.

4.4 Dynamic Models

The graph of a probabilistic network is restricted to be a finite acyclic directed
graph, see Section 2.1. This seems to imply that probabilistic networks as such
do not support models with feedback loops or models of dynamic systems
changing over time. This is not the case. A common approach to representing
and solving dynamic models or models with feedback loops is to unroll the
dynamic model for the desired number of time steps and treat the resulting
network as a static network. Similarly, a feedback loop can be unrolled and
represented using a desired number of time steps. The unrolled static network
is then solved using a standard algorithm applying evidence at the appropriate

time steps.

Fig. 4.20. The structure of a static network model.

As an example of a dynamic model consider the problem of monitoring the
state of a dynamic process over a specific period of time. Assume the network
of Figure 4.20 is an appropriate model of the causal relations between variables
representing the system at any point in time. The structure of this network
is static in the sense that it represents the state of the system at a certain
point in time. In the process of monitoring the state of the system over a
specific period of time, we will make observations on a subset of the variables
in the network and make inference about the remaining unobserved variables.
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In addition to reasoning about the current state of the system, we may want
to reason about the state of the system at previous and future points in time.
For this usage the network in Figure 4.20 is inadequate. Furthermore, the
state of the system at the current point in time will impact the state of the
system in the future and be impacted by the state of the system in the past.
What is needed is a time-sliced model covering the period of time over
which the system should be monitored. Figure 4.21 indicates a time-sliced
model constructed based on the static network shown in Figure 4.20. Each
time-slice consists of the structure shown in Figure 4.20 while the development
of the system is specified by links between variables of different time-slices.

> smoothing prediction
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Fig. 4.21. The structure of a dynamic model with n time-slices.

The temporal links of a time-slice t; is the set of links from variables of
time-slice t;_1 into variables of time-slice t;. The temporal links of time slice t;
define the conditional distribution of the variables of time slice t; given the
variables of time slice t;_7. The temporal links connect variables of adjacent
time slices. For instance, the temporal links of time-slice t, in Figure 4.21 is
the set {(X1,X3), (X1, X3)}.

The interface of a time-slice is the set of variables with parents in the
previous time-slice. For instance, the interface of time-slice t; in Figure 4.21
is the set {X%, X%}.

Three additional concepts are often used in relation to dynamic models.
Let 1 be the current time step, then smoothing is the process of querying about
the state of the system at a previous time step j < i given evidence about
the system at time 1, filtering is the process of querying about the state of
the system at the current time step, and prediction is the process of querying
about the state of the system at a future time step j > 1.

A dynamic Bayesian network is stationary when the transition probability
distributions are invariant between time steps. A dynamic Bayesian network
is first-order Markovian when the variables at time step i+ 1 are d-separated
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from the variables at time step i — 1 given the variables at time step i. When
a system is stationary and Markovian, the state of the system at time i + 1
only depends on its state at time 1, and the probabilistic dependence relations
are the same for all i. The Markovian property implies that arcs between time
slices only go from one time slice to the subsequent time slice.

A dynamic Bayesian network is referred to as either a dynamic Bayesian
network (DBN) or a time-sliced Bayesian network (TBN). See Kjaerulff (1995)
for more details on dynamic Bayesian networks.

Ezample 4.17 (Apple Jack’s Finest Tree). Figure 4.1 of Example 4.1 on
page 66 shows the Apple Jack network. The network is used for reasoning
about the cause of Apple Jack’s finest apple tree losing its leaves. The net-
work is static and models the dependence relations between two diseases and
a symptom at four specific points in time where Apple Jack is observing his
tree.

Consider the case where Apple Jack is monitoring the development of the
disease over a period of time by observing the tree each day in the morning.
In this case the level of dryness of the tree on a specific day will depend on
the level of dryness on the previous day and impact the level of dryness on the
next day; similarly for the level of sickness. The levels of dryness and sickness
on the next day are independent of the levels of dryness and sickness on the
previous day given the levels of dryness and sickness on the current day. This
can be captured by a dynamic model.

Fig. 4.22. A model with four time-slices.

Figure 4.22 shows a dynamic model with four time slices. Each time step
models the state of the apple tree at a specific point in time (the dashed
lines illustrates the separation of the model into time slices). The conditional
probability distributions P(Dry; |Dry;_;) and P(Sick; |Sicki_1) are the transi-
tion probability distributions. The interface between time slices i — 1 and 1
consists of Dry; and Sick;.

Assume that it is the second day when Apple Jack is observing his tree. The
observations on Loses of the first and second day are entered as evidence on the
corresponding variables. Filtering is the task of computing the probability of
the tree being sick on the second day, smoothing is the task of computing the
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probability of sickness on the first day and prediction is the task of computing
the probability of the tree being sick on the third or fourth day.

Dynamic models are not restricted to be Bayesian networks. Influence
diagrams and LIMIDs can also be represented as dynamic models.

Time-sliced networks are often represented using object-oriented networks
as the following example illustrates.

Ezxample 4.18 (Breeding Pigs). Example 4.13 shows a LIMID representation
of a decision problem related to breeding pigs, see Figure 4.15 on page 91. The
decision problem is in fact modeled as a time-sliced model where the structure
of each time-slice representing a test-and-treat cycle is shown in Figure 4.23.

7
{
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©

Fig. 4.23. The test-and-treat cycle of the Breeding Pigs network in Figure 4.15.

Three instances of the network class in Figure 4.23 are constructed to
create the network in Figure 4.24. The use of object-oriented modeling has
simplified the network construction.

(Graie, 1> {Coeles |—>{ G

Fig. 4.24. The Breeding Pigs network as a time-sliced OOPN.

The network in Figure 4.24 is equivalent to the network in Figure 4.15 on
page 91.

Kjeerulff (1995) has described a computational system for dynamic time-
sliced Bayesian networks. The system implemented is referred to as dHugin.
Boyen & Koller (1998) have described an approximate inference algorithm for
solving dynamic Bayesian networks with bounds on the approximation error.



102 4 Probabilistic Networks

4.5 Summary

In this chapter we have introduced probabilistic networks for reasoning and
decision making under uncertainty. A probabilistic network represents and
processes probabilistic knowledge. The qualitative component of a proba-
bilistic network encodes a set of (conditional) dependence and independence
statements among a set of random variables, informational precedence, and
preference relations. The quantitative component specifies the strengths of
dependence relations using probability theory and preference relations using
utility theory.

We have introduced discrete Bayesian network models and CLG Bayesian
network models for reasoning under uncertainty. A discrete Bayesian net-
work supports the use of discrete random variables whereas a CLG Bayesian
network supports the use of a mixture of continuous and discrete random
variables. The continuous variables are constrained to be conditional linear
Gaussian variables. The chapter contains a number of examples that illus-
trate the use of Bayesian networks for reasoning under uncertainty.

Discrete influence diagrams, CLQG influence diagrams, and limited mem-
ory influence diagrams were introduced as models for reasoning and decision
making under uncertainty. An influence diagram is a Bayesian network aug-
mented with decision variables, informational precedence relations, and pref-
erence relations. A discrete influence diagram supports the use of discrete
random and decision variables with an additively decomposing utility func-
tion. A CLQG influence diagram supports the use of a mixture of continuous
and discrete variables. The continuous random variables are constrained to be
conditional linear Gaussian variables while the utility function is constrained
to be linear-quadratic. A limited memory influence diagram is an extension
of the discrete influence diagram where the assumptions of no-forgetting and
a total order on the decisions are relaxed. This allows us to model a large
set of decision problems that cannot be modeled using the traditional influ-
ence diagram representation. The chapter contains a number of examples that
illustrate the use of influence diagrams for decision making under uncertainty.

Finally, we have introduced OOPNs. The basic OOPN mechanisms in-
troduced support a type of object-oriented specification of probabilistic net-
works, which makes it simple to reuse models, to encapsulate sub-models, and
to perform model construction at different levels of abstraction. The chapter
contains a number of examples that illustrates the use of the basic OOPN
mechanisms in the model development process. OOPNs are well-suited for
constructing time-sliced networks. Time-sliced networks are used to represent
dynamic models.

In Chapter 5 we discuss techniques for solving probabilistic networks.
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Exercises

Exercise 4.1. Peter and Eric are chefs at Restaurant Bayes. Peter works six
days a week while Eric works one day a week. In 90% of the cases Peter’s
food is high quality while Eric’s food is high quality in 50% of the cases. One
evening Restaurant Bayes serves an awful meal.

Is it fair to conclude that Eric prepared the food that evening?

Exercise 4.2. One in a thousand people has a prevalence for a particular
heart disease. There is a test to detect this disease. The test is 100% accurate
for people who have the disease and is 95% accurate for those who do not
(this means that 5% of people who do not have the disease will be wrongly
diagnosed as having it).

If a randomly selected person tests positive what is the probability that
the person actually has the heart disease?

Exercise 4.3. Assume a math class is offered once every semester while an
AT class is offered twice. The number of students taking a class depends on the
subject. On average 120 students take AI (02 = 500) while 180 students take
math (0 = 1000). Assume that on average 25% pass the Al exam (o2 = 400)
while 50% pass the math exam (0% = 500).

(a) What is the average number of students passing either a math or Al an
exam?

(b) What is the average number of students passing a math exam?

(c) What is the average number of students taking a math class when 80
students pass the exam?

Exercise 4.4. Frank goes to the doctor because he believes that he has got
the flu. At this particular time of the year, the doctor estimates that one out
of 1000 people suffers from the flu. The first thing the doctor checks is whether
Frank appears to have the standard symptoms of the flu; if Frank suffers from
the flu, then he will exhibit these symptoms with probability 0.9, but if he
does not have the flu he may still have these symptoms with probability 0.05.
After checking whether or not Frank has the symptoms, the doctor can decide
to have a test performed which may reveal more information about whether
or not Frank suffers from the flu; the cost of performing the test is €40.
The test can either give a positive or a negative result, and the frequency of
false positives and false negatives is 0.05 and 0.1, respectively. After observing
the test result (if any) the doctor can decide to administer a drug that with
probability 0.6 may shorten the sickness period if Frank suffers from the flu (if
he has not got the flu, then the drug has no effect). The cost of administering
the drug is €100, and if the sickness period is shortened the doctor estimates
that this is worth € 1000.

(a) Construct an influence diagram for the doctor from the description above.
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(b) Specify the probability distributions and the utility functions for the in-
fluence diagram.

Exercise 4.5. Assume that Frank is thinking about buying a used car for
€20,000, and the market price for similar cars with no defects is €23, 000.
The car may, however, have defects which can be repaired at the cost of
€5000; the probability that the car has defects is 0.3. Frank has the option
of asking a mechanic to perform (exactly) one out of two different tests on
the car. Test; has three possible outcomes, namely no-defects, defects and
inconclusive. For Test, there are only two possible outcomes (no-defects and
defects). If Frank chooses to have a test performed on the car, the mechanic
will report the result back to Frank who then decides whether of not to buy
the car; the cost of Test; is €300 and the cost of Test, is € 1000.

(a) Construct an influence diagram for Frank’s decision problem.

(b) Calculate the maximum expected utility and the optimal strategy for the
influence diagram; calculate the required probabilities from the joint prob-
ability table (over the variables Testy, Test, and StateOfCar) specified be-

low.
Test
no-defects defects inconclusive
Test no-defects | (0.448,0.00375) (0.028,0.05625) (0.084,0.015)
2 defects (0.112,0.01125)  (0.007,0.16875) (0.021,0.045)

Exercise 4.6. An environmental agency visits a site where a chemical pro-
duction facility has previously been situated. Based on the agency’s knowledge
about the facility, they estimate that there is a 0.6 risk that chemicals from
the facility have contaminated the soil. If the soil is contaminated (and noth-
ing is done about it) all people in the surrounding area will have to undergo
a medical examination due to the possible exposure; there are 1000 people
in the area, and the cost of examining/treating one person is $100. To avoid
exposure, the agency can decide to remove the top layer of the soil which,
in case the ground is contaminated, will completely remove the risk of ex-
posure; the cost of removing the soil is $30,000. Before making the decision
of whether or not to remove the top layer of soil, the agency can perform a
test which will give a positive result (with probability 0.9) if the ground is
contaminated; if the ground is not contaminated the test will give a positive
result with probability 0.01. The cost of performing the test is $1000.

(a) Construct an influence diagram for the environmental agency from the
description above.

(b) Specify the probability distributions and the utility functions for the in-
fluence diagram.

Exercise 4.7. A company has observed that one of their software systems is
unstable, and they have identified a component which they suspect is the cause
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of the instability. The company estimates that the prior probability for the
component being faulty is 0.01, and if the component is faulty then it causes
the system to become unstable with probability 0.99; if the component is not
faulty, then the system may still be unstable (due to some other unspecified
element) with probability 0.001.

To try to solve the problem the company must first decide whether to
patch the component at a cost € 10,000 : if the component is faulty, then the
patch will solve the fault with probability 0.95 (there may be several things
wrong, not all of which may be covered by the patch), but if the component
is not faulty then the patch will have no effect. The company also knows
that in the near future the vendor of the component will make another patch
available at the cost of € 20,000; the two patches focus on different parts of
the component. This new patch will solve the problem with probability 0.99,
and (as for the first patch) if the component is not faulty then the patch will
have no effect. Thus, after deciding on the first patch, the company observes
whether or not the patch solved the problem (i.e., is the system still unstable?)
and it then has to decide on the second patch. The company estimates that
(after the final decision has been made) the value of having a fully functioning
component is worth € 100, 000.

(a) Construct an influence diagram for the company from the description
above.

(b) Specify the probability distributions and the utility functions for the in-
fluence diagram.

Exercise 4.8. Consider a stud farm with ten horses where Cecily has un-
known mare and sire, John has mare Irene and sire Henry, Henry has mare
Dorothy and sire Fred, Irene has mare Gwenn and sire Eric, Gwenn has mare
Ann and unknown sire, Eric has mare Cecily and sire Brian, Fred has mare
Ann and unknown sire, Brian has unknown mare and sire, Dorothy has mare
Ann and sire Brian, and Ann has unknown mare and sire, see Figure 4.25.

Fig. 4.25. The stud farm pedigree.
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A sick horse has genotype aa, a carrier of the disease has genotype aA,
and a non-carrier has genotype AA. P(aa,aA,AA) = (0.1,0.2,0.7)

(a) Construct an object-oriented network representation of the stud farm prob-
lem.

(b) What is the probability of each horse being sick/a carrier/a non-carrier
once we learn that John is sick?
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Solving Probabilistic Networks

We build knowledge bases in order to formulate our knowledge about a certain
problem domain in a structured way. The purpose of the knowledge base
is to support our reasoning about events and decisions in a domain with
inherent uncertainty. The fundamental idea of solving a probabilistic network
is to exploit the structure of the knowledge base to reason efficiently about
the events and decisions of the domain taking the inherent uncertainty into
account.

An expert system consists of a knowledge base and an inference engine.
The inference engine is used to solve queries against the knowledge base. In
the case of probabilistic networks, we have a clear distinction between the
knowledge base and the inference engine. The knowledge base is the Bayesian
network or influence diagram, whereas the inference engine consists of a set
of generic methods that applies the knowledge formulated in the knowledge
base on task-specific data sets, known as evidence, to compute solutions to
queries against the knowledge base. The knowledge base alone is of limited
use if it cannot be applied to update our belief about the state of the world
or to identify (optimal) decisions in the light of new knowledge.

As we saw in the previous chapter, the knowledge bases we consider are
probabilistic networks. A probabilistic network may be an efficient represen-
tation of a joint probability distribution or a joint expected utility function.
In the former case the model is a Bayesian network, while in the latter case
it is an influence diagram.

In this chapter we consider the process of solving probabilistic networks.
As the exact nature of solving a query against a probabilistic network depends
on the type of model, the solution process of Bayesian networks and influence
diagrams are considered separately in the following sections.

Section 5.1 considers probabilistic inference in Bayesian networks as the
task of computing posterior beliefs in the light of evidence. A number of differ-
ent approaches to inference are considered. We consider variable elimination,
query-based inference, arc reversal, and message passing in junction trees. The
inference process in discrete Bayesian networks is treated in detail, while the
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inference process in CLG Bayesian networks and CLQG influence diagrams
is outlined. In Section 5.2 we consider the task of solving decision models.
Solving a decision model amounts to computing maximum expected utilities.
We derive a generic method for solving influence diagrams and LIMIDs.

Parts of this chapter have appeared in Madsen, Jensen, Kjeerulff & Lang
(2005).

5.1 Probabilistic Inference

We build Bayesian network models in order to support efficient reasoning
under uncertainty in a given domain. Reasoning under uncertainty is the task
of computing our updated beliefs in (unobserved) events given observations
on other events, i.e., evidence.

5.1.1 Inference in Discrete Bayesian Networks

One particular type of probabilistic inference task in Bayesian networks is the
task of computing the posterior marginal of an unobserved variable Y given
a (possibly empty) set of evidence ¢, i.e., P(Y]e). Let N = (X,G,P) be a
Bayesian network over the set of discrete random variables X = {X7,..., X},
and assume that ¢ = (). Exploiting the chain rule for Bayesian networks (see
e.g., Equation 4.1 on page 65), for variable Y € X, we may compute

PY) = ) P

XeX\{Y}

Z H P(XV‘Xpa(V))- (5.1)

XeX\{Y} XyeX

This is the prior marginal distribution P(Y) of Y. The prior marginal of all
variables may be computed by repetition for each variable.

Ezample 5.1. Given the example of Apple Jack (Example 4.1 on page 66), we
may consider the task of computing the prior marginal distribution P(L) over
the events that the tree does lose its leaves and that the tree does not lose its
leaves. The distribution P(L) may be computed as

P(L)=) ) P(S)P(L|S,D)P(D).
S D

Using the quantification of the model specified as part of Example 4.1, we
arrive at the prior distribution P(L) = (0.82,0.18). Hence, a priori, there is
an 18% probability that the tree will lose its leaves.
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The above approach does not incorporate evidence into the inference task.
In addition, it is a very inefficient approach for non-trivial Bayesian networks
because the joint distribution P(X) over X is constructed as an intermediate
step and because a lot of calculations are repeated.

As we will see, it is possible to develop a more efficient approach to prob-
abilistic inference by exploiting the independence relations induced by the
structure of the DAG and the evidence, and by minimizing the repetition of
calculations. Having said that, let us turn to the general case of computing
the posterior marginal P(X|e) of a variable, X, given evidence ¢.

Let € ={e1,...,em} be a non-empty set of evidence over variables X(¢).
For a (non-observed) variable X; € X of N, the task is to compute the posterior
probability distribution P(Xj|e). This can be done by exploiting the chain rule
factorization of the joint probability distribution induced by N:

P(e|X;)P(X;)  P(Xj,¢€)
Ple)  P(e)
X P(Xj,E)

= ) P

YeU\{X;}

= Z H P(Xi|xpa(vi))££

YEUN(X;} Xi€X

> T PXilXpapo) H Ex

YeU\{X;} XieX XeX(e

P(Xjle) =

for each Xj ¢ X(e), where Ex is the evidence function for X € X(e) and v; is
the node representing X;. Notice that

LXle) =PlelX) = > J]PX X)) J] €x  (5:2)

YeX\{Xj} i#j XeX(e)

is the likelihood function of Xj given e. Since P(Xj) may be obtained by
inference over the empty set of evidence, we can — using Bayes’ rule —
compute

P(Xjle) o L(Xjle)P(X5).

The proportionality factor is the normalization constant o« = P(¢), which is
easily computed from P(X, e) by summation over X as o = ) o P(X, ¢).

Example 5.2. One evening when Apple Jack is taking his usual after-dinner
walk in the garden, he observes his finest apple tree to be losing its leaves.
Given that he knows that this may be an indication of the tree being sick, he
starts wondering whether or not the tree is sick.

Apple Jack is interested in the probability of the tree being sick given the
observation on the tree losing its leaves
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P(S,¢)
P(S =
Sle) = s
LT PISIPLIS, D)P(D)EL
P(e)
o (0.0927,0.0905),
where & = (0,1) is the evidence function reflecting the tree losing its
leaves. The normalization constant is « = P(¢) = P(S = nole) + P(S =

yesle) = 0.0927 4+ 0.0905 = 0.1832. This produces the posterior distribu-
tion P(S|e) = (0.506,0.494) over the tree losing its leaves. Hence, there is an
increased probability that the tree is sick when it has been observed to lose
its leaves. The prior distribution on the tree being sick is P(S) = (0.9,0.1).

In general, probabilistic inference is an NP-hard task (Cooper 1990). Even
approximate probabilistic inference is NP-hard (Dagum & Luby 1993). For
certain classes of Bayesian network models the complexity of probabilistic in-
ference is polynomial or even linear in the number of variables in the network.
The complexity is polynomial when the graph of the Bayesian network is a
poly-tree (Kim & Pearl 1983, Pearl 1988) (a directed graph § is called a poly-
tree, if its underlying undirected graph is singly connected), while it is linear
when the graph of the Bayesian network is a tree.

The most critical problem related to the efficiency of the inference process
is that of finding the optimal order in which to perform the computations.
The inference task is, in principle, solved by performing a sequence of multi-
plications and additions.

Query-Based Inference

One approach to inference is to consider the inference task as the task of
computing the posterior distribution of a set of variables. This is referred
to as query based inference. We define the notion of a query, Q, against a
Bayesian network model N as follows.

Definition 5.1 (Query). Let N = (X, G, P) be a Bayesian network model. A
query Q is a three-tuple Q = (N, T, €) where T C X is the target set and € is
the evidence set.

The solution of a query, Q, is the posterior distribution over the target,
i.e., P(T|e). A variable X is a target variable if X € T. Notice that computing
all posterior marginals of a Bayesian network N = (X, G, P) corresponds to
solving |X| queries, i.e., Q = (N,{X}, ¢) for each X € X.

Prior to solving the query Q, the graph G of N may be pruned to include
only variables relevant for the query. One class of variables which may be
pruned from the graph without any computation is the class of barren vari-
ables, see Section 3.3.4 on page 49 for an example. Here we give a formal
definition of a barren variable.
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Definition 5.2 (Barren Variable). Let N = (X, G,P) be a Bayesian net-
work and let Q = (N, T C X, ¢) be a query against N. A variable X is a barren
variable with respect to Q, if X € T, X € ¢, and all descendants, de(X), of X
are barren.

When a variable X is classified as a barren variable, it is always relative
to a target and given a set of evidence. A barren variable does not add any
information to the inference process. It is computationally irrelevant to Q.

Once all barren variables with respect to Q have been pruned from the
graph G, the inference task can be solved by variable elimination as described
in the previous section.

In addition to the concept of a barren variable, there is the concept of a
nutsance variable.

Definition 5.3 (Nuisance Variable). Let N = (X, G, P) be a Bayesian net-
work and let Q = (N, T C X, €) be a query against N. A non-barren variable X
s a nuisance variable with respect to Q, if X € T, X € €, and X is not on a
path between any pair of variables Y € T and Z € «.

Notice that a nuisance variable is computationally relevant for a query Q,
but it is not on a path between any pair of evidence and query variables. Given
a query and a set of evidence variables, the contribution from a nuisance
variable does not depend on the observed values of the evidence variables.
Hence, if a query is to be solved with respect to multiple instantiations over
the evidence variables, then the nuisance variables (and barren variables) may
be eliminated in a preprocessing step to obtain the relevant network (Lin &
Druzdzel 1997). The relevant network consists of target variables, evidence
variables, and variables on paths between target and evidence variables only.

Ezample 5.3. Returning to the Chest Clinic example (Example 4.2 on page 68),
we may consider the task of computing the probability of each disease given
the observations that the patient is a smoker and has a positive X-ray result.
That is, we need to compute P(Y|¢e) for Y € {T,L, B} and ¢ = {S = yes, X = yes}.

The variables {A, T} are nuisance variables with respect to posteriors for B
and L. The variable D is a barren variable with respect to the posteriors
for B, T, and L, whereas B is a barren variable with respect to the posteriors
for T and L. Figure 5.1 shows the relevant networks for (a) computing P(T|e)
and P(L|e), and for (b) computing P(B|e).

The approach to inference outlined above may be referred to as a di-
rect approach. Arc reversal is a specific type of direct approach to infer-
ence (Olmsted 1983, Shachter 1986).

Arc Reversal

In Section 3.4.1 on page 52 we illustrated how application of Bayes’ rule can be
given a graphical interpretation as arc reversal. We mentioned that Olmsted



112 5 Solving Probabilistic Networks

@>9/@p il

(a) (b)
Fig. 5.1. The relevant networks for computing (a) P(T|e) and P(L|e), and
(b) P(BJe).

(1983) and Shachter (1986) have exploited this view of inference in their arc
reversal algorithms for inference in probabilistic networks. Here we consider
the process in more detail.

Let G be the DAG of a Bayesian network N = (X, G,P) and assume a
query Q = (N,{Z},0) against N. The inference task is to compute P(Z) by
eliminating all variables X \ {Z}.

The inference process on § has a natural graphical interpretation as a
sequence of arc reversals and barren variable eliminations. The fundamental
idea is to adjust the structure of G such that all variables except Z are pruned
as barren variables while maintaining the underlying properties of the joint
probability distributions over the remaining variables. The structure of G is
adjusted through a sequence of arc reversal operations.

Assume X,, is the next variable to be eliminated as a barren variable.
Let X,, have parents X,,(w) = Xi UX; and X, have parents X,,(v) = {Xw}U
X5 UXy where X;NX; =XiN X = XN X = () such that X; = Xpa(w) \Xpa(v)
are the parents specific for X,,,, Xj = Xpa(w) N Xpa(yv) are the common parents,
and Xy = Xpa(v) \ Xfa(w) are the parents specific for X,.

The reversal of arc (w,v) proceeds by setting X,a(w) = Xi UX; U Xy U{X,}
and Xpa(v) = Xi UXj U X as well as performing the computations specified
below, see Figure 5.2 for a graphical representation

P(Xu X, X5, Xi) = Y P(Xow [ X, X5)P(X, [ Xow, X5, Xic) (5.3)
Xw

P(Xou I X, X5)P(Xy [ Xon, X5, Xic)
P(X, X3, X5, Xi) '

The operation of reversing an arc changes the structure of § without chang-
ing the underlying joint probability distribution over X induced by N.

Once the arc (w,v) has been reversed, the variable X,, is a barren variable
relative to the other variables (given the empty set of evidence), and can be
pruned from § without further computations.

P(XW|XV>X1)X]'$XK) =

(5.4)
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Fig. 5.2. An illustration of reversal of the arc (w,v)

The basic idea of the inference process known as arc reversal is to perform
a sequence of arc reversals and barren variable eliminations on the DAG §
until a desired marginal or conditional is obtained. In this process a valid
Bayesian network structure is maintained throughout the inference process.

Ezample 5.4. We may compute the prior probability distribution P(L) in the
Apple Jack example (see Example 4.1 on page 66) using a sequence of arc
reversals and barren variable eliminations as indicated in Figure 5.3.

W e oo

(a) (b) (c) (d) (e)
Fig. 5.3. Computing P(L) by arc reversal.

Notice that the arc reversal method does not have worse complexity than
variable elimination.

Arc reversal is not a local computation algorithm in the sense that when
reversing an arc (w,Vv), it is necessary to test for existence of a directed path
from w to v not containing (w,v). If such a path exists, then the arc (w,v)
cannot be reversed until one or more other arcs have been reversed as revers-
ing (w,v) would otherwise create a directed path.

Graphical Representation of Inference

We may define the task of solving a Bayesian network model N = (X, G, P)
as the problem of computing the posterior marginal P(X]|e) given a set of
evidence ¢ for all variables X € X.

When defining the task of probabilistic inference as the task of computing
the posterior marginals P(X|¢) for all X given evidence ¢, the most common
approach is to use a secondary computational structure. Performing inference
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in a secondary computational structure aims at reusing calculations solving
all queries simultaneously.

From Equation 5.1 on page 108 we should notice the direct correspon-
dence between the acyclic, directed graph G and the factorization of the joint
probability distribution P(X) over X. The domain of each factor in the factor-
ization corresponds to a node and its parents. The head of the factor is the
child node whereas the tail consists of the parents. Furthermore, if we drop
the distinction between head and tail we see that the domain of each factor
corresponds to a clique (a clique is a maximal complete subgraph) of g™ —
the moralization of §. This is exploited to build a secondary structure for
performing inference.

Assume we are in the process of computing P(X;). Let Y be the first random
variable to eliminate. The elimination process proceeds by local computation
in order to maintain efficiency (i.e., we exploit the distributive law to maintain
the factorization of the joint probability distribution — see Section 3.3.3 on
page 47). The set of probability potentials P can be divided into two disjoint
subsets with respect to Y. Let Py C P be the subset of probability potentials
including Y in the domain

Py ={P € P|Y € dom(P)},

where dom(P) denotes the domain of P (i.e., the set of variables over which it
is defined). Then P\ Py is the set of probability potentials not including Y in
their domain. Let ¢y be the probability potential obtained by eliminating Y
(by summation) from the combination of all probability potentials in Py.
Using ¢y as well as a generalized version of the distributive law, we may
rewrite Equation 5.1 on page 108 as

PX0) = Y [ PXelXpar)

XeX\{X;i} XyeX

= 2 Il ell«

XeX\{Xi} peP\Py PPy

= 2 Il e) II¥

XeX\{Xi,Y} peP\ Py Y ¢’'ePy

= > o T o (5.5)

XeX\{Xi,Y} bEP\Py

Equation 5.5 specifies a decomposition of the joint probability distribution
over X \ {Y}. The decomposition has the form of Equation 5.1. The decom-
position is the product over the elements of P \ Py U{dvy}. In addition, we
have performed the elimination over Y by local computations only involving
potentials of which Y is a domain variable. We say that the set

PANPy U{dy}
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is a reduction of P where Y has been eliminated. The elimination of the next
variable to be eliminated may proceed in the same manner on P\ Py U{dpy}.
The order in which variables are eliminated is the elimination order.

An example of this process may be depicted graphically as shown in Fig-
ure 5.4 where we assume dom(dvy) = {X7,X2}. The arrows in the figure are
used to illustrate the flow of computations.

KT s ] C TR ]

Fig. 5.4. A graphical illustration of the process of eliminating Y from ¢(X7,X2,Y)
and X7 from ¢ (X1, X2, X3,X4), where the ovals represent the domain of a potential
before elimination, and rectangles represent the domain of a potential after elimi-
nation.

The elimination of Y from ¢ (X7, X2,Y) creates a potential over ¢ (X, X>2)
which is included in the elimination of the next variable X7 to be eliminated.
In this way the process continues until the desired marginals are obtained.
Let us consider an even more concrete example.

Ezample 5.5 (Burglary or Earthquake on page 25). The Bayesian network
shown in Figure 2.3 on page 26, is repeated in Figure 5.5.

ONNO
@ ®
®

Fig. 5.5. The Burglary or Earthquake network.

The prior marginal on A may be computed by elimination of {B, E, R, W}
as follows

P(A)=) P(E)) P(B)P(A[B,E)) P(RIE)Y P(WIA). (5.6)
E B R w

Figure 5.6 shows a graphical representation of the computations and po-
tentials created the during process of computing P(A).

Similarly, the prior marginal distribution over W may be computed by
elimination of {A, B, E, R} as follows
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Fig. 5.6. A graphical illustration of the process of computing P(A) in Equation 5.6,
where the ovals represent the domain of a potential before elimination, and rectangles
represent the domain of a potential after elimination.

P(W)=) P(W|A)) P(E)Y P(B)P(A|B,E)) P(R|E). (5.7)
A E

B R

Figure 5.7 shows a graphical representation of the computations and po-
tentials created during the process of computing of P(W).

@

Fig. 5.7. A graphical illustration of the process of computing P(W) in Equation 5.7,
where the ovals represent the domain of a potential before elimination, and rectangles
represent the domain of a potential after elimination.

Notice the similarity between the potentials created in the process of com-
puting P(A) and P(W). There is a significant overlap between the potentials
created and therefore the calculations performed. This is no coincidence.

Junction Trees

The task of probabilistic inference may be solved efficiently by local procedures
operating on a secondary computational structure known as the junction tree
(also known as a join tree and a Markov tree) representation of a Bayesian
network (Jensen & Jensen 1994, Jensen et al. 1994).

The junction tree representation is efficient when solving the inference
task for multiple sets of different evidence and target variables. A junction
tree representation J of a Bayesian network N = (X, G, P) is a pair T = (C, §)
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where € is the set of cliques and 8 is the set of separators. The cliques € are
the nodes of T whereas the separators 8 annotate the links of the tree. Each
clique C € C represents a maximal complete subset of pairwise connected
variables of X, i.e., C C X, of an undirected graph.! The link between two
neighboring cliques C; and C; is annotated with the intersection S = C; N C;j,
where S € S.

Ezample 5.6 (Chest Clinic). Figure 4.2 on page 69 shows the DAG § of the
Chest Clinic network N = (X, G, P), see Example 4.2 on page 68.

Fig. 5.8. A junction tree representation T for the Chest Clinic network.

Figure 5.8 shows a junction tree representation T = (€, 8) of the Chest
Clinic network. The junction tree consists of cliques

€ ={A,T,{B,D,E}{B,E,L},{B,L,S}{E L, T}{E,X}}

and separators

8 ={{B, £}, {B, L}, {E},{E, L}, {T}}.

The structure of T is determined from the structure of G.

The process of creating a junction tree representation of a DAG is beyond
the scope of this book. Instead we refer the interested reader to the literature,
see, e.g., Cowell, Dawid, Lauritzen & Spiegelhalter (1999).

The junction tree serves as an excellent control structure for organizing the
computations performed during probabilistic inference. Messages are passed
between cliques of the junction tree in two sweeps such that a single message
is passed between each pair of neighboring cliques in each sweep. This process
is referred to as a propagation of information.

! The undirected graph is constructed from the moral graph §™ of G by adding
undirected edges until the graph is triangulated. A graph is triangulated if every
cycle of length greater than three has a chord.
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Fig. 5.9. When C;j has absorbed information from its other neighbors, C; can absorb
from Cj.

Once the junction tree T = (€,8) has been constructed, a probability
potential is associated with each clique C € € and each separator S € §
between two adjacent cliques C; and Cj where S = C; N Cj, see Figure 5.9.

Inference involves the following steps:

(1) Each item of evidence must be incorporated into the junction tree poten-
tials. For each item of evidence, an evidence function is multiplied onto
an appropriate clique potential.

(2) Some clique R € € of T is selected. This clique is referred to as the root of
the propagation.

(3) Then messages are passed toward the selected root. The messages are
passed through the separators of the junction tree (i.e., along the links of
the tree). These messages cause the potentials of the receiving cliques and
separators to be updated. This phase is known as COLLECTINFORMATION.

(4) Now messages are passed in the opposite direction (i.e., from the root
toward the leaves of the junction tree). This phase is known as DISTRIB-
UTEINFORMATION.

(5) At this point, the junction tree is said to be in equilibrium: The proba-
bility P(X|e) can be computed from any clique or separator containing X
— the result will be independent of the chosen clique or separator.

Prior to the initial round of message passing, for each variable X, € X
we assign the conditional probability distribution P(X,[Xpa(v)) to a clique C
such that Xg, () € C. Once all conditional probability distributions have been
assigned to cliques, the distributions assigned to each clique are combined to
form the initial clique potential.

Example 5.7. Consider again the junction tree of the Chest Clinic network
shown in Figure 5.8. Each conditional probability distribution P € P is asso-
ciated with a clique of T such that dom(P) C C for C € C. Notice that the
association of distributions with cliques is unique in this example.

The basic inference algorithm is as follows. Each separator holds a single
potential over the separator variables, which initially is a unity potential.
During propagation of information the separator and clique potentials are
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updated. Consider two adjacent cliques C; and Cj as shown in Figure 5.9.
When a message is passed from Cj to C; either during COLLECTINFORMATION
or DISTRIBUTEINFORMATION, C; absorbs information from Cj. Absorption of
information involves performing the following calculations:

(1) Calculate the updated separator potential:
5= > dc,
C;\S
(2) Update the clique potential of Cj:
b5
GR
(3) Associate the updated potential with the separator:

bs = bs.

be, == dc,

After a full round of message passing the potential associated with any
clique (separator) is the joint probability distribution (up to the same normal-
ization constant) of the variables in the clique (separator) and the evidence.
This algorithm is known as the Hugin algorithm. Details on the inference
process can be found in the literature (Lauritzen & Spiegelhalter 1988, An-
dersen, Olesen, Jensen & Jensen 1989, Jensen et al. 1990, Dawid 1992, Jensen
et al. 1994, Lauritzen & Jensen 2001).

Fig. 5.10. A junction tree representation T of the Bayesian network depicted in
Figure 5.5 on page 115.

Ezample 5.8. Figure 5.10 shows a junction tree representation 7 = (C,8) of
the Bayesian network depicted in Figure 5.5 on page 115 with cliques:

¢ ={{A,B,EL{E,R},{A, W}}

and separators:

8 = {{E},{A}).
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Fig. 5.11. The undirected graph corresponding to Figures 5.6, 5.7 and 5.10.

Notice the similarity between Figure 5.10 and Figures 5.6 and 5.7. The
nodes of Figures 5.6 and 5.7 are clusters (i.e., subsets of variables) whereas the
nodes of Figure 5.10 are cliques (i.e., maximal subsets of pairwise connected
variables) of undirected graphs.

The undirected graph corresponding to a junction tree is obtained by
adding undirected edges between each pair of variables contained in the same
clique or cluster. Figure 5.11 is the undirected graph corresponding to Fig-
ures 5.6, 5.7 and 5.10.

>] 7= Lo

Fig. 5.12. Message passing in 7.

Le T {m]

Figure 5.12 shows how messages are passed over 7 relative to the root ABE.

Underlying any approach to inference is the junction tree representation,
although its presence may be implicit. Figure 5.6 shows the cluster tree repre-
sentation underlying the computation of P(A) whereas Figure 5.7 shows the
cluster tree representation underlying the computation of P(W). Figures 5.6
and 5.7 are not junction trees, but cluster trees. The cliques of a junction
tree are maximal complete subsets of pairwise connected variables, whereas
clusters are not necessarily maximal.

The quality of the junction tree 7 = (€,8) determines the efficiency of
inference. A common score or criterion to use when considering the optimal-
ity of a junction tree is the maximum state space size over all cliques in T,
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i.e., maxcee ||C||. Another similar score is the sum over all cliques in T, i.e.,
S ceelCI-

All types of probabilistic networks considered in this book may be solved
by message passing in a junction tree representation. However, we will restrict
ourselves from a detailed treatment of this topic for all models presented as
it is beyond the scope of this book.

The approach to inference outlined above may be referred to as an indirect
approach.

5.1.2 Inference in CLG Bayesian Networks

Let N = (X,G,P,F) be a CLG Bayesian network with continuous random
variables, X, and discrete random variables, Xa, such that X = Xr U Xa.
To solve the probabilistic inference task on N is to compute the marginal
for each X € X. Since N is a CLG Bayesian network the task of performing
inference becomes more subtle than in the case of a pure discrete Bayesian
network.

The prior distribution, P(X), of a discrete variable X € X4 is equal to the
distribution of X in the discrete network N’ = (XA, P) obtained by removing
all continuous variables from the model (all continuous variables are barren
variables with respect to the joint over the discrete variables). The prior den-
sity of a continuous variable Y, on the other hand, will, in general, be a mixture
of Gaussian distributions where the mixing factors are joint probabilities over
configurations of discrete variables I C X . For each configuration i of I with
non-zero probability, i.e., p(i) > 0, the joint distribution of I and X has the
form

P(I=1) * N(p(i), o%(1)).

This implies that the marginal of X € X is

LX)= ) P *N(u(i),o*(i).

P (I1=1)>0

For each configuration i of I with P(i) = 0 the mean u(i) and variance o2(i)
may be random numbers. Hence, the marginal density function for a contin-
uous variable X € Xr is, in general, a mixture of Gaussian distributions

where each component f; is a one-dimensional Gaussian density function in X
and each coeflicient «; is the probability of a configuration of discrete vari-
ables. This implies that the marginal density function of X € X is not neces-
sarily a CLG distribution with the indicated mean p and variance ¢2. That is,
the result of a marginalization of a CLG distribution over continuous variables
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is a CLG distribution whereas the result of a marginalization of a CLG dis-
tribution over discrete variables, in general, is not. The first type of marginal
is referred to as a strong marginal, whereas the latter is referred to as a weak
marginal. The marginal is strong as we compute the mean p and the vari-
ance 02, and we know the distribution is a CLG distribution.

Probabilistic inference is the task of updating our belief about the state
of the world in light of evidence. Evidence on discrete variables, be it hard or
soft evidence, is treated as in the case of discrete Bayesian networks. Evidence
on a continuous variable, on the other hand, is restricted to be hard evidence,
i.e., instantiations.

In the general case where evidence ¢ is available, the marginal for a dis-

crete variable X € X is a probability distribution P(X]e) conditional on the
evidence ¢, whereas the marginal for a continuous variable X € Xr is a density
function f(x|e) conditional on ¢ with a mean p and a variance o?.
Ezxample 5.9. Example 4.3 on page 72 shows an example of a simple CLG
Bayesian network. Computing the prior probability density in X3 amounts
to eliminating the variables X; and X,. With the quantification specified in
Example 4.3 this produces the following mixture

L(X3) = 0.75 + N (=5,5.1) +0.25 % N (5,5.2)

with mean pu = —2.5 and variance o = 23.88. Notice that the density for X3
is not the density for the Gaussian distribution with mean p = —2.5 and
variance o2 = 23.88. The density function is shown in Figure 5.13.

0.14 :

0.1 - -

0.08 - -

0.06 — 4

0.04 - -

0.02 - -

Fig. 5.13. The density function for X3.

The prior probability density for X, and the prior probability distribution
for X7 are trivial to compute as {X;, X3} are barren with respect to the prior
for X; and similarly {X;, X3} are barren with respect to the prior for Xj.
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The above examples illustrates that the class of CLG distributions is not
closed under the operation of discrete variable elimination. The weak marginal
distribution N(p, 02) may, however, be used as an approximation of the true
marginal. The weak marginal is the closest non-mixture to the true marginal
in terms of the Kullback—Leibler distance (Lauritzen 1996).

Example 5.10. Consider again the CLG Bayesian network N from Example 4.3
on page 72. Figure 5.13 on the preceding page shows the density function
for X3. Figure 5.14 shows both the density function f(X3) and the weak mar-
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Fig. 5.14. The density function f(X3) for X3 and its weak marginal g(X3).

ginal g(X3) for X3. It is obvious that the weak marginal is only an approxi-
mation of the exact density function.

Since the CLG distribution is not closed under the operation of discrete
variable elimination and since the operation of discrete variable elimination is
not defined when continuous variables are in the domain of the potential to
be marginalized, it is required that continuous variables are eliminated before
discrete variables. For this reason, when marginalizing over both continuous
and discrete variables, we first marginalize over the continuous variables and
then over the discrete variables (Lauritzen 1992b).

This implies that the (exact) solution method for inference in CLG
Bayesian networks induce the partial order X4 < X on the elimination order.
Hence, the continuous variables X should be eliminated before the discrete
variables Xa. A variable elimination order, which is restricted to induce a cer-
tain (partial) order, is referred to as a strong elimination order. Hence, we use
a strong elimination order to solve a CLG Bayesian network by variable elim-
ination. For this reason, inference in a CLG Bayesian network may be more
resource intensive than inference in a corresponding Bayesian network with
the same structure, but consisting only of continuous random variables. No-
tice that due to independence relations induced by the structure of § = (V, E)
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of a CLG Bayesian network and the structure of the evidence ¢, it may in
some situations be possible to eliminate discrete variables before continuous
variables.

In the special case where the ancestors of v € V are all representing con-
tinuous variables (i.e., an(v) C Vy) for X, € X, the posterior marginal for X,
is a strong marginal. Otherwise, it is a weak marginal. If the posterior for X,
is a weak marginal, the density function of X, is an unknown mixture of
Gaussians, which needs to be computed as part of probabilistic inference.

The normalization constant & computed as part of probabilistic inference is
proportional to the density at the observed values of the continuous variables.
The proportionality constant is P(e(A)|e(T")), where ¢(A) is the evidence on
discrete variables and ¢(T") is the evidence on continuous variables. In general,
« is scale-dependent and does not make much sense. For instance, the value
of o will be dependent on whether height is measured in meters or centimeters.
If ¢ only contains discrete variables, then « is the probability of e.

The presence of both continuous and discrete variables makes the oper-
ations required for performing probabilistic inference in CLG Bayesian net-
works more complicated than those required for performing probabilistic in-
ference in discrete Bayesian networks. For a detailed treatment on inference
in CLG Bayesian networks, see for example Lauritzen (1992b) and Lauritzen
& Jensen (2001).

5.2 Solving Decision Models

We build decision models in order to support efficient reasoning and decision
making under uncertainty in a given problem domain. Reasoning under un-
certainty is the task of computing our updated beliefs in (unobserved) events
given observations on other events whereas decision making under uncertainty
is the task of identifying the (optimal) decision strategy for the decision maker
given observations.

5.2.1 Solving Discrete Influence Diagrams

Inference in an influence diagram N = (X, G, P, U) is to determine an optimal
strategy A =1{8,...,8,) for the decision maker and compute the maximum
expected utility of adhering to A.

The influence diagram is a compact representation of a joint expected
utility function due to the chain rule

EU(:X:): H P(Xv‘xpa(v)) Z u(Xpa(W))'

XyE€Xc weVy

Applying the ) -max-) -rule (Jensen 1996) on the joint expected utility
function, we may solve N by eliminating variables in the reverse order of the
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information precedence order <. That is, the precedence relation < induces
a partial order on the elimination of variables in X. This implies that we use
a strong variable elimination order to solve an influence diagram by variable
elimination.

Starting with the last decision Dy, the }_-max-) -rule says that we should
average over the unknown random variables J,,, maximize over the deci-
sion Dy, average over the random variables J;, 1 known to the decision maker
at Dy, (but not known to the analyst), maximize over Dy,_1, and so on. The
principle is to average over the unknown random variables, maximize over the
decision variable, and finally average over the observed random variables.

The intuition behind the application of the ) _-max-) -rule in reverse order
of decisions is as follows. When we consider the last decision D, its past
is fully observed and the only unobserved variables are the variables never
observed or observed after Dy, i.e., J,. Hence, after averaging over J,,, we can
select a maximizing argument of the utility function w(J(Dy), Dy) for each
configuration of J(Dy) as an optimal decision at D,,. Notice that we select
a maximizing argument for each configuration of the past. In principle, this
eliminates J,, and D,, from the decision problem and we may consider Dy
as the last decision. This implies that when we solve for D;,_; we assume the
decision maker to act optimally for D;,.

Notice that the variables are observed at the time of decision, but not
(necessarily) at the time of analysis. Whether a random variable is known or
unknown is defined from the point of view of the decision maker, and not the
analyst. In this way we may solve N by computing the maximum expected
utility MEU(A) of the optimal strategy A as

MEU(A) = Zr%aXZr%ax~~ Z r%aXZEU(X)
7 1 7, 2 n

In-1 In
= ) mex) mex-- ) mex
Jo I Jn—1
H P(Xv‘xpa[\))) Z u(xpa(w))- (58)
XyvEXc U, eXy

As part of the process, prior to the elimination of each decision D, we
record the maximizing arguments of D over the utility potential (D, J(D))
from which D is eliminated for each configuration of J(D). From (D, J(D))
we define the (probabilistic) policy function §(D|J(D)) for D as

1 if d = argmaxg P(d’, 1),

0 otherwise,

5(d]I(D) =1) = {

where we assume the maximizing argument arg maxg: P(d’,1i) to be unique.
If it is not unique, then any maximizing argument may be chosen.?

2 As we shall see in Section 5.2.4, the policy function need not be deterministic.
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Ezample 5.11 (Oil Wildcatter). To solve the decision problem of the Oil Wild-
catter of Example 4.5 on page 77 is to identify the optimal decision policies for
the test and drill decisions. From the joint expected utility function, EU(X),
over variables X of N = (X, G, P, U), we may compute the maximum expected
utility, MEU(A), of the optimal strategy, A= {SD(S,T),ST()}, and in the
process determine the optimal strategy as

MEU(A) = mTaXZmSXZ P(O)P(S|O,T)(C(T)+ U(D, 0)).
S O

Table 5.1 shows the expected utility function over D, S, T from which the
decision policy 3p(S,T) is identified as the maximizing argument of D for
each configuration of S and T. The oil wildcatter should drill for oil unless he
performed the test and obtained a diffuse pattern.

D S T

no «c no 0
yes cl no 7
no op no 0
yes op no 7
no di no 0
yes di  no 7

no c yes | —24
yes ¢l yes | 18.6
no op vyes | —3.5
yes op yes 8
no di yes | —4.1
yes di yes | —16.6

Table 5.1. The joint expected utility function EU(D, S, T).

Table 5.2 shows the expected utility function over T from which the de-
cision policy o71() is identified as the maximizing argument of T. Hence, the
test should always be performed.

T
no 21
yes | 22.5

Table 5.2. The expected utility function EU(T).

The decision policies 57() and dp(S,T) are already known from Exam-
ple 4.7 on page 79. The maximum expected utility for the decision problem
is 22.5.
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Solving an influence diagram by performing the variable eliminations ac-
cording to Equation 5.8 will be highly inefficient even for simple influence
diagrams. Instead we will — as in the case of Bayesian networks — apply a
generalized version of the distributive law to increase computational efficiency.

For notational convenience, the generalized marginalization operator M
was introduced by Jensen et al. (1994). The marginalization operator works
differently for marginalization of random variables and decision variables:

Mpe£) o and M o2 maxp,
X D

X

where X is a random variable while D is a decision variable. We will use
the generalized marginalization operator to explain the process of solving an
influence diagram, see Madsen & Jensen (1999) for details.

Using a generalized version of the distributive law, the solution of an in-
fluence diagram may proceed as follows. Let Y be the first random variable
to eliminate. The set of utility potentials U can be divided into two disjoint
subsets with respect to Y. Let Uy C U be the subset of utility potentials
including Y in the domain

Uy ={u e UlY € dom(u)}.

Then U\ Uy is the set of utility potentials not including Y in the domain.
Similarly, let Py C P be the subset of probability distributions including Y in
the domain

Py ={P € P|Y € dom(P)}.

Then P \ Py is the set of probability potentials not including Y in the
domain. The elimination process proceeds by local computation in order to
maintain efficiency (i.e., we exploit the distributive law to maintain the fac-
torization of the joint expected utility function). Let ¢y be the probability
potential obtained by eliminating Y from the combination of all probability
potentials in Py and let Py be the utility potential obtained by eliminating Y
from the combination of all probability and utility potentials in Py U Uy such
that

ov=M ] ¢

Y $ePy

Yy = M by Z P. (5.9)
Y

Pbely

The two potentials ¢y and Py will be used to enforce the factorization
of the joint expected utility function over X \ {Y}. The factorization may be
achieved by rewriting Equation 5.8 using ¢v and Py as well as applying the
distributive law
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weud) - M (o 3 ¥)

XeX ¢eP Pelu

L\;ICK IT 11 cb’)( >oov+ Y w)]

GeP\Py $’ePy weU\Uy Pp’ely

M ACIL (L) (3 v 3 v)]

XeX\{Y} " d'ePy PpeU\Uy P'ely

- PQ}Q,H\ ) <<¢euz\uf")¢”q”ﬂ (5.10)
(el s el

XeX\{Y}*- “peP\Py YeU\Uy

Equation 5.11 specifies a decomposition of the joint expected utility func-
tion over X \{Y}, and decomposition has the form of Equation 5.8. The decom-
position is the product of the summation over the elements of U\ Uy U { %}
and the product over the elements of P\ Py U{¢dv}. In addition, we have per-
formed the elimination of Y by local computations only involving potentials
with Y as a domain variable. We say that the sets

by

are a value preserving reduction of P and U where Y has been eliminated. The
elimination of the next variable may proceed in the same manner on U\ Uy U
{3} and P\ Py U{dy}.

The division operation in Equation 5.11 is introduced because the combi-
nation of probability potentials and utility potentials is non-associative. Thus,
either the division should be performed or the probability potentials have to
be distributed over the terms of the utility function as in Equation 5.10.

P\ Py Uldy) and u\uvu{””},

Ezample 5.12 (Oil Wildcatter). Utilizing the local computation approach ex-
plained above we may solve the Oil Wildcatter problem as follows

EU(A) = maXZmaxZP P(S|O, T)(C(T) + U(D, O))
= max —I—ZP maxZ S|O T) u(o, 0)).

The division by P(S) is necessary in order to obtain the correct conditional
expected utility for D. This division does not effect the policy.

The benefit of the local computation approach is more profound on large
and more complex influence diagrams.
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5.2.2 Solving CLQG Influence Diagrams

Inference in a CLQG influence diagram N = (X, G, P, F, U) is similar to in-
ference in a discrete influence diagram. The task is to determine an optimal
strategy, A ={8;,...,8,), for the decision maker and compute the maximum
expected utility of adhering to A.

The influence diagram is a compact representation of a joint expected
utility function due to the chain rule

BUXa =1,Xr) = [ PAvlipan) * [T PUwXpaw)) * D ulXpa(z)-

VEVA wWEeVr zeVy

The solution process for CLQG influence diagrams follows the same ap-
proach as the solution process for discrete influence diagrams. The solution
process proceeds by applying an extension of the ) -max-) -rule (Madsen
& Jensen 2005). The extension is that we need to eliminate the continuous
random variables X by integration as opposed to summation. We refer the
interested reader to the literature for details on the solution process (Kenley
1986, Shachter & Kenley 1989, Poland 1994, Madsen & Jensen 2005).

The optimal strategy A = {87, ..., 8.} will consist of decision policies for
both discrete and continuous decision variables. The decision policy for a
discrete decision variable D; € XA N Xp is a mapping from the configuration
of its past J(D;i) to dom(Dj;), whereas the decision policy for a continuous
decision variable Dj € Xr N Xp is a multi-linear function in its continuous
past 3(Di) N Xy conditional on its discrete past J(Di) N Xa.

Ezample 5.13 (Marketing Budget (Madsen & Jensen 2005)). Consider a com-
pany manager has to decide on a unit price, Price, to charge for a certain
item she wants to sell. The number of items sold, Units, is a function of the
price and marketing budget, Budget, whereas the cost of production, Cost, is a
function of the number of items sold. This scenario can be modeled using the
CLQG influence diagram shown in Figure 5.15 on the following page. Prior
to making the decision on price she will be allocated a marketing budget.
The decision problem may be quantified as follows where the unit of utility
is thousands of euros. The distributions of items sold and production cost are

L(Units|Budget = b,Price=p) = N(20+0.2%xb—0.1xp,25)
L(Cost|Units =u) = N(400+ 10 * u, 2500)

The distribution of marketing budget is
L(Budget) = N(100,400).

The cost function is
U, (Cost =c¢) = —c

and the revenue function is
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Fig. 5.15. Optimization of price given marketing budget size.

U (Price = p,Units =u) = uxp.

Figure 5.16 shows the expected utility function as a function of M and P.
The optimal decision policy 6p(m) for P is a linear function in M: dp(m) =
105+ m.

15000
10000
5000

—5000
—10000

400

100955

200
Marketing Budget 250 0

Fig. 5.16. Expected utility as a function of price and marketing budget.

5.2.3 Relevance Reasoning

As mentioned in the previous section, a policy & for D is a mapping from
past observations and decisions to the possible decision options at D. When
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modeling a large and complex decision problem involving a sequence of de-
cisions, the past observations and decisions of a decision may involve a large
set of variables. At the same time, it may be that only a small subset of these
are essential for the decision. Informally speaking, an observation (or deci-
sion) is essential (also known as requisite) for a decision, if the outcome of the
observation may impact the choice of decision option.

Assume we are able to identify and remove non-requisite parents of each
decision. This makes a policy for decision D a function from the requisite
past RP(D) to the decision options such that & : RP(D) — dom(D). It is not
a trivial task to determine the requisite past of a decision D, i.e., the variables
observed prior to D, whose values have an impact on the choice of decision
option for D (Shachter 1998, Lauritzen & Nilsson 2001, Nielsen 2001).

Definition 5.4 (Requisite Observation). Let N = (X,§ = (V,E), P, U) be
an influence diagram. The observation on variable Y,, € J(Dy) is requisite for
decision Dy in N if and only if v Lq Vu Nde(vi)|(Vyp,) \ {v}), where v; is
the node representing Dj.

The solution algorithm will identify some of the non-requisite parents for
each decision, but there is no guarantee that all non-requisite parents will be
identified and ignored. The implicit identification of non-requisite parents is
due to conditional independence properties of the graph.

Similar to the concept of a requisite observation is the concept of a relevant
variable. The set of variables relevant for a decision, D, is the set of variables
observed and the set of decisions made after decision D, which may impact
the expected utility of D.

Definition 5.5 (Relevant Variable). Let N = (X, = (V,E),P,U) be an
influence diagram. A wvariable Y, € F(D;i) is relevant for decision Dy if and
only if v fg Vunde(vi)|(Vgp,) \{V}), where vi is the node representing Dy.

Using the concepts of relevant variables and requisite observations it is
possible to decompose the structure of an influence diagram N = (X,§ =
(V,E), P, U) into a sub-models consisting only of requisite parents and relevant
variables for each decision in N.

Ezample 5.14 (Decomposition of Influence Diagrams (Nielsen 2001)). Con-
sider the influence diagram shown in Figure 4.10 on page 84. Traversing the
decision variables in reverse order, we may for each decision variable construct
the sub-model consisting of relevant variables and requisite parents only.

We consider the decisions in reverse order starting with D4. The reasoning
proceeds by searching for non-requisite parents of D4. By inspection of the
diagram it becomes clear that G blocks the flow of information from obser-
vations made prior to D4 to the only utility descendant Uz of D4. Hence,
all other parents are non-requisite. Similarly, we identify the set of relevant
variables. Figure 5.17 on the following page shows the DAG induced by the
subset of requisite observations and relevant variables for Dy.
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Fig. 5.17. The DAG induced by the subset of requisite observations and relevant

variables for Dy4.

&

Fig. 5.18. The DAG induced by the subset of requisite observations and relevant
variables for D3.

Similarly, Figure 5.18 and Figure 5.19 show the DAGs induced by the
subsets of requisite observations and relevant variables for D3 and D3, re-
spectively.

Fig. 5.19. The DAG induced by the subset of requisite observations and relevant
variables for D>.
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The DAG induced by the subset of requisite observations and relevant
variables for Dy is equal to the DAG shown in Figure 4.10 on page 84.

Decomposing an influence diagram into its sub-models of requisite ob-
servations and relevant variables for each decision is very useful for model
validation.

5.2.4 Solving LIMIDs

The LIMID representation relaxes the two fundamental assumptions of the
influence diagram representation. The assumptions are the total order on de-
cisions and the perfect recall of past decisions and observations. These two
assumptions are fundamental to the solution algorithm for influence diagrams
described above. Due to the relaxation of these two assumptions, the solu-
tion process of LIMIDs becomes more complex than the solution process of
influence diagrams.

Let N = (X,G,P,U) be a LIMID representation of a decision problem.
The Single Policy Updating (SPU) algorithm is an iterative procedure for
identifying (locally) optimal decision policies for the decisions of N. The basic
idea is to start an iterative process from some initial strategy where the policy
at each decision is updated while keeping the remaining policies fixed until
convergence. The starting point can be the uniform strategy where all options
are equally likely to be chosen by the decision maker.

As mentioned in Chapter 4, a decision policy dp, is a mapping from
the decision past of D; to the state space dom(D;) of D;i such that ép,:
J(D;i) — dom(Dj;). This implies that we may use the probabilistic policy
function 8;(Di|J(D1)) of ép, (I(Di)) introduced in Section 5.2.1

1 if di = 0p,(§),
0 otherwise.

5i(di|I(Dy) =j) = {

This encoding will play a central role in the process of solving a LIMID.

Let N = (X,G,P,U) be a LIMID model with chance and decision vari-
ables Xc and Xp, respectively. A strategy A ={6p : D € Xp} for N induces
a joint probability distribution Pa(X) over X as it specifies a probability dis-
tribution for each decision variable:

PAX) = ] PXIXparw) JT & (5.12)

XyE€Xc D;eXp

The aim of solving N is to identify a strategy, A, maximizing the expected
utility

EUA) = Y PAU) = [T PO IXpae) [T 803 w

Xex Xy EXc D:€Xp ucl
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The SPU algorithm starts with some initial strategy and iteratively up-
dates a single policy until convergence has occurred. Convergence has oc-
curred when no single policy modification can increase the expected utility
of the strategy. As mentioned above, a common initial strategy is the uni;

form strategy A = {a/, .. ,E/} consisting of uniform policies al, e, 0n
where 8}(d) = HD171|| for each d € dom(Djy) and each D; € Xp.

Assume A is the current strategy and D; is the next decision to be con-
sidered for a policy update, then SPU proceeds by performing the following

steps

Retract Retract the policy 8] from A to obtain A_; = A\ {d}} (i.e., A_; is a
strategy for all decisions except Dj).
Update Identify a new policy §'; for D; by computing

8 = argmax EU(A_; U{8)).

Replace Set A =A_; U{§;}.

SPU may consider the decisions in an arbitrary order. However, if the
graph § specifies a partial order on a subset of decisions Di; < -+ < Dy, <
--- < Dj,,, then these decisions are processed in reverse order, cf. the solution
process of ordinary influence diagrams.

Ezample 5.15 (Solving Breeding Pigs). To solve the breeding pigs decision
problem of Example 4.13 on page 90 is to identify a strategy consisting of one
policy for each decision on whether or not to treat each pig for the disease.
Using the SPU algorithm described above we may solve the decision problem
by iteratively updating each single policy until convergence has occurred.

The uniform strategy will serve as the initial strategy. Hence, we assign a
uniform policy &; to each decision Di. As there is a total temporal order on
the decisions, we consider them in reverse temporal order.

The SPU algorithm updates the policy of each decision iteratively un-
til convergence. Once convergence has occurred, we have obtained the strat-
egy A ={ép,,0p,,0D,}, where

5p (Ry) = no R; = unhealthy
B N no Ry = healthy

5. (Ry) = yes R, = unhealthy
PR Yo Ry = healthy

yes Rz = unhealthy

op, (R =
03 (Rs) {no R3 = healthy
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For R, and R3 the strategy is to treat a pig when the test indicates that
the pig is unhealthy. For Ry no treatment should be performed. Notice that
each policy is only a function of the most recent test result. This implies that
previous results and decisions are ignored.

Probability of Future Decisions

Equation 5.12 specifies a factorization of the joint probability distribution Pa
over X encoded by a strategy A. This factorization may be interpreted as a
Bayesian network model. With this interpretation we are able to compute the
probability of future events under the assumption that the decision maker
adheres to the strategy A. This property also holds for ordinary influence
diagrams.

Ezample 5.16 (Breeding Pigs). In Example 5.15 we identified a strategy A =
{4p,,0D,,0p,} for the Breeding Pigs problem. Having identified a strategy,
the farmer may be interested in knowing the probability of a pig being healthy
when it is sold for slaughtering. This probability may be computed using
Equation 5.12.

The probability of a pig being healthy under strategy A is Pa(Hg = true) =
67.58 whereas the probability of a pig being healthy under the uniform strat-
egy A is Px(H4 = true) = 70.55. The uniform strategy has a lower maximum
expected utility though.

Minimal LIMIDs

LIMIDs relax the assumption of perfect recall of the decision maker. This
implies that the structure of a LIMID defines what information is available to
the decision maker at each decision. In addition to specifying what informa-
tion is available to the decision maker, we may perform an analysis of which
information is relevant to each decision.

It is not always obvious which informational links to include in a LIMID
with graph § = (V, E). Sometimes a link (v, w) € E from X,, € X¢ to D, € Xp
may be removed from the graph § without affecting the policies and the
expected utility of the computed policies. When this is the case, we say that
the link (v,w) (and the parent X, given by the link) is non-requisite for D,,.

Removing all non-requisite informational links from a LIMID N = (X, § =
(V,E),P,U) produces the minimal reduction N™* = (X, G = (V,E*),P,U)
of N. Any LIMID N has a unique minimal reduction N™* obtained by itera-
tive removal of informational links from non-requisite parents into decisions.

Since removing a non-requisite parent X from decision D; may make an-
other previously requisite parent Y € X,,(v,) & non-requisite parent, it is
necessary to iteratively process the parent set of each decision until no non-
requisite parents are identified. If N is an ordinary influence diagram, it is
sufficient to perform a single pass over the decisions starting with the last
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decision first. The reason is that we have a total order on the decisions and
all decisions are extremal (see Definition 5.6 below).

Optimal Strategies

In order to characterize the conditions under which SPU is guaranteed to find
an optimal solution we need to define the notion of an extremal decision.

Definition 5.6 (Extremal Decision). Let N = (X,G,P,U) be a LIMID. A
decision variable Dy is extremal if and only if

(Vu Nde(Dy)) Lg | J fa(D;)[fa(Ds).
jAL

That is, a decision variable is extremal if all other decisions and their
parents are d-separated from the utility descendants of D; given the family
of Di-

A LIMID is soluble if all decisions are extremal. If D; is extremal in N,
then it has an optimal policy. If all policies in A are optimal, then A is an
optimal strategy.

Ezample 5.17 (Breeding Pigs). The Breeding Pigs network in Figure 4.15 on
page 91 is not soluble as all decisions are non-extremal. This implies that the
local optimal strategy identified is not necessarily a globally optimal strategy.

Similarly, Figure 4.14 of Example 4.12 on page 90 shows an example of
a non-soluble LIMID N = (X,§ = (V,E),P,U). On the other hand, the
LIMID N = (X,§ = (V,E\ {(Dy,D)}),P,U) is soluble as both D; and Dj
are extremal.

Notice that since any ordinary influence diagram may be represented as
a limited memory influence diagram, the SPU solution process may be used
to solve influence diagrams, see e.g. Madsen & Nilsson (2001). Any ordinary
influence diagram is a special case of a limited memory influence diagram.
The LIMID representation of an ordinary influence diagram will produce an
optimal strategy.

See Lauritzen & Nilsson (2001) for more details on the solution process.

5.3 Solving OOPNs

For the purpose of inference, an object-oriented model is unfolded. The un-
folded network is subsequently transformed into the computational structure
used for inference. This implies that to solve an object-oriented model is equiv-
alent to solving its unfolded network. Hence, from the point of view of inference
there is no difference between an object-oriented network and a flat network.
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5.4 Summary

In this chapter we have considered the process of solving probabilistic net-
works. As the exact nature of solving a query against a probabilistic network
depends on the type of model, the solution processes of Bayesian networks
and influence diagrams have been considered separately.

We build Bayesian network models in order to support efficient reasoning
under uncertainty in a given domain. Reasoning under uncertainty is the task
of computing our updated beliefs in (unobserved) events given observations
on other events, i.e., evidence.

We have considered the task of computing the posterior marginal of each
unobserved variable, Y, given a (possibly empty) set of evidence ¢, i.e., P(Y]e).
We have focused on the solution process that computes the posterior marginal
for all unobserved variables using a two-phase message passing process on a
junction tree structure.

We build decision models in order to support efficient reasoning and de-
cision making under uncertainty in a given problem domain. Reasoning un-
der uncertainty is the task of computing our updated beliefs in (unobserved)
events given observations on other events whereas decision making under un-
certainty is the task of identifying the (optimal) decision strategy for the
decision maker given observations.

We have derived a method for solving influence diagrams by variable elim-
ination. In the process of eliminating variables we are able to identify the
decision policy for each decision. The resulting set of policies is the optimal
strategy for the influence diagram.

The LIMID representation relaxes the two fundamental assumptions of
the influence diagram representation. The assumptions are the total order on
decisions and the perfect recall of past decisions and observations. These two
assumptions are fundamental to the solution algorithm for influence diagrams
described above. Due to the relaxation of these two assumptions, the solu-
tion process of LIMIDs becomes more complex than the solution process of
influence diagrams.

We have described how the single policy updating algorithm iteratively
identifies a set of locally optimal decision policies. A decision policy is globally
optimal when the decision is extremal.

Finally, an OOPN is solved by solving its equivalent unfolded network.

Exercises

Exercise 5.1. You are confronted with three doors, A, B, and C. Behind
exactly one of the doors there is a big prize. The money is yours if you choose
the correct door. After you have made your first choice of door but still not
opened it, an official opens another one with nothing behind it, and you are
allowed to alter your choice.
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(a) Construct a model for reasoning about the location of the prize.
(b) Compute by hand the probability distribution over the location of the
prize given you select door A and the official opens door B.

Exercise 5.2. Consider the Asia network shown in Figure 5.20 (see Exam-
ple 4.2 on page 68 for more details).

Tuberculosis
Tub_or_cancer

Fig. 5.20. A graph specifying the independence and dependence relations of the
Asia example.

(a) Determine the set of barren variables for queries
Q1 = (N, {Bronchitis}, {}),
Q2 = (N, {Bronchitis}, {Dyspnoea = yes}),
Qs = (N, {Bronchitis}, {Dyspnoea = no, X_ray = yes}),
where Qi = (N, T, ¢) with N denoting the model, T the target, and ¢ the
evidence set.
(b) Determine the set of nuisance variables for the same queries.

Exercise 5.3. Consider again the Asia network shown in Figure 5.20.

(a) Identify the domain of potentials created by the elimination sequence o =
(Tub_or_cancer, Asia, Smoker, Bronchitis, Cancer, X_ray, Dyspnoea, Tuberculo-
sis).

(b) Construct a junction tree representation using the elimination order o.

(c¢) Compare the answer to (a) with Figure 5.8 on page 117.

Exercise 5.4. Consider the influence diagram in Figure 4.10 on page 84.

a) Which variables are relevant for each decision node?

b) Which observed variables are requisite for each decision node?

c¢) Identify the partial order of the chance nodes relative to the decision nodes.
d) Identify the domains of each decision policy.

(
(
(
(

Exercise 5.5. Interpret the graph in Figure 4.10 on page 84 as a LIMID.
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(a) Identify the domains of decision policies and compare the results with the
policies identified in Exercise 5.4(d).
(c) Are any of the decision nodes extreme?

Exercise 5.6. Consider the decision problem in Exercise 5.1.

(a) Calculate the MEU for the first choice/decision.

(b) Explain the results of your calculations.

(c) Construct an influence diagram for this problem, and check if the results
are consistent with your calculations.

(d) What is the optimal policy?
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Eliciting the Model

A probabilistic network can be constructed manually, (semi-)automatically
from data, or through a combination of a manual and a data driven process. In
this chapter we will focus exclusively on the manual approach. See Chapter 8
for approaches involving data.

Faced with a new problem, one first has to figure out whether or not
probabilistic networks are the right choice of “tool” for solving the problem.
Depending on the nature of the problem, probabilistic networks might or
might not be a natural choice of modeling methodology. In Section 6.1 we
consider criteria to be fulfilled for probabilistic networks to be a suitable
modeling methodology.

A probabilistic network consists of two components: structure and para-
meters (i.e., conditional probabilities and utilities (statements of preference)).
The structure of a probabilistic network is often referred to as the qualitative
part of the network, whereas the parameters are often referred to as its quan-
titative part. As the parameters of a model are determined by its structure,
the model elicitation process always proceeds in two consecutive stages: First,
the variables and the causal, functional or informational relations among the
variables are identified, providing the qualitative part of the model. Second,
once the model structure has been determined through an iterative process
involving testing of variables and conditional independences, and verification
of the directionality of the links, the values of the parameters are elicited.

Manual construction of probabilistic networks can be a labor-intensive
task, requiring a great deal of skill and creativity as well as close communica-
tion with problem domain experts. Two key problems need to be addressed in
the process of establishing the model structure: identification of the relevant
variables and identification of the links between the variables.

The notion of variables (be they discrete chance or decision variables or
continuous chance or decision variables) plays a key role in probabilistic net-
works. At a first glance it might seem like a relatively simple task to identify
the variables of a probabilistic network, but experience shows that this might
be a difficult task. In Section 6.2 we carefully introduce the notion of variables,
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discuss the various types of variables and their roles, and provide a test that
each variable should be able to pass.

In Section 6.3 we discuss the process of eliciting the structure of a prob-
abilistic network for a problem domain, discussing both a basic approach,
utilizing variable classification and typical causal relations among these, and
a more elaborate approach based on identification of archetypical semantical
substructures.

Although the use of structured approaches to elicitation of model structure
might drastically reduce the risk of misplacing and/or reversing links, model
verification ought to be performed before elicitation of model parameters is
initiated. In Section 6.4 we discuss the importance of inspecting the model
structure to verify that the dependence and independence properties encoded
in the structure are reasonable.

Having the structure of the probabilistic network in place, the parame-
ters (conditional probabilities and the utilities (if any)) of the network are
identified. Quite often this is the most labor-intensive task, as the number
of parameters can be counted in hundreds or even thousands, possibly each
requiring consultation of a domain expert. In Section 6.5 we consider ways in
which the elicitation of the numbers (parameters) can be eased.

In Section 6.6 we make some concluding remarks about the art of con-
structing probabilistic networks by hand, and point out the importance of
being aware of the limitations of models and the conditions and assumptions
under which they are supposed to work. We also stress that an object-oriented
approach, which facilitates a modular model construction approach, should
preferably be used for large models or models with repetitive structures (e.g.,
dynamic models). Finally, we point out that manual model construction is an
iterative process that can be quite labor intensive.

6.1 When to Use Probabilistic Networks

A probabilistic network is a compact and intuitive representation of causal
relations among entities of a problem domain, where these entities are repre-
sented as discrete variables over either finite sets of mutually exclusive and
exhaustive sets of possible values or as continuous variables defined over a
space ranging from minus infinity to plus infinity.

There are many good reasons to choose probabilistic networks as the mod-
eling framework, including the coherent and mathematically sound handling of
uncertainty and normative decision making, the automated construction and
adaptation of models based on data, the intuitive and compact representa-
tion of cause—effect relations and (conditional) dependence and independence
relations, the efficient solution of queries given evidence, and the ability to
support a whole range of analyses of the results produced, including conflict
analysis, sensitivity analysis (with respect to both parameters and evidence),
and value-of-information analysis. There are, however, some requirements to
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the nature of the problem that have to be fulfilled for probabilistic networks
to be the right choice of paradigm for solving the problem.

6.1.1 Characteristics of Probabilistic Networks

To understand the power as well as the limitations of the framework of proba-
bilistic networks, let us briefly discuss the main characteristics of probabilistic
networks. Probabilistic networks are normative, meaning that they provide
answers to queries that are mathematically coherent and in agreement with
a set of fundamental principles (axioms) of probability calculus and decision
theory. There are four ground characteristics that constitute the foundation
of (normative) probabilistic models:

e Graphical representation of causal relations among domain entities (vari-
ables). The notion of causality is central in probabilistic networks, meaning
that a directed link from one variable to another (usually) signifies a causal
relation among the two. For example, in the Chest Clinic model (see Ex-
ample 4.2 on page 68), the directed link from Smoker to Bronchitis indicates
that Smoker is a (possible) cause of Bronchitis.

o Strengths of probabilistic relations are represented by (conditional) prob-
abilities. Causal relations among variables are seldomly deterministic in
the sense that if the cause is present, then the effect can be concluded by
certainty. For example, P(Bronchitis = yes|Smoker = yes) = 0.6 indicates
that among smokers entering the chest clinic 60% suffer from bronchitis.

e Preferences are represented as utilities on a numerical scale. All sorts of
preferences that are relevant in a decision scenario must be expressed on a
numerical scale. In a medical scenario, for example, some relevant factors
might be medicine expenses and patient comfort.

o Recommendations are based on the principle of maximal expected utility.
As the reasoning performed by a probabilistic network is normative, the
outcome (e.g., most likely diagnosis or suggested decision) is guaranteed
to provide a recommended course of action that maximizes the expected
utility to the extent that the model is a “true” representation of problem
domain.

6.1.2 Some Criteria for Using Probabilistic Networks

Given the characteristics of probabilistic networks, there are obviously some
problems that can be modeled nicely with probabilistic networks and others
that cannot.

For probabilistic networks to be a good choice of modeling paradigm, there
should normally be an element of uncertainty associated with the problem
definition, implying a desire to maximize some sort of expected utility.

There are a few problem domains where probabilistic networks might not
be the ideal choice of modeling paradigm. For example, some problems con-
cerning pattern recognition (e.g., recognition of fingerprints), where there are
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no well-understood mechanisms underlying the layout of the pattern, prob-
abilistic networks most probably would not be the ideal choice. Also, if the
cause—effect relations change over time (i.e., there is no fixed structure of
the corresponding probabilistic network), other modeling paradigms might be
considered.

So, we might set up the following criteria to be met for probabilistic net-
works to potentially be a good candidate technology for solving the problem
at hand:

o Well-defined variables. The variables and events (i.e., possible values of the
variables) of the problem domain need to be well-defined. For example, in
many medical problems the set of relevant factors (e.g., headache, fever,
fatigue, abdominal pain, etc.) are well-defined. On the other hand, the
variables that determine whether or not a person likes a painting may not
be well-defined.

o Highly structured problem domain with identifiable cause—effect relations.
Well-established and detailed knowledge should be available concerning
structure (variables and (causal) links), conditional probabilities, and util-
ities (preferences). In general, the structure needs to be static (i.e., not
changing over time), although re-estimation of structure (often through
the usage of learning tools; see Chapter 8) can be performed. The values
of the probability parameters of a probabilistic network might be drifting,
in which case, adaptation techniques can be used to update the parameter
values (see Chapter 8).

o Uncertainty associated with the cause—effect relations. If all cause—effect
relations are deterministic (i.e., all conditional probabilities either take
the value 0 or the value 1), more efficient technologies probably exist. In
almost all real-world problem domains there are, however, various kinds
of uncertainty associated with cause—effect mechanisms, be it incomplete
knowledge about the mechanisms, noisy observations (measurement error),
or abstraction of information (e.g., discretization of real-valued observa-
tions).

e Repetitive problem solving. Often, for the (sometimes large) effort invested
in constructing a probabilistic network to pay off, the problem solved
should be of repetitive nature. A physician diagnosing respiratory dis-
eases, an Internet company profiling its customers, and a bank deciding to
grant loans to its customers are all examples of problems that need to be
solved over and over again, where the involved variables and causal mech-
anisms are invariant over time, and only the values observed for (some of)
the variables differ. Although the repetitiveness criterion is characteristic
of many real-world decision problems for which model-based decision sup-
port is well-suited in terms of payoff of investment, there are important
exceptions. Non-repetitive decision problems with high stakes comprise
an important exception to this criterion. Examples include decisions on
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whether or not to establish an offshore oil rig, build a highway bridge,
launch a Mars exploration mission, go to war, etc.

o  Maximization of expected utility. For the probabilistic network framework
to be a natural choice, the problem at hand should most probably contain
an element of decision making involving a desire to maximize the expected
utility of a decision.

6.2 Identifying the Variables of a Model

The set of variables of a probabilistic network comprises the cornerstone of
the model. Basically, there are two kinds of variables in probabilistic net-
works, namely chance and decision variables. Chance variables model events
of the problem domain, which are not under control of the decision maker,
whereas decision variables represent precisely the decisions taken by the de-
cision maker.

Variables can be discrete or continuous. Discrete variables take values
from a finite set of possible values, whereas continuous variables take values
from the set of real numbers. We refer the reader to Section 4.1.2 for details
regarding networks with continuous variables.

6.2.1 Well-Defined Variables

A discrete chance variable of a probabilistic network must represent an ex-
haustive set of mutually exclusive events. That is, all possible values of the
variable must be represented in its state space (exhaustiveness) and no pair
of values from the set must exclude each other (mutual exclusiveness).

Example 6.1. Consider the following sets of events

(1) {heads, tails},
(2) {1,2,3}, and
(3) {black_or_white, black, white}.

Assume that set (1) is meant to describe the set of possible outcomes of a
flip with a coin. Thus, assuming that the coin cannot end up in an upright
position, the set constitutes an exhaustive set of mutually exclusive events
describing the outcomes, and is thus a positive example of a set of possible
states of a variable of a probabilistic network.

Assume that set (2) is meant to describe the outcomes of a roll with
an ordinary die. The events of the set are mutually exclusive, but being non-
exhaustive, set (2) is a negative example of a set of possible states of a variable
of a probabilistic network.

Assume that set (3) is meant to describe the colors of the keys of a piano.
The set of events is exhaustive, but not mutually exclusive, and is thus another
negative example of a set of possible states of a variable of a probabilistic
network.
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In addition to representing an exhaustive set of mutually exclusive events,
a variable of a probabilistic network typically must represent a unique set of
events. This means that, usually, a state of a variable should not be mutually
exclusive with a state of a single other variable. In other words, the state of
a variable should not be given deterministically by the state of a single other
variable. If there are states of two variables, say A and B, that are mutually
exclusive, it most probably means that the two variables should be merged
into one variable having {A, B} as part of its set of states. We shall refer to a
test of a variable for fulfillment of this uniqueness property as the uniqueness
test.

Although we usually require variables to pass the uniqueness test, we do
allow (the state of) a variable to be deterministically given by the states of
two (or more) other variables. Consider, for example, the Chest Clinic example
(see Example 4.2), where Tub_or_cancer depends deterministically on variables
Tuberculosis and Cancer through a logical OR relation. Constraint variables
(see Chapter 7) also depend deterministically on its parent variables. Such
“artificial” variables can be handy in many modeling situations, for example,
reducing the number of conditional probabilities needed to be specified or
enforcing constraints on the combinations of states among a subset of the
variables.

Ezxample 6.2. Consider the following candidate variables for a probabilistic
network:

(1) High_temperature,
(2) Low_temperature,

(3) Error_occured, and
(4) No_error,

all having state space {no,yes}. Assume that the variables pairwise refer to
the state of the same phenomenon (e.g., temperature of cooling water of a
power plant and state of operation of a particular device of the plant, re-
spectively). Then there are obviously states of variables High_temperature and
Low_temperature that are mutually exclusive (i.e., High_temperature = no im-
plies that Low_temperature = yes and vice versa). Obviously, the same problem
pertains to variables Error_occured and No_error.

New variables, say Temperature and Error, with sets of states {High, Low}
and {Error_occured, No_error}, respectively, should be defined, and the vari-
ables (1)—(4) should be eliminated.

Finally, a candidate variable of a problem domain needs to be clearly
defined so that everyone involved in the construction or application of the
model (i.e., knowledge engineers, domain experts, decision makers, etc.) knows
the exact semantics of each variable of the model. For example, the vari-
able It_will_rain_tomorrow might not be clearly defined, as there could be open
questions regarding the location of the rain, the amount of rain, the time of
observation of rain, etc.
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To test if a candidate variable, say V, is indeed a proper and useful variable
of the problem domain, it should be able to pass the clarity test:

(1) The state space of V must consist of an exhaustive set of mutually exclu-
sive values that V can take.

(2) Usually, V should represent a unique set of events (i.e., there should be
no other candidate variable of the problem domain a state of which is
mutually exclusive with a state of V). If this principle is violated, the
model most probably should include one or more “constraint” variables
(see Section 7.1.4) to enforce mutual exclusivity.

(3) V should be clearly defined, leaving no doubts about its semantics. In
general, a variable is well-defined if a clairvoyant can answer questions
about the variable without asking further clarifying questions.

Identifying the variables of a problem domain is not always an easy task,
and requires some practicing. Defining variables corresponding to the (physi-
cal) objects of a problem domain is a common mistake made by most novices.
Instead of focusing on objects of the problem domain, one needs to focus on
the problem (possible diagnoses, classifications, predictions, decisions, etc. to
be made) and the relevant pieces of information for solving the problem.

Ezample 6.3 (Doors). Consider the task of constructing a probabilistic net-
work for the following decision problem (cf. Exercise 5.1 on page 137):

You are confronted with three doors, A, B, and C. Behind exactly one
of the doors there is a big prize. The prize is yours if you choose the
correct door. After you have made your first choice of door but still
not opened it, an official opens another one with nothing behind it,
and you are allowed to alter your choice. Now, the question is: Should
you alter your choice?

A small probabilistic network can be constructed for solving the problem, and
which provides exact odds of winning given the two options. By experience,
though, most novices construct models with one variable for each door, instead
of variables modeling the information available and the problem to be solved.

By defining a variable for each door (with each variable having state space
{Prize, No_prize}, say), one violates the principle that variables should represent
unique sets of events (unless constraint variables are included), and thus do
not pass the clarity test.

Instead one needs to take a different perspective, focusing on the problem
and the available information:

(1) Problem: Where is the prize? This gives rise to a variable, Prize_location,
with state space {A, B, C}, corresponding to doors A, B, and C, respec-
tively.

(2) Information 1: Which door did you choose originally? This gives rise to a
variable, say First_choice, with state space {A, B, C}.
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(3) Information 2: Which door were opened by the host? This gives rise to a
variable, say Host_choice, with state space {A, B, C}.

These variables pass the clarity test.

6.2.2 Types of Variables

In the process of identifying the variables it can be useful to distinguish be-
tween different types of variables:

e Problem variables: These are the variables of interest; i.e., those for which
we want to compute their posterior probability given observations of values
for information variables (see next item). Usually, the values of problem
variables cannot be observed; otherwise, there would not be any point in
constructing a probabilistic network in the first place. Problem variables
(also sometimes called hypothesis variables) relate to diagnoses, classifica-
tions, predictions, decisions, etc. to be made.

o Information variables: These are the variables for which observations may
be available, and which can provide information relevant for solving the
problem. T'wo sub-categories of information variables can be distinguished:
—  Background information: Background information for solving a prob-

lem (represented by one or more problem variables) is information that
was available before the occurrence of the problem and that has a causal
influence on problem variables and symptom variables (see next item),
and are thus usually among the “root” variables of a probabilistic net-
work. For example, in a medical setting, relevant background infor-
mation could include patient age, smoking habits, blood type, gender,
etc.

—  Symptom information: Symptom information, on the other hand, can
be observed as a consequence of the presence of the problem, and hence
will be available after the occurrence of the problem. In other words,
problem variables have causal influences on its symptoms. Hence,
symptom variables are usually descendants of background and problem
variables. Again, in a medical setting, relevant symptom information
could include various outcomes of clinical tests and patient interviews;
e.g., blood pressure, fever, headache, weight, etc.

e Mediating variables: These are unobservable variables for which poste-
rior probabilities are not of immediate interest, but which play important
roles for achieving correct conditional independence and dependence prop-
erties and/or efficient inference. Mediating variables often have problem
and background variables as parents and symptom variables as children.

Table 6.1 summarizes the typical causal dependence relations for the four
different variable classes.

In Example 6.3 there are one problem variable (Prize_location) and two
information variables (First_choice and Host_choice), where First_choice repre-
sents a piece of background information, as it was available before the problem
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Type Causally influenced by

Background variables | None

Problem variables Background variables

Mediating variables Background and problem variables

Symptom variables Background, problem, and mediating variables

Table 6.1. Typical causal dependence relations for different variable classes.

occurred, and Host_choice represents a piece of symptom information that be-
came available only after the occurrence of the problem and as a consequence
of it.

Ezample 6.4 (Classification). Assume that we wish to construct a probabilistic
network for classifying scientific papers into the two classes of

(1) books referring to real-world applications of Bayesian networks and
(2) other books.

We identify a problem variable, say Class, with two states, say BN_appl_books
and Other_books. Assume that the classification is going to be based on detec-
tion of keywords, where keywords like “Bayesian network”, “Bayes net”, “ap-
plication”, “industrial”, “decision support”, etc. found in a book might indi-
cate reference to real-world applications of Bayesian networks. Then we might
define an information (symptom) variable for each keyword (or phrase). Each
information variable could be binary; e.g., Boolean, with states 0 (“false”)
and 1 (“true”) indicating if the keyword is absent or present, respectively, in
a particular book). In a more refined version, each information variable could
represent the number of occurrences of the associated keyword, in which case
the variable need several states, say {0,1 —5,5— 15, > 15}.

Example 6.5 provide a simple example in which the need for a mediating
variable is crucial for achieving correct dependence and independence proper-
ties of a model (and, consequently, to get reliable answers from the model).

Ezample 6.5 (Insemination (Jensen 2001)). Six weeks after insemination of
a cow, two tests can be performed to investigate the pregnancy state of the
cow: blood test and urine test. We identify pregnancy state as the prob-
lem variable (PS), and the results of the blood and urine tests as informa-
tion (symptom) variables (BT and UT, respectively), where PS has states
{Pregnant, Not_pregnant} and variables (BT and UT have states {Positive,
Negative}). As the state of pregnancy has a causal influence on the outcome
of the tests, we identify an initial model as shown in Figure 6.1. Using d-
separation, we find that this model assumes BT and UT to be independent
given information about the state of PS (i.e., P(PS = Pregnant) = 0 or
P(PS = Pregnant) = 1). Assume now that a domain expert (e.g., a veteri-
narian) informs us that this independence statement is false; i.e., the expert
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Fig. 6.1. A model for determining pregnancy state.

expects the outcome of one of the tests to be informative about the outcome
of the other test even if the pregnancy state of the cow is known for sure. As
there are no natural causal mechanisms linking BT and UT that could counter
for the dependence between these two variables, we need to solve the problem
by introducing a fourth (mediating) variable (HS) describing the hormonal
state of the cow, which determines the outcomes of both tests (i.e., HS has a
causal influence on BT and UT). The resulting model is shown in Figure 6.2,
where BT and UT are dependent (as they should be) even if the state of

pregnancy is known.
(Hs)
GO G

Fig. 6.2. A refined model for determining the pregnancy state, reflecting the fact
that both tests are indications of the hormonal state, which in turn is an indication
of pregnancy state.

6.3 Eliciting the Structure

We shall consider two structured ways of eliciting the model structure. A
basic approach relies on the natural causal ordering that exist among the four
categories of variables that were discussed in Section 6.2.2. A more refined
approach has been developed by Neil et al. (2000) where model fragments
are identified by recognizing archetypical relations (known as idioms) among
groups of variables.

6.3.1 A Basic Approach

Given an initial set of variables identified for a given problem domain, the
next step in the model construction process concerns the identification and
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verification of (causal) links of the model. As discussed in Section 2.4, main-
taining a causal perspective in the model construction process may prove
valuable in terms of correctly representing the dependence and independence
relations as well as in terms of ease of elicitation of the conditional proba-
bilities of the model. Notice that maintaining a causal perspective is crucial
when constructing influence diagrams (see Chapter 4).

As discussed in Section 6.2.2, there are four categories of variables of a
probabilistic network: (i) background (information) variables, (ii) problem
variables, (iii) mediating variables, and (iv) symptom (information) variables.
Also, as discussed above, background variables have a causal influence on
problem variables and symptom variables, and problem variables have a causal
influence on symptom variables. Mediating variables, if present, are most often
causally influenced by problem variables and background variables, and they
causally influence symptom variables. This gives us a typical overall causal
structure of a probabilistic network as shown in Figure 6.3.

Background variables

em variables

Mediating variables
ymptom variables

Fig. 6.3. Typical overall causal structure of a probabilistic network.

Notice that the structure of the chest-clinic example on page 68 fits nicely
with this overall structure of a probabilistic network, where Asia and Smoker
are background variables, Tuberculosis, Cancer, and Bronchitis are problem
variables, Tub_or_cancer is a mediating variable, and X_ray and Dyspnoea are
symptom variables.

Ezxample 6.6 (Doors, continued). For the decision problem of Example 6.3 on
page 149 we identified First_choice as a background variable, Prize_location
as a problem variable, and Host_choice as a symptom variable. Obviously,
First_choice has no influence on Prize_location (i.e., no cheating by the host).
Also, clearly, the choice of the host depends on your initial choice (First_choice)
as well as on the host’s private information about the location of the prize
(Prize_location). Thus, following the overall structure in Figure 6.3, we arrive
at a structure for the problem as shown in Figure 6.4.
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Prize_location

Fig. 6.4. Causal structure for the prize problem.

Ezxample 6.7 (Classification, continued). In Example 6.4 on page 151 we
have one problem variable Class and a number of symptom variables, say
Bayesian_network, Bayes_net, application, industrial, decision_support, etc. Ac-
cording to the overall structure in Figure 6.3, we get a network structure as
displayed in Figure 6.5.

Bayesian_network application

Fig. 6.5. Structure of the model for the classification problem of Example 6.4.

6.3.2 Idioms

Neil et al. (2000) have developed an approach to elicitation of model struc-
ture, which is based on describing the semantics and syntax of five commonly
occurring substructures (called idioms), representing different modes of un-
certain reasoning. These five idioms are believed to cover the vast majority, if
not all, substructures that can occur in a Bayesian network. Each idiom can
be considered an archetypical set of relations among a set of variables. Thus,
the use of idioms encourages the knowledge engineer to think in terms of se-
mantical relations among a (small) group of variables rather than in terms of
nodes and links. The modeling paradigm is thus moved to a higher level of ab-
straction, leaving details about which links to include and their directionality
to be handled automatically through the predefined structures of the idioms.
The five idioms are:

(1) Definitional/synthesis: Models the combination of variables into a sin-
gle variable, including deterministic or uncertain definition/function of a
variable in terms of other variables.
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(2) Cause-consequence: Models cause—effect mechanisms (causal processes).

(3) Measurement: Models the uncertainty associated with an observation or
measurement.

(4) Induction: Models inductive reasoning based on observations from similar
entities to infer something about an unobserved entity.

(5) Reconciliation: Models the reconciliation of results from competing state-
ments that arise from different sources of information.

Let us consider some examples on the use of the idioms, all taken from the
problem domain of risk assessment in software development processes (Neil
et al. 2000).

Ezample 6.8 (Definitional/synthesis idiom (Neil et al. 2000)). The quality of
software testing is defined in terms of the experience of the tester, the effort
put into the testing process, and the coverage of the test (i.e., how many
modules of the software system is tested). A sub-model implementing this
definition of testing quality as an instance of the definitional/synthesis idiom
is shown in Figure 6.6.

Coverage

Experience

Fig. 6.6. Sample instantiation of the definitional/synthesis idiom (Neil et al. 2000).

Ezample 6.9 (Cause—consequence idiom (Neil et al. 2000)). Both problem dif-
ficulty and supplier quality have causal impacts on the number of failures in
a software product. The three variables, Difficulty, Supplier, and Failures, com-
prise a sub-model implemented as a join of two instantiations of the cause—
consequence idiom, as illustrated in Figure 6.7.

Fig. 6.7. Sample instantiation of the cause-consequence idiom (Neil et al. 2000).
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One might argue that in Example 6.8 Experience, Effort, and Coverage are
all causes of Quality, and hence these four variables comprise a sub-model
implemented as a join of three instantiations of the cause—consequence idiom.
Also, in Example 6.9, one might argue that variable Failures is defined in terms
of (or is a synthesis of) variables Difficulty and Supplier, and hence should give
rise to a sub-model implemented as an instance of the definitional/synthesis
idiom. Which of the two idioms is chosen, however, is immaterial and depends
on how the model constructor perceives the relations among the variables.

Ezample 6.10 (Measurement Idiom (Neil et al. 2000)). The number of defects
in a software system can only be estimated up to a certain accuracy. Still,
however, the true number of defects is the important variable in assessing the
risk of employing the system. Hence, based on the observed number of defects
(Detected_defects), we need to estimate the true number (Inserted_defects). In
doing that we need to known the accuracy of the testing procedure applied.
This is a classical example of an instantiation of the measurement idiom, as
illustrated in Figure 6.8.

Inserted_defects

Detected_defects

Fig. 6.8. Sample instantiation of the measurement idiom (Neil et al. 2000).

Ezample 6.11 (Induction Idiom (Neil et al. 2000)). Assume that information
is available on the competence of a software testing organization on two pre-
vious occasions, where the organization tested non-critical software products.
Given this information and a measure on the similarity of these previous soft-
ware products with a safety-critical software product, we wish to estimate
the competence of the organization in testing the safety-critical product. In
other words, we wish to induce the competence from previous competences
on similar tasks. This induction problem is implemented as an instantiation
of the induction idiom, as illustrated in Figure 6.9.

Ezxample 6.12 (Reconciliation Idiom (Neil et al. 2000)). Statements about
fault tolerance of a software system can be derived either through a cause-
consequence relation, where the quality of the software development process
has a causal influence on the fault tolerance of the system, or through a defini-
tional relation involving the contributions of various fault tolerance strategies
such as error checking and error recovery mechanisms. Thus, if two such com-
peting submodels provide statements about fault tolerance, we need to rec-
oncile the two statements. Figure 6.10 shows how this problem can be solved
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Hist_comp

Fig. 6.9. Sample instantiation of the induction idiom (Neil et al. 2000).

through an instantiation of the reconciliation idiom, where Reconciliation is
a binary variable with states on and off that forces P(Fault_tol_1|e) and
P(Fault_tol 2| ¢) to be identical whenever Reconciliation = on, i.e.,

1 whenever F;1 =F
P(R=onl|F,F;) = { 0 otherwise ] ’

where Fy, F,, and R are abbreviations for, respectively, Fault_tol_1, Fault_tol 2,
and Reconciliation. Assume that dom(F;) = dom(F,) = {high, low} and that

Process_quality Err_checking

Fault_tol_1

Reconciliation

Fig. 6.10. Sample instantiation of the reconciliation idiom (Neil et al. 2000).

before reconciliation has taken place (i.e., R has not been instantiated) we
have
P(F; = highle) =0.7

P(F2 = high|e) = 0.8.
Using Bayes’ rule (Equation 3.11), we then get
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P(F; = high|R =on,¢)
P(F; = high,R = on|¢)

P(R =on]l¢)
_ P(R=on|Fy = high, F; = high)P(F; = high|e)P(F, = high|e)
N P(R=on|¢)
P(R = on|F; = high,F2 = low)P(F; = high|e)P(F, = low|¢)
+
P(R =on]¢)

1-P(Fy = high|e)P(F2 = high|e) + 0 - P(F; = high|e)P(F2 = low|e€)
2 F, F, P(R=on|F1,F2)P(Fy[e)P(F2¢)
P(F; = high|e)P(F2 = high|¢)
P(Fy = high|e)P(F2 = high|e) + P(Fy = low|&)P(F2 = low|e)’

(Note that with the last expression being symmetrical in Fy and F,, we get
(as expected) P(F; = high|R = on,¢) = P(F2 = high|R = on, ¢).) Now, with
P(F; = high|e) = 0.7 and P(F, = highle) = 0.8, we get

P(F; = high|R =on,¢) = P(F, = high|R = on, ¢) = 0.903.

That is, the reconciliation model reinforces both statements whenever the
statements support each other; i.e., if P(F; = highle) > % and P(F, =
highle) > . then

P(F; = high|R = on, ¢) > max{P(F; = high|e), P(F2 = high|¢)}

for i = 1,2. Similarly, with the above sample values for P(F; = high|¢) and
P(F2 = highle),

P(Fi =low|R =on, ¢) < min{P(F; = low|e),P(F2 = low|¢)}
fori=1,2.

Some remarks concerning the feasibility of the reconciliation idiom are in
order. As shown in Example 6.12 on page 156, the model reinforces state-
ments supporting each other. That is, the posterior probability (i.e., after
reconciliation) of a statement is greater (less) than the prior probability of
the statement if the prior probability of each of the contributing statements
is greater (less) than 12 In applications like the one sketched in Example 6.12,
this might make perfect sense, as two different sources of information form
the bases of the two statements about fault tolerance; i.e., one is based on
an assessment of process quality, and another on the extent to which errors
have been checked for and the ability of the system to recover from errors.
Thus, whenever two such independent statements about the fault tolerance of
a system both point in the same direction there is reason to believe that the
combined statement is stronger than each individual statement.

Care should be taken, however, not to apply the reconciliation model in
cases where the contributing/competing statements are based on the same
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source of information. Consider, for example, the statements from two, other-
wise independent, astronomers about the risk of an asteroid hitting the Earth.
If each of them state that the risk of collision is 10%, it would definitely be a
mistake to conclude that the risk then would be only 1.2%, which would be
the result of applying the reconciliation model in this case! In Section 7.2.2 we
shall present a model for dealing with competing statements that are based
on the same source of information.

The basic structures of the idioms are illustrated in Figure 6.11. Notice
that these basic structures can be combined into more complex structures. For
example, parents in a definitional/synthesis idiom can be a child in another
definitional /synthesis idiom etc., breaking down a definitional /synthesis idiom
with many parents into a hierarchy through a parent divorcing process (see
Chapter 7). Also, basic cause—consequence idioms are typically combined into
more complex structures where causes have common effects and effects have
COIMIMON Causes.

Also notice that depending on whether or not a root variable of an idiom is
a root variable of the overall model structure it may be categorized as either a
background variable, a problem variable, or a mediating variable. Similarly, a
non-root variable of an idiom may be a problem variable, a mediating variable,
or a symptom variable of the overall model. For example, in the induction
idiom of Figure 6.9 on page 157, variables Hist_.comp and Similarity could
typically be characterized as background variables, Comp_1 and Comp_2 as
symptom variables, and Competence as a problem variable.

Probably the most frequent idiom used is the cause—consequence idiom.
Thus, in determining the “right” idiom to use it might be advisable to start
considering whether the relations among the subset of variables under con-
sideration are best described using one or more cause—consequence relations.
Also, the measurement, induction and reconciliation idioms all deal with as-
sessments of some sort. Therefore, another relevant question to ask is whether
the relations among the variables under consideration describe some sort of
assessment. As a guide to choosing the right idiom one might consult the
flowchart in Figure 6.12.

6.4 Model Verification

Proper use of idioms or identification and categorization of variables as back-
ground variables, problem variables, symptom variables, and mediating vari-
ables and adhering to the overall causal structure in Figure 6.3 reduces the
typical error of letting links (arrows) point from symptom variables to prob-
lem variables. If, however, a model contains links that point from effects to
causes, inspection of the dependence and independence properties represented
by the model will often reveal a problem caused by the reversed links.

Ezample 6.13. Consider the following three Boolean variables (i.e., having
state space {false, true}):
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Definitional /synthesis Cause—consequence

@ Consequence

Measurement Reconciliation

Obs_value

Induction

Fig. 6.11. The five basic kinds of idioms defined by Neil et al. (2000).

e Two_PCs: Two or more PCs have been bought within a few days using the
same credit card.

e Card_copied: The credit card has been used at almost the same time at
different locations.

e Fraud: The credit card has been subject to fraud.

Now the question is if Model A in Figure 6.13(a) is correct or Model B in
Figure 6.13(b) is correct. Experience shows that most novices tend to prefer
Model A, probably based on the notion that “input” leads to “output” (i.e.,
observations imply a hypothesis). That is, given the two pieces of information
that the credit card has been used to buy two or more PCs within a few
days and that the card has been used almost at the same time at different
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Focus on
causing
some-
thing?

Y
c Focus on
ause— defining
consequence some-
idiom thing?

Y

. Focus
Definition/ on as-
Synthesis sess-
idiom ment?

Y

Think again

Y

Reconcil-
iating dif-
ferent pre-
dictions/
views?

Induction id-
iom

Y

Y

Reconciliation Measurement
idiom idiom

Fig. 6.12. Choosing the right idiom (Neil et al. 2000).

(a) (b)

Fig. 6.13. Two competing models for Example 6.13.
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locations (the input), we can conclude that the card has been subject to fraud
(the output). According to Model A, however, information about Two_PCs
(Card_copied) does not provide us with any information about Card_copied
(Two_PCs) when no information is available about Fraud. This is obviously
incorrect, as one piece of evidence confirming (or disconfirming) fraud would
obviously make us believe more (or less) in observing the other symptom of
fraud. Based on Model A we would thus get wrong posterior probabilities. No-
tice also that Model A does not have the typical causal structure as displayed
in Figure 6.3, as we identify Fraud as the problem variable and Two_PCs and
Card_copied as information (symptom) variables.
Model B, on the other hand, rightfully tells us that

e Two_PCs and Card_copied are dependent when we have no hard evidence
on Fraud: Observing Two_PCs (Card_copied) will increase our belief that
we will also observe Card_copied (Two_PCs), and

e Two_PCs and Card_copied are independent when the state of Fraud is
known: If we know that we are considering a case of fraud, then observing
Two_PCs (Card_copied) will not change our belief about whether or not we
are going to observe Card_copied (Two_PCs).

As this example shows, close inspection of the dependence and independence
relations of a model may reveal links pointing in the wrong direction. However,
adherence to the overall causal structure of Figure 6.3, would eliminate the
possibility of arriving at Model A.

Using the idiom approach to structure elicitation in this case, one would
have to decide whether to use the definitional/synthesis idiom or the cause—
consequence idiom (the measurement, reconciliation, and induction idioms
would be readily rejected). The definitional /synthesis idiom would make Fraud
be defined in terms of Card_copied and Two_PCs, which would be awkward.
For one thing, such a definition would be open-ended, as the are an unlimited
number of ways in which a credit card can be abused. Another, more con-
vincing, argument why the definitional /synthesis idiom is the wrong choice is
that it violates the overall causal structure of Figure 6.3.

Despite its simplicity, Example 6.13 shows that it might be beneficial to
combine the idiom approach and the basic approach to structure elicitation.
In other words, keeping in mind the overall causal structure of Figure 6.3
might be helpful when a choice of idiom has to be made.

As illustrated in Example 6.5 on page 151, model verification may reveal
a need to introduce additional (mediating) variables. The mediating variable,
HS, of Figure 6.2 is a common cause of variables BT and UT. Identification
of such common causes most often requires a close collaboration between
a problem domain expert and a knowledge engineer, as the domain expert
often lacks the ability to read the dependence and independence properties
displayed by a network structure and the knowledge engineer lacks insight into
the causal mechanisms among the variables of problem domain. As illustrated
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in the pregnancy example, failure to identify such hidden common causes (i.e.,
causes for which we have neither any immediate interest in their probability
distributions nor any (easy) way of observing their states) may lead to models
that provide wrong answers. In the case of the pregnancy model, exclusion
of the variable HS would make the model exaggerate the influence from BT
and UT when both are observed, as they are both indicative of the same
phenomenon, namely a possible change in the hormonal state of the cow.

6.5 Eliciting the Numbers

Once the structure of the probabilistic network has been established — prob-
ably through an iterative process involving model verification and model re-
visions, including identification of new variables, deletion and redefinition of
existing variables, and addition, deletion, and reversal of links — the next and
usually the most difficult phase of constructing a probabilistic network con-
cerns the elicitation of the quantitative information, including (conditional)
probability distributions and utilities (jointly referred to as the “numbers” or
the “parameters”).

Due to the (most often) quite demanding effort involved in eliciting the
numbers, it is important to carefully verify the structure of the model before
proceeding to the quantitative part of the model construction. Otherwise,
one runs the risk of having to reject or alter already elicited numbers, as the
kind of numbers required are dictated by the model structure. Also, eliciting
conditional probabilities with causal links reversed may be difficult and prone
to errors. In practice, however, minor model structure adjustments are often
made during the number elicitation process (e.g., to reduce the number of
parameters).

The quantitative information of a probabilistic network (often referred to
as the parameters of the model) is represented as real numbers in conditional
probability tables (CPTs) and utility tables (UTs). CPTs represent (con-
ditional) probability distributions with domains spanning the interval [0;1],
whereas UTs represent utility functions with domains spanning ] — 0o; col.

The parameters of a probabilistic network can be retrieved from databases,
elicited from (subjective) domain expert knowledge (e.g., from literature or
interviews of domain experts), or established through a mathematical model
(e.g., based on assumptions that a given probabilistic distribution can be
approximated through a mixture of two Normal distributions). In this section,
we shall focus only on the latter two approaches; see Chapter 8 for learning
probability parameters from data.

6.5.1 Eliciting Subjective Conditional Probabilities

Part of the reason why elicitation of values of probability parameters can be
rather demanding is that human reasoning is seldomly based on probabilities.
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In other words, a domain expert might find it awkward to express her domain-
specific knowledge in terms of conditional probabilities and utility values.
Thus, different indirect ways of eliciting the quantitative knowledge may be
used.

The fact that small differences in the values of probability (or utility) para-
meters often make no difference in the recommendations provided by a model
allows for parameter elicitation methods based on qualitative approaches. A
qualitative approach often makes the domain expert more comfortable specify-
ing her knowledge about strengths of causal relations and relative preferences
associated with decision problems.

An example of a qualitative approach for assessing subjective probabilities
include the usage of a so-called probability wheel. A probability wheel is a circle
subdivided into n pie wedges, where n equals the number of possible states
of the variable for which a (conditional) probability distribution is requested.
The domain expert then estimates a probability for a particular state by sizing
the corresponding pie wedge to match her best assessment of that probability.

Ezxample 6.14 (Probability Wheel). A climate researcher asked to provide an
estimate of the increase in the average global temperature over the next 100
years might use a probability wheel as shown in Figure 6.14, working with a
granularity of < 2°C, 2-5°C, and > 5°C.

0.44
Fig. 6.14. Probability wheel with three pie wedges corresponding to three states
of a variable representing the increase in the average global temperature over the
next 100 years. The relative area occupied by a particular pie wedge represents the
(conditional) probability for the associated state (indicated by the numbers next to
the pie wedges).

Another example of a qualitative approach is the use of verbal statements
like “very unlikely” or “almost certain” that are then mapped to probabilities
(see Figure 6.15). The use of such a limited set of verbal statements often
makes it quite a lot easier for the domain expert to provide assessments of
(conditional) probabilities.
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1 —+ Certain
0.95 T Almost certain
0.9 —+ Very probable
0.8 T Probable
0.5 —+ Fifty-fifty
0.2 —+ Not probable
0.1 1+  Unlikely
0.05 — Very unlikely
0 -+ Impossible

Fig. 6.15. Mapping of verbal statements of probability to probabilities.

A simple gamble-based approach can be used for assessing the value of a
probability parameter. Assume that a domain expert is asked to assess the
conditional probability that X = x when Y = y; i.e., P(X = x|Y = y). An
indirect way of making the expert assess this quantity would be to ask the
expert to choose an n, where 0 < n < 100, such that she finds the following
two gambles equally attractive:

(1) If X attains the value x when Y =y, you receive $10.
(2) If you draw a red ball from an urn with n red balls and 100 — n white
balls, you receive $10.

If all balls are red, she prefers Gamble 2, and if all balls are white, she prefers
Gamble 1. The n for which she finds the two gambles equally attractive is her
estimate of 100 * P(X =x|Y =y); i.e., P(X =x]Y =y) =n/100.

To reduce the parameter elicitation burden, it is advisable to perform the
elicitation of probability parameters in a two-step process:

(1) quickly provide rough initial parameter estimates, and then

(2) perform sensitivity analysis (see Chapter 10) to identify parameter assess-
ments that need to be made with care, as small variations can have a large
impact on the posterior probability of problem variables given evidence.

The second step should probably be repeated, as the careful assessment of the
critical parameters might reveal new critical parameters, etc.

See, for example, Renooij (2001) for a more in-depth discussion of the
issues related to elicitation of probabilities for probabilistic networks.
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6.5.2 Eliciting Subjective Utilities

Similar to the gamble-based approach for eliciting subjective conditional prob-
abilities, we define a gamble-based approach for eliciting subjective utilities.

Assume that we have the ordering (aq,...,a,) of outcomes to which we
need to assign subjective utilities, where the outcomes are ordered from worst
to best. We first assign a utility of 0 to the worst outcome and a utility of 1
to the best outcome. So

Then we consider gambles (or lotteries) L,, in which we get the best outcome
(an) with probability p and the worst outcome (a;) with probability T — p.
The utility of an outcome a; (i = 2,...,n — 1) is then defined to be the
expected utility of L, for which we are indifferent between playing the gamble
and getting the outcome a; for sure. Thus,

Ula;) = EU(L)
p-Ulan) + (1 —p)-Ulay)
p.

In other words, the probability, p, for which we are indifferent between the
gamble and getting a; for sure is our utility for a;.

6.5.3 Specifying CPTs and UTs Through Expressions

Probability distributions and utility functions in probabilistic networks often
follow (at least approximately) certain functional or distributional forms. In
such cases the CPTs/UTs can be described compactly through mathematical
expressions. Apart from ease of specification, specification through expressions
also makes maintenance and reuse much easier.

An expression may be built using standard statistical distributions (e.g.,
Normal, Binomial, Beta, Gamma, etc.), arithmetic operators, standard math-
ematical functions (e.g., logarithmic, exponential, trigonometric, and hyper-
bolic functions), logical operators (e.g., and, or, if-then-else), and relations
(e.g., less than, equals).

The different operators used in an expression have different return types
and different type requirements for arguments. Thus, in order to provide a rich
language for specifying expressions, it is convenient to have a classification of
the discrete chance and decision variables into different groups:

e Labeled variables have state spaces of arbitrary qualitative descriptors pro-
vided in the form of character strings. Labeled variables can be used in
equality comparisons and to express deterministic relationships. For ex-
ample, a labeled variable Cy with states state_1 and state_2 can appear in
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an expression like if(C; = state_1,Distribution(0.2,0.8),Distribution
(0.4,0.6)) for P(C5|Cy), where C; is another discrete chance variable with
two possible states and where if(p, a,b) is read as if predicate p is true,
then a else b.

e Boolean variables represent the truth values “false” and “true” (in that
order) and can be used in logical operators. For example, for a Boolean
variable, By, being the logical OR of its (Boolean) parents, By, By, and
B3, P(Bo|B1, B2, B3) can be specified simply as or(By, By, B3).

e Numbered variables represent increasing sequences of numbers (integers or
reals) and can be used in arithmetic operators, mathematical functions,
etc. For example, a numbered variable with state space {1,2,3,4,5,6} can
represent the outcome of the roll of a die.

e [Interval variables represent disjoint intervals on the real line and can
be used in the same way as numbered variables. In addition, they can
be used when specifying the intervals over which a continuous quantity
is to be discretized. For example, an interval variable with state space
{10;2],12;5],15;10]} may represent the increase in the average global tem-
perature over the next 100 years (cf. Example 6.14 on page 164).

Table 6.2 shows some examples of possible states of the various subtypes
of discrete chance variables.

Subtype ‘ Sample states
Labeled red, blue, low

Boolean false, true
Numbered | —c0,...,—2.2,—1.5,0,1,2,3,...,00
Interval ] —o00;—10],] — 10;-5],] — 5;—1]

Table 6.2. Examples of possible states of the various subtypes of discrete chance
variables.

Based on the semantics of discrete chance nodes provided by the above
subtyping an algorithm for automatic generation of CPTs and UTs can be
implemented. The functionality of such a table generator will be dependent on
the subtypes of the variables involved. Table 6.3 shows how the functionality
of a table generator algorithm might be dependent on variable subtypes.

Ezample 6.15 (Number of People (Hugin 2006)). Assume that in some appli-
cation we have probability distributions over the number of males and females,
where the distributions are defined over intervals ]0; 100], 1100; 500], 1500; 1000],
and that we wish to compute the distribution over the total number of individ-
uals given the two former distributions. (Note that this an obvious sample us-
age of the definitional /synthesis idiom presented in Section 6.3.2 on page 155.)
It is a simple but tedious task to specify P(Ny|Nm, Ng), where Np, Naq, and
N stand for the number of individuals, the number of males, and the number
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Operation Labeled | Boolean | Numbered | Interval | Utility

if-then-else + + + + +
Arithmetic operators + + +
Boolean operators +
Boolean comparison +
Boolean distributions +
Continuous distributions +
Discrete distributions +
Custom distribution +

Table 6.3. The functionality of a table generator algorithm is dependent on the
subtype of the involved variables.

of females, respectively. A much more expedient way of specifying this con-
ditional probability distribution would be to let Ny and Nf be interpreted
as interval variables with states ]0;100], 1100;500], and ]500;1000], and to let
N1 be interpreted as an interval variable with states ]0;200], ]1200; 1000], and
11000;2000], for example, and then define P(Ny|Na, Ng) through the sim-
ple expression N; = Npq + Ng. The alternative would require specification
(including computation) of 27 probability parameters; see Table 6.4.

N
Ne Nm 10;200]  ]1200;1000]  11000;2000]

10;100] 10;100] 1 0 0

10;100] 1100;500] 0.1248 0.8752 0

10;100] 1500; 1000] 0 0.8960 0.1040
1100;500] 10;100] 0.1248 0.8752 0
1100;500] 1100;500] 0 1 0
1100;500]  1500;1000] 0 0.4 0.6
1500;1000] 10;100] 0 0.8960 0.1040
1500;1000]  1100;500] 0 04 0.6
1500;1000]  1500; 1000] 0 0 1

Table 6.4. The CPT for P(Ny|Nm, Ng
pression N; = Nap + Nr.

—

in Example 6.15 generated from the ex-

Ezample 6.16 (Fair or Fake Die (Hugin 2006)). Consider the problem of com-
puting the probabilities of getting n sixes in n rolls with a fair die and a fake
die, respectively. A random variable, X, denoting the number of sixes obtained
in n rolls with a fair die is binomially distributed with parameters (n,1/6).
Thus, the probability of getting k sixes in n rolls with a fair die is P, (X = k),
where Py, is a Binomial(n, 1/6). Assuming that for a fake die the probability
of six pips facing up is 1/5, the probability of getting k sixes in n rolls with
a fake die is Pgake (X = k), where Pgaie is a Binomial(n, 1/5).
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A model of this problem is shown in Figure 6.16, where #6’s depends
on #rolls and Fake_die?. Now, if we let #rolls be interpreted as a numbered
variable with state space {1, 2, 3,4, 5}, let Fake_die? be interpreted as a Boolean
variable, and let #6’s be interpreted as a numbered variable with state space
{0,1,2,3,4,5}, then P(#6’s|#rolls, Fake_die?) can be specified elegantly using
the expression

P(#6's|#rolls, Fake_die?) = Binomial (#rolls, if(Fake_die?, 1/5,1/6)).

Filling in the probabilities by hand would require computation of 60 values of
the Binomial function with different parameters; see Table 6.5.

G Caa>

Fig. 6.16. A model for the fake die problem.

#6's
Fake_die?  #rolls 0 1 2 3 4 5
false 1 0.8333 0.1666 0 0 0 0
false 2 0.6944  0.2777 0.0277 0 0 0
false 3 0.5787 0.3472 0.0694 0.0046 O 0
false 4 0.4822 0.3858 0.1157 0.0154 0.0007 0
false 5 0.4018 0.4018 0.1607 0.0321 0.0032 0.0001
true 1 0.8 0.2 0 0 0 0
true 2 0.6400 0.3200 0.0400 0 0 0
true 3 0.5120 0.3840 0.0960 0.0080 O 0
true 4 0.4096 0.4096 0.1536 0.0256 0.0016 0
true 5 0.3276  0.4096 0.2048 0.0512 0.0064 0.0003

Table 6.5. The CPT for P(#6's|#rolls, Fake_die?) in the fake die problem of Ex-
ample 6.16 generated from the expression Binomial(#rolls, if(Fake_die?,1/5,1/6)).

Ezxample 6.17 (Discretization of a Random Variable (Hugin 2006)). Assume
that P(Cy|C2) can be approximated by a Normal distribution with mean
given by C, and with variance 1, where C; is an interval variable with states
]—5;—1],1—1;01, 10;1], 11;5]. If the discretization of C; given by the intervals
]—o00; 5], 1—5;-2],1—2;01, 10; 2], 12; 5], 15, oo[ is found to be suitable, then we
can specify P(Cq|C;) simply as Normal(C;,1). The probability distribution
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P(Cq|Cz = c3) (i.e., the conditional distribution for C; given that the value
of C, belongs to interval cy) is generated by computing a large number of
probability distributions for C,, each distribution being obtained by instan-
tiating C; to a value in the interval, c;, under consideration. The average of
these distributions (based on, for example, the midpoints of 25 subintervals) is
used as P(Cq|C2 = c2). Hence, for expressions involving several interval vari-
ables as parents, the generation of the CPT may be computationally intensive.
Table 6.6 shows P(C;|C2).

Cy
Cz ] —o00;=5] 1-5-2] 1-2,01 10;2] 12;5] 15, ool
] —5;—1] | 0.0996 0.6297 0.2499 0.0207 94E-5 3.8E—11

1 —1;0] 7.JE—6 0.0748 0.60%6 0.3075 0.0081 5.3E-8
10;1] 5.3E-38 0.0081 0.3075  0.6096 0.0748 71E—6
11;5] 3.8E—11 94E-5 0.0207 0.2499  0.6297 0.0996
Table 6.6. The CPT for P(C;|C2) in the discretization problem of Example 6.17
generated from the expression Normal(Cy,1).

6.6 Concluding Remarks

In this chapter we have tried to convey a set of good practices, routines,
and hints that can be helpful for novices wanting to construct a probabilistic
network model for a problem domain.

When constructing a model (probabilistic or not) it is crucial to realize
that real-world problem domains are usually embedded in a complex reality
involving interaction with numerous different aspects of the real world in a
way that can never be fully captured in a model. Also, the internal causal
mechanisms of a problem domain can almost always only be approximately
described in a model. Thus, it is important to bear in mind that all models
are wrong, but that some might be useful.

Based on this insight, it is important to clearly state the context of the
model as well as the assumptions and conditions under which it is supposed
to work. Real-world problem domains exist in an open world, whereas models
for the problem domains are based on a (most often, erroneous) closed-world
assumption.

The construction of a probabilistic network typically runs through four
main phases:

Design of the network structure, covering identification of variables and
(causal) relations among the variables. In addition, verification of the
network structure is an essential activity of the design phase, where
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the dependence and independence relations represented in the model are
stated and verified.

Implementation of the network, covering the process of populating the CPTs
and UTs with (conditional) probabilities and utilities. This phase is often
the most labor intensive of the four phases.

Test of the network to check if it provides sensible outputs to a carefully se-
lected set of inputs. In a medical setting, for example, testing may amount
to entering patient data and comparing network recommendations (e.g.,
diagnoses or treatment plans) with recommendations provided by med-
ical experts. If the test phase does not reveal any flaws of the network,
construction of the network is considered successfully completed.

Analysis of the network is performed to pinpoint problematic aspects of the
network revealed in the test phase. Various tools may be brought into
play, including conflict analysis (see Chapter 9), sensitivity analyses (see
Chapter 10), and value-of-information analysis (see Chapter 11).

In the design phase it is crucial to clearly define the problem that is going
to be addressed by the model, and to pay close attention to this problem
definition when identifying the variables of the model. It is strongly recom-
mended to keep the number of variables and (causal) relations among them
to a minimum; only those variables and relations that are thought to have
significant influences on the problem variable(s) should be included.

In his writings, William of Occam (or Ockham) (1284-1347) stressed the
Aristotelian principle that entities must not be multiplied beyond what is
necessary. This principle became known as Occam’s Razor or the law of par-
simony; a problem should be stated in its basic and simplest terms. In science,
the simplest theory that fits the facts of a problem is the one that should be
selected. This rule is interpreted to mean that the simplest of two or more
competing theories is preferable and that an explanation for unknown phe-
nomena should first be attempted in terms of what is already known.!

One argument why one should go for simpler rather than complex solutions
to a problem lies in the fact that simpler solutions impose less assumptions
about the problem (e.g., about dependences and independences), and hence
postulate fewer hypothetical solutions. The underlying idea is thus that sim-
pler solutions are more likely to be “correct”.

A key design principle applied in the construction of virtually any complex
system is the principle of a modular top-down design in which the level of ab-
straction changes from the more abstract to the more concrete. To support a
modular design approach clear descriptions of the interface mechanisms of the
modules must be provided. Also, given clear interface descriptions, coopera-
tion among sub-teams, reuse modules (submodels), and support for bottom-up
design are made possible. There are several reasons why an object-oriented
modeling approach (see Section 4.3), which facilitate exactly a modular model

! This paragraph is taken from http://www.2think.org/occams_razor.shtm]
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construction approach that allows for both top-down and bottom-up design,
is recommended for constructing large models:

e Large and complex systems are often composed of collections of identical
or similar components. Therefore, models of such systems will naturally
contain repetitive submodels. Object orientation allows such components
to be instantiated from a generic class. Both construction and maintenance
becomes a whole lot easier in this way: each component is generated simply
through instantiation and changes that apply to all instances should be
made only in the class from which the components have been instantiated.

e Many complex real-world systems (e.g., mechanical and biological systems)
are naturally described in terms of hierarchies of components (i.e., the sys-
tem consists of components, which consist of sub-components, etc.). Thus,
often an object-oriented probabilistic network (OOPN) more naturally de-
scribes the structure of the system modeled.

e Object-oriented model construction supports both top-down and bottom-
up modes of construction, which are often used, respectively, to maintain
a good overview of the model by abstracting away irrelevant details and
to focus on sub-components with a well-defined interfaces to their sur-
roundings. Thus, the OOPN framework provides support for working with
different levels of abstraction in the model constructing process.

e Object-oriented model construction provides a natural means to reuse of
existing sub-models. That is, the methodology provides a means to main-
tain a library of sub-models that can be instantiated in many different
OOPNs.

e Specifying a model in a hierarchical fashion often makes the model less
cluttered, and thus provides a better means of communicating ideas among
knowledge engineers, domain experts, and users.

e The composition of a model by a number of components with well-defined
interfaces supports a collaborative model construction process, where dif-
ferent model constructors work on different parts of the model.

Finally, it is important to realize that construction of a probabilistic net-
work is an iterative process in the sense that if model testing reveals flaws of
the model, another cycle through the model construction phases mentioned
above is necessary. In most practical model construction projects, many iter-
ations are needed before a workable model is found. This iterative process is
illustrated in Figure 6.17.

6.7 Summary

Manual construction of a probabilistic network for a complex decision or di-
agnosis problem is usually a demanding task, involving different sources of
expertise that provide model engineering skills as well as deep understand-
ing of the problem domain. The model elicitation process requires careful
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Fig. 6.17. Model construction is an activity that iteratively passes through de-
sign, implementation, test, and analysis phases until model tests no longer uncover
undesired behavior of the model.

problem definition, careful identification of the relevant variables and depen-
dences/independences among the variables, and elicitation of many (condi-
tional) probabilities and utilities.

However appealing a probabilistic network might seem in terms of com-
pactness of representation and in terms of serving as an intuitive means for
communication of problem domain characteristics, there exist problems for
which probabilistic networks are not the ideal tool to use. In Section 6.1, we
discussed some characteristics of probabilistic networks and some criteria for
using them. Briefly, and most importantly, the variables of the problem do-
main should be well-defined, causal relations among the variables should be
identifiable, uncertainty should be associated with the causal relations, and
the problem should contain an element of decision making with a desire to
maximize the expected utility of a decision.

In Section 6.2, we discussed how to identify the right set of variables of
a probabilistic network and what it takes for a variable to be well-defined.
A simple taxonomy of variables was introduced, which includes three basic
types of variables and their causal relations. Problem variables (or hypothesis
variables) represent the diagnoses, classifications, predictions, decisions, etc.
to be made. Information variables represent the available information (evi-
dence) that can provide information relevant for solving the problem. Finally,
mediating variables represent unobservable entities of the problem domain for
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which posterior probabilities are of no immediate interest, but which play an
important role for achieving the right dependence and independence proper-
ties of the network or for making efficient inference.

In Section 6.3, we first described a basic approach to structure elicitation,
showing how the variable taxonomy can be used in the attempt to elicit the
model structure. Next, we described how the notion of idioms can be helpful
in identifying fractions of a network structure, depending on the nature of
the semantic relations that exist among a small set of variables. Five idioms,
thought to cover the vast majority of commonly occurring semantic relation-
ships, were presented. The five idioms can be thought of as five archetypical
modes of uncertain reasoning, and thus, using the idioms approach to elic-
itation of model structure, one is encouraged to think at a higher level of
abstraction, leaving behind details about which links to include and their
directionality.

Although the basic approach to structure elicitation can be quite feasible
for some problems, for most (large) real-world problems the use of idioms is
preferable, as the idioms approach splits the problem into smaller and more
manageable chunks.

In Section 6.4 we briefly touched upon the issue of model verification, an
important activity immediately following the structure elicitation effort. In
the model verification process one checks if the dependence and independence
statements imposed by the structure are consistent with the knowledge of
problem domain experts.

In Section 6.5, we presented some techniques that might be considered
in the attempt to elicit the (subjective) values of the parameters (i.e., (con-
ditional) probabilities and utilities) dictated by the structure of the model.
Also, we presented a lower-level taxonomy for variables, distinguishing among
them in terms of their types of domains. Knowledge about the types of do-
mains of variables allows for automatic generation of CPTs and UTs through a
language of mathematical operations, including if-then-else statements, arith-
metic and Boolean operations, and a variety of discrete and continuous dis-
tributions. The ability to define CPTs and UTs in terms of compact mathe-
matical expressions might greatly reduce the burden of eliciting the numbers
(parameter values) of a probabilistic network.

We concluded the discussion on model elicitation in Section 6.6 by point-
ing out some typical main phases of the model construction process, and how
these phases are repeated iteratively until model tests no longer uncover unde-
sired behavior of the model. Also, we pointed to the fact that the best models
are usually constructed through deliberate use of the law of parsimony (or Oc-
cam’s razor). Finally, we touched upon the potential benefits of applying an
objected-oriented modeling approach, which facilitates modular model con-
struction with the freedom to use a top-down or a bottom-up approach. The
use of an object-oriented approach is especially beneficial for construction of
large models.
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Exercises

Exercise 6.1. There are three condemned prisoners A, B and C. The gover-
nor has announced that one of the three, chosen at random, has been par-
doned, but does not say which. Prisoner A, realizing that he only has a 1/3
chance of having been pardoned, reasons with the warden as follows: “Please
tell me the name of one of the other prisoners B or C who will be executed.
I already know that at least one of them will be executed so you will not
be divulging any information.” The warden then asks how he should choose
between B or C in case both are to be executed. “In that case,” A tells him,
“simply flip a coin (when I'm not around) to choose randomly between the
two.” The warden agrees and later tells A that B will be executed. On hearing
this news, A smiles and thinks to himself, “Now my chances of having been
pardoned have increased from 1/3 to 1/2”.

(a) Identify the variables of a Bayesian network model of the reasoning made
by prisoner A.

(b) Specify the domains of the variables.

(¢c) Are your variables well-defined? Why or why not?

(d) Characterize the variables in terms of the taxonomy presented in Sec-
tion 6.2.2 on page 150 and specify the causal links of your model using the
prototypical causal structure shown in Figure 6.3.

(e) Specify the (conditional) probabilities of your model and check if your
model agrees with the conclusion drawn by prisoner A.

Exercise 6.2. In Exercise 6.1, consider the suggestion to define three vari-
ables A, B, and C to represent the three prisoners. Are these variables well-
defined? If so, why? If not, why not?

Exercise 6.3. In the morning when Mr Holmes leaves his house he realizes
that his grass is wet. He wonders whether it has rained during the night or
whether he has forgotten to turn off his sprinkler. He looks at the grass of his
neighbors, Dr Watson and Mrs Gibbon. Both lawns are dry and he concludes
that he must have forgotten to turn off his sprinkler.

(a) Identify the relevant variables a probabilistic network representing Mr
Holmes’ reasoning problem. Also, identify the domains of the variables.
(b) Characterize the variables in terms of the taxonomy presented in Sec-
tion 6.2.2 on page 150 and specify the causal links of your model using the
prototypical causal structure shown in Figure 6.3.

(c) If you were to construct the model using the idioms approach, which id-
iom(s) would you use?

(d) Verify that your model is consistent with the following dependence and
independence statements:
(i) Information about the states of the lawns (i.e., wet or dry) are inde-

pendent if we know that it has rained; otherwise, they are dependent.
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(ii) Information about the state of rain and information about the state of
Holmes’ sprinkler are dependent if the state of Holmes’ lawn is known;
otherwise, they are independent.

Exercise 6.4. Consider the inference problem in Example 2.4 on page 25,
which is stated as follows:

Mr Holmes is working in his office when he receives a phone call from
his neighbor Dr Watson, who tells him that Holmes’ burglar alarm
has gone off. Convinced that a burglar has broken into his house,
Holmes rushes to his car and heads for home. On his way, he listens
to the radio, and in the news it is reported that there has been a small
earthquake in the area. Knowing that earthquakes have a tendency to
turn burglar alarms on, he returns to his work.

The structure of a Bayesian network for this inference problem is shown in
Figure 6.18.

e e W: Phone call from Watson
A: Burglary alarm
e @ B: Burglary

R: Radio news
E: Earthquake

Fig. 6.18. Structure of a Bayesian network for the “Burglary or Earthquake” in-

ference problem.

(a) Classify the variables in Figure 6.18 according to the taxonomy in Sec-
tion 6.2.2 on page 150.

(b) Verify that the structure in Figure 6.18 is consistent with the prototypical
causal structure shown in Figure 6.3 on page 153.

Exercise 6.5. Consider the task of providing your subjective probabilities of
who is going to win the next World Cup in soccer.

(a) Provide your probability that Brazil wins.
(b) Consider the following gambles:
(i) If Brazil wins, you receive $10.
(ii) If you draw a red ball from an urn with n red balls and 100 — n. white
balls, you receive $10.
For which value of n are the two gambles equally attractive to you?
(¢) Compare your original subjective probability that Brazil wins with n/100
from (b).
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Modeling Techniques

In this chapter we introduce a set of modeling methods and techniques for
simplifying the specification of a probabilistic network.

The construction of a probabilistic network may be a labor-intensive task
to perform. The construction involves a sequence of steps such as identify-
ing variables, identifying states of variables, encoding dependence and inde-
pendence relations as an acyclic, directed graph, and eliciting (conditional)
probabilities and utilities as required by the structure of the acyclic, directed
graph.

There are many reasons for considering the utilization of modeling tech-
niques in the model development process. Modeling techniques may be applied
in order, for instance, to simplify knowledge elicitation and model specifica-
tion, capture certain properties of the problem domain that are not easily
captured by an acyclic, directed graph, to reduce model complexity and im-
prove efficiency of inference in the model, and so on.

Section 7.1 considers modeling techniques for adjusting the structure of a
probabilistic network. This includes, in particular, modeling techniques that
captures certain structural properties of the problem domain that help reduce
the complexity of a model. Section 7.2 considers modeling techniques for the
specification of conditional probability distributions. This includes modeling
techniques for capturing uncertain information and for reducing the number
of parameters to specify. Finally, Section 7.3 considers modeling techniques
for influence diagram models. This includes modeling techniques of capturing
properties of a problem domain that seemingly do not fulfill the underlying
assumptions of influence diagrams.

7.1 Structure Related Techniques
In this section we consider modeling techniques related to the structure of

a probabilistic network. In particular we consider parent divorcing, temporal
transformation, the representation of structural and functional uncertainty,
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undirected dependence links, bidirectional relations, and the Naive Bayes
model.

7.1.1 Parent Divorcing

The modeling techniques referred to as parent divorcing (Olesen, Kjeerulff,
Jensen, Jensen, Falck, Andreassen & Andersen 1989) is a commonly used
modeling technique for reducing the complexity of a model by adjusting the
structure of the graph of a probabilistic network. The technique of parent
divorcing can be applied to reduce the complexity of specifying and repre-
senting the direct impact of a relatively large number of variables Xy,..., Xy,
referred to as the cause variables, on a single variable Y, referred to as the
effect variable.

The basic idea of parent divorcing is to introduce layers of intermediate
variables between the effect variable Y and its direct causes Xj,..., X, such
that each intermediate variable I captures the impact of its parents on the child
variable. The parents of I may consists of a subset of intermediate variables
and cause variables.

Figure 7.1(a) illustrates a model structure where the variable Y has three
direct parent causes X7, X3, X3. Parent divorcing applied to Y and its direct
causes X1, X2, X3 amounts to introducing a mediating variable I between Y
and a subset of its parents X1, X2, X3. Let the subset of parents be X; and X,
such that Y after parent divorcing has parents X3 and I while X; and X, are
parents of I. The result of this process is as illustrated in Figure 7.1(b). Notice
that X; and X, are divorced from the remaining parents of Y.

R

(a) (b)

Fig. 7.1. (a) X1, Xz, and X3 are direct parents of Y. (b) X3 is a direct parent of Y
while the combined influence of X; and X; is mediated through I.

The following example illustrates how the use of parent divorcing may
reduce the size of a conditional probability distribution significantly by ex-
ploiting structure within conditional probability distributions.
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Example 7.1. Consider Figure 7.1 and assume Y is defined as the disjunction of
its three parents X1, X2, and X3. This implies that the conditional probability
distribution P(Y|X7, X3, X3) is defined as shown in Table 7.1.

Y
X1 X3 X3 false  true
false false false 1 0
false false true 0 1
false true false 0 1
false true true 0 1
true false false 0 1
true false true 0 1
true  true false 0 1
true  true  true 0 1

Table 7.1. The conditional probability distribution P(Y|X;,X2,X3).

By inspection of Table 7.1 it is clear that the conditional probability distri-
bution P(Y|X7, X2, X3) has a lot of structure. This structure can be exploited
to reduce the size of the largest conditional probability distribution using

parent divorcing.

Fig. 7.2. Parent divorcing applied to the distribution for Y = X; V X3 V X3.

The structure in Figure 7.1(a) defines Y as Y = X; V X3 V X3 disregarding
the fact that disjunction is a binary operator. On the other hand the structure
shown in Figure 7.2 defines Y as Y = (X7 VX2)V X3 by introducing a mediating
variablecapturing the expression X7 V X;. The distribution P(X7 V X2 X7, X3)
is shown in Table 7.2 (the distribution P(Y[X; V Xz, X3) is equivalent).

Thus, instead of having one distribution of size 16 we have two tables of
size 8. The reduction in size of the largest conditional probability table may
seem insignificant. However, if there is a large number of parents the reduction
is significant. The reduction may make an otherwise intractable task tractable.
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X1V Xz
Xj X2 false  true
false false 1 0
false true 0 1
true false 0 1
true  true 0 1

Table 7.2. The conditional probability distribution P(X; V X2 |X1, X2).

The fundamental idea of parent divorcing is that through the utilization
of mediating variables it may be possible to divorce subsets of parents of the
effect variable in order to limit the size of parent sets. Parent divorcing is
almost only used when the relation among parent variables can be expressed
as a chain of associative binary operations such as V,/\, min, max, 4, —, . ...

In general, the underlying assumption of parent divorcing is that the con-
figurations of (X7, X3), i.e., pairs of instantiations of X; and X3, can be parti-
tioned into sets i1, ..., im such that different configurations (x1,x2), (x},x5) €
i; if and only if for all y:

P(yl)anZ)XSy-"aXT‘L) :P(y‘xqvxéaxfn"-)xn)

Table 7.3 shows how the conditional distribution P(Y|X;y,...,X;,) may
support the use of parent divorcing. For different configurations of X; and X3,
the child variable Y has the same distribution, e.g., for configurations (x1,x2)

and (x},x5), the distribution of Y is z1,...,2n.
Y
X] XZ X3 - Xm Y1 - Yn
X1 X2 X3 cee Xm Z7 ce Zn
X1 Xlz X3 e Xm Z{I e Z':I
X,] X2 X3 . Xm Z/] . an
X'{l Xlz X3 e Xm Z1 cen Zn
Table 7.3. The conditional probability distribution P(Y|X7,...,Xm).

An intermediate variable I may be introduced in order to exploit of the
structure of P(Y| Xy, ..., X\n). Figure 7.3 illustrates how the intermediate vari-
able I is introduced as a parent of Y and a child of X; and X;.
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W

Fig. 7.3. Parent divorcing in general.

The conditional probability distribution of the intermediate variable I is
often a deterministic function in configurations of its parents. Table 7.4 shows
the conditional probability distribution P(I|Xj,X3).

I
X3 X2 11 i
X1 X2 1 0
x1 x5 | 0 1
x;] x2 | 0 1
x; x5 |1 0

Table 7.4. The conditional probability distribution P(I|X7, X2).

Since I replaces X; and X, as parents of Y, the conditional probability
distribution of Y changes. Table 7.5 shows the conditional probability distri-
bution P(Y|I, X3,..., Xm).

Y
I X3 Xm 1°Al Yn
i1 X3 .. Xm Z] ... Zn
. ’ /
'Lz X3 e xm Z] e ZTL

Table 7.5. The conditional probability distribution P(Y|I,X3,...,Xm).

The above property is captured by introducing a mediating variable I as
parent of Y with X; and X, as parents. Parent divorcing is particularly useful
in situations where the state space size of the intermediate variable is (sig-
nificantly) smaller than the combined state space of its parents. Example 7.1
on page 179 shows one situation where parent divorcing improves the effi-
ciency of a model. That is, parent divorcing is (representationally) efficient if
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IT| < [IXq]] - [IX2]l, i.e., if the number of subsets is less than the combined state
space size of X; and Xs.

Parent divorcing may be considered as a relevant modeling technique when
specifying P(Y|X1,..., Xy ) is a significant or even intractable knowledge ac-
quisition task or when the size of n makes probabilistic inference intractable.

Notice that parent divorcing can always be applied to a variable and its
parents. If the intermediate variable I in Figure 7.1(b) has one state for
each configuration of its parents, then the conditional probability distribu-
tion P(Y|X3,I) can be considered as equivalent to P(Y|X7,X3,X3). In this
case nothing has been gained from applying parent divorcing with respect to
reducing the complexity of the model or improving efficiency of the model.

How to Implement This Technique

The parent divorcing modeling technique is implemented as follows.

(1) Let Xw C pa(Y) be the subset of parents of Y to be divorced from pa(Y)\
Lw .

(2) Create an intermediate node I as a common child of X and a new parent
of Y replacing X, as parents of Y.

(3) Let I have one state for each subset of Xy, mapping to the same distrib-
ution on Y.

(4) Define the distribution of I given Xy such that each subset of Xy mapping
to the same distribution on Y maps to the same state of I.

(5) Repeat the above steps for each subset Xy C pa(Y) to be divorced
from pa(Y) \ Xw.

7.1.2 Temporal Transformation

In this section we focus on applying the temporal transformation to adjust
the network structure to capture structure within a conditional probability
distribution of an effect variable Y given a set of causes Xy, ..., X;, expressing
a temporal (or causal) order on the impact of the cause variables on the effect
variable Y. Instead of combining causes pairwise as in parent divorcing, the
influence of causes on the effect variable are taken into account one cause at
a time in their causal or temporal order.

The method of temporal transformation is best illustrated by an example.
Figure 7.4 shows the result of applying the temporal order method on the
conditional probability distribution of a variable Y given cause variables Xj,
X2, X3, and X4. Notice the temporal order on the causal impacts of the cause
variables on the effect variable. The intermediate variables Y; and Y, have the
same state spaces as Y.

The variables in Figure 7.4 may represent causes X, X3, and X3 of a
disease Y and a medicament X4 for curing the disease. The causes X;, Xz,
and X3 add to the level of the disease Y independently while the medicament
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cures the disease no matter the level of the disease. In this example it is
important that X4 is the last variable in the temporal order of the causes.
The example could be extended such that X;, X; and X3 represent different
risk factors of the disease that have a temporal order.

()
—W——0O

Fig. 7.4. Modeling a temporal order of the impacts of X1,...,Xs on Y.

The temporal transformation method was introduced by Heckerman (1993)
and refined by Heckerman & Breese (1994). A temporal order of the causal
impacts of Xi,..., Xy on Y is not necessary for applying the method of tem-
poral transformation. In addition to representing a temporal order of causal
influence, the temporal transformation method can be used as an alternative
to parent divorcing. The parent divorcing method described in the previous
section also captures internal structure of a conditional probability distribu-
tion of an effect variable given a set of cause variables. The parent divorcing
method often constructs a (balanced) binary tree combining causes pairwise
recursively, while the temporal transformation method constructs an unbal-
anced binary tree as illustrated in Figure 7.4.

The temporal transformation was introduced by Heckerman (1993) as a
method for representing causal independence between a set of cause vari-
ables X1, ..., X;, with a common effect E. The model structure in Figure 7.1(a)
on page 178 does not capture the property that cause variables X1, ..., Xy im-
pact the effect variable E independently. Temporal transformation can be used
to implement independence of causal influence as defined in Section 7.2.5.

How to Implement This Technique

The temporal transformation modeling technique is implemented as follows.

(1) Let (Xq,...,Xy) be an ordering of the parents pa(Y) of Y.

(2) For i =2,...,n—1 create an intermediate node Y; with the same state
space as Y as a child of X; and a parent of Yi i where Y, =Y.

(3) Add X; as a parent of Y».

(4) Define the distribution of Y; for i = 2,...,n such that it captures the
combined impact of its parents on Y.
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7.1.3 Structural and Functional Uncertainty

When modeling certain domains as a probabilistic network it may be difficult
or even seem impossible to specify the set of independence and dependence
assumptions using a DAG. It may seem impossible to specify a static DAG for
a problem domain where dependence relations change or are uncertain in the
sense that they are not known at the time of model development. Similarly,
it may be that the functional dependence relation between a variable and

(a subset of) its parents is uncertain.

(a) (b)

Fig. 7.5. (a) Should A or B be the parent of Y? (b) Modeling structure and func-
tionality uncertainty.

Figure 7.5(a) shows an example where A and B may both be considered
as parent of Y. However, due to the nature of the problem domain only one
of the two is parent of Y at any given time. This is an example of what we
term structure uncertainty. Figure 7.5(b) shows how this behavior may be
represented as a DAG where S is a selector variable specifying P as taking on
the value of A or B. The nodes A, B, and P are assumed to have the same
domain, i.e.,

dom(A) = dom(B) = dom(P) = (z1,...,zn).

The prior distribution P(S = A) = 1 — P(S = B) specifies the prior belief
in A being the true parent of Y. Table 7.6 shows the conditional probability
distribution P(P|A, B, S). We can define P(P|A,B,S) as

b_ A ifS=A
|B ifS=B

The following example illustrates how structure uncertainty between a
variable Ann and two causes George and Henry may be represented.
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P
S A B |z1 2z --- Zn
A Z1 Z1 1 0 cee 0
A Z1 z2 1 0 te 0
A V%) Z1 O 1 e 0
A V%) V%) 0 1 s 0
B Z1 Z1 1 0 0
B Z1 V) 0 1 0
B V%) Z1 1 O 0
B 2z z 0 1 0

Table 7.6. The conditional probability distribution P(P|A,B,S).

Ezample 7.2 (Paternity). In addition to maintaining his orchard Jack Fletcher
breeds horses. Assume Jack — by mistake — placed a group of mares with
two stallions (instead of a single stallion) for breeding. After some time the
foal Ann is born. It is clear that the sire of Ann is one the stallions. The
question is which one.

The two stallions are Henry and George. Soon after birth it is discovered
that Ann is suffering from a disease caused by a certain genotype aa.

ERCD
Gire)  QMared

Fig. 7.6. Either George or Henry is the true sire of Ann.

This implies that one of the stallions is a carrier of the gene making its
offspring unsuitable for breeding. A carrier of the disease has genotype aA
while a pure horse has genotype AA. This stallion should not be used in future
breeding. For this reason it is important to determine the paternity of Ann.
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The graph shown in Figure 7.6 captures the properties of the problem. Each
variable (except S) species the genotype of a horse where Sire denotes the true
father of Ann.

Sire
S Henry George | aa AA dA
henry aa aa 1 0 0
henry aa AA 1 0 0
henry aa aA 1 0 0
george aa aa 1 0 0
george aa AA 0 1 0
george aa aA 0 0 1

Table 7.7. The conditional probability distribution P(Sire|Henry, George, S).

The selector variable S specifies either Henry or George as the true father
and its domain is dom(S) = (henry, george). Thus, the conditional probability
distribution P(Sire|George, Henry, S) is defined as

) Henry if S = henry
Sire = ]
George if S = george

This construction can be generalized for more complex pedigrees with mul-
tiple generations and offspring of the stallion. Table 7.7 shows the conditional
probability distribution P(Sire|Henry, George,S) where aa, aA, and AA are
the three different genotypes.

The situation where a variable Y is a function of a subsets of its parents
such that the state of Y is either one or another (known) function of its
parents is termed functional uncertainty. Functional uncertainty is similar
to structure uncertainty. The following example illustrates how functional
uncertainty between a variable Y and two causes X; an X, may be represented.

Ezxample 7.3 (Functional Uncertainty). Consider two Boolean variables X;
and X;. Assume we know that there is a direct impact of configurations of X;
and X; on the Boolean variable Y. Assume further that we know that ei-
ther Y =X; VX, or Y =X; A X, and that the first case is known to appear
twice as frequently as the other.

This situation can be captured by a simplified version of the structure
shown in Figure 7.5(b) as illustrated in Figure 7.7.

The state space of F is dom(F) = (V,A) such that P(F) = (2/3,1/3). The
conditional probability distribution of Y is defined as:
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©

Fig. 7.7. Either Y =X; V X3 or Y = X5 A X;.

true if X;VX;and F=V
Y=<true if X;AX;and F=A

false otherwise.

Y
X3 X2 false true

false false
false true
true false
true true
false false
false  true
true false
true true

>S>>>ILLLLL|
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Table 7.8. The conditional probability distribution P(Y|F, X1, X2).

This structure captures the uncertainty related to the impact of X;
and X on Y. Table 7.8 shows the resulting conditional probability distrib-
ution P(Y|F, X7, X2).

Ezxample 7.4. In Example 4.10 on page 87 we have implicitly used the func-
tional uncertainty modeling technique. In the example we assumed that the
average height of a male person is greater than the average height of a female
person. If the sex of a person is unknown to us when we want to reason about
the height of the person, the situation is modeled using a simple variant of
functional uncertainty as illustrated in Figure 7.8.

The example may be extended by assuming there is a correlation between
height and weight as illustrated in Figure 7.9.

For each configuration of Sex we define a linear function between weight
and height.
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e

Fig. 7.8. Functional uncertainty on the height of a person.

Fig. 7.9. Functional uncertainty on the height of a person.

How to Implement This Technique

The functional uncertainty modeling technique is implemented as follows.

(1) Let Y be a random variable with parents pa(Y) = {X1,..., X} such that Y
is a function of pa(Y).

(2) Assume the functional dependence relation between Y and pa(Y) is uncer-
tain such that the alternatives and their relative frequencies are known.

(3) Create a discrete random variable F with one state for each possible func-
tional dependence relation between Y and pa(Y).

(4) Define the prior probability distribution P(F) such that it encodes the
relative frequency of the possible functional dependence relations.

The structure uncertainty modeling technique is implemented similarly to the
way functional uncertainty is implemented.

7.1.4 Undirected Dependence Relations

The DAG structure of a probabilistic network specifies a set of dependence
and independence relations between variables. These dependence and inde-
pendence relations are specified using directed links between pairs of variables
only. When capturing a set of dependence relations between variables using a
DAG it is not unusual to encounter the problem of how (most efficiently) to
represent a dependence relation which by nature is undirected.
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Let X7, X2, and X3 be discrete variables with the same set of states. Assume
configurations where all variables are in the same state are illegal. This is a
typical example of an undirected dependence relation over a set of variables.
This type of undirected relation is referred to as a constraint.

A constraint over a subset of variables may be enforced by introducing
an auxiliary variable referred to as the constraint variable with an appropri-
ate number of states as a child of the variables to be constrained. Often the
constraint variable is Boolean, but it may have more that two states. Con-
figurations of the parent variables are mapped to states of the child and the
constraint is enforced using evidence on the constraint variable. For instance,
assume that we want to enforce a prior joint probability potential f(X7, X2, X3)
over variables X7, X2, and X3. The joint probability can be enforced using a
Boolean constraint node C with a conditional probability distribution defined
as:

P(C=on|X;,X2,X3) = f(X1,X2,X3), (7.1)
P(C = off|X1,X2,X3) = 1—f(X3,X2,X3).

The constraint is enforced by instantiating C to on.

Figure 7.10 illustrates how constraints over configurations of variables Xy,
Xz, and X3 are enforced by introducing an auxiliary variable C with two
states. One state reflects legal configurations of variables X;, X,, and X3
while the other state reflects illegal configurations of variables X;, X3, and
X3. In the example, all configurations where the three variables are not in the
same state are legal, while the remaining configurations where all variables
are in the same state are illegal. The constraint is enforced by instantiating
the variable C to the state corresponding to legal configurations.

)

(a) (b)

Fig. 7.10. (a) A functional relation (X1, X2, X3) is to be enforced. (b) A constraint
over X1, X2, and X3 is enforced by instantiating C to on.

The following example illustrates the application of the modeling technique
described above to an everyday problem.

Ezample 7.5 (Washing Socks (Jensen 1996)). Two pairs of socks have been
washed in the washing machine. The washing has been rather hard on the
colors and patterns of the socks. One pair of socks is the pair of socks usually
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worn to play golf why the other is the pair of socks usually worn during long
airplane trips. The airplane socks help to improve blood circulation while the
golf socks have improved respiration. For this reason it is important to pair

the socks correctly.

Fig. 7.11. The constraint over S1,...,S4 is enforced by instantiating C to on.

The airplane socks are blue while the golf socks are black. The patterns of
two pairs of socks are also similar (at least after the washing).

C
S1 Sz S3 S4 off on
airplane airplane airplane airplane 1 0
airplane  airplane airplane  golf 1 0
airplane  airplane  golf airplane 1 0
airplane  airplane  golf golf 0 1
airplane  golf airplane  airplane | 1 0
airplane  golf airplane  golf 0 1
airplane  golf golf airplane | 0 1
airplane  golf golf golf 1 0
golf airplane airplane airplane 1 0
golf airplane  airplane  golf 0 1
golf airplane  golf airplane | 0 1
golf airplane  golf golf 1 0
golf golf airplane  airplane | 0 1
golf golf airplane  golf 1 0
golf golf golf airplane | 1 0
golf golf golf golf 1 0
Table 7.9. The conditional probability distribution P(C|Sy,...,S4).

A model for distinguishing the socks of different types has to capture the
undirected relation over the four socks. The relation enforces the fact that
there are exactly two airplane socks and two golf socks.

The model has four variables Si,...,S4. Each S; represents a sock and
has domain dom(S;) = (airplane, golf). The undirected relation R(Sq,...,S4)
is a constraint over configurations of the S1,...,S4. Figure 7.11 illustrates the
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model structure while Table 7.9 shows the conditional probability distribu-
tion P(C|Sq,...,S4). The conditional probability distribution P(C|S1,...,S4)
may be defined as

1 if [{si = airplane}| =2

0 otherwise.

P(C =on|s1,s2,53,54) = {

The constraint is enforced by instantiating C to on.

In the description above we have focused on binary constraint variables.
In the general case the constraint variable may have more than two states.
In this case multiple states of the constraint variable specifying legal configu-
rations can be enforced using likelihood evidence assigning the value zero to
all states specifying illegal configurations and one to all states specifying legal
configurations.

How to Implement This Technique

The undirected directions modeling technique is implemented as follows.

(1) Let {Xj,...,Xn} be the set of variables over which the prior joint proba-
bility distribution f(X7,...,Xn) is to be enforced.

(2) Create a binary constraint node C with states off and on.

(3) Add each X € {Xj,..., Xy} as a parent of C.

(4) Define the conditional probability distribution P(C|Xj,...,Xy) as speci-
fied in Equation 7.1 and Equation 7.2.

(5) Instantiate C to state on enforcing the constraint.

7.1.5 Bidirectional Relations

Section 7.1.4 describes how an undirected dependence relation over a subset
of variables can be enforced using a constraint variable. The introduction of a
constraint variable is necessary in order to represent the undirected relation as
a DAG. In this section we consider the similar problem of representing what
seems to be a bidirectional relation between a pair of variables. That is, when
a pair of variables are dependent it is not always evident which direction the
connecting link should have.

Figure 7.12(a) illustrates the situation where a pair of variables X; and X3
should be connected by a link as there seems to be a direct dependence relation
between X; and X3, but it is not possible to identify the direction of the link.
Should the link be directed from X; to X, or vice versa? An insufficient set
of variables for capturing the dependence and independence properties of a
problem domain as a DAG is a common cause of this type of difficulty in
identifying the direction of a link. Figure 7.12(b) illustrates how a mediating
variable Y may be used to capture the bidirectional relation. The mediating
variable Y is introduced as a common cause of X; and X.
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) & ®
(a) (b)

Fig. 7.12. (a) How should the bidirectional correlation between X; and X; be
captured? (b) A mediating variable Y between X7 and X, captures the bidirectional
relation.

The following example illustrates how an insufficient set of variables for
capturing the dependence properties of the problem domain can imply diffi-
culties in determining the direction of links.

Ezample 7.6 (Insemination (Jensen 1996)). Consider the task of monitoring
the pregnancy state of a cow (also considered in Example 6.5 on page 151).
Assume we have the options to perform a blood test and a urine test to
determine the pregnancy state of the cow. Both the blood test and the urine
test are indicators for the pregnancy state of the cow. Furthermore, we argue
that there is a dependence relation between the results of the two tests (if
either is positive (negative) we would expect the other test to be positive
(negative) as well).

We know there is a correlation between blood test and urine test, but
we cannot identify one test as a cause of the other test. This is indicated in
Figure 7.13(a) where Pr specifies the pregnancy state of the cow while BT
and UT specify the results of the blood and urine tests, respectively. We
assume the blood test is not independent of the urine test given the pregnancy
state of the cow.

Looking deeper into the properties of the problem domain we identify some
additional structure that alleviates the problem of a bidirectional relation
between BT and UT. The two tests do not identify the pregnancy state of
the cow directly. Instead the two tests identify the hormonal state of the cow.
The resulting structure is shown in Figure 7.13(b) where HS represents the
hormonal state of the cow.

Notice that the structure shown in Figure 7.13(b) correctly captures the
conditional dependency of BT and UT given Pr.

How to Implement This Technique

The bidirectional relations modeling technique is implemented as follows.

(1) Let X7 and X, be a pair of variables which seems to have a bidirectional
interaction.
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(a) (b)

Fig. 7.13. (a) How should the bidirectional correlation between BT and UT be
captured? (b) The bidirectional correlation between BT and UT is captured by the
mediating variable HS.

(2) Create a mediating variable Y such that it is the intermediate variable in
a serial connection with X; and X,.

(3) The identification of the states of Y and the probability distribution of Y
is domain dependent.

7.1.6 Naive Bayes Model

Restricted probabilistic graphical models are used or considered when low
model complexity and high computational power are required. Low model
complexity and high computational power is often required in classification
related problems. In a classification problem the task is to classify an instance
into a class based on observations on properties of the instance.

The Naive Bayes model is one of the simplest restricted probabilistic graph-
ical models; see Friedman, Geiger & Goldszmidt (1997) who cite Duda & Hart
(1973) and Langley, Iba & Thompson (1992). The Naive Bayes model is a pop-
ular model due to its high representational and computational simplicity while
maintaining an impressive performance on classification tasks.

Since the Naive Bayes model is most commonly used for classification
problems, we will describe the model from this point of view. We consider the
task of classifying a set of instances into a predefined set of classes based on
observations on properties of the instances. Let C be the class variable with one
state for each possible class and let 3 = {I;, ..., I} be the set of variables (also
known as attributes, indicators, and features) where each variable represents
a property that we can possibly observe and have decided to include in our
model.

The structure of the Naive Bayes model is the reason for the simplicity and
efficiency of the model. The structure of the Naive Bayes model is illustrated in
Figure 7.14 where the class variable C is the only parent of each attribute and
no other structure is present in the graph. The Naive Bayes model assumes
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conditional pairwise independence of the attributes given the class. This is a
rather strong, but often useful assumption.

Fig. 7.14. The structure of the Naive Bayes model.

The set of (conditional) probability distributions induced by the Naive
Bayes model consists of the prior distribution P(C) on the class variable and
the conditional probability distribution P(I;|C) on the attribute I; given the
class for all i = 1,...,n. The Naive Bayes model induce a joint probability
distribution over the class and attributes as:

P(X) =P(C,T1,...,In) = P(C) [ [ P(1:IC).
i=1

Notice that this implies that the representational complexity of the model
is linear in the number of attributes.

Probabilistic inference in a Naive Bayes model consists of computing the
conditional probability distribution P(C|e) where € consists of observations
on a subset of the attributes of the instance to be classified. For any set of

observations ¢ = {i1,...,1m} we may calculate the likelihood of the class as:
L(Cle) =P(e|C) = [ P(IC).
i€e

The posterior of the class is computed from the product of the prior and
the likelihood by normalization P(C|e) = «L(C|e)P(C), where o = P(e)~! =

(>_cL(Cle)P (C))~ ", or expressed via Bayes’ rule as:
_ P(elC)P(C)
P(Cle) = Ple) .

Despite its simplicity and strong assumption of pairwise independence of
the attributes given the class, the Naive Bayes model has in practice been
shown to have excellent performance on (many) classification tasks. This
makes the Naive Bayes model popular. The following example illustrates the
most common application of the Naive Bayes model.

Ezxample 7.7. Consider the task of classifying a mushroom as either edible or
poisonous based on observations on the shape, color and odor of the mush-
room. This is a classic classification problem. We make observations on the
mushroom to identify it as either edible or poisonous.
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Figure 7.15 shows a Naive Bayes model for this classification task. The
model has class variable Class and feature variables Color, Odor, and Shape.
The class variable is the direct parent of each feature variable and no other
structure is present.

Fig. 7.15. A Naive Bayes model for classifying mushrooms.

The class variable has states dom(Class) = (edible, poisonous) while the fea-
ture variables have states dom(Odor) = (none, almond, spicy), dom(Shape) =
(flat, bell, convex), and dom(Color) = (brown, white, black).

The prior distribution on Class specifies the frequency of edible and poi-
sonous mushrooms while the conditional distribution of each feature variable
specifies the distribution of the feature given the mushroom class. Table 7.10
shows the distribution P(Odor|Class). The distribution of each of the other
feature variables is similar.

Odor
C none almond  spicy
edible 0.902  0.0979  0.0001
poisonous | 0.173 0.001 0.826

Table 7.10. The conditional probability distribution P(Odor|C).

Each time a mushroom is picked up, the features of the mushroom are
observed and entered into the model as evidence. After inference the model
returns the probability that the mushroom is edible.

There exist other classes of restricted probabilistic graphical models than
the Naive Bayes model. For instance, the Tree-Augmented Naive Bayes
model (Friedman et al. 1997) appears as a natural extension of the Naive
Bayes model while the Hierarchical Naive Bayes model (Zhang 2004) is an-
other extension of the Naive Bayes model.

How to Implement This Technique

The Naive Bayes modeling technique is implemented as follows.
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(1) Let C be the class variable with one state for each possible class.

(2) Let 3 ={I;,...,I,} be the set of feature variables.

(3) Let C have no parents and let it be the only parent of each feature vari-
able I;. In this way, C becomes the intermediate variable in a serial con-
nection with each pair of feature variables.

(4) Define the prior probability distribution P(C) such that it encodes the
relative frequency of each class.

(5) For each Iy € J define the conditional probability distribution P(I;|C)
such that it encodes the relative frequency of each state of the feature
given each state of the class variable.

If data are available, then it may be an advantage to estimate the prior
and conditional probability distributions P(C) and P(I1|C),...,P(I,,|C) from
data.

7.2 Probability Distribution Related Techniques

In this section we consider modeling techniques related to the specification
of probability distributions of a probabilistic network. In particular we con-
sider measurement error, expert opinions, node absorption, setting a value
by intervention, independence of causal influence and mixture of Gaussian
distributions.

7.2.1 Measurement Uncertainty

Probabilistic networks are well-suited models for reflecting properties of prob-
lem domains with some kind of uncertainty. The sources of uncertainty may be
many and diverse. In this section we consider a modeling technique for repre-
senting uncertainty related to measurements. Measurements and observations
on the state of the problem domain such as, for instance, sensor readings and
noisy observations, are subject to uncertainty. In some situations it may be
important to capture and represent the uncertainty explicitly in a probabilistic

Fig. 7.16. The observed value of a phenomenon is a function of the accuracy of the
measurement and the actual value of the measured phenomenon.

Figure 7.16 illustrates a modeling technique that captures measurement
uncertainty. The variable Value represents the actual value of the phenomenon
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being measured, the variables Observed and Accuracy represent the observed
value of the phenomenon and the accuracy with which observations are made,
respectively.

Ezample 7.8. For some reason we would like to measure the temperature in
a room. The true temperature is unknown, but we may use a thermometer
to get an estimate of the temperature in the room. Assume we have two
different thermometers to choose from: one thermometer of low quality and
another thermometer of high quality. The high quality thermometer offers
more accurate estimates of the temperature.

Obs_Temperature

Fig. 7.17. The measured temperature is a function of the quality of the thermometer
and the actual temperature.

Figure 7.17 shows the structure of a model with variables Obs_Temperature,
Quality, and Temperature. Assume that the three variables have domains
dom(Obs_Temperature) = (low, medium, high), dom(Quality) = (low, high), and
dom(Temperature) = (low, medium, high). Table 7.11 shows the conditional
probability distribution P(Obs_Temperature|Quality, Temperature).

Obs_Temperature
Quality  Temperature | low  medium high
low low 0.6 0.3 0.1
low medium 0.2 0.6 0.2
low high 0.1 0.3 0.6
high low 0.9 0.1 0
high medium 0.05 0.9 0.05
high high 0 0.1 0.9

Table 7.11. The conditional probability distribution P(Obs_Temperature]
Quality, Temperature).

Notice how the distribution over Obs_Temperature depends on the qual-
ity of the thermometer used to measure the temperature. This reflects the
accuracy of each thermometer.

An explicit representation of the accuracy with which observations are
made is not always necessary.
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Example 7.9. Example 7.5 on page 189 illustrates how to enforce the fact that
there are two socks of each type (airplane and golf). To classify the four socks
we make observations on the color and pattern of each sock. Color and pattern
are indicator variables for the type of sock.

Pattern

Y

Obs_Color @

Fig. 7.18. The observations on color and pattern are imperfect.

The observations on color and pattern are imperfect due to the washing.
Figure 7.18 shows the model structure for classifying a single sock based on
(imperfect) observations on color and pattern.

Obs_Color
Color | blue black
blue 0.9 0.1
black | 0.05 0.95

Table 7.12. The conditional probability distribution P(Obs_Color|Color).

The conditional probability distribution P(Obs_Color|Color) is shown in
Table 7.12. Notice that blue is observed as black in 10% of the cases and black
is observed as blue in 5% of the cases.

The measure uncertainty modeling technique is closely related to the mea-
surement idiom, see Section 6.3.2 on page 154.
How to Implement This Technique

The measurement uncertainty modeling technique is implemented as follows.

(1) Let variable Value represent the actual value of the phenomenon being
measured.
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(2) Create variables Observed and Accuracy representing the observed value

of the phenomenon and the accuracy with which observations are made,

respectively.

) Let Value and Accuracy be the parents of Observed.

(4) Let Observed have one state for each possible observation of Value.

) Let Accuracy have one state for each possible level of accuracy of the

observation on Value.

(6) Define the prior probability distribution P(Accuracy) such that it encodes
the relative frequency of each possible level of accuracy.

(7) Define the conditional probability distribution P(Observation|Accuracy,
Value) such that it encodes the relative frequency of each possible ob-
servation given the level of accuracy and the actual value.

7.2.2 Expert Opinions

The specification of the parameters of a probabilistic network is often based on
knowledge elicitation from problem domain experts. Typically, a knowledge
engineer interviews one or more experts in order to assess the values of model
parameters. In some cases when the elicitation of parameters is based on
assessments from a group of experts, it is advantageous that any differences
in the assessed values are represented explicitly in the model. This is, for
instance, useful when the group of experts are distributed physically and when
the model is developed iteratively.

A conditioning (or auxiliary) variable can select among the opinions of
different experts expressed in the probability assessments of a single variable.
The conditioning variable is a parent of the variable of interest and has one
state corresponding to each expert. The prior distribution of the auxiliary
value will assign a weight to the experts represented in the auxiliary variable.
Different auxiliary variables need not have the same set of states. The following
example illustrates the modeling technique on a simple example.

Ezample 7.10. Consider the quantification of the Chest Clinic example (Ex-
ample 4.2 on page 68). Assume the model is constructed by elicitation of
knowledge from two experts Bill and John. Consider the elicitation of condi-
tional probability distribution P(Bronchitis|Smoker) and assume that Bill and
John have different opinions on this distribution.

To reflect the different opinions of the experts, we construct the model
structure shown in Figure 7.19 where dom(Experts) = (bill, john) representing
the two experts.

Table 7.13 shows the distribution P(Bronchitis| Smoker, Experts). The dis-
tribution encodes the different opinions of the experts on the conditional
probability distribution whereas the prior distribution P(Experts) encodes the
reliability of the experts.

The model captures the opinions of experts Bill and John using the Experts
variable to condition the conditional probability distribution they have differ-
ent opinions on.
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Gomoter> ErpertD
Coronchiis >

Fig. 7.19. The variable Experts has one state for each expert.

Bronchitis
Experts Smoker | false true
bill false 0.7 0.3
bill true 04 0.6
john false 0.8 0.2
john true 0.3 0.7

Table 7.13. The specification of the conditional probability distribution
P(Bronchitis| Smoker, Experts).

Tuberculosis @
Tub_or_cancer

Fig. 7.20. A graph specifying the independence and dependence relations of the
Asia example.

One expert node is introduced for each conditional probability distribu-
tion elicited from domain expert knowledge. Figure 7.20 illustrates how two
groups of experts have been consulted to elicit the conditional probability
distributions of Bronchitis and Cancer. By introducing multiple expert nodes,
we assume the elicitation of different conditional probability distributions to
be independent.

The model in Example 7.10 has an explicit representation of the opinions
of the two experts. In some situations it is desirable not to have an explicit
representation of expert opinions in the model. This can be achieved by elim-
inating the variables representing different experts from the model. This is
described in Section 7.2.3.
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How to Implement This Technique

The expert opinions modeling technique is implemented as follows.

(1) Let P(X|pa(X)) be the conditional probability distribution assessed from a
group of experts (one instance of P(X|pa(X)) is assessed from each expert).

(2) Create a discrete random variable Experts with one state for each expert.

(3) Let Experts be a parent of X.

(4) Define the prior probability distribution P(Experts) such that it encodes
the reliability of the experts.

(5) Define the conditional probability distribution P(X|pa(X), Experts) such
that for each state of Experts it encodes the assessment of P(X|pa(X))
given by the corresponding expert.

7.2.3 Node Absorption

Node absorption is the process of eliminating a variable from a model by
arc reversals and barren variable eliminations. Recall that in Section 3.4.1 on
page 52 we illustrated the application of Bayes’ rule as an arc reversal oper-
ation while in Section 5.1.1 on page 111 we considered repeated applications
of arc reversal as an inference process.

The node absorption method may also be a useful tool in the model de-
velopment process. Node absorption may be used to eliminate variables from
a model which for one reason or another should not be included in the final
model. If efficiency of probabilistic inference in a probabilistic network is of
high priority, it may be worthwhile to eliminate variables that are neither ob-
served nor the target of inference. In Section 5.1.1 we denoted a variable that
is neither an evidence variable nor a target variable as a nuisance variable.

Ezxample 7.11 (Expert Opinions). Consider Example 7.10 on page 199 where
the conditional probability distribution P(Bronchitis| Smoker) has been elicited
from the two experts Bill and John. From the example we know that Bill
and John disagree slightly on the strength of the dependence relation be-
tween Bronchitis and Smoker. This is captured by the graph of Figure 7.19.

For different reasons (e.g. political) we would like to eliminate the inter-
mediate variable Experts from the model while maintaining the underlying
dependence relations between the remaining variables. This can be achieved
using node absorption.

Since Experts has Bronchitis as its only child, a single arc reversal operation
is sufficient to absorb Experts. Once the arc (Experts, Bronchitis) is reversed,
Experts is barren and can therefore be removed from the graph without chang-
ing the dependence relations between the remaining variables in the graph.

If we assume that we have equal trust in the two experts, then Table 7.14
shows the conditional probability distribution P(Bronchitis|Smoker) after ab-
sorbing Experts from the distribution shown in Table 7.13.
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Bronchitis
Smoker | false true
false 0.75 0.25
true 0.35 0.65

Table 7.14. The conditional probability distribution P(Bronchitis|Smoker) after
absorbing Experts from the distribution shown in Table 7.13.

The prior distribution P(Experts) can be interpreted as specifying our rel-
ative trust in the two experts. In the example we have used a uniform distri-
bution.

The order in which arcs are reversed may be constrained by the structure of
the graph. That is, the sequence of arc reversals should be performed such that
all intermediate graphs are acyclic. In addition, the order in which variables
are absorbed and arcs are reversed may impact the size of the parent sets in
the resulting graph.

How to Implement This Technique

The node absorption modeling technique is implemented as follows.

(1) Let X be the variable to be eliminated by node absorption.

(2) Let ch(X) be the direct successors of X, i.e., the children of X.

(3) For each Y € ch(X) reverse the link (X,Y) according to the arc reversal
operation. Traverse ch(X) in topological order.

(4) Eliminated X as a barren variable, i.e., simply remove X and incoming
links from the model.

Node absorption may be implemented as a single step operation in probabilis-
tic network editor software.

7.2.4 Set Value by Intervention

An important distinction should be made between a passive observation of
the state of a variable and an active action forcing a variable to be in a
certain state. A passive observation of a variable impacts the beliefs of the
ancestors of the variable whereas an active action enforcing a certain state on
a variable does not under the assumption of a causal ordering (see Section 4.2
on decision making under uncertainty). We refer to this type of active action
as an intervention. When we make a passive observation on a variable this
produces a likelihood on the parents of the variable. This should not be the
case when the value of a variable is set by intervention. The instantiation
of a decision variable in an influence diagram is an example of this type of
intervention.
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In some situations it is undesirable to model active actions forcing a vari-
able to be in a certain state as a decision in an influence diagram. Instead of
modeling the situation using decision variables a simple modeling technique
may be used. The modeling technique is illustrated in Figure 7.21.

Q040

Fig. 7.21. Modeling the option of setting a value of B by intervention.

In Figure 7.21 we illustrate a situation where the value of the random
variable B may be set by intervention. The causal properties of the exam-
ple are such that the variable A has a causal impact on B which in turn
has a causal impact on C. The variable 1 captures the property that the
state of variable B may be set by intervention. Assuming Table 7.15(a) shows
the conditional probability distribution P(B|A), then Table 7.15(b) shows the
distribution P(B|A,I).

B B

A false true | A false true

false | 0.9 0.1 no intervention false | 0.9 0.1

true 0.2 0.8 no intervention  true 0.2 0.8
false false 1 0
false true 1 0
true false 0 1
true true 0 1

(a) (b)

Table 7.15. (a) The conditional probability distribution P(B|A). (b) The condi-
tional probability distribution P(B|l, A).

This construction of P(B|I,A) implies that C 1. A|l = 1 where i #
no intervention, i.e., setting | to a value different from no intervention makes A
and C independent. Thus, if we enforce a certain state on B by selecting a
state of | (different from no intervention), then observing C subsequently will
not change the belief in A. In general, the conditional probability distribu-
tion P(B|l, A) may be defined as
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P(b|A) if 1 = no intervention
P(B=Dbl|A,I=1)=<1 ifb=1 (7.3)

0 otherwise

where dom(I) = dom(B) U {no intervention}.

It is important to notice that when the state of B is observed, the obser-
vation is enforced by setting the state of B whereas if the state of B is set by
intervention, then I is instantiated to the corresponding state. When B is not
observed, I is in the state no intervention.

Example 7.12. Figure 7.22 depicts a simple model for reasoning about a com-
mon medical situation. The model captures the direct causal influence of flu
on fever and the direct causal impact of fever on sleepiness. These events are
represented by the variables Flu, Fever, and Sleepy, respectively.

Fig. 7.22. Taking an aspirin forces the fever to a certain level. Subsequent obser-
vations on Sleepy should not change our belief in Flu.

In addition to the aforementioned variables, the model has the vari-
able Aspirin. This variable represents the event that the patient takes an
aspirin to reduce fever to a certain level. Once an aspirin has been taken an
observation on Sleepy will be uninformative with respect to Flu. This behavior
may be enforced as described above.

How to Implement This Technique

The set value by intervention modeling technique is implemented as follows.

(1) Let X be the random variable that may be set by intervention.

(2) Create a random variable I with dom(I) = dom(B) U{no intervention}.

(3) Let I be a parent of X.

(4) Define the prior probability distribution P(I) such that it encodes the
relative frequency of setting each state of X and no intervention.

(5) Define the conditional probability distribution P(X|pa(X),I) according to
Equation 7.3.
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7.2.5 Independence of Causal Influence

In this section we consider how a special kind of structure within a condi-
tional probability distribution may be exploited to reduce the complexity of
knowledge elicitation from exponential in the number of parents to linear in
the number of parents. The property we consider is known as independence
of causal influence (Heckerman 1993).

N

Fig. 7.23. The causal influence of C; on E is independent of the causal influence
of Cj on E (for i #3j).

In an independence of causal influence model, the parent variables of a
common child variable interact independently on the child. With a slight
abuse of terms, the parents are sometimes said to be causally independent.
All variables in an independence of causal influence model are assumed to be
discrete random variables. The common child variable is denoted E and it is

referred to as the effect variable. The parent variables are denoted Cq,...,Cy
and they are referred to as cause variables or causes, see Figure 7.23.
The cause variables Cq, ..., Cy, may cause an abnormality modeled as the

effect variable E to be present at a certain level. The states of the effect
variable E specify different levels of the abnormality. The states of E are
ordered in the sense that they represent different levels of abnormality and
such that a designated state indicates that the abnormality is absent. Similarly,
each of the causes have an absence state corresponding to mo impact on the
effect variable. The principle of an independence of causal influence model is
that the causal impact of each cause is independent of the causal impact of
all other causes.

In this section we consider the Boolean independence of causal influence
model known as the Noisy-OR model (Pear]l 1988). The Noisy-OR model is a
commonly used example of a model for local conditional probability distribu-
tions that depends on fewer parameters than the total number of combinations
of fa(E) (Laskey 1993).

In the Noisy-OR model, the effect variable E and the variables Cq,..., Cy,
are Boolean variables (i.e., binary discrete random variables with states false
and true). The designated state is false. The causal impact of each cause Cj is
independent of the causal impact of any other cause Cj for i # j. Figure 7.24
illustrates two different ways in which this independence may be modeled ex-
plicitly. Each variable E; has the same state space as E and it captures the
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© (£)
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Fig. 7.24. Two model structures for capturing independence of causal influence.

contribution from cause C; to the value of E. Each variable E; is referred
to as a contribution variable and P(E;|Cy) captures the causal impact of C;
on E. In the left part of the figure, the total impact on the effect variable
is the disjunction of all causes whereas in the right part of the figure the
temporal transformation modeling technique has been applied such the total
impact is determined based on a pairwise combination of causes. The condi-
tional probability distribution P(E|Eq,...,Ey) is defined as disjunction and
so are P(E”|E’, E;) and P(E|E”, E3). The effect variable E is in state true when
at least one contribution variable is in state true.

The causal impact of a cause C; is the probability P(E = yes|C; = yes)
whereas P(E = yes|C; = no) = 0. We denote P(E = yes|C; = vyes) =1 —q;
where q; is referred to as the inhibitor probability, see Figure 7.25.

In some domains there may be a need to have a leak probability 1— qo rep-
resenting the probability of E = true when all causes Cq,...,C, are absent
where o is known as the default inhibitor. A leak probability may be imple-
mented by introducing as a separate Boolean cause variable Cy instantiated
to state true. The leak variable Cy represents the set of causes are not modeled
explicitly in the network. In this way the leak variable can be used to enforce
the closed-world assumption. The leak probability is assigned as the proba-
bility that the effect will occur in the absence of any of the causes Cy,...,Cyn
that are explicitly represented in the network (Pradhan, Provan, Middleton
& Henrion 1994).

Let us consider how the reduction from exponential to linear in the number
of parents is achieved. We may consider the conditional probability distribu-
tion P(Xi|pa(Xi)) as parameterized over a vector ©; of parameters 0i5, with
one component for each possible value of X; and combination of pa(X;) such
that
Oijk

P(xiji | i3, 01) = T Oy’
K 94
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a1 qz2

Fig. 7.25. One inhibitor probability for each parent C; of the effect E.

where 735 is the jth configuration of pa(Xi). The above formula is an unre-
stricted local conditional probability distribution. The distribution depends
on as many parameter vectors as there are combinations of fa(X;).

In an independence of causal influence model, the conditional probability
distribution P(X;|pa(Xi)) can be specified using a parameter @; that grows
in size linearly in the number of parents pa(X).

For the Noisy-OR model it is straightforward to determine the conditional
probability distribution P(E|pa(E), ®O¢) given a specific parameter vector O
from the Noisy-OR model

P(E =true| X1 =x1,..., Xn =%n,O) =1— 09 H 04,

Xi=true

where 8¢ is the default inhibitor, 0; is the inhibitor for X;, and ¢ =
{00,01,...,0,}. From this it follows that

P(E:false|X1:x1,...,Xn:xn,®E):90 H 91.

X =true

The following example illustrates how independence of causal influence
may be exploited to simplify the knowledge elicitation process.

Ezample 7.13 (Sore Throat). A physician wants to diagnose her patients with
respect to diseases causing a sore throat. For simplicity of the example we
assume the physician is mainly interested in modeling the causal effect of cold
and angina on sore throat. In addition to cold and angina there are other
potential causes of a sore throat. These other causes are not to be represented
explicitly in the model though.

Thus, initially the model consists of three variables SoreThroat, Angina,
and Cold. All variables are Boolean with states false and true. Figure 7.26
shows the structure of the model.

The synergy between Angina and Cold with respect to their combined
effect on SoreThroat is assumed to be minimal. Thus, we may use the Noisy-
OR model to specify and represent the conditional probability distribution
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Fig. 7.26. Sore throat may be caused by both angina and cold.

of SoreThroat given Angina and Cold where all other implicit causes of sore
throat are captured by the background event.

First, assume the inhibitor probabilities are qangina = 0.1 and qcolg = 0.2
while the default inhibitor is one (i.e., there are no other causes of sore throat).
The combined impact of Angina and Cold on SoreThroat is computed as

P(SoreThroat = false| Angina = false, Cold = false, O ) 1,
P(SoreThroat = false| Angina = false, Cold = true,@g) = 0.2,
P(SoreThroat = false| Angina = true, Cold = false, @g) = 0.1,
P(SoreThroat = false| Angina = true, Cold = true,®g) = 0.1x%0.2.

Table 7.16 shows the distribution P(SoreThroat|Angina, Cold).

SoreThroat
Angina  Cold | false true

false false 1 0

false true 0.2 0.8
true false | 0.1 0.9
true true | 0.02 0.98

Table 7.16. The conditional probability distribution P(SoreThroat|Angina, Cold)
with a zero background event probability.

Next, assume the background inhibitor is 0.95 (i.e., the probability that
sore throat is caused by the background event (other causes not represented
in the model) is 0.05 such that qo = 0.95). The combined impact of Angina,
Cold, and the background event on SoreThroat given is computed as:

P(SoreThroat = false| Angina = false, Cold = false,@g) = 0.95,
P(SoreThroat = false| Angina = false, Cold = true,®@g) = 0.95%0.2,
P(SoreThroat = false| Angina = true, Cold = false, @g) = 0.95%0.1,
P(SoreThroat = false| Angina = true, Cold = true,@g) = 0.95%0.1%0.2.

Table 7.17 shows the distribution P(SoreThroat|Angina, Cold).
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SoreThroat
Angina  Cold | false  true

false false | 0.95 0.05
false true 0.19 0.81
true false | 0.095 0.905
true true | 0.019 0.981

Table 7.17. The conditional probability distribution P(SoreThroat|Angina, Cold)
with a non-zero background event probability.

By exploiting the independence of causal influence between Cold and Angina
the number of parameters to elicit has decreased from four to two. This may
seem to be an insignificant reduction. However, if we consider the case where
ten different causes of SoreThroat are to be represented explicitly in the model,
then the number of parameters to elicit is reduced from 1024 to ten.

The benefit of independence of causal influence becomes even more appar-
ent when the effect has a large number of causes as the number of parameters
grows linearly with the number of causes. The advantage of independence
of causal influence is an exponential decrease in the number of parameters
to elicit. The disadvantage of independence of causal influence is that any
synergy between causes (with respect to their combined impact on the effect
variable) is ignored.

Using independence of causal influence in conjunction with parent divorc-
ing may reduce the complexity of inference exponentially.

Srinivas (1993) discusses a generalization of the Noisy-OR model to non-
binary variables. Pradhan et al. (1994) and Diez (1993) have considered in
detail the Noisy-MAX model as a generalization of the Noisy-OR model to
the case in which each variable is allowed to have a finite discrete state space.
In the Noisy-MAX model, the max operator specifies the combination of the
cause variables. In the Noisy-MAX model the probability distribution of the
effect variable E given its parent causes can be expressed as:

P(EICy,...,Ca)= > J]PEICw.
yi=1

max(Eq,...,En

One prerequisite for using the Noisy-MAX model is that the variable state
spaces are ordered as, for example (absent, mild, moderate, severe). In addition,
each cause variable must have a distinguished (or absent) state designating an
influence of the cause on the effect variable.

How to Implement This Technique

The independence of causal influence modeling technique is implemented as
follows.
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(1) Let {Cq,...,Cn} be the set of causes of effect variable E.
(2) Assume the impact of Cq,...,Cy on E can be modeled as a Noisy-OR
model. Hence, C1,...,Cy, and E are Boolean variables.

) Create one Boolean contribution variable E; for each C; € {Cy,...,Cn}.
(4) Let each E; be a child of C; and a parent of E.

) For each Cj, define the conditional probability distribution P(E;|C;) such
that P(E; = true|C; = true) is the probability of E = true given C; = true
and Cj = false for 1 # j and P(E; = false| C; = false) = 1.

(6) Define the conditional probability distribution P(E|Eq,..., Ey) as disjunc-
tion (i.e., or).

Once the independence of causal influence modeling technique has been ap-
plied, it may be an advantage to use the parent divorcing modeling technique
(see Section 7.1.1) to reduce the number of parents of the effect variable.

7.2.6 Mixture of Gaussian Distributions

When modeling problem domains with continuous entities a decision on how
to represent the continuous entities in a network has to be made. One option is
to represent a continuous entity as a discrete variable with states representing
intervals for the continuous entity. For instance, we may choose to represent
temperature as a discrete variable with three states low, medium and high. In
other cases we may choose to approximate the distribution of a continuous
entity using the conditional linear Gaussian distribution.

A third option is presented in this section. The third option is to approx-
imate the continuous distribution of a variable using a mixture of Gaussian
distributions (MoGs). This option is interesting as it is well known that mix-
tures of Gaussian distributions can approximate any probability distribution;
see Shenoy (2006) who cites Titterington, Smith & Makov (1995).

An MoGs is a sum of Gaussian distributions where each component is
weighted by a number between zero and one such that the sum of the weights
is one, i.e., the weights are probabilities. Assume X is a continuous variable
with a probability distribution that can be approximated using the MoGs

f(x) = D pi-Nlow,v1), (7.4)
i

where o, yi € Rand 0 < p; < 1such that ), p; =1 are the mean, variance,
and weight of the i’th component in the mixture.

To approximate the probability distribution on X using Equation 7.4, a
selector variable S with n states is introduced as a parent of X. The variable X
becomes a continuous variable with a conditional linear Gaussian distribution,
see Section 4.1.2. Each state s; of S corresponds to one component p;-N( i, Vi)
in the mixture. The prior distribution on S is P(S = s;) = p; while X|s; ~
N(ai,vi). Figure 7.27 illustrates the use of the MoGs modeling technique on
the distribution for X.
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Fig. 7.27. Approximation of a continuous distribution using the MoGs modeling
technique.

Using MoGs the network becomes either a CLG Bayesian network or a
CLQG influence diagram.

Example 7.14. A Gamma/(2, 2) distribution can, for instance, be approximated
using a two-component mixture of MoGs such as

f(x) = 0.609 - N(4.57,2.37) + 0.391 - N(1.93,1.12). (7.5)
Figure 7.28 shows the result of approximating the Gamma(2,2) distribu-

tion with the above two-component mixture of Gaussian distributions.

0.2 ‘

T T
Gamma(2,2) ——
0.18 ' 2-component MoG

0.16
0.14
0.12

0.1
0.08
0.06
0.04

0.02

Fig. 7.28. A two-component mixture approximation of the Gamma(2,2) distribu-
tion.

The two-component approximation in Equation 7.5 produces a reasonable
fit to the Gamma(2,2) distribution. Whether or not the fit is of sufficient
quality depends on the problem domain and application.

The MoGs modeling technique introduces a discrete random variable with
one state for each component in the mixture. Approximating continuous dis-
tributions using the MoGs modeling technique is not necessarily simple and
may produce networks where belief updating is computationally intensive.
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How to Implement This Technique

The mixture of Gaussian distributions modeling technique is implemented as
follows.

(1) Let X be the variable of the probability distribution to approximate.
(2) Assume the probability distribution of X can be approximated using the
MoGs

f(x) =Y pi-N(xi,vi).
i=1

(3) Create a discrete variable S with n states.
(4) Let S be the parent of X in the network with P(S = si) = pi.
(5) For each state si of S set X|s; ~ N(oi,vi).

The process of identifying the number of components as well as the para-
meterization and weight of each component is not trivial.

In this section we have considered the case of approximating the prior dis-
tribution of a continuous variable with no parents. Shenoy (2006) presents a
methodology for belief updating in hybrid Bayesian networks (i.e., Bayesian
networks with both continuous and discrete variables and with no restrictions
on the model structure) based on approximating distributions using MoGs.
Shenoy (2006) gives examples on how to approximate different types of distrib-
utions using MoGs. This includes approximating the distribution of a discrete
child of a continuous variable. Poland (1994) has presented an algorithm for
identifying MoGs using the EM algorithm (see Section 8.3.1).

7.3 Decision Related Techniques

In this section we consider modeling techniques related to the specification
of a decision problem as an influence diagram. In particular we consider how
to model test decisions, how to exploit missing informational links, how to
model variables which may or may not be observed prior to a decision, how
to force a decision variable to be in a state corresponding to a hypothesis of
maximum probability, and how to enforce constraints on decision options.

7.3.1 Test Decisions

As part of a decision problem, a decision maker may be faced with the option
to perform some kind of test. Performing the test produces a test result which
is modeled as a random variable with states corresponding to the possible test
results in an influence diagram. In addition to the random variable represent-
ing the test result, the influence diagram has a decision variable with states
representing whether or not the test is performed. If the test is performed,
then the result of the test (usually) becomes available to the decision maker.
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If the test, on the other hand, is not performed, then no test result becomes
available. The influence diagram may also have a utility function associated
with the test specifying the cost of the test. Solving the influence diagram will
produce a policy for when to perform the test.

The random variable representing the test result may be an informational
parent of another decision variable in the influence diagram. If the test re-
sult variable is an informational parent of another decision in the influence
diagram, then the variable must be observed prior to this decision. This, how-
ever, contradicts the fact that the test result is available only when the test is
performed. In this section we consider two examples that illustrate different
approaches to alleviating this contradiction.

Ezxample 7.15 (Oil Wildcatter (Raiffa 1968)). Example 4.5 on page 77 consid-
ers an oil wildcatter about to decide whether or not to drill for oil at a specific
site. Prior to her decision on whether or not to drill for oil the oil wildcatter
has the option to take seismic soundings to better understand the geological
structure of the site. The structure of the Oil Wildcatter model (Figure 4.5
on page 77) is repeated in Figure 7.29 for convenience.

Fig. 7.29. The test result is only available after a test is performed.

There are two informational links in the graph of Figure 7.29. The link
(Test, Drill) from Test to Drill and the link (Seismic, Drill) from Seismic to Drill
are both informational links. The former link specifies whether or not the oil
wildcatter decided to take seismic soundings prior to the drill decision. On
the other hand, the latter link specifies that the value of Seismic is also known
when making the drill decision. This cannot, however, be the case when the
test is not performed.

We consider two alternative options to correct this problem. Both options
consider the specification of the conditional probability distribution P(Seismic|
Oil, Test).

One option is to specify P(Seismic|Qil, Test = no) as a uniform distribution.
The corresponding distribution is shown in Table 7.18. If the oil wildcatter
decides not to perform the test, then any observation on Seismic will not effect
the belief in Oil (the likelihood potential over Oil induced by the observation
on Seismic assigns equal likelihood to all states of Qil due to the uniform
distribution).
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Seismic
Test  Qil closed open diffuse
no dry 0.1 0.3 0.6
no wet 0.3 0.4 0.3
no soaking 0.5 0.4 0.1
yes dry 1/3 1/3 1/3
yes wet 1/3 1/3 1/3
yes soaking 1/3 1/3 1/3

Table 7.18. The conditional probability distribution P(Seismic|Test, Oil).

The other option is to introduce an additional no result state in Seismic.
The distribution P(Seismic|Qil, Test = no) is specified such that not perform-
ing the test instantiates Seismic to no result. The corresponding distribution
is shown in Table 7.19. If the oil wildcatter decides not to perform the test,
then Seismic is instantiated to no result.

Seismic
Test  Oil closed open diffuse no result
no dry 0.1 0.3 0.6 0
no wet 0.3 0.4 0.3 0
no soaking 0.5 0.4 0.1 0
yes dry 0 0 0 1
yes wet 0 0 0 1
yes soaking 0 0 0 1

Table 7.19. The conditional probability distribution P(Seismic|Test, Qil)
where Seismic has a no result state.

The latter option is semantically more clear than the former option in
the sense that it is easily understood that Seismic should be instantiated
to no result when the test is not performed. On the other hand, the lat-
ter option increases the complexity of the model by introducing the addi-
tional no result state in the Seismic variable.

Ezample 7.16 (Aspirin (Jensen 1996)). Example 7.12 on page 204 describes
a simple model for reasoning about the effect of flu on fever and the effect
of fever on sleepiness. Here we consider this example as a decision problem
where the decision maker has to decide on whether or not to take an aspirin.

The level of fever may be reduced by taking an aspirin. This is represented
by the decision variable A. Prior to taking an aspirin there is the option to
measure temperature. This option is indicated using the triangular-shaped
node with label T in Figure 7.30.
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Fig. 7.30. Prior to deciding on whether or not to take an aspirin, we may measure
the temperature.

Fig. 7.31. The test for temperature is modeled as a decision value with a random
variable as a child specifying the result of the test.

The test option indicated in Figure 7.30 by the triangular-shaped node
may be represented using three nodes as indicated in Figure 7.31. The three
nodes represent decision variable T and random variables Temp, and Fever*.
The decision variable T represents whether or not the temperature is mea-
sured. The random variable Temp specifies the temperature measured and
the random variable Fever* represents the level of fever after taking an aspirin
while the random variable Fever represents the level of fever prior to taking
an aspirin.

How to Implement This Technique

The test decisions modeling technique is implemented as follows.

(1) Let P be a discrete random variable representing the phenomenon that
may be measured by a test.

(2) Create a decision variable T with two states no test and test corresponding
to not performing and performing the test, respectively.

(3) Create a discrete random variable R representing the result of the test as
a child of D and P.

(4) Let R have one state for each possible test result and the state no result
representing the event that the test is not performed, i.e., T = no test.

(5) Define the conditional probability distribution P(R|P, T) such that P(R =
no result|P, T = no test) = 1 and P(R|P, T = test) encodes the probability
of each possible test result given the actual value of phenomenon P.
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Instead of using the state no result to specify no test result, a uniform dis-
tribution may be used. Furthermore, the modeling technique may be used in
combination with the measurement uncertainty modeling technique described
in Section 7.2.1.

7.3.2 Missing Informational Links

Informational links of an influence diagram define the points at which informa-
tion is assumed to become available to the decision maker. An informational
link (X, D) from a random variable X to a decision variable D specifies that
the value of X is known to the decision maker when the decision correspond-
ing to decision variable D is made. The informational links of an influence
diagram induce a partial order over the random variables relative to the de-
cision variables. The partial order over random variables is important for the
solution of an influence diagram. In essence the partial order over random vari-
ables induces a constraint on the order in which variables may be eliminated
when solving the decision model; see Section 5.2 for details on solving decision
models. Thus, correct specification of informational links is imperative.

When the influence diagram has only a single decision, then informational
links can be ignored if the influence diagram is solved for each set of evidence.
That is, the influence diagram is solved prior to making the decision each
time the influence diagram is used. This implies that the optimal strategy
is only implicitly available to the decision maker as the optimal decision is
determined for each evidence scenario prior to making the decision. This can
be particularly useful if the optimal policy for the decision has a large state
space.

Example 7.17. In Example 7.6 on page 192 we considered the task of moni-
toring the pregnancy state of a cow. Assume that in addition to the blood
and urine tests we have the option to make a scanning of the cow. A scanning
of the cow will produce a more accurate estimation of the pregnancy of the
cow. The option to scan the cow introduces the variable Sc with states false
and true as a child of Pr.

The pregnancy state of the cow is estimated six weeks after the initial
insemination of the cow. Based on the observations and the probability dis-
tribution of the pregnancy state of the cow, we need to make a decision on
whether or not to repeat the insemination of the cow or to wait for another
six weeks before estimating the pregnancy state of the cow. This decision
introduces the decision variable D with states wait and repeat.

The cost of repeating the insemination is 65 no matter the pregnancy state
of the cow. If the cow is pregnant, and we wait, it will cost us nothing, but
if the cow is not pregnant, and we wait, it will cost us another 30 units plus
the eventual repeated insemination (that makes a total of 95 for waiting).
A blood test has the cost 1 and a urine test has the cost 2. This defines a
utility function over variables Pr and D, see Table 7.20.
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Pr D

false wait —95
false repeat | —65
true  wait 0

true  repeat | —65

Table 7.20. The utility function U(Pr, D).

Figure 7.32(a) shows the resulting structure of the model. Notice that
there are no informational links in the structure.

@™ @
@ X0 @ & XD
@ B D]

(a) (b)
Fig. 7.32. (a) Informational links are unnecessary in influence diagrams with a
single decision. (b) Informational links only clutter up the graph.

Since the structure in Figure 7.32(a) does not contain any informational
links, it does not properly reflect the test options available prior to deciding
on whether or not to repeat the insemination.

To capture the three test options we may introduce an additional no test
state in each of the test result variables (BT, UT, and Sc). This would produce
the structure shown in Figure 7.32(b).

Alternatively, we may use the fact that the decision problem contains a
single decision variable. This allows us to leave out informational links and
instantiate the random variables observed prior to the decision as the ob-
servations are made. This leaves us with Figure 7.32(a) instead of the more
cluttered Figure 7.32(b).

When informational links are included in the influence diagram the solu-
tion will identify a decision policy specifying an optimal decision option for
each configuration of the parents of the decision. Thus, the influence diagram
is solved once and off-line in the sense that the influence diagram is solved
before the decision maker has to make a decision and before any observations
are made. On the other hand, it is necessary to resolve the influence diagram
each time the decision maker has to make the decision when informational
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links are not included in the network. The solution process identifies an op-
timal decision option for the specific set of observations made prior to the
decision. The influence diagram is solved on-line in the sense that the influ-
ence diagram is solved when the decision maker has to make the decision and
after observations have been made. Solving the influence diagram on-line is
often a significantly simpler task than solving it off-line and may be the only
option when the influence diagram is complex.

How to Implement This Technique

The missing informational links modeling technique is implemented as follows.

(1) Let D be the decision under consideration.

(2) Assume observations ¢ have been made prior to making decision D
where pa(D) C X(¢).

(3) Inmsert € as evidence and solve the influence diagram.

(4) The expected utility associated with each state d of D is EU(d|e), i.e.,
the expected utility of decision option d given observations .

The above steps should be repeated each time observations are made prior to
deciding on D.

7.3.3 Missing Observations

The structure of an influence diagram induces a partial order on the random
variables of the model relative to the decision variables of the model. The
partial order is induced by the informational links of the graph of the influence
diagram. An informational link (X,D) from a node representing a random
variable X to a node representing a decision variable D specifies that the
value of X is observed when decision D is to be made. That is, the value of X
is always observed prior to decision D.

Figure 7.33(a) illustrates a typical dilemma a knowledge engineer may be
faced with when representing a decision problem as an influence diagram.
In some situations the random variable X is observed prior to the decision
represented as D and in other situations it is not observed prior to making
decision D. In this section we describe a modeling technique for solving the
dilemma where a random variable X may or may not be observed prior to a de-
cision D. This is a typical and frequently occurring situation when considering
decision problems with sensor readings or other similar types of observations,
which may, for some reason, be missing or lost.

Figure 7.33(b) illustrates the solution to the dilemma. An auxiliary vari-
able O is introduced as a child of X and a parent of D. The random variable O
has the state space of X extended with one additional state, e.g., named none.
Each state o € dom(O) corresponding to state x € dom(X) represents an
observation of X to the state x while the additional state none represents the
event that X is not observed. The conditional probability distribution P(O|X)
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® [o]
(O~[0] O>(@~[0]

(a) (b)

Fig. 7.33. (a) In some situations X is observed prior to D while in others it is
not. (b) By introducing an additional variable, we capture the situation where an
observation on X may or may not be available.

is constructed such that P(O = 0|X =x) =p and P(O = none|X =x)=1—p
where p specifies the probability that the observation on X is made when X
is in state x. The following example illustrates the use of this modeling tech-
nique.

Ezxample 7.18. In Example 4.5 on page 77 the oil wildcatter has the option
to take seismic soundings prior to the drill decision. In this example we will
assume that the oil wildcatter is not in full control of the test option. This im-
plies that the test event should be modeled as a random variable. Figure 7.34
shows the resulting structure.

TS

———> Dr||

Fig. 7.34. The observation on Seismic is missing when the test is not performed.

The dashed link from Seismic to Drill indicates that Seismic is only observed
when the test is performed. This property can be captured by the approach
described above. Figure 7.35 shows the structure which captures the situation
where the result of seismic soundings may not be available.

o>

Fig. 7.35. This graph captures the situation where the result of seismic soundings
may not be available.
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The conditional probability distribution of Obs is shown in Table 7.21.
The variable Obs has one state for each state of Seismic and one additional
state none representing the event that no result is available. The table specifies
the probability that the result of seismic soundings is available to be 0.9.

Obs
Seismic | closed open diffuse none
closed 0.9 0 0 0.1
open 0 0.9 0 0.1
diffuse 0 0 0.9 0.1

Table 7.21. The conditional probability distribution P(Obs|Seismic).

The variable Obs is always observed. Either it instantiates Seismic to the
state representing the seismic soundings result or it carries no information on
the test result.

How to Implement This Technique

The missing observations modeling technique is implemented as follows.

(1) Let X be the discrete random variable that may or may not be observed
prior to decision D.

(2) Create a discrete random variable O with state space dom(O) = dom(X)U
{none} representing the observation on X when it is observed and none
when it is not.

(3) Let X be the parent of O and let O be a parent of D.

(4) Define the prior probability distribution P(O|X) such that P(O = o|X =
x) =p and P(O = none|X = x) = 1 —p where p specifies the probability
that the observation on X is made when X is in state x.

(5) Instantiate O to the state of X when X is observed and instantiate O to
the state none when X is not observed.

7.3.4 Hypothesis of Highest Probability

An influence diagram is useful for solving problems of decision making under
uncertainty. The variables of an influence diagram consist of a mixture of
random variables and decision variables. The random variables are used for
representing uncertainty while the decision variables represent entities under
the full control of the decision maker. The state of a random variable may be
observable or hidden while the state of a decision variable is under the full
control of the decision maker.

As indicated above there is a fundamental difference between random vari-
ables and decision variables. Situations exist, however, where it is useful to
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Fig. 7.36. Decision D selects a hypothesis of maximum probability.

have the decision maker select a decision option corresponding to the state
of a random variable. In a medical diagnosis situation, for instance, it may
be necessary to have the model suggest the most likely diagnosis as the dis-
ease with the maximum probability where the presence or absence of diseases
are modeled as random variables. Figure 7.36 illustrates a simple modeling
technique for representing this situation. Let D be the discrete decision vari-
able under the full control of the decision maker and let H be the hypothe-
sis variable such that D and H have the same (or equivalent) state spaces,
i.e., dom(D) = dom(H). The goal is to assign the maximum expected utility
to the decision option d of D corresponding to the hypothesis h of H with
maximum probability. This is achieved by adding a utility function U with
domain dom(U) ={D, H} assigning utilities to configurations of H and D as

1 ifh=d
0 otherwise.

U(h,d) = {

That is, all configurations where the decision variable D and the hypothesis
variable H are in the same state are assigned the value one, while all remain-
ing configurations are assigned the value zero. In effect each state of D has
expected utility corresponding to (a linear transformation of) the probability
of the hypothesis. Since influence diagrams are solved by selecting the decision
option with maximum expected utility, the optimal decision policy for D will
select a hypothesis with maximum probability.

() ()
{uy<—{D]

Fig. 7.37. Decision D selects a hypothesis of maximum probability.
In the general case each hypothesis h may be a configuration over a set of

variables such that the utility function has more than one hypothesis variable
as parent. Figure 7.37 illustrates this situation.
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Ezample 7.19. In the Chest Clinic example (Example 4.2 on page 68) a physi-
cian is diagnosing her patients with respect to lung cancer, tuberculosis, and
bronchitis based on observations of symptoms and possible causes of the dis-
eases.

Assume the physician would like to select the single diagnosis with highest
probability. Figure 7.38 shows the structure of a model where the decision
variable D selects the disease hypothesis with highest probability. The decision
variable D has states bronchitis, cancer, and tuberculosis.

-0

Tub_or_cancer

==

Dyspnoea

Fig. 7.38. Selecting a disease hypothesis with highest probability.

The utility function U(T,L, B, D) encodes the behavior of the model and
it is specified as

if B=yes,L =no, T =no and D = bronchitis
if B=no,L =yes, T =no and D = cancer

U(T,L,B,D) = . :
if B=no,L =no, T =yes and D = tuberculosis

O = o

otherwise.

This model will enforce the expected utility function over D to assign the
hypothesis with the highest probability with the maximum expected utility.

How to Implement This Technique

The hypothesis of highest probability modeling technique is implemented as
follows.

(1) Let H be the random variable for which the hypothesis (i.e., state) of
highest probability is to be selected.

(2) Create a decision variable D with the same state space as H, i.e., such
that dom(D) = dom(H).

(3) Create a utility function U with D and H as its parents.
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(4) Define the utility function U(H, D) such that

1 ifh=d
0 otherwise

U(h,d) = {
where h and d are states of H and D, respectively.

7.3.5 Constraints on Decisions

One of the underlying assumptions of representing and solving a decision
making problem with uncertainty using influence diagrams is that the decision
maker is in full control of her decision options. It is, however, common that a
decision making problem is subject to certain constraints on the decisions (and
random) variables. We consider the situation where certain configurations of
decision variables are illegal in the sense that such configurations should never
be optimal.

There are two alternatives to enforcing constraints on decision options.
The basic idea of the first alternative is to assign an infinitely large negative
value to configurations of decision options that are illegal. Since influence
diagrams are solved by maximizing the expected utility, decision options with
infinitely large negative expected utilities will not be chosen.

It is not possible to specify that a configuration of variables has infinitely
large negative expected utility. Instead of using an infinitely large negative
value we may use zero (or a very large negative value). This implies that it may
be necessary to make a linear utility transformation to avoid zero expected
utilities for any configuration which is not illegal. This transformation of the
utility function will preserve the optimal policy.

The second alternative is to use an extension of the constraints modeling
technique of Section 7.1.4 to the case of influence diagrams. Using constraints
we are able to ensure that illegal configurations are avoided. Using constraints
we assign zero probability to configurations of variables that are illegal. Since
influence diagrams are solved by maximizing expected utility we need to make
sure that only illegal configurations have expected utility zero and no other
configuration has lower or equal expected utility. This can be achieved by a
linear transformation of the utility function such that all utilities in the model
are positive except for configurations that are illegal.

Ezxample 7.20. Assume that two decisions Dy and D, specify two different
points in time where the decision maker can choose to sell an old car that
needs repair. If both decisions are to keep the car, then a repair cost of is
induced. If the car is sold at decision D1, then it is not an option to sell the
car at decision D».

This implies that options available for the decision maker at decision D,
are constrained by the decision made at decision D;. This property can be
encoded as a constraint over D1 and D, as illustrated in Figure 7.39 with the
distribution P(C|D7,D;) as specified in Table 7.22.
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Fig. 7.39. A constraint on configurations of decisions D7 and D,.

C
D1 D» off on
keep keep | 0O 1
keep  sell 0 1
sell keep | 0 1
sell sell 1 0

Table 7.22. The conditional probability distribution P(C|D1,D3).

In order to avoid problems related to decision options having zero expected
utility due to illegal events, a linear transformation of the utility function can
be made. In the example we may add a constant greater than the numerical
value of the cost of repairing the car to all utilities. This will force all utilities
to be positive and zero expected utility to be assigned to illegal configurations
only.

The constraint is enforced by instantiating C to on.

In the example we assume that D7 and D, are temporally ordered in the
enclosing model, i.e., decision Dy is made prior to decision D,. This assump-
tion has no impact on the model.

How to Implement This Technique

The constraints on decisions modeling technique is implemented as follows
(assuming that we use constraints as opposed to large negative utility values
to encode the constraint).

(1) Let {Dy,..., Dy} be the set of decisions to be constrained.

(2) Create a binary constraint node C with one state off representing all illegal
configurations and one state on representing all legal configurations.

(3) Add each D € {Dy,...,Du} as a parent of C.

(4) Define the conditional probability distribution P(C|Djy,..., Dy) such that
all illegal configurations of {Dq, ..., Dy} map to the state off and all legal
configurations of {Dq,..., Dy} map to the state on.

(5) Instantiate C to state on enforcing the constraint.

If a linear transformation of the utility function is required, this should be
performed subsequently.
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7.4 Summary

In this chapter we have introduced modeling methods and techniques for
adjusting the structure of a probabilistic network, for the specification of con-
ditional probability distributions and for influence diagram models.

The construction of a probabilistic network may be a labor-intensive task
to perform. A sequence of steps related to knowledge acquisition and repre-
sentation is performed in the process of constructing a probabilistic network.
The steps include identifying variables, identifying states of variables, identi-
fying and encoding dependence and independence relations among variables
as an acyclic, directed graph and eliciting the quantification of the model as
required by the structure.

In Chapter 8 we discuss methods for data-driven modeling.

Exercises

Exercise 7.1. Assume that the causal influences of Angina, Cold, and Flu
on SoreThroat can be assumed to be independent. Furthermore, assume that
there is a background event that can cause the throat to be sore.

The probability of a sore throat being caused by other causes is 0.05
whereas the inhibitor probabilities for Angina, Cold, and Flu are 0.3, 0.4, and
0.25, respectively. The prior probabilities for Angina, Cold, and Flu are 0.4,
0.1, and 0.25, respectively.

(a) Construct a Bayesian network model representing the causal impact on
SoreThroat.

(b) Compute the prior probability of SoreThroat.

(c) Apply the parent divorcing modeling technique to simplify the model.

Exercise 7.2. Consider the Asia network in Figure 7.20 on page 200.

(a) Perform a sequence of node absorption operations to remove the vari-
ables Experts; and Experts,.

(b) Assume bronchitis can be cured by taking a certain type of medicine.
Extend the network accordingly.

Exercise 7.3. Consider the Naive Bayes network for classifying mushrooms in
Figure 7.15 on page 195. Assume no odor is perfectly observed, whereas almond
is mistakenly observed as spicy in 10% of the cases while spicy is mistakenly
observed as almond in 5% of the cases. Extend the network accordingly.

Exercise 7.4. Consider the Asia network in Figure 4.2 on page 69, see Ex-
ample 4.2 on page 68.

(a) Perform a node absorption operation to remove the variable Tub_or_cancer.
(b) Apply the parent divorcing technique on the resulting network.
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Exercise 7.5. Assume appendicitis may cause fever, pain, or both. If a pa-
tient has appendicitis, then the patient will have an increased white blood
cells count. When a patient potentially has appendicitis, the physician may
choose to carry out surgery right away or wait for a blood test result. Fever
and pain are observed.

The prevalence of appendicitis is 0.15. The true positive rates are 0.98,
0.95, and 0.99 for fever, pain, and white_cells_count, respectively. The true
negative rates are 0.5, 0.4, and 0.95 for fever, pain, and white_cells_count, re-
spectively. The utilities of operating are shown in Table 7.23.

‘ —surgery  surgery

—appendicitis 5 -5
appendicitis —10 10

Table 7.23. The utility function U(Surgery, Appendicitis).

(a) Build a model for the diagnosis problem.

(b) Compute the maximum expected utility of the scenario where the physi-
cian does not wait for the blood test result.

(¢) Compute the maximum expected utility of the scenario where the physi-
cian waits for the blood test result.

(d) Prior to deciding on whether or not to carry out surgery the physician has
the option to carry out a test for the white blood cell count.
Extend the model to include a representation of the test decision.
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Data-Driven Modeling

In this chapter we introduce data-driven modeling as the task of inducing a
Bayesian network by fusion of (observed) data and domain expert knowledge.

The data-driven modeling is illustrated in Figure 8.1. The assumption is
that some underlying process has generated a database of observed cases as
well as domain expert experience and knowledge. The task of data-driven mod-
eling is to fuse these information sources in order to induce a representative
model of the underlying process. If the model is a good approximation of the
underlying process, then it can be used to answer questions about properties
of the underlying process.

| Database of cases |

Underlying process | Induced model

| Experience & knowledge |

Fig. 8.1. We assume the underlying process generates a database of cases as well
as experience and knowledge that can be fused for learning a model of the process.

In this book we consider the use of Bayesian networks to model the under-
lying process. The process of inducing a Bayesian network from a database
of cases and expert knowledge consists of two main steps. The first step is to
induce the structure of the model, i.e., the DAG, while the second step is to es-
timate the parameters of the model as defined by the structure. In this book
we consider only discrete Bayesian networks. Thus, the task of data-driven
modeling is to construct a Bayesian network N = (X, G, P) from the available
information sources. In general, the problem of inducing the structure of a
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Bayesian network is NP-complete (Chickering 1996). Thus, heuristic methods
are appropriate.

Section 8.1 gives some background on data-driven modeling and presents
a set of assumptions underlying the presented approach to data-driven model-
ing. Section 8.2 considers structure learning of Bayesian networks. A number
of different algorithms for structure learning are considered. We consider the
PC, PC*, and NPC algorithms. These algorithms are all constraint-based algo-
rithms. In Section 8.3 we consider the Expectation-Maximization algorithm
for parameter estimation. In addition to the two main steps of data-driven
modeling there is the step of sequential parameter learning. Structure learn-
ing and parameter estimation are performed during the model construction
phase whereas sequential parameter learning is performed during model us-
age. In Section 8.4 we consider sequential parameter learning, which is the
task of adjusting parameters of the model as the model is used, i.e., as new
cases OCcur.

Parts of this chapter have appeared in Madsen et al. (2005).

8.1 The Task and Basic Assumptions

Data-driven modeling is the task of identifying a Bayesian network model
from a source of data. We assume the underlying process follows a probability
distribution Py (referred to as the underlying probability distribution of the
process). That is, we assume the data source can be adequately represented
by sampling from Py. The goal of data-driven modeling is to identify a model
representation of Py.

To simplify the task, the probability distribution Py is assumed to be a
DAG-faithful probability distribution with underlying DAG Go. That is, we
assume that the distribution Py can be represented as a Bayesian network
(if Po is not DAG-faithful, a Bayesian network may still be an excellent ap-
proximation).

The faithfulness assumption (also known as the stability assumption) says
that the distribution P induced by N = (X, G, P) satisfies no independence
relations beyond those implied by the structure of § (Spirtes, Glymour &
Scheines 2000, Pearl 2000). A Bayesian network is faithful if and only if for
every d-connection there is a corresponding conditional dependence, i.e.,

X Lo Y| =X A, Y|Z

We assume the underlying probability distribution Py to be DAG-faithful with
DAG Go.

The database of cases generated by the underlying and unknown process
(i.e., the data source for learning) is denoted D = {c',...,cN} where N is
the number of cases in the database. We assume D consists of independent
and identically distributed data cases drawn at random from the probability
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distribution Py, i.e., we assume cases are drawn at random and independently
from the same probability distribution Pg.

Each case ¢t = {x},...,xL} in D specifies an assignment of a value x}
to each variable X; € X. Some values in D may be missing, but missing
values are assumed to be missing at random (MAR) or missing completely at
random (MCAR), i.e., the missing data mechanism is uninformative and can
be ignored (Cowell et al. 1999). A variable never observed is called a hidden
or a latent variable.

Example 8.1. Table 8.1 shows a database of N cases D ={c',...,cN} over n
variables X ={Xj,..., X}

Xi X2 oo Xa
¢! blue yes ... low
¢? | green no coo low
¢ | red N/A ... high

Table 8.1. A database of cases.

In case c?, for instance, variable X, is observed to have value no, i.e.,
x3 = no, while its value is missing in case c> (missing values are indicated

using N/A).

We consider learning a Bayesian network as the task of identifying a DAG
structure § and a set of conditional probability distributions P with para-
meters © on the basis of D = {c',...,cN} and possibly some domain expert
background knowledge.

8.2 Structure Learning From Data

Structure learning from data is the task of inducing the structure, i.e., the
graph, of a Bayesian network from a source of data. There exists different
classes of algorithms for learning the structure of a Bayesian network such
as search-and-score algorithms and constraint-based algorithms as well as
combinations of the two. We consider structure learning algorithms based
on the constraint-based approach (Wermuth & Lauritzen 1983, Verma &
Pearl 1992, Spirtes et al. 2000).

In the constraint-based approach, the DAG G of a Bayesian network N =
(X,G,P) is considered as an encoding of a set of (conditional) dependence
and independence relations (CIDRs) Mg, which can be read off § using the
d-separation criterion (Lauritzen et al. 1990b, Geiger, Verma & Pearl 1990).
Structure learning is then the task of identifying a DAG structure that (best)
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encodes a set of CIDRs. The set of CIDRs may, for instance, be derived from
the data source by statistical tests. Based on D alone, we can at most hope to
identify an equivalence class of graphs encoding the CIDRs of the generating
distribution Py.

A constraint-based structure learning algorithm proceeds by determining
the validity of independence relations of the form I(X,Y|Sxy) (i.e., X is inde-
pendent of Y given subset Sxy where X,Y € X and Sxy C X). The structure
learning algorithm will work with any information source able to provide such
information. We will consider the case where the validity of independence re-
lations is determined by statistical hypothesis tests of independence based on
a database of cases.

Applying Occam’s Razor (the law of parsimony), see Section 6.6, to the
problem of learning the structure of a Bayesian network from a database
of cases suggests that the simplest model of a set of competing models is
preferable. Why should we adhere to Occam’s Razor principle, i.e., adhere
to one specific selection bias? One argument is that we want models that
generalize correctly with respect to subsequent data and it is unlikely that we
by coincidence will find a simple model which fits the data as well as a very
complex model.

Learning the structure of a sparse graph is computationally less involved
than learning the structure of a dense graph where the number of edges is used
as a measure of the density of the graph. Inducing a graph from a sample of
cases that require the induced graph to be dense is computationally more
expensive than inducing a graph from a sample of cases that require the
induced graph to be sparse. In addition, domains that require the induced
graph to be dense may be difficult to represent as a Bayesian network as
inducing the graph is computationally expensive, representing a dense graph
requires a lot of storage, and inference in dense graphs may be intractable.

The size of the space of possible DAGs grows super-exponentially with the
number of vertices in the graph. Robinson (1977) gives the following recursive
formula for calculating the number f(n) of DAGs on n vertices:

f(n) _ Z(_] )i+1 m%iﬂﬂzi(n—] )f(n _ ‘L).

i=1

For example, f(10) ~4.2-10'8.

8.2.1 Basic Assumptions

Under the conditions listed below, the structure learning algorithm considered
will discover a DAG structure equivalent to the DAG structure of Py (Spirtes
et al. 2000)

e The independence relationships have a perfect representation as a DAG.
This is the DAG faithfulness assumption.
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e The database consists of a set of independent and identically distributed
cases.
The database of cases is infinitely large.
No hidden (latent) variables are involved.
The statistical tests have no error.

8.2.2 Equivalent Models

Two DAGs representing the same set of CIDRs are equivalent in the sense
that they can capture the same set of probability distributions. That is, two
models M and M, are statistically equivalent if and only if they contain
the same set of variables and joint samples over them provide no statistical
grounds for preferring one over the other.

The equivalence class of a DAG G is the set of DAGs with the same set
of d-separation relations as §. A PDAG — an acyclic, partially directed graph,
i.e., an acyclic graph with some edges undirected (also known as a pattern or
essential graph) — can be used to represent the equivalence class of a set of
DAG structures, i.e., a maximal set of DAGs with the same set of d-separation
relations (Pearl 2000).

Any two models M; and M; over the same set of variables, whose
graphs G; and G, respectively, have the same skeleton Gs (i.e., undirected
graph obtained by replacing directed edges with undirected edges) and the
same v-structures are equivalent. That is, two DAGs §; and G, are equivalent
if they have the same skeleton and the same set of uncovered colliders (i.e.,
X =Y « Z-structures where X and Z are not connected by a link also known
as v-structures) (Pearl 2000).

Ezample 8.2. The models A - B - Cand A «— B« Cand A «— B — C are
equivalent, as they share the skeleton A — B — C and have no v-structures.

Hence, based on data alone we cannot distinguish A — B — C and A «
B «+ C and A « B — C. These models can, however, be distinguished from
A — B« C.

An equivalence class is a maximal set of DAGs with the same set of inde-
pendence properties.

Ezample 8.3. The three DAGs in Figure 8.2 all represent the same set of
conditional independence and dependence relations.

Figure 8.3 shows the equivalence class of the three equivalent DAGs of
Figure 8.2.

If structure is identified from data, then two DAGs G; and §j from the
same equivalence class cannot be distinguished. Based on data alone, we can
at most hope to identify a PDAG representing the equivalence class of the
generating distribution Py.
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Fig. 8.3. The equivalence class of the DAGs in Figure 8.2.

8.2.3 Statistical Hypothesis Tests

A set of CIDRs may be generated by statistical tests on the database of cases.
In each test, the hypothesis tested is that of independence between a pair of
variables.

Let X and Y be a pair of variables for which we would like to determine
dependence by statistical hypothesis testing. First we test for marginal inde-
pendence and subsequently we test for conditional independence given subsets
of other variables. In the case of marginal independence testing between X
and Y, the hypothesis to be tested is

Ho:P(X,Y) = PX)P(Y), ie, X1lpVY
Hy:P(X,Y) # P(X)P(Y).

Hence, the null hypothesis Hp is X 1Lp Y while the alternative hypothesis H;
is X ,KLP Y.

In order to test the hypothesis we may use the likelihood G? test statistic.
Under the null hypothesis Hy the likelihood G? test statistic has an asymp-
totic x? distribution with the appropriate degrees of freedom denoted df. The
likelihood G? test statistic is computed as

N
G?=2) Ny log (E:y ) ,
X,y Y
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where Ey, = N%NU and Nyy specifies the number of cases in D where X = x
and Y =vy.

In the case of conditional independence testing between X and Y given a
subset Sxy, the hypothesis to be tested is

Ho : P(X,Y|Sxy) = P(X[Sxy)P(Y|Sxy), ie., X 1p Y[Sxy
Hy :P(X,Y[Sxy) # P(X|Sxy)P(Y[Sxy).
The null hypothesis Hg is X LLp Y|Sxy while the alternative hypothesis H;

is X /Lp Y|Sxy. In the case of conditional independence testing, the likeli-
hood G? test statistic is computed as

N
G?=2 Z nyz log <Exyz> »

Xyz
XY,z v

Ny N . .
where Ey,, = == and z is a configuration of Sxy.

If the test statistic G2 is sufficiently small, i.e., G? < ¢, then the null hy-
pothesis Hp is not rejected. Since the value of ¢ is unknown the probability
distribution of G2 under Hy and a significance level o are used. The signifi-
cance level « is the probability of rejecting a true hypothesis and is typically
set to 0.05 (or 0.01 or 0.001). Not rejecting a hypothesis does not imply that
data support independence. A hypothesis is not rejected when there is no
evidence in the data against the hypothesis.

'Gz -

Fig. 8.4. The x? density function for different degrees of freedom.

Under the null hypothesis Ho (i.e., (conditional) independence of X and Y)
the likelihood G? test statistic has, as mentioned above, an asymptotic x>

distribution with an appropriate number of degrees of freedom denoted df.
The value of df is defined as
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=(XI=navi=n T 1z,

ZeSxy

where [|X|], |Y]|, and ||Z|| are the number of distinct values of X, Y, and Z,
respectively, in D.

If the tail probability of the x? distribution at G? is less than o, then Hg
is rejected. Otherwise it is not rejected. Thus, the hypothesis Hy is rejected
in favor of the alternative hypothesis H; when P24 (x > G?) < «, see
Figure 8.4 for an illustration.

In the figure f(x,5) and f(x, 10) are x? density functions with five and ten
degrees of freedom, respectively. The solid line specifies the density function
with ten degrees of freedom while G2 Speciﬁes the value of the likelihood G?
test statistic. The tail of the distribution Py2(4¢)(x > G?) is the area indicated
in the figure and is often referred to as the p value. If the tail is less than the
significance level, then the independence hypothesis is rejected. It is clear from
the figure that it is important to use the correct value of df when considering
the tail probability of the distribution.

Ezample 8.4. Consider the statistical test for (marginal) independence be-
tween a pair of variables X and Y with states n and y given the sufficient
statistics shown in Table 8.2.

Y
n Yy

nl12 1] 13

y |84 3| 87
9 4 | 100

Table 8.2. Sufficient statistics for testing marginal independence of X and Y.

The hypothesis to be tested is Hp : X ILp Y under the distribution induced
by the sufficient statistics. Computing the test statistic G proceeds as

N
¢ - Z%NW o8 (EXS)

2<1210g< 12 >—|—1log< L >+84log( 84 >+
100 100 100
3
310g<87*4>>
100

0.2194.

Q
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Since G? ~ x?(1) under Hy we obtain a p-value of 0.64 (i.e., Py, (X >
G?) = 0.64). At a significance level & = 0.01 we cannot reject the hypothe-
sis Hp. Hence, X and Y are assumed to be independent.

The value of df is computed as the sum of (||X|| — 1)(]|[Y]] — 1) over all
configurations of Sxy correcting for marginal zero counts (i.e., Ny = 0 or
Ny = 0). The value of [[X|| ([Y]]) is decreased by one for each marginal count
equal to zero.

It is common to perform tests X 1L Y|Sxy for |Sxy| =0,1,2,3 as the tests
become unreliable (for finite data sets) when the size of Sxy exceeds three as
the number of counts Ny, become too small.

If we reject Ho when it is true we incur a Type I error. On the other
hand, if we do not reject Hp when it is false we incur a Type II error. In
the constraint-based approach to structure learning the relative frequency of
Type I and Type II errors can (to some extent) be controlled by varying the
significance level used in the statistical tests for conditional independence.
The lower the significance level the lower the probability of incurring a Type
I error.

8.2.4 Structure Constraints

Prior to the testing phase, background knowledge of domain experts in the
form of constraints on the structure of the DAG can be specified. It is possible
to specify the presence and absence of edges, the orientation of edges, and a
combination.

If the background knowledge is assumed to be consistent with the under-
lying DAG Gy of the generating distribution Py, then it is not necessary to
test the validity of the background knowledge. Hence, specifying background
knowledge may reduce the number of statistical tests. Unfortunately, this may,
in practice, produce unwanted behavior of the edge-orientation algorithm (as
described later). This implies that background knowledge should often be used
with caution.

8.2.5 PC Algorithm

The PC algorithm (Spirtes & Glymour 1991, Spirtes et al. 2000) (which is
similar to the IC algorithm (Verma & Pearl 1992, Pearl 2000)) is a constraint-
based algorithm for learning the structure of a Bayesian network. The main
steps of the PC algorithm are

(1) Test for (conditional) independence between each pair of variables repre-
sented in D to derive My, the set of CIDRs.

(2) Identify the skeleton of the graph induced by Mqp.

(3) Identify colliders.

(4) Identify derived directions.



236 8 Data-Driven Modeling

The PC algorithm produces a PDAG representing an equivalence class.
Each step of the PC algorithm is described in the following sections where
the task is to identify a graph G representing the independence model of the
underlying process generating the database of cases.

Step (1): Test for (Conditional) Independence

We try to determine the validity of the conditional independence state-
ment X Il Y[Sxy by a statistical hypothesis test as explained in Section 8.2.3.

The independence hypothesis is tested for conditioning sets Sxy of cardi-
nality 0,1, 2,3 in that order. If the hypothesis X 1L Y|Sxy cannot be rejected
based on some preselected significance level «, then the search for an inde-
pendence relation between X and Y is terminated.

Ezample 8.5. Assume D is a database of cases generated from the Burglary
or Earthquake network in Figure 5.5 on page 115. If the sample is sufficiently
large, the conditional independence tests will generate the set Mp = My U
My of CDIRs where

My = {BILE,BI RBI WIA A I R|EE I W|A R I W|A}(8.1)
My = {BULABUANELBULARLB U AW]LB UL AI{E,R},
B U A{E,W}LB L AR, W} B U A{E,R,WLA ILE,...,
ALW,. .. EULR,..J. (8.2)

We will continue this example in the following subsections describing the
steps of the PC algorithm.

Step (2): Identify the Skeleton

The skeleton of an acyclic, directed or partially directed graph §G is the undi-
rected graph G’ obtained from § by removing the direction on all directed
edges. The skeleton of the graph induced from My is constructed from the
conditional dependence and independence statements of Mp generated by the
statistical test in Step (1) of the PC algorithm.

For each pair of variables X and Y where no independence statements X 1L
Y|Sxy exist, the undirected edge (X,Y) is created in the skeleton.

Ezample 8.6 (Example 8.5 continued). From Mqp the skeleton of G is gener-
ated. The skeleton of G generated from My is shown in Figure 8.5.
Comparing the skeleton of Figure 8.5 with the skeleton of the graph of
Figure 5.5 on page 115 we see a perfect match.
In addition, it is obvious that the graph of Figure 8.5 is a more intuitive
and compact representation of the dependence and independence model than
that of Equation 8.1 and Equation 8.2.
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Fig. 8.5. Skeleton representing the CDIRs Mp of Equation 8.1 and Equation 8.2.

Step (3): Identify Colliders

Once the skeleton has been identified, colliders in the skeleton are identified.
Based on the skeleton, we search for subsets of variables {X,Y, Z} such that X
and Y are neighbors, Z and Y are neighbors while X and Z are not neighbors.
For each such subset a collider X — Y « Z is created when Y ¢ Sxz for
any Sxz satisfying X 1l Z|Sxz in Mop.

Ezample 8.7 (Example 8.6 continued). From the skeleton §s = (Vs,Es) (see
Figure 8.5) and My (see Equation 8.1 and Equation 8.2) a single collider B —
A « Eisidentified, see Figure 8.6. This collider is identified as (B, A), (E,A) €
Es, (B,E) € Es, and A & Sgg for any B 1L E|SgE.

Fig. 8.6. Colliders identified from Mqp and the skeleton of Figure 8.5.

Notice that the collider B — A < W is not identified as A € Sgw
for B 1L W|Sgw where Sgw = {A}. A similar argument holds for the po-
tential collider E — A « W.

Step (4): Identify Derived Directions

After identifying the skeleton and the colliders of G, derived directions are
identified. The direction of an edge is said to be derived when it is a logical
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consequence of (the lack of) previous actions (i.e., since the edge was not
directed in a previous step and it should have been in order to have a certain
direction, then the edge must be directed in the opposite direction).

0@ = 0O

Fig. 8.7. Rule R for identifying derived directions.

Starting with any PDAG including all valid colliders, a maximally directed
PDAG can be obtained following four necessary and sufficient rules (Verma &
Pearl 1992, Meek 1995). That is, by repeated application of these four rules all
edges common to the equivalence class of G are identified. The four rules R,
to R4 are illustrated in Figure 8.7 to Figure 8.10.

F-O0rD - OO

Fig. 8.8. Rule R, for identifying derived directions.

Rules R to R4 direct edges under the assumption that G is a valid DAG,
i.e., they ensure that no directed cycle is created in the graph and no additional
colliders are created.

NN

Fig. 8.9. Rule R;3 for identifying derived directions.

Rule R; as illustrated in Figure 8.7 follows from the fact that the col-
lider X — Y « Z was not identified as a valid collider. Since the edge be-
tween Y and Z is not part of the aforementioned collider, it must be directed
from Y to Z.

Rule R; as illustrated in Figure 8.8 follows from the fact that directing the
edge between X and Z from Z to X will induce a directed cycle in the graph.
Thus, the edge must be directed from X to Z.

Rule R3 as illustrated in Figure 8.9 follows from the fact that directing
the edge between X and Y from Y to X will inevitable produce an additional



8.2 Structure Learning From Data 239

Fig. 8.10. Rule R4 for identifying derived directions. (The dashed line between X
and V indicates that X and V are adjacent, i.e., connected by an edge.)

collider V. — X « Z or a directed cycle. Hence, the edge must be directed
from X to Y.

Rule R4 as illustrated in Figure 8.10 follows from the fact that directing
the edge between X and Y from Y to X will inevitable produce an additional
collider Y — X « Z or a directed cycle. Hence, the edge must be directed
from X to Y. The dashed lines used to illustrate the fourth rule indicate that X
and V are connected by an edge (either directed or not).

The fourth rule is not necessary if the orientation of the initial PDAG
is limited to containing colliders only. The initial PDAG may contain non-
colliders when expert knowledge on edge directions are included in the graph.

Ezample 8.8 (Example 8.7 continued). As neither the collider B — A « W
nor the collider E — A « W were identified as a collider of G, the edge
between A and W must be directed from A to W. This is an application of
rule R;.

@) ()
®)
®

Fig. 8.11. Derived directions identified from the skeleton and the colliders identified
in Example 8.7.

Figure 8.11 shows the equivalence class of Mp. The equivalence class con-
tains two DAGs differing only with respect to the orientation of the edge
between E and R.
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The four rules R; to R4 are necessary and sufficient for achieving maximal
orientation (up to equivalence) of the PDAG returned by the PC algorithm.

We use these four rules repeatedly until no edge can be given an orienta-
tion. Notice that the result of closing edge directions under rules R to R4 is
not necessarily a DAG. If the graph is not a DAG, then expert knowledge may
be appropriate in order to direct an edge. Once an edge has been directed by
use of expert knowledge derived directions should be identified. This process
may be repeated until a DAG structure is obtained. Experience shows that
most edges are directed using Rq, and that R3 is only rarely used.

Since the goal of structure learning is to induce a DAG structure over the
variables in the data, a decision has to be made on how to handle directed
cycles and additional colliders induced by rules R; to R4. In a practical im-
plementation of the algorithm as part of a tool, we suggest to give the user a
warning and to enforce the constraint that the induced graph must be acyclic
with the possible implication that edges may be reversed after the application
of a rule in order to enforce acyclicity.

Ezample 8.9 (Example 8.8 continued). There are two possible completions of
the PDAG shown in Figure 8.11 into a DAG. Either the edge between E and R
is directed from E to R or vice versa. The two DAGs induce the same set of
CDIRs.

®)
®
®

Fig. 8.12. The result of structure learning.

Since, based on data alone, we cannot determine the direction of the edge
between E and R the direction can either be selected at random or we can
exploit expert knowledge, if available. From our knowledge of the problem
domain and the underlying process, we may argue that if there is an edge
between E and R, then it should be directed from E to R. An earthquake may
cause a report on the radio reporting the earthquake. A report on the radio
definitely cannot cause an earthquake. Figure 8.12 shows the result.

Once the edge between E and R has been given a direction the resulting
graph is a DAG. This completes the structure learning process. The next step
in the learning process is to determine or estimate the parameters of the model
in order to obtain a fully specified Bayesian network.
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8.2.6 PC* Algorithm

To speed up the structure learning process various heuristic improvements of
the straightforward incremental testing scheme have been developed (Spirtes
et al. 2000).

One of the main improvements is to identify the conditioning set Sxy using
an undirected graph specifying pairs of variables that have been identified as
(conditional) independent given previous test results. Thus, an undirected
graph describing the current set of neighbors of each variable is maintained.

This neighbor graph may be updated each time an independence state-
ment is identified (or after the completion of the sequence of tests performed
for a fixed cardinality of the conditioning set), i.e., each independence test
not rejecting the hypothesis. Hence, the conditional independence of X and Y
is only tested conditional on subsets of the neighbors of X and Y in the undi-
rected graph. This can significantly reduce the number of independence tests
performed. With the improvement described above the algorithm is referred
to as the PC* algorithm (Spirtes et al. 2000).

Similarly, the order in which we try out the possible conditioning sets of
a fixed cardinality may be selected according to how likely they are to cause
independence for the edge under consideration. For instance, the heuristic rule
that the variables of the conditioning set should be strongly correlated with
both endpoints of the edge being tested may be used.

Due to the nature of the testing scheme, the conditioning set Sxy for an
identified independence relation X 1L Y|Sxy is minimal in the sense that
no proper subset of Sxy makes X and Y independent. This is an important
property that is exploited by the NPC algorithm.

8.2.7 NPC Algorithm

The NPC algorithm (Steck & Tresp 1999) is an extension of the PC algorithm.
The additional feature of the NPC algorithm over the PC algorithm is the
introduction of the notion of a necessary path condition (Steck & Tresp 1999)
for the absence of an edge.

Necessary Path Condition

Informally, the necessary path condition for the absence of an edge says that
in order for two variables X and Y to be independent (in a DAG faithful data
set) conditional on a minimal set Sxy, there must exist a path between X
and every Z € Sxy (not crossing Y) and between Y and every Z € Sxy
(not crossing X), see Figure 8.13. Otherwise, the inclusion of each Z in Sxy
is unexplained. Thus, in order for an independence relation to be valid, a
number of edges (or paths) are required to be present in the graph. This is
the necessary path condition.
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Fig. 8.13. The necessary path condition says that in order for X 1L Y[{Z1,...,Zn}
to be valid, there should for each Z;,1=1,... 1 exist a path between X and Z; not

crossing Y and vice versa.

The necessary path condition introduces the concept of an ambiguous edge.
An edge (X,Y) is ambiguous if the absence of (X,Y) depends on the presence
of an edge (X’,Y’), and vice versa. In that case, (X,Y) and (X’,Y’) are said to
be interdependent. An ambiguous edge indicates inconsistency in the set of
independence relations derived by the statistical tests. A maximal set of in-
terdependent ambiguous edges is denoted an ambiguous region. The necessary
path condition is probably better explained by the following example.

Example 8.10. Assume we are given the set of independence relations M}, over
the variables {Tub_or_cancer, Tuberculosis, Cancer, X_ray} from the Asia exam-
ple (Example 4.2 on page 68) where

My = {Xray 1l Tub_or_cancer|{Cancer, Tuberculosis},
X_ray 1L Tuberculosis| Tub_or_cancer,
X_ray 1 CancerITuborcancer}. (8.3)

The set M specifies the independence relations induced by the quantifi-
cation of the model (i.e., by the conditional probability distributions on the
variables of the model given their parents). The CDIR

X_ray 1l Tub_or_cancer|{Cancer, Tuberculosis}

follows from the fact that Tub_or_cancer is a deterministic function of the
variables Tuberculosis and Cancer. That is, whenever the states of Tuberculosis
and Cancer are given, the state of Tub_or_cancer is known and hence indepen-
dent of the state of X_ray. Assume further that the collider

Tuberculosis — Tub_or_cancer + Cancer

is known to be present, see e.g. Figure 8.16.
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The set M consists of three independence statements, which are incon-
sistent (in the rest of this section we use E as short for Tub_or_cancer, L as
short for Cancer, and T as short for Tuberculosis). The absence of the edge
between E and X depends on the presence of the edges (E,L), (E, T), (X,L),
and (X, T) according to the necessary path condition. Contrary to this, the ab-
sence of the edge between X and T depends on the presence of the edges (E, X)
and (E, T). Similarly, the absence of the edge between X and L depends on the
presence of the edges (E,X) and (E,L).

The interdependencies between edges induced by the set of conditional
independence statements M j; may be displayed as a directed graph Gy, =
(V,E) where each vertex v € V corresponds to an edge (X,Y) in § and each
directed edge (u,v) € E specifies that the absence of v in § depends on the
presence of u in G. The graph Gy, is referred to as the condition graph.

Ezxample 8.11. Figure 8.14 shows the condition graph over M j, in Equation 8.3.
Notice that vertices (L, X) and (E, X) as well as (T, X) and (E, X) are connected

by two directed edges.
Fig. 8.14. The condition graph over M j; .

The condition graph shows how the absence of each edge depends on the
presence of other edges.

When a vertex v in Gy , does not have a parent, it implies that the absence
of the edge represented by v does not depend on the presence of any other
edges. Hence, the independence statement related to the absence of the edge
represented by v satisfies the necessary path condition.

The set of ambiguous regions can be identified as the strongly connected
components of Gy, where a strongly connected component is a maximal sub-
graph in which every vertex is connected to every other vertex by a directed
path.

Ezxample 8.12. Figure 8.15 shows the strongly connected component of the
condition graph of Figure 8.14. The strongly connected component consists of
vertices (L, X), (E,X), and (T, X). This set of vertices represents an ambiguous
region over the corresponding edges.



244 8 Data-Driven Modeling

Fig. 8.15. The strongly connected component of the condition graph in Figure 8.14.

Fig. 8.16. Ambiguous edges in the skeleton due to the deterministic relation be-
tween Cancer, Tuberculosis, and Tub_or_cancer.

The graph of Figure 8.16 illustrates an alternative graphical representa-
tion of the ambiguous region consisting of three edges. The graph does not,
however, illustrate how the absence of an edge depends on the presence of
another set of edges.

@ (1)
®
® ®

Fig. 8.17. The two possible resolutions of the ambiguous region.

The two possible resolutions of the ambiguous region are shown in Fig-
ure 8.17. The ambiguous region may be resolved by including either edge (E, X)
or edges (L, X) and (T, X) in the graph. The minimal resolution is (E, X).

An ambiguous region is resolved by including a minimal number of ambigu-
ous edges in order to satisfy a maximal number of independence relations. In
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a graphical representation ambiguous regions should, for instance, have differ-
ent color as they consist of independent sets of ambiguous edges. A resolution
of an ambiguous region is a minimal set of edges which will remove all am-
biguous edges. A resolution is to include some of the ambiguous edges in the
graph in order to be able to make as many independence relations as possible
fulfill the necessary path condition.

Example 8.13. Figure 8.18 shows the skeleton of the graph identified by the
PC algorithm based on a (sufficiently large) sample D generated from the
Asia network (Figure 4.2 on page 69).

Fig. 8.18. Skeleton representing the CDIRs Mqp generated from D by the PC
algorithm.

Comparing the skeleton of Figure 8.18 with the skeleton of the acyclic,
directed graph of Figure 4.2 we notice that three edges seem to be missing
in Figure 8.18. These are the edges (Asia, Tuberculosis), (X_ray, Tub_or_cancer),
and (Dyspnoea, Tub_or_cancer). The edge (Asia, Tuberculosis) is too weak not
to be rejected by the hypothesis test whereas the edges (X_ray, Tub_or_cancer)
and (Dyspnoea, Tub_or_cancer) are absent due to the (deterministic) relation
between Tub_or_cancer, Tuberculosis, and Cancer as explained in Example 8.10.

Figure 8.19 shows the skeleton of the graph identified by the NPC algo-
rithm based on the same data set D. The edge (Asia, Tuberculosis) is missing
for the reasons explained above whereas the (deterministic) relation between
Tuber_or_cancer, Tuberculosis, and Cancer has induced two ambiguous regions.

The ambiguous regions can be resolved by selecting the minimal resolution
in each region.

In the above presentation we have assumed that at most a single con-
ditional independence statement is generated for each pair of variables. If
multiple conditional independence statements are generated it is necessary to
introduce a more complicated graphical notion where it is possible to rep-
resent the fact that an edge may depend on different subsets of edges (one
subset of edges corresponding to each independence statement).
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Tuberculosis
Tub_or_cancer

Fig. 8.19. Skeleton representing the CDIRs Mp generated from D by the NPC
algorithm after selecting minimal resolutions.

In order to increase reliability and stability of the NPC algorithm multiple
independence statements may be generated for each pair of variables. This
can, for instance, be achieved by completing the iteration step for a fixed
cardinality of the conditioning set even if an independence statement is found.

If one of the independence relations satisfies the necessary path condition,
then the independence hypothesis is not rejected. Otherwise, an ambiguous
edge is created.

The PC and NPC structure learning algorithms can be considered as ex-
tensions of the WL (Wermuth & Lauritzen 1983) and SGS (Spirtes et al. 2000)
algorithms.

8.3 Batch Parameter Learning From Data

Parameter estimation in a Bayesian network N = (X,G,P) is the task of
estimating the values of parameters © corresponding to DAG structure § and
distributions P from a database of cases D ={c',...,cN}

Let N = (X,G,P) be a Bayesian network with parameters @ = {O;}
where ®i = {®ij} and ®ij = {Gﬁk} such that Bijk = P(Xl = k|pa(Xi) = ])
for each 1i,j, k. Batch parameter learning from data is to estimate the value
of 855k from D.

When each case ¢t € D is complete maximum likelihood parameter es-
timation is simple (a case c' is complete when c' assigns a value to each
variable X; € X). The basic idea of parameter learning is illustrated in the
following example.

Ezxample 8.14. Table 8.2 on page 234 shows the sufficient statistics for testing
marginal independence of X and Y in Example 8.4. From this example we may
determine a maximum likelihood estimate P(X = y|Y =y) of the conditional
probability of X =y given Y =y as follows
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P(X=y,Y=1y)
P(Y =y)
n(X=y,Y=y)
N
n(Y=y)
N
nX=y,Y=y)

n(Y =vy)

PX=yly=y) =

From Table 8.2 we have n(X =y) =87 and n(X =y,Y =y) = 3. Estimating
the conditional probability parameter Oy_,|x—y = P(Y=y|X=v) proceeds
as
n(Y=yX=y) 3
— 7 = — =.034.

nX=vy) 87

The remaining parameters of P(Y|X) are estimated in a similar way.

P(Y=yIX=y)=

8.3.1 Expectation-Maximization Algorithm

Parameter estimation in the case of missing values may be performed using the
Expectation-Maximization (EM) algorithm (Lauritzen 1995). The EM algo-
rithm is well-suited for calculating maximum likelihood (ML) and maximum
a posterior (MAP) estimates in the case of missing data. The EM algorithm
proceeds by iterating two steps: the expectation E-step and the maximization
M-step.

Let N = (X, G,P) be a Bayesian network for which we would like to esti-
mate the parameters © of P from a database of cases D. The estimation of the
parameters © from D proceeds, as mentioned above, by iterating the E-step
and the M-step. Given an initial assignment to the parameters @, the E-step
is to compute the expected sufficient statistics under @, while the subsequent
M-step is to maximize the log-likelihood of the parameters under the expected
sufficient statistics. These two steps are alternated iteratively until a stopping
criterion is satisfied.

In the case of missing data, the log-likelihood function of the parameters
is a linear function in the sufficient marginals (Lauritzen 1995). The log-
likelihood function 1(®) of the parameters © given the data D ={c',...,cN}
and DAG G is

N
(@) = ) logP(c'|O)
1=1

N VI

= ) ) logP(Xi =x{[palXi) =x,(x,),O1,¢")
1=11i=1
VI

= Zl(@i)»
i
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where 1(© Zl 1 log P(Xi = x}pa(X;) = La(xi),(@i,cl) assuming the pa-

rameters @ to be independent and (x xL

(Xi)) are the values of (Xi, pa(Xi))
in the lth (possibly incomplete) case of D

For Bayesian networks, the E-step of the EM algorithm is to compute
expected counts (expected sufficient statistics for a complete database), where
expectation is taken with respect to the joint distribution over V under the

current parameter values @ and observed data D
N
Niji) = ) P(Xi =k, pa(Xi) =jlc', 05, G),
1=1

where Nyjx is the count for (Xi,pa(Xi)) = (k,j) and c! is the lth case of D.
Next, the M-step computes new estimates 67, of Biji interpreting the ex-
pected sufficient statistics as actual sufficient statistics from a complete data-
base of cases

“ E@(Nijk)

ik = ZHX ill Uk) ’
The E-step and M-step are iterated until convergence of 1(®) (or until a
limit on the number of iterations is reached).
We say convergence is achieved when the difference between the log-
likelihoods of two consecutive iterations is less than or equal to the numerical
value of a log-likelihood threshold & times the log-likelihood, i.e.,

L(O) = 1i41(0) < 3[li41(O)]

where 1;(0) is the log-likelihood of © after the ith iteration and li,1(©) is
the log-likelihood of © after the (i 4 1)st iteration.

Alternatively, an upper limit on the number of iterations can be specified
in order to ensure that the procedure terminates.

Ezample 8.15 (Toss of a Coin). Consider the task of predicting the toss of a
coin. Having no additional knowledge of the coin we would assume it to be
fair. Hence, we assume heads and tails to be equally likely as the result of
tossing the coin. Let X be a discrete random variable with two states heads
and tails representing the outcome of a toss of the coin.

If we have observed the result of ten tosses of the coin we can use this
data to predict the result of a subsequent toss of the coin. Assume we make
the following sequence of observations on previous tosses of the coin

tails, tails, heads, tails, heads, tails, N /A, tails, tails, heads,

where N /A indicates a missing observation in the seventh throw, i.e., we know
the coin was tossed, but for some (random) reason we do not have access to the
result. From this sequence of observations we want to estimate the distribution
of X.



8.3 Batch Parameter Learning From Data 249

Since we have no extra knowledge about the coin we assume a uniform prior
distribution on X. Hence, the initial parameter assignment is set to P(X) =
(0.5, 0.5), i.e.7 0= {etans = 0.5, eheads = 0.5}.

The estimated distribution after running the EM algorithm with the data
and parameter setting described above is P(X) = (0.74992,0.25008) with an
experience count & = 10. This distribution is the result of five iterations of
the EM algorithm with & = 0.0001 and

L(®) = -—554518
L(O®) = -—4548

5(@) = —4.50078
L(O®) = —4.49877
15(0) —4.49868.

The parameter estimation is completed after five iterations of the EM algo-
rithm as described above.

Taking the observations on the coin into account, we predict tails to be
approximately three times as likely as heads.

In the EM algorithm the log-likelihood function (@) of the model given
data is used as a quality measure to compare different parameterizations of the
same network structure. When the increase in quality of the parameterization
between subsequent iteration steps is below a threshold, the EM algorithm
terminates. The log-likelihood function is well suited for this purpose. How-
ever, the log-likelihood quality measure does not take network complexity
into account. Thus, the log-likelihood measure is not well suited for model
selection due to overfitting from using a too-complex network structure. The
log-likelihood measure will take its maximum value for a complete graph.

Instead of using log-likelihood for model selection, Akaike’s Information
Criterion (AIC) or the Jeffreys—Schwarz criterion, also called the Bayesian In-
formation Criterion (BIC), may be used. The AIC score is computed as 1(©)—«
and the BIC score is computed as (@) — 1klog N where « is the number of
free parameters in the network and N is the number of cases in the database.
The number of free parameters k is defined as

c=> (XxI-1 TT v

XeVv Yepa(X)

8.3.2 Penalized EM Algorithm

When both data and domain expert knowledge are available, both of these
two sources of knowledge should be taken into consideration by the parameter
estimation algorithm. This can be achieved using the penalized EM algorithm.

Domain expert knowledge on the parameters of a conditional probability
distribution is specified in the form of a Dirichlet probability distribution and
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an experience table. For each variable Xj, the distribution P(Xi|pa(Xi)) =
{P(X;y = kl|pa(Xi) = j)} and the experience counts «ii,...,*%im where
m = ||pa(Xi)|| associated with X; are used to specify the prior expert knowl-
edge. The size of the experience count o indicates the weight of the domain
expert knowledge. The experience table over a variable X; and its parent vari-
ables pa(X;) indicates the experience related to the child distribution for each
possible configuration of pa(Xj).

In the case of expert knowledge, the E-step does not change whereas the
M-step becomes
_—_— aijk + Eo(Nijx)

eijk - [1X11] ’
reg (i + Ee(Nijk))

where o5 = P(Xi = k|pa(Xi) = j)ayy is the initial count for (Xi,pa(X;)) =
(k,3). Thus, the M-step is changed to take the expert knowledge into account.

Ezample 8.16. Consider again the problem of predicting the result of a coin
toss. Assume we have reason to believe that the coin is not fair. Instead of
assuming a uniform prior distribution on the parameters, we will assume a
non-uniform prior on X, e.g. we assume the parameter assignment is P(X) =
(0.75,0.25) with an experience count of o = 5. This will serve as the initial
parameter assignment.

The estimated distribution is P(X) = (0.75,0.25) with an experience
count & = 15. This distribution is the result of only two iterations of the
EM algorithm with 6 = 0.0001 and

L(®) = —4.49868
1L(©®) = —4.49868.

The parameter estimation is completed after only two iterations of the EM
algorithm as described above.

Taking the observations on the coin and the additional knowledge of the
coin into account, we predict tails to be three times as likely as heads.

The penalized EM algorithm is useful for combining expert domain knowl-
edge and data in parameter estimation. It is, however, important to be care-
ful when using the penalized EM algorithm as illustrated by the following
example.

Example 8.17. Assume we need to estimate the conditional probability distri-
butions of a network with two dependent variables X and Y. To model the
dependency between variables X and Y we have either the network in Fig-
ure 8.20(a) or the network in Figure 8.20(b).

From the point of view of modeling the joint probability distribution over
variables X and Y, the choice of network does not matter as the two models
are equivalent. Assume the complete database of cases to be used in the para-
meter estimation has sufficient statistics as shown in Table 8.3. The database
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(a) (b)
Fig. 8.20. Two equivalent DAGs over X and Y.

X
Y X0 X1
Yo 0 2 2
Y1 4 2 6
Y2 6 3 9
10 7 17

Table 8.3. Sufficient statistics for estimating the distributions of X and Y.

consists of 17 complete cases, i.e., no missing values. Notice that the configu-
ration (xp,Yo) does not appear in the database.

The probability of the configuration (xg,yo) will be zero in both networks
if the EM algorithm is used for the estimation. The penalized EM algorithm
may be used to avoid zero probabilities in the joint probability distribution.
The trick is to assign a positive probability distribution to the initial parame-
ter values and a non-zero value to the experience counts. The values of the
experience counts should be chosen with care though.

Assume we decide to assign a uniform probability distribution to the
parameters, e.g., P(X) = (1/2,1/2), P(Y|X = xo) = (1/3,1/3,1/3), and
P(YIX = x1) = (1/3,1/3,1/3) for the network in Figure 8.20(a). To avoid
a zero probability for the configuration (xg,yo) we assign experience counts
as ax = 1, ayo = 1 and ay; = 1. The resulting joint probability distribution
over X and Y is shown in the second column of Table 8.4.

X Yy

X0 Yo | 0.0177 | 0.0216 | 0.0093
xo Y1 | 0.2298 | 0.2262 | 0.2315
xo Yz | 0.3359 | 0.3370 | 0.3426
X1 Yo | 0.1215 | 0.1080 | 0.1204
x1  yr | 0.1215 | 0.1257 | 0.1204

x1 Yz | 0.1736 | 0.1815 | 0.1759

Table 8.4. Joint probability distributions over X and Y.
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If we use the same approach on the network in Figure 8.20(b), then the
resulting joint probability distribution over X and Y is shown in the third
column of Table 8.4.

It is clear from Table 8.4 that the approach taken does not produce the
same results for two equivalent models given complete data and a uniform
prior. The problem is the value assigned to the experience counts.

Instead of assigning the value 1 to all experience counts, we assign the
value 1/||pa(X)|| to each parent configuration of X and value 1/||pa(Y)|| to
each parent configuration of Y. This approach will ensure that the two equiv-
alent networks in Figure 8.20 represent the same joint probability distribution
over X and Y after EM learning. With this approach, the result is the same
for both models and it is shown in the last column of Table 8.4.

8.4 Sequential Parameter Learning

Sequential parameter learning or parameter adaptation is the task of sequen-
tially updating the parameters of the conditional probability distributions of a
Bayesian network when the structure and an initial specification of the condi-
tional probability distributions are given in advance. We consider a Bayesian
approach to sequential parameter (Spiegelhalter & Lauritzen 1990, Cowell
et al. 1999).

In sequential learning, experience is extended to include both quantitative
expert knowledge and past cases (e.g. from EM learning). Thus, the result of
EM learning may be considered as input for sequential learning.

Let X; be a variable with n states, then the prior belief in the parameter
vector @y = (04j1,...,04ijn), i.e., the conditional probability distribution of
a variable Xj given its parents pa(X;) = j, is specified as an n-dimensional
Dirichlet distribution D(etij1, .. ., &tijn ). This distribution is represented using
a single experience count oy; = 1/|lpa(Xi)ll (equivalent sample size) and the
initial distribution P(X;i|pa(Xi) =3j). The experience count oyjx for a partic-
ular state k of X given pa(Xi) =j is ay5x = a43P(Xy = k|pa(Xi) = j). This
setting is similar to the setting of the EM algorithm.

Parameter adaptation proceeds by updating the experience associated with
the parameters and subsequently updating the parameters to reflect the new
experience. The process of updating the experience associated with a distrib-
ution is referred to as retrieval of experience. Dissemination of experience is
the process of calculating prior conditional probability distributions for the
variables in the Bayesian network given the experience, and it proceeds by set-
ting each parameter equal to the mean of the corresponding updated Dirichlet
distribution, i.e., 8;;,, as shown below. See Figure 8.21 for a graphical repre-
sentation of dissemination and retrieval of experience.

After a complete observation (Xi,pa(Xi)) = (k,j), the posterior belief in
the distribution is updated as ocfj; = auji + 1 and ofj; = oy for U# k. After
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Fig. 8.21. Retrieval and dissemination of experience.

an incomplete observation, the resulting weighted sum of Dirichlet distribu-
tions over the parameters is approximated with a single Dirichlet distribution
with the same means and sum of variances as the mixture. The approximation
is used in order to avoid the combinatorial explosion, which would otherwise
occur when subsequent incomplete observations are made. For each 1,j, k, the
updated value 05;;, of each parameter 0ji is

o sk PX =kpa(Xi) = | ) 4+ 0 (1 — P(pa(Xi) =jle))
Yk i +1 )

The updated equivalent sample size «f; is a function of the means and the
sum of variances, see e.g. Cowell et al. (1999) for details on computing the
updated «fj. Notice that P(X; = k,pa(Xi) =j | ¢) and P(pa(Xi) = jle) are
readily available after a propagation of evidence.

In order to reduce the influence of past and possibly outdated information,
an optional feature of fading is provided. Fading proceeds by reducing the ex-
perience count before the retrieval of experience takes place. The experience
count oy; is faded by a factor of 0 < Ay; < 1 typically close to one according
to pi; = P(pa(Xi) = j) such that o = a;((1 — pij) + Aijpij). Notice that
experience counts corresponding to parent configurations, which are inconsis-
tent with the evidence, are unchanged. The fading factors of a variable X; are
specified in a separate table including one fading factor for each configuration
of pa(Xj).

Ezample 8.18. Consider again the Asia example (Example 4.2 on page 68).
Assume we have evidence ¢ = {S = no, A = yes,D = yes} on a patient, i.e.,
a non-smoking patient with dyspnoea who has recently been to Asia. The
evidence is entered and propagated followed by an adaptation of parameters.
Table 8.5 shows the experience counts for L, B, and S before (i.e., after EM
learning using 10,000 randomly generated cases) and after the adaptation
with fading factor of A = 0.999 for each distribution.

Note that since S is an observed variable without parents, the experience
count og for P(S) will converge to % = 1001 if S = no is observed multiple
times.
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‘ xs XL |S=no XL |S=yes XB|S=no XB|S=yes

Before | 10,000 4970.88 5029.12  4970.88  5029.12
After 9,001 4472.71  5029.12  4473.73  5029.12

Table 8.5. Experience counts for B, L, and S before and after adaptation.

Sequential updating may be applied to the parameters of conditional prob-
ability distributions in mixed Bayesian networks and in influence diagrams
when all decisions have been instantiated.

8.5 Summary

In this chapter we have considered data-driven modeling as the process of
inducing a Bayesian network from data and domain expert knowledge. We
have considered this as a two-step learning process where the first step is to
induce the structure of the graph of the Bayesian network whereas the second
step is to estimate the parameters of the conditional probability distributions
induced by the graphical structure of the Bayesian network.

We have considered the constraint-based approach to learning the struc-
ture of a Bayesian network from data. In particular we have described in some
detail the steps of the PC algorithm. The PC algorithm is based on perform-
ing a sequence of statistical hypothesis tests for (conditional) independence.
Based on the set of CDIRs derived by the test, the skeleton, the colliders, and
derived directions of the graph are identified.

Since the result of the PC algorithm (i.e., the PDAG) is rather sensitive to
errors in the CDIRs the notion of a necessary path condition for the absence
of an edge in the skeleton of the induced graph is introduced. The necessary
path condition produces the NPC algorithm, which has also been described
in some detail.

The graph resulting from structure learning defines the set of conditional
probability distributions of the Bayesian network. The parameters of this set
of distributions may be set manually, but more often the parameters of the
distributions will be estimated from the same database of cases as used by
the structure learning algorithm. We have described the EM algorithm and
the penalized EM algorithm for estimating the parameters of a conditional
probability distribution from data.

Finally, we have described a Bayesian approach for adaptation of parame-
ters as the model is used.

In the next part of the book we consider different methods for analyzing
probabilistic networks. This includes methods for conflict analysis, sensitivity
analysis, and value of information analysis.
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Exercises

Exercise 8.1. Let the following set of conditional pairwise independence
statements be the result of performing statistical independence tests M on
a set of variables:

My = {A 1L CH}L,C AL SI{},F L SI{AL T 1L S{A}, T 1L FI{C}}.
For each independence statement X Il Y|Sxy, the conditioning set Sxy is
minimal.

(a) Identify the skeleton of the graph of the network.

(b) Identify colliders.

(c) Identify derived directions.

(d) Identify remaining undirected edges according to your interpretation of
the problem domain.

Exercise 8.2. Generate 10,000 sample cases from the Asia network shown in
Figure 8.22 (see Example 4.2 on page 68 for more details).

Tuberculosis

Fig. 8.22. A graph specifying the independence and dependence relations of the
Asia example.

The Asia network consists of the three hypothesis variables Bronchitis,
Cancer, and Tuberculosis. The risk factors are Smoking and a recent visit to Asia
while the symptoms of the network are X_ray and Dyspnoea. The risk factors
and symptoms are the possible observations a physician can make on a patient.

(a) Use a software package for learning the equivalence class of DAGs repre-
senting the data generated. Specify expert knowledge on the structure of
the DAG as constraints.

(b) Resolve ambiguous regions.

(c¢) Complete orientation of the DAG.
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(d) Specify expert knowledge on the distributions of the model and estimate
the parameters from the data generated.

Exercise 8.3. Consider the network in Figure 8.23. Assume the network is
the result of learning from a complete database with 1000 cases and let (@) =
—964.

D
"4

SoreThroat
Fig. 8.23. The Angina network.

(a) Compute the AIC score.
(b) Compute the BIC score.
(c¢) Compare the AIC and BIC scores. Explain the difference.

Exercise 8.4. Assume we plan to pick up mushrooms to prepare for a nice
dinner. In the process we want to classify each mushroom as either edible
or poisonous. We want to construct a network for classifying each mushroom
based on a database of mushrooms. Assume Table 8.6 to Table 8.9 specify the
sufficient statistics of a database we found on the Internet.

Class ‘ n

edible 5333
poisonous | 4667

Table 8.6. Sufficient statistics for the class variable.

(a) Construct a model for classifying mushrooms based on the data in Ta-
ble 8.6 to Table 8.9.
(b) What is the probability of a mushroom with no odor being edible?



Class
Population | edible poisonous
abundant 587 0
clustered 389 75
numerous 480 0
scattered 1173 420
several 1440 3384
solitary 1264 788

Table 8.7. Sufficient statistics for the class variable and Population.

Class

Cap_Shape | edible poisonous
bell 478 56
conical 0 5
convex 2453 2034
flat 2098 1853
knobbed 267 719
sunken 37 0

Table 8.8. Sufficient statistics for the class variable and Cap_Shape.

Class

Odor edible  poisonous
almond 475 0
anise 475 0
creosote 0 229
fishy 0 685
foul 0 2567
musty 0 57
none 4383 141
pungent 0 303
spicy 0 685

Exercises

Table 8.9. Sufficient statistics for the class variable and Odor.
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Model Analysis
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Conflict Analysis

It is difficult or even impossible to construct models covering all aspects of
(complex) problem domains of interest. A model is therefore most often an
approximation of a problem domain that is designed to be applied according
to the assumptions as determined by the background condition or context of
the model. If a model is used under circumstances not consistent with the
background condition, the results will in general be unreliable. The evidence
need not be inconsistent with the model in order for the results to be un-
reliable. It may be that evidence is simply in conflict with the model. This
implies that the model in relation to the evidence may be weak and therefore
the results may be unreliable.

Evidence driven conflict analysis is used to detect possible conflicts in
the evidence or between the evidence and the model. If a possible conflict is
detected we should alert the user that the model given the evidence may be
weak or even misleading. In this way conflict analysis can also be used for
model revision.

Hypothesis driven conflict analysis is used to identify findings acting in
favor of or against a hypothesis. If the evidence set consists of a large number
of findings, it may be crucial to identify which individual findings act in favor
of or against a hypothesis.

In this chapter we use the Asia example to illustrate the concepts of evi-
dence and hypothesis driven conflict analysis in Bayesian networks.

Ezample 9.1 (Asia). As an example we apply conflict analysis to the Asia
example shown in Figure 9.1 (see Example 4.2 on page 68 for more details).

Assume we see a smoking patient with no shortness of breath and a
negative X-ray result, i.e., the initial set of evidence is ¢ = {Dyspnoea =
no,Smoker = yes, X_ray = no}. In the remainder of this section we write
e ={ep, €s, ex/} for short.

From our knowledge about the problem domain and the assumptions of
the model, we would say that the findings are in conflict. The patient visited
the chest clinic, but she does not have any of the symptoms even though
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Tuberculosis
Tub_or_cancer

Fig. 9.1. A graph specifying the independence and dependence relations of the Asia
example.

she is a smoker. A propagation of the evidence produces posterior probability
distributions over the diseases P(B = yes|e) = 0.25, P(L = yes|e) = 0.089,
and P(T = yes|e) = 0.009. This does not disclose a possible conflict, but only
indicates that the most likely disease the patient is suffering from is bronchitis.
Using the model only, we cannot distinguish between flawed evidence, a case
not covered by the model, or a rare case.

In Section 9.1 we describe evidence driven conflict analysis. A conflict
measure designed to be efficient to compute and to give indications of possi-
ble conflicts in evidence is introduced. Possible conflicts should be detected
and traced or explained as rare cases that the model may not cover well. In
Section 9.2 we describe hypothesis driven conflict analysis. A cost-of-omission
measure is introduced. This measure is useful for relating the impact of find-
ings on a hypothesis variable. In addition, we describe how to investigate the
impact of a finding on the probability of a hypothesis.

9.1 Evidence Driven Conflict Analysis

The objective in evidence driven conflict analysis is to detect possible conflicts
in a set of evidence. As a tool for detecting possible conflicts, we want a conflict
measure which is easy to calculate and which gives a reliable indication of a
possible conflict.

9.1.1 Conflict Measure

In order to detect a possible conflict we need to compare the results obtained
from our best model with the results obtained from an alternative model.
This model is referred to as a straw model. A straw model is a simple and
computationally efficient model used as an alternative model in the detection
of possible conflicts.
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In the design of the conflict measure we make the assumption that for
the normally (according to the model) behaving evidence it is the case
that P(eile;) > P(ey) where ¢; and €. Based on this assumption and
since P(ei, €5) = P(eilej)P(ej), the conflict measure is designed to indicate
a possible conflict when the joint probability of the evidence is less than the
product of the probabilities of the individual pieces of evidence given the
model. We thus assume that there is a possible conflict between two pieces of
evidence ¢; and ¢, if

P(ei)P(g;)
P(ei, &)

P(ei)P(e;)

> 1 I
=g P(ei, &)

>0,

i.e., €1 and ¢; are negatively correlated. Thus, we define the conflict measure

as
P(ei)P(g;)

ple) '

where € = {ey, ¢;}. Notice that we are comparing the joint probability of the
evidence with a model where the observed variables are independent (the
straw model).

The main assumption is that pieces of evidence are positively correlated
such that P(e) > [T, P(ei). With this assumption the general conflict mea-
sure is defined as

conf(e) = log

H?:1 P(Ei)'

f(e) = conf ey eny) =1
conf(e) = conf({er, ..., en}) = log ()

This implies that a positive value of the conflict measure conf(e) indicates
a possible conflict. Notice that the conflict measure is easy to calculate once
the evidence ¢ has been propagated in a junction tree representation of the
model. The marginal probabilities P(e;) are available once the junction tree
has been initialized and the probability of the evidence P(¢) is available as a
by-product of message passing, see Section 5.1 for details on propagation of
evidence.

Another way to look at the definition of the conflict measure is the follow-
ing. In the general case, two pieces of evidence ¢; and ¢; are either

e positively correlated, i.e., P(ei|e5) > P(eq),
e negatively correlated, i.e., P(eilej) < P(ey), or
e independent, i.e., P(ei|e;) = P(ei).

Given these three options, we choose to assume that two pieces of evidence €;
and ¢; are positively correlated.

Ezample 9.2. Returning to Example 9.1, the evidence is ¢ = {¢p, €5, ex}. We
compute the conflict measure to be
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conf(¢) = conf({D =no,S = yes, X = no})
b P(D = no)P(S = yes)P(X = no)
B P(c)
0.56 % 0.5 % 0.89
= 1 —_— Y = .22
o8 0.2 0
> 0.

Thus, conf(e) indicates a possible conflict in e.

9.1.2 Tracing Conflicts

Once a possible conflict has been detected, the origin of the conflict should
be determined such that it can be presented to the analyst or user. Tracing
the source of a conflict amounts to computing the conflict measure conf(¢’)
for (all) subsets ¢’ C e.

Tracing the conflict to all subsets of the evidence is a computationally com-
plex problem as the number of subsets increases exponentially with the size of
the evidence set. It is not always possible or meaningful to assume monotonic-
ity with respect to conflict in subsets, i.e., no subset ¢” C ¢’ with conf(e”) > 0
exists for ¢’ with conf(e’) < 0. That is, the monotonicity assumption states
that if ¢’ is not in conflict, then no subset of ¢’ is in conflict.

Ezample 9.8. In Example 9.2 a possible conflict was identified, but not traced,
i.e., located. That is, after the conflict measure has been found to indicate a
possible conflict, the source of the conflict should be traced. This is achieved
by computing the conflict measure for different subsets ¢’ of ¢.

With three pieces of evidence there are three pairs of evidence to consider.
The pair eps = {ep, €s} has conflict measure

P(D = no)P(S = yes)

conf(ep,es) = log P(D =no, S = yes)
0.56 % 0.5
— log o = 0.24,

the pair epx = {ep, ex} has conflict measure
P(D = no)P(X = no)
P(D = no,X = no)
0.56 x 0.89
0.52

and the pair eps = {¢s, ex} has conflict measure

conf(ep,ex) = log

= log = —0.04,

P(S = yes)P(X = no)
P(S = yes, X = no)
0.5%0.89

conf(es,ex) = log
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The (partial) conflicts show that there is a conflict in the pair eps = {ep, es}
while there are no conflicts in the pairs epx = {ep, eéx} and esx = {es, ex}.
Hence, the source of the global conflict in conf(e) can be traced to the partial
conflict between ep and es. The finding that the patient is a smoker is in
conflict with the finding that the patient is not suffering from dyspnoea (under
the assumptions of the model).

Let ¢; and ¢; be a partitioning of the evidence ¢ into two disjoint subsets
such that € = €; U g5 is the evidence under consideration. The global conflict
conf(e) can be computed from local conf({es, €;}) and partial conflicts conf(e;)
and conf/(e;)

conf(e) = conf({ei, &5}) + conf(ei) + conf(e;).
This property holds in general and it may be used as a tool for tracing conflicts.

Ezample 9.4. In the example, we have three subsets with partial conflicts com-
puted in Example 9.3 conf(ep,es) = 0.24, epx = {ep,ex} = —0.04, and
eps = {€s, ex} = —0.06. The local conflict between {ep, €5} and ex is

P(D =no,S = yes)P(X = no)
P(e)
0.22%0.89

= log = = —0.02,

conf({ep,es},ex) = log

The global conflict can be computed from local and partial conflicts as

conf({ep, es,ex}) = conf({ep, es}) + conf({{ep, es}, ex})
= 0.244(-0.02) =0.22

We notice that the finding ex reduces the global conflict slightly.

9.1.3 Conflict Resolution

Typical evidence from a rare case may indicate a possible conflict (a rare case
is identified as a finding or set of evidence with low (prior) probability). Let
e ={e1,...,en} be findings for which the conflict measure indicates a possible
conflict, i.e., conf(e) > 0. Also, let h be a hypothesis which could explain the
findings (i.e., conf(e U{h}) < 0). That is, if we also know the hypothesis h to
be true, then we will not expect a conflict. We compute

P(h)

conf(e U{h}) = conf(e) + log Phle)”

If conf(e) < log ",&*(‘}'j)

the normalized likelihood.

P(hle
P(h)

, then h can explain away the conflict where L s
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Hypothesis P(h) P(hle) log PF(,}(LAT]
Asia = no 0.99 0.99 0
Asia = yes 0.01 0.01 0
Bronchitis = no 0.55 0.75 0.31
Bronchitis = yes 0.45 0.25 —0.59
Cancer = no 0.545 0.1 1.7
Cancer = yes 0.455 0.9 0.68
Tuberculosis = no 0.99 0.999 0.01
Tuberculosis = yes 0.01 0.001 —-2.3
Tub_or_cancer =no | 0.995 0.9999 0.005
Tub_or_cancer =yes | 0.005 0.0001 —3.9

Table 9.1. The log-normalized likelihood of each possible instantiation of each
variable in Example 9.1.

Ezample 9.5. Table 9.1 shows the log-normalized likelihood of each possible
instantiation of each variable in Example 9.1. From this table it is clear that
there are five possible explanations of the conflict (some of which have a low
log-normalized likelihood).

For instance, the posterior probability of the patient not having bronchitis
is P(B = nole) = 0.75 while the prior probability is P(B = no) = 0.55. We
compute the logarithm of the normalized likelihood
P(hle) 0.75

log ~=> = 0.31.

1 =
RN TEN) 0.55

From this we compute the conflict measure under the hypothesis of the patient
not having bronchitis

conf(e U{h}) = conf(e) +log P}El(l}\i)
— 0.22-031<0.

Thus, the conflict may be explained away as the rare case where the patient
is not suffering from bronchitis given the symptoms and risk factors (similarly
for Cancer). In general, if the normalized likelihood is greater than the conflict,
then we may have a rare case.

The above method for detecting conflicts may fail. This will happen if
the assumption of positively correlated pieces of evidence does not hold. The
above approach can be combined with other methods such as those reported
in Kim & Valtorta (1995) and Laskey (1991). These methods are based on
using a more complex straw model for the comparison (i.e., evidence variables
are not assumed independent) and a different measure to detect conflicts. The
advantage of the above approach is that is computationally efficient.

The above method for detecting conflicts was introduced by Andersen et al.
(1989) and the method is described in Jensen (1996) and Jensen (2001).
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9.2 Hypothesis Driven Conflict Analysis

In hypothesis driven conflict analysis the impact of a finding on the probability
of a hypothesis is investigated. In order to be able to relate the impacts of
different findings on the probability of the hypothesis given evidence a measure
is needed. This will allow us to identify pieces of evidence that conflict with
the impact of the entire set of evidence.

9.2.1 Cost-of-Omission Measure

The main purpose of hypothesis driven conflict analysis is to identify pieces
of evidence with an impact on the evidence that conflicts with the impact of
the entire set of evidence. In order to perform this investigation a measure
providing a numerical value specifying the cost of omitting a single piece of
evidence is required. The cost-of-omission c(P(X|e),P(X|e \ {ei})) of &; is
defined as

c(P(Xe),P(X|e\{et])) = > p(xmbg#\‘ﬁ{)&})_
x€dom(X) i

(9.1)
The above equation is undefined for values P(x|¢) = 0 and P(x|e\{e;}) = 0. For
these two cases, we define cost-of-omission to be 0 and infinity, respectively.

9.2.2 Evidence with Conflict Impact

Let H be a hypothesis variable with states dom(H) ={hy,...,h,} and let ¢ =
{€1,...,em} be the set of evidence. The impact of a finding ¢; € ¢ on a
hypothesis h € dom(H) is determined by computing and comparing the prior
probability of the hypothesis P(h), the posterior probability of the hypothesis
given all evidence P(h|e), and the posterior probability of the hypothesis given
all evidence except the finding under consideration P(h|e\ ¢;). By comparing
these three probabilities we can identify findings that have a conflicting impact
on the probability of the hypothesis compared with the impact of the entire
set of evidence.

Ezample 9.6 (Asia). In the Asia example we assume evidence ¢ = {Dyspnoea =
no,Smoker = yes,X_ray = no} = {ep,¢€s,ex}. Assume further that B =
Bronchitis is the hypothesis variable under consideration.

Figure 9.2 shows the impact of the finding ¢s on the hypothesis B = no
while Figure 9.3 shows the impact of the finding e¢s on the hypothesis B = yes.
From Figure 9.2 it is clear that the finding s acts against the hypothesis B =
no. The probability of the hypothesis is higher when the finding ¢g is excluded
than when it is included. The posterior is higher than the prior. This implies
that the combined effect of the evidence acts in favor of the hypothesis.

Similarly, from Figure 9.3 it is clear that the finding es acts in favor of
the hypothesis B = yes. The probability of the hypothesis is higher when the
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Fig. 9.2. The impact of finding es on the hypothesis h: B = no.
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Fig. 9.3. The impact of finding es on the hypothesis h: B = yes.

finding es is included than when it is excluded, but not as high as the prior
though. The posterior is lower than the prior. This implies that the combined
effect of the evidence acts against the hypothesis.

The numbers in the two graphs are pairwise complementary since B is
binary.

When considering the impact of findings given a large set of evidence it
may be an advantage to use a cost-of-omission threshold to focus on findings
with a cost-of-omission greater than the threshold.

Ezxample 9.7. In Example 9.6 the cost-of-omission of finding ¢gs is 0.03, i.e.,
c(P(Ble),P(Ble\{es})) =0.03.

Further information on hypothesis driven conflict analysis can be found
in Suermondt (1992).
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9.3 Summary

In this chapter we have considered evidence and hypothesis driven conflict
analysis in Bayesian networks.

The objective of evidence driven conflict analysis is to detect possible
conflicts in the evidence. To support this analysis, we have defined a conflict
measure that is simple to compute. The conflict measure is computed based
on an alternative and much simpler model (the straw model). The conflict
measure is defined such that a positive value is an indication that a conflict
may be present in the evidence. Once a possible conflict is detected, we try to
trace and resolve the conflict. We say that a hypothesis may resolve the conflict
if the log of the normalized likelihood of the hypothesis is greater than the
conflict. Furthermore, a positive conflict measure may originate from a rare
case.

The objective of hypothesis driven conflict analysis is to investigate the
impact of a single piece of evidence on the probability of a hypothesis com-
pared with the impact of all the evidence. To support this investigation, we
have defined a cost-of-omission measure. The cost-of-omission measure is used
to measure the difference between including and excluding the selected piece
of evidence on the probability of the hypothesis given evidence. In hypothesis
driven conflict analysis we relate the prior probability of the hypothesis to the
probability of the hypothesis given the entire set of evidence, and the prob-
ability of the hypothesis given the entire set of evidence except the selected
piece of evidence. This enables us to determine whether or not a single piece
of evidence conflicts with the remaining set of evidence with respect to the
probability of the hypothesis.

In Chapter 10 we consider sensitivity analysis. Evidence sensitivity analy-
sis is to determine the sensitivity of the posterior probability of a hypothesis
relative to observations made. Parameter sensitivity is to determine the sen-
sitivity of the posterior probability of a hypothesis relative to parameters of
the model.

Exercises

Exercise 9.1. From Example 2.4 on page 25, we know that Dr Watson makes
frequent calls to Mr Holmes regarding the burglar alarm, however, till now
the cause of activation of the alarm has been small earthquakes or a big truck
passing by near the house. Every time Mr Holmes rushes home, just to find
that everything is in order; so now Mr Holmes is installing a seismometer in
his house with a direct line to his office. In this exercise we assume P(B) =
P(E) = (0.1,0.9).

The revised model in Figure 9.4 captures the situation where Mr Holmes
has installed a seismometer in his house with a direct line to the office. As-
sume S has states reflecting no, some and large vibrations in the house. The
conditional probability distribution P(S|B, E) is shown in Table 9.2.
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Fig. 9.4. Mr Holmes installs a seismometer with a direct line to his office.

S
B E no some large

no no | 097 0.02 0.01
no vyes | 0.01 0.97 0.02
yes no | 0.01 0.02 0.97
yes yes 0 0.03 0.97

Table 9.2. The conditional probability distribution P(S|B,E).

(a) One afternoon Dr Watson calls again and announces that Mr Holmes’
alarm has gone off. Mr Holmes checks the seismometer, it is in state no.
Are the two observations in conflict?

(b) Mr Holmes looks out his window. It rains heavily. When it rains heavily
a flood is likely to occur. Extend the model in Figure 9.4 to capture these
events when the prior of rain is 0.01 and rain causes a flood in one out of
ten cases. The conditional probability table P(A|B, E, F) where F represents
flood is shown in Table 9.3.

E B F no yes

no no no | 0.99 0.01
no no yes | 0.01 0.99
no yes no | 0.01 0.99

no yes yes 0 1
yes no no | 0.01 0.99
yes no  yes 0 1
yes yes no 0 1
yes yes yes 0 1

Table 9.3. The conditional probability distribution P(A|B,E, F).

Are the observations in conflict in this model and what is the value of the
conflict measure?
(c) Is there a potential explanation of the value of the conflict measure?
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(d) What is the partial conflict of each subset of the observations and what
conclusion can be derived from the partial conflicts?

Exercise 9.2. Consider again the model with a seismometer of Mr Holmes
in Exercise 9.1.

(a) Perform hypothesis driven conflict analyses with respect to both Burglar =
yes and Earthquake = yes.
(b) What is the cost-of-omission for eg with respect to Burglar and Earthquake?
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Sensitivity Analysis

We construct probabilistic networks to support and solve problems of reason-
ing and decision making under uncertainty. In problems of reasoning under
uncertainty the posterior probability of a single hypothesis variable is some-
times of interest. When the evidence set consists of a large number of findings
or even when it consists of only a small number of findings questions concern-
ing the impact of subsets of the evidence on the hypothesis or a competing
hypothesis emerge.

Evidence sensitivity analysis may, for instance, give answers to questions
like what are the minimum and mazximum beliefs produced by observing a vari-
able, which evidence acts in favor of or against a hypothesis, which evidence
discriminates one hypothesis from an alternative hypothesis, and what if a
certain observed variable had been observed to a value different from the ac-
tual value? Knowing the answers to these and similar questions may help to
explain and understand the conclusions reached by the model as a result of
probabilistic inference. It will also help to understand the impact of subsets
of the evidence on a certain hypothesis and alternative hypotheses.

Evidence sensitivity analysis is not the only possible kind of sensitivity
analysis that can be performed on a probabilistic network. Parameter sen-
sitivity analysis is another type of sensitivity analysis that is supported by
probabilistic networks. We focus on parameter sensitivity analysis in discrete
Bayesian networks. The parameters considered in parameter sensitivity analy-
sis are the entries of the conditional probability distributions specified in the
Bayesian network. The analysis is performed relative to a hypothesis and a
given set of evidence. It has been shown that there is a (surprisingly) simple
correlation between the probability of a set of evidence and an entry of a con-
ditional probability distribution. The probability of the evidence is a linear
function of the parameter. This knowledge can be exploited to determine the
functional relation between the probability of a hypothesis given a subset of
evidence and a parameter of a conditional probability distribution.

Parameter sensitivity analysis is particularly useful for identifying para-
meters of a probabilistic network that have a large or small impact on the
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probability of a hypothesis given evidence. When knowledge elicitation re-
sources are limited, parameter sensitivity analysis is a useful tool for identi-
fying and focusing resources on the parameters that are most influential on
the posterior probability of a hypothesis given evidence. That is, parameter
sensitivity analysis can be used in an attempt to focus knowledge elicitation
resources in the model construction process.

In Section 10.1, we introduce evidence sensitivity analysis. A distance mea-
sure designed to measure the impact of evidence on the probability of a hy-
pothesis is introduced. In the following subsections we consider identifying
minimum and maximum beliefs in a hypothesis given various subsets of the
evidence, the impact of different evidence subsets on a hypothesis, how subsets
of the evidence discriminates between a pair of competing hypotheses, what-if
analysis, and the impact of findings on a hypothesis variable. In Section 10.2
parameter sensitivity analysis is introduced.

10.1 Evidence Sensitivity Analysis

Evidence sensitivity analysis (SE analysis) is the analysis of how sensitive the
results of a belief update (propagation of evidence) is to variations in the set
of evidence (observations, likelihood, etc.).

Consider the situation where a decision maker has to make a decision based
on the probability distribution of a hypothesis variable. It could, for instance,
be a physician deciding on a treatment of a patient given the probability dis-
tribution of a disease variable. Prior to deciding on a treatment the physician
may have the option to investigate the impact of the collected information on
the posterior distribution of the hypothesis variable. That is, given a set of
findings and a hypothesis, which sets of findings are in favor of, against, or
irrelevant for the hypothesis, which sets of findings discriminate the hypothe-
sis from an alternative hypothesis, what if a variable had been observed to a
different value than the one observed, etc. These questions can be answered
by SE analysis.

Given a Bayesian network model and a hypothesis variable, the task is to
determine how sensitive the belief in the hypothesis variable is to variations in
the evidence. We consider one-step look-ahead hypothesis driven SE analysis
on discrete random variables.

Ezample 10.1 (Asia). As an example we consider SE analysis on the Asia
example shown in Figure 10.1 (see Example 4.2 on page 69 for more details).
The hypothesis variable is Bronchitis (B) and the initial set of evidence is ¢ =
{es,ep} ={S = no,D = yes}. That is, we are considering whether or not the
patient is suffering from bronchitis after observing that the patient does not
smoke (Smoker = no), but has shortness of breath (Dyspnoea = yes).

This example is used in the following sections to illustrate concepts of SE
analysis.
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Tuberculosis
Tub_or_cancer

Fig. 10.1. A graph specifying the independence and dependence relations of the
Asia example.

10.1.1 Distance and Cost-of-Omission Measures

The main purpose of hypothesis driven SE analysis is to investigate how
changes in the set of evidence impact the probability of a hypothesis. In order
to perform this investigation, two distance measures are required. Each dis-
tance measure will provide a numerical value specifying the distance between
either two probabilities or two probability distributions.

Let X be a hypothesis variable with state space dom(X) = {x1,...,xn} and
let € ={e1,...,&em} be a set of evidence (findings). We let ¢y € ¢ denote the
finding on variable Y € X(¢).

The distance d(p, q) between two probabilities p and q is defined, for p #
0, as
d(p,a) = q1‘.
P

This measure is, for instance, useful for measuring the distance between the
probability P(x|e) of hypothesis x given evidence € and the probability P(x|e\
{ei}) of hypothesis x given evidence ¢ \ {ei}; i.e., the set of evidence where ¢;
is excluded from ¢.

A pair of probabilities p and q are said to be almost equal when their
distance d(p, q) is below a predefined threshold 6; i.e., d(p, q) < 9.

The cost-of-omission c(P(X|e), P(X|e \ {ei})) of &¢; was defined in Sec-
tion 9.2.1 on page 267 as:

c(P(X|e),P(X[e\{e}) = > P(x|e)log <PP(X|8)>

x€dom (X) (X|€ \{51})

Notice the difference between the distance measure and the cost-of-
omission measure. The distance measure evaluates the distance between prob-
ability values whereas the cost-of-omission measure evaluates the distance
between two posterior probability distributions relative to omitting a cer-
tain finding ¢; from the evidence ¢. The cost-of-omission measure is a special
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case of the more general cross entropy distance (or Kullback—Leibler distance)
measure between a probability distribution P and an approximation P’ of P:

HPP) = Y P(x)log(E,((’;))).
)

xedom

The cost-of-omission measure is, for instance, useful for measuring the
distance between the posterior probability distribution P(X]e) of hypothesis
variable X given evidence ¢ and the posterior probability distribution P(X|e\
{ei}) of hypothesis variable X given evidence ¢ \ {¢i}; i.e., the set of evidence
where ¢; is excluded from ¢.

In the following sections, the distance measures defined above are used to
introduce different concepts related to SE analysis.

10.1.2 Identify Minimum and Maximum Beliefs

As part of performing SE analysis we may be interested in knowing the
minimum and maximum values of the posterior belief for each possible
state x € dom(X) of the hypothesis variable X given all possible observa-
tions on a given variable Y & X(¢); i.e., what are the minimum and maximum
values of P(x|¢,y) as a function of y € dom(Y).

The minimum miny egom(v) P(x/€,y) and maximum maxy cdom(v) P(x[€,y)
values of the posterior belief are determined by entering and propagating each
state y of the information variable Y. This analysis requires one belief update
for each state of variable Y.

This analysis identifies the range of the posterior belief in a hypothesis as
a function of possible observations on an unobserved variable. This may help
to determine the impact of a possible observation on the probability of the
hypothesis.

Ezxample 10.2 (Example 10.1 continued). Table 10.1 shows the sensitivity of
the posterior probability distribution P(B|e, a) of the hypothesis variable B
relative to instantiations of the unobserved variable Asia (A).

b ‘minaP(B:b\e,a) P(B=Dble) maxqP(B=Dble a)

no 0.228 0.228 0.236
yes 0.764 0.772 0.772

Table 10.1. Sensitivity of the posterior probability distribution of the hypothesis
variable B to findings on A.

For each state b € dom(B) of B the minimum posterior belief miny P(B =
ble,a), the current belief P(B = ble), and the maximum posterior be-
lief ming P(B = b|¢, a) is shown. From the table it is clear that an observation
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on A would produce insignificant variations in the posterior belief in any state
of B.

10.1.3 Impact of Evidence Subsets

Investigation of the impact of different subsets of the evidence ¢ on each
state x € dom(X) of the hypothesis variable X is a useful part of SE analysis.
Investigating the impact of different subsets of the evidence on states of the
hypothesis may help to determine subsets of the evidence acting in favor of
or against each possible hypothesis.

The impact of a subset of the evidence ¢’ C ¢ on a state x of the hypothesis
variable X is determined by computing the normalized likelihood NLof the
hypothesis x given evidence ¢’; i.e.,

Ple'[x) _ P(e/,x)/P(x) _ P(x|e')P(e')/P(x) _ P(x|e’)

N=%e) =7 pey T Py P

where we assume P(¢’) > 0 and P(x) > 0. This fraction is computed by
entering and propagating €¢’. Therefore, this analysis requires one belief update
for each subset ¢’ of the evidence ¢.

Each normalized likelihood is a measure of the impact of a subset of evi-
dence on the hypothesis. By comparing the normalized likelihoods of different
subsets of the evidence, we compare the impacts of the subsets of evidence on
the hypothesis.

Ezample 10.3 (Example 10.2 continued). Assume that we observe the patient
to have a positive X-ray result X = yes, such that the set of evidence is ¢ =
{es,ep,ex} = {S = no,D = yes, X = yes}. Table 10.2 shows the normalized
likelihood of the hypothesis hg : B = yes given the evidence ¢ = {¢s, €p, €x]-

e NL

£s £X &D 1.256
es ex — | 0.667
€s — ED 1.675
€s - — | 0.667
— EX ED 1.515
— &x — 1.125
- — ¢p | 1.853
- - -1

Table 10.2. Normalized likelihood of hypothesis hg given all subsets of the evi-
dence ¢.

From Table 10.2 it is clear that the finding ep on D acts in favor of the
hypothesis hg. On the other hand, the evidence es acts slightly against the
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hypothesis hg while ex is irrelevant, against and in favor of hg depending on
the remaining evidence.

10.1.4 Discrimination of Competing Hypotheses

A central question considered by SE analysis is how different subsets of the
evidence discriminate between competing hypotheses. The challenge is to com-
pare the impact of subsets of the evidence on competing hypotheses.

We consider the discrimination between two different hypotheses repre-
sented as states of two different variables. Thus, let X be the hypothesis vari-
able of interest and let Y be an alternative hypothesis variable where X # Y.

In Section 3.5, we describe how the discrimination of a pair of competing
hypotheses x € dom(X) and y € dom(Y) may be based on the calculation of
Bayes’ factor B (or Bayesian likelihood ratio) for all subsets ¢’ C ¢ of a set of
evidence e:

_ posterior odds ratio  P(x|e’)/P(yle’)  P(e'Ix)  L(x|e")

B= prior odds ratio - P(x)/P(y) = P(¢'|y) = Lyle)’ (10.1)

where we assume P(x) > 0, P(y) > 0, and P(¢’) > 0. Bayes’ factor is the ratio
of the likelihoods of hypothesis x and y given the evidence ¢’.
From Equation 10.1 we see that

B > 1 if the evidence ¢’ provides more support for x than for vy,

B < 1 if the evidence ¢’ provides less support for x than for y, and

B =1 if the evidence ¢’ does not provide useful information for differentiating
between x and y.

This analysis requires one belief update for each subset ¢’ C e.
Ezample 10.4 (Example 10.3 continued). Assume that hy : Cancer = yes is an

alternative hypothesis to the hypothesis hg. Table 10.3 shows Bayes’ factor
for the hypothesis hg and the alternative hypothesis hy .

e B

es  €x ¢ep | 0.281
Es EX — 0.258
es — ¢ep | 3.869
£s  — — | 3.667
— EX ED 0.134
— EX — 0.127
— — ED 0.992
- - — |

Table 10.3. Discrimination between hypothesis hg and the alternative hypothe-
sis hr.
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From Table 10.3 it is clear that subsets {es} and {es,ep} acts in favor of
the hypothesis hg when compared with the alternative hypothesis hy. On the
other hand, the remaining subsets act slightly against the hypothesis hg when
compared with the alternative hypothesis hp.

10.1.5 What-If Analysis

In what-if analysis the type of question considered is the following. What if the
finding on a discrete random variable Y € X (&) had been the observation Y =y’
instead of Y = y (represented by the finding ey € ¢, where ¢ is the set of
evidence)? We consider a hypothesis driven approach to what-if SE analysis.

Hypothesis driven what-if analysis is performed by computing the poste-
rior probability distribution P(X|e \ {ey},y’) of the hypothesis variable X for
each possible state y’ # y of the observed variable Y.

The posterior probability distribution P(X|e\{ey},y’) specifies the impact
of each possible instantiation of Y on the posterior distribution of the hypoth-
esis variable X. The analysis requires one belief update for each y’ € dom(Y).
Notice that ey need not be an instantiation of Y; i.e., ey may be soft evidence.

Ezample 10.5 (Example 10.4 continued). For each finding variable Y we may
consider the impact of each possible observation Y = y. Table 10.4 shows
the posterior belief in the hypothesis B = yes given the evidence where the
finding y is substituted with each possible state y’ € dom(Y).

Y vy | P(B=yesle\{ev}y')
D no 0.092
D yes 0.565
S no 0.565
S yes 0.714
X no 0.774
X yes 0.565

Table 10.4. What-if analysis on findings.

From Table 10.4 it is clear that changing the observation on D from yes to no
has a significant impact of the posterior belief in the hypothesis B = yes. On
the other hand, the posterior belief in the hypothesis B = yes has a lower
sensitivity to observations on S and X.

Since each finding (i.e., €s, €x, or €p) is an instantiation, one row for each
observed variable Y corresponds to the posterior belief in the hypothesis B =
yes. That is, P(B = yes|e) = 0.565 is represented three times in the table.
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10.1.6 Impact of Findings

Let X = x be the hypothesis of interest where X is the hypothesis variable
and let € be the entire set of evidence. The impact of each finding ey € ¢
on the probability of x is determined by computing and comparing the prior
probability of the hypothesis, P(x), the posterior probability of the hypothesis
given the entire set of evidence, P(x|¢), and the posterior probability of the
hypothesis given the entire set of evidence except the finding ey, P(x|e\{ey}).

To relate the impact of individual findings on the probability of the hy-
pothesis we define the notions of an important finding, a redundant finding,
and an irrelevant finding:

e A finding ey € ¢ is important when the difference between the proba-
bility @ = P(x|e \ {ey}) of the hypothesis given the entire set of evidence
except ey and the probability p = P(x|e) of the hypothesis given the entire
set of evidence is too large; i.e., the probabilities p and q are not almost
equal (d(p, q) > 9).

e A finding ey € ¢ is redundant when q = P(x|e \ {ey}) is almost equal
top = P(x|e); ie., d(p,q) <.

e A finding ey € ¢ is irrelevant when q = P(x|¢’ \ {ey}) is almost equal
to p = P(x|¢’) for all subsets ¢; i.e., d(p,q) < & for all subsets ¢’. That
is, the finding ey is redundant for all subsets of the evidence.

The term almost equal is defined based on the distance measure introduced
in Section 10.1.1. Similarly, a sufficient set of evidence is defined as:

e A subset of evidence ¢/ C ¢, e.g., the entire set of evidence ¢ except a
certain finding ey, is sufficient when q = P(x|¢’) is almost equal to p =
P(x|e); ie., d(p,q) < 0.

The impact of each finding ey may be considered for each state or a certain
state of the hypothesis variable X. Sufficiency 65 and importance 8; thresholds
should be specified by the user.

Ezample 10.6 (Example 10.5 continued). We may be interested in considering
the impact of each finding ey € € on the probability of the hypothesis B = yes
by comparing P(B = yes), P(B = yes|¢), and P(B = yes|e \ {ey}). Table 10.5
shows the prior belief in the hypothesis B = yes, the posterior belief given all
evidence P(B = yes|¢), and the posterior belief given all evidence except a
single finding P(B = yes|¢e \ {ey}).

From Table 10.5 we make the following observations:

e The finding eg is important. At sufficiency threshold &5 = 0.02 the find-
ing eg is redundant and ¢ \ {es} is sufficient. At cost-of-omission thresh-
old &, = 0.03 the evidence es would not be included in the analysis.

The finding ex is important.
The finding e¢p is important.
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ey \ P(B =yes) P(B=yes|e\{ey}) P(B=yes|e)

€s 0.45 0.682 0.565
eX 0.45 0.754 0.565
€D 0.45 0.3 0.565

Table 10.5. Findings impact analysis.

ey ‘ c(P(Ble),P(Ble\{ev})) d(P(B =yes|e),P(B =yes|e\{ev}))

€s 0.03 0.171
ex 0.085 0.25
€D 0.151 0.884

Table 10.6. Cost-of-omission and distance in posterior beliefs of the hypothesis for
each finding.

The subset ¢’ = {es, ex, ep} = ¢ is, of course, also sufficient. The analysis is
performed using threshold values 6, = 0.0001, 65 = 0.02, and §; = 0.05.
Table 10.6 shows the cost-of-omission ¢(P(Bl¢), P(Ble\{ey})) and the distance
d(P(B = yes|¢), P(B = yes|e \ {ey})) for each finding ¢vy.

10.2 Parameter Sensitivity Analysis

Parameter sensitivity analysis (SP analysis) is the analysis of how sensitive
the results of a belief update (propagation of evidence) is to variations in the
value of a parameter of the model. The parameters of a model are the entries
of the conditional probability distributions.

Consider the situation where company management allocates resources to
research and development projects based on an estimation of projects’ suc-
cesses. The success of a project depends on the ability of the project manage-
ment to obtain certain environmental permissions from the authorities. This
and other properties of the domain are modeled as a Bayesian network. As
part of the model construction the knowledge engineers (and the management
of the company) would like to assess how sensitive the conclusion of the model
(i.e., the probability of project success) is to the prior probability of a spe-
cific environmental permission being obtained. Parameter sensitivity analysis
is designed to answer such questions. Given a Bayesian network model, a hy-
pothesis and a set of evidence, the task is to determine the sensitivity of the
posterior belief in the hypothesis to variations in the value of an assessed
parameter.

We consider scenario-based SP analysis on discrete random variables with
respect to changes in a single parameter value where a scenario S is defined
as a vector consisting of a hypothesis variable H, a state of the hypothesis
variable h and a set of evidence ¢, i.e., S = (H,h,¢).
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Ezample 10.7 (Apple Jack). Apple Jack, see Example 4.1 on page 66, is inter-
ested in computing the probability of his finest apple tree being sick. His hy-
pothesis is that the tree is sick, i.e., the hypothesis is Sick = yes. The evidence
available to support the reasoning of Apple Jack is that the tree is losing its
leaves. Thus, the scenario under consideration is S = (Sick, yes, {Loses = yes})
Given the Bayesian network shown in Figure 4.1 on page 66 and the condi-
tional probability distributions P(Sick) = (0.95,0.05), P(Dry) = (0.9,0.1) and
P(Loses|Sick, Dry) as specified in Table 4.1 on page 67, the posterior distrib-
ution of the hypothesis given the observation, P(Sick = yes|¢), is 31.62%.

How sensitive is this posterior probability to small variations in the quan-
tification of the model? For instance, how would the posterior probability of
the hypothesis change if the prior probability of Dry = yes decreases from 0.1
to 0.0757 Setting the prior probability of Dry = yes to 0.075, the posterior dis-
tribution of the hypothesis given the observation, P(Sick = yes|¢), is 36.64%.

This shows that the posterior probability of the hypothesis Sick = yes
(and other events) changes when the prior on Dry = yes is changed to 0.075
(from 0.1). The posterior probability of Sick = yes increases from 31.52%
to 36.64%. This seems intuitive as the prior of one cause decreases and the
posterior of another cause increases given the observed effect. However, what if
the prior had been changed to a different value? Is it necessary to compute the
posterior probability of the hypothesis for all possible values of P(Dry = yes),
i.e., the parameter we are investigating?

The aforementioned questions may be answered more efficiently using pa-
rameter sensitivity analysis.

10.2.1 Sensitivity Function

Parameter sensitivity analysis is based on the observation that the probability
of the evidence is a linear function of any single parameter in the model; i.e.,
any entry of any conditional probability distribution (Castillo, Gutiérrez &
Hadi 1997, Coupé & van der Gaag 1998). That is, y = P(¢) as a function of
a conditional probability t = P(X = x|pa(X) = z) has the simple form y =
«-t+ P where &, 3 € R. This implies that the conditional probability of a
hypothesis h given evidence ¢ as a function of a parameter t has the form

P(h,e)(t) o-t+p
P(e)(t)  v-t+3d’

where «, 3,7, € R. Hence, the posterior probability P(h|e) is a quotient of
two linear functions of the parameter t.

The function f(t) is known as the sensitivity function. The coefficients of
the sensitivity function are determined separately for its numerator and de-
nominator functions. The coefficients of a linear function can be determined
from two values of the function for two different values of the parameter. We
can compute the value of the function for two different values of the para-
meter by propagating the evidence twice (once for each of the two parameter

f(t) =P(hle)(t) =
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values). When determining the coefficients of the sensitivity function, we use
proportional scaling to change the remaining related parameters such that
they keep the original proportion. This implies that when we change the pa-
rameter value for t, the remaining probability values for the corresponding
parent configuration (i.e., P(X = x'|pa(X) = z) for all x # x') are scaled
proportionally. We need to scale the values such that the values sum to one;
ie., Y  P(x|pa(X)) = 1. Assume P(X = x'|pa(X) = z) = (p1,...,pn) is the
initial assessment of the probability of X given pa(X) = z and p; is the pa-
rameter value under consideration. Proportional scaling on p; for j # i when
changing p; to pi* amounts to computing

pr = P (1—p7)
! Zj;éi Pj
where (p7,...,p5) is the updated probability of X given pa(X) = z.
We assume that each parameter can be varied independently of other

parameters and that each parameter is non-extreme, i.e., it can be varied in
an open interval around its initial assessment.

)

Ezample 10.8 (Proportional Scaling). Let S = (Dry, yes,{Loses = yes}) be the
scenario under consideration. Assume that the variable Dry has three states no,
dry and very dry with a prior distribution P(Dry) = (0.1,0.6,0.3). If we want to
investigate the impact of adjusting the parameter P(Dry = yes) = 0.1 to 0.075,
then it is necessary to adjust the values of the other two parameters such that
all three adjusted parameters sum to one. This is achieved by proportional
scaling such that the adjusted prior distribution is

0.6-(1—0.075) 0.3-(1—0.075)

P(Dry) = (0.07
(Dry) (0075, —3 6703 06703
0.555 0.2775
= (0075, =5 =55 )

= (0.075,0.6167,0.3083).

When a variable has only two states a change in the value of one parameter
must induce a similar (but opposite) change in the other parameter.

Ezample 10.9 (Sensitivity Function). Let S = (Sick, yes, ¢ = {Loses = yes}) be
the scenario under consideration. Hence, the hypothesis under investigation
is Sick = yes while the parameter in focus is t = P(Dry = yes). The sensitivity
function f(t) where t is the parameter for P(Dry = yes) is
f(t) = P(Sick = yes|Loses = yes)
P(Sick = yes, Loses = yes)
P(Loses = yes)
x-t+f3
v-t+o
0.0025 -t + 0.045
0.791 -t + 0.064
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The coefficients of denominator and numerator functions are determined sep-
arately. Both functions are linear in the parameter t. Thus, the coefficients
of each function can be determined by propagating evidence for two different
parameter values. For instance, the coefficients v and 6 of the denominator
can be determined as
P(Loses = yes)(t1) — P(Loses = yes)(tg)  0.2222 —0.1431
= = =0.791
t — 1o 0.2-0.1
0 = P(Loses =yes)(tg) — v to=0.1431 —0.791 - 0.1 = 0.064

where tp = 0.1 and t; = 0.2 are two different values of the parameter t.
The graph of the sensitivity function f(t) for all possible values of t, i.e,
values of t between zero and one, is plotted in Figure 10.2.

‘ P(Sick L yes\e)‘

0.8 —

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 10.2. The graph of the sensitivity function f(t) = P(Sick = yes|Loses = yes) as
a function of t = P(Dry = yes).

Figure 10.2 shows that the minimum value of the probability of the hy-
pothesis is 0.0556 for t = 1 while the maximum value of the probability of
the hypothesis is 0.7031 for t = 0. Thus, no matter what value of t is speci-
fied P(Sick = yes|¢) is between 0.0556 and 0.7031. In addition, it is clear from
Figure 10.2 that the posterior probability of the hypothesis is more sensitive
to small variations in the parameter value when the initial parameter value
is in the range from 0 to, say, 0.25 than when the initial parameter is in the
range from 0.25 to 1.

Performing two full propagations of the evidence for each parameter value
may be inefficient if the number of parameters is large. Jensen (2001) describes
a modeling technique for computing the coefficients of the linear function
based on introducing an auxiliary variable (for each parameter inspected). By
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introducing an auxiliary variable it is possible to reduce the number of mes-
sages to be passed in the junction tree representation. Madsen (2005) describes
a propagation method that makes it possible to compute the coefficients for
all parameters from a single propagation in a junction tree representation.

10.2.2 Sensitivity Value

The partial derivative f'(t) = 0P(h|e)/0t of the sensitivity function f(t) with
respect to t expresses how much P(h|e)(t) changes as a function of t given
small variations in the initial assessment. The partial derivative f'(t) of the
sensitivity function on t is

ax-t+p
(v-t+98)?

The partial derivative reflects how the posterior probability of the hypoth-
esis h changes with changes in the parameter t under evidence scenario .
Wang, Rish & Ma (2002) defines parameter sensitivity S(t|h,e) as f'(t) =
0P(h|e)/0t. The sensitivity value of a parameter is defined as [S(t|h, ¢)]; i.e.,
the absolute value of the derivative of the sensitivity function at the initial
assessment of the parameter (Laskey 1993). The sign of S(t|h,¢) indicates
whether the probability of the hypothesis is increasing or decreasing in t.

The sensitivity value can be used as a guide to identify parameter assess-
ments where small variations in the value may have the largest impact on
the posterior probability of the hypothesis given the evidence. In general, a
parameter is of interest when the sensitivity value is greater than zero. Para-
meter sensitivity analysis enables us to identify the most important parameter
assessments in the Bayesian network. Let t’ and t” be two parameters. If t’
has a higher sensitivity value than t”, then t’ will intuitively induce a larger
change on the probability of interest than t” given the same variation in the
parameter assessments.

When considering sensitivity analysis with respect to multiple evidence
sets we may choose to weigh the parameter sensitivity with the probability
of the evidence, i.e., P(¢) - S(t|h, ¢) as different evidence scenarios may have
different probabilities. Parameter importance defines the importance of a pa-
rameter across multiple evidence scenarios € and multiple hypotheses h. Wang
et al. (2002) defines parameter importance I(t) as

—ZSt\hs 7ZaPh|£

where m is the number of hypotheses and n is the number of evidence scenar-
ios. The importance value of a parameter is defined as |[I(tg)]; i.e., the absolute
value of the parameter importance function at the initial assessment of the
parameter.

f'(t) =
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Ezample 10.10 (Sensitivity Value). Let S = (Dry,yes,{Loses = yes}) be the
scenario under consideration. The initial value of the parameter of inter-
est t = P(Dry = yes) is tg = 0.1. This implies that the sensitivity value
of the parameter t is f'(ty) = 17.

On the other hand, the conditional probability P(Loses = yes|Dry =
yes, Sick = yes) has sensitivity function

ft) = 0.005-t+0.13835
~0.005-t+0.0405

The initial parameter assessment is to = 0.95 and the sensitivity value is 0.24.

10.2.3 Admissible Deviation

Parameter sensitivity values may be used to focus the knowledge elicitation
resources in the model construction process. The sensitivity function, its deriv-
ative, and the sensitivity value are not sufficient tools for analyzing how the
change in a parameter t may change the most likely state of a hypothesis
variable H.

We extend the basic sensitivity analysis method with the calculation of an
interval within which the parameter under investigation can be varied without
changing the most likely value of the hypothesis variable of interest. Let H
be the hypothesis variable of interest, ¢ the evidence scenario under consid-
eration, and t the parameter under investigation with initial assessment to.
The admissible deviation of t from ty is a pair of real numbers (r,s) such
that t can be varied from min(0,ty — r) to max(1,ty + s) without changing
the most likely state of H, i.e., argmaxP(hle) is unchanged by the devia-
tion of t from ty. The values of (r,s) should be the largest such numbers for
which the property is satisfied (Laskey 1993). The admissible deviation inter-
val is [min(0,to — r);max(1,to + s)]. Notice that the interval specifying the
admissible deviation is in general not symmetric around the value to, i.e., in
general r is not equal to s.

Some parameters may take any value without changing the most likely
state of H. This implies that the value of the parameter can be varied over
the entire range [0; 1] without changing the most likely state of the hypothesis.
In this case the admissible deviation interval is specified as (oo, 00).

Ezample 10.11 (Admissible Deviation). Assume that Apple Jack is interested
in determining whether or not his apple tree is sick. The hypothesis variable
of interest is Sick, the evidence scenario is Loses = yes, and the parameter
under investigation is t = P(Dry = yes). How much can the parameter t be
varied without inducing a change in the most likely state of Sick? Apple Jack
wants to know the admissible deviation of t.

The sensitivity function f(t) for Sick = no is

~0.7885 -t 4 0.019

)= 5701 110064
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T T
P(Sick = yes| ¢
0.9 - ‘ . ~P(Sick :yno|s}
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Fig. 10.3. The graph of the sensitivity functions for Sick = yes and Sick = no.

The sensitivity functions for Sick = no and Sick = yes are shown in
Figure 10.3.

For t = 0.033 we have P(Sick = yes|e) = P(Sick = no|e) = 0.5. Since
the hypothesis variable Sick is binary, the two states have equal probability
when they both have probability 0.5. Assuming that ty = 0.1 the admissible
deviation of t is the pair (0.0967, c0), i.e. the value of the parameter t can be
varied from 0.033 = 0.1 — 0.0967 to 1 without changing the hypothesis with
highest probability.

10.3 Summary

In this chapter we have considered evidence and parameter sensitivity analysis
in Bayesian networks.

The objective of evidence sensitivity analysis is to investigate how sensitive
the result of a belief update is to variations in the set of evidence. To support
this analysis, we have defined two distance measures designed to provide a
numerical value specifying the distance between either two probabilities or two
probability distributions. Based on the distance measures, we have described
five different types of evidence sensitivity analysis: identifying minimum and
maximum beliefs, impact of evidence subsets, discrimination of competing
hypotheses, what-if analysis, and impact of findings.

The objective of parameter sensitivity analysis is to investigate how sensi-
tive the result of a belief update is to variations in a parameter of the model.
It has been shown that there is a simple functional relation between the prob-
ability of a set of evidence and an entry of a conditional probability table;
i.e., a parameter. The probability of the evidence is a simple linear function
of the parameter. This insight may be used to perform parameter sensitivity
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analysis on the posterior probability of a hypothesis given a set of evidence.
Parameter sensitivity values may be used to focus the knowledge elicitation
resources in the model construction process.

In Chapter 11 we consider value of information analysis. Value of informa-
tion analysis is to compute the value of potential new observations.

Exercises

Exercise 10.1. In the morning when Mr Holmes leaves his house he realizes
that his grass is wet. He wonders whether it has rained during the night or
whether he has forgotten to turn off his sprinkler. He looks at the grass of his
neighbors, Dr Watson and Mrs Gibbon. Both lawns are dry and he concludes
that he must have forgotten to turn off his sprinkler. (This problem was also
discussed in Exercise 6.3 on page 175.)

The structure of a network for modeling the above scenario is shown in
Figure 10.4.

Sprinkler

Holmes’ lawn

Gibbon’s lawn

Fig. 10.4. The Wet Grass network.

Prior probability distributions are P(Rain) = P(Sprinkler) = (0.1,0.9) while
the conditional probability distributions are shown in Table 10.7 to Table 10.9.

Holmes’ lawn
Rain  Sprinkler | dry wet

no no 1 0
no yes 0.1 0.9
yes no 0.01 0.99
yes yes 0 1

Table 10.7. The conditional probability distribution P(Holmes’ lawn|Rain,
Sprinkler).

The hypothesis under consideration is Sprinkler = yes.

(a) Identify the set of evidence.
(b) What is the impact of subsets of the evidence on the hypothesis?
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Gibbon’s lawn

Rain | dry wet
no 0.9 0.1
yes 0.1 0.99

Table 10.8. The conditional probability distribution P(Gibbon’s lawn|Rain).

Watson’s lawn

Rain | dry wet
no 0.9 0.1
yes 0.1 0.99

Table 10.9. The conditional probability distribution P(Watson’s lawn|Rain).

(c) What subsets of the evidence discriminate the hypothesis from the alter-
native hypothesis Rain = yes?

(d) How does the posterior distribution of the hypothesis change with changes
in the observed state for each evidence variable?

(e) What is the impact of each individual piece of evidence on the posterior
distribution of the hypothesis?

Exercise 10.2. Consider the Asia network shown in Figure 10.5 (see Exam-
ple 4.2 on page 68 for more details).

Tuberculosis

Fig. 10.5. A graph specifying the independence and dependence relations of the
Asia example.

The Asia network consists of the three hypothesis variables Bronchitis,
Cancer, and Tuberculosis. The risk factors are Smoking and a recent visit to Asia
while the symptoms of the network are X_ray and Dyspnoea. The risk factors
and symptoms are the possible observations a physician can make on a patient.
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Assume the physician is diagnosing a smoking patient with dyspnoea who
has recently been to Asia. The hypothesis under consideration is Bronchitis =
yes.

(a) Identify the set of evidence.

(b) What is the impact of subsets of the evidence on the hypothesis?

(c) What subsets of the evidence discriminate the hypothesis from the alter-
native hypothesis Cancer = yes?

(d) How does the posterior distribution of the hypothesis change with changes
in the observed state for each evidence variable?

(e) What is the impact of each individual piece of evidence on the posterior
distribution of the hypothesis?

Exercise 10.3. One in a thousand people has a prevalence for a particular
heart disease. There is a test to detect this disease. The test is 100% accurate
for people who have the disease and is 95% accurate for those who do not
(this means that 5% of people who do not have the disease will be wrongly
diagnosed as having it).

(a) If a randomly selected person tests positive, what is the probability that
the person actually has the heart disease?

(b) Compute the sensitivity function f(t) = P(Heart_Disease = yes|Test =
yes)(t) where t = P(Heart_Disease = yes).

(¢) Compute the sensitivity value for to = 0.001.

(d) Identify the admissible deviation of t.

Exercise 10.4. Let us consider parameter sensitivity analysis in the Wet
Grass network (cf. Exercise 10.1).

(a) Compute the sensitivity function f(t) = P(Sprinkler = yes|Holmes’ lawn =
wet, Watson’s lawn = dry)(t) where t = P(Rain = yes).

(b) Compute the sensitivity value for ty = 0.2.

(¢) Compute the sensitivity function f(t) = P(Rain = yes|Holmes’ lawn =
wet, Watson’s lawn = dry)(t) where t = P(Rain = yes).

(d) Identify the admissible deviation of t when the hypothesis is Sprinkler = yes
and the alternative hypothesis is Rain = yes.
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Value of Information Analysis

Probabilistic networks are constructed to support reasoning and decision mak-
ing under uncertainty. A common solution to a reasoning problem is the poste-
rior probability distribution over a hypothesis variable given a set of evidence.
Similarly, the solution to a decision making problem is an optimal decision
given a set of evidence. When faced with a reasoning or decision making
problem, we may have the option to consult additional information sources
for further information that may improve the solution. Value of information
analysis is a tool for analyzing the potential usefulness of additional informa-
tion before the information source is consulted.

We consider a one-step look-ahead hypothesis driven approach to value of
information (VOI) analysis. At any time, at most one additional information
source may be consulted in the search for additional information. In the case
of a reasoning problem we assume that the posterior probability distribution
of a certain hypothesis variable is of interest and that a set of evidence is
available. The task of value of information analysis is to determine the value
of information from different information sources; i.e., the value of making
additional observations before accepting the posterior distribution of the hy-
pothesis as the solution to the reasoning problem. On the other hand, in the
case of a decision making problem we assume that we are about to make a
certain decision based on a set of observations on its relevant past. Again
the task of value of information analysis is to consider the value of informa-
tion from different information sources; i.e., the value of making additional
observations before making a decision based on the current expected utility
function over the decision options available.

In Section 11.1 we describe value of information analysis in Bayesian net-
works. The value of information analysis in Bayesian networks is based on
an information theoretic approach using concepts such as entropy, mutual in-
formation, and information gain. Entropy and mutual information are intro-
duced as information measures specifying the information gain by observing a
variable. These information measures are easy to compute using probabilistic
inference. In Section 11.2 we describe value of information analysis in influence



292 11 Value of Information Analysis

diagrams where the change in expected utility is used as the information mea-
sure. In both sections we consider a one-step look-ahead hypothesis driven
approach to value of information analysis where we assume at most a single
information source may be consulted in a quest for additional information.

11.1 VOI Analysis in Bayesian Networks

Consider the situation where a decision maker has to make a decision based
on the probability distribution of a hypothesis variable. It could, for instance,
be a physician deciding on a treatment of a patient given the probability
distribution of a disease variable. For instance, if the probability of the patient
suffering from the disease is above a certain threshold, then the patient should
be treated immediately. Prior to deciding on a treatment the physician may
have the option to gather additional information about the patient such as
performing a test or asking a certain question. Given a range of options,
what option should the physician choose next? That is, which of the given
options will (on average) produce the most information? These questions can
be answered by a value of information analysis.

Given a Bayesian network model and a hypothesis variable, the task is to
identify the variable which is most informative with respect to the hypothesis
variable. Hence, we consider a one-step look-ahead hypothesis driven value of
information analysis in Bayesian networks.

11.1.1 Entropy and Mutual Information

The main reason for acquiring additional information is to decrease the uncer-
tainty about the hypothesis under consideration. The selection of the variable
to observe next (e.g., the question to ask next) can be based on the notion
of entropy. Entropy is a measure of how much the probability mass is scat-
tered over the states of a variable (the degree of chaos in the distribution of
the variable), see Cover & Thomas (1991). As such entropy is a measure of
randomness. The more random a variable is, the higher its entropy will be.

Let X be a discrete random variable with n states x1,...,x, and proba-
bility distribution P(X), then the entropy of X is defined as

H(X) = —Epx)llogP(X]]
= =) P(X)logP(X)
X
> 0.

The maximum entropy, log(n), is achieved when the probability distribu-
tion, P(X), is uniform while the minimum entropy, 0, is achieved when all the
probability mass is located on a single state. Thus, H(X) € [0, log(n)].
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Since entropy can be used as a measure of the uncertainty in the distrib-
ution of a variable, we can determine how the entropy of a variable changes
as observations are made. In particular, we can identify the most informative
observation.

IfY is a random variable, then the entropy of X given an observation on Y is

H(X|Y) = —Epx,y)logP(X|Y)]
= =) P(Y)) P(X|Y)logP(X]Y)
Y

X

where 1(X,Y) is the mutual information (also known as cross entropy) of X
and Y. The conditional entropy H(X|Y) is a measure of the uncertainty of X
given an observation on Y, while the mutual information I(X,Y) is a measure
of the information shared by X and Y (i.e., the reduction in entropy from
observing Y). If X is the variable of interest, then I(X,Y) is a measure of the
value of observing Y. The mutual information is computed as

I(X,Y) = H(X) —H(X]Y)
—  H(Y) — H(Y|X)

_ P(X,Y)
- ;P ZPMY@HM()

In principle, I(X,Y) is a measure of the distance between P(X)P(Y) and
P(X,Y). The conditional mutual information given a set of evidence ¢ is com-
puted by conditioning the probability distributions on the available evidence ¢:

I(X,Y]e) ZP Y|e) ZP XY, ¢)log (X(‘X)Y(‘ag)

We compute I(X,Y]|e) for each possible observation Y. The next variable
to observe is the variable Y that has the highest non-zero mutual information
with X (i.e., [(X,Y]e)), if any.

The probabilities needed for the computation of mutual information are
readily computed by message passing in a junction tree representation of the
model.

11.1.2 Hypothesis Driven Value of Information Analysis

Value of information analysis is the task of estimating the value of additional
information. When considering hypothesis driven value of information analysis
in Bayesian networks, we need to define a value function in order to determine
the value of an information scenario. Entropy can be used as a value function.
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Entropy for the binary case
07 I \ \ \

0.6 — —

0.5 - -

0.4 - =

0.3 - -

0.1 —

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 11.1. The entropy of T.

In a hypothesis driven value of information analysis the value of an in-
formation scenario is defined in terms of the probability distribution of the
hypothesis variable. If T is the hypothesis variable and entropy is used as the
value function, then the value function is defined as

V(T) = —H(T) =) P(T)log(P(T)).
T

The reason for using the negation of the entropy is best illustrated using an
example. Consider a binary hypothesis variable T with states false and true.
Hence, the distribution of T is fully specified by a single parameter p; i.e.,
P(T = false, T = true) = (p,1 — p). Figure 11.1 illustrates the entropy as a
function of p while Figure 11.2 illustrates the negation of the entropy as a
function of p.

As can be seen from Figure 11.1 the entropy takes on its maximum value for
the uniform distribution and its minimum value for the extreme cases (p =0
and p = 1). Since the value function should take on its maximum value at
the extreme cases and the minimum value in the uniform case, the negation
of the entropy is used as the value function as illustrated in Figure 11.2.

The value of the information scenario after observing a variable X is

V(TIX) = —(H(T) = I(X, T)).

Thus, one-step look-ahead hypothesis driven value of information analysis
in Bayesian networks amounts to computing the value of the initial informa-
tion scenario V(T) and the value of information scenarios where a variable X
is observed, i.e., V(T|X). The task is to identify the variable that increases the
value of information the most. The most informative variable to observe is the
variable with the highest mutual information with the hypothesis variable.
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Negative entropy for the binary case
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Fig. 11.2. The negation of the entropy of T.

Example 11.1. As an example we consider a one-step look-ahead hypothesis
driven value of information analysis on the Asia example shown in Figure 11.3.
The hypothesis variable is Bronchitis (B) and the initial set of evidence is
¢ =0. That is, we are considering whether or not the patient is suffering from
bronchitis.

Tuberculosis
Tub_or_cancer

Fig. 11.3. A graph specifying the independence and dependence relations of the
Asia example.

Given the network of Figure 11.3, the hypothesis variable Bronchitis, and
the initial set of evidence ¢ = {ep} = {D = yes}, we want to determine the most
valuable observation. We may compute the value of the initial information
scenario as
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V(Bronchitis) = —H(Bronchitis)
= - Z P(Bronchitis = x) log P(Bronchitis = x)
x€{no,yes}
= —0.69,
where
P(Bronchitis =yes) = 1 — P(Bronchitis = no)
= 045

i.e., P(Bronchitis) = (yes, no) = (0.55,0.45).

To identify the most informative observation, we compute the mutual in-
formation between the hypothesis variable and each of the other variables in
the model. Table 11.1 specifies the mutual information between Bronchitis and
each of the other (unobserved) variables.

Variable name (X) ‘ I(Bronchitis, X)

Dyspnoea 0.25
Smoker 0.05
X_ray 0.0008
Asia 0

Table 11.1. Mutual information between Bronchitis and other variables given no
observations.

Notice that one of the variables has a mutual information measure of value
zero. A mutual information measure of zero specifies that the two variables
are independent (this can be easily verified applying d-separation).

From Table 11.1 it is clear the most informative variable is Dyspnoea.
Thus, we choose to observe this variable. Assume we observe the patient to
suffer from dyspnoea; i.e., Dyspnoea = yes. The value of the new information
scenario can be computed as described above

V(Bronchitis| Dyspnoea = yes) = —H(Bronchitis| Dyspnoea = yes)
= —045,

where P(Bronchitis| Dyspnoea = yes) = (yes, no) = (0.834,0.166).

Once the Dyspnoea variable has been observed to be in state yes we may
be satisfied with the certainty in the hypothesis or we may search for the next
observation to make.

Table 11.2 shows the mutual information between Bronchitis and each
of the remaining unobserved variables when Dyspnoea is observed to be in
state yes. The variable with the highest mutual information score is X_ray.
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Variable name (X) ‘ I(Bronchitis, X)

X_ray 0.014
Smoker 0.0129
Asia 0.0002

Table 11.2. Mutual information between Bronchitis and other variables
given Dyspnoea = yes.

If the variable with the highest mutual information score is unobservable,
then we proceed to the variable with the second highest score. Notice that the
mutual information scores change as observations are made. Often both the
score and the order of the variables will change with observations.

Variables with a score of zero should not be observed as they will not add
any information to the analysis. Notice that additional information cannot
decrease the value of an information scenario.

11.2 VOI Analysis in Influence Diagrams

The value of information is a core element of decision analysis. We perform
decision analysis using influence diagram representations of decision problems.
The structure of an influence diagram N = (X, G, P, U) specifies a partial order
on observations relative to the order of decisions

Jo<D1 <71 <---<Dp <Jn.

Value of information analysis in influence diagrams considers the impact of
changing the partial order of observations relative to decisions.

Assume Dj is the next decision to be made and let € be the set of obser-
vations and decisions made up to decision Dj. Initially, the basis for making
decision Dj is the expected utility function EU(Dj | ) over the options encoded

by Dj .
Let X; € Jx where k > j such that Xj ¢ F(Dj) be a discrete random vari-
able with n states x1,...,xn; i.e., Xi is a variable observed after Dj or never

observed such that Xj is not a descendant of Dj. Assume X; = x is observed
prior to making decision Dj. The revised basis for making decision Dj is the
expected utility function EU(Dj|e,x). Prior to observing the state of X; the
probability distribution of X; is P(X;|e). Thus, we can compute the expected
utility of the optimal decision at Dj after X; is observed EUO(X;, Dj|e) to be

EUO(X;,Djle) = ) P(Xile) max EU(D; |e, Xs).
X )

This value should be compared with the expected utility maxp; EU(Dj|e)
of the optimal decision at Dj without the observation on X;. The value
VOI(X;, Djle) of observing X; before decision Dj is
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VOI(XI, D]' ‘E) = EUO(XU Dj |€) - Hll)aXEU(D) |€)

Ezxample 11.2 (Appendicitis). Appendicitis may cause fever, pain, or both. If
a patient has appendicitis, then the patient will have an increased count of
white blood cells in addition to fever and pain. Assume that fever and pain
are observed.

When a patient potentially has appendicitis, the physician may choose
to operate right away or wait for the result of a blood test. The question
considered is whether or not the result of the blood test provides sufficient
value.

Figure 11.4 shows a graphical representation of the decision problem where
we assume fever and pain are observed while the blood test result is not (yet)
observed.

Appendicitis

White_Blood_Cells

Operate

Fig. 11.4. A graph representing the Appendicitis example.

To compute the value of information on White_Blood_Cells the model has
to be quantified. Let P(Appendicitis = no, Appendicitis = yes) = (0.85,0.15)
and the remaining conditional probability distributions be given as specified
in Table 11.3-Table 11.5. Table 11.6 shows the utility function U(Appendicitis,
Operate).

‘ Appendicitis = no  Appendicitis = yes
Fever = no 0.5 0.02
Fever = yes 0.5 0.98
Table 11.3. The conditional probability distribution P(Fever|Appendicitis).
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‘ Appendicitis = no  Appendicitis = yes
Pain = no 0.4 0.05
Pain = yes 0.6 0.95
Table 11.4. The conditional probability distribution P(Pain|Appendicitis).

‘ Appendicitis = no  Appendicitis = yes
White_Blood_Cells = no 0.95 0.01
White_Blood_Cells = yes 0.05 0.99

Table 11.5. The conditional probability distribution P(White_Blood_Cells|
Appendicitis).

Appendicitis  Operate

no now 5
no wait -5
yes now —10
yes wait 10

Table 11.6. The utility function U(Appendicitis, Operate).

Assume that the physician observes the patient to suffer from pain and
fever; i.e., ¢ = {Fever = yes, Pain = yes}. With the above quantification we
compute the expected utility function over Operate to be EU(Operate|Fever =
yes, Pain = yes) = (0.31,—0.31). We compute the expected utility of the opti-
mal decision at Operate after White_Blood_Cells is observed to be

EUO(White_Blood_Cells, Operate| ¢)

= Z P(White_Blood_Cells| ¢)
White_Blood_Cells
max EU(Operate| ¢, White_Blood_Cells)

Operate

= 6.375.
The value of observing White_Blood_Cells before decision Operate is

VOI(White_Blood_Cells, Operate| ¢)
= EUO(White_Blood_Cells, Operate|¢) — max EU(Operate|¢)

Operate
=6.375—0.31 = 6.065.
Thus, the physician should wait for the result of the blood test.

Instead of considering which observation to make next, if any, at a deci-
sion in the middle of the decision process, we may consider how the maxi-
mum expected utility of the optimal strategy A changes as the partial order
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of observations is altered. Let MEU(A) be the maximum expected utility of
the original formulation of the decision problem N and let MEU(A*) be the
maximum expected utility of the revised formulation of the decision prob-
lem N* where a variable X € J; in N and X € J¢ in N* such that j > k
and X ¢ F(Dy—_1). The value of observing X before decision k — 1 instead of
before decision j — 1 is MEU(A*) — MEU(A).

Ezxample 11.3. Reconsidering the decision problem in Example 11.2, we com-
pute the maximum expected utility MEU(A ) A) of the optimal strategy A for the
information scenario where White_Blood_Cells is not observed before making
any observation to be (where we use the first letter of each variable name to
shorten the presentation)

ZZmaXZZP P(FIA)P(P|A)P(W|A)U(O, A)

= 2.99.

MEU(A)

Similarly, we compute the maximum expected utility MEU*(K*) of the opti-
mal strategy A* for the information scenario where White_Blood_Cells is ob-
served to be

MEU*(A*) ZZZmaXZP P(FIA)P(P|A)P(W[A)U(O,A)

= 5.45.

Based on the above analysis the physician should wait for the result of the
blood test. The value of observing White_Blood_Cells prior to the decision is

VOI(White_Blood_Cells, Operate|e) = MEU*(A*) — MEU(A)
= 5.45-2.99
= 246,

where ¢ is the set of observations on Fever and Pain.

11.3 Summary

In this chapter we have considered value of information analysis in Bayesian
networks and influence diagrams in two separate sections. In both cases we
have described a one-step look-ahead approach to value of information analy-
sis. That is, value of information analysis performed under the assumption
that we may at most consult one additional information source in the search
for further information before accepting the posterior distribution of the hy-
pothesis variable or making the decision.

In order to perform value of information analysis in Bayesian networks
we have defined entropy and mutual information as information measures.
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Entropy is a measure of how much the probability mass is scattered over the
states of the hypothesis variable. In the evaluation of possible information
sources we identify the possible observation that reduces the entropy of the
hypothesis variable the most. This will be the variable with the highest mutual
information with the hypothesis variable.

In the case of value of information analysis in influence diagrams expected
utility is used as the information measure. In the evaluation of possible infor-
mation sources we identify the possible observation that increases the expected
utility of the decision the most. This variable is identified by computing the
maximum expected utility of the decision given that the variable is observed
prior to the decision. This maximum expected utility is computed for each
possible observation and compared with the maximum expected utility of the
decision given no additional information.

Exercises

Exercise 11.1. Consider the Asia network shown in Figure 11.5 (see Exam-
ple 4.2 on page 68 for more details).

Tuberculosis
Tub_or_cancer

Fig. 11.5. A graph specifying the independence and dependence relations of the
Asia example.

The Asia network consists of the three hypothesis variables Bronchitis,
Cancer, and Tuberculosis. The risk factors are Smoking and a recent visit to Asia
while the symptoms of the network are X_ray and Dyspnoea. The risk factors
and symptoms are the possible observations a physician can make on a patient.

(a) What is the entropy of the prior distribution on each of the diseases?

(b) What is the most informative observation with respect to each of the
diseases?

(c) What is the most informative observation with respect to each of the
diseases if the patient is a smoker suffering from dyspnoea?
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Exercise 11.2. A used car salesman offers all potential customers a test per-
formed on the car they are interested in buying. The test should reveal whether
the car has either no defects or one (or more) defects; the prior probability
that a car has one or more defects is 0.3. There are two possible tests: Test;
has three possible outcomes, namely no-defects, defects and inconclusive. If
the car does not have any defects, then the probabilities for these test results
are 0.8, 0.05 and 0.15, respectively. On the other hand, if the car has defects,
then the probabilities for the test results are 0.05, 0.75 and 0.2. For Test;
there are only two possible outcomes (no-defects and defects). If the car does
not have any defects, then the probabilities for the test results are 0.8 and 0.2,
respectively, and if the car has defects then the probabilities are 0.25 and 0.75.

(a) Construct a Bayesian network (both structure and probabilities) repre-
senting the relations between the two tests and the state of the car.

(b) Calculate the probabilities P(StateOfCar|Test;) and P(Test;).

(c) Perform a value of information analysis on both Test; and Test, with
respect to StateOfCar.

Exercise 11.3. Assume we are given the influence diagram in Figure 11.6.

A >( B

H—LF—O0—O

Fig. 11.6. An influence diagram with two decisions.

P(A|Dy) ‘ dir di2 P(B|A) ‘ a;  a

a; | 0.3 0.6 by | 0.1 0.8
a, | 0.7 04 b, | 0.9 0.2
P(T|A,B) ‘ a; az P(C|B,D3) ‘ by b>
b; (0,1) (0.2,0.8) d>; | (0.9,0.1) (0.5,0.5)
b, | (0.6,0.4) (0.8,0.2) dy; | (0.5,0.5) (0.9,0.1)
Wi(AD) | a1 a2
di; |10 0 Uz2(C) =(20,0)
di | 0 —6

(a) Compute the solution to this decision problem (i.e., compute the strategy
maximizing the expected utility).
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(b) Describe the impact of the information on variable T.

(c) Repeat parts (a) and (b) when P(A|Dy = dj2) = (0.4,0.6) and U, (C) =
(20,100).

(d) Assume the informational link between T and D3 is not present in the
influence diagram. Compute VOI(T) when Dy = dy; for both quantifica-
tions.

Exercise 11.4. Assume that Frank wakes up one morning feeling ill. Frank
thinks that he may have caught the flu, and he now has to decide whether to
go to the pharmacy to buy some medicine (at the cost of €150). If Frank has
the flu, then the medicine will relieve his discomfort during the sickness period;
if he does not have the flu then the medicine will have no effect. Assuming
that Frank does not suffer from the discomfort caused by a flu, then he can
take some additional overtime work which will be worth € 2000.

Before Frank decides to go to the pharmacy, he can try to get more infor-
mation by buying a thermometer (at a cost of €10.) and test whether he has
a fever; the thermometer is very precise and will indicate a fever if and only
if Frank actually has a fever.

(a) Perform a myopic value of information analysis for the decision problem
above and calculate the expected profit of performing the test (i.e., buying
the thermometer at a cost of €10 and taking the temperature). Calculate
the required probabilities from the joint probability table (over the vari-
ables Flu and Fever) specified in Table 11.7.

Flu
no yes
Feve no | 0.89298  0.00095
ver yes | 0.09702  0.00905

Table 11.7. The joint probability distribution P(Fever, Flu).
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| “given” (e.g., “alb” means “a given b”)

pa Parents of

fa  Family of

ch  Children of

an  Ancestors of

An  Ancestral set of

de  Descendants of

nd  Non-descendants of

true  Boolean value “true”
false  Boolean value “false”
J  Past

EU  Expected utility
MEU Maximum expected utility
Normal (Gaussian) distribution
k-dimensional Normal distribution
Law of (e.g., £(X) = N(u, 02), also denoted X ~ N(u, 62))
The set of all real numbers
Scope
Input variables
Private (hidden) variables
Output variables
Public variables (input 4+ output)
Evidence variables (i.e., subset of X for which their values are
known)
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EUO, 297
> -max-)_-rule, see influence diagram

~, 19
-1, 21
— , see edge, directed

5, , see edge, directed

i, see edge, undirected

— , see edge, undirected

abductive reasoning, see reasoning,
abductive

acyclic directed graph, see graph,
acyclic directed

AIC, see Akaike’s Information Criterion

Akaike’s Information Criterion, 249
almost equal, 280

ambiguous region, 242

An, see ancestral set

an, see ancestor

ancestor, 19

ancestral set, 20

Appendicitis, 298, 300

Apple Jack, 66, 80

arc, see edge

arc reversal, 52, 111

Asia, 68, 261, 267, 274, 295
auxiliary variable, 199, 218
axioms, see probability axioms

barren variable, see variable, barren
Bayes’ factor, 53, 278
Bayes’ rule, 50

interpretation of, 51

Bayesian Information Criterion, 249
Bayesian likelihood ratio, 278
Bayesian network
conditional LG, 72, 70-75
direct inference approach, 111
discrete, 65, 65-70
indirect inference approach, 121
query, 110
query based inference, 110
belief theory, 4

BIC, see Bayesian Information Criterion

Burglary or Earthquake, 25

case
complete, 246

category, see variable, category

causal network, 25-31
converging connection in, 29-30
diverging connection in, 28-29
flow of information in, 25—31
serial connection in, 26-27
types of connections in, 26

causal reasoning, see reasoning, causal

causality, 6, 24-25, 66
modeling, 30

causally independent, 205

cause variables, 178, 182, 205

causes, 205

certainty factor, 7

ch, see child

chain graph, see graph, chain

chain rule, 8, 58



314 Index
Bayesian networks, 59, 65
CLG Bayesian networks, 72
CLQG influence diagrams, 86
influence diagrams, 76
object-oriented Bayesian network
models, 96
Chest Clinic, see Asia
junction tree, 117
child, 19
chord, 117
CLG Bayesian network, see Bayesian
network, conditional LG
CLG distribution, see conditional linear
Gaussian distribution
clique, 114
CLQG influence diagram, see influence
diagram, conditional LQG, 86
collider, 231
combination, see probability potential,
combination
conditional independence, see indepen-
dence
conditional linear Gaussian distribution,
71
conditional linear-quadratic Gaussian
influence diagram, see influence
diagram, conditional LQG
conditional probability, see probability,
conditional
conflict analysis, 261
local conflict, 265
partial conflict, 265
rare case, 265
conflict measure, 262
constraint variable, 149, 189
contribution variable, 206
converging connection, see causal
network, converging connection in
cost of omission, 267, 275
threshold, 268
cycle, 20
directed, 20

D-map, 56

d-separation, 32, 59

DAG, see graph, acyclic directed
DAG faithfulness assumption, 230
de, see descendant

decision

full control, 223
decision future, 79
decision history, 78
decision past, 79
decision problem
well-defined, 80
decision variable, 74
informational parents, 84
decision variables
partial order, 78
total order, 80
deductive reasoning, see reasoning,
deductive
default inhibitor, 206, 207
default prior probability distribution,
94
degrees of freedom, 232
descendant, 19
dHugin, 101
diagnostic reasoning, see reasoning,
diagnostic
directed acyclic graph, see graph,
acyclic directed
directed cycle, see cycle, directed
directed global Markov criterion, 32, 3/
directed global Markov property, 59
directed graph, see graph, directed
dissemination of experience, 252
distance measure, 274
distinguished state, 209
distributive law, see probability
calculus, distributive law of
diverging connection, see causal
network, diverging connection in
division, see probability potential,
division
by zero, 46, 50
dom, see variable, domain
dynamic Bayesian network, 100

edge, 18
derived direction, 237
directed, 18
undirected, 19
effect variable, 178, 182, 205
elicitation of numbers, see parameters,
elicitation of



elicitation of structure, see structure,
elicitation of
elimination order, 115
strong, 123, 125
EM algorithm
penalized, 249
entropy, 292
conditional, 293
conditional mutual information, 293
cross, 293
mutual information, 293
equivalence class, 230
equivalent sample size, 252
equivalent variables, see variable,
equivalence
event, 38
evidence, 23
cost of omission, 267
hard, 23
impact, 267
likelihood, see evidence, soft
potential, 45
soft, 23
sufficient, 280
expected utility, 75
experience count, 250, 252
experience table, 250
expert system, 3, 107
normative, 5
explaining away, 7, 18, 30
expressions, see parameter, elicitation
of

factorization

recursive, see probability distribution,

recursive factorization of

faithfulness assumption, 228
filtering, 99
finding

important, 280

irrelevant, 280

redundant, 280
flat network, 96
functional uncertainty, 186
fundamental rule, 39, 50
fuzzy logic, 5
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gamble-based approach, see parameter,
elicitation of
generalized marginalization operator,
127
global conflict, 265
graph
acyclic directed, 20
chain, 17
condition, 243
connected, 20
directed, 19
equivalence class, 231
instances, 92
moral, 20
moralization, 114
skeleton, 20, 231, 236
strongly connected component, 243
undirected, 19

head, 114
head-to-head, 19
Hugin algorithm, 119
hypothesis variables, 68

I-map, 56
IC algorithm, 235
idioms, 154
independence, 54
completeness of DAG, 56
conditional, 55
correctness of DAG, 56
represented in DAGs, 56
independence of causal influence, 205
inference engine, 107
influence diagram, 74
> -max-)_-rule, 124
conditional LQG, 86, 85-89
discrete, 75, 75-85
information sets, 78
limited memory, 89, 89-91
minimal reduction, 135
soluble, 136
linear-quadratic CG
> -max-)_-rule, 129
maximum expected utility, 78
no-forgetting links, 84
policy, 79
policy function, 125
strategy, 78
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optimal, 78

information measures, 291

informational link, see link, informa-
tional, 216, 218

inheritance, 98

inhibitor probability, 206

initial assessment, 283

instance, 92

inter-causal reasoning, see explaining
away

interface, 99

interface variables, 92

intermediate variables, 178

intervening action, 75

intervening decision, 80

intervention, 202

joint probability distribution, see
probability distribution
junction tree, 116
COLLECTINFORMATION, 118
DISTRIBUTEINFORMATION, 118
propagation, 117
root, 118

kind, see variable, kind

law of parsimony, 171
leak probability, 206
likelihood evidence, see evidence, soft
LIMID, see influence diagram, limited
memory
link, see edge
informational, 76
local conflict, 265

marginalization, 42, 46

generalized operator, 127
Markov criterion, see directed global

Markov criterion

Markovian, 99
maximum expected utility principle, 75
measurement uncertainty, 196
mediating variable, 178, 179, 181, 191
MEU

maximum expected utility, 125
minimal conditioning set, 241

minimal reduction, see influence
diagram, limited memory, minimal
reduction

missing data mechanism, 229

Mixture of Gaussian distributions, 210

model verification, 159

modeling technique

parent divorcing, 178

monotonicity, 264

moral graph, see graph, moral

multivariate Gaussian distribution, 71

mutually exclusive states, 65, 71

nd, see non-descendants
necessary path condition, 241
network class, 92
default instance, 97
internal scope, 93
neural network, 15
no-forgetting, 76
node absorption, 201
Noisy-MAX, 209
Noisy-OR, 205
non-descendants, 20
non-intervening action, 75
normalization, see probability potential,
normalization of
normalization constant, 109
normalized likelihood, 51, 265, 277
nuisance variable, see variable, nuisance,
201

object, 92
object-oriented probabilistic network,
91-98
instance tree, 97
object-orientation
classes, 92
definition, 91
inheritance, 92
objects, 92
observation
essential, 131
requisite, 131
Occam’s Razor, 171
Oil Wildcatter, 88
OOBN, see object-oriented probabilistic
network



pa, see parent
parameters
elicitation of, 163
parent, 19
partial conflict, 265
partial order, 216
path, 19
blocked in DAG, 32
blocked in undirected graph, 20
directed, 19
PC algorithm, 235
PDAG, 231
perfect map, 56
perfect recall, see no-forgetting
poly-tree, 110
posterior probability distribution, see
probability distribution, posterior
potential calculus, 46
prediction, 99
probabilistic network
characteristics, 145
when to use, 144
probability
conditional, 38
probability axioms, 39
probability calculus, 46
chain rule of, 58
distributive law of, 47
fundamental rule of, 39, 50
probability distribution
decomposition, 37
for variables, 40
graphical representation of condi-
tional, 43
marginal, 43
posterior, 45
recursive factorization of, 37
probability of future decisions, 135
probability potential, 44
combination, 46
division, 46
marginalization, see marginalization
normalization of, 44, 45
vacuous, 44
process
underlying distribution, 228
projection, see marginalization
propagation, see junction tree,
propagation
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reasoning
abductive, 18
causal, 18
deductive, 18
diagnostic, 18
inter-causal, see explaining away
recursive factorization, see proba-
bility distribution, recursive
factorization of
relevant network, 111
relevant variable, 131
retrieval of experience, 252
rule of total probability, 41
rule-based system, 5

selector variable, 184
sensitivity function, 282
sensitivity value, 285
serial connection, see causal network,
serial connection in
Single Policy Updating, 133
skeleton, see graph, skeleton
smoothing, 99
soluble, see influence diagram, limited
memory, soluble
Sore Throat, 207
SPU, see Single Policy Updating
stability assumption, 228
straw model, 262
structure
elicitation of, 152
uncertainty, 184
verification, see model verification
subclass, 98
subtype, see variable, subtype

tail, 114

temporal links, 99

temporal order, 182

test decision, 212

time-sliced Bayesian network, 100
topological ordering, 58

tree, 20

Type I error, 235

Type II error, 235

undirected dependence relation, 189
undirected graph, see graph, undirected
unfolded network, 96
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utility function, 74

v-structure, see collider
vacuous potential, see probability
potential, vacuous
value function, see utility function, 293
value nodes, 75
variable, 20-23
barren, 49, 83, 110
basic, 92
binding link, 94
bound, 94
category, 22
chance, 21
conditioned, 65
conditioning, 65
decision, 21
decision future, 79
decision history, 78
decision past, 79
designated state, 205
deterministic, 21
domain, 21
elimination, 111, 115
equivalence, 94
extremal decision, 136

hidden, latent, 229

identification of, 147

independence, see dependence and
independence

kind, 22

no impact state, 205

nuisance, 111

policy, 79

qualified name, 93

random, 21

scope, 93

set by intervention, 203

simple name, 93

strong marginal, 122

strong type checking, 94

subtype, 22, 166

synergy, 209

target, 110

taxonomy, 22

type, 150

vs. vertex, 21

weak marginal, 122

well-defined, 147

vertex
symbols, 23
vs. variable, 21





