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Preface

Time series and random fields are main topics in modern statistical techniques.
They are essential for applications where randomness plays an important role.
Indeed, physical constraints mean that serious modelling cannot be done us-
ing only independent sequences. This is a real problem because asymptotic
properties are not always known in this case.

The present work is devoted to providing a framework for the commonly used
time series. In order to validate the main statistics, one needs rigorous limit
theorems. In the field of probability theory, asymptotic behavior of sums may
or may not be analogous to those of independent sequences. We are involved
with this first case in this book.

Very sharp results have been proved for mixing processes, a notion intro-
duced by Murray Rosenblatt [166]. Extensive discussions of this topic may be
found in his Dependence in Probability and Statistics (a monograph published
by Birkhaiiser in 1986) and in Doukhan (1994) [61], and the sharpest results
may be found in Rio (2000) [161]. However, a counterexample of a really simple
non-mixing process was exhibited by Andrews (1984) [2]. The notion of weak
dependence discussed here takes real account of the available models, which
are discussed extensively. Our idea is that robustness of the limit theorems
with respect to the model should be taken into account. In real applications,
nobody may assert, for example, the existence of a density for the inputs in
a certain model, while such assumptions are always needed when dealing with
mixing concepts. Our main task here is not only to provide the reader with
the sharpest possible results, but, as statisticians, we need the largest possible
framework. Doukhan and Louhichi (1999) [67] introduced a wide dependence
framework that turns out to apply to the models used most often. Their simple
way of weakening the independence property is mainly adapted to work with
stationary sequences.

We thus discuss examples of weakly dependent models, limit theory for such
sequences, and applications. The notions are mainly divided into the two fol-
lowing classes:

e The first class is that of “Causal” dependence. In this case, the conditions
may also be expressed in terms of conditional expectations, and thus the

v



vi PREFACE

powerful martingale theory tools apply, such as Gordin’s [97] device that
allowed Dedecker and Doukhan (2003) [43] to derive a sharp Donsker
principle.

e The second class is that of noncausal processes such as two-sided linear
processes for which specific techniques need to be developed. Moment
inequalities are a main tool in this context.

In order to make this book useful to practitioners, we also develop some ap-
plications in the fields of Statistics, Stochastic Algorithms, Resampling, and
Econometry. We also think that it is good to present here the notation for the
concepts of weak dependence. Our aim in this book was to make it simple to
read, and thus the mathematical level needed has been set as low as possible.
The book may be used in different ways:

e First, this is a mathematical textbook aimed at fixing the notions in the
area discussed. We do not intend to cover all the topics, but the book
may be considered an introduction to weak dependence.

e Second, our main objective in this monograph is to propose models and
tools for practitioners; hence the sections devoted to examples are really
extensive.

e Finally, some of the applications already developed are also quoted for
completeness.

A preliminary version of this joint book on weak dependence concepts was
used in a course given by Paul Doukhan to the Latino Americana Escuela de
Matemaética in Merida (Venezuela). It was especially useful for the preparation
of our manuscript that a graduate course in Merida (Venezuela) in September
2004 on this subject was based on these notes. The different contributors and
authors of the present monograph participated in developing it jointly. We
also want to thank the various coauthors of (published or not yet published)
papers on the subject, namely Patrick Ango Nzé (Lille 3), Jean-Marc Bardet
(Université Paris 1), Odile Brandiere (Orsay), Alain Latour (Grenoble), Hélene
Madre (Grenoble), Michael Neumann (Iena), Nicolas Ragache (INSEE), Math-
ieu Rosenbaum (Marne la Vallée), Gilles Teyssiere (Goteborg), Lionel Truquet
(Université Paris 1), Pablo Winant (ENS Lyon), Olivier Wintenberger (Uni-
versité Paris 1), and Bernard Ycart (Grenoble). Even if all their work did
not appear in those notes, they were really helpful for their conception. We
also want to thank the various referees who provided us with helpful comments
either for this monograph or for papers submitted for publication and related
to weak dependence.

We now give some clarification concerning the origin of this notion of weak
dependence. The seminal paper [67] was in fact submitted in 1996 and was part
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of the PhD dissertation of Sana Louhichi in 1998. The main tool developed in
this work was combinatorial moment inequalities; analogous moment inequali-
ties are also given in Bakhtin and Bulinski (1997) [8]. Another close definition
of weak dependence was provided in a preprint by Bickel and Bithlmann (1995)
[17] anterior to [67], also published in 1999 [18]. However, those authors aimed
to work with the bootstrap; see Chapter 13 and Section 2.2 in [6]. The approach
of Wu (2005) [188] detailed in Remark 3.1, based on L2-conditions for causal
Bernoulli shifts, also yields interesting and sharp results.
This monograph is essentially built in four parts:

Definitions and models
In the first chapter, we make precise some issues and tools for investigating
dependence: this is a motivational chapter. The second chapter introduces
formally the notion of weak dependence. Models are then presented in a
long third chapter. Indeed, in our mind, the richness of examples is at the
core of the weak dependence properties.

Tools
Tools are given in two chapters (Chapters 4 and 5) concerned respectively
with noncausal and causal properties. Tools are first used in the text for
proving the forthcoming limit theorems, but they are essential for any type
of further application. Two main tools may be found: moment bounds and
coupling arguments. We also present specific tightness criteria adapted to
work out empirical limit theorems.

Limit theorems
Laws of large numbers (and some applications), central limit theorems,
invariance principles, laws of the iterated logarithm, and empirical central
limit theorems are useful limit theorems in probability. They are precisely
stated and worked out within Chapters 6-10 .

Applications
The end of the monograph is dedicated to applications. We first present
in Chapter 11 the properties of the standard nonparametric techniques.
After this, we consider some issues of spectral estimation in Chapter 12.
Finally, Chapter 13 is devoted to some miscellaneous applications, namely
applications to econometrics, the bootstrap, and subsampling techniques.

After the table of contents, a useful short list of notation allows rapid access to
the main weak dependence coefficients and some useful notation.

Jérome Dedecker, Paul Doukhan, Gabriel Lang, José R. Ledn,
Sana Louhichi, and Clémentine Prieur
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List of notations

We recall here the main specific or unusual notation used throughout this

monograph.

As usual, #A denotes the cardinal of a finite set A, and N,Z, R, C are the standard
sets of calculus. For clarity and homogeneity, we note in this list:

e a <Xbora= O(b) means that a < Cb for a constant C' > 0 and a,b > 0,

a<<bora=o(b) as b — 0, for a,b > 0, means limy_oa/(a+b) =1,

e aAb, aVbare the minimum and the maximum of the numbers a,b > 0,
e M,U,V, A, B are o-algebras, and (2, 4, P) is a probability space,
e XY, Z, ... denote random variables (usually &, ( are inputs),

1
e LP(E,&,m) are classes of measurable functions: ||f[l, = ([, |f(z)[’dm(z))»

o0,

e ['is a cumulative distribution function,
® is the normal cumulative distribution function, and ¢ = ®’ is its density,

<

e n is a time (space) delay, r,s € N are “past-future” parameters, p is a moment
order, and F, G are function spaces.

a(ld,V) p. 4,
a(M,X) p. 16,
ar(n) p. 19,
BV p. 11,
BV

Q(U,V) p- 4,
B(M,X) p. 16,
Br(n) p. 19,
Ch,r p. 73,
ex r(n) p. 87,
cx .(n) p. 87,
(M, X) p. 19,
Yp(n) p- 19,
On p. 25,
e(X,Y) p. 11,

§1.2, eqn. (1.2.1),
§2.2.3, def. 2.5-1,
§2.2.3, def. 2.2.15,
§2.1,

8 1.2, eqn. (1.2.4),
§2.2.3, def. 2.5-2,
§2.2.3, def .2.2.15,
§ 4.3, def. 4.1,
§4.4.1, eqn. (4.4.7),
§4.4.1, eqn. (4.4.8),
§2.2.4, def. 2.2.16,
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§3.1.2, def. 3.1.10,
§2.2, eqn. (2.2.1),
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mixing coefficient
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Chapter 1

Introduction

This chapter is aimed to justify some of our choices and to provide a basic
background of the other competitive notions like those linked to mixing condi-
tions. In our mind mixing notions are not related to time series but really to
o-algebras. They are consequently more adapted to work in areas like Finance
where history, that is the o-algebra generated by the past is of a considerable
importance.

Having in view the most elementary ideas, Doukhan and Louhichi (1999) [67] intro-
duced the more adapted weak dependence condition developped in this monograph.
This definition makes explicit the asymptotic independence between ‘past’ and ‘fu-
ture’; this means that the ‘past’ is progressively forgotten. In terms of the initial
time series, ‘past’ and ‘future’ are elementary events given through finite dimensional
marginals. Roughly speaking, for convenient functions f and g, we shall assume that

Cov (f(‘past’), g(‘future’))

is small when the distance between the ‘past’ and the ‘future’ is sufficiently large. Such
inequalities are significant only if the distance between indices of the initial time series
in the ‘past’ and ‘future’ terms grows to infinity. The convergence is not assumed to
hold uniformly on the dimension of the ‘past’ or ‘future’ involved. Another direction to
describe the asymptotic behavior of certain time series is based on projective methods.
It will be proved that this is coherent with the previous items.

Sections in this chapter first provide general considerations on independence,
then we define classical mixing coefficients, mixingales and association to con-
clude with simple counterexamples.

1.1 From independence to dependence

We recall here some very basic facts concerning independence of random vari-
ables. Let P,F be random variables defined on the same probability space
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(Q, A, P) and taking values in measurable spaces (Ep,&p) and (Er,Er). Inde-
pendence of both random variables P, F writes

P(X €AY eB) =P(Xc AP(Y € B), VY(A,B)e& x&  (1.1.1)

extending this identity by linearity to stepwise constant functions and using
limits yields a formulation of this relation which looks more adapted for appli-
cations:

Cov(f(P),g(F)) =0,  V(f,g9) € L=(Ep,&p) x L(EF,EF)

where, for instance, L (Ep,Ep) denotes the subspace of £°(Ep,R) (the space
of bounded and real valued functions), of measurable and bounded function
f : (Ep,gp) — (R,B}R)

If the spaces Ep, Er are topological spaces endowed with their Borel o-algebras
(the o-algebra generated by open sets) then it is sufficient to state

Cov(f(P),g(F)) =0, Y(f,9) € PxF (1.1.2)

where P, F are dense subsets of the spaces of continuous functions Fp — R
and Fp — R. In order to qualify a simple topology on both spaces it will be
convenient to assume that Ep and Eg are locally compact topological spaces
and the density in the space of continuous functions will thus refer to uniform
convergence of compact subsets of Fp, Fp.

From a general principle of economy, we always should wonder about the small-
est classes P, F possible. The more intuitive (necessary) condition for indepen-
dence is governed by the idea of orthogonality.

In this idea we now develop some simple examples for which, however

Orthogonality = Independence.

e Bernoulli trials

If Ep = Er = {0, 1} are both two-points spaces, the random variables now follow
Bernoulli distributions and independence follows form the simple orthogonality
of Cov(P,F) = 0. Indeed from the standard bilinearity properties of the covari-
ance, we also have Cov(1-P,F) = 0, Cov(P,1-F) = 0 and Cov(1-P,1-F) =0
which respectively means that eqn. (1.1.1) holds if (A, B) = ({a},{b}) with
(a,b) = (0,0) or respectively (1,0), (0,1) and (1,1). The problem of this exam-
ple is that in this case the o-algebras generated by P, F are very poor and this
example will thus not fit the forthcoming case of ‘important’ past and future.

e (Gaussian vectors
If now Ep = R and Er = RY then if the vector Z = (P,F) € RP™? is
Gaussian then its distribution only depends on its second order properties™,

*This only means that Z’s distribution depends only on the expressions EZ; and EZ;Z;
for 1 <i,5<dif Z=(Z1,...,2Zq).
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hence coordinate functions are enough to determine independence. In more
precise words two random vectors P = (Py,...,P,) and F = (F1,..., Fy) are
independent if and only if Cov(P;, Fj) =0 for any 1 <i<pandany 1 <j <gq.
This is a very simple characterization of independence which clearly does not
extend to any category of random variables.

For example, let X, Y € R be independent and symmetric random variables such
that P(X = 0) =0 if we set P = X and F = sign(X)Y then

Cov(P,F) = E(|X|Y) —EX -EF = E|X|-EY —EX -EF =0

because X and Y are centered random variables even if those variables are not
independent if the support of Y’s distribution contains more than two points.

A simple situation of uncorrelated individually standard Gaussian random vari-
ables which are not independent is provided’ with the couple (P, F) = (N, RN)
where N ~ N(0,1) and R is a Rademacher random variable (that means
P(R=1)=P(R=—1)=}) independent of N.

e Associated vectors (cf. § 1.4)

Again, we assume that EFp = RP and Er = R?, then the random vector X =
(P,F) € RP™ = R? is called associated in case

Cov(h(X), k(X)) >0

for any measurable couple of functions h, k : R — R such that both E(h*(X) +

k*(X)) < oo and the partial functions x; — h(z1,...,zq) and ; — k(z1,...,24)
are non-decreasing for any choice of the remaining coordinates z1, ...,x;—1,
ZTjt+1,...,2q4 € Rand any 1 < j < d. A essential property of such vectors is

that here too, orthogonality implies independence. This will be developed in a
forthcoming chapter.

An example of associated vectors is that of independent coordinates. Even if
it looks uninteresting case in our dependent setting, this leads to much more
involved examples of associated random vectors through monotonic functions.
The class of such coordinatewise increasing functions is a cone of L?(X), the class
of functions such that Eh*(X) < oo, hence the set of associated distributions
looks like a (very thin) cone of the space of distributions on R

The same idea applies to Gaussian distributions which is even finite dimensional
in the large set of laws on R

If now, we consider a time series X = (X,,)nez with values in a locally compact
topological space E (typically E = R?) we may consider one variable P of the
past and one variable F' of the future:

P:(Xilw"aXiu)a F:(Xj17"'7Xj'u)7
TIn this case both variables are indeed centered with Normal distributions and

E{N(RN)} = ER-EN? = 0 while |[N| = |RN]| is not independent of itself since it is not
a.s. a constant.
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for i; <ig < --- iy <j1 <joa <o Sjv,u,UEN* :{1,2,...}.
Independence of the time series X thus writes as the independence of P and F
for any choices i1 <5 < -+ < 4y, < J1 < Jo < -+ < j,. Independence of the
times series up to time m, also called m-dependence, is now characterized as
independence of P and F if i, + m < j;. Finally, asymptotic independence of
past and future will thus be given by arbitrary asymptotics

er)= sup  sup [Cov(f(P),g(F))| (1.1.3)
d(P,F)>r (f,9)€FXG

where d(P,F) = j; —i,. The only problem of the previous definition is that the
corresponding dependence coefficient should also be indexed by suitable multi-
indices (i1,142,...,%,) and (j1,J2,...,J»). This definition will be completed in
chapter 2 by considering classes P, C P and F, C F and suprema as well
with respect to ordered multi-indices (i1, 42, . . ., 4,) and (j1, J2, - . ., ju) such that
jl - Zu Z r.

1.2 Mixing

Mixing conditions, as introduced by Rosenblatt (1956) [166] are weak depen-
dence conditions in terms of the o—algebras generated by a random sequence.
In order to define such conditions we first introduce the conditions relative to
sub-o—algebras U,V C A on an abstract probability space (£, .4, P):

al,V) = sup [PUNV)—PU)PV) (1.2.1)
veu,vey
pU,V) = EILQ(MS)upe]LZ(V)|Corr(u,v)| (1.2.2)
_ e POV
o) = s g —BW) (1.2.3)
I J
BUY) =, s SSTBWNY) - PRI (1:2.4)

WUir<i<r € ul | =1 j=1

J
Vii<j<g €V

In the definition of 3, the supremum is considered over all measurable partitions
(Ui)i<i<r, (Vi)i<j<g of Q. The above coefficients are, respectively, Rosenblatt
(1956) [166]’s strong mixing coefficient a(U, V), Wolkonski and Rozanov (1959)
[187]’s absolute regularity coefficient 5(U, V), Kolmogorov and Rozanov (1960)
[112]’s maximal correlation coefficient p(i,V), and Ibragimov (1962) [110]’s
uniform mixing coefficient ¢(U, V). A more comprehensible formulation for 3 is
written in terms of a norm in total variation

BU,V) = |Pugy — Py @ Pyllrv
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here Py, Py, denote the restrictions of P to o—fields U,V and Pygy is a law on
the product o—fields defined of rectangles by Pygy(U,V) = P(U,V). In case
U,V are generated by random variables U, V' this may be written

pU,V) = Pw,v) —Pv@Py|rv

as the total variation norm of distributions of (U, V') and (U, V*) for some inde-
pendent copy V* of V. The Markov frame is however adapted to prove S-mixing
since this condition holds under positive recurrence.
In fact any coefficient p such that u(U,V) € [0,+oc] is well defined and such
that independence of U,V implies u(U,V) = 0 may be considered as a mix-
ing coefficient. Once a mixing coefficient has been chosen, the corresponding
mixing condition is defined for random processes (X;):ez and for random fields
(Xt)teza:

px(r) =supc(o(Xe,t <i),0(Xs,t >i+71)) (1.2.5)

i€z

and the random process is called p-mixing in case pux(r) —r—oco 0. Here u =
a, B, ¢ or p thus yield the coefficient sequences ax (1), Bx(r), ¢x(r) or px(r);
many other coeflicients may also be introduced.

For the more difficult case of random fields, one needs a more intricate definition.
The one we propose depends on two additional integers, and the random field
(X¢)teza is p-mixing in case for any u,v € N*, ¢x y,4(7) —r—00 0, where now

x.ab(r) = sup clo(X,t € A),0(Xy,t € B)) (1.2.6)
#A=a,#B=b,d(A,B)>r

the supremum is considered over finite subsets with cardinality u, v and at least
r distant (where a metric has been fixed on Z9).
The following relations hold:

p — mixing

.. = o — mixin
[ — mixing } &

¢ — mixing = {
and no reverse implication holds in general.
Examples for such conditions to hold are investigated in Doukhan (1994) [61],
and Rio (2000) [161] provides up-to-date results in this setting. We only quote
here that those conditions are usually difficult to check.

1.3 Mixingales and Near Epoch Dependence

Definition 1.1 (Mc Leish (1975) [129], Andrews (1988) [3]). Let p > 1 and let
(Fn)nez be an increasing sequence of o-algebras. The sequence (X, Fn)nez is
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called an LLP-mizingale if there exist nonnegative sequences (¢p)nez and
(¥(n))nez such that (n) — 0 as n — oo and for all integers n € Z, k > 0,

1 X0 —E (X0 | Fast) lp < cato(k+1), (13.1)
IE (X0 | Faoi)lp < cato (). (13.2)

This property of fading memory is easier to handle than the martingale condi-
tion. A more general concept is the near epoch dependence (NED) on a mixing
process. Its definition can be found in Billingsley (1968) [20] who considered
functions of ¢—mixing processes.

Definition 1.2 (Potscher and Prucha (1991) [152]). Let p > 1. We consider a
c-mizing process (defined as in eqn. (1.2.5)) (Vy.), oy - For any integers i < j,
set F! = o (Vi,...,V;). The sequence (X,,, Fp)nez is called an LP-NED process
on the c-mizing process (Vy.), oy if there exist nonnegative sequences (cn)nez
and (Y(n))nez such that (n) — 0 as n — oo and for all integersn € Z, k > 0,

|~ B 1 ) | < cw b,

This approach is developed in details in Potscher and Prucha (1991) [152].
Functions of MA (co) processes can be handled using NED concept. For instance,
limit theorems can be deduced for sums of such Functions of MA(co) processes.
These previous definitions translate the fact that a k-period — ahead in the
first case, both ahead and backwards in the second definition — projection is
convergent to the unconditional mean. They are known to be satisfied by a wide
class of models. For example, martingale differences can be described as ;-
mixingale sequences, and linear processes with martingale difference innovations
as well.

1.4 Association

The notion of association was introduced independently by Esary, Proschan and
Walkup (1967) [85] and Fortuin, Kastelyn and Ginibre (1971) [87].

The motivations of those authors were radically different since the first ones
were working in reliability theory and the others in mechanical statistics, and
their condition is known as FKG inequality.

Definition 1.3. The sequence (Xi)iez is associated, if for all coordinatewise
increasing real-valued functions h and k,

Cov(h(X¢,t € A),k(Xy,t € B)) >0
for all finite disjoint subsets A and B of Z and if moreover
E (h(X¢,t € A)? + k(Xy,t € B)?) < o0.
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This extends the positive correlation assumption to model the notion that two
stochastic processes have a tendency to evolve in a similar way.

This definition is deeper than the simple positivity of the correlations. Be-
sides the evident fact that it does not assume that the variances exist, one
can easily construct orthogonal (hence positively correlated) sequences that do
not have the association property. An important difference between the above
conditions is that its uncorrelatedness implies independence of an associated se-
quence (Newman, 1984 [136]). Let for instance (&x, 7y ) be independent and i.i.d.
N(0,1) sequences. Then the sequence (X, )nez defined by Xy = & (nx — mk—1)
is neither correlated nor independent, hence it is not an associated sequence.
Heredity of association only holds under monotonic transformations. This un-
pleasant restriction will disappear under the assumption of weak dependence.
The following property of associated sequences was a guideline for the forth-
coming definition of weak dependence. Association does not imply at all any
mixing assumptiont. The forthcoming inequality (1.4.1) also contains the idea
that weakly correlated associated sequences are also ‘weakly dependent’. The
following result provide a quantitative idea of the loss of association to indepen-
dence:

Theorem 1.1 (Newman, 1984 [136]). For a pair of measurable numeric func-
tions (f,g) defined on A C R¥, we write f < g if both functions g+ f and g— f
are non-decreasing with respect to each argument. Let now X be any associated
random vector with range in A. Then

(f; < giy fori=1,2) (|cov (f1(X), f2(X))| < Cov(gl(X),gg(X))).

This theorem follows simply from several applications of the definition to the co-
ordinatewise non-decreasing functions g; — f; and g; + f;. By an easy application
of the above inequalities one can check that

kool
|Cov(f(X SZZ

for R¥ or R! valued associated random vectors X and Y and C! functions f and
g with bounded partial derivatives. For this, it suffices to note that f < fy if
of

Denote by R(z) the real part of the complex number z. Theorem 1.1 can be
extended to complex valued functions, up to a factor 2 in the left hand side of the
above inequality (1.4.1). Indeed, we can set now f < g if for any real number

Cov(X;,Y;), (1.4.1)

g
axz o 10y

one makes use of Theorem 1.1 with fi(z1,...,2p) =

'E.g. Gaussian processes with nonnegative covariances are associated while this is well
known that this condition does not implies mixing, see [61], page 62.
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w the mapping ¢ = (t1,...,t;) — R (g(t) + e ) £(1)) is non-decreasing

with respect to each argument. Also, for any real numbers t1, ..., g,
ko k
Eez(t1X1+“'+thk) _ Rt Xy L. RetteXk <2 Z Z |ti||tj|COV(Xi, X])
i=1 j=1

On the opposite side, negatively associated sequences of r.v.’s are defined by a
similar relation than the aforementioned covariance inequality, except for the
sense of this inequality. This property breaks the seemingly parallel definitions
of positively and negatively associated sequences.

1.5 Nonmixing models

Finite moving averages X, = H (&, &n—1,- - -, &n—m) are trivially m-dependent.
However this does not remain exact as m — oco. For example, the Bernoulli
shift X, = H(&n, &1, ...) (with H(z) = Y52, 27 **F Y1) is not mixing; this
is an example of a Markovian, non-mixing sequence.
Indeed, its stationary representation writes X,, = ZEO:O 2_k_1§n,k. Here &,
is the k-th digit in the binary expansion of the uniformly chosen number X, =
0.6p&n—1 -+ € ]0,1]. This proves that X,, is a deterministic function of Xy which
is the main argument to derive that such models are not mixing ([61], page 77,
counterexample 2 or [2]); more precisely, as X, is some deterministic function
of Xy the event A = (X < %) belongs both to the sigma algebras of the past
(X, t <0) an and the sigma algebras of the future o(X¢, ¢ > n), hence with
the notation in § 1.2,

1 1 1

a(n) = [P(AN A) — PAP(A)| = — = .

2 4 4
The same arguments apply to the model described before of an autoregressive
process with innovations taking p distinct values. The difference between two
such independent processes of this type or ((—1)"X,,), provide example of non-
associated and non-mixing processes.
Assume now that more generally &; ~ b(s) follows a Bernoulli distribution with
parameter 0 < s < 1. Concentration properties then hold e.g. X,, is uniform if
s = %, and it has a Cantor marginal distribution if s = é
Much more stationary models may be in fact proved to be nonmixing; e.g. for
integer valued models (3.6.2) this is simple to prove that X; = 0 = Xg = 0
and P(Xy = 0) €]0, 1[. With stationarity this easily excludes this model to be
strong mixing since, setting P(Xy = 0) := p,

a(n) > | B((Xo = 0) N (X, = 0)) — B(Xo = 0B(X,, = 0) = p(1 —p) > 0.



Chapter 2

Weak dependence

Many authors have used one of the two following type of dependence: on the
one hand mixing properties, introduced by Rosenblatt (1956) [166], on the other
hand martingales approximations or mixingales, following the works of Gordin
(1969, 1973) [97], [98] and Mc Leisch (1974, 1975) [127], [129]. Concerning
strongly mixing sequences, very deep and elegant results have been established:
for recent works, we mention the books of Rio (2000) [161] and Bradley (2002)
[30]. However many classes of time series do not satisfy any mixing condition
as it is quoted e.g. in Eberlein and Taqqu (1986) [83] or Doukhan (1994) [61].
Conversely, most of such time series enter the scope of mixingales but limit
theorems and moment inequalities are more difficult to obtain in this general
setting.

Between those directions, Bickel and Bithlmann (1999) [18] and simultaneously
Doukhan and Louhichi (1999) [67] introduced a new idea of weak dependence.
Their notion of weak dependence makes explicit the asymptotic independence
between ‘past’ and ‘future’; this means that the ‘past’ is progressively forgotten.
In terms of the initial time series, ‘past’ and ‘future’ are elementary events
given through finite dimensional marginals. Roughly speaking, for convenient
functions f and g, we shall assume that

Cov (f(‘past’), g(‘future’))

is small when the distance between the ‘past’ and the ‘future’ is sufficiently
large. Such inequalities are significant only if the distance between indices of
the initial time series in the ‘past’ and ‘future’ terms grows to infinity. The
convergence is not assumed to hold uniformly on the dimension of the ‘past’ or
‘future’ involved.

The main advantage is that such a kind of dependence contains lots of pertinent
examples and can be used in various situations: empirical central limit theorems
are proved in Doukhan and Louhichi (1999) [67] and Borovkova, Burton and

9
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Dehling (2001) [25], while applications to Bootstrap are given by Bickel and
Bithlmann (1999) [18] and Ango Nzé et al.(2002) [6] and to functional estima-
tion (Coulon-Prieur & Doukhan, 2000 [40]).

In this chapter a first section introduces the function spaces necessary to de-
fine the various dependence coefficients of the second section. They are classi-
fied in separated subsections. We shall first consider noncausal coefficients and
then their causal counterparts; in both cases the subjacent spaces are Lipschitz
spaces. A further case associated to bounded variation spaces is provided in the
following subsection. Projective measure of dependence are included in the last
subsection.

2.1 Function spaces

In this section, we give the definitions of some function spaces used in this book.

e Let m be any measure on a measurable space (£2,.4). For any p > 1, we
denote by IL?(m) the space of measurable functions f from Q to R such

that
1/p
o = ([17@ @) <,
fllcom = inf{M> O/m(|f| > M) :O} < 0o, for p= occ.
For simplicity, when no confusion can arise, we shall write L” and || - ||,
instead of LP(m) and || - ||p,m.-

Let X be a Polish space and ¢ be some metric on X' (X need not be Polish with
respect to 9).

e Let A(0) be the set of Lipschitz functions from X to R with respect to the
distance §. For f € A(9), denote by Lip (f), f’s Lipschitz constant. Let

AW(8) = {f € A(6) / Lip (f) < 1}.

e Let (2,4, P) be a probability space. Let X be a Polish space and § be a
distance on X. For any p € [1, 0], we say that a random variable X with
values in & is LP-integrable if, for some xo in &X', the real valued random
variable §(X, z¢) belongs to L?(P).

Another type of function class will be used in this chapter: it is the class of
functions with bounded variation on the real line. To be complete, we recall,
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Definition 2.1. A o-finite signed measure is the difference of two positive o-
finite measures, one of them at least being finite. We say that a function h
from R to R is o-BV if there exists a o-finite signed measure dh such that
h(xz) = h(0) + dh([0,z]) if x > 0 and h(z) = h(0) — dh([z,0]) if = <0 (h is left
continuous). The function h is BV if the signed measure dh is finite.

Recall also the Hahn-Jordan decomposition: for any o-finite signed measure p,
there is a set D such that

pi(A) = p(AND) >0, —p_(A) = p(A\D) < 0.

4 and p_ are mutually singular, one of them at least is finite and p = gy —p—.
The measure |p| = u4 + p— is called the total variation measure for u. The
total variation of p writes as ||u]] = |u|(R).

Now we are in position to introduce

e BV) the space of BV functions h : R — R such that ||dh| < 1.

2.2 Weak dependence
Let (Q, A, P) be a probability space and let X be a Polish space. Let
F=|JF and G= ] Gu.
ueN* ueN~
where F, and G, are two classes of functions from X" to R.

Definition 2.2. Let X and Y be two random variables with values in X" and
XV respectively. If W is some function from F x G to Ry, define the (.7-',9, \I/)—
dependence coefficient e(X,Y) by
C X Y
(X, Y)= sup |COVUELIWDI (2.2.1)
J€Fug€Gy V(f,9)
Let (X,)nez be a sequence of X-valued random variables. Let T'(u,v, k) be the
set of (i,7) in Z* X Z¥ such that i1 < -+ < iy < iy +k < j1 < -+ < j,. The
dependence coefficient e(k) is defined by
e(k) = sup sup e((Xiy, o, Xiy), (XG0, X5)) -

w,v (i,5)€l(u,v,k)
The sequence (Xp)nez is (F,G, V)-dependent if the sequence (e(k))ren tends to
zero. If F = G we simply denote this as (F, V)-dependence.

Remark 2.1. Definition 2.2 above easily extends to general metric sets of in-
dices T equipped with a distance & (e.g. T = 79 yields the case of random fields).
The set I'(u,v, k) is then the set of (i,7) in T* x T such that

E=min{d(i¢,jm)/ 1 <l<u,1<m<wv}.
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2.2.1 n,k, A and (-coefficients

In this section, we focus on the case where F, = G,. If f belongs to F,, we
define dy = u.

In a first time, F, is the set of bounded functions from X* to R, which are
Lipschitz with respect to the distance §; on A" defined by

O1(2,y) = D 0(wi,yi) - (2.2.2)

In that case:

e the coefficient 7 corresponds to
U(f,9) = dgllgllecLip (f) + dgll fllocLip (9) . (2.2.3)
e the coefficient A\ corresponds to

V(f,9) = dyllgllocLip (f) + dg|| fllocLip (9) + dydgLip (f)Lip (g) . (2.2.4)

To define the coefficients x and (, we consider for F, the wider set of functions
from X™ to R, which are Lipschitz with respect to the distance §; on X'™, but
which are not necessarily bounded. In that case we assume that the variables
X; are L'-integrable.

e the coefficient x corresponds to
V(f,9) = dydyLip (f)Lip (g) , (2.2.5)

e the coefficient ¢ corresponds to
U(f,g9) = min(dy, dg)Lip (f)Lip (g) - (2.2.6)

These coefficients have some hereditary properties. For example, let A : X — R
be a Lipschitz function with respect to 0, then if the sequence (X, )nez is 7, K,
A or ¢ weakly dependent, then the same is true for the sequence (h(X,,))nez.
One can also obtain some hereditary properties for functions which are not
Lipschitz on the whole space X, as shown by Lemma 2.1 below, in the special
case where X = R* equipped with the distance §(z,y) = maxi<i<g |T; — ¥il.

Proposition 2.1 (Bardet, Doukhan, Leén, 2006 [11]). Let (X, )nez be a se-
quence of RF-valued random variables. Let p > 1. We assume that there exists
some constant C' > 0 such that maxi<;<i || X;l|, < C. Let h be a function from
R* to R such that h(0) = 0 and for z,y € R*, there exist a in [1,p[ and ¢ > 0
such that

h(x) = h(y)| < clz —y|(j2]*" + [yl .
We define the sequence (Yy,)nez by Y, = h(X,,). Then,
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o if (X))nez is n-weak dependent, then (Y, )nez also, and
ny(n) = O (n(n)7=1 ) ;
o if (Xy)nez is A-weak dependent, then (Yy)nez also, and
Ay (n) =0 ()\(n) pi:iz) .

Remark 2.2. The function h(x) = 2% satisfies the previous assumptions with
a = 2. This condition is satisfied by polynomials with degree a.

Proof of Proposition 2.1. Let f and g be two real functions in F,, and F, respec-
tively. Denote (™) = (z A M)V (—=M) for x € R. Now, for = = (x1,...,21) €
R¥, we analogously denote z(*) = (... 2™)). Assume that (i, j) belong
to the set I'(u,v,r) defined in Definition 2.2. Define X; = (X;,,...,X;,) and
X; = (Xj,,...,X;,). We then define functions F : R** — R and G : R"* — R
through the relations:

o F(X;) = f(M(Xy,), ..., hX,,)), FO(X;) = f(R(XM), ... h(XMDY),

o G(X;) = g(h(X,),....h(X;,)), GM(X;) = g(h(XIM™), ... h(X M)
Then:

Cov(F(X5), G(X;) — G (X))
+|Cov(F(X;:), M (X;))]

2] flloo EIG(X;) — G (X))
+2|glloo EIF(X;) — FOD (X))
+|Cov(FM) (X3), G (X5))|

|Cov(F(X3), G(X5))|

IN

IN

But we also have from the assumptions on h and Markov inequality,

E|G(X;) - GO (Xp)| < Lipg Y E[h(X;,) — (X))
=1

< 2cLingE(|le|a1\le|>M)7
=1

< 2cvLipgC?M*™P,

The same thing holds for F. Moreover, the functions FM) : R** — R and
GM) ;. RYF — R satisfy Lip FM) < 2¢M 'Lip (f) and Lip GM) < 2eMe!
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Lip (9), and |[F™)|| o < || £lloos |G ||oe < ||glse- Thus, from the definition of

weak dependence of X and the choice of i, j, we obtain respectively, if M > 1

|Cov (FM (X3), GM (X)) | < 2¢(uLip (f)g]loe + vLip (9)[|f[loc) M~ (r),
< 2¢(dyLip (£)llgllo + dgLip (9)[| flloc) M A(r)
_|_

4c*dpd,Lip (f)Lip (g)M>* 2 (7).
Finally, we obtain respectively, if M > 1:

[Cov(F(X3),G(X;))] < 2c(uLip fllglloc + vLip g floc)
x (M 'n(r) +2CPM*P),
< ¢(uLip f + vLip g + wvLip fLip g)
x (M?*72\(r) + M7P).

Choosing M = n(r)" ™" and M = A(r) /#7272 respectively, we obtain the
result. 0O

In the definition of the coefficients 7, x, A and (, we assume some regularity
conditions on F,, = G,,. In the case where the sequence (X,,),ez is an adapted
process with respect to some increasing filtration (M;);cz, it is often more
suitable to work without assuming any regularity conditions on F,. In that
case G, is some space of regular functions and F,, # G,. This last case is called
the causal case. In the situations where both F,, and G, are spaces of regular
functions, we say that we are in the non causal case.

2.2.2 0 and T-coefficients

Let F, be the class of bounded functions from X, to R, and let G, be the class
of functions from X, to R which are Lipschitz with respect to the distance &y
defined by (2.2.2). We assume that the variables X; are L'-integrable.

e The coeflicient 6 corresponds to
U(f,9) = dg| fllocLip (9) - (2.2.7)

The coefficient # has some hereditary properties. For example, Proposition 2.2
below gives hereditary properties similar to those given for the coefficients n
and A in Lemma 2.1.

Proposition 2.2. Let (X,)nez be a sequence of R*-valued random variables.
We define the sequence (Y )nez by Yo = h(X,,). The assumptions on (X, )nez
and on h are the same as in Lemma 2.1. Then,
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o if (Xp)nez is 0-weak dependent, (Yy,)nez also, and
Oy (n) = 0O (o(n) ZZT) .

The proof of Proposition 2.2 follows the same line as the proof of Proposition
2.1 and therefore is not detailed.

We shall see that the coefficient 6 defined above belongs to a more general class
of dependence coefficients defined through conditional expectations with respect
to the filtration o(X;,j < 1).

Definition 2.3. Let (2, A, P) be a probability space, and M be a o-algebra of A.
Let X be a Polish space and § a distance on X. For any ILP-integrable random
variable X (see § 2.1) with values in X, we define

0p(M, X) = sup{||E(g(X)|M) —E(9(X)],/ g € AV ()} (2.2.8)

Let (X;)iez be a sequence of LP-integrable X -valued random variables, and let
(M)iez be a sequence of o-algebras of A. On X', we consider the distance &,
defined by (2.2.2). The sequence of coefficients 0, (k) is then defined by

1
Opr(k) = max , ~ Sup Op (M, (X5, ..., X5,)). (2.2.9)
=T (i,5)€T(1,6,k)
When it is not clearly specified, we shall always take M; = o(Xg, k <1).
The two preceding definitions are coherent as proved below.

Proposition 2.3. Let (X;)icz be a sequence of L'-integrable X -valued random
variables, and let M; = 0(Xj;,j <1i). According to the definition of 8(k) and to
the definition 2.3, we have the equality

0(k) = 01 00 (k). (2.2.10)

Proof of Proposition 2.3. The fact that 0(k) < 0 o (k) is clear since, for any f
in Fy, g in Gy, and any (¢,7) € I'(u, v, k),

‘Cov(f(Xiu--inu) Q(ijw)va))‘

Iflle 7 wLip(g

< B ) 2 (" o, 2

To prove the converse inequality, we first notice that

6‘(./\/11, (le, e 7Xj'u) = kEIElOOG (Mk,i7 (le, . 7va)), (2211)
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where My, ; = o(X;,k < j <1i). Now, letting
f(ka s 7X ) - SlgD{E J1a B anu)|Mk,i) - ]E(g(lev s 7va))}7
we have that, for (i,4) in T'(1,v, k) and g in AM)(8,),

IE(g(X0s -y X5, ) [Mii) —E(g(XG,, -, X5,)
= Cov(f(Xp,..., Xi),9(Xj,,...,Xj,)) <vb(k) .
We infer that .
(Mk 2] ( j17 . X ) ( )
and we conclude from (2.2.11) that 01 o (k) < 6(k). The proof is complete. [
Having in view the coupling arguments in § 5.3, we now define a variation of
the coefficient (2.2.8) where we exchange the order of ||.||, and the supremum.
This is the same step as passing from a—mixing to f—mixing, which is known
to ensure nice coupling arguments (see Berbee, 1979 [16]).

Definition 2.4. Let (22, A, P) be a probability space, and M a o-algebra of A.
Let X be a Polish space and § a distance on X. For any LP—integrable (see
§ 2.1)) X-valued random variable X, we define the coefficient 1, by:

ge?\l(llr))(g){/g(x)PX|M(d$) —/g(x)]P’X(dx)}

where Px is the distribution of X and Px | is a conditional distribution of X
given M. We clearly have

(M, X) = (2.2.12)

0,(M,X) < 7,(M, X). (2.2.13)

Let (X;)iez be a sequence of LP-integrable X-valued random wvariables. The
coefficients 1, »(k) are defined from 7, as in (2.2.9).

2.2.3 @, ( and ¢-coefficients.

In the case where X = (R?)", we introduce some new coefficients based on
indicator of quadrants. Recall that if 2 and y are two elements of R?, then
x <y if and only if z; < y; for any 1 < i < d.

Definition 2.5. Let X = (X4,...,X,) be a (Rd)r—valued random variable and
M a o-algebra of A. Fort; in R? and x in RY, let gy, i(x) = Lo, —P(X; < t5).

Keeping the same notations as in Definition 24, define for t = (t1,...,t,) in
RY)",

LX\M /Hgt“ CEZ ]Px|M(dCE) and LX EHgt“

Define now the coefficients
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1 aM, X) = sup [[Lxjm(t) = Lx ()]
te(R4)r

2. fM, X) =

sup | Lxaa(t) = Lx (D) | -
te(Rd)r 1

3. ¢(M,X) = sup |Lxjm(t) = Lx(t)]oo-
te(Rd)r

Remark 2.3. Note that if r = 1,d = 1 and é(x,y) = |z — y|, then, with the
above notation,

71<M,X>=/|\LX|M<t>||1dt.

The proof of this equality follows the same lines than the proof of the coupling
property of 71 (see Chapter 5, proof of Lemma 5.2).

In the definition of the coefficients 8 and 7, we have used the class of func-
tions A(M)(§). In the case where d = 1, we can define the coefficients &(M, X),
B(M, X) and ¢(M, X) with the help of bounded variation functions. This is
the purpose of the following lemma:

Lemma 2.1. Let (Q,A,P) be a probability space, X = (X1,...,X,) a R"-
valued random variable and M a o-algebra of A. If f is a function in BVy, let
fO(x) = f(x) —E(f(X:)). The following relations hold:

L aM, X) = E(T]r0x0|m) -5 ([0,
ol ) f1,...?}l};Bv1 <i1:[1f1 ( ) (il:llfz ( )) 1
2. BM, X) = 1).”?;1123% /Hf (@:) (Px i — Px) (dz)

3 (M, X) = sup

f1,e fr€BVY

E (H £ (Xi)IM> ~E (H £ (X»)

i=1 i=1

o0

Remark 2.4. Forr =1 and d = 1, the coefficient &(M, X) was introduced
by Rio (2000, equation 1.10c [161]) and used by Peligrad (2002) [140], while
71 (M, X) was introduced by Dedecker and Prieur (2004a) [45]. Let (M, o(X)),
B(M, (X)) and p(M, (X)) be the usual mizing coefficients defined respectively
by Rosenblatt (1956) [166], Rozanov and Volkonskii (1959) [187] and Ibragimov
(1962) [110]. Starting from Definition 2.5 one can easily prove that

&M, X) < 2a(M,a(X)), BM,X) < B(M,0(X)), pM,X) < $(M,0(X)).
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Proof of Lemma 2.1. Let f; be a function in BV;. Assume without loss of
generality that f;(—oo) = 0. Then

fO (@) = - / (Lot — B(X; < 1)) dfi(t).

Hence,

/Hf (2:)Px | (dz) = / /Hgt ()P x m dl‘)dez i)

and the same is true for Px instead of Px . From these inequalities and the
fact that |df;|(R) < 1, we infer that

k

k
o | [T woPxatan) — [ T[57 Px(an)

fio fe€BVY i1
< sup [Lxm(t) — Lx(t)] -
teRT

The converse inequality follows by noting that x — 1,<; belongs to BV, . 0O
The following proposition gives the hereditary properties of these coefficients.

Proposition 2.4. Let (Q, A, P) be a probability space, X an R"-valued, random
variable and M a o-algebra of A. Let g1, ..., g be any nondecreasing functions,
and let g(X) = (91(X1),...,9-(X;)). We have the inequalities &(M, g(X)) <
a(M, X), f(M,g(X)) < (M, X) and $(M,g(X)) < ¢(M, X). In particu-
lar, if F; is the distribution function of X;, we have &(M, F(X)) = a(M, X),
BM, F(X)) = H(M, X) and (M, F(X)) = 3(M, X).

Notations 2.1. For any distribution function F', we define the generalized
inverse as

F~'z) =inf{t eR/F(t) > z}. (2.2.14)
For any non-increasing cadlag function f : R — R we analogously define the
generalized inverse
F7Hu) = inf{t/f(t) < u}.

Proof of Proposition 2.4. The fact that &(M,g(X)) < &(M,X) is immedi-
ate, from its definition. We infer that &(M, F(X)) < &M, X). Applying
the first result once more, we obtain that a(M,F HF(X))) < &M, F(X)).

To conclude, it suffices to note that F~* o F/(X) = X almost surely, so that
a(M, X) < a(M,F(X)). Of course, the same arguments apply to G(M, X)
and p(M, X). O

We now define the coefficients a,.(k), B.(k) and ¢, (k) for a sequence of o-
algebras and a sequence of R%valued random variables.
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Definition 2.6. Let (2, A,P) be a probability space. Let (X;)icz be a sequence
of Re-valued random variables, and let (M;)icz be a sequence of o-algebras of
A. Forr e N* and k > 0, define

ar (k) = max sup &M, (X;,,...,X;)) . (2.2.15)
LSIST (4 5)en(1,1,k)

The coefficients B,.(k) and ¢, (k) are defined in the same way. When it is not
clearly specified, we shall always take M; = o(Xy, k < 1).

2.2.4 Projective measure of dependence

Sometimes, it is not necessary to introduce a supremum over a class of functions.
We can work with the simple following projective measure of dependence

Definition 2.7. Let (2, A,P) be a probability space, and M a c-algebra of A.
Let p € [1,00]. For any LP—integrable real valued random variable define

(M, X) = [E(X|M) = E(X)]|,- (2.2.16)

Let (X;)iez be a sequence of LP —integrable real valued random variables, and
let (M;)iez be a sequence of o-algebras of A. The sequence of coefficients vy (k)
is then defined by

(k) = Sug“Yp(Mi,XHk) : (2.2.17)
1€

When it is not clearly specified, we shall always take M; = o( Xy, k <1).

Remark 2.5. Those coefficients are defined in Gordin (1969) [97], if p > 2 and
in Gordin (1973) [98] if p = 1. Mc Leish (1975a) [128] and (1975b) [129] uses
these coefficients in order to derive various limit theorems. Let us notice that

(M, X) < 0,(M, X). (2.2.18)



Chapter 3

Models

The chapter is organized as follows: we first introduce Bernoulli shifts, a very
broad class of models that contains the major part of processes derived from a
stationary sequence. As an example, we define the class of Volterra processes
that are multipolynomial transformation of the stationary sequence. We will
discuss the dependence properties of Bernoulli shifts, whether the initial is a
dependent or independent sequence. When the innovation sequence is indepen-
dent, we will distinguish between causal and non-causal processes. After these
general properties, we focus on Markov models and some of their extensions,
as well as dynamical systems which may be studied as Markov chains up to a
time reversal. After this we shall consider LARCH(co)-models which are built
by a mix of definition of Volterra series and Markov processes and will provide
an attractive class of non linear and non Markovian times series. To conclude,
we consider associated processes and we review some other types of stationary
processes or random fields which satisfy some weak dependence condition.

3.1 Bernoulli shifts

Definition 3.1. Let H : R? — R be a measurable function. Let (£,)nez be a
strictly stationary sequence of real-valued random variables. A Bernoulli shift
with innovation process (§n)nez is defined as

X, = H ((§n-i)icz) , n € Z. (3.1.1)
This sequence is strictly stationary.

Remark that the expression (3.1.1) is certainly not always clearly defined; as H
is a function depending on an infinite number of arguments, it is generally given
in form of a series, which is usually only defined in some LL? space. In order to

21
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define (3.1.1) in a general setting, we denote for any subset J C Z:

H ((élj)je‘;) =H ((S—j 1j€J)jeZ)'

For finite subsets J this expression is generally well defined and simple to handle.
In order to define such models in L™ we may assume

> Wi < 00, (3.1.2)
n=1

where, for some m > 1:

m

it = EH (€3 jien) = H (€120 (3.1.3)

This condition indeed proves that the sequence H ((f,j)m <n) has the Cauchy

property and thus converges in the Banach space L™ of the classes of random
variables with a finite moment order m.

In fact the strict definition of the function H as an element of the space
L™(RZ,B(R?), 1) is the following. Denote by u the distribution of a process
¢ = (&)tez. The measure p is a probability distribution on the measurable
space (RZ, B(R?)). If as before we assume that ¢ is stationary, that S C R is
the support of the distribution of &y, and that S C R? is the support of the
distribution of the sequence &, then the random variable H defines a function
over § O S@ where S@ is the set of sequences with values 0 excepted for
finitely many indices. Now given a function defined over R®) the previous
condition (3.1.2) ensures that such a function may be extended to a function
H € L™(R? B(R?), p).

Dependence properties. No mixing properties have been derived for such
models excepted for the simple case of m-dependent Bernoulli shifts, i.e. when
H depends only on a finite number of variables.

3.1.1 Volterra processes

The most simple case of infinitely dependent Bernoulli shift is the infinite moving
average process with independent innovations:

Xt = Zai&ﬂ‘ (3.1.4)

This simple case is generalised by Volterra processes defined with use of poly-
nomials of the innovation process. A Volterra process is a stationary process
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defined through a convergent Volterra expansion

X: = v+ Z Vieit, where (3.1.5)
k=1

Vk;t - Z ak;il,...,ikft—il e gt—ik) (31'6)
i <o <

and vy denotes a constant and (ak;il7,,,,1»,6)(1-1,___“)621@ are real numbers for each
k > 1. Let p > 1, then this expression converges in P, provided that E|& [P < co
and the weights satisfy

oo
Z Z |ak;i1,...7ik|p<oo.

k=111 <---<ig

If the sequences ay;i,,...;,, = 0 as i3 < 0 then the process is causal in the sense
that X; is measurable with respect to 0{&;,7 < t}. In this case t may be seen
as the usual time o{&;,7 < t} denotes the history at epoch t.

Assume now that p = 2, E&y = 0 and E¢? = 1, then the k—th order ho-
mogeneous chaotic processes Vj.; are pairwise orthogonal, and it is thus enough
to prove the existence of such homogeneous processes (3.1.6) in L? in order
to obtain the existence of the more general Volterra processes (3.1.5). Normal
convergence of V., follows clearly from the convergence of the series defining its
variance I'}

l"i = Z alzl;w»yik—l,ik < 00.

0<iy < <ip_1

For the general infinite order Volterra series (3.1.5), the corresponding variance
is trivially related by orthogonality:

r? = ZF% < oo.
k=1

The formula defining Volterra processes can be generalized to expansions

Xp=vo+ Y Vi, where Vi = D kiiy, inemin - &ohy  (31.7)
k=1 (i1yeeeyin ) EZF

and vy denotes a constant and (ak;il).”,ik)(il)'..7ik)ezk are real numbers for each
k > 1. The major difference with the preceding definition is the fact that the
indices in the product are not all different. Let p > 1, then the series converges
in L? provided that the weights satisfy

ZE|§0|pk Z |ak;i1,---7ik|p < Q. (318>
k=1

i1 <<
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The drawback of this generalization is the loss the properties of orthogonality
and moments derived for the models (3.1.5). It is but possible to rewrite the
process as a sum of orthogonal term by relaxing the condition of identical dis-
tribution and independence of the innovation process. Consider more general
Volterra processes defined under the same condition (3.1.8) by

k k.1 .k
Vk;t = Z a;l;)“wjkf‘g*jl) e gt(*jk) (3'1'9)

J1<-<Jjk

For a fixed k > 0, the series ({Ek’l))tez are i.i.d. and mutually orthogonal for
[ < k. Clearly, models (3.1.5) have this form but it is also interesting to see
that models (3.1.7) may also be written as sums of such models. Consider an
expansion (3.1.7), we may assume without loss of generality that j; < -+ <
i and that E§y = 0; we replace each power of an innovation variable by its
decomposition on the Appell polynomial of the distribution of &. For example
the squares will be replaced by

& =& —0°)+0”=A (&) + 0>

For higher order polynomials, recall that Appell polynomials (see e.g. Doukhan,
2002 [62]) are defined as Ay (&—;) = & ;+- - - in such a way that EA,(&)P(&) =
0 if the degree of the polynomial P is less than k. Replacing all the powers with
the help of such Appell polynomial leads to a decomposition (3.1.9) in orthogonal
terms.

Dependence properties. Note that such models may have no weak depen-
dence properties, as in the case of simple moving averages, see Doukhan, Op-
penheim and Taqqu (2003) [72] for a thorough survey of strongly dependent
Volterra processes. No mixing property have been derived in the general case.
The degenerated case of m dependence, when V; depends only on the &_; for
i =1 to m, so that only a finite number of coefficients in each series are nonzero,
satisfies any of the mixing properties. The mixing properties of causal linear
processes corresponding to the term Vi, with a;, = 0 when ¢; < 0 were derived
under the strong additional assumption that &y’s distribution admits a density
which is itself an absolutely continuous function; see Doukhan, 1994 [61] for ref-
erences, in this monograph the proof of mixing for non causal linear processes
is not complete.

3.1.2 Noncausal shifts with independent inputs

Assume here that the shift is well defined and that the sequence of innovations
(&) is ii.d.
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Dependence properties. In order to prove weak dependence properties,
once the existence and measurability of the function H is ensured, it is suf-
ficient to assume the sequence {4, }ren defined by:

E|H (&—j.j € Z) — H (&4—51j<,nJ € Z)| =6, (3.1.10)

converges to 0 as r tends to infinity. Note that a simple bound for §, is 6, <
> isr wii- The following elementary lemma is easily proved:

Lemma 3.1. Bernoulli shifts are n—weakly dependent with

n(r) < 2009

Proof. Let x = H((€n—i1)ij<s)). Clearly, the two sequences (X,(f))ngi and

(X,(f))nzlurr are independent if r > 2s; now consider Cov(f,g) for the functions
f = f( X, ..., Xin), 8 = 9(Xj,,...,X,,), where f and g are bounded and
f.og € AV(|-|1) with |-|; defined by (2.2.2). Let i; < --- <4, and j; < --- < 7,
such that j; —4, > 2s. From the previous remark, f(*) = f(X-(S), ... in(j)) and

21

gl =g(X J(f), X j(f)) are independent, and consequently

[Cov(f,g)] < ‘COV(f—f(S),g)‘+‘COV(f(S),g—g(S))‘

< 2l | = £9)] + 201 ]l E | — )

< 2Hg||ooLiprE\Xit—X§j> +2|\f|\ooLingE‘th—X§f)
t=1 t=1

< 2(ullgllclip f + v[| fllcLipg)ds . O

The sequence (dy )k is related to the modulus of uniform continuity of H. Under
the following regularity conditions:

|H(ui, i€ Z) — H(’Ui, RS Z)| < Zaz|ul — ’Ui|b,
i€Z

for some non negative constants (a;);ez,0 < b < 1 and if the sequence (&;)icz
has finite b-th order moment, then d; < Z aiE|§i|b.

[i|>k
Recall here that processes can be n-weakly dependent and nonmixing, see § 1.5.

3.1.3 Noncausal shifts with dependent inputs

The condition of independent inputs ¢ may be relaxed. E.¢g. in eqn. (3.1.4),
instead of independence, assume that the sequence (&, )nez is ne-weak dependent
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then the process (Xy, )nez is n-weak dependent with 7(r) < ne(r/2) 4, /2. Such
an heredity property of weak dependence is unknown under mixing. A general
statement of this property is provided below in lemma 3.3. Let us now note
by (& )iez a weakly dependent innovation process. The coefficient A is proved
to very useful to study Bernoulli shifts X,, = H(§,—;,j € Z) with weakly
dependent innovation process (&;); from the forthcoming lemma (see Doukhan
and Wintenberger, 2005 [77]).

Let H : R* — R be a measurable function and X,, = H(&,_;,i € Z). In order
to define X,,, we assume that H satisfies: for each s € Z, if x,y € R? satisfy
x; = y; for each index i # s

|H(x) — H(y)| < bs(sliplxillV1)lws — Yl (3.1.11)

where z is defined by zs = 0 and z; = x; = y; for each ¢ # s. This assumption
is stronger than in the case of independent innovations (see equation (3.1.10)).
The following lemma proves the existence of such models:

Lemma 3.2. Let X,, = H(,—;,1 € Z) be a Bernoulli shift such that H : RZ —
R satisfies the condition (3.1.11) with 1 > 0 and some sequence by > 0 such that
S, Islbs < co. Assume that E|&|™ < oo with Im +1 < m/ for some m > 2.
Then X,, = H(&,—;,1 € Z) is a strongly stationary process, well defined in L™.

The existence of example (3.1.4) was stated without proof, we now precise more
involved examples of Bernoulli shifts with dependent innovations:

Example 3.1 (Volterra models with dependent inputs.). Consider

(k)
S D DRI,

k=0 j1,..,jk
then if x,y are as in eqn. (3.1.11):

k
H@)=H@) = Y ) i @i Ty (T —Ys) Ty o T

1<u<k<K

Jut1s s Ik

From the triangular inequality we derive that suitable constants in condition
(3.1.11) may be chosen asl =K —1 and

()
bs —ZZ ai)

where Z(k’s) stands for the sums over all indices in Z* and one of the indices
J1s- ., ]k takes the value s
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Example 3.2 (Uniform Lipschitz Bernoulli shifts). Assume that the condition
(8.1.11) holds with I = 0, then the previous result still holds. An example of
such a situation is the case of LARCH(c0) non-causal processes with bounded
(m’ = +00) and dependent stationary innovations.

Proof of lemma 3.2. We first prove the existence of Bernoulli shift with de-

pendent innovations in L!. The same proof leads to the existence in L™ for
all m > 1 such that Im +1 < m’. Here we set () = (§-iljjj<s)icz and

Er (€_il_s<i<s)iez for i € Z U {oo}. In order to prove the existence of
Bernoulli shift with dependent innovations, we show that H(£(°)) is the sum
of a normally convergent series in IL'. Then formally

Xo=H(E™)) = H(0) + (H(EW) ~ H(0))
+§j( H(ES) — HED) + (HE) ~ HEW).

With (3.1.11) we obtain

|H(EW) = H(©0)] < bolél,

[HE) —HED] < bea(sup fel VDI,
H(ED) - HEW] < be(sup [€-4l' V DIE
Holder inequality yields
H(EW) - \}]MHS“> HED)| +E[H(ED) - H(E)

<> 20ifbi(ll&ll + 1%l (3.1.12)

€L

Hence assumption [ +1 < m/ with »_,_, [i[b; < oo together imply that the
variable H () is well defined. The same way proves that the process X,
H(&,_4,1 € Z) is a well defined process in L' and that it is strongly stationary.
We can extend this result in L™ for all m > 1 such that Im +1 < m/.

Dependence properties. Such models are proved to exhibit either A- or
n-weak dependence properties, as described below.

Lemma 3.3. Assume that the conditions of lemma 3.2 are satisfied
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e if the innovation process (& )icz is A\-weakly dependent (with coefficients
Ae(r)), then X, is A-weakly dependent with

Ak) =c inf (Z| |b) (2r+1)2A5(k—2r)2i‘115).

r<[k/2]

e if the innovation process (&;)icz is n-weakly dependent (with coefficients
ne(r)) then X, is n-weakly dependent and there exists a constant ¢ > 0
such that

n(k) = c 1nf Z| |b; | v ( o + 1)1+m'll775(/€—2r):§’?> .

<[k/2]

Because Bernoulli shifts of k-weak dependent innovations are neither - nor 7-
weakly dependent, the case of k dependent innovation is here included in that
of X\ dependent inputs.

The proof of lemma 3.2 will be given below. If the weak dependence coeffi-
cients of £ are regularly decreasing, it is easy to explicit the decay of the weak
dependence coefficients of X:

Proposition 3.1. Here A > 0 and n > 0 are constants which can differ in each
case.

o Ifb; = O(i7") for some b > 2 and A¢(i) = O (i), resp. ne(i) =
O@G™) (as i | o0) then from a simple calculation, we optimize both

m/—1-1

terms in order to prove that A(k) = O <I€_)‘(1_§)M’1+l>, resp. n(k) =

(b—2)(m' —2)
@ <k M (p=1)(m’ =1)~ l). Note that in the case m' = oo this exponent is ar-

bitrarily close to A for large values of b > 0 and takes all possible values
between 0 and .

o If b = O(e™™) for some b > 0 and Ae(i) = O (e™™), resp. n¢(i) =
. b(m’ —1-1)
O (e7™) (asi 1 o0) we have A(k) = O (k2eAkb(m/—1+l>+2n(m'—1—z) ) , Tesp.

m o1l b(m’ ~2)
nk)=0k -1 e "kb(m/—1J+2n<m/—2>>, The geometrical decays for both

(b;)i and coefficients of the innovations ensure the geometric decay of the
weakly dependence coefficient of the Bernoulli shift.

o [fthe Bernoulli shift coefficients have a geometric decay, say b; = O (e*ib)
and Xe(i) = O(i™), resp. me(i) = O™ (as i 1 o0) we find
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A(k) = O ((log k)%AZ'—M), resp. n(k) = O ((log k) o1 g ”m/—f>
Ifm' = oo this means that we only lose at most a factor log? k with respect
to the dependence coefficients of the input dependent series (§;);.

Proof of lemma 3.3. We exhibit some Lipschitz function by using a convenient
truncation. Write £ = £V (=T) AT for a truncation T which will be precisely

stated later. Asin the proof of Lemma 3.1, we denote by X = H((&n—iljij<r))

and XS) = H((&,,_;1)i<s)). Furthermore, for any k£ > 0 and any (u+ v)-tuples

such that s1 < - < sy < sy +k < t1 < -+ < ty, set Xg = (Xgy,...,Xs,),
Xe = (X1,.., %) and X7 = (x\7 x") x = x0 x7),

Then we have for all f, g satisfying || f|co, [|¢]|lcc < 1 and Lip f + Lip g < oo:

Cov(f(Xs), g(Xe)| < [Cov(f(Xs) — FXS),g(X0)]  (3.1.13)
+ Cov(F(X), g(Xe) — g(X\7))] (3.1.14)
+ |Cov(F(x),g(x )], (3.1.15)

Using that ||g|lco < 1, the term (3.1.13) in the sum is bounded by

2Lip f - E[ Y (X,, - X))
i=1

< 2uLipf(lrga<x E|X,, — X{)| + max E[X(") - if’\).

With the same arguments as in the proof of the existence of H(£(>)) (see equa-
tion (3.1.12)), the first term in the right hand side is bounded by (|[&oll1 +

1€0[l;51) X5 2li[bi. Notice now that if 2,y are sequences with z; = y; = 0 if

|i| > 7 then a repeated application of the previous inequality (3.1.11) yields
|H(z) — H(y)| < L(llzl% vyl v Dlle =yl (3.1.16)

where L =3, |i[b; < co. The second term is bounded by using (3.1.16):

Bl () - 1 (")

l
LE <max |gz|) S {lglte o1}

r<i<
—r<j<r

E|x( - X7

IN

IN

L(2r +1)°E ( max |€7,| {|§J|1|£]>T})

L(2r + 1)2||€o|\me”1’m

IN
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The term (3.1.14) is analogously bounded. We write (3.1.15) as

Cov(F" (& i1 <i<u, il <), G (&g 1 <i <, lj] <),

where F : R¥Cr+1) R and G : R¥2r+1) L R, If r < [k/2], assume that
¢ is n weakly dependent (resp. A-weak dependent) to bound this covariance by

¥ (Lip F(T),Lip G(T),u(Zr + 1),v(2r + 1))eg—_2,, where ¥(u,v,a,b) = wvab and
€ = n; (resp. ¥(u,v,a,b) = uvab + ua +vb and €; = \;). Let © = (x1,...,2y)

and ¥y = (y1,...,ys) where x;,y; € R**1: a bound for Lip F(T) writes as the
supremum over sequences ,y of:

lf(H(zs, 41,1 < i Su [l <7) = f(H(ys 1 S i< I < 7))
> izt g = wjll '
Using (3.1.16), we have:

Lip fL S (s, lloe V 1 lloo v 1) llzs, =y, |

(r) (r)
[F () = F (y)| <
i=1
< LiprTlZ Z |$5i+l_y5i+l|'
i=1 —r<I<r

Hence Lip F") < Lip f - L - T" and, similarly, Lip G < Lipg- L - T".
e Under n-weak dependence, we bound the covariance as:

[Cov(f(Xe), g(Xe))| < (uliip f + vLipg)
x [43 lilbillgolls + Igolli D)

>r
+(@2r+ 1)L ((2r +1)2)| &)™ T 4 Tl (k — 27‘)) }
We then fix the truncation 7™ 1 = 2(2r + 1)||&||7% /n¢(k — 2r) to obtain the

result of the lemma 3.3 in the n-weak dependent case.
e Under A-weak dependence, we obtain:

|Cov(f(Xs),g(Xt))| < (uLip f + vLip g + uvLip fLip g)
x ({4 lilbi (gl + ol 1)

i>r
+ @+ DL (2020 + DT ol + T (b —2r) }
v {(@r+ DL (k- 20} )

With the truncation such that 7'+ ~1 = 2H§0||m:/(L/\§(k— 2r)), we obtain the
result of the lemma 3.3 in the present n-weak dependent case. O]
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3.1.4 Causal shifts with independent inputs

Let (&;)icz be a stationary sequence of random variables with values in a mea-
surable space X'. Assume that there exists a function H defined on a subset of
XN with values in R and such that H (&, & 1,€ o, ...) is defined almost surely.
The stationary sequence (X,,)nez defined by

Xp = H(én €no1,6n2,...) (3.1.17)

is called a causal function of (&;);cz.

In this section, we assume that (&;);ez is i.i.d. In this causal case, another way
to define a coupling coefficient is to consider a non increasing sequence (gp,n)nzo
(p may be infinite) such that

Opn = [ X0 = Xallp, (3.1.18)

where X; = H(ét,ét,l,ét,g, R fn =&, if n> 0 and fn = ¢/ for n <0 for an
independent copy (&} )tez of (&)icz. Here X; has the same distribution as X
and is independent of Mg = o(X;,7 <0).

Dependence properties. In this section, we shall use the results of chapter
5 to give upper bounds for the coefficients 0, o (1), Tp.oo(n), &x(n), Br(n) and
¢r(n). More precisely, we have that

L. 0y oo(n) < Tpoo(n) < dpn.

2. Assume that Xy has a continuous distribution function with modulus of
continuity w. Let g,(y) = y(w(y))'/?. For any 1 < p < 0o, we have

() < ) <26( 0 o

In particular, if Xy has a density bounded by K, we obtain the inequality
Br(n) < 2k(K 6, )P/ PH1),

3. Assume that Xy has a continuous distribution function, with modulus of
uniform continuity w. Then

dr(n) < Pr(n) < dr(n) < kw(boon).
4. For ék(n) it is sometimes interesting to use the coefficient

G = IIE(| X0 — X[ IMo) [P

- d
With the same notations as in point 2, ¢x(n) < Qk( P ))p
g
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The point 1. can be proved by using Lemma 5.3. The points 2. 3. and 4. can
be proved as the point 3. of Lemma 5.1, by using Proposition 5.1 and Markov
inequality.

Application (causal linear processes). In that case X,, = Zajfn_j. One
Jj=0
can take 9, , = 2|/, Z laj|. For p =2 and E{; = 0 one may set
jzn
1

0. = (2EE Y a?)’

Jjzn

For instance, if a; = 2771 and & ~ B(1/2), then §; « < 27% Since X is
uniformly distributed over [0, 1], we have ¢; (i) < 27, Recall that this sequence
is not strongly mixing (see section 1.5).

Remark 3.1. By interpreting causal Bernoulli shifts as physical systems, de-
noted X¢ = g(...,e—1,€) Wu (2005) [188] introduces physical dependence coef-
ficients quantifying the dependence of outputs (X;) on inputs (¢;). He considers
the nonlinear system theory’s coefficient

5t = Hg( -5 €0y - "7€t7176t) _g( "76717667' "76t717€t)H2

with € an independent copy of €. This provides a sharp framework for the study
of the question of CLT random processes and shed new light on a variety of prob-
lems including estimation of linear models with dependent errors in Wu (2006)
[191], nonparametric inference of time series in Wu (2005) [192], representa-
tions of sample quantiles (Wu 2005 [189]) and spectral estimation (Wu 2005
[190]) among others. This specific IL?-formulation is rather adapted to CLT and
it is not directly possible to compare it with T-dependence because coupling is
given here with only one element in the past. Justification of the Bernoulli shift
representation follows from Ornstein (1973) [158].

3.1.5 Causal shifts with dependent inputs

In this section, the innovations are not required to be i.i.d., but the method
introduced in the preceding section still works. More precisely, assume that
there exists a stationary sequence (£});ez distributed as (§;);ecz and independent

of (&)ico. Define X, = H(€,, ¢, 1, € ,,...). Clearly X, is independent of
Mg = o(X;,i < 0) and distributed as X,,. Hence one can apply the result of
Lemma 5.3: if (6p.n)n>0 I a non increasing sequence satisfying (3.2.2), then the
upper bounds 1. 2. 3. and 4. of the preceding section hold.

In particular, these results apply to the case where the sequence (&;)cz is -

mixing. According to Theorem 4.4.7 in Berbee (1979) [16], if € is rich enough,
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there exists (&])icz distributed as (&)icz and independent of (§;):<o such that
P(& # & for some i > k) = B(0(&i,i < 0),0(&,1 = k)).
Application (causal linear processes). In that case X,, = Ejzo aj&n—j-

For any p > 1, we can take the non increasing sequence (3, ,,)n>0 such that

dp,n 2 |10 _goHpZ |aj| + Z |all[&i—; — &i- J”p Z |a;l[&i—5 — i—j”P'

Jjzn Jj=0

From Proposition 2.3 in Merlevede and Peligrad (2002) [130], one can take

B0 (€xk<0),0(Ex k>i—3)) 1/p
o > 60— Ellp 3 oyl + Z ol (2 [ Q2 (w) " du,

ji>n

where Q¢, is the generalized inverse of the tail function z — P(|§o] > ) (see
Lemma 5.1 for the precise definition).

3.2 Markov sequences

Let (Xn)n>1-4 be sequence of random variables with values in a Banach space
(B, || - ||)- Assume that X,, satisfies the recurrence equation

Xp=F(Xn_1,..., Xn_a:&n)- (3.2.1)

where F'is a measurable function with values in B, the sequence (§,)n>0 is i.i.d.
and (&,)n>0 is independent of (X, ..., X4-1). Note that if X,, satisfies (3.2.1)
then the random variable Y,, = (X,,,..., X,,_4+1) defines a Markov chain such
that Y, = M(Y,,—1;&,) with

M(xla'“axd;é-): (F(xl,...7$d;£),x1,...,$d,1).

Dependence properties. Assume that (Xn)ngd—l is a stationary solution
to (3.2.1). As previously, let Yy = (Xo, ..., X1 _q), and let Yy = (Xo,..., X1 q)
be and independent vectors with the same law as Yy (that is a distribution
invariant by M). Let then X, = F(Xn 1yeeoy X 4;&n). Clearly, for n > 0,
X,, is distributed as X,, and independent of /\/lo =0(X;,1—-d<i<0). As
in the preceding sections, let (gp,n)nzo (p may be infinite) be a non increasing

sequence such that ~
opn > (E[| X, — X, ||P)V/P. (3.2.2)

Applying Lemma 5.3, we infer that

1

IN

Op,00(n) < Tp,oo(n2)
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For the coefficients @y (n), B (n) and ¢y (n) in the case B = R, the upper bounds
2., 3., and 4. of section 3.1.4 also hold under the same conditions on the distri-
bution function of Xj.

Assume that, for some p > 1, the function F' satisfies

d d
(EF(2;6) — Fi:e)lIP)r <Y aillai—will, Y ai<1. (3.2.3)
=1

i=1
Then one can prove that the coefficient 7, «o(n) decreases at an exponential
rate. Indeed, we have that

d
§ p7n i

For two vectors z,y in RY, we write 2 < y if 2; < y; for any 1 < i < d. Using
this notation, we have that

(Sp,n; ey Sp,n—d+l)t S A(Sp,n—la ceey Sp,n—d)t )

with the matrix A equal to

ay a2 - - - Qq4—1 Q4
1 0 - - - 0 0
o 1 - - - 0 0
o o - - - 1 0

Iterating this inequality, we obtain that
(Bpyns -+ Opin—ds1)’ < A™(Gp0, -+ Op1-a)" -

Since Z‘ii:l a; < 1, the matrix A has a spectral radius strictly smaller than 1.
Hence, we obtain that there exists C' > 0 and p in [0, 1] such that §,,, < Cp™.
Consequently

Op.co(n) < Tpoo(n) < Cp™.
If B = R and the condition (3.2.3) holds for p = 1, and if the distribution
function Fx of Xy is such that |Fx(x) — Fx(y)| < Kl|x —y|” for some ~ in |0, 1],
then we have the upper bound

an(n) < Br(n) < 26K Y OFD /(1) pry/(+1)
If the condition (3.2.3) holds for p = oo, then
agp(n) < Bk(n) < &k(n) < kKC“p™.

We give below some examples of the general situation described in this section.
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3.2.1 Contracting Markov chain.

For simplicity, let B = R, and let || - || be a norm on R?. Let F be a R? valued
function and consider the recurrence equation

Xn = F(Xn-1;6n). (3.2.4)
Assume that
AP =E||F(0;&1)[P < oo and E||F(x,&) — F(y,&)||P < aP|lz —y||”, (3.2.5)

for some a < 1 and p > 1. Duflo (1996) [81] proves that condition (3.2.5) implies
that the Markov chain (X;);en has a stationary law p with finite moment of
order p. In the sequel, we suppose that p is the distribution of Xy (i.e. the
Markov chain is stationary).

Bougerol (1993) [27] and Diaconis and Friedmann (1999) [60] provide a wide
variety of examples of stable Markov chains, see also Ango-Nzé and Doukhan
(2002) [7].

Dependence properties. Mixing properties may be derived for Markov
chains (see the previous references and Mokkadem (1990) [132]), but this prop-
erty always need an additional regularity assumption on the innovations, namely
the innovations must have some absolutely continuous component. By contrast,
no assumption on the distribution of £; is necessary to obtain a geometrical de-
cay of the coefficient 7, o (n). More precisely, arguing as in the previous section,
one has the upper bounds: if X, is independent of Xy and distributed as Xy,

Op,00(n) < Tp,oo(n) < || Xo — Xollpa™.

In the same way, if each component of Xy has a distribution function which is
Holder, then the coefficients a(n) and S (n) decrease geometrically (see lemma
5.1).

Let us show now that contractive Markov chains can be represented as
Bernoulli shifts in a general situation when X; and (; take values in Euclidean
spaces R? and RP| respectively, d, D > 1 with || - || denoting indifferently a norm
on R” or on R?. Any homogeneous Markov chain X; may also be represented
as solution of a recurrence equation

Xp = F(Xp1,6n) (3.2.6)

where F(u, z) is a measurable function and (&, ),>0 is an i.i.d. sequence inde-
pendent of Xy, see e.g. Kallenberg (1997, Proposition 7.6) [111].

Proposition 3.2 (Stable Markov chains as Bernoulli shifts). The stationary
iterative models (3.2.6) are Bernoulli shifts (3.1.17) if condition (3.2.5) holds.
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Proof. We denote by p the distribution of ¢ = ((,)nen on (RD)N. We de-
fine the space LP(1, R?) of R?-valued Bernoulli shifts functions H such that
H((o,C1,-..) € LP. We shall prove as in Doukhan and Truquet (2006) [76] that
the operator of ]LP(ILL,Rd) ®: H— K with K(Co, Cla .. ) = M(H(Cl, <2, .. .), CO)
satisfies the contraction principle. Then, Picard fixed point theorem will allows
to conclude.

We first mention that the condition (3.2.5) implies ||M (z, (o)ll, < A + a|z|
hence with independence of the sequence ¢ this yields | K|, < A + a|H]||,;
thus ®(ILP (u, R?)) C LP(u, RY). Now for H, H' € LLP(u, R?) we also derive with
analogous arguments that |®(H) — ®(H')||, < a|H — H'||,. O

Remark 3.2. [t is also possible to derive the Bernoulli shift representation
through a recursive iteration in the autoregressive formula.

3.2.2 Nonlinear AR(d) models

For simplicity, let B = R. Autoregressive models of order d are models such
that:
Xn=r(Xp-1,..., Xn-a) +&n. (3.2.7)

In such a case, the function F' is given by
Fluyy...,uq, &) =r(ug,...,uq) + &,

Assume that E|&; [P < oo and that

d
[r(uty .. ug) — r(vi, ... v)| < Zaﬂui —v;
i=1
d
for some aq,...,aq > 0 such that a = Zai < 1. Then the condition (3.2.3)
i=1

holds, and we infer from section 3.2 that the coefficients 7, o (n) decrease expo-
nentially fast.

3.2.3 ARCH-type processes
For simplicity, let B = R. Let

F(u,z) = A(u) + B(u)z (3.2.8)

for suitable Lipschitz functions A(u), B(u),u € R. The corresponding iterative
model (3.2.6) satisfies (3.2.5) if

a = Lip (A) + [|& |, Lip (B) < 1.
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If p=2and E(&,) = 0, it is sufficient to assume that

o= /(Lip (4)) + E(€) (Lip (B))® < 1.

Some examples of iterative Markov processes given by functions of type (3.2.8)
are:

e nonlinear AR(1) processes (case B = 1);

e stochastic volatility models (case A = 0);

e classical ARCH(1) models (case A(u) = au, B(u) = /3 + 7u2 « ﬁ v >0).
In the last example, the inequality (3.2.5) holds for p =2 with a? = o + E£2.
A general description of these models can be found in Section 3.4.2.

3.2.4 Branching type models

Here B = R and &, is RP-valued. Let &, = ( 7(11), . 7&(LD)). Letnow Ay, ..., Ap
be Lipschitz functions from R to R, and let

D
F (u, (2(1), .. .,z(D))) = ZAj(“)Z(j)7

Jj=1

for (21, ..., 2(P)) € RP. For such functions F, if E(&li)éj)) =0 for i # j, the
relation (3.2.5) holds with p = 2 if

@ = 3 Wi (4)PE(E)) <1

Jj=1
Some examples of this situation are

e If D=2 and 551) ~ b(p) is a Bernoulli variable independent of a centered
variable 552) € L? and A;(u) = u, As(u) = 1 then the previous relations
hold if p < 1.

o If D = 3, {El) = 5(2) ~ b(p) is independent of a centered variable
(3) € L2, then one obtamb usual threshold models if Az = 1.
ThlS only means that X,, = F,(X,,—1) + f,(l) where F), is an i.i.d. se-

quence, independent of the sequence ({,(13)),121, and such that F,, = A;
with probability p and F,, = A, else.
The condition (3.2.5) with p = 2 writes here

= p (Lip (A1))” + (1 — p) (Lip (42))* < 1.
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3.3 Dynamical systems

Let I = [0,1], T be a map from I to I and define X; = T*. If y1 is invariant by T,
the sequence (X;);>0 of random variables from (I, i) to I is strictly stationary.
Denote by ||g[/1,» the L -norm with respect to the Lebesgue measure A on I and
by |lv|| = |v|(I) the total variation of v.

Covariance inequalities. In many interesting cases, one can prove that, for
any BV function h and any k in L*(I, ),

|Cov(h(Xo), k(Xn))| < anllk(Xn) 1 ([[P]l1x + [IdA]) (3.3.1)

for some non increasing sequence a,, tending to zero as n tends to infinity. Note
that if (3.3.1) holds, then

|Cov(h(Xo), k(Xn))| |Cov(h(Xo) — h(0), k(Xn))|

an |[E(Xn)[1([[ = R(0)]]1,x + [ldA]) -

IN

Since ||h — h(0)||1,x < ||dh||, we obtain that

|[Cov(h(Xo), k(Xn))| < 2an|[k(Xn)1]|dR]| . (3.3.2)

The associated Markov chain. Define the operator £ from L!(I,)\) to
LY(I,\) via the equality

/ L) @)k()\(dz) = / h(z)(k o T)(2) A (dz)
0 0

where h € LY(I,\) and k € L>(I,)\). The operator L is called the Perron-
Frobenius operator of T'. Assume that p is absolutely continuous with respect
to the Lebesgue measure, with density f,. Let I* be the support of p (that is
(I*)¢ is the largest open set in I such that p((1*)) = 0) and choose a version
of f, such that f, > 0 on I* and f, = 0 on (I*)°. Note that one can always
choose £ such that L(f.h)(z) = L(f.h)(2)1f,(2)>0- Define a Markov kernel
associated to T' by

L(fuh)(x)
K(h)(z)= """ 15, (2)>0 + u(h) 1y, (2)—0- (3.3.3)
fu(z)
It is easy to check (see for instance Barbour et al.(2000) [9]) that (Xo, X1, ..., X,)
has the same distribution as (Y;,,Y,—1,...,Yp) where (Y;);>0 is a stationary

Markov chain with invariant distribution u and transition kernel K.

Spectral gap. In many interesting cases, the spectral analysis of £ in the
Banach space of BV-functions equipped with the norm ||Al|, = ||dh| + ||h]]1,x
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can be done by using the Theorem of Ionescu-Tulcea and Marinescu (see Lasota
and Yorke (1974) [115]): assume that 1 is a simple eigenvalue of £ and that the
rest of the spectrum is contained in a closed disk of radius strictly smaller than
one. Then there exists an unique T-invariant absolutely continuous probability
p whose density f, is BV, and

L7 (h) = A(R) f, + T (h) (3.3.4)

with ¥(f,) = 0 and || U™ (h)|, < Dp™||hl, for some 0 < p < 1 and D > 0.
Assume moreover that

= < 0. (3.3.5)

v

1
£ 1,50
Starting from (3.3.3), we have that

k() =ty + 1
o

Let ||+ ||oo,x be the essential sup with respect to A\. Taking Cy = 2D~(||df.||+1),
we obtain [[K"(h) = u(h)]loox < C1p"[|B]o-
This estimate implies (3.3.1) with a,, = C1p". Indeed,

|Cov(h(Xo), k(X)) |Cov(h(Yy), k(Yo))]
[[E(Y0)(E(h(Yn)|o(Y0)) — E(h(Yn)))ll2
IO 1K™ (B) = pa(h) oo, x

Cip" [[E(Yo) [l (ldhll + [1Al[1.2) -

INIA TN

Moreover, we also have that

[dK™ ()|l = [[dK™ (h = h(0))]] 29[ (fu (e = 2 (0))) |

<
< 8Dp"y(1+ [ldfylDlldR]l . (3.3.6)

Dependence properties. If (3.3.2) holds, the upper bound
é(U(Xn)a XO) S 2an
follows from the following lemma.

Lemma 3.4. Let (2, A, P) be a probability space, X a real-valued random vari-
able and M a o-algebra of A. We have the equality

(M, X)=sup {ICov(Y,h(X))| /Y is M-measurable, |Y|1<1 and he BV1 }.
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Proof of Lemma 3.4. Write first |Cov(Y, h(X))| = |E(Y (E(h(X)|M)—E(h(X))))]-
For any positive ¢, there exists A in M such that P(A;) > 0 and for any w in
A,

[E(h(X)|M)(w) = E(h(X))] > [[E(A(X)|M) = E(h(X))]loc — &

Define the random variable

1a. .
Yei= by sien (E((X)1M) — B((X)))

Y. is M-measurable, E|Y;| = 1 and
|Cov(Yz, h(X))| = [E(A(X)|M) = E(h(X))]loc — &

This is true for any positive €, we infer from Definition 2.5 that

(M, X) < sup{|Cov(Y,h(X))| /Y is M-measurable, ||Y|; <1 and h € BV;}.

The converse inequality follows straightforwardly from Definition 2.5. O

Now, if (3.3.4) and (3.3.5) hold, we have that: for any n > i; > --- > iy >0,

d(o(Xp, bk >n), Xn_iyy oy, Xni) <C)p™,

for some positive constant C'(I). This is a consequence of the following lemma
by using the upper bound (3.3.6).

Lemma 3.5. Let (Y;);>0 be a real-valued Markov chain with transition kernel
K. Assume that there exists a constant C such that

for any BV function f and any n >0, |[dK"(f)] < C|df]|l . (3.3.7)

Then, for any i; > --- > i3 >0,

Ho(Y), Vi Yirss) < (L4 C -+ O )d(0(Yi), Yiews) -

Consequently, if (3.3.4) and (3.3.5) hold, the coefficients ¢y, (i) of the associated
Markov chain (Y;);>¢ satisfy: for any k > 0,

di(i) < Ok

Proof of Lemma 3.5. We only give the proof for two points i; = i and i = j,
the general case being similar. Let fx(x) = f(x) — E(f(Y%)). We have, almost
surely,

E(frti(Yeti)gr+5 Yeri) 1 Ye) = E(frri Vi) gt (Vi) =
E(frsi (Verd) (K7 (9)) ki YVeri) Vi) = B ks (Virs) (K77 (9)) ks (Yiera))-
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Let f and g be two functions in BV;. It is easy to see that

A @il < il 10 (9D lloc
A ()| i loc
< (1 A (@)l

Hence, applying (3.3.7), the function (K77%(g))k1ifrsi/(1+C) belongs to BV;.
The result follows from Definition 2.5. O

Application: uniformly expanding maps. A large class of uniformly ex-
panding maps T is given in Broise (1996) [31], Section 2.1, page 11. If Broise’s
conditions are satisfied and if 7" is mixing in the ergodic-theoretic sense, then
the Perron-Frobenius operator £ satisfies the assumption (3.3.4). Let us recall
some well know examples (see Section 2.2 in Broise):

1. T(x) = Bx — [Bx] for B > 1. These maps are called -transformations.

2. I is the finite union of disjoints intervals (I1)1<k<n, and T'(z) = apz + by,
on I, with |ag| > 1.

3. T(z) = a(z™t — 1) — [a(z™ — 1)] for some a > 0. For a = 1, this
transformation is known as the Gauss map.

Remark 3.3. Expanding maps with a neutral fixed point. For some
maps which are non uniformly expanding, in the sense that there exists a point
for which the right (or left) derivative of T is equal to 1, Young (1999) [194]
gives some sharp upper bounds for the covariances of Hélder functions of T™.
For instance, let us consider the maps introduced by Liverani et al. (1999) [123]:

x(1+272Y) ifxel0,1/2]

for0 <y <1, T(ﬂf):{zx_1 if w € [1/2,1],

for which there exists a unique invariant probability p. Contrary to uniformly
expanding maps, these maps are not ¢-dependent. For X €]0,1], let ox(z,y) =

|z —y|* and let 09) be the coefficient associated to the distance §y (see definition
2.83). Starting from the upper bounds given by Young, one can prove that there
exist some positive constants C1(\,v) and Ca(\,7) such that

Ol Av A CQ )\7
O < Py < A0

n v n v
Approzimating the indicator function fi(t) = lg<¢ by A-Hélder functions for
small enough A, one can prove that for any ¢ > 0, there exist some positive
constant Cs(e,vy) such that

Cl(r}:;’/) < d(U(Tn),T) < C?;(fla:ye) )
n v n v



42 CHAPTER 3. MODELS

3.4 Vector valued LARCH(oc0) processes

A vast literature is devoted to the study of conditionally heteroskedastic models.
One of the best-known model is the GARCH model (Generalized Autoregressive
Conditionally Heteroskedastic) introduced by Engle (1982) [84] and Bollerslev
(1986) [23]. A usual GARCH(p, ¢) model can be written:

p q
2 2 2
re = o0&, 0p =ap+ E Bioy_; + § ;T

i=1 j=1

where a9 > 0, 3; > 0, a;j > 0, p >0, ¢ > 0 are the model’s parameters and
the & are i.i.d.

If the B; are null, we have an ARCH(g) model which can be extended in
LARCH(o0) model (see Robinson, 1991 [165], Giraitis, Kokozska and Leipus,
2000 [92]). These models are often used in finance because their properties
are close to the properties observed on empirical financial data such as volatil-
ity clustering, white noise behaviour or autocorrelation of the squares of those
series. To reproduce other properties of the empirical data, such as leverage ef-
fect, a lot of extensions of the GARCH model have been introduced: EGARCH,
TGARCH. ..

A simple equation in terms of a vector valued process allows simplifications in
the definition of various ARCH type models Let (£;):ez be an i.i.d. sequence of
random d x m-matrices, (a;);en+ be a sequence of m x d matrices, and a be a
vector in R™. A vector valued LARCH(oc0) model is a solution of the recurrence
equation

Xt = ft a+ Zant,j (341)
j=1

Some examples of LARCH(oco) models are now provided. Even if standard
LARCH(oc0) models simply correspond to the case of real valued X; and aj,
general LARCH(oo) models include a large variety of models, such as

1. Bilinear models, precisely addressed in the forthcoming subsection 3.4.2.
They are solution of the equation:

Xi=G|la+ Z%‘thj +0+ Zﬂthfj

Jj=1 Jj=1

where the variables are real valued and (; is the innovation. This is easy to
see that such models take the previous form with m = 2 and d = 1: write
Qj

for this & = ( ¢ 1 ),a:<g)andaj:(ﬁj)forjzl,Z,...
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2. GARCH(p, ¢) models, are defined by
Tt = Ot
2 g 2 . 2
op = Z:lﬁjatfj +7+ Zﬂjrtfj
j= j=

where ag > 0, a; 2 0, §; > 0 (and the variables € are centered at ex-
pectation). They may be written as bilinear models: for this set ag =

Yo/ /(1 =3 Bi) and > izt =Y 420 /(1 = 3 B;2%) (see Giraitis et al.(2006)
[93]).
3. ARCH(c0) processes, given by equations,

Tt = OtEt

oo
op = Po+ X Biei;
i=1

They may be written as bilinear models: set & = (& 1), a= (;%0 ),
150

KO, .
a;= (Al%j) with A\; = E(¢3), #* = Var ().

4. Models with vector valued innovations

Xt:@l <Oél + ZOZ}th> +/L% <ﬂl + Zﬁ}th> +"/1 + Z’yjl-Xt,j
=1 j=1 j=1

J

Jj=1

Y, =¢ <a2 + X ath_j> +p7 <[32 + zﬁ;n_j> +92+ Y3
j=1 J=1
may clearly be written as LARCH(oco) models with now m = d = 2.

3.4.1 Chaotic expansion of LARCH(occ) models

We provide sufficient conditions for the following chaotic expansion

oo
Xe=&la+) > apbjiag . ap&ji—ja| - (3.4.2)
k=1j1,....5k =1
For a k x | matrix M, and || - || a norm on R¥, let as usual
[M|[= sup ||Mz].
z€RL ||| <1

For a random matrix M we set || M |5 = E(||M[?).
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Theorem 3.1. Assume that either Z lla; IPE(I&]|P < 1 for some p < 1, or
i>1
ZHajH (EH&OH”):’ < 1 for p > 1. Then one stationary of solution of eqn.

j=>1
(3.4.1) in ILP is given by (3.4.2).

In this section we set

= llajll, A=A(1), and X, = A&l (3.4.3)

jzw

Proof. We first prove that expression (3.4.2) is well defined. Set

o0
S=3 > lap&—-aié—ji—l

k=1 ji,.,jx>1

Clearly

S <

NE

Z gl Nag &=l - NEe—jr —— el
e

k=1 ji,..,jk=1

Using that the sequence (&, )nez is i.i.d., we obtain for p > 1,

N

o0
1S, < D> > lagll - llage gl 16— sl
k=1j1,....5k 21

(oo}

> (éllpA)
k=1

IN

If A, < 1, the last series is convergent and S belongs to L?. If p < 1 we conclude
as for p = 1, using the bound

o0 p o0
<Z|aj1€t—j1 S g &gy g ”) < ZHahft—J& g &gy 1
k=1 k=1
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Now we prove that the expression (3.4.2) is a solution of eqn. (3.4.1),

Xy = &((H- > ajl&—jl"'a]’kft—jl—m—jka)

E>1,
Jis--s ik 21
= & a+§ aj, &e— J1a+§ ajy &e—j E ajzgt*jlsz"'ajkét*h*jz*'“*jka
Jj1z1 k>2,j121 J2sendk 21

& <a + Z aji§e—j, (a + Z Wja€(t—j1)—jo *** Qi §(t—j1)—ja— -~k a))

j121 k>2,

13 (a + i ant,j). O

Theorem 3.2. Assume that p > 1 in the assumption of theorem 3.1, and
assume that o =3 |laj|[[&oll, < 1. If a stationary solution (Y)iez to equation
(8.4.1) exists (a.s.), if Yy is independent of the o-algebra generated by {Es; 8 > t},
for each t € Z, then this solution is also in LP and it is (a.s.) equal to the
previous solution (Xy)iez defined by equation (3.4.2).

Proof. Step 1. We first prove that || Y]], < co. From the equation (3.4.1), from
the stationarity of {Y;}+cz and from the independence assumption, we derive
that

1Yollp < ollp | llall + Z lla; Yol

7j=1

Hence, the first point in the theorem follows from [|Y5]],

||€o|\p|\a|\
—

<
Step 2. As in Giraitis et al. (2000) [92] we write YV, = (a + ZJ>1 a;Yi— J) =
X"+ S with

m
lavd N apbgan gl

mo
X" =
k=1j1, ,jr=1
m _— . . “ e . - - - . .
S = & E , ajy &t—jy &t —j1 = iom Vi A1 Y1 =i
Ji s dmy1 21
We have

1570 < I€lls D Nagll- - laj HEN 1Yol = [ Yollpe™

Jisdmr 21
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We recall the additive decomposition of the chaotic expansion X; in equation
(3.4.2) as a finite expansion plus a negligible remainder that can be controlled
X = X" + R where

R;n =& Z Z ajlgt*jl ’ "a’jk&*jl'"*jka )

k>m g1, k21

satisfies
k o™
IR < llallliéoll, Y @* < HaHHﬁole_w — 0.

k>m

Then, the difference between those two solutions is controlled as a function of
m with X; —Y; = R} — 5}", hence

1Xe =Yilly < (1R [lp + 115"l

™ m
SN gpllallllé“ollp + IYollp

(pm
< 27 Jallel,

thus, Y; = X; a.s. O

Dependence properties. To our knowledge, there is no study of the weak
dependence properties of ARCH or GARCH type models with an infinite num-
ber of coefficients. Mixing seems difficult to prove for such models excepted in
the Markov case (a; = 0 for large enough j), because this case is included in the
Markov section for which we already mention that additional assumptions are
needed to derive mixing. This section refers to Doukhan, Teyssiere and Winant
(2005) [75], who improve on the special case of bilinear models precisely con-
sidered in Doukhan, Madré and Rosenbaum (2006) [69]. We use the notations
given in (3.4.3).

Theorem 3.3. The solution (3.4.2) of eqn. (3.4.1) is 0—weakly dependent with

t—1

o) < 2K <E|§O|Zw—m (1) A) lall for any ¢ <.

k=1

Proof. Consider f : (R%)"* — R with ||f|jec < oo and g : (RY)Y — R with

Lip (9) < oo, that is [g(z) — g(y)| < Lip(g)([lz1 — yull + -+ + [lzw — wull). Let
i < o0 <y, J1 <+ < Jou, such that j; — i, > r. To bound weak dependence
coeflicients we use an approximation of the vector v = (le, e 7va) by v in
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such a way that, for each index j € {j1,...,jx} and s <, the random variable
X is independent of X;_,. More precisely, let

Xi=&la+d D ap&g a8 5y

k=1j1++jr<s

Now, let f(u) = f(X,,,...,X;,) and g(v) = g (Xj,,...,X;,). We have that

|Cov(f(u),g(v))| < [E(f(u)(g(v)—g(¥) —E(f(n)E(g(v) —g(¥))|
< 2flElg(v) = g(¥)
< 2| fllooLip (9)) EIX;, — X, |
k=1
< 20| flloLip (9)E[ X0 — Xol|-

Hence 0(r) < 2E||Xo — Xol|| for any s < r, which implies the bound of the
theorem. This bound is made explicit for simple decay rates. More precisely

o(t) Kt~ under Riemanian decay A(z) < Cz~°
K(qV AV, under geometric decay A(z) < Cq”

Further approximations. In order to simulate and also to better understand
their behaviour, it is an important feature to see how far those models are from
simple processes. Weak dependence was proved with independent approxima-
tions

o0
Xi=&|a+) Y ap&g a6 g ja
k=1 jit+-+ijx<s
of the LARCH models; we precise this approximation through coupling argu-
ments and we also prove below proximity to the Markov sequence obtained by
truncating the series which defines them.

Coupling. The approximation X, of X; has not the same distribution as X;.
But we are in the case of causal Bernoulli shifts with independent inputs, so
that the method of Section 3.1.4 applies. Let (£});ez be an independent copy of
(&)iez, and let &, = &, if n > 0 and &, = &, for n < 0. Finally, let

o0
XtZ&(aJrZ > %ﬁtm"'ajkﬁt—j1—~~—jka)-
k=1j1,...Jk

Here Xt has the same distribution as Xy and is independent of the o-algebra
Mo = o(X;,i <0). Consequently, if d, ,, is a non increasing sequence satisfying
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(3.2.2), we obtain the upper bounds 7, - (n) < Sp,n. Since for any s < n, we
have that || X,, — X, < 2||Xo — Xol|p, we obtain that

t—1 t
: k=14 (¢ A
Tp.oo(n) < inf 2E(|€oll» <]E||€0||P];k)\p A <k +t _p)\p llall-

For p = 1, we recover the upper bound of Theorem 3.3. If d = 1, we obtain
the same upper bounds for ag(n), Bx(n) and ¢x(n) as in Section 3.1.4, by
assuming that the distribution function of Xy is continuous (similar bounds me
bay obtained for d > 1 by assuming that each component of Xy has a continuous
distribution function, see Lemma 5.1).

Markov approximation. Consider equation (3.4.1) truncated at rank N,
N
XN =¢ la+t Zanﬁj
j=1
The previous solution rewrites as

XN=gla+d, D ap&jiai& 5 ja

k=1NZj1,....5k 21

The corresponding error is then bounded by

E[X — x| < DA,
k=1

In the Riemanian decay case, the error is > po N~ and in the geometric
decay case, the error is ¢V /(1 — ¢V).

3.4.2 Bilinear models

Those models are defined through the recurrence relation
Xe=Gla+Y aXi | +8+) 8iXi
j=1 j=1

the variables here are real valued and (; now denotes the innovation. To see
that this is still a LARC H (c0) model, we set as before

G=(¢ 1), a:<g), andaj:<oéé’),forj21.
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One usually takes § = 0. ARCH(oc0) and GARCH(p, ¢) models are particular
cases of the bilinear models. Giraitis and Surgailis (2002) [95] prove that under
some restrictions, there is a unique second order stationary solution for these
models. This solution has a chaotic expansion. Assume that the power series

A(z) = Zajzj and B(z) = Zﬁjzj exist for |z] <1, let

j=1 J=1
1 = Az = ;
G(z) = - B(2) j:Zlg]zj and H(z)= 1 (Bzz) = ;hjzj

we will note [|h[|5 = =72 [h;[P. Then:
Proposition 3.3 (Giraitis, Surgailis, 2002 [95]). If ((t)¢ is i-i.d., and ||h]2 < 1,
then there is a unique second order stationary solution :

Xt =« Z Z gt781h81782 e hsk_lfsk <S1 U Csk (344)

k=1 sp<...<s1<t

Lemma 3.6. Ezpansion (3.4.2) coincides with the chaotic expansion in propo-
sition 3.3.

Proof.  Assuming that 3 = 0, the expansion (3.4.2) writes as:
Hme ;Sk<'“<81<tz(<tatisl + Brs)x

X (<S1O‘S1—52 + ﬂ51—52) e (Csk—lask—l_sk + ﬁsk—l_sk)cska

or X; = G+ S1 + 52 with

Sl = Z Ctatfﬁ (Csl sy —sy + 581*52) T (Csk—lask—1*8k + 5Sk—175k)<5ka
k>1
s < - <81 <t
Sy = Z ﬂt—51 (<S1O‘S1—S2 + ﬂ51—52) T (Csk—lask—l_sk + ﬁsk—l_sk)cska
E>1

S < - < s1 <t

Under additional assumptions Giraitis and Surgailis prove the expansion:

X = QZ Z gt—51h51—52 o .h‘sk—l_sk <51 o 'Csk

k=1 sp<---<s1<t
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rewritten as X; = G+ 11 + T with

Tl = Z Z Cthtfm Cs1 hs1782<32 T hsk_lfskgska

k=1sp<--<s1<t

I = Z Z gt—51h51—52<51 e 'hsk,l—skCSkOC

k=1sp<---<s1<t

The terms in the sum (7}) take a form:

Ct(at,igmﬁigl)ﬂgl) x 'ﬂigﬁ,sl)Ca (asl,igmﬂig)%g) x '51»;22),32) e

.. 'Csk_l(a

sxr—i By - ﬂié’jﬁ o )G

hence between each couple (s, (s,., read from the left to the right one founds
a term (ay;) followed with several (3;)’s in such a way that the sum of all indices
equals 5,11 — sp.

On the one hand, quote that expanding terms in the (S7) yields a sum of prod-
ucts of such terms proves that (51)’s is included in (7%)’s.

On the other hand, expand the term k = k + p1 + -+ + pr (55, 85_1,--+,51) =
(Sk, z';’?, o Jgk), Sk—1y---,S1, z'l(jll), e ng),ig ), t) in the sum (S7) yields the
generic term in (7} ) expansion. Hence (S1) and (T4)’s expansions coincide.
Analogously (T2) = (S2), by quoting that the generic term in (T%) writes:

(ﬂt,igl)ﬁigl)ﬂém & 'ﬂi;}l),sl)csl(a 2B "'ﬂig,s) e

S1—1

G (@ 0 B0 00 'ﬁiéi)_sk)CskOA u

Sp—1—1

Conditional densities of Bilinear models. Another more specific feature
of those models is the following result on the existence of conditional densities
(see Doukhan et al.1995 [69]). This is relevant for subsampling techniques and
density estimation. We use the fact that the bilinear equation may be written

X = Atg + Bt with At =a+ Z CLth,j, Bt = ijXt,j
j=1 Jj=1

Hence, conditionally to the past o-algebra (the history of {(s,s < t}), the
distribution of X; is as smooth as the one of (; if A; # 0. Now if we are
interested by higher order marginal distributions we need a bit more work.
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Split /L and Bt into

t—1 0o

Ay = Zant,j + Ay, A = Zant,j
j=1 j=t

~ t—1 00

By = Y bXi j+B,  Bi=) bjX;
j=1 j=t

where A; and B; are measurable with respect to the o algebra of the past
0{(s,s < 0}. This entails, for instance:

X1
Xo

AlCl + By
(a1C1 + AQ)CQ + (b1<l + BZ)-

Thus conditionally to f:ll, B, Ay and B, the previous system is triangular and it
thus may be solved if A1, a1(; + A2 do not vanish. The following result extends
this observation:

Lemma 3.7 (Conditional densities Doukhan et al. [69]). Assume that the
random variables (G;)iez and the coefficients a; are non negative for j =1,2,.. ..
Also suppose that ¢; are independent random variables with a density fc, for
all i € {1,...,n}. Then, conditionally with respect to the past of the process
c{(s,s < 0}, the random vector (X1, ..., X,) admits the density fn(x1,...,Tn)

defined by:
o 1 61 511
(21, ) = |(110¢2"'Oén|fC1 (051) "'an <Oln>

with ﬁj =x;— blﬁjfl — b2$j72 — = bj,1$1 — Bj and Qj = a1Tj—1+a2Tj—2+
ceFajzr + A for 1 < j<n (here a; = Ay).

Corollary 3.1 (Density). Under the same assumptions as in lemma 3.7, with
a #0 and ()¢ i-i.d. with a density f bounded by M then
falze, .. szn) < (M/a)" for all (x1,...,2,).

Corollary 3.2 (Density of a couple). Under the same assumptions as in lemma
3.7, and if ¢, are i.i.d. with density f, then g; the density of the couple (X1, X;)
satisfies || gillco < || f12/ A1 for all i > 1.

Remark 3.4. Asymptotic properties of a standard kernel density estimate relies
on such bounds. Indeed an expression of its variance follows jointly from weak
dependence properties and such assumptions on the two dimensional
distributions.



52 CHAPTER 3. MODELS

Proof of lemma 3.7. We work conditionally to the infinite past from X,. We
write

anl Anflgnfl + anl
M . = . )
X1 A1G1+ By
where

1 —a1(n—b1  —a2Cu—bs ... —ap_1Gp —bp_1
0 1 —a1Cn—1— 01 ... —an—2Qn—1 —bn_2
0 0 0 1 —a1G2 — by
0 0 0 0 1

This may be rewritten as,

 Xi-B
1 = A,
¢ Xo— 01Xy — B
2 a1 X1 + Ay
¢ Xy =01 Xpo1 — b2 Xy —- = b1 X1 — B,

a1 Xp_1+aeXy_o+-Fa1 X1+ A,

where the previous coefficients A; and B; are deterministic in this conditional
setting. Thus,

Eg(X17X27'~'7Xn) — /g(¢_1(u1,...,un)) fCl(ul)an(un)duldun

with f¢, the density of ¢; and with ((i,...,¢n) = ¢(X1,...,X,). Here, put

(u1,...,up) = ¢(x1,...,2,). The function ¢ has a diagonal Jacobian, hence
an - 1
or;  a;

for 1 < j < n and the result follows. O

Proof of the corollaries. The first corollary follows by integration from lemma
3.7. We prove the result for the density of the couple (X7, X4), and we can
prove the general result in the same way. With

fa(xy, @, 23, 04) = o ':'l'a4|f(gi)“.f(gi)’
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an integration with respect to x2 and x3 implies that

2
ga(1,24) = /f4($1,$2,$3,x4)dm2dx3 < ”ﬂ /f <ﬂ2) f <ﬂ3> dxs dx3

g az) |azas]
Hence with
Ty — bz — Bo 3 — bixg — bowy — B3
9 - b
a1y + A a1T2 + asxy + As

we write x93 = u X (@121 + A2) + bix1 + Ba, x5 = v X (a1(u X (@121 + A2) +
bix1 + B2) + asxy + Asz) + b1(u X (@121 + Az) + bixy + Ba) + baxy + Bs. The
Jacobian matrix is diagonal and the absolute value of the Jacobian is equal to
[(a1x1 + Ag)(arxe + aswy + As)l|, and thus

-

2
sitora) < 0 [ 101 @) duao < 1]

3.5 (-dependent models

In this section, we give some classes of (-dependent models: associated processes,
Gaussian processes and interacting particle systems.

3.5.1 Associated processes

An analogous formula to (1.4.1) proves that associated random variables belong
to the class of (-dependent models. Several associated models are obtained from
nondecreasing transformations of independent variables. For Gaussian vector,
Pitt (1982) [146] gave a necessary and sufficient condition to be associated. We
discuss Pitt’s result in the sequel.

Theorem 3.4. Let X = (X1,...,X,) be a Gaussian vector with mean vector
0 and covariance matriz ¥ = (0;; = Cov(X;, X;))i<ij<n. The condition

Cov(X;,X;) >0, foral i,j=1,....,n (3.5.1)
1s mecessary and sufficient for the variables to be associated.

Proof of Theorem 3.4. The method of the proof below is due to Pitt (1982).
Assuming Condition (3.5.1), the task is to prove that

Cov(f(X),9(X)) =0,

for all nondecreasing functions f and g defined on R™ (the second implication
being trivial).
We suppose, without loss of generality, that ¥ is non-singular and that the
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function f and g are continuously differentiable with bounded derivatives g ;;cf .
K3

and ggg ,fori=1,...,n. Let Z be an independent copy of X. For any X € [0, 1],

3

let Y(\) be the random vector defined by
Y(A) =AX + 11— X2

Clearly, for each fixed A, Y(A) is a Gaussian vector with covariance matrix X
and

COV(Xi, }/j()\)) = )\O’i)j.
Set

Clearly
Cov(f(X),9(X)) = F(1) — F(0). (3.5.2)
It is sufficient to show that F’(\) exists and F/(A\) > 0 for 0 < A < 1. To this

end, let ¢ and p be respectively the density of X and the conditional density of
Y (A) given X = x. We have :

(b(ﬂi) = \/(27i)n|2| exp —; Z CijTi%j |, with 271 = (Ci,j)lgi,jgn
ij=1
and ) \
) _ r—=y
p()hxay)_ (1_)\2)n/2¢<\/1—A2>
Hence
F(A) = - o(z) f(x)g(\; x)dz, (3.5.3)

where g(\; x) is defined by

g(\z) = /np(k;w,y)g(y)dy,
which is equal to
g(\z) = /n gz —y)oa(y)dy, (3.5.4)

where

Palx) = (1— )1\2)11/2(;5 <\/1x— /\2> '

Now Equation (3.5.4) proves that the partial derivatives 99 éi’x) exist and are
3
bounded. Moreover, since g is increasing and X is positive, we have
dg(A; )

> 0. 0.
oo, 20 (3.5.5)
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Next an explicit calculation based on the heat equations

I 19°¢ 9o _ 0% for i

80’1',1' n 2 833127 80’1',3‘ N 8xi8xj’ I
shows that
op = b k)\—Zx-c--(/\x»— ; Z/\CE —vi)(Az; —y;)
12D 1— )2 7 AT )\2 ! g /

1
- Z Jaa;axj leaxz : (3.5.6)

)

We obtain, combining (3.5.3), (3.5.4) and (3.5.6)

, 1 9%g(\; Ag(A;
Fy==, [ e@iw | Yo aifa;)—zxi géxlx) da.
i,j ! i !

An integration by parts gives

1 Of(x) 9g(A; x)
F'(\) = i ' dx. 5.7
0= o0 | s 5 | o (35.7)
We have 853(633) > 0, since f is increasing. This fact, together with (3.5.5),

(3.5.1) and (3.5.7) proves that F’(\) > 0, for any A € [0,1]. This conclusion
together with (3.5.2) proves Theorem 3.4. O

Remark 3.5. Stable processes have the same linear structure as normal pro-
cesses since arbitrary linear combinations of stable variables are stable. Lee,
Rachev and Samorodnitsky (1990) [118] gave necessary and sufficient conditions
for a stable random vector to be associated.

3.5.2 (Gaussian processes

Gaussian processes belong to the class of (-dependent models. This property is
a consequence of the following lemma.

Lemma 3.8. Denote X¢ = (X;)ico if C C Z. Let (Xp)nez be a Gaussian
centered process. Then for all real-valued functions h, k with bounded first partial
derivatives, one has

|Cov(h(Xa),k(XB))| <
i€A,j

H ICov(X:, X;)]. (3.5.8)

>~ lonl o,
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Remark 3.6. The proof of Lemma 3.8 is along the paper of Pitt (1982) [146].
For more details, we refer the reader to the proof of Lemma 19 in Doukhan and
Louhichi (1999) [67].

3.5.3 Interacting particle systems

In this subsection, we develop an example of (-dependent interacting particle
systems (cf. Proposition 3.4 below). Before stating the main result of this
paragraph, we briefly recall the basic construction of general interacting particle
systems, described in sections 1.3 and 1.4 of Liggett’s book (1985) [122].

Let S be a countable set of sites, W a finite set of states, and X = W the set
of configurations, endowed with its product topology, that makes it a compact
set. On each site the state evoluate as a Markov chain. But we are interested
in the case where the evolution of neighbour sites are linked. We define a Feller
process on X by specifying the local transition rates: to a configuration n and a
finite set of sites T is associated a nonnegative measure cr (7, ) on W7. Loosely
speaking, we want the configuration to change on T after an exponential time
with parameter

Crn = Z CT(%C) :

CewT

After that time, the configuration becomes equal to ¢ on T, with probability
er(n,¢)/er,y. Let ¢ denote the new configuration, which is equal to ¢ on 7,
and to n outside T'. The infinitesimal generator should be:

Qf)=>_ > exm. QM) = f(0)) - (3.5.9)

TCS¢ewT

For © to generate a Feller semigroup acting on continuous functions from X
into R, some hypotheses have to be imposed on the transition rates cr (1, -).
The first condition is that the mapping n — ¢r(n, ) should be continuous (and
thus bounded, since X" is compact). Let us denote by ¢p its supremum norm.

Cr = sSup crqy.
neX

It is the maximal rate of change of a configuration on T'. One essential hypothesis
is that the maximal rate of change of a configuration at one given site is bounded.

B = sup Z e < Q. (3.5.10)
€S Tsx

If f is a continuous function on X, one defines A¢(x) as the degree of dependence
of f on x:

Ag(z) =sup{|f(n) — f(OI/n,¢ € X and n(y) =C(y) Vy #z } .
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Since f is continuous, Ay (z) tends to 0 as = tends to infinity, and f is said to
be smooth if Ay is summable:

A=) A(a) < oo

zeS

It can be proved that if f is smooth, then Qf defined by (3.5.9) is indeed a
continuous function on X and moreover:

1[I < BIIIf]]-

We also need to control the dependence of the transition rates on the configu-
ration at other sites. If y € S is a site, and T C S is a finite set of sites, one
defines

er(y) = sup { ller(m, -) —cr(nz, )l / m(z) =n2(2) V2 #y },

where || - ||+, is the total variation norm:

ler(m, -) —cr(m, e = Z ler(m, €) — er(n2, Q)] -
cewr

If x and y are two sites such that x # y, the influence of y on z is defined as:

Y, y) =Y er(y).

T>x

We will set v(x,2) = 0 for all . The influences v(x,y) are assumed to be
summable:
M = sup Z Y(z,y) < 0. (3.5.11)
€S yeS

Under both hypotheses (3.5.10) and (3.5.11), it can be proved that the closure
of Q generates a Feller semigroup {S;, ¢ > 0} (Theorem 3.9 p. 27 of Liggett
(1985)). A generic process with semigroup {S;, ¢ > 0} will be denoted by
{nt, t > 0}. The expectations with respect to its distribution, starting from
19 = n will be denoted by E,,. For each continuous function f, one has:

Sef(m) = Ey[f ()] = E[f(n:) [0 = n].

We have now all the ingredients to control the covariance of f(ns) and g(n:) for
a finite range interacting particle system when the underlying graph structure
has bounded degree. Proposition 3.4 shows that if f and g are mainly located on
two finite sets R; and Ra, then the covariance of f and ¢ decays exponentially
in the distance between R; and Ra.

From now on, we assume that the set of sites S is endowed with an undirected
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graph structure, and we denote by d the natural distance on the graph. We will
assume not only that the graph is locally finite, but also that the degree of each
vertex is uniformly bounded.

VeeS #{yeS/dxy) =1}<r,

where # denotes the cardinality of a finite set. Thus the size of the sphere or
ball with center x and radius n is uniformly bounded in x, and increases at most
geometrically in n.

r

- 2(7"—1)”.

#yeS/day)=ny< " 0-)" #yeS/day) <n}<

1
Let R be a finite subset of S. We shall use the following upper bounds for the
number of vertices at distance n, or at most n from R.

#{reS/dx,R)=n} <#{ye S/dx,R) <n} < 2""#R, (3.5.12)

with p = log(r — 1).
In the case of an amenable graph (e.g. a lattice on Z?), the ball sizes have a
subexponential growth. Therefore, for all € > 0, there exists ¢ such that:

#{reS/dxz,R)=n} <#{ye S/dx, R) <n}<ce".

What follows is written in the general case, using (3.5.12). It applies to the
amenable case replacing p by ¢, for any € > 0.
We are going to deal with smooth functions, depending weakly on coordinates
away from a fixed finite set R. Indeed, it is not sufficient to consider functions
depending only on coordinates in R, because if f is such a function, then for
any t > 0, Sy f may depend on all coordinates.

Definition 3.2. Let f be a function from S into R, and R be a finite subset of
S. The function f is said to be mainly located on R if there exists two constants
a and B> p such that o > 0, 8 > p and for all x € R:

Ap(z) < ae PR, (3.5.13)

Since 3 > p, the sum ) Ajf(x) is finite. Therefore a function mainly located
on a finite set is necessarily smooth.

The system we are considering will be supposed to have finite range interactions
in the following sense (cf. Definition 4.17 p. 39 of Liggett (1985)).

Definition 3.3. A particle system defined by the rates cp(n,-) is said to have
finite range interactions if there exists k > 0 such that if d(x,y) > k:

1. ¢p =0 for all T containing both x and vy,
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2. y(x,y) =0.

The first condition imposes that two coordinates cannot simultaneously change
if their distance is larger than k. The second one says that the influence of a
site on the transition rates of another site cannot be felt beyond distance k.
Under these conditions, the following covariance inequality holds.

Proposition 3.4. Assume (3.5.10) and (3.5.11). Assume moreover that the
process is of finite range. Let Ry and Ro be two finite subsets of S. Let [ be a
constant such that B > p. Let f and g be two functions mainly located on Ry
and Ra, in the sense that there exist positive constants Ky, kg such that,

Ap(z) < kpe PR and  Ay(z) < e PR,
Then for all positive reals s,t,

su)pé Covy,(f(ns), g(ne)) SC/if/ig(#R1/\#Rg)eD(tJrs)e*(B*p)d(Rl’RQ), (3.5.14)
ne

where,

2BePk ek
— (B+p)k —
D =2Me and C = D <1+1—e—5+P)'

Proof. We refer the reader to the proof of Proposition 3.3 in Doukhan et al.
(2005) [64]. O

Remark 3.7. Shashkin (2005) [176] obtains a similar inequality for random
fields indexed by Z¢. For transitive graphs, the covariance inequality stated in
Proposition 3.4 was studied by Doukhan et al. (2005) [64] in order to derive a
functional central limit theorem for interacting particle systems.

3.6 Other models
3.6.1 Random AR models

Assume here that
X = A X1 + &,

where the sequence & € R? is still i.i.d. but now A; is assumed to be a station-
ary sequence of random d x d matrices. A stationary solution of the previous
equation has the formal expansion

X = Z A A&k
k=0
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A first and simple case for convergence of this series is E||Ag||P < 1 for a suitable
matrix norm, in the case where the sequence (A;) is i.i.d. and that A, A;_q, ...
are independent of the inputs (&;). For this we also assume E||&||? < oo for
some p > 1. This condition™ also implies convergence of the previous series in
L.

For d = 1, a simple example of this situation is the bilinear model A; = a+b&;_1.
If now A; = ¢ + ijl b;&—; for a stationary sequence ((;) independent of (&)
the condition ;

P

J
E|Go+> b <1
j=1

implies absolute convergence of the previous series in L through Holder’s in-
equality. The previous relation holds if

J
Sollps + lI€ollps > IIbjll < 1.

Jj=1

Those models are also suitable for the previous section related to Markov chains,
but a special case of this situation is provided if the sequence (4;) is stationary
and independent of the sequence (& ). In this case the assumption

> E[ApAg_ - Ag|P < 00
k=0

implies the convergence of the previous series in L if E||&]|” < cc.
Extension of such models, solutions of the non Markov equation

X = Z Oz{Xt_j + (3, (361)
JjEA

are seen in Doukhan and Truquet (2006) [76] as random fields (7) with infinitely
many interactions. If b = 7., [lag|l, < 1 the solution of equation (3.6.1)
writes a.s. and in LP,

o0
_ g1 J2 Ji
X =G+ E E Qp Qi - .Oétfjlf"'*ji—lCt*(j1+”'+ji)'

i=1 j1,...,5: €A

*Existence of the model in this case also relies on the weaker assumption Elog ||Ao|| < 0;
in this case the previous series only converges a.s. and dependence conditions are not easy
to derived; for this a concentration inequality is needed and a log transformation should be
applied to the obtained coefficients.

fInnovations ¢; are vectors of R¥ and coefficients o are k x k matrices, || - | is a norm of
algebra on this set of matrices and X will be an E valued random field. Let A C Z%\ {0}, we
assume that the i.i.d. random field £ = ((ai icA, Ct> rezd takes now its values in (kak)A X F;

here M}« denotes the set of k X k matrices.
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3.6.2 Integer valued models

The idea of Galton Watson models conducted Alain Latour (see [116], [117],
[65]) to the construction of integer valued extensions of the standard economet-
ric models. As they are discrete valued no mixing condition may usually be
expected from such models (see section 1.5) and this is why they fit nicely in
the weak dependent frame.

Definition 3.4 (Steutel and van Harn Operator). Let (Y;)jen be a sequence of
independent and identically distributed (i.i.d.) non-negative integer-valued vari-
ables with mean o and variance \, independent of X, a non-negative integer-
valued variable. The Steutel and van Harn operator, ao is defined by:

aoX:{ Z;'leyi’ if X #0,

0, otherwise.

The sequence (Y;);en is called a counting sequence. Note that, as indicated in
Definition 3.4, the mean of the summands Y; associated with the operator ao
is denoted by a. Suppose that o is another Steutel and van Harn operator
based on a counting sequence (Y;);en. The operator ao and o are said to
be independent if, and only if, the counting sequences (Y;);en and (ﬁ)ieN are
mutually independent. One may first think to Poisson distributed variables Y;
with parameter a. The first example, Galton Watson with immigration

Xt = ao thl + ft (362)

was extended in various papers by Alain Latour (see e.g. [116] or [117]) for
bilinear type extensions (see Doukhan, Latour and Oraichi, 2006 [65]).

We would like to extend the integer-valued model class to give a non-negative
integer-valued bilinear process, denoted by INBL(p, ¢, m,n), similar to the real-
valued bilinear process. A time series (X;)ien is generated by a bilinear model,
if it satisfies the equation:

p q m n
Xi=a+ Z a; Xi—; + Z cjei—j + Z Z b (et—eXt—k) + €1 (3.6.3)
i=1 j=1 k=1¢=1

where (g¢):en is a sequence of i.i.d. random variables, usually but not always with
zero mean, and where o, a;, 1 =1,...,p,¢;, 7=1,...,¢q,and bpp, k =1,...,m,
¢=1,...,n are real constants. In (3.6.3), we can “formally” substitute Steutel
and van Harn operators to some of the parameters giving an equation of the
form

p q m n
Xt = Z a; © thi + Z CjOEt—j + Z Z b@k o (Etngtfk) + &¢ (364)
i=1 j=1 k=1/¢=1
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where the operators a;0,7=1,...,p, ¢cjo, j =1,...,q, and b0, k =1,...,m,
¢=1,...,n, are mutually independent and (g¢)en is a sequence of i.i.d. non-
2

negative integer-valued random variables of finite mean p and finite variance o,
independent of the operators. As in Latour et al., we restrict to the first-order
bilinear model

Xi=aoXy_1+bo (Et—lXt—l) + & (365)

where the sequence involved in the operator ao and bo are respectively of mean
a and b and variance o and . Y and Y denote generic variables used in ao and
bo, respectively. If a +b- u < 1 Doukhan, Latour and Oraichi (2006) [65] prove
that this model is strictly stationary in L'; it is 6—weakly dependent with

O(r) <2(a+b-p)"E(Xo).

If moreover ||Y|, + [l€oll,||Y|l, < 1 this solution belongs to LP. Moment esti-
mators thus yield \/n—consistent estimators of the parameters in the previously
cited paper. We finally mention that in the case of non negative coefficients
such models are also associated sequences.

3.6.3 Random fields

Analogously, one may define some simple stationary random fields. Let T be
any group (in an additive notation) with some metric d, then Bernoulli shifts
still write

Xt = H((gsft)seT)

for a function H : RT — R if (& )ter is stationary, this is also the case of
(X¢)ter. In order to derive dependence properties of such models one better
considers i.i.d. innovations and we assume that

E|H((&)ser) — H((EM)ser)| —r—oo 0

if we set {t(r) = & for d(s,0) < r and {t(r) = z is a fixed point of {’s values set.
Another option is to use a i.i.d. sequence ¢ = (§})ier independent and with
the same distribution as £ and to set §tr) = ¢ for d(s,0) >r.

Here again linear random fields as well as Volterra random fields are simple to
define. Standard sets T' are Z% and (Z/nZ)". 1t is less natural to work here with
continuous time processes because i.i.d. white noise are discontinuous processes:
they are thus less natural to define. A nice example of this situation is given in
the next subsection.

LARCH(c0) random fields

Let (&)ieza be a stationary sequence of random d x m-matrices, (a;j)jen+ be
a sequence of m X d matrices, and a be a vector in R™. A vector valued
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LARCH(c0) random field model is a solution of the recurrence equation

Xe=& |a+ Zant—j , tezd (3.6.6)
J#0

Such LARCH(00) models include a large variety of models, as those in § 3.4 but
the main point is here that causality in no more assumed in general. The same
proof as in Section 3.4 entails the

Proposition 3.5 (Doukhan, Teyssiere, Winant, 2006 [75]). Assume that

€olloo Y llayll < 1,
#0

then one stationary of solution of eqn. (3.6.6) in LP is given as

Xe=&la+d) D apbjap...a5bji——ja (3.6.7)

k=1 j1,....jx#0

In the following of this section we set A(z) = 32,5, e[, A = A(1) and
A = All6olloo where [|(j1, .-, ji)l| = 1] + -+ + Lkl

Approximations. We assume here that the random field (§;);cza is i.d.d..
One first approximates here X; by a random variable independent of Xy. Set

Xi=& |a+), > Wy §t—jr " Ui &ty — i O

k=1 {71 [l4+l7x [ <t

Proposition 3.6. One bound for the error is given by:

t—1
. _ ¢ A
EILX, — il < Eléo] <E||§o| St )+ A) ol
k=1

We now specialize this result. Assume that b, C' > 0 are constants, then there
exists some constant K > 0 such that

1X, - Xl < { %, under Riemaniann decay A(z) < Ca~°
t tll X

K(qV AV, under geometric decay A(z) < Cq®
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Markov approximation. Consider equation (3.6.6) truncated at rank N,

XtN =& (a + ZO<|UH§N antJ\ij). The previous solution rewrites as

o0
XtN = ft a—+ Z Z aj1€t—j1 o .a’jkgt—jl—'“—jka’

k=10<]|71[ls- s TklI<N

Then E||X; — XV < 3°p2, A(N)E. This error has rate ;- ; N~ for Riema-
nian decays and ¢" /(1 — ¢") in the geometric case. Moreover:

Theorem 3.5. The solution (3.6.7) of eqn. (3.6.6) is n—weakly dependent with

t—1 n At
) = oo <||fo|oo2m“A O A) ol
k=1

This bound may be made explicit for the decays considered previously.

Models with infinite memory

We also mention rapidly here truly non linear extensions of LARCH(co0) models
which are the chains with infinite memory from Doukhan and Wintenberger
(2006) [78] and the random fields with infinite interactions from Doukhan and
Truquet (2007) [55], those models are respectively solutions of the equations*

Xt = F(thlaXt727"';§t)a tEZ,
X, = F((X,f_j)#O &), t ez,

those models are usual excited by i.i.d. inputs £&. Even if no explicit chaotic
solution seems to be available in general, such models are well defined and L”
stationary if

IF(2560) = F(y; &o)llm <Y asllay—uill,  a=Y a; <1,
J#0 J#0
in the previous inequality® one should take m = p both for causal random
processes and causal random fields (accurately defined in the above mentioned
work) and m = oo else. Moreover the weak dependence coefficients are proved
to follow analogous decays with now «; = ||a;|| in theorem 3.4.2. More precisely,
the respectively 7 or n weak dependence coefficients have rates driven by the

relation )
inf (ap + a-).
ot (ar + 2 o
li|>p
fHere the function F(z;u) is perhaps not defined over all RN x R or RZ? x R but it is

enough that it is defined on trajectories of the solution.
§For respectively j € N* and j € Z4\ {0}.
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With the previous geometric decays, the bound is the same as in the paragraph
related to theorem 3.3 and for Riemanian decays pr a; < Ci~% a log loss

appears and 71 oo (r) < Klog?!r - r=.

3.6.4 Continuous time

In the continuous time setting one better consider a process with independent in-
crements, (Z;)er, then a simple extension of linear processes is defined through
the Wiener integral

th/oo F(t — s)dZ,

It is for example simple to define such integrals for a Brownian motion but other
possibilities are all the classes of Lévy processes. Among them, the SaS-Lévy
motion is described in Samorodnitsky and Taqqu (1994) [172].

Analogues of Volterra processes are now multiple stochastic integrals. A com-
plete theory is developed by Major (1981) [126].

More examples are provided in the monograph by Doukhan, Oppenheim and
Taqqu (2003) [72].



Chapter 4

Tools for non causal cases

Moment inequalities are the main tools when using non causal weak dependence.
A first useful section addresses the weak dependence properties of indicators of
processes, useful both for moment inequalities and for the empirical process. Af-
ter this separate sections address variances of sums, (2 4 §)-order moments and
higher order moments. They yield both Rosenthal type and Marcinkiewicz-
Zygmund inequalities. Finally cumulants sums are also considered as depen-
dence coefficients and they are used in order to derive sharp exponential in-
equalities. A last section is devoted to prove tightness criteria for empirical
processes through suitable moment inequalities.

4.1 Indicators of weakly dependent processes
Define, for positive real number z, the function g, : R — R by

9u(Y) = lo<y — Lo<—y.

We are interested along this chapter by (Z, ¥)-dependent sequences, where

1-{Q® .. ) wi>0, uenw},

and V(f,g) = c(dy,dy), for some positive function ¢ defined on N* x N*, in this
case we will simply say that the sequence is (Z, ¢)-dependent. Set

A0={®j:1fi/ fieANL®, i R—>R,i=1,...,u, UEN*}.

The following lemma relates 7, k or § weak dependence to Z weak dependence
under additional concentration assumptions.

67
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Lemma 4.1. Let (X,,)nen be a sequence of r.v’s. Suppose that, for some positive
real constants C, a, A

supsupP (z < X; <z + X)) < CA™. (4.1.1)
z€R ieN

(i) If the sequence (X,,) is (Ao, n)-dependent, then it is (Z, c)-dependent with
e(r) = n(r) e and c(u,v) = 2(8C) 1ta (u+v).

(ii) If the sequence (X,) is (Ao, k)-dependent, then it is (Z, c)-dependent with
2(14+a)

e(r) = k(r)2+e and c(u,v) = 2(8C) 2fa (u+wv) 2+,

(i11) If the sequence (X,,) is (Ao, 0)-dependent, then it is (Z,c)-dependent with
e(r) = 0(r) "o and c(u,v) = 2(8C) 1+e (u + v)1+a.

(iv) If the sequence (X,,) is (Ao, \)-dependent (with X(r) < 1), then it is (Z,c)-
dependent with c¢(u,v) = 2 ((80) e 4 (8C) 243&) (u+v) 0 and e(r) =
A(r) 2¥a

Proof of Lemma /4.1. First recall that for all real numbers 0 < x;,y; < 1,
|1 T — Y1 Ym| < Doiey |2 — yi|- Let then g, f € Z, i.e.

91, Yu) = 9oy (Y1) - G, (Yu), and [y, Y0) = Gy (Y1) -+~ Gar, (Y0)

for some u,v € N* and a:i,a:;- > 0.
For fixed x > 0 and a > 0 let

y Yy x
fm(y) = 1y>w - lygfw + (CL - a + 1) 1acfa<y<w + (CL + a - 1) 171<y<7w+a~

Then Lip(f,) = a™! and || fs]/co = 1.
Define now h and k respectively by

Ry, - yu) = for (1) fo, (W), (Y1, y0) = fz’l (y1)- "fz’v(yv)

then Lip(h) < a~ !, Lip(k) < a~!. Consider iy < -+ <y <y +7<j; < -+ <
Jv and set Cov(h, k) := Cov(h(Xi,, ..., Xi,), k(Xj,, ..., X;,))-

(i) n-weak dependence = |Cov(h, k)| < (u+ v)n(r)/a.
(ii) k-weak dependence = |Cov(h, k)| < ((u + v)/a)® k(r).

(iii) 6-weak dependence = |Cov(h, k)| < vé(r)/a.

Inequality (4.1.1) yields |Cov(g, f) — Cov(h, k)| < 8Ca®(u + v) and
(i) |Cov(g, f)| < 8Ca*(u+v) + (u+v)n(r)/a,



4.2. LOW ORDER MOMENTS INEQUALITIES 69

(i) |Cov(g, )] < 8Ca“(u+v)+ (“Z”)Z k(r), or
(iii) |Cov(g, f)| < 8Ca*(u+v) + 26(r).
The lemma follows by setting respectively
1/(1a) 1/(2+a) 1/(14a)
o n(r) o ((utv)s(r) oo 0r)

The case of A dependence is obtained by the summation of both cases (i) and
(ii). O

4.2 Low order moments inequalities

Our proof for central limit theorems is based on a truncation method. For a
truncation level T' > 1 we shall denote X = fr(Xy) — Efr(Xx) with f7(X) =
XV (=T)AT. Let us simply remark that X; has moments of any orders
because it is bounded. Suppose that ¢ = E|X|™ is finite for some m > 0.
Furthermore, for any a < m, we control the difference E|fr(Xo) — Xo|* with
Markov inequality:

E[fr(Xo) — Xo|* < E[Xo|"1q x>y < 0T ™,
thus using Jensen inequality yields
X0 — Xolla < 2uaT" . (4.2.1)

Deriving from this truncation, we are now able to control the limiting variance
as well as the higher order moments.

4.2.1 Variances

Lemma 4.2 (Variances). If one of the following conditions holds then the series
Zkzo |Cov(Xo, Xi)| is convergent

i k(k) < oo (4.2.2)
k=0
iA(k)ﬁif < o (4.2.3)
k=0

Proof. Using the fact that X = gr(Xp) is a function of Xy with Lip gr = 1,
llgr]lco < 2T we derive, for T large enough,

|Cov(Xo, Xi)| < k(k), or < (2T 4 1)A(k) < 4T X(k) respectively (4.2.4)
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In the x-dependent case, truncation can thus be omitted and
|Cov(Xo, Xi)| < (k) (4.2.5)
we only consider \ dependence below. Now we develop
Cov(Xo, Xi) = Cov(Xo, Xg) + Cov(Xg — Xo, Xi) + Cov(Xo, X — Xi)

and using a truncation 7' to be determined we use the two previous bounds
1 1

(4.2.1) and (4.2.4) with Holder inequality with the exponents + = =1 to
a m

derive

|Cov(Xo, Xp)| < 4TA(K) + 2[[ Xo[[m[| X0 = Xolla
< 4T)\(/€) +4ul/a+l/mT17m/a
< ATAKk) + pT?™).

Note that we used the relation 1 — m/a = 2 — m. Thus using the truncation
such that 7™ = Ak Yields the bound

|Cov(Xo, Xp)| < 8um 1 A(k)m—1. O (4.2.6)

4.2.2 A (2+ ¢)-order moment bound

Lemma 4.3. Assume that the stationary and centered process (X;)icz satisfies
E|Xo?*¢ < oo, and it is either k-weakly dependent with k(r) = O (r~"%) or A-
weakly dependent with A(r) = O (T’A). Then if k > 2 + é, or A >4+ z, then
for all § €]0, AN B A 1] (where A and B are constants smaller than ¢ and only
depending of ¢ and respectively Kk or A, see 4.2.10 and 4.2.11), there exist C > 0
such that:

1Snlla < Cy/n, where A =2+4.

Remarks.

. 5 1/A
e The constant C' satisfies C' > <26/2 B 1) kEZZK]ov(Xo,Xk)I. Under

the conditions of this lemma, Lemma 4.2 entails

c= Z |Cov(Xo, Xi)| < 0.
kEZ

e The result is sketched from Bulinski and Sashkin (2005) [33]; notice, how-
ever that their condition of dependence is of a causal nature while our is
not which explains a loss with respect to the exponents A and . In their
(—weak dependence setting the best possible value of the exponent is 1
while it is 2 for our non causal dependence.
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Proof of lemma 4.3. Analogously to Bulinski and Sashkin (2005) [33], who
sketch Ibragimov (1962) [110], we proceed by recurrence on k for n < 2 to
prove the property:

|1+ S]], < CVn. (4.2.7)

We then assume (4.2.7) for all n < 2K—1. We note N = 2X and we want to
bound [|1 + |Sn|||la. We always can share the sum Sy in three blocks, the
two first with the same size n < 2K~! denoted A and B, and the third V
placed between the two first and of size ¢ < n. We then have |1 + [Sn||a <
|1+ |A|+|B||la+|V]|a. The term ||V is directly bounded with ||[1+ |V | a
and the property of recurrence, i.e. C'\/q. Writing q = N? with b < 1, then this
term is of order strictly smaller than v/N. For |1+ |A| 4 |B|||a, we have:

E(1+|A|+ [B])*(1 +|A| + |B])°,
E(1+2|A| +2|B| + (|A| + |B|)*)(1 + |A| + |B)°.

E(1+ |A| +|B)2 <
<

An expansion yields the terms:
o E(L+]A[+[B|)° <1+ A} +|Bl3 < 1+2¢°(v/n)’,

o E[A|(1+[A|+[B|)° <E|A[((1+|B)° +|A]°) < E[A|(1+|B])° + E[A]'*.
The term E|A|'*? is bounded with [|A[|2*° and then ¢'+%(y/n)'+%. The
term E|A|(1+|B|)? is bounded using Holder || Al|145/2[1+|B| [|% and then
is at least of order cC®(y/n)'*9.

e We have the analogous with B instead of A.

e E(|A| + |B|)%(1 + |A| + |B|)°. For this term, we use an inequality from
Bulinski:

E (1Al +BI)?(1 + Al +[B])°)
< E[A|® +E|B|® +5(EA%(1 + |B|)° + EB2(1 + |A])?).

The term E|A|? is bounded using (4.2.7) by C?(y/n)?. The second term
is the analogous with B. The third is treated with particular care in the
following.

We now want to control EA%(1 + |B|)? and the analogous with B. For this, we
introduce the weak dependence. We then have to truncate the variables. We
denote X the variable X V (=T) A T for a real T that will determined later.
We then note by extension A and B the sums of the truncated variables X;.
Remarking that |B| — |B| > 0, we have:

E|A[2(1 +|B|)® < EA%(|B| — |B|)’ + E(A2 — A%)(1 + |B|)® + EA*(1 + |B|)’.
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We begin by control EA?(|B|—|B|)°. Set m = 2+, then using Hélder inequality
with 2/m + 1/m’ = 1 yields:

EA*(|B| - |B))° < A5 (B] = 1B [l

[lA]|a is bounded using (4.2.7) and we remark that:
(IB|—|B]))’™" < (|B|_|B|1{Vi7|X,i|§T})6ml < |B|6ml1{3i,\xi\>T} < |B|6ml1|B\>T-
We then bound 1,7 < (|B|/T)* with a = m — dm'. Then

E||B| - |B||"™ < E|B™T*™ ™.
Then, by convexity and stationarity, we have E|B|™ < n™E|X|™. Then:

EA%(|B| - |B|)? < n>tm/m pé=m/m’,
Finally, remarking that m/m’ = m — 2, we obtain:
EA2(|B| — |B|)? < n™TA~™,

We obtain the same bound for the second term:

E(A% — A%)(1 + |B|)® < n™TA~™.
For the third term, we introduce a covariance term:

EA’(1+|B|)® < Cov(A®, (1+|B])°) + EA’E(1 + |B|)°.

The last term is bounded with |A[3|B|) < ¢ \/nA. The covariance is controlled
by the weak-dependence notions:

e in the rs-dependent case: n*T'k(q),

e in the A\-dependent case: n3T?\(q).

We then choose either the truncation 7™ %1 = n™=2/k(q) or T™ 0 =
n™=3/X(q). Now the three terms of the decomposition have the same order:

m— m—A\1/(m—06-1)
E|A[*(1 +B])° (¥ 22k ()" )

E|A*(1 + |B|)5 = (n5m_3A)\(q)m_A)1/(m76) under A-dependence.

IA

under k-dependence,

b . 3m—2A4+br(A—m)
Set ¢ = NP, we note that n < N/2 and this term has order N m—6-1
5m—3A+bA(A—m)
under k-weak dependence and the order N m=s under A-weak depen-

dence. Those terms are thus negligible with respect to N2/2 if:

k> 3m72AbznA1£2A(T7671), under k-dependence, (4.2.8)

A > 5m73bA(;ﬁ/A2)(m*6) ,  under A-dependence. (4.2.9)
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Finally, using this assumption, b < 1 and n < N/2 we derive the bound for
some suitable constants ai, as > 0:

E(1+|Sx))2 < (2—5/’4’0A £5.279/26A alN_“2) (\/N)A .

Using the relation linking C' and ¢, we conclude that (4.2.7) is also true at the

step NN if the constant C satisfies 27%/2C2 4+5.279/2¢2 4, N~ < C2. Choose
1/A

A 26/2
C> <5c25—/|—2a_1 ] ) with ¢ = Z |Cov(Xo, Xi)|, then the previous relation
kEZ

holds.
Finally, we use eqns. (4.2.8) and (4.2.9) to find a condition on ¢. In the case of
k-weak dependence, we rewrite inequality (4.2.8) as:

0>024+06(2—3—C) —rC+2C+1.
It leads to the following condition on A:

V2 —=3-02+4(k¢ -2 -1)+(+3 -2k

0 < 2 = A. (4.2.10)
We do the same in the case of the A\-weak dependence:
2A—6—C)2+4(\—4C—2 —2)\
5 VA0 OTHAN — =2+ (4620 (4.2.11)

2

Remark: those bounds are always smaller than (. [J

4.3 Combinatorial moment inequalities

Let (X,,)nen be a sequence of centered r.v.s. Let S, = Z?:l X;. In this section,
we obtain bounds for |[E(S?)|, when ¢ € N and ¢ > 2. Our main references are
here Doukhan and Portal (1983) [73], Doukhan and Louhichi (1999) [67], and
Rio (2000) [161].

We first introduce the following coefficient of weak dependence.

Definition 4.1. Let (X,,) be a sequence of centered r.v.s. For positive inte-
ger r, we define the coefficient of weak dependence as non-decreasing sequences
(Cr.q)q>2 such that

sup |COV(,XVt1 s Xtm,Xtm+1 ce th)| = Cr)q, (431)

where the supremum is taken over all {t1,...,tq} such that 1 < t; < --- <,
and m, r satisfy ty 41—t = 1.



74 CHAPTER 4. TOOLS FOR NON CAUSAL CASES

Below, we provide explicit bounds of C,. 4 in order to obtain inequalities for mo-
ments of the partial sums S,,. We shall assume, that either there exist constants
C, M > 0 such that for any convenient g-tuple {t1,...,t,} as in the definition,

Crq < CMie(r), (4.3.2)

or, denoting by Qx the quantile function of |X| (inverse of the tail function
t— P(|X]| > t), see (2.2.14)),

e(r)

Crq < c(q) ;@ (x)---Qx,, (z)dz, (4.3.3)

The bound (4.3.2) holds mainly for bounded sequences. E.g. if || X, ]|co < M
and X is (A NL*>, ¥)-weak dependent, we have:

Cr’q S 1H13X \I/(j®m,j®(qim)7m7 q— m)qu(r)’

<m<gq

where j(r) = 213<1 + 1p51 — 1o 1. If (A, k,u,v) = c(u,v)Lip (h)Lip (k),
the bound becomes

< - = 2¢(r).
C’r,q_llgnniuéqc(m,q m)MI%e(r)

The bound (4.3.3) holds for more general r.v.s, using moment or tail assump-
tions. With Lemma 4.1, we derive that if the concentration property (4.1.1)
holds then the 1 (resp. k) weak dependence implies (Z, ¢)-weak dependence.

Now relation (4.3.3) follows from the following lemma.

Lemma 4.4. If the sequence (X, )nen is (Z,c)-weak dependent, then

e(r)
Cov(Xs, - Xo, . Xo - Xo)| < Gy / Qua(0) -+ Qu, (w)du,
0

where Cq = (MaxXyv<q c(u,v)) V2. The quantity Qq, denotes the inverse of the
tail function t — P(| Xy, | > t) (inverse are defined in eqn. 2.2.14)).

Proof of Lemma 4.4. Let YT =0VY and Y~ =0V (-Y),

+oo “+o0
/ ly<y+dz = / 1,.<ydz, and
0 0

—+oo +oo
/ 1w<y—d$ = / 1z<_ydﬂf.
0 - 0 h

The inclusion-exclusion formula entails,

Y+

v

VoY = [JO77 = ¥7) = D07y iy

tq
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where " denotes a summation over all the permutations {i1,...,7,} of
{1,...,¢}. Using Fubini’s theorem, the preceding integral representation yields

VY, = (-1

X
T
-
B
IA
=

o lwrﬁyw 117‘+1S7Y7‘+1 T 11q§*Yiq dry - -d{Eq

I< y)dxl-"qu.

Il
aé\
et
£
b<

Again Fubini’s theorem yields

q
E(Y;---Y,) = /d EJ] (Qei<v, = Laj<oy,) day -+ - day. (4.3.4)
RY =1

Now, eqn. (4.3.4) applied with Y; = Xy, for i = 1,..., ¢, together with Fubini’s
theorem implies

Cov (Xt -+ Xty s Xtoin ...th):/R Cov (H fi(Xt,) H fi (X, ) dzy - - - dxg,

=1 zm+1

where f;(y) = 1;,<y — 13,<—y. Define

= |Cov (H fi(Xe) H fi(X4) )‘ (4.3.5)

=1 zm+1

In the sequel, we give two bounds of the quantity B. The first bound does not
use the dependence structure, only that |f;(y)| = 1,,<|y. Thus

B < 2inf(®x,, (21), ... Px,, (). (4.3.6)

with ®x(z) = P(]X| > x). The second bound is deduced from the (Z, ¢)-weak
dependence property. In fact, we have (recall that r = t,,11 — t,,)

B < c(u,v)e(r). (4.3.7)
The bound (4.3.7) together with (4.3.6) yields
B < Cyinf(e(r), @x, (z1),..., Px,, (xq))-
Hence

|COV(Xt1 Xtm ? Xtm+1 T X q)

+oo —+oo
< cq\/2/ / inf(e(r), @x,, (z1), ..., Px,, (¥q))dz1 - -~ dg.
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The proof of Theorem 1-1 in Rio (1993) [157] can be completely implemented
here. We give it for completeness. Let U be an uniform-[0,1] r.v, then

e(r) A 1r<nj1n Px,, (z;) = PU<e(r),U<Ox, (21),...,U < Px, (24))
= P(U <e(r),z1 <Qx, (U),...,24 < Qx,, (U)).
We obtain, collecting the above results
|Cov(Xe, - Xy Xtyyr - Xi, )| £ CeEQx,, (U) -+ Qx,, (U)ly<e(r)-

The lemma is thus proved. [J

In order to make possible to use such bounds it will be convenient to express
bounds of the quantities

N
sabN—ZrH/ Q4 (s (4.3.8)
r=0

under conditions of summability of the series ¢, for suitable constants a > 0 and
N,b> 0 and a tail function @ of a random variable X such that E|X[**® < oo
for some 6 > 0. Set for convenience A, = Y _ (i + 1) for 7 > 0 and = 0 for
r <0, and B, = E(T) Q"(s)ds for r > 0 (= 0 for r < 0), then expression s, 4 x
rewrites as follovvs Abel transform with Holder inequality for the conjugate
exponents p =1 + b/ 0 and ¢ = 1 + /b implies the succession of inequalities

N
Sa,b,N = Z(Ar - Arfl)Br
=0

N—-1
= Y Ax(By = Bri1) + AvBy

L ot
- /0 Z Ardje(r41),e(r)](8) + AnLjo,e(n)) (5 )) Q"(s)ds

1 N1 Vo »

< () (Z A0+ At )as) ([ @)

3 1/p bqy1/a
< (X A2(elr) — elr + 1)) + Ae(N)) " (BIX|™)

r=0
Hence

N 1/p
Sa,b,N < (Z(Ag — Af_l)e(r)> (E|X|b+§)b/(b+5)
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Now we note that 7¢*1/(a+1) < A, < (r +1)%"1/(a + 1) so that
AP A < (1D (1) a1 < 2 1 (g 1

hence, setting ¢ = (2p)'/?(a + 1)/,

N 8/(b+6)
Sap,N <€ <Z(T + 1)a+(a+l)b/6€(7")> 1X 1155
r=0

We summarize this in the following lemma.

Lemma 4.5. Leta > 0,b > 0 be arbitrary then there exists a constant ¢ = ¢(a,b)
such that for any real random valued variable X with quantile function Qx, we
have for any N >0

N e(r N

)
Z(T + 1)a Qg((s)ds < C(Z(r+ 1)a+(a+1)b/6€(,r))

r=0 0 r=0

5/(b+6)
11X [1p45-

4.3.1 Marcinkiewicz-Zygmund type inequalities
Our first result is the following Marcinkiewicz-Zygmund inequality.

Theorem 4.1. Let (X,)nen be a sequence of centered r.v.s fulfilling for some
fizredqe N, ¢ >2
Cryg=0""%), as r— oco. (4.3.9)

Then there exists a positive constant B not depending on n for which
IE(S4)| < Bn?/2. (4.3.10)

Proof of Theorem 4.1. For any integer q > 2, let

Ay(n) = S E(Xy Xy, | (4.3.11)

1<t < <tg<n

Clearly,
[E(SD| < q'Aq(n). (4.3.12)

Hence, in order to bound |E(S?)|, it remains to bound A,(n). For this, we argue
as in Doukhan and Portal (1983) [73]. Clearly

Aq(n) < Z IE(X, - X, )E(Xe ey o X, )
1<ty < <ty<n
+ Z |COV(Xt1 T thL7thL+1 T th)|'

1<ty <<ty <n
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The first term on the right hand of the last inequality is bounded by:

qg—1
Z IE(X, - X, )E(Xe o X, )| < ZAm(n)Aq_m(n).
1<t <<ty <n m=1
Hence
qg—1
< SN 4n(n (n) + V,(n). (4.3.13)
m=1
with
Van) = > |Cov(Xy, - Xo, Xy - X1, (4.3.14)
(t1,--+,tq)EG,

where G, is the set of {t1,...,t,} fulfilling 1 < ¢; < --- < ¢, < n with r =
b1 — bm = MaXi<jcq(tiv1 — ti).
Our task now is to bound the expression V,(n) defined by (4.3.14). Clearly

< Z Z |COV(AXV151 o 'XtmaXtm+1 T th)lv

t1=1
where Z* denotes a sum over such a collection 1 <t; <--- <t, <n with fixed
t1, and r = ti4+1 — tm = maxlgigq,l(tiﬂ — ti) S [0, n— 1] Again

n—1 xx

*
Z |Cov (X, -- 'Xtm7Xtm+1 o 'th)| < Z Z |Cov (X, -- 'Xtm7Xtm+1 o 'th)|'
r=0

*kk

where Z denotes the (¢ — 2)-dimensional sums each over

{(t1,. . tg) ) tica <t; <tii+7r, i#1,m+1}.

Hence Zl (r 4+ 1)777, with [Cov(Xy, -+ Xt Xtyy - Xe,)| < Crgy we
deduce that )
<D+ 1)C, (4.3.15)
ti1=1r=0

We obtain, collecting inequalities (4.3.13) and (4.3.15),

q—1 n—1
Apn(n)Ag-m(n) +n Y (r+1)172C, . (4.3.16)
m=1 r=0

By induction on ¢, and using the last inequality together with condition (4.3.9),
it is easy to check that A,(n) < K,n%?. Theorem 4.1 follows from (4.3.12). O
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4.3.2 Rosenthal type inequalities

The following lemma, which is a variant of Lemma 1 page 195 in Billingsley
(1968) [20], gives moment inequalities of order ¢ € {2,4}.

Lemma 4.6. If (X,,)nen is a sequence of centered r.v.s, then

n_l 2 n—1
B <03 o msh ) (1520) 1a S vy
r=0 —0

(4.3.17)

Proof of Lemma 4.6. We take respectively ¢ = 2 and ¢ = 4 in the rela-
tion (4.3.16). The obtained formulas, together with (4.3.12) and the fact that
A1(n) = 0 for any positive integer n, prove Lemma 4.6. O

The following theorem deals with higher order moments.

Theorem 4.2. Let q be some fized integer not less than 2. Assume that the
dependence coefficients C,.,, associated to the sequence (X,,) satisfy, for every
nonnegative integer p, p < q, and for some positive constants C and M,

Crp < CMPe(r). (4.3.18)
Then, for any integer n > 2

D) _2)' n—1 qa/2 n—1
(qq_ oM <Cn26(r)> v (CnZ(r+1)q2e(r)>

r=0 r=0

E(s9)] <
(4:3.19)

Proof of Theorem 4.2. The relation (4.3.16) together with Condition (4.3.18)
gives,

qg—1 n—1
A (n (n) +CMn Y " (r+1)""¢(r). (4.3.20)
m=1 r=0

In order to solve the above inductive relation, we need the following lemma.

Lemma 4.7. Let (Uy)g>0 and (Vy)gso0 be two sequences of positive real numbers
satisfying for some v > 0, and for all ¢ € N*

q—
Z Uy + MV, (4.3.21)

m=1
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with Uy = 0 < V3. Suppose that for every integers m,q fulfilling 2 <m < q—1,
there holds

VIV V) (T2 V) < (G2 V). (4.3.22)
Then, for any integer q > 2
Ma
v< ( 2qq_ 1 ) V2 ). (4.3.23)

Remark 4.1. Note that a sufficient condition for (4.3.22) to hold is that for all
p, qgsuch that 2 <p<qg-—1

LA Ve (4.3.24)

Proof of Lemma 4.7. Let (Uy)g>0 and (V4)g>0 be two sequences of positive real
numbers as deﬁned by Lemma 4.7. We deduce from (4.3.21) and (4.3.22), that

the sequence (U,), defined by U, = U,/ M q(VQQ/ 2y V,) satisfies the relation,

q—
Z qm—I—l [7120

In order to prove (4.3.23), it suffices to show that, for any integer ¢ > 2,
~ 1/ 2¢—2
U, <d, := , 4.3.25
T g < g—1 ) (4:329)

where d, is called the ¢g-th number of Catalan. The proof of the last bound is
done by induction on ¢q. Clearly (4.3.25) is true for ¢ = 2. Suppose now that
(4.3.25) is true for every integer m less than ¢ — 1. The inductive hypothesis
yields with 01 =0:

q—
Z dgm + 1. (4.3.26)

The last inequality, together with the identity d, = Y7 d mdq—m (cf. Comtet
(1970) [39], page 64), implies U, < d,, proving (4.3.25) and thus Lemma 4.7. O

We continue the proof of Theorem 4.2. We deduce from (4.3.20) that the se-
quence (Aq(n))q satisfies (4.3.21) with

n—1
Vg i=Vy(n) = CM™n Y (r+ 1) %(r).

r=0

Hence, to prove Theorem 4.2, it suffices to check condition (4.3.22).

A A 1 A e VA A ARV Ul 7 S Y T
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To control each of these terms, we use three inequalities. Let p be a positive
integer, 2 < p < g — 1. We deduce from,

n—1 n—1 3712) n—1 2:5
Z(r +1)P2¢(r) < (Z e(r)) (Z(T + l)q_ze(r)> ,
r=0 r=0 r=0
that, for 2 <p <gq—1,
p—2 q—p
V, < VIRVl (4.3.27)

Define the discrete r.v. Z by P(Z =7+ 1) = e(r)/ Z;.Zol €;. Jensen inequality
implies || Z]|p—2 < || Z|lq—2 if 1 <p—2 < ¢ — 2 so that
V, < Vil (4.3.28)
ForO<a<1,
ViRviee < ity (4.3.29)
Using (4.3.28), we get

(a—=m)a  m— 2

V V(‘I m)/2<v2(q 2) Vq
q—m—2

VQm/2Vq . <V2(" Q)V q-2
From (4.3.27) we obtain
ViV < Vi 2 Vi
Now (4.3.29) implies that these three bounds are less than VQq/ >V Ve, O

Theorem 4.3. If (X,,)nen is a centered and (Z,c)-weak dependent sequence,
then

(¢g—1)

noo1 a/2
Y% <Cg Zl/o (e_l(u) An)Q? (u)du) ,

where €1 (u) is the generalized inverse of ) (see eqn. (2.2.14)).

syl < 207 {c > [ an) ™ @t

Proof of Theorem 4.3. We begin from relation (4.3.16), and we try to evaluate
the coefficient of dependence C. , for (Z,1)-weak dependent sequences. For
this, we need the forthcoming lemma.

Lemma 4.8. If the sequence (X, )nen is (Z,c)-weak dependent, then

<CZ/ ! QY (u)du
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Proof of Lemma 4.8. We use Lemma 4.4. Arguing exactly as in Rio (1993)
[157], we obtain

e(r)

N < oYY | @t
r=0 (i1,...,iq)EG,
e(r) q

S0 SHED SH A o A0
r=0 (i1,...,iq)EG,

< OY % /
r=0 (iy,.. zq)EUk< (r+1)

Now fixing ¢; and noting that the number of completing (¢1,...,%j-1,%j41,...,1q)

to get an sequence in J, ., Gy, is less than (r + 1)771:

n n—1

+ 1)1l

Z( <1)Z€Uk< Gk /(T+1 Z;Jr oV e(r+1) r ( )
y u) An) T Qf (u)du
< 2 [

Lemma 4.8 is now completely proved. [J
We continue the proof of Theorem 4.3. We deduce from Lemma 4.8 and In-

equality (4.3.16), that the sequence (A4(n)), fulfills relation (4.3.21). So, as in
the proof of Theorem 4.2, Theorem 4.3 is proved, if we prove that the sequence

Vo(n) == (cp V2) S0 fol (e (u) An)" ™" QF(u)du satisfies (4.3.22). We have,
/1 (e M (w) A n)p_l QF (u)du
0

) </01 e Q?(U)du> : </o1 (M) Am)" Q?(u)du> }

The last bound proves that the sequence (V},(n)), fulfills the convexity inequality
(4.3.27), which in turns implies (4.3.22). O

4.3.3 A first exponential inequality

For any positive integers n and ¢ > 2, we consider the following assumption,

_ 2 q!
qu—nZ(r—kl )12 Crq < Ap o (4.3.30)
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where 3 is some positive constant and A,, is a sequence independent of g.
As a consequence of Theorem 4.2, we obtain an exponential inequality.

Corollary 4.1. Suppose that (4.3.18) and (4.3.30) hold for some sequence A,, >
1 for any n > 2. Then for any positive real number x

P (|Sn| > x\/An) < Aexp (—B\/ﬁx) , (4.3.31)
for universal positive constants A and B.
Remark 4.2.
e One may choose the explicit values A = e*T1/12\/87, and B = /2.

e Let us note that condition (4.3.30) holds if C,., < CM9e="" for positive
constants C, M,b. In such a case A, is of order n. E.q. this holds if
[Xnllo < M and | X,|l2 < o under (A N L, U)-weak dependence if
e(r) = O(e™) and U (h, k,u,v) < @tV Lip (h)Lip (k) for some 6§ > 0.
For this, either compare the series > (r—+1)9"2e=" with integrals or with
derivatives of the function t — 1/(1 —t) =", t" at point t = e~ .

e The use of combinatorics in those inequalities makes them relatively weak.
E.g. Bernstein inequality, valid for independent sequences allows to replace
the term \/z in the previous inequality by x* under the same assumption
no? > 1; in the mizing cases analogue inequalities are also obtained by
using coupling arguments (not available here), e.g. the case of absolute
regularity is studied in Doukhan (1994) [61].

Proof of Corollary 4.1. Theorem 4.2 written with ¢ = 2p yields

2p)! [ dp—2
E(S2P) < (2];) ( 2]73_ . )(szm\/M{n). (4.3.32)

Hence inequality (4.3.32) together with condition (4.3.30) implies

B(s) < P2 <(2A")”v 2,00)

- (@2p-1)! B2 B2
(4p —2)! o (2p)!
p— 1A

< (A, vAP)(;];g!.

From Stirling formula and from the fact that A,, > 1 we obtain
2p P
E(S?) _ A

P(|Sn| > z) < o S $2pggp€1/12_4p\/8ﬂp(4p)4p
<

16 »
e'12\/8n <xﬁe7/4p2\/A"> .
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Now setting h(y) = (Cy,y)*¥ with C2 = ;26_7/4\/14”, one obtains

P(|S,| > z) < e/'2\/8xh(p).

Define the convex function g(y) = log h(y). Clearly

1
inf = .
ylerﬁwg(y) g <€On)
Suppose that eC,, < 1 and let pg = [e(lj }, then

P(|S,| > z) < e/*2V/8nh(po) < e4+1/12\/87rexp(ec )

Suppose now that eC,, > 1, then 1 < e*t1/12{/87 eXp(e_C4 )
In both cases, inequality (4.3.31) holds and Corollary 4.1 is proved. [J

Remark. More accurate applications of those inequalities are proposed in
Louhichi (2003) [125] and Doukhan & Louhichi (1999) [67]. In particular in
Section 3 of [67] conditions for (4.3.18) are checked, providing several other
bounds for the coefficients C, 4.

4.4 Cumulants

The main objective of this section is to reinterpret the cumulants which classi-
cally used expressions to measure the dependence properties of a sequence.

4.4.1 General properties of cumulants

Let Y = (Y7,...,Y;) € R* be a random vector, setting ¢y (t) = EeY =
Eexp (z Z;ﬂ:l thj) for t = (t1,...,t5) € R*, we write m,(Y) = EY{* .- YP*
for p = (p1,...,pr) f E(Y1|° +--- +|Y1]°) < o0 and [p| = p1 + - +pp = 5.
Finally if the previous moment condition holds for some r € N*/ then the
function log ¢y (t) has a Taylor expansion

i1l
log ¢y (t) = Z sz; kp(Y)tP +o(|t]"), ast—0

[p|<r
for some coefficients k,(Y) called the cumulant of Y of order p € R* if |p| < s
where we set p! = pil--ppl, 2 = 7" #F if t = (t1,...,tx) € RF and p =
(pla e 7pk)'
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In the case p = (1,...,1), to which the others may be reduced, we denote
k(1,0 (Y) = K(Y). Moreover, if pp = {i1,... i} C{1,...,k}

kp(Y) =k, ..., Y:,), m,(Y)=m(;,...,Y,).

Leonov and Shyraev (1959) [119] (see also Rosenblatt, 1985, pages 33-34 [168])
obtained the following expressions

KY) = > (- (w—10 > J[mw, ) (4.4.1)

u=1 L seees by =1
k

my) = > > Hf% (4.4.2)
u=1fi1,...,py j=1

The previous sums are considered for all partitions 1, . . ., i, of the set {1,..., k}.

We now recall some notions from Saulis and Statulevicius (1991) [173]. For this
we reformulate their notations.

Definition 4.2. Centered moments of a random vector Y = (Yi,...,Yy) are
defined by setting E (Y1,...,Y;) = EY1¢(Ya,...,Y]) where the centered random

=
variables ¢(Ya, ..., Y]) are defined recursively, by setting c(&1) = € = & —E&,

(&5t &) = & el 60) = & (elEjory - E1) = BelEjr, . 61)
We also write Y,, = (Y;/j € p) as a p—tuple if p C {1,...,k}.

Quote for comprehension that E (&) =0, E (n,€) = Cov(n, ) and,
E (€,n,6) = E((ng) — E(QE®E) — E(n)E(CE) — E(EE((n).

A remarkable result from Saulis and Statulevicius (1991) will be informative

Theorem 4.4 (Saulis, Statulevicius, 1991 [173]).

k u
H(Ylw'wyk) = Z(_l)u_l Z Nu(MlavMU)H EYNJ
u=1 Hlsens b Jj=1

where sums are considered for all partitions py, ..., p, of the set {1,...,k} and
the integers Ny (u1, ..., fy) € [0, (u—1)IA [’;} !] , defined for any such partition,
satisfy the relations

u—1
Z Nu(le 7Mu) = ch‘z(u_j)kilf
=1

HiseeosHu
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k

o ) N(ku)=(k—1)!

u=1
Using this representation the following bound will be useful

Lemma 4.9. Let Yi,...,Y; € R be centered random variables. For k > 1, we
set My, = (k — 1)128 "L max;<;<x E|Y;|*, then

[k(Y1,...,Yp)| < My, (4.4.3)

MM, < My, if k)1 > 2. (4.4.4)

Mention that a consequence of this lemma will be used in the following;:

u
[T lep(Yas o Yo )l < My, g, (4.4.5)
i=1
We shall use this inequality for components Y; = X ,ga) of a stationary sequence

of RP —valued random variable hence max;>1 E|Y;|P < max;<j<p E|Xéj) [P and
we may set

— _ 1op—1 (]) P
My = (p—1)2"" max EXG" (4.4.6)

Proof of lemma 4.9. The second point in this lemma follows from the elementary
inequality a!b! < (a + b)! and the first one is a consequence of theorem 4.4 and
of the following lemma

Lemma 4.10. For any j,p > 1 and any real random variables &y, &1, &2, . . . with
identical distribution,

less&i-1s-s60)llp < 2 max 1l with [illy = EV/7lg].

Proof of lemma 4.10. For simplicity we shall omit suprema replacing
max;<; [|&||p by [|€1]|p- First of all, Hélder inequality implies

le€lly < lI€allp + B | < 2[[&1llp,

We now use recursion; setting Z; = ¢(§;,&-1,...,&) yields Z; = §(Z;-1 —
EZ;_1) hence Minkowski and Holder inequalities entail

1€5Z5-1llp + 1€0llpEZ; 1|

[€0llpsl1Zi-1llq + IS0llpill Zj -1l

2o lll€oll?G

12l

INIA A
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1 1
where =~ + 1= 1; from p > 1 we infer ¢(j — 1) < pj to conclude. (J
q p-

Proof of lemma 4.9. Here again, we omit suprema and we replace max;< s [|Yjlp
by [|Yoll,- With lemma 4.10 we deduce that |E Y, | < 2/71| Yo} with I = #p.
Indeed, write Z = ¢(Ya,...,Y]), then with ; + % =1 we get

E (1, Y| = [EYi 2] < Yol ZIl, < 2 1Yol

since ¢(I — 1) = [. Hence theorem 4.4 implies,

k u
S0 Nulpn, o) []2# V0l

k(Y] <
u=1 1. .y fbu i=1
k
< Y 2Nk W)Yol
u=1
k
< 2MYYOlE D N (ki)
u=1
= 271k — )Y Yoll7- 0

The following lemmas are essentially proved in Doukhan & Leén (1989) [66] for
real valued sequences (X, )nez. Let now (X,,)nez denote a vector valued and
stationary sequence (with values in R?), we define*, extending Doukhan and
Louhichi (1999)’s coefficients,

Cx.qr) = sup ‘Cov (xf) e xfe, x (o) -Xt(jq))} (4.4.7)

1 ti1

tl+1*tlz7‘

We also define the following decreasing coefficients, for further convenience,

cx,q(r) = [max ex,1(r)pg—t, with = 1IgrbaLSXDI['E|X0|t. (4.4.8)
In order to state the following results we set, for 1 < ay,...,a, < D,

R(g) @) (o, ) = Ry (X6, X X))
The following decomposition lemma will be very useful. It explain how cu-
mulants behave naturally as covariances. Precisely, it proves that a cumulant

*For D = 1 this coefficient was already defined in definition 4.1 as Cy 4 but the present
notation recalls also the underlying process.
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KQ(Xkys -+, Xpg) is small if kyq — ky is large, by < --- < kg, and the process
is weakly dependent. This is a natural extension of one essential property of
the cumulants which states that such a cumulant vanishes if the index set can
be partitioned into two strict subsets such that the vector random variables
determined this way are independent.

Definition 4.3. Let t = (t1,...,t,) be any p—tuple in ZP such that t; < --- <
tp, we denote r(t) = maxi<j<p(ti41 — t;), the mazimal lag within the succession

(t1,.. . tp).
We now introduce another dependence coefficient

Kip(r) = max max ‘K,p (Xt(lal), . ,Xt(a”)) ‘ (4.4.9)
tp < < tp 1<ai,...,ap <D P
CTRSE

Lemma 4.11. Let (X,)nez be a stationary process, centered at expectation
with finite moments of any order. Then if Q > 2 we have, using the notation
in lemma 4.9,

Q Q—s+1
ixalr) < ex.olr +ZMQ A3 e

Proof of lemma 4.11. We denote X( 9 = Hle X ) for any p—tuples n € ZP and
a=(ai,...,ap) €{1,...,D}? (thlS way admits repetitions of the succession 7).
We assume that k1 < --- < kg satisfy kjp1 — ki = r = maxi<s<p(ksp1 —ks) > 0,
then if p = {p1, ..., py} ranges over all the partitions of {1,..., @} there is some
pi (which we denote v),) satisfies v, = [1,1]Nv, # 0 and v} = [I+1,Q]Nv, # 0.
Using formula (4.4.2), we obtain, with n = {1,...,1},

(X X)) = Cov(X U XY =3 N kg Kk, (44.10)
w {p}

where K, = H Ku; (k) and where the previous sum extends to partitions
iV

= {p1, ..., pu} of {1,...,Q} such that there exists some 1 < ¢ < u with

wiNv # () and p;Nv # (. For simplicity the previous formulas omit the reference

to indices (a1, ..., aq) which is implicit. We use the simple but essential remark

that

r(yﬂ(k)) > r(k) to derive |/£,,M(k)| < KX H, (1)

We now use lemma 4.9 to deduce |M,| < Mg_4,, as in eqn. (4.4.5). This
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yields the bound

[Q/2]
’K (X]ng)’ c ,XIS;Q))‘ < C)QQ(T) + Z (u - 1 Z MQ #W'KW(/C)(X( ))|

u=2 M1y
[Q/2] Q-2

< COxo)+ D (w—1Y" Mg wrxslr) >, 1
u=2 s=2 Hlseoos I

Huy =

[Q/2] Q-2

< COxo)+ D> (=D (u—1)9*Mg_srix.s(r)
u=2 s=2
Q-2 Q —s+1

< Mg s

< Cxofr +ZQ—3+1{2] Q-skx,s(T)

since the inequality 25:1 (u—1)P < lerl UPT! follows from a comparison between
a sum and an integral. [J

Rewrite now the lemma 4.11 as

Q-2

kx.q(r) <exo(r) + Y Baskix,s(r)
s=2

thus the following formulas follow

kx2(r) < expa(r),
kx3(r) < exgs(r),
kxa(r) < exa(r)+ Bagkxa(r)
< exa(r) + Baaexa(r),
kx5(r) < exs(r) + Bsskx3(r) + Bsakx,a(r)
< ¢x,5(r) + Bssex,3(r) + Bsacx 2(r),
kx,6(r) < c¢x6(r)+ Bsakx,a(r) + Bsskx 3(r) + Beakx,2(r)
< ex,6(r) + Bsa (ex,a(r) + Baocx 2(r)) + Bg,scx 3(r) + Bs2cx,2(r)
< ex,6(r) + Bsuacx,a(r) + Bgscx,3(r) + (Bs,2 + BsaBa2)cx 2(r).

A main corollary of lemma 4.11 is the following, it is proved by induction.

Corollary 4.2. For any Q) > 2, there exists a constant Ag > 0 only depending
on Q, such that

kx,Q(r) < Agcy o(r).
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Remark 4.3. This corollary explains an equivalence between the coefficients
cx,q(r) and the kq(r) which may also be preferred as a dependence coefficient.
A way to derive sharp bounds for the constants involved is, using theorem 4.4,
to decompose the corresponding sum of centered moments in two terms, the first
of them involving the maximal covariance of a product.

Section 12.3.2 will provide multivariate extensions devoted to spectral analysis.

For completeness sake remark that formula (4.4.10) implies with Bg o = 1 that

Q
cx,o(r) < Z Bq skx,s(r). Hence there exists some constant Ag such that
5=2

<;4V * * _ * B
exalr) < Aqkk o), R q(r) = max m (g

Finally, we have proved that constants ag, Ag > 0 satisfy

aQcx (r) < kx o(r) < Agcx o(r)
Hence, for fixed @ those inequalities are equivalent.

The previous formula (4.4.10) implies that the cumulant

KX, ,X;iZQ)) =y Ka,ﬁ,kCOV(Xc(szLV ng’)“))
o,

writes as the linear combination of such covariances with o C {1,...,l} and
Bc{l+1,...,Q} where the coefficients K, g are some polynomials of the cu-
mulants. For this one replaces the Q—tuple (X,g‘lll)7 . ,XIEZQ)) by (Xi(a))ie,,#(k)
for each partition f, in formula (4.4.10) and use recursion.

Such representation is useful namely if one precisely knows such covariances;
let us mention the cases of Gaussian and associated processes for which addi-
tional informations are provided.

The main attraction for cumulants with respect to covariance of products is
that if a sample (X4, ,...,X,) is provided, the behaviour of the cumulant is
that of cx q(r(k)) with appears as suprema over a position ! of the maximal lag
in the sequence k. This means an automatic search of this maximal lag r(k)
may be performed with the help of cumulants.

Examples. The constants Ag, which are not explicit, may be determined
for some low orders. A careful analysis of the previous proof allows the sharp



4.4. CUMULANTS 91

bounds'
kx,2(r) cx,2(r)
kx3(r) = cx3(r)
kxa(r) < exa(r) +3pscex,2(r)
kx5(r) < exs(r) + 10pecx 3(r) + 10uscx 2(r)
kxe(r) < exe(r)+ 15pgcx a(r) + 20uscx 3(r)) + 150pacx 2(r)

Our main application of those inequalities is the
Lemma 4.12. Set
— N . S (a1) yr(az) (aq)
KQ = kzo kzolgalf??f@@ ’n (X0 XX )’ L (4411)
2= Q=

We use notation (4.4.8). For each Q > 2, there exists a constant By such that

ka < B Y (r+1)22Ch o)
r=0

Proof of lemma 4.12. For this we only decompose the sums

—1) (a1) x-(a2) (GQ)) }
kg < (Q-1) Z 1§a1?%§Q§D}K(X0 Xy X
ka<-<kg
= (Q—-1!Ekg

by considering the partition of the indice set
E={k=(ka,...,kg) e N 1/ky <. <kg}
into E, = {k € E/ r(k) =r} for r > 0, then
- N (a1) y(a2) <aQ>)‘

The previous lemma implies that there exists some constant Ag > 0 such that

Z max ‘m(Xéal),Xlgzz),...,X,ng))‘ < AQ#E Cx o(r)

1<ay,...,ag<D
keE, — tes

and the simple bound #E, < (Q — 1)(r + 1)9~2 concludes the proof. [

TTo bound higher order cumulants we shall prefer lemma 4.11 rough bounds to those
involved combinatorics coefficients.
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Lemma 4.13. Let us assume now that D = 1 (the process is real valued and
we omit the super-indices a;). If the series (4.4.11) is finite for each Q < p we
set q=[p/2] (g =p/2 if p is even and q = (p—1)/2 if p is odd) then

P

n q
E ZXj < Zn“%, where (4.4.12)
Jj=1 u=1
29
SID VD DR
Tu il pa! P1 Pu

v=1pi+:-+pu=p

Proof. As in Doukhan and Louhichi (1999) [67], we bound

E(X)+ -+ Xn)P| = Z EXy, - Xg,
1<ki,....kp<n

App = Z |EX, - Xy, |
1<k, kp<n

IN

Let now p = {i1,...,iy} C {1,...,p} and k = (k1,...,kp), we set for conve-
nience

p(k) = (kiy, ... ki) € NV (4.4.13)

In order to count the terms with their order of multiplicity, it is indeed not
suitable to define the previous item as a set and cumulants or moments are
defined equivalently in this case. Hence, as in Doukhan and Leén (1989) [66],
we compute, using formula (4.4.2) and using all the partitions pq,.. ., of
{1,...,p} with exactly 1 < u < p elements

Apw = D> > > [Aww®

1<ki,....kp<nu=1p1,...; 1y j=1

= > > > IrwwE)
u=1

H1seespbu 1<k, . kp<n j=1

& !
= Z Z v.p..pryx

r=1 pr+-tpr=p PV

<11 S kX Xy,,)  (4414)

u=11<ky,....,kp, <n

' u
[Apn| < § n* E "1?.~p | | | Kp; (4.4.15)
! ul
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Identity (4.4.14) follows from a simple change of variables and takes in account
that the number of partitions of {1,...,p} into u subsets with respective cardi-
nalities pq, ..., py is simply the corresponding multinomial coefficient. Remark
that, for A € N, and taking X’s stationarity in account, we obtain

Z |/€pu(Xk1,...,Xk>\)|§7’LK,)\

Using this remark and the fact that cumulants of order 1 vanish and the only
non-zero terms are those for which p1,...,p, > 2 and thus 2u < p, hence u < ¢
we finally deduce inequality (4.4.15). O

Remark 4.4. If ks < C? for s < p and for a constant C > 0, the bound
(4-4.15) rewrites as CP Y"1 _ uPn® by using the multinomial identity.

4.4.2 A second exponential inequality

This section is based on Doukhan and Neumann (2005), [71]. In this section we
will be concerned with probability and moment inequalities for

Sn=X1 4+ Xa,

where X1, ..., X, are zero mean random variables which fulfill appropriate weak
dependence conditions. We denote by o2 the variance of S,. Result are here
stated without proof and we defer the reader to [71].

The first result is a Bernstein-type inequality which generalizes and improves
previous inequalities of this chapter.

Theorem 4.5. Suppose that Xq,...,X,, are real-valued random wvariables de-
fined on a probability space (0, A, P) with EX; = 0 and P(|X;| < M) =1, for
alli =1,...,n and some M < oco. Let ¥ : N2 — N be one of the following
functions: (a) ¥(u,v) = 2v, (b) V(u,v) = u+v, (¢) V(u,v) = wv, or (d)
U(u,v) = afu+v) + (1 —a)uw, for some a € (0,1).

We assume that there exist constants K, L1, Lo < co, u > 0, and a nonincreas-
ing sequence of real coefficients (p(n))n>0 such that, for all u-tuples (s1,. .., Sy)
and all v-tuples (t1,...,t,) with 1 < s < -+ <5, <t; <---<t, <n the
following inequality is fulfilled:

|Cov (X, -+ X, Xpy - X, )| < KM P20 (u,0)p(ty — su),  (4.4.16)

where
o

> (s+ 1) p(s) < LiLE(RY",  VE>0. (4.4.17)
s=0
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Then

t2/2
P(S, > 1) < . , 4418
== eXP( A, + By D 2nt3)/ “‘*2)) ( :

where A,, can be chosen as any number greater than or equal to o2 and

4+ 2
By =2(KV M)Ls ((2 NZK Ll) v 1) .
Remark 4.5. (1) Inequality (4.4.18) resembles the classical Bernstein inequality
for independent random variables. Asymptotically, o2 is usually of order O(n)
and A,, can be chosen equal to o2 while By, is usually O(1) and hence negligible.
In cases where o2 is very small or where the knowledge of the value of A, is
required for some statistical procedure, it might, however, be better to choose A,
larger than o. It follows from (4.4.16) and (4.4.17) that a rough bound for o2
is given by

02 <2nK?W(1,1)L;. (4.4.19)

Hence, taking A, = 2nK?V(1,1)L; we obtain from (4.4.18) that

P <Z X; > t) < exp <— Cun+ 02t<2u+3>/<u+2>) : (4.4.20)

i=1

where Cy = 4K?W(1,1)Ly and Cy = 2371/(’”2) with B, such that B, = 2(K V
M) Lo ((23+“/\I/(1, 1))V 1), Inequality (4.4.20) is then more of Hoeffding-type.
(i) In the causal case, we obtain in Theorem 5.2 of Chapter 5 a Bennelt-type
inequality for T-dependent random variables. This also implies a Bernstein-type
inequality, however, with different constants. In particular, the leading term in
the denominator of the exponent differs from o2. This is a consequence of the
method of proof which consists of replacing weakly dependent blocks of random
variables by independent ones according to some coupling device (an analogue
argument is used in [61] for the case of absolute regularity).

(ii) Condition (4.4.16) in conjunction with (4.4.17) may be interpreted as a
weak dependence condition in the sense that the covariances on the left-hand side
tend to zero as the time gap between the two blocks of observations increases.
Note that the supremum of expression (4.4.16) for all u-tuples (s1,...,s,) and
all v-tuples (t1,...,t,) with 1 < 57 < -+ <5, < t3 < --- <, < 00 such
that t1 — sy, = 1 is denoted by Cytyr in (4.3.1). Conditions (4.4.16) and
(4.4.17) are typically fulfilled for truncated versions of random wvariables from
many time series models; see also Proposition 4.1 below. The constant K in
(4.4.16) is included to possibly take advantage of a sparsity of data as it appears,
for example, in nonparametric curve estimation.
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(tv) For unbounded random variables, the coefficients Cy, , may still be bounded
by an explicit function of the indexr p under a weak dependence assumption;
see Lemma 4.14 below. For example, assume that Eexp(A|X:|*) < L holds for
some constants A,a >0, L < co. Since the inequality uP < ple* (p € N,u >0)
implies that

u™ = (Aa)"™(Aau®)™* < (Aa)"™(m)Y %A ¥m e N

we obtain that B|X,|™ < L(m!)"/*(Aa)~™/* holds for all m € N. Lemma 4.1/
below provides then appropriate estimates for C, .

Note that the variance of the sum does not explicitly show up in the Rosenthal-
type inequality given in Theorem 4.2. Using the formula of Leonov and Shiryaev
(1959) [119], we are able to obtain a more precise inequality which resembles the
Rosenthal inequality in the independent case (see Rosenthal (1970) [170] and
and Theorem 2.12 in Hall and Heyde (1980) [100] in the case of martingales).

Theorem 4.6. Suppose that X1, ..., X, are real-valued random variables on a
probability space (2, A,P) with zero mean and let p be a positive integer. We
assume that there exist finite constants K, M, and a nonincreasing sequence of
real coefficients (p(n))n>0 such that, for all u-tuples (s1,...,sy) and all v-tuples
(t1, o oty) with1 < sy <--- <5, <t1 <---<t, <n and u+v < p, condition
(4.4.16) is fulfilled. Furthermore, we assume that

E|X;P~2 < MP~2,
Then, with Z ~ N(0,1),

[ESE — 0PEZP| < By Y AupK™(M Vv K)P~n",
1<u<p/2

where By, = (p)?2 maxacp{phln s pen = S50 (s + 1)¥2p(s) and

M=y X g
wp T ook I
U ot b =p ki >2,Vi ke B!

Remark 4.6. For even p, the above result implies that

ESE<(p—1)(p—3)---1lcb + B, Z AumK?“(M V. K)p_zun",
1<u<p/2

which resembles the classical Rosenthal inequality from the independent case.
If sup,, Bp.n, < 00 and o2 =< n, then the first term on the right-hand side is
asymptotically dominating, as n — oco. This term is equal to the p-th moment
of a Gaussian random variable with mean 0 and variance o>

n*
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Remark 4.7. The inequality from Theorem 4.6 is well suited for proving a
central limit theorem via the method of moments. Assume first that the random
variables X; are uniformly bounded, centred and satisfy condition (4.4.16) with
lims_o p(s)/s? =0, for all p > 0. Then

lim 7" =02 = Y E(XoXy)

k=—cc

is a convergent series, and thus the method of moments implies a central limit

theorem,
1 d
Jn Sy —n—ooo 0Z.

4.4.3 From weak dependence to the exponential bound

A large class of weak dependent sequences satisfies the assumption (4.4.16) of
Theorem 4.5. If §(z,y) = | — y|, we write A() instead of A ().

(i) Assume that (X;)icz is an R%valued and stationary process which is
(A, W)-weakly dependent. Then for any Lipschitz-continuous function
F:R? — R with ||F|ls = M < 0o and Lip F' < 1, the process Y; = F(X})
is real valued, stationary, and ||Y;|lec < M. Moreover, it is also (A1), ¥)-
weakly dependent.

(ii) In the more general case when Lip F' possibly exceeds 1 (e.g., if the
function F' depends on the sample size in a statistical context), then
weak dependence still holds where only ¥(a,b, u,v) has to be replaced by
Yy (a, b, u,v) = U(aLip F, bLip F,u,v). For the special cases of 7, k and A
weak dependence conditions, one may re-formulate this as (Y;)ez is still
an 7, k or A\ weakly dependent sequence but now we have to respectively
consider the coefficients

ny(r) = LipF -n(r), ky (r) = Lip ’F. K(T),
Ay (r) = max{Lip F,Lip°F} A(r).

Now we relate the conditions of weak dependence to condition (4.4.16). Sup-
pose that (X;).ez is a stationary sequence of real-valued random variables with
[ Xtlloo < M which satisfies a weak dependence condition. To see the con-
nection to (4.4.16), we consider the functions ¢; and g with g1 (21,...,2,) =
[T, f (@i/M) and go(z1, ..., 20) = [[_; [ (xi/M), where f(u) =uV (—1) AL
These functions satisfy Lipg; < 1/M and ||gi||c < 1. The covariance in the
definition of weak dependence can be expressed as in equation (4.4.16), up to a
factor MquU since gl(Xila . 7Xiu) = Xi1 s qu/Mu and gg(Xil, ceey Xlu) =
X, - X, /M.
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Proposition 4.1. Assume that the real valued sequence (X;)iez is (A, ¥)-
weakly dependent and that | X¢||eco < M. Then

|Cov( Xy, -+ Xo,, Xy -+ Xy, )| S MUTU(M ™ M1 u,v)e(ty — sy) (4.4.21)

Moreover, if e(r) = e, for some a > 0, then we may choose in inequality
(4.4.17) w=1and L1 = Ly = 1/(1 —e™®). Ife(r) = e~ for some a > 0,
b € (0,1), then we may choose p = 1/b and Ly, Lo appropriately as only
depending on a and b.
Remark 4.8. (i) Notice that Proposition 4.1 implies that (A, ¥)-depen-

dence implies (4.4.16) with

(a) W(u,v) =2v, K2 =M and e(r) = 0(r)/2, under §-dependence,

(b) V(u,v) =u+wv, K> =M and ¢(r) =n(r), wunder n-dependence,

(c) U(u,v) =uv, K =1 and ¢(r) = k(r), under k-dependence,

(d) U(u,v) = (u+v+uw)/2, K2 = M V1 and e(r) = 2\(r), under

A-dependence.

(i) Now if the vector valued process (Xi)iez is an n, k or A\-weakly dependent
sequence, for any Lipschitz function F : R? — R such that |F|le = M <
00, then the process Yy = F(Xy) is real valued and the relation (4.4.16)
holds with

(a) ¥(u,v) =2v, K2 = MLipF ande(r) = 0(r)/2, wunder0-dependence,
(b) V(u,v) =u+v, K?= MLip F and €(r) = n(r), under n-dependence,
(c) ¥(u,v) =wuv, K =LipF and ¢(r) = k(r), under k-dependence,
(d) V(u,v) = (u+v+uv)/2, K* = (M V1)(Lip?F vV Lip F) and (r) =
2X(r), under A-dependence.
Those bounds allow to use the Bernstein-type inequality in Theorem 4.5 for sums

of functions of weakly dependent sequences.

A last problem in this setting is to determine sharp bounds for the coefficients
Cp,r. This is even possible when the variables X; are unbounded and is stated
in the following lemma.

Lemma 4.14. Assume that the real valued sequence (Xi)iez isn, k or A\-weakly
dependent and that E|X;|™ < M,,, for any m > p. Then, according to the type
of the weak dependence condition:

p—1 _

Cp7’r < 2p+3p2M1%"_1 77(7-)1_ 5;—11 , (4422)
p—2 p—

< 2p+3p4M$72 K/(r)lf m—22 , (4423)
p—1 p—

S 2p+3p4M$71 )\(T)lfmfll . (4424)
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Remark 4.9. This lemma is the essential tool to provide a version of Theo-
rem 4.6 which yields both a Rosenthal-type moment inequality and a rate of con-
vergence for moments in the central limit theorem. We also note that this result
does not involve the assumption that the random variables are a.s. bounded. In
fact even the use of Theorem 4.5 does not really require such a boundedness; see
Remark 4.5-(iv).

4.5 Tightness criteria

Following Andrews and Pollard (1994) [5], we give in this section a general
criterion based on Rosenthal type inequalities and on chaining arguments. Let
d € N* and let (X;);ez be a stationary sequence with values in R, Let F be a
class of functions from R? to R. We define the empirical process { Z,,(f), f € F}
by

Zn(f) == vn(Pu(f) = P(f)) ,
with P the common law of (X;);ez and, for f € F,

n

P = S, P = [ fa)p(s)

i=1

We study the process {Z,(f), f € F} on the space £*°(R%) of bounded func-
tions from R? to R equipped with the uniform norm || - ||o. For more details
on tightness on the non separable space £>°(R%), we refer to van der Vaart
and Wellner (1996) [183]. In particular, we shall not discuss any measurabil-
ity problems which can be handled by using the outer probability. The process
{Z,.(f), f € F}istight on (/o (R?),||.||ec) as soon as there exists a semi-metric
p such that (F, p) is totally bounded for which

lim lim sup P sup |Z.(f)— Zn(g)| > | =0, Ve>D0.
9=0 n—oo f.9€F, p(f,9)<6

We recall the following definition of bracketing number.

Definition 4.4. Let Q be a finite measure on a measurable space X. For
any measurable function f from X to R, let ||fllo.- = QUfINY". If | flo.nr
is finite, one says that f belongs to Lg,. Let F be some subset of L,. The
number of brackets Ng (e, F) is the smallest integer N for which there exist
some functions fi < fi,..., fy < fn in F such that: for any integer1 <i < N
we have || fi — fi lor < e, and for any function f in F there exists an integer
1< <N such that f; < f < fi.
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Proposition 4.2. Let (X;);>1 be a sequence of identically distributed random
variables with values in a measurable space X, with common distribution P. Let
P, be the empirical measure P, = n~" Z?:l 0x,, and let Z, be the normalized
empirical process Z, = \/n(P, — P). Let Q be any finite measure on X such
that QQ — P is a positive measure. Let F be a class of functions from X to R
and G ={f—1/(f,1) € F x F}. Assume that there existr >2,p>1 and ¢ > 2
such that for any function g of G, we have

1Zn(9)llp < Clllglgl +n'/a=1/2), (4.5.1)

where the constant C' does not depend on g nor n. If moreover
1
/ eI/ (N1 (z, F)YPdx < 0o and lirr%J aPO=D/ING (2, F) =0,
0 xr—

then
lim limsupE( sup |Zn(g)|p) =0. (4.5.2)

—0 n—oo 9€G.llgllQ.1 <8

Proof of Proposition 4.2. Tt follows the line of Andrews and Pollard (1994) [5]
and Louhichi (2000) [124]. It is based on the following inequality: given N
real-valued random variables, we have

. < NUp .
Il max [Zif [l < N7 max || Zil, (4.5.3)
For any positive integer k, denote by N} = N 1(27%, F) and by Fj a family of

functions f1"~ < ff,.... fxy < fR, In F such that |ff — £ [lga < 27%, and
for any f in F, there exists an integer 1 < i < N, such that fikﬁ < f<fr

First step. We shall construct a sequence hy,,)(f) belonging to Fy(,, such that

lim Hsup 1Zo(f) = Zon(hieiny (f |H (4.5.4)

For any f in F, there exist two functions g, and g,j in F such that g, < f < g,:'

and ||g; — g5, llo.1 < 27%. Since @ — P is a positive measure, we have

2= Zalai) < Zulal) = Zula) + ) DOE(a — HX)
i=1

|Z0(9) = Zn(gy)| + V27"

Since g, < f, we also have that Z,(g, ) — Z,(f) < /n27%, which enables us to
conclude that |Z,,(f) — Zn(9;)| < 1Zn(9) — Zn(gy, )| + v/n27F. Consequently

IN

WD 1 Z0(1) = Znlgi )| < may, \ZalfE) = Zu(iE D] vn2 e (459)
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Combining (4.5.3) and (4.5.5), we obtain that

- 1/p k,— _
H;gg'zn<f>—zn<gk>|H <N max 1 Za(FF) = Za () lp +v/n2 7"
(4.5.6)

Starting from (4.5.6) and applying the inequality (4.5.1),we obtain

H?EE \Z0(f) - Zn(gk_)|Hp < CWMPaHr 4 NVPRU12) 4 ok (45.7)

From the integrability condition on Ng1(x,F), and since the function z —
2(1=")/" N (z, F)L/? is non increasing, we infer that N/727%/" tends to 0 as k
tends to infinity. Take k(n) such that 2¥(") = \/n/a, for some sequence a,
decreasing to zero. Then \/n2’k(”) tends to 0 as n tends to infinity. Il remains
to control the second term on right hand in (4.5.7). By definition of Nj,), we
have that

(4.5.8)

Nin )nl’(l/q 1/2) _NQI(\/ j__)( 1 )P(q—Q)/q'

vn
Since xp(q_Q)/pNQJ (z, F) tends to 0 as = tends to zero, we can find a sequence a,
such that the right hand term in (4.5.8) converges to 0. The function Ay, (f) =
po(n) Satisfies (4.5.4).

Second step. We shall prove that for any € > 0 and n large enough, there exists
a function h,,(f) in F,, such that

H U |Z0 (I (1)) = Zn(lao) (] <e. (4.5.9)

Given h in Fy, choose a function Ty_1(h) in Fi—1 such that [|h—Ti_1(h)|g1 <
2-k+1 Denote by Tk = Id and for | < k, mpp(h) = Tyo---oTp_1(h). We
consider the function hy, (f) = T, k() (i) (f)). We have that

HSUP |Zn(hm) - Zn(hk(n))|Hp <

fer
k(n)
S |[5u0 120 (T () = Za(m s )| - (4:5.10)
l=m+1 fer p
Clearly

HSUP|Zn(7Tl,k(n)(hk(n))—Zn(Wl—l,k(n)(hk(n))|H <Hmax|Z (f)=Zn(Ti-1( |H
fer p feEF

Applying the inequality (4.5.1) to (4.5.10) we obtain

k(n)

[0 1Z00) = Zutha)l]| <€ DT @2 112
fer l=m+1
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Clearly

—m—1

Z -/\/—ll/P27l/r < 2/ {E(lir)/r(NQ)l(ﬁ,.F))l/pdl',

l=m+1 0

which by assumption is as small as we wish. To control the second term, write

k(n) k(n)
nl/a=1/2 Z A/ll/p < nl/a—1/2 22%/11/1724
l=m+1 =0
o
< 2n1/q*1/2/ (No.1(z, F)V/Pdz.
9—k(n) T

It is easy to see that if #P(4=2)/IN (z, F) tends to 0 as x tends to 0, then

1
1
lim x(q*2)/q/ y(NQ)l(y,}'))l/”dy =0.

x—0

Consequently, we can choose the decreasing sequence a,, such that

1N ! 1 y
: : Vpde =
nlgrgo(\/n) /ann_l/2 x(/\fQJ(x,.F)) dz = 0.

The function hp, (f) = T kn) (him) (f)) satisfies (4.5.9).

Third step. From steps 1 and 2, we infer that for any ¢ > 0 and n large enough,
there exists h,,(f) in F,, such that

< 2e¢.
p

Hsup |Z0(f) = Zn (P (f))]
feF

Using the same argument as in Andrews and Pollard (1994) [5] (see the para-
graph “Comparison of pairs” page 124), we obtain that, for any f and ¢ in
F,

| s 1Zu(f) = Zalo)]
If=glle,1<é

<8+ NH™  sup | Zu(f) = Zu(9)|lp -
P If—gllQ.1<é

We conclude the proof by noting that

<8&. O

lim sup lim supH sup | Zn(9)]
P

6—0  n—oo lgeg llgllg,1<6



Chapter 5

Tools for causal cases

The purpose of this chapter is to give several technical tools useful to derive
limit theorems in the causal cases. The first section gives comparison results
between different causal coefficients. The second section deals with covariance
inequalities for the coefficients 71, § and ¢ already defined in Chapter 2. Section
3 discusses a coupling result for 71-dependent random variables. This coupling
result is generalized to the case of variables with values in any Polish space. Sec-
tion 4 gives various inequalities mainly Bennett, Fuk-Nagaev, Burkholder and
Rosenthal type inequalities for different dependent sequences. Finally Section 5
gives a maximal inequality as an extension of Doob’s inequality for martingales.

5.1 Comparison results

Weak dependence conditions may be compared as in the case of mixing condi-
tions.

Lemma 5.1. Let (Q, A, P) be a probability space. Let (X;)iez be a sequence of
real valued random variables. We have the following comparison results:

1. VTEN*,szoa - ~
(k) < Br(k) < ¢p (k).

Assume now that X; € LY(P) for alli € Z. IfY is a real valued random variable
Qy is the generalized inverse of the tail function, t — P(|Y| > t), see (2.2.14).

2. Let Qx > suppez @Qx,. Then, Yk >0,

& (k)
ma(k) < 2/0 Qx (u)du. (5.1.1)

103
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Assume now that the sequence (X;)icz is valued in R4 for some d € N* and that
each X; belongs to L*(P). On R?, we put the distance dy(z,y) = Zi:l |z —

y®)|, where £®) (resp. yP)) denotes the p™ coordinate of x (resp. y). Assume
that for all i € Z, each component of X; has a continuous distribution function,
and let w be the supremum of the modulus of continuity, that is

w(x) =sup max sup |Fom(y) — Fom(z
( ) i€Z lﬁkgd‘y_z‘gzl X; ( ) X ( )|,

where for alli € Z, X; = (Xi(l), ce Xl-(d)). Define g(x) = aw(x). Then we have
3. VreN,Vk>0,

~ 27‘T1)T(]€)
5T(k) = gfl (n,:i(k))'

- - 2rToo,r(/Z) ’
gfl (Too,:i‘( ))

where =% denotes the generalized inverse of g defined in (2.2.14).

4. Assume now that there exists some positive constant K such that for all
i € Z, each component of X; has a density bounded by K > 0. Then, for
allr € N* and k > 0,

G (k) < 4\ /K d6y (k).

Remark 5.1. If each marginal distribution satisfies a concentration condition

|FX’i<k>(y) - FXi(k) (2)| < K|y — 2| with a <1,K > 0 then Item 3. yields

By (k) 277y (k)1 5e (Kd)1te,
br(k) < 277 p(k)1ie (Kd)1te.

IN

If e.g. for alli € Z, each component of X; has a density bounded by K > 0 then
those relations write more simply with a =1 as in Item 4.

In order to prove Lemma 5.1, we introduce some general comments related with
the notation (2.2.14). Let (€2, A,P) be a probability space, M a o-algebra of
A and X a real-valued random variable. Let Fiu(t,w) = Pxjam(] — 0o, t],w)
be a conditional distribution function of X given M. For any w, Fa(-,w)
is a distribution function, and for any ¢, Fa(t,-) is a M-measurable random
variable. Hence for any w, define the generalized inverse F/' (u,w) as in (2.2.14).
Now, from the equality {w/t > Fy(u,w)} = {w/Fm(t,w) > u}, we infer
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that Fy'(u,-) is M-measurable. In the same way, {(t,w)/Fm(t,w) > u} =
{(t,w)/t > Fy/(u,w)}, which implies that the mapping (t,w) + Fa(t,w) is
measurable with respect to B(R) ® M. The same arguments imply that the
mapping (u,w) — Fy ! (u,w) is measurable with respect to B([0, 1])®M. Denote
by Fam(t) (resp. Fj/ (u)) the random variable Faq(t,-) (resp. Fy{(u,-)), and
let Fiq(t —0) = sup,, Faq(s).

Proof of Lemma 5.1.

e Ttem 1. follows from the definition of &(M, X), B(M, X) and (M, X).

e Let us now prove Item 2. We first prove that if M is a o-algebra of A, and if
X is a real valued random variable in L*(P), then

&(M,X)
(M, X) <2 / Qx (u)du . (5.1.2)
0

The proof follows from arguments in Peligrad (2002) [140]. Denote X+ =
sup(X,0) and X~ = sup(—X,0). Let F' denote the distribution function of X.
Let Faq(t,w) be the conditional distribution of X given M. Assume that there
exists a random variable § uniformly distributed over [0, 1], independent of the
o-algebra generated by X and M. As § is uniformly distributed over [0, 1] and
independent of the o-algebra generated by X and M,

U=Fm(X —0)+(Fm(X) - Fm(X —0))

is uniformly distributed over [0, 1] conditionally to M. So U is independent of
M and is uniformly distributed over [0, 1] (see Major (1978) [126] and also Rio
(2000) [161]). Hence,

X*=FYU) (5.1.3)

is independent of M and distributed as X. Moreover,
FolU) =X, P-almost surely.
It yields
X — X*|1 :E(/Ol |F/\_Al(u)—F’1(u)|du). (5.1.4)
We start with equality (5.1.4).

X = X"

E(fy [Frd () = F~(w)ldu)

= E(J;° [Fu(w) — F(u)|du)

E( [ P(X+ > u) —P(XT > u|M)|du)
+E(f0°° IP(X~ >u) — P(X~ > u|M)|du)
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Now, by definition of &, we have the inequalities

EP(XT >u) —P(XT >ulM)| < aM,XT)A2P(XT > u)
EP(X™ >u) —P(X~ >uM)| < aM, X )A2P(X~ >u)
It is clear that sup (&(M,X"),&(M,X7)) < &M,X). Define Hx(x) =

P(|X| > ). Next, using the inequality a Ab+cAd < (a+¢c) A (b+ d),
we obtain that

o oo pra(M,X)
E|X — X*| < 2/ &M, X) A Hy (u)du < 2/ / Loyt .
0 0 0

Then, since P(|X| > u) > t if and only if v < @x(t) and applying Fubini The-
orem, we get Inequality (5.1.2).

Let us now prove (5.1.1). For i € Z, let M; = (X, j <1i). For i +k < j, we
infer from Inequality (5.1.2) that

a1 (k) &y (k)
71 (M, X;) <2 / Qx, (u)du < 2/ Qx (u)du,
0 0
and the result follows from the definition of 7 1 (k).

e For Item 3. we will write the proof for r = 1, 2, the generalization to r points
being straightforward. We will make use of the following proposition:

Proposition 5.1. Let (Q,A,P) be a probability space, X = (X1,...,Xq) and
Y = (Y1,...,Yy) two random variables with values in RY, and M a o-algebra of
A. If (X*,Y™) is distributed as (X,Y) and independent of M then, assuming
that each component Xy, and Yy, has a continuous distribution function Fx, and

Fy, , we get for any x1,...,%d,Yy1,-..,ya n [0,1],
. d
B, X) < || 30 + (P, (X7) = P (Xi)| > M)Hl . (5.15)
k=1

d
BM,XY) < | e+ (1P (X7) = P (X)) > | M)
k=1

d
{0+ POP 07) = P ()] > e MO (5.1.6)
k=1
We prove Proposition 5.1 at the end of this section and we continue the proof of
Item 3. Starting from (5.1.5) with z; = - -+ =z}, = w(x) and applying Markov’s
inequality, we infer that

BM, X) < dula) + iHE(i X5 — X
k=1

M),
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Now, from Proposition 6 in Riischendorf (1985) [171] (see also Equality (5.3.5)
of Lemma 5.3), one can choose X* such that

d
\\E(gxk—xm

M)Hl = (M, X).

Hence
BM, X) < dw(z) + TI(A;’X) ,

and Item 3. follows for r = 1 by noting that dzw(x) = 7(M,X) for x =
g ! (n(/\;,x)). Starting now from (5.1.6), Item 3. may be proved in the same

way for 7 = 2. Proposition 5.1 is still true when replacing 3 by ¢ and || - ll1
by || - || (see Proposition 7 in Dedecker & Prieur, 2006 [49]). The proof for ¢
follows then the same lines and is therefore omitted here.

e It remains now to prove Item 4. We write the proof for r = 1 and d = 1
and then generalize to any dimension d > 1 and any r > 1.

Case r = 1,d = 1. Fori € Z, let M; = 0(X;,j < i). Let i +k < ji.
We know from Definition 2.5 of Chapter 2 that

a(M;, Xj,) = Sup ILx; 1m, (8) — Lx;, ()]

Define ¢(x) = 1<t — P(X;, <t). We want to smooth the function ¢; which
is not Lipschitz. Let ¢ > 0. We consider the following Lipschitz function ¢f
smoothing ¢;:

(,OE(ZIJ) _ (Pt(ﬁ), x E] - oo,t] U [t + 574—00[7
! () + T L cpye, t<z<t+e

We then have ||¢f||oc < 1 and Lip (¢§) < !. Hence,
DX, 1M () = L, ()]l = EE(p: (X5,) [M)]
< e = #illocP (X5, €]t,t + &) + E[E(pf (X)) — Egf (Xj,) [ M)
+IE (97 (X51) — ¢1(X50))
<2Ke+ ! 011(k)+2Ke.

Then, if we take ¢ = \/0141;?) and if we consider the supremum in ¢, we get

Ga(K) < 4\/K 611(k) .
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Case r > 1,d > 1. The proof follows essentially the same lines. Let ¢ + k <
J1 <o <. Let X = (Xj,,...,X;,) in (R?)". We know from Definition 2.5
of Chapter 2 that

a(M;, X) = sup |[Lx|a(t) — Lx (@)1
te(RE)™

For t = (t1,...,t;) € (RY)" and x = (x1,...,7,) € (R?)", define

T

(,Ot(x) = H (lwigti X < t H@t xl

i=1

We want to smooth the function ¢, which is not Lipschitz. Let ¢ > 0. We
first smooth each of the functions ;,. In the following, if z is in R?, 2(®) denotes
its p'" coordinate. We consider the following Lipschitz function 5, smoothing

Pt

£

@5, is equal to ¢y, on | — o0, t;]U[t; +¢€, +oo[, and for x; ¢] — oo, t;]U[t; +¢, +00],
d ©) ©)
t;” —x, €
vi. (@) = ]1 <1mgﬂ<t5f> +0 1t5j)<wgﬂ<t5ﬂ+a> —P(Xy, < ti).
j=1

di(z,y) = 30 |29 — yU)|. We then smooth @, (x) by 5 (x) = [T\, &, (2:)-
We have [|¢f|loc <1 and Lip (¢f) < I. Let X = (X;,, X},). We get

[Lxiam, () = Lx(@®)l1 = EE(pi(X) — Ep(X) [M;)]
< 2rKde + lr@l,r(k) +2rKde.

We then have ||¢f,||sc < 1 and Lip (¢§,) < !, where the distance used on R is

: : dyr _ 01, (k)
We conclude by taking the supremum in ¢ € (R*)" and € = \/ irwd - O

Proof of Proposition 5.1. Let Z be a random variable with values in R™ and let
f:R™ — R such that

ZlyeeeyRigeneylm) — ZlyeeesZyeenZm)| S [Lz,<a; — 12/<ay
[/ )= f( ; < Loi<ail

for some real numbers aq, ..., a,,. Let U be a o-algebra and let Z* be a random
variable distributed as Z and independent of &/. Then

@) = 12N = | S F@r 2 Ziaso o Z3) = F(Zs o 2t 2y 2
k=1

m
< Z |1Zk§ak - 1Z;Sak| .
k=1
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Hence

E(f(Z)U) —E(f(2))] <E(f(2) = F(Z")[U) < Y E([1zizar — Lzp<anl | U) -
k=1

(5.1.7)
Let t € R%. We first apply (5.1.7)to Z = X, Z* = X*, U = M, and f(z) = 1,<;
with a1 = t1,...,aq = tq. Since F)}:(ka (X1)) = Xi almost surely, we obtain
d
E(lx<|M) —P(X <t)] < > E([lx,<i — Ixz<il| M) (5.1.8)

k

1

M=

E(|1ka (Xk)<Fx, (tx) — lFXk (X$)<Fx, (tk)” M)

b
I

1

Define Tk = FXk (Xk), T]: = FXk (X]:) We have

E(117,<rx, (tn) = 1y <px, (00| M)
< max (FTklM(FXk (te)) = Fx, (tr), 1 = Fryama(Fx (t:) = (1 = Fx, (tk)))-

Now, for any y in [0, 1],

Fr, M (y) = / 1U+u—v§yPTkyTg M (du, dv)

IN

/1U§y+szTk*|M(dv)+/1v—u>1kPTk7T§|M(duvdv)

IN

Y+ xp + / 1v_u>rkIP’Tk7Tg‘M(du, dv) .
In the same way,

L= Frym(y) <1—(y— k) + / Lu—vsa Pry, 12 M (du, dv)
Consequently, taking y = Fx, (t),

]E(|1Tk§ka (te) — L1y <py, ol M) <z + / Lju—v|>a, Py, 17| (du, d),

(5.1.9)
and Inequality (5.1.5) follows from (5.1.9) and (5.1.8) by taking the supremum
in ¢ and the expectation. Let s, ¢t € R?. In the same way, applying (5.1.7) to

Z=(ZW, 73\ = (X,Y), Z* = (X*,Y*),U = M and

FzW, 28 = (1,00, = Fx(s)) (1<, — Fy (1))
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we obtain that
IE((1x<s — Fx(s))(1y<i — Fy (t))| M) = E((1x<s — Fx(s))(1y<i — Fy (1)))]
d d
< E(lxe<o — Ixp<a | M) + Y E([ly,<o, — Lyp<i, || M),
k=1 =1

and we conclude the proof of (5.1.6) by using the same arguments as for (5.1.5). O

5.2 Covariance inequalities

In this section we present some covariance inequalities for the coefficients v1, 8
and ¢. We begin with the weakest of those coefficients.

5.2.1 A covariance inequality for v,

Definition 5.1. Let X,Y be real valued random variables. Denote by
- Qx the generalized inverse of the tail function Hx : x — P(|X| > z).
~ Gx the inverse of x foz Qx (u)du.

- Hxy the generalized inverse of x +— E(|X|1}y|>z).

Proposition 5.2. Let (2, A,P) be a probability space and M be a o-algebra of
A. Let X be an integrable random variable and Y be an M-measurable random
variable such that | XY is integrable. The following inequalities hold

IE(X M) IE(X M)
E(YX)| < / Hx y(u)du < / Qy o Gx(u)du. (5.2.1)
0 0

If furthermore Y 1is integrable, then

71(M7X) 71(M7X)/2
|Cov(Y, X)| g/ Qy oG x_g(x)(u)du < 2/ QyoGx(u)du. (5.2.2)
0 0

Combining Proposition 5.2 and the comparison results (2.2.13), (2.2.18) and
Item 2. of Lemma 5.1, we easily derive covariance inequalities for 6, 71 and a.

Proof of Proposition 5.2. We start from the inequality
BV X)| < BYEKIM)) = [ E(BXM[Ly ).

Clearly we have that E(|E(X|M)|1jy|s:) < [[E(X|M)|1 AE(|X|1}y|;). Hence

oo, PIECXIM)L IECX M), poo
|E(YX)|§/O (/0 1u<E(|X‘1‘Y‘>t)du)dt§/o (/O 1t<HXYY(u)dt)du,
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and the first inequality in (5.2.1) is proved. In order to prove the second one we
use Fréchet’s inequality (1957) [88]:

(Y |>t)
E(|X[1y|>e) < /O Qx (u)du. (5.2.3)

We infer from (5.2.3) that Hx y(u) < Qy o Gx(u), which yields the second
inequality in (5.2.1).

We now prove (5.2.2). The first inequality in (5.2.2) follows directly from
(5.2.1). To prove the second one, note that Qx_g(x) < @x + || X|; and conse-
quently

/ QX_]E(X)(u)dug/ Qx(u)du + z|| X1 . (5.2.4)
0 0

Set R(z) = [y Qx(u)du — z||X||1. Clearly, R' is non-increasing over ]0,1],
R'(€) > 0 for e small enough and R/(1) < 0.

We infer that R is first non-decreasing and next non-increasing, and that
for any x € [0, 1], R(x) > min(R(0), R(1)). Since fol Qx (u)du = || X |1, we have
that R(1) = R(0) = 0 and we infer from (5.2.4) that

/ Qx 0 (u)du < / Qx(w)du + 2| X |y < 2 / Qx (u)du.
0 0 0

This implies Gx_g(x)(u) > Gx(u/2) which concludes the proof of (5.2.2). O
Combining Proposition 5.2 and the comparison results (2.2.13), (2.2.18) and
Item 2. of Lemma 5.1, we easily derive covariance inequalities for 6;, 7 and &.

Corollary 5.1. Let (2, A,P) be a probability space. Let X be a real valued
integrable random variable, and M be a o—algebra of A. We have that

&(M,X)

|Cov(¥, X)| < 2 / Qv (u)Qx (w)du. (5.2.5)

0

Proof of Corollary 5.1. To prove (5.2.5), put z = Gx(u) in the second integral
of (5.2.2), and we use the results of comparison (2.2.13), (2.2.18) and Item 2. of
Lemma 5.1. OJ

5.2.2 A covariance inequality for B and gg

Proposition 5.3. Let X and Y be two real-valued random wvariables on the
probability space (2, A,P). Let Fxy :t — Px|y(] — 00,t]) be a distribution
function of X given'Y and let Fx be the distribution function of X. Define the
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random wvariable b(o(Y), X) = sup,cg |Fx|y(z) — Fx(z)|. For any conjugate
exponents p and q, we have the inequalities

ICov(Y, X)| < 2{E<|X|pb<aog>,y>>}i{E<|Y|qb<a<y>,x>>}é (5.2.6)

< 20(0(X),Y) P G (¥), X)X [Vl - (5.2.7)

Remark 5.2. Inequality (5.2.6) is a weak version of that of Delyon (1990)
[57] (see also Viennet (1997) [185], Lemma 4.1) in which appear two random
variables by (o(Y),0(X)) and ba(o(X),0(Y)) each having mean B3(c(Y),0(X)).
Inequality (5.2.7) is a weak version of that of Peligrad (1983) [139], where the
dependence coefficients are ¢(o(Y),0(X)) and ¢p(o(X),o(Y)).

Proof of Proposition 5.3. We start from the equality
Cov(Y, X) = / / Covllxon — Lxconlysy — lyo_y)dedy. (5.2.8)
o Jo

Since |[b(a(Y), X)||oo = (c(Y), X), we only need to prove (5.2.6). Here, note
that the value of b(o(Y'), X') does not change if we replace Fx|y (v) and Fx (x)
by Pxy (] — oo, z[) and Px (] — oo, z[) respectively. Consequently, the following
inequalities hold:

|[E(1xsolysy — P(X > 2)P(Y > y))|
<E(lysyb(o(Y), X)) AE(1x>b(0(X),Y))

[E(lx<—alysy —P(X < —2)P(Y >y))|
<E(lysyb(0(Y), X)) AE(1x<_sb(0(X),Y))

[E(lxselyc—y —P(X > 2)P(Y < —y))|
<E(ly<_yb(o(Y), X)) AE(1x>2b(c0(X),Y))

E(lxc—aly<—y —P(X < —2)P(Y < —y))|
<E(ly<—yb(o(Y), X)) AE(1x<—ob(0(X),Y)).

Since a1 Aby +a1 Aby+ag Aby +as Aby < 2(&1 + CLQ) A (bl + bg), we infer from
(5.2.8) that

ICov(Y, X)| < 2/000 /OOOE(1|X>zb(a(X),Y))/\E(1|y>yb(a(Y),X))dxdy.
(5.2.9)
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Let 81 = B(0(X),Y) and B2 = 3(0(Y), X). Note 31 (or o) is 0 if and only if
X is independent of Y, and then (5.2.6) is true in that case. Otherwise, let Pg,,
P, be the probabilities with density b(o(X),Y)/31 and b(o(Y), X)/B2 with
respect to P. The inequality (5.2.9) writes

Cov(Y, X)| < 2/0 /O BBy (1X| > 2) A BoPp, ([V] > y) dzdy.  (5.2.10)

Let Qp, x et Qp, vy be the generalized inverse of x — Pg, (|X| > z) and y —
Ps,(]Y| > y). Starting from (5.2.10), we have successively

oo B1AB2
|Cov(Y, X)| < 2/ / / Lu<piPs, (1X[>2) Lu<oPp, (|Y|>y) dudz dy

oo oo B1AB2
2 /0 A /0 1Qﬁ1,x("/51)>f1Qﬁ2,Y(“/52)>y du dz dy

B1NAB2
< 9 / Qs x (/51 Qv (1] B) du

IN

Applying Holder’s inequality, and setting s = u/3; and ¢t = u/[33, we obtain

1/p /q
|COV(YX|<2</ 5Q%, x( ) (/ 32Q5, v ( ) :

To complete the proof of (5.2.6), note that, by definition of Qg, x,

/ B1QY, (s)ds = B(X[’b(o(X),Y)). O

Corollary 5.2. Let f1, f2, 91, g2 be four increasing functions, and let f = f1— fo
et g = g1 — g2. For any random variable Z, let Ap(Z) = infyer | Z — all, and
Ay o(x)y(Z) = inf,er(E(|Z —alPb(o(X),Y)))/P. For any conjugate exponents
p and q, we have the inequalities

ICov(g(Y), FX))| < 2{A, o(x)y (X)) + Apoxyy (F2(X))}
X {Agov) x (91(Y)) + Aoy x (92(Y)) },

[Cov(g(Y), F(X))| < 26(0(X), V) » (o (Y), X)
< {2 (f1(X)) + Ap(£2(X) H{Ag(91(Y) + Ag(g2(Y)) } -

In particular, if u is a signed measure with total variation || and f(x) =
w(] — 00, x]), we have

ICov(Y, FCO)| < IIE(Y b(o(Y), X)) < oV ), X) ull [Y]1.  (5.2.11)
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Proof of Corollary 5.2. For the two first inequalities, note that, for any aq, as,
b17 b23

|Cov(g(Y), f(X))] = [|Cov(gi(Y) = by, f1(X) —a1)]
+[Cov(g1(Y) — b1, fo(X) — az)|
+[Cov(g2(Y) — bz, f1(X) — a1)]
+[Cov(g2(Y) — bz, f2(X) — a2)|.

the functions f; — a1, fo — as, g1 — b1, g2 — b being nondecreasing, we infer that
b(o(fi(X)),9;(Y) —b;) < E(b(o(X),Y)|o(fi(X))) almost surely. Now, apply
(5.2.6) and (5.2.7), and take the infimum over ay, by, ag, ba.

To show (5.2.11), we take ¢ = 1 and p = co. Let u = py — p— be the Jordan
decomposition of pu.

We have f(z) = fi(z) — fa(z), with f1(2) = py(] — 00,2]) and fo(z) = p(] -
00,z]). To conclude, apply the preceding 1nequaht1es and note that ||u|| =
p(R) + p—(R) and Ay 5y x (V) S E([Y[b(o(Y), X)), 2800 (f1(X)) < py(R),

and 2A.(g1(X)) < p—(R). O

5.3 Coupling

There exist several methods to obtain limit theorems for sequences of dependent
random variables. One of the most popular and useful is the coupling of the
initial sequence with an independent one. The main result in Section 5.3.1
is a coupling result (Dedecker and Prieur (2004) [45]) allowing to replace a
sequence of 71 —dependent random variables by an independent one, having the
same marginals. Moreover, a variable in the newly constructed sequence is
independent of the past of the initial one and it is close, for the L; norm, to the
variable having the same rank. The price to pay to replace the initial sequence
by an independent one depends on the 73 —dependence properties of the initial
sequence.

Various approaches to coupling have been developed by different authors. We
refer to a recent paper by Merlevede and Peligrad (2002) [130] for a survey on
the various coupling methods and their applications. The approach used in this
chapter lies on the quantile transform of Major (1978) [126]. It has been used
for strongly mixing sequences by Rio (1995) [159] and Peligrad (2002) [140] to
obtain a coupling result in L!.

In Section 5.3.2, the coupling result of Section 5.3.1 is generalized to the case
of variables with values in any Polish space X.
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5.3.1 A coupling result for real valued random variables

The main result of this section is a coupling result for the coefficient 71, which
appears to be the appropriate coefficient for coupling in L!.

We first recall the nice coupling properties known for the usual mixing coeffi-
cients. Berbee (1979) [16] and Goldstein (1979) [96] proved: if  is rich enough,
there exists a random variable X* distributed as X and independent of M
such that P(X # X*) = 8(M,0(X)). For the mixing coefficient a(M, (X)),
Bradley (1983) [29] proved the following result: if  is rich enough, then for
each 1 < p < oo and each A < || X]|,, there exists X* distributed as X and
independent of M such that

o 111, \ P/ 20/ (2p+1)
POX - X zx <18 () (a(M, 5(X))) .

For the weaker coefficient a(M, X), Rio (1995, 2000) [159, 160] obtained the
following upper bound, which is not directly comparable to Bradley’s: if X
belongs to [a,b] and if § is rich enough, there exists X* independent of M and
distributed as X such that || X — X*||; < (b—a)&@(M, X). This result has then
been extended by Peligrad (2002) [140] to the case of unbounded variables.
Recall that the random variable X* appearing in the results by Rio (1995, 2000)
[159, 160] and Peligrad (2002) [140] is based on Major’s quantile transformation
(1978) [126]. X™* has the following remarkable property: || X — X*||; is the
infimum of ||X — Y||; where Y is independent of M and distributed as X.
Starting from the exact expression of X *, Dedecker and Prieur (2004) [45] proved
that 71 (M, X) is the appropriate coefficient for the coupling in L' (see Lemma
5.2 below).

Lemma 5.2. Let (Q,A,P) be a probability space, X an integrable real-valued
random variable, and M a o-algebra of A. Assume that there exists a random
variable § uniformly distributed over [0,1], independent of the o-algebra gener-
ated by X and M. Then there exists a random variable X*, measurable with
respect to MV o(X) V a(9), independent of M and distributed as X, such that

[X = X" = 1 (M, X). (5.3.1)

This coupling result is a useful tool to obtain suitable inequalities, to prove
various limit theorems and to obtain upper bounds for S(M, X) (see Dedecker
and Prieur (2004) [48]).

Remark 5.3. From Berbee’s lemma and Lemma 5.2 above, we see that both
B(M,c(X)) and 71 (M, X) have a property of optimality: they are equal to the
infimum of E(do(X,Y)) where Y is independent of M and distributed as X, for
the distances do(x,y) = lgzy and do(z,y) = |z — y| respectively.
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Proof of Lemma 5.2. We first construct X* using the conditional quantile
transform of Major (1978), see (5.1.3) in the proof of Lemma 5.1. The choice of
this transform is due to its property to minimize the distance between X and
X*in LY(R).

We recall equality (5.1.4):

X — X*|4 :E(/Ol |Frof (u) —Ffl(u)|du). (5.3.2)

For two distribution functions F and G, denote by M (F, G) the set of all prob-
ability measures on R x R with marginals F' and G. Define

d(F,G) = inf {/ (&~ ylu(dr. dy) / p € M(F, G)} ,

and recall that (see Dudley (1989) [80], Section 11.8, Problems 1 and 2 page
333)

d(F,G):/R|F(t)—G(t)|dt:/O |F~ (u) — G (u)|du . (5.3.3)

On the other hand, Kantorovich and Rubinstein (Theorem 11.8.2 in Dudley
(1989) [80]) have proved that

d(F,G) :sup{‘/de—/fdG’/ feA<1>(R)}. (5.3.4)

Combining (5.1.4), (5.3.3) and (5.3.4), we have that

X — X*|4 :E(sup{‘/deM —/de‘/fe A(l)(R)}),

and the proof of Lemma 5.2 is complete. [

5.3.2 Coupling in higher dimension

We show that the coupling properties of 71 described in the previous section
remain valid when X is any Polish space. This is due to a conditional version
of the Kantorovich Rubinstein Theorem (Theorem 5.1).

Lemma 5.3. Let (Q,A,P) be a probability space, M a o-algebra of A and X
a random variable with values in a Polish space (X,d). Assume that [ d(x,xq)
Px (dx) is finite for some (and therefore any) xo € X. Assume that there exists a
random variable 6 uniformly distributed over [0, 1], independent of the o-algebra
generated by X and M. Then there exists a random wvariable X*, measurable
with respect to MV o(X)V o(9), independent of M and distributed as X, such
that

(M, X) = [[E(d(X, X*)[M)]]. (5.3.5)
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We first need some notations. We denote P(£2) the set of probability measures
on a space €2 and define

V(Q,AP; X) = {uGP(Qx X),A@BX/VAGA, (A % X) :]P(A)}.

Recall that every u € Y(Q,A,P; X) is disintegrable, that is, there exists a
(unique, up to P-a.s. equality) A}-measurable mapping w — pi,, @ — P(X),
such that

w0 = [ ] 1.0 dnofa) ap)

for every measurable f : QxX — [0, +o0] (see Valadier (1973) [184]). Moreover,
the mapping w — p, can be chosen A-measurable. If X' is endowed with the
distance d, let denote

YQ AP X) = {u v/ [ dtea0)dutes) < oo} |
QAxX

where zg is some fixed element of X (this definition is independent of the choice
of zg). For any p,v € Y, let D(u, v) be the set of probability laws 7 on Q x X' x X
such that 7(- x - x X) = g and 7(- x X x -) = v. We now define the parametrized

versions of A%){ and Aéd). Set, for p,v € Y1,

M) = _nt [ dlay)dn(nay).
meD(pv) Jaxxxx

Let also A(Y) denote the set of measurable integrands f : Q x X — R such that

f(w,) € AW NL> for every w € Q. We denote

AP (uv) = sup (u(f) —v(f)).
fea®

We now state the parametrized Kantorovich-Rubinstein Theorem of Dedecker,
Prieur and Raynaud De Fitte (2004) [47], which is the main tool to prove the

coupling result of Lemma 5.3. The proof of that theorem mainly relies on ideas
contained in Riischendorf (1985) [171].

Theorem 5.1. (Parametrized Kantorovich—Rubinstein Theorem) Let
v € YEHQ, AP X) and let w — p, and w — v, be disintegrations of ju and
v respectively.

1. Let G : w — A%){(uw,yw) = AI(Jd) (e, V) and let A* be the universal
completion of A. There exists an A*—measurable mapping w +— A\, from
Q to P(X x X) such that N, belongs to D(py,,vw) and

G(w):AXXd(x,y)dAw(x,y).
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2. The following equalities hold:
A%(dF){(yﬂy) = / d(z,y) d\(w, z,y) = Aid)(uvy)ﬂ
QXX XX

where X is the element of Y(Q, A,P; X x X) defined by A\(A x B x C) =
JiAu(B x C)dP(w) for any A in A, B and C in Bx. In particular,

A belongs to D(u,v), and the infimum in the definition of A%?l)%(u,y) is
attained for this \.

Remark 5.4. This theorem is proved in a more general frame in Dedecker,
Prieur and Raynaud De Fitte (2004) [47]. It also allows more general coupling
results when working with more general cost functions than the metric d of X.

Proof of Lemma 5.3. First notice that the assumption that [ d(z,zo)Px (dz) <
oo for some zyp € X means that the unique measure of Y(Q2, A, P; X x X') with
disintegration Px|a(.,w) belongs to Y410, A P; X). We now prove that if Q
is any element of Y 1(Q, A, P; X), there exists a 0(5) V o(X) V X —measurable
random variable Y such that @, is a regular conditional probability of Y given

M, and

E(d(X,Y)| M) = sup ‘ / F(@)Px pq(da) — / f(x)Q.(dx)‘ P-a.s.
feA)NLee
(5.3.6)

Applying (5.3.6) with Q@ = P ® Px, we get the result of Lemma 5.3. O

Proof of Equation (5.8.6). We apply Theorem 5.1 to the probability space
(€2, M, P) and to the disintegrated measures p.,(-) = Pxjm(-,w) and v, = Q.
From point 1 of Theorem 5.1 we infer that there exists a mapping w +— A,
from Q to P(X x &), measurable for M* and Bpx ), such that A, belongs
to D(Pxm(-w),Qu) and G(w) = [ d(x,y) Ao (dz,dy). On the measurable
space (M, 7) = (2 x X x X, M* @ By ® Bx) we put the probability

T(Ax BxC)= / Ao (B x C)P(dw) .
A

If I = (I, 12, I3) is the identity on M, we see that a regular conditional distribu-
tion of (12, I3) given Iy is P(7, 1,)|1,—=w = Aw. Since Px (-, w) is the first margin
of A, a regular conditional probability of I given I} is Pr, 7, —,(-) = Px|am(-,w).
Let Ay.o = Pr,|1,—w,1,—o be a regular conditional distribution of I3 given (I1, I2),
so that (w, ) — Ay . is measurable for M* ® By and Bp(x). From the unicity
(up to P-a.s. equality) of regular conditional probabilities, it follows that

A (B x C) :/B/\w)m(C)]P’MM(dx,w) P-a.s. (5.3.7)
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Assume that we can find a random variable Y from Q to X, measurable for
o(U) Vv o(X)V M* and By, such that Py vy (5 w) = Ay x(w)(+). Since
w = Pxam(-, w) is measurable for M* and Bp(x), one can check that Py is
a regular conditional probability of X given M*. For A in M*, B and C inBy,
we thus have

E(1alxeplyce) = E(14E (1xepE (Lycolo(X) VvV M*) |MY))

_ /A ( /B N (OVPx | (d, ) ) P(d)
_ / (B x C)P(dw) .
A

We infer that A, is a regular conditional probability of (X, }7) given M*. By
definition of \,, we obtain that

B (d(x.7)|m7) :fefl?ﬁw‘ / F(@) P p(d) — / F@)Qu(dr)|  Pas
(5.3.8)

As X is Polish, there exists a ¢(0) V o(X) V M-measurable modification Y of
Y, so that (5.3.8) still holds for E(d(X,Y)|M*). We obtain (5.3.6) by noting

that E (d(X,Y)|M*) = E(d(X,Y)|M) P-a.s. It remains to build Y. Since X
is Polish, there exists a one to one map f from X to a Borel subset of [0, 1],
such that f and f~! are measurable for B([0,1]) and By. Define F(t,w) =
Aw,x(w)(f71([0,])). The map F(-,w) is a distribution function with generalized
inverse F~1(-,w) and the map (u,w) — F~1(u,w) is B([0,1]) ® M* V o(X)-
measurable. Let T(w) = F~'(§(w),w) and Y = f~1(T). It remains to see that
IE”};‘U(X)\/M*(-,W) = Ay, x(w)(-). Forany Ain M*, B in Bx and t in R, we have

B (Lalxenlye o) = /A 1x (w)e B Lo(w) <P (1) P(dw).
Since ¢ is independent of o(X) V.M, it is also independent of o(X)V M*. Hence
B (Lalxenlye o) = /A Lx(w)enF(t,w)P(dw)
= [ Axentxe (7 (0.0,

Since {f1([0,t])/t € [0,1]} is a separating class, the result follows. O

5.4 Exponential and Moment inequalities

The first theorem of this section extends Bennett’s inequality for independent
sequences to the case of 7i-dependent sequences. For any positive integer ¢,
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we obtain an upper bound involving two terms: the first one is the classical
Bennett’s bound at level A for a sum >, & of independent variables & such
that Var (31, &) = vy and [[&]leo < ¢M, and the second one is equal to
nA~t7,(g+1). Using Item 2. of Lemma 5.1, we obtain the same inequalities as
those established by Rio (2000) [161] for strongly mixing sequences. This is not
surprising, we follow the proof of Rio and we use Lemma 5.2 instead of Rio’s
coupling lemma. Note that the same approach has been previously used by
Bosq (1993) [26], starting from Bradley’s coupling lemma (1983) [29]. Theorem
5.2 and Theorem 5.3 below are due to Dedecker and Prieur (2004) [45].

5.4.1 Bennett-type inequality

Theorem 5.2. Let (X;);>0 be a sequence of real-valued random variables such
that | X,lleo < M, and M; = o(Xp,1 < k <i). Let S, = % (X, — E(X)))
and S, = maxi<i<n |Sk|. Let ¢ be some positive integer, v, some nonnegative
number such that

[n/d]
Vg > [ Xgpn/q41 + -+ + X3+ Z | X(i—1)ge1 + -+ + Xiqll3 -
=1

and h the function defined by h(z) = (1 + z)log(l + z) — x.

AgM
1 For >0, P(|Sn|23)\)§4exp(—(q;<;)2h( )+ mala+1).
q
2. For A > Mg,
v AgM n
P(Sn > (151 +3)N) §4exp(—(qA})2h( By )) +y alg+1).
q

Proof of Theorem 5.2. We proceed as in Rio (2000) [161] page 83. For 1 <
i < [n/q], define the variables U; = Siy — Siq—q and Up,/q+1 = Sn — Sqn/q)-
Let (6j)1<j<[n/q+1 be independent random variables uniformly distributed over
[0,1] and independent of (Us)i<j<in/q+1- We apply Lemma 5.2: For any
1 < i < [n/q] + 1, there exists a measurable function F; such that U} =
F;(Uy,...,U;—2,U;, 0;) satisfies the conclusions of Lemma 5.2, with M = o (U,
I <i—2). The sequence (U;")1<j<[n/q+1 has the following properties:

a. For any 1 <i < [n/q] + 1, the random variable U} is distributed as U;.

b. The variables (Us;)a<2i<[n/q+1 are independent and so are the variables
(U;i—l)1§2i—1§[n/q]+l'

c. Moreover ||U; — U1 < m(o(Us, 1 <i—2),U;).
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Since for 1 < i < [n/q] we have 7 (o(U;,l <i—2),U;) < qr1,4(q + 1), we infer
that

for1<i<n/ql, |Ui—=Ulli < qnrgq(g+1) (5.4.1)
and  |[Upq+1 — U[jz/q]ﬂﬂl < (n—qn/ad)Tn—gm/qla+1).
Proof of 1. Clearly
[n/ql+1 ([n/q+1)/2 [n/al/2+1
1S. < Y U - Ui*|+‘ Z U21‘+‘ Z Uz, 1‘ (5.4.2)

i=1
Combining (5.4.1) with the fact that 7 ,,_gn/q (g +1) < 71,4(¢ + 1), we obtain

[n/ql+1
. n
P( Y [0i=U71 = A)< [ rig(g+1). (5.4.3)
i=1

The result follows by applying Bennett’s inequality to the two other sums in
(5.4.2). The proof of the second item is omitted. It is similar to the proof of
Theorem 6.1 in Rio (2000) [161], page 83, for a-mixing sequences.

Proceeding as in Theorem 5.2, we establish Fuk-Nagaev type inequalities
(see Fuk and Nagaev (1971) [89]) for sums of 7;-dependent sequences. Applying
Item 2. of Lemma 5.1, we obtain the same inequalities (up to some numerical
constant) as those established by Rio (2000) [161] for strongly mixing sequences.

Notations 5.1. For any non-increasing sequence (3;);>0 of nonnegative num-
bers, define 5~ (u) = > .50 Lucs, = inf{k € N/6, < u}. Note that 5~ is the
generalized inverse (see (2.2.14)) of the cadlag function x — 6, [] denoting
the integer part.

Theorem 5.3. Let (X;)i>0 be a sequence of centered and square integrable
random variables, and define (M;);>0 and S, as in Theorem 5.2. Let X be
some positive random variable such that Qx > supy>; Q|x,| and

n

= Z Z |COV(XZ',X]')| .

i=1 j=1

Let R=((1/2) "o Gy')Qx and S=R™'. Forany A >0 andr > 1,

A2\ /2 4p ST
P(SRESA)§4(1+rs2) + A" /0 Qx (u)du. (5.4.4)
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Proof of Theorem 5.3. Let q be any positive integer, and M > 0. As for the
proof of Theorem 5.2 we define U; = Sijg — Siq—q, for 1 < i < [n/q]. We also
define U; = (U; AgM) V (—gM). Let op(x) = (Jx| — M) 4. Following the proof
of Rio (2000) [161] for strongly mixing sequences, we first prove that

S, < max U;| 4+ qM + (Xk) 5.4.5
1<J<["/¢1]|Z I+a ;@M ) (5:4.5)

To prove (5.4.5), we just have to notice that, if S,, = Sk,, then for jo = [ko/q],

Jo Jo ko
Sn <D U+ U=Uil+ > Xkl (5.4.6)
i=1 i=1 k=jo+1
and then, as ;s is convex, that
Jo qjo
SN = Uil <> ou(Xe), (5.4.7)
i=1 k=1
and, by definition of ¢y, that
ko ko
37Xkl < (ko —ajo)M + Y on(X). (5.4.8)
k=jo+1 k=jo+1

Now, to be able to apply Theorem 5.2, we need to center the variables U;. Then
as the random variables U, are centered, we get

J J [n/dq]
max U =  _max + Y E(U; — Us
1<j<[n/q] |; | 1<j<[n/q] ; i)l ; (I )
J
< max +> E(pm(X
= 1<i<iv/a) 1> (W ) Z (o (Xi))

i=1 k=1

using the convexity of ¢j;. Hence we have proved that

J
Sn < 1<Hi3[tx/]| E (Ui —EU:))| + qM + E (o (Xk)) + om(Xi)). (5.4.9)
J=n/q

Let us now choose the size ¢ of the blocks and the constant of truncation M.
Let v = S(\/r), ¢ = (1/2)"' o G}'(v) and M = Qx(v). Clearly, we have that
qM = R(v) = R(S(A/r)) < A/r. Since M = Qx (v),

n

(Z (oM (Xk)) + @m(Xk)) >)\ /QX (5.4.10)

=1
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We are now interested in the term P (maxlgjg[n/q] | Zle(Ui —EU,))| > 3)\).

We apply Theorem 5.2 to the sequence (U; — E(U;))iez with n’ = [n/q] and
¢ = 1. We have U; = h(U;) where h : R — R is a Lipschitz function such
that Lip (h) < 1. Hence, we have 7 (c(U;,l <i—2),U;) < qm1,4(q +1). Since
s2 > U134+ + |Upnsqll3 we obtain:

zj:(Uz—E(Uz))‘ > 3)\) < 4(1+ré;)r/2+n

P(
max - A

1<j<[n/q]

T100(g+1). (5.4.11)

To conclude, let us notice that the choice of ¢ implies that 7 (¢ + 1) <
2 [y @x (u)du. Hence, since ¢M < X, combining (5.4.11), (5.4.10) and (5.4.9),
we get the result. [

5.4.2 Burkholder’s inequalities

The next result extends Theorem 2.5 of Rio (2000) [161] to non-stationary se-
quences.

Proposition 5.4. Let (X;);en be a sequence of centered and square integrable
random variables, and M; = 0(X;,0 < j <1i). Define S, = X1 +---+ X,, and

l
Xi > E(Xk|M;)

k=i

bi.n = max
i<l<n

p/2

For any p > 2, the following inequality holds

ISl < (20> bea) (5.4.12)
=1

Proof. We proceed as in Rio (2000) [161] pages 46-47. For any ¢ in [0, 1] and
p > 2, let hy(t) = ||Sn—1+1X,|h. Our induction hypothesis at step n— 1 is the
following: for any k < n

k-1 p/2
hi(t) < (2p)P/? (Z bi k. + tbk,k)
i—1

This assumption is true at step 1. Assuming that it holds for n — 1, we have
to check it at step n. Setting G(i,n,t) = X;(tE(X,| M;) + S 7=  E(X] M,))
and applying Theorem (2.3) in Rio (2000) with ¢(x) = |x|P, we get

b

n—1 1 t

t o _

p§> <> /0 E(]Si—1+sX;[? 2G(z,n,t))ds+/0 E(|Sp_1+sX, P72 X2)ds .
i=1

(5.4.13)
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Note that the function ¢t — E(|G(i,n,t)|P/?) is convex, so that for any ¢ in
[0,1], B(|G (i, n, 1)[P/2) < B(|G(i,n,0)[P/?) v E(IG(i, n, 1)[P/2) < bP)2. Applying
Holder’s inequality, we obtain

E(|Si—14sX:P2G(i,n, 1)) < (hi(s) P27 (|G n, bl < (hi() P27 by,
This bound together with (5.4.13) and the induction hypothesis yields

ha(t) < p (Z bm/ () 2)/pd8+bnn/ot(hn(s))(p2)/%)
2 o 21 ! 1-2
< p (;(219 m/ (ijn—ksbz n) ds+bn,n/0 (hn(8)) pds).

Integrating with respect to s we find

1 i P_q 2 i P 2 i—1 D
bin (Z bj,n + Sbi,n) ’ ds = (Z bj,n) C (Z bj,n) ’ s
0 V=1 p = p =
and summing in j we finally obtain
= \% t .
t) < (2pz bj,n) + P2y / (hn(s))' " rds. (5.4.14)
j=1 0

Clearly the function u(t) = (2p)?/2(by ., + -+ + thy, ,)P/? solves the equation
associated to Inequality (5.4.14). A classical argument ensures that h, (t) < u(t)
which concludes the proof.

Corollary 5.3. Let (X;)ien and (M;)ien be as in Proposition 5.4. Define
Yii = SUD Y (M, Xiyr), i = 2&1807(/\/11@, Xitx) and ¢; = sup ¢(Mk, Xitk)-

1. Let X be any random wvariable such that Qx > supy>; Qx,, and let

'yfi(u) =3 oluca,, and &t (w) = Y0 lu<a, . Forp > 2 we have
the inequalities

I1Sally < \/2]9”(/0|X”1(71,n( DPRQY ! o Gx(u)d )w
V2pn( /0 1(@;1<u>>p/2¢2€(du)l/p

2. Let My = supy>q || Xillq- For ¢ > p > 2 we have the inequality

IN

1/2
1
||Sn||p < 2(]9M ap/ (2q—p) E TL— q )/q) )
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Proof of 1. Let r = p/(p—2). By duality there exists an M;-mesurable Y such
that [|Y]|, = 1, and

n

< S E(YXEGIM,)).

k=1

Let \; = Gx(71.;). Applying (5.2.1) and Fréchet’s inequality (1957) [88], we
obtain

)\k‘L

QYXLOGX du<Z/ Q% (u)du .

Using the duality once more, we get

/2 _ T, p/2 1X1I1 ) )
922 [ (X ten)” Q= [ 07 @) Q5 o Gx(wiu.
0 “MiZo 0
The first inequality follows. To prove the second one, note that Ay < ay.

Proof of 2. First, note that by < Y | XiE(Xk| M;)|p/. Let 7 = p/(p — 2).
k=i
By duality, there exist a M;-measurable variable Y such that ||Y||, =1 and

| XECX] M) g2 = [Cov(Y X, X))
Applying inequality (5.2.7), and next Holder’s inequality, we obtain that
| XX M)z < 2050 Y Xillgjq-0) 1 Xilla < 2MyMop 2 815"

The result follows. OJ

5.4.3 Rosenthal inequalities using Rio techniques

We suppose that the sequence (X,,),en fulfills the following covariance inequal-
ity,

T S SNE S IED 9 M e N MEEVE S T}
i€l jeJ
(5.4.15)
for all real valued functions f and g defined on R™ having bounded first differ-
entials and depending respectively on (z;);cr and on (z;);c; where I and J are

disjoints subsets of N. Sequences fulfilling (5.4.15) with sup || 8xf [loc < oo and
i€l i

0
sup || g oo are r-dependent with x(r) = sup |Cov(X;,X;)|, they are also
jes Ox; li—j|>r
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(-dependent with ((r) = sup Z |Cov(X;, X;)|.
ieN .
{3/ li=jlzr}
Our task in this section, is to extend Doukhan and Portal (1983) [73] method in
order to provide moment bounds of order r, where r is any positive real number
not less than two. The main result of this paragraph is the following theorem.

Theorem 5.4. Let r > 2 be a fized real number. Let (X,) be a strictly sta-
tionary sequence of centered r.v’s fulfilling (5.4.15). Suppose moreover that this
sequence is bounded by M. Then there exists a positive constant C, depending
only on r, such that

n k—1

ZEMH(H 1)T2|COV(X17X1+1’)|> . (5.4.16)

E[S,|" < C, <s;; +
k=1 i=0

where s2 :=nY i, |Cov(X1, X144)|.

Theorem 5.4 gives, in particular, a unifying Rosenthal-type inequality for at
least two models: associated or negatively associated processes.

An immediate consequence of Theorem 5.4 is the following Marcinkiewicz-
Zygmund bound.

Corollary 5.4. Let r > 2 be a fized real number. Let (X,,) be a strictly sta-
tionary sequence of centered r.v’s bounded by M and fulfilling (5.4.15). Suppose
that

|Cov (X1, X114)| = OG""/?), as i— +oo. (5.4.17)

Then
E[S,|" = O(n'/?). (5.4.18)

For bounded associated sequences, condition (5.4.17) is shown to be optimal for
the Marcinkiewicz-Zygmund bound (5.4.18) (cf. Birkel (1988) [22]).

Proof of Theorem 5.4. The method is a generalization of the Lindeberg de-
composition to an order r > 2. This method was first developed by Rio (1995)
[158] for mixing sequences and for r €]2,3]. The restriction to sequences ful-
filling the bound (5.4.15) is only for the sake of clarity and the method can be
adapted successfully to other dependent sequences (cf. Proposition 5.5 below).
We give here the great lines of the proof and we refer to Louhichi (2003) [125]
for more details.

Let p > 2 be a fixed integer. Let ®, be the class of functions ¢ : RT — R™ such
that ¢(0) = ¢/(0) = --- = =1 (0) = 0 and ¢ is non decreasing and concave.
Let ¢ be a function of the set ®,. Theorem 5.4 is proved if we suitably control
E¢(]Sn]) (since the function = +— 2", for r €]p,p + 1] is one of those functions
@). Such a control will be done into the following steps.
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Step 1. The purpose of Step 1 is to reduce the control of E¢(|S,|) to that
of a suitable polynomial function of |S,|. For this, define g, : R x R — R* by,

1
gp(t,x) := (b1 [2P T Lo<per + (2P — (2 — )P 10y] (5.4.19)

for any > 0 and g, (¢, ) = g, (¢, —z). The following lemma is a generalization
of Equality (4.3) of Rio (1995) [158], which was written for p = 2.

Lemma 5.4. Let p > 2 be a fized integer. Let ¢ € ®,. Suppose that ot
exists and that lim, o 6P+ (z) = 0. Then

+oo
o) = / 0y (1, )y (dt),

where vy, is the Stieltjes measure of —¢1()p+1) defined by v, (dt) = —dpPTV(t).

Lemma 5.4 reduces then the estimation of E¢(|S,|) to that of Eg,(t, S,,).

Step 2. The purpose of Step 2 is then to give bounds of Ef(.S,,), for real-valued
functions f belonging to a suitable set containing the functions x — g,(¢, x).
For this, we denote by C, the class of real-valued, p times continuously dif-
ferentiable functions f such that f(0) = --- = f®(0) = 0. Let F,(b1,bs) be
the subclass of Cp11 such that ||f®)|| < by and that ||fP+D|| < ba, where
[ £D]oo = sup,eg |f@ ()| and O is the differential of order i of f.

In this step, we give an estimation of Ef(S,,), for f € F,(b1,b2). Let us note
that the function g, as defined by (5.4.19) belongs to the set F,(¢,1)

We first exhibit the mains terms of our calculations.

Notations. We denote by Z(p%) the sum over iy, ...,%,—2 such that 0 := iy <
i1 <---<ip_9 <k—1,that is Zogilg---gip,ggkfl- We define

E,—2k(Af) = sup Z IEX3 Xk, - Ximiy_ o Dp 2 k(fr0)]
0961(1)72)

where
Ap—2k(f) == Dp_ax(fiu) = [f(Sk—ip_2—1 +uXyp—i, ,)— f(Sk—ip_g—l)]
1
= Ukaip,g / fl (Sk,ip72,1 + U'Ukaip,g) dv.
0

We set for p > 2,

Epok(f) = > [EXpXpoi, - Xpoip o f(Skip_o1)l-
(p—2)
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Finally, recall that i = 0, Eo (f) = |EX% f(Sk—1)| and that

Eor(Af) = sup [EXpAor(f,u)l|

0<u<l1

For any real-valued function f of the set F,(b1,bs), the quantity [E(f(S,))| is
evaluated by means of the main terms E, o x(f®~1) and E, o x(AfP~D) as
shows the following lemma.

Lemma 5.5. Let p > 2 be a fized integer. Let (X,,) be a sequence of r.v’s
fulfilling (5.4.15), centered and bounded by M. There exists a positive constant
C,, depending only on p, such that for any f € Fp(b1,b2),

n k—1
IE(f(Sn))| < C,,{sg(blmgsn) + (b A M)MP™2 >N " |Cov( X, Xj—i)|
k=1 1=0

+ ZEpfzk(f(pil)) + ZEp2,k(Af(p1))} .
k=1

k=1

From now C), denotes a positive constant depending only on p and that will be
different from line to line.

Evaluation of the main terms Ep_o p(f) and E,_2 1 (Af). The object of this
step is to evaluate the main terms E, 2 x(f) and E,_2 x(Af) of Lemma 5.5.
This evaluation involves the following covariance quantities:

Ea
—

(i +1)™2|Cov (X1, Xit1)|, for2<m <p, (5.4.20)

NIE

My = M™2

>
Il
—
<
Il
o

o
—

M (b1, b2) := (by Aba(r + 1)M)(r + 1) 2M™2|Cov(X1, X, 41)|.

M=

>
Il

1r

Il
=]

(5.4.21)
Let us note that My ,, is close to Var S, and that M, = nVar X; in the ii.d.
case. Those covariance quantities satisfy the following analogous of Holder’s
inequality:

My My < s2/T=Dpr=4/r=2) <57 4 M, (5.4.22)

for any r > 4, 2 < m < r. We now state the basic technical lemma of the proof
of Theorem 5.4.

Lemma 5.6. Let [ be a real valued function of the set F1(by,bs). Let (X,,) be
a centered sequence of random variables fulfilling (5.4.15). Suppose that (X,,)



5.4. EXPONENTIAL AND MOMENT INEQUALITIES 129

s uniformly bounded by M. Then, for any integer p > 2, there exists a positive
constant C), depending only on p, for which

D Epok(Af)+ Y Epak(f) (5.4.23)
k=1 k=1

p—2
S Op {Sz(bl A bQSn) + Z Mm,nMp—m,n(bla bQ) + Mp,n(bla bQ)} )

m=2
where the sum Y P~ equals to 0, whenever p € {2,3}.

End of the proof of Theorem 5.4. Finally, we combine the three previous steps
in order to finish the proof of Theorem 5.4. Let us explain. We first make use
of Lemma 5.4, together with Fubini’s theorem, to obtain,

+oo
Eé(|Sn|) = /0 Eg,(t, S) vy (dt). (5.4.24)

We recall that the functions z — g,(t,z) and = — g(p 1)(t,ac) belong respec-
tively to F,(t,1) and to Fy(t,1) (in fact if f € F,(t,1), then fP=Y € Fi(t,1)).
Hence we deduce, applying Lemma 5.5 to the function z — g,(¢, ) and Lemma

5.6 to the function x +— g(p )(t, x),

pP—2

Eg,(t,Sn) < C, { > Mo My (£, 1) + My (,1) + sH(E A sn)} . (5.4.25)

m=2

Taking into account Lemma 5.4 and the fact ¢(P)(x) = = A t, we deduce that

+oo
P () = / (t A z)v,(dt). (5.4.26)
0
Inequalities (5.4.24), (5.4.25) and (5.4.26) yield:

Eo(1Sn]) < Cp{ 56 (s0)

n k—1

DY (M4 1)P 6P (M (i +1))|Cov(X1, X144)] (5.4.27)
k=1 1i=0
p—2 n k—1

3 M (D2 D MG+ 1)) 200 (M 5+ 1) Cov (X1, X114)]) |-
m=2 k=1 1=0

Now, we use the concavity property of the function ¢,

b1 — ¢yt
(p—1)!

xP

) = ' — P 14®) (41 226 (2
ow) = "y [ A=t > w6 ) | at.
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to deduce that
aPoP) (z) < Cpoi(x). (5.4.28)

We conclude, combining inequalities (5.4.27) and (5.4.28),

1

Eo(|Sa) < Gy {Zi (i + 1) (M (i +1))|Cov (X1, X144)| + ¢ (sn)

k=1 i=0
+ i ( Z (i+1)) m2¢(M(i+1))|Cov(X1,X1+i)|>}

The last inequality applied to ¢(z) = 2", for r €]p,p + 1], leads to

N

n k—1 p—2
E|Sn|T S CT {Z T 2|COV(X17X1+7,)| +Sn + Z Mm nMr mn} .

k=1 1i=0 m=2

The proof of Theorem 5.4 is now complete, using the last inequality together
with (5.4.22) (recall that My, <s2). O

— n

In the case where the sequence (X, )nen+ is O—dependent, the proof of the
inequalities of Theorem 5.4 can be adapted. We then get a variation of the
technical proof of Theorem 5.4 written just above. Hence it will be omitted
here. Let us state the inequalities we obtained in the case where (X,,)pen+ is
f#—dependent.

Proposition 5.5. Let r be a fized real number > 2. Let (X,,) be a stationary
sequence of 01 oo—dependent centered random variables. Suppose moreover that
this sequence is bounded by 1. Let S, := X1+ Xo+ -+ X, forn > 1 and
So = Xo = 0. Then there exists a positive constant C,. depending only on r,
such that

E|S,|" < C. (5, + M, ), (5.4.29)
where My, :=n 31" (i +1)""20(i), and 82 := My, =n > 1 0(3).

We refer to Prieur (2002) [155] for a detailed proof of Proposition 5.5.

5.4.4 Rosenthal inequalities for 7-dependent sequences
We give here a corollary of Theorem 5.3.

Corollary 5.5. Let (X;)i~o0 be a sequence of centered random variables belong-
ing to ILP for some p > 2. Define (M;)i=0, Sn, Qx and s, as in Theorem 5.3.
Recall that 7= has been defined in Notations 5.1. We have

1X 1 1 o
1S w2 < aps?, + nb, / ((7/2) ()P Q% o Gx (u)du
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where a, = 4p5P(p + 1)P/2 and (p — 1)b, = 4p5P(p + 1)P~1. Moreover we have
that

1X 11
s2 < 4n/0 (7/2) M (u)Qx o Gx (u)du.

Proof of Corollary 5.5. Tt suffices to integrate (5.4.4) (as done in Rio (2000)
[161] page 88) and to note that

1X 11

1
/ Q(u)(R(u))"™" (u)du = / ((7/2) 7 ()P Q5" o Gx (u)du.
0 0

The bound for s2 holds with 01,1 instead of 71 o (see Dedecker and Doukhan
(2002) [43]).

5.4.5 Rosenthal inequalities under projective conditions

We recall two moment inequalities given in Dedecker (2001) [42]. We use these
inequalities in Chapter 10 to prove the tightness of the empirical process for @,
0 and ¢ dependent sequences.

Proposition 5.6. Let (X;);cz be a stationary sequence of centered and square
integrable random variables and let S, = X1+ -+ X,,. Let M; = o(X;,j <1).
The following upper bound holds

1/3
1ully < (nVa)? + (39 (11X 15/ + M (p) + Ma(p) + Ma(p)) )

N
where Vy = E(X7) 4 2 Z [E(XoXk)| and
k=1

+oo [—1

M(p) = Z Z [ X0 XmE(Xitm| Mm)HP/B
=1 m=0
+o0o +oo

MQ(p) = Z Z HXO]E(XmXHm - E(Xle+m)| MO)H;D/B

=1 m=l

“+o0
1

Ms(p) =, D IXoE(X — E(X})| Mo)llys -
k=1

Proposition 5.7. We keep the same notations as in Proposition 5.6. For any
positive integer N, the following upper bound holds

1Snllp < (on (Vi1 + 2M00))) " + (3% (I X8 5+ 311 (0) 4 Mo () + 25 )



132 CHAPTER 5. TOOLS FOR CAUSAL CASES

where

+oo
Mo(p) = Z||XOE(XZ|MO)”1)/2

=0
L=z

11

|
—

[ X0 XmB(Xigm| Mu)|lp/s

N
Il
=

§1
S
Il
+ 3
: i

i

Ms(p) = [ XoE(XmXitm — E(Xm Xigm)| Mo)llp/s -
=1

3
I

5.5 Maximal inequalities

Our first result is an extension of Doob’s inequality for martingales. This max-
imal inequality is stated in the nonstationary case.

Proposition 5.8. Let (X;)iez be a sequence of square-integrable and centered
random variables, adapted to a nondecreasing filtration (F;)icz. Let X be any
nonnegative real number and Gy = (S > X). We have

n n—1
E((S; = N3) <4 E(X71a,) +8 > [ Xela,E(Sn — Skl Fi)lls -
k=1 k=1

Proof of Proposition 5.8. We proceed as in Garsia (1965) [90]:
=> (s —(Si_1 — V). (5.5.1)
k=1

Since the sequence (S})r>0 is nondecreasing, the summands in (5.5.1) are non-
negative. Now

(% = At = (i1 = M) (S = A4+ (Simy = A)4) >0
if and only if Sy > A and S, > S;;_,. In that case S} = S}, whence

(Sk =N = (Sict = V3 <28k = NSk = N+ = (Si—1 = M)

Consequently
(Sp—=N3 < 2> (Sk—=N(Sf =Nt —2) ((Sk = N(Si1 = Ny)
k=1 k=1
< 2(Sh = A ( +—2ZSk1 N X5
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Noting that 2(S, — A)4+(S; — A)4 < ;(5’; — A2 +2(S, — A3, we infer

(55— N2 < A(Sw— A 43 (811 — A4 X (5.5.2)

k=1

In order to bound (S, — \)2, we adapt the decomposition (5.5.1) and next we
apply Taylor’s formula:

(Sn — A3 Z ((Sk = X3 = (Sk—1—N)3)
k=1

22 Sk_1— +Xk+QZXk/ 1—1)1s, ,+ex,>adt.
=1

Since 1g, ,1tx,>x < 1g:>a, it follows that

(Sn —)\ig ZSk 1 — +X/€+ZXI€15*>>\ (5.5.3)
k=1 k=1

Hence, by (5.5.2) and (5.5.3)

<4AY (2Sk1 =Ny — (Sioi — N Xk +4> XPls o
k=1

k=1
Let Dy =0 and Dy = 2(Sp — A4 — (S5 — A)4 for k> 0. Clearly

k—1

Dy1 X = (Di— Di_1)Xx.
=1

Hence
n—1
(Sp— N3 <4 (Di— Dio1)(Sn — 5)) +42Xk15 . (5.5.4)
=1 k=1

Since the random variables D; — D, 1 are F;-measurable, we have:

E((Di — Di—1)(Sn — Si)) = E((Di — Di—1)E(Sn — Si | Fi))
< E[(D; — Di-1)E(Sn — Si | F)|- (5.5.5)

It remains to bound |D; — D;_1|. If (S — N4+ = (S;_; — A4, then

|Di — Di—1| = 2|(Si = ANy — (Si—1 — N4 < 2[Xi[1lsr>a,
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because D; — D;_; = 0 whenever S; < X and S;—1 < A. Otherwise S; =S > A
and S;—1 < 87, < .S;, which implies that

Di—=Di—1 = (8 = A4 + (5721 = N+ — 2(Si—1 — M)+
Hence D; — D;_1 belongs to [0,2((S; — M)+ — (Si—1 — A)+)]. In any case
|Di — Di—1| <2|1X;[15:5,

which together with (5.5.4) and (5.5.5) implies Proposition 5.8. O

Consider the projection operators P;: for any f in L2, P;(f) = E(f| F) —
E(f| Fi—1). Combining Proposition 5.8 and a decomposition due to McLeish,
we obtain the following maximal inequality.

Proposition 5.9. Let (X;)iez be a sequence of square-integrable and centered
random variables, and (F;)icz be any nondecreasing filtration. Define the o-
algebras F_oo = (g Fi and Foo = 0((;ez Fi)- Define the random wvari-
ables S, = X1 + -+ X, and S} = max{0,S1,...,S,}. For any i in Z, let
(Yij)j=1 be the martingale Vi j = Y5y Pri(Xy) and Yy, = max{0,Y;1,...,
Yin}. Let A be any nonnegative real number and G (i, k, ) = {Y;, > A}. As-
sume that the sequence is regular: for any integer k, E(Xg|F_~) = 0 and
E(Xk|Foo) = Xi. For any two sequences of nonnegative numbers (a;);i>o and
(bi)i>o such that K =Y a; " is finite and 3" b; = 1 we have

E((S;—N2) <4AK Y a (Z ]E(szfi(Xk)lc:(i,k,biA)))

i=0 k=1
Proof of Proposition 5.9. Since the sequence is regular, we decompose

+oo
Xp= > Pei(Xp).

i=—00

Consequently S; = Z Y; ; and therefore: (S;—\)4 < Z 5.5 —bi\) 4. Applying

€L €L
Hoélder inequality and taking the maximum on both sides, we get

(Sp =N <KD ai(Yy, —bidi.
i€EZ

Taking the expectation and applying Proposition 5.8 to the martingale
(Y n)n>1, we obtain Proposition 5.9. O



Chapter 6

Applications of strong laws
of large numbers

We consider in this chapter a stochastic algorithm with weakly dependent input
noise (according to Definition 2.2). In particular, the case of ~;-dependence
is considered. The ODE (ordinary differential equation) method is generalized
to such situation. For this, we use tools for causal and non causal sequences
developed in the previous chapters. Illustrations to the linear regression frame
and to the law of large numbers for triangular arrays of weighted dependent
random variables are also given.

6.1 Stochastic algorithms with non causal de-
pendent input

We consider the R%valued stochastic algorithm, defined on a probability space
(©, A, P) and driven by the recurrence equation

Zn+1 - Zn + 'Ynh(Zn) + Cn—&-la (611)

where
e /1 is a continuous function from an open set G C R? to R?,
e () a decreasing to zero deterministic real sequence satisfying

> An = o0, (6.1.2)

n>0

e ((,) is a “small” stochastic disturbance.
The ordinary differential equation (ODE) method associates (we refer for in-
stance to Benveniste et al. (1987) [15], Duflo (1996) [82], Kushner and Clark

135
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(1978) [114]) the possible limit sets of (6.1.1) with the properties of the associ-
ated ODE

These sets are compact connected invariant and “chain-recurrent” in the Benaim
sense for the ODE (c¢f. Benaim (1996) [14]). These sets are more or less com-
plicated. Various situations may then happen. The most simple case is an
equilibrium : z is a solution of h(z) = 0, but equilibria cycle, or a finite set
of equilibria is linked to the ODE’s trajectories, connected sets of equilibria or,
periodic cycles for the ODE may also happen. . .

In order to use the ODE method, we suppose that (Z,,) is a.s. bounded and

Cot1 = cn(&ns1 +Tnt1), (6.1.4)
where (¢,,) denotes a nonnegative deterministic sequence such that
Tn=0(cn), Y <o, (6.1.5)

(¢,) and (r,,) are R%-valued sequences, defined on (2, A,P), and adapted with
respect to an increasing sequence of o-fields (F,,)»>0 and satisfying almost surely
(a.s.) on A C Q,

Z cnént1 <00 a.s. and (6.1.6)
n=0
lim r, =0 a.s. (6.1.7)

The classical theory of algorithms is related to a noise (&,) which is a martingale
difference sequence. Our aim is to replace this condition about the noise by
weakly dependence conditions as being introduced in Chapter 2.

In Section 6.1.1, we suppose that the sequence (&,) is (A(Y) NIL>°, ¥)-dependent
according to Definition 2.2, where

U(f,g) = C(dy,dy)(Lip(f) + Lip(g)),

for some function C': N* x N* — R.
Various examples of this situation may be found in Chapter 3, they include
general Bernoulli shifts, stable Markov chains such as, & = G(&—1,...,&—p) +

G, & = (a0+2j21 ajét,j) (¢ generated by some i.i.d. sequence ((;), or
ARCH(00) models.

In Section 6.1.2 below, we consider a weakly dependent noise in the sense of the
~1-weak coefficients of Dedecker and Doukhan (2003) [43] defined by (2.2.17).
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Note that (cf. Remark 2.5) a causal version of (F,G, ¥)-dependence implies
~v1-dependence, where the left hand side in definition of weak dependence writes
< C(v)Lip(g)e(r). Counter-examples of v;-dependent sequences which are not
f-dependent may also be found there.

The notion of v;-dependence is generalized to R? valued sequences.

Proposition 6.1. The two following assertions are equivalent:
(i) A R -valued sequence (X,,) is y1-dependent,
(ii) Each component (XL) (¢ =1,...,d) of (X,) is y1- dependent.

Proof.  Clearly, ”E( ntr —IE( n+r)|]: M < NE(Xntr—E(Xpnq0)|Fn)| 1, hence
(i) implies (ii). The second implication follows from,

U

||E(Xn+T_E( n+r)|-7: ||1:IE Z n+r_ ( n+r)|]: )) 0
=1

The two forthcoming sections are devoted to provide moment inequalities of the
Marcinkiewicz-Zygmund type adapted to deduce the relation (6.1.6) in those two
frames. The following sections are devoted to study the examples of Robbins-
Monro and Kiefer-Wolfowitz algorithms and to obtain sufficient conditions for
the complete convergence of triangular arrays, extending on Chow (1966) [37].
Finally, the last section is devoted to the specific of the linear regression algo-
rithm with dependent entries. In [36], Chen (1985) has also studies this topic.
He works in a more general matrix valued framework. Assuming only the sta-
tionarity and the ergodicity of entries, he derives the a.s. convergence of the
algorithm. We get the same result with a y;-dependence assumption, but this
assumption, more restrictive, allow us to reach, thanks to a moment technic, a
precise n~1/%-convergence rate.

6.1.1 Weakly dependent noise

Let (&,) be a sequence of centered random variables. Let S,, be the sum 2?21 &
and Cy; = maxy4+y<q C(u,v). Suppose that an analogous of the bounds (4.3.2)
and (4.3.3) are satisfied by the process &:

sup [Cov(&s, =+ &ts &t = &t,)| < qu'VMq_Ze(r), (6.1.8)

where the supremum is taken over all {¢1,...,t,} such that 1 <t <--- <t
and 1 <m < ¢ such that ¢,,41 —t,, =r, or

e(r)nl
ICOV(En € Ems ++E0)] < (Cy V' 2) / Qe,, (1)~ Qe,, (). (6.1.9)
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Those bounds respectively imply moment inequalities in Theorems 4.2 and
4.3. Denoting ¥,, = >""" | ¢;_1&;, and using similar techniques as in § 4.3 (see
Doukhan and Louhichi (1999) [67]) one has,

Proposition 6.2. Let p > 2 be some fized integer and let (€,) be a centered
sequence of real random variables such that (6.1.8) holds for all ¢ < p. Then
forn > 2,

|EXP| < ((2;__12))!! { (CMMP2 Z; & Z_:(r + 1)”e(r)>

r=0
n n—1 p/2
Y <022” Z c Z e(r))
i=1 r=0
This result is mainly adapted to bounded sequences.

Proof of proposition 6.2. The proof is done in Brandiere and Doukhan (2004)
[32]. We have, using arguments from Doukhan and Louhichi’s (1999) [67] as
done for the proof of Theorem 4.2,

n p
E(Zq@) <Pl > o[BG, &)l (6.1.10)
i=1 1<t <-<tp<n

Denote Ap(n) = 3214 <.cqy<n €ty - €ty [E(&ey -+ &), so for any to <ty <
tpfla

Ap(n) < S oo B & )E &)l
1<t1 < <tp<n
+ Z Cty o Cy [Cov(Esy - &ty Etmis = 6]
1<t <<ty <n
Denote
Ay(n) = S e e B &) E -6
1<t <<ty <n
Af)(n) = Z Cty =" Cty |COV(£t1 e gtm ) gtm+1 e é-tp)|'

1<t <-<tp<n

Since the sequence (c¢,) is decreasing to 0, we deduce, as in Doukhan and
Louhichi (1999) [67],

Al(n) < Apm(n)Ap—m(n). (6.1.11)



6.1. STOCHASTIC ALGORITHMS 139

By (6.1.8) we obtain AZ(n) < Ztl S Cup? MP72(r 4 1)P2¢(r), and
the expression > > " C,p? MP~2(r —|— 1)p 2 ( ) = V,(n), verifies, for

any integer 2 < ¢ < p—1: Vi(n) < V” 2( )VZP 2( ). Now, Lemma 4.7
(see also Lemma 12 of Doukhan and Louhichi (1999) [67]) leads to A,(n) <

b ( iy ) (V' (n) V V(n), hence

o\ -2 N
u«:@g) < O Vv,

This ensures the result. [J

The following result is appropriate to more general real-valued random variables
but require a moment assumption and a tail condition.

Proposition 6.3. Let p > 2 be a fized integer and (&,) be a centered sequence
of random wvariables. Assume that for all 2 < q < p, Inequality (6.1.9) holds
with

- P—aq

My (6.1.12)
and there exists a constant ¢ > 0 such that

3k > p, Vi>0: P& > t) < (6.1.13)

c
th’
Then forn > 2,

2p — 2 = _ k—p
[EX| < ((;_1)) Y k{<Mchf 1720 (r+1)P%e(r) « )
n—1 p/2
v <M22q D elr 22> (6.1.14)

=0

Note that (6.1.13) holds as soon as the &,’s have a k-th order moment such that

sup;>o E[&|" < ¢
Now we argue as in Billingsley (1968) [20]: if (6.1.8) holds for some p such that

n n—1
{ (CPP'YMP_Z Z i Z(T + 1)p_2€(7')>

i=1 r=0
n n—1 p/2
V| Cy27 ch{l Z e(r)) < oo
i=1 r=0
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then for any ¢ > 0, lim,, . P(supy> [Xn4x — Xn| > t) = 0. Thus (X,,) is a.s. a
Cauchy sequence, hence it converges. In the same way, if (6.1.9) holds for some
p such that

o0 p/2
< gr—i—po ) <Zczlz ) < 00, (6.1.15)

then (3,,) converges with probability 1.

s.
I M:
I

Proof of proposition 6.3. Using the same notations as in the previous proof,
by (6.1.9)

n 1
m < 8,30 [ ) Anp QY )

where e(u) = €}, ([u] denotes the integer part of u). Denote

n 1
=M, [ any Qi

If (6.1.12) is verified, then

-2 P—q
-2

W,(n) < Wi~ (m)We~ (),

which completes the proof. [J

6.1.2 ~;—dependent noise

Let (£n)n>0 be a sequence of integrable real-valued random variables, and
(m1(r))r>0 be the associated mixingale-coefficients defined in (2.2.17). Then
the following moment inequality holds.

Proposition 6.4. Let p > 2 and (£,)nen be a sequence of centered random
variables such that (6.1.13) holds. Then for any n > 2,
p/2
2(k—p) 1 2(k—p)
|EX?| < ZpKlzc PN "y (5) D) : (6.1.16)
7=0

where Ky depends on r, p and c.

Notice that here p € R, and is not necessarily an integer. If now (6.1.16) holds
for some p such that

S ()™ < 0, (6.1.17)
i=1 j=0
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2(k—p)
p(k—1)
extends to R%. Indeed, if we consider a centered R%valued and 7;-dependent

sequence (&,)n>0, one has as previously

d n p
BIS, [P —EY (z cz-gf) |

(=1 \i=1

where m = < 1, then (3,) converges with probability 1. The result

and if each component (¢£),>0 (¢ = 1,...,d) is yi-dependent and verifies
(6.1.13) and (6.1.17), E||X,||? < co and we conclude as before that (X,),>0
converges a.s.

Proof of proposition 6.4. Proceeding as in Dedecker and Doukhan (2003) [43],
we deduce

[E(SR)| < <2p2bi,n> :
1=1

where
t—i
bim = max |lci& Y B(ciynbirrlFi)
i<t<n
k=0 v

Let ¢ = p/(p — 2), then there exists Y such that ||Y|, = 1.
Applying Proposition 1 of Dedecker and Doukhan (2003) [43], we obtain

—i ryi(k)
bin < / Q{YCiEi} ° G{kafwk}(u)du?
k=070

where Gx is the inverse of o — [ Qx(u)du. Since Gye¢y(u) = Ge () =
G(.), we get

71 (k)

n—i ~1 (k) u n—i o
bin < Z/ Quyveey oG < ) du < Z Ci+k/ o Qveiey © Glu)du,
k=070 Citk k=0 0

and the Fréchet inequality (1957) [88] yields

n—i G(’Yl(k))
Citk
bin < S ciin / Qv (1)Q ey (1)Q(u)du
k=0 0
n—i 1
< Cs 2
< Yeiein [ g @00y (i
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where @ = Q¢,. Using Hoélder’s inequality, we also obtain
2
P

n—i 1
bi7n < ¢ Z Citk </ 1{u<G('Y1(k))}Qp(u)du>
k=0 0 T ik

By (6.1.13), Q(u) < cru~r and setting K = "7} yields

rcr

n—i 1
P _p
Cizci+k </ 1{HSG(71(1€))}CT1’L *du)
k=0 0

2
P

IN

bi,n

Cit+k

A
9
3
1
o
+
>
/%\
2
=
=
S~—
~_
3
I~
-
|
3
"N

2(r—p)
Noting that (¢, )n>0 is decreasing, the result follows with K = K»o-D . [

Equip R with its p-norm ||(z1,...,za)|5 = 2} +--- + 28, Let (&)n>0 be
an R9valued and (F,V¥)- dependent sequence. Set &, = (&L,...,&3) then

Iy ciilly, = S (0 el)P. If each component (£4),,50 is (F, ¥)-depen-
dent and such that a relation like (6.1.15) holds, then E||Y,, || < co. Arguing as
before, we deduce that the sequence (X,),>0 converges with probability 1. O

6.2 Examples of application

6.2.1 Robbins-Monro algorithm

The Robbins-Monro algorithm is used for dosage, to obtain level a of a function
f which is usually unknown. It is also used in mechanics, for adjustments, as
well as in statistics to fit a median (Duflo (1996) [82], page 50). It writes

Zn+1 =2y — Cn(f(Zn) - a) + Cnfn—i—la (621)

with ¢, = 0o and Y ¢2 < oo. It is usually assumed that the prediction error
(&) is an identically distributed and independent random variables, but this
does not look natural. Weak dependence seems more reasonable. Hence the
previous results, ensure the convergence a.s. of this algorithm, under the usual
assumptions and the conditions yielding the a.s. convergence of Y ¢, &n41-
Under the assumptions of Proposition 6.2, if for some integer p > 2

oo

> (r+1)P%e(r) < o0, (6.2.2)

r=0
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then the algorithm (6.2.1) converges a.s.
If the assumptions of Proposition 6.3 hold, then the convergence a.s. of the
algorithm (6.2.1) is ensured as soon as, for some p > 2,

(ZO"+ 1)”e<r>k’“p> ! (Zﬁw)kﬁ) -
r=0 r=0

Under the assumptions of Proposition 6.4, as soon as (6.1.17) is satisfied, the
algorithm (6.2.1) converges with probability 1.

6.2.2 Kiefer-Wolfowitz algorithm

It is also a dosage algorithm. Here we want to reach the minimum z* of a real
function V which is C2 on an open set G of R?. The Kiefer-Wolfowiftz algorithm
(Duflo (1996) [82], page 53) is stated as:

Zoi1 = Zn — 26,V (Z0) = (g1 (6.2.3)

where C’I’L+1 = ZZ €n+1 + cnbiq(n, Zn)a ”q(n7 Zn)” < K (fOI‘ some K > 0)7
Sen =00, b2 <ooand Y, (cn/by)? < oo (for instance, ¢, = !, -0
with 0 <b < ).

Usually, the prediction error (§,) is assumed to be i.i.d, centered, square inte-
grable and independent of Zjy. The previous results improve on this assumption
until weakly dependent innovations. It is now enough to ensure the a.s. conver-
gence of ) ZZ &nt1. The weak dependence assumptions are the same as for the
Robbins-Monro algorithm. Concerning the ~;-weak dependence, the condition
(6.1.17) is replaced by

b,=n

2—m o0

i (Z) ;71(1')’” < .

6.3 Weighted dependent triangular arrays

In this section, we consider a sequence (;);>1 of random variables and a trian-
gular array of non-negative constant weights {(cp;)1<i<n;n > 1}. Let

i=1

If the &’s are i.i.d., Chow (1966) [37] has established the following complete
convergence result.
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Theorem (Chow (1966) [37]) Let (&)i be independent and identically dis-
tributed random variables with E; = 0 and E|&|9 < oo for some q > 2. If
for some constant K (non depending on n), ni/a maxi<i<n |[cni| < K, and
S 2 < K then,

zlnz

VE>0, Y P YU, > t) < oo

n=1

The last inequality is a result of complete convergence of n=/4|U,| to 0. This

notion was introduced by Hsu and Robbins (1947) [109]. Complete convergence
implies the almost sure convergence from the Borel-Cantelli Lemma.
Li et al.(1995) [120] extend this result to arrays (cui){n>1 icz} for ¢ = 2. Quote
also Yu (1990) [196], who obtains a result analogue to Chow’s for martingale
differences. Ghosal and Chandra (1998) [91] extend the previous results and
prove some similar results to these of Li et al.(1995) [120] for martingales differ-
ences. As in [120], their main tool is Hoffmann-Jorgensen Inequality (Hoffmann-
Jorgensen (1974) [107]). Peligrad and Utev (1997) [143] propose a central limit
theorem for partial sums of a sequence U,, = Y I | ¢,;& where sup,, 2. < oo,
maxi<i<n |cni| — 0 as n — oo and &;’s are in turn, pairwise mixing martingale
difference, mixing sequences or associated sequences. Mcleish (1975) [128], De
Jong (1996) [56], and, more recently Shinxin (1999) [177], extend the previous
results in the case of L,-mixingale arrays. Those results have various applica-
tions. They are used for the proof of strong convergence of kernel estimators.
Li et al.(1995) [120] results are extended to our weak dependent frame. A
straightforward consequence of Proposition 6.3 is the following.

Corollary 6.1. Under the assumptions of Proposition 6.3, if q is an even in-

teger such that k > ¢q > p, and if for some constant K, non depending on n
‘ - ‘ —1

we assume that Y 1 < K, and if e(r) = O(r=®), with o > ({Z )k, or

e(r) =0(e "), then for all positive real number t,

> P(nTVPUL| > 1) < 00

zlnz

Proof. Proposition 6.3 implies

n—1
2q —2)!
E|U,|7 < ((qQ_l cL/k << qzcnn lz T+1)q—2€(7,)(k—q)/k>

r=0
. <M2 (chn anl )= 2)/k)p/2> .
r=0

If Y " cp, 1 < K ande(r) = O(r™®), with a > (qfl)k then there is some
E|U, |7

Ky > 0 with E|U,|? < K1, {the result follows from P(n~Y/?|U,| > t) < ciiln
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IfY " 2,y < Kande(r) = O(e ), then E|U,|? < K for a real constant
Kz and Y P (n’l/p|Un| > t) <o0. O

n
The following corollary is a direct consequence of proposition 6.4.

Corollary 6.2. Suppose that all the assumptions of Proposition 6.4 are satis-
fied. If g>p, k>q>1, and > 50, 2" Z?io 71(5)™ < oo where m = 3(2:‘1),
then for any positive real number t,

> P(nTVPUL| > 1) < oo

2
n—1 a/

Proof. We have from Proposition 6.4, E|U,|? < [ 2¢K; Z " Z ()™
i=1 =0
Now the relation Y77, 27" E;io 7 (j)™ < oo implies Z]P’(n_l/p|Un| >t) <

0o. This concludes the proof. [J

6.4 Linear regression

We observe a stationary bounded sequence, (y,,,) € R x R? defined on a
probability space (2, A, P).

We look for the vector Z* which minimizes the linear prediction error of y,
with x,. We identify the R-vector z, and its column matrix in the canonical
basis. So

7* = in E[(y, — 2L Z)?].
arg min (Y — 2, 2)7]

This problem leads to study the gradient algorithm
ZnJrl = Zn + cn(ynJrl - x;l;Jrlzn)anrla

where ¢, = ¢ with g > 0 (so (c,) verifies (6.1.2) and (6.1.5)). Let Cyq1 =
Tn4120, 1, we obtain:

Zn+]_ = Zn + cn(yn+1xn+1 — Cn+]_Zn). (641)

Denote U = E(ynt12n41), C = E(Cpi1), Yo = Z, — C7'U and h(Y) = —CY,
then (6.4.1) becomes :

Yor1 = Ya+enh(YVn)+ o, with (6.4.2)
Cot1 = Wnt1Zn41 — Coy1C7U) + (C — Cpgr) Vi
Note that the solutions of (6.1.3) are the trajectories
Ct

z(t) = zpe” ™",



146 CHAPTER 6. APPLICATIONS OF SLLN

so every trajectory converges to 0, the unique equilibrium point of the differen-
tiable function h (Dh(0) = —C and 0 is an attractive zero of h).

Denoting F,, = (0(Y;) /i < n), we also define the following assumption A-lr:
C' is not singular, (Cy) and (yn,xy) are y1-dependent sequences with 1 (r) =
O(a") fora < 1.

Note that if (Y, Tn)nen is 01,1-dependent (see Definition 2.3) then A-Ir is sat-
isfied. First, note that if a R%-valued sequence (X,) is 61 ;-dependent, any
Ri-valued sequence (j = 1,...,d—1) (V) = (X1,..., X}7) is 01.1-dependent.
So, if (Yn,zn) is 01 1-dependent, then so are (y,,) and (z) (j = 1,...,d). Let f
a bounded 1-Lipschitz function, defined on R and g the function defined on R?
by g(z,y) = f(xy). It is enough to prove that g is a Lipschitz function defined
on R2.

l9(z,y) — 9@’ y)| _ lzy —2'y/|

lz =2+ y—y| — |lz—a+]y -y
o lelly =y + 1y'l|z = 2]
- |z —a'| + |y — |
< max(|z/, [y']),

and ¢ is Lipschitz as soon as z and y are bounded. Thus, since (z,) and (y,)
are bounded, the result follows. [J

Denoting M = sup,, ||z, ||?, one has,

Proposition 6.5. Under Assumption A-Ir (Y,,) is a.s. bounded and the per-
turbation (C,) of algorithm (6.4.2) splits into three terms of which two are 7 -
dependent and one is a rest leading to zero. So the ODE method assures the a.s
convergence of Y, to zero (hence Z* = C~1U ). Moreover if g < 2]1\4 then

VnY, = O(1), a.s. (6.4.4)

Proof of Proposition 6.5. To start with, we prove that Y,, — 0 a.s by assuming
that (Y;,) is a.s bounded. Then we justify this assumption and finally we prove
(6.4.4).

The perturbation ¢,y splits into two terms : (yn417n11 — Cry1C~1U) and
(C = Ch41)Y,. The first term is centered and obvious ~;-dependent with a
dependence coefficient v1(r). Now 71 (r) = O(a”) thanks to Assumption A-Ir.
It remains to study (C' — Cp41)Ya.

Study of (C'— Cp41)Y,: write (C — Cri1)Y, = g1 + 1 with

§n+1 = (C— Cn+1)Yn — E[(O — On+1)Yn] and Tn+1 = ]E[(C — On+1)Yn]. We will
prove that the sequence (&,) is v1-dependent with an appropriate dependent
coefficient and that lim,, .. r, = 0. Notice that
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n—1

g1 = E[(C — Cpi1) Z (Yip1 =Y+ E[(C = Cpy1)Yr],
i=3
and since Yj11 — Y; = —¢;C11Y; + Cj(yj+133j+1 - Oj+1C_1U), we obtain
n—1
Tt =B(C — Coy1)Yy — > B(C = Coy1)e;CiinY)

=3

n—1
+ > E(C = Cny1)ej(yj1mj11 — Cj1aC '),

i=3

If 7 is not an integer, we replace it by ”gl. In the same way, in the first sum
we replace Yj by Zf;jl/Q(YiH —Y;) +Yj/2 with the same remark as above if j/2
is not an integer. So

n—1

Tag1 = 3 E(C = Cryr)e; (Y1241 — Cop1C7U) + E(C — Cpyr)Yy
=3

n—1 Jj—1

- Z E(C—Chi1)c;Ciqa Z —¢iCit1Y; + ci(yiy17iy1 — Ci1C71U) + Y;/2
Jj=3 i=35/2

Expectations conditionally with respect to F;11 of each term of the second sum
and with respect Fr of the last term give, by assuming that (Y,) is bounded:

n—1

gl < JAN+ K1Y eym(n+1—i)m@G +1) + Kon(n/2+1), (6.4.5)

J=2

where A denote the last sum of the previous representation of r,, and K; (for
i =1,2,...) non-negative constants. Moreover,

n—1
A= — > E(C-Cn1)ej(Cisr — O

J=75
j—1

X Z —¢iCi1Yi + cilyirizips — CipaCHU))
i=j/2
n—1

— Y E(C = Ci1)¢j(Cja — O)Yipa

=3
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n—1 Jj—1
+ Z E(C - On+1)CjO[ Z —Cici—i-l}/i + Ci(yi+1xi+1 - Oi+1071U)]
J=5 i=j/2

n—1
+ Z E(C — On_;_l)CjO}/j/g.
=1

Expectations conditionally successively with respect to Fj4q1 and F;11 of each
term of the first and the third sum and with respect 741 then F; of the second
2

and the fourth sum give, by assuming that (Y},) is bounded,

n—1 Jj—1 n—1
Al < K3 Z cjyi(n —j) Z cmn(j—i)+ Ky Z cjm(n —j)1(j/2)(6.4.6)
=3 i=5/2 J=3

Since ¢; = ¢, (6.4.5) and (6.4.6) involve that ry, is O(n=2), so r, converges to
zero. On the other hand, for r» > 6:

EnrlFa) = ElC = Cosr)Ynrr1|Fa] = E(6nsr),
n+r—2

= > E[(C—Cuyr) (Y1 — Y))IFl
j=nts

+ E[(C - CnJrr)YnJr;‘ |-7:n] — Tntr-

Note also that if ; is not an integer, we replace it by T;rl.

technics as above, we obtain

Using the same

B E(En+rFn)ll

n—+r—2 Jj—1
< K5 Z cnn+r—j—1) Z civi(G —1) +71(r/2) +(’)((n+r)_2)
j=nty i=j/2

T _ r _
ElE(&nsr|70)| < O((n+ ,)7%) + Ksm(,) + O((n +7)7%),
and [|E(&4r | Fn) |1 = yi(r), with y1(r) = O(r=2). So (&) is y1-dependent and
since (6.1.17) is satisfied, the ODE method may be used and Y,, converges to 0
a.s.

Now we prove that Y}, is a.s bounded. Let V(Y) = Y7CY = ||v/CY]?. Since
C' is not singular, V' is a Lyapounov function and VV (YY) = 2CY is a Lipschitz
function, so we have

V(YnJrl) < V(Yn) + (Yn+1 - Yn)Tvv(Yn) + K6||Yn+1 - Yn||2'
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Furthermore ||V;,41 — Yo |2 < 262 (||[yns1@nt1 — Cnp1 O U2 4262 | Cri1 Yo ||).
Since (yn, T, ) is bounded, (Cy,) and ||yn 1175 +1—Cri1C~1U||? are also bounded.

Moreover
Ky

)\min (O)

where Apin(C) is the smallest eigenvalue of C. So

||Cn+1YnH2 < KV7HYn||2 < V({Y)

V(Yni1) S V(Yn)(1 + Ksc2) + Koc2 +2(Yny1 — V)T CY,.

The last term becomes

2(Y,1 — YTy, —26,||CYl1? + 260 (Yns1Zng1 — Cop1 CTLUNYTCY,
+2¢, YT (C = Cpy1)CYy,
—26,||CY3 12 + cn K1o||CYo || + 2¢,Y, T (C — Cpy1)CYy

—2¢,||ICY |2 + cnK10||CYo | + 2¢ntn i1V (Yy),

IN A

where u,, = max{X?(C — C,)X; 1 <i < d} and {X1,..., X4} is an orthogonal
basis of unit eigenvectors of C'.
‘We now obtain

V(Y1) < V(Y1 + Ksc? + 2cptini1) (6.4.7)
+ K9Cn - Cn(QHCYnH2 — K10|[CYal)).

Note that under the assumption A-lr (u,) is a y;-dependent sequence with a
weakly dependent coefficient v (r) = O(a") and > 7 ¢ptinq1 < 0.

IEV(Y,) > 5. then OV, | > K10/2 and —(2[|CY,||? — K10]|CY,]|) < 0.

Denote T' = inf{n / V(¥,) < ,, ! (c)} By the Robbins-Sigmund theorem,

V(Y,,) converges a.s. to a finite hmlt on {T = +oo}, so (Y;,) is bounded since
V' is a Lyapounov function.

Theorem 2 of Delyon (1996) [58], we deduce that V(Y;,) converges to a finite
limit, as soon as :

On {liminf, V(Y;,) < 4,\5,12]0(0)}’ V(Y,) does not converge to oo and using

Vk > 0, ch Hh + CnJrl” 1{V(Y y<k} < OO (648)
VE>0, > enllat1, VV(Zn)) Liv(v, )<k} < o0 (6.4.9)

Using relation > ¢2 < oo and the fact that on {V(Y;,) < k}, [|h(Yy) + Cusa||? is

bounded, we deduce (6.4.8). To prove (6.4.9), it is enough, by Proposition 6.4, to
prove that ((ni1, VV(Y2)) v (v, )<k} = €nt1 is a y1-dependent sequence with
a dependent coefficient satisfying (6.1.17). But to use the result of Proposition
6.4, it is necessary to center e, 1. So we are going to prove that > ¢,Ee, 11 < 00



150 CHAPTER 6. APPLICATIONS OF SLLN

and that (e,4+1 —Ee, 1) is a y1-dependent sequence with a dependent coefficient
y1(r) equals to O(r=2).

Study of E(e,+1). First of all, we must note a few elements. Denoting I the
unit matrix of R%, Y, = (I — ¢,_10,)Yn_1 + cn_1(znyn — C,,C~1U). Note
that Amax(Cr) = [|[2n]|> € M (Amax(Cr) =: the largest eigenvalue of C,,). For
n large enough ¢,—1M < 1 and (I — ¢,—1C,,) is not singular. So, if M; =
sup,,{znyn — C,,C~1U}, then we obtain

1

Yo_1| <
Wacrl <)o)

¥l + cn1My) < (14 ben—1)([[Yall A M)

where b > 0 does not depend on n. Moreover

k
V(Y,) < k= |Y.l? < 7
(Yn) 1Y Doin(C)

and

[Voll < k' = V(Ya) < Amax(C)E".
So that,

Livva <kt = Lvall<ka} = Lassli<ka-,}»

where

kn—j < (14 cp_1)? (\/)\mm( /\Ml)

And since ¢, = 7, for any 0 < j < n, (1 + acn,l)j is bounded independently
of n, so is kn_j. And ]E(en+1) = E($n+1yn+1 — On+1071U)TCYn1{V(yn)<k} +
EYE(C - Cn+1)CYn1{V(Yn)<k}' We have,
n—1
E(eni1) = Y EWni12nir — ConCTU)TCY41 = Y)) Ly, j<ky)
J=5

+ ]E(yn+1$n+1 —CpnCTU)CZy

n Z E(Yj41 = Y5)T(C = Coi)C(Yr1 = Y5) iy, <h;)

n—1 n—2

+ 2> > E(Yj - Y)T(C = Capa)

':" i=7+1

XC( i1 = Yi) Ly <k 3n{ivili<hi}
+ 2 Z EY,5(C = Cos1)C (Vi1 = Y)) Ly <k 3|V ol <o}

+ n/Q(C = Cnt1)CY0s2 L)y, oli<ko o)+
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Note that if 3 is not an integer, we replace it by "51. Using always the same
technique, we obtain that

Eeni1 = On )+ 0(a?)+0(n %) + O(n?) 4+ O(a?),

hence " ¢, Ee, < 00.
Study of (en, — Ee,). We now prove that this sequence is v;-dependent with a
relevant dependent coefficient. Write

E(en—i-r - ]Een+r|-7:n) = Dn+r + Gn+r - ]Een+r7

with

Dpir = ElyntrTntr — n+1c_1U)TCYn+T—1 Lovvapro1)<k} | Fnl,

Gn+r = E(anji-r—l(c_ CnJrr)CYnJrrfl 1{V(Yn+r_1)<k} |-7:n]
n+r—2

Dypyyr = Z ]E[((yn+rxn+r - Cn+1c_lU)TC(Yj+l - YJ) 1{||Yj||<kj} |-7:n]
Jj=n+j

+  El((Unsrtngr — Cog1CTHU) T CY iy L(Yoi g I<kns g} [Fnls

Here again, if ; is not a integer, we replace it by Tgl . Again, the same techniques
as for r,, give

E|| Dnell = O((n + 7)) + O(a™*2)

We study Gj,i, in the same way and E||G,ir|| = O((n + 7)72), and since
Eeptr = O((n +1)72), (6.1.17) is satisfied and the result is proved.

Proof of (6.4.4) For n > N, denote by IIY = (I —¢,Cpi1)--- (I —enCny1)-

Since g < 2]1\4, for N > 1, ITY is no singular and

Yoo =1 Yy + Z I () 714,
J=N

where §j1-+1 =yj+12j+1 — Cj11 C~'U. We obtain, since Y,, — 0,

(oo}

Y= () g
j=N

()~ = —enCnya) - (I = ¢;Cjp1) " and

1

o< . .
[ (L") ”’HLN(l—qM)
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Hence

J .\ gM
||(H§V)—1|| =0 (exp (M Z cl>> =0 ((]]V) ) , (6.4.10)
i=N

oo g N -
IWNYNI =D 54/ @),
Vi
Since g < ,,, (6.4.10) involves that the sum converges. Indeed (6.1.17) is
verified with k = 5 and p = 3 (so m = }) and since f} 41 1s y1-dependent with
a mixingale coefficient 1 (r) = O(a"). Hence the result is proved. O



Chapter 7

Central Limit theorem

In this chapter, we give sufficient conditions for the central limit theorem in
the non causal and causal contexts. In Sections 7.1 and 7.2, we give sufficient
conditions for k and A dependent sequences, for random variables having mo-
ments of order 2 + (. The proof is based on a decomposition which combines
Bernstein blocks with the Lindeberg method. In Section 7.3, we prove a central
limit theorem for random fields, under an exponential decay of the covariance
of Lipshitz functions of the variables. The proof is based on Stein’s method, as
described in Bolthausen (1982) [24]. In Section 7.4, we focus on the causal case:
in Theorem 7.5, we give necessary and sufficient conditions for the conditional
central limit theorem. This notion is more precise than convergence in distri-
bution and implies the stable convergence in the sense of Rényi (1963) [156]. In
the last Section 7.5, we give some applications of Theorem 7.5: in particular, we
give sufficient conditions for the central limit theorem for v, & and q@-dependent
sequences.

7.1 Non causal case: stationary sequences

In all the section, we shall consider a centered and stationary real-valued se-
quence (X,,)nez such that

= E|Xo|™ < o0, for a real number m =2+ ¢ > 2. (7.1.1)
We also define

o? = Z Cov(Xo, Xk),
keZ

whenever it exists. Let S, = X1 + -+ + X,,. The following results come from
Doukhan and Wintenberger (2005) [77].

153
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Theorem 7.1 (k-dependence). Assume that the k-weakly dependent stationary
process satisfies (7.1.1) and that k(r) = O(r=") for k > 2+ é Then o2 is well

defined and n~='/2S,, converges in distribution to the normal distribution with

mean 0 and variance o2.

Remark 7.1. Under the more restrictive (-dependence condition, Bulinski and
Shashkin (2005) [33] obtain the central limit theorem with the sharper assump-
tion ¢(r) = O(r=") for k > 1+ 1/(m — 2) (beware notations in this remark).
The difference between the two conditions is natural, since it may be proved
for C-weakly dependent sequences that ((r) > > .. k(s). This simple bound,
checked from the definitions, explains the loss in the rate of convergence of r(r)
to 0.

The following result relaxes the previous dependence assumptions to the cost of
a faster decay for the dependence coefficients.

Theorem 7.2 (A-dependence). Assume that the \-weakly dependent stationary
process satisfies (7.1.1) and that A(r) = O(r=*) for A\ > 4 + Z Then the
conclusion of Theorem 7.1 holds.

As stressed in section 3.1.3 the coefficient A is very useful to work out the case
of Bernoulli shifts with weakly dependent innovations (&;);.

Theorem 7.3. Denote by \e(r) the A-dependence coefficients of the sequence
(&)i. Assume that H : RZ — R satisfies the condition (3.1.11) for some m > 2
such that Im < m/ — 1 with E|§0|m, < 00, and some sequence b; > 0 such that
> lilbi < oo, Then X, = H(&n—4,1 € ) satisfy the central limit theorem in
the following cases:

o Geometric case: b, = O (") and \¢(r) = O (e7").

e Mized case: b, = O (e7™) and A¢(r) = O (r=¢) with ¢ > 4+2/(m — 2).

e Riemanian case: If b, = O (r=°) for some b > 2 and A¢(r) = O (r~¢)
with

. (10 — 4m)b(m’ — 1)
2-m)(b—2)(m'—1-1)
The constants b > 0 and ¢ > 0 obtained are different for each case.

This theorem is useful to derive the weak invariance principle in many cases
(see again Section 3.1.3). We now look with more detail the following example.
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Example. Consider the two sided sequence X; = Ziooo a; &—; with ARCH(o0)
innovations:

=& d+> d& ),

Jj=1

where the process (&); is i.i.d.. Under Riemanian decays (a, = O(r~%) and
al. = O(r=")), we infer from Theorem 7.3 that the central limit theorem holds

as soon as:
, (10 — 4m)a(m’ — 1)

CZ o m)a—2)m —1-1)

Remark 7.2. The technique of the proofs is based on Lindeberg method and we
prove in fact that |E (f(S,/v/n) — f(oN))| < Cn=¢ for f(x) = e™*, where the
constants ¢*,C > 0 depend only on the parameters ¢ and k or \ respectively,
and where c¢* < % (see Proposition 2 section 7.2.2 for more details). When k
or X\ tends to infinity, we have ¢* = /(44 (). For ( > 2 and k or X\ tends to
infinity, we notice that ¢* — é

Using a smoothing lemma, this also yields an analogue bound for the uniform
distance in the real case (d=1):

sup
teR

<\/n5' <t) ]P’(oN<t)‘<Cnc.

A first and easy way to control ¢’ is to set ¢ = c¢* /4 but the corresponding rate
is really a bad one. Petrov (1995) [144] obtains the exponent , L in the i.i.d. case
and Rio (2000) [161] reaches the emponent for strongly mizing sequences. In
proposition 3 section 7.2.2, we achieve ¢’ = ¢*/3. Analogous bad convergence
rates have been settled in the case of weakly dependent random fields in [63].

The following subsections are devoted to the proofs. We first describe in detail
the Lindeberg method with Bernstein blocks in Section 7.2 (another version
of the Lindeberg method will be presented is the causal framework in Section
7.4.3). The main tools are the controls of the variance of S,, and of ||Sy||2+s
obtained in Lemma 4.2 and 4.3 of section 4.2. Rates of convergence for the
central limit theorem are obtained in 7.2.2.

7.2 Lindeberg method

Let x1,...,7; be random variables with values in R? (equipped with the Eu-
clidean norm ||(z1,...,z4)|| = /23 +---+2), centered at expectation and
such that for some 0 < 5 <1:

k
D Bl < A< oo (7.2.1)

=1
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We consider independent random variables v, ..., yr, independent of the vari-
ables x1, ...,z and such that y; ~ Ny(0, Var z;).

Denote by Cj the set of bounded functions from R? to R with bounded and
continuous partial derivatives up to order 3. The Lindeberg method relies on
the following lemma

Lemma 7.1 (Bardet et al., 2006 [10]). For any f € C3, let:

A = |E( (w14 +xp) = flyn + -+ ur))l (7.2.2)
and T; = ZCOV (fZ iz + -+ xi,l),xg) , j=1,2.(7.2.3)
fi(t) = |Ef(t+yi+1 + k)

Let

M=

Cov({f'(a)y) = o

d
Z;CO ((%;ﬁa: (z )Jlkyé),

where by convention the empty sums are equal to 0. The following upper bound
holds:

Cov < of (x),yg> , and

Y
a |l

1

Cov(f"(2),y*)

k=1¢

1
A< T+, | + 4] 71 17715 A

Remark 7.3. If k tends to 0o, we denote the variables by (z;r)1<i<k and we
set A= A(k),T; =Tj(k). Assume that A(k) and Tj(k) tend to 0 as k tends to
o0, and assume moreover that oy = Zle Exfk converges to 0% as k tends to

0o. Then
k

Sy = Z Tik —k—oo N(0, o?), in distribution.
i=1
Condition A(k) — 0 implies the usual Lindeberg condition, condition o} — o>
is only the convergence of variances, while the conditions T;(k) — 0 are the only

one related to dependence.

Examples. Assume that (X;)icz is a stationary times series the following
examples are widely developed in [10].

e The first example of application of such a situation is the Bernstein block
method used below for proving the central limit theorem.

e Functional estimation also enters this frame. In that case we write z; ;, =
fx(X;) for functions f which approximate the Dirac distribution, see
chapter 11.
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e A final example is provided by subsampling, in which z;; = X,,, for
1 <im, <nand 1 <K m, < n; this example fits chapter 13 but we defer
the reader to [10] for shortness.

Proof of lemma 7.1. We first notice that:

A < Aj+---+ Ay, where (7.2.4)
A; = [E(filwi +zi) — fi(wi +vi))l, i=1,....k
w; = X1+t T

(7.2.5)

Let z,w € R? The Taylor formula writes in the two distinct following ways
(for suitable values wy, ws):

1
flwta) = flw)+af(w)+  f(w)(z )
1 1
= f)+af(w)+ [ (w),z) + [ (ws)(z, 2, 2)
here fO)(z)(yy, ... 2 Yj) stands for the value of the symmetric j-linear form f@
at (y1,...,y;). Let [[f9]oc = sup, [[f9)(x)] with
1fP@)) = sup [fD@) ;9]
Nyl llysl1<1

Thus for w, z,y € R? we may write:

[N

flwta) = flw+y) = fw)e-y)+ f(w)(® -y

(f"(w1) = f"(w) (@, 2) = (f" (wi) = f"(w))(y, y)
2

(o =) (w) + " (@)@ ~ o)
) 2,2) — 1) ()

+

6
Thus
T = flwta) - fwty) - f ) —y) - @) - y?)  satisfies
71 < 20l + Byl o A 5 (el + I8l e
< 20l (10 g bl )+ (105 )
< ZUEI IS (el + )
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the last inequality following from the inequality 1 A a < a°, valid for a > 0
and § € [0,1]. Here we set f”(w)(z? —y?) = f"(w)(x,z)) — f"(w)(y,y) for
notational convenience. This relation together with the decomposition (7.2.4)
and the upper bound Hfi(J)HOO <N f9 s (valid for 1 <4 < k, and 0 < j < 3)
entails

k
1 2 _
A < |T1|+2|T2|+35|\f”||é05|\f”’llioz{El\will2+5+1Ellyill“5}
=1
1 14312
< T+ 1ol +2 5 7115501 12 A
1 _
< |T1|+2|T2|+4Hf”||io‘5|\f”’||‘ioA

)

where we have used the bound E||y; |28 < (E[|y;||4)2+9/4 < (3(E||z;|2)2)2*4.0

7.2.1 Proof of the main results

In this section we first prove theorem 7.1 and 7.2, and then we give rates for
this central limit results. Some useful moment inequalities are proved in section
4.1. They are essential in the following proof.

Proof of Theorems 7.1 and 7.2. Let S = \/1115” and consider p = p(n) and
g = ¢(n) in such a way that

lim = lim aln) _ lim p(n) 0.
Let k = k(n) = [p(n)iq(n)} and
1 .
Z:\/n(U1++Uk)a with UJZQZBX“
T J

where B; =|(p+¢)(j —1),(p+¢)(j — 1) + p] NN is a subset of p successive
integers from {1,...,n} such that, for j # j’, B; and B} are at least distant of
q = q(n). We note B’ the block between B; and Bj1 and V; = )7, p Xi. Vi

is the last block of X; between the end of By, and n. Let o = Var (U;)/p, and
ViV
= Jn ,
where the Gaussian variables V}-’ are independent and independent of the se-

quence (X,)nez. We fix t € R? and we define f : R? — C with f(x) = e®.
Then:

E(f(S) = f(oN)) =E(f(S) = f(2)) + E(f(2) — f(Y)) + E(f(Y) — f(oN)).

2
Y ‘/j/NN(Ovp'Up)v
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The Lindeberg method consists in proving that this expression converges to 0 as
n — 00. The first and the last term in this inequality are referred to as auxiliary
terms in this Bernstein-Lindeberg method. They come from the replacement of
the individual initial - non-Gaussian and Gaussian respectively - random vari-
ables. The second term is analogue to that obtained with decoupling and turns
the proof of the central limit theorem to the independent case. The third term
is referred to as the main term and following the proof under independence it
will be bounded above by using a Taylor expansion. Because of the dependence
structure, in the corresponding bounds, some additional covariance terms will
appear.

Auziliary terms. Using Taylor expansions up to the second order, we bound:

B -f2y < Wps—ze
B - feny < U ry —onp

Firstly:
1
E|Z - SP = B(Vit-+ W)

Note that the set under the sums of X; in Vj + - -- + V}, has cardinality smaller
than (k + 1)¢ + p. Using the bounds (4.2.6) and (4.2.5), we infer that under
conditions (4.2.3) and (4.2.2) respectively,

k+1
n

k
We notice that Y follows the distribution of \/ P o, N and then working with
n

Gaussian random variables:

k
ElY —oN[* < ‘p—la§+|a§—02\.
n

Since |kp/n — 1| < ¢/p, we need to bound

1
o2 —0?| < > | ||E(X0Xi)| + > [E(XoX)].
lil<p lil>p
Let a; = |E(XoX;)|. Under conditions (4.2.3) and (4.2.2) respectively, the series
> g a; converge and s; = Y 7° . a; converges to 0 as j converges to infinity.
Consequently

p—1

p—1 .
2
|012,—02|§2 E Z-ai—l—2$p§ E si + 2s,.
im0 P P =
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Cesaro lemma implies that this term converges to 0. Hence |[Ef(S) — f(Z)| +
[Ef(Y)— f(ocN)| tends to 0 as n ] cc.

To precise the rate of convergence, we now assume that a; = O(i~%) with
a > 1 we see that

11—«

o7 —0? <p

The convergence rate is then given by !+ +plm if E(XoX;) = O(i™®). Since
E(XoX;) = Cov(Xo, X;), we then use equations (4.2.5) and (4.2.6) and we find
a =k or a=Am—2)/(m—1) depending of the weak-dependence setting.
With p = n®, ¢ = n®, those bounds become:

nt= 4 no=1 4 pa(1=r) in the k-weak dependence setting,
nb=a 4 po—l 4 pall=A(m=2)/(m=1)) “ypder \-weak dependence.

Main terms. It remains to control the expression |T1| 4 }|T%| and A in lemma
7.2.2 with now, for 1 < j < k:

1 1
U, P = V.
Jnd Yj Jn'?

e The terms T}, are bounded by using the weak-dependence properties. The
expressions of this bound are obtained by rewriting

€Ty =

|Cov(F(Xm,m € B;,i < j),G(Xm,m € By))|.

Note that ||F||» < 1 and that we can compute a bound for Lip F' with
F(zq,...,25p) = f (\}n doicy xi) (with possible repetitions in the se-

quence (z1,...,%kp)):
sz - Zyl < |1 —expit- ! Z(yl—xl)
\/" N /n —
Z<J 1<J 1<J
||t||2
< ZH% = Zill2.
For G(x1,...,2p) = f (320, xi//n), we have |G|l < 1 and LipG <

1/y/n. We then distinguish the two cases, noting that the gap between
blocks is at least ¢q. Since the bounds of the different covariances do not
depend of j, we then obtain the controls:

— In the x dependence setting:

1
Ty | + 2|T2| = kp-r(q)
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— In the A\ dependence setting:
1
T3] + || < kp(1+ Vk/p) - Aa).

Reminding that p = n®, ¢ = n?, k(r) = O (r=") or A(r) = O (r™?),

the bounds become n'=#% or n!*t(1/2=a)+=Ab in regpectively & or A

context.

e Using the stationarity of the sequence X,, we obtain:
|A| < nflfg (E|5p|2+6 \/lerg) )

We then use the result of lemma 4.3 to bound the moment E|S,|>*. If
K> 2+ é, or A >4+ ?, where £(r) = O (r=%) or A(r) = O (r~*) then
there exists 0 €]0,¢ A 1[ and C > 0 such that:

E|Sp|2+5 < Op1+6/2.
We then obtain:
A= k(p/n)l+5/2.

Reminding that p = n%, the bound is of order n(*~1%/2 in both  or
A-weak dependence setting.

7.2.2 Rates of convergence

We present two propositions that give rates of convergence in the central limit
theorem.

Proposition 7.1. Assume that the weakly dependent stationary process (X, )n
satisfies (7.1.1) then the difference between the characteristic functions is
bounded by: )

B (F(Su/vn) — (oN))| < Cn~,
where C' is some positive constant and c* depends of the weakly dependent coef-
ficients as follows:

e in the A-dependence case with \(r) = O(r=) for A > 4 + g, then

A 2x-1
S 22+A0+1)

*

c

where

\/(2)\—6—02+4()\<—4<—2)+C+6—2)\/\1

A= ,
2
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e in the k-dependence case with k(r) = O(r=") for k > 2+ é, then

* (ﬁ_l)B
T k(2+B)

where

¢(2ﬁ—3—g)2+4(n<—2g—1)+§+3—2ﬁA

B =
2

1.

In the case d = 1, we use Theorem 5.1 of Petrov (1995) [144] to obtain:

Proposition 7.2 (A rate in the Berry Essen bound). Assume that the real
weakly dependent stationary process (X, )n satisfies the same assumptions than
in Proposition 7.1. We obtain:

sup By (x) — ()] = O (n—c*/4) :

where ¢* is defined in Proposition 7.1.

Proof of proposition 7.1. In the previous section, we have expressed the rates of
the different terms. Let us recall these rates:

e In the A\-dependence case, we finally only have to consider the three largest
rates: (a—1)0/2,14(1/2—a)+—Ab and b—a. The previous optimal choice
of a* is smaller than 1/2, then we have to consider the rate 3/2 —a — \b
and not 1 — Ab. We find:

o (14+XN)6+3 ]0 1{
24900 +1) )

* _ * 3 *

bt = a2(/\+1) €]0,a”|

Finally, we obtain the rate n™
e In the k-dependence case:

— Auxiliary terms: b —a, a — 1 and a(1l — k),

— Main terms: 1 — kb and (a — 1)J/2.

The idea is to choose carefully a* and b* €]0, 1] such that the main rates
are equal. Because 6 < 1, a > b, we directly see that (a —1)6/2 > a —1
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and 1 — kb > a(1 — k), so that the only rate of the auxiliary term that it
remains to consider is b — a. Finally, we obtain

2k — 2
= 1 1
¢ @+ o)+ 01
.. 242 .
o= a2+5+5n€]0’a[

Finally, we obtain the proposed rate. [

Proof of proposition 7.2. We have seen that for t fix, we control the distance
between the characteristic functions of S and o N by a term proportional to
t2n=¢". Here, t? appear because |t| was included in the constants (not depending
of n) of the bound of the Lipschitz coefficients. Let ® be the distribution function
of N and F,, be the distribution function S. Theorem 5.1 p. 142 in Petrov
(1995) [144] gives, for every T' > 0:

1

sup |F,(z) — ®(z)| <~ T3 + T

We optimize T' to obtain a rate of convergence in the central limit theorem. [

7.3 Non causal random fields
Let (B, )nen be an increasing sequence of finite subsets of Z¢ fulfilling

> . #0B,
7¢=1||B, 1 = 3.1
UBe  tim Syp =0 (731

OB, ={i € By /3j & By, d(i,j) =1}
and for i = (i(l))1<i<a and j = (j())1<i<a in Z%, d(i, j) = maxi<i<a [i(1) =5 (1)]-

Let (Y;);eze be a real valued random fields. Suppose that (Y;);cza satisfies
the following two assumptions:
A) A covariance inequality. Recall that for a real valued function h defined on
RTL
h(z) —h
Lip (h) = sup | ,(f) W)l .
aty 2im1 [T = Vil

Let R; and R, be two disjoints and finite subsets of Z¢, and let f and g be
two real valued functions defined respectively on R#f1 and R#%2 such that
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Lip (f) < oo and Lip (g) < co. We suppose that for any positive real number ¢,
there exists a constant Cs (not depending on f g, Ry and Rs) such that

|COV (f(}/z, 1€ Rl),g(}/i, 1€ R2)|
< CsLip (f)Lip (9) (#R1 + #Rz2) exp (—0d(R, R2)),  (7.3.2)

where d(Ri, R2) = miner, . jer, d(i,7). We refer the reader to the book of
Liggett (1985) [122] for some interacting particle models fulfilling such a covari-
ance inequality.

B) Weak stationarity. Suppose that for any 4, j € Z4
Cov(Y;,Y;) = Cov(Yo, Yi_y). (7.3.3)

Theorem 7.4 gives a central limit theorem for the random fields (Y;);cza.

Theorem 7.4. Let (B, )nen be an increasing sequence of finite subsets of 7.2
fulfilling (7.3.1). Let (Y;);eza be a real valued random field, satisfying (7.5.2)
and (7.3.3). Suppose that, for anyi € Z¢, EY; = 0 and sup;cza |Yilloo < M. Let
Sp = ien, Yi- Then Y pa|Cov(Yo,Yy)| < oo and (#B,,)"Y28,, converges
in distribution to a centered normal law with variance 0® =y, ;4 Cov(Yy, Yz).

Proof of Theorem 7.4. The proof of Theorem 7.4 follows from Proposition 7.3
and Proposition 7.4 below.

Proposition 7.3. Let (Y;);eza be a real valued random field such that EY; =0
and EY? < oo for any i € Z%. Suppose that, for any i, j € Z¢, (7.3.3) holds
and that, for any positive real number §, there exists a positive constant Cs such
that

|Cov(Y;, Y;)| < Cse 0400, (7.3.4)

Let (B,), be a sequence of finite and increasing sets of Z% fulfilling (7.3.1). Let
S, = ZieBn Y;. Then

1
Z |Cov(Yp, Yi)| < oo and  lim Var S,, = Z Cov(Yo, Y).
kezd noteo #Bn kezd

Proof of Proposition 7.3. The first conclusion of Proposition 7.3 follows from
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the bound (7.3.4), together with the following elementary calculations

> ICov(Yo,Yi)| < C D exp(—dd(0,k))

kezd keZd

< C Z Zexp(—éd(o,k))lrgd(o,k)<r+1
kezd r=0

< CY exp(=0r) > Laop<rit
r=0 kezd

< O exp(—dr)#{k € Z7/d(0,k) < r+ 1}
r=0

< C’Zexp(—(ST)Td (7.3.5)
r=0

where C' is a positive constant depending only on ¢ and d.
We now prove the second part of Proposition 7.3. Thanks to (7.3.1), we can
find a sequence u = (u,,) of positive real numbers such that

B
lim u, =+oc0, lim exp(uy,) = 0. (7.3.6)

n—oo n—-+oo # n
Let (0, Bn)n be the sequence of subsets of Z% defined by
OuBn ={s € Bn/ d(s,0By) < un}.

The following bound

together with the suitable choice of the sequence (u,) and the limit (7.3.1)
ensures

#0uBn _

lim =0, (7.3.7)

nioo #B,

we shall use this fact below without further comments. Let BY = B,, \ 0,B,.
We decompose the quantity Var S, as in Newman (1980) [135]:

1

1
yp VarSn = p >N Cov (YY) =Tin+ Tom + Tom,

i€By jEBy
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where

Ty, = #jlgn > > Cov (Y3,Yj),

1€BL j€Bn /d(i,)Z2un

Ty, = #}an > Cov (Y;,Y;),

t€BL jE€ By :d(i,5) <un

Tsp = #jlgn > ) Cov(vi,Yg).

i1€0uBn jEB,
Control of Ty ,,. We have, since |BY| < |By,| and applying (7.3.4)
[Tin| < sup > |Cov(Y;,Y;)]
€LY jepaa(i,g) >un

Cs sup Z e~ 0d(d), (7.3.8)
€LY {end fd(i.g)>un}

IN

For any fixed i € Z9¢, we argue as for (7.3.5) and we obtain

Z e ) < i o= 07

{G€29/d(irj)>un} r=[un]
< Qe dlunlyd, (7.3.9)

We obtain, collecting (7.3.8), (7.3.9) together with the first limit in (7.3.6):

lim Ty, =0. (7.3.10)

n—-+4oo

Control of Ts ,,. We obtain using (7.3.3) and (7.3.4) :

|T3)n| < #auBn

< "4p > |Cov (Yo, Yi)! . (7.3.11)

kezd

The last bound, together with the limit (7.3.7) and the first conclusion of Propo-
sition 7.3, gives
lim 75, = 0. (7.3.12)

n—oo

Control of T5,,. We deduce using the following implication, if ¢ € By and j is
not belonging to B, then d(i,j) > u,, that

To, = #}Bn > > Cov(Y;,Y;)

1€B {jELI /d(i,5) <un}
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Equality (7.3.3) ensures

Z Cov(Y;,Y;) = Z Cov (Yo, Y) -

{7€z4/d(i,j)<un} {k€Z4/d(0,k)<un}

Hence

Bu
Tyn = iB: > Cov(Yy, Yz).

{ke€Z/d(0,k)<un}

The last equality together with the first limit in (7.3.6) and (7.3.7), implies that

lim Ty, = » _ Cov(Yp, V). (7.3.13)

n—oo
kezd

The second conclusion of Proposition 7.3 is proved by collecting the limits
(7.3.10), (7.3.12) and (7.3.13). O

Proposition 7.4. Let (B, )nen be an increasing sequence of finite subsets of
7% such that #B,, tends to infinity as n goes to infinity. Let (Y;)icza be a real
valued random field satisfying (7.3.2). Suppose that EY; = 0 for any i € 79,
and that sup;eza ||Yillo < M. Let Sy, = ;cp Yi. If there exists a finite real

number o2 such that
. Vars, 9
lim =

= 7.3.14
Jim UL o, (7.3.14)

then (#B)~'/2S,, converges in distribution to a centered normal law with vari-

ance o2.

Proof of Proposition 7.4. We need the following notation. Let (m,) be a se-
quence of positive integers to be fixed later. We suppose for the moment that
lim,,—o0 My = 00. For any i € Z%, we define a neighborhood V; of i in B,, as

Vi = B(i,mn) N By, (7.3.15)

where B(i,m,) = {j € Z¢/d(i,j) < m,}. Let V¢ denote the complementary
of V; in B,, i.e. V. = B, \'V;. For I a subset of B,,, we denote by

sSH=Yv, su)= 3 v
iel i€ By \I
Hence S(Bn) =) ,cp, Yi =: Sy for the sake of brevity.
Finally we denote by F(bs, bs) the set of the real valued function i defined
on R, three times differentiable, such that 2(0) = 0, by := ||h/']|ec < 400 and
that by := ||h®) o < 4o00.

We also need the following proposition.
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Proposition 7.5. Let h be a fixed function of the set F(ba,bs). Let (By)nen
be a sequence of finite subsets of Z. For anyi € By, let V; be the set as defined
by (7.3.15). Let (Y;);cze be a real valued random field. Suppose that EY; = 0
and BY? < 400 for any i € Z. Let S, = > icp, Yi- Then

‘E(h(Sn)) — Var S, / 1 tE(R” (tSn))dt‘

<[5 1Cov 0 M s, i+ 2 3 EIS(R)] 02 A IS )

i€B, i€ By
+hB| Y (ViS(V) —E(YiS(Vi)| +b2 Y [Cov(Yi, S(V))|.  (7.3.16)
i€By, i€ By,

Remark 7.4. For a random field (Y;);cza of independent random variables such
that sup;cza EY;! < 0o, Proposition 7.5 applied with V; = {i} implies that

‘]E(h(Sn)) ~VarS, /0 LR (tSn))dt‘ <

2> " EIYi| (ba A bs|Yi]) + b2v/| Bn |Sup Y2l
i€B,

Proof of Proposition 7.5. We have,

n(S,) = Sn/()lh’(tSn)dt:/ (Z Yk (tSn) )

ieB
= / (Z YR (tS(V, )
i€B
/ (Z Y; (W (tS,) — B (tS(VE)) — tS(Vi)h" (tS, )))
i€B )

+ Y YiS(, / th! (tSp)dt — > E()@-S(m)/ th" (tS,)dt

i€B,, i€ By, 0
+ E(Y;S(V; th"(tSn)dt— E(Y;S,) | th"(tS,)dt
+ Z / th" (tS,,)dt. (7.3.17)

1€B,,

We take the expectation in the equality (7.3.17). The obtained formula, together
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with the following estimations, proves Proposition 7.5. [

I/ (£Sn) — W' (S (Vi) — tS(Vi)h" (t5n)]
< W (8Sn) = W(ES(VE)) — tS(VR" (RS (V)| + |S(VO)IIR" (£5n) — 1" (£S(ViO)))
< 2[S(Vy)] (b2 A bs[S(V5)]) . O

The purpose now is to control the right hand side of the bound (7.3.16) for a
random field (Y;);czq¢ fulfilling the covariance inequality (7.3.2) and the require-
ments of Proposition 7.4.

Corollary 7.1. Let h be a fized function of the set F(ba,bs). Let (By)nen be
a sequence of finite subsets of Z¢. For any i € B, let V; be the set as defined
by (7.8.15). Let (Yi);cza be a real valued random field, fulfilling the covariance
inequality (7.3.2). Suppose that, for any i € Z, EY; = 0 and sup;cza || Yilloo <
M. Let S, = ZiGBn Yi. Then, for any positive real number 0, there exists a
positive constant C (0, M,d) independent of n, such that

sup

1
E(h(S,.)) — Var S, / (" (tSn))dt‘
heF (ba,bs) 0

< (6, M, d){ba(#Bn) e "™ + bymii# By
i 3my,
+ by} \/#Bnm( > kde*‘s(’f*?mn)) bz + by \/#Ban( Y eﬂskkd) 1/2}.
k=3m,, 1

Proof of Corollary 7.1. From now, we denote by C' a positive constant that may
be different from line to line, independent of n and depending, eventually, on
M, 6 and d. We have

V= {je Zd/ d(i,j) > mu} N B,

Hence
d({i}, Vi) = ma.
The last bound together with (7.3.2), proves that
Y ICov (Vi W (tSu (V) < Chy Y (V4 1)e )

i€B, i€B,
Chy(#B,,)%e™mn, (7.3.18)

IN

In the same way, we prove that

by Y |Cov(Yi, S(VE))| < Chy(#B,)e . (7.3.19)

i€By,
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Since #V; < #B(0,m,) < Cm and supjcga Y pcz0 |Cov(Y}, Yi)| < oo, we
deduce that

> EYi|IS(V)| (b2 Abs|S(V)]) < bsM#B, sup E[S(V;)]*  (7.3.20)
i€EB, i€Z4

IN

Cbs#B, mik Y [Cov(Yy, V).

keZa

It remains to control

E

> vis(vi) - E(ES(%)))‘ :

1€By,

For this, we argue as in Bolthausen (1982) [24]. We have

E|Y (YiS(Vi) ~E(Y:S(Vi))| = Var()_ YiS(Vp))
i€ By, i€ By,
= Y D Cov(YiS(Vi),Y;S(V))):
i€By, jEB,
Hence
E| Y (YiS(Vi) —E(Y;S(V7)))

i€B

<> Y Y Y [Cov(WiYe, YY)l (7.3.21)

i€By i/ €B(i,my) JEBn j'€B(j,my)
Next, we have
Cov(YYi, Y,y (73.22)
< |Cov(YiYir, YY) Lagi jy>3m, + 1Cov(YiYar, YY) LaGi jy<3m, -

We begin with the first term. The covariance inequality (7.3.2) together with
some elementary estimations, imply that

[Cov(YiYir, YiYj) [ Lugjyzam, < D 1Cov(¥iYe, Y;¥in)l Lecut jy<rin
k=3m,
< ¢ Z e,[sd({m’}{j,j’})1k§d(i,j)gk+1
k=3m,
< C Y eI ki

k=3m,
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To obtain the last bound, note that for any i’ € B(i,m,,) and j' € B(j,m,), we
have

d({i, i}, {5,3"}) + 2mn = d({i, i}, {4, 5'}) + d(i, 1) + d(5,5") = d(@, 5).

Hence,

3 |Cov (Y:Yir, YY) Lagi,j)>3m.,
€Bn j

i€By, i’ €B(i,my) j i’ €B(4,mn)

< Cm?* i Z Z e 0T Bk

k=3m, i€B,, jEB,

< C#HBympt ke ohm2m), (7.3.23)
k=3m,

We control the second term in (7.3.22). Inequality (7.3.2) and the fact that
d({i},{i",5,J'}) < d({i},{i'}), imply that

|Cov(YiYir, YY) Lagi jy<sm.,
< |Cov(Ys, Yo Y;Y))| Lagi 5y <am,, + [Cov(Yi, Yir)| [Cov (Y, V)| Lag j)<3m.,

< Ce—5d({i}>{i’,j7j’})1d(i )<3mn-
Using the last bound, we infer that

|Cov(YiYr, YY) Lagi j)<3m.,
3my,
<Y |Cov(YiYir, YY) Lagi gy <sm, Le—1<d((iy. g 5.0 )<k
k=1
3my

<CY e 4 iy <am, La(iy 4v..5 ) <k (7.3.24)

Next, we have
Laiyqirggh <k < Laay o<k T Ladayh <k + L[y 457 <k

and consequently

Yoo > Y luh<sma Lt g n<k S C#BampkY.

1€ By i/ €B(i,my) JEBn ' €B(j,my)
(7.3.25)
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Combining (7.3.24) and (7.3.25), we obtain that

Yoo D> Y [Cov(YaYu, YY)  Lag jy<sm,

i€B, ' €B(i,my) JEBn j €B(j,my)
3my
< C#B,mp* > e kT (7.3.26)
k=1

We collect the bounds (7.3.21), (7.3.23) and (7.3.26) and we obtain,

o 1/2
E|> (ES(W)—E(ES(%)))‘ < C\/#B, mg< 3 kde—6<k—2mn>>

1€B,, k=3m.,,

3my, 1/2
<Z e‘skkd> . (7.3.27)

Finally, the bounds (7.3.18), (7.3.19), (7.3.20), (7.3.27), together with Proposi-
tion 7.5 prove Corollary 7.1. O

End of the proof of Proposition 7.4. We apply Corollary 7.1 to the real and
imaginary parts of the function x — exp(iux/\/#B;,) — 1. Those functions
belong to the set F(ba, bs), with

(i) ()

We obtain, noting by ¢, the characteristic function of the normalized sum

Sn/N#Bn,

dn(u) —1+ VarSn 2 /1 té (tu)dt’ < C(5,M,d,u) {#B e—Omn | mg,
n [Bal = o T VH#B,
md o0 1/2 3m., 1/2
+ Mn fide—0(k—2m.) o0k d
V# By (k_;nn \/#B Z
s md m3d/2 -
< C(6,M,d,u){ #B, e "™ + n no —emn, )
| ) V#B, | V#B,

For a suitable choice of the sequence m,, (for example we can take m, =
glog #B,,), the right hand side of the last bound tends to 0 an n goes to
infinity:
Var S, , / ! ‘

U ton (tu)dt| = 0. 7.3.28
g, ton(t) (7.3.28)

In order to finish the proof of Proposition 7.4, we need the following lemma.

lim

n—oo

On(u) — 1+
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Lemma 7.2. Let 0% be a positive real number. Let (X,,) be a sequence of real
valued random variables such that sup, ey EX2 < +o00. Let ¢, be the character-
istic function of X,. Suppose that for any u € R,

lim (¢, (u) — 1+ o2 / tgbn(t)dt‘ =0. (7.3.29)
n—oo 0
Then, for any u € R,
lim ¢, (u) =€ 2

n—oo

Proof. Lemma 7.2 is a variant of Lemma 2 in Bolthausen (1982) [24], which is
an adaptation of Stein’s method. Markov inequality implies that the sequence
(ftn)nen of the laws of (X,,) is tight with the condition sup,.yEX?2 < oc.
Theorem 25.10 in Billingsley (1995) [21] proves the existence of a subsequence
i, and a probability measure p such that p,, converges weakly to p as k
tends to infinity. Let ¢ denote the characteristic function of u. We deduce from
(7.3.29) that, for any u € R,

(u) —1+0? /u to(t)dt = 0,

0

or equivalently, for any u € R,
¢ (u) + oc*up(u) = 0.

We obtain integrating the last equation

o?u?

o(w) = exp(=" "),

for any u € R. The proof of Lemma 7.2 is complete by the use of Theorem 25.10
in Billingsley (1995) [21] and its corollary. O

The proof of Proposition 7.4 follows by (7.3.14), (7.3.28) and Lemma 7.2. [

7.4 Conditional central limit theorem (causal)

Let S, be the partial sums of a triangular array with stationary rows. In
this section, we give necessary and sufficient conditions for S;, to satisfies the
conditional central limit theorem. These conditions imply the weak convergence
of n=1/2S,, to a mixture of normal distribution, but they also imply the stable
convergence in the sense of Rényi (1963) [156] (see section 7.5.1). The main
result of this section (Theorem 7.5) is due to Dedecker and Merlevede (2002)
[44].
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Definition 7.1. Let (Q, A, P) be a probability space, and T : Q +— Q be a
bijective bimeasurable transformation preserving the probability P. An element
A is said to be invariant if T(A) = A. We denote by T the o-algebra of all
imvariant sets. The probability P is ergodic if each element of T has measure
0 or 1. Finally, let H be the space of continuous real functions ¢ such that
= |(1+2%) " Lo(z)| is bounded.

Theorem 7.5. For each positive integer n, let My, be a o-algebra of A
satisfying Mo, C T=Y(Mo,n). Define the nondecreasing filtration (M;.,)iez
by Mim = Tﬁi(./\/lo,n) and Mi,inf = U(Uzozl ﬂzozn./\/li,k), Let Xo,, be a
My n-measurable and square integrable random variable and define the sequence
(Xin)iez by Xin = XonoT". Finally, for any t in [0,1], write S,(t) =
Xin+ -+ Xpign- Suppose that n’l/QXom converges in probability to zero
as n tends infinity. The following statements are equivalent:

S1 There exists a nonnegative Mg inf-measurable random variable 1 such that,
for any v in H, any t in [0,1] and any positive integer k,

=0
1

n—oo

si0): Jim_ [ (w(025,0) - [ elovimataids [, )

where g is the distribution of a standard normal.

- Sa(t) 1S (O _
tlgréh’rlnﬂsotipE( it (1/\ /n ))—0.

() mlimsup - E(S, (Mol = 0.

S2 (a)

(¢) There exists a nonnegative M int-measurable random variable n such
that,

lim lim sup HE(Si(tt) - U‘MOm,)

t—0 p—oo

=0.

’ 1

Moreover the random variable n satisfies n =no T almost surely.

We now give the proof of this theorem. The fact that S1 implies S2 is obvious.
In the next sections, we focus on the consequences of condition S2. We start
with some preliminary results.

7.4.1 Definitions and preliminary lemmas

Definition 7.2. Let p be a signed measure on a metric space (S, B(S)). Denote
by || the total variation measure of u, and by ||ul| = |p|(S) its norm. We say
that a family 11 of signed measures on (S,B(S)) is tight if for every positive e
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there exists a compact set K such that |u|(K¢) < e for any p in II. Denote by
C(S) the set of continuous and bounded functions from S to R. We say that a
sequence of signed measures (fin)n>0 converges weakly to a signed measure p if
for any ¢ in C(S), pn(p) tends to u(p) as n tends to infinity.

Lemma 7.3. Let (jin)n>0 be a sequence of signed measure on (R?, B(R?)), and
set [in(t) = pn(exp(i < t,- >)). Assume that the sequence (i )n>o is tight and
that sup,,~ ||pnl| < co. The following statements are equivalent

1. the sequence (fin)n>0 converges weakly to the null measure.
2. for any t in RY, i, (t) tends to zero as n tends to infinity.

Proof of Lemma 7.3. 1 = 2 is obvious. It remains to prove that 2 = 1. We
proceed in 3 steps.

Step 1. Let D(R?) be the space of functions from R? to C which are infinitely
derivable with compact support. Let ¢ be any element of D(R?) and set @(t) =
@(—t). From Plancherel equality, we have j,,(¢) = (271) %1, (). The function
@ being infinitely derivable and fast decreasing, it belongs to IL1()\). Since |/iy,|
converges to zero everywhere and is bounded by sup,,~ |||/, the dominated
convergence theorem implies that fi, (@) tends to zero as n tends to infinity.
Consequently, for any ¢ in D(RY), p,,(¢) converges to zero as n tends to infinity.

Step 2. Let ¢ be any function from R? to R, continuous and with compact
support. For any positive e, there exists ¢, in D(R?) such that [|¢ — @c|leo < €.
Since furthermore sup,, || @ is finite, we infer from Step 1 that p,(y) tends
to zero as n tends to infinity.

Step 3. For any positive integer k, let f be a positive and continuous function
from R? to R satisfying: ||fx|le < 1, f(z) = 1 for any z in [~k, k]¢, f(x) =0
for any z in ([—k — 1,k + 1]9)".

For any continuous bounded function ¢, write

|t ()] < [1n (@ )]+ 1l oo i (([= K, K]D)°)

From Step 2 the first term on right hand tends to zero as n tends to infinity.
Since the sequence (p,)n>0 is tight, the second term on right hand is as small
as we wish by choosing k large enough. This completes the proof of 1. OJ

Definition 7.3. Define the set R(My,) of Rademacher My, »-measurable ran-
dom variables: R(My,) ={214 —1/ A € Myn}. Recall that g is the N(0,1)-
distribution. For the random wvariable n introduced in Theorem 7.5 and any
bounded random variable Z, let

1. vp|Z] be the image measure of Z.P by the variable n=/2S,,(t).
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2. v[Z] be the image measure of g.A ® Z.P by the variable ¢ from R ® Q to
R defined by ¢(z,w) = z+/tn(w)

Lemma 7.4. Let u,[Z,] = vn|Z,] — v[Z,]. For any ¢ in H, the statement
S1(yp) is equivalent to:

S3(p): for any Z, in R(My.,,) the sequence 11, Z,](p) tends to zero as n tends
to infinity.

Proof of Lemma 7.4. For Z,, in R(My,,,) and ¢ in H, we have

@) = [B(Z0 (o025, - [ elaving(olas))|
(25,00 - [ olaovimatone M)

IN

1

Consequently S1(p) implies S3(¢). Now to prove that S3(p) implies S1(yp),
choose

Aln, o) = {B(otn28,(0) - [ elavimgla)ds M) = 0},

and Z¢ = 21 4(,,,) — 1. Obviously

9y

1

0 22160) = [B(sln725,(0) ~ [ etavingtoio |Me..)

and S3(p) implies S1(yp). O

7.4.2 Invariance of the conditional variance

We first prove that if S2 holds, the random variables 7 satisfies n = ol almost
surely (or equivalently that 7 is measurable with respect to the P-completion
of 7). From S2(c) and both the facts that (X; ., )icz is strictly stationary and
Mo € My, we have for any ¢ in 0, 1],

lim HE(noT Salt }M0n> =0. (7.4.1)

1

n—oo

On the other hand, defining ¥ (z) = z2(1 — (1 A |z|)) and using the fact that T
preserves P, we have

S2(t)  S2(t)oT

nt nt

2
=05

O -0

<2|

1

(7.4.2)

1
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To control the second term on right hand, note that the function v is 3-lipschitz
and bounded by 1. It follows that for each positive e,

Sn(t) Sp(t)oT
Using that n~1/ 2 Xy, converges in probability to 0, we derive that
) Sn(t) Sp(t)oT

and the second term on right hand in (7.4.2) tends to 0 as n tends to infinity.
This fact together with inequality (7.4.2) and Condition S2(a) yield

H Spt)  Sp(t)oT

nt nt

< 3e 4 2P(| Xon — Xingnl| > Vne) .
1

:0’
1

:0’
1

hm lim sup
n—oo

which together with S2(c) imply that

o1 o)

Combining (7.4.1) and (7.4.3), it follows that lim ||E(n —noT|Myn)l1 = 0,
which implies that

hm lim sup

n—oo

= 0. (7.4.3)

i 51 e7]) 20, 0

k>n

Applying the martingale convergence theorem, we obtain

nllnéoHE(” noT’ ﬂ Mo, k)H IE(n —noT|Mowme)lli =0.  (7.4.4)

According to S2(c), the random variable 1 is Mg ins-measurable. Therefore,
(7.4.4) implies that E(n o T'|Mo inr) = 1. The fact that n o T =7 almost surely
is a direct consequence of the following elementary result.

Lemma 7.5. Let (2, A,P) be a probability space, X an integrable random vari-
able, and M a o-algebra of A. If the random variable E(X|M) has the same
law as X, then E(X|M) = X almost surely.

Proof of Lemma 7.5. For any real number m, consider A; = {X < m},
As = {E(X|M) <m}, C; = Ay N A§ and Cy = A2 N AS. Since by assumption
the random variables X and E(X|M) are identically distributed, it follows that
P(A;) = P(Ag), P(C1) = P(C3) and E(X1y4,) = E(X14,). This implies in
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particular that E((X —m)1¢,) = E((X —m)1¢,). These terms having opposite
signs, they are zero. Since X —m is positive on Cy, it follows that Cy and con-
sequently A; A Ay have probability zero (A denoting the symmetric difference).
Now, it is easily seen that

E(E(X|M))*14,) = E(E(X|M))*14,) = E(X?1s,) and  (7.4.5)
E(XE(X|M)14,) = E(XE(X|M)14,) = E(E(X|M))*14,)  (7.46)

According to (7.4.5) and (7.4.6), we obtain

I(X —EXIM)14, 5 = [ X145+ IEXIM)La,[J5 — 2E(XE(X|M)14,)
=0 (7.4.7)

Since (7.4.7) is true for any real m, it follows that X = E(X|M) almost surely,
and Lemma 7.5 is proved. [.

7.4.3 End of the proof

First, note that we can restrict ourselves to bounded functions of H: if S2
implies S1(h) for any continuous and bounded function % then we easily infer
from S2(c) that n=152(¢) is uniformly integrable for any ¢ in [0, 1], which implies
that S1 extends to the whole space H.

Definition 7.4. Let B (R) be the class of three-times continuously differentiable
functions from R to R such that max(||h ||, i € {0,1,2,3}) < 1.

Suppose now that S1(h) holds for any & in Bf(R). Applying Lemma 7.4, this is
equivalent to say that S3(h) holds for any h in B} (R), which obviously implies
that S3(h) holds for h; = e'*. Using that the probability 1,[1] is tight (since it
converges weakly to v[1]) and that |u,[Z,]| < vp[1] + v[1], we infer that p,[Z,]
is tight, and Lemma 7.3 implies that S3(h) (and therefore S1(h)) holds for any
continuous bounded function h.

On the other hand, from the asymptotic negligibility of n=1/ 2Xo,n we infer that,
for any positive integer k, n=1/2(S,,(t) — S, (t) o T*) converges in probability to
zero. Consequently, since any function h belonging to B3 (R) is 1-Lipschitz and
bounded, we have

lim Hh(nfl/an(t)) — h(n"V/28,(t) oTk)H ~0,

n— oo 1

and S1(h) is equivalent to

=0.
1

lim HE(h(n1/2sn(t)oTk)—/h(wtn)g(x)d:v \Mkn)

n—oo

Now, since both 7 and P are invariant by 7', we infer that Theorem 7.5 is a
straightforward consequence of Proposition 7.6 below:
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Proposition 7.6. Let X;, and M;, be defined as in Theorem 7.5. If S2
holds, then, for any h in B} (R) and any t in [0,1],

=0
1

lim H]E(h(n1/2sn(t))—/ (zv/tn)g(z)dz ‘Mo n)

n—oo

where g is the distribution of a standard normal.

Proof of Proposition 7.6. We prove the result for S, (1), the proof of the general
case being unchanged. Without loss of generality, suppose that there exists
a sequence (g;);cz of N(0,1)-distributed and independent random variables,
independent of Mo oo = U(U,m Mi.n).

Definition 7.5. Let i, p and n be three integers such that 1 <i <p < n. Set
q = [n/p] and define

1

Ui,n = Xiq—q+1,n +-+ Xiq,n; Vi,n = \/n (Ul,n + U2,n +- Uz,n)
A = Eig—g+1 T+ + Eig, r; \/Z(Ai+Ai+1+"'+Ap)-

Definition 7.6. Let g be any function from R to R. For k and I in [1,p]
and any positive integer n > p, set gi 1. = g(Vin +1'1), with the conventions
Ikptin = 9(Vin) and go.n = g(I'1). Afterwards, we shall apply this notation
to the successive derivatives of the function h. For brevity we shall omit the
index n.

Let s, = \/n(e1+---+¢€5). Since (&;)icz is independent of My, o, we have,
integrating with respect to (g;);ez,

E(h(n=1/28,( /h z/n)g )da:‘/\/lom)
= E(h(n28,(1)) = h(Vpn)|Mon) + E(A(V,,n) — h(T1)| Mo,n)
+E(W(T)) — h(n"Y2s,)|Mon). (7.4.8)
Here, note that [n=1/2S,,(1) =V, .| <n Y2(|Xp_pran|+- - +|Xn.nl). Using the
asymptotic negligibility of n*1/2X07n, we infer that n=1/28,,(1) — Vp,n converges
in probability to zero. Since furthermore h is 1-Lipschitz and bounded, we

conclude that
lim [|h(n~"/28, (1)) = A(Vpn)[1 =0, (7.4.9)

and the same arguments yield

lim [|A(T1) — h(n~Y2s,)|l1 = 0. (7.4.10)

n—oo
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In view of (7.4.9) and (7.4.10), it remains to control the second term in the right
hand side of (7.4.8). To this end, we use Lindeberg’s decomposition.

P

p
n) = h(l) = Z iit1 = hieviv1) + Z (Ri-1i+1 — hi—14) . (7.4.11)
i=1 i=1

h(Vp,n)

Now, applying Taylor’s integral formula we get that:

1 1
Riit1 — hic1i41 = Jn Uinhi_141 + 2nUi2’" P + R
hi1iv1—hic1: = \/ Ay — Az i T
where
R < © (m' ") and |ri| <" ( p VA |) (7.4.12)

Since A; is centered and independent of o (Moo oo Uo(hj ;. )), we have
E(yvnAihi_y ;1 1IMon) = E(ADE(/1R,_1 ;41| Mon) = 0. Tt follows that

E(h(Vp) = h(I'1)|Mo,n) = D1+ D2 + D3, (7.4.13)

where

p

D, = Z 71/ Uznh/ 1)1+1|M0,n)a
- P

Dy = Z - nA?)hgl_l)HﬂMom),

=1
p
Ds = Z (Ri + 7| Mon).
Control of Ds. From (7.4.12) and the fact that T preserves P, we get
p
S2(1 Sn(1

Z|Rz|1<E< (/p)(l/\| (/p)|)>’

— n/p vn
and S2(a) implies that

hm hmbupz IR:]l1 =0. (7.4.14)

=1
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Moreover, since for ¢ € [0,1], the sequence (n/n)~Y/2(e1 + - -+ + €[ny) obviously
satisfies S2(a), the same argument applies to Y 5_, [|r;||1. Finally

hm limsup || D3]l = 0. (7.4.15)

n—oo

Control of D1. Denote by E. the integration with respect to the sequence
(¢i)icz. Set I(i,n) = (i — 1)[n/p]. Bearing in mind the definition of h{_; ;\,
and integrating with respect to (g;)icz we deduce that the random variable
Ec(hi_1 i41) i8 My n)n-measurable and bounded by one. Now, since the o-
algebra Mo ,, is included into M(; ) n, We obtain

IE(n ™2 Ui by i1l Mo) 11 < NE(™2Us 0 Miginy )1 -

Using that T preserves P, the latter equals ||E(n=/2S,,(1/p)|Mo.)|/1. Conse-
quently || D1|[1 < pn=/?||E(S,(1/p)|Mo,n)|1 and S2(b) implies that

lim limsup D; =0. (7.4.16)

P—X npn—oco

Control of Dy. Integrating with respect to (¢;);cz, we have

(U2, = nADR 1 i1l Mop)ll = 1B, — nlnp™ DE (A1 ;1) Mow)ll1 -
Arguing as for the control of Dy, we have

IE(UZ, = nlnp™ DE:(hi_y 141)[Mon) [l S NE(mTIUZ, = nlnp™ TIMigny )l -

Since both 7 and P are invariant by the transformation 7', the latter equals
IE(S2(1/p) — nlnp~t]|Mo.,)|l1. Consequently

IDslls < HE (Si(l/p) [n/p] ‘Mon)

n/p n/p

1

and S2(c) implies that
hm limsup [[Dz; = 0. (7.4.17)

70 n—oo

End of the proof of Proposition 7.6. From (7.4.15), (7.4.16) and (7.4.17) we
infer that, for any h in B3 (R),

hm limsup || D1 + D2 + D31 = 0.

O n—oo

This fact together with (7.4.8), (7.4.9), (7.4.10) and (7.4.13) imply Proposition
7.6. O
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7.5 Applications

7.5.1 Stable convergence

Let (Q, A, P) be a probability space. A sequence (X,,),>0 of integrable random
variables is said to converge weakly in L' to X if for any bounded random
variable Y, we have

Jim B(ZX,) = E(ZX).
Let X be some polish space. A random probability 4 on X is a function from
B(X) x Q such that u(.,w) is a probability measure for any w in 2 and u(B,.)
is A-measurable for any B in B(X).

Let p be random probability on X. We say that a sequence (X,,)n~0 with
values in a Polish space X converges stably with respect to p if the sequence
(0(X1))n>0 converges weakly in L' to () for any continuous bounded function
¢. The equivalence of this definition with that of Rényi (1963) [156] is proved
in Aldous and Eagleson (1978) [1]. Note that, if (X,),>0 converges stably
with respect to u, then it converges in distribution to the probability v(A4) =
J (A, w)P(dw). Here is a one consequence of the stablility.

Lemma 7.6. Let (X,)n>0 and (Yy,)n>0 be two sequences of random variables
with values in two polish spaces X and Y. If (X,)n>0 converges stably with
respect to p and (Yy)nso converges in probability to Y then (X, Y,) converges
in distribution to the probability v(A x B) = [ u(A (w)eBP(dw).

Proof of Lemma 7.6. Let f and g be two bounded Lipschitz functions. We have

[E(f(Xn)g(Yn)) = v(f @ 9) = [E(f(Xn)g(Yn)) = E(u(f)g(Y))].

Consequently

IE(f(Xn)g(Yn)) — v(f ®g))| < [E(f(Xn)g(Y)) — E(u(f)g(Y))]
+lg(Yn) = g(¥)l1 -

The first term on right hand tends to zero by the weak-L' convergence and the
second term tends to zero because Y,, converges in probability to Y and g is
bounded Lipschitz. [J

The next Corollary shows that if the CCLT holds then (n='/2S,,(t)),>0 con-
verges stably.

Corollary 7.2. Let X, M;n, Sn(t) be as in Theorem 7.5. Suppose that
the sequence (Mo .n)n>1 is nondecreasing. If Condition S2 is satisfied, then the
sequence (n~/28,(t))ns0 converges stably with respect to the random probability

defined by (@) = [ p(zv/tn)g(z)dx
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Proof of Corollary 7.2. We shall prove that if S2 holds, then, for any bounded
random variable Z, any t in [0,1] and any ¢ in H,

lim E (Zcp(n_l/QSn(t))) :E(z / @(x\/tn)g(x)dx) . (7.5.1)

n—oo

Since n~152(t) is uniformly integrable, we only need to prove (7.5.1) for contin-
uous bounded functions. Recall that Moo oo = (U}, Mk,n). Since both S, (¢)
and 7 are M oo-measurable, we can and do suppose that so is Z.

Set Zy., = E(Z| M), and use the decomposition

E (Z@(n71/25n(t))) - E(Z/go(x\/tn)g(x)dx): Ty + Ty +Ts,

where
T = E((Z - Zea)e(n 280(1)
2

T = E(Zun (e /280(0) -
T = B((Zun-2) [ elayimgle)ds).

By assumption, the array My, , is nondecreasing in k£ and n. Since the random
variable Z is M o-measurable, the martingale convergence theorem implies
that limg oo limy,—oo || Zk,n — Z||1 = 0. Consequently,

lim limsup|7i| = lim limsup |T3| =0.

k—oo pn—ooo k—oo nooo

On the other hand, Theorem 7.5 implies that 75 tends to zero as n tends to
infinity, which completes the proof of Corollary 7.2. [J

We end this section with an application of the stable convergence to random
normalization. The proof is straightforward, using Lemma 7.6 and Corollary
7.2.

Corollary 7.3. Let X; ,,, M, Sn(t) be as in Theorem 7.5. Suppose that the
sequence (Mo n)n>1 is nondecreasing and that P(n > 0) = 1. If Condition S2
is satisfied, and if (nn)n>0 converges in probability to n then, for any t in |0, 1],
n=128,(t)
\/tr]n v n—l

For more about stable convergence, we refer to the book by Castaing et al.
(2004) [35].

converges in distribution to N'(0,1).
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7.5.2 Sufficient conditions for stationary sequences

For strictly stationary sequences, Theorem 7.5 writes as follows.

Theorem 7.6. Let Mg be a o-algebra of A satisfying Mo C T~1(My) and
define the nondecreasing filtration (M;)icz by M; = T4 (My). Let Xo be a
Mo-measurable, square integrable and centered random wvariable. Define the
sequence (X;)iez by X; = Xoo T, and S, = X1 +---+ X,,. The following
statements are equivalent:

S1 There exists a nonnegative Mo-measurable random variable n such that,
for any ¢ in 'H and any positive integer k,

tim £ (0 1725,) ~ [ wlevigte)ds | M) =0

n—oo
where g is the distribution of a standard normal.

S2 (a) the sequence (n~1S2),~0 is uniformly integrable.
(b) the sequence |E(n=/2S,|My)||1 tends to 0 as n tends to infinity.

(c) there exists a nonnegative Mo-measurable random variable 1 such
that |E(n=1S2 — n|Mo)|1 tends to 0 as n tends to infinity.

Moreover the random variable n satisfies n = noT almost surely.

In Proposition 7.7 and 7.8, we give two conditions implying S2. For the usual
central limit theorem, Proposition 7.7 is due to Gordin (1969) [97], Corollary
7.4 is due to Heyde (1974) [103] and Proposition 7.8 is due to Dedecker and Rio
(2000) [50].

Proposition 7.7. Let (M;)icz and (X;)icz be as in Theorem 7.6. Let H; be
the Hilbert space of M;-measurable, centered and square integrable functions.
For all integer j less than i, denote by H; © Hj, the orthogonal of H; into H;.
Assume that there exists a random variable m in Hy © H_1 such that

1 || , ,
lim HE XooT"—moT"
i=1

= 7.5.2

2

then S2 (hence S1) holds.

Corollary 7.4. Let (M;)icz and (X;)iez be as in Theorem 7.6, and define H;
as in Proposition 7.7. Let P; be the projection operator on H; © H;_1: for any
function fin L2, Pi(f) = E(f|M;) — E(f|M;-1). If

ZPO(XZ-) converges in L% to m and lim n=Y?||S,|l2 = |mllz,  (7.5.3)
=0

then (7.5.2) (hence S1) holds.
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Proof of Proposition 7.7. Let W,, = moT+- - -+moT™. Since (moT");cz is a sta-
tionary sequence of martingale differences with respect to the filtration (M;);ez,
it satisfies S2. More precisely, n~!E(W?2| M) converges to n = E(m?|Z) in L!.
Now, we shall use (7.5.2) to see that the sequence (X;);cz also satisfies S2.

Proof of S2(b). From (7.5.2) it is clear that n~'/2||E(S,|Mo)|2 tends to zero
as n tends to infinity.

Proof of S2(c). To see that n™E(S%|My) converges to n in L, write

1 1
ESE - WRMo, < llsh - WR],
Sn+Whll2 ||Sn — Wy,
< | o fl2 o 2 (7.5.4)

From (7.5.2) the latter tends to zero as n tends to infinity and therefore (X;);cz
satisfies s2(c) with n = E(m?|Z).

Proof of S2(a). Using both that n~'W?2 is uniformly integrable and that the
function x +— (1 A |z|) is 1-Lipschitz, we have, for any positive real M,

lim <W2 (1/\ J\'f\”/ln)—(l/\ %L)D =0. (7.5.5)

n— o0 n
Since |22(1 A |y]) — 22(LA [t])] < |22 — 22| + 22[(1 A |y|) — (1 A [t])], we infer from
(7.5.4) and (7.5.5) that

)= 0|

lim

n—oo

Now, the uniform integrability of n=!W? yields

lim hmsupIE<S (1/\ [ )) =0,

2

which means exactly that n~1S2 is uniformly integrable. [J

Proof of Corollary 7.4. By assumption, the random variable m belongs to
Ho© H_;. Tt remains to check (7.5.2). Let m; = moT% and T}, = my +- - +my,.
Clearly E((S,, — T,,)?) = E(S2) + E(T?) — 2E(S,T,,). By assumption n~1E(S?)
converges to ||m||3 = n~tE(T?). To prove (7.5.2), it suffices to prove that
n~YE(S,T,) converges to ||m||3. Now, by stationarity

E(S,T,) iii E(Ximj) = > (1— |:|)E(ka). (7.5.6)

=1 k=—n
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By Kronecker’s lemma n~'E(S,T},,) converges to ., ., E(mXy) as soon as the
latter converges. Now since m belongs to HO © H_y, it follows that »,_,
E(mXk) = > 5o E(mPo(Xk)). Since m = >, Po(Xk) in L2, the result
follows. [

Proposition 7.8. Let (M,)icz, (Xi)icz and Sy, be as in Theorem 7.6. Consider
the condition:

Z XoE(Xi|Mo) converges in L' (7.5.7)
k=1
If (1.5.7) is satisfied, then S2 holds and the sequence E(XZ|T) + 2E(X0S,|Z)

converges in L' to .

Proof of Proposition 7.8. We first prove that E(X3|Z) + 2E(X0S,|Z) converges
in L. From assumption (7.5.7), the sequence E(X3|My) +2E(XoS,|My) con-
verges in 1. The result is then a consequence of part (b) of Lemma 7.7 below:

Lemma 7.7. We have:

(a) Both E(XoXy|Z) and E(E(XoXx|Mo)|Z) are almost surely equal to Mg-
measurable random variables.

(b) E(XoXi|T) = B(E(XoXk|Mo)|Z) almost surely.

Lemma 7.7(b) is derived from Lemma 7.7(a) via the following elementary fact,
whose proof is omitted.

Lemma 7.8. Let Y be a random variable in LY(P) and U, V two o-algebras
of (2, A,P). Suppose that E(Y|U) and E(E(Y|V)|U) are V-measurable. Then
E(Y|U) =EEQY |V)[U) almost surely.

Proof of Lemma 7.7(a). The fact that E(E(X¢Xx|Mo)|Z) is almost surely equal
to some M-measurable random variable follows from the L'-ergodic theorem.
Indeed the variables E(X; Xy My) are My-measurable and

1 n
E(E(XoXy|Mo)|Z) = lim > E(XiXpyilMo) in L.
i=1
Next, from the stationarity of the sequence (X;);cz, we have

1
HE XoXi|T) — ZXXMH _HE XoXilT)— Z XXZ+kH .
—(n+k)

Both this equality and the L!-ergodic theorem imply that E(XXz|Z) is the
limit in L' of a sequence of My-measurable random variables. [J
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Proof of SZ(a) Let S, = max{|S1],...,|S:|}.- In Chapter 8, we shall prove
that (n=1(S,)?)n>0 is uniformly integrable as soon as (7.5.7) holds. [J
Proof of S2(c). For any positive integer N, we introduce

Ay =[(k=1)q+1,kq)* N{(i,j) € Z*/[i - j| > N}, and Ay =[1,n]* —Ay.

and ny = E(XZ|Z) + 2(E(XoX1|Z) + - -+ E(XoXn|Z) ). Since iy converges in
L! to 7, it suffices to prove that

—X n—oo

1 n n
Jim Timsup H”N - E(n 3 ZXin‘MO) H1 ~0. (7.5.8)
i=1 j=1

Using the triangle inequality and the fact that ny = E(ny|M,j) almost surely,
we obtain

1 e — 1
o= 33 o), < o2 S
i=1 j= N
1
+ nH ZE(Xin|MO)"1 '
AN

Applying the L'-ergodic theorem the first term on right hand tends to 0 as n
tends to infinity. To control the second term, write

TL

ZHX E(IM)||

Jj=i+N
2 — —
= n Z HXO Z E(Xj|MO)H1 '
i=1 j=N

By assumption (7.5.7) limy . max, - N<i<n ||XOZ E(X;|Mo)|lx = 0 and
consequently

IN

I %E(xixjwo)\]l

N—oo pooo

hm lim sup Z HXO Z E(Xj|./\/lo)H1 =0.
= j=N

This completes the proof of S2(c). O

Proof of S2(b). Let M_o = ﬂ M; and recall that P; has been defined in
iz
Corollary 7.4. We have the orthogonal decomposition

X Z]E(Xk|./\/l_00) +ipk—i(Xk)- (759)
1=0
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Using the stationarity of (X;);ez we infer from (7.5.9) that

D IP(Xa)5 =D I1P-i(Xo)lI3 < [ Xoll3 - (7.5.10)
i=0 i=0
Now, from the decomposition

n

LE(S, M) + S R,

X X_
Vn vn o

vn

we infer that

E(Sn|Mo) =

X
X0, o TIMO + X012 S Ry

[ X1 E(Sn|Mo)[l1 < yn 2

\/ \/

(7.5.11)
By (7.5.7), the first term on right hand tends to zero as m tends to infinity.
On the other hand, we infer from (7.5.10) and Cauchy-Shwarz’s inequality that
n~Y23°" || Po(X;)||2 vanishes as n goes to infinity, and so does the left hand

term in (7.5.11). By induction, we can prove that for any positive k,

hm \/ ||X kE(SnlMQ)leo. (7.5.12)
Now
S EGXITES, Mol <, 2, Mo) (E(XoliT) - Z|X |
+ B IM0 ZIX (7.5.13)

From (7.5.12), the second term on right hand tends to zero as n tends to infinity.
Applying first Cauchy-Schwarz’s inequality and next the L2-ergodic theorem,
we easily deduce that the first term on right hand is as small as we wish by
choosing k large enough. Therefore

1
nh_)rrgo Jn IE(| Xo||Z)E(S,|Mo)||1 =0. (7.5.14)
Set A = {1IE(|X0||I)>O} and B = A° = {1IE(\X0||I):O}'

For any positive real m, we have

1AE(Sy | Mo)ll1 < (| Xol[Z)E(Sn|Mo)l1

1
E
m\/nH
1
+ \/n||10<]E(\Xo\\I)<mE(Sn|MO)H1 . (7515)

5
vn
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From (7.5.14), the first term on right hand tends to zero as n tends to infinity.
Letting m tend to zero we infer that the second term on right hand of (6.12) is
as small as we wish. Consequently

lim \/ H].A]E(S |M0)||1 =0. (7516)

n—oo

On the other hand, noting that E(|Xo|15) = 0, we infer that X is zero on the
set B. Since B is invariant by T', X}, is zero on B for any k in Z. Now arguing
as in Lemma 7.7(b), we obtain E(E(|S,||Mo)|Z) = E(|S.||Z). These two facts
lead to

1BE(Sn|Mo)ll1 < E(1BE(E(|S4||M0)[T)) <E(|Sx|15) <0 (7.5.17)

Collecting (7.5.16) and (7.5.17), we conclude that n='/2||E(S,,|Mo)||1 tends to
zero as n tends to infinity. This completes the proof. [J

7.5.3 ~-dependent sequences

Applying Corollary 7.4 and Proposition 7.8, we derive sufficient conditions for
the CCLT expressed in terms of the coefficients v, and ~;. Here, the coefficients
are defined by

11(k) =71 (Mo, Xi), and ~2(k) = y2(Mo, Xi) -

Corollary 7.5. Let (M;)icz and (X;)icz be as in Theorem 7.6 and define
M _o = NijezM;. Define the operators P; as in Corollary 7.4.

1. If E(XolM_s) = 0 and Y .~ | Po(Xi)|l2 < oo then (7.5.3) (hence S1)
holds. Moreover, 1 is the same as in Proposition 7.8.

2. Assume that
72(k)

= Vk
Then E(Xo|M_oc) =0 and 3,54 [[Po(Xi)[|2 < 0o, and S1 holds.
Proof of Corollary 7.5:
Proof of 1. Starting from (7.5.9) with E(X%|M_) = 0, we obtain
E(XoXy) = > E(P- =Y E(Po(Xi)Po(Xitk)) -

>0 1>0

< 0. (7.5.18)

Hence, using Holder’s inequality,

Z|EX0Xk|<ZHPO ||2(ZHP0 Xiwlla) < (X IR0 )

1>0 >0
(7.5.19)



190 CHAPTER 7. CENTRAL LIMIT THEOREM

so that ), ., [E(XoX4)| is finite. Consequently

lim 115(55): i E(XoXk):iiE(PO(Xi)PO(Xj)). (7.5.20)

n—oo n it ==
On the other hand
0 2 0o o0
- E((Z PO(Xi)) ) =Y ) E(P(Xi)Ro(X;))- (7.5.21)
=0 i=0 j=0

Combining (7.5.20) and (7.5.21), we see that (7.5.3) holds. To compute 7, note
that we can in fact prove a stronger result than (7.5.19), that is

S B0 Xe T < (S 1Roxl)’
k=1 i>0

It follows that n~'E(SZ|Z) converges in L' to n =", ., E(XoX;|Z). O
Proof of 2. Note first that (7.5.18) implies that E(X;|M_s) = 0. Let (Lg)k>0

be a sequence of positive numbers such that >, (22:1 Lk) < 0o. Starting

from (7.5.9) and using the stationarity of (X;);cz we obtain that

> LB IMo) 3 = 3 L Y (X3 = Z(Z Le ) | Po(X) 3.

k>0 k>0 <0 i>0 k=1

Let a; = Ly + --- + L;. Applying Hélder’s inequality in ¢2, we obtain that

Sirl < (X)) (Sainep)”
i>0 i>0 i>0
(X )" (X mlEamoz)
i>0 k>0

Since (7.5.18) holds, one can take L, ' = Vk||[E(Xx|Mo)|2. The result fol-
lows. I

IN

IN

Corollary 7.6. Let (M;)icz and (X;)iez be as in Theorem 7.6. Let Gx, and
Qx, be as in Definition 5.1. If

> (k)
Z/ Qx, o Gx,(u)du < oo (7.5.22)
k=0"0

then (7.5.7) (hence S1) holds. Moreover (7.5.22) holds as soon as
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P(|Xo| > x) < (/)" forr > 2, and 3, (71(i NT=2/=1) < o0,
2. || Xollr < o0 forr>2, and 3, it (=2 (1) < oo0.
3. E(|Xo|*1log(1 + | Xo])) < 0o and v1(i) = O(a?) for some a < 1.
Proof of Corollary 7.6. Applying Inequality (5.2.1), we obtain that
71(k)
> IXE(Xk Mo < Z/ Qx| © Gxo| (u)du

k>0 k>0

so that (7.5.22) implies (7.5.7).
Proof of 1. Since P(|X| > z) < (¢/z)" we easily get that

ur )T/(T’—l)

/‘T Qx(u)du < C(TT_ 1);10(“1)” and then Gx(u) > (c(r 1)
0 _

Set K, = c(c — cr~ 1)/ (=1 We obtain the bound

’Yl
Z/ Qx, 0 Gx,(u)du < KMZ/ u Dy

>0 >0

Ker(r—1) (r—2)/(r—1)
r—9 ;’71,1‘ :

Proof of 2. Note first that

[ Xoll1 L 1
/ el o Gix, (w)du = / Q' (u)du = E(|Xo[") .
O O
Define next

it ZLK,“ (i) = inf{k € N/ v (k) < u}.

>0

Applying Holder’s inequality, we obtain that

Y1 (i r—1 1 Xollx r—2
(> / Qux, 0 Gx, (u)du) snXoH:(/O (7 @) D)

z>0

Here note that

(v = D ((G+D7 = i) Lucy () (7.5.23)
7=0
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Now, apply (7.5.23) with ¢ = (r — 1)/(r — 2). Noting that (i + 1)? — 7 <
q(i +1)771, we infer that

X1
[ or @ et < g3 ) ).
0 i>0
Proof of 3. Let p(i) = v1(¢)/||X]|1 and U be a random variable uniformly
distributed over [0,1]. We have
Ixh b
|t wex e Gxwin = [ 57w, 0 G, (lXoll )
0 0
= E((p~(U))@x, © Gx, (U] Xoll))-

Let ¢ be the function defined on R* by ¢(z) = z(log(1 + ))?~!. Denote by ¢*
its Young’s transform. Applying Young’s inequality, we have that

E((p~ ' (U)Qx, 0 Gx, (U] Xoll1)) < 2[[(p~ (U))ll4- |Qx, © Gx, (Ul Xoll1)ll6

Here, note that ||Qx, © Gx,(U||Xol|/1)||¢ is finite as soon as

X0
[ @xo Gxudlog(t + @x, o G, )P~ < oc.
0

Setting z = G'x, (u), we obtain the condition

/0 Q%, (w)(log(1 + Qx, (u)))du < co. (7.5.24)

Since Qx,(U) has the same distribution as | Xy, we infer that (7.5.24) holds as
soon as E(|Xo|?(log(1 + | Xo|))) is finite. It remains to control ||(p™ (U))||=-
Arguing as in Rio (2000) [161] page 17, we see that |[(p~1(U))||4+ is finite as
soon as there exists ¢ > 0 such that

S o) (i +1)/e) < 0. (7.5.25)

i>0

Since ¢’ ~! has the same behavior as z — e” as x goes to infinity, we can always
find ¢ > 0 such that (7.5.25) holds provided that v (i) = O(a’) for some a < 1.0

7.5.4 & and é-dependent sequences

In this section, the coefficients are defined by

d1(k) = d(Mo, Xi) and aq(k) = (Mo, Xi).
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Let X,, = XooT"% and
Su(f) = f(Xo) + -+ f(Xn) and  Spo(f) = Sn(f) — nE(f(X0))-

Let C(p, M,Px) be the closed convex hull of the class of functions g which are
monotonic on an open interval and 0 elsewhere, and such that E(|g(Xo)[?) < M.

Corollary 7.7. Let (M;)iez be as in Theorem 7.6. Assume that, for some
P22,

5 (k) (P—1D)/p
feclp, M,Px) and kzzo (92 3}6 < 0. (7.5.26)
Then Sy o(f) satisfies S1 with
n=">_ E(f(Xo)(f(Xx) — E(f(Xx)))|T). (7.5.27)

kEZ

Remark 7.5. We can apply this result to the case of uniformly expanding maps
(see Section 3.8). If T is a uniformly expanding map of [0,1] preserving a
probability pi, and if f belongs to C(2, M, 1), then n=Y2(foT+- -+ foT"—nu(f))
converges weakly in the space ([0,1], 1) to a Gaussian distribution with mean 0
and variance

o®(f) = n((f = u(N)?) +2Y w((f = p(f)f o T).

k>0

Let C(Q) the closed convex hull of the class of functions g which are monotonic
on an open interval and 0 elsewhere, and such that Q4(x,) < @, where @ is a
given quantile function.

Corollary 7.8. Let (M;)iez be as in Theorem 7.6. Assume that, for some
quantile function Q,

a(k)
fec@) and Z/O Q*(u)du < co. (7.5.28)

k>0

Then Sy0(f) satisfies S1 with n given by (7.5.27).

Proof of Corollaries 7.7 and 7.8. Without loss of generality, it suffices to prove
the results for f = Zle a;gi, where Zle a; = 1 and g; is monotonic on an
interval and 0 elsewhere, and E(|g;(Xo)|?) < M (resp. Q4,(x,) < Q). To prove
Corollary 7.7 it suffices to see that the sequence (f(X;))icz satisfies (7.5.18),

that s IECF(X0)lMo) — E(F(X1))
Z k 0 k

l|2
< 00. (7.5.29)
= VEk
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Clearly, it suffices to check (7.5.29) for a single function g;. Note that by mono-
tonicity ¢(Mo, g:(Xk)) < 2¢(My, Xi). Let S1(My) be the set of all My-
measurable random variables Z such that E(Z?) = 1. Clearly,

IE(g: (X%)|Mo) —E(g:(Xx))l|2 = Zeg‘u(pjw ) |Cov(Z, gi(Xy)) (7.5.30)

Applying (5.2.7), we have, for any conjugate exponents p, g,
Cov(Z, (f = 9)(Yi))| < 4llgs(Xo) o]l Z|lo(61 (k)7 .

and the result easily follows. In the same way, to prove Corollary 7.8, it suffices
to prove that

> 1l9i(X0) (E(gi(Xx)[Mo) — E(gi(Xo))l1 < oo,

k>0

which follows (5.2.5). O

7.5.5 Sufficient conditions for triangular arrays

The next condition is the natural extension of Condition (7.5.7).

=0. (7.5.31)

im limsup sup
1

1

Xom > B(Xpn|Mon)
k=N
If (7.5.31) is satisfied, define R(N, X) and N(X) as follows:

R(N,X) =limsup sup

n—oo N<m<n

)

1

XO,n Z E(Xk,n|MOn)
k=N

and N(X) =inf{N >0 : R(N,X) =0} (N(X) may be infinite).

Proposition 7.9. Let X;, and M, , be as in Theorem 7.5. Assume that
(7.5.31) and S2(b) are satisfied. Assume furhtermore that, for each 0 < k <
N(X), there exists an Mg int-measurable random variable A such that for any
t in 10, 1],

[nt]

ZXHk,nXi,n converges in L' to . (7.5.32)
i=1

Then Condition S2 holds with n = Ay + 2 EkN:(f)A Ak

Remark 7.6. Let us have a look to a particular case, for which N(X) = 1.
Conditions (7.5.31) and (7.5.32) are satisfied if condition R1. and R2. below
are fulfilled

1
nt



7.5. APPLICATIONS 195
R1. nh_)ngo ZZ:I HXO,n]E(Xk,n|MO,TL)”1 =0.

R2. For any t in]0,1], " Z[iq X7, converges in L' to \.

7 nt 7

In the stationary case, these results extend on classical results for triangular
arrays of martingale differences (see for instance Hall and Heyde (1980) [100],
Theorem 3.2), for which Condition R1. is salisfied. This particular case is
sufficient to improve on many results in the context of kernel estimators.

We conclude with a simple result for é-mixing arrays. Here, the coefficients
are defined by

¢1(k) = sup ¢(Mo,n, Xi,n) -

n>0

Corollary 7.9. Let X;, and M, , be as in Theorem 7.5. If there exists two
conjugate exponent p < q such that

sup | Xomllp - | Xomllg < oo and Y (¢1(k)"/P < o0, (7.5.33)
n> k=0

then (7.5.31) holds. If furthermore, for any k > 0 the sequence || XonXknl1
converges to 0 as n tends to infinity, then N(X) = 1. If furthermore Lindeberg’s
condition holds:

for any € > 0, nh—{lgo E(Xg,n1|xg,n|>e\/n) =0, (7.5.34)

then S2 holds as soon as B(X§,,) converges, and n = lim, . E(X3,,).
Proof of Proposition 7.9.
Proof of S2(a). Write first

2 2 €
(S0 < B ) 0

4
E
nt

IN

(18a(6)] = %) + “SE(S2(1) (7.5.35)

Since (7.5.31) holds, (nt)"'E(S2(¢)) is bounded, so that the second term on
right hand is a small as we wish. Consequently, we infer from (7.5.35) that
S2(a) holds as soon as,

1
for any positive ¢, lim lim sup o (1S (t)] —€)%) =0. (7.5.36)

n—oo

In fact, we shall prove that (7.5.36) holds with S, (t) = supeg 4 [Sn(s)| in-
stead of |Sy(t)]. Define S;(t) = sup,cp4(Sn(s))+ and G(t,e,n) by G(t,€,n)
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= {S(t) > €}. From Proposition 5.8, we have, for any positive integer N,

1 [nt] N—1

E ((S:L(t) - E)i) S S]E(]-G(t,e,n) ’fit Z Z |Xk,nXk+i,n|)

k=1 i=0

nt

m

XO,nZE(Xk,n|MO,n) 1

k=N

+ 8 sup
N<m<|[nt]

(7.5.37)

Since (7.5.31) holds, the second term on right hand is as small as we wish by
choosing N large enough. To control the first term, note that by Proposition
5.8 and Markov’s inequality, lim; ¢ lim sup,,_, . P(G(t,¢,n)) = 0. The result
follows by noting that 2| Xy ,X; | < X%)n + Xl%n and by using (7.5.32) for
k=0.0

Proof of S2(c). For any finite integer 0 < N < N(X), define the variable
v = Ao+ 2(\1 + -+ + Any—1) and the two sets

Ay = [, [nt)*n{(,j)€2z®/]i—j <N} and
Ay = [, [nt)*N{(,j) €Z?/j—i> N}, so that,

(%5 o)

1
’ < HnN — g XinXjn
1 nt . 1

2
+ntHZE(Xi,an,nlMo,n) o (1538)
AN
Hence, it remains to show that
1
N—}]r\?(X) I,Ilrisolip nt Z (XinXjn|Mo.n) . 0 (7.5.39)

AN

Using first the inclusion My, € M, , for any positive i and second the sta-
tionarity of the sequence, we obtain succesively

1
ntH;j (Kin X gl Mo, 1
N

1
S TLtHAZ Xi,nE(Xj,n|Mi,n)
N

IN

sup
N<m<n

X07n Z E(Xk,n|MO,n) 1 .
k=N

and (7.5.39) follows from (7.5.31). This completes the proof. O
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Proof of Corollary 7.9. Using the stationarity and the inequality (5.2.7), we
infer that

1 X0.nB( Xkl Mon) 1 < 2 Xo,nllpll Xo,nllg (61 (k)7 (7.5.40)

so that (7.5.31) follows easily from (7.5.33). Moreover, if for each &k > 0 the
sequence || XXk |1 converges to 0, the fact that N(X) = 1 follows from
(7.5.40) and the dominated convergence theorem.

To prove the last point of this corollary, it suffices, by applying Proposition
(7.9), to prove that for any ¢ in |0, 1],

[nt]

. 1 2 2
Jim HZ(X,M - IE(XO)H))Hl ~0. (7.5.41)

According to the condition (7.5.34), it suffices to prove that
[nt]

- 2 —
lim lim sup Var (nt kz_l Xk)nl‘ka‘S\/m) =0. (7.5.42)

=0 nooo

Setting Vi, = X7, 1|x, .|<yne; We have the elementary inequality

nt|

[ n
Var (rit ; Y’“’") = jt ];) |Cov(Yo,n: Vi)l - (7.5.43)

Now, bearing in mind the definition of Y%, and applying (5.2.7), we have suc-
cessively

|Cov(Yo,n, Yn)l = [Cov(Yon, X}?,n1|xk,n|§\/nK)|

= 2(¢Zl (k))l/pHXg,n1|Xg,n|§\/ne||P||X§,n1\Xo,n\§\/néHq
< 20 (1 ()N Xo,nllpl Xo,nlla

A

and (7.5.42) follows from (7.5.43) and (7.5.33). O



Chapter 8

Donsker Principles

In this chapter we give sufficient conditions for the smoothed partial sum process
of a sequence (resp. field) of real-valued random variables to converge to a
Brownian motion (resp. Brownian sheet). In the non causal case, we show that
the conditions on x(r) and A(r) (implied by n dependence) given in Theorems
7.1 and 7.2 respectively, are sufficient to obtain the weak invariance principle.
In Section 8.2 we give a general result for n dependent random fields having
moments of order 4. For the causal case, we present the functional version of
the conditional central limit theorem (CCLT) established in Section 7.4. We
shall see in Section 8.4 that the sufficient conditions for the CCLT for v, &
and q@—dependent sequences, are also sufficient for the conditional invariance
principle.

8.1 Non causal stationary sequences

Let (X;);cz be a stationary sequence of centered and square integrable random
variables, and let U,, be the Donsker line

[nt

1 Z] nt — [nt]
Un(t) = \/n Xi + \/n X[nt]+1~
i=1

In this short section, we show that under the same assumptions as in Theorem
7.1 or Theorem 7.2, the weak invariance principle holds. This follows easily
from the control of ||.S,,||2+5 obtained at the end of Section 7.2.1.

Theorem 8.1. Assume that (X;)iez satisfy the assumptions of Theorem 7.1
or the assumptions of Theorem 7.2. Then the process U, converges weakly in
(C([0,1]), ]| - lsc) to a Wiener process with variance o® =3, ., Cov(Xo, Xj).

199
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Proof. The finite dimensional convergence of the process U, can be proved
as in Section 7.2.1. It remains to prove the tightness. Recall that under the
assumptions of Theorem 7.1 or of Theorem 7.2, there exist there exists 6 > 0
and C' > 0 such that:

]E|Sp|2+5 S Cp1+6/2.

The tightness follows then from standard arguments, which can be found in
many papers. For instance, if A\ denotes the Lebesgue measure, we infer from
the moment inequality above that (U, \) belongs to the class C(1+6/2,2+ 9)
defined in Bickel and Wichura (1971) [19] (see the inequality (3) of this paper).
The tightness of the process {U,(t),t € [0,1]} follows by applying Theorem 3
of the above paper. [

Remark. The same result follows the same lines for the Bernoulli shift models
with dependent inputs from theorem 7.3.

8.2 Non causal random fields

Here we establish the Donsker principle for non causal weak dependent sequences
and random fields. A block B in [0, 1]¢ is a subset of [0, 1]¢ of the form |s,t] =
szl]sp,tp]. Let (X;)jcze be a random field and B be a block in [0,1]9. Let
nB = {nz,z € B}, and

1
SuB)= L, S X (8.2.1)
jENBNZY

For any j € Z%, denote by C7 the unit with upper corner j, and define the
continuous process:

1 .
Un(B) = a2 > AMnBNCI)X;,
jezd

where \ denotes the Lebesgue measure on R%. For ¢ € [0,1]¢, define S, () =
Sn([0,t]) and U, (t) = U,([0,]).

Theorem 8.2. Let (X;)jczae be an-weak dependent stationary centered random
field. Assume that E|Xo|* = M* < co. If n(r) < er™, with a > 3d, then the
process U, converges weakly in (C([0,1]%),] - |s) to a Brownian sheet with
variance 0° =y, -4 Cov(Xo, Xp).
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8.2.1 Moment inequality
First we establish a bound for the fourth moment of a partial sum:

Lemma 8.1. Assume that the assumptions of theorem 8.2 are satisfied, then
for any block B in [0,1], there exists C > 0 such that:

E(S.(B)*) < OA(B)?

Proof. For a finite sequence k = (ki,...,k,) of elements of Z¢, define Il =
¢, Xy, For any integer ¢ > 1, set:

A= D [E(I), (82.2)
ke(nBNZd)a
then
IE(S,(B))*| < n244,(n). (8.2.3)

The gap of k is defined by the max of the integers r such that the sequence
may be split into two non-empty subsequences k' and k? ¢ Z¢ whose mutual
distance equals 7 (d(k*, k?) = min{||i—j|1/i € k', j € k*} = r). If the sequence
is constant, its gap is 0. Define the set G,-(¢,n) = {k € (nB)? and the gap of k
is r}. Sorting the sequences of indices by their gap:

Agn) < DT EIXRT+Y ) [Cov (T, The)| (8.2.4)

kenB r=1keG,(q,n)

+ ) Y ELe)E(Le). (8.2.5)

r=1keG,(q,n)
Define V;(n) as the sum of the right hand side of (8.2.4). We get
Ag(n) < Vi(n) + Va(n)?.

Denote by N the cardinality of nB N Z%. To build a sequence k belonging to
G, (q,n), we first fix one of the N points of nB NZ?. We choose a second point
on the ¢'-sphere of radius r centered on the first point. The third point is in a
ball of radius r centered on one of the preceding points, and so on. We get

#G,(g,4) < N2d(2r + 1) 122r + 1)2.3(2r + 1)? < 12dN334p3d-1,
#G,(q,2) < N2d(2r+ 1)d*1 < 9dN3I-1pd-1

and
Vi(n) < NM*+12dN3%y " r3=In(r),
r=1
Va(n) < NM2+2dN3dflzrd*1n(r),

r=1
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so that
Ay(n) < C(N + N?).

Because N is an integer and |N — n?\(B)| < 2dN/n, Lemma 8.1 is proved. [J

8.2.2 Finite dimensional convergence

To prove the convergence of the finite dimensional distributions, we note that it
is sufficient to prove it for the finite dimensional distribution of S,,(B), because
U,(B) — S, (B) tends to zero in probability. Considering B and C' two disjoint
blocks of [0, 1]¢, we check that the joint distribution of (S, (B), S,,(C)) satisfies:

lim Cov(S,(B),S,(C)) =0.
Denote b~ and b the lower and upper vertex of block B. If the domains are non

intersecting, for at least one coordinate (say the first), we have (say) bf < ¢ .
Then

ICov(Sn(B), Sn(C)] < n7* > Y |Cov(X;, X;)|
ienB jenC
< )y > |Cov(Xi, X;)
ienB \jenC,j1<nP
+ Z |COV(X1',XJ')|

jeENC,j1>nP

< nfd nﬁerleTdfln(r) —|—Tld Z Tdil’r](’l")
reN r>nh

= o(nﬁfl,nﬁ(dﬂl))
Taking 3 < 1 gives the result.

Now, let v and p be two reals, we show that S,, = vS,(B) + u(S,(C)) tends
to a Gaussian distribution. Write

Sn = Tlid/z Z ai,nXi
i€{0,...,n}d

where o;, = v+ p if i € nBNnC, a;,, = v if i € nB\ nC, o, = p if
i € nC\ nB and «;, = 0 elsewhere. We use the Bernstein blocking technique,
(1939) [13]. Let p(n) and g(n) be sequences of integers such that p(n) = o(n)
and ¢(n) = o(p(n)). Assume that the Euclidean division of n by (p + ¢) gives a
quotient k and a remainder r. Denote j = (j,..., ). Define K = {1,...,k+1}¢
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and order K by the lexicographic order; for i € {1,...,k}¢, define the blocks
Pi=[lp+q)i—1),....(p+q)i—ql]. Ifr >0, for i € {0,...,1}\ {0} define
the blocks P; = [(p+ q)(k +14),...,(p+q)(k + i) + (r Vp)1]. Denote Q the set
of indices that are not in one of the P;. Note that the cardinality of @ is less
than d(k + 1)gp?~!. For each block P; and @, we define the partial sums:

u; = n_d/2 Z aijj,
JEP;
v = n 42 Z ajnX
JEQ
Recall lemma 11 in Doukhan and Louhichi (1999) [67].

Lemma 8.2. Let S,, = n~%/? Zje{o,... n}d ajnX; be a sum of centered trian-
gular array; set 02 = Var S,,. Assume that :

1
lim | Ev?=0. (8.2.6)

n—oo 0‘2

Z Cov | g ! Z u; |, h( f uj> — 0, forallteR, (8.2.7)
o o

jeK " GeK,i<j "
where h and g are either the sine or the cosine function,

lim Z E|u1| 1{‘ut|>60n} =0, fO’I‘ all € > 0, (828)

n—oo 0'727’ K
7

lim ZE|U1|2 (8.2.9)

n—oo 0'2

Then Sy /o, converges in distribution to a Gaussian N (0, 1)-distribution.

First note that
Z COV(OéQmXQ, Ozj’an) < 00 (8210)
jend

so that 02 tends to a constant. If this constant is zero then the limit of S,, is

0. If it is not, we check the conditions of the preceding lemma for the array
a;nX;. To check (8.2.6), note that

Ev® < (w4 [u)*n™" DY [Cov(Xe, X)| < (vl + [ul)*n =YD n(li—il)

1,7E€EQ 1€Q JjEQ

d—1
(] + 1 DTS ) = o),

r=0

IN
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Consider 8.2.7. Note that g ! Z u; | is a function of at most ((k+1)p)?
In i€K,i#j

variables X; and that its Lipschitz modulus is less than t(|v| + |u|)/n?/?0,,. Sim-

ilarly h(tu;/o,) is a function of at most p? variables and its Lipschitz modulus

is less than ¢(|v| + |u|)/n%20,. Using the weak dependence property, we get

Cov (g > ’h<t“j> SZ’d((1€+1)‘“r1)-t(|y|+m|)n(q)-

" ieK itj In nt/?ay,
and
t t d ar1 t(vl+ul)
Z Cov | g Z u; |, h u; < PR+ (9)
jEK " GeK i) In e 0n

_ O(n3d/2p—dq—a).

Taking p = n®/% and ¢ = n®¥/5% gives a bound tending to 0.
To prove (8.2.8), it is sufficient to show that E|u;|* = O(k~2%). But

4 4
1 (Il + [ph)?* p* T4
E nd/2 Z ajﬂlXj < n2d E Z Xj < n2d E (Sp([07 1])) )
JjeEP; JEP;
and we conclude with the moment inequality
2114
E (Sp([0,1]))" = O(1).
In order to prove (8.2.9), note that (8.2.6) implies that
) 1
nlLII;O 2 Var Z u; | = 1.
n i€eK

But

IN

2 > [Cov(us,uy)

i€EKit]

< 20k 17 n(0)

Var (Z u) " Bl

e K e K

= O(np 4qg~™).

5d/6a

Taking p = n°/% and ¢ =n gives a bound tending to 0. [J
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8.2.3 Tightness

Recall that X is the Lebesgue measure on R?. Applying Lemma 8.1, we infer
that (S, \) and (U,, \) belong to the class C(2, 4) defined in Bickel and Wichura
(1971) [19] (see the inequality (3) of this paper). The tightness or relative
compactness of the process {U,(t),t € [0,1]%} follows by applying Theorem 3
of [19].

8.3 Conditional (causal) invariance principle

In this section we give the functional version of Theorem 7.5. Denote by H*
the space of continuous functions ¢ from (C([0,1]),] - ||) to R such that z
[(1+ [|z]|2,) ()| is bounded.

Theorem 8.3. Let X;,,, M, and S, (t) be as in Theorem 7.5. For any t in
[0, 1], let Un(t) = Sn(t)+(nt—[nt]) Xjny 11,0 and define S,,(t) = supg< < |Sn(s)]-

The following statements are equivalent:

S1* There exists a nonnegative Mo ins-measurable random variable n such that,
for any ¢ in H* and any positive integer k,

=0

!

n—oo

S1%(p):  lim HIE(go(n_l/ZUn) - /cp(x\/n)W(dw) ‘Mkn)
where W is the distribution of a standard Wiener process.
S2* Properties S2(b) and (c) of Theorem 7.5 hold, and (a) is replaced by:

(a*) the sequence (n"1(S,(1))?)n>0 s uniformly integrable, and

%im limsup E <(Snrf:))2 (1 A Sn(t))) =0.

—Y n—ooco \/TL
Moreover the random variable 1 satisfies n =no T almost surely.

Remark 8.1. Let X, ,, M, , and U, be as in Theorem 8.53. Suppose that the
sequence (Mo n)n>1 is nondecreasing. If Condition S1% is satisfied, then the
sequence (12U, )n>0 converges stably with respect to the random probability
defined by p(p) = [(xy/n)W (x)dz. The proof of this result is the same as
that of Corollary 7.2.

We now give the proof of this theorem. Once again, it suffices to prove that S2*
implies S17.
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8.3.1 Preliminaries

Definition 8.1. Recall that R(My, ) is the set of Rademacher My, p-measurable
random variables: R(My, ) ={214 —1/ A € My, }. For the random variable
1 introduced in Theorem 8.3 and any bounded random variable Z, let

1. v:[Z] be the image measure of Z - P by the process n~'/2U,,.

2. v*[Z] be the image measure of W @ Z.IP by the variable ¢ from C([0,1]) @8
to C([0,1]) defined by ¢(x,w) = x1/n(w).

We need the functional analogue of Lemma 7.4 (the proof is unchanged).

Lemma 8.3. Let p}[Z,] = vi[Z,]) — v*[Z,]). For any ¢ in H* the statement
S1%(y) is equivalent to:

S3*(p): for any Z,, in R(My.,) the sequence k[ Z,](p) tends to zero as n tends
to infinity.

Suppose that S1*(¢) holds for any bounded function ¢ of H*. Since the se-
quence (n~1(S%(1))?),>0 is uniformly integrable, S1* () obviously extends to
the whole space H*. Consequently, we can restrict ourselves to the space of con-
tinuous bounded functions from C([0,1]) to R. According to Lemma 8.3, the
proof of Theorem 8.3 will be complete if we show that, for any Z, in R(My_,,),
the sequence p*[Z,] converges weakly to the null measure as n tends to infinity.

Definition 8.2. For 0 < t; < --- < tq < 1, define the functions m, .+, and
Q1,..1, from C([0,1]) to RY by the equalities 7y, 4, (x) = (x(t1),...,z(ts)) and
Qty..1,(x) = (x(t1), x(t2) — x(t1), ..., x(tq) — x(ta—1)). For any signed measure
w on (C([0,1]),B(C([0,1]))) and any function f from C([0,1]) to R, denote by
wf~t the image measure of p by f.

Let pu and v be two signed measures on (C([0,1]), B(C(]0,1]))). Recall that if
on ~1~~td = vm, .1..td for any positive integer d and any d-tuple such that 0 <
ty < -+ <tyg <1, then p = v. Consequently Theorem 8.3 is a straightforward
consequence of the two following items

1. relative compactness: for any Z, in R(My,,), the family (1)[Zn])n>0 is
relatively compact with respect to the topology of weak convergence.

2. finite dimensional convergence: for any positive integer d, any d-tuple
0<t; <---<tqg<1andany Z, in R(My,) the sequence u* [Zn]wt_l_l__td

converges weakly to the null measure as n tends to infinity.
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8.3.2 Finite dimensional convergence

Clearly it is equivalent to take Q¢, ..+, instead of m, ;, in item 2. The following
lemma shows that finite dimensional convergence is a consequence of Condition
S2 of Theorem 7.5. The stronger condition S2* is only required for tightness.

Lemma 8.4. For any a in R? define f, from R? to R by fo(x) =< a,z >. If
S2 holds then, for any a in R, any d-tuple 0 < t; < --- < tq <1 and any Z,
in R(Mgy), the sequence [ Z,)(fa © Qty..1,) " converges weakly to the null
measure.

Wite 2(Z0) (fa © Qty.ot) ™ (xD(02)) = 3 [ Za @1, (exD(i < a,- >)). Accord-
ing to Lemma 8.4, the latter converges to zero as n tends to infinity. Taking
Z, =1, we infer that the probability measure v[1]Q;,' , converges weakly to
the probability measure v*[1]Q;," ., and hence is tight. Since [u*[Z,]Qy;" 4, | <
viQ: " ., + v (1)@ 4, the sequence (u*[Z,]Qyr" , )n>0 is tight. Conse-
quently we can apply Lemma 7.3 to conclude that ;*[Z,]Q;" , converges
weakly to the null measure. [J

Proof of Lemma 8.4. According to Lemma 8.3, we have to prove the property
S1*(p o fa 0 Q4. +,) for any continuous bounded function ¢. Arguing as in
Section 7.4.3, we can restrict ourselves to the class of function Bf(R). Let h be
any element of B} (R) and write

:ihé(af([]n(te) ?/Z (te—1) /hg (agz/(te — te—1)n) g(z) dx,
(=1

where the random variable hy(z) is equal to

/h(g_l ai(Un(ti) —\/gn(til)) + o+ zd: aizi/ (b — ti—l)n) ﬁ 9(w:)dz;
v i1l i=0+1

Note that for any w in , the random function h, belongs to B;(R). To complete
the proof of Lemma 8.4, it suffices to see that, for any positive integers k and
¢, the sequence

HE(hg(al(Un(té) _\/U (te-1) /hg aga:\/ (te — to—1) )g(a:)da:‘./\/lkn)

n

(8.3.1)
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tends to zero as n tends to infinity. Since hy is 1-Lipshitz and bounded, we infer
from the asymptotic negligibility of n=1/2Xj , that

hy (ag ( Un(te) ?/Zn(tél))) by (ag (Sn(tg — t@\l/): Tlnte1]+1 )) |
(8.3.2)

Denote by g, the random function gy = hy o T~ [**-1]=1 Combining (8.3.1),
(8.3.2) and the fact that My_i_[n¢, )0 & Mpn, we infer that it suffices to
prove that

lim =0.

n—oo

=0. (833)
1

hm H ge(aem —1/2g, (u)) — /gg(agx\/un dx‘J\/lk n)

Since the random functions g, is M ,,-measurable (8.3.3) can be proved exactly
as property S1 of Theorem 7.5 (see Section 7.4.3). This completes the proof of
Lemma 8.4. O

8.3.3 Relative compactness

In this section, we shall prove that the sequence (1) [Z,])n>0 is relatively com-
pact with respect to the topology of weak convergence. That is, for any increas-
ing function f from N to N, there exists an increasing function g with value in
f(N) and a signed mesure p on (C([0,1]),B(C([0,1]))) such that
(,u;(n) [Zg(n)])n>0 converges weakly to pu.

Let Z (resp. Z, ) be the positive (resp. negative) part of Z,,, and write

pn(Zn) = wnl 2] — o2, = vyl 2] = vil 2, ] = vi (2] + vl 2],

where v} [Z] and v*[Z] are defined in 1. and 2. of Definition 8.1. Obviously, it
is enough to prove that each sequence of finite positive measures (v[Z;F]),>0,
Wi Z7 >0, (W [ZF])n>0 and (v*[Z])n>o0 is relatively compact. We prove the
result for the sequence (v}:[Z,7])n>0, the other cases being similar.

Let f be any increasing function from N to N. Choose an increasing function [

with value in f(N) such that

lim E(Z, |) =lim 1anE(

S B(Zy,)) = lminf B(Z )
We must sort out two cases:

1. If B(Z;

n)) converges to zero as n tends to infinity, then, taking g = [, the

sequence (v, [Z;r(n)]),»o converges weakly to the null measure.

2. If ]E(Z;(rn)) converges to a positive real number as n tends to infinity,
we introduce, for n large enough, the probability measure p, defined by p,



8.4. APPLICATIONS 209

= (E(Z}(,)) " Vi [2)(,y]. Obviously if (pn)nso is relatively compact with
respect to the topology of weak convergence, then there exists an increasing
function g with value in I(N) (and hence in f(N)) and a measure v such that
(u;(n) [Z;r(n)]),wo converges weakly to v. Since (p,)n>o is a family of probabil-
ity measures, relative compactness is equivalent to tightness. Here we apply
Theorem 8.2 in Billingsley (1968) [20]: to derive the tightness of the sequence
(Pn)n>0 it is enough to show that, for each positive e,

%iné lim sup p,, (z/w(x,0) > ¢€) =0, (8.3.4)

where w(z, d) is the modulus of continuity of the function z. According to the
definition of p,,, we have

1 Uitn)
pn(x/w(z,§) >¢€) = Z5 P w( ,5) >el .
Since both E(Z ;(rn)) converges to a positive number and Z ;(rn) is bounded by one,
we infer that (8.3.4) holds if

Ui(n
lim lim sup P w( Hm) ,5) >e| =o0. (8.3.5)
L i)
From Theorem 8.3 and inequality (8.16) in Billingsley (1968) [20], it suffices to
prove that, for any positive €,

o 1 Sin)(9) €
> =0. .
11_1)16 h?rln_?;p 5 P ( NI 0 (8.3.6)

We conclude by noting that (8.3.6) follows straightforwardly from S2(a*) and
Markov’s inequality.

Conclusion. In both cases there exists an increasing function g with value in
f(N) and a measure v such that (v}, [Z;r(n)]),»o converges weakly to v. Since
this is true for any increasing function f with value in N, we conclude that
the sequence (v[Z,])n>0 is relatively compact with respect to the topology
of weak convergence. Of course, the same arguments apply to the sequences
Wi Z >0, (W [ZF])n>0 and (v*[Z])n>0, which implies the relative com-

pactness of the sequence ([ Z,])n>0. O

8.4 Applications

8.4.1 Sufficient conditions for stationary sequences

For strictly stationary sequences, Theorem 8.3 writes as follows.
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Theorem 8.4. Let (M;)icz and (X;)iez be as in Theorem 7.6. Define S, =
X144+ Xy and Up(t) = Spy + (0t — [nt]) X[ny41. The following statements
are equivalent:

S1* There exists a nonnegative Mo-measurable random variable n such that,
for any ¢ in 'H* and any positive integer k,

lim HE(@(nflmUn) - /cp(x\/n)W(dw) ‘Mk) Hl =0

where W is the distribution of a standard Wiener process.
S2* Properties S2(b) and (¢) of Theorem 7.6 hold, and (a) is replaced by:
(a*) the sequence (n~'(maxi<i<y |Si])%)n>0 is uniformly integrable.
Under the conditions of Proposition 7.8, S1* holds:

Proposition 8.1. Let (M;)icz and (X;)iez be as in Theorem 7.6 and define
M_ oo = NiezM;. Define the operators P; as in Corollary 7.4.

1. IfE(XoM_o) =0 and Y.~ || Po(X;)|l2 < oo then S1* holds. Moreover,
n is the same as in Proposition 7.8.

2. If (7.5.7) is satisfied, then S1* holds and n is the same as in Proposition
7.8.

Remark 8.2. As in Chapter 7, we deduce from Proposition 8.1 sufficient con-
ditions for the functional CCLT in terms of the coefficients v1, 2, & and ¢.
More precisely, S1* holds if either (7.5.18), (7.5.22), (7.5.26) or (7.5.28) is
satisfied.

Proof of Proposition 8.1. In view of Corollary 7.5 and Proposition 7.8, it is
enough to prove that S2(a*) holds.

Proof of item 1. According to Proposition 5.9, for any two sequences of non-

negative numbers (@, )m>0 and (b, )m>o0 such that K = 5" a;bis finite and
Y >0 bm =1, we have

TllE ((S; - M\/n)i) <AK Z am]E(Tll ZPlgfm(Xk)]'F(m,n,me\/n)) )
m=0

k=1
(8.4.1)

k
where I'(m,n, \) = (0 \Y 1I<n]?<Xn{;Pgm(Xg)} > /\). Here, we take b,, =

27"V and ay, = (|| Po(Yoni)|l2 + (m+1)72)~1. By assumption, > a,,! is finite.
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Since for all m >0

1 [1Po(Xm) I3
mE P2 (X)) lrimn ) < < ||1Po(Xm)ll2,
a (n > " PY o (Xk) Lt b0ty )) N Po( X2 + (m +1)2 = [P0 (Xom) |2

we infer from (8.4.1) that for any € > 0, there exists N(e) such that

N(e) n
iu«: ((S; —Myn)2) < e+ dk Y amE(; 3 Pg,m(xk)h(m,mw\/n)) .
" o (8.4.2)
Now by Doob’s maximal inequality
B(0n bty < Ty o CO0IE_ IR
and consequently
lim supP(I'(m,n,b,My/n)) =0. (8.4.3)

M—00 >0

Since n=t 37}, P2, (Xi) converges in L' (apply the ergodic theorem), we
infer from (8.4.3) that

M—oo p—oo

1 n
hm hmsupIE( ZP]?_m(Xk)lr(m’n,me\/n)) =0. (8.4.4)
k=1

Combining (8.4.2) and (8.4.4), we conclude that

1
hm lim sup nE ((Sp—My/n)3) =0. (8.4.5)
Of course, the same arguments apply to the sequence (—X})rez so that (8.4.4)
holds for maxi<g<y, |Sk| instead of S};. This completes the proof. O

Proof of item 2. Let Ap(A\) = {maxi<i<x|Si| > A}. From Proposition 5.8
applied to the sequences (X;)iez and (—X;);cz we get that

E((max |S;i| — ) ) <SZ( XklAk()\) +2[|14, ) XKE(Sn — Sk | Fi)lla )

1<i<n

(8.4.6)
By assumption the sequence (X,f)k>0 and the array (XxE(S,, — Sk | Fr))i1<k<n
are uniformly integrable. It follows that the L'-norms of the above random
variables are each bounded by some positive constant K. Hence, from (8.4.6)
with A = 0 we get that E((maxi<;<n |Si])?) < 24Kn. It follows that

P(Ay(My/n)) < (nMQ)_lE(( max |S; |) ) < 24K M2, (8.4.7)

1<i<n
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From the inequality (8.4.7) and the uniform integrability of both (X ,3)k>0 and
(XKE(Syn — Sk | Fr))1<k<n we infer that

2
. . 1 0 _
A/}linoohﬁsolipn E((lrél%xn|5’l| M\/n)Jr) 0.

This completes the proof. [J

8.4.2 Sufficient conditions for triangular arrays
Under the conditions of Proposition 7.9, S1* holds:

Proposition 8.2. Let X;,, and M, be as in Proposition 7.9. If (7.5.31) and
(7.5.32) hold, then S1* holds with the same n as in Proposition 7.9.

Proof of Proposition 8.2. In view of Proposition 7.9, it is enough to prove that
S2(a*) holds. In fact, this follows from the inequality (7.5.37). O.



Chapter 9

Law of the iterated
logarithm (LIL)

In this chapter, we derive laws of the iterated logarithm. We first give a bounded
law of the iterated logarithm in a non causal setting. We then focus on 7-
dependent sequences for which we derive a causal strong invariance principle.
The main tool to prove it is the Fuk-Nagaev type inequality given in Theorem
5.3 of Chapter 5.

9.1 Bounded LIL under a non causal condition

In this section, we derive a bounded law of the iterated logarithm under a non
causal condition detailed in the assumptions of Theorem 4.5 of Chapter 4. We
get the following theorem:

Theorem 9.1. Suppose that (X, )nez is a stationary process satisfying the as-
sumptions of Theorem 4.5 of Chapter 4. If o2 = Var (3.1, X;), assume that

0?2 =lim, o 02/n > 0. Then we have

1
lim sup |Shl <1 a.s. (9.1.1)

n—ooo ov/2nloglogn

Proof of Theorem 9.1. Let a > 1. We define the subsequence (ng)rcz as
ne = [ak]. We obtain from Theorem 4.5 that, for any ny < n < ng41 and any

213
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fixed c,

|Sn| 2 o’n
P > cy/logl < 2 —c“logl 1 1
(\/2n02 cy/loglogng | < exp [ —c” loglogny o2 (1 + o(1))

= 2 exp (—c?loglogny(1 + o(1)))
-0 (k7c2(1+o(1))) .

This implies by the maximal inequality given in Theorem 2.2 in Moricz et
al.(1982) [133] that

]P’( max [Snl > c\/loglognk) <Ck“, (9.1.2)

nE<n<ngii \/2na'2

where ¢ < ¢? can be chosen arbitrarily close to ¢? and C is an appropriate
finite constant (see the remark following the proof of Theorem 2.2 in Mdricz et
al.(1982) [133]). Since limy—oc MaXy, <p<ny ., 12?12?& = 1, we conclude from

(9.1.2) by the Borel-Cantelli lemma that for any ¢ > 1,

1
lim sup [Sn| < ¢ a.s.

n—oo 0v/2nloglogn
This implies (9.1.1). O

9.2 Causal strong invariance principle

In this section, we present a strong invariance principle for partial sums of
T1,00—dependent sequences. Let (X, )nez be a stationary sequence of zero-mean
square integrable real valued random variables. Let M; = o(Xj,j < i). Define

Su=X1+ -+ X, and S,(t) = Spuy + (nt — [0t]) X[y 41

We assume that o2 /n = Var (S,,) /n converges to some constant o2 as n tends to
infinity (this will always be true for any of the conditions we shall use hereafter).
For o > 0, we study the almost sure behavior of the partial sum process

{cr_l (2nloglogn)~1/2 Sn(t)/t e o, 1]} . (9.2.1)

Before stating the main result, let us recall existing results in the i.i.d. case or
in other frames of dependence.

Let S be the subset of C([0,1]) consisting of all absolutely continuous func-
tions with respect to the Lebesgue measure such that

h(0) = 0 and /1(h’(t))2dt <1.
0
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In 1964, Strassen [180] proved that if the sequence (X, )nez is i.i.d. then the
process defined in (9.2.1) is relatively compact with a.s. limit set S. This result
is known as the functional law of the iterated logarithm (FLIL for short). Heyde
and Scott (1973) [104] extended the FLIL to the case where E(X7|Mg) = 0
and the sequence is ergodic. Starting from this result and from a coboundary
decomposition due to Gordin (1969) [97], Heyde (1975) [105] proved that the
FLIL holds if E (S,,| M) converges in Ly and the sequence is ergodic. Heyde’s
condition holds as soon as

o0 7 (k)/2
Zk/ Qo G(u) du < oo, (9.2.2)
k=1 70

where the functions @ = Q|x, and G = G|x,| have been defined in Chapter
5 and v1(k) = ||E (Xx|Mop) ||1 is the coefficient introduced in Section 2.2.4 of
Chapter 2.

Other types of dependence have been soon considered for the FLIL (see for in-
stance the review paper by Philipp (1986) [150]). For p and ¢-mixing sequences,
a strong invariance principle is given in Shao (1993) [174]. The case of strongly
(a-)mixing sequences has been considered by Oodaira and Yoshihara (1971)
[137], Dehling and Philipp (1982) [54] , and Bradley (1983) [29] among others.
In 1995, Rio [159] proved a FLIL (and even a strong invariance principle) for
the process defined in (9.2.1) as soon as the DMR (Doukhan, Massart and Rio
(1994) [70]) condition (9.2.3) is satisfied

0 2 ax (k)
Z/O Q*(u) du < oo, (9.2.3)
k=1

where ax (k) has been defined in Section 1.2 of Chapter 1.

Considering Corollary 7.6 which gives the central limit theorem for v-dependent
sequences, we think that a reasonable condition for the FLIL is condition (9.2.2)
without the & in front of the integral. Actually, we can only prove this conjecture
with 71 o (k) instead of 1 (k), that is the FLIL holds as soon as

(oo}

Tl’m(k)/Q
Z/ Qo G(u) du < co. (9.2.4)
0

k=1

Theorem 9.2. Let (X,)nez be a strictly stationary sequence of centered and
square integrable random variables satisfying (9.2.4). Then o2 /n converges to
o2, and there exists a sequence (Y )nen of independent N (0, 0?)-distributed ran-
dom variables (possibly degenerate) such that

i(Xi -Yi)=o0 (\/nloglogn) a.s.

i=1
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Such a result is known as a strong invariance principle. If ¢ > 0, Theorem 9.2
and Strassen’s FLIL for the Brownian motion yield the FLIL for the process
(9.2.1).

As in Corollary 7.6, we obtain simple sufficient conditions for the FLIL to hold:

Corollary 9.1. Let (X,,)nez be a strictly stationary sequence of centered and
square integrable random wvariables. Any of the following conditions implies
(9.2.4) and hence the FLIL.

1. P(|Xo| > x) < (c/x)" for somer > 2, and 3,5 (Tl,oo(i))(r_Q)/(r_l) < 0.
2. || Xoll» < 00 for some r > 2, and 37+, V=21 (i) < oo
3. E(|Xo]?log(1 + |Xo])) < 00 and 11 (i) = O(a?) for some a < 1.

Condition (9.2.4) is essentially optimal as shown in Corollary 9.2 below, derived
from the examples given in Doukhan, Massart and Rio (1994) [70]:

Corollary 9.2. For any r > 2, there is stationary Markov chain (X,,)nez such
that

1. E(Xo) = 0 and, for any nonnegative real x, P(|Xo| > x) = min(1,z77).
2. The sequence (T1,00(1))i>0 satisfies sup;sg ir=D/=27 (i) < 0.

3. limsup (nloglogn)~1/2|S,| = +oo almost surely.

This corollary follows easily from Proposition 3 in Doukhan, Massart and Rio
(1994) [69]. Let us now write the proof of Theorem 9.2.
Proof of Theorem 9.2. We first need to give some precise notations.

Notations 9.1. Define the set

U= {w/N — N, ¢ increasing, ¢£Ln) — oo 00, ¥(n) = o(n\/LLn)} .

If ¢ is some function of U, let

n—1

M; =0 andMn:Z(w(k)—Fk), form>2.
k=1

Forn > 1, define the random variables

M, +1(n) My 41

Up= Y. Xi, Va= > X, and

i=M,+1 i=Mpy14+1—n
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Myt

Uo= > IXil.

i=M,+1

If Ly = max(1,logx), define the truncated random variables

n -n
U, = max min(Un, ), > .
( VLLn/' V/LLn
Theorem 9.2 is a consequence of the following Proposition

Proposition 9.1. Let (X,,)nez be a strictly stationary sequence of centered
and square integrable random variables satisfying condition (9.2.4). Then o2 /n
converges to o and there exist a function ¥ € ¥ and a sequence (W) nen
of independent N (0,1 (n)o?)-distributed random variables (possibly degenerate)
such that

(a) zn:(WZ -U;)=o0 (\/MnLLn) a.s.
i=1

(c) U,/L =0 (n\/LLn) a.s.

Proof of Proposition 9.1. It is adapted from the proof of Proposition 2 in Rio
(1995) [159].

Proof of (b). Note first that

E|U, —U,|=E ((|Un| - \/Iian)Jr) so that

+oo
E|U, — U, :/ P(|U,| > t)dt . (9.2.5)
x/LnLn
In the following we write @ instead of Q|x,|. Since U, is distributed as Sy ),
we infer from Theorem 5.3 that

]P’(|Un|>t)§4(1+ r )_£+20¢(") /S(;T)Q(u)du. (9.2.6)
0

2
25rsw(n) t

Consider the two terms

A, = ! /+OO(1+ r )ﬁdt
Ln = n\/LLn 257"812/} ’

\/LnLn (n)
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Q(u)du dt .

2,n —

209(n) [T 1 )
nvLLn /

From (9.2.5) and (9.2.6), we infer that

E|U, — U,

<Ay, + A, 9.2.7
nvLLn — b > ( )

Study of A1n. Since the sequence (X, )nen satisfies (9.2.4), sfp(n)/w(n) con-
verges to some positive constant. Let C, denote some constant depending only
on r which may vary from line to line. We have that

4 +oo T —r
Ay < / dt<Coshoy "L
nvV/LLn o Cr qu(n) LLn "2
We infer that A,, = (’)(w(n)rmn*TLLn(T*m/z) as n tends to infinity. Since
¥ € U and r > 2, we infer that Zn21 Ay, is finite.

Study of As . We use the elementary result: if (a;);>1 is a sequence of positive
numbers, then there exists a sequence of positive numbers (b;);>1 such that b; —

oo and Y., a;b; < oo if and only if Y, a; < 0o (note that b2 = (3o aif1

=N

works). Consequently Zn>1 Ay, is finite for some ¢ € ¥ if and only if

+oo 1 S(Str)

o)
> Q(u)du dt < +oco. (9.2.8)
n>1 VLLn o, o

Recall that S = R™!, with the notations of Theorem 5.3. To prove (9.2.8), write

tee 5) tee
/ / u)dudt = / /1Ru)>t (u)du dt

\/LL \/LL
51 R(u) 1
= /Q(u)/ dtdu
x/LnLn
57‘R( )
- /Q 1R(")25r\7LLndu'
\/LLn

Consequently (9.2.8) holds if and only if

57"R(u)
/Q Z¢LL” . 1{R(u)> B }du<+oo. (9.2.9)

n>1 VLLn T5rVLLn
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To see that (9.2.9) holds, we shall prove the following result: if f is any increasing
function such that f(0) = 0 and f(1) = 1, then for any positive R we have that

Zlog< ) fn) = fn=1) 1pm<r < (R—1)VO<R.  (9.2.10)

n>1

Applying this result to f(z) = x(LLz)~'/? and R = 5rR(u), and noting that
(LLn)='/2 < C (f(n) — f(n — 1)) for some constant C' > 1, we infer that

/ Q(u Z 5TR( ) 1 du < 507‘/1 Q(u)R(u)du
\/LLn n (Bw)=, 7, 0= o ’

VLLn

which is finite as soon as (9.2.4) holds.

It remains to prove (9.2.10). If R <1 the result is clear. Now, for R > 1, let zr
be the largest integer such that f(zxr) < R and write R* = f(xr). Note first
that

> (logR) (f(n) — f(n— 1)) 1y<r < R log R. (9.2.11)

n>1
On the other hand, we have that

TR

> log (f(n) (f(n) = f(n = 1)) Lymy<n = »_log (f(n)) (f(n) = f(n—1)) .

n>1 n=1
It follows that
R
Zlog(f(n)) (f(n)— f(n—=1)) > / logzder = R*log R* — R*+1. (9.2.12)
n>1 1
Using (9.2.11) and (9.2.12) we get that
Zlog < > (f(n) = f(n—1)) 1ymy<r < R — 14 R*(log R — log R™).
n>1
(9.2.13)

Using Taylor’s inequality, we have that R*(log R—log R*) < R— R* and (9.2.10)
follows. The proof of (b) is complete.

Proof of (c). Let T}, = i]\i’}\}’iﬂ (|1X;i| — E|X;]) . We easily see that
Uy, = (¥(n) +n) E[X1| + T (9.2.14)

By definition of ¥, we have ¥(n) = o (n \/LLn). Here note that

n n
T, < +oVv (T, — . 9.2.15
VLLn < \/LLn> ( )
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Using same arguments as for the proof of (b), we obtain that

E (o v (Tn - \/L“Ln))

< +o0, so that
nvLLn

n>1

0V (Tn - ¢L”Ln)

< 400 a.s.
nv'LLn

n>1

Consequently max(0, T, — n(LLn)~'/2) = o(n+/LLn) almost surely, and the
result follows from (9.2.14) and (9.2.15).

Proof of (a). In the following, (5)n>1 and (7,)n>1 denote independent se-
quences of independent random variables with uniform distribution over [0, 1],
independent of (X,,)n>1. Since U, is a 1-Lipschitz function of U;, 7(o(U;,i <
n—1),U,) <¢(n)r(n). Using Lemma 5.2 and arguing as in the proof of The-
orem 5.2, we get the existence of a sequence (U Z)nzl of independent random
variables with the same distribution as the random variables U,, such that U Z
is a measurable function of (U;,d;),., and

E (U~ UL]) < v(m) ().

Since (9.2.4) holds, we have that

E|U. U, U, — U,

< oo so that < 400 a.s.
= VM, LLn ngl VM, LLn

Applying Kronecker’s lemma, we obtain that

Zn:(Ui —U)=o0 (\/Mn LLn) a.s. (9.2.16)

=1

We infer from (9.2.4) and from Dedecker and Doukhan (2003) [43] that

()™ Var Uy = 0 and ()2 U =2 N (0,0%).
Hence the sequence (U2/t¢(n)),>1 is uniformly integrable (Theorem 5.4. in
Billingsley (1968) [20]). Consequently, since the random variables U, have the
same distribution as the random variables U,,, we deduce from the above limit
results, from Strassen’s representation theorem (see Dudley (1968) [79]), and
from Skorohod’s lemma (1976) [179] that one can construct some sequence
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(Wi)n>1 of (U 1 )-measurable random variables with respective distribution
N (0,1(n) 6?) such that

E <(UZ - Wn)2) =o0(y¥(n)) as n — +oo, (9.2.17)

which is exactly equation (5.17) of the proof of Proposition 2(c¢) in Rio (1995)
[159]. The end of the proof is the same as that of Rio.

Proof of Theorem 9.2. By Skohorod’s lemma (1976) [179], there exists a se-
quence (Y;);>1 of independent A (0, 6?)-distributed random variables satisfying

W, = ZZM’}}rwﬁ Y; for all positive n. Define the random variable

My41

Vi= ) Y

i=Mpy1+1—n

Let n(k) := sup{n > 0/ M,, < k}, and note that by definition of M,, we have
n(k) = o(vk). Applying Proposition 9.1(c) we see that

n)
‘ZX U +V;)

< Uy = o (VKLLE) as. (9.2.18)
From (5.26) in Rio (1995) [159], we infer that
(k) (k)
> Vi=o(VKLLK) as. and Y V/=o(VKLLEK) as  (9.2.19)
i=1 i=1

Gathering (9.2.18), (9.2.19) and Proposition 9.1(a) and (b), we obtain that

k n(k)

Yxi->Y Wi+ V) =o (\/k LLk) a.s. (9.2.20)

=1 =1

Clearly Ele Y; — E?:(li) (W; 4+ V/) is normally distributed with variance smaller
than (n(k)) + n(k). Since n(k) = o(vk) we have that o (n(k)) + n(k) =
o(vkLLE) by definition of 1. An elementary calculation on Gaussian random
variables shows that
n(k)
Z Yi-Y Wi+ V))=o (\/k LLk) a.s. (9.2.21)

i=1

Theorem 9.2 follows from (9.2.20) and (9.2.21).



Chapter 10

The Empirical process

In this chapter, we prove central limit theorems for the empirical distribution
function of weakly dependent stationary sequences (or fields). Except in the
last section (Section 10.6), where the oscillations of the empirical distribution
of weakly dependent random fields are studied, all the results are mainly based
on the tightness criterion given in Proposition 4.2. In Section 10.1, we give a
sufficient condition for the tightness, based on the control of the covariances
between indicators of half lines. In Section 10.2 we prove an empirical central
limit theorem for 7-dependent sequences by assuming an exponential decay of
the coefficients. In Sections 10.3 and 10.4, we give sufficient conditions in terms
of the coefficients &, 3, ¢, # and 7. In Section 10.5 we present the applications
of such results to the empirical copula process.

Definition 10.1 (Empirical process). We recall the definition of the empir-
ical process for the different cases considered:

e Stationary real valued or multivariate sequence: Let (X,,)nez be a
sequence of R? valued random variables. Define in R? the partial order by
s <t if and only if s; <t; fori=1,...,d. The empirical process of X is
defined by

1 n
Fu(t) = " Z lix,<ay- (10.0.1)
i=1

e Stationary real valued random field: For N in N, let By be the closed
ball of radius N for the {°-norm on T = 74 and n = #Bx = (2N + 1)<
Let (X¢)ier be a real valued random field. We define the empirical process

1
Fo(t) = n Z 1ix, <oy (10.0.2)
k€Bn

223
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In any case, if the variables are identically distributed with common distribution
function F, we define the normalized empirical process by

Un(t) = v/n (F,(t) — F(2)).

We need to define the limit processes in the following central limit theorems.
(B(t))tc[0,1]¢ is a zero-mean Gaussian process with covariance function

L(t,s) =Y Cov(lx,<t,1x,<s)- (10.0.3)
keT

where T = Z in the case of random sequences and T = Z¢ in the case of random
fields.

10.1 A simple condition for the tightness

We consider a stationary real valued sequence (X,,)nez with continuous common
repartition function F. We assume without loss of generality that the marginal
distribution of this sequence is the uniform law on [0, 1].

Assume that the sequence (X, ),z satisfies the following weak dependence con-
dition:

Let F = {x + lsc4</ for s,t € [0,1]}. We assume that for any m € {1,2,3}
and any 0 < 1y <o <3 <4,

m 4
Cov <Hf(Xti>, II f(Xti)>

i=1 i=m+1

sup < e(r), (10.1.1)

fer

where r = t;,4+1 — t,n, and e(r) does only depend on r (in this case a weak
dependence condition holds for a class of functions R* — R working only with
the values u =1, 2 or 3).

Proposition 10.1. Let (X,,)nez be a real valued stationary sequence fulfilling
(10.1.1) with

e(r) = O@F=%/% "), for some v > 0. (10.1.2)

Then the process U, is tight in D([0, 1]).

Proof of Proposition 10.1. The moment inequality (4.3.17), together with con-
ditions (10.1.1) and (10.1.2), yields the existence of a positive constant C' such
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that for any s,¢ in [0, 1]

- Uuls < S{(Srate—s)” 5 (LS04 7m) ")
r=0 r=0
1/2

INA
Q
—

> )

r>|t—s|=1/a

—|—( Z |t—s|)1/2+n2za}

r<|t—s|—1/a

C{|t o S|a27al + n21a}.

IN

The last bound together with the tightness criterion given in Proposition 4.2
proves that the sequence {U,(t),¢ € [0, 1]} is tight.

Remark 10.1. Stationary associated sequences (see Section 1.4) satisfy the
requirement of Proposition 10.1 if

sup sup Cov(lxysz, 1x,5y) = O /27).
|k|>r @,yeR

Using the following inequality :

sup sup Cov(lxysqe,lx,>y) < C sup Covl/B(Xo,Xk),
[k|>r z,yeR |k| >

for an universal constant C, Yu (1993) [195] proves the tightness under the
condition Cov(Xo, X,) = O(r=%), for a > 15/2. However in this case, the paper
by Louhichi (2000) [124] proves the tightness under the condition Cov(Xo, X,) =
O(r=%), fora > 4.

10.2 n-dependent sequences

In this section, Y is a stationary 7-dependent sequence in [0,1]¢ with uniform
marginal distributions.

Theorem 10.1. Assume that (Y,;)icz is a stationary n-dependent zero-mean
process in [0,1]% with uniform marginal distributions. Assume that there exist
some constants C > 0 and a > 4d + 2 such that n(r) < Cr=®. Then the process
U, converges in distribution in D([0,1]?) to the Gaussian process B.

The following lemma is used to prove Theorem 10.1.

Lemma 10.1. Assume that (Y;)iezr is a stationary multivariate random field
with value in [0,1]% and that the density of marginal distribution of the vectors
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Y; are bounded by Cy. For s <t in [0,1], denote g; s(7) = 1{z <t} — 1{x <
st. Leti= (i1,...,1y) i (ZP)" and j = (j1,...,Jv) in (ZP)¥ be two sets of
indices that are r-distant in L' -distance. Let G and H be two bounded Lipschitz
functions on R* and R respectively. Denote Y; = (Yi,,...,Y:,). Then

|Cov (G(gt,s(Y1)), H(ge,s(Y3)))| < (G, H)er, (10.2.1)
where, setting ¢(G, H) = dg||H||oLip (G), we define

o if Y is n-dependent, €, = 77;/2
W(G, H) = 4(Cyd)'*(¢(G, H) + ¢(H, G)), (10.2.2)

e if Y is k-dependent, €, = K}/?)

(G, H) = 2(4(Cy d))**($(G, H) + ¢(H,G))**($(G, H)p(H,G))"/*
(10.2.3)

Proof of lemma 10.1 For § > 0, define the d-approximations of 1¢,> by:

d (p) _ ¢(»)
x t) 40
hsi(z) = H (( 5 )1{t(p>75<w(p><t(p>} + 1{m<p)>t(p>}> .

p=1
Define gs+,s = hst — hs,s. Then its Lipschitz modulus is equal to 51, where
the distance in R? is dy (x,7) = Zi:l |2®) — y®)| and E |gs +(Yo) — gr.5.6(Yo)| <
2dCy 6 because the density of the variable Y; is bounded by Cy and the two
functions are equal except on 2d blocks of width 4.
Define Gy(Y;) = G (g¢,5(Yi) and G5(Y;) = G (g¢,5,5(Y3)).

[Cov(Go(¥i), Ho(¥3)) — Cov(Gs(¥5), Hs(1))
< |E(Go(Yi)Ho(Y;)) — E(G5(Yi)Hs(Y;))|
+ [E(Go (Y1) E (Ho(Y;)) — E(Gs(Y3)) E (Hs(Y))]

After substitution of the variables one by one, the first term of the right hand
side is bounded by:

(ul| H||ooLip (G) 4 v G| oo Lip (H))E | gt,5(Yo) — gt,5,5(Yo)| -
so that:
|E (Go(Yi)Ho(Y;)) — E(G5(Yi)Hs(Y;))| < 2Cydo(o(G, H) + ¢(H, G)).

The bound of the second term is the same.
Now if Y is n-dependent:

[Cov (Gs(¥h), Hs(¥))| < (6(G. H) + (H,G) "
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Hence

[Cov (Go(¥h), Ho(¥)) | < (6(G. H) + 6(H,G)) (4Cydo + )

If Y is k-dependent:

[Cov (G5(¥i), Hs(¥)) | < (6(G. H)O(H,G)) T,
Hence

|Cov (Go(Yi), Ho(Yj)) | < 4Cyd(é(G, H) + ¢(H, G))é + (G, H)p(H, G) o,

Choosing the optimal J, relation (10.2.1) is proved. O
We apply this lemma for the case of products of indicator functions, namely for
s <t in R?, for any k multi-index of Z*, we define

My = [ g1.s(Ye,) = F(t) + F(s).
j=1

We note that I}, = G(g¢,s(Y))) where the function G is defined by G(z1,. ..
) = [[j-1(z; — ¢) with ¢ = F(t) — F(s). Here |G| = Lip (G) = 1.

Corollary 10.1. Assume that (Y;)iez is a stationary n-dependent zero-mean
process in [0,1]% with uniform marginal distributions, then for any sequences
i=(i1,..,04) and j = (j1,...,jv) such that r < j1 —iy:

‘COV (Hi,r{j)‘ < (u+v)e(r), (10.2.4)

with €(r) = 4y/dn(r).
Next we prove a Rosenthal type inequality.

Proposition 10.2. Assume that 'Y is a stationary n-dependent zero-mean pro-
cess in [0,1]% with uniform marginal distributions. Assume moreover that con-
dition (10.2.4) is satisfied with e(r) = Cr=*. Then, for 1 < (a+1)/2 and (s,t)
such that Elzo(s,t)] < C, we have

_ 21 zals 1-1/a\ !
s-vaos 20 ( (o2 () )

1-1 E 1+(1-20)/a
+ " 3’” ( |$°C(f’t)|> . (10.2.5)

_ c2°
where k; = (C + a7221+1) .
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Proof of Proposition 10.2. Let s <t be in R%. As |z;(s,t)| < 1, we get for any
sequences i € Z*, j € Z",

‘COV (Hi,Hj)‘ < 2E|zo(s, 1) (10.2.6)
For any integer g > 1, set
An) = > |E(Iy)], (10.2.7)
ke{1,...,n}a
then
E(U,(s) — Un(t)? < (20)!n " Ag(n). (10.2.8)
Let ¢ > 2.

For a finite sequence k = (k1,...,ky) of elements of Z, let (k(1),...,k)) be
the same sequence ordered from the smaller to the larger. The gap r(k) in the
sequence is defined as the maximum of the integers k(1) — k), i =1,...,¢—1.
Choose any index j < ¢ such that k(4 1) — k(;) = r, and define the two non-
empty subsequences k! = (kay, -, k¢y) and k? = (k(i4+1)s -+ k(q))- Define
Gr(qg,n) = {k € {1,...,n}9 / r(k) = r}. Sorting the sequences of indices by
their gaps, we get

Ag(n)

IN

ZE|xo(s,t)|q
k=1

n nz_:l 3 ’COV (Hkl,nk2) (10.2.9)
r=lkeG, (q,n)
n nf 3 ‘IE (Hkl) E (sz) . (10.2.10)

r=1 kGGT(q,n)
Define
n n—1
By(n) =Y Elzo(s, )7+ > Y ‘COV (Hkl,nkz)‘ .
k=1 r=1 kEGr(q,n)

In order to prove that the expression (10.2.10) is bounded by the product
S Am(n)Ag—m(n) we make a first summation over the k’s with #k' = m.
Hence

Ay(n) < By(n) + qz_: A (n)Ag—m(n). (10.2.11)

Now we give a bound of B,(n). To build a sequence k belonging to G, (g,n),
we first fix one of the n points of {1,...,n}. We choose a second point among
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the two points that are at distance r from the first point. The i-th point lies in
an interval of radius r centered at one of the ¢ — 1 preceding points. Thus for
r € N*, we have

#Gr(g,n)<n-2-22r+1)---(¢—1)(2r+1) <2n(qg—1)!(3r)"~
We use condition (10.2.4) and condition (10.2.6) to deduce:

n—1

By(n) < nElzo(s,t)] + 2n(g— 1)1y (3r)" min(ge(r), 2E|zo (s, 1))
r=1

< nE|zo(s, )] +n377 ¢! <Z_: rd=2 min(e(r),E|xo(s,t)|)> .
r=1

Denote by R the integer such that R < (E|zo(s,t)|/C)"1/¢ < R+ 1. For any
2<q<2:

IN

By(n)
r=1 r=R
3q—1nq! E|$0(Svt)|Rq—l + C Rq_l_a
q—1 a—q+1

Blro(s | €
qg—1 a—q+1 '

R—1
nElzo(s, t)| + 39 ng! <E|xo (s,8)] > r 2+Cqu 2= )

IN

IN

3q_1nq!(E|x0(s,t)|/C)_(q_1)/a <
But R > 1, so that (E|zo(s,t)|/C)~"/* < 2R, and
By(n) < 37 tng!(E|a (s, t)]/C) -0/ [+ o .
w = ’ a—20+1

We find that:

—1/a\ ¢ 14+1/a
By(n) < <3 (]E|x0és’t)|) ) "Bkl <]E|x0és’t)|) : ¢ (10.2.12)

s0 By(n) is bounded by a function M7V, that satisfies condition (4.3.24) and
gives

Au(n) < (4l — 2)! (3((E|g;0(5,t)|)71/a)21

(@2 -1)! C
iy 2 (Elrols, Dl Ir1/ey! @k E|zo(s, )|\ 1+1/a
(Sl_igm cn)m)w| " () )
< e (@5 (72T

+(2Z)!”3kl (Elwoé : >|)1+<1 ww)

)
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and (10.2.5) is proved. O
Proof of theorem 10.1.

CLT for the finite dimensional distributions of U,. Let (s1,...,sm,) be a fixed
sequence of elements in [0, 1]%. Denote B,, the vector-valued process

B, = (Un(s1), -, Un(5m))-

To prove a CLT for the vector B,, is equivalent to prove the Gaussian conver-
gence for any linear combination of its coordinates. Let (aq,...,a,,) be a real
vector such that 37", o # 0.

Define Z; = 377" | a;(1{Y; < 5;} — P(Y; < s5)). Define also

Sn: \/ln Z Zl': Z oszn(sj).

1<i<n 1<j<m

We use the Bernstein blocking technique, as in chapter 8. Let p(n) and ¢(n) be
sequences of integers such that p(n) = o(n) and ¢(n) = o(p(n)). Assume that
the Euclidean division of n by (p+ ¢) gives a quotient k and a remainder r. For
i=1,...,k, we define the interval P, = {(p+¢)(i—1)+1,...,(p+q)i —q} and
ifr#0, Pip1 ={p+@k+1,....(p+ @k +rVp} Q the set of indices that
are not in one of the P;. Note that the cardinal of @ is less than (k + 1)g. For
each block P; (1 <i<k+1) and @, we define the partial sums:

1 1
U; = \/nZZj, v = \/HZZJ

JEP; JEQ

We use lemma 8.2. We check the conditions for the sequence Z;. To check

n—1 n—1
1 (k+1)q
8.2.6), note that o2 < ) d that Ev? < > :
( ), note that o < n 2 e(r) and that Ev® < w2 e(r)

Let us check (8.2.7). Using (10.2.4) with LipG = Lip H = tmaxca;/\/noy,
da = mpk and di = mp, we get

Jcon(a( | Sou)n( )] < mota+ )" = et

g (o}
L n

and

S Jeov(a( ! Su)en(f us))| < 12 =0 ) = 007y 1

On
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Taking p = n°/¢ and ¢ = n®/%* gives a bound tending to 0.
To prove (8.2.8), it is sufficient to show that E|u;|* = O(k=2). But

4

2 [ m *
>z =, (ZaiB,,(si)) s§2m32a;*<3p<si>—3p<0>>4,

JEP;

and we conclude by applying Proposition 10.2 for [ = 2 to the couples (0, s;).
In order to prove (8.2.9), note that (8.2.6) implies that

1 k+1
nh—{lgo 2 Var <Z ul> = 1.
n i=1

But

IN

k+1 k+1
Var <Zul> —ZE|ui|2 2 Z |Cov(u;, uj)|
i=1 i=1

1<i#j<k

LIPS () = 0g ) = o)

Taking p = n°/¢ and ¢ = n®/%* gives a bound tending to 0. OJ

Tightness of U,. We use the criteria of Proposition 4.2. Define
F ={gst/gs1(x) = 1{x <t} —1{x < s} — F(t) + F(s);s,t € [0,1]%}.

By definition U, (t) — Up(s) = Zn(gst) and ||gsllpy 1 = Elzo(s,t)]. Recalling
that a > 2d + 1, from the Rosenthal inequality (10.2.5) for [ = d 4 1 we get

1/r + nl/q—l/Z) ’

12n(9s,0)llp < Cllgs.tll py 1

with p=¢g =20l =2d+2, r =2a/(a—1). For the class of functions considered,
the covering number Np, 1(z,F)) is O(z~%) so that

1(a+1

L 1
/ 2Ny 1 (2, F))YPdr < C’/ 22 ("7 et ) d,
0 0

Because a > d + 1, the exponent is greater than —1, and the integral is finite.
As p = q = 2d + 2, the last condition holds directly. [J
10.3 «, J and ¢-dependent sequences

Consider the three following conditions:
(C1) There exists £ > 0 such that as(k) = O (k=7/37°) if d = 1, and as(k)
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=0 (k™2#) ifd > 1.
(C2) There exists £ > 0 such that fGa(k) = O (k=2d=¢).
(C3) There exists & > 0 such that ¢o(k) = O (k=1=*).

Theorem 10.2. If one of the conditions (Ci), i = 1,...,3 holds, then the process
U, converges in distribution in D(R?) to the Gaussian process B.

Remark 10.2. For d = 1, the condition (C1) is better than the condition
ax(k) = O(k™17V27¢) given in Shao and Yu (1996) [175] for strongly miz-
ing sequences (recall that ax (k) has been defined in Section 1.2 of Chapter 1).
In fact, in Theorem 7.3 of his book, Rio (2000) [161] has shown that the rate
ax (k) = O(k=17¢) is sufficient for the weak convergence of the d-dimensional
distribution function.

Proof of Theorem 10.2. We keep the notations of Chapter 4. The finite dimen-
sional convergence of U,, can be proved as before. Let us prove the tightness of
Un. Let F={x— 1,<,t € R}, and let G = {f —h, f,h € F}. We have
to prove that the process {Z,(f), f € F} is asymptotically tight, that is there
exists a semi metric p on F such that (F,p) is totally bounded, and, for every
€ >0,

lim limsupIE”( sup |Zo(f) — Zn(g)| > e) =0. (10.3.1)
=0 n—oo o(£,9)<9, f.geF

Since Ng,1(x, F) = O(x~?) for any finite measure @ on R?, the set (F, | - [lo,1)
is totally bounded. Consequently, the property (10.3.1) follows from (4.5.2) by
applying Markov’s inequality.

Let us prove that condition (C;) implies (4.5.2). For any s,t in RY, let f . (x) =
1,<t — 1y<s and fs,t(x) = fot(x) — [ fs1(x)P(dz). With proposition 5.6 for

(fs,t(Xi))iez for any p > 1, the quantity || Z,(fs)|lp is bounded by

Voo #0572 (3021 e (X0) g+ M () 4 Mo (o) + M) (10.3.2)

where Vo, Mi(p), Ma(p) and Ms(p) are defined in Proposition 5.6. Let P be
the law of Xy. Use inequality (5.2.5), then for any r > 2, g € G,

@)l < 4 gl (3 (@) "))

k>0

+oo
4 nl/3-1/2 (3]32 (1 +10 Z k(@z(k))g/p)) 1/3- (10.3.3)
k=1

We then apply Proposition 4.2 with ¢ = 3. Recall that Np(z,F) = O(z~%).
If d = 1, we can take r = 7/2 and p > 7/2 such that (4.5.2) holds under C;. If
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d > 1 we can take r = 3 and p > 3d such that (4.5.2) holds under (C;).
Let us prove that condition (Cz) implies (4.5.2). Define the measure @ on R?¢
by

Q(dz) = B(x) P(dx (1 + 4Zbk ) (dx), (10.3.4)
where by (z) is the function from R? to [0, 1] such that b(o(Xy), Xi) = br(Xo)

and P is the law of X,. Note that @ is finite as soon as 3,5 81 (k) is finite.
Applying the inequality (5.2.6), we obtain that for any ¢ in G,

+oo 1/3
1Za(9)llp < (2 lgllQ)"/? +nt/3-1/2 <3p2 (1 +10) _k (52<’“>)3/p>> -
k=1

We then apply Proposition 4.2 with » = 2 and ¢ = 3. Since Ng(z,F) =
O(x~%), we can take p > 3d such that (4.5.2) holds under (Cs).

Let us prove that condition (Cs) implies (4.5.2). Applying Proposition 5.7
to the sequence (fs,t(Xi))iez, we obtain, for any p > 1,

1Z0 (Fo)llp < (p(Veo + 2Mo (p))) /2
4 pl/3-1/2 (3p2(||f(X0)3Hp/3 + Ml(p) 4 Mz(p) i Mg(p)))l/3 7

where Vo, Mo(p), Mi(p), Ma(p) and Mjz(p) are defined in Proposition 5.7.
Applying the inequality (5.2.7), we get that for any ¢ in G,

1/2 (2pz¢2 )1/2

+oo
4 pl/3-1/2 (3p2(1 +2 Z ko (k) + 4 Z Ga(k)(k AN) +47 QEQ(k)))l/B'
k=1 k=1

k=1

1 Zn(9)lp < (

(10.3.5)

We take now N = n® with o = 1/(2+ ¢). If (C3) holds, we infer from (10.3.5)
that there exists some positive constant C' such that, for any g in G,

1/2 _
1Zn(9)lp < Cliglgs + Cn=e/ 429

To conclude we apply Proposition 4.2 with »r = 2 and ¢ = 2 4+ . Since
Ngi(z, F) = O(z~%), (4.5.2) holds under (C3). O

10.4 ¢ and T-dependent sequences

Consider the three following conditions:
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(C4) Each component of X; has a bounded density and there exists € > 0 such
that 61 2(k) = O (k=1/37¢) if d =1, and 601 2(k) = O (k~7¢) if d > 1.

(C5) Each component of X; has a bounded density and there exists € > 0 such
that Tl)z(k) =0 (k74d76).

(Cs) Each component of X; has a bounded density and there exists € > 0 such
that 7o 2(k) = O (k~279).

Theorem 10.3. If one of the conditions (C;), i = 4, ...,6 holds, then the process
U, converges in distribution in D(R?) to the Gaussian process B.

Proof of Theorem 10.3. The result is immediate by using Theorem 10.2 and
Lemma 5.1. O

10.5 Empirical copula processes

Copulas describe the dependence structure between some random vectors. They
have been introduced a long time ago by Sklar (1959) [178] and have been re-
discovered recently, especially for their applications in finance and biostatis-
tics. Briefly, a d-dimensional copula is a distribution function on [0, 1]‘i7 whose
marginal distributions are uniform and that summarizes the dependence “struc-
ture” independently of the specification of the marginal distributions.

To be specific, consider a random vector X = (X7,...,X4) in RY, whose
joint distribution function is F' and whose marginal distribution functions are
denoted by Fj, j = 1,...,d. Then there exists a unique copula C defined on
the product of the values taken by the r.v. F;(X;), such that

C(Fi(x1),...,Fa(zq)) = F(x1,...,24q),

for any x = (21,...,74) € R C is called the copula associated with X. When

F is continuous, it is defined on [0, 1]d, with an obvious extension to Rd. When
F is discontinuous, there are several choices to expand C' on the whole [0, 1]%
(see Nelsen (1999) [134] for a complete theory).
The natural empirical counterpart of C'is the so-called empirical copula, defined
by

Cp(u) = Fn(Ffl(ul), cee Fniull(ud)),

n,l

for every wuj,...,uq in [0,1], where F,, denotes the empirical process as in
Definition 10.0.1 and F;, ; the empirical process of the i-th marginal distribu-
tion. We use the usual “generalized inverse” notations, for every j = 1,...,d,
FyH(u) = inf{t / Fj(t) > u}.

Empirical copulas have been introduced by Deheuvels (1979, 1981a, 1981b),

[51],[52],[53] in an i.i.d. framework. This author studied the consistency of C,,
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and the limiting behavior of n'/2(C,, — C') under the strong assumption of inde-
pendence between margins. Fermanian et al.(2002) [86] proved some functional
CLT for this empirical copula process in a more general framework and provide
some extensions. Note that the results of [86] are available under the sup-norm
and outer expectations assumptions, as in van der Vaart and Wellner (1996)
[183].

Assume that the process (Y;)icz, Y = (F1(X1),..., Fy(X4)) is weakly depen-
dent. Note that the covariance structure of the limit process B depends not
only on the copula C' (via the term associated with ¢ = 0 e.g.), but also on the
joint law between Xy and X;, for every 4. This is different from the i.i.d. case,
where B becomes a Brownian bridge whose covariance structure is a function of
C only. Actually, the covariances of B depend here on every successive copulas
of the random vectors (Xop, X;). We can state:

Theorem 10.4. If (Y;)iez is weakly dependent and if the empirical process
of (Y:)icz converges in distribution in D([0,1]?) to a Gaussian process B , if
C has some continuous first partial derivatives, then the process n'/?(C,, — C)
tends weakly to a Gaussian process G in D([0,1]¢). Moreover, this process has
continuous sample paths and can be written as

d
G(u) =B(u) = Y _0;C(w)B(ur,...,uj-1,0,uj41, ..., ug), (10.5.1)
j=1

for every u € [0,1]%.

Note that the covariance structure of n'/?(C, — C) is involved, because of
both (10.0.3) and (10.5.1).

Proof of theorem 10.4. The proof is directly adapted from Fermanian et al.(2002)
[86]. Briefly, we can assume that the law of X is compactly supported on [0, 1]%,
eventually by working with Y = (F1(X1),..., F4(X4)). Indeed, it can be proved
that the empirical copulas associated with Y and X are equal on all the points
(i1/n,...,iq/n), i1,...,iq in {0,...,n} (lemma 3 in [86]), thus on [0,1]¢ as a
whole.

Consider the usual norm on [°°(]0,1]) and the Skohorod metric § on D([0,1]%.
Define the mappings
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b - { (1[0, 1)) x 12((0, 1) — (1=*([0, 1]%))
’ (F,Gl,...7Gd)'—>F(G1,...7Gd).

Clearly, ¢; is Hadamard-differentiable because it is linear. Moreover, ¢o is
Hadamard-differentiable tangentially to the corresponding product of continu-
ous functions by applying theorem 3.9.23 in van der Vaart and Wellner (1996)
[183]. Note that, for any function h € C(]0, 1]), the convergence of a sequence h,
towards h in (D([0,1]),0) is equivalent to the convergence in (D([0,1]),]| - ||oo)-
Thus, working with the Skorohod metric is not an hurdle here. At last, ¢s
is Hadamard-differentiable by applying theorem 3.9.27 in [183]. Thus, the
chain rule applies : ¢ = ¢3 o ¢2 o ¢1 is Hadamard-differentiable tangentially
to C([0,1]¢). The result follows by applying the functional A-method to the
empirical process of Y and to the function ¢ (see theorem 3.9.4 in [183]). O

10.6 Random fields

In this section, we give rates of convergence in the central limit theorem for a
7- or k-weak dependent field £. Assume that the density of the variable &; is
bounded by C¢. Following lemma 4.1, we get (Z, ¢)-weak dependence with

o for n-weak dependence, €(r) = /n(r) and c(dy,dy) = 21/8C¢(ds + d,).
o for k-weak dependence: €(r) = (k(r))* and c(dy,dg) = 2(8C¢) ; (df‘f’dg)g.

For the sake of simplicity, we shall assume that the process takes its values in
[0,1]. This may be achieved by using the quantile transform. Let (S, |- |s) be
the space of cadlag functions D(]0,1]) with the Skorohod metric. Let 7 denote
the Prohorov distance between distribution functions on (S, |- |g). If X and Y
are two processes on S, we also denote 7(X,Y") the Prohorov distance between
their distributions.

Central limit theorem for the empirical process

Let U,, be the normalized version of the empirical process defined by (10.0.2)
with respect to the closed ball By of radius N and cardinality n = #By =
(2N +1)9. Denote gs ¢ (u) = 1s<y<i—F(t)+F(s) the interval counting functions.
Denote x;(t) = go+(&).

Theorem 10.5. Assume that (&,)ner is a centered and n- or k-dependent
process. Assume that the density of the variable & is bounded by C¢. Let X (t)
be the centered normal process with variance X5 = 3 ;p Cov(zo(s), z;(t)).

Assume that there exist C > 0 and b > 0 such that €(r) < Ce™"", then
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T(Un, X) = O (n~ " log(n)~"),

where
1
W T gdyoa
~10d® +39d + 28
fo = 8d + 24

The proof is based on the well known result on the Prohorov distance:

Lemma 10.2. Let 6 be a positive real and D be a finite subset {x1,...,xm} C
[0,1], such that every z in [0,1] is in a d-neighborhood of some ;. Let X and
Y be two distributions on S. Define the d-oscillation of X

wx(0) = sup ([ X(z) = X(y)]),

llz—yll <o

and ex () = inf{e € R /P(wx (0) > ¢) < e}. The Prohorov distance between X
and'Y is bounded by:

7(X,Y) <ex(6) +ey(d) +m(Xp,Yp),

where Xp is the finite dimensional distribution of X on the subset D.

We need to compute bounds for the d-oscillations and distance between laws.
These are based on moment inequalities for the process U,,.

Proposition 10.3. Assume that €(r) < Ce™"", with b > 0. For (s,t) such that
[t —s| < Cee™/C and |t — s| < Ce3/C:

(41 — 2)!
(21 — 1)
X ((2(2d)!Cg|t — s+ (2D)(21d) 0 e |t — s|) . (10.6.1)

)2dl

E(Un(t) = Un(s))* < (6(1vb~?)log (1/]t - s))

Note that U, (t)—Uy(s) = \}n > keBy Is.t(§k). The proposition is a consequence
of the bound of the covariance of quantities depending on the functions g +(&x).

Proof of proposition 10.3. We adapt the proof of Proposition 10.2 to the series
(9s,¢(6k) ke By - For a sequence k = (ki,...,kq) of elements of T', define & =
(&kys--->Ek,) and when s and t are fixed, Iy, = []7_; gs,¢(&, ). For any integer
q>1, set:

A,(N)= > |E ()], (10.6.2)

keBY,

then,
IE(U,(s) — Un(t)?] < (20)!'n " Ay (N). (10.6.3)
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Let ¢ > 2. For a finite sequence k = (k1,...,kq) of elements of T', the gap is
defined by the max of the integers r such that the sequence may be split into
two non-empty subsequences k' and k? C Z¢ whose mutual distance equals r
(d(k*, k*) = min{||i — j||1/i € k',j € kK*} = r). If the sequence is constant, its
gap is 0. Define the set G,(¢, N) = {k € B, and the gap of k is r}. Sorting
the sequences of indices by their gap:

Ag(N) < ZEmM(aﬁnu% > |cov (M)

ki€eBn r=lkeq,(¢,N)

+ QZN: 3 ‘E(Hk1)E(Hk2).

r=1ke@, (¢,N)

(10.6.4)

Define

By(N)= ) E|gs,t(5k1)|q+§ > [cov (M e )|

qg—1
A(N) < By(N) + 3 Am(N)Aym(N).
m=1
To build a sequence k belonging to G, (g, N), we first fix one of the n points of
By . We choose a second point on the ¢'-sphere of radius r centered on the first
point. The third point is in a ball of radius r centered on one of the preceding
points, and so on... Thus

#Gr(q,N) <n-2d2r+1)1202r + 1) (g—1)(2r +1)¢ < ndg!(3r)?a=D~1,
We use Lemma 4.1 to deduce:
2N
B,(N) < n(Cg|t — s+ dg! S (3r)@ D~ min(e(r), Cet - s|)).
r=1
Let R be an integer to be chosen later.
R—1 0o
By(N) < nd?)d(q*l)q!(Cdt — 3] Z rde=D-1 4 ¢ Z Td(qfl)*le*br).
r=0 r=R
Comparing summations with integrals we get
By(N) < n(3(1vb )M Dgl(d(g —1)! x

d(g—1) Ce' b(R+1)
RUI™H(Ce|t — 1 - .
: fe=ol (14 o o)
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Choose R as the integer part of | log (Ce®®/Ce|t — s|) and assume that (s,t) € T
are such that |t — s| < e %C¢/C and |t — s| < €3*C/C¢. Then R > 1 and
By(N) < (6(1V b2)log (1/]t — s)) ™ nCelt — s|q! (dq)L, (10.6.5)

so that B, (V) is bounded by a function M7V, that satisfies condition (4.3.24).
Then

A (N) < (4l — 2)! )le

< g — 1y 00 Vb=*)log (1/]t — s|)

((2(2d)!n05|t — s)! + (2D)1(21d) nCe |t — s|) ,
and (10.6.1) is proved. O

Oscillations of the empirical process
Using Proposition 10.3, we give a bound for the modulus of continuity of U,.

Proposition 10.4. If ¢(r) < Ce™"" with b > 0, then for 6 > 1/n:
ev, (0) < K1(Ce,b,d)5? log™™ (1/9), (10.6.6)

where K1 (Ce,b,d) = 8 (6(1V 52)) (2(2d)!C¢)? .

Proof of proposition 10.4. We show that exponential moment of U, (t) — U,(s)
are finite and use Stroock’s method to find the oscillation.

Lemma 10.3. Let f(u) = |u|'/21log?(1/u). Assume that e(r) < Ce™" with
b > 0, and that 6 > 1/n. Then there exists a constant co such that for every
¢ < co and every (s,t) such that |t — s| < ¢:

(o (0, 5) < 10 <

Proof of lemma 10.3 Using the moment inequality (10.6.1) and Stirling’s for-
mula:

Un(t) = Un(s)\P _ 5, .
E( f(t,s) > SpQ (86205(261)!(6(1\/1) 2)) )

E <exp <C|Ungfzt—_ Z’J(S)'» :’O Z]: (E (wn(?(; gn(s)|>zk> :

cF Lk
k!

(]

M8

(88205(260! (6(1v b—2))2d) : .

>
Il
o
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_ 1
For ¢o = (6(1V b)) ¢ (8e2C¢(2d)!) 2, the lemma is true.
We apply a lemma of Garsia (1965) [90]. Let ¢ = ¢o/2, B(c) as in lemma 10.3,
P(u) = e —1 and 0 < § < e~ 22, The lemma says that if

// () s <

then |Un (t,w) — Un(s,w)| < 871 (4Y (w)/d%) £(9)-
Using Markov inequality and the fact that E(Y) < B(c)d?

52 A (¢)
P00~ V(o) = ) < F (v > 0 <8f(5))) < ¢iﬁ<5))'

For A = (4/¢)f(8)log(1/6), P(|Uyn(t) — Un(s)| > \) < 4B(c)6Y/?/(1 — §'/2) . For
§ sufficiently small, this term is less than \, so that ey, (§) < K162 log®(1/6)
with Ky =4/c. O
Oscillations of the limit process
Proposition 10.5. If €(r) < Ce™"" with b > 0, then etting K3(Ce,b,d) =
(Ced!(2d + 7)) /%24 (1 v b1)?,

ex(0) < K3(Ce, b, d)6? 1og\ /2 (1/6). (10.6.7)

Proof of proposition 10.5. We use a chaining argument to bound the §-oscillations
of the non-stationary Gaussian limit process X. Define a semi-metric p on [0, 1]
by p(s,t)? = Var (X (t) — X(s)). As a Gaussian process, X satisfies the expo-
nential inequality:

P(X () = X(s)] = M(s,1)) < exp{—\?/2}.

By definition, p(s,t)? = > jer Cov (zo(t) — zo(s), ;(t) — z;(s)). Using the
Cauchy-Schwarz inequality:

|Cov (x0(t) — z0(s), zr(t) — zr(5)) | < Var (xo(t) — z0(s)) < Celt — s,
and by definition of ¢(r),
|Cov (xo(t) — xo(s), xr(t) — zr(5)) | < e(r).

For a metric v over [0,1], we denote N, (¢) the covering number (see Pollard
(1984) [151], p.143). It is the cardinality of the smallest set S of points of [0, 1],
so that for any ¢, v(t,5) < e. The corresponding covering integral is

Jy<a>=/oa (210g (N, (1)?/u))* du.
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Computing as in (10.6.5), it is easy to show that
p(s,t)? = 2(27“ + 1) Ye(r) A Celt — 5| < K2|t — s log®(1/|t — s]).
r=0
where K = 2,/Ced!(1 vV b~')% Let e > 0. The inclusion of the balls of
the two metrics implies that N,(Ke'/?log??(1/e)) < Njj(¢). Thus Ny(u) <
21K /u)?log® ™ (K /u) < 24(K/u)?*t2. The corresponding covering integral
is:

é
o= /o(410g(2d+1(K/u)d+3)+210g(1/u))1/2du

5
< 25log!/? (2d+1Kd+3) + (4d + 14)'/? logfl/z(l/é)/ log(u)du
0

< 20log!/? (29 KH) 4 (4d + 14)%510g /2 (1/).

Taking ¢ = K6'/21og%?(1/6):
P (| max | X (t) — X(s)| > 26J,(K5/? 1ogd/2(1/5))) < K6Y?10g%%(1/9).
t—s|<
For a sufficiently small 6,

ex(6) < JH(K6Y210g?(1/6)) < K (2d 4 7)"/26"/2 1og ™+ V/2(1/6).

Distance between the finite dimensional laws

Let m € N. Let D = {t1,...,t,} C [0,1]. We denote z* the m-vector
(;(t1),...,x;(tm)). Define the partial sum s,,:

1 i
sn:\/nZz

1€BN

Let Y be a centered Gaussian m-vector, whose covariance matrix is Xp =
(257,5)8 veD- We bound the Prohorov distance between s, and Y. For a real e
such that 0 < e < 1, we define the class of functions F. by

Fo={feCG®R™/0<f<1,||fP)s <2m 27" for i = 1,2 or 3},
(10.6.8)
where f(9) is the differential of i-th order of f and the norm ||-||s is the operator
sup-norm w.r.t to the norm | - ||;. A bound of the Prohorov distance between
sp and Y is given by:

(50, Y) < 4m'2e(1 +1og?(e)) + 2811:'113 [E(f(sn) — f(Y)]). (10.6.9)
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Proposition 10.6. Define m, p and q as functions of n which converge to
infinity with n, negligible with respect to n, q negligible with respect to p, and
€ as a function of n which converges to zero as n tends to infinity. For a
sufficiently large n, in the case of n-dependence:

T(sn,Y) < 4m'/%e(1+4log'?(1/e)) (10.6.10)
+  Kie 'm'/2g 2p1/2 (10.6.11)
+ 2KsmY2e72n3/2¢(q) (10.6.12)
+ 2Kem®* % 3ne(q) (10.6.13)
+  2K7me3pd/2n=1/2 (10.6.14)
+ 2Kgm* %7 ?p1q. (10.6.15)

In the case of k-dependence, the terms involving K5 and K¢ are replaced by:

4 2K5m1/3pd/3€_7/3n4/36(q)
+ 2Kem*?ple ™1 3ne(q).

The values of the constants K; are given in the proof.

Proof of proposition 10.6. We use the Bernstein blocking technique (Bernstein,
1939, [13]. Assume that the Euclidean division of n by (p+¢) gives a quotient a
and a remainder 7. Denote j = (4,...,7). Define K = {—a—1,...,a + 1}%; for
i€ {—a,...,a}? wedefine the blocks P; = [(p+¢q)(i—1),..., (p+q)i—ql]. These
blocks are separated with bands of width g. We complete the construction with
at most 4a + 4 incomplete blocks on the boundary, also separated with bands of
width ¢, and associate each of them with a corresponding index in the boundary
of K. Denote @) the set of indices that are in the separating bands. Note that the
cardinality of Q is less than d(2a+1)gp?~!. We order the set of blocks P by the
lexicographic order of their index in K. We define the variables (u;);—1,... (2a41)4
and v exactly as in section 8.2.2. Consider an independent sequence of centered
Gaussian vectors (yi)i:17,,,7k, such that each y’ has the same covariance matrix
as u'. Let € > 0 and f € F. defined by (10.6.8). We decompose

k
fsn) = F(Y) f(sn) = f (Z u) (10.6.16)
i=1

k k

+of (Z u) _f (Z y> (10.6.17)
k

+ f <Z y) - f(Y). (10.6.18)
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Consider the left hand side of (10.6.16).

k k k
o) - o) 5
i=1 i=1 i=1
< 2m71/2871§:E(|U3|)
s=1
< 2m1/2671E(|U1|2)1/2.
Because €(r) is decreasing,
1 1
E(l?) = > [Cov (wi(tr), z;(t)] < " > elli—il
,JEQ ,JEQ
N
< #nQ 2(27« + 1) e(r) < K, #nQ < Klz,

where K is a constant depending on the sequence ¢(r). We get

(e (3))

Now, we apply Lemma 7.1 to the difference (10.6.17). We first, give a bound
for T}. Assume that ¢ is n-dependent. Define G = df (u' + -+ +u'~1)/0x, and
H = u’. We apply lemma 10.1 for dg < p%i, dy = p?, Lip (G) < 2m~1/2e72,
Lip(H) < n7 Y2 ||Glloe < 2m™ 27! and ||H||o < p?n~1/2. Because of the
respective order of the parameters, we simplify (10.2.2):

1. Jj—1 )
‘Cov (af(u +otu )’ujs)
0z

Summing over j and s:

< Ky (mq/p)t/%e~ (10.6.19)

< 20(G, H)e(q) < 4m™Y 22 n=12¢(g).

ITy| < Z E(fD(ul + -+ 97 -wd)| < 4m/2e 2e(q)n®/2
=1
Now we give a bound for Ty. Define G = & f(ua;atul D and H = ulul. We
apply Lemma 10.1 for dg = i’p??, dy = 2p?, Lip (G) < 2m~1/2c73 Lip (H) <
P ||Glee < 2m~Y2e72 and || H||oo < p**n~"'. Keeping the larger exponents
in each term:

2 L., j—1
Cov (3 flw 4+ ™)

0.0, ujut> < am V273 i e(g).
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Summing over j, s and t:

|T| < zl: }E (f(Q)(ul +oud (uj,uj))} < 2m32e 3¢(g)n.
j=1

Assume that £ is k-dependent. Using the same bounds for functions G and H
and relation (10.2.3):

T3] < 3D (SOl - ud ™)l ) | < am? /ot (),
j=1

o) < D[ (F@ @+ ) - () )| < Am Ve one(g).
j=1

The term of third order is bounded using the third order moment. Using Jensen
inequality:

Elull} <m'/2 " (Blut')*".
s=1
Substituting 1 to the bound C¢|t — s| and choosing R = 1V (4 + b~ log(C)),
Equation (10.6.5) becomes V4 (N) < p® (3R(1 v b=2))"* 41(4d)!. Then
(Blul Y < Kp?¥2n 572,
so that the last term is less than

If @A < Kyme3p/2n=1/2 (10.6.20)

We conclude that, if € is n-dependent:

k k
E(FQ_uw) = fQ_ vl < Kem!/2e™*n2e(q) (10.6.21)

+Kem®2e3ne(q) + Kyme3p¥/?n=1/2,
where K5 = 4, Kg = 2 and K7 is the constant in (10.6.20). If £ is x-dependent:

k k

B u) = FO )l < Ksm!'/Bp?3=p3¢(q) (10.6.22)
j=1 j=1

+Kem*3ple™3ne(q) + Kyme 3p/2n=1/2.

Now we have to bound the difference (10.6.18). We use the following lemma:



10.6. RANDOM FIELDS 245

Lemma 10.4. Let X and Y be two centered Gaussian vector of length m, with
respective covariance matric M and N. Let 0 < e <1, and f € F.. Then

[E(f(X) = FOO)] <m™ 27| M = Ny,
where ||Al[y = Zi,j | Aijl.

Proof of lemma 10.4. Because X and Y are Gaussian

n

E(f(X) = f(Y) =Y f(Zk+ Xum/Vn) — f (Zi+ Yin/Vn)

k=1

where the X}, ,, and Y}, are independent copies of X and Y, and
Zy = (Xin+ 4+ Xpo1 0+ Yer1,n+ -+ Yo n)/v/n. Using the Taylor expansion:

E(F(X) = J(00) = 3 5 B 0) - (K Xn) = FP(0) - Vi, Vi)
k=1
o B(FP WVin) - K, X Xien) = O Win) - Vi, Vs Vi)

Viens Wi, being random vectors. The term involving f ®3) tends to 0, and

. (024(0)
B (10) (s Xam) = 20) Wi Yin)) =3 (3050 05300

so that |E(f(X) — f(Y))| <m~ Y2 2|M -~ N||;. O
Apply this lemma to the Gaussian vector Y and > y;. The covariance matrix
of Y y; and Y are respectively k’;d Yp,p and Xp, where

Em.

Spp(s.t) = > h(j)Cov(zg(s),z;(t) and h(j) =

l7l<p

(1 —4i/p).

1

Define the matrix M by M(s,t) =3, ., Cov(zo(s),x;(t)). We have that

- m2kqu71

k d
H . 2D7p - ED
n 1

||ED,p||oo +m2H2D7;D_M||oo+m2HM_zDHoo'

Because of the convergence of the series defining X, ||Xp pllec is uniformly
bounded in p and gives the main contribution. Because 1 — h(j) < d|j|/p,
and >, ., [7]Cov(zo(s), z;(t)) is bounded, the term |[Xp,, — M| = O(1/p) .
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|M — % pl|o is the remainder of a geometric series and is smaller. We conclude
that the difference (10.6.18) satisfies:

E(f(gk:y) - f(Y)) < Kgm322gp 1. (10.6.23)

i=

Thus collecting the bounds (10.6.19), (10.6.21) or (10.6.22) and (10.6.23), we
infer that the distance between the finite dimensional distributions of size m
satisfies the inequalities of Proposition 10.6. O
Proof of theorem 10.5. Let D be the set of reals (i/m);=1,. m. The corre-
sponding § is m~!. We collect the results of Proposition 10.4 (oscillation of the
empirical process), Proposition 10.5 (oscillation of the Gaussian limit process)
and Proposition 10.6 (distance between fidi repartitions). We use lemma 10.2
to conclude.
The (1/m)-oscillation of U, is less than Kjgm~'/?log? ™ (m). The (1/m)-
oscillation of X is negligible with respect to m~1/2 log2d+1(m). We choose ¢ =
log(n). The terms (10.6.11), (10.6.12) and (10.6.13) are negligible. The mini-
mum rate is obtained for parameters such that m=/21og?***(n), m'/2¢ log'/?(n),
mP®/2e=3p?/2n=1/2 and m?/2c=2p~1log(n) are of same order with respect to n.
The solution is

m = n4di12 (log(n)) 6di$i713+5

p=nats (log(n)) 4+,

2d2+9d+1

= n4d_+112 (]Og(n))f 4d+12

. . . 1 10d24+39d+29
For this choice, the rate of convergence is nsi+24 (log(n)) — sit2a . O



Chapter 11

Functional estimation

In this chapter we are going to consider some methods of functional estimation.
We study the estimation of the marginal density of the one weak dependence
sequence (X;)tez and also the estimation of the regression function in a two di-
mensional model Z; = (X, Y})tez. We will show that the CLT and uniform a.s.
convergence results hold under general non causal weak dependence. We also es-
tablish sharp results about the MISE of these estimators under more restrictive
causal dependence. Our principal goal consists in extending to less restrictive
notions of weak dependence results already known for mixing sequences. We
end the chapter with an overview over the different methods of non parametric
estimation in order to extend the field of application of the previous results.

11.1 Some non-parametric problems

For a stationary two dimensional process (Z;)iez with Z; = (X¢, Y:), an impor-
tant quantity is the regression function

r(z) = E(Yo|Xo = ).

Various methods to fit such a function have been developed. Nadaraya-Watson
kernel estimates are very popular; see Rosenblatt (1991) [169], Prakasa-Rao
(1983) [153], or Robinson (1983) [163], for instance.

Volatility. Among other problems, one may wish to estimate the volatility of
financial times series, v(x) = Var (X;|X;—1 = z). The question enters
into the regression framework with both Y; = X;_; and Y; = Xi{l since
v(x) = va(x) — v¥(x), where vj(x) = E(X7|Xo = ).

Density. Another important problem of econometric interest is to estimate
the marginal density f of a stationary sample. Density kernel estimators

247
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built by using a kernel function K are usually defined. Derivatives of the
density and regression functions can also be estimated by using analogous
procedures. Here we simply set Y; = 1.

Quantiles. Conditional quantiles are linked to the conditional distribution
by the relation F(y | ) = P(X;1 < y|Xo = x). More precisely, we de-
note by ¢(t|z) = inf {y/ F(y | «) > t} the generalized (right-continuous,
with left-limits) inverse of the monotone function y — F(y | x). Set
Yi(y) = 1{x,.,<y}- Consistent estimators of the conditional regression
E(Y:(y)| X+ = x) provides information on the previous conditional quan-
tiles.

Derivatives of a density. An estimator of the derivative f(*) of f, where v is a
Grittva

vector (v1,...,v4) in N% and @) = 0x .. at"
... d

The kernel estimator f of f (see below for a precise statement) gives
another estimation f*) of f*) as:

3u1+~»+udf mitvitotra D griteetva |

s X
151 Vd = 1% V4 m (x - 7/)
oxi* ... 0z} n — Oxy' ... 0xy ( )

11.2 Kernel regression estimates

We now consider a stationary process (Z;):cz with Z; = (X3, Y;) where X3, Y; €
R. The quantity of interest is the regression function r(z) = E(Yp|Xo = x).
Let K be some kernel function integrated to 1, Lipschitz and with a compact
support. The kernel estimators are defined by

f) = m(x):nthK(x )
@) = Gl Zyt < Xt),
@) = Fan(z)= 9”“”, if fon(z) # 0;7(z) =0, otherwise.

fn,h T

Here h = (hn)nen is a sequence of positive real numbers. We always assume
that h,, — 0, nh,, — 0o as n — oo.

Definition 11.1. Let p = a + b with (a,b) € Nx]0,1]. Denote by C, the set of
a-times continuously differentiable functions. The set of p-regular functions C,
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is defined as

¢, ={u:R—R[uec, andvK, 340,
2l Iyl < K = [u() (@) = u@ ()| < Alz =y }.

Assuming g € C,, one can choose a kernel function K of order p (which is not
necessarily nonnegative integer) such that the bias b, satisfies

br(z) = E(g(x)) — g(x) = O(R), uniformly on any compact subset of R,

see e.g. Rosenblatt (1991) [169]*. If, moreover, p is an integer with b = 1,
p = a — 1, then with an appropriately chosen kernel K of order p, bj(z) ~
h? g\®) () [ sPK(s)ds/p!, uniformly on any compact interval. In view of the
asymptotic analysis we assume that the marginal density f(-) of X, exists and
is continuous. Moreover, f(x) > 0 for any point x of interest and the regression
function r(-) = E(Yy|Xo = -) exists and is continuous. Finally, for some p > 1,
x — gp(z) = f(2)E(|Yo|"| X0 = z) exists and is continuous. We set g = fr with
obvious shorthand notation. Moreover, we impose one of the following moment
conditions:

E|Yy|® < oo, for some S >p, (11.2.1)

Ee?!Yol < o0, for some a>0. (11.2.2)

11.2.1 Second order and CLT results

We consider first the properties of g(x). The following conditionally centered
equivalent of gy appears in the asymptotic variance of the estimator 7,

Ga(z) = f(z)Var (Yo|Xo = 2) = ga(z) — f(2)r? ().

Assume that the densities of the pairs (X, X}), k € Z*, exist, and are uniformly
bounded: sup || f(x)|loc < 00. Moreover, uniformly over all k € Z™, the functions
k>0

r(z,7') = (|Y0Yk| | X0 = 2, X, = a:') (11.2.3)

are continuous. Under these assumptions, the functions g4y = fayre) are
locally bounded.

*Such kernels can be constructed as K = pd for some known compactly supported (con-
tinuous) density d(-) and a polynomial p with d°p < p. If d(x) # 0 on some infinite set then
the system of equations [t/ K (t)dt = a; (0 < j < p) admits a unique solution for all choices
of a;’s because the quadratic form p — [ p?(z)d(z) dz is positive definite.
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Theorem 11.1. Suppose that the stationary sequence (Zy)icz satisfies the con-
ditions (11.2.1) with p = 2 and (11.2.3). Suppose that n’h — oo for some
d €]0,1[. Then

Vnh (§(z) — Ej()) —2 <o, nlo) [ K (u)du)

o~

and setting g(x) = g(z) — r(z) f(z)

Vnh (§(z) — E§(z)) —2— N (0, Ga(z) / K2(u)du>

n—oo

under any of the weak dependence condition formulated below.

For clarity sake we do not precise the assumptions here but the result holds if
the decay of the sequence 6(n) = O(n~=%) as n — oo for each a > 0 is faster
than any Riemanian decay. The same holds too for n(n), x(n) or A\(n).

In order to consider asymptotics for the ratio estimator 7 we use a method,
already used by Collomb (1984) [38], which consists of studying higher order
asymptotics. It is the topic of the next subsection.

Theorem 11.2. Suppose that the stationary sequence (Zy)iez satisfies the con-
ditions (11.2.1) with p = 2 and (11.2.3). Consider a positive kernel K. Let
f,9 € C, for some p €]0,2], and nh'*2¢ — 0. Then, if f(z) # 0,

Vnh (?(x) —r(x)) PN <o, ?22((;5) / K2(u)du)

n—o00 gj)

under any of the weak dependence condition formulated below.

Assuming that the sequence (Z;).ez is 6-weakly dependent with rate O(r—%)
and a > 3, Ango Nze, Bithlmann and Doukhan (2002) [6] prove that, uniformly
in x belonging to any compact subset of R,

Var G(o)) = ), () [ Ky du + o
and
Var (3(@) — r(@)f(z)) = nlh G (2) / K2(u) du + o <n1h) .

The exponential moment assumption can be relaxed. Suppose that the sta-
tionary sequence (Z;)iez satisfies conditions (11.2.1) and (11.2.3) with p = 2,
S > 2. Former results then hold if the sequence (Z;).cz is weak dependent with
n(r) = O(r=®) and @ > 35 —4/(S—2) + 2/(S —2), or A(r) = O(r~*) and
a>45—-4/(S—2)+3/(S-2).
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The CLT convergence Theorem 11.1 holds, under the conditions (11.2.1) with

p =2 and (11.2.3), if the stationary sequence (Z;)icz is 1 or k-weak dependent
with rate O(r~%) and

1 24+2(2+7)0

a>a;(0) = min(max(2+j,3(2+j)5) ,max (2+j + 5 + 1(4_;]) >>7

where 7 = 1 or j = 2 according respectively to 7 or A dependence assumption.
These results extend Doukhan and Louhichi (2001) [68], valid for the case of the
density function f, to the estimate g under weak dependence. The first right
hand side term is obtained by Bernstein’s blocking technique. The second right
hand side term results from the application of the Lindeberg method (see Rio
(2000) [161]). The CLT convergence Theorem 11.2 relies on the expansion

p 7 p+1
- i (u —up) (u —up)
wl = Z(—l) R C b b1 (11.2.4)
i—0 uo uuo

where p =2, u = b, up = Eb, =1, and r(z) = a, /b, (if b, # 0) with

o= 2 () (e (1)
3o () (e (757))

i=1

bn

Using the Rosenthal inequalities described in § 4.3 and the aforementioned CLT,
we obtain the CLT convergence Theorem 11.2 for the regression function, under
conditions (11.2.1) for p = 2 and (11.2.3), if the stationary sequence (Zi):ez
is either n or x-weakly dependent with rate O(r~%), with ¢ > «; (6) and a >
3V 97(2_1? (j = 1 under n and j = 2 under x dependence).

The results stated in Theorem 11.1 and Theorem 11.2 also hold for finite dimen-
sional convergence. The components are asymptotically jointly independent,
much in the same way that for i.i.d. sequences.

A rapid sketch of the proof for theorem 11.1. We proceed as in Rio (2000) [161]
and more specifically as in Coulon-Prieur and Doukhan (2000) [40] for density
estimation in a causal case. The case of non causal coefficients is considered
with Bernstein blocks as in Doukhan and Louhichi (2001) [68].

Here for 0 <t < n we consider Lipschitz truncations at level M = M (n):

rz—X
Tt($): (}/t 1|Yt|<M+M(n)1Yt>M_M]-Yt<—M)K( " t).
Then for a suitable constant oy, o, Y., T;(z) approximates the expression

Vnh (ﬁ(x) - r(x)f(x)) (after centering).
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Now a CLT may be proved for & = o,v/nh (T;(z) — ET;(x)). The second as-
sertion is a consequence of the first one, where Y; is replaced by Y; — r(x). See
Ango Nze et al., 2002, [6], Ango Nze & Doukhan, 2004, [7].

Remarks e A more easy and efficient way to get such results may obtained
by using lemma 7.1, see Bardet et al. (2006) [10] for density estimation and a
paper by Nicolas Ragache will clarify the regression estimation case.

e Finite repartitions distributions. Let H be an estimate of a function H (among
the previously cited). Then a central limit result for

Zn(2) = Vnh(H(z) — EH(2)) — N(0, $*(z))

extends to a multivariate central limit theorem (Z,,(z1), . . ., Zn(z)) — Nx(0,%)
where ¥ denotes the diagonal matrix with entries (s?(x1),...,s%(xx)). The pre-
vious process is not tight in C[0, 1] at points for which s?(z) # 0.

11.2.2 Almost sure convergence properties

Theorem 11.3. Let (Z;)icz be a stationary sequence satisfying the conditions
(11.2.1) with p =2 and (11.2.3). Then under the forthcoming conditions,

(i) There exists a sequence (€p)nen with nh/ (e,log(n)) — oo as n — oo such
that for any M > 0,

sup |g(z) —Eg(z)| = 0O <\/6n log(n)> : almost surely.

|| <M nh

(ii) Assume now that inf g <y f(x) > 0. If f,g € C, for some p €]0,00],
h ~ (e log(n)/n)/ 20 then

W1 p/(1+2p)
sup |[r(z) —r(z)| =0 { (6 og(n)) , almost surely.

| <M n
Remark. Under conditions (ii) of Theorem 11.3, but assuming only the weaker
condition about the bandwidth sequence
n’h — oo, for some § €]0,1],
we obtain

sup |r(z) — r(x)] = o(1), almost surely.

o] <M
For the sake of simplicity, we shall only consider the geometrically dependent
case and we defer a reader to Ango Nze, Bithlmann and Doukhan (2002) [6] for
Riemanian decays.
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Theorem 11.4. Let (Z;)icz be a stationary sequence satisfying the conditions
(11.2.1) with p = 2 and (11.2.3), and either n or k-weak dependent with geo-
metric decay rate.

(i) If nh/log*(n) — oo, then for any M > 0, almost surely,

sup |g(z) — Eg(x)| = log2(n)
sup [3(2) ~ Ej(r) 0( m)‘

an
n

. ) log* (n) 1/(1+2p)
(ii) For any M >0, if f,g € C, for some p €]0,00[, h ~ ( )

inf |, <ar f(2) > 0, then, almost surely,

4 p/(142p)
sup |F(z) —r(z)] =0 { <10g (n)) } .

|| <M n

Proof of Theorem 11.3. We keep usual notations and denote by C' a universal
constant (whose value can change from one place to another). Assume that
E(exp(a|Yy|)) < co. Then

P ( sup [g(z) — g(x)| > 0) < nP(|Yo| = Molog(n)) < Cn'~ ™,
|| <M

and, by the Cauchy-Schwarz inequality,

=N 5 1 z—X /3
sup E[g(z) — g(z)| < L E |Y0|1{Yo|>Molog(n)}|K< O) |] < n~Mo.

|z <M h h

We can now reduce computations to the case of a density estimator, as in
Doukhan and Louhichi (2001) [68]. Assume that the interval [—M, M] is covered
by L, intervals with diameter 1/v (here v = v(n) depends on n and we denote
by I; the j-th interval and x; the center of the interval). Assume that the
relation hv — oo holds (for n — o). Assume that the compactly supported
kernel K vanishes if ¢ > Ry. Liebscher (1996) [121] exhibits another kernel-type
density estimate ¢’ based on an even, continuous, kernel, decreasing on [0, co],
constant on [0,2R], taking the value 0 at ¢ = 3Ry (with compact support).
Then, he proves that

sup |9(z) —Eg(z)| < |g(x;) — Eg(x;)| + fi (17" (z;) — Eg'(x;)] + 2/Eg' (;)]) -
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Therefore, for any A > 0,

P S g(z) —Eg >
<Ief“p [9(a) — Eg(x)| 2 o

1 _ log(n)
+ A3 TMo 4 C
— M, M) Vn h

A
< C'n'"Mo 4 L, supP <|§(“”1) ~Eglay)] = )
e Vnh

A
+ L, -supP (|7 (z1) — Ed'(x1)| > )
w? (1) < B > )

The exponential inequality (4.3.31) completes the proof of assertion (i).
The proof of assertion (ii) is standard and we defer to [6] for a proof . OJ

11.3 MISE for B-dependent sequences

We now consider the problem of estimating the unknown marginal density f
from the observations (X7i,...,X,) of a stationary sequence (X;);>o. In this
context, Viennet (1997) [185] obtained optimal results for the MISE under the
condition ), ., B(c(Xo), (X)) < oo for a 3-mixing sequence X,,. We wish to
extend Viennet’s results to sequences satisfying only

> Bo(Xo), Xi) < 00 (11.3.1)

k>0
For kernel density estimators , this can be done by assuming only that the kernel
K is BV and Lebesgue integrable. For projection estimators, it works only if the
basis is well localized, because our variance inequality is less precise than that
of Viennet. Note that Condition (11.3.1) is much less restrictive than Viennet’s,
for it contains many non mixing examples. In particular, since f is supposed
to be square integrable with respect to the Lebesgue measure, the distribution
function F of Xy is 1/2-Holder. Hence, we infer from lemma 5.1 point 3.1) that
(11.3.1) holds as soon as 3, o(7(0(Xo), Xx))*/? < oo. If f is bounded (11.3.1)
holds as soon as >, o (7(0(Xo), Xx))"/? < oo.

Variance inequalities

We set (i) = B(0(Xo), X;). The main results of this section are the following
upper bounds (compare to Theorems 1.2 and 1.3(a) in Rio (2000) [161] for the
mixing coefficients a(o(Xp), o(X;))).

Proposition 11.1. Let K be any BV function such that [ |K(x)|dx is finite.
Let (X;)i>0 be a stationary sequence, and define

Yin =h 'K(h Yz — Xy)) and fo(z) = Tll ZYM. (11.3.2)
k=1
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The following inequality holds

nh/Var(fn(x))dx < /K2(x) dx+2;5(k) HdKH/|K(x)|dx.

We now come to the case of projection estimators defined with more details in
the next section:

Proposition 11.2. Let (p;)1<i<n be an orthonormal system of L*(R,\) (A
is the Lebesgue measure) and assume that each ¢; is BV. Let (X;)i>0 be a
stationary sequence, and define

1 n m
Yin= > 0i(Xk) and fu = Ying;- (11.3.3)
k=1 j=1

The following inequality holds

n [ Var (f,(a))ds < su%{iwﬁ(w)} 23 3 sug{i sl Lo @)1}
rER =1 k=1 reR =1

Remark 4. Since (M, X) < (M, X), Propositions 11.1 and 11.2 apply to
dynamical systems satisfying (3.3.1) with 257" ay, instead of 327" 3(k). For
kernel estimators this can be also deduced from a variance estimate given in
Pricur (2001) [154].

Proof of Proposition 11.1. We start from the elementary inequality

n—1

1 2
Var (fn(z)) < nHYO,nH% + n Z |Cov(Yo,n, Yin)| -
i=1

Now h [ ||Yon|l3(z)dz = [(K(x))*dz. To complete the proof, we apply Propo-
sition 5.3:

h/|C0V(Y07n,K7n)|(x)dx
< K[ (so(X0). X0) [Von(@)lds) < G@laK]| [1K(@)ldz. O

Proof of Proposition 11.2. Since (p;)1<i<n is an orthonormal system of L? (R, \)
we have that

/Var (fn(z))dz = ZVar (Yin)-
j=1
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Applying Proposition 5.3, we obtain that

n—1
1 2
Var (Vi) < lles(Xo)l5+ > [Cov(p;(Xo), 05 (X))
k=1
n—1
<

Vs o)+ 2 3 Iy 1B (les (Xo)b(o(Xo), X))
k=1

To complete the proof we sum in j:

m n—1
/ Var (fu(a z 23(X0) +2 3 E (b(o(Xo), Xi) an%nwxon)
j=1 k=

1 Jj=1

Some function spaces

In this section we recall the definition of the spaces Lip*(s,2,I), where I is
either R or some compact interval [a,b] (see DeVore and Lorentz (1993) [59],
Chapter 2). Let I, =R if I =R and I, = [a,b—rh] otherwise. For any h > 0,
let T}, be the translation operator T}, (f,z) = f(x+ h) and Ay, = T, — Tj be the
difference operator. By induction, define the operators A} = Ay o A};_l. Let
A be the Lebesgue measure on I and ||.||2,x the usual norm on L2(I,\). The
modulus of smoothness of order r of a function f in L?(I, \) is defined by

wr(fvt)Qz sup ||Az(f’.)1lrh||2>)\7
0<h<t

For s > 0, Lip*(s,2,1) is the space of functions f in IL2(I, \) such that

wisl+1(f51)2
tS

I flls.2.r = [ fll2.x + sup < 0.
t>0

These spaces are Banach spaces with respect to the norm |.|[s2,7. Recall
that Lip*(s,2, ) is a particular case of Besov spaces (precisely Lip*(s,2,1) =
Bs 2.00(I)) and that it contains Sobolev spaces Ws(I) = Bs2.2(1).

Application to Kernel estimators

If f, is defined by (11.3.2), set f, = E(f,). Let r be some positive integer, and
assume that the kernel K is such that: for any f belonging to the Sobolev space
W, (R) we have

/(f(x) — fu(x))?da < MyR2T|| £]3, (11.3.4)
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for some constant M7 depending only on r. From (11.3.4) and Theorem 5.2 page
217 in DeVore and Lorentz (1993) [59], we infer that, for any f in L3(R, \),

/ (F(2) — ful@)?de < Ma(wn(f,h)2)?.

for some constant Ms depending only on r. This last inequality implies that, if
f belongs to Lip*(s,2,R) for r — 1 < s < r, then

/ (F(2) — ) ?di < Moh? || .

This evaluation of the bias together with Proposition 11.1 leads to the following
Corollary.

Corollary 11.1. Let r be some positive integer. Let (X;)i>1 be a stationary
sequence with common marginal density f belonging to Lip*(s,2,R) withr—1 <
s<r, orto We(R) with s =r. Let K be a BV function satisfying (11.5.4) and
such that [ |K(x)|dz is finite. Let f, be defined by (11.5.2) with h = n=/(2s+1),
If (11.8.1) holds, then there exists a constant C' such that

E/ (folx) = f(2))* dz < Cn~2e/CsH),

Here are two well known classes of kernel satisfying (11.3.4).

Example 1. One says that K is a kernel of order k, if

1. /K(x)dx =1, /Kz(a:)da: < oo and /|a:|k+1|K(x)|da: < 0.

2. /a:jK(x)dx =0 for1 <j<k.

If K is a Kernel of order k, then it satisfies (11.3.4) for any » < k + 1. For
instance, the naive kernel K = (1/2)1j_; 1) is BV and of order 1. Consequently
Corollary 11.1 applies to functions belonging to Lip*(s,2,RR) for s < 2, or to
Wa(R). A footnote on page 249 proves the existence of such kernels.

Example 2. Assume that the fourier transform K* of K satisfies |1 — K*(z)| <
M |z|" for some positive constant M. Then K satisfies (11.3.4) for this r. For
instance, K (x) = sin(z)/(mx) satisfies (11.3.4) for any positive integer r. Un-
fortunately, it is neither BV nor integrable. Another function satisfying (11.3.4)
for any positive integer r is the analogue of the de la Vallée-Poussin kernel
V(x) = (cos(x) — cos(2x))/mx?. This function is BV and integrable, so that
Corollary 11.1 applies to any function belonging to Lip*(s, 2, ) for s > 0.
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Application to unconditional systems.

Proposition 11.2 is of special interest for orthonormal systems (¢;);>1 satisfying
the two conditions:

P1. There exists C independent of m such that max |ldes|| < Civ/m.
_z_m

m

P2. There exists Cy independent of m such that supz loj(z)] < Cav/m.

wejl

An orthonormal system satisfying P2 is called unconditional. For such systems,
we obtain from Proposition 11.2 that

/Var Ful@))da < m(c2 +2clcgzﬁ ) (11.3.5)

k=1

Example 1 (piecewise polynomials). Let (Q;)i<i<r+1 be an orthonormal
basis of the space of polynomials of order r on [0, 1] and define the function R;
on R by: R;(z) = Qi(z) if = belongs to ]0,1] and 0 otherwise. We consider
the regular partition of ]0,1] into k intervals (](j — 1)/k,j/k])1gjgk. Define
the functions R; j(x) = \/kRi(ka: — (j —1)). Clearly the family (R;x)1<i<r+1
is an orthonormal basis of the space of polynomials of order r on the interval
[(j —1)/k,j/k]. Let m = k(r + 1) and (¢;);>1 be any family such that

{ei/1<i<m}={Ri; /1<j<k1<i<r+1}. (11.3.6)

The orthonormal system (p;);>1 satisfies P1 and P2 with

r+1
01:(r+1)*1/21max [|dR;|| and Cy = (r+1)"1/2 s%pl]Zm
TE =1

The case of histograms corresponds to r = 0. In that case ¢; = \/kl](j_l)/k,j/k].
Clearly Cy = 1 and ||dy;|| = 2v/k, so that C; = 2.

Assume now that Xy has a density f such that f1 ;) belongs to Lip*(s, 2, [0, 1]).
Suppose that r > s — 1, and denote by f the orthogonal projection of f on the
subspace generated by (¢;)1<1<m. From Lemma 12 in Barron et al. (1999) [12]
we know that there exists a constant K depending only on s such that

1
/0 (f(@) = f(2))*dz < Km™>*. (11.3.7)

Since f = E(f,), we obtain from (11.3.5) and (11.3.7) the following corollary.
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Corollary 11.2. Let (X;);>1 be a stationary sequence with common marginal
density f such that f1jg 1) belongs to Lip*(s,2,[0,1]). Let r be any nonnegative
integer such that r > s — 1 and k = [n'/tV). Let (:i)1<i<m be defined by
(11.3.6) and f, be defined by (11.5.83). If (11.3.1) holds, then there exists a
constant C' such that

1
B [ (fula) ~ fla)Pdo < O 25041
0

Example 2 (wavelet basis). Let {e;x,j > 0,k € Z} be an orthonormal
wavelet basis with the following convention: eg ) are translate of the father
wavelet and for j > 1, e; = 27/2¢)(2/2 — k), where 1 is the mother wavelet. As-
sume that these wavelets are compactly supported and have continuous deriva-
tives up to order r (if r = 0, the wavelets are supposed to be BV). Let g be some
function with support in [— A, A]. Changing the indexation of the basis if neces-

. 27 M . . .
sary, we can write g = > .50 > k_1 jk€jk, Where M > 1 is some finite integer

depending on A and on the size of the wavelets supports. Let m = ijo 27 M
and (¢;)i>1 be any family such that

{ei/1<i<m}={ejr/0<j<J1<k<2M}. (11.3.8)

The orthonormal system (¢;);>1 satisfies P1 and P2.

Assume now that Xy has a density f belonging to Lip*(s,2,R) with compact
support in [~ A4, A]. Denote by f the orthogonal projection of f on the subspace
generated by (¢;)i<i<m. From Lemma 12 in Barron et al.(1999) [12] we know
that there exist a constant K depending only on s such that

[ @) - oo < w22 (11.3.9)

Since f = E(f,), we obtain the following corollary from (11.3.5) and (11.3.9).

Corollary 11.3. Let (X;);>1 be a stationary sequence with common marginal
density f belonging to Lip*(s,2,R) and with compact support in [—A, A]. Let
r be any nonnegative integer such that r > s — 1 and J be such that J =
[logy(n/ s+ )] Let (¢;)1<i<m be defined by (11.3.8) and f, be defined by
(11.3.3). If (11.5.1) holds, then there exists a constant C' such that

E [ (fu(e) - f(@)de < Cu22/2040),

Remark 5. More generally, if 7" | B(o(Xo), X;) = O(n®) for some a in [0,1],
we obtain the rate n=2(1=a)/(2s+1) for the MISE in Corollaries 11.1, 11.2 and
11.3. Note that if (11.3.1) holds the rate n=2%/(25%1) is known to be optimal for
i.i.d. observations.
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11.4 General Kernels

We are aimed to describe other (linear) estimation procedures obtained by re-
placement of the kernel K, (z,y) = h,,' K (y — 2/h,) by another one.

As a meta-theorem we claim that theorems 11.1 and 11.3 remain valid if the
convolution kernels are replaced by any of the forthcoming one; moreover those
results extend to the estimation questions formulated in § 11.1; the needed
assumptions are still a fast enough Riemanian decay of the weak dependence
coefficient sequence. The more precise theorem 11.4 requires geometric decay
rates.

Even if we do not write definitive convergence results, we provide below all the
bounds needed to extend results in § 11.2 to other types of estimators.
Projections. Our discussion will be made of three steps: we consider suc-
cessively finite order polynomial functions (Tchebichev), infinite order kernels
(Dirichlet) and summation methods (Cesaro, developed in the case of De la
Vallée-Poussin and Fejer on the one hand and Abel-Poisson on the other hand
with Melher), and finally generating functions. For the sake of completeness
several classical results are here reminded and we are most of the time working
on R rather than R?, the generalization being straightforward.

Orthogonal polynomials. Consider an interval I of R and a real Hilbert
space L2(I, ) with p dominated by the Lebesgue measure. The Schmidt or-
thogonalization of the family of monomial functions {1, x, 2?2, ...} according to
the scalar product of IL?(I, i) leads to the Tchebichev polynomials Pj. Such
polynomials verify for all j, deg(P;) = j. Denoting k,, the highest coefficient of
P, (x), orthogonality of the families implies, for constant B, 2, a three terms
recurrence relation

Priale) = (14204 Buia ) Prialo) = "3 Py o),
Kn+1 Kn+1
Ezamples. If I = (—1,1) and pu(dt) = dt then this gives the Legendre polyno-
mials, if I = (—o00,00) and u(dt) = e~t"dt we obtain the Hermite polynomials
and if I = (0,00) and p(dt) = e~tdt this leads to Laguerre polynomials.
If fis in IL2(I, i), a natural way to estimate f is by mean of projection on an
orthonormal polynomial basis through the estimation fn that naturally arises :

n m(n)

fule) = 13T BX)R)

i=1 j=1
The kernel we have to consider is thus given by

m(n)

Koy (Xiyz) = Y Pi(X;)Pj(x).
j=1
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Application to functional results with wu,,(X;,z) = VmK;,(X;,r) as usual.
Indeed, the Christoffel-Darboux formula (three terms recurrence relation: see
e.g. Szegd [182], p. 43), implies that the polynomial functions yield the kernel:

fm Prni1(2) P (y) = P (€) Pt (y)

Km(ﬂf, y) =
RKm+1 r—=y

where k,, is the highest coefficient of P,,(x). One remarks that the division by
x —1y does not change the polynomial character of K, because x = y is a root of
Ko(x,y). Then K,(2,y) ~oo kmt™. Thereby we can straightforwardly check
that /m| K (Xi, )|l < m*/? and that [ /m|K,,(X;,t)|dt < m~/2 on every
compact subdomain of 1.

An example on IL? ([-1, 1], dt) is given by Legendre polynomials also known by
the formula:

_1)k dm
2nn! dzn
Dirichlet kernel. Consider now the family of trigonometric polynomials func-
tions {cos(nz),sin(nx)}nen. This family is well-known to be a dense subset of
the set of 27-periodical continuous functions, denoted C* ([0, 27, dt) by WEIER-
STRASS density theorem. If we consider the projection S;, on the trigonometric
subspace

Li(a) = ¢ 2)n,

(1—=

span {cos kaasinnx/k < n} =T,

then the natural associated kernel is Dirichlet kernel:

m m . (2m+1)
. sin (x —vy)
Dp(a,y) = Y e*ov) =142 k(xz—1y) = 2
) k=—m ‘ i k=1 cosktr =) sin ;(33 )

The Dirichlet kernel is also of infinite order but is not positive. Thereby one
cannot use the previous monotone convergence argument.

Consider a function f in C**([0,2x]), the space of r times differentiable, 27
periodical functions on [0,27]. A theorem of Jackson (cf. Doukhan and Sifre
[74] p. 217) asserts that

IRl =510 | [ Doy = 2)(706) = )] = O~ g

This implies that the optimal bandwidth condition for Fourier approximation in
our case is not defined as a power of n. This furthermore implies that whenever
fis in C**([0,27], R) we cannot use an optimal window to control the bias
and the covariance of the estimate. Then in that case we need to erase the

bias by taking a suboptimal window, ¢.e. a window whose order is such that
1

Rm(f)zo(n’a)

Summation methods. The purpose of summation methods is to transform
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natural kernel into non-negatives, more regular kernels, thereby turning over
the above problems. We first define summation methods by the way of a weight
sequence {a,, ;/m € N, 0 < j < m}. Then for all j < m: am; —m—oo 0, and
Z;n:l am,j = 1. The weighed kernel is defined as a generalized CESARO’s mean

m m J
K& (,y) = am;Ki(z,y) =Y am; »_ Pi(z)Pi(y)
j=0 j=0 i=0

In the sequel we will omit the superscript a. The summations method when well
chosen lead to improving result on the bias. Consider now the main classical
examples. The DE LA VALLEE-POUSIN kernel is obtain by considering the means
of the FOURIER truncated series:

1

Smn = (Sp+ -+ Smt1)
m—n

The kernel associated to this summation of projection is given by:

1 sin (m-|2-n)t (mgn)t

sin

m-—n sinzé

Dpyn(t) =

When m takes the value 0, the kernel specializes into the FEJER’s kernel F},, of
order m, wich is also the result of a CESARO mean of the DIRICHLET Kernel
D,,, setting in that case a,,; = mfll{lgjgm},

Fp(Xp,2) =mD? (Xp —2) = Frp(Xp —2) ~m™?

The Fejer kernel is nonnegative then for all f € C1*([0,27]) an equivalent of
the bias is easily found with a > 0

n

Ram(N@) =[St E = sy — )
= ml/? Fm(u)f(a:—l—u)dy—/ Fo(u)f(x)du
[0,27] [0,27]
= mt/? 0> ]Fm(u) (fx+u)— f(x)du

Now let ¢ = mu and expand f to order one according to Taylor’s formula;
the positivity of the kernel implies Ry, ., (f)(z) = O (m’3/2), thus the optimal
bandwidth condition is m = O(n¢) and we may again adapt the CLT.

For f € C#*([0,2n]) with 8 > 1 use Jackson kernel J, ., = g, L, D2’ | where
Gp,m normalizes Jj, .
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Generating function and Abel summation. Another way of adding regularity to
kernels is with analytic extension of the generating functions. Note that this
is close to the principles of Abel summations. e.g. the example of Hermite
polynomial functions leads to a kernel known as Melher kernel, see [182].

The Hermite polynomial functions H, (z) are defined by:

1 dF 2
Hy(x) = —1)* v

RPN e N g 1€
The double generating function of this family is of the form:

Ki(X;, ) = Ztka () = ! 672<1it2)((X’3+w2)(t2+1)74tka)

V(1 —t2)

And admits an analytic continuation in ¢ = 1. The Mehler kernel M,,(z) is

defined by setting ¢ = 1 — 1/m(n) and studying the behavior when m(n) — oo.

Then we once more have a result.

Wavelets basis. Another important class of projection estimates is given by

wavelets. Consider a wavelet basis derived from a scaling function ¢(z). Then

the projection f of order m of a density f over span{gm x = = m¥2¢p(mix —
k)/keZ}is

= Z O ks O 1 () where O = /f(t)¢m,k(t)dt
k=0

Empirical coefficients are: &y ;1 = n-! 2?21 ®m,k(Xi). Thus the projection
estimate f writes as:

k=—o0 k=—o00 i=1

We define the wavelet kernel K, as

m(Xi, x) = Z Onr i (Xa)dnr k()

k=—o00

The number of terms in the summation is finite for finite M whenever the func-
tion ¢ is assumed to have a compact support. This hypothesis is not necessary
and we only assume here that wavelets are regular enough (cf. Daubechies
(1988) [41]): 4C' > 0, dJa > 1, Vz € R: |¢(z)] < C/(1 + |z|)*. This yields a fast
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decay of the kernel:

—d
/|¢(de)|d$ < (1+ﬁd|x|)a—l — O(Mfder(afl)) _ (,)(]\4—11(@,2))7
Kyu(Xiz)lde < O(M M —2de
[ K (X, )| (

= OMI=2) g5 if 2 #0, P(X; =0) = 0.

We now set m = M?4(2¢=2) Tt is remarkable that for x = 0 (and only for this
point if we assume regularity conditions) one must set m = M 2d(a=2) hence
the speed of convergence is lower. 6 = 1/2d(1 — 2«) holds in our theorem. We
now note K, instead of Ky;. Then K,,(z,y) = m?K (max, my) for K(z,y) =
Sore o ¢y — k)p(x — k) and bias writes,

En(f)(@) = [E(fam(@)— f(z))
< /K (y, ) f(y)dy — f(x)

= / m? K (m®y, mx)(f(y) — f (w))dy‘

= /de(mdx—i-t,mdx) <f (x—i— Ttn) - f(x)) dt‘

Let now the kernel K have regularity r i.e. [ K(u,u—t)t’dt =01if0<v <r
and [ K(u,u—t)t"dt # 0. If now f € C"([a,b],R), then by the Taylor formula,

n—1 j ) z+t/m r—1
o) = X oo [ S du, we obtain

= mdj! mr =1 (r —1)!

En(f)@) = ., " ) / K(x,er;) /:“/mumf<m>(u)dudt

m" =L (r —1)!

If f"=1 is bounded, the second integral is O((t/m)") as Ey, (f)(z).

Remarks. e FE, (f)(xz) ~ h(mx)m~" where h is a bounded function when
m goes to infinity. The precise characteristics of h depends on the wavelet
considered. h in general is a pseudo-periodic function.

e Now consider the quadratic deviation. By positivity of the summed functions,
the second moment V,,,(f)(z) answers

Valla) = [ K3 nte + t.ma) <f (;H;)_ f@) i

~ m/Kz(u,u+t)dt.



Chapter 12

Spectral estimation

Parametric estimation from a sample of a stationary time series is an important
statistic problem both for theoretical research and for its practical applications
to real data. Whittle’s approximate likelihood estimate is particularly attractive
for numerous models like ARMA, linear processes, etc. mainly for two reasons:
first, Whittle’s contrast does not depend on the marginal law of the time series
but only on its spectral density, and second, its computation time is smaller
than other parametric estimation methods such as exact likelihood. Numerous
papers have been written on this estimation method after Whittle’s seminal pa-
per and in particular Hannan (1973) [102], Rosenblatt (1985) [167] and Giraitis
and Robinson (2001) [94] established the asymptotic normality respectively for
Gaussian, causal linear, strong mixing processes as well as for ARCH(o0) pro-
cesses.

This chapter is organized as follows. A first section details the expression of
the spectral densities of some standard models. A second section addresses the
asymptotic behavior of the empirical periodogram. This is a non consistent
estimator of the spectral density but it yields a consistent parametric procedure
called Whittle estimation. A last section is aimed to derive the properties of a
bandwidth estimate of the spectral density. This estimate is obtained by con-
voluting the periodogram with an approximate Dirac measure. Its second order
properties are easily derived through a simple diagram formula but higher order
asymptotic needed to conclude to a.s. convergence properties need a dependence
tool introduced in § 12.3.2.

12.1 Spectral densities

The following models are already described and their weak dependence prop-
erties are checked in chapter 3. Nevertheless, this is an important feature to

265
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provide precise expressions of their spectral properties.

Non-causal (two-sided) linear processes. Let X be a zero mean station-
ary non causal (two-sided) linear time series satisfying:

Xp= Y aj&-; for keZ, (12.1.1)

j=—o0

with (ag)kez € R% and (&k)rez a sequence of zero mean i.i.d. random variables
such that E(£3) = 02 < oo and E(|&|?) < co. We set @, = a_x, and @ = (ay)kez.
Therefore the spectral density of X exists and satisfies:

o
§ ake—lkA

k=—o0

2

) =

0.2
21
9 00 o

g .
_ o,k
= o E E ap—jaje

k=—oc0 \j=—00
2 o0

a

= o > (axa)e ™, (12.1.2)

k=—oc0

There exist very few explicit results in the case of two-sided linear processes.

Causal GARCH and ARCH(o0) processes. The famous and from now
on classical GARCH(¢', ¢) model, introduced by Engle (1982) [84] and Bollerslev
(1986) [23], is given by relations

’

q q
Xk = pkfk with pi = Qo + Zang*j + chpz*j’ (1213)
Jj=1 Jj=1

where (¢',q) € N2, agp > 0, a; > 0 and ¢; > 0 for j € N and (& )rez are
iid. random variables with zero mean (for an excellent survey about ARCH
modelling, see Giraitis et al. (2005) [93]). Under some additional conditions,
the GARCH model can be written as a particular case of ARCH(oo) model,
introduced in Robinson (1991) [165], that satisfies

Xy, = pr&r with pf =by+ Y b; X7, (12.1.4)
j=1

with a sequence (b;); depending on the family (a;) and (¢;). Different sufficient
conditions can be given for obtaining a m-order stationary solution to (12.1.3)



12.1. SPECTRAL DENSITIES 267

or (12.1.4). Notice that for both models (12.1.3) or (12.1.4), the spectral density
is a constant. As a consequence, the periodogram is that of the squared pro-
cesses; in the GARCH case (see Bollerslev (1986) [23]) is based on the ARMA
representation satisfied by (X?)rez. Indeed, if (Xj) is a solution of (12.1.3)
or (12.1.4), then (X?) can be written as a solution of a particular case of the
bilinear equation (see § 3.4.2):

X2 =g, (A/bo + WijX,f,j) +Aibo+ M S bXE, for ke,
j=1 j=1

with ey, = (2 —X\1)/y for k € Z, \; = E€} and 7? = Var (§2). Moreover, the time
series (Yy)rez defined by Yj, = X,f — Mbg (1 - M Z bj)f1 for k € Z, satisfies
j=1

the bilinear equation with parameter ¢g = 0. Hence, a sufficient condition for
the stationarity of (X?)kez with || X&||m < oo is

(leollm +1)- Y bl <1 = ; +1) - bl < L.
7j=1 7j=1

Set 0 = E(X¢ — p?), the spectral density of (X7 )kez is
o’ = x| 72
) = 2W‘1—;bj-eﬂ ‘ .

The method developed in Giraitis and Robinson (2001) [94] for establishing
the central limit theorem satisfied by the periodogram is essentially ad hoc and
can not be used for non causal or non linear time series. The recent book of
Straumann (2005) [181] also provides an up-to-date and complete overview to
this question. Chapter 8 of this book is devoted to the results in Mikosch and
Straumann (2002) [131] that studied the case of intermediate moment conditions
of order > 4 and < 8 for the special case of GARCH(1,1) processes.

Causal Bilinear processes. Now, assume that X = (Xy)kez is a bilinear
process (see the seminal paper of Giraitis and Surgailis (2002) [95]) satisfying
the equation

X =&k (ao + Zank*j) +co+ ZCij,j for ke Z, (12.1.5)
=1 =1

where (§x)rez are 1.i.d. random variables with zero mean and such that ||, <
oo with p > 1, and ay, ¢;, j € N are real coefficients. Assume ¢y = 0 and define
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the generating functions

A(z) = 372, ;2! o Cl) =R, g ,
Giz)=(1-C(2) ' = >0 957 H(z) = A(2)G(2) = 2272, hy2/.

If [[€ollp 2=72 1 1hyi] < oo, for instance when |||, - (Z;’il laj| + 3252, |cj|) <1,
there exists a unique zero mean stationary and ergodic solution X in LP(Q, A, P)
of equation (12.1.5). For p > 2, the covariogram of X is

) = aleola(1 - Y202) Y gs00
j=1 §=0

and ), |R(k)| < co. The spectral density of X exists and satisfies:

f) = e 9igjen e,
) 2m(1 = 3272, h3) k;wgo s

with o2 = ||&]|3.

Non-causal (two-sided) bilinear and LARCH(c) processes. The bi-
linear process X = (Xj)gez satisfies the equation

X =& (a0+ Y a;Xp ), forkez, (12.1.6)
A
where (&;)rez are i.i.d. random bounded variables and (a)kez is a sequence of
real numbers such that A = [|{o[|ec - 3, 2 a;| < 1. Then the spectral density of
X exists and is defined by

-2
2 (o)

_7 AR
=, 1- ije
Jj=1
In the previous expression, the coefficients b; are not written explicitly as func-
tions of the initial parameters (a;);ez and a. By the same way as in the causal
case, assume now that Y = (Yj)rez satisfies the relation

Y. = &g\/ao + Zank{j, for k € Z, (12.1.7)
J#0

with the same assumptions on (&;)rez and (ag)rez. Then, the time series

(Y;?)rez satisfies the relation (12.1.6) and is a stationary process. Then, Y is a

stationary process, so-called a two-sided LARCH(oo) process.

The condition on the sequence (£x)kez, i-e. i.i.d. random bounded variables,

is restricting. However, if it is only a sufficient condition for the existence of a

non causal LARCH(o00) process; it seems to be very close to be also a necessary
condition, see Doukhan and Wintenberger (2005) [77].
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Non-causal linear processes with dependent innovations. Let X be a
zero mean stationary non causal (two-sided) linear time series satisfying eqn.
(12.1.1) with now a dependent and centered stationary innovation process:

E& =0, E¢2 = o2

Then denoting by f¢ the spectral of the process (£;) we have f¢(0) = o2/(27),
moreover the spectral density of X exists and satisfies:

2

FO) = | D are™™ £
k=—o0
= fe(N) D (axa)e*N (12.1.8)
k=—oc0

Examples of interest are orthogonal series like mean zero LARCH(00) processes.
In this case no additional information about £ may be obtained from the ex-
pression of this spectral density.

Another important case is thus that of a process £ with a non constant spectral
density; we previously recalled the precise expression of this spectral density for
the case of Bilinear processes introduced by Giraitis and Surgailis (2002) [95].

12.2 Periodogram

Let X = (Xk)rez be a zero mean fourth-order stationary time series with real
values. Denote (R(¢)); the covariogram of X, and (k4(¢,7,k))ijx the fourth
cumulants of X:

R(Z) = COV(X(),Xi) = E(X()XZ),
/€4(7;,j7 k‘) = EX()XZ'X]'X].C — EXQXlEXJXk
~EXoX;EX; X), — EXo X, EX; X,
for (i,7,k) € Z3.

We will use the following assumption on X:
Assumption M. X is such that:

v = ZR(€)2 <oo and Ky = Z |ka(i, j, k)| < o0. (12.2.1)
tez i,j,k€EZ

This assumption is closely linked to weak dependence in the comments following
definition 4.1 and by using the notation (4.4.9) with lemma 4.11 and propositions
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2.1 and 2.2.
Assumption M ensures the existence of X’s spectral density f € L?([—m,x[):

1 ik
f\) = o Z R(k)e™ for A € [—m, 7.
keZ
The periodogram of X is defined as:

n
E Xkefik)\
k=1

2

I,(\) = 271m , for A € [-m 7.

We now rewrite

1 D —i
L = > Ru(k)e*
[k|<n
(n—k)An
Ry (k) = n Z X Xjtk
j=1v(1—k)

Here ﬁn(k) is a biased estimate of R(k).

Thus, the periodogram I, (\) is a natural estimator of the spectral density;
unfortunately it is not a consistent estimator, as its variance does not tend to
zero as n tends to infinity. However, once integrated with respect to some L2
function, its behavior becomes quite smoother and can provide an estimation of

the spectral density. Now, let g : [—m, 7[— R a 27-periodic function such that
g € L3([—, n[) and define:

Jn(9) / g(M) L, (M) dX, the integrated periodogram of X

and J(g)

/ " gNFO) dx.

—T

Theorem 12.1 (SLLN). Letc > 0. Assume that the function g(N\)=>",., gee’™*
satisfies 3,5 (1 + [€])°g7 < ¢ for some s > 1. If X satisfies Assumption M,
then uniformly with respect to such functions g,

Jn(g) — J(g) a.s.

This theorem will be proved after two lemmas of independent interest.

Lemma 12.1. If X satisfies Assumption M, then:

nmax (Var (}A%n(é))) < Rg + 27.
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Proof of Lemma 12.1. To prove this result, we denote Y;, = X; X1, — R({),
use the identity

Cov(Yo,e, Yje) = ka(l, 5, j +€) + R(j)* + R(j + O)R(j — £)
and deduce from the stationarity of (Yj /) ez when £ is a fixed integer:

(n—0)An  (n—0)An

nVar (}A%n(é)) < 11L Z Z |Cov(Yje, Yjr o)l

Jj=1Vv(1—=4) j/=1v(1-¥)
< Z|Cov Yo,e,Yj,0)|
jEL
< D (Imalt. 4.5+ 0]+ 2R(j)?)
JEL
S KJ4+277

by using Cauchy-Schwarz inequality for ¢?-sequences. [J

Lemma 12.2. Denote cs =) ,c,(1+[£|)7%. If X satisfies assumption of The-
orem 12.1, then:

El() — J) < ° (7 + ealia +27)).

Proof of Lemma 12.2. As in Doukhan and Leén (1989) [66], we use the decom-
position:

Tig) = Y R(O)gr.

[e[=n

Ju(g) = J(g) = ~Ti(g) — Ta(g) + Ts(g) with { T2l9) = > U R() g,
[|<n

Ti(g) = Y (Ru(0)—ER,(0))ge

[e|<n

(12.2.2)

Remark that T53(g9) = J,(g9) — EJ,(g). Thus, we obtain the inequality:
E[Jn(9) = J(9)* < 3(ITu(9)* + T2 (9)* + E[T3(9)[?).

Cauchy-Schwarz inequality yields:
s c
Ti(@)f < e (1+[) R < " > RE?,
[¢]>n le]>n

Pl TRE? < YT R

[¢]<n [¢|<n

T2 (g)I?

IN
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Hence, |T1(g)|? + |Ta(g)|* < 7. Lemma 12.1 entails
n

T5(9)* < e (L+|0)*(Ralf) — ERu(0),

[|<n
ET3(g))> < ¢ (1+[¢)~*Var (R,(¢))

[|<n
1

< —8

< DA (ka+ 2)
[|<n

< CCS-H4+27,

n
We combine those results to deduce Lemma 12.2. [

Proof of Theorem 12.1. We derive the strong law of large numbers from a weak
L2-LLN and from Lemma 12.2. The proof follows the scheme of the proof of the
standard strong LLN. Set ¢ > 0. First, we know that for all random variables
X and Y, we have P(| X + Y| > 2t) <P (|X| >t) +P(]Y| > t). Thus:

P (om0~ @] 220) < B(dee) -T2

+ P ( max
k2<n<(k+1)2

Tu(g) — Jia(g)] > t)

and

P(max|Jn<g>—J<g>|>zt) < Y Bl - J(@) >0

n>N
k=[v'N]
e P(kzgﬁ%ﬁmlJn<g>—Jk2<g>|zt)
k=[VN]
< Av+ By (12.2.3)

From Bienaymé-Tchebychev (or Markov) inequality, Lemma 12.2 implies:
Cy 1
AN 50 D o (12.2.4)
k>VN

with ¢} € Ry. Now set R, (f) = ﬁn(é) - Eﬁn(é) The fluctuation term By
is more involved and its bound is based on the same type of decomposition as
(12.2.2), because for k? < n:

In(9) — Jr2(9) = —T1(9) + Ty(g) — T3(9),
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with now,

Ti(9) = Y, R(Oa,

k2<|¢|<n
1
o) = . > RO
k2<|€|<n
and Ty(g9) = Z él@(@ge— Zén(é)gf-
0| < k2 [l|<n

As previously,

¥
T (9)]* + 1T5(9) < c- g2

— _ * _ /

Set Ly =, max . [n(9) = Jiz(9) and Tii(g) = pmax IT5(g)|, then,
, E(L2
By < Z br, with by = P(Lk > t) < (t2k).
k>VN
Now
. 3ey .
E(L}) < 3(T{(9)]* + |T5(9)|* + E|T; (9)°) < w2 T 3E| Ty (9)°.

Then, for k> <n < (k+1)? and /£ € Z,

k% ~
Rn(é) = " Ry (6) + Ag’n,k

nA(n—~)
AVEWENES > Yhe
" h=(k2 A2 —0) 1

Remark that E;g (0) = 0 if k? < |[¢| < n and thus én(é) = Ay % in such a case.
Also note that

(K2 4+2k)A((K* +2k)—£)

Ay = max [Agnkl <, > Yh,el,
k2 sn<(kt1)? k h=(k2A(k2—£))+1

and thus,
1
* 2 < 2 2
E(A7,)° < o (2k) o, (E(|Yn,e|?))
4
< E(| Xo[*).
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Write

) = X R (1-5)a- S v

[0]<k2 [ <n
* 2 53 *
Ty (9)] < i Z | B2 (€) ge| + Z A7y 1gel
| <k? jel< (ot 1)2

and we thus deduce for a constant Cy > 0,

4 ~ CicA
E|T: (9))? < 20, < 5 SUp (Var (Rp2 (6))) + sup (]E(A}‘k)z)) < 12
k* vez, tez, ’ k
for a constant A > 0 depending on E|X,|*, x4, and ~ only.
Hence by, < 3(y + AC1)/(k*t?) is a summable series and, with Cy > 0,
Cs 1
BN< 50 D g (12.2.5)

k>VN
Then, (12.2.3), (12.2.4) and (12.2.5) imply sup |J,,(9) — J(g)] — 0 in probabil-
n>N

ity, so that J,(¢9) — J(g) a.s. O
Two frames of weak dependence are considered here, the #-weak dependence
property and the non causal n-weak dependence.

12.2.1 Whittle estimation

The previous examples are essentially explicit representations of the spectral
density of some commonly used times series. In the case when the coefficients
are functions of an unknown finite dimensional parameter 3, a way to estimate
this parameter is to use the contrast J (ggl) where f(\) = o%gg(\) denotes
the spectral density of the model according to the value 3 of the parameter
and moreover gg(0) = 1. We thus exhibit two parameters, 0? and 3. Let
(X1,...,X,) be a sample from X. Define the Whittle maximum likelihood
estimators of * and ¢*2, that are

~ : - . "I (N)
n — A n ! = A
I} rgminge {J (95 )} rgminge {/ﬂ a5 () d)\} and
1
~2 —1

In Bardet, Doukhan and Leén (2005) [11] it is shown that strong consistency
of the estimators (3, and 52 may be proved by using extensions of the previous
tools. First a SLLN can be deduced of the one of the previous section and
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secondly the CLT is derived by using the previous representation of the peri-
odogram and the results in § 7.1. To our knowledge, the known results about
asymptotic behavior of Whittle parametric estimation for non-Gaussian linear
processes are essentially devoted to one-sided (causal) linear processes (see for
instance, Hannan (1973) [102], Hall and Heyde (1980) [100], Rosenblatt (1985)
[168], Brockwell and Davis (1988) [28]). There exist very few results in the case
of two-sided linear processes. In Rosenblatt ((1985), p. 52 [168]) a condition for
strong mixing property for two-sided linear processes was given, but some re-
strictive conditions on the process were also required for obtaining a central limit
theorem for Whittle estimators: the distribution of random variables & has to
be absolutely continuous with respect to the Lebesgue measure with a bounded
variation density, m > 4 + 29 with § > 0 and a central limit theorem obtained
with a tapered periodogram (under assumption also > v a0 (m)%/ 39 < oo
where ay, oo (m) > oy, denote a strong mixing coefficient defined now with four
points in the future instead of 2 for a/,). The case of strongly dependent two-
sided linear processes was also treated by Giraitis and Surgailis (1990) [95] or
Horvath and Shao (1999) [108].

In the case of causal linear processes, it is well known that:

V(B = %) = Ny (0, 2m(W*)~1),

2 is a consistent estimate of o* and therefore \/n(5, — 0*) — N (0,0%4),

with 44 the fourth cumulant of the (£ )rez, and v/n (B, — 8*) and v/n(32 — *)
are asymptotically normal and independent.

o

12.3 Spectral density estimation

In this section, X = (X,,)nez denotes a vector valued stationary sequence (with
values in R”). The spectral matrix density of X writes

fx(\) = Cov(Xo, X;)e'™

teEL
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here, R, = Cov(Xy, X;) = EXI X; — EXJEX; is a D x D—matrix.
This D x D—matrix valued function is estimated by

—~ ™ d
O = BaxL)= [ Fu(L— )y, (12.3.1)
n _ —+ )
_ ! 3 <1_ [k l') X xetth=DA (12.3.2)
n m
k=1
_ ! <1—|5|>1§n(s)e—isA (12.3.3)
2 m ’
|s|<m
(n—s)An
Rn(s) = > XX (12.3.4)

n
j=1v(1—s)

where Fi, () =32, (1 - Lfl‘) et =1 (Sm(::f ))‘) is the Fejer Kernel and
2

the matrix periodogram is defined as

1 «— ,
I,(\) = ZX,ZXleW*W
k=1

if the sequence X; is centered at expectation.
Note that in equation (12.3.4), the summation contains n — |s| terms hence this
estimate of Ry is biased.

The following relation links the spectral density to the limit variance ¥ in the
CLT for X = (X;)nez

= Cov(Xo, X
ElsY/
Assume ) [s|?||Rs|| < co where || - || is any matrix norm, then
bias(\) = fx(\) = fx(\)
Ibias(V) = || > <1 - |‘9|> <(1— |S|) - 1) Z Rye™
| m > K sl >m
< Z||HRH+ lepHRH

= o(i)
n mpP
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12.3.1 Second order estimate

First recall the 4-th order cumulant of a centered random vector (z,y, z,t) € R*P
writes, for 1 < a,b,c,d < D,

K(OPOD (2 2 1) = Ea(@y® @@
~ R @y (4@
M OMOMORC)
—Ez@ Dy ® 4
Ex(@y®) (4@ _ Eg@yORy@pd = glabed g, 4
_ R @ @Ry ®)4(@)
~ Bz @Dy ®) 5,

Set now
RPeD g k) = ka(X5Y, X, X9, x(), e 6) =BXEU X, (12.3.5)

Assume that for 1 < a,b,c,d < D,

Z|j|p‘7“(a’b)(j)‘ = 7P < oo, (12.3.6)
JEL
Z ‘ﬁ(a’b’c’d)(i7j7k)‘ = glebed <o, (12.3.7)
i,5,kEZ
Then we may rewrite
FO)=EFN) = > Zkn(V), (12.3.8)
k=1
Zin(\) = Y bnks(MYis, with (12.3.9)
|s|<m
Yis = XIXpis— R(s) (12.3.10)

S —18
Onks(\) = <1—|m|>e A<t s<n) (12.3.11)
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hence setting f(\) = (f(a’b)()\)) | <ap< p- €ach coordinate writes for 1 < a,b,¢,d <
D as:

e (a,b,c,d)
(var 7)) = Cov (Fl (), Fen(n)
1l 171\ A(abe.d)
~ n Z (1 - n ) ij ()‘)a
lil<n
a,b,c, S t
Cj(ﬁb d)()\) — IZ tIZ: 61,0,5(N) 0 j e (A )<1—|m|) (1—|m|>
<m |[t|<m

x (BX{IXOx X[, - BX(XORX O X(Y)
Denote by ® the tensor product of two D x D matrices:

(ua,b)lgc,dSD & (ua,b)lga,bSD - (ua,buc,d)lga,b,c,dSD-

If the set of such tensors, a = (twq,b,c,d)1<i,j,ki<D, is equipped with a norm
derived from the matrix norm

[ (tap)i<ap<pl = | Jnax |ta,bl, (12.3.12)
then
- < D? ) 3.
[/l | Jnax > laapea <D 1S£§f§§[)|aa,b7c7d| (12.3.13)
1<c,d<D

The variance of this estimate is a 4—th order tensor which writes (using notation
(12.3.13))

A )(a,b,c,d)

‘(Varf(/\) < Z Z k(@0 eD (s, 5,5 + 1)

|J|<"\ [t|<m

Z Y DD Gt -9

|J|<"\ [t|<m

1 a . (& .
S Y NGOG - ),

7] <n |s|,[t|<m

_|_

Assumptions (12.3.7) implies tha bounds the first sum and after

an interversion of summations w.r.t. ¢ and s, assumption (12.3.6), both other
2m+1 (a C)rgb,d) and 2n:1+17a((3a7d)7a§b,0)

t 2m+1 ﬁ(a,b7c7d)
n

terms are bounded above by , respectively.

This entails

D D D
2m+1 (a,c) (b,d)
Var ‘H < max glabed) 49 max ry ry
H‘ f 1<a,b<D ; * 1§a,b§DZ; 0 Z L ’
c,d= c=
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we thus obtain

Lemma 12.3. Assume that the vector valued stationary sequence (X, )nez sat-
isfies conditions (12.3.7) and (12.3.6) for some p > 1, then (using notation
(12.3.12))
E[|fon - s < c< L m)
- n2 )

m?2

This expression is optimized as O (n_Q”/(QPH)) by setting m = n'/r+1)

12.3.2 Dependence coefficients

This section is aimed to prove that bounds of higher order moments needed for
deriving a.s. convergence of spectral density estimates are analogue to those
computed for densities estimates in chapter 11, see § 11.2.2.

Spectral estimates are written as second order polynomials of the initial process.
We thus need a translation table to compute the properties of the initial process
in order to derive asymptotics.

In connection with § 4.3 and § 4.4.1 we now make use of the decorrelation
coefficients (2.2.1), the following lemma is a first rough bound which relates
those coefficients to those built upon the sequence Z = (Zj)kez defined in an
analogous way to (12.3.9), for some fixed complex valued sequence 0, € C
such that supy, ; [d,s| < 1 (here the dependence with respect to A is omitted).
In order to obtain a suitable bound of this coefficient, it seems unavoidable to
make use of the previous diagram formula.

_ (a1,b1) (ar,b1) ry(ait1,biv1) (aq,bq)
cz,q(r) = o, 0K . ‘COV(Zkl 2, 2y Zy, )
ki1 —k =7
1<ag,..., ag < D
1< by,..., bqg < D

Those coefficients are already defined for vector valued sequences in (4.4.7). Set,

C = ‘COV(Zé’fl’bl) e Z]g?hbl) Zlarbien) Z}iaq,bq))

ki q ‘

if kj41 — k; = r, then (in a condensed notation)

_ (a1,b1) (ar,br) yr(ars1,bi41) (aq,bq)
C o= [Cov(yient e eyt
[s1],-.05]8¢| <m0
q u
= > > 2 kuws&EM)
U=1 o1, [s1],.00]8q|<m i=1

where the previous sum extends on such undecomposable diagrams such that
some p1; is not entirely contained neither in the past nor in the future of the
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table

(1,1), (1,2)
past ¢ 20 @2

(,1), (1,2

(l+1,1), (+1,2)
Future

(¢,1), (¢,2)
The number of such regular diagrams is thus ¢! (each one is defined by one term
in the past and one term in the future). In the general case, set A\; = #u; for
1 < i < u, then if y; contains v; terms ((ji,1,2), ..., (jiv,»2)) from the second
column of the table

Cur i = Z H Fopi(k,s) (X))

[$1],0e0s]8q]|<mi=1
u
b
Gl < I X
i=11sj; 4 |>"'a‘5ji,vi [<m

For the general case we need to consider sums of cumulants indexed by v(s) =
(h1+81,...7hi+8i, /1,7h;)

Yo ruwX)]

[s1],--s]8:|<m

Using stationarity, it is easy to check that this sum is bounded by (2m+1)"k,;
(i+j = #u) where w = 0 or 1 according to the fact that j # 0 or j = 0. Hence
1Chinp] < (2m 4+ 1) [}, Ky, where w is the number of those y; entirely
in the second column of the table, hence w < 2. In fact, the non Gaussian
partitions (those with p; > 2 for some ¢) have a contribution of a lower order
O(ml9/A=1), Taking in account that in each partition one term has factors both

in the Past and in the Future and lemma 4.11 we thus obtain

Theorem 12.2. If the sums of cumulants of X, k, < oo are finite for each
p < 4q (which holds if 3~ (r + 1)”’20}71)(7") < oo from lemma 4.12) then there
s a constant K, > 0 such that

cz.q(r) < Kq(2m+ 1)[‘1/2](3}72(1(7“ —2m).
Using inequality (4.4.12) we thus derive the main result of this section.

Corollary 12.1. Let 2p > 2 be an even integer such that kg < oo for q¢ < 4p,
then

E[f()) —Ef NI =0 ((73)”)
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e Note that lemma 4.12 prove that the previous conditions may also be expressed
in terms of weak dependence coefficients (4.4.8).

e Moreover the condition
(")
> (") <
n

n

implies a.s. convergence of such spectral density estimates as this was done in
§ 11.2.2 for regression estimates.



Chapter 13

Econometric applications
and resampling

Essentially few rigorous results are stated in this chapter. We are aimed here
to check how weak dependence may be applied in standard applications. This
last chapter is more aimed at providing reasonable directions for further in-
vestigations of times series. The chapter is organized as follows. In order to
provide deep econometric motivations, Section 13.1 includes several situations
where various weak dependence conditions arise. After some generic exam-
ples including bootstrapping, we consider specific problems including unit root
problems and parametric or semiparametric problems in § 13.1.1, 13.1.2 and
13.1.3. A following section 13.2 reviews the question of bootstrap; some models
based bootstraps are first considered (see also § 13.2.4). We consider the block
bootstrap in § 13.2.1 and § 13.2.2 addresses GMM estimation for which weak
dependence provides a complete proof of the results in Hall and Horowitz (1996)
[101]. We also mention conditional bootstrap in § 13.2.3 and sieve bootstrap
in § 13.2.4. Finally in Section 13.3 we study more completely the problem of
limiting variance (in the central limit theorem) estimation under 7-weak depen-
dence.

13.1 Econometrics

Time series analysis is a major part of econometrics. Here we provide several
examples of interest in which it is essential to consider dependent structures
instead of simple independence. In some situations like bootstrap mixing notions
seem useless (see § 13.2.2). An application concerns linearity tests in time
series analysis. Rios (1996) [162] considers a stationary functional autoregressive
model (13.2.1) where » = L + C is the decomposition of the autoregression

283
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function into a sum of linear (L) and nonlinear (C) components. Local linearity
of r is then tested via the null hypothesis

Hp : / (" (2))* w(z) dz =0

where the weight function w has compact support. Rios (1996) [162] proves that
a local linearity test can be handled in the strong mixing case. The function r
is assumed to be p continuous. Then the plug-in estimator 7' = [72(z)w(z)dz
converges to T = [r*(z)w(z)dz if o, = O(n™?) and a > 2+ 3/p and the
bandwidth condition h,, € [n~ o, n”~ 2P1—4]. This result may be extended to weak
dependence as in Ango Nze et al. (2002) [6].

Still another problem of interest is to test the independence of the innovations
(€n)nez In a regression model

X, =aY, +&,.

This can be performed using the Durbin-Watson statistic which is a non corre-
lation test. The latter can be written as a continuous functional of the Donsker
line of the sequence (&,)nez.

Some other applications are detailed in the forthcoming subsections.

13.1.1 Unit root tests

Consider a stationary autoregressive sequence (X, ),cz generated by an i.i.d.
sequence (&, )nez,

Xp=aX, 1 +&,.
A classical problem is to test whether there is a unit root (that is a = 1).
In the specific context of aggregated time series, the assumption of white noise
innovations seems to be rather strong. Phillips (1987) [145] develops unit root
tests for mixing and heterogeneously distributed innovations. The ordinary least
square estimate @ is shown to be a continuous functional of the Donsker line of
the sequence (&, )nez. As an application of the functional central limit theorem,
Phillips shows that a unit root test can be based on the fact that under the null
hypothesis Hy : a = 1,

~ D 1 2 0?
n@—1) —— 1 Wi — o
n— 00 2f0 Wtzdt o

where W denotes the standard Brownian motion and o2 = Y% Cov(&, &);
in the initial i.i.d. frame 02/02 = 1 but this is no more the case for dependent
innovations. The author works with stationary strong mixing sequences, and
conditions under which the functional CLT result holds are given before. This
example, as the author suggests, can be generalized to error sequences (&, )nez
that allow for heteroskedasticity.
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13.1.2 Parametric problems

Generalized method of moments (GMM) estimation procedures involve an es-
timate 6,,, which is a solution of the arg-min problem J,(6,,) = mingeo J,(0),

where
Ju(0) = (i S g(xs, a)) Q <i S g(xs, a)) . (13.1.1)
=1 i=1

Here © C R? is a finite dimensional parameter set, and g(-,-) is a given function
such that Eg,g(X1,6p) = 0, where 6 is the true parameter point. In the time
series context, the positive semi-definite matrix Q is often replaced (see Hall
and Horowitz, 1996, equation (3.2) [101]) by an asymptotically optimal weight
matrix estimate

1 n K
Qn(e) = nZg(X“e)g(Xlaa)l+ZH(X17XZ+]79)7
i—1 j=1
H(z,y,0) = g(x,0)9(y,0) + g(y.0)9(x,0)',

and « is such that Eg(X;,0)g(X;,0) = 01if |i — j| > k. The statistic to test Hy :
0 = 0o is Jn(0) = Kn(0) Kn(8), where K, (0) = | Q,(0)% 31, 9(X;,0) (the
square root of a symmetric positive matrix is uniquely defined). The following
CLT holds under standard mixing assumptions:

To(0) = v £t (én - 9) —2 N0, 1), (13.1.2)

where the diagonal matrix ¥, has d entries. GMM techniques naturally involve
an unknown covariance matrix. In order to estimate such limiting distributions
it will be natural to use the bootstrap techniques described in § 13.2.1.

13.1.3 A Semi-parametric estimation problem

We follow the presentation in Robinson (1989) [164]. He considers an economic
variable observable at time n which is an R x 1 vector of r.v.’s (W, )nez. We
observe W,, at timen =1— P,2— P,...,T where P is nonnegative and T large.
Hypotheses of economic interest often involve a subset X,, = B(W},,..., W/ _p)

of the array (W}, ..., W,;_P)/; for this B is a J x (PR) matrix formed from
the PR—rowed identity matrix Ipr by omitting PR — J rows (which means
that in B, PR — J elements of W,,...,W,_p are deleted). Thus, in B,
elements of W,,,W,,_1,...,W,_p which are not in X,, are deleted, and X,
can have elements in common with X,y p_1,..., Xp4+1,Xp-1,..., Xp—p. Let
X, = (Y, Z), where Y,, and Z,, are K x 1 and L x 1 vectors (K + L = J).

n?

The problem of interest is to test the hypothesis E(Y,|Z,) = 0 against the
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alternative E(Y,,|Z,,) # 0. This null hypothesis is written in the form 7 =
Jor H(z,2) f*(z)dz = 0 for M = 0 and

r= [ HG) (£G) OGO fed =0
RL

for some M > 0 and some function H(z, z) defined as

H%wﬁ=/ Gl(21, 22)dF (4121 )AF (32 22)
RE xRK

for some convenient function G and where F(A|z) = P(Y,, € A|Z,, = z) for any
Borel set A of RX and z € RY and 2, = (v, 2})" and 29 = (v}, 25)". Here f\9)(2)
denotes the vector of j—partial derivatives of f.

An example of this framework is given by X,, = (Y,/, Z!)', where Y,, = (tp, s},)’
and Z, = v,. The regression model

tn =B (sn — Ensn) + 7V Ensn + un (13.1.3)

is of common use in econometrics. Here s, t,, v, are respectively scalars, p x 1
and ¢ X 1; they are observable random sequences while the innovation pro-
cess (uy) is centered and unobservable, so that E(u,|s,,t,) = 0; we denote
E.(-) = E(:|vn). In the case of a weakly dependent and stationary innova-
tion process, Robinson (1989) [164] considers the hypothesis Hy : 3 = 0.
In this case, the hypothesis can be written as before and Robinson calculates
B =71 where K =p+1, L =1, M = 0 and G(z1,22) = (t1 — t2)s16(v1)
for some function ¢ : R? — R (usually ¢ = 1). Robinson considers the
statistics A = n7Q~1% constructed from the n—sample (X1,...,X,). Here,
n
T= ! Z G(X;, X;)k(Z; — Zj/h) is a U—statistics and Q is the natural es-

n2hl £
i,j=1

n
. . . ~ . 51
timator of the covariance matrix of 7. One such estimate is {2 = E ic.
n
i=1

Tapered versions might be preferred (see formula (2.21) of Robinson, 1989

[164]), here ¢; = Y di; + dj; with d;; = G(X;, X;)k(Zi — Z;)/h, where
j=1

k(z) = b7t (k(z),h kM (2), ... ,hMEMM)(2)). Under S—mixing assump-
tions, Robinson proves that the above estimates are y/n—consistent and satisfy
a CLT. Under a natural S—mixing condition, Robinson proves in fact that
the statistic A has asymptotically a x2—distribution if 8; = O(j~%) where
b > p/(p — 2) under the moment assumption sup; ; E[G(X;, X;)|* < oo.

The f—mixing assumption allows to compare the joint distribution of the ini-
tial sequence with respect to a sequence of r.v.’s with independent blocks. This
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reconstruction is due to Berbee’s coupling lemma, no matter how big the size of
the blocks may be. Yoshihara (1976) [193] derives a covariance inequality that
fits to U—statistics. A way to get rid of f—mixing conditions is to consider an
independent realization X1,..., X, of the trajectory Xi,..., X,. Now a simpler
estimator of 7 is given by

U R . Z; - Z,
T:nZhL ZG(X“XJ)k< h j).

ij=1

The asymptotic behavior of this expression is easy to derive under alternative
weak dependence conditions by using our results because 7 = 1, Y1 W, 1 (X)
is the numerator of a Nadaraya-Watson kernel for the regression estimation
problem E(s;(t; —t)|v1 = z) in the special case of the previous example. In fact
this trick avoids the corresponding coupling construction for U—statistics.

13.2 Bootstrap

Consider the following example concerning bootstrap: let a stationary autore-
gressive sequence be generated by an independent and identically distributed
(i.i.d.) and centered sequence (&,)nez:

X =r(Xp 1) +&n. (13.2.1)

Standard nonparametric estimation techniques provide an estimate of the au-
toregression function 7. Let 7 be a convenient estimator of r. Given data
(X1,...,X,) from the sequence 13.2.1, another autoregressive process can be
defined by . R

X =7(Xno1) + & (13.2.2)
The innovations (&) are i.i.d. drawn according to the centered empirical mea-
sure of the estimated centered residuals,

~ o~ 1 &~ ~
i =& — iy i =X —71(Xio1), 1<i<n.
&=¢ n;sj 3 P(Xio1) i<n

From the first example § 1.5 this is clear that no mixing assumption can be ex-
pected for the model (13.2.2). However, our concept of fading memory can still
be applied. Bickel and Bithlmann (1999) [18] set up such a new weak depen-
dence condition in order to build critical bootstrap values for a linearity test in
linear models. Doukhan and Louhichi (1999) [67] have extended it in order to fit
models such as positively dependent sequences, Markov chains (with or without
topological assumptions), and Bernoulli shifts. The Bernoulli shifts are defined
in Assumption 1 of Hall and Horowitz (1996) [101] and are used throughout
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that paper. The above mentioned weak dependence conditions yield standard
results concerning convergence in distribution with a /n-normalization.

If now the process Xy = H (&, k-1, .. .) is defined as a Bernoulli shift a suitable
form of the resampled version X; of X, is H (52, Shtre-r8h 1415050 ) Here

H and &} are i.id. random variables drawn uniformly with the distribution ﬁn,
the centered version of residuals distribution obtained through filtering. In the
simple case of a linear process (H(2o,21,...) = Y_; ax2k, see Section 13.2.2); in
the general setting, one needs to develop additional estimation procedures. In
order to describe the asymptotic properties of such processes one needs to know
the limiting asymptotic behaviour of Bernoulli shifts.

Unfortunately such representations are not always known and additional boot-
strap procedures have been considered.

13.2.1 Block bootstrap

We describe here the block-bootstrap procedure which is adapted to the times
series (X;)ien. Let b = b(n) and I = [ (n) denote the number and the length
of the blocks. Assume b -1 = n and consider [ blocks (X(;_1yi41,.-.,X;) for

1 < j < b. Blocks ()?(j,l)lﬂ, e ,)N(jl) are now randomly drawn (uniformly)
among those [ blocks. A trajectory of the resampled process is obtained by
concatenation of those block; however a problem clearly appears to connect
those (see Kiinsch, 1989 [113]).

13.2.2 Bootstrapping GMM estimators

Using the notations in § 13.1.2, let (X/)1<;<», denote a block-bootstrap sample
and let g* (z,0) = g (z,0) — E*g (x, @1) . The expectation is taken with respect
to the bootstrap distribution. The GMM estimate 5:; solves the arg-min problem

Ji(0) = (; Zg*<X;,9>) 0 (fl Zg*m:e)) (13.2.3)

i=1 i=1

when the matrix € is known.

In order to prove the consistency of this bootstrap procedure Hall and Horowitz
(1996) [101] propose an uncomplete proof. However, weak dependence will
allows us to prove rigorously this consistency. More precisely, if X,, = h(e,,
€n—1,...) for some i.i.d. sequence (¢;);cz, their Assumption 1 is*

efdm

E Hh(ena €n—1,-- ) - h(ena €n—1y--s€n—m,0,0,.. )” < d

*The function h : RN — B with B a Banach space with norm | - ||.
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This condition holds for linear processes and it is claimed to imply geometric
strong mixing in [101]. Andrews’s simple example (1984) [2] proves that this
does not hold in general. It implies however §—weak dependence with geometric
decay yielding the following useful tail inequality for sums of functions of the
sequence &, = f(X,,0)!. This is the main tool to prove the validity of the
bootstrap in this dependent setting. A rigorous version of Lemma 1 in Hall and
Horowitz (1996) [101] thus follows

Lemma 13.1 (Ango Nze & Doukhan, 2004 [7]). Let (&,) be a stationary
n—weakly dependent sequence with EE, = 0 such that n(r) = O(e™ ") as
r 1 oo for some a > 0, and P(|&1] > 2) = O(|z]7%), as [z] — oco. Then
Ry, =n"1'3"" & satisfies

lim nP (|Rn| > n_+) ~0.

P?"OOf, Set gi,n = fil{‘&|§n1/16} - Efil{lgilgnuls} and let En = }LZ?:l giﬂl'
Then

P (|Rn| > 27172;6) < P (lﬁn| > n72§e) + 27’Ll+2J5r€E ‘€i1{|§i\>n1/16}‘
< n7USUBIR 4 2 e 4P (j6a] > it )

—11+432 47
n_l(’)(n 5 €+n§—320)

o(n™h).

Following precisely the same steps as in Hall and Horowitz (1996) [101], we thus
prove, by only replacing their Lemma 1 by our lemma 13.1, that bootstrapping
critical values for GMM estimators is an asymptotically valid procedure.

Remark 13.1. Theorems 1, 2 and 3 in Hall and Horowitz (1996) [101] seem
now to be rigorously proved. Analogous comments fit to a more recent paper by
Andrews (2002) [4]. The exponent 33 in the previous lemma is unnatural and
it will be improved in a forthcoming paper.

The above procedure can be used for testing the null hypothesis Hy : 6 =
0o against the bilateral alternative. Under Hy the studentized statistic T;, (6)
described in (13.1.2) satisfies with the critical value Q,,

P(T. (0)] > Qo) =+ O (1/n).

TIn this equation, 6 is really the parameter to be estimated and in order too avoid fur-
ther confusion with the dependence we shall prove below a result under the weaker n weak
dependence.
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As in Gotze & Hipp (1978) [99], Hall and Horowitz seem to prove that T, (6)
and the bootstrap studentized statistic

T:(6) = vn " (6, -6.).
have close distributions in the sense that

P (sup |P* (T (0) < z)—P(T,(0) < z)| > n“) =o(n™%), (13.2.4)
z€R

for a relevant integer 2a, with a > 1+ ¢&, and the range of ¢ € [0, 1] is formulated
according to the dependence assumptions prescribed. This relation comes from

an Edgeworth development. It yields an improved acceptation rule for the test
of H():

P(T;(0)] > Qi) =a+0(n"17¢).

13.2.3 Conditional bootstrap

A simple local conditional bootstrap is investigated by Ango Nze et al. (2002)
[6]. Consider a stationary process (X¢, Yz)tez. The local bootstrap for nonpara-
metric regression is defined as follows: the empirical distribution for Y; given
X = = writes

Fyle) = Zl{m}x ( ‘bXt) e

for a kernel density estimator with bandwidth b = b(n). The bootstrap sam-
ple is now defined as (X¢,Y,")1<t<n where V" ~ F(-]|X;) is independent of
(Y] )s+ conditionally to the data for 1 <t < n. In this article, it is shown that

S
the asymptotic properties of the local regression bootstrap estimator 7 7,n With

bandwidth h = h(n) constructed from this sample are analogue to those of the
regression estimator 7, , contructed from the data (X, Y3)i<i<n:

sup [ (V{75 () ~ BT 4(0) | < u)
—P({\/nh?n,h() Efp (@ } ) LA

under suitable weak dependence assumptions (see theorem 4 in [6]).

13.2.4 Sieve bootstrap

Bickel and Biihlmann (1999) [18] tackle the problem of the ‘sieve bootstrap’ for
a one sided linear process

—p=%+Y arbn (13.2.5)
t=1
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where (&,) is a sequence of i.i.d. random variables (r.v.’s) with E{y = 0 and the

o0
density function fe, and where Z la;] < 0o and p = EX,.
t=1

oo

Under the assumption that the function ¥(z) =1+ Z a2z has no root in the
t=1

closed unit circle, the process (13.2.5) admits an AR(oco) representation

(Xn =)+ > b Xt —p) =&, with > |b| < 0. (13.2.6)
t=1 t=1

The latter process (13.2.6) is fitted with an autoregressive process of finite order
p(n) (p(n)/n — 0, p(n) — o0). Using estimated residuals, the resampling (i.i.d.)
innovation process (£)nez is constructed by smoothing the empirical process
based on those residuals by a kernel density estimate of the density fe. Finally,
the smoothed sieve bootstrap sample (X),ecz is defined by resampling the
AR(p(n)) process from innovations (&),ez:

p(n)
(X X)+ 3 h(Xi, —X) =€ (13.2.7)
t=1

The purpose of [18] was to carry over a weak dependence property (here strong
mixing) of the initial sequence (X, )ncz to the sieve processes (X ), cz (a classic
and a smoothed version were examined in the paper). The goal is unrealistic for
the classic bootstrap sample, since the distribution of the bootstrapped innova-
tions is discrete. Proving a mixing property for the smoothed sieve bootstrap
sample eludes the efforts of the authors. In the latter case, it nevertheless ap-
pears that limit theorems can be proven by another method. It consists in using
the following property:

|COV (gl (X7d1+17 cee 7X0) » g2 (Xk7 cee 7Xk+d271)) |
< 4lgilloo lg2lloo v (k: %, C%) (13.2.8)

with dy,ds € N and for smooth functions g1, g» belonging to the classes C* and
C?% (see equation (3.1) for the definition of the class C% and some examples). The
new dependence coefficient v is less than the strongly mixing coefficient. Bickel
and Biithlmann (1999) [18] cannot prove that the sieve sequence (X ) is strongly
mixing. A weak dependence condition is now defined by the v coefficient. The
authors prove that it is satisfied by both this sequence and a smooth version
of the resampled innovations. For instance, Bickel and Bithlmann prove that if
the sequence (X,,)nez satisfies some regularity conditions ensuring that aj =
O (k~7) (recall that vy, < ay), then the sieve bootstrap process (X ), ez satisfies
a v mixing condition with a polynomial rate v*(k;C%,D%) = O (k=) for
relevant classes C%, D% and a positive constant L. See Theorem 3.2 on page 422
in Bickel and Biihlmann (1999) [18] for more details.
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13.3 Limit variance estimates

The end of this chapter is aimed at providing a very important resampling tool
for weakly dependent time series. In this monograph (and elsewhere) extensions
of the central limit theorem have been proved for times series. The limiting
variance takes a complicated form; the results write as

1 n o
/n ST Xk L N(0,0%), where 0% = Y EXoX.
k=1

k=—00

Functional vector valued versions of such results also arise,

\}n S X, () - Z(s), (13.3.1)

ns<j<nt

with Z(t) € RP, the D-dimensional centered Gaussian random process such
that

o0
Cov(Z(s),Z(t) = (tAs)-%,  S= > Cov(Xo, Xg).
k=—o0
For statistical use, one needs to provide self-normalized versions of such results.
The expression reduces to o> = EXZ for iid sequences and it may be directly
estimated by }L S X ,% using the method of moments. The first and natural
way to achieve this for dependent sequences is to replace o2 by some convergent
estimator. We shall assume n—weak dependence; several ways of estimating this
quantity are reasonable.
e Recalling that o2 is only the value at origin of X,’s spectral density gives a first
approach; spectral density estimates from chapter 12 yield as in § 12.3 estimators
of o2, we defer a reader to Bardet et al. (2005) [11] for this approach.
e Another way to estimate this quantity is considered here: we mimick an
argument by Carlstein (1986) [34], see also Peligrad and Shao (1994) [141].
This estimation is based on the Donsker invariance principle and a subsampling
argument described in section 13.3.2.

We provide below a.s. convergence properties of those estimates as well as a
CLT; modifications of the previous CLT will make it suitable for applications.
To this aim, subsection 13.3.1 relates moments of sums with the cumulants
of stationary sequences; this is a tool of an independent interest for several
applications, like extensions to multispectra of the results in chapter 12.

We are involved here in a vector valued version of the estimation of o2. The
main motivation for this is to derive a dependent version of Kolmogorov-Smirnov
test. Empirical CLT (for the empirical cdf) are derived in chapter 10:
1 & d
vn Z (1(XkSw) - F(a:)) —n—oo B(2),
k=1
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where B(x) denotes the centered Gaussian process such that

EB Z COV (Xo<z)» (Xkﬁy))’

k=—o00

A direct extension of the Kolmogorov-Smirnov test is not possible for such de-
pendent sequences because limits are not distribution free. After a convenient
discretization, Doukhan & Lang (2002) [63] prove that confidence bounds for
such statistics, which are not anymore distribution-free, may however be es-
timated with the present sharp estimates of the multivariate extension of o2.

The following subsection is aimed to derive useful tools in order to precise asymp-
totics for the previous estimation procedure.

13.3.1 Moments, cumulants and weak dependence

We thus consider a stationary vector valued sequence (X,,)nez with values in
RP; we equip RP with the norm defined as |jz|| = || + --- + [2(P)] for
= (zM,... 2P)) € RP. We assume below that there exists some b > 2 such
that || Xoll» = (IE||X0||b)i < oco. For each u > 1 we identify the sets (R?)"
and RP“. We use the coefficients cx 4(r) from (4.4.7). We define nonincreasing
coefficients, for further convenience,

t
* . d
Cg(r) = max cxa (g with = max E[x(?] . (1332

Those coefficients (4.4.7) are now linked to the weak dependence coefficients:

Proposition 13.1. Assume that the stationary and vector valued sequence
(Xn)nez ts n-dependent and satisfies p1 = maxi<q<p HXéa)Hb < oo for some
b > q then the coefficients defined in eqn. (4.4.7) satisfy

(g—1)b b—

exq(r) < gdotip bt p(r) oot

Proof of proposition 15.1. Consider integers 1 < ¢ < ¢, 1 < ay,...,aq < D
and t; < --- <, such that t,41 —t¢ > r, we need to bound (uniformly wrt ¢,
1<ay,...,aq <D and t; <--- <t,) the expression

o= ‘Cov (Xg‘“) L x), X<“f+1>---qu“q))‘ = |Cov(A,B)|  (13.3.3)

toy1

In order to bound (13.3.3), for some M > 0 depending on r [to be defined later]

we now set X; = (Xg-l),...7X(-D)) with X;a) = Xj(a) V (=M) A M for each

J
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1<a<Dif X; = (X\",...,X")). Then we also have,

¢ < |Cov(4,B)|+|Cov(A— A, B)|+ |Cov(A, B — B)|,
A = Xitln) o Xijz)’ B— Xijﬁ-ﬂ B 'XEZQ)-

Now we note that

a; (asi)
(A—A)B] < Y vx) - x)),

MQ EM*‘

a; (as)
|A(B-B)| < vilx{) — x|

+

where Y; writes as the product of ¢ — 1 factors Z; ; = |Xt(a])| or |X(a])| for

1 <j<qandj # i Itis thus clear that for qbl + 11) 1 an analogue
representation of the centering terms yields

a
|Cov(A—A, B)|+|Cov(A, B—B)| Z max 1 X5 a)||37 max, ||Xéa) X ||p.

Set h(xz) =V (=M) A M then Liph =1 and ||h||cc = M thus fe(z1,...,2¢) =
h(z1)--h(z,) is such that A :fg(Xt(fl), . ,X,f;”) ,B=fs—¢ (ngﬁl), . ,Xt(:"))
and || feleo < M¥, Lip fo < M*~1; from n-dependence we derive,

|Cov(4, B)| < (€Lip fell fo—elloo + (a4 = OLip fo—ell felloc) n(r) < aM I~ n(r).

Now for each real valued random variable X {a) and 1 <a <D,

a (a) a (a)
EX{ - x| E| X\ - X P Ly 5

IN

PEIXSPL g5

2PE| XV P MY,

IN

Hence,
1% = x$, < 21 x| M

thus setting 1 = maxi<q<p ||XO ||b7 we obtain with the previous inequalities,
|Cov(A— A,B)| + |Cov(A,B—B)| < dqu® 'ToM' s,
|Cov(A,B)| < ¢ (4uq_1+ZM1_Z + quln(r))
q (4uqu7b + M n(r)) .

IN
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The previous expression has an order optimized with 4°M*~? = 5(r) yielding
(a—1)b -

¢=|Cov(A, B)| < g4y b1 p(r)o=t. O

As a first application of this relation, it seems useful to state the following

moment inequality, they also entail laws of large numbers.

Corollary 13.1 (D = 1). Let (X;)iez be a real valued and stationary n-weakly
dependent times series. Assume that E|Xg|® < oo for some b > q, EXy = 0,

and
oo

S (r 4+ 1) 2(r) b < oo,
r=0

then there exists a constant C > 0 only depending on q and on the previous

series such that .

E(Y X;| <cnl/
j=1

Proof. We note, that Z(r+ 1)?2¢cx 4(r) < oo and we use theorem 4.2 together
r>0
with proposition 13.1 to conclude. [J

13.3.2 Estimation of the limit variance

Now let N be some fixed integer and n = N, we rewrite the previous limit
(13.3.1) as A; 5 — A, (which have the same distribution) where we set

i+m

Ai = jm S X Ai:\/N(Z (;H) —Z(%)) ZA~ND(0,%).

j=it+1

The heuristic in Peligrad and Shao (1995) [142]’s variance estimator consists to
substitute A; by Ai,m in this last relation. For different values of ¢ the random
variables A; are independent only for values with a difference > m. On another
hand if ¢ = i(n),j = j(n) are such that lim, ., |i(n) —j(n)|/m(n) = « then the
couple (Aj(n); Ajemy) is Gaussian with Cov(A;y, Aj)) =1 —a,if 0 <a < 1.
This implies

lim Var B F(Ai m(n))
e V/n—m(n) i=1

1
= [ cop(z01). P20+ 0) = Z(c)) do.
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This integral may be explicitly computed with the help of an Hermite expansion
but it is however somewhat complicates. We thus subsample this sums setting
Aiim = Aim,m, then,

N
;ZF(AH —Nooo EF(A) (13.3.4)
N =1
jNZ(F(Ai)—EF(Ai)) PN Np(0,VarF(A)). (13.3.5)
i=1

Examples
e F(z) = 2/ yields the estimation of the covariance matrix 3.

e Let F(z) = |2/a| for a fixed vector a € RP, then EF(A) = Va/Ya -
E|N(0,1)].

e Setting more generally F(z1,...,2p) = (|z; + 2;]*)1<i<j<p € RPIPTD/2
provides estimates for all the coefficients of the matrix : for this, use the
polarity argument

1 ; hy L h o1 :
Tij =, <Var(A(Z) + AWy — 4Var2A(’) - 4Var2A(j)> .

In order to make the heuristic (13.3.5) work, we better consider sequences ¢ =
l(n), m =m(n), m=m+/{and N = N(n) converging to infinity and such that
n> N(m+£) —£. Now we set

1 (i—1)(m+£)+m
Din = Jm > X;, (13.3.6)
J=(i—1)(m+0)+1

and EF(A) is estimated by

N(n)
~ 1
F, = F(A; ) 13.3.7
N(n) ;:1 (Aim(n)) ( )

Peligrad and Shao (1995) [142] consider instead that EF(A) is estimated by
A= ! ni F(A; )
n = n—im P i,m(n)):

We need to quote that in this case the sum runs on 1 < i < n — m which is
a number of much larger order than N. In this case, the Gaussian limiting
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variables are not independent. This makes the limiting distribution a bit more
complicated and we thus avoid this estimation by working analogously to Carl-
stein (1986) [34]. More precisely, this author proves that if i = i(n),j = j(n)
vary in such a way that liminf,, o |i(n) — j(n)|/m(n) > 1 then

Cov (Az(n)ﬁl(n)a A](n),rh(n)) —n—o0 0

This is exactly our situation and the variables A;,, are here asymptotically
independent as n T oo for any choice of /. The setting in Carlstein is that of a
strong mixing sequence and other type of increment are also investigated.

The forthcoming section is aimed to derive the asymptotic behaviour for this
estimation.

13.3.3 Law of the large numbers

Lemma 13.2. Let now F : RP — R be a Lipschitz function. Assume that the
sequence (Xp)nez is stationary and n—weakly dependent then

N

1 2

N N F(Aim) SN EF (D), (13.3.8)
=1

1 o —
if ) = maxi<qa<p (E|Xéa)|b) b < oo, Z(r +1)%n(r) -1 < oo for some b > 4.
r=0

Proof of lemma 13.2. The proof follows from two steps.
N

N
1 1
Step 1. Var <N ; F(Ai,m)> < v ; |Cov(F (A1 m), F(Aim))] —N—oo O.
For this we first write

Fim=F(AQim) = f(X@-1)mto+1s--> X1 (mro)+m)s  With
flar,. .. xm) = F<961+;/'7'n+9€m)’ z; € RP,

thus Lip f < Lip F/\/m; this means that covariances will not be directly con-
trolled with weak dependence. We thus have to control

ICov(F(ALm), F(Aim))|, 1<i<N (13.3.9)

We first consider the variance term obtained with ¢ = 1. If we replace F' by
F — F(0) the expression (13.3.9) is unchanged so that we assume that F'(0) = 0

thus |Fy | < Lip FH ZXJ-H/wn and
j=1

5| 3 <3 S5 x]) < pY (ST x)

j=1 k=1 j=1 k=1  j=1
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With this relation and |Cov(X| (k) X(k))‘ <2k ubﬁl n(r)t~ »'1 obtained from

proposition 13.1, we derive:
E|Fn> < 2D(LipF)*Y Z ‘Cov (x (B, x W)

S 24+b—1 ub—l D2 77(7")171711
< 09, from our assumption.

Now consider F(z) = F(z) V (=M) A M for some M > 0 to be defined later,
we set [y, = F(Ajm), then I, = f( (m+€)+17"'7X(i71)(m+€)+m)a
where f(x1,...,2m) = F(x1 +- —|—3:m/\/m), thus Lip f < Lip F//\/m and
[IFllcc < M and we derive,
|Cov (Fim, Fim)| < |Cov (Fim, Fim)|
+ |COV (Fl,m; E,m - Fz,m)‘
+ |COV (Fl,m - FLma Fi,m)‘

< ‘COV (Fl,maFi7m)|
+ (1FLmll2 + 1 Fimll2) | Fim — Fimll2
< }COV (Fl,m, Fi7m)| + 2||F1,m||2HFi7m - Fi,mH2'

Then
2Lip FM

vm
On the other hand we already obtained || F} ;|2 < C'D for some constant C' > 0
and the following lemma 13.3 with p = 2 and ¢ = 4 implies with corollary 13.1,
HA 7113 < cu* for some constant if

|Cov (Fim, Fim)| < n((i —2)(£ +m) +0).

S+ 1)%(r)t < oo, and |[Fym — Finllz < CD*M Y,
r=0

Lemma 13.3. Letg>p>1and 1 <i <N then if A;,, = (A(-l) A(D))

im? ) =im )

1Fsm = Fimllp < 2DYPLip 9P F - M= 9/7 max ||A%) |2/,
1<k<D

If now q is an even integer, then zfz r+1)72n(r) ot < oo the last moment

is bounded uniformly wrt i and m. Useful cases are given for ¢ =2 and q = 4.
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Proof of lemma 13.3. We first quote that || F; ., — Fimllp < 2[|Fim 15, 1> M ||ps
then

ElFiml’ 1p, > < MPTOE|E |
< Lip"F - MPUE|A; |
< DILip?F - MP~9 max_[|Al) |
1<k<D ’
|Fin = Fimlly < 2DYPLip¥PF . M'“-9/P max A% |[a/r,
1<k<D J

Now corollary 13.1 implies that max;<p<p ||A§kn)1|\g is uniformly bounded. O

End of the proof of lemma 13.2. We thus have proved that there is some constant
C' > 0 such that

N
1 M D?
Var (N;F(Az,m)> < O(D M +\/m”(€)+ N),
D2
< <D3/2m1/4\/77(£)+ N).

The last inequality holds for some €’ > 0 with the choice M = D3/2m/45(¢)=1/2,

Step 2. We now need to prove that EF(Aq ;) —m—oo EF(A). We first note
that the condition n(r) = O(r—%) for & > 2+ 1/(b — 2) from Bardet, Leén and
Doukhan (2005) [11] for CLT to hold is implied by the assumptions in our result.
Consider again the truncated function F' but for some M which may vary with
m, |EF(Aym)—EF(A)] < A+ B+ C, where A = E|F(A1,,) — F(A1m)l
B = E|F(A1,m) — F(A)|, C = E|F(A) — F(A)]. Now as M — oo, A <
|F(A1m) — F(A1 )|l = O(D?/M) converges to 0 (uniformly wrt m), and
C —pM—c 0, because E|F(A)| < co. Now, from the central limit theorem,
B — 0 as m — oo. Thus we may choose a sequence M = M (m) T oo such that
EF(A1,m) — EF(A).

13.3.4 Central limit theorem
Theorem 13.1. Set Z, = S i, with i, = e (F(Dim) —EF (D).

Assume that the centered and stationary sequence (X;) satisfies E|Xo|® < oo
for some b > 4 and this is n—weakly dependent with n(r) = O (r=%) for some
a>2+1/(b—2). Then,

Zyp Boroe N(0, Var F(A)),

where N = N(n) is the largest number such that n > N(m + £) — £, and where
m =m(n) = [m], £ = l(n) = [m°] satisfy o > 3 /6 + 5(1—~)/0.
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Remark. For a > 2+ 1/(b— 2) one may choose such rates with v > § > 0.
Proof. Consider Z ~ N(0, Var F(A)). For f € C?*(R,R), we want to control

N
[Bf(Zn) — f(Z)| < [Ef(Z2™) = £(2)|+ ) |Uil,
1=1

with U; = E(fl(wm +$i,n) — fl(wl,n +yi,n)); Win = Z;;ll Tin and fi(t) =

f (t + Z?:z 11 ym) , where, as usual, empty sums are set equal to 0 and where

zn) — Zyiﬂ“ Yin ~ N(0,Varz; ,,), and the Gaussian random variables y; ,,
i=1

are set as jointly independent and independent of the process (X¢)iez.

Step 1. Lindeberg technique. Notice that [|f o < [|f@]lee for j = 0,1,2,3

and for each i < N. From a Taylor expansion and from the bound E|y; ,|* <

E|N(0,1)3 (Ex%n)Bﬂ < EIN(0,1)]3E|z; ,,|?, there exists a constant ¢ > 0 such

that

N N
c 1
Ui < E|A m3+ Cov ilwinaxin + Cov i” winaxgn :
Zi:1| <y Bl + D ICov(fi(wim @in)| + , [Cov(f (wimal)|

i=1

As mentioned in the previous section the first term is bounded as O(1/v/N) if
the moment of order 4 of a sum is suitably controlled. In order to make use
of the weak dependence condition, we have to truncate the random variables
Tin. Set F(t) = F(t)V (=M) A M for a truncation level M > 0 precisely
set later, then xz;, = \/1N (F(Ai,m) — EF(Ai,m)) writes as a function z;, =

I(X (= 1) m+0)+15 - - - » X(i—1)(m+0)4n) Where

Gty ) = \/1N (F <t1 +;/'T'n+ ’5’”) —EF(Ai,m)) ,

thus [|g/lec < 2M/+/N and Lipg < Lip F/v/Nm. By another hand, we may
write fi(j) (Win) = G ((Xs)s<(i—1)(mt0)—¢) where G : (RP)E=Dm+0 R satis-
fies ||Glloo < If 9|00, Lip G < || fUHD]| o Lip F/v/mN and is a function of less
than n variables in RP.

21 Nl oo
(Cov(fitwsn)in)] < 1Cov(silwinasn)l + 1 I IF(81,0) = F(ALw)
|Cov(f{(wim), Tim)] < eV/mMnG_1)msey+e < cv/mMnyg, with n dependence,
|Eim — Fiml|1 < eD?M 3, from lemma 13.3.
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With M = n(¢)~"/*m~/8N~-1/8DY* we thus arrive with some constant ¢ > 0
to  [Cov(f(win), Zin)| < eDY*m3/EN3/8y(0)3/% < eDY4n3/5y(0)%/4. Analo-
gously

|Cov(fi (win) a7n)| < [Cov(fi (win), o7,)] + 2 f"|Ela?,, — a7

i,n i,mn

., 1 M2 M
Coutsitwnatl = e(n b A em N Yate

M2
< ¢ N\/nn(é), with 77 dependence.
2
Elai, —2inl < G IFQim)ll2l F(Aim) = F(Aim)l2
D3
< CMN’ from lemma 13.3.
Here we choose M = n(£)~'/3n=/6D to obtain, for some constant ¢ > 0,
D2pl/6
[Cov(fY (win) a?a)| < ¢ 0 (0.

N
We thus have proved that

N
1

Z |Uz| <ec (ND1/47’L3/877(€)3/4 + D27’L1/677(€)1/3 + > )

i=1 VN

Now consider m(n) = [n7] and £(n) = [n]. Then N(n) ~ cn” where =1 —1.

In order that the previous expression converges to 0, we only need

1 1 4(1—7)
) > )

25 ‘T2 3

To conclude, this is enough to choose § < 7, such that those relations hold. If §
and v are both close enough to 1, a > 2+ 1/(b — 2) implies those inequalities.

6>0, o> <.

Step 2. Gaussian approzimation. To conclude we still need to bound the ex-
pression |E(f(Z™) — f((Z))|. For this set Z = oN and Z(™) = ¢,, N for some
standard Gaussian random variable N and o2, = Var F(Ay ,,,), 02 = Var F(A).
Then

n F Moo
E((2) — (@) < 17l — ol < 11102 2
We need to prove that EF2(A17m) —m—oo EF?(A) and we use step 2 in the
proof of lemma 13.2. We first note that the condition n(r) = O(r~*) with
a>2+1/(b—2) from Bardet, Le6n and Doukhan (2005) [11] implies the CLT.

We consider the truncated function F' for some M which may vary with m,

IEF?(Ay,,) —EF?(A) < A+B+C,
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where we set A = E[F2(Aqm)—F (Arm)|, B = E|F*(Aym)—F (A)], and C =
2

E[F"(A)=F?(A)]. Now A < 2[[F*(Ay )2 F(A1,m) = F(Arm)]2 = O(D?/M)

(as M — o0) converges to 0 (uniformly wrt m), and C —jp—o 0 because

E|F?(A)| < co. From the central limit theorem, B — 0 as m — oo. Thus we
may choose a sequence M = M (m) 1 oo such that EF%(A; ,,,) — EF?(A).

13.3.5 A non centered variant

An alternative more attractive result involves

N
Tp=> tin, where t;,= \/1N (F(Ajm) —EF(A)).

A central limit theorem for this non centered quantity looks much more conve-
nient to consider the estimation of the parameter EF(A). Such results are not
considered by Peligrad & Shao (1995) [142]. In order to derive them one still

uses the Lindeberg technique with blocks. Hence, for some bounded and C3
function f we bound again:

E(f(T,) — f(2))] < [E(f(Tn) — F(Zo)| + [E(f(Za) — £(2))]
< VN|f'llo |EF(A1,m) — EF(A)| + [E(f(Zn) — f(2))]

with Z ~ N(0,Var F(A)). This means that the previous convergence relies
on the decay rate of the expression [EF(Aq,,) —EF(A)|; as stressed in the
forthcoming remark, this is O (! ) if F(z) = (2/a)? and the previous quantity
tends to zero under the assumption: lim,,_, ., N/ m? = 0.

Examples of functions F

e Case D = 1. In this case for F such that [|F’(z)|/(1 + 2?)dz < oo,
Petrov (1996) lemma 5.4 page 152 [144] implies

|F ()]

[EF(A1 ) —EF(A)| < (v, +6) 14 22 dx
with vp, = sup,cp [P(Arm < 2) —P(A < 2)] = O (m™*) for some A < §
given in Bardet, Doukhan and Leén (2005) [11] and § = [EAT | — EA?| =
O (). This implies that the cases F(z) = [z|® for some 8 < 2 is also
obtained if, now, lim, .., N/m?* = 0; Peligrad and Shao (1995) [142]
consider the special case § = 1. Here A — } as a,b — oo if (r) = O(r™°)
and E| X[ < .

e Case D = 1. If now F(x) = 2P then theorem 4.6 provides a bound
O(1/m) for each integer p which resembles the Rosenthal inequality in
the independent case (see Hall & Heyde, 1980 [100]).
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e Case D > 1. The special case F(x) = (2'a)?, for some a € RP is the
simplest multi-dimensional one. In this case, indeed setting & = X/a, we
still assume E&; = 0 and one may write

o0

F(Al,m) = Z (1 - | |) E&oés, ]EF(A) = Z E&oés,

|s|<m §=—00

so that EF(A) —EF (A1)

LY slEGk + Y B,

s |<m [s|=m
= Z |s/E&oSs + (1— )Efofs,
s=—00 |s|>m
thus
EF(A) —EF(Aym) — Z |s|B&oLs| < > [B&&|.  (13.3.10)
s=—o0 |s|>m

Using proposition 13.1 now yields if a = (a(V),. .., a(P)),
3b—1 b _
[E&o&s| < Dlal?exa(s) < 271 Dljalur=1n(s)' .

This previous bound (13.3.10) is thus (’)(D||a||2 Z n(s)l_bil).

s>m

For fixed D this bound has order o(m™") if Z sn(s ol < 00, and thus

EF(A) =EF(A1.,) + T}l Z |s|E€o&s + 0 (;) .

S§=—00

Remark. The previous results given under 1 weak dependence will be ex-
tended in forthcoming papers under x and A\-weak dependence.
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