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Preface

When we agreed to share all of our preparation of exercises in sampling theory
to create a book, we were not aware of the scope of the work. It was indeed
necessary to compose the information, type out the compilations, standardise
the notations and correct the drafts. It is fortunate that we have not yet
measured the importance of this project, for this work probably would never
have been attempted!

In making available this collection of exercises, we hope to promote the
teaching of sampling theory for which we wanted to emphasise its diversity.
The exercises are at times purely theoretical while others are originally from
real problems, enabling us to approach the sensitive matter of passing from
theory to practice that so enriches survey statistics.

The exercises that we present were used as educational material at the
École Nationale de la Statistique et de l’Analyse de l’Information (ENSAI),
where we had successively taught sampling theory. We are not the authors of
all the exercises. In fact, some of them are due to Jean-Claude Deville and
Laurent Wilms. We thank them for allowing us to reproduce their exercises.
It is also possible that certain exercises had been initially conceived by an
author that we have not identified. Beyond the contribution of our colleagues,
and in all cases, we do not consider ourselves to be the lone authors of these
exercises: they actually form part of a common heritage from ENSAI that has
been enriched and improved due to questions from students and the work of
all the demonstrators of the sampling course at ENSAI.

We would like to thank Laurent Wilms, who is most influential in the or-
ganisation of this practical undertaking, and Sylvie Rousseau for her multiple
corrections of a preliminary version of this manuscript. Inès Pasini, Yves-Alain
Gerber and Anne-Catherine Favre helped us over and over again with typing
and composition. We also thank ENSAI, who supported part of the scientific
typing. Finally, we particularly express our gratitude to Marjolaine Girin for
her meticulous work with typing, layout and composition.

Pascal Ardilly and Yves Tillé
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1

Introduction

1.1 References

This book presents a collection of sampling exercises covering the major chap-
ters of this branch of statistics. We do not have as an objective here to present
the necessary theory for solving these exercises. Nevertheless, each chapter
contains a brief review that clarifies the notation used. The reader can consult
more theoretical works. Let us first of all cite the books that can be considered
as classics: Yates (1949), Deming (1950), Hansen et al. (1993a), Hansen et al.
(1993b), Deming (1960), Kish (1965), Raj (1968), Sukhatme and Sukhatme
(1970), Konijn (1973), Cochran (1977), a simple and clear work that is very
often cited as a reference, and Jessen (1978). The post-mortem work of Há-
jek (1981) remains a masterpiece but is unfortunately difficult to understand.
Kish (1989) offered a practical and interesting work which largely transcends
the agricultural domain. The book by Thompson (1992) is an excellent pre-
sentation of spatial sampling. The work devoted to the basics of sampling
theory has been recently republished by Cassel et al. (1993). The modern ref-
erence book for the past 10 years remains the famous Särndal et al. (1992),
even if other interesting works have been published like Hedayat and Sinha
(1991), Krishnaiah and Rao (1994), or the book Valliant et al. (2000), dedi-
cated to the model-based approach. The recent book by Lohr (1999) is a very
pedagogical work which largely covers the field. We recommend it to discover
the subject. We also cite two works exclusively established in sampling with
unequal probabilities: Brewer and Hanif (1983) and Gabler (1990), and the
book by Wolter (1985) being established in variance estimation.

In French, we can suggest in chronological order the books by Thionet
(1953) and by Zarkovich (1966) as well as that by Desabie (1966), which are
now classics. Then, we can cite the more recent books by Deroo and Dussaix
(1980), Gouriéroux (1981), Grosbras (1987), the collective work edited by
Droesbeke et al. (1987), the small book by Morin (1993) and finally the manual
of exercises published by Dussaix and Grosbras (1992). The ‘Que Sais-je?’
by Dussaix and Grosbras (1996) expresses an appreciable translation of the
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theory. Obviously, the two theoretical works proposed by the authors Ardilly
(1994) and Tillé (2001) are fully adapted to go into detail on the subject.
Finally, a very complete work is suggested, in Italian, by Cicchitelli et al.
(1992) and, in Chinese, by Ren and Ma (1996).

1.2 Population, variable and function of interest

Consider a finite population composed of N observation units; each of the
units can be identified by a label, of which the set is denoted

U = {1, ..., N}.
We are interested in a variable y which takes the value yk on unit k. These
values are not random. The objective is to estimate the value of a function of
interest

θ = f(y1, ..., yk, ..., yN ).

The most frequent functions are the total

Y =
∑
k∈U

yk,

the mean
Y =

1
N

∑
k∈U

yk =
Y

N
,

the population variance

σ2
y =

1
N

∑
k∈U

(
yk − Y

)2
,

and the corrected population variance

S2
y =

1
N − 1

∑
k∈U

(
yk − Y

)2
.

The size of the population is not necessarily known and can therefore be
considered as a total to estimate. In fact, we can write

N =
∑
k∈U

1.

1.3 Sample and sampling design

A sample without replacement s is a subset of U . A sampling design p(.) is a
probability distribution for the set of all possible samples such that



1.4 Horvitz-Thompson estimator 3

p(s) ≥ 0, for all s ⊂ U and
∑
s⊂U

p(s) = 1.

The random sample S is a random set of labels for which the probability
distribution is

Pr(S = s) = p(s), for all s ⊂ U.

The sample size n(S) can be random. If the sample is of fixed size, we denote
the size simply as n. The indicator variable for the presence of units in the
sample is defined by

Ik =
{

1 if k ∈ S
0 if k /∈ S.

The inclusion probability is the probability that unit k is in the sample

πk = Pr(k ∈ S) = E(Ik) =
∑
s�k

p(s).

This probability can (in theory) be deduced from the sampling design. The
second-order inclusion probability is

πk� = Pr(k ∈ S and � ∈ S) = E(IkI�) =
∑

s�k,�

p(s).

Finally, the covariance of the indicators is

∆k� = cov(Ik, I�) =
{

πk(1 − πk) if � = k
πk� − πkπ� if � �= k.

(1.1)

If the design is of fixed size n, we have∑
k∈U

πk = n,
∑
k∈U

πk� = nπ�, and
∑
k∈U

∆k� = 0.

1.4 Horvitz-Thompson estimator

The Horvitz-Thompson estimator of the total is defined by

Ŷπ =
∑
k∈S

yk

πk
.

This estimator is unbiased if all the first-order inclusion probabilities are
strictly positive. If the population size is known, we can estimate the mean
with the Horvitz-Thompson estimator:

Ŷ π =
1
N

∑
k∈S

yk

πk
.
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The variance of Ŷπ is

var(Ŷπ) =
∑
k∈U

∑
�∈U

yky�

πkπ�
∆k�.

If the sample is of fixed size (var(#S) = 0), then Sen (1953) and Yates and
Grundy (1953) showed that the variance can also be written

var(Ŷπ) = −1
2

∑
k∈U

∑
�∈U

(
yk

πk
− y�

π�

)2

∆k�.

The variance can be estimated by:

v̂ar(Ŷπ) =
∑
k∈S

∑
�∈S

yky�

πkπ�

∆k�

πk�
,

where πkk = πk. If the design is of fixed size, we can construct another esti-
mator from the Sen-Yates-Grundy expression:

v̂ar(Ŷπ) = −1
2

∑
k∈S

∑
�∈S,
� �=k

(
yk

πk
− y�

π�

)2
∆k�

πk�
.

These two estimators are unbiased if all the second-order inclusion proba-
bilities are strictly positive. When the sample size is ‘sufficiently large’ (in
practice, a few dozen most often suffices), we can construct confidence inter-
vals with a confidence level of (1 − α) for Y according to:

CI(1 − α) =
[
Ŷπ − z1−α/2

√
var(Ŷπ), Ŷπ + z1−α/2

√
var(Ŷπ)

]
,

where z1−α/2 is the (1− α/2)-quantile of a standard normal random variable
(see Tables 10.1, 10.2, and 10.3). These intervals are estimated by replacing
var(Ŷπ) with v̂ar(Ŷπ).
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Simple Random Sampling

2.1 Simple random sampling without replacement

A design is simple without replacement of fixed size n if and only if, for all s,

p(s) =

{(
N

n

)−1

if #s = n

0 otherwise,

or (
N

n

)
=

N !
n!(N − n)!

.

We can derive the inclusion probabilities

πk =
n

N
, and πk� =

n(n − 1)
N(N − 1)

.

Finally,

∆k� =
n(N − n)

N2
×
{

1 if k = �
−1

N − 1
if k �= �.

The Horvitz-Thompson estimator of the total becomes

Ŷπ =
N

n

∑
k∈S

yk.

That for the mean is written as

Ŷ π =
1
n

∑
k∈S

yk.

The variance of Ŷπ is

var(Ŷπ) = N2
(
1 − n

N

) S2
y

n
,
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and its unbiased estimator

v̂ar(Ŷπ) = N2(1 − n

N
)
s2

y

n
,

where
s2

y =
1

n − 1

∑
k∈S

(
yk − Ŷ π

)2

.

The Horvitz-Thompson estimator of the proportion PD that represents a sub-
population D in the total population is

p =
nD

n
,

where nD = #(S ∩ D), and p is the proportion of individuals of D in S. We
verify:

var(p) =
(
1 − n

N

) PD(1 − PD)
n

N

N − 1
,

and we estimate without bias this variance by

v̂ar(p) =
(
1 − n

N

) p(1 − p)
n − 1

.

2.2 Simple random sampling with replacement

If m units are selected with replacement and with equal probabilities at each
trial in the population U , then we define ỹi as the value of the variable y for
the i-th selected unit in the sample. We can select the same unit many times
in the sample. The mean estimator

Ŷ WR =
1
m

m∑
i=1

ỹi,

is unbiased, and its variance is

var(Ŷ WR) =
σ2

y

m
.

In a simple design with replacement, the sample variance

s̃2
y =

1
m − 1

m∑
i=1

(ỹi − Ŷ WR)2,

estimates σ2
y without bias. It is possible however to show that if we are inter-

ested in nS units of sample S̃ for distinct units, then the estimator

Ŷ DU =
1

nS

∑
k∈S̃

yk,

is unbiased for the mean and has a smaller variance than that of Ŷ WR. Ta-
ble 2.1 presents a summary of the main results under simple designs.
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Table 2.1. Simple designs : summary table

Simple sampling design Without replacement With replacement

Sample size n m

Mean estimator Ŷ =
1

n

∑
k∈S

yk Ŷ WR =
1

m

m∑
i=1

ỹi

Variance of the mean estimator var
(
Ŷ
)

=
(N − n)

nN
S2

y var
(
Ŷ WR

)
=

σ2
y

m

Expected sample variance E
(
s2

y

)
= S2

y E
(
s̃2

y

)
= σ2

y

Variance estimator of the mean
estimator

v̂ar
(
Ŷ
)

=
(N − n)

nN
s2

y v̂ar
(
Ŷ WR

)
=

s̃2
y

m

EXERCISES

Exercise 2.1 Cultivated surface area
We want to estimate the surface area cultivated on the farms of a rural town-
ship. Of the N = 2010 farms that comprise the township, we select 100 using
simple random sampling. We measure yk, the surface area cultivated on the
farm k in hectares, and we find∑

k∈S

yk = 2907 ha and
∑
k∈S

y2
k = 154593 ha2.

1. Give the value of the standard unbiased estimator of the mean

Y =
1
N

∑
k∈U

yk.

2. Give a 95 % confidence interval for Y .

Solution
In a simple design, the unbiased estimator of Y is

Ŷ =
1
n

∑
k∈S

yk =
2907
100

= 29.07 ha.

The estimator of the dispersion S2
y is

s2
y =

n

n − 1

(
1
n

∑
k∈S

y2
k − Ŷ

2
)

=
100
99

(
154593

100
− 29.072

)
= 707.945.
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The sample size n being ‘sufficiently large’, the 95% confidence interval is
estimated in hectares as follows:[

Ŷ ± 1.96

√
N − n

N

s2
y

n

]
=

[
29.07 ± 1.96

√
2010 − 100

2010
× 707.45

100

]
= [23.99; 34.15] .

Exercise 2.2 Occupational sickness
We are interested in estimating the proportion of men P affected by an oc-
cupational sickness in a business of 1500 workers. In addition, we know that
three out of 10 workers are usually affected by this sickness in businesses of
the same type. We propose to select a sample by means of a simple random
sample.

1. What sample size must be selected so that the total length of a confidence
interval with a 0.95 confidence level is less than 0.02 for simple designs
with replacement and without replacement ?

2. What should we do if we do not know the proportion of men usually
affected by the sickness (for the case of a design without replacement) ?

To avoid confusions in notation, we will use the subscript WR for estimators
with replacement, and the subscript WOR for estimators without replace-
ment.

Solution

1. a) Design with replacement.
If the design is of size m, the length of the (estimated) confidence
interval at a level (1 − α) for a mean is given by

CI(1 − α) =

[
Ŷ − z1−α/2

√
s̃2

y

m
, Ŷ + z1−α/2

√
s̃2

y

m

]
,

where z1−α/2 is the quantile of order 1 − α/2 of a random normal stan-
dardised variate. If we denote P̂WR as the estimator of the proportion
for the design with replacement, we can write

CI(1 − α) =

⎡⎣P̂WR − z1−α/2

√
P̂WR(1 − P̂WR)

m − 1
,

P̂WR + z1−α/2

√
P̂WR(1 − P̂WR)

m − 1

⎤⎦ .
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Indeed, in this case,

v̂ar(P̂WR) =
P̂WR(1 − P̂WR)

(m − 1)
.

So that the total length of the confidence interval does not exceed
0.02, it is necessary and sufficient that

2z1−α/2

√
P̂WR(1 − P̂WR)

m − 1
≤ 0.02.

By dividing by two and squaring, we get

z2
1−α/2

P̂WR(1 − P̂WR)
m − 1

≤ 0.0001,

which gives

m − 1 ≥ z2
1−α/2

P̂WR(1 − P̂WR)
0.0001

.

For a 95% confidence interval, and with an estimator of P of 0.3
coming from a source external to the survey, we have z1−α/2 = 1.96,
and

m = 1 + 1.962 × 0.3 × 0.7
0.0001

= 8068.36.

The sample size (m=8069) is therefore larger than the population
size, which is possible (but not prudent) since the sampling is with
replacement.

b) Design without replacement.
If the design is of size n, the length of the (estimated) confidence
interval at a level 1 − α for a mean is given by

CI(1 − α) =

[
Ŷ − z1−α/2

√
N − n

N

s2
y

n
, Ŷ + z1−α/2

√
N − n

N

s2
y

n

]
.

For a proportion P and denoting P̂WOR as the estimator of the pro-
portion for the design without replacement, we therefore have

CI(1 − α) =

⎡⎣P̂WOR − z1−α/2

√
N − n

N

P̂WOR(1 − P̂WOR)
n − 1

,

P̂WOR + z1−α/2

√
N − n

N

P̂WOR(1 − P̂WOR)
n − 1

⎤⎦ .

So the total length of the confidence interval does not surpass 0.02, it
is necessary and sufficient that
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2z1−α/2

√
N − n

N

P̂WOR(1 − P̂WOR)
n − 1

≤ 0.02.

By dividing by two and by squaring, we get

z2
1−α/2

N − n

N

P̂WOR(1 − P̂WOR)
n − 1

≤ 0.0001,

which gives

(n − 1) × 0.0001− z2
1−α/2

N − n

N
P̂WOR(1 − P̂WOR) ≥ 0,

or again

n

{
0.0001 + z2

1−α/2

1
N

P̂WOR(1 − P̂WOR)
}

≥ 0.0001 + z2
1−α/2P̂WOR(1 − P̂WOR),

or

n ≥
0.0001 + z2

1−α/2P̂WOR(1 − P̂WOR){
0.0001 + z2

1−α/2
1
N P̂WOR(1 − P̂WOR)

} .

For a 95% confidence interval, and with an a priori estimator of P of
0.3 coming from a source external to the survey, we have

n ≥ 0.0001 + 1.962 × 0.30 × 0.70{
0.0001 + 1.962 × 1

1500 × 0.30 × 0.70
} = 1264.98.

Here, a sample size of 1265 is sufficient. The obtained approximation
justifies the hypothesis of a normal distribution for P̂WOR. The impact
of the finite population correction (1−n/N) can therefore be decisive
when the population size is small and the desired accuracy is relatively
high.

2. If the proportion of affected workers is not estimated a priori, we are
placed in the most unfavourable situation, that is, one where the variance
is greatest: this leads to a likely excessive size n, but ensures that the
length of the confidence interval is not longer than the fixed threshold of
0.02. For the design without replacement, this returns to taking a pro-
portion of 50%. In this case, by adapting the calculations from 1-(b), we
find n ≥ 1298. We thus note that a significant variation in the proportion
(from 30% to 50%) involves only a minimal variation in the sample size
(from 1265 to 1298).
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Exercise 2.3 Probability of inclusion and design with replacement
In a simple random design with replacement of fixed size m in a population
of size N ,

1. Calculate the probability that an individual k is selected at least once in
a sample.

2. Show that

Pr(k ∈ S) =
m

N
+ O

(
m2

N2

)
,

when m/N is small. Recall that a function f(n) of n is of order of magni-
tude g(n) (noted f(n) = O(g(n))) if and only if f(n)/g(n) is limited,
that is to say there exists a quantity M such that, for any n ∈ N,
|f(n)|/g(n) ≤ M.

3. What are the conclusions ?

Solution

1. We obtain this probability from the complementary event:

Pr (k ∈ S) = 1 − Pr (k /∈ S) = 1 −
(

1 − 1
N

)m

.

2. Then, we derive

Pr (k ∈ S) = 1 −
(

1 − 1
N

)m

= 1 −
m∑

j=0

(
m

j

)(
− 1

N

)m−j

= 1 −
⎧⎨⎩

m−2∑
j=0

(
m

j

)(
− 1

N

)m−j

− m

N
+ 1

⎫⎬⎭ =
m

N
−

m−2∑
j=0

(
m

j

)(
− 1

N

)m−j

=
m

N
+ O

(
m2

N2

)
.

3. We conclude that if the sampling rate m/N is small, (m/N)2 is negligible
in relation to m/N. We then again find the probability of inclusion of a
sample without replacement, because the two modes of sampling become
indistinguishable.

Exercise 2.4 Sample size
What sample size is needed if we choose a simple random sample to find,
within two percentage points (at least) and with 95 chances out of 100, the
proportion of Parisians that wear glasses ?



12 2 Simple Random Sampling

Solution
There are two reasonable positions from which to deal with these issues:

• The size of Paris is very large: the sampling rate is therefore negligible.
• Obviously not having any a priori information on the population sought

after, we are placed in a situation which leads to a maximum sample size
(strong ‘precautionary’ stance), having P = 50 %. If the reality is different
(which is almost certain), we have in fine a lesser uncertainty than was
fixed at the start (2 percentage points).

We set n in a way so that

1.96 ×
√

P (1 − P )
n

= 0.02, with P = 0.5,

hence n = 2 401 people.

Exercise 2.5 Number of clerics
We want to estimate the number of clerics in the French population. For that,
we choose to select n individuals using a simple random sample. If the true
proportion (unknown) of clerics in the population is 0.1 %, how many people
must be selected to obtain a coefficient of variation CV of 5 % ?

Solution
By definition:

CV =
σ(Np)
NP

=
σ(p)
P

,

where P is the true proportion to estimate (0.1 % here) and p its unbiased
estimator, which is the proportion of clerics in the selected sample. A CV of
5 % corresponds to a reasonably ‘average’ accuracy. In fact,

var(p) ≈ P (1 − P )
n

(f a priori negligible compared to 1).

Therefore,

CV =

√
(1 − P )

nP
≈ 1√

nP
= 0.05,

which gives

n =
1

0.001
× 1

0.052
= 400 000.

This large size, impossible in practice to obtain, is a direct result of the scarcity
of the sub-population studied.
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Exercise 2.6 Size for proportions
In a population of 4 000 people, we are interested in two proportions:

P1 = proportion of individuals owning a dishwasher,
P2 = proportion of individuals owning a laptop computer.

According to ‘reliable’ information, we know a priori that:

45 % ≤ P1 ≤ 65 %, and 5 % ≤ P2 ≤ 10 %.

What does the sample size n have to be within the framework of a simple
random sample if we want to know at the same time P1 near ± 2 % and P2

near ± 1 %, with a confidence level of 95 % ?

Solution
We estimate without bias Pi, (i = 1, 2) by the proportion pi calculated in the
sample:

var(pi) =
(
1 − n

N

) 1
n

N

N − 1
Pi(1 − Pi).

We want

1.96 ×
√

var(p1) ≤ 0.02, and 1.96 ×
√

var(p2) ≤ 0.01.

In fact ,
max

45%≤P1≤65 %
P1(1 − P1) = 0.5(1 − 0.5) = 0.25,

and
max

5 %≤P2≤10%
P2(1 − P2) = 0.1(1 − 0.1) = 0.09.

The maximum value of Pi(1 − Pi) is 0.25 (see Figure 2.1) and leads to a
maximum n (as a security to reach at least the desired accuracy).
It is jointly necessary that

Fig. 2.1. Variance according to the proportion: Exercise 2.6

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

P

P
(1

−
P

)
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(
1 − n

N

) 1
n

N

N − 1
× 0.25 ≤

(
0.02
1.96

)2

(
1 − n

N

) 1
n

N

N − 1
× 0.09 ≤

(
0.01
1.96

)2

,

which implies that {
n ≥ 1 500.62

n ≥ 1 854.74.

The condition on the accuracy of p2 being the most demanding, we conclude
in choosing: n = 1 855.

Exercise 2.7 Estimation of the population variance
Show that

σ2
y =

1
N

∑
k∈U

(
yk − Y

)2
=

1
2N2

∑
k∈U

∑
�∈U
� �=k

(yk − y�)
2
. (2.1)

Use this equality to (easily) find an unbiased estimator of the population
variance S2

y in the case of simple random sampling where S2
y = Nσ2

y/(N − 1).

Solution
A first manner of showing this equality is the following:

1
2N2

∑
k∈U

∑
�∈U
� �=k

(yk − y�)
2 =

1
2N2

∑
k∈U

∑
�∈U

(yk − y�)
2

=
1

2N2

(∑
k∈U

∑
�∈U

y2
k +

∑
k∈U

∑
�∈U

y2
� − 2

∑
k∈U

∑
�∈U

yky�

)

=
1
N

∑
k∈U

y2
k − 1

N2

∑
k∈U

∑
�∈U

yky� =
1
N

∑
k∈U

y2
k − Y

2

=
1
N

∑
k∈U

(yk − Y )2 = σ2
y .

A second manner is:
1

2N2

∑
k∈U

∑
�∈U
� �=k

(yk − y�)2 =
1

2N2

∑
k∈U

∑
�∈U

(yk − Y − y� + Y )2

=
1

2N2

∑
k∈U

∑
�∈U

{
(yk − Y )2 + (y� − Y )2 − 2(yk − Y )(y� − Y )

}
=

1
2N

∑
k∈U

(yk − Y )2 +
1

2N

∑
�∈U

(y� − Y )2 + 0 = σ2
y .
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The unbiased estimator of σ2
y is

σ̂2
y =

1
2N2

∑
k∈S

∑
�∈S
� �=k

(yk − y�)
2

πk�
,

where πk� is the second-order inclusion probability. With a simple design
without replacement of fixed sample size,

πk� =
n(n − 1)
N(N − 1)

,

thus
σ̂2

y =
N(N − 1)
n(n − 1)

1
2N2

∑
k∈S

∑
�∈S
� �=k

(yk − y�)
2 .

By adapting (2.1) with the sample S (in place of U), we get:

1
2n2

∑
k∈S

∑
�∈S
� �=k

(yk − y�)2 =
1
n

∑
k∈S

(yk − Ŷ )2,

where
Ŷ =

1
n

∑
k∈S

yk.

Therefore

σ̂2
y =

(N − 1)
N

1
n − 1

∑
k∈S

(
yk − Ŷ

)2

=
N − 1

N
s2

y.

We get

σ̂2
y =

N − 1
N

s2
y, and Ŝ2

y =
N

N − 1
σ̂2

y = s2
y.

This result is well-known and takes longer to show if we do not use the equality
(2.1).

Exercise 2.8 Repeated survey
We consider a population of 10 service-stations and are interested in the price
of a litre of high-grade petrol at each station. The prices during two consecu-
tive months, May and June, appears in Table 2.2.

1. We want to estimate the evolution of the average price per litre between
May and June. We choose as a parameter the difference in average prices.
Method 1: we sample n stations (n < 10) in May and n stations in June,
the two samples being completely independent ;
Method 2: we sample n stations in May and we again question these sta-
tions in June (panel technique).
Compare the efficiency of the two concurrent methods.
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Table 2.2. Price per litre of high-grade petrol: Exercise 2.8

Station 1 2 3 4 5 6 7 8 9 10
May 5.82 5.33 5.76 5.98 6.20 5.89 5.68 5.55 5.69 5.81
June 5.89 5.34 5.92 6.05 6.20 6.00 5.79 5.63 5.78 5.84

2. The same question, if we this time want to estimate an average price
during the combined May-June period.

3. If we are interested in the average price in Question 2, would it not be
better to select instead of 10 records twice with Method 1 (10 per month),
directly 20 records without worrying about the months (Method 3) ? No
calculation is necessary.

N.B.: Question 3 is related to stratification.

Solution

1. We denote pm as the simple average of the recorded prices among the n
stations for month m (m = May or June).
We have:

var(pm) =
1 − f

n
S2

m,

where S2
m is the variance of the 10 prices relative to month m.

• Method 1. We estimate without bias the evolution of prices by pJune−
pMay (the two estimators are calculated on two different a priori sam-
ples) and

var1(pJune − pMay) =
1 − f

n
(S2

May + S2
June).

Indeed, the covariance is null because the two samples (and therefore
the two estimators pMay and pJune) are independent.

• Method 2. We have only one sample (the panel). Still, we estimate the
evolution of prices without bias by pJune − pMay, and

var2(pJune − pMay) =
1 − f

n
(S2

May + S2
June − 2SMay, June).

This time, there is a covariance term, with:

cov (pMay, pJune) =
1 − f

n
SMay, June,

where SMay, June represents the true empirical covariance between the
10 records in May and the 10 records in June. We therefore have:

var1(pJune − pMay)
var2(pJune − pMay)

=
S2

May + S2
June

S2
May + S2

June − 2SMay, June
.
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After calculating, we find:

S2
May = 0.05601

S2
June = 0.0564711

SMay, June = 0.0550289

⎫⎪⎪⎬⎪⎪⎭ ⇒ var1(pJune − pMay)
var2(pJune − pMay)

≈ (6.81)2.

The use of a panel allows for the division of the standard error by 6.81.
This enormous gain is due to the very strong correlation between the
prices of May and June (ρ ≈ 0.98): a station where high-grade petrol is
expensive in May remains expensive in June compared to other stations
(and vice versa). We easily verify this by calculating the true average
prices in May (5.77) and June (5.84): if we compare the monthly average
prices, only Station 3 changes position between May and June.

2. The average price for the two-month period is estimated without bias,
with the two methods, by:

p =
pMay + pJune

2
.

• Method 1:
var1(p) =

1
4
× 1 − f

n
[S2

May + S2
June].

• Method 2:

var2(p) =
1
4
× 1 − f

n
[S2

May + S2
June + 2SMay, June].

This time, the covariance is added (due to the ‘+’ sign appearing in
p).

In conclusion, we have

var1(p)
var2(p)

=
S2

May + S2
June

S2
May + S2

June + 2SMay, June
= (0.71)2 = 0.50.

The use of a panel proves to be ineffective: with equal sample sizes, we
lose 29 % of accuracy.
As the variances vary in 1/n, if we consider that the total cost of a survey
is proportional to the sample size, this result amounts to saying that for
a given variance, Method 1 allows a saving of 50 % of the budget in
comparison to Method 2: this is obviously strongly significant.

3. Method 1 remains the best. Indeed, Method 3 amounts to selecting a sim-
ple random sample of size 2n in a population of size 2N , whereas Method
1 amounts to having two strata each of size N and selecting n individuals
in each stratum: the latter instead gives a proportional allocation.
In fact, we know that for a fixed total sample (2n here), to estimate
a combined average, stratification with proportional allocation is always
preferable to simple random sampling.
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Exercise 2.9 Candidates in an election
In an election, there are two candidates. The day before the election, an opin-
ion poll (simple random sample) is taken among n voters, with n equal to at
least 100 voters (the voter population is very large compared to the sample
size). The question is to find out the necessary difference in percentage points
between the two candidates so that the poll produces the name of the winner
(known by census the next day) 95 times out of 100. Perform the numeric
application for some values of n.
Hints: Consider that the loser of the election is A and that the percentage of
votes he receives on the day of the election is PA ; the day of the sample, we
denote P̂A as the percentage of votes obtained by this candidate A.
We will convince ourselves of the fact that the problem above posed in ‘com-
mon terms’ can be clearly expressed using a statistical point of view: find the
critical region so that the probability of declaring A as the winner on the day
of the sample (while PA is in reality less than 50 %) is less than 5 %.

Solution
In adopting the terminology of test theory, we want a ‘critical region’ of the
form ]c, +∞[, the problem being to find c, with:

Pr[P̂A > c|PA < 50 %] ≤ 5 %

(the event PA < 50 % is by definition certain; it is presented for reference).
Indeed, the rule that will decide on the date of the sample who would win the
following day can only be of type ‘P̂ greater than a certain level’. We make
the hypothesis that P̂A ∼ N (PA, σ2

A), with:

σ2
A =

PA(1 − PA)
n

.

This approximation is justified because n is ‘sufficiently large’ (n ≥ 100). We
try to find c such that:

Pr

[
P̂A − PA

σA
>

c − PA

σA

∣∣∣∣∣PA < 50 %

]
≤ 5 %.

However, PA remains unknown. In reality, it is the maximum of these proba-
bilities that must be considered among all PA possible, meaning all PA < 0.5.
Therefore, we try to find c such that:

max
{PA}

Pr
[
N (0.1) >

c − PA

σA

∣∣∣∣PA < 0.5
]
≤ 0.05.

Now, the quantity
c − PA√
PA(1−PA)

n
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is clearly a decreasing function of PA (for PA < 0.5). We see that the maximum
of the probability is attained for the minimum (c − PA)/σA, or in other words
the maximum PA (subject to PA < 0.5). Therefore, we have PA = 50 %. We
try to find c satisfying:

Pr

⎡⎣N (0, 1) >
c − 0.5√

0.25
n

⎤⎦ ≤ 0.05.

Consulting a quantile table of the normal distribution shows that it is neces-
sary for:

c − 0.5√
0.25

n

= 1.65.

Conclusion: The critical region is{
P̂A >

1
2

+ 1.65

√
0.25
n

}
, that is

{
P̂A >

1
2

+
1.65
2
√

n

}
.

The difference in percentage points therefore must be at least the following:

P̂A − P̂B = 2P̂A − 1 ≥ 1.65√
n

.

If the difference in percentage points is at least equal to 1.65/
√

n, then we
have less than a 5 % chance of declaring A the winner on the day of the
opinion poll while in reality he will lose on the day of the elections, that is, we
have at least a 95 % chance of making the right prediction. Table 2.3 contains
several numeric applications. The case n = 900 corresponds to the opinion
poll sample size traditionally used for elections.

Table 2.3. Numeric applications: Exercise 2.9

n 100 400 900 2000 5000 10000
1.65/

√
n 16.5 8.3 5.5 3.7 2.3 1.7

Exercise 2.10 Select-reject method
Select a sample of size 4 in a population of size 10 using a simple random
design without replacement with the select-reject method. This method is
due to Fan et al. (1962) and is described in detail in Tillé (2001, p. 74). The
procedure consists of sequentially reading the frame. At each stage, we decide
whether or not to select a unit of observation with the following probability:

number of units remaining to select in the sample
number of units remaining to examine in the population

.
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Use the following observations of a uniform random variable over [0, 1]:

0.375489 0.624004 0.517951 0.0454450 0.632912
0.246090 0.927398 0.32595 0.645951 0.178048

Solution
Noting k as the observation number and j as the number of units already
selected at the start of stage k, the algorithm is described in Table 2.4. The
sample is composed of units {1, 4, 6, 8}.

Table 2.4. Select-reject method: Exercise 2.10

k uk j
n − j

N − (k − 1)
Ik

1 0.375489 0 4/10 = 0.4000 1
2 0.624004 1 3/9 = 0.3333 0
3 0.517951 1 3/8 = 0.3750 0
4 0.045450 1 3/7 = 0.4286 1
5 0.632912 2 2/6 = 0.3333 0
6 0.246090 2 2/5 = 0.4000 1
7 0.927398 3 1/4 = 0.2500 0
8 0.325950 3 1/3 = 0.3333 1
9 0.645951 4 0/2 = 0.0000 0
10 0.178048 4 0/1 = 0.0000 0

Exercise 2.11 Sample update method
In selecting a sample according to a simple design without replacement, there
exist several algorithms. One method proposed by McLeod and Bellhouse
(1983), works in the following manner:

• We select the first n units of the list.
• We then examine the case of record (n + 1). We select unit n + 1 with a

probability n/(n + 1). If unit n + 1 is selected, we remove one unit from
the sample that we selected at random and with equal probabilities.

• For the units k, where n + 1 < k ≤ N , we maintain this rule. Unit k is
selected with probability n/k. If unit k is selected, we remove one unit
from the sample that we selected at random and with equal probabilities.

1. We denote π
(k)
� as the probability that individual � is in the sample at

stage k, where (� ≤ k), meaning after we have examined the case of record
k (k ≥ n). Show that π

(k)
� = n/k. (It can be interesting to proceed in a

recursive manner.)
2. Verify that the final probability of inclusion is indeed that which we obtain

for a design with equal probabilities of fixed size.
3. What is interesting about this method?
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Solution

1. • If k = n, then π
(k)
� = 1 = n/n, for all � ≤ n.

• If k = n + 1, then we have directly π
(n+1)
n+1 = n/(n + 1). Furthermore,

for � < k,

π
(n+1)
� = Pr [unit � being in the sample at stage (n + 1)]

= Pr [unit (n + 1) not being selected at stage n]
+Pr [unit (n + 1) being selected at stage n]
×Pr [unit � not being removed at stage n]

= 1 − n

n + 1
+

n

n + 1
× n − 1

n
=

n

n + 1
.

• If k > n+1, we use a recursive proof. We suppose that, for all � ≤ k−1,

π
(k−1)
� =

n

k − 1
, (2.2)

and we are going to show that if (2.2) is true then, for all � ≤ k,

π
(k)
� =

n

k
. (2.3)

The initial conditions are confirmed since we have proven (2.3) for
k = n and k = n + 1. If � = k, then the algorithm directly gives

π
(k)
k =

n

k
.

• If � < k, then we calculate in the sample, using Bayes’ theorem,

πk
� = Pr [unit � being in the sample at stage k]

= Pr [unit k not being selected at stage k]
×Pr [unit � being in the sample at stage k − 1]
+Pr [unit k being selected at stage k]
×Pr [unit � being in the sample at stage k − 1]
×Pr [unit � not being removed at stage k]

= (1 − n

k
) × π

(k−1)
� +

n

k
× π

(k−1)
� × n − 1

n

= π
(k−1)
�

k − 1
k

=
n

k
.

2. At the end of the algorithm k = N and therefore π
(N)
� = n/N , for all

� ∈ U .
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3. What is interesting about this algorithm is that it permits the selection of
a sample of fixed size n with equal probabilities without replacement and
without having to know a priori the size of the population N . For example,
we can sample a list that is being filled ‘on the fly’ without needing to
wait for everything to be complete before starting the selection procedure.
We remark that systematic sampling can be put into place without the
population being complete but, in this case, the sample is not necessarily
of fixed size.

Exercise 2.12 Domain estimation
In a population of size N , we sample n individuals by simple random sampling.
We consider a subpopulation D (meaning a ‘domain’) of size ND, and we
denote nD as the (random) sample size for D. With the selected sample S
being decomposable into two parts SD and SD, where SD is the intersection
of S and the domain, find the conditional distribution of SD given nD (nD is
therefore the cardinality of SD). What is the practical conclusion?

Solution

p(sD | nD) =
Pr(selecting sD and obtaining a size nD)

Pr(obtaining a size nD)

If sD is indeed of size nD, the numerator is quite simply Pr(selecting sD). If
sD is not of size nD, the numerator is null. We are now placed in the first
case. In fact:

p(sD) =
∑

s⊃sD

p(s) =
Number of s containing sD(

N
n

) .

The number of s containing sD is
(

N−ND

n−nD

)
because, in order to go from sD to

s, it is necessary and sufficient to choose (n−nD) individuals to select outside
of the domain D, that is, in a group of size N − ND. Furthermore:

Pr(obtaining a size nD) =
∑

card(s∩D)=nD

p(s) =
# {s|card (s ∩ D) = nD}(

N
n

) .

Counting the s such that card (s ∩ D) = nD brings us back to selecting nD

individuals in D, (there are
(

ND

nD

)
possible cases) and (n − nD) individuals

outside of D (there are
(

N−ND

n−nD

)
possible cases). Therefore

Pr(obtaining a size nD) =

(
ND

nD

) (
N−ND

n−nD

)
(

N
n

) ,
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which is a hypergeometric distribution.
Finally, we get:

p[sD | nD] =
1(

ND

nD

) .

Practical conclusion:
We indeed see that it is the distribution of a simple random sampling of size
nD in a population of size ND. Thus, all the calculations of bias and variance,
if they are conditional on nD, follow directly from the standard results of
simple random sampling, meaning that it is sufficient to continue with the
classic formulas in considering that all magnitudes involved are relative to D
(we replace n by nD, N by ND, S2

y by S2
yD, etc.).

Exercise 2.13 Variance of a domain estimator
Having carried out a simple random sample in a finite population, we are
interested in estimating a total Y0 in a given domain U0 of the population.
We introduce the variable y∗ which is

y∗
k =

{
yk if k ∈ U0

0 otherwise.

1. Throughout this question, the domain size N0 is unknown and the in-
dividuals in the domain are not identifiable a priori. The sample size is
denoted as n.
a) Give the expressions of the unbiased estimator Ŷ0 of the total and its

variance.
b) Show that

(N − 1)S∗2
y = (N0 − 1)S2

y0 + N0Y
2

0

(
1 − N0

N

)
,

where S2
y0 is the population variance of y∗

k (or of yk) in the domain
U0 and S∗2

y is the population variance of y∗
k in the entire population.

c) Deduce that, when N0 is very large,

var
(
Ŷ0

)
≈ N2

n

(
1 − n

N

)(
P0S

2
y0 + P0Q0Y

2

0

)
,

where P0 = N0/N and Q0 = 1 − P0.
2. Throughout this question, the domain size N0 is known, as we henceforth

assume that the individuals in the domain are identifiable a priori in the
survey frame. Recall that the sampling is simple random in the population.
a) Give the expressions of the classic unbiased estimator ̂̂Y 0 of the total

and its conditional variance given n0. We denote n0 as the (random)
sample size of individuals in the domain U0, and we consider that n
is sufficiently large so that the probability of obtaining a null n0 is
negligible.
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b) We want to compare the performances of ̂̂Y 0 and Ŷ0. For that, we

set n0 = nP0, and we use this value in the expression var
(̂̂

Y 0|n0

)
.

Justify this manner of proceeding. Deduce that

var
(̂̂

Y 0|n0

)
≈ var

(̂̂
Y 0

)
≈ N2

n

(
1 − n

N

)
P0S

2
y0.

c) Show that these approximations lead to

var
(̂̂

Y 0

)
var
(
Ŷ0

) ≈ C2
0

C2
0 + Q0

,

where C0 = Sy0/Y 0 is the coefficient of variation of yk in the domain
U0. What do you conclude?

3. In a population of given individuals, we wish to estimate the total number
of men in the socio-professional category ‘employees’. We never have at
our disposal any information relating to gender except, obviously, in the
sample.
a) Suppose that we do not know the total number of employees in the

population. In what way is this question related to the previous prob-
lem (in particular, specify the variable y∗ that was used) ?

b) What is the relative gain in accuracy obtained when we suddenly
have at our disposal the information ‘total number of employees in
the population’ ?

c) How can we estimate this gain? What problem(s) do we face?

Solution

1. a) The estimator is given by

Ŷ0 = NŶ
∗

where Ŷ
∗

=
1
n

∑
k∈S

y∗
k.

We get
E(Ŷ0) = NY

∗
=
∑
k∈U

y∗
k =

∑
k∈U0

yk = Y0

(the estimator Ŷ0 is therefore unbiased), and

var[Ŷ0] = var[NŶ
∗
] = N2 N − n

Nn
S∗2

y ,

where S∗2
y is the population variance (unknown) of y∗

k.
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b) We have

(N − 1)S∗2
y

=
∑
k∈U

(y∗
k − Y

∗
)2

=
∑
k∈U

(y∗
k − Y 0 + Y 0 − Y

∗
)2

=
∑
k∈U

(y∗
k − Y 0)2 + N(Y 0 − Y

∗
)2 + 2(Y 0 − Y

∗
)
∑
k∈U

(y∗
k − Y 0)

=
∑

k∈U0

(y∗
k − Y 0)2 +

∑
k∈U\U0

(y∗
k − Y 0)2 + N(Y 0 − Y

∗
)2

+2(Y 0 − Y
∗
)N(Y

∗ − Y 0)

= (N0 − 1)S2
y0 + (N − N0)Y

2

0 − N(Y 0 − Y
∗
)2.

In fact

N(Y 0 − Y
∗
)2 = N

(
Y 0 − Y 0

N0

N

)2

= NY
2

0

(
1 − N0

N

)2

,

which gives

(N − 1)S∗2
y = (N0 − 1)S2

y0 + N0

(
1 − N0

N

)
Y

2

0.

c) If N0 is very large, then N0 ≈ (N0 − 1) and N ≈ (N − 1):

var(Ŷ0) ≈ N
N − n

Nn

[
(N0 − 1)S2

y0 + N0

(
1 − N0

N

)
Y

2

0

]
≈ N2 N − n

Nn

(
P0S

2
y0 + P0Q0Y

2

0

)
.

2. a) We have ̂̂
Y 0 = N0Ŷ 0,

where
Ŷ 0 =

1
n0

∑
k∈U0∩S

yk,

n0 = #(U0 ∩ S),

and
var
(̂̂

Y 0|n0

)
= N2

0

N0 − n0

N0n0
S2

y0.

Indeed, in this conditional approach, everything happens as if we had
completed a simple random survey of n0 individuals in U0 (see Exer-
cise 2.12).
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b) Since n0 follows a hypergeometric distribution, we have E(n0) = nP0.

The value n0 does not appear in var(Ŷ0): to compare similar expres-
sions, it is thus legitimate to substitute E(n0) with n0, which is ran-

dom. We thus assimilate var
(̂̂

Y 0|n0

)
to var

(̂̂
Y 0

)
. Since N0 = NP0,

we get

var
(̂̂

Y 0

)
≈ P 2

0 N2 NP0 − nP0

NP0nP0
S2

y0 = P0N
2 N − n

Nn
S2

y0.

Note that we would reach the same expression by starting from the

unconditional variance var
(̂̂

Y 0

)
and by replacing, in the first approx-

imation, the term E(1/n0) with 1/E(n0).
c) The relationship between the two variances is:

var
(̂̂

Y 0

)
var
(
Ŷ0

) ≈ P0S
2
y0

P0S2
y0 + P0Q0Y

2

0

=
C2

0

C2
0 + Q0

< 1.

We conclude that the knowledge of N0 permits having a more efficient
estimator. The ‘gain’ is all the more important when C0 is small,
meaning that the domain groups similar individuals (according to yk),
and/or that Q0 is large, or in other words that the domain is of small
size.

3. a) We initially define for the entire population the variable

yk =
{

1 if k is male
0 otherwise.

Being interested in the domain U0 of the employees, we will define y∗
k

as previously, which comes back to writing:

y∗
k =

{
yk if k is an employee
0 otherwise,

that is to say:

y∗
k =

{
1 if k is male and an employee
0 if k is not an employee or not male.

Then, E(Ŷ0) = Nh0 is the number of male employees in the population.
b) N0 is the total number of employees (male + female) henceforth

known. The domain U0 is then defined by the group of employees
(male and female). The variable yk being defined as above, the rela-
tive gain from one method to another is
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var
(̂̂

Y 0

)
var
(
Ŷ0

) =
C2

0

C2
0 + Q0

,

with
C0 =

Sy0

Y 0

,

and
Y 0 =

Nh0

N0
= P h

0 ,

which is the proportion of men among the employees. As

S2
y0 ≈ P h

0 (1 − P h
0 ),

we have

C2
0 =

1 − P h
0

P h
0

,

and Q0 = 1 − P0, the proportion of non-employees in the total popu-
lation (and not only in the domain).

c) We can estimate without bias (or nearly, because n0 can be null with
a negligible probability) P h

0 by nho/n0 and P0 by n0/n. However, the
gain is a non-linear function of P h

0 and P0. The estimator of the gain
is therefore biased and the estimation of the associated variance has
to rely on a linearisation technique if n is large.

Exercise 2.14 Complementary sampling
Let U be a population of size N . We define the following sampling distribution:
we first select a sample S1 according to a simple design without replacement
of fixed size n1.

1. We then select a sample S2 in U outside of S1 according to a simple
random design without replacement of fixed size n2. The final sample
S consists of S1 and S2. Give the sampling distribution of S. What is
interesting about this result?

2. We then select a sample S3 from S1, according to a simple random design
without replacement of fixed size n3 where (n3 < n1). Give the sampling
distribution of S3 (in relation to U). What is interesting about this result?

3. Using again the framework from Question 1, we define the estimator of Y
by:

Ŷ θ = θŶ 1 + (1 − θ)Ŷ 2,

with 0 < θ < 1,
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Ŷ 1 =
1
n1

∑
k∈S1

yk and Ŷ 2 =
1
n2

∑
k∈S2

yk.

Show that, for any θ, Ŷ θ estimates Y without bias.
4. Give the optimal estimator (as θ) in the class of estimators of the form

Ŷ θ.

Solution

1. We have of course S1 ⊂ S, S2 ⊂ S, and S1 ∩ S2 = ∅. Therefore, for s of
size n = n1 + n2, we have (#S indicates the size of the sample S)

Pr(S = s) =
∑

s1⊂s|#s1=n1

Pr(S1 = s1)Pr(S2 = s\s1|S1 = s1)

=
(

n1 + n2

n1

)(
N

n1

)−1(
N − n1

n2

)−1

=
(n1 + n2)!

n1!n2!
× n1!(N − n1)!

N !
× n2!(N − n1 − n2)!

(N − n1)!

=
(n1 + n2)!(N − n1 − n2)!

N !
=
(

N

n

)−1

.

The sampling of S1 ∪ S2 is therefore carried out according to a simple
random design of fixed size n = n1 +n2. If we want to increase the sample
size already selected using a simple design (for example, to increase the
accuracy of an estimator, or because we notice a lower response rate than
expected), it is sufficient to reselect a sample according to a simple design
among the units that were not selected at the time of the first sampling.

2. The probability of selecting s3 is calculated as follows using the conditional
probabilities.

Pr(S3 = s3) =
∑

s1|s3⊂s1

Pr(S1 = s1)Pr(S3 = s3|S1 = s1)

=
(

N − n3

n1 − n3

)(
N

n1

)−1(
n1

n3

)−1

=
(N − n3)!

(n1 − n3)!(N − n1)!
× n1!(N − n1)!

N !
× n3!(n1 − n3)!

n1!

=
(

N

n3

)−1

.

Here once again, we find the distribution characterising the simple random
sampling of size n3 in a population of size N . In practice, to ‘calibrate’ a
sample, this property can be used to compete with that shown in 1. We



Exercise 2.14 29

use a priori the sample s3, but if its size proves to be insufficient, we call
upon s1 in its group. If we iterate the process, we can set up a group of
nested samples, all coming from simple random sampling and using first
of all the smallest and then eventually the others as reserve samples, and
in relation to the needs as dictated by the field.

3. Method 1:

E(Ŷ θ) = θE(Ŷ 1) + (1 − θ)E(Ŷ 2).

The conditional expectation E(Ŷ 2|S1) is the expectation of a mean in a
simple random sample without replacement of fixed size from the popu-
lation U\S1, which is therefore the true mean of this population, being:

E(Ŷ 2|S1) =
1

N − n1

∑
U\S1

yk =
NY − n1Ŷ 1

N − n1
,

and therefore

E(Ŷ 2) = EE(Ŷ 2|S1) =
NY − n1E[Ŷ 1]

N − n1
=

NY − n1Y

N − n1
= Y .

Thus

E(Ŷ θ) = θE(Ŷ 1) + (1 − θ)E(Ŷ 2) = θY + (1 − θ)Y = Y .

Method 2:
We can also use the results from 1., which avoids conditional expectations.
Indeed, we can express the simple mean on S of the form

Ŷ =
n1Ŷ 1 + n2Ŷ 2

n
,

thus

Ŷ 2 =
nŶ − n1Ŷ 1

n2
.

We therefore get

Ŷ θ = θŶ 1 + (1 − θ)
nŶ − n1Ŷ 1

n2
=
[
θ − n1

n2
(1 − θ)

]
Ŷ 1 + (1 − θ)

nŶ

n2
.

Since E(Ŷ 1) = E(Ŷ ) = Y ,

E(Ŷ θ) =
[
θ − n1

n2
(1 − θ)

]
E[Ŷ 1] + (1 − θ)

nE[Ŷ ]
n2

=
[
θ − n1

n2
(1 − θ)

]
Y + (1 − θ)

nY

n2

= Y .
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4. Since Ŷ θ is unbiased, we find θ that minimises the variance of Ŷ θ.
Method 1:

var
(
Ŷ θ

)
= θ2var(Ŷ 1) + (1 − θ)2var(Ŷ 2) + 2θ(1 − θ)cov(Ŷ 1, Ŷ 2),

var(Ŷ 2) = varE(Ŷ 2|S1) + Evar(Ŷ 2|S1),

now

var(Ŷ 2|S1) =
(

1 − n2

N − n1

)
S′2

y

n2
,

where S′2
y is the population variance of yk in U\S1. Since S1 is derived

from a simple random sample without replacement, it is clear that U\S1

is as well, and E(S′2
y ) = S2

y . Therefore,

var(Ŷ 2) = var

(
NY − n1Ŷ 1

N − n1

)
+ E

[(
1 − n2

N − n1

)
S′2

y

n2

]

=
(

n1

N − n1

)2

var
(
Ŷ 1

)
+
(

1 − n2

N − n1

)
E
[
S′2

y

]
n2

=
(

n1

N − n1

)2
N − n1

Nn1
S2

y +
(

1 − n2

N − n1

)
S2

y

n2

=
N − n2

Nn2
S2

y .

We notice that it is the variance of a simple random sample of size n2 in
the complete population. Therefore

var(Ŷ 1) =
N − n1

Nn1
S2

y and var(Ŷ 2) =
N − n2

Nn2
S2

y .

Furthermore,

cov(Ŷ 1, Ŷ 2) = E
[
cov(Ŷ 1, Ŷ 2|S1)

]
+ cov[E(Ŷ 1|S1), E(Ŷ 2|S1)],

where now Ŷ 1 is constant conditionally to S1, thus

cov(Ŷ 1, Ŷ 2|S1) = 0, and E(Ŷ 1|S1) = Ŷ 1,

and

cov(Ŷ 1, Ŷ 2) = 0 + cov

(
Ŷ 1,

NY − n1Ŷ 1

N − n1

)
= − n1

N − n1

N − n1

Nn1
S2

y

= − 1
N

S2
y .
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Therefore,

var
(
Ŷ θ

)
=

S2
y

N

[
θ2 N − n1

n1
+ (1 − θ)2

N − n2

n2
− 2θ(1 − θ)

]
.

The optimal value of θ is obtained by differentiating var
(
Ŷ θ

)
with respect

to θ and setting the derivative equal to zero, which gives

2θ∗
N − n1

n1
− 2(1 − θ∗)

N − n2

n2
− 2(1 − 2θ∗) = 0,

and we get
θ∗ =

n1

n
.

Method 2:
We use the expression Ŷ θ as a function of Ŷ 1 and Ŷ , which avoids the
tedious calculation of the variance of Ŷ 2. We very easily verify that

Ŷ θ = δŶ 1 + (1 − δ)Ŷ ,

with
δ =

n

n2
θ − n1

n2
.

var
(
Ŷ θ

)
= δ2var

(
Ŷ 1

)
+ (1 − δ)2var

(
Ŷ
)

+ 2δ(1 − δ)cov
(
Ŷ 1, Ŷ

)
.

Now,

cov
(
Ŷ 1, Ŷ

)
= Ecov

(
Ŷ 1, Ŷ |S1

)
+ cov

[
E(Ŷ 1|S1), E(Ŷ |S1)

]
= E (0) + cov

[
Ŷ 1,

n1

n
Ŷ 1 +

n2

n
E(Ŷ 2|S1)

]
= cov

(
Ŷ 1,

n1

n
Ŷ 1 +

n2

n

NY − n1Ŷ 1

N − n1

)

=
n1

n

N − n

N − n1
var
(
Ŷ 1

)
=

n1

n

N − n

N − n1

(
1 − n1

N

) S2
y

n1
.

Finally,

var
(
Ŷ θ

)
= δ2

(
1 − n1

N

) S2
y

n1
+ (1 − δ)2

(
1 − n

N

) S2
y

n

+2δ(1 − δ)
n1

n

N − n

N − n1

(
1 − n1

N

) S2
y

n1

=
S2

y

N

[
δ2

(
N − n1

n1

)
+ (1 − δ)2

(
N − n

n

)
+ 2δ(1 − δ)

(
N − n

n

)]
=

S2
y

N

[(
N − n

n

)
+

N(n − n1)
nn1

δ2

]
.
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As (n − n1 > 0), var
[
Ŷ θ

]
is manifestly minimal for δ2 = 0, being

n

n2
θ∗ − n1

n2
= 0,

therefore
θ∗ =

n1

n
.

We indeed find again the same θ∗ as with Method 1, in a little more
‘elegant’ fashion. No matter the method, the optimal estimator must be
the simple mean of the sample S, being Ŷ . Therefore, when we select
samples repeatedly (by simple random sampling each time), the best es-
timator is still the most simple, meaning that one which we naturally get
by combining all the samples in fine.

Exercise 2.15 Capture-recapture
In surveys, it sometimes happens that the population size is ignored by the sur-
vey taker. One method to remediate this is the following: we identify, among
the total population of size N (unknown), M individuals. We then allow these
individuals to ‘mix’ with the total population, and we select n individuals by
simple random sampling in the total population after mixing. We then pick
out from this sample m individuals belonging to the first ‘marked’ population.

1. What is the distribution of m ; what is its expected value and variance?
2. What is the probability that m is equal to zero? We suppose n is small

with respect to M and with respect to N − M .
3. Considering the expectation of m, give a natural estimator N̂ of N in the

case where m is not equal to zero. We verify that in practice this occurs
if n and M are ‘sufficiently large’.

4. Calculate M = E(m | m > 0) and V = var (m | m > 0). In using a
Taylor expansion of m around M, approach E(N̂ | m > 0) by considering
n ‘large’ (and, consequently, N ‘particularly large’).

5. Conclude about the eventual bias of N̂ .

This method, called ‘capture-recapture’ (see Thompson, 1992), can be used,
for example, to estimate the number of wild animals of a certain type in a
large forest (we control M , the number of marked animals, and obviously n).

Solution

1. The random variable m follows a hypergeometric distribution with pa-
rameters N , M , n:
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Pr(m = x) =

(
M
x

)
×
(

N−M
n−x

)
(

N
n

) ,

for all x = max(0, M−N +n), 1, 2, . . . ,min(n, M). We can obviously cal-
culate the moments directly by using the previous expression. We can also
notice that m/n is the classical unbiased estimator of the true proportion
of M/N ‘marked’ individuals. Hence:

E
(m

n

)
=

M

N
, and therefore E(m) = n

M

N
.

The variance is

var
(m

n

)
=
(
1 − n

N

) 1
n

N

N − 1

(
M

N

)(
1 − M

N

)
.

If N is large, we then have:

var(m) ≈
(
1 − n

N

) (
n

M

N

) (
1 − M

N

)
.

2. The probability that m is null is:

Pr(m = 0) =

(
M
0

)(
N−M

n

)
(

N
n

) =

(
N−M

n

)
(

N
n

) =
(N − M)[n]

N [n]
≈
(

N − M

N

)n

,

where N [n] = N ×(N −1)×· · ·×(N −n+1). This probability is negligible
when M and n are sufficiently large.

3. Since
M

N
= E

(m

n

)
,

we can use:
N̂ = M

n

m
,

but only if m > 0. In practice, this is almost certainly confirmed if M and
n are sufficiently large according to Question 2. If m = 0, we do not use
any estimation (in concrete terms, we continue with the process from the
beginning, until m > 0).

4. As

E(m) = E(m | m = 0)Pr(m = 0) + E(m | m > 0)Pr(m > 0),

we have

M = E(m | m > 0) =
E(m)

Pr(m > 0)
= n

M

N

1
1 − Pr(m = 0)

,
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and

V = var(m | m > 0) = E(m2 | m > 0) − [E(m | m > 0)]2

=
E(m2)

Pr(m > 0)
−M2

=
var(m) + [E(m)]2

Pr(m > 0)
−M2

=
1

Pr(m > 0)

[
var(m) − Pr(m = 0)

Pr(m > 0)

(
n

M

N

)2
]

.

Furthermore, we have:

1
m

=
1

M (
1 + m−M

M
) , for all m > 0 (M > 0).

Now, the term

∆ =
m −M

M ,

conditional on m > 0, is of null expectation, by construction. Furthermore:

var (∆ | m > 0) =
1

M2
var(m | m > 0) =

var(m)
Pr(m > 0)M2

− Pr(m = 0).

If n and M are large, then Pr(m = 0) is negligible with respect to the
first term of this difference. Since n is large, we can write(

1 +
m −M

M
)−1

≈ 1 − m −M
M +

(
m −M

M
)2

+ . . .

With n large, we neglect the terms of order 3 and above, of order of
magnitude by (nM/N)−3/2. Thus, for m > 0,

N̂ =
Mn

m
≈ Mn

M (1 − ∆ + ∆2),

and

E(N̂ | m > 0) ≈ Mn

M (1 + E(∆2 | m > 0)) = NPr(m > 0)
(

1 +
V
M2

)
.

5. The estimator is then biased. The bias results from the conjunction of two
elements: on the one hand, we are restricted at m > 0, and on the other
hand the random variable m is in the denominator of the estimator. If n
is large, the bias is small because

Pr(m > 0) = 1 − Pr(m = 0)
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approaches 1 and that

V
M2

varies by 1/n

and therefore approaches zero. The estimator N̂ thus appears as an inter-
esting estimator of N . It would remain to calculate its variance.

Exercise 2.16 Subsample and covariance
We consider a simple random sample without replacement of size n in a pop-
ulation U of size N (sample denoted as S). We also consider two individuals
k and � distinct.

1. Show that:
Pr[k ∈ S and � /∈ S] =

n(N − n)
N(N − 1)

.

2. In the previous sample S, we select by simple random sampling n1 individ-
uals. We denote S1 as the sample obtained and S2 as the complementary
sample of S1 in S. Let k and � be any two distinct individuals belonging
to the sample S (we thus work ‘conditionally on S’). What is Pr(k ∈ S1

and � ∈ S2 | S) ? (Hint: use Question 1.)
3. If k and � are any two elements (but distinct) in the population, show that

Pr[k ∈ S1 and � ∈ S2] =
n1(n − n1)
N(N − 1)

.

4. Show, in the conditions of Question 2, that we can consider S1 as a simple
random sample of size n1 selected from a population of size N . (Hint:
calculate Pr(S1 = s1).)

5. By using the results from Question 1, calculate, first of all for k different
from � and then for k equal to �, the following:

cov (I{k ∈ S1}, I{� ∈ S2}),

where I{A} represents the indicator for event A.
6. Deduce that:

cov (Ŷ 1, Ŷ 2) = −S2
y

N
,

where Ŷ � is the simple mean of a real variable yk calculated in the sample
S� (� = 1, 2), and S2

y is the population variance of yk.

7. Calculate cov (Ŷ , Ŷ 1) where Ŷ is the simple mean of yk calculated in S.
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Solution

1. Since

Pr(k ∈ S and � /∈ S) + Pr(k ∈ S and � ∈ S)
= Pr(k ∈ S and (� ∈ S or � /∈ S)) = Pr(k ∈ S),

we have

Pr(k ∈ S and � /∈ S) = πk − πk� =
n

N
− n(n − 1)

N(N − 1)
=

n(N − n)
N(N − 1)

.

A second method consists of writing:

Pr(k ∈ S and � /∈ S) =
∑
s�k
s���

p(s) =
#{s|k ∈ s and � /∈ s}(

N
n

) .

Now the number of samples s containing k but not � is
(

N−2
n−1

)
. Indeed,

k being in s, there remain (n − 1) individuals to select in the population
outside of k and of �.

2. The sample S is fixed: we can use the previous result by considering that
the population here is the sample S and that the sample is S1:

Pr(k ∈ S1 and � /∈ S1 | S) =
n1(n − n1)
n(n − 1)

, with k and � ∈ S.

It remains to state that (� /∈ S1 | S) is equivalent to (� ∈ S2 | S), seeing
that S1 and S2 form a partition of S.

3. As for all S:

Pr[k ∈ S1 and � ∈ S2 | S] =
n1(n − n1)
n(n − 1)

, if k and � ∈ S.

We have

Pr[k ∈ S1 and � ∈ S2]

=
∑

s|k∈s and �∈s

Pr[k ∈ S1 and � ∈ S2 | S = s] Pr[S = s]

=
n1(n − n1)
n(n − 1)

(
N

n

)−1(
N − 2
n − 2

)
=

n1(n − n1)
n(n − 1)

n(n − 1)
N(N − 1)

=
n1(n − n1)
N(N − 1)

.

A faster approach, but less natural, consists of stating the result from
Question 2 obtained by depending on the lone fact that k and � are in S
(the integral composition of S does not provide anything). Also,
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Pr(k ∈ S1 and � ∈ S2|k ∈ S and � ∈ S) =
n1(n − n1)
n(n − 1)

,

which leads to

Pr(k ∈ S1 and � ∈ S2)
= Pr(k ∈ S1 and � ∈ S2|k ∈ S and � ∈ S)Pr(k ∈ S and � ∈ S)

=
n1(n − n1)
n(n − 1)

n(n − 1)
N(N − 1)

=
n1(n − n1)
N(N − 1)

.

4. The probability of selecting s1 is:

Pr(S1 = s1) =
∑
s⊃s1

Pr(S1 = s1 | S = s) Pr(S = s) =

(
N−n1
n−n1

)
(

n
n1

)(
N
n

) =
1(
N
n1

) .

This result is characteristic of a simple random sampling of size n1 in a
population of size N .

5. If k �= �, then

cov (I{k ∈ S1}, I{� ∈ S2})
= E(I{k ∈ S1}I{� ∈ S2}) − (EI{k ∈ S1}) (EI{� ∈ S2})
= Pr[k ∈ S1 and � ∈ S2] − Pr[k ∈ S1]Pr[� ∈ S2]

=
n1(n − n1)
N(N − 1)

− n1

N

n − n1

N
=

n1(n − n1)
N2(N − 1)

.

If k = �,

cov(I{k ∈ S1}, I{k ∈ S2}) = −Pr(k ∈ S1) Pr(k ∈ S2) = −n1(n − n1)
N2

.

6. We let n2 = n − n1:

cov (Ŷ 1, Ŷ 2)

= cov

(∑
k∈U

ykI{k ∈ S1}
n1

,
∑
�∈U

y�I{� ∈ S2}
n2

)

=
1

n1(n − n1)

∑
k∈U

∑
�∈U

cov (I{k ∈ S1}, I{� ∈ S2}) yky�

=
1

n1(n − n1)

⎡⎢⎣−n1(n − n1)
N2

∑
k∈U

y2
k +

n1(n − n1)
N2(N − 1)

∑
k∈U

∑
�∈U
� �=k

yky�

⎤⎥⎦

= − 1
N2

⎛⎜⎝∑
k∈U

y2
k − 1

N − 1

∑
k∈U

∑
�∈U
� �=k

yky�

⎞⎟⎠ = −S2
y

N
.
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This is a second method that depends only on the result from Question 4,
meaning that S1 is a simple random sample of size n1 in a population of
size N and that, by analogy, S2 is a simple random sample of size n2 in a
population of size N − n1.

cov(Ŷ 1, Ŷ 2) = ES1cov(Ŷ 1, Ŷ 2|S1) + covS1

[
E(Ŷ 1|S1), E(Ŷ 2|S1)

]
.

Now, conditionally on S1, Ŷ 1 is constant:

cov(Ŷ 1, Ŷ 2) = covS1

[
Ŷ 1, E(Ŷ 2|S1)

]
.

We have

E(Ŷ 2|S1) =
1

N − n1

∑
k∈U\S1

yk =
NY − n1Ŷ 1

N − n1
.

Ultimately,

cov(Ŷ 1, Ŷ 2) = covS1

(
Ŷ 1,− n1Ŷ 1

N − n1

)
= − n1

N − n1
varS1

(
Ŷ 1

)
= − n1

N − n1

(
1 − n1

N

) S2
y

n1
= −S2

y

N
.

7. Finally, the covariance is

cov (Ŷ , Ŷ 1) = cov
(n1

n
Ŷ 1 +

n2

n
Ŷ 2, Ŷ 1

)
(with n2 = n − n1)

=
n1

n
var(Ŷ 1) +

n2

n
cov(Ŷ 1, Ŷ 2)

=
n1

n

(
1 − n1

N

) S2
y

n1
− n2

n

S2
y

N

=
(
1 − n

N

) S2
y

n
= var (Ŷ ) = cov(Ŷ , Ŷ ).

From this fact, Ŷ and (Ŷ − Ŷ 1) appear to be uncorrelated, which is quite
surprising.

Exercise 2.17 Recapture with replacement
The objective is to estimate the number of rats present on an island. We set
up a trap which is installed at a location selected at random on the island.
When a rat is trapped, it is marked and then released. If, for 50 captured rats,
we count 42 distinctly marked rats, estimate using the maximum likelihood
method the number of rats living on the island, assuming that the 50 rats
were captured at random and with replacement.
Note: the maximum likelihood solution can be obtained through searching
using, for example, a spreadsheet.
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Solution
In this approach, N is the parameter to estimate and r is the random variable
for which it is necessary to express the density and to later maximize. We
denote fN (r) as the probability of obtaining r distinct rats in m trials with
replacement (m is a controlled size, known and non-random) in a population
of size N . This model is reasonable under the conditions of the process. We
note that there are

(
N
r

)
= N !/r!(N − r)! ways of choosing the list of r rats

involved. Thus,

fN(r) =
N !

r!(N − r)!
gN(r),

where gN (r) is the probability of obtaining r distinct and properly identified
rats in m trials with replacement (valid expression because all rats have, for
each trial, the same probability of being selected). This list of rats being
fixed, the universe Ω of possibilities is formed by the group of mappings of
{1, . . . , m} to {1, . . . , N} (we assume that the r rats listed are identified by
the first r integers). We have m ≥ r, and in fact

gN(r) =
∑

ω∈FAV
p(ω),

where p(ω) is the probability of obtaining a given mapping ω and FAV is the
group of favourable mappings. We have p(ω) = N−m, for all ω. It remains to
calculate the total number of favourable cases. It is exactly a question of the
number of surjective mappings of {1, . . . , m} in {1, . . . , r}, which is equal to
r! multiplied by the Stirling number of second kind s(r)

m , which is:

s(r)
m =

1
r!

r∑
i=1

(r

i

)
im(−1)r−i.

The Stirling number of second kind is equal to the number of ways of finding
a group of m elements in r non-empty parts (see Stanley, 1997). However,
the calculation of s(r)

m does not interest us here. Indeed, s(r)
m does not depend

on N but only on m and r. Eventually we obtain

fN (r) =
N !

(N − r)!Nm
s(r)

m , r = 1, . . . ,min(m, N). (2.4)

We are going to maximize the function fN(r) for N . Now, maximizing fN(r)
for N comes back to maximizing

N !
(N − r)!Nm

=
∏r−1

i=0 (N − i)
Nm

,

as s(r)
m does not depend on N . When m = 50 and r = 42, we find the solution

through a search (see Table 2.5). The solution of the maximum likelihood is
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Table 2.5. Search for the solution of maximum likelihood: Exercise 2.17

N N!
(N−r)!Nm × 1021 N N!

(N−r)!Nm × 1021 N N!
(N−r)!Nm × 1021

100 3.97038 120 6.49114 140 7.05245
101 4.13269 121 6.56558 141 7.03671
102 4.29281 122 6.63468 142 7.01773
103 4.45037 123 6.69847 143 6.99563
104 4.60503 124 6.75702 144 6.97054
105 4.75645 125 6.81037 145 6.94259
106 4.90434 126 6.85860 146 6.91191
107 5.04842 127 6.90178 147 6.87864
108 5.18844 128 6.94001 148 6.84288
109 5.32416 129 6.97339 149 6.80478
110 5.45539 130 7.00200 150 6.76444
111 5.58193 131 7.02597 151 6.72199
112 5.70364 132 7.04541 152 6.67755
113 5.82038 133 7.06042 153 6.63122
114 5.93203 134 7.07115 154 6.58311
115 6.03850 135 7.07770 155 6.53335
116 6.13971 136 7.08021 156 6.48202
117 6.23561 137 7.07881 157 6.42924
118 6.32616 138 7.07363 158 6.37510
119 6.41134 139 7.06479 159 6.31970

therefore N = 136. Another manner of tackling the problem consists of setting
the first derivative of the logarithm of the likelihood function equal to zero

d

(
log[∏r−1

i=0 (N−i)]
Nm

)
dN

=
d

dN

[
r−1∑
i=0

log(N − i) − m log N

]
=

r−1∑
i=0

1
N − i

− m

N
= 0,

which gives
r−1∑
i=0

N

N − i
= m.

We obtain a non-linear equation that we can also solve by trial and error.
Obviously, we obtain the same result.

Exercise 2.18 Collection
Your child would like to collect pictures of football players sold in sealed pack-
ages. The complete collection consists of 350 distinct pictures. Each package
contains one picture ‘at random’ in a totally independent manner from one
package to another. Purchasing X packages is similar to taking X samples with
replacement and with equal probability in the population of size N = 350. To
simplify, your child does not trade any pictures.
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1. What is the probability distribution of the number of pictures to purchase
in order to obtain exactly r different players?

2. How many photos must be purchased on average in order to obtain the
complete collection?

Solution

1. In Exercise 2.17, we saw that if nS represents the number of distinct units
obtained by selecting m units with replacement in a population of size N ,
then

pm(r) = Pr(nS = r) =
N !

(N − r)!Nm
s(r)

m ,

where r = 1, . . . ,min(m, N) and s(r)
m is a Stirling number of second kind,

s(r)
m =

1
r!

r∑
i=1

(r

i

)
im(−1)r−i.

If we let X be the random variable representing the number of drawings
necessary to obtain r distinct individuals, then

Pr[X = m]
= Pr[selecting r − 1 distinct units in m − 1 samples with replacement]

×Pr[selecting in the mth sample a unit not yet selected
knowing that r − 1 distinct units have already been selected]

= pm−1(r − 1) × N − r + 1
N

=
N !

(N − r)!Nm
s(r−1)

m−1 ,

for m = r, r + 1, . . . .
2. We know the probability distribution of the random variable X . We now

wish to calculate its expected value in the case r = N , which corresponds
to the complete collection. In the case of any r, we have

E(X) =
∞∑

m=r

m
N !

(N − r)!Nm
s(r−1)

m−1 .

Since ∞∑
m=r

Pr[X = m] = 1,
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we have
∞∑

m=r

s(r−1)
m−1

Nm
=

(N − r)!
N !

=
r−1∏
i=0

1
(N − i)

. (2.5)

By differentiating Identity (2.5) with respect to N (for the right-hand side,
use the logarithmic derivative), we easily obtain

∞∑
m=r

m
s(r−1)

m−1

Nm+1
=

⎛⎝r−1∑
j=0

1
N − j

⎞⎠ (N − r)!
N !

.

We then get

E(X) =
N !N

(N − r)!

∞∑
m=r

m
s(r−1)

m−1

Nm+1
=

r−1∑
j=0

N

N − j
.

For the complete collection:

E(X) =
r−1∑
j=0

N

N − j
= N

N∑
j=1

1
j

= 350 ×
350∑
j=1

1
j
≈ 350 × (log 350 + γ),

where γ is Euler’s constant, approximately 0.5772. We get E(X) ≈ 2252
pictures.

Exercise 2.19 Proportion of students
A sample of 100 students is chosen using a simple random design without
replacement from a population of 1000 students. We are then interested in
the results obtained by these students in an exam. There are two possible
results: success or failure. The outcome is presented in Table 2.6.

Table 2.6. Sample of 100 students: Exercise 2.19

Men Women Total
Success n11 = 35 n12 = 25 n1. = 60
Failure n21 = 20 n22 = 20 n2. = 40

Total n.1 = 55 n.2 = 45 n = 100

1. Estimate the success rate for men and for women.
2. Calculate the approximate bias of the estimated success rates.
3. Estimate the mean square error of these success rates.
4. Give the 95% confidence intervals for the success rate for men RM and

for women RW . What can we say about their respective positions?



Exercise 2.19 43

5. What confidence intervals must be considered in order for the true values
RM and RW to be inside the disjoint confidence intervals? Comment on
this.

6. Using the estimation results by domain, find a more simple result for
Questions 2 and 3.

Solution
The notation for different proportions in the population U is presented in
Table 2.7.

Table 2.7. Notation for different proportions: Exercise 2.19

Men Women Total
Success P11 P12 P1.

Failure P21 P22 P2.

Total P.1 P.2 1

1. The success rate for men is naturally estimated by:

rM =
P̂11

P̂.1

=
n11

n.1
=

35
55

≈ 63.6%.

The success rate for women is estimated by:

rW =
P̂12

P̂.2

=
n12

n.2
=

25
45

≈ 55.6%.

These two estimators are ratios. Indeed, the denominators of these esti-
mators are random.

2. Since the sample size n is 100, we can consider without hesitation that n

is large. The bias of a ratio r = Ŷ /X̂ is given by

B(r) = E(r) − R ≈ R

(
S2

x

X
2 − Sxy

X Y

)
1 − f

n
,

where

xk =
{

1 if the individual is a man (resp. a woman)
0 otherwise,

and

yk =
{

1 if the individual is a man (resp. a woman) who succeeded
0 otherwise,
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for all k ∈ U. For example, we have for the men:

S2
x =

1
N − 1

(∑
k∈U

x2
k − NX

2

)
=

1
N − 1

(
NP.1 − NP 2

.1

)
=

N

N − 1
P.1 (1 − P.1) ,

and

Sxy =
1

N − 1

(∑
k∈U

xkyk − NX Y

)

=
1

N − 1
(NP11 − NP.1P11)

=
N

N − 1
P11 (1 − P.1) .

We therefore have

S2
x

X
2 − Sxy

X Y
=

1
P 2

.1

N

N − 1
P.1 (1 − P.1) − 1

P.1P11

N

N − 1
P11 (1 − P.1) = 0.

The bias is thus approximately null: B(r) ≈ 0.
3. Since n is large, the mean square error, similar to the variance, is given

by the approximation

MSE(r) ≈ 1 − f

nX
2

(
S2

y − 2RSxy + R2S2
x

)
,

where

R =
Y

X
.

For the men, we get

MSE(rM ) ≈ var(rM )

≈ 1 − f

nP 2
.1

N

N − 1

{
P11(1 − P11) − 2

P11

P.1
P11(1 − P.1) +

P 2
11

P 2
.1

P.1(1 − P.1)
}

=
1 − f

nP 2
.1

N

N − 1

{
P11 − 2

P 2
11

P.1
+

P 2
11

P.1

}
=

1 − f

nP.1

N

N − 1
P11

P.1

{
1 − P11

P.1

}
.

The estimator (slightly biased) directly becomes

M̂SE(rM ) =
1 − f

nP̂.1

N

N − 1
P̂11

P̂.1

{
1 − P̂11

P̂.1

}
.
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We get
• For the men:

M̂SE(rM ) =
1 − 1

10

100 55
100

1000
999

35
55

{
1 − 35

55

}
= 0.00379041.

• For the women:

M̂SE(rW ) =
1 − 1

10

100 45
100

1000
999

25
45

{
1 − 25

45

}
= 0.0049432148.

4. With 95 chances out of 100 (roughly), we have the estimated intervals

ĈI(RM ; 0.95) =
[
rM − 1.96

√
M̂SE(rM ), rM + 1.96

√
M̂SE(rM )

]
= [0.636− 0.121; 0.636 + 0.121] = [0.515; 0.757] ,

ĈI(RW ; 0.95) =
[
rW − 1.96

√
M̂SE(rW ), rW + 1.96

√
M̂SE(rW )

]
= [0.556− 0.138; 0.556 + 0.138] = [0.418; 0.694] .

The sample size is not very large, but we can consider it to be a priori
sufficient to approach the distribution of ratios by the normal distribution.
Therefore, the two intervals overlap very considerably: we cannot say that
the ratios RM and RW are significantly different, considering the selected
sample size (that is, we do not find two disjoint intervals).

5. With 40 chances out of 100 (roughly), we have the estimated intervals

ĈI(RM ; 0.40) =
[
rM − 0.52

√
M̂SE(rM ), rM + 0.52

√
M̂SE(rM )

]
= [0.636− 0.032; 0.636 + 0.032] = [0.604; 0.668] ,

ĈI(RW ; 0.40) =
[
rW − 0.52

√
M̂SE(rW ), rW + 0.52

√
M̂SE(rW )

]
= [0.556− 0.037; 0.556 + 0.037] = [0.519; 0.593] .

The establishment of such intervals is an exercise of style which does not
represent much in practice. Except for an ‘absolute miracle’, we indeed
have RM �= RW (why would we think otherwise?). The question is to
find out if the confidence interval actually confirms this evidence or not.
If the two intervals do not overlap, the produced statistic could be used
as evidence in confirming that RM �= RW . If they overlap such as in
Question 4, we find the statistic has no usefulness. We can only say that
the sample was not large enough to reject the equality hypothesis of the
ratios. Obviously, the 40% intervals allow to significantly separate RM

from RW , but the probability of covering the true values is so poor that
we cannot seriously refer to it.
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6. The approach (bias and variance) of the previous questions relied upon
direct calculations carried out starting from the ratio. However, we can
note that we are precisely in the situation of mean estimation in a domain:
for example, if we go back to the notation from Question 2, RM is the
mean of yk for the domain of men (xk = 1). We know that the estimated
mean for the domain (here rM ) has, as expected value, the true value RM

as soon as we use a conditional expectation to the sample size matching
up with the domain (here n.1). A problem occurs when n.1 = 0, in which
case we cannot calculate rM , but this situation can only occur with a
negligible probability (here n = 100). Thus, for all n.1 > 0, we have

E [rM |n.1] = RM ,

and therefore

E [rM ] = En.1E [rM |n.1] = En.1 [RM ] = RM ,

where En.1 [.] is the expectation in relation to the hypergeometric distribu-
tion of the random variable n.1 in a population of size N.1 (excluding the
case where n.1 = 0). The bias is approximately null. For the conditional
variance, we use the characteristic expression for a simple random sample
of size n.1:

var [rM |n.1] =
(

1 − n.1

N.1

)
S1

n.1
,

where
S1 =

N11

N.1

(
1 − N11

N.1

)
=

P11

P.1

(
1 − P11

P.1

)
,

seeing that it is a question of a proportion. The unconditional variance is
obtained by

var [rM ] = En.1var [rM |n.1] + varn.1E [rM |n.1]
= En.1var [rM |n.1]

= En.1

[(
1 − n.1

N.1

)
1

n.1

]
P11

P.1

(
1 − P11

P.1

)
=
(

E
[

1
n.1

]
− 1

N.1

)
P11

P.1

(
1 − P11

P.1

)
.

In the first approximation, as n is large:

E
[

1
n.1

]
≈ 1

E[n.1]
=

1
nP.1

.

Since N.1 = NP.1, we finally get

var [rM ] =
1 − f

nP.1

P11

P.1

(
1 − P11

P.1

)
,

and we indeed find the variance found in Question 3 apart from a factor
N/(N − 1) (this factor is obviously close to 1).
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Exercise 2.20 Sampling with replacement and estimator improvement
Consider a population of size N . We perform simple random sampling with
replacement of size m = 3. We denote S̃ as the random sample selection (with
repetitions). For example, with N = 5, S̃ can have as values

(1, 2, 5), (1, 3, 4), (2, 4, 4), (2, 2, 3), (2, 3, 3), (3, 3, 3).

(we consider two samples containing the same units in a different order to
be distinct). Consider the reduction function r(.), which suppresses from the
sample the information concerning any multiplicity of units. For example:

r((2, 2, 3)) = {2, 3}, r((2, 3, 3)) = {2, 3}, r((3, 3, 3)) = {3}.

We denote S as the random sample without replacement obtained by sup-
pressing the information concerning the multiplicity of units (in S, the order
of individuals does not matter).

1. Calculate the probability Ri that sample S̃ contains exactly i distinct
individuals (i = 1, 2, or 3).

2. Show that the design of S conditional on its size #S is a simple random
design without replacement of fixed size.

3. Give the sampling design for S, that is, the list of all possible values of S
and the probabilities associated with those values.

4. Consider the following two estimators:
The mean with repetition

Ỹ =
1
3

∑
k∈S̃

yk,

the mean calculated on distinct values

Ŷ =
1

#S

∑
k∈S

yk.

Calculate the expected values and the variances for these estimators. Make
a conclusion.

Solution

1. The probability of having three distinct individuals is

R3 =
N − 1

N
× N − 2

N
=

(N − 1)(N − 2)
N2

.

In fact, with the first individual (any) being selected, there is a probability
1/N that the second individual is identical to the first. Furthermore, with
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the first two individuals (distinct) having been selected, there is a proba-
bility 2/N that the third individual is also one of the first two. Another
method consists of counting the number of distinct trios of elements (there
are N(N − 1)(N − 2) combinations) and multiplying this number by the
probability of obtaining any given trio, which is 1/N3. The probability of
getting the same unit three times is

R1 =
1
N

× 1
N

=
1

N2
.

The probability of obtaining two distinct individuals is obtained by the
difference:

R2 = 1 − R1 − R3 =
N2 − (N − 1)(N − 2) − 1

N2
=

3(N − 1)
N2

.

2. For reasons of symmetry between the units, the design of S conditional
on #S had to be simple. However, we are going to calculate this condi-
tional design rigorously. The design of S is obtained from the design of S̃.
Conditional on the size j of S, we have, for j = 1, 2, 3:

Pr(S = s|#S = j) =

⎧⎨⎩ Pr(S = s)
Rj

=

∑
s̃|r(s̃)=s p̃(s̃)

Rj
if #s = j

0 otherwise,

where p̃(s̃) is the probability of obtaining an ordered sample with repeti-
tion s̃. Since the sampling is done with replacement, we have p̃(s̃) = 1/N3,
for all s̃, which is:

Pr(S = s|#S = j) =

⎧⎨⎩
1

Rj
× #{s̃|r(s̃) = s} × 1

N3
if #s = j

0 otherwise.

• If j = 1, and #s = 1, then #{s̃|r(s̃) = s} = 1.
• If j = 2, and #s = 2, then #{s̃|r(s̃) = s} = 6. In fact, if s = {a, b},

we can have, for S̃:

(a, a, b) or (a, b, a) or (b, a, a) or (a, b, b) or (b, a, b) or (b, b, a).

• If j = 3, and #s = 3, then #{s̃|r(s̃) = s} = 3! = 6.

We can then calculate the probability p(s) of selecting s, conditional on
#S:
• If j = 1, and #s = 1, then

Pr(S = s|#S = 1) =
1/N3

1/N2
=
(

N

1

)−1

.
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• If j = 2, and #s = 2, then

Pr(S = s|#S = 2) =
6

N3

3(N−1)
N2

= 2
1

N(N − 1)
=
(

N

2

)−1

.

• If j = 3, and #s = 3, then

Pr(S = s|#S = 3) =
6

N3

(N−1)(N−2)
N2

=
6

N(N − 1)(N − 2)
=
(

N

3

)−1

.

The design conditional on #S is simple without replacement of fixed size
equal to #S.

3. Being conditional on #S, the sample is simple without replacement of
fixed size and we have:

p(s) = Pr(S = s)
= Pr(S = s|#S = #s)Pr(#S = #s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R1 ×
(

N

1

)−1

=
1

N3
if #s = 1

R2 ×
(

N

2

)−1

=
6

N3
if #s = 2

R3 ×
(

N

3

)−1

=
6

N3
if #s = 3.

4. The estimator Ỹ is the classical estimator obtained by sampling with
replacement of size 3. It is unbiased and

var(Ỹ ) =
σ2

y

3
=

N − 1
3N

S2
y ,

where
σ2

y =
1
N

∑
k∈U

(yk − Y )2,

Y =
1
N

∑
k∈U

yk,

and
S2

y =
N

N − 1
σ2

y .

The estimator Ŷ is more particular to treat, but we have

E(Ŷ ) = E(Ŷ |#S = 1)R1 + E(Ŷ |#S = 2)R2 + E(Ŷ |#S = 3)R3.

Being conditional on the size of S, the design is simple without replace-
ment with fixed size, E(Ŷ |#S = α) = Y , for α = 1, 2, 3, and therefore
E(Ŷ ) = Y . Moreover,
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var(Ŷ ) = E{var(Ŷ |#S)} + var
{

E(Ŷ |#S)
}

︸ ︷︷ ︸
=Y

= E{var(Ŷ |#S)}
= var(Ŷ |#S = 1)R1 + var(Ŷ |#S = 2)R2 + var(Ŷ |#S = 3)R3

=
N − 1

N

S2
y

1
R1 +

N − 2
N

S2
y

2
R2 +

N − 3
N

S2
y

3
R3

=
S2

y

N

[
(N − 1)R1 +

N − 2
2

R2 +
N − 3

3
R3

]
=

S2
y(2N − 1)(N − 1)

6N2

=
(

1 − 1
2N

)
var(Ỹ ).

Thus, Ŷ appears to be systematically more efficient than Ỹ .

Exercise 2.21 Variance of the variance
In a simple random design without replacement, give the first- through fourth-
order inclusion probabilities. Next, give the variance for the estimator of the
sampling variance. Simplify the expression for the case where N is very large,
then suppose that y is distributed according to a normal distribution in U .
What can we say about the estimator of the variance if n is ‘large’?

Solution
If we denote Ii as the indicator variable for the presence of unit i in sample
S, we have

Ii =
{

1 if i ∈ S
0 if i /∈ S.

The first- through fourth-order inclusion probabilities are:

π1 = E(Ii) =
n

N
, i = 1, . . . , N,

π2 = E(IiIj) =
n(n − 1)
N(N − 1)

, j �= i,

π3 = E(IiIjIk) =
n(n − 1)(n − 2)

N(N − 1)(N − 2)
, j �= i, k �= i, k �= j,

and

π4 = E(IiIjIkI�) =
n(n − 1)(n − 2)(n − 3)

N(N − 1)(N − 2)(N − 3)
,

j �= i, k �= i, � �= i, k �= j, � �= j, � �= k.
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The corrected variance in the sample is:

s2
y =

1
n − 1

∑
i∈S

(
yi − Ŷ

)2

,

where
Ŷ =

1
n

∑
i∈S

yi.

This estimator is unbiased for the corrected variance in the population

E
(
s2

y

)
= S2

y , (2.6)

where
S2

y =
1

N − 1

∑
i∈U

(yi − Y )2 =
N

N − 1
σ2

y ,

and
Y =

1
N

∑
k∈U

yk.

In fact, since s2
y can also be written (see Exercise 2.7),

s2
y =

1
2n(n − 1)

∑
i∈S

∑
j∈S

(yi − yj)
2
,

we get

E(s2
y) =

1
2n(n − 1)

∑
i∈U

∑
j∈U

(yi − yj)
2 E(IiIj)

=
1

2N(N − 1)

∑
i∈U

∑
j∈U

(yi − yj)
2 = S2

y .

To calculate the variance of s2
y following the sampling, we suppose that the

population mean Y is null, without sacrificing the general nature of the solu-
tion (we can still set Yi = Zi + Y , with Z = 0). We also denote

µ4 =
1
N

∑
i∈U

(yi − Y )4.

Preliminary calculations
We will subsequently use the following four results:

1. If Y = 0, then
1

N2

∑
i∈U

∑
j∈U
j �=i

y2
i y2

j = σ4
y − µ4

N
. (2.7)
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In fact,

1
N2

∑
i∈U

∑
j∈U
j �=i

y2
i y2

j =
1

N2

∑
i∈U

∑
j∈U

y2
i y

2
j − 1

N2

∑
i∈U

y4
i = σ4

y − µ4

N
.

2. If Y = 0, then
1
N

∑
i∈U

∑
j∈U
j �=i

y3
i yj = −µ4. (2.8)

In fact, seeing as
∑

j∈U yj = 0,

1
N

∑
i∈U

∑
j∈U
j �=i

y3
i yj =

1
N

∑
i∈U

∑
j∈U

y3
i yj − 1

N

∑
i∈U

y4
i = −µ4.

3. If Y = 0, then

1
N2

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

y2
i yjyk =

2µ4

N
− σ4

y . (2.9)

Indeed, as

1
N2

∑
i∈U

∑
j∈U

∑
k∈U

y2
i yjyk = 0 =

1
N2

∑
i∈U

y4
i +

1
N2

∑
i∈U

∑
j∈U
j �=i

y2
i y2

j

+
2

N2

∑
i∈U

∑
j∈U
j �=i

y3
i yj +

1
N2

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

y2
i yjyk,

with the results from (2.7) and (2.9) we have:

0 =
µ4

N
+ σ4

y − µ4

N
− 2

µ4

N
+

1
N2

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

y2
i yjyk.

Therefore,

1
N2

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

y2
i yjyk =

2µ4

N
− σ4

y .
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4. If Y = 0, then

1
N2

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

∑
�∈U
� �=i
� �=j
� �=k

yiyjyky� = −3
(

2µ4

N
− σ4

y

)
.

In fact, since
1

N2

∑
i∈U

∑
j∈U

∑
k∈U

∑
�∈U

yiyjyky� = 0

=
1

N2

∑
i∈U

y4
i +

3
N2

∑
i∈U

∑
j∈U
j �=i

y2
i y2

j +
4

N2

∑
i∈U

∑
j∈U
j �=i

y3
i yj

+
6

N2

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

y2
i yjyk +

1
N2

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

∑
�∈U
� �=i
� �=j
� �=k

yiyjyky�,

by the results from (2.7), (2.8), and (2.9), we have

0 =
µ4

N
+ 3
(
σ4

y − µ4

N

)
− 4µ4

N
+ 6
(

2µ4

N
− σ4

y

)
+

1
N2

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

∑
�∈U
� �=i
� �=j
� �=k

yiyjyky�.

Thus
1

N2

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

∑
�∈U
� �=i
� �=j
� �=k

yiyjyky� = −3
(

2µ4

N
− σ4

y

)
.

These preliminary calculations will be used to calculate the variance which
can be divided into two parts according to:

var
(
s2

y

)
= E

(
s4

y

)− {E (s2
y

)}2
.

Since E
(
s2

y

)
is given by (2.6), we must calculate

E
(
s4

y

)
= E

(
1

n − 1

∑
i∈S

y2
i − n

n − 1
Ŷ

2
)2

=
n2

(n − 1)2
E

(
1
n

∑
i∈S

y2
i − Ŷ

2
)2

=
n2

(n − 1)2
(A − 2B + C) ,
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where

A = E

(
1
n

∑
i∈S

y2
i

)2

, B = E

(
1
n

∑
i∈S

y2
i

)
Ŷ

2

, and C = E
(

Ŷ
4
)

.

Calculation of the 3 terms A, B and C

1. Calculation of A

A = E

(
1
n

∑
i∈S

y2
i

)2

= E

⎛⎜⎜⎝ 1
n2

∑
i∈S

y4
i +

1
n2

∑
i∈S

∑
j∈S
j �=i

y2
i y2

j

⎞⎟⎟⎠
=

1
n2

∑
i∈U

y4
i π1 +

1
n2

∑
i∈U

∑
j∈U
j �=i

y2
i y

2
j π2.

By Result (2.7),

A =
Nπ1µ4

n2
+

N2π2

n2

(
σ4

y − µ4

N

)
=

N(π1 − π2)
n2

µ4 +
N2π2

n2
σ4

y . (2.10)

2. Calculation of B

B = E

(
1
n

∑
i∈S

y2
i

)
Ŷ

2

= E

⎛⎝ 1
n3

∑
i∈S

∑
j∈S

∑
k∈S

y2
i yjyk

⎞⎠

= E

(
1
n3

∑
i∈S

y4
i

)
+ E

⎛⎜⎜⎝ 1
n3

∑
i∈S

∑
j∈S
j �=i

y2
i y2

j

⎞⎟⎟⎠

+E

⎛⎜⎜⎜⎜⎝ 1
n3

∑
i∈S

∑
j∈S
j �=i

∑
k∈S
k �=i
k �=j

y2
i yjyk

⎞⎟⎟⎟⎟⎠+ E

⎛⎜⎜⎝ 2
n3

∑
i∈S

∑
j∈S
j �=i

y3
i yj

⎞⎟⎟⎠
=

1
n3

∑
i∈U

y4
i π1 +

1
n3

∑
i∈U

∑
j∈U
j �=i

y2
i y2

j π2

+
1
n3

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

y2
i yjykπ3 +

2
n3

∑
i∈U

∑
j∈U
j �=i

y3
i yjπ2.
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Through Results (2.7), (2.8), and (2.9), we get:

B =
A

n
+

N2π3

n3

(
2µ4

N
− σ4

y

)
− 2Nπ2

n3
µ4

=
A

n
+

2N(π3 − π2)
n3

µ4 − N2π3

n3
σ4

y

=
N(π1 − 3π2 + 2π3)

n3
µ4 +

N2(π2 − π3)
n3

σ4
y . (2.11)

3. Calculation of C

C = E
(

Ŷ
4
)

= E

⎛⎝ 1
n4

∑
i∈S

∑
j∈S

∑
k∈S

∑
�∈S

yiyjyky�

⎞⎠

= E

(
1
n4

∑
i∈S

y4
i

)
+ E

⎛⎜⎜⎝ 3
n4

∑
i∈S

∑
j∈S
j �=i

y2
i y2

j

⎞⎟⎟⎠+ E

⎛⎜⎜⎝ 4
n4

∑
i∈S

∑
j∈S
j �=i

y3
i yj

⎞⎟⎟⎠

+E

⎛⎜⎜⎜⎜⎝ 6
n4

∑
i∈S

∑
j∈S
j �=i

∑
k∈S
k �=i
k �=j

y2
i yjyk

⎞⎟⎟⎟⎟⎠+ E

⎛⎜⎜⎜⎜⎜⎜⎝
1
n4

∑
i∈S

∑
j∈S
j �=i

∑
k∈S
k �=i
k �=j

∑
�∈S
� �=i
� �=j
� �=k

yiyjyky�

⎞⎟⎟⎟⎟⎟⎟⎠
By calculating the expectations, we have

C =
1
n4

∑
i∈U

y4
i π1 +

3
n4

∑
i∈U

∑
j∈U
j �=i

y2
i y2

j π2 +
4
n4

∑
i∈U

∑
j∈U
j �=i

y3
i yjπ2

+
6
n4

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

y2
i yjykπ3 +

1
n4

∑
i∈U

∑
j∈U
j �=i

∑
k∈U
k �=i
k �=j

∑
�∈U
� �=i
� �=j
� �=k

yiyjyky�π4.

Finally, by Results (2.7), (2.8), and (2.9), we get:

C =
Nπ1

n4
µ4 +

3N2π2

n4

(
σ4

y − µ4

N

)
− 4Nπ2

n4
µ4

+
6N2π3

n4

(
2µ4

N
− σ4

y

)
− 3N2π4

n4

(
2µ4

N
− σ4

y

)
=

N(π1 − 7π2 + 12π3 − 6π4)
n4

µ4 +
3N2(π2 − 2π3 + π4)

n4
σ4

y . (2.12)
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From Expressions (2.10), (2.11), (2.12) and (2.6), we finally have the variance
of the estimator of the population variance.

var(s2
y)

=
n2

(n − 1)2
(A − 2B + C) − S4

y

=
n2

(n − 1)2

{
N(π1 − π2)

n2
µ4 +

N2π2

n2
σ4

y

−2
[
N(π1 − 3π2 + 2π3)

n3
µ4 +

N2(π2 − π3)
n3

σ4
y

]
+

N(π1 − 7π2 + 12π3 − 6π4)
n4

µ4 +
3N2(π2 − 2π3 + π4)

n4
σ4

y

}
− S4

y

=
N(N − n)

n(n − 1)(N − 1)2(N − 2)(N − 3)
× {µ4(N − 1) [N(n − 1) − (n + 1)] − σ4

y

[
N2(n − 3) + 6N − 3(n + 1)

]}
.

(2.13)

With simple random sampling, we estimate the sampling variance by:

v̂ar(Ŷ ) =
(
1 − n

N

) s2
y

n
,

an estimator that has the sampling variance:

var(v̂ar(Ŷ )) =
(
1 − n

N

)2 1
n2

var(s2
y),

where var(s2
y) is defined in (2.13). So, this expression is surprisingly complex

for a problem that a priori had appeared to be simple. If N approaches toward
infinity (in practice N is ‘very large’), we get the valuable expression for a
design with replacement:

var(s2
y) ≈ 1

n

{
µ4 − n − 3

n − 1
σ4

y

}
. (2.14)

If the variable y has a normal distribution in population U , then we know
furthermore that µ4 = 3σ4

y , and we get

var(s2
y) ≈ 2σ4

y

n − 1
.

Finally, in the case:

var(v̂ar(Ŷ )) ≈
(
1 − n

N

)2 1
n2

2σ4
y

n − 1
.
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The standard deviation of v̂ar(Ŷ ) varies by 1/n3/2. If n is large, this standard
deviation is

√
n times smaller than v̂ar(Ŷ ): this is the reason for which in

practice we content ourselves with the calculation of v̂ar(Ŷ ), which we judge
to be sufficiently accurate.



3

Sampling with Unequal Probabilities

3.1 Calculation of inclusion probabilities

If we have an auxiliary variable xk > 0, k ∈ U , ‘sufficiently’ proportional to the
variable yk, it is often interesting to select the units with unequal probabilities
proportional to xk. To do this, we first calculate the inclusion probabilities
according to

πk = n
xk∑

�∈U

x�

. (3.1)

If Expression (3.1) gives πk > 1, the corresponding units are selected in the
sample (with an inclusion probability equal to 1), and we then recalculate the
πk according to (3.1) on the remaining units.

3.2 Estimation and variance

The Horvitz-Thompson estimator of the total is

Ŷπ =
∑
k∈S

yk

πk
,

and its variance is:
var(Ŷπ) =

∑
k∈U

∑
�∈U

yk

πk

y�

π�
∆k�,

where ∆k� = πk� − πkπ�, and πk� is the second-order inclusion probability.
If k = �, then πkk = πk. To obtain a positive estimate of the variance (see
page 4), a sufficient constraint is to have ∆k� ≤ 0 for all k �= � in U. This
constraint is called the Sen-Yates-Grundy constraint.

There exist several algorithms that allow for the selection of units with un-
equal probabilities. Two books give a brief overview of such methods: Brewer
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and Hanif (1983) and Gabler (1990). The most well-known methods are sys-
tematic sampling (Madow, 1948), sampling with replacement (Hansen and
Hurwitz, 1943), the method of Sunter (1977) and Sunter (1986). As well, the
method of Brewer (1975) presents an interesting approach. The representation
through a splitting method (see on this topic Deville and Tillé, 1998) allows
for the rewriting of methods in a standardised manner and the creation of
new algorithms.

EXERCISES

Exercise 3.1 Design and inclusion probabilities
Let there exist a population U = {1, 2, 3} with the following design:

p({1, 2}) =
1
2
, p({1, 3}) =

1
4
, p({2, 3}) =

1
4
.

Give the first-order inclusion probabilities. Give the variance-covariance ma-
trix ∆ of indicator variables for inclusion in the sample. Give the variance
matrix of the unbiased estimator for the total.

Solution
Clearly, we have:

π1 =
3
4
, π2 =

3
4
, π3 =

1
2
.

Notice that π1 + π2 + π3 = 2. In fact, the design is of fixed size and n = 2.
Finally, we directly obtain the

∆k� = cov(Ik, I�) =
{

πk� − πkπ� if k �= �
πk(1 − πk) if k = �

∆11 =
3
4

(
1 − 3

4

)
=

3
16

, ∆12 =
1
2
− 3

4
× 3

4
=

−1
16

,

∆13 =
1
4
− 3

4
× 1

2
=

−1
8

, ∆22 =
3
4

(
1 − 3

4

)
=

3
16

,

∆23 =
1
4
− 3

4
× 1

2
=

−1
8

, ∆33 =
1
2

(
1 − 1

2

)
=

1
4
,

which gives the positive symmetric matrix:

∆ =

⎛⎝ 3/16 −1/16 −1/8
−1/16 3/16 −1/8
−1/8 −1/8 1/4

⎞⎠ .

If we denote u as the column vector of yk/πk, k = 1, . . . , N, and 1 as the
column vector of Ik, k = 1, . . . , N, we have
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var

(∑
k∈S

yk

πk

)
= var(u′1) = u′var(1)u = u′∆u.

Exercise 3.2 Variance of indicators and design of fixed size
Given a sampling design for a population U , we denote Ik as the random
indicator variable for the presence of unit k in the sample, and

∆k� =
{

var(Ik) if � = k
cov(Ik, I�) if k �= �.

Show that if ∑
k∈U

∑
�∈U

∆k� = 0,

then the design is of fixed size.

Solution
Denoting nS as the size, a priori random, of the sample S:∑

k∈U

∑
�∈U

∆k� =
∑
k∈U

∑
�∈U

cov(Ik, I�) = var
∑
k∈U

Ik = var(nS).

var(nS) = 0 implies that the design is of fixed size.

Exercise 3.3 Variance of indicators and sampling design
Consider the variance-covariance matrix ∆ = [∆k�] of indicators for the pres-
ence of observation units in the sample for a design p(s),

∆ =

⎛⎜⎜⎜⎜⎝
1 1 1 −1 −1
1 1 1 −1 −1
1 1 1 −1 −1
−1 −1 −1 1 1
−1 −1 −1 1 1

⎞⎟⎟⎟⎟⎠× 6
25

.

1. Is this a design of fixed size?
2. Does this design satisfy the Sen-Yates-Grundy constraints?
3. Calculate the inclusion probabilities of this design knowing that

π1 = π2 = π3 > π4 = π5.

4. Give the second-order inclusion probability matrix.
5. Give the probabilities associated with all possible samples.



62 3 Sampling with Unequal Probabilities

Solution

1. If we denote Ik as the indicator random variable for the presence of unit
k in the sample, we have:

∆k� = cov (Ik, I�) .

If the design is of fixed size, ∑
k∈U

Ik = n,

(with n fixed). We then have, for all � ∈ U :

∑
k∈U

∆k� =
∑
k∈U

cov (Ik, I�) = cov

(∑
k∈U

Ik, I�

)
= cov (n, I�) = 0.

In a design of fixed size, the sum of all rows and the sum of all columns in
∆k� are null. We immediately confirm that this is not the case here, and
thus the design is not of fixed size.

2. No, because we have some ∆k� > 0 for k �= �.
3. Since var(Ik) = πk(1 − πk) = 6/25 for all k, we have

π2
k − πk +

6
25

= 0.

Therefore

πk =
1 ±
√

1 − 4 × 6
25

2
=

1 ± 1
5

2
,

and
π1 = π2 = π3 =

3
5

> π4 = π5 =
2
5
.

4. Since πk� = ∆k� + πkπ�, for all k, � ∈ U, if we let π be the column vector
of πk, k ∈ U, the second-order inclusion probability matrix is:

Π = ∆ + ππ′

=

⎛⎜⎜⎜⎜⎝
1 1 1 −1 −1
1 1 1 −1 −1
1 1 1 −1 −1
−1 −1 −1 1 1
−1 −1 −1 1 1

⎞⎟⎟⎟⎟⎠× 6
25

+

⎛⎜⎜⎜⎜⎝
9 9 9 6 6
9 9 9 6 6
9 9 9 6 6
6 6 6 4 4
6 6 6 4 4

⎞⎟⎟⎟⎟⎠× 1
25

=

⎛⎜⎜⎜⎜⎝
3 3 3 0 0
3 3 3 0 0
3 3 3 0 0
0 0 0 2 2
0 0 0 2 2

⎞⎟⎟⎟⎟⎠× 1
5
.
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5. On the one hand, the second-order inclusion probabilities equal to zero
show that certain pairs of units cannot be selected (such as unit 1 with
unit 4). On the other hand, certain units are always selected together.
Indeed,

Pr(2 ∈ S|1 ∈ S) =
π12

π1
= 1, and Pr(3 ∈ S|1 ∈ S) =

π13

π1
= 1.

Therefore if unit 1 is selected, units 2 and 3 are selected as well. Likewise
if unit 4 is selected, unit 5 is selected as well. By following this reasoning,
we see that units 1, 2, and 3 are always selected together, and units 4 and
5 as well. The only two samples having a strictly positive probability are
{1, 2, 3}, {4, 5} . The probabilities associated with all the possible samples
are given by:

p({1, 2, 3}) = π1 =
3
5
, p({4, 5}) = π4 =

2
5
,

and are null for all other samples.

Exercise 3.4 Estimation of a square root
Consider a population of 5 individuals. We are interested in a characteristic
of interest y which takes the values:

y1 = y2 = 1, and y3 = y4 = y5 =
8
3
.

We define the following design:

p({1, 2}) =
1
2
, p({3, 4}) = p({3, 5}) = p({4, 5}) =

1
6
.

1. Calculate the first- and second-order inclusion probabilities.
2. Give the probability distribution of the π-estimator of the total.
3. Calculate the variance estimator with the Sen-Yates-Grundy expression

(we verify that the design is indeed of fixed size). Is this estimator biased?
Could we have foreseen this?

4. We propose to estimate the square root of the total (denoted
√

Y ), using

the square root of the π-estimator
√

Ŷπ. Give the probability distribution
of this estimator. Show that it underestimates

√
Y . Could we have foreseen

this?
5. Calculate the variance of

√
Ŷπ.
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Solution

1. The inclusion probabilities are

π1 = π2 =
1
2
, π3 = π4 = π5 =

1
3
,

π12 =
1
2
, π34 = π35 = π45 =

1
6
, πk� = 0, for all other pairs (k, �).

2. The Horvitz-Thompson estimator is

Ŷπ =

⎧⎪⎨⎪⎩
1

1/2
+

1
1/2

= 4 with a probability
1
2

8/3
1/3

+
8/3
1/3

= 16 with a probability
1
6

+
1
6

+
1
6

=
1
2
.

3. The samples all being of size 2, the variance estimator to calculate when
we select i and j is

v̂ar
(
Ŷπ

)
=
(

yi

πi
− yj

πj

)2
πiπj − πij

πij
.

Since π1 = π2 = 1/2 and π3 = π4 = π5 = 2 × 1/6 = 1/3, and con-
sidering the values of yi, the results are given in Table 3.1. We obtain

Table 3.1. Estimated variances for the samples: Exercise 3.4

s p(s) v̂ar(Ŷπ)

{1, 2} 1/2 0
{3, 4} 1/6 0
{3, 5} 1/6 0
{4, 5} 1/6 0

v̂ar
(
Ŷπ

)
= 0, for each possible sample, and thus E v̂ar

(
Ŷπ

)
= 0. In fact,

it is obvious that var
(
Ŷπ

)
> 0, since Ŷπ varies depending on the selected

sample. Therefore v̂ar
(
Ŷπ

)
is biased. The bias follows from the existence

of second-order inclusion probabilities equal to zero (see Exercise 3.23).
4. Since √

Ŷπ =

{
2 with a probability 1/2
4 with a probability 1/2,

E
(√

Ŷπ

)
= 2 × 1

2
+ 4 × 1

2
= 3 <

√
10 =

√
Y .
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There is thus underestimation. This result was foreseeable, as the square
root is a concave function, and we know that for each concave function φ,
we have

E [φ(X)] < φ [E(X)] .

5. The variance is given by

var
(√

Ŷπ

)
= E

(
Ŷπ

)
−
[
E
(√

Ŷπ

)]2
= 10 − 9 = 1.

Exercise 3.5 Variance and concurrent estimates of variance
Consider a population U = {1, 2, 3} and the following design:

p({1, 2}) =
1
2
, p({1, 3}) =

1
4
, p({2, 3}) =

1
4
.

1. Give the probability distribution of the π-estimator and the Hájek ratio
of the mean.

2. Give the probability distributions of the two classical variance estimators
of the π-estimator in the case where yk = πk, k ∈ U .

Solution

1. The first- and second-order inclusion probabilities are respectively

π1 = 3/4, π2 = 3/4, π3 = 1/2,

and
π12 = 1/2, π13 = 1/4, π23 = 1/4.

The probability distribution of the π-estimator of the mean is given by

Ŷ π =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
N

(
y1

π1
+

y2

π2

)
=

1
3

(
y1

3/4
+

y2

3/4

)
if S = {1, 2}

1
N

(
y1

π1
+

y3

π3

)
=

1
3

(
y1

3/4
+

y3

1/2

)
if S = {1, 3}

1
N

(
y2

π2
+

y3

π3

)
=

1
3

(
y2

3/4
+

y3

1/2

)
if S = {2, 3},

which gives

Ŷ π =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4
9

(y1 + y2) with a probability
1
2

1
9

(4y1 + 6y3) with a probability
1
4

1
9

(4y2 + 6y3) with a probability
1
4
,
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which comes back to saying that the population size N cannot be esti-
mated with a null variance. The π-estimator of the mean is such that the
sum of the weights of the observations is not equal to 1. Nonetheless, this
estimator is unbiased. Indeed,

E
(
Ŷ π

)
=

1
2
× 4

9
(y1 + y2) +

1
4
× 1

9
(4y1 + 6y3) +

1
4
× 1

9
(4y2 + 6y3)

=
1
3
(y1 + y2 + y3) = Y .

For the Hájek ratio,

• if S = {1, 2}, then

Ŷ H =
(

1
π1

+
1
π2

)−1(
y1

π1
+

y2

π2

)
=
(

1
3/4

+
1

3/4

)−1(
y1

3/4
+

y2

3/4

)
=

1
2

(y1 + y2) ,

• if S = {1, 3}, then

Ŷ H =
(

1
π1

+
1
π3

)−1(
y1

π1
+

y3

π3

)
=
(

1
3/4

+
1

1/2

)−1(
y1

3/4
+

y3

1/2

)
=

1
5

(2y1 + 3y3) ,

• if S = {2, 3}, then

Ŷ H =
(

1
π2

+
1
π3

)−1(
y2

π2
+

y3

π3

)
=
(

1
3/4

+
1

1/2

)−1(
y2

3/4
+

y3

1/2

)
=

1
5

(2y2 + 3y3) .

The probability distribution of the Hájek ratio is thus given by:

Ŷ H =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

(y1 + y2) if S = {1, 2}, with a probability
1
2

1
5

(2y1 + 3y3) if S = {1, 3}, with a probability
1
4

1
5

(2y2 + 3y3) if S = {2, 3}, with a probability
1
4
.
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Here, the sum of the affected weights of the observations is 1 by construc-
tion, in order that the population size N is perfectly estimated (that is,
with a null variance). However, the estimator is biased. Indeed,

E
(
Ŷ H

)
=

1
2
× 1

2
(y1 + y2) +

1
4
× 1

5
(2y1 + 3y3) +

1
4
× 1

5
(2y2 + 3y3)

=
1
20

(7y1 + 7y2 + 6y3) = Y +
y1

60
+

y2

60
− 2y3

60
.

2. If yk = πk, k ∈ U, then yk/πk = 1, k ∈ U, and

Ŷ π =
1
N

∑
k∈S

yk

πk
=

1
N

∑
k∈S

1 =
n

N
,

whatever the selected sample is. We therefore have var
(
Ŷ π

)
= 0.

We now calculate the two classical variance estimators. The Sen-Yates-
Grundy estimator, which estimates without bias the variance in the case
of sampling with fixed size (here n = 2), is given by:

v̂ar2
(
Ŷ π

)
=

1
2N2

∑
k∈S

∑
�∈S
� �=k

(
yk

πk
− y�

π�

)2
πkπ� − πk�

πk�
.

Since yk/πk = 1, k ∈ U, we have(
yk

πk
− y�

π�

)
= 0,

for all k, � and therefore v̂ar2
(
Ŷ π

)
= 0.

The (unbiased) Horvitz-Thompson variance estimator is given by:

v̂ar1
(
Ŷ π

)
=

1
N2

∑
k∈S

y2
k

π2
k

(1 − πk) +
1

N2

∑
k∈S

∑
�∈S
� �=k

yky�

πkπ�

πk� − πkπ�

πk�
.

If S = {1, 2}, and knowing that yk = πk, k ∈ U, we get

v̂ar1
(
Ŷ π

)
=

1
N2

(
(1 − π1) + (1 − π2) + 2 ×

(
1 − π1π2

π12

))
=

1
N2

(
4 − π1 − π2 − 2 × π1π2

π12

)
=

1
9

(
4 − 3

4
− 3

4
− 2 × 3/4 × 3/4

1/2

)
=

1
36

.

If S = {1, 3}, inspired by the previous result, we have
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v̂ar1
(
Ŷ π

)
=

1
N2

(
4 − π1 − π3 − 2 × π1π3

π13

)
=

1
9

(
4 − 3

4
− 1

2
− 2 × 3/4 × 1/2

1/4

)
= − 1

36
.

Finally, if S = {2, 3}, we get

v̂ar1
(
Ŷ π

)
=

1
N2

(
4 − π2 − π3 − 2 × π2π3

π23

)
=

1
9

(
4 − 3

4
− 1

2
− 2 × 3/4 × 1/2

1/4

)
= − 1

36
.

The probability distribution of v̂ar1
(
Ŷ π

)
is therefore:

v̂ar1
(
Ŷ π

)
=
{

1/36 with a probability of 1/2 (if S = {1, 2})
−1/36 with a probability of 1/2 (if S = {1, 3} or {2, 3}).

It is obviously preferable, in the present case, to use v̂ar2
(
Ŷ π

)
which

precisely estimates here the variance of the mean estimator. In fact,
v̂ar1

(
Ŷ π

)
is unbiased, but on the one hand it has a strictly positive

variance, and on the other hand, it can take a negative value, which is un-
acceptable in practice. However, even if it is manifestly preferable to use
v̂ar2

(
Ŷ π

)
in this example, there does not exist a theoretical result that

shows that, in general, v̂ar2
(
Ŷ π

)
has a smaller variance than v̂ar1

(
Ŷ π

)
.

Exercise 3.6 Unbiased estimation
Consider a random design without replacement that is applied to a population
U of size N . We denote πk, k ∈ U, and πk�, k, � ∈ U, k �= �, respectively, as the
first- and second-order inclusion probabilities, strictly positive, and S as the
random sample. Consider the following estimator:

θ̂ =
1

N2

∑
k∈S

yk

πk
+

1
N2

∑
k∈S

∑
�∈S
� �=k

y�

πk�
.

For what function of interest is this estimator unbiased?
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Solution
Let Ik be 1 if k is in S and 0 otherwise.

E
(
θ̂
)

= E

⎛⎜⎝ 1
N2

∑
k∈U

yk

πk
Ik +

1
N2

∑
k∈U

∑
�∈U
� �=k

y�

πk�
IkI�

⎞⎟⎠
=

1
N2

∑
k∈U

yk

πk
E (Ik) +

1
N2

∑
k∈U

∑
�∈U
� �=k

y�

πk�
E(IkI�)

=
1

N2

∑
k∈U

yk +
1

N2

∑
k∈U

∑
�∈U
� �=k

y� =
1

N2

∑
k∈U

∑
�∈U

y� =
1
N

∑
k∈U

Y = Y .

Exercise 3.7 Concurrent estimation of the population variance
For a design without replacement with strictly positive inclusion probabilities,
construct at least two unbiased estimators for σ2

y. We can use the expression
obtained in Exercise 2.7. In this context, why would we try to estimate σ2

y

without bias?

Solution
Since we can write

σ2
y =

1
2N2

∑
k∈U

∑
�∈U
� �=k

(yk − y�)
2 ,

we directly have an unbiased estimator for σ2
y by

σ̂2
y1 =

1
2N2

∑
k∈S

∑
�∈S
� �=k

(yk − y�)
2

πk�
,

as the second-order inclusion probabilities πk� are all strictly positive. How-
ever, this estimator is not the only unbiased estimator for σ2

y . Indeed, we can
also write

σ2
y =

1
N

∑
k∈U

y2
k − Y

2
=

1
N

∑
k∈U

y2
k − 1

N2

∑
k∈U

∑
�∈U

yky�

=
1
N

∑
k∈U

y2
k − 1

N2

∑
k∈U

∑
�∈U
� �=k

yky� − 1
N2

∑
k∈U

y2
k

=
N − 1
N2

∑
k∈U

y2
k − 1

N2

∑
k∈U

∑
�∈U
� �=k

yky�.
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This last expression allows us to construct the following estimator:

σ̂2
y2 =

N − 1
N2

∑
k∈S

y2
k

πk
− 1

N2

∑
k∈S

∑
�∈S
� �=k

yky�

πk�
.

These two estimators are generally different. We prefer a priori the estimator
σ̂2

y1 which has the advantage of always being positive and which takes the
value zero if yk is constant on U , but a complete comparative study would
call for the calculation of variances for these two estimators.
Another solution consists of writing, from the Horvitz-Thompson mean esti-
mator Ŷ π:

var
(
Ŷ π

)
= E

(
Ŷ

2

π

)
− Y

2
,

thus
Y

2
= E

(
Ŷ

2

π

)
− var

(
Ŷ π

)
.

We can therefore construct an unbiased estimator ̂
(Y

2
) for Y

2
:

̂
(Y

2
) = Ŷ

2

π − v̂ar
(
Ŷ π

)
,

where v̂ar
(
Ŷ π

)
is an unbiased estimator for var

(
Ŷ π

)
. A family of unbiased

estimators for σ2
y is therefore

σ̂2
y3 =

1
N

∑
k∈S

y2
k

πk
− Ŷ

2

π + v̂ar
(
Ŷ π

)
.

In the case for designs of fixed size, we know two concurrent expressions for
v̂ar
(
Ŷ π

)
: the Horvitz-Thompson estimator and the Sen-Yates-Grundy esti-

mator.

The testing of an unbiased estimator for σ2
y allows us to compare the per-

formance of a complex design of size n with that of a simple random design
without replacement of the same size, which serves as a reference design. The
variance of a simple design is

var
(
Ŷ SRS

)
=

N − n

Nn

N

N − 1
σ2

y .

After a survey is carried out using a complex design, we are able to estimate
var
(
Ŷ SRS

)
if and only if we have an unbiased estimator for σ2

y . The ratio

DEFF =
var
(
Ŷ π

)
var
(
Ŷ SRS

) ,
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is called the design effect, and acts as a performance indicator of a sampling
design for a given variable of interest y. The design effect can be estimated as
a simple ratio; we get the estimator for var

(
Ŷ SRS

)
by replacing σ2

y with one
of its unbiased estimators.

Exercise 3.8 Systematic sampling
A population is comprised of 6 households with respective sizes 2, 4, 3, 9, 1
and 2 (the size xk of household k is the number of people included). We select
3 households without replacement, with a probability proportional to its size.

1. Give, in fractional form, the inclusion probabilities of the 6 households in
the sampling frame (note: we may recalculate certain probabilities).

2. Carry out the sampling using a systematic method.
3. Using the sample obtained in 2., give an estimation for the mean size X

of households; was the result predictable?

Solution

1. For all k:
πk = 3

xk

X
, with X = 21.

Therefore
πk =

xk

7
, k ∈ U.

A problem arises for unit 4 because π4 > 1. We assign the value 1 to π4

and for the other units we recalculate the πk, k �= 4, according to:

πk = 2
xk

X − 9
= 2

xk

12
=

xk

6
.

Finally, the inclusion probabilities are presented in Table 3.2. We can
verify that

6∑
k=1

πk = 3.

Table 3.2. Inclusion probabilities: Exercise 3.8

k 1 2 3 4 5 6
πk 1/3 2/3 1/2 1 1/6 1/3

2. We select a random number between 0 and 1, and we are interested in
the cumulative probabilities presented in Table 3.3. We advance in this
list using a sampling interval of 1. In each case, we obtain in fine three
distinct individuals (including household 4).
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Table 3.3. Cumulative inclusion probabilities: Exercise 3.8

k 1 2 3 4 5 6∑
j≤k πj 1/3 1 3/2 5/2 8/3 3

3. We have:

X̂ =
1
6

∑
k∈S

xk

πk
=

1
6

[
xk1

1
+

xk2

xk2/6
+

xk3

xk3/6

]
,

with k1 = 4 (household 4 is definitely chosen) and k2 and k3 being the
other two selected households

X̂ =
1
6

[9 + 6 + 6] = 3.5 = X.

This result was obvious, as xk and πk are perfectly proportional, by con-
struct (we have a null variance, thus a ‘perfect’ estimator for the estima-
tion of the mean size X).

Exercise 3.9 Systematic sampling of businesses
In a small municipality, we listed six businesses for which total sales (vari-
able xk) are respectively 40, 10, 8, 1, 0.5 and 0.5 million Euros. With the
aim of estimating total paid employment, select three businesses at random
and without replacement, with unequal probabilities according to total sales,
using systematic sampling (by justifying your process). To do this, we use the
following result for a uniform random variable between [0, 1]: 0.83021. What
happens if we modify the order of the list?

Solution
The sampling by unequal probabilities, proportional to total sales (auxiliary
variable) is a priori justified by the (reasonable) hypothesis that there is a
somewhat proportional relationship between total sales and paid employment.
The choice of systematic sampling is justified by the simplicity of the method.
Since ∑

k∈U

xk = 60,

and
π1 =

nx1∑
�∈U x�

= 3 × 40
60

= 2 > 1,

unit 1 is selected with certainty and removed from the population. Since∑
k∈U\{1}

xk = 20,
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and
π2 =

(n − 1)x2∑
�∈U\{1} x�

= 2 × 10
20

= 1,

unit 2 is selected with certainty and removed from the population. It remains
to select one unit among units 3, 4, 5, 6.∑

k∈U\{1,2}
xk = 10,

π3 =
(n − 2)x3∑
�∈U\{1,2} x�

=
8
10

= 0.8, π4 =
(n − 2)x4∑
�∈U\{1,2} x�

=
1
10

= 0.1,

π5 =
(n − 2)x5∑
�∈U\{1,2} x�

=
0, 5
10

= 0.05, π6 =
(n − 2)x6∑
�∈U\{1,2} x�

=
0, 5
10

= 0.05.

The cumulative inclusion probabilities are (denoting Vk =
∑k

i=3 πk)

V3 = 0.8, V4 = 0.9, V5 = 0.95, V6 = 1.

Since V3 = 0.8 ≤ 0.83021 ≤ V4 = 0.9, we select unit 4. The final sample
selected is {1, 2, 4}. If we modify the order of the list, the two largest units
(x = 40) and (x = 10) are always kept with certainty, whatever the initial
order. With the number selected at random between 0 and 1, everything
depends upon the position of the unit for which x = 8 when we consider the
four remaining units (x = 0.5; 0.5; 1; 8). If this unit is in position 2, 3, or 4,
then it is always selected (easy to verify). If it is in position 1, then anything
is possible: we could select any of the three other individuals, depending on
their appropriate positions (more precisely, we always select the individual
found in the second position). The order of the list therefore influences upon
the selected sample.

Exercise 3.10 Systematic sampling and variance
Consider a population U comprised of six units. We know the values of an
auxiliary characteristic x for all the units in the population:

x1 = 200, x2 = 80, x3 = 50, x4 = 50, x5 = 10, x6 = 10.

1. Calculate the first-order inclusion probabilities proportional to xk for a
sample size n = 4. Consider 0.48444 to be a value chosen from a uni-
form random variable on the interval [0, 1]. Select a sample with unequal
probabilities and without replacement of size 4 by means of systematic
sampling, keeping the initial order of the list.

2. Give the second-order inclusion probability matrix (initial order of the list
fixed).
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3. We assume that a variable of interest y takes the following values:

y1 = 80, y2 = 50, y3 = 30, y4 = 25, y5 = 10, y6 = 5.

Construct a table having, by row each sample s possible and by column the
sampling probabilities p(s), the respective estimators for the total Ŷ (s)
and the variance v̂ar(Ŷ )(s) (in the Sen-Yates-Grundy form). Calculate,
based on this table, the expected values E(Ŷ ) and E(v̂ar(Ŷ )). Comment.

Solution

1. Since X =
∑

k∈U xk = 400, we calculate nx1/X = 4 × 200/400 = 2 > 1.
We eliminate unit 1 from the population and we must again select 3
units among the 5 remaining. Then, we calculate

∑
k∈U\{1} = 200. As

3 × 80/200 = 1.2 > 1, we eliminate unit 2 from the population and
once again we must select 2 units among the 4 remaining. Finally, we
have

∑
k∈U\{1,2} = 120. π3 = π4 = 2 × 50/120 = 5/6 and π5 = π6 =

2×10/120 = 1/6, (denoting Vk =
∑k

i=3 πi) so the cumulative probabilities
are V3 = 5/6, V4 = 10/6, V5 = 11/6, V6 = 2. We thus select the sample
{1, 2, 3, 4}, as shown in Figure 3.1.

Fig. 3.1. Systematic sampling of two units: Exercise 3.10

0 1 2

0
5
6

10
6

11
6

12
6

� �

u u + 1

2. The second-order inclusion probability matrix is given by:⎛⎜⎜⎜⎜⎜⎜⎝
− 1 5/6 5/6 1/6 1/6
1 − 5/6 5/6 1/6 1/6

5/6 5/6 − 4/6 1/6 0
5/6 5/6 4/6 − 0 1/6
1/6 1/6 1/6 0 − 0
1/6 1/6 0 1/6 0 −

⎞⎟⎟⎟⎟⎟⎟⎠ .

The first two lines and the first two columns of this matrix result from
the obvious property:

For all k, for all � : πk = 1 ⇒ πk� = π�.

To determine the other values, we are going to consider all the possible
contexts: in fixed order, if we denote u as the value chosen at random
between 0 and 1, we see that:
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• If 0 ≤ u ≤ 4/6, then we fall in the intervals of units 1 and 2.
• If 4/6 < u ≤ 5/6, then we fall in the intervals of units 1 and 3.
• If 5/6 < u ≤ 1, then we fall in the intervals of units 2 and 4.
Therefore:

π34 =
4
6

; π35 =
1
6

; π46 =
1
6
.

The other combinations indeed yield πk� = 0.
3. There are only three possible samples of fixed size (see the matrix). We

recall:
Ŷ (s) =

∑
k∈S

yk

πk

v̂ar(Ŷ )(s) =
1
2

∑
k∈S

∑
�∈S
� �=k

πkπ� − πk�

πk�

(
yk

πk
− y�

π�

)2

.

The true total Y is 200. We immediately confirm that Ŷ is unbiased for

Table 3.4. Estimated variances according to the samples: Exercise 3.10

s Ŷ (s) v̂ar(Ŷ )(s) p(s)

1, 2, 3, 4 196 0.75 4/6
1, 2, 3, 5 226 −48 1/6
1, 2, 4, 6 190 0 1/6

Y , in accordance with the theory:

E(Ŷ ) =
∑

s

p(s)Ŷ (s) = 200.

On the other hand, the numerical values of the estimated variances are
surprising, in particular for the second sample (we notice that the sum
occurring in v̂ar(Ŷ )(s) only has to be calculated in fact on the lone pair
formed by the two final elements in the samples, with all the other terms
being zero). The presence of an estimation v̂ar(Ŷ ) that is negative is un-
pleasant, but it is theoretically possible. The fact that v̂ar(Ŷ ) is equal
to zero for the third sample is by ‘luck’. Clearly, E v̂ar(Ŷ ) differs from
var(Ŷ ), since E v̂ar(Ŷ ) < 0. That is explained by the presence of three
null second-order inclusion probabilities (see Exercise 3.23), which biases
the estimator v̂ar(Ŷ )(s).
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Exercise 3.11 Systematic sampling and order
Consider a population of 5 units. We want to select using systematic sampling
with unequal probabilities a sample of two units with inclusion probabilities
proportional to the following values of Xi

1, 1, 6, 6, 6.

1. Calculate the first-order inclusion probabilities.
2. Considering the two units where the value of Xi is 1, calculate their

second-order inclusion probabilities for every possible permutation of the
list. What is the outcome?

Solution

1. With n = 2, we have

X =
6∑

i=1

Xi = 20, πi = n
Xi

X
(i = 1 to 6),

and π1 = π2 = 0.1, π3 = π4 = π5 = 0.6.
2. The 10 possible permutations (there are

(
5
2

)
ways of arranging the ‘1’

values among the 5 cases) are given in Table 3.5. However, we will not carry

Table 3.5. The 10 permutations of the population: Exercise 3.11

1 1 1 6 6 6
2 1 6 1 6 6
3 1 6 6 1 6
4 1 6 6 6 1
5 6 1 1 6 6
6 6 1 6 1 6
7 6 1 6 6 1
8 6 6 1 1 6
9 6 6 1 6 1
10 6 6 6 1 1

out calculations for all possible permutations, as we see rather quickly that
the probabilities for lines 1, 4, 5, 8 and 10 are going to be identical. In fact,
with systematic sampling, only the relative position of the units matters.
For these 5 lines, the two smallest values are consecutive and they appear
as five particular breaks of a given circular layout, as shown in Figures 3.2
and 3.3. There only exists one other possible circular order, in which we
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Fig. 3.2. Systematic sampling, case 1: the two smallest probabilities are adjacent:
Exercise 3.11

1 1

6

6

6

Fig. 3.3. Systematic sampling, case 2: the two smallest probabilities are not adja-
cent: Exercise 3.11

1

6

1

6 6

notice that the two smallest units are always separated by only one larger
unit. This circular order will allow for the representation of permutations
2, 3, 6, 7 and 9. Once again, for whatever break is determined as the start of
the permutation, we obtain the same second-order inclusion probabilities.
To cover all situations, we can thus confine our examination to the first
two cases, that is the permutations

1 1 6 6 6
1 6 1 6 6

The first-order inclusion probabilities for the two respective permutations
are

0.1 0.1 0.6 0.6 0.6
0.1 0.6 0.1 0.6 0.6

In the two cases, each corresponding to a particular permutation from the
list at the start, it is impossible to jointly select the two smallest units
because the sampling step value is 1. Thus, this is valid for all possible
permutations and therefore their second-order inclusion probability is null.
The main outcome is that there is no unbiased variance estimator.
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Exercise 3.12 Sunter’s method
We know the values of an auxiliary variable for 10 units in a population. These
values are the following:

10, 10, 8, 6, 6, 4, 2, 2, 1, 1.

Select a sample with unequal probabilities proportional to these values with
n = 4 units by using the Sunter method. Use the findings of a uniform random
variable over [0, 1], given in Table 3.6.
Reminder: The Sunter method consists of scanning an ordered list and, for
each record k (k from 1 to N), to proceed as follows:

• Generate a random number uk between 0 and 1.
• If k = 1, retain the individual k if and only if (step 1) u1 ≤ π1.
• If k ≥ 2, retain the individual k if and only if (step k):

uk ≤ n − nk−1

n −∑k−1
i=1 πi

πk,

where nk−1 represents the number of individuals already selected at the
end of step k − 1.

After having verified that, in every case, at least one of the first two records
is retained, notice that there can be some ‘problems’ with the 5th record.

Table 3.6. Uniform random numbers: Exercise 3.12

0.375489 0.624004 0.517951 0.045450 0.632912
0.24609 0.927398 0.32595 0.645951 0.178048

Solution
By denoting k as the order of the individual, πk as the inclusion probability,
Vk as the cumulative inclusion probabilities (Vk =

∑k
i=1 πi and V0 = 0) and

nk−1 as the number of units selected at the start of step k (n0 = 0), we can
describe the steps of the algorithm using Table 3.7. The selected units are 1,
2, 3 and 4. We observe that we selected the units with the largest inclusion
probabilities. If the first record is not kept (u1 > 0.8), the calculation for the
second record is:

4
4 − 0.8

× 0.8 = 1.

We are thus certain to retain the second record. In this case, we verify that it
is possible for records 3 and 4 not to be retained, in which case, arriving at
record 5, we calculate:
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3
4 − 2.72

× 0.48 = 1.125 > 1.

This value is larger than 1: we retain the individual with certainty, but the
existence of such a possibility suggests that the algorithm does not respect
exactly the πk fixed at the start (we speak of an ‘inexact’ algorithm).

Table 3.7. Application of the Sunter method: Exercise 3.12

xk πk Vk uk nk−1
n − nk−1

n − Vk−1
πk Ik

10 0.8 0.8 0.375489 0 0.8 1
10 0.8 1.6 0.624004 1 0.75 1
8 0.64 2.24 0.517951 2 0.5333 1
6 0.48 2.72 0.045450 3 0.2727 1
6 0.48 3.2 0.632912 4 0 0
4 0.32 3.52 0.246090 4 0 0
2 0.16 3.68 0.927398 4 0 0
2 0.16 3.84 0.325950 4 0 0
1 0.08 3.92 0.645951 4 0 0
1 0.08 4 0.178048 4 0 0

50 4 4

Exercise 3.13 Sunter’s method and second-order probabilities
In a population of size 6, we know the values of an auxiliary characteristic x
for all the units in the population:

x1 = 400, x2 = x3 = 15, x4 = 10, x5 = x6 = 5.

1. Select from this population a sample of size 3 using the Sunter method
(see Exercise 3.12) with unequal inclusion probabilities proportional to the
characteristic x. Keep the initial order of the data and use the following
findings of a uniform random variable over [0,1]:

0.28 0.37 0.95 0.45 0.83 0.74.

2. Give the following second-order inclusion probabilities: π23, π24 (always
keeping the initial order of the data).

Solution

1. For all k, a priori
πk = 3

xk

X
with X = 450.

Clearly, 3x1/X > 1, which leads to π1 = 1. We therefore eliminate indi-
vidual 1 and we start again, which leads to, for k ≥ 2:
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πk = 2
xk

X
, with X = 50.

Finally,

π1 = 1, π2 = 0.6, π3 = 0.6, π4 = 0.4, π5 = 0.2, π6 = 0.2.

If we denote Vk =
∑k

i=1 πi,

V1 = 1, V2 = 1.6, V3 = 2.2, V4 = 2.6, V5 = 2.8, V6 = 3.

The application of the Sunter algorithm is detailed in Table 3.8.

Table 3.8. Application of the Sunter method: Exercise 3.13

k πk Vk uk nk−1 πk(n − nk−1)/(n − Vk−1) Ik

1 1 1 0.28 0 1 1
2 0.6 1.6 0.37 1 0.6 × 2/2 = 3/5 1
3 0.6 2.2 0.95 2 0.6 × 1/(3 − 1.6) = 3/7 0
4 0.4 2.6 0.45 2 0.4 × 1/(3 − 2.2) = 1/2 1
5 0.2 2.8 0.83 3 0 0
6 0.2 3 0.74 3 0 0

The selected sample is: {1,2,4}.
2. We know that, (Sunter, 1986) for all 2 ≤ k < �:

πkl =
πkπ�n(n − 1)

(n − Vk−1)(n − Vk)

k−1∏
i=1

(
1 − 2πi

n − Vi−1

)
,

where (V0 = 0) as soon as
n − nk

n − Vk
πk+1 ≤ 1, (3.2)

for all k = 1, 2, . . . , 5. For this last inequality, we verify that with the
smallest nk possible for all k (being n1 = 1 = n2 = n3, n4 = n5 = 2), we
can only obtain values smaller (or equal) to 1 for the left-hand side. We
then have:

π23 =
π2π3n(n − 1)

(n − π1)(n − π1 − π2)

(
1 − 2

π1

n

)
=

9
35

,

and
π24 =

π2π4n(n − 1)
(n − π1)(n − π1 − π2)

(
1 − 2

π1

n

)
=

6
35

.

It is quite remarkable to note that in this favourable case where (3.2)
is satisfied (which is due to the values of xk), it is possible to calculate
all the second-order inclusion probabilities, starting from a quite simple
expression.
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Exercise 3.14 Eliminatory method
Consider the following sampling design with unequal probabilities: in a pop-
ulation U of size N ≥ 3, we select one unit with unequal probabilities αk, k ∈
U (we have of course

∑
k∈U αk = 1). This unit is definitely removed from

the population and is not kept in the sample. Among the remaining N − 1
units, we select n units according to a simple random sampling design without
replacement.

1. Calculate the first- and second-order inclusion probabilities for this sam-
pling design.

2. Do the second-order inclusion probabilities satisfy the Sen-Yates-Grundy
conditions?

3. How do we determine the αk in order to select the units according to the
inclusion probabilities πk, k ∈ U, fixed a priori?

4. Is this method a) of fixed size, b) without replacement, c) applicable for
every vector of inclusion probabilities fixed a priori? Explain.

5. We assume, from now on, that we know, for each individual k in the
population, an auxiliary information xk, and we set

αk =
xk

X
for all k with X =

∑
k∈U

xk.

a) Having given a sample s = {k1, k2, . . . , kn} (without replacement),
show using an appropriate conditioning that its sampling probability
is

p(s) =
∑

k∈s αk(
N−1
n−1

) .

b) Express the expected value of the ratio:

R̂(S) =
∑

k∈S yk∑
k∈S xk

as a function of p(s) and R̂(s).
c) Calculate the previous expected value and show that the ratio R̂ is an

unbiased estimator of R = Y /X.
6. Using the definition of an expected value, prove the two following results:

a)

AS = X

∑
k∈S y2

k∑
k∈S xk

estimates without bias
∑
k∈U

y2
k,

b)

BS =
X∑

k∈S xk

N − 1
n − 1

∑
k∈S

∑
�∈S
� �=k

yky�,

estimates without bias
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k∈U

∑
�∈U
� �=k

yky�.

7. Deduce an unbiased estimator for
(∑

k∈U yk

)2.
8. Complete by suggesting an unbiased estimator for the variance of R̂ (Note:

it is not necessary to express the true variance of R̂, which is excessively
complicated).

Solution

1. We condition with respect to the result from the first drawing. With a
probability αk, individual k is eliminated, and with a probability (1−αk)
it is kept for the outcome of a simple random design without replacement
of size n among the (N − 1) remaining individuals.

πk = (1 − αk)
n

N − 1
+ αk × 0.

For the second-order inclusion probability, we condition with respect to
the event ‘neither k nor � are selected in the first drawing’: that is achieved
with probability (1−αk −α�), with what remains to be considered being
the second-order probability in a simple random design without replace-
ment of size n among (N − 1) individuals.

πk� = (1 − αk − α�)
n(n − 1)

(N − 1)(N − 2)
+ 0.

2. Yes, as for all k �= �, we have:

πkπ� − πk�

= (1 − αk)(1 − α�)
(

n

N − 1

)2

− (1 − αk − α�)
n(n − 1)

(N − 1)(N − 2)

= (1 − αk − α�)

{(
n

N − 1

)2

− n(n − 1)
(N − 1)(N − 2)

}
+ αkα�

(
n

N − 1

)2

= (1 − αk − α�)
n(N − n − 1)

(N − 2)(N − 1)2
+ αkα�

(
n

N − 1

)2

≥ 0.

3. We immediately deduce the αk by using from 1.:

αk = 1 − πk
N − 1

n
, for all k = 1, . . . , N.
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4. The method is indeed without replacement and of fixed size, but it is only
applicable if 0 ≤ αk ≤ 1, for all k, and therefore if:

πk
N − 1

n
≤ 1,

which is
πk ≤ n

N − 1
, for all k = 1, . . . , N.

This condition is very restrictive and has little chance of occurring in
practice: indeed, with a sample of fixed size n, we have∑

k∈U

πk = n,

and thus the mean inclusion probability is n/N , which is only slightly
less than n/(N − 1). Briefly speaking, the only favourable case is that
for a sample with ‘nearly equal’ probabilities: introducing a first sample
with unequal probabilities therefore does not generate a sufficient margin
of flexibility so that the overall process significantly moves away from a
selection with unequal probabilities.

5. a) The design is

p(s) =
n∑

�=1

p(s | k� selected in the first drawing)αk�
.

If k� is selected in the first drawing, it remains to select the other
(n − 1) elements of s by simple random sampling, among (N − 1)
elements, being:

p(s | k�) =
1(

N−1
n−1

) .

Therefore,

p(s) =
1(

N−1
n−1

)∑
k∈s

αk.

b) We have
E[R̂(S)] =

∑
s∈Sn

p(s)R̂(s),

where Sn is the set of
(

N
n

)
samples without replacement of size n

that we can form in a population of size N .
c) The expected value is

E(R̂) =
∑
s∈Sn

1(
N−1
n−1

) (∑
k∈s

αk

) (∑
k∈s yk

)(∑
k∈s xk

) .
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In fact, ∑
k∈s

xk = X

(∑
k∈s

αk

)
(since αk = xk/X).

Therefore,

E(R̂) =
1
X

1(
N−1
n−1

) ∑
s∈Sn

∑
k∈s

yk

=
1(

N−1
n−1

) 1
X

∑
s∈Sn

∑
k∈U

ykIk, =
1(

N−1
n−1

) 1
X

∑
k∈U

(∑
s∈Sn

Ik

)
yk.

But
∑

s∈Sn
Ik is the number of samples s containing k: all these sam-

ples are determined by choosing their (n − 1) different elements of
k among (N − 1) individuals (the restricted population of k), which
gives ∑

s∈Sn

Ik =
(

N − 1
n − 1

)
.

We finally get

E(R̂) =
∑

k∈U yk

X
= R.

Thus R̂ estimates without bias R. This property, extremely rare for a
ratio, follows directly from the sampling mode.

6. a) This is exactly the same method as in 5.:∑
s∈Sn

p(s)
X(∑

k∈s xk

) ∑
k∈s

y2
k

=
∑
s∈Sn

p(s)
1∑

k∈s αk

∑
k∈s

y2
k =

∑
s∈Sn

1(
N−1
n−1

)∑
k∈s

y2
k =

∑
k∈U

y2
k.

b) The expected value is given by∑
s∈Sn

p(s)
X(∑

k∈s xk

)N − 1
n − 1

∑
k∈s

∑
�∈s
� �=k

yky�

=
N−1
n−1(
N−1
n−1

)
⎛⎜⎝∑

s∈Sn

∑
k∈s

∑
�∈s
� �=k

yky�

⎞⎟⎠ .

In fact,

∑
s∈Sn

∑
k∈s

∑
�∈s
� �=k

yky� =
∑
k∈U

∑
�∈U
� �=k

(∑
s∈Sn

IkI�

)
yky�,
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where U is the total population, and
∑

s∈Sn
IkI� counts the samples of

Sn such as (k, �) ∈ s, that are of the number
(

N−2
n−2

)
. The calculated

expected value is therefore:(
N−2
n−2

)
(

N−1
n−1

)N − 1
n − 1

⎛⎜⎝∑
k∈U

∑
�∈U
� �=k

yky�

⎞⎟⎠ =
∑
k∈U

∑
�∈U
� �=k

yky�.

7. Since (∑
k∈U

yk

)2

=
∑
k∈U

y2
k +

∑
k∈U

∑
�∈U
� �=k

yky� = E(AS) + E(BS),

AS + BS is an unbiased estimator of
(∑

k∈U yk

)2.
8.

var(R̂) =
∑
s∈Sn

p(s) R̂2(s) − R2.

Since

R2 =

(∑
k∈U yk

)2(∑
k∈U xk

)2 = E

[
AS + BS(∑

k∈U xk

)2
]

,

we can construct an unbiased estimator of the variance

v̂ar(R̂) = R̂2(S) − AS + BS(∑
k∈U xk

)2 .

Exercise 3.15 Midzuno’s method
Consider the following sampling design with unequal probabilities: in a popu-
lation U of size N ≥ 3, we select a unit with unequal probabilities αk, k ∈ U,
where ∑

k∈U

αk = 1.

Next, among the N − 1 remaining units, we select in the sample n − 1 units
according to a simple random design without replacement. The final sample
is thus of fixed size n.

1. Calculate the first- and second-order inclusion probabilities for this design.
Write the second-order inclusion probabilities as a function of the first-
order probabilities.

2. Do the second-order inclusion probabilities satisfy the Sen-Yates-Grundy
conditions?
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3. How do we determine the αk in order to select the units according to
πk, k ∈ U, fixed a priori?

4. Is this method a) without replacement, b) applicable for every vector of
inclusion probabilities fixed a priori? Explain.

Solution

1. We condition with respect to the result of the first drawing. Unit k is
selected with probability αk

πk = αk + (1 − αk)
n − 1
N − 1

= αk
N − n

N − 1
+

n − 1
N − 1

.

We condition according to three possible occurrences in the first drawing:
k is kept, or � is kept, or neither k nor � is kept.

πk� = αk
n − 1
N − 1

+ α�
n − 1
N − 1

+ (1 − αk − α�)
(n − 1)(n − 2)
(N − 1)(N − 2)

= (αk + α�)
(n − 1)(N − n)
(N − 1)(N − 2)

+
(n − 1)(n − 2)
(N − 1)(N − 2)

.

The second-order inclusion probabilities are written:

πk� =
(

πk
N − 1
N − n

− n − 1
N − n

+ π�
N − 1
N − n

− n − 1
N − n

)
(n − 1)(N − n)
(N − 1)(N − 2)

+
(n − 1)(n − 2)
(N − 1)(N − 2)

= πk
(n − 1)
N − 2

+ π�
(n − 1)
N − 2

− 2
(n − 1)
N − 1

(n − 1)
N − 2

+
(n − 1)(n − 2)
(N − 1)(N − 2)

=
(n − 1)
N − 2

(
πk + π� − n

N − 1

)
.

2. The second-order inclusion probabilities satisfy the Sen-Yates-Grundy
conditions. Indeed, we have

πkπ� − πk� =
(

αk
N − n

N − 1
+

n − 1
N − 1

)(
α�

N − n

N − 1
+

n − 1
N − 1

)
−(αk + α�)

(n − 1)(N − n)
(N − 1)(N − 2)

− (n − 1)(n − 2)
(N − 1)(N − 2)

= (αk + α�)
(N − n)(n − 1)

(N − 1)2
+

(n − 1)2

(N − 1)2
+ αkα�

(N − n)2

(N − 1)2

−(αk + α�)
(n − 1)(N − n)
(N − 1)(N − 2)

− (n − 1)(n − 2)
(N − 1)(N − 2)

= (1 − αk − α�)
(n − 1)(N − n)

(N − 1)2(N − 2)
+ αkα�

(N − n)2

(N − 1)2
≥ 0.
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3. We calculate αk as a function of πk by

αk = πk
N − 1
N − n

− n − 1
N − n

.

Clearly, we have αk ≤ 1 for all k in U .
4. The method is of course without replacement but in order for it to be

applicable, it is necessary and sufficient that

αk = πk
N − 1
N − n

− n − 1
N − n

≥ 0,

and therefore that

πk ≥ n − 1
N − 1

, for all k = 1, . . . , N,

which is rarely the case (also see Exercise 3.14).

Remark: this method was proposed by Midzuno (see on this topic
Midzuno, 1952; Singh, 1975).

Exercise 3.16 Brewer’s method
Consider a sampling design of fixed size n with unequal probabilities in a
population U of size N whose first two order probabilities are denoted as πk

and πk�. We denote p(s) as the probability of selecting sample s. We say that
a design p∗(.) of size n∗ = N −n is the complement of p(s) if p∗(U\s) = p(s),
for all s ⊂ U.

1. Give the first- and second-order inclusion probabilities for the design p∗(.)
as a function of πk and πk�.

2. Show that if the Sen-Yates-Grundy conditions are satisfied for a sampling
design, they are equally satisfied for the complementary design.

3. The Brewer method (see Brewer, 1975) can be written as a succession of
splitting steps (see on this topic Deville and Tillé, 1998; Tillé, 2001, chap-
ter 6). A splitting method consists of transforming in a random manner
the vector of inclusion probabilities. At each step, the same procedure is
applied to the non-integer inclusion probabilities: we randomly choose one
of the vectors given in Figure 3.4 with a probability λj , where

λj =

{∑
z∈U

πz(n − πz)
1 − πz

}−1
πj(n − πj)

1 − πj
.

Give the splitting step of the complementary design of the Brewer method.
Express this step as a function of the sample size and the inclusion prob-
abilities of the complementary design.

4. Brewer’s method consists of selecting at each step only one unit, that
which corresponds to the coordinate equal to 1. What about the comple-
mentary design?
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Fig. 3.4. Brewer’s method shown as a technique of splitting into N parts: Exer-
cise 3.16

⎡⎢⎢⎢⎢⎢⎢⎣

π1

...
πk

...
πN

⎤⎥⎥⎥⎥⎥⎥⎦
����������

�����������

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
...

πk(n−1)
n−π1

...
πN (n−1)

n−π1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π1(n−1)
n−πj

...
1
...

πN (n−1)
n−πj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

π1(n−1)
n−πN

...
πk(n−1)
n−πN

...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

λ1 λj λN

. . .. . .

Solution

1. The first- and second-order inclusion probabilities for the complementary
design are

π∗
k = Pr(k ∈ U\S) = Pr(k /∈ S) = 1 − Pr(k ∈ S) = 1 − πk,

π∗
k� = Pr[k /∈ S ∩ � /∈ S] = 1 − Pr[k ∈ S ∪ � ∈ S].

Thus
π∗

k� = 1 − πk − π� + πk�,

as
Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B).

2. Since

π∗
kπ∗

� − π∗
k� = (1 − πk)(1 − π�) − (1 − πk − π� + πk�) = πkπ� − πk� ≥ 0,

the Sen-Yates-Grundy conditions are also satisfied for the complementary
design.
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3. The Brewer method produces the vector split

π
(j)
k =

⎧⎨⎩1 k = j

πk
n − 1
n − πj

k �= j,

with λj such that ∑
j∈U

λjπ
(j)
k = πk.

The complementary design gives the following split:

π
(j)∗
k = 1 − π

(j)
k =

⎧⎨⎩1 − 1 k = j

1 − πk
n − 1
n − πj

k �= j.

Being

π
(j)∗
k =

⎧⎨⎩
0 k = j

1 − (1 − π∗
k)

N − n∗ − 1
N − n∗ − 1 + π∗

j

k �= j,

with the same λj . We indeed have
∑

j∈U λjπ
(j)∗
k = 1 − πk = π∗

k.
4. We note that the method now consists of eliminating one unit at each step

(eliminatory method), since π
(j)∗
j = 0 for all j = 1, . . . , N . Thus, in n =

N −n∗ successive steps, the complementary design indeed gives a sample
of size n∗ = N − n, while respecting the set of inclusion probabilities π∗

k

initially presented.

Exercise 3.17 Sampling with replacement and comparison of means
Consider x1, . . . , xk, . . . , xN as a family of any positive values.

1. Mention the sampling probabilities used in a sample proportional to sizes
xk with replacement.

2. What is the unbiased estimator N̂ of the population size N? What is its
variance?

3. Using the fact that a variance is always positive, find a well-known math-
ematical inequality for a family of any positive values.

Solution

1. The sampling probability of individual k is

pk =
xk

X
with X =

∑
k∈U

xk,



90 3 Sampling with Unequal Probabilities

and therefore ∑
k∈U

pk = 1.

2. In a sample with replacement with unequal probabilities pk we can esti-
mate N without bias using the Hansen-Hurwitz estimator:

N̂ =
1
n

n∑
α=1

1
pk(α)

,

where α is the sample number, k(α) is the identifier of the individual
selected for drawing number α, and n is the size of the sample. We have:

var(N̂) =
1
n

∑
k∈U

pk

(
1
pk

− N

)2

,

where k is indeed the identifier of the individual.
3. The variance of N̂ is

var(N̂) =
1
n

∑
k∈U

pk

(
1
p2

k

+ N2 − 2N

pk

)
=

1
n

[∑
k∈U

1
pk

− N2

]
.

In fact,

var(N̂) ≥ 0 ⇒
∑
k∈U

1
pk

≥ N2 ⇒ 1
N

∑
k∈U

X

xk
≥ N.

Thus

1
N

∑
k∈U

1
xk

≥ N∑
k∈U xk

⇒ X ≥ 1
1
N

∑
k∈U 1/xk

.

The arithmetic mean is greater than or equal to the harmonic mean: it is
a well-known result, which is not obvious to obtain using a direct method.

Exercise 3.18 Geometric mean and Poisson design
In a Poisson design where the units are selected from a population U of size
N with inclusion probabilities πk, we want to estimate the geometric mean

θ =
∏
k∈U

y
1/N
k .

To do this, we propose to use the following estimator:

θ̂ =
∏
k∈S

y
1/N
k − 1 + πk

πk
.



Exercise 3.18 91

1. Express θ̂ by changing the product on the sample with a product on the
population and by making use of the indicator variables Ik in the presence
of units k in sample S. What problem can occur for θ̂?

2. Using the expression given in 1., show that θ̂ is unbiased for θ.

3. Give E
(
θ̂2
)

and deduce the exact variance of θ̂.

Solution

1. The estimator can be written

θ̂ =
∏
k∈U

(
y
1/N
k − 1 + πk

πk

)Ik

.

We notice that θ̂ can be negative, especially if πk and yk are jointly small.
This nuisance never occurs in the estimation of a total with the Horvitz-
Thompson estimator.

2. Since the random variables Ik are independent:

E
(
θ̂
)

=
∏
k∈U

E

⎧⎨⎩
(

y
1/N
k − 1 + πk

πk

)Ik

⎫⎬⎭
=
∏
k∈U

{(
y
1/N
k − 1 + πk

πk

)
πk + (1 − πk)

}
=
∏
k∈U

y
1/N
k = θ.

3. It remains to calculate

E
(
θ̂2
)

=
∏
k∈U

E

⎡⎣(y
1/N
k − 1 + πk

πk

)2Ik
⎤⎦

=
∏
k∈U

⎡⎢⎣
(
y
1/N
k − 1 + πk

)2

+ πk − π2
k

πk

⎤⎥⎦ ,

to obtain

var
(
θ̂
)

= E
(
θ̂2
)
−
{
E
(
θ̂
)}2

=
∏
k∈U

⎡⎢⎣
(
y
1/N
k − 1 + πk

)2

+ πk − π2
k

πk

⎤⎥⎦−
∏
k∈U

y
2/N
k .
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Exercise 3.19 Sen-Yates-Grundy variance
The goal of this exercise is to show that, when the sample size is fixed, the
accuracy of a sample without replacement with unequal probabilities can be
expressed under a ‘pleasant’ form, known as the Sen-Yates-Grundy variance.

1. If we denote πk as the inclusion probability of individual k, N as the
population size, and n as the fixed size of the sample, show that:∑

k∈U

πk = n.

2. If we denote πk� as the second-order inclusion probability of k and �, show
that, for all k ∈ U , ∑

�∈U
� �=k

πk� = (n − 1) πk,

(hint: use indicator variables).
3. Show that, for all k ∈ U ,∑

�∈U
� �=k

πkπ� = πk(n − πk),

and deduce that, for all k ∈ U ,∑
�∈U
� �=k

(πkπ� − πk�) = πk(1 − πk).

4. Put the accuracy of the Horvitz-Thompson estimator Ŷ in the form:

var(Ŷ ) =

⎡⎢⎣∑
k∈U

(
yk

πk

)2∑
�∈U
� �=k

(πkπ� − πk�) −
∑
k∈U

∑
�∈U
� �=k

yk

πk

y�

π�
(πkπ� − πk�)

⎤⎥⎦ .

By showing:

var(Ŷ ) =
1
2

∑
k∈U

∑
�∈U
� �=k

(πkπ� − πk�)
(

yk

πk
− y�

π�

)2

.

What is the interest of this form?
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Solution

1. Suppose

Ik =

{
1 if k ∈ S

0 otherwise.

The variable Ik therefore has a Bernoulli distribution, B(1, πk). We know
that:

E(Ik) = πk, var(Ik) = πk(1 − πk).

Indeed, ∑
k∈U

Ik = n (by definition of n).

Therefore,

E

(∑
k∈U

Ik

)
= E(n) = n, because n is fixed.

Finally, ∑
k∈U

πk =
∑
k∈U

E(Ik) = n.

2. Since πk� = E[IkI�], by fixing k we have

∑
�∈U
� �=k

πk� = E

⎛⎜⎝∑
�∈U
� �=k

IkI�

⎞⎟⎠ = E

⎡⎢⎣Ik

⎛⎜⎝∑
�∈U
� �=k

I�

⎞⎟⎠
⎤⎥⎦

= E (Ik(n − Ik)) = E[nIk − (Ik)2] = nπk − πk,

as (Ik)2 = Ik. We conclude that for all k in U :∑
�∈U
� �=k

πk� = (n − 1) πk.

3. For all k, ∑
�∈U
� �=k

πkπ� = πk

⎛⎜⎝∑
�∈U
� �=k

π�

⎞⎟⎠ = πk(n − πk).

Thus, ∑
�∈U
� �=k

(πkπ� − πk�) = πk(n − πk) − (n − 1) πk

= nπk − π2
k − nπk + πk = πk(1 − πk).
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4. The unbiased Horvitz-Thompson estimator is:

Ŷ =
∑
k∈S

yk

πk
=

∑
k∈U

yk

πk︸ ︷︷ ︸
non-random

random︷ ︸︸ ︷
× Ik .

Its variance is:

var(Ŷ ) =
∑
k∈U

(
yk

πk

)2

var(Ik) +
∑
k∈U

∑
�∈U
� �=k

yky�

πkπ�
cov (Ik, I�)

=
∑
k∈U

(
yk

πk

)2

πk(1 − πk) −
∑
k∈U

∑
�∈U
� �=k

yky�

πkπ�
(πkπ� − πk�).

By the expression from 3., we have

var(Ŷ ) =
∑
k∈U

(
yk

πk

)2 ∑
�∈U
� �=k

(πkπ� − πk�) −
∑
k∈U

∑
�∈U
� �=k

yky�

πkπ�
(πkπ� − πk�)

=
1
2

∑
k∈U

∑
�∈U
� �=k

(
yk

2

πk
2

+
y�

2

π�
2
− 2

yky�

πkπ�

)
(πkπ� − πk�)

=
1
2

∑
k∈U

∑
�∈U
� �=k

(
yk

πk
− y�

π�

)2

(πkπ� − πk�).

This form of the variance is known as the Sen-Yates-Grundy variance,

and has the advantage of highlighting the terms
(

yk

πk
− y�

π�

)2

. A ‘good’
sample with unequal probabilities is therefore like πk as much as possible
proportional to yk.

Exercise 3.20 Balanced design
Consider U as a finite population and S as the random sample obtained from
U using a design with inclusion probabilities πk and πk� strictly positive. We
assume that this design is balanced on a characteristic z, otherwise stated∑

k∈S

zk

πk
=
∑
k∈U

zk.
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The total of the characteristic of interest y given by

Y =
∑
k∈U

yk

can be estimated without bias by

Ŷπ =
∑
k∈S

yk

πk
.

1. Show that, for all � in U :∑
k∈U
k �=�

zkπk�

πk
= π�

∑
k∈U

zk − z�. (3.3)

2. What particular result do we obtain when zk = πk, k ∈ U?
3. Show that, for all � ∈ U,

var
(
Ŷπ

)
=

1
2

∑
k∈U

∑
�∈U
� �=k

(
yk

zk
− y�

z�

)2

zkz�
πkπ� − πk�

πkπ�
. (3.4)

4. What result is generalised by Expression (3.4)?
5. Construct an unbiased estimator of the variance starting from Expres-

sion (3.4).

Solution

1. As the design is balanced we have, denoting I� as the indicator for unit �
being in S: ∑

k∈S

zk

πk
I� =

∑
k∈U

zkI�,

and thus

E

⎛⎜⎝∑
k∈U
k �=�

zk

πk
IkI� +

z�I
2
�

π�

⎞⎟⎠ = E

(∑
k∈U

zkI�

)
,

which gives ∑
k∈U
k �=�

zkπk�

πk
= π�

∑
k∈U

zk − z�. (3.5)

2. If zk = πk, then the balanced design is written∑
k∈S

1 =
∑
k∈U

πk = n.
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The balanced design is in that case of fixed sample size. Expression (3.5)
becomes ∑

k∈U
k �=�

πk� = π�(n − 1).

3.

1
2

∑
k∈U

∑
�∈U
� �=k

(
yk

zk
− y�

z�

)2

zkz�
πkπ� − πk�

πkπ�

=
∑
k∈U

∑
�∈U
� �=k

y2
k

z2
k

zkz�
πkπ� − πk�

πkπ�
−
∑
k∈U

∑
�∈U
� �=k

yk

zk

y�

z�
zkz�

πkπ� − πk�

πkπ�

=
∑
k∈U

y2
k

zkπk

∑
�∈U
� �=k

(
z�πk − z�

πk�

π�

)
−
∑
k∈U

∑
�∈U
� �=k

yky�

πkπ�
(πkπ� − πk�) .

In fact,∑
�∈U
� �=k

(
z�πk − z�

πk�

π�

)
= πk(Z − zk) − (πkZ − zk) = zk(1 − πk),

where
Z =

∑
k∈U

zk.

We therefore get

1
2

∑
k∈U

∑
�∈U
� �=k

(
yk

zk
− y�

z�

)2

zkz�
πkπ� − πk�

πkπ�

=
∑
k∈U

y2
k

πk
(1 − πk) −

∑
k∈U

∑
�∈U
� �=k

yky�

πkπ�
(πkπ� − πk�) = var(Ŷπ).

4. When zk = πk, we get the Sen-Yates-Grundy variance for designs of fixed
size.

5. An unbiased estimator is

v̂ar(Ŷπ) =
1
2

∑
k∈S

∑
�∈S
� �=k

(
yk

zk
− y�

z�

)2

zkz�
πkπ� − πk�

πkπ�πk�
.
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Exercise 3.21 Design effect
When we introduce complex sampling designs and we look to calculate the
accuracy using a computer program, we get in general the calculation of a ratio
called the ‘design effect’. This ratio is defined as the ratio of the variance of
the estimator of the total Ŷ over the variance of the estimator that we would
get if we would have performed a simple random sampling design of the same
size n. We denote Ŷ as the simple mean of the yk for k in S.

1. Letting varp(Ŷ ) be the true variance (possibly very complicated) obtained
under the complex design (denoted p), give the expression of the design
effect (henceforth denoted DEFF).

2. How are we going to naturally estimate DEFF(we denote D̂EFF as the
estimator)?
We are henceforth limited to complex designs p with equal probabilities and
of fixed size.

3. Under these conditions, how do we estimate without bias any ‘true’ total
Y ?

4. Calculate the expected value of the sample variance s2
y in the sample,

under the design p (we denote this Ep(s2
y)). We will express this as a

function of varp(Ŷ ), S2
y , n and N .

5. Considering the denominator of D̂EFF, show that its use introduces a bias
that we express as a function of n, N and varp(Ŷ ). For this question, we
assume that n is ‘large’.

6. Deduce that the denominator of D̂EFF has an expected value equal to
the desired value multiplied by the factor:

1 − 1 − f

n
DEFF.

Find the conclusions in the case where n is ‘large’.

Solution

1. The design effect is:

DEFF =
varp(Ŷ )

N2 1−f
n S2

y

.

where S2
y is the variance of the yk in the population.

2. The estimator is
D̂EFF = v̂arp(Ŷ )/N2 1 − f

n
s2

y,

where
s2

y =
1

n − 1

∑
k∈S

(yk − Ŷ )2,
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v̂arp(Ŷ ) is an unbiased estimator of varp(Ŷ ), and Ŷ is the simple mean in
the sample.

3. We estimate without bias Y by

Ŷ =
∑
k∈S

yk

πk
.

Now
∑

k∈U πk = n and πk are constant, which implies that for all k =

1, . . . , N, πk = n/N, and Ŷ = NŶ , where

Ŷ =
1
n

∑
k∈S

yk.

4. We have:
s2

y =
1

n − 1

∑
k∈S

y2
k − n

n − 1
Ŷ

2

,

and

Ep(s2
y) =

1
n − 1

(∑
k∈U

y2
k

n

N

)
− n

n − 1

{
varp(Ŷ ) +

(
EpŶ

)2
}

.

Since the sampling is with equal probabilities, we have Ep(Ŷ ) = Y . Hence:

Ep(s2
y) =

n

n − 1

(
1
N

∑
k∈U

y2
k − (Y )2

)
− n

n − 1
varp(Ŷ )

=
n

n − 1

(
N − 1

N
S2

y − varp(Ŷ )
)

.

5. We have, in the case where n (and therefore N) is large

Ep

(
N2 1 − f

n
s2

y

)
≈ N2 1 − f

n

(
S2

y − varp(Ŷ )
)

= N2 1 − f

n
S2

y − 1 − f

n
varp(NŶ )︸ ︷︷ ︸
Bias

.

6. The expected value is

Ep

(
N2 1 − f

n
s2

y

)
≈ N2 1 − f

n
S2

y − 1 − f

n

(
DEFFN2 1 − f

n
S2

y

)
= N2 1 − f

n
S2

y

(
1 − DEFF

1 − f

n

)
.

Of course, N2(1 − f)S2
y/n is the value that we try to approach (it is

a question of the denominator of DEFF). DEFF is a real value which
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only rarely exceeds the value by a few: indeed, the sample designs are by
construction built to restrict this. We very rarely find values greater than
10, for example. As a result, as soon as n is large, the factor (1 − f)/n
is very small, and the coefficient 1 − DEFF(1 − f)/n is close to 1. The
conclusion is that with sample designs with equal probabilities and of fixed
size, the use of ‘naive’ computer programs based upon the calculation of
s2

y is without any harmful consequence when n is large. On the other hand,
in the contrary case (n of the order of 10, 20 or 30), the calculation of
D̂EFF can turn out to be whimsical.

Exercise 3.22 Rao-Blackwellisation
In a finite population U = {1, . . . , k, . . . , N}, we select three units with re-
placement and with unequal probabilities pk, k ∈ U , where∑

k∈U

pk = 1.

We let ak be the random variable indicating the number of times that unit k
is selected in the sample with replacement.

1. Give the distribution of the probability of vector (a1, . . . , ak, . . . , aN )′.
2. Deduce E [ak] , var [ak] and cov [ak, a�] , k �= �.
3. If S represents the random sample of distinct units, calculate

Pr (k /∈ S) ,

Pr (S = {k}) ,

Pr (S = {k, �}) , k �= �,

Pr (S = {k, �, m}) , k �= � �= m.

4. What is the inclusion probability πk = Pr (k ∈ S)?
5. Determine

E [ak | S = {k}] , E [ak | S = {k, �}] , k �= �,

E [ak | S = {k, �, m}] , k �= � �= m.

6. Define the unbiased estimator of the total of a variable yk using a sum-
mation of U and ak (called the Hansen-Hurwitz estimator).

7. Define the estimator obtained by Rao-Blackwellising the Hansen-Hurwitz
estimator by separately considering the cases S = {k} , S = {k, �} , and
S = {k, �, m} . The Rao-Blackwellisation consists of calculating the ex-
pected value of the estimator conditional on the list of distinct units ob-
tained, here being S (see Tillé, 2001, page 30).
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Solution

1. The vector (a1, . . . , ak, . . . , aN )′ has a multinomial distribution with ex-
ponent 3 and parameters p1, . . . , pk, . . . , pN :

Pr (ak = rk, k ∈ U) =
3!

r1! . . . rk! . . . rN !

∏
k∈U

prk

k .

and ak following a binomial distribution B(3, pk).
2. E [ak] = 3pk, var [ak] = 3pk (1 − pk) and cov [ak, a�] = −3pkp�.
3. Since the three samples are independent, we have

Pr (k /∈ S) = (1 − pk)3 ,

Pr (S = {k}) = p3
k,

Pr (S = {k, �}) = Pr(ak = 2 ∩ a� = 1) + Pr(ak = 1 ∩ a� = 2)
= 3p2

kp� + 3pkp2
�

= 3pkp� (pk + p�) , k �= �,

Pr (S = {k, �, m}) = Pr(ak = a� = am = 1) = 6pkp�pm, k �= � �= m.

4. The inclusion probability is

πk = Pr (k ∈ S) = 1 − Pr (k /∈ S) = 1 − (1 − pk)3 .

5. The conditional expectations are

E [ak | S = {k}] = E [ak | ak = 3] = 3, k ∈ U,

E [ak | S = {k, �}]
=
∑

ak=1,2

akPr (ak | S = {k, �}) (null probability if ak = 0 or ak = 3)

= 1
Pr (ak = 1 ∩ S = {k, �})

Pr (S = {k, �}) + 2
Pr (ak = 2 ∩ S = {k, �})

Pr (S = {k, �})
=

2 × Pr [ak = 2 and al = 1] + 1 × Pr [ak = 1 and al = 2]
Pr [S = {k, �}]

=
2 × 3p2

kp� + 1 × 3pkp2
�

3p2
kp� + 3pkp2

�

=
2pk + p�

pk + p�
, k �= � ∈ U,

E [ak | S = {k, �, m}] = 1, k �= � �= m ∈ U.

6. The unbiased Hansen-Hurwitz estimator is given by

ŶHH =
1
3

∑
i∈U

yiai

pi
.

The estimator is unbiased, because for all i in U , we have E(ai) = 3pi.
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7. Finally, the Rao-Blackwellised estimator is obtained by calculating the
conditional expectation of S, since S indicates the distinct units obtained
in the initial sample of size 3.

ŶRB =
1
3

∑
i∈U

yi

pi
E [ai | S] .

In a general way, E [ai | S] = 0 if i does not appear in S. Question 5 gives
the other values of E [ai | S].
If S = {k},

ŶRB =
yk

pk
.

If S = {k, �},

ŶRB =
yk

3pk

2pk + p�

pk + p�
+

y�

3p�

pk + 2p�

pk + p�
=

1
3

(
yk

pk
+

y�

p�
+

yk + y�

pk + p�

)
.

If S = {k, �, m},
ŶRB =

1
3

(
yk

pk
+

y�

p�
+

ym

pm

)
.

The Rao-Blackwellised estimator has a smaller variance than the Hansen-
Hurwitz estimator, because

var(ŶHH) = varE(ŶHH | S) + Evar(ŶHH | S)

= var(ŶRB) + Evar(ŶHH | S)

≥ var(ŶRB).

In a design with replacement, it is thus always theoretically possible to
improve the Hansen-Hurwitz estimator. Unfortunately, the calculations
turn out to be too complicated when n > 3.

Exercise 3.23 Null second-order probabilities
In a complex design of fixed size and with equal probabilities, show that the
classical estimator v̂ar(Ŷ ) underestimates on average the true variance var(Ŷ )
as soon as there exists at least one pair (k, �) whose second-order inclusion
probability πk� is null. Express the bias as a function of yk.
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Solution
Since

v̂ar(Ŷ ) =
1
2

∑
k∈S

∑
�∈S
� �=k

πkπ� − πk�

πk�

(
yk

πk
− y�

π�

)2

=
1
2

∑
k∈U

∑
�∈U
� �=k

πk�>0

πkπ� − πk�

πk�

(
yk

πk
− y�

π�

)2

IkI�,

denoting Ik as the indicator for the inclusion in S, the expectation is

E(v̂ar(Ŷ )) =
1
2

∑
k∈U

∑
�∈U
� �=k

(πkπ� − πk�)
(

yk

πk
− y�

π�

)2

I{πk� > 0}

= var(Ŷ ) − 1
2

∑
k∈U

∑
�∈U
� �=k

(πkπ� − πk�)
(

yk

πk
− y�

π�

)2

I{πk� = 0},

where I{A} is 1 if A is true and 0 otherwise. The bias of v̂ar(Ŷ ) is therefore:

E(v̂ar(Ŷ )) − var(Ŷ ) = −1
2

∑
k∈U

∑
�∈U
� �=k

πkπ�

(
yk

πk
− y�

π�

)2

I{πk� = 0}.

This bias is strictly negative as soon as a πk� is null. If the probabilities πk

are all equal, the bias is:

B(Ŷ ) = −1
2

∑
k∈U

∑
�∈U
� �=k

(yk − y�)2I{πk� = 0}.

In all cases, it is therefore harmful to use an algorithm imposing πk� = 0 as
soon as yk and y� are very different.

Exercise 3.24 Hájek’s ratio
The object of this exercise is to determine certain conditions in which the
Hájek ratio is less efficient than the classical Horvitz-Thompson estimator.
We consider that the size of the sample is large and that the sample is of fixed
size.

1. Recall, for the estimation of a total Y , the variance expressions of the two
estimators in question.
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2. We can always write, for all k ∈ U ,

yk = α + βxk + uk α, β ∈ R,

where α and β are the regression coefficients (‘true’ and unknown) for y
on x, πk = nxk/X, xk is a size variable, and the units are consequently
selected proportionally to the size. Furthermore, we assume that uk is
‘small’, that is to say that x ‘explains well’ y.
Under these conditions, what happens to the variance expressions for the
two estimators? (Reminder: the terms in uk are numerically negligible.)

3. What is (approximately) the ratio of the two variances?
4. In conclusion, under the conditions of a strong linear correlation between

x and y (that is, uk is small), when can we ‘qualitatively’ consider that
the Horvitz-Thompson estimator is preferable to Hájek’s ratio?

Solution

1. Let Ŷ be the Horvitz-Thompson estimator and ŶH be the Hájek ratio.
We must compare

var(Ŷ ) and var(ŶH) = var

(
N

Ŷ

N̂

)
.

By linearisation, since the sample size is large, we have

var

(
Ŷ

N̂

)
≈ var

(
1
N

(Ŷ − Y N̂)
)

=
1

N2
var(Ẑ),

where
zk = yk − Y ⇒ var(ŶH) ≈ var(Ẑ).

Thus

var(Ŷ ) =
−1
2

∑
k∈U

∑
�∈U
� �=k

∆k�

(
yk

πk
− y�

π�

)2

,

where ∆k� = πk� − πkπ�, and

var(ŶH) ≈ −1
2

∑
k∈U

∑
�∈U
� �=k

∆k�

(
yk − Y

πk
− y� − Y

π�

)2

.

2. If we can write
yk = α + βxk + uk,

then
Y = α + βX + U,
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where α and β are the ‘true’ regression coefficients and U = 0. Then,
considering that the uk are small:(

yk

πk
− y�

π�

)2

≈ α2

(
1
πk

− 1
π�

)2

,

and (
yk − Y

πk
− y� − Y

π�

)2

≈ β2X
2
(

1
πk

− 1
π�

)2

.

3. We therefore have:
var(Ŷ )

var(ŶH)
≈
(

α

βX

)2

.

4. The estimator Ŷ is preferable to ŶH if and only if(
α

βX

)2

< 1 ⇔ | α |<| β | X. (3.6)

In fact,

β =
Sxy

S2
x

, and α = Y − βX.

By (3.6), we get
| Y − βX |<| β | X.

Let us suppose that Y > 0.

• Case 1: Sxy > 0: Expression (3.6) is equivalent to

−βX < Y − βX < βX ⇔ Y < 2βX ⇔ S2
xY < 2SxyX,

which is still equivalent to

1 ≥ ρ >
1
2

CVx

CVy
,

where CVx is the coefficient of variation of the xk. This condition re-
quires in particular CVx < 2CVy.

• Case 2: Sxy ≤ 0: (3.6) is never satisfied.

Conclusion:
Ŷ is only preferable to NŶ /N̂ under the following conditions:

Sxy > 0, CVx < 2CVy and ρ >
1
2

CVx

CVy
.
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In practice, and qualitatively, as we are immediately under the conditions
where ρ is close to 1 (uk small), we retain that Ŷ is a serious competitor
to Hájek’s ratio when the correlation between x and y is positive and that
CVx is noticeably smaller than 2CVy.
These calculations are approximate, but they show that the ratio is not
systematically better than Ŷ : if the relationship between x and y is purely
linear (α = 0), it is certain that the ratio is not interesting. If it is strongly
linear, the result is similar: the ratio is only interesting if there is a constant
term α ‘sufficiently large’.
When we select a sample with inclusion probabilities proportional to size
xk, we are placed exactly in a hypothesis where β is large and α rather
small, that is, in a situation where Ŷ can happen to be greatly better than
the Hájek ratio.

Exercise 3.25 Weighting and estimation of the population size
We consider a variable y measured on the observation units of a population
U of size N . Letting a be a fixed value and known and yk be the value of y
for unit k in U , we construct the variable

zk = yk + a.

Let Y and Z denote respectively the totals of variables y and z in U . We
select from U a random sample S using any design.

1. Recall the expressions for the linear estimators Ẑ of Z and Ŷ of Y .
2. Consider the estimator Ŷa = Ẑ − a × N . Give the relations that the

sampling weights must satisfy so that the estimators Ŷ and Ŷa are identical
for all values of a.

3. We consider a complex design in which the weights are not random. If the
estimator is unbiased, what are these weights?

4. With the estimator defined in 3., how do we write the relations from 2.?
How do we obtain them?

Solution

1. The linear estimators are

Ẑ =
∑
k∈S

wk(S)zk, and Ŷ =
∑
k∈S

wk(S)yk,

where wk(S) is the weight for unit k. This weight, in general, depends on
k but also on sample S.
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2. The estimator Ŷa is

Ŷa =
∑
k∈S

wk(S)zk − aN =
∑
k∈S

wk(S)yk + a
∑
k∈S

wk(S) − aN.

In order that Ŷa and Ŷ be equal for all a, it is necessary and sufficient
that, for all S ∑

k∈S

wk(S) = N. (3.7)

There are as many equations as there are samples S possible.
3. Consider the estimator

Ŷw =
∑
k∈S

wkyk,

where the weights wk are not random, meaning that they do not depend
on S. The expected value is (denoting Ik as the indicator for the inclusion
in S):

E(Ŷw) =
∑
k∈S

wkykE(Ik) =
∑
k∈U

ykwkπk.

So that E(Ŷw) = Y , it is necessary and therefore sufficient that wkπk = 1,
for all k ∈ U , meaning that wk = 1/πk. We then encounter the classical
Horvitz-Thompson estimator.

4. If wk = 1/πk, then Condition (3.7) becomes∑
k∈S

1
πk

= N.

This relation can be obtained if we use a sample balanced on the variable
with a value of 1 everywhere on U .

Exercise 3.26 Poisson sampling
When we undertake a sample with unequal probabilities, in the large majority
of cases, we use sampling methods of fixed size. Nevertheless, there exist very
simple algorithms allowing for samples with unequal probabilities but con-
ferring on the sample a size variable. We are interested here in one of these
algorithms (called ‘Poisson sampling’).

Method: Having a population of size N , we hold a lottery for each individ-
ual, independent from one individual to another: if we have a set of N values
π1, . . . , πk, . . . , πN such that 0 < πk < 1, we generate a set of N indepen-
dent risks u1, . . . , uk, . . . , uN under the uniform distribution over [0,1], and
we retain individual k if and only if uk ≤ πk.

1. a) What is the inclusion probability for each individual k?
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b) What is the expected value (denoted ν) of the sample size? What is
its variance?

c) What is the probability that the sample has a size at least equal to 1?
2. We then use the estimator of the total:

Ŷ =
∑
k∈S

yk

πk
,

where S indicates the final sample selected at the outcome of the N lot-
teries (we assume that this sample has a size at least equal to 1).
a) Verify that Ŷ is unbiased for the true total Y .
b) What is the true variance of Ŷ ? How can we estimate it without bias?

(We always suppose that the sample has a nonzero size.)
c) What is the second-order inclusion probability πk�?

3. We assume here that the average size of the sample is a value that we
fixed (denoted ν) and that it is sufficiently small so that the inclusion
probabilities that we are manipulating are all less than 1.
a) What values πk are we interested in selecting to obtain an optimal

accuracy? We will specify in having ν ‘sufficiently small’ so as to not
have problems with the calculation.

b) In the case where ν � N , what is the optimal accuracy? We will
express this as a function of N , ν, Y and CV, where CV represents
the true coefficient of variation of the yk in the population.

c) Still in the case where ν is ‘sufficiently small’, compare with a simple
random sample of size ν (consider the magnitude of CV in a ‘real
situation’).

4. Finally, what is the advantage of this method? Interpret this.

Solution

1. a) Clearly,
Pr [k ∈ S] = Pr [uk ≤ πk] = F (πk) = πk,

where F (.) is the cumulative distribution function of the uniform dis-
tribution U[0,1], being F (x) = x over [0, 1].

b) The sample size n is a random variable taking the values in

{0, 1, . . . , N}.

If
Ik =

{
1 if k ∈ S
0 if k /∈ S,

then
n =

∑
k∈U

Ik, ν = E(n) =
∑
k∈U

E(Ik) =
∑
k∈U

πk,
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and
var(n) =

∑
k∈U

var(Ik),

because the samples are independent from one individual to another
(since the uk are as well). The variance of n is:

var(n) =
∑
k∈U

πk(1 − πk),

because the Ik follow a Bernoulli distribution: Ik ∼ B(1, πk).
c) Pr[n = 0] = (1 − π1) (1 − π2) (1 − π3) . . . (1 − πN ).

Therefore
Pr[n ≥ 1] = 1 −

∏
k∈U

(1 − πk).

2. a) We have

Ŷ =
∑
k∈U

yk

πk
Ik ⇒ E(Ŷ ) =

∑
k∈U

yk

πk
E(Ik) =

∑
k∈U

yk.

b) Due to the independence of samples, the variance of the sum is the
sum of the variances,

var(Ŷ ) =
∑
k∈U

(
yk

πk

)2

var(Ik) =
∑
k∈U

y2
k

π2
k

πk(1−πk) =
∑
k∈U

1 − πk

πk
y2

k,

and
v̂ar(Ŷ ) =

∑
k∈S

1 − πk

π2
k

y2
k (instantly verifiable).

c) Obvious: πk� = πk × π� (due to the independence of samples).
Note: The Sen-Yates-Grundy variance form is no longer valid here, as the
sample is no longer of fixed size.

3. a) The problem to solve is:

min
πk

∑
k∈U

1 − πk

πk
y2

k,

subject to ∑
k∈U

πk = ν and 0 < πk ≤ 1.

We ‘forget’ for the moment the inequality constraints. This problem
is equivalent to

min
πk

∑
k∈U

y2
k

πk
, subject to

∑
k∈U

πk = ν.
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The Lagrangian function is:

L =
∑
k∈U

y2
k

πk
− µ

(∑
k∈U

πk − ν

)
,

and
∂L
∂πk

= 0 ⇒ − y2
k

π2
k

− µ = 0.

The πk must be proportional to yk: πk = λyk, with

λ =
ν∑

k∈U yk
.

Therefore,

πk = ν
yk∑

k∈U yk
, for all k = 1, 2, . . . , N.

To not have problems in calculation, it is necessary and sufficient that:

ν
yk∑

�∈U y�
≤ 1, k = 1, 2, . . . , N,

that is:

ν ≤
∑

k∈U yk

max
1≤k≤N

(yk)
= N

Y

max
1≤k≤N

(yk)
.

In this case, the inequality constraints defined in the first optimisation
problem do not have to be taken into account. Except for the patho-
logical case where there exist some large values yk, it is an ‘easy’
condition to obtain from the moment where ν � N : this last inequal-
ity corresponds to that for which we understood to be ‘sufficiently
small’.

b) We let V
min

be the optimal accuracy:

V
min

=
∑
k∈U

1 − πk

πk
y2

k,

where
πk = ν

yk

Y
, and Y =

∑
k∈U

yk.

Thus,

V
min

=
∑
k∈U

y2
k

νyk/Y
−
(∑

k∈U

y2
k

)
=

1
ν

(∑
k∈U

yk

)2

−
(∑

k∈U

y2
k

)
.
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We have:

NS2
y ≈

(∑
k∈U

y2
k

)
−
(∑

k∈U yk

)2
N

,

which implies that

V
min

≈ 1
ν

Y 2 −
[
NS2

y +
Y 2

N

]
=
(

1
ν
− 1

N

)
Y 2 − NS2

y .

Let us set f = ν/N, then

V
min

≈ 1 − f

ν
Y 2 − NS2

y = Y 2

[
1 − f

ν
− N

(
Sy

Y

)2
]

= Y 2

[
1 − f

ν
− CV2

N

]
,

where CV is the (true) coefficient of variation of the yk:

CV =
Sy

Y
,

with Y = Y/N. Now, since we are placed in the situation ν � N , we
have f � 1. Thus:

V
min

≈ Y 2

[
1
ν
− CV2

N

]
.

That is, in fine:

V
min

(Ŷ ) ≈ N2

(
1
ν
− CV2

N

)
Y 2.

c) Furthermore:

V
SRS

= var
SRS

(Ŷ ) = N2 1 − f

ν
S2

y ,

where f = ν/N, that is

var
SRS

(Ŷ ) ≈ N2 1
ν

S2
y ,

as f is very small compared to 1 considering the hypothesis made
upon ν.

In a ‘real situation’ the CV are small, in general noticeably smaller
than 1. It is rare that we have Sy > Y with a distribution of income,
or for physical heights of individuals for example, but even if Sy > Y ,
we would anyhow have to have:
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1
ν
� CV2

N
⇔ N

ν
� CV2,

which is indeed our ‘starting hypothesis’, being ν very small compared
to N . Therefore

V
min

= V
min

(Ŷ ) ≈ N2 1
ν

Y 2.

In conclusion, we have

V
SRS

V
min

≈
(

Sy

Y

)2

= CV2.

Under these conditions, we would have to have a priori

V
SRS

≤ V
min

.

4. From the accuracy viewpoint, that Poisson sampling truly has little ad-
vantage, it is the contrary! Indeed, in the previous case, its variance had
been calculated with the optimal πk and, in spite of that, it is greater than
that for simple random sampling. The problem is that each lottery brings
its share to the variance and that all the variances add up. Even if we
had yk/πk rigourously constant, it would even so be necessary to ‘collect’
the variability due to the size variable for the sample, and it is already
an important source of inaccuracy. From the point of view of necessary
and sufficient information to perform the sampling, it is clear that the
Poisson sample uses a minimum amount of information, as it is unnec-
essary to have information about the individuals other than k when we
prepare to hold the lottery on k. This is a kind of ‘minimal information’
sampling (but we pay for it with a degraded accuracy). In comparison,
we indeed see that in ‘classical’ sampling, we have πk = nxk/X , and it
is thus necessary to know X (auxiliary information), being the xk for all
the individuals before we can begin the algorithm. This last case, which
corresponds for example to systematic sampling, is thus more demanding
in terms of information.

Exercise 3.27 Quota method
We are interested in a quota sampling design based upon two qualitative vari-
ables x1 and x2 (see, for an introduction to the method and the vocabulary,
Ardilly, 1994). We denote Y ij as the true mean of the variable of interest y
in the sub-population Uij of size Nij intersecting the modes i of x1 and j of
x2. The sample S again intersecting Uij is denoted Sij and its size is nij . For
every individual k of Uij , we define εk = yk − Y ij . We traditionally use the
true simple mean Ŷ in S as the estimator of the true mean Y .
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1. Write Ŷ as a function of Y ij , nij and εk.
2. Empirical practice leads the interviewer to select individual k with a prob-

ability πk (unknown). Calculate the bias of Ŷ , conditional on nij . We will
express this while using the covariances between y and π in the sub-
populations Uij .

3. What can we fear, in practice?
4. Under what favourable conditions is the conditional bias null?

We will be successively placed in the following cases:
a) intersecting quotas,
b) marginal quotas.

Solution

1. We have
Ŷ =

1
n

∑
k∈S

yk =
∑

i

∑
j

nij

n
Ŷ ij ,

where
Ŷ ij =

1
nij

∑
k∈Sij

yk = Y ij +
1

nij

∑
k∈Sij

εk.

2. We conditionally justify on nij (for which the distribution is complex):

E(Ŷ ) =
∑

i

∑
j

nij

n
E(Ŷ ij).

In fact,

E(Ŷ ij) = Y ij +
1

nij

∑
k∈Uij

εkπk.

Furthermore, if we denote Cij as the covariance in Uij between y and π,
we have:

Cij =
1

Nij

∑
k∈Uij

(yk − Y ij)(πk − πij) =
1

Nij

∑
k∈Uij

εk(πk − πij),

where
πij =

1
Nij

∑
k∈Uij

πk.

Since ∑
k∈Uij

εk = 0,

we have
Cij =

1
Nij

∑
k∈Uij

εkπk.
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Finally,

E(Ŷ ij) = Y ij +
Nij

nij
Cij ,

and

E(Ŷ − Y ) =

⎛⎝∑
i

∑
j

nij

n
Y ij − Y

⎞⎠+
N

n

∑
i

∑
j

Nij

N
Cij

=
∑

i

∑
j

(
nij

n
− Nij

N

)
Y ij +

N

n

∑
i

∑
j

Nij

N
Cij .

3. The bias is composed of two terms:

A =
∑

i

∑
j

(
nij

n
− Nij

N

)
Y ij , B =

N

n

∑
i

∑
j

Nij

N
Cij .

That suggests the following comments:
• The term A, linked in a complex way to πk through nij , is not zero

unless, for all (i, j) we have nij/n = Nij/N . This case corresponds
to the intersecting quotas, which can only be brought into use if we
know the Nij . In the case of marginal quotas, even if n becomes very
large, we cannot really count on a convergence of A towards zero,
because we can imagine that certain categories Uij are left frequently
underrepresented while the marginal quotas remain satisfied.

• The term B does not have any particular reason to be zero (also see
4.), as in a general manner, we very well imagine that in practice
the empirical methods produce a correlation between y and π: the
interviewer could indeed select an individual k with a probability πk

linked to the value of yk. If we take the example of a survey on the
duration of work, πk will be most probably negatively correlated with
yk, because a person who works a great deal will be more difficult to
contact. This term is moreover still less sensitive to the size n than
is A: we can even say that it only depends a little on n, as through
this analogy with probabilistic samples, we can think that πk varies
a priori like n (πk = n/N in simple random sampling, πk = nXi/X
in sampling proportional to size, for example). By this analogy, we
can suppose that it signifies that Cij varies like n (more or less), and
therefore that B does not practically depend on n. This persistance of
a bias a priori (unmeasurable) is generally presented as a weakness of
the quota method.

4. a) Case of intersecting quotas:
The bias is reduced to the term B. In order for it to be zero, it is
necessary and sufficient that the Cij are all zero. In practice, two
cases appear favourable:
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• either yk is constant in Uij : it is indeed to approach this context
that we find in practice the quota variables x1 and x2 which best
explain y,

• or πk is constant in Uij : to approach this context, we conceive
collection instructions in such a way that sampling carried out by
the interviewer is the most ‘uniform’ possible.

b) Case of marginal quotas:
The conclusions in case (a) still hold, but it is necessary to add the
condition A = 0. In a conditional approach, the favourable case is that
for the additive decomposition of Y ij of type:

Y ij = ai + bj for all i, for all j.

Indeed:

A =
∑

i

∑
j

(
nij

n
− Nij

N

)
(ai + bj)

=
∑

i

⎛⎝∑
j

nij

n
−
∑

j

Nij

N

⎞⎠ ai +
∑

j

(∑
i

nij

n
−
∑

i

Nij

N

)
bj .

Satisfying the marginal quotas sets,

for all j
∑

i

nij

n
=

n.j

n
=

N.j

N
=
∑

i

Nij

N
,

and for all i
∑

j

nij

n
=
∑

j

Nij

N
, that is A = 0.

In conclusion, to protect against bias that is of great importance in the frame-
work of the marginal quota method (it is a question of a frequently encoun-
tered design), we can proceed by simultaneously ensuring:

• selection probabilities πk as invariable as possible;
• a choice of quota variables that explains well the variable of interest, ac-

cording to a model of type (for the two quota variables)

yk = ai + bj + εk

with εk small.

Exercise 3.28 Successive balancing
We select a sample S1 with probabilities of selection πk,1 from a population U
of size N . This sample is balanced (see, for an overview of balanced sampling,
Deville and Tillé, 2004; Tillé, 2001, Chapter 8) on two variables: πk,1 and an
auxiliary variable xk. Sometime later on, we select from the complement U\S1

a second sample S2, with equal probabilities and of fixed size. We balance S2

on xk.
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1. Write the balancing equations. What can we say about the size of S1?
2. What is the selection probability πk in the overall sample S = S1 ∪ S2?
3. Is the overall sample S balanced on xk?
4. Examine the particular case where πk,1 is constant.

Solution

1. The balancing of S1 leads to two equations:∑
k∈S1

πk,1

πk,1
=
∑
k∈U

πk,1, (3.8)

∑
k∈S1

xk

πk,1
=
∑
k∈U

xk. (3.9)

The left-hand term of (3.8) represents the size of S1, which is consequently
constant. The balancing of S2 is carried out in U\S1 and leads to the
following equation: ∑

k∈S2

xk

πk,2
=

∑
k∈U\S1

xk, (3.10)

where πk,2 is the selection probability of k in S2. Since S2 is of fixed size
n2 and with equal probabilities, we have

πk,2 =
n2

N − n1
for all k of U\S1.

Hence
1
n2

∑
k∈S2

xk =

∑
k∈U xk −∑k∈S1

xk

N − n1
. (3.11)

2. We denote p(s1) as the probability of selecting s1.

πk = Pr(k ∈ S) =
∑
s1

Pr(k ∈ S|s1)p(s1)

=
∑
s1�k

1 × p(s1) +
∑
s1 ��k

Pr(k ∈ S|s1)p(s1).

In fact, by definition πk,1 =
∑

s1�k p(s1) and, for s1 such that k /∈ s1,

Pr(k ∈ S|s1) = Pr(k ∈ S2) =
n2

N − n1
.

Therefore,

πk = πk,1 +
n2

N − n1

∑
s1 ��k

p(s1) = πk,1 +
n2

N − n1
(1 − πk,1).

3. Balancing S on xk would correspond to the equality, for all S:∑
k∈S

xk

πk
=
∑
k∈U

xk,
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such that ∑
k∈S1

xk

πk
+
∑
k∈S2

xk

πk
=
∑
k∈U

xk. (3.12)

Obviously, considering the relation which links πk to πk,1, we cannot use
Equations (3.9) and (3.11) to get this balance, in any general context
where πk,1 is unspecified.

4. If πk,1 is constant, since S1 is of fixed size n1, we inevitably have πk,1 =
n1/N . In this particular case, we get πk = (n1+n2)/N . But (3.9) simplifies
to:

1
n1

∑
k∈S1

xk =
1
N

∑
k∈U

xk.

Likewise, (3.11) becomes:

1
n2

∑
k∈S2

xk =
1

N − n1

(
1 − n1

N

)∑
k∈U

xk =
1
N

∑
k∈U

xk.

Along the way, we notice that this last equality signifies that S2 is balanced
on xk in U (and no longer only in U\S1). Finally, the left-hand side of
(3.12) becomes:

N

n1 + n2

(∑
k∈S1

xk +
∑
k∈S2

xk

)
=

N

n1 + n2

(
n1

N

∑
k∈U

xk +
n2

N

∑
k∈U

xk

)
=
∑
k∈U

xk.

There is indeed a balancing of S on xk.

Exercise 3.29 Absence of a sampling frame
This exercise deals with estimation in a context of an absence of an exhaustive
sampling frame of individuals. More precisely, it is about introducing a method
of estimation in a survey of homeless people who frequent a given shelter in
a given city. The shelter does not have any list of names other than from day
to day.

1. What statistical problem are we going to naturally encounter if we are
content to place a team of interviewers for a given day at the shelter?

2. We decide to observe the population for a period of T consecutive days (t
represents the day, t varies from 1 to T , for example describing a complete
month). We consider that a homeless person frequents the shelter at most
one time each day, and we denote Ut as the population having frequented
the shelter on day t. Under these conditions, what is the population of
interest ŨT ? What is the unit of observation and what is the sampling
unit? What technical difficulty are we going to face during this phase of
estimation?
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3. We are interested in a variable yk that does not depend on time (example:
age at the end of the study). We denote rk as the total number of visits
made to the shelter by individual k of ŨT during the course of the period
T (rk = 1, 2, . . . , T ). Express the total

Y =
∑
ŨT

yk

as a function of the sums of yk/rk on the populations Ut.
4. If, on day t, individual k frequenting the shelter is selected with probability

πt
k, how do we estimate Y without bias? (We denote Ŷ as the estimator

and st as the sample for day t.)
5. What is the variance of Ŷ ? (The sample is of fixed size every day t, and

the samples are independent from one day to the next.) How must we
choose the sampling probabilities πt

k?
6. Write Ŷ in the form of a linear estimator involving a sum on ST , the

overall sample obtained during the period T, with

ST =
T⋃

t=1

st.

Does Ŷ depend on the inclusion probability in ST ?
7. In practice, where does the difficulty lie with estimation for this survey?

Solution

1. There exists a considerable ‘conditional’ bias on the selected day: indeed,
we claim to estimate a parameter on the entire population for which cer-
tain individuals cannot be surveyed. The inference is only valid for the
homeless population having frequented the shelter on day t (the other
homeless individuals have an inclusion probability of zero), which is surely
not the result we are looking for. If we consider that the day is ‘randomly’
selected, the bias can disappear if an adequate weighting scheme is used
and if we begin from the hypothesis that over the course of period T each
homeless person frequents the shelter at least once. On the other hand,
the variance is strong if the characteristics of frequenting depend appre-
ciably on the selected day (we can imagine that weather conditions are a
deciding factor, for example: according to whether we select a very cold
day or a mild day instead, we probably have survey units with a rather
different profile).

2. The inference focuses in this case on:

ŨT =
T⋃

t=1

Ut.
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We obviously get a better coverage of the population in a precarious situa-
tion with ŨT than for any Ut. Obviously, this coverage is improved when T
increases because there exist people who only visit the shelter occasionally.
It is, however, very difficult (impossible?) to find a totally satisfying con-
cept for the population in this context, starting from the moment where
we are interested in a population that is naturally unstable in time (like
all human population everywhere, but this is especially marked in this
sensitive domain): conversely if T is large (one year for example), the ‘so-
cial’ sense of ŨT such as the collection of punctual populations Ut which
are evolving becomes questionable. The observation unit is the homeless
person as long as he is part of ŨT . The sampling unit is instead the visit
made by the individual in the shelter, on a given day. The difficulty is due
to the fact that Ut ∩ Ut′ �= ∅. An individual can thus be selected through
several visits (at the most, he can be selected each day t if he frequents
the shelter every day). This multiplicity of visits constitutes a particular
technical difficulty for estimation, as a homeless individual who frequents
the shelter often has a greater chance of being selected than an individual
who seldom visits. It is then necessary to find adequate weighting.

3. We have:
T∑

t=1

∑
k∈Ut

yk =
∑

k∈ŨT

rkyk,

as on T days, yk is encountered rk times as a member of the left-hand
side. Therefore,

Y =
∑

k∈ŨT

yk =
T∑

t=1

∑
k∈Ut

yk

rk
.

4. The fundamental contribution of the previous rewriting is due to the fact
that the sampling is effectively practical for the units of Ut (in fact for the
visits, but a visit refers to a single individual on a given day), and not for
those of ŨT (population constructed from Ut but that does not directly
identify the sampling units). We estimate without bias∑

k∈Ut

yk

rk
by

∑
k∈st

yk

πt
krk

.

Therefore:

Ŷ =
T∑

t=1

∑
k∈st

yk

πt
krk

estimates Y without bias, where st designates the selected sample over
the course of day t.

5. The variance is:

var(Ŷ ) =
T∑

t=1

var

(∑
k∈st

yk/rk

πt
k

)
,
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because the samples are independent from one day to another. Thus

var(Ŷ ) =
T∑

t=1

∑
i�=j
Ut

(πt
iπ

t
j − πt

i,j)

(
yi

riπt
i

− yj

rjπt
j

)2

.

This is the classical expression, applied on the individual variable yi/ri.
We are interested in having πt

i as proportional as possible to yi/ri: what
is original here is the presence of the factor 1/ri. If it is possible, that is
if in practice we have at our disposal a priori the information ri (or some
information which is more or less proportional to it), we then more likely
select the individuals where ri is small, being the homeless people who
only rarely frequent the shelter.

6. The estimator is written

Ŷ =
∑

k∈ST

(∑
t∈Sk

1
πt

k

)
yk

rk
,

where
Sk= {t = 1, . . . , T such that k ∈ st} .

Therefore

Ŷ =
∑

k∈ST

wkyk where wk =
1
rk

(∑
t∈Sk

1
πt

k

)
.

The inclusion probability of k in ST is:

Pr[k ∈ ST ] = Pr

[
T⋃

t=1

{k ∈ st}
]

.

The events {k ∈ st} are not disjoint, and the probability of their union
is expressed in a complicated way as a function of Pr[k ∈ st] = πt

k and is
not involved in Ŷ (which recalls that the sample is not undertaken in a
‘simple’ manner in ŨT ).

7. In concrete terms, for all k, the difficulty consists in obtaining a value
for rk for the past period: if it is short enough, it is still possible by
questioning the survey subject. On the other hand, obtaining rk in a
sufficiently reliable manner on the set of periods T (and therefore partly
on the future) is practically impossible. We thus estimate rk, for example
after looking at a short enough time period before the interview (several
days) and then by using the rules of three to estimate the frequency on
the set of periods, under the hypothesis of a relatively stable behaviour of
frequenting the shelter over time.
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Stratification

4.1 Definition

Consider a population U split into H parts Uh, called ‘strata’, such that
H⋃

h=1

Uh = U, and Uh ∩ Ui = ∅,

for all (h, i) with h �= i. A design is called stratified if in each stratum Uh we
select a random sample Sh of fixed size, and that the sample selection in each
stratum is taken independently of the selection done in all other strata (see
Figure 4.1).

Fig. 4.1. Stratified design
UU

S S S1

1 h

H

U

h

H

4.2 Estimation and variance

We furthermore assume throughout this chapter that the designs are simple
without replacement within each stratum. The population size Uh is denoted
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Nh and the sample size Sh is denoted nh, where h = 1, ..., H. Since the
inclusion probability is πk = nh/Nh, for all k ∈ Uh, the Horvitz-Thompson
estimator of the total becomes

Ŷπ =
∑
k∈S

yk

πk
=

H∑
h=1

Nh

nh

∑
k∈Sh

yk =
H∑

h=1

NhŶ h,

where Ŷ h is the unbiased mean estimator for stratum h:

Ŷ h =
1
nh

∑
k∈Sh

yk.

The variance of Ŷπ is

var(Ŷπ) =
H∑

h=1

N2
h

Nh − nh

Nh

S2
yh

nh
,

where
S2

yh =
1

Nh − 1

∑
k∈Uh

(yk − Y h)2,

and
Y h =

1
Nh

∑
k∈Uh

yk.

The variance can be estimated by

v̂ar(Ŷπ) =
H∑

h=1

N2
h

Nh − nh

Nh

s2
yh

nh
,

where
s2

yh =
1

nh − 1

∑
k∈Sh

(yk − Ŷ h)2.

The choice of the nh specifies different stratified designs:

• designs stratified with proportional allocation,

nh = n
Nh

N
; (4.1)

• designs stratified with optimal allocation to estimate a total (case of iden-
tical survey unit cost in all strata),

nh = n
NhSyh∑H
i=1 NiSyi

. (4.2)

Expressions (4.1) and (4.2) do not generally give an integer value for nh; it
is therefore necessary to turn to a rounding procedure. Furthermore, Expres-
sion (4.2) sometimes leads to having nh > Nh. In this case, we take a census
in the strata where this problem exists, and we restart the calculation of nh

for the remaining strata.
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EXERCISES

Exercise 4.1 Awkward stratification
Given a population U = {1, 2, 3, 4} and y1 = y2 = 0, y3 = 1, y4 = −1, the
values taken by the characteristic y.

1. Calculate the variance of the mean estimator for a simple random design
without replacement of size n = 2.

2. Calculate the variance of the mean estimator for a stratified random design
for which only one unit is selected per stratum and the strata are given
by U1 = {1, 2} and U2 = {3, 4}.

Solution
1. The mean of y is zero. Indeed,

Y =
1
N

∑
k∈U

yk =
1
4
(0 + 0 + 1 − 1) = 0.

The population variance is

S2
y =

1
N − 1

∑
k∈U

(yk − Y )2 =
1

4 − 1
{
02 + 02 + 12 + (−1)2

}
=

2
3
.

We thus have

var
(
Ŷ
)

=
N − n

N

S2
y

n
=

4 − 2
4

× 1
2
× 2

3
=

1
6
.

2. For the stratified design, we start by calculating the parameters within the
strata

Y 1 =
1

N1

∑
k∈U1

yk =
1
2
(0 + 0) = 0,

Y 2 =
1

N2

∑
k∈U2

yk =
1
2
(1 − 1) = 0,

S2
y1 =

1
N1 − 1

∑
k∈U1

(yk − Y 1)2 =
1
1
(02 + 02) = 0,

and
S2

y2 =
1

N2 − 1

∑
k∈U2

(yk − Y 2)2 =
1
1
{
12 + (−1)2

}
= 2.

The variance of the Horvitz-Thompson estimator is, with regards to a pro-
portional allocation,

var
(
Ŷ π

)
=

N − n

nN

2∑
h=1

Nh

N
S2

yh =
4 − 2
2 × 42

(2 × 2 + 2 × 0) =
1
4
.
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We therefore see that the variance for a stratified design is larger than for the
simple design, despite proportional allocation. This surprising result recalls
that stratification does not lead to a systematic improvement in accuracy; it
is due to the fact that, in this example, the inter-strata variance is zero and
that the population size is small.

Exercise 4.2 Strata according to income
Among the 7500 employees of a company, we wish to know the proportion P of
them that owns at least one vehicle. For each individual in the sampling frame,
we have the value of his income. We then decide to construct three strata in
the population: individuals with low income (stratum 1), with medium income
(stratum 2), and with high income (stratum 3). We denote:

Nh = the stratum size h,

nh = the sample size in stratum h (simple random sampling),
ph = the estimator of the proportion of individuals in stratum h

owning at least one vehicle.

The results are given in Table 4.1.

Table 4.1. Employees according to income: Exercise 4.2

h=1 h=2 h=3
Nh 3500 2000 2000
nh 500 300 200
ph 0.13 0.45 0.50

1. What estimator P̂ of P do you propose? What can we say about its bias?
2. Calculate the accuracy of P̂ , and give a 95% confidence interval for P .
3. Do you consider the stratification criteria to be adequate?

Solution

1. The Horvitz-Thompson estimator for the stratified design is given by

P̂ =
3∑

h=1

Nhph

N
=

1
7500

(3500 × 0.13 + 2000 × 0.45 + 2000× 0.50)

= 0.314.

This estimator is unbiased.
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2. As the estimated variance is

v̂ar
(
P̂
)

=
1

N2

3∑
h=1

N2
h

Nh − nh

Nh(nh − 1)
ph(1 − ph) = (0.013)2,

the 95% confidence interval for P is given by

CI(0.95) = [0.314 − 0.026 ; 0.314 + 0.026].

The normal distribution can be used without hesitation, because n is large.
3. The stratification criteria is adequate, as income is strongly correlated to

owning a vehicle.

Exercise 4.3 Strata of elephants
A circus director has 100 elephants classified into two categories: ‘males’ and
‘females’. The director wants to estimate the total weight of his herd because
he wants to cross a river by boat. However, the previous year, this same circus
director had all the elephants of the herd weighed and had obtained the results
presented in Table 4.2 (averages are expressed in tonnes).

Table 4.2. Average weights and variances by stratum: Exercise 4.3

Size Nh Means Y h Variances S2
yh

Males 60 6 4
Females 40 4 2.25

1. Calculate the variance in the population for the variable ‘elephant weight’
for the previous year.

2. The director assumes from now on that the variances of the weights do
not noticeably change from one year to another (this type of hypothesis
here remains very reasonable and commonly occurs in practice when we
repeat surveys in time). If the director conducts a simple random sample
survey without replacement of 10 elephants, what is the variance of the
estimator for the total weight of the herd?

3. If the director conducts a stratified sample survey with proportional allo-
cation of 10 elephants, what is the variance of the estimator for the total
weight of the herd?

4. If the director conducts an optimal stratified sample survey of 10 ele-
phants, what are the sample sizes in each of the two strata and what is
the variance of the estimator for the total?
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Solution

1. The mean weight of an elephant in the population is

Y =
1
N

(
N1Y 1 + N2Y 2

)
=

1
100

(60 × 6 + 40 × 4) =
360 + 160

100
= 5.2.

The uncorrected variances are

σ2
y1 =

N1 − 1
N1

S2
y1 =

60 − 1
60

× 4 = 3.9333,

σ2
y2 =

N2 − 1
N2

S2
y2 =

40 − 1
40

× 2.25 = 2.19375.

We can then calculate the total variance (equation called ‘analysis of vari-
ance’)

σ2
y =

1
N

{
N1σ

2
y1 + N2σ

2
y2

}
+

1
N

{
N1(Y − Y 1)2 + N2(Y − Y 2)2

}
=

1
100

{60 × 3.9333 + 40 × 2.19375}

+
1

100
{
60 × (6 − 5.2)2 + 40 × (4 − 5.2)2

}
= 4.1975.

Therefore,

S2
y = σ2

y

N

N − 1
= 4.1975× 100

100 − 1
= 4.2399.

2. The variance of the estimator for the total weight of the herd in the case
of a simple design without replacement is therefore

var
(
Ŷπ

)
=

N(N − n)
n

S2
y =

100 × 90
10

× 4.2399 = 3815.91.

3. If we stratify with proportional allocation, we get

n1 =
N1

N
n =

60
100

× 10 = 6, and n2 =
N2

N
n =

40
100

× 10 = 4.

The variance of the estimator for the total is directly obtained

var
(
Ŷπ

)
=

N − n

n

2∑
h=1

NhS2
yh =

100 − 10
10

{60 × 4 + 40 × 2.25} = 2970.

4. If we use an optimal allocation, we get

N1Sy1 = 60 ×√
4 = 120 and N2Sy2 = 40 ×√

2.25 = 60.
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The sample sizes within the strata are therefore

n1 =
nN1Sy1

N1Sy1 + N2Sy2
=

10 × 120
120 + 60

= 6.66667,

and
n1 =

nN2Sy2

N1Sy1 + N2Sy2
=

10 × 60
120 + 60

= 3.33333.

By rounding to the nearest whole number, we get n1 = 7 and n2 = 3.
The variance of the Horvitz-Thompson estimator for the total is thus the
following:

var
(
Ŷπ

)
=

2∑
h=1

Nh
Nh − nh

nh
S2

yh

= 60 × 60 − 7
7

× 4 + 40 × 40 − 3
3

× 2.25

= 2927.14.

The gain in accuracy is therefore not very important with respect to the
proportional stratification (well-known result: the two allocations in ques-
tion only differ slightly, and the optimum is rather ‘flat’). We therefore
prefer to use proportional stratification, which is more simple to calculate
and which has the determining advantage of not depending on a particular
variable.

Exercise 4.4 Strata according to age
In a very large population composed of actual individuals, we are looking
to estimate the mean age Y . Given information on age groups, we stratify
the population into three parts, and we select a sample using simple random
sampling in each part.
We denote:

• Nh/N : the true weight of stratum h,
• Ŷ h: the mean age calculated on the sample in stratum h,
• nh: the allocation chosen in stratum h,
• S2

yh: the population variance of ages in stratum h (note the squared term),
• Ch: the unit cost of surveying in stratum h.

Table 4.3 gives the useful data:

1. What is the unbiased stratified estimator of Y ? (We denote Ŷ π as this
estimator.)

2. Is this estimator different from the simple mean calculated on the overall
sample?
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Table 4.3. Distribution of ages: Exercise 4.4

Stratum Nh/N Ŷ h S2
yh nh Ch

Less than 40 50% 25 16 40 1
Between 40 and 50 30% 45 10 20 1

Over 50 20% 58 20 40 4

3. Neglecting all the sampling rates, calculate the accuracy of Ŷ π.
4. Calculate the proportional allocation and recall the expression of the es-

timator which follows (the total size of the sample is n = 100).
5. What is the accuracy obtained with the proportional allocation?
6. What is the gain in accuracy from using Neyman allocation instead of

proportional allocation? (Use comparable situations.)

Solution

1. The estimator is given by

Ŷ π =
3∑

h=1

Nh

N
Ŷ h = 0.50 × 25 + 0.30 × 45 + 0.20 × 58 = 37.6 years.

2. Yes, because
nh

n
�= Nh

N
.

3. Neglecting the sampling rate,

var(Ŷ π) =
3∑

h=1

(
Nh

N

)2 S2
yh

nh
= (0.5)2 × 16

40
+ (0.3)2 × 10

20
+ (0.2)2 × 20

40

= 0.165 ≈ (0.41)2.

4. The proportional allocation leads to

nh = n
Nh

N
.

Therefore,

n1 = 100 × 50% = 50, n2 = 30, and n3 = 20.

The unbiased estimator is the simple mean in the sample

Ŷ =
3∑

h=1

nh

n
Ŷ h.
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5. The variance is

varprop(Ŷ ) ≈ S2
intra

n
(neglecting the sampling rate) ,

where

S2
intra =

3∑
h=1

Nh

N
S2

yh = 0.50 × 16 + 0.30 × 10 + 0.20 × 20 = 15.

Thus,
varprop(Ŷ ) = 0.150 ≈ (0.39)2.

We therefore improve the accuracy with respect to the initial allocation.
6. We obviously reason on a constant cost: with 100 interviewers, the cost

is, with proportional allocation:

50 × 1 + 30 × 1 + 20 × 4 = 160.

We have, for a Neyman allocation

nh =
NhSyh√

Chλ
,

with λ calculated in a way such that the total cost is 160, being n1 +
n2 + 4n3 = 160. We find (rounding to the nearest whole number): n1 =
68, n2 = 32, and n3 = 15. With this allocation, using the general formula
from 3., we get the minimum variance varopti(Ŷ π) = 0.140 ≈ (0.37)2,
which is a gain in the order of 5% for the standard deviation as compared
to proportional allocation.

Exercise 4.5 Strata of businesses
We want to estimate average sales related to a population of businesses. The
businesses are a priori listed in three classes by sales. The data are presented in
Table 4.4. We want to select a sample of 111 businesses. Having confidence in

Table 4.4. Distribution of sales: Exercise 4.5

Sales in millions of Euros Number of businesses
0 to 1 1000
1 to 10 100

10 to 100 10

the expert assessments and in the absence of any other information, we assume
that the distribution of sales is uniform within each class: give the variances of
the mean estimator of sales for a stratified design with proportional allocation
and for a stratified design with optimal (or Neyman) allocation.



130 4 Stratification

Solution
A random variable X is called uniform over an interval [a, b] with b > a if its
density function is given by

f(x) =
{

(b − a)−1 if a ≤ x ≤ b
0 otherwise.

We can thus calculate the expected value and the variance of X :

E(X) =
∫ b

a

x

b − a
dx =

1
2(b − a)

[
x2
]b
a

=
1

2(b − a)
(b2 − a2) =

b + a

2
.

var(X) =
∫ b

a

x2

b − a
dx −

(
b + a

2

)2

=
1

3(b − a)
[
x3
]b
a
−
(

b + a

2

)2

=
1

3(b − a)
(b3 − a3) −

(
b + a

2

)2

=
a2 + ab + b2

3
− a2 + 2ab + b2

4

=
(b − a)2

12
.

The standard error of a uniform variable is therefore proportional to the length
of the interval [a, b]: √

var(X) =
b − a

2
√

3
.

We can thus complete Table 4.4 with the population variances within each
stratum and we get Table 4.5. The corrected variances are therefore

Table 4.5. Distribution of sales and population variances: Exercise 4.5

Sales in millions of Euros Number of businesses σ2
yh

0 to 1 1000 1/12
1 to 10 100 81/12

10 to 100 10 8100/12

S2
y1 =

1
12

× 1000
999

= 0.0834168,

S2
y2 =

81
12

× 100
99

= 6.81818,

S2
y3 =

8100
12

× 10
9

= 750.
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1. Stratification with proportional allocation

var
(
Ŷ π

)
=

N − n

nN

3∑
h=1

Nh

N
S2

yh

=
1110− 111
111 × 11102

× {1000× 0.0834168 + 100 × 6.81818 + 10 × 750}
≈ 0.0604.

We easily prove that the largest stratum is the one that contributes the
most to this variance (it creates roughly 91% of the total variance).

2. Optimal stratification
We calculate the products of the standard errors Syh and the stratum
sizes

N1Sy1 = 1000×
√

0.0834168 = 288.82,

N2Sy2 = 100 ×
√

6.81818 = 261.116,

N3Sy3 = 10 ×√
750 = 273.861,

which gives the optimal allocation:

n1 =
nN1Sy1∑3
h=1 NhSyh

=
111 × 288.82

288.82 + 261.116 + 273.861
= 38.9161

n2 =
nN2Sy2∑3
h=1 NhSyh

=
111 × 261.116

288.82 + 261.116 + 273.861
= 35.1833

n3 =
nN3Sy3∑3
h=1 NhSyh

=
111 × 273.861

288.82 + 261.116 + 273.861
= 36.9006.

The sample size in the third stratum n3 = 36.9 is larger than N3 = 10. In
this case, we select all units from the third stratum by setting n3 = N3 =
10, and it remains to select (in an optimal manner) 101 units among the
1100 units from strata 1 and 2. Thus, we have

n1 =
101 × N1Sy1

N1Sy1 + N2Sy2
=

101 × 288.82
288.82 + 261.116

= 53.0439 ≈ 53,

n2 =
101 × N2Sy2

N1Sy1 + N2Sy2
=

101 × 261.116
288.82 + 261.116

= 47.9561 ≈ 48.

The optimal distribution is thus (n1 = 53, n2 = 48, n3 = 10).
It remains to calculate the variance of the mean estimator

var
(
Ŷ π

)
=

3∑
h=1

N2
h

N2

Nh − nh

Nhnh
S2

yh

=
10002

11102

1000 − 53
1000 × 53

× 0.0834168 +
1002

11102

100 − 48
100 × 48

× 6.81818 + 0

= 0.0018.
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We note that it is much more interesting to use an optimal than a propor-
tional allocation: the gain essentially follows from exhaustive sampling in
the stratum with the largest sales.

Exercise 4.6 Stratification and unequal probabilities
When we have available auxiliary information, we try to use it to improve the
accuracy of estimators. When this individual information is quantitative, we
particularly think of two types of concurrent sampling designs:

• stratified samples,
• samples with unequal probabilities.

It is not possible, a priori and without further specifying the context, to
say that one of the two methods is better than the other. What follows has
the objective of showing that, in certain cases, we arrive all the same at
determining which of these two methods has to be used.
We consider a population U of size N partitioned into H classes. We assume
that in class Uh of size Nh, h = 1, . . . , H, we can rewrite the variable attached
to individual k, being yhk, in the following form using the auxiliary information
x:

yhk = βxh + ehk,

with, for all h, ∑
k∈Uh

ehk = 0, and
1

Nh

∑
k∈Uh

e2
hk = axg

h.

The individuals are therefore found by the indicator (hk).
Here, β is an unknown positive value, a and g are known positive values and
x is an auxiliary variable known everywhere, with the notation xh signifying
that all individuals of class Uh take the same value of x.

1. Recall the expression of usual estimators for the mean Y , as well as their
respective variances, in the following three cases (the sample is always of
size n):
• stratified sampling with proportional allocation (Ŷ prop),
• stratified sampling with Neyman optimal allocation (Ŷ opti),
• sampling with probabilities proportional to xh, with replacement (Ŷ pps).
To simplify matters, we always ignore the sampling rates, and we assume
Nh � 1.

2. Using the rewritten form of yhk, express the variances coming from the
previous section by only using the quantities a and n as well as the true
means (known) for variables of type xα

k , where α is a real value. We denote:
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X(α) =
1
N

H∑
h=1

∑
k∈Uh

xα
h =

1
N

∑
k∈U

xα
k .

The three variances must be made using easily comparable forms.
3. Compare the three sampling designs and specify, in particular, under

which condition sampling proportional to size (with replacement) is more
efficient than stratification by proportional allocation.

Solution

1. We denote Ŷ h as the simple mean of the yk in the sample of stratum Uh,
and Ŷ as the simple mean in the total sample.

• Ŷ prop =
H∑

h=1

Nh

N
Ŷ h = Ŷ where

Nh

N
=

nh

n
,

V
prop

= var(Ŷ prop) =
1
n

(
H∑

h=1

Nh

N
S2

yh

)
,

with

S2
yh =

1
Nh − 1

∑
k∈Uh

(yhk − Y h)2 ≈ 1
Nh

∑
k∈Uh

e2
hk = axg

h,

as Y h = βxh.

• Ŷ opti =
H∑

h=1

Nh

N
Ŷ h where nh = n

NhSyh

H∑
h=1

NhSyh

,

V
opti

= var(Ŷ opti) =
1

nN2

(
H∑

h=1

NhSyh

)2

.

• Ŷ pps =
1
N

n∑
j=1

yhkj

nphkj

(sampling with replacement),

where (hkj) is the label of the unit selected in the hth stratum at the
jth trial, and phk is the probability of selecting individual hk in each
drawing, given by

phk =
xh

X
, where X =

H∑
h=1

∑
k∈Uh

xh =
H∑

h=1

Nhxh.
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The probability phk only depends on h. We denote ph as the common
value of all individuals of Uh.

V
pps

= var(Ŷ pps) =
1

nN2

H∑
h=1

∑
k∈Uh

ph

(
yhk

ph
− Y

)2

,

where Y is the true total

Y =
H∑

h=1

NhY h.

2. a) With proportional allocation, the variance is

V
prop

=
1
n

H∑
h=1

Nh

N
axg

h =
a

n

1
N

(
H∑

h=1

Nhxg
h

)
.

Indeed,
H∑

h=1

Nhxg
h =

H∑
h=1

∑
k∈Uh

xg
h,

thus
V

prop
=

a

n
X(g).

We note that X(g) is the true mean of the xg
h.

b) With optimal allocation, the variance is

V
opti

=
a

nN2

(
H∑

h=1

Nhx
g/2
h

)2

=
a

nN2

(
H∑

h=1

∑
k∈Uh

x
g/2
h

)2

=
a

n

[
1
N

H∑
h=1

∑
k∈Uh

x
g/2
h

]2

=
a

n
[X(g/2)]2.

Here, X(g/2) is the true mean of the
√

xg
h.

c) For the design with unequal probabilities, the variance satisfies

nN2
V

pps
=

H∑
h=1

∑
k∈Uh

ph

(
yhk

ph
− Y

)2

=
H∑

h=1

∑
k∈Uh

xh

X

(
X

yhk

xh
− Y

)2

,

where ph = xh/X. Indeed, Y h = βxh, therefore

Y =
H∑

h=1

NhY h = β

H∑
h=1

Nhxh = βX,
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which gives

nN2
V

pps
=

H∑
h=1

∑
k∈Uh

xh

X
X2

(
yhk

xh
− β

)2

= X

H∑
h=1

∑
k∈Uh

xh
1
x2

h

(yhk − βxh)2

= X
H∑

h=1

∑
k∈Uh

1
xh

∑
k∈Uh

(yhk − Y h)2

= X
H∑

h=1

Nh

xh

[
1

Nh

∑
k∈Uh

(yhk − Y h)2
]

.

We obtain approximately

nN2
V

pps
≈ X

H∑
h=1

Nh

xh
S2

yh = Xa

H∑
h=1

Nhxg−1
h = XaNX(g−1).

Finally,

V
pps

=
a

n

X

N
X(g−1),

and as
X

N
= X,

we get
V

pps
=

a

n
X X(g−1).

Here, X(g−1) is the true mean of the xg−1
h .

3. We obtained: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V
prop

=
a

n
X(g)

V
opti

=
a

n
[X(g/2)]2

V
pps

=
a

n
X X(g−1).

The problem therefore is to rank, as a function of g, the three expressions:

X(g), [X(g/2)]2 and X X(g−1).

We notice that a completely disappears in this comparison process.
a) Without hesitation, we can say V

prop
≥ V

opti
, because V

opti
corresponds

to the optimal method.
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Thus, we must have X(g) ≥ [X(g/2)]2. It is well understood to be true,
but we can eventually convince doubtful readers: the idea is to write
the empirical means as expected values of discrete random variables,
and to use the ‘well-known’ properties on the expected values. We
know that for every real random variable X , we have: E(X)2 ≥ (EX)2

(as var(X) ≥ 0). Let us apply that for the variable Xg/2

E(Xg) = E([Xg/2]2) ≥ [EXg/2]2.

Indeed

E(Xg) =
1
N

H∑
h=1

∑
k∈Uh

xg
h = X(g)

and

EXg/2 =
1
N

H∑
h=1

∑
k∈Uh

x
g/2
h = X(g/2),

which is to say:
X(g) ≥ [X(g/2)]2.

b) Let us consider two real random variables, some X and Y . We have:

cov(X, Y ) = EXY − (EX) (EY ).

Therefore

cov(Xg−1, X) = EXg − (EX) (EXg−1) = X(g) − X X(g−1).

Indeed
g ≥ 1 ⇔ cov(Xg−1, X) ≥ 0.

In fact, X and Xg−1 vary ‘along the same lines’ if and only if

g − 1 ≥ 0.

Therefore
g ≥ 1 ⇔ X(g) ≥ XX(g−1).

c) Let us change methods and return to the (well-known) Schwarz in-
equality: given two vectors a and b of RH with coordinates

a =
(√

Nhxh

)
1≤h≤H

and b =
(√

Nhxg−1
h

)
1≤h≤H

, in RH .

We know that:
| ab |≤‖ a ‖ × ‖ b ‖,
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being:

H∑
h=1

(Nhx
1/2
h x

g−1/2
h ) ≤

√√√√ H∑
h=1

Nhxh

√√√√ H∑
h=1

Nhxg−1
h ,

thus [
H∑

h=1

Nh

N
(xh)g/2

]2

≤
(

H∑
h=1

Nh

N
xh

)(
H∑

h=1

Nh

N
xg−1

h

)
.

Finally [
X(g/2)

]2
≤ XX(g−1),

for all g.

We can conclude by distinguishing two cases:
Case 1:

0 < g < 1 :
[
X(g/2)

]2
≤ X(g) < XX(g−1)

⇔ V
pps

> V
prop

≥ V
opti

Case 2:
g ≥ 1 :

[
X(g/2)

]2
≤ XX(g−1) ≤ X(g)

⇔ V
prop

≥ V
pps

≥ V
opti

Stratified sampling with optimal allocation is always the most effi-
cient; on the other hand everything depends on g in ranking stratified
sampling with proportional allocation and sampling proportional to
size.

Exercise 4.7 Strata of doctors
In a large city, we are studying the mean number of patients that a doctor
sees during a working day. We begin with the a priori idea that the more
experience a doctor has, the more clients she or he has. That leads us to
classify the population of doctors into 3 groups: the ‘beginners’ (class 1),
the ‘intermediates’ (class 2) and the ‘experienced’ (class 3). Furthermore, we
assume that we know, from the sampling frame of doctors, the class of each
one (1 or 2 or 3). Thus, we list 500 doctors in class 1, 1 000 in class 2 and
2 500 in class 3. Using simple random sampling, we select 200 doctors in each
class. We then calculate, in each class, the mean number of patients by day
and by sampled doctor: 10 in class 1, then 15 in class 2 and 20 in class 3.
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We finally calculate the variances of the number of patients by doctor in each
of the three samples and we find respectively 4 (class 1), 7 (class 2), and 10
(class 3).

1. What do we call this sample design? Justify a priori its usage.
2. How do you estimate the mean number of patients treated by day and by

doctor?
3. Give a 95% confidence interval for the ‘true’ mean number of patients

treated by doctor and by day.
4. If you had a constraint on the total number of doctors to survey (being

600), would you proceed as shown above?
5. What is the gain in estimated variance obtained with a proportional allo-

cation in comparison with simple random sampling (of size 600)?
6. Would this gain have been numerically different if we had naively es-

timated the population variance S2
y by the simple sample variance s2

y

calculated on the whole sample?

Solution

1. It is stratified sampling. The three groups defined are supposedly a pri-
ori relatively ‘intra’ homogeneous; that is, the number of patients is well
explained by the experience of the doctor.

2. The mean estimator is:

Ŷ π =
3∑

h=1

Nh

N
Ŷ h =

500
4 000

× 10 +
1 000
4 000

× 15 +
2 500
4 000

× 20 = 17.5.

3. The number of doctors selected per stratum (nh = 200) is sufficiently
large so that we consider that each Ŷ h follows a normal distribution, and
therefore that the linear combination Ŷ follows a normal distribution as
well (the Ŷ h are independent).

v̂ar(Ŷ ) =
3∑

h=1

(
Nh

N

)2(
1 − nh

Nh

)
s2

yh

nh

=
(

500
4 000

)2(
1 − 200

500

)
4

200
+
(

1 000
4 000

)2(
1 − 200

1 000

)
7

200

+
(

2 500
4 000

)2(
1 − 200

2 500

)
10
200

≈ 19.9 × 10−3.

Therefore

2 ×
√

v̂ar(Ŷ ) ≈ 0.282 and Y ∈ [17.5 ± 0.28],

95 times out of 100.
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4. Everything depends on the information which we have a priori on the
population variances by stratum for the variable ‘number of patients’.
In the absence of such information, we choose a proportional allocation,
which assures a better accuracy than that for simple random sampling:

nh = 600 × Nh

N
,

n1 = 75, n2 = 150, and n3 = 375.

If we have an estimation a priori of standard errors Syh (previous survey
on the same subject, preliminary sampling), we choose an optimal Neyman
allocation. For example, if we have to again carry out a survey, we use the
syh estimated by the previous survey, being: nh proportional to Nhsyh.

N1sy1 = 1 000, N2sy2 = 2 646, N3sy3 = 7 906.

That is:
n1 = 52, n2 = 137, n3 = 411.

5. The difficulty consists of estimating the true overall population variance
S2

y starting from the stratified sample with 200 doctors selected per stra-
tum. Using the decomposition formula of the variance, we have:

S2
y ≈

3∑
h=1

Nh

N
S2

yh +
3∑

h=1

Nh

N
(Y h − Y )2.

We know that E(s2
yh) = S2

yh (simple sampling in each stratum). Further-
more, it is natural to be interested in the expected value of

A =
3∑

h=1

Nh

N
(Ŷ h − Ŷ π)2 =

3∑
h=1

Nh

N
Ŷ

2

h − Ŷ
2

π.

We have

E(A) =
3∑

h=1

Nh

N
E(Ŷ

2

h) − E
(

Ŷ
2

π

)

=
3∑

h=1

Nh

N

(
var(Ŷ h) + Y

2

h

)
−
(
var(Ŷ π) + Y

2
)

=
3∑

h=1

Nh

N

(
Y h − Y

)2
+

3∑
h=1

Nh

N
var(Ŷ h) − var(Ŷ π).

But

v̂ar(Ŷ h) =
(

1 − nh

Nh

)
s2

yh

nh
(nh = 200)
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estimates var(Ŷ h) without bias.

In conclusion, gathering the unbiased estimators for each component of
S2

y , we got the unbiased estimator:

Ŝ2
y =

3∑
h=1

Nh

N
s2

yh +
3∑

h=1

Nh

N
(Ŷ h − Ŷ π)2 −

3∑
h=1

Nh

N
v̂ar(Ŷ h) + v̂ar(Ŷ π)

≈ 8.5 + 12.5 − 0.037 + 0.020
= 20.983.

The estimated variance with proportional allocation is:

V̂
prop

=
1 − f

n
Ŝ2

intra =
1 − f

n

(
3∑

h=1

Nh

N
s2

yh

)
.

The variance that we would obtain with a simple random sample is there-
fore estimated by:

V̂
SRS

=
1 − f

n
Ŝ2

y .

The desired gain is:

V̂
prop

V̂
SRS

=

(∑3
h=1

Nh

N s2
yh

)
Ŝ2

y

≈ 8.5
21

= 40.5%.

It is a substantial gain, ensuing from a quite strong inter-strata variance
(that signifies that the strata are well constructed).

6. If we use s2
y to estimate S2

y , we create a bias as under the stratified sample

design effectively carried out, E(s2
y) �= S2

y . Numerically, if we denote Ŷ as
the simple mean of yk in the overall sample,

s2
y =

1
n − 1

∑
k∈S

(yk − Ŷ )2

≈
3∑

h=1

nh

n
s2

yh +
3∑

h=1

nh

n
(Ŷ h − Ŷ )2 = 7 + 16.67 = 23.67.

We would therefore get a weaker variance relationship (slight overestima-
tion of the gain).

Exercise 4.8 Estimation of the population variance

1. Give an unbiased estimator for the population variance σ2
y for a stratified

survey with proportional allocation.
2. Show that the corrected sample variance s2

y is a biased estimator of σ2
y

but that this bias approaches zero when n becomes very large.
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Solution

Method 1.
In any stratified design, we have

πk� =

⎧⎪⎪⎨⎪⎪⎩
nh(nh − 1)
Nh(Nh − 1)

if k, � ∈ Uh, k �= �,

nhni

NhNi
if k ∈ Uh, � ∈ Ui, h �= i.

The unbiased estimator of σ2
y is given by (see Exercise 2.7)

σ̂2
y =

1
2N2

∑
k∈S

∑
�∈S
� �=k

(yk − y�)2

πk�

=
1

2N2

H∑
h=1

∑
k∈Sh

∑
�∈Sh
� �=k

(yk − y�)2
Nh(Nh − 1)
nh(nh − 1)

+
1

2N2

H∑
h=1

H∑
i=1
i�=h

∑
k∈Sh

∑
�∈Si

(yk − y�)2
NhNi

nhni

=
1

2N2

H∑
h=1

H∑
i=1

∑
k∈Sh

∑
�∈Si
� �=k

(yk − y�)2
NhNi

nhni

+
1

2N2

H∑
h=1

∑
k∈Sh

∑
�∈Sh
� �=k

(yk − y�)2
{

Nh(Nh − 1)
nh(nh − 1)

− N2
h

n2
h

}
.

As the allocation is proportional

N2
h

n2
h

=
N2

n2
,

and that

Nh(Nh − 1)
nh(nh − 1)

− N2
h

n2
h

=
Nh(Nh − nh)
n2

h(nh − 1)
=

N − n

n

Nh

nh(nh − 1)
,
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we get

σ̂2
y =

1
2n2

H∑
h=1

H∑
i=1

∑
k∈Sh

∑
�∈Si
� �=k

(yk − y�)2

+
1

2N2

H∑
h=1

∑
k∈Sh

∑
�∈Sh
� �=k

(yk − y�)2
N − n

n

Nh

nh(nh − 1)

=
1

2n2

∑
k∈S

∑
�∈S
� �=k

(yk − y�)2 +
N − n

nN2

H∑
h=1

Nh
1

2nh(nh − 1)

∑
k∈Sh

∑
�∈Sh
� �=k

(yk − y�)2

= s2
y

n − 1
n

+
N − n

nN2

H∑
h=1

Nhs2
yh

= s2
y

n − 1
n

+ v̂ar(Ŷ prop),

where Ŷ prop is the unbiased estimator of Y .

Method 2.
Due to the proportional allocation, the unbiased estimator of Y is Ŷ prop, the
simple mean in the sample. We therefore have:

E(Ŷ
2

prop) = var(Ŷ prop) + [E(Ŷ prop)]2 = E[v̂ar(Ŷ prop)] + Y
2
,

where v̂ar(Ŷ prop) estimates var(Ŷ prop) without bias. We know that with such
an allocation,

v̂ar(Ŷ prop) =
N − n

Nn

H∑
h=1

Nh

N
s2

yh.

Furthermore,

σ2
y =

1
N

∑
k∈U

y2
k − Y

2
.

If we let
wh =

1
nh

∑
k∈Sh

y2
k,

we have:

E

(
H∑

h=1

Nh

N
wh

)
=

H∑
h=1

Nh

N

1
Nh

∑
k∈Uh

y2
k =

1
N

∑
k∈U

y2
k,
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and therefore

σ2
y = E

(
H∑

h=1

Nh

N
wh

)
− E

(
Ŷ

2

prop − v̂ar(Ŷ prop)
)

.

An unbiased estimator of σ2
y is therefore:

σ̂2
y =

H∑
h=1

Nh

N
wh − Ŷ

2

prop + v̂ar(Ŷ prop) =
H∑

h=1

nh

n
wh − Ŷ

2

prop + v̂ar(Ŷ prop)

=
1
n

∑
k∈S

(yk − Ŷ prop)2 + v̂ar(Ŷ prop) =
n − 1

n
s2

y +
N − n

Nn

H∑
h=1

Nh

N
s2

yh.

2. We have
E
(
σ̂2

y

)
= σ2

y = E
(
s2

y

) n − 1
n

+ var(Ŷ prop).

Therefore

E
(
s2

y

)
=

n

n − 1

{
σ2

y − var(Ŷ prop)
}

= σ2
y +

σ2
y

n − 1
− var(Ŷ prop)

n

n − 1
= σ2

y + O

(
1
n

)
.

As a reminder, we say that a function f(n) of n is of order of magnitude g(n)
(denoted f(n) = O(g(n))) if and only if f(n)/g(n) is restricted; that is to say,
if there exists a quantity M such that, for all n ∈ N, |f(n)|/g(n) ≤ M. The
bias is of 1/n: it is very low if n is very large.

Exercise 4.9 Expected value of the sample variance
Consider the uncorrected sample variance in the sample:

v2
y =

1
n

∑
k∈S

(
yk − Ŷ

)2

, where Ŷ =
1
n

∑
k∈S

yk.

1. Give the expected value of v2
y for a stratified design with proportional

allocation (we neglect the rounding problems which arise when calculating
nh = nNh/N).

2. If v2
y is used to estimate

σ2
y =

1
N

∑
k∈U

(
yk − Y

)2
,

what is the bias of this estimator? Do we have a tendency to overestimate
or underestimate σ2

y?
3. What is the practical interest of the previous result?
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Solution

1. Method 1.

E(v2
y) = E

[
1
n

∑
k∈S

y2
k − Ŷ

2
]

= E

[
1
n

∑
k∈S

y2
k

]
−
[
var(Ŷ ) + (EŶ )2

]
.

A stratified design with proportional allocation is a design with equal
probabilities and of fixed size: in this case, every calculated mean in the
sample estimates without bias the mean defined in an identical manner in
the population. Thus:

E

(
1
n

∑
k∈S

y2
k

)
=

1
N

∑
k∈U

y2
k,

and E(Ŷ ) = Y , which implies that

E(v2
y) =

(
1
N

∑
k∈U

y2
k − Y

2

)
− var(Ŷ ) = σ2

y − var(Ŷ ).

Method 2.
By the result from Exercise 2.7, we have

v2
y =

1
n

∑
k∈S

(
yk − Ŷ

)2

=
1

2n2

∑
k∈S

∑
�∈S
� �=k

(yk − y�)
2 =

1
2n2

∑
k∈U

∑
�∈U
� �=k

(yk − y�)
2
IkI�.

Separating the sums by stratum, we can write

v2
y =

1
2n2

H∑
h=1

H∑
i=1

∑
k∈Uh

∑
�∈Ui
� �=k

(yk − y�)
2 IkI�

=
1

2n2

⎡⎢⎢⎣ H∑
h=1

∑
k∈Uh

∑
�∈Uh
� �=k

(yk − y�)
2
IkI�

+
H∑

h=1

H∑
i=1
i�=h

∑
k∈Uh

∑
�∈Ui

(yk − y�)
2
IkI�

⎤⎥⎦ .
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The expected value is

E(v2
y) =

1
2n2

⎡⎢⎢⎣ H∑
h=1

∑
k∈Uh

∑
�∈Uh
� �=k

(yk − y�)
2 E(IkI�)

+
H∑

h=1

H∑
i=1
i�=h

∑
k∈Uh

∑
�∈Ui

(yk − y�)
2 E(IkI�)

⎤⎥⎦ .

Since

E(IkI�) =
nh(nh − 1)
Nh(Nh − 1)

=
n(nh − 1)
N(Nh − 1)

=
n2

N2
− n(N − n)

N2(Nh − 1)
,

if k �= � ∈ Uh, and that

E(IkI�) =
nh

Nh

ni

Ni
=

n2

N2
,

if k ∈ Uh, � ∈ Ui, h �= i, we get

E(v2
y) =

1
2n2

H∑
h=1

∑
k∈Uh

∑
�∈Uh
� �=k

(yk − y�)
2

[
n2

N2
− n(N − n)

N2(Nh − 1)

]

+
1

2n2

H∑
h=1

H∑
i=1
i�=h

∑
k∈Uh

∑
�∈Ui

(yk − y�)
2 n2

N2

= − 1
2n2

H∑
h=1

∑
k∈Uh

∑
�∈Uh
� �=k

(yk − y�)
2 n(N − n)

N2(Nh − 1)

+
1

2n2

H∑
h=1

H∑
i=1

∑
k∈Uh

∑
�∈Ui

(yk − y�)
2 n2

N2

=
1

2N2

H∑
h=1

H∑
i=1

∑
k∈Uh

∑
�∈Ui

(yk − y�)
2

−N − n

N2n

H∑
h=1

Nh
1

2Nh(Nh − 1)

∑
k∈Uh

∑
�∈Uh
� �=k

(yk − y�)
2

= σ2
y − var(Ŷ ).

2. The bias is

B(v2
y) = E(v2

y) − σ2
y = σ2

y − var(Ŷ ) − σ2
y = −var(Ŷ ) < 0.

The variance σ2
y is therefore underestimated.
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3. The practical interest resides in the calculation of the estimated design
effect, defined as the ratio of the variance estimated with the design used
over the variance estimated by a random sample of the same size n: to
estimate the population variance σ2

y in the denominator, certain software
packages are going to naturally calculate v2

y. The bias introduced, of order
of magnitude 1/n, is very low if n is large, and therefore the design effect
thus estimated is correct, even if there is a theoretical overestimation.

Exercise 4.10 Stratification and difference estimator
Given a stratified design composed of H strata of size Nh. The objective is to
estimate the population mean Y of a characteristic y. Denote Xh, h = 1, ..., H
as the means in the strata (in the population) of an auxiliary characteristic
x. The Xh are supposedly known and we propose to estimate Y using the
following estimator:

Ŷ D = Ŷ π + X − X̂π.

We undertake a simple random sample in each stratum.

1. Show that Ŷ D estimates Y without bias.
2. Give the variance of Ŷ D.
3. What is the optimal allocation of the nh in order to minimise the variance

of Ŷ D? We consider that the unit cost of the survey does not depend on
the stratum.

4. In which favourable case is Ŷ D unquestionably preferable to Ŷ π?

Solution

1. The estimator is unbiased. Indeed, since

Ŷ π =
H∑

h=1

Nh

N
Ŷ h,

where Ŷ h indicates the simple mean of the yk in the sample of stratum h,

E(Ŷ D) = X + E(Ŷ π) − E(X̂π) = X + Y − X = Y .

2. Let zk = yk − xk. We have

Ŷ D = X + Ẑπ.
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Therefore

var(Ŷ D) = var(Ẑπ) =
H∑

h=1

(
Nh

N

)2(
1 − nh

Nh

)
S2

zh

nh
,

where
S2

zh =
1

Nh − 1

∑
k∈Uh

(zk − Ẑh)2 = S2
yh + S2

xh − 2Sxyh,

and
Sxyh =

1
Nh − 1

∑
k∈Uh

(xk − X̂h)(yk − Ŷ h).

3. Letting zk = yk−zk, the problem goes back to minimising var(Ẑπ) subject
to fixed sample size, which is written here

∑H
h=1 nh = n. Indeed, the unit

cost is the same in all of the strata, which gives

nh =
nNhSzh∑H
�=1 N�Sz�

.

In practice, we estimate a priori the Szh and we round nh to the nearest
whole number, after having fixed n as a function of the overall budget
which we have. It can happen that we get nh > Nh for certain h: in
this case, we set nh = Nh and we perform the calculation again with the
remaining strata.

4. As

var(Ŷ π) =
H∑

h=1

(
Nh

N

)2(
1 − nh

Nh

)
S2

yh

nh
,

and that the two estimators are unbiased, Ŷ D is indisputably preferable
to Ŷ π when, for all h, S2

yh > S2
zh, meaning, for all h,

Sxyh

S2
xh

>
1
2
.

This condition comes back to obtaining a regression line for y on x which,
in each stratum, has a slope greater than 1/2. This is particularly the
case if we let y = x (slope equal to 1): this result is natural, as then
X̂D = X for whatever sample is selected. We say that the estimator Ŷ D

is ‘calibrated’ on X.
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Exercise 4.11 Optimality for a domain
Consider a population U of size N partitioned into H strata denoted U1,
..., Uh, ..., UH , with respective sizes N1, ..., Nh, ..., NH . We also denote Y 1, ...,
Y h, ..., Y H , as the H true means calculated within the strata. The sampling
in each stratum is simple random. We have of course

Y =
1
N

H∑
h=1

NhY h.

The objective of the survey is to compare a particular stratum Ui to the total
population: more specifically we want to estimate Di = Y i − Y .

1. Construct D̂iπ, the Horvitz-Thompson estimator of Di for a stratified
design with any allocation.

2. Give the variance of D̂iπ .
3. Give the optimal allocation minimising the variance of D̂iπ for a fixed

sample size n.
4. How does this allocation differ from the ‘classical’ optimal allocation?

Solution

1. Since

Di = Y i

(
1 − Ni

N

)
− 1

N

H∑
h=1
h �=i

NhY h,

we have the unbiased estimator:

D̂iπ = Ŷ i

(
1 − Ni

N

)
− 1

N

H∑
h=1
h �=i

NhŶ h,

where Ŷ h indicates the simple mean in the sample of stratum h.
2. The variance of D̂iπ is:

var
(
D̂iπ

)
=
(

1 − Ni

N

)2
Ni − ni

niNi
S2

yi +
1

N2

H∑
h=1
h �=i

N2
h

Nh − nh

nhNh
S2

yh.

3. Letting

zk =
{

yk(N/Ni − 1) if k ∈ Ui

−yk otherwise,

we can write

D̂iπ =
H∑

h=1

Nh

N
Ẑh.
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The optimal allocation is given by the classical Neyman expression with
a constant unit cost:

nh =
nNhSzh∑H
j=1 NjSzj

(if nh ≤ Nh),

where
Szh =

{
Syi(N/Ni − 1), if h = i
Syh, otherwise.

As always, it is necessary to ‘round’ nh after having estimated Szh a priori
(via Syh).

4. In comparison to the classical optimal allocation, we ‘overrepresent’ stra-
tum Ui by a factor of (N/Ni − 1) whenever Ni is ‘not too large’ (more
precisely, as soon as Ni < N/2). Otherwise, there is on the contrary ‘un-
derrepresentation’ of stratum i and we again find exactly the Neyman
allocation whenever Ni = N/2.

Exercise 4.12 Optimality for a difference
We wish to compare, using a sample survey, a metropolitan population with
an overseas population. We assume that we know the variances of the variable
y in both of the populations where we select a simple random sample without
replacement. The objective is to estimate the difference:

D = Y 1 − Y 2,

where Y 1 and Y 2 are respectively the means of characteristic y in metropolitan
France and in ‘overseas entities’ of France. We know furthermore that an
overseas interview costs two times more than in metropolitan France.

1. Define your notation and give an unbiased estimator D̂ of D.
2. Give the variance of the estimator D̂. What criteria must be optimised to

obtain the optimal allocation (to be determined) allowing to estimate at
best D for a fixed cost C?

3. Give the variance of the optimal estimator obtained with the optimal
allocation.

Solution

1. We denote C1 as the cost of an interview in metropolitan France (popula-
tion indicator 1) and C2 = 2C1 as the cost in overseas France (population
indicator 2). We denote Nh as the population size h, nh as the sample size
in the population h, Ŷ h as the simple mean of the sample selected in the
population h, and C as the total cost of the survey. We have:

D̂ = Ŷ 1 − Ŷ 2.
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2. Since the two surveys are independent, we must minimise

var(D̂) = var
[
Ŷ 1

]
+ var

[
Ŷ 2

]
=

N1 − n1

N1n1
S2

y1 +
N2 − n2

N2n2
S2

y2

subject to n1C1 + n2C2 = C. After some very simple calculations, we
obtain

nh =
Syh√
λCh

, h = 1, 2,

where λ is the Lagrange multiplier, and therefore

nh =
SyhC√

Ch

{√
C1

(
Sy1 + Sy2

√
2
)} , if nh ≤ Nh for h = 1, 2.

3. We find, if nh ≤ Nh (h = 1, 2),

var(D̂) =
C1

C

(
Sy1 + Sy2

√
2
)2

−
(

S2
y1

N1
+

S2
y2

N2

)
.

Exercise 4.13 Naive estimation
Consider a population U of size N partitioned into H strata denoted U1, ...,
Uh, ..., UH , of respective sizes N1, ..., Nh, ..., NH . We denote as well Y 1, ...,
Y h, ...,Y H , as the H means calculated within the strata. We have of course

Y =
1
N

H∑
h=1

NhY h.

In each stratum, we select a sample according to a simple random design
without replacement of any size nh, h = 1, ..., H. The samples are independent
from one stratum to another. A young statistician proposes to estimate Y by

Ŷ =
1
n

∑
k∈S

yk,

where n =
∑H

h=1 nh.

1. Calculate E(Ŷ ), and deduce the bias of Ŷ .

2. Calculate the standard deviation of Ŷ , and deduce the bias ratio, defined
as the ratio of the standard deviation over the bias.

3. Explain why it is not advised to use this estimator.
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Solution

1. The expected value is

E(Ŷ ) =
1
n

∑
k∈U

ykπk =
1
n

H∑
h=1

nh

Nh
NhY h

=
1
n

H∑
h=1

nhY h = Y +
H∑

h=1

(
nh

n
− Nh

N

)
Y h.

We deduce the bias:

B
(
Ŷ
)

=
H∑

h=1

(
nh

n
− Nh

N

)
Y h.

2. We denote Ŷ h as the simple mean of the yk in the sample of stratum h.

var(Ŷ ) = var

(
H∑

h=1

nh

n
Ŷ h

)
=

H∑
h=1

n2
h

n2
var
(
Ŷ h

)
=

H∑
h=1

n2
h

n2

Nh − nh

Nhnh
S2

yh.

Therefore,

σ(Ŷ ) =

(
1
n

H∑
h=1

nh

n

Nh − nh

Nh
S2

yh

)1/2

.

3. The bias ratio is:

BR
(
Ŷ
)

=
B(Ŷ )

σ(Ŷ )
=

∑H
h=1

(
nh

n − Nh

N

)
Y h(

1
n

∑H
h=1

nh

n
Nh−nh

Nh
S2

yh

)1/2
.

We can consider the bias to be negligible when BR is small.
A priori the numerator does not systematically approach 0 when n in-
creases (the convergence is only stochastic), while the denominator is al-
ways of magnitude n−1/2, thus the bias ratio can be large when n is large.
The estimator is thus banished whenever nh/n differs from Nh/N , as we
have another estimator (the unbiased ‘classical’ estimator) which does not
have this unfortunate drawback.

Exercise 4.14 Comparison of regions and optimality
We perform a stratified survey on businesses in a country. The strata are
regions and we study the variable ‘sales’ denoted y. In each stratum, we take
a simple random sample. The objective is to compare the average sales of each
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region to that of the other regions. We use the following criteria to measure
the pertinence of the sampling design.

W =
H∑

h=1

H∑
�=1
� �=h

var
{
Ŷ h − Ŷ �

}
,

where Ŷ h is the unbiased mean estimator of y in stratum h.

1. Show that W can equally be written

W = C

H∑
h=1

Nh − nh

Nhnh
S2

yh,

where C is a constant that does not depend on h. Give the value of C.
2. How do we choose the nh while assuring a fixed sample size n?

Solution

1. In developing W , we have

W =
H∑

h=1

H∑
�=1
� �=h

var
(
Ŷ h − Ŷ �

)

=
H∑

h=1

H∑
�=1
� �=h

[
var
(
Ŷ h

)
+ var

(
Ŷ �

)]
(the Ŷ h are independent)

=
H∑

h=1

H∑
�=1

[
var
(
Ŷ h

)
+ var

(
Ŷ �

)]
−

H∑
h=1

2var
(
Ŷ h

)
= 2H

H∑
h=1

var
(
Ŷ h

)
−

H∑
h=1

2var
(
Ŷ h

)
= 2(H − 1)

H∑
h=1

var
(
Ŷ h

)
= 2(H − 1)

H∑
h=1

Nh − nh

Nhnh
S2

yh,

which gives C = 2(H − 1).
2. We thus have:

W = C

H∑
h=1

S2
yh

nh
+ constant.
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It remains to minimise
∑H

h=1 S2
yh/nh subject to

∑H
h=1 nh = n. Deriving

the Lagrangian function, we right away have

nh =
Syh√

λ
,

where λ is the Lagrange multiplier, and therefore

nh =
nSyh∑H
�=1 Sy�

(if nh ≤ Nh).

Exercise 4.15 Variance of a product
Consider a population U of size N composed of two strata, U1 and U2 of sizes
N1 and N2. We wish to estimate Y 1 × Y 2, where Y i represents the mean of
characteristic y in Ui. In each stratum, we select (independently) a random
sample. These samples denoted respectively e1 and e2 are selected according
to two simple designs of respective fixed sizes n1 and n2.

1. Give the ‘natural’ estimator of Y 1 × Y 2 and verify that it is unbiased.
2. Calculate its variance by expressing it as a function of the means Y 1, Y 2,

and the corrected population variances calculated in the strata, denoted
respectively S2

1 and S2
2 .

Solution

1. We are going to naturally use Ŷ 1 × Ŷ 2 where Ŷ i represents the simple
mean of characteristic y in ei. In fact Ŷ 1 and Ŷ 2 are independent, by
construction. Therefore:

E(Ŷ 1 × Ŷ 2) = E(Ŷ 1) × E(Ŷ 2) = Y 1 × Y 2.

2. The variance is

var
(
Ŷ 1 × Ŷ 2

)
= E

(
Ŷ

2

1 × Ŷ
2

2

)
−
{
E
(
Ŷ 1 × Ŷ 2

)}2

= E
(

Ŷ
2

1

)
× E

(
Ŷ

2

2

)
− Y

2

1 × Y
2

2

=
{
var
(
Ŷ 1

)
+ Y

2

1

}
×
{

var
(
Ŷ 2

)
+ Y

2

2

}
− Y

2

1 × Y
2

2

=
{(

1
n1

− 1
N1

)
S2

1 + Y
2

1

}
×
{(

1
n2

− 1
N2

)
S2

2 + Y
2

2

}
− Y

2

1 × Y
2

2.
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Exercise 4.16 National and regional optimality
We consider a stratified sample of individuals at a national scale, with each
administrative region comprising a stratum. In each stratum, we select indi-
viduals through simple random sampling.

1. Recall the expression of Neyman allocation (indifferent costs) and express
the accuracy of a regional simple mean as a function of the size of the
region (the size of a region is the number of inhabitants which occupy
it). What ‘strange’ occurrence can be detected concerning the quality of
regional results?

2. Instead of minimising a ‘national’ variance, we use the following criterion:

H∑
h=1

[(Xh)αCV (Ŷ h)]2,

where:

• Ŷ h is the mean of y in the sample calculated within stratum h;
• Xh is some auxiliary information measuring the importance of the stra-

tum (its population for example, or the total of a variable correlated
to y);

• CV (Ŷ h) is the coefficient of variation of Ŷ h;
• α is a real and known fixed value, between 0 and 1.
a) Comment on the merits of such a criterion.
b) Express the criterion as a function of Xh, Syh, Y h, nh and Nh (tradi-

tional notations).
c) Minimise this criterion subject to the overall sample size equal to n.

Deduce the optimal allocation.
d) With this allocation, what happens to the regional accuracy? In par-

ticular, we will measure this accuracy by the coefficient of variation
(instead of the variance), neglecting the sampling rates.

e) Comment on the effect on the local accuracy (regional) of the following
choices: α = 1 and Xh = NhY h, then α = 0 and finally 0 < α < 1.

Solution

1. The optimal allocation is given here by nh = λNhSyh, where λ is such
that

H∑
h=1

nh = n.

If h represents a given region, we have

var(Ŷ h) = (1 − fh)
S2

yh

λ NhSyh
=

1
λ

(1 − fh)
Syh

Nh
.
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Unfortunately, with this approach, the regions are treated in an unequal
way: the smallest regions (Nh small) have the least precise results! The
Neyman optimality is of an overall nature (here national): it is the best
strategy to produce national results, but not regional results.

2. a) The CV (Ŷ h) is a measure of imprecision within the region h, and the
Xα

h is a weight which puts into perspective this measure. The overall
national quality criterion is obtained by weighting the regional quali-
ties by the importance of the regions. This importance is measured by
Xα

h (for example, if Xh = Nh, the most populated regions are going to
have a larger importance in the quality criterion). But, quite cleverly,
the exponent α comes to moderate the relative importance given to a
region compared to the others.

b) The square of the coefficient of variation is written

CV2(Ŷ h) =
var(Ŷ h)

(EŶ h)2
=

(1 − fh) S2
yh

nh

Y
2

h

=
(

1 − nh

Nh

)
1
nh

(
Syh

Y h

)2

.

We get:

Criterion =
H∑

h=1

X2α
h

(
1
nh

− 1
Nh

) (
Syh

Y h

)2

=
H∑

h=1

(
Xα

h Syh

Y h

)2 1
nh

+ (term without nh).

c) Let

∆h =
Xα

h Syh

Y h

.

Minimising the criterion comes back to minimising

H∑
h=1

∆2
h/nh

subject to
∑H

h=1 nh = n. We get:

−∆2
h

n2
h

= Constant.

The nh must therefore be proportional to the ∆h, or more precisely:

nh = n
∆h∑H
j=1 ∆j

.
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d) The regional accuracy can be measured by:

var(Ŷ h) = (1 − fh)
S2

yh

n

∆

Xα
h Syh

Y h

, where ∆ =
H∑

j=1

∆j ,

that is,

CV2(Ŷ h) ≈
(

∆

n
Y h

Syh

Xα
h

)
1

Y
2

h

,

neglecting the sampling rates. CV(Ŷ h) is thus proportional to

1√
Xα

h

×
√

Syh

Y h

.

e) • If α = 1, Xh = Nh × Y h. We then find the coefficient of variation
attached to the Neyman allocation, which is not beneficial for the
smaller regions (see 1.).

• If α = 0, we get a CV proportional to
√

Syh/Y h. Indeed, Syh/Y h

is the true coefficient of variation of yk in region h. Except for
particular circumstances, it varies little from one region to another.
In this case, the regional accuracies (measured by the coefficient
of variation) are absolutely comparable from a numerical point of
view (the Limousin region is no more disadvantaged compared to
the Ile-de-France region), but we lose in overall accuracy.

• If 0 < α < 1, then we find ourselves in a compromising situation,
which eventually allows to satisfy at the same time the national
statisticians and the regional statisticians (for example, we com-
promise with α = 1/2).

Exercise 4.17 What is the design?
In the population U = {1, 2, 3, 4, 5}, we consider the following sampling design:

p({1, 2, 4}) = 1/6, p({1, 2, 5}) = 1/6, p({1, 4, 5}) = 1/6,

p({2, 3, 4}) = 1/6, p({2, 3, 5}) = 1/6, p({3, 4, 5}) = 1/6.

Calculate the first- and second-order inclusion probabilities as well as the ∆k�

(see Expression (1.1), page 3). Show that it is a matter of a stratified design.
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Solution
The first-order inclusion probabilities are given by

π1 = 1/2, π2 = 2/3, π3 = 1/2, π4 = 2/3, π5 = 2/3,

and the second-order inclusion probabilities by⎛⎜⎜⎜⎜⎝
− π12 = 1/3 π13 = 0 π14 = 1/3 π15 = 1/3

π12 = 1/3 − π23 = 1/3 π24 = 1/3 π25 = 1/3
π13 = 0 π23 = 1/3 − π34 = 1/3 π35 = 1/3

π14 = 1/3 π24 = 1/3 π34 = 1/3 − π45 = 1/3
π15 = 1/3 π25 = 1/3 π35 = 1/3 π45 = 1/3 −

⎞⎟⎟⎟⎟⎠ .

Finally, the ∆k� = πkl − πkπl are given by⎛⎜⎜⎜⎜⎝
− ∆12 = 0 ∆13 = −1/4 ∆14 = 0 ∆15 = 0

∆12 = 0 − ∆23 = 0 ∆24 = −1/9 ∆25 = −1/9
∆13 = −1/4 ∆23 = 0 − ∆34 = 0 ∆35 = 0

∆14 = 0 ∆24 = −1/9 ∆34 = 0 − ∆45 = −1/9
∆15 = 0 ∆25 = −1/9 ∆35 = 0 ∆45 = −1/9 −

⎞⎟⎟⎟⎟⎠ .

We see that a large number of ∆k� are null, which is a sign of a stratified
design. In fact, in a stratified design, if k and � belong to any two different
strata then πk� = πkπ�, that is ∆k� = 0. Anyway, if the design is stratified, two
individuals k and � such that ∆k� �= 0 inevitably belong to the same stratum.
Considering this principle, the two strata, if they exist, are inevitably:

{1, 3}, {2, 4, 5}.

If remains to verify that this stratified design corresponds well to the stated
design. If, in the strata {1, 3}, we select a unit by simple random sampling
(which explains that π13 = 0 and that π1 + π3 = 1) and if, in the strata
{2, 4, 5}, independent from the previous selection, two units are selected by
simple random sampling without replacement (where π2 + π4 + π5 = 2),
there are six possible samples S and we very well find the probabilities p(s)
previously stated.
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Multi-stage Sampling

5.1 Definitions

We consider a partitioning of the population U into M parts, called primary
units (PU). Each PU is itself partitioned into Ni parts, called secondary units
(SU), identified by the pair (i, k), where k varies from 1 to Ni. The population
of secondary units in PU i is denoted Ui. It is possible to repartition each SU
and to iterate this process. We sample m PU (sample S) then, in general in-
dependently from one PU to another, we sample ni SU in PU i if it is sampled
(sample Si): we say that we are faced with sampling of two stages. If this final
stage is sampled exhaustively, the sampling is called ‘cluster sampling’.

5.2 Estimator, variance decomposition, and variance

In a two-stage sampling design without replacement, if PU i is selected with
inclusion probability πi, and if SU (i, k) that it contains is selected with prob-
ability πk|i, then we estimate the total

Y =
M∑
i=1

∑
k∈Ui

yi,k

without bias by
Ŷ =

∑
i∈S

∑
k∈Si

yi,k

πiπk|i
.

The variance var(Ŷ ) is the sum of two terms, knowing the ‘inter-class’ variance
var1(E2|1(Ŷ )) and the ‘intra-class’ variance E1(var2|1(Ŷ )), where 1 and 2 are
the indices representing the two successive sampling stages. In the case of a
simple random sample at each stage, when ni only depends on i, we show
that:
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var(Ŷ ) = M2
(
1 − m

M

) S2
T

m
+

M

m

M∑
i=1

N2
i

(
1 − ni

Ni

)
S2

2,i

ni
,

where

S2
T =

1
M − 1

M∑
i=1

(Yi − Y )2,

Y =
1
M

M∑
i=1

Yi,

and
S2

2,i =
1

Ni − 1

∑
k∈Ui

(yi,k − Y i)2,

with
Y i =

Yi

Ni
,

and
Yi =

∑
k∈Ui

yi,k.

This variance can be estimated without bias by:

v̂ar(Ŷ ) = M2
(
1 − m

M

) s2
T

m
+

M

m

∑
i∈S

N2
i

(
1 − ni

Ni

)
s2
2,i

ni
,

where
s2

T =
1

m − 1

∑
i∈S

(Ŷi − 1
m

∑
i∈S

Ŷi)2,

and
s2
2,i =

1
ni − 1

∑
k∈Si

(yi,k − Ŷ i)2,

with
Ŷi = NiŶ i,

and
Ŷ i =

1
ni

∑
k∈Si

yi,k.

5.3 Specific case of sampling of PU with replacement

When the primary units are selected with replacement, we have a remarkable
result. Denoting m as the sample size of PU, j as the order number of the
drawing and ij as the identifier of the PU selected at the jth drawing, and
denoting:
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• pi as the sampling probability of PU i at the time of any drawing

M∑
i=1

pi = 1.

• Ŷi as the unbiased estimator of the true total Yi (expression as a function
of the sampling design within PU i).

We then estimate without bias the true total with the Hansen-Hurwitz esti-
mator:

ŶHH =
1
m

m∑
j=1

Ŷij

pij

,

and we estimate without bias its variance by:

v̂ar
(
ŶHH

)
=

1
m(m − 1)

m∑
j=1

(
Ŷij

pij

− ŶHH

)2

.

This very simple expression is valid for whatever sampling design used within
the PU (we only require that Ŷi be unbiased for Yi).

5.4 Cluster effect

We thus indicate the phenomenon conveying a certain ‘similarity’ among the
individuals of the same PU, in comparison with the variable of interest y. We
can formalise this by:

ρ =

∑M
i=1

∑Ni

k=1

∑Ni

�=1
� �=k

(yi,k − Y )(yi,� − Y )∑M
i=1

∑
k∈Ui

(yi,k − Y )2
1

N − 1
,

where
N =

N

M
.

With simple random sampling without replacement at each of the two stages
and with the PU of same size, we show that

var(Ŷ ) = N2
S2

y

mn̄
(1 + ρ(n̄ − 1))

as soon as ni = n̄ for all PU i (and that we neglect the sampling rate of PU).
The cluster effect increases the variance, especially since n̄ is large.
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EXERCISES

Exercise 5.1 Hard disk
On a micro-computer hard disk, we count 400 files, each one consisting of
exactly 50 records. To estimate the average number of characters per record,
we decide to sample using simple random sampling 80 files, then 5 records in
each file. We denote: m = 80 and n = 5. After sampling we find:

• the sample variance of the estimators for the total number of characters
per file, which is s2

T = 905 000 ;
• the mean of the m sample variances s2

2,i is equal to 805, where s2
2,i repre-

sents the variance for the number of characters per record in file i.

1. How do we estimate without bias the mean number Y of characters per
record?

2. How do we estimate without bias the accuracy of the previous estimator?
3. Give a 95% confidence interval for Y .

Solution

1. We denote yi,k as the number of characters in record k of file i. We have

Y =
1
N

M∑
i=1

∑
k∈Ui

yi,k =
1
N

M∑
i=1

N Y i =
1
M

M∑
i=1

Y i,

where
• M = 400 is the number of files (primary units),
• N = 50 is the number of records per file,
• N = M × N = 400 × 50 = 20000 is the total number of records,
• Y i is the mean number of characters per record in file i,
• Ui is the set of identifiers for the records of file i.
We estimate Y without bias by

Ŷ =
Ŷ

N
=

1
N

∑
i∈S1

Ŷi

m/M
,

where
• S1 is the sample of files,
• Ŷi is the unbiased estimator of the total number of characters in file i

Ŷi =
∑
k∈Si

yi,k

n̄/N
=

N

n̄

∑
k∈Si

yi,k,
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• Si is the sample of records selected in file i.
We know that Ŷi = N × Ŷ i, where Ŷ i is the mean number of characters
per record sampled in file i. We easily see that:

Ŷ =
M

Nm
N
∑
i∈S1

Ŷ i =
1
m

∑
i∈S1

Ŷ i =
1

mn̄

∑
i∈S1

∑
k∈Si

yi,k,

which is the simple mean Ŷ calculated on the sample of the m× n̄ = 400
selected records. Arriving at this mean is natural if we observe that the
sampling is of fixed size mn̄.

2. This sampling design is of two stages, with primary units (the files) of
constant size N . In this case, we have:

v̂ar(Ŷ ) =
1

N2
v̂ar(Ŷ ) =

1

N
2

1 − m
M

m
s2

T +
m

M

1
mn̄

(
1 − n̄

N

)(
1
m

∑
i∈S1

s2
2,i

)
,

which gives

v̂ar(Ŷ ) =
1 − 80/400

80
× 905 000

(50)2
+

80
400

× 1
80 × 5

(
1 − 5

50

)
× 805

=
14 480
4 000

+
1 449
4 000

≈ 3.98.

Note: In this design of two stages, the quantity 14 480/4 000 overestimates
the INTER-class variance and 1 449/4 000 underestimates the INTRA-
class variance (see Ardilly, 1994, page 101).

3. Taking into account the sampling sizes, we can consider that Ŷ follows
(approximately) a normal distribution. Then

Y ∈
[
Ŷ − 1.96

√
v̂ar(Ŷ ) ; Ŷ + 1.96

√
v̂ar(Ŷ )

]
=
[
Ŷ − 3.9; Ŷ + 3.9

]
,

95 times out of 100.

Exercise 5.2 Selection of blocks
The objective is to estimate the mean income of households in a district of a
city consisting of 60 blocks of houses (of variable size). For this, we select three
blocks using simple random sampling without replacement and we interview
all households which live there. Furthermore, we know that 5000 households
reside in this district. The result of the survey is given in Table 5.1.

1. Estimate the mean income Ŷ π and the total income Ŷπ of the households
in the district using the Horvitz-Thompson estimator.
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Table 5.1. Table of three selected blocks: Exercise 5.2

Block number Number of households Total household income
in the block in the block

1 120 2100
2 100 2000
3 80 1500

2. Estimate without bias the variance of the Horvitz-Thompson mean esti-
mator.

3. Estimate the mean income Ŷ H of the households in the district using the
Hájek ratio, and compare with the estimation from 1. Was the direction
of the change predictable?

Solution
It is cluster sampling where the clusters are selected with equal probabilities
with M = 60, m = 3, N = 5000. The inclusion probabilities are given by:

πi =
m

M
=

3
60

=
1
20

.

The population total (known) in cluster i is NiY i.

1. We denote S as the sample of selected clusters. The Horvitz-Thompson
mean estimator is defined by:

Ŷ π =
1
N

∑
i∈S

NiY i
m
M

=
M

N

1
m

∑
i∈S

NiY i

=
1

5000

(
1500
1/20

+
2000
1/20

+
2100
1/20

)
= 22.4.

The Horvitz-Thompson estimator of the total is:

Ŷπ = NŶ π = 5000× 22.4 = 112 000.

2. Since the sampling is simple random in the population of clusters, we have

v̂ar(Ŷ π) =
(

M

N

)2 (
1 − m

M

) 1
m

1
m − 1

∑
i∈S

(
NiY i − N

M
Ŷ π

)2

=
M − m

m − 1
M

m

∑
i∈S

(
Y iNi

N
− Ŷ π

M

)2

=
60 − 3
3 − 1

× 60
3

×
{(

1500
5000

− 22.4
60

)2

+
(

2000
5000

− 22.4
60

)2

+
(

2100
5000

− 22.4
60

)2
}

≈ 4.7.
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3. We denote N̂π as the unbiased estimator of N , being

N̂π =
∑
i∈S

Ni

m/M
,

in that case

Ŷ H =
Ŷπ

N̂π

=
1500
1/20 + 2000

1/20 + 2100
1/20

120
1/20 + 100

1/20 + 80
1/20

=
5600 × 20
300 × 20

= 18.7.

Therefore Ŷ H < Ŷ π. The three blocks forming S are obviously ‘too large’
on average: their mean size is 100 households while in the entire population
the mean block size is 5000/60 ≈ 83.3 households. Under these conditions,
since the total income of a block is well explained by its size, it is logical
to get an estimate Ŷ π of Y that is ‘too large’. The usage of Ŷ H corrects
this effect and decreases the estimate.

Exercise 5.3 Inter-cluster variance
Consider a simple random sample of clusters. We suppose that all clusters are
of the same size. Recall the expression of the Horvitz-Thompson estimator.
Give an expression of its variance as a function of the inter-cluster population
variance.

Solution
With a simple random sample of clusters i of size Ni and of mean Y i, we
have:

Ŷ π =
M

N

1
m

∑
i∈S

NiY i.

If all clusters are of the same size, we have

Ni

N
=

1
M

, i = 1, ..., M.

That is, finally,

Ŷ π =
1
m

∑
i∈S

Y i.

We will observe that it is the simple mean of yk in the overall sample. The
variance of the Horvitz-Thompson mean estimator is written in the case of
clusters of size Ni:

var
(
Ŷ π

)
=
(

M

N

)2
M − m

mM

1
M − 1

M∑
i=1

(
NiY i − 1

M

M∑
i=1

NiY i

)2

=
M − m

M − 1
M

m

M∑
i=1

(
Y iNi

N
− Y

M

)2

.
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We therefore obtain, in the present case:

var
(
Ŷ π

)
=

M − m

M − 1
M

m

M∑
i=1

(
Y i

M
− Y

M

)2

=
M − m

M − 1
1
m

M∑
i=1

1
M

(
Y i − Y

)2
=

M − m

M − 1
1
m

M∑
i=1

Ni

N

(
Y i − Y

)2
=

M − m

M − 1
σ2

inter

m
.

The variance of the estimator essentially depends on the size of the sample
of clusters and on the inter-cluster population variance σ2

inter. Contrary to
the stratification, we thus have complete interest in constructing clusters for
which the means are very close to one another. Note that, in the exclusive case
of a simple random sample of clusters of equal size, we immediately deduce
the variance of the unbiased estimator of the mean Ŷ π, as this is the simple
mean of values Y i, that is:

var(Ŷ π) =
(
1 − m

M

) S2(Y i)
m

,

where

S2(Y i) =
1

M − 1

M∑
i=1

(Y i − Y )2.

Exercise 5.4 Clusters of patients
A statistician wishes to carry out a survey on the quality of health care in
the cardiology services of hospitals. For that, he selects by simple random
sampling 100 hospitals among the 1 000 hospitals listed and then, in each of
the selected hospitals, he collects the opinions of all the cardiology patients.

1. What do we call this sampling design and what is its reason for existence?
2. We consider that each cardiology unit is comprised of exactly 50 beds and

that the 95% confidence interval on the true proportion P of dissatisfied
patients is:

P ∈ [0.10 ± 0.018] ,

(that signifies in particular that, in the sample, 10% of patients are dis-
satisfied with the quality of care). How do you estimate the cluster effect?
(Start by estimating S2

y .)
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3. How would the accuracy of the statistician’s survey on satisfaction evolve
if, all at once, he sampled twice the number of hospitals but in each
selected hospital he only collected his data on half of the cardiology units?
(Say that the units are systematically divided by an aisle and that our
statistician is exclusively interested in the 25 beds that are situated to the
right of the aisle)?

4. Comment on this result in comparison to that given by the first sample
design.

Solution

1. It is cluster sampling. It is justified by a search for savings in terms of
budget.

2. We recall that a true proportion P is estimated without bias using a
proportion in the sample P̂ whenever all the clusters have the same size
(it is the case here, with the common size being 50). If ρ̂ is the estimated
cluster effect, we have:

v̂ar(P̂ ) = (1 − f)
Ŝ2

y

mN

[
1 + ρ̂(N − 1)

]
,

where Ŝ2
y is a ‘good’ estimator of S2

y , because the clusters are of equal size
N . Indeed

2 ×
√

v̂ar(P̂ ) = 0.018 ⇒ v̂ar(P̂ ) = 8.1 × 10−5.

Furthermore, f = 100
1 000 , m = 100, and N = 50. The problem remains

to estimate S2
y . We saw in Exercise 3.21 that the sample variance s2

y is
a biased estimator of S2

y when the design is complex (which is the case
here), but that this bias varies by 1/n if the design is of fixed size and with
equal probabilities. Here, n = 5000, these conditions are satisfied and this
bias is therefore totally negligible. That is,

Ŝ2
y = s2

y =
1

mN − 1

∑
k∈S∗

(yk − Ŷ )2,

where S∗ is the sample of mN patients and yk is 1 if patient k is dis-
satisfied, and 0 otherwise (Ŷ is the mean of yk on S∗). According to the
decomposition formula for variance, denoting S as the sample of hospitals
(the other notations are standard):

s2
y ≈

∑
i∈S

N

n
s2
2,i +

∑
i∈S

N

n
(Ŷ i − Ŷ )2 =

1
m

∑
i∈S

s2
2,i +

1
m

∑
i∈S

(Pi − P̂ )2,
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where Pi is the true proportion of dissatisfied patients in hospital i. Here,
s2
2,i ≈ Pi(1 − Pi). Therefore

s2
y ≈ 1

m

∑
i∈S

[Pi − P 2
i + (Pi − P̂ )2] =

1
m

∑
i∈S

[Pi − 2PiP̂ + P̂ 2] = P̂ (1 − P̂ ),

that is, s2
y ≈ 0.1 × 0.9 = 0.09. Thus, ρ̂ = 4/49 ≈ 0.08. The estimator ρ̂

is biased for the true cluster effect ρ (unknown), but its bias is weak (on
1/n).

3. To perform this type of simulation, we consider that the cluster effect does
not change. It is mathematically false since it depends on the composition
of clusters, but numerically it is a matter of an indicator of similarity
which is, by construction, a little sensitive to the delimitation of clusters.
We then obtain:

v̂ar′ =
(

1 − 200
1 000

)
× 0.1 × 0.9

200 × 25
[1 + 0.08(25− 1)] ≈ 4.2 × 10−5.

4. The variance goes from 8.1 × 10−5 to 4.2 × 10−5, which is a decrease in
standard deviation (and therefore in confidence interval length) of 28%,
which conforms to the theory: it is preferable, with a constant final sample
size and from the lone point of view of accuracy, to select more primary
units (hospitals) and fewer secondary units (beds). In compensation, the
second method is more expensive. In practice, the choice of method takes
into account both the cost and the accuracy.

Exercise 5.5 Clusters of households and size
To estimate the average number Y of people per household in a given country,
we carry out a two-stage sampling design:

• 1st stage: Random sampling with replacement of m = 4 villages among
M = 400 proportional to size. The size of a village is the number of
households it has. Thus, for each of the four independent selections, a
village is selected with a probability proportional to its size.

• 2nd stage: Simple random sampling of ni households among Ni if village
i is selected.

The data are presented in Table 5.2.
Ŷ i is the mean number of people per household in village i, according to the
sample.

The total number of households in the country is N = 10 000.

1. a) What is the selection probability pi for each of the four villages se-
lected? (The selection probability is the probability a village has of
being selected at the time of each of the four independent selections
successively done under the same conditions.)
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Table 5.2. Number of people per household: Exercise 5.5

i Ni Ŷ i

1 20 5.25
2 23 5.50
3 25 4.50
4 18 5.00

b) Calculate Pr(i /∈ S) as a function of (1 − pi). Deduce the inclusion
probability πi = Pr(i ∈ S) as a function of pi. Examine the case
where pi is small.

2. What is the expression of Y (true value) and what is its unbiased estima-
tor?

3. Estimate the variance of this estimator. What interest do we have in using
sampling with replacement at the 1st stage?

Solution

1. a) The basic selection probability with replacement is proportional to the
size Ni and is thus pi = Ni/N , which gives

p1 =
20

10 000
, p2 =

23
10 000

, p3 =
25

10 000
, p4 =

18
10 000

.

b) The probability that village i is not in the sample is:

Pr(i /∈ S)

= Pr [(i not selected in 1st trial) ∩ (i not selected in 2nd trial) ∩
(i not selected in 3rd trial) ∩ (i not selected in 4th trial)]

=
∏

α=1,2,3,4

Pr(i not selected in αth trial)

= (1 − pi)4,

which gives the inclusion probability

πi = Pr(i ∈ S) = 1 − Pr(i /∈ S) = 1 − (1 − pi)4 for all i.

If we assume that pi is small, then πi ≈ 1 − (1 − 4pi) = 4pi.
Note: we ‘nearly’ find the πi from sampling without replacement, since
in this case:

πi = m
Ni

N
= mpi here with m = 4.
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2. The mean number of people per household is defined by:

Y =
total number of people

total number of households
.

Denote yi,k as the number of people in household k of village i. The true
mean is:

Y =
1
N

M∑
i=1

∑
k∈Ui

yi,k.

There exists two unbiased estimators of the total Y = Y N .
• the Hansen-Hurwitz estimator

ŶHH =
1
m

m∑
i=1

Ŷi

pi

(with an abuse of notation, i here indicates at the same time an iden-
tifier and a sampling number),

• the Horvitz-Thompson estimator

Ŷπ =
∑
i∈S

Ŷi

πi
=
∑
i∈S

Ŷi

1 − (1 − pi)4
,

where S is the sample of villages with distinct identifiers in fine selected
(therefore S does not have a fixed size).

These two estimators are approximately equal if the pi are very small.
The estimator Ŷi is an unbiased estimator of the total in village i

Yi =
∑
k∈Ui

yi,k.

The estimator of Yi is Ŷi = NiŶ i, where Ŷ i is the simple mean calculated
in the sample selected in village i. Finally, if we use the first estimator to
estimate the mean Y :

Ŷ HH =
1

mN

m∑
i=1

NiŶ i

pi
,

with pi = Ni/N, which gives

Ŷ HH =
1
m

m∑
i=1

Ŷ i.

Numerical application: Ŷ HH ≈ 5.06.



Exercise 5.6 171

3. We know that the unbiased estimator of var(ŶHH) is:

v̂ar(ŶHH) =
1

m(m − 1)

m∑
i=1

(
Ŷi

pi
− ŶHH

)2

.

Indeed
Ŷi

pi
=

NiŶ i

Ni/N
= NŶ i and ŶHH = NŶ HH ,

and thus

v̂ar(Ŷ HH) =
1

N2
v̂ar(ŶHH) =

1
m(m − 1)

m∑
i=1

(Ŷ i − Ŷ HH)2.

Numerical application:

v̂ar(Ŷ HH)

=
1

4 × 3
[(5.25 − 5.06)2 + (5.50 − 5.06)2 + (4.50 − 5.06)2 + (5 − 5.06)2]

≈ 0.045.

The mean number of people per household is therefore known, 95 times
out of 100, at nearly 0.42 individuals (if we make the assumption of a
normal distribution).
Interest: The formula for estimating the accuracy v̂ar is very simple (the
true variance itself is complicated). This result is remarkable, as it is valid
as soon as:
• the sampling of primary units is carried out with unequal probabilities

and with replacement;
• any sampling of secondary units is used, with a single constraint nev-

ertheless: Ŷi estimates Yi without bias.

Exercise 5.6 Which design?
Consider the population {1, 2, 3, 4, 5, 6, 7, 8, 9} and the following sample de-
sign:

p({1, 2}) = 1/6, p({1, 3}) = 1/6, p({2, 3}) = 1/6,
p({4, 5}) = 1/12, p({4, 6}) = 1/12, p({5, 6}) = 1/12,
p({7, 8}) = 1/12, p({7, 9}) = 1/12, p({8, 9}) = 1/12.

1. Give the first-order inclusion probabilities.
2. Is this design simple, stratified, clustered, two-stage or none of these par-

ticular designs? Justify your response.
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Solution

1. The first-order probabilities are:

π1 =
1
3
, π2 =

1
3
, π3 =

1
3
, π4 =

1
6
, π5 =

1
6
, π6 =

1
6
, π7 =

1
6
, π8 =

1
6
, π9 =

1
6
.

2. We see that the design is clearly developed as a function of the following
partition of the population: {1, 2, 3}, {4, 5, 6}, {7, 8, 9}. The design consists
of choosing one of the three parts with respective probabilities of 1/2,
1/4 and 1/4. Next, in the selected part, we perform a simple sampling
without replacement of size 2 among the three individuals (probability
1/3 of selecting each of the possible samples). It is therefore a two-stage
sample, where the primary units (the parts) are selected with unequal
probabilities and the secondary units are selected according to simple
random sampling without replacement of size n = 2.

Exercise 5.7 Clusters of households

1. A survey is carried out from a simple random sample of 90 clusters of 40
households each. The clusters are selected using simple random sampling
at the rate f = 1/300. To improve the accuracy of the results, a statistician
proposes to reduce by half the size of the clusters by selecting twice as
many of them. What gain in accuracy can we hope for, ‘all other things
being equal’?

2. For an estimated proportion P̂ = 0.1, the actual survey produces a 95%
confidence interval CI = [0.1 ± 0.014]. Calculate the confidence interval
that we obtain to estimate the same proportion with the new survey tech-
nique (we neglect the sampling rates).

Solution

1. If we estimate Y with Ŷ , we have, in the two-stage design proposed:

var[Ŷ ] = var

[
Ŷ

N

]
= (1 − f)

S2
y

mn
[1 + ρ(n − 1)],

where
• m = number of clusters selected (f = m/M),
• n = number of households per cluster (constant),
• ρ = ‘intra-cluster’ correlation coefficient, also called ‘cluster effect’,
• S2

y = true total variance in the population.
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Note: This expression is true, as the sizes of the clusters are constant
(n̄ = 40); otherwise there is an additional term due to the variance of the
sizes (see Exercise 5.12).
• 1st case:

m= 90

n= 40

}
f =

1
300

→ variance var1.

• 2nd case:

m= 180

n= 20

}
f =

1
300

→ variance var2.

Now, if we compare the two cases, mn = constant. Hence

var2
var1

=
1 + ρ(20 − 1)
1 + ρ(40 − 1)

=
1 + 19ρ

1 + 39ρ
< 1.

This ratio measures, as a function of ρ, the expected gain in accuracy,
‘all other things being equal’.

• Note:
We assume that ρ does not vary when the clusters go from 40 to 20
households. Strictly speaking, this is inaccurate, but in practice we
consider that the modifications are slight and therefore that ρ is quite
‘bearable’ (a priori, we would instead have ρ decreasing if the size
of the clusters increase, because the intra-cluster homogeneity would
then have to decrease).

2. The proportion P̂ is in fact only a particular mean Ŷ where y is an indica-
tor variable. The variance expression from 1. is thus valid by adapting S2

y

in the context of the indicator variables. Since the clusters are of identical
size, n = 40, we have P̂ = Ŷ = p, the proportion in the sample. We are
going to use (see Exercise 5.4 to justify the estimator of S2

y):

v̂ar1 =
p(1 − p)

nm
[1 + ρ(n − 1)],

where (1 − f) is close to 1, which gives

v̂ar1 =
0.1 × 0.9
90 × 40

[1 + ρ × 39] =
(

0.014
2

)2

,

and therefore ρ = 0.0246. Hence

v̂ar2 =
0.1 × 0.9
180 × 20

[1 + ρ × 19],

and therefore
v̂ar2
v̂ar1

= 0.75.
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We deduce the new confidence interval estimated for the true proportion
P : [

P̂ ± 2 ×
√

v̂ar2
]

=
[
0.1 ±

√
0.75 × 0.014

]
= [0.1 ± 0.012] .

Exercise 5.8 Bank clients
A bank has 39 800 clients in its computer files, divided into 3 980 branches each
managing exactly 10 clients. We wish to estimate the proportion of clients for
whom the bank has granted a loan. For this, we sample, using simple random
sampling (SRS), 40 branches (sample S), and we list, in each branch i, Ai

clients having a loan. The data coming from the survey are:∑
i∈S

Ai = 185, and
∑
i∈S

A2
i = 1 263.

1. What do we call this type of sampling?
2. Give the expression of the parameter to estimate and its unbiased estima-

tor.
3. Estimate without bias the variance of this estimator, and provide a 95%

confidence interval.
4. Calculate the design effect (DEFF), defined as a ratio measuring the loss

in estimated variance obtained in comparison to a simple random sample
of the same size.

5. Calculate the intra-cluster correlation coefficient ρ.
6. Estimate the accuracy that we would get by sampling (still using simple

random sampling) 80 branches and 5 clients per selected branch.
7. We have a total budget C to proceed with the estimation (this budget

corresponds to the cost of a simple random sampling of 400 clients). In
concrete terms, in the first place we retrieve, by post from the sampled
branches, the account numbers of sampled clients in the branch (C2: cost
of sending a letter) then we review the central computer list of loans, client
by client, by means of the collected accounts (C1: cost of reading a record).
Then, we add a fixed cost C0, independent of the sampling method. Dis-
cuss the interest of selecting, at a fixed budget, either a simple random
sampling (with the mailout of a letter per client sampled to retrieve his
account number) or a two-stage sampling (with the mailout of a letter per
branch). Prior to this, justify that with simple random sampling, there is
no interest in trying to group the clients by branch before the mailout by
post.

Solution

1. The sample design is cluster sampling: each branch is a cluster of clients.
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2. The function of interest to estimate is the proportion:

P =
∑M

i=1 Ai

MN
,

with M = 3 980 (total number of branches), and N = 10 (total number
of clients in each branch). The unbiased estimator of P is P̂ :

P̂ =
∑

i∈S Ai/(m/M)
MN

=
1

mN

∑
i∈S

Ai =
1
m

∑
i∈S

(
Ai

N

)
,

where m is the number of branches selected (m = 40). Since mN is the
total size of the sample of clients, P̂ is the simple proportion of clients in
the sample having a loan. We have

P̂ =
185

40 × 10
≈ 46.2%.

3. We estimate without bias the variance with

v̂ar(P̂ ) =
(
1 − m

M

) 1
m

s2
P ,

where
s2

P =
1

m − 1

∑
i∈S

(Pi − P̂ )2,

with
Pi =

Ai

N
.

Indeed, P̂ is the simple mean, on the sample of branches, of the proportions
Pi of clients having a loan from branch i. Furthermore,

s2
P =

∑
i∈S P 2

i

m − 1
− m

m − 1
P̂ 2 =

1

(m − 1) N
2

(∑
i∈S

A2
i −

(∑
i∈S Ai

)2
m

)
.

We have

s2
P =

1
39 × 100

(
1 263 − 1852

40

)
= 0.1045,

v̂ar(P̂ ) =
(

1 − 40
3980

)
× 1

40
× 0.1045 ≈ 25.85 × 10−4,

and σ̂ = 5.1 %. We therefore have, 95 times out of 100, the estimated
interval:

P ∈ [46.2 % − 10.2 % ; 46.2 % + 10.2 %].

This mediocre result is due to the very small size of the sample of branches.
We note that with m = 40 branches, the simplifying hypothesis of a
normal distribution for P̂ can be questioned, and anyway is considered to
be quite poor.
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4. It is a matter of estimating without bias the variance that we would get
with n = 400 clients selected using simple random sampling. We know
that

var
SRS

(P̂ ) =
(
1 − n

N

) S2
y

n
,

where, when N is large, S2
y = P (1−P ), with P = the proportion of clients

having obtained a loan (this is indeed the parameter from 1.).

The difficulty consists of estimating S2
y with the cluster sampling design.

The ‘trick’, at least in theory, consists of using P̂ (1 − P̂ ) mechanically
without having calculated the expectation. Indeed, such an expression
would only estimate S2

y without bias if the design was simple random, but
this is not the case. However, according to Question 3,

E v̂ar(P̂ ) = var(P̂ ) = E(P̂ 2) − (EP̂ )2.

In fact, according to 1., we have EP̂ = P, and thus

P 2 = EP̂ 2 − E v̂ar(P̂ ) = E[P̂ 2 − v̂ar(P̂ )].

Finally,

S2
y = P − P 2 = EP̂ − E[P̂ 2 − v̂ar(P̂ )] = E[P̂ (1 − P̂ ) + v̂ar(P̂ )].

We therefore have:

DEFF =
v̂ar(P̂ )(

1 − n
N

)
1
n [P̂ (1 − P̂ ) + v̂ar(P̂ )]

=
25.85 × 10−4(

1 − 400
39 800

)× 1
400 × [0.462× 0.538 + 0.003]

≈ 4.2.

We note that, numerically, the bias of P̂ (1−P̂ ) is very slight. The previous
sample of 40 branches thus multiplied the standard deviation by

√
4.2 ≈ 2.

We are ‘two times worse’ than if we use a simple random sample, but in
contrast the process is less expensive.

5. We have:
DEFF = 1 + ρ(N − 1),

as all the clusters are of the same size N . Thus

ρ =
4.2 − 1
10 − 1

≈ 0.35.

It is a rather strong value, which expresses the ‘intra-class’ homogeneity
of the clusters. We can simplify the situation by considering there to be
two categories of branches: those which easily grant a loan (Ai close to
N), and those which are rather hesitant to make them (Ai close to 0).
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6. With this new sampling design, we have:

v̂ar2(P̂ ) = v̂ar
SRS

(P̂ ) × (1 + ρ(n − 1)),

where v̂ar
SRS

(P̂ ) is the variance estimator in a simple random sample of size

400 and n is the size (constant) of the sample selected within each branch
(n = 5). According to 4., we have:

v̂ar
SRS

(P̂ ) =
v̂ar(P̂ )
DEFF

≈ 6.15 × 10−4.

Therefore

v̂ar2(P̂ ) ≈ 6.15 × 10−4(1 + 0.35 × (5 − 1)) = 14.8 × 10−4,

and σ̂2 = 3.8 %. In comparison with cluster sampling, the length of the
confidence interval is reduced by a factor of 1.3.

7. With simple random sampling, the probability that there are two clients
interviewed from the same branch is extremely small. If we denote X as the
number (random) of clients selected in a given branch i, the distribution
of X is approximately Poisson with parameter(

400 × 10
39 800

)
.

Therefore

Pr(X = 0) + Pr(X = 1) ≈ e−0.1(1 + 0.1) = 0.995.

It is thus almost certain that there is at most one client interviewed per
branch. This justifies that we send one letter per client, without previously
trying to group them by branch to save money.
• With a simple sampling of clients, n is small compared to the pop-

ulation size N = 39 800. We therefore neglect the finite population
correction. We have

C = C0 + C1n + C2n,

and

var
SRS

(P̂ ) =
S2

y

n
,

where S2
y = P (1 − P ). We determine C according to:

C = C0 + 400(C1 + C2).
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• With a two-stage sampling, and denoting m as the number of branches
selected and n as the number of clients selected from each branch, we
get

C = C0 + C1mn + C2m,

and

var(P̂ ) =
S2

y

mn
[1 + ρ(n − 1)].

Neglecting the sampling rate:

var(P̂ )

var
SRS

(P̂ )
=

400
mn

(1 + ρ(n − 1)) =
1
n

C1n + C2

C1 + C2
(1 + ρ(n − 1)).

The simple sampling is interesting if and only if:

var(P̂ )

var
SRS

(P̂ )
≥ 1,

which implies that

(ρC1) n2 + (ρ(C2 − C1) − C2) n + (1 − ρ) C2 ≥ 0,

we calculate
∆ = [(C1 + C2) ρ − C2]2 ≥ 0.

• Case 1: If
ρ =

C2

C1 + C2
,

then
var(P̂ )

var
SRS

(P̂ )
≥ 1 ⇔ C1C2

C1 + C2
(n − 1)2 ≥ 0,

which is always true. Simple random sampling always carries this.
• Case 2:

ρ �= C2

C1 + C2
.

The two distinct roots are 1 and [(1 − ρ)/ρ]×C2/C1 = 1.86×C2/C1.
Therefore

var(P̂ )

var
SRS

(P̂ )
≥ 1 ⇔ n outside of the roots.

• Case 2.a:
C2

C1
≤ 1

1.86
≈ 0.54.

Simple random sampling always carries this. In the extreme case
C2 = 0, we very well see that two-stage sampling does not save
anything, but reduces the accuracy due to ρ: it would be of no
avail to use!
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• Case 2.b:
C2

C1
> 0.54.

The two-stage sampling is at least as advantageous as simple ran-
dom sampling under the condition of selecting the suitable n̄ in
the interval, of course: if C2/C1 is slightly larger than 0.54, we
have n = 1 and therefore it is indeed a simple random sample, but
if C2/C1 is large (for example C2/C1 = 10, and in all severity it is
sufficient to have C2/C1 > 2/1.86 = 1.075), then it is worthwhile to
use a genuine two-stage sampling (with n ≥ 2). This result is intu-
itively explained by the importance of the unit cost C2: it becomes
interesting to save money by limiting the number of letters sent but
on the other hand to read many more records (C1 small). Despite
the cluster effect ρ, the overall ‘sample size’ effect eventually gets
the better of this.

Exercise 5.9 Clusters of households and number of men
This exercise consists of a summary of cluster sampling and sampling with
unequal probabilities. We consider a population of individuals of size N =
62 000. This population is made up of M = 15 000 households. We denote:

Ni = size of household i (number of individuals)
Ai = number of men in household i.

The data from the sample required for the calculations are shown in Table 5.3.

1. First, we conduct a simple random sampling of m = 30 households among
M (sample S), and we survey all the individuals from each of the m
households selected.
a) What do we call this type of sampling?
b) What are the selection probabilities of the households, and what are

the selection probabilities of the individuals?
c) We denote A as the total number (unknown) of men in the population.

i. Give an unbiased estimator Â of A and perform the numerical
application.

ii. What is the expression for its true variance?
iii. What is the unbiased estimator of this variance (numerical appli-

cation)?
iv. What can we say about the pertinence of the total on the model

of Â when we try to estimate the total number of households M?
(We denote the estimator by M̂ .) What about if we now want
to estimate the total size of the population N? (We denote the
estimator by N̂ .)
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Table 5.3. Sample of households: Exercise 5.9

Household identifier Ni Ai

1 5 1
2 6 3
3 3 1
4 3 1
5 2 1
6 3 1
7 3 1
8 3 1
9 4 2

10 4 3
· · · · · · · · ·
25 2 1
26 4 3
27 3 1
28 4 2
29 2 1
30 4 2∑

i∈S

Ni = 104,
∑
i∈S

Ai = 53,
∑
i∈S

N2
i = 404,

∑
i∈S

A2
i = 117,

∑
i∈S

AiNi = 206,
∑
i∈S

(
Ai

Ni

)2

= 8.5,
∑
i∈S

Ai

Ni
= 14.9.

d) For this question, we are trying to estimate the total A using a ‘ratio
by size’ expression.
i. Give a ratio estimator ̂̂A of A that lets us perfectly and properly

estimate the total size N and perform the numerical application.
ii. Can we explain a priori, that is without calculating, the interest

of such an estimator?
iii. What is the expression of its true variance?
iv. What estimator for this variance can we use? Is it biased?
v. Perform the numerical application and conclude.

e) The goal of this question is to estimate the design effect, denoted
DEFF, when we use Â.
i. How would we estimate A by assuming ‘as if’ the individuals in the

selected households had been selected by simple random sampling
directly from the population of size N , and what would be the
accuracy obtained under these conditions (numerical application)?

ii. Comparing this accuracy with the one obtained in 1.(c)iii., give
the DEFF obtained as part of Question 1.(c).
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iii. Why could we have, intuitively, predicted the situation of DEFF in
relation to the value 1?

2. Second, we decide to select m households proportionately to their size Ni.
We consider that this sampling, performed in reality without replacement,
can be likened to be a sampling design with replacement.
a) Under what general conditions, when the sampling designs bring into

consideration unequal probabilities, can we assimilate sampling with
and without replacement?

b) Give, as a function of Ni, the selection probability pi of household
i at the time of each primary drawing. What about the inclusion
probability?

c) Give an unbiased estimator Ã of A, and give a 95% confidence interval
estimated for A. Numerical application and conclusion in comparison
to the results of 1.(c) and 1.(d).

d) What can we say about the pertinence of an estimator of the total
developed on the model of Ã when we try to estimate the total number
of households M (estimator M̃)? What if we now want to estimate
the total size N of the population (estimator Ñ)?

Solution

1. a) It is cluster sampling, with each household forming a cluster. The
clusters are selected through simple random sampling.

b) The inclusion probability of a household is given by:

πhousehold =
m

M
=

30
15 000

=
1

500
.

The inclusion probability of an individual is the inclusion probability
of a household.

c) i. The classical Horvitz-Thompson estimator is:

Â =
∑
i∈S

Ai

m/M
= 500 × 53 = 26 500,

where S is the sample of households.
ii. Since S comes from a simple random sample, we have:

var(Â) = M2
(
1 − m

M

) S2
A

m
,

where

S2
A =

1
M − 1

M∑
i=1

(Ai − A)2.
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iii. Furthermore,

v̂ar(Â) = M2
(
1 − m

M

) s2
A

m
,

where

s2
A =

1
m − 1

∑
i∈S

(
Ai − Â

M

)2

,

which again becomes

s2
A =

1
m − 1

[∑
i∈S

A2
i −

m

M2
(Â)2

]
.

The calculation gives

v̂ar(Â) = 6 043 966.

Therefore,

σ̂Â =
√

v̂ar(Â) = 2 458.

iv. • To estimate the total number of households, we use

M̂ =
∑
i∈S

1
m/M

= M.

This equality, true for whatever sample selected, expresses the
fact that the variance of M̂ is null. We therefore perfectly and
properly estimate M (this is a total like any other).

• To estimate the total number of individuals, we use

N̂ =
∑
i∈S

Ni

m/M
�= N.

This time, unlike for M, we do not perfectly estimate N .
d) i. We are going to set

̂̂
A = N

∑
i∈S Ai∑
i∈S Ni

= N
Â

N̂
.

In fact,
∑

i∈S Ai estimates without bias mA/M , and
∑

i∈S Ni

estimates mN/M ; therefore ̂̂A perfectly estimates N (let Ai = Ni,

and notice then that ̂̂A = N for any S)

̂̂
A = 62 000 × 53

104
= 31 596 (�= Â).
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ii. A priori, Ai must be ‘quite’ proportional to Ni (we can logically
think that the number of men increases more or less in proportion
to the size of the household) and this would have to come back
to the estimator quite precisely, as we are very well under the
conditions for using a ratio (see Chapter 6).

iii. We have: ̂̂
A = M

[
N

Â

N̂

]
,

with

N =
N

M
, N̂ =

∑
i∈S Ni

m
, and Â =

∑
i∈S Ai

m
.

This rewriting allows for the expression of ̂̂A under the classical
form of a ratio and to immediately select the variance (approxi-
mately):

var(̂̂A) ≈ M2
(
1 − m

M

) 1
m

S2
U ,

where S2
U indicates the population variance of the residuals Ui:

Ui = Ai − ANi,

where A = A/N is the true proportion of men in the population.
Finally, this is

S2
U =

1
M − 1

M∑
i=1

(Ai − ANi)2.

iv. The estimator for the variance is

v̂ar(̂̂A) = M2
(
1 − m

M

) 1
m

s2
Û

,

where

s2
Û

=
1

m − 1

∑
i∈S

⎛⎝Ai −
̂̂
A

N
Ni

⎞⎠2

.

The estimator v̂ar(̂̂A) is biased, with a bias of 1/m.
v. By expanding the square of s2

Û
, we obtain:

s2
Û

= s2
A +

⎛⎝ ̂̂A
N

⎞⎠2

s2
N − 2

̂̂
A

N
sAN,

where sAN indicates the covariance in the sample between Ai

and Ni
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s2
Û

= 0.806 +
(

31 596
62 000

)2

× 1.5 − 2 × 31 596
62 000

× 0.759 ≈ 0.422.

Therefore,
σ̂̂̂
A

= 1 779.

Conclusion: Since 1 779 < 2 458, the ratio ̂̂A appears to be prefer-
able to Â.

e) i. We ‘forget’ for a moment the cluster aspect, and we consider that
the
∑

i∈S Ni individuals selected could have been selected by sim-
ple random sampling. We would then use the estimator:

A∗ = N × (% of men selected) = N

∑
i∈S Ai∑
i∈S Ni

.

Numerically, A∗ = ̂̂A, but the estimated variance is calculated very
differently:

v̂ar
SRS

(A∗) = N2
(
1 − n

N

) s2

n − 1
,

with s2 = P̂ (1 − P̂ ), where

P̂ =
∑

i∈S Ai

n
= % of men in the sample.

Numerical application:

v̂ar
SRS

(A∗) = (62 000)2
[
1 − 104

62 000

]
0.51 × 0.49

103
= 9326313,

since P̂ = 53/104 = 0.51, and therefore

σ̂SRS(A∗) =
√

v̂ar
SRS

(A∗) = 3 053.9.

ii. We estimate the design effect by:

D̂EFF =
v̂ar(Â)
v̂ar
SRS

(A∗)
=

6 043 966
9 326 313

≈ 0.65.

Once again, we draw attention to the traditional difficulty encoun-
tered with each calculation of the design effect: the estimator of
the variance used in the denominator does not estimate without
bias the variance that we would obtain with simple sampling. In
fact, the expression s2 from (e) i. does not estimate the popu-
lation variance S2 without bias because the sampling that had
taken place was not simple random (it is not even of fixed size,
which greatly complicates things). We therefore only get an order
of magnitude of DEFF.
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iii. DEFF< 1: This time, cluster sampling was better than simple
random sampling (once is not enough). We could have figured this
by examining the individual data because from a gender point of
view, the households seem rather heterogeneous from within (‘neg-
ative’ cluster effect: to extremely simplify, a household is composed
of 50% men and 50% women).

2. a) The likening is possible under two conditions: sample size m is ‘small’
with respect to M and the sizes Ni are not much dispersed. These two
conditions are in practice realised.

b) For all i, pi = Ni/N . The inclusion probability of household i is (see
Exercise 5.5) 1− (1−pi)n �= npi, but even so is extremely close to npi

since here pi � 1.
c) An unbiased estimator is

Ã =
1
m

m∑
i=1

Ai

pi
.

(Note that i = the sequence number of the drawing here, with an
abuse of notation.)

v̂ar(Ã) =
1

m(m − 1)

m∑
i=1

(
Ai

pi
− Ã

)2

=
1

m(m − 1)

[
N2

m∑
i=1

(
Ai

Ni

)2

− mÃ2

]

=
1

m(m − 1)

[
N2
∑
i∈S

(
Ai

Ni

)2

− mÃ2

]
.

This last equality expresses the comparison of sampling with and with-
out replacement.

Ã =
1
30

× 62 000 × 14.9 = 30 793 (thus Ã �= Â and Ã �= ̂̂A),

v̂ar(Ã) =
1

30 × 29
[
(62 000)2 × 8.5 − 30 × (30 793)2

]
= 4 859 460,

and
σ̂Ã = 2 204.

Recall that
σ̂̂̂
A

= 1 779, and σ̂Â = 2 458.

We apparently get (because it is only an estimation) a worse accuracy
with the unequal probabilities than with the ratio according to size,
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but better than cluster sampling with the classical estimator. The 95%
confidence interval for A is:

A ∈ [30 793 ± 4 408].

Since the size m is not very large, we could hesitate to construct such
a confidence interval but due to the likening made to sampling with
replacement, we can depend on the central limit theorem, of which we
know that it becomes usable with a few dozen units. The conditions are
a bit ‘tight’ to consider that Ã follows a normal distribution, but must
be sufficient to give an acceptable order of magnitude of uncertainty
on A.

d) Since we have

M̃ =
1
m

m∑
i=1

1
pi

�= M (var(M̃) > 0),

and

Ñ =
1
m

m∑
i=1

Ni(
Ni

N

) = N ⇒ var(Ñ) = 0,

we notice that the total size of the population is perfectly estimated,
but not the total number of households. This is exactly the opposite
of the Horvitz-Thompson estimator studied in Question 1.

Exercise 5.10 Variance of systematic sampling
In a list of N individuals, we are interested in a variable y. The individuals
are identified by their order on the list, so their order goes from 1 (for the
first) to N (for the last). We use systematic sampling with interval h to select
n individuals from the list. We assume that: h = N/n ∈ N.

1. Show that everything happens as if we selected a unique cluster of individ-
uals from a population pre-divided into clusters. We will specify what the
clusters are, what their size is, and how many there are in the population.

2. We henceforth use the following notation:

yi,k = value of y for the kth record counted in cluster number i.

We denote Y i as the mean of the yi,k calculated from all the individuals
of cluster number i.
a) What is the unbiased estimator Ŷ of the true mean Y ? We will show

that Ŷ is effectively unbiased.
b) What is the expression of its true variance, as a function of Y i, Y

and h?
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c) How do we estimate this variance without bias?
3. a) Considering the natural splitting of the population into h clusters,

write the analysis equation for the variance by noting:

S2
i =

1
n − 1

n∑
k=1

(yi,k − Y i)2.

b) Show that if N is large, and if we denote:

S2
W =

1
h(n − 1)

h∑
i=1

n∑
k=1

(yi,k − Y i)2,

then we have:
var(Ŷ ) ≈ S2

y − h(n − 1)
N

S2
W .

c) Show that systematic sampling is more precise than simple random
sampling if and only if: S2

y < S2
W by considering N as very large with

respect to n.
d) In order for this condition to be satisfied, it is necessary to ensure that

S2
W is ‘large’. How does this affect yi,k? How do we proceed in order

that, in practice, this is indeed the case?

Solution

1. The configuration of the list and the different systematic samples conceiv-
able are the following:
cluster 1: {1, 1 + h, 1 + 2h, 1 + 3h, . . . , 1 + (n − 1) h},
cluster 2: {2, 2 + h, 2 + 2h, 2 + 3h, . . . , 2 + (n − 1) h},
cluster h: {h, h + h, h + 2h, h + 3h, . . . , h + (n − 1) h︸ ︷︷ ︸

=nh=N

}.

There are thus h clusters possible in the population, each having a size n.
One lone cluster is sampled.

2. a)

Ŷ =
1
N

∑
k∈S

yk
m
M

,

where
• m = number of clusters selected = 1,
• M = number of clusters in the population = h,
• k = identifier of the individual (S is the sample of individuals).
In fact, the inclusion probability for all individuals is equal to the
selection probability for the cluster in which it is contained, being
m/M . We thus have
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Ŷ =
h

N

∑
k∈S

yk =
1
n

∑
k∈S

yk.

Therefore, if cluster (unique) i is selected, we have:

Ŷ =
1
n

n∑
k=1

yi,k = Y i.

Demonstration of the unbiasedness of Ŷ : by the definition of the ex-
pected value:

E(Ŷ ) =
1
h

h∑
i=1

Y i =
1
h

h∑
i=1

n∑
k=1

yi,k

n
=
∑h

i=1

∑n
k=1 yi,k

N
= Y ,

as there are h clusters in total and only one selected per simple random
sampling (Y i occurs with a probability 1/h). Therefore, Ŷ is unbiased.

b) The variance is

var(Ŷ ) = E(Ŷ − Y )2 =
h∑

i=1

1
h

(Y i − Y )2,

by definition of an expected value since the distribution is discrete.
c) Trick question: We cannot estimate this variance without bias, as we

select only one cluster, and this fact prohibits the unbiased estimation
of any population variance. In literature, we nevertheless find vari-
ance estimators for this type of sampling design but they are biased
(see Wolter, 1985): under certain conditions, responding to behaviour
patterns, the bias is weak, and that justifies the use of such estimators.

3. a) Recall the general expression for the decomposition of variance (clas-
sical notation):

S2
y ≈

H∑
i=1

Ni

N
(Y i − Y )2 +

H∑
i=1

Ni − 1
N

S2
i ,

for any division into H sub-populations indexed by i. Here, a sub-
population consists of one cluster; we have H = h and Ni = n

S2
y ≈

h∑
i=1

n

n × h
(Y i − Y )2 +

h∑
i=1

n − 1
n × h

S2
i ,

that is,

S2
y ≈ n − 1

n × h

h∑
i=1

S2
i +

1
h

h∑
i=1

(Y i − Y )2.
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b) We can write

var(Ŷ ) ≈ S2
y − n − 1

N

h∑
i=1

S2
i

≈ S2
y − n − 1

N

h∑
i=1

1
n − 1

n∑
k=1

(yi,k − Y i)2

≈ S2
y − 1

N

h∑
i=1

n∑
k=1

(yi,k − Y i)2

≈ S2
y − 1

N
[h(n − 1) S2

W ].

c) Systematic sampling is more precise than simple random sampling if
and only if:

var(Ŷ ) < (1 − f)
S2

y

n

⇔ S2
y − h(n − 1)

N
S2

W <

(
1
n
− 1

N

)
S2

y

⇔ S2
y

[
1 − 1

n
+

1
N

]
<

h(n − 1)
N

S2
W =

(
1 − 1

n

)
S2

W

⇔ S2
y <

1 − 1
n

1 − 1
n + 1

N

S2
W ≈ S2

W

(
by hypothesis,

1
n
� 1

N

)
⇔ S2

y < S2
W .

d) We want S2
W to be ‘large’: yi,k must be very dispersed around their

mean Y i, and this must happen for each cluster. In practice, a method
of ‘assuring’ this is to sort the list according to an auxiliary variable
x that is well correlated to y.

Exercise 5.11 Comparison of two designs with two stages
A population U with N individuals is divided into M primary units Ui (i =
1, ..., M) of size Ni. We are interested in the total Y of a variable taking the
values yi,k (k ∈ Ui), and we denote

Yi =
∑
k∈Ui

yi,k, Y i =
Yi

Ni
, Y =

M∑
i=1

Yi,

S2
2,i =

1
Ni − 1

∑
k∈Ui

(
yi,k − Y i

)2
,
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S2
T =

1
M − 1

M∑
i=1

(
Yi − Y

M

)2

,

S2
N =

1
M − 1

M∑
i=1

(
Ni − N

M

)2

.

1. a) We select using simple random sampling (without replacement) m
primary units, forming a sample S. Calculate the expected value and
the variance of the estimator

N̂(S) =
∑
i∈S

Ni.

b) In each primary unit of S, we select (by simple random sampling
without replacement) a sample of secondary units at a rate f2. This
rate is independent of S (strategy A). Calculate f2 so that the final
sample size has an expected value n̄ fixed in advance (we assume that
f2 × Ni is an integer).

c) What unbiased estimator Ŷ of Y , as a linear function of Ŷ i, do we pro-
pose? What is its variance? What does it become if S2

2,i is a constant
(denoted S2

2) for all i?
d) For m sufficiently large, give a 95% confidence interval for the total

size n of the final sample.
2. We now examine another two-stage sampling design (strategy B). The

sample of primary units is selected as previously done, but in each primary
unit selected in the first stage, we select using simple random sampling
without replacement a sample of size ni = f2Ni, with

f2 = f2(S) =
n̄

N̂(S)
.

a) Show that the sample is of fixed size (to be determined), and that for
all i of S, the estimator Ŷi = NiŶ i estimates Yi without bias. Show
that Ŷ defined from 1.c. is always unbiased.

b) Calculate the variance of Ŷ assuming that S2
2,i = S2

2 for all i.
3. Compare the two strategies A and B, under the conditions that we spec-

ified. Can we say that one is indisputably better than the other?

Solution

1. a) Since
N̂(S) =

∑
i∈S

Ni,
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E
(
N̂(S)

)
=

M∑
i=1

Ni
m

M
=

mN

M
.

Furthermore, since N̂(S)M/m is the unbiased estimator of N =∑M
i=1 Ni,

var
(

N̂(S)
M

m

)
= M2 M − m

Mm
S2

N ,

where S2
N is the population variance of Ni. It follows that

var
(
N̂(S)

)
= m2 M − m

Mm
S2

N .

b) We fix f2 = ni/Ni before selecting S. The ni are therefore not random.
The total sample size n(S) is random, indeed

n(S) =
∑
i∈S

ni =
∑
i∈S

Nif2 = f2N̂(S).

Therefore, if we fix in advance n̄, the expected value of n(S)

n̄ = E(n(S)) =
f2mN

M
,

and we therefore set
f2 =

Mn̄

mN
,

which is effectively independent of S.
c) Since Y =

∑M
i=1 Yi, the estimator of the total is given by

Ŷ =
∑
i∈S

M

m
Ŷi =

∑
i∈S

M

m
NiŶ i,

where Ŷi estimates Yi without bias, and Ŷ i is the mean of ni secondary
units sampled from i. We are in the ‘classical’ setting where ni only
depends on i since f2 is independent of S. In this case, the variance,
well-known, is

var(Ŷ ) = M2 M − m

Mm
S2

T +
M

m

M∑
i=1

N2
i

Ni − ni

Nini
S2

2,i

= M2 M − m

Mm
S2

T +
M

m
(1 − f2)

M∑
i=1

N2
i

mS2
2,i

Mn̄Ni
N

= M2 M − m

Mm
S2

T +
N

n̄
(1 − f2)

M∑
i=1

NiS
2
2,i.
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Furthermore, if S2
2,i = S2

2 , then

var(Ŷ ) = M2 M − m

Mm
S2

T +
N2

n̄
(1 − f2)S2

2 .

d) We have
n = n(S) =

∑
i∈S

ni = f2N̂(S).

Therefore,

var(n) = (f2)2var(N̂(S)) =
(

n̄

N

)2 (
1 − m

M

) S2
N

m
,

where N = N/M is the mean size of the M primary units. If m is
large, then n approximately follows a normal distribution and, (about)
95 times out of 100, we have:

n ∈
[
n̄ ± 2

n̄

N
SN

√
1
m

− 1
M

]
.

2. In strategy B, the number of units selected in each primary unit becomes
random

ni(S) = f2Ni =
n̄Ni

N̂(S)
.

The sampling of the second stage thus depends on what passes through
the first stage. The invariance property of ni is therefore not satisfied,
and it is thus not a classical two-stage design. It is therefore necessary
to recalculate the expected value and the variance of the total estimator,
while being attentive to the fact that ni(S) is random.
a) The total size of the sample is∑

i∈S

ni(S) =
∑
i∈S

n̄Ni

N̂(S)
=

n̄

N̂(S)

∑
i∈S

Ni = n̄,

and is thus not random. We still estimate Y by

Ŷ =
∑
i∈S

M

m
Ŷi,

where Ŷi = NiŶ i. Finally, Ŷ is absolutely the same estimator as in
strategy A, but its distribution is not the same.

E
(
Ŷ
)

= E

(∑
i∈S

M

m
Ŷi

)
= ESE

(∑
i∈S

M

m
Ŷi|S

)

= ES

(∑
i∈S

M

m
E
(
Ŷi|S

))
,



Exercise 5.11 193

where ES indicates the expected value with respect to the sampling
distribution of S. Now, conditionally on S, the size ni is fixed, and we
therefore perform ‘standard’ simple random sampling in Ui: Ŷi then
estimates Yi without bias. Finally:

E
(
Ŷ
)

= ES

(∑
i∈S

M

m
Yi

)
=

M∑
i=1

Yi = Y.

b) The variance obtained by the classical decomposition is

var(Ŷ ) = var E
(
Ŷ |S
)

+ E var
(
Ŷ |S
)

.

Indeed

var E
(
Ŷ |S
)

= var

(∑
i∈S

M

m
Yi

)
= M2 M − m

Mm
S2

T .

Furthermore,

E var
(
Ŷ |S
)

= E

{∑
i∈S

M2

m2
var
(
Ŷi|S

)}
.

There is no covariance term, as conditionally on S, the drawings within
the Ui are independent from one another. Therefore

E var
(
Ŷ |S
)

= E

{∑
i∈S

M2

m2
N2

i

Ni − ni

Nini
S2

2,i

}

= E

{∑
i∈S

M2

m2

N2
i

ni
S2

2,i

}
−

M∑
i=1

M

m
NiS

2
2,i

= E

{∑
i∈S

M2

m2

N2
i N̂(S)
n̄Ni

S2
2,i

}
−

M∑
i=1

M

m
NiS

2
2,i

= E

{
M2

m2

∑
i∈S

NiN̂(S)
n̄

S2
2,i

}
−

M∑
i=1

M

m
NiS

2
2,i.

A priori, we can no longer simplify this expression in the general case.
On the other hand, if S2

2,i = S2
2 , we have



194 5 Multi-stage Sampling

E
[
var
(
Ŷ |S
)]

=
M2

m2n̄
S2

2E
{
N̂(S)2

}
−

M∑
i=1

M

m
NiS

2
2

=
M2

m2n̄
S2

2

[
var
{

N̂(S)
}

+
{

EN̂(S)
}2
]
− M

m
NS2

2

=
M2

m2n̄
S2

2

[
m

M − m

M
S2

N +
(

mN

M

)2
]
− M

m
NS2

2 (See 1.a)

=
M(M − m)

mn̄
S2

2S2
N +

N2

n̄
S2

2 − M

m
NS2

2

=
M(M − m)

mn̄
S2

2S2
N +

N2

n̄

(
1 − Mn̄

mN

)
S2

2 .

We finally get

var
(
Ŷ
)

= M2 M − m

Mm
S2

T +
M(M − m)

mn̄
S2

2S2
N +

N2

n̄

(
1 − Mn̄

mN

)
S2

2 .

3. It is necessary to compare designs that are comparable; that is, designs
having identical costs. In the present case, the cost is conditional on the
sample size. It is therefore necessary to ensure that the expected value of
the total sample size from strategy A (denoted n̄) is equal to the total
fixed size from strategy B (also denoted n̄). Thus, n̄ represents the same
value for the two strategies. We can set f2 = Mn̄/mN , as in strategy A,
and compare:

var(strategy A) = M2 M − m

Mm
S2

T +
N2

n̄
(1 − f2)S2

2 ,

and

var(strategy B) = M2 M − m

Mm
S2

T +
N2

n̄
(1 − f2)S2

2 +
M(M − m)

mn̄
S2

2S2
N .

Strategy A, with a variable sample size, is therefore unquestionably the
best, unless the M primary units are of the same size Ni (in which case
S2

N = 0, and the two strategies are identical).

Exercise 5.12 Cluster effect and variable sizes
In a cluster sample with simple random sampling of m clusters among M , we
know that if the clusters are of identical size, the variance of the estimator Ŷ
for the mean Y is:
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var(Ŷ ) =
1 − f

mN
S2

y [1 + ρ(N − 1)],

where S2
y is the population variance of yk in the population, ρ is the cluster

effect, and N is the common size of the clusters. The object of the exercise
is to expand this expression in the case of clusters with variable sizes, with a
(reasonable) hypothesis of a technical nature that is specified later on.

1. We denote Y as the true mean of yi,k (i is the cluster identifier, k is the
identifier of the individual in the cluster), N as the total population size,
Yi as the true total (unknown) in cluster i and Y as the mean of Yi among
the M clusters. Recall the expression of the unbiased estimator Ŷ and the
expression of its variance. Link Y to Y .

2. Express the population variance of the totals Yi as a function of yi,k, Ni

(size of cluster i), Yi, Y and N .
3. Use the previous expression to derive the population variance S2

y of vari-
ables yi,k, the cluster effect ρ, the population variance S2

N of the sizes Ni

and the covariance SNY of Ni and Yi.
4. By considering M to be large, give an expression approaching var(Ŷ ) as

a function of the quantities previously defined.
5. We define the variable Ui as follows:

Yi = Y Ni + Ui for all i = 1, 2, . . . , M

and we make the technical hypothesis (reasonable) that Ni and Ui are
uncorrelated. Show that in that case SNY ≈ Y S2

N .
6. Show that, under this hypothesis, we have:

var(Ŷ ) ≈
[
1 + ρ(N − 1) + N

(
CVN

CVY

)2
]

V
SRS

,

where V
SRS

is the true variance obtained for a simple random sample of

size mN (to be determined), and CVN and CVY are the true coefficients
of variation respectively for Ni and yi,k.

7. Conclude, in particular by considering the reasonable orders of magnitude
for the parameters involved in the variance expression.

Solution

1. We define

Y =
1
N

M∑
i=1

Yi =
1

MN

M∑
i=1

Yi,
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which implies that

Ŷ =
1

Nm

∑
i∈S

Yi.

Therefore

var(Ŷ ) =
1

N
2

(
1 − m

M

) S2
T

m
,

where

S2
T =

1
M − 1

M∑
i=1

(Yi − Y )2.

We have as well: Y = Y /N.
2. We have:

Yi − Y =
∑
k∈Ui

yi,k − NiY + NiY − Y =
∑
k∈Ui

(yi,k − Y ) + Y (Ni − N).

Therefore,

M∑
i=1

(Yi − Y )2 =
M∑
i=1

∑
k∈Ui

(yi,k − Y )2 +
M∑
i=1

∑
k∈Ui

∑
�∈Ui
� �=k

(yi,k − Y ) (yi,� − Y )

+Y 2
M∑
i=1

(Ni − N)2 + 2Y

M∑
i=1

(Ni − N) (Yi − NiY ).

3. Recall that

S2
y =

1
N − 1

M∑
i=1

∑
k∈Ui

(yi,k − Y )2,

and, by definition,

ρ =

∑M
i=1

∑Ni

k=1

∑Ni

�=1
� �=k

(yi,k − Y )(yi,� − Y )∑M
i=1

∑
k∈Ui

(yi,k − Y )2
× 1

N − 1
.

The term 1/(N − 1) can seem strange at first glance, but it appears nat-
urally when we divide each term of the ratio by the number of terms that
it contains ‘on average’ (being MN(N − 1) for the numerator and MN
for the denominator). This normalisation ensures a certain ‘stability’ in
ρ. That is,

S2
N =

1
M

M∑
i=1

(Ni − N)2,

and

SNY =
1
M

M∑
i=1

(Ni − N) (Yi − Y ).
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We consider M to be sufficiently large to assume M − 1 and M to be
similar. We have:

M∑
i=1

(Yi − Y )2 = (MN − 1) S2
y + (N − 1) ρ(MN − 1) S2

y + Y 2MS2
N

+2Y

M∑
i=1

(Ni − N) (Yi − Y + Y − NiY )

= (MN − 1) S2
y(1 + ρ(N − 1)) − MY 2S2

N + 2MY SNY .

4. When M is large, we have the approximation MN − 1 ≈ MN − N.
Therefore,

var(Ŷ ) ≈ 1 − f

mN

[
S2

y(1 + ρ(N − 1)) +
Y

N
(2SNY − Y S2

N)
]

.

5. The formula proposed for Yi simply expresses an approximately linear
relation between the total Yi and the size Ni. This relation is natural:
although we do not at all need to have Ui small, it is likely that in practice
this is often the case. We see that

M∑
i=1

Ui = 0.

Furthermore: Yi − Y = Y (Ni − N) + Ui. Therefore

MSNY = Y

M∑
i=1

(Ni − N)2 +
M∑
i=1

(Ni − N) (Ui − U) = Y MS2
N ,

by the hypothesis of non-correlation between Ui and Ni.

Of course, this technical hypothesis is never exactly realised in practice,
but the covariance must be small in a good number of cases. Indeed, there
is no reason a priori for the residual Yi −Y Ni to be linked in a particular
way to the size Ni. We deduce

SNY ≈ Y S2
N .

6. The variance is

var(Ŷ ) ≈ 1 − f

mN

[
S2

y(1 + ρ(N − 1)) + Y 2 S2
N

N

]
. (5.1)

If we let
CVN =

SN

N
, and CVY =

Sy

Y
,

we get the desired expression by noticing that:
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V
SRS

=
1 − f

mN
S2

y .

We can verify very rapidly the validity of Expression (5.1) in the particular
case where yi,k is constant (thus equal to Y ), as then S2

y = 0, Yi = Y Ni

and it is instantly verified that

Ŷ =
1
N

Y
1
m

∑
i∈S

Ni.

Hence

var(Ŷ ) =
Y

2

N
2

1 − f

m
S2

N =
1 − f

mN

[
Y

2 S2
N

N

]
.

We observe that mN is the expected value for the size of the sample (size
random):

Ŝize =
∑
i∈S

Ni =
M∑
i=1

NiIi.

Therefore

E(Ŝize) =

(
M∑
i=1

Ni

)
m

M
= mN.

The expression V
SRS

was thus obtained from a sample of size comparable

to the one from cluster sampling.
7. We see that there is deterioration in the quality in comparison with simple

random sampling of the same size (on average), when:
• the cluster effect is large,
• the mean cluster size N is large,
• the sizes Ni are varied,
• the population variance S2

y is small.
The first three conclusions are well-known: heterogeneous clusters are re-
quired, of small size and of similar size. The fourth conclusion is more
mechanical and expresses the great effectiveness of simple sampling when
the yi,k are not too dispersed.

In concrete terms, take the example of the labour force survey used by
INSEE: this one is built upon housing units of size 20 on average, and
consisting of between 16 and 24. Using a uniform division of Ni in this
interval, we will have:

S2
N =

(24 − 16)2

12
≈ 5.3.

Therefore,

CVN =
√

5.3
20

≈ 0.12.
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We commonly find coefficients ρ of order from 5% to 10%. For a variable
y having for example a coefficient of variation of 30%, and such that
ρ = 10%, this gives:

var(Ŷ )
V

SRS

= 1+0.1×(20−1)+20×
(

0.12
0.30

)2

= 1+1.9+3.2 = 6.1 ≈ (2.5)2.

The loss in accuracy is high, and the variance of sizes Ni contributes to
this appreciably more than the cluster effect ρ (even if, at first glance, the
variance of the cluster sizes seems quite modest).

Exercise 5.13 Variance and list order
In this exercise, we are interested in the estimation of variance when we draw
a systematic sample with equal probabilities, of total size n. We have a frame
of N individuals, sorted in the order given. We denote i as the list number of
the first individual selected and g as the sampling interval (g = N/n, which we
consider to be an integer). Finally, we denote as yi,j the value of the variable
of interest y for the (j + 1)-th individual selected (j = 0, 1, 2, . . . , n − 1)
when the first individual selected has list number i (i = 1, 2, . . . , g).

1. What precisely is the list number of the individual corresponding to the
value yi,j? (This list number is included between 1 and N .)

2. If we denote Yi =
∑n−1

j=0 yi,j , give the unbiased estimator Ŷ of the true
mean Y and then give the expression of its (true) variance.

3. Explain why we cannot estimate this variance without bias.
4. We are henceforth going to assume that the yi,j are generated by a stochas-

tic model functioning as follows for all i, j:

yi,j = α + zi,j,

where the zi,j are real random variables with null expected value and
variance σ2 and are uncorrelated among themselves. We denote E() and
V() as the expected value and the variance associated with the distribution
of z.
a) Intuitively, when do we make this type of hypothesis?
b) Calculate, under this model, the expected value of the true variance

coming from 2., that is, E(var(Ŷ )).
c) We venture to use, as a variance estimator, the expression:

v1 =
(
1 − n

N

) s2
y

n
,

where s2
y is the corrected variance in the sample. Calculate the ex-

pected value under the model of v1, being E(v1).
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d) Make a conclusion.
5. This time, we are interested in cases where we can reasonably make the

hypothesis:
yi,j = α(i + jg) + β + zi,j ,

still with the same hypotheses on the random variables zi,j .
a) In what case will we use this model?
b) Calculate E(var(Ŷ )) under the model.
c) Calculate E(v1) under the model.
d) Make a conclusion.

6. With systematic sampling having been done, let us pretend ‘as if’ it re-
sulted in a stratified sampling design with the simple random sampling of
two individuals in each stratum, for each of the n/2 strata (assume n is
an even number to simplify matters) and are put together by dividing the
frame into blocks of (2g) consecutive individuals (the systematic sampling
is not ‘as far off’ as that for this stratified design: this last design simply
gives a little more freedom in the choice of the sample, but the principle of
a systematic scan of the complete frame remains more or less respected).
a) What variance estimator v2 should we use?
b) With the model from 4., what would E(v2) be?
c) With the model from 5., what would E(v2) be?
d) Make a conclusion.

Solution

1. In the sorted list, the list number of the individual which takes yi,j for the
value of y is:

i + jg.

Indeed, the first individual selected corresponds to j = 0 (by definition)
and it indeed has the list number i = i+0g. The second individual selected
has a list number that is larger by ‘STEP’ (thus by g), that is i+g = i+1g.
The (j + 1)-th individual selected has a list number that is larger by jg
in comparison to i, that is i + jg.

2. We are faced with cluster sampling, where each cluster of the population
is composed of a first individual with a list number between 1 and g and
the set of (n − 1) individuals that are deduced from the succession of
consecutive steps of length g for the entire length of the sampling frame:

cluster 1 : list numbers 1, 1 + g, 1 + 2g, . . . , 1 + (n − 1) g,

cluster 2 : list numbers 2, 2 + g, 2 + 2g, . . . , 2 + (n − 1) g,

cluster g : list numbers g, g + g, g + 2g, . . . , g + (n − 1) g = N.
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The unbiased estimators and their variances are obtained as a conse-
quence, by noticing that they are clusters of fixed size n. In fact, if i
is initially selected:

Ŷ =
1
n

n−1∑
j=0

yi,j =
Yi

n
.

The variance is directly obtained if we notice that Ŷ takes the value Yi/n
with probability 1/g, where i covers 1, 2, . . . , g:

var(Ŷ ) =
g∑

i=1

1
g

(
Yi

n
− 1

g

g∑
i=1

Yi

n

)2

,

by the definition of the variance, or again:

var(Ŷ ) =
1
g

g∑
i=1

(
Yi

n
− Y

)2

=
1

gn2

g∑
i=1

Y 2
i − Y

2
.

3. We are in the context of cluster sampling with a single cluster selected.
Surveys for which the sample size is 1 never allow for the unbiased estima-
tion of population variances (in other words, by construction, there must
be at least two units to estimate a population variance). We therefore do
not have any hope of being able to estimate the variance without bias.

4. a) The model presents the individual values yi,j of the individuals from
the frame as the realisations of uncorrelated random variables (de-
noted in the same way as the deterministic variables in order to sim-
plify) with the same mean and the same variance:

E(yi,j) = α and V(yi,j) = σ2,

where E and V represent respectively the expected value and the vari-
ance in relation to the distribution of the model. Intuitively, this is
realistic when there is no particular ‘structure’ in the sampling frame,
or no apparent order: this can be because the variable y itself is not ex-
plained by any known characteristic of the individuals (variable with
‘lawless’ appearance) or because the frame has been mixed and that
the individuals themselves appear in a random order. In one word,
the over-simplicity of the model is synonymous with absolute ‘chaos’
at the mechanism level determining the individual values y.

b) We have, according to 2.,

E
[
var(Ŷ )

]
=

1
gn2

g∑
i=1

E(Y 2
i ) − E(Y )2.

We use:
E(Y 2

i ) = V(Yi) + [E(Yi)]2,
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and

E(Y )2 = V(Y ) + [E(Y )]2,

V(Yi) =
n−1∑
j=0

V(yi,j) = nσ2,

E(Yi) =
n−1∑
j=0

E(yi,j) = nα,

V(Y ) =
1

N2

g∑
i=1

n−1∑
j=0

V(yi,j) =
σ2

N
(recall : ng = N),

E(Y ) =
1
N

g∑
i=1

n−1∑
j=0

E(yi,j) = α.

Therefore,

E(var(̂Y )) =
1

n2g

g∑
i=1

(nσ2 + n2α2) −
(

σ2

N
+ α2

)
=
(
1 − n

N

) σ2

n
.

This expression has a well-known appearance.
c)

E(v1) =
(
1 − n

N

) E(s2
y)

n
.

In fact, if i is the list number of the ith individual selected,

s2
y =

1
n − 1

n−1∑
j=0

(yi,j − Ŷ )2 =
1

n − 1

n−1∑
j=0

y2
i,j −

n

n − 1
Ŷ

2

.

Thus

E(s2
y) =

1
n − 1

n−1∑
j=0

E(y2
i,j) −

n

n − 1
E(Ŷ

2

),

with
Ŷ =

Yi

n
.

We easily verify (still from the variances, as in b.):

E(y2
i,j) = α2 + σ2,

and E(Ŷ
2

) = σ2/n + α2. Therefore, E(s2
y) = σ2. Finally,

E(v1) =
(
1 − n

N

) σ2

n
.
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d) The estimator v1 is biased for the true variance var(Ŷ ) if the inference
is based on the sampling design (see 3.). On the other hand, if the
inference is based on the model, we have:

E [v1 − var(Ŷ )] = 0.

We can therefore say that, if we take into account the risk on y ex-
pressed by the model, v1 estimates var(Ŷ ) without bias. This property
justifies the use of v1 to estimate the accuracy of a systematic sampling
when the frame is apparently ‘in any order’.

5. a) yi,j has an expected value that clearly increases with the list number
of the individual. Such a model reflects a linear tendency. This is the
classical situation obtained after sorting the frame according to an
auxiliary variable correlated to y. It is also in this case that we can
benefit from gains in accuracy linked to systematic sampling: this is
indeed because there is such a tendency that systematic sampling is
used.

b)

E(var(Ŷ )) =
1

gn2

g∑
i=1

E(Y 2
i ) − E(Y )2.

We have:

V(Yi) = nσ2,

E(Yi) =
n−1∑
j=0

[α(i + jg) + β] = n

(
αi + β + αg

n − 1
2

)
,

V(Y ) =
σ2

N
,

E(Y ) =
g∑

i=1

n−1∑
j=0

1
N

(α(i + jg) + β)

=
n

N
g

(
α

g + 1
2

+ β + αg
n − 1

2

)
.

Hence

E(var(Ŷ )) =
1

gn2

g∑
i=1

(
nσ2 + n2

(
αi + β + αg

n − 1
2

)2
)

− σ2

N

−n2g2

N2

(
α

g + 1
2

+ β + αg
n − 1

2

)2

.

After a calculation that is long but not technically difficult, by using
the equality:
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g∑
i=1

i2 =
g

6
(2g2 + 3g + 1),

and remembering that ng = N , we find:

E(var(Ŷ )) =
(
1 − n

N

) σ2

n
+ α2 g2 − 1

12
.

c) By reusing 4-(c), we have:

E(s2
y) =

1
n − 1

n−1∑
j=0

E(y2
i,j) −

n

n − 1
E(Ŷ

2

).

With the model from 5., we get:

E(y2
i,j) = σ2 + [α(i + jg) + β]2,

and therefore

E(Ŷ
2

) =
σ2

n
+

⎡⎣ 1
n

n−1∑
j=0

(α(i + jg) + β)

⎤⎦2

=
σ2

n
+

1
n2

n2

(
αi + β + αg

n − 1
2

)2

.

The calculation (long) leads to:

E(v1) =
(
1 − n

N

) σ2

n
+
(
1 − n

N

) (α2g2

12

)
(n + 1).

We notice that this expression does not depend on i.
d) If the model is true (see a for the practical conditions), we have:

E(v1) = E(var(Ŷ )) +
α2

12
[(1 − f) (n + 1) g2 − g2 + 1].

Under the most frequent conditions, we have 1 − f ≈ 1 and n ‘large’.
Hence:

E(v1) ≈ E(var(Ŷ )) + n
α2g2

12
= E(var(Ŷ )) +

N2

n

α2

12
.

On average, v1 and var(Ŷ ) differ by (N2α2)/(12n). Unless α is truly
very small, close to null (in which case we find the model from 4.), this
factor is very large and positive. In this case, v1 is going to considerably
overestimate var(Ŷ ). The previous calculations therefore justify a well-
known principle, which states that the classical variance estimator for
a simple random sample is a very bad estimator of the true variance
in the case of systematic sampling for a sorted list, all the more so as
the population is large and the sample small.
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6. a) In a stratified sampling with H strata, we have (classical notation):

v̂ar(Ŷ ) =
H∑

h=1

(
Nh

N

)2(
1 − nh

Nh

)
s2

yh

nh
.

In the context of the proposed comparison, we have nh = 2 and Nh =
N/H with H = n/2, that is Nh/N = 2/n. If the individual with list
number i is selected at the start of the list, then, in stratum h, the
sample consists of two individuals with list numbers j and (j + 1); we
easily verify then that j = 2h − 2, where:

s2
yh =

1
2 − 1

[(
yi,j − yi,j + yi,j+1

2

)2

+
(

yi,j+1 − yi,j + yi,j+1

2

)2
]

=
1
2

(yi,j − yi,j+1)2.

Hence:

v2 =
∑
j∈J

(
2
n

)2 (
1 − 2

2
nN

)
1
2

1
2

(yi,j − yi,j+1)2,

where J is the set of integer pairs included between 0 and (n − 2).
There are n/2 integers in J . Finally:

v2 =
(
1 − n

N

) 1
n

δ2,

where

δ2 =
1
n

∑
j∈J

(yi,j − yi,j+1)2

=
1
n

[(yi,0 − yi,1)2 + (yi,2 − yi,3)2 + (yi,4 − yi,5)2 + ...].

b) It is necessary to calculate E(δ2) with the model from 4.:

E(δ2) =
1
n

∑
j∈J

E(yi,j − yi,j+1)2.

Now:

E(yi,j − yi,j+1)2 = V(yi,j − yi,j+1) + [Eyi,j − Eyi,j+1]2

= 2σ2 + (α − α)2 = 2σ2.

Therefore

E(δ2)=
1
n

n

2
2σ2 = σ2, and E(v2)=

(
1 − n

N

) σ2

n
.
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c) With the model from 5., E(δ2) takes another value:

E(yi,j − yi,j+1)2= 2σ2 + [(α(i + jg) + β) − (α(i + jg + g) + β)]2

= 2σ2 + α2g2.

Thus,

E(δ2)=
1
n

n

2
(2σ2 + α2g2) = σ2 +

α2g2

2
,

and

E(v2)=
(
1 − n

N

) σ2

n
+
(
1 − n

N

) α2g2

2n
.

d) • With the model from 4., E [v2 −var(Ŷ )] = 0. Therefore, v2 appears
to be unbiased under the model, for the same reason as v1. It would
remain to see which of v1 or v2 is the ‘best’ estimator of var(Ŷ )
(notion of ‘best’ to be defined).

• With the model from 5.,

E [v2 − var(Ŷ )] = α2

[(
1 − n

N

) g2

2n
− g2 − 1

12

]
.

In the most frequent conditions, we have 1 − f ≈ 1(⇒ g � 1),
thus:

E [v2 − var(Ŷ )] ≈ α2g2

2

(
1
n
− 1

6

)
.

The fact that the bias is null for α = 0 is not surprising, since in
these conditions the models from 4. and 5. merge. We get a bias
that is nearly null for n = 6 which raises our curiosity. If n is ‘large’
(more than 6), we have:

E [v2 − var(Ŷ )] ≈ −α2

12

(
N

n

)2

.

v2 has rather a tendency to underestimate var(Ŷ ): this can be a
very large underestimation if the STEP is very large (the approxi-
mation of systematic sampling by stratified sampling then becomes
strongly questionable).

We retain that with this model of linear tendency, the absolute error
introduced by v2 is much smaller than with v1 (see 5-d): in absolute value,
the error is indeed n times smaller with v2 than with v1.

In summary, we distinguished here two cases:
• A sampling frame is presented in any order, and we have two variance

estimators v1 and v2, concurrent but unbiased in the sense of the risk
linked to the model.
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• The frame is sorted in order to present a linear tendency. Then v1

overestimates the true variance (in the sense of the risk of the model)
while v2 underestimates it. A combined estimator v = v1/(n + 1) +
(n/n + 1)v2 is in that case unbiased.
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Calibration with an Auxiliary Variable

6.1 Calibration with a qualitative variable

We assume that the sizes Nh, where h = 1, ..., H, of H types of a qualitative
variable are known in the population. The qualitative variable specifies H
parts Uh, where h = 1, ..., H, called post-strata in the population. If the sample
S is selected in accordance with a simple design without replacement, then
the size of the sample intersecting post-strata h, being nh = #(Uh ∩ S) has a
hypergeometric distribution. If we denote Yh as the true total of a variable y
over Uh, we can construct the post-stratified estimator of the total

Ŷpost =
H∑

h=1
nh>0

NhŶ h,

where Ŷ h = Ŷh/N̂h. With a simple design without replacement,

Ŷ h =
1
nh

∑
k∈Uh∩S

yk.

With a simple design without replacement, the post-stratified estimator is
unbiased as soon as we keep to the conditions of nh non-null for all h, and it
is all the more precise since the auxiliary variable is ‘linked’ to the variable of
interest. If n is ‘large enough’, the variance of Ŷpost is approximately, for the
simple design without replacement:

var(Ŷpost)

≈ N2

[(
1 − n

N

) 1
n

(
H∑

h=1

Nh

N
S2

yh

)
+
(
1 − n

N

) 1
n2

(
H∑

h=1

(
1 − Nh

N

)
S2

yh

)]
,
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and is estimated by

v̂ar(Ŷpost)

= N2

[(
1 − n

N

) 1
n

(
H∑

h=1

Nh

N
s2

yh

)
+
(
1 − n

N

) 1
n2

(
H∑

h=1

(
1 − Nh

N

)
s2

yh

)]
,

where
S2

yh =
1

Nh − 1

∑
k∈Uh

(yk − Y h)2,

and
s2

yh =
1

nh − 1

∑
k∈Uh∩S

(yk − Ŷ h)2.

6.2 Calibration with a quantitative variable

If the total X of a quantitative variable x is known, we can use this information
to construct a more precise estimator. If X̂π and Ŷπ designate respectively the
Horvitz-Thompson estimators of the totals of variables x and y, then we can
construct

• the difference estimator:

ŶD = Ŷπ + X − X̂π,

• the ratio estimator:
ŶR = Ŷπ

X

X̂π

,

• the regression estimator:

Ŷreg = Ŷπ + (X − X̂π)b̂,

where b̂ is an estimator of the affine regression coefficient of y over x:

b =
Sxy

S2
x

,

and
Sxy =

1
N − 1

∑
k∈U

(xk − X)(yk − Y ).

We can choose, to estimate b:

b̂ =

∑
k∈S

1
πk

(
xk − X̂π

N̂π

)(
yk − Ŷπ

N̂π

)
∑
k∈S

1
πk

(
xk − X̂π

N̂π

)2 .
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All of these estimators satisfy a fundamental property of calibration, as they
estimate with null variance the total X (we are speaking about estimators
calibrated on x):

X̂D = X̂R = X̂reg = X.

We can show that:

• var(ŶD) = var

(∑
k∈S

yk − xk

πk

)
,

• var(ŶR) ≈ var

⎛⎜⎝∑
k∈S

yk − Y

X
xk

πk

⎞⎟⎠ (n ‘large enough’),

• var(Ŷreg) ≈ var

(∑
k∈S

(yk − Y ) − b(xk − X)
πk

)
(n ‘large enough’),

which comes back to using the general expressions of Chapter 3 with new
individual variables. Thus, with simple random sampling, we estimate these
variances with:

N2
(
1 − n

N

) 1
n

1
n − 1

∑
k∈S

(yk − α − βxk)2,

by holding:

• α = 0, β = 1 with ŶD;

• α = 0, β =
Ŷ

X̂
with ŶR;

• α = Ŷ − b̂ X̂, β = b̂ =

∑
k∈S

(xk − X̂)(yk − Ŷ )∑
k∈S

(xk − X̂)2
with Ŷreg.

EXERCISES

Exercise 6.1 Ratio
In a population of 10 000 businesses, we want to estimate the average sales
Y . For that, we sample n = 100 businesses using simple random sampling.
Furthermore, we have at our disposal the auxiliary information ‘number of
employees’, denoted by x, for each business. The data coming from the sample
are:

• X = 50 employees (true mean for xk),
• Ŷ = 5.2 × 106 Euros (average sales in the sample),
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• X̂ = 45 employees (sample mean),
• s2

y = 25 × 1010 (corrected sample variance of yk),
• s2

x = 15 (corrected sample variance of xk),
• ρ̂ = 0.80 (linear correlation coefficient between x and y calculated in the

sample).

1. What is the ratio estimator? (We denote this as Ŷ R.) Is this estimator
biased?

2. Recall the ‘true’ variance formula for this estimator.
3. Calculate an estimate of the true variance. Is the variance estimator used

biased?
4. Give a 95% confidence interval for Y .

Solution

1. By definition:

Ŷ R = X
Ŷ

X̂
= 50 × 5.2 × 106

45
≈ 5.8 × 106 Euros.

We have Ŷ R > Ŷ because the sample contains businesses that are on
average too small (in terms of employees), and thus with sales that are
a little bit too small. A priori, the estimator is biased: the 1/n term
appearing in the bias is null when

Sx

X
= ρ

Sy

Y
.

None of the terms of this equality can be estimated without bias, but a
calculation of magnitudes (bias 1/n) compares:

sx

X̂
≈ 0.086 and ρ̂

sy

Ŷ
≈ 0.077.

Numerically, they are close values, which lets us think that the bias must
be very small.

2. For n ‘large’, we have:

var(Ŷ R) ≈ 1 − f

n
S2

u =
1 − f

n
[S2

y + R2S2
x − 2RSxy].

S2
u is the population variance of ui, where ui = yi − Rxi with R = Y /X.

3. We have
v̂ar(Ŷ R) =

1 − f

n
[s2

y + R̂2s2
x − 2R̂sxy].
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Indeed

sxy = ρ̂sxsy = 0.8 ×
√

25 × 1010 ×
√

15 ≈ 1 549 193,

and f ≈ 0. Therefore

v̂ar(Ŷ R)

=
1

100

[
25 × 1010 +

(
5.2 × 106

45

)2

× 15 − 2 × 5.2 × 106

45
× 1 549 293

]
= 0.0923× 1010 ≈ (0.03 × 106)2.

This variance estimator is biased (because it is not written as a linear
combination of estimators that are themselves unbiased).

4. Since n is large, Ŷ R is going to approximately follow a normal distribution.
The estimated confidence interval (at 95%) is:

Y = 5.8 × 106 ± 0.06 × 106.

Due to the estimates (v̂ar biased, passing on to the root) and hypotheses
(normal distribution), the real probability of covering Y is not 95% but a
percentage that is close to it.

Exercise 6.2 Post-stratification
Consider an agricultural region consisting of N = 2010 farms. We draw a
simple random sample of farms of size n = 100. We possess information on
the total surface area cultivated for each farm. In particular, we know that
there are 1 580 farms of less than 160 hectares (post-stratum 1) and 430 farms
of more than 160 hectares (post-stratum 2). We try to estimate the mean
surface area of cereals cultivated Y . Using simple random sampling without
replacement (having denoted with the indices 1 and 2 the two post-strata thus
defined), we have:

n1 = 70, n2 = 30, Ŷ 1 = 19.40, Ŷ 2 = 51.63, s2
y1 = 312, s2

y2 = 922.

1. What is the post-stratified estimator Ŷ post? Is it different than the simple
mean Ŷ ?

2. What is the distribution of n1? What is its expected value? What is its
variance?

3. Give the unbiased estimator of the variance v̂ar(Ŷ post) and a 95% confi-
dence interval.
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Solution

1. The post-stratified estimator is

Ŷ post =
N1

N
Ŷ 1 +

N2

N
Ŷ 2,

where Ŷ h is the simple mean in post-stratum h (h = 1, 2).
• We know that the post-stratified estimator is unbiased (by assuming

that Pr(nh = 0) ≈ 0):
E(Ŷ post) = Y .

• Numerical application:
The post-stratified estimator is:

Ŷ post =
1 580
2 010

× 19.40 +
430

2 010
× 51.63 = 26.30 hectares.

Furthermore, the simple mean is:

Ŷ =
n1

n
Ŷ 1 +

n2

n
Ŷ 2 =

70
100

× 19.40 +
30
100

× 51.63

= 29.07 hectares �= Ŷ post.

The adjustment is interpreted as a reweighting method: we go from
initial weights equal to 1/n (which we find in Ŷ ) to adjusted weights
equal to Nh/(Nnh) for an individual in post-stratum h (which we find
in Ŷ post).

2. Because the sampling is simple random and without replacement,

n1 ∼ hypergeometric (N, n, P ),

with
P =

N1

N
.

Therefore,

E(n1) = nP = n
N1

N
,

var
(n1

n

)
= (1 − f)

PQ

n

N

N − 1
,

where
Q = 1 − P =

N2

N
and f =

n

N
.

This last expression comes from the estimation theory of proportions in
the case of simple random sampling. We get:

var(n1) = n2
(
1 − n

N

) N

N − 1
PQ

n
= n

N − n

N − 1
PQ.
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3. As n = 100, we can use the slightly biased estimator as follows:

v̂ar(Ŷ post) =
1 − f

n

H∑
h=1

Nh

N
s2

yh +
1 − f

n2

H∑
h=1

(
1 − Nh

N

)
s2

yh.

Numerical application:

v̂ar(Ŷ post) =
1 − 100

2 010

100

[
1 580
2 010

× 312 +
430

2 010
× 922

]
+

1 − 100
2 010

(100)2

[(
1 − 1 580

2 010

)
312 +

(
1 − 430

2 010

)
922
]

≈ 4.205 + 0.075
≈ 4.28.

We notice that the first term of v̂ar(Ŷ post) is numerically predominant
and that it could have been sufficient for the calculation. Here, n = 100,
which is ‘sufficiently large’ to approach the distribution of Ŷ post through
a normal distribution. We can therefore construct a confidence interval:

Y ∈ [26.30 ± 1.96 ×√
4.28] = [22.25 ; 30.35] 95 times out of 100.

Exercise 6.3 Ratio and accuracy
We are placed in the context of Exercise 6.2 but we now exploit the auxiliary
variable x (measuring the total surface area cultivated) to construct a ratio
estimator. We are given:

X = 118.32 hectares, X̂ = 131.25 hectares, Ŷ = 29.07 hectares,

and
s2

x = 9 173, s2
y = 708, ρ̂ = 0.57.

where ρ̂ is the estimator of the ‘true’ unknown linear correlation coefficient ρ.

1. Recall the expression of ρ.
2. How do we define ρ̂? Is the estimator ρ̂ biased?
3. Show that the ratio estimator of Y appears to be preferable to the simple

mean Ŷ if and only if:

ρ̂ >
1
2

ĈV(x)

ĈV(y)
,

where the ĈV estimate the coefficients of variation. Do the numerical
application.

4. Calculate Ŷ R, the ratio estimator of Y .
5. Estimate its accuracy, and give a 95% confidence interval.
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Solution

1. The correlation coefficient is:

ρ =
∑

k∈U (xk − X) (yk − Y )√∑
k∈U (xk − X)2

√∑
k∈U (yk − Y )2

.

2. With the classical notations, we have:

ρ̂ =
∑

k∈S (xk − X̂)(yk − Ŷ )√∑
k∈S (xk − X̂)2

√∑
k∈S (yk − Ŷ )2

.

Obviously E(ρ̂) �= ρ, since ρ̂ is a complex ratio. The denominator of ρ̂ is
for that matter not even an unbiased estimator of the denominator of ρ,
since it is a product of square roots.

3. The ratio estimator is

Ŷ R = X
Ŷ

X̂
,

and its estimated variance

v̂ar(Ŷ R) =
1 − f

n
s2

y−R̂x
=

1 − f

n
[s2

y + R̂2s2
x − 2R̂ sxy],

where R̂ = Ŷ /X̂.
• Note: s2

y−R̂x
= s2

û is the sample variance of the estimated residuals,
which is:

ûk = yk − R̂xk.

Furthermore,

v̂ar(Ŷ ) =
1 − f

n
s2

y.

Therefore,

v̂ar(Ŷ R) < v̂ar(Ŷ ) ⇔ s2
y + R̂2s2

x − 2R̂sxy < s2
y

⇔ R̂s2
x < 2sxy = 2ρ̂sxsy

⇔ R̂sx < 2ρ̂sy

⇔ Ŷ

X̂
sx < 2ρ̂sy

⇔ ρ̂ >
1
2

ĈV(x)

ĈV(y)
.

Attention: This comparison is made, in practice, on variance estimates
and not on true values of variance. It is therefore not totally ‘assured’.
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• Numerical application:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ̂ = 0.57

ĈV(y) =
sy

Ŷ
=

√
708

29.07
≈ 91.5%

ĈV(x) =
sx

X̂
=

√
9 173

131.25
≈ 73%,

which gives
1
2

ĈV(x)

ĈV(y)
≈ 0.40 < 0.57 = ρ̂.

The estimator Ŷ R effectively appears to be better than Ŷ .
4. The ratio estimator is

Ŷ R = X
Ŷ

X̂
= 118.32× 29.07

131.25
= 26.21 hectares.

5. Seeing as n is ‘sufficiently large’, we estimate the variance of the estimator
by

v̂ar(Ŷ R) =
1 − f

n
[s2

y + R̂2s2
x − 2R̂ρ̂sxsy]

=
1 − 100

2010

100

[
708 +

(
29.07
131.25

)2

9173

−2 ×
(

29.07
131.25

)
0.57 ×√

708 × 9173
]

≈ 4.90.

The sample size (here n = 100) is sufficient in order that we liken the
distribution of Ŷ R to a normal distribution. Therefore, the estimated con-
fidence interval is

Y ∈ [26.21 ± 1.96
√

4.90] = [21.88 ; 30.54] 95 times out of 100.

Note: With this data, the accuracy of the ratio estimator is a little worse
than that for the post-stratified estimator (see Exercise 6.2). It is not nec-
essary to select this in general, as we cannot say that the ratio estimator is
systematically preferable to the post-stratified estimator.
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Exercise 6.4 Comparison of estimators
We propose to estimate the mean Y of a characteristic y by way of a sample
selected according to a simple random design without replacement of size 1000
in a population of size 1 000 000. We know the mean X = 15 of an auxiliary
characteristic x. We have the following results:

s2
y = 20, s2

x = 25, sxy = 15, X̂ = 14, Ŷ = 10.

1. Estimate Y by way of the Horvitz-Thompson, difference, ratio and regres-
sion estimators. Estimate the variances of these estimators.

2. Which estimator should we choose to estimate Y ?

Solution

1. a) The Horvitz-Thompson estimator is Ŷ π = Ŷ = 10 and the estimator
of its variance is given by

v̂ar
(
Ŷ π

)
=

N − n

Nn
s2

y =
1 000 000 − 1000
1 000 000 × 1000

× 20 ≈ 0.020.

b) The difference estimator is given by

Ŷ D = Ŷ + X − X̂ = 10 + 15 − 14 = 11.

Its estimated variance is

v̂ar
(
Ŷ D

)
=

N − n

Nn

{
s2

y − 2sxy + s2
x

}
=

1 000 000 − 1000
1 000 000 × 1000

× {20 − 2 × 15 + 25}
≈ 0.015.

c) The ratio estimator is given by

Ŷ R =
Ŷ X

X̂
=

10 × 15
14

= 10.71.

Its variance is comparable to its mean square error (MSE), given the
large sample size (the true variance varies by 1/n, the square of the
bias by 1/n2):

M̂SE
(
Ŷ R

)
≈ N − n

Nn

⎧⎨⎩s2
y − 2

Ŷ

X̂
sxy +

Ŷ
2

X̂
2 s2

x

⎫⎬⎭
=

1 000 000 − 1000
1 000 000 × 1000

×
{

20 − 2 × 10
14

× 15 +
102

142
× 25

}
≈ 0.0113.
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d) The regression estimator is given by

Ŷ reg = Ŷ +
sxy

s2
x

(X − X̂) = 10 +
15
25

(15 − 14) = 10.6.

Its estimated variance is approximately equal to its estimated MSE:

M̂SE
(
Ŷ reg

)
≈ N − n

Nn
s2

y(1 − ρ̂2),

where ρ̂2 = s2
xy/s2

xs2
y = 152/20 × 25 = 0.45 represents the square of

the linear correlation coefficient between x and y in the sample

M̂SE
(
Ŷ reg

)
≈ 0.0110.

2. The smallest variance estimated is that for the regression estimator, which
is expected given the large sample size. Nevertheless, the relationship be-
tween x and y is strongly linear: the regression line passes close to the
origin, so that the ratio estimator appears (almost) as effective as the
regression estimator.

Exercise 6.5 Foot size
The director of a business that makes shoes wants to estimate the average
length of right feet of adult men in a city. Let y be the characteristic ‘length
of right foot’ (in centimetres) and x be the height of the individual (in cen-
timetres). The director knows moreover from the results of a census that the
average height of adult men in this city is 168 cm. To estimate the foot length,
the director draws a simple random sample without replacement of 100 adult
men. The results are the following:

X̂ = 169, Ŷ = 24, sxy = 15, sx = 10, sy = 2.

Knowing that 400 000 adult men live in this city,

1. Calculate the Horvitz-Thompson estimator, the ratio estimator, the dif-
ference estimator and the regression estimator.

2. Estimate the variances of these four estimators.
3. Which estimator would you recommend to the director?
4. Express the literal difference between the estimated variance of the ratio

estimator and the estimated variance of the regression estimator, as a
function of X̂, Ŷ and the slope b̂ of the regression of y on x in the sample.
Comment on this.
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Solution

1. The estimator Ŷ is the Horvitz-Thompson estimator, being

Ŷ = 24 cm.

Furthermore,

Ŷ R =
Ŷ X

X̂
=

24 × 168
169

= 23.86 cm,

Ŷ D = Ŷ + X − X̂ = 24 + 168 − 169 = 23 cm,

Ŷ reg = Ŷ +
sxy

s2
x

(X − X̂) = 24 +
15
102

(168 − 169) = 23.85 cm.

2. The variance estimators are:

v̂ar
(
Ŷ
)

=
N − n

Nn
s2

y =
400000− 100
400000× 100

22 = 0.0399,

v̂ar
(
Ŷ R

)
=

N − n

Nn

⎛⎝s2
y − 2

Ŷ

X̂
sxy +

Ŷ
2

X̂
2 s2

x

⎞⎠
=

400000− 100
400000× 100

(
22 − 2

24
169

× 15 +
242

1692
× 102

)
= 0.0176.

We verify that

v̂ar
(
Ŷ R

)
< v̂ar

(
Ŷ
)
⇔ Ŷ

X̂
< 2

sxy

s2
x

.

Here,
Ŷ

X̂
=

24
169

= 0.142 < 2 × 15
100

= 0.3,

v̂ar
(
Ŷ D

)
=

N − n

Nn

(
s2

y − 2sxy + s2
x

)
=

400000− 100
400000× 100

(
22 − 2 × 15 + 102

)
= 0.7398,

v̂ar
(
Ŷ reg

)
=

N − n

Nn
s2

y(1 − ρ̂2), avec ρ̂2 =
s2

xy

s2
xs2

y

= 0.5625

=
400000− 100
400000× 100

× 22 × (1 − 0.5625)

= 0.0175.
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3. We recommend the ratio estimator which has a variance distinctly smaller
than the two other estimators and is identical to that of the regression
estimator, but is simpler to use compared to the latter.

4. The variance estimators are

v̂ar
(
Ŷ R

)
=

N − n

Nn
(s2

y + R̂2s2
x − 2R̂sxy), with R̂ =

Ŷ

X̂
,

and

v̂ar
(
Ŷ reg

)
≈ N − n

Nn
(1 − ρ̂2)s2

y with ρ̂2 =
s2

xy

s2
xs2

y

.

Thus:

D =
(

N − n

Nn

)−1 (
v̂ar(Ŷ R) − v̂ar(Ŷ reg)

)
= s2

y +R̂2s2
x−2R̂sxy−s2

y +
s2

xy

s2
x

.

If we denote b̂ = sxy/s2
x, the slope of the regression line of y on x in the

sample,
D = R̂2s2

x − 2R̂b̂s2
x + b̂2s2

x = s2
x(R̂ − b̂)2.

Therefore,

v̂ar(Ŷ R)−v̂ar(Ŷ reg) =
(

N − n

nN
s2

x

)
(R̂−b̂)2 =

(
Ŷ

X̂
− sxy

s2
x

)2

v̂ar(X̂π) ≥ 0.

The difference between the accuracies depends on the difference between
the slopes of the regression lines, going through the origin or not. In the
previous numerical example, we have:

Ŷ

X̂
= 0.142 and

sxy

s2
x

=
15
100

= 0.150.

The gap between the two slopes is very small: from this fact, the regression
estimator hardly provides anything more than the ratio estimator.

Exercise 6.6 Cavities and post-stratification
Two dentists conduct a survey on the condition of teeth of 200 children in
a village. The first dentist selects using simple random sampling 20 children
among the 200, and counts the data in the sample according to the number of
teeth with cavities. The results are presented in Table 6.1. The second dentist
examines the 200 children but with the sole goal of determining who has no
cavities. He notices that 50 children are in this category.
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Table 6.1. Teeth with cavities: Exercise 6.6

Number of teeth with cavities 0 1 2 3 4 5 6 7 8

Number of children 8 4 2 2 1 2 0 0 1

1. Estimate the mean number of teeth with cavities per child in the village
using only the results of the first dentist. What is the accuracy of the
unbiased estimator obtained? Estimate this accuracy and the associated
confidence interval.

2. Propose another estimator for the mean number of teeth with cavities per
child using the results of the two dentists. Calculate the new estimate,
and estimate the gain in efficiency obtained.

3. Find a reason showing whether or not post-stratification is appropriate: it
can end up in fine in comparing the survey unit cost α of the first dentist
with the survey unit cost β of the second dentist.

Solution

1. Since it is a simple random sample, if we denote yk as the number of teeth
with cavities for child k, we use

Ŷ =
1
n

∑
k∈S

yk

=
1
20

(0 × 8 + 1 × 4 + 2 × 2 + 3 × 2 + 4 × 1 + 5 × 2 + +8 × 1)

=
36
20

≈ 1.8.

We have

var
(
Ŷ
)

=
N − n

Nn
S2

y , and v̂ar
(
Ŷ
)

=
N − n

Nn
s2

y,

s2
y =

1
n − 1

∑
k∈S

(
yk − Ŷ

)2

=
1

n − 1

∑
k∈S

y2
k − n

n − 1

(
Ŷ
)2

=
1
19

(0 + 1 × 4 + 4 × 2 + 9 × 2 + 16 + 25 × 2 + 64) − 20
19

1.82

= 5.0105,

v̂ar
(
Ŷ
)

=
N − n

Nn
s2

y =
(

1 − 20
200

)
s2

y

20
= 0.2255,
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Y ∈
[
Ŷ ± 1.96

√
v̂ar
(
Ŷ
)]

= [0.87; 2.73].

The accuracy is mediocre, but the sample size is very small. We are under
the limits of the utilisation conditions of the normal distribution for Ŷ : it
is highly likely that the true probability of covering the interval that we
have just calculated is noticeably different from 0.95.

2. We can post-stratify: post-stratum 1 contains the children who have no
cavities (size N1) and post-stratum 2 contains the children who have at
least one cavity (size N2).

Ŷ post =
1
N

(
N1Ŷ 1 + N2Ŷ 2

)
=

N2

N
Ŷ 2.

We see that the post-stratified estimator is equal to the ratio estimator
constructed from the auxiliary variable which is 1 for post-stratum 2 and
0 for post-stratum 1. Since we have N1 = 50, N2 = 150, Ŷ 2 = 36/12 = 3,
we get

Ŷ post = 3 × 150
200

= 2.25.

The variance is

var(Ŷ post) ≈ N − n

nN2

H∑
h=1

NhS2
yh +

(N − n)
n2N

H∑
h=1

N − Nh

N
S2

yh,

and is estimated by

v̂ar(Ŷ post) =
N − n

nN2

H∑
h=1

Nhs2
yh +

(N − n)
n2N

H∑
h=1

N − Nh

N
s2

yh.

As S2
y1 = s2

y1 = 0, we have

v̂ar(Ŷ post) =
N − n

nN2
N2s

2
y2 +

(N − n)
n2N

N − N2

N
s2

y2.

After a few calculations, we obtain

s2
y2 = 4.7273,

N − n

N2n
N2 = 0.03375,

N − n

n2N

N − N2

N
= 0.00056,

thus v̂ar(Ŷ post) = 0.1622 and therefore, with a 95% probability,



224 6 Calibration with an Auxiliary Variable

Y ∈
[
Ŷ post ± 1.96

√
v̂ar
(
Ŷ post

)]
= [2.25 ± 0.79] = [1.46; 3.04].

The gain due to the post-stratification, measurable by:

v̂ar
(
Ŷ post

)
v̂ar
(
Ŷ
) =

0.1622
0.2255

= 72% = (0.85)2

is thus not very large since the length of the confidence interval is reduced
by 15%: the question henceforth consists in knowing if the cost related
to the contribution of the second dentist is or is not made up for by the
reduction by 15% of the length of the confidence interval of Y .

3. If we neglect the numerical value of the second term of the variance of
Ŷ post (in 2., it is 60 times smaller than the first term), and if we hold on
to the small sample sizes compared to N, the standard deviation of Ŷ post

varies by the inverse of
√

n, where n is the sample size examined by the
first dentist:

σp(n) ≈ δ√
n

(δ is a complex expression).

The total cost of the process is nα + 200β (since the second dentist must
examine the 200 children). If we choose not to post-stratify, the first den-
tist interviews 20 children and the accuracy obtained is (still n negligible
compared to N):

σ(Ŷ ) =
δ′√
20

.

Since under these conditions δ and δ′ do not (nearly) depend on n, we can
also write:

δ√
20

=
δ′√
20

× 0.85, according to 2.

In this case, the cost is 20 α.
To make comparisons between the two methods (and to thus determine
which is the most worthwhile) we are going to think with constant accu-
racy, being for example the accuracy obtained with simple random sam-
pling of 20 children without post-stratification, which serves as a refer-
ence situation. To attain this accuracy, it would be necessary with post-
stratification that the first dentist examines n0 children, by setting:

σp(n0) =
δ√
n0

=
δ′√
n0

× 0.85 =
δ′√
20

,

thus:
n0 = 20 × (0.85)2 ≈ 14.45, rounded to 14 or 15.
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With this sample size, the cost is n0α + 200β, while the cost without
post-stratification is 20α. The accuracy being fixed, post-stratification is
therefore worthwhile if and only if:

n0α + 200β < 20α with n0 = 14 or n0 = 15.

Thus,
α > 33β (n0 = 14) or α > 40β (n0 = 15).

In the first approximation, we can therefore conclude that post-stratifica-
tion is most likely worthwhile if the hourly rate of the second dentist is at
least 40 times less than that of the first dentist (who works more, since
he must count the cavities).

Exercise 6.7 Votes and difference estimation
A television channel enters into a contract with a survey institute for the
next election. This institute is in charge of providing, on election night, a first
estimate at 8 o’clock (the definitive results not being known until two hours
later). The methodology put into place can be described in the following way.
The population considered is that of polling stations. We denote N as the
number of polling stations (the statistical unit is therefore not the individual
voting but the polling station). The objective is to estimate at a national
level the percentage of votes for a political party A. We consider that the
polling stations are comprised in a manner of grouping the same number of
voters. We select, according to a certain method, a sample (denoted S) of
polling stations. At 7:50, we have available the exact percentage of votes yk

obtained by party A at polling station k (for each k in S). Furthermore, we
have available auxiliary information defined by:

• xk, the percentage obtained by A at polling station k at the time of the
previous election,

• X, the percentage obtained by A at the national level at the time of the
previous election.

Preliminary: How do we simply write the desired percentage as a function of
yk, k = 1, ..., N?

1. a) We assume that we select a single polling station, denoted k. We
propose to estimate Y by:

yk + (X − xk).

Under what condition (in terms of political behaviour) does this esti-
mator seem to have to be better than the ‘naive’ estimator yk? Justify
in an intuitive manner.
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b) We select polling stations according to simple random sampling of
size n. We propose to estimate Y with:

Ŷ D =
1
n

∑
k∈S

{
yk + (X − xk)

}
= Ŷ +

(
X − X̂

)
.

• Show that Ŷ D estimates Y without bias.
• Calculate the variance of Ŷ D (we will put it under the form(

1 − n

N

) D

n
,

where D is a corrected population variance).
• Give a simple condition, necessary and sufficient, with respect to

the slope of the regression line of yk on xk so that Ŷ D is better
than the Horvitz-Thompson estimator Ŷ π.

2. We wish to improve the estimator Ŷ D by acting on the sampling phase.
We propose to create strata of polling stations according to the prevailing
political party of these polling stations at the time of the previous election.
For example: Stratum 1 = ‘extreme right’, Stratum 2 = ‘right’, Stratum 3
= ‘left’, Stratum 4 = ‘extreme left’.
a) Does this stratification appear to you to be of good judgement?
b) We draw a stratified sample of fixed size n with a simple random

design without replacement of fixed size in each stratum. We denote
nh as the sample size in stratum Uh, h = 1, ..., H, and Nh as the size
of Uh.
• Propose an unbiased estimator Ŷ N of Y using the auxiliary in-

formation xk (at the estimation stage). We suppose that the per-
centage obtained by A in stratum Uh at the time of the previous
election is known (we denote this Xh).

• Express its variance.
c) We are trying to get a constant accuracy (in terms of variance) for

the estimators of Y h, for all h = 1, ..., H.
• Explain the functional relationship gh such that nh = gh(e) where

e indicates the fixed constant accuracy.
• Deduce that there exists a sole allocation guaranteeing the equality

of variances of the estimators of Y h for a fixed size n of the final
sample.

d) Give the optimal allocation assuring the best accuracy for Ŷ N (with-
out any calculation).
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Solution
Preliminary
We are in the situation where all the polling stations have the same number
of voters: the national percentage desired is then (see the theory of cluster
sampling with clusters of constant size)

Y =
1
N

∑
k∈U

yk.

It is therefore a question of estimating a simple mean Y .

1. a) If X − xk is positive, that signifies that at the time of the last elec-
tion polling station k underestimated the percentage of voters at the
national level. Under a hypothesis of stability in the political voting
structure at the time (xk < X therefore yk < Y ), then intuitively
yk + (X − xk) would have to be better than the naive estimator yk

which probably underestimates Y , since we add a positive corrective
term. For example, if X = 25% and xk = 22%, station k is ‘3 points’
below the national average. If we consider that the gap remains at the
time, we are naturally adding three points to yk as compensation, to
get nearer to Y .

b) The estimator Ŷ D is what we call a difference estimator

E(Ŷ D) = E

(
1
n

∑
k∈S

yk

)
+ X − E

(
1
n

∑
k∈S

xk

)
= Y + X − X = Y .

If we denote zk = yk − xk, we have

Ŷ D = Ẑ + X,

where
Ẑ =

1
n

∑
k∈S

zk.

Therefore
var
(
Ŷ D

)
= var

(
Ẑ
)

=
N − n

Nn
S2

z ,

where
S2

z =
1

N − 1

∑
k∈U

(
zk − Z

)2
,

and
Z =

1
N

∑
k∈U

zk.

In order for var
(
Ŷ D

)
to be null, it is necessary and sufficient that

S2
z = 0, which is obtained when zk is constant, that is to say zk = C.

It is therefore necessary and sufficient that
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yk = xk + C.

This model indeed corresponds to the intuitive idea from 1.(a) pushed
to its extreme: it expresses the perfect stability of the political struc-
ture at the time, which is to say that the interest in party A can
develop, but in the same way at all the polling stations. In order that

var
(
Ŷ D

)
≤ var

(
Ŷ π

)
,

it is necessary and sufficient that S2
z ≤ S2

y . Indeed

S2
z = S2

x + S2
y − 2Sxy.

It is necessary and sufficient that S2
x + S2

y − 2Sxy ≤ S2
y , which is to

say that
Sxy

S2
x

≥ 1
2
.

It is therefore necessary and sufficient that the slope of the affine re-
gression line of yk on xk in the population is larger than 1/2. This
threshold quantifies and specifies what can be a ‘certain’ political sta-
bility at the time.

2. a) This stratification must be good to estimate the voting proportions
for the parties situated in a ‘left-right’ dimension. It is however not
very relevant for a party that is not situated in this dimension. Also, in
this case, a better solution would be to stratify into classes according
to the xk which are known at the time of the previous election, where
xk is the percentage of votes relative to the party in question.

b) We are going to set:

Ŷ N =
H∑

h=1

Nh

N
Ŷ Dh,

with
Ŷ Dh =

1
nh

∑
k∈Sh

(yk + Xh − xk),

where Sh indicates the sample obtained in stratum h. We have

E
(
Ŷ Dh

)
= Y h see 1.(b), thus E

(
Ŷ N

)
=

H∑
h=1

Nh

N
Y h = Y ,

and

var
(
Ŷ N

)
=

H∑
h=1

N2
h

N2

Nh − nh

Nhnh
S2

zh,

where S2
zh is the corrected population variance of zk in stratum Uh

(see 1.(b) for the definition of zk).
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c) To get a constant accuracy e in each stratum, it is necessary and
sufficient that

Nh − nh

Nhnh
S2

zh = e,

for all h, which is equivalent to

nh =
NhS2

zh

Nhe + S2
zh

= gh(e).

We verify that gh(e) is decreasing and continues on R+,

gh(0) = Nh, gh(+∞) = 0.

The sample size can be written

n =
H∑

h=1

gh(e) = g(e).

The function g(e) is also decreasing and continues on R+,

g(0) = N, g(+∞) = 0.

For n fixed, there thus exists e∗ unique such that n = g(e∗), which
allows to set, for all h, nh = gh(e∗). Thus, there is existence and
uniqueness of nh assuring a given ‘local’ variance e∗ subject to the
fixed sample size n.

d) It is sufficient to remark that Ŷ N = X + Ẑstrat, where

Ẑstrat =
H∑

h=1

Nh

N
Ẑh with Ẑh =

1
nh

∑
k∈Sh

zk.

To the additive constant near X , it is the classical stratified estimator
obtained with the variable zk. Thus

min
n1,...,nH

var(Ŷ N ) = min
n1,...,nH

var(Ẑstrat),

subject to
H∑

h=1

nh = n.

The optimal allocation is the famous Neyman optimal allocation:

nh =
nSzhNh∑H
�=1 Sz�N�

(if nh ≤ Nh).

This is the allocation optimising the quality of a global estimator
Ŷ N : it differs from the allocation of (c) which completely had another
objective.
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Exercise 6.8 Combination of ratios
In a population of size N , we have available two quantitative auxiliary vari-
ables x1 and x2. We are interested in estimating a total

Y =
∑
k∈U

yk.

We denote Xi, i = 1, 2, the true known total of the information xi. A simple
random sample without replacement is performed in the population. Through-
out the exercise, we consider that the sample size is ‘large’.
Preliminary question:
Show that the sampling covariance between two simple means Ŷ and X̂i is:

cov
(
X̂i, Ŷ

)
=

N − n

Nn
Sxiy, i = 1, 2,

where Sxiy is the corrected covariance between xik and yk in the population.

1. Write the two ratio estimators of the total Y that we are able to form.
We denote them ŶR1 and ŶR2.

2. We then construct the synthetic estimator

ŶR = αŶR1 + βŶR2.

What reasonable relationship are we trying to impose between α and β?
Is the estimator ŶR biased?

3. Calculate var(ŶR) as a function of

α, β, var(ŶR1), var(ŶR2) and cov(ŶR1, ŶR2),

this last term representing the covariance between ŶR1 and ŶR2. Deduce
an optimal value for α, denoted αopti, then the optimal variance of ŶR,
denoted varopti(ŶR).

4. Using a technique of limited development, express cov(ŶR1, ŶR2) as a func-
tion of the following quantities:

n, N, S2
y , Sx1y, Sx2y, Sx1x2 , R1 and R2, where Ri =

Y

Xi
, i = 1, 2.

5. How do we estimate var(ŶR1), var(ŶR2), and cov(ŶR1, ŶR2)? Deduce an
estimator α̂opti, of αopti, and an optimal variance estimator varopti(ŶR).

6. Numerical application:
We want to estimate the mean population of 195 large cities in 1999
(denoted Y = Y/N). Furthermore, from censuses, we know the mean
population X1 in 1990 and the mean population X2 in 1980. The simple
random sample of cities is of size 50. We have, in millions of residents:

X1 = 1482, X2 = 1420, Ŷ = 1896, X̂1 = 1693, X̂2 = 1643,
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s2
y = (2088)2, s2

x1
= (1932)2, s2

x2
= (1931)2,

sx1y = (1996)2, sx2y = (1978)2, sx1x2 = (1926)2.

Calculate the two ratio estimators of Y , denoted Ŷ R1 and Ŷ R2, and the
estimator Ŷ opti obtained with α̂opti. For each of these estimators, give an
estimate of the accuracy. Make a conclusion.

Solution
Preliminary question:
We propose two methods of resolution.
Method 1
Since

var(X̂ + Ŷ ) = var(X̂) + var(Ŷ ) + 2cov(X̂, Ŷ ),

we have

cov(X̂, Ŷ ) =
1
2

[
var(X̂ + Ŷ ) − var(X̂) − var(Ŷ )

]
=

N − n

2Nn

[
S2

z − S2
x − S2

y

]
,

where zk = xk + yk. Therefore:

S2
z =

1
N − 1

∑
k∈U

(
xk + yk − X − Y

)2
= S2

x + S2
y + 2Sxy,

where
Sxy =

1
N − 1

∑
k∈U

(
xk − X

) (
yk − Y

)
.

We finally obtain:

cov(X̂, Ŷ ) =
N − n

2Nn

[
S2

x + S2
y + 2Sxy − S2

x − S2
y

]
=

N − n

Nn
Sxy.

Method 2
Denoting Ik as the random variable for the presence of unit k in the sample,
we have:

cov(X̂, Ŷ ) = cov

(
1
n

∑
k∈S

xk,
1
n

∑
�∈S

y�

)
=

1
n2

∑
k∈U

∑
�∈U

xky�cov (Ik, I�) .

Indeed

cov (Ik, I�) =

⎧⎪⎪⎨⎪⎪⎩
πk� − πkπ� =

n(n − 1)
N(N − 1)

− n2

N2
= − n(N − n)

N2(N − 1)
, if k �= �

πk(1 − πk) =
n

N

(
N − n

N

)
, if k = �.
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Therefore

cov (Ik, I�) =
N − n

N

n

N
×
{
− 1

N − 1
if k �= �

1 if k = �.

We therefore obtain:

cov(X̂, Ŷ ) =
1
n2

∑
k∈U

xkykcov (Ik, Ik) +
1
n2

∑
k∈U

∑
�∈U,� �=k

xky�cov (Ik, I�)

=
1
n2

N − n

N

n

N

⎡⎣∑
k∈U

xkyk − 1
N − 1

∑
k∈U

∑
�∈U,� �=k

xky�

⎤⎦
=

N − n

nN2

[∑
k∈U

xkyk − 1
N − 1

∑
k∈U

∑
�∈U

xky� +
1

N − 1

∑
k∈U

xkyk

]

=
N − n

nN2

[
N

N − 1

∑
k∈U

xkyk − N2

N − 1
X Y

]

=
N − n

n(N − 1)

[
1
N

∑
k∈U

xkyk − X Y

]

=
N − n

nN
Sxy.

1. Successively using the two variables x1 and x2, we have

ŶR1 = X1
Ŷ

X̂1

and ŶR2 = X2
Ŷ

X̂2

.

2. The expected value of the estimator is

E
(
ŶR

)
= αE

(
ŶR1

)
+ βE

(
ŶR2

)
= α

[
Y + O

(
1
n

)]
+ β

[
Y + O

(
1
n

)]
= (α + β)Y + O

(
1
n

)
,

where the notation O (1/n) represents a quantity which remains restricted
when multiplied by n. We would like that α + β = 1. Thus, the estimator
ŶR is biased but its bias is of O (1/n) , which is negligible when n is large.

3. The variance is

var
(
ŶR

)
= α2var

(
ŶR1

)
+ β2var

(
ŶR2

)
+ 2αβcov

(
ŶR1, ŶR2

)
. (6.1)

If we minimise var
(
ŶR

)
by α, after having set β = 1 − α, we find
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αopti =
var
(
ŶR2

)
− cov

(
ŶR1, ŶR2

)
var
(
ŶR1

)
+ var

(
ŶR2

)
− 2cov

(
ŶR1, ŶR2

) .

Replacing in (6.1) α by αopti, we get after a few calculations

varopti

(
ŶR

)
=

var
(
ŶR1

)
var
(
ŶR2

)
−
[
cov
(
ŶR1, ŶR2

)]2
var
(
ŶR1

)
+ var

(
ŶR2

)
− 2cov

(
ŶR1, ŶR2

) .

The Schwarz inequality ensures that the numerator is indeed positive.
4. Since Y = E(ŶRi) + O

(
1
n

)
,

cov
(
ŶR1, ŶR2

)
= E

{(
ŶR1 − E(ŶR1)

)(
ŶR2 − E(ŶR2)

)}
= E

{(
ŶR1 − Y + O

(
1
n

))(
ŶR2 − Y + O

(
1
n

))}
.

The mean square error of ŶRi being 1/n, we can write

ŶRi − Y = O
(
1/

√
n
)
,

which yields ŶRi − Y leading to O (1/n), thus

cov
(
ŶR1, ŶR2

)
≈ E

{(
ŶR1 − Y

)(
ŶR2 − Y

)}
,

which gives

cov
(
ŶR1, ŶR2

)
= E

{
X1X2

(
Ŷ

X̂1

− R1

)(
Ŷ

X̂2

− R2

)}

= X1X2E

{(
Ŷ

X̂1

− R1

)(
Ŷ

X̂2

− R2

)}

= X1X2E

{(
Ŷ − R1X̂1

X̂1

)(
Ŷ − R2X̂2

X̂2

)}
.

By a limited development of X̂ i around its expected value X i, we get

Ŷ − RiX̂i

X̂ i

≈ Ŷ − RiX̂ i

Xi

(
1 − X̂i − Xi

Xi

)
, i = 1, 2.

Only keeping the term of order 1/n in the limited development, we finally
have
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cov
(
ŶR1, ŶR2

)
≈ X1X2

X1X2

E

[
(Ŷ −R1X̂1)(Ŷ −R2X̂2)

(
1− X̂1 − X1

X1

)(
1− X̂2 − X2

X2

)]
.

Indeed Ŷ − RiX̂i has a null expected value and a variance of 1/n; it is
of order of magnitude 1/

√
n. Likewise (X̂ i − X i)/Xi has a null expected

value and a variance of 1/n; it is therefore of order of magnitude 1/
√

n as
well. Save the 1/n terms and reject those in 1/n3/2, leading to keep only
the product (Ŷ − R1X̂1)(Ŷ − R2X̂2). Therefore

cov
(
ŶR1, ŶR2

)
≈ X1X2

X1X2

E
[
(Ŷ − R1X̂1)(Ŷ − R2X̂2)

]
= N2cov

(
Ŷ − R1X̂1, Ŷ − R2X̂2

)
= N2

[
var(Ŷ ) − R1cov(X̂1, Ŷ ) − R2cov(X̂2, Ŷ ) + R1R2cov(X̂1, X̂2)

]
.

Since the sample is simple random, by using the preliminary question,

var(Ŷ ) =
N − n

Nn
S2

y , cov(X̂1, Ŷ ) =
N − n

Nn
Sx1y,

cov(X̂2, Ŷ ) =
N − n

Nn
Sx2y, cov(X̂1, X̂2) =

N − n

Nn
Sx1x2 ,

we finally get

cov
(
ŶR1, ŶR2

)
≈ N2 N − n

Nn

[
S2

y − R1Sx1y − R2Sx2y + R1R2Sx1x2

]
.

5. We are going to use:

α̂opti =
v̂ar
(
ŶR2

)
− ĉov

(
ŶR1, ŶR2

)
v̂ar
(
ŶR1

)
+ v̂ar

(
ŶR2

)
− 2ĉov

(
ŶR1, ŶR2

) ,

with
v̂ar
(
ŶR1

)
= N2 N − n

Nn
s2

u,

where
uk = yk − R̂1x1k,

and
v̂ar
(
ŶR2

)
= N2 N − n

Nn
s2

v,
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where
vk = yk − R̂2x2k,

with

R̂1 =
Ŷ

X̂1

and R̂2 =
Ŷ

X̂2

,

s2
u = s2

y + R̂2
1s

2
x1 − 2R̂1sx1y,

and
s2

v = s2
y + R̂2

2s
2
x2 − 2R̂2sx2y.

Furthermore, we set

ĉov
(
ŶR1, ŶR2

)
= N2 N − n

Nn

[
s2

y − R̂1sx1y − R̂2sx2y + R̂1R̂2sx1x2

]
.

All of these estimators are obviously biased, but the biases are very small
when n is large (bias 1/n). The optimal variance estimated is immediately
obtained and without problem, each component being estimated as above.

6. The two estimators are

Ŷ R1 = 1482× 1896
1693

= 1660, Ŷ R2 = 1420× 1896
1643

= 1639.

In sampling, n = 50 can be considered as ‘large’, even if we are at the
limits of accepting such an assertion.

v̂ar
(
Ŷ R1

)
=

195 − 50
195 × 50

[
(2088)2 +

(
1896
1693

)2

(1932)2 − 2 × 1896
1693

× (1996)2
]
≈ 1750.

Therefore, √
v̂ar
(
Ŷ R1

)
≈ 41.8.

Furthermore,
v̂ar
(
Ŷ R2

)
≈ 4393,

which gives √
v̂ar
(
Ŷ R2

)
≈ 66.3.

The increase in variance obtained by going from Ŷ R1 to Ŷ R2 is logical
since information x2 is older than information x1, and is therefore less
correlated with y. Furthermore,

ĉov
(
Ŷ R1, Ŷ R2

)
= 2632,
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and, after a few calculations, we find α̂opti = 2, which gives

Ŷ opti = 2Ŷ R1 − Ŷ R2 = 1681,

and
v̂ar
(
Ŷ opti

)
= 865.

We notice a net improvement in accuracy with the optimal linear combi-
nation of Ŷ R1 and Ŷ R2.

Exercise 6.9 Overall ratio or combined ratio
The goal of this exercise is to compare the performance of several sampling
designs using stratification and ratios, when the sample size is large. We con-
sider that the sample is stratified (H strata with simple random sampling in
each stratum), and we have available an auxiliary variable x.

1. A stratified estimator of Y can be constructed on the model:

Ŷ com = X

∑H
h=1

Nh

N Ŷ h∑H
h=1

Nh

N X̂h

,

where X̂h and Ŷ h represent the simple means of x and y in the sample of
stratum h.
a) Justify this expression (we are speaking about a combined ratio).
b) Using limited developments, give an approximation of the bias of order

1/n (we are therefore placed in the case where n is ‘large’). Under what
condition is this bias null?

c) Give an approximation of the mean square error and then of the vari-
ance of order 1/n.

d) For what relationship between xk and yk is the estimator Ŷ com inter-
esting?

2. A second estimator can be constructed from the ratio estimators consid-
ered stratum by stratum, being:

Ŷ strat =
1
N

H∑
h=1

Xh
Ŷ h

X̂h

,

where Xh represents the true total (known) of x in stratum h (we are
speaking here about a stratified ratio). Go back to Questions 1.(a), 1.(b)
and 1.(c) and compare, from the viewpoint of bias and then of the variance,
the performances of Ŷ com and Ŷ strat.
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3. Numerical application: We return to the example from Exercise 6.2, where
we would consider a population of 2 010 farms. We stratify into two parts:
the farms where the total surface area cultivated x is less than 160 hectares
(stratum 1) and the other farms (stratum 2). The data are presented in
Table 6.2. The selected allocation is n1 = 70 and n2 = 30 (we are restricted
in selecting 100 farms in total).

Table 6.2. Total surface area cultivated x, and surface area cultivated in cereals y
in two strata: Exercise 6.9

Stratum Nh Ŷ h s2
yh s2

xh sxyh X̂h Xh

1 1580 19.40 312 2055 494 82.56 84
2 430 51.63 922 7357 858 244.85 241.32

Total 2010 −− 620 7619 1453 − −

a) What is the property of this allocation?
b) Compare the estimated variances of the mean estimators for the fol-

lowing five concurrent sampling designs:
• Simple random sampling with the simple mean Ŷ ;
• Simple random sampling with ratio;
• Stratified sampling, ‘classical’ estimator;
• Stratified sampling, combined ratio estimator;
• Stratified sampling, stratified ratio estimator.

We neglect the sampling rates. To estimate the variances of the unstrat-
ified designs, we will act as if the individuals had been selected using
simple random sampling (note that this only poses a problem of bias in
the estimators).

Solution

1. a) We know that for a stratified survey with simple random sampling in
each stratum, we have:

E

[
H∑

h=1

Nh

N
Ŷ h

]
= Y .

Therefore, Ŷ com naturally estimates

X

∑H
h=1

Nh

N Yh∑H
h=1

Nh

N Xh

=
Y

X
X = Y .
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b) We denote:

Ŷ =
H∑

h=1

Nh

N
Ŷ h, and X̂ =

H∑
h=1

Nh

N
X̂h.

Therefore,

Ŷ com = X
Ŷ

X̂
.

We write

X̂ = X

[
1 +

X̂ − X

X

]
and Ŷ = Y

[
1 +

Ŷ − Y

Y

]
,

which gives

Ŷ com

= X
Y

X

[
1 +

Ŷ − Y

Y

] ⎡⎣1 − X̂ − X

X
+

(
X̂ − X

X

)2

+ ε1

⎤⎦
= Y

⎡⎣1− X̂−X

X
+

(
X̂−X

X

)2

+
Ŷ −Y

Y
− (Ŷ − Y ) (X̂ − X)

X Y
+ ε2

⎤⎦ ,

where ε2 is an expression containing an infinite number of terms orig-
inating from the limited development of 1/X̂. Finally,

E[Ŷ com] ≈ Y +
Y

X2
E[X̂ − X]2 − 1

X
E(Ŷ − Y )(X̂ − X).

Both of the expected values are manifestly 1/n, in regards respectively
to a variance and a covariance. We are convinced that all the other
terms neglected here being E(ε2) are 1/nα with α > 1. (We can even
say that the ‘forgotten’ first-order varies by 1/n3/2.) We can neglect
them as soon as n is ‘large’. We have

E[X̂ − X]2 = var [X̂ ] =
H∑

h=1

(
Nh

N

)2

var(X̂h),

E(X̂ − X) (Ŷ − Y ) = cov(X̂, Ŷ )

= cov

(
H∑

h=1

Nh

N
X̂h,

H∑
h=1

Nh

N
Ŷ h

)

=
H∑

h=1

(
Nh

N

)2

cov(X̂h, Ŷ h),
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as the cross-covariances h×k (h �= k) are null due to the independence
of drawings from one stratum to another. The covariance is

cov(X̂h, Ŷ h) =
1 − fh

nh
Sxyh,

where Sxyh indicates the true covariance between xk and yk in stratum
h and

var(X̂h) =
1 − fh

nh
S2

xh.

Conclusion: The approximate bias obtained by only keeping the
largest terms (1/n) is:

E[Ŷ com] − Y

≈ Y

[
var(X̂)

X2
− cov(X̂, Ŷ )

X Y

]

≈ Y

⎡⎣∑H
h=1

(
Nh

N

)2 S2
xh

nh
(1 − fh)

X
2 −

∑H
h=1

(
Nh

N

)2 Sxyh

nh
(1 − fh)

X Y

⎤⎦
≈

H∑
h=1

(
Nh

N

)2 1 − fh

nh

[
Y

X2
S2

xh − Sxyh

X

]
.

This bias is null if and only if, for all h,

Sxyh

S2
xh

=
Y

X
= constant.

The combined ratio is thus unbiased (or very slightly biased) if and
only if the affine regression lines developed in each of the strata are
of the same slope, and that this common slope is Y /X. That comes
back to saying that all the regression lines have the same slope and
pass through the origin in each stratum.

c) We calculate the mean square error:

MSE[Ŷ com] = E

(
X

Ŷ

X̂
− Y

)2

= X2E

[
Ŷ

X̂
− R

]2

= X2E

[
Ŷ − RX̂

X̂

]2

,

where R = Y /X. By developing, we find

MSE[Ŷ com] = E
[
Ŷ − RX̂

]2 ⎡⎣1 − X̂ − X

X
+

(
X̂ − X

X

)2

+ ...

⎤⎦2

≈ E[Ŷ − RX̂]2,
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by keeping only the 1/n terms. Using the technique of limited devel-
opment for n large, and by only keeping the 1/n terms, the calculation
of the last line comes back to replacing X̂ of the denominator with X .
Indeed

Ŷ − RX̂ =
H∑

h=1

Nh

N
(Ŷ h − RX̂h)

is the null expected value by definition of R. Therefore

E[Ŷ − RX̂]2 = var[Ŷ − RX̂] =
H∑

h=1

(
Nh

N

)2

var(Ŷ h − RX̂h).

Indeed

var(Ŷ h − RX̂h) = var(Ŷ h) + R2var(X̂h) − 2Rcov(Ŷ h, X̂h),

which gives

MSE[Ŷ com] ≈
H∑

h=1

(
Nh

N

)2 1 − fh

nh
[S2

yh + R2S2
xh − 2RSxyh],

with
R = Y /X.

var(Ŷ com) = MSE[Ŷ com] − Bias2.

The bias indeed depends on 1/nh, which is the same as MSE. As the
bias is squared, MSE[Ŷ com] and var(Ŷ com) have the same approxima-
tion of order 1/n.

d) The estimator Ŷ com is interesting once var(Ŷ h−RX̂h) is small, which
is as soon as the population variance of the variable

yk − Rxk

is small in each stratum as well, which is when

yk − Rxk ≈ Ch,

for all k of stratum h where Ch is a constant only depending on stra-
tum h. The favourable situation (from the point of view of the vari-
ance) is therefore presented when

yk = Ch + Rxk for all individuals k of stratum h.

Then,

Y =
H∑

h=1

Nh

N
Yh =

H∑
h=1

Nh

N
Ch + RX =

H∑
h=1

Nh

N
Ch + Y .
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Thus
H∑

h=1

Nh

N
Ch = 0.

The ‘ideal model’ is then:

yk = Ch + Rxk, with
H∑

h=1

NhCh = 0.

In practice, we instead expect relationships where Ch is close to null,
of the type: yk ≈ Rxk, which is a proportionality between x and y
with the same proportionality factor in all strata. Thus, it is a rather
restricting ‘model’.

2. a) Xh
Ŷ h

X̂h

is the ratio estimator of the unknown true total Yh in stratum

h: the expression of Ŷ strat is therefore natural.
b) We denote

ŶRh = Xh
Ŷ h

X̂h

.

Going back to the expression of bias (approximate) for the ratio esti-
mator (see 1.(b)), we deduce this as:

bias in stratum h : EŶRh − Yh ≈ Yh

[
var(X̂h)

X2
h

− cov(X̂h, Ŷ h)
XhY h

]
.

The approximate bias of Ŷ strat is therefore:

E(Ŷ strat) − Y ≈ 1
N

H∑
h=1

Yh

(
1 − fh

nh

) [
S2

xh

X2
h

− Sxyh

XhY h

]

=
H∑

h=1

(
Nh

N

)
1 − fh

nh

[
Y h

X2
h

S2
xh − Sxyh

Xh

]
.

It is of course not possible to compare in a rigorous manner the bi-
ases of Ŷ com and Ŷ strat. We can however notice that Nh/N is larger
than (Nh/N)2: if the terms in square brackets are mostly of the same
sign (for example, if the regression lines most often have positive y-
intercepts) we can think that Ŷ strat is more biased than Ŷ com (espe-
cially if there are many strata). This bias of Ŷ strat is null if and only
if, for all h,

Sxyh

S2
xh

=
Y h

Xh

,
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which is the classical condition in the absence of bias for the ratio
estimator: the slope of the affine regression line of y on x is equal to
the true ratio, which comes back to saying that this line passes through
the origin, but stratum by stratum. From this point of view, we get an
appreciably less restrictive condition than that which corresponds to
the uselessness of the bias of Ŷ com.

c) We use here the approximated variance expression for the ratio esti-
mator (nh large), obtained in 1.(c).

var[Ŷ strat] =
1

N2

H∑
h=1

var [ŶRh] ≈ 1
N2

H∑
h=1

N2
hvar [Ŷ h − RhX̂h],

with

Rh =
Y h

Xh

.

Thus

var(Ŷ strat) ≈
H∑

h=1

(
Nh

N

)2 1 − fh

nh
[S2

yh + R2
h S2

xh − 2RhSxyh].

Ŷ strat is ‘good’ as soon as ŶRh is ‘good’ from stratum to stratum,
which is as soon as the relationship between x and y is sufficiently
linear in each stratum. However, with such an estimator, it is possible
that the slope of the regression line is quite variable from one stratum
to another, without being penalising, contrary to Ŷ com.

Conclusions: A priori, except for a slightly ’bizarre’ configuration:
• Ŷ com is instead less biased than Ŷ strat;
• Ŷ com is instead more variable than Ŷ strat;
• Ŷ com requires less auxiliary information x than Ŷ strat. In fact, to

use Ŷ strat, we have to know Xh for all h (but only X =
∑H

h=1 Xh

to use Ŷ com).
A selection rule could therefore be of the following type:
• With small nh, we use Ŷ com to avoid in the first place biases that

are too large.
• With large nh, we use Ŷ strat, under the condition that the squared

biases are ‘small’ compared to the variances (which is expected,
since the bias and variance vary 1/nh).

The variance estimates are obtained by replacing the population vari-
ance parameters with their counterparts in the sample.

3. a) This allocation is (almost) the Neyman optimal allocation. Indeed,
with optimal allocation nh is proportional to NhSyh (Syh was ‘esti-
mated’ here). Therefore,
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n1 proportional to 1 580 ×√

312

n2 proportional to 430 ×√
922

with n1 + n2 = 100.

This calculation technically leads, after rounding, to n1 = 68 and
n2 = 32. Nevertheless, we know that the optimum is ‘flat’; that is, the
neighbouring allocations of the optimal allocation (such as 70 and 30)
lead to variances (nearly) equal to the minimum variance.

b) In the calculations of the two estimates which follow (unstratified
case), the population variances S2

y , S2
x and the true covariance Sxy

are estimated from the data which are in reality obtained from strati-
fied sampling: as a result, we lose the property of the absence of bias,
strictly speaking. In regards to sampling with slightly unequal proba-
bilities, we can however assume that the bias is small when the sample
size is ‘large’ (which is the case with 100 units; see Exercise 3.21).
• Simple design and simple mean:

If we denote Ŷ as the simple mean in the sample, then

v̂ar
SRS

(Ŷ ) ≈ s2
y

n
=

620
100

= 6.2.

• Simple design and ratio:
If X̂ and Ŷ indicate the simple means of x and y in the sample,
then

v̂ar
SRS

(
X

Ŷ

X̂

)
≈ 1

n
[s2

y + R̂2s2
x − 2R̂sxy]

≈ 1
100

[620 + (0.2215)2 × 7 619 − 2(0.2215)× 1 453],

as

Ŷ =
2∑

h=1

nh

n
Ŷ h = 0.7 × 19.4 + 0.3 × 51.63 = 29.07,

and by the same calculation X̂ = 131.25 and thus R̂ = Ŷ

X̂
≈ 0.2215.

Thus

v̂ar
SRS

(
X

Ŷ

X̂

)
≈ 350.12

100
≈ 3.50.

• Stratified design with ‘classical’ estimator:

v̂ar

(
H∑

h=1

Nh

N
Ŷ h

)
=

H∑
h=1

(
Nh

N

)2 1
nh

s2
yh

=
(

1 580
2 010

)2

× 1
70

× 312 +
(

430
2 010

)2

× 1
30

× 922

= 4.16.
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• Stratified design with combined ratio estimator:
Let us go back to the initial notations from 1.(b). We are going to
estimate the true ratio R with Ŷ /X̂, being:

̂̂
R =

∑H
h=1 NhŶ h∑H
h=1 NhX̂h

,

which is preferable in comparison to the ratio of the simple means.
Note: We could have used this expression ̂̂R to estimate the vari-
ance of the ratio with simple random sampling (case 2), but we
kept the ratio of simple means because it is the classical approach.
The calculation giveŝ̂

R =
1 580 × 19.40 + 430 × 51.63
1 580 × 82.56 + 430 × 244.85

≈ 0.2242.

We have

v̂ar[Ŷ com]

=
(

1 580
2 010

)2

× 1
70

× [312 + (0.2242)2 × 2 055 − 2 × 0.2242× 494]

+
(

430
2 010

)2

× 1
30

[922 + (0.2242)2 × 7 357 − 2 × 0.2242× 858]

= 3.10.

• Stratified design with separate ratio estimator:

v̂ar[Ŷ strat]

=
(

1580
2 010

)2 1
70

[
312 +

(
19.40
82.56

)2

× 2055− 2 × 19.40
82.56

× 494

]

+
(

430
2010

)21
30

[
922 +

(
51.63
244.85

)2

× 7357 − 2 ×
(

51.63
244.85

)
× 858

]
= 3.06.

Finally, we get the following classification:

v̂ar(Ŷ strat)<v̂ar(Ŷ com)<v̂ar
SRS

(
X

Ŷ

X̂

)
<v̂ar

(
H∑

h=1

Nh

N
Ŷ h

)
<v̂ar

SRS

(
Ŷ
)
.

Remaining cautious with the interpretation of calculations for the
two unstratified designs, we notice that the three ratio estimators
seem of comparable quality and produce the smallest variances,
with a small advantage for those that take into account the strat-
ification.
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Exercise 6.10 Calibration and two phases
A regional agricultural cooperative wishes to estimate the average surface area
of wheat cultivated Y in N farms of the region. To do this, a sample S∗ of
n∗ farms is selected and the average surface area cultivated X̂

∗
is computed

in the sample from land registers. Afterwards, n farms are resampled from
the previous sample (we get the sample S) and one calculates the average
surface area cultivated X̂ and the average surface area of wheat cultivated
Ŷ in this sample, resulting from a trip of investigators into the field. Each
sample is simple random (without replacement). The cooperative chooses to
use an estimator of type

Ŷ c = Ŷ + c(X̂
∗
− X̂),

where c is a known fixed value (thus non-random).
First of all, show that S can be considered as coming from a simple random
sample without replacement of size n in a population of size N (hint: think
about conditioning with respect to S∗).

1. a) Justify the expression Ŷ c with consideration to the accuracy (with-
out calculation). In particular, give the relationship that would have
to exist between xk and yk so that Ŷ c is precise, and interpret the
constant c.

b) Justify the expression Ŷ c with consideration to the cost.
c) What do we call the type of sampling that is applied here?

2. Show that Ŷ c estimates Y without bias (hint: think about conditioning).
3. a) Write the decomposition formula of the variance allowing to express

var(Ŷ c) as a function of terms necessitating successively the sampling
of S∗ and the sampling of S.

b) We define the following notation:

• Ŷ
∗
: mean surface area of wheat cultivated for S∗,

• uk = yk − cxk,
• s2∗

u : sample variance of uk calculated on S∗,
• S2

u: population variance of uk calculated on the entire population
U ,

• S2
y : population variance of yk calculated on the entire population

U.
From each of the previously defined terms, show that

var(Ŷ c) =
N − n∗

Nn∗ S2
y +

n∗ − n

nn∗ S2
u. (6.2)

4. a) What is the gain (if a gain exists) offered by this sampling design
compared to a simple random sample without replacement of size n

with estimator Ŷ ?
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b) From the previous result, define in practice the context in which the
estimator Ŷ c is a good estimator and again, find the result from 1.(a).

5. We are placed in the favourable context defined in 4.(b) and we contribute,
in this question only, some considerations of cost. We denote c1 as the cost
of listing the surface area of a farm from the land registers, and c2 as the
survey cost in the field to list the surface area of wheat cultivated for a
farm. We call C the total budget that we have available.
a) Write out the budget constraint.
b) Find the sizes n∗ and n allowing to obtain the best accuracy for Ŷ c

and note that S2
u must be situated in a certain interval (which we

will determine) so that the sample is not reduced to a classical simple
random sample.

6. a) Write out the population variance S2
u as a function of c and the pop-

ulation variances and covariances of y and x. What are we going to
naturally impose on c?

b) From the expression of the accuracy for Ŷ c, determine the constant c

which permits to get the most precise estimator Ŷ c.
c) What difficulty (difficulties) do we have in practice to calculate this

optimal constant? Under these conditions, what ‘natural’ estimator
are we tempted to use?

Solution
Preliminary question:
We denote

(
N
n

)
as the number of ways of choosing n individuals among

N without replacement (this is also N !/n!(N − n)!). We denote p(s) as the
probability of selecting sample s.

p(s) =
∑

{s∗|s⊂s∗}
p(s|s∗)p(s∗) =

#{s∗ ⊂ U | s ⊂ s∗}(
n∗
n

) (
N
n∗

) .

The sum involves all the samples s∗ containing s: n individuals are fixed,
and it remains to select (n∗ − n) of them (to form s∗) among the ‘remaining’
(N − n) individuals in the population. Therefore, the sum contains

(
N−n
n−n∗

)
identical terms.

p(s) =

(
N−n
n∗−n

)
(

n∗
n

) (
N
n∗

) =
(N − n)!n!(n∗ − n)!n∗!(N − n∗)!

(n∗ − n)!(N − n∗)!n∗!N !
=
(

N

n

)−1

,

which characterises a simple random sampling without replacement of fixed
size n in a population of size N .

1. a) The estimator resembles the regression estimator, but this is not the
regression estimator as on the one hand, the true mean X was replaced
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with an estimate X̂
∗

and on the other hand, c is chosen a priori. As
X̂

∗
is going to estimate X, through a reasoning similar to that which

permits the construction of the regression estimator, we can suspect
that Ŷ c leads to a better accuracy than Ŷ if we have a relationship of
the type

yk = a + bxk + uk,

where the uk are small and of null sum. The constant c is then an es-
timate a priori (independent of the sample) of the slope of the regres-
sion line of yk on xk, and therefore a value close to b. This modelling
corresponds well, a priori, to the concrete situation coming from the
statement as we can reasonably think that the surface area of wheat
cultivated is a function more or less linear to the total surface area
cultivated.

b) The cost of obtaining X, the true mean cultivated surface area, is high
a priori, since it is necessary to get the cadastral information for all
of the existing farms. By replacing X with X̂

∗
, we certainly lose some

accuracy but we use auxiliary information at less cost (it is ‘sufficient’
to consult the registers for some of the farms).

c) This is a two-phase sample. At the first phase, we select S∗ and at the
second phase, we select S.

2. In all of the calculations that follow, it is necessary to remember that S∗

is a simple random sample and that, conditionally on S∗, S is a simple
random sample in S∗.

E
(
Ŷ c

)
= E E

(
Ŷ c|S∗

)
,

the first expected value agrees in comparison to the distribution p(s∗),
and the second in comparison to the conditional distribution p(s|s∗).

E
(
Ŷ c

)
= E E

(
Ŷ + c(X̂

∗
− X̂)|S∗

)
= E

(
Ŷ

∗
+ c(X̂

∗
− X̂

∗
)
)

= E
(

Ŷ
∗)

= Y .

Another method consists of using the preliminary question:

E(Ŷ c) = ES(Ŷ ) + c(ES∗X̂
∗
− ESX̂),

where ES and ES∗ respectively indicate the expected value in relation to
the sampling distributions p(s) and p(s∗). As S∗ and S are simple random
samples in the population U , we have directly

ES(Ŷ ) = Y , ES(X̂) = X, and ES∗(X̂
∗
) = X,

which leads to E(Ŷ c) = Y .
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3. a) The decomposition of the variance (respective distributions p(s∗) and
p(s|s∗)) gives:

var
(
Ŷ c

)
= var E

(
Ŷ c|S∗

)
+ E var

(
Ŷ c|S∗

)
= var

(
Ŷ

∗)
+ E var

(
Ŷ − cX̂ |S∗

)
.

b) Setting uk = yk − cxk, and

s∗2u =
1

n∗ − 1

∑
k∈S∗

(uk − Û
∗
)2,

where
Û

∗
=

1
n∗
∑

k∈S∗
uk,

we have

var
(
Ŷ c

)
= var

(
Ŷ

∗)
+ E var

(
Û |S∗

)
=

N − n∗

Nn∗ S2
y + E

(
n∗ − n

nn∗ s∗2u

)
=

N − n∗

Nn∗ S2
y +

n∗ − n

nn∗ S2
u,

as E(s∗2u ) = S2
u.

4. a) In a ‘direct’ simple random design without replacement of size n, the
variance of the unbiased estimator Ŷ is

var
(
Ŷ
)

=
N − n

Nn
S2

y .

The gain in the two-phase design with Ŷ c is therefore

var
(
Ŷ
)
− var

(
Ŷ c

)
=

N − n

Nn
S2

y − N − n∗

Nn∗ S2
y − n∗ − n

nn∗ S2
u

=
n∗ − n

nn∗
(
S2

y − S2
u

)
.

This difference can be both positive and negative according to the sign
of S2

y − S2
u.

b) We notice that Ŷ c is much better when S2
u is small (with fixed sample

sizes, but it is here a question of budget). This is the only term that
we can try to keep at a minimum since S2

y is set for us. To obtain S2
u

small, it is necessary and sufficient that yk−cxk is not very dispersed,
which means that it is approximately constant. In other words, we
would like that
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yk ≈ a + cxk, for all k,

which very well returns to the idea presented in 1.(a). The gain there-
fore depends on the choice of c.

For the following, we are placed in the case where Ŷ c is a ‘good’ estimator,
which indicates in the first place that it is preferable to Ŷ , and therefore
that S2

y − S2
u > 0.

5. a) The total budget is
C = c1n

∗ + c2n.

b) We are therefore trying to minimise

N − n∗

N
× S2

y

n∗ +
n∗ − n

n∗
S2

u

n
, (6.3)

subject to C = c1n
∗ + c2n and n∗ ≥ n. We immediately verify that

the function (6.3) to minimise can be replaced with

1
n∗ (S2

y − S2
u) +

1
n

S2
u.

If we ‘forget’ the inequality constraint in the first place, then by dif-
ferentiating the Lagrangian linked to this last expression in relation
to n∗ and n, we get ⎧⎪⎪⎨⎪⎪⎩

−S2
y − S2

u

n∗2 − λc1 = 0

−S2
u

n2
− λc2 = 0,

where λ is the Lagrange multiplier. By making a ratio from these two
equations, we get

S2
y − S2

u

S2
u

( n

n∗
)2

=
λc1

λc2
=

c1

c2
.

We therefore have

n∗ = n

√
S2

y − S2
u

S2
u

c2

c1
.

With the cost constraint

c1n
∗ + c2n = c1n

√
S2

y − S2
u

S2
u

c2

c1
+ c2n = C,

we obtain:

n =
C

c2 +
√

c1c2
S2

y−S2
u

S2
u

,
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and

n∗ = n

√
S2

y − S2
u

S2
u

c2

c1
.

It remains to verify if we had reason to not count on the constraint
n∗ ≥ n, that is, if

S2
y − S2

u

S2
u

c2

c1
≥ 1,

which is also written

S2
u ≤ S2

y

1 + c1
c2

≤ S2
y .

It is therefore necessary and sufficient that

S2
u ∈
[
0,

S2
y

1 + c1
c2

]

(in which case S2
y − S2

u ≥ 0) so that we have a genuine two-phase
sample. If

S2
u ≥ S2

y

1 + c1
c2

,

then we stumble upon the constraint, which is to say that n∗ = n
and we are then brought back to a simple random sample without
replacement of fixed size

n = n∗ =
C

c2
,

in which case Ŷ c = Ŷ . This is the case as soon as S2
u > S2

y , since then

Ŷ appears to be better than Ŷ c.
6. a) In the population, the variance of uk is

S2
u = S2

y−cx = S2
y + c2S2

x − 2cSxy.

So that S2
u < S2

y , that is var(Ŷ ) > var(Ŷ c) with c > 0, it is necessary
and sufficient that

c <
Sxy

S2
x

× 2.

b) From the variance (see 3.b), we want to minimise S2
u by c, or in other

words to minimise
S2

y + c2S2
x − 2cSxy.

By setting the derivative with respect to c equal to zero, we got the
optimal value c̃
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2c̃S2
x − 2Sxy = 0,

which gives

c̃ =
Sxy

S2
x

,

which is the slope of the regression line of y on x in the population U .
c) That problem is that c̃ is incalculable, since we do not know the pop-

ulation variances. We are tempted to estimate c̃ by

ĉ =
sxy

s2
x

,

the slope of the regression line of y on x in the sample. But be care-
ful, as this is no longer the difference estimator, as ĉ depends on the
sample. It is then a regression estimator, where the estimation of the
slope is done from the xk and yk collected, which is to say by calling
only on the second phase.

Exercise 6.11 Regression and repeated surveys
The object of this exercise is to show how a regression estimator can improve
the quality of mean estimation when we perform two surveys on the same
theme y on two successive dates t = 1 and t = 2. At the same time, we can
study the (delicate) question of ‘optimal’ replacement of a part of the sample.
We are interested in the estimation of the mean of y on date t = 2, denoted
Y 2. At period t = 1, we select by simple random sampling a sample S1 of size
n in a very large population (f negligible). At period t = 2, we re-interview c
individuals that were part of the previous sample (those coming from a simple
random sample in S1), and we select r new individuals using simple random
sampling in a way that the total size remains equal to n (we therefore have
c + r = n). We consider that the identifiers for the population are exactly
the same for the two dates (the population does not change between the two
dates), and we denote:

• ytk = value of y for individual k on date t,
• Ŷ tc = simple mean in the common sample of size c, calculated on date t.

This sample is denoted Sc,
• Ŷ tr = simple mean in the sample to replace or replaced of size r, calculated

on date t. This sample is denoted Str.

Finally, we denote:

S2
t =

1
N − 1

∑
k∈U

(ytk − Y t)2 (t = 1, 2).
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1. a) Conditionally on the composition of S1, the sample S2r comes from a
simple random sample in the population outside of S1. Show that if
we ‘decondition’ from S1, we can again consider that S2r comes from
a simple random sample in the total population.

b) Give the expression for the variance var(Ŷ 2r).
2. As the estimator of Y 2, we first propose the following ‘regression’ estima-

tor:
Ŷ 2, reg = Ŷ 2c + ̂̂b(Ŷ 1 − Ŷ 1c),

where Ŷ 1 is the simple mean of y1k from S1 on date t = 1.

a) Justify this formula, and specify the expression of the estimator ̂̂b.
b) Calculate the approximate variance of Ŷ 2, reg.

Hint: since Ŷ 1 is random (in that, Ŷ 2, reg is not a ‘genuine’ regression
estimator) we use the decomposition formula of the variance, condi-
tioning on S1 in the first place. We will find:

var(Ŷ 2, reg) ≈ S2
2

n
+
(

1
c
− 1

n

)
(1 − ρ2) S2

2 ,

where ρ is the linear correlation coefficient between y1k and y2k in the
total population.

3. Still to estimate Y 2, we now propose the following estimator where α is a
fixed value in [0,1]:

Ŷ 2(α) = α Ŷ 2r + (1 − α) Ŷ 2, reg.

a) If we denote the replacement rate as x = r/n, and if we consider that
Ŷ 2r and Ŷ 2, reg are uncorrelated, explain why this approximation is
reasonable, and give the optimal value of α, denoted αopti.

b) Calculate var[Ŷ 2(αopti)], as a function of x and ρ2.
c) Deduce x∗, the optimum replacement rate, as well as the optimal

variance varopti(ρ) obtained with this rate.
d) What is the gain of this strategy Ŷ 2(αopti) with the rate x∗ compared

to the ‘classical’ estimator Ŷ 2 coming from a simple random sample
of size n on date t = 2? (In other words, what is the design effect?)
Study the variation of this gain as a function of ρ, where 0 ≤ ρ ≤ 1.
Make a conclusion.

4. Indicate without calculation the strategy to adopt if we want to best
estimate, not the mean Y 2, but the difference Y 2 − Y 1, where Y 1 is the
true mean of y1k.
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Solution
On the two successive dates t1 and t2, the samples can be represented by
Figure 6.1, with the part Sc being common in the two samples S1 and S2:

Fig. 6.1. Samples on two dates: Exercise 6.11

t=1

s

s

sc

t=2

1r

2r

1. a) Let us look at the distributions in play. Due to the occurrence of the
adopted sampling method, we have:

p(s1) =
1(
N
n

) ,

p(s2r | s1) =

⎧⎪⎪⎨⎪⎪⎩
1(

N−n
r

) if s2r ∩ s1 = ∅

0 otherwise,

therefore
p(s2r) =

∑
{s1/s1∩s2r=∅}

p(s2r | s1)p(s1).

There are
(

N−r
n

)
identical terms in the sum, thus:

p(s2r) =
(

N − r

n

)
1(

N−n
r

) 1(
N
n

) =
1(
N
r

) .

Everything happens ‘as if’ we selected r individuals from N using
simple random sampling.
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b) According to a), Ŷ 2r is the mean coming from a simple random sample
of size r in a population of size N and with population variance S2

2 .
Therefore

var(Ŷ 2r) =
S2

2

r
.

2. a) The estimator proposed Ŷ 2,reg resembles a regression estimator: Ŷ 1

has the role of auxiliary information (this is not however a true value;
this is a random variable that is sensitive to the composition of S1).
Furthermore, Ŷ 1c and Ŷ 2c are very well calculated on the same sam-
ple, here Sc. We thus find ourselves in a situation that resembles the
one for the regression estimator, but here we set Ŷ 2c on the value
taken on date t = 1. Indeed, if we use Ŷ 2, reg to estimate the mean Y 1

on date t = 1, and if ̂̂b takes under these conditions the value 1, we
have:

Ŷ 1,reg = Ŷ 1c + 1 × (Ŷ 1 − Ŷ 1c) = Ŷ 1,

and we again find the estimator Ŷ 1 on which ‘we are calibrated’. To

justify that, it is necessary and sufficient that ̂̂b is the estimated slope
in the regression of y2k on y1k:

y2k = a + by1k + uk, with
∑
k∈U

uk = 0 and (a, b) minimising
∑
k∈U

u2
k,

thus ̂̂
b =

∑
k∈Sc

(y2k − Ŷ 2c) (y1k − Ŷ 1c)∑
k∈Sc

(y1k − Ŷ 1c)2
.

This formula permits as it were to be armed against the ‘bizarre’
compositions of Sc in comparison to S1. If, for example, Sc plainly
overestimates Y 1, which is to say if Ŷ 1c > Ŷ 1, then, from the fact
of the natural correlation between the variables yk from dates 1 and
2, we can think that Sc continues to overestimate Y 2 on date 2. We

indeed verify that in that case the corrective coefficient ̂̂b(Ŷ 1 − Ŷ 1c)
is negative and that we have as a consequence Ŷ 2, reg < Ŷ 2c, which
makes the estimation evolve ‘in a good way’.

b) By the decomposition of the variance, we have:

var[Ŷ 2, reg] = var
{
E[Ŷ 2, reg | S1]

}
+ E

{
var[Ŷ 2, reg | S1]

}
.

First, we are going to condition on S1: in this case, the risk is not
carried on S1, which is ‘fixed’. Therefore,
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E[Ŷ 2, reg | S1]

= E
[̂̂
b Ŷ 1 + (Ŷ 2c − ̂̂b Ŷ 1c) | S1

]
= Ŷ 1E(̂̂b | S1) + E(Ŷ 2c | S1) − E(̂̂b Ŷ 1c | S1)

= Ŷ 1E(̂̂b | S1) + E(Ŷ 2c | S1) − E(̂̂b | S1)E(Ŷ 1c | S1) − cov(̂̂b, Ŷ 1c | S1).

Indeed, Sc comes from a simple random sample in S1. That leads to:

E(Ŷ 1c | S1) = Ŷ 1 and E(Ŷ 2c | S1) = Ŷ 2,

where Ŷ 2 is the simple mean for y2k of S1 = Sc ∪ S1r (Ŷ 2 is thus
calculated on S1, the sample selected at t = 1, and not on Sc ∪ S2r,
which is the sample in use on date t = 2). Therefore

E[Ŷ 2,reg|S1] = Ŷ 2 − cov(̂̂b, Ŷ 1c | S1).

The covariance is a very complex term, but which is of the form
θ̂(S1)/c, where θ̂(S1) is a function of S1. Its variance compared to
the risk on S1 is negligible with respect to that of Ŷ 2, due to the 1/c2

term. Therefore

var
[
E(Ŷ 2, reg | S1)

]
≈ var(Ŷ 2) =

S2
2

n
.

Furthermore, if we set

b̂ =

∑
k∈S1

(y2k − Ŷ 2)(y1k − Ŷ 1)∑
k∈S1

(y1k − Ŷ 1)2
,

var[Ŷ 2, reg | S1] ≈ var[Ŷ 2c − b̂ Ŷ 1c | S1] = var[Û c | S1] =
s2

u

c

(
1 − c

n

)
,

with, for all k of S1,

uk = y2k − b̂ y1k − â,

the ‘true’ residual in the linear regression for S1 of y2k on y1k, and s2
u

is the sample variance of uk in S1.
Attention: (1 − c/n) is not a priori negligible. We know that:

s2
u = (1 − ρ̂2) s2

y2,

where
• ρ̂ is the linear correlation coefficient between y1k and y2k (in S1),
• s2

y2 is the sample variance of y2k in S1 (our ‘population’ as there
is conditioning).
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Thus,

var[Ŷ 2, reg | S1] = (1 − ρ̂2)
(
1 − c

n

) s2
y2

c
,

with
E[s2

y2] = S2
2 ,

which is a classical result due to the simple random sampling of S1.
That leads to:

E
[
var(Ŷ 2, reg | S1)

] ≈ (1
c
− 1

n

)
(1 − ρ2) S2

2 .

Note: we replaced ρ̂ with ρ, calculated on the entire population of size
N . Indeed, the standard deviation of ρ̂, which is a ratio, is of order
1/

√
n. If n is ‘large’, we neglect the difference | ρ2 − ρ̂2 | compared to

ρ2 and therefore

1 − ρ̂2 = 1 − ρ2 + (ρ2 − ρ̂2)︸ ︷︷ ︸
negligible

≈ 1 − ρ2.

Finally, we get:

var[Ŷ 2, reg] ≈ S2
2

n
+
(

1
c
− 1

n

)
(1 − ρ2) S2

2 .

3. a) S2r is practically independent of S1 and Sc; the difference in inde-
pendence is due to the sole fact that S2r is selected, on date 2, in
the population outside of S1, but S1 is small with respect to this
population: in other words, a direct sampling of S2r in the complete
population (without taking count of S1 as a result) would give ‘almost
surely’ the same results. We therefore have

cov(Ŷ 2r, Ŷ 2, reg) ≈ 0,

and thus

var[Ŷ 2(α)] ≈ α2 var[Ŷ 2r]︸ ︷︷ ︸
see 1) b)

+(1 − α)2 var[Ŷ 2, reg]︸ ︷︷ ︸
see 2) b)

.

If we minimise this variance as a function of α, we very easily find:

αopti =
var[Ŷ 2, reg]

var[Ŷ 2r] + var[Ŷ 2, reg]
∈ [0, 1].

b) By including the value of αopti in the expression var[Ŷ 2(α)] and by
noting that c/n = 1 − x, we find:

var
[
Ŷ 2(αopti)

]
=

S2
2

n

1 − ρ2x

1 − ρ2x2
.
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c) With ρ ‘fixed’, we easily verify that var[Ŷ 2(α)] is a convex x function
and that:[

x∗ ≤ 1 and
(

∂var
∂x

)
x∗

= 0
]

⇔ x∗ =
1

1 +
√

1 − ρ2
.

Then,

varopti(ρ) =
S2

2

n

(1 +
√

1 − ρ2)
2

,

where
• S2

2/n is the variance of Ŷ 2 in the frame of a simple random sample
of size n (accuracy of reference),

• (1 +
√

1 − ρ2)/2 is the corrective coefficient applied to the accu-
racy of reference (design effect).

d) The design effect as a function of ρ is:

DEFF(ρ) =
1 +
√

1 − ρ2

2
.

It is a function strictly decreasing over [0, 1].

Conclusion: for all ρ ∈ [0, 1], DEFF(ρ) ≤ 1, we always improve the
accuracy compared to the ‘classical’ estimator Ŷ 2, and particularly
since | ρ | is large, which is modelled on the ‘philosophy’ of regression
estimation. Whatever the value may be for ρ, we see that we get as
the optimum:

x∗ ≥ 50 %.

It is therefore necessary to always replace at least half of the sample to
reach this optimum. This result is remarkable, as intuitively it presents
a certain logic: if ρ = 1, there is a perfect link between y1k and y2k.
In this case corresponding to x∗ = 100%, it is necessary to replace
at most the sample as otherwise, we collect two times in a row the
same information! (At the limit, by choosing c = 2, we take only two

individuals back between the two dates to be able to calculate ̂̂b, and
that is sufficient to ensure that Ŷ 2, reg = Ŷ 2.) We are then well aware
that everything happens ‘as if’ we had a sample of size 2n on date
t = 2:
• the n individuals of S1 corresponding to n pieces of recollected

information, allowing for the calculation of Ŷ 2, reg = Ŷ 2,
• the n individuals of S2r corresponding to n pieces of supplementary

information, allowing for the calculation of Ŷ 2r.
4. The estimation strategy of an evolution is a panel strategy: we renew the

entire sample. This is the contrary logic (x∗ = 0 in this case): Ŷ 2 − Ŷ 1

estimates Y 2 − Y 1 without bias, and cov(Ŷ 1, Ŷ 2) is positive if ρ > 0.
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var(Ŷ 2 − Ŷ 1) = var(Ŷ 1) + var(Ŷ 2)− 2cov(Ŷ 1, Ŷ 2) < var(Ŷ 1) + var(Ŷ 2).

Therefore, we benefit from the sign of the covariance: conserving the sam-
ple over time decreases the variance of Ŷ 2 − Ŷ 1, which is preferable to a
partial replacement, even for the total sample.

Exercise 6.12 Bias of a ratio
This exercise is a little atypical in spirit. It is to get here an approximation
of the bias of a ratio and to propose a method to decrease this bias, without
proceeding in a rigorous way but by underlining the difficulties that there
would be to do this. We are placed in the case of a simple random sample
of large size n. We are interested in the classical ratio constructed from the
variables x and y. We denote R = Y /X and R̂ = Ŷ /X̂.

1. Write R̂ − R under the form of a ratio utilising X̂, Ŷ , R, X and ∆X =
(X̂ − X)/X. Specify the variance and the expected value of ∆X .

2. Using the limited development of the function 1/(1 + u) in the vicinity of
0, where u ∈ R, rewrite R̂ − R in a way so that there is no longer any
random variable in the denominator.

3. When n is ‘large’, what can we say about the random variable ∆X?
4. We decide (arbitrarily) to hold the first two terms random from the limited

development. What are the questions that we can ask ourselves if we want
to practise rigorously?

5. Coming from the previous approximation that we assume to be good,
express the expected value E(R̂−R), by isolating the 1/n term. Conclude
on the approximate bias of the ratio estimator when the sample size is
large.

6. We consider from now on that the expected value of the ratio is written
under the form:

E(R̂) = R +
A

n
+

B

n3/2
.

For each individual i of the sample S, we construct the estimator R̂(i) on
the model of R̂ but by removing individual i, then we are interested in
the estimator: ̂̂

R = nR̂ − n − 1
n

∑
i∈S

R̂(i).

Express E( ̂̂R) and conclude on the interest (from the point of view of bias

in any case) in choosing ̂̂R instead of R̂ to estimate R.
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Solution

1. As

R̂ =
Ŷ

X̂
,

we have

R̂ − R =
Ŷ

X̂
− R =

Ŷ − RX̂

X̂
=

Ŷ − RX̂

X(1 + ∆X)
,

where

∆X =
X̂ − X

X
.

We notice that
E(∆X) = 0, (6.4)

and

var(∆X) =
1

X
2 var(X̂) =

1

X
2

N − n

N

S2
x

n
, (6.5)

where
S2

x =
1

N − 1

∑
k∈U

(xk − X)2.

2. We have, with u close to 0,

1
1 + u

=
∞∑

j=0

(−u)j,

therefore

R̂ − R =
Ŷ − RX̂

X

∞∑
j=0

(−∆X)j =
Ŷ − RX̂

X

⎧⎨⎩1 − ∆X +
∞∑

j=2

(−∆X)j

⎫⎬⎭ .

The random variable ∆X is a priori close to 0, since it is of null expected
value and of variance 1/n, with n large.

3. From (6.4) and (6.5), we can write

∆X = Op

(
1√
n

)
,

where Op(1/x) is a quantity which remains bounded in probability when
multiplied by x, which is written

for all ε > 0, there exists Mε such that Pr

[
| ∆X |

1√
n

≥ Mε

]
≤ ε.
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We can in fact show that if X is a random variable of the null expected
value and of the variance var(X) = f(n) where f is a given function, then
X = Op

(√
f(n)

)
.

4. We can therefore write, in neglecting the random term
∑∞

j=3(−∆X)j ,

R̂ − R =
Ŷ − RX̂

X
{1 − ∆X + Op (1/n)} .

Indeed, ∆2
X = Op

(
1
n

)
according to the following result:

Op (f(n)) × Op (g(n)) = Op (f(n) × g(n)) ,

where f(n) and g(n) are any two functions. It is legitimate to do this
approximation if n is large, which comes back to neglecting 1/n3/2 (which
is of the order ∆3

X) compared to 1/n.
5. The approximate bias is

E(R̂ − R) ≈ E

{
Ŷ − RX̂

X

(
1 − ∆X + Op

(
1
n

))}

=
1
X

{
E(Ŷ − RX̂) − E[(Ŷ − RX̂)∆X ] +E

[
(Ŷ − RX̂)Op

(
1
n

)]}
=

1

X
2

{
R var(X̂) − cov(X̂, Ŷ ) + Op

(
1

n3/2

)}
.

Indeed, Ŷ − RX̂ is Op (1/
√

n), due to the null expected value and the 1/n
variance. We select

(Ŷ − RX̂)Op

(
1
n

)
= Op

(
1

n3/2

)
,

E(R̂ − R) ≈ 1

X
2

N − n

Nn

(
RS2

x − Sxy

)
+ Op

(
1

n3/2

)
,

where
Sxy =

1
N − 1

∑
k∈U

(xk − X)(yk − Y ).

Finally, the expected value can be written

E(R̂) ≈ R +
A

n
+ Op

(
1

n3/2

)
,

where

A =
1

X
2

N − n

N
(RS2

x − Sxy) =
(
1 − n

N

)(Sx

X

)2 [
Y

X
− Sxy

S2
x

]
.
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We therefore have
E(R̂) ≈ R +

A

n
+

B

n3/2
.

We notice that A is small in absolute value if the affine regression line for
yk on xk in the population passes close to the origin. Furthermore, if n is
large, A/n is negligible and the estimator is approximately unbiased.

6. In this question, we transform the approximation obtained in 5. into an
equality. We have:

E( ̂̂R) = nE(R̂) − n − 1
n

E

(∑
i∈S

R̂(i)

)
.

Now, for every sample S collected, and for every element i selected af-
terwards in S, R̂(i) is a standard ratio constructed from a sample of size
(n − 1) selected by simple random sampling in the complete population,
being:

ER̂(i) = R +
A

n − 1
+

B

(n − 1)3/2
(approximately).

Since this expected value does not depend on i, we have approximately:

E ̂̂R = n

(
R +

A

n
+

B

n3/2

)
− n − 1

n

[
n

(
R +

A

n − 1
+

B

(n − 1)3/2

)]
= R +

B√
n
− B√

n − 1

= R − B√
n(n − 1)

(√
n +

√
n − 1

) .
The bias of ̂̂R is manifestly of order of magnitude 1/(n3/2); for n large,

the bias of ̂̂R is approximately less than that for R̂ (which is of 1/n). This
technique for reducing the bias is known under the name jackknife.
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Calibration with Several Auxiliary Variables

7.1 Calibration estimation

The totals of p auxiliary variables x1, ..., xp are assumed to be known for the
population U . Let us consider the vector xk = (xk1, ..., xkj , ..., xkp)′ of values
taken by the p auxiliary variables on unit k. The total

X =
∑
k∈U

xk

is assumed to be known. The objective is always to estimate the total

Y =
∑
k∈U

yk,

using the information given by X. Furthermore, we denote

Ŷπ =
∑
k∈S

yk

πk
, and X̂π =

∑
k∈S

xk

πk
,

the Horvitz-Thompson estimators of Y and X. The general idea of calibration
methods (see on this topic Deville and Särndal, 1992) consists of defining
weights wk, k ∈ S, which benefit from a calibration property, or in other
words which are such that ∑

k∈S

wkxk =
∑
k∈U

xk. (7.1)

To obtain such weights, we minimise a pseudo-distance Gk(., .) between wk

and dk = 1/πk,

min
wk

∑
k∈S

Gk(wk, dk)
qk

,

under the constraints of calibration given in (7.1). The weights qk, k ∈ S, form
a set of strictly positive known coefficients. The function Gk(., .) is assumed
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to be strictly convex, positive and such that Gk(dk, dk) = 0. The weights wk

are then defined by
wk = dkFk(λ′xk),

where dkFk(.) is the reciprocal of the function gk(., dk)/qk, with

gk(wk, dk) =
∂Gk(wk, dk)

∂wk
,

and λ is the Lagrange multiplier following from the constraints. The vector λ

is obtained by solving the calibration equations:∑
k∈S

dkFk(λ′xk)xk =
∑
k∈U

xk.

7.2 Generalised regression estimation

If the function Gk(., .) is chi-square,

Gk(wk, dk) =
(wk − dk)2

dk
,

then the calibrated estimator is equal to the generalised regression estimator
which is

Ŷreg = Ŷπ + (X − X̂π)′b̂,

where

b̂ =

(∑
k∈S

xkx′
kqk

πk

)−1∑
k∈S

xkykqk

πk
.

7.3 Marginal calibration

A particularly important case is obtained when the auxiliary variables are the
indicator variables of the strata, and the function Gk(wk, dk) = wk log(wk/dk).
We can show that we then obtain weights equivalent to those given by the
calibration algorithm on the margins (also known under the name raking ra-
tio). In the case where the sample leads to a table of real values estimated
N̂ij , i = 1, . . . , I, and j = 1 . . . , J, and the true marginals Ni., i = 1, . . . , I,
and N.j, j = 1, . . . , J, of this table are known in the population, the equiva-
lent calibration method consists of adjusting the estimated table successively
by row and by column. The algorithm is thus the following. We initialise by
having:

N
(0)
ij = N̂ij , for all i = 1, . . . I, j = 1, . . . J.

Next, we successively adjust the rows and columns. For t = 1, 2, 3, . . .
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N
(2t−1)
ij = N

(2t−2)
ij

Ni.∑
j N

(2t−2)
ij

, for all i = 1, . . . I, j = 1, . . . J,

N
(2t)
ij = N

(2t−1)
ij

N.j∑
i N

(2t−1)
ij

, for all i = 1, . . . I, j = 1, . . . J.

The algorithm rapidly converges if the table N̂ij is not composed of null values.

EXERCISES

Exercise 7.1 Adjustment of a table on the margins
Using a sampling procedure, we get the Horvitz-Thompson estimators N̂ij

from a contingency table (see Table 7.1). Now, the margins of this table are

Table 7.1. Table obtained through sampling: Exercise 7.1

80 170 150 400
90 80 210 380
10 80 130 220

180 330 490 1000

known for the entire population. The true totals of the rows are (430, 360, 210),
and the true totals of the columns (150, 300, 550). Adjust the table obtained
using sampling on the known margins of the population with the ‘raking ratio’
method.

Solution
We start indiscriminately with an adjustment on the rows or on the columns.
Here, we chose to start with an adjustment by row.

Calibration by row: iteration 1
86.00 182.75 161.25 430.00
85.26 75.79 198.95 360.00
9.55 76.36 124.09 210.00

180.81 334.90 484.29 1000.00

Next, we adjust on the columns.

Calibration by column: iteration 2
71.35 163.70 183.13 418.18
70.73 67.89 225.94 364.57
7.92 68.41 140.93 217.25

150.00 300.00 550.00 1000.00
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We then repeat these two steps.

Calibration by row: iteration 3
73.36 168.33 188.31 430.00
69.85 67.04 223.11 360.00
7.65 66.12 136.22 210.00

150.87 301.49 547.64 1000.00

Calibration by column: iteration 4
72.94 167.50 189.12 429.56
69.45 66.71 224.07 360.23
7.61 65.79 136.81 210.22

150.00 300.00 550.00 1000.00

Calibration by row: iteration 5
73.02 167.67 189.31 430.00
69.40 66.67 223.93 360.00
7.60 65.73 136.67 210.00

150.02 300.06 549.91 1000.00

Calibration by column: iteration 6
73.01 167.64 189.34 429.98
69.39 66.65 223.97 360.01
7.60 65.71 136.69 210.01

150.00 300.00 550.00 1000.00

Calibration by row: iteration 7
73.01 167.64 189.35 430.00
69.39 66.65 223.96 360.00
7.60 65.71 136.69 210.00

150.00 300.00 550.00 1000.00

Calibration by column: iteration 8
73.01 167.64 189.35 430.00
69.39 66.65 223.96 360.00
7.60 65.71 136.69 210.00

150.00 300.00 550.00 1000.00

Calibration by row: iteration 9
73.01 167.64 189.35 430.00
69.39 66.65 223.96 360.00
7.60 65.71 136.69 210.00

150.00 300.00 550.00 1000.00

Calibration by column: iteration 10
73.01 167.64 189.35 430.00
69.39 66.65 223.96 360.00
7.60 65.71 136.69 210.00

150.00 300.00 550.00 1000.00

After 11 iterations, the adjustment is very accurate.

Calibration by row: iteration 11
73.01 167.64 189.35 430.00
69.39 66.65 223.96 360.00
7.60 65.71 136.69 210.00

150.00 300.00 550.00 1000.00

Exercise 7.2 Ratio estimation and adjustment
We are interested in the population of 10000 students registered in their first
year at a university. We know the total number of students whose parents
have graduated from primary school, secondary school and higher education.
We take a survey according to a simple random design without replacement
of 150 students. We divide these 150 students according to the education level
of their parents and their own marks (pass or fail) during the first year, and
we get Table 7.2. The number of students whose parents have graduated from
primary school, secondary school and higher education are respectively 5000,
3000 and 2000:
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Table 7.2. Academic failure according to the education level of parents: Exercise 7.2

Students results
Education of parents Fail Pass
Primary 45 15
Secondary 25 25
Higher 10 30

1. Estimate the passing rate of students using the Horvitz-Thompson esti-
mator and give a variance estimator and a 95% confidence interval for this
rate.

2. Explain why it is a priori worthwhile to make an adjustment, and why
this adjustment should decrease the value of the estimate from 1.

3. Estimate the passing rate of students using the post-stratified estimator
and give a variance estimator and a 95% confidence interval for this rate.

4. Estimate the passing rate by the level of education of the parents using
a raking ratio knowing that, in the total student population, the passing
rate is in reality 40%.

Solution

1. The margins of Table 7.2 are given in Table 7.3. Since it is a simple random

Table 7.3. Table of academic failure with its margins: Exercise 7.2

Fail Pass Total
Primary 45 15 60
Secondary 25 25 50
Higher 10 30 40
Total 80 70 150

sample, the Horvitz-Thompson estimator for the passing rate P (where P
is the total number of passes divided by 10000) is given by

P̂ =
70
150

= 0.467 = 46.7%.

When a variable yk takes as its value 0 (fail) or 1 (pass), we have

s2
y =

1
n − 1

∑
k∈S

(
yk − Ŷ

)2

=
nP̂ (1 − P̂ )

n − 1
.
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Thus

v̂ar(P̂ ) =
N − n

N

s2
y

n

=
N − n

N

P̂ (1 − P̂ )
n − 1

=
10000− 150

10000
× 70

150
× 80

150
× 1

149
= 0.00164
= (0.0405)2.

The estimated 95% confidence interval is (n = 150 is sufficiently large):

P ∈
[
P̂ ± 1.96

√
v̂ar(P̂ )

]
= [46.7%± 8.0%] .

2. The adjustment appears natural as the structure of the sample differs
greatly from the expected structure ‘on average’. Indeed, if we are inter-
ested for example in the first post-stratum (students whose parents have
only a primary school education), we have:

E(n1) =
N1

N
n =

5000
10000

× 150 = 75,

while n1 = 60. To judge the importance of the difference, let us calculate
the interval for which n1 has a 95% chance of being found (n1 roughly
follows a normal distribution):

n1 ∈
[
E(n1) ± 1.96

√
var(n1)

]
,

where

var
(n1

n

)
≈ N − n

nN

N1

N

(
1 − N1

N

)
=

10000− 150
10000× 150

× 1
2
×
(

1 − 1
2

)
≈ (0.0405)2.

Therefore,
n1 ∈ [75 ± 11.91] .

Now, n1 = 60 is outside of the interval! The adjustment must logically
decrease the estimate from 1. In fact, we can already notice in Table 7.4
that the passing rates P̂h (proportions of passing by category h which
are unbiased according to the theory of domain estimation) vary a lot
from one category to another, thus showing a quite strong explanatory
characteristic of the variable ‘education level of parents’. We then notice
that there are ‘too many’ in the category ‘higher’ in comparison to the
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Table 7.4. Passing rates according to the education level of parents: Exercise 7.2

nh E(nh) P̂h

Primary 60 75 25%
Secondary 50 45 50%
Higher 40 30 75%
Total 150 150 46.7%

expected mean structure, and too few in the category ‘primary’; that is,
an over-representation of the category with the highest passing rate and
correspondingly, a deficit in the category with the smallest passing rate.
It is therefore logical that the simple estimator

P̂ =
3∑

h=1

nh

n
P̂h

is too high and that the post-stratification decreases the numerical esti-
mate by correcting in a certain way the effect of the structure.

3. The post-stratified estimator is given by

P̂post =
3∑

h=1

Nh

N
P̂h,

where the P̂h are the passing rates estimated for each post-stratum. There-
fore,

P̂post =
1

10000

{
5000× 15

60
+ 3000× 25

50
+ 2000× 30

40

}
=

1
10000

{1250 + 1500 + 1500} = 0.425 = 42.5%.

The post-stratification has indeed decreased the numerical estimate, as
planned. The unbiased estimators of the population variance within the
post-strata are the following:

s2
y1 =

P̂1(1 − P̂1)
n1 − 1

n1 =
15
60

× 45
60

× 60
59

= 0.1906779,

s2
y2 =

P̂2(1 − P̂2)
n2 − 1

n2 =
25
50

× 25
50

× 50
49

= 0.255102,

s2
y3 =

P̂3(1 − P̂3)
n3 − 1

n3 =
30
40

× 10
40

× 40
39

= 0.1923076.

We can proceed with the (approximately) unbiased estimation of the vari-
ance:
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v̂ar(P̂post)

=
N − n

nN2

3∑
h=1

Nhs2
yh +

N − n

n2N

3∑
h=1

N − Nh

N
s2

yh

=
10000− 150
150 × 100002

{
5000× s2

y1 + 3000× s2
y2 + 2000× s2

y3

}
+

10000− 150
1502(10000 − 1)

{
5000
10000

× s2
y1 +

7000
10000

× s2
y2 +

8000
10000

× s2
y3

}
=

10000− 150
150 × 100002

{953.3895 + 765.306 + 384.615}

+
10000− 150

1502(10000 − 1)
1

10000
{953.3895 + 1785.714 + 1538.461}

= 0.0013812 + 0.0000187
= 0.0014
= (0.0374)2.

Therefore, v̂ar(P̂post) < v̂ar(P̂ ). We notice that the second term of
v̂ar(P̂post), being 0.0000187, is numerically negligible compared to the first
term (0.0013812): this ratio of orders of magnitude is classical when the
sample size is ‘large’. The estimated 95% confidence interval is:

P ∈
[
P̂post ± 1.96

√
v̂ar(P̂post)

]
= [42.5%± 7.3%] .

This confidence interval quite considerably covers that for the raw esti-
mator (see 1.).

4. We have available two qualitative variables (level of education of the par-
ents on the one hand and passing rate on the other hand), of which we
know here the population sizes of each of the distinct values. If we consider
the contingency table divided according to these two variables for the 150
students sampled, we know the ‘theoretical’ margins for the table but not
the true values of the cases (see Table 7.5). The first three steps of the
algorithm for calibrating on the margins are presented in Tables 7.6 to 7.8
and provide in case (i, j) the estimates N̂ij for the population size for the
10000 students, successively adjusted to the distinct values i and j of the
variable by row and by column.
After 10 iterations, we obtain Table 7.9, nearly perfect by row and by
column at the same time. Since we applied the algorithm directly on the
population sizes, we get an estimated distribution of the total popula-
tion for the 10000 students, from the ‘asymptotically’ unbiased estima-
tors (n = 150 is sufficiently large in order for the bias to be negligible): it
is then sufficient to read the passing rates by domain (each post-stratum
technically constitutes a domain). The passing rates according to the level
of education of the parents are therefore the following ratios (bias negli-
gible):
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Table 7.5. Table of academic failure with its margins in the population: Exercise 7.2

Start Fail Pass Total Margins
Primary 45 15 60 5000
Secondary 25 25 50 3000
Higher 10 30 40 2000
Total 80 70 150
Margins 6000 4000 10000

Table 7.6. Adjustment on the margins, step 1: Exercise 7.2

Step 1 Fail Pass Total Margins
Primary 3750 1250 5000 5000
Secondary 1500 1500 3000 3000
Higher 500 1500 2000 2000
Total 5750 4250 10000
Margins 6000 4000 10000

Table 7.7. Adjustment on the margins, step 2: Exercise 7.2

Step 2 Fail Pass Total Margins
Primary 3913.0 1176.5 5089.5 5000
Secondary 1565.2 1411.8 2977.0 3000
Higher 521.8 1411.7 1933.5 2000
Total 6000 4000 10000
Margins 6000 4000 10000

Table 7.8. Adjustment on the margins, step 3: Exercise 7.2

Step 3 Fail Pass Total Margins
Primary 3844.2 1155.8 5000 5000
Secondary 1577.3 1422.7 3000 3000
Higher 539.7 1460.3 2000 2000
Total 5961.2 4038.8 10000
Margins 6000 4000 10000

• primary: 1138.9/5000.1 ≈ 23%,
• secondary: 1408.4/3000 ≈ 47%,
• higher: 1452.7/1999.9 ≈ 73%.
These values must be compared to the three unbiased ‘natural’ estimators
from the initial division of the sample, being respectively 25%, 50% and
75%. To choose the ‘best’ estimators, as all these estimators are unbiased
or with negligible bias, it would remain to perform variance estimation.
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Table 7.9. Table adjusted on the margins in 10 iterations: Exercise 7.2

Step 10 Fail Pass Total Margins
Primary 3861.2 1138.9 5000.1 5000
Secondary 1591.6 1408.4 3000.0 3000
Higher 547.2 1452.7 1999.9 2000
Total 6000 4000 10000
Margins 6000 4000 10000

Exercise 7.3 Regression and unequal probabilities
This exercise, theoretical enough, deals with regression estimation in the frame
of sampling with unequal probabilities. It is composed of two independent
parts.
First part:
The objective is to establish the expression of the regression estimator in
the case where the regressors are the results xk for a real variable, and the
constant 1.

1. Recall the expression b̃ for the slope of the true regression line as a function
of xk and yk, where k varies from 1 to N .

2. For a sampling design with unequal probabilities (πk), what natural es-

timator of b̃ (denoted ̂̂b) are we tempted to use in ‘sticking’ with the ex-
pression found in 1., by noticing that the numerator and the denominator
of b̃ are sums?

3. With the mean ‘regression’ estimator set up by using the estimator of b̃
from 2., verify that the expected calibration (that is, the ‘perfect’ estimate
of the total of xk on the one hand, and of the population size N on
the other hand) is no longer satisfied and that, as a result, the so-called
‘regression’ estimator is not the one that we think it is but is something
else.

4. Set up the normal equations giving ã and b̃, the true regression coefficients
from the relation:

yk = a + bxk + uk, with
∑
k∈U

uk = 0.

We recall that these equations are obtained by writing the least square
criteria and by differentiating it with respect to a and b.

5. Rewrite these equations by replacing all true sums (unknown) by their
unbiased estimators and consider that the new system has for the solutions
of a and b the estimated regression coefficients â and b̂.

6. Finally, develop the regression estimator from â and b̂ and verify that, this
time, the estimator has the calibration properties required.
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Second part:
In this part, it is a question of presenting a particular approach for the regres-
sion estimator. From the outcome of a sampling procedure (eventually very
complex) we are led to use the estimator of the total:

Ŷ =
∑
k∈S

dkyk.

The weights (dk)k∈S are real known values, determined by the sample.
The objective is to reweight the selected individuals by assigning them a new
weight wk in a context where we know two auxiliary variables xk and zk for
each individual in the population (true totals X and Z known), in such a way
to minimise

∑
k∈S

(wk − dk)2

dk
, subject to

{∑
k∈S wkxk = X, and∑
k∈S wkzk = Z.

1. Comment on this procedure.
2. Solve this and notice that the estimator obtained is the regression estima-

tor on X and Z. We thus get a simple interpretation of this estimator.

Solution
First part:

1. The regression is written on the population:

yk = a + bxk + uk, (a, b) ∈ R2, with
∑
k∈U

uk = 0.

Attention: the uk are not random (it is a matter here of rewriting yk).
If we minimise

∑
k∈U u2

k, we find:⎧⎪⎨⎪⎩
b̃ =

∑
k∈U (yk − Y ) (xk − X)∑

k∈U (xk − X)2
,

ã = Y − b̃X,

which are the true regression coefficients ã and b̃. These values are not
calculable.

2. We are tempted to estimate all the sums with the Horvitz-Thompson
estimators; that is to say, to use, quite naturally:

̂̂
b =

∑
k∈S (yk − Ŷ ) (xk − X̂)/πk∑

k∈S (xk − X̂)2/πk

,

where
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Ŷ =
1
N

∑
k∈S

yk

πk
,

is an unbiased estimator of Y , and

X̂ =
1
N

∑
k∈S

xk

πk
,

is an unbiased estimator of X. The divisions by πk in the numerator and
denominator proceed in the same way, as that for the classical estimator
of a sum. Next, we determine ̂̂a by

̂̂a = Ŷ − ̂̂bX̂.

3. The mean ‘regression’ estimator (or supposedly like that) thus seems to
be, at this stage:

Ỹ = Ŷ + ̂̂b(X − X̂) + ̂̂a(1 − N̂

N

)
,

where
N̂ =

∑
k∈S

1
πk

.

We must not omit the last term ̂̂a(1 − N̂/N
)

which must express the
calibration on the constant.
Unfortunately, this formula does not work! Indeed, if we innocently select,
for all k ∈ U : yk = 1, then

̂̂
b =

∑
k∈S

(
1 − N̂

N

)
(xk − X̂)/πk∑

k∈S (xk − X̂)2/πk

=
X̂
(
1 − N̂

N

)2

∑
k∈S

(
xk − X̂

)2

/πk

�= 0,

with
X̂ =

∑
k∈S

xk

πk
,

and, consequently, Ỹ �= Y , where Y = 1. There is therefore no calibration
on the constant (which is to say, on the population size N if we think in
terms of the total): the fundamental property of calibration is not satis-
fied! From this fact, Ỹ is not the regression estimator. The fundamental
error originates from the use of N instead of N̂ : the regression estimator
must be constructed by estimating every total with its Horvitz-Thompson
estimator, including the population size N , like how the following is shown.

4. The normal equations are given by the procedure:

min
a,b

∑
k∈U

(yk − a − bxk)2,
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which gives ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k∈U

(yk − ã − b̃xk)xk = 0

∑
k∈U

(yk − ã − b̃xk) = 0.

5. The previous system, consisting of two equations for two unknowns ã
and b̃ in R, is translated in a new way if we are only interested in the
sampled data (the other data being unknown, the solution for ã and b̃
to the previous system would not result in anything for the numerical
design). We therefore solve⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
k∈S

(yk − â − b̂xk) xk

πk
= 0

∑
k∈S

(yk − â − b̂xk)
πk

= 0.

By denoting

(̂XY ) =
∑
k∈S

xkyk

πk
, Ŷ =

∑
k∈S

yk

πk
, and (̂X2) =

∑
k∈S

x2
k

πk
,

we arrive without difficulty at:

b̂ =
(̂XY ) − N̂ X̂

N̂

Ŷ

N̂

(̂X2) − N̂
(

X̂

N̂

)2 .

We deduce:

b̂ =

∑
k∈S

(
xk − X̂

N̂

)(
yk − Ŷ

N̂

)
/πk∑

k∈S

(
xk − X̂

N̂

)2

/πk

,

and
Ŷ

N̂
= â + b̂

X̂

N̂
.

6. • We are going to set:

Ŷ reg = Ŷ + b̂(X − X̂) + â

(
1 − N̂

N

)
.

• If yk = xk, we have {
b̂ = 1

â = 0,
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and therefore Ŷ = X̂. Hence

X̂reg = X̂ + 1(X − X̂) + 0 = X.

• If yk = 1, we obtain

b̂ =

∑
k∈S

(
1 − N̂

N̂

) (
xk − X̂

N̂

)
∑

k∈S

(
xk − X̂

N̂

)2

being {
b̂ = 0

â = 1.

Hence

Ŷ reg = 1̂ + 0 +

(
1 − N̂

N

)
,

with

1̂ =
1
N

∑
k∈S

1
πk

=
N̂

N
,

which gives
Ŷ reg = 1 = Y .

There is therefore double calibration on each of the two auxiliary vari-
ables which are xk and 1. Thus, Ŷ reg is indeed the regression estimator.

Note: we stress the role of the intercept in the ‘model’ at the start: to
set a constant, it is said that we can perfectly estimate the total of the
‘1’s, which is to say the population size N .

Second part:

1. We minimise a distance between ‘raw weights’ dk and ‘estimator weights
from adjustment’ wk. The distance is of type chi-square (we can of course
think of other distances but this one is often used in statistics).
The constraints are the traditional properties of calibration. The minimi-
sation of a distance is justified by the search for weights wk as close as
possible to the raw weights dk: in fact, the weights dk are generally es-
tablished in order to define unbiased estimators. The calibration is going
to destroy this property of the absence of bias, but the bias of the new
estimator is a priori much smaller than the wk are close to dk.

2. The minimisation under the constraints lead to the Lagrangian calcula-
tion:
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L =
∑
k∈S

(wk − dk)2

dk
− 2λ

(∑
k∈S

wkxk − X

)
− 2µ

(∑
k∈S

wkzk − Z

)
.

By setting the partial derivatives of L equal to zero:

∂L
∂wk

= 0, for all k of S,

we obtain
wk = dk + dkλxk + dkµzk. (7.2)

According to the constraints, we have⎧⎨⎩X = X̂ + λ(̂X2) + µ(̂XZ)

Z = Ẑ + µ(̂Z2) + λ(̂XZ),

where

X̂ =
∑
k∈S

dkxk, (̂X2) =
∑
k∈S

dkx2
k, (̂XZ) =

∑
k∈S

dkxkzk.

Therefore (
λ
µ

)
= T−1

(
X − X̂

Z − Ẑ

)
,

where

T =

(
(̂X2) (̂XZ)
(̂XZ) Ẑ2

)
.

Then, we establish the expression of the estimator adjusted according to
Expression (7.2)∑

k∈S

wkyk = Ŷ + λ(̂XY ) + µ(̂Y Z)

= Ŷ +
(
(̂XY ), (̂Y Z)

)(λ
µ

)
= Ŷ +

(
(̂XY ), (̂Y Z)

)
T−1

(
X − X̂

Z − Ẑ

)

= Ŷ + (Â, B̂)

(
X − X̂

Z − Ẑ

)
= Ŷ + Â(X − X̂) + B̂(Z − Ẑ),

where (
Â

B̂

)
= T−1

(
(̂XY )
(̂ZY )

)
.
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We again find the regression coefficient estimated from the rewritten form:

yk = Axk + Bzk + uk (with
∑
k∈U

uk = 0),

where A and B are estimated in the frame of sampling with unequal
probabilities: it is in fact the (well-known) expression of the parameter of
ordinary least squares, in which all the true sums (unknown) have been
estimated by the unbiased Horvitz-Thompson estimator.
Conclusion:

∑
k∈S wkyk is indeed the regression estimator of the total,

which is therefore interpreted as the adjusted estimator ‘closest’ to the
raw estimator, in the sense of the chi-square distance between the weights.

Exercise 7.4 Possible and impossible adjustments
Adjust Tables 7.10 and 7.11 to the margins labelled ‘to adjust’ using the
‘raking ratio’ method (we notice that the margins by row are satisfied imme-
diately). Explain the problem posed by Table 7.11.

Table 7.10. Table to adjust on the margins: Exercise 7.4

Data to adjust Total To adjust
235 78 15 6 334 334
427 43 17 12 499 499
256 32 14 5 307 307
432 27 32 2 493 493

Total 1350 180 78 25 1633
To adjust 25 78 180 1350 1633

Table 7.11. Table to adjust on the margins: Exercise 7.4

Data to adjust Total To adjust
0 78 0 6 84 84

427 0 17 0 444 444
0 32 0 5 37 37

432 0 32 0 464 464
Total 859 110 49 11 1029

To adjust 11 49 110 859 1029
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Solution
After the application on Table 7.10 of 10 iterations of the algorithm used in
Exercises 7.1 and 7.2, we get Table 7.12. This example shows that even with
an initial structure that is extremely far from the theoretical structure given
by the margins (by column), we get to this adjusted table respecting the fixed
margins.
By reorganising the rows and the columns of Table 7.11, we get Table 7.13.
The initial structure respects the rows but not at all the columns. Indeed,
the method of adjustment, by following the rules of three, obviously conserve
the zeroes of the table. The method then comes back to separately adjusting
the two 2 × 2 tables of the diagonal. Since 84 + 37 �= 49 + 859, and since
11 + 110 �= 444 + 464, it is impossible to adjust this table.

Table 7.12. Result of the adjustment of Table 7.10: Exercise 7.4

2.54 25.40 17.81 288.25 334
3.74 11.36 16.37 467.53 499
3.14 11.85 18.89 273.12 307
15.58 29.39 126.93 321.10 493
25 78 180 1350 1633

Table 7.13. Reorganisation of rows and columns of Table 7.11: Exercise 7.4

Data to adjust Total To adjust
78 6 0 0 84 84
32 5 0 0 37 37
0 0 427 17 444 444
0 0 432 32 464 464

Total 110 11 859 49 1029
To adjust 49 859 11 110 1029

Exercise 7.5 Calibration and linear method
Give the calibration equations for a problem of adjustment on two margins
(of respective sizes H and I) in a simple random design with qk = 1 (see
course summaries) by selecting the adjustment function Fk(u) = F (u) = 1+u
(method is called linear).
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Solution
The auxiliary variables are split into two groups (one for each qualitative
variable)

xk1, ..., xkh, ..., xkH (vertical margin of the table),

and
zk1, ..., zki, ..., zkI (horizontal margin of the table),

where, if Uhi indicated the population defined by the overlap of row h and
column i of the contingency table:

xkh =

⎧⎪⎨⎪⎩ 1 if k ∈ Uh. =
I⋃

i=1

Uhi

0 otherwise,

and

zki =

⎧⎪⎨⎪⎩1 if k ∈ U.i =
H⋃

h=1

Uhi

0 otherwise.

We denote xk as the vector of xkh (1 ≤ h ≤ H) and zk as the vector of zki

(1 ≤ i ≤ I):

xk = (xk1, xk2, ..., xkH)′, and zk = (zk1, zk2, ..., zkI)′.

The constraints linked to the H rows give way to the Lagrange multipliers
λ = (λ1, λ2, . . . , λH)′, likewise as the constraints linked to the I columns lead
to multipliers µ = (µ1, µ2, . . . , µI)′. The row constraints are of type:

X =
∑
k∈S

wkxk,

and the column constraints of type

Z =
∑
k∈S

wkzk,

where
X =

∑
k∈U

xk, and Z =
∑
k∈U

zk.

If the initial weight of k is denoted dk, we get

wk = dkF (x′
kλ + z′kµ) .

In the linear frame, we set F (u) = 1+ u. The calibration equations are there-
fore written, coordinate by coordinate:
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Xh =
∑
k∈S

xkhdk

(
1 +

H∑
h=1

λhxkh +
I∑

i=1

µizki

)
, with 1 ≤ h ≤ H,

and

Zi =
∑
k∈S

zkidk

(
1 +

H∑
h=1

λhxkh +
I∑

i=1

µizki

)
with 1 ≤ i ≤ I.

By distinguishing the rows and columns, as here dk = N/n, we have, for all
h,

Nh. = #(Uh.) =
∑
k∈S

xkh
N

n

(
1 + λh(k) + µi(k)

)
.

Furthermore, for all i,

N.i = #(U.i) =
∑
k∈S

zki
N

n

(
1 + λh(k) + µi(k)

)
,

where h(k) and i(k) respectively indicate the row and the column in which k
is situated, which gives

Nh. =
I∑

i=1

nhi
N

n
(1 + λh + µi) , for all h,

N.i =
H∑

h=1

nhi
N

n
(1 + λh + µi) , for all i,

where nhi is the sample size S intersecting row h and column i, and thus

Nh. = nh.
N

n
(1 + λh) +

I∑
i=1

nhi
N

n
µi (1 ≤ h ≤ H),

N.i = n.i
N

n
(1 + µi) +

H∑
h=1

nhi
N

n
λh (1 ≤ i ≤ I).

Noticing that nh.N/n = N̂h. estimates Nh. without bias and nhiN/n = N̂hi

estimates Nhi without bias, the system is written:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N̂h.λh +

I∑
i=1

N̂hiµi = Nh. − N̂h. (1 ≤ h ≤ H)

H∑
h=1

N̂hiλh + N̂.iµi = N.i − N̂.i (1 ≤ i ≤ I).

We must therefore solve a linear system of H + I equations with H + I un-
knowns. Still, as

∑H
h=1 Nh. =

∑I
i=1 N.i = N , there are only H + I − 1 inde-

pendent equations: we can therefore fix (to be chosen) one of the λh or one of
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the µi. The system being linear, there is no difficulty in the solution, and we
finally obtain the λh and the µi, and then the adjusted weights wk:

wk =
N

n
(1 + x′

kλ + z′kµ).

Exercise 7.6 Regression and strata
In this exercise, the objective is to calculate the generalised regression estima-
tor of the total in a stratified design. We assume that the totals of an auxiliary
characteristic value x are known for each stratum and we use the weighting
coefficient qk = 1/xk to estimate the vector of regression coefficients, which
are of general style:

b̂ =

(∑
k∈S

xkx′
kqk

πk

)−1∑
k∈S

xkykqk

πk
.

The regression estimator of the total is conceived by alternatively using the
following regressors:

1. We use a lone regressor given by the values xk taken by the characteristic
x (without intercept);

2. We use H regressors given by xkδkh, with h varying from 1 to H where H
is the number of strata and δkh is 1 if k is in stratum h and 0 otherwise.
We will verify that there is effectively calibration on the totals of x in each
stratum.

In what way are these estimators distinguished? Which is most commendable?

Solution
In a preliminary way, we will denote that the presence of a weighting coefficient
qk appears naturally in regression theory. In this classical modelling approach
where yk is random, if we consider that its variance is proportional to xk, the
optimal estimator will reweight by the inverse of xk.

1. If we use a lone regressor x, we have

b̂ =

(∑
k∈S

xkxk

πkxk

)−1∑
k∈S

xkyk

πkxk
=

Ŷπ

X̂π

.

We get

Ŷreg = Ŷπ + (X − X̂π)
Ŷπ

X̂π

= X
Ŷπ

X̂π

, where X =
∑
k∈U

xk.

We encounter the ratio estimator.
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2. If we use H regressors given by xkδkh, where H is the number of
strata and δkh is 1 if k is in stratum h and 0 otherwise, we have
xk = (xkδk1, ..., xkδkh, ..., xkδkH)′. The matrix

∑
k∈S

xkx′
k

xkπk
= diag

(∑
k∈S1

xk

πk
, . . . ,

∑
k∈Sh

xk

πk
, . . . ,

∑
k∈SH

xk

πk

)

is diagonal, as we have the equality δkiδkj = 0 as soon as i �= j, where Sh

indicates the sample of stratum h. Furthermore

∑
k∈S

xkyk

xkπk
=

[∑
k∈S1

yk

πk
, ...,

∑
k∈Sh

yk

πk
, ...,

∑
k∈SH

yk

πk

]′
.

We therefore get b̂ =
[
b̂1, ..., b̂h, ..., b̂H

]′
, with

b̂h =

∑
k∈Sh

yk/πk∑
k∈Sh

xk/πk
=

Ŷh

X̂h

.

Finally, if we denote Xh as the true total of xk in stratum h,

Ŷreg = Ŷπ +

[
...,
∑

k∈Uh

xk −
∑

k∈Sh

xk

πk
, ...

]
b̂

=
H∑

h=1

Ŷh +
H∑

h=1

b̂h(Xh − X̂h)

=
H∑

h=1

b̂hXh =
H∑

h=1

∑
k∈Sh

yk/πk∑
k∈Sh

xk/πk

∑
k∈Uh

xk =
H∑

h=1

Xh
Ŷh

X̂h

.

It is therefore the sum of ratio estimators in each stratum. Clearly, if we
denote yk = δkhxk, h fixed, we have Ŷreg = Xh. The estimator of the total
of xk in stratum h is calibrated. The first estimator ensures a calibration
on X , the total on the set of the population. The second estimator ensures
a calibration on the totals Xh, stratum by stratum (and therefore, as a
result, on X). The second estimator, which uses more information, is a
priori more efficient, especially if the relationship between x and y differs
from one stratum to another: in fact, the variance from the first estimator
involves the terms yk − (Y/X)xk for all k of the population, whereas the
variance of the second estimator involves the terms yk − (Yh/Xh)xk for
all k of h, terms which are a priori smaller.
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Exercise 7.7 Calibration on sizes
Consider H sub-populations Uh, where h = 1, ..., H, such that Uh∩U� = ∅, h �=
�. Show that, in a simple random design, if we apply a calibration method on
the sizes Nh = #Uh, without giving particular weighting qk to the units and
so that the pseudo-distance Fk used does not depend on units k, then the
weights from calibration do not depend on the pseudo-distances used.

Solution
The H auxiliary characteristics naturally associated to the context take the
values xk1, ..., xkh, ..., xkH , for all k ∈ U where xkh = 1 if k ∈ Uh and 0
otherwise. Furthermore, we have xkhxk� = 0, for all k whenever h �= �. If
qk = 1, k ∈ U, and the pseudo-distance F does not depend on k, then the
calibration equations are written

∑
k∈S

dkxkhF

(
H∑

i=1

λixki

)
= Xh = Nh,

for all h. Now
H∑

i=1

λixki = λh(k),

where h(k) indicates the stratum for unit k, which gives, with the simple
random design, ∑

k∈S

N

n
xkhF

(
λh(k)

)
= Nh,

for all h, and thus
N

n
nhF (λh) = Nh.

Finally

F (λh) =
Nhn

nhN
.

The weights are therefore

wk =
N

n

Nhn

nhN
=

Nh

nh
, as soon as k ∈ Uh,

and the estimator obtained is quite simply the ‘classical’ post-stratified esti-
mator for whatever pseudo-distance F is used.
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Exercise 7.8 Optimal estimator
We consider a stratified design with simple random sampling in each stratum.
Furthermore, we know for the entire sampling frame an auxiliary characteristic
value x. We are interested in the estimators of the total of type:

Ŷb = Ŷπ + b(X − X̂π),

for all b ∈ R, b fixed.

1. What is the best value of b? What are we going to finally keep as the
‘optimal’ a priori estimator?

2. Compare this optimal a priori estimator to the regression estimator ob-
tained by using as regressors the characteristic x and the intercept.

Solution

1. Clearly, E(Ŷb) = Y for all b ∈ R. Furthermore:

var(Ŷb) = var(Ŷπ − bX̂π) = varŶπ + b2varX̂π − 2b cov(X̂π, Ŷπ).

The best value of b is that which minimises the mean square error, which
is here equal to the variance. By differentiating the variance with respect
to b and setting the derivative equal to zero, we find:

bopt =
cov(X̂π, Ŷπ)

var(X̂π)
.

Unfortunately, bopt is incalculable: it is necessary to estimate it. We will
choose, naturally,

b̂opt =
ĉov(X̂π, Ŷπ)

v̂ar(X̂π)
,

where ĉov and v̂ar are the classical π-estimators of cov and var. The es-
timator loses, along the way, its optimality but we can think that it is
‘almost as efficient’ as the optimal estimator. The pseudo-optimal estima-
tor is therefore:

Ŷopt = Ŷπ + (X − X̂π)
ĉov(X̂π, Ŷπ)

v̂ar(X̂π)
,

which gives, if we denote X̂h and Ŷ h as the simple means respectively for
x and y in the sample of stratum h,

ĉov(X̂π, Ŷπ) =
H∑

h=1

N2
h ĉov(X̂h, Ŷ h),
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and

v̂ar(X̂π) =
H∑

h=1

N2
h v̂ar(X̂h),

which is

Ŷopt = Ŷπ+(X−X̂π)

∑H
h=1

N2
h

nh

Nh−nh

Nh

1
nh−1

∑
k∈Sh

(
xk − X̂h

)(
yk − Ŷ h

)
∑H

h=1
Nh−nh

Nh

N2
h

nh

1
nh−1

∑
k∈Sh

(
xk − X̂h

)2 .

2. For the stratified design, the regression coefficient present in the expression
of the regression estimator is b̂ = T̂−1t̂, where

T̂ =

[
N̂π X̂π

X̂π (̂X2)π

]
, and t̂ = (Ŷπ, (̂XY )π)′.

We set

N̂π =
∑
k∈S

1
πk

, (̂X2)π =
∑
k∈S

x2
k

πk
, and (̂XY )π =

∑
k∈S

xkyk

πk
.

These expressions originate quite simply from the solution of the following
equations: {

aN̂π + bX̂π = Ŷπ

aX̂π + b(̂X2)π = (̂XY )π.

Therefore,

T̂−1 =
1

N̂π (̂X2)π − X̂2
π

[
(̂X2)π −X̂π

−X̂π N̂π

]
.

Now, if we denote,

v2
x =

(̂X2)π

N̂π

− X̂2
π

N̂2
π

=
1

N̂π

∑
k∈S

1
πk

(
xk − X̂π

N̂π

)2

,

and

vxy =
(̂XY )π

N̂π

− X̂πŶπ

N̂2
π

=
1

N̂π

∑
k∈S

1
πk

(
xk − X̂π

N̂π

)(
yk − Ŷπ

N̂π

)
,

we get after a few calculations that:

b̂ = T̂−1t̂ =
1
v2

x

[
∆̂, vxy

]′
,

where ∆̂ is a complex expression without interest. Finally, we have:
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Ŷreg = Ŷπ + (X − X̂π)
vxy

v2
x

.

As the sampling is stratified, with simple random sampling in each stra-
tum,

N̂π = N, X̂π =
H∑

h=1

NhX̂h, Ŷπ =
H∑

h=1

NhŶ h, X̂π =
X̂π

N
, Ŷ π =

Ŷπ

N
.

Hence

Ŷreg = Ŷπ + (X − X̂π)

∑H
h=1

Nh

nh

∑
k∈Sh

(
xk − X̂π

)(
yk − Ŷ π

)
∑H

h=1
Nh

nh

∑
k∈Sh

(
xk − X̂π

)2 .

Let us note that v2
x and vxy do not estimate the population variances S2

x

and Sxy without bias as they are ratio functions. The optimal estimator
would be indisputably better if we knew the true regression coefficient,
but it is penalised by the instability of the estimator for its regression
coefficient. Indeed, this estimated regression coefficient is composed of a
covariance ratio on a variance for a stratified design. In stratification, it is
known that the higher the number of strata, the more the variance esti-
mator is unstable. With many strata, the estimated regression coefficient
of the optimal estimator Ŷopt is therefore more unstable than that of the
generalised regression estimator Ŷreg, which can have its theoretical ad-
vantage lost. In fact, in the coefficient of the optimal estimator, we must
estimate the H means of the strata, which corresponds to the loss of H
degrees of freedom. If the optimal estimator is asymptotically better, it
can happen to be less effective when the sample sizes in the strata are
small.

Exercise 7.9 Calibration on population size
We consider a Poisson sampling design with inclusion probabilities πk, k ∈ U,
and we are interested in the total Y of a characteristic of interest y. The
objective consists of constructing a calibration estimator of Y using a sole
auxiliary calibration variable xk = 1, k ∈ U . We use the pseudo-distance Gα,
parameterised by α ∈ R

Gα(wk, dk) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wα
k

dα−1
k

+ (α − 1)dk − αwk

α(α − 1) if α ∈ R\{0, 1}
wk log

wk

dk
+ dk − wk if α = 1

dk log
dk

wk
+ wk − dk if α = 0,
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by taking qk = 1, for all k ∈ U (this parameterised expression integrates the
principal distances used in practice).

Preliminary: Recall the unbiased estimator of the total population size N
and express its variance. For a sample size that is on average n̄, show that
this variance is always higher than a threshold to be specified.

1. On which total are we going to calibrate this estimator?
2. Write the calibration equation.
3. Determine the value of the Lagrange multiplier λ (for all fixed α ∈ R).
4. Deduce the adjusted weights wk of the calibration estimator.
5. Give the calibrated estimator. What type of estimator is it?

Solution
Preliminary: the unbiased estimator of a total Y in the Poisson case being

Ŷ =
∑
k∈S

yk

πk
,

we classically estimate the population size without bias by

N̂ =
∑
k∈S

1
πk

=
∑
k∈U

Ik

πk
, (7.3)

with a variance:

var(N̂) =
∑
k∈U

1
(πk)2

var(Ik) =
∑
k∈U

1 − πk

πk
. (7.4)

The expected value of the (random) sample size being n̄ =
∑

k∈U πk, the
minimum variance threshold (convex function) is obtained by minimising (7.4)
subject to

∑
k∈U πk = n̄ and 0 < πk ≤ 1. We easily get πk constant, equal as

a result to n̄/N . Hence

min
[
var(N̂)

]
=
∑
k∈U

1 − n̄
N

n̄
N

= N
N − n̄

n̄
.

This threshold is high if n̄ is ‘sufficiently’ small: this result is intuitive; it is
obvious under these conditions that the variance can only be higher.

1. We calibrate on the population size. Indeed,∑
k∈U

1 = N.

This calibration is conceived, as a matter of fact, to ‘thwart’ the uncer-
tainty dealt with in the previous question.
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2. If we let dk = 1/πk, the calibration equation is then

N =
∑
k∈S

dkFα
k (λ × 1),

where dkFα
k is the reciprocal of the function of wk:

∂Gα(wk, dk)
∂wk

,

and λ is the Lagrange multiplier (real) associated with the constraint
N̂ = N .

3. As (derived without difficulty)

Fα
k (u) = Fα(u) =

{
α−1
√

1 + u(α − 1), α ∈ R\{1}
exp u, α = 1,

and since
∑

k∈S dk = N̂ , the calibration equation becomes N = Fα(λ)N̂ .
Thus

λ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

N

N̂

)α−1

− 1

α − 1
α ∈ R\{1}

log
N

N̂
α = 1.

We notice that λ is a continuous function of α in R, as

lim
α→1

(
N

N̂

)α−1

− 1

α − 1
= log

N

N̂
.

4. Since
Fα(λ) =

N

N̂
,

for whatever value α is, the adjusted weights are written

wk = dk
N

N̂
=

1
πk

N

N̂
.

5. The calibrated estimator does not depend on the distance used and is∑
k∈S

dk
N

N̂
yk =

N

N̂
Ŷ .

It is a ratio estimator calibrated on the population size, called the ‘Hájek
ratio’ (see also Exercise 3.24).
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Exercise 7.10 Double calibration
Following a complex sampling design leading to individual weights dk, we
perform a first calibration on a vector of known totals X of Rp, and then a
second calibration on the pair (X, Z) of Rp+q, where Z is a second vector
of known totals of Rq. Do we get in fine the same estimator as if we had
disregarded the first step (which does not seem to contribute much a priori)?

Solution

• Method a:
The first calibration leads to weights d̃k = dkF (x′

kλ) with∑
k∈S

d̃kxk = X,

where x′
k indicates the transposed vector of xk. The second calibration

starts from the weights d̃k and leads to

˜̃
dk = d̃kF (x′

kµ + z′kδ),

where λ, µ, δ are the vectors of Lagrange multipliers associated with the
constraints, respectively in Rp, Rp and Rq.

Moreover, ∑
k∈S

˜̃
dkxk = X, and

∑
k∈S

˜̃
dkzk = Z.

• Method b:
With a direct calibration on (X, Z), we get in fine the weights

wk = dkF (x′
kα + z′kβ),

with ∑
k∈S

wkxk = X, and
∑
k∈S

wkzk = Z.

Method a produces:

˜̃
dk = dkF (x′

kλ)F (x′
kµ + z′kδ).

A priori, the solution of the systems of equations related to the constraints
leads to the weights wk �= ˜̃

dk. On the other hand, there is a favourable
case which leads to the same system of equations. Indeed, if F (a)F (b) =
F (a + b), we have:

˜̃
dk = dkF [x′

k(λ + µ) + z′kδ].
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The uniqueness of the solutions of the systems of equations (with F having
‘good’ properties of regularity) leads to

λ + µ = α and δ = β.

which is to say that ˜̃dk = wk, for all k (λ being determined by the first cal-
ibration, we select µ = α−λ). The estimator is then the same, that being
with Method a or Method b. This case comes from the following property:
G(x) = exp cx, for any c in R, is the only real continuous function satisfying
G(a + b) = G(a)G(b) for all (a, b) in R2. This is the method called ‘rak-
ing ratio’. Under these conditions, in the case of marginal calibration (xk

and zk contain the indicators), the eventual preliminary post-stratification
steps on certain margins do not disrupt the ensuing calibration because
they do not impact upon the weighting. If we do not use the raking ratio,
the final estimates are, in theory, sensitive to the partial preliminary cali-
brations, even if it does not change a lot on the point of view of the bias
and the variance, as soon as n is ‘large’.



8

Variance Estimation

8.1 Principal techniques of variance estimation

There exist several approaches to estimate the variances of estimators. The
two essential techniques are, on the one hand, the analytical approach, that
is to say, the formatting of expressions for variance estimators, and on the
other hand, replication methods that rely on re-samples conducted from the
initially selected sample.

The analytical approach encounters two types of difficulties. On the one
hand, it is necessary to manage the problem posed by the very complex cal-
culation of double inclusion probabilities πk�, which occurs in the majority
of the sampling designs without replacement. On the other hand, it is nec-
essary to bypass the difficulty posed by the manipulation of non-linear esti-
mators. In fact, we know how to mathematically express the variance of a
linear expression, but it is no longer possible to make exact calculations when
products, ratios, powers and roots are involved. The treatment of the prob-
lem of second-order inclusion probabilities is quite complex, and requires us,
on the one hand, to formulate simplifying assumptions on the design, and on
the other hand, to completely explore the branching describing the sampling
design. It is possible to use a recursive formula (see on this topic Raj, 1968)
to construct variance estimators. This technique was used at the Institut Na-
tional de la Statistique et des Études Économiques, (INSEE, France) in the
POULPE software program used to estimate the variances in complex designs
(see Caron, 1999). On the other hand, the treatment of the problem posed by
the non-linearity of the estimators is more accessible due to the linearisation
technique (see on this topic Deville, 1999), once the sample size is ‘sufficiently
large’.

Replication methods such as the jackknife, the bootstrap and balanced half-
samples are used with ‘sufficiently large’ samples and permit the estimation
of variances for non-linear estimators. Nevertheless, notable difficulties ex-
ist when the sampling is complex (multi-stage designs, unequal probability
designs, multi-phase designs) and, above all, the properties of the variance
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estimator (bias, in particular) are not as well controlled as in the analytical
approach when the sampling design is no longer simple random. The reader
interested in these methods can refer to Wolter (1985); Efron and Tibshirani
(1993) and Rao and Sitter (1995).

8.2 Method of estimator linearisation

The idea consists of linearising a complex estimator and assimilating its vari-
ance, under certain conditions, to that of its linear approximation. We then
encounter, in a standard manner, the problem of variance estimation for a
linear estimator. It is this approach that allows for the calculation of the pre-
cision of calibrated estimators, presented in Chapters 6 and 7 (ratio estimator,
regression estimator, marginal calibration estimators), and of estimators with
complex parameters, such as correlation coefficients, regression coefficients
and inequality indicators. To estimate a parameter θ = f(Y 1, Y 2, ..., Y p),
where Y i is the true total of a variable yi (i = 1 to p), we use the substitution
estimator modelled on the same functional form, that is:

θ̂ = f(Ŷ 1, Ŷ 2, ..., Ŷ p),

where Ŷ i is a linear estimator of Y i and therefore of type∑
k∈S

wk(S)yi
k

(for example, the unbiased Horvitz-Thompson estimator), and f is a reason-
ably smooth function of Rp in R, in practice of class C2 (twice differentiable,
the second-order derivative being continuous). If the mean estimators Ŷ i/N
have a mean square error that varies by 1/n (which is always the case in
practice), and if n is sufficiently large so that 1/n3/2 is negligible compared to
1/n (it is therefore an ‘asymptotic’ vision where n and N become very large),
then we show that var(θ̂) ≈ var(V̂ ), where V̂ is built on the model of Ŷ i (thus
with the same weights), being

V̂ =
∑
k∈S

wk(S)vk,

with, for all k ∈ S,

vk =
p∑

j=1

yj
k

∂f(a1, a2, ..., ap)
∂aj

∣∣
(Y 1,Y 2,...,Y p) .

The new variable vk is called ‘linearisation’ of θ. The variance estimator of θ̂
is naturally obtained from a variance estimator of V̂ by replacing vk (incal-
culable) with:
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v̂k =
p∑

j=1

yj
k

∂f(a1, a2, ..., ap)
∂aj

∣∣∣(Ŷ 1,Ŷ 2,...,Ŷ p) .

We can show that this substitution is judicious (p remaining fixed when n
increases). We can also proceed stepwise: if θ = f(Y 1, Y 2, ..., Y p, ψ), where ψ
is a function of totals (Y p+1, Y p+2, ..., Y q), for which we already calculated a
linearised variable uk, then the linearisation of θ is:

vk =
p∑

j=1

yj
k

∂f(a1, a2, ..., ap, z)
∂aj

∣∣
(Y 1,Y 2,...,Y p,ψ)

+ uk
∂f(a1, a2, ..., ap, z)

∂z

∣∣
(Y 1,Y 2,...,Y p,ψ) .

It is then sufficient to form v̂k by replacing all the unknown totals with their
respective estimators.

EXERCISES

Exercise 8.1 Variances in an employment survey
The 1989 INSEE employment survey leads to Table 8.1, expressed in thou-
sands of people. The sample size is larger than 10000, and the confidence
intervals are given under the assumption of asymptotic normality of estima-
tors.

Table 8.1. Labour force, employed and unemployed: Exercise 8.1

Estimated size 95% confidence interval
Labour force 24062 ± 129
Employed 21754 ± 149

Unemployed 2308 ± 76

1. Estimate the unemployment rate defined as the percentage of unemployed
people among the labour force (the labour force is the sum of those em-
ployed and unemployed). What type of estimator is this?

2. Give the approximate mathematical expression for the estimated mean
square error (MSE) of the estimated unemployment rate, as a function of:
• the estimated variance of the estimator for the labour force,
• the estimated variance of the estimator for the number of unemployed,
• the estimated covariance between the estimators for the labour force

and the number of unemployed,
• the estimator of the labour force,
• and the estimator of the unemployment rate.
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3. Show that the MSE estimator of the unemployment rate can be calculated
with the data from the table.
Hint: to do this, we use the following general result. Let X and Y be any
two random variables; then

cov(X, Y ) =
var(X + Y ) − var(X) − var(Y )

2
.

4. Use the previous expression to calculate the variance estimate for the
unemployment rate and draw up an estimated 95% confidence interval.

Solution

1. Estimated unemployment rate:

R̂ =
Unemployed
Labour force

=
2308
24062

≈ 9.6%.

This is a ‘ratio’ estimator (quotient of two estimators of the totals).
2. Since the sample size n is very large, the bias 1/n and the variance 1/n

as well, the MSE is numerically similar to the variance (the squared bias
becomes negligible). If X represents the labour force and Y the number
of unemployed:

M̂SE ≈ v̂ar

(
Ŷ

X̂

)
=

1

X̂2

{
v̂ar
(
Ŷ
)

+ R̂2v̂ar
(
X̂
)
− 2R̂ĉov

(
X̂, Ŷ

)}
,

a well-known approximation for quotients.
3. The difficulty consists of the evaluation of the term ĉov

(
X̂, Ŷ

)
, but since

X̂ = Ŷ + Ẑ, where Z is the number of employed people, we have

ĉov
(
Ŷ , X̂

)
= ĉov

(
Ŷ , Ŷ + Ẑ

)
= v̂ar

(
Ŷ
)

+ ĉov
(
Ŷ , Ẑ

)
.

Furthermore

ĉov
(
Ŷ , Ẑ

)
=

v̂ar
(
Ŷ + Ẑ

)
− v̂ar

(
Ŷ
)
− v̂ar

(
Ẑ
)

2
,

which gives

ĉov
(
X̂, Ŷ

)
=

v̂ar
(
Ŷ + Ẑ

)
+ v̂ar

(
Ŷ
)
− v̂ar

(
Ẑ
)

2
.
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Therefore:

v̂ar

(
Ŷ

X̂

)

=
1

X̂2

⎧⎨⎩v̂ar
(
Ŷ
)

+ R̂2v̂ar
(
X̂
)
− 2R̂

⎡⎣ v̂ar
(
X̂
)

+ v̂ar
(
Ŷ
)
− v̂ar

(
Ẑ
)

2

⎤⎦⎫⎬⎭
=

1

X̂2

{(
1 − R̂

)
v̂ar
(
Ŷ
)
− R̂(1 − R̂)v̂ar

(
X̂
)

+ R̂v̂ar
(
Ẑ
)}

.

4. Table 8.2 gives us the variance estimates for the three estimators of the
totals X̂, Ŷ and Ẑ obtained from Table 8.1. It only remains to do the

Table 8.2. Estimated variances of the estimators: Exercise 8.1

X̂ = 24062 v̂ar(X̂) = 4332

Ẑ = 21754 v̂ar(Ẑ) = 5779

Ŷ = 2308 v̂ar(Ŷ ) = 1504

calculation, as R̂ ≈ 0.09592:

v̂ar

(
Ŷ

X̂

)
= 2.66 × 10−6,

that is,
Y

X
∈ [9.6% ± 0.3%] (about) 95 times out of 100.

Exercise 8.2 Tour de France
Following a stage of the Tour de France, we complete a simple random survey
without replacement of n cyclists (n fixed, supposedly ‘large’) among the N
competitors. For each selected cyclist, we have available his average speed
for the stage. Estimate the average speed of the entire group of cyclists and
estimate the variance of this estimator.

Solution
To calculate an average of speeds on a route of given length L, it is necessary
to calculate a harmonic mean. In fact, if we denote zk as the speed of cyclist
k and L as the length of the stage, we naturally define the average speed M
of the group of cyclists by:

M =
∑

kilometres travelled∑
time per cyclist

=
N × L∑

time per cyclist
,
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where the sums are for the group of N competitors. In fact, the time for
cyclist k to complete the stage is equal to the length of the stage divided by
the average speed zk of this cyclist and thus

M =
N × L∑
k∈U L/zk

=
N∑

k∈U 1/zk
.

We recognize the harmonic mean of zk which can be written as a function of
totals by setting yk = 1/zk:

M =
N

Y
=

1
Y

= f(N, Y ).

We thus estimate M by

M̂ =
N

Ŷ
=

1

Ŷ
,

with
Ŷ = NŶ =

N

n

∑
k∈S

1
zk

.

By noticing that N is a total, the linearisation of M is therefore

vk =
(

1
Y

− yk
N

Y 2

)
=

1
Y

(
1 − yk

N

Y

)
,

which can be estimated by

v̂k =
1

Ŷ

(
1 − yk

N̂

Ŷ

)
=

1

Ŷ

(
1 − yk

N

Ŷ

)
=

1

NŶ

(
1 − yk

Ŷ

)
.

We get

v̂ar
(
M̂
)

= N2 N − n

Nn

1
n − 1

∑
k∈S

(v̂k − ¯̂v)2,

where
¯̂v =

1
n

∑
k∈S

v̂k = 0.

We easily deduce this:

v̂ar
(
M̂
)

=
1

Ŷ
4

N − n

Nn
s2

y,

thus

v̂ar
(

1

Ŷ

)
=

v̂ar
(
Ŷ
)

Ŷ
4 .
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Exercise 8.3 Geometric mean
Show that the geometric mean G of values yk > 0, k ∈ U for a character-
istic y can be written as a function of the total of a certain variable (to be
determined). We recall:

G =

(∏
k∈U

yk

)1/N

.

1. We assume that N is unknown. Give an estimator Ĝ of G for any design.
Then, estimate the variance of this estimator by way of the linearisation
technique in the case of a design of fixed size n (n large).

2. We now assume that N is known. What estimator ̂̂G of G can we con-
struct? What can we say about the sign of its bias (n large)? Give a

variance estimator of ̂̂G, and compare it to the variance estimator of Ĝ.

Solution

1. Since

G = exp

(
1
N

∑
k∈U

log yk

)
,

letting zk = log yk, k ∈ U, we have

G = exp

(
1
N

∑
k∈U

zk

)
= exp(Z).

The geometric mean G is therefore written as a function of two totals: Z

and N . We next estimate G with Ĝ = exp
(
ẐR

)
, where

ẐR =
1

N̂π

∑
k∈S

zk

πk
.

We can also write:

Ĝ =
∏
k∈S

exp
(

1

πkN̂π

log yk

)
=

(∏
k∈S

y
1/πk

k

)1/N̂π

.

This estimator is biased. The linearisation technique leads to the linearised
variable vk

vk =
zk

N
expZ − Z

N
exp Z =

1
N

(zk − Z)G,

which is estimated by
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v̂k =
1

N̂π

(zk − ẐR) exp ẐR =
1

N̂π

(zk − ẐR)Ĝ.

Lastly, the variance estimator is written

v̂ar
[
Ĝ
]

=
1
2

Ĝ2

N̂2
π

∑
k∈S

∑
�∈S
� �=k

(
zk − ẐR

πk
− z� − ẐR

π�

)2

πkπ� − πk�

πk�
.

2. If N is known, we construct a new estimator ̂̂G on the model of Ĝ, without
it being necessary to estimate N :

̂̂
G = exp(Ẑπ) where Ẑπ =

1
N

∑
k∈S

zk

πk
.

A limited development of ̂̂G, an exponential function of Ẑπ, around
E(Ẑπ) = Z gives:

̂̂
G = f(Ẑπ) = f(Z) + f ′(Z)(Ẑπ − Z) +

1
2
f ′′(Z)(Ẑπ − Z)2 + R,

where R is of the same order of magnitude as (Ẑπ − Z)3. Therefore:

̂̂
G = G + G(Ẑπ − Z) +

G

2
(Ẑπ − Z)2 + R.

In the end,

E( ̂̂G − G) =
G

2
E(Ẑπ − Z)2 + E(R), with E(R) = O

(
1

n3/2

)
≈ G

2
E(Ẑπ − Z)2 for n large .

We have
E(Ẑπ − Z)2 = var(Ẑπ) = O

(
1
n

)
.

Therefore:
E(Ẑπ − Z)3 = O

(
1

n3/2

)
.

Thus,
E( ̂̂G − G) > 0,

for n sufficiently large. The estimator ̂̂G overestimates (a little) G, but
the bias is negligible if n is large. The sign of the bias is coherent with
Jensen’s inequality, which is well-known to probabilists and is applicable
here because the exponential is convex. Indeed, Jensen’s inequality states
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that if f is convex, throughout random variable X , we have: Ef(X) ≥
f(EX). Here, we take X = Ẑπ and f(X) = exp(X), thus

E
[
exp(Ẑπ)

]
≥ exp

[
E(Ẑπ)

]
,

and therefore
E ̂̂G ≥ exp(Z) = G = E(G).

The classical considerations for orders of magnitude (case where n is large)
lead to the approximation:

var( ̂̂G) ≈ G2var(Ẑπ) = var

(∑
k∈S

1
πk

Gzk

N

)
.

The linearisation technique would again exactly and logically give (as it

follows from the limited development of ̂̂G) the same result, which is to
say vk = Gzk/N. Finally,

v̂ar
( ̂̂

G

)
=

1
2

Ĝ2

N2

∑
k∈S

∑
�∈S
� �=k

(
zk

πk
− z�

π�

)
πkπ� − πk�

πk�
.

To compare the respective qualities of Ĝ and ̂̂G (for all designs of fixed
size and with equal probabilities, these two estimators correspond), we
can compare the variances (or estimated variances). For a design with
any probabilities πk, we indeed see that everything depends on the value
of zk = log yk. If the zk are ‘rather constant’ (therefore, if the yk only vary

a little), then Ĝ is preferable to ̂̂G. On the contrary, if the zk are instead

proportional to πk (that is yk ≈ µπk), then we recommend ̂̂G.

Exercise 8.4 Poisson design and calibration on population size
For a Poisson design with unequal probabilities, give the variance of the
Horvitz-Thompson estimator of the total. Afterwards, give an unbiased es-
timator of this variance. For this same design (knowing the population size
N), from now on we use the regression estimator, with only one auxiliary
variable xk = 1, k ∈ U .

1. Simplify the regression estimator. What well-known estimator is this? Is
it unbiased?

2. Using the technique of linearisation, give the linearised variable associated
with this estimator.

3. Give an approximation of the variance by means of the linearised variable.
Formulate this variance with the variable yk.
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4. Give an estimator of this variance.
5. What probabilities πk would we want to choose?
6. What happens to the previous results if the Poisson design is with equal

probabilities, being πk = n̄/N , where n̄ is the expected value of the total
size of the sample?

Solution
We cannot use the Sen-Yates-Grundy variance, as the sample size is random.
Therefore, we use the Horvitz-Thompson variance knowing that for a Poisson
design, we have πkl = πkπ� for all k �= �, which gives:

var(Ŷ ) =
∑
k∈U

y2
k

πk
(1 − πk).

This expression is directly obtained by noting

Ŷ =
∑
k∈S

yk

πk
=
∑
k∈U

yk

πk
Ik,

and by noticing that the random variables Ik, k ∈ U are independent and
follow Bernoulli distributions with parameters πk. This variance can be esti-
mated without bias by:

v̂ar(Ŷ ) =
∑
k∈S

y2
k

π2
k

(1 − πk).

1. The generalised regression estimator is

Ŷreg = Ŷ + (N − N̂)b̂,

where b̂ estimates the ‘true’ regression coefficient of yk on the constant 1,
equal to: ∑

k∈U yk × 1∑
k∈U 1

=
Y

N
= Y ,

and
N̂ =

∑
k∈S

1
πk

.

We select:

b̂ =
Ŷ

N̂
,

and therefore
Ŷreg = Ŷ

N

N̂
.

The estimator calibrates well on N , since N̂reg = N and an estimator
based upon an estimated regression coefficient Ŷ /N would not lead to
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this fundamental property (see on this topic Exercise 7.3). It is that Hájek
ratio that is a particular case of the ratio estimator where the auxiliary
characteristic is xk = 1. It is biased, with a 1/n bias, which is negligible
when n is large.

2. The linearised variable of Ŷreg = Nf(Ŷ , N̂) is

vk = yk − Y
1
N

= yk − Y ,

and its estimator
v̂k = yk − Ŷ H ,

where Ŷ H is the Hájek ratio of the mean, which is

Ŷ

N̂
=

1
N

× Ŷreg.

3. The approximation of the variance is then

var(Ŷreg) ≈
∑
k∈U

v2
k

πk
(1 − πk) =

∑
k∈U

1 − πk

πk

(
yk − Y

)2
.

This variance, a priori, should be smaller than that of the Horvitz-
Thompson estimator (see the preliminary question). Indeed, the y2

k of
the Horvitz-Thompson variance are here replaced by (yk −Y )2, which are
‘normally’ smaller. Although the complex coefficients (1− πk)/πk disturb
the comparisons, we remember that we still have∑

k∈U

y2
k ≥

∑
k∈U

(yk − Y )2.

4. Its estimator (slightly biased) is:

v̂ar(Ŷreg) =
∑
k∈S

1 − πk

π2
k

(
yk − Ŷ H

)2

.

5. We try to minimise the convex function var(Ŷreg) subject to:∑
k∈U

πk = n̄ and πk > 0,

where n̄ is the expected value of the sample size (fixed by the survey
taker). The Lagrangian technique finally leads to:

for all k ∈ U : πk = n̄
|vk|∑

k∈U |vk| if vk �= 0.

If vk = 0, we consider πk ‘unimportant’ in ]0, 1]. In practice, vk is unknown.
It is necessary to estimate (even roughly) a priori.
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6. Let us denote nS as the sample size: this is a random variable, with ex-
pected value n̄. Applying the previous expressions on πk = n̄/N , we easily
get:

Ŷ = N
nS

n̄
Ŷ ,

where
Ŷ =

1
nS

∑
k∈S

yk,

and
Ŷreg = NŶ ,

var(Ŷreg) = N2
(
1 − n̄

N

) σ2
y

n̄
,

where
σ2

y =
1
N

∑
k∈U

(yk − Y )2.

At last, the estimator of the variance is

v̂ar(Ŷreg) = N2
(
1 − n̄

N

) σ̃2
y

n̄
,

where
σ̃2

y =
1
n̄

∑
k∈S

(
yk − Ŷ

)2

,

which can also be written

v̂ar(Ŷreg) =
(nS

n̄

)2

N2
(
1 − n̄

N

) σ̂2
y

nS
,

where
σ̂2

y =
1

nS

∑
k∈S

(
yk − Ŷ

)2

.

Thus, the regression estimator on the constant is identical to the classical
estimator of simple random sampling, and its variance resembles that of
this same classical estimator (it is sufficient to replace the actual sample
size nS by its expected value n̄). As for the estimator of the variance,
we can say that it is ‘nearly’ the variance estimator of simple random
sampling, multiplied by the corrective term (nS/n̄)2.

Exercise 8.5 Variance of a regression estimator
In a simple random design without replacement, estimate the variance of the
regression estimator of the total when n is large

Ŷreg = Ŷ +
sxy

s2
x

(X − X̂).
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Solution
In a simple random sampling of fixed size, the population size N needs to be
known. The regression estimator is

Ŷreg = Ŷ +
sxy

s2
x

(X − X̂).

If we set
f(a1, a2, a3, a4) = a1 +

Na3 − a1a2

Na4 − a2
2

(X − a2),

we can write the regression estimator as a function of estimators of the totals

Ŷreg = f(Ŷ , X̂, (̂XY ), (̂X2)),

where
(̂XY ) =

N

n

∑
k∈S

xkyk, and (̂X2) =
N

n

∑
k∈S

x2
k.

In a simple design, the estimators of the totals Ŷ , X̂, (̂XY ) and (̂X2) are all of
Op(n−1/2), where Op(1/x) is a quantity which remains bounded in probability
when multiplied by x. We start by calculating the partial derivatives:

∂f(a1, a2, a3, a4)
∂a1

∣∣∣∣
a1=Y,a2=X,a3=(XY ),a4=(X2)

= 1

∂f(a1, a2, a3, a4)
∂a2

∣∣∣∣
a1=Y,a2=X,a3=(XY ),a4=(X2)

=
−Sxy

S2
x

∂f(a1, a2, a3, a4)
∂a3

∣∣∣∣
a1=Y,a2=X,a3=(XY ),a4=(X2)

= 0

∂f(a1, a2, a3, a4)
∂a4

∣∣∣∣
a1=Y,a2=X,a3=(XY ),a4=(X2)

= 0,

where
(XY ) =

∑
k∈U

xkyk and (X2) =
∑
k∈U

x2
k,

and Sxy and S2
x are respectively the corrected population covariance between

x and y and the corrected population variance of x. We then get the linearised
variable

vk = yk − Sxy

S2
x

xk, estimated by v̂k = yk − sxy

s2
x

xk.

The (biased) variance estimator is therefore
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v̂ar
[
Ŷreg

]
=

N(N − n)
n

1
n − 1

∑
k∈S

(v̂k − v̂)2 where v̂ =
1
n

∑
k∈S

v̂k

=
N(N − n)

n

[
s2

y +
s2

xy

s2
x

− 2
s2

xy

s2
x

]

=
N(N − n)

n
s2

y

(
1 − ρ̂2

)
,

where
ρ̂ =

sxy

sxsy
.

Eventually,
v̂ar
[
Ŷreg

]
= (1 − ρ̂2) v̂ar

(
NŶ
)

,

where Ŷ is the simple mean in the sample.

Exercise 8.6 Variance of the regression coefficient
In some sampling design whose first two orders of inclusion probabilities are
strictly positive, we consider the following parameter of interest:

σ2
y =

1
N

∑
k∈U

(
yk − Y

)2
,

where U = {1, . . . , k, . . . , N} indicates the population for which the size N is
not supposedly known, and Y is the mean of the population.

1. Show that σ2
y is a function of totals (strictly).

2. Give the estimator of the parameter obtained by replacing the unknown
totals of σ2

y with their Horvitz-Thompson estimators (called ‘substitution
estimator’). Simplify this expression to get a quadratic form in yk.

3. Give the linearised variable associated to σ2
y, then the approximate vari-

ance of the substitution estimator.
4. Give the variance estimator of the substitution estimator, in the case of

simple random sampling. Give an expression as a function of moments
about the mean.

5. By applying the same reasoning as before, give the Horvitz-Thompson
estimator and the substitution estimator of the covariance σxy:

σxy =
1
N

∑
k∈U

(
xk − X

) (
yk − Y

)
,

where
X =

1
N

∑
k∈U

xk, and Y =
1
N

∑
k∈U

yk.
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6. Give the linearised variable associated to σxy and the estimator of the
linearised variable.

7. Give the variance estimator of the substitution estimator of the covariance,
in the case of simple random sampling. Give an expression as a function
of moments about the mean.

8. By applying the technique of stepwise linearisation, give the linearised
variable associated to the regression coefficient, in the regression of y on
x. Come to a conclusion on the variance of the estimator of the regression
coefficient.

Solution

1. The population variance of yk in U can be written

σ2
y =

1
N

∑
k∈U

y2
k −
(

Y

N

)2

=
(Y 2)
N

−
(

Y

N

)2

,

where
N =

∑
k∈U

1, Y =
∑
k∈U

yk, (Y 2) =
∑
k∈U

y2
k.

2. The substitution estimator is therefore

σ̂2
ysubs =

(̂Y 2)

N̂
−
(

Ŷ

N̂

)2

=
1

N̂

∑
k∈S

(
yk − Ŷ H

)2

πk
,

where

N̂ =
∑
k∈S

1
πk

, Ŷ =
∑
k∈S

yk

πk
, (̂Y 2) =

∑
k∈S

y2
k

πk
, and Ŷ H =

Ŷ

N̂
.

3. We can from that time calculate the linearised variable. Since

σ̂2
ysubs = f((̂Y 2), Ŷ , N̂),

we obtain

vk = y2
k

1
N

− 2ykY
1
N

+ 2Y
Y

N2
− Y 2 1

N2
=

1
N

{(
yk − Y

)2 − σ2
y

}
.

The approximate variance given by the linearisation is, for a simple design,

var
(
σ̂2

ysubs

) ≈ N − n

nN(N − 1)

∑
k∈U

{(
yk − Y

)2 − σ2
y

}2

=
N

(N − 1)
N − n

Nn

(
m4 − σ4

y

)
,
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where
m4 =

1
N

∑
k∈U

(
yk − Y

)4
.

This variance is very close to the exact variance obtained in Expres-
sion (2.13) of Exercise 2.21, page 56, particularly when N is large (see
Expression (2.14)).

4. We estimate the linearised variable by

v̂k =
1

N̂

{(
yk − Ŷ H

)2

− σ̂2
ysubs

}
.

For simple random sampling, we have, since N is then known:

v̂ar
(
σ̂2

ysubs

)
=

N − n

nN(n − 1)

∑
k∈S

{(
yk − Ŷ H

)2

− σ̂2
ysubs

}2

=
N − n

N(n − 1)
(
m̂4 − σ̂4

ysubs

)
,

where
m̂4 =

1
n

∑
k∈S

(
yk − Ŷ H

)4

.

5. The true covariance is written:

σxy =
1
N

∑
k∈U

(xk − X)(yk − Y ) =
1

2N2

∑
k∈U

∑
�∈U
� �=k

(xk − x�)(yk − y�).

The Horvitz-Thompson estimator of the covariance is:

σ̂xy =
1

2N2

∑
k∈S

∑
�∈S
� �=k

(xk − x�) (yk − y�)
πk�

.

The covariance can also be written as a function of totals:

σxy =
1
N

∑
k∈U

xkyk − XY

N2
=

(XY )
N

− XY

N2
,

where

N =
∑
k∈U

1, X =
∑
k∈U

xk, Y =
∑
k∈U

yk, (XY ) =
∑
k∈U

xkyk,

σ̂xysubs =
(̂XY )

N̂
− X̂Ŷ

N̂2
=

1

N̂

∑
k∈S

(
xk − X̂H

)(
yk − Ŷ H

)
πk

,
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where

X̂ =
∑
k∈S

xk

πk
, (̂XY ) =

∑
k∈S

ykxk

πk
, and X̂H =

X̂

N̂
.

6. By noticing that

σxy = f((XY ), X, Y, N), and σ̂xysubs = f((̂XY ), X̂, Ŷ , N̂),

we get the linearised variable for the covariance:

vk = xkyk
1
N

− (XY )
1

N2
− xk

Y

N2
− yk

X

N2
+ 2

XY

N3

=
1
N

{(
yk − Y

) (
xk − X

)− σxy

}
,

and therefore

v̂k =
1

N̂

{(
xk − X̂H

)(
yk − Ŷ H

)
− σ̂xysubs

}
.

7. For a simple design, we have

v̂ar (σ̂xysubs) =
N − n

nN(n − 1)

∑
k∈S

{(
xk − X̂H

)(
yk − Ŷ H

)
− σ̂xysubs

}2

=
N − n

N(n − 1)
(
m̂22 − σ̂2

xysubs

)
,

where
m̂22 =

1
n

∑
k∈S

(
xk − X̂H

)2 (
yk − Ŷ H

)2

,

and
σ̂xysubs =

1
n

∑
k∈S

(xk − X̂H)(yk − Ŷ H).

8. The regression coefficient of y on x is:

b =
σxy

σ2
x

,

which we can estimate by

b̂ =
σ̂xysubs

σ̂2
xsubs

.

The linearisation of b̂ is, by a stepwise reasoning:

wk =
1
N

{(
yk − Y

) (
xk − X

)− σxy

} 1
σ2

x

− 1
N

{(
xk − X

)2 − σ2
x

} σxy

σ4
x

=
1

Nσ2
x

(
xk − X

){(
yk − Y

)− (xk − X
) σxy

σ2
x

}
=

1
Nσ2

x

(xk − X)ek,
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where ek is the true residual of the regression of y on x, which we naturally
estimate by:

ŵk =
1

N̂ σ̂2
xsubs

(xk − X̂H)
{
(yk − Ŷ H) − (xk − X̂H)b̂

}
.

The variance of b̂ is therefore approximated, if n is ‘large’, by the variance
of
∑

k∈S wk/πk.

Exercise 8.7 Variance of the coefficient of determination

1. Using the technique of stepwise linearisation, give the linearised variable
of the coefficient of determination (we assume N to be unknown) defined
by

r2 =
σ2

xy

σ2
xσ2

y

.

We will use the linearised variables of σ2
x, σ2

y and σxy obtained in Ex-
ercise 8.6. We note that the coefficient of determination is equal to the
square of the linear correlation coefficient between x and y.

2. Show that the coefficient of determination can likewise be written as a
function of regression coefficients.

3. Using the technique of stepwise linearisation, give the linearised variable
of the coefficient of determination originating from the linearised variables
of regression coefficients (see Question 8 of Exercise 8.6).

4. Do the two methods give the same result?

Solution

1. From Exercise 8.6, we have the linearisation of the population variance
σ2

y :

uk(y) =
1
N

{(
yk − Y

)2 − σ2
y

}
,

and the covariance σxy:

vk =
1
N

{(
yk − Y

) (
xk − X

)− σxy

}
.

Since

r2 =
σ2

xy

σ2
yσ2

x

,
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the linearisation of r2 is given by

wk = 2vk
σxy

σ2
xσ2

y

− uk(x)
σ2

xy

σ4
xσ2

y

− uk(y)
σ2

xy

σ2
xσ4

y

= r2 1
N

{
2

σxy

(
yk − Y

) (
xk − X

)− 1
σ2

x

(
xk − X

)2 − 1
σ2

y

(
yk − Y

)2}
= r2 1

N

{
1

σxy

(
yk − Y

) (
xk − X

)− 1
σ2

x

(
xk − X

)2
+

1
σxy

(
yk − Y

) (
xk − X

)− 1
σ2

y

(
yk − Y

)2}
=

r2

Nσxy

{(
xk − X

)
ek +

(
yk − Y

)
fk

}
,

where ek and fk are respectively the true residuals (unknown) of the
regression of y on x and of x on y.

2. The coefficient of determination can be written as a function of regres-
sion coefficients. In fact, r2 = b1b2, where b1 and b2 are respectively the
regression coefficients of y on x and of x on y.

3. If we denote uk(b1) (or uk(b2)) as the linearisation of the regression co-
efficient of y on x (or of x on y), the linearisation of the coefficient of
determination is

ak = uk(b1)b2 + uk(b2)b1

=
ek(xk − X)

Nσ2
x

b2 +
fk(yk − Y )

Nσ2
y

b1

=
r2

Nσxy

{(
xk − X

)
ek +

(
yk − Y

)
fk

}
.

4. Yes, the two methods give the same result. The approximate variance of
r2, when n is rather large and if the design is of unequal probabilities πk,
is that of

∑
k∈S ak/πk.

Exercise 8.8 Variance of the coefficient of skewness
Consider any design of fixed size of which the first-order πk and second-order
πk� inclusion probabilities are strictly positive. The objective is to estimate
the variance of the estimator of the coefficient of skewness

g =
m3

σ3
y

,
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where

σ2
y =

1
N

∑
k∈U

(yk − Y )2, m3 =
1
N

∑
k∈U

(yk − Y )3, Y =
1
N

∑
k∈U

yk.

In everything that follows, we assume that the population size N is known
and that the sample size n is large.

1. Give the substitution estimators of σ2
y, m3 and g (these estimators are

obtained by writing σ2
y, m3 and g in the form of totals, with each of these

totals being estimated without bias by the classical Horvitz-Thompson
estimator).

2. Give the linearised variable of σ2
y , and deduce the linearisation of σ3

y .
3. Give the linearisation of m3.
4. Deduce the linearisation of g from the two previous questions.
5. Give the estimator of the linearisation of g and lastly, estimate the variance

of ĝ.

Solution

1. We denote

Y =
∑
k∈U

yk, (Y 2) =
∑
k∈U

y2
k, (Y 3) =

∑
k∈U

y3
k,

Ŷ =
∑
k∈S

yk

πk
, (̂Y 2) =

∑
k∈S

y2
k

πk
, (̂Y 3) =

∑
k∈S

y3
k

πk
.

Since

σ2
y =

(Y 2)
N

− Y 2

N2
, and σ̂2

y =
(̂Y 2)
N

− Ŷ 2

N2
,

m3 =
(Y 3)
N

− 3
Y (Y 2)

N2
+ 2

Y 3

N3
, and m̂3 =

(̂Y 3)
N

− 3
Ŷ (̂Y 2)

N2
+ 2

Ŷ 3

N3
,

we have

ĝ =
̂(Y 3)
N − 3 Ŷ ̂(Y 2)

N2 + 2 Ŷ 3

N3(
̂(Y 2)
N − Ŷ 2

N2

)3/2
=

N2(̂Y 3) − 3NŶ (̂Y 2) + 2Ŷ 3(
N (̂Y 2) − Ŷ 2

)3/2
.

2. The linearisation of σ2
y = f((Y 2), Y ) is

uk = y2
k

1
N

− 2yk
Y

N2
=

yk

N

(
yk − 2Y

)
.

The linearisation of σ3
y is obtained by stepwise linearisation

vk = uk
3
2
(
σ2

y

)1/2
=

3
2
σy

yk

N

(
yk − 2Y

)
.
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3. The linearisation of m3 = g((Y 3), (Y 2), Y ) is

wk =
1
N

{
y3

k − 3y2
k

Y

N
+ yk

(−3(Y 2)
N

+
6Y 2

N2

)}
=

yk

N

(
y2

k − 3yk
Y

N
− 3

(Y 2)
N

+
6Y 2

N2

)
.

4. The linearisation of g is (stepwise linearisation):

zk = wk
1
σ3

y

− vk
m3

σ6
y

= g

[
wk

1
m3

− vk
1
σ3

y

]
= g

[
yk

N

(
y2

k − 3yk
Y

N
− 3

(Y 2)
N

+
6Y 2

N2

)
1

m3
− 3

2
σy

yk

N

(
yk − 2Y

) 1
σ3

y

]
=

gyk

N

[(
y2

k − 3yk
Y

N
− 3

(Y 2)
N

+
6Y 2

N2

)
1

m3
− 3

2
(
yk − 2Y

) 1
σ2

y

]
.

5. We estimate zk by

ẑk =
ĝyk

N

[(
y2

k − 3yk
Ŷ

N
− 3

(̂Y 2)
N

+
6Ŷ 2

N2

)
1

m̂3
− 3

2

(
yk − 2

Ŷ

N

)
1
σ̂2

y

]
,

which allows for estimating the variance of ĝ by:

v̂ar(ĝ) =
1
2

∑
k∈S

∑
�∈S
� �=k

πkπ� − πk�

πk�

(
ẑk

πk
− ẑ�

π�

)2

.

Exercise 8.9 Half-samples
The aim of this exercise is to present a method of variance estimation called the
‘half-sample method’ that is part of the class of methods of sample replication.
It can be done when the initial drawing of a sample, denoted S, has been
performed according to a stratification technique, with the drawing of nh =
2 individuals by simple random sampling in each of the H strata initially
constructed. We denote:

• wh = Nh/N , where Nh is the size of stratum h, and N is the total popu-
lation size.

• yh1 and yh2 are the values of y known for the two individuals selected in
stratum h (denoted by the indicators h1 and h2).

• dh = yh1 − yh2.



314 8 Variance Estimation

Throughout this exercise, we neglect the sampling rates.

1. What is the unbiased estimator Ŷ strat used, from the sample S, to estimate
the true mean Y ? What is its estimated variance v̂ar(Ŷ strat) as a function
of wh and dh?

2. In each of the H strata, we select, through simple random sampling in S,
one of the two individuals h1 or h2. The sampling is independent from one
stratum to another. We thus generate a random sampling design leading
to a very simple probability distribution on the identifiers of S, denoted
Pr∗. In relation to this distribution, we can calculate the expected values
E∗ and the variances var∗ (the sample S is fixed when we manipulate this
distribution).
Vocabulary: This procedure, applied successively on the H strata, produces
a sample S∗ of size H called a ‘half-sample’.
a) With S being fixed, how many half-samples are possible?
b) If we denote hi as the individual selected in stratum h according to Pr∗

(two possible cases: i = 1 or i = 2), give the values of the probabilities
Pr∗(i = 1) and Pr∗ (i = 2).

c) Deduce that the estimator:

Ŷ 1/2 =
H∑

h=1

whyhi is such that E∗(Ŷ 1/2) = Ŷ strat.

d) We consider the dichotomous random variable εh, defined in stratum
h according to:

εh =
{

+1 if hi = h1,
−1 if hi = h2.

Show that

Ŷ 1/2 − Ŷ strat =
1
2

H∑
h=1

whεhdh.

Then, find (Ŷ 1/2 − Ŷ strat)2.
e) Calculate E∗(εh), and show that:

var∗(Ŷ 1/2) = E∗(Ŷ 1/2 − Ŷ strat)2 = v̂ar(Ŷ strat).

3. Let us assume that we select X half-samples under the same conditions
(which are those of 2.) and in an independent way, with X very large. The
experiment x (1 ≤ x ≤ X) leads to the estimator denoted Ŷ 1/2(x). Use

the law of large numbers to estimate var∗(Ŷ 1/2), i.e., v̂ar(Ŷ strat), and, in

fine, var(Ŷ strat).

Note: This method is apparently without great interest if we want to esti-
mate the variance of Ŷ strat, as an exact analytical calculation is preferable.
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Indeed, we verify that it works for means, and we apply it in more complex
estimators such as, for example, ratios, for which we do not know how to
get exact analytical expressions.

Solution

1. It is a classical stratified sampling, with simple random sampling in each
stratum:

Ŷ strat =
H∑

h=1

Nh

N
Ŷ h, where Ŷ h =

yh1 + yh2

2
.

Furthermore,

v̂ar(Ŷ strat) =
H∑

h=1

(
Nh

N

)2

(1 − fh)
s2

yh

nh
.

Indeed, nh = 2, and

s2
yh =

1
2 − 1

∑
k∈h
k∈S

(yk − Ŷ h)2 = (yh1 − Ŷ h)2 + (yh2 − Ŷ h)2 =
d2

h

2
.

Therefore, since fh is negligible,

v̂ar(Ŷ strat) =
H∑

h=1

w2
h

d2
h

4
.

2. The configuration of the sampling is as follows:
a) In each of the H strata, there are two possibilities; hence, there are in

total 2H possible half-samples.
b) Pr∗(i = 1) = Pr∗(i = 2) = 1/2, since we select at random one indi-

vidual among the two.
c) We recall that we reason here conditionally on S. Therefore

E∗(Ŷ 1/2) =
H∑

h=1

whE∗(yhi).

Indeed,

E∗(yhi) = yh1Pr∗(i = 1) + yh2Pr∗(i = 2) =
yh1 + yh2

2
= Ŷ h.

Conclusion: E∗(Ŷ 1/2) = Ŷ strat.
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d) We have

Ŷ 1/2 − Ŷ strat =
H∑

h=1

wh(yhi − Ŷ h).

Indeed,

yhi − Ŷ h =

⎧⎪⎨⎪⎩
yh1 − Ŷ h =

yh1 − yh2

2
=

dh

2
, with probability

1
2

yh2 − Ŷ h =
yh2 − yh1

2
= −dh

2
, with probability

1
2
.

Thus,

yhi − Ŷ h = εh
dh

2
.

Hence

Ŷ 1/2 − Ŷ strat =
H∑

h=1

whεh
dh

2
.

We get

(Ŷ 1/2 − Ŷ strat)2 =
1
4

⎡⎢⎣ H∑
h=1

w2
hε2

hd2
h +

H∑
h=1

H∑
�=1
� �=h

whw�εhε�dhd�

⎤⎥⎦ .

e) The expected value of εh is:

E∗(εh) = (+1) × 1
2

+ (−1) × 1
2

= 0.

Now

var∗(Ŷ 1/2) = E∗(Ŷ 1/2 − Ŷ strat)2

=
1
4

⎡⎢⎣ H∑
h=1

w2
hd2

h +
H∑

h=1

H∑
�=1
� �=h

whw�dhd�E∗(εhε�)

⎤⎥⎦ ,

since E∗(Ŷ 1/2) = Ŷ strat (according to c), for all h, ε2
h = 1, and dh is

not random for S fixed. In addition, for each pair (h, �) where h �= �,

E∗(εhε�) = cov(εh, ε�) = 0,

for the drawings are independent from one stratum to another.

Conclusion:

var∗(Ŷ 1/2) =
1
4

H∑
h=1

w2
hd2

h = v̂ar(Ŷ strat).
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3. By construction, the X estimators Ŷ 1/2(x) are independent and identi-
cally distributed (iid). According to the law of large numbers, the empirical
moments almost surely converge toward the ‘true’ moments according to
the distribution (∗). Therefore

Ṽ =
1
X

X∑
x=1

[Ŷ 1/2(x) − Ỹ ]2 tends toward var∗(Ŷ 1/2) = v̂ar(Ŷ strat),

where

Ỹ =
1
X

X∑
x=1

Ŷ 1/2(x).

Conclusion:
Thus, using a system of X successive independent re-samples, we can
very easily calculate an empirical statistic Ṽ which should not be ‘too far’
from the unbiased classical estimator v̂ar(Ŷ strat) and thus from the true
variance var(Ŷ strat). This technique is in practice used to estimate the
variance of complex estimators, i.e., non-linear estimators (ratios, regres-
sion coefficients, correlation coefficients).



9

Treatment of Non-response

Non-response is an inevitable phenomenon in surveys. We distinguish total
non-response, which affects individuals for which we do not have available any
workable collected information, and partial non-response, which corresponds
to ‘holes’ in the information collected for a given individual (certain variables
yk are known, but others are not). In all cases, this phenomenon generates a
bias and increases the variance that varies more or less explicitly as a function
of the inverse of the sample size of the respondents. There exist two large
classes of methods to correct the non-response: reweighting and imputation.

9.1 Reweighting methods

We denote φk as the probability of response of individual k: this entire ap-
proach rests on the idea that the decision of whether or not to respond is
random and is formalised by a probability, which we consider here, to sim-
plify, that it only depends on individual k (indeed, it could very likely depend
on the set of identifiers sampled). If φk is known, before an eventual calibra-
tion, we estimate without bias the total Y by:

Ŷφ =
∑
k∈r

yk

πkφk
,

where πk is the regular inclusion probability, and r indicates the sample of re-
spondents (r ⊂ S). In practice, we try to model the probability φk (unknown)
to be able to estimate it subsequently. The leads are then multiple, but often
we try to partition the population U into sub-populations Uc inside of which
the φk are supposedly constant:

φk = φc when k ∈ Uc.

We are speaking of a homogeneous response model. We can also model φk by a
logistic function (for example) if we have available quantitative or qualitative
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auxiliary information that is sufficiently reliable. Reweighting is essentially
used to treat total non-response.

9.2 Imputation methods

Contrary to the case of the method of reweighting, we directly model the
behaviour yk by using a vector of auxiliary information xk. For example, we
denote (model called ‘superpopulation’):

yk = ψ(x′
kb) + zk,

where ψ is a known function and zk is a random variable of null expected
value and variance σ2. We use the information on the respondents to estimate
b and σ2 and we predict yk, for each non-respondent k, with y∗

k. Lastly, we
calculate:

ŶI =
∑
k∈r

yk

πk
+
∑
k∈S
k/∈r

y∗
k

πk
,

which allows for the conservation of the initial weights. If, within any sub-
population, we believe in the model yk = b + zk, we can impute y∗

k = y�,
where � is an identifier selected at random in the respondent sub-population:
this is a technique called ‘hot deck’. The study of the quality of ŶI is performed
by bringing into play the random variable zk. Imputation is essentially used
to treat partial non-response.

EXERCISES

Exercise 9.1 Weight of an aeroplane
We wish to estimate the total weight of 250 passengers on a charter flight. For
that, we select a simple random sample of 25 people for whom we intend to
ask their height (in centimetres) and their weight (in kilograms). Five people
refuse to respond, but we can all the same note their gender (1: male and 2:
female). Among the others, five have given their height but did not want to
say their weight. The collected data is finally presented in Table 9.1.

1. What methods can we use to correct the effects of non-response? Justify
your decisions in a precise way, by explaining the models that you use.
Perform the numerical applications.

2. You learn that 130 passengers are men and 120 are women. Would you
modify your estimation method? Why?

3. Among the 10 non-responses for weight, we select a simple random sample
comprised of individuals b, g, w, x. Using a particularly persuasive inter-
viewer, we get them to admit their height and their weight. This com-
plementary information is given in Table 9.2. How can we take this into
consideration?
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Table 9.1. Sample of 25 selected individuals: Exercise 9.1

Individual Gender Height Weight
a 1 170 60
b 1 170
c 1 180 70
d 1 190 80
e 1 190 80
f 1 170 70
g 1 170
h 1 180 80
i 1 180 80
j 1 180 80
k 1 180
l 1 190
m 1 190 90
n 2 150 40
o 2 160 50
p 2 170 60
q 2 150 50
r 2 160 60
s 2 180 70
t 2 180
u 1
v 1
w 2
x 2
y 2

Table 9.2. Complementary information for four individuals: Exercise 9.1

Individual Gender Weight Height
b 1 80 170
g 1 100 170
w 2 90 180
x 2 60 150

Solution

1. Two types of non-response appear: total non-response for individuals u to
y and partial non-response for b, g, k, l and t. The total non-response is
treated in general by modifying the weights of the respondents (technique
of ‘reweighting’). Since only the gender variable is known, we can con-
struct, at best, cells based on the gender variable. To justify this practice,
we can have two points of view:
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• A ‘probabilistic’ point of view, which postulates that the non-respon-
dents of one given gender in fact account for a simple random sub-
sample of the initially selected sample (gender by gender), whose size
is equal to the number of respondents for the gender considered. A
second approach, equivalent in terms of the estimator, depends on a
Bernoulli type of response model: all individuals of a given gender have
the same probability of response, estimated by the response rate char-
acterising the gender (maximum likelihood estimator). A third way,
equivalent in terms of the estimator, of adhering to this point of view,
consists of saying that, conditionally on the gender, the weight variable
and the ‘response’ variable are independent (the fact of deciding not to
respond does not depend on the weight). With these three approaches,
the reweighting estimator is:

Ŷ φ =
∑

h=1,2

nh

n
Ŷ hr,

where nh is the number of selected people of gender h (h = 1, 2) and
Ŷ hr is the average weight of the respondents of gender h. If we treat
the partial non-responses as total non-responses, it is theoretically un-
biased if the probabilistic model is exact.

• A more ‘modellistic’ point of view, which is less interested in the pro-
cess of selecting the non-respondents but which postulates a statistical
model of type:

yhi = µh + εhi,

where yhi is the weight of individual i of gender h, µh is ‘mean’ of the
weight characteristic of gender h and εhi is a random variable whose
expected value is 0 (it is a classical approach in statistics: everything
happens as if a random process had generated yhi according to this
model). The estimator is still Ŷ φ, but this time we are interested in
its expected value under the model:

E(Ŷ φ) =
∑

h=1,2

nh

n
E(Ŷ hr) =

∑
h=1,2

nh

n
µh.

Therefore,

E E(Ŷ φ) =
∑

h=1,2

Nh

N
µh = E(Y ) = E E(Y ).

We have E E(Ŷ φ − Y ) = 0, and therefore Ŷ φ remains ‘unbiased’ if we
bring into play the expected value under the model.

The partial non-response is treated in general by imputation, using a
behaviour model. In every case, we use the auxiliary information given by
the variable ‘size’, which is strongly linked to weight. To treat the partial
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non-response, we can for example use imputation by depending on a linear
regression:

weight = a + b × height + residual,

and by estimating the parameters a and b from the respondents. This
model can be repeated gender by gender. We find:
• for men (9 observations):

weight = −83.80 + 0.89 × height + residual (R2 = 0.64),

• for women (6 observations):

weight = −75.10 + 0.80 × height + residual (R2 = 0.80).

We could equally construct cells of ‘homogeneous behaviour’ by using
the height variable and imputing the non-responses of one cell with the
mean of respondents of the indicated cell. The problem is that of the
composition of the cells. As a matter of course, many compositions are
possible. A natural option consists of regrouping the individuals of the
same height and same gender, which would lead to:

cell 1 = {a, b, f, g} cell 2 = {c, h, i, j, k} cell 3 = {d, e, �, m}
cell 4 = {n, q} cell 5 = {o, r} cell 6 = {p}
cell 7 = {s, t}.

Numerical applications:
The reweighting estimation depends on the calculation of Ŷ hr, which can
be conceived in two ways:
• either from the lone respondents of the variable ‘weight’, in which case

there is no recognition of the partial non-response (the variable ‘height’
is at no time of assistance, so the information is lost),

• or from the respondents of the variable ‘weight’ for which we add the
partial non-respondents after imputing a value for ‘weight’.

In the first case, we have:

Ŷ 1r =
690
9

≈ 76.7 and Ŷ 2r =
330
6

= 55,

thus
Ŷ 1 =

15
25

× 76.7 +
10
25

× 55 = 68 kg.

In the second case, we impute five values. If we choose the imputation
originally from a regression by gender:

y∗
b = y∗

g = −83.80 + 0.89 × 170 = 67.5
y∗

k = −83.80 + 0.89 × 180 = 76.4
y∗

� = −83.80 + 0.89 × 190 = 85.3
y∗

t = −75.10 + 0.80 × 180 = 68.9.
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Then, we calculate:

Ŷ 1r =
690 + 67.5 × 2 + 76.4 + 85.3

9 + 4
≈ 75.9,

and
Ŷ 2r =

330 + 68.9
6 + 1

≈ 57,

thus
Ŷ 2 =

15
25

× 75.9 +
10
25

× 57 = 68.3 kg.

If we choose imputation by homogeneous cell:

y∗
b = y∗

g =
60 + 70

2
= 65,

y∗
k =

70 + 80 × 3
4

= 77.5,

y∗
� =

80 × 2 + 90
3

= 83.3.

y∗
t = 70.

Then, we calculate:

Ŷ 1r =
690 + 65 × 2 + 77.5 + 83.3

9 + 4
≈ 75.4,

and
Ŷ 2r =

330 + 70
6 + 1

≈ 57.1,

thus
Ŷ 3 =

15
25

× 75.4 +
10
25

× 57.1 = 68.1 kg.

By way of comparison, we notice that the simple mean of the weights of 15
respondents is equal to Ŷ 4 = 66.7 kg. This estimate is the most natural if
we believe in a model in which men and women have the same probability
of response.

Conclusion of this question:
Everything is dependent on the behaviour model in which we believe.
There is not therefore, among the four previous estimators, an approach
that is indisputably better than the others.

2. This supplementary information allows for post-stratification on the en-
tire population and thus leads to a modification in weights. In fact, the
proportions of men in the sample and in the population differ. It is the
same for women. We recall:
• reweighting estimator by gender:

Ŷ φ =
∑

h=1,2

nh

n
Ŷ hr,



Exercise 9.1 325

• post-stratified estimator by gender:

Ŷ post =
∑

h=1,2

Nh

N
Ŷ hr.

We have
n1

n
=

15
25

= 60% and
N1

N
=

130
250

= 52%,

and
n2

n
=

10
25

= 40% and
N2

N
=

120
250

= 48%.

The post-stratified estimator uses ‘exact’ weights: its variance is smaller
than that of the reweighting estimators. If we redo the first three ap-
proaches of Question 1, the post-stratified estimates become:

Ŷ 1,post = 0.52 × 76.7 + 0.48 × 55 = 66.3 kg,

Ŷ 2,post = 0.52 × 75.9 + 0.48 × 57 = 66.8 kg,

Ŷ 3,post = 0.52 × 75.4 + 0.48 × 57.1 = 66.6 kg.

Each estimate appears to be smaller than its counterpart from Question 1:
this is naturally due to an over-representation of men in the sample, which
is rectified by the post-stratification (men have a higher average weight
than women).

3. The new values obtained for partial non-respondents b and g are in-
deed larger than those obtained by imputation (regression or homoge-
neous cells), which shows that the non-response is very much related to
the weight variable (people for whom weight is high in comparison to
their height refuse to respond). We could use these new values to per-
form more pertinent imputations. If we had available sufficient values in
the supplementary table obtained due to the persuasive interviewer, we
could for example conceive a regression model uniquely from the initial
non-respondent sub-population, to impute individual values to the par-
tial non-respondents (by postulating a link of the same nature between
height and weight among initial non-respondents). This would allow for
the limiting of the bias generated by the non-response. Alas, this is not
the case here: with so few values, we can ‘only’ add the values of the new
respondents in the initial calculations to produce the model parameters.
This is somewhat a last resort, which is going to certainly reduce the bias
but does not resolve the underlying problem linked to the dependence
between weight and non-response. The regression equations are modified
by the recognition of two supplementary points for each gender:
• for men (11 observations):

weight = 29.60 + 0.28 × height + residual (R2 = 0.05),
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• for women (8 observations):

weight = −95.40 + 0.96 × height + residual (R2 = 0.66).

We notice the poor quality of the adjustment for men. The means Ŷ hr are
found to be modified as a consequence, which is the same for imputations
by homogeneous cell. We get

Ŷ 1 =
15
25

× 690 + 80 + 100
11

+
10
25

× 330 + 90 + 60
8

= 71.5 kg.

With regression imputation:

y∗
k = 80, y∗

� = 82.8, y∗
t = 77.4,

thus
Ŷ 2 =

15
25

× 79.4 +
10
25

× 61.9 = 72.4 kg.

With mean imputation by class (homogeneous cell):

y∗
k = 77.5, y∗

� = 83.3, y∗
t =

70 + 90
2

= 80,

thus

Ŷ 3 =
15
25

× 690 + 80 + 100 + 77.5 + 83.3
13

+
10
25

× 330 + 90 + 60 + 80
9

= 72.5 kg.

Finally, the mean of the 19 respondents leads to Ŷ 4 = 71.1 kg.

Exercise 9.2 Weighting and non-response
It is a matter here of presenting two concurrent estimators in the presence of
non-response. We consider a simple random sampling of size n in a population
of size N and we are interested in the true mean Y of a variable y. We know
in addition, for each individual in the sampling frame, a qualitative auxiliary
variable x which takes C modalities (which leads to defining C ‘cells’ in the
population). We denote nr as the respondent sample size and Ŷ r as the mean
of y in the sample of respondents. We assume from now on that in each cell
c (1 ≤ c ≤ C), there is at least one responding individual.

1. If we make the assumption that all the individuals of the population have
the same probability of response, what reweighting estimator for the re-
spondents are we going to use? When do we use this approach?
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2. If we apply the preceding model, but only for each of the modalities of x,
what estimator Ŷ φ are we going to choose? We denote Ŷ cr as the mean of
yi of the respondents, for which x takes the value c and ncr is the number
of corresponding respondents. Compare the structures of Ŷ r and Ŷ φ.

3. Numerical application: In a survey on income for 300 people (simple ran-
dom sampling), we have available the variable x ‘place of residence’, which
allows distinguishing of three types of habitats: rural (c = 1), urban fringe
and suburban (c = 2) and downtown (c = 3). The data is presented by
category in Table 9.3. Calculate Ŷ r and Ŷ φ.

Table 9.3. Non-response according to category: Exercise 9.2

Subpopulation
c = 1 c = 2 c = 3

Number of respondents 80 70 50
Mean annual income 9 800 11 600 13 600
Sample size 100 100 100

4. If we choose to proceed with case-by-case mean imputation of the respon-
dents, what estimator are we going to get?

5. We are now interested in the bias and the variance of the two preceding
estimators. Count all the random variables involved in the survey process,
by taking into account the ex-post splitting into C cells (we consider that
the behaviour of an individual i can be modelled by a random variable Ri

that is 1 if i responds and 0 otherwise). Next, we consider that all these
variables are fixed, except the sample S: under these simplified conditions,
how must we comprehend the random nature of the estimator?

6. Under the previous conditions, give the bias and the conditional variance
of Ŷ r and Ŷ φ. We will differentiate, in the expressions of bias, between
one part that tends towards zero when n increases (denoted B0) and one
part that is insensitive to n (denoted B∞).

7. If n is ‘large’, what are the favourable conditions to limit the conditional
biases of Ŷ r and Ŷ φ? (We can go back to the numerical example of 3.)

8. We are trying to compare the conditional variances of Ŷ r and Ŷ φ, in
the case where the sampling rates involved are negligible and where the
variances of yi among the respondents do not depend on the cell. Noting
that these two estimators are written in the form

∑C
c=1 wcŶ cr, where the

(wc) are the non-random weights of the sum equal to 1, find the weighting
scheme (wc) which minimises the variance. Come to a conclusion on the
‘better’ of the two estimators Ŷ r and Ŷ φ from the point of view of the
variance.

9. If the ‘reality’ effectively corresponds to an independence between the
value of y, being yi, and the fact of whether or not to respond (modelled
by the variable Ri), but only cell by cell and not in the total population,
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which estimator are we going to finally retain in the case where the sample
size is large?

10. We assume here that the ‘reality’ this time corresponds to an independence
on the whole population between the variable y and the fact of whether or
not to respond. We are placed in the case where N is very large compared
to n.
a) To judge the respective biases of the two estimators, what terms must

be compared?
b) Calculate the expected values for the squares of the two terms in

question, by making use of the fact that (nc) and (ncr) approximately
follow multinomial distributions (n � N) (in this question, we retain
only the conditioning with respect to Ri and nr).

c) If we now assume that the probability of response does not depend
upon the individual, considering the expected values for the squares of
the two biases, which of the estimators Ŷ r and Ŷ φ appears on average
to be less biased?

d) Come to a conclusion on the respective quality of Ŷ r and Ŷ φ, under
the assumptions from 8. and 10.(c).

Solution

1. The probability of response is manipulated like an inclusion probability
(the sample of respondents is considered in theory to be selected with
equal probabilities in the ‘primitive’ sample). The probability of response
is going to be estimated by the global response rate, being nr/n, which
has the property of being the maximum likelihood estimator in a Bernoulli
model. Hence:

Ŷ φ =
1
N

∑
i∈r

yi
n

N

nr

n

= Ŷ r,

where r is the set of respondents. We use this assumption when we consider
that the ‘decision’ to not respond does not even depend on the subject
of the survey, i.e., neither on the value of y nor on any known auxiliary
variable (in particular, not on x).

2. The variable x possesses C modalities: that leads to differentiating C sub-
populations (cells 1, 2, . . . , C). In cell c, we denote ncr as the number
of respondents among the nc sampled. The response probability is esti-
mated, in cell c, by the ratio ncr/nc, the maximum likelihood estimator.
Therefore, if we denote rc = r ∩ c:

Ŷ φ =
1
N

C∑
c=1

∑
i∈rc

yi
n

N

ncr

nc

=
C∑

c=1

nc

n
Ŷ cr.
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We compare the structure of Ŷ φ with that of Ŷ r written like this:

Ŷ r =
C∑

c=1

ncr

nr
Ŷ cr,

which differs in the weighting system of means Ŷ cr: we use the weights of
the categories in the sample for Ŷ φ and the weights of the categories in
the respondent sample for Ŷ r.

3. We notice that the response rates obviously differ from one category to
another (80% rural, 70% suburban and 50% downtown), which explains
the numerical difference between Ŷ r and Ŷ φ. We have

Ŷ φ =
100
300

× 9 800 +
100
300

× 11 600 +
100
300

× 13 600 ≈ 11 670 Francs,

and

Ŷ r =
80
200

× 9 800 +
70
200

× 11 600 +
50
200

× 13 600 = 11 380 Francs.

The categories with the smallest mean income (rural zone) respond best:
this is why the correction (going from Ŷ r to Ŷ φ) makes the estimate
increase.

4. In case c, we keep yi if individual i is a respondent (i ∈ rc) and Ŷ cr

otherwise (which affects nc − ncr individuals). The estimator originally
from the imputation is thus:

Ŷ I =
1
N

C∑
c=1

∑
i∈rc

yi + (nc − ncr) Ŷ cr

n/N

=
1
n

C∑
c=1

[
(ncrŶ cr + (nc − ncr)Ŷ cr

]
= Ŷ φ.

We hold that, case by case, mean imputation or reweighting by the inverse
of the response probability leads to the same estimator.

5. We can distinguish four random variables (more or less interdependent):
• The sample S, as a list of sampled identifiers;
• The responding or non-responding characteristic of every individual in

the population, which can be formed by a random variable Ri that is
1 is individual i responds and 0 otherwise;

• The vector of sample sizes intersecting the C cells, being

n = (n1, n2, . . . , nC);

• The vector of respondent sample sizes by cell, being

nr = (n1r ; n2r ; . . . ; nCr).
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If, for example, we fix S and Ri, then n and nr are determined. If we
are placed in the situation where we fix Ri, n and nr, there remains the
random variable on S: this random variable leaves a priori a large number
of combinations possible for the sample of respondents. The fixing of Ri

comes back to designating non-respondents in the population. The fixing
of nc comes back, in the frame of a simple random survey of size n, to
considering that we eventually complete a simple random survey of size nc

in cell c (a well-known result that is often used in the frame of domain es-
timation: consider here that a cell is a domain). The supplementary fixing
of ncr (still by virtue of the fundamental result of the domain estimation
in the case of simple sampling) eventually consists in summarising the
situation as such: in a given cell c distinguishing a priori a population of
respondents and a population of non-respondents, we perform a simple
random survey of size ncr among the respondents and a simple random
survey of size (nc −ncr) among the non-respondents (the latter obviously
not yielding any information y).

6. Attention! The expected values and variances are simply denoted E(.)
and var(.), but it is indeed a question, in the entire series, of conditional
moments about R (vector of Ri), n and nr

E(Ŷ r) − Y =
C∑

c=1

ncr

nr
Y cr − Y ,

where Y cr is the true mean among the respondents of cell c (this parameter
has here a significance, since the respondents in the population of the cell
are fixed, from the fact of conditioning upon Ri). We know in fact that
E(Ŷ cr | n,nr,R) = Y cr. We notice that in the absence of conditioning by
Ri we cannot define Y cr, as there is no a priori respondent population.
Since

Y r =
C∑

c=1

Ncr

Nr
Y cr,

where Ncr counts the respondents in the total population of cell c, we
have:

E(Ŷ r) − Y =
C∑

c=1

(
ncr

nr
− Ncr

Nr

)
Y cr + (Y r − Y ) = B0 + B∞.

It is clear that if n is large, ncr/nr is close to Ncr/Nr (classical estimation
theory of proportions in the case of simple random sampling, since ncr/nr

is an unbiased estimator of Ncr/Nr and its variance varies by 1/nr), and
B0 indeed approaches zero. On the other hand, it is very likely that Y r �=
Y , the difference between the two magnitudes (that is B∞) being nothing
depending on n. Furthermore,
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var(Ŷ r) =
C∑

c=1

(
ncr

nr

)2

var(Ŷ cr) =
C∑

c=1

(
ncr

nr

)2 (
1 − ncr

Ncr

)
S2

cr

ncr

=
1
nr

C∑
c=1

(
ncr

nr

) (
1 − ncr

Ncr

)
S2

cr,

where S2
cr is the population variance of yi for the Ncr respondents of cell c.

The variance of Ŷ r thus varies in fine by 1/nr. We have:

E(Ŷ φ) − Y =
C∑

c=1

nc

n
E(Ŷ cr) − Y

=
C∑

c=1

(
nc

n
− Nc

N

)
Y cr +

C∑
c=1

Nc

N
(Y cr − Y c)

= B0 + B∞.

For reasons similar to those mentioned for Ŷ r, B0 approaches zero if n
increases, but B∞ does not depend on n and is not null unless Y cr = Y c,
for all c.

var(Ŷ φ) =
C∑

c=1

(nc

n

)2
(

1 − ncr

Ncr

)
S2

cr

ncr
.

We can write the variance as such:

var(Ŷ φ) =
1
nr

C∑
c=1

nr/n

ncr/nc

(
1 − ncr

Ncr

)
nc

n
S2

cr.

The variance of Ŷ φ therefore varies in fine by 1/nr.
7. If n is large, the problem is concentrated on B∞. To reasonably use Ŷ r,

it is necessary to assume that Y = Y r. That concretely returns to making
the assumption that in the whole population the phenomenon of non-
response does not at all depend on the value of y: technically, if we assume
that y is a random variable for which the yi constitute N realisations,
we get the equality if there is independence between y and R, i.e., if
f(y | R) = f(y), where f(y) is the distribution of y, or, which is equivalent,
if Pr[Ri = 1 | y] = Pr(Ri = 1). On the other hand, we use Ŷ φ when we
believe that Y cr = Y c in each cell, i.e., that the non-response is not related
to the value of y within each cell. The application of the assumption at
a finer level sometimes lets us approach the reality in a more acceptable
way. If we go back to the numerical example of 3., we indeed see that it
is not reasonable to use Ŷ r because the mean income increases while the
response rate decreases. An individual with high income (living downtown)
responds less readily than an individual with lower income (characterising
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the rural zone). However, for a given type of habitat and in the absence
of other information, we can believe that y does not influence (or only
slightly) on the non-response.

8. We try to minimise

var

(
C∑

c=1

wcŶ cr

)
subject to

C∑
c=1

wc = 1,

in the assumption where ncr is small compared to Ncr and S2
cr is a constant

denoted S2 (this last assumption is a little simplifying, but the validity of
the result naturally covers the case where these population variances are
‘a little bit different’ from one another). We have:

var

(
C∑

c=1

wc Ŷ cr

)
≈

C∑
c=1

w2
c

S2

ncr
.

Using the Lagrangian method, we find wc = ncr/nr. The estimator of
minimal variance is therefore Ŷ r. Under the assumptions from the start,
we have var(Ŷ φ) > var(Ŷ r).

9. The overall quality of the estimator Ŷ is measurable by the criterion of
the mean square error (MSE):

MSE(Ŷ ) = E[Ŷ − Y ]2 = var(Ŷ ) + Bias2.

Comparing from this point of view the two estimators Ŷ r and Ŷ φ, we see
that the variances vary by 1/nr (see 6.) and therefore approach zero when
n becomes large, that the B0 parts of the bias also approach 0 and that
the B∞ parts consequently remain the prominent terms of the numerical
point of view. In the conditions stated, B∞ is 0 for Ŷ φ but not for Ŷ r.
We thus without hesitation keep Ŷ φ.

10. a) If there is independence between y and R in the whole population
(therefore, in particular cell by cell), the B∞ components are null, for
Ŷ r as well as for Ŷ φ. To judge the impact of the biases, it therefore
remains to compare the squares of the following terms:

B1 =
C∑

c=1

(
ncr

nr
− Ncr

Nr

)
Y cr, for Ŷ r,

and

B2 =
C∑

c=1

(
nc

n
− Nc

N

)
Y cr, for Ŷ φ.

The direct comparison of squares of these values is not possible; hence,
the approach of part b).
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b) The distribution of nc is hypergeometric, for whatever c

nc ∼ H
(

n,
Nc

N

)
,

as the sampling is simple random without replacement and of fixed
size n. However, if n is very small compared to N, the hypergeometric
distribution can be approximated by a multinomial distribution, which
we will do hereafter. We therefore have, conditionally on Ri:

E
(nc

n

)
=

Nc

N
,

var
(nc

n

)
=

1
n

(
Nc

N

) (
1 − Nc

N

)
,

and
cov
(nc

n
,
nd

n

)
= − 1

n

Nc

N

Nd

N
, for all c �= d,

Now

E(B2
2) = var (B2)

=
C∑

c=1

Y
2

cr var
(nc

n

)
+

C∑
c=1

C∑
d=1
d �=c

Y crY drcov
(nc

n
,

nd

n

)

=
1
n

C∑
c=1

Nc

N
(Y cr − Ỹr)2,

with

Ỹr =
C∑

c=1

Nc

N
Y cr.

Likewise, conditionally on nr and Ri:

ncr ∼ H
(

nr,
Ncr

Nr

)
.

Therefore, by a calculation similar to the preceding, in approaching
the hypergeometric by a multinomial,

E(B2
1) = var(B1) =

1
nr

C∑
c=1

Ncr

Nr
(Y cr − Y r)2.

c) This assumption of constant probability places us in the scope where
y and R are independent on the entire population. From this fact, the
response probability satisfies:
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Pr[Ri = 1 | y] = Pr[Ri = 1] = constant.

The response rate is therefore pretty much identical in every cell, thus:

Ncr

Nc
≈ Nr

N
⇔ Ncr

Nr
≈ Nc

N
.

The equality is only approximate: we would rigorously get this by
considering the expected values of the two members with respect to
the distribution of Ri. However, if Nc is ‘large’ (we assume this), the
approximation must be good or very good. In this case, Ỹr ≈ Y r and
we finally get:

E(B2
2) ≈ nr

n
E(B2

1),

where nr/n is the response rate, less than 1. On average, B2
2 is less

than B2
1 .

d) From the point of view of the conditional variance, Ŷ r is preferable to
Ŷ φ (see 8.). From the point of view of the squared conditional bias,
Ŷ φ is instead preferable to Ŷ r. Thus, there is not any evidence to say
that overall (conditional criterion of the MSE) Ŷ φ is preferable to Ŷ r,
all the more so as the advantage of Ŷ φ in terms of bias is indeed slim
if the response rate is good. Even if we cannot come up, at this stage,
with a general rule, we hold out as, if the reality is indeed that of a
constant response probability, the splitting of the population into cells
c and the concerted use of Ŷ φ instead of Ŷ r can very well carry a false
sense of security: it is not because we are based on a finer splitting
with an estimator adapted on this splitting that the estimate is on
average better!

Exercise 9.3 Precision and non-response
For this exercise, it is a question of calculating the accuracy of an estimator
in the presence of non-response, when we consider the sample of respondents
as resulting from a two-phase survey. The variable of interest is denoted y.

1. Preliminary: We consider, in a sample S of given size n, that the indi-
viduals are all likely to respond with a probability φ, and they act inde-
pendently from one another. We denote Ri as the random variable linked
to individual i, which is 1 if he responds and 0 otherwise. What is the
distribution of Ri? What is the distribution of R, the total number of
respondents? Using two different methods, estimate φ and notice that we
reach the response rate m/n (m indicates the value taken by R).
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2. From now on, we are going to model the process leading to the sample of
respondents. We begin from a sample of size n selected by simple random
sampling. In addition, in the sample, we distinguish two sub-populations
(respectively indicated by h = 1 and h = 2): the first is that of individ-
uals likely to respond, independent from one another, with a probability
φ1, and the second is that of individuals likely to respond, independent
from one another, with a probability φ2. From the point of view of in-
dividual information, we consider that we are capable of replacing every
non-responding sampled individual in his category h, but not every indi-
vidual in the complete population. If the sample of respondents consists
in fine of mh individuals in sub-population h, what estimator Ŷφ of the
total Y are we going to use? (We assume that we always have at least one
respondent in each category h.) We will verify that it is unbiased, after
having seen the four types of random variables related to the modelling.

3. Using the appropriate conditioning, express the true variance var(Ŷφ).
In some terms, there remain expected values, which we will not try to
calculate.

4. With a quick calculation that assimilates the expected value of 1/mh to
1/E(mh), which is justified only if n is ‘quite large’, give a more legible
version of var(Ŷφ), as a function of φh.

5. Propose an unbiased variance estimator for Ŷφ.
Hint: If we denote Ŷ hr as the mean of yi calculated on the mh respondents
of h, nh as the sample size intersecting the sub-population h, and Ŷ φ as
the unbiased mean estimator Y , calculate the expected value of∑

h=1,2

nh

n
(Ŷ hr − Ŷ φ)2,

using the conditioning according to the different random variables.

Solution

1. The random variable Ri follows a Bernoulli distribution: Ri ∼ B(1, φ),
therefore R has a binomial distribution

R =
∑
i∈S

Ri ∼ B(n, φ).

In fact, the Ri are independent (fundamental assumption).
Estimation of φ:
• Search for an unbiased estimator (method 1):

As E(R) = nφ, we have

E
(

R

n

)
= φ.
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We therefore choose:
φ̂ =

m

n
,

where m is the realisation of the random variable R.
• Search for the maximum likelihood estimator (method 2):

The distribution of R has as a density function:

Pr[R = m] =
( n

m

)
φm(1 − φ)n−m.

It remains to maximise φm(1−φ)n−m, for given m. By differentiating
with respect to φ, we easily find φ̂ = m/n.

2. There are two sub-populations of interest (h = 1 and h = 2). The sample
S consists of a part of size n1 (denoted S1) crossing population 1 and
another part of size n2 (denoted S2) crossing population 2. The response
mechanism gives a sample r1 of size m1 in S1 and a sample r2 of size m2

in S2. Thus, there are four types of random variables:
• the sizes n1 and n2,
• the sample S,
• the sizes m1 and m2,
• the samples r1 and r2.

Fig. 9.1. Respondent and non-respondent samples: Exercise 9.3

S

r

S

r1

2

2

S1

respondents

non−respondents

category 1 category 2

In the presence of non-response, we reweight by the inverse of the esti-
mated response probability, in order to limit the biases. It is therefore
going to be necessary to distinguish between the two sub-populations. In
addition, the true response probabilities φ1 and φ2 being known, it is nec-
essary to replace them with their respective estimators. Conditionally on
n1 and n2, we know following from 1) that the ‘good’ estimators of φ1

and φ2 are m1/n1 and m2/n2. We therefore use:
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Ŷφ =
∑

h=1,2

∑
i∈rh

yi

n
N

mh

nh

= N
∑

h=1,2

nh

n

(
1

mh

∑
i∈rh

yi

)
.

We can write
Ŷφ = N

∑
h=1,2

nh

n
Ŷ rh,

where
1

mh

∑
i∈rh

yi = Ŷ rh

is the mean of yi in sample rh. If the modelling is exact, the estimator Ŷφ

is unbiased on Y .

We have:
E(Ŷφ) = E

S
[ E
mh|S

( E
rh|S,mh

Ŷφ)].

The three conditional expected values correspond to the ‘fitting’ of suc-
cessive random variables: S foremost, then mh (S fixed) and then finally
rh (mh and S fixed). Indeed, a fundamental theorem (shown below) says
that if we fix mh, since the non-response comes from a Bernoulli scheme,
everything occurs as if rh came from a simple random sample of size mh

in Sh (fixed), which is written

E
rh|S,mh

(Ŷφ) = N
∑

h=1,2

nh

n
E

rh|S,mh

(Ŷ rh) = N
∑

h=1,2

nh

n
Ŷ h,

where
Ŷ h =

1
nh

∑
i∈Sh

yi.

Thus
E

rh|S,mh

(Ŷφ) = NŶ ,

where Ŷ indicates the simple mean of n values yi for i in S. Since Ŷ does
not depend on mh, we have E

mh|S
( E
rh|S,mh

Ŷφ) = NŶ . Eventually,

E(Ŷφ) = NE
S
(Ŷ ) = Y.

Complements
Let us show that in some population of size n, if we select a sample
according to a Bernoulli process of probability φ and whose size is m,
then conditionally on m the selection is carried out by simple random
sampling of size m. We have: m ∼ B(n, φ), the binomial distribution.
Then, for every s sample,
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Pr[s | m] =

⎧⎨⎩
Pr(s and m)

Pr(m)
=

Pr(s)
Pr(m)

if #s = m

0 if #s �= m.

For all s of size m,

Pr[s | m] =
φm(1 − φ)n−m(

n
m

)
φm(1 − φ)n−m

=
( n

m

)−1

.

This probability characterises the simple random sample of size m in a
population of size n.

3. We have, by the decomposition formula of the variance,

var(Ŷφ) = var
S

E
mh|S

E
rh|S,mh

(Ŷφ) + E
S

var
mh|S

E
rh|S,mh

(Ŷφ) + E
S

E
mh|S

var
rh|S,mh

(Ŷφ).

Let us examine each of the three terms on the right-hand side:
• Term 3:

var
rh|S,mh

(Ŷφ) = N2
∑

h=1,2

(nh

n

)2

var
rh|S,mh

(Ŷ rh),

since S is fixed, the nh are fixed as well. The conditioning allows assim-
ilating the sampling to a stratified sampling by category h: therefore,
there is no covariance. Thus, according to the theorem from Ques-
tion 2., we have

var
rh|S,mh

(Ŷφ) = N2
∑

h=1,2

(nh

n

)2
(

1 − mh

nh

)
s2

yh

mh
,

where s2
yh is the variance of yi in the subsample Sh, which gives

E
S

E
mh|S

var
rh|S,mh

(Ŷφ) = E
S

⎧⎨⎩N2
∑

h=1,2

(nh

n

)2
(

E
mh|S

(
1

mh

)
− 1

nh

)
s2

yh

⎫⎬⎭ .

To go a bit further, we can consider a conditioning of S by nh, being:

E
S

= E
nh

E
S|nh

.

We notice that this distinction was not imposed in the calculation
of the bias. Now, still by virtue of the same fundamental theorem, we
know that if we condition by nh everything happens as if we did simple
random sampling of size nh in the sub-population h. Thus E

S|nh

(s2
yh) =

S2
yh, the population variance of yi throughout sub-population h. Since

1/mh evidently only depends on nh (and not on S), we at last obtain
a third term equal to:
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N2 E
nh

⎧⎨⎩∑
h=1,2

(nh

n

)2
[

E
mh|nh

(
1

mh

)
− 1

nh

]⎫⎬⎭S2
yh,

thus:
N2

n2

∑
h=1,2

{
E
nh

[
n2

h E
mh|nh

(
1

mh

)]
− E

nh

(nh)
}

S2
yh.

We can certainly write

E
nh

(nh) = n
Nh

N
,

(Nh is the size of sub-population h), but the other expected values
cannot be calculated in an exact manner, even if it is not possible to
simplify this term any more.

• Term 2: Since E
rh|S,mh

(Ŷφ) = NŶ and since this term does not depend

on mh, we have: var
mh|S

(NŶ ) = 0. The second term is therefore null.

• Term 1:
E

mh|S
( E
rh|S,mh

(Ŷφ)) = E
mh|S

(NŶ ) = NŶ .

The first term is
N2var

S
(Ŷ ) = N2 1 − f

n
S2

y .

Finally, by bringing together the three terms:

var(Ŷφ)

= N2

⎡⎣1 − f

n
S2

y +
1
n2

∑
h=1,2

{
E
nh

[
n2

h E
mh|nh

(
1

mh

)]
− E

nh

(nh)
}

S2
yh

⎤⎦ .

4. mh ∼ B(nh, φh). If n is large, the coefficient of variation of mh is small,
and therefore the approximation E (1/mh) ≈ 1/E(mh), although incor-
rect on the theoretical point of view, can be proven to be numerically
acceptable. Under this approximation:

E
(

1
mh

)
≈ 1

nhφh
,

and therefore, because E(nh) = nNh

N :

var(Ŷφ) ≈ N2 1
n

⎡⎣(1 − f) S2
y +

∑
h=1,2

(
1
φh

− 1
)

Nh

N
S2

yh

⎤⎦ .

We see in particular that if φh = 1, for all h, we indeed find the classical
scope of the theory without non-response. The second term of var(Ŷφ),
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which is positive, therefore constitutes the loss in accuracy (in order of
magnitude) due to the lone phenomenon of non-response. Clearly, if we
can act on φh (policy of training the interviewers, to go back to the non-
respondents, etc.), we have complete interest in doing this (φh large),
especially where NhS2

yh is large.
5. We have:

var(Ŷφ) = N2

[
1 − f

n
S2

y

]
+ E

S
E

mh|S

⎡⎣N2
∑

h=1,2

(nh

n

)2
(

1 − mh

nh

)
s2

yh

mh

⎤⎦ ,

and likewise:
s2

yh = E
rh|S,mh

(s2
hr),

where s2
hr is the sample variance of yi in the sample rh (therefore calcu-

lable).

Estimation of S2
y : The sampling design being complex, it is necessary

to try to estimate, on the one hand the ‘inter’ sub-population variance,
and on the other hand the ‘intra’ population variance. We are therefore
brought to calculate the expected value of:∑

h=1,2

nh

n
(Ŷ hr − Ŷ φ)2 =

∑
h=1,2

nh

n
Ŷ

2

hr − Ŷ φ
2.

where Ŷ φ indicates the unbiased estimator of Y , being

Ŷ φ =
∑

h=1,2

nh

n
Ŷ hr.

We get

E

⎛⎝∑
h=1,2

nh

n
Ŷ

2

hr

⎞⎠
= E

S
E

mh|S

⎛⎝∑
h=1,2

nh

n
E

rh|mh,S
(Ŷ

2

hr)

⎞⎠

= E
S

E
mh|S

⎛⎝∑
h=1,2

nh

n
var

rh|mh,S
(Ŷ hr) +

∑
h=1,2

nh

n
Ŷ

2

h

⎞⎠

= E
S

E
mh|S

E
rh|mh,S

⎛⎝∑
h=1,2

nh

n

(
1 − mh

nh

)
s2

hr

mh

⎞⎠+ E
nh

E
S|nh

⎛⎝∑
h=1,2

nh

n
Ŷ

2

h

⎞⎠ .
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Now,

E
S|nh

⎛⎝∑
h=1,2

nh

n
Ŷ

2

h

⎞⎠ =
∑

h=1,2

nh

n
[ var
S|nh

(Ŷ h) + Y
2

h].

Thus,

E
nh

E
S|nh

⎛⎝∑
h=1,2

nh

n
Ŷ

2

h

⎞⎠
= E

nh

⎛⎝∑
h=1,2

nh

n

(
1 − nh

Nh

)
S2

yh

nh

⎞⎠+
∑

h=1,2

Nh

N
Y

2

h

= E
nh

E
S|nh

E
mh|S

E
rh|mh,S

⎛⎝∑
h=1,2

nh

n

(
1 − nh

Nh

)
s2

hr

nh

⎞⎠+
∑

h=1,2

Nh

N
Y

2

h.

On the other hand,
E(Ŷ φ

2) = var(Ŷ φ) + Y
2
.

Finally,

E

⎛⎝∑
h=1,2

nh

n
(Ŷ hr − Ŷ φ)2

⎞⎠
= E

⎛⎝∑
h=1,2

nh

n

(
1 − mh

nh

)
s2

hr

mh

⎞⎠+ E

⎛⎝∑
h=1,2

nh

n

(
1 − nh

Nh

)
s2

hr

nh

⎞⎠
− var(Ŷ φ) +

⎛⎝∑
h=1,2

Nh

N
Y

2

h − Y
2

⎞⎠ .

Therefore∑
h=1,2

Nh

N
(Y h − Y )2

= E

⎡⎣ ∑
h=1,2

nh

n
(Ŷ hr − Ŷ φ)2 −

∑
h=1,2

nh

n

(
1 − mh

Nh

)
s2

hr

mh

⎤⎦+ var(Ŷ φ).

In addition, it is easy to verify that:

E
nh

E
S|nh

E
mh|S

E
rh|mh,S

⎛⎝∑
h=1,2

nh

n
s2

hr

⎞⎠ =
∑

h=1,2

Nh

N
S2

yh,

which is the intra-population variance. Therefore:
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S2
y =

∑
h=1,2

Nh

N
(Y h − Y )2 +

∑
h=1,2

Nh

N
S2

yh (N large)

= var(Ŷ φ)

+E

⎡⎣ ∑
h=1,2

nh

n
(s2

hr + (Ŷ hr − Ŷ φ)2) −
∑

h=1,2

nh

n

(
1 − mh

Nh

)
s2

hr

mh

⎤⎦
= var(Ŷ φ) + E(δ),

where δ represents the complex term between square brackets.
Return to the estimation of var(Ŷφ):

var(Ŷφ)

= N2 1 − f

n

(
var(Ŷφ)

N2
+ E(δ)

)
+ E

⎛⎝N2
∑

h=1,2

(nh

n

)2
(

1 − mh

nh

)
s2

hr

mh

⎞⎠ .

Therefore,

(
1 − 1 − f

n

)
var(Ŷφ) = N2E

⎛⎝1 − f

n
δ +

∑
h=1,2

(nh

n

)2
(

1 − mh

nh

)
s2

hr

mh

⎞⎠ .

An unbiased estimator of var(Ŷφ) is thus:

v̂ar(Ŷφ)

=
(

1 − 1 − f

n

)−1

N2

⎛⎝1 − f

n
δ +

∑
h=1,2

(nh

n

)2
(

1 − mh

nh

)
s2

hr

mh

⎞⎠ .

In the most frequent conditions, we have nh large, with f negligible com-
pared to 1 (and therefore mh negligible compared to Nh). After the de-
velopments that are derived, we come to an approximately unbiased esti-
mator

V̂ ′ = N2

⎛⎝ S̃2
y

n
+

1
n

∑
h=1,2

nh

n
(nh(1 − φ̃h) − 1)

s2
hr

mh

⎞⎠ ,

with
S̃2

y =
∑

h=1,2

nh

n
(s2

hr + (Ŷ hr − Ŷ φ)2),

and
φ̃h =

mh

nh
.
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The term S̃2
y is of an overall population variance nature, traced to the

decomposition of S2
y into ‘inter-variance’ and ‘intra-variance’, and φ̃h is

the response rate observed in category h.

It is difficult to simplify anymore, the order of magnitude (and even the
sign) of nh(1− φ̃h)− 1 possibly being of any nature. That being said, we
can be satisfied with the term in S̃2

y/n provided that, for h = 1 and h = 2,

| nh(1 − φ̃h) − 1 | is negligible compared to mh = φ̃hnh, thus in practice
nh(1 − φ̃h) is negligible compared to φ̃hnh, or moreover φ̃h ≥ 90 %.

Exercise 9.4 Non-response and variance
We consider a sampling plan with unequal probabilities πk (the πk do not
depend upon S) producing a sample S. The phenomenon of non-response
leads to a sample r (consequently included in S); we model the behaviour of
non-response using the Bernoulli approach, by distinguishing the categories
c within which the response probability of each of the individuals is φc. We
consider that the behaviours of response are independent from one individual
to another and that there is independence between ‘deciding whether or not
to respond’ and ‘being in S’ or not.

First part:
In this part, we consider that the response probabilities φc are known.

1. What natural unbiased estimator Ŷφ are we going to use to estimate the
total Y ? Verify that its bias is effectively null.

2. Write the decomposition formula of the variance by distinguishing the
randomness of producing S and the randomness of producing r given S.

3. Deduce the variance of Ŷφ (we denote V as the variance that the Horvitz-
Thompson estimator would have if there had not been any non-response).
Ascertain that the supplementary imprecision brought by the non-response
can be easily formalised.

4. How should we estimate (without bias) this variance? We will write the
variance V under the following form:

V =
∑
k∈U

∑
�∈U

wk�yky�,

where wk� depends on k and �.

Second part:
In this part, we consider that the response probabilities φc are unknown.
We call nc the number of selected individuals that belong to category c (nc

random) and mc the number of respondents among these nc individuals.
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1. In the Bernoulli model, how do we estimate φc?
2. Give the estimator Ŷφ that is used.
3. Using the fact that conditioning by mc amounts to a simple random sam-

pling of size mc in a population of size nc, show that Ŷφ is unbiased.
4. How would we naturally estimate the variance of Ŷφ? Is the estimator

biased?
5. The variance expression obtained above is comprised, alas, of very complex

terms that are the double inclusion probabilities πk�. Assuming that we
have available ‘ready-made’ software that can estimate the accuracy using
a design with unequal probabilities πk but cannot treat the non-response,
how can we estimate the accuracy of the estimator obtained in 2.?

Solution
First part:

1. Naturally, the non-response procedure is treated like a supplementary
sampling stage, where each individual k of S is kept with a probabil-
ity φk which is appropriate for this. The estimator is only concerned with
the individuals k of r, the only identifiers that we know yk:

Ŷφ =
∑
k∈r

yk

πkφk
, (9.1)

here with
φk = φc if k ∈ c.

We can write:
Ŷφ =

∑
k∈U

yk

πkφk
× Rk × Ik,

where
Ik =

{
1 if k is selected
0 otherwise,

and
Rk =

{
1 if k responds
0 otherwise.

Rk follows a Bernoulli distribution B(1, φk) and Ik follows a Bernoulli
distribution B(1, πk).

E(Rk) = Pr[k responds] = φk,

E(Ik) = Pr[k is selected] = πk.

Thus,
E(Ŷφ) =

∑
k∈U

yk

πkφk
E(Rk × Ik).
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Indeed
E(Rk × Ik) = ERk × EIk = φk × πk.

The equality above is due to the assumption of independence between
‘sampling’ and ‘response’: the fact of knowing that an individual is se-
lected gives absolutely no information about its behaviour in terms of
response. In other words, being sampled is neither a particular incentive
nor a restraint in accepting to respond in a survey. The independence
of these two events is far from being evident in practice, as the fact of
being selected in the sample can prompt, in itself, a response. With this
assumption:

E(Ŷφ) = Y.

2. The variance decomposition gives:

var(Ŷφ) = var
S

[ E
r|S

(Ŷφ | S)] + E
S
[var
r|S

(Ŷφ | S)],

where r | S is the randomness from the Bernoulli model, and S is the
‘classical’ randomness producing the sample.

3. In the first place, it is necessary to express each of the conditional terms.

E
r|S

[Ŷφ | S] = E
r|S

[∑
k∈S

yk

πkφk
Rk | S

]
=
∑
k∈S

yk

πk φk
φk =

∑
k∈S

yk

πk
,

where
∑

k∈S yk/πk is the Horvitz-Thompson estimator used in the absence
of non-response. Thus,

var
S

[ E
r|S

(Ŷφ | S)] = var
S

[∑
k∈S

yk

πk

]
= V,

var
r|S

[Ŷφ | S] = var
r|S

[∑
k∈S

yk

πk φk
Rk

]
=
∑
k∈S

(
yk

πkφk

)2

var
r|S

(Rk).

The covariances between the Rk are null, as the ‘response’ behaviours
are independent from one individual to another. It is again based on an
assumption for which the relevance in practice remains questionable. We
can indeed imagine that the decision for individual i to respond (or not)
has an ‘influence’ on the decision of another individual � to respond (or
not). This phenomenon routinely occurs for surveys in clusters. Now,

var(Rk) = φk(1 − φk) (Bernoulli distribution),

and

var
r|S

[Ŷφ | S] =
∑
k∈S

1 − φk

φkπ2
k

y2
k =

∑
k∈U

1 − φk

φkπk

y2
k

πk
Ik.
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Therefore,

E
S
[var
r|S

(Ŷφ | S)] =
∑
k∈U

1 − φk

φk

y2
k

πk
.

Conclusion:
We have

var(Ŷφ) = V +
∑
k∈U

1 − φk

φk

y2
k

πk
,

where V is thus the accuracy that we would get in the absence of non-
response, and ∑

k∈U

1 − φk

φk

y2
k

πk

is the loss in supplementary accuracy specifically due to the non-response.
In particular, we verify that for all k, if φk = 1 then var(Ŷφ) = V. Since
φk = φc if k ∈ c, we can write:

var(Ŷφ) = V +
C∑

c=1

1 − φc

φc

(∑
k∈c

y2
k

πk

)
,

where (1 − φc)/φc is a decreasing function of φc.
4. We notice that V is a quadratic form, which justifies the adopted composi-

tion. The wk� are complex functions of k and �, involving double inclusion
probabilities πk�. Then, reusing the approach from 1., we have:

V̂ =
∑
k∈r

∑
�∈r
� �=k

wk�

πk�

yky�

φkφ�
+
∑
k∈r

wkk

πkφk
y2

k. (9.2)

where V̂ estimates V without bias. The calculation of the expected value
is done as in 1. and again uses the independences expressed in the as-
sumption through:

E(IkI�RkR�) = E(IkI�)(ERk)(ER�) = πk�φkφ�.

In addition, the second part of var(Ŷφ) is estimated (without bias) by:

∑
k∈r

1 − φk

φ2
k

y2
k

π2
k

.

Finally,

v̂ar(Ŷφ) = V̂ +
∑
k∈r

1 − φk

φ2
k

y2
k

π2
k

,

where V̂ is the ‘classical’ variance estimator, weighted to take into con-
sideration the non-response, and
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k∈r

1 − φk

φ2
k

y2
k

π2
k

is a ‘supplementary’ term specifically due to the existence of non-response.

Second part:

1. The natural estimator is:
φ̂c =

mc

nc

(empirical response rate in category c). Here, nc is a random variable, but
if we think conditionally on nc, φ̂c is the maximum likelihood estimator of
φc in the Bernoulli model. Actually, according to the non-response mech-
anism, mc ∼ B(nc, φc). Furthermore, conditionally on nc, the estimator
φ̂c is unbiased for φc.

2. Since φc is unknown, we take a page from Expression (9.1) and we replace
φc by φ̂c:

Ŷφ =
C∑

c=1

∑
k∈rc

yk

πkφ̂c

=
C∑

c=1

∑
k∈rc

yk

πk mc/nc
(with rc = r ∩ c).

3. In the first place, we are placed in S (we therefore condition with respect
to S). We look for:

E
r|S

(Ŷφ | S) = E
mc|S

[E(Ŷφ | mc, S)],

where E
mc|S

indicates the expected value with respect to the distribution

of mc conditionally on S. Indeed,

E(Ŷφ | mc, S) =
C∑

c=1

E

(∑
k∈rc

yk

πk mc/nc

∣∣∣∣∣mc, S

)

=
C∑

c=1

ncE

[∑
k∈rc

yk/πk

mc

∣∣∣∣mc, S

]
,

and

E

[∑
k∈rc

yk/πk

mc

∣∣∣∣mc, S

]
=
∑
k∈Sc

yk/πk

nc
,

for all c, with Sc = S∩c. In effect, this expected value being conditional on
the sample size mc resulting from a Bernoulli sampling, we calculate this
as if we had dealt with a simple random sample of size mc in a population
of size nc:

E(Ŷφ | mc, S) =
C∑

c=1

∑
k∈Sc

yk

πk
=
∑
k∈S

yk

πk
.
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Therefore,

E
r|S

(Ŷφ | S) = E
mc|S

(∑
k∈S

yk

πk

)
=
∑
k∈S

yk

πk
,

because
∑

k∈S yk/πk does not depend on mc. Eventually, by decondition-
ing by S at the ultimate step, we obtain

E(Ŷφ) = E
S

E(Ŷφ | S) =
∑
k∈U

yk.

4. We go from Expression (9.2), and we replace the φk by their estimator
(maximum likelihood) φ̂k:

̂̂
V =

∑
k∈r

∑
�∈r
� �=k

wk�

πk�

yky�

φ̂kφ̂�

+
∑
k∈r

wkk

πkφ̂k

y2
k +
∑
k∈r

(1 − φ̂k)y2
k

φ̂2
k π2

k

.

Even if φ̂k estimates φk without bias (and if in knowing that nc is large,
we can remember that φ̂k has the ‘good properties’ that all maximum
likelihood estimators have), V̂ being a complex expression in φk (presence

of squares, roots, products), this substitution operation renders ̂̂V slightly
biased.

5. In fact, for a sample S and in the absence of non-response, the ‘ready-
made’ software knows how to calculate the following variance estimator:

v̂ar(Ŷφ) =
∑
k∈S

∑
�∈S
� �=k

wk�

πk�
yky� +

∑
k∈S

wkk
y2

k

πk
.

We notice that if at the start of running the software we give the variable
zk = yk/φ̂k, instead of yk and if we do the calculation on the respondents
only (for which zk is perfectly known), the software is going to calculate:

V̂2 =
∑
k∈r

∑
�∈r
� �=k

wk�

πk�

yk

φ̂k

y�

φ̂�

+
∑
k∈r

wkk
y2

k

πkφ̂2
k

= ̂̂V −
∑
k∈r

wkk

πkφ̂k

y2
k −
∑
k∈r

1 − φ̂k

φ̂2
k

y2
k

π2
k

+
∑
k∈r

wkk
y2

k

πkφ̂2
k

.
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Therefore,

̂̂
V = V̂2 +

∑
k∈r

wkk

πkφ̂k

y2
k

{
1 +

1 − φ̂k

φ̂kπkwkk

− 1

φ̂k

}

= V̂2 +
∑
k∈r

(1 − φ̂k)(1 − wkkπk)

φ̂2
kπ2

k

y2
k

= V̂2 +
C∑

c=1

∑
k∈rc

1 − φ̂c

φ̂2
c

1 − wkkπk

π2
k

y2
k.

Since the inclusion probabilities πk do not depend on S, we have

wkk =
1 − πk

πk
.

Therefore, ̂̂
V = V̂2 +

C∑
c=1

∑
k∈rc

1 − φ̂c

φ̂2
c

y2
k

πk
.

Summary of the approach:
• Calculate, for each category c and for each respondent k of c, the

variable yk/φ̂c.
• Give the values thus obtained at the start of the ‘ready-made’ software

and note the output value V̂2.
• Add the (positive) value:

C∑
c=1

1 − φ̂c

φ̂2
c

∑
k∈rc

y2
k

πk
.

Exercise 9.5 Non-response and superpopulation
In this exercise, we introduce a model called the ‘superpopulation’, by exam-
ining the randomness of a completely different nature than for survey random-
ness. Thus, we consider adding to the survey randomness a randomness term
governed by a superpopulation model. Without this approach (that of sam-
pling ‘models’), it is difficult to treat the non-responses through imputation.
We consider that each value yk of the finite population of size N is, indeed,
the result of a random variable generated by the following simple model:

yk = a + zk,

where a is a real number (unknown) and zk is a random variable of the ex-
pected value E(zk) = 0 and of the variance V(zk) = σ2. The zk are indepen-
dent among one another. The notations E and V are voluntarily differentiated
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from the notations E and var for the traditional expected value and variance
because it is a matter of randomness of a different nature. As a result of a
simple random sample, we obtain m responses for a selected sample of size n.
We denote S as the selected sample, r as the sample of respondents, Ŷ r as
the mean (known) for the r respondents and Y as the true mean (unknown)
for the population of size N . We assume that the response behaviour is inde-
pendent from one individual to another.

I) Reweighting with the ‘classical’ view
It is common to come across, for the estimator of Y , the value Ŷ r, i.e., the
simple mean of the respondents.

1. Justify this estimator with a simple probabilistic model, in a reweighting
point of view.

2. With the previous model, show that if the size m is fixed, everything
comes along as if we had produced a simple random sampling of size m
in a population of size N (hint: calculate the conditional probability of
selecting r knowing m and S, then ‘decondition’ by S).

3. Deduce that, if the model from 1. is true, Ŷ r is conditionally unbiased
on m; then, calculate its true variance (conditional on m) and give an
unbiased estimator for it (still for m fixed).

4. What problems would we have if we wanted to calculate a bias or a vari-
ance unconditionally on m?

II) Mean imputation, ‘superpopulation’ view
We are going to verify that, in a completely different point of view, we find
the estimator Ŷ r and that we are able to calculate a bias and a variance, in
the ‘superpopulation’ sense.

1. Having available information on the lone respondents, i.e., {yk | k ∈ r},
how do we estimate (‘at best’, in a way of specifying) the known param-
eters a and σ2 of the superpopulation model?

2. Under these conditions, what ‘optimal’ value are we going to naturally
impute for the selected but non-respondent individual �?

3. Verify that then the mean imputation estimator Y can only be Ŷ r.
4. The bias in a classical sense is: E(Ŷ r)− Y . In the sense of the model, the

bias is obtained by taking the expected value E (compared to the model)
of the classical bias, being:

E [E(Ŷ r) − Y ].

We remember that the expected value E is conceived with respect to the
randomness generating r. We consider that the sampling leading to r pro-
duces a randomness completely independent from that of the model, which
goes back to saying that the two expected values E and E interchange.
Then, calculate the bias of Ŷ r.
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5. The variance in a classical sense is:

var(Ŷ r) = E[Ŷ r − E(Ŷ r)]2.

In the sense of the model, we now define the variance like this:

V(Ŷ r) = EE(Ŷ r − Y )2.

Calculate this variance as a function of m, N and σ2.
6. What expression can we use to estimate V(Ŷ r) in a way to obtain an

unbiased estimator V̂ under the model, i.e., such that EV̂ = V(Ŷ r)? We
distinguish two cases:
a) We know how to locate the individual respondents.
b) After imputation, we no longer know who has responded and who has

not responded and consequently, we no longer know which are the
imputed values.

7. Finally, what are the ‘benefits’ and the ‘drawbacks’ of the two points
of view, addressing respectively I) and II), which both lead to the same
estimator Ŷ r?

III) Imputation by drawing of individuals (quick overview of the method)
We are placed in the event where that are more respondents than non-
respondents (response rate higher than 50%). To impute the values of the
(n − m) non-respondents, we randomly assign them selected values without
replacement among the m responses. The ‘donors’ therefore make up a sim-
ple random sample S∗ taken from r (this is a sort of hot deck, but without
replacement). We denote as y∗

� the value imputed in this way for unit � of
S − r.

1. In an approach by modelling behaviour, what is the justification of this
method? Write the mean estimator that is imposed and specify under
what condition and in what sense it is unbiased.

2. Verify that, when the composition of r is known and fixed, the weights
are random and can take two values that we will specify.

3. Deduce that this estimator is unbiased for Y , in the ‘traditional’ sense of
bias, under the conditions of Part I).

We could carry on with the exercise by calculating the accuracy (traditional
or in the ‘model’ sense). We could show that the accuracy in the traditional
sense is worse with this method III) than with that developed in II).

Solution
I) Reweighting with the ‘classical’ view

1. This approach comes back to adopting a Bernoulli model: individual k
responds with probability φ or does not respond with probability (1−φ).
Therefore, the distribution of the indicator variable ‘k responds’ (denoted
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Rk) is a Bernoulli distribution with parameter φ: Rk ∼ B(1, φ). We know
that with the inclusion probability πk and the response probability φk,
associated with individual k, the classical reweighting estimator of the
total is:

Ŷφ =
∑
k∈r

yk

πk × φk
.

It is calculable and unbiased if (and only if) φk > 0 and φk are known for
all k = 1, . . . , N , but this approach is unrealistic, since in practice the φk

stay unknown. Here, the model needs φk = φ, for all k = 1, . . . , N, which
in practice produces a bias as this model does not reflect the reality. With
φ being unknown, it is necessary to estimate it. We easily verify that, S
being known, the maximum likelihood estimator of parameter φ is:∑

k∈S

Rk

n
=

m

n
= Empirical response rate.

Actually, the likelihood function is (conditionally on S):∏
k∈S

φRk(1 − φ)1−Rk

and it suffices to maximise it on φ, with Rk being ‘known’. We recall that
here, πk = n/N . At last,

Ŷφ =
∑
k∈r

yk
n
N

m
n

= N

∑
k∈r yk

m
= NŶ r.

Thus, Ŷ φ = Ŷ r, and the use of Ŷ r is justified with such a model.
2. Let us set S and m. The randomness rests on the m identifiers of the

respondents among the individuals of S, i.e., on the composition of r:

Pr(r | S, m) =
Pr(r and m | S)

Pr(m | S)
.

As it is well understood that we consider only samples r consisting of
exactly m individuals, we have:

Pr(r | S, m) =
Pr(r | S)
Pr(m | S)

.

In the Bernoulli model, m follows a binomial distribution B(n, φ), as m =∑
k∈S Rk and the variables Rk are independent among one another by

assumption of behaviour

Pr(m | S) =
( n

m

)
φm(1 − φ)n−m.
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In addition,
Pr(r | S) = φm(1 − φ)n−m.

Actually, r is a well-determined sample of size m. To get it, it is necessary
to ‘select’ with probability φ exactly the m individuals which comprise
r (that justifies the term φm), while the other individuals of S (i.e., the
non-respondents) are selected with probability 1−φ (hence the term (1−
φ)n−m). Therefore,

Pr(r | S, m) =
1(
n
m

) ,
an expression which characterises a simple random sample of size m in S.
At last, we decondition by S:

Pr(r | m) =
∑
S⊃r

Pr(r | S, m)Pr(S | m) =
∑
S⊃r

Pr(r | S, m)Pr(S). (9.3)

Effectively,

Pr(S | m) =
Pr(m | S)

Pr(m)
Pr(S),

and Pr(m | S) does not depend on S (S of size fixed on n), therefore

Pr(m) = Pr(m | S), and Pr(S = s | m) = Pr(S = s) = p(s).

Indeed
p(s) =

1(
N
n

) ,

and there are
(

N−m
n−m

)
terms in the sum. We get

Pr(r | m) =

(
N−m
n−m

)
(

n
m

) (
N
n

) =
1(
N
m

) .

That characterises a simple random sample of size m in a population of
size N .

3. If the Bernoulli model is true (and only in this case), we have, using the
fundamental result of the previous question and for all m > 0:
• E[Ŷ r | m] = Y (fundamental property of simple random sampling

of size m). We notice that the knowledge of φ is (fortunately) useless.

• var[Ŷ r | m] =
(
1 − m

N

) S2
y

m
(property of simple random sampling

of size m), with

S2
y =

1
N − 1

∑
k∈U

(yk − Y )2,
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• v̂ar[Ŷ r | m] =
(
1 − m

N

) s2
r

m
, with

s2
r =

1
m − 1

∑
k∈r

(yk − Ŷ r)2

(calculated on the sample of respondents). The estimator v̂ar[Ŷ r | m]

is unbiased for var[Ŷ r | m] conditionally on m, for E(s2
r | m) = S2

y

(property of simple random sampling).
4. There are in fact two problems: a problem for the expected value and the

variance and a calculating problem for the variance.
• The problem of burden is derived from the situation where m = 0.

That remains possible with probability Pr(m = 0) = (1 − φ)n. This
probability can in addition be non-negligible if φ is small. In this un-
favourable case, Ŷ r is very obviously incalculable since there are no
respondents. From this fact, the ‘deconditioning’ by m can only be
developed by preserving the condition m > 0, i.e., by considering:

E(Ŷ r | m > 0) and var(Ŷ r | m > 0).

This condition implies a modified distribution of m, with m > 0,

Pr′(m) =
Pr(m)

Pr(m > 0)
.

Since Y = E(Ŷ r | m) does not depend on m for m > 0, we have
E(Ŷ r | m > 0) = E

[
E(Ŷ r | m) | m > 0

]
= Y . It is not the same for

the variance.
• For the variance, independently from the difficulty that comes from

being raised, the deconditioning by m leads to serious calculation dif-
ficulties: it is necessary to calculate E

m

(
var(Ŷ r | m)

)
while var(Ŷ r | m)

has a 1/m expression. Indeed, we do not know how to exactly calculate
E
m

(1/m), and it would then be necessary to develop an approximate
formula (which would only make sense for n large).

II) Mean imputation, ‘superpopulation’ view

1. It is a quite classical problem in mathematical statistics: we have available
r values yk that are independent and identically distributed (iid). The
optimum linear estimator in the least squares sense is:

â = Ŷ r (called the Gauss-Markov estimator.)

The criterion is one of minimal variance among the linear estimators and
without bias: â is the estimator of type

∑
k∈r λkyk such that E(â) = a
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that minimises E(â − a)2. According to this same criterion of optimality,
we find:

σ̂2 =
SSR

m − 1
,

where
SSR =

∑
k∈r

ẑ2
k (sum of squared residuals),

with ẑk = yk − Ŷ r, thus σ̂2 = s2
r.

2. We are going to estimate (or, more precisely, predict) the unknown value
y� for the selected but non-respondent individual � by the optimal value:

E [y� | {yk | k ∈ r}] = a + E(z� | {zk | k ∈ r}) = a,

where a must be at best estimated, thus by â, i.e., that y∗
� = Ŷ r. We

therefore impute, for each non-respondent, the mean value of the respon-
dents. Even without the theoretical arsenal shown above, this practice is
intuitive and natural.

3. We denote Ŷ I as the final mean estimator Y after imputation.

Ŷ I =
1
N

⎡⎣∑
k∈r

yk

n/N
+
∑

k∈S\r

y∗
k

n/N

⎤⎦ ,

where S\r is the set of selected but non-respondent individuals, n/N is the
inverse of the sampling weight, and y∗

k is the imputed value for individual
k. We get

Ŷ I =
1
N

[
N

m

n
Ŷ r + (n − m)

Ŷ r

n
N

]
=

mŶ r + (n − m) Ŷ r

n
= Ŷ r.

4. The bias is
Bias = E [E(Ŷ r − Y )],

and the expected value is E(Y ) = Y , however E(Y ) �= Y , because Y
consists of values yk, and each yk is a random variable. Therefore,

Bias = E[E(Ŷ r − Y )].

Since the two types of randomness are by hypothesis of independent na-
ture, we can interchange the operators E and E .

Note on this point: Concretely, this signifies that the sampling of individ-
uals to construct S and the response process, i.e., the transition from S to



356 9 Treatment of Non-response

r, is carried out for both independently from the values y that the individ-
uals take. In other words, we require that the ‘behaviour of response/non-
response’ not depend on the realisations of the random variables yk, or,
otherwise stated, the fact of whether or not to respond does not depend
on the value y (which all the same consists of a rather strong assumption,
contrary to its appearance).

Bias = E[E(Ŷ r − Y )] = E[E(Ŷ r) − E(Y )].

Indeed,

E(Ŷ r) = E

⎛⎜⎜⎝
∑
k∈r

yk

m

⎞⎟⎟⎠ =
∑
k∈r

E(yk)
m

= m
a

m
= a,

and

E(Y ) = E
(∑

k∈U yk

N

)
=
∑
k∈U

E(yk)
N

= N
a

N
= a.

Therefore, the bias is: B = E(0) = 0.
5. For the variance, we are going to use the same property and interchange

the operators E and E
V(Ŷ r) = E[E(Ŷ r − Y )2].

We have:
Ŷ r = a + Ẑr and Y = a + Z,

where
Ẑr =

1
n

∑
k∈r

zk and Z =
1
N

∑
k∈U

zk.

Therefore,
V(Ŷ r) = E[E(Ẑr − Z)2].

We have, as well,

E(Ẑr − Z)2

= E
(∑

k∈r zk

m
−
∑

k∈U zk

N

)2

= E
[∑

k∈r

zk

(
1
m

− 1
N

)
−
∑
k/∈r

zk

N

]2

= V
(∑

k∈r

zk

(
1
m

− 1
N

)
−
∑
k/∈r

zk

N

)
because Ezk = 0

=
∑
k∈r

(
1
m

− 1
N

)2

V(zk) +
∑
k/∈r

1
N2

V(zk) for the zk are independent

=

[
m

(
1
m

− 1
N

)2

+ (N − m)
1

N2

]
σ2 =

N − m

Nm
σ2.
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Indeed, this expression only depends on fixed quantities, thus it is not
sensitive to S, which leads to

E(E(Ẑr − Z)2) = E(Ẑr − Z)2 =
(
1 − m

N

) σ2

m
.

Note: The expression resembles that of the variance for a simple random
sample of size m in a population of size N . The lone difference is that
the traditional population variance defined on the population S2

y has been
‘replaced’ here by the variance from the model σ2.

6. a) We recalled in II.1 that the traditional expression of the variance in
the sample of respondents denoted s2

r was unbiased under the model
(classical theory of the linear model), that is:

E(s2
r) = σ2.

Hence the natural estimator,

V̂ =
(
1 − m

N

) s2
r

m
such that EV̂ = V(Ŷ r).

b) After imputation and in the absence of remembering the imputed
data, the simple expression that we try to naturally calculate is the
overall variance in S, being:

s2 =
1

n − 1

∑
k∈S

(y∗
k − Ŷ r)2,

with

y∗
k =

{
yk if k responded
Ŷ r otherwise.

We recall that

Ŷ r =
∑

k∈S y∗
k

n
.

The estimator s2 can seem at first glance impossible to calculate since
it brings into play all the individuals of S and not only the respondents.
Actually, this is not the case, as it is sufficient to observe that for all
k /∈ r, y∗

k = Ŷ r and therefore the terms corresponding to the non-
respondents disappear. Hence,

s2 =
1

n − 1

∑
k∈r

(y∗
k − Ŷ r)2 =

1
n − 1

∑
k∈r

(yk − Ŷ r)2,

and therefore
s2 =

m − 1
n − 1

s2
r .
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It is thus necessary to use, to estimate V(Ŷ r) without bias:

V̂ =
(
1 − m

N

) 1
m

(
n − 1
m − 1

s2

)
n − 1
m − 1︸ ︷︷ ︸

β term

(
1 − m

N

) s2

m︸ ︷︷ ︸
α term

.

The α term is the expression that we are ‘naturally’ led to take in
the presence of imputed data (the naive calculation of the variance
s2 with all the data of which we have available is effectively quite
natural). Unfortunately, this term underestimates the true accuracy,
and it is therefore necessary to correct by multiplying it with the β
term, greater than 1. The β term is for that matter pretty much equal
to the inverse of the response rate. In effect, the mean imputation
Ŷ r creates a lot of equal y∗

k (to Ŷ r in this case), and that artificially
reduces the variance.

7. Overview:
a) In I), we count on the validity of the response model (Bernoulli model

here): it is necessary to specify the way in which we go from S to r
by modelling the response probabilities. This is somewhat risky.

b) In II), it is not necessary to know precisely how we go from S to
r by modelling the response probabilities. However, a rather strong
first assumption requires that the fact of whether or not to respond
does not depend on the distribution producing y. A second rather
strong assumption is the model of behaviour directly dealing with the
variables yk. Therefore:
• If we favour the model on the response probabilities, use Ap-

proach I.
• If we favour the model on the values yk themselves, use Ap-

proach II.
It is necessary to prejudge the model in which we have the most con-
fidence, the one that seems most reliable.

III) Imputation by sampling of individuals

1. This method is intuitively justified if we consider that the respondents
and the non-respondents have the same behaviour y ‘on average’, that is
to say if we believe in the superpopulation model

yk = a + zk, for all k = 1, 2, . . . , N.

The natural mean estimator is:

Ŷ I =
∑

k∈r yk +
∑

k∈S−r y∗
k

n
,

where the y∗
k are in fact yj(j ∈ r). Since E(yk) = a for all k = 1, 2, . . . , N ,

E(Ŷ I) = a = E(Y ).
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Thus
EE(Ŷ I − Y ) = EE(Ŷ I − Y ) = E

[
E(Ŷ I) − E(Y )

]
= 0.

The estimator Ŷ I is unbiased under the conditions of II.4. Thanks to the
assumption that allows to interchange E and E, it is not worthwhile to
specify how we go from S to r. Furthermore, the method of selecting the
(n − m) individuals in r (therefore the drawing of S∗) is ‘without effect’
on the calculation of the bias.

2. We have

Ŷ I =
∑

k∈r yk +
∑

k∈S−r y∗
k

n
.

Indeed, y∗
k, for all k ∈ S − r, is in reality one of the yj with j ∈ r. More

precisely, we can say, by definition of S∗, that j ∈ S∗. We can therefore
write, for all k ∈ S − r, that there exists j ∈ S∗ such that y∗

k = yj, and

Ŷ I =

∑
k∈r yk +

∑
j∈S∗ yj

n
=
∑
k∈r

(
1 + I {k ∈ S∗}

n

)
yk,

where I {k ∈ S∗} refers to the indicator variable of the occurrence k ∈ S∗.
For k ∈ r fixed, the sampling weight is:

1 + I {k ∈ S∗}
n

.

It is therefore random, being explicitly dependent on S∗. It can take two
values:

1 + I {k ∈ S∗}
n

=

⎧⎪⎨⎪⎩
1 + 1

n
=

2
n

with probability Pr[k ∈ S∗] =
n − m

m
1
n

with probability Pr[k /∈ S∗] = 1 − n − m

m
,

(reminder: m > n/2).
3. In the first place, let us condition with respect to r (r fixed, we are only

interested in the randomness that produces S∗):

E
S∗|r

(Ŷ I) = E
S∗|r

[∑
k∈r

1 + I {k ∈ S∗}
n

yk

]
=
∑
k∈r

⎡⎣1 + E
S∗|r

I {k ∈ S∗}
n

⎤⎦ yk.

Since
E

S∗|r
I {k ∈ S∗} = Pr[k ∈ S∗ | k ∈ r] =

n − m

m
,

we have

E
S∗|r

(Ŷ I) =
1 + n

m − 1
n

(∑
k∈r

yk

)
= Ŷ r.
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Now, we saw in I) that with the Bernoulli model, we have

E(Ŷ r | m > 0) = Y ,

the randomness this time being the sampling of S, then the sampling of r

in S. Provided that m > 0, the estimator Ŷ I is therefore unbiased in the
classical sense, together for all randomness.

Note: In point of view III), we bring into play up to three types of ran-
domness which occurs in sequence: S, then r, then S∗.

* * *



Table of Notations

# cardinal (number of elements in a set)
� much less than
\ A\B complement of B in A
′ the vector u′ is the transpose of the vector u

! factorial: n! = n × (n − 1) × · · · × 2 × 1(
N
n

)
N !

n!(N−n)! number of combinations of n individuals among N

[a ± b] interval [a − b, a + b]
≈ is approximately equal to
∼ follows a specified distribution (for a random variable)
b slope of the regression line for y on x in the population

b̂ estimator of the slope of the regression line for y on x

CI(1 − α) confidence interval of probability level 1 − α

cov(X, Y ) covariance between random variables X and Y

CV coefficient of variation
dk dk = 1/πk natural sampling weight
DEFF design effect
D domain of U

E(Y ) mathematical expected value of random variable Y

E(Y |A) mathematical expected value of random variable Y given that event
A occurs

E(Y ) expected value of Y with respect to the randomness of a model
f sampling rate f = n/N

Gk(.) pseudo-distance
h indicator of the stratum or post-stratum
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Ik is 1 if unit k is in the sample and 0 otherwise
I{A} is 1 if A is true and 0 otherwise
k or i generally indicates a statistical unit, k ∈ U (identifying) or i ∈ U

m number of clusters or primary units in the sample of primary units,
or the sample size with replacement

M number of clusters or primary units in the population
MSE mean square error
n sample size (without replacement)
n̄ average sample size of SU in the PU
nD sample size intersecting domain D

ni number of sampled SU in PU i

nr or m number of respondents in the sample
nS sample size within S

N population size
N average size of the PU in the population
nh sample size in stratum or post-stratum Uh

Nh number of statistical units in stratum or post-stratum Uh

Ni number of SU in PU i

Nij population size in case (i, j) of a contingency table
p(s) probability associated with sample s

pi elementary sampling probability of unit i in a drawing with
replacement

P or PD proportion of individuals belonging to a domain D

Pr(A) probability that event A occurs
Pr(A|B) probability that event A occurs, given that event B occurs
PU primary unit
r sample of respondents
Rk random variable equalling 1 if k responds and 0 otherwise
s sample or subset of the population, s ⊂ U

s2
y corrected sample variance of variable y

s2
yh corrected sample variance of y in stratum or post-stratum h

s2
T corrected sample variance of totals estimated for PU in the sample

of PU
s2
2,i corrected sample variance of y in the sample of SU within PU i

sxy corrected covariance between variables x and y for the sample
S random sample such that Pr(S = s) = p(s)
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S2
y corrected population variance of variable y for the population

Sxy corrected covariance between variables x and y for the population
Sh random sample selected in stratum or post-stratum h

S2
yh corrected population variance of y in stratum or post-stratum h

S2
T corrected population variance of totals for PU in the population of

PU
S2

2,i corrected population variance of y within PU i

SU secondary unit
U finite population of size N

Uh finite population consisting of stratum or post-stratum h, where
h = 1, · · · , H

vk linearised variable
var(Y ) variance of random variable Y

V(Y ) variance of Y with respect to the randomness of a model
v̂ar(Y ) estimator of the variance of random variable Y

wk weight associated with individual k in the sample
x real auxiliary variable
xk value taken by the real auxiliary variable for unit k

xk vector of Rp corresponding to the values taken by the p auxiliary
variables for unit k

X total of values taken by the auxiliary variable for all units of U

X̂ or X̂π Horvitz-Thompson estimator of X

X mean of values taken by the auxiliary variable for all units of U

X̂ or X̂π Horvitz-Thompson estimator of X

y variable of interest
yk value taken by the variable of interest for unit k

y∗
k value of y imputed for individual k (treatment of non-response)

yi,k value of the variable of interest y for SU k of PU i

Y total of values taken by the variable of interest for all units of U

Yh total of values taken by the variable of interest for all units of
stratum or post-stratum Uh

Yi total of yi,k in PU i

Ŷ or Ŷπ Horvitz-Thompson estimator of Y

Y mean of values taken by the variable of interest for all units of U

Y h mean of values taken by the variable of interest for all units of
stratum or post-stratum Uh
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Ŷ h mean estimator of the values taken by the variable of interest for
all the units of stratum or post-stratum Uh

Ŷ or Ŷ π Horvitz-Thompson estimator of Y

Ŷpost post-stratified estimator of the total

Ŷreg regression estimator of the total

ŶD difference estimator of the total

Ŷh estimator of the total Yh in stratum or post-stratum Uh

ŶH Hájek ratio of the total

ŶI estimator used in the case of imputation for non-response

ŶR ratio estimator of the total

Ŷ r simple mean of y for the individual respondents of the sample

Ŷφ estimator used in the case of reweighting for non-response
zp p-quantile of the standard normal distribution
α probability that the function of interest is found outside of the

confidence interval
∆k� πk� − πkπ�

πk inclusion probability of unit k

πk� second-order inclusion probability for units k and �

πk� = Pr(k and � ∈ S)
σ2 variance of randomness in a superpopulation model
φk response probability of individual k

ρ linear correlation coefficient between x and y for the population, or
cluster effect

σ2
y population variance of variable y for the population



Normal Distribution Tables

Table 10.1. Table of quantiles of a standard normal variable

0−∞ +∞zp

p

Order of quantile (p) Quantile (zp) Order of quantile (p) Quantile (zp)
0.500 0.0000 0.975 1.9600
0.550 0.1257 0.976 1.9774
0.600 0.2533 0.977 1.9954
0.650 0.3853 0.978 2.0141
0.700 0.5244 0.979 2.0335
0.750 0.6745 0.990 2.3263
0.800 0.8416 0.991 2.3656
0.850 1.0364 0.992 2.4089
0.900 1.2816 0.993 2.4573
0.950 1.6449 0.994 2.5121
0.970 1.8808 0.995 2.5758
0.971 1.8957 0.996 2.6521
0.972 1.9110 0.997 2.7478
0.973 1.9268 0.998 2.8782
0.974 1.9431 0.999 3.0902



Table 10.2. Cumulative distribution function of the standard normal distribution

(Probability of finding a value less than u)

0−∞ +∞u

p = F (u)

u 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .4878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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