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Preface to the Second Edition

It has been over 20 years since the publication of the first edition of Introduction to
Variance Estimation and now 8 years since the publication of the Chinese edition.
Despite its age, I find that the book still reflects what is practical in large-scale,
complex surveys and the methods actually used in such surveys. Here I refer to sur-
veys with a substantial sample size and often requiring a considerable investment
of resources, usually with a diverse user community. The sampling design and
estimation methods usually involve advanced methods and complexity. Smaller
academic surveys may enjoy access to other specialized methods of variance esti-
mation that are not feasible or affordable in the context of a large, complex study.

Even though the theory and methods found in the first edition are still relevant
today, research on variance estimation has continued during the intervening years.
In this second edition, I have tried to capture some of the key advances while
holding true to the book’s focus on practical solutions for complex surveys. I
added a new chapter on the bootstrap (BOOT) method of estimation, which was
just emerging at the date of publication of the first edition. Although the bootstrap
is still not used very much in large-scale survey work, it has been the recipient of
much research activity during the past 20 years, and it seemed prudent to include
it in the book as a potential future competitor to the established, replication-based
methods of variance estimation. I considerably expanded the scope of the chapter
on the Taylor series method of variance estimation. The new material includes
Taylor series methods for new estimators and methods of analysis. Because of their
importance and because they are not well-treated in other texts on survey statistics,
I added a brief section on survey weighting to Chapter 1. I also continued the use
of weights in estimation throughout the other chapters of the book.

Since the first edition, the balanced half-sample (BHS), jackknife (J), and Taylor
series (TS) methods have emerged as the predominant methods of variance estima-
tion in large-scale work, while the random group (RG) method has declined in use.
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vi Preface to the Second Edition

There is usually a means of configuring the BHS and J methods so that they confer
upon the analysis a greater number of degrees of freedom than the RG method,
without incurring substantial bias. This being the case, I might have dropped the
RG chapter from the second edition—but I did not. Instead, I decided to keep the
chapter because it still gives students and practitioners a sound introduction to the
general theory of replication. This foundation is essential to properly understand
the BHS, J, and BOOT methods that appear later in the book.

Another important reason that BHS, J, and TS have become the predominant
methods is the convenient, cheap computing power available today combined with
the developments in software that have taken place during the past 20 years. Indeed,
the entire microcomputer and Internet revolutions have occurred between the first
edition and now. These developments changed the nature of the world, including
the nature of variance estimation. In the first edition, I included appendices on
Hadamard matrices, to support the use of the BHS method, and on commercially
available software for variance calculations. Because neither appendix remains
compelling in its original form, I cut both of them back quite severely. Today one
can easily find Hadamard matrices and up-to-date software reviews on various
Web sites. Had I included these appendices in fully developed form, they would
undoubtedly be considered out-of-date within just a year or two of the publication
date of the second edition.

Introduction to Variance Estimation has been used not only as a reference manual
for practical work but also as a basis for instruction in survey statistics. I have used
the first edition in graduate classes in survey sampling at The George Washington
University and the University of Chicago. I have used it as a basis for short courses
in Paris (1989), Padua (1993), Beijing (1995), Istanbul (1997), Barcelona (1998),
Jyvaskyla (1999), Seoul (2001), Berlin (2003), and Sydney (2005). I would like to
thank the many students who participated in these courses and my co-presenters in
a number of the courses: Wayne Fuller, Jay Breidt, and Tony An. All have helped
spot typos in the first edition, which I hope I have dealt with successfully in this
second edition. Some of the upgrades I included in the second edition are certainly
due to their influences.

Readers of the first edition will note that chapters are ordered a bit differently
in the second edition. The chapter on the boootstrap now follows the chapter on
jackknife, keeping all of the replication-based methods adjacent to one another.
Also, I moved the chapter on generalized variance functions following the chapter
on the Taylor series method.

Marilyn Ford typed portions of both the Chinese edition and the second edition.
I thank her for careful and diligent work.

Most especially, I would like to thank my wife, Mary Jane, who provided consis-
tent support and encouragement throughout the development of all three editions
of the book.

Chicago, Illinois Kirk M. Wolter
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Preface to the First Edition

I developed this book for statisticians who face the problem of variance estimation
for large complex sample surveys. Many of the important variance estimating
techniques have been relatively inaccessible to the general survey statistician.
The existing literature on variance estimation has been available only in widely
disparate places and usually in a highly theoretical form; heretofore there has been
no single reference offering practical advice on the various variance estimating
methodologies. By the late 1970s, when I first began working on the book, it was
clear that a central reference text was needed in this area.

After preparing an early draft of the book, I gave a short course on variance
estimation at the U.S. Bureau of the Census. This draft later formed the basis for
another short course offered to statisticians in the Washington, DC area through the
Washington Statistical Society. Beginning in the fall of 1979 I used the emerging
book in a one-semester, graduate-level course on variance estimation at The George
Washington University (GWU). The GWU classes were composed primarily of
mathematical statisticians working at various agencies of the Federal Government
and graduate students in statistics. Prerequisites for the course were a first-year
graduate course in mathematical statistics and either a rigorous course in the theory
and practice of sample surveys or the equivalent in terms of working experience.
Although the background, interests, and needs of the students were varied, they
shared a common interest in the application of the various variance estimating
techniques to real survey data.

I improved the draft book considerably in the summer of 1980, and in August
1980 presented a short course based on this draft to a group of about 100 statisticians
at the national meetings of the American Statistical Association in Houston, Texas.
David W. Chapman and Joseph Sedransk assisted me in presenting this course.
By February 1983 I had made further improvements and I presented a week-long
course on variance estimation at The Netherlands Central Bureau of Statistics in
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viii Preface to the First Edition

The Hague. I have continued to offer the one-semester course at the GWU on an
intermittent basis.

The book is organized in a way that emphasizes both the theory and applica-
tions of the various variance estimating techniques. Each technique is presented
in a separate chapter, and each chapter divided into several main sections. The
opening sections deal with the theory and motivation for the particular method of
variance estimation. Results are often presented in the form of theorems; proofs
are deleted when trivial or when a reference is readily available. The latter sections
of each chapter present numerical examples where the particular technique was
applied (and perhaps modified) to a real survey. The objectives of this organiza-
tional format are to provide the student with a firm technical understanding of the
methods of variance estimation; to stimulate further research on the various tech-
niques, particularly as they apply to large, complex surveys; and to provide an easy
reference for the survey researcher who is faced with the problem of estimating
variances for real survey data.

The topics, in order of presentation, are the following:

(1) Introduction
(2) The Method of Random Groups
(3) Variance Estimation Based on Balanced Half-Samples
(4) The Jackknife Method
(5) Generalized Variance Functions
(6) Taylor Series Methods
(7) Variance Estimation for Systematic Sampling
(8) Summary of Methods for Complex Surveys
(A) Hadamard Matrices
(B) Asymptotic Theory of Variance Estimators
(C) Transformations
(D) The Effect of Measurement Errors on Variance Estimation
(E) Computer Software for Variance Estimation

Chapters 2, 3, and 4 are closely related, each discussing a different member of
the general class of techniques that produce an estimator from each of several
“replicates” and the variance by computing the variability among the replicate
estimates. Appendix A presents the orthogonal matrices, known in the mathematics
as Hadamard matrices, that are useful in implementing the balanced half-sample
method (Chapter 2). In many cases it is important to use a transformation with the
replicate-type methods, and this is discussed in Appendix C.

Sometimes it is possible to model the variance as a function of certain simple
population parameters. Such models, which we shall call Generalized Variance
Functions (GVFs), are discussed in Chapter 5. Chapter 6 introduces a method of
variance estimation based on local linear approximation. The important topic of
variance estimation for systematic samples is discussed in Chapter 7.

Appendix B provides the asymptotic underpinning for the replication methods
and for the Taylor series method. The effects of measurement or response errors
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on variance calculations are discussed in Appendix D. And software for variance
calculation is discussed in the closing portion of the book, Appendix E.

Since I began work on the book, the bootstrap method of variance estimation has
emerged and garnered considerable attention, particularly among theoretical statis-
ticians. This is a new and attractive method that may hold considerable promise
for the future. Its utility for survey sampling problems is questionable, however,
and as a consequence I have not included the bootstrap in the book at this stage.
Work is now ongoing by a number of researchers to modify the basic bootstrap
principles so that it can accommodate problems of finite population sampling. At
this time I know of no successful applications of the bootstrap to complex survey
data. But I intend to watch developments in this area carefully, and if the theory
and applications are solved successfully, I’ll plan to add a chapter on bootstrap
methods to the next edition.

The inferential approach taken in the book is that of the randomization theory of
survey sampling. Inferences derive mainly from the sampling distribution created
by the survey design. I do not discuss variance estimation from the prediction-
theory point of view nor from a Bayesian viewpoint. At times I employ super-
population models, but only as a guide in choosing among alternative sampling
strategies, never as a basis for the inference.

It is a pleasure to acknowledge Barbara Bailar for initial encouragement to
develop the book and the subsequent courses based on the book. I thank Cary Isaki
for contributing to Sections 7.6 to 7.9 and David W. Chapman for contributing
to Sections 5.6 and 7.6–7.9. I am indebted to many people for providing data
for the numerical examples, including W. Edwards Deming, Ben Tepping, Cathy
Dippo, and Dwight Brock. I am grateful to Larry Cahoon for collaborating on
the Current Population Survey (CPS) example in Chapter 5; to Dan Krewski for
reading and commenting on Appendix B; to Phil Smith and Joe Sedransk for
assistance in preparing Appendix E; to Colm O’Muircheartaigh and Paul Biemer
for reading and commenting on Appendix D; and especially to Mary Mulry-Liggan
for collaborating in the development of Appendix C and for a general review of
the manuscript. Lillian Principe typed the entire manuscript, with some assistance
from Jeanne Ostenso, and I thank them for careful and diligent work.

Kirk M. Wolter
1985
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CHAPTER 1

Introduction

1.1. The Subject of Variance Estimation

The theory and applications of survey sampling have grown dramatically in the last
60 years. Hundreds of surveys are now carried out each year in the private sector,
the academic community, and various governmental agencies, both in the United
States and abroad. Examples include market research and public opinion surveys;
surveys associated with academic research studies; and large nationwide surveys
about labor force participation, health care, energy usage, and economic activity.
Survey samples now impinge upon almost every field of scientific study, including
agriculture, demography, education, energy, transportation, health care, eco-
nomics, politics, sociology, geology, forestry, and so on. Indeed, it is not an over-
statement to say that much of the data undergoing any form of statistical analysis
are collected in surveys.

As the number and uses of sample surveys have increased, so has the need for
methods of analyzing and interpreting the resulting data. A basic requirement of
nearly all forms of analysis, and indeed a principal requirement of good survey
practice, is that a measure of precision be provided for each estimate derived from
the survey data. The most commonly used measure of precision is the variance of
the survey estimator. In general, variances are not known but must be estimated
from the survey data themselves. The problem of constructing such estimates of
variance is the main problem treated in this book.

As a preliminary to any further discussion, it is important to recognize that
the variance of a survey statistic is a function of both the form of the statistic
and the nature of the sampling design (i.e., the procedure used in selecting the
sample). A common error of the survey practitioner or the beginning student is the
belief that simple random sampling formulae may be used to estimate variances,
regardless of the design or estimator actually employed. This belief is false. An

1
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2 1. Introduction

estimator of variance must take account of both the estimator and the sampling
design.

Subsequent chapters in this book focus specifically on variance estimation
methodologies for modern complex sample surveys. Although the terminology
“modern complex sample survey” has never been rigorously defined, the follow-
ing discussion may provide an adequate meaning for present purposes.

Important dimensions of a modern complex sample survey include:

(i) the degree of complexity of the sampling design;
(ii) the degree of complexity of the survey estimator(s);

(iii) multiple characteristics or variables of interest;
(iv) descriptive and analytical uses of the survey data;
(v) the scale or size of the survey.

It is useful to discuss dimensions (i) and (ii) in the following terms:

Simple design Complex design

Linear estimators

Nonlinear estimators

a b

c d

Much of the basic theory of sample surveys deals with case a, while the modern
complex survey often involves cases b, c, or d. The complex survey often involves
design features such as stratification, multiple-stage sampling, unequal selection
probabilities, double sampling, and multiple frames, and estimation features such
as adjustments for nonresponse and undercoverage, large observation or outlier
procedures, poststratification, and ratio or regression estimators. This situation
may be distinguished from the basic survey, which may involve only one or two
of these estimation and design features. Regarding dimension (iii), most modern
complex sample surveys involve tens or hundreds of characteristics of interest.
This may be contrasted with the basic survey discussed in most existing textbooks,
where only one characteristic or variable of interest is considered. Dimension (iv)
captures the idea that many such surveys include both descriptive and analytical
uses. In a simple survey, the objective may amount to little more than describing
various characteristics of the target population, such as the number of men or
women that would vote for a certain candidate in a political election. The complex
survey usually includes some descriptive objectives, but may also include analytical
objectives where it is desired to build models and test hypotheses about the forces
and relationships in the population. For example, instead of merely describing
how many would vote for a certain political candidate, the survey goals may
include study of how voter preference is related to income, years of education,
race, religion, geographic region, and other exogenous variables. Finally, the scale
of the survey effort (dimension (v)) is important in classifying a survey as simple
or complex. The complex survey usually involves hundreds, if not thousands, of
individual respondents and a large data-collection organization.
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1.1. The Subject of Variance Estimation 3

Of course, the distinction between simple and complex surveys is not clear-cut
in any of the five dimensions, and some surveys may be considered complex in
certain dimensions but not in others.

In the context of these dimensions of the modern complex sample survey, how is
one to choose an appropriate variance estimator? The choice is typically a difficult
one involving the accuracy of the variance estimator, timeliness, cost, simplicity,
and other administrative considerations.

The accuracy of a variance estimator may be assessed in a number of different
ways. One important measure is the mean square error (MSE) of the variance
estimator. Given this criterion, the estimator with minimum MSE is preferred.
Since it is often the case that the variance estimates will be used to construct interval
estimates for the main survey parameters, a second criterion of accuracy has to do
with the quality of the resulting intervals. The variance estimator that provides the
best interval estimates is preferred. Unfortunately, there may be a conflict between
these criteria; it is possible that the estimator of variance with minimum MSE
provides poorer interval estimates than some other variance estimators with larger
MSE. Finally, the survey specifications may include certain multivariate, time
series, or other statistical analyses of the survey data. It would then be appropriate to
prefer the variance estimator that has the best statistical properties for the proposed
analysis. Of course, compromises will have to be made because different analyses
of the same data may suggest different variance estimators.

In summary, the accuracy of alternative variance estimators may be assessed
by any of the above criteria, and the planned uses and analyses of the survey data
should guide the assessment.

Although accuracy issues should dominate decisions about variance estimators,
administrative considerations such as cost and timing must also play an important
role, particularly in the complex surveys with which this book is primarily con-
cerned. The publication schedule for such surveys may include tens of tables, each
with a hundred or more cells, or it may include estimates of regression coefficients,
correlation coefficients, and the like. The cost of computing a highly accurate es-
timate of variance for each survey statistic may be very formidable indeed, far
exceeding the cost of the basic survey tabulations. In such circumstances, methods
of variance estimation that are cost-effective may be highly desirable, even though
they may involve a certain loss of accuracy. Timing is another important practical
consideration because modern complex surveys often have rather strict closeout
dates and publication deadlines. The methods of variance estimation must be eval-
uated in light of such deadlines and the efficiency of the computer environment to
be used in preparing the survey estimates.

A final issue, though perhaps subordinate to the accuracy, cost, and timing con-
siderations, is the simplicity of the variance estimating methodology. Although
this issue is closely interrelated with the previous considerations, there are three
aspects of simplicity that require separate attention. First is the fact, observed
earlier, that most modern complex sample surveys are multipurpose in character,
meaning that there are many variables and statistics of interest, each of which
requires an estimate of its corresponding variance. From the point of view of
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theoretical accuracy, this multitude of purposes may suggest a different preferred
variance estimator for each of the survey statistics, or at least a different variance
estimator for different classes of statistics. Such use of different variance estima-
tors may be feasible in certain survey environments, where budget, professional
staff, time, and computing resources are abundant. In many survey environments,
however, these resources are scarce; this approach will not be feasible, and it will
be necessary to use one, or at most a few, variance estimating methodologies. In
this case compromises must be made, selecting a variance estimator that might
not be optimal for any one statistic but that involves a tolerable loss of accu-
racy for all, or at least the most important, survey statistics. The second aspect
of simplicity involves the computer processing system used for the survey. As
of this writing, several good and capable software packages for variance calcu-
lations have been developed and are commercially available (see Appendix E).
When such specialized packages are available to the survey researcher, they are
a boon to the processing of survey data, and there may be little concern with this
aspect of the simplicity issue. When such packages are not available, however,
custom computer programs may have to be written to process the data and esti-
mate variances correctly. In this case, one must give consideration to the abilities
and skills of the computer programming staff. The specification of a variance es-
timating methodology must be commensurate with the staff’s abilities to program
that methodology. It may serve no purpose to specify an elaborate variance esti-
mation scheme if the programming staff cannot devise the appropriate computer
programs correctly. If a specialized package for variance estimation is not avail-
able, one might consider the use of a general statistical package. Care is required in
doing so because many procedures in such packager are based on simple random
sampling assumptions, which are violated in the typical modern complex survey.
Such procedures likely give wrong answers for survey data. The third and final
aspect of simplicity is concerned with the survey sponsor and users of the survey
data. Often, the survey goals will be better served if simple estimation methods
are used that are readily understood by the survey sponsor and other users of the
data. For statistically sophisticated sponsors and users, however, this should not
be a concern.

Thus, the process of evaluating alternative variance estimators and selecting a
specific estimator(s) for use in a particular application is a complicated one, involv-
ing both objective and subjective elements. In this process, the survey statistician
must make intelligent trade-offs between the important, and often conflicting, con-
siderations of accuracy, cost, timing, and simplicity.

1.2. The Scope and Organization of this Book

The main purpose of this book is to describe a number of the techniques for
variance estimation that have been suggested in recent years and to demonstrate
how they may be used in the context of modern complex sample surveys. As of the
publication data of the first edition of this book, the various techniques were widely
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scattered through the statistical literature; there was no systematic treatment of this
methodology in one manuscript. The purpose of the first edition was to provide a
consolidated treatment of the methods. This second edition rounds out the material
with important new developments in variance estimation that have occurred within
the last 20 years.

Few fields of statistical study have such a variety of excellent texts as sur-
vey sampling. Examples include the very readable accounts by Cochran (1977),
Deming (1950, 1960), Hansen, Hurwitz, and Madow (1953), Raj (1968), Sukhatme
and Sukhatme (1970), and Yates (1949). Each of these texts discusses variance
estimation for some of the basic estimators and sample designs. For conve-
nience, we shall refer to these as the standard (or textbook or customary) vari-
ance estimators. Most of the textbook discussions about the standard variance
estimators emphasize unbiasedness and minimum mean square error. These dis-
cussions stop short of dealing with some of the important features of complex
surveys, such as non-response, measurement errors, cost, and other operational
issues.

In this book we consider certain nonstandard variance estimating techniques.
As we shall see, these nonstandard estimators are not necessarily unbiased, but
they are sufficiently flexible to accommodate most features of a complex survey.
Except for a brief discussion in Section 1.4, we do not discuss the standard vari-
ance estimators because they are adequately discussed elsewhere. In so doing we
have tried to avoid duplication with the earlier sampling texts. The techniques
we discuss overcome, to a large extent, some of the deficiencies in the stan-
dard estimators, such as the treatment of nonresponse, cost, and other operational
issues.

Although the main area of application is the complex survey, part of the text is
devoted to a description of the methods in the context of simple sampling designs
and estimators. This approach is used to motivate the methods and to provide
emphasis on the basic principles involved in applying the methods. It is important
to emphasize the basic principles because, to some extent, each survey is different
and it is nearly impossible in a moderately sized manuscript to describe appropriate
variance estimating techniques for every conceivable survey situation.

Examples form an integral part of the effort to emphasize principles. Some are
simple and used merely to acquaint the reader with the basics of a given tech-
nique. Others, however, are more elaborate, illustrating how the basic principles
can be used to modify and adapt a variance estimating procedure to a complex
problem.

Chapters 2–5 describe methods of variance estimation based on the concept of
replication. The four methods—random groups, balanced half-samples, jackknife,
and bootstrap—differ only in the way the replicates are formed. These chapters
should be read in sequence, as each builds on concepts introduced in the preceding
chapters.

The remaining chapters are largely self-contained and may be read in any suit-
able order. A minor exception, however, is that some of the examples used in later
chapters draw on examples first introduced in Chapters 2–5. To fully understand
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such examples, the reader would first need to study the background of the example
in the earlier chapter.

Taylor series (or linearization) methods are used in the basic sampling texts to
obtain an estimator of variance for certain nonlinear estimators, e.g., the classical
ratio estimator. In Chapter 6, a complete account of this methodology is given,
showing how most nonlinear statistics can be linearized as a preliminary step in
the process of variance estimation.

The subject of generalized variance functions (GVF) is introduced in Chapter 7.
This method is applicable to surveys with an extraordinarily large publication
schedule. The idea is simply to model an estimator’s variance as a function of the
estimator’s expectation. To estimate the variance, one evaluates the function at the
estimate; a separate variance computation is not required.

Chapter 8 discusses variance estimation for both equal and unequal proba-
bility systematic sampling. Although many of the estimators that are presented
have been mentioned previously in the earlier sampling texts, little advice was
given there about their usage. This chapter aims to provide some guidance
about the tricky problem of variance estimation for this widely used method of
sampling.

A general summary of Chapters 2 through 8 is presented in Chapter 9. This
chapter also makes some recommendations about the advantages, disadvantages,
and appropriateness of the alternative variance estimation methodologies.

The book closes with six short appendices on special topics. Appendix A dis-
cusses the topic of Hadamard matrices, which are useful in implementing the ideas
of balancing found in Chapter 3. Appendix B discusses the asymptotic properties
of the variance estimating methodologies presented in Chapters 2–6. Data transfor-
mations are discussed in Appendix C. This topic offers possibilities for improving
the quality of survey-based interval estimates. Nonsampling errors are treated in
Appendixes D and F. In Appendixes D, the notion of total variance is introduced,
and the behavior of the variance estimators in the presence of measurement errors
is discussed. Appendix E addresses computer software for variance estimation.
Finally, Appendix F discusses the effect of imputation for missing observations on
variance estimation.

1.3. Notation and Basic Definitions

This section is devoted to some basic definitions and notation that shall be useful
throughout the text. Many will find this material quite familiar. In any case, the
reader is urged to look through this material before proceeding further because
the basic framework (or foundations) of survey sampling is established herein.
For a comprehensive treatment of this subject, see Cassel, Särndal, and Wretman
(1977).

(1) We shall let U = {1, . . . , N } denote a finite population of identifiable units,
where N < ∞. N is the size of the population. In the case of multistage
surveys, we shall use N to denote the number of primary units, and other
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symbols, such as M , to denote the number of second and successive stage
units.

(2) There are two definitions of the term sample that we shall find useful.
(a) A sample s is a finite sequence {i1, i2, . . . , in(s)} such that i j ∈ U for

j = 1, 2, . . . , n(s). In this case, the selected units are not necessarily
distinct.

(b) A sample s is a nonempty subset of U . In this case, the selected units are
necessarily distinct.

(3) In either definition of a sample s, we use n(s) to denote the sample size. Many
common sampling designs have a fixed sample size that does not vary from
sample to sample, in which case we shall use the shorthand notation n.

(4) For a given definition of the term sample, we shall let S denote the collection
of all possible samples fromU .

(5) A probability measure P is a nonnegative function defined over S such
that the function values add to unity; i.e.,

P {s} ≥ 0 and
∑
s∈S

P {s} = 1.

Let S be the random variable taking values s ∈ S .
(6) We shall call the pair (S , P ) a sampling design. It should be observed that

it makes little conceptual difference whether we let S include all possible
samples or merely those samples with positive probability of being selected;
i.e., P {s} > 0.

(7) For a given sampling design, the first-order inclusion probability πi is the
probability of drawing the i-th unit into the sample

πi =
∑
s⊃i

P {s},

for i = 1, . . . , N , where
∑

s⊃i stands for summation over all samples s that
contain the i-th unit. The second-order inclusion probability πi j is the prob-
ability of drawing both the i-th and j-th units into the sample

πi j =
∑
s⊃i, j

P {s},

for i, j = 1, . . . , N .

(8) Attached to each unit i in the population is the value Yi of some characteristic
of interest. Sometimes we may be interested in more than one characteristic,
then denoting the values by Yi1, Yi2, . . . , or by Yi , Xi , . . . .

(9) A sampling design (S , P ) is called noninformative if and only if the measure
P {·} does not depend on the values of the characteristics of interest. In this
book, we only consider noninformative designs.

(10) As much as is feasible, we shall use uppercase letters to indicate the values
of units in the population and lowercase letters to indicate the values of units
in the sample. Thus, for example, we may write the sample mean based on a
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sample s as

ȳ =
∑
i∈s

Yi/n(s),

ȳ =
n(s)∑
i=1

yi/n(s),

or

ȳ =
N∑

i=1

αi Yi/n(s),

where

αi =
{

number of times i occurs in s, if i ∈ s,
0, if i /∈ s.

(11) In the case of a single characteristic of interest, we call the vector Y =
(Y1, . . . , YN ) the population parameter. In the case of multiple (r ) character-
istics, we let Yi be a (1 × r ) row vector composed of the values associated
with unit i , and the matrix

Y =
⎛
⎝ Y1

...
YN

⎞
⎠

is the population parameter. We denote the parameter space by �. Usually,
� is the N -dimensional Euclidean space in the single characteristic case
(Nr-dimensional Euclidean space in the multiple characteristic case) or some
subspace thereof.

(12) Any real function on � is called a parameter. We shall often use the letter θ

to denote an arbitrary parameter to be estimated. In the case of certain widely
used parameters, we may use special notation, such as

Y =
N∑

i=1

Yi , population total,

R = Y/X, ratio of population totals,

D = Y/X − W/Z , difference between ratios,

β =

N∑
i=1

(Yi − Ȳ )(Xi − X̄ )

N∑
i=1

(Xi − X̄ )2

, regression coefficient,

Ȳ = Y/N , population mean per element.

(13) An estimator of θ will usually be denoted by θ̂ . An estimator θ̂ = θ (S, Y) is
a real-valued statistic thought to be good for estimating θ such that for any
given s ∈ S , θ (s, Y) depends on Y only through those Yi for which i ∈ s. In
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the case of the special parameters, we may use the notation

Ŷ ,

R̂,

D̂,

β̂,

and

ȳ.

We shall often adjoin subscripts to these symbols to indicate specific
estimators.

(14) The expectation and variance of θ̂ with respect to the design (S , P ) shall
be denoted by

E{θ̂} =
∑

s

P {s} θ (s, Y),

Var{θ̂} =
∑

s

P {s} [θ (s, Y) − E{θ̂}]2.

(15) In this book, we shall be concerned almost exclusively with the estimation of
the design variance Var{θ̂}. There are at least two other concepts of variability
that arise in the context of survey sampling:
(i) In the prediction theory approach to survey sampling, it is assumed that

the population parameter Y is itself a random variable with some distribu-
tion function ξ (·). Inferences about θ are based on the ξ -distribution rather
than on the P -distribution. In this approach, concern centers around the
estimation of the ξ -variance

Var {θ̂ − θ} =
∫

[(θ̂ − θ ) − E {θ̂ − θ}]2 dξ,

where

E {θ̂ − θ} =
∫

(θ̂ − θ ) dξ

is the ξ -expectation. The problem of estimating Var {θ̂ − θ} is not treated
in this book. For more information about ξ -variances, see Cassel, Särndal,
and Wretman (1977) and Royall and Cumberland (1978, 1981a, 1981b).

(ii) In the study of measurement (or response) errors, it is assumed that the
data

{Yi: i ∈ s}
are unobservable but rather that

{Y 0
i = Yi + ei: i ∈ s}

is observed, where ei denotes an error of measurement. Such errors are
particularly common in social and economic surveys; e.g., Yi is the true
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income and Y 0
i is the observed income of the i-th unit. In this context,

the total variability of an estimator θ̂ arises from the sampling design,
from the distribution of the errors ei , and from any interaction between the
design and error distributions. The problems of estimating total variability
are treated briefly in Appendix D.

Henceforth, for convenience, the term “variance” shall refer strictly to “design
variance” unless otherwise indicated.

(16) An estimator of variance, i.e., an estimator of Var{θ̂}, will usually be denoted
by v(θ̂ ). We shall adjoin subscripts to indicate specific estimators.

(17) Often, particularly in Chapters 2–5, we shall be interested in estimation based
on k subsamples (or replicates or pseudoreplicates) of the full samples. In
such cases, we shall let θ̂ denote the estimator based on the full sample
and θ̂α the estimator, of the same functional form as θ̂ , based on the α-
th subsample, for α = 1, . . . , k. We shall use ˆ̄θ to denote the mean of the
θ̂α; i.e.,

ˆ̄θ =
k∑

α=1

θ̂α/k.

(18) We shall often speak of the Horvitz–Thompson (1952) estimator of a popula-
tion total Y . For an arbitrary sampling design with πi > 0 for i = 1, . . . , N ,

this estimator is

Ŷ =
∑

i∈d(S)

Yi/πi ,

where
∑

i∈d(S) denotes a summation over the distinct units in S.
(19) When speaking of unequal probability sampling designs, we shall use pi to

denote the per draw selection probability of the i-th unit (i = 1, . . . , N ). That
is, in a sample of size one, pi is the probability of drawing the i-th unit. If X
is an auxiliary variable (or measure of size) that is available for all units in
the population, then we may define

pi = Xi/X,

where X is the population total of the X -variable.
(20) Many common sampling designs will be discussed repeatedly throughout the

text. To facilitate the presentation, we shall employ the following abbrevia-
tions:

Sampling Design Abbreviation

simple random sampling without replacement srs wor

simple random sampling with replacement srs wr

probability proportional to size sampling with replacement pps wr

single-start, equal probability, systematic sample sys
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(21) An unequal probability without replacement sampling design with πi = npi

and fixed sample size n(s) = n shall be called a πps sampling design. Such
designs arise frequently in practice; we shall discuss them further at various
points in later chapters.

1.4. Standard Sampling Designs and Estimators

Although it is not our intention to repeat in detail the standard theory and
methods of variance estimation, it will be useful to review briefly some of
this work. Such a review will serve to clarify the standard variance esti-
mating formulae and to motivate the methods to be discussed in subsequent
chapters.

We discuss nine basic sampling designs and associated estimators in the fol-
lowing paragraphs. All are discussed in the context of estimating a population
total Y . These are basic sampling designs and estimators; they are commonly
used in practice and form the basis for more complicated designs, also used in
practice. The estimators are unbiased estimators of the total Y . The variance
of each is given along with the standard unbiased estimator of variance. A ref-
erence is also given in case the reader desires a complete development of the
theory.

(1) Design: srs wor of size n

Estimator: Ŷ = f −1
n∑

i=1

yi ,

f = n/N .

Variance: Var{Ŷ } = N 2(1 − f )S2/n,

S2 =
N∑

i=1

(Yi − Ȳ )2/(N − 1),

Ȳ =
N∑

i=1

Yi/N .

Variance Estimator: v(Ŷ ) = N 2(1 − f )s2/n,

s2 =
n∑

i=1

(yi − ȳ)2/(n − 1),

ȳ =
n∑

i=1

yi/n.

Reference: Cochran (1977), pp. 21–27.
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(2) Design: srs wr of size n

Estimator: Ŷ = N
n∑

i=1

yi/n.

Variance: Var{Ŷ } = N 2σ 2/n,

σ 2 =
N∑

i=1

(Yi − Ȳ )2/N .

Variance Estimator: v(Ŷ ) = N 2s2/n,

s2 =
n∑

i=1

(yi − ȳ)2/(n − 1).

Reference: Cochran (1977), pp. 29–30.
(3) Design: pps wr of size n

Estimator: Ŷ =
n∑

i=1

yi/npi .

Variance: Var{Ŷ } =
N∑

i=1

pi (Zi − Y )2/n,

Zi = Yi/pi .

Variance Estimator: v(Ŷ ) =
n∑

i=1

(zi − Ŷ )2/n(n − 1).

Reference: Cochran (1977), pp. 252–255.
(4) Design: πps of size n

Estimator: Ŷ =
n∑

i=1

yi/πi .

(Horvitz-Thompson Estimator)

Variance: Var{Ŷ } =
N∑

i=1

N∑
j>i

(πiπ j − πi j )(Yi/πi − Y j/π j )
2.

Variance Estimator: v(Ŷ ) =
n∑

i=1

n∑
j>i

[(πiπ j − πi j )/πi j ](yi/πi − yi/π j )
2.

(Yates–Grundy Estimator)
References: Cochran (1977), pp. 259–261; and Rao (1979).

A two-stage sampling design is used in paragraphs 5, 6, and 7. In all cases, N
denotes the number of primary sampling units in the population and Mi denotes
the number of elementary units within the i-th primary unit. The symbols n and
mi denote the first- and second-stage sample sizes, respectively, and Yi j denotes
the value of the j-th elementary unit within the i-th primary unit. The population
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total is now

Y.. =
N∑

i=1

Mi∑
j=1

Yi j .

(5) Design: srs wor at both the first and second stages of sampling

Estimator: Ŷ .. = (N/n)
n∑

i=1

Mi ȳi .,

ȳi . =
mi∑
j=1

yi j/mi .

Variance : Var{Ŷ ..} = N 2(1 − f1)(1/n)
N∑

i=1

(Yi . − Y../N )2/(N − 1)

+ (N/n)
N∑

i=1

M2
i (1 − f2i )S2

i /mi ,

Yi . =
Mi∑
j=1

Yi j ,

Ȳi . = Yi ./Mi ,

S2
i =

Mi∑
j=1

(Yi j − Ȳi .)
2/(Mi − 1),

f1 = n/N ,

f2i = mi/Mi .

Variance Estimator:

v(Ŷ ..) = N 2(1 − f1)(1/n)
n∑

i=1

(Mi ȳi . − Ŷ ../N )2/(n − 1)

+ (N/n)
n∑

i=1

M2
i (1 − f2i )s

2
i /mi ,

s2
i =

n∑
j=1

(yi j − ȳi .)
2/(mi − 1).

Reference: Cochran (1977), pp. 300–303.
(6) Design: pps wr at the first stage of sampling; srs wor at the second stage

Estimator: Ŷ .. =
n∑

i=1

Mi ȳi ./npi .

Variance: Var{Ŷ ..} =
n∑

i=1

pi (Yi ./pi − Y..)2/n

+
N∑

i=1

(1/npi )M2
i (1 − f2i )S2

i /mi .
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Variance Estimator: v(Ŷ ..) =
n∑

i=1

(Mi ȳi ./pi − Ŷ ..)2/n(n − 1).

Reference: Cochran (1977), pp. 306–308.
(7) Design: πps at the first stage of sampling; srs wor at the second stage

Estimator: Ŷ .. =
n∑

i=1

Mi ȳi ./πi .

πi = npi is the probability that the i-th primary unit is selected.

Variance: Var{Ŷ ..} =
N∑

i=1

N∑
j>i

(πiπ j − πi j )(Yi ./πi − Y j ./π j )
2

+
N∑

i=1

(1/πi )M2
i (1 − f2i )S2

i /mi .

πi j is the joint probability that the i-th and j-th primary units are selected.

Variance Estimator:

v(Ŷ ..) =
n∑

i=1

n∑
j>1

[(πiπ j − πi j )/πi j ](Mi ȳi ./πi − M j ȳ j ./π j )
2

+
n∑

i=1

(1/πi ) M2
i (1 − f2i )s

2
i /mi .

Reference: Cochran (1977), pp. 308–310.
Any of the above sampling designs may be used within strata in a stratified sam-
pling design.
(8) Design: L strata; sample size nh in the h-th stratum (h = 1, . . . , L); the samp-

ling design within the strata is one of those described in paragraphs (1), (2) . . . ,
(7).

Estimator: Ŷ =
L∑

h=1

Ŷh .

Ŷh = estimator of the total in the h-th stratum; corresponds to the specific
within stratum sampling design.

Variance: Var{Ŷ } =
L∑

h=1

Var{Ŷh}.

Var{Ŷh} corresponds to the given estimator and sampling design; See para-
graphs (1), (2) . . . , (7).

Variance Estimator: v(Ŷ ) =
L∑

h=1

v(Ŷh).
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v(Ŷh) corresponds to the given estimator and sampling design; see paragraphs
(1), (2) . . . , (7).
Reference: Cochran (1977), pp. 91–96; and Raj (1968), pp. 61–64.

Finally, we illustrate the concept of the double sampling design.
(9) Design: The first-phase sample is a srs wor of size n′; this sample is classified

into L strata. The second-phase sample is a stratified random subsample of
size n; the subsample size within the h-th stratum is nh = νhn′

h, where 0 <

νh ≤ 1, νh is specified in advance of sampling, and n′
h is the number of units

from the first sample that were classified in the h-th stratum.

Estimator: Ŷ = N
L∑

h=1

wh ȳh,

wh = n′
h/n′.

ȳh is the sample mean of the simple random subsample from the h-th stratum.

Variance: Var{Ŷ } = N 2(1 − f ′)S2/n′ + N 2
L∑

h=1

(Wh S2
h/n′)(1/νh − 1),

f ′ = n′/N ,

S2 =
L∑

h=1

Nh∑
i=1

(Yhi − Ȳ )2/(N − 1),

Ȳ =
L∑

h=1

Nh∑
i=1

Yhi/N ,

Ȳh =
Nh∑

i=1

Yhi/Nh,

Nh is the size of the population in the h-th stratum,

S2
h =

Nh∑
i=1

(Yhi − Ȳh)2/(Nh − 1).

Variance Estimator:

v(Ŷ ) = N 2[n′(N − 1)/(n′ − 1)N ]

[
L∑

h=1

whs2
h (1/n′νh − 1/N )

+ [(N − n′)/n′(N − 1)]
L∑

h=1

s2
h (wh/N − 1/n′νh)

+ [(N − n′)/n′(N − 1)]
L∑

h=1

wh(ȳh − Ŷ/N )2

]
,

s2
h =

nh∑
i=1

(yhi − ȳh)2/(nh − 1).

Reference: Cochran (1977), pp. 327–335.



P1: OTE/SPH P2: OTE

SVNY318-Wolter December 13, 2006 19:52

16 1. Introduction

In what follows we refer frequently to the standard or textbook or customary
estimators of variance. It will be understood, unless specified otherwise, that these
are the estimators of variance discussed here in paragraphs (1)–(9).

1.5. Linear Estimators

Linear estimators play a central role in survey sampling, and we shall often discuss
special results about estimators of their variance. Indeed, we shall often provide
motivation for variance estimators by discussing them in the context of estimating
the variance of a linear estimator, even though their real utility may be in the context
of estimating the variance of a nonlinear estimator. Furthermore, in Chapter 6 we
shall show that the problem of estimating the variance of a nonlinear estimator
may be tackled by estimating the variance of an appropriate linear approximation.

There is little question about the meaning of the term linear estimator when
dealing in the context of random samples from an infinite population. In finite-
population sampling, however, there are several meanings that may be ascribed to
this term.

Horvitz and Thompson (1952) devised three classes of linear estimators for
without replacement sampling designs:

(1) θ̂ =
∑
i∈S

βi Yi ,

where
∑

i∈S is a summation over the units in the sample S and βi is defined in
advance of the survey, for i = 1, . . . , N , and is associated with the i-th unit in
the population;

(2) θ̂ =
n(S)∑
i=1

βi yi ,

where βi is defined in advance of the survey, for i = 1, . . . , n(S), and is asso-
ciated with the unit selected at the i-th draw; and

(3) θ̂ = βs

∑
i∈S

Yi ,

where βs is defined in advance of the survey for all possible samples S.

Certain linear estimators are members of all three classes, such as the sample mean
for srs wor sampling. Other estimators belong to only one or two of these classes.
If we use srs wor within each of L ≥ 2 strata, then the usual estimator of the
population total

Ŷ =
L∑

h=1

(Nh/nh)
∑

i∈S(h)

Yi ,

where S(h) denotes the sample from the h-th stratum and Nh and nh denote the
sizes of the population and sample, respectively, in that stratum, belongs only to
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classes 1 and 2, unless proportional allocation is used. An example of a class 3
estimator is the classical ratio

ŶR =
∑
i∈S

Yi

N∑
i=1

Xi/
∑
i∈S

Xi , (1.5.1)

where X is an auxiliary variable and

βS =
N∑

i=1

Xi/
∑
i∈S

Xi

is assumed known in advance of the survey.
Some linear estimators do not fit into any of Horvitz and Thompson’s classes,

most notably those associated with replacement sampling designs. An easy exam-
ple is the estimator of the population total

Ŷpps = (1/n)
n∑

i=1

yi/pi

for pps wr sampling, where {pi }N
i=1 is the sequence of selection probabilities and

n(S) = n is the sample size. To include this estimator and other possibilities,
Godambe (1955) suggested that the most general linear estimator may be written
as

θ̂ =
∑
i∈S

βSi Yi , (1.5.2)

where the βsi are defined in advance of the survey for all samples s ∈ S and for
all units i ∈ s. Cassel, Särndal, and Wretman (1977) define linear estimators to be
of the form

θ̂ = βS0 +
∑
i∈S

βSi Yi . (1.5.3)

They call estimators of the form (1.5.2) linear homogeneous estimators.
If multiple characteristics are involved in the estimator, then even (1.5.3) does

not exhaust the supply of linear estimators. For example, for srs wor we wish to
regard the difference estimator

ȳd =
∑
i∈S

Yi/n + β

(
N∑

i=1

Xi/N −
∑
i∈S

Xi/n

)

(β a known constant) as a linear estimator, yet it does not fit the form of (1.5.3).
In view of these considerations, we shall use the following definition in this book.

Definition 1.5.1. Let θ̂ (1), . . . , θ̂ (p) denote p statistics in the form of (1.5.3),
possibly based on different characteristics, and let {γ j }p

j=0 denote a sequence of
fixed real numbers. An estimator θ̂ is said to be a linear estimator if it is expressible
as

θ̂ = γ0 + γ1θ̂ (1) + · · · + γp θ̂ (p).
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This definition is sufficiently general for our purpose. Sometimes, however, it
is more general than we require, in which case we shall consider restricted classes
of linear estimators. For example, we may eliminate the ratio estimator (1.5.1)
from certain discussions because it lacks certain properties possessed by other
estimators we wish to consider.

1.6. Survey Weights

Estimation for modern complex surveys is often conducted using case weights (or,
more simply, weights). It is useful to briefly review the topic of weights at this
juncture because we will assume knowledge of them and use them in the ensuing
chapters on methods of variance estimation.

The use of weights is pervasive in surveys of people and their institutions and
is also common in environmental and other surveys. Given this approach, the
estimator of the population total is of the form

Ŷ =
∑
i∈s

Wi Yi , (1.6.1)

where s denotes the sample, Yi is the characteristic of interest, and Wi is the weight
associated with the i-th unit in the sample. The statistic (corresponding to Yi ≡ 1)

N̂ =
∑
i∈s

Wi

is an estimator of the size of the eligible population. Informally, one may describe
Wi as the number of units in the population represented by the i-th unit in the
sample. While this description of the weight is not exact technically, it can be
useful in describing survey estimation to nontechnical audiences.

The weights are independent of the characteristic y, and they are constructed
by the survey statistician such that Ŷ is an unbiased, or nearly unbiased, estimator
of the population total, Y . Weights enter into the estimation of more complicated
parameters of the finite population, too, by way of the estimated totals, which
may be viewed as building blocks. To see this, let θ = g(Y, X, . . .) be the param-
eter to be estimated for some function g. Then the standard survey estimator is
θ̂ = g(Ŷ , X̂ , . . .), where the estimated totals on the right-hand side are constructed
from the survey weights and expression (1.6.1). Weights facilitate the survey com-
putations. Because generally they are not specific to any one characteristic of
interest, one weight can be associated with each completed interview and saved
on the computer record representing the sample unit. Then, it is straightforward to
calculate the estimates of the population totals and other parameters of interest.

Weights may be constructed in many different ways. As an illustration, we give
one widely used approach, involving three steps.

Step 1. It is common to start the weighting process with

W1i = 1

πi
. (1.6.2)
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This base weight is the reciprocal of the inclusion probability. At this step, equation
(1.6.1) executes the Horvitz–Thompson estimator of the population total. Because
of nonresponse and other factors, it usually is not possible or wise to stop the
weighting process at this step.

Step 2. As a result of data-collection operations, each unit in the sample will
end up with a detailed disposition code (AAPOR, 2004) and in turn a broader
disposition category. To keep the illustration concrete and relatively simple, define
the disposition category for the i-th unit in the sample as

di = D, if i is out of the scope of the target population,

= K , if i is in-scope and missing (due to unit nonresponse or edit failure),
= C, if i is in-scope and completed the interview (with acceptable data).

(Here, we assume that scope status is determined for respondents and nonrespon-
dents alike. If scope status is not determined for nonrespondents, then a modifica-
tion of this step is required.) Classify each unit in the sample (including nonrespon-
dents) into one of A nonresponse-adjustment cells defined in terms of variables
available on the sampling frame. Let ei (= 1, . . . , A) be the code signifying the
cell into which unit i is classified. Define the indicator variables

δDi = 1, if di = D,

= 0, otherwise;

δCi = 1, if di = C,

= 0, otherwise;

and

δαi = 1, if ei = α,

= 0, otherwise

for α = 1, . . . , A. Then, the nonresponse-adjusted weight is defined by

W2i = δCi W1i

A∑
α=1

δαi

∑
j∈s

(
1 − δDj

)
δα j W1 j∑

j∈s
δC jδα j W1 j

. (1.6.3)

This calculation assigns positive weight to the units with a completed interview
and zero weight to all other units. The transformation is sum-preserving: The
sum of the W2-weights over all in-scope units (δDi = 0) is equal to the sum of the
W1-weights over the same domain. Note that it makes little difference conceptually
whether W2 is defined for all units in the sample (0 for all but the complete cases)
or is defined only for the completed cases (with a missing value for all other cases).

Step 3. As a result of data-collection operations, classify each completed inter-
view into one of B poststrata. Define the poststratum code for the i-th unit,

gi = missing, if di 	= C,

= β , if di = C and unit i is classified into the β-th poststratum;
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and define the corresponding indicator variables

χβi = 1, if gi = β,

= 0, otherwise

for β = 1, . . . , B.
Also, determine the population totals Nβ from a recent census or a larger ref-

erence survey. Nβ is the size of the in-scope population in the β-th poststratum.
Then calculate the poststratification-adjusted weight

W3i = W2i

B∑
β=1

χβi
Nβ∑

j∈s
χβ j W2 j

. (1.6.4)

This calculation, similar to that in Step 2, assigns positive weight only to the units
with completed interviews. Again, it makes little difference conceptually whether
W3 is defined for all units in the sample (0 for all but the complete cases) or is
defined only for the complete cases (with a missing value for all other cases). The
transformation is such that the sum of the W3-weights agrees with the control totals
Nβ .

If the W3-weights represent the final step in weighting, then relative to (1.6.1)
we take Wi = W3i , i ∈ s.

See Brackstone and Rao (1979), DeVille, Särndal, and Sautory (1993), and
DeVille and Särndal (1992) for additional weighting methods. RDD surveys,
multiple-stage surveys, and surveys with a screening interview (for a defined sub-
population) require additional steps for weighting.
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CHAPTER 2

The Method of Random Groups

2.1. Introduction

The random group method of variance estimation amounts to selecting two or
more samples from the population, usually using the same sampling design for
each sample; constructing a separate estimate of the population parameter of in-
terest from each sample and an estimate from the combination of all samples;
and computing the sample variance among the several estimates. Historically,
this was one of the first techniques developed to simplify variance estimation for
complex sample surveys. It was introduced in jute acreage surveys in Bengal
by Mahalanobis (1939, 1946), who called the various samples interpenetrat-
ing samples. Deming (1956), the United Nations Subcommission on Statistical
Sampling (1949), and others proposed the alternative term replicated samples.
Hansen, Hurwitz, and Madow (1953) referred to the ultimate cluster technique
in multistage surveys and to the random group method in general survey appli-
cations. Beginning in the 1990s, various writers have referred to the resampling
technique. All of these terms have been used in the literature by various authors,
and all refer to the same basic method. We will employ the term random group
when referring to this general method of variance estimation.

There are two fundamental variations of the random group method. The first
case is where the samples or random groups are mutually independent, while the
second case arises when there is a dependency of some kind between the random
groups. The case of independent samples is treated in Section 2.2. Although this
variation of the method is not frequently employed in practice, there is exact theory
regarding the properties of the estimators whenever the samples are independent.
In practical applications, the samples are often dependent in some sense, and exact
statistical theory for the estimators is generally not available. This case is discussed
beginning in Section 2.3.

21
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2.2. The Case of Independent Random Groups

Mutual independence of the various samples (or, more properly, of estimators
derived from the samples) arises when one sample is replaced into the population
before selecting the next sample. To describe this in some detail, we assume
there exists a well-defined finite population and that it is desired to estimate some
parameter θ of the population. We place no restrictions on the form of the parameter
θ . It may be a linear statistic such as a population mean or total, or nonlinear such
as a ratio of totals or a regression or correlation coefficient.

The overall sampling scheme that is required may be described as follows:

(i) A sample, s1, is drawn from the finite population according to a well-defined
sampling design (S , P ). No restrictions are placed on the design: it may
involve multiple frames, multiple stages, fixed or random sample sizes, double
sampling, stratification, equal or unequal selection probabilities, or with or
without replacement selection, but the design is not restricted to these features.

(ii) Following the selection of the first sample, s1 is replaced into the population,
and a second sample, s2, is drawn according to the same sampling design
(S , P ).

(iii) This process is repeated until k ≥ 2 samples, s1, . . . , sk , are obtained, each
being selected according to the common sampling design and each being
replaced before the selection of the next sample. We shall call these k samples
random groups.

In most applications of the random group method, there is a common estima-
tion procedure and a common measurement process that is applied to each of the
k random groups. Here, the terminology estimation procedure is used in a broad
sense to include all of the steps in the processing of the survey data that occur after
those data have been put in machine readable form. Included are such steps as the
editing procedures, adjustments for nonresponse and other missing data, large ob-
servation or outlier procedures, and the computation of the estimates themselves.
In applying the random group method, there are no restrictions on any of these
steps beyond those of good survey practice. The terminology measurement process
is used in an equally broad sense to include all of the steps in the conduct of the
survey up to and including the capture of the survey responses in machine readable
form. This includes all of the data-collection work (whether it be by mail, tele-
phone, or personal visit), callbacks for nonresponse, clerical screening and coding
of the responses, and transcription of the data to machine readable form. There are
no restrictions on any of these steps either, with one possible exception (see
Appendix D).1

1 In the study of measurement (or response) errors, it is assumed that the characteristic of
interest Y cannot be observed. Rather, Y 0 is observed, where Y 0 is the characteristic Y plus
an additive error e. If care is not taken, correlations between the various random groups can
occur because of correlations between the errors associated with units selected in different
random groups. An important example is where the errors are introduced by interviewers,
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Application of the common measurement process and estimation procedure
results in k estimators of θ , which we shall denote by θ̂α, α = 1, . . . , k. Then, the
main theorem that describes the random group estimator of variance may be stated
as follows.

Theorem 2.2.1. Let θ̂1, . . . , θ̂k be uncorrelated random variables with common
expectation E{θ̂1} = μ. Let ˆ̄θ be defined by

ˆ̄θ =
k∑

α=1

θ̂α/k.

Then E{ ˆ̄θ} = μ and an unbiased estimator of Var{ ˆ̄θ} is given by

v( ˆ̄θ ) =
k∑

α=1

(θ̂α − ˆ̄θ )2/k(k − 1). (2.2.1)

Proof. It is obvious that E{ ˆ̄θ} = μ. The variance estimator v( ˆ̄θ ) may be written
as

v( ˆ̄θ ) =
[

k∑
α=1

θ̂2
α − k ˆ̄

θ2

] /
k(k − 1).

Since the θ̂α are uncorrelated, we have

E{v( ˆ̄θ )} =
[

k∑
α=1

(Var{θ̂α} + μ2) − k(Var{ ˆ̄θ} + μ2)

] /
k(k − 1)

= (k2 − k)Var{ ˆ̄θ}/k(k − 1)

= Var{θ̂α}. �

The statistic ˆ̄θ may be used as the overall estimator of θ , while v( ˆ̄θ ) is the random
group estimator of its variance Var{ ˆ̄θ}.

In many survey applications, the parameter of interest θ is the same as the
expectation μ,

E{ ˆ̄θ} = μ = θ, (2.2.1a)

or at least approximately so. In survey sampling it has been traditional to employ
design unbiased estimators, and this practice tends to guarantee (2.2.1a), at least in
cases where θ̂α(α = 1, . . . , k) is a linear estimator and where θ is a linear function

and an interviewer’s assignment covers units selected from two or more random groups.
To avoid such correlation, interviewer assignments should be arranged entirely within a
single random group. Error might also be introduced by other clerical operations, such as
in coding survey responses on occupation, in which case clerical work assignments should
be nested within random groups.
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of the population parameter Y. When θ and θ̂α are nonlinear, then μ and θ may be
unequal because of a small technical bias arising from the nonlinear form.2

It is interesting to observe that Theorem 2.2.1 does not require that the variances
of the random variables θ̂α be equal. Thus, the samples (or random groups) sα

could be generated by different sampling designs and the estimators θ̂α could have
different functional forms, yet the theorem would remain valid so long as the θ̂α are
uncorrelated with common expectation μ. In spite of this additional generality of
Theorem 2.2.1, we will continue to assume the samples sα are each generated from
a common sampling design and the estimators θ̂α from a common measurement
process and estimation procedure.

While Theorem 2.2.1 only requires that the random variables θ̂α be uncorrelated,
the procedure of replacing sample sα−1 prior to selecting sample sα tends to induce
independence among the θ̂α . Thus, the method of sampling described by (i)–(iii)
seems to more than satisfy the requirements of the theorem. However, the presence
of measurement errors, as noted earlier, can introduce a correlation between the θ̂α

unless different sets of interviewers and different processing facilities are employed
in the various samples. Certain nonresponse and poststratification adjustments may
also introduce a correlation between the θ̂α if they are not applied individually
within each sample. This topic is discussed further in Section 2.7.

Inferences about the parameter θ are usually based on normal theory or on
Student’s t theory. The central mathematical result is given in the following well-
known theorem, which we state without proof.

Theorem 2.2.2. Let θ̂1, . . . , θ̂k be independent and identically distributed normal
(θ, σ 2) random variables. Then
(i) the statistic

z = ( ˆ̄θ − θ )/
√

σ 2/k

is distributed as a normal (0, 1) random variable; and
(ii) the statistic

t = ( ˆ̄θ − θ )/

√
v( ˆ̄θ )

is distributed as Student’s t with k − 1 degrees of freedom. �

If the variance of ˆ̄θ is essentially known without error or if k is very large, then
a (1 − α) 100% confidence interval for θ is

( ˆ̄θ − zα/2

√
v( ˆ̄θ ), ˆ̄θ + zα/2

√
v( ˆ̄θ )),

where zα/2 is the upper α/2 percentage point of the N (0, 1) distribution.

2 In most simple examples, this bias is at most of order n−1, where n is the sample size.
Such biases are usually unimportant in large samples.
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When the variance of ˆ̄θ is not known or when k is not large, the confidence interval
takes the form

( ˆ̄θ − tk−1,α/2

√
v( ˆ̄θ ), ˆ̄θ + tk−1,α/2

√
v( ˆ̄θ )),

where tk−1,α/2 is the upper α/2 percentage point of the tk−1 distribution.
In like manner, statistical tests of hypotheses about θ may be based on
Theorem 2.2.2.

The assumptions required in Theorem 2.2.2 are stronger than those in
Theorem 2.2.1 and may not be strictly satisfied in sampling from finite pop-
ulations. First, the random variables θ̂α must now be independent and identi-
cally distributed (θ, σ 2) random variables, whereas before they were only held
to be uncorrelated with common mean μ. These assumptions, as noted before,
do not cause serious problems because the overall sampling scheme (i)–(iii) and
the common estimation procedure and measurement process tend to ensure that
the more restrictive assumptions are satisfied. There may be concern about a
bias μ − θ �= 0 for nonlinear estimators, but such biases are usually unimpor-
tant in the large samples encountered in modern complex sample surveys. Second,
Theorem 2.2.2 assumes normality of the θ̂α , and this is never satisfied exactly
in finite-population sampling. Asymptotic theory for survey sampling, however,
suggests that the θ̂α may be approximately normally distributed in large sam-
ples. A discussion of some of the relevant asymptotic theory is presented in
Appendix B.

Notwithstanding these failures of the stated assumptions, Theorem 2.2.2 has
historically formed the basis for inference in complex sample surveys, largely
because of the various asymptotic results.

Many of the important applications of the random group technique concern
nonlinear estimators. In such applications, efficiency considerations may suggest

an estimator θ̂ computed from the combination of all random groups, rather than ˆ̄θ .

For certain linear estimators, θ̂ and ˆ̄θ are identical, whereas for nonlinear estimators
they are generally not identical. This point is discussed further in Section 2.8. The

difference between θ̂ and ˆ̄θ is illustrated in the following example.

Example 2.2.1. Suppose that it is desired to estimate the ratio

θ = Y/X,

where Y and X denote the population totals of two of the survey characteristics.
Let Ŷα and X̂α (α = 1, . . . , k) denote estimators of Y and X derived from the α-th
random group. In practice, these are often linear estimators and unbiased for Y
and X , respectively. Then,

θ̂α = Ŷα/X̂α,

ˆ̄θ = (1/k)
k∑

α=1

Ŷα/X̂α,
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and

θ̂ =

k∑
α=1

Ŷα/k

k∑
α=1

X̂α/k

.

In general, ˆ̄θ �= θ̂ . �

There are two random group estimators of the variance of θ̂ that are used in
practice. First, one may use

v1(θ̂ ) =
k∑

α=1

(θ̂α − ˆ̄θ )2/k(k − 1), (2.2.2)

which is the same as v( ˆ̄θ ). Thus, v( ˆ̄θ ) = v1(θ̂ ) is used not only to estimate Var{ ˆ̄θ},
which it logically estimates, but also to estimate Var{θ̂}. However, straightforward
application of the Cauchy-Schwarz inequality gives

0 ≤
[√

Var{ ˆ̄θ} −
√

Var{θ̂}
]2

≤ Var{ ˆ̄θ − θ̂}, (2.2.3)

and Var{ ˆ̄θ − θ̂} is generally small relative to both Var{ ˆ̄θ} and Var{θ̂}. In fact, using

Taylor series expansions (see Chapter 6), it is possible to show that Var{ ˆ̄θ − θ̂} is

of smaller order than either Var{ ˆ̄θ} or Var(θ̂}. Thus, the two variances are usually
of similar magnitude and v1(θ̂ ) should be a reasonable estimator of Var{θ̂}.

The second random group estimator is

v2(θ̂ ) =
k∑

α=1

(θ̂α − θ̂ )2/k(k − 1). (2.2.4)

When the estimator of θ is linear, then clearly ˆ̄θ = θ̂ and v1(θ̂ ) = v2(θ̂ ). For
nonlinear estimators, we have

k∑
α=1

(θ̂α − θ̂ )2 =
k∑

α=1

(θ̂α − ˆ̄θ )2 + k( ˆ̄θ − θ̂ )2. (2.2.5)

Thus,

v1(θ̂ ) ≤ v2(θ̂ )

and v2(θ̂ ) will be preferred when a conservative estimate of variance is desired.

However, as observed before, the expectation of the squared difference ( ˆ̄θ − θ̂ )2

will be unimportant in many complex survey applications, and there should be
little difference between v1 and v2. If an important difference does occur between

v1 and v2 (or between ˆ̄θ and θ̂ ), then this could signal either a computational error
or a bias associated with small sample sizes.
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Little else can be said by way of recommending v1(θ̂ ) or v2(θ̂ ). Using second-
order Taylor series expansions, Dippo (1981) has shown that the bias of v1 as an
estimator of Var{θ̂} is less than or equal to the bias of v2. To the same order of
approximation, Dippo shows that the variances of v1 and v2 are identical. Neither
of these results, however, has received any extensive empirical testing. And, in
general, we feel that it is an open question as to which of v1 or v2 is the more
accurate estimator of the variance of θ̂ .

Before considering the case of nonindependent random groups, we present a sim-
ple, artificial example of the method of sample selection discussed in this section.

Example 2.2.2. Suppose that a sample of households is to be drawn using a
multistage sampling design. Two random groups are desired. An areal frame exists,
and the target population is divided into two strata (defined, say, on the basis of
geography). Stratum I contains N1 clusters (or primary sampling units (PSU));
stratum II consists of one PSU that is to be selected with certainty. Sample s1 is
selected according to the following plan:

(i) Two PSUs are selected from stratum I using some πps sampling design. From
each selected PSU, an equal probability, single-start, systematic sample of m1

households is selected and enumerated.
(ii) The certainty PSU is divided into well-defined units, say city blocks, with the

block size varying between 10 and 15 households. An unequal probability
systematic sample of m2 blocks is selected with probabilities proportional to
the block sizes. All households in selected blocks are enumerated.

After drawing sample s1 according to this plan, s1 is replaced and the second
random group, s2, is selected by independently repeating steps (i) and (ii).

Separate estimates, θ̂1, and θ̂2, of a population parameter of interest are computed
from the two random groups. An overall estimator of the parameter and the random
group estimator of its variance are

ˆ̄θ = (θ̂1 + θ̂2)/2

and

v( ˆ̄θ ) = 1

2(1)

2∑
α=1

(θ̂α − ˆ̄θ )2

= (θ̂1 − θ̂2)2/4,

respectively. �

The example nicely illustrates the simplifications that result from proper use
of random groups. Had we not employed the random group method, variance
estimation would have been considerably more difficult, particularly for designs
that do not admit an unbiased estimator of variance; e.g., systematic sampling
designs.
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2.3. Example: A Survey of AAA Motels3

We now illustrate the use of independent random groups with a real survey. The
example is concerned with a survey of motel operators affiliated with the American
Automobile Association (AAA). The purpose of the survey was to determine
whether the operators were in favor of instituting a system whereby motorists
could make reservations in advance of their arrival.

The survey frame was a file of cards maintained in the AAA’s central office. It
consisted of 172 file drawers, with 64 cards per drawer. Each card represented one
of the following kinds of establishment:

a contract motel
1 to 10 rooms

11 to 24 rooms
25 rooms and over

a hotel
a restaurant
a special attraction
a blank card.

The sampling unit was the card (or, equivalently, the establishment operator).
The sampling design for the survey consisted of the following key features:

(1) Each of the 172 drawers was augmented by 6 blank cards, so that each drawer
now contained 70 cards. This augmentation was based on 1) the prior belief
that there were approximately 5000 contract motels in the population and 2)
the desire to select about 700 of them into the overall sample. Thus, an overall
sampling fraction of about one in 5000/700 =̇ 7 was required.

(2) A sample of 172 cards was chosen by selecting one card at random from each
drawer. Sampling was independent in different drawers.

(3) Nine additional samples were selected according to the procedure in Step 2.
Each of the samples was selected after replacing the previous sample. Thus,
estimators derived from the ten samples (or random groups) may be considered
to be independent.

(4) Eight hundred and fifty-four motels were drawn into the overall sample,
and each was mailed a questionnaire. The 866 remaining units were not
members of the domain for which estimates were desired (i.e., contract motels).
Although the random groups were selected with replacement, no duplicates
were observed.

(5) At the end of 10 days, a second notice was sent to delinquent cases, and at the
end of another week, a third notice. Every case that had not reported by the
end of 24 days was declared a nonrespondent.

3 This example is from Deming (1960, Chapter 7). The permission of the author is gratefully
acknowledged.
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Table 2.3.1. Number of Replies of Each Category to the Question “How
Frequently Do People Ask You to Make Reservations for Them?” After 24 Days

Random Ambiguous

Group Frequently Rarely Never Answer No Reply Yet Total

1 16 40 17 2 19 94

2 20 30 17 3 15 85

3 18 35 16 1 15 85

4 17 31 14 2 16 80

5 14 32 15 3 18 82

6 15 32 12 4 16 79

7 19 30 17 3 17 86

8 13 37 11 3 18 82

9 19 39 19 2 14 93

10 17 39 15 2 15 88

Total 168 345 153 25 163 854

Source: Table 3, Deming (1960, Chapter 7).

(6) Nonrespondents were then ordered by random group number, and from each
consecutive group of three, one was selected at random. The selected nonre-
spondents were enumerated via personal interview. In this sampling, nonre-
spondents from the end of one random group were tied to those at the beginning
of the next random group, thus abrogating, to a minor degree, the condition of
independence of the random group estimators. This fact, however, is ignored
in the ensuing development of the example.

Table 2.3.1 gives the results to the question, “How frequently do people ask you
to make reservations for them?” after 24 days. The results of the 1 in 3 subsample
of nonrespondents are contained in Table 2.3.2.

Estimates for the domain of contract motels may be computed by noting that
the probability of a given sampling unit being included in any one of the random
groups is 1/70, and the conditional probability of being included in the subsample
of nonrespondents is 1/3. Thus, for example, the estimated total number of contract
motels from the first random group is

X̂1 = 70
172∑
i=1

X1i

= 70(94)

= 6580,

where

X1i =
⎧⎨
⎩

1, if the i-th selected unit in the first
random group is a contract motel,

0, if not,
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Table 2.3.2. Results of Personal Interviews with the Subsample of
Nonrespondents

Random Temporarily Closed

Group Frequently Rarely Never (vacation, sick, etc.) Total

1 1 2 2 1 6

2 1 2 1 1 5

3 2 2 0 1 5

4 2 1 2 0 5

5 1 3 1 2 7

6 2 2 0 1 5

7 1 3 1 1 6

8 1 2 1 2 6

9 2 2 1 0 5

10 1 2 0 2 5

Total 14 21 9 11 55

Source: Table 4, Deming (1960, Chapter 7).

and the estimated total over all random groups is

ˆ̄X =
10∑

α=1

X̂α/10 = 5978.

Since the estimator is linear, X̂ and ˆ̄X are identical. The corresponding estimate of
variance is

v( ˆ̄X ) = 1

10(9)

10∑
α=1

(X̂α − ˆ̄X )2 = 12,652.9.

Estimated totals for each of the categories of the question, “How frequently
do people ask you to make reservations for them?” are given in Table 2.3.3. For
example, the estimate from random group 1 of the total number of motels that
would respond “frequently” is

Ŷ1 = 70

(∑
i∈r1

Y1i + 3
∑
i∈nr1

Y1i

)

= 70(16 + 3 · 1)

= 1330,

where
∑

i∈r1
and

∑
i∈nr1

denote summations over the respondents and the subsam-
ple of nonrespondents, respectively, in the first random group, and

Y1i =
⎧⎨
⎩

1, if the i-th selected unit in the first random group is a
contract motel and reported “frequently,”

0, if not.

All of the estimates in Table 2.3.3 may be computed in this manner.
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Table 2.3.3. Estimated Totals

Random Ambiguous Temporarily

Group Frequently Rarely Never Answer Closed

1 1330 3220 1610 140 210

2 1610 2520 1400 210 210

3 1680 2870 1120 70 210

4 1610 2380 1400 140 0

5 1190 2870 1260 210 420

6 1470 2660 840 280 210

7 1540 2730 1400 210 210

8 1120 3010 980 210 420

9 1750 3150 1540 140 0

10 1400 3150 1050 140 420

Parent

Sample 1470 2856 1260 175 231

Various nonlinear statistics may also be prepared from these data. The esti-
mate from the first random group of the ratio of the “rarely” plus “never” to the
“frequently” plus “rarely” plus “never” is

R̂1 = 3220 + 1610

1330 + 3220 + 1610
= 0.784.

The estimate of this ratio over all random groups is

ˆ̄R =
10∑

α=1

R̂α/10

= 0.737

with corresponding variance estimate

v( ˆ̄R) = 1

10(9)

10∑
α=1

(R̂α − ˆ̄R)2

= 0.0001139.

Since the ratio is a nonlinear statistic, we may use the alternative estimate

R̂ = 2856 + 1260

1470 + 2856 + 1260
= 0.737.

The two random group estimates of Var{R̂} are

v1(R̂) = v( ˆ̄R)

= 0.0001139
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and

v2(R̂) = 1

10(9)

10∑
α

(R̂α − R̂)2 = 0.0001139.

Clearly, there is little difference between ˆ̄R and R̂ and between v1(R̂) and v2(R̂)
for these data. A normal-theory confidence interval for the population ratio R is
given by(

R̂ ± 1.96

√
v2(R̂)

)
= (0.737 ± 1.96 ∗ 0.011) = (0.737 ± 0.021) .

2.4. The Case of Nonindependent Random Groups

In practical applications, survey samples are almost always selected as a whole
using some form of sampling without replacement rather than by selecting a se-
ries of independent random groups. Random groups are now formed following
sample selection by randomly dividing the parent sample into k groups. Estimates
are computed from each random group, and the variance is estimated using an
expression of the form of (2.2.1). The random group estimators θ̂α are no longer
uncorrelated because sampling is performed without replacement, and the result of
Theorem 2.2.1 is no longer strictly valid. The random group estimator now incurs a
bias. In the remainder of this section, we describe the formation of random groups
in some detail and then investigate the magnitude and sign of the bias for some
simple (but popular) examples.

2.4.1. The Formation of Random Groups

To ensure that the random group estimator of variance has acceptable statistical
properties, the random groups must not be formed in a purely arbitrary fashion.
Rather, the principal requirement is that they be formed so that each random group
has essentially the same sampling design as the parent sample. This requirement
can be satisfied for most survey designs by adhering to the following rules:

(i) If a single-stage sample of size n is selected by either srs wor or pps wor
sampling, then the random groups should be formed by dividing the parent
sample at random. This means that the first random group (RG) is obtained
by drawing a simple random sample without replacement (srs wor) of size
m = [n/k] from the parent sample, the second RG by drawing an srs wor of
size m from the remaining n − m units in the parent sample, and so forth. If
n/k is not an integer, i.e., n = km + q with 0 < q < k, then the q excess units
may be left out of the k random groups. An alternative method of handling
excess units is to add one of the units to each of the first q RGs.
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(ii) If a single-start systematic sample of size n is selected with either equal or
unequal probabilities, then the random groups should be formed by dividing
the parent sample systematically. This may be accomplished by assigning the
first unit in the parent sample to random group 1, the second to random group
2, and so forth in a modulo k fashion. Variance estimation for systematic
sampling is discussed more fully in Chapter 8.

(iii) In multistage sampling, the random groups should be formed by dividing the
ultimate clusters, i.e., the aggregate of all elementary units selected from the
same primary sampling unit (PSU), into k groups. That is, all second, third,
and successive stage units selected from the PSU must be treated as a single
unit when forming RGs. The actual division of the ultimate clusters into
random groups is made according to either rule (i) or (ii), depending upon
the nature of the first-stage sampling design. If this design is either srs wor
or pps wor, then rule (i) should be used, whereas for systematic sampling
designs rule (ii) should be used. Particular care is required when applying
the ultimate cluster principle to so-called self-representing PSUs, where
terminology may cause considerable confusion.4 From the point of view of
variance estimation, a self-representing PSU should be considered a separate
stratum, and the units used at the first stage of subsampling are the basis for
the formation of random groups.

(iv) In stratified sampling, two options are available. First, if we wish to estimate
the variance within a given stratum, then we invoke either rule (i), (ii), or
(iii) depending upon the nature of the within stratum sampling design. For
example, rule (iii) is employed if a multistage design is used within the
stratum. Second, if we wish to estimate the total variance across all strata,
then each random group must itself be a stratified sample comprised of units
from each stratum. In this case, the first RG is obtained by drawing an srs
wor of size mh = nh/k from the parent sample nh in the h-th stratum, for
h = 1, . . . , L . The second RG is obtained in the same fashion by selecting
from the remaining nh − mh units in the h-th stratum. The remaining RGs
are formed in like manner. If excess observations remain in any of the
strata, i.e., nh = kmh + qh , they may be left out of the k random groups
or added, one each, to the first qh RGs. If the parent sample is selected
systematically within strata, then the random groups must also be formed in
a systematic fashion. In other words, each random group must be comprised
of a systematic subsample from the parent sample in each stratum.

(v) If an estimator is to be constructed for some double sampling scheme, such as
double sampling for stratification or double sampling for the ratio estimator
(see Cochran (1977, Chapter 12)), then the n′ sampling units selected into the
initial sample should be divided into the k random groups. The division should
be made randomly for srs wor and pps wor designs and systematically for
systematic sampling designs. When n′ is not an integer multiple of k, either of
the procedures given in rule (i) for dealing with excess units may be used. The

4 A self-representing PSU is a PSU selected with probability one.
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second-phase sample, say of size n, is divided into random groups according
to the division of the initial sample. In other words, a given selected unit i is
assigned the same random group number as it was assigned in the initial sam-
ple. This procedure is used when both initial and second-phase samples are
selected in advance of the formation of random groups. Alternatively, in some
applications it may be possible to form the random groups after selection of
the initial sample but before selection of the second-phase sample. In this case,
the sample n′ is divided into the k random groups and the second-phase sam-
ple is obtained by independently drawing m = n/k units from each random
group.

These rules, or combinations thereof, should cover many of the popular sampling
designs used in modern large-scale sample surveys. The rules will, of course, have
to be used in combination with one another in many situations. An illustration is
where a multistage sample is selected within each of L ≥ 2 strata. For this case,
rules (iii) and (iv) must be used in combination. The ultimate clusters are the
basis for the formation of random groups, and each random group is composed of
ultimate clusters from each stratum. Another example is where a double sampling
scheme for the ratio estimator is used within each of L ≥ 2 strata. For this case,
rules (iv) and (v) are used together. Some exotic sampling designs may not be
covered by any combination of the rules. In such cases, the reader should attempt
to form the random groups by adhering to the principal requirement that each
group has essentially the same design as the parent sample.

2.4.2. A General Estimation Procedure

In general, the estimation methodology for a population parameter θ is the same
as in the case of independent random groups (see Section 2.2). We let θ̂ denote the
estimator of θ obtained from the parent sample, θ̂α the estimator obtained from

the α-th RG, and ˆ̄θ = ∑k
α=1 θ̂α/k. The random group estimator of Var{ ˆ̄θ} is then

given by

v( ˆ̄θ ) = 1

k(k − 1)

k∑
α=1

(θ̂α − ˆ̄θ )2, (2.4.1)

which is identical to (2.2.1). We estimate the variance of θ̂ by either

v1(θ̂ ) = v( ˆ̄θ ) (2.4.2)

or

v2(θ̂ ) = 1

k(k − 1)

k∑
α=1

(θ̂α − θ̂ )2, (2.4.3)

which are identical to (2.2.2) and (2.2.4). When a conservative estimator of Var{θ̂}
is sought, v2(θ̂ ) is preferred to v1{θ̂}. The estimators θ̂α should be prepared by
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application of a common measurement process and estimation procedure to each
random group. This process was described in detail in Section 2.2.

Because the random group estimators are not independent, v( ˆ̄θ ) is not an unbi-

ased estimator of the variance of ˆ̄θ . The following theorem describes some of the
properties of v( ˆ̄θ ).

Theorem 2.4.1. Let θ̂α be defined as above and let μα = E{θ̂α}, where μα is not
necessarily equal to θ . Then,

E{ ˆ̄θ} =
k∑

α=1

μα/k
(say)= μ̄,

and the expectation of the random group estimator of Var{ ˆ̄θ} is given by

E{v( ˆ̄θ )} = Var{ ˆ̄θ} + 1

k(k − 1)

k∑
α=1

(μα − μ̄)2

− 2
k∑

α=1

k∑
β>α

Cov{θ̂α, θ̂β}/{k(k − 1)}.

Further, if each RG is the same size, then

μα = μ̄(α = 1, . . . , k),

E{ ˆ̄θ} = μ̄,

and

E{v( ˆ̄θ )} = Var{ ˆ̄θ} − Cov{θ̂1, θ̂2}.

Proof. It is obvious that

E{ ˆ̄θ} = μ̄.

The random group estimator of variance may be reexpressed as

v( ˆ̄θ ) = ˆ̄θ2 − 2
k∑
α

k∑
β>α

θ̂αθ̂β/k(k − 1).

The conclusion follows because

E{ ˆ̄θ2} = Var{ ˆ̄θ} + μ̄2

and

E{θ̂αθ̂β} = Cov{θ̂α, θ̂β} + μαμβ. �

Theorem 2.4.1 displays the bias inv( ˆ̄θ ) as an estimator of Var{ ˆ̄θ}. For large popu-
lations and small sampling fractions, however, 2

∑k
α

∑k
β>αCov{θ̂α, θ̂β}/{k(k − 1)}
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will tend to be relatively small and negative. The quantity

1

k(k − 1)

k∑
α=1

(μα − μ̄)2

will tend to be relatively small when μα =̇ μ̄(α = 1, . . . , k). Thus, the bias of v( ˆ̄θ )
will be unimportant in many large-scale surveys and tend to be slightly positive.

When the estimator θ̂ is linear, various special results and estimators are avail-
able. This topic is treated in Subsections 2.4.3 and 2.4.4.

When the estimator θ̂ is nonlinear, little else is known regarding the exact
bias properties of (2.4.1), (2.4.2), or (2.4.3). Some empirical investigations of the
variance estimators have been encouraging in the sense that their bias is often
found to be unimportant. See Frankel (1971b) for one of the largest such studies
to date. The evidence as of this writing suggests that the bias of the random group
estimator of variance is often small and decreases as the size of the groups increase
(or equivalently as the number of groups decreases). This result occurs because
the variability among the θ̂α is close to the variability in θ̂ when the sample size
involved in θ̂α is close to that involved in θ̂ . See Dippo and Wolter (1984) for a
discussion of this evidence.

It is possible to approximate the bias properties of the variance estimators
by working with a linear approximation to θ̂ (see Chapter 6) and then apply-
ing known results for linear estimators. Such approximations generally suggest
that the bias is unimportant in the context of large samples with small sam-
pling fractions. See Dippo (1981) for discussion of second-order approxima-
tions.

2.4.3. Linear Estimators with Random Sampling of Elementary Units

In this subsection, we show how the general estimation procedure applies to a rather
simple estimator and sampling design. Specifically, we consider the problem of
variance estimation for linear estimators where the parent sample is selected in
L ≥ 1 strata. Within the h-th stratum, we assume that a simple random sample
without replacement (srs wor) of nh elementary units is selected. Without essential
loss of generality, the ensuing development will be given for the case of estimating
the population mean θ = Ȳ .

The standard unbiased estimator of θ is given by

θ̂ = ȳst =
L∑

h=1

Wh ȳh,

where Wh = Nh/N , ȳh = ∑nh
j=1 yhj/nh, Nh denotes the number of units in the

h-th stratum and N = ∑L
h=1 Nh . If nh is an integer multiple of k (i.e., nh = kmh)

for h = 1, . . . , L , then we form the k random groups as described by rule (iv) of
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Subsection 2.4.1 and the estimator of θ from the α-th RG is

θ̂α = ȳst,α =
L∑

h=1

Wh ȳh,α, (2.4.4)

where ȳh,α is the sample mean of the mh units in stratum h that were selected into the
α-th RG. Because the estimator θ̂ is linear and since nh = kmh for h = 1, . . . , L ,

it is clear that θ̂ = ˆ̄θ .
The random group estimator of the variance Var{θ̂} is

v(θ̂ ) = 1

k(k − 1)

k∑
α=1

(ȳst,α − ȳst)
2,

where it is clear that (2.4.1), (2.4.2), and (2.4.3) are identical in this case.

Theorem 2.4.2. When nh = kmh for h = 1, . . . , L, the expectation of the random
group estimator of Var{ȳst} is given by

E{v(θ̂ )} =
L∑

h=1

W 2
h S2

h/nh,

where

S2
h = 1

Nh − 1

Nh∑
j=1

(Yhj − Ȳh)2.

Proof. By definition,

E{ȳ2
st,α} = Var{ȳst,α} + E2{ȳst,α}

=
L∑

h=1

W 2
h

(
1

mh
− 1

Nh

)
S2

h + Ȳ 2

and

E{ȳ2
st} = Var{ȳst} + E2{ȳst}

=
L∑

h=1

W 2
h

(
1

nh
− 1

Nh

)
S2

h + Ȳ 2.

The result follows by writing

v(θ̂ ) = 1

k(k − 1)

(
k∑

α=1

ȳ2
st,α − k ȳ2

st

)
. �

The reader will recall that

Var{θ̂} =
L∑

h=1

W 2
h (1 − fh)S2

h/nh,
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where fh = nh/Nh is the sampling fraction. Thus, Theorem 2.4.2 shows that v(θ̂ )
is essentially unbiased whenever the sampling fractions fh are negligible. If some
of the fh are not negligible, then v(θ̂ ) is conservative in the sense that it will tend
to overestimate Var{θ̂}.

If some of the sampling fractions fh are important, then they may be included
in the variance computations by working with

W ∗
h = Wh

√
1 − fh

in place of Wh . Under this procedure, we define the random group estimators by

θ̂∗
α = ȳst +

L∑
h=1

W ∗
h (ȳh,α − ȳh), (2.4.5)

ˆ̄θ∗ = 1

k

k∑
α=1

θ̂∗
α ,

and

v( ˆ̄θ∗) = 1

k(k − 1)

k∑
α=1

(θ̂∗
α − ˆ̄θ∗)2.

It is clear that

ˆ̄θ∗ = θ̂ = ȳst.

Corollary 2.4.1. Let v( ˆ̄θ∗) be defined as v(θ̂ ) with ˆ̄θ∗
α in place of θ̂α . Then, given

the conditions of Theorem 2.4.2,

E{v( ˆ̄θ∗)} =
L∑

h=1

W ∗2
h S2

h/nh

= Var{θ̂}. �

This corollary shows that an unbiased estimator of variance, including the
finite population corrections, can be achieved by exchanging the weights W ∗

h for
Wh .

Next, we consider the general case where the stratum sample sizes are not
integer multiples of the number of random groups. Assume nh = kmh + qh for
h = 1, . . . ., L , with 0 ≤ qh < k. A straightforward procedure for estimating the
variance of θ̂ = ȳst is to leave the qh excess observations out of the k random
groups. The random group estimators are defined as before, but now

ˆ̄θ =
k∑

α=1

ȳst,α/k �= θ̂

because the excess observations are in θ̂ but not in ˆ̄θ . The expectation of the
random group estimator v( ˆ̄θ ) is described by Theorem 2.4.2, where the nh in the
denominator is replaced by nh − qh = kmh .
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Corollary 2.4.2. Let v(θ̂ ) be defined as in Theorem 2.4.2 with qh excess observa-
tions omitted from the k random groups. Then,

E{v(θ̂ )} =
L∑

h=1

W 2
h S2

h/kmh . �

The reader will immediately observe that v(θ̂ ) tends to overestimate Var{θ̂},
not only due to possibly nonnegligible fh but also because kmh ≤ nh . As before,
if some of the fh are important, they may be accounted for by working with θ̂∗

α

instead of θ̂α . If both the fh and the qh are important, they may be accounted for
by replacing Wh by

W
′′
h = Wh

√
(1 − fh)

kmh

nh

and by defining

θ̂
′′
α = ȳst +

L∑
h=1

W
′′
h

(
ȳh,α − 1

k

k∑
β=1

ȳh,β

)
.

Then ˆ̄θ
′′ = θ̂ and v( ˆ̄θ

′′
) is an unbiased estimator of Var{θ̂}.

An alternative procedure, whose main appeal is that it does not omit observa-
tions, is to form qh random groups of size mh + 1 and k − qh of size mh . Letting

ah,α =

⎧⎪⎪⎨
⎪⎪⎩

k(mh + 1)/nh, if the α-th RG contains mh + 1
units from the h-th stratum,

kmh/nh, if the α-th RG contains mh units
from the h-th stratum,

we define the α-th random group estimator by

θ̃α =
L∑

h=1

Whah,α ȳh,α.

It is important to note that

E{θ̃α} =
L∑

h=1

Whah,αȲh

�= Ȳ . (2.4.6)

However, because

˜̄θ =
k∑

α=1

θ̃α/k = ȳst = θ̂
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and E{θ̂} = θ, ˜̄θ is an unbiased estimator of θ even though the individual θ̃α are
not unbiased. The random group estimator of Var{θ̂} is now given by

v( ˜̄θ ) = 1

k(k − 1)

k∑
α=1

( θ̃α − ˜̄θ )2

= 1

k(k − 1)

k∑
α=1

( θ̃α − θ̂ )2. (2.4.7)

Theorem 2.4.3. When nh = kmh + qh for h = 1, . . . , L, the expectation of the
random group estimator v( ˜̄θ ) is given by

E{v( ˜̄θ )} = Var{ȳst} + 1

k(k − 1)

k∑
α=1

(E{ θ̃α} − θ )2

− 2
k∑

α=1

k∑
β>α

[
h∑

h=1

W 2
h ah,αah,β(−S2

h/Nh)

]/
k(k − 1). (2.4.8)

Proof. Follows directly from Theorem 2.4.1 by noting that

Cov{ θ̃α, θ̃β} =
h∑

h=1

W 2
h ah,αah,β(−S2

h/Nh)

whenever α �= β. �

The reader will observe that v( ˜̄θ ) is a biased estimator of Var{ȳst}, with the bias
being given by the second and third terms on the right-hand side of (2.4.8). When
the fh’s are negligible, the contribution of the third term will be unimportant. The
contribution of the second term will be unimportant whenever

E{ θ̃α} =
h∑

h=1

Whah,αȲh =̇ Ȳ

for α = 1, . . . , k. Thus, in many surveys the bias of the random group estimator
v( ˜̄θ ) will be unimportant.

It is an open question as to whether the estimator v( ˜̄θ ) has better or worse
statistical properties than the estimator obtained by leaving the excess observations
out of the random groups.

2.4.4. Linear Estimators with Clustered Samples

In the last subsection, we discussed the simple situation where an srs wor of
elementary units is selected within each of L strata. We now turn to the case
where a sample of n clusters (or PSUs) is selected and possibly several stages
of subsampling occur independently within the selected PSUs. To simplify the
presentation, we initially discuss the case of L = 1 stratum. The reader will be
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able to connect the results of Subsection 2.4.3 with the results of this subsection
to handle cluster sampling within L ≥ 2 strata. We continue to discuss linear
estimators, only now we focus our attention on estimators of the population total
θ = Y .

Let N denote the number of PSUs in the population, Yi the population total in the
i-th PSU, and Ŷi the estimator of Yi due to subsampling at the second and successive
stages. The method of subsampling is left unspecified, but, for example, it may
involve systematic sampling or other sampling designs that ordinarily do not admit
an unbiased estimator of variance. We assume that n PSUs are selected according
to some πps scheme, so that the i-th unit is included in the sample with probability

πi = npi ,

where 0 < npi < 1,
∑N

i=1 pi = 1, and pi is proportional to some measure of size
Xi . The reader will observe that srs wor sampling at the first stage is simply a
special case of this sampling framework, with πi = n/N .

We consider estimators of the population total of the form

θ̂ =
n∑

i=1

Ŷi/πi =
n∑

i=1

Ŷi/npi .
5

The most common member of this class of estimators is

θ̂ =
n∑

i=1

ri∑
j=1

wi j yi j ,

where i indexes the PSU, j indexes the complete interview within the PSU, ri is
the number of complete interviews within the PSU, and wi j denotes the weight
corresponding to the (i, j)-th respondent. See Section 1.6 for a discussion of case
weights.

After forming k = n/m (m an integer) random groups, the α-th random group
estimator is given by

θ̂α =
m∑

i=1

Ŷi/mpi ,

where the sum is taken over all PSUs selected into the α-th RG.
The weighted version of this estimator is

θ̂α =
n∑

i=1

ri∑
j=1

wαi j yi j ,

where the replicate weights are defined by

wαi j = wi j
n

m
, if i is a member of the random group,

5 The material presented here extends easily to estimators of the more general form θ̂ =∑N
i=1 ais Ŷi , where the ais are defined in advance for each sample s and satisfy E{ais} = 1.

See Durbin (1953) and Raj (1966) for discussions of unbiased variance estimation for such
estimators.
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= 0, otherwise.

Because θ̂ is linear in the Ŷi , it is clear that θ̂ = ˆ̄θ = ∑k
α=1 θ̂α/k. We define the

RG estimator of Var{θ̂} by

v(θ̂ ) = 1

k(k − 1)

k∑
α=1

( θ̂α − θ̂ )2. (2.4.9)

Some of the properties of v(θ̂ ) are given in the following theorems.

Theorem 2.4.4. Let vk(θ̂ ) be the estimator defined in (2.4.9) based on k random
groups, and let n = km (m an integer). Then,

(i) E2{vk(θ̂ )} = vn(θ̂ ),
(ii) Var{vk(θ̂ )} ≥ Var{vn(θ̂ )},

where E2 denotes the conditional expectation over all possible choices of k random
groups for a given parent sample.

Proof. Part (i) follows immediately from Theorem 2.4.2 by letting L = 1. Part
(ii) follows from part (i) since

Var{vk(θ̂ )} = Var{E2{vk(θ̂ )}} + E{Var2{vk(θ̂ )}}
≥ Var{E2{vk(θ̂ )}}. �

Theorem 2.4.4 shows that vk(θ̂ ) has the same expectation regardless of the
value of k, so long as n is an integer multiple of k. However, the choice k = n
minimizes the variance of the RG estimator. The reader will recall that vn(θ̂ ) is
the standard unbiased estimator of the variance given pps wr sampling at the first
stage.

Theorem 2.4.5. Let vk(θ̂ ) be the estimator defined in (2.4.9) based on k random
groups and let

Yi = E{Ŷi |i},
σ 2

2i = Var{Ŷi |i},
and n = km (m an integer). Then, the expectation of vk(θ̂ ) is given by

E{vk(θ̂ )} = E

⎧⎨
⎩ 1

n(n − 1)

n∑
i=1

(
Yi/pi −

n∑
j=1

Y j/np j

)2
⎫⎬
⎭ +

N∑
i=1

σ 2
2i/npi .

(2.4.10)

Proof. The result follows from Theorem 2.4.4 and the fact that

vn(θ̂ ) = 1

n(n − 1)

(
n∑

i=1

Ŷ
2

i

p2
i

− nŶ 2

)
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and that

E{Ŷ 2
i |i} = Y 2

i + σ 2
2i . �

Remarkably, (2.4.10) shows that the RG estimator completely includes the
within component of variance since, the reader will recall,

Var{θ̂} = Var

{
n∑

i=1

Yi/npi

}
+

N∑
i=1

σ 2
2i/npi . (2.4.11)

Thus, the bias in vk(θ̂ ) arises only in the between component, i.e., the difference
between the first terms on the right-hand side of (2.4.10) and (2.4.11). In surveys
where the between component is a small portion of the total variance, we would
anticipate that the bias in vk(θ̂ ) would be unimportant. The bias is discussed further
in Subsection 2.4.5, where it is related to the efficiency of πps sampling vis-à-vis
pps wr sampling.

Now let us see how these results apply in the case of srs wor sampling at the
first stage. We continue to make no assumptions about the sampling designs at
the second and subsequent stages, except we do require that such subsampling be
independent from one PSU to another.

Corollary 2.4.3. Suppose the n PSUs are selected at random and without replace-
ment. Then, the expectation of vk(θ̂ ) is given by

E{vk(θ̂ )} = N 2S2
b/n + (N 2/n)σ 2

w, (2.4.12)

where

S2
b = (N − 1)−1

N∑
i=1

(
Yi − N−1

N∑
j=1

Y j

)2

and

σ 2
w = N−1

N∑
i=1

σ 2
2i . �

The true variance of θ̂ given srs wor at the first stage is

Var{θ̂} = N 2(1 − n/N )S2
b/n + (N 2/n)σ 2

w,

and thus vk(θ̂ ) tends to overestimate the variance. Not surprisingly, the problem
is with the finite-population correction (1 − n/N ). One may attempt to adjust for
the problem by working with the modified estimator (1 − n/N )vk(θ̂ ), but this
modification is downward biased by the amount

Bias{(1 − n/N )vk(θ̂ )} = −Nσ 2
w.

Of course, when n/N is negligible, vk(θ̂ ) is essentially unbiased.
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In the case of sampling within L ≥ 2 strata, similar results are available. Let the
estimator be of the form

θ̂ =
L∑

h=1

Ŷh =
L∑

h=1

nh∑
i=1

Ŷhi

πhi
,

where πhi = nh phi is the inclusion probability associated with the (h, i)-th PSU.
Two random group methodologies were discussed for this problem in Subsection
2.4.1. The first method works within strata, and the estimator of Var{Ŷ} is of the
form

v(θ̂ ) =
L∑

h=1

v(Ŷh),

v(Ŷh) = 1

k(k − 1)

k∑
α=1

(Ŷhα − Ŷh)2, (2.4.13)

Ŷhα =
mh∑
i=1

Ŷhi

mh phi
,

where the latter sum is over the mh units that were drawn into the α-th random
group within the h-th stratum. The second method works across strata, and the
estimator is of the form

v(θ̂ ) = 1

k(k − 1)

k∑
α=1

(θ̂α − θ̂ )2,

θ̂α =
L∑

h=1

Ŷhα, (2.4.14)

Ŷhα =
mh∑
i=1

Ŷhi

mh phi
,

where this latter sum is over the mh units from the h-th stratum that were assigned
to the α-th random group. It is easy to show that both (2.4.13) and (2.4.14) have
the same expectation, namely

E{v(θ̂ )} =
L∑

h=1

E

⎧⎨
⎩ 1

nh(nh − 1)

nh∑
i=1

(
Yhi

phi
− 1

nh

nh∑
j=1

Yhj

phj

)2
⎫⎬
⎭ +

L∑
h=1

Nh∑
i=1

σ 2
2hi

nh phi
.

Since the true variance of Ŷ is

Var{θ̂} =
L∑

i=1

Var

{
nh∑

i=1

Yhi

nh phi

}
+

L∑
h=1

Nh∑
i=1

σ 2
2hi

nh phi
,

we see once again that the random group estimator incurs a bias in the between
PSU component of variance.
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In the case of stratified sampling, the weighted form of the estimator is

θ̂ =
L∑

h=1

nh∑
i=1

rhi∑
j=1

whi j yhi j ,

where there are rhi completed interviews in the (h, i)-th PSU and whi j is the weight
corresponding to the (h, i, j)-th interview. The corresponding RG estimator is

θ̂α =
L∑

h=1

nh∑
i=1

rhi∑
j=1

wαhi j yhi j ,

where the replicate weights are

wαhi j = whi j
nh

mh
, if the (h, i)-th PSU is in the α-th RG,

= 0, otherwise.

It may be possible to reduce the bias by making adjustments to the estimator
analogous to those made in Subsection 2.4.3. Let

Var

{(
nh∑

i=1

Yhi

nh phi

)
wr

}

denote the between PSU variance given pps wr sampling within strata, and let

Var

{
nh∑

i=1

Yhi

nh phi

}

denote the between variance given πps sampling. Suppose that it is possible to
obtain a measure of the factor

Rh = nh

nh − 1

⎛
⎜⎜⎜⎜⎝

{
Var

(
nh∑
j=1

Yhi

nh phi

)
wr

}

Var

{
nh∑

i=1

Ŷhi

nh phi

} −
Var

{
nh∑

i=1

Yhi

nh phi

}

Var

{
nh∑

i=1

Ŷhi

nh phi

}
⎞
⎟⎟⎟⎟⎠ ,

either from previous census data, computations on an auxiliary variable, or pro-
fessional judgment. Then define the adjusted estimators

θ̂∗
α = θ̂ +

L∑
h=1

A−1/2
h (Ŷhα − Ŷh),

Ah = 1 + Rh .

It is clear that

ˆ̄θ∗ =
k∑

α=1

θ̂∗
α/k = θ̂
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since the estimators are linear in the Ŷhi . If the Ah are known without error, then
the usual random group estimator of variance

v( ˆ̄θ∗) = 1

k(k − 1)

k∑
α=1

(θ̂∗
α − ˆ̄θ∗)2

is unbiased for Var{θ̂}. The estimator v( ˆ̄θ∗) will be biased to the extent that the
measures of Rh are erroneous. So long as the measures of Rh are reasonable,

however, the bias of v( ˆ̄θ∗) should be reduced relative to that of v(θ̂ ).
The results of this subsection were developed given the assumption that

n (or nh) is an integer multiple of k. If n = km + q, with 0 < q < k, then either
of the techniques discussed in Subsection 2.4.3 may be used to obtain the variance
estimator.

2.4.5. A General Result About Variance Estimation for Without
Replacement Sampling

As was demonstrated in Theorem 2.4.4, the random group estimator tends to
estimate the variance as if the sample were selected with replacement, even
though it may in fact have been selected without replacement. The price we
pay for this practice is a bias in the estimator of variance, although the bias is
probably not very important in modern large-scale surveys. An advantage of
this method, in addition to the obvious computational advantages, is that the
potentially troublesome calculation of the joint inclusion probabilities πi j , present
in the Yates–Grundy estimator of variance, is avoided. In the case of srs wor,
we can adjust for the bias by applying the usual finite-population correction. For
unequal probability sampling without replacement, there is no general correction
to the variance estimator that accounts for the without replacement feature. In the
case of multistage sampling, we know (see Theorem 2.4.5) that the bias occurs
only in the between PSU component of variance.

This section is devoted to a general result that relates the bias of the random
group variance estimator to the efficiency of without replacement sampling. We
shall make repeated use of this result in future chapters. To simplify the discussion,
we assume initially that a single-stage sample of size n is drawn from a finite
population of size N , where Yi is the value of the i-th unit in the population
and pi is the corresponding nonzero selection probability, possibly based upon
some auxiliary measure of size Xi . We shall consider two methods of drawing
the sample: (1) pps wr sampling and (2) an arbitrary πps scheme. The reader will
recall that a πps scheme is a without replacement sampling design with inclusion
probabilities πi = npi . Let

Ŷπps =
n∑

i=1

yi/πi

denote the Horvitz–Thompson estimator of the population total given the πps



P1: OTE/SPH P2: OTE

SVNY318-Wolter December 13, 2006 19:54

2.4. The Case of Nonindependent Random Groups 47

scheme, where πi = npi , for i = 1, . . . , N , and let

Ŷwr = (1/n)
n∑

i=1

yi/pi

denote the customary estimator of the population total Y given the pps wr scheme.
Let Var{Ŷπps} and Var{Ŷwr} denote the variances of Ŷπps and Ŷwr, respectively.
Further, let

v(Ŷwr) = {1/n(n − 1)}
n∑

i=1

(yi/pi − Ŷwr)
2

be the usual unbiased estimator of Var{Ŷwr}. Then we have the following.

Theorem 2.4.6. Suppose that we use the estimator v(Ŷwr) to estimate Var{Ŷπps}
given the πps sampling design. Then, the bias of v(Ŷwr) is given by

Bias{v(Ŷwr)} = n

n − 1
(Var{Ŷwr} − Var{Ŷπps}). (2.4.15)

Proof. The variances of Ŷπps and Ŷwr are

Var{Ŷπps} =
N∑

i=1

πi (1 − πi )

(
Yi

πi

)2

+ 2
N∑

i=1

N∑
j>i

(πi j − πiπ j )

(
Yi

πi

) (
Y j

π j

)

(2.4.16)

and

Var{Ŷwr} = 1

n

N∑
i

pi

(
Yi

pi
− Y

)2

,

respectively. Thus

Var{Ŷwr} − Var{Ŷπps} = n − 1

n
Y 2 − 2

N∑
i=1

N∑
j>i

πi j

(
Yi

πi

) (
Y j

π j

)
.

The variance estimator may be expressed as

v(Ŷwr) =
n∑

i=1

(
yi

npi

)2

− 2

n − 1

n∑
i=1

n∑
j>i

(
yi

npi

) (
y j

np j

)

with expectation (given the πps sampling design)

E{v(Ŷwr)} =
N∑

i=1

πi

(
Yi

npi

)2

− 2

n − 1

N∑
i=1

N∑
j>i

πi j

(
Yi

npi

) (
Y j

np j

)
. (2.4.17)

Combining (2.4.16) and (2.4.17) gives

Bias{v(Ŷwr)} = Y 2 − 2n

n − 1

N∑
i=1

N∑
j>i

πi j

(
Yi

πi

) (
Y j

π j

)
,

from which the result follows immediately. �
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Theorem 2.4.6, originally due to Durbin (1953), implies that when we use the
pps wr estimator v(Ŷwr) we tend to overestimate the variance of Ŷπps whenever that
variance is smaller than the variance of Ŷwr given pps wr sampling. Conversely,
when pps wr sampling is more efficient than the πps scheme, the estimator v(Ŷwr)
tends to underestimate Var{Ŷπps}. Thus, we say that v(Ŷwr) is a conservative esti-
mator of Var{Ŷπps} for the useful applications of πps sampling.

This result extends easily to the case of multistage sampling, and as before, the
bias occurs only in the between PSU component of variance. To see this, consider
estimators of the population total Y of the form

Ŷπps =
n∑

i=1

Ŷi

πi
,

Ŷwr = 1

n

n∑
i=1

Ŷi

pi
,

for πps sampling and pps wr sampling at the first stage, where Ŷi is an estimator
of the total in the i-th selected PSU due to sampling at the second and subsequent
stages. Consider the pps wr estimator of variance

v(Ŷwr) = 1

n(n − 1)

n∑
i=1

(
Ŷi

pi
− Ŷwr

)2

. (2.4.18)

Assuming that sampling at the second and subsequent stages is independent from
one PSU selection to the next, v(Ŷwr) is an unbiased estimator of Var{Ŷwr} given
pps wr sampling. When used for estimating the variance of Ŷπps given πps sam-
pling, v(Ŷwr) incurs the bias

Bias{v(Ŷwr)} = Y 2 − 2n

n − 1

N∑
i=1

N∑
j>i

πi j

(
Yi

πi

) (
Y j

π j

)

= n

n − 1
(Var{Ŷwr } − Var{Ŷπps}), (2.4.19)

where Yi is the total of the i-th PSU. See Durbin (1953). This result confirms that
the bias occurs only in the between PSU component of variance. The bias will be
unimportant in many practical applications, particularly those where the between
variance is a small fraction of the total variance.

Usage of (2.4.18) for estimating the variance of Ŷπps given πps sampling not
only avoids the troublesome calculation of the joint inclusion probabilities πi j ,
but also avoids the computation of estimates of the components of variance due to
sampling at the second and subsequent stages. This is a particularly nice feature
because the sampling designs used at these stages often do not admit unbiased
estimators of the variance (e.g., systematic sampling).

The above results have important implications for the random group estimator of
variance with n = km. By Theorem 2.4.4 we know that the random group estimator
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of Var{Ŷπps} given πps sampling and based upon k ≤ n/2 random groups, has the
same expectation as, but equal or larger variance than, the estimator v(Ŷwr). In
fact, v(Ŷwr) is the random group estimator for the case (k, m) = (n, 1). Thus the
expressions for bias given in Theorem 2.4.6 and in (2.4.16) apply to the random
group estimator regardless of the number of groups k. Furthermore, all of these
results may be extended to the case of sampling within L ≥ 2 strata.

Finally, it is of some interest to investigate the properties of the estimator

v(Ŷπps) =
n∑

i=1

n∑
j>i

πiπ j − πi j

πi j

(
Ŷi

πi
− Ŷ j

π j

)2

(2.4.20)

given a πps sampling design. This is the Yates–Grundy estimator of variance
applied to the estimated PSU totals Ŷi and is the first term in the textbook unbiased
estimator of Var{Ŷπps}. See Cochran (1977, pp. 300–302). The estimator (2.4.17)
is not as simple as the estimator v(Ŷwr) (or the random group estimator with
k ≤ n/2) because it requires computation of the joint inclusion probabilities πi j .
However, it shares the desirable feature that the calculation of estimates of the
within variance components is avoided. Its expectation is easily established.

Theorem 2.4.7. Suppose that we use v(Ŷπps) to estimate Var{Ŷπps} given a πps
sampling design. Then

Bias{v(Ŷπps)} = −
N∑

i=1

σ 2
2i ,

where

σ 2
2i = Var{Ŷi |i}

is the conditional variance of Ŷi due to sampling at the second and subsequent
stages given that the i-th PSU is in the sample.

Proof. Follows directly from Cochran’s (1977) Theorem 11.2. �

It is interesting to contrast this theorem with earlier results. Contrary to the
random group estimator (or v(Ŷwr)), the estimator v(Ŷπps) is always downward
biased, and the bias is in the within PSU component of variance. Since the bias
of this estimator is in the opposite direction (in the useful applications of πps
sampling) from that of v(Ŷwr), the interval

(v(Ŷπps), v(Ŷwr))

may provide useful bounds on the variance Var{Ŷπps}. Of course, the random
group estimator may be substituted for v(Ŷwr) in this expression.

We speculate that in many cases the absolute biases will be in the order

|Bias{v(Ŷwr)}| ≤ |Bias{v(Ŷπps)}|.



P1: OTE/SPH P2: OTE

SVNY318-Wolter December 13, 2006 19:54

50 2. The Method of Random Groups

This is because the within variance dominates the total variance Var{Ŷπps} in many
modern large-scale surveys and the bias of v(Ŷπps) is in that component. Also, the

within component of Var{Ŷπps} is
∑N

i=1 σ 2
2i/πi so that the relative bias of v(Ŷπps)

is bounded by

|Bias{v(Ŷπps)}|
Var{Ŷπps}

≤

N∑
i=1

σ 2
2i

N∑
i=1

σ 2
2i/πi

≤ max
i

πi .

This bound may not be very small in large-scale surveys when sampling PSUs
within strata. In any case, the random group estimator (or v(Ŷwr)) will be preferred
when a conservative estimator of variance is desired.

2.5. The Collapsed Stratum Estimator

Considerations of efficiency sometimes lead the survey statistician to select a single
primary sampling unit (PSU) per stratum. In such cases, an unbiased estimator of
the variance is not available, not even for linear statistics. Nor is a consistent
estimator available. It is possible, however, to give an estimator that tends towards
an overestimate of the variance. This is the collapsed stratum estimator, and it is
closely related to the random group estimator discussed elsewhere in this chapter.
Generally speaking, the collapsed stratum estimator is applicable only to problems
of estimating the variance of linear statistics. In the case of nonlinear estimators,
the variance may be estimated by a combination of collapsed stratum and Taylor
series methodology (see Chapter 6).

We suppose that it is desired to estimate a population total, say Y , using an
estimator of the form

Ŷ =
L∑

h=1

Ŷh, (2.5.1)

where L denotes the number of strata and Ŷh an estimator of the total in the h-th
stratum, Yh , resulting from sampling within the h-th stratum. We assume that one
PSU is selected independently from each of the L strata, and that any subsampling
is independent from one primary to the next, but otherwise leave unspecified the
nature of the subsampling schemes within primaries. Note that this form (2.5.1)
includes as special cases the Horvitz–Thompson estimator and such nonlinear
estimators as the separate ratio and regression estimators. It does not include the
combined ratio and regression estimators.

To estimate the variance of Ŷ , we combine the L strata into G groups of at least
two strata each. Let us begin by considering the simple case where L is even and
each group contains precisely two of the original strata. Then the estimator of the
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population total may be expressed as

Ŷ =
G∑

g=1

Ŷg =
G∑

g=1

(Ŷg1 + Ŷg2),

where L = 2G and Ŷgh(h = 1, 2) denotes the estimator of the total for the
h-th stratum in the g-th group (or collapsed stratum). If we ignore the original
stratification within groups and treat (g, 1) and (g, 2) as independent selections
from the g-th group, for g = 1, . . . , G, then the natural estimator of the variance of
Ŷg is

vcs(Ŷg) = (Ŷg1 − Ŷg2)2.

The corresponding estimator of the variance of Ŷ is

vcs(Ŷ ) =
G∑

g=1

vcs(Ŷg) (2.5.2)

=
G∑

g=1

(Ŷg1 − Ŷg2)2.

In fact, the expectation of this estimator given the original sampling design is

E{vcs(Ŷ )} =
G∑

g=1

(σ 2
g1 + σ 2

g2) +
G∑

g=1

(μg1 − μg2)2,

where σ 2
gh = Var{Ŷgh} and μgh = E{Ŷgh}. Since the variance of Ŷ is

Var{Ŷ } =
G∑

g=1

(σ 2
g1 + σ 2

g2),

the collapsed stratum estimator is biased by the amount

Bias{vcs(Ŷ )} =
G∑

g=1

(μg1 − μg2)2. (2.5.3)

This, of course, tends to be an upward bias since the right-hand side of (2.5.3) is
nonnegative.

Equation (2.5.3) suggests a strategy for grouping the original strata so as to
minimize the bias of the collapsed stratum estimator. The strategy is to form groups
so that the means μgh are as alike as possible within groups; i.e., the differences
|μg1 − μg2| are as small as possible. If the estimator Ŷgh is unbiased for the stratum
total Ygh , or approximately so, then essentially μgh = Ygh and the formation of
groups is based upon similar stratum totals, i.e., small values of |Yg1 − Yg2|.

Now suppose that a known auxiliary variable Agh is available for each stratum
and that this variable is well-correlated with the expected values μgh (i.e., essen-
tially well-correlated with the stratum totals Ygh). For this case, Hansen, Hurwitz,
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and Madow (1953) give the following estimator that is intended to reduce the bias
term (2.5.3):

vcs(Ŷ ) =
G∑

g=1

vcs(Ŷg) (2.5.4)

=
G∑

g=1

4(Pg2Ŷg1 − Pg1Ŷg2)2,

where Pgh = Agh/Ag, Ag = Ag1 + Ag2. When Pgh = 1/2 for all (g, h), then this
estimator is equivalent to the simple estimator (2.5.2). The bias of this estimator
contains the term

G∑
g=1

4(Pg2μg1 − Pg1μg2)2, (2.5.5)

which is analogous to (2.5.3). If the measure of size is such that μgh = β Agh

(or approximately so) for all (g, h), then the bias component (2.5.5) vanishes (or
approximately so). On this basis, Hansen, Hurwitz, and Madow’s estimator might
be preferred uniformly to the simple estimator (2.5.2). Unfortunately, this may not
always be the case because two additional terms appear in the bias of (2.5.4) that
did not appear in the bias of the simple estimator (2.5.2). These terms, which we
shall display formally in Theorem 2.5.1, essentially have to do with the variability
of the Agh within groups. When this variability is small relative to unity, these
components of bias should be small, and otherwise not. Thus the choice of (2.5.2)
or (2.5.4) involves some judgment about which of several components of bias
dominates in a particular application.

In many real applications of the collapsed stratum estimator, Agh is taken simply
to be the number of elementary units within the (g, h)-th stratum. For example,
Section 2.12 presents a survey concerned with estimating total consumer expen-
ditures on certain products, and Agh is the population of the (g, h)-th stratum.

The estimators generalize easily to the case of more than two strata per group.
Once again let G denote the number of groups, and let Lg denote the number of
original strata in the g-th group. The estimator of the total is

Ŷ =
G∑

g=1

Ŷg =
G∑

g=1

Lg∑
h=1

Ŷgh, (2.5.6)

and Hansen, Hurwitz, and Madow’s estimator of variance is

vcs(Ŷ ) =
G∑

g=1

[Lg/(Lg − 1)]

Lg∑
h

(Ŷgh − PghŶg)2, (2.5.7)

where Pgh = Agh/Ag and

Ag =
Lg∑

h=1

Agh .
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If we take Agh/Ag = 1/Lg for g = 1, . . . , G, then the estimator reduces to

vcs(Ŷ ) =
G∑

g=1

[Lg/(Lg − 1)]

Lg∑
h=1

(Ŷgh − Ŷg/Lg)2, (2.5.8)

which is the generalization of the simple collapsed stratum estimator (2.5.2). If
the Ŷgh were a random sample from the g-th collapsed stratum, then the reader
would recognize (2.5.8) as the random group estimator. In fact, though, the Ŷgh

do not constitute a random sample from the g-th group, and vcs(Ŷ ) is a biased and
inconsistent estimator of Var{Ŷ}.

Theorem 2.5.1. Let Ŷ and vcs(Ŷ ) be defined by (2.5.6) and (2.5.7), respectively.
Let the sampling be conducted independently in each of the L strata, so that the
Ŷgh are independent random variables. Then,

E{vcs(Ŷ )} =
G∑

g=1

Lg − 1 + V 2
A(g) − 2VA(g), σ (g)

Lg − 1
σ 2

g

+
G∑

g=1

Lg

Lg − 1

Lg∑
h=1

(μgh − Pghμg)2,

Var{Ŷ } =
G∑

g=1

σ 2
g ,

and

Bias{vcs(Ŷ )} =
G∑

g=1

V 2
A(g) − 2VA(g), σ (g)

Lg − 1
σ 2

g

+
G∑

g=1

Lg

Lg − 1

Lg∑
h=1

(μgh − Pghμg)2,

where

μgh = E{Ŷgh}, μg =
Lg∑

h=1

μgh,

σ 2
gh = Var{Ŷgh},

σ 2
g =

Lg∑
h=1

σ 2
gh,

V 2
A(g) =

Lg∑
h=1

A2
gh/Lg Ā2

g − 1,

VA(g),σ (g) =
Lg∑

h=1

Aghσ
2
gh/ Āgσ

2
g − 1,
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and

Āg =
Lg∑

h=1

Agh/Lg.

Proof. See Hansen, Hurwitz, and Madow (1953), Volume II, Chapter 9. �

Corollary 2.5.1. If Pgh = 1/Lg for all h and g, then

Bias{vcs(Ŷ )} =
G∑

g=1

Lg

Lg − 1

Lg∑
h=1

(μgh − μg/Lg)2. �

Corollary 2.5.2. If μgh = βg Agh for all h and g, then

Bias{vcs(Ŷ )} =
G∑

g=1

V 2
A(g) − 2VA(g),σ (g)

Lg − 1
σ 2

g . �

Corollary 2.5.3. If both Pgh = 1/Lg and μgh = μg/Lg for all g and h, then
vcs(Ŷ ) is an unbiased estimator of Var{Ŷ}. �

Theorem 2.5.1 gives the expectation and bias of the collapsed stratum estimator.
It is clear that vcs(Ŷ ) tends to give an overestimate of the variance whenever the Agh

are similar within each group. If the Agh are dissimilar within groups so that V 2
A(g)

and VA(g),σ (g) are large relative to Lg − 1, the bias could be in either direction. To re-
duce the bias, one may group strata so that the expected values μgh (essentially the
stratum totals Ygh) are similar within each group, choose Agh =̇ β−1

g μgh for some
constant βg , or both, as is evident from Corollaries 2.5.1–2.5.3. As was noted earlier
for the special case Lg = 2, the choice between equal Pgh = 1/Lg and other alter-
natives involves some judgment about which components of bias dominate and how
closely the available measures of size are to being proportional to the μgh (or Ygh).

A word of caution regarding the grouping of strata is in order. While it is true
that strata should be grouped so that the μgh (or the totals Ygh) are alike, the
grouping must be performed prior to looking at the observed data. If one groups
on the basis of similar Ŷgh , a severe downward bias may result. Another problem
to be avoided is the grouping of a self-representing (SR) primary sampling unit
with a nonself-representing (NSR) primary.6 Since the SR PSU is selected with
probability one, it contributes only to the within PSU component of variance, not
to the between component. The collapsed stratum estimator, however, would treat
such a PSU as contributing to both components of variance, thus increasing the
overstatement of the total variance.

One of the conditions of Theorem 2.5.1 is that sampling be conducted indepen-
dently in each of the strata. Strictly speaking, this eliminates sampling schemes

6 An SR primary is one selected with probability one. An NSR primary is one selected
with probability less than one from a stratum containing two or more primaries.
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such as controlled selection, where a dependency exists between the selections in
different strata. See, e.g., Goodman and Kish (1950) and Ernst (1981). Neverthe-
less, because little else is available, the collapsed stratum estimator is often used
to estimate the variance for controlled selection designs. The theoretical proper-
ties of this practice are not known, although Brooks (1977) has investigated them
empirically. Using 1970 Census data on labor force participation, school enroll-
ment, and income, the bias of the collapsed stratum estimator was computed for
the Census Bureau’s Current Population Survey (CPS). The reader will note that
in this survey the PSUs were selected using a controlled selection procedure (see
Hanson (1978)). In almost every instance the collapsed stratum estimator resulted
in an overstatement of the variance. For estimates concerned with Blacks, the ratios
of the expected value of the variance estimator to the true variance were almost
always between 1.0 and 2.0, while for Whites the ratios were between 3.0 and 4.0.

Finally, Wolter and Causey (1983) have shown that the collapsed stratum estima-
tor may be seriously upward biased for characteristics related to labor force status
for a sampling design where counties are the primary sampling units. The results
support the view that the more effective the stratification is in reducing the true vari-
ance of estimate, the greater the bias in the collapsed stratum estimator of variance.

In discussing the collapsed stratum estimator, we have presented the relatively
simple situation where one unit is selected from each stratum. We note, however,
that mixed strategies for variance estimation are available, and even desirable,
depending upon the nature of the sampling design. To illustrate a mixed strategy
involving the collapsed stratum estimator, suppose that there are L = L ′ + L ′′

strata, where one unit is selected independently from each of the first L ′ strata
and two units are selected from each of the remaining L ′′ strata. Suppose that
the sampling design used in these latter strata is such that it permits an unbiased
estimator of the within stratum variance. Then, for an estimator of the form

Ŷ =
L∑

h=1

Ŷh

=
L ′∑

h=1

Ŷh +
L∑

h=L ′+1

Ŷh

=
G ′∑

g=1

L ′
g∑

h=1

Ŷgh +
L∑

h=L ′+1

Ŷh,

L ′ =
G ′∑

g=1

L ′
g,

we may estimate the variance by

v(Ŷ ) =
G ′∑

g=1

L ′
g

L ′
g − 1

L ′
g∑

h=1

(Ŷgh − PghŶg)2 +
L∑

h=L ′+1

v(Ŷh), (2.5.9)

where v(Ŷh), for h = L ′ + 1, . . . , L , denotes an unbiased estimator of the variance
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of Ŷh based upon sampling within the h-th stratum. In this illustration, the collapsed
stratum estimator is only used for those strata where one primary unit is sampled
and another, presumably unbiased, variance estimator is used for those strata where
more than one primary unit is sampled. Another illustration of a mixed strategy
occurs in the case of self-representing (SR) primary units. Suppose now that the
L ′′ strata each contain one SR primary, and that the L ′ are as before. The variance
estimator is again of the form (2.5.9), where the v(Ŷh) now represent estimators of
the variance due to sampling within the self-representing primaries.

As we have seen, the collapsed stratum estimator is usually, though not nec-
essarily, upward biased, depending upon the measure of size Agh and its relation
to the stratum totals Ygh . In an effort to reduce the size of the bias, several au-
thors have suggested alternative variance estimators for one-per-stratum sampling
designs:

(a) The method of Hartley, Rao, and Kiefer (1969) relies upon a linear model
connecting the Yh with one or more known measures of size. No collapsing
of strata is required. Since the Yh are unknown, the model is fit using the Ŷh .
Estimates σ̂ 2

h of the within stratum variances σ 2
h are then prepared from the

regression residuals, and the overall variance is estimated by

v(Ŷ ) =
L∑

h=1

σ̂ 2
h .

The bias of this statistic as an estimator of Var{Ŷ} is a function of the error
variance of the true Yh about the assumed regression line.

(b) Fuller’s (1970) method depends on the notion that the stratum boundaries
are chosen by a random process prior to sample selection. This preliminary
stage of randomization yields nonnegative joint inclusion probabilities for
sampling units in the same stratum. Without this randomization, such joint
inclusion probabilities are zero. The Yates–Grundy (1953) estimator may then
be used for estimating Var{Ŷ}, where the inclusion probabilities are specified
by Fuller’s scheme. The estimator incurs a bias in situations where the stratum
boundaries are not randomized in advance.

(c) The original collapsed stratum estimator (2.5.2) was derived via the supposi-
tion that the primaries are selected with replacement from within the collapsed
strata. Alternatively, numerous variance estimators may be derived by hypoth-
esizing some without replacement sampling scheme within collapsed strata. A
simple possibility is

v(Ŷ ) =
G∑

g=1

(1 − 2/Ng)(Ŷg1 − Ŷg2)2,

where Ng is the number of primary units in the g-th collapsed stratum. For
this estimator, srs wor sampling is assumed and (1 − 2/Ng) is the finite
population correction. Shapiro and Bateman (1978) have suggested another
possibility, where Durbin’s (1967) sampling scheme is hypothesized within
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collapsed strata. The authors suggest using the Yates and Grundy (1953)
variance estimator with the values of the inclusion probabilities specified by
Durbin’s scheme. The motivation behind all such alternatives is that variance
estimators derived via without replacement assumptions should be less bi-
ased for one-per-stratum designs than estimators derived via with replacement
assumptions.

The above methods appear promising for one-per-stratum designs. In fact, each
of the originating authors gives an example where the new method is less biased
than the collapsed stratum estimator. More comparative studies of the methods are
needed, though, before a definitive recommendation can be made about preferences
for the various estimators.

2.6. Stability of the Random Group
Estimator of Variance

In most descriptive surveys, emphasis is placed on estimating parameters θ such
as a population mean, a population total, a ratio of two population totals, and so
on. An estimator of variance is needed at the analysis stage in order to interpret the
survey results and to make statistical inferences about θ . The variance of the survey
estimator θ̂ is also of importance at the design stage, where the survey statistician
is attempting to optimize the survey design and to choose a large enough sample
to produce the desired levels of precision for θ̂ . A subordinate problem in most
surveys, though still a problem of importance, is the stability or precision of the
variance estimator. A related question in the context of the present chapter is “How
many random groups are needed?”

One general criterion for assessing the stability of the random group estimator

v( ˆ̄θ ) is its coefficient of variation,

CV{v( ˆ̄θ )} = [Var{v( ˆ̄θ )}]1/2/Var{ ˆ̄θ}.

We shall explore the CV criterion in this section. Another general criterion is the
proportion of intervals

( ˆ̄θ − c{v( ˆ̄θ )}1/2, ˆ̄θ + c{v( ˆ̄θ )}1/2)

that contain the true population parameter θ , where c is a constant, often based
upon normal or Student’s t theory. This criterion will be addressed in Appendix C.
Finally, the quality of a variance estimator may be assessed by its use in other
statistical analyses, though no results about such criteria are presented in this
book.

With respect to the CV criterion, we begin with the following theorem.
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Theorem 2.6.1. Let θ̂1, . . . , θ̂k be independent and identically distributed random
variables, and let v( ˆ̄θ ) be defined by (2.2.1). Then

CV{v( ˆ̄θ )} =
{

β4(θ̂1) − (k − 3)/(k − 1)

k

}1/2

, (2.6.1)

where

β4(θ̂1) = E{(θ̂1 − μ)4}
[E{(θ̂1 − μ)2}]2

,

μ = E{θ̂1}.

Proof. Since the θ̂α are independent, we have

E{v2( ˆ̄θ )} = 1

k4

k∑
α=1

κ4(θ̂α)

+ 2

k4

(
1 + 2

(k − 1)2

) k∑
α=1

k∑
β>α

κ2(θ̂α)κ2(θ̂β),

where

κ4(θ̂α) = E{(θ̂α − μ)4},
κ2(θ̂α) = E{(θ̂α − μ)2}.

And by the identically distributed condition,

Var{v( ˆ̄θ )} = 1

k3
κ4(θ̂1) + k − 1

k3

k2 − 2k + 3

(k − 1)2
κ2

2 (θ̂1) − E2{v( ˆ̄θ )}.

The result follows by the definition of the coefficient of variation. �

From this theorem, we see that the CV of the variance estimator depends upon
both the kurtosis β4(θ̂1) of the estimator and the number of groups k. If k is small,
the CV will be large and the variance estimator will be of low precision. If the
distribution of θ̂1 has an excess of values near the mean and in the tails, the kurtosis
β4(θ̂1) will be large and the variance estimator will be of low precision. When k is
large, we see that the CV2 is approximately inversely proportional to the number of
groups,

CV2{v( ˆ̄θ )} =̇ β4(θ̂1) − 1

k
.

Theorem 2.6.1 can be sharpened for specific estimators and sampling designs.
Two common cases are treated in the following corollaries, which we state without
proof.

Corollary 2.6.1. A simple random sample with replacement is divided into k
groups of m = n/k units each. Let θ̂α denote the sample mean based on the α-th
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group, let ˆ̄θ = ∑k
α=1 θ̂α/k = ∑n

i=1 yi/n, and let v( ˆ̄θ ) be defined by (2.2.1). Then,

CV{v( ˆ̄θ )} =
{

β4(θ̂1) − (k − 3)/(k − 1)

k

}1/2

, (2.6.2)

where

β4(θ̂1) = β4/m + 3(m − 1)/m,

β4 =

N∑
i=1

(Yi − Ȳ )4/N

{
N∑

i=1

(Yi − Ȳ )2/N

}2
. �

Corollary 2.6.2. A pps wr sample is divided into k groups of m = n/k units
each. Let

θ̂α = 1

m

m∑
i=1

yi/pi

denote the usual estimator of the population total based on the α-th group, let

ˆ̄θ =
k∑

α=1

θ̂α/k = 1

n

n∑
i=1

yi/pi ,

and let v( ˆ̄θ ) be defined by (2.2.1). Then,

CV{v( ˆ̄θ )} =
{

β4(θ̂1) − (k − 3)/(k − 1)

k

}1/2

, (2.6.3)

where

β4(θ̂1) = β4/m + 3(m − 1)/m,

β4 =

N∑
i=1

(Zi − Z̄ )4/N

{
N∑

i=1

(Zi − Z̄ )2/N

}2
,

Zi = Yi/pi . �

Both corollaries work with an estimator ˆ̄θ that is in the form of a sample mean,
first for the y-variable and second for the z-variable. Correspondingly, the first
corollary expresses the CV as a function of the kurtosis of the y-variable, while the
second corollary expresses the CV as a function of the kurtosis of the z-variable.
In this latter case, it is the distribution of z that is important, and when there is an
excess of observations in the tail of this distribution, then β4 is large, making β4(θ̂1)

large and the precision of v( ˆ̄θ ) low. Both corollaries are important in practical
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applications because it may be easier to interpret the kurtosis of y or z than that
of θ̂1.

As has been observed, CV{v( ˆ̄θ )} is an increasing function of β4(θ̂1) and a de-
creasing function of k. The size of the random groups m exerts a minor influence

on β4(θ̂1) and thus on the CV{v( ˆ̄θ )}. Because the kurtosis β4(θ̂1) is essentially of
the form a/m + b, where a and b are constants, it will decrease significantly as m
increases initially from 1. As m becomes larger and larger, however, a law of di-
minishing returns takes effect and the decrease in the kurtosis β4(θ̂1) becomes less
important. The marginal decrease in β4(θ̂1) for larger and larger m is not adequate
to compensate for the necessarily decreased k. Thus, the number of groups k has

more of an impact on decreasing the CV{v( ˆ̄θ )} and increasing the precision of the
variance estimate than does the size of the groups m.

While Theorem 2.6.1 and its corollaries were stated for the case of independent
random groups, we may regard these results as approximate in the more common
situation of without replacement sampling, particularly in large populations with
small sampling fractions. This is demonstrated by Hansen, Hurwitz, and Madow’s
(1953) result that

CV{v( ˆ̄θ )} = (N − 1)

N (n − 1)

{{
(n − 1)2

n
− n − 1

n(N − 1)
[(n − 2)(n − 3) − (n − 1)]

− 4(n − 1)(n − 2)(n − 3)

n(N − 1)(N − 2)
− 6(n − 1)(n − 2)(n − 3)

n(N − 1)(N − 2)(N − 3)

}
β4

+
{

(n − 1)N

n(N − 1)
[(n − 1)2 + 2]

+ 2(n − 1)(n − 2)(n − 3)N

n(N − 1)(N − 2)
+ 3(n − 1)(n − 2)(n − 3)N

n(N − 1)(N − 2)(N − 3)

− N 2(n − 1)2

(N − 1)2

}}1/2

(2.6.4)

for srs wor with ˆ̄θ = ȳ and k = n, m = 1. Clearly, when N and n are large and the
sampling fraction n/N is small, (2.6.4) and (2.6.2) are approximately equal to one
another. Based on this result, we suggest that Theorem 2.6.1 and its corollaries
may be used to a satisfactory approximation in studying the stability of the random
group variance estimator for modern complex sample surveys, even for without
replacement designs and nonindependent random groups.

Theorem 2.6.1 and its corollaries may be used to address two important ques-
tions: “How many random groups should be used?” and “What values of m and k
are needed to meet a specified level of precision (i.e., a specified level of CV{v( ˆ̄θ )},
say CV∗)?”

The question about the number of random groups k involves many considera-
tions, including both precision and cost. From a precision perspective, as has been
noted, we would like to choose k as large as possible. From a cost perspective, how-
ever, increasing k implies increasing computational costs. Thus, the optimum value
of k will be one that compromises and balances the cost and precision requirements.
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These requirements will, of course, vary from one survey to another. In one case,
the goals of the survey may only seek to obtain a rough idea of the characteristics
of a population, and cost considerations may outweigh precision considerations,
suggesting that the optimum value of k is low. On the other hand, if major pol-
icy decisions are to be based on the survey results, precision considerations may
prevail, suggesting a large value of k.

To show that a formal analysis of the cost–precision trade-off is possible, con-

sider the simple case of srs wor where the sample mean ˆ̄θ = ȳ is used to estimate
the population mean Ȳ . If the random group estimator of variance is computed
according to the relation

v( ˆ̄θ ) = 1

k(k − 1)

k∑
α=1

(θ̂α − ˆ̄θ )(θ̂α − ˆ̄θ ),

then (m + 3)k + 1 addition or subtraction instructions and 2k + 3 multiplication
or division instructions are used. Now suppose that C dollars are available in the
survey budget for variance calculations and c1 and c2 are the per unit costs of
an addition or subtraction instruction and a multiplication or division instruction,

respectively. Then, m and k should be chosen to minimize CV{v( ˆ̄θ )} subject to the
cost constraint

{(m + 3)k + 1}c1 + (2k + 3)c2 ≤ C. (2.6.5)

As has been observed, however, CV{v( ˆ̄θ )} is, to a good approximation, a decreasing
function of k, and thus the approximate optimum is the largest value of k (and the
corresponding m) that satisfies the constraint (2.6.5). In multipurpose surveys
where two or more statistics are to be published, the objective function may be
a linear combination of the individual CVs or the CV associated with the most
important single statistic. Although the above analysis was for the simple case of
srs wor and the sample mean, it may be extended in principle to complex survey
designs and estimators.

To answer the second question, we suggest setting (2.6.1), (2.6.2), or (2.6.3)
equal to the desired level of precision CV∗. Then one can study the values of
(m, k) needed to meet the precision constraint. Usually, many alternative values
of (m, k) will be satisfactory, and the one that is preferred will be the one that
minimizes total costs. In terms of the formal analysis, the cost model (2.6.5) is now
the objective function to be minimized subject to the constraint on the coefficient of
variation

CV{v( ˆ̄θ )} ≤ CV∗.

In practical applications, some knowledge of the kurtosis β4(θ̂1) (or β4) will be
necessary in addressing either of these two questions. If data from a prior survey
are available, either from the same or similar populations, then such data should
be used to estimate β4(θ̂1). In the absence of such data, some form of subjective
judgment or expert opinion will have to be relied upon.
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Table 2.6.1. Bernoulli Distribution

In this connection, Tables 2.6.1 through 2.6.11 present information about 11
families of distributions, some discrete, some continuous, and one of a mixed
type. Each table contains six properties of the associated distribution:

(i) the density function,
(ii) the constraints on the parameters of the distribution,

(iii) plots of the distribution for alternative values of the parameters,
(iv) the mean,
(v) the variance, and

(vi) the kurtosis.

These tables may be useful in developing some idea of the magnitude of the
kurtosis β4(θ̂1) (or β4). Simply choose the distribution that best represents the
finite population under study and read the theoretical value of the kurtosis for that
distribution. The choice of distribution may well be a highly subjective one, in
which case the kurtosis could only be regarded as an approximation to the true
kurtosis for the population under study. Such approximations, however, may well
be adequate for purposes of planning the survey estimators and variance estimators.
If the chosen distribution is intended to represent the distribution of the estimator
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Table 2.6.2. Discrete Uniform Distribution

θ̂1, then the tabular kurtosis is β4(θ̂1), whereas if the distribution represents the unit
values Yi or Zi , then the tabular kurtosis is β4.

The kurtosis β4(θ̂1) (or β4) is invariant under linear transformations of θ̂1 (or
Yi or Zi ). Therefore, if a given finite population can be represented by a linear
transformation of one of the 11 distributions, then the kurtosis of the original
distribution applies. If the population cannot be represented by any of the 11
distributions or by linear transformations thereof, then see Johnson and Kotz (1969,
1970a, 1970b) for discussion of a wide range of distributions.

To illustrate the utility of the tables, suppose a given survey is concerned with
three variables, where the unit values are distributed approximately as a uniform, a
normal, and a �(6/7, 1) random variable, respectively. The corresponding values
of β4 are then 9/5, 3, and 10. Table 2.6.12 gives the corresponding values of

CV{v( ˆ̄θ )} for srs wor of size n = 1000, where sample means are used to estimate
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Table 2.6.3. Poisson Distribution

population means. If CV{v( ˆ̄θ )} is to be no larger than 15% for each of the three
survey variables, then at least k = 200 random groups are needed.

2.7. Estimation Based on Order Statistics

In view of the computational simplicity of the random group estimator, one may

question the need for still “quicker” estimators of the variance of ˆ̄θ or θ̂ . There may
be circumstances where the additional simplicity of an estimator based, say, on the
range may be useful. Also, estimators based on the range or on quasiranges may
be robust in some sense and may be used to identify errors in the calculation of
the random group estimator. This section, then, is devoted to a brief discussion of
such estimators. For additional information, the reader is referred to David (1970).
The estimators described here have received little previous attention in the survey
sampling literature.
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Table 2.6.4. Logarithmic Series Distribution

The specific problem that we shall address is that of estimating

σ
[defn]= [k · Var{ ˆ̄θ}]1/2.

Given an estimator σ̂ of σ , we may estimate the standard error of ˆ̄θ or θ̂ by σ̂ /k1/2.
As before, we let θ̂1, . . . , θ̂k denote the k random group estimators of θ , and we

let

θ̂(1), . . . , θ̂(k)

denote the observations ordered from smallest to largest. We define the range

W = θ̂(k) − θ̂(1)

and the i-th quasirange

W(i) = θ̂(k+1−i) − θ̂(i),

for 1 ≤ i ≤ [k/2], where the notation [x] signifies the largest integer ≤ x . Note
that the range and the first quasirange are identical.
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Table 2.6.5. Uniform Distribution

The utility of the range for checking calculations is easily seen. Letting v( ˆ̄θ )

denote the random group estimator, the ratio W 2/v( ˆ̄θ ) is algebraically bounded by

W 2/v( ˆ̄θ ) ≤ 2k(k − 1),

W 2/v( ˆ̄θ ) ≥
{

4(k − 1), k even,
4k2/(k + 1), k odd.

The upper bound results from a sample configuration with k − 2 observations at ˆ̄θ

and θ̂(1) and θ̂(k) at equal distances below and above ˆ̄θ . The lower bound corresponds
to half the observations at one extreme θ̂(k) and half (plus 1 if k is odd) at the other

θ̂(1). Consequently, if the computed value of v( ˆ̄θ ) is larger than its upper bound

W 2/4(k − 1), k even,
W 2/(k + 1)/4k2, k odd,
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Table 2.6.6. Beta Distribution

or smaller than its lower bound

W 2/2k(k − 1),

then an error has been made either in the computation of the random group
estimator or in the computation of the range.

Ranges and quasiranges form the basis for some extremely simple estimators
of σ . The first of these is

σ̂1 = W/dk, (2.7.1)

where dk =E {W/σ } and the expectation operator, E , is with respect to an as-
sumed parent distribution for the θ̂α . For the time being, we shall assume that the
θ̂α(α = 1, . . . , k) comprise a random sample from the N (θ, σ 2) distribution. For
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Table 2.6.7. Triangular Distribution

this normal parent, values of dk are given in the second column of Table 2.7.1 for
k = 2, 3, . . . , 100. The efficiency of σ̂1, is very good for k ≤ 12.

In normal samples, however, the efficiency of σ̂1 declines with increasing k, and
at a certain point estimators based on the quasiranges will do better. It has been
shown that σ̂1 is more efficient than any quasirange for k ≤ 17, but thereafter a
multiple of W(2) is more efficient, to be in turn replaced by a multiple of W(3) for
k ≥ 32, and so on. Table 2.7.1 also presents the appropriate divisors for W(i) for
i = 2, 3, . . . , 9 and k = 2, 3, . . . , 100.

Very efficient estimators can be constructed from thickened ranges, e.g., W +
W(2) + W(4), and other linear combinations of quasiranges. A typical estimator is

σ̂2 = (W + W(2) + W(4))/ek, (2.7.2)

where ek = E {(W + W(2) + W(4))/σ } may be obtained by summing the appro-
priate elements of Table 2.7.1. For k = 16, the estimator σ̂2 has efficiency
97.5%.
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Table 2.6.8. Standard Normal Distribution

Table 2.7.2 presents several unbiased estimators of σ and their associated effi-
ciencies for k = 2, 3, . . . , 100. Column 2 gives the most efficient estimator, say σ̂3,
based on a single quasirange (i ≤ 9); Column 3 gives its corresponding efficiency;
Column 4 gives the most efficient estimator, say σ̂4, based on a linear combination
of two quasiranges (i and i ′ ≤ 9); and Column 5 gives its corresponding efficiency.
The efficiencies,

eff{σ̂3} = Var{σ̃ }/Var{σ̂3},
eff{σ̂4} = Var{σ̃ }/Var{σ̂4},

are with respect to the minimum variance unbiased estimator

σ̃ = �[(k − 1)/2]

[2/(k − 1)]1/2�(k/2)

[
k∑
α

(θ̂α − ˆ̄θ )2/(k − 1)

]1/2

.

A final important estimator of σ is

σ̂5 = 2
√

π

k(k − 1)

k∑
α=1

[α − (k + 1)/2]θ̂(α). (2.7.3)
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Table 2.6.9. Gamma Distribution

Barnett et al. (1967) have found that σ̂5 is highly efficient (>97.8%) and more
robust against outliers than σ̂1 and σ̃ .

Example 2.2.1. k = 16 random groups are to be used. Then, the estimators of σ

take the form

σ̂1 = W/3.531,

σ̂2 = (W + W(2) + W(4))/(3.531 + 2.569 + 1.526)

= (W + W(2) + W(4))/7.626,

σ̂3 = W/3.531

= 0.283W,

σ̂4 = 0.168(W + 1.216W(3)),

σ̂5 = 2
√

π

16(15)

16∑
α=1

(α − 17/2)θ̂(α).
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Table 2.6.10. Standard Weibull Distribution

The corresponding estimators of the standard error of ˆ̄θ are

σ̂1/4,

σ̂2/4,

σ̂3/4,

σ̂4/4,

σ̂5/4. �
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Table 2.6.11. Mixed Uniform Distribution

The methods discussed here could be criticized on the grounds that the estimators
are bound to be both inefficient and overly sensitive to the shape of the parent
distribution of the θ̂α . There is evidence, however, that both criticisms may be
misleading (see David (1970)). As we have already seen, the loss in efficiency
is usually unimportant. Furthermore, the ratio E {W/σ } is remarkably stable for
most reasonable departures from normality. Table 2.7.3 illustrates the stability
well. The entries in the table are the percent bias in the efficient estimators σ̂3

and σ̂4 (constructed using normality assumptions) when the parent distribution
is actually uniform or exponential. For the uniform distribution, the percent bias
is quite trivial for most values of k between 2 and 100. The bias is somewhat
more important for the skewed parent (i.e., the exponential distribution), but not
alarmingly so. In almost all cases, the estimators tend towards an underestimate.
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Table 2.6.12. CV{v( ˆ̄θ )} for n = 1000

β4

m k 9/5 3 10

500 2 1.41379 1.41421 1.41669

250 4 0.81576 0.81650 0.82077

200 5 0.70626 0.70711 0.71204

125 8 0.53340 0.53452 0.54103

100 10 0.47013 0.47140 0.47877

50 20 0.32259 0.32444 0.33506

40 25 0.28659 0.28868 0.30056

20 50 0.19904 0.20203 0.21867

10 100 0.13785 0.14213 0.16493

8 125 0.12218 0.12700 0.15208

5 200 0.09408 0.10025 0.13058

4 250 0.08266 0.08962 0.12261

2 500 0.05299 0.06331 0.10492

1 1000 0.02832 0.04474 0.09488

Cox (1954) suggests that the ratio E {W/σ } does not depend on the skewness of
the parent distribution but only on the kurtosis. With approximate knowledge of
the kurtosis (e.g., from a prior survey of a similar population) one may use Cox’s
tables to correct for the bias.

The stability of E {W/σ } is, of course, of central importance in applying these
methods to samples from finite populations because the random group estimators
θ̂α cannot, strictly speaking, be viewed as normally distributed. The fact that the
ratio E {W/σ } is quite stable lends support to the use of these estimators in finite-
population sampling. Further support is derived from the various central limit
theorems given in Appendix B. In many cases, when the size m of the random
groups is large and the number of groups k is fixed, the θ̂α will behave, roughly
speaking, as a random sample from a normal distribution and the methods presented
in this section will be appropriate.

2.8. Deviations from Strict Principles

The fundamental principles of the random group method were presented in Sec-
tions 2.2 and 2.4 for the independent and nonindependent cases, respectively. In
practice, however, there are often computational or other advantages to some devi-
ation from these principles. We may suggest a modified random group procedure
if it both results in a substantial cost savings and gives essentially the same re-
sults as the unmodified procedure. In this section, we discuss briefly two such
modifications.
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Table 2.7.1. Denominator dk of Unbiased Estimator of σ Based on the i-th
Quasirange for Samples of k from N (θ, σ 2)

k i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

2 1.128

3 1.692

4 2.058 0.594

5 2.325 0.990

6 2.534 1.283 0.403

7 2.704 1.514 0.705

8 2.847 1.704 0.945 0.305

9 2.970 1.864 1.143 0.549

10 3.077 2.002 1.312 0.751 0.245

11 3.172 2.123 1.457 0.923 0.449

12 3.258 2.231 1.585 1.073 0.624 0.205

13 3.335 2.328 1.699 1.205 0.776 0.381

14 3.406 2.415 1.802 1.323 0.911 0.534 0.176

15 3.471 2.495 1.895 1.429 1.031 0.670 0.330

16 3.531 2.569 1.980 1.526 1.140 0.792 0.467 0.154

17 3.587 2.637 2.058 1.614 1.238 0.902 0.590 0.291

18 3.640 2.700 2.131 1.696 1.329 1.003 0.701 0.415 0.137

19 3.688 2.759 2.198 1.771 1.413 1.095 0.803 0.527 0.261

20 3.734 2.815 2.261 1.841 1.490 1.180 0.896 0.629 0.373

21 3.778 2.867 2.320 1.907 1.562 1.259 0.982 0.724 0.476

22 3.819 2.916 2.376 1.969 1.630 1.333 1.063 0.811 0.571

23 3.858 2.962 2.428 2.027 1.693 1.402 1.137 0.892 0.659

24 3.895 3.006 2.478 2.081 1.753 1.467 1.207 0.967 0.740

25 3.930 3.048 2.525 2.133 1.810 1.528 1.273 1.038 0.817

26 3.964 3.088 2.570 2.182 1.863 1.585 1.335 1.105 0.888

27 3.996 3.126 2.612 2.229 1.914 1.640 1.394 1.168 0.956

28 4.027 3.162 2.653 2.273 1.962 1.692 1.450 1.227 1.019

29 4.057 3.197 2.692 2.316 2.008 1.741 1.503 1.284 1.079

30 4.085 3.231 2.729 2.357 2.052 1.788 1.553 1.337 1.136

31 4.112 3.263 2.765 2.396 2.094 1.833 1.601 1.388 1.190

32 4.139 3.294 2.799 2.433 2.134 1.876 1.647 1.437 1.242

33 4.164 3.324 2.832 2.469 2.173 1.918 1.691 1.484 1.291

34 4.189 3.352 2.864 2.503 2.210 1.957 1.733 1.528 1.339

35 4.213 3.380 2.895 2.537 2.245 1.995 1.773 1.571 1.384

36 4.236 3.407 2.924 2.569 2.280 2.032 1.812 1.612 1.427

37 4.258 3.433 2.953 2.600 2.313 2.067 1.849 1.652 1.469

38 4.280 3.458 2.981 2.630 2.345 2.101 1.886 1.690 1.509

39 4.301 3.482 3.008 2.659 2.376 2.134 1.920 1.726 1.547

40 4.321 3.506 3.034 2.687 2.406 2.166 1.954 1.762 1.585

41 4.341 3.529 3.059 2.714 2.435 2.197 1.986 1.796 1.621

42 4.360 3.551 3.083 2.740 2.463 2.227 2.018 1.829 1.655

43 4.379 3.573 3.107 2.766 2.491 2.256 2.048 1.861 1.689

44 4.397 3.594 3.130 2.791 2.517 2.284 2.078 1.892 1.721

45 4.415 3.614 3.153 2.815 2.543 2.311 2.107 1.922 1.753
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Table 2.7.1. (Cont.)

k i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

46 4.432 3.634 3.175 2.839 2.568 2.337 2.135 1.951 1.784

47 4.449 3.654 3.196 2.862 2.592 2.363 2.162 1.980 1.813

48 4.466 3.673 3.217 2.884 2.616 2.388 2.188 2.007 1.842

49 4.482 3.691 3.237 2.906 2.639 2.413 2.214 2.034 1.870

50 4.498 3.709 3.257 2.927 2.662 2.436 2.238 2.060 1.897

51 4.513 3.727 3.276 2.948 2.684 2.460 2.263 2.086 1.924

52 4.528 3.744 3.295 2.968 2.705 2.482 2.286 2.110 1.950

53 4.543 3.761 3.313 2.988 2.726 2.504 2.310 2.135 1.975

54 4.557 3.778 3.331 3.007 2.746 2.526 2.325 2.158 1.999

55 4.571 3.794 3.349 3.026 2.766 2.547 2.354 2.181 2.023

56 4.585 3.810 3.366 3.044 2.786 2.567 2.376 2.204 2.047

57 4.599 3.825 3.383 3.062 2.805 2.587 2.397 2.226 2.069

58 4.612 3.840 3.400 3.080 2.824 2.607 2.417 2.247 2.092

59 4.625 3.855 3.416 3.097 2.842 2.626 2.437 2.268 2.113

60 4.638 3.870 3.432 3.114 2.860 2.645 2.457 2.288 2.135

61 4.651 3.884 3.447 3.131 2.878 2.663 2.476 2.308 2.156

62 4.663 3.898 3.463 3.147 2.895 2.681 2.495 2.328 2.176

63 4.675 3.912 3.478 3.163 2.912 2.699 2.513 2.347 2.196

64 4.687 3.926 3.492 3.179 2.928 2.716 2.532 2.366 2.215

65 4.699 3.939 3.507 3.194 2.944 2.733 2.549 2.385 2.235

66 4.710 3.952 3.521 3.209 2.960 2.750 2.567 2.403 2.253

67 4.721 3.965 3.535 3.224 2.976 2.767 2.584 2.420 2.272

68 4.733 3.977 3.549 3.239 2.991 2.783 2.601 2.438 2.290

69 4.743 3.990 3.562 3.253 3.006 2.798 2.617 2.455 2.308

70 4.754 4.002 3.575 3.267 3.021 2.814 2.633 2.472 2.325

71 4.765 4.014 3.588 3.281 3.036 2.829 2.649 2.488 2.342

72 4.775 4.026 3.601 3.294 3.050 2.844 2.665 2.504 2.359

73 4.785 4.037 3.613 3.308 3.064 2.859 2.680 2.520 2.375

74 4.796 4.049 3.626 3.321 3.078 2.873 2.695 2.536 2.391

75 4.805 4.060 3.638 3.334 3.091 2.887 2.710 2.551 2.407

76 4.815 4.071 3.650 3.346 3.105 2.901 2.724 2.566 2.423

77 4.825 4.082 3.662 3.359 3.118 2.915 2.739 2.581 2.438

78 4.834 4.093 3.673 3.371 3.131 2.929 2.753 2.596 2.453

79 4.844 4.103 3.685 3.383 3.144 2.942 2.767 2.610 2.468

80 4.853 4.114 3.696 3.395 3.156 2.955 2.780 2.624 2.483

81 4.862 4.124 3.707 3.407 3.169 2.968 2.794 2.638 2.497

82 4.871 4.134 3.718 3.419 3.181 2.981 2.807 2.652 2.511

83 4.880 4.144 3.729 3.430 3.193 2.993 2.820 2.665 2.525

84 4.889 4.154 3.740 3.442 3.205 3.006 2.833 2.679 2.539

85 4.897 4.164 3.750 3.453 3.216 3.018 2.845 2.692 2.553

86 4.906 4.173 3.760 3.464 3.228 3.030 2.858 2.705 2.566

87 4.914 4.183 3.771 3.474 3.239 3.042 2.870 2.717 2.579

88 4.923 4.192 3.781 3.485 3.250 3.053 2.882 2.730 2.592

89 4.931 4.201 3.791 3.496 3.261 3.065 2.894 2.742 2.605

90 4.939 4.211 3.801 3.506 3.272 3.076 2.906 2.754 2.617
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Table 2.7.1. (Cont.)

k i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

91 4.947 4.220 3.810 3.516 3.283 3.087 2.918 2.766 2.630

92 4.955 4.228 3.820 3.526 3.294 3.098 2.929 2.778 2.642

93 4.963 4.237 3.829 3.536 3.304 3.109 2.940 2.790 2.654

94 4.970 4.246 3.839 3.546 3.314 3.120 2.951 2.802 2.666

95 4.978 4.254 3.848 3.556 3.325 3.131 2.963 2.813 2.678

96 4.985 4.263 3.857 3.566 3.335 3.141 2.973 2.824 2.689

97 4.993 4.271 3.866 3.575 3.345 3.152 2.984 2.835 2.701

98 5.000 4.280 3.875 3.585 3.355 3.162 2.995 2.846 2.712

99 5.007 4.288 3.884 3.594 3.364 3.172 3.005 2.857 2.723

100 5.015 4.296 3.892 3.603 3.374 3.182 3.016 2.868 2.734

Source: Table 1 of Harter (1959). Harter’s tables are given to six decimal places. We have truncated
(not rounded) his figures to three decimal places.

Table 2.7.2. Most Efficient Unbiased Estimators of σ Based on Quasiranges for
Samples of k from N (θ, σ 2)

Based on a Linear Combination of

Two Quasiranges Among Those with

Based on One Quasirange i < i ′ ≤ 9

k Estimate Eff(%) Estimate Eff(%)

2 0.886W1 100.00

3 0.590W1 99.19

4 0.485W1 97.52 0.453(W1 + 0.242W2) 98.92

5 0.429W1 95.48 0.372(W1 + 0.363W2) 98.84

6 0.394W1 93.30 0.318(W1 + 0.475W2) 98.66

7 0.369W1 91.12 0.279(W1 + 0.579W2) 98.32

8 0.351W1 89.00 0.250(W1 + 0.675W2) 97.84

9 0.336W1 86.95 0.227(W1 + 0.765W2) 97.23

10 0.324W1 84.99 0.209(W1 + 0.848W2) 96.54

11 0.315W1 83.13 0.194(W1 + 0.927W2) 95.78

12 0.306W1 81.36 0.211(W1 + 0.923W3) 95.17

13 0.299W1 79.68 0.198(W1 + 1.001W3) 95.00

14 0.293W1 78.09 0.187(W1 + 1.076W3) 94.77

15 0.288W1 76.57 0.177(W1 + 1.147W3) 94.50

16 0.283W1 75.13 0.168(W1 + 1.216W3) 94.18

17 0.278W1 73.76 0.160(W1 + 1.281W3) 93.82

18 0.370W2 72.98 0.153(W1 + 1.344W3) 93.43

19 0.362W2 72.98 0.147(W1 + 1.405W3) 93.02

20 0.355W2 72.91 0.141(W1 + 1.464W3) 92.59

21 0.348W2 72.77 0.136(W1 + 1.520W3) 92.14

22 0.342W2 72.59 0.146(W1 + 1.529W4) 91.78
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Table 2.7.2. (Cont.)

Based on a Linear Combination of

Two Quasiranges Among Those with

Based on One Quasirange i < i ′ ≤ 9

k Estimate Eff(%) Estimate Eff(%)

23 0.337W2 72.37 0.141(W1 + 1.588W4) 91.61

24 0.332W2 72.11 0.136(W1 + 1.644W4) 91.42

25 0.328W2 71.82 0.132(W1 + 1.699W4) 91.21

26 0.323W2 71.52 0.128(W1 + 1.752W4) 90.98

27 0.319W2 71.20 0.124(W1 + 1.805W4) 90.73

28 0.316W2 70.86 0.121(W1 + 1.855W4) 90.48

29 0.312W2 70.51 0.118(W1 + 1.905W4) 90.21

30 0.309W2 70.15 0.115(W1 + 1.953W4) 89.93

31 0.306W2 69.78 0.112(W1 + 2.000W4) 89.63

32 0.357W3 69.57 0.109(W1 + 2.046W4) 89.35

33 0.353W3 69.58 0.115(W1 + 2.067W5) 89.11

34 0.349W3 69.57 0.112(W1 + 2.115W5) 88.97

35 0.345W3 69.53 0.110(W1 + 2.161W5) 88.82

36 0.341W3 69.48 0.107(W1 + 2.207W5) 88.66

37 0.338W3 69.41 0.105(W1 + 2.252W5) 88.48

38 0.335W3 69.32 0.103(W1 + 2.296W5) 88.31

39 0.332W3 69.21 0.101(W1 + 2.339W5) 88.12

40 0.329W3 69.10 0.099(W1 + 2.381W5) 87.92

41 0.326W3 68.97 0.097(W1 + 2.423W5) 87.73

42 0.324W3 68.83 0.095(W1 + 2.464W5) 87.52

43 0.321W3 68.68 0.094(W1 + 2.504W5) 87.32

44 0.319W3 68.53 0.092(W1 + 2.543W5) 87.10

45 0.317W3 68.37 0.096(W1 + 2.574W6) 86.97

46 0.352W4 68.22 0.094(W1 + 2.615W6) 86.85

47 0.349W4 68.24 0.093(W1 + 2.655W6) 86.73

48 0.346W4 68.23 0.091(W1 + 2.695W6) 86.60

49 0.344W4 68.22 0.090(W1 + 2.734W6) 86.47

50 0.341W4 68.20 0.088(W1 + 2.772W6) 86.33

51 0.339W4 68.17 0.087(W1 + 2.810W6) 86.19

52 0.336W4 68.12 0.086(W1 + 2.847W6) 86.04

53 0.334W4 68.07 0.084(W1 + 2.884W6) 85.89

54 0.332W4 68.02 0.083(W1 + 2.921W6) 85.73

55 0.330W4 67.95 0.082(W1 + 2.956W6) 85.57

56 0.328W4 67.87 0.137(W2 + 1.682W9) 85.44

57 0.326W4 67.80 0.135(W2 + 1.706W9) 85.46

58 0.324W4 67.71 0.134(W2 + 1.730W9) 85.47

59 0.322W4 67.62 0.132(W2 + 1.753W9) 85.48

60 0.321W4 67.53 0.130(W2 + 1.777W9) 85.48

61 0.347W5 67.52 0.128(W2 + 1.800W9) 85.47

62 0.345W5 67.52 0.127(W2 + 1.823W9) 85.46

63 0.343W5 67.52 0.125(W2 + 1.846W9) 85.44
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Table 2.7.2. (Cont.)

Based on a Linear Combination of

Two Quasiranges Among Those with

Based on One Quasirange i < i ′ ≤ 9

k Estimate Eff(%) Estimate Eff(%)

64 0.341W5 67.50 0.123(W2 + 1.868W9) 85.42

65 0.339W5 67.49 0.122(W2 + 1.890W9) 85.40

66 0.337W5 67.46 0.121(W2 + 1.912W9) 85.36

67 0.335W5 67.44 0.119(W2 + 1.934W9) 85.33

68 0.334W5 67.40 0.118(W2 + 1.955W9) 85.29

69 0.332W5 67.36 0.116(W2 + 1.976W9) 85.24

70 0.330W5 67.32 0.115(W2 + 1.997W9) 85.20

71 0.329W5 67.27 0.114(W2 + 2.018W9) 85.14

72 0.327W5 67.22 0.113(W2 + 2.038W9) 85.09

73 0.326W5 67.16 0.111(W2 + 2.059W9) 85.04

74 0.324W5 67.11 0.110(W2 + 2.079W9) 84.98

75 0.346W6 67.07 0.109(W2 + 2.099W9) 84.91

76 0.344W6 67.03 0.108(W2 + 2.118W9) 84.85

77 0.342W6 67.07 0.107(W2 + 2.138W9) 84.78

78 0.341W6 67.07 0.106(W2 + 2.157W9) 84.71

79 0.339W6 67.06 0.105(W2 + 2.176W9) 84.63

80 0.338W6 67.04 0.104(W2 + 2.195W9) 84.56

81 0.336W6 67.03 0.103(W2 + 2.214W9) 84.48

82 0.335W6 67.01 0.102(W2 + 2.232W9) 84.40

83 0.334W6 66.98 0.101(W2 + 2.251W9) 84.32

84 0.332W6 66.95 0.100(W2 + 2.269W9) 84.23

85 0.331W6 66.92 0.099(W2 + 2.287W9) 84.15

86 0.329W6 66.89 0.099(W2 + 2.305W9) 84.07

87 0.328W6 66.85 0.098(W2 + 2.323W9) 83.97

88 0.327W6 66.81 0.097(W2 + 2.340W9) 83.88

89 0.345W7 66.77 0.096(W2 + 2.358W9) 83.79

90 0.344W7 66.77 0.095(W2 + 2.375W9) 83.70

91 0.342W7 66.77 0.095(W2 + 2.393W9) 83.61

92 0.341W7 66.77 0.094(W2 + 2.409W9) 83.51

93 0.340W7 66.76 0.093(W2 + 2.426W9) 83.42

94 0.338W7 66.75 0.092(W2 + 2.443W9) 83.32

95 0.337W7 66.74 0.092(W2 + 2.459W9) 83.22

96 0.336W7 66.73 0.091(W2 + 2.476W9) 83.12

97 0.335W7 66.71 0.090(W2 + 2.492W9) 83.02

98 0.333W7 66.69 0.090(W2 + 2.508W9) 82.92

99 0.332W7 66.67 0.089(W2 + 2.524W9) 82.82

100 0.331W7 66.65 0.088(W2 + 2.540W9) 82.71

Source: Table 4 of Harter (1959). Harter’s results have been truncated (not rounded) to three decimal
places.
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Table 2.7.3. Percent Bias of Estimators of σ that Assume Normality

When Population Is Uniform When Population Is Exponential

Two Two

One Quasiranges One Quasiranges

k Quasirange with i < i ′ ≤ 9 Quasirange with i < i ′ ≤ 9

2 2.33 −11.38

3 2.33 −11.38

4 0.96 1.98 −10.95 −11.27

5 −0.71 1.61 −10.43 −11.16

6 −2.37 1.13 −9.91 −11.01

7 −3.93 0.54 −9.41 −10.84

8 −5.37 −0.11 −8.93 −10.66

9 −6.69 −0.80 −8.49 −10.46

10 −7.90 −1.51 −8.08 −10.26

11 −9.02 −2.22 −7.69 −10.06

12 −10.04 −1.47 −7.32 −10.07

13 −10.99 −1.72 −6.98 −10.00

14 −11.87 −2.01 −6.65 −9.92

15 −12.69 −2.33 −6.34 −9.84

16 −13.46 −2.66 −6.05 −9.75

17 −14.18 −3.01 −5.77 −9.65

18 1.26 −3.37 −11.85 −9.56

19 0.41 −3.74 −11.61 −9.46

20 −0.39 −4.11 −11.37 −9.36

21 −1.15 −4.48 −11.14 −9.25

22 −1.87 −3.11 −10.92 −9.43

23 −2.56 −3.32 −10.71 −9.38

24 −3.22 −3.53 −10.51 −9.33

25 −3.85 −3.75 −10.31 −9.28

26 −4.45 −3.98 −10.12 −9.22

27 −5.03 −4.21 −9.93 −9.16

28 −5.58 −4.45 −9.75 −9.10

29 −6.11 −4.69 −9.58 −9.04

30 −6.63 −4.94 −9.41 −8.98

31 −7.12 −5.18 −9.24 −8.91

32 1.23 −5.43 −12.07 −8.85

33 0.71 −3.95 −11.92 −9.09

34 0.20 −4.11 −11.78 −9.05

35 −0.29 −4.28 −11.63 −9.02

36 −0.77 −4.45 −11.49 −8.98

37 −1.23 −4.63 −11.35 −8.93

38 −1.68 −4.81 −11.22 −8.89

39 −2.11 −4.99 −11.09 −8.85

40 −2.53 −5.17 −10.96 −8.81

41 −2.94 −5.36 −10.83 −8.76

42 −3.34 −5.54 −10.71 −8.72
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Table 2.7.3. (Cont.)

When Population Is Uniform When Population Is Exponential

Two Two

One Quasiranges One Quasiranges

k Quasirange with i < i ′ ≤ 9 Quasirange with i < i ′ ≤ 9

43 −3.73 −5.72 −10.59 −8.67

44 −4.10 −5.91 −10.47 −8.62

45 −4.47 −4.45 −10.35 −8.89

46 1.24 −4.59 −12.18 −8.86

47 0.86 −4.73 −12.07 −8.83

48 0.49 −4.88 −11.96 −8.80

49 0.12 −5.02 −11.86 −8.76

50 −0.23 −5.17 −11.75 −8.73

51 −0.58 −5.32 −11.65 −8.70

52 −0.92 −5.46 −11.55 −8.66

53 −1.25 −5.61 −11.45 −8.63

54 −1.57 −5.76 −11.36 −8.59

55 −1.89 −5.91 −11.26 −8.55

56 −2.20 −0.63 −11.17 −10.80

57 −2.50 −0.76 −11.08 −10.78

58 −2.79 −0.89 −10.98 −10.75

59 −3.08 −1.02 −10.89 −10.71

60 −3.37 −1.15 −10.81 −10.67

61 0.95 −1.28 −12.16 −10.64

62 0.66 −1.41 −12.07 −10.60

63 0.37 −1.55 −11.99 −10.56

64 0.09 −1.67 −11.91 −10.53

65 −0.19 −1.81 −11.83 −10.49

66 −0.46 −1.94 −11.75 −10.46

67 −0.73 −2.07 −11.67 −10.42

68 −0.99 −2.20 −11.59 −10.38

69 −1.25 −2.34 −11.51 −10.35

70 −1.50 −2.47 −11.44 −10.31

71 −1.75 −2.59 −11.36 −10.27

72 −1.99 −2.73 −11.29 −10.24

73 −2.23 −2.85 −11.22 −10.20

74 −2.47 −2.98 −11.14 −10.17

75 1.01 −3.11 −12.21 −10.13

76 0.77 −3.24 −12.14 −10.09

77 0.53 −3.36 −12.07 −10.05

78 0.30 −3.49 −12.01 −10.02

79 0.07 −3.62 −11.94 −9.98

80 −0.16 −3.74 −11.87 −9.95

81 −0.38 −3.87 −11.81 −9.91

82 −0.60 −3.99 −11.74 −9.88

83 −0.82 −4.11 −11.68 −9.84
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Table 2.7.3. (Cont.)

When Population Is Uniform When Population Is Exponential

Two Two

One Quasiranges One Quasiranges

k Quasirange with i < i ′ ≤ 9 Quasirange with i < i ′ ≤ 9

84 −1.04 −4.24 −11.62 −9.81

85 −1.25 −4.36 −11.55 −9.77

86 −1.45 −4.48 −11.49 −9.74

87 −1.66 −4.60 −11.43 −9.70

88 −1.86 −4.72 −11.37 −9.67

89 1.06 −4.83 −12.25 −9.63

90 0.85 −4.95 −12.19 −9.60

91 0.65 −5.07 −12.13 −9.56

92 0.45 −5.19 −12.08 −9.53

93 0.25 −5.30 −12.02 −9.49

94 0.05 −5.42 −11.96 −9.46

95 −0.14 −5.53 −11.91 −9.43

96 −0.33 −5.64 −11.85 −9.39

97 −0.52 −5.76 −11.80 −9.36

98 −0.70 −5.87 −11.74 −9.32

99 −0.88 −5.98 −11.69 −9.29

100 −1.07 −6.09 −11.63 −9.26

Source: Table 6 of Harter (1959).

The first concerns the “weights” used in preparing the survey estimates. To be
precise, we consider a survey estimator

θ̂ =
∑
i∈s

Wi Yi (2.8.1)

with weights {Wi }. In a typical survey, the Wi may be a product of several compo-
nents, including the reciprocal of the inclusion probability (or the basic weight);
an adjustment for nonresponse, undercoverage, and post-stratification; and pos-
sibly a seasonal adjustment. Strict adherence to random group principles would
dictate that the adjustments of the basic weights be computed separately within
each random group. That is, the sample is divided into, say, k groups and from
each group s(α) an estimator

θ̂α =
∑

i∈s(α)

Wαi Yi (2.8.2)

is developed of the same functional form as the parent estimator θ̂ . The sum in
(2.8.2) is only over units in the α-th random group, and the replicate weights
{Wαi} are developed from the inclusion probabilities with adjustments derived
from information in the α-th group only. The reader will immediately recognize
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the computational cost and complexities associated with this procedure. In effect
the weight adjustments must be computed k + 1 times: once for the full-sample
estimator and once for each of the k random group estimators. For extremely
large samples, the cost associated with these multiple weight adjustments may
be significant. A simpler procedure that sometimes gives satisfactory results is to
compute random group estimates, say θ̃α , using the weight adjustments appropriate
to the full sample rather than to the relevant random group. That is, θ̃α is defined
as in (2.8.2) and the Wαi are now developed from the inclusion probabilities for
the α-th random group with adjustments derived from all of the information in the
full parent sample. In this way computational advantages are gained because only
one set of weight adjustments is necessary.

Intuitively, we expect that this shortcut procedure may tend to under-represent
the component of variability associated with random error in the weight adjust-
ments and thus underestimate the total variance of θ̂ . In some cases, however,
Taylor series approximations (see Chapter 6) suggest that this problem is not a
serious one. To illustrate, consider a simple situation where the sample is classi-
fied into L1i poststrata. The poststratified estimator is in the form of (2.8.1) with
Wi = W1i (Nh/N̂h), where W1i = π−1

i , π is the inclusion probability associated
with the i-th unit, h is the stratum to which the i-th unit was classified, Nh is the
known number of units in the h-th stratum, N̂h = ∑

j∈sh
W1 j is the full-sample

estimator of Nh , and sh denotes the set of selected units that were classified into
the h-th stratum. The α-th random group estimator is in the form of (2.8.2) with

Wαi = kW1i (Nh/N̂h(α)),

N̂h(α) =
∑

j∈sh (α)

kW1 j ,

and sh(α) denotes the set of units in the α-th random group that were classified
into the h-th stratum. Note that the base weight associated with the full sample is
Wi , and that with the α-th random group is kW1i . Then, from first principles, a
random group estimator of variance is

v2(θ̂ ) = 1

k(k − 1)

k∑
α

(θ̂α − θ̂ )2.

Viewing this estimator as a function of (N̂1(1), . . . , N̂L(1), . . . , N̂L(k)) and expanding
in a Taylor series about the point (N̂1, . . . , N̂L , . . . , N̂L ) gives

v2(θ̂ ) =̇ 1

k(k − 1)

k∑
α

(θ̃α − θ̂ )2,

where

θ̃α =
∑
s(α)

{kW −1
1i (Nh/N̂h)}Yi

is the α-th random group estimator derived using the full-sample weight adjust-
ment Nh/N̂h . This shows that the strict random group procedure θ̂α and the
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modified shortcut procedure θ̃α should give similar results, at least to a local
approximation.

Simmons and Baird (1968) and Bean (1975) have empirically compared the
shortcut procedure to the standard procedure using the National Center for Health
Statistics Health Examination Survey. They found that the shortcut procedure gave
slightly worse variance estimates but saved greatly on computational costs.

Wolter, Pedlow, and Wang (2005) compared the shortcut and standard proce-
dures using data from the National Longitudinal Survey of Youth, 1997. They
found that both procedures produced very similar numerical results. On the basis
of these studies, we recommend the shortcut procedure for use in many large-scale
modern surveys.

These comments also apply to the donor pool used in making imputations for
missing data. Strict RG principles suggest that the α-th random group should serve
as the donor pool for imputing for missing data within the α-th random group for
α = 1, . . . , k. An alternative procedure that may give satisfactory results is to let
the entire parent sample serve as the donor pool for imputing for missing data
within any of the random groups.

The second modification to the random group method concerns the manner in
which the random groups are formed in the nonindependent case. To illustrate
the modification, we suppose the population is divided into L ≥ 1 strata and two
or more PSUs are selected within each stratum using some without replacement
sampling scheme. Strict adherence to random group principles would dictate that
random groups be formed by randomly selecting one or more of the ultimate
clusters from each stratum. In this manner, each random group would have the
same design features as the parent sample. However, if there are only a small
number of selected primaries in some or all of the strata, the number of random
groups, k, will be small and the resulting variance of the variance estimator large.
For this situation we may seek a modified random group procedure that is biased
but leads to greater stability through use of a larger number of random groups. The
following modification may be acceptable:

(i) The ultimate clusters are ordered on the basis of the stratum from which they
were selected. Within a stratum, the ultimate clusters are taken in a natural or
random order.

(ii) The ultimate clusters are then systematically assigned to k (acceptably large)
random groups. For example, the first ultimate cluster may be assigned random
group α∗ (a random integer between 1 and k), the second to group α∗ + 1, and
so forth in a modulo k fashion.

The heuristic motivation for the modification is quite simple: the bias of the variance
estimator should not be large since the systematic assignment procedure reflects
approximately the stratification in the sample, while use of increased k should
reduce the variance of the variance estimator. While there is no general theory to
substantiate this claim, a small empirical study by Isaki and Pinciaro (1977) is sup-
portive. An example involving an establishment survey is reported in Section 2.10.
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2.9. On the Condition ˆ̄θ = θ̂ for Linear Estimators

At various points in this chapter, we have stated that the mean of the random

group estimators is equal to the parent sample estimator, i.e., ˆ̄θ = θ̂ , whenever the
estimator is linear. We shall make similar statements in Chapters 3 and 4 as we
talk about balanced half-samples and the jackknife. We shall now demonstrate the
meaning of this statement in the context of Definition 1.5.1 in Section 1.5. This

work clarifies the distinction between v( ˆ̄θ ), v1(θ̂ ), and v2(θ̂ ) and suggests when
the parent sample estimator θ̂ may be reproduced as the mean of the θ̂α . This latter
point is of interest from a computational point of view because it is important to
know when θ̂ may be computed as a by-product of the θ̂α calculations and when
a separate calculation of θ̂ is required.

Using the notation of Section 1.5, we note that it is sufficient to work with (1.5.3)
because the estimator in Definition 1.5.1 satisfies

ˆ̄θ = 1

k

k∑
α

θ̂α

= γ0 + γ1
ˆ̄θ (1) + · · · + γp

ˆ̄θ (p)

= γ0 + γ1θ̂ (1) + · · · + γp θ̂ (p)

= θ̂

if and only if

ˆ̄θ ( j) = θ̂ ( j), for j = 1, . . . p,

where

θ̂α = γ0 + γ1θ̂α(1) + · · · + θ̂α(p)

and θ̂α( j) denotes the estimator for the j-th characteristic based on the α-th random
group. As a consequence, we condense the notation, letting θ̂ denote an estimator
of the form (1.5.3).

It is easy to establish that not all linear estimators in this form satisfy the property
ˆ̄θ = θ̂ . A simple example is the classical ratio estimator for srs wor. For this case

θ̂ = (ȳ/x̄)X̄ ,

θ̂α = (ȳα/x̄α)X̄ ,

and

ˆ̄θ =
(

k−1
k∑
α

ȳα/x̄α

)
X̄ .

�= θ̂ .

Unfortunately, it is difficult to specify precisely the class of linear estimators for
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which the property does hold. The best we can do is illustrate some cases where it
does and does not hold.

(i) Suppose that a single-stage sample of fixed size n = mk is selected without
replacement and then divided into k random groups according to the prin-
ciples given in Section 2.3. The Horvitz–Thompson (H–T) estimator of the

population total satisfies ˆ̄θ = θ̂ since

θ̂ =
n∑
i

yi/πi

and

θ̂α =
m∑
i

yi/(πi k
−1).

(ii) Suppose k independent random groups are selected, each of size m, using pps
wr sampling. The customary estimators of the population total based on the
parent sample and on the α-th random group are

θ̂ = (1/n)
n∑
i

yi/pi

and

θ̂α = (1/m)
m∑
i

yi/pi ,

respectively. Clearly, ˆ̄θ = θ̂ .
(iii) If k independent random groups, each an srs wr of size m, are selected, the

Horvitz–Thompson estimators are

θ̂ =
∑

i∈d(s)

Yi/{1 − (1 − 1/N )n}

and

θ̂α =
∑

i∈d(s(α))

Yi/{1 − (1 − 1/N )m},

where the summations are over the distinct units in the full sample s and in
the α-th random group s(α), respectively. For this problem, it is easy to see

that ˆ̄θ �= θ̂ .
(iv) Let the sampling scheme be the same as in (iii) and let θ̂ and θ̂α denote the

sample means of the distinct units in the full sample and in the α-th random
group, respectively. Once again we have ˆ̄θ �= θ̂ .

These examples show that the kinds of sampling strategies that satisfy the condi-

tion ˆ̄θ �= θ̂ are quite varied and cut across all classes of linear estimators discussed
in Section 1.5. To complicate matters, even some nonlinear estimators satisfy the
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condition, such as

θ̂ = (N/n)
∑
i∈s

Ŷi ,

θ̂α = (N/m)
∑

i∈s(α)

Ŷi ,

where an srs wor of n = km PSUs is divided into k random groups, and Ŷi denotes
some nonlinear estimator of the total in the i-th primary. Thus, the statements

that we have made in this chapter about ˆ̄θ = θ̂ are somewhat imprecise without
clarification of the meaning of the term linear estimator. This is equally true of
our statements in Chapters 3 and 4. The reader should interpret all such statements
in light of the exceptions described above. It should be observed, however, that for
the sampling strategies used most commonly in practice, e.g., without replacement

sampling and the Horvitz–Thompson estimator, the condition ˆ̄θ = θ̂ does hold.

2.10. Example: The Retail Trade Survey

The U.S. Census Bureau’s retail trade survey is a large, complex survey conducted
monthly to obtain information about retail sales in the United States.7 In this Sec-
tion, we discuss the problems of variance estimation for this survey. We illustrate
the case of nonindependent random groups.

The target population for the retail trade survey consists of all business estab-
lishments in the United States that are primarily engaged in retail trade. A given
month’s sample consists of two principal components, each selected from a dif-
ferent sampling frame. The first component is a sample of approximately 12,000
units selected from a list of retail firms that have employees and that make Social
Security payments for their employees. This is by far the larger component of the
survey, contributing about 94% of the monthly estimates of total retail sales. A
combination of several types of sampling units are used in this component, though
a complete description of the various types is not required for present purposes.
For purposes of this example, we will treat the company (or firm) as the sampling
unit, this being only a slight oversimplification.

The second principal component of the retail trade survey is a multistage sample
of land segments. All retail stores located in selected segments and not represented
on the list frame are included in this component. Typically, such stores either do not
have employees or have employees but only recently hired them. This component
contributes only about 6% of the monthly estimates of total retail sales.

Due to its overriding importance, this example will only treat the problems of
estimation for the list sample component. Before considering the estimators of vari-
ance, however, we discuss briefly the sampling design and estimators of total sales.

7 The descriptions presented here pertain to the survey as it was at the time of the printing
of the first edition of the book.
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Important aspects of the sampling design for the list sample component include
the following:

(i) The population of firms was stratified by kind of business (KB) and within
KB by size of firm. A firm’s measure of size was based on both the firm’s
annual payroll as reported to the Internal Revenue Service and the firm’s sales
in the most recent Census of Retail Trade.

(ii) The highest size stratum within each KB was designated a certainty stratum.
All firms in the certainty stratum were selected with probability one.

(iii) The remaining size strata within a KB were designated noncertainty. A simple
random sample without replacement (srs wor) was selected independently
within each noncertainty stratum.

(iv) A cutoff point was established for subsampling individual establishments
within selected firms. The cutoff point was 25 for certainty firms and 10
for noncertainty firms. Within those selected firms having a “large” num-
ber of establishments (i.e., more establishments than the cutoff point), an
establishment subsample was selected. The subsample was selected indepen-
dently within each such firm using unequal probability systematic sampling.
In this operation, an establishment’s conditional inclusion probability (i.e.,
the probability of selection given that the firm was selected) was based on the
same size measure as employed in stratification. Within those selected firms
having a “small” number of establishments (i.e., fewer establishments than
the cutoff point), all establishments were selected. Thus, the company (or
firm) was the primary sampling unit and the establishment the second-stage
unit.

(v) Each month, lists of birth establishments are obtained from the previously
selected companies. Additionally, lists of birth companies are obtained from
administrative sources approximately once every third month. The birth estab-
lishments of previously selected companies are sampled using the sampling
scheme described in (iv). Birth companies are subjected to a double sampling
scheme. A large first-phase sample is enumerated by mail, obtaining infor-
mation on both sales size and the kind of business. Using this information,
the second-phase sample is selected from KB by sales size strata. Because
the births represent a relatively small portion of the total survey, we shall not
describe the birth sampling in any greater detail here. For more information,
see Wolter et al. (1976).

(vi) From the noncertainty strata, two additional samples (or panels) were se-
lected according to this sampling plan without replacement. The first panel
was designated to report in the first, fourth, seventh, and tenth months of
each calendar year; the second in the second, fifth, eighth, and eleventh
months; and the third in the third, sixth, ninth, and twelfth months. Cases
selected from the certainty stratum were designated to be enumerated every
month.

For any given month, the firms selected for that month’s sample are mailed a
report form asking for total company sales and sales of the selected establishments
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in that month and in the immediately preceding month. Callbacks are made to
delinquent cases by telephone.

The principal parameters of retail trade that are estimated from the survey include
total monthly sales, month-to-month trend in sales, and month-to-same-month-a-
year-ago trend in sales. The estimates are computed for individual KBs, individual
geographic areas, and across all KBs and geographic areas. In this example, we
shall focus on the estimation of total monthly sales.

To estimate the variability of the survey estimators, the random group method is
employed in its nonindependent mode. Sixteen random groups are used. Important
aspects of the assignment of firms and establishments to the random groups include
the following:

(i) Strict application of the random group principles articulated in Section 2.4.1
would require at least 16 selected units in each noncertainty stratum, i.e., at
least one unit per random group. This requirement was not met in the retail
trade survey, and, in fact, in many of the KB by size strata only three units
were selected. This meant that, at most, only three random groups could be
formed and that the estimator of variance would itself have a variance that is
much larger than desired. It was therefore decided to deviate somewhat from
strict principles and to use a method of forming random groups that would
create a larger number of groups. The method chosen accepts a small bias
in the resulting variance estimator in exchange for a much reduced variance
relative to what would occur if only three random groups were used.

(ii) To form 16 random groups such that as much of the stratification as possible
was reflected in the formation of the random groups, the selected units in
noncertainty strata were ordered by KB and within KB by size stratum. The
order within a size stratum was by the units’ identification numbers, an essen-
tially random ordering. Then, a random integer, say α∗, between 1 and 16 was
generated, and the first unit in the ordering was assigned to random group α∗,
the second to group α∗ + 1, and so forth in a modulo 16 fashion. Thus, the
random groups were formed systematically instead of in a stratified manner.
The effect of stratification in the parent sample, however, was captured to a
large extent by the ordering that was specified.

(iii) Within firms selected in noncertainty strata, all selected establishments were
assigned the same random group number as was the firm. Thus, the ultimate
cluster principle for multistage sampling designs was employed.

(iv) In the certainty stratum, although the component of variability due to the sam-
pling of companies was zero, it was necessary to account for the component of
variability due to subsampling within the companies. This was accomplished
by ordering the selected establishments by KB, and within KB by size stra-
tum. Within a size stratum, ordering was by identification number. Then, the
establishments were systematically assigned to random groups in the manner
described in (ii). Of course, establishments associated with certainty firms,
all of whose establishments were selected, do not contribute to the sampling
variance and were not assigned to one of the 16 random groups.
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(v) The selected birth establishments were also assigned to the 16 random groups.
Again, for brevity we shall not describe the assignment process here. For
details, see Wolter et al. (1976).

The basic estimator of total sales used in the retail trade survey is the Horvitz–
Thompson estimator

Ŷ =
16∑

α=0

∑
j

yα j/πα j , (2.10.1)

where yα j is the sales of the j-th establishment in the α-th random group and
πα j is the associated inclusion probability. The subscript α = 0 is reserved for
the establishments of certainty companies that have not been subsampled, and
for such cases π0 j = 1. For subsampled establishments of certainty companies
and for establishments of noncertainty companies, the inclusion probability is
less than one (πα j < 1). The inclusion probabilities used in (2.10.1) refer to the
complete sample; the probability of inclusion in any given random group is πα j/16.
Consequently, an alternative expression for Ŷ is

Ŷ = Ŷ0 +
16∑

α=1

Ŷα/16, (2.10.2)

where

Ŷ0 =
∑

j

y0 j ,

Ŷα =
∑

j

yα j (16/πα j ),

for α = 1, . . . , 16. In (2.10.2), Ŷα is the Horvitz–Thompson estimator from the
α-th random group of the total sales due to the noncertainty portion of the popu-
lation, and Ŷ0 is the total of the certainty establishments. Since Ŷ0 is fixed, it does
not contribute to the sampling variance of Ŷ and

Var{Ŷ } = Var

{
16∑

α=1

Ŷα/16

}
.

The imputation of sales for nonresponding establishments is a complicated
process in the retail trade survey. Here, we shall present a simplified version of the
imputation process, but one that contains all of the salient features of the actual
process. The imputed value ỹα j of a nonresponding unit (α, j) is essentially the
value of the unit at some previous point in time multiplied by a measure of change
between the previous and current times. Specifically,

ỹα j = δ̃xα j ,

where xα j is the value of unit (α, j) at a previous time,

δ̃ =
∑+ yβi/πβi∑+ xβi/πβi
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is a ratio measure of change, and the summations
∑+ are over all similar units

(e.g., in the same kind of business) that responded in both the present and previous
time periods. The ratio is computed from data in all random groups, not just
from the random group of the nonrespondent (α, j). Usually, the previous time
period is three months ago for a noncertainty establishment and one month ago
for a certainty establishment (i.e., the last time the establishment’s panel was
enumerated). To simplify notation, the “ ˜ ” is deleted from the imputed values in
(2.10.1), (2.10.2), and (2.10.3), although it should be understood there that the yα j

is the reported or imputed value depending upon whether the unit responded or not,
respectively.

The random group estimator of Var{Ŷ } is then

v(Ŷ ) = {1/16(15)}
16∑

α=1

(
Ŷα −

16∑
β=1

Ŷβ/16

)2

, (2.10.3)

and the estimator of the coefficient of variation (CV) is {v(Ŷ )}1/2/Ŷ . The reader
will note that (2.10.2) and (2.10.3) are entirely equivalent to letting

θ̂α = Ŷ0 + Ŷα,

ˆ̄θ =
16∑

α=1

θ̂α/16

= Ŷ ,

and

v( ˆ̄θ ) = {1/16(15)}
16∑

α=1

(θ̂α − ˆ̄θ )2

= v(Ŷ ).

In this notation, θ̂α is an estimator of total sales, including both certainty and
noncertainty portions of the population. Presented in this form, the estimators of
both total sales and variance have the form in which they were originally presented
in Section 2.4.

It is worth noting at this point that strict principles were violated when the
change measure δ̃ used in the imputation process was computed from all random
groups combined rather than computed individually within each random group.
The overall δ̃ has obvious computational advantages. This procedure probably
does not seriously bias the variance estimator, although a rigorous proof has not
been given (recall the discussion in Section 2.8).

To illustrate the computations that are required, we consider the case of total
August 1977 grocery store sales. The random group totals are given in Table 2.10.1.
Computations associated with Ŷ and v(Ŷ ) are presented in Table 2.10.2. Some
estimators of Var{Ŷ } based on the order statistics are computed in Table 2.10.3.
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Table 2.10.1. Random Group Totals Ŷα

for August 1977 Grocery Store Sales

Random Group α Ŷα ($1000)

0 7,154,943

1 4,502,016

2 4,604,992

3 4,851,792

4 4,739,456

5 3,417,344

6 4,317,312

7 4,278,128

8 4,909,072

9 3,618,672

10 5,152,624

11 5,405,424

12 3,791,136

13 4,743,968

14 3,969,008

15 4,814,944

16 4,267,808

Table 2.10.2. Computation of Ŷ and v(Ŷ )
for August 1977 Grocery Store Sales

By definition, we have

Ŷ = Ŷ0 +
16∑

α=1

Ŷα/16

= 7,154,943 + 4,461,481

= 11,616,424,

where the unit is $1000. Also

v(Ŷ ) = {1/16(15)}
16∑

α=1

(
Ŷα −

16∑
β=1

Ŷβ/16

)2

= 19,208,267,520.

Thus, the estimated coefficient of variation is

cv(Ŷ ) = {v(Ŷ )}1/2/Ŷ
= 138,594/11,616,424

= 0.012.

In the retail trade survey itself, the published statistics result from a “composite
estimation” formula. The estimates presented here are not published but are the
inputs to the composite formula. We shall return to this example in Chapter 6 and
at that time discuss the composite estimator and estimators of the month-to-month
trend in sales.
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Table 2.10.3. Computations Associated with Estimates of
Var{Ŷ } Based on the Ordered Ŷα

Corresponding to σ̂1, σ̂2, σ̂3, σ̂4, and σ̂5 of Section 2.7, we have the following

estimates of Var{Ŷ }:
(σ̂1/4)2 = {(W/3.531)/4}2

= 140,7592,

(σ̂2/4)2 = {(W + W(2) + W(4)/7.626)/4}2

= 144,4012,

(σ̂3/4)2 = (σ̂1/4)2

= 140,7592,

(σ̂4/4)2 = {0.168(W + 1.216W(3))/4}2

= 140,5952,

and

(σ̂5/4)2 =
{(

2
√

π

16(15)

16∑
α=1

(α − 17/2)Ŷ(α)

) /
4

}2

= 143,1502.

The corresponding estimates of the coefficient of variation are

cv1(Ŷ ) = 140,657

11,616,424
= 0.012,

cv2(Ŷ ) = 144,368

11,616,424
= 0.012,

cv3(Ŷ ) = cv1(Ŷ ) = 0.012,

cv4(Ŷ ) = 140,595

11,616,424
= 0.012,

cv5(Ŷ ) = 143,150

11,616,424
= 0.012.

Clearly, these “quick” estimators are very similar to the random group estimator

for these data.

2.11. Example: The 1972–73 Consumer
Expenditure Survey

The U.S. Bureau of Labor Statistics has sponsored eight major surveys of consumer
expenditures, savings, and income since 1888. The 1972–73 survey, which is the
main focus of this example, was undertaken principally to revise the weights and
associated pricing samples for the Consumer Price Index and to provide timely,
detailed, and accurate information on how American families spend their incomes.

The 1972–73 Consumer Expenditure Survey (CES) consisted of two main com-
ponents, each using a separate probability sample and questionnaire. The first
component, known as the quarterly survey, was a panel survey in which each con-
sumer unit8 in a given panel was visited by an interviewer every 3 months over a
15 month period. Respondents were asked primarily about their expenditures on

8 A consumer unit is a single financially independent consumer or a family of two or more
persons living together, pooling incomes, and drawing from a common fund for major
expenditures.
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major items; e.g., clothing, utilities, appliances, motor vehicles, real estate, and
insurance. The second component of CES was the diary survey, in which diaries
were completed at home by the respondents. This survey was intended to obtain
expenditure data on food, household supplies, personal care products, nonprescrip-
tion drugs, and other small items not included in the quarterly survey.

To simplify the presentation, this example will be concerned only with the quar-
terly survey. The sampling design, estimation procedure, and variance estimation
procedure for the diary survey were similar to those of the quarterly survey.

The quarterly survey employed a multistage, self-weighting sampling design.
Its principal features included the following:

(1) The 1924 primary sampling units (PSU) defined for the Census Bureau’s Cur-
rent Population Survey (see Hanson (1978)) were grouped into 216 strata
on the basis of percent non-White and degree of urbanization. Fifty-four of
these strata contained only one PSU (thus designated self-representing PSUs),
while the remaining 162 strata contained two or more PSUs (thus designated
nonself-representing PSUs).

(2) From each of the 162 strata, one PSU was selected using a controlled se-
lection scheme. This scheme controlled on the number of SMSAs (Standard
Metropolitan Statistical Area) from each of two size classes and on the ex-
pected number of nonself-representing PSUs in each state.

(3) Within each selected PSU, a self-weighting sample of three types of units was
selected:
(a) housing units that existed at the time of the 1970 Census,
(b) certain types of group quarters,
(c) building permits representing new construction since 1970.
For simplicity this example will only describe the sampling of types (a) and (b)
units. The sampling frame for types (a) and (b) units was the 20% sample of
households in the 1970 Decennial Census that received the census long form.

(4) Subsampling of types (a) and (b) units was performed independently in each
nonself-representing PSU. Existing housing units were assigned a sampling
code between 1 and 54 according to Table 2.11.1. Each group quarters person
was assigned sampling code 55. All types (a) and (b) units in each PSU were
then arranged into the following order,
(a) sampling code,
(b) state,
(c) county,
(d) census enumeration district (ED).
For each PSU, a single random start was generated and a systematic sample
of housing units (HU) and group quarters persons was selected.

(5) All consumer units in selected housing units were taken into the sample.
(6) A panel number between 1 and 3 was systematically assigned to each selected

HU and group quarters person in a modulo 3 fashion.
(7) In self-representing PSUs, the sampling of types (a) and (b) units occurred as

in the nonself-representing PSUs. In self-representing PSUs, the selected units
were then assigned to 15 random groups based on the order of the systematic
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Table 2.11.1. Sampling Codes for Housing Units for Within PSU Sampling

Rent or Value Owner Family Size Renter Family Size

Rent Value 1 2 3 4 5 + 1 2 3 4 5 +
$0–$49 $0–$9,999 1 4 5 8 9 2 3 6 7 10

$50–$69 $10,000–$14,999 20 17 16 13 12 19 18 15 14 11

$70–$99 $15,000–$19,999 21 24 25 28 29 22 23 26 27 30

$100–$149 $20,000–$24,999 40 37 36 33 32 39 38 35 34 31

$150 + $25,000 + 41 44 45 48 49 42 43 46 47 50

51: Low Value Vacants (rent under $80 or value under $15,000)

52: Medium Value Vacants (rent of $80–$119 or value of $15,000–$24,999)

53: High Value Vacants (rent over $120 or value over $25,000)

54: Residual Vacants (those not for sale or rent).

selection. A random integer, α∗, between 1 and 15 was generated, and the first
unit selected was assigned to group α∗, the second to group α∗ + 1, and so
forth in a modulo 15 fashion.

(8) Finally, the sample was divided in half, and one half was enumerated between
January 1972 and March 1973 and the second half between January 1973 and
March 1974. Thirty of the original 54 self-representing PSUs were retained
in the sample for both years, but the subsample in each of these PSUs was
randomly halved. The remaining 24 original self-representing PSUs and the
original nonself-representing PSUs were paired according to stratum size.
Then, one PSU from each pair was assigned to 1972 and the other to 1973. This
step was not included in the original specification of the CES sampling design.
It was instituted later when budgetary limitations necessitated extending the
sample over two fiscal years instead of over one year, as originally specified.

The estimator of the total used in the quarterly survey was of the form

Ŷ =
∑
i∈s

Wi Yi , (2.11.1)

where Yi is the value of the i-th consumer unit (CU) and Wi denotes the correspon-
ding weight. The CU weights were generated by the following seven-step process:

(1) The base weight was the reciprocal of the inclusion probability.
(2) A so-called duplication control factor9 was applied to the basic weight of

certain CUs selected in the new construction sample and existing CUs in two
small PSUs.

(3) The weight resulting from step 2 was multiplied by a noninterview adjustment
factor that was calculated for each of 106 noninterview cells within each of
four geographical regions.

(4) First-stage ratio factors were then applied to the weights of all CUs in the
nonself-representing PSUs. This factor was computed for ten race-residence

9 In a few cases, CUs were subsampled in large housing units. The duplication control factor
simply adjusted the weight to include the conditional probability due to subsampling.
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cells in each of the four geographic regions and took the form∑
h

(1970 Census total for stratum h)∑
h

(Sample PSU in stratum h)/πh
,

where πh is the inclusion probability associated with the selected PSU in
stratum h and the summation is taken over all strata in the region. Thus, the
weight resulting from step 3 for a given CU was multiplied by the factor
appropriate for the region and race-residence cell corresponding to the CU.

(5) To adjust for noninterviewed CUs in multi-CU households, a multi-CU factor
was applied to the weight resulting from step 4.

(6) Next, a second-stage ratio factor was applied to each person 14 years old and
over in each CU. This was computed for 68 age-sex-race cells and took the
form

Independent population count of an age-sex-race cell

Sample estimate of the population of an age-sex-race cell
,

where the independent population counts were obtained from the Census
Bureau.

(7) Until the assignment of the second-stage ratio factor, all persons in a CU had the
same weight. But after the second-stage factor was applied, unequal weights
were possible. To assign a final weight to a CU, a so-called principal person
procedure10 was employed.

For a comprehensive discussion of the CES and its sample design and estima-
tion schemes, see U.S. Department of Labor (1978). Here we have only attempted
to provide the minimal detail needed to understand the CES variance estimators.
The description provided above suggests a complex sampling design and estima-
tion scheme. The ensuing development shows the considerable simplification in
variance estimation that results from the random group method.

In the CES, estimated totals and their associated variance estimates were com-
puted separately for the self-representing (SR) and nonself-representing (NSR)
PSUs. We begin by discussing the estimation for the SR PSUs. Subsequently, we
discuss the estimation for the NSR PSUs and the combined estimates over both
SR and NSR PSUs.

The variance due to subsampling within the SR PSUs was estimated in the
following fashion:

(1) The 30 SR PSUs were grouped into 15 clusters of one or more PSUs for
purposes of variance estimation.

10 Expenditure data were tabulated in the CES by designating a “principal person” and
assigning that person’s weight to the CU. This was done because the second-stage ratio
factor applied to persons, not CUs. Since expenditure data were to be based on CUs, there
was a need to assign each CU a unique weight.
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(2) For each cluster, 15 random group totals were computed according to the
relation

Ŷ1cα =
∑

i

15Wcαi Ycαi ,

where Ycαi denotes the value of the i-th CU in the α-th random group and
c-th cluster and Wcαi denotes the corresponding weight as determined by the
seven-step procedure defined above. Ŷ1cα is the estimator in (2.11.1), where
the summation has been taken only over units in the α-th random group and
c-th cluster. The Wcαi are the parent sample weights, and the 15 Wcαi are the
appropriate weights for a given random group.

(3) Cluster totals and variances were estimated by

Ŷ1c =
15∑

α=1

Ŷ1cα/15

and

v(Ŷ1c) = 1

15(14)

15∑
α=1

(Ŷ1cα − Ŷ1c)2,

respectively.
(4) Totals and variances over all SR PSUs were estimated by

Ŷ1 =
15∑
c

Ŷ1c

and

v(Ŷ1) =
15∑
c

v(Ŷ1c),

respectively.

The total variance (between plus within components) due to the sampling of
and within the NSR PSUs was estimated using the random group and collapsed
stratum techniques.

(1) The 93 strata were collapsed into 43 groups, 36 of which contained two strata
and seven of which contained three strata.

(2) For each NSR PSU, a weighted total was computed according to the relation

Ŷ2gh =
∑

i

Wghi Yghi ,

where Yghi denotes the value of the i-th CU in the h-th PSU in group g and Wghi

denotes the corresponding weight as determined by the seven-step procedure
defined earlier. Ŷ2gh is the estimator in (2.11.1), where the summation has been
taken only over units in the h-th PSU in the g-th group. The Wghi are the full
sample weights. Thus Ŷ2gh is an estimator of the total in the (g, h)-th stratum.

(3) Totals and variances over all NSR PSUs were estimated by

Ŷ2 =
43∑
g

Ŷ2g =
43∑
g

Lg∑
h

Ŷ2gh
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and

v(Ŷ2) =
36∑

g=1

2
2∑

h=1

(Ŷ2gh − PghŶ2g)2

+
43∑

g=37

3

2

3∑
h=1

(Ŷ2gh − PghŶ2g)2,

where Pgh is the proportion of the population in the g-th group living in the h-th
stratum. Observe that v(Ŷ2) is a collapsed stratum estimator. The factors Pgh

are analogous to the Agh/Ag in equation (2.5.7). Population is an appropriate
factor here because it should be well-correlated with the expenditure items of
interest in the CES.

Finally, totals and variances over both SR and NSR PSUs were estimated by

Ŷ = Ŷ1 + Ŷ2 (2.11.2)

and

v(Ŷ ) = v(Ŷ1) + v(Ŷ2),

respectively. The variance of Ŷ is the sum of the variances of Ŷ1 and Ŷ2 because
sampling was performed independently in the SR and NSR strata.

Before presenting some specific variance estimates, two aspects of the esti-
mation procedure require special discussion. First, the application of the random
group method did not adhere strictly to the principles discussed in Sections 2.2 and
2.4 of this chapter. Recall that the weights attached to the sample units included
nonresponse adjustments and first- and second-stage ratio adjustments. All of these
adjustment factors were computed from the entire sample, whereas strict random
group principles would suggest computing these factors individually for each ran-
dom group. The adopted procedure is clearly preferable from a computational
standpoint, and it also can be justified in some cases by Taylor series arguments.
Second, the collapsed stratum feature of the variance estimation procedure proba-
bly tended to overstate the actual variance. As was shown in Section 2.5, such over-
statement tends to occur when one unit is selected independently within each stra-
tum. In the CES, however, primaries were sampled by a controlled selection proce-
dure, and to the extent that this resulted in a lower true variance than an independent
selection procedure, the overestimation of variance may have been aggravated.

The principal estimates derived from the quarterly survey included the total
number of CUs and the mean annual expenditure per CU for various expenditure
categories. The estimator of mean annual expenditure was of the ratio form, and
its variance was estimated using a combination of random group and Taylor series
methodologies. For that reason, the discussion of variance estimation for mean
annual expenditures will be deferred until Chapter 6 (see Section 6.8).

Estimation of the total number of CUs is described in Tables 2.11.2–2.11.5.
Random group totals for the SR and NSR PSUs are presented in Tables 2.11.2 and
2.11.3, respectively. The factors Pgh are given in Table 2.11.4. Both the SR and
NSR variances are computed in Table 2.11.5.
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2.11. Example: The 1972–73 Consumer Expenditure Survey 99

Table 2.11.3. Estimated Totals Ŷ2gh for 43 Collapsed Strata
for the Characteristic “Number of Consumer Units”

Stratum (h)

Group (g) 1 2 3

1 361,336 434,324

2 413,727 479,269

3 446,968 408,370

4 520,243 598,114

5 375,400 467,515

6 477,180 464,484

7 494,074 496,722

8 437,668 456,515

9 387,651 430,562

10 450,008 467,255

11 485,998 502,247

12 464,604 393,965

13 415,047 472,583

14 444,814 481,008

15 375,815 442,793

16 438,436 474,527

17 451,239 382,624

18 460,168 311,482

19 462,894 470,407

20 493,373 540,379

21 469,461 394,530

22 426,485 546,285

23 515,182 974,332

24 436,378 410,247

25 436,449 362,472

26 383,687 431,037

27 387,268 419,426

28 302,383 441,139

29 432,195 454,737

30 432,159 426,645

31 440,998 374,043

32 367,096 528,503

33 428,326 549,871

34 395,286 456,075

35 410,925 220,040

36 465,199 475,912

37 449,720 387,772 471,023

38 441,744 437,025 640,130

39 651,431 364,652 638,782

40 441,244 420,171 362,705

41 489,315 463,869 384,602

42 443,885 476,963 397,502

43 821,244 692,441 431,657
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Table 2.11.4. Factors Pgh Used in Computing the Variance
Due to Sampling in NSR Strata

Stratum (h)

Group (g) 1 2 3

1 0.486509 0.513491

2 0.485455 0.514545

3 0.496213 0.503787

4 0.438131 0.561869

5 0.493592 0.506408

6 0.505083 0.494917

7 0.503599 0.496401

8 0.499901 0.500099

9 0.501436 0.498564

10 0.507520 0.492480

11 0.503276 0.496724

12 0.500381 0.499619

13 0.501817 0.498183

14 0.501071 0.498929

15 0.500474 0.499526

16 0.489670 0.510330

17 0.495551 0.504449

18 0.500350 0.499650

19 0.496320 0.503680

20 0.497922 0.502078

21 0.498676 0.501324

22 0.475579 0.524421

23 0.459717 0.540283

24 0.495257 0.505743

25 0.499968 0.500032

26 0.499178 0.500822

27 0.498887 0.501113

28 0.497341 0.502659

29 0.499085 0.500915

30 0.499191 0.500809

31 0.498829 0.501171

32 0.484498 0.515502

33 0.510007 0.489993

34 0.532363 0.467637

35 0.471407 0.528593

36 0.486899 0.513101

37 0.318160 0.338869 0.342971

38 0.313766 0.323784 0.362450

39 0.409747 0.312005 0.278248

40 0.337979 0.333625 0.328396

41 0.325368 0.333347 0.341285

42 0.331581 0.334400 0.334019

43 0.414992 0.332518 0.252491
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2.12. Example: The 1972 Commodity Transportation Survey 101

Table 2.11.5. Estimated Totals and Variances for Both SR and NSR PSUs

Ŷ1cα is the element in the c-th row, α-th column of Table 2.11.2. Thus, the

estimated total and variance for the SR PSUs are

Ŷ1 =
15∑
c

Ŷ1c =
15∑
c

15∑
α

Ŷ1cα/15 = 28.2549 · 106

and

v(Ŷ1) =
15∑
c

v(Ŷ1c) =
15∑
c

1

15(14)

15∑
α

(Ŷ1cα − Ŷ1c)2 = 10.2793 · 1010,

respectively.

Ŷ2gh and Pgh are the elements in the g-th row, h-th column of Tables 2.11.3 and

2.11.4, respectively. Thus, the estimated total and variance for the NSR PSUs are

Ŷ2 =
43∑
g

Ŷ2g =
43∑
g

Lg∑
h

Ŷ2gh = 42.5344 · 106

and

v(Ŷ2) =
36∑

g=1

2
2∑

h=1

(Ŷ2gh − PghŶ2g)2

+
43∑

g=37

(3/2)
3∑

h=1

(Ŷ2gh − PghŶ2g)2

= 46.5747 · 1010,

respectively.

The estimated total and variance over both SR and NSR PSUs are

Ŷ = Ŷ1 + Ŷ2 = 70.7893 · 106

and

v(Ŷ ) = v(Ŷ1) + v(Ŷ2) = 56.8540 · 1010.

2.12. Example: The 1972 Commodity
Transportation Survey

The 1972 Commodity Transportation Survey was a part of the 1972 U.S. Census
of Transportation. Prime objectives of the survey included the measurement of
the transportation and geographic distribution of commodities shipped beyond the
local area by manufacturing establishments in the United States.

This example is limited to the Shipper Survey, which was the major component
of the Commodity Transportation Survey program. The frame for the Shipper
Survey was derived from the 1972 U.S. Census of Manufacturers, and consisted of
all manufacturing establishments in the United States with 20 or more employees,
there being approximately 100,000 in number. The Mail Summary Data Survey, a
minor component of the Commodity Transportation Survey program, covered the
manufacturing plants with less than 20 employees.

Key features of the sampling design and estimation procedure for the Shipper
Survey included the following:
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Table 2.12.1. Allocation of the Sample for the Shipper Survey

Number of Selected Plants
Tonnage Shipper

Division Classes Certainty Noncertainty Total

1 1 81 40 121

2 5 459 696 1,155

3 5 354 578 932

4 4 339 541 880

5 13 1,242 1,045 2,287

6 12 771 866 1,637

7 15 880 1,318 2,198

8 13 675 1,102 1,777

9 17 585 1,348 1,933

Total 85 5,386 7,534 12,920

Source: Wright (1973).

(i) Using the Federal Reserve Board’s Index of Industrial Production, manufac-
turing plants were divided into 85 shipper classes. Each class was composed
of similar SIC (Standard Industrial Classification) codes.

(ii) Each shipper class was then assigned to one of nine tonnage divisions based
on total tons shipped. Each tonnage division comprised a separate sampling
stratum.

(iii) Within a tonnage division, manufacturing plants were ordered by shipper
class, by state, and by SIC code.

(iv) Each plant was assigned an expected tonnage rating on the basis of the
plant’s total employment size.

(v) Based on the expected tonnage rating, a certainty cutoff was specified
within each tonnage division. All plants with a rating greater than the cutoff
were included in the sample with probability one.

(vi) An unequal probability, single-start systematic sample of plants was se-
lected independently from within the noncertainty portion of each tonnage
division. The selection was with probability proportional to expected
tonnage rating. The sample sizes are given in Table 2.12.1.

(vii) Within each selected manufacturing plant, an equal probability sample of
bills of lading was selected. The filing system for shipping documents varies
from plant to plant, but often the papers are filed by a serial number. If so,
a single-start systematic sample of bills of lading was selected (see Table
2.12.2 for subsampling rates). If not, then a slightly different sampling
procedure was employed. The alternative subsampling procedures are
not of critical importance for this example and thus are not described
here.
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2.12. Example: The 1972 Commodity Transportation Survey 103

Table 2.12.2. Subsampling Rates for Shipping
Documents Filed in Serial Number Order

Number of Documents in File Sampling Rate

0–199 1/1

200–399 1/2

400–999 1/4

1,000–1,999 1/10

2,000–3,999 1/20

4,000–9,999 1/40

10,000–19,999 1/100

20,000–39,999 1/200

40,000–79,999 1/400

80,000–99,999 1/500

(viii) Population totals were estimated using the Horvitz–Thompson estimator

Ŷ = Ŷ0 + Ŷ1 + Ŷ2

=
∑

i

∑
j

Y0i j +
∑

i

∑
j

Y1i j/π1i j +
∑

i

∑
j

Y2i j/π2i j ,

where Yci j denotes the value of the j-th document in the i-th plant
and πci j denotes the associated inclusion probability. The c subscript
denotes

c = 0 document selected at the rate 1/1
from within a certainty plant,

c = 1 document selected at a rate < 1/1
from within a certainty plant,

c = 2 document selected from a,
noncertainty plant.

The variance of Ŷ was estimated using the random group method. Plants were
assigned to k = 20 random groups in the following fashion:

(ix) All noncertainty plants were placed in the following order:

tonnage division,
shipper class,
state,
plant ID.

(x) A random integer between 1 and 20 was generated, say α∗. The first plant
was then assigned to random group (RG) α∗, the second to RG α∗ + 1, and
so forth in a modulo 20 fashion.
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(xi) All selected second-stage units (i.e., bills of lading) within a selected non-
certainty plant were assigned to the same RG as the plant.

(xii) All second-stage units selected at the rate 1/1 within certainty plants were
excluded from the 20 RGs.

(xiii) Second-stage units selected at a rate < 1/1 within certainty plants were
placed in the following order:

tonnage division,
shipper class,
state,
plant ID.

(xiv) The second-stage units in (xiii) were assigned to the k = 20 random groups
in the systematic fashion described in (x).

The random group estimator of Var{Ŷ } is prepared by estimating the variance
for certainty plants and noncertainty plants separately. The two estimates are then
summed to give the estimate of the total sampling variance. The random group
estimator for either the certainty (c = 1) or noncertainty plants (c = 2) is defined
by

v(Ŷc) = 1

20(19)

20∑
α=1

(Ŷcα − Ŷc)2, (2.12.1)

where c = 1, 2,

Ŷcα =
∑

(c,i, j)∈s(α)

Yci j (20/πci j ),

∑
(c,i, j)∈s(α) denotes a sum over units in the α-th random group, and the

πci j/20 are the inclusion probabilities associated with the individual random
groups.

Table 2.12.3 presents some typical estimates and their estimated coefficients of
variation (CV) from the Shipper Survey. These estimates include the contribution
from both certainty and noncertainty plants.

To illustrate the variance computations, Table 2.12.4 gives the random group to-
tals for the characteristic “U.S. total shipments over all commodities.” The estimate
of the total tons shipped is

Ŷ = Ŷ0 + Ŷ1 + Ŷ2

= Ŷ0 +
20∑

α=1

Ŷ1α/20 +
20∑

α=1

Ŷ2α/20

= 42.662 · 106 + 236.873 · 106 + 517.464 · 106

= 796.99 · 106,

where Ŷ0 is the total of certainty shipments associated with certainty plants.
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2.12. Example: The 1972 Commodity Transportation Survey 105

Table 2.12.3. Estimates of Total Tons Shipped and Corresponding Coefficients
of Variation

Transportation Estimated

Commodity Tons Shipped CV

Code Commodity (1,000s) (%)

29 Petroleum and coal products 344,422 6

291 Products of petroleum refining 310,197 6

2911 Petroleum refining products 300,397 7

29111 Gasoline and jet fuels 123,877 8

29112 Kerosene 6,734 37

29113 Distillate fuel oil 58,601 13

29114 Petroleum lubricating and similar oils 23,348 5

29115 Petroleum lubricating greases 553 17

29116 Asphalt pitches and tars from petroleum 21,406 19

29117 Petroleum residual fuel oils 36,689 12

29119 Petroleum refining products, NEC 24,190 42

2912 Liquified petroleum and coal gases 9,800 9

29121 Liquified petroleum and coal gases 9,800 9

295 Asphalt paving and roofing materials 21,273 10

2951 Asphalt paving blocks and mixtures 6,426 24

29511 Asphalt paving blocks and mixtures 6,426 24

2952 Asphalt felts and coatings 14,847 10

29521 Asphalt and tar saturated felts 2,032 13

29522 Asphalt and tar cements and coatings 4,875 18

29523 Asphalt sheathings, shingles, and sidings 7,817 13

29529 Asphalt felts and coatings, NEC 124 27

299 Miscellaneous petroleum and coal products 12,952 33

2991 Miscellaneous petroleum and coal products 12,952 33

29912 Lubricants and similar compounds, other 760 16

than petroleum

29913 Petroleum coke, exc. briquettes 2,116 42

29914 Coke produced from coal, exc. briquettes 2,053 14

29919 Petroleum and coal products, NEC 1,851 50

Source: U.S. Bureau of the Census (1976a).

From equation (2.12.1), the estimate of Var{Ŷ} is

v ˆ(Y ) = v(Ŷ1) + v(Ŷ2)

= 12.72 · 1012 + 18,422.78 · 1012

= 18,435.50 · 1012.

The estimated CV is

cv{Ŷ } = v(Ŷ )1/2

Ŷ
= 0.17.
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CHAPTER 3

Variance Estimation Based on
Balanced Half-Samples

3.1. Introduction

Efficiency considerations often lead the survey designer to stratify to the point
where only two primary units are selected from each stratum. In such cases, only
two independent random groups (or replicates or half-samples) will be available for
the estimation of variance, and confidence intervals for the population parameters
of interest will necessarily be wider than desired. To overcome this problem,
several techniques have been suggested. One obvious possibility is to apply the first
version of rule (iv), Section 2.4.1, letting the random group method operate within
the strata instead of across them. Variations on the collapsed stratum method offer
the possibility of ignoring some of the stratification, thus increasing the number
of available random groups. A bias is incurred, however, when the variance is
estimated in this manner. Other proposed techniques, including jackknife and
half-sample replication, aim to increase the precision of the variance estimator
through some form of “pseudoreplication.”

In this chapter, we discuss various aspects of balanced half-sample replication
as a variance estimating tool. The jackknife method, first introduced as a tool for
reducing bias, is related to half-sample replication and will be discussed in the
next chapter.

The basic ideas of half-sample replication first emerged at the U.S. Bureau of
the Census through the work of W. N. Hurwitz, M. Gurney, and others. During the
late 1950s and early 1960s, this method was used to estimate the variances of both
unadjusted and seasonally adjusted estimates derived from the Current Population
Survey. Following Plackett and Burman (1946), McCarthy (1966, 1969a, 1969b)
introduced and developed the mathematics of balancing. The terms balanced half-
samples, balanced fractional samples, pseudoreplication, and balanced repeated

107
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108 3. Variance Estimation Based on Balanced Half-Samples

replication (BRR) have since come into common usage and all refer to McCarthy’s
method.

3.2. Description of Basic Techniques

Suppose it is desired to estimate a population mean Ȳ from a stratified design with
two units selected per stratum, where the selected units in each stratum comprise
a simple random sample with replacement (srs wr). Let L denote the number of
strata, Nh the number of units within the h-th stratum, and N = ∑L

h=1 Nh the size
of the entire population. Suppose yh1 and yh2 denote the observations from stratum
h(h = 1, . . . , L). Then an unbiased estimator of Ȳ is

ȳst =
L∑

h=1

Wh ȳh,

where

Wh = Nh/N ,

ȳh = (yh1 + yh2)/2.

The textbook estimator of Var{ȳst} is given by

v(ȳst) =
L∑

h=1

W 2
h s2

h/2

=
L∑

h=1

W 2
h d2

h/4,

where

dh = yh1 − yh2.

For a complete discussion of the theory of estimation for stratified sampling, see
Cochran (1977, Chapter 5).

For the given problem, only two independent random groups (or replicates or
half-samples) are available: (y11, y21, . . . , yL1) and (y12, y22, . . . , yL2). The ran-
dom group estimator of Var{ȳst} is then

vRG(ȳst) = [2(2 − 1)]−1
2∑

α=1

(ȳst,α − ȳst)
2

= (ȳst,1 − ȳst,2)2/4,

where

ȳst,1 =
L∑

h=1

Wh yh1,

ȳst,2 =
L∑

h=1

Wh yh2,
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and

ȳst = (ȳst,1 + ȳst,2)/2.

Because this estimator is based on only one degree of freedom, its stability (or
variance) will be poor relative to the textbook estimator v(ȳst).

We seek a method of variance estimation with both the computational simplicity
of vRG(ȳst) and the stability of v(ȳst). Our approach will be to consider half-samples
comprised of one unit from each of the strata. This work will differ fundamentally
from the random group methodology in that we shall now allow different half-
samples to contain some common units (and some different units) in a systematic
manner. Because of the overlapping units, the half-samples will be correlated
with one another. In this sense, the methods to be presented represent a form of
“pseudoreplication,” as opposed to pure replication.

To begin, suppose that a half-sample replicate is formed by selecting one unit
from each stratum. There are 2L such half-samples for a given sample, and the
estimator of Ȳ from the α-th half-sample is

ȳst,α =
L∑

h=1

Wh(δh1α yh1 + δh2α yh2),

δh1α =
{

1, if unit (h, 1) is selected for the α-th half-sample,
0, otherwise,

and

δh2α = 1 − δh1α.

It is interesting to note that the mean of the 2L estimators ȳst,α is equal to the
parent sample estimator ȳst. This follows because each unit in the parent sample
is a member of exactly one-half of the 2L possible half-samples (or 2L/2 = 2L−1

half-samples). Symbolically, we have

2L∑
α=1

ȳst,α/2L =
L∑

h=1

Wh(yh1 + yh2)(2L−1/2L )

= ȳst.

We shall construct a variance estimator in terms of the ȳst,α . Define

δ
(α)
h = 2δh1α − 1

=
{

1, if unit (h, 1) is in the α-th half-sample,
−1, if unit (h, 2) is in the α-th half-sample.

Then it is possible to write

ȳst,α − ȳst =
L∑

h=1

Whδ
(α)
h dh/2 (3.2.1)
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and

(ȳst,α − ȳst)
2 =

L∑
h=1

W 2
h d2

h/4 +
L∑ ∑

h<h′
δ

(α)
h δ

(α)
h′ Wh Wh′dhdh′/2 (3.2.2)

since δ
(α)2
h = 1. Note that the right-hand side of (3.2.2) contains both the textbook

estimator v(ȳst) and a cross-stratum term. Notwithstanding this cross-stratum term,
(3.2.2) provides an unbiased estimator of Var{ȳst}.

Theorem 3.2.1. The statistic (ȳst,α − ȳst)
2 is an unbiased estimator of Var{ȳst}.

Proof. Because

2L∑
α=1

δ
(α)
h δ

(α)
h′ = 0,

it follows that

E{(ȳst,α − ȳst)
2|d1, . . . , dL} =

2L∑
α=1

(ȳst,α − ȳst)
2/2L

= v(ȳst). (3.2.3)

The expectation E{·|d1, . . . , dL} holds fixed the selected units and is with respect
to the formation of the α-th half-sample. Thus,

E{(ȳst,α − ȳst)
2} = E{v(ȳst)}

= Var{ȳst}. �

A more direct proof of this result that avoids the conditional expectation (3.2.3)
relies on the fact that sampling is independent in the various strata. Thus,
E{dhdh′ } = E{dh}E{dh′ } = 0 and the expectation of the cross-stratum term in
(3.2.2) is zero. Although the direct proof is appealing, the conditioning argument
in (3.2.3) shows not only that (ȳst,α − ȳst)

2 is an unbiased estimator of Var{ȳst}
but also that the textbook estimator may be reproduced by taking the mean of the
(ȳst,α − ȳst)

2 over the 2L half-samples. Thus there is no loss of information if all
2L replicates are used to estimate Var{ȳst}.

When L is large, the computation of v(ȳst) as the mean of the (ȳst,α − ȳst)
2 over

the 2L half-samples is clearly not feasible. A natural shortcut is to compute the
mean only over a small subset of the replicates. In so doing we may or may not
reproduce the textbook estimator v(ȳst), but we certainly simplify the computa-
tional difficulties. As we shall see, however, by choosing the subset of half-samples
judiciously we may, in fact, reproduce v(ȳst).

Unfortunately, if the subset is chosen at random, then the variance of the resulting
variance estimator may be much larger than the variance of v(ȳst). Specifically,
suppose a simple random sample without replacement of k half-samples is selected,
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and consider the corresponding variance estimator

vk(ȳst) =
k∑

α=1

(ȳst,α − ȳst)
2/k. (3.2.4)

From Theorem 3.2.1, this is seen to be an unbiased estimator of Var{ȳst}. Further-
more, since the conditional expectation of v(ȳst) over the 2L half-samples for a
given sample is v(ȳst), we have

Var{vk(ȳst)} = Var1E2{vk(ȳst)} + E1Var2{vk(ȳst)}
= Var1{v(ȳst)} + E1Var2{vk(ȳst)}
≥ Var1{v(ȳst)},

where the operators E2 and Var2 are with respect to the selection of the sample
of half-samples given d1, d2, . . . , dL , and E1 and Var1 are with respect to the
sampling design generating the parent sample. Consequently, v(ȳst) is at least as
stable as vk(ȳst), with the excess of Var{vk(ȳst)} over Var{v(ȳst)} arising from the
cross-stratum contribution to vk(ȳst). Specifically, from (3.2.2) we see that

Var{vk(ȳst)} = Var{v(ȳst)} +
L∑ ∑

h<h′

2L − k

k(2L − 1)
W 2

h W 2
h′Var{dh}Var{dh′ }/4.

How then must we choose the subset of half-samples so that vk(ȳst) = v(ȳst),
thus guaranteeing that Var{vk(ȳst)} = Var{v(ȳst)}? By (3.2.2), this equality will
obtain whenever the k half-samples satisfy the property

k∑
α=1

δ
(α)
h δ

(α)
h′ = 0 (3.2.5)

for all h < h′ = 1, . . . , L . Plackett and Burman (1946) have given methods for
constructing k × k orthogonal matrices, k a multiple of 4, whose columns satisfy
(3.2.5). For example, an 8 × 8 orthogonal matrix is presented in Table 3.2.1. In the
present context, strata are represented by the columns of the table and half-samples

Table 3.2.1. Definition of Balanced Half-Sample
Replicates for 5, 6, 7, or 8 Strata

Stratum (h)

Replicate 1 2 3 4 5 6 7 8

δ
(1)
h +1 −1 −1 +1 −1 +1 +1 −1

δ
(2)
h +1 +1 −1 −1 +1 −1 +1 −1

δ
(3)
h +1 +1 +1 −1 −1 +1 −1 −1

δ
(4)
h −1 +1 +1 +1 −1 −1 +1 −1

δ
(5)
h +1 −1 +1 +1 +1 −1 −1 −1

δ
(6)
h −1 +1 −1 +1 +1 +1 −1 −1

δ
(7)
h −1 −1 +1 −1 +1 +1 +1 −1

δ
(8)
h −1 −1 −1 −1 −1 −1 −1 −1
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by the rows. An entry of +1 in the (α, h)-th cell signifies that unit (h, 1) is part of
the α-th replicate, while an entry of −1 signifies that unit (h, 2) is part of the α-th
replicate. Any set of five columns for the L = 5 case; six columns for the L = 6
case; seven columns for the L = 7 case; or all eight columns for the L = 8 case
defines a set of k = 8 replicates satisfying (3.2.5). Thus, defining half-samples in
this manner leads to the equality relation

vk(ȳst) = v(ȳst).

These k half-samples contain all of the information with respect to Var{ȳst} con-
tained in all 2L half-samples. The cross-stratum component of vk(ȳst) has been
eliminated! McCarthy (1966) has referred to a set of half-samples satisfying (3.2.5)
as being balanced.

Half-sample balancing also leads to another desirable property. From (3.2.1) it
can be seen that the average of the ȳst,α(α = 1, . . . , k) will equal ȳst whenever

k∑
α=1

δ
(α)
h = 0 (3.2.6)

for each h = 1, . . . , L . This condition is satisfied by Plackett and Burman’s ma-
trices except when k = L (e.g., see column 8 of Table 3.2.1). When k = L , one
of the two units from the L-th stratum is used in each of the half-samples, thus
defeating condition (3.2.6). In the example, the second unit from the eight stratum
is used in each half-sample. It is intuitively clear that the mean of the ȳst,α cannot
equal ȳst in this case because the latter includes both units from the L-th stratum
in the computations, whereas the former does not.

When both (3.2.5) and (3.2.6) are satisfied, we shall refer to the set of replicates
as being in full orthogonal balance. This will be the case whenever k is an integral
multiple of 4 that is strictly greater than L . Choosing k to be the smallest such value
minimizes the number of computations. For example, in the L = 8 case, k = 12
half-sample replicates would be required to achieve full orthogonal balance, and
any eight columns of Plackett and Burman’s 12 × 12 orthogonal matrix may be
used to derive the replicates. If k = 8 half-samples are used instead (that is, all
eight columns of the 8 × 8 matrix in Table 3.2.1), then balance is achieved but not
full orthogonal balance. If k = 16 or more half-samples are used, full orthogonal
balance is also achieved, but more computations are required than for k = 12
half-samples.

If fewer than k = L half-samples are used, then neither balance nor full orthog-
onal balance can be achieved.

The orthogonal matrices discussed by Plackett and Burman are known in mathe-
matics as Hadamard matrices. Strictly speaking, Hadamard matrices are not known
to exist for every multiple of 4, although constructions have been given for all orders
through 200 × 200, thus covering most situations of practical importance in survey
sampling. Hadamard matrices are not unique, and thus balance or full-orthogonal
balance may be achieved with alternative sets of half-samples. An easy way to see
this is to note that if H is a Hadamard matrix, then −H is also. See Appendix A
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for more information about Hadamard matrices and for information about how to
obtain them for use in practical work.

3.3. Usage with Multistage Designs

In Section 3.2, we introduced the basic balanced half-sample methodology using
simple random sampling with replacement within strata. The methodology, how-
ever, has more general application, and we now consider the case of multistage
sampling with possibly unequal probabilities of selection.

We assume that primary sampling units (PSUs) are selected pps with replace-
ment within each of L strata. We shall consider the problem of estimating a pop-
ulation total Y via the unbiased estimator

Ŷ =
L∑

h=1

Ŷh

=
L∑

h=1

(Ŷh1/2ph1 + Ŷh2/2ph2) (3.3.1)

=
L∑

h=1

2∑
i=1

mhi∑
j=1

whi j yhi j ,

where Ŷhi is an unbiased estimator of the total in the (h, i)-th PSU, say Yhi , based
upon sampling at the second and successive stages, and phi is the per-draw selection
probability for the (h, i)-th primary. As usual, we must have both 1) phi > 0 for
all h and i and 2)

∑
i phi = 1 for all h. The value of the (h, i, j)-th completed

interview is denoted by yhi j , and this unit’s final weight is whi j . There are mhi

completed interviews within the (h, i)-th PSU due to sampling at the second and
successive stage.

The textbook estimator of variance for this problem is

v(Ŷ ) =
L∑

h=1

(Ŷh1/ph1 − Ŷh2/ph2)2/4 (3.3.2)

=
L∑

h=1

(
mh1∑
j=1

2whi j yhi j −
mh2∑
j=1

2wh2 j yh2 j

)2/
4.

As in the case of srs wr sampling within strata, there are 2L possible half-
samples. We shall select k of them using the balancing ideas presented in Section
3.2. Note that the issue of balancing the half-samples is separate and distinct from
the issue of the sampling design used in selecting the parent sample. Thus, the
specification of a set of balanced half-samples is performed the same for pps wr
sampling, srs wr sampling, or any other two-per-stratum sampling design. For pps
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wr sampling, the α-th half-sample estimator of Y is

Ŷα =
L∑

h=1

(δh1αŶh1/ph1 + δh2αŶh2/ph2) (3.3.3)

=
L∑

h=1

2∑
i=1

mhi∑
j=1

δhiα2whi j yhi j

=
L∑

h=1

2∑
i=1

mhi∑
j=1

whi jα yhi j ,

where

δh1α =
{

1, if the (h, 1)-st PSU is in the α-th half-sample,
0, otherwise,

δh2α = 1 − δh1α , and whi jα = δhiα2whi j is the weight for the α-th half-sample.
If a set of k balanced half-samples is specified, then

vk(Ŷ ) =
L∑

α=1

(Ŷα − Ŷ )2/k (3.3.4)

provides the full-information, unbiased estimator of Var{Ŷ }. That is, following the
approach of Section 3.2, it may be shown that

vk(Ŷ ) = v(Ŷ ). (3.3.5)

Indeed we may anticipate the result (3.3.5) because the sampling design considered
in Section 3.2 is a special case of that considered here. Furthermore, relying on
the development in Section 3.2, we may conclude that:

� When k < 2L randomly selected half-samples are used, vk(Ŷ ) is an unbiased but
possibly inefficient estimator of Var{Ŷ }. It may or may not equal the textbook
estimator v(Ŷ ).

� When k = 2L , then the equality vk(Ŷ ) = v(Ŷ ) is guaranteed. Computational
costs will be prohibitive, however, in all circumstances where L is moderate to
large.

� If k balanced half-samples are used, then
∑k

α=1 Ŷα/k = Ŷ , except when
k = L .

We introduce different forms of the balanced half-sample estimator—forms that
will become useful to us in the next section. Let

Ŷ c
α =

L∑
h=1

2∑
i=1

mhi∑
j=1

(1 − δhiα) 2whi j yhi j

=
L∑

h=1

2∑
i=1

mhi∑
j=1

wc
hi jα yhi j

(3.3.6)
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be the estimator of the population total based on the half-sample that is comple-
mentary to the α-th half-sample. That is, if PSU (h, 1) is in the α-th half-sample,
then (h, 2) is in the complementary half-sample and vice versa.

The estimators Ŷ c
α suggest an apparently alternative estimator of variance,

vc
k

(
Ŷ

) = 1

k

k∑
α=1

(
Ŷ c

α − Ŷ
)2

. (3.3.7)

To estimate the variance of Ŷ , we might consider other apparently different esti-
mators, too, including

v̄k
(
Ŷ

) = {
vk

(
Ŷ

) + vc
k

(
Ŷ

)}
/2, (3.3.8)

v
†
k

(
Ŷ

) = 1

4k

k∑
α=1

(
Ŷα − Ŷ c

α

)2
, (3.3.9)

and

vτ
k

(
Ŷ

) = 1

(2τ − 1)2 k

k∑
α=1

(
Ŷ τ

α − Ŷ
)2

, (3.3.10)

where Ŷ τ
α is a weighted average of the half-sample estimator and its complement

defined by

Ŷ τ
α = τ Ŷα + (1 − τ ) Ŷ c

α

=
L∑

h=1

2∑
i=1

mhi∑
j=1

wτ
hi jα yhi jα,

wτ
hi jα = {τδhiα + (1 − τ ) (1 − δhiα)} 2whi j ,

τ ∈ (1/2, 1] .1

(3.3.11)

Because the estimated total Ŷ is linear, it is easy to see that
(
Ŷα + Ŷ c

α

)
/2 = Ŷ and

thus that vk
(
Ŷ

) = vc
k

(
Ŷ

) = v̄k
(
Ŷ

) = v
†
k

(
Ŷ

) = vτ
k

(
Ŷ

)
. The apparently alternative

estimators of variance are not different after all. All of the estimators of variance
equal the standard unbiased estimator (3.3.2) when the set of k half-samples is
balanced. We will return to these alternative estimators in the next section, where
differences between them will be real.

We offer two final thoughts without providing a formal development of them.
First, the balanced half-sample methodology may be used for estimating the com-
ponents of the variance of Ŷ . The estimator presented in (3.3.4) estimates the total
variance of Ŷ , which may be partitioned as

Var{Ŷ } = Var1E2{Ŷ } + E1Var2{Ŷ },
Total Between PSU Within PSU

Variance Variance Variance

1 It is also easy to construct an estimator of variance similar to vτ
k

(
Ŷ

)
based on the random

group method.
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where E2 and Var2 condition on the selected PSUs. Application of the balanced
half-sample methodology to the second-stage sampling units allows one to estimate
both Var2{Ŷ } and the within PSU component E1Var2{Ŷ }. By subtraction, an es-
timator of the between PSU component may be derived. For multiple-stage sam-
pling, the within PSU component may be further partitioned, with the elements
of the partition estimated directly by the balanced half-sample method or indi-
rectly by subtraction. Second, the balanced half-sample method may be applied
to without replacement sampling designs, even though the designs presented in
the last two sections featured with replacement sampling. Some overestimation
of the variance tends to occur in this case. We consider this point further in
Section 3.5.

3.4. Usage with Nonlinear Estimators

The balanced half-sample technique was introduced in Sections 3.2 and 3.3 in the
context of simple linear estimators, a context in which the textbook variance es-
timating formulas may be computationally satisfactory. These methods, however,
suggest techniques for estimating the variance of nonlinear estimators, where sim-
ple and unbiased estimators of variance are not available.

We shall continue to use the stratified pps wr sampling design set forth in
Section 3.3. Now suppose that an estimator θ̂ , not necessarily linear, is constructed
from the entire sample for some general population parameter θ . For example,
θ may be a ratio, a difference of ratios, a regression coefficient, a correlation
coefficient, etc. Suppose further that k balanced half-sample replicates are specified
as described in Section 3.2.

Let θ̂α(α = 1, . . . , k) denote the estimator of θ computed from the α-th half-
sample. These estimators should be of the same functional form as the parent
sample estimator θ̂ . Thus, if θ̂ is the “combined” ratio estimator

θ̂ = Ŷ

X̂
X,

where Ŷ and X̂ are of the form (3.3.1), then θ̂α is the “combined” ratio estimator

θ̂α = Ŷα

X̂α

X.

By analogy with the linear problem, an estimator of Var{θ̂} based on the k
balanced half-samples is

vk(θ̂ ) =
k∑

α=1

(θ̂α − θ̂ )2/k. (3.4.1)

This estimator is intuitively satisfying because it mimics the estimator developed
for the linear problem. In general, however, its exact theoretical properties are
unknown. The moments of vk(θ̂ ) may be approximated by first “linearizing” the
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estimators (see Chapter 6) and then applying the results of Sections 3.2 and 3.3
to the linear approximation. Appendix B discusses the asymptotic properties of
vk(θ̂ ).

The nonlinear problem discussed here differs in two important respects from
the linear problem discussed in earlier sections. First, we see almost immediately
that the mean of the half-sample estimators

ˆ̄θ =
k∑

α=1

θ̂α/k

is not necessarily equal to the parent sample estimator θ̂ . For the linear problem, we

had the equality ˆ̄θ = θ̂ provided that the half-samples were balanced and k > L .
Even for the linear problem, the equality breaks down when the half-samples are

unbalanced or k = L . For the nonlinear problem, ˆ̄θ and θ̂ are never equal except by
rare chance. They should be quite close, however, in most survey applications; cer-
tainly within sampling error of one another. Moderate to large differences between
them should serve as a warning that either computational errors have occurred or
bias exists in the estimators due to their nonlinear form.

The second unique aspect of the nonlinear problem concerns the fact that the
alternative variance estimators are now actually different from one another.

To illustrate, continue the pps, multistage sampling design introduced in the
previous section. Let θ̂ , θ̂α, θ̂ c

α , and θ̂ τ
α all denote the same estimator based upon

the weights whi j , whi jα, wc
hi jα , and wτ

hi jα , respectively. Alternative estimators of
variance corresponding to (3.3.7)–(3.3.10) are now given by

vc
k

(
θ̂
) = 1

k

k∑
α=1

(
θ̂ c
α − θ̂

)2
, (3.4.2)

v̄k
(
θ̂
) = {

vk
(
θ̂
) + vc

k

(
θ̂
)}

/2, (3.4.3)

v
†
k

(
θ̂
) = 1

4k

k∑
α=1

(
θ̂α − θ̂ c

α

)2
, (3.4.4)

and

vτ
k

(
θ̂
) = 1

(2τ − 1)2 k

k∑
α=1

(
θ̂ τ
α − θ̂

)2
. (3.4.5)

Because θ̂ is nonlinear, the alternative estimators of variance (3.4.1)–(3.4.5) are
no longer equal to one another. In large-survey applications, however, all will
normally be quite close to one another. Judkins (1990) advocates (3.4.5) in the
case of variance estimation for domains with small sample sizes. The natural
choice of τ = 3/4 gives

vτ
α

(
θ̂
) = 4

k

k∑
α=1

(
θ̂ τ
α − θ̂

)2
.
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Additional estimators of variance can be constructed by employing squared devi-

ations from ˆ̄θ instead of from θ̂ . Such estimators also are identical to vk(θ̂ ) when-
ever θ̂ is linear. When θ̂ is nonlinear, the estimators of variance are, in general,
unequal.

In the case of nonlinear estimators, vk(θ̂ ), vc
k (θ̂ ), and v̄k(θ̂ ) are sometimes re-

garded as estimators of the mean squared error MSE{θ̂}, while v
†
k(θ̂ ) is regarded

as an estimator of variance Var{θ̂}. This follows because v
†
k(θ̂ ) is an unbiased es-

timator of Var{ ˆ̄θα} for any given α, and the variance of ˆ̄θα is thought to be close to
that of θ̂ . We also note that

v̄k(θ̂ ) = v
†
k(θ̂ ) +

k∑
α=1

( ˆ̄θα − θ̂ )2/k

so that v̄k(θ̂ ) is guaranteed to be larger than v
†
k(θ̂ ). Similarly, vk(θ̂ ) and vc

k (θ̂ ) also
tend to be larger than v

†
k(θ̂ ). By symmetry, we have

E{v̄k(θ̂ )} = E{vk(θ̂ )} = E{vc
k (θ̂ )}

= Var{ ˆ̄θα} + E{( ˆ̄θα − θ̂ )2}
≥ Var{ ˆ̄θα} + [E{ ˆ̄θα − θ̂}]2

= Var{ ˆ̄θα} + [Bias{θ̂}]2

= Var{θ̂} + [Bias{θ̂}]2

= MSE{θ̂},
the first approximate equality holding whenever the bias of θ̂ is proportional to the
number of selected PSUs (i.e., 2L) and the second approximate equality holding

whenever ˆ̄θα and θ̂ have the same variance.
As an illustration of the above methods, suppose it is desired to estimate the

ratio

R = Y/X,

where Y and X denote two population totals. The estimator based on the entire
sample is

R̂ = Ŷ/X̂ ,

where Ŷ and X̂ are defined according to (3.3.1), and the α-th half-sample estimator
is

R̂α = Ŷα/X̂α,

where Ŷα and X̂α are defined according to (3.3.3). The estimator corresponding to
(3.4.1) is given by

vk(R̂) =
k∑

α=1

(R̂α − R̂)2/k, (3.4.6)
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and the estimators vc
k (R̂), v̄k(R̂), v

†
k(R̂), and vτ

k (R̂) are defined similarly. Clearly,

ˆ̄R = 1

k

k∑
α=1

R̂α

�= R̂.

The variance estimator suggested for this problem in most sampling textbooks is

v(R̂) = X̂−2{v(Ŷ ) − 2R̂c(Ŷ , X̂ ) + R̂2v(X̂ )},
where v(Ŷ ), c(Ŷ , X̂ ), and v(X̂ ) are the textbook estimators of Var{Ŷ }, Cov{Ŷ , X̂},
and Var{X̂}, respectively. Using the approximation

R̂α − R̂ =̇ (Ŷα − R̂ X̂α) / X̂ ,

we see that

vk(R̂) =̇ X̂−2
k∑

α=1

{(Ŷα − Ŷ ) − R̂(X̂α − X̂ )}2 / k,

which equals the textbook estimator v(R̂) whenever the half-samples are balanced!

Using the same approximation, we also see that ˆ̄R =̇ R̂ whenever the half-samples
are balanced and k > L .

Approximate equalities of this kind can be established between balanced half-
sample estimators and textbook estimators for a wide class of nonlinear statistics θ̂ .

These are approximate results, however, and there is a dearth of exact theoret-
ical results for finite sample sizes. One exception is Krewski and Rao’s (1981)
finite sample work on the variance of the ratio estimator. Although there are few
theoretical results, there is a growing body of empirical evidence that suggests bal-
anced half-sample estimators provide satisfactory estimates of the true variance (or
MSE). This is confirmed in Frankel’s (1971b) investigation of means, differences
of means, regression coefficients, and correlation coefficients; McCarthy’s (1969a)
investigation of ratios, regression coefficients, and correlation coefficients; Levy’s
(1971) work on the combined ratio estimator; Kish and Frankel’s (1970) study of
regression coefficients; Bean’s (1975) investigation of poststratified means; and
Mulry and Wolter’s (1981) work on the correlation coefficient.

3.5. Without Replacement Sampling

Consider the simple linear estimator ȳst discussed in Section 3.2, only now let
us suppose the two units in each stratum are selected by srs wor sampling. The
textbook estimator of Var{ȳst} is now

v(ȳst) =
L∑

h=1

W 2
h (1 − 2/Nh)s2

h/2

=
L∑

h=1

W 2
h (1 − 2/Nh)d2

h/4,
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where (1 − 2/Nh) is the finite-population correction (fpc). The balanced half-
sample estimator vk(ȳst) shown in (3.2.4) is identical to

L∑
h=1

W 2
h d2

h/4

and thus incurs the upward bias

Bias{vk(ȳst)} =
L∑

h=1

W 2
h

1

Nh
S2

h

for the without replacement problem.
It is possible to modify the half-sample replication technique to accommodate

unequal fpc’s and provide an unbiased estimator of Var{ȳst}. McCarthy (1966)
observed that the fpc’s could be taken into account by working with W ∗

h instead
of Wh , where

W ∗
h = Wh

√
1 − 2/Nh .

The α-th half-sample estimator is then defined by

ȳ∗
st,α = ȳst +

L∑
h=1

W ∗
h (δh 1 α yh1 + δh 2 α yh2 − ȳh), (3.5.1)

and the estimator of variance is

v∗
k (ȳst) = 1

k

k∑
α=1

(ȳ∗
st,α − ȳst)

2. (3.5.2)

If the replicates are in full orthogonal balance, then the desirable properties

(i) v∗
k (ȳst) = v(ȳst),

(ii) k−1
k∑

α=1

ȳ∗
st,α = ȳst,

are guaranteed, and v∗
k (ȳst) is an unbiased estimator of Var{ȳst}.

For nonlinear estimators, the modification for without replacement sampling is
straightforward. In the case of the combined ratio estimator

ȳRC = X̄ ȳst/x̄st,

Lee (1972) suggests the half-sample estimators be defined by

ȳ∗
RC,α = X̄ ȳ∗

st,α/x̄∗
st,α,

where ȳ∗
st,α and x̄∗

st,α are defined according to (3.5.1) for the y- and x-variables,
respectively. The variance of ȳRC is then estimated by

v∗
k (ȳRC) =

k∑
α=1

(ȳ∗
RC,α − ȳRC)2/k.
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More generally, let θ̂ = g(ȳst) denote a class of nonlinear estimators, where
g(·) is some real-valued function with continuous second derivatives and ȳst =
(ȳst(1), . . . , ȳst(p)) is a p-vector of stratified sampling means based upon p different
variables. Most of the nonlinear estimators used in applied survey work are of this
form. The α-th half-sample estimator is defined by

θ∗
α = g(ȳ∗

st,α),

ȳ∗
st,α = (ȳ∗

st,α(1), . . . , ȳ∗
st,α(p)),

with corresponding estimator of variance

v∗
k (θ̂ ) = 1

k

k∑
α=1

(θ∗
α − θ̂ )2.

This choice of estimator can be justified using the theory of Taylor series approx-
imations (see Chapter 6).

Thus far we have been assuming srs wor within strata. Now let us suppose a
single-stage sample is selected with unequal probabilities, without replacement,
and with inclusion probabilities πhj = 2phj for all strata h and units j, where
phj > 0 and

∑
j phj = 1. This is a πps sampling design. We consider the Horvitz–

Thompson estimator of the population total Y

Ŷ =
L∑

h=1

Ŷh

=
L∑

h=1

(
yh1

πh1

+ yh2

πh2

)

and the balanced half-sample estimator of variance as originally defined in (3.2.4),

vk(Ŷ ) = 1

k

k∑
α=1

(Ŷα − Ŷ )2,

Ŷα =
L∑

h=1

(
δh1α

2yh1

πh1

+ δh2α

2yh 2

πh 2

)
.

For this problem, vk(Ŷ ) is not an unbiased estimator of Var{Ŷ }. Typically, vk(Ŷ )
tends to be upward biased. The reason is that vk(Ŷ ) estimates the variance as
if the sample were selected with replacement, even though without replacement
sampling is actually used. This issue was treated at length in Section 2.4.5, and here
we restate briefly those results as they relate to the balanced half-sample estimator.
It can be shown that

vk(Ŷ ) =
k∑

α=1

(Ŷα − Ŷ )2/k

=
L∑

h=1

(yh1/ph1 − yh2/ph2)2/4

= v(Ŷwr),
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which is the textbook estimator of variance for pps wr sampling. By Theorem
2.4.6, it follows that

E{vk(Ŷ )} = Var{Ŷ } + 2(Var{Ŷwr} − Var{Ŷ }),
where Var{Ŷwr} is the variance of Ŷwr = ∑L

h=1 2−1(yh1/ph1 + yh2/ph2) in pps wr

sampling. Thus, the bias in vk(Ŷ ) is twice the reduction (or increase) in variance
due to the use of without replacement sampling. In the useful applications of πps
sampling (i.e., applications where πps is more efficient than pps wr), the balanced
half-sample estimator vk(Ŷ ) tends to be upward biased.

If the use of without replacement sampling results in an important reduction in
variance, and if it is desired to reflect this fact in the variance calculations, then
define the modified half-sample estimators

Ŷ ∗
α = Ŷ +

L∑
h=1

(
πh1πh2 − πh12

πh12

)1/2 (
δh1α

2yh1

πh1

+ δh2α

2yh2

πh2

− Ŷh

)
,

where πh12 is the joint inclusion probability in the h-th stratum. In its weighted
form, the rescaled estimator is

Ŷ ∗
α =

L∑
h=1

2∑
i=1

w∗
hi yhi ,

with weights

w∗
hi = whi + �

1/2

h (whiα − whi )

and

�h = πh1πh2 − πh12

πh12

.

The half-sample estimator of variance takes the usual form

v∗
k (Ŷ ) = 1

k

k∑
α=1

(Ŷ ∗
α − Ŷ )2.

And if the half-samples are in full orthogonal balance, then

(i) v∗
k (Ŷ ) =

L∑
h=1

πh1πh2 − πh12

πh12

(
yh1

πh1

− yh1

πh2

)2

(the Yates–Grundy estimator)

and

(ii) k−1
k∑

α=1

Ŷ ∗
α = Ŷ .

Thus, the modified half-sample methods reproduce the Yates–Grundy (or textbook)
estimator.
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For multistage sampling, the estimators of the total are

Ŷ =
L∑

h=1

Ŷh

=
L∑

h=1

(
Ŷh1

πh1

+ Ŷh2

πh2

)
,

Ŷα =
L∑

h=1

(
δh1α

2Ŷh1

πh1

+ δh2α

2Ŷh2

πh2

)

=
L∑

h=1

2∑
i=1

mhi∑
j=1

δhiα2whi j yhi j

=
L∑

h=1

2∑
i=1

mhi∑
j=1

whi jα yhi j , (3.5.3)

where Ŷhi is an estimator of the total of the (h, i)-th selected PSU based on sampling
at the second and subsequent stages. Once again, it can be shown that

vk(Ŷ ) =
k∑

α=1

(Ŷα − Ŷ )2/k

=
L∑

h=1

(Ŷh1/ph1 − Ŷh2/ph2)2/4

= v(Ŷwr),

which is the textbook estimator of variance when pps wr sampling is employed in
the selection of PSUs. By (2.4.16), we see that

Bias{vk(Ŷ )} = 2(Var{Ŷwr} − Var{Ŷ }),
where Var{Ŷwr} is the variance assuming with replacement sampling of PSUs,
and that this bias occurs only in the between PSU component of variance. In
applications where the between variance is a minor part of the total variance, this
bias may be unimportant.

3.6. Partial Balancing

When the number of strata is large, the cost of processing k ≥ L fully balanced
replicates may be unacceptably high. For this case, we may use a set of k partially
balanced half-sample replicates.

A G-order partially balanced design is constructed by dividing the L strata into
G groups with L/G strata in each group. We temporarily assume that L/G is an
integer. A fully balanced set of k half-samples is then specified for the first group,
and this design is repeated in each of the remaining G − 1 groups.
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Table 3.6.1. A Fully Balanced Design for
L = 3 Strata

Stratum (h)

Half-Sample 1 2 3

δ
(1)
h +1 +1 +1

δ
(2)
h −1 +1 −1

δ
(3)
h −1 −1 +1

δ
(4)
h +1 −1 −1

To illustrate, we construct a G = 2-order partially balanced design for L = 6
strata. Table 3.6.1 gives a fully balanced design for L/G = 3 strata. This uses three
columns of a 4 × 4 Hadamard matrix. The partially balanced design for L = 6
strata is given by repeating the set of replicates in the second group of L/G = 3
strata. A demonstration of this is given in Table 3.6.2. Recall that a fully balanced
design for L = 6 strata requires k = 8 replicates. Computational costs are reduced
by using only k = 4 replicates.

The method of construction of partially balanced half-samples leads to the ob-
servation that any two strata are orthogonal (or balanced) provided they belong to
the same group, or belong to different groups but are not corresponding columns
in the two groups. That is,

k∑
α=1

δ
(α)
h δ

(α)
h′ = 0 (3.6.1)

whenever h and h′ are not corresponding strata in different groups. For example,
in Table 3.6.2, strata 1 and 4 are corresponding strata in different groups.

To investigate the efficiency of partially balanced designs, consider the simple
linear estimator ȳst discussed in Section 3.2. The appropriate variance estimator is

vk,pb(ȳst) =
k∑

α=1

(ȳst,α − ȳst)
2/k,

Table 3.6.2. A 2-Order Partially Balanced Design for L = 6 Strata

Stratum (h)

Half-Sample 1 2 3 4 5 6

δ
(1)
h +1 +1 +1 +1 +1 +1

δ
(2)
h −1 +1 −1 −1 +1 −1

δ
(3)
h −1 −1 +1 −1 −1 +1

δ
(4)
h +1 −1 −1 +1 −1 −1
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where the subscript pb denotes partially balanced. By (3.2.2) and (3.6.1), the
variance estimator may be written as

vk,pb(ȳst) = v(ȳst) +
∑
h,h′

†
Wh Wh′dhdh′/2,

where the summation
∑†

h,h′ is over all pairs (h, h′) of strata such that h < h′ and
h and h′ are corresponding strata in different groups. From this expression it is
clear that the variance estimator vk,pb(ȳst) is not identical to the textbook estimator
v(ȳst) because of the presence of cross-stratum terms. Evidently, the number of
such terms, L(G − 1)/2, increases with G.

Thus, while partial balancing offers computational advantages over complete
balancing, its variance estimator cannot reproduce the textbook variance estimator.
The estimator vk,pb(ȳst) is unbiased, however. Because sampling is performed
independently in the various strata, the dh’s are independent random variables. Thus

E{vk,pb(ȳst)} = E{v(ȳst)} = Var{ȳst},
and

Var{vk,pb(ȳst)} = Var{v(ȳst)} +
∑
h,h′

†
W 2

h W 2
h′σ

2
h σ 2

h′ , (3.6.2)

where

σ 2
h =

Nh∑
j=1

(Yhj − Ȳh)2/Nh

is the population variance within the h-th stratum (h = 1, . . . , L). The variance of
the variance estimator has increased because of the presence of the cross-stratum
terms.

We have seen that vk,pb(ȳst) is unbiased but less precise than vk(ȳst), the estimator
based on a fully balanced design. For a given G-order partially balanced design,
the loss in precision depends on the magnitudes of the W 2

h σ 2
h and on the manner in

which the pairs (W 2
h σ 2

h , W 2
h′σ

2
h′ ) are combined as cross-products in the summation∑†

h,h′ . To evaluate the loss in precision more closely, we assume the L strata are
arranged randomly into G groups each of size L/G strata. Let TL be the set of
all permutations on {1, 2, . . . , L}. Then, the variance Var{vk,pb(ȳst)} is equal to the
expectation of (3.6.2) with respect to the random formation of groups:

Var{vk,pb(ȳst)}

= Var{v(ȳst)} + (1/L!)
∑
TL

(∑
h,h′

†
W 2

h W 2
h′σ

2
h σ 2

h′

)

= Var{v(ȳst)} +
L∑ ∑

h<h′
W 2

h W 2
h′σ

2
h σ 2

h′ L(G − 1)(L − 2)!/L!

= Var{v(ȳst)} + [(G − 1)/(L − 1)]
L∑ ∑

h<h′
W 2

h W 2
h′σ

2
h σ 2

h′ .
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For the special case W 2
1 σ 2

1 = . . . = W 2
Lσ 2

L and β1 = . . . = βL = 3 (βh is the mea-
sure of kurtosis in the h-th stratum and βh = 3 is equivalent to a normality as-
sumption), Lee (1972) shows that

Var{vk,pb(ȳst)}/Var{v(ȳst)} = G.

Thus, the loss in precision relative to the fully balanced design may be substantial.
The loss is minimized when G = 2, but this choice of G will result in larger
computational costs than when G > 2.

In an effort to improve the precision of partially balanced designs, Lee (1972,
1973a) has investigated several nonrandom techniques for grouping strata. His
investigations suggest the SAOA (semiascending order arrangement) procedure:

(1) Arrange the L strata in ascending order of magnitude of ah = W 2
h σ 2

h (in
practice, the ah will need to be estimated from a prior survey).

(2) Rearrange the last L/2 (or (L − 1)/2 if L is odd) strata in descending order of
the ah’s.

(3) Divide the L strata arranged in this order into G groups, each of size L/G.

When G is even and the monotonic increasing sequence {ah} is either strictly
convex (i.e., 0 ≤ ah−1 − 2ah + ah+1) or strictly concave (i.e., 0 ≥ ah−1 − 2ah +
ah+1), Lee shows that the AAA (alternate ascending order arrangement) procedure
fares better than the SAOA procedure and is as follows:

(1) Same as step 1 of the SAOA procedure.
(2) Split the L strata arranged in this order into G groups, each of size L/G.
(3) Reverse the order of the L/G strata in each of the second, fourth,

sixth, . . . groups.

Ernst (1979) has proposed the NESA (nearly equal sums arrangement) procedure
for increasing the precision of partially balanced designs:

(1) Arrange the L strata in decreasing order of magnitude of ah = W 2
h σ 2

h (in
practice, the ah will need to be estimated from a prior survey).

(2) Recursively define a one-to-one onto map

g: {1, . . . , L} → {1, . . . , r} × {1, . . . , G},

where r = L/G.
(a) g(1) = (1, 1).
(b) Assume that g(h) is defined for h = 1, . . . , l and denote g1(h) = i if g(h) =

(i, j). The function g1(h) gives the position of stratum h in the group j to
which it has been assigned.

(c) Define H (l, i) = {h: g1(h) = i, h = 1, . . . , l} and let η(l, i) denote the
number of elements in H (l, i), i = 1, . . . , r .
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(d) Define J (l) = {i : η(l, i) < G} and let s be the smallest member of J (l)
satisfying

∑
h∈H (l,s)

ah = inf

{ ∑
h∈H (l,s)

ah : i ∈ J (l)

}
.

(e) g(l + 1) = (s, η(l, s) + 1).
(3) Stratum h is assigned the i-th position in the j-th group, where g(h) = (i, j).

This method aims to equalize the position sums

ti =
G∑

j=1

ag−1(i, j)

as much as possible. At the l-th step, the stratum associated with al is assigned a
position and group number. H (l, i) then denotes the set of strata for which the i-th
position has been assigned, and η(l, i) denotes the number of such strata. At the
(l + 1)-st step, the stratum associated with al+1 is assigned the position, s, with
the smallest sum of the a’s at that point. The method is initialized by assigning
the largest stratum, a1, to the first position, first group. We are unaware of any
empirical comparisons of NESA versus SAOA and AAA. Ernst established an
upper bound on the variance given NESA that can be exceeded by the variance
given SAOA and AAA.

Of course the way in which strata are formed in the first place must necessarily
affect the values of the ah and thus affect the application of the SAOA, AAA,
or NESA procedures. If stratum boundaries are optimized using the cumulative√

f rule of Dalenius (1957) and Dalenius and Hodges (1959), then the values
ah = W 2

h S2
h are approximately equal. In this case the three procedures SAOA,

AAA, NESA are identical, and the loss in precision relative to the fully balanced
design is the same as that experienced with a random formation of groups.

The methods of partial balancing discussed in this section can also be used
to estimate the variance of an arbitrary nonlinear estimator. To apply the SAOA,
AAA, or NESA procedures, however, it is necessary to modify the definition of
ah . For the combined ratio estimator

ȳRC = X̄ ȳst/x̄st,

where X̄ is the known population mean of an auxiliary variable, the appropriate
definition is

ah = W 2
h σ 2

he,

σ 2
he = σ 2

hy + R2σ 2
hx − 2Rσhxy,

R = Ȳ/X̄ .

For a general estimator, θ̂ , of the form

θ̂ = g(ȳst(1), . . . , ȳst(p)),
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Table 3.6.3. A 3-Order Partially Balanced Design for L = 7 Strata

Stratum (h)

Half-Sample 1 2 3 4 5 6 7

δ
(1)
h +1 +1 +1 +1 +1 +1 +1

δ
(2)
h −1 +1 −1 −1 +1 −1 −1

δ
(3)
h −1 −1 +1 −1 −1 +1 −1

δ
(4)
h +1 −1 −1 +1 −1 −1 +1

where ȳst(1), . . . , ȳst(p) are stratified sampling means associated with p different
survey variables, the appropriate definition is

ah = W 2
h σ 2

he,

σ 2
he = eΣhe′,
e = (e1, . . . , ep),

ei = ∂g(x1, . . . , x p)

∂xi

∣∣∣∣
(x1,...,x p)=(Ȳ1...,Ȳp)

,

and Σh is the covariance matrix for a single observation, (yhi1, . . . , yhip), from the
h-th stratum.

Lee (1972, 1973a) discusses suitable modifications to the ah when the sampling
design features multiple stages and unequal selection probabilities.

In the application of the partial balancing method, no additional complexities
are encountered when L/G is not an integer. The solution is merely to employ
unequally sized groups. For example, the case L = 7, G = 3 is presented in Table
3.6.3. Note that the replicate pattern for strata 1, 2, and 3 is repeated for strata 4,
5, and 6, and that the pattern for stratum 1 is repeated a third time for stratum 7.

3.7. Extensions of Half-Sample Replication to the
Case nh �= 2

In the case of multistage surveys of households, stratification is sometimes carried
to the point of selecting only one primary sampling unit (PSU) per stratum. The
estimator of the population total may be expressed by

Ŷ =
L∑
h

Ŷh,

where Ŷh denotes the estimator of the total in stratum h. From (2.5.2) the simple
collapsed stratum estimator of Var{Ȳ } is

vcs(Ŷ ) =
G∑

g=1

(Ŷg1 − Ŷg2)2,
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where G denotes the number of groups and Ŷg j denotes the estimator of the to-
tal in the j-th stratum of the g-th group. The collapsed stratum estimator vcs(Ŷ )
may be reproduced exactly by specifying k balanced half-sample replicates (as in
Section 3.2) and using

vk(Ŷ ) =
k∑

α=1

(Ŷα − Ŷ )2/k,

where

Ŷα =
G∑

g=1

(δg1α2Ŷg1 + δg2α2Ŷg2),

=
G∑

g=1

2∑
i=1

mgi∑
j=1

δgiα2wgi j ygi j

=
G∑

g=1

2∑
i=1

mgi∑
j=1

wgi jα ygi j

δg1α =
⎧⎨
⎩

1, if stratum (g, 1) is selected
into the α-th half-sample,

0, otherwise,

δg2α = 1 − δg1α.

Furthermore,
∑k

α=1 Ŷα/k = Ŷ except when k = G. In this problem, the groups are
treated as the strata for purposes of defining the half-sample replication scheme.
Of course, as was demonstrated in Section 2.5, both vcs(Ŷ ) and vk(Ŷ ) will tend to
overestimate the variance of Ŷ .

Conversely, in sampling economic establishments from a list frame, one fre-
quently selects more than nh = 2 units from some or all of the L strata. Balanced
half-sample replication can be modified to accommodate this situation also. We
first consider some simple ad hoc procedures.

To simplify matters, let nh be a multiple of 2 for h = 1, . . . , L , i.e., nh = 2mh ,
where mh is an integer. We consider once again the linear estimator ȳst =∑L

h=1 Wh ȳh , where ȳh = ∑nh
j=1 yhj/nh . A simple ad hoc procedure is to divide the

units in each stratum into two random groups, letting ȳh1 and ȳh2 denote the sample
means of the mh units in the first and second groups, respectively. Then, we form k
half-sample replicates by operating on the two groups within each stratum instead
of on the individual observations. The estimator for the α-th half-sample is given by

ȳst,α =
L∑

h=1

Wh(δh1α ȳh1 + δh2 ȳh2),

δh1α =
⎧⎨
⎩

1, if group (h, 1) is selected for
the α-th half-sample,

0, otherwise,

δh2α = 1 − δh1α.



P1: OTE/SPH P2: OTE

SVNY318-Wolter December 13, 2006 19:59

130 3. Variance Estimation Based on Balanced Half-Samples

An unbiased estimator of Var{ȳst} is

vk(ȳst) =
k∑

α=1

(ȳst,α − ȳst)
2/k (3.7.1)

and
∑k

α=1 ȳst,α/k = ȳst except when k = L . Contrary to the case of nh = 2, the
estimator in (3.7.1) is not algebraically equivalent to the textbook estimator

v(ȳst) =
L∑

h=1

W 2
h s2

h/nh,

(3.7.2)

s2
h =

nh∑
j=1

(yhj − ȳh)2/(nh − 1),

for this problem. Rather, it can be shown that

vk(ȳst) =
L∑

h=1

W 2
h (ȳh1 − ȳh2)2/4.

This ad hoc procedure “forces” the problem into the basic two-per-stratum
situation discussed in Section 3.2. The procedure is computationally convenient,
but some information is lost relative to the textbook variance estimator.

Another simple ad hoc procedure is to subdivide the h-th stratum into mh artificial
strata, each of sample size two, for h = 1, . . . , L . Now there are H = ∑L

h=1 mh

artificial strata, and we specify a balanced set of half-samples for the expanded set
of strata. Corresponding to the simple linear estimator ȳst , we have half-sample
estimators

ȳst,α =
L∑

h=1

mh∑
i=1

(W ′
h)(δhi1α yhi1 + δhi2α yhi2),

where W ′
h = Wh/mh ,

δhi1α =
⎧⎨
⎩

1, if the first unit in the (h, i)-th artificial
stratum is in the α-th half-sample,

0, otherwise,

δhi2α = 1 − δhi1α.

These estimators satisfy the desirable property
∑k

α=1 ȳst,α/k = ȳst, except when
k = H . The half-sample estimator of variance for this problem is

vk(ȳst) = 1

k

k∑
α=1

(ȳst,α − ȳst)
2,

and this estimator is unbiased for Var{ȳst}. Furthermore, it is identical to

L∑
h=1

mh∑
i=1

(W ′
h)2(yhi1 − yhi2)2/4, (3.7.3)
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which would be the textbook estimator if the H strata were real instead of artificial.
In fact, though, there are only L real strata, and the textbook estimator is given
by (3.7.2). The difference between (3.7.2) and (3.7.3) is that the former estimates
the within stratum mean square S2

h by the full-information estimator s2
h based on

2mh − 1 degrees of freedom, whereas the latter uses the estimator

1

2mh

mh∑
i=1

(yhi1 − yhi2)2

based on only mh degrees of freedom. As was the case for the first ad hoc procedure,
we have “forced” the problem into the basic two-per-stratum context. The resulting
procedure is computationally convenient, but some information is lost. For large
sample sizes, mh , the loss may be unimportant.

In certain cases it is possible to construct “balanced n−1-sample” replication
schemes that exactly reproduce the textbook variance estimators, resulting in no
loss of information. The theory for such schemes was first developed by Borack
(1971).

We consider the simple sampling design and estimator discussed in Section 3.2,
except we now allow nh = n units per stratum, where n is a positive integer greater
than 2. An n−1-sample consists of one unit from each stratum, and there are nL

possible n−1-samples. The estimator from the α-th replicate is

ȳst,α =
L∑

h=1

Wh(δh1α yh1 + δh2α yh2 + . . . + δhnα yhn),

where

δhiα =
⎧⎨
⎩

1, if the (h, i)-th unit is selected into the
α-th replicate,

0, otherwise.

Using all nL possible n−1-samples, it can be shown that

nL∑
α=1

ȳst,α/nL = ȳst

and

1

nL (n − 1)

nL∑
α=1

(ȳst,α − ȳst)
2 = v(ȳst),

thus reproducing the textbook estimators.
Our goal is to produce a small set, k, of the nL n−1-samples wherein reproducibil-

ity of the textbook estimators is maintained. Such a set will be said to be balanced.
The problem of constructing balanced n−1-samples is analogous to the problem
of constructing orthogonal designs in the context of statistical experiments. We
divide the problem into three cases.
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Case 1. Let L = pβ and n = L , where β is a positive integer and p is a positive
prime integer. For this case k = L2 replicates are needed for balancing and are spec-
ified by the cell subscripts of L × L GrecoL−3-Latin square designs. A replication
pattern constructed for this problem can also be employed with sampling designs
involving L∗ ≤ L strata. This case is for unusual sampling designs such as (n, L) =
(3, 3), (3, 2), (4, 4), (4, 3), (4, 2), (5, 5), (5, 4), (5, 3), (5, 2), (7, 7), (7, 6), (7, 5),
and so on. Because such designs are not usually found in practice, we omit the
specific rules needed for constructing the replication patterns. For a comprehensive
discussion of the rules with examples, the reader may see Borack (1971) and the
references contained therein.

Case 2. Let n > L ≥ 2 and n = pβ1

1 pβ2

2 . . . pβr
r , where the βi , are positive inte-

gers and the pi positive prime integers, i = 1, . . . , r . Also let mini (pβi
i ) + 1 ≥ L ,

i.e., the minimum prime power of n is at least L − 1. For this case k = n2 repli-
cates are needed for balancing and are specified by the cell subscripts of n × n
GrecoL−3-Latin square designs. A replication pattern constructed for this prob-
lem can also be employed with sampling designs involving L∗ ≤ L strata. As for
Case 1, this case includes sampling designs that are not usually found in practice;
construction rules and examples may be found in Borack (1971).

Case 3. Let n = p, L = (pβ − 1)/(p − 1), where β is a positive integer
and p is a positive prime integer. For this case, k = pβ replicates are needed
for balancing and are defined by a pβ × L matrix whose elements take the
values 0, 1, . . . , p − 1. A value of 0 in the (α, h)-th cell signifies that unit (h, 1)
is included in the α-replicate. Similarly, values 1, 2, . . . , p − 1 signify units
(h, 2), (h, 3), . . . , (h, p), respectively, for the α-th replicate. The columns of the
matrix are orthogonal modulo p. A set of balanced replicates may also be used for
sampling designs involving L∗ ≤ L strata: one simply uses any L∗ columns of the
pβ × L matrix. If we assume that 200 replicates are an upper bound in practical
survey applications, then the only important practical problems are (p, L , pβ) =
(3, 4, 9), (3, 13, 27), (3, 40, 81), (5, 6, 25), (5, 31, 125), (7, 8, 49), (11, 12, 121),
and (13, 14, 169). This covers all three-per-stratum designs with L = 40 or fewer
strata; five-per-stratum designs with L = 31 or fewer strata; seven-per-stratum
designs with L = 8 or fewer strata; eleven-per-stratum designs with L = 12
or fewer strata; and thirteen-per-stratum designs with L = 14 or fewer strata.
All other permissible problems (p, L , pβ) involve more than 200 replicates.
Generators for the eight practical problems are presented in Table 3.7.1. For a
given problem, use the corresponding column in the table as the first column in the
orthogonal matrix. The other L − 1 columns are generated cyclically according
to the rules

m(i, j + 1) = m(i + 1, j), i < pβ − 1,

m(pβ − 1, j + 1) = m(1, j),

where m(i, j) is the (i, j)-th element of the orthogonal matrix. Finally, a row
of zeros is added at the bottom to complete the pβ × L orthogonal matrix. To
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Table 3.7.1. Generators for Orthogonal Matrices of Order pβ × L

p = 3 p = 3 p = 3 p = 5 p = 5 p = 7 p = 11 p = 13

β = 2 β = 3 β = 4 β = 2 β = 3 β = 2 β = 2 β = 2

L = 4 L = 13 L = 40 L = 6 L = 31 L = 8 L = 12 L = 14

0 0 0 0 0 0 3 1

1 0 1 4 2 1 6 12

2 1 1 1 2 2 4 10

2 0 1 1 2 6 0 12

0 1 1 2 1 2 1 5

2 2 2 1 0 2 1 7

1 1 0 0 4 1 4 10

1 1 1 3 1 6 7 9

2 2 2 1 0 8 2

0 1 2 4 5 7 10

1 1 4 1 3 9 6

1 2 2 3 2 8 12

1 1 0 1 3 2 0

0 2 1 3 3 4 2

0 0 4 4 5 10 2

2 2 4 1 2 0 11

0 0 3 2 0 8 7

2 2 4 0 4 8 11

1 2 0 2 1 10 10

2 1 2 1 3 1 1

2 1 3 1 1 9 7

1 0 3 0 1 1 5

0 2 1 2 4 6 4

2 0 3 4 3 9 7

2 1 4 0 5 12

2 1 3 6 10 11

0 1 5 3 0

0 4 1 0 4

1 0 5 9 4

2 2 5 9 9

2 0 6 3 1

2 0 1 8 9

0 4 0 6 7

2 4 2 8 2

1 4 4 4 1

0 2 5 6 10

0 0 4 7 8

2 3 4 3 1

0 2 2 2 11

0 2 5 0 9

0 3 0 6 0

2 2 3 6 8
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Table 3.7.1. (Cont.)

p = 3 p = 3 p = 3 p = 5 p = 5 p = 7 p = 11 p = 13

β = 2 β = 3 β = 4 β = 2 β = 3 β = 2 β = 2 β = 2

L = 4 L = 13 L = 40 L = 6 L = 31 L = 8 L = 12 L = 14

2 1 6 2 8

2 2 4 9 5

2 1 6 4 2

1 3 6 9 5

0 2 3 10 1

2 4 4 4 4

1 0 1 2

2 4 2 7

2 2 5 3

1 2 0 2

2 0 4 9

1 4 4 5

0 3 5 0

1 3 6 3

0 1 10 3

1 2 6 10

1 3 3 4

2 0 10 10

2 4 8 2

0 0 5 8

1 0 7 4

0 3 0 1

2 3 10 6

2 3 10 4

0 4 7 5

0 0 4 10

2 1 3 0

1 4 4 6

1 4 2 6

1 1 3 7

0 4 9 8

1 2 7 7

2 4 1 4

0 2 0 3

0 1 3 8

1 4 3 2

0 3 1 12

0 0 10 8

3 2 10

4 10 7

4 5 0

0 2 12
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Table 3.7.1. (Cont.)

p = 3 p = 3 p = 3 p = 5 p = 5 p = 7 p = 11 p = 13

β = 2 β = 3 β = 4 β = 2 β = 3 β = 2 β = 2 β = 2

L = 4 L = 13 L = 40 L = 6 L = 31 L = 8 L = 12 L = 14

3 6 12

1 1 1

1 8 3

2 0 1

4 2 8

1 2 6

0 8 3

3 3 4

0 5 11

0 3 3

1 7 7

1 5 1

1 4 0

3 8 11

0 9 11

2 0 2

3 5 6

3 5 2

2 9 3

3 2 12

4 7 6

3 2 8

4 1 9

2 7 6

3 10 1

1 9 2

0 6 0

1 0 9

3 7 9

3 7 4

0 6 12

1 5 4

2 1 6

2 5 11

4 8 12

3 1 3

2 5

0 12

1 2

0 4

0

5

(cont. )
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Table 3.7.1. (Cont.)

p = 3 p = 3 p = 3 p = 5 p = 5 p = 7 p = 11 p = 13

β = 2 β = 3 β = 4 β = 2 β = 3 β = 2 β = 2 β = 2

L = 4 L = 13 L = 40 L = 6 L = 31 L = 8 L = 12 L = 14

5

8

11

8

12

9

11

6

10

11

4

8

0

10

10

3

9

3

11

5

9

12

7

9

8

3

0

7

7

6

5

6

9

10

5

11

1

5

3

6

0

1

Note: L = (pβ − 1)/(p − 1).
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Table 3.7.2. Fully Balanced Replication Scheme for the Case p = 3,
L = 13, β = 3

Stratum

Replicate 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 1 0 1 2 1 1 2 0 1 1 1

2 0 1 0 1 2 1 1 2 0 1 1 1 0

3 1 0 1 2 1 1 2 0 1 1 1 0 0

4 0 1 2 1 1 2 0 1 1 1 0 0 2

5 1 2 1 1 2 0 1 1 1 0 0 2 0

6 2 1 1 2 0 1 1 1 0 0 2 0 2

7 1 1 2 0 1 1 1 0 0 2 0 2 1

8 1 2 0 1 1 1 0 0 2 0 2 1 2

9 2 0 1 1 1 0 0 2 0 2 1 2 2

10 0 1 1 1 0 0 2 0 2 1 2 2 1

11 1 1 1 0 0 2 0 2 1 2 2 1 0

12 1 1 0 0 2 0 2 1 2 2 1 0 2

13 1 0 0 2 0 2 1 2 2 1 0 2 2

14 0 0 2 0 2 1 2 2 1 0 2 2 2

15 0 2 0 2 1 2 2 1 0 2 2 2 0

16 2 0 2 1 2 2 1 0 2 2 2 0 0

17 0 2 1 2 2 1 0 2 2 2 0 0 1

18 2 1 2 2 1 0 2 2 2 0 0 1 0

19 1 2 2 1 0 2 2 2 0 0 1 0 1

20 2 2 1 0 2 2 2 0 0 1 0 1 2

21 2 1 0 2 2 2 0 0 1 0 1 2 1

22 1 0 2 2 2 0 0 1 0 1 2 1 1

23 0 2 2 2 0 0 1 0 1 2 1 1 2

24 2 2 2 0 0 1 0 1 2 1 1 2 0

25 2 2 0 0 1 0 1 2 1 1 2 0 1

26 2 0 0 1 0 1 2 1 1 2 0 1 1

27 0 0 0 0 0 0 0 0 0 0 0 0 0

illustrate the construction process, Table 3.7.2 gives the entire orthogonal matrix
for the problem (p, L , pβ) = (3, 13, 27). Generators such as those presented in
Table 3.7.1 are defined on the basis of the Galois field GF(pβ). A general discussion
of such generators is given in Gurney and Jewett (1975), as is the example GF(35).

The n−1-sample replication estimator of Var{ȳst} is given by

vk(ȳst) =
k∑

α=1

(ȳst,α − ȳst)
2/k(n − 1).

When the replicates are balanced, the two desirable properties

(1)
1

k

k∑
α=1

ȳst,α = ȳst,

(2) vk(ȳst) = v(ȳst),
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are guaranteed. In the case of an arbitrary nonlinear estimator θ̂ of some population
parameter θ , the n−1-sample replication estimator of Var{θ̂} is

vk(θ̂ ) =
k∑
α

(θ̂α − θ̂ )2/k(n − 1),

where θ̂α is the estimator computed from the α-th replicate.
The methods of n−1-sample replication discussed here are also compatible with

multistage survey designs, unequal selection probabilities, and the concept of par-
tial balancing. See Dippo, Fay, and Morgenstein (1984) for an example of 3−1-
sample replication applied to the U.S. Occupational Changes in a Generation
Survey.

3.8. Miscellaneous Developments

For multistage, stratified sampling designs, the standard full-sample and half-
sample estimators of the population total are given by

Ŷ =
L∑

h=1

2∑
i=1

mhi∑
j=1

whi j yhi j

and

Ŷα =
L∑

h=1

2∑
i=1

mhi∑
j=1

whi jα yhi j .

Strict principles dictate that any nonresponse adjustment incorporated in the full-
sample weights should be computed separately within each set of replicate weights.
Imputation, if any, should also be executed separately within each half-sample.
Following these principles, the balanced half-sample estimator of variance will
properly reflect an allowance for the increase in variance due to nonresponse. As
in Section 2.8, however, a computational advantage can be gained by calculating
any weight adjustments and imputations only once for the full sample and apply-
ing them repeatedly for each half-sample replicate. For many modern large-scale
surveys, this shortcut procedure gives highly satisfactory variance estimates.

Thus far we have discussed balanced half-sample (or n−1-sample) replication
as a method for variance estimation in the context of descriptive surveys. Such
replication has also proved to be useful in many analytical surveys.

Koch and Lemeshow (1972) describe an application of balanced half-sample
replication in the comparison of domain means in the U.S. Health Examination
Survey. In this work, domain means are assumed, at least approximately, to follow
a multivariate normal law. Both univariate and multivariate tests are presented
wherein a replication estimate of the covariance matrix is employed.

Freeman (1975) presents an empirical investigation of balanced half-sample
estimates of covariance matrices. The effects of such estimates on the weighted
least squares analysis of categorical data are studied.
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Also, see Koch, Freeman, and Freeman (1975) for a discussion of replication
methods in the context of univariate and multivariate comparisons among cross-
classified domains.

Chapman (1966), and later Nathan (1973), presented an approximate test for
independence in contingency tables wherein balanced half-sample replication es-
timates of the covariance matrices were employed.

Nonparametric uses of balanced half-sample replication were first suggested
by McCarthy (1966, 1969a, 1969b). A sign test based on the quantities ȳst,α was
presented, where the y-variable represented the difference between two other vari-
ables, say x and z.

Bean (1975), using data from the 1969 U.S. Health Interview Survey (HIS),
studied the empirical behavior of poststratified means. Balanced half-sample esti-
mates of variance were used in defining standardized deviates. The results showed
that such standardized means agree well with the normal distribution for a variety
of HIS variables and thus that replication estimates of variance can be used for
making inferential statements.

Finally, Efron (1982) studied the balanced half-sample estimators along with
other “resampling” estimators in an essentially analytical context. Some examples
and simulations involving small samples are given.

3.9. Example: Southern Railway System

This example, due to Tepping (1976), is concerned with a survey of freight ship-
ments carried by the Southern Railway System (SRS). The main objective of
this survey was to estimate various revenue-cost relationships. Such relationships
were to be used in an Interstate Commerce Commission hearing wherein SRS
was objecting to the accounting methods used to allocate revenues between SRS
and Seaboard Coast Line Railroad (SCL). Apparently, total railroad revenues are
divided among the various rail carriers involved with a particular shipment accord-
ing to a prespecified allocation formula. In this case SRS was claiming that the
allocation formulae involving SRS and SCL were out of balance, favoring SCL.

The sample was selected from a file containing 44,523 records, each record
representing a shipment carried by SRS in 1975. The records were ordered by a car-
type code, and within each code according to an approximate cost-to-revenue ratio
for the shipment. The sequence was ascending and descending in alternate car-type
classes. In this ordering of the file, each set of 100 successive cars was designated
a sampling stratum. Because the file of 44,523 shipments involved 44,582 cars,
446 sampling strata resulted (18 “dummy” cars were added to the final stratum in
order to provide 100 cars in that stratum). The difference 44, 582 − 44, 523 = 59
apparently represents large shipments that required more than one car.

Within each stratum, a simple random sample of two cars was selected. The
basic data obtained for the selected cars were actual costs and actual revenues of
various kinds. Secondary data items included actual ton-mileage.
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Table 3.9.1. Designation of Half-Sample Replicates

Stratum Group

Replicate 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

3 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1

4 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1

5 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1

6 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1

7 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

8 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

9 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

10 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1

11 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1

12 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1

13 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1

14 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1

15 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1

16 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1

Estimates of variance were computed for the most important survey estimates
via the balanced half-sample replication technique. Since 448 (smallest multiple
of 4 larger than L = 446) replicates would have been needed for a fully balanced
design, a partially balanced scheme involving only 16 replicates was chosen. This
scheme results in great cost and computational savings relative to the fully balanced
scheme.

The 16 replicates were constructed by dividing the 446 strata into 14 groups
of 32 strata each (the last group contained 30 strata). Within each group, one of
the two sample cars in each stratum was selected at random and designated as
the first “unit” for the group; the remaining cars were designated as the second
“unit.” Then, a half-sample replicate consisted of one “unit” from each of the
14 groups. A balanced set of k = 16 such replicates was specified according to
the pattern in Table 3.9.1. The reader will note that this method of grouping and
balancing is equivalent to the method of partial balancing discussed in Section 3.6;
i.e., repeating the 16 × 14 replication pattern 32 times and omitting the final two
columns, where G = 32 and L/G = 14 or 13.

To illustrate the variance computations, we consider inference for three different
survey parameters: a total, a ratio, and a difference of ratios. Table 3.9.2 displays
the replicate estimates of the total cost and of the revenue/cost ratio for SCL and
SRS. The weighted or Horvitz-Thompson estimator, which is linear, was used
in estimating both total cost and total revenue, while the revenue/cost ratio was
estimated by the ratio of the total estimators. For example, letting the variable y
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Table 3.9.2. Replicate Estimates of Cost and
Revenue/Cost Ratios, 1975

Replicate Estimates
Replicate

No. (α) Total Cost Revenue/Cost Ratio

a. SCL

1 11,689,909 1.54

2 12,138,136 1.53

3 11,787,835 1.55

4 11,928,088 1.53

5 11,732,072 1.55

6 11,512,783 1.56

7 11,796,974 1.53

8 11,629,103 1.56

9 11,730,941 1.54

10 11,934,904 1.54

11 11,718,309 1.57

12 11,768,538 1.55

13 11,830,534 1.55

14 11,594,309 1.57

15 11,784,878 1.54

16 11,754,311 1.59

b. SRS

1 11,366,520 1.07

2 11,694,053 1.06

3 11,589,783 1.07

4 11,596,152 1.06

5 11,712,123 1.07

6 11,533,638 1.06

7 11,628,764 1.05

8 11,334,279 1.08

9 11,675,569 1.07

10 11,648,330 1.08

11 11,925,708 1.07

12 11,758,457 1.07

13 11,579,382 1.09

14 11,724,209 1.07

15 11,522,899 1.08

16 11,732,878 1.07

denote cost, the estimators of total cost are

Ŷ =
446∑
h=1

100(yh1 + yh2)/2,

Ŷα =
446∑
h=1

100(δh1α yh1 + δh2α yh2).
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The computations associated with variance estimation are presented in Table
3.9.3.

Table 3.9.3. Overall Estimates of Cost, Revenue/Cost Ratios, Differences in
Revenue/Cost Ratios, and Associated Variance Estimates, 1975

The estimated total cost and total revenue for SCL are

ŶSCL = 11, 758, 070

and

X̂SCL = 18, 266, 375,

respectively. The revenue/cost ratio for SCL is

R̂SCL = X̂SCL/ŶSCL = 1.554.

The analogous figures for SRS are

ŶSRS = 11, 628, 627,

X̂SRS = 12, 414, 633,

R̂SRS = 1.068,

and the difference in revenue/cost ratios is estimated by

D̂ = R̂SCL − R̂SRS = 0.486.

Associated standard errors are estimated by the half-sample replication method as follows:

se(ŶSCL) = [vk(ŶSCL)]1/2 =
[

16∑
α=1

(Ŷα − ŶSCL)2

/
16

]1/2

= 142, 385,

se(R̂SCL) = [vk(R̂SCL)]1/2 =
[

16∑
α=1

(R̂α − R̂SCL)2

/
16

]1/2

= 0.016,

se(D̂) = [vk(D̂)]1/2 =
[

16∑
α=1

(D̂α − D̂)2

/
16

]1/2

= 0.017.

Observe that

ˆ̄Y SCL =
16∑

α=1

Ŷα/16 = 11, 770, 726.5

�= ŶSCL

because the first column in the replication pattern contains all ones; i.e.,
∑16

α=1 δ
(α)
1 �= 0.

This is also true of the other linear estimators (and of course for the nonlinear estimators as

well). Equality of ˆ̄Y SCL and ŶSCL, and of other linear estimators, could have been obtained

by using any 14 columns of an order 16 Hadamard matrix, except the column consisting of

all +l’s or all −l’s.
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3.10. Example: The Health Examination Survey,
Cycle II

The Health Examination Survey (HES), Cycle II was a large, multistage sur-
vey conducted by the U.S. National Center for Health Statistics to obtain in-
formation about the health status of the civilian, noninstitutional population of
the United States. It operated between July 1963 and December 1965 and was
concerned with children ages 6–11 years inclusive. Through direct medical and
dental examinations and various tests and measurements, the survey gathered
data on various parameters of growth and development; heart disease; congen-
ital abnormalities; ear, nose, and throat diseases; and neuro-musculo-skeletal
abnormalities.

The sample for HES, Cycle II consisted of approximately 7417 children selected
in three fundamental stages.

Stage 1. The first fundamental stage of sampling was accomplished in two steps.
First, the 3103 counties and independent cities that comprise the total land area
of the United States were combined into 1891 primary sampling units (PSUs).
These were the same PSUs used by the U.S. Bureau of the Census for the Current
Population Survey (CPS) and for the Health Interview Survey (HIS). See Hanson
(1978). The PSUs were then clustered into 357 so-called first-stage units (FSUs),
where an FSU was actually a complete stratum of PSUs in the HIS or CPS design.
Now, the FSUs were divided into 40 strata, there being ten population density strata
within each of four geographic regions. Seven of the strata were designated self-
representing. From each of the remaining 33 strata, one FSU was selected with
probability proportional to the 1960 census population. This was accomplished
using a controlled selection sampling scheme (see Goodman and Kish (1950)),
where the “control classes” consisted of four rate-of-population-change classes
and several state groups. Second, from each of the 40 selected FSUs, one PSU
was selected with probability proportional to its 1960 census population. This
was accomplished simply by taking the HIS PSU selected from the FSU (or HIS
stratum) into the HES sample.

Stage 2. In the second fundamental stage of sampling, each selected PSU was
divided into mutually exclusive segments, where, with few exceptions, a segment
was to contain about 11 children in the target population. Several kinds of seg-
ments were used in this work. In the case of housing units that were listed in
the 1960 census with a usable address, the segments were clusters of the corre-
sponding addresses, whereas in other cases, such as housing units built since the
1960 census in an area not issuing building permits, the segments were defined
in terms of areas of land (such as a city block). In the sequel we make no dis-
tinction between the kinds of segments because they are treated identically for
purposes of estimation. A sample of the segments was selected in what amounted
to two separate stages. First, a sample of about 20 to 30 Enumeration Districts
(1960 census definition) was selected within each PSU using unequal probability
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systematic sampling. The probabilities were proportional to the number of children
aged 5 to 9 in the 1960 census (or aged 6 to 11 at the time of the survey). Second,
a simple random sample of one segment was selected within each Enumeration
District.

Stage 3. In the third fundamental stage, a list was prepared of all eligible chil-
dren living within the selected segments of each selected PSU. The list was pre-
pared by enumerating via personal visit each housing unit within the segments
selected in Stage 2. Table 3.10.1 gives some results from these screening inter-
views, including the number of eligible children listed. Then, the list of eligible
children was subsampled to give approximately 190 to 200 children per PSU for
the HES examination. The subsampling scheme was equal probability systematic
sampling.

The HES, Cycle II estimation procedure consisted of the following features: (1)
The basic estimator of a population total was the Horvitz–Thompson estimator,
where the “weight” attached to a sample child was the reciprocal of its inclusion
probability (taking account of all three stages of sampling). (2) The basic weight
was adjusted to account for nonresponse. Weight adjustments were performed
separately within 12 age-sex classes within each sample PSU. (3) Finally, a post-
stratified ratio adjustment was performed using independent population totals in
24 age-sex-race classes.

Thus, the estimator Ŷ of a population total Y was of the form

Ŷ =
24∑

g=1

R̂g

40∑
h=1

12∑
j=1

s∑
k=1

nghi jk∑
l=1

W1·hi W2·hik W3·hiklahi j yghi jkl , (3.10.1)

where

yghi jkl = value of y-characteristic for l-th sample person in the k-th segment,
j-th age-sex class, i-th PSU, h-th stratum, and g-th age-sex-race
class,

W1·hi = first-stage weight (reciprocal of probability of selecting the
PSU),

W2·hik = second-stage weight (reciprocal of probability of selecting the seg-
ment, given the PSU),

W3·hikl = third-stage weight (reciprocal of probability of selecting the child,
given the PSU and segment),

ahi j = weight adjustment factor in the j-th age-sex class, i-th PSU, and h-th
stratum, �( j)W1·hi W2·hik W3·hikl/�1( j)W1·hi W2·hik W3·hikl , where �( j)

denotes summation over all selected children in the (h, i, j)-th adjust-
ment class and �1( j) denotes summation only over the respondents
therein,
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Table 3.10.1. Numbers of Segments, Interviewed Housing
Units, and Eligible Children in the Sample by PSU

Interviewed Eligible

PSU Segments Housing Units Children

1 28 630 200

2 25 475 246

3 26 638 248

4 23 602 218

5 25 600 230

6 25 459 206

7 31 505 240

8 26 451 240

9 22 410 248

10 20 727 147

11 24 777 201

12 24 694 138

13 24 546 246

14 23 459 196

15 22 539 193

16 22 882 220

17 23 689 195

18 23 395 241

19 24 727 226

20 24 423 252

21 21 379 218

22 21 495 234

23 37 690 301

24 23 451 160

25 20 434 221

26 25 408 188

27 22 338 186

28 22 267 179

29 25 528 239

30 23 421 149

31 24 450 216

32 24 506 250

33 25 650 260

34 20 422 239

35 23 680 231

36 24 492 218

37 22 596 222

38 26 616 228

39 22 545 163

40 21 397 156

Source: Bryant, Baird, and Miller (1973).
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R̂g = ratio of total U.S. noninstitutional population in the g-th age-sex-race
class according to 1964 independent population figures (produced by
the U.S. Bureau of the Census) to the sample estimate of the same
population.

In discussing the estimation of variance for HES, Cycle II, we will only con-
sider the total design variance of an estimator and not the between or within
components of variance. Variances were estimated using the balanced half-sample
method.

Since only one PSU was selected from each stratum, it was necessary to col-
lapse the strata into 20 stratum pairs or pseudostrata and to employ the half-sample
methodology as outlined in Section 3.7. Pairing was on the basis of several charac-
teristics of the original strata, including population density, geographic region, rate
of growth, industry, and size. Both original strata and pseudostrata are displayed
in Table 3.10.2.

To estimate the total variance, it was necessary to account for the variability due
to subsampling within the self-representing PSUs. In HES, Cycle II this was accom-
plished by first pairing two self-representing strata and then randomly assigning all
selected segments in the pair to one of two random groups. Thus, a given random
group includes a random part of each of two original self-representing strata. For
example, Chicago and Detroit are paired together and the two resulting random
groups, 02A and 02B, are each comprised of segments from each of the original
two strata. The half-sample methodology to be discussed will treat the two random
groups within a pair of self-representing strata as the two “units” within the stra-
tum. This procedure properly includes the variability due to sampling within the
self-representing strata, while not including (improperly) any variability between
self-representing strata.

Before proceeding, two remarks are in order. First, the nonself-representing
PSU of Baltimore was paired with the self-representing PSU of Philadelphia, and
two random groups were formed in the manner just described for self-representing
PSUs. It is easy to show, using the development in Sections 3.2 and 3.3, that this
procedure has the effect of omitting the between component of variance associated
with the Baltimore PSU. Baltimore’s within component of variance is properly
included, as is the total variance associated with the Philadelphia PSU. Of course,
Philadelphia does not have a between component of variance because it is self-
representing. Thus the variance estimators presented here are downward biased by
the omission of Baltimore’s between component.

The second remark concerns a bias that acts in the opposite direction. Recall
that the collapsed stratum technique customarily gives an overestimate of the total
sampling variance for the case where one PSU is selected independently within
each stratum. In HES, Cycle II, moreover, a dependency exists between the strata
due to the controlled selection of PSUs. Although the statistical properties of the
collapsed stratum estimator are not fully known in this situation, it is believed that
an upward bias still results (based on the premise that a controlled selection of
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Table 3.10.2. Collapsing Pattern of Strata for Replication Purposes

Pseudo- 1960 Census

stratum Population

PSU Location PSU No. No. Region of Stratum

Boston, Mass. 5 01 NE 4,994,736

Newark, N.J. 37 01 NE 4,183,250

Jersey City, N.J. 38 02 NE 3,759,760

Allentown, Pa. 35 02 NE 3,768,466

Columbia–Dutchess, N.Y. 3 03 NE 4,271,826

(Poughkeepsie, N.Y.)

Hartford–Tolland, Conn. 36 03 NE 4,843,253

(Manchester and Bristol,

Conn.)

Columbia, S.C. 40 04 S 3,776,544

Charleston, S.C. 9 04 S 3,961,447

Crittenden–Poinsett 27 05 S 4,961,779

(Marked Tree, Ark.)

Sussex (Georgetown, Del.) 39 05 S 4,622,338

Bell–Knox–Whitley, Ky. 25 06 S 4,973,857

(Barbourville)

Breathitt-Lee, Ky. 34 06 S 4,415,267

(West Liberty

and Beattyville)

Cleveland, Ohio 33 07 NC 3,856,698

Minneapolis–St. Paul, Minn. 20 07 NC 5,155,715

Lapeer–St. Clair, Mich. 32 08 NC 4,507,428

(Lapeer and Marysville)

Ashtabula–Geauga, Ohio 2 08 NC 4,156,090

San Francisco, Calif. 14 09 W 3,890,572

Denver, Colo. 6 09 W 4,899,898

Prowers, Colo. (Lamar) 8 10 W 5,519,588

Mariposa, Calif. 16 10 W 5,115,227

Atlanta, Ga. 13 11 S 4,318,307

Houston, Tex. 29 11 S 3,587,125

Des Moines, Iowa 24 12 NC 4,895,507

Wichita, Kans. 26 12 NC 5,047,027

Birmingham, Ala. 30 13 S 3,472,118

Grand Rapids, Mich. 21 13 NC 4,799,314

Clark, Wis. (Neillsville) 22 14 NC 4,384,792

Grant, Wash. (Moses Lake) 18 14 W 5,207,020

Portland, Maine 1 15 NE 3,759,516

Mahaska–Wapello, Iowa 4 15 NC 4,570,419

(Ottumwa)

De Soto–Sarasota, Fla. 11 16 S 4,739,463

(Sarasota)
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Table 3.10.2. (Cont.)

Pseudo- 1960 Census

stratum Population

PSU Location PSU No. No. Region of Stratum

Brownsville, Tex. 28 16 S 4,841,990

(Brownsville)

Philadelphia, Pa., and 7 01A, 01B NE 4,342,897

Baltimore, Md. 15 01A, 01B S 3,728,920

Chicago, Ill., and 23 02A, 02B NC 6,794,461

Detroit, Mich. 31 02A, 02B NC 3,762,360

Los Angeles, Calif. 10 03A, 03B W 6,742,696

12 03A, 03B

New York, N.Y. 17 04A, 04B NE 10,694,633

19 04A, 04B

Source: Bryant, Baird, and Miller (1973).

PSUs is at least as efficient as an independent selection of PSUs for estimating
the principal characteristics of the survey). Thus, certain components of bias act
in the upward direction, while others act in the downward direction. The net bias
of the variance estimators is an open question.

Having defined the 20 pseudostrata, a set of k = 20 balanced half-samples
was specified, each consisting of one PSU from each pseudostratum. To estimate
the variance of a statistic computed from the parent sample, the estimate was
calculated individually for each of the 20 half-samples. In computing the half-
sample estimates, the original principles of half-sample replication were adhered
to in the sense that the poststratification ratios, R̂g , were computed separately for
each half-sample. Also, the weighting adjustments for nonresponse were calculated
separately for each half-sample.

To illustrate the variance computations, we consider the characteristic “number
of upper-arch permanent teeth among 8-year-old boys in which the annual family
income is between $5000 and $6999.” The population mean of this characteristic
as estimated from the parent sample was θ̂ = 5.17; the 20 half-sample estimates of
the population mean are presented in Table 3.10.3. The estimator θ̂ was the ratio
of two estimators (3.10.1) of total: total number of upper arch permanent teeth
among 8-year-old boys in which the annual family income is between $5000 and
$6999 divided by the total number of such boys. The variance of θ̂ was estimated
using the methods discussed in Section 3.4:

vk(θ̂ ) = (1/20)
20∑

α=1

(θ̂α − θ̂ )2

= 0.008545.
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Table 3.10.3. Half-Sample Replicate Estimates
of Mean Number of Upper-Arch Permanent
Teeth for 8-Year-Old Boys with Family Income
of $5000–$6999

Replicate Replicate

Number θ̂α Number θ̂α

1 5.1029 11 5.1899

2 5.0685 12 5.0066

3 5.1964 13 5.2291

4 5.2701 14 5.2074

5 5.1602 15 5.0424

6 5.2353 16 5.0260

7 5.1779 17 5.2465

8 5.2547 18 5.3713

9 5.1619 19 5.1005

10 5.1116 20 5.0737

Source: Bryant, Baird, and Miller (1973).

Further examples of HES, Cycle II estimates, and their estimated standard errors
are given in Table 3.10.4. For example, consider the characteristic “systolic blood
pressure of white females age 6–7 years living in an SMSA with an annual family

Table 3.10.4. Average Systolic Blood Pressure of White Females by Age,
Income, and Residence. Means, Standard Errors, and Sample Sizes

SMSA Non-SMSA

$5K– $5K–

Age Class <$5K $10K >$10K <$5K $10K >$10K Total

Total 110.3 111.0 110.9 110.6 109.9 110.2 110.6

0.77 0.54 0.82 0.80 0.37 0.80 0.35

384 923 390 513 456 132 2798

6–7 yr. old 107.1 107.5 107.0 107.5 105.7 106.7 107.0

0.82 0.74 1.19 0.61 0.50 0.89 0.42

121 336 108 175 155 35 930

8–9 yr. old 110.4 111.0 111.4 110.6 110.4 109.4 110.7

1.08 0.84 1.03 0.98 1.25 0.82 0.50

140 289 137 165 154 53 938

10–11 yr. old 113.6 115.1 113.9 114.0 114.0 114.1 114.3

1.05 0.59 0.88 1.01 0.73 1.72 0.39

123 298 145 173 147 44 930

Source: Brock, D. B., personal communication, 1977.
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income of $5000–$10,000.” The mean of this characteristic as estimated from the
parent sample was θ̂ = 107.5. The estimated standard error of θ̂ , as given by the
half-sample method, was 0.74. There were 336 sample individuals in this particular
race-age-sex-residence-income class.
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CHAPTER 4

The Jackknife Method

4.1. Introduction

In Chapters 2 and 3, we discussed variance estimating techniques based on random
groups and balanced half-samples. Both of these methods are members of the class
of variance estimators that employ the ideas of subsample replication. Another
subsample replication technique, called the jackknife, has also been suggested as
a broadly useful method of variance estimation. As in the case of the two previous
methods, the jackknife derives estimates of the parameter of interest from each
of several subsamples of the parent sample and then estimates the variance of the
parent sample estimator from the variability between the subsample estimates.

Quenouille (1949) originally introduced the jackknife as a method of reduc-
ing the bias of an estimator of a serial correlation coefficient. In a 1956 paper,
Quenouille generalized the technique and explored its general bias reduction prop-
erties in an infinite-population context. In an abstract, Tukey (1958) suggested that
the individual subsample estimators might reasonably be regarded as independent
and identically distributed random variables, which in turn suggests a very simple
estimator of variance and an approximate t statistic for testing and interval esti-
mation. Use of the jackknife in finite-population estimation appears to have been
considered first by Durbin (1959), who studied its use in ratio estimation. In the
ensuing years, a great number of investigations of the properties of the jackknife
have been published. The reference list contains many of the important papers, but
it is by no means complete. A comprehensive bibliography to 1974 is given by
Miller (1974a). Extensive discussion of the jackknife method is given in Brillinger
(1964), Gray and Schucany (1972), and in a recent monograph by Efron (1982).

Research on the jackknife method has proceeded along two distinct lines: (1) its
use in bias reduction and (2) its use for variance estimation. Much of the work has
dealt with estimation problems in the infinite population. In this chapter, we do not

151
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present a complete account of jackknife methodology. Our primary focus will be
on variance estimation problems in the finite population. We shall, however, follow
the historical development of the jackknife method and introduce the estimators
using the infinite-population model.

4.2. Some Basic Infinite-Population Methodology

In this section, we review briefly the jackknife method as it applies to the
infinite-population model. For additional details, the reader should see Gray and
Schucany (1972) or Efron (1982). Discussion of jackknife applications to the
finite-population model is deferred until Section 4.3.

4.2.1. Definitions

In this section, we consider Quenouille’s original estimator and discuss some of
its properties. We also study the variance estimator and approximate t statistic
proposed by Tukey.

We let Y1, . . . , Yn be independent, identically distributed random variables with
distribution function F(y). An estimator θ̂ of some parameter of interest θ is com-
puted from the full sample. We partition the complete sample into k groups of m ob-
servations each, assuming (for convenience) that n, m and k are all integers and n =
mk. Let θ̂(α) be the estimator of the same functional form as θ̂ , but computed from
the reduced sample of size m(k − 1) obtained by omitting theα-th group, and define

θ̂α = kθ̂ − (k − 1)θ̂(α). (4.2.1)

Quenouille’s estimator is the mean of the θ̂α ,

ˆ̄θ =
k∑

α=1

θ̂α/k, (4.2.2)

and the θ̂α are called “pseudovalues.”
Quenouille’s estimator has the property that it removes the order 1/n term from

a bias of the form

E{θ̂} = θ + a1(θ )/n + a2(θ )/n2 + . . . ,

where a1(·), a2(·), . . . are functions of θ but not of n. This is easily seen by noting
that

E{θ̂(α)} = θ + a1(θ )/m(k − 1) + a2(θ )/(m(k − 1))2 + . . .

and that

E{ ˆ̄θ} = k[θ + a1(θ )/mk + a2(θ )/(mk)2 + . . .]

− (k − 1)[θ + a1(θ )/m(k − 1) + a1(θ )/(m(k − 1))2 + . . .]

= θ − a2(θ )/m2k(k − 1) + . . . .
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In addition, the estimator ˆ̄θ annihilates the bias for estimators θ̂ that are quadratic
functionals. Let θ = θ (F) be a functional statistic and let θ̂ = θ (F̂), where F̂ is
the empirical distribution function. If θ̂ is a quadratic functional

θ̂ = μ(n) + 1

n

n∑
i=1

α(n)(Yi ) + 1

n2

∑n∑
i< j

β (n)(Yi , Y j )

(i.e., θ̂ can be expressed in a form that involves the Yi zero, one, and two at a time

only), then ˆ̄θ is an unbiased estimator of θ ,

E{ ˆ̄θ} = θ.

See Efron and Stein (1981) and Efron (1982). We shall return to the bias reducing
properties of the jackknife later in this section.

Following Tukey’s suggestion, let us treat the pseudovalues θ̂α as approximately
independent and identically distributed random variables. Let θ̂(·) denote the mean
of the k values θ̂(α). The jackknife estimator of variance is then

v1( ˆ̄θ ) = 1

k(k − 1)

k∑
α=1

(θ̂α − ˆ̄θ )2 (4.2.3)

= (k − 1)

k

k∑
α=1

(θ̂(α) − θ̂(·))2,

and the statistic

t̂ =
√

k( ˆ̄θ − θ ){
1

k − 1

k∑
α=1

(θ̂α − ˆ̄θ )2

}1/2
(4.2.4)

should be distributed approximately as Student’s t with k − 1 degrees of freedom.

In practice, v1( ˆ̄θ ) has been used to estimate the variance not only of Quenouille’s

estimator ˆ̄θ but also of θ̂ . Alternatively, we may use the estimator

v2( ˆ̄θ ) = 1

k(k − 1)

k∑
α=1

(θ̂α − θ̂ )2. (4.2.5)

This latter form is considered a conservative estimator since

v2( ˆ̄θ ) = v1( ˆ̄θ ) + (θ̂ − ˆ̄θ )2/(k − 1),

and the last term on the right-hand side is guaranteed nonnegative.
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4.2.2. Some Properties of the Jackknife Method

A considerable body of theory is now available to substantiate Tukey’s conjectures
about the properties of the jackknife method, and we now review some of the
important results.

Many important parameters are expressible as θ = g(μ), where μ denotes the
common mean E{Yi } = μ. Although

Ȳ = n−1
n∑

j=1

Y j

is an unbiased estimator ofμ, θ̂ = g(Ȳ ) is generally a biased estimator of θ = g(μ).
Quenouille’s estimator for this problem is

ˆ̄θ = kg(Ȳ ) − (k − 1)k−1
k∑

α=1

g(Ȳ(α)),

where Ȳ(α) denotes the sample mean of the m(k − 1) observations after omitting

the α-th group. Theorem 4.2.1 establishes some asymptotic properties for ˆ̄θ .

Theorem 4.2.1. Let {Y j } be a sequence of independent, identically distributed
random variables with mean μ and variance 0 < σ 2 < ∞. Let g(·) be a func-
tion defined on the real line that, in a neighborhood of μ, has bounded second
derivatives. Then, as k → ∞, k1/2( ˆ̄θ − θ ) converges in distribution to a normal
random variable with mean zero and variance σ 2{g′(μ)}2, where g′(μ) is the first
derivative of g(·) evaluated at μ.

Proof. See Miller (1964). �

Theorem 4.2.2. Let {Y j } be a sequence of independent, identically distributed
random variables as in Theorem 4.2.1. Let g(·) be a real-valued function with
continuous first derivative in a neighborhood of μ. Then, as k → ∞,

kv1( ˆ̄θ )
p−→ σ 2{g′(μ)}2.

Proof. See Miller (1964). �

Taken together, Theorems 4.2.1 and 4.2.2 prove that the statistic t̂ is asymptoti-
cally distributed as a standard normal random variable. Thus, the jackknife method-
ology is correct, at least asymptotically, for parameters of the form θ = g(μ).

These results do not apply immediately to statistics such as

s2 = (n − 1)−1
n∑

j=1

(Y j − Ȳ )2 or log(s2)
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since they are not of the form g(Ȳ ). In a second paper, Miller (1968) showed that
when the observations have bounded fourth moments and θ = log(s2), t̂ converges

in distribution to a standard normal random variable as k → ∞ . In this case, ˆ̄θ is
defined by

ˆ̄θ = k log(s2) − (k − 1)k−1
k∑

α=1

log(s2
(α))

and s2
(α) is the sample variance after omitting the m observations in the α-th group.

Miller’s results generalize to U -statistics and functions of vector U -statistics.
Let f (Y1, Y2, . . . , Yr ) be a statistic symmetrically defined in its arguments with
r ≤ n,

E{ f (Y1, Y2, . . . , Yr )} = η,

and

E{( f (Y1, Y2, . . . , Yr ))2} < ∞.

Define the U -statistic

Un = U (Y1, . . . , Yn) = 1(n

r

) ∑
f (Yi1

, . . . , Yir ), (4.2.6)

where the summation is over all combinations of r variables Yi1
, . . . , Yir out of the

full sample of n. The following theorems demonstrate the applicability of jackknife
methods to such statistics.

Theorem 4.2.3. Let φ be a real-valued function with bounded second derivative
in a neighborhood of η, let θ = φ(η), and let θ̂ = φ(Un). Then, as k → ∞

k1/2( ˆ̄θ − θ )
d−→ N (0, r2ξ 2

1 {φ′(η)}2),

where

ˆ̄θ = k−1
k∑

α=1

θ̂α,

θ̂α = kφ(Un) − (k − 1)φ(Um(k−1),(α)),

Um(k−1),(α) = 1(
m(k − 1)

r

) ∑
f (Yi1

, . . . , Yir ),

ξ 2
1 = Var{E{ f (Y1, . . . , Yr )|Y1}},∑

denotes summation over all combinations of r integers chosen from
(1, 2, . . . , ( j − 1)m, jm + 1, . . . , n), and φ′(η) is the first derivative of φ(·) eval-
uated at η.

Proof. See Arvesen (1969). �
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Theorem 4.2.4. Let the conditions of Theorem 4.2.3 hold, except now adopt the
weaker condition that φ(·) has a continuous first derivative in a neighborhood of
η. Then, as k → ∞

kv1( ˆ̄θ )
p−→ r2ξ 2

1 {φ′(η)}2.

Proof. See Arvesen (1969). �

Theorems 4.2.3 and 4.2.4 generalize to functions of vector U -statistics; e.g.,
(U 1

n , U 2
n , . . . , U q

n ). Again, the details are given by Arvesen (1969). These results
are important because they encompass an extremely broad class of estimators.
Important statistics that fall within this framework include ratios, differences of
ratios, regression coefficients, correlation coefficients, and the t statistic itself. The
theorems show that the jackknife methodology is correct, at least asymptotically,
for all such statistics.

The reader will note that for all of the statistics studied thus far, t̂ converges to
a standard normal random variable as k → ∞. I f n → ∞ with k fixed, it can be
shown that t̂ converges to Student’s t with (k − 1) degrees of freedom.

All of these results are concerned with the asymptotic behavior of the jackknife
method, and we have seen that Tukey’s conjectures are correct asymptotically.
Now we turn to some properties of the estimators in the context of finite samples.

Let v1(θ̂ ) denote the jackknife estimator (4.2.3) viewed as an estimator of the
variance of θ̂ = θ̂ (Y1, . . . , Yn); i.e., the estimator of θ based upon the parent sample
of size n. Important properties of the variance estimator can be established by
viewing v1(θ̂ ) as the result of a two-stage process: (1) a direct estimator of the
variance of θ̂ (Y1, . . . , Ym(k−1)); i.e., the estimator of θ based upon a sample of
size m(k − 1); (2) a modification to the variance estimator to go from sample size
m(k − 1) to size n = mk. The direct estimator of Var{θ̂ (Y1, . . . , ym(k−1))} is

v
(n)
1 (θ̂ (Y1, . . . , Ym(k−1))) =

k∑
α=1

(θ̂(α) − θ̂(·))2,

and the sample size modification is

v1(θ̂ (Y1, . . . , Yn)) =
(

k − 1

k

)
v

(n)
1 (θ̂ (Y1, . . . , Ym(k−1))).

Applying an ANOVA decomposition to this two-step process, we find that the
jackknife method tends to produce conservative estimators of variance.

Theorem 4.2.5. Let Y1, . . . , Yn be independent and identically distributed ran-
dom variables, θ̂ = θ̂ (Y1, . . . , Yn) be defined symmetrically in its arguments, and
E{θ̂2} < ∞. The estimator v

(n)
1 (θ̂ (Y1, . . . , Ym(k−1))) is conservative in the sense

that

E{v(n)
1 (θ̂ (Y1, . . . , Ym(k−1)))} − Var{θ̂ (Y1, . . . , Ym(k−1))} = 0

(
1

k2

)
≥ 0.
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Proof. The ANOVA decomposition of θ̂ is

θ̂ (Y1, . . . , Yn) = μ + 1

n

∑
i

αi + 1

n2

∑ ∑
i<i ′

βi i ′ + 1

n3

∑ ∑ ∑
i<i ′<i ′′

γi i ′i ′′

+ . . . + 1

nn
η1,2,3,...,n, (4.2.7)

where all 2n − 1 random variables on the right-hand side of (4.2.7) have zero mean
and are mutually uncorrelated with one another. The quantities in the decomposi-
tion are

μ = E{θ̂}
grand mean;

αi = n[E{θ̂ |Yi = yi } − μ]

i-th main effect;

βi i ′ = n2[E{θ̂ |Yi = yi , Yi ′ = yi ′ } − E{θ̂ |Yi = yi } − E{θ̂ |Yi ′ = yi ′ } + μ]

(i, i ′)-th second-order interaction;

γi i ′i ′′ = n3[E{θ̂ |Yi = yi , Yi ′ = yi ′ , Yi ′′ = yi ′′ }
− E{θ̂ |Yi = yi , Yi ′ = yi ′ }
− E{θ̂ |Yi = yi , Yi ′′ = yi ′′ }
− E{θ̂ |Yi ′ = yi ′ , Yi ′′ = yi ′′ }
+ E{θ̂ |Yi = yi }
+ E{θ̂ |Yi ′ = yi ′ }
+ E{θ̂ |Yi ′′ = yi ′′ } − μ]

(i, i ′, i ′′)-th third-order interaction; and so forth. See Efron and Stein (1981) both
for the derivation of the ANOVA decomposition and for the remainder of the
present proof. �

The statistic v
(n)
1 (θ̂ (Y1, . . . , Ym(k−1)) is based upon a sample of size n = mk but

estimates the variance of a statistic θ̂ (Y1, . . . , Ym(k−1)) associated with the reduced

sample size m(k − 1). Theorem 4.2.5 shows that v
(n)
1 tends to overstate the true

variance Var{θ̂ (Y1, ..., Ym(k−1))} associated with the reduced sample size m(k − 1).
The next theorem describes the behavior of the sample size modification.

Theorem 4.2.6. Let the conditions of Theorem 4.2.5 hold. In addition, let θ̂ =
θ̂ (Y1, . . . , Yn) be a U-statistic and let m(k − 1) ≥ r . Then

E{v1(θ̂ )} ≥ Var{θ̂}.
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Proof. From Hoeffding (1948), we have

(k − 1)

k
Var{θ̂ (Y1, . . . , Ym(k−1))} ≥ Var{θ̂ (Y1, . . . , Yn)}.

The result follows from Theorem 4.2.5. �

Thus, for U -statistics the overstatement of variance initiated in Theorem 4.2.5
for statistics associated with the reduced sample size m(k − 1) is preserved by the
sample size modification factor (k − 1)/k. In general, however, it is not true that
the jackknife variance estimator v1(θ̂ ) is always nonnegatively biased for statistics
associated with the full sample size n = mk. For quadratic functionals, Efron and
Stein (1981) show sufficient conditions for v1(θ̂ ) to be nonnegatively biased.

For linear functionals, however, the biases vanish.

Theorem 4.2.7. Let the conditions of Theorem 4.2.5 hold. For linear functionals,
i.e., statistics θ̂ such that the interactions βi i ′ , γi i ′i ′′ , etc. are all zero, the estimator
v

(n)
1 (θ̂ (Y1, . . . , Ym(k−1))) is unbiased for Var{θ̂ (Y1, . . . , Ym(k−1))} and the estimator

v1(θ̂ ) is unbiased for Var{θ̂}.

Proof. See Efron and Stein (1981). �

In summary, Theorems 4.2.5, 4.2.6, and 4.2.7 are finite-sample results, whereas
earlier theorems presented asymptotic results. In the earlier theorems, we saw
that the jackknife variance estimator was correct asymptotically. In finite samples,
however, it tends to incur an upward bias of order 1/k2. But, for linear functionals,
the jackknife variance estimator is unbiased.

4.2.3. Bias Reduction

We have observed that the jackknife method was originally introduced as a means
of reducing bias. Although our main interest is in variance estimation, we shall
briefly review some additional ideas of bias reduction in this section.

The reader will recall that ˆ̄θ removes the order 1/n term from the bias in θ̂ and
annihilates the bias entirely when θ̂ is a quadratic functional. Quenouille (1956)
also gave a method for eliminating the order 1/n2 term from the bias, and it
is possible to extend the ideas to third-, fourth-, and higher-order bias terms, if
desired.

Schucany, Gray, and Owen (1971) showed how to generalize the bias-reducing
properties of the jackknife. Let θ̂1 and θ̂2 denote two estimators of θ whose biases
factor as

E{θ̂1} = θ + f1(n) a(θ ),

E{θ̂2} = θ + f2(n) a(θ ),
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with ∣∣∣∣ 1 1
f1(n) f2(n)

∣∣∣∣ �= 0.

Then, the generalized jackknife

G(θ̂1, θ̂2) =

∣∣∣∣ θ̂1 θ̂2

f1(n) f2(n)

∣∣∣∣∣∣∣∣ 1 1
f1(n) f2(n)

∣∣∣∣
is exactly unbiased for estimating θ . This is analogous to Quenouille’s original
estimator with the following identifications:

k = n,

θ̂1 = θ̂ ,

θ̂2 =
n∑

α=1

θ̂(α)/n,

f1(n) = 1/n,

f2(n) = 1/(n − 1).

Now suppose p + 1 estimators of θ are available and that their biases factor as

E{θ̂ i } = θ +
∞∑
j=1

f ji (n) a j (θ ) (4.2.8)

for i = 1, . . . , p + 1. If ∣∣∣∣∣∣∣∣∣

1 · · · 1
f11(n) · · · f1,p+1(n)

...
...

f p1(n) f p,p+1(n)

∣∣∣∣∣∣∣∣∣
�= 0, (4.2.9)

then the generalized jackknife estimator

G(θ̂1, . . . , θ̂ p+1) =

∣∣∣∣∣∣∣∣∣

θ̂1 θ̂ p+1

f11(n) · · · f1,p+1(n)
...

...
f p1(n) . . . f p,p+1(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
f11(n) · · · f1,p+1(n)

...
...

f p1(n) · · · f p,p+1(n)

∣∣∣∣∣∣∣∣∣
eliminates the first p terms from the bias.
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Theorem 4.2.8. Let conditions (4.2.8) and (4.2.9) be satisfied. Then,

E{G(θ̂1, . . . , θ̂ p+1)} = θ + B(n, p, θ ),

where

B(n, p, θ ) =

∣∣∣∣∣∣∣∣∣

B1 · · · Bp+1

f11(n) · · · f1,p+1(n)
...

...
f p1(n) . . . f p,p+1(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
f11(n) · · · f1,p+1(n)

...
...

f p1(n) · · · f p,p+1(n)

∣∣∣∣∣∣∣∣∣
and

Bi =
∞∑

j=p+1

f ji (n) a j (θ )

for i = 1, . . . , p + 1.

Proof. See, e.g., Gray and Schucany (1972). �

An example of the generalized jackknife G(θ̂1, . . . , θ̂ p+1) is where we extend
Quenouille’s estimator by letting θ̂1 = θ̂ and letting θ̂2, . . . , θ̂ p+1 be the statistic
k−1

∑k
α=1 θ̂(α) with m = 1, 2, 3, 4, . . . , p, respectively. If the bias in the parent

sample estimator θ̂1 = θ̂ is of the form

E{θ̂} = θ +
∞∑
j=1

a j (θ )/n j ,

then

f ji = 1/(n − i + 1) j (4.2.10)

and the bias in G(θ̂1, . . . , θ̂ p+1) is of order n−(p+1). Hence, the generalized jack-
knife reduces the order of bias from order n−1 to order n−(p+1).

4.2.4. Counterexamples

The previous subsections demonstrate the considerable utility of the jackknife
method. We have seen how the jackknife method and its generalizations eliminate
bias and also how Tukey’s conjectures regarding variance estimation and the t̂
statistic are asymptotically correct for a wide class of problems. One must not,
however, make the mistake of believing that the jackknife method is omnipotent,
to be applied to every conceivable problem.
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In fact, there are many estimation problems, particularly in the area of order
statistics and nonfunctional statistics, where the jackknife does not work well, if at
all. Miller (1974a) gives a partial list of counterexamples. To illustrate, we consider
the case θ̂ = Y(n), the largest order statistic. Miller (1964) demonstrates that t̂ with
k = n can be degenerate or nonnormal. Quenouille’s estimator for this case is

θ̂α = Y(n), if α �= n,

= nY(n) − (n − 1)Y(n−1), if α = n,

¯̂θ = n−1
n∑

α=1

θ̂α

= Y(n) + [(n − 1)/n](Y(n) − Y(n−1)).

When Y1 is distributed uniformly on the interval [0, θ ], ˆ̄θ does not depend solely
on the sufficient statistic Y(n), and the jackknife cannot be optimal for convex loss
functions. The limiting distribution of t̂ is nonnormal with all its mass below +1.

The jackknife method with m = 1 also fails for θ̂ = sample median. If n is even,
then the sample median is

θ̂ = [
y(r ) + y(r+1)

] /
2,

where y(i) denote the ordered observations and r = n/2. After dropping one obser-
vation, α, the estimate is either θ̂(α) = y(r ) or y(r+1), with each outcome occurring
exactly half the time. The sample median is simply not smooth enough, and the
jackknife cannot possibly yield a consistent estimator of its variance.

On the other hand, the jackknife does work for the sample median if m is large
enough. The jackknife estimator of variance

v(θ̂ ) = (k − 1)

k

∑
α

(θ̂(α) − θ̂(·))2

is consistent and provides an asymtotically correct t statistic

t = θ̂ − θ√
v(θ̂ )

if
√

n/m → 0 and n − m → ∞. For the sample median, one should choose
√

n <

m < n. Further more, if one chooses m large enough, it may be come advantageous
to employ all

(n
m

)
groups instead of just the k = n/m nonoverlapping groups we

have studied thus for. In this event, the jackknife estimator of variance becomes.

v(θ̂ ) = n − m

m
(n

m

) ∑
α

(θ̂(α) − θ̂(·))2.

See Wu (1986) and Shao and Wu (1989) for details.
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4.2.5. Choice of Number of Groups k

There are two primary considerations in the choice of the number of groups k : (1)
computational costs and (2) the precision or accuracy of the resulting estimators.
As regards computational costs, it is clear that the choice (m, k) = (1, n) is most
expensive and (m, k) = ((n/2), 2) is least expensive. For large data sets, some
value of (m, k) between the extremes may be preferred. The grouping, however,
introduces a degree of arbitrariness in the formation of groups, a problem not
encountered when k = n.

As regards the precision of the estimators, we generally prefer the choice
(m, k) = (1, n), at least when the sample size n is small to moderate. This choice
is supported by much of the research on ratio estimation, including papers by Rao
(1965), Rao and Webster (1966), Chakrabarty and Rao (1968), and Rao and Rao
(1971). For reasonable models of the form

Yi = β0 + β1 Xi + ei ,

E{ei |Xi } = 0,

E{e2
i |Xi } = σ 2 Xt

i ,

t ≥ 0,

E{ei e j |Xi X j } = 0, i �= j,

both the bias and variance of ˆ̄θ are decreasing functions of k, where ˆ̄θ is
Quenouille’s estimator based on the ratio θ̂ = ȳ/x̄ . Further, the bias of the

variance estimator v1( ˆ̄θ ) is minimized by the choice k = n whenever {Xi } is a
random sample from a gamma distribution.

In the sequel, we shall present the jackknife methods for general k. The optimum
k necessarily involves a trade-off between computational costs and the precision
of the estimators.

4.3. Basic Applications to the Finite Population

Throughout the remainder of this chapter, we shall be concerned with jackknife
variance estimation in the context of finite-population sampling. In general, the
procedure is to (1) divide the parent sample into random groups in the man-
ner articulated in Sections 2.2 (independence case) and 2.4 (nonindependence
case) and (2) apply the jackknife formulae displayed in Section 4.2 to the random
groups. The asymptotic properties of these methods are discussed in Appendix B,
and the possibility of transforming the data prior to using these methods is dis-
cussed in Appendix C.

We shall describe the jackknife process in some detail and begin by demon-
strating how the methodology applies to some simple linear estimators and basic
sampling designs. We let N denote a finite population of identifiable units. At-
tached to each unit in the population is the value of an estimation variable, say y.
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Thus, Yi is the value of the i-th unit with i = 1, . . . , N . The population total and
mean are denoted by

Y =
N∑
i

Yi

and

Ȳ = Y/N ,

respectively. It is assumed that we wish to estimate Y or Ȳ .

4.3.1. Simple Random Sampling with Replacement (srs wr)

Suppose an srs wr sample of size n is selected from the population N . It is known
that the sample mean

ȳ =
n∑

i=1

yi/n

is an unbiased estimator of the population mean Ȳ with variance

Var{ȳ} = σ 2/n,

where

σ 2 =
N∑

i=1

(Yi − Ȳ )2/N .

The unbiased textbook estimator of variance is

v(ȳ) = s2/n, (4.3.1)

where

s2 =
n∑

i=1

(yi − ȳ)2/(n − 1).

By analogy with (4.2.1), let θ̂ = ȳ, and let the sample be divided into k random
groups each of size m, n = mk. Quenouille’s estimator of the mean Ȳ is then

ˆ̄θ =
k∑

α=1

θ̂α/k, (4.3.2)

where the α-th pseudovalue is

θ̂α = k ȳ − (k − 1)ȳ(α),

and

ȳ(α) =
m(k−1)∑

i=1

yi/m(k − 1)



P1: OTE/SPH P2: OTE

SVNY318-Wolter December 13, 2006 20:0

164 4. The Jackknife Method

denotes the sample mean after omitting the α-th group of observations. The cor-
responding variance estimator is

v( ˆ̄θ ) =
k∑

α=1

(θ̂α − ˆ̄θ )2/k(k − 1). (4.3.3)

To investigate the properties of the jackknife, it is useful to rewrite (4.3.2) as

ˆ̄θ = k ȳ − (k − 1)ȳ(·), (4.3.4)

where

ȳ(·) =
k∑

α=1

ȳ(α)/k.

We then have the following lemma.

Lemma 4.3.1. Quenouille’s estimator is identically equal to the sample mean

ˆ̄θ = ȳ.

Proof. Follows immediately from (4.3.4) since any given yi appears in exactly
(k − 1) of the ȳ(α). �

From Lemma 4.3.1, it follows that the jackknife estimator of variance is

v1( ˆ̄θ ) = (k − 1)

k

k∑
α=1

(ȳ(α) − ȳ)2. (4.3.5)

The reader will note that v1( ˆ̄θ ) is not, in general, equal to the textbook estimator
v(ȳ). For the special case k = n and m = 1, we see that

ȳ(α) = (n ȳ − yα)/(n − 1)

and by (4.3.5) that

v1( ˆ̄θ ) = (n − 1)

n

n∑
α=1

[yα − ȳ/(n − 1)]2

= v(ȳ),

the textbook estimator of variance. In any case, whether k = n or not, we have the
following lemma.

Lemma 4.3.2. Given the conditions of this section,

E{v1( ˆ̄θ )} = Var{ ˆ̄θ} = Var{ȳ}.

Proof. Left to the reader. �
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We conclude that for srs wr the jackknife method preserves the linear estimator
ȳ, gives an unbiased estimator of its variance, and reproduces the textbook variance
estimator when k = n.

4.3.2. Probability Proportional to Size Sampling with Replacement
(pps wr)

Suppose now that a pps wr sample of size n is selected from N using probabilities
{pi }N

i=1, with
∑N

i pi = 1 and pi > 0 for i = 1, . . . , N . The srs wr sampling design
treated in the last section is the special case where pi = N−1, i = 1, . . . , N . The
customary estimator of the population total Y and its variance are given by

Ŷ = 1

n

n∑
i=1

yi/pi

and

Var{Ŷ } = 1

n

N∑
i=1

pi (Yi/pi − Y )2,

respectively. The unbiased textbook estimator of the variance Var{Ŷ } is

v(Ŷ ) = 1

n(n − 1)

n∑
i=1

(yi/pi − Ŷ )2.

Let θ̂ = Ŷ , and suppose that the parent sample is divided into k random groups
of size m, n = mk. Quenouille’s estimator of the total Y is then

ˆ̄θ = kŶ − (k − 1)k−1
k∑

α=1

Ŷ(α),

where

Ŷ(α) = 1

m(k − 1)

m(k−1)∑
i=1

yi/pi

is the estimator based on the sample after omitting the α-th group of observations.
The jackknife estimator of variance is

v1(θ̂ ) = 1

k(k − 1)

k∑
α=1

(θ̂α − ˆ̄θ )2,

where

θ̂α = kŶ − (k − 1)Ŷ(α)
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is the α-th pseudovalue. For pps wr sampling, the moment properties of ˆ̄θ and v1( ˆ̄θ )
are identical with those for srs wr sampling, provided we replace yi by yi/pi .

Lemma 4.3.3. Given the conditions of this section,

θ̂ = Ŷ

and

E{v1( ˆ̄θ )} = Var{ ˆ̄θ} = Var{Ŷ }.
Further, if k = n, then

v1( ˆ̄θ ) = v(Ŷ ).

Proof. Left to the reader. �

4.3.3. Simple Random Sampling Without Replacement (srs wor)

If an srs wor sample of size n is selected, then the customary estimator of Ȳ , its
variance, and the unbiased textbook estimator of variance are

θ̂ = ȳ =
n∑

i=1

yi/n,

Var{ȳ} = (1 − f )S2/n,

and

v(ȳ) = (1 − f )s2/n,

respectively, where f = n/N and

S2 =
N∑

i=1

(Yi − Ȳ )2/(N − 1).

We suppose that the parent sample is divided into k random groups, each of size
m, n = mk. Because without replacement sampling is used, the random groups

are necessarily nonindependent. For this case, Quenouille’s estimator, ˆ̄θ , and the

jackknife variance estimator, v1( ˆ̄θ ), are algebraically identical with the estimators
presented in Section 4.3.1 for srs wr sampling. These appear in (4.3.2) and (4.3.3),

respectively. By Lemma 4.3.1, it follows that ˆ̄θ = ȳ, and thus ˆ̄θ is also an unbiased

estimator of Ȳ for srs wor sampling. However, v1( ˆ̄θ ) is no longer an unbiased
estimator of variance; in fact, it can be shown that

E{v1( ˆ̄θ )} = S2/n.

Clearly, we may use the jackknife variance estimator with little concern for the

bias whenever the sampling fraction f = n/N is negligible. In any case, v1( ˆ̄θ )
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will be a conservative estimator, overestimating the true variance of ˆ̄θ = ȳ by the
amount

Bias{v1( ˆ̄θ )} = f S2/n.

If the sampling fraction is not negligible, a very simple unbiased estimator of
variance is

(1 − f )v1( ˆ̄θ ).

Another method of “correcting” the bias of the jackknife estimator is to work with

θ̂∗
(α) = ȳ + (1 − f )1/2(ȳ(α) − ȳ)

instead of

θ̂(α) = ȳ(α).

This results in the following definitions:

θ̂∗
α = kθ̂ − (k − 1)θ̂∗

(α), (pseudovalue),

ˆ̄θ∗ =
k∑

α=1

θ̂∗
α/k, (Quenouille’s estimator),

v1( ˆ̄θ∗) = 1

k(k − 1)

k∑
α=1

(θ̂∗
α − ˆ̄θ∗)2, (jackknife estimator of variance).

We state the properties of these modified jackknife statistics in the following
Lemma.

Lemma 4.3.4. For srs wor sampling, we have

ˆ̄θ∗ = ȳ

and

E{v1( ˆ̄θ∗)} = Var{ȳ} = (1 − f )S2/n.

Further, when k = n,

v1( ˆ̄θ∗) = v(ȳ).

Proof. Left to the reader. �

Thus, the jackknife variance estimator defined in terms of the modified pseu-
dovalues θ̂∗

α takes into account the finite-population correction (1 − f ) and gives
an unbiased estimator of variance.
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4.3.4. Unequal Probability Sampling Without Replacement

Little is known about the properties of the jackknife method for unequal probability,
without replacement sampling schemes. To describe the problem, we suppose that
a sample of size n is drawn from N using some unequal probability sampling
scheme without replacement and let πi denote the inclusion probability associated
with the i-th unit in the population, i.e.,

πi = P {i ∈ s},
where s denotes the sample. The Horvitz-Thompson estimator of the population
total is then

θ̂ = Ŷ =
n∑

i=1

yi/πi . (4.3.6)

Again, we suppose that the parent sample has been divided into k random groups
(nonindependent) of size m, n = mk. Quenouille’s estimator ˆ̄θ for this problem is
defined by (4.3.2), where the pseudovalues take the form

θ̂α = kŶ − (k − 1) Ŷ(α), (4.3.7)

and

Ŷ(α) =
m(k−1)∑

i=1

yi/[πi m(k − 1)/n]

is the Horvitz-Thompson estimator based on the sample after removing the α-th
group of observations. As was the case for the three previous sampling methods,
ˆ̄θ is algebraically equal to Ŷ . The jackknife thus preserves the unbiased character
of the Horvitz-Thompson estimator of the total.

To estimate the variance of ˆ̄θ , we have the jackknife estimator

v1( ˆ̄θ ) = 1

k(k − 1)

k∑
α=1

(θ̂α − ˆ̄θ )2,

where the θ̂α are defined in (4.3.7). If πi = npi for i = 1, . . . , n (i.e., a πps sam-
pling scheme) and k = n, then it can be shown that

v1( ˆ̄θ ) = 1

n(n − 1)

n∑
i=1

(yi/pi − Ŷ )2. (4.3.8)

The reader will recognize this as the textbook estimator of variance for pps wr
sampling. More generally, when k < n it can be shown that the equality in (4.3.8)
does not hold algebraically but does hold in expectation,

E{v( ˆ̄θ )} = E

{
1

n(n − 1)

n∑
i=1

(yi/pi − Ŷ )2

}
,
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where the expectations are with respect to the πps sampling design. We conclude
that the jackknife estimator of variance acts as if the sample were selected with
unequal probabilities with replacement rather than without replacement! The bias
of this procedure may be described as follows.

Lemma 4.3.5. Let Var{Ŷπps} denote the variance of the Horvitz-Thompson esti-
mator, and let Var{Ŷwr} denote the variance of Ŷwr = n−1

∑n
i=1 yi/pi in pps wr

sampling. Let πi = npi for the without replacement scheme. If the true design
features without replacement sampling, then

Bias{v1( ˆ̄θ )} = (Var{Ŷwr} − Var{Ŷπps})n/(n − 1).

That is, the bias of the jackknife estimator of variance is a factor n/(n − 1) times
the gain (or loss) in precision from use of without replacement sampling.

Proof. Follows from Durbin (1953). See Section 2.4, particularly Theorem
2.4.6. �

We conclude that the jackknife estimator of variance is conservative (upward
biased) in the useful applications of πps sampling (applications where πps beats
pps wr).

Some practitioners may prefer to use an approximate finite-population correc-

tion (fpc) to correct for the bias in v1( ˆ̄θ ). One such approximate fpc is (1 − π̄ ),
with π̄ = ∑n

i=1 πi/n. This may be incorporated in the jackknife calculations by
working with

θ̂∗
(α) = Ŷ + (1 − π̄ )1/2(Ŷ(α) − Ŷ )

instead of θ̂(α) = Ŷ(α).

4.4. Application to Nonlinear Estimators

In Section 4.3, we applied the various jackknifing techniques to linear estimators, an
application in which the jackknife probably has no real utility. The reader will recall
that the jackknife simply reproduces the textbook variance estimators in most cases.
Further, no worthwhile computational advantages are to be gained by using the
jackknife rather than traditional formulae. Our primary interest in the jackknife lies
in variance estimation for nonlinear statistics, and this is the topic of the present sec-
tion. At the outset, we note that few finite sample, distributional results are available
concerning the use of the jackknife for nonlinear estimators. See Appendix B for
the relevant asymptotic results. It is for this reason that we dealt at some length with
linear estimators. In fact, the main justification for the jackknife in nonlinear prob-
lems is that it works well and its properties are known in linear problems. If a non-
linear statistic has a local linear quality, then, on the basis of the results presented in
Section 4.3, the jackknife method should give reasonably good variance estimates.
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To apply the jackknife to nonlinear survey statistics, we

(1) form k random groups and
(2) follow the jackknifing principles enumerated in Section 4.2 for the infinite-

population model.

No restrictions on the sampling design are needed for application of the jackknife
method. Whatever the design might be in a particular application, one simply
forms the random groups according to the rules set forth in Section 2.2 (for the
independent case) and Section 2.4 (for the nonindependent case). Then, as usual,
the jackknife operates by omitting random groups from the sample. The jackknifed
version of a nonlinear estimator θ̂ of some population parameter θ is

ˆ̄θ =
k∑

α=1

θ̂α/k,

where the pseudovalues θ̂α are defined in (4.2.1), and θ̂(α) is the estimator of the
same functional form as θ̂ obtained after omitting the α-th random group. For linear
estimators, we found that the estimator ˆ̄θ is equal to the parent sample estimator

θ̂ . For nonlinear estimators, however, we generally have ˆ̄θ �= θ̂ .
The jackknife variance estimator

v1( ˆ̄θ ) = 1

k(k − 1)

k∑
α=1

(θ̂α − ˆ̄θ )2

was first given in (4.2.3). A conservative alternative, corresponding to (4.2.5), is

v2( ˆ̄θ ) = 1

k(k − 1)

k∑
α

(θ̂α − θ̂ )2.

We may use either v1( ˆ̄θ ) or v2( ˆ̄θ ) to estimate the variance of either θ̂ or ˆ̄θ .
Little else is known about the relative accuracy of these estimators in finite

samples. Brillinger (1966) shows that both v1 and v2 give plausible estimates of
the asymptotic variance. The result for v2 requires that θ̂ and θ̂(α) have small biases,
while the result for v1 does not, instead requiring that the asymptotic correlation
between θ̂(α) and θ̂(β) (α �= β) be of the form (k − 2)(k − 1)−1. The latter condition
will obtain in many applications because θ̂(α) and θ̂(β) have (k − 2) random groups
in common out of (k − 1). For additional asymptotic results, see Appendix B.

We close this section by giving two examples.

4.4.1. Ratio Estimation

Suppose that it is desired to estimate

R = Y/X,

the ratio of two population totals. The usual estimator is

R̂ = Ŷ/X̂ ,
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where Ŷ and X̂ are estimators of the population totals based on the particular
sampling design. Quenouille’s estimator is obtained by working with

R̂(α) = Ŷ(α)/X̂ (α),

where Ŷ(α) and X̂ (α) are estimators of Y and X , respectively, after omitting the α-th
random group from the sample. Then, we have the pseudovalues

R̂α = k R̂ − (k − 1)R̂(α) (4.4.1)

and Quenouille’s estimator

ˆ̄R = k−1
k∑

α=1

R̂α. (4.4.2)

To estimate the variance of either R̂ or ˆ̄R, we have either

v1( ˆ̄R) = 1

k(k − 1)

k∑
α=1

(R̂α − ˆ̄R)2 (4.4.3)

or

v2( ˆ̄R) = 1

k(k − 1)

k∑
α=1

(R̂α − R̂)2. (4.4.4)

Specifically, let us assume srs wor sampling. Then,

Ŷ = N ȳ,

X̂ = N x̄,

Ŷ(α) = N ȳ(α),

X̂ (α) = N x̄(α),

R̂ = Ŷ/X̂ ,

R̂(α) = Ŷ(α)/X̂ (α),

R̂α = k R̂ − (k − 1)R̂(α),

ˆ̄R = k−1
k∑

α=1

R̂α,

= k R̂ − (k − 1)R̂(·).

If the sampling fraction f = n/N is not negligible, then the modification

R̂∗
(α) = R̂ + (1 − f )1/2(R̂(α) − R̂)

might usefully be applied in place of R̂(α).
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4.4.2. A Regression Coefficient

A second illustrative example of the jackknife is given by the regression coefficient

β̂ =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

based on srs wor sampling of size n. Quenouille’s estimator for this problem is
formed by working with

β̂(α) =

m(k−1)∑
i=1

(xi − x̄(α))(yi − ȳ(α))

m(k−1)∑
i=1

(xi − x̄(α))2

,

where the summations are over all units not in the α-th random group. This gives
the pseudovalue

β̂α = kβ̂ − (k − 1)β̂(α)

and Quenouille’s estimator

ˆ̄β = k−1
k∑

α=1

β̂α.

To estimate the variance of either β̂ or ˆ̄β, we have either

v1( ˆ̄β) = 1

k(k − 1)

k∑
α=1

(β̂α − ˆ̄β)2

or

v2( ˆ̄β) = 1

k(k − 1)

k∑
α=1

(β̂α − β̂)2.

An fpc may be incorporated in the variance computations by working with

β̂∗
(α) = β̂ + (1 − f )1/2(β̂(α) − β̂)

in place of β̂(α).

4.5. Usage in Stratified Sampling

The jackknife runs into some difficulty in the context of stratified sampling plans
because the observations are no longer identically distributed. We shall describe
some methods for handling this problem. The reader should be especially careful
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not to apply the classical jackknife estimators (see Sections 4.2, 4.3, and 4.4) to
stratified sampling problems.

We assume the population is divided into L strata, where Nh describes the size of
the h-th stratum. Sampling is carried out independently in the various strata. Within
the strata, simple random samples are selected, either with or without replacement,
nh denoting the sample size in the h-th stratum. The population is assumed to be
p-variate, with

Yhi = (Y1hi , Y2hi , . . . , Yphi )

denoting the value of the i-th unit in the h-th stratum. We let

Ȳh = (Ȳ1h, Ȳ2h, . . . , Ȳph)

denote the p-variate mean of the h-th stratum, h = 1, . . . , L .
The problem we shall be addressing is that of estimating a population parameter

of the form

θ = g(Ȳ1, . . . , ȲL ),

where g(·) is a “smooth” function of the stratum means Ȳrh for h = 1, . . . , L and
r = 1, . . . , p. The natural estimator of θ is

θ̂ = g(ȳ1, . . . , ȳL ); (4.5.1)

i.e., the same function of the sample means ȳrh = ∑nh
i=1 yrhi/nh . The class of

functions satisfying these specifications is quite broad, including for example

θ̂ = R̂ =

L∑
h=1

Nh ȳ1h

L∑
h=1

Nh ȳ2h

,

the combined ratio estimator;

θ̂ = ȳ11/ȳ12,

the ratio of one stratum mean to another;

θ̂ = β̂ =

L∑
h=1

Nh ȳ4h −
(

L∑
h

Nh ȳ1h

) (
L∑
h

Nh ȳ2h

) /
N

L∑
h=1

Nh ȳ3h −
(

L∑
h

Nh ȳ2h

)2 /
N

,

the regression coefficient (where Y3hi = Y 2
2hi and Y4hi = Y1hi Y2hi ); and

θ̂ = (ȳ11/ȳ21) − (ȳ12/ȳ22),

the difference of ratios.
As in the case of the original jackknife, the methodology for stratified sampling

works with estimators of θ obtained by removing observations from the full sample.
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Accordingly, let θ̂(hi) denote the estimator of the same functional form as θ̂ obtained
after deleting the (h, i)-th observation from the sample. Let

θ̂(h·) =
nh∑

i=1

θ̂(hi)/nh,

θ̂(··) =
L∑

h=1

nh∑
i=1

θ̂(hi)/n,

n =
L∑

h=1

nh,

and

θ̄(··) =
L∑

h=1

θ̂(h·)/L .

Then define the pseudovalues θ̂hi by setting

θ̂hi = (Lqh + 1)θ̂ − Lqh θ̂(hi),

qh = (nh − 1)(1 − nh/Nh), for without replacement sampling

= (nh − 1), for with replacement sampling

for i = 1, . . . , nh and h = 1, . . . , L .1

In comparison with earlier sections, we see that the quantity (Lqh + 1) plays the
role of the sample size and Lqh the sample size minus one, although this apparent
analogy must be viewed as tenuous at best. The jackknife estimator of θ is now
defined by

θ̂1 =
L∑

h=1

nh∑
i=1

θ̂hi/Lnh

=
(

1 +
L∑

h=1

qh

)
θ̂ −

L∑
h=1

qh θ̂(h·), (4.5.2)

and its moments are described in the following theorem.

1 In the case L = 1, contrast this definition with the special pseudovalues defined in Section
4.3. Here we have (dropping the ‘h’ subscript)

θ̂i = θ̂ − (n − 1)(1 − f )(θ̂(i) − θ̂ ),

whereas in Section 4.3 we had the special pseudovalues

θ̂∗
i = θ̂ − (n − 1)(1 − f )1/2(θ̂(i) − θ̂ ).

For linear estimators θ̂ , both pseudovalues lead to the same unbiased estimator of θ . For
nonlinear θ̂ , the pseudovalue defined here removes both the order n−1 and the order N−1

(in the case of without replacement sampling) bias in the estimation of θ . The pseudovalue
θ̂∗

i , attempts instead to include an fpc in the variance calculations. In this section, fpc’s are
incorporated in the variance estimators but not via the pseudovalues. See (4.5.3).
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Theorem 4.5.1. Let θ̂ and θ̂1 be defined by (4.5.1) and (4.5.2), respectively. Let g(·)
be a function of stratum means, which does not explicitly involve the sample sizes
nh, with continuous third derivatives in a neighborhood of Ȳ = (Ȳ1, . . . , ȲL ).
Then, the expectations of θ̂ and θ̂1 to second-order moments of the ȳrh are

E{θ̂} = θ +
L∑

h=1

[
Nh − nh

(Nh − 1)nh

]
ch, for without replacement sampling

= θ +
L∑

h=1

ch/nh, for with replacement sampling,

E{θ̂1} = θ,

where the ch are constants that do not depend on the nh. Further, their variances
to third-order moments are

Var{θ̂} =
L∑

h=1

[
Nh − nh

(Nh − 1)nh

]
d1h +

L∑
h=1

[
(Nh − nh)(Nh − 2nh)

(Nh − 1)(Nh − 2)n2
h

]
d2h,

for without replacement sampling

=
L∑

h=1

n−1
h d1h +

L∑
h=1

n−2
h d2h, for with replacement sampling,

Var{θ̂1} =
L∑

h=1

[
Nh − nh

(Nh − 1)nh

]
d1h −

L∑
h=1

[
(Nh − nh)

(Nh − 1)(Nh − 2)nh

]
d2h,

for without replacement sampling

=
L∑

h=1

n−1
h d1h, for with replacement sampling,

where the d1h and d2h are constants, not dependent upon the nh, that represent the
contributions of the second- and third-order moments of the ȳrh .

Proof. See Jones (1974) and Dippo (1981). �

This theorem shows that the jackknife estimator θ̂1 is approximately unbiased
for θ . In fact, it is strictly unbiased whenever θ is a linear or quadratic function of
the stratum means. This remark applies to estimators such as

θ̂ =
L∑

h=1

Nh ȳ1h,

the estimator of the total;

θ̂ = ȳ11 − ȳ12,
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the estimated difference between stratum means; and

θ̂ =
(

L∑
h=1

(Nh/N )ȳ1h

) (
L∑

h=1

(Nh/N )ȳ2h

) / L∑
h=1

(Nh/N )Ȳ2h,

the combined product estimator.
As was the case for sampling without stratification (i.e., L = 1), the jackknife

may be considered for its bias reduction properties. The estimator θ̂1, called by
Jones the first-order jackknife estimator, eliminates the order n−1

h and order N−1
h

terms from the bias of θ̂ as an estimator of θ . This is the import of the first part of
Theorem 4.5.1. Jones also gives a second-order jackknife estimator, say θ̂2, which
is unbiased for θ through third-order moments of the yrh :

θ̂2 =
(

1 +
L∑

h=1

q(h) −
L∑

h=1

q(hh)

)
θ̂ −

L∑
h=1

q(h)θ̂(h·) +
L∑

h=1

q(hh)θ̂(h·)(h·),

q(h) = aha(hh)/{(a(h) − ah)(a(hh) − a(h))},
q(hh) = aha(h)/{(a(hh) − ah)(a(hh) − a(h))},

θ̂(h·) =
nh∑

i=1

θ̂(hi)/nh,

θ̂(h·)(h·) = 2
∑nh∑

i< j

θ̂(hi)(hj)/{nh(nh − 1)},

ah = n−1
h − N−1

h , for without replacement sampling

= n−1
h , for with replacement sampling,

a(h) = (nh − 1)−1 − N−1
h , for without replacement sampling

= (nh − 1)−1, for with replacement sampling,

a(hh) = (nh − 2)−1 − N−1
h , for without replacement sampling

= (nh − 2)−1, for with replacement sampling,

where θ̂(hi)(hj) is the estimator of the same functional form as θ̂ based upon the
sample after removing both the (h, i)-th and the (h, j)-th observations. The second-
order jackknife is strictly unbiased for estimators θ̂ that are cubic functions of the
stratum means ȳrh . For linear functions, we have

θ̂ = θ̂1 = θ̂2.

The jackknife estimator of variance for the stratified sampling problem is defined
by

v1(θ̂ ) =
L∑

h=1

qh

nh

nh∑
i=1

(θ̂(hi) − θ̂(h·))2. (4.5.3)

This estimator and the following theorem are also due to Jones.
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Theorem 4.5.2. Let the conditions of Theorem 4.5.1 hold. Then, to second-order
moments of ȳrh, v1(θ̂ ) is an unbiased estimator of both Var{θ̂} and Var{θ̂1}. To
third-order moments, the expectation is

E{v1(θ̂ )} =
L∑

h=1

[
Nh − nh

(Nh − 1)nh

]
d1h +

L∑
h=1

[
(Nh − nh)(Nh − 2nh + 2)

(Nh − 1)(Nh − 2)nh(nh − 1)

]
d2h,

for without replacement sampling

=
L∑

h=1

n−1
h d1h +

L∑
h=1

n−1
h (nh − 1)−1d2h,

for with replacement sampling,

where d1h and d2h are defined in Theorem 4.5.1.

Proof. See Jones (1974) and Dippo (1981). �

Thus, v1(θ̂ ) is unbiased to second-order moments of the ȳrh as an estimator of
both Var{θ̂} and Var{θ̂1}. When third-order moments are included, however, v1(θ̂ )
is seen to be a biased estimator of variance. Jones gives further modifications to
the variance estimator that correct for even these “lower-order” biases.

In addition to Jones’ work, McCarthy (1966) and Lee (1973b) have studied the
jackknife for the case nh = 2(h = 1, . . . , L). McCarthy’s jackknife estimator of
variance is

vM (θ̂ ) =
L∑

h=1

(1/2)
2∑

i=1

(
θ̂(hi) −

L∑
h=1

θ̂(h′.)/L

)2

,

and Lee’s estimator is

vL (θ̂ ) =
L∑

h=1

(1/2)
2∑

h=1

(θ̂(hi) − θ̂ )2.

For general sample size nh , the natural extensions of these estimators are

v2(θ̂ ) =
L∑

h=1

(qh/nh)
nh∑

i=1

(θ̂(hi) − θ̂(··))2, (4.5.4)

v3(θ̂ ) =
L∑

h=1

(qh/nh)
nh∑

i=1

(θ̂(hi) − θ̄(··))2, (4.5.5)

and

v4(θ̂ ) =
L∑

h=1

(qh/nh)
nh∑

i=1

(θ̂(hi) − θ̂ )2. (4.5.6)

In the following theorem, we show that these are unbiased estimators of variance
to a first-order approximation.
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Theorem 4.5.3. Given the conditions of this section, the expectations of the jack-
knife variance estimators, to second-order moments of the ȳrh , are

E{v2(θ̂ )} =
L∑

h=1

[
Nh − nh

(Nh − 1)nh

]
d1h, for without replacement sampling

=
L∑

h=1

n−1
h d1h, for with replacement sampling

and

E{v3(θ̂ )} = E{v4(θ̂ )} = E{v2(θ̂ )},

where the d1h are as in Theorem 4.5.1.

Proof. Left to the reader. �

Theorems 4.5.1, 4.5.2, and 4.5.3 show that to second-order moments v1, v2, v3,
and v4 are unbiased estimators of the variance of both θ̂ and θ̂1.

Some important relationships exist between the estimators both for with re-
placement sampling and for without replacement sampling when the sampling
fractions are negligible, qh =̇ nh − 1. Given either of these conditions, Jones’
estimator is

v1(θ̂ ) =
L∑

h=1

[(nh − 1)/nh]
nh∑

i=1

(θ̂(hi) − θ̂(h·))2,

and we may partition the sum of squares in Lee’s estimator as

v4(θ̂ ) =
L∑

h=1

[(nh − 1)/nh]
nh∑

i=1

(θ̂(hi) − θ̂ )2

=
L∑

h=1

[(nh − 1)/nh]
nh∑

i=1

(θ̂(hi) − θ̂(h·))2 (4.5.7)

+
L∑

h=1

(nh − 1)(θ̂(h·) − θ̂(··))2 + (n + L)(θ̂(··) − θ̄(··))2

+ (n − L)(θ̄(··) − θ̂ )2 + 2n(θ̄(··) − θ̂ )(θ̂(··) − θ̄(··)).

The first term on the right-hand side of (4.5.7) is v1(θ̂ ). The estimator v2(θ̂ ) is
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equal to the first two terms on the right-hand side, and v3(θ̂ ) is equal to the first
three terms. When the nh are equal (h = 1, . . . , L), the fifth term is zero. Thus,
we make the following observations:

(i) v4(θ̂ ) ≥ v1(θ̂ ),
(ii) v3(θ̂ ) ≥ v2(θ̂ ) ≥ v1(θ̂ ),

(iii) v4(θ̂ ) ≥ v3(θ̂ ) = v2(θ̂ ) ≥ v1(θ̂ ), whenever the nh are roughly equal.

These results hold algebraically irrespective of the particular sample selected. They
are important in view of the result (see Theorem 4.5.3) that the four estimators
have the same expectation to second-order moments of the ȳrh . We may say that
v2(θ̂ ) and v3(θ̂ ) are conservative estimators of variance relative to v1(θ̂ ) and that
v4(θ̂ ) is very conservative, although in large, complex sample surveys, there may
be little difference between the four estimators.

Example 4.5.1 To illustrate the application of the above methods, we consider
the combined ratio estimator θ̂ = R̂. The estimator obtained by deleting the
(h, i)-th observation is

θ̂(hi) = R̂(hi) =

L∑
h′ �=h

Nh′ ȳ1h′ + Nh

nh∑
j �=i

y1hj/(nh − 1)

L∑
h′ �=h

Nh′ ȳ2h′ + Nh

nh∑
j �=i

y2hj/(nh − 1)

.

The jackknife estimator of θ = R is

θ̂1 = R̂1 =
(

1 +
L∑

h=1

qh

)
R̂ −

L∑
h=1

qh R̂(h·),

where R̂(h·) =
nh∑

i=1

R̂(hi)/nh . The corresponding variance estimators are

v1(θ̂ ) = v1(R̂) =
L∑

h=1

qh

nh

nh∑
i=1

(R̂(hi) − R̂(h·))2,

v2(θ̂ ) = v2(R̂) =
L∑

h=1

qh

nh

nh∑
i=1

(R̂(hi) − R̂(··))2,

v3(θ̂ ) = v3(R̂) =
L∑

h=1

qh

nh

nh∑
i=1

(R̂(hi) − R̄(··))2,

v4(θ̂ ) = v4(R̂) =
L∑

h=1

qn

nh

nh∑
i=1

(R̂(hi) − R̂)2,
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and are applicable to either R̂ or R̂1. For nh = 2 and (1 − nh/Nh) = 1, the esti-
mators reduce to

v1(R̂) =
L∑

h=1

(1/2)
2∑

i=1

(R̂(hi) − R̂(h·))2 =
L∑

h=1

(R̂(h1) − R̂(h2))
2/4,

v2(R̂) =
L∑

h=1

(1/2)
2∑

i=1

(R̂(hi) − R̂(··))2,

v3(R̂) =
L∑

h=1

(1/2)
2∑

i=1

(R̂(hi) − R̄(··))2,

v4(R̂) =
L∑

h=1

(1/2)
2∑

i=1

(R̂(hi) − R̂)2.
�

All of the results stated thus far have been for the case where the jackknife
operates on estimators θ̂(hi) obtained by eliminating single observations from the
full sample. Valid results may also be obtained if we divide the sample nh into
k random groups of size mh and define θ̂(hi) to be the estimator obtained after
deleting the mh observations in the i-th random group from stratum h.

The results stated thus far have also been for the case of simple random sampling,
either with or without replacement. Now suppose sampling is carried out pps with
replacement within the L strata. The natural estimator

θ̂ = g(x̄1, . . . , x̄L ) (4.5.8)

is now defined in terms of

x̄rh = (1/nh)
nh∑

i=1

xrhi ,

where

xrhi = yrhi/Nh phi

and phi denotes the probability associated with the (h, i)-th unit. As usual, phi > 0
for all h and i, and

∑
i phi = 1 for all h. Similarly, θ̂(hi) denotes the estimator of

the same form as (4.5.8) obtained after deleting the (h, i)-th observation from the
sample,

θ̂(h·) =
nh∑

i=1

θ̂(hi)/nh, θ̂(··) =
L∑

h=1

nh∑
i=1

θ̂(hi)/n,

and

θ̄(··) =
L∑

h=1

θ̂(h·)/L .
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The first-order jackknife estimator of θ is

θ̂1 =
(

1 +
L∑

h=1

qh

)
θ̂ +

L∑
h=1

qh θ̂(h·),

where qh = (nh − 1). To estimate the variance of either θ̂ or θ̂1, we may use

v1(θ̂ ) =
L∑

h=1

{(nh − 1)/nh}
nh∑

i=1

(θ̂(hi) − θ̂(h·))2,

v2(θ̂ ) =
L∑

h=1

{(nh − 1)/nh}
nh∑

i=1

(θ̂(hi) − θ̂(··))2,

v3(θ ) =
L∑

h=1

{(nh − 1)/nh}
nh∑

i=1

(θ̂(hi) − θ̄(··))2,

or

v4(θ̂ ) =
L∑

h=1

{(nh − 1)nh}
nh∑

i=1

(θ̂(hi) − θ̂ )2.

The reader should note that the earlier results for simple random sampling extend
to the present problem.

If sampling is with unequal probability without replacement with inclusion
probabilities

πhi = P {(h, i)-th unit in sample} = nh phi ,

i.e., a πps sampling scheme, then we may use the jackknife methods just given for
pps with replacement sampling. This is a conservative procedure in the sense that
the resulting variance estimators will tend to overestimate the true variance. See
Section 2.4.5.

Example 4.5.2 If sampling is pps with replacement and θ̂ = R̂ is the combined
ratio estimator, then the jackknife operates on

θ̂(hi) = R̂(hi) =

L∑
h′ �=h

Nh′ x̄1h′ + Nh

nh∑
j �=i

x1hj/(nh − 1)

L∑
h′ �=h

Nh′ x̄2h′ + Nh

nh∑
j �=i

x2hj/(nh − 1)

,

where xrhj = yrhj/Nh phj . �

Finally, there is another variant of the jackknife, which is appropriate for strat-
ified samples. This variant is analogous to the second option of rule (iv), Section
2.4, whereas previous variants of the jackknife have been analogous to the first
option of that rule. Let the sample nh (which may be srs, pps, or πps) be divided
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into k random groups of size mh , for h = 1, . . . , L , and let θ̂(α) denote the estimator
of θ obtained after removing the α-th group of observations from each stratum.
Define the pseudovalues

θ̂α = kθ̂ − (k − 1) θ̂(α).

Then, the estimator of θ and the estimator of its variance are

ˆ̄θ =
k∑

α=1

θ̂α/k,

v1( ˆ̄θ ) = 1

k(k − 1)

k∑
α=1

(θ̂α − ˆ̄θ )2. (4.5.9)

Little is known about the relative merits of this method vis-à-vis earlier methods. It
does seem that the estimators in (4.5.9) have computational advantages over earlier
methods. Unless k is large, however, (4.5.9) may be subject to greater instability.

4.6. Application to Cluster Sampling

Throughout this chapter, we have treated the case where the elementary units
and sampling units are identical. We now assume that clusters of elementary
units, comprising primary sampling units (PSUs), are selected, possibly with
several stages of subsampling occurring within each selected PSU. We con-
tinue to let θ̂ be the parent sample estimator of an arbitrary parameter θ . Now,
however, N and n denote the number of PSUs in the population and sample,
respectively.

No new principles are involved in the application of jackknife methodology to
clustered samples. When forming k random groups of m units each (n = mk), we
simply work with the ultimate clusters rather than the elementary units. The reader
will recall from Chapter 2 that the term ultimate cluster refers to the aggregate of
elementary units, second-stage units, third-stage units, and so on from the same
primary unit. See rule (iii), Section 2.4. The estimator θ̂(α) is then computed from
the parent sample after eliminating the α-th random group of ultimate clusters (α =
1, . . . , k). Pseudovalues θ̂α , Quenouille’s estimator ˆ̄θ , and the jackknife variance

estimators v1( ˆ̄θ ) and v2( ˆ̄θ ) are defined in the usual way.
As an illustration, consider the estimator

θ̂ = Ŷ = 1

n

n∑
i=1

ŷi/pi (4.6.1)

of the population total θ = Y based on a pps wr sample of n primaries, where ŷi

denotes an estimator of the total in the i-th selected primary based on sampling at
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the second and successive stages. For this problem, the θ̂(α) are defined by

θ̂(α) = Ŷ(α) = 1

m(k − 1)

m(k−1)∑
i=1

ŷi/pi , (4.6.2)

where the summation is taken over all selected PSUs not in the α-th group.
Quenouille’s estimator is

ˆ̄θ = ˆ̄Y = 1

k

k∑
α=1

Ŷ(α),

θ̂α = Ŷα = kŶ − (k − 1) Ŷ(α),

and

v1( ˆ̄θ ) = 1

k(k − 1)

k∑
α=1

(Ŷα − ˆ̄Y )2

is an unbiased estimator of the variance of ˆ̄θ .
If the sample of PSUs is actually selected without replacement with inclu-

sion probabilities πi = npi , then the estimators θ̂ and θ̂(α) take the same form
as indicated in (4.6.1) and (4.6.2) for with replacement sampling. In this case,
the estimator v1( ˆ̄θ ) will tend to overestimate the variance of ˆ̄θ . See Section 2.4.5
for some discussion of this point. Also, using a proof similar to Theorem 2.4.5, it
can be shown that the bias in v1( ˆ̄θ ) arises only in the between PSU component of
variance.

For the example θ̂ = Ŷ , regardless of whether the sample primaries are drawn
with or without replacement, the reader will note that ˆ̄θ = θ̂ and v1( ˆ̄θ ) = v2( ˆ̄θ )
because the parent sample estimator θ̂ is linear in the ŷi . For nonlinear θ̂ , the
estimators ˆ̄θ and θ̂ are generally not equal, nor are the estimators of variance v1( ˆ̄θ )
and v2( ˆ̄θ ). For the nonlinear case, exact results about the moment properties of
the estimators generally are not available. Approximations are possible using the
theory of Taylor series expansions. See Chapter 6. Also see Appendix B for some
discussion of the asymptotic properties of the estimators.

If the sample of PSUs is selected independently within each of L ≥ 2 strata,
then we use the rule of ultimate clusters together with the techniques discussed
in Section 4.5. The methods are now based upon the estimators θ̂(hi) formed by
deleting the i-th ultimate cluster from the h-th stratum. Continuing the example
θ̂ = Ŷ , we have

θ̂1 =
(

1 +
L∑

h=1

qh

)
θ̂ −

L∑
h=1

qh θ̂(h·)

=
(

1 +
L∑

h=1

qh

)
Ŷ −

L·∑
h=1

qhŶ(h·), (4.6.3)
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the first-order jackknife estimator of θ , and

v(θ̂ ) =
L∑

h=1

nh − 1

nh

nh∑
i=1

(θ̂(hi) − θ̂(h·))2 (4.6.4a)

=
L∑

h=1

nh − 1

nh

nh∑
i=1

(Ŷ(hi) − Ŷ(h·))2, (4.6.4b)

the first-order jackknife estimator of the variance, where

θ̂(h·) = Ŷ(h·) = 1

nh

nh∑
j=1

Ŷ(hj)

is the mean of the θ̂(hj) = Ŷ(hj) over all selected primaries in the h-th stratum.
Consider an estimator of the population total of the form

Ŷ =
L∑

h=1

nh∑
i=1

mhi∑
j=1

whij yhij, (4.6.5)

where whi j is the weight associated with the j-th completed interview in the (h, i)-
th PSU. The estimator after dropping one ultimate cluster is

Ŷ(hi) =
L∑

h′=1

nh∑
i ′=1

mh′ i ′∑
j=1

w(hi)h′i ′ j yh′i ′ j , (4.6.6)

where the replicate weights satisfy

w(hi)h′i ′ j = wh′i ′ j , if h′ �= h,

= wh′i ′ j
nh

nh−1

, if h′ = h and i′ �= i,

= 0, if h′ = h and i′ = i.

(4.6.7)

Then, the first jackknife estimator of variance v1

(
Ŷ

)
is defined by (4.6.4b). Es-

timators v2

(
Ŷ

)
, v3

(
Ŷ

)
, and v4

(
Ŷ

)
are defined similarly. For a general nonlinear

parameter θ , the estimators θ̂ and θ̂(hi) are defined in terms of the parent sam-
ple weights, whi j , and the replicate weights, w(hi)h′i ′ j , respectively. And the first
jackknife estimator of variance v1

(
θ̂
)

is defined by (4.6.4a). In this discussion,
nonresponse and poststratification (calibration) adjustments incorporated within
the parent sample weights are also used for each set of jackknife replicate weights.
A technically better approach—one that would reflect the increases and decreases
in the variance brought by the various adjustments—would entail recalculating the
adjustments for each set of jackknife replicate weights.

The discussion in this section has dealt solely with the problems of estimating θ

and estimating the total variance of the estimator. In survey planning, however, we
often face the problem of estimating the individual components of variance due to
the various stages of selection. This is important in order to achieve an efficient



P1: OTE/SPH P2: OTE

SVNY318-Wolter December 13, 2006 20:0

4.7. Example: Variance Estimation for the NLSY97 185

allocation of the sample. See Folsom, Bayless, and Shah (1971) for a jackknife
methodology for variance component problems.

4.7. Example: Variance Estimation for the NLSY97

The National Longitudinal Survey of Youth, 1997 (NLSY97) is the latest in a
series of surveys sponsored by the U.S. Department of Labor to examine issues
surrounding youth entry into the workforce and subsequent transitions in and out
of the workforce. The NLSY97 is following a cohort of approximately 9000 youths
who completed an interview in 1997 (the base year). These youths were between 12
and 16 years of age as of December 31, 1996, and are being interviewed annually
using a mix of some core questions asked annually and varying subject modules
that rotate from year to year.

The sample design involved the selection of two independent area-probability
samples: (1) a cross-sectional sample designed to represent the various subgroups
of the eligible population in their proper population proportions; and (2) a supple-
mental sample designed to produce oversamples of Hispanic and non-Hispanic,
Black youths. Both samples were selected by standard area-probability sampling
methods. Sampling was in three essential stages: primary sampling units (PSUs)
consisting mainly of Metropolitan Statistical Areas (MSAs) or single counties,
segments consisting of single census blocks or clusters of neighboring blocks,
and housing units. All eligible youths in each household were then selected for
interviewing and testing.

The sampling of PSUs was done using pps systematic sampling on a geographi-
cally sorted file. To proceed with variance estimation, we adopt the approximation
of treating the NLSY97 as a two-per-stratum sampling design. We take the first-
stage sampling units in order of selection and collapse two together to make a
pseudostratum. We treat the two PSUs as if they were selected via pps wr sam-
pling within strata.

In total, the NLSY97 sample consists of 200 PSUs, 36 of which were selected
with certainty. Since the certainties do not involve sampling until the segment level,
we paired the segments and call each pair a pseudostratum. Overall, we formed 323
pseudostrata, of which 242 were related to certainty strata and 81 to noncertainty
PSUs (79 of the pseudostrata included two PSUs and two actually included three
PSUs).

Wolter, Pedlow, and Wang (2005) carried out BHS and jackknife variance esti-
mation for NLSY97 data. We created 336 replicate weights for the BHS method
(using an order 336 Hadamard matrix). Note that 336 is a multiple of 4 that is
larger than the number of pseudostrata, 323. For the jackknife method, we did not
compute the 2*323 = 646 replicate weights that would have been standard for the
“drop-out-one” method; instead, to simplify the computations, we combined three
pseudostrata together to make 108 revised pseudostrata consisting of two groups
of three pseudo-PSUs each (one of the revised pseudostrata actually consisted of
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the two pseudostrata that included three PSUs). We created 2*108 = 216 replicate
weights by dropping out one group at a time.

In creating replicate weights for the BHS and jackknife methods, the simple
approach is to adjust the final parent sample weights only for the conditional
probability of selecting the replicate given the parent sample, as in (3.3.3) and
(4.6.7). We calculated the simple approach. We also produced replicate weights
according to the technically superior approach of recalculating adjustments for
nonresponse and other factors within each replicate.

Table 4.7.1 shows the estimated percentage of enrolled youths (or students) who
worked during the 2000–01 school year or the summer of 2001. The weighted
estimates are broken down by age (17, 18, or 19) and by age crossed by sex,
race/ethnicity, or grade. The data for this table are primarily from rounds 4 and
5 of the NLSY97, conducted in 2000–01 and 2001–02, respectively. Analysis of
these data was first presented in the February 18, 2004 issue of BLS News (see
Bureau of Labor Statistics, 2004).

The resulting standard error estimates appear in Table 4.7.1. The jackknife and
BHS give very similar results. For the simple versions of the estimators without
replicate reweighting, of 24 estimates, the jackknife estimate is largest 14.5 times
(60%) and the BHS standard error estimate is largest 9.5 times (40%).2 The average
standard errors are 1.86 and 1.85 and the median standard errors are 1.51 and 1.50
for the jackknife and BHS, respectively.

The means and medians of the replicate reweighted standard error estimates are
1.85 and 1.51 for the jackknife and and 1.85 and 1.49 for the BHS. Theoretically, the
replicate-reweighted methods should result in larger estimated standard errors than
the corresponding methods without replicate reweighting because they account for
the variability in response rates and nonresponse adjustments that is ignored by
simply adjusting the final weight for the replicate subsampling rate. However,
we find almost no difference between the estimates with and without replicate
reweighting by method. Since the estimates with and without replicate reweighting
are so close, the method without replicate reweighting is preferred because it is
the simpler method computationally.

An illustration of the jackknife and BHS calculations appears in Table 4.7.2.

4.8. Example: Estimating the Size of
the U.S. Population

This example is concerned with estimating the size of the U.S. population. The
method of estimation is known variously as “dual-system” or “capture-recapture”
estimation. Although our main purpose is to illustrate the use of the jackknife
method for variance estimation, we first describe, in general terms, the two-sample
capture-recapture problem.

2 When two methods tie, we consider each to be largest 0.5 times.
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Table 4.7.2. Illustration of Jackknife and BHS Calculations for the
NLSY Example

For a given demographic domain, the estimated proportion is of the form

R̂ =

L∑
h=1

nh∑
i=1

mhi∑
j=1

whi j yhi j

L∑
h=1

nh∑
i=1

mhi∑
j=1

whi j xhi j

,

where
xhi j = 1, if the interviewed youth is in the specified domain and is a student,

= 0, otherwise,

yhi j = 1, if the interviewed youth is in the specified domain, is a student, and ever

worked during the school year or following summer,

= 0, otherwise,
and L denotes the number of pseudostrata, nh = 2 is the number of pseudo-PSU groups per

stratum, and mhi is the number of completed youth interviews within the (h,i)-th group. L
is 323 and 108 for the BHS and jackknife methods, respectively.

Without replicate reweighting, we have replicate estimators R̂(hi) defined for the jackknife

method using the replicate weights in (4.6.7) and the replicate estimators R̂α defined for the

BHS method using the replicate weights in (3.5.3). With replicate reweighting, nonresponse

and other adjustments are calculated separately within each replicate. It is too complicated

to show the adjustments here.

The BHS and jackknife variance estimators for this illustration are

vBHS(R̂) = 1

336

336∑
α=1

(R̂α − R̂)2

and

vj(R̂) =
108∑
h=1

1

2

2∑
i=1

(R̂(hi) − R̂)2,

respectively.

For the domain of females age 17, we find R̂ × 100% = 89.6 and vJ(R̂ × 100%) = 1.51

and vBHS(R̂ × 100%) = 1.85 without replicate reweighting and vJ(R̂ × 100%) = 1.44 and

vBHS(R̂ × 100%) = 1.80 with replicate reweighting.

Let N denote the total number of individuals in a certain population under study.
We assume that N is unobservable and to be estimated. This situation differs from
the model encountered in classical survey sampling, where the size of the popu-
lation is considered known and the problem is to estimate other parameters of the
population. We assume that there are two lists or frames, that each covers a portion
of the total population, but that the union of the two lists fails to include some
portion of the population N . We further assume the lists are independent in the
sense that whether or not a given individual is present on the first list is a stochastic
event that is independent of the individual’s presence or absence on the second
list.
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The population may be viewed as follows:

Second List

First List

Present

Absent

Present Absent

N11 N12

N21 —

N·1

N1·

The size of the (2,2) cell is unknown, and thus the total size N is also unknown.
Assuming that these data are generated by a multinomial probability law and that
the two lists are independent, the maximum likelihood estimator of N is

N̂ = N1.N.1

N11

.

See Bishop, Fienberg, and Holland (1975), Marks, Seltzer, and Krotki (1974), or
Wolter (1986) for the derivation of this estimator.

In practice, the two lists must be matched to one another in order to determine
the cell counts N11, N12, N21. This task will be difficult, if not impossible, when
the lists are large. Difficulties also arise when the two lists are not compatible with
computer matching. In certain circumstances these problems can be dealt with
(but not eliminated) by drawing samples from either or both lists and subsequently
matching only the sample cases. Dealing with samples instead of entire lists cuts
down on work and presumably on matching difficulties. Survey estimators may
then be constructed for N11, N12, and N21. This is the situation considered in the
present example.

We will use the February 1978 Current Population Survey (CPS) as the sample
from the first list and the Internal Revenue Service (IRS) tax returns filed in 1978
as the second list. The population N to be estimated is the U.S. adult population
ages 14–64.

The CPS is a household survey that is conducted monthly by the U.S. Bureau
of the Census for the U.S. Bureau of Labor Statistics. The main purpose of the
CPS is to gather information about characteristics of the U.S. labor force. The CPS
sampling design is quite complex, using geographic stratification, multiple stages
of selection, and unequal selection probabilities. The CPS estimators are equally
complex, employing adjustments for nonresponse, two stages of ratio estimation,
and one stage of composite estimation. For exact details of the sampling design
and estimation scheme, the reader should see Hanson (1978). The CPS is discussed
further in Section 5.5.

Each monthly CPS sample is actually comprised of eight distinct sub-samples
(known as rotation groups). Each rotation group is itself a national probability
sample comprised of a sample of households from each of the CPS primary
sampling units (PSUs). The rotation groups might be considered random groups
(nonindependent), as defined in Section 2.4, except that the ultimate cluster rule
(see rule (iii), Section 2.4) was not followed in their construction.
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In this example, the design variance of a dual-system or capture-recapture es-
timator will be estimated by the jackknife method operating on the CPS rotation
groups. Because the ultimate cluster rule was not followed, this method of variance
estimation will tend to omit the between component of variance. The omission is
probably negligible, however, because the between component is considered to be
a minor portion (about 5%) of the total CPS variance.

The entire second list (IRS) is used in this application without sampling. After
matching the CPS sample to the entire second list, we obtain the following data:

IRS

CPS

Present

Absent

Present Absent

N̂11 N̂12

N̂21 —

N·1

N̂1·

and

IRS

CPS

Present

Absent

Present Absent

N̂11α N̂12α

N̂21α —

N·1

N̂1·α

for α = 1, . . . , 8. The symbol “
ˆ
” is being used here to indicate a survey esti-

mator prepared in accordance with the CPS sampling design. The subscript “α”
is used to denote an estimator prepared from the α-th rotation group, whereas

Table 4.8.1 Data from the 1978 CPS–IRS Match Study

Matched CPS Total

Rotation Population Population

Group α N̂11α N̂1·α N̂(α) N̂α

1 107,285,040 133,399,520 144,726,785 143,087,553

2 105,178,160 132,553,952 144,447,797 145,040,467

3 110,718,448 139,055,744 144,518,186 144,547,744

4 103,991,496 132,390,240 144,243,095 146,473,380

5 106,818,488 131,627,520 144,910,512 141,801,461

6 106,636,928 133,095,536 144,647,594 143,641,892

7 105,338,552 133,324,528 144,359,733 145,656,914

8 103,349,328 131,061,688 144,323,897 145,907,770

Parent 106,164,555 133,313,591

Note: The size of the IRS list is N·1 = 115,090,300.
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the absence of “α” denotes an estimator prepared from the parent CPS sample.
The total population on the IRS list, N.1, is based on a complete count of that
list: N.1 is not an estimate prepared from a sample. The data are presented in
Table 4.8.1.

Because each random group is a one-eighth sample of the parent CPS sample,
we have

N̂11 =̇ 1

8

8∑
α=1

= N̂11α,

N̂12 =̇ 1

8

8∑
α=1

= N̂12α,

N̂21 =̇ 1

8

8∑
α=1

= N̂21α,

N̂1· =̇ 1

8

8∑
α=1

= N̂1·α.
3

The dual-system or capture-recapture estimator of N for this example is

N̂ = N̂1·N·1
N̂11

,

and the estimator obtained by deleting the α-th rotation group is

N̂(α) = N̂1·(α) N·1
N̂11(α)

,

where

N̂11(α) = 1

7

∑
α′ �=α

N̂11α′ ,

N̂1·(α) = 1

7

∑
α′ �=α

N̂1·α′ .

The pseudovalues are defined by

N̂α = 8N̂ − 7N̂(α),

Quenouille’s estimator by

ˆ̄N = 1

8

8∑
α=1

N̂α,

3 These are only approximate equalities. The reader will recall that estimators θ̂ and ˆ̄θ are
equal if the estimators are linear. In the present example, all of the estimators are nonlinear,
involving ratio and nonresponse adjustments. Thus, the parent sample estimators, such as
N̂11, are not in general equal to the mean of the random group estimators

∑
N̂11α/8. Because

the sample sizes are large, however, there should be little difference in this example.
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Table 4.8.2 Computation of Pseudovalues, Quenouille’s Estimator, and the
Jackknife Estimator of Variance

The estimates obtained by deleting the first rotation group are

N̂11(1) = 1

7

∑
α′ �=1

N̂11α′

= 106,004,486,

N̂1·(1) = 1

7

∑
α′ �=1

N̂1·α′

= 133,301,315,

N̂(1) = N̂1·(1) N·1
N̂11(1)

= 144,726,785.

The estimate obtained from the parent sample is

N̂ = N̂1· N·1
N̂11

= (133,313,591)(115,090,300)

106,164,555
.

= 144,521,881.

Thus, the first pseudovalue is

N̂1 = 8N̂ − 7N̂(1)

= 143,087,555.

The remaining N̂(α) and N̂α are presented in the last two columns of Table 4.8.1.

Quenouille’s estimator and the jackknife estimator of variance are

ˆ̄N = 1

8

8∑
α=1

N̂α

= 144,519,648

and

v1
ˆ̄(N ) = 1

8(7)

8∑
α=1

(N̂α − ˆ̄N )2,

= 3.1284 × 1011,

respectively. The estimated standard error is 559,324.

The conservative estimator of variance is

v2
ˆ̄(N ) = 1

8(7)

8∑
α=1

(N̂α − N̂ )2

= 3.1284 × 1011

with corresponding standard error 559,325.
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and the jackknife estimator of variance by

v1( ˆ̄N ) = 1

8(7)

8∑
α=1

(
N̂α − ˆ̄N

)2

.

The conservative estimator of variance is

v2( ˆ̄N ) = 1

8(7)

8∑
α=1

(
N̂α − N̂

)2
.

In this problem we are estimating the design variance of N̂ , given N11,

N21, N12, N1·, and N .1. Some illustrative computations are given in Table 4.8.2.
To conclude the example, we comment on the nature of the adjustment for

nonresponse and on the ratio adjustments. The CPS uses a combination of “hot
deck” methods and “weighting-class” methods to adjust for missing data. The
adjustments are applied within the eight rotation groups within cells defined by
clusters of primary sampling units (PSUs) by race by type of residence. Because
the adjustments are made within the eight rotation groups, the original principles
of jackknife estimation (and of random group and balanced half-sample estima-
tion) are being observed and the jackknife variances should properly include the
components of variability due to the nonresponse adjustment.

On the other hand, the principles are violated as regards the CPS ratio estima-
tors. To illustrate the violation, we consider the first of two stages of CPS ratio
estimation. Ratio factors (using 1970 census data as the auxiliary variable) are
computed within region,4 by kind of PSU, by race, and by type of residence. In
this example, the ratio factors computed for the parent sample estimators were also
used for each of the random group estimators. This procedure violates the origi-
nal principles of jackknife estimation, which call for a separate ratio adjustment
for each random group. See Section 2.8 for additional discussion of this type of
violation. The method described here greatly simplifies the task of computing the
estimates because only one set of ratio adjustment factors is required instead of
nine sets (one for the parent sample and one for each of the eight rotation groups).
Some components of variability, however, may be missed by this method.

4 The four census regions are Northeast, North Central, South, and West.
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CHAPTER 5

The Bootstrap Method

5.1. Introduction

In the foregoing chapters, we discussed three replication-based methods of variance
estimation. Here we close our coverage of replication methods with a presenta-
tion of Efron’s (1979) bootstrap method, which has sparked a massive amount
and variety of research in the past quarter century. For example, see Bickel and
Freedman (1984), Booth, Butler, and Hall (1994), Chao and Lo (1985, 1994),
Chernick (1999), Davison and Hinkley (1997), Davison, Hinkley, and Young
(2003), Efron (1979, 1994), Efron and Tibshirani (1986, 1993, 1997), Gross (1980),
Hinkley (1988), Kaufman (1998), Langlet, Faucher, and Lesage (2003), Li, Lynch,
Shimizu, and Kaufman (2004), McCarthy and Snowden (1984), Rao, Wu, and Yue
(1992), Roy and Safiquzzaman (2003), Saigo, Shao, and Sitter (2001), Shao and
Sitter (1996), Shao and Tu (1995), Sitter (1992a, 1992b), and the references cited
by these authors.

How does the bootstrap differ from the other replication methods? In the sim-
plest case, random groups are based upon replicates of size n/k; half-samples
use replicates of size n/2; and the jackknife works with replicates of size n − 1.
By comparison with these earlier methods, the bootstrap employs replicates of
potentially any size n∗.

We begin by describing the original bootstrap method, which used n∗ = n;
i.e., the bootstrap sample is of the same size as the main sample. In subsequent
sections, we adapt the original method to the problem of variance estimation in
finite-population sampling and we consider the use of other values of n∗ at that time.

Let Y1, . . . , Yn be a sample of iid random variables (scalar or vector) from a
distribution function F . Let θ be the unknown parameter to be estimated and let θ̂

denote the sample-based estimator of θ . The problem is to estimate the variance
of θ̂ in repeated sampling from F ; i.e., Var{θ̂}.

194
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A bootstrap sample (or bootstrap replicate) is a simple random sample with
replacement (srs wr) of size n∗ selected from the main sample. In other words,
the main sample is treated as a pseudopopulation for this sampling. The bootstrap
observations are denoted by Y ∗

1 , . . . , Y ∗
n .

Let θ̂∗ denote the estimator of the same functional form as θ̂ but applied to the
bootstrap sample instead of the main sample. Then, the ideal bootstrap estimator
of Var{θ̂} is defined by

v1(θ̂ ) = Var∗{θ̂∗},
where Var∗ signifies the conditional variance, given the main sample (or pseu-
dopopulation). Repeated bootstrap sampling from the main sample produces al-
ternative feasible samples that could have been selected as the main sample from
F . The idea of the bootstrap method is to use the variance in repeated bootstrap
sampling to estimate the variance, Var{θ̂}, in repeated sampling from F .

For simple problems where θ̂ is linear, it is possible to work out a closed-form
expression for v1(θ̂ ). In general, however, an exact expression will not be available,
and it will be necessary to resort to an approximation. The three-step procedure is
to:

(i) draw a large number, A, of independent bootstrap replicates from the main
sample and label the corresponding observations as Y ∗

α1, . . . , Y ∗
αn , for α =

1, . . . , A;
(ii) for each bootstrap replicate, compute the corresponding estimator θ̂∗

α of the
parameter of interest; and

(iii) calculate the variance between the θ̂∗
α values

v2

(
θ̂
) = 1

A − 1

A∑
α=1

(
θ̂∗
α − ˆ̄θ

∗)2

,

ˆ̄θ
∗ = 1

A

A∑
α=1

θ̂∗
α .

It is clear that v2 converges to v1 as A → ∞. Efron and Tibshirani (1986) report
that A in the range of 50 to 200 is adequate in most situations. This advice originates
from the following theorem, which is reminiscent of Theorem 2.6.1 for the random
group method.

Theorem 5.1.1. Let the kurtosis in bootstrap sampling be

β∗
(
θ̂∗) =

E∗
{(

θ̂∗ − E∗θ̂∗)4
}

[
E∗

{(
θ̂∗ − E∗θ̂∗)2

}]2
− 3.

Then, given A independent bootstrap replicates,

CV
{
se2

(
θ̂
)} =̇

[
CV2

{
se1

(
θ̂
)} + E

{
β∗

(
θ̂∗)} + 2

4A

]1/2

,
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where se1(θ̂ ) = {v1(θ̂ )}1/2 and se2

(
θ̂
) = {v2(θ̂ )}1/2 are the estimated standard

errors.

For large A, the difference between v1 and v2 should be unimportant. Hence-
forth, we shall refer to both v1 and v2 as the bootstrap estimator of the variance
of θ̂ .

5.2. Basic Applications to the Finite Population

We now consider use of the bootstrap method in the context of sampling from
a finite population. We begin with four simple sampling designs and linear es-
timators, situations in which exact results are available. Later, we address more
complicated (and realistic) survey problems. The bootstrap method can be made
to work well for the simple surveys—where textbook estimators of variance are
already available—and this good performance motivates its use in the more com-
plicated survey situations, where textbook estimates of variance are not generally
available. We used this line of reasoning, from the simple to the complex, previ-
ously in connection with the random group, balanced half-samples, and jackknife
estimators of variance.

5.2.1. Simple Random Sampling with Replacement (srs wr)

Suppose it is desired to estimate the population mean Ȳ of a finite population
U of size N . We select n units into the sample via srs wr sampling and use the
sample mean ȳ = (1/n)

∑
yi as our estimator of the parameter of interest. From

Section 1.4, the variance of this estimator (in repeated sampling from U ) and the
textbook estimator of variance are given by

Var {ȳ} = σ 2

n
,

v (ȳ) = s2

n
,

respectively, where

σ 2 = 1

N

N∑
i=1

(
Yi − Ȳ

)2
,

s2 = 1

n − 1

n∑
i=1

(yi − ȳ)2.

The bootstrap sample, y∗
1 , . . . , y∗

n∗ , is an srs wr of size n∗ from the parent sample
of size n, and the corresponding estimator of the population mean is the sample
mean ȳ∗ = (1/n∗)

∑
y∗

i .
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Consider, for example, the first selection, y∗
1 . Given the parent sample, it has

expectation and variance (in repeated sampling from the parent sample) of

E∗
{

y∗
1

} = 1

n

n∑
i

yi ,

Var∗
{

y∗
1

} = 1

n

n∑
i

(yi − ȳ)2 = n − 1

n
s2,

where E∗ and Var∗ denote conditional moments with respect to repeated bootstrap
sampling from the parent sample (or pseudopopulation). These results follow from
the fact that P(y∗

1 = yi ) = 1
n for i = 1, . . . , n. By construction, the bootstrap ob-

servations are iid, and thus we conclude that

E∗
{

ȳ∗} = E∗
{

y∗
1

} = ȳ,

v1 (ȳ) = Var∗
{

ȳ∗} = Var∗
{

y1
∗}

n∗

= n − 1

n

s2

n∗ .

It is apparent that the bootstrap estimator of variance is not generally equal to the
textbook estimator of variance and is not an unbiased estimator of Var{ȳ}. These
desirable properties obtain if and only if n∗ = n − 1.

Theorem 5.2.1. Given srs wr sampling of size n from the finite population of size
N, the bootstrap estimator of variance, v1(ȳ), is an unbiased estimator of Var{ȳ}
if and only if the bootstrap sample size is exactly one less than the size of the
parent sample, n∗ = n − 1. For n∗ = n, the bias of v1(ȳ) as an estimator of the
unconditional variance of ȳ is given by

Bias{v1(ȳ)} = −1

n
Var{ȳ}.

In large samples, the bias is unlikely to be important, while in small samples it
could be very important indeed. For example, if the sample size were n = 2 and
n∗ = n, then there would be a severe downward bias of 50%. We will discuss
stratified sampling in Section 5.3, where such small samples within strata are quite
common.

5.2.2. Probability Proportional to Size Sampling
with Replacement (pps wr)

A second simple situation arises when the sample is selected via pps wr sampling
and it is desired to estimate the population total, Y . To implement the sample, one
uses a measure of size Xi (i = 1, . . . , N ) and n independent, random draws from
the distribution F = U (0, 1), say rk (k = 1, . . . , n). At the k-th draw, the procedure
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selects the unique unit i for which Si−1 < rk ≤ Si , where the cumulative sums are
defined by

Si =
i∑

i ′=1

p′
i for i = 1, . . . , N

= 0 for i = 0

and pi = Xi/X .
The standard unbiased estimator of the population total is given by

Ŷ = 1

n

n∑
k=1

yk

pk

= 1

n

n∑
k=1

N∑
i=1

Irk∈(Si−1,Si ]

Yi

pi

= 1

n

n∑
k=1

zk,

where yk is the y-value of the unit randomly selected at the k-th draw and Irk∈(Si−1,Si ]

is the indicator variable taking the value 1 when rk ∈ (Si−1, Si ] and 0 otherwise. Let
r∗

1i
, . . . , r∗

n∗ be the bootstrap sample obtained from the pseudopopulation, {ri }n
i=1,

via srs wr sampling. The estimator of Y from the bootstrap sample is

Ŷ ∗ = 1

n∗

n∗∑
k=1

N∑
i=1

Ir∗
k ∈(Si−1,Si ]

Yi

pi
.

Notice that Ŷ ∗ is the mean of n∗ iid random variables

z∗
k =

N∑
i=1

Ir∗
k ∈(Si−1,Si ]

Yi

pi
,

each with conditional expectation

E∗
{
z∗

1

} = 1

n

n∑
k=1

zk = Ŷ

and conditional variance

Var∗
{
z∗

1

} = 1

n

n∑
k=1

(
zk − Ŷ

)2
.

It follows that

E∗
{
Ŷ ∗} = E∗

{
z∗

1

} = Ŷ

and

Var∗
{
Ŷ ∗} = Var∗

{
z∗

1

}
n∗

=
(

n − 1

n

) (
1

n∗
1

n − 1

n∑
k=1

(
zk − Ŷ

)2

)
. (5.2.1)
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v1(Ŷ ) = Var∗{Ŷ ∗} is the bootstrap estimator of the variance of Ŷ . It is the factor
n−1

n times the textbook estimator of the variance under pps wr sampling. If we

implement a bootstrap sample size of n∗ = n − 1, then v1

(
Ŷ

)
is exactly equal to

the textbook estimator and is an unbiased estimator of Var{Ŷ }; otherwise, when
n∗ = n, v1 is biased. If n is large, the bias may be unimportant.

5.2.3. Simple Random Sampling Without Replacement (srs wor)

The bootstrap method does not easily or uniquely accommodate without replace-
ment sampling designs, even in the simplest cases. In this section, we describe
variations of the standard method that might be appropriate for srs wor sampling.

The parameter of interest in this work is the population mean Ȳ . Let s denote the
parent sample of size n, and let s∗ denote the bootstrap sample of size n∗. Initially,
we will assume s∗ is generated by srs wr sampling from the pseudopopulation s.
We will alter this assumption later on.

The sample mean ȳ is a standard estimator of the population mean. It is easy to
find that

E∗
{

ȳ∗} = E∗
{

y∗
1

}
= 1

n

∑
i∈s

yi

= ȳ,

Var∗
{

ȳ∗} = Var∗
{

y∗
1

}
n∗ (5.2.2)

=

1

n

∑
i∈s

(yi − ȳ)2

n∗

= n − 1

n

s2

n∗ .

These results are not impacted by the sampling design for the main sample but
only by the design for the bootstrap sample. Thus, these properties are the same
as in Section 5.2.1.

Compare (5.2.2) to the textbook (unbiased) estimator of variance

v (ȳ) = (1 − f )
1

n
s2

and to the variance of ȳ in repeated sampling from the population

Var {ȳ} = (1 − f )
1

n
S2.

We then have the following theorem.
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Theorem 5.2.2. Assume that a bootstrap sample of size n∗ is selected via srs wr
sampling from the main sample s, which itself is selected via srs wor sampling
from the population. The standard bootstrap estimator of Var{ȳ} is given by

v1 (ȳ) = Var∗
{

ȳ∗} = n − 1

n

s2

n∗ . (5.2.3)

In the special case n∗ = n − 1, the bootstrap estimator

v1 (ȳ) = s2

n

is biased upwards by the absence of the finite-population correction, 1 − f . The
bias in this case is given by

Bias {v1 (y)} = E {v1 (ȳ)} − Var {ȳ}
= f

S2

n
.

It is clear from this theorem that the bias of v1 will be unimportant whenever
f is small. In what follows, we present four variations on the standard bootstrap
method that address survey situations in which f is not small.

Correction Factor Variant. In the special case n∗ = n − 1, an unbiased estimator
of variance is given simply by

v1F (ȳ) = (1 − f ) v1 (ȳ) .

Rescaling Variant. Rao and Wu (1988) define the bootstrap estimator of variance
in terms of the rescaled observations

y#
i = ȳ + (1 − f )

1/2

(
n∗

n − 1

)1/2 (
y∗

i − ȳ
)
.

The method mimics techniques introduced in earlier chapters of this book in
Sections 2.4.3, 3.5, and 4.3.3 designed to incorporate an fpc into the random
group, balanced half-sample, and jackknife estimators of variance. The bootstrap
mean is now

ȳ# = 1

n∗

n∗∑
i=1

y#
i ,

and from (5.2.3) the bootstrap estimator of the variance is

v1R {ȳ} = Var∗
{

ȳ#
}

= (1 − f )
n∗

n − 1
Var∗

{
ȳ∗}

= (1 − f )
1

n
s2.

The rescaled variant v1R is equal to the textbook (unbiased) estimator of variance.
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Two special cases are worthy of note. If the statistician chooses n∗ = n, the
rescaled observations are

y#
i = ȳ + (1 − f )

1/2

(
n

n − 1

)1/2 (
y∗

i − ȳ
)
,

while the choice n∗ = n − 1 gives

y#
i = ȳ + (1 − f )

1/2
(
y∗

i − ȳ
)
.

BWR Variant. The with replacement bootstrap method (or BWR), due to Mc-
Carthy and Snowden (1985), tries to eliminate the bias in (5.2.2) simply by a
clever choice of the bootstrap sample size. Substituting n∗ = (n − 1) / (1 − f )
into (5.2.3), we find that v1BWR (ȳ) = (1 − f ) 1

n s2, the textbook and unbiased es-
timator of Var {ȳ} given srs wor sampling.

In practice, because (n − 1) / (1 − f ) is unlikely to be an integer, one may
choose the bootstrap sample size n∗ to be n′ = [[(n − 1) / (1 − f )]], n′′ = n′ + 1,
or a randomization between n′ and n′′, where [[−]] denotes the greatest integer
function. We tend to prefer the first choice, n∗ = n′, because it gives a conservative
estimator of variance and its bias should be small enough in many circumstances.
We are not enthusiastic about the third choice, even though it can give a technically
unbiased estimator of variance. For the Monte Carlo version of this bootstrap
estimator, one would incorporate an independent prerandomization between n′

and n′′ into each bootstrap replicate.
BWO Variant. Gross (1980) introduced a without replacement bootstrap (or

BWO) in which the bootstrap sample is obtained by srs wor sampling. Sampling
for both the parent and the bootstrap samples now share the without replacement
feature. In its day, this variant represented a real advance in theory, yet it now
seems too cumbersome for practical implementation in most surveys.

The four-step procedure is as follows:

(i) Let k = N/n and copy each member of the parent sample k times to create a

new pseudopopulation of size N , say U s , denoting the unit values by
{

y′
j

}N

j=1
.

Exactly k of the y′
j values are equal to yi for i = 1, . . . , n.

(ii) Draw the bootstrap sample s∗ as an srs wor sample of size n∗ from U s .

(iii) Evaluate the bootstrap mean ȳ∗ = (1/n∗)
∑n∗

i=1 y∗
i .

(iv) Either compute the theoretical bootstrap estimator v1BWO (ȳ) = Var∗ {ȳ∗} or
repeat steps i – iii a large number of times, A, and compute the Monte Carlo
version

v2BWO (ȳ) = 1

A − 1

A∑
α=1

(
ȳ∗
α − 1

A

A∑
α′=1

ȳ∗
α

′

)2

.

Because s∗ is obtained by srs wor sampling from U s , the conditional expectation
and variance of ȳ∗ take the familiar form shown in Section 1.4. The conditional
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expectation is

E∗
{

ȳ∗} = 1

N

N∑
j=1

y′
j

= k

N

∑
i∈s

yi

= ȳ,

and the conditional variance is

Var∗
{

ȳ∗} = (
1 − f ∗) 1

n∗
1

N − 1

N∑
j=1

(
y′

j − 1

N

N∑
j ′=1

y′
j ′

)2

= (
1 − f ∗) 1

n∗
k

N − 1

∑
i∈s

(yi − ȳ)2 (5.2.4)

= (
1 − f ∗) 1

n∗
N

N − 1

k

N
(n − 1) s2,

where f ∗ = n∗/N and s2 = (n − 1)−1
∑

(yi − ȳ)2.
From (5.2.4) we conclude that the theoretical bootstrap estimator

v1BWO (ȳ) = Var∗
{

ȳ∗}
is not generally unbiased or equal to the textbook estimator of variance v (ȳ). If
n∗ = n, then

v1BWO (ȳ) = (1 − f )
1

n
s2

(
N

N − 1

n − 1

n

)

and the bootstrap estimator is biased by the factor C = N (n − 1) / {(N − 1) n}. To
achieve unbiasedness, one could redefine the bootstrap estimator by multiplying
through by C−1,

v1BWO (ȳ) = C−1Var∗
{

ȳ∗} ,

or by working with the rescaled values

y#
i = ȳ + C

1/2
(
y∗

i − ȳ
)
.

Another difficulty that requires additional fiddling is the fact that k = N/n is
not generally an integer. One can alter the method by working with k equal to k ′ =
[[N/n]] , k ′′ = k ′ + 1, or a randomization between these bracketing integer values.
Following step i, this approach creates pseudopopulations of size N ′ = nk ′, N ′′ =
nk ′′, or a randomization between the two. The interested reader should see Bickel
and Freedman (1984) for a complete description of the randomization method.
For the Monte Carlo version of this bootstrap estimator, one would incorporate an
independent prerandomization between n′ and n′′ into each bootstrap replicate.

Mirror-Match Variant. The fourth and final variation on the standard bootstrap
method, introduced to accommodate a substantial sampling fraction, f , is the
mirror-match, due to Sitter (1992a, 1992b). The four-step procedure is as follows:
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(i) Select a subsample (or one random group) of integer size m (1 ≤ m < n) from
the parent sample, s, via srs wor sampling.

(ii) Repeat step i k times,

k = n

m

1 − e

1 − f
,

independently replacing the random groups each time, where e = 1 − m/n.
The bootstrap sample is the consolidation of the selected random groups and
is of size n∗ = mk.

(iii) Evaluate the bootstrap mean ȳ∗ = (1/n∗)
∑n∗

i=1 y∗
i .

(iv) Either compute the theoretical bootstrap estimator v1MM (ȳ) = Var∗ {ȳ∗}, or
repeat steps i – iii a large number of times, A, and compute the Monte Carlo
version

v2MM (ȳ) = 1

A − 1

A∑
α=1

(
ȳ∗
α − 1

A

A∑
α′=1

ȳ∗
α′

)2

.

The bootstrap sample size,

n∗ = n
1 − e

1 − f
,

differs from the parent sample size by the ratio of two finite-population correction
factors. Choosing m = f n implies the subsampling fraction e is the same as the
main sampling fraction f . In this event, n∗ = n.

Let ȳ∗
j be the sample mean of the j-th selected random group, j = 1, . . . , m.

By construction, these sample means are iid random variables with conditional
expectation

E∗
{

ȳ∗
j

} = ȳ

and conditional variance

Var∗
{

ȳ∗
j

} = (1 − e)
1

m
s2,

s2 = 1

n − 1

n∑
i=1

(yi − ȳ)2.

It follows that the bootstrap estimator of variance is

v1MM (ȳ) =
Var∗

{
ȳ∗

j

}
k

= m

n

1 − f

1 − e
(1 − e)

1

m
s2

= (1 − f )
1

n
s2,

which is the textbook and unbiased estimator of the variance Var {ȳ}.
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A practical problem, also encountered for other variants in this section, is that k
is probably not an integer. To address this problem, one could redefine k to equal

k ′ =
[[

n

m

1 − e

1 − f

]]
,

k ′′ = k ′ + 1,or a randomization between k ′ and k ′′. The former choice gives a
conservative estimator of variance. The latter choice potentially gives an unbiased
estimator provided the prerandomization between k ′ and k ′′ is incorporated in the
statement of unbiasedness. Again, for the Monte Carlo version of this bootstrap
estimator, one would include an independent prerandomization into each bootstrap
replicate.

5.2.4. Probability Proportional to Size Sampling
Without Replacement (pps wor)

The last of the basic sampling designs that we will cover in this section is πps
sampling, or pps wor sampling when the inclusion probabilities are proportional
to the measures of size. If Xi is the measure of size for the i-th unit, then the
first-order inclusion probability for a sample of fixed size n is

πi = npi = Xi (X/n)−1 ;

we denote the second-order inclusion probabilities byπi j , which will be determined
by the specific πps sampling algorithm chosen. Brewer and Hanif (1983) give an
extensive analysis of πps designs.

We will work in terms of estimating the population total Y . The standard
Horvitz–Thompson estimator is

Ŷ =
∑
i∈s

yi

πi
=

∑
i∈s

wi yi =1

n

∑
i∈s

ui ,

where the base weight wi is the reciprocal of the inclusion probability and ui =
nwi yi . Our goal is to estimate the variance of Ŷ using a bootstrap procedure. The
textbook (Yates–Grundy) estimator of Var

{
Ŷ

}
, from Section 1.4, is

v
(
Ŷ

) =
n∑

i=1

n∑
j>i

πiπ j − πi j

πi j

(
yi

πi
− y j

π j

)2

.

Unfortunately, the bootstrap method runs into great difficulty dealing with πps
sampling designs. Indeed, we know of no bootstrap variant that results in a fully
unbiased estimator of variance for general n. To make progress, we will resort to
a well-known approximation, namely to treat the sample as if it had been selected
by pps wr sampling. Towards this end, we let u∗

1, . . . , u∗
n∗ be the bootstrap sample
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obtained by srs wr sampling from the parent sample s. The bootstrap copy of Ŷ is
then

Ŷ ∗ = 1

n∗

n∗∑
i=1

u∗
i ,

where

u∗
i = (nwi yi )

∗ ,

and the u∗
i random variables are iid with

E∗
{
u∗

1

} = 1

n

n∑
i=1

ui = Ŷ ,

Var∗
{
u∗

1

} = 1

n

n∑
i=1

(
ui − Ŷ

)2
.

The definition of u∗
i is meant to imply that wi is the weight associated with yi in

the parent sample, and the pairing (wi , yi ) is preserved in specifying the bootstrap
sample.

We find that

Var∗
{
Ŷ ∗} = n

n∗

n∑
i=1

(
wi yi − 1

n
Ŷ

)2

. (5.2.5)

This result follows because the conditional variance depends only on the bootstrap
sampling design, not on the parent sampling design.

We designate this conditional variance as the bootstrap estimator of variance,
v1

(
Ŷ

)
, for the πps sampling design. The choice n∗ = n − 1 gives

v1

(
Ŷ

) = n

n − 1

∑
i∈s

(
wi yi − 1

n
Ŷ

)2

(5.2.6)

= 1

n − 1

n∑
i=1

n∑
j>i

(
yi

πi
− y j

π j

)2

,

which is the textbook and unbiased estimator of variance given pps wr sampling.
By Theorem 2.4.6, we find that v1

(
Ŷ

)
is a biased estimator of the variance in

πps sampling and when n∗ = n − 1 that

Bias
{
v1

(
Ŷ

)} = n

n − 1

[
Var

{
Ŷwr

} − Var
{
Ŷ

}]
,

where Var
{
Ŷwr

}
is the variance of the estimated total given pps wr sampling. Thus,

the bootstrap method tends to overestimate the variance in πps sampling whenever
that variance is smaller than the variance in pps wr sampling. The bias is likely to
be small whenever n and N are both large unless the πps sampling method takes
extreme steps to emphasize the selection of certain pairs of sampling units.

In small samples, the overestimation is aggravated by the factor n/ (n − 1) ≥ 1.
To control the overestimation of variance when n = 2, rescaling is a possibility.
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Let n∗ = n − 1 and define the rescaled value

u#
i = Ŷ +

(
π1π2 − π12

π12

)1/2 (
u∗

i − Ŷ
)
.

The revised bootstrap estimator is

Ŷ # = 1

n∗

n∗∑
i

u#
i ,

and the revised bootstrap estimator of variance is

v1R

(
Ŷ

) = Var∗
{
Ŷ #

}
= π1π2 − π12

π12

Var∗
{
Ŷ ∗} (5.2.7)

= π1π2 − π12

π12

(w1 y1 − w2 y2)2 .

This estimator of Var
{
Ŷ

}
is identical to the textbook (or Yates–Grundy) estimator

of variance. Thus, the bias in variance estimation has been eliminated in this special
case of n = 2. This method could be helpful for two-per-stratum sampling designs.
Unfortunately, it is not obvious how to extend the rescaling variant to general n.
Rescaling only works, however, when π1π2 > π12; that is, when the Yates–Grundy
estimator is positive.

Alternatively, for general n, one could try to correct approximately for the bias
in bootstrap variance estimation by introducing a correction factor variant of the
form

v1F

(
Ŷ

) = (
1 − f̄

)
Var∗

{
Ŷ ∗}

= (
1 − f̄

) n

n − 1

∑
i∈s

(
wi yi − 1

n
Ŷ

)2

,

where n∗ = n − 1 and f̄ = (1/n)
∑n

i πi .
(
1 − f̄

)
is an approximate finite-

population correction factor. While there is no universally accepted theory for
this correction in the context of πps sampling, it offers a simple rule of thumb
for reducing the overestimation of variance created by virtue of the fact that
the uncorrected bootstrap method acts as if the sample were selected by pps wr
sampling.

Throughout this section, we have based our bootstrap method on the premise
that the variance in πps sampling can be estimated by treating the sample as if
it had been obtained by pps wr sampling. Alternative approaches may be fea-
sible. For example, Sitter (1992a) describes a BWO-like procedure for variance
estimation for the Rao, Hartley, and Cochran (1962) sampling design. Generally,
BWO applications seem too cumbersome for most real applications to large-scale,
complex surveys. Kaufman (1998) also describes a bootstrap procedure for pps
sampling.
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5.3. Usage in Stratified Sampling

The extension of the bootstrap method to stratified sampling designs is relatively
straightforward. The guiding principle to keep in mind in using the method is that
the bootstrap replicate should itself be a stratified sample selected from the parent
sample. In this section, we sketch how the method applies in the cases of srs wr,
srs wor, pps wr, and πps sampling within strata. Details about the application to
these sampling designs have already been presented in Section 5.2.

We shall assume the population has been divided into L strata, where Nh de-
notes the number of units in the population in the h-th stratum for h = 1, . . . , L .
Sampling is carried out independently in the various strata, and nh denotes the
sample size in the h-th stratum. The sample observations in the h-th stratum are
yhi for i = 1, . . . , nh .

The bootstrap sample is y∗
hi , for i = 1, . . . , n∗

h and h = 1, . . . , L . Throughout
this section, to keep the presentation simple, we take nh ≥ 2 and n∗

h = nh − 1
in all of the strata. The bootstrap replicates are one unit smaller in size than the
parent sample. The detailed procedures set forth in Section 5.2 should enable the
interested reader to extend the methods to general n∗

h . We also assume throughout
this section that the bootstrap replicate is obtained by srs wr sampling from the
parent sample independently within each stratum. While BWO- and MM-like
extensions are possible, we do not present them here.

For either srs wr or srs wor sampling, the standard estimator of the population
total is

Ŷ =
L∑

h=1

Ŷh,

Ŷh = (Nh/nh)
nh∑

i=1

yhi ,

and its bootstrap copy is

Ŷ ∗ =
L∑

h=1

Ŷ ∗
h ,

Ŷ ∗
h = (

Nh/n∗
h

) n∗
h∑

i=1

yhi .

The bootstrap estimator of Var
{
Ŷ

}
is given by

v1

(
Ŷ

) = Var∗
{
Ŷ ∗} =

L∑
h

Var∗
{
Ŷ ∗

h

}
.

The terms on the right-hand side of this expression are determined in Section 5.2.
By (5.2.3), we find that

v1

(
Ŷ

) =
L∑

h=1

N 2
h

s2
h

nh
, (5.3.1)

s2
h = 1

nh − 1

nh∑
i

(yhi − ȳh)2,
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which is the textbook estimator of variance given srs wr sampling. v1 is an unbiased
estimator of variance for srs wr sampling.

On the other hand, (5.3.1) is a biased estimator of variance for srs wor sampling
because it omits the finite-population correction factors. If the sampling fractions,
fh = nh/Nh , are negligible in all of the strata, the bias should be small andv1 should
be good enough. Otherwise, some effort to mitigate the bias is probably desirable.
The correction factor variant is not feasible here unless the sample size has been al-
located proportionally to strata, in which case (1 − fh) = (1 − f ) for all strata and

v1F

(
Ŷ

) = (1 − f ) Var∗
(
Ŷ ∗)

becomes the textbook (unbiased) estimator of variance. The rescaling variant is
a feasible means of reducing the bias. Define the revised bootstrap observations

y#
hi = ȳh + (1 − fh)

1/2
(
y∗

hi − ȳh
)
,

the bootstrap copy

Ŷ # =
L∑

h=1

Ŷ #
h ,

Ŷ #
h = (

Nh/n∗
h

) n∗
h∑
i

y#
hi ,

and the corresponding bootstrap estimator of variance

v1R

(
Ŷ

) = Var∗
(
Ŷ #

)
.

It is easy to see that v1R reproduces the textbook (unbiased) estimator of variance
for srs wor sampling:

v1R

(
Ŷ

) =
L∑

h=1

N 2
h (1 − fh)

s2
h

nh
.

For pps wr sampling, the standard estimator of the population total is

Ŷ =
L∑

h=1

Ŷh,

Ŷh = 1

nh

nh∑
i=1

zhi ,

zhi = yhi

phi
,

and its bootstrap copy is

Ŷ ∗ =
L∑

h=1

Ŷ ∗
h ,

Ŷ ∗
h = 1

n∗
h

n∗
h∑

i=1

z∗
hi ,

z∗
hi =

(
yhi

phi

)∗
.
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The bootstrap estimator of variance is given by

v1

(
Ŷ

) = Var∗
{
Ŷ ∗} =

L∑
h=1

Var∗
{
Ŷ ∗

h

}
.

By (5.2.1), we find that

v1

(
Ŷ

) =
L∑

h=1

1

nh (nh − 1)

nh∑
i=1

(
zhi − Ŷh

)2
,

which is the textbook (unbiased) estimator of variance.
Finally, for πps sampling, the Horvitz–Thompson estimator is

Ŷ =
L∑

h=1

Ŷh,

Ŷh = 1

nh

nh∑
i=1

uhi ,

uhi = nhwhi yhi ,

whi = 1

πhi
,

and its bootstrap copy is

Ŷ ∗ =
L∑

h=1

Ŷ ∗
h ,

Ŷ ∗
h = 1

n∗
h

n∗
h∑

i=1

u∗
hi ,

u∗
hi = (nhwhi yhi )

∗.

Given the approximation of treating the sample as if it were a pps wr sample, the
bootstrap estimator of variance is (from 5.2.6)

v1

(
Ŷ

) = Var∗
{
Ŷ ∗}

=
L∑

h=1

Var∗
{
Ŷ ∗

h

}
(5.3.2)

=
L∑

h=1

nh

nh − 1

nh∑
i=1

(
whi yhi − 1

nh
Ŷh

)2

.

For πps sampling, (5.3.2) is biased and, in fact, overestimates Var
{
Ŷ

}
to the extent

that the true variance given πps sampling is smaller than the true variance given
pps wr sampling.
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Two-per-stratum sampling designs are used in certain applications in which
nh = 2 for h = 1, . . . , L . The bias in variance estimation can be eliminated by
working with the rescaled observations

u#
hi = Ŷh +

(
πh1πh2 − πh12

πh12

)1/2 (
u∗

hi − Ŷh
)

and the revised bootstrap copy

Ŷ # =
L∑

h=1

Ŷ #
h ,

Ŷ #
h = 1

n∗
h

n∗
h∑

i=1

u#
hi .

5.4. Usage in Multistage Sampling

In this section, we shall address survey designs with two or more stages of
sampling and with pps sampling either with or without replacement at the first
stage. We shall continue to focus on the estimation of the population total,
Y .

Consider an estimator of the form

Ŷ =
L∑
h

Ŷh,

Ŷh = 1

nh

nh∑
i

Ŷhi

phi
= 1

nh

nh∑
i

zhi ,

zhi = Ŷhi/phi .

In this notation, there are L strata, and nh PSUs are selected from the h-th
stratum via pps wr sampling according to the per-draw selection probabilities(
i.e.,

∑nh
i phi = 1

)
. Sampling is assumed to be independent from stratum to stra-

tum. Ŷhi is an estimator of Yhi , the total within the i-th PSU in the h-th stratum, due
to sampling at the second and successive stages of the sampling design. We are not
especially concerned about the form of Ŷhi —it could be linear in the observations,
a ratio estimator of some kind, or something else. Of course, Ŷhi should be good
for estimating Yhi , which implies that it should be unbiased or approximately so.
However, the estimators of variance that follow do not require unbiasedness. In
practical terms, the same estimator (the same functional form) should be used for
each PSU within a stratum.
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To begin, assume pps wr sampling, where it is well-known that an unbiased
estimator of the unconditional variance, Var

{
Ŷ

}
, is given by

v
(
Ŷ

) =
L∑
h

v
(
Ŷh

)

=
L∑
h

1

nh (nh − 1)

nh∑
i

(
zhi − Ŷh

)2
. (5.4.1)

We obtain the bootstrap sample by the following procedure:

(i) Select a sample of n∗
1 PSUs from the parent sample (pseudopopulation) in the

first stratum via srs wr sampling.
(ii) Independently, select a sample of n∗

2 PSUs from the parent sample in the
second stratum via srs wr sampling.

(iii) Repeat step ii independently for each of the remaining strata, h = 3, . . . , L .
(iv) Apply the ultimate cluster principle, as set forth in Section 2.4.1. This means

that when a given PSU is taken into the bootstrap replicate, all second and
successive stage units are taken into the replicate also. The bootstrap replicate
is itself a stratified, multistage sample from the population. Its design is the
same as that of the parent sample.

The bootstrap sample now consists of the z∗
hi for i = 1, . . . , n∗

h and h =
1, . . . , L .

The observations within a given stratum, h, have a common expectation and
variance in bootstrap sampling given by

E∗
{
z∗

hi

} = 1

nh

nh∑
i

zhi = Ŷh,

Var∗
{
z∗

hi

} = 1

nh

nh∑
i

(
zhi − Ŷh

)2
.

Therefore, we find the following theorem.

Theorem 5.4.1. The ideal bootstrap estimator of variance is given by

v1

(
Ŷ

) =
L∑
h

Var∗
{
Ŷ ∗

h

}

=
L∑
h

Var∗
{
z∗

h1

}
n∗

h

(5.4.2)

=
L∑
h

1

n∗
h

1

nh

nh∑
i

(
zhi − Ŷh

)2
.

The estimator (5.4.2) equals the textbook (unbiased) estimator (5.4.1) when n∗
h =

nh − 1.
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For other values of the bootstrap sample size, such as n∗
h = nh , v1 is a biased

estimator of the unconditional variance Var
{
Ŷ

}
. The bias may be substantial for

small nh , such as for two-per-stratum designs.
Next, let us shift attention to multistage designs in which a πps application is

used at the first stage of sampling. The estimator of the population total is now
denoted by

Ŷ =
L∑

h=1

Ŷh

=
L∑

h=1

nh∑
i=1

∑
j∈shi

whij yhij

=
L∑

h=1

1

nh

nh∑
i=1

uhi.,

uhi j = nhwhij yhij,

uhi. =
∑
j∈shi

uhij,

where whi j is the survey weight attached to the (h, i, j)-th ultimate sampling unit
(USU) and shi is the observed set of USUs obtained as a result of sampling at the
second and successive stages within the (h, i)-th PSU.

Although we have shifted to without replacement sampling at the first stage, we
shall continue to specify the bootstrap sample as if we had used with replacement
sampling. We employ the five-step procedure that follows (5.4.1). The bootstrap
sample consists of

u∗
hi. =

(∑
j∈shi

nhwhij yhij

)∗

for i = 1, . . . , n∗
h and h = 1, . . . , L . This notation is intended to convey the ulti-

mate cluster principle, namely that selection of the PSU into the bootstrap replicate
brings with it all associated second and successive stage units.

The bootstrap copy of Ŷ is given by

Ŷ ∗ =
L∑

h=1

Ŷ ∗
h =

L∑
h=1

1

n∗
h

n∗
h∑

i=1

u∗
hi. (5.4.3)

=
L∑

h=1

nh∑
i=1

∑
j∈shi

wαhi j yhij,

where the bootstrap weights are given by

wαhij = tαhi
nh

n∗
h

whij (5.4.4)

and tαhi is the number of times the (h, i)-th PSU in the parent sample is selected into
the bootstrap replicate,α. The valid values are tαhi = 0, 1, . . . , n∗

hi .For nonselected
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PSUs (into the bootstrap sample), tαhi = 0 and the corresponding bootstrap weights
are null, wαhi j = 0. For selected but nonduplicated PSUs (in the bootstrap sample),
tαhi = 1 and the bootstrap weights

wαhij = nh

n∗
h

whij

reflect the product of the original weight in the parent sample and the reciprocal of
the bootstrap sampling fraction. For selected but duplicated PSUs (in the bootstrap
sample), tαhi ≥ 2 and the bootstrap weights reflect the product of the original
weight, the reciprocal of the bootstrap sampling fraction, and the number of times
the PSU was selected.

The ideal bootstrap estimator of variance is now

v1

(
Ŷ

) = Var∗
{
Ŷ ∗} =

L∑
h=1

Var∗
{
Ŷ ∗

h

}

=
L∑

h=1

Var∗
{
u∗

h1.

}
n∗

h

(5.4.5)

=
L∑

h=1

1

n∗
h

1

nh

nh∑
i=1

(
uhi. − Ŷh

)2

=
L∑

h=1

nh

n∗
h

nh∑
i=1

⎛
⎝∑

j∈shi

whi j yhij − 1

nh
Ŷh

⎞
⎠

2

.

Its properties are set forth in the following theorem.

Theorem 5.4.2. Given πps sampling, the ideal bootstrap estimator of the variance
Var

{
Ŷ

}
, given by (5.4.5), is equivalent to the random group estimator of variance

(groups of size 1 PSU) if and only if nh ≥ 2 and n∗
h = nh − 1. In addition to these

conditions, assume that the survey weights are constructed such that

Yhi.

πhi
= E

⎧⎨
⎩

∑
j∈shi

whij yhij|i
⎫⎬
⎭ ,

σ 2
2hi

π2
hi

= Var

⎧⎨
⎩

∑
j∈shi

whij yhij|i
⎫⎬
⎭ ,

and

0 = Cov

⎧⎨
⎩

∑
j∈shi

whij yhij,
∑

j ′∈sh′ i ′

wh′i ′ j ′ yh′i ′ j ′ |i, i ′

⎫⎬
⎭

for (h, i) 	= (
h′, i ′), where Yhi. is the population total within the (h, i)-th selected

PSU and πhi is the known probability of selecting the (h, i)-th PSU. The variance
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component σ 2
2hi is due to sampling at the second and successive stages. Then, the

unconditional expectation of the bootstrap estimator is

E
{
v1

(
Ŷ

)} =
L∑

h=1

⎡
⎣E

⎧⎨
⎩ nh

nh−1

nh∑
i=1

(
Yhi.

πhi
− 1

nh

nh∑
i ′=1

Yhi ′.

πhi ′

)2
⎫⎬
⎭ +

Nh∑
i=1

σ 2
2hi

πhi

⎤
⎦.

(5.4.6)

Because the unconditional variance of Ŷ is given by

Var
{
Ŷ

} =
L∑

h=1

[
Var

{
nh∑

i=1

Yhi.

πhi

}
+

Nh∑
i=1

σ 2
2hi

πhi

]
, (5.4.7)

we conclude that the bootstrap estimator correctly includes the within PSU com-
ponent of variance, reaching a similar finding as for the random group estimator
in (2.4.10). The bias in the bootstrap estimator—the difference between the first
terms on the right-hand sides of (5.4.6) and (5.4.7)—arises only in the between
PSU component of variance. Furthermore, we conclude from Theorem 2.4.6 that
the bias in the bootstrap estimator is

Bias
{
v1

(
Ŷ

)} =
L∑

h=1

nh

nh − 1

(
Varwr

{
1

nh

nh∑
i=1

Yhi.

phi

}
− Varπps

{
nh∑

i=1

Yhi.

πhi

})
,

where Varwr means the variance in pps wr sampling and Varπps means the variance
in πps sampling. The bootstrap estimator is upward biased whenever πps sampling
is superior to pps wr sampling.

For nh = 2, one could consider using the rescaling technique to adjust the boot-
strap estimator of variance to eliminate the bias in the between PSU component
of variance. However, this effort may ultimately be considered unacceptable be-
cause it would introduce bias into the estimation of the within PSU component of
variance.

5.5. Nonlinear Estimators

We now consider bootstrap variance estimation for nonlinear estimators. A general
parameter of the finite population is

θ = g (T) ,

where g is continuously differentiable and T is a p × 1 vector of population totals.
For a general probability sampling plan giving a sample s, let T̂ be the textbook
(unbiased) estimator of T. The survey estimator of the general parameter is θ̂ =
g(T̂).

The bootstrap method for this problem consists of eight broad steps:

(i) Obtain a bootstrap replicate s∗
1 by the methods set forth in Sections 5.2–5.4.
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(ii) Let T̂∗
1 be the bootstrap copy of the estimated totals based upon the bootstrap

replicate.
(iii) Compute the bootstrap copy of the survey estimator θ̂∗

1 = g(T̂∗
1).

(iv) Interest centers on estimating the unconditional variance Var
{
θ̂
}
. If feasible,

compute the ideal bootstrap estimator of variance as v1

(
θ̂
) = Var∗

{
θ̂∗

1

}
and

terminate the bootstrap estimation procedure. Otherwise, if a known, closed-
form expression does not exist for the conditional variance Var∗

{
θ̂∗

1

}
, then

continue to the next steps and use the Monte Carlo method to approximate
the ideal bootstrap estimator.

(v) Draw A − 1 more bootstrap replicates, s∗
α , giving a total of A replicates. The

replicates should be mutually independent.
(vi) Let T̂∗

α be the bootstrap copies of the estimated totals for α = 1, . . . , A.

(vii) Compute the bootstrap copies of the survey estimator θ̂∗
α = g(T̂∗

α) for α =
1, . . . , A.

(viii) Finally, compute the Monte Carlo bootstrap estimator of variance

v2

(
θ̂
) = 1

A − 1

A∑
α=1

(
θ̂∗
α − ˆ̄θ

∗)2

, (5.5.1)

ˆ̄θ
∗ = 1

A

A∑
α=1

θ̂∗
α .

As a conservative alternative, one could compute v2 in terms of squared differ-

ences about θ̂ instead of ˆ̄θ
∗
.

As an example, we show how the method applies to the important problem
of ratio estimation. Suppose we have interviewed a multistage sample selected
within L strata, obtaining measurements yhij, xhij for the j-th ultimate sampling
unit (USU) selected within the i-th primary sampling unit (PSU) obtained in the
h-th stratum. The textbook estimators of the population totals are

Ŷ =
L∑

h=1

nh∑
i=1

mhi∑
j=1

whij yhij,

X̂ =
L∑

h=1

nh∑
i=1

mhi∑
j=1

whijxhij,

where nh is the number of PSUs selected within stratum h, mhi is the number
of USUs interviewed within the (h, i)-th PSU, and whi j is the survey weight for
the (h, i, j)-th USU. The survey weights reflect the reciprocals of the inclusion
probabilities and perhaps other factors, and they are specified such that Ŷ and X̂
are unbiased or nearly unbiased estimators of the corresponding population totals
Y and X .

The ratio of the two totals θ = Y/X is often of interest in survey research.
The usual survey estimator of the population ratio is the ratio of the estimated
totals θ̂ = Ŷ/X̂ . To estimate the unconditional variance of θ̂ , obtain independent
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bootstrap replicates α = 1, . . . , A as in Section 5.4. Compute the bootstrap copies

Ŷ ∗
α =

L∑
h=1

nh∑
i=1

mhi∑
j=1

wαhij yhij,

X̂∗
α =

L∑
h=1

nh∑
i=1

mhi∑
j=1

wαhijxhij,

where the replicate weights are defined in (5.4.4). Also, compute the bootstrap
copies of the ratio θ̂∗

α = Ŷ ∗
α /X̂∗

α , α = 1, . . . , A. Finally, evaluate the bootstrap
estimator of variance v2

(
θ̂
)

as in (5.5.1).
Another prominent parameter of interest in survey research is defined as the

solution to the equation

N∑
i=1

{Yi − μ (Xiθ )}Xi = 0.

The case of a dichotomous (0 or 1) dependent variable y and

μ (xθ ) = exθ

1 + exθ

corresponds to simple logistic regression, while a general dependent variable y and
μ (xθ ) = xθ corresponds to ordinary least squares regression. Given the aforemen-
tioned multistage, stratified sampling plan, the standard estimator θ̂ is defined as
the solution to the equation

L∑
h=1

nh∑
i=1

mhi∑
j=1

whij
{

yhi j − μ
(
xhi jθ

)}
xhi j = 0.

The estimator θ̂ may be obtained by Newton–Raphson iterations

θ̂ (k+1) = θ̂ (k)

+
{

L∑
h=1

nh∑
i=1

mhi∑
j=1

whijμ
′(xhi j θ̂

(k)
)
x2

hi j

}−1 L∑
h=1

nh∑
i=1

mhi∑
j=1

whij
{

yhi j −μ
(
xhi j θ̂

(k)
)}

xhi j ,

where

μ′ (xθ ) = μ (xθ ) {1 − μ (xθ )} , if logistic regression,

= 1, if ordinary least squares regression.

Given bootstrap replicate α, the bootstrap copy of the estimator θ̂∗
α is defined as

the solution to

L∑
h=1

nh∑
i=1

mhi∑
j=1

wαhij {yi − μ (xiθ )} = 0,
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where the replicate weights are defined in (5.4.4). Using A bootstrap replicates
yields the bootstrap estimator of the unconditional variance of θ̂ ,

v2

(
θ̂
) = 1

A − 1

A∑
α=1

(
θ̂∗
α − ˆ̄θ

∗)2

.

The method extends straightforwardly to the multivariate case: μ (Xiθ ), where Xi

is (1 × p) and θ is (p × 1).
Before leaving this section, we briefly address a key question: Why should

one trust the bootstrap method to provide a valuable estimator of variance for a
nonlinear estimator θ̂? An informal answer to this question is that the method works
well for linear estimators, where we have demonstrated that it has the capacity to
reproduce the textbook (unbiased) estimator of variance. The proper choice of n∗

and rescaling may be necessary to achieve exact unbiasedness. Since the method
works for linear statistics, it should also work for nonlinear statistics that have
a local linear quality. This justification for the bootstrap method is no different
from that given in earlier chapters for the random group, BHS, and jackknife
methods.

That said, little is known about the exact theoretical properties of the bootstrap
estimator of variance in small samples. Appendix B.4 presents some asymptotic
theory for the method and establishes conditions under which the normal approx-

imation to
(
θ̂ − θ

)
/

√
v1

(
θ̂
)

is valid and thus in which the bootstrap can be used

with trust to construct statistical confidence intervals.

5.6. Usage for Double Sampling Designs

Double sampling designs are used to achieve various ends, such as improved
precision of survey estimation or the oversampling of a rare population. In this
section, we demonstrate how the bootstrap method can be applied to estimate the
variance for such sampling designs. The guiding principle is similar to that set forth
in Section 2.4.1, namely that the bootstrap replicate should have the same double
sampling design as the parent sample. Here we will assume srs wr sampling at each
phase of the design and that the parameter of interest is the population mean Ȳ .
The bootstrap method readily extends to other double sampling designs (including
other sampling schemes, parameters, and estimators).

Assume the following methods of sampling and estimation.

(i) Draw a sample of size n2 by srs wr sampling and collect the data (yi , xi ) for
the units in the selected sample.

(ii) Independently draw a supplementary sample of size n3 by srs wr sampling
and collect the data xi for the units in this selected sample.

(iii) Construct a regression estimator of the population mean

ȳR = ȳ2 + B (x̄1 − x̄2) ,
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where

ȳ2 = 1

n2

n2∑
i=1

yi ,

x̄2 = 1

n2

n2∑
i=1

xi ,

are the sample means of the y- and x-variables for the sample specified in
step i;

x̄3 = 1

n3

n2+n3∑
i=n2+1

xi

is the sample mean of the x-variable in the supplementary sample; B is a
known constant; n1 = n2 + n3 is the size of the pooled sample; λ2 = n2/n1

and λ3 = n3/n1 are the proportions of the pooled sample; and

x̄1 = λ2 x̄2 + λ3 x̄3

is the mean of the pooled sample.

The premise of the double sampling scheme is that it is much more expensive to
collect data on y than on x . One can afford to collect x on a substantially larger
sample than the sample used to collect y. For example, collection of y may require
a personal interview with respondents, while collection of x may be based on
processing of available administrative records.

The pooled sample n1 is called the first phase of the double sampling scheme.
The sample n2 is called the second phase of the design. x is collected for all
of the units in the first-phase sample, while y is collected only for units in the
second-phase sample.

The regression estimator can be rewritten as

ȳR = r̄2 + Bλ2 x̄2 + Bλ3 x̄3,

where

ri = yi − Bxi ,

r̄2 = 1

n2

n2∑
i=1

ri .

Because the supplementary sample is independent of the second-phase sample, it
follows that

Var {ȳR} = Var {r̄2} + B2λ2
2Var {x̄2} + 2Bλ2Cov {r̄2, x̄2} + B2λ2

3Var {x̄3}

= σ 2
r

n2

+ B2λ2
2

σ 2
x

n2

+ 2Bλ2

σr x

n2

+ B2λ2
3

σ 2
x

n3

,
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where the population variances and covariances are defined by

σ 2
r = 1

N

N∑
i=1

(
Ri − R̄

)2
,

σ 2
x = 1

N

N∑
i=1

(
Xi − X̄

)2
,

σ 2
r x = 1

N

N∑
i=1

(
Ri − R̄

) (
Xi − X̄

)
,

Ri = Yi − Xi B.

Assuming n2 ≥ 2 and n3 ≥ 2, a standard textbook estimator (unbiased) of the
variance Var {ȳR} is

v (ȳR) = s2
2r

n2

+ B2λ2
2

s2
2x

n2

+ 2Bλ2

s2r x

n2

+ B2λ2
3

s2
3x

n3

,

where

s2
2r = 1

n2 − 1

n2∑
i=1

(ri − r̄2)2,

s2
2x = 1

n2 − 1

n2∑
i=1

(xi − x̄2)2,

s2
3x = 1

n3 − 1

n3∑
i=1

(xi − x̄3)2,

s2r x = 1

n2 − 1

n2∑
i=1

(ri − r̄2) (xi − x̄2)2.

The data from the double sampling design are given by (y1, x1, y2, x2, . . . ,

yn2
, xn2

, xn2+1, . . . , xn1
). In this notation, the observations in the supplementary

sample are indexed by i = n2 + 1, n2 + 2, . . . , n1. A bootstrap sample for this
problem consists of a random sample from the second-phase sample and an in-
dependent random sample from the supplementary sample. Thus, the bootstrap
sample uses the two-phase sampling design. Here is the four-step procedure for
specifying a bootstrap sample.

(i) Draw a sample of size n∗
2 from the second-phase sample n2 by srs wr sampling.

(ii) Draw an independent sample of size n∗
3 from the supplementary sample n3

by srs wr sampling.
(iii) The pooled bootstrap replicate, or first-phase sample, consists of the second-

phase sample and the supplementary sample and is of size n∗
1 = n∗

2 + n∗
3.

(iv) Construct the bootstrap copy of the regression estimator

ȳ∗
R = ȳ∗

2 + B
(
x̄∗

1 − x̄∗
2

)
= r̄∗

2 + Bλ2 x̄∗
2 + Bλ3 x̄∗

3 .
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Because bootstrap sampling is independent in the second-phase and supplemen-
tary samples, we find the following theorem.

Theorem 5.6.1. Assuming n∗
2 ≥ 2 and n∗

3 ≥ 2, the ideal bootstrap estimator of
the unconditional variance Var {ȳR} is defined by

v1 (ȳR) = Var∗
{

ȳ∗
R

}
= Var∗

{
r̄∗

2

} + B2λ2
2Var∗

{
x̄∗

2

}
+ 2Bλ2Cov∗

{
r̄∗

2 , x̄∗
2

}
+ B2λ2

3Var∗
{

x̄∗
3

}
= n2 − 1

n2

1

n∗
2

s2
2r + B2λ2

2

n2 − 1

n2

1

n∗
2

s2
2x

+ 2Bλ2

n2 − 1

n2

1

n∗
2

s2r x

+ B2λ2
3

n3 − 1

n3

1

n∗
3

s2
3x .

Furthermore, if n∗
2 = n2 − 1 and n∗

3 = n3 − 1, this ideal bootstrap estimator re-
produces the textbook (unbiased) estimator of variance.

Throughout the foregoing presentation, we assumed B is a fixed and known
constant. Now assume B̂2 is an estimator based upon the second-phase sample, such
as the ordinary least squares estimator B̂2 = ∑

(xi − x̄2) (yi − ȳ2) /
∑

(xi − x̄)2

or the ratio B̂2 = ȳ2/x̄2. In the latter case, the estimator of the population mean
becomes the ratio estimator

ȳR = ȳ2

x̄2

x̄1.

The estimator of the population mean is now nonlinear, and a closed-form, simple
expression for the ideal bootstrap estimator of variance does not exist. We will
resort to the Monte Carlo version of the bootstrap for this problem.

A bootstrap replicate is obtained by steps i –iv above, where the bootstrap copy
of ȳR is now given by

ȳ∗
R = ȳ∗

2 + B̂∗
2

(
x̄∗

1 − x̄∗
2

)
and B̂∗

2 is the estimator B̂2 based upon the n∗
2 units selected into the second phase

of the bootstrap replicate. For example, in the ratio case B̂∗
2 = ȳ∗

2/x̄∗
2 and in the

ordinary least squares case, B̂∗
2 = ∑ (

x∗
i − x̄∗

2

) (
y∗

i − ȳ∗
2

)
/
∑ (

x∗
i − x̄∗

2

)2
.

The complete bootstrap procedure now consists of steps i – iv plus the following
two additional steps:

(v) Replicate steps i–iv independently A − 1 more times.
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(vi) Compute the bootstrap copy ȳ∗
Rα for each bootstrap replicate α = 1, . . . , A.

The bootstrap estimator of the unconditional variance Var {ȳR} is finally given
by

v2 (ȳR) = 1

A − 1

A∑
α=1

(
ȳ∗

Rα − ȳ∗
R.

)2
,

where ȳ∗
R. equals either

∑
ȳ∗

Rα/A or ȳR . In practice, we can recommend
n∗

2 = n2 − 1 and n∗
3 = n3 − 1, as before.

5.7. Example: Variance Estimation for the NLSY97

Examples of bootstrap variance estimation for complex sample surveys are given
by Li et al. (2004), Langlet, Faucher, and Lesage (2003), and Kaufman (1998).
In this final section of Chapter 5, we present an example of the bootstrap method
based on data collected in the National Longitudinal Survey of Youth (NLSY97).
This work continues the example begun in Section 4.7.

We used custom SAS programming to compute the bootstrap estimates.1 Since
we are treating the NLSY97 as a stratified, multistage sampling design, we used the
methods set forth in Section 5.4 to construct A = 200 bootstrap replicates, each of
size n∗

h = nh − 1, for h = 1, . . . , 323. We used the methods of Section 5.5 to con-
struct bootstrap variance estimates for the nonlinear ratio statistics described below.

In Section 4.7, we presented jackknife and BHS variance estimates both with
and without replicate reweighting. We found that the resulting variance estimates
differed only trivially. Thus, in what follows, we present results of the use of the
BHS, jackknife, and bootstrap methods without reweighting for nonresponse and
other factors within each replicate. Replicate weights for the bootstrap method are
based solely on (5.4.4).

Table 5.7.1 shows the estimated percentage of enrolled youths (or students) who
worked during the 2000–01 school year or the summer of 2001. The weighted
estimates are broken down by age (17, 18, or 19) and by age crossed by sex,
race/ethnicity, or grade. These data also appear in Table 4.7.1. The table displays the
estimated standard errors obtained by the BHS, jackknife, and bootstrap methods.
The three standard errors are reasonably close to one another for all of the statistics
studied in this table.

The bootstrap method offers the smallest average standard error (1.82) and yields
the largest standard error for 8 individual domains and the smallest standard error
for 11 domains. By comparison, the BHS method has an average standard error
of 1.85 and is the largest standard error in four cases and the smallest in nine
cases. The jackknife method has the largest average standard error (1.86) and is
the largest standard error in 13 cases and the smallest in 8 cases. Figure 5.7.1 plots

1 All of the calculations for the bootstrap method were performed by Erika Garcia-Lopez
in connection with coursework in the Department of Statistics, University of Chicago.
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Table 5.7.1. Percentage of Students Who Ever Worked During the School Year
or Following Summer

Jackknife BHS Bootstrap
Domain Estimates Standard Error Standard Error Standard Error

Total, age 17 89.0 1.00 0.98 1.05

Male youths 88.5 1.49 1.35 1.42

Female youths 89.6 1.23 1.36 1.32

White non-Hispanic 92.2 1.04 1.09 1.16

Black non-Hispanic 78.7 3.18 2.76 2.53

Hispanic origin 86.8 2.34 2.55 2.91

Grade 11 84.8 2.63 2.63 2.61

Grade 12 90.9 1.19 1.05 1.06

Total, age 18 90.5 1.22 1.21 1.11

Male youths 89.3 2.05 1.90 1.81

Female youths 91.8 1.32 1.55 1.52

White non-Hispanic 92.8 1.47 1.42 1.39

Black non-Hispanic 82.6 2.96 3.13 2.64

Hispanic origin 89.4 2.37 2.35 2.27

Grade 12 86.7 1.91 2.16 2.32

Freshman in college 93.9 1.27 1.34 1.36

Total, age 19 94.1 1.20 1.13 1.12

Male youths 93.8 1.61 1.64 1.66

Female youths 94.4 1.43 1.42 1.43

White non-Hispanic 94.8 1.53 1.44 1.29

Black non-Hispanic 88.9 3.24 3.04 2.91

Hispanic origin 92.2 3.51 3.46 3.46

Freshman in college 95.2 1.91 1.89 1.92

Sophomore in college 95.1 1.42 1.43 1.48
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Figure 5.7.1 Plot of Alternative Standard Error Estimates versus the Jackknife Standard

Error Estimates.
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Table 5.7.2. Estimates of Percentage of Students Who Ever Worked During the
School Year or Following Summer from 200 Bootstrap Replicates: Females,
Age 18

Bootstrap Bootstrap Bootstrap Bootstrap
Replicate Replicate Replicate Replicate
Number Estimates Number Estimates Number Estimates Number Estimates

1 91.18 51 88.23 101 93.24 151 93.22

2 90.91 52 92.08 102 92.58 152 90.20

3 93.33 53 91.70 103 93.10 153 90.52

4 93.41 54 92.50 104 92.69 154 88.98

5 93.12 55 90.92 105 91.78 155 95.30

6 91.66 56 92.62 106 91.83 156 93.12

7 93.91 57 94.35 107 91.59 157 94.31

8 90.90 58 90.28 108 94.34 158 89.95

9 90.81 59 89.01 109 89.65 159 91.35

10 91.10 60 91.12 110 92.89 160 91.88

11 92.69 61 89.41 111 91.10 161 90.65

12 92.49 62 90.27 112 89.45 162 94.47

13 91.30 63 91.02 113 92.25 163 91.78

14 92.78 64 90.05 114 91.83 164 91.07

15 92.81 65 92.83 115 92.35 165 90.98

16 90.43 66 94.06 116 91.45 166 94.01

17 89.95 67 92.47 117 95.00 167 92.00

18 94.49 68 90.62 118 93.42 168 93.50

19 90.21 69 91.08 119 90.43 169 94.63

20 91.09 70 92.46 120 95.10 170 87.78

21 92.29 71 92.09 121 90.94 171 90.13

22 92.85 72 92.15 122 90.97 172 93.30

23 92.47 73 93.07 123 91.21 173 90.48

24 91.82 74 93.76 124 93.64 174 89.47

25 91.60 75 94.28 125 91.94 175 91.25

26 92.41 76 93.93 126 91.87 176 92.10

27 93.73 77 94.96 127 93.10 177 90.53

28 89.28 78 93.33 128 91.09 178 91.93

29 91.55 79 91.20 129 91.40 179 91.22

30 92.66 80 90.56 130 93.34 180 89.64

31 91.98 81 94.94 131 94.20 181 89.84

32 92.00 82 91.80 132 93.40 182 91.00

33 93.74 83 89.07 133 93.53 183 92.18

34 92.44 84 92.72 134 92.50 184 92.23

35 91.35 85 88.56 135 88.47 185 92.89

36 92.41 86 92.18 136 92.55 186 89.55

37 92.77 87 89.07 137 92.99 187 90.34

38 90.88 88 93.50 138 90.32 188 91.93

39 91.62 89 91.66 139 90.37 189 92.22

40 91.29 90 92.91 140 93.93 190 90.23

41 91.11 91 94.40 141 91.21 191 93.06

42 92.38 92 90.72 142 92.09 192 93.17

43 91.99 93 93.44 143 93.31 193 89.90

44 91.07 94 90.72 144 90.88 194 90.05

45 90.85 95 92.66 145 94.04 195 96.00

46 92.10 96 91.51 146 91.46 196 90.20

47 90.90 97 93.64 147 91.02 197 92.48

48 91.29 98 92.49 148 91.33 198 92.68

49 94.02 99 91.08 149 92.84 199 92.48

50 90.58 100 91.16 150 91.52 200 94.00
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Figure 5.7.2 Distribution of 200 Bootstrap Replicate Estimates.

the BHS and bootstrap standard errors versus the jackknife standard errors. The
plot provides visual verification of the closeness of the estimates.

Table 5.7.2 gives the bootstrap replicate estimates for one of the domains studied,
namely females, age 18. For this statistic, there is little difference between θ̂ = 91.8

and ˆ̄θ
∗ = 91.9. The bootstrap estimate of the variance is

v2

(
θ̂
) = 1

200 − 1

200∑
α=1

(
θ̂∗
α − ˆ̄θ

)2

= 2.3104.
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Figure 5.7.4 Plot of the First Bootstrap Replicate Weights versus the Parent Sample

Weights.

Figure 5.7.2 displays the histogram of the 200 bootstrap replicate estimates for
this domain.

Finally, Figures 5.7.3 and 5.7.4 illustrate the parent sample and bootstrap repli-
cate weights using the first replicate. The distribution of parent sample weights is
bimodal, reflecting the designed oversampling of Black and Hispanic youths. The
replicate weights are zero for youths not selected into the replicate and are twice
the parent sample weights for youths selected into the replicate.
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CHAPTER 6

Taylor Series Methods

6.1. Introduction

In sample surveys of both simple and complex designs, it is often desirable or neces-
sary to employ estimators that are nonlinear in the observations. Ratios, differences
of ratios, correlation coefficients, regression coefficients, and poststratified means
are common examples of such estimators. Exact expressions for the sampling vari-
ances of nonlinear estimators are not usually available and, moreover, neither are
simple, unbiased estimators of the variance.

One useful method of estimating the variance of a nonlinear estimator is to
approximate the estimator by a linear function of the observations. Then, variance
formulae appropriate to the specific sampling design can be applied to the linear
approximation. This leads to a biased, but typically consistent, estimator of the
variance of the nonlinear estimator.

This chapter discusses in detail these linearization methods, which rely on the
validity of Taylor series or binomial series expansions. The methods to be discussed
are old and well-known: no attempt is made to assign priority to specific authors. In
Section 6.2, the linearization method is presented for the infinite-population model,
where a considerable body of supporting theory is available. The remainder of the
chapter applies the methods of Section 6.2 to the problems of estimation in finite
populations.

It should be emphasized at the outset that the Taylor series methods can-
not act alone in estimating variances. That is, Taylor series methods per se
do not produce a variance estimator. They merely produce a linear approxima-
tion to the survey statistic of interest. Then other methods, such as those de-
scribed elsewhere in this book, are needed to estimate the variance of the linear
approximation.

226
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6.2. Linear Approximations in the Infinite Population

In this section, we introduce some theory regarding Taylor series approximations
in the context of the infinite-population model. The reason for doing so is that
rigorous theory about these matters is lacking, to some extent, in the context of
the classical finite-population model. Our plan is to provide a brief but rigorous
review of the methods in this section and then in the next section (6.3) to show
how the methods are adapted and applied to finite-population problems.

The concept of order in probability, introduced by Mann and Wald (1943), is
useful when discussing Taylor series approximations. For convenience, we follow
the development given in Fuller (1976). The ideas to be presented apply to random
variables and are analogous to the concepts of order (e.g., 0 and o) discussed in
mathematical analysis.

Let {Yn} be a sequence of p-dimensional random variables and {rn} a sequence
of positive real numbers.

Definition 6.2.1. We say Yn is at most of order in probability (or is bounded in
probability by) rn and write

Yn = 0p(rn)

if, for every ε > 0 , there exists a positive real number Mε such that

P{| Y jn | ≥ Mεrn} ≤ ε, j = 1, . . . , p,

for all n. �

Using Chebyshev’s inequality, it can be shown that any random variable with
finite variance is bounded in probability by the square root of its second moment
about the origin. This result is stated without proof in the following theorem.

Theorem 6.2.1. Let Y1n denote the first element of Yn and suppose that

E{Y 2
1n} = 0(r2

n );

i.e., E{Y 2
1n}/r2

n is bounded. Then

Y1n = 0p(rn).

Proof. See, e.g., Fuller (1976). �

For example, suppose that Y1n is the sample mean of n independent (0, σ 2)
random variables. Then, E{Y 2

1n} = σ 2/n and Theorem 6.2.1 shows that

Y1n = 0p(n−1/2).

The variance expressions to be considered rest on the validity of Taylor’s
theorem for random variables, and the approximations employed may be quantified
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in terms of the order in probability concept. Let g(y) be a real-valued function de-
fined on p-dimensional Euclidean space with continuous partial derivatives of order
2 in an open sphere containing Yn and a. Then, by Taylor’s theorem,

g(Yn) = g(a) +
p∑

j=1

∂g(a)

∂y j
(Y jn − a j ) + Rn(Yn, a), (6.2.1)

where

Rn(Yn, a) =
p∑

j=1

p∑
i=1

1

2!

∂2g(ä)

∂y j ∂yi
(Y jn − a j )(Yin − ai ),

∂g(a)/∂y j is the partial derivative of g(y) with respect to the j-th element of y
evaluated at y = a, ∂2g(ä)/∂y j ∂yi is the second partial derivative of g(y) with
respect to y j and yi evaluated at y = ä, and ä is on the line segment joining Yn

and a. The following theorem establishes the size of the remainder Rn(Yn, a).

Theorem 6.2.2. Let

Yn = a + 0p(rn),

where rn → 0 as n → ∞. Then g(Yn) may be expressed by (6.2.1), where
Rn(Yn, a) = 0p(r2

n ).

Proof. See, e.g., Fuller (1976). �
A univariate version of (6.2.1) follows by letting p = 1.

In stating these results, the reader should note that we have retained only the
linear terms in the Taylor series expansion. This was done to simplify the pre-
sentation and because only the linear terms are used in developing the variance
and variance estimating formulae. The expansion, however, may be extended to a
polynomial of order s − 1 whenever g(·) has s continuous derivatives. See, e.g.,
Fuller (1976).

We now state the principal result of this section.

Theorem 6.2.3. Let

Yn = a + 0p(rn),

where rn → 0 as n → ∞, and let

E{Yn} = a,

E{(Yn − a)(Yn − a)′} = ��n < ∞.

Then the asymptotic variance of g(Yn) to order r3
n is

Ē{(g(Yn) − g(a))2} = d��nd′ + 0p(r3
n ) (6.2.2)

where d is a 1 × p vector with typical element

d j = ∂g(a)

∂y j
.
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(The notation, Ē, in (6.2.2) should be interpreted to mean that (g(Yn) − g(a))2 can
be written as the sum of two random variables, say Xn and Zn, where E{Xn} =
d��nd′ and Zn = 0p(r3

n ). This does not necessarily mean that E{(g(Xn) − g(a))2}
exists for any finite n.)

Proof. Follows directly from Theorem 6.2.2 since

g(Yn) − g(a) = d(Yn − a) + 0p(r2
n ). �

If Yn is the mean of n independent random variables, then a somewhat stronger
result is available.

Theorem 6.2.4. Let {Yn} be a sequence of means of n independent, p-dimensional
random variables, each with mean a, covariance matrix ��, and finite fourth mo-
ments. If g(y) possesses continuous derivatives of order 3 in a neighborhood of
y = a, then the asymptotic variance of g(Yn) to order n−2 is

Ē{(g(Yn) − g(a))2} = (1/n)d��d′ + 0p(n−2).

Proof. See, e.g., Fuller (1976). �
The above theorems generalize immediately to multivariate problems. Suppose

that g1(y), g2(y), . . . , and gq (y) are real-valued functions defined on p-dimensional
Euclidean space with continuous partial derivatives of order 2 in a neighborhood
of a, where 2 ≤ q < ∞.

Theorem 6.2.5. Given the conditions of Theorem 6.2.3, the asymptotic covariance
matrix of G(Yn) = [g1(Yn), . . . , gq (Yn)]′ to order r3

n is

Ē{(G(Yn) − G(a))(G(Yn) − G(a))′} = D��nD′ + 0p(r3
n ), (6.2.3)

where D is a q × p matrix with typical element

di j = ∂gi (a)

y j
. �

Theorem 6.2.6. Given the conditions of Theorem 6.2.4, the asymptotic covaria-
nce matrix of G(Yn) to order n−2 is

Ē{(G(Yn) − G(a))(G(Yn) − G(a))′} = (1/n)D��D′ + 0p(n−2). �

A proof of Theorems 6.2.5 and 6.2.6 may be obtained by expanding each function
gi (Yn), i = 1, . . . , q, in the Taylor series form (6.2.1).

Theorems 6.2.3 and 6.2.4 provide approximate expressions for the variance of a
single nonlinear statistic g(·), while Theorems 6.2.5 and 6.2.6 provide approximate
expressions for the covariance matrix of a vector nonlinear statistic G(·). In the next
section, we show how these results may be adapted to the classical finite-population
model and then show how to provide estimators of variance.



P1: OTE/SPH P2: OTE

SVNY318-Wolter November 30, 2006 21:18

230 6. Taylor Series Methods

6.3. Linear Approximations in the Finite Population

We consider a given finite population N , let Y = (Y1, . . . , Yp)′ denote a

p-dimensional vector of population parameters, and let Ŷ = (Ŷ1, . . . , Ŷp)′ denote a
corresponding vector of estimators based on a sample s of size n(s). The form of the
estimators Ŷi , i = 1, . . . , p, depends on the sampling design generating the sample
s. In most applications of Taylor series methods, the Yi denote population totals or
means for p different survey characteristics and the Ŷi denote standard estimators
of the Yi . Usually the Ŷi are unbiased for the Yi , though in some applications they
may be biased but consistent estimators. To emphasize the functional dependence
on the sample size, we might have subscripted the estimators by n(s); i.e.,

Ŷn(s) = (Ŷ1,n(s), . . . , Ŷp,n(s))
′.

For notational convenience, however, we delete the explicit subscript n(s) from
all variables whenever no confusion will result.

We suppose that the population parameter of interest is θ = g(Y) and adopt the
natural estimator θ̂ = g(Ŷ). The main problems to be addressed in this section
are (1) finding an approximate expression for the design variance of θ̂ and (2)
constructing a suitable estimator of the variance of θ̂ .

If g(y) possesses continuous derivatives of order 2 in an open sphere containing
Ŷ and Y, then by (6.2.1) we may write

θ̂ − θ =
p∑

j=1

∂g(Y)

∂y j
(Ŷ j − Y j ) + Rn(s)(Ŷ, Y),

where

Rn(s)(Ŷ, Y) =
p∑

j=1

p∑
i=1

(1/2!)
∂2g(Ÿ)

∂y j∂yi
(Ŷ j − Y j )(Ŷi − Yi )

and Ÿ is between Ŷ and Y. As we shall see, this form of Taylor’s theorem is useful
for approximating variances in finite-population sampling problems.

In the finite population, it is customary to regard the remainder Rn(s)(Ŷ, Y) as
an “unimportant” component of the difference g(Ŷ) − g(Y) relative to the linear
terms in the Taylor series expansion. Thus, the mean square error (MSE) of θ̂ is
given approximately by

MSE{θ̂} = E{(g(Ŷ) − g(Y))2}

=̇ Var

{
p∑

j=1

∂g(Y)

∂y j
(Ŷ j − Y j )

}

=
p∑

j=1

p∑
i=1

∂g(Y)

∂y j

∂g(Y)

∂yi
Cov{Ŷ j , Ŷi }

= d��n(s)d′, (6.3.1)
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where ��n(s) is the covariance matrix of Ŷ and d is a 1 × p vector with typical
element

d j = ∂g(Y)

∂y j
.

This expression is analogous to (6.2.2) in Theorem 6.2.3. We refer to (6.3.1) as the
first-order approximation to MSE{θ̂}. Second- and higher-order approximations
are possible by extending the Taylor series expansion and retaining the additional
terms in the approximation. Experience with large, complex sample surveys has
shown, however, that the first-order approximation often yields satisfactory re-
sults. The approximation may not be satisfactory for surveys of highly skewed
populations.

A multivariate generalization of (6.3.1) is constructed by analogy with (6.2.3).
Let

G(Y) = [
g1(Y), . . . , gq (Y)

]′

denote a q-dimensional parameter of interest, and suppose that it is estimated by

G(Ŷ) =
[
g1(Ŷ), . . . , gq (Ŷ)

]′
.

Then the matrix of mean square errors and cross products is given approximately
by

E{[G(Ŷ) − G(Y)][G(Ŷ) − G(Y)]′} = D��n(s)D′. (6.3.2)

The matrix D is q × p with typical element

di j = ∂gi (Y)

∂y j
.

For purposes of variance estimation, we shall substitute sample-based estimates
of d (or D) and ��n(s). Suppose that an estimator, say ˆ��n(s), of ��n(s) is available.

The estimator, ˆ��n(s), should be specified in accordance with the sampling design.

Then an estimator of MSE{θ̂} is given by

v(θ̂ ) = d̂ ˆ��n(s)d̂′, (6.3.3)

where d̂ is the 1 × p vector with typical element

d̂ j = ∂g(Ŷ)

∂y j
.

Similarly, an estimator of (6.3.2) is given by

v(G(Ŷ)) = D̂ ˆ��n(s)D̂′, (6.3.4)

where D̂ is the q × p matrix with typical element

d̂i j = ∂gi (Ŷ)

∂y j
.
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In general, v(θ̂ ) will not be an unbiased estimator of either the true MSE{θ̂} or
the approximation d��n(s)d′. It is, however, a consistent estimator provided that Ŷ
and ��n(s), are consistent estimators of Y and ��n(s), respectively. The same remarks
hold true for v(G(Ŷ)). The asymptotic properties of these estimators are discussed
in Appendix B.

The reader may have observed that our development has been in terms of the
mean square error MSE{θ̂}, while our stated purpose was a representation of the
variance Var{θ̂} and construction of a variance estimator. This apparent dichotomy
may seem puzzling at first but is easily explained. The explanation is that to the
order of approximation entertained in (6.3.1), the MSE{θ̂} and the Var{θ̂} are
identical. Of course, the true mean square error satisfies

MSE{θ̂} = Var{θ̂} + Bias2{θ̂}.
But to a first approximation, Var{θ̂} and Bias{θ̂} are of the same order and Bias2{θ̂}
is of lower order. Therefore, MSE{θ̂} and Var{θ̂} are the same to a first approxi-
mation. In the sequel, we may write either Var{θ̂} or MSE{θ̂} in reference to the
approximation, and the reader should not become confused.

For the finite-population model, the validity of the above methods is often crit-
icized. At issue is whether the Taylor series used to develop (6.3.1) converges
and, if so, at what rate does it converge? For the infinite-population model, it was
possible to establish the order of the remainder in the Taylor series expansion,
and it was seen that the remainder was of lower order than the linear terms in
the expansion. On this basis, the remainder was ignored in making approxima-
tions. For the finite-population model, no such results are possible without also
assuming a superpopulation model or a sequence of finite populations increasing in
size.

To illustrate the potential problems, suppose that ȳ and x̄ denote sample means
based on a simple random sample without replacement of size n. The ratio R =
Ȳ/X̄ of population means is to be estimated by R̂ = ȳ/x̄ . Letting

δy = (ȳ − Ȳ )/Ȳ ,

δx = (x̄ − X̄ )/X̄ ,

we can write

R̂ = R(1 + δy)(1 + δx )−1,

and expanding R̂ in a Taylor series about the point δx = 0 gives

R̂ = R(1 + δy)(1 − δx + δ2
x − δ3

x + δ4
x − + . . .)

= R(1 + δy − δx − δyδx + δ2
x . . .).

By the binomial theorem, convergence of this series is guaranteed if and only if
|δx | < 1. Consequently, the approximate formula for MSE{R̂} will be valid if and
only if |δx | < 1 for all ( N

n ) possible samples.
Koop (1972) gives a simple example where the convergence condition is vio-

lated. In this example, N = 20; the unit values are

5, 1, 3, 6, 7, 8, 1, 3, 10, 11, 16, 4, 2, 11, 6, 6, 7, 1, 5, 13;
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and X̄ = 6.3. For one sample of size 4, we find x̄ = (11 + 16 + 11 + 13)/4 =
12.75, and thus |δx | > 1. Samples of size n = 2 and n = 3 also exist where |δx | >

1. However, for samples of size n ≥ 5, convergence is guaranteed. Koop calls
n = 5 the critical sample size.

Even when convergence of the Taylor series is guaranteed for all possible sam-
ples, the series may converge slowly for a substantial number of samples, and the
first-order approximations discussed here may not be adequate. It may be nec-
essary to include additional terms in the Taylor series when approximating the
mean square error. Koop (1968) illustrates this point with numerical examples,
Sukhatme and Sukhatme (1970) give a second-order approximation to MSE{R̂},
and Dippo (1981) derives second-order approximations in general.

In spite of the convergence considerations, the first-order approximation is used
widely in sample surveys from finite populations. Experience has shown that where
the sample size is sufficiently large and where the concepts of efficient survey de-
sign are successfully applied, the first-order Taylor series expansion often provides
reliable approximations. Again, we caution the user that the approximations may
be unreliable in the context of highly skewed populations.

6.4. A Special Case

An important special case of (6.3.1) is discussed by Hansen, Hurwitz, and Madow
(1953). The parameter of interest is of the form

θ = g(Y) = (Y1Y2 . . . Ym)/(Ym+1Ym+2 . . . Yp),

where 1 ≤ m ≤ p. A simple example is the ratio

θ = Y1/Y2

of p = 2 population totals Y1 and Y2. To a first-order approximation,

MSE{θ̂} = θ2
{[

σ11/Y 2
1 + . . . + σmm/Y 2

m

]
+ [

σm+1,m+1/Y 2
m+1 + . . . + σpp/Y 2

p

]
+ 2[σ12/(Y1Y2) + σ13/(Y1Y3)

+ . . . + σm−1,m/(Ym−1Ym)]

+ 2[σm+1,m+2/(Ym+1Ym+2) + σm+1,m+3/(Ym+1Ym+3)

+ . . . + σp−1,p/(Yp−1Yp)]

− 2[σ1,m+1/(Y1Ym+1) + σ1,m+2/(Y1Ym+2) + . . .

+ σm,p/(YmYp])}, (6.4.1)

where

σi j = Cov{Ŷi , Ŷ j }
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is a typical element of ��n(s). If an estimator σ̂i j of σi j is available for i, j =
1, . . . , p, then we estimate MSE{θ̂} by

v(θ̂ ) = θ̂2
{[

σ̂11/Ŷ 2
1 + · · · + σ̂mm/Ŷ 2

m

] + [
σ̂m+1,m+1/Ŷ 2

m+1 + · · · + σ̂pp/Ŷ 2
p

]
+ 2[σ̂12/(Ŷ1Ŷ2) + · · · + σ̂m−1,m/(Ŷm−1Ŷm)]

+ 2[σ̂m+1,m+2/(Ŷm+1Ŷm+2) + · · · + σ̂p−1,p/(Ŷp−1Ŷp)]

− 2[σ̂1,m+1/(Ŷ1Ŷm+1) + · · · + σ̂m,p/(ŶmŶp)]}. (6.4.2)

This expression is easy to remember. All terms (i, j) where i = j pertain to a
relative variance and have a coefficient of +1, whereas terms (i, j) where i �= j
pertain to a relative covariance and have a coefficient of +2 or −2. For the relative
covariances, +2 is used when both i and j are in the numerator or denominator of
θ , and −2 is used otherwise.

In the simple ratio example,

θ̂ = Ŷ1/Ŷ2

and

v(θ̂ ) = θ̂2
(
σ̂11/Ŷ 2

1 + σ̂22/Ŷ 2
2 − 2σ̂12/Ŷ1Ŷ2

)
.

6.5. A Computational Algorithm

In certain circumstances, an alternative form of (6.3.1) and (6.3.3) is available. De-
pending on available software, this form may have some computational advantages
since it avoids the computation of the p × p covariance matrix ˆ��n(s).

We shall assume that Ŷ j is of the form

Ŷ j =
n(s)∑

i

wi yi j , j = 1, . . . , p,

where wi denotes a weight attached to the i-th unit in the sample. By (6.3.1), we
have

MSE{θ̂} =̇ Var

{
p∑
j

∂g(Y)

∂y j
Ŷ j

}

= Var

{
p∑
j

∂g(Y)

∂y j

n(s)∑
i

wi yi j

}

= Var

{
n(s)∑

i

wi

p∑
j

∂g(Y)

∂y j
yi j

}

= Var

{
n(s)∑

i

wivi

}
, (6.5.1)
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where

vi =
p∑
j

∂g(Y)

∂y j
yi j .

Thus, by a simple interchange of summations, we have converted a p-variate
estimation problem into a univariate problem. The new variable vi is a linear
combination of the original variables (yi1, yi2, . . . , yip).

Variance estimation is now simplified computationally because we only estimate
the variance of the single statistic

∑n(s)
i wivi instead of estimating the p × p

covariance matrix ��n(s). The variance estimator that would have been used in
ˆ��n(s) for estimating the diagonal terms of ��n(s) may be used for estimating the
variance of this single statistic. Of course, the Y in ∂g(Y)/∂y j is unknown and must
be replaced by a sample-based estimate. Thus, we apply the variance estimating
formula to the single variate

v̂i =
p∑
j

∂g(Ŷ)

∂y j
yi j .

The expression in (6.5.1) is due to Woodruff (1971). It is a generalization of
the identity Keyfitz (1957) gave for estimating the variance of various estimators
from a stratified design with two primaries per stratum.

6.6. Usage with Other Methods

Irrespective of whether (6.3.1) or (6.5.1) is used in estimating MSE{θ̂}, it is nec-
essary to be able to estimate the variance of a single statistic; e.g.,

n(s)∑
i

wi yi j or
n(s)∑

i

wivi .

For this purpose, we may use the textbook estimator appropriate to the specific
sampling design and estimator. It is also possible to employ the methods of es-
timation discussed in other chapters of this book. For example, we may use the
random group technique, balanced half-sample replication, or jackknife replica-
tion. If a stratified design is used and only one primary has been selected from each
stratum, then we may estimate the variance using the collapsed stratum technique.
When units are selected systematically, we may use one of the biased estimators
of variance discussed in Chapter 8.

6.7. Example: Composite Estimators

In Section 2.10, we discussed the Census Bureau’s retail trade survey. We observed
that estimates of total monthly sales are computed for several selected kinds of
businesses (KB). Further, it was demonstrated how the random group technique
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is used to estimate the variance of the Horvitz–Thompson estimator of total sales.
The Census Bureau, however, does not publish the Horvitz–Thompson estimates.
Rather, composite type estimates are published that utilize the correlation structure
between the various simple estimators to reduce sampling variability.

To illustrate this method of estimation, we consider a given four-digit Stan-
dard Industrial Classification (SIC) code for which an estimate of total sales
is to be published.1 We consider estimation only for the list sample portion of
this survey (the distinction between the list and area samples is discussed in
Section 2.10).

During the monthly enumeration, all noncertainty units that are engaged in the
specific KB report their total sales for both the current and previous months. As
a result of this reporting pattern, two Horvitz–Thompson estimators of total sales
are available for each month. We shall let

Y ′
t,α = Horvitz–Thompson estimator of total sales for month t obtained from

the α-th random group of the sample reporting in month t

and

Y ′′
t,α = Horvitz–Thompson estimator of total sales for month t obtained from

the α-th random group of the sample reporting in month t + 1.

Thus

Y ′
t =

16∑
α=1

Y ′
t,α/16

and

Y ′′
t =

16∑
α=1

Y ′′
t,α/16

are the two simple estimators of total sales for month t for the noncertainty portion
of the list sample. The corresponding simple estimators of total sales, including
both certainty and noncertainty units, are

Yt,0 + Y ′
t

and

Yt,0 + Y ′′
t ,

where Yt,0 denotes the fixed total for certainty establishments for month t . These
expressions are analogous to the expression presented in (2.10.2).

1 The Standard Industrial Classification (SIC) code is a numeric code of two, three, or four
digits that denotes a specific economic activity. Kind-of-business (KB) codes of five or six
digits are assigned by the Census Bureau to produce more detailed classifications within
certain four-digit SIC industries. In the 1990s, the SIC code was replaced by the North
American Industrial Classification System (NAICS) Code.
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One of the composite estimators of total sales that is published, known as the
preliminary composite estimator, is recursively defined by

Y ′′′
t = Y ′

t + βt
X ′

t

X ′′
t−1

(Y ′′′
t−1 − Y ′′

t−1),

where

X ′
t = Horvitz–Thompson estimator of total sales in the three-digit KB

of which the given four-digit KB is a part, for month t, obtained
from the sample reporting in month t,

X ′′
t−1 = Horvitz–Thompson estimator of total sales in the three-digit KB of

which the given four-digit KB is a part, for month t − 1, obtained
from the sample reporting in month t,

Y ′′′
t−1 = preliminary composite estimator for month t − 1,

the βt denote fixed constants, and Y ′
1, Y ′′

0 , X ′
0, X ′

1, X ′′
0 are the initial values. The

values of the βt employed in this survey are as follows:

t βt

1 0.00

2 0.48

3 0.62

4 0.75

5 0.75
...

...

The reader will recognize that Y ′′′
t is a function of Y ′

t− j , Y ′′
t− j−1, X ′

t− j , and X ′
t− j−1

for j = 0, 1, . . . , t − 1. In particular, we can write

Y ′′′
t = g(Y ′

t , Y ′′
t−1, Y ′

t−1, Y ′′
t−2, . . . , Y ′

1, Y ′′
0 , X ′

t , X ′′
t−1, X ′

t−1, X ′′
t−2, . . . , X ′

1, X ′′
0 )

= Y ′
t +

t−1∑
j=1

[
j∏

i=1

βt−i+1

X ′
t−i+1

X ′′
t−i

]
(Y ′

t− j − Y ′′
t− j ). (6.7.1)

Expression (6.7.1) will be useful in deriving a Taylor series estimator of variance.
Towards this end, let

Yt− j = E{Y ′
t− j },

Yt− j−1 = E{Y ′′
t− j−1},

Xt− j = E{X ′
t− j },

and

Xt− j−1 = E{X ′′
t− j−1}

for j = 0, 1, . . . , t − 1. Then, expanding Y ′′′
t about the point

(Yt , Yt−1, Yt−1, Yt−2, . . . , Y1, Y0, Xt , Xt−1, Xt−1, Xt−2, . . . , X1, X0)
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gives the following expression, which is analogous to (6.2.1):

Y ′′′
t =̇ Yt + (Y ′

t − Yt ) +
t−1∑
j=1

j∏
i=1

βt−i+1

Xt−i+1

Xt−i
(Y ′

t− j − Y ′′
t− j ). (6.7.2)

Corresponding to (6.3.1), an approximate expression for the mean square error is

MSE{Y ′′′
t } = d��d′, (6.7.3)

where �� denotes the covariance matrix of (Y ′
t , Y ′′

t−1, Y ′
t−1, Y ′′

t−2, . . . , Y ′
1, Y ′′

0 , X ′
t ,

X ′′
t−1, . . . , X ′

1, X ′′
0 ),

d = (dy, dx ),

dy =
(

1, −βt
Xt

Xt−1

, βt
Xt

Xt−1

, −
2∏

i=1

βt−i−1

Xt−i+1

Xt−i
,

2∏
i=1

βt−i+1

Xt−i+1

Xt−i
, . . . ,

−
t−1∏
i=1

βt−i+1

Xt−i+1

Xt−i
,

t−1∏
i=1

βt−i+1

Xt−i+1

Xt−i
, 0

)
,

and dx denotes a (1 × 2t) vector of zeros. Alternatively, corresponding to (6.5.1),
the mean square error may be approximated by the variance of the single variate

Ỹt = Y ′
t +

t−1∑
j=1

j∏
i=1

βt−i+1

Xt−i+1

Xt−i
(Y ′

t− j − Y ′′
t− j )

= Y ′
t + βt

Xt

Xt−1

(Ỹt−1 − Y ′′
t−1). (6.7.4)

To estimate the variance of Y ′′′
t , we shall employ (6.7.4) and the computational

approach given in Section 6.5. In this problem, variance estimation according to
(6.7.3) would require estimation of the (4t × 4t) covariance matrix ��. For even
moderate values of t , this would seem to involve more computations than the
univariate method of Section 6.5.

Define the random group totals

Ỹt,α = Y ′
t,α + βt

Xt

Xt−1

(Ỹt−1,α − Y ′′
t−1,α)

for α = 1, . . . , 16. If the Xt− j were known for j = 0, . . . , t − 1, then we
would estimate the variance of Ỹt , and thus of Y ′′′

t , by the usual random group
estimator

1

16(15)

16∑
α=1

(Ỹt,α − Ỹt )
2.

Unfortunately, the Xt− j are not known and we must substitute the sample estimates
X ′

t− j and X ′′
t− j−1. This gives

v(Y ′′′
t ) = 1

16(15)

16∑
α=1

(Y ′′′
t,α − Y ′′′

t )2 (6.7.5)
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Table 6.7.1. Random Group Estimates Y ′′′
t,α and Y ′′′′

t−1,α

for August and July 1977 Grocery Store Sales from
the List Sample Portion of the Retail Trade Survey

Random Group α Y ′′′
t,α($1000) Y ′′′′

t−1,α($1000)

1 4,219,456 4,329,856

2 4,691,728 4,771,344

3 4,402,960 4,542,464

4 4,122,576 4,127,136

5 4,094,112 4,223,040

6 4,368,000 4,577,456

7 4,426,576 4,427,376

8 4,869,232 4,996,480

9 4,060,576 4,189,472

10 4,728,976 4,888,912

11 5,054,880 5,182,576

12 3,983,136 4,144,368

13 4,712,880 4,887,360

14 3,930,624 4,110,896

15 4,358,976 4,574,752

16 4,010,880 4,081,936

as our final estimator of variance, where

Y ′′′
t,α = Y ′

t,α + βt
X ′

t

X ′′
t−1

(Y ′′′
t−1,α − Y ′′

t−1,α)

for α = 1, . . . , 16.

To illustrate this methodology, Table 6.7.1 gives the quantities Y ′′′
t,α correspond-

ing to August 1977 grocery store sales. The computations associated with v(Y ′′′
t )

are presented in Table 6.7.2.
The Census Bureau also publishes a second composite estimator of total sales,

known as the final composite estimator. For the noncertainty portion of a given
four-digit KB, this estimator is defined by

Y ′′′′
t = (1 − γt )Y

′′
t + γt Y

′′′
t ,

where the γt are fixed constants in the unit interval. This final estimator is not avail-
able until month t + 1 (i.e., when Y ′′

t becomes available), whereas the preliminary
estimator is available in month t . To estimate the variance of Y ′′′′

t , we use

v(Y ′′′′
t ) = 1

16(15)

16∑
α=1

(Y ′′′′
t,α − Y ′′′′

t )2, (6.7.6)

where

Y ′′′′
t,α = (1 − γt )Y

′′
t,α + γt Y

′′′
t,α
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Table 6.7.2. Computation of Y ′′′
t and v(Y ′′′

t ) for August 1977 Grocery Store Sales

By definition, the estimated noncertainty total for August is

Y ′′′
t =

16∑
α=1

Y ′′′
t,α/16

= 4,377,233,

where the unit is $1000. The estimator of variance is

v(Y ′′′
t ) = 1

16(15)

[
16∑

α=1

(Y ′′′2
t,α − 16(Y ′′′

t )2

]

= 1

16(15)
[308,360,448 · 106 − 306,561,280 · 106]

= 7,496,801,207.

To obtain the total estimate of grocery store sales, we add the noncertainty total Y ′′′
t to the

total from the certainty stratum obtained in Section 2.10

Yt,0 + Y ′′′
t = 7,154,943 + 4,377,223

= 11,532,166.

The estimated coefficient of variation associated with this estimator is

cv(Yt,0 + Y ′′′
t ) = √

v(Y ′′′
t )/(Yt,0 + Y ′′′

t )

= 0.0075.

for α = 1, . . . , 16. The development of this estimator of variance is similar to that
of the estimator v(Y ′′′

t ) and utilizes a combination of the random group and the
Taylor series methodologies.

6.8. Example: Simple Ratios

Let Y and X denote two unknown population totals. The natural estimator of the
ratio

R = Y/X

is

R̂ = Ŷ/X̂ ,

where Ŷ and X̂ denote estimators of Y and X . By (6.4.2), the Taylor series estimator
of the variance of R̂ is

v(R̂) = R̂2

[
v(Ŷ )

Ŷ 2
+ v(X̂ )

X̂2
− 2

c(Ŷ , X̂ )

X̂ Ŷ

]
, (6.8.1)
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where v(Ŷ ), v(X̂ ), and c(Ŷ , X̂ ) denote estimators of Var{Ŷ }, Var{X̂}, and
Cov{Ŷ , X̂}, respectively. Naturally, the estimators v(Ŷ ), v(X̂ ), and c(Ŷ , X̂ ) should
be specified in accordance with both the sampling design and the form of the
estimators Ŷ and X̂ . This formula for v(R̂) is well-known, having appeared
in almost all of the basic sampling textbooks. In many cases, however, it is
discussed in the context of simple random sampling with Ŷ = N ȳ, X̂ = N x̄ .
Equation (6.8.1) indicates how the methodology applies to general sample de-
signs and estimators.

We consider two illustrations of the methodology. The first involves the retail
trade survey (see Sections 2.10 and 6.7). An important parameter is the month-to-
month trend in retail sales. In the notation of Section 6.7, this trend is defined by
Rt = (Yt,0 + Yt )/(Yt−1,0 + Yt−1) and is estimated by

R̂t = (Yt,0 + Y ′′′
t )/(Yt−1,0 + Y ′′′′

t−1).

To estimate the variance of R̂t , we require estimates of Var{Y ′′′
t }, Var{Y ′′′′

t−1}, and
Cov{Y ′′′

t , Y ′′′′
t−1}. As shown in Section 6.7, the variances are estimated by (6.7.5)

and (6.7.6), respectively. In similar fashion, we estimate the covariance by

c(Y ′′′
t , Y ′′′′

t−1) = 1

16(15)

16∑
α=1

(Y ′′′
t,α − Y ′′′

t )(Y ′′′′
t−1,α − Y ′′′′

t−1).

Thus, the estimator of Var{R̂t } corresponding to (6.8.1) is

Var(R̂t ) = R̂2
t

[
v(Y ′′′

t )

(Yt,0 + Y ′′′
t )2

+ v(Y ′′′′
t−1)

(Yt−1,0 + Y ′′′′
t−1)2

− 2
c(Y ′′′

t , Y ′′′′
t−1)

(Yt,0 + Y ′′′
t )(Yt−1,0 + Y ′′′′

t−1)

]
.

The reader will recall that the certainty cases, Yt,0 and Yt−1,0, are fixed and hence do
not contribute to the sampling variance or covariance. They do, however, contribute
to the estimated totals and ratio.

The computations associated with v(R̂t ) for the July–August 1977 trend in
grocery store sales are presented in Table 6.8.1.

The second illustration of (6.8.1) concerns the Consumer Expenditure Survey,
first discussed in Section 2.11. The principal parameters of interest in this sur-
vey were the mean expenditures per consumer unit (CU) for various expenditure
categories. To estimate this parameter for a specific expenditure category, the
estimator

R̂ = Ŷ/X̂

was used, where Ŷ denotes an estimator of total expenditures in the category and X̂
denotes an estimator of the total number of CUs. To estimate the variance of R̂, the
Taylor series estimator v(R̂) in (6.8.1) was used, where v(Ŷ ), v(X̂ ), and c(X̂ , Ŷ )
were given by the random group technique as described in Section 2.11. Table 6.8.2
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Table 6.8.1. Computation of v(R̂t ) for the July–August 1977 Trend in Grocery
Store Sales

By definition, the final composite estimate is

Y ′′′′
t−1 =

16∑
α=1

Y ′′′′
t−1,α/16

= 4,503,464.

The certainty total for July is

Yt−1,0 = 7,612,644

so that the total estimate of July grocery store sales is

Yt−1,0 + Y ′′′′
t−1 = 7,612,644 + 4,503,464

= 12,116,108.

Thus, the estimate of the July–August trend is

R̂t = Yt,0 + Y ′′′
t

Yt−1,0 + Y ′′′′
t−1

= 11,532,166/12,116,108

= 0.952.

The August estimates were derived previously in Table 6.7.2.

We have seen that

v(Y ′′′
t ) = 7,496,801,207,

and in similar fashion

v(Y ′′′′
t−1) = 7,914,864,922,

c(Y ′′′
t , Y ′′′′

t−1) = 7,583,431,907.

An estimate of the variance of R̂t is then

v(R̂t ) = R̂2
t

[
v(Y ′′′

t )

(Yt,0 + Y ′′′
t )2

+ v(Y ′′′′
t−1)

(Yt−1,0 + Y ′′′′
t−1)2

− 2
c(Y ′′′

t , Y ′′′′
t−1)

(Yt,0 + Y ′′′
t )(Yt−1,0 + Y ′′′′

t−1)

]

= 0.9522[0.564 · 10−4 + 0.539 · 10−4 − 2(0.543 · 10−4)]

= 0.154 · 10−5.

The corresponding estimated coefficient of variation (CV) is

cv(R̂t ) =
√

v(R̂t )/R̂t

= 0.0013.
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gives the estimated mean annual expenditures and corresponding estimated stan-
dard errors for several important expenditure categories.

6.9. Example: Difference of Ratios

A common problem is to estimate the difference between two ratios, say

� = X1/Y1 − X2/Y2.

For example, � may represent the difference between the per capita income of men
and women in a certain subgroup of the population. The natural estimator of � is

�̂ = X̂1/Ŷ1 − X̂2/Ŷ2,

where X̂1, X̂2, Ŷ1, and Ŷ2 denote estimators of the totals X1, X2, Y1, and Y2,
respectively.

Since �̂ is a nonlinear statistic, an unbiased estimator of its variance is generally
not available. But using the Taylor series approximation (6.3.1), we have

MSE{�̂} = d��n(s)d′, (6.9.1)

where ��n(s) is the covariance matrix of Ŷ = (X̂1, Ŷ1, X̂2, Ŷ2)′ and

d = (1/Y1, −X1/Y 2
1 , −1/Y2, X2/Y 2

2 ).

Alternatively, (6.5.1) gives

MSE{�̂} = Var{�̃}, (6.9.2)

where

�̃ = X̂1/Y1 − X1Ŷ1/Y 2
1 − X̂2/Y2 + X2Ŷ2/Y 2

2 .

The Taylor series estimator of the variance of �̂ is obtained by substituting sample
estimates of d and ��n(s) into (6.9.1) or, equivalently, by using a variance estimating
formula appropriate to the single variate �̃ and substituting sample estimates for
the unknown X1, Y1, X2, and Y2. In the first case, the estimate is

v(�̂) = d̂ ˆ��n(s)d̂′,

d̂ = (1/Ŷ1, −X̂1/Ŷ 2
1 , −1/Ŷ2, X̂2/Ŷ 2

2 ), (6.9.3)

and ˆ��n(s) is an estimator of ��n(s) that is appropriate to the particular sampling

design. In the second case, the variance estimator for the single variate �̃ is chosen
in accordance with the particular sampling design.

An illustration of these methods is provided by Tepping’s (1976) railroad data.
In Section 3.9, we estimated the difference � between the revenue/cost ratios of
the Seaboard Coast Line Railroad Co. (SCL) and the Southern Railway System
(SRS) and used a set of partially balanced half-samples to estimate the variance.
We now estimate the variance by using the half-sample replicates to estimate ˆ��n(s)

in (6.9.3).
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Table 6.9.1. Replicate Estimates of Cost and Revenues, 1975

Replicate Total Cost Total Cost Total Revenue Total Revenue

(α) (SRS) (SCL) (SRS) (SCL)

1 11,366,520 11,689,909 12,177,561 17,986,679

2 11,694,053 12,138,136 12,361,504 18,630,825

3 11,589,783 11,787,835 12,384,145 18,248,708

4 11,596,152 11,928,088 12,333,576 18,262,438

5 11,712,123 11,732,072 12,538,185 18,217,923

6 11,533,638 11,512,783 12,264,452 17,912,803

7 11,628,764 11,796,974 12,247,203 18,054,720

8 11,334,279 11,629,103 12,235,234 18,194,872

9 11,675,569 11,730,941 12,489,930 18,112,767

10 11,648,330 11,934,904 12,552,283 18,394,625

11 11,925,708 11,718,309 12,773,700 18,354,174

12 11,758,457 11,768,538 12,560,133 18,210,328

13 11,579,382 11,830,534 12,612,850 18,330,331

14 11,724,209 11,594,309 12,532,763 18,251,823

15 11,522,899 11,784,878 12,399,054 18,146,506

16 11,732,878 11,754,311 12,539,323 18,717,982

Source: Tepping (1976).

Table 6.9.1 gives the half-sample estimates of total costs and total revenues for
the two railroads. We shall employ the following notation:

X̂1,α = α-th half-sample estimate of total revenue for SCL,

Ŷ1,α = α-th half-sample estimate of total cost for SCL,

X̂2,α = α-th half-sample estimate of total revenue for SRS,

and

Ŷ2,α = α-th half-sample estimate of total cost for SRS.

The overall estimates are then

X̂1 = 16−1
16∑

α=1

X̂1,α = 18,266,375,

Ŷ1 = 16−1
16∑

α=1

Ŷ1,α = 11,758,070,

X̂2 = 16−1
16∑

α=1

X̂2,α = 12,414,633,

Ŷ2 = 16−1
16∑

α=1

Ŷ2,α = 11,628,627,
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and the difference in the revenue/cost ratios is estimated by

�̂ = X̂1/Ŷ1 − X̂2/Ŷ2 = 0.486.

Using the methodology developed in Chapter 3, we estimate the covariance
matrix of Ŷ = (X̂1, Ŷ1, X̂2, Ŷ2)′ by

ˆ��n(s) =
16∑

α=1

(Ŷα − Ŷ)(Ŷα − Ŷ)′/16

=

⎡
⎢⎢⎣

41,170,548,000 17,075,044,000 15,447,883,000 13,584,127,000
20,113,190,000 1,909,269,400 4,056,642,500

24,991,249,000 18,039,964,000
symmetric 19,963,370,000

⎤
⎥⎥⎦,

where

Ŷα = (X̂1,α, Ŷ1,α, X̂2,α, Ŷ2,α)′.

Also, we have

d̂ = (8.5 · 10−8, −1.3 · 10−7, −8.6 · 10−8, 9.2 · 10−8).

Thus, the Taylor series estimate of the variance of �̂ is

v(�̂) = d̂ ˆ� �n(s)d̂′

= 0.00026.

This result compares closely with the estimate v(�̂) = 0.00029 prepared in
Chapter 3.

Alternatively, we may choose to work with expression (6.9.2). We compute the
estimates

ˆ̃�α = X̂1,α/Ŷ1 − X̂1Ŷ1,α/Ŷ 2
1 − X̂2,α/Ŷ2 + X̂2Ŷ2,α/Y 2

2 ,

ˆ̃� = 16−1
16∑

α=1

ˆ̃�α = X̂1/Ŷ1 − X̂1Ŷ1/Ŷ 2
1 − X̂2/Ŷ2 + X̂2Ŷ2/Ŷ 2

2 = 0,

and then the estimator of variance

v(�̂) =
16∑

α=1

( ˆ̃�α − ˆ̃�)2/16

= 0.00026.

6.10. Example: Exponentials with Application to
Geometric Means

Let Ȳ denote the population mean of a characteristic y, and let ȳ denote an estimator
of Ȳ based on a sample of fixed size n. We assume an arbitrary sampling design,
and ȳ need not necessarily denote the sample mean.



P1: OTE/SPH P2: OTE

SVNY318-Wolter November 30, 2006 21:18

6.10. Example: Exponentials with Application to Geometric Means 247

We suppose that it is desired to estimate θ = eȲ . The natural estimator is

θ̂ = eȳ .

From (6.3.1), we have to a first-order approximation

MSE{θ̂} =̇ e2ȳVar{ȳ}. (6.10.1)

Let v(ȳ) denote an estimator of Var{ȳ} that is appropriate to the particular sampling
design. Then, by (6.3.3) the Taylor series estimator of variance is

v(θ̂ ) = e2ȳv(ȳ). (6.10.2)

These results have immediate application to the problem of estimating the geo-
metric mean of a characteristic x , say

θ = (X1 X2 · · · X N )1/N ,

where we assume Xi > 0 for i = 1, . . . , N . Let Yi = ln(Xi ) for i = 1, . . . , N .
Then

θ = eȲ

and the natural estimator of θ is

θ̂ = eȳ .

From (6.10.2), we may estimate the variance of θ̂ by

v(θ̂ ) = θ̂2v(ȳ), (6.10.3)

where the estimator v(ȳ) is appropriate to the particular sampling design and
estimator and is based on the variable y = ln(x).

To illustrate this methodology, we consider the National Survey of Crime
Severity (NSCS). The NSCS was conducted in 1977 by the Census Bureau as
a supplement to the National Crime Survey. In this illustration we present data
from an NSCS pretest. In the pretest, the respondent was told that a score of
10 applies to the crime, “An offender steals a bicycle parked on the street.”
The respondent was then asked to score approximately 20 additional crimes,
each time comparing the severity of the crime to the bicycle theft. There was
no a priori upper bound to the scores respondents could assign to the various
crimes, and a score of zero was assigned in cases where the respondent felt a
crime had not been committed. For each of the survey characteristics x , it was
desired to estimate the geometric mean of the scores, after deleting the zero
observations.

The sampling design for the NSCS pretest was stratified and highly clustered.
To facilitate presentation of this example, however, we shall act as if the NSCS
were a simple random sample. Thus, the estimator ȳ in (6.10.3) is the sample mean
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Table 6.10.1. Estimates of Geometric Means and Associated
Variances for the NSCS Pretest

Item ȳ v(ȳ) θ̂ v(θ̂ )

1 3.548 0.227 · 10−4 34.74 0.274 · 10−1

2 4.126 0.448 · 10−6 61.95 0.172 · 10−2

3 4.246 0.122 · 10−5 69.82 0.596 · 10−2

4 4.876 0.275 · 10−4 131.06 0.472 · 100

5 5.398 0.248 · 10−4 220.87 0.121 · 10+1

6 4.106 0.242 · 10−5 60.70 0.891 · 10−2

7 4.854 0.325 · 10−4 128.31 0.536 · 100

8 5.056 0.559 · 10−4 156.94 0.138 · 10+1

9 6.596 0.391 · 10−3 731.80 0.209 · 10+3

10 5.437 0.663 · 10−5 229.67 0.350 · 100

11 4.981 0.159 · 10−5 145.55 0.336 · 10−1

12 3.752 0.238 · 10−4 42.61 0.432 · 10−1

of the characteristic y = ln(x), and v(ȳ) is the estimator

v(ȳ) =
n∑

i=1

(yi − ȳ)2/n(n − 1),

where we have ignored the finite population correction (fpc) and n denotes the
sample size after deleting the zero scores. The estimates ȳ, v(ȳ), θ, v(θ̂ ) are pre-
sented in Table 6.10.1 for 12 items from the NSCS pretest. A description of the
items is available in Table 6.10.2.

Table 6.10.2. Twelve Items from the NSCS Pretest

Crime No. Description

1 An offender steals property worth $10 from outside a building.

2 An offender steals property worth $50 from outside a building.

3 An offender steals property worth $100 from outside a building.

4 An offender steals property worth $1000 from outside a building.

5 An offender steals property worth $10,000 from outside a building.

6 An offender breaks into a building and steals property worth $10.

7 An offender does not have a weapon. He threatens to harm a victim unless

the victim gives him money. The victim gives him $10 and is not harmed.

8 An offender threatens a victim with a weapon unless the victim gives him

money. The victim gives him $10 and is not harmed.

9 An offender intentionally injures a victim. As a result, the victim dies.

10 An offender injures a victim. The victim is treated by a doctor and

hospitalized.

11 An offender injures a victim. The victim is treated by a doctor but is not

hospitalized.

12 An offender shoves or pushes a victim. No medical treatment is required.
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6.11. Example: Regression Coefficients

The conceptual framework and theory for the estimation of regression coefficients
from survey data was developed by Tepping (1968), Fuller (1973, 1975, 1984),
Hidiroglou (1974), and Fuller and Hidiroglou (1978). Let Yi and Xi denote the
values of the dependent and independent variables for the i-th elementary unit in
the population, where Xi is 1 × p. The finite population regression coefficients
are defined by the p × 1 vector

B = (
X′ X

)−1
X′ Y, (6.11.1)

where Y = (Y1, . . . , YN )′ and

X =

⎛
⎜⎜⎝

X1

X2
...

XN

⎞
⎟⎟⎠ .

The residuals in the population are Ei = Yi − Xi B.
We assume a probability sample, s, has been selected and interviewed, leading

to the estimated regression coefficients

b = (
X′

sWsXs
)−1

X′
sWsYs, (6.11.2)

where Ys = (y1, . . . , yn(s))
′, Ws = diag(w1, . . . , wn(s)), and

Xs =

⎛
⎜⎜⎝

X1

X2
...

Xn(s)

⎞
⎟⎟⎠ .

The weights arise from the Horvitz–Thompson estimator, which provides for
essentially unbiased estimation of population totals. Thus, wi is at least the re-
ciprocal of the inclusion probability and may, in practice, also incorporate other
adjustments, such as for nonresponse. However, we shall not explicitly account
for any extra variability due to nonresponse in our discussion in this section. For
example, the first element of X′

sWsYs ,∑
i∈s

xi1 yiwi ,

is the essentially unbiased estimator of the first element of X′Y,

N∑
i=1

Xi1Yi ,

which is the population total of the derived variable Xi1Yi defined as the product
of the dependent variable and the first independent variable.

To obtain the first-order approximation to the covariance matrix of b, we expand
the matrix (X′

sWsXs)−1 in a Taylor series about the population value X′ X. This
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gives

b = (
X′

sWsXs
)−1

X′
sWs (XsB + Es)

= B + (
X′

sWsXs
)−1

X′
sWsEs

= B +
{(

X′ X
)−1 − (

X′ X
)−1 (

X′
sWsXs − X′ X

) (
X′ X

)−1 + Remainder
}

×{
X′ E + (

X′
sWsEs − X′ E

) }
,

where ei = yi − xi B, Es = (e1, e2, . . . , en(s))
′, and E = (E1, E2, . . . , EN )′. Be-

cause the elements of X′ E are equal to zero, we have

b − B = (
X′ X

)−1
X′

s WsEs + Reminder,

and the first-order approximation to the mean square error is given by

MSE
{
b
} = E

{
(b − B)(b − B)′

}
= (

X′ X
)−1

E
{
X′

s WsEsE′
sWsXs

} (
X′ X

)−1

= (
X′ X

)−1
G

(
X′ X

)−1
. (6.11.3)

Because the expectation of X′
s WsEs is X′ E = γ, the p × 1 vector of zeros,

the matrix G is nothing more than the p × p covariance matrix of the vector of
estimated totals X′

s WsEs . Let Ĝ denote an estimator of this covariance matrix
appropriate for the given sampling design. Initially, Ĝ is defined in terms of the
residuals Es . But since the residuals are unknown (i.e., B is unknown), we replace
them by the estimated residuals Ês = (ê1,ê2, . . . , ên(s))

′, where êi = yi − xi b. We
also replace the unknown (X′ X)−1 by its sample-based estimator (X′

s WsXs)−1,
giving the Taylor series estimator of the covariance matrix of the estimated regres-
sion coefficients

v(b) = (X′
s WsXs)−1Ĝ(X′

s WsXs)−1. (6.11.4)

We illustrate the development of Ĝ for three common sampling designs: (1) sim-
ple random sampling without replacement, (2) stratified random sampling, and
(3) stratified multistage sampling. A typical element of X′

s WsXs is∑
i∈s

xik ei wi ,

which is the essentially unbiased estimator of the population total of the derived
variable defined as the product of the residual and k-th independent variable. Thus
G is simply the covariance matrix, given the sampling design, of p estimated totals.

First assume srs wor of size n from a population of size N. The (k,l)-th element
of G is given by the familiar expression

gkl = N 2
(

1 − n

N

) 1

n

1

N − 1

N∑
i=1

(
Xik Ei − 1

N

N∑
i ′=1

Xi ′k Ei ′

)

×
(

Xil Ei − 1

N

N∑
i ′=1

Xi ′l Ei ′

)
,
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and its unbiased estimator (assuming B is known) is given by

ĝkl = N 2
(

1 − n

N

) 1

n

1

n − 1

∑
i∈s

(
xikei − 1

n

∑
i ′∈s

xi ′kei ′

)(
xilei − 1

n

∑
i ′∈s

xi ′l ei ′

)

=
(

1 − n

N

) n

n − 1

∑
i∈s

(
xikeiwi − 1

n

∑
i ′∈s

xi ′kei ′wi ′

)

×
(

xileiwi − 1

n

∑
i ′∈s

xi ′l ei ′wi ′

)
,

where wi = N

n
. The basis for these expressions was set forth in Section 1.4.

However, because B is unknown, we update the estimator by replacing the ei by
the êi , as follows:

ĝkl =
(

1 − n

N

) n

n − 1

∑
i∈s

(
xik êiwi − 1

n

∑
i ′∈s

xi ′k êi ′wi ′

)

×
(

xil êiwi − 1

n

∑
i ′∈s

xi ′l êi ′wi ′

)
. (6.11.5)

The finite population correction factor could be omitted if the sampling fraction
is negligible or if one chooses to act conservatively. The weights, as noted earlier,
may be modified by nonresponse or other adjustments. A simplification is available
recognizing that X′

s Ws Ês = γ, giving the alternative expression for the (k,l)-th
element of Ĝ,

ĝkl =
(

1 − n

N

) n

n − 1

∑
i∈s

xik xil ê
2
i w

2
i .

Second, we assume sampling strata labeled h=1, 2, . . . , L, with srs wor sampling
of size nh from the h-th stratum of size Nh . Now the (k,l)-th element of G is given
by

gkl =
L∑

h=1

N 2
h

(
1 − nh

Nh

)
1

nh

1

nh − 1

Nh∑
i=1

(
Xhik Ehi − 1

Nh

Nh∑
i ′=1

Xhi ′k Ehi ′

)

×
(

Xhil Ehi − 1

Nh

Nh∑
i ′=1

Xhi ′l Ehi ′

)
,

and its unbiased estimator (assuming B is known) is given by

ĝkl =
L∑

h=1

(
1 − nh

Nh

)
nh

nh − 1

∑
i∈sh

(
xhikehiwhi − 1

nh

∑
i ′∈sh

xhi ′kehi ′whi ′

)

×
(

xhilehiwhi − 1

nh

∑
i ′∈sh

xhi ′l ehi ′whi ′

)
,
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where the weight before adjustments is whi = Nh

nh
and sh denotes the sample

selected from the h-th stratum. After updating the ehi = yhi − xhi B by êhi = yhi −
xhi b, we have

ĝkl =
L∑

h=1

(
1 − nh

Nh

)
nh

nh − 1

∑
i∈sh

(
xhik êhiwhi − 1

nh

∑
i ′∈sh

xhi ′k êhi ′whi ′

)

×
(

xhil êhiwhi − 1

nh

∑
i ′∈sh

xhi ′l êhi ′whi ′

)
. (6.11.6)

As our third and final illustration, we assume two-stage sampling within L strata.
We select nh primary sampling units (PSUs) from the Nh PSUs in the population
within stratum h using some form of pps wor sampling. The inclusion probabilities
at the first stage of sampling are denoted by πhi . At the second stage, we select an
srs wor of mhi elementary units from the Mhi elementary units in the population
in the (h, i)-th PSU. The weights incorporate the probability of selecting the PSU,
πhi , and the conditional probability of selecting the elementary unit given the PSU,
say π j.hi = Mhi

mhi
. Thus, before adjustments, the weight for the j-th elementary unit

within the (h, i)-th primary unit is whi j = (πhiπ j.hi )
−1.

For convenience, let Zhijk = Xhijk Ehij and let the usual “dot” notation signify

summation over a subscript; e.g., Zhi.k = ∑Mhi
j=1 Zhi jk . Then, a typical element of

the covariance matrix G is given by

gkl =
L∑

h=1

Nh∑
i=1

Nh∑
i ′>i

(
πhiπhi ′ − πhi,hi ′

)( Zhi.k

πhi
− Zhi ′.k

πhi ′

)(
Zhi.l

πhi
− Zhi ′.l

πhi ′

)

+
L∑

h=1

Nh∑
i=1

1

πhi
Cov2

{
mhi∑
j=1

Zhi jk

π j.hi
,

mhi∑
j=1

Zhi jl

π j.hi

}
,

where Cov2 denotes the conditional covariance due to sampling within the PSU.
Assuming the nh are fixed and that all joint inclusion probabilities, πhi,hi ′ , are
positive, the textbook estimator of gkl , obtained from Section 1.4, is given by

ĝkl =
L∑

h=1

nh∑
i=1

nh∑
i ′>i

πhiπhi ′ − πhi,hi ′

πhi,hi ′

(
mhi∑
j=1

whij zhijk −
mhi ′∑
j=1

whi ′ j zhi ′jk

)

×
(

mhi∑
j=1

whij zhijl −
mhi ′∑
h=1

whi ′ j zhi ′ jl

)
+

L∑
h=1

nh∑
i=1

πhi

(
1 − mhi

Mhi

)
mhi

mhi − 1

mhi∑
j=1

×
(

whij zhijk − 1

mhi

mhi∑
j ′=1

whij ′ zhi j ′k

) (
whi j zhijl − 1

mhi

mhi∑
j ′=1

whij ′ zhij ′l

)
.

(6.11.7)

Alternatively, as a presumed conservative approximation, one could consider
using the pps wr estimator of the covariance, which is also the random group
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estimator with one PSU per group. This estimator is

ĝkl =
L∑

h=1

nh

nh − 1

nh∑
i=1

(
mhi∑
j=1

whi j zhi jk − 1

nh

nh∑
i ′=1

mhi ′∑
j=1

whi ′ j zhi ′ jk

)

×
(

mhi∑
j=1

whi j zhi jl − 1

nh

nh∑
i ′=1

mhi ′∑
j=1

whi ′j zhi ′jl

)
. (6.11.8)

Approximate finite-population correction factors could be employed if de-
sired. Further alternatives include the jackknife or BHS estimators of the
covariance.

The z-variable is presently defined in terms of the unknown population residuals.
To make ĝkl a practical estimator, we update it by replacing zhi jk with ẑhi jk =
xhi jk(yhi j − xhi j b) for k = 1, 2,. . . , p.

Before turning to an empirical example, we demonstrate use of the computa-
tional algorithm set forth in Section 6.5. Returning to equation (6.11.4), let

Ds = (
X′

sWsXs
)−1

with typical element dkl . Then, define the new variable

v̂hi jk =
∑

l

dkl xhi jl
(
yhi j − xhi j b

)
for k = 1, . . . , p. The (k,l)-th element of v(b) = Q̂ is obtained by replacing zhi jk

with v̂hi jk . Starting with the textbook estimator in equation (6.11.7), we obtain

q̂kl =
L∑

h=1

nh∑
i=1

nh∑
i ′>i

πhiπhi ′ − πhi,hi ′

πhi,hi ′

(
mhi∑
j=1

whi j v̂hi jk −
mhi ′∑
j=1

whi ′ j v̂hi ′ jk

)

×
(

mhi∑
j=1

whi j v̂hil −
mhi ′∑
j=1

whi ′ j v̂hi ′ jl

)
+

L∑
h=1

nh∑
i=1

πhi

(
1 − mhi

Mhi

)
mhi

mhi − 1

×
mhi∑
j=1

(
whi j v̂hi jk − 1

mhi

mhi∑
j ′=1

whi j ′ v̂hi j ′k

) (
whi j v̂hi jl − 1

mhi

mhi∑
j ′=1

whi j ′ v̂hi j ′l

)
.

(6.11.9)

Starting with the random group estimator in equation (6.11.8) gives

q̂kl =
L∑

h=1

nh

nh − 1

nh∑
i=1

(
mhi∑
j=1

whi j v̂hi jk − 1

nh

nh∑
i ′=1

mhi ′∑
j=1

whi ′ j v̂hi ′ jk

)

×
(

mhi∑
j=1

whi j v̂hi jl − 1

nh

nh∑
i ′=1

mhi ′∑
j=1

whi ′ j v̂hi ′ jl

)
. (6.11.10)

To illustrate these methods, we consider the Early Childhood Longitudinal
Study—Kindergarten Class of 1998–99 (ECLS-K), sponsored by the National
Center for Education Statistics. This panel study used a three-stage sampling
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design with counties or clusters of counties selected as primary sampling units
(PSUs), schools selected within PSUs, and kindergarten students selected within
schools. Overall, 100 PSUs were selected within strata defined by region (North-
east, Midwest, South, West), metropolitan status (MSA, non-MSA), density of
minority populations, school size, and per capita income. There were 24 certainty
PSUs, and two PSUs were selected from each of 38 noncertainty PSUs. Sampling
within strata was with probability proportional to a measure of size (a modified
estimate of the number of five-year-old children). Over 1200 schools were se-
lected within the selected PSUs with probability proportional to the measure of
size. Samples of target size 24 students were selected at random within selected
schools, yielding an overall sample of about 21,000 students. For details of the
sampling design, see NCES (2001).

In what follows, we reanalyze data originally presented by Hoffer and Shagle
(2003) concerning students who participated in the fall 1998 and spring 1999
rounds of interviewing.2 After dropping students with any missing data, 16,025
student records from 939 schools remained in the data set.

We consider the regression of y = fall mathematics score on 18 independent
variables (or x-variables), including

Intercept,
Child Is Female (1 if female, 0 otherwise),
Child Age (in years),
Black (1 if Black, 0 otherwise),
Hispanic (1 if Hispanic, 0 otherwise),
Asian (1 if Asian, 0 otherwise),
Pacific Islander (1 if Pacific Islander, 0 otherwise),
American Indian (1 if American Indian, 0 otherwise),
Mixed Race (1 if mixed race, 0 otherwise),
Household At or Below Poverty Level (1 if ≤ poverty level, 0 otherwise),
Composite SES,
Two-Parent Household (1 if two-parent household, 0 otherwise),
Number of Siblings in Household,
Primary Language not English (1 if primary language not English, 0 other-

wise),
Child Has Disability (1 if disability, 0 otherwise),
School Medium–Low Poverty (1 if school poverty = 18 to 40 percent, 0 other-

wise),
School Medium–High Poverty (1 if school poverty = 41 to 65 percent, 0 other-

wise),
School High Poverty (1 if school poverty = 66 to 100 percent, 0 otherwise).

2 The author is grateful to Tom Hoffer and Shobha Shagle for making available their micro-
data, extracted from ECLS-K files released by the National Center for Education Statistics,
and sharing their expertise in early childhood education.
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Table 6.11.1. Effects of Student-Level Variables and School Poverty on Fall Test
Scores: Full Data Set

Independent Variables b se(b) t Statistic OLS b OLS se(b) OLS t Statistic

Intercept −6.91 0.94 −7.38 −6.69 0.79 −8.52

Child is Female 0.10 0.11 0.90 0.08 0.10 0.84

Child Age (Years) 5.08 0.16 31.43 5.05 0.13 37.77

Black −1.40 0.18 −7.65 −1.30 0.16 −8.01

Hispanic −1.81 0.19 −9.77 −1.78 0.16 −10.95

Asian 1.25 0.36 3.49 1.35 0.26 5.19

Pacific Islander −0.69 0.54 −1.28 −0.73 0.49 −1.50

American Indian −2.47 0.58 −4.28 −2.30 0.42 −5.45

Mixed Race −0.92 0.37 −2.46 −0.88 0.31 −2.85

Household At or

Below Poverty

Level

−0.14 0.13 −1.09 −0.07 0.16 −0.43

Composite SES 2.64 0.12 21.52 2.66 0.08 33.70

Two-Parent Household 0.63 0.11 5.92 0.68 0.13 5.24

Number of Siblings in

Household

−0.39 0.05 −7.44 −0.42 0.05 −8.46

Primary Language

not English

−0.67 0.23 −2.86 −0.59 0.19 −3.15

Child Has Disability −2.17 0.16 −13.38 −2.19 0.14 −15.36

School Medium–Low

Poverty

−1.15 0.21 −5.47 −1.17 0.13 −8.71

School Medium–High

Poverty

−2.41 0.25 −9.75 −2.49 0.15 −16.31

School High Poverty −2.90 0.24 −11.85 −3.00 0.18 −17.06

Table 6.11.1 gives the estimated regression coefficients and standard errors
resulting from the methods of this chapter. In making the calculations, we used
the survey weights produced by the NCES, the definition of the PSUs within
the noncertainty strata, and strata defined for purposes of variance estimation
(including the noncertainty strata plus a subdivision of the certainty strata into
groups of schools). As a useful approximation, we assumed pps wr sampling of
PSUs within strata. For comparison purposes, the table also gives the coefficients
and standard errors resulting from an ordinary least squares (OLS) analysis. Child
Age, Composite SES, Child has Disability, and School High Poverty appear to
have strongly significant effects on math scores. In this particular example, the
invalid OLS analysis does not lead to markedly different conclusions than the
valid design-based analysis.

To enable the reader to replicate the analysis on a manageable amount of data,
we present a reduced data set consisting of 38 student observations. This data set
is not representative of the full data set and is used here strictly to illustrate the
computations required in the analysis. We consider the regression of Fall Math
Score on Intercept, Child Age, Composite SES, Child has Disability, and School
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Table 6.11.2. Reduced Data Set for Study of Effects on Fall Math Scores

Fall Child School

Math Age Composite Child Has High

Stratum PSU Weight Score Intercept (Years) SES Disability Poverty

101 1 224.13 14.48 1.00 5.88 −0.84 0.00 1.00

101 2 171.86 14.01 1.00 5.86 −0.02 0.00 0.00

101 2 168.74 17.80 1.00 5.20 1.19 0.00 0.00

101 2 337.28 15.04 1.00 5.89 −0.03 0.00 0.00

101 2 331.15 18.69 1.00 5.81 −0.09 1.0 0.00

101 2 337.28 17.95 1.00 5.77 0.08 0.00 0.00

101 2 190.86 9.81 1.00 5.72 −0.33 1.00 0.00

101 2 255.06 22.83 1.00 6.13 0.05 0.00 0.00

102 1 317.33 23.66 1.00 5.78 −0.26 0.00 0.00

102 1 317.33 21.36 1.00 6.14 −0.05 0.00 0.00

102 1 409.64 15.95 1.00 6.06 −0.53 1.00 0.00

102 1 409.64 23.63 1.00 6.11 −0.10 0.00 0.00

102 1 409.64 19.29 1.00 5.86 1.84 1.00 0.00

102 1 409.64 19.37 1.00 5.40 0.37 0.00 0.00

102 2 167.66 17.28 1.00 5.95 −0.42 1.00 0.00

102 2 270.42 17.69 1.00 5.48 0.02 0.00 0.00

102 2 470.46 21.29 1.00 5.96 1.44 0.00 0.00

102 2 470.46 14.79 1.00 5.58 −0.08 1.00 0.00

102 2 261.24 11.63 1.00 5.94 −0.81 0.00 1.00

102 2 231.56 18.68 1.00 6.10 −0.51 0.00 0.00

103 1 558.28 12.30 1.00 5.81 −0.10 0.00 0.00

103 1 264.33 17.20 1.00 5.25 0.25 0.00 0.00

103 1 113.44 12.66 1.00 5.84 −0.58 0.00 0.00

103 2 219.08 21.83 1.00 5.88 −0.27 0.00 0.00

104 1 328.61 7.91 1.00 6.28 −0.64 0.00 0.00

104 1 265.22 21.17 1.00 5.34 −0.27 0.00 0.00

104 1 230.32 21.50 1.00 5.98 −0.11 0.00 0.00

104 1 149.99 11.81 1.00 6.12 0.54 0.00 0.00

104 2 76.27 14.18 1.00 5.11 −0.21 0.00 0.00

104 2 92.14 8.74 1.00 5.57 −0.29 0.00 0.00

104 2 78.37 21.92 1.00 5.76 −0.74 0.00 1.00

104 2 62.27 8.67 1.00 4.89 −0.57 0.00 1.00

104 2 222.06 11.78 1.00 5.07 0.37 0.00 1.00

104 2 85.81 20.11 1.00 5.42 −0.06 0.00 0.00

104 2 79.77 8.48 1.00 5.84 −0.51 0.00 0.00

105 1 69.66 11.04 1.00 6.02 −0.61 0.00 1.00

105 2 152.56 19.67 1.00 6.34 0.01 0.00 0.00

105 2 216.01 19.98 1.00 5.68 −0.16 0.00 0.00

High Poverty, the five independent variables with the strongest estimated effects
in the full data set. Table 6.11.2 gives the design variables (stratum and PSU), the
weights, and the dependent and independent variables. The results of the analysis
are given in Table 6.11.3.
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Table 6.11.3. Effects of Student-Level Variables and School Poverty on Fall Test
Scores: Reduced Data Set

Independent

Variables b se(b) t-Statistic

Intercept 9.15 20.70 0.44

Child Age (Years) 1.51 3.59 0.42

Composite SES 2.01 0.50 4.02

Child Has Disability −1.90 1.00 −1.90

School High Poverty −3.64 1.23 −2.95

X′
s Ws Xs /100

Intercept 94.26 546.47 2.24 19.79 9.18

Child Age (Years) 546.47 3176.92 10.15 115.17 51.70

Composite SES 2.24 10.15 36.82 3.36 −4.54

Child Has Disability 19.79 115.17 3.36 19.79 0.00

School High Poverty 9.18 51.70 −4.54 0.00 9.18

Ĝ/10,000

Intercept 5579.96 32979.42 −1229.85 54.47 247.72

Child Age (Years) 32979.42 195761.37 −7484.42 317.76 1458.28

Composite SES −1229.85 −7484.42 332.84 −12.71 −63.21

Child Has Disability 54.47 317.76 −12.71 1.18 5.44

School High Poverty 247.72 1458.28 −63.21 5.44 28.89

v(b)

Intercept 428.41 −74.24 −1.83 3.90 −12.00

Child Age (Years) −74.24 12.90 0.22 −0.86 1.89

Composite SES −1.83 0.22 0.25 0.46 0.52

Child Has Disability 3.90 −0.86 0.46 1.00 0.87

School High Poverty −12.00 1.89 0.52 0.87 1.52

6.12. Example: Poststratification

Given a general sampling design leading to a sample, s, an estimator of the popu-
lation total, Y, is given by

ŶPS =
A∑

α=1

∑
i∈sα

wi yi
QU α∑

i∈sα

wi qi

, (6.12.1)

where the population U is partitioned into A poststrata, Uα is the set of units
in the population classified into the α-th poststratum, sα = s ∩ Uα , Qi ≡ 1, and
QUα

= ∑
i∈Uα

Qi is the total of the q-variable within the α-th poststratum. As in the
preceding section, the weights wi include the reciprocal of the inclusion probability
and possibly an adjustment for nonresponse. It is assumed that the poststrata are
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nonoverlapping and jointly span the entire population, U = U1 ∪ . . . ∪ UA, and
that s is large enough so that all of the sα are nonempty. Otherwise, some of the
poststrata should be collapsed prior to estimation.

To facilitate the processing of the survey data, we sometimes absorb the post-
stratification factor into the weight, giving

ŶPS =
A∑

α=1

∑
i∈sα

w2i yi ,

where the final weights are w2i = wi QUα
/Q̂Uα

for i ∈ sα and Q̂Uα
= ∑

i∈sα

wi qi .

Poststratification differs from the prestratification (or simply stratification)
that is used in the design and implementation of the sample. The classifica-
tion variable(s) defining the poststrata typically are not known at the time of
sampling. They are collected in the survey interview only for units in the sam-
ple. On the other hand, the classification variables used in prestratification are
known in advance of sampling for all units in the population. Poststratifica-
tion is part of the estimation procedure, and it requires that the totals QUα

be
known, or at least precisely estimated from sources independent of the current
survey.

For example, in social surveys it is common to poststratify the observed sample
by age, race/ethnicity, sex, and possibly other characteristics, too, such as edu-
cational attainment. The population totals by cell can be obtained from updated
census data or from a large reference survey (e.g., the U.S. Current Population
Survey). The poststratification variables are not known at the time of sampling for
the individual ultimate sampling units, and thus they cannot be used as stratifiers
in the selection of the sample. Stratification variables for sample implementation
might include various geographic variables; metro/nonmetro status; census vari-
ables for states, countries, or census tracts; or, in an RDD survey, census data for
counties or tracts mapped onto telephone exchanges or area codes, all of which
might be known at the time of sampling.

The poststratified estimator, ŶPS, is nothing more than a regression estimator,
and thus Section 6.11 holds the key to estimating its variance. Consider the linear
model

Yi = Xi B + Ei , (6.12.2)

where the population regression coefficient B is now A × 1 and

Xiα = Qi , if i ∈ sα,

= 0, if i /∈ sα,

for α =1, . . . , A. The x-variables are defined in terms of the auxiliary variable, q,
and one x-variable is set up for each poststratum.
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The estimated regression coefficient defined by equation (6.11.1) now has typical
element

bα =

∑
i∈s

xiα yiwi∑
i∈s

x2
iαwi

=

∑
i∈s

yi xiαwi∑
i∈s

xiαwi

since x2
iα = xiα . Thus, the poststratified estimator can be written as

ŶPS =
A∑

α=1

QUα
bα

= J′Xb,

where J = (1, 1, . . . , 1)′ is N × 1. We conclude from equation (6.11.3) that the
first-order approximation to the variance of the poststratified estimator is

Var
{
ŶPS

} = J′X(X′X)
−1G(X′X)

−1X′J′, (6.12.3)

where G is the covariance matrix of the A × 1 vector X′
sWsEs .

From equation (6.11.4), the corresponding estimator of the variance of the post-
stratified estimator is

v
(
ŶPS

) = J′X(X′
sWsXs)−1Ĝ(X′

sWsXs)−1X′J, (6.12.4)

where X′J = (QU1
, . . . , QUA )′ is assumed known and Ĝ is an estimator of G

specific to the given sampling design.
We studied Ĝ for three illustrative sampling designs in Section 6.11: (1) simple

random sampling without replacement, (2) stratified random sampling, and (3) two-
stage sampling within strata. To give a concrete example here of the variance of
the poststratified estimator, let us assume the stratified random sampling design.
A typical element of Ĝ is

ĝαα′ =
L∑

h=1

(
1 − nh

Nh

)
nh

nh − 1

∑
i∈sh

(
xhiα êhiwhi − 1

nh

∑
i ′∈sh

xhi ′α êhi ′whi ′

)

×
(

xhiα′ êhiwhi − 1

nh

∑
i ′∈sh

xhi ′α′ êhi ′whi ′

)
,

where the estimated residuals are

êhi = yhi − xhi b

= yhi −
A∑

α=1

xhiαbα.

If unit (h, i) is classified in poststratum α, then the residual is the difference between
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the unit’s y-value and its corresponding poststratum mean:

êhi = yhi − b̂α,

b̂α =

L∑
h=1

∑
i∈sh

yhi xhiαwhi

L∑
h=1

∑
i∈sh

xhiαwhi

=

L∑
h=1

∑
i∈sh

yhi xhiαw2hi

L∑
h=1

∑
i∈sh

xhiαw2hi

.

Since X′
sWsXs is a diagonal matrix with α-th element equal to

L∑
h=1

∑
i∈sh

x2
hiαwhi =

L∑
h=1

∑
i∈sh

xhiαwhi = Q̂Uα
,

it follows that the estimator of the variance of the poststratified estimator is

v
(
ŶPS

) =
A∑

α=1

A∑
α′=1

QUα

Q̂Uα

QUα′

Q̂Uα′

L∑
h=1

(
1 − nh

Nh

)
nh

nh − 1

×
∑
i∈sh

(
xhiα êhiwhi − 1

nh

∑
i ′∈sh

xhi ′α êhi ′whi ′

)

×
(

xhiα′ êhiwhi − 1

nh

∑
i ′∈sh

xhi ′α′ êhi ′whi ′

)

=
L∑

h=1

(
1 − nh

Nh

)
nh

nh − 1

×
∑
i ′∈sh

(
êhiwhi

A∑
α=1

xhiα
QUα

Q̂Uα

− 1

nh

∑
i ′∈sh

êhi ′whi ′

A∑
α=1

xhi ′α
QUα

Q̂Uα

)2

=
L∑

h=1

(
1 − nh

Nh

)
nh

nh − 1

∑
i∈sh

(
êhiw2hi − 1

nh

∑
i ′∈sh

êhi ′w2hi ′

)2

. (6.12.5)

Better poststratification schemes partition the population into relatively more ho-
mogeneous cells wherein the residuals êhi and thus the variance are smaller.

For a general sampling design, let v(yi , wi ) be the estimator of variance for the
Horvitz–Thompson estimator of the total of the y-variable. Then an estimator of
the variance of the poststratified estimator may be constructed by replacing yi by
êi = yi − b̂α and wi by w2i ; that is, by computing v(êi , w2i ).
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6.13. Example: Generalized Regression Estimator

Assume the regression model from Section 6.11. Given a sample, s, arising from
a general sampling design, a generalized regression estimator (GREG) of the
population total of the y-variable is defined by

ŶG = J′
sWsYs + J′Xb − J′

sWsXsb

= J′
sWsYs + (J′X − J′

sWsXs)b,

where J is a column vector of N 1’s and Js is a column vector of n(s)1’s. The
estimator can be written as

ŶG = Ŷ + (X .1 − X̂ .1, . . . , X .p − X̂ .p)b

=
∑
i∈s

w2i yi ,

where

Ŷ =
∑
i∈s

wi yi ,

X .k =
N∑

i=1

Xik,

X̂ .k =
∑
i∈s

wi xik,

for k = 1, . . . , p, andw2i = wi {1 + (X .1 − X̂ .1, . . . , X .p − X̂ .p)(X′
sWsXs)−1x′

i }.
See Hidiroglou, Sarndal, and Binder (1995), DeVille, Sarndal, and Sautory (1993),
and Sarndal, Swensson, and Wretman (1989).

The Taylor series expansion is

ŶG − Y = (Ŷ − Y ) + (X .1 − X̂ .1, . . . , X .p − X̂ .p)B + Remainder

=̇
∑
i∈s

wi ei −
N∑

i=1

Ei ,

where Ei = Yi − Xi B and ei = yi − xi B. Thus, the first-order approximation to
the variance of the GREG estimator is

Var
{
ŶG

} = Var

{∑
i∈s

wi ei

}
. (6.13.1)

If J is in the column space of X, then
∑N

i=1 Ei = 0.
The form of equation (6.13.1) and the corresponding estimator of variance

depends on the details of the actual sampling design. For example, for stratified
random sampling, the estimator of the variance is

v

(∑
i∈s

wi ei

)
=

L∑
h=1

(
1 − nh

Nh

)
nh

nh − 1

∑
i∈sh

(
whi ehi − 1

nh

∑
i ′∈sh

whi ′ehi ′

)2

.
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After substituting b for the unknown population parameter B, we have the Taylor
series estimator of the variance of the GREG estimator

v
(
ŶG

) =
L∑

h=1

(
1 − nh

Nh

)
nh

nh − 1

∑
i∈sh

(
whi êhi − 1

nh

∑
i ′∈sh

whi ′ êhi ′

)2

, (6.13.2)

where êhi = yhi − xi b. For srs wor, the estimator is

v
(
ŶG

) =
(

1 − n

N

) n

n − 1

∑
i∈s

(
wi êi − 1

n

∑
i ′∈s

wi ′ êi ′

)2

, (6.13.3)

and for two-stage sampling (pps sampling at the first stage and srs wor at the
second stage) within strata, it is

v
(
ŶG

) =
L∑

h=1

nh

nh − 1

nh∑
i=1

(
mhi∑
j=1

whi j êhi j − 1

nh

nh∑
i ′=1

mhi ′∑
j=1

whi ′ j êhi ′ j

)2

. (6.13.4)

Now let us explore a specific case. Assume a three-way cross-classification of
the population of interest. For example, a population of adults might be cross-
classified by age, race/ethnicity, and sex as depicted in Figure 6.13.1. Let Nabc

denote the size of the population in the (a,b,c)-th cell. A common situation in survey
estimation is where the individual cell sizes are unknown while the margins of the
table—Na.., N.b., and N..c—are known or well-estimated from an independent
reference survey for a = 1, . . . , A, b = 1, . . . , B, and c = 1, . . . , C. We would
like to use this information to construct improved estimators of parameters of the
finite population, such as the population total Y . Note that if the cell sizes were
known, the poststratified estimator discussed in Section 6.12 would be available
for our use.

18--24
25--34
35--44
45--64
65+

Age

Hispanic

Race/Ethnicity

NonHispanic
 Black

NonHispanic
Non-black

Male

Female

Sex

Figure 6.13.1 Cross-Classification by Age, Race/Ethnicity, and Sex.
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Let p = A + B + C − 2 and define the columns of X according to a linear
model with main effects for the rows, columns, and layers of the three-way table:

Xi1 = 1, if unit i is in the first row of the table,
= 0, otherwise;

...
Xi A = 1, if i is in the A-th or the last row of the table,

= 0, otherwise;
Xi,A+1 = 1, if unit i is in the first column of the table,

= 0, otherwise;
...

Xi,A+B−1 = 1, if unit i is in the (B − 1)-st or second from the
last column of the table,

= 0, otherwise;
Xi,A+B = 1, if unit i is in the first layer of the table,

= 0, otherwise;
...

Xi,p = 1, if unit i is in the (C − 1)-st or second from the last
layer of the table,

= 0, otherwise. (6.13.5)

Because we have omitted indicators for the last column and last layer from the X
matrix, the corresponding levels of these variables become reference categories.

The GREG estimator of the population total is now

ŶG = Ŷ + �′b =
∑
i∈s

w2i yi ,

where the sample regression coefficient is

b = (X′
sWsXs)−1X′

sWsYs,

� = (
N1.. − N̂1.., . . . , NA.. − N̂A.., N.1. − N̂.1., . . . , N.,B−1,. − N̂.,B−1,., N..1

−N̂..1, . . . , N..,c−1 − N̂..,c−1

)′
,

and the updated weights are

w2i = wi {1 + �′(X′
sWsXs)−1x′

i }.
The estimator is invariant to the choice of reference categories; we could param-

eterize the regression model somewhat differently than we did without altering the
value of the estimator ŶG. Note that the elements of xi are zeros except for one,
two, or three 1’s signifying the i-th unit’s row, column, and layer.

Variance estimation occurs via equations (6.13.2), (6.13.3), or (6.13.4) as ap-
propriate to the actual sampling design. These methods generalize both to two
dimensions and to four or more dimensions in the cross-classification.
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Brackstone and Rao (1979) discuss the classical raking-ratio estimator (RRE)
of the population total, defined by

ŶRRE =
∑
i∈s

w2i yi ,

where the weights are obtained by an iterative proportional fitting (IPF) algorithm.
One begins with the base weights, wi , possibly after adjusting them for survey
nonresponse, and then iteratively fits them to the known margins of a multiway
table.

To illustrate the RRE, let us continue to use the three-way table discussed above.
Each complete iteration of the IPF algorithm consists of three steps, one each for
rows, columns, and layers. At the t-th complete iteration (t ≥ 2), for units i in the
sample s, we have

w
(t1)
i = w

(t−1,3)
i

A∑
a=1

xia..

Na..∑
i ′∈s xi ′a..w

(t−1,3)
i ′

,

w
(t2)
i = w

(t1)
i

B∑
b=1

xi.b.

N.b.∑
i ′∈s xi ′.b.w

(t1)
i ′

,

and

w
(t3)
i = w

(t2)
i

C∑
c=1

xi..c
N..c∑

i ′∈s xi ′..cw
(t2)
i ′

,

where xia.. = 1 if the i-th unit is classified in the a-th row (= 0 otherwise); xi.b. = 1
if the i-th unit is classified in the b-th column (= 0 otherwise); and xi..c = 1 if the
i-th unit is classified in the c-th layer (= 0 otherwise). To launch the method, take
w

(1,3)
i = wi . Iteration continues until the weights converge, usually after about

three or four iterations. Modifications are often required to handle excessively
large weights. We call the final weights w2i .

Variance estimation is a bit problematic for the RRE. As a simplified approach,
one could treat ŶRRE as if it were the poststratified estimator ŶPS of Section 6.12,
based only on the last dimension (the layer dimension) of the rake. The corre-
sponding estimator of variance is given by (6.12.4). A presumed better approach
arises from the work of Deville and Sarndal (1992), who showed that ŶRRE is
asymptotically equivalent to ŶG, assuming the main-effects model

Yi = XiB + Ei ,

where Xi is defined as in (6.13.5). The estimator of variance for ŶG may be used to
estimate the variance of ŶRRE. For example, assuming stratified random sampling,
srs wor, and two-stage sampling within strata, the estimators of variance are given
by (6.13.2), (6.13.3), and (6.13.4), respectively.
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6.14. Example: Logistic Regression

Let Yi be a dichotomous variable (= 1 if true and = 0 if false) and let Xi be a
1 × p vector of explanatory (or independent) variables. The logistic regression
coefficients in the population B are defined by the equations

N∑
i=1

{Yi − μ(Xi B)}Xik = 0

for k = 1, 2, . . . , p,

μ(Xi B) = eXi B

1 + eXi B
,

Xi = (Xi1, . . . , Xip),

and

X =

⎛
⎜⎜⎜⎝

X1

X2
...
XN

⎞
⎟⎟⎟⎠ .

The defining equations can also be written as

X′Y − X′M(X; B) = γ,

where γ is a p × 1 vector of zeros, M(X; B) = (μ(X1B), . . . , μ(XN B))′, and Y =
(Y1, . . . , YN )′. Note the similarity between this expression and equation (6.11.1),
which defines the finite population regression coefficients, namely

X′Y − X′XB = γ.

The estimated coefficients for the logistic regression model, b, are defined by
the solution to

X′
sWsYs − X′

sWsMs(Xsb) = γ, (6.14.1)

where Xs, Ys, and Ws are defined as in Section 6.11,

μ(xi b) = exib

1 + exib
,

and Ms(Xsb) = (μ(x1b), . . . , μ(xn(s)b))′.
Binder (1983) showed how to estimate the covariance matrix of the estimated

coefficients in a logistic regression model. We expand equation (6.14.1) in a Taylor
series and find

Ms(Xsb) = Ms(XsB) + Ωs(B)Xs(b − B) + Remainder,

where

Ωs(B) = diag
[
μ(x1B){1 − μ(x1B)}, . . . , μ(xn(s)B){1 − μ(xn(s)B)}] .
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It follows that

b − B =̇ (X′Ω(B)X)
−1X′

sWsEs,

where ei = yi − μ(xi B), Es = (e1, e2, . . . , en(s))
′, and

Ω(B) = diag
[
μ(X1B){1 − μ(X1B)}, . . . , μ(XN B){1 − μ(XN B)}] .

The covariance matrix of the logistic regression coefficients is given by

Var{b} =̇ (X′Ω(B)X)
−1 E{X′

sWsEsE′
sWsXs}(X′Ω(B)X)

−1
(6.14.2)

to a first-order approximation. Because the expectation of X′
sWsEs is zero by

definition, the middle term on the right-hand side of equation (6.14.2) is simply
the covariance matrix of X′

sWsEs , given the specific sampling design. A typical
element of X′

sWsEs is ∑
i∈s

xikeiwi ,

which is the standard estimator of the total of the derived variable xikei .
To construct the Taylor series estimator of the covariance matrix of the logistic

regression coefficients, determine consistent estimators of the covariance matrix
of X′

sWsEs , given the sampling design, and D = X′Ω(B)X, and plug them into
equation (6.14.2). The natural estimator of D is

D̂ = X′
sW1/2

s Ω̂s(b)W1/2
s Xs,

where

Ωs(b) = diag
[
μ(x1b){1 − μ(x1b)}, . . . , μ(xn(s)b){1 − μ(xn(s)b)}] .

Let v(X′
sWsEs) denote an estimator of the covariance matrix of X′

sWsEs given
the sampling design. It follows that the estimated covariance matrix of the logistic
regression coefficients is

v(b) = D̂−1v(X′
sWsÊs)D̂−1, (6.14.3)

where êi = yi − μ(xi b) replaces the unknown ei in the construction of the estima-
tor. One can achieve this result by applying the formula for the estimated variance
of an estimated population total, given the sampling design, to the derived variables

ĝ jk = �̂kx′
i êi

for k = 1, . . . , p, where �̂k is the k-th row of D̂−1.
To illustrate these ideas, let us assume a stratified random sampling design. We

used this design as an illustration in Section 6.11, and we use similar notation
here. The standard estimator of the variance of an estimated total Ŷ can be written
as

v(Ŷ ) =
L∑

h=1

(
1 − nh

Nh

)
nh

nh − 1

∑
i∈sh

(
yhiwhi − 1

nh

∑
i ′∈sh

yhi ′whi ′

)2

.
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We apply this formula to the estimated totals X′
sWsEs , giving v(X′

sWsEs). After
substituting the estimated residuals for the unknown population residuals, we have
v(X′

sWsÊs) with typical element

v̂kl =
L∑

h=1

(
1 − nh

Nh

)
nh

nh − 1

∑
i∈sh

(
xhik êhiwhi − 1

nh

∑
i ′∈sh

xhi ′k êhi ′whi ′

)

×
(

xhil êhiwhi − 1

nh

∑
i ′∈sh

xhi ′l êhi ′whi ′

)
.

Then, the estimated covariance matrix of the logistic regression coefficients is
given by equation (6.14.3) or by the p × p matrix v(b) with typical element

ûkl =
L∑

h=1

(
1 − nh

Nh

)
nh

nh − 1

∑
i∈sh

(
ĝhikwhi − 1

nh

∑
i ′∈sh

ĝhi ′kwhi ′

)

×
(

ĝhilwhi − 1

nh

∑
i ′∈sh

ĝhi ′lwhi ′

)
. (6.14.4)

These ideas extend directly to other sampling designs. Assuming srs wor, a
typical element of v(X′

sWsÊs) is given by

v̂kl =
(

1 − n

N

) n

n − 1

∑
i∈s

(
xik êiwi − 1

n

∑
i ′∈s

xi ′k êi ′wi ′

)

×
(

xil êiwi − 1

n

∑
i ′∈s

xi ′l êi ′wi ′

)

and that of v(b) is given by

ûkl =
(

1 − n

N

) n

n − 1

∑
i∈s

(
ĝikwi − 1

n

∑
i ′∈s

ĝi ′kwi ′

)

×
(

ĝilwi − 1

n

∑
i ′∈s

ĝi ′lwi ′

)
.

Assuming two-stage sampling within strata, a typical element of v(X′
sWsÊs) is

given by

v̂kl =
L∑

h=1

nh

nh − 1

nh∑
i=1

(
mhi∑
j=1

xhi jk êhi jwhi j − 1

nh

nh∑
i ′=1

mhi ′∑
j=1

xhi ′ jk êhi ′ jwhi ′ j

)

×
(

mhi∑
j=1

xhi jl êhi jwhi j − 1

nh

nh∑
i ′=1

mhi ′∑
j=1

xhi ′ jl êhi ′ jwhi ′ j

)
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and that of v(b) is given by

v̂kl =
L∑

h=1

nh

nh − 1

nh∑
i=1

(
mhi∑
j=1

ĝhi jkwhi j − 1

nh

nh∑
i ′=1

mhi ′∑
j=1

ĝhi ′ jkwhi ′ j

)

×
(

mhi∑
j=1

ĝhi jlwhi j − 1

nh

nh∑
i ′=1

mhi ′∑
j=1

ĝhi ′ jlwhi ′ j

)
.

The foregoing formula assumes pps wr sampling of PSUs within strata, either
as a good approximation or because that is the sampling design actually used.
One could alternatively use the Yates–Grundy estimator in the event of without
replacement sampling of PSUs.

6.15. Example: Multilevel Analysis

In this final section, we consider variance estimation for the estimated coefficients
in a multilevel model. Let there be L strata in the population, Nh PSUs in the
population in the h-th stratum, and Mhi ultimate sampling units (USUs) in the
population within the (h, i)-th PSU. For example, the PSUs may be schools and
the USUs may be students within a school. Schools could be stratified by region
and poverty status.

As an approximation to the actual sampling design, we will assume pps wr
sampling of PSUs within strata and that sampling is independent from stratum to
stratum. Assume that USUs are sampled in one or more stages within the selected
PSUs and that sampling is independent from PSU to PSU. Let sh be the set of
cooperating PSUs within the h-th stratum, and let shi be the set of cooperating
USUs within the (h, i)-th cooperating PSU.

Let Whi be the final weight for the (h, i)-th cooperating PSU; let Whi j be the
final weight for the (h, i, j)-th respondent USU; and let W j |hi = Whi j/Whi be the
conditional weight for the (h, i, j)-th respondent USU, given the cooperating PSU.
Let y be a dependent variable of interest collected in the survey. The weights are
constructed such that

Ŷ =
L∑

h=1

∑
i∈sh

∑
j∈shi

Whi j Yhi j

is an essentially unbiased estimator of the population total Y and

Ŷhi+ =
∑
j∈shi

W j |hi Yhi j

is an essentially unbiased estimator of the PSU total, given (h, i).
We will consider the problem of estimating the coefficients in the two-level

model

Yhi j = Xhi jβ + ehi j ,

ehi j = uhi + vhi j , (6.15.1)

uhi ∼ N
(
0, σ 2

u

)
,

vhi j ∼ N
(
0, σ 2

v

)
,
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where the unknown coefficients β, are p × 1, and Xhi j is the 1 × p case-specific
vector of independent variables. Also define the matrices

Yhi Mhi × 1
Xhi Mhi × p
ehi Mhi × 1

Vhi =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ . . . ρ

1 ρ . . . ρ

. .

sym · .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

Mhi × Mhi ,

where σ 2 = σ 2
u + σ 2

v and ρ = σ 2
u /σ 2.

The finite-population regression coefficient, given by generalized least squares,
is defined by

B =
(

X′V−1X
)−1

X′V−1Y, (6.15.2)

where X is the Mo × p matrix of stacked blocks

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X11

X12

...
X1M1

...
XL ML

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Yis the Mo × 1 vector Y = (
Y′

11, Y′
12, . . . , Y′

1M1
, . . . , Y′

L ML

)′
, and V is the

Mo × Mo block-diagonal matrix

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V11 0 . . . 0 . . . 0
V12 . . . 0 . . . 0

. . .

. . .

. 0 . . . 0
V1M1

.

. .

. .

sym . 0
VL ML

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Mo =
L∑

h=1

Nh∑
i=1

Mhi is the size of the population. The residuals in the finite

population are Ehi j = Yhi j − Xhi j B.
We use the symbol “+” to designate a summation over a subscript. Thus, Xhi+ is

the summation of the row vectors of independent variables Xhi j over USUs within
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the PSU. Then we find that

B = P−1Q,

P =
L∑

h=1

Nh∑
i=1

(
Mhi∑
j=1

X′
hi j Xhi j − ρ

1 + (Mhi − 1) ρ
X′

hi+Xhi+

)
,

Q =
L∑

h=1

Nh∑
i=1

(
Mhi∑
j=1

X′
hi j Yhi j − ρ

1 + (Mhi − 1) ρ
X′

hi+Yhi+

)
.

(6.15.3)

It is possible to estimate the components of (6.15.3), and thence to estimate B,
using the survey weights. In our work, to simplify the presentation, we will assume
the intraclass correlation coefficient ρ is known. Pfefferman et al. (1998) handle
the general case of unknown ρ. Define

Q̂ =
L∑

h=1

∑
i∈sh

∑
j∈shi

Whi j X′
hi j Yhi j −

L∑
h=1

∑
i∈sh

Whi
ρ

1 + (M̂hi − 1)ρ
X̂′

hi+Ŷhi+,

P̂ =
L∑

h=1

∑
i∈sh

∑
j∈shi

Whi j X′
hi j Xhi j −

L∑
h=1

∑
i∈sh

Whi
ρ

1 + (M̂hi − 1)ρ
X̂′

hi+X̂hi+,

Ŷhi+ =
∑
j∈shi

W j |hi Yhi j ,

X̂hi+ =
∑
j∈shi

W j |hi Xhi j ,

whereM̂hi = ∑
j∈shi

W j |hi estimates the size of the PSU. These statistics are the

sample-based and consistent estimators of P and Q, the components of B. Thus,
the sample-based and consistent estimator of the regression coefficient is given by

b = P̂−1Q̂. (6.15.4)

From model (6.15.1) and estimator (6.15.4), we find that

Q̂ = P̂β +
L∑

h=1

∑
i∈sh

∑
j∈shi

Whi j X′
hi j ehi j

−
L∑

h=1

∑
i∈sh

Whi
ρ

1 + (M̂hi − 1)ρ
X̂′

hi+
∑
j∈shi

W j |hi ehi j .

Thus, the error in the estimated regression coefficient is

b − β = P̂−1
L∑

h=1

∑
i∈sh

d′
hi ,

d′
hi =

∑
j∈shi

Whi j X′
hi j ehi j − ρ

1 + (M̂hi − 1)ρ
Whi X̂′

hi+
∑
j∈shi

W j |hi ehi j ,

=
∑
j∈shi

Whi j

(
X′

hi j − ρ

1 + (M̂hi − 1)ρ
X̂′

hi+

)
ehi j ,
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and the first-order Taylor series approximation is

b − β=̇P−1
L∑

h=1

∑
i∈sh

d′
hi . (6.15.5)

Because sampling was assumed to be independent in the various strata, it follows
that the first-order approximation to the variance is

Var {b} = P−1
L∑

h=1

Var

{∑
i∈sh

d′
hi

}
P−1. (6.15.6)

To estimate the variance, we substitute consistent sample-based estimators for
each of the components of (6.15.6). Of course, P̂ is the estimator of P. Because we
have assumed pps wr sampling of PSUs within strata (at least as an approximation
to the real sampling design), the dhi are independent random variables and the
estimator of the middle component of (6.15.6) is

v

(∑
i∈sh

d′
hi

)
= nh

nh − 1

∑
i∈sh

(dhi − d̄h+)′(dhi − d̄h+),

d̄h+ = 1

nh

∑
i∈sh

dhi .

This estimator is unworkable in its current form because the random variables
dhi are unknown. To proceed with the estimation, we substitute the sample-based
estimators

d̂′
hi =

∑
j∈shi

Whi j

(
X′

hi j − ρ

1 + (M̂hi − 1)ρ
X̂′

hi+

)
êhi j ,

where êhi j = Yhi j − Xhi j b. After substitution into (6.15.6), we have the following
Taylor series estimator of the variance of the estimated regression coefficients:

v (b) = P̂−1

{
L∑

h=1

nh

nh − 1

∑
i∈sh

(d̂hi − ˆ̄dh+)′(d̂hi − ˆ̄dh+)

}
P̂−1, (6.15.7)

ˆ̄dh+ = 1

nh

∑
i∈sh

d̂hi .

In the special case where the intraclass correlation coefficient ρ equals 0, note that
the estimator of variance (6.15.7) reduces to the expression for the estimator of
variance given in (6.11.4) for ordinary least squares regression.
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CHAPTER 7

Generalized Variance Functions

7.1. Introduction

In this chapter, we discuss the possibility of a simple mathematical relationship
connecting the variance or relative variance of a survey estimator to the expectation
of the estimator. If the parameters of the model can be estimated from past data or
from a small subset of the survey items, then variance estimates can be produced
for all survey items simply by evaluating the model at the survey estimates rather
than by direct computation. We shall call this method of variance estimation the
method of generalized variance functions (GVF).

In general, GVFs are applicable to surveys in which the publication schedule is
extraordinarily large, giving, for example, estimates for scores of characteristics,
for each of several demographic subgroups of the total population, and possibly
for a number of geographic areas. For surveys in which the number of published
estimates is manageable, we prefer a direct computation of variance for each
survey statistic, as discussed in other chapters of this book. The primary reasons
for considering GVFs include the following:

(1) Even with modern computers it is usually more costly and time consuming
to estimate variances than to prepare the survey tabulations. If many, perhaps
thousands, of basic estimates are involved, then the cost of a direct computation
of variance for each one may be excessive.

(2) Even if the cost of direct variance estimation can be afforded, the problems of
publishing all of the survey statistics and their corresponding standard errors
may be unmanageable. The presentation of individual standard errors would
essentially double the size of tabular publications.

(3) In surveys where statistics are published for many characteristics and a
great many subpopulations, it may be impossible to anticipate the various

272
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combinations of results (e.g., ratios, differences, etc.) that may be of interest to
users. GVFs may provide a mechanism for the data user to estimate standard
errors for these custom-made combinations of the basic tabulations, without
resorting to direct analysis of public-use files.

(4) Variance estimates themselves are subject to error. In effect, GVFs simul-
taneously estimate variances for groups of statistics rather than individually
estimating the variance statistic-by-statistic. It may be that some additional
stability is imparted to the variance estimates when they are so estimated (as
a group rather than individually). At present, however, there is no theoretical
basis for this claim of additional stability.

An example where GVFs have considerable utility is the Current Population
Survey (CPS), a national survey conducted monthly for the purpose of providing
information about the U.S. labor force. A recent publication from this survey (U.S.
Department of Labor (1976)) contained about 30 pages of tables, giving estimated
totals and proportions for numerous labor force characteristics for various demo-
graphic subgroups of the population. Literally thousands of individual statistics
appear in these tables, and the number of subgroup comparisons that one may
wish to consider number in the tens of thousands. Clearly, a direct computation of
variance for each CPS statistic is not feasible.

The GVF methods discussed in this chapter are mainly applicable to the problem
of variance estimation for an estimated proportion or for an estimate of the total
number of individuals in a certain domain or subpopulation. There have been a
few attempts, not entirely successful, to develop GVF techniques for quantitative
characteristics. Section 7.6 gives an illustration of this work.

7.2. Choice of Model

As noted in the introduction, a GVF is a mathematical model describing the re-
lationship between the variance or relative variance of a survey estimator and its
expectation. In this section, we present a number of possible models and discuss
their rationales.

Let X̂ denote an estimator of the total number of individuals possessing a certain
attribute and let X = E{X̂} denote its expectation. The form of the estimator is
left unspecified: it may be the simple Horvitz–Thompson estimator, it may involve
poststratification, it may be a ratio or regression estimator, and so on. To a certain
extent, the sampling design is also left unspecified. However, many of the applica-
tions of GVFs involve household surveys, where the design features multiple-stage
sampling within strata.

We let

σ 2 = Var{X̂}
denote the variance of X̂ and

V 2 = Var{X̂}/X2
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the relative variance (or relvariance). Most of the GVFs to be considered are
based on the premise that the relative variance V 2 is a decreasing function of the
magnitude of the expectation X .

A simple model that exhibits this property is

V 2 = α + β/X, (7.2.1)

with β > 0. The parameters α and β are unknown and to be estimated. They depend
upon the population, the sampling design, the estimator, and the x-characteristic
itself. Experience has shown that Model (7.2.1) often provides an adequate descrip-
tion of the relationship between V 2 and X . In fact, the Census Bureau has used
this model for the Current Population Survey since 1947 (see Hansen, Hurwitz,
and Madow (1953) and Hanson (1978)).

In an attempt to achieve an even better fit to the data than is possible with (7.2.1),
we may consider the models

V 2 = α + β/X + γ /X2, (7.2.2)

V 2 = (α + β X )−1, (7.2.3)

V 2 = (α + β X + γ X2)−1, (7.2.4)

and

log(V 2) = α − β log(X ). (7.2.5)

Edelman (1967) presents a long list of models that he has investigated empirically.
Unfortunately, there is very little theoretical justification for any of the models

discussed above. There is some limited justification for Model (7.2.1), and this is
summarized in the following paragraphs:

(1) Suppose that the population is composed of N clusters, each of size M. A
simple random sample of n clusters is selected, and each elementary unit in the
selected clusters is enumerated. Then, the variance of the Horvitz–Thompson
estimator X̂ of the population total X is

σ 2 = (NM)2 N − n

N − 1

PQ

nM
{1 + (M − 1)ρ},

where P = X/NM is the population mean per element, Q = 1 − P , and ρ

denotes the intraclass correlation between pairs of elements in the same cluster.
See, e.g., Cochran (1977, pp. 240–243). The relative variance of X̂ is

V 2 = N − n

N − 1

Q

P(nM)
{1 + (M − 1)ρ},

and assuming that the first-stage sampling fraction is negligible, we may write

V 2 = 1

X

NM{1 + (M − 1)ρ}
nM

− {1 + (M − 1)ρ}
nM

.

Thus, for this simple sampling scheme and estimator, (7.2.1) provides an ac-
ceptable model for relating V 2 to X . If the value of the intraclass correlation
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is constant (or approximately so) for a certain class of survey statistics, then
(7.2.1) may be useful for estimating the variances in the class.

(2) Kish (1965) and others have popularized the notion of design effects. If we
assume an arbitrary sampling design leading to a sample of n units from a
population of size N , then the design effect for X̂ is defined by

Deff = σ 2/{N 2PQ/n},
where P = X/N and Q = 1 − P . This is the variance of X̂ given the true
sampling design divided by the variance given simple random sampling. Thus,
the relative variance may be expressed by

V 2 = Q(Pn)−1Deff

= −Deff/n + (N/n) Deff/X. (7.2.6)

Assuming that Deff may be considered independent of the magnitude of X
within a given class of survey statistics, (7.2.6) is of the form of Model (7.2.1)
and may be useful for estimating variances in the class.

(3) Suppose that it is desired to estimate the proportion

R = X/Y,

where Y is the total number of individuals in a certain subpopulation and
X is the number of those individuals with a certain attribute. If X̂ and Ŷ
denote estimators of X and Y , respectively, then the natural estimator of R
is R̂ = X̂/Ŷ . Utilizing a Taylor series approximation (see Chapter 6) and
assuming Ŷ and R̂ are uncorrelated, we may write

V 2
R =̇ V 2

X − V 2
Y , (7.2.7)

where V 2
R, V 2

X , and V 2
Y denote the relative variances of R̂, X̂ , and Ŷ , respec-

tively. If Model (7.2.1) holds for both V 2
X and V 2

Y , then (7.2.7) gives

V 2
R =̇ β/X − β/Y

= β

Y

(1 − R)

R
,

and hence

Var{R̂} =̇ (β/Y )R(1 − R). (7.2.8)

Equation (7.2.8) has the important property that the variance of an estimator

R̂′ = X̂ ′/Ŷ

of a proportion

R′ = X ′/Y

that satisfies

R′ = 1 − R
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is identical to the variance of the estimator R̂ of R. Thus, for example,
Var{R̂} =Var{1 − R̂}. Tomlin (1974) justifies Model (7.2.1) on the basis that
it is the only known model that possesses this important property.

In spite of a lack of rigorous theory to justify (7.2.1) or any other model,
GVF models have been successfully applied to numerous real surveys in the past
50 years. In the following sections, we shall demonstrate the exact manner in which
such models are used to simplify variance calculations.

7.3. Grouping Items Prior to Model Estimation

The basic GVF procedure for variance estimation is summarized in the following
steps:

(1) Group together all survey statistics that follow a common model; e.g., V 2 =
α + β/X . This may involve grouping similar items from the same survey; the
same item for different demographic or geographic subgroups; or the same
survey statistic from several prior surveys of the same population. The third
method of grouping, of course, is only possible with repetitive or recurring
surveys.

(2) Compute a direct estimate V̂ 2 of V 2 for several members of the group of
statistics formed in step 1. The variance estimating techniques discussed in the
other chapters of this book may be used for this purpose.

(3) Using the data (X̂ , V̂ 2) from step 2, compute estimates, say α̂, β̂, γ̂ , etc., of the
model parameters α, β, γ , etc. Several alternative fitting methodologies might
be used here, and this topic is discussed in Section 5.4.

(4) An estimator of the relative variance of a survey statistic X̂ for which a direct
estimate V̂ 2 was not computed is now obtained by evaluating the model at the
point (X̂ ; α̂, β̂, γ̂ , . . .). For example, if Model (7.2.1) is used, then the GVF
estimate of V 2 is

Ṽ 2 = α̂ + β̂/X̂ .

(5) To estimate the relative variance of an estimated proportion R̂ = X̂/Ŷ , where
Ŷ is an estimator of the total number of individuals in a certain subpopulation
and X̂ is an estimator of the number of those individuals with a certain attribute,
use

Ṽ 2
R = Ṽ 2

X − Ṽ 2
Y .

Often, X̂ and Ŷ will be members of the same group formed in step 1. If this
is the case and Model (7.2.1) is used, then the estimated relative variance
becomes

Ṽ 2
R = β̂(X̂−1 − Ŷ −1).

Considerable care is required in performing step 1. The success of the GVF
technique depends critically on the grouping of the survey statistics; i.e., on whether



P1: PJO
SVNY318-Wolter December 13, 2006 22:34

7.4. Methods for Fitting the Model 277

all statistics within a group behave according to the same mathematical model. In
terms of the first justification for Model (7.2.1) given in the last section, this implies
that all statistics within a group should have a common value of the intraclass
correlation ρ. The second justification given in the last section implies that all
statistics within a group should have a common design effect, Deff.

From the point of view of data analysis and model confirmation, it may be
important to begin with provisional groups of statistics based on past experience
and expert opinion. Scatter plots of V̂ 2 versus X̂ should then be helpful in forming
the “final” groups. One simply removes from the provisional group those statistics
that appear to follow a different model than the majority of statistics in the group
and adds other statistics, originally outside the provisional group, that appear
consonant with the group model.

From a substantive point of view, the grouping will often be successful when the
statistics (1) refer to the same basic demographic or economic characteristic, (2)
refer to the same race-ethnicity group, and (3) refer to the same level of geography.

7.4. Methods for Fitting the Model

As noted in Section 7.2, there is no rigorous theoretical justification for Model
(7.2.1) or for any other model that relates V 2 to X . Because we are unable to be
quite specific about the model and its attending assumptions, it is not possible to
construct, or even to contemplate, optimum estimators of the model parameters
α, β, γ , etc. Discussions of optimality would require an exact model and an exact
statement of the error structure of the estimators V̂ 2 and X̂ . In the absence of a
completely specified model, we shall simply seek to achieve a good empirical fit
to the data (X̂ , V̂ 2) as we consider alternative fitting methodologies.

To describe the various methodologies that might be used, we let g(·) denote
the functional relationship selected for a specific group of survey statistics; i.e.,

V 2 = g(X ; α, β, γ, . . .).

A natural fitting methodology is ordinary least squares (OLS). That is, α̂, β̂, γ̂ , . . .

are those values of α, β, γ, . . . that minimize the sum of squares∑
{V̂ 2 − g(X̂ ; α, β, γ, . . .)}2, (7.4.1)

where the sum is taken over all statistics X̂ for which a direct estimate V̂ 2 of V 2 is
available. When g(·) is linear in the parameters, simple closed-form expressions
for α̂, β̂, γ̂ , . . . are available. For nonlinear g(·), some kind of iterative search is
usually required.

The OLS estimators are often criticized because the sum of squares (7.4.1) gives
too much weight to the small estimates X̂ , whose corresponding V̂ 2 are usually
large and unstable. A better procedure might be to give the least reliable terms in
the sum of squares a reduced weight. One way of achieving this weighting is to
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work with the sum of squares∑
V̂ −4{V̂ 2 − g(X̂ ; α, β, γ, . . .)}2, (7.4.2)

which weights inversely to the observed V̂ 4. Alternatively, we may weight inversely
to the square of the fitted relvariances; i.e., minimize the sum of squares∑

{g(X̂ ; α, β, γ, . . .)}−2{V̂ 2 − g(X̂ ; α, β, γ, . . .)}2. (7.4.3)

In the case of (7.4.3), it is usually necessary to consider some kind of iterative
search, even when the function g(·) is linear in the parameters. The minimizing
values from (7.4.2) may be used as starting values in an iterative search scheme.

As noted earlier, there is little in the way of theory to recommend (7.4.1), (7.4.2),
or (7.4.3). The best one can do in an actual problem is to try each of the methods,
choosing the one that gives the “best” empirical fit to the data.

One obvious danger to be avoided, regardless of which estimation procedure is
used, is the possibility of negative variance estimates. To describe this, suppose
that Model (7.2.1) is to be used; i.e.,

g(X ; α, β) = α + β/X.

In practice, the estimator α̂ of the parameter α may be negative, and if X̂ is
sufficiently large for a particular item, the estimated relative variance

Ṽ 2 = α̂ + β̂/X̂

may be negative. One way of avoiding this undesirable situation is to introduce
some kind of restriction on the parameter α and then proceed with the estimation
via (7.4.1), (7.4.2), or (7.4.3) subject to the restriction. For example, in the Current
Population Survey (CPS), Model (7.2.1) is applied to a poststratified estimator of
the form

X̂ =
∑

a

X̂a

Ŷa
Ya,

where X̂a denotes an estimator of the number of individuals with a certain attribute
in the a-th age-sex-race domain, Ŷa denotes an estimator of the total number of
individuals in the domain, and Ya denotes the known total number of individuals in
the domain. If T denotes the sum of the Ya over all domains in which the x-variable
is defined, then we may impose the restriction that the relative variance of T is
zero; i.e.,

α + β/T = 0.1

Thus,

α = −β/T,

1 For example, if X̂ is an estimator of total Black unemployed, then T is the sum of the Ya

over all age-sex-Black domains.
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and we fit the one-parameter model

V 2 = β(X−1 − T −1). (7.4.4)

The estimated β will nearly always be positive, and in this manner the problem
of negative estimates of variance is avoided. In the next section, we consider the
CPS in some detail.

7.5. Example: The Current Population Survey

The Current Population Survey (CPS) is a large, multistage survey conducted by
the U.S. Bureau of the Census for the purpose of providing information about the
U.S. labor force. Due to the large amount of data published from the CPS, it is not
practical to make direct computations of the variance for each and every statistic.
GVFs are used widely in this survey in order to provide variance estimates at
reasonable cost that can be easily used by data analysts.

Before describing the usage of GVFs, we give a brief description of the CPS
sampling design and estimation procedure. Under the CPS design of the early
1970s, the United States was divided into 1924 primary sampling units (PSUs)
chosen with probability proportional to size. Each PSU consisted of one or more
contiguous counties. The PSUs were grouped into 376 strata, 156 of which con-
tained only one PSU, which was selected with certainty. The remaining PSUs were
grouped into 220 strata, with each stratum containing two or more PSUs. The 156
are referred to as self-representing PSUs, while the remaining 1924 − 156 = 1768
are referred to as nonself-representing PSUs. Within each of the 220 strata, one
nonself-representing PSU was chosen with probability proportional to size. Addi-
tionally, the 220 strata were grouped into 110 pairs; one stratum was selected at
random from each pair; and one PSU was selected independently with probabil-
ity proportional to size from the selected stratum. Thus, in the CPS design, three
nonself-representing PSUs were selected from each of 110 stratum pairs, although
in 25 stratum pairs a selected PSU was duplicated. The sample selection of the
nonself-representing PSUs actually utilized a controlled selection design in order
to provide a sample in every state. Within each selected PSU, segments (with an av-
erage size of four households) were chosen so as to obtain a self-weighting sample
of households; i.e., so that the overall probability of selection was equal for every
household in the United States The final sample consisted of 461 PSUs compris-
ing 923 counties and independent cities. Approximately 47,000 households were
eligible for interview every month.

The CPS estimation procedure involves a nonresponse adjustment, two stages of
ratio estimation, the formation of a composite estimate that takes into account data
from previous months, and an adjustment for seasonal variation. The variances are
estimated directly for about 100 CPS statistics using the Taylor series method (see
Chapter 6).

The interested reader should consult Hanson (1978) or U.S. Department of Labor
(2002) for a comprehensive discussion of the CPS sampling design and estimation
procedure.
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The CPS statistics for which variances are estimated directly are chosen on the
basis of user interest, including certain key unemployment statistics, and on the
need to obtain well-fitting GVFs that pertain to all statistics. In most cases, a GVF
of the form (7.2.1) is utilized, experience having shown this to be a useful model.
The statistics are divided into six groups with Model (7.2.1) fitted independently
in each group. Thus, different estimated parameters are obtained for each of the
six groups. The groups are:

(1) Agriculture Employment,
(2) Total or Nonagriculture Employment,
(3) Males Only in Total or Nonagriculture Employment,
(4) Females Only in Total or Nonagriculture Employment,
(5) Unemployment,
(6) Unemployment for Black and Other Races.

A separate agricultural employment group is used because the geographic dis-
tribution of persons employed in agriculture is somewhat different from that of
persons employed in nonagricultural industries. Separate curves are fit for the other
groups because statistics in different groups tend to differ in regard to the clustering
of persons within segments. In general, as mentioned previously, the grouping aims
to collect together statistics with similar intraclass correlations or similar design
effects.

To illustrate the GVF methodology, we consider the items used in the total
employment group. A list of the items is given in Table 7.5.1. The July 1974
estimates and variance estimates for the items are also given in Table 7.5.1. A
plot of the log of the estimated relvariance versus the log of the estimate is given
in Figure 7.5.1. The log–log plot is useful since the data will form a concave
downward curve if a GVF of the form (7.2.1) is appropriate. Other types of plots
can be equally useful.

The parameters of (7.2.1) for the total employment group were estimated using
an iterative search procedure to minimize the weighted sum of squares in (7.4.3).
This resulted in

α̂ = −0.0000175 (0.0000015),

β̂ = 2087 (114),

where figures in parentheses are the least squares estimated standard errors. The
observed R2 was 0.96.

The normal practice in the CPS is to use data for an entire year in fitting the
GVF. This is thought to increase the accuracy of the estimated parameters and to
help remove seasonal effects from the data. To illustrate, estimates and estimated
variances were obtained for the characteristics listed in Table 7.5.1 for each month
from July 1974 through June 1975. The log–log plot of the estimated relvariance
versus the estimate is presented in Figure 7.5.2. Once again a concave downward
curve is obtained, suggesting a GVF of the form (7.2.1). Minimizing the weighted
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Table 7.5.1. Characteristics and July 1974 Estimates and Estimated Variances
Used to Estimate the GVF for the Total Employment Group

Variance
Characteristic Estimate × 10−10

Total civilian labor force 93,272,212 4.4866
Total employed—Nonagriculture 83,987,974 5.0235
Employed—Nonagriculture:

Wage and salary 77,624,607 5.2885
Worked 35 + hours 57,728,781 5.8084
Blue collar civilian labor force 30,967,968 4.3166
Wage and salary workers—Manufacturing 21,286,788 4.3197
Wage and salary workers—Retail trade 12,512,476 1.9443
Worked 1–34 hours, usually full-time 4,969,964 1.1931
Self-employed 5,873,093 0.9536
Worked 1–14 hours 3,065,875 0.5861
Wage and salary workers—Construction 4,893,046 0.7911
Worked 1–34 hours, economic reasons 3,116,452 0.6384
With a job, not at work 11,136,887 2.5940
Worked 1–34 hours, usually full-time, economic

reasons
1,123,992 0.2935

With a job, not at work, salary paid 6,722,185 1.6209
Wage and salary—Private household workers 1,386,319 0.1909

sum of squares in (7.4.3) yields

α̂ = −0.000164 (0.000004),

β̂ = 2020 (26).

The R2 on the final iteration was 0.97. A total of 192 observations were used for
this regression.

Another example of GVF methodology concerns CPS data on population mobil-
ity. Such data, contrary to the monthly collection of CPS labor force data, are only
collected in March of each year. For these data, one GVF of the form (7.2.1) is fit
to all items that refer to movers within a demographic subpopulation. Table 7.5.2
provides a list of the specific items used in estimating the GVF (i.e., those charac-
teristics for which a direct variance estimate is available). The data are presented in
Table 7.5.3, where the notation T denotes the known population in the appropriate
demographic subgroup, as in (7.4.4). For example, in the first row of the table, data
are presented for “total movers, 18 to 24 years old,” and T = 25,950,176 denotes
the true total population 18 to 24 years old. Data are presented for both 1975 and
1976, giving a total of 66 observations. The 1975 data represent movers between
1970 and 1975 (a 5-year reference period), whereas the 1976 data represent movers
between 1975 and 1976 (a 1-year reference period). The difference in reference
periods explains the relatively higher degree of mobility for 1975.
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Table 7.5.2. Items Used to Estimate the GVF for Movers Within a Demographic
Subpopulation

Item Code Description

23 Total movers, 18 to 24 years old
29 Total movers 16+, never married
27 Total White household heads, movers within same SMSA
38 Total movers, different county, 4 years college
53 Total movers 16+, never married; professional, technical and kindred

workers
66 Total movers within and between balance of SMSA, within same

SMSA, head 25 to 34 years old with own children under 18
79 Total male movers 16+, within same SMSA, laborers except farm
82 Total movers from central cities to balance of SMSAs, within same

SMSA, 18 to 24 years old, 4 years high school
91 Total Black male movers into South
59 Total Black movers, family heads, within same SMSA
70 Total Black employed male movers 16+, within same SMSA
98 Total Black movers, within same SMSA, 4 years high school
44 Total Black movers, family heads
54 Total employed Black male movers
60 Total Black family heads, movers, without public assistance
25 Total female movers, married, spouse present
33 Total White male movers 16+, employed, within same SMSA
36 Total male movers 16+, income $15,000 to $24,999
49 Total female movers, different county, 16 to 24 years old, never married
61 Total male movers within same SMSA, 18+, 4 years college
64 Total male movers 16+, married, spouse present, unemployed
71 Total female movers within and between balance of SMSAs, within

same SMSA, 25 to 34 years old, employed
72 Total female movers 16+, clerical and kindred workers, outside SMSAs

at both dates
77 Total female movers within same SMSA, 35 to 44 years old, married,

spouse present
83 Total employed male movers into South
84 Total male movers 16+, same county, never married, unemployed
85 Total male movers within same SMSA, 16 to 24 years old, married, wife

present, with income of $1000 to $9999
87 Total male movers 16+, from central cities to balance of SMSAs, within

same SMSA, with income of $7000 to $9999
99 Total Black female movers 16+, not in labor force

100 Total male movers 16+, between SMSAs, with income of $10,000 to
$14,999

76 Total female movers into South, 16 to 64 years old
52 Total Black movers 25+, within and between central cities within same

SMSA
92 Total Black male movers from Northeast to South
80 Total movers into South, age 25+, 4 years of high school or less
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Table 7.5.3. Estimates and Variance Estimates Used in Fitting the GVF for
Movers Within a Demographic Subpopulation

Item Code Year X̂ σ̂ 2 T

23 75 15,532,860 0.1685 + 11 25,950,176
23 76 9,076,725 0.1900 + 11 26,624,613
29 75 12,589,844 0.2930 + 11 150,447,325
29 76 6,311,067 0.1978 + 11 153,177,617
27 75 12,447,497 0.2580 + 11 168,200,691
27 76 5,585,767 0.1121 + 11 180,030,064
38 75 3,582,929 0.7451 + 10 192,444,762
38 76 1,310,635 0.3373 + 10 207,149,736
53 75 1,482,186 0.3538 + 10 150,447,325
53 76 784,174 0.1876 + 10 153,177,617
66 75 1,308,198 0.2101 + 10 63,245,759
66 76 540,045 0.9804 + 09 76,352,429
79 75 895,618 0.1579 + 10 70,995,769
79 76 367,288 0.6925 + 09 72,344,487
82 75 449,519 0.8537 + 09 25,950,176
82 76 272,015 0.6405 + 09 26,624,613
91 75 167,514 0.4991 + 09 11,272,923
91 76 69,165 0.1447 + 09 12,704,849
59 75 1,712,954 0.3287 + 10 24,244,071
59 76 721,547 0.1318 + 10 27,119,672
70 75 1,224,067 0.2529 + 10 17,567,954
70 76 503,651 0.1144 + 10 8,215,984
98 75 980,992 0.2115 + 10 12,747,526
98 76 415,049 0.1112 + 10 13,174,373
44 75 2,718,933 0.4504 + 10 24,244,071
44 76 1,002,446 0.1684 + 10 27,119,672
54 75 1,993,665 0.3641 + 10 11,272,923
54 76 786,787 0.1383 + 10 99,856,466
60 75 2,082,244 0.3590 + 10 24,244,071
60 76 732,689 0.1291 + 10 27,119,672
25 75 21,558,732 0.3243 + 11 100,058,547
25 76 7,577,287 0.1608 + 11 107,293,270
33 75 9,116,884 0.1807 + 11 63,071,059
33 76 4,152,975 0.8778 + 10 64,128,503
36 75 4,556,722 0.7567 + 10 70,995,769
36 76 1,637,731 0.3472 + 10 72,344,487
49 75 1,676,173 0.3391 + 10 17,591,865
49 76 839,009 0.2114 + 10 17,884,083
61 75 1,222,591 0.2230 + 10 66,804,777
61 76 673,099 0.1382 + 10 68,142,678
64 75 1,419,308 0.2381 + 10 70,995,769
64 76 563,687 0.9383 + 09 72,344,487
71 75 893,820 0.1571 + 10 15,316,481
71 76 484,469 0.8372 + 09 15,883,656
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Table 7.5.3. (Cont.)

Item Code Year X̂ σ̂ 2 T

72 75 1,038,820 0.2079 + 10 79,451,556
72 76 461,248 0.1439 + 10 80,833,130
77 75 1,428,205 0.2368 + 10 11,614,088
77 76 378,148 0.5966 + 09 11,712,165
83 75 1,016,787 0.2855 + 10 92,386,215
83 76 271,068 0.7256 + 09 99,856,466
84 75 497,031 0.9248 + 09 70,995,769
84 76 251,907 0.4909 + 09 72,344,487
85 75 926,436 0.1675 + 10 16,657,453
85 76 582,028 0.9195 + 09 17,049,814
87 75 376,700 0.6399 + 09 70,995,769
87 76 175,184 0.4420 + 09 72,344,487
99 75 1,894,400 0.4023 + 10 9,643,244
99 76 605,490 0.1157 + 10 9,974,863

100 75 1,160,351 0.2045 + 10 70,995,769
100 76 332,044 0.6936 + 09 72,344,487

76 75 1,480,028 0.5013 + 10 67,047,304
76 76 402,103 0.9359 + 09 68,083,789
52 75 2,340,338 0.6889 + 10 12,747,526
52 76 824,359 0.2492 + 10 13,655,438
92 76 51,127 0.1861 + 09 12,704,849
80 76 348,067 0.1120 + 10 118,243,720

Figure 7.5.3 plots the log of the estimated relvariance versus the log of the
estimate. As in the case of the CPS labor force data, we notice a concave
downward pattern in the data, thus tending to confirm the model specification
(7.2.1).

Minimizing the weighted sum of squares in (7.4.3) yields the estimated coeffi-
cients

α̂ = −0.000029 (0.000013),

β̂ = 2196 (72).

On the final iteration, we obtained R2 = 93.5%.
As a final illustration, we fit the GVF in (7.4.4) to the mobility data in Table

7.5.3. The reader will recall that this model specification attempts to protect against
negative estimated variances (particularly for large X̂ ). Minimizing the weighted
sum of squares in (7.4.3) yields

β̂ = 2267 (64),

with R2 = 95.0% on the final iteration.
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7.6. Example: The Schools and Staffing Survey2

Much of this chapter has dealt with methods for “generalizing” variances based
upon model specification (7.2.1) or related models. Survey statisticians have also
attempted to generalize variances by using design effects and other ad hoc meth-
ods. In all cases, the motivation has been the same: the survey publication schedule
is exceedingly large, making it impractical to compute or publish direct variance
estimates for all survey statistics, and some simple, user-friendly method is needed
to generalize variances from a few statistics to all of the survey statistics. It is not
feasible for us to recount all of the ad hoc methods that have been attempted.
To illustrate the range of other possible methods, we discuss one additional
example.

The Schools and Staffing Survey (SSS) was a national survey of public elemen-
tary and secondary schools carried out in 1969–70. A stratified random sample of
about 5600 schools was selected from the SSS universe of about 80,000 schools.
Thirty strata were defined based on the following three-way stratification:

(1) Level (elementary and secondary),
(2) Location (large city, suburban, other),
(3) Enrollment (five size classes).

There were a large number of estimates of interest for the SSS. Estimates of
proportions, totals, and ratios were made for many pupil, teacher, and staff charac-
teristics. Examples include (1) the proportion of schools with a school counselor,
(2) the number of schools that offer Russian classes, (3) the number of teachers in
special classes for academically gifted pupils, (4) the number of pupils identified
as having reading deficiencies, (5) the ratio of pupils to teachers, and (6) the ratio
of academically gifted pupils to all pupils. Survey estimates were made for the
entire population and for a large number of population subgroups.

Because the number of estimates of interest for the SSS was very large, it was not
feasible to calculate and publish variances for all survey estimates. Consequently,
procedures were developed to allow the calculation of approximate variance esti-
mates as simple functions of the survey estimates. Procedures were developed for
three basic types of statistics: (1) proportions, (2) totals, and (3) ratios. Details are
given by Chapman and Hansen (1972). Summarized below is the development of
the generalized variance procedure for a population or subpopulation total X .

The methodology was developed in terms of the relative variance, or relvariance,
V 2, of the estimated total, X̂ . The relvariance was used instead of the variance
because it is a more stable quantity from one statistic to another. For the SSS
sampling design, the relvariance of X̂ can be written as

V 2 = X̄−2
L∑

h=1

ah S2
h , (7.6.1)

2 This example derives from a Westat, Inc. project report prepared by Chapman and Hansen
(1972).
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where

X̄ = the population mean,

L = the number of strata in the population or

subpopulation for which the estimate is made,

Nh = the number of schools in stratum h,

N = the number of schools in the population,

nh = the number of schools in the sample from stratum h,

S2
h = the variance, using an Nh − 1 divisor, among the schools in stratum h,

ah = N 2
h

N 2

Nh − nh

Nhnh
.

A direct sample estimate, V̂ 2, of V 2 can be calculated as

V̂ 2 = (x̄−2)
L∑

h=1

ahs2
h , (7.6.2)

where s2
h = the ordinary sample variance for stratum h and x̄ = X̂/N .

The estimated relvariance per unit, v2
h , is introduced into the right-hand side of

(7.6.2) by writing

V̂ 2 = (x̄−2)
L∑

h=1

ah(x̄h/x̄h)2s2
h =

L∑
h=1

ah(x̄h/x̄)2v2
h, (7.6.3)

where v2
h = s2

h/x̄2
h .

For many of the characteristics for which estimated totals were of interest, the
ratio x̄h/x̄ was approximately equal to the corresponding ratio of mean school
enrollments. That is, for many characteristics,

x̄h/x̄ =̇ ēh/ē, (7.6.4)

where

ēh = the sample mean school enrollment for stratum h,

ē =
L∑

h=1

(Nh/N )ēh .

This gives

V̂ 2 =
L∑

h=1

bhv
2
h, (7.6.5)

where bh = ah(ēh/ē)2.
The most important step in the derivation of the generalized variance estima-

tor was the “factoring out” of an average stratum relvariance from (7.6.5). The
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estimator V̂ 2 can be written in the form

V̂ 2 = v2b(1 + δ), (7.6.6)

where

v2 = L−1
L∑

h=1

v2
h,

b =
L∑

h=1

bh,

δ = ρbv2 VbVv2 , (7.6.7)

ρbv2 = the simple correlation between the L pairs of bh and v2
h values,

Vb = the coefficient of variation (i.e., square root of the relvariance)

of the L values of bh ,

Vv2 = the coefficient of variation of the L values of v2
h .

It seems reasonable to expect that the correlation between the bh and v2
h val-

ues would generally be near zero. Consequently, the following approximate
variance estimate is obtained from (7.6.6) by assuming that this correlation is
zero:

Ṽ 2 = v2b. (7.6.8)

For the SSS, tables of b values were constructed for use in (7.6.8). An extensive
examination of v2

h values was conducted for a number of survey characteristics,
and guidelines were developed for use in obtaining an approximate value of v2.
The guidelines consisted of taking v2 to be one of two values, 0.2 or 0.7, depending
upon the characteristic of interest.

Although this generalized variance estimation procedure was not tested ex-
tensively, some comparisons were made between the generalized estimates in
(7.6.8) and the standard estimates in (7.6.2). The generalized estimates were
reasonably good for the test cases. When differences existed between the two
estimates, the generalized estimate was usually slightly larger (i.e., somewhat
conservative).

7.7. Example: Baccalaureate and Beyond
Longitudinal Study (B&B)

Another method of generalizing variance estimates is via the use of design effects,
which we introduced earlier in this chapter. If the Deff is thought to be portable
from one item to another within the survey, or even from one survey to another,
then it can be used as a factor for correcting srs wor variance estimates.
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To see how this works, let us consider a general complex sampling design giving
a sample, s. Let

Ŷ =
∑
k∈s

WkYk

be an essentially unbiased estimator of the population total, Y , where {Wk} are the
case weights. If Var{Ŷ |design} is the estimator variance given the actual complex
sampling design and Var{Ŷ |srs wor} is the hypothetical variance that would be
obtained in the event that the sample s had been generated by srs wor sampling,
then the design effect is defined by the ratio

Deff = Var{Ŷ |design}
Var{Ŷ |srs wor} = Var{Ŷ |design}

M2(1 − f ) 1
m S2

Y

, (7.7.1)

where f = m/M , Ȳ = Y/M ,

S2
Y = 1

M − 1

M∑
k=1

(Yk − Ȳ )2,

m is the number of completed interviews with eligible respondents, and M is the
number of eligible individuals within the finite population. Note that (7.7.1) is
conditional on m.

Var{Ŷ |design}, M, f , and S2
Y are all unknown and must be estimated. We

estimate the complex design variance, say v(Ŷ ), using a method of one of the
earlier chapters of this book. To estimate the size of the eligible population, we
take the essentially unbiased estimator

M̂ =
∑
k∈s

Wk .

We use the consistent (given the actual complex design) estimators of the sampling
fraction and population variance defined by

f̂ = m/M̂,

Ŝ2
Y = 1

M̂ − 1

∑
k∈s

Wk(Yk − ˆ̄Y )2,

where ˆ̄Y = Ŷ/M̂ .
Putting all of the pieces together, we find the estimated design effect

D̂eff = v(Ŷ )

M̂2(1 − f̂ ) 1
m Ŝ2

Y

. (7.7.2)

Fuller et al. (1989) have implemented essentially this estimator in the PC CARP
software. See Appendix E.

Now consider a general parameter of the finite population θ = g(Y), of the form
treated in Chapter 6, and its estimator θ̂ = g(Ŷ). The design effect is

Deff = Var{θ̂ |design}
Var{θ̂ |srs wor} =̇

Var{θ̂ |design}
M2(1 − f ) 1

m S2
V

, (7.7.3)
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where

S2
V = 1

M − 1

M∑
k=1

(Vk − V̄ )2,

V̄ = V/M , and the v-variable is defined in (6.5.1) as

Vk =
p∑

j=1

∂g(Y)

∂y j
Yk j .

We are using the Taylor series approximation to the srs wor variance. Let v(θ̂ ) be
an estimator of the actual complex design variance constructed by a method pre-
sented in earlier chapters, e.g., BHS or jackknife, and use the consistent estimator
of S2

V

Ŝ2
V = 1

M̂ − 1

∑
k∈s

Wk(V̂k − ˆ̄V )2,

where

V̂k =
p∑

j=1

∂g(Ŷ)

∂y j
Yk j ,

ˆ̄V = V̂ /M̂ =
∑
k∈s

Wk V̂k/
∑
k∈s

Wk .

This gives the estimated design effect

D̂eff = v(θ̂ )

M̂2(1 − f̂ ) 1
m Ŝ2

V

. (7.7.4)

The extension of (7.7.1) – (7.7.4) to estimated domains requires care. To see why,
we consider the estimator of the total, YD , of a specified domain, D. For example,
D may be specified by geographic, demographic, size, or other characteristics of
the interviewed units. Let δDk (= 0 or 1) be the variable indicating membership in
the domain. Then,

ŶD =
∑
k∈s

WkδDkYk

estimates the domain total

YD =
M∑

k=1

δDkYk .

The design effect is now

Deff = Var{ŶD|design}
M2

D(1 − fD) 1
m D

S2
YD

, (7.7.5)
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where

m D =
∑
k∈s

δDk,

MD =
M∑

k=1

δDk,

fD = m D/MD,

S2
YD

= 1

MD − 1

M∑
k=1

δDk(Yk − ȲD)2,

ȲD = YD/MD.

and its estimator is

D̂eff = v(ŶD)

M̂2
D(1 − f̂D) 1

m D
Ŝ2

YD

, (7.7.6)

where v(ŶD) is obtained by a method of one of the previous chapters in the book:

M̂D =
∑
k∈s

WkδDk,

f̂D = m D/M̂D,

Ŝ2
YD

= 1

M̂D − 1

∑
k∈s

WkδDk(Yk − ˆ̄Y D)2,

and

ˆ̄Y D = ŶD/M̂D.

Again note that this Deff and its estimator are conditional on the number of
completed interviews, m D , within the domain. If D is over- or undersampled in
s, then this fact is directly reflected in (7.7.5) and (7.7.6). Alternative definitions
of Deff and D̂eff appear in the literature, yet we like (7.7.5) and (7.7.6) from
a variance generalization point of view. These definitions extend naturally to a
general parameter θD and estimator θ̂D for the domain.

To use the estimated design effect for variance generalization purposes, we
suggest the following five-step procedure:

(i) Determine a class of survey items/statistics within which Deff is thought to
be portable.

(ii) Produce correct design variance estimates v(θ̂ ) by the methods of previous
chapters for one or more statistics in the class.

(iii) For all statistics in the class, compute an estimator of the srs wor variance
according to the formula given in the denominator of (7.7.2), (7.7.4), and
(7.7.6) or its extension, as appropriate.

(iv) Produce the average D̂eff among the statistics in the class for which the design
variance is estimated directly.

(v) Estimate the design variance for any statistic in the class as the product of its
estimated srs wor variance and the average D̂eff.
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While arguably not as good as direct variance estimation, this procedure gives
survey analysts a tool to calculate usable standard errors and confidence intervals.
The user only needs to estimate the srs wor sampling variance, which is possible
using standard software packages. The average design effect is provided by the
survey statistician with special training in complex design variance estimation.
Then the user obtains usable design variance estimates by taking the product of
the average effect and the srs wor variance estimate.

To conclude this chapter, let us look at a specific application of this method
to the Baccalaureate and Beyond Longitudinal Study (B&B), sponsored by the
National Center for Education Statistics of the U.S. Department of Education. The
project tracked the experiences of a panel of college graduates who received their
baccalaureate degrees during the 1992–93 academic year. Interviews focused on
the experience areas of academic enrollments, degree completions, employment,
public service, and other adult decisions. The analysis sought to understand the
effects of attending different types of colleges and universities on outcomes such as
access to jobs, enrollment in graduate and professional programs, and the rates of
return for the individual and society from investments in postsecondary education.

The population of interest included all postsecondary students in the United
States who received a bachelor’s degree between July 1, 1992 and June 30, 1993.
The sampling design involved three stages of sampling, with areal clusters consist-
ing of three-digit postal ZIP codes used as the PSUs (primary sampling units), post-
secondary institutions within clusters as the second-stage units, and students within
schools as the third-stage (or ultimate) sampling units. One hundred seventy-six
PSUs were selected, of which 86 were certainty selections; from the noncertainty
population of 205 PSUs, 90 PSUs were selected via pps sampling.

From the consolidated subpopulation of eligible institutions within the selected
PSUs, a sample of 1386 schools was selected via pps sampling within 22 type-of-
institution strata. The allocation of the sample among the institutional strata is set
forth in Table 7.7.1. Following sample selection, it was determined that only 1243
institutions were actually eligible to participate in the study. The eligible schools
were asked for their cooperation and to provide enrollment files and graduation
lists. Of these, 1098 institutions actually did so, corresponding to an 88% institution
participation rate.

At the third stage, a large sample of 82,016 students was selected via systematic
sampling with fixed sampling rates within 29 type-of-student strata within the
participating schools. The classification of the actual student sample to the 22
institutional strata is set forth in Table 7.7.1.

Baseline data for this large sample were collected as the 1993 National Post-
secondary Student Aid Study. An examination of institution records verified that
77,003 of the selected students were eligible to participate in a telephone inter-
view. Of these eligible students, 52,964 students actually responded to the baseline
interview, providing a conditional student response rate of 69%, given institution
response.

Of the eligible cases in the large sample, 16,316 bachelor’s degree recipients
were identified. In this student domain, which became the basis for the B&B
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Table 7.7.1. Allocation of the Institution and Student Sample Sizes to
the 22 Institutional Strata

Institution Student
Institutional Stratum Sample Sizes Sample Sizes

Total 1,386 82,016

1. Public, 4-year, first-professional, high eda 16 2,301
2. Public, 4-year, first-professional, low ed 100 14,376
3. Private, 4-year, first-professional, high edb 75 5,156
4. Private, 4-year, first-professional, low ed 79 3,392

5. Public, 4-year, doctoral, high eda 14 1,890
6. Public, 4-year, doctoral, low ed 41 5,075
7. Private, 4-year, doctoral high edb 19 1,016
8. Private, 4-year, doctoral, low ed 15 699

9. Public, 4-year, masters, high edc 25 2,034
10. Public, 4-year, masters, low ed 123 11,064
11. Private, 4-year, masters, high edc 12 711
12. Private, 4-year, masters, low ed 127 5,759

13. Public, 4-year, bachelors, high edc 11 635
14. Public, 4-year, bachelors, low ed 36 1,138
15. Private, 4-year, bachelors, high edc 12 580
16. Private, 4-year, bachelors, low ed 79 3,636

17. Public, 2-year 215 9,543
18. Private, not-for-profit, 2-year 23 838
19. Private, for-profit, 2-year 48 1,481

20. Public, less than 2-year 54 2,055
21. Private, not-for-profit, less than 2-year 45 1,351
22. Private, for-profit, less than 2-year 217 7,286

a More than 15% of baccalaureate degrees awarded in education.
b Any baccalaureate degrees awarded in education.
c More than 25% of baccalaureate degrees awarded in education.
Source: See U.S. Department of Education (1995) for more details about the definition of
the institutional strata and other aspects of the B&B sampling design.

study, 11,810 students actually responded to the baseline interview, providing a
conditional student response rate of 72%.

A subsample of size 12,478 from the 16,316 degree recipients was retained
for participation in the B&B study, which consisted of three rounds of follow-up
interviewing, in 1994, 1997, and 2003. In this subsample, a few additional ineligible
cases were identified in the first follow-up interview, such that only 11,192 cases
were retained for the second and third follow-ups. In the balance of this example,
we discuss the second follow-up, which resulted in 10,093 completed interviews,
providing a conditional student response rate of 90%.

Estimates, estimated standard errors, and design effects for the second follow-up
are presented in Table 7.7.2. The table includes 30 estimated population propor-
tions, scaled as percentages.
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Table 7.7.2. Estimates, Standard Errors, and Design Effects for All Respondents

Design SRS WOR Number of
Estimates Standard Standard Complete

Variables (%) Errors Errors Responses D̂eff

Took state/professional 17.68 0.52 0.38 10,087 1.87
licensing exams

Attended school since graduation 40.88 0.74 0.49 10,089 2.30
Received aid (of those attending 55.54 1.22 0.87 3,239 1.96

school since BA)
Had prior related job experience 68.27 0.62 0.47 9,659 1.71
Employed since last interview 96.72 0.23 0.18 10,059 1.72
Degree is required for job 62.37 0.66 0.49 9,614 1.79
Received other similar job offers 37.41 0.71 0.51 8,881 1.89
Degree is closely related to job 54.50 0.70 0.51 9,667 1.91
Job has career potential 54.62 0.72 0.51 9,644 2.03
Job offers health insurance 83.24 0.48 0.38 9,659 1.59
Ever considered teaching 41.65 0.69 0.49 10,058 1.97
Received training from employer 43.78 0.65 0.51 9,634 1.66

(last 12 months)
Has done volunteer work 42.65 0.69 0.49 10,051 1.97
Voted in 1996 presidential election 75.40 0.64 0.43 10,051 2.23
Speaks a foreign language 64.46 0.83 0.48 10,053 3.04
Has children 28.74 0.98 0.45 10,089 4.69
Is saving money 68.08 0.70 0.47 10,016 2.23
Has educational loans 48.95 0.80 0.50 9,987 2.55
Owns home 41.48 0.94 0.49 10,026 3.62
Owns car 89.42 0.52 0.31 10,018 2.86
Has non-educational debt 52.08 0.72 0.50 9,962 2.07
Has graduate loan(s) 12.42 0.47 0.33 9,982 2.04
Disabilities interfere with work 1.96 0.17 0.14 10,049 1.42
Any months with more than 1 job 55.59 0.67 0.51 9,627 1.76
Any unemployment 39.47 0.67 0.49 10,093 1.88

since graduation
Applied to graduate school 17.67 0.51 0.38 10,090 1.79

since last interview
Is single, never married 42.47 0.92 0.49 10,040 3.47
Taken the GRE 6.86 0.34 0.25 10,072 1.84
Very satisfied with job’s 37.43 0.65 0.50 9,514 1.71

promotion opportunity
Very satisfied with job’s pay 32.24 0.61 0.48 9,652 1.63

SUMMARY STATISTICS
Mean 2.17
Minimum 1.42
Maximum 4.69

Source: U.S. Department of Education (1999).



P1: PJO
SVNY318-Wolter December 13, 2006 22:34

7.7. Example: Baccalaureate and Beyond Longitudinal Study (B&B) 297

To illustrate, it is estimated that 17.68% of the population took state/professional
licensing exams and 10,087 cases responded to this item. The estimate of
the design variance of the estimated proportion, obtained by the Taylor series
method, is 0.2704 × 10−4. The design standard error in percentage terms is√

0.2704 × 10−4 × 100% = 0.52%. Because the sampling fraction is negligible
and the population large, the estimated srs wor sampling variance, the denominator
of (7.7.4), is given approximately by

v( ˆ̄Y | srs wor ) =̇
ˆ̄Y (1 − ˆ̄Y )

m
= 0.1768 × 0.8232

10,087
= 0.1443 × 10−4,

where ˆ̄Y = Ŷ/M̂ = 0.1768 is the estimated proportion defined in terms of the
final case weights. In percentage terms, the estimated srs wor standard error
is

√
0.1443 × 10−4 × 100% = 0.38%, resulting in an estimated design effect of

D̂eff = 0.2704/0.1443 = 1.87.
To approximate the design variance for a newly estimated proportion concerning

the entire population, say ˆ̄Y , one might take the product

ˆ̄Y (1 − ˆ̄Y )

m
× 2.17,

where 2.17 is the average design effect from Table 7.7.2. To estimate the design
variance for a newly estimated proportion for a domain of the population, say ˆ̄Y D ,
one might take the product

ˆ̄Y D(1 − ˆ̄Y D)

m D
× D̂eff,

where D̂eff is now the average design effect corresponding to the specified domain
D. Numerous tables of design effects by race ethnicity and type-of-institution
domains are given in U.S. Department of Education (1999).
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CHAPTER 8

Variance Estimation for
Systematic Sampling

8.1. Introduction

The method of systematic sampling, first studied by the Madows (1944), is used
widely in surveys of finite populations. When properly applied, the method picks
up any obvious or hidden stratification in the population and thus can be more
precise than random sampling. In addition, systematic sampling is implemented
easily, thus reducing costs.

Since a systematic sample can be regarded as a random selection of one cluster,
it is not possible to give an unbiased, or even consistent, estimator of the design
variance. A common practice in applied survey work is to regard the sample as
random, and, for lack of knowing what else to do, estimate the variance using
random sample formulae. Unfortunately, if followed indiscriminately, this prac-
tice can lead to badly biased estimators and incorrect inferences concerning the
population parameters of interest.

In what follows, we investigate several biased estimators of variance (includ-
ing the random sample formula) with a goal of providing some guidance about
when a given estimator may be more appropriate than other estimators. We
shall agree to judge the estimators of variance on the basis of their bias, their
mean square error (MSE), and the proportion of confidence intervals formed
using the variance estimators that contain the true population parameter of
interest.

In Sections 8.2 to 8.5, we discuss equal probability systematic sampling. The
objective is to provide the survey practitioner with some guidance about the specific
problem of estimating the variance of the systematic sampling mean, ȳ. Several
alternative estimators of variance are presented, and some theoretical and numerical
comparisons are made between eight of them. For nonlinear statistics of the form

298
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θ̂ = g(ȳ), we suggest that the variance estimators be used in combination with the
appropriate Taylor series formula.

In the latter half of the chapter, Sections 8.6 to 8.9, we discuss unequal probability
systematic sampling. Once again, several alternative estimators of variance are
presented and comparisons made between them. This work is in the context of
estimating the variance of the Horvitz–Thompson estimator of the population
total.

In reading this chapter, it will be useful to keep in mind the following general
procedure:

(a) Gather as much prior information as possible about the nature and ordering of
the target population.

(b) If an auxiliary variable closely related to the estimation variable is available for
all units in the population, then try several variance estimators on this variable.
This investigation may provide information about which estimator will have
the best properties for estimating the variance of the estimation variable.

(c) Use the prior information in (a) to construct a simple model for the population.
The results presented in later sections may be used to select an appropriate
estimator for the chosen model.

(d) Keep in mind that most surveys are multipurpose and it may be important to
use different variance estimators for different characteristics.

Steps (a)–(d) essentially suggest that one know the target population well before
choosing a variance estimator, which is exactly the advice most authors since the
Madows have suggested before using systematic sampling.

8.2. Alternative Estimators in the Equal
Probability Case

In this section, we define a number of estimators of variance that are useful for
systematic sampling problems. Each of the estimators is biased, and thus the
statistician’s goal is to choose the least biased estimator, the one with minimum
MSE, or the one with the best confidence interval properties. It is important to have
an arsenal of several estimators because no one estimator is best for all systematic
sampling problems. This material was first presented in Wolter (1984).

To concentrate on essentials, we shall assume that the population size N is
an integer multiple of the sample size n, i.e., N = np, where p is the sampling
interval. The reader will observe that the estimators extend in a straightforward
manner to the case of general N .

In most cases, we shall let Yi j denote the value of the j-th unit in the i-th possible
systematic sample, where i = 1, . . . , p and j = 1, . . . , n. But on one occasion we
shall employ the single-subscript notation, letting Yt denote the value of the t-th
unit in the population for t = 1, . . . , N .
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The systematic sampling mean ȳ and its variance are

ȳ =
n∑
j

yij /n

and

Var{ȳ} = (σ 2/n)[1 + (n − 1)ρ], (8.2.1)

respectively, where

σ 2 =
p∑
i

n∑
j

(Yi j − Ȳ ..)2/np

denotes the population variance,

ρ =
p∑
i

n∑
j

n∑
j �= j ′

(Yi j − Ȳ ..)(Yi j ′ − Ȳ ..)/pn(n − 1)σ 2

denotes the intraclass correlation between pairs of units in the same sample, and
Ȳ .. denotes the population mean.

8.2.1. Eight Estimators of Variance

One of the simplest estimators of Var{ȳ} is obtained by regarding the systematic
sample as a simple random sample. We denote this estimator by

v1(i) = (1 − f )(1/n)s2, (8.2.2)

where

s2 =
n∑

j=1

(yi j − ȳ)2/(n − 1)

and

f = n/N = p−1.

The argument (i) signifies the selected sample. This estimator is known to be
upward or downward biased as the intraclass correlation coefficient is less than or
greater than −(N − 1)−1.

Another simple estimator of Var{ȳ} is obtained by regarding the systematic
sample as a stratified random sample with two units selected from each successive
stratum of 2p units. This yields an estimator based on nonoverlapping differences,

v3(i) = (1 − f )(1/n)

n/2∑
j=1

a2
i,2 j/n, (8.2.3)

where ai j = �yi j = yi j − yi, j−1 and � is the first difference operator. A related
estimator, which aims at increasing the number of “degrees of freedom,” is based
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on overlapping differences

v2(i) = (1 − f )(1/n)
n∑

j=2

a2
i j/2(n − 1). (8.2.4)

Several authors, e.g., Yates (1949), have suggested estimators based upon higher
order contrasts than are present in v2 and v3. Examples of such estimators include

v4(i) = (1 − f )(1/n)
n∑

j=3

b2
i j/6(n − 2), (8.2.5)

v5(i) = (1 − f )(1/n)
n∑

j=5

c2
i j/3.5(n − 4), (8.2.6)

and

v6(i) = (1 − f )(1/n)
n∑

j=9

d2
i j/7.5(n − 8), (8.2.7)

where

bi j = �ai j = �2 yi j

= yi j − 2yi, j−1 + yi, j−2

is the second difference of the sample data,

ci j = 1
2
�4 yi j + �2 yi, j−1

= yi j/2 − yi, j−1 + yi, j−2 − yi, j−3 + yi, j−4/2

is a linear combination of second and fourth differences, and

di j = 1
2
�8 yi j + 3�6 yi, j−1 + 5�4 yi, j−2 + 2�2 yi, j−3

= yi j/2 − yi, j−1 + − . . . + yi, j−8/2

is a linear combination of second, fourth, sixth, and eighth differences. There are
unlimited variations on this basic type of estimator. One may use any number of
data points in forming the contrast; one may use overlapping, nonoverlapping,
or partially overlapping contrasts; and one has considerable freedom in choosing
the coefficients, so long as they sum to zero. Then, in forming the estimator, one
divides the sum of squares by the product of the sum of squares of the coefficients
and the number of contrasts in the sum.

For example, the sixth estimator v6 employs overlapping contrasts di j , there are
(n − 8) contrasts in the sum

∑n
j=9, and the sum of squares of the coefficients is

equal to(
1
2

)2 + (−1)2 + 12 + (−1)2 + 12 + (−1)2 + 12 + (−1)2 + (
1
2

)2 = 7.5.

Therefore, one divides the sum of squares
∑n

j=9 d2
i j by 7.5 (n − 8).

Another general class of variance estimators arises by splitting the parent sample
into equal-sized systematic subsamples. This may be thought of as a kind of random
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group estimator. Let k and n/k be integers, and let ȳα denote the sample mean of
the α-th systematic subsample of size n/k; i.e.,

ȳα = k

n

n/k∑
j=1

yi,k( j−1)+α.

An estimator of Var{ȳ} is then given by

v7(i) = (1 − f )
1

k(k − 1)

k∑
α=1

(ȳα − ȳ)2. (8.2.8)

Koop (1971) has investigated this estimator for the case k = 2, giving expressions
for its bias in terms of intraclass correlation coefficients.

Finally, another class of estimators can be devised from various assumptions
about the correlation between successive units in the population. One such esti-
mator, studied by Cochran (1946), is

v8(i) = (1 − f )(s2/n)[1 + 2/ ln(ρ̂p) + 2/(ρ̂−1
p − 1)] if ρ̂p > 0

= (1 − f )s2/n if ρ̂p ≤ 0, (8.2.9)

where

ρ̂p =
n∑

j=2

(yi j − ȳ)(yi, j−1 − ȳ)/(n − 1)s2.

The statistic ρ̂p is an estimator of the correlation ρp between two units in the
population that are p units apart. This notion of correlation arises from a super-
population model, wherein the finite population itself is generated by a stochas-
tic superpopulation mechanism and ρp denotes the model correlation between,
e.g., Yi j and Yi, j+1. The particular estimator v8 is constructed from the assump-
tion ρp = exp(−λp), where λ is a constant. This assumption has been studied by
Osborne (1942) and Matern (1947) for forestry and land-use surveys, but it has not
received much attention in the context of household and establishment surveys.
Since ln(ρ̂p) is undefined for nonpositive values of ρ̂p, we have set v8 = v1, when
ρ̂p ≤ 0. Variations on the basic estimator v8 may be constructed by using a positive
cutoff on ρ̂p, an estimator other than v1 below the cutoff, or a linear combination
of v8 and v1 where the weights, say φ(t) and 1 − φ(t), depend upon a test statistic
for the hypothesis that ρp = 0.

The eight estimators presented above are certainly not the only estimators of
Var{ȳ}. Indeed, we have mentioned several techniques for constructing additional
estimators. But these eight are broadly representative of the various classes of
variance estimators that are useful in applied systematic sampling problems. The
reader who has these eight estimators in their toolbag will be able to deal effectively
with most applied systematic sampling problems.

Finally, we note in passing that a finite-population correction (1 − f ) was in-
cluded in all of our estimators. This is not a necessary component of the estimators
since there is no explicit fpc in the variance Var{ȳ}. Moreover, the fpc will make
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little difference when the sampling interval p is large and the sampling fraction
f = p−1 negligible.

8.2.2. A General Methodology

We now present a general methodology for constructing estimators of Var{ȳ}. This
section is somewhat theoretical in nature and the applied reader may wish to skip to
Section 8.2.3. The general methodology presented here will not be broadly useful
for all systematic sampling problems but will be useful in specialized circumstances
where the statistician is reasonably confident about the statistical model underlying
the finite population. In the more usual circumstance where the model is unknown
or only vaguely known, we recommend that a choice be made among the eight
estimators presented in Section 8.2.1 rather than the methodology presented here.

Let Y = (Y1, Y2, . . . , YN ) denote the N -dimensional population parameter, and
suppose that Y is selected from a known superpopulation model ξ (·; θ ), where θ

denotes a vector of parameters. Let Yi = (Yi1, Yi2, . . . , Yin) denote the values in
the i-th possible systematic sample.

In order to construct the general estimator, it is necessary to distinguish two
expectation operators. We shall let Roman E denote expectation with respect to
the systematic sampling design, and script E shall denote the ξ -expectation.

Our general estimator of the variance is the conditional expectation of Var{ȳ}
given the data yi from the observed sample. We denote the estimator by

v∗(i) = E (Var{ȳ}|yi ), (8.2.10)

where the i-th sample is selected.
The estimator v∗ is not a design unbiased estimator of variance because

E{v∗(i)} �= Var{ȳ}.

It has two other desirable properties, however. First, the expected (with respect to
the model) bias of v∗ is zero because

E{v∗(i)} = 1

p

p∑
i=1

E (Var{ȳ}|Yi )

and

E E{v∗(i)} = 1

p

p∑
i=1

E E (Var{ȳ}|Yi )

= 1

p

p∑
i=1

E (Var{ȳ})

= E (Var{ȳ}).
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Second, in the class of estimators v(i) that are functions of the observed data yi,v∗
minimizes the expected quadratic loss. That is, for any such v, we have

E (v(i) − Var{ȳ})2 ≥ E (v∗(i) − Var{ȳ})2. (8.2.11)

This is a Rao–Blackwell type result. Further, since (8.2.11) is true for each of the
p possible samples, it follows that v∗ is the estimator of Var{ȳ} with minimum
expected MSE; i.e.,

E E(v − Var{ȳ})2 = 1

p

p∑
i=1

E (v(i) − Var{ȳ})2

≥ 1

p

p∑
i=1

E (v∗(i) − Var{ȳ})2

= E E(v∗ − Var{ȳ})2.

It is easy to obtain an explicit expression for v∗. Following Heilbron (1978), we
write

Var{ȳ} = 1

p

p∑
i

(Ȳi . − Ȳ ..)2

= N−2W′CW,

where Ȳi . is the mean of the i-th possible systematic sample, W =
(W1, . . . , Wp)′, Wi = Yi e, e is an (n × 1) vector of 1’s, and C is a (p × p) matrix
with elements

cii ′ = p − 1, i = i ′,
= −1, i �= i ′.

The estimator v∗ is then given by

v∗(i) = N−2ω′
i Cωi + N−2tr(C
i ),

where

ωi = E {W|yi )

and

Σi = E {(W − ωi )(W − ωi )
′|yi }

are the conditional expectation and conditional covariance matrix of W, respec-
tively.

Although v∗ is optimal in the sense of minimum expected mean square error, it is
unworkable in practice because ωi = ωi (θ) and Σi = Σi (θ) will be functions of
the parameter θ, which is generally unknown. A natural approximation is obtained
by computing a sample-based estimate θ̂ and replacing the unknown quantities ωi

and Σi by ω̂i = ωi (θ̂) and Σ̂i = Σi (θ̂), respectively. The resulting estimator of
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variance is

v̂∗(i) = N−2ω̂′
i Cω̂i + N−2tr(C
̂i ). (8.2.12)

Another practical difficulty with v∗ is that it is known to be optimal only for
the true model ξ . Since ξ is never known exactly, the practicing statistician must
make a professional judgment about the form of the model and then derive v∗
based on the chosen form. The “practical” variance estimator v̂∗ is then subject
not only to errors of estimation (i.e., errors in estimating θ) but also to errors of
model specification. Unless one is quite confident about the model ξ and the value
of the parameter θ, it may be better to rely upon one of the estimators defined in
Section 8.2.1.

8.2.3. Supplementing the Sample

A final class of variance estimators arises when we supplement the systematic sam-
ple with either a simple random sample or another (or possibly several) systematic
sample(s). We present estimators for both cases in this section. Of course, if there
is a fixed survey budget, then the combined size of the original and supplementary
samples necessarily must be no larger than the size of the single sample that would
be used in the absence of supplementation.

We continue to let N = np, where n denotes the size of the initial sample. From
the remaining N − n units, we shall draw a supplementary sample of size n′ via
srs wor. It is presumed that n + n′ will be less than or equal to the sample size n
employed in Sections 8.2.1 and 8.2.2 because of budgetary restrictions.

We let ȳs denote the sample mean of the initial systematic sample and ȳr the
sample mean of the supplementary simple random sample. For estimating the
population mean, ȳ, we shall consider the combined estimator

ȳ(β) = (1 − β)ȳs + β ȳr , 0 ≤ β ≤ 1. (8.2.13)

We seek an estimator of the variance, Var{ȳ(β)}. Zinger (1980) gives an explicit
expression for this variance.

To construct the variance estimator, we define three sums of squares:

Qs =
n∑
t

(yt − ȳs)2,

the sum of squares within the initial sample;

Qr =
n′∑
t

(yt − ȳr )2,

the sum of squares within the supplementary sample; and

Qb = (ȳs − ȳr )2,

the between sum of squares.
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Then, an unbiased estimator of the variance of ȳ(β) is given by

v(ȳ(β)) = B(Qs + λQr ) + DQb, (8.2.14)

where

B = d2a1(β) − d1a2(β)

d2(n + λc1) + d1(n + λc2)
,

D = a1(β)(n + λc2) + a2(β)(n + λc1)

d2(n + λc1) + d1(n + λc2)
,

a1(β) = β2(N − n − n′)/n′(N − n − 1),

a2(β) =
(

1 − pβ

p − 1

)2

− β2(N − n − n′)
n′(p − 1)2(N − n − 1)

,

c1 = (n′ − 1)(N − n)/(N − n − 1),

c2 = n2(n′ − 1)/(N − n)(N − n − 1),

d1 = (N − n − n′)/n′(N − n − 1),

d2 = (n′N 2 − n′N − n2 − nn′)/n′(N − n)(N − n − 1).

This estimator is due to Wu (1981), who shows that the estimator is guaranteed
nonnegative if and only if

λ ≥ 0

and

β ≥ p − 1

2p
.

The choice of (λ, β) = (1, (p − 1)/2p) results in the simple form

v(ȳ(β)) =
(

p − 1

2p

)2

Qb. (8.2.15)

This estimator omits the two within sums of squares Qs and Qr .
The estimator with λ = 1 and β = 1

2
or β = n′/(n + n′) was studied by Zinger

(1980). For β = 1
2
, the estimator v(ȳ(β)) is unbiased and nonnegative. But for the

natural weighting β = n′/(n + n′), the estimator may assume negative values.
Because n′ will be smaller than n in most applications, the optimum β for ȳ(β)

will usually be smaller than (p − 1)/2p, and thus the optimum β will not guarantee
nonnegative estimation of the variance. Evidently, there is a conflict between the
two goals of (1) choosing β to minimize the variance of ȳ(β) and (2) choosing a
β that will guarantee a nonnegative unbiased estimator of the variance.

Wu suggests the following strategy for resolving this conflict:

(i) If the optimal β, say β0, is greater than (p − 1)/2p, then use ȳ(β0) and
v(ȳ(β0)).

(ii) If 0.2 ≤ β0 ≤ (p − 1)/2p, then use ȳ( 1
2
) or ȳ((p − 1)/2p) and the corre-

sponding variance estimator v(ȳ( 1
2
)) or v(ȳ((p − 1)/2p)). This strategy will
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guarantee a positive variance estimator while preserving high efficiency for
the estimator of Ȳ .

(iii) If β0 < 0.2, then use ȳ(β0) and the truncated estimator of variance
v+(ȳ(β0)) = max{v(ȳ(β0)), 0}.

Wu’s strategy for dealing with this conflict is sensible, although in case (iii) a
variance estimate of zero is almost as objectionable as a negative variance estimate.

In the remainder of this section, we discuss the situation where the systematic
sample is supplemented by one or more systematic samples of the same size as the
original sample. This is commonly called multiple-start systematic sampling. Wu
(1981) discusses a modification of this approach whereby the original systematic
sample is supplemented by another systematic sample of smaller size, although
his approach does not appear to have any important advantages over multiple-start
sampling.

Let N = np, where n continues to denote the size of an individual systematic
sample. We assume k integers are selected at random between 1 and p, generating
k systematic samples of size n. It is presumed that the combined sample size, kn,
will be less than or equal to the size of a comparable single-start sample because
of budgetary restrictions.

Let the k systematic sampling means be denoted by ȳα, α = 1, . . . , k. We shall
consider variance estimation for the combined estimator

ȳ = 1

k

k∑
α=1

ȳα.

Because each sample is of the same size, note that ȳ is also the sample mean of
the combined sample of kn units.

There are two situations of interest: the k random starts are selected (1) with
replacement or (2) without replacement. In the first case, an unbiased estimator of
Var{ȳ} is given by

vwr(ȳ) = 1

k(k − 1)

k∑
α=1

(ȳα − ȳ)2, (8.2.16)

while in the second case the unbiased estimator is

vwor(ȳ) = (1 − f )
1

k(k − 1)

k∑
α=1

(ȳα − ȳ)2, (8.2.17)

f = k/p

Both of these results follow simply from standard textbook results for srs wr and
srs wor sampling.

Both of these estimators bear a strong similarity to the estimator v7 presented
in (8.2.8). They are similar in mathematical form to v7 but differ in that v7 relies
upon splitting a single-start sample, whereas vwr and vwor rely upon a multiple-start
sample.
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The estimators vwr and vwor also bear a strong similarity to the random group
estimator discussed in Chapter 2. The present estimators may be thought of as
the natural extension of the random group estimator to systematic sampling. It
would be possible to carry these ideas further, grouping at random the k selected
systematic samples, preparing an estimator for each group, and estimating the
variance of ȳ by the variability between the group means. In most applications,
however, the number of samples k will be small and we see no real advantage in
using fewer than k groups.

We conclude this section by recalling Gautschi (1957), who has examined the
efficiency of multiple-start sampling versus single-start sampling of the same size.
Not surprisingly, he shows that for populations in “random order” the two sampling
methods are equally efficient. For “linear trend” and “autocorrelated” populations,
however, he shows that multi-start sampling is less efficient than single-start sam-
pling. We shall give these various kinds of populations concrete definition in
the next section. However, it follows once again that there is a conflict between
efficient estimation of Ȳ and unbiased, nonnegative estimation of the variance.
The practicing statistician will need to resolve this conflict on a survey-by-survey
basis.

8.3. Theoretical Properties of the Eight Estimators

In many applications, the survey statistician will wish to emphasize efficient es-
timation of Ȳ and thus will prefer single-start systematic sampling to the supple-
mentary techniques discussed in the previous section. The statistician will also
wish to employ a fairly robust variance estimator with good statistical properties,
e.g., small bias and MSE and good confidence interval coverage rates. Selecting
wisely from the eight estimators presented in Section 8.2.1 will be a good strategy
in many applied problems.

In this section and the next, we shall review the statistical properties of these
eight estimators so as to enable the statistician to make wise choices between them.
We shall consider a simple class of superpopulation models, introduce the notion
of model bias, and use it as a criterion for comparing the eight estimators. We
shall also present the results of a small Monte Carlo study that sheds light on the
estimators’ MSEs and confidence interval coverage properties.

We assume the finite population is generated according to the superpopulation
model

Yi j = μi j + ei j , (8.3.1)

where the μi j denote fixed constants and the errors ei j are (0, σ 2) random variables.
The expected bias and expected relative bias of an estimator vα , for α = 1, . . . , 8,

are defined by

B {vα} = E E{vα} − E Var{Ȳ }
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and

R {vα} = B {vα}/E Var{ȳ},
respectively. In this notation, we follow the convention of using Roman letters to
denote moments with respect to the sampling design (i.e., systematic sampling)
and script letters to symbolize moments with respect to the model (8.3.1).

In Sections 8.3.1 to 8.3.4, we compare the expected biases or expected relative
biases of the eight estimators using five simple models.

8.3.1. Random Model

Random populations may be represented by

μi j = μ, (8.3.2)

for i = 1, . . . , p and j = 1, . . . , n, where the ei j are independent and identically
distributed (iid) random variables. For such populations, it is well-known that the
expected variance is

E Var{ȳ} = (1 − f )σ 2/n (8.3.3)

(see, e.g., Cochran (1946)). Further, it can be shown that the expected relative bias
of the first seven estimators of variance is zero. We have been unable to obtain an
expression for B {v8} without making stronger distributional assumptions. How-
ever, it seems likely that this expected bias is near zero and therefore that each of
the eight estimators is equally preferable in terms of the bias criterion.

8.3.2. Linear Trend Model

Populations with linear trends may be represented by

μi j = β0 + β1[i + ( j − 1)p], (8.3.4)

where β0 and β1 denote fixed (but unknown) constants and the errors ei j are iid
random variables. For this model, the expected variance is

E Var{ȳ} = β2
1 (p2 − 1)/12 + (1 − f )σ 2/n. (8.3.5)

The expectations of the eight estimators of variance are given in column 2 of
Table 8.3.1. The expression for E E{v8} was derived by approximating the expec-
tation of the function v8(s2, ρ̂ps2) by the same function of the expectations E E{s2}
and E E{ρ̂ps2}, where we have used an expanded notation for v8. In deriving this
result, it was also assumed that ρ̂p > 0 with probability one, thus guaranteeing
that terms involving the operator ln(·) are well-defined.

From Table 8.3.1 and (8.3.5), we see that the intercept β0 has no effect on the
relative biases of the variance estimators, while the error variance σ 2 has only a
slight effect. Similarly, the slope β1 has little effect on the relative biases unless
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β1 is very small. For populations where p is large and β1 is not extremely close to
0, the following useful approximations can be derived:

R {v1} = n,

R {v2} = −(n − 6)/n,

R {v3} = −(n − 6)/n,

R {v4} = −1,

R {v5} = −1,

R {v6} = −1,

R {v7} = k.

Thus, from the point of view of relative bias, the estimators v2 and v3 are preferred.
The reader will notice that these results differ from those of Cochran (1977),

who suggests v4 for populations with linear trends. The contrasts defining v4, v5,
and v6 eliminate the linear trend, whereas v2, v3, and v8 do not. Eliminating the
linear trend is not a desirable property here because the variance is a function of
the trend.

8.3.3. Stratification Effects Model

We now view the systematic sample as a selection of one unit from each of n strata.
This situation may be represented by the model

μi j = μ j (8.3.6)

for all i and j, where the errors ei j are iid random variables. That is, the unit means
μi j are constant within a stratum of p units. For this model, the expected variance
of ȳ is

E Var{ȳ} = (1 − f )σ 2/n, (8.3.7)

and the expectations of the eight estimators of variance are given in column 3 of
Table 8.3.1. Once again, the expression for the expectation of v8 is an approxima-
tion and will be valid when n is large and ρ̂p > 0 almost surely.

From Table 8.3.1 and (8.3.7), we see that each of the first seven estimators
have small and roughly equal relative biases when the stratum means μ j are
approximately equal. When the stratum means are not equal, there can be important
differences between the estimators and v1 and v8 often have the largest absolute
relative biases. This point is demonstrated in Table 8.3.2, which gives the expected
biases for the examples μ j = j, j1/2, j−1, ln( j) + sin( j) with n = 20.

Based on these simple examples, we conclude that v4, v5, and v6 provide the
most protection against stratification effects. The contrasts used in these estima-
tors tend to eliminate a linear trend in the stratum means, μ j , which is desirable
because the expected variance is not a function of such a trend. Conversely, v2,
v3, and v7 do not eliminate the trend. Estimators v5 and v6 will be preferred when
there is a nonlinear trend in the stratum means. When the means μ j are equal in
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Table 8.3.2. Expected Relative Bias Times σ 2 for Eight Estimators of Variance
for the Stratification Effects Model

μ j

Estimator j j1/2 j−1 ln( j) + sin( j)

v1 35.00 1.046 0.050 0.965

v2 0.50 0.020 0.008 0.235

v3 0.50 0.022 0.013 0.243

v4 0.00 0.000 0.001 0.073

v5 0.00 0.000 0.001 0.034

v6 0.00 0.000 0.000 0.013

v7 5.00 0.177 0.022 0.206

v8 −0.67 −0.396 −0.239 −0.373

Note: n = 20, k = 2, σ 2 = 100.

adjacent nonoverlapping pairs of strata, estimator v3 will have the smallest ex-
pected bias. Estimator v7 will have the smallest expected bias when the μ j are
equal in adjacent nonoverlapping groups of k strata.

8.3.4. Autocorrelated Model

Autocorrelated populations occur in the case where the ei j are not independent
but rather have some nonzero correlation structure. For example, estimator v8

arises from consideration of the stationary correlation structure E {ei j ei ′ j ′ } = ρdσ
2,

where d is the distance between the (i, j)-th and (i ′, j ′)-th units in the population
and ρd is a correlation coefficient.

In general, we shall study autocorrelated populations by assuming the y-variable
has the time series specification

Yt − μ =
∞∑

j=−∞
α jεt− j (8.3.8)

for t = 1, . . . , pn, where the sequence {α j } is absolutely summable, and the εt are
uncorrelated (0, σ 2) random variables. The expected variance for this model is

E Var{ȳ} = (1 − f )(1/n)

{
γ (0) − 2

pn(p − 1)

pn−1∑
h=1

(pn − h)γ (h)

+ 2p

n(p − 1)

n−1∑
h=1

(n − h)γ (ph)

}
, (8.3.9)

where

γ (h) = E {(Yt − μ)(Yt−h − μ)} =
∞∑

−∞
α jα j−hσ

2.
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By assuming that (8.3.8) arises from a low-order autoregressive moving average
process, we may construct estimators of Var{ȳ} and study their properties.

For example, a representation for the model underlying v8 is the first-order
autoregressive process

Yt − μ = ρ(Yt−1 − μ) + εt , (8.3.10)

where ρ is the first-order autocorrelation coefficient (to be distinguished from the
intraclass correlation) and 0 < ρ < 1. By (8.3.9), the expected variance for this
model is

E Var{ȳ} = (1 − f )(σ 2/n)

{
1 − 2

(p − 1)

(ρ − ρ pn)

(1 − ρ)

+ 2

pn(p − 1)

[
(ρ − ρ pn)

(1 − ρ)2
− (pn − 1)

ρ pn

(1 − ρ)

]

+ 2p

(p − 1)

(ρ p − ρ pn)

(1 − ρ p)

− 2p

n(p − 1)

[
(ρ p − ρ pn)

(1 − ρ p)2
− (n − 1)

ρ pn

(1 − ρ p)

]}
. (8.3.11)

Letting n index a sequence with p fixed, we obtain the following approximation
to the expected variance:

E Var{ȳ} = (1 − f )(σ 2/n)

{
1 − 2

(p − 1)

ρ

(1 − ρ)
+ 2p

(p − 1)

ρ p

(1 − ρ p)

}
+ 0(n−2).

(8.3.12)

The expectations of the eight estimators of variance are presented in column 4
of Table 8.3.1. The expression for v8 is a large-n approximation, as in (8.3.12),
whereas the other expressions are exact. Large-n approximations to the expecta-
tions of v1 and v7 are given by

E E{v1} = (1 − f )σ 2/n + 0(n−2), (8.3.13)

E E{v7} = (1 − f )(σ 2/n){1 + [2/(k − 1)][kρ pk/(1 − ρ pk) − ρ p/(1 − ρ p)]}
+ 0(n−2). (8.3.14)

The expectations of the remaining estimators (v2 to v6) do not involve terms of
order lower than 0(n−1).

From Table 8.3.1 and (8.3.12)–(8.3.14), it is apparent that each of the eight
estimators has a small bias for ρ near zero. If p is reasonably large, then v1 is only
slightly biased regardless of the value of ρ, provided ρ is not very close to 1. This
is also true of estimators v2 through v8. The expectation of the first estimator tends
to be larger than those of the other estimators since, e.g.,

E E{v1} − E E{v4} =̇ (1 − f )(σ 2/n){(4/3)ρ p − (1/3)ρ2p} ≥ 0,

E E{v1} − E E{v2} =̇ (1 − f )(σ 2/n)ρ p ≥ 0.
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As Cochran (1946) noticed, a good approximation to −2ρ/p(1 − ρ) is given by
2/ln(ρ p). On this basis, v8 should be a very good estimator since the expectation
E E{v8} is nearly identical with the expected variance in (8.3.12).

Exact statements about the comparative biases of the various estimators depend
on the values of ρ and p. In Table 8.3.3, we see that differences between the
estimator biases are negligible for small ρ and increase as ρ increases. For a given
value of ρ, the differences decline with increasing sampling interval p. Estimator v8

tends to underestimate the variance, while the remaining estimators (most notably
v1) tend towards an overestimate. Further, v8 tends to have the smallest absolute
bias, except whenρ is small. Whenρ is small, the ln(ρ p) approximation is evidently
not very satisfactory.

8.3.5. Periodic Populations Model

A simple periodic population is given by

μi j = β0 sin{β1[i + ( j − 1)p]} (8.3.15)

with ei j iid (0, σ 2). As is well-known, such populations are the nemesis of sys-
tematic sampling, and we mention them here only to make note of that fact. When
the sampling interval is equal to a multiple of the period, 2π/β1, the variance of
ȳ tends to be enormous, while all of the estimators of variance tend to be very
small. Conversely, when the sampling interval is equal to an odd multiple of the
half period, Var{ȳ} tends to be extremely small, while the estimators of variance
tend to be large.

8.3.6. Monte Carlo Results

In this subsection, we shall present some simulations concerning the confidence
interval properties and MSEs of the variance estimators. We shall also present
simulation results concerning the estimator biases, which generally tend to confirm
the analytical results described in the previous several subsections.

We present results for the seven superpopulation models set forth in Table 8.3.4.
For each model, 200 finite populations of size N = 1000 were generated, and in
each population, the bias and MSE of the eight estimators of variance were com-
puted, as well as the proportion of confidence intervals that contained the true pop-
ulation mean. We averaged these quantities over the 200 populations, giving the ex-
pected bias, the expected MSE, and the expected coverage rate for each of the eight
estimators. The multiplier used in forming the confidence intervals was the 0.025
point of the standard normal distribution. Estimator v7was studied with k = 2.

The Monte Carlo results for the random population are presented in the row
labeled A1 of Tables 8.3.5, 8.3.6, and 8.3.7. Estimator v1 is the best choice in
terms of both minimum MSE and the ability to produce 95% confidence inter-
vals. Estimator v8 is the only one of the eight estimators that is seriously biased.
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Table 8.3.4. Description of the Artificial Populations

Population Description n p μi j ei j

A1 Random 20 50 0 ei j iid N (0, 100)

A2 Linear Trend 20 50 i + ( j − 1)p ei j iid N (0, 100)

A3 Stratification 20 50 j ei j iid N (0, 100)

Effects

A4 Stratification 20 50 j + 10 ei j = εi j if εi j ≥ −( j + 10)

Effects = −( j + 10) otherwise

εi j iid N (0, 100)

A5 Autocorrelated 20 50 0 ei j = ρei−1, j + εi j

e11 ∼ N (0, 100/(1 − ρ2))

εi j iid N (0, 100)

ρ = 0.8

A6 Autocorrelated 20 50 0 same as A5 with ρ = 0.4

A7 Periodic 20 50 20 sin{(2π/50) ei j iid N (0, 100)

× [i + ( j − 1)p]}

The variance of the variance estimators is related to the number of “degrees of
freedom,” and on this basis v1 is the preferred estimator. The actual confidence
levels are lower than the nominal rate in all cases.

For the linear trend population (see the row labeled A2), all of the estimators
are seriously biased. Estimators v2 and v3 are more acceptable than the remaining
estimators, although each is downward biased and actual confidence levels are
lower than the nominal rate of 95%. Because of their large biases, v1 and v7 are
particularly unattractive for populations with a linear trend. Although estimator v8

was designed for autocorrelated populations, we obtained a relatively small bias
for this estimator in the context of the linear trend population. As we shall see,
however, this estimator is too sensitive to the form of the model to have broad
applicability.

The Monte Carlo results for the stratification effects populations are presented
in rows labeled A3 and A4. Population A4 is essentially the same as A3, except
truncated so as not to permit negative values. Estimators v2, v3, and v4 are preferred
here; they have smaller absolute biases and MSEs than the remaining estimators.
Estimators v5 and v6 have equally small biases but larger variances, presumably be-
cause of a deficiency in the “degrees of freedom.” Primarily because of large biases,
estimators v1, v7, and v8 are unattractive for populations with stratification effects.

Results for the autocorrelated populations are in rows A5 and A6. Estimator
v8 performs well in the highly autocorrelated population (A5) but not as well
in the moderately autocorrelated population (A6). Even in the presence of high
autocorrelation, the actual confidence level associated with v8 is low. Any one of
the first four estimators is recommended for low autocorrelation.

Row A7 gives the results of the Monte Carlo study of the periodic population. As
was anticipated (because the sampling interval p = 50 is equal to the period), all
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Table 8.3.7. Proportion of Times that the True Population Mean Fell Within the
Confidence Interval Formed Using One of Eight Estimators of Variance

Estimator of Variance

Population v1 v2 v3 v4 v5 v6 v7 v8

A1 94 93 93 93 91 86 70 85

A2 100 64 64 17 17 16 100 85

A3 97 93 93 93 91 86 71 77

A4 97 93 93 93 91 86 71 77

A5 96 95 94 94 92 88 73 88

A6 94 94 93 93 91 86 71 86

A7 14 14 14 13 13 13 11 11

EMPINC 90 90 88 90 88 88 64 84

EMPRSA 96 94 94 94 94 96 74 88

EMPNOO 98 98 98 98 98 98 76 92

INCINC 98 94 94 94 94 96 74 88

INCRSA 94 90 90 90 90 88 76 70

INCNOO 98 98 98 98 100 100 76 92

FUELID 88 86 82 84 82 80 60 74

FUELAP 100 90 88 86 84 82 80 76

of the eight estimators are badly biased downward, and the associated confidence
intervals are completely unusable.

In the next section, we shall present some further numerical results regarding the
eight estimators of variance. Whereas the above results were based upon computer
simulations, the following results are obtained using real data sets. In Section 8.5,
we summarize all of this work, pointing out the strengths and weaknesses of each
of the estimators.

8.4. An Empirical Comparison

In this section, we compare the eight estimators of variance using eight real data
sets. As in the last section, the comparison is based upon the three criteria

� bias
� mean square error
� confidence interval properties.

The results provide the reader with insights about how the estimators behave in a
variety of practical settings.

The first six populations are actually based upon a sample taken from the March
1981 Current Population Survey (CPS). The CPS is a large survey of households
that is conducted monthly in the United States. Its primary purpose is to produce
descriptive statistics regarding the size of the U.S. labor force, the composition of
the labor force, and changes in the labor force over time. For additional details,
see Hanson (1978).



P1: OTE/SPH P2: OTE

SVNY318-Wolter December 13, 2006 22:1

8.4. An Empirical Comparison 321

The populations consist of all persons enumerated in the March 1981 CPS who
are age 14+, live in one of the ten largest U.S. cities, and are considered to be
members of the labor force (i.e., either employed or unemployed). Each population
is of size N = 13, 000 and contains exactly the same individuals.

The six CPS populations differ only in respect to the characteristic of interest
and in respect to the order of the individuals in the population prior to sampling.
For three of the populations, EMPINC, EMPRSA, and EMPNOO, the y-variable
is the unemployment indicator

y = 1, if unemployed,

= 0, if employed,

while for the remaining three populations, INCINC, INCRSA, and INCNOO,
the y-variable is total income. EMPINC and INCINC are ordered by the median
income of the census tract in which the person resides. EMPRSA and INCRSA
are ordered by the person’s race, by sex, by age (White before Black before other,
male before female, age in natural ascending order). EMPNOO and INCNOO are
essentially in a geographic ordering.

The seventh and eighth populations, FUELID and FUELAP, are comprised of
6500 fuel oil dealers. The y-variable is 1972 annual sales in both cases. FUELID is
ordered by state by identification number. The nature of the identification number is
such that within a given state, the order is essentially random. FUELAP is ordered
by 1972 annual payroll. The source for these data is the 1972 Economic Censuses.
See, e.g., U.S. Bureau of the Census (1976).

Table 8.4.1 provides a summary description of the eight real populations. As
an aid to remembering the populations, notice that they are named so that the first

Table 8.4.1. Description of the Real Populations

Population Characteristic Order

FUELID Annual Sales (1) State

(2) Identification Number

FUELAP Annual Sales Annual Payroll

EMPINC Unemployment Indicator Median Income of Census Tract

EMPRSA Unemployment Indicator (1) Racea

(2) Sex

(3) Age

EMPNOO Unemployment Indicator (1) Rotation Group

(2) Identification Number

INCINC Total Income Median Income of Census Tract

INCRSA Total Income (1) Racea

(2) Sex

(3) Age

INCNOO Total Income (1) Rotation Group

(2) Identification Number

a White before Black before Other; male before female; age in natural ascending order.
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three letters signify the characteristic of interest and the last three letters signify
the population order.

The populations INCINC, INCRSA, and INCNOO are depicted in Figures 8.4.1,
8.4.2, and 8.4.3. (These figures actually depict a 51-term centered moving average
of the data). The ordering by median income (INCINC) results in an upward
trend, possibly linear at first and then sharply increasing at the upper tail of the
income distribution. There are rather distinct stratification effects for the population
INCRSA, where the ordering is by race by sex by age. The geographical ordering
displays characteristics of a random population.

The unemployment populations EMPINC, EMPRSA, and EMPNOO (see
Figures 8.4.4, 8.4.5, and 8.4.6) are similar in appearance to INCINC, INCRSA,
and INCNOO, respectively, except that they display negative relationships between
the y-variable and the sequence number wherever the income populations display
positive relationships, and vice versa.

The fuel oil population FUELAP (Figure 8.4.8) is similar in appearance to
INCINC, except the trend is much stronger in FUELAP than in INCINC. FUELID
(Figure 8.4.7) appears to be a random population, or possibly a population with
weak stratification effects (due to a state or regional effect).

For each of the eight populations, we have calculated the population mean Ȳ
and the variance Var{ȳ}. For all possible systematic samples corresponding to
p = 50 (i.e., f = n/N = 0.02), we have also calculated the sample mean ȳ and
the eight estimators of variance. Utilizing these basic data, we have calculated for
each population and each variance estimator, vα , the bias

Bias{vα} = 50−1
50∑

i=1

vα(i) − Var{ȳ},

the mean square error

MSE{vα} = 50−1
50∑

i=1

(vα(i) − Var{ȳ})2,

and the actual confidence interval probability

50−1
50∑

i=1

χi ,

where

χi = 1, if Ȳ ∈ (ȳ ± 1.96
√

vα(i)),

= 0, otherwise.

The results of these calculations are presented in Tables 8.3.5, 8.3.6, and 8.3.7,
respectively. In general, these results mirror those obtained in Section 8.3, where
hypothetical superpopulation models were used. In the following paragraphs, we
summarize the essence of the results presented in the tables.
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Populations with a Trend. Populations EMPINC, INCINC, and FUELAP fall
generally in this category. Any of the five estimators v2, . . . , v6 may be recom-
mended for INCINC. For FUELAP, which has a stronger trend than INCINC, v2

and v3 are the least biased estimators and also provide confidence levels closest
to the nominal rate. The estimator v1 was profoundly bad for both of these pop-
ulations. For EMPINC, which has a much weaker trend than INCINC, the first
estimator v1 performed as well as any of the estimators v2, . . . , v6.

Populations with Stratification Effects. Any of the three estimators v2, v3,
or v4 may be recommended for the populations INCRSA and EMPRSA. The
absolute bias of v1 tends to be somewhat larger than the biases of these preferred
estimators. All of the preferred estimators are downward biased for INCRSA and
thus actual confidence levels are too low. Estimator v6 has a larger MSE than the
preferred estimators.

Random Populations. Any of the first six estimators may be recommended for
INCNOO, EMPNOO, and FUELID. The eighth estimator also performs quite well
for these populations except for FUELID, where it has a larger downward bias and
corresponding confidence levels are too low.

8.5. Conclusions in the Equal Probability Case

The reader should note that the findings presented in the previous sections apply
primarily to surveys of establishments and people. Stronger correlation patterns
may exist in surveys of land use, forestry, geology, and the like, and the properties
of the estimators may be somewhat different in such applications. Additional
research is needed to study the properties of the variance estimators in the context
of such surveys. With these limitations in mind, we now summarize the numerical
and theoretical findings regarding the usefulness of the estimators of variance. The
main advantages and disadvantages of the estimators seem to be as follows:

(i) The bias and MSE of the simple random sampling estimator v1 are reason-
ably small for all populations that have approximately constant mean μi j .
This excludes populations with a strong trend in the mean or stratification
effects. Confidence intervals formed from v1 are relatively good overall but
are often too wide and lead to true confidence levels exceeding the nominal
level.

(ii) In relation to v1, the estimators v4, v5, and v6 based on higher-order differences
provide protection against a trend, autocorrelation, and stratification effects.
They are often good for the approximate random populations as well. v4 often
has the smallest MSE of these three because the variances of v5 and v6 are
large when the sample size (and thus the number of differences) is small. In
larger samples and in samples with a nonlinear trend or complex stratification
effects, these estimators should perform relatively well. Confidence intervals
are basically good, except when there is a pure linear trend in the mean.

(iii) The bias of v7 is unpredictable, and its variance is generally too large to be
useful. This estimator cannot be recommended on the basis of the work done
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here. Increasing k, however, may reduce the variance of v7 enough to make
it useful in real applications.

(iv) Estimator v8 has remarkably good properties for the artificial populations
with a linear trend or autocorrelation; otherwise it is quite mediocre. Its bias
is usually negative, and consequently confidence intervals formed from v8 can
fail to cover the true population mean at the appropriate nominal rate. This
estimator seems too sensitive to the form of the model to be broadly useful in
real applications.

(v) The estimators v2 and v3 based on simple differences afford the user consid-
erable protection against most model forms studied in this chapter. They are
susceptible to bias for populations with strong stratification effects. They are
also biased for the linear trend population, but even then the other estimators
have larger bias. Stratification effects and trend effects did occur in the real
populations, but they were not sufficiently strong effects to defeat the good
properties of v2 and v3. In the real populations, these estimators performed, on
average, as well as any of the estimators. Estimators v2 and v3 (more degrees of
freedom) often have smaller variances than estimators v4, v5, and v6 (fewer de-
grees of freedom). In very small samples, v2 might be the preferred estimator.

If an underlying model can be assumed for the finite population of interest
and is known approximately or can be determined by professional judgment, then
the reader should select an appropriate variance estimator by reference to our
theoretical study of the estimator biases or by reference to our numerical results
for similar populations. The summary properties in points (i) to (v) above should
be helpful in making an informed choice.

If the model were known exactly, of course, then one may construct an appropri-
ate estimator of variance according to the methodology presented in Section 8.2.2.
But true superpopulation models are never known exactly, and moreover are never
as simple as the models utilized here. It is thus reasonable to plan to use one
of the eight estimators of variance presented in Section 8.2.1. These estimators
will not necessarily be optimal for any one specific model but will achieve good
performance for a variety of practical circumstances and thus will offer a good
compromise between optimality given the model and robustness given realistic
failures of the model.

On the other hand, if little is known about the finite population of interest,
or about the underlying superpopulation model, then, as a good general-purpose
estimator, we suggest v2 or v3. These estimators seem (on the basis of the work
presented here) to be broadly useful for a variety of populations found in practice.

8.6. Unequal Probability Systematic Sampling

Unequal probability systematic sampling is one of the most widely used methods
of sampling with unequal probabilities without replacement. Its popularity derives
from the fact that:
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� It is an easy sampling scheme to implement either manually or on a computer.
� If properly applied, it can be a πps sampling design, i.e., πi = npi .
� It is applicable to arbitrary sample size n; i.e., its use is not restricted to a

certain sample size such as n = 2.
� If properly applied, it can be quite efficient in the sense of small design

variance, picking up any implied or hidden stratification in the population.

As in the case of equal probability systematic sampling, however, the method
runs into certain difficulties with regard to the estimation of variances. In the bal-
ance of this chapter, we shall discuss the difficulties, define several potentially
useful estimators of variance, and examine the range of applicability of the esti-
mators.

Before proceeding, it will be useful to review briefly how to select an unequal
probability systematic sample (also called systematic pps sampling). First, the N
population units are arranged in a list. They can be arranged at random in the list;
they can be placed in a particular sequence; or they can be left in a sequence in which
they naturally occur. We shall let Yi denote the value of the estimation variable
for the i-th unit in the population and let Xi denote the value of a corresponding
auxiliary variable, or “measure of size,” thought to be correlated with the estimation
variable.

Next, a cumulative measure of size, Mi , is calculated for each population unit.
This cumulative size is simply the measure of size of the i-th unit added to the
measures of size of all units preceding the i-th unit on the list; i.e.,

Mi =
i∑

j=1

X j .

To select a systematic sample of n units, a selection interval, say I , is calculated
as the total of all measures of size divided by n:

I =
N∑

i=1

Xi/n = X/n.

The selection interval I is not necessarily an integer but is typically rounded off
to two or three decimal places.

To initiate the sample selection process, a uniform random deviate, say R, is
chosen on the half-open interval (0, I ]. The n selection numbers for the sample
are then

R, R + I, R + 2I, R + 3I, . . . , R + (n − 1)I.

The population unit identified for the sample by each selection number is the first
unit on the list for which the cumulative size, Mi , is greater than or equal to the
selection number. Given this method of sampling, the probability of including the
i-th unit in the sample is equal to

πi = Xi/I

= npi ,
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Table 8.6.1. Example of Unequal Probability Systematic Sampling

Unit Size (Xi ) Cum Size (Mi ) Selection Numbers

1 8 8

2 12 20

3 11 31

4 4 35 31.68

5 10 45

6 15 60

7 6 66

8 20 86 71.93

9 11 97

10 14 111

11 5 116 112.18

12 9 125

13 7 132

14 17 149

15 12 161 152.43

where

pi = Xi/X.

Thus, systematic pps sampling is a πps sampling scheme.
As an example, suppose a sample of four units is to be selected from the units

listed in Table 8.6.1, with probabilities proportional to the sizes indicated in the
second column. The cumulative sizes are shown in column 3. The selection inter-
val is I = 161/4 = 40.25. Suppose the random start, which would be a random
number between 0.01 and 40.25, were R = 31.68. The four selection numbers
would be 31.68, 71.93, 112.18, and 152.43. The corresponding four units selected
would be units labelled 4, 8, 11, and 15. The four selection numbers are listed in
the last column of the table in the rows representing the selected units.

Prior to the selection of a systematic pps sample, the sizes of the units must
be compared with the selection interval. Any unit whose size Xi exceeds the
selection interval will be selected with certainty; i.e., with probability 1. Typically,
these certainty units are extracted from the list prior to the systematic selection.1 A
new selection interval, based on the remaining sample size and on the sizes of the
remaining population units, would be calculated for use in selecting the balance of
the sample. Of course, the inclusion probabilities πi must be redefined as a result
of this process.

1 In multistage samples for which systematic pps sampling is used at some stage, certainty
selections are often not identified prior to sampling. Instead, the systematic sampling pro-
ceeds in a routine fashion, even though some units may be “hit” by more than one selection
number. Adjustments are made in the subsequent stage of sampling to account for these
multiple hits.
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In identifying certainty selections from the list, units that have a size only slightly
less than the selection interval are usually included in the certainty group. In applied
survey work, a minimum certainty size cutoff is often established, such as 2I/3 or
3I/4, and all units whose size Xi is at least as large as the cutoff are taken into the
sample with probability 1. By establishing a certainty cutoff, the survey designer
is attempting to control the variance by making certain that large units are selected
into the sample.

For the systematic pps sampling design, the Horvitz–Thompson estimator

Ŷ =
n∑

i=1

yi/πi

is an unbiased estimator of the population total

Y =
N∑

i=1

Yi .

To estimate the variance of Ŷ , it is natural to consider, at least provisionally,
the variance estimators proposed either by Horvitz and Thompson (1952) or by
Yates and Grundy (1953). See Section 1.4 for definitions of these estimators.
Unfortunately, both of these estimators run into some difficulty in the context
of systematic pps sampling. In fact, neither estimator is unbiased, and in some
applications they may be undefined. Most of the difficulties have to do with the
joint inclusion probabilities πi j . The πi j will be zero for certain pairs of units, thus
defeating the unbiasedness property. Or the πi j may be unknown, thus making it
difficult to apply the provisional variance estimators.

In view of these difficulties, we shall broaden our search for variance estimators,
including biased estimators that are computationally feasible. We shall define
several such estimators of variance in the next section and in subsequent sections
examine whether these estimators have utility for systematic pps sampling designs.

8.7. Alternative Estimators in the Unequal
Probability Case

We shall discuss estimators of the variance of Ŷ . Estimators of the variance of
nonlinear statistics of the form θ̂ = g(Ŷ ) may be obtained from the development
presented here together with the appropriate Taylor series formula.

An appealing estimator of variance is obtained from the Yates and Grundy
formula by substituting an approximation to the πi i ′ developed by Hartley and
Rao (1962). The approximation

πi i ′ = n − 1

n
πiπi ′ + n − 1

n2
(π2

i πi ′ + πiπ
2
i ′ ) − n − 1

n3
πiπi ′

N∑
j=1

π2
j
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is correct to order 0(N−3) on the conditions that (1) the population listing may
be regarded as in random order and (2) πi is order 0(N−1). The corresponding
estimator of variance

v9 = 1

n − 1

n∑
i

n∑
i<i ′

(
1 − πi − πi ′ +

N∑
j=1

π2
j

n

)
·
(

yi

πi
− yi ′

πi ′

)2

(8.7.1)

is correct to terms of order 0(N ). Hartley and Rao also give a better approximation
to the πi i ′ , correct to order 0(N−4), and the corresponding variance estimator is
correct to order 0(1).

If large units are selected into the sample with certainty, then this formula and all
symbols contained therein (e.g., N , n, πi , and πi ′ ) pertain only to the noncertainty
portion of the population. For the certainty cases, the contribution to both the true
and estimated variances is identically zero. In fact, these remarks apply generally
to all of the variance estimators studied in this section.

In the equal probability situation where N is an integer multiple of n, the prob-
abilities πi = n/N and the estimator v9 reduces to the simple random sampling
estimator v1 studied in Section 8.2.1.

The estimator v9 is not an unbiased estimator of the variance Var{Ŷ }, but it may
have useful statistical properties in situations where the population listing can be
regarded as random and the approximation involved in πi i ′ is satisfactory.

A second estimator of variance is obtained by treating the sample as if it were
a pps with replacement (wr) sample. The estimator is

v10 = 1

n(n − 1)

n∑
i=1

(
yi

pi
− Ŷ

)2

. (8.7.2)

This estimator will be biased in the context of systematic pps designs, but the bias
may be reasonably small when the population is large, the population listing is in an
approximate random order, and none of the population units are disproportionately
large. Further, the estimator v10 will tend to be conservative (i.e., too large) in
situations where systematic pps sampling has smaller true variance than pps with
replacement sampling.

A third estimator is obtained by treating the sample as if nh = 2 units were
selected from within each of n/2 equal-sized strata. The corresponding variance
estimator is

v11 = 1

n

n/2∑
i=1

(
y2i

p2i
− y2i−1

p2i−1

)2 /
n. (8.7.3)

Another estimator, which aims to increase the number of “degrees of freedom,” is

v12 = 1

n

n∑
i=2

(
yi

pi
− yi−1

pi−1

)2 /
2(n − 1). (8.7.4)

This estimator utilizes overlapping differences, whereas v11 utilizes nonoverlap-
ping differences.
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A fifth estimator is obtained by application of the random group principle. Let
the systematic sample be divided into k systematic subsamples, each of integer
size m = n/k. Let

Ŷα = 1

m

m∑
i=1

yi

pi

denote the Horvitz–Thompson estimator of total corresponding to the α-th sub-
sample (α = 1, . . . , k). Then, the variance estimator is defined by

v13 = 1

k(k − 1)

k∑
α=1

(Ŷα − Ŷ )2. (8.7.5)

Alternatively, the systematic sample may be divided into subsamples at random
instead of systematically. It can be shown that this form of v13 has the same
expectation but a larger variance than the pps wr estimator v10. See Isaki and
Pinciaro (1977).

If desired, each of the estimators v10, . . . , v13 may be multiplied by a finite-
population correction (fpc) factor, whereas estimator v9 presumably accounts in-
ternally for the without replacement aspect of the sampling design. A computa-
tionally simple and potentially useful fpc for systematic pps sampling is

f̂pc =
(

1 − n−1
n∑

i=1

πi

)
. (8.7.6)

Of course, no exact fpc appears in the true variance for systematic pps sampling.
Therefore, use of (8.7.6) should be viewed as a rule of thumb for reducing the
estimated variance in applications where systematic pps sampling is thought to be
more efficient than pps with replacement sampling.

By now, the reader will have noticed a strong resemblance between the present
estimators and those given in Section 8.2.1 for equal probability systematic sam-
pling. In fact, a general method for constructing variance estimators for unequal
probability systematic sampling involves using almost any estimator of variance
for equal probability sampling and replacing the values yi by zi = yi/pi in the
definition of the estimator. Aside from the presence or absence of the fpc and from
the differences between estimating the population mean or total, the estimator v10

corresponds in this way to the estimator v1 in Section 8.2.1. Likewise, estimators
v11, v12, v13 correspond in this way to v3, v2, and v7, respectively. It would also
be possible to construct unequal probability analogs of v4, v5, v6, and v8. But we
shall leave this work to the reader as an exercise.

Little is known about the exact theoretical properties of these variance estima-
tors, and instead we offer some general impressions. The behavior of the estimators
will depend to a large degree upon the order of the population listing prior to sam-
pling and on any association between that order and the estimation variable. What
matters in equal probability systematic sampling is the association between the
order and the y-variable itself. What is likely to matter in unequal probability sam-
pling, however, is the association between the order and the z-variable, or, in other
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words, the association between order and the ratio yi/pi . By interpreting them
in this light, the findings and discussions presented in Sections 8.2 to 8.5 can be
used to guide the choice of variance estimator for unequal probability systematic
sampling. For example, if a certain estimator possesses good statistical properties
in the equal probability case when there is a linear trend in the y-variable, then it
may possess good properties in the unequal probability case when there is a linear
trend in the ratio yi/pi .

Further, the behavior of the estimators will depend upon the fact that the survey
design involves without replacement sampling, whereas many of the variance
estimators arise from within the context of with replacement sampling. As a result,
the estimators will tend to over-or underestimate the true variance Var{Ŷ }, as this
variance is less than or greater than the variance under pps wr sampling. Use of the
approximate fpc will tend to help matters if the former relationship is known to hold.

Finally, the variance of the variance estimators will tend to be inversely related to
the number of “degrees of freedom.” This behavior was observed in the preceding
sections on equal probability systematic sampling. In small sample sizes, the survey
statistician should take particular care to choose an estimator of variance with
adequate “degrees of freedom” so that the variance of the variance estimator is not
so large as to render the estimator unusable.

An altogether different class of variance estimators for Ŷ is created by assuming
the data are generated by a superpopulation model. One estimator in this class is

v16 = X2{(β̂2 − V̂ ar {β̂})
∑

k

P(k)(X̄k − n
∑

k ′
P(k ′)X̄k ′ )2 + (N − 1)σ̂ 2

e /Nn},
(8.7.7)

where

X =
N∑

i=1

Xi ,

β̂ =

n∑
i=1

(ri − r̄ )(xi − x̄)

n∑
i=1

(xi − x̄)2

,

V̂ ar {β̂} = σ̂ 2
e

/ n∑
i=1

(xi − x̄)2,

σ̂ 2
e = 1

n − 2

n∑
i=1

{(ri − r̄ ) − β̂(xi − x̄)}2,

ri = yi/xi ,

r̄ = 1

n

n∑
i=1

ri ,

x̄ = 1

n

n∑
i=1

xi ,
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X̄k = sample mean of the k-th systematic sample, and P(k) = probability of
selecting the k-th systematic sample. This estimator was originally due to Hartley
(1966) and is obtained by assuming a linear regression model

ri = α + βxi + ei (8.7.8)

between the ri = yi/xi ratio and the measure of size xi . If we may reasonably
assume that the population N is a random sample from a superpopulation wherein
(8.7.8) holds with

E {ei } = 0,

then v16 is an unbiased estimator (with respect to the model) of the design variance
Var{Ŷ }.

Extensions of the Hartley method can be created by assuming alternative su-
perpopulation models relating the ratios ri to xi . In fact, in numerical work to be
described in Section 8.8, we encounter a population wherein a hyperbolic relation
between ri and xi may be appropriate.

Finally, we note that estimator v16 requires calculation of the between sum of
squares

∑
k

P(k)

(
X̄k −

∑
k ′

P(k ′)X̄k ′

)2

and thus carries a greater computational burden than estimators v9, . . . , v13. Pre-
sumably, a similar burden would accompany any other member of this class of
estimators.

8.8. An Empirical Comparison

In this section, we report on a small empirical comparison that was made in order
to understand better the properties of the alternative variance estimators. In the
absence of firm theoretical results about the estimators, the empirical results should
provide the reader with the best available guidance on choosing variance estimators
for systematic pps sampling. This material was originally reported by Isaki and
Pinciaro (1977).

8.8.1. Description of the Study

We compare the estimators of variance defined in the previous section using four
real data sets, each comprised of N = 5634 mobile home dealers that were enumer-
ated in the 1972 U.S. Census of Retail Trade. Table 8.8.1 provides a description
of the four populations. In populations SALPAY and SALGEO, the estimation
variable (y) is 1972 annual sales, whereas in EMPPAY and EMPGEO it is 1972
first-quarter employment. The populations also differ by the ordering of the units
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Table 8.8.1. Description of the Populations Used in the Empirical
Comparison

Population Characteristic Order

SALPAY Annual Sales Average Payroll

SALGEO Annual Sales Identification Number

EMPPAY First Quarter Employment Average Payroll

EMPGEO First Quarter Employment Identification Number

prior to sampling. For SALPAY and EMPPAY, the units were ordered by decreas-
ing value of 1972 average quarterly payroll (x), and for SALGEO and EMPGEO
the ordering was by identification number (this essentially provides a geographic
ordering).

As in Section 8.4, the populations are named for the convenience of the reader.
The first three letters of the name signify the estimation variable, and the last three
letters signify the ordering. For example, SALPAY equates to

� estimation variable = SALes,
� ordering variable = PAYroll.

The population totals of the sales, employment, and payroll variables are
0.32385 · 1010 dollars, 0.33213 · 105 employees, and 0.57300 · 108 dollars, re-
spectively.

Figures 8.8.1 to 8.8.4 plot the data in various ways. The figures show

Figures Plots
8.8.1 sales vs. payroll
8.8.2 employment vs. payroll
8.8.3 sales/payroll ratio vs. payroll
8.8.4 employment/payroll ratio vs. payroll

There is an approximately linear relationship between sales and payroll and be-
tween employment and payroll, where in each case the residual variance about the
linear relation would appear to increase with payroll.

The population correlation coefficients are

ρ(sales, payroll) = 0.74,

ρ(employment, payroll) = 0.75.

These data suggest that a systematic pps sampling design, using payroll as the
measure of size, would be an efficient scheme for sampling from this population.

In Figures 8.8.3 and 8.8.4 there is an apparent hyperbolic relationship between
the sales/payroll ratio and payroll and between the employment/payroll ratio and
payroll. These data suggest that the populations should be ordered by payroll in
addition to sample selection with probability proportional to payroll. Ordering in
this way is a good sampling strategy because it ensures that each potential sample
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contains a cross-section of units with different values of the y/x ratio. Indeed, the
numerical work, described in the next subsection, confirms this observation. Had
there been a flat relationship between the y/x ratio and payroll, then no additional
sampling efficiencies would be gained by ordering by the measure of size; in effect,
all of the useful sampling information in the measure of size would be used up by
selecting with probability proportional to size.

In the empirical comparisons, we are concerned with the statistical properties
of eight estimators of the variance of the Horvitz–Thompson estimator, Ŷ , of
the population total. We study the estimators v9, v10, v11, v12, and v13 defined in
Section 8.7. The estimator v13 is studied both with k = 5 groups and k = 15 groups.
We also study two modified estimators created by appending the approximate
finite-population correction, f̂pc. These estimators are defined by

v14 =
(

1 −
n∑

i=1

πi/n

)
v10,

v15 =
(

1 −
n∑

i=1

πi/n

)
v12,

modifying the pps wr estimator and the estimator based upon overlapping differ-
ences, respectively.

We do not present results for the Hartley estimator v16. In view of the apparent
hyperbolic relationship between the ratios ri and the measure of size xi , it would
be appropriate in this population to replace xi by x−1

i throughout the definition of
the estimator.

Throughout the study, sample selection is with probability proportional to Xi ,
where Xi is the 1972 average quarterly payroll of the i-th unit. Results are presented
for three sample sizes, including n = 30, 60, 150. In advance of the study, 19 large
dealers were declared to be certainty units on the basis of large Xi and were omitted
from the study. The population size N = 5634 is net of these certainty cases. Also
in advance, the actual payroll sizes of the various units were modified slightly so
that the total

X =
N∑

i=1

Xi

would be perfectly divisible by the sample size n. This modification permits certain
computational efficiencies in the conduct of the study (see, e.g., equations 8.8.1,
8.8.2, and 8.8.3) but is not an essential part of the systematic pps method.

We compare the estimators of variance on the basis of their relative biases,
relative mean square errors (MSE), and confidence interval coverage rates. The
relative bias of an arbitrary estimator of variance v is given by

Rel Bias{v} = E{v} − Var{Ŷ }
Var{Ŷ } .
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The expectation is obtained computationally as

E{v} =
∑

s

v(s)
1

p
, (8.8.1)

where p = X/n denotes the number of potential integer random starts, s denotes
the sample associated with a given random start, 
s denotes summation over all
possible integer random starts, and v(s) denotes the value of the random variable
v given a certain random start. In this formulation, note that the samples s are not
necessarily distinct. In fact, two or more integer random starts may produce the
same sample of units.

The relative MSE of v is given by

Rel MSE{v} = E{(v − Var{Ŷ })2}
(Var{Ŷ })2

,

where

E{(v − Var{Ŷ })2} =
∑

s

(v(s) − Var{Ŷ })2 1

p
, (8.8.2)

and the actual confidence interval coverage percentage is

c = 100

p

∑
s

χs,

where

χs = 1, if the true total Y satisfies Y ∈ (Ŷ (s) ± z
√

v(s)),

= 0, otherwise.

In this notation, Ŷ (s) denotes the value of the Horvitz–Thompson estimator given
a specific integer random start and z denotes a tabular value from the standard
normal distribution. We present results for z = 1.96 and thus investigate the actual
coverage properties of nominal 95% confidence intervals.

8.8.2. Results

Table 8.8.2 presents certain summary information with respect to the various pop-
ulations and sample sizes. The third column gives the design variance of the
Horvitz–Thompson estimator given the pps systematic sampling design. Columns
four and five compare that variance to the variance that would obtain given a pps
wr sampling design. Hartley’s (1966) intraclass correlation is equivalent to

Intraclass Correlation = Var{Ŷ |pps syst} − Var{Ŷ |pps wr}
(n − 1)Var{Ŷ |pps wr}

and takes its lower bound of −(n − 1)−1 when the pps systematic design has zero
variance, takes the value zero when the two sampling designs are equally efficient,
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Table 8.8.2. Population Parameters

Sample Intraclass

Population Size Var{Ŷ |pps syst} Correlation Eff

SALPAY 30 1.427 · 1011 −0.0071 1.26

60 0.718 · 1011 −0.0034 1.26

150 0.276 · 1011 −0.0016 1.30

SALGEO 30 1.876 · 1011 0.0014 0.96

60 0.931 · 1011 0.0006 0.97

150 0.411 · 1011 0.0009 0.88

EMPPAY 30 1.076 · 107 −0.0041 1.13

60 0.506 · 107 −0.0029 1.21

150 0.218 · 107 −0.0007 1.12

EMPGEO 30 1.270 · 107 0.0014 0.96

60 0.576 · 107 −0.0010 1.06

150 0.265 · 107 0.0006 0.92

and increases above zero as pps wr sampling becomes more and more efficient.
The column headed Eff represents the efficiency,

Eff = Var{Ŷ |pps wr}
Var{Ŷ |pps syst} ,

of pps systematic sampling with respect to pps wr sampling.
These data show clearly that the population ordering by payroll results in the

most efficient sampling design. It is more efficient than either the population order-
ing by geography or the pps wr design. The data also show that the pps wr design
tends to be more efficient than the population ordering by geography, although
these results are equivocal for the population EMPGEO. These data suggest that
the essence of the systematic pps method is to order the population in such fash-
ion as to produce a large negative intraclass correlation and that this can often be
achieved by ordering according to Xi .

The numerical comparison of the variance estimators is presented in Tables 8.8.3
(relative bias), 8.8.4 (relative MSE), and 8.8.5 (confidence interval coverage per-
centages). For population SALPAY, the estimator v11 based upon nonoverlapping
differences tends to have the smallest bias. The estimator v12 based upon overlap-
ping differences also tends to have small bias. The pps wr estimator v10 and the
Hartley–Rao estimator v9 tend to be too big. Fewer groups k = 5 seems to produce
a smaller absolute bias than more groups k = 15 in the context of v13. Use of the
f̂pc’s in v14 and v15 is not very helpful; the f̂pc reduces the bias marginally when
the basic estimator is too large and makes matters slightly worse when the basic
estimator is too small. In terms of MSE, the estimator based upon overlapping
differences v12 and its modification v15 are the clear winners. There is little to
choose between the remaining estimators, except v13 with k = 5 tends to be worse
than with k = 15. For the largest sample size, everything tends to even out and all
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estimators perform about the same. In terms of confidence intervals, all estimators
tend to produce actual coverage rates lower than the nominal rate for small sample
sizes. The situation is much improved for the larger sample sizes, however. Esti-
mators v9, v10, and v13 with k = 15 tend to provide the best confidence intervals
(in the sense of smallest departure from nominal levels). v13 with k = 5 is not as
good as with k = 15, which is opposite the finding with respect to bias. At large
sample sizes, all of the estimators, except v13 with k = 5, perform similarly. Once
again, we see that the f̂pc’s tend not to produce a significant or helpful outcome
but only a marginally different outcome.

The results for population EMPPAY are very nearly identical with those just
described for SALPAY. This is to be expected since the structure of the data in
these two populations is nearly identical. Compare Figures 8.8.1 to 8.8.4.

Turning next to the geographic ordering, we see in population SALGEO that all
of the estimators tend to be too small. Estimators v9 and v10 may be considered
slight favorites in the race for smallest bias, but really there is little to choose be-
tween the different estimators. Once again, the addition of the f̂pc’s does not seem to
offer any significant improvement. There is little difference among the various esti-
mators in terms of their MSE. It is noteworthy, however, that the estimator MSEs are
smaller for this population ordering than for the ordering by payroll. Evidently there
is a slight conflict between efficient estimation of the Y total (which suggests order-
ing by measure of size) and efficient estimation of the estimator variance (which
suggests against ordering by measure of size). All of the actual confidence levels are
lower than the nominal level of 95%. In fact, the actual confidence levels are notice-
ably lower than they were for the populations ordered by payroll. Estimator v13 with
k = 5 is not as good as the estimator with k = 15, a finding that is consistent with
the findings for populations SALPAY and EMPPAY. Otherwise, there are few dif-
ferences among the remaining variance estimators in terms of confidence interval
properties.

All of the estimators behave similarly in the context of population EMPGEO.
They all tend towards an underestimate for sample sizes n = 30 and 150 and
an overestimate for sample size n = 60. These results are consistent with the
efficiency comparison in Table 8.8.2: in cases where pps systematic sampling is
more efficient than pps wr sampling, the estimators of variance tend to be too large,
evidently tracking the pps wr variance, and vice versa. The confidence intervals
associated withv13 (k = 15) tend to be better than those associated withv13 (k = 5).
But all of the actual confidence levels are too low, particularly for n = 30 and 150,
where the variance estimators are too small. There is little to choose between the
remaining estimators.

8.9. Conclusions in the Unequal Probability Case

As in the case of equal probability systematic sampling, we suggest that the statis-
tician study the population and its order prior to selecting an estimator of the
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variance. By consulting expert opinion and analyzing prior data sets, the statisti-
cian should

� determine the statistical relationship between the estimation variable (y) and
the measure of size (x); and

� determine the statistical relationship between the ordering variable and the
ratio (r = y/x).

Only after making these determinations can the statistician make an informed
selection from among the many alternative variance estimators. Further, dif-
ferent estimation variables may bear different relationships to the measure of
size or to the ordering variable, and each may warrant a different estimator of
variance.

In Section 8.7, we defined a number of alternative estimators of the variance
of the Horvitz–Thompson estimator, Ŷ , of the population total. A general method
of constructing variance estimators for Ŷ is to begin with a variance estimator
for equal probability systematic sampling and replace yi in the definition of the
estimator by the ratio yi/pi . In fact, many of the estimators defined in Section 8.7
were obtained in this way. For nonlinear survey statistics, we suggest using one of
the estimators in Section 8.7 together with the appropriate Taylor series formula.

In Section 8.8, we presented numerical evidence relating to the statistical prop-
erties of eight of the variance estimators. The numerical evidence may be used
to guide the selection of a variance estimator. We envision a selection process
consisting of the following features:

� determine the relationships between x and y and between r and the ordering
variable, as mentioned above;

� find the population in Section 8.7 that most closely resembles the population
under study with respect to these relationships;

� choose an appropriate variance estimator according to the results in Tables
8.8.3, 8.8.4, and 8.8.5 and to any special circumstances involved in the particular
application.

Now we summarize the main findings regarding the usefulness of the eight
estimators studied in Section 8.8. The estimators seem to fall into three basic
categories on the basis of the numerical results: (i) v13 (k = 5) and v13 (k = 15),
(ii) v9, v10, and v14, and (iii) v11, v12, and v15.

(i) Although v13 tends to display reasonable statistical properties, it is almost
never the optimal estimator. There is always another class of estimators that
performs somewhat better, and thus we tend not to recommend v13 on the
basis of the work done to date. This recommendation is consistent with our
recommendation regarding v7 in the context of equal probability systematic
sampling. The estimator with fewer groups, k = 5, generally has smaller bias,
larger MSE, and worse confidence interval properties than the estimator with
more groups, k = 15. Evidently, the variance of this variance estimator is
inversely related to the number of groups. The bias of the variance estimator
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is smallest when the random group estimators are based upon sample sizes
that most closely resemble the full sample size; i.e., when the number of
groups is small.

(ii) v9, v10, and v14 tend to perform best for the geographic ordering. This is
because this ordering approximates a random ordering and these three esti-
mators owe their heritage to the assumption of a random order. The estimators
tend to be too small in the case of the geographic ordering and too large in the
case of the payroll ordering. It seems that the estimators of variance tend to be
biased on the same side of Var{Ŷ |pps syst} as the pps wr variance. Confidence
intervals formed using v9, v10, and v14 seem to be quite good for all popu-
lations studied. In most cases, the actual coverage rates are lower than the
nominal coverage rate, particularly for the geographic ordering. In general,
the use of the fpc in v14 results in little improvement relative to the unmodified
estimator v10.

(iii) v11, v12, and v15 perform best for the populations ordered by payroll. These
estimators are a function of the ordering, whereas estimators v9, v10, and v14

are not. This is a desirable property here because the true variance of Ŷ is
greatly reduced by the payroll ordering. v12 and v15 clearly have the small-
est MSE for this ordering. v11 also has a smaller MSE than the remaining
estimators, but not as small as v12. This is because v12 is based upon over-
lapping differences, increasing the “degrees of freedom” relative to v11, and
thus reducing the variance of the variance estimator. v11, v12, and v15 tend to
have the smallest bias for the populations ordered by payroll, and even in the
populations ordered by geography the bias is not too bad. These estimators
tend to be smaller than v9, v10, and v14, though there are some exceptions. As
a consequence, actual confidence interval coverage rates are lower for these
estimators than for v9, v10, and v14. Once again, use of the fpc in v15 affords
no significant improvements vis-à-vis the unmodified estimator v12.

Taking all of the results together, we recommend that one

� choosev9,v10, orv14 for any population that is in an approximate random order,
and among these choose v10 or v14 if computational convenience is important;

� choose v11, v12, or v15 for any population that is ordered in such a way as to
display a trend (in this case hyperbolic) in the ratios y/x , and if sample sizes are
small to moderate choose v11; and

� consider using v9, v10, or v14 if a confidence interval for Y is desired, regardless
of the population order.
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CHAPTER 9

Summary of Methods for
Complex Surveys

In this book, we have studied several practical methods for variance estimation for
complex sample surveys. And at this point we address briefly the ultimate question:
which of the various methods can be recommended and under what circumstances
can they be recommended?

We attempt to provide a partial answer to this question by offering some com-
parative remarks about the random group method (RG), the balanced half-sample
method (BHS), the jackknife method (J), the method of generalized variance func-
tions (GVF), the bootstrap method (BOOT) and the Taylor series method (TS).
Variance estimation issues for systematic sampling designs were treated in Chapter
8 and we shall not repeat that treatment here. In any case, the variance estimators
for systematic sampling are not necessarily competitors of the RG, BHS, J, GVF,
BOOT, and TS estimators but are instead intended for a different class of variance
estimation problems.

As was explained in Chapter 1, methods for variance estimation must be com-
pared in terms of statistical factors such as bias, mean square error (MSE), and
confidence interval coverage probabilities, and administrative considerations such
as timing and cost. Our comments on the RG, BHS, J, GVF, and TS methods
shall be in terms of these factors. We shall also comment upon the flexibility of the
different variance methods in terms of their ability to work with different sampling
designs and different estimators.

Before discussing the merits of the individual methods, we note that the ac-
curacy of a variance estimator can be defined in terms of different criteria, in-
cluding bias, MSE, and confidence interval coverage probabilities. Indeed, it
may be the case that different variance estimators turn out to be best given
different accuracy criteria. Since the most important purpose of a variance es-
timator will usually be for constructing confidence intervals for the parame-
ter of interest, θ , or for testing statistical hypotheses about θ , we suggest the

354
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confidence interval coverage probability will usually be the most relevant criterion
of accuracy.

The bias and MSE criteria of accuracy are important, such as for planning future
surveys, but are secondary to the primacy of the confidence interval criterion. Even
if this were not the case, it turns out that the bias criterion, and to some extent the
MSE criterion, do not lead to any definitive conclusions or recommendations about
the different variance estimators. This is because the biases of the RG, BHS, J, and
TS estimators of variance are, in almost all circumstances, identical, at least to a
first-order approximation. Thus, one has to look to second- and higher-order terms
in order to distinguish between the estimators. Because the square of the bias is one
component of MSE, this difficulty also carries over to the MSE criterion of accu-
racy. To a limited extent, the second component of the MSE, i.e., variance, is within
the statistician’s control because he/she can choose from a range of strategies about
the number of random groups, partial versus full balancing, and the like. Thus, the
best estimator of variance is not obvious in terms of the bias and MSE criteria.

As a consequence, we prefer to decide which variance estimators to use in differ-
ent survey applications based upon the confidence interval criterion, administrative
considerations of some kind, or the compatibility of the survey-design–estimator
pair with the variance estimating methods.

As will become clear, the BHS method seems to have some advantages in terms
of accuracy and is as good as other methods in terms of flexibility and administrative
factors.

9.1. Accuracy

The five methods RG, BHS, J, BOOT, and TS will normally have identical asymp-
totic properties (see Appendix B). Thus, we focus here on the finite-sample prop-
erties of the methods. The bias and MSE of the RG method will depend on both
the number (k) and size (m) of the random groups. Generally speaking, we have
found the variance of the variance estimator declines with increasing k while the
bias increases. At this writing, it is somewhat unclear what the net effect of these
competing forces is in the MSE. These remarks also apply to the bias and MSE of
the BHS, J, and TS estimators of variance. We observe, however, that the MSE of
the RG estimator may be slightly larger than that of the BHS, J, and TS estimators
in applications where the sampling design limits the number of replicates the RG
method can use.

In the case of nonindependent random groups, the variance estimators do not
properly account for both the between and the within components of variance for
a multistage survey design. This problem will be negligible whenever the between
component of variance is unimportant or adjustments can be made to the variance
estimators so that the problem will be negligible whenever the within component
of variance is unimportant. See Section 2.4.4 for details.

A number of Monte Carlo studies of the variance estimators have been con-
ducted. Such studies are important to our understanding of the accuracy of the
variance estimators in finite samples. Such studies provide an understanding of the
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Table 9.1.1. Relative Bias of Variance Estimators, Averaged
Over Characteristics, from Frankel’s Study

Parameter of Interest θ

Simple Regression Ratio

Variance Estimator Coefficients Means

TS −0.023 0.024

BHS(1) 0.102 0.064

BHS(2) 0.116 0.069

BHS(3) 0.109 0.067

BHS(4) 0.061 0.053

J(1) 0.019 0.057

J(2) 0.018 0.019

J(3) 0.0004 0.038

J(4) 0.008 0.033

behavior of the estimators in terms of the confidence interval criterion, which we
have said is often the most relevant criterion of accuracy.

In Tables 9.1.1 to 9.1.15, we present illustrative results from five Monte Carlo
studies. Fortunately, these studies seem to be telling us the same story about the
behavior of the variance estimators. We are always hesitant to draw definitive
conclusions and formulate general recommendations from one Monte Carlo study.
But since the five studies are in some agreement and since the range of survey
conditions in the various studies is fairly broad, we feel that some generally useful
recommendations are warranted.

Tables 9.1.1 to 9.1.3 are abstracted from the extensive study by Frankel (1971a,
1971b). This study involved data from the U.S. Current Population Survey (CPS)

Table 9.1.2. Relative MSE of Variance Estimators, Averaged
over Characteristics, from Frankel’s Study

Parameter of Interest θ

Simple Regression Ratio

Variance Estimator Coefficients Means

TS 1.15 0.384

BHS(1) 1.43 0.446

BHS(2) 1.51 0.441

BHS(3) 1.45 0.440

BHS(4) 1.35 0.419

J(1) 1.27 0.492

J(2) 1.19 0.414

J(3) 1.20 0.420

J(4) 1.18 0.407
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Table 9.1.3. Actual Confidence Interval Coverage Probabilities Associated with
Variance Estimators, Averaged over Characteristics, from Frankel’s Study

Nominal Probability Assuming Standard

Normal Theory

Variance Estimator 0.99 0.95 0.90 0.80 0.85

a. Simple Regression Coefficients

TS 0.966 0.912 0.850 0.744 0.622

BHS(1) 0.975 0.930 0.873 0.770 0.650

BHS(2) 0.970 0.930 0.875 0.778 0.653

BHS(3) 0.973 0.934 0.875 0.773 0.653

BHS(4) 0.970 0.925 0.865 0.765 0.641

J(1) 0.966 0.921 0.856 0.745 0.630

J(2) 0.967 0.910 0.849 0.745 0.624

J(3) 0.968 0.916 0.854 0.750 0.628

J(4) 0.967 0.914 0.851 0.747 0.625

b. Ratio Means

TS 0.971 0.919 0.865 0.763 0.654

BHS(1) 0.973 0.920 0.869 0.771 0.661

BHS(2) 0.971 0.952 0.872 0.768 0.659

BHS(3) 0.972 0.922 0.870 0.769 0.661

BHS(4) 0.972 0.921 0.869 0.767 0.658

J(1) 0.972 0.921 0.867 0.766 0.659

J(2) 0.970 0.918 0.864 0.759 0.650

J(3) 0.971 0.920 0.866 0.765 0.655

J(4) 0.971 0.920 0.866 0.764 0.655

as the finite population of interest. A two-per-stratum, single-stage cluster sample
design of households was used. Results were produced for a number of sample
sizes; for a number of characteristics such as “number of persons per household
under 18,” “total income of household,” and “age of head of household”; and
for a number of parameters such as ratio means, differences of means, regres-
sion coefficients, and correlation coefficients. We present results for one sample
size (with L = 12 strata) for estimators of simple regression coefficients and ra-
tio means and averaged over all of the characteristics presented in the Frankel
study. For the TS estimator, Frankel estimated the covariance matrix �� by the
random group method as applied to cluster sampling. The four BHS methods cor-
respond to equations (3.4.1), (3.4.2), (3.4.3), and (3.4.4), respectively. The four
J methods do not correspond to any of the J methods presented in Chapter 4 but
instead are obtained by a procedure of omitting one observation and duplicating
another.

Tables 9.1.4 to 9.1.6 are drawn from the study of poststratified means by Bean
(1975). This study used 131,575 people from the U.S. Health Interview Survey
as the finite population of interest. Bean’s sample design involved two PSUs per
stratum selected by pps wr sampling. Five variables/parameters were included in
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Table 9.1.4. Bias of Estimators of the Variance of a Poststratified Mean,
for Five Characteristics of Interest, from Bean’s Study

Characteristic of Interest

Restricted Proportion

Variance Family Activity Physician Hospital Seeing a

Estimator Income Days Visits Days Physician

TS 3.21 · 102 −1.60 · 10−1 1.02 · 10−3 −6.85 · 10−5 6.95 · 10−6

BHS(1) 1.49 · 103 −4.34 · 10−2 2.69 · 10−3 1.93 · 10−3 1.61 · 10−5

BHS(2) 1.64 · 103 −4.09 · 10−2 2.69 · 10−3 1.79 · 10−3 1.58 · 10−5

Table 9.1.5. MSE of Estimators of the Variance of a Poststratified Mean, for Five
Characteristics of Interest, from Bean’s Study

Characteristic of Interest

Restricted Proportion

Variance Family Activity Physician Hospital Seeing a

Estimator Income Days Visits Days Physician

TS 3.26 · 108 0.485 7.65 · 10−4 5.65 · 10−5 3.39 · 10−9

BHS(1) 3.24 · 108 0.522 8.38 · 10−4 1.24 · 10−4 3.73 · 10−9

BHS(2) 3.23 · 108 0.507 8.32 · 10−4 1.07 · 10−4 3.56 · 10−9

the study; e.g., “average income per person” and “average number of restricted
activity days per person per year.” We present bias and MSE results for all five
items but average over items in presenting Bean’s confidence interval results. The
variance estimators appearing in this study, i.e., TS, BHS(1), and BHS(3), are
defined as they were in the Frankel study.

Table 9.1.6. Actual Confidence Interval Coverage Probabilities
Associated with Variance Estimators, Averaged over
Characteristics, from Bean’s Study

Nominal Probability Assuming

Standard Normal Theory
Variance

Estimators 0.99 0.95 0.90 0.68

TS 0.974 0.930 0.879 0.652

BHS(1) 0.978 0.937 0.889 0.672

BHS(2) 0.978 0.938 0.890 0.671



P1: OTE/SPH P2: OTE

SVNY318-Wolter November 30, 2006 14:46

9.1. Accuracy 359

Table 9.1.7. Bias of Variance Estimators for the
Correlation Coefficient, from Mulry and Wolter’s Study

Variance Estimators Bias

TS −0.453 · 10−2

BHS(1) 0.072 · 10−2

BHS(4) −0.123 · 10−2

J(k = 60) 0.320 · 10−2

RG(k = 12) −0.068 · 10−2

Table 9.1.8. MSE of Variance Estimators for the
Correlation Coefficient, from Mulry and Wolter’s Study

Variance Estimators MSE

TS 0.713 · 10−4

BHS(1) 1.651 · 10−4

BHS(4) 1.085 · 10−4

J(k = 60) 3.791 · 10−4

RG(k = 12) 0.508 · 10−4

Data from the Mulry and Wolter (1981) study are presented in Tables 9.1.7 to
9.1.9. This study is described in detail in Appendix C, and here we repeat some
of the data for sample size n = 60 merely for convenience. This study looked at
variance estimators for the sample correlation coefficient using data from the U.S.
Consumer Expenditure Survey. For the TS estimator, the covariance matrix �� was
estimated by standard srs wor formulae. The estimators BHS(1) and BHS(4) are
defined by equations (3.4.1) and (3.4.4), respectively, where pseudostrata were

Table 9.1.9. Actual Confidence Interval Coverage
Probabilities Associated with Variance Estimators, from
Mulry and Wolter’s Study

Nominal Probability

Assuming Standard

Normal Theory

Variance Estimators 0.95 0.90

TS 0.828 0.746

BHS(1) 0.872 0.816

BHS(4) 0.864 0.796

J(k = 60) 0.878 0.817

RG(k = 12) 0.881 0.829
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Table 9.1.10. Relative Bias of Estimators of Variance, from Dippo and Wolter’s
Study

Characteristic of Interest

Variance Ground Food at Food Away

Estimators Floura Beefa Gasolinea Homeb from Homeb

RG(k = 8) 0.249 0.051 0.079 −0.050 −0.042

RG(k = 4) 0.134 0.076 0.080 −0.148 −0.069

RG(k = 2) 0.050 0.112 0.106 −0.132 −0.005

BHS(1) 0.055 0.079 −0.082 −0.153 −0.054

a Ratio estimator of the average cost per consumer unit for the particular commodity among con-
sumer units reporting the commodity.
b Simple correlation coefficient between the annual consumer unit income before taxes and expen-
ditures on the particular commodity.

created by pairing adjacent selections in the srs wor sampling design. The J estima-
tor corresponds to equation (4.2.5) with group size m = 1, and the RG estimator
to equation (2.4.3) with group size m = 5.

Tables 9.1.10 to 9.1.12 present data from the study by Dippo and Wolter (1984).
The universe for this study was 14,360 consumer units obtained from the U.S.
Consumer Expenditure Survey. Estimators such as ratios and correlation coeffi-
cients were studied for a wide range of consumer expenditure items such as flour,
candy, and eggs. The sample design involved L = 20 equal-sized strata with srs
wor sampling within strata. Three sample sizes nh = 6, 12, and 24 were included
in the study, and our tables present results only for the largest sample size. The
random group estimators RG(k = 8), RG(k = 4), and RG(k = 2) correspond to

Table 9.1.11. Relative MSE of Estimators of Variance from Dippo and Wolter’s
Study

Characteristic of Interest

Variance Ground Food at Food Away

Estimators Floura Beefa Gasolinea Homeb from Homeb

RG(k = 8) 3.58 4.11 0.552 0.257 0.282

RG(k = 4) 2.32 4.63 0.961 0.458 0.715

RG(k = 2) 3.21 6.29 3.13 1.40 2.60

BHS(1) 2.20 4.28 0.248 0.236 0.640

a Ratio estimator of the average cost per consumer unit for the particular commodity, among con-
sumer units reporting the commodity.
b Simple correlation coefficient between the annual consumer unit income before taxes and expen-
ditures on the particular commodity.
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Table 9.1.12. Actual Confidence Interval Coverage Probabilities Associated with
Variance Estimators, from Dippo and Wolter’s Study

Nominal Probability Assuming Standard

Normal Theory
Variance

Estimators 0.99 0.95 0.90 0.68

a. Ratio Meansa

RG(k = 8) 0.909 0.850 0.799 0.604

RG(k = 4) 0.874 0.803 0.761 0.584

RG(k = 2) 0.744 0.681 0.634 0.493

BHS(1) 0.906 0.840 0.794 0.596

b. Correlation Coefficientsb

RG(k = 8) 0.963 0.905 0.853 0.637

RG(k = 4) 0.918 0.843 0.784 0.582

RG(k = 2) 0.752 0.689 0.641 0.492

BHS(1) 0.967 0.902 0.838 0.607

a Actual probability averaged over the three ratio means: flour, ground beef, and gasoline.
b Actual probability averaged over the two correlation coefficients: ρ (food at home, income) and ρ
(food away from home, income).

equation (2.4.3) with group sizes m = 3, 6, and 12, respectively. The BHS(1)
estimator corresponds to equation (3.4.1).

Finally, a selection of results from the study by Deng and Wu (1984) is pre-
sented in Tables 9.1.13 to 9.1.15. In this study, simple random samples without
replacement of size n = 32 were used. The estimator of interest was the standard

Table 9.1.13. Bias of Estimators of the Variance of the Regression Estimator,
from Deng and Wu’s Study

Population
Variance

Estimators 1 2 3 4 5 6

TS −1.2 −5.2 −10.0 −5.6 −1.6 −13.8

J(k = 32) 0.6 16.8 5.3 7.1 1.8 9.9

Table 9.1.14. Root MSE of Estimators of the Variance of the Regression
Estimator, from Deng and Wu’s Study

Population
Variance

Estimators 1 2 3 4 5 6

TS 2.91 52.6 13.6 22.0 6.75 24.9

J(k = 32) 5.56 84.2 37.1 52.6 11.36 48.1
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Table 9.1.15. Actual Confidence Interval Coverage
Probabilities Associated with Variance Estimators, from
Deng and Wu’s Study

Nominal Probability Assuming

t30 Theory
Variance

Estimators 0.99 0.95 0.90

a. Population 1

TS 0.943 0.885 0.805

J(k = 32) 0.973 0.927 0.876

b. Population 6

TS 0.915 0.841 0.774

J(k = 32) 0.984 0.939 0.892

regression estimator of the finite population mean,

μ̂ = ȳ +
{

n∑
i=1

(yi − ȳ)(xi − x̄)

/ n∑
i=1

(xi − x̄)2

}
(X̄ − x̄),

and this estimator was studied in six small populations, known as

(1) Cancer,
(2) Cities,
(3) Counties 60,
(4) Counties 70,
(5) Hospital,
(6) Sales.

See Royall and Cumberland (1981b) for a complete description of these popula-
tions. For the TS estimator, the covariance matrix �� was obtained by standard srs
wor formulae, and for the J estimator, equation (4.2.3) was used with group size
m = 1 and with a finite-population correction factor.

The overall study by Frankel shows generally that

� TS and J may have smaller biases than BHS, but the patterns are not very
clear or consistent;

� TS tends to have the smallest MSE for most simple survey statistics, but BHS
and J may have smaller MSEs for multiple correlation coefficients; and

� BHS is clearly best in terms of the confidence interval criterion.

The abstracted data in Tables 9.1.1 to 9.1.3 are generally consistent with these
overall conclusions.

Bean’s data tell a similar story:

� No one estimator of variance consistently and generally has the smallest bias,
although in Table 9.1.4 TS tends in this direction.
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� TS tends to have the smallest MSE.
� BHS tends to offer the best confidence intervals.

The Mulry and Wolter data and the Dippo and Wolter data conclude similarly
that

� TS tends to have good properties in terms of MSE;
� BHS and RG are favored for confidence interval problems; and
� actual confidence interval coverage probabilities tend to be too low in all

cases.

Tables 9.1.7 to 9.1.12 generally support these conclusions. Appendix C explains
that data transformations are sometimes useful in closing the gap between actual
and nominal confidence probabilities.

Finally, Deng and Wu’s study concludes that

� J and TS tend to be upward and downward biased, respectively;
� TS has a smaller MSE than J;
� actual confidence interval probabilities are lower than nominal probabilities;

and
� J has the better performance regarding confidence interval probabilities.

Note that Deng and Wu use confidence intervals based upon Student’s t theory,
whereas the four earlier studies used standard normal theory.

Although there are gaps between these studies, we feel that it may be warranted to
conclude that the TS method is good, perhaps best in some circumstances, in terms
of the MSE and bias criteria, but the BHS method in particular, and secondarily
the RG and J methods, are preferable from the point of view of confidence interval
coverage probabilities. These results may arise because the TS variance estimator
does not generally behave as a multiple of a χ2-variate independent of the estimated
parameter θ̂ .

Of course, as is pointed out in Appendix C, each of the replication methods
(RG, BHS, and J) may benefit in some circumstances from a transformation of the
data.

We are not able to make specific, finite-sample comparisons of BOOT with
the other methods because BOOT was not included in any of the Monte Carlo
studies cited here. Nevertheless, with adequate replication, we are confident that
BOOT should have statistical properties similar to the other replication-based
methods such as BHS and J. That said, we also observe that, for a fairly common
nh = 2 PSUs-per-stratum sampling design, with BOOT replicates of size n∗

h = 1,
the BOOT replicate is essentially a half-sample replicate. Because BOOT replicates
are not balanced in the sense of BHS replicates, it is difficult to see how the BOOT
variance estimate could be generally superior to the BHS variance estimate in finite
samples.

We turn finally to the accuracy of the GVF method. This method cannot be
recommended for any but the very largest sample surveys, where administrative
considerations may prevail. There is little theory for this method, and the resulting
estimators of variance are surely biased. Survey practitioners who have used these
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methods, however, feel that some additional stability (lower variance) is imparted
to variance estimates through the use of GVF techniques.

In terms of the confidence interval criterion, the GVF method is clearly inferior
to the other methods. Indeed, the studentized statistic

tGVF = θ̂ − θ√
vGVF(θ̂ )

= θ̂ − θ√
θ̂2a + θ̂b

is generally not distributed as a standard normal or as a Student’s t random variable,
not even asymptotically. To our knowledge, there have been no Monte Carlo studies
of the actual confidence interval probabilities associated with the GVF method,
and thus we conclude that it is an open question as to whether GVF methods
provide “usable” confidence intervals.

9.2. Flexibility

The RG method provides a flexible method of variance estimation. Almost any
estimator θ̂ likely to occur in survey work can be accommodated. The RG method
is also a versatile method in terms of dealing with almost any sampling design.
This is particularly true for patchwork designs that evolve over time, where the
patchwork results from influences such as budget cuts, new objectives, political
compromises, and the like. On the other hand, the RG method is sometimes limited
by the nature of the sampling design in how much replication it can employ.

The BHS method is likely to be as flexible as the random group method in
terms of the kinds of estimators that can be accommodated. In terms of sampling
designs, BHS is often thought to be restricted to stratified, two-per-stratum designs.
Indeed, this is the way in which the BHS method was defined in Chapter 3. By
pairing adjacent selections in a random sample design, however, the BHS method
can also be applied to nonstratified designs, and thus it can accommodate a wider
range of sampling designs than originally thought possible. By more complicated
balancing schemes or by collapsing schemes, BHS can also accommodate three-
or-more-per-stratum designs and one-per-stratum designs.

The J method can accommodate most estimators likely to occur in survey sam-
pling practice. There is an exception to this rule for (k, m) = (n, 1), i.e., delete
one observation at a time, where J fails for nondifferentiable statistics such as
the median. However, if the number deleted is substantially more than one, say
m = 0(

√
n), J still works. Many kinds of sampling designs can be treated by the J

method. The J method is likely to be as versatile in this regard as the BHS method.
The GVF method is somewhat less flexible than the other methods. It is designed

primarily for multistage sample surveys of households. Some ad hoc developments
have occurred for other applications, but these have not generally been as success-
ful. The method is also applicable primarily to dichotomous variables.

The TS method can generally accommodate any survey estimator of the form
θ̂ = g(Ŷ), which includes most statistics used in survey sampling practice. It may
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be difficult to apply for very complex g(·), but such statistics do not often occur
in practice. The derivatives required by the method have traditionally been hard-
coded into software, making the method cumbersome to implement for new, novel
statistics g(·). But such statistics do not arise very often either. The TS method
fails for statistics that are based on ordered categories; e.g., employed in the top
five occupations as a percentage of total employed. The TS method can deal with
any sample design for which an estimator of the covariance matrix �� can be
given. The BOOT method is quite flexible. It can handle most estimators likely to
occur in real survey research, including nondifferentiable statistics. It can handle
new, novel statistics more easily than the TS method. Some fiddling is required in
order to reflect the finite-population correction factor in the calculations should the
statistician feel that it is important to do so. On balance, at this writing, we deny
ourselves the opportunity to give an unqualified recommendation of the BOOT
method for large-scale, complex surveys with important consequences riding on
the results, because the method has not been adequately tested in this environment.
With additional testing, the method may be quite serviceable.

9.3. Administrative Considerations

Both the RG method and the BHS method have many advantages in terms of
cost, timing, and the like. Software is available for both of these methods (see
Appendix E), and the processing costs of both are relatively quite low. For the
BHS method, cost can be reduced in large surveys by resorting to partial balancing.
Processing costs for the RG method can be reduced by decreasing the number of
random groups, although this has a trade-off against the accuracy of the variance
estimator.

At the time of publication of the first edition of this book, computing power
was both much less extensive and more costly than it is today. These facts alone
might have ruled against use of the J and BOOT methods for large-scale, complex
surveys in the mid-1980s. At this writing, however, computing power should not
be a serious obstacle to the use of these methods.

The GVF method is quick, cheap, and easy to use with rotating panel surveys.
Publication of the variance estimates is especially convenient because only two pa-
rameters, a and b, need to be published, whereas for the RG, BHS, J, and TS meth-
ods, the survey publication will necessarily contain as many variance estimates as
there are estimates. The GVF method is implemented easily using existing software
packages for regression analysis. The GVF method, of course, is not a stand-alone
variance estimation methodology. Some direct variance estimator such as RG,
BHS, or J needs to be used to produce the inputs (i.e., the data needed to estimate
the coefficients a and b) to the GVF method. In very large-scale survey systems,
GVFs may have cost, timing, and publication advantages over other methods.

The TS method is not a stand-alone method either but rather must be used in
connection with other methods. The RG, BHS, or J methods must be used to
estimate the covariance matrix �� prior to implementing the TS method. Software
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exists for TS variance estimators (described in Appendix E) but, in general, this
software only handles the common survey statistics. For less common and more
complicated survey applications, derivatives of the function θ̂ = g(Ŷ) need to be
derived and programmed on the computer, and this issue must be addressed in
regards to staffing, cost, and timing of the survey. The cost of the TS method will
primarily be a function of the other method that is used in conjunction with the
TS method to produce an estimate of the covariance matrix ��. The TS method
will be relatively less expensive when the single variate alternative discussed in
Section 6.5 is used as opposed to the full p × p covariance matrix.

The J and BOOT methods are probably the most expensive methods to imple-
ment. In general, both may require a larger number of replicate weights than the
RG and BHS methods. Additional replicate weights may involve more profes-
sional staff time to plan, more cost to compute, and more storage space. In modern
computing environments with plentiful, cheap disk space, however, none of these
cost factors are likely to be substantial. While the BOOT method is easy enough
to implement, none of the current software packages offer it as an explicit option.
All of the other methods studied here are offered as explicit software options. This
usability factor will be important to some users.

9.4. Summary

The choice of a method for variance estimation involves a complex trade-off or
balancing of factors such as accuracy, cost, and flexibility. The statistician will
usually need to treat each survey on a case-by-case basis, considering the special
circumstances and objectives of the survey. A good deal of judgment is involved
in selecting a method for variance estimation, and it will not be surprising if
the statistician recommends different methods for different survey applications.
Indeed, no one method of variance estimation is best overall.
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APPENDIX A

Hadamard Matrices

The orthogonal matrices used in defining half-sample replicates in Chapter 3 are
known in mathematics as Hadamard matrices. A Hadamard matrix H is a k × k
matrix all of whose elements are +1 or −1 that satisfies H′H = k I, where I is the
identity matrix of order k. The order k is necessarily 1, 2, or 4t , with t a positive
integer.

Plackett and Burman (1946) presented methods of constructing Hadamard ma-
trices for the following three cases:

1. k = 4 t = p + 1, where p is an odd prime;
2. k = 4 t = pr + 1, where r is an integer and p is an odd prime;
3. k = 4 t = 2(pr + 1), where r is an integer, p an odd prime, and (pr + 1) is not

divisible by 4.

They also presented a simple rule for doubling the size of any Hadamard matrix:

4. If H is a Hadamard matrix of order k, then(
H H
H −H

)

is a Hadamard matrix of order 2 k.

Surprisingly, the constructions given by Plackett and Burman include all orders
less than 200 (and of course many orders above 200) except 92, 116, 156, 172,
184, and 188. Subsequent constructions have been given for these six special cases.
See Baumert, Golomb, and Hall (1962) and Hall (1967).

In the first edition of this book, I presented Hadamard matrices for all orders from
k = 2 through 100. The matrices were intended to enable the reader to implement
the balanced half-sample method for sampling designs up to L = 100 strata. For
designs with L > 100 strata, I instructed the reader to (1) construct a partially

367



P1: OTE/SPH P2: OTE

SVNY318-Wolter November 30, 2006 14:51

368 A. Hadamard Matrices

balanced set of half-sample replicates or else (2) construct a larger Hadamard
matrix by the methods of the earlier-cited authors.

With this second edition of Introduction to Variance Estimation, I omit explicit
presentation of Hadamard matrices. There are now numerous Web sites that present
Hadamard matrices, and I urge the reader to make liberal use of this resource. For
example, at this writing, the Web site www.research.att.com/∼njas/hadamard gives
Hadamard matrices for all orders through 256. The material is presently maintained
by N.J.A. Sloane, AT&T Shannon Lab, 180 Park Ave., Room C233, Florham Park,
NJ 07932-0971.
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APPENDIX B

Asymptotic Theory of
Variance Estimators

B.1. Introduction

Inferences from large, complex sample surveys usually derive from the pivotal
quantity

t = θ̂ − θ√
v(θ̂ )

,

where θ is a parameter of interest, θ̂ is an estimator of θ, v(θ̂ ) is an estimator of the
variance of θ̂ , and it is assumed that t is distributed as (or approximately distributed
as) a standard normal random variable N (0, 1). The importance of the variance
estimator v(θ̂ ) and the pivotal quantity t has been stressed throughout this book. For
the most part, however, we have concentrated on defining the various tools available
for variance estimation and on illustrating their proper use with real data sets. Little
has been provided in regards to theory supporting the normality or approximate
normality of the pivotal t. This approach was intended to acquaint the reader with
the essentials of the methods while not diverting attention to mathematical detail.

In the present appendix, we shall provide some of the theoretical justifications.
All of the results to be discussed, however, are asymptotic results. There is little
small-sample theory for the variance estimators and none for the pivotal quan-
tity t. The small-sample theory that is available for the variance estimators has
been reviewed in the earlier chapters of this book, and it is difficult to envision a
small-sample distributional theory for t unless one is willing to postulate a super-
population model for the target population. See Hartley and Sielken (1975).

Asymptotic results for finite-population sampling have been presented by
Madow (1948), Erdös and Rényi (1959), Hajek (1960, 1964), Rosen (1972), Holst
(1973), Hidiroglou (1974), Fuller (1975), and Fuller and Isaki (1981). Most of
these articles demonstrate the asymptotic normality or consistency of estimators
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of finite-population parameters, such as means, totals, regression coefficients, and
the like. Because little of this literature addresses the asymptotic properties of vari-
ance estimators or pivotal quantities, we shall not include this work in the present
review.

Authors presenting asymptotic theory for variance estimators or pivotal qualities
include Nandi and Sen (1963), Krewski (1978b), and Krewski and Rao (1981).
Much of our review concentrates on these papers. As we proceed, the reader
will observe that all of the results pertain to moderately simple sampling designs,
although the estimator θ̂ may be nonlinear and quite complex. It is thus reasonable
to ask whether or not these results provide a theoretical foundation for the variance
estimating methods in the context of large-scale, complex sample surveys. Our
view is that they do provide an implicit foundation in the context of complex
sample designs and that by specifying enough mathematical structure explicit
extensions of these results could be given for almost all of the complex designs
found in common practice.

We discuss asymptotic theory for two different situations concerning a sequence
of samples of increasing size. In the first case, the population is divided into L strata.
The stratum sample sizes are regarded as fixed and limiting results are obtained
as the number of strata tends to infinity; i.e., as L → ∞. In the second case, the
number of strata L is regarded as fixed (L = 1 is a special case), and limiting
results are obtained as the stratum sample sizes tend to infinity; i.e., as nh → ∞.
We shall begin with the results for case 1, followed by those for case 2.

B.2. Case I: Increasing L

We let {U L}∞L=1 denote a sequence of finite populations, with L strata in U L . The
value of the i-th unit in the h-th stratum of the L-th population is denoted by

YLhi = (YLhi1, YLhi2, . . . , YLhip)′,

where there are NLh units in the (L , h)-th stratum. A simple random sam-
ple with replacement of size nLh is selected from the (L , h)-th stratum, and
yLh1, yLh2, . . . , yLhnh denote the resulting values. The vectors of stratum and sam-
ple means are denoted by

ȲLh = N−1
Lh

NLh∑
i=1

YLhi

= (ȲLh1, . . . , ȲLhp)′

and

ȳLh = n−1
Lh

nLh∑
i=1

yLhi

= (ȳLh1, . . . , ȳLhp)′,



P1: OTE/SPH P2: OTE

SVNY318-Wolter November 30, 2006 21:22

B.2. Case I: Increasing L 371

respectively. Henceforth, for simplicity of notation, we shall suppress the popula-
tion index L from all of these variables.

We shall be concerned with parameters of the form

θ = g(Ȳ)

and corresponding estimators

θ̂ = g(ȳ),

where g(·) is a real-valued function,

Ȳ =
L∑

h=1

WhȲh

is the population mean,

ȳ =
L∑

h=1

Wh ȳh

is the unbiased estimator of Ȳ, and

Wh = Nh/
∑

h′
Nh′ = Nh/N

is the proportion of units in the population that belong to the h-th stratum.
The covariance matrix of ȳ is given by

Σ =
L∑

h=1

W 2
h n−1

h Σh,

where Σh is the (p × p) covariance matrix with typical element

σhj,hj ′ = N−1
h

Nh∑
i=1

(Yhi j − Ȳh j )(Yhi j ′ − Ȳh j ′ ).

The textbook (unbiased) estimator of Σ is given by

Σ̂ =
L∑

h=1

W 2
h n−1

h Σ̂h, (B.2.1)

where Σ̂h is the (p × p) matrix with typical element

σ̂hj,hj ′ = (nh − 1)−1
nh∑

i=1

(yhi j − ȳh j )(yhi j ′ − ȳh j ′ ).

Several alternative estimators of the variance of θ̂ are available, including the
Taylor series (TS), balanced half-samples (BHS), and jackknife (J) estimators.
For this appendix, we shall let vTS(θ̂ ), vBHS(θ̂ ), and vJ(θ̂ ) denote these estimators
as defined in equations (6.3.3), (3.4.1), and (4.5.3), respectively. In the defining
equation for vTS, we shall let (B.2.1) be the estimated covariance matrix of ȳ. As
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noted in earlier chapters, alternative defining equations are available for both vBHS

and vJ, and we shall comment on these alternatives later on.
The following four theorems, due to Krewski and Rao (1981), set forth the

asymptotic theory for ȳ, θ̂ , vTS, vBHS, vJ, and corresponding pivotals. For simplic-
ity, proofs are omitted from our presentation, but are available in the original
reference.

Theorem B.2.1. We assume that the sequence of populations is such that the
following conditions are satisfied:

(i)
L∑

h=1

Wh E{|yhi j − Ȳh j |2+δ} = 0(1)

for some δ > 0 ( j = 1, . . . , p);
(ii) max

1≤h≤L
nh = 0(1);

(iii) max
1≤h≤L

Wh = 0(L−1);

(iv) n
L∑

h=1

W 2
h n−1

h Σh → Σ∗,

where Σ∗ is a (p × p) positive definite matrix.
Then, as L → ∞, we have

n1/2(ȳ − Ȳ)
d→ N (0,Σ∗).

Proof. See Krewski and Rao (1981). �

Theorem B.2.2. We assume regularity conditions (i)–(iv) and in addition assume

(v) Ȳ → μ ( finite),
(vi) the first partial derivatives g j (·) of g(·) are continuous in a neighborhood of

μ = (μ1, . . . , μp).
Then, as L → ∞, we have

(a) n1/2(θ̂ − θ )
d→ N (0, σ 2

θ ),

(b) nvTS(θ̂ )
p→ σ 2

θ ,

and

(c) tTS = θ̂ − θ

{vTS(θ̂ )}1/2

d→ N (0, 1),

where

σ 2
θ =

∑
j

∑
j ′

g j (μ)g j ′ (μ)σ ∗
j j ′

and σ ∗
j j ′ is the ( j, j ′)-th element of Σ∗.

Proof. See Krewski and Rao (1981). �
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Theorem B.2.3. Given regularity conditions (i)–(vi),

(a) nvJ(θ̂ )
p→ σ 2

θ

and

(b) tJ = θ̂ − θ

{vJ(θ̂ )}1/2

d→ N (0, 1).

Proof. See Krewski and Rao (1981). �

Theorem B.2.4. Given regularity conditions (i)–(vi) and the restriction nh = 2
for all h, then

(a) nvBHS(θ̂ )
p→ σ 2

θ

and

(b) tBHS = θ̂ − θ

{vBHS(θ̂ )}1/2

d→ N (0, 1).

The results also hold for nh = p (for p a prime) with the orthogonal arrays of
Section 3.7.

Proof. See Krewski and Rao (1981). �

In summary, the four theorems show that as L → ∞ both ȳ and θ̂ are asymp-
totically normally distributed; vTS, vJ, and vBHS are consistent estimators of the
asymptotic variance of θ̂ ; and the pivotals tTS, tJ, and tBHS are asymptotically
N (0, 1). The assumptions required in obtaining these results are not particularly
restrictive and will be satisfied in most applied problems. Condition (i) is a standard
Liapounov-type condition on the 2 + δ absolute moments. Condition (ii) will be
satisfied in surveys with large numbers of strata and relatively few units selected
per stratum, and condition (iii) when no stratum is disproportionately large. Con-
ditions (iv) and (v) require that both the limit of the covariance matrix multiplied
by the sample size n and the limit of the population mean exist. The final con-
dition (vi) will be satisfied by most functions g(·) of interest in finite-population
sampling.

These results extend in a number of directions.

� The results are stated in the context of simple random sampling with replacement.
But the results are also valid for any stratified, multistage design in which the
primary sampling units (PSUs) are selected with replacement and in which
independent subsamples are taken within those PSUs selected more than once.
In this case, the values yhi j employed in the theorems become

yhi j = ŷhi j/phi ,

where ŷhi j is an estimator of the total of the j-th variable within the (h, i)-th PSU
and phi is the corresponding per-draw selection probability.
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� The results are stated in the context of a single function θ̂ = g(ȳ). Multivariate
extensions of the results can be given that refer to q ≥ 2 functions

θ̂ =

⎛
⎜⎜⎝

g1(ȳ)
g2(ȳ)

...
gq (ȳ)

⎞
⎟⎟⎠ .

For example, n1/2(θ̂ − θ) converges in distribution to a q-variate normal random
variable with mean vector 0 and covariance matrix DΣ∗ D′, where

θ =

⎛
⎜⎜⎝

g1(Ȳ)
g2(Ȳ)

...
gq (Ȳ)

⎞
⎟⎟⎠

and D is a (q × p) matrix with typical element

Di j = gi
j (μ).

� The results are stated for one definition of the jackknife estimator of the variance.
The same results are valid not only for definition (4.5.3), but also for alternative
definitions (4.5.4), (4.5.5), and (4.5.6).

� The results are stated for the case where the variance estimators are based on
the individual observations, not on groups of observations. In earlier chapters,
descriptions were presented of how the random group method may be applied
within strata, how the jackknife method may be applied to grouped data, how
the balanced half-samples method may be applied if two random groups are
formed within each stratum, and how the Taylor series method can be applied
to an estimated covariance matrix Σ̂ that is based on grouped data. Each of the
present theorems may be extended to cover these situations where the variance
estimator is based upon grouped data.

B.3. Case II: Increasing nh

We shall now turn our attention to the second situation concerning the sequence
of samples. In this case, we shall require that the number of strata L be fixed, and
all limiting results shall be obtained as the stratum sizes and sample sizes tend to
infinity; i.e., as Nh → ∞, nh → ∞. To concentrate on essentials, we shall present
the case L = 1 and shall drop the subscript h from or notation. All of the results
to be discussed, however, extend to the case of general L ≥ 1.

We let {U N }∞N=1 denote the sequence of finite populations, where N is the size
of the N-th population. As before, YNi denotes the p-variate value of the i-th unit
(i = 1, . . . , N ) in the N-th population. Also as before, we shall omit the population
index in order to simplify the notation.



P1: OTE/SPH P2: OTE

SVNY318-Wolter November 30, 2006 21:22

B.3. Case II: Increasing nh 375

Arvesen (1969) has established certain asymptotic results concerning the
jackknife method applied to U-statistics and functions of U-statistics. After
defining U-statistics, we shall briefly review Arvesen’s results. Extensions of the
results to other sampling schemes are discussed next, followed by a discussion of
the properties of the other variance estimators.

Let y1, . . . , yn denote a simple random sample with replacement from U . Let
f (y1, . . . , yb) denote a real-valued statistic, symmetric in its arguments, that is
unbiased for some population parameter η, where b is the smallest sample size
needed to estimate η.

The U-statistic for η is defined by

U (y1, . . . , yn) =
(

n
b

)−1 ∑
Cb

f (yi1
, . . . , yib ),

where the summation extends over all possible combinations of 1 ≤ i1 ≤ i2 ≤
. . . ≤ ib ≤ n. The statistic f is the kernel of U, and b is the degree of f. Krewski
(1978b) gives several examples of statistics that are of importance in survey sam-
pling and shows that they are members of the class of U-statistics. For example,
the kernel f (y1) = y11 with b = 1 leads to the mean of the first variable, while
the kernel f (y1, y2) = (y11 − y21)(y12 − y22)/2 with b = 2 leads to the covariance
between the first and second variables. Nearly all descriptive statistics of interest
in survey sampling may be expressed as a U-statistic or as a function of several
U-statistics.

We shall let U = (U 1, U 2, . . . , U q )′ denote q U -statistics corresponding to
kernels f 1, f 2, . . . , f q based on b1, b2, . . . , bq observations, respectively. We
shall be concerned with an estimator

θ̂ = g(U 1, U 2, . . . , U q )′

of a population parameter

θ = g(η1, η2, . . . , ηq ),

where g is a real-valued, smooth function and the η1, η2, . . . , ηq denote the ex-
pectations of U 1, U 2, . . . , U q , respectively.

The jackknife method with n = mk and k = n (i.e., no grouping) utilizes the
statistics

θ̂(i) = g(U 1
(i), U 2

(i), . . . , U q
(i)),

where U j
(i) is the j-th U-statistic based upon the sample after omitting the i-th

observation (i = 1, . . . , n). The corresponding pseudovalue is

θ̂i = nθ̂ − (n − 1)θ̂(i);

Quenouille’s estimator is

ˆ̄θ = n−1
n∑

i=1

θ̂i ;
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and a jackknife estimator of variance is

vJ(
ˆ̄θ ) = n−1(n − 1)−1

n∑
i=1

(θ̂i − ˆ̄θ )2.

Then, we have the following theorem establishing the asymptotic properties of ˆ̄θ
as n → ∞.

Theorem B.3.1. Let the kernels have finite second moments,

E{[ f j (y1, y2, . . . , yb j )]
2} < ∞,

for each j = 1, . . . , q. Let g be a real-valued function defined on Rq that, in a
neighborhood of η = (η1, . . . , ηq ), has bounded second partial derivatives. Then,
as n → ∞, we have

n1/2( ˆ̄θ − θ )
d→ N (0, σ 2

θ ),

where g j (η) denotes the first partial derivative of g with respect to its j-th argument
evaluated at the mean η,

f j
1 (Y1) = E{ f j (y1, y2, . . . , yb j )|y1 = Y1},

φ
j
1 (Y1) = f j

1 (Y1) − η j ,

ζ j j ′ = E{φ j
1 (y1)φ

j ′
1 (y1)},

and

σ 2
θ =

q∑
j=1

q∑
j ′=1

b j b j ′ g j (η)g j ′ (η)ζ j j ′
.

Proof. See Arvesen (1969). �

The next theorem shows that the jackknife estimator of variance correctly esti-
mates the asymptotic variance of ˆ̄θ .

Theorem B.3.2. Let g be a real-valued function defined on Rq that has continuous
first partial derivatives in a neighborhood of η. Let the remaining conditions of
Theorem B.3.1 be given. Then, as n → ∞, we have

nvJ(
ˆ̄θ )

p→ σ 2
θ .

Proof. See Arvesen (1969). �

By Theorems B.3.1 and B.3.2, it follows that the pivotal statistic

tJ = ( ˆ̄θ − θ )/

√
vJ(

ˆ̄θ ) (B.3.1)

is asymptotically distributed as a standard normal random variable.
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In presenting these results, it has been assumed that n = mk → ∞ with k = n
and m = 1. The results may be repeated with only slight modification if k → ∞
with m > 1. On the other hand, if k is fixed and m → ∞, then the pivotal
statistic (B.3.1) converges to a Student’s t distribution with (k − 1) degrees of
freedom.

Arvesen’s results extend directly to other with replacement sampling schemes.
In the most general case, consider a multistage sample where the primary sampling
units (PSUs) are selected pps wr. Assume that subsampling is performed indepen-
dently in the various PSUs, including duplicate PSUs. Theorems B.3.1 and B.3.2
apply to this situation provided that the values yi j are replaced by

yi j = ŷi j/pi ,

where ŷi j is an estimator of the total of the j-th variable within the i-th PSU and
pi is the corresponding per-draw selection probability.

Krewski (1978b), following Nandi and Sen (1963), has extended Arvesen’s
results to the case of simple random sampling without replacement. In describing
his results, we shall employ the concept of a sequence {U } of finite populations
and require that n → ∞, N → ∞, and λ = n/N → λ0 < 1. Once again, we let
n = km with k = n and m = 1.

Define

f j
c (Y1, . . . , Yc) = E{ f j (y1, . . . , yb j )|y1 = Y1, . . . , yc = Yc}

and

φ j
c (Y1, . . . , Yc) = f j

c (Y1, . . . , Yc) − η j

for c = 1, . . . , b j . As before, we let

ζ j j ′ = E{φ j
1 (y1)φ

j ′
1 (y1)}.

Define the (q × q) covariance matrix

Z = (ζ j j ′
).

The asymptotic normality of the estimator ˆ̄θ and the consistency of the jackknife
variance estimator are established in the following two theorems.

Theorem B.3.3. Let g be a real-valued function defined on Rq with bounded
second partial derivatives in a neighborhood of η = (η1, . . . , ηq )′. Assume that Z
converges to a positive definite matrix Z0 = (ζ

j j ′
0 ), as n → ∞, N → ∞ and λ →

λ0 < 1, that sup E{|φ j
b j

(y1, . . . , yb j )|2+δ} < ∞ for some δ > 0 and j = 1, . . . , q,
and that η j → η

j
0 for j = 1, . . . , q. Then, we have

√
n( ˆ̄θ − θ ) → N (0, (1 − λ0)σ 2

θ ),
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where

σ 2
θ =

q∑
j=1

q∑
j ′=1

b j b j ′ g j (η0)g j ′ (η0)ζ
j j ′

0 .

Proof. See Krewski (1978b). �

Theorem B.3.4. Let g be a real-valued function defined on Rq with continuous
first partial derivatives in a neighborhood of η. Let the remaining conditions of
Theorem B.3.3 be given. Then, as n → ∞ and λ → λ0, we have

nvJ(
ˆ̄θ )

p→ σ 2
θ .

Proof. See Krewski (1978b). �

Theorems B.3.3 and B.3.4 show that the pivotal statistic

tJ =
ˆ̄θ − θ√

(1 − λ0)v j (θ )

is asymptotically a standard normal random variable.
Theorems B.3.3 and B.3.4 were stated in terms of the traditional jackknife

estimator with pseudovalue defined by

θ̂i = nθ̂ − (n − 1)θ̂(i).

These results extend simply to the generalized jackknife estimator (see Gray and
Schucany (1972)) with

θ̂i = (1 − R)−1(θ̂ − Rθ̂(i)).

The traditional jackknife is the special case of this more general formulation with
R = (n − 1)/n. The Jones (1974) jackknife, introduced in Chapter 4, is the special
case with R = n−1(N − n + 1)−1(N − n)(n − 1). Thus, asymptotic normality and
consistency of the variance estimator apply to the Jones jackknife as well as to
the traditional jackknife. See Krewski (1978b) for a fuller discussion of these
results.

Theorems B.3.3 and B.3.4 were also stated in terms of the Quenouille estimator,
ˆ̄θ , and the jackknife estimator of variance

vJ(
ˆ̄θ ) = n−1(n − 1)−1

n∑
i=1

(θ̂i − ˆ̄θ )2.

Similar results may be obtained for the parent sample estimator θ̂ and for the
alternative jackknife estimator of variance

vJ(θ̂ ) = n−1(n − 1)−1
n∑

i=1

(θ̂i − θ̂ )2.
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Indeed, it follows from these various results that each of the four statistics

ˆ̄θ − θ√
vJ(

ˆ̄θ )

,

θ̂ − θ√
vJ(

ˆ̄θ )

,

ˆ̄θ − θ√
vJ(θ̂ )

, (B.3.2)

θ̂ − θ√
vJ(θ̂ )

,

converges to a standard normal random variable N (0, 1) as n → ∞, N → ∞, and
λ → λ0 < 1, and thus each may be employed as a pivotal quantity for making an
inference about θ .

All of the asymptotic results presented here for srs wor apply to arbitrary config-
urations of m and k, provided n → ∞, N → ∞, and λ → λ0 < 1, with m fixed. On
the other hand, if we fix k and permit m → ∞ with λ → λ0 < 1, then the four piv-
otal quantities in (B.3.2) converge to a Student’s t random variable with k − 1 de-
grees of freedom. This result is identical with that stated earlier for srs wr sampling.

Next, we turn attention to other variance estimation methods and look briefly at
their asymptotic properties. We shall continue to assume srs wor sampling.

Let d̂ denote the (q × 1) vector of first partial derivatives of θ̂ evaluated at
U = (U 1, U 2, . . . , U q )′. This vector is an estimator of

d = (g1(η), g2(η), . . . , gq (η))′,

where the derivatives are evaluated at the meanη = (η1, η2, . . . , ηq ). Let Ω̂ denote
the (q × q) matrix with typical element

	̂ j j ′ = n−1(n − 1)−1
n∑

i=1

(U j
i − U j )(U j ′

i − U j ′
).

This is a jackknife estimator of the covariance matrix Ω = (	 j j ′ ) of U, where

	 j j ′ = b j b j ′ζ j j ′
.

Then a Taylor series estimator of the variance of θ̂ is given by

vTS(θ̂ ) = d̂′Ω̂d̂.

The following theorem establishes the probability limit of the Taylor series
estimator.

Theorem B.3.5. Let the conditions of Theorem B.3.3 hold. Then, as n → ∞, N →
∞, and λ → λ0 < 1, we have

nvTS(θ̂ )
d→ σ 2

θ .
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Proof. See Krewski (1978b). �

Similar results may be obtained when the estimated covariance matrix Ω̂ is
based upon a random group estimator (with m fixed) or the jackknife applied to
grouped data.

Combining Theorems B.3.3 and B.3.5, it follows that the pivotal statistic

tTS = θ̂ − θ√
(1 − λ0)vTS(θ̂ )

(B.3.3)

is asymptotically a standard normal random variable. As a practical matter, the
finite-population correction, 1 − λ0, may be ignored whenever the sampling frac-
tion is negligible.

Results analogous to Theorem B.3.5 and equation (B.3.3) may be obtained for
the random group and balanced half-samples estimators of variance.

Finally, we turn briefly to the unequal probability without replacement sampling
designs, where few asymptotic results are available. Exact large sample theory for
certain specialized unequal probability without replacement designs is presented
by Hájek (1964) and Rosén (1972). Also see Isaki and Fuller (1982). But none of
these authors discuss the asymptotic properties of the variance estimators treated in
this book. Campbell (1980) presents the beginnings of a general asymptotic theory
for the without replacement designs, but more development is needed. Thus, at
this point in time, the use of the various variance estimators in connection with
such designs is justified mainly by the asymptotic theory for pps wr sampling.

B.4. Bootstrap Method

The following theorems set forth the asymptotic theory for the bootstrap method.

We discuss the validity of the normal approximation to (θ̂ − θ )/
√

v1(θ̂ ), where
v1(θ̂ ) is the bootstrap estimator of variance, when the total sample size tends to ∞.

Consider a sequence of finite populations and, for each population, assume a
stratified sampling plan with L strata, srs wor sampling within strata, and inde-
pendent sampling from stratum to stratum. The following work will cover both (1)
the situation in which the nh are bounded and L is increasing and (2) the nh are
increasing without bound and L is bounded. Let ȳst denote the standard textbook
estimator of the population mean.

Theorem B.4.1. Assume 2 ≤ nh ≤ Nh − 1 and

L∑
h=1

1

Nh

Nh∑
i=1

φ2

(
Nh

N

1√
ρh

yhi − Ȳh√
Var {ȳst}

, ε
√

ρh

)
→ 0

for ε > 0, where

ρh = nh
Nh − 1

(1 − fh) Nh
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is the effective sample size in stratum h and

φ (x, δ) = x, for x ≥ δ

= 0, otherwise.

Then

ȳst − Ȳ√
Var {ȳst}

d→ N (0, 1)

and

v (ȳst)

Var {ȳst}
p→ 1

as n = n1 + n2 + . . . + nL → ∞, where v {ȳst } is the textbook (unbiased) esti-
mator of variance.

Proof. See Bickel and Freedman (1984). �

If the standardized stratum observations have reasonably light tails and each
stratum contribution to the total variance is small, then asymptotic normality holds.

Further, assume Nh = nhkh (kh an integer) for each stratum and apply the BWO
bootstrap due to Gross (1980). Let

v1BWO (ȳst) = Var∗
{

ȳ∗
st

}
be the ideal bootstrap estimator of variance. From (5.2.4), we obtain

Var∗
{

ȳ∗
st

} =
L∑

h=1

(
Nh

N

)2 (
1 − f ∗

h

) 1

n∗
h

Nh

Nh − 1

nh − 1

nh
s2

h .

Theorem B.4.2. Given the conditions of Theorem B.4.1,

ȳ∗
st − ȳst√

v1BWO (ȳst)

d→ N (0, 1) .

Proof. See Bickel and Freedman (1984). �

The ideal bootstrap estimator is not, however, generally an unbiased or even
consistent estimator of Var {ȳst}, as we demonstrated in Chapter 5. To patch up the
variance estimator, let n∗

h = nh , define the rescaled values

y#
hi = ȳh + C

−1/2

h

(
y∗

hi − ȳh
)
,

C−1
h = Nh

Nh − 1

nh − 1

nh
,

ȳ#
st =

L∑
h=1

Nh

N

1

n∗
h

n∗
h∑

i=1

y#
hi ,
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and define the revised bootstrap estimator of variance

v1BWO (ȳst) = Var∗
{

ȳ#
st

}
.

Theorem B.4.3. Given the conditions of Theorem B.4.1,

v1BWO (ȳst)

Var {ȳst}
p→ 1

and

ȳst − Ȳ√
v1BWO (ȳst)

d→ N (0, 1) .

Now, consider a general parameter of the finite population θ = g
(
Ȳ

)
, where g

is continuously differentiable. The standard estimator is θ̂ = g (ȳst).

Theorem B.4.4. Given the conditions of Theorem B.4.1,

θ̂ − θ√
v1BWO

(
θ̂
) d→ N (0, 1),

where v1BWO

(
θ̂
) = Var∗

{
θ̂#

}
and θ̂# = g

(
ȳ#

st

)
is the bootstrap copy of θ̂ based

upon the rescaled observations.
Shao and Tu (1995) discuss consistent estimation of the distribution function

of
√

n
(
θ̂ − θ

)
. Consider a stratified, multistage design in which sampling is inde-

pendent from stratum to stratum, PSUs are selected via pps wr sampling within
strata, and USUs are selected in one or more stages of subsampling within PSUs.
The unbiased estimator of the population total is

Ŷ =
L∑

h=1

nh∑
i=1

mhi∑
j=1

whi j yhi j ,

where nh is the number of PSUs selected from stratum h, mhi is the number of
USUs selected from the i-th PSU in stratum h, yhi j is the characteristic of interest
for the (h, i, j)-th USU, and whi j is the corresponding survey weight.

Mo =
L∑

h=1

Nh∑
i=1

Mhi

is the size of the finite population,

Y =
L∑

h=1

Nhi∑
i=1

Mhi∑
j=1

Yhi j

is the population total, and n =
L∑

h=1

nh is the number of selected PSUs.
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Assume that

sup
h

nh/Nh < 1; (B.4.1)

that there is a set H ⊂ {1, . . . , L} such that

sup
h∈H

nh < ∞ and min
h /∈H

nh → ∞; (B.4.2)

that no survey weight is disproportionally large,

max
h,i, j

nmhiwhi j

Mo
= O(1); (B.4.3)

that

L∑
h=1

nh∑
i=1

E

{(
zhi −E{zhi }

nh

)2+δ
}

= O
(
n−(1+δ)

)
,

zhi =
mhi∑
j=1

nh
(
whi j/Mo

)
yhi j ;

(B.4.4)

and that

lim
k

inf[moVar
{
Ŷ

}
] > 0. (B.4.5)

Theorem B.4.5. Assume (B.4.1) – (B.4.5). Then the bootstrap estimator of the
distribution function of

√
n

(
θ̂ − θ

)
is consistent:

|P∗
{√

n
(
θ̂∗ − θ̂

) ≤ x
} − P

{√
n

(
θ̂ − θ

) ≤ x
} | p→ 0

as k → ∞ (i.e., as n → ∞).
Proof. See Shao and Tu (1995). �

Shao and Tu also establish the consistency of the bootstrap estimator of the
distribution function of

√
n

(
θ̂ − θ

)
when θ = F−1 (p) is a population quantile

(0 < p < 1 and F is the finite population distribution function of the y-variable).
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APPENDIX C

Transformations

C.1. Introduction

Transformations find wide areas of application in the statistical sciences. It often
seems advantageous to conduct an analysis on a transformed data set rather than
on the original data set. Transformations are most often motivated by the need or
desire to

(i) obtain a parsimonious model representation for the data set,
(ii) obtain a homogeneous variance structure,

(iii) obtain normality for the distributions, or
(iv) achieve some combination of the above.

Transformations are used widely in such areas as time series analysis, econo-
metrics, biometrics, and the analysis of statistical experiments. But they have
not received much attention in the survey literature. A possible explana-
tion is that many survey organizations have emphasized the production of
simple descriptive statistics, as opposed to analytical studies of the survey
population.

In this appendix, we show how transformations might usefully be applied
to the problems studied in this book. We also present a simple empirical
study of one specific transformation, Fisher’s well-known z-transformation of
the correlation coefficient. Our purpose here is mainly to draw attention to the
possible utility of data transformations for survey sampling problems and to
encourage further research in this area. Aside from the z-transformation, lit-
tle is known about the behavior of transformations in finite-population sam-
pling, and so recommendations are withheld pending the outcome of future
research.

384



P1: OTE/SPH P2: OTE

SVNY318-Wolter November 30, 2006 15:23

C.2. How to Apply Transformations to Variance Estimation Problems 385

C.2. How to Apply Transformations to Variance
Estimation Problems

The methods for variance estimation discussed in Chapters 2, 3, and 4 (i.e., ran-
dom group, balanced half-sample, and jackknife) are closely related in that each
produces k estimators θ̂α of the unknown parameter θ . The variance of the parent
sample estimator, θ̂ , is then estimated by v(θ̂ ), where v(θ̂) is proportional to the
sum of squares

k∑
α=1

(θ̂α − θ̂ )2.

When an interval estimate of θ is required, normal theory is usually invoked,
resulting in the interval

(θ̂ ± c
√

v(θ̂ )), (C.2.1)

where c is the tabular value from either the normal or Student’s t distributions.
As an alternative to (C.2.1), we may consider ˆ̄θ as a point estimator of θ or an
estimator of variance proportional to the sum of squares

∑
(θ̂α − ˆ̄θ )2.

In Chapter 2, we assessed the quality of a variance estimator v(θ̂ ) by its variance
Var{v(θ̂ )} or by its relative variance RelVar {v(θ̂ )} = Var{v(θ̂ )}/E2{v(θ̂ )}. Another
attractive criterion involves assessing quality in terms of the interval estimates
resulting from the use of v(θ̂ ). We have found in our empirical work that these
criteria are not necessarily in agreement with one another. Sometimes one variance
estimator will produce “better” confidence intervals, while another will be “better”
from the standpoint of minimum relative variance.

Specifically, the quality of the interval estimator given by (C.2.1), and thus
also of the variance estimator v(θ̂ ), may be assessed in repeated sampling by the
percentage of intervals that contain the true parameter θ . A given method may be
said to be “good” if this percentage is roughly 100(1 − α)%, not higher or lower,
where (1 − α) is the nominal confidence level. Usually, good interval estimates
are produced if and only if the subsample estimators θ̂α(α = 1, . . . , k) behave like
a random sample from a normal distribution with homogeneous variance. Often
this is not the case because the distribution of θ̂α is excessively skewed.

Normality can be achieved in some cases by use of a suitable transformation of
the data, say φ. Given this circumstance, an interval estimate for θ is produced in
two steps:

1. An interval is produced for φ(θ ).
2. An interval is produced for θ by transforming the φ(θ )-interval back to the

original scale.

The first interval is

(φ(θ̂ ) ± c
√

v(φ(θ̂ ))), (C.2.2)
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where v(φ(θ̂ )) is proportional to the sum of squares

k∑
α=1

(φ(θ̂α) − φ(θ̂ ))2.

Alternatively, we may work with

φ̂(θ ) =
k∑

α=1

φ(θ̂α)/k

as a point estimator of φ(θ ) or an estimator of variance proportional to the sum of
squares

k∑
α=1

(φ(θ̂α) − φ̂(θ ))2.

The second interval is

(φ−1(L), φ−1(U )), (C.2.3)

where (L , U ) denotes the first interval and φ−1 denotes the inverse transforma-
tion: i.e., φ−1(φ(x)) = x . If the transformation φ is properly chosen, this two-step
procedure can result in interval estimates that are superior to the direct interval
(C.2.1).

We note that in some applications it may be sufficient to stop with the first
interval (C.2.2), reporting the results on the φ-scale. In survey work, however, for
the convenience of the survey sponsor and other users it is more common to report
the results on the original scale. We also note that when the true variance Var{θ̂} is
“small,” most reasonable transformations φ will produce results that are approx-
imately equal to one another, and approximately identical to the direct interval
(C.2.1). This is because the θ̂α will not vary greatly. If the transformation φ has a
local linear quality (and most do), then it will approximate a linear transformation
over the range of the θ̂α , and the two-step procedure will simply reproduce the direct
interval (C.2.1). In this situation, it makes little difference which transformation is
used. For moderate to large true variance Var{θ̂}, however, nonidentical results will
be obtained and it will be important to choose the transformation that conforms
most closely with the conditions of normality and homogeneous variance.

C.3. Some Common Transformations

Bartlett (1947) describes several transformations that are used frequently in sta-
tistical analysis. See Table C.3.1. The main emphasis of these transformations is
on obtaining a constant error variance in cases where the variance of the untrans-
formed variate is a function of the mean. For example, a binomial proportion θ̂

with parameter θ has variance equal to θ (1 − θ )/k. The variance itself is a function
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Table C.3.1. Some Common Transformations

Variance Appropriate

in Terms Variance on Relevant

of Mean, θ Transformation New Scale Distribution

θ
√

x , (or
√

x + 1
2

0.25 Poisson
{

λ2θ for small integers) 0.25λ2 Empirical

2θ 2/(k − 1) loge x 2/(k − 1) Sample

variance

λ2θ 2 loge x, loge (x + 1) λ2 Empirical
{ }

log10 x, log10 (x + 1) 0.189λ2

θ (1 − θ )/k Sin−1√x, (radians) 0.25/k Binomial
{ }

Sin−1√x, (degrees) 821/k
λ2θ (1 − θ ) Sin−1√x, (radians) 0.25λ2 Empirical

λ2θ 2(1 − θ )2 loge [x/(1 − x)] λ2 Empirical

(1 − θ 2)2/(k − 1) 1
2

loge [(1 + x)/(1 − x)] 1/(k − 3) Sample

correlations

θ + λ2θ 2 λ−1 Sinh−1[λ
√

x], or 0.25 Negative
⎧⎪⎨
⎪⎩λ−1 Sinh−1[λ

√
x + 1

2
] binomial

μ2(θ + λ2θ2) for small integers 0.25 μ2 Empirical

Source: Bartlett (1947).
Note: λ and μ are unknown parameters and k is the sample size.

of the mean. The transformation

φ(θ̂ ) = Sin−1
√

θ̂ ,

however, has variance proportional to k−1, and the functional dependence between
mean and variance is eliminated.

In general, if the variance of θ̂ is a known function of θ , say Var{θ̂} = �(θ ),
then a transformation of the data that makes the variance almost independent of θ

is the indefinite integral

φ(θ ) =
∫

dθ/
√

�(θ ).

This formula is behind Bartlett’s transformations cited in Table C.3.1. It is based
on the linear term in the Taylor series expansion of φ(θ̂ ) about the point θ .

Bartlett’s transformations also tend to improve the closeness of the distribution
to normality, which is our main concern here. On the original scale, the distribution
of θ̂ may be subject to excessive skewness, which is eliminated after the transfor-
mation. Cressie (1981) has studied several of these transformations in connection
with the jackknife method.

The Box–Cox (1964, 1982) family offers another potentially rich source of trans-
formations that may be considered for survey data. Also see Bickel and Doksum
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(1981). This parametric family of transformations is defined by

φ1(θ̂ ) = θ̂ λ − 1

λ
, λ �= 0, θ̂ > 0,

= log θ̂ , λ = 0, θ̂ > 0,

or by

φ2(θ̂ ) = (θ̂ + λ2)λ1 − 1

λ1

, λ1 �= 0, θ̂ > −λ2,

= log(θ̂ + λ2), λ1 = 0, θ̂ > −λ2,

where λ, λ1, λ2 are parameters. φ1 is the one-parameter Box–Cox family of trans-
formations; φ2 is the two-parameter family.

The Box–Cox family was originally conceived as a data-dependent class of
transformations (i.e., λ, λ1, λ2 determined from the data itself) in the context of
linear statistical models. Parameter λ (or λ1 and λ2) was to be estimated by max-
imum likelihood methods or via Bayes’ theorem. For the problem of variance
estimation, the maximized log likelihood, except for a constant, is

L 1(λ) = −k log σ̂1(λ) + (λ − 1)
k∑

α=1

log θ̂α,

σ̂ 2
1 (λ) = k−1

k∑
α=1

(φ1(θ̂α) − ̂φ1(θ ))2.

We may plot L 1(λ) versus λ and from this plot obtain the maximizing value
of λ, say λ̂. Then λ̂ specifies the particular member of the Box–Cox family to
be employed in subsequent analyses, such as in the preparation of a confidence
interval for θ . Similar procedures are followed for the two-parameter family of
transformations.

It may be unrealistic to allow the data themselves to determine the values of
the parameters in the context of variance estimation problems for complex sample
surveys. Also, actual confidence levels for θ associated with a data-dependent λ (or
λ1 and λ2) may not achieve the nominal levels specified by the survey statistician,
although this is an issue in need of further study.

Much empirical research is needed concerning both the Box–Cox and the
Bartlett transformations on a variety of data sets and on different survey parameters
θ and estimators θ̂ of interest. Based on the empirical research, guidelines should
be formulated concerning the applicability of the transformations to the various
survey estimators and parameters. General principles should be established about
which transformations work best for which survey problems. In future survey appli-
cations, then, the survey statistician would need only consult the general principles
for a recommendation about which transformation (if any) is appropriate in the
particular application. In this way, the dependence of the transformation on the
data itself would be avoided, and a cumulative body of evidence about the appro-
priateness of the various transformations would build over time. One contribution
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to this cumulative process is described in the next section, where we report on an
empirical study of Fisher’s z-transformation.

C.4. An Empirical Study of Fisher’s z-Transformation
for the Correlation Coefficient

Fisher’s z-transformation

z = φ(ρ) = 1

2
log

(
1 + ρ

1 − ρ

)

is used widely in the analysis of the correlation, ρ, between two random variables,
X and Y, particularly when (X, Y ) is distributed as a bivariate normal random
variable. The main emphasis of the transformation is on the elimination of the
functional dependence between mean and variance. See Table C.3.1. This allows
standard methods to be used in the construction of confidence intervals.

The asymptotic properties of z are presented in Anderson (1958). Briefly, if ρ̂

is the sample correlation coefficient for a sample of size n from a bivariate normal
distribution with true correlation ρ, then the statistic

√
n(ρ̂ − ρ)/(1 − ρ2)

is asymptotically distributed as a standard normal N (0, 1) random variable. The
asymptotic variance of ρ̂, i.e., (1 − ρ2)2/n, is functionally dependent on ρ itself.
On the other hand, the statistic

√
n(ẑ − z)

is asymptotically distributed as an N (0, 1) random variable, where ẑ = φ(ρ̂). This
shows that the z-transformation eliminates the functional relationship between
mean and variance; i.e., the asymptotic variance n−1 is independent of ρ.

To illustrate the ideas in Sections C.2 and C.3, we present the results of a small
empirical study of the effectiveness of z. Our results were originally reported in
Mulry and Wolter (1981). Similar results were recently reported by Efron (1981),
who worked with some small computer-generated populations. In our study, we
find that the z-transformation improves the performance of confidence intervals
based on the random group, jackknife, and balanced half-samples estimators.

We assume that a simple random sample of size n is selected without replacement
from a finite population of size N. The finite-population correlation coefficient is

ρ =

N∑
i

(Xi − X̄ )(Yi − Ȳ )

{
N∑
i

(Xi − X̄ )2

}1/2 {
N∑
i

(Yi − Ȳ )2

}1/2
.
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The usual estimator of ρ and the random group, balanced half-sample, jackknife,
Taylor series, and normal-theory estimators of Var{ρ̂} are given by

ρ̂ =

n∑
i

(xi − x̄)(yi − ȳ)

{
n∑
i

(xi − x̄)2

}1/2 {
n∑
i

(yi − ȳ)2

}1/2
,

vRG(ρ̂) = 1

k(k − 1)

k∑
α

(ρ̂α − ρ̂)2,

v
†
BHS(ρ̂) = 1

4k

k∑
α

(ρ̂α − ρ̂c
α)2,

vBHS(ρ̂) = 1

k

k∑
α

(ρ̂α − ρ̂)2,

vJ(ρ̂) = 1

k(k − 1)

k∑
α

(ρ̂α − ρ̂)2,

vTS(ρ̂) = 1

n(n − 1)

n∑
i

r̂2
i ,

and

vNT(ρ̂) = (1 − ρ̂2)2/n,

respectively.
For the random group estimator, the sample is divided at random into k groups

of size m (we assume n = mk), and ρ̂α is the estimator of ρ obtained from the
α-th group. For the balanced half-sample estimator, n/2 pseudostrata are formed
by pairing the observations in the order in which they were selected. Then, vBHS is
based on k balanced half-samples, each containing one unit from each pseudostra-

tum, and ρ̂α is the estimator based on the α-th half-sample. The estimator v
†
BHS is

also based on the k balanced half-samples, where ρ̂c
α is based upon the half-sample

that is complementary to the α-th half-sample. For the jackknife estimator, the
sample is divided at random into k groups, and the pseudovalue ρ̂α is defined by

ρ̂α = kρ̂ − (k − 1)ρ̂(α),

where ρ̂(α) is the estimator of ρ obtained from the sample after deleting the α-th
group.

For the Taylor series estimator, we express ρ̂ as follows:

ρ̂(ū, v̄, w̄, x̄, ȳ) = w̄ − x̄ ȳ

(ū − x̄2)1/2(v̄ − ȳ2)1/2
,

where Ui = X2
i , Vi = Y 2

i , and Wi = Xi Yi . Then,

r̂i = d̂1ui + d̂2vi + d̂3wi + d̂4xi + d̂5 yi ,
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where (d̂1, d̂2, d̂3, d̂4, d̂5) is the vector of partial derivatives of ρ̂ with respect to its
five arguments evaluated at the point (ū, v̄, w̄, x̄, ȳ).

Alternative variance estimators may be obtained by using squared deviations
from ˆ̄ρ = k−1

∑k
α ρ̂α . An alternative Taylor series estimator may be obtained by

grouping the r̂i and then applying the random group, balanced half-samples, or
jackknife estimator to the group means. None of these alternatives are addressed
specifically in this study.

The data used in this study were collected in the 1972–73 Consumer Expendi-
ture Survey, sponsored by the U.S. Bureau of Labor Statistics and conducted by
the U.S. Bureau of the Census. The correlation between monthly grocery store
purchases and annual income was investigated. The data refer to 1972 annual in-
come and average monthly grocery purchases during the first quarter of 1973. An
experimental file of 4532 consumer units who responded to all the grocery and
income categories during the first quarter of 1973 was created and treated as the
finite population of interest.

The population mean of the income variable for the 4532 consumer units is
$14,006.60 and the standard deviation is $12,075.42. The mean and standard de-
viation of monthly grocery store purchases are $146.30 and $84.84 respectively.
The true correlation between annual income and monthly grocery store purchases
is ρ = 0.3584.1 Figure C.4.1 presents a scatter plot of the data.

To investigate the properties of the variance estimators, 1000 samples (srs wor)
of size n = 60, 120, and 480 were selected from the population of consumer units.
These sample sizes correspond roughly to the sampling fractions 0.013, 0.026, and
0.106, respectively. For each sample size, the following were computed:

(a) the mean and variance of ρ̂,
(b) the mean and variance of vRG(ρ̂),
(c) the mean and variance of vJ(ρ̂),
(d) the mean and variance of vTS(ρ̂),
(e) the mean and variance of vNT(ρ̂),
(f) the mean and variance of vBHS(ρ̂),
(g) the mean and variance of v

†
BHS(ρ̂),

(h) proportion of confidence intervals formed using vRG(ρ̂) that contain the true ρ,
(i) proportion of confidence intervals formed using vJ(ρ̂) that contain the true ρ,
(j) proportion of confidence intervals formed using vTS(ρ̂) that contain the true ρ,
(k) proportion of confidence intervals formed using vNT(ρ̂) that contain the true ρ,
(l) proportion of confidence intervals formed using vBHS(ρ̂) that contain the

true ρ,
(m) proportion of confidence intervals formed using v

†
BHS(ρ̂) that contain the

true ρ,
(n) coverage rates in h, i, j, k, l, m for confidence intervals constructed using

Fisher’s z-transformation.

1 The grocery store purchases include purchases made with food stamps. This probably
tends to depress the correlation.
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Figure C.4.1. Grocery Store Purchases vs. Income.

For all confidence intervals, the value of the constant c was taken as the tabular
value from the standard normal N (0, 1) distribution.

The Monte Carlo properties of the variance estimators are presented in Tables
C.4.1 to C.4.5. Table C.4.1 gives the bias, variance, and mean square error (MSE)
of the estimators. We observe that most of the estimators are downward biased but
that vJ is upward biased and vBHS is nearly unbiased. The jackknife estimator vJ also
tends to have the largest variance and MSE. Taylor series vTS has reasonably good
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Table C.4.1. Monte Carlo Properties of Estimators of Var{ρ̂}
Bias Variance MSE

Estimator ×102 ×104 ×104

Random Group

(n, k, m) = (60, 12, 5) −0.068 0.503 0.508

(n, k, m) = (60, 6, 10) −0.194 0.966 1.004

(n, k, m) = (120, 24, 5) −0.160 0.049 0.075

(n, k, m) = (480, 32, 15) −0.193 0.002 0.039

Jackknife

(n, k, m) = (60, 12, 5) 0.293 4.110 4.195

(n, k, m) = (60, 60, 1) 0.320 3.689 3.791

(n, k, m) = (120, 24, 5) 0.124 0.880 0.896

Taylor Series

n = 60 −0.453 0.507 0.713

n = 120 −0.199 0.159 0.199

n = 480 − 0.114 0.014 0.027

Normal Theory

n = 60 −0.602 0.090 0.453

n = 120 −0.387 0.012 0.162

n = 480 −0.220 0.0003 0.049

Balanced Half-Samples

n = 60 0.072 1.646 1.651

n = 120 0.020 0.386 0.386

Balanced Half-Samples†

n = 60 −0.123 1.070 1.085

n = 120 −0.070 0.279 0.284

Note: The Monte Carlo expectation and variance of ρ̂ are
n E{ρ̂} Var{ρ̂} × 102

60 0.415 1.774
120 0.401 0.974
480 0.388 0.370

properties except in the case of the smallest sample size, n = 60, where the bias
is relatively large. The normal-theory variance estimator has a very small variance
but unacceptably large (in absolute value) bias. The variances of vRG and vJ are
inversely related to k, as might be expected from the theoretical developments in

Section 2.6. Any one of vRG, vTS, vBHS, or v
†
BHS might be recommended on the

basis of these results.
Alternatively, we might judge the quality of the variance estimators by the differ-

ence between nominal and true confidence interval coverage rates. See Table C.4.2
for these results. Notice that for the Taylor series and normal-theory estimators
there are sharp differences between the Monte Carlo and nominal coverage rates.
We conclude that neither estimator provides satisfactory confidence intervals for

the sample sizes studied here. On the other hand, vRG, vJ, vBHS, and v
†
BHS all provide
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Table C.4.4. Monte Carlo Correlation
Between ρ̂ and v(ρ̂)

Variance Estimator Correlation

Random Group

(n, k, m) = (60, 12, 5) −0.30

(n, k, m) = (60, 6, 10) −0.28

(n, k, m) = (120, 24, 5) −0.30

(n, k, m) = (480, 32, 15) −0.46

Jackknife

(n, k, m) = (60, 12, 5) −0.32

(n, k, m) = (60, 60, 1) −0.33

(n, k, m) = (120, 24, 5) −0.31

Taylor Series

n = 60 −0.28

n = 120 −0.23

n = 480 0.06

Normal Theory

n = 60 −1.00

n = 120 −1.00

n = 480 −1.00

Balanced Half-Samples

n = 60 −0.37

n = 120 −0.36

Balanced Half-Samples†

n = 60 −0.37

n = 120 −0.31

similar and relatively better confidence intervals. Even in these cases, however, the
Monte Carlo coverage rates are too small. The confidence intervals tend to err on
the side of being larger than the true ρ because the estimator ρ̂ is upward biased and
the variance estimators tend (except for vJ) to be downward biased. The problem
is made worse by the fact that ρ̂ and its variance estimators tend to be negatively
correlated. Table C.4.4 gives the Monte Carlo correlations. Thus, the confidence
intervals tend to be too narrow, particularly when ρ̂ is too large. Finally, note that
jackknife confidence intervals are competitive with confidence intervals formed
using other variance estimators, whereas the jackknife could not be recommended
on the basis of its own properties as given in Table C.4.1. The reverse is true of
the Taylor series estimator.

Table C.4.3 shows the confidence interval coverage rates when the z-
transformation is used. We observe substantial improvement in the confidence

intervals associated with vRG, vJ, vBHS, and v
†
BHS. Confidence intervals associated

with vRG and v
†
BHS are now particularly good, with very little discrepancy between

the Monte Carlo and nominal coverage rates. The intervals still tend to miss ρ
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Table C.4.5. Monte Carlo Correlation
Between ẑ = φ(ρ̂) and v(ẑ)

Variance Estimator Correlation

Random Group

(n, k, m) = (60, 12, 5) −0.03

(n, k, m) = (60, 6, 10) −0.01

(n, k, m) = (120, 24, 5) −0.03

(n, k, m) = (480, 32, 15) −0.22

Jackknife

(n, k, m) = (60, 12, 5) −0.06

(n, k, m) = (60, 60, 1) −0.04

(n, k, m) = (120, 24, 5) −0.08

Taylor Series

n = 60 −0.28

n = 120 −0.23

n = 480 0.05

Normal Theory

n = 60 0.00

n = 120 0.00

n = 480 0.00

Balanced Half-Samples

n = 60 −0.02

n = 120 −0.06

Balanced Half-Samples†

n = 60 0.42

n = 120 0.35

on the high side, but this effect is much diminished vis-à-vis the untransformed
intervals. A partial explanation for the reduction in the asymmetry of the error is
that ẑ = φ(ρ̂) and the estimators of its variance tend to be correlated to a lesser
degree than the correlation between ρ̂ and its variance estimators. See Table C.4.5.

Even on the transformed scale, however, confidence intervals associated with
vTS and vNT perform badly. The transformation does not seem to improve these
intervals and in fact seems to make the Taylor series intervals worse.

Based on the results presented here, we recommend the z-transformation for
making inferences about the finite-population correlation coefficient, particularly
when used with the random group, jackknife, or balanced half-sample variance
estimators. The normal-theory estimator seems sensitive to the assumed distribu-
tional form and is not recommended for populations that depart from normality
to the degree observed in the present population of consumer units. The Taylor
series estimator is not recommended for inferential purposes either, although this
estimator does have reasonably good properties in its own right.
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APPENDIX D

The Effect of Measurement Errors
on Variance Estimation

We shall now introduce measurement (or response) errors and look briefly at
the properties of variance estimators when the data are contaminated by such
errors.

Throughout the book, we have assumed that the response, say Yi , for a given
individual i is equal to that individual’s “true value.” Now we shall assume that the
data may be adequately described by the additive error model

Yi = μi + ei , (D.1)

i = 1, . . . , N . The errors ei are assumed to be (0, σ 2
i ) random variables, and the

means μi are taken to be the “true values.” Depending on the circumstances of
a particular sample survey, the errors ei may or may not be correlated with one
another. In the sequel, we shall make clear our assumptions about the correlation
structure.

Model (D.1) is about the simplest model imaginable for representing measure-
ment error. Many extensions of the model have been given in the literature. For a
general discussion of the basic model and extensions, see Hansen, Hurwitz, and
Bershad (1961), Hansen, Hurwitz, and Pritzker (1964), Koch (1973), and Cochran
(1977). The simple model (D.1) is adequate for our present purposes.

It should be observed that (D.1) is a conceptual model, where the Yi and ei are
attached to the N units in the population prior to sampling. This situation differs
from some of the previous literature on response errors, where it is assumed that
the errors ei are generated only for units selected into the sample. Our stronger
assumption is necessary in order to interchange certain expectation operators. See,
e.g., equation (D.7).

We shall assume that it is desired to estimate some parameter θ of the fi-
nite population. For the moment, we assume that the estimator of θ is of the

398
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form

θ̂ =
N∑

i=1

Wi ti Yi , (D.2)

where the Wi are fixed weights attached to the units in the population, the ti are
indicator random variables

ti = 1, if i ∈ s,
= 0, if i /∈ s,

and s denotes the sample. Equation (D.2) includes many of the estimators found
in survey sampling practice.

We are interested in estimators of the variance of θ̂ and in studying the properties
of such estimators in the presence of model (D.1). Many authors, including those
cited above, have studied the effects of measurement errors on the true variance of
θ̂ . We shall review this work and then go on to consider the problem of variance
estimation, a problem where little is available in the published literature.

Before beginning, it is important to establish a clear notation for the different
kinds of expectations that will be needed. There are two sources of randomness in
this work. One concerns the sampling design, which is in the control of the survey
statistician. All information about the design is encoded in the indicator variables ti .
We shall let Ed and Vard denote the expectation and variance operators with respect
to the sampling design. The other source of randomness concerns the distribution,
say ξ , of the measurement (or response) errors ei . We shall let E and Var denote
the expectation and variance operators with respect to the ξ -distribution. Finally,
combining both sources of randomness, we shall let the unsubscripted symbols E
and Var denote total expectation and total variance, respectively. The reader will
note the following connections between the different operators:

(1) E = Ed E =E Ed

and

(2) Var = Ed Var + Vard E =E Vard +Var Ed .

Summarizing the notation, we have

Source Operators

Sampling Design Ed , Vard

ξ E , Var
Total E, Var

The total variance of θ̂ may be written as

Var{θ̂} = Vard E {θ̂} + Ed Var {θ̂}.
Total Sampling Response

Variance Variance Variance (D.3)
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The sampling variance is the component of variability that arises because observa-
tions are made on a random sample and not on the full population. This component
is the total variance when measurement error is not present. The response variance
is the component of variability that arises because of the errors of measurement
ei . This component is present even when the entire population is enumerated!

It is easily seen that the sampling variance is

Vard E {θ̂} = Vard

{
N∑

i=1

Wi ti μi

}

=
N∑

i=1

W 2
i μ2

i πi (1 − πi ) +
N∑ ∑

i �= j

Wi W jμiμ j (πi j − πiπ j ), (D.4)

where, as usual, πi denotes the probability that the i-th unit is drawn into the sample
and πi j denotes the probability that both the i-th and j-th units are drawn into the
sample. Equation (D.4) follows from the fact that

E {Yi } = μi ,

Vard{ti } = πi (1 − πi ),

and

Covd{ti , t j } = πi j − πi π j .

Now let σi j = E {ei e j } denote the ξ -covariance between the errors ei and e j ,

i �= j . Then, the response variance is

Ed Var {θ̂} = Ed

{
N∑

i=1

W 2
i t2

i σ 2
i +

N∑ ∑
i �= j

Wi W j ti t jσi j

}

=
N∑

i=1

W 2
i πiσ

2
i +

N∑ ∑
i �= j

Wi W jπi jσi j (D.5)

because Ed {t2
i } = πi , Ed{ti t j } = πi j , and Var {Yi } = σ 2

i . Combining (D.4) and
(D.5) gives the following theorem.

Theorem D.1. The total variance of an estimator of the form θ̂ = ∑
Wi ti Yi is

given by

Var{θ̂} =
N∑

i=1

W 2
i μ2

i πi (1 − πi ) +
N∑ ∑

i �= j

Wi W jμiμ j (πi j − πiπ j )

+
N∑

i=1

W 2
i πiσ

2
i +

N∑ ∑
i �= j

Wi W jπi jσi j .
1

1 Some authors permit the distribution of Yi to depend not only on unit i but also on other
units in the sample s. See Hansen, Hurwitz, and Bershad (1961) for an example involving a
housing survey. Given this, circumstance, we may have E {Yi |s} = μis �= μi = E {Yi |ti = 1}
and Var {Yi |s} = σ 2

is �= σ 2
i = Var {Yi |ti = 1}. A nonzero covariance (or interaction) then
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The last term on the right-hand side is omitted when the measurement errors are
uncorrelated. �

Example D.1. For srs wor sampling and θ̂ = ȳ, we have the familiar expression

Var{ȳ} = (1 − f )n−1 S2
μ + n−1σ 2{1 + (n − 1)ρ}, (D.6)

where

S2
μ = (N − 1)−1

N∑
i=1

(μi − M̄)2,

M̄ = N−1
N∑

i=1

μi ,

σ 2 = N−1
N∑

i=1

σ 2
i ,

σ 2ρ = N−1(N − 1)−1
N∑ ∑

i �= j

σi j ,

f = n/N .

This follows from Theorem D.1 with wi = 1/n, πi = n/N , and πi j = n(n − 1)/
n(N − 1). The term involving σ 2ρ is omitted whenever the errors are
uncorrelated. �

The expressions for total variance presented in Theorem D.1 and (D.6) have
appeared previously in the literature. To investigate potential estimators of vari-
ance, however, it is useful to work with an alternative expression, obtained by
interchanging the order of expectations. The alternative expression is

Var{θ̂} =E Vard{θ̂} +Var Ed{θ̂}. (D.7)

Neither of the components on the right-hand side of (D.7) correspond precisely to
the components of (D.3).

Define

θ̃ =
N∑

i=1

Wi tiμi ,

the estimator of the same functional form as θ̂ , with the means μi replacing the
response variables Yi . The estimators θ̂ and θ̃ are identical whenever measurement
error is absent. We shall assume that there exists a design unbiased estimator of
the design variance of θ̃ . That is, there exists an estimator v(θ̃ ) such that

Ed{v(θ̃ )} = Vard{θ̃}.

exists between sampling error and measurement error. See, e.g., Koch (1973). In the simple
additive model considered here, it is assumed that μis = μi and σ 2

is = σ 2
i , and thus the

interaction component vanishes.
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Such estimators have been discussed in this book and are discussed extensively in
the traditional survey sampling texts.

Now define the “copy” of v(θ̃ ), say vc(θ̂ ), by replacing the μi by the responses
Yi . We shall view vc(θ̂ ) as an estimator of the total variance of θ̂ . The bias of this
estimator is described in the following theorem.

Theorem D.2. The bias of vc(θ̂ ) as an estimator of the total variance of θ̂ is given
by

Bias{vc(θ̂ )} = −Var Ed{θ̂} =
N∑

i=1

W 2
i π2

i σ 2
i −

N∑ ∑
i �= j

Wi W jπiπ jσi j .

Proof. By definition, v(θ̃ ) is a design-unbiased estimator of Vard{θ̃}. Because this
must be true for any characteristic of interest, we have

Ed{vc(θ̂ )} = Vard {θ̂}.
Therefore,

E{vc(θ̂ )} =E Vard {θ̂}
and the result follows by the decomposition (D.7). �

The “copy” vc(θ̂ ) may or may not be seriously biased, depending on the corre-
lated component of the total variance. The following two examples illustrate these
findings.

Example D.2. We continue the first example, assuming srs wor sampling and
θ̂ = ȳ. For this problem, the familiar variance estimators are

v(θ̃ ) = (1 − f )s2
μ/n,

s2
μ = (n − 1)−1

n∑
i=1

(μi − μ̄)2,

μ̄ = n−1
n∑

i=1

μi ,

and

vc(ȳ) = (1 − f )s2
y/n,

s2
y = (n − 1)−1

n∑
i=1

(yi − ȳ)2,

ȳ = n−1
n∑

i=1

yi .

By Theorem D.2, the bias in the variance estimator is

Bias{vc(ȳ)} = −N−1σ 2{1 + (N − 1)ρ}.
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When measurement errors are uncorrelated, the bias reduces to

Bias{vc(ȳ)} = −N−1σ 2,

and this will be unimportant whenever the sampling fraction f is negligible. If the
fpc is omitted from the variance calculations, we note that

Bias {s2
y/n} = N−1S2

μ − σ 2ρ,

reducing to

Bias{s2
y/n} = N−1S2

μ

for uncorrelated errors. Thus, even when measurement errors are uncorrelated, we
are forced to accept a downward bias in the response variance (estimator with fpc)
or upward bias in the sampling variance (estimator without fpc). �

Example D.3. We assume a πps sampling scheme with θ̂ = Ŷ , the Horvitz–
Thompson estimator of the population total; i.e., Wi = π−1

i = (npi )
−1. Assuming

positive joint inclusion probabilities, πi j > 0, the Yates and Grundy (1953) esti-
mator is unbiased for the design variance of θ̃ . See Section 1.4. The “copy” is
then

vc(Ŷ ) =
n∑

i=1

n∑
j>i

{(πiπ j − πi j )/πi j }(yi/πi − y j/π j )
2,

and by Theorem D.2 its bias must be

Bias{vc(Ŷ )} = −Nσ 2{1 + (N − 1)ρ},
where

σ 2 = N−1
N∑

i=1

σ 2
i ,

σ 2ρ = N−1(N − 1)−1
N∑ ∑

i �= j

σi j .

The bias reduces to −Nσ 2 in the case of uncorrelated errors. On several occasions
in this book, we have also discussed the possibility of estimating the variance of
θ̂ = Ŷ by the traditional formula for pps wr sampling

vwr(θ̃ ) = n−1(n − 1)−1
n∑

i=1

(μi/pi − θ̃ )2.

As was demonstrated in Section 2.4.5, this is a biased estimator of the design
variance of θ̃ , with bias given by

Biasd{vwr(θ̃ )} = n

n − 1
(Vard{θ̃wr} − Vard{θ̃πps}),

where the first and second terms on the right-hand side denote the variance of θ̃

given with and without replacement sampling, respectively. Let vwr,c(Ŷ ) denote
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the “copy” of vwr(θ̃ ). Then, following the development of Theorem D.2, the bias
of the “copy” as an estimator of Var{Ŷ } is

Bias{vwr,c(Ỹ )} = −Nσ 2{1 + (N − 1)ρ} + E
n

n − 1
(Vard{Ŷwr} − Vard{Ŷπps}).

The second term on the right-hand side is the “price” to be paid for “copying” a
biased estimator of the variance of θ̃ . �

In most surveys of human populations, there tends to be a positive-valued cor-
related component of response variance σ 2ρ. This is particularly so when the enu-
meration is made via personal visit. See Bailar (1968, 1979) for some examples.
Whenever such correlation occurs, there is a potential for both (1) an important
increase in the total variance and (2) a serious bias in the variance estimator. The
first point is illustrated in the first example, where we note (see (D.6)) that the
total variance is of order n−1, except for an order 1 term in σ 2ρ. This latter term
may result in an important increase in total variance relative to the situation where
measurement errors are uncorrelated. The second point is illustrated in the second
and third examples. We not only observe a bias in the variance estimator but see
that the bias involves the order 1 term in σ 2ρ. Roughly speaking, this term is left
out of the variance calculations, resulting in an order 1 downward bias!

Even when measurement errors are uncorrelated, there is a bias in the variance
estimators. This, too, is illustrated in the second and third examples. The bias is
less harmful in this case, however, and is unimportant when the sampling fraction
is negligible.

One might despair at this point, thinking that there is no hope for producing
satisfactory variance estimates in the presence of correlated measurement error.
Fortunately, some of the variance estimating methods discussed earlier in this book
may provide a satisfactory solution.

To see this, let us assume that the correlated component arises strictly from
the effects of interviewers. This assumption is fairly reasonable; most research
on the correlated component points to the interviewer as the primary cause of
the correlation. We note, however, that coders, supervisors, and the like may also
contribute to this component.

We shall consider the random group estimator of variance. Similar results can
be given for some of the other estimators studied in this book. We shall assume

(1) there are k, random groups,
(2) interviewers assignments are completely nested within random groups, and
(3) interviewers have a common effect on the ξ -distribution; i.e.,

E {ei } = 0,

E {e2
i } = σ 2

i ,

E {ei e j } = σi j , if units i and j are enumerated by the same interviewer,
= 0, if units i and j are enumerated by different interviewers,

and these moments do not depend upon which interviewer enumerates the i-th
and j-th units.
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The parent sample estimator θ̂ is still as defined in (D.2). The estimator for the
α-th random group is defined by

θ̂α =
N∑

i=1

Wi(α)ti(α)Yi ,

where

ti(α) = 1, if the i- th unit is included in the α-th random group sα,

= 0, otherwise,

and the Wi(α) = kWi are the weights associated with the α-th random group.
Because the estimators are linear, we have

θ̂ = k−1
k∑

α=1

θ̂α.

By our assumptions, the θ̂α are ξ -uncorrelated, given the sample and its partition
into random groups, and it follows that

Var {θ̂} = k−1Var {θ̂α}. (D.8)

The ξ -variance of θ̂α is

Var {θ̂α} =
N∑

i=1

W 2
i(α)t

2
i(α)σ

2
i +

N∑ ∑
i �= j

Wi(α)W j(α)ti(α)t j(α)σi j

and

Ed Var {θ̂α} =
N∑

i=1

W 2
i(α)(k

−1πi )σ
2
i +

N∑ ∑
i �= j

Wi(α)W j(α)(k
−1φ j |iπi j )σi j

= k
N∑

i=1

W 2
i πiσ

2
i + k

N∑ ∑
i �= j

Wi W jφ j |iπi jσi j , (D.9)

where φ j |i is the conditional probability that unit j is included in the α-th random
group, given that unit i is included in the α-th random group and that both units i
and j are included in the parent sample. Combining (D.4), (D.8), and (D.9) gives
the following result.

Theorem D.3. Given assumptions (1)–(3), the total variance of θ̂ is

Var{θ̂} =
N∑

i=1

W 2
i μ2

i πi (1 − πi ) +
N∑ ∑

i �= j

Wi W jμiμ j (πi j − πiπi )

+
N∑

i=1

W 2
i πiσ

2
i +

N∑ ∑
i �= j

Wi W jφ j |iπi jσi j . �
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The first and second terms on the right-hand side of the above expression constitute
the sampling variance, while the third and fourth terms constitute the response
variance.

Comparing this expression with the corresponding expression in Theorem D.1
shows that the sampling variance is the same but the correlated component of
response variance is diminished by the factor φ j |i . The diminution in the corre-
lated component arises because the measurement errors are assumed to be corre-
lated within, and not between, interviewer assignments. This effect will be present
whether or not the groups referenced in assumption (1) are formed at random.
In fact, the correlated component will always be diminished by roughly a factor
that is inversely proportional to the number of interviewers. By forming groups
at random, we achieve both the reduction in the true variance and a rigorous es-
timator of variance, as we shall show in Theorem D.4. By forming groups in a
nonrandom way, however, we achieve the reduction in the true variance but render
that variance nonestimable.

Example D.4. To illustrate the effect, note that φ j |i = (m − 1)/(n − 1) =. k−1 for
srs wor sampling, where m = n/k. Thus, for large k, the correlated component is
diminished very substantially when the errors ei can be assumed to be uncorrelated
between interviewer assignments. Specifically, for θ̂ = ȳ, we now have

Var{ȳ} = (1 − f )n−1S2
μ + n−1σ 2{1 + (m − 1)ρ}.

The term in σ 2ρ is now of order k−1, whereas in the earlier work this term was of
order 1. �

By definition, the random group estimator of variance is

υRG(θ̂ ) = k−1(k − 1)−1
k∑

α=1

(θ̂α − θ̂ )2 = 2−1k−2(k − 1)−1
k∑ ∑

α �=β

(θ̂α − θ̂β)2.

Assuming that the random group estimators are symmetrically defined,2 we see
that the total expectation of υRG is given by

E{υRG(θ̂ )} = (2k)−1E{(θ̂α − θ̂β)2} = k−1(Var{θ̂α} − Cov({θ̂α, θ̂β}). (D.10)

The following theorem establishes the bias of the random group estimator.

Theorem D.4. Given assumptions (1)–(3) and that the θ̂α are symmetrically de-
fined, the total bias of the random group estimator of variance is

Bias{υRG(θ̂ )} =
N∑

i=1

W 2
i μ2

i π
2
i −

N∑ ∑
i �= j

Wi W jμiμ j (kθ j |iπi j − πiπ j ),

2 By “symmetrically defined,” we mean that the random groups are each of equal size and
that the θ̂α are defined by the same functional form. This assumption ensures that the θ̂α are
identically distributed.
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where θ j |i is the conditional probability that unit j is included in random group
β, given that unit i is included in random group α(α �= β) and that both i and j
are in the parent sample. In other words, the bias arises solely from the sampling
distribution and not from the ξ -distribution. In particular, the bias is not an order
1 function of σ 2ρ.

Proof. By (D.8) and (D.3),

Var{θ̂} = k−1Var{θ̂α} + Vard E {θ̂} − k−1Vard E {θ̂α}
= k−1Var{θ̂α} + (1 − k−1) Covd{E θ̂α, E θ̂β}.

Combining this result with (D.10) and remembering that the θ̂α are ξ -uncorrelated
gives

Bias{υRG(θ̂ )} = −Covd{E θ̂α, E θ̂β}.
The theorem follows from

Covd{E θ̂α, E θ̂β} =
N∑

i=1

N∑
j=1

Wi(α)W j(β)μiμ j Covd{ti(α), t j(β)}

= −
N∑

i=1

W 2
i μ2

i π
2
i +

N∑ ∑
i �= j

Wi W jμiμ j (kθ j |iπi j − πiπ j ).

�
Some examples will illustrate the nature of the bias of υRG.

Example D.5. Again consider srs wor sampling with θ̂ = ȳ. From Theorem D.4,
we have

Bias{υRG(ȳ)} = S2
μ/N

because Wi = 1/n, πi = n/N , πi j = n(n − 1)/N (N − 1), θ j/ i = m/(n − 1).
This bias is unimportant in comparison with the bias displayed in Example D.2.
The bias component in σ 2ρ has now been eliminated. Moreover, the remaining
bias will be unimportant whenever the sampling fraction f = n/N is negligible.

�
Example D.6. Let us assume πps sampling with θ̂ = Ŷ , the Horvitz–Thompson
estimator of the population total. In this case, Wi = π−1

i and θ j |i = m/(n − 1).
Thus,

Bias{υRG(Ŷ )} =
N∑

i=1

μ2
i −

N∑ ∑
i �= j

μiμ j

(
n

n − 1

πi j

πiπ j
− 1

)

= n

n − 1
(Var{θ̂wr} − Var{θ̃πps}),

where θ̃ = ∑
Wi tiμi and Var{θ̃wr and Var{θ̃πps} are variances assuming with and

without replacement sampling, respectively. Compare this work with Example D.3.



P1: OTE/SPH P2: OTE

SVNY318-Wolter November 30, 2006 20:38

408 D. The Effect of Measurement Errors on Variance Estimation

The bias component in σ 2ρ has been eliminated. The residual bias is a function
of the efficiency of πps sampling vis-à-vis pps wr sampling, and in the useful
applications of πps sampling the bias will be positive. �

Example D.7. One of the most useful applications of Theorems D.3 and D.4
concerns cluster sampling. We shall assume a πps sample of n clusters, with
possibly several stages of subsampling within the selected clusters. No restrictions
are imposed on the subsampling design other than it be independent from cluster
to cluster. For this problem, rule (iii), Section 2.4.1 is employed in the formation
of random groups, and, to be consistent with assumptions (1)–(3), interviewer
assignments are nested completely within clusters. Then, as we shall see, the bias
in υRG(θ̂ ) arises solely in the between component of the sampling variance and
thus will be unimportant in many applications. Once again, the bias in σ 2ρ is
eliminated by using of the random group method. To show this effect, it will be
convenient to adopt a double-subscript notation. The estimator of θ is now

θ̂ =
N∑

i=1

Mi∑
j=1

Wi j ti j Yi j ,

where Yi j denotes the j-th elementary unit in the i-th primary unit and the other
symbols have a similar interpretation. We shall let θ̂ = Ŷ , the Horvitz–Thompson
estimator of the population total.

Let

μi =
Mi∑
j=1

μi j

denote the “true” total for the i-th primary unit. Then, by Theorem D.4 and (2.4.5)
and (2.4.6) it follows that

Bias{υRG(Ŷ )} = n

n − 1
(Var{θ̂wr} − Var{θ̂πps}),

where

θ̃ =
N∑

i=1

Wi tiμi ,

ti = 1, if the i-th primary is in the sample,

= 0, otherwise,

Wi = (npi )
−1,

pi is the probability associated with the i-th primary unit, and Var{θ̃wr} and
Var{θ̃πps} denote the variances of θ̃ assuming with and without replacement sam-
pling, respectively. This expression confirms that the bias is in the between compo-
nent of the sampling variance and not in the within component or in the response
variance. In surveys where the between component of sampling variance is a neg-
ligible part of the total variance, the bias of υRG will be unimportant. In any case,
the bias will tend to be positive in the useful applications of πps sampling. �
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In summary, we have seen that the correlated component of the response variance
is eliminated entirely from the bias of the random group estimator of variance. The
main requirements needed to achieve this result are that (1) k random groups be
formed in accordance with the rules presented in Section 2.4.1, (2) interviewer
assignments be nested completely within random groups, and (3) measurement
errors be uncorrelated between interviewer assignments. Requirements (2) and (3)
imply that the random group estimators θ̂α are ξ -uncorrelated.

Our results also extend to more complicated situations where coders, super-
visors, and the like may potentially induce a correlation between the ei . In this
case, one needs to nest the coder and supervisor (etc.) assignments within random
groups. This procedure ensures that the θ̂α will be ξ -uncorrelated and that the
results of our theorems will be valid.

The nesting techniques, intended to induce ξ -uncorrelated θ̂α , were studied
by Mahalanobis (1939) as early as the 1930s under the name “interpenetrating
subsamples.” The terminology survives to the present day with authors concerned
with components of response variability. Although many benefits accrue from
the use of these techniques, one disadvantage is that the nesting of interviewer
assignments may tend to slightly reduce flexibility and marginally increase costs.
The extent of this problem will vary with each survey application.

The work done here may be extended in a number of directions. First, we have
been working with estimators of the general form given in (D.2). Estimators that
are nonlinear functions of statistics of form (D.2) may be handled by using Taylor
series approximations. In this way, our results extend to a very wide class of sur-
vey problems. Second, we have been working with the random group estimator
of variance. Extensions of the results may be obtained for the jackknife and bal-
anced half-sample estimators of variance. In the case of the jackknife, for example,
one begins by forming random groups, proceeds to nest interviewer (and possibly
coder, etc.) assignments within random groups, and then forms pseudovalues by
discarding random groups from the parent sample. Third, the measurement error
model (D.1) assumed here involved a simple additive structure. Extensions of the
results could be given for more complicated models. Finally, we have been at-
tempting to show in rather simple terms the impact of response errors upon the
statistical properties of estimators of total variance. We have not discussed oper-
ational strategies for randomizing interviewers’ assignments in actual fieldwork.
In actual practice, it is common to pair together two (or more) interviewers within
a primary sampling unit (or within some latter-stage sampling unit) and to ran-
domly assign the corresponding elementary units to the interviewers. See, e.g.,
Bailar (1979). Depending upon how the randomization of assignments is actually
accomplished, it will be possible to estimate various components of variance in
addition to estimating the total variance.
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APPENDIX E

Computer Software for
Variance Estimation

To implement the methods of variance estimation described in this book, one
needs to have computer software of known quality and capability. One can write
original software for this purpose or purchase a commercially available software
package.

As the first edition of this book went to press in 1985, there were no less than 14
different commercially available computer programs for variance estimation for
complex sample surveys or for the analysis of data from such surveys. A list
of the programs and their developers is presented in Table E.1. I included a brief
description of each of the 14 programs in the first edition. I only included programs
that were portable to some degree and that were, or had some expectation of
becoming, commercially available. I made no attempt to catalogue the hundreds
of nonportable, special-purpose programs used for variance estimation by survey
researchers and organizations around the world.

During the past 20 years, the software and hardware markets have undergone
many changes, the most remarkable of which has been the microcomputer rev-
olution. In 1985, virtually all variance estimation tasks were performed on large
mainframe computers. Yet today most variance estimation is performed on pow-
erful personal computers.

Because software and hardware now change so rapidly, the Survey Research
Methods Section of the American Statistical Association (ASA) has established a
Web page summarizing survey analysis software, including software for variance
calculations. This material can be reached via links through the ASA’s home page
at http://www.amstat.org.

As this second edition of Introduction to Variance Estimation goes to press,
the ASA’s Web page lists 15 packages for the analysis of complex survey data.
Table E.2 provides a listing of these packages. Only four of the packages—
CLUSTERS, PC CARP, SUDAAN, and WesVar—have descended directly from

410
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Table E.1. Variance Estimation Programs

Program Name Vendor

BELLHOUSE University of Western Ontario

CAUSEY U.S. Bureau of the Census

CLUSTERS World Fertility Survey

FINSYS-2 Colorado State University and U.S. Forest Service

HESBRR U.S. National Center for Health Statistics

NASSTIM, NASSTVAR Westat, Inc.

OSIRIS IV University of Michigan

PASS U.S. Social Security Administration

RGSP Rothamsted Experimental Station

SPLITHALVES Australian Bureau of Statistics

SUDAAN Research Triangle Institute

SUPER CARP Iowa State University

U–SP University of Kent

VTAB and SMED83 Swedish National Central Bureau of Statistics

ancestors listed in Table E.1. The remaining 11 packages either descend indirectly
or represent fresh start-ups. For each package, the Web page gives the follow-
ing pieces of information: vendor, types of designs that can be accommodated,
types of estimands and statistical analyses that can be accommodated, restrictions
on the number of variables or observations, primary methods used for variance

Table E.2. Survey Analysis Software Listed on the ASA’s Web Page as of
October 2006

Program Name Vendor

AM Software American Institutes for Research

Bascula Statistics Netherlands

CENVAR U.S. Bureau of the Census

CLUSTERS University of Essex

Epi Info Centers for Disease Control and Prevention

Generalized Estimation System Statistics Canada

IVEware University of Michigan

PC CARP Iowa State University

R Survey Functions R Project

SAS/STAT SAS Institute

SPSS Complex Samples SPSS, Inc.

Stata Stata Corporation

SUDAAN Research Triangle Institute

VPLX U.S. Bureau of the Census

WesVar Westat, Inc.
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estimation, general description of the “feel” of the software, input, platforms on
which the software can run, pricing and terms, and contact information.

The ASA maintains the Web page, while a static book appendix like this one
could be out-of-date before it is published. Therefore, I decided not to include
descriptions of the packages like I did in the first edition. Instead, I urge readers
to consult the ASA’s Web page before launching a new survey project or selecting
the software.

Before implementing any of these software packages, the potential user needs
to have a fairly clear idea of the characteristics and features of “good” software.
This information is needed in order to appraise the quality and capabilities of the
alternative software packages so that an informed decision can be made about
which package is best for a particular application. The following characteristics
and features are potentially important:

(1) Input
(a) Flexibility
(b) Calculation of weights
(c) Finite correction terms
(d) Convenient to learn and use
(e) Good recoding system
(f) Missing value codes

(2) Output
(a) Echo all user commands
(b) Clear labeling
(c) Documentation of output clear, concise, self-explanatory
(d) Options of providing estimates by stratum, cluster group, various stages of

sampling
(3) Accuracy

(a) Computational
(b) Appropriateness

(4) Cost or efficiency

Here is what Francis and Sedransk (1979) say about these characteristics:

Ideally it [the software package] should have great flexibility in dealing with

various designs. The program should allow the user to describe his design exactly,

accounting for strata, clusters, various stages of sampling, and various types

of case weighting. The program should also be able to calculate weights from

the data, if enough information is present. Finite population correction factors

(f.p.c.’s) should be available if a user requests them. In particular, for “collapsed

strata” methods, it would be desirable to have an option available for recalculation

of new case weights and new f.p.c.’s derived from the original case weights and

f.p.c.’s.

If a program is to be of general use it must be reasonably convenient to learn and

use. Such a program will not only be more effective, but will be easier to check and

debug; and this, in turn, will improve accuracy. A good recoding system would

allow for easy calculation of estimates for subpopulations. Missing value codes
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should exist and the program should be specific about its treatment of missing

values, and small sample sizes (e.g., cluster sample sizes of zero or one).

An essential feature is accuracy which depends on two things: the formula

used and its computation by the program. First, computational accuracy should

be required of every program. Second, the formula should be appropriate for the

sample design employed. For example, in variance estimation an estimate of the

variability in the lower stages of the sample should be given, and the effect of all

f.p.c.’s should be considered.

The output should echo all the user commands: all options which were specified

should be clearly repeated, including a description of the design. The labelling

should be clear, and allow the user flexibility in naming his variables. Additional

useful output would include: (1) estimates for each stratum and any user-specified

group of clusters; (2) design effects and (3) estimates of variability by stage of

sampling.

The documentation of the output should be clear, concise and self-explanatory.

It should also provide references which clearly explain the statistical techniques

programmed.

Finally, since sample surveys frequently involve large amounts of data, the

difficult question of efficiency, in terms of I/O and CPU time, must be addressed.

In addition to appraising a program’s capabilities and features with respect to
these criteria, one should also consider testing the program on some benchmark
data sets where the true answers are known. Such investigation can test a program’s
computational accuracy and provide insight (at a level of detail not usually encoun-
tered in program manuals) into the methodology implemented in the program. To
illustrate these ideas, Table E.3 presents six simple benchmark data sets. The de-
sign assumed here involves two stages of sampling within L strata. The number
of PSUs in the h-th stratum in the population and in the sample is denoted by Nh

and nh . Mhi denotes the size of the (h, i)-th PSU, and mhi denotes the subsampling
size.

For these small data sets, one is able to compute true answers by hand and
compare them with answers produced by a software package.

Benchmark data sets should be chosen so as to test as many features of the
software as possible. Our data sets I and II are rather straightforward and should
produce few surprises. Data set III may be revealing because only one primary unit
is selected in the fourth stratum. A program would need to do some collapsing of
strata in order to produce a variance estimate. Data set IV contains a certainty (or
self-representing) PSU and its treatment should be checked. Data sets V and VI
also contain samples of size one, but at the second stage of sampling instead of at
the first stage.

In addition to assessing the capabilities of the software, the potential user, pur-
chaser, or developer needs to assess carefully the needs and requirements of their
particular applications. Some key issues are:

(a) Are computations needed for one or many kinds of survey designs?
(b) Will the surveys be one-time or recurring?
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Table E.3. Six Benchmark Data Sets

I. Data Set 1

Cluster Values of

Stratum Number M1i m1i Observations

1 10 5 1, 2, 3, 4, 5

1 N1 = 15 n1 = 3 2 10 5 2, 3, 4, 5, 6

3 10 5 3, 4, 5, 6, 7

II. Data Set 2

Cluster Values of

Stratum Number Mhi mhi Observations

1 10 5 1, 2, 3, 4, 5

1 N1 = 15 n1 = 3 2 10 5 2, 3, 4, 5, 6

3 10 5 3, 4, 5, 6, 7

1 10 5 1, 2, 3, 4, 5

2 N2 = 15 n2 = 3 2 10 5 2, 3, 4, 5, 6

3 10 5 3, 4, 5, 6, 7

1 10 5 1, 2, 3, 4, 5

3 N3 = 15 n3 = 3 2 10 5 2, 3, 4, 5, 6

3 10 5 3, 4, 5, 6, 7

III. Modifieda Data Set 1

Cluster Values of

Stratum Number M41 m41 Observations

4 N4 = 15 n4 = 1 1 10 5 1, 2, 3, 4, 5

IV. Modifieda Data Set 2

Cluster Values of

Stratum Number M41 m41 Observations

4 N4 = 1 n4 = 1 1 10 5 1, 2, 3, 4, 5
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Table E.3. (Continued )

V. Modifieda Data Set 3

Cluster Values of

Stratum Number M4i m4i Observations

1 10 5 1, 2, 3, 4, 5

4 N4 = 14 n4 = 3 2 10 5 2, 3, 4, 5, 6

3 10 1 3

VI. Modifieda Data Set 4

Cluster Values of

Stratum Number M4i m4i Observations

1 10 5 1, 2, 3, 4, 5

4 N4 = 15 n4 = 3 2 10 5 2, 3, 4, 5, 6

3 1 1 3

Source: Francis and Sedransk (1979).
a The first three strata of data sets III, IV, V, and VI are identical to data set 2.

(c) Are computations to be limited to simple tabulations and associated variance
estimates or will further statistical analysis of the data be undertaken?

(d) What kind of user is expected?
(e) What kind of hardware environment is anticipated?
(f) Is the software maintained by a reliable organization?
(g) What kind of internal support can be provided for the software?
(h) What are the costs of the software? Initial costs? Maintenance costs?

Issues (a)–(h) define the importance to the potential user of the assessment
criteria and benchmark tests. Two examples will clarify this situation. First, if
only one kind of survey design is anticipated, then the importance of software
flexibility is relatively diminished, whereas if many designs are anticipated, then
software flexibility assumes relatively greater importance. Second, if the main
users are skilled mathematical statisticians or experts in statistical computing,
then convenience (to learn and use) is relatively less important than if the main
users are analysts in some other scientific field.

We suggest that the survey statistician assess needs and requirements for soft-
ware first, and then evaluate the various options of developing or purchasing soft-
ware in light of the requirements. The characteristics, features, and benchmark
data sets cited earlier will be useful in conducting this evaluation.
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APPENDIX F

The Effect of Imputation on Variance
Estimation

F.1. Introduction

Missing data due to nonresponse, edit failure, and other factors appear in all surveys
of human populations. Standard methods of handling missing data can result in an
inflation in the estimator variance relative to the variance that would have occurred
had all data been observed. This final appendix defines the extra variability and
summarizes several methods that can be used to ensure that it properly reflected
in the variance estimates.

Total or unit nonresponse is usually handled in large-scale modern surveys by
adjustments to the survey weights, as described in Section 1.6. Item nonresponse
is often handled in one of two ways:

(i) Don’t Know (DK) and Refused are listed as explicit response categories for
each item on the survey questionnaire, and in the analysis either these cate-
gories appear separately in survey tabulations or survey statistics are computed
based only on completed cases.

(ii) Missing items in an otherwise complete interview are imputed (estimated
values are inserted into the computer record), and the survey analysis proceeds
to include all of the reported and imputed data.

In what follows, we deal only with item nonresponse and the effect of imputation
on survey inference, having already dealt adequately with weighting adjustments
for total nonresponse in the main chapters of this book. The extra variability we
will be working with is sometimes called imputation variance.

While our focus is on the effects of item nonresponse, it is important to observe
that such nonresponse may be unimportant in some surveys, even while it may
be highly important in others. Modern surveys frequently use automated instru-
ments in the form of CATI (computer-assisted telephone interviewing) or CAPI

416
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(computer-assisted personal interviewing) questionnaires. In such environments,
item nonresponse may be eliminated or greatly curtailed, especially if option (i) is
selected by the instrument designer. Correspondingly, the extra variability due to
imputation may be unimportant. Breakoffs can occur that result in whole sections
of the interview being missing. In this event, the statistician will need to define
what it means to be a “completed interview.” Depending on the definition, an inter-
view may be deemed totally missing, in which case it will be accounted for in the
estimation procedure by a weight adjustment method, or it may be deemed com-
pleted, in which case missing items may be handled by either of the options cited
above. A few surveys, of course, still use paper instruments, and some surveys are
underfunded or use inferior procedures and poorly trained interviewers. Surveys
that possess any of these characteristics may exhibit higher item missingness rates
and a correspondingly greater inflation in the survey variance. Given a choice
between survey designs that minimize the effect of item missingness and survey
estimation procedures that explicitly account for the effect, the survey researcher
is well-advised to give priority to the former.

Bias and variance due to the missingness mechanism and to the corresponding
adjustments are two components of the overall survey mean square error. Of these,
bias is usually thought to be the more urgent. Survey managers typically place
a premium on achieving high response rates as a protection against bias. In our
work in this appendix, we will assume that a weighting adjustment(s) has already
been performed and has removed any bias attributable to total nonresponse. We
will also assume, for simplicity, that the imputation method used to adjust for any
missing items is essentially unbiased. Thus, we will focus attention strictly on the
effects of item nonresponse and of imputation on the variance of survey statistics.

For more details about models for missing data and for methods of handling
nonresponse in survey estimation procedures, see Little and Rubin (1987).

F.2. Inflation of the Variance

To begin, we will assume that a sample s of size n is selected from the population
U . To keep things simple, we will focus the discussion on the analysis of just one
survey characteristic of interest, y. Let sr be the sample of units that responded to
the item and let sm be the sample of units that did not, with s = sr ∪ sm . Throughout,
we will assume that nr , the number of item respondents, and nm , the number of
item nonrespondents, are fixed with n = nr + nm . Define the response indicator
variable

Ri = 1, if i ∈ sr ,

= 0, if i ∈ sm,

in terms of the survey’s disposition codes and let R = (R1, . . . , Rn)′.
To illustrate the impact of imputation on the variance, we will assume s is

obtained by srs wor sampling and will consider estimation of the population mean



P1: OTE/SPH P2: OTE

SVNY318-Wolter December 13, 2006 20:12

418 F. The Effect of Imputation on Variance Estimation

Ȳ . The standard unbiased estimator in the complete data case is the sample mean

ȳ = 1

n

∑
i∈s

Yi = 1

n

(∑
i∈sr

Yi +
∑
i∈sm

Yi

)
.

Faced with item nonresponse, the second term on the right-hand side is unknown,
making the estimator unworkable in its current form.

We impute the value Ỹi for the missing Yi for i ∈ sm . Now the estimator of the
population mean becomes

ȳ = 1

n

(∑
i∈sr

Yi +
∑
i∈sm

Ỹi

)
. (F.2.1)

In the balance of this subsection, we will consider two popular and well-known
methods: mean and hot-deck imputation.

F.2.1. Mean Imputation

Let the imputed value for each missing item be the sample mean of the respondents.
The imputed value is

Ỹi = ȳr = 1

nr

∑
j∈sr

Y j

for i ∈ sm . The estimator of the population mean is now

ȳM = 1

n

(∑
i∈sr

Yi +
∑
i∈sm

Ỹi

)
= 1

n
(nr ȳr + nm ȳr ) = ȳr . (F.2.2)

That is, the sample mean of the completed data set is equivalent to the sample
mean of the respondents. The variance of the estimator under mean imputation is
given by

Var{ȳM} = Var{E{ȳM|s, R}} + E{Var{ȳM|s, R}} (F.2.3)

= Var{ȳr } + 0.

Assuming a missing completely at random model (MCAR), the variance becomes

Var{ȳM} =
(

1

nr
− 1

N

)
S2. (F.2.4)

Before proceeding, we note that in practical survey work the survey statistician
will usually partition the sample into A imputation cells based upon covariates that
are known for respondents and nonrespondents alike and that are thought to be
correlated with the estimation variable(s). Covariates may include frame variables
and items collected in earlier stages or phases of the survey. The imputation method
is applied separately within each of the resulting cells. In the present case, the mean
of the respondents within a cell is donated to each of the nonrespondents within the
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cell. Cells are constructed, with collapsing of cells as necessary, such that a certain
minimum number of respondents are obtained within each cell. To maintain the
simplicity and transparency of the current discussion, we have chosen to conduct
our work in this appendix in terms of a single cell A = 1. The results given and
their practical import, however, extend to the case of general A ≥ 2 assuming a
missing at random (MAR) model.

Returning to (F.2.4), note that the variance may be quite a bit larger than the
variance would be in the hypothetical event of a complete response; i.e.,

Var{ȳ} =
(

1

n
− 1

N

)
S2. (F.2.5)

If the sampling fraction is negligible, the relative increase in variance is equal
to (1 − pr )/pr , where pr = nr/n is the item response rate. The statistician must
make sure the extra variability in the estimator of the variance of ȳM is reflected
unless pr is close to 1.

The standard estimator of variance under srs wor sampling applied to the com-
pleted data set is

v(ȳM) =
(

1

n
− 1

N

)
1

n − 1

{∑
i∈sr

(Yi − ȳM)2 +
∑
i∈sm

(Ỹi − ȳM)2)

}
(F.2.6)

=
(

1 − n

N

) 1

nr

nr

n

nr − 1

n − 1
s2

r .

This estimator clearly does not work: not only does it not reflect the extra variability,
it incurs a downward bias due to the fact that variability has been removed from
the nonrespondents, all of whom have the same imputed value. The expectation of
(F.2.6) is given by

E{v(ȳM)} =
(

1 − n

N

) 1

nr

nr

n

nr − 1

n
E

{
s2

r

}
.

Assuming an MCAR model and a negligible sampling fraction, the expectation is

E{v(ȳM)} = 1

nr
S2 p2

r . (F.2.7)

Comparing (F.2.7) with (F.2.4), one easily sees the downward bias in the standard
estimator of variance unless pr approaches 1.

Before turning to more appropriate estimators of variance, we review the method
of hot-deck imputation and its effect on the variance.

F.2.2. Hot-Deck Imputation

Hot-deck imputation really refers to an entire class of methods that seek to donate
individual respondent values to the missing items. The individual respondent sup-
plying the value to the nonrespondent is called the donor, while the nonrespondent
receiving the imputed value is designated the recipient. Hot-deck imputation may
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be executed using a variety of algorithms, each of which will have its own unique
statistical properties. Our purpose here is not to study imputation in its own right
but rather to explore the general effects imputation has on the estimation of vari-
ance and inferences concerning population parameters of interest. Towards this
end, we will assume a particular simple algorithm for hot-deck imputation.

We assume the imputed values Ỹi , for i ∈ sm , are obtained by nm independent,
random draws from the set of respondent values {Y j | j ∈ sr }. The estimator (F.2.1)
applied to the resulting completed data set is now

ȳHD = 1

n

(∑
i∈sr

Yi +
∑
i∈sm

Ỹi

)
= 1

n
(nr ỹr + nm ˜̄ym),

where ˜̄ym is the sample mean of the imputed values.
Because the imputed values are obtained by srs wr sampling, the conditional

expectation and variance of the hot-deck estimator are given by

E{ȳHD|s, R} = ȳr

and

Var{ȳHD|s, R} =
(nm

n

)2 1

nm

nr − 1

nr

s2
r .

Thus, the unconditional variance is

Var{ȳHD} = Var{ȳr } +
(nm

n

)2 1

nm

nr − 1

nr
E

{
s2

r

}
, (F.2.8)

which reduces to

Var{ȳHD} =
(

1

n r
− 1

N

)
S2 + 1

nr

(nr

n

) (
1 − nr

n

) nr − 1

nr
S2, (F.2.9)

assuming an MCAR model. Comparing (F.2.9) with (F.2.5) reveals the extra vari-
ability in the estimator as result of the item nonresponse and the imputation done to
treat it. Assuming a negligible sampling fraction, the relative increase in variance
is equal to (1 − pr )(1 + pr )/pr . The hot-deck method increases the variance to a
greater extent than mean imputation. (Of course, hot-deck imputation has many
other virtues that will often recommend it in preference to mean imputation.)

The standard estimator of variance applied to the completed data set is now
given by

v(ȳHD) =
(

1

n
− 1

N

)
1

n − 1

{∑
i∈sr

(Yi − ȳHD)2 +
∑
i∈sm

(Ỹi − ȳHD)2

}

=
(

1

n
− 1

N

)
1

n − 1

(∑
i∈sr

Y 2
i +

∑
i∈sm

Ỹ 2
i − n ȳ2

HD

)
. (F.2.10)

The conditional expectation of (F.2.10) is easily seen to be

E{v(ȳHD)|s, R} =
(

1

n
− 1

N

)
n

n − 1

nr − 1

nr

{
1 − 1

nr
pr (1 − pr )

}
s2

r .
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Assuming an MCAR model, a negligible sampling fraction, and at least a moder-
ately large sample size, we find that

E{v(ȳHD)} =. 1

n

{
1 − 1

nr
pr (1 − pr )

}
S2

= 1

nr

{
pr − 1

nr
p2

r (1 − pr )

}
S2. (F.2.11)

The bias in the estimator of variance can be seen by comparing (F.2.11) and (F.2.9).
The relative bias is

− (1 − pr )(1 + pr )

1 + pr − p2
r

+ O

(
1

nr

)
.

The relative bias approaches −1 in the event of a very low item-response rate and
approaches 0 for items whose item-response rates approach 1.

We have now seen that a low item-response rate coupled with imputation for
the missing data can impart a severe downward bias in the standard estimator of
variance. In the next sections, we show how appropriate estimators of variance
may be constructed.

F.3. General-Purpose Estimators of the Variance

In the balance of this appendix, we consider the problem of estimating the pop-
ulation total θ = Y . The results extend naturally to most parameters of interest,
including the population mean. In the present section, we give general-purpose
methods of variance estimation, while in the three succeeding sections, we discuss
specialized methods of variance estimation.

We consider a general probability sampling design with L strata, a sample sh

of PSUs selected within the h-th stratum, and a sample shi of USUs selected in
one or more subsequent stages of sampling within the (h,i)-th selected PSU. We
consider an estimator of the population total defined by

Ŷ =
L∑

h=1

∑
i∈sh

∑
j∈shi

Whi j Yhi j ,

where {Whi j } are the survey weights. We assume the weights are constructed so
that Ŷ is an essentially unbiased estimator of Y. Because of item nonresponse,
Ŷ is unworkable in its current form. After imputation for item nonresponse, the
estimator becomes

Ŷ =
L∑

h=1

∑
i∈sh

( ∑
j∈shir

Whi j Yhi j +
∑
j∈shim

Whi j Ỹhi j

)
, (F.3.1)
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where shir is the sample of item respondents and shim is the sample of item non-
respondents in the PSU. In this work, we assume that all PSUs participate in the
survey and that nonresponse is at the level of the USU.1

Given mean imputation, the imputed values are

Ỹhi j = μ̂r =

L∑
h=1

∑
i∈sh

∑
j∈shir

Whi j Yhi j

L∑
h=1

∑
i∈sh

∑
j∈shir

Whi j

,

and given hot-deck imputation, the imputed values are random draws from the
response set

⋃L
h=1

⋃
i∈sh

{
Yhi j | j ∈ shir

}
with probabilities equal to

ahi j = Whi j

L∑
h′=1

∑
i ′∈sh′

∑
j ′∈sh′ i ′r

Wh′i ′ j ′

For either method of imputation, the conditional expectation is

E{Ŷ |s, R} =
L∑

h=1

∑
i∈sh

∑
j∈shir

Whi j Yhi j +
L∑

h=1

∑
i∈sh

∑
j∈shim

Whi j E{Ỹhi j |s, R}

=
L∑

h=1

∑
i∈sh

∑
j∈shi

Whi j μ̂r . (F.3.2)

Given mean imputation, the conditional variance is zero, while for hot-deck im-
putation, the conditional variance is

Var{ŶHD|s, R} =
L∑

h=1

∑
i∈sh

∑
j∈shim

Whi j Var{Ỹhi j |s, R}

=
L∑

h=1

∑
i∈sh

∑
j∈shim

W 2
hi j σ̂

2
r , (F.3.3)

where

σ̂ 2
r =

L∑
h=1

∑
i∈sh

∑
j∈shir

Whi j (Yhi j − μ̂r )2

L∑
h=1

∑
i∈sh

∑
j∈shir

Whi j

.

For either method of imputation, the total variance is

Var{Ŷ } = E{Var{Ŷ |s, R}} + Var{E{Ŷ |s, R}},

1 This assumption may rule out serveys of teachers within schools and other similar surveys,
where there can be noncooperation of PSUs.
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where the first term on the right-hand side is the imputation variance and the
second term is the sampling variance. The inner expectations are with respect to
the imputation mechanism, while the outer ones are with respect to the sampling
and response mechanisms. Thus,

Var{ŶM} =
L∑

h=1

Var

{∑
i∈sh

∑
j∈shi

Whi j μ̂r

}
(F.3.4)

and

Var{ŶHD} =
L∑

h=1

Var

{∑
i∈sh

∑
j∈shi

Whi j μ̂r

}
+

L∑
h=1

E

{∑
i∈sh

∑
j∈shim

W 2
hi jσ

2
r

}
. (F.3.5)

In Chapters 2–5, we described a general-purpose method for the estimation of
Var{Ŷ } when missing values are present. These chapters dealt with replication-
based estimators of variance. The approach essentially consisted of the following
steps:

(i) Divide the sample into random groups.
(ii) Construct k replicates using a method of the named chapters (RG, BHS, J,

and BOOT) by operating on the random groups. Let W α
hi j denote the replicate

weights for α = 1, . . . , k.
(iii) Obtain imputations for the missing items separately within each random group

using essentially the same method of imputation in each group.
(iv) Define the replicate estimators

Ŷα =
L∑

h=1

∑
i∈sh

(∑
i∈shir

W α
hi j Yhi j +

∑
i∈shim

W α
hi j Ỹhi j

)
. (F.3.6)

(v) Use the Ŷα to construct the corresponding replication-based estimator of
variance.

We give two illustrations of this approach. First, we consider the random group
method whose properties were set forth in Theorem 2.2.1, which we repeat here.

Theorem 2.2.1. Let θ̂1, . . . , θ̂k be uncorrelated random variables with common

expectation E{θ̂1} = μ. Let ˆ̄θ be defined by

ˆ̄θ =
k∑

α=1

θ̂α/k.

Then E{ ˆ̄θ} = μ and an unbiased estimator of Var{ ˆ̄θ} is given by

v{ ˆ̄θ} =
k∑

α=1

(
θ̂α − ˆ̄θ

)2
/k(k − 1). (F.3.7)

For the current problem, if the random groups are selected independently and if
the estimation procedure, including imputation, is executed independently within
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each random group, then the replicate estimators Ŷα must satisfy the conditions of

the theorem. A proper unbiased estimator of Var{ ˆ̄Y } is therefore given by (F.3.7).
Because of the separate imputations within random groups, it is possible that the

parent sample estimator Ŷ is not exactly equal to ˆ̄Y and that v( ˆ̄Y ) is not exactly

an unbiased estimator of Var{Ŷ }. By (2.2.3), the bias of v{ ˆ̄Y } as an estimator of
Var{Ŷ } should be unimportant.

Second, we consider the jackknife method, consisting of dropping out one PSU at
a time. Assume pps wr sampling at the first stage of sampling within strata. Assume
that hot-deck imputation for missing items j ∈ shim is conducted via random draws
from the sample of respondents within the same PSU, with probability proportional
to the respondent weights. Imputation is conducted independently within each
PSU.

A jackknife replicate estimator of the population total corresponding to (F.3.6)
is

Ŷ(hi) =
L∑

h′=1

∑
i ′∈sh′

( ∑
j ′∈sh′ i ′r

W (hi)
h′i ′ j ′Yh′i ′ j ′ +

∑
j ′∈sh′ i ′m

W (hi)
h′i ′ j ′ Ỹh′i ′ j ′

)

=
L∑

h′ �=h

Ŷh′ + (
nhŶh − Ŷhi

)
/(nh − 1),

where

W (hi)
h′i ′ j ′ = Wh′i ′ j ′ , if h′ �= h,

= nh′

nh′ − 1
Wh′i ′ j ′ , if h′ = h and i ′ �= i,

= 0, if (h′, i ′) = (h, i);

Ŷh =
∑
i∈sh

( ∑
j∈shir

Whi j Yhi j +
∑
j∈shim

Whi j Ỹhi j

)

is the estimated total in stratum h based on all of the PSUs in the sample; and

Ŷhi =
∑
j∈shir

nh Whi j Yhi j +
∑
j∈shim

nh Whi j Ỹhi j

is the estimated total in stratum h based upon the single PSU i.
Let Ŷ(h.) be the mean of the Ŷ(hi) over PSUs selected within stratum h; i.e., over

i εsh . Note that Ŷ(h.) = Ŷ . Then a jackknife estimator of variance is given by

vJ (ŶHD) =
L∑

h=1

nh − 1

nh

∑
iεsh

(
Ŷ(hi) − Ŷ(h.)

)2
(F.3.8)

=
L∑

h=1

1

nh(nh − 1)

∑
iεsh

(
Ŷhi − Ŷh

)2
.
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Because imputation is performed independently within the various PSUs, it follows
that Ŷhi are independent random variables with a common expectation

E
{

E
{
Ŷhi |s, R

}} = E

{ ∑
j∈shir

nh Whi j Yhi j +
∑
j∈shim

nh Whi j μ̂rhi

}

= E

{
μ̂rhi

∑
j∈shi

nh Whi j

}
,

where

μ̂rhi =

∑
j ′∈shir

Whi j ′Yhi j ′

∑
j ′∈shir

Whi j ′
.

The following theorem states that the jackknife estimator of variance is unbiased.

Theorem F.3.1. Assume pps wr sampling of PSUs and assume hot-deck imputation
is conducted independently within each PSU. then,

vJ (Ŷh) = nh − 1

nh

∑
j ′∈sh

(
Ŷ(hi) − Ŷ(h.)

)2

is an unbiased estimator of Var{Ŷh}, the variance within the h-th stratum, and

(F.3.8) is an unbiased estimator of the total variance Var{Ŷ } =
L∑

h=1

Var{Ŷh}.

F.4. Multiple Imputation

The first of the specialized methods developed to incorporate an allowance for
the imputation variance in the estimator of variance is the method of multiple
imputation, due to Rubin (1980, 1987). Also see Rubin and Schenker (1986).

The essential idea is a simple one, which may be described by the following
steps:

(i) Make D independent, hot-deck imputations for each missing item. (Multiple
imputation as a method is not restricted to hot-deck imputation. We use the
hot-deck method merely for simplicity and consistency with the balance of
the appendix.)

(ii) Construct (conceptually) D complete data sets, each consisting of all reported
data plus one set of the imputed data.

(iii) Estimate the population total, say Ŷd , using each complete data set d =
1, . . . , D.

(iv) Estimate the variance of the estimated total, say v(Ŷd ), using each complete
data set and a method of the chapters of this book.
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(v) Estimate the variability between the completed data sets as an allowance for
the imputation variance.

(vi) Estimate the total variance as the sum of the within data set variance (the
average of the v(Ŷd )) and the between data set variance.

Let Ỹ d
hi j denote the d-th imputed value for j ∈ shim . The d-th completed data set

consists of the values ∪L
h=1

∪
i∈shi

[{Yhi j | j ∈ shir } ∪ {Ỹ d
hi j | j ∈ shim}], for d = 1, . . . , D.

The estimator of the population total derived from the d-th data set is of the form

Ŷd =
L∑

h=1

∑
i∈sh

(∑
i∈shir

Whi j Yhi j +
∑

i∈shim

Whi j Ỹ
d
hi j

)
.

The estimator of variance within a given data set should be selected from one of
the main chapters in this book. Key candidates include the random group, balanced
half-samples, jackknife, and bootstrap methods. For example, if we select the
jackknife method, then we may define

vJ (Ŷd ) =
L∑

h=1

nh − 1

nh

∑
i∈sh

(
Ŷd(hi) − Ŷd(h.)

)2
,

where

Ŷd(hi) =
L∑

h′=1

∑
i ′∈sh′

⎛
⎝ ∑

j ′ ∈sh′ i ′r

W (hi)
h′i ′ j ′ Yh′i ′ j ′ +

∑
j ′ ∈sh′ i ′m

W (hi)
h′i ′ j ′ Ỹ d

h′i ′ j ′

⎞
⎠

is the estimator from the d-th data set, after dropping the (h,i)-th PSU, and Ŷd(h.)

is the mean of the Ŷd(hi) over the selected PSUs within the stratum.
The multiple imputation estimator of the variance is given by

vMI(
ˆ̄Y ) = 1

D

D∑
d=1

vJ
(
Ŷd

) + (1 + D−1)
1

D − 1

D∑
d=1

(
Ŷd − ˆ̄Y

)2
, (F.4.1)

Where ˆ̄Y = ∑D
d=1 Ŷd/D. The second term in (F.3.9) is the between data set vari-

ance, which makes an allowance for the imputation variance.
A recommended interval for the population total is now

ˆ̄Y ± tγ,α/2

√
vMI

( ˆ̄Y
)
,

where tγ,α/2 is the upper α/2 percentage point of Student’s t distribution with
γ = (D − 1)(1 + C−1

D )2 degrees of freedom where

CD =
(1 + D−1)

1

D − 1

D∑
d=1

(
Ŷd − ˆ̄Y

)2

1

D

D∑
d=1

vJ
(
Ŷd

)
is the between variance relative to the within variance.
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F.5. Multiply Adjusted Imputation

Rao and Shao (1992) and Shao and Tu (1995) propose a second multiple-
imputation-like procedure that uses a single imputation plus nr additional adjusted
imputations. One may feel that the donor pool offered by the procedure of Theorem
F.3.1 is too limiting. Rao and Shao’s procedure offers, in some circumstances, a
richer donor pool, at the price of the computational complexity brought by multiple
imputations. To introduce the method, we assume srs wor sampling. Later we’ll
return to the general framework we have been using of multistage sampling within
strata.

Under hot-deck imputation, the sample mean is ȳHD, and its jackknife estimator
of variance is

vJ(ȳHD) = n − 1

n

∑
i ∈ s

(ȳHD(i) − ȳHD)2,

where

ȳHD(i) = (n ȳHD − Yi )/(n − 1), if i ∈ sr ,

= (n ȳHD − Ỹi )/(n − 1), if i ∈ sm .

For this problem, the jackknife estimator vJ is identically equal to the standard
estimator given in (F.2.10).

Rao and Shao’s proposal is to adjust the imputed values nr times as follows. If
the deleted unit i is in the response set, i ∈ sr , then the adjusted imputed values are

Ỹ j(i) = Ỹ j + ȳr (i) − ȳr , j ∈ sm, (F.5.1)

where ȳr is the mean of the respondents and ȳr (i) is the mean of the respondents
after dropping i. Otherwise, if the deleted unit i is in the nonresponse set, i ∈ sm ,
then the unadjusted Ỹ j are the final imputed values, j ∈ sm .

The “drop-out-one” sample mean is now

ȳHD(i) = (n ȳHD − Ỹi )/(n − 1), if i ∈ sm,

=
( ∑

j∈ sr −i

Y j +
∑
j∈ sm

Ỹ j(i)

)
/(n − 1), if i ∈ sr .

When the deleted unit is a respondent, it is easy to detemine that

ȳHD(i) = {n ȳHD − Yi − nm(Yi − ȳr )/(nr − 1)}/(n − 1).

Hence, the jackknife estimator of variance becomes

vJ(ȳHD) = 1

n(n − 1)

{∑
i∈sr

(
Yi − ȳHD + nm(Yi − ȳr )

nr − 1

)2

+
∑
i∈sm

(Ỹi − ȳHD)2

}
(F.5.2)
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= 1

n(n − 1)

{∑
i∈sr

(Yi − ȳHD)2 +
∑
i∈sm

(
Ỹi − ȳHD

)2

}

+ nm (n + nr − 2)

n (n − 1) (nr − 1)
s2

r .

The first term on the right-hand side of (F.5.2) is the standard jackknife estimator
with omitted fpc. Assume a negligible sampling fraction and an MCAR model.
then comparing (F.5.2) and (F.2.9) with (F.2.11) gives

E{vJ(ȳHD)} =. 1

nr

{
pr − 1

nr
p2

r (1 − pr )

}
S2 + (1 − pr )

(
1 + pr − 2

n

)

×
(

n

n − 1

)(
nr

nr − 1

)
1

nr
S2,

and the relative bias of vJ as an estimator of the variance of ȳHD is 0 + O(1/nr ).
It follows that the jackknife estimator of variance is essentially unbiased, except

for terms of low order. The introduction of nr sets of adjusted imputations, for
a grand total of nr + 1 multiple imputations, introduces enough extra variability
between the jackknife replicates to essentially eliminate the bias in the estimation
of variance.

Now let us return to the general problem of multistage sampling within strata.
The estimator of the population total is given in (F.3.1). Define the nr sets of
adjusted imputed values. When the deleted PSU is (h, i), define

Ỹh′i ′ j ′(hi) = Ỹh′i ′ j ′ + ȳr (hi) − ȳr , j ′ ∈ sh′i ′m∀(h′, i ′) �= (h, i),

where

ȳr =

L∑
h′=1

∑
i ′∈sh′

∑
j ′∈sh′ i ′r

Wh′i ′ j ′Yh′i ′ j ′

L∑
h′=1

∑
i ′∈sh′

∑
j ′∈sh′ i ′r

Wh′i ′ j ′

is the weighted mean of respondents and

ȳr (hi) =

∑
h′ �=h

∑
i ′∈sh′

∑
j ′∈sh′ i ′r

Wh′i ′ j ′Yh′i ′ j ′ +
∑
i ′ �=i

∑
j ′∈shi

nh

nh − 1
Whi ′ j ′Yhi ′ j ′

∑
h′ �=h

∑
i ′∈sh′

∑
j ′∈sh′ i ′r

Wh′i ′ j ′ +
∑
i ′=i

∑
j ′∈shi ′

nh

nh − 1
Whi ′ j ′

is the weighted mean of respondents after dropping the (h, i)-th PSU. Then, the
jackknife estimator of variance is given by

vJ(ŶHD) =
L∑

h=1

nh − 1

nh

∑
i∈sh

(
Ỹ(hi) − Ỹ(h.)

)2
,
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where

Ỹ(hi) =
L∑

h′=1

∑
i ′∈sh′

∑
j ′∈sh′ i ′r

W (hi)
h′i ′ j ′Yh′i ′ j ′ +

L∑
h′=1

∑
i ′∈sh′

∑
j ′∈sh′ i ′m

W (hi)
h′i ′ j Ỹh′i ′ j ′(hi),

W (hi)
h′i ′ j ′ = Wh′i ′ j ′ , if h′ �= h,

= nh′

nh′ − 1
Wh′i ′ j ′ , if h′ �= h, i ′ �= i,

= 0, if (h′, i ′) = (h, i),

and

Ỹ(h.) = 1

nh

∑
i ′∈sh

Ỹ(hi ′).

Shao and Tu give conditions under whichvJ, is a consistent estimator of the variance
of ŶHD, both for the “A = 1” case discussed here and for the general case where
the sample is partitioned into A ≥ 2 imputation classes.

Data management for the multiple imputations of Rubin and Rao and Shao may
be problematic. One possible solution is to store the multiple imputations in a
separate table in a relational database. Modifications to standard software would
be required.

F.6. Fractional Imputation

While Rubin and Rao and Shao propose methods of multiple imputation, Fuller and
Kim (2005) and Kim and Fuller (2004) propose an algorithm for conducting mean
imputation using fractional imputation (or multiple imputation with fractional
weights).

Recall that, for A = 1, mean imputation for item nonresponse results in the
imputed values

Ỹhi j =

L∑
h′=1

∑
i ′∈sh′

∑
j ′∈sh′ i ′r

Wh′i ′ j ′Yh′i ′ j ′

L∑
h′=1

∑
i ′∈sh′

∑
j ′∈sh′ i ′r

Wh′i ′ j ′

= μ̂r (F.6.1)

for all (h, i) in the sample and j ∈ shim . The estimator of the population total is

ŶM =
L∑

h=1

∑
i∈sh

( ∑
j∈shir

Whi j Yhi j +
∑
j∈shim

Whi j Ỹhi j

)
. (F.6.2)

Plugging (F.6.1) into (F.6.2) gives

ŶM =
L∑

h=1

∑
i∈sh

( ∑
j∈shir

Whi j Yhi j +
∑
j∈shim

∑
(h′,i ′, j ′)∈sr

Whi j fhi j,h′i ′ j ′Yh′i ′ j ′

)
, (F.6.3)
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where

fhi j,h′i ′ j ′ = Wh′i ′ j ′

L∑
h′′=1

∑
i ′′∈sh′′

∑
j ′′∈sh′′ i ′′

Wh′′i ′′ j ′′

and Whi j fhi j,h′i ′ j ′ is the weight of donor (h′, i ′, j ′) for recipient (h, i, j). Like
the other specialized methods studied in this appendix, the method of fractional
imputation extends to the general case of A ≥ 2.

From (F.6.3), one may conclude that the estimator ŶM is algebraically equiva-
lent to an estimator obtained as a result of multiple imputations for each missing
item. For each missing item (h, i, j) ∈ sm, one constructs nr imputed values. The
imputed values for the missing item are exactly the values of the nr respondents:
{Yh′,i ′, j ′ |(h′, i ′, j ′) ∈ sr }. The weight for the imputed value Yh′i ′ j ′ ∈ sr for the miss-
ing item (h, i, j) ∈ sm is Whi j fhi j,h′i ′ j ′ . This weight is obviously a fraction of the
original case weight for the missing item.

To operationalize (F.6.3) as a method for computing the estimator ŶM, one must
append records to the survey data file. The expanded survey data file consists
of the nr respondent records, containing values Yhi j and weights Whi j , plus nr

imputed records for each nonrespondent, containing values Yh′i ′ j ′ and weights.
Whi j fhi j,h′i ′ j ′ . Each of the new imputed records will require a case identification
number signifying the recipient/donor pair (h, i, j)/(h′, i ′, j ′). Alternatively, in-
stead of expanding the survey data file by the addition of records with fractional
weights, one could store and manage the imputed values in a separate table of a
relational database.

Fractional imputation can get quite intricate and entail a considerable expansion
of the size of the data file when multiple survey items, each with their own patterns
of missingness, are taken into consideration. To limit the growing complexities,
Fuller and Kim give approximations that limit the number of donors to a fixed
number for each recipient. Also, one can limit the number of imputations for
categorical variables.

One can estimate the variance of ŶM using a replication-based method. To
illustrate, the “drop-out-one” jackknife estimator of the variance of ŶM is

vJ

(
ŶM

) =
L∑

h=1

nh − 1

nh

∑
i∈sh

(
Ŷ(hi) − Ŷ(h.)

)2
, (F.6.4)

where

Ŷ(hi) =
L∑

h′=1

∑
i ′∈sh

( ∑
j ′∈sh′ i ′r

W (hi)
h′i ′ j ′Yh′i ′ j ′ +

∑
j ′∈sh′ i ′m

∑
(h′′,i ′′, j ′′)∈sr

W (hi)
h′i ′ j ′,h′′i ′′ j ′′Yh′′i ′′ j ′′

)
,
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and the replicate weights satisfy

W (hi)
h′i ′ j ′ = 0, if

(
h′, i ′) = (h, i),

= Wh′i ′ j ′ , if h′ �= h,

= nh

nh − 1
Wh′i ′ j ′ , if h′ = h, i ′ �= i,

f (hi)
h′i ′ j ′,h′′i ′′ j ′′ = W (hi)

h′′i ′′ j ′′

L∑
h′′′=1

∑
i ′′′∈sh′′′

∑
j ′′′∈sh′′′ i ′′′r

W (hi)
h′′′i ′′′ j ′′′

,

and

W (hi)
h′i ′ j ′,h′′i ′′ j ′′ = W (hi)

h′i ′ j ′ f (hi)
h′i ′ j ′,h′′i ′′ j ′′ .

Weighting is executed separately for each jackknife replicate. If the finite popula-
tion correction can be ignored, (F.6.4) is a consistent estimator of Var

{
ŶM

}
.

The fractional imputation method does not alter the imputed values from jack-
knife replicate to jackknife replicate. Rather, it only recalculates the weights from
replicate to replicate. Fuller and Kim argue that these aspects of the procedure
make it computationally superior to the methods of the foregoing sections.
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Confidence interval, 24–25, 32, 107, 217, 294,

298–299, 308, 315, 320, 322, 346–347,

351–358, 362–364, 388–389,

391, 393

Consumer Expenditure Survey, 92–99, 241,

359–360, 391

Controlled selection, 55, 93, 97, 143, 146, 279

Convergence, 332–333

in distribution, 333

in probability, 333

Correlation coefficient, 3, 22, 116, 119, 151,

156, 226, 270–271, 300, 302, 313, 340,

357, 359, 384, 389, 397

asymptotic theory for, 389

Cost of variance estimators, 3, 302, 338

CPS, see Current Population Survey

CTS, see Commodity Transportation Survey

Current Population Survey (CPS), 55, 93, 107,

143, 189, 258, 273, –274, 278–279, 320,

356

Customary variance estimators, see standard

variance estimators

δ-method, see Taylor series

Design effect, 275, 277, 280, 288, 290–295, 297

Distribution function, 9, 152–153, 194, 382–383

Bernoulli, 62

beta, 67

discrete uniform, 63

exponential, 72

gamma, 70

logarithmic series, 65

mixed uniform, 72

normal, 24–25, 69, 73, 139

Poisson, 64

standard Weibull, 71

triangular, 68

uniform, 63, 66, 72

Donor, 83, 419, 427, 430

Double sampling designs, 217

Double sampling, 2, 15, 22, 33

Dual-system estimator, see capture recapture

estimator

Early Childhood Longitudinal Study-

Kindergarten Class of 1998–99, 253

ECLS-K, see Early Childhood Longitudinal

Study-Kindergarten Class of 1998–99

Economic Censuses, 321

Estimator, 1–6, 8–19, 21–30, 32–74, 81–86,

88–91, 94–97, 103–104, 107–111,

113–125, 127–131, 137–142, 144, 146,

148, 151–154, 156, 158–184, 187,

190–221, 226, 229–232, 234–241, 244,

247–253, 257–278, 289–293, 298–309,

313–317, 335, 337, 345–346, 352, 403,

407–408

Horvitz–Thompson, 10, 12, 19, 46, 50, 85–86,

89, 103, 121, 140, 144, 168–169, 204,

209, 236–237, 249, 260, 273–274, 299,

335, 337, 345–346, 352, 403,

407–408

difference of ratios, 116, 140, 173, 244

linear, 16–18, 23, 25, 36, 40–41, 84–86

nonlinear, 16, 25, 50, 85–86, 116

of variance, 10

ratio, 2, 6, 8, 17–18, 25, 31–34, 55, 57, 66,

72–73, 84, 116, 119–120, 127, 179, 193,

210, 220, 264

Taylor series estimator of variance, 237, 247

Excess observations, 33, 38–40

Expectation, 6, 9, 23–24, 35, 37, 42

Finite population, 6, 18, 22, 25, 43, 46, 56, 62,

73, 120

Flexibility of variance estimators, 354

Fractional imputation, 429–431

Full orthogonal balance, 112, 120, 122

Galois fields, 137

Generalized regression estimator, 261, 263

Generalized variance functions (GVF), 6,

272–290

alternative functions, 275

applied to quantitative characteristics, 273

for πps sampling, 168–169, 181

for nonlinear estimators, 169–170

for srs wor, 166–167, 171–172, 199

for srs wr, 163–166, 195

generalized, 159–160

justification for, 274, 277

in multistage sampling, 210–211, 213

in presence of nonresponse, 184, 187–189,

193

in stratified sampling, 172–181

log-log plot, 280

model fitting, 288

negative estimates, 279

number of groups for, 162

pseudovalue, 152–153, 163, 166–168,

170–172, 174, 182, 191

transformation for, 63
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Geometric mean, 246–247

estimation of variance for, 246

Greco-Latin square, 132

GREG estimator, see Generalized regression

estimator

GVF, see Generalized variance functions

Hadamard matrices, 6, 112–113, 367–368

Health Examination Survey, 138, 143

Hot-deck imputation, 418–420, 422, 424–425,

427

Ideal bootstrap estimator, 195, 211, 213, 215,

220, 381

Imputation variance, 416, 423–425

Inclusion probability, 7, 43, 81–82, 87, 89,

94–95, 103, 122, 144, 168, 204, 249, 257

second order, 7

Interpenetrating samples, see random groups

Interval estimates, see confidence interval

Jackknife method, 107, 151–193

ANOVA decomposition, 156–157

asymptotic properties, 117, 154, 162, 183,

232, 355, 370, 389

basic estimator, 5, 89, 144, 302, 347

bias reduction, 151, 158, 176

generalized, 159–160

in multistage sampling, 210–211, 213

for nonlinear estimators, 169–170

number of groups for, 162

for πps sampling, 168–169, 181

in presence of nonresponse, 184, 187–189,

193

pseudovalue, 152–153, 163, 166–168,

170–172, 174, 182, 191

for srs wor, 166–167, 171–172, 199

for srs wr, 163–166, 195

in stratified sampling, 172–181

transformation for, 63

Kurtosis, 58–73

Liapounov, 373

Linearization, see Taylor series method

Logistic regression, 216, 265–266

Mean imputation, 418, 420, 422, 429

Mean square error, 3, 203–233, 238, 250, 304,

320, 322, 345, 354, 392, 417

Measurement error, 5, 24, 398–404, 406, 409

correlated component, 402–404, 406, 409

effect on sample mean, 418, 420, 427

effect on variance estimator, 396–397, 402,

404

for πps sampling, 48, 209

model for, 152, 274, 199, 332, 369

random groups for, 404

response variance, 399, 400, 402–403, 406,

408–409

sample copy, 402

total variance, 404–405

Measurement process, 22–25, 35

Median, 161, 187, 321–322

Mirror-Match variant, 202

Monte Carlo bootstrap, 215

MSE, see mean square error

Multilevel analysis, 269, 271

Multiple imputation, 425–430

Multiply-adjusted imputation, 427

Multipurpose surveys, 61

Multistage sampling, 27, 33, 46, 48, 88, 113,

117, 123, 210, 221, 250, 427

National Crime Survey, 247

National Longitudinal Survey of Youth, 83, 185,

221

National Postsecondary Student Aid Study,

294

Newton-Raphson iterations, 216

NLSY97, see National Longitudinal Survey of

Youth

Noncertainty stratum, 87–88

noninformative, 7

Nonresponse, 2, 5, 19, 22, 24, 81, 97,

138, 144, 148, 184, 187–189, 191,

193, 221, 249–250, 257, 264,

279

Nonresponse-adjusted weights, 19

Nonsampling errors, 6

Nonself-representing PSU, 93, 96, 144, 279

NSR PSU, see nonself-representing PSU

Order in probability, 227–228

Ordinary least squares regression, 216, 271

Parameter, 274, 277–280, 303–305, 354,

356–357, 363, 365, 370–371, 375, 382,

385–386, 388, 398, 420

Pivotal statistic, 376–378, 380

Population, 2, 6, 8, 340, 347

Poststratification, 2, 20, 24, 148, 184, 200,

257–258

Poststratification-adjusted weights, 20

pps wr, see probability proportional to size with

replacement sampling
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Precision, 1, 57–61, 107, 125–127, 162

coefficient of variation (CV) criteria, 57–58,

61, 90

confidence interval criteria, 55

Prediction theory approach, 9

Primary sampling unit (PSU), 12, 27, 33, 50,

54–55, 87, 93, 113

Probability measure, 7

Probability per draw, 10

Probability proportional to size with

replacement sampling, 10, 165

Pseudoreplication, see balanced half-sample

method

pseudovalues, see jackknife method

PSU, see primary sampling unit

Quasirange, see range

Quenouille’s estimator, see jackknife method

Raking-ratio estimator (RRE estimator), 264

Random group method, 21–22, 27, 44, 73, 83,

88, 97, 103, 107, 195

asymptotic theory, 217, 370, 374, 380

basic rules for, 81, 89, 94, 108, 113, 131

for multistage sampling, 88, 123

general estimation procedure, 33

independent case, 170

linear estimators, 16, 17, 25, 36, 40–41, 80,

84–85, 116, 169–170, 174, 196, 217

nonindependent case, 73, 83, 170

number of, 38, 60, 83, 355, 365

transformations for, 384

Range, 63–64, 66–67, 195, 288, 333

Recipient, 295, 419, 430

Regression, 22, 50, 53, 56, 116, 119, 156,

172–173, 216–219, 249–250

Regression coefficient, 3, 8, 116, 119, 156, 172,

245a to 245j, 249–250, 253, 255,

265–267, 271, 357, 370

Taylor series estimate of variance, 246

Replicate weights, 41, 45, 81, 138, 184–185,

187–188, 216–217, 225, 366, 423, 431

Replication, 107

Rescaling variant, 200, 206, 208

Response error, see measurement error

Retail Trade Survey, 86–91, 235, 241

RG estimator, 360

RG, see random group method

Sample design, 5, 95, 185, 241, 357, 360,

364–365, 370

Sample median, 161

Sample size, 7

SASS (see Schools and Staffing Survey)

Schools and Staffing Survey, 288

Self-representing PSU, 33, 93–94, 146

Simple random sampling with replacement (srs

wr), 113, 163, 196

Simple random sampling without replacement

(srs wor), 2, 11, 17

Simplicity of variance estimators, 3–5,

317–318

Size of population, 7

SMSA (Standard Metropolitan Statistical Area),

93

Software for variance calculations, 410

benchmark data sets, 413–415

characteristics of, 415

environment for, 415

SR PSU, see self-representing PSU

srs wor, see simple random sampling without

replacement

srs wr, see simple random sampling with

replacement

Standard Metropolitan Statistical Areas, see
SMSA

Standard variance estimators, 5

Stratified sampling, 172–181; see also collapsed

stratum estimator

Student’s t distribution, 377, 385, 426

Survey Research Methods Section, 410

Survey weights, 18, 213, 215, 255, 270

Sys, see systematic sampling

Systematic sampling (sys), 6, 27, 33, 41, 48,

144, 185, 298–308

equal probability, 27, 102, 144, 298

alternative estimators of variance, 115, 117,

250–254, 298–299

empirical comparison of variance

estimators, 127, 320, 339

expected bias of variance estimators,

259–261, 308–309

expected MSE of variance estimators, 259,

304, 315

multiple-start sampling, 255–258, 307–308

recommendations regarding variance

estimation, 282–283, 356, 384

superpopulation models for, 259–265, 308,

315, 322, 332,

variance of, 250

unequal probability, 105, 283–305, 332–333,

335, 337

alternative estimators of variance, 287–290

approximate fpc, 169, 288, 338

confidence interval coverage probabilities,

302, 354, 363
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description of, 284–286, 374

empirical comparison of variance

estimators, 291–302

intraclass correlation, 270–271, 274, 277,

280, 298

recommendations about variance

estimators, 304–305, 355

relative bias of variance estimators, 300,

356

relative MSE of variance estimators, 301,

356

Taylor series method, 50, 226–374

asymptotic theory, 353–364

basic theorem, 398

convergence of, 232–233

second-order approximation, 36, 233

transformations for, 370–379

variance approximation, 224, 226

variance estimator, 11, 47, 227–231

easy computational algorithm, 234,

253

for products and ratios, 228–229

with other variance methods, 354

Textbook variance estimators, see standard

variance estimators

Thickened range, see range

Time series models, 313

Timeliness of variance estimators, 3; See also
cost of variance estimators

Total variance, 6; see also measurement error

Transformations, 384

Bartlett’s family of, 386

Box–Cox family of, 388

z-transformation, 389

Ultimate cluster method, 33, 83; see also
random group method

Unbiased estimators of variance, see standard

variance estimators

U-statistics, 155–156, 158, 375

Weights, 18–20, 38, 41, 45, 81, 92, 94–97, 117,

122, 138, 184, 185, 187–188, 212, 291,

297, 412

Yates–Grundy estimator of variance, 46, 49, 206
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