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Preface

The book offers a selection of papers most of which are revised and enriched versions
of the contributions presented at the 12th Symposium on Trends of Applications of
Mathematics to Mechanics (STAMM) which was sponsored by the International So-
ciety for the Interaction between Mathematics and Mechanics (ISIMM) and held in
Maiori (Salerno), Italy, from September 29th to October 4th, 2002. The Symposium
attracted leading researchers from around the world who are working at the interface
between mathematics and mechanics. The importance of a close link between these
two disciplines has long been recognized; each benefits from and is stimulated by
open problems, methods and results emerging from the other. The book compri-
ses 22 papers which report specialized investigations and which contribute broader
presentations of linear and nonlinear problems.

It is with the deepest gratitude to the authors who have contributed to the volume
and to the publisher, for its highly professional assistance, that the editors submit
this book to the international mathematics and mechanics communities. The editors
gratefully acknowledge the financial support of the following institutions: Gruppo
Nazionale di Fisica Matematica (GNFM) of the Istituto Nazionale diAlta Matematica
(INDAM), Università degli Studi di Napoli Federico II and Regione Campania.

Naples, Italy, October 2004 Salvatore Rionero
Giovanni Romano
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On the instability of double diffusive convection in
porous media under boundary data periodic in space

F. Capone, S. Rionero

Abstract. The linear instability analysis of the motionless state for a binary fluid mixture in a
porous layer, under horizontal periodic temperature and concentration gradients, is performed.

1 Introduction

Let Oxyz be a cartesian frame of reference with the z-axis vertically upwards and
S = IR2 � [0; d] a horizontal (infinite) porous layer filled by a binary fluid mixture.
WhenS is strictly uniformly heated and salted from below, the onset of convection inS
has been widely studied since it has many geophysical and technical applications [2–
4,8–12]. Recently an analysis of this problem was carried out under the assumption
of a linear spatial variation of temperature and concentration along the boundaries
[6,7,13]. This assumption is more realistic than strictly uniform heating and salting
but, since it implies infinite temperature and concentration on the horizontal planes
at large spatial distances, it does not appear to be completely acceptable. In order to
overcome this problem, a diffusion-convection model driven by horizontally periodic
temperature and concentration gradients was considered in [5]. Specifically, in [5],
only a condition of global nonlinear stability of the steady state has been obtained.
In the present paper we reconsider the problem in order to determine an instability
condition when " Le > 1. The basic proof is based on the instability theorem obtained
by Rionero in [14] for a general binary reaction-diffusion system of PDE.

The plan of the paper is as follows. Section 2 is devoted to the mathematical
statement of the convection problem for a double diffusive fluid mixture modelled
by the Darcy-Oberbeck-Boussinesq (DOB) equations. In Sect. 3, by applying the
general instability theorem obtained in [14], we obtain an instability condition.

2 Basic equations and steady state solution

The Darcy-Oberbeck-Boussinesq equations governing the motion of a binary porous
fluid mixture are [2–4]:
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rp = �(�=k)v + �0[1 � �T(T� T0) + �C(C� C0)]g;

r � v = 0;

(�0 c)m
(�0 cp)f

Tt + v � rT = kT�T;

'Ct + v � rC = kC�C;

(1)

with:

�C = solute expansion coefficient; p = pressure field;
�T = thermal expansion coefficient; ' = porosity of the medium;
T0 = reference temperature; C0 = reference concentration;
v = seepage velocity field; C = concentration field;
� = viscosity; T = temperature field;
kT = thermal diffusivity; kC = salt diffusivity;
c = specific heat of the solid; �0 = fluid density atT0;
cp = specific heat of fluid at constant pressure ;

and the subscripts m and f refer to the porous medium and the fluid, respectively.
To (1) we append the boundary conditions

TL(x) = ˇ�
T sin(x=d) + T1; CL(x) = ˇ�

C sin(x=d) + 2C1 on z = 0;

TU(x) = (ˇ�
T=e) sin(x=d); CU(x) = (ˇ�

C=e) sin(x=d) + C1 on z = d;
(2)

in which T1 > 0; C1 > 0; here ˇ�
C and ˇ�

T are two positive constants having,
respectively, the dimensions of concentration and temperature such that

ˇ�
T = ˇ�

C

�C
�T

(> 0): (3)

On assuming

0 < ˇ�
C < min

{
e

e� 1
�T
�C

T1; C1

}
; (4)

we see that (1-3) admit the steady state solution (motionless state) [5]:

vs(x) = 0; ps(z) = ��0g[A1 z+ (�TT1 � �CC1)=(2d) z2]; (5)

Ts(x; z) = ˇ�
Te

�z=d sin(x=d) + T1(1 � z=d); (6)

Cs(x; z) = ˇ�
Ce

�z=d sin(x=d) + C1(2 � z=d); (7)

where A1 = 1 + �C(2C1 � C0) � �T(T1 � T0) is a constant. The solution (5-7),
because of (4), corresponds to the case of a porous fluid mixture layer heated and
salted from below.1

1 We observe that the temperature and concentration fields Ts(x; z), Cs(x; z) exhibit a boun-
ded periodic behaviour in the unbounded x-direction.
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Let u = (u; v;w); �; �; � be the perturbations to the (seepage) velocity, tem-
perature, concentration and (reduced) pressure fields, respectively, and introduce the
non-dimensional quantities [4]:

x = dx� ; t =
Ad2

kT
t� ; u =

kT
d

u� ; � =
�kT
k

�� ; � = T̃ �� ;

ˇT =
ˇ�
Tp
R T̃

; N2 =
C1�C
T1�T

; ˇC =
ˇ�
Cp

CLe C̃
; Le =

kT
kC
; � = C̃�� ;

" =
'

A
; T̃ =

√
T1�kT
g�T�0kd

; C̃ =

√
C1�k2

T

g�C�0kkcd
; A =

(�0c)m
(�0cp)f

R =
�0g�TkdT1

�kT
the vertical thermal Rayleigh number;

C =
�0g�CkdC1

�kT
the vertical solutal Rayleigh number :

In particular, on taking into account (4), one obtains

0 < ˇC <
1
Le

min
{

e

e� 1
1
N2 ; 1

}
: (8)

Dropping all asterisks, we see that, for all (x; y; z) 2 IR2 � [0; 1],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

r� = �u + (
p
R��

p
LeC�)k;

r � u = 0;

�t + u � r� = �ˇT
p
R e � u +

p
Rw+ ��;

" Le�t + Leu � r� = �ˇC Le
p
LeC e � u +

p
LeCw+ ��;

(9)

where e = (e�z cos x; 0; �e�z sin x). To (9) we append the boundary conditions

w = � = � = 0 on z = 0; z = 1 : (10)

In the sequel we assume that the perturbation fields are periodic functions of x
and y of periods 2�=ax; 2�=ay, respectively, 2 and we denote the periodicity cell by
˝ = [0; 2�=ax] � [0; 2�=ay] � [0; 1]. Finally, to ensure that the steady state (5 - 7)
is unique, we assume that∫

˝
ud˝ =

∫
˝
vd˝ = 0 :

2 When ˛ 6= 0, � = 2� is the only admissible period in the x-direction [5].
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3 Instability analysis

Our aim, in this section, is to determine conditions guaranteeing the linear instability
of the solution (5-7) when N2 < 1 and " Le > 1. To this end, we consider the linear
version of (9), i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

r� = �u + (
p
R��

p
LeC�)k;

r � u = 0;

�t = �ˇT
p
R e � u +

p
Rw+ ��;

" Le�t = �ˇC Le
p
LeC e � u +

p
LeCw+ �� :

(11)

On considering the third component of the double curl of (11)1, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�w = �1(
p
R� �

p
LeC�);

r � u = 0;

�t = �ˇT
p
R e � u +

p
Rw+ ��;

" Le�t = �ˇC Le
p
LeC e � u +

p
LeCw+ �� ;

(12)

in which �1� = @2x � +@2y � .
In order to obtain conditions guaranteeing the linear instability of the steady state

(5-7), following Remark 2 of [14], we consider the class of perturbations for which
the first component of the seepage velocity u = (u; v;w) is zero, i.e.,

u = 0 :

In this case, (12) reduces to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�w = �1(

p
R� �

p
LeC�);

�t = ˇT
p
R e�z sin xw+

p
Rw+ ��;

" Le�t = ˇC Le
p
LeC e�z sin xw+

p
LeCw+ �� :

(13)

We define

H = fw; �;� regular in˝; periodic in x and y, satisfying
(13)1 and the boundary conditions (10)g (14)

the class of kinematically admissible perturbations and choose⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w = ˛(

p
R��

p
LeC �);

� = �̂(x; y; t) sin(�z);

� = �̂(x; y; t) sin(�z) :

(15)
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By requiring that �̂; �̂ satisfy the plan form equation �1� = �a2 � ; according to the
periodicity of � and � in the x and y directions, from (15) we easily obtain

�w = �	w ; �� = �	 � ; �� = �	� ; (16)

with

a2 = a2
x + a2

y ; 	 = a2 + �2 ; ˛ =
a2

	
; (17)

and hence, as is easily verified, (15) belongs to H. On substituting (15) in (13)2 �
(13)3, since

ˇT = ˇC LeN
2 ; (18)

one obtains⎧⎨⎩
�t = a1(x; z)�+ b1(x; z)�;

�t = c1(x; z)�+ d1(x; z)�
(19)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1(x; z) = ˛(1 + ˇC LeN
2 e�z sin x)R� 	;

b1(x; z) = �˛
p
Le(1 + ˇC LeN

2 e�z sin x)
p
RC;

c1(x; z) =
˛p
Le "

(1 + ˇC Le e
�z sin x)

p
RC;

d1(x; z) = �˛

"
(1 + ˇC Le e

�z sin x)C � 	

"Le
:

(20)

To obtain sufficient conditions for the instability of the zero solution of (19), we
apply the following theorem [14].

Theorem 1. Let A1(x; z) = a1d1 � b1c1 and I1(x; z) = a1 + d1. If A1(x; z) >
0 and I1(x; z) > 0 for all (x; z) 2 [0; 2�=ax] � [0; 1], then O � (� � � � 0) is
linearly unstable with respect to the L2�norm.

Starting from (20), we obtain

A1(x; z)=
˛	

"Le

[
�(1 + ˇCLeN

2e�z sin x)R+Le(1 + ˇCLee
�z sin x)C+

	

˛

]
; (21)

I1(x; z)=˛
[
(1 � ˇCLeN

2e�z sin x)R�1 + ˇCLee
�z sin x

"
C�(" Le+ 1)	

"Le˛

]
: (22)
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On defining⎧⎪⎪⎪⎨⎪⎪⎪⎩
A�

1 = �(1 + ˇC LeN
2)R+ Le(1 � ˇC Le)C +

	

˛
;

I�
1 = (1 � ˇC LeN

2)R� 1 + ˇC Le

"
C � (" Le+ 1)	

"Le˛
;

(23)

and taking (21) and (22) into account, one immediately obtains

" Le

˛ 	
A1(x; z) � A�

1 ;
1
˛
I1(x; z) � I�

1 8(x; z) 2 [0; 2�=ax] � [0; 1] (24)

and hence⎧⎨⎩
A�

1 > 0

I�
1 > 0

=⇒
⎧⎨⎩
A1(x; z) > 0

8 (x; z) 2 [0; 2�=ax] � [0; 1]
I1(x; z) > 0 :

(25)

We observe that the system of inequalities (for at least one a 2 IR+)⎧⎨⎩
A�

1 > 0;

I�
1 > 0 ;

(26)

in view of (23), is equivalent to the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
�(1 + ˇCLeN

2)R+ Le(1 � ˇCLe)C +
	

˛
> 0;

(1 � ˇCLeN
2)R� 1 + ˇCLe

"
C � (" Le+ 1)	

"Le˛
> 0 :

(27)

Setting⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(ˇC)=Le[Le2N2(" Le� 1)ˇ2

C�Le(" Le+ 1)(N2 + 1)ˇC + " Le� 1];

RB = 4�2;

f(ˇC) = LeN2(2" Le+ 1)ˇC + 1(> 0) ;

(28)

we see that N2 < 1 implies ˇC 2
(

0;
1
Le

)
and it follows immediately that

" Le� 1 > 0 =⇒ 9ˇ�
C <

1
Le

: g(ˇC) > 0 8ˇC 2 (0; ˇ�
C) (29)

and that (26) holds only if⎧⎪⎪⎨⎪⎪⎩
" Le > 1;

C > C� =
f(ˇC)
g(ˇC)

RB 8ˇC 2 (0; ˇ�
C) :

(30)
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Theorem 2. Assume that (30) holds. Then a critical number for the linear instability
of the steady state (5-7) is given by

RC =
1 + ˇCLe

"(1 � ˇCLeN
2)

C +
" Le+ 1

" Le(1 � ˇCLeN
2)
RB : (31)

Proof. It is enough to prove that, for any k 2
(

0;
g(ˇC)(C � C�)

(" Le+ 1)(1 + ˇCLeN
2)

]
,

R =
1 + ˇCLe

"(1 � ˇCLeN
2)

C +
" Le+ 1

" Le(1 � ˇCLeN
2)

(RB + k) (32)

implies linear instability. To this end, setting

F(a2) =
	

˛
; (33)

we show that there exists a suitable a2 > 0 such that (27) holds, i.e.,⎧⎪⎪⎪⎨⎪⎪⎪⎩
R� Le(1 � ˇCLe)

1 + ˇCLeN
2 C � 1

1 + ˇCLeN
2F(a2) < 0;

R� 1 + ˇCLe

"(1 � ˇCLeN
2)

C � " Le+ 1
" Le(1 � ˇCLeN

2)
F(a2) > 0 :

(34)

By (28-30), (34) becomes

RB � k1 < F(a2) < RB + k (35)

with

k1 =
g(ˇC)(C � C�) � (" Le+ 1)(1 + ˇCLeN

2)k
"Le(1 � ˇCLeN

2)
(> 0) : (36)

Since⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F(a2) 2 C(IR+);

F(a2) � F(ā2) = RB;

ā2 = �2

(37)

in the interval ]ā2; a2
� [, with

F(a2
�) = RB + k ; (38)

there exists suitable a a2 > 0 such that (35) holds. Then on taking (25) into account
and applying Theorem 1, one obtains the linear instability of the critical point O.
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Modelling of a free piston problem

B. D’Acunto, A. Monte

Abstract. We give a qualitative analysis of the free boundary value problem which models the
motion of a piston. A basic role is played by a third-order operator, whose properties are used
for solving preliminary problems. The differential equations are transformed into a nonlinear
Volterra system, which is dealt with by the fixed point theorem.

1 Introduction

Free boundary value problems occur in many fields of mechanics and are the objects
of studies documented in an extensive bibliography; see, e.g., [1,2] and their referen-
ces. Also, from this point of view, the motion of the piston in gas dynamics has been
newly addressed in recent years [3–5]. In this context, we discuss a free boundary
value problem related to the motions of a viscous isentropic gas in a cylinder. In the
model analyzed in this note we consider aspects of the physical process not examined
in previous papers. In fact, we assume that the cylinder is finite and delimited by
a fixed wall and by a movable piston. In addition, we account for the friction, that
necessarily arises during the motion, by means of a quite general force F applied
on the piston head. Furthermore, the case of a forcing term f, depending on the gas
speed, is also considered.

In the framework of the one-dimensional model, with � denoting the density, u
the velocity, p the pressure, � the viscosity coefficient, cp (cv) the specific heat at
constant pressure (constant volume), the following equations apply:

�ut + �uux = (4=3)�uxx � px + f(u);

�t + (�u)x = 0;

p = A��; � = cp=cv; A > 0;

ṡ = u(s; t);

ms̈ = ˛[p(s; t) � (4=3)�ux(s; t)] + F(s; ṡ; t);

where x = s(t) represents the piston path, ˛ the surface of the piston head and m
its mass. Moreover, a boundary condition at the fixed end must be given in order
to consider the gas entering into the cylinder. Finally, arbitrary initial conditions are
prescribed.

We emphasize that, although in this paper we consider a linear form of the
equations, the problem itself remains nonlinear because of the free boundary. In
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Sect. 2 we discuss the model and give the basic equations of the problem. In the next
section we solve intermediate initial boundary value problems. Then, the problem
is transformed into a nonlinear Volterra system, which can be analyzed by the fixed
point theorem. This enables us to obtain a uniqueness and existence theorem for our
model of the free piston problem.

2 Model and basic equations

Consider a cylinder filled with gas that can move between a fixed wall and a movable
piston. We assume that a quite general force F1 can act on its head; in particular, the
friction is included in this force. Moreover, the gas motions can also be influenced
by a forcing term f which depends on the gas speed. The one-dimensional motions
of an isentropic viscous gas are governed by the equations:

�ut + �uux = �px + (4=3)�uxx + f(u); (1)

�t + (�u)x = 0; (2)

p = A��; � = cp=cv; A > 0; (3)

where u(x; t) represents the gas velocity at location x and time t, � the density, p the
pressure, � the viscosity coefficient and cp (cv) the specific heat at constant pressure
(constant volume). The piston path is described by the unknown function x = s(t),
which represents the free boundary.

Of course, the gas elements in contact with the piston head move with the same
velocity as that of the piston:

ṡ = u(s(t); t): (4)

Finally, Newton’s law for the piston motion is interpreted as

ms̈ = ˛1[p(s; t) � (4=3)�ux(s; t)] + F1(s; ṡ; t); (5)

where ˛1 identifies the surface of the piston head and m its mass.
The cylinder is assumed to be insulated except at the fixed wall through which

the gas enters. We take account of this by means of the boundary conditions at x = 0.
In addition, suitable initial conditions must be given.

Now, we consider the linear case of equations (1), (2). However the free boundary
value problem is nonlinear. We denote a reference density by �0 and we use the
condensation


 = (�� �0)=�0; (6)

for giving a linear form to (3)1

p = A��0 + c2�0
; (7)
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where c denotes the speed of sound. The last result is used to eliminate the pressure
from the motion equations which, in linearized form, become

ut + c2
x � "uxx + au = 0; 0 < x < s(t); 0 < t � T; (8)


t + ux = 0; 0 < x < s(t); 0 < t � T; (9)

where " = 4�=3�0 is the kinematical coefficient of viscosity and a�0u is the linear
term of f.

Now, we use (7) in the piston equation (5) and we obtain

s̈ = ˛[c2
(s; t) � "ux(s; t)] + F(s; ṡ; t); 0 < t � T; (10)

where ˛ = ˛1�0=m, and F = (F1 + ˜̨��0)=m. Obviously, (4) holds:

ṡ = u(s(t); t); 0 < t � T: (11)

The mathematical problem is completed by arbitrary initial and boundary conditions:

u(0; t) = g(t); 0 < t � T: (12)

u(x; 0) = u0(x); 
(x; 0) = 
0(x); 0 < x < b1; (13)

s(0) = b1; ṡ(0) = b2: (14)

For the functions g, u0, 
0 we assume that

g 2 C1([0; T]); u0; 
0 2 C2([0; b1]): (15)

Remark 2.1. It is easy to verify that any function u, which is a solution of (8), (9),
also satisfies the third-order equation

"uxxt + c2uxx = utt + aut: (16)

The same equation is also satisfied by the function 
.
Equation (16) is a special case of a nonlinear equation recently discussed in

a wide-ranging monograph [6]. We remark that the free boundary value problem
studied here cannot be deduced from the results obtained in this book.

3 Discussion of intermediate problems

In this section we analyze preliminary initial-boundary value problems related to the
system (8), (9). First we consider the Cauchy problem

vt + c2zx � "vxx + av = 0; x 2 R; 0 < t � T; (17)

zt + vx = 0; x 2 R; 0 < t � T: (18)
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As initial conditions for this problem we use the initial data u0, 
0 defined in (13),
after a smooth extension with compact support on R:

v(x; 0) = u0(x); z(x; 0) = 
0(x); u0; 
0 2 C2(R): (19)

This problem can be explicitly solved by using the fundamental solution K of
Eq. (16), determined and discussed in [7]. We use the following expression of K for
convenience:

K(x; t) = e�bt
∫ 1

r

e�z21=4"t

2"
p
�"t

B(z1; r) dz1; r = jxj; (20)

with

B(z1; r) =
∫ z1

r
I0

(
ˇ
√
u2
1 � r2

)
I0
(
2ı
√
u(z1 � u1)

)
du1; (21)

where I0 denotes the modified Bessel function of the first kind and

b = c2="; k =
√

1 � a=b; ı = (c=")
p
k; ˇ = c(1 � k)=": (22)

From (20) it is apparent that K is never negative. Moreover, this function has other
basic properties, proved in [7], which are similar to those of the fundamental solution
of the heat operator. We use these properties later.

Now, we can write the solution of (17)-(19) as:

v(x; t) =
∫
R
u0(	)Kt(x� 	; t)d	�

∫
R
c2
0

0(	)K(x� 	; t)d	; (23)

z(x; t) =
∫
R

0(	)Kt(x�	; t)d	�

∫
R
(u0

0 + "
00
0 �a
0)(	)K(x�	; t)d	: (24)

Indeed, it is easy to verify that these functions satisfy (17), (18). Furthermore, the
initial conditions are satisfied as

lim
t#0

∫
R
u0(	)Kt(x� 	; t)d	 = u0(x); lim

t#0

∫
R

0(	)Kt(x� 	; t)d	 = 
0(x);

whereas the other limits vanish [7].

Then, we discuss the initial-boundary value problem:

ut + c2
x � "uxx + au = 0; 0 < x < s(t); 0 < t � T; (25)


t + ux = 0; 0 < x < s(t); 0 < t � T; (26)

u(0; t) = g(t); 0 < t � T: (27)

u(s(t); t) = g1(t); 0 < t � T: (28)

u(x; 0) = u0(x); 
(x; 0) = 
0(x); 0 < x < b1; (29)
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where s(t) is a given function. We examine this problem under hypotheses (15) and
the following hypotheses:

g1 2 C1([0; T]); s 2 C1([0; T]); (30)

g(0) = u0(0); g1(0) = u0(b1); (31)

� = inf
0�t�T

s(t) > 0: (32)

In order to obtain the solution of the above problem, we extend the initial data
exactly as we did for the Cauchy problem (17)-(19) and we express, as before, by v
and z the functions which solve that problem. Then, we give a solution of (25)-(29)
by means of two auxiliary functions '(t),  (t) belonging to C1([0; T]) such that
'(0) =  (0) = 0. First we provide the solution and afterwards we show how to find
these functions. We apply a method already employed to analyze other free boundary
value problems governed by third-order operators [5,8]. Thus, we put

K1(x; t) = ("@t + c2)K(x; t); (33)

and we state that a solution of (25)-(29) is given by

u(x; t) = v(x; t) + 2
∫ t

0
'(�)K1(x; t� �)d� (34)

+ 2
∫ t

0
 (�)[ṡ(�)Kt(x� s(�); t� �) +K1(x� s(�); t� �)]d�;


(x; t) = z(x; t) � 2
∫ t

0
'̇(�)K(x; t� �)d� (35)

� 2
∫ t

0
[ ̇(�) + a (�)]K(x� s(�); t� �)d�:

Indeed, it is easy to verify that these functions satisfy the system (25)-(26); moreover,
since v, z are solutions of (17)-(19), the initial conditions are also satisfied. It remains
to show that the boundary conditions (27), (28) are verified and the auxiliary functions
can be uniquely found; these problems are solved together. First, letting x ! 0 and
x ! s(t) in (34), we get

'(t) = v(0; t) � g(t) (36)

+ 2
∫ t

0
 (�)[ṡ(�)Kt(�s(�); t� �) +K1(�s(�); t� �)]d�;

 (t) = g1(t) � v(s(t); t) � 2
∫ t

0
'(�)K1(s(t); t� �)d� (37)

� 2
∫ t

0
 (�)[ṡ(�)Kt(s(t) � s(�); t� �) +K1(s(t) � s(�); t� �)]d�:

Then, we differentiate (34) with respect to t and let x ! 0 and thus obtain

'̇(t) = vt(0; t) � ġ(t) + 2
∫ t

0
 ̇(�)K1(�s(�); t� �)d� (38)



14 B. D’Acunto, A. Monte

� 2a
∫ t

0
ṡ(�)Kt(�s(�); t� �)d�:

Similarly, by noting that

ġ1(t) = ux(s(t); t)ṡ(t) + ut(s(t); t);

we get

 ̇(t) = ġ1(t)� v̇(s(t); t)�2
∫ t

0
'̇(�)[ṡ(t)Kt(s(t); t��)+K1(s(t); t��)]d� (39)

� 2a
∫ t

0
ṡ(t)'(�)Kt(s(t); t� �)d�� 2a

∫ t

0
ṡ(t) (�)Kt(s(t) � s(�); t� �)d�

� 2
∫ t

0
 ̇(�)[ṡ(t)Kt(s(t) � s(�); t� �) +K1(s(t) � s(�); t� �)]d�:

Now, we note that (36)-(39) provide a system of Volterra integral equations whose
kernels are bounded by C=

p
t� �), where C is a constant depending on T [7].

Consequently, we can apply well-known results [9] in order to obtain the existence
and uniqueness of the functions ',  2 C1([0; T]). This proves that a solution of
problem (25)-(29) exists and that it is given by (23), (24). Moreover, this solution is
also unique, as we next show.

To this end we denote by (u1; 
1) the solution of (25)-(29) such that

u1(x; 0) = 0; 
1(x; 0) = 0; u1(0; t) = 0; u1(s(t); t) = 0: (40)

Now, we put

u = u1 exp(�ˇt); 
 = 
1 exp(�ˇt); (41)

where ˇ is a positive constant, and we obtain

ut + c2
x � "uxx + (ˇ+ a)u = 0; 0 < x < s(t); 0 < t � T; (42)


t + ˇ
+ ux = 0; 0 < x < s(t); 0 < t � T: (43)

Next, we consider the energy functional

E(t) =
1
2

∫ s

0
[u2(x; t) + c2
2(x; t)]dx; (44)

which we differentiate and evaluate along the solutions of (42)-(43):
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Ė(t) =
c2

2
ṡ(t)
(s(t); t) (45)

�
∫ s

0
[(ˇ+ a)u2(x; t) + c2ˇ
2(x; t) + "u2

x(x; t)]dx:

Finally, from (45) we get

E(t) =
c2

2

∫ t

0
ṡ(�)
(s(�); �)d� (46)

�
∫ t

0
d�

∫ s

0
[(ˇ+ a)u2(x; �) + c2ˇ
2(x; �) + "u2

x(x; �)]dx:

Since ˇ can be chosen sufficiently enough, we obtain E(t) � 0 and this proves the
uniqueness.

4 Existence and uniqueness of the free boundary

First, we give the hypotheses under which the free boundary value problem (8)-(14)
is discussed. We assume that the known force acting on the piston is a continuous
bounded function which satisfies a Lipschitz condition

jF(ṡ; s; t)j � CD; jF(ṡ1; s1; t) �F(ṡ2; s2; t)j � Lfjṡ1 � ṡ2j + js1 � s2jg: (47)

In addition, since we use the results of the last section, all the assumptions introduced
there are assumed to hold. Specifically,

g 2 C1([0; T]); u0; 
0 2 C2([0; b1]); (48)

g(0) = u0(0); ṡ(0) = u0(b1): (49)

Consider, now, solutions (34) and (35) depending on the unknown functions s(t),
'(t),  (t). From the results of Sect. 3 it easily follows that u, 
 satisfy the equations
(8), (9) as well as the initial conditions (13). Therefore, we have to show that the cited
unknown functions can be determined by the system (36)-(39), where the function
g1 is replaced by ṡ, and by the piston equation (10). However, this last equation must
be suitably transformed. First we note that from (34), (35) it follows that

c2
(s(t); t) � "ux(s(t); t) = c2z(s(t); t) � "vx(s(t); t) (50)

�2
∫ t

0
[a'(�) + '̇(�)]K1(s(t); t� �)d�

�2
∫ t

0
[a (�) +  ̇(�)]K1(s(t) � s(�); t� �)d�:

In addition, from (23), (24), we obtain immediately that
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c2z(s(t); t) � "vx(s(t); t) =
∫
R
c2[a
00

0(	) + 
0(	)]K(s(t) � 	; t)d	 (51)

�
∫
R
u0
0(	)("@t + c2)K(s(t) � 	; t)d	:

Then we substitute (50) and (51) into the piston equation (10) and obtain

y = F(s; ṡ; t) + ˛

∫
R
[c2a
00

0(	) + c2
0(	) � u0
0(	)("@t + c2)]K(s(t) � 	; t)d	 (52)

� 2˛
∫ t

0
f[a'(�) + '̇(�)]K1(s(t); t� �) + [a (�) +  ̇(�)]K1(s(t) � s(�); t� �)gd�;

where we put

y = s̈: (53)

Consequently, we also have

ṡ(t) = b2 +
∫ t

0
y(�)d�; s(t) = b1 + b2t+

∫ t

0
(t� �)y(�)d�: (54)

We note that Eq. (52), together with (36)-(39) (when the function g1 is replaced
by ṡ), gives rise to a nonlinear Volterra system. The existence and uniqueness of
a continuous solution of this system can be proved by the fixed point theorem.
Indeed, since the functionK has properties analogous to those of the heat fundamental
solution [7], we can apply the well-known method used for the classical Stefan
problem [10,11].

We outline that the result proves only existence and uniqueness for small times.
In fact, when the free boundary value problem is discussed, condition (32) cannot
be assumed as hypothesis, and, of course, it is satisfied, in general, only for small
T. However, conditions under which a solution exists for large intervals can be
provided, [5].

We summarize the results in the following theorem.

Theorem 1. Under the hypotheses (47)-(49) the free boundary value problem (8)-
(14) admits a unique smooth solution.
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Reflections on frequently used viscoplastic
constitutive models

F. De Angelis

Abstract. The constitutive problems of plasticity and viscoplasticity are considered in detail
via an internal variable formulation. The treatment is set within the framework of the gene-
ralized standard material model and exploits the appropriate mathematical tools of convex
analysis and subdifferential calculus. Furthermore two frequently used viscoplastic constitu-
tive models are analyzed, the Perzyna viscoplastic model and the Duvaut-Lions viscoplastic
model. In the existing literature these two models are frequently used as alternatives. In the
sequel interesting relations between them are outlined and it is shown that, under particular
hypotheses, the Duvaut-Lions model may be regarded as derived from the Perzyna model.

1 Introduction

In non-smooth plasticity and viscoplasticity the appropriate mathematical frame-
work is determined by the tools and concepts of convex analysis and subdifferential
calculus (Rockafellar [1], Hiriart-Urruty and Lemaréchal [2]), which are capable
of dealing with convex non-differentiable functions and multivalued operators (see,
e.g., Halphen and Nguyen [3], Moreau [4], Eve et al. [5], Romano et al. [6]). Within
this framework the evolutive laws are here derived in a generalized form which na-
turally encompasses the flow law and the evolutive laws of the internal variables for
non-smooth plasticity and viscoplasticity. The elasto/viscoplastic model is thus set
in a unitary context [7].

According to this approach the evolutive equations in viscoplasticity are inter-
preted as optimality conditions of a convex optimization problem which naturally
provides the elasto/viscoplastic model with a complete variational formulation (De
Angelis [8]).

In the literature, in order to describe the viscoplastic behaviour of materials the
Perzyna model [9] and the Duvaut-Lions model [10] are frequently used. In particular
the Duvaut-Lions model is used as an alternative for the Perzyna model; see, e.g.,
Simo et al. [11] and Ju [12]. Useful clarifications regarding these two models in
non-smooth viscoplasticity were also provided by Ristinmaa and Ottosen [13,14]. In
the present paper, by means of a suitable application of the rules of convex analysis,
it is shown that the flow law of the Perzyna model reduces to the flow law of the
Duvaut-Lions model when, for the function present in the Perzyna model, a particular
function of the excess stress is chosen, which represents the difference between the
actual stress and its projection onto the elastic domain. This result was originally
presented in De Angelis [7]. For this exposition it is necessary to use properties and
definitions typical of convex analysis and ideas about projections on convex sets.
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2 The continuum model

We consider a body B whose reference configuration is˝ 	 <n, with 1 � n � 3. The
time interval of interest is defined by T 	 <+. Let V be the space of displacements,
D the strain space and S the dual stress space. We denote by u : ˝ � T ! V the
displacement of a particle at a point x 2 ˝ and by � : ˝� T ! S the stress tensor.
The compatible strain tensor is expressed by " = rsu : ˝ � T ! D, where rs is
the symmetric part of the gradient.

A pair of conjugate convex potentials representing the elastic energy W : D ! <
and the complementary elastic energy W� : S ! < are introduced. For linear
elasticity they are expressed in the form

W("e) =
1
2

hE"e;"e i; W�(�) =
1
2

h�;E�1� i; (1)

where "e 2 D is the elastic strain, the symbol h . ; . i is used to denote a non-degenerate
bilinear form acting on dual spaces and E is the linear elastic stiffness.

The relations

� = d W("e) () "e = d W�(�) (2)

may also be expressed in the equivalent Legendre form

W("e) + W�(�) = h�;"e i (3)

and hold true for pairs f�;"eg satysfying the elastic constitutive relation.
In the sequel we assume a linearized theory and a quasi-static formulation with

an additive decomposition of the total strain into an elastic and an inelastic part.
Following Naghdi and Murch [15], we consider the class of rate-sensitive materials
and assume that viscous effects are exhibited beyond the elastic range (see also
Skrzypek and Hetnarski [16] and Lemaitre and Chaboche [17]). Accordingly the
inelastic strain is specified as a plastic strain "p for the rate independent material
behavior and a viscoplastic strain "vp for the rate dependent material behavior, where
combined viscous and plastic effects are represented.

The kinematic internal variable ˛ 2 <n+1 and the corresponding static internal
variable � 2 <n+1 are defined as

˛ =

⎧⎨⎩ ˛iso

˛kin

⎫⎬⎭ ; � =

⎧⎨⎩ �iso

�kin

⎫⎬⎭ ; (4)

where ˛iso 2 < and �iso 2 < are introduced to model isotropic hardening and
˛kin 2 <n and �kin 2 <n are introduced to model kinematic hardening.

A hardening potential H(˛) and its conjugate H�(�), the complementary har-
dening potential, are also introduced. The relations

� = d H(˛) () ˛ = d H�(�) (5)
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are equivalent to the relation in Legendre form

H(˛) + H�(�) = h�;˛ i (6)

and hold true for conjugate pairs f�;˛g. The hardening potential and the complemen-
tary hardening potential are assumed to be in decoupled form which takes isotropic
and kinematic hardening into account separately:

H(˛)= Hiso(˛iso) + Hkin(˛kin);

H�(�)= H�
iso(�iso) + H�

kin(�kin):
(7)

The Helmholtz free energy in decoupled form is expressed as

�("e;˛) = W("e) + H(˛): (8)

The potential ��(�;�), the conjugate of �("e;˛), represents the complementary
free energy. In decoupled form it is expressed as

��(�;�) = W�(�) + H�(�): (9)

For linear hardening behavior, static and kinematic internal variables are linked
by the relations

� = H˛; ˛ = H�1�; (10)

where H denotes the hardening matrix

H =

⎡⎣Hiso 0T

0 Hkin

⎤⎦ ; (11)

andHiso and Hkin respectively denote the isotropic and kinematic hardening moduli.
Accordingly the hardening potential and the complementary hardening potential can
be expressed as

H(˛)=
1
2
Hiso˛

2
iso +

1
2
Hkin˛kin

. ˛kin;

H�(�)=
1
2
H�1
iso �

2
iso +

1
2

�kin
. H�1

kin�kin;

(12)

which gives �iso = Hiso˛iso and �kin = Hkin˛kin.

2.1 The generalized standard material model

Following the generalized standard material model (Halphen and Nguyen [3]), we
introduce generalized strains and stresses

"̃ =

⎡⎣ "

o

⎤⎦ ; "̃e =

⎡⎣"e

˛

⎤⎦ ; "̃p =

⎡⎣ "p

�˛

⎤⎦ ; "̃vp =

⎡⎣ "vp

�˛

⎤⎦ ; �̃ =

⎡⎣�

�

⎤⎦ ; (13)
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in order to take into account actual strains and stresses and also kinematic and static
internal variables. Generalized variables are defined in product spaces, respectively
D̃ = D � <n+1 and S̃ = S � <n+1, and they are often represented by the notation
"̃ = (";o) and �̃ = (�;�).

The admissibility condition on the generalized stress is determined by a genera-
lized convex elastic domain C̃ 
 S̃, defined as

C̃
def= f�̃ 2 S̃ : f̃ (�̃) � 0g;

where f̃ : S̃ ! < is a convex generalized material function. The convex sets C̃� 
 S
and C̃� 
 <n+1, defined as

C̃� = f� 2 S : (�;�) 2 C̃g;

C̃� = f� 2 <n+1 : (�;�) 2 C̃g;
represent sections of the generalized elastic domain respectively at the constant �
and the constant �.

Consequently the duality product between generalized variables is defined as

h�̃; "̃ i = h�;" i; h�̃; "̃e i = h�;"e i + h�;˛ i;

h�̃; "̃p i = h�;"p i � h�;˛ i; h�̃; "̃vp i = h�;"vp i � h�;˛ i;

and is induced by the duality products between the corresponding elements of D and
S and between the corresponding elements of <n+1 and <n+1.

3 The constitutive model in plasticity

The maximum plastic dissipation principle (Hill [18]),

D( ˙̃"p) = sup
�̃2C̃

fh �̃; ˙̃"p ig = sup
(�;q)2C̃

fh�; "̇p i � hq; ˙̨ ig; (14)

plays a fundamental role in plasticity, since it implies normality of the flow law,
normality of the evolutive law for the internal variables and the definition of the
loading/unloading conditions in the Kuhn-Tucker complementarity form.

For a given generalized plastic strain rate ˙̃"p, the Lagrangian of the plastic con-
stitutive problem with hardening is defined as

L̃p(�̃; ı̇)def= �h �̃; ˙̃"p i + ı̇f̃ (�̃) � t<+(ı̇)

= �h�; "̇p i + hq; ˙̨ i + ı̇f̃ (�;q) � t<+(ı̇);

(15)

where t<+(ı̇) is the convex indicator function [1,2] of the set of non-negative real
numbers <+, namely,

t<+(ı̇) =

⎧⎨⎩ 0 if ı̇ � 0;

+1 if ı̇ < 0:

(16)
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The generic generalized stress is denoted here by �̃ = (�;q) 2 S̃, while the value at
the solution is denoted by �̃ = (�;�). Similarly, the generic Lagrange multiplier is
denoted by ı̇, while �̇ is used to denote the value at the solution, whose significance
is that of a plastic multiplier.

The solution of problem (14) is given by the point (�̃; �̇) 2 S̃ � <+ which
satisfies the Kuhn-Tucker optimality conditions [19]:

0 2
[
@�̃L̃p(�̃; ı̇)

]
(�̃;�̇) , ˙̃"p 2 �̇@f̃ (�̃); (17)

0 2
[
@ı̇L̃

p(�̃; ı̇)
]

(�̃;�̇) , f̃ (�̃) 2 @ t <+(ı̇): (18)

By making explicit the terms related to the generalized variables the solution is given
by the conditions:

0 2
[
@�L̃p(�;q; ı̇)

]
(�;�;�̇) , "̇p 2 �̇@� f̃ (�;�); (19)

0 2
[
@qL̃p(�;q; ı̇)

]
(�;�;�̇) , � ˙̨ 2 �̇@� f̃ (�;�); (20)

0 2
[
@ı̇L̃

p(�;q; ı̇)
]

(�;�;�̇) , f̃ (�;�) 2 @ t <+(ı̇): (21)

Relation (17) gives the normality law of the plastic flow for the model problem with
hardening. We explicitly note that the term @f̃ (�̃) has the significance of a subdif-
ferential [1,2] of the function f̃ (�̃) at �̃ and therefore turns out to be a multivalued
operator.

The relation (17) expresses the flow law (19) and the evolutive law (20) for the
internal variables. Relation (18) or relation (21) give the loading/unloading conditions
for the model problem with hardening and they may be written equivalently in the
well-known complementarity form (see, e.g., [7]):

f̃ (�̃) = f̃ (�;�) � 0; �̇ � 0; �̇f̃ (�̃) = �̇f̃ (�;�) = 0: (22)

The principle of maximum plastic dissipation may be expressed in the form

h(�̃ � �̃); ˙̃"p i � 0 8 �̃ 2 C̃: (23)

By recalling the definition of normal cone to a convex set [1,2], we see that

˙̃"p 2 NC̃(�̃); (24)

which expresses the normality law for the plastic model with hardening and it ensures
that the well-known property for the generalized plastic strain rate to belong to the
normal cone to the generalized convex domain C̃ at �̃, is satisfied.

The normality law (24) may be expressed in subdifferential terms by observing
[7] that NC̃(�̃) coincides with the subdifferential of the indicator function tC̃(�̃)

of the convex set C̃,

NC̃(�̃) = @ t C̃(�̃); (25)
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where the indicator function of the generalized convex elastic domain C̃ is defined
[1,2] as

tC̃(�̃) =

⎧⎨⎩
0 if �̃ 2 C̃;

+1 if �̃ 62 C̃:

(26)

The normality law for the generalized standard material model may therefore be
expressed in the subdifferential form

˙̃"p 2 @ t C̃(�̃); (27)

which expresses an equivalent form of the normality law for the plastic model with
hardening. This law may be expressed in component variables as

˙̃"p 2 @ t C̃(�̃) ()

⎧⎪⎪⎨⎪⎪⎩
"̇p 2 @ t C̃�

(�);

� ˙̨ 2 @ t C̃�
(�):

(28)

The function t�
C̃

( ˙̃"p), the conjugate [1,2] of the function tC̃(�̃), is defined as

t�
C̃

( ˙̃"p) = sup
�̃2S̃

fh �̃; ˙̃"p i � tC̃(�̃)g = sup
�̃2C̃

h �̃; ˙̃"p i (29)

and has the mechanical significance of plastic dissipation, and therefore in the sequel
is denoted by D( ˙̃"p).

The pairs (�̃; ˙̃"p) which satisfy the normality law in its subdifferential form are
said to be conjugate. The normality law, in its subdifferential form (27), is equivalent
to the inverse subdifferential relation

�̃ 2 @D( ˙̃"p): (30)

Relations (27) and (30) may be expressed equivalently in Fenchel’s form

tC̃(�̃) + D( ˙̃"p) = h�̃; ˙̃"p i; (31)

that is, in components,

tC̃(�;�) + D( ˙̃"p;� ˙̨ ) = h�; "̇p i � h�; ˙̨ i;

holding for conjugate pairs (�̃; ˙̃"p), that is, for conjugate pairs (�;�) and ("̇p;� ˙̨ ).

4 The constitutive model in viscoplasticity

For a given generalized viscoplastic strain rate ˙̃"vp = ( ˙"vp;� ˙̨ ), the potential fun-
ction of the evolutive viscoplastic constitutive problem with hardening is defined as
(see, e.g., De Angelis [7])

L̃vp(�̃) def= �h �̃; ˙̃"vp i +˘�(�̃) = �h�; ˙"vp i + hq; ˙̨ i +˘�(�;q); (32)
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where˘�(�̃) is a convex viscoplastic potential. The potential L̃vp(�̃) turns out to be
convex in �̃.

The solution of the viscoplastic constitutive problem is given by the value �̃ =
(�;�) 2 S̃ which satisfies the stationarity condition

0 2
[
@�̃L̃vp(�̃)

]
(�̃) , ˙̃"vp 2 @˘�(�̃); (33)

that is, in components,⎧⎪⎪⎨⎪⎪⎩
0 2

[
@�L̃vp(�;q)

]
(�;�)

0 2
[
@qL̃vp(�;q)

]
(�;�)

()

⎧⎨⎩
˙"vp 2 @�˘

�(�;�);

� ˙̨ 2 @�˘
�(�;�);

(34)

which represent the flow law and the evolutive law for the internal variables of the
viscoplastic problem with hardening expressed in subdifferential form.

The function ˘( ˙̃"vp), the conjugate of the function ˘�(�̃), is by definition ex-
pressed as

˘( ˙̃"vp)= sup
�̃2S̃

fh �̃; ˙̃"vp i �˘�(�̃)g

= sup
(�;q)2S�<n+1

fh�; ˙"vp i � hq; ˙̨ i �˘�(�;q)g;
(35)

and has the significance of a viscoplastic dissipation D( ˙̃"vp).
The evolutive law, expressed in the subdifferential form (33), may be written

equivalently as an inverse subdifferential relation

�̃ 2 @D( ˙̃"vp): (36)

The relations (33) and (36) may be written equivalently in Fenchel’s form

˘�(�̃) + D( ˙̃"vp) = h�̃; ˙̃"vp i; (37)

that is, in components,

˘�(�;�) + D( ˙"vp;� ˙̨ ) = h�; ˙"vp i � h�; ˙̨ i; (38)

which holds for conjugate pairs (�;�) and ( ˙"vp;� ˙̨ ).
In the literature viscoplasticity is often presented (Yosida [20]) as a regulariza-

tion process of plasticity (see, e.g., Simo et al. [11]). Constitutive equations of the
rate-independent model result from the optimality conditions of maximum plastic
dissipation. Similarly constitutive equations in viscoplasticity may be considered
as optimality conditions of a properly regularized function representing maximum
viscoplastic dissipation.
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Consequently in viscoplasticity we now introduce the regularized potential fun-
ction

L̃vp
 (�̃) def= �h �̃; ˙̃"vp i+

1


g+(f̃ (�̃)) = �h�; ˙"vp i+ hq; ˙̨ i+
1


g+(f̃ (�;q)): (39)

The regularized potential function is obtained by appending to the objective function
of the plastic problem (14) a penalty function g+ : < ! <+ of the constraint
f̃ (�̃) � 0, amplified by a penalty parameter 1=. The penalty function g+(x) must
be of class C1, defined in <, non-negative and such that g+(x) = 0 if and only
if x � 0. The parameter  2 (0;+1) in viscoplasticity represents a viscosity
coefficient.

Consequently, a set of unconstrained problems is obtained,

inf
�̃2S̃

L̃vp
 (�̃); (40)

as penalty regularization of the constrained plastic problem. The solution �̃ of the
regularized problem tends to the solution �̃ of the constrained problem as  ! 0
(Luenberger [19]).

A regularized form of the viscoplastic dissipation may therefore be expressed as

D( ˙̃"vp)= sup
�̃2S̃

fh �̃; ˙̃"vp i � 1


g+(f̃ (�̃))g

= sup
(�;q)2S�<n+1

fh�; ˙"vp i � hq; ˙̨ i � 1


g+(f̃ (�̃))g:

(41)

The expression (39) for the regularized Lagrangian is equivalent to the assump-
tion that the convex viscoplastic potential ˘�(�̃) has the expression of a composed
function G(f̃ (�̃)), where G(x) depends upon a penalty function g+(x). By a suitable
specialization of the function G(x), or, equivalently, of the penalty function, it is
possible to show (see, e.g., De Angelis [7]) that this expression of the regularized
viscoplastic potential is capable of reproducing different viscoplastic constitutive
models such as the Odqvist law, the Norton law and the Perzyna law.

It may be shown that the viscoplastic constitutive law expressed in the form (33)2
acquires a general relevance. In fact, when the function G(x) is assumed to be the
indicator function of the non-positive real numbers [1,2],

t<�(x) =

⎧⎨⎩
0 if x � 0;

+1 if x > 0;
(42)

it follows [7] that

˘�(�̃) = G(f̃ (�̃)) = t<�(f̃ (�̃)) = tC̃(�̃); (43)
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and thus the viscoplastic flow law (33)2 reduces to the plastic flow law (27). Conse-
quently the flow law (33)2 can be specialized in order to represent different models
of viscoplastic behavior and, at the limit, it gives the flow law of the plastic problem.

In the sequel we consider two viscoplastic constitutive models frequently used
in the literature, namely, the Perzyna model and the Duvaut-Lions model. Some
interesting relations between them are outlined and it is shown that, under particular
hypotheses, the Duvaut-Lions model may be regarded as derived from the Perzyna
model.

5 The Perzyna viscoplastic model

Different expressions of the viscoplastic constitutive relations are obtained by spe-
cializing the penalty function suitably [7]. For instance, by choosing the penalty
function in the form

g+ def=

⎧⎪⎨⎪⎩
1
2
x2 for x > 0;

0 for x � 0;

(44)

it follows that dg+(x)=dx =< x >, where the McCauley brackets are defined as
< x >= (x+ jxj)=2. These positions ensure that the adopted function satisfies the
conditions necessary to be considered as a penalty function (Luenberger [19]).

By imposing the stationarity condition of the regularized viscoplastic Lagrangian
(39), it follows that

0 2
[
@�̃L̃vp

 (�̃)
]

(�̃) , ˙̃"vp 2 1

< f̃ (�̃) > @f̃ (�̃); (45)

that is, in components,⎧⎪⎪⎨⎪⎪⎩
0 2

[
@�L̃vp

 (�;q)
]

(�;�)

0 2
[
@qL̃vp

 (�;q)
]

(�;�)

()

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
˙"vp 2 1


< f̃ (�;�) > @� f̃ (�;�);

� ˙̨ 2 1

< f̃ (�;�) > @� f̃ (�;�):

(46)

Equations (46)1 and (46)2 represent the normality law and the internal variable
evolutive law for the viscoplastic constitutive model of Perzyna-type [9] with linear
viscous effects. The constitutive equations are reported here in subdifferential form
[7], suitable for dealing properly with the singularities characterizing non-smooth
problems.

6 The Duvaut-Lions viscoplastic model

It is well-known that the viscoplastic model presents a substantial difference from
the plastic model. In fact, in the plastic model, the generalized stress �̃ is constrained
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to belong to the closure of the elastic domain C̃. On the contrary, in the viscoplastic
model, generalized stress states external to the elastic domain are admissible. When
the viscosity parameter  tends to zero the behavior of the rate-dependent model
tends to the behavior of the rate-independent model and the solution in terms of
generalized stresses tends to the solution of the plastic problem.

The constitutive model examined in this paragraph refers to the treatment ori-
ginally proposed by Duvaut and Lions [10] and subsequently exploited by various
authors; among others see Simo et al. [11] and Ju [12].

The Duvaut-Lions viscoplastic constitutive model is expressed in the form

˙̃"vp =

⎧⎪⎪⎨⎪⎪⎩
1

G�1(�̃ � �̃) if f (�̃) > 0;

0 if f (�̃) � 0;

(47)

where G�1 is defined as

G�1 =

⎡⎣E�1 0

0 H�1

⎤⎦ ; (48)

�̃ is the generalized actual stress and �̃ 2 @C̃ is defined as

�̃ = arg min
�̃2C̃

k�̃ � �̃kG�1 : (49)

The term �̃ = (�;�) is the closest-point-projection (in the metric induced by
G�1) of the generalized actual stress �̃ onto the elastic domain C̃. Since C̃ is closed
and convex, the solution of the problem (49) exists and is unique for any generalized
actual stress �̃ 2 S̃.

The projection operator

P(�̃) =

⎧⎨⎩
�̃ if �̃ 2 int C̃;

�̃ if �̃ 2 ext C̃;

(50)

satisfies the condition P ı P = P. Equation (49) may therefore be written as

�̃ = P(�̃): (51)

The Duvaut and Lions viscoplastic constitutive model is therefore formulated as

˙̃"vp =
1

G�1(�̃ � P(�̃)); (52)

which is expressed in components as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
"̇vp=

1

E�1(� � P(�));

� ˙̨ =
1

H�1(� � P(�)):

(53)
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It may be shown [7] that the Duvaut-Lions viscoplastic model (52) can be derived
from the Perzyna viscoplastic model (45)2 when, for the function f̃ (�̃), one choses
the function representative of the complementary energy norm of the generalized
excess stress �̃ex, which represents the difference between the generalized actual
stress �̃ and its projection onto the elastic domain P(�̃). In this regard we recall that
the complementary energy norm of a generalized stress �̃ is expressed as

k�̃kG�1 = h�̃;G�1�̃ i = h�;E�1� i + h�;H�1� i: (54)

In fact, if, in Eq. (45)2, we assume the function f̃ (�̃) to be the complementary
energy norm of the generalized excess stress, i.e.

f̃ (�̃) = k�̃ � P(�̃)kG�1 ; (55)

then

< f̃ (�̃) >= k�̃ � P(�̃)kG�1 (56)

and therefore relation (45)2 may be written as

˙̃"vp =
1


k�̃ � P(�̃)kG�1@�̃k�̃ � P(�̃)kG�1 : (57)

We explicitly note that the function k�̃ � P(�̃)kG�1 is both non-linear and non-
differentiable and therefore in (57) it is necessary to consider the subdifferential
@�̃k�̃ � P(�̃)kG�1 .

We now consider the function

'(�̃) =
1
2

k�̃ � P(�̃)k2
G�1 : (58)

For the subdifferential rule of the composed functions it follows that

@'(�̃) = k�̃ � P(�̃)kG�1@�̃k�̃ � P(�̃)kG�1 : (59)

Relation (57) may therefore be written as

˙̃"vp =
1

@'(�̃); (60)

where @'(�̃) represents the subdifferential of '(�̃).
A result related to projection problems on convex sets (Moreau [21], Zaranto-

nello [22], Romano and Romano [23]) ensures that the function (58) is a non-linear
function, but differentiable in S̃, and it is

d'(�̃) = G�1 [�̃ � P(�̃)] : (61)

Equation (60) may therefore be expressed as

˙̃"vp =
1

G�1 [�̃ � P(�̃)] ; (62)
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which represents the viscoplastic constitutive relation (52) for the Duvaut-Lions
model.

Consequently the Duvaut-Lions viscoplastic model, expressed in the form (52),
may be considered as derived from the Perzyna viscoplastic model if we assume
that the function f̃ (�̃) is the complementary energy norm of the generalized excess
stress.

A different demonstration of the same result is also possible; see De Angelis [24].
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On hereditary models of polymers

M. De Angelis

Abstract. An equivalence between an integro-differential operator M and an evolution ope-
rator Ln is determined. From this equivalence the fundamental solution of Ln is estimated in
terms of the fundamental solution related to the third-order operator L1 whose behavior is
now available. Moreover, properties typical of wave hierarchies can be applied to polymeric
materials. As an example the case n = 2 is considered and results are applied to the Rouse
model and the reptation model which describe different aspects of polymer chains.

1 Statement of the problem

The creep and relaxation processes related to the viscoelastic behavior of many
polymeric materials are specified by means of memory functions of the form:

gn(t) =
n∑

h=1

Bh e
�ˇht; (1)

where n, Bh and ˇh depend on the polymer physics and are determined so as to fit
the experimental curves for gn(t) to a given approximation [1–4].

Let B be a linear, isotropic, homogeneous system and let u(x; t)i be the dis-
placement field from an underformed homogeneous reference configuration B0. If
�0 denotes the mass density in B0, and f = fi is the known body force, the one-
dimensional linear motions of B are described by the higher order equation [5]

Lnu =
n∑

k=0

ak @
(k)
t (utt � c2k uxx) = F; (2)

where

ck = ˛k=�0ak; F = (1=�0)
n∑

k=0

ak @
k
t f: (3)

In (2) the constants ck are the characterized speeds depending on the material
properties of the medium and in many physical problems c20 < c21:: < c2n�1 < c2n
and so the equation is typical of wave hierarchies [6].

When n = 1, (2) turns into a strictly hyperbolic third-order equation which
models the evolution of the standard linear solid [7] and its behavior was discussed in
[8]: the fundamental solution E1 was explicitly determined, together with maximum
theorems and boundary layer estimates.
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Moreover, the behavior of most viscoelastic media is also fairly well modelled
by linear hereditary equations of the form

"(t) = J(0)
(t) +
∫ t

�1
J̇(t� �)
(�)d� (4)

where J(t) denotes the creep-compliance and 
, " are the only non-vanishing com-
ponents of the stress and the strain tensors such that �0 utt = 
x + f; " = ux;

According to fading memory hypotheses [9,10], J̇(t) is a positive fast decreasing
function and, for many real materials such as polymers, rubbers and bitumens, which
can be representated by means of chains of S.L.S. elements in series or parallel [1,2],
one has

J̇n(t) = Jn(0)gn(t); (5)

where n is the number of elements in the chain, Jn(0) denotes the elastic compliances
and constants Bk and frequencies ˇk satisfy

0 < ˇ1 < ˇ2 < : : : < ˇn and Bk > 0 8k = 1; 2 : : : n: (6)

The well-known creep representation of one-dimensional linear motions of B is
given by [11] as

Mu = c2uxx � utt �
∫ t

0
g(t� �)u��d� = �F�(x; t); (7)

where

c2 = [�0Jn(0)]�1; F� = c2[Jn(0)f+
∫ 0

�1
J̇n(t��)
x(�)d�+

∫ t

0
J̇(t��)f(�)d�]:

(8)

For all n, the fundamental solutionEn of the operator M has been explicitly deter-
mined [11,12]. Moreover, letE1 be the fundamental solution related to an appropriate
S.L.S. B�

1 defined by

g1 = b e�ˇ1t with b = ˇ1

n∑
1

Bk

ˇk
; (9)

the following theorem shows that the fundamental solution En can be rigorously
estimated by means of E1.

In fact, if � is the open forward characteristic cone f(t; x) : t > 0 jxj < ctg, and
�n =

∏n
k=2 ( Bkˇ1

)2, then the following theorem holds.
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Theorem 1.1. If the memory function is given by (1) and (6), then the fundamental
solution En of M is a nonnegative C1(�) function and it satisfies the estimate

0 < En(ˇ1::ˇn; B1::Bn) < �n E1(ˇ1; b) (10)

everywhere in � and for all n. �

In this paper a conditional equivalence between (2) and the integro-differential equa-
tion (7) is established.

With this equivalence and Theorem 1.1, the fundamental solution En of (2) can
be determined and an estimate in terms of E1 is obtained for all n.

Moreover, properties typical of wave hierarchies can be applied to polymeric
materials. As an example the case n = 2 is considered and results are applied to the
Rouse model and the reptation model which describe different aspects of polymer
chains.

2 Conditioned equivalence between operators Ln and M
Suppose that the initial data related to (2) and (7) are null and let

�k = ak=an; �k = akck=ancn (k = 0; : : : ; n): (1)

Applying the Laplace transform and the polynomial identity one has cn = c2 and⎧⎪⎪⎨⎪⎪⎩
�0 = ˇ1ˇ2 � � �ˇn
::::::::::::::::::::::::::::::
�n�2 = ˇ1ˇ2 + ˇ1ˇ3 + � � � + ˇn�1ˇn
�n�1 = ˇ1 + � � � + ˇn

(2)

By (6), the �k are positive. Further,⎧⎪⎪⎨⎪⎪⎩
�0 = �0 + B1(ˇ2 : : : ˇn) + � � � + Bn(ˇ1 � � �ˇn�1)
::::::::::::::::::::::::::::::
�n�2 = �n�2 + B1(ˇ2 + � � � + ˇn) + � � � + Bn(ˇ1 + � � � + ˇn�1)
�n�1 = �n�1 + B1 + � � � + Bn

(3)

and (6), (3) imply that 0 < �k < �k (k = 0; : : : ; n� 1). Consequently,

0 < ck < cn = c2 (k = 0; : : : ; n� 1): (4)

Lastly, by (2), (3), it follows that �0�0
< �1

�1
< �n�1

�n�1 and so

0 < c0 < c1 < : : : < cn: (5)

Thus, the following property holds.

Property 2.1. Hypotheses of fading memory (1), (6) imply that the differential ope-
rator (2) is typical of wave hierarchies. �
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Conversely, when the differential equation (2) is given, to obtain the dual hereditary
equation (7) with a memory function g(t) satisfying (5), (6), appropriate restrictions
on the constants ak; ck must be imposed.

Example 2.1. When n = 2, then c2 = c2; B0 = 1, and ˇ1; ˇ2 are real if and only if

!2 = (a1c1)2 � 4(a0c0)(a2c2) > 0: (6)

Then,

ˇ1 =
1

2a2c2
(a1c1 � !); ˇ2 =

1
2a2c2

(a1c1 + !) (7)

so that 0 < ˇ1 < ˇ2 . Further,

Bi =
(�1)i�1

!
[a0(c2 � c0) � a1ˇi(c2 � c1)] (i = 1; 2): (8)

Thus, B1 > 0; B2 > 0 if and only if

ˇ1 <
ao
a1

c2 � c0
c2 � c1

< ˇ2: (9)

Therefore, the fourth-order operator

a2(utt � c2uxx)tt + a1(utt � c1uxx)t + a0(utt � c0uxx) (10)

can be analyzed by (5)-(7) when the constants ak; ck satisfy (6) and (9). �

3 Polymeric materials

Polymeric materials such as rubber are very flexible and are easily formed into fibres,
thin films, etc. Moreover, the liquid state composed only of polymers (polymer melt)
is an important state for industrial uses where polymeric materials are processed
into various plastic products such as gaskets, seals, flexible joints, vehicle tires, etc.
Also, durability is a requirement imposed on polymers and polymeric composites so
the development of these materials has thus become an increasingly important part
of engineering studies. In fact, a large literature deals with polymer physics. As for
viscoelastic theories, two models which describe different aspects of polymer chains,
have met with reasonable success: the Rouse model and the reptation model [4,3].

In both cases the memory function g(t) assumes the form (1) of Sect. 1.
In fact in the the Rouse model the function g(t) is given by

g(t) = k1

n∑
h=1

e2h
2 t
�1 ; (1)

where the relaxation time �1 can be calculated by means of experimental results [4].
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When the viscoelastic behavior is represented by the reptation model, the stress
function decreases with a relaxation time �d, as times increases, and one has

g(t) = k
n∑

h=0

1
(h)2

e
�h2 t

�d ; (2)

where h ranges over the odd integers, the constant k depends on the polymer physics
and the value of the reptation time �d can be fixed according to elasticity experi-
ments [2].

From the first two steps in the reptation model, B1 = k; B2 = B1=9; ˇ1 =
1=�d; ˇ2 = 9ˇ1: Consequently the operator (10) is characterized by constants:⎧⎪⎨⎪⎩

c0 = c2 81
81+82k�d

; c1 = c2 9
9+k�d

; c2 = c2

a0 = 1 + 82
81 k�d; a1 = 10�2d

9 ( 1
�d

+ k
9 ); a2 = �2d

9

(3)

Analogously, in the Rouse model, as B1 = B2 = k1; ˇ1 = 2=�1 and ˇ2 = 4ˇ1,
one has:⎧⎪⎨⎪⎩

c0 = c2 8
8+5k1�1

; c1 = c2 5
5+k1�1

; c2 = c2

a0 = 1 + 5k1
8 �1; a1 = �21

16 (2k1 + 10
�1

); a2 = �21
16

(4)

The wave hierarchies defined by (3) or (4) are governed by the operator L�
1 of

the standard linear solid defined, respectively, by:⎧⎨⎩
c0 = c2 81

81+82k�d
; c1 = c2; a0 = 1 + 82

81 k�d;  = 81�d
81+82k�d

;

c0 = c2 8
8+5k1�1

; c1 = c2; a0 = 1 + 5
8k1�1;  = 4�1

8+5k1�1
:

(5)

Remark 3.1. As shown, the memory function gn(t) can depend on h2. Thus, the
approximation to the two first terms appears to be reasonable. However, in many
articles the model is limited to a single relaxation time (see, e.g., [13]). �
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Edge contact forces in continuous media

M. Degiovanni, A. Marzocchi, A. Musesti

1 Introduction and preliminaries

In this note we present results contained in [2] concerning integral properties of
second-order powers. More precisely, we introduce the power expended on a subbody
by a virtual velocity field, in the spirit of Germain [6,7], but in an axiomatic way
similar to that exploited for first-order powers in [11], in which the power is regarded
as a function of the subbody and of the velocity field.

As already shown by Dell’Isola and Seppecher [3] and Di Carlo and Tatone [4],
higher order powers can be used to describe edge effects, in a way that seems to
be simpler than the use of edge interactions (see Noll and Virga [12] and Forte and
Vianello [5]).

Here we investigate the above subject by paying attention to the regularity of
the stress (or hyper-stress) fields, as well as of the subbodies on which the stresses
act. In doing this, we first obtain results for finite perimeter subbodies and fields
with divergence measure in order to represent a contact power as a surface integral;
secondly, since the power is of order two, a further integration by parts is formally
possible, leading to subsets of codimension 2, i.e., edges. To this end, we introduce
a subclass of the sets of finite perimeter, called sets with curvature measure, where
such an integral representation can be obtained. The result is that edge effects are
seen as surface integrals involving curvature and/or density which is singular with
respect to the area.

Finally, we find, as in previous papers [1,10,11], that powers are uniquely deter-
mined by their properties on n-intervals.

For the proofs of all results cited below, the reader is referred to [2].

In the sequel, Ln denotes the n-dimensional Lebesgue outer measure and Hk the
k-dimensional Hausdorff outer measure on Rn. Given a Borel subset ˝ 
 Rn, we
denote by B(˝) the collection of all Borel subsets of ˝.

The topological closure, interior and boundary of E 
 Rn are denoted as usual
by clE, intE and bdE, respectively. Denoting by Br(x) the open ball with radius r
centered at x, we introduce the measure-theoretic interior of E

E� =
{
x 2 Rn : lim

r!0+

(
r�nLn(Br(x) n E)

)
= 0

}
and the measure-theoretic boundary of E

@�E = Rn n
(
E� [ (Rn n E)�

)
;
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which are both Borel subsets of Rn. We say that E 
 Rn is normalized if E� = E.
Let˝ be a Borel subset of Rn. We denote by M(˝) the set of Borel measures� :

B(˝) ! [0;+1] finite on compact subsets of ˝ and by Lp
loc;+(˝), p 2 [1;+1],

the set of Borel functions h : ˝ ! [0;+1] such that∫
K
hp dLn < +1 (p < +1); ess sup

K
h < +1 (p = +1)

for every compact subset K 
 ˝.

Definition 1. A full grid G is an ordered triple

G =
(
x0; (e1; : : : ; en); Ĝ

)
;

where x0 2 Rn, (e1; : : : ; en) is a positively oriented orthonormal basis of Rn and Ĝ
is a Borel subset of R with L1(R n Ĝ) = 0.

If G1, G2 are two full grids, we write G1 
 G2 if Ĝ1 
 Ĝ2 and they share the
point x0 and the list (e1; : : : ; en).

Definition 2. We denote by Sym2 the finite-dimensional linear space of all symme-
tric bilinear forms on Rn and by Sym3 the linear space of all symmetric 3-linear
forms on Rn.

Definition 3. We denote by R the class of open n-intervals I such that cl I 
 ˝.

Definition 4. Let G =
(
x0; (e1; : : : ; en); Ĝ

)
be a full grid. A subsetM of Rn is said

to be a G-interval if

M =
{
x 2 Rn : aj < (x� x0) � ej < bj 8j = 1; : : : ; n

}
for some a1; b1; : : : ; an; bn 2 Ĝ. We set

MG = fM 
 Rn : M is a G-interval with clM 
 ˝g :

Definition 5. Let A 
 R. We say that A contains almost all of R if, for every
x0 2 Rn and every positively oriented orthonormal basis (e1; : : : ; en) in Rn, there
exists a full grid

G =
(
x0; (e1; : : : ; en); Ĝ

)
such that MG 
 A .

2 Second-order powers

We now give our main definition.

Definition 6. Let A be a subset of R containing almost all of R. We say that a
function P : A � C1(˝) ! R is a second-order power if the following properties
hold:
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(a) for every v 2 C1(˝), P( � ; v) is countably �-additive, i.e.,

P

((⋃
i2N

Mi

)
�

; v

)
=
∑
i2N

P(Mi; v)

for every disjoint sequence (Mi) 2 A such that

(⋃
i2N

Mi

)
�

2 A ;

(b) for every M 2 A, P(M; � ) is linear;
(c) there exist �0; �1; �2 2 M(˝) such that, for every M 2 A; v 2 C1(˝),

jP(M;v)j �
∫
M

jv(x)jd�0(x)+
∫
M

jrv(x)jd�1(x)+
∫
M

jrrv(x)jd�2(x):

Definition 7. We call a second-order power with �2 = 0 a first-order power, and a
first-order power with �1 = 0 a power with order 0.

Remark 1. Let M 2 R; then it is easy to prove that for every full grid G there exists
a disjoint sequence (Mi) 
 MG such that(⋃

i2N

Mi

)
�

= M:

Moreover, one can replace (a) by the following weaker assumption:

(a’) for every v 2 C1(˝) and for every full grid G,

P

((⋃
i2N

Mi

)
�

; v

)
=
∑
i2N

P(Mi; v)

whenever (Mi) 2 A \ MG is a disjoint sequence such that

(⋃
i2N

Mi

)
�

2 A .

Remark 2. One can also consider powers P(M; v), where v takes values in RN,
N � 1, and define the corresponding power by linearity.

Our first goal is to establish a representation formula for a second-order power. This
is not a matter of routine, since P(M;v) does not depend only on v and hence is not
merely a linear functional on the velocity field.

Theorem 1. Let P be a second-order power.
Then there exist bounded Borel maps A0 : ˝ ! R, A1 : ˝ ! (Rn)�, A2 : ˝ !

Sym2 such that, for every M 2 A; v 2 C1(˝),

P(M;v) =
∫
M
A0(x)v(x)d�0(x) +

∫
M

hA1(x);rv(x)id�1(x)+

+
∫
M

hA2(x);rrv(x)id�2(x): (1)

Moreover, each Aj is uniquely determined �j-a.e.
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The following is a form of converse of the previous theorem.

Proposition 1. Let �0; �1; �2 2 M(˝) and A0; A1; A2 as above be Borel and
bounded.

Then there exists a set A 
 R containing almost all of R such that the function
P : A � C1(˝) ! R defined as

P(M;v) =
∫
M
A0(x)v(x)d�0(x) +

∫
M

hA1(x);rv(x)id�1(x)+

+
∫
M

hA2(x);rrv(x)id�2(x)

is a second-order power.

Now we turn to a similar representation formula on Borel subsets of ˝.

Definition 8. Let  2 M(˝). We set

B = fM 
 Rn : M = M� ; clM 
 ˝; (@�M) = 0g :

Theorem 2. Let P be a second-order power. Let Aj, j = 0; 1; 2, be as in Theorem 1.
Then there exists  2 M(˝) such that the function P̃ : B � C1(˝) ! R

defined as

P̃(M;v) =
∫
M
A0(x)v(x)d�0(x) +

∫
M

hA1(x);rv(x)id�1(x)+

+
∫
M

hA2(x);rrv(x)id�2(x)

is an extension of P which satisfies (a), (b) and (c) of Definition 6 on B.

3 Decomposition of powers

Up to this point, the definitions and assumptions made imply that the powerP behaves
as an integral on the subbodies, but they do not imply, for example, that the power
can be represented as a surface integral, as is often the case in continuum mechanics.
Our next definition makes these features precise.

Definition 9. A second-order power P is said to be weakly balanced if there exists
� 2 M(˝) such that,

8M 2 A; 8v 2 C1
c (M) ; jP(M;v)j �

∫
M

jvjd� :

In particular, P is said to be a contact power if,

8M 2 A; 8v 2 C1
c (M) ; P(M;v) = 0 ;

namely, if it is weakly balanced with � = 0.
A power P of order 0 is said to be a body power.
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Note that a body power is always weakly balanced, as can be seen by choosing
trivially � = �0.

Theorem 3. LetP be a weakly balanced second-order power and letAj, j = 0; 1; 2,
be as in Theorem 1.

Then the following facts hold:

(a) there exists a bounded Borel function B : ˝ ! R such that, for every v 2
C1
c (˝),∫

˝
A0(x)v(x)d�0(x) +

∫
˝

hA1(x);rv(x)id�1(x)+

+
∫
˝

hA2(x);rrv(x)id�2(x) =
∫
˝
B(x)v(x)d�(x) ; (2)

moreover, B is uniquely determined �-a.e.;
(b)

8M 2 A; 8v 2 C1
c (M) ; P(M;v) =

∫
M
B(x)v(x)d�(x) :

Now let P be a weakly balanced second-order power, let �j; Aj, 0 � j � k, be
as in Theorem 1 and let �, B be as in Theorem 3. According to Proposition 1 we
can define, for a suitable class A containing almost all of R, two powers Pb; Pc :
A � C1(˝) ! R by

Pb(M;v) :=
∫
M
B(x)v(x)d�(x) ;

Pc(M;v) := P(M;v) �
∫
M
B(x)v(x)d�(x) :

It is readily seen that Pb is a body power and Pc a second-order contact power. Of
course, we have P = Pb + Pc.

Definition 10. Pb is said to be the body part of P and Pc the contact part of P.

4 First-order contact powers

Let P be a first-order contact power such that (c) of Definition 6 holds with �1
absolutely continuous with respect to the Lebesgue measure. We set  = �0.

According to Theorems 1 and 3, there exist a bounded Borel function a : ˝ ! R

and T 2 L1
loc(˝; Rn) such that,

8M 2 B;8v 2 C1(˝) ; P(M;v) =
∫
M
avd+

∫
M
T � rv dLn ; (3)

8v 2 C1
c (˝) ;

∫
˝
avd+

∫
˝
T � rv dLn = 0 : (4)
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Moreover, a is uniquely determined -a.e. and T is uniquely determined Ln-a.e.
We now briefly recall the concept of outer normal to the measure-theoretic bo-

undary of a set. Let M 
 Rn and x 2 @�M. We denote by nM(x) 2 Rn a unit vector
such that

Ln
(
f	 2 Br(x) \M : (	� x) � nM(x) > 0g

)/
rn ! 0;

Ln
(
f	 2 Br(x) nM : (	� x) � nM(x) < 0g

)/
rn ! 0

as r ! 0+. At most one such vector can exist. Setting nM(x) = 0 elsewhere, we
can consider the map nM : @�M ! Rn, which is called the unit outer normal to M.
It turns out that nM is Borel and bounded.

Whenever Hn�1(@�M) < +1, we say thatM is a set with finite perimeter. In that
case it is well-known that nM(x) 6= 0 for Hn�1-a.e. x 2 @�M and the Gauss-Green
theorem holds for Lipschitz functions.

Now we define a suitable subclass of B which allows us to give a representation
formula for a first-order contact power involving only the measure-theoretic boundary
of the subbodies. We refer to [14,1] for a discussion of this class.

Definition 11. For h 2 L1
loc;+(˝) we set

Mh =
{
M 2 B : Hn�1(@�M) < +1;

∫
@�M

hdHn�1 < +1
}
:

We are now in a position to state the boundary representation formula for first-order
contact powers. We refer to it as the Cauchy’s Stress Theorem, since it states the
linearity of the stress with respect to the normal.

Theorem 4 (Cauchy’s Stress Theorem). There exists h 2 L1
loc;+(˝) such that,

8M 2 Mh;8v 2 C1(˝) ; P(M;v) =
∫
@�M

vT � nM dHn�1:

5 Second-order contact powers

Now we study second-order contact powers in more detail and the possibility of
representing them as surface integrals.

Throughout this section, we assume that P is a second-order contact power such
that (c) of Definition 6 holds with �1 and �2 absolutely continuous with respect to
the Lebesgue measure. We set  = �0.

According to Theorems 1 and 3, there exist a bounded Borel function a : ˝ ! R,
B 2 L1

loc(˝; Rn) and C 2 L1
loc(˝; Sym2) such that,

8M 2 B;8v 2 C1(˝) ; P(M;v) =
∫
M
avd+

+
∫
M
B � rv dLn +

∫
M

C � rrv dLn ; (5)

8v 2 C1
c (˝) ;

∫
˝
avd+

∫
˝
B � rv dLn +

∫
˝

C � rrv dLn = 0 : (6)
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Moreover, a is uniquely determined -a.e. and B;C are uniquely determined Ln-a.e.
When the distribution div C is a function, we have a representation of P(M;v) as a
surface integral.

Theorem 5. Assume that div C 2 L1
loc(˝;R

n). Then there exists h 2 L1
loc;+(˝)

such that

P(M;v) =
∫
@�M

[v(B� div C) � nM + rv � CnM]dHn�1 (7)

for every v 2 C1(˝) and M 2 Mh .

A remarkable feature of our approach is that the condition div C 2 L1
loc(˝;R

n),
mentioned in the above theorem, has a counterpart in terms of the power P, as we
show in Theorem 6 below.

This is quite interesting, since assumptions made on P are in general more ‘phy-
sical’ than those made on its densities.

To state this, we need a definition and a proposition.

Definition 12. Let G =
(
x0; (e1; : : : ; en); Ĝ

)
be a full grid and M 2 MG of the

form

M = fx 2 Rn : aj < (x� x0) � ej < bj; j = 1; : : : ; ng ; (8)

where a1; b1; : : : ; an; bn 2 Ĝ . Whenever 1 � j � n and aj � ˛ < ˇ � bj , we set

M
(j)
˛;ˇ = fx 2 Rn : ˛ < (x� x0) � ej < ˇ; ai < (x� x0) � ei < bi 8i 6= jg :

We simply write M(j)
ˇ in the case ˛ = aj.

Proposition 2. Let MG 
 A, M 2 MG be represented as in (8), v 2 C1
c (M) and

1 � j � n. Then M(j)
ˇ 2 MG for L1-a.e. ˇ 2 (aj; bj] and the map{

ˇ 7! P(M(j)
ˇ ; v)

}
belongs to L1(aj; bj) for every v 2 C1

c (˝).

At this point we may state the following result.

Theorem 6. The distribution div C 2 L1
loc(˝;R

n) if and only if there exists h 2
L1
loc;+(˝) such that∣∣∣∣∣

∫ bj

aj

P(M(j)
ˇ ; v)dˇ

∣∣∣∣∣ �
∫
M

jvjhdLn (9)

for every MG 
 A, M 2 MG, v 2 C1
c (M) and j = 1; : : : ; n. In this case, we have

jB� 2 div Cj � h on Ln-a.a. of ˝.
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6 Boundary representation with edges

Now we come to the most interesting application of second-order powers, namely,
the possibility of having a representation formula on edges, or simply sets with non-
smooth normal. Roughly speaking, this is made possible by the gradient term in (7),
which allows a further integration by parts.

To do this, we need to introduce a new class of sets.

Definition 13. Let M be a normalized set with finite perimeter. We say that M is a
set with curvature measure if there exist �M 2 M(@�M) with �M(@�M) < +1 and
a Borel tensor field U : @�M ! Sym2 with jU(x)j = 1 for �M-a.e. x 2 @�M such
that

�
∫
@�M

[�(div C) � nM + ((rC)nMnM) � nM]dHn�1 =
∫
@�M

C � Ud�M

for every C 2 C1
c (Rn; Sym2). It turns out that �M is uniquely determined and U is

uniquely determined �M-a.e.
For h 2 L1

loc;+(˝) we set

Ch =
{
M 2 Mh : M has curvature measure and

∫
@�M

hd�M < +1
}
:

Remark 3. One can prove that the elements of R are sets with curvature measure.
Indeed, since on each face the term [�(div C) � nM +((rC)nMnM) � nM] is a surface
divergence, it turns out that �M is the Hausdorff measure Hn�2 restricted to the edges,
and U = nM ˝ N + N ˝ nM, where N is the normal to the edge in the hyperplane
of the surface.

We are now ready to perform the last integration by parts. In doing this, however, we
remark that the normal derivative of v cannot be dropped, since it corresponds to a
field of doublets assigned on the boundary.

We also want to let line integrals appear as surface integrals, with respect to a
singular measure.

Since the formal integration by parts involves the symmetric gradient of a tensor,
we briefly recall its definition.

Definition 14. Let C 2 L1
loc(˝;Sym2). We define the symmetric gradient of C by

setting (rsC)uvw on ˝ as

h(rsC)uvw; 'i =
1
3

∫
˝

[(Cv � w)(r' � u) + (Cu � w)(r' � v) + (Cu � v)(r' � w)] dLn

for every ' 2 C1
c (˝). The function

{
(u; v;w) 7! (rsC)uvw

}
is 3-linear and

symmetric; moreover, ((rC)uu) � u = (rsC)uuu for every u 2 Rn.

The following theorem gives us our final goal, provided div C 2 L1
loc(˝;R

n) and
rsC 2 L1

loc(˝;Sym3), that is, the corresponding distributions are represented by
locally integrable functions.
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Theorem 7. Let P be a contact power of order 2 such that (c) of Definition 6 holds
with �1 � Ln and �2 � Ln and let  = �0. Assume further that div C 2
L1
loc(˝;R

n) and rsC 2 L1
loc(˝;Sym3).

Then there exists h 2 L1
loc;+(˝) such that

P(M;v) =
∫
@�M

v
[
(B� 2 div C) � nM + (rsC)nMnMnM

]
dHn�1

+
∫
@�M

@v

@n
(CnM � nM)dHn�1 +

∫
@�M

vC � Ud�M (10)

for every M 2 Ch and v 2 C1(˝).

In the same spirit as above, we show that the condition rsC 2 L1
loc(˝;Sym3) has a

counterpart in terms of P.

Theorem 8. The function rsC 2 L1
loc(˝;Sym3) if and only if there exists h 2

L1
loc;+(˝) such that∣∣∣∣∫ ˇ

˛
P(M(j)

s ; v)ds
∣∣∣∣ �

∫
M

(j)
˛;ˇ

(
jvj +

∣∣∣∣ @v@ej
∣∣∣∣) hdLn (11)

for every MG 
 A, M 2 MG, v 2 C1
c (M), j = 1; : : : ; n and aj < ˛ < ˇ < bj . In

this case, we have jrsCj � 3
2 (h+ jB� 2 div Cj) on Ln-a.a. of ˝.
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Tangent stiffness of a Timoshenko beam
undergoing large displacements

M. Diaco, A. Romano, C. Sellitto

Abstract. The polar model of an elastic Timoshenko beam undergoing large displacements
is investigated in detail. Special emphasis is given to the problems involved in the evaluation
of the tangent stiffness to provide a complete answer to the question of whether or not tangent
stiffness is tensorial and symmetric.

1 Introduction

The paper deals with the analysis of the Timoshenko beam model (i.e., a shear defor-
mable beam) undergoing large displacements and deformations during an evolution
process in the elastic range. The Timoshenko beam model provides a significant
example of a continuum whose configuration space is an infinite-dimensional non-
linear manifold modeled on a Banach space [1,2,6]. Indeed the rotations of the cross
sections of the beam are primary kinematic parameters ranging over the special or-
thogonal group which is a three-dimensional non-linear compact manifold. Due to
the nonlinearity of the configuration manifold, it is compelling to apply the rules of
calculus on manifolds in the evaluation of the tangent stiffness. The constitutive tan-
gent stiffness is provided by the Hessian of the elastic potential defined as the second
covariant derivative according to a chosen connection on the rotation manifold. The
Hessian operator is the difference between the second directional derivative along
trial and test fields and the first derivative in the direction of the covariant derivative of
the test field in the direction of trial fields. The evaluation of the Hessian requires the
extension of the virtual displacement to a vector field on the configuration manifold,
but the result is tensorial as it is independent of this arbitrary choice. We show that
the geometric tangent stiffness is symmetric if the torsion of the connection on the
manifold vanishes. Moreover we explain that the lack of symmetry found in early
calculations based on a canonical extension of the virtual displacement is due to the
implicit assumption of a non-symmetric connection on the configuration manifold.
The constitutive tangent stiffness plays an essential role both from the theoretical and
the computational points of view. The dependence of its expression on the connection
and on the extension of the virtual displacement, recently stressed in [10,11], and
investigated in detail in the present paper, seems to have been overlooked in previous
treatments [3–5,7].
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2 The beam model

We develop the treatment of the Timoshenko beam model along the general guide-
lines set forth in the companion paper [11]. We also refer to that paper for more
general definitions and results that are presented here in the special context of one-
dimensional polar beam theory.

As usual let E3 denote three-dimensional affine euclidean space, with translation
linear space V3 , and SO(3) the special orthogonal group of rotations, which is a
three-dimensional compact nonlinear manifold.

A placement of a Timoshenko beam is described by a regular curve in E3 , named
the axis of the beam, and by a field of rotations Q 2 SO(3) , attached at each point
of the beam axis, which simulates the rigid body kinematics of the cross sections
of the beam. The ambient space S is the fiber bundle defined by the projection
�

S
: E3 � SO(3) 7! E3 .
This is a trivial fiber bundle defined by the cartesian product of the euclidean

space (the base manifold) and the non-linear three-dimensional compact group of
rotations (the fiber).

The material body is a set of particles which can be put in one-to-one correspon-
dence with an interval B of the real line R .

We consider an evolution process of the beam in a time observation interval
I = [to; tf] and a reference base placement of the beam at time s 2 I, which is
a closed interval Bs of a regular curve in E3 . We denote the curvilinear abscissa
along Bs by � 2 R .

A configuration of the beam at time t 2 I : ut : B 7! E3 � SO(3) maps a
particle p 2 B into a pair frt(p) ;Qt(p)g 	 E3 � SO(3) defining the position
rt(p) 2 E3 of the beam axis and the rotation Qt(p) 2 SO(3) of the corresponding
cross section of the beam. The image of a configuration is called a placement of the
beam. The map rt : B 7! E3 is named the base configuration of the beam at time
t 2 I and its image is the base placement of the beam Bt at time t 2 I .

The polar structure of the beam st : Bt 7! S is the map from the base placement
at time t 2 I onto the placement Pt = st(Bt) 	 S defined by

st ı rt = ut := frt ;Qtg 8 rt 2 Bt ; (1)

it has the property

(�
S

ı st)(x) = x 8 x 2 Bt 	 E3 : (2)

The change of base configuration from rs to rt is the diffeomorphism rt;s 2
Ck(Bs ; Bt) defined by

rt;s ı rs = rt ; (3)

where the index k denotes a suitable integer.
The change of configuration from us to ut is the map ut;s := frt;s ;Qt;sg :

us(B) 7! ut(B) 	 S defined by

rt;s(rs) = rt ; Qt;s Qs = Qt : (4)
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The beam axis displacement field is given by dt;s = rt � rs so that

rt;s(rs) = rs + dt;s ; (5)

rt;s ı rs = rt : (6)

The composition rules are given by

r�;t ı rt;s = r�;s ; Q�;t ı Qt;s = Q�;s : (7)

Since rs;s 2 Ck(Bs ; Bs) and Qs;s : us(B) 7! us(B) are identities, the maps
rt;s 2 Ck(Bs ; Bt) and Qt;s : us(B) 7! ut(B) are invertible and their inverses are
given by

(rt;s)
�1 = rs;t ; (Qt;s)

�1 = Qs;t : (8)

The Timoshenko beam undergoes a rigid displacement in the passage from the confi-
guration us = frs ;Qsg to the configuration ut = frt ;Qtg if and only if the relative
rotation Qt;s between the cross sections of the beam is uniform and the positions of
the axis are given by

rt = Qt;s rs + c ; (9)

where c 2 V3 is a constant vector field.
The next proposition provides a measure of finite deformation for the Timoshenko

beam which satisfies the requirements of consistency and nonredundancy illustrated
in [11].

Proposition 3 (Deformation measures). The finite deformation measure

D(ut;s) :=

∣∣∣∣∣ı(rt;s;Qt;s)

C(Qt;s)

∣∣∣∣∣ ; (10)

vanishes if and only if the Timoshenko beam undergoes a rigid displacement. Here

ı(rt;s;Qt;s):= QT
t;s

r0
t
� r0

s
: Bs 7! V3 ; sliding vector field ;

C(Qt;s):= QT
t;s

Q0
t;s

: Bs 7! L(V3 ;V3) ; curvature tensor field :
(11)

The prime (�)0 denotes the derivative with respect to the curvilinear abscissa along
the beam axis in the configuration at the initial time s 2 I .

Proof. Under a rigid transformation, the relative rotation field Qt;s is uniform so
that Q0

t;s
= O and hence C(Qt;s) = O . By differentiating the expression

rt = Qt;s rs + c ; (12)

with respect to the curvilinear abscissa 	 along the beam axis at time s 2 I , we see
that

r0
t
= Qt;s r

0
s

() ı(rt;s;Qt;s) = o : (13)
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Vice versa, if D(rt;s) = f o;O g , the condition C(Qt;s) = O implies that the
rotation Qt;s is uniform. The condition ı(rt;s) = o then implies that r0

t
= Qt;s r

0
s
.

Integrating with respect to � we get the relation

rt = Qt;s rs + c ; (14)

which is characteristic of a rigid transformation.

The deformation measure of Proposition 3 satisfies the consistency condition

ı(r�;s;Q�;s) = QT
t;s

ı(r�;t;Q�;t)
d	t
d	s

+ ı(rt;s;Qt;s) ; (15)

C(Q�;s) = QT
t;s

C(Q�;t)Qt;s

d	t
d	s

+ C(Qt;s) (16)

for any s; t; � 2 I . In particular, if the relative deformations ı(r�;t;Q�;t) and
C(Q�;t) vanish, we infer that

ı(r�;s;Q�;s) = ı(rt;s;Qt;s) ; (17)

C(Q�;s) = C(Qt;s) : (18)

Regarding the rigid transformation f r�;t;Q�;t g as a change of observer, we may
conclude that the deformation measure is frame indifferent.

3 Elastic equilibrium

The space of configuration changes from a reference placement (in short, the con-
figuration space) is the differentiable manifold M := Ck(Bs ; S) modeled on the
Banach space Ck(Bs ; Rd) , d = dim S (see [11]).

We now consider an elastic behavior defined by an elastic potential ' which
is assumed to be a differentiable convex function of the finite deformation D(ut;s)
corresponding to the change of configuration ut;s 2 M evaluated from a natural
configuration us : B 7! S . Since the deformation measure is frame indifferent,
the value of the elastic potential is independent of the observer and the principle of
material indifference is satisfied.

The elastic law is imposed pointwise in the reference placement Bs by assuming
that the local stress S = fFo ;Mog , conjugate to the deformation measure D =
fı ;Cg , is the gradient of the potential ' , according to the local formula

Sx = @'x(Dx(u)) 8 x 2 Bs : (19)

Since the deformation measure satisfies the consistency condition, the equilibrium of
the elastic continuum at the configuration ut : B 7! S may be enforced in terms of
fields defined in the reference placement Bs , by means of the variational condition∫

Bs

@('x ı Dx)(ut;s) � ıut;s(x)d� = hG(ut;s) � f t; ıut;s i ;
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which must be satisfied for any virtual displacement

ıut;s(x) 2 T
S
(ut;s(x)) 8 x 2 Bs : (20)

Here and in the sequel a dot denotes a linear dependence on the subsequent argument.
The global elastic potential � 2 C2(Ck(Bs;S) ; R) provides the elastic energy

associated with the configuration change u 2 M = Ck(Bs;S) and is given by

�(u) := (' ı D)(u) =
∫

B

('x ı Dx)(u)d� : (21)

Setting u = ut;s we denote by T
M

(u) the linear space of tangent vectors to
the manifold M := Ck(Bs ; S) at the configuration u 2 M and by T�

M
(u) =

BL (T
M

(u) ; R) the dual space of continuous linear forms on T
M

(u) .

The referential equilibrium of the body at time t 2 I is then expressed by

h@�(u); ıui = hG(u) � f ; ıui 8 ıu 2 T
M

(u) : (22)

The bounded linear functionals G(u) � f 2 T�
M

(u) and @�(u) 2 T�
M

(u) res-
pectively provide the referential applied load and the referential elastic response of
the body (see [11]).

4 Tangent stiffness

The condition of incremental elastic equilibrium of a Timoshenko beam at the confi-
guration ut;s 2 M = Ck(Bs;S) is obtained by linearizing the equilibrium condition.

In performing the linearization we must recall that the kinematic parameters
of the beam are fields whose values belong to the non-linear differential manifold
E3 � SO(3) .

With Gf (u) := G(u) � f ; the incremental equilibrium is imposed by carrying
out the total time derivative of the non-linear condition along the equilibrium path

d

dt

[
(@�� Gf )(u)

]
= 0 : (23)

Since both the configuration change u and the force f depend on t 2 I , the
incremental equilibrium condition may be rewritten as

@u̇(@�� Gf )(u) = G(u) � ḟ ; (24)

where a superimposed dot denotes the time derivative and u̇ 2 T
M

(u) .
The total tangent stiffness of the body is the directional derivative

K(u) := @(@�� Gf )(u) ; (25)

and the incremental equilibrium is accordingly written as

K(u) � u̇ = G(u) � ḟ : (26)
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However, as illustrated in detail in [11], when dealing with a polar continuum, such
as a Timoshenko beam, the directional derivative of the covector field (@�� Gf ) 2
Ck(M ; T�

M
) at a configuration u 2 M must be taken according to a connection

defined on the configuration space, the non-linear manifold of maps M = Ck(Bs ; S) .
Once a connection rS is defined on the ambient space S a corresponding connec-

tion rM is induced on the configuration manifold M (see [11]). The total tangent
stiffness is then computed by taking covariant derivatives instead of directional de-
rivatives to get the expression

K(u) := rM(@�� Gf )(u) = (rM˛)(u) ; (27)

where

˛ = @�� Gf (28)

is the equilibrium gap resulting from the difference between the elastic response
@� 2 Ck(M ; T�

M
) and the referential load Gf 2 Ck(M ; T�

M
) .

The covariant derivative of the covector field ˛ 2 Ck(M ; T�
M

) is the linear form
rM

u̇
˛ 2 Ck(M ; T�

M
) defined by

(rM

u̇
˛)(u) � ıu := @u̇ (˛ � ı̂u)(u) � ˛(u) � (rM

u̇
ı̂u)(u) ; (29)

where ı̂u is an extension of the virtual displacement ıu 2 T
M

(u) to a neighborhood

U(u) 	 M of the configuration u 2 M and (˛ � ı̂u) 2 Ck(M ; R) is the scalar
field defined by

(˛ � ı̂u)(u) := ˛(u) � ı̂u(u) : (30)

It can be shown that the Hessian is independent of the choice of the extension [8,11].
Hereafter the suffices S and M are dropped unless necessary.

We consider two tangent vector fields at the configuration ut;s 2 M ,

u̇t;s(x) 2 TS(ut;s(x))

ıut;s(x) 2 TS(ut;s(x))
8 x 2 Bs : (31)

To simplify the exposition we set m = ut(x) and adopt the shorthand notation

Q = Qt;s ; r = rt;s (32)

Xm = u̇t;s(x) = fṙX ; Q̇Xg ; Ym = ıut;s(x) = fṙY ; Q̇Yg : (33)

The field Xm = fṙX ; Q̇Xg is the unknown velocity along the equilibrium path and
the field Ym = fṙY ; Q̇Yg is a virtual displacement which plays the role of test
field in the variational condition of equilibrium.

In the sequel, in common with earlier treatments in the literature (see [4,7]), we
analize only the tangent stiffness stemming from the constitutive response of the
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beam. The constitutive stiffness is the Hessian of the elastic potential � = ' ı D 2
Ck(M ; R) , a twice covariant tensor field on the configuration manifold M defined
as the covariant derivative of the linear form ˛ = @� 2 Ck(M ; T�

M
) :

K(u) = (r2
u̇ ıu

�)(u) := (ru̇@�)(u) �ıu = @u̇ (@ı̂u �)(u)�@(
ru̇ ı̂u

)�(u) : (34)

The explicit expression of the Hessian is given by

K(u) =
∫

Bs

r2
XmYm

('x ı Dx)(u)d� :

Accordingly the tangent stiffness can be decomposed in the sum of two terms:

� the elastic tangent stiffness∫
Bs

@2'x(Dx(u)) � (@Ym
Dx)(u) � (@Xm

Dx)(u)d� ; (35)

which is a two-times covariant symmetric tensor as it is the second directional deri-
vative of the scalar function 'x in the linear space V3 � L(V3 ;V3);
� the geometric tangent stiffness∫

Bs

@'x(Dx(u)) � (r2
XmYm

Dx)(u) d� ; (36)

where

(r2
XmYm

Dx)(u) = @Xm
(@Ŷ Dx)(u) � @(

rXm
Ŷ
)Dx(u) (37)

is the Hessian of the deformation measure.
The geometric tangent stiffness is then a two-times covariant tensor which is

symmetric if the Hessian (r2
XmYm

Dx)(u) is so. In turn this Hessian is symmetric
if the torsion of the connection r vanishes.

The vector field Ŷ is an extension of the virtual displacement Y 2 T
M

(u) to
a neighborhood U(u) 	 M of the configuration u 2 M .

This extension pertains only to the component of the virtual displacement in
SO(3) since the component in E3 is trivially extended as a constant field.

We remark that any vector Q̇ tangent to the manifold SO(3) at a point Q can
be represented by Q̇ = WQ where W 2 so(3) is a skew-symmetric tensor. By
taking constant the tensor W 2 so(3) , this formula provides a simple way to extend
a vector tangent at a point of SO(3) to a vector field on SO(3) . This extension,
which is referred to as the canonical extension, was the one adopted by Simo and
Vu-Quoc in [4].
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By differentiating the expression of the finite deformation

Dx(r;Q) :=

∣∣∣∣∣ı(r;Q)

C(Q)

∣∣∣∣∣ =

∣∣∣∣∣Q
T r0

t
� r0

s

QT Q0

∣∣∣∣∣ ; (38)

we see that

@Dx(f r;Q g) � f ṙY; Q̇Y g =

∣∣∣∣∣ Q̇T
Y

r0
t
+ QT ṙ0

Y

Q̇T
Y
Q0 + QTQ̇0

Y

∣∣∣∣∣ ; (39)

and, setting Q̇Y = WY Q ; we get

@Dx(f r;Q g) � f ṙY;WY Q g =

∣∣∣∣∣Q
T (ṙ0

Y
� WY r0

t
)

QTW0
Y
Q

∣∣∣∣∣ : (40)

The second derivative @Xm
(@Y Dx)(u) is evaluated by putting Q̇X = WXQ in

Xm = fṙX ; Q̇Xg .
Then, as Q̇T

X
= �QTWX , we see that

@(QT (ṙ0
Y

� WY r0
t
))[Q̇X] = QT

[
WX WY r0

t
� (WX ṙ0

Y
+ WY ṙ0

X
)
]
; (41)

@(QTW0
Y
Q) [Q̇X] = Q̇T

X
W0

Y
Q + QTW0

Y
Q̇X =

= �QTWXW0
Y
Q + QTW0

Y
WXQ =

= QT
[
�WXW0

Y
+ W0

Y
WX

]
Q = QT

[
W0

Y
;WX

]
Q ;

(42)

where
[
A;B

]
is the commutator of two tensors in L(V3 ;V3) defined by[

A;B
]

:= AB � BA : (43)

It is apparent that the commutator of two skew-symmetric tensors is a skew-symmet-
ric tensor. In conclusion the second directional derivative of the deformation measure
has the expression

@Xm
(@Ŷ Dx)(u) =

∣∣∣∣∣Q
T
[
WX WY r0

t
� (WX ṙ0

Y
+ WY ṙ0

X
)
]

QT
[
W0

Y
;WX

]
Q

∣∣∣∣∣ ; (44)

which is apparently non-symmetric with respect to an exchange of the vectors

Xm = fṙX ; Q̇Xg = fṙX ;WX Qg ; Ym = fṙY ; Q̇Yg = fṙY ;WY Qg :
(45)



Tangent stiffness of a Timoshenko beam undergoing large displacements 57

This is the expression that was evaluated in [4].
Lastly, the directional derivative @Dx(u) � (rXm

Ŷ) must be evaluated. To this
end it is necessary to equip the manifold SO(3) with a connection. The Levi–Civita
connection corresponding to the Riemannian metric is the natural candidate.

This metric is simply that induced on SO(3) by the euclidean metric in the
ambient linear space L(V3 ;V3) . The Levi–Civita connection may then be defined
either by the general Koszul formula or as the orthogonal projection on SO(3) of
the directional derivative in L(V3 ;V3) [8,9].

The former route was followed in [7]. We follow the latter route which is by far
the simpler. Indeed, we consider the tensor field T̂Y : L(V3 ;V3) 7! L(V3 ;V3)
defined by

T̂Y(B) := WY B 8 B 2 L(V3 ;V3) ; (46)

so that

@AT̂Y(B) = WY A 8 A 2 L(V3 ;V3) : (47)

Then, setting TX = T̂X(Q) 2 TSO(3)(Q) = so(3)Q ; we have

(@TX
T̂Y)(Q) = WY WX Q ; Q 2 SO(3) : (48)

The orthogonal projection on the subspace so(3)Q , which is tangent to the
manifold SO(3) at Q , provides the expression of the covariant derivative

(rTX
T̂Y)(Q) =

(
emi (WY WX)

)
Q = �1

2
[
WX;WY

]
Q ; (49)

where the commutator
[
WX;WY

]
is a skew-symmetric tensor.

We can now evaluate the directional derivative @Dx(u) � (rXm
Ŷ) . To this end

we observe that the directional derivatives of the curvature and of the sliding along
Q̇ are respectively given by

@(QT Q0) [Q̇] = Q̇T Q0 + QT Q̇0 ;

@(QT r0
t
� r0

s
) [Q̇] = Q̇T r0

t
:

(50)

By setting

Q̇ = (rTX
T̂Y)(Q) = �1

2
[WX;WY]Q ; (51)

the directional derivatives of the curvature and of the sliding become

Q̇T Q0 + QT Q̇0 = 1
2 QT [WX;WY]Q0 � 1

2Q
T [WX;WY]0 Q+

� 1
2 QT [WX;WY]Q0 = � 1

2 QT [WX;WY]0 Q ;

Q̇T r0
t
= 1

2 QT [WX;WY] r0
t
;

(52)
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and hence we get

@Dx(u) � (rXm
Ŷ) =

1
2

∣∣∣∣∣ QT [WX;WY] r0
t

�QT [WX;WY]0 Q

∣∣∣∣∣ : (53)

Then, from the formula

(r2
XmYm

Dx)(u) = @Xm
(@Ŷ Dx)(u) � @(

rXm
Ŷ
)Dx(u) ; (54)

we infer the final result

(r2
XmYm

Dx)(u)=
1
2

∣∣∣∣∣Q
T
[
(WX WY + WY WX) r0

t
�2(WX ṙ0

Y
+ WY ṙ0

X
)
]

QT ([W0
X
;WY] + [W0

Y
;WX])Q

∣∣∣∣∣
(55)

which is clearly symmetric with respect to the exchange of the vectors Xm;Ym 2
V3 � so(3)Q .

The symmetry of the constitutive tangent stiffness is a direct consequence of the
symmetry of the Levi–Civita connection. Moreover, since the covariant derivative
(rTX

T̂Y)(Q) is skew-symmetric, the second directional derivative

@Xm
(@Ŷ Dx)(u) (56)

is the sum of the symmetric bilinear form (r2
XmYm

Dx)(u) and the skew-symmetric

bilinear form @Dx(u) � (rXm
Ŷ) .

It is then apparent that the statement claimed in [4,7] that the symmetric consti-
tutive tangent stiffness can be obtained simply by taking the symmetric part of the
classical Hessian of the elastic potential (the second directional derivative), is not
a general rule but a direct special consequence of the special assumptions concer-
ning the connection on SO(3) (the Levi–Civita connection) and the extension of the
virtual displacement (the canonical extension).

On the other hand complete understanding of the reason why the non-symmetric
classical Hessian of the elastic potential turns out to be tensorial can be had by
observing that it coincides with the second covariant derivative taken according to
the connection induced by the parallel transport defined by the canonical extension
of a vector tangent at a point of SO(3) to a vector field on SO(3) . As proved in
the Appendix, the torsion of this connection does not vanish. As a consequence the
Hessian is not symmetric but is tensorial.

5 Matrix form of the tangent stiffness

It is convenient to rewrite the expression of the stiffness in terms of axial vectors
associated to the skew-symmeric tensors WX and WY . To rewrite the deformation
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measure D in terms of axial vectors we recall the formulas

axial (QWX QT) = Q axial WX 8 Q 2 SO(3) ;

axial
[
WX;WY

]
= (axial WX) � (axial WY) ;

(57)

and set

!X = axial WX ; !Y = axial WY : (58)

5.1 Elastic tangent stiffness

We consider the vector form of the deformation measure

D(r;Q) :=

∣∣∣∣∣Q
T r0

t
� r0

s

c(Q)

∣∣∣∣∣ ; (59)

with c(Q) := axial (QT Q0) . By recalling that

ı(r;Q) = ṙ0�Wr0
t
= ṙ0+r0

t
�! ; ċ(Q) = axial (QTW0Q) = QT!0 ; (60)

and by defining the operators

Q :=

[
Q O

O Q

]
; �T :=

⎡⎣ @
@�I r0

t
�

O @
@�I

⎤⎦ ; (61)

we see that

@D(r;Q) � (f ṙY;WY Q g) =

∣∣∣∣∣Q
T (ṙ0

Y
+ r0

t
� !Y)

QT!0
Y

∣∣∣∣∣
= QT

∣∣∣∣∣ ṙ
0
Y

+ r0
t
� !Y

!0
Y

∣∣∣∣∣ = QT�T

∣∣∣∣∣ ṙY
!Y

∣∣∣∣∣ :
(62)

The constitutive elastic stiffness is represented by the two-times covariant symmetric
tensor

E(r;Q) = @2'x(Dx)(r;Q) =

[
E11 E12

E21 E22

]
: (63)

The bilinear form of the elastic tangent stiffness then assumes the expression∫
Bs

@2'x(Dx(u)) � (@Ym
Dx)(u) � (@Xm

Dx)(u)d�

=
∫

Bs

E(r;Q) � QT�T

∣∣∣∣∣ ṙY
!Y

∣∣∣∣∣ � QT�T

∣∣∣∣∣ ṙX
!X

∣∣∣∣∣ d� :
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5.2 Geometric tangent stiffness

In an analogous way, for the geometric tangent stiffness we get

(r2
XmYm

Dx)(r;Q) =

=
1
2

∣∣∣∣∣Q
T
[
(WX WY + WY WX) r0

t
� 2 (WX ṙ0

Y
+ WY ṙ0

X
)
]

QT axial ([W0
X
;WY] + [W0

Y
;WX])

∣∣∣∣∣ =

=
1
2

∣∣∣∣∣Q
T
[
!X � (!Y � r0

t
) + !Y � (!X � r0

t
) � !X � ṙ0

Y
� !Y � ṙ0

X

]
QT (!0

X
� !Y + !0

Y
� !X)

∣∣∣∣∣ =

= �1
2

QT

∣∣∣∣∣!X � (!Y � r0
t
) + !Y � (!X � r0

t
) � !X � ṙ0

Y
� !Y � ṙ0

X

!0
X

� !Y + !0
Y

� !X

∣∣∣∣∣ :

(64)

The two-times covariant symmetric tensor∫
Bs

@'x(Dx(u)) � (r2
XmYm

Dx)(u) d� ; (65)

provides the geometric tangent stiffness. By setting

F = QFo ; M = Q axial Mo = axial (QMo QT) ; (66)

it follows from the constitutive relation

Sx = fFo ;Mog = @'x(Dx(u)) ; (67)

that

fF ;MQg = Q @'x(Dx(u)) Q
T
; fF ;Mg = Q @'x(Dx(u)) ; (68)

where

Q :=

[
Q O

O Q

]
; Q =

[
O O

O Q

]
: (69)

Observing that

F � (WX r0
Y

) = F � (!X � r0
Y

) = (F � !X) � r0
Y
;

F � (WX WY r0
t
) = (WX WY) : (F ˝ r0

t
) = F �

[
!X � (!Y � r0

t
)
]

=

= (F � !Y) (r0
t
� !X) � (F � r0

t
) (!X � !Y) =

=
[
(F ˝ r0

t
) !X

]
� !Y � (F � r0

t
) (!X � !Y) ;

(70)
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we can write

@'x(Dx)(r;Q) � r2
XmYm

Dx(r;Q) =

= F � 1
2
[
!X � (!Y � r0

t
) + !Y � (!X � r0

t
) � 2 (!X � ṙ0

Y
+ !Y � ṙ0

X
)
]

+M � 1
2
[
!0

X
� !Y + !0

Y
� !X

]
:

(71)

Then

@'x(Dx)(r;Q) � r2
XmYm

Dx(r;Q) =

=
[
sym (F ˝ r0

t
) !X

]
� !Y � (F � r0

t
) (!X � !Y)

� (F � !X) � r0
Y

+ (F � r0
X

) � !Y+

+ 1
2

[
(M � !0

X
) � !Y � (M � !X) � !0

Y

]
:

(72)

To provide a matrix form of the first member of the incremental equilibrium condition,
we introduce the linear differential operator

L =

⎡⎣ @
@�I O O

@
@�I O I

⎤⎦ ; (73)

so that

L

∣∣∣∣∣ ṙ

!

∣∣∣∣∣ =

∣∣∣∣∣∣
ṙ0

!0

!

∣∣∣∣∣∣ : (74)

The geometric tangent stiffness is then expressed as∫
Bs

@'x(Dx)(r;Q) � r2
XmYm

Dx(r;Q)d� (75)

=
∫

Bs

B

∣∣∣∣∣∣
ṙ0
X

!0
X

!X

∣∣∣∣∣∣ �

∣∣∣∣∣∣
ṙ0
Y

!0
Y

!Y

∣∣∣∣∣∣ d� =
∫

Bs

B L

∣∣∣∣∣ ṙX
!X

∣∣∣∣∣ � L

∣∣∣∣∣ ṙY
!Y

∣∣∣∣∣ d� ; (76)

where the symmetric operator of geometric stiffness B is defined by

B =

⎡⎢⎢⎣
O O �F�
O O � 1

2M�
F� 1

2M� 1
2 (F ˝ r0

t
+ r0

t
˝ F) � (F � r0

t
) I

⎤⎥⎥⎦ : (77)
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5.3 Constitutive tangent stiffness

The previous analysis provides the matrix expression of the constitutive tangent
stiffness, defined by the symmetric bilinear form∫

Bs

r2
XY

('x ı Dx)(r;Q) d�

=
∫

Bs

@'x(Dx)(r;Q) � r2
XmYm

Dx(r;Q)d�

+
∫

Bs

@2'x(Dx)(r;Q) � @Dx(r;Q)[Ym] � @Dx(r;Q)[Xm]d�

=
∫

Bs

[
B L

∣∣∣∣∣ ṙX
!X

∣∣∣∣∣ � L

∣∣∣∣∣ ṙY
!Y

∣∣∣∣∣ d�+ E(r;Q) � QT�T

∣∣∣∣∣ ṙX
!X

∣∣∣∣∣ � QT�T

∣∣∣∣∣ ṙY
!Y

∣∣∣∣∣
]
d� ;

where

Q :=

[
Q O

O Q

]
; (78)

�T :=

⎡⎣ @
@�I r0

t
�

O @
@�I

⎤⎦ ; (79)

L =

⎡⎣ @
@�I O O

@
@�I O I

⎤⎦ ; (80)

B =

⎡⎢⎢⎣
O O �F�
O O � 1

2M�
F� 1

2M� 1
2 (F ˝ r0

t
+ r0

t
˝ F) � (F � r0

t
) I

⎤⎥⎥⎦ : (81)

6 Conclusion

The constitutive tangent stiffness of a Timoshenko beam model is composed of an
elastic and a geometric part. The elastic part is always a symmetric bilinear form as
it is the second directional derivative of the deformation measure field whose values
belong to a linear space. The geometric part is a bilinear form which turns out to be
symmetric if the torsion of the connection vanishes. We have shown that the calcula-
tions performed in early treatments of the Timoshenko beam model [4,7], in which
the geometric stiffness is computed by taking the second directional derivative of
the deformation measure according to a canonical extension of the virtual displace-
ment, are equivalent to evaluating the second covariant derivative of the deformation
measure according to a non-symmetric connection on the non-linear rotation ma-
nifold. This result explains why the tangent stiffness so evaluated is tensorial but
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non-symmetric. By adopting the natural symmetric Levi–Civita connection the tan-
gent stiffness turns out to be the symmetric part of the non-symmetric one classically
evaluated on the basis of the canonical extension of the virtual displacement.

Appendix

Let SO(3) be the special orthogonal group of proper rotations, with tangent bundle
TSO(3) 	 BL (V3 ;V3) and let so(3) 	 BL (V3 ;V3) be the linear subspace of skew-
symmetric tensors. We consider the trivial fiber bundle � : SO(3) � so(3) 7! SO(3)
and a section Ŵ : SO(3) 7! SO(3) � so(3) of this bundle, defined by

Ŵ(R) = f R;WR g ; R 2 SO(3) ;WR 2 so(3) : (82)

The composition T̂ ı Ŵ with the map T̂ : SO(3) � so(3) 7! TSO(3) defined by

T̂(f R;WR g) = f R;WR R g ; (83)

yields a vector field T̂ ı Ŵ : SO(3) 7! TSO(3) on the tangent bundle TSO(3) ,
according to the relation

(T̂ ı Ŵ)(R) = f R;WR R g : (84)

Let ŴX;ŴY : SO(3) 7! SO(3) � so(3) be sections of the fiber bundle � :
SO(3) � so(3) 7! SO(3) . The corresponding vector fields X̂; Ŷ : SO(3) 7! TSO(3)
are defined by the compositions

X̂ := T̂ ı ŴX ; Ŷ := T̂ ı ŴY : (85)

The directional derivative of X̂ at Q along Y = Ŷ(Q) 2 TSO(3)(Q) is given by

(@YX̂)(Q) = [@YŴX(Q)]Q + ŴX(Q)@YQ : (86)

To simplify the notation we set WX = ŴX(Q) and WY = ŴY(Q) .

We remark that the directional derivative @YQ is defined by considering the
canonical injection Ĵ : SO(3) 7! BL (V3 ;V3) :

Ĵ(Q) := Q 2 BL (V3 ;V3) 8 Q 2 SO(3) ; (87)

and by setting

@YQ := (@YĴ)(Q) = Y = WY Q 2 BL (V3 ;V3) : (88)

The directional derivative of the vector field X̂(R) at the point Q along Y =
Ŷ(Q) 2 TSO(3)(Q) is given by

(@YX̂)(Q) = (@YŴX)Q + WXWYQ : (89)
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Let f Qs ; s 2 I g be the parametric equation of a curve on SO(3) passing through
Q at time t 2 I so that Qt = Q .

A covariant differentiation on the manifold SO(3) is uniquely defined once a
parallel transport is chosen along the curves on the manifold. The covariant derivative
of the vector field X̂ along the tangent vector

Y =
@

@s

∣∣∣∣
s=t

Qs (90)

is defined by

(rYX̂)(Qt) =
@

@s

∣∣∣∣
s=t

St;sX̂(Qs) ; (91)

where St;s denotes the parallel transport along the curve f Qs ; s 2 I g from the
point Qs to the point Qt . We now define the parallel transport according to the
relation

St;sX̂(Qs) := ŴX(Qs)Qt : (92)

By the formula above the covariant derivative is then given by

(rYX̂)(Qt) = (@YŴX)(Qt)Qt ; (93)

so that

(@YX̂)(Qt) = (rYX̂)(Qt) + WXWYQt : (94)

The torsion of a connection on the manifold SO(3) is the third-order tensor field
which provides the vector measure of the lack of symmetry of the Hessian of a scalar
function f 2 C2(M ; R) :

TOR(X;Y)f := (r2
XY

� r2
YX

)f = (rXŶ � rYX̂)f� [X̂; Ŷ]f ; (95)

where [X̂; Ŷ] is the Lie bracket given by

[X̂; Ŷ]f = (LX̂Ŷ)f = (@X@Ŷ � @Y@X̂)f ; (96)

where the Lie derivative is defined by

(LX̂Ŷ)(Qt) :=
@

@s

∣∣∣∣
s=t

't;s�(X̂(Qs)) ; (97)

and 't;s� is the differential of the flow 't;s on the manifold SO(3) associated with

the vector field X̂ via the differential equation

d

dt

∣∣∣∣
t=s

't;s = X̂ : (98)



Tangent stiffness of a Timoshenko beam undergoing large displacements 65

It is worth noting that the Lie derivative is a first-order derivative which is the diffe-
rence between two second directional derivatives. Although both terms of the right-
hand side in the expression of the torsion are not tensorial, the expression of the
torsion as a whole is in fact tensorial in its arguments, i.e., it depends only on the
point values of the vector fields.

We now compute the explicit expression of the torsion. The two covariant deri-
vatives are given by

(rXŶ)f =
[
(@XŴY)Q

]
f ; (99)

(rYX̂)f =
[
(@YŴX)Q

]
f : (100)

The evaluation of the second directional derivatives yields

@X@Ŷf = @2
XY

f+ (@XŶ)f = @2
XY

f+
[
(@XŴY)Q+WYWX Q

]
f; (101)

@Y@X̂f = @2
YX

f+ (@YX̂)f = @2
YX

f+
[
(@YŴX)Q+WXWY Q

]
f : (102)

In the linear ambient space L(V3 ;V3) we have @2
XY

f = @2
YX

f and hence the final
expression of the torsion is given by

TOR(X;Y)f = +
[
(@XŴY)Q

]
f�

[
(@YWX)Q

]
f

� @2
XY

f�
[
(@XŴY)Q + WYWXQ

]
f

+ @2
YX

f+
[
(@YŴX)Q + WXWYQ

]
f

=
[
WXWY � WYWX

]
Qf =

[
WX;WY

]
Qf : (103)

We may conlude that the torsion tensor at a point Q 2 SO(3) is a non-vanishing
bilinear form. Moreover, as predicted by the theory, its expression is independent of
the special functional form of the vector fields X̂; Ŷ : SO(3) 7! TSO(3) since, in

its expression, only the point values WX;WY at Q of the sections ŴX;ŴY :
SO(3) 7! SO(3) � so(3) appear.

The canonical extension of a vector tangent at a point of SO(3) is obtained by
setting

Ŵ(R) = f R;W g ; R 2 SO(3) ; (104)

with W 2 so(3) a fixed skew-symmetric tensor. In this case the covariant derivative
vanishes since

(rYX̂)(Q) = (@YŴX)(Q)Q = 0 8 Y = Ŷ(Q) 2 TSO(3)(Q) : (105)

Hence, from the formula

(r2
XmYm

Dx)(u) = @Xm
(@Ŷ Dx)(u) � @(

rXm
Ŷ
)Dx(u) ; (106)
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we infer that

(r2
XmYm

Dx)(u) = @Xm
(@Ŷ Dx)(u) ; (107)

so that the second covariant derivative of the deformation measure coincides with
the second directional derivative.
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Qualitative estimates for cross-sectional measures
in elasticity

J.N. Flavin, B. Gleeson

1 Introduction

This paper summarizes recent spatial decay results in linear homogeneous isotropic
elasticity. They are derived by studying positive-definite cross-sectional measures of
deformation/stress, using second-order differential inequality, or convexity, techni-
ques.

Two contexts are considered:

(i) a hollow circular cylinder, in a state of axisymmetric (torsionless) stress, whose
lateral boundaries are traction-free, the resultant stress on each cross-section
being zero;

(ii) a semi-infinite rectangular strip in a state of plane stress, whose lateral edges are
displacement free.

Section 2 discusses the former context, Sect. 3 the latter.

2 Estimates for an annular cylinder in an axisymmetric state
of stress

Knowles and Horgan [1] established a spatial decay result (reflecting Saint-Venant’s
principle) for an energy-like functional in the context of a ‘solid’ circular cylinder
in a state of axisymmetric stress. A central feature of this analysis was the use of an
ingeniously defined ‘scalar product’ in order to facilitate the analysis. The estimates,
discussed here, are based on a positive-definite cross-sectional measure of stress
and second-order differential inequalities – as opposed to an energy-like functional
together with a differential-integral inequality as used in [1] – and involve the use of
a ‘scalar product’ analogous to that used in [1]. It should be noted that Horgan and
Knowles [2] remarked that the methodology used by them in connection with the
solid cylinder, could also be used for the analogous issue for the hollow cylinder.

It is relevant to mention that the methodology used in this paper is analogous
to that used in [3], and that reviews of Saint-Venant’s principle and related issues,
together with copious references, are available in [2,4,5].

We first deal with notation and other preliminaries, including the representation
of the stress field in terms of potential-like functions. We then define a positive-
definite cross-sectional measure – based on a suitably defined ‘scalar product’ –
and establish its convexity (with respect to the axial coordinate z). Next, an annular
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cylinder (0 < z < L) is considered subject to zero traction on its boundary except
on the end z = 0 where the load is (necessarily) self-equilibrated, and the cross-
sectional measure is proved to be a generalized convex function of z, using, inter
alia, a conservation law (discussed in the Appendix). A spatial decay law for the
cross-sectional measure appropriate to a semi-infinite cylinder (L ! 1) follows
therefrom. The estimated decay constant depends on two eigenvalues which are
discussed in the Appendix. The section concludes with a discussion of the estimated
decay constant. A complete discussion of these issues appears in [6], together with
further references.

We consider an annular circular cylinder of internal radius a and external radius
b, consisting of homogeneous isotropic elastic material. We use cylindrical polar
coordinates (r; �; z) throughout. We are concerned with axisymmetric, torsionless,
deformations of the cylinder, and employ the following notation: the non-vanishing
components of the stress tensor � are denoted by �rr, ���, �zz, �rz. Moreover, all
these are functions of r, z only. We assume that the displacement field u is three
times continuously differentiable and that � is twice continuously differentiable in
the relevant closed region. We also assume that the shear modulus � and Poisson’s
ratio 
 satisfy � > 0 and �1 < 
 < 1=2, and that both are constant.

We are concerned with (torsionless) axisymmetric stress fields corresponding to
free lateral boundaries and such that the resultant traction on each cross-section is
zero (self-equilibration condition). These are expressed respectively as follows:

�rr = �rz = 0 on r = a; b, (1)

and ∫ b
a �zzrdr = 0. (2)

It may be noted that the latter is, of course, satisfied (for all z) provided that it holds
on any particular cross-section (e.g., on z = 0).

In the early part of the section specific limits on z are not imposed, but later on
we assume that the cylinder occupies

0 < z < L,

that (additionally) the end z = L (constant) is traction-free, and therefore that (2)
holds on z = 0 and hence on all cross-sections. The traction-free condition on z = L
is expressible as

�zz = �zr = 0 on z = L. (3)

Subsequently we will assume that L ! 1, and that (3) continues to hold.
It is convenient to introduce the functions � (r; z),  (r; z) (e.g., Knowles and

Horgan [1]), the former being analogous to the Airy stress function in plane elasticity.
As pointed out by Knowles and Horgan [1], a virtual retracing of the argument given
in Love [7] establishes that any stress field of the type envisaged, with the smoothness
properties stated in the first paragraph of this section, exists if and only if there exist



Qualitative estimates for cross-sectional measures in elasticity 69

functions � (r; z),  (r; z) which are four times continuously differentiable in the
relevant closed region, such that

�rr = �zz + r�1�r � r�2 z, (4)

��� = 
 (�zz + �rr) � (1 � 
) r�1�r + r�2 z, (5)

�zz = r�1 (r�r)r , (6)

�rz = ��rz, (7)

and which satisfy the differential equations

(1 � 
)
{
r�1 (r�r)r + �zz

}
= r�1 rz, (8)

r
(
r�1 r

)
r
+  zz = 0, (9)

where suffixes attached to �,  denote partial differentiation with respect to the
appropriate variables, both here and subsequently. There is a certain arbitrariness
inherent in the representation (4) � (7); see [6]. The boundary conditions (1), (2)
may be expressed in terms of �,  as

r2�zz + r�r �  z = 0,
�rz = 0,

}
on r = a; b. (10)

Furthermore, one may express the self-equilibration condition (2) in the form

r�r]
b
a = 0, (11)

while the traction-free condition on z = L – when relevant – may be expressed in
the form

r�1 (r�r)r = 0,
�rz = 0,

}
on z = L. (12)

Throughout we employ a cross-sectional measure of stress, suggested both by [3]
and the procedure adopted by Knowles and Horgan [1] wherein they define a scalar
product appropriate to a solid cylinder. We define the cross-sectional measure of
stress by

F (z) = (�zz; �zz) + (1 � 
)
∫ b
a r

�1
{
(r�r)r

}2
dr, (13)

where the scalar product (u; v) is defined, for any two continuous functions u (r; �),
v (r; �) defined in a � r � b, as follows:

(u; v) = (1 � 
)
∫ b
a ru (r; �) v (r; �)dr� r2u (r; �) v (r; �)

]b
a

. (14)

[The cross-sectional measure may be expressed in terms of stress components using
(4) � (6)]. In all cases where it arises, the class of functions upon which the scalar
product is defined is constrained by either of the conditions
(a) u = 0 on r = a; b,
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(b) (u; 1) = 0.
It can be shown that

(u; u) � 0 with equality if and only if u � 0 (15)

in both these cases.
Since integration of (8), multiplied by r, with respect to r, together with (101)

and (11), gives

(�zz; 1) = 0, (16)

the positive-definiteness of (�zz; �zz) is established.
Using the foregoing properties together with the arbitrariness inherent in the

representation (4) � (7), we may easily establish (see [6]) that F (z), defined by
(13), is positive-definite in the stress field, i.e., for each z, F (z) is positive except
when the stress field is identically zero. ThusF (z) may be regarded as an acceptable
global measure, in each cross-section, of the stress.

The foregoing notation and properties may be used (see [6]) to establish a con-
vexity property of F (z).

Theorem 1. The cross-sectional measure of stress F (z), defined by (13), in the
context of an axisymmetric, torsionless stress field, corresponding to traction-free
lateral boundaries and zero resultant traction on each cross-section, in the cylindrical
region

a < r < b, 0 � � < 2�,

is a convex function of the axial coordinate.

The proof of Theorem 1 is based upon the readily established equality

F00 (z) = 2 (�zzz; �zzz) + 4 (�rzz; �rzz) + 2 (1 � 
)
∫ b
a r

�1
{
(r�rz)r

}2
dr. (17)

Theorem 1 follows from this expression together with the non-negativity property of
the scalar product.

Some implications of Theorem 1 are discussed in [6].
We now give a generalised convexity property, for a more restricted problem,

and study its implications. We consider a cylinder with zero traction, not only on
the lateral surfaces r = a; b, but also on the end z = L, all other conditions being
as previously; naturally, the load applied on the end z = 0 is self-equilibrated. It
is possible to replace the boundary conditions (10), (12) by simplified ones, on
exploiting the arbitrariness inherent in �,  :

r2�z �  = 0, �r = 0, on r = a; b, (18)

and, on the unloaded end,

� = 0, �z = 0, on z = L. (19)
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Commencing from (17), and using Inequality 1 (see Appendix (A1)), etc., we obtain

F00 (z) � 2 (�zzz; �zzz) + 4�1 (�zz; �zz) + 2 (1 � 
)
∫ b
a r

�1
{
(r�rz)r

}2
dr, (20)

where �1 is an eigenvalue defined in Appendix (A1).
Suitably combining this, (19), and the conservation law (see Appendix (A4))

2 (�z; �zzz) + (1 � 
)
∫ b
a r

�1
{
(r�r)r

}2
dr� (�zz; �zz) � 2 (�rz; �rz)

= E,
(21)

where E is a constant, we obtain

F00 (z) �K�1F (z) � 2 (2 �K)�1 (�zz; �zz) + 2 (1 � 
)
∫ b
a r

�1
{
(r�rz)r

}2
dr

� 1
2K (K+ 4)�1 (�rz; �rz) .

(22)

On applying Inequality 2 (Appendix (A2)), etc., we obtain

F00 (z) �K�1F (z) � 2 (2 �K)�1 (�zz; �zz)
+ 1

2

{
4�2 �K (K+ 4)�1

}
(�rz; �rz) .

(23)

We now choose the value of K so that the right-hand side of (23) is non-negative. In
order to make the last term in (23) non-negative we choose

0 < K � 2
p
�2=�1 + 1 � 2,

where the definitions of �1, �2 are given in the Appendix (A1), (A2), and we require

0 < K � 2

in order to secure the non-negativity of the first term on the right-hand side of (23).
We thus have the following result.

Theorem 2. The cross-sectional measureF (z) (defined by (13)) of the axisymmetric
stress field in an annular elastic cylinder (0 < z < L) with null traction boundary
conditions on its lateral surfaces r = a; b, and on its plane end z = L, satisfies the
(generalised convexity) inequality

F00 (z) � k2F (z) � 0, (24)

the (positive) constant k being defined by

k =
p
K�1 (25)

where K is given by

K = 2 min
(
1;

p
�2=�1 + 1 � 1

)
, (26)

and the eigenvalues �1, �2 are defined in the Appendix.
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One may deduce from (24) that, in the case of a semi-infinite cylinder (L ! 1),
one has the following result.

Theorem 3. In the context of the cylinder in Theorem 2, whose length L ! 1, we
have

F (z) � F (0) exp [�kz] (27)

where k is defined by (25), (26), provided that

lim
L!1

F (L) exp [�kL] = 0. (28)

Remark 1. The bound (27) can be made fully explicit in either of the following two
ways.
(a) Consider the case of normal loading on the end z = 0 (i.e., �rz = 0 thereon), and
assume �zz ! 0 as L ! 1. One may use the conservation law (A3) to obtain

F (0) = 2 (1 � 
)
∫ b
a r

{
�zz (r; 0)

}2
dr.

(b) Suppose that �zz and the complementary displacement component u are both
prescribed, as smooth functions, on the end z = 0. In these circumstances, one may
express F (0) in terms of �zz and u (the radial component of displacement).

Remark 2. With

b=a = 1 + ",

an asymptotic analysis establishes that

�1=�2 � 1 as " ! 0;

it is found, accordingly, that the decay constant k is such that

ka � �"�1
(
2
p

2 � 2
)1=2

as " ! 0.

This is consistent with the decay constant of Knowles [8] for a plane elastic state,
derived by a different methodology.

Remark 3. It is of interest to compare the estimated decay rate obtained here with that
obtained by Stephen and Wang [9] who estimated the decay rate, in the case
 = 0:25,
by means of an eigenfunction analysis and numerical techniques. A comparison is
given in the accompanying table, in which the estimated decay rate ka (DE) is given
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in the second column, and the constant ka obtained by Stephen and Wang (WS) is
given in the third column.

b=a ka(DE) ka(WS)
1:05 52:1 166:5
1:1 26:1 84:2
1:5 5:3 16:8
2 2:7 8:4

3 Estimates for a semi-infinite rectangular strip in plane strain

In this section we consider an homogeneous isotropic linear elastic material in plane
strain occupying the rectangular region 0 < x2 < 1, 0 < x1 < 1, ((x1; x2)
denoting rectangular cartesian coordinates). We suppose that the lateral boundaries
x2 = 0; 1 are displacement-free and that the deformation is generated by actions on
the remaining ends. Specifically, we assume that thex1; x2 displacement components
u1 (x1; x2) ; u2 (x1; x2) 2 C3 satisfy

(˛+ 1) u1;11 + u1;22 + ˛u2;12 = 0
u2;11 + (˛+ 1) u2;22 + ˛u1;12 = 0

}
(29)

subject to

u1 = u2 = 0 on x2 = 0; 1. (30)

As usual, ˛ is a constant such that

˛ = (1 � 2
)�1 ; (31)

where 
 is Poisson’s ratio, assumed to satisfy

�1 < 
 < 1=2, (32)

whence

1=3 < ˛ < 1. (33)

In previous work [10], a decay estimate was obtained for a cross-sectional mea-
sure, whence a pointwise estimate was obtained for the displacement component u1.
The main purpose of this section is to obtain an estimate for a different/modified
cross-sectional measure, which yields a pointwise decay estimate for the comple-
mentary displacement component u2. As pointed out in [2], such pointwise estimates
are liable to be of considerable technical complexity.
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Estimates of this, and related types, are obtained in [11]. The main result therein
is now summarized. Defining the cross-sectional measure of deformation K (x1) as

K (x1) =
∫ 1
0

[
u2
1;2 + u2

2;1 + ˛�1
(
u2
1;1 + u2

2;2
)]
dx2; (34)

one finds

K00 (x1) � 2�2 (˛+ 1)�1K (x1) = 0. (35)

Under the asymptotic conditions

uˇ;� ! 0 as x1 ! 1, (36)

it follows from (35) that

K (x1) � K (0) exp
[
��

p
2 (˛+ 1)�1=2 x1

]
. (37)

It is possible to boundK (0) above in terms of data, using a conservation law, provided
that the displacement components are specified as smooth functions on the edge
x1 = 0:

K (0) �
∫ 1
0

[(
˛+ 1 + ˛�1

)
u2
2;2 + 2u2

1;2
]
x1=0 dx2. (38)

A pointwise decay estimate for u2 (x1; x2) – in terms of data – follows from
(37) ; (38) and∣∣u2 (x1; x2)

∣∣ �
√
x2 (1 � x2)˛K (x1), (39)

essentially a consequence of Schwarz’s inequality and (34).

Theorem 4. In the context of a semi-infinite region, 0 < x1 < 1; 0 < x2 < 1,
consisting of linear isotropic, homogeneous elastic material in plane strain. for
which the boundary and asymptotic conditions (30) ; (36) hold, the displacement
components u1; u2 being specified as smooth functions on the edge x1 = 0, an
explicit, pointwise, decay estimate for the displacement component u2 is available
from (37) � (39), if we assume that the elastic constant ˛ > 0.

Appendix

The scalar product ( ; ) used in this Appendix is that defined in (14).

A1. Inequality 1

For arbitrary � (r) 2 C2 (a; b) such that (�; 1) = 0,

(1 � 
)
∫ b
a r�

2
rdr � �1 (�; �) ; (A1)
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where �1 is the lowest (positive) eigenvalue of

r2�rr + r�r + �r2� = 0

subject to

(1 � 
)�r + �r� = 0 on r = a; b:

The eigenvalue �1 is given by

�1 = s2a�2;

where s is the lowest positive root of

[s J0 (s) � (1 � 
) J1 (s)] [svY0 (sv) � (1 � 
) Y1 (sv)]
� [sY0 (s) � (1 � 
) Y1 (s)] [sv J0 (sv) � (1 � 
) J1 (sv)] = 0;

where v = b=a, and where Jn, Yn denote Bessel functions of order n, of the first and
second kind respectively.

A2. Inequality 2

For arbitrary � (r) 2 C2 (a; b) such that � (a) = � (b) = 0,∫ b
a r

�1�2
rdr � �2

∫ b
a r

�1�2dr; (A2)

where �2 is the lowest (positive) eigenvalue of

r2�rr + r�r +
(
�r2 � 1

)
� = 0

subject to

� = 0 on r = a; b:

The eigenvalue �2 is given by

�2 = t2a�2;

where t is the lowest positive root of

J1 (t) Y1 (tv) � Y1 (t) J1 (tv) = 0,

where the same notation is used as in the previous case.

A3. Conservation law

2 (�z; �zzz) + (1 � 
)
∫ b
a r

�1
({
r�r

}
r

)2
dr� (�zz; �zz) � 2 (�rz; �rz)

= E(constant).
(A3)

The proof of this may be found in [6].
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On nonlinear global stability of Jeffery-Hamel flows

M. Gentile, S. Rionero

Abstract. By using weighted energy methods, we prove a condition assuring nonlinear global
stability for a large class of flows in a wedge.

1 Introduction

We consider an incompressible viscous fluid between two inclined impermeable
plane walls with a line source, or sink, at the intersection of the walls. By introducing
a system of cylindrical coordinates (x; r; �); where x is the intersection of the walls,
we denote by ˝ the divergent channel defined by ˝ =

{
(x; r; �) : j�j � �0

}
: Then

the fluid motion is governed by the Navier-Stokes equations

vt + v � rv = �1
�

rp+ ��v;

r � v = 0;
(1)

where � is the kinematic viscosity, with the initial-boundary conditions

v(x; t0) = v0(x) 8x 2 ˝; (2)

v(x; r;˙�0; t) = 0 8t � 0: (3)

It can be proved that Eqs. (1-3) admit the family of solutions

vx = v� = 0; vr = v(r; �) =
F(�)
r

; (4)

p

�
=

1
r2

[2�F(�) � C1] + const; (5)

where F(�) is the generic solution of the ordinary differential equation

2FF0 + �F000 + 4�F0 = 0; (6)

and C1 is a constant chosen to verify the boundary conditions F(˙�0) = 0: As
is well-known, such motions are called Jeffery-Hamel flows. These motions were
discovered, independently, by Jeffery (1915) and Hamel (1916). They were studied
by many authors and completely classified in terms of elliptic functions [5,6,9].
Jeffery-Hamel flows are important not only from a mathematical point of view, but
also in applications. For instance, they may be used to approximate locally the steady
flow in a two-dimensional channel with walls of small curvature [5,6].
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Recently, many authors have studied these motions. Much attention was devoted
to stability with respect to linear or weakly nonlinear two-dimensional perturbations,
and many results were established [1,3,7]. Nevertheless, it seems hard to determine
stability conditions with respect to nonlinear three-dimensional perturbations. The
aim of the present paper is to prove, by using weighted energy techniques, a nonlinear
stability result for a general class of three-dimensional perturbations.

The scheme of the paper is as follows. In Sect. 2, the perturbation equations
for a basic JH flow and a weighted energy equality are obtained. In Sect. 3, two
embedding inequalities in a wedge are given. Then, in Sect. 4, we obtain a priori
estimates. Lastly, in Sect. 5, a theorem assuring nonlinear global stability is proved.

2 The balance energy equation

Let (u; �) be a regular perturbation to the basic Jeffery-Hamel flow (v; p). From
(1-3) it follows that

ut + (v + u) � ru + u � rv = �r�+ ��u;

r � u = 0;
(7)

u(x; t0) = u0(x) 8x 2 ˝; (8)

u(x; r;˙�0; t) = 0 8t � 0: (9)

We remark that a basic JH flow (v; p) belongs neither to L1(˝) nor to L2(˝):
Therefore, it is natural to consider perturbations (u; �) having the same behaviour
as the basic flow. In order to deal with the problem we introduce the one-parameter
family of weight functions

�(x; r) = exp [�˛(jxj + r)] ; ˛ 2 (0; 1): (10)

This allows us to control the set } of perturbations (u; �) such that:

1. juj + j�j � C in ˝;
2. r � u = 0;
3. uj@˝ = 0;
4. jruj � Cjxjhrk in ˝ (h � 0; k > 0);
5. � 2 L2 (˝� [0;+1)) :

Theorem 1. Let (u; �) 2 P: Then, for all t � t0, we have∫
˝
�u2d˝ =

∫
˝
�u2

0d˝� 2
∫ t

t0

∫
˝
�
[
�jruj2 + u � rv � u

]
d˝d�

+
∫ t

t0

∫
˝

r� �
[
u2(u + v) + 2�u � 2�ru � u

]
d˝d�:

(11)
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Proof. From Eq. (7)1 we obtain

1
2
d

dt

∫
˝
�u2d˝ = �

∫
˝
�r� � ud˝+ �

∫
˝
�u � �ud˝

�
∫
˝
�(v + u) � ru � ud˝�

∫
˝
�u � rv � ud˝ :

(12)

For any x̄ > 0 and r̄ > 0; we set

¯̋ =
{
(x; r; �) : jxj � x̄; r � r̄

}
;

¯̋+ =
{
(x; r; �) : 0 < x � x̄; r � r̄

}
;

¯̋� =
{
(x; r; �) : �x̄ � x < 0; r � r̄

}
:

(13)

Now, by Gauss’ theorem, we see that∫
¯̋
�r� �ud˝ =

∫
¯̋+

r�f��ugd˝+
∫

¯̋�
r�f��ugd˝�

∫
¯̋
�r� �ud˝: (14)

As x̄ ! +1 and r̄ ! +1; by the boundary conditions (9), we get∫
˝
�r� � ud˝ = �

∫
˝
�r� � ud˝: (15)

The following identities can be shown by using the same techniques:∫
˝
�u � �ud˝ = �

∫
˝
�jruj2d˝�

∫
˝

r� � ru � ud˝; (16)∫
˝
�(v + u) � ru � ud˝ = �1

2

∫
˝
u2r� � (v + u)d˝ : (17)

From (12) and (15-17) we deduce that

d

dt

∫
˝
�u2d˝ = �2

∫
˝
�
[
�jruj2 + u � rv � u

]
d˝

+
∫
˝

r� �
[
u2(u + v) + 2�u � 2�ru � u

]
d˝;

(18)

and, finally, integrating in the interval [t0; t]; we get (11).

3 Two embedding theorems

In the divergent channel a weighted Poincaré inequality can be obtained [4,8]:∫
˝
w
'2

r2
d˝ � �

∫
˝
wjr'j2d˝ (19)

with different values for �. We recall here inequalities obtained by Rionero for a
wedge of angle 2�0 2 (0; 2�] which, as far as we know, contain the smallest value
of �.



80 M. Gentile, S. Rionero

Theorem 2. Let ˝ be a wedge of angle 2�0 2 (0; 2�] and let w = w(x; r) be
a nonnegative weight function. Then, for any ' such that

p
wjr'j 2 L2 (˝); the

inequality (19) holds with

� =
4�2

0

�2 : (20)

Proof. Because '(x; r;˙�0) = 0, the usual Poincaré inequality [4] implies that∫ �0

��0
'2d� � 4�2

0

�2

∫ �0

��0

(
@'

@�

)2

d�: (21)

But, since(
@'

@�

)2

� r2

[(
@'

@x

)2

+
(
@'

@r

)2

+
1
r2

(
@'

@�

)2
]

= r2jr'j2; (22)

we have∫ �0

��0

'2

r2
d� � 4�2

0

�2

∫ �0

��0
jr'j2d�; (23)

and hence, multiplying both sides by rw and integrating with respect to x 2 R and
r 2 R+; as w does not depend on �, we see that the inequality (19) holds with �
given by (20).

Remark 1. The special case of (19) with the weight function � = e�˛(jxj+r) will be
of interest in what follows.

Theorem 3. Let ˝ be a wedge of angle 2�0 2 (0; 2�]; and ' such that jr'j 2 L2(˝):
Then the inequality∫

˝

'2

r2
d˝ � 4�2

0

�2

∫
˝

jr'j2d˝ (24)

holds.

Proof. On multiplying both sides of (23) by r; and integrating with respect to x 2 R
and r 2 R+; the theorem immediately follows.

4 L2 energy estimates

Definition 15. Introduce the Reynolds number

R1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�0F�

�
if max

[��0;�0]
jFj � max

[��0;�0]
jF0j;

�2
0F

�

�
if max

[��0;�0]
jFj < max

[��0;�0]
jF0j;

(25)

where F� = max
[��0;�0]

fjFj; jF0jg:
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Theorem 4. Let (u; �) 2 P;
∫
˝ u

2(x; t0)d˝ < +1; and set

R̂1 =

⎧⎪⎪⎨⎪⎪⎩
�0R1 if max

[��0;�0]
jFj � max

[��0;�0]
jF0j;

R1 if max
[��0;�0]

jFj < max
[��0;�0]

jF0j:
(26)

Then

R̂1 <
�2

6
(27)

implies that

u 2 L2(˝); ru 2 L2(˝� [t0; T]) 8t 2 [t0; T] (28)

according to

e�C(t�t0)
∫
˝
u2d˝+

12�
�2

(
�2

6
� R̂1

)∫ t

t0

∫
˝

jruj2d˝d� �
∫
˝
u2
0d˝; (29)

where C is a positive constant independent of the time t:

Proof. The Cauchy-Schwarz inequalities and (19), where � is given by (20), imply
that:∫

˝
�r� � ud˝ � C

∫
˝
�u2d˝+ ˛2

∫
˝
�j�j2d˝; (30)

∫
˝

r� � ru � ud˝ � C

∫
˝
�u2d˝+ ˛2

∫
˝
�jruj2d˝; (31)∫

˝
u2r� � (v + u)d˝ � C

∫
˝
�u2d˝+ ˛2

∫
˝
�jruj2d˝; (32)∫

˝
�u � rv � ud˝ � 6�2

0F
�

�2

∫
˝
�jruj2d˝ ; (33)

where C is a positive constant. The last inequality is obtained by taking into account
the fact that

ju � rv � uj =
1
r2

jF(�) (u2
3 � u2

2) + F0(�)u2u3j � 3
2
F� u

2

r2
: (34)

From (11) and (30-33) it follows that∫
˝
�u2d˝ �

∫
˝
�u2

0d˝� 2�
(

1 � 6�0
2F�

��2 � ˛2

�

)∫ t

t0

∫
˝
�jruj2d˝d�

+C
∫ t

t0

∫
˝
�u2d˝d�+ 2˛2

∫ t

t0

∫
˝
��2d˝d�; (35)
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whereC is a positive constant independent of ˛:Now, applying the Gronwall lemma
in the interval [t0; t], we see that

e�C(t�t0)
∫
˝
�u2d˝+ 2�

(
1 � 6�0

2F�

��2 � ˛2

�

)∫ t

t0

∫
˝
�jruj2d˝d�

�
∫
˝
�u2

0d˝+ 4˛2
∫ t

t0

∫
˝
��2d˝d�: (36)

Therefore, as ˛ ! 0, in view of the monotone convergence theorem, we obtain (29).

Theorem 5. Let (u; �) 2 P and let t0;� 0, be such that
∫
˝ u

2(x; t0)d˝ < +1:
Then

R̂1 <
�2

6
(37)

implies that, for all t � t0;∫
˝
u2(x; t)d˝ =

∫
˝
u2(x; t0)d˝� 2

∫ t

t0

∫
˝

[
�jruj2 + u � rv � u

]
d˝d�: (38)

Proof. By the Cauchy inequality and (24), we get:∣∣∣∣∫
˝
�r� � ud˝

∣∣∣∣ �
p

2
2
˛

(∫
˝
�2d˝+

∫
˝
u2d˝

)
; (39)

∣∣∣∣∫
˝

r� � ru � ud˝

∣∣∣∣ �
p

2
2
˛

(∫
˝
u2d˝+

∫
˝

jruj2d˝
)
; (40)∣∣∣∣∫

˝
u2r� � (v + u)d˝

∣∣∣∣ � C˛

(∫
˝
u2d˝+

∫
˝

jruj2d˝
)
; (41)

where C is a positive constant independent of ˛: In this way, by means of (29), we
conclude that the left-hand sides of the previous inequalities go to zero as ˛ !
0: Therefore, integrating (11) in the time interval [t0; t], as ˛ ! 0; by virtue of
Lebesgue’s theorem, we get (38).

5 The stability theorem

Now, we can prove the main stability theorem.

Theorem 6. Let (v; p) be a Jeffery-Hamel basic flow in the wedge˝: If R̂1 < �2=6;
then (v; p) is stable in the L2(˝)-norm with respect to the perturbations (u; �) 2 }:

Proof. From (38) and inequality (24) it follows that∫
˝
u2(x; t)d˝ �

∫
˝
u2(x; t0)d˝� 12�2

0�

�2

(
�2

6
� R̂1

)∫ t

t0

∫
˝

jruj2d˝d�; (42)

which proves the result.
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Energy penalty, energy barrier and hysteresis
in martensitic transformations

Y. Huo, I. Müller

Abstract. Non-convex energy and interfacial energy have been considered as fundamen-
tal in modeling the martensitic-austenitic phase transformation with hysteresis. For a one-
dimensional bar, an additional non-local energy penalizing the inhomogeneous deformation
needs to be considered in order to obtain finely lamellated phase mixtures. We study the
thermodynamic consequences of such energy penalization, in particular, the possible energy
barriers that can lock the phase transition process so as to produce hysteresis. Under the as-
sumption that the energy penalty for the interfaces and the penalty for inhomogeneity are
both very small, we reduce the total energy functional into a function of the strain, the phase
fraction and the number of interfaces. Minimization of the total energy determines the number
of interfaces in terms of the phase fraction. The model also predicts that the martensitic trans-
formation needs a large driving force for starting while it can proceed at a lower driving force.
Also the phase transition nucleates with a small but finite amount of the new phase, i.e., with
non-zero values of the phase fraction and of the number of interfaces. Possible mechanism for
hysteresis of phase transition is discussed with the energy barriers in Gibbs free energy.

1 Introduction

Van der Waals first introduced a non-monotone state equation in his well-known work
of 1873 (see [1]) on the gas-liquid phase transition. It is now widely recognized that a
non-monotone state equation or, equivalently, a non-convex energy function should
be taken as the starting point to model phase transitions. Once a phase transformation
has occurred, a previously homogeneous body transforms to an inhomogeneous one
composed of regions of different phases. On the two sides of the inter-phase boundary,
the atoms or molecules are of the same type but with different arrangements. This
leads to different inter-atomic interactions. To account for such differences, one way
is to consider the inter-phase boundary as a singular surface with abrupt changes of
the state variables and to endow the singular surface with a surface tension and a
surface energy as was done by Maxwell in his work on capillary action [2]. Another
approach is to assume that the state variables are continuous but change strongly
in the neighborhood of the inter-phase boundary and the local free energy density
depends not only on the state variables but also on their derivatives, as considered
by, e.g., van der Waals [3], Cahn and Hilliard [4]. Thus, the total energy of a body
under phase transformation is a sum of the bulk energy, with the energy density
function being a non-convex function of the state variables, and the interfacial energy
proportional to the area of the interphase boundaries for the first approach of singular
surfaces, or as an integral of an energy density function of the derivatives of the state
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variables for the second approach of continuous fields. The minimization of the total
energy functional in three-dimensional space is a still an open problem [5], partly
due to the fact that complicated patterns of the phase regions can form during phase
transformations.

Finely lamellated microstructures have been observed for specimens under ten-
sion or compression in martensitic transformations and in twinning. It is suggestive
to consider a one-dimensional approximation for such situations. In the singular
surface approach, the interfacial energy is thus just proportional to the number of
interfaces. However, the minimization of the total energy leads to only one interface.
Therefore, a finely lamellated structure is not possible. Statistical arguments were
used to derive a relation between the number of interfaces and the amount of the
phase fraction [6]. In the continuous field approach, the interfacial energy density
is a function (often assumed to be the square) of the derivative of the state variable,
the strain gradient in the case of martensitic transformation. Also in this approach it
was shown that the absolute minimizer of the total energy functional corresponds to
a phase mixture with only one interface [7]. Thus, in a one-dimensional model, it is
necessary to consider additional contributions to the total energy in order to obtain
finely lamellated microstructures.

By adding the square of the displacement to the total energy density, finely
oscillating minimizing sequences were shown to be the minimizers under zero dis-
placement boundary condition [8]. Solutions of the corresponding Euler-Lagrange
equation with symmetric displacement boundary conditions and with the number of
interfaces equal to 0, 1, and 2 have been studied [9,10]. Bifurcation and stability were
also investigated for the solutions of the above model [11] and a similar model that
implies the square of the difference between the displacements of the bar in the phase
mixture and in the homogeneous bar [12]. The results show that the additional energy
contribution related to the displacement of the bar penalizes the inhomogeneity and
leads to solutions with microstructures.

In this work, we follow the approach of singular interfaces and propose, in ad-
dition to the bulk energy and the interfacial energy, an energy penalizing the in-
homogeneity which can be deduced from the square of the difference between the
displacements of the bar in the phase mixture and in the homogeneous bar similar
to the one used in [12]. The total energy becomes a function of the bulk strains,
the number of interfaces and the phase fraction. The absolute and local minimizers
of such an energy function can be studied without much mathematical difficulty.
Minimization of the total energy determines the number of interfaces in terms of
the phase fraction. According to the present model, the martensitic transformation
needs a large driving force for starting while it proceeds at a lower driving force.
This implies that the stress has jumps at the initiation of the phase transition: down-
ward jumps in extension and upward jumps in compression. Moreover, the transition
nucleates with a small but finite amount of the new phase.
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2 Energy penalty for inhomogeneous deformations

Consider a nonlinearly elastic bar with a non-convex double-well energy density
f(u0(x)). The total energy is

E =

1∫
0

[f(u0(x)) +
"2

2
u00(x)2 +

�2

2
(u(x) � uı(x))2]dx; (1)

with boundary conditions

u(0) = u0; u(1) = d+ u0; (2)

where u(x) is the displacement of the bar, uı(x) = u0 + dx is the displacement of
the homogeneous bar subject to the same boundary conditions (2), and " and � are
two constants [10,12]. The corresponding Euler-Lagrange equation is

f00(u0(x))u00(x) � "2u0000(x) � �2(u(x) � uı(x)) = 0: (3)

For the boundary conditions (2) on the displacement u(x) and the natural bo-
undary conditions u00(0) = u00(1) = 0, the solutions of (3) have jumps at points xi
(i = 1; 2; :::; N) if " = 0 and � = 0 holds and provided that d lies in the interval bet-
ween the minima of the double-well energy density. Within each interval (xi; xi+1),
i = 0; 1; 2; :::; N, with x0 = 0 and xN+1 = 1, the strains are piecewise constant

u0(x) = fu
+
x

u�
x

; (4)

where u˙
x are the strains in the two wells of the bulk energy density f(u0(x)), res-

pectively, with the constraint

d = zu+
x + (1 � z)u�

x ; (5)

where z is the length of all the intervals (xi; xi+1) with u0(x) = u+
x , namely, the

phase fraction of the “+” phase. The total energy of the bar for " = 0 and � = 0 has
only the contribution from the first term in (1) and has the form

Eb = zf(u+
x ) + (1 � z)f(u�

x ): (6)

Consider now very small values of the coefficients " and �. In that case the
solutions of (3) with the previous boundary conditions should be very similar to the
above solutions of piecewise constant strains except in the immediate neighborhoods
of the points xi, i = 1; 2; :::; N. Thus, the contribution of the bulk energy term in
(1) to the total energy should approximately still be equal to Eb as defined by (6).
The contribution of the second term in (1) is the interfacial energy and should be
approximately proportional to the number N of jump points, namely, the number of
interfaces. Thus

Ei = �1N; (7)
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where the proportionality coefficient �1, which represents the surface energy of the
interfaces, is positive and depends on the constant ", – and possibly on (u+

x � u�
x )2,

the magnitude of the jump.
The last term in (1) penalizes the inhomogeneity of the above piecewise con-

stant-strain solutions and forces the piecewise linear displacement function u(x) to
be close to the linear function uı(x). It was shown [13] that, for a given number N
of jump points and given values of u˙

x , this energy of homogenisation has a minimal
value when the jump points are at the positions

x+�
i = i�1+z

N ; when the jump is from u+
x to u�

x ;
x�+
i = i�z

N ; when the jump is from u�
x to u+

x .
(8)

The minimal value of this energy has the form

Eh =
�2

2

(
z(1 � z)

N

)2

; (9)

where �2 = 1
3 (u+

x � u�
x )2�2 is a positive coefficient. While the interfacial energy

Ei defined by (7) is an increasing function of the number N of interfaces, the above
energy of homogenisation decreases withN. So, it is this penalty for inhomogeneity
which leads to a finely lamellated microstructure. The interfacial energy, however,
prevents too fine a structure. Thus, these two energy terms together select the correct
number of microstructures as explained in the next section.

The total energy is the sum of the three terms, E = Eb + Ei + Eh,

E = (1 � z)f(u+
x ) + zf(u�

x ) + �1N+
�2

2

(
z(1 � z)

N

)2

: (10)

3 Minimization of the total energy
and condition of phase equilibrium

The minimization of the total energy E(u+
x ; u

�
x ; z;N) defined by (10) subject to the

constraint (5) leads to the minimization of the function

 (u+
x ; u

�
x ; z;N) = E� �(zu+

x + (1 � z)u�
x � d); (11)

with � being the Lagrange multiplier which must be identified with the stress in the
bar. We set the derivatives of the function  with respect to its variables equal to
zero, and thus obtain the following equilibrium conditions:

� = f0(u+
x ) + �0

1(u
+
x � u�

x )Nz + 1
2�

0
2(u

+
x � u�

x )
( 1�z

N

)2
z

= f0(u�
x ) � �0

1(u
+
x � u�

x ) N
1�z � 1

2�
0
2(u

+
x � u�

x )
(
z
N

)2 (1 � z);
(12)

N = Ne(z) =
(
�2

�1

)1=3

(z(1 � z))2=3; (13)
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Fig. 1. The number of interfaces as a function of the phase fraction normalized by the maximum
at z = 1/2. Solid line for ne(z) = (z(1 � z))2=3 and dotted line for ne = z(1 � z) of [6]

f(u+
x ) � f(u�

x ) + �2
z(1 � z)
N2 (1 � 2z) � �(u+

x � u�
x ) = 0: (14)

By (13), we obtain an explicit relation between the number N of interfaces and
the phase fraction z that is similar to, but different from, the relation obtained by a
statistical argument [8], as shown in Fig. 1. Such a relation comes from the interplay
between the microstructure-preventing interfacial energy (7) and the microstructure-
supporting homogenisation energy (9).

From Fig. 1, the above (N, z)-relation (13) shown by the solid line has infinite
derivatives at z = 0, and 1, while the relation obtained by a statistical argument, viz.,
N / z(1 � z) shown by the dotted line, has finite derivatives. This fact has a strong
influence on the nucleation of phases as is shown in the next section.

Equation (12) shows that, in general, the two energy terms, Ei and Eh, may also
have contributions to the total stress. For simplicity, we neglect these contributions
in (12) and assume that the two coefficients �1 and �2 in (10) are positive constants.
Thus, we have

� = f0(u+
x ) = f0(u�

x ): (15)

In order to carry out all the calculations analytically, we accept the two-parabola
bulk energy density function,

f(u0) = f
˛
2 (u0 + �d)2; for u0 � 0;
˛
2 (u0 � �d)2; for u0 > 0; (16)

where ˛ is the elastic modulus and ˙�d are the stress-free strains of the two stable
states. Substituting (16) in (14) and considering the constraint (5), we obtain

u+
x � u�

x = 2�d; d = u�
x + z�d;

� = �(d; z) = ˛(d+ (1 � 2z)�d):
(17)
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a) b)

Fig. 2. The strain and the energy of the phase equilibrium states as functions of the phase
fraction. The parameters are chosen so that A=˛�2

d = 0:25

This is the stress-strain relation of phase mixtures with phase fraction z. The
phase equilibrium condition (14) is reduced to

� = �e(z) =
A

3�d
1 � 2z

(z(1 � z))1=3
; (18)

where A is a positive constant and is related to the two coefficients �1;2 through

A =
3
2
(�2

1�2)1=3: (19)

By use of (17) the total strain is related to the phase fraction in phase equilibrium
through

d = de(z) = �(1 � 2z)�d +
A

3˛�d
1 � 2z

(z(1 � z))1=3
: (20)

As shown in Fig. 2a, de(z) is non-monotone and has a minimum �dm in the
interval 0 < zm < 0:5 and a maximum dm at 1 � zm. As d0

e(zm) = 0, we see that

z4=3m (1 � zm)4=3

1 + 2zm
=

A

18˛�2
d

and dm = �de(zm): (21)

Here zm can be solved numerically or approximately for very small values of the
constant A as

zm 
(

A

18˛�2
d

)3=4

and dm  �d(1 � 8zm) for A << ˛�2
d: (22)

The total energy for phase equilibrium states can be obtained by substituting (13)
and (16-18) into (10),

E = Ee(z) =
2A2

9˛�2
d

(1 � 2z)2

(z(1 � z))2=3
+ A(z(1 � z))2=3: (23)
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∆

a) E� d b) �� d

Fig. 3. The energy-strain and stress-strain relations for the pure phases (solid lines ) and the
phase equilibrium states (dotted lines). A=˛�2

d = 0:25

As shown in Fig. 2b, it has two minima at zm and 1 � zm with Eme = Ee(zm) > 0,
and a maximum at z = 1/2 with EMe = Ee(1=2) = A=24=3.

In order to obtain the total energy as a function of the total strain, namely, Ee(d),
we need to invert the (d; z)�relation (18) for the three monotone branches: (0, zm),
(zm, 1 � zm) and (1 � zm, 1), respectively, and substitute them into (20). This can be
done numerically and the resulting graph Ee(d) is shown in Fig. 3a as dotted lines.
There are two convex branches corresponding to (0, zm) and (1 � zm, 1), and one
concave branch for (zm; 1 � zm). The concave branch has lower values than the two
convex branches and has two minima at ˙dm and a maximum at d = 0. In order that
at least a part of Ee(d) is below the energy of the pure phases, i.e., the two parabolas
f(d) shown as solid lines in Fig. 3a, the maximum of the concave branch of Ee(d)
should be below f(d = 0). From (16) and (23) this requirement reads for our model
that

EMe = Ee(z = 1=2) < ˛�2
d=2 ) A =

3
2
(�2

1�2)1=3 < 21=3˛�2
d: (24)

Figure 3b shows the corresponding stress-strain relation which results from sub-
stituting the inverse of (20) into (18). It is interesting to observe that there is no point
of intersection on the stress-strain diagram between phase equilibrium states (dotted
line) and the two straight elastic curves (solid lines) which represent the states of the
“-” and “+” phases. However, there are two intersection points on the energy-strain
diagram between the pure phases and the phase equilibrium states.

The points of intersection, indicated by dn and dp = �dn in Fig. 3a, and the
corresponding phase fractions: zn and zp = 1 � zn, satisfy

dn = de(zn) and Ee(zn) = f(dn) =
˛

2
(dn + �d)2: (25)

By (20) and (23), we have

z4=3n (1 � zn)1=3

1 + zn
=

A

6˛�2
d

: (26)
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As with (21), it can be solved numerically or approximately for very small values
of the constant A as

zn 
(

A

6˛�2
d

)3=4

and dn  ��d(1 � 4zn) for A << ˛�2
d: (27)

4 Absolute minimizer and nucleation of phase transition

The absolute minimizer Em(d) of the total energy is the lowest graph in Fig. 3a and
is shown in Fig. 4a,

Em(d) =
{
Ee(d); dn < d < dp;
f(d); otherwise.

(28)

If a body begins to be extended from the “-” phase at the stress-free configuration
d = ��d, it first follows the energy curve off(d) as far asdn. Upon a further increase
ofd, it switches the energy branch toEe(d) at this point if the body chooses the lowest
energy, i.e., it follows the absolute minimizer shown in Fig. 4a. Thus, at dn, the body
starts to transform from the “-” phase to a phase mixture with its phase fraction
jumping from z = 0 to z = zn > 0. At the same time, the number of interfaces jumps
accordingly by (13) from N = 0 to N = Nn = Ne(zn). Moreover, since the slopes of
f(d) and Ee(d) are not equal at dn, the stress also has a jump as shown in Fig. 4b for
the corresponding stress-strain relation. The stresses before and after the jump are

�n0 = f0(dn) = ˛(dn + �d);
�nzn := E0

e(dn) = �e(dn) = ˛(dn + �d � 2zn�d) = �n0 � 2˛�dzn:
(29)

Because of symmetry, the above argument can be carried out similarly for com-
pression tests starting from the “+” phase. The phase fraction, number of interfaces
and the stress all jump at d = dp = �dn from z = 1, N = 0 and � = ��n0 to
z = 1 � zn, N = Ne(1 � zn) = Nn and � = ��nzn .

∆

∆

a) b)

Fig. 4. The absolute minimizer of the energy and the corresponding stress-strain relation.
A=˛�2

d = 0:25
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In both cases, zn is the critical, i.e., minimal, mass of nucleation. This is very
similar to the critical radius of a nucleus in gas-liquid phase transition in a volume-
controlled process [14]. However, since the number of interfaces for this nucleus
is larger than zero, the body is in the phase mixtures with a microstructure, once
the phase transition has occurred at dn. The stress decreases upon extension and it
increases in compression. The stored elastic energy in the body decreases in both
cases as can be calculated by (14), (17), (6) and (29),

�Ef := Eb(z = 0) � Eb(z = zn) =
�n0

2

2˛
�
�nzn

2

2˛
= A(zn(1 � zn))2=3: (30)

Thus, a part of the stored elastic energy is changed into the interfacial energy and
the energy penalizing inhomogeneity. So, in a sense, �Ef is the energy lost to form
the microstructure of the phase mixture with the critical mass zn and we may call it
the formation energy for nucleation.

After the above initial nucleation at dn or dp, the body is in the phase equilibrium
state. Upon further extension or compression, the body cannot follow the phase
equilibrium line�e(d), since the energy function is concave and the phase equilibrium
states are unstable. Rather, hysteresis should occur and the body does not follow the
absolute minimizer. To analyse this, local minimizers of the energy are considered
in the next section.

5 Partial equilibrium states and hysteresis

Four equilibrium conditions were obtained by (12-14) for phase equilibrium states.
Equation (12) is the mechanical equilibrium condition, (13) represents the equili-
brium condition for the microstructures and (14) is the phase equilibrium condition.
Due to the different mechanisms for attaining those three equilibria, it seems rea-
sonable to assume that some of them are attained much faster than the others. The
mechanical equilibrium in a body is attained by elastic waves that have large speeds.
The increase in the number of interfaces is because of the nucleation of the new phase,
which is rather fast in diffusionless thermo-elastic martensitic transformations. If we
assume that the mechanical equilibrium of (12) or (15) for the simplified model is
attained first, we have the following total energy function for two-parabola potential
by substituting (16), (17) into (10),

E(d; z;N) =
˛

2
[d+ (1 � 2z)�d]2 + �1N+

�2

2

(
z(1 � z)

N

)2=3

: (31)

If we assume further that the equilibrium for the microstructures (13) is also
satisfied, by substituting it into the above relation we obtain a simple form for the
total energy as

E(d; z) =
˛

2
[d+ (1 � 2z)�d]2 + A(z(1 � z))2=3; (32)

where the first term is the stored elastic energy and the second is the energy to
form microstructures consisting of the interfacial energy and the energy penalizing
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a) b)

Fig. 5. The energy-strain and the stress-strain relations of local minimizers for zi =
0; 0:1; 0:2; : : : 0:9; 1. A=˛�2

d = 0:25

inhomogeneity. The corresponding stress-strain relation is still given by (17). Figure 5
shows the above energy function and the corresponding stress-strain relation for
various values of the phase fraction z.

The stress-strain curves are all straight and parallel to each other. The energy-
strain curves are all parabolas that intersect each other. In particular there are in-
tersections with the energies of the pure phases. The above consideration of partial
equilibrium is connected with the local minimizers that some authors prefer to use.

The strains ˙di at the intersection points can be calculated by the equation

E(di; z) = E(di; z = 0) = f(d): (33)

Note that �di is the solution for the intersection with z = 1 because of symmetry.
By (32), we obtain

di = di(z) = �(1 � z)�d +
A

2˛�d
(1 � z)2=3

z1=3
: (34)

As shown by the solid line in Fig. 6, there is a minimum of the above strain of
intersection, which is exactly the intersection between di(z) and the phase equili-
brium condition de(z) of (18) (dashed line in Fig. 6). Thus, the phase fraction zn
at the minimum defined by d0

i(zn) = 0 satisfies (26) and di(zn) = de(zn) = dn as
defined by (25).

It can be shown easily that

f(d) = E(d; z = 0) < E(d; z > 0) for d < dn: (35)

Therefore, the starting point of nucleation d = dn obtained in the last section
by considering the absolute minimizer is the smallest strain at which there are other
local minimizers with the same or lower energies than those of the pure “-” phase.
And at d = dn, the phase mixture with z = zn has the same energy as in the “-”
phase and all the other phase mixtures have larger energies, i.e.,

fn := f(dn) = E(dn; z = zn) < E(dn; z 6= 0; zn): (36)
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a) b)

Fig. 6. The strain of the intersection di(z) (solid lines) and the phase equilibrium strain de(z)
(dashed lines). A=˛�2

d = 0:25

As shown in Fig. 7a, the phase mixture with z = zn has a lower energy than the “-”
phase for d > dn. Therefore, we may expect from considering the local minimizers
that the body starts to transform its phase at d = dn and it transforms from z = 0 to
z = zn. The stress �n0 required for nucleation defined by (28) is essentially the stress
needed to eliminate the energy barrier between f(d) andE(d; zn) as made evident in
Fig. 7b by consideringE��n0d. Once the body has climbed over the energy barrier, it
falls into the energy branch E(d; zn) and has a lower stress �nzn = E;d (dn; zn) < �n0
as defined by (29).

Thus, we may call the energy fn at d = dn as defined by (36) the driving force
of nucleation. The formation energy of nucleation �Ef defined by (30) is just the
energy (32) of the local minimizer z = zn at its stress-free configuration. And the

−

∆

a) b)

Fig. 7. The energy function of the local minimizer with the critical mass z = zn (dashed lines)
and the “-” phase (solid lines). A=˛�2

d = 0:25
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∆ ∆

a) b)

Fig. 8. Hysteresis in the stress-strain diagram for nucleation-then-growth and continuous-
nucleation processes

difference between these two energies is

fg := fn � Em =
�nzn

2

2˛
: (37)

As discussed in the last section, the body under extension first transforms its phase
by nucleation at d = dn and the stress drops from �n0 to �nzn . After the nucleation,
the body is on the phase equilibrium branch but cannot proceed along the decreasing
stress-strain branch of the phase equilibrium states, since they are unstable. Hysteresis
should occur. Here we propose two possible mechanisms for hysteresis.

1. Nucleation-then-growth: The body proceeds in its phase transformation just by
growth with the constant stress ˙�nzn . Hysteresis is observed as shown by the
stress-strain diagram in Fig. 8a. The back transformation is shown by symmetry.
The driving force of growth is fg as defined by (37).

2. Continuous-nucleation: No growth but only nucleation with critical mass zn and
driving force fn takes place. A zigzag stress-strain hysteresis is observed as
shown in Fig. 8b.

The number of interfaces for process (1) first jumps fromN = 0 to N = Nn > 0
by the initial nucleation and remains constant for a large part of the growth process.
Then, it decreases to N = 0 at the end. However, the situation is entirely different
for the continuous-nucleation process. The number of interfaces increases after each
new nucleation as far as z = 1=2. Then, further nucleation of the new phase causes
a decrease in the number of interfaces. The reality may lie somewhere between the
above two extreme situations. Namely, both growth of existing new phases and new
nucleation take place [15,16].

6 Load-controlled experiments and energy barrier

In the previous sections, we have always assumed that a hard device controls the end
displacement of the bar. For a soft device, the stress at the two ends is controlled. The
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a) b)

Fig. 9. The Gibbs free energy as a function of the phase fraction for various values of the stress
and the phase fraction of their maximum as a function of the stress. A=˛�2

d = 0:25

phase equilibrium conditions (13–15) are independent of the boundary conditions,
so they remain unchanged. However, the proper potential for a body under load-
controlled experiments is the Gibbs free energy G = E� �d with � the stress of the
bar. For the two-parabola bulk energy density (16), the equilibrium conditions are
still (13), (17), (18). Under the assumption that the mechanical equilibrium (15) and
the equilibrium for microstructures (13) are attained, we see from (32) and (15) that

G = G(z; �) = E(d; z) � �d = � �

2˛
+ ��d(1 � 2z) + A(z(1 � z))2=3: (38)

Figure 9a shows the Gibbs free energy above as a function of the phase fraction
for various values of the stress. It is obvious thatG is a concave function of z and has
a maximum at ze which satisfies the phase equilibrium condition (18) by �e(ze) = �
as shown in Fig. 9b. Thus, there is an energy barrier between the two pure phases,
z = 0 and 1. Substituting (18) into (38), we find that the differences in G between
the phase equilibrium state and the pure phases are

�G0(�) = G(ze(�); �) � G(z = 0; �) = A(1+ze)
3

z2=3e

(1�ze)1=3 > 0;

�G1(�) = G(ze(�); �) � G(z = 1; �) = A(2�ze)
3

(1�ze)2=3
z1=3e

> 0:
(39)

From (18), we know that 0 < ze < 1 for any finite values of the stress. Thus,
the above differences are always positive and the phase equilibrium states always
have a larger Gibbs free energy than the two pure phases. Such an energy barrier
in the Gibbs free energy can never be eliminated under finite values of the stress.
This is very different from the displacement-controlled experiments as discussed in
the previous section. Moreover, the derivatives of G with respect to z are infinite
at z = 0 and 1. Therefore, any phase transition starting from z = 0 or 1 must start
with a finite value of the phase fraction so that it will pass over the maximal point
of G. Otherwise, there would be a very large driving force, -G;z, to eliminate the
nucleation of the new phase.
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The above phenomenon predicted by the present model is very similar to the well-
known theory of nucleation of a spherical droplet in gases in a pressure-controlled
process; see [14] for a recent treatment. It is also known for the gas-liquid transition
that there must be a fluctuation of the local pressure and the local density inside
the gas in order that nucleation can take place in a pressure-controlled process. As
a consequence, super-cooling and overheating may occur and lead to hysteresis.
Similarly, we may expect for the present model that there is a fluctuation of the local
stress and the local strain for a bar under load-controlled tests to start to transform.
This is also consistent with the prediction that the stress has a jump at the initial
nucleation of the phase transformation obtained by following the absolute minimizer
of the energy function.
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On the applicability of generalized strain measures
in large strain plasticity

M. Itskov

Abstract. In the present paper two thermodynamically consistent large strain plasticity mo-
dels are examined and compared in finite simple shear. The first model (A) is based on the
multiplicative decomposition of the deformation gradient, while the second one (B) on the ad-
ditive decomposition of generalized strain measures. Both models are applied to a rigid-plastic
material described by a von Mises-type yield criterion. Since both models include neither a
hardening nor a softening law, a constant shear stress response, even for large amounts of
shear, is expected. Indeed, model A exhibits true constant shear stress behavior independent
of the elastic material law. This is not, however, the case for model B so that its applicability
under finite shear deformations may be questioned.

1 Introduction

There are several different concepts enabling to consider large elasto-plastic strains
in anisotropic materials. One is based on the multiplicative decomposition of the
deformation gradient into an elastic and a plastic part. A thermodynamically con-
sistent formulation of this concept naturally leads to a 9-dimensional flow rule and
a yield criterion in terms of Mandel’s stress tensor [1]. Since this tensor is gene-
rally non-symmetric, additional efforts are required to construct an anisotropic yield
function and to formulate conditions of convexity of the yield surface resulting in
the 9-dimensional stress space (see [2–4]). Another concept is based on the additive
decomposition of the so-called generalized strain measures [5–7]. Thereby, the struc-
ture of the classical infinitesimal theory of plasticity is retained. A further remarkable
feature of this concept is that the yield criterion is formulated in terms of the stress
tensor work-conjugate to the underlying generalized strain (see, e.g., [8]). Since this
stress tensor is a priori symmetric, a quadratic yield function preserves the form of
the well-known Hill orthotropic criterion [9] and can easily be generalized to other
material symmetries (see [10–12]). However, this concept has never been studied in
the case of large plastic deformations accompanied by finite rotations which take
place, for example, under simple shear.

Thus, the aim of the present paper is to examine and compare shear stress respon-
ses of the two above mentioned plasticity models in the case of finite simple shear.
Both models are applied to an ideal-plastic material described by a von Mises-type
yield criterion. Since both models include neither a hardening nor a softening law, a
constant shear stress response even for large amounts of shear is expected. To avoid
the influence of the elastic material law and the elastic strain energy, we consider
small elastic but large plastic deformations (rigid-plastic material). This deformation
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pattern takes place in many engineering problems, as, for example, metal forming
processes, and is important for engineering practice.

Finally, a word of notation. Second-order tensors are denoted by bold face letters,
e.g., A, B, .... Their scalar product, the quadratic norm and the deviator are defined
by A :B = tr

(
ABT), kAk =

p
A :A and devA = A�1/3 tr (A) I respectively,

where I represents the second-order identity tensor. A linear mapping of one second-
order tensor into another is described byB = C :A, where C stands for a fourth-order
tensor. Along with this “right” mapping we also define the “left” mapping, so that the
relation (A : C) :X = A : (C :X) holds for all second-order tensors X (see [13]).
ıij denotes finally the Kronecker delta.

2 Thermodynamic and kinematic preliminaries

The derivation of evolution equations for both material models is based on the second
law of thermodynamics and the principle of maximum plastic dissipation. In this
section we begin with the second law of thermodynamics written in the Clausius-
Planck form [14] as

D = � :L �  ̇ � 0; (1)

where D denotes a dissipation defined as the difference between the stress power
and the material time derivative of the free energy function  . Here � represents the
Kirchhoff stress tensor work-conjugate to the velocity gradient L defined in terms
of the deformation gradient F by

L = ḞF�1: (2)

The stress power in the dissipation inequality (1) can alternatively be written in
terms of the so-called generalized strain measures. They represent isotropic tensor
functions of the right Cauchy-Green tensor

C = FTF (3)

or the right stretch tensor

U = C1/2: (4)

The latter results from the polar decomposition of the deformation gradient

F = RU; (5)

where R = R�T denotes a rotation tensor.
The generalized strains can be defined by means of the spectral decomposition

of the stretch tensor

U =
m∑
i

�iPi; PiPj = ıijPi; i; j = 1; :::; m � 3; (6)
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in terms of the eigenprojections Pi and the corresponding pairwise distinct eigenva-
lues �i (i = 1; :::; m � 3) [6,7] as

E =
m∑
i

f (�i)Pi; (7)

where f: IR+ ! IR is a strictly increasing scalar function satisfying the conditions
[7]

f (1) = 0; f0 (1) = 1: (8)

Additionally, we require that the function f (�) is analytic everywhere except for the
point � = 0. For example, for the so-called Seth strains [5] the function f takes the
form

f (�) =

⎧⎨⎩
1
r

(�r � 1) for r 6= 0 ;

ln� for r = 0 :
(9)

In terms of the generalized strains (7) the dissipation inequality (1) can be rewritten
as

D = T : Ė �  ̇ � 0; (10)

where T denotes a stress tensor work-conjugate to E. Of special interest is a particular
form of the dissipation inequality (10),

D = S :
1
2
Ċ �  ̇ � 0; (11)

in terms of the second Piola-Kirchhoff stress tensor

S = F�1�F�T: (12)

Further derivation of the evolution equations depends on the assumption concerning
the decomposition of strains into an elastic and a plastic part.

3 Multiplicative decomposition of the deformation gradient
(model A)

In this section we assume the multiplicative decomposition of the deformation gra-
dient into an elastic part Fe and a plastic part Fp [15],

F = FeFp: (13)

The strain energy function can further be represented by

 =  ̂ (Ce) ; (14)
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where Ce = FT
e Fe denotes the elastic right Cauchy-Green tensor. With the aid of

the identity

C = FT
p CeFp (15)

resulting from (3) and (13), the material time derivative of C can be expressed as

Ċ = FT
p ĊeFp + ḞT

p CeFp + FT
p CeḞp: (16)

Thus, the dissipation inequality (11) takes the form

D =
(
FpSFT

p � 2
@ 

@Ce

)
:
1
2
Ċe + S :

(
FT

p CeḞp

)
� 0: (17)

The first term in the expression of the dissipation (17) depends solely on the elastic
strain rate, while the second term on the plastic strain rate. Since the elastic and plastic
strain rates are independent of each other, the dissipation inequality (17) requires that

S = 2F�1
p

@ 

@Ce
F�T

p = 2
@ 

@C
: (18)

This leads to the so-called reduced dissipation inequality

D = Σ : Lp � 0; (19)

where Lp = ḞpF
�1
p denotes the plastic velocity gradient and

Σ = FT
e �F�T

e (20)

is Mandel’s stress tensor [1]. Among all admissible processes the real one maximizes
the dissipation (19). This statement is based on the postulate of maximum plastic
dissipation (see, e.g., [16]). According to the converse Kuhn-Tucker theorem (see,
e.g., [17]) sufficient conditions for this maximum can be written as

Lp = �̇
@˚

@Σ
; �̇ � 0; �̇˚ = 0; ˚ � 0; (21)

where˚ represents a convex yield function and �̇ stands for a consistency parameter.
In what follows we deal with an ideal-plastic isotropic material described by the von
Mises yield function

˚ = kdev�k �
√

2
3

Y =

p
devΣ : devΣT �

√
2
3

Y; (22)

where 
Y denotes the normal yield stress. Accordingly,

Lp = �̇
devΣT

p
devΣ : devΣT

: (23)
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Now, we specify the evolution equation (23) for small elastic (but large plastic)
strains. In this case one may set Fe = I, such that Mandel’s stress tensor (20)
becomes symmetric

Σ = ΣT = �: (24)

Thus, the reduced dissipation inequality (19) can be given as

D = Σ : Dp � 0 (25)

in terms of the plastic rate-of-deformation tensor

Dp =
1
2
(
Lp + LT

p
)
: (26)

In view of (22), (24) and (25) we can further write

Dp = �̇
@˚

@Σ
= �̇

dev�

kdev�k : (27)

Taking the quadratic norm on the left- and right-hand sides of this equation shows
that �̇ =

∥∥Dp

∥∥. Thus, under consideration of the yield criterion ˚ = 0 applied to
(22), we obtain

dev� =

√
2
3

Y

Dp∥∥Dp

∥∥ : (28)

This is a remarkable relation since it defines the deviator of the Kirchhoff stress
tensor in terms of the plastic deformation rate independent of the elastic material
law. In the case of simple shear we can further write:

F =

⎡⎣1 � 0
0 1 0
0 0 1

⎤⎦ ei ˝ ej; ei � ej = ıij;

Dp = D =
1
2
(
L + LT) =

1
2

⎡⎣ 0 �̇ 0
�̇ 0 0
0 0 0

⎤⎦ ei ˝ ej; (29)

where � denotes the amount of shear. With consideration of (28) this leads to the
classical constant shear stress response

dev� = �Y

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ ei ˝ ej; (30)

where �Y = 
Y

/p
3 denotes the shear yield stress.
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4 Additive decomposition of the generalized strain measures
(model B)

In this section we assume the additive decomposition of a generalized strain measure
into an elastic part Ee and a plastic part Ep,

E = Ee + Ep: (31)

Thus, the dissipation inequality (10) can be written as

D =
(
T � @ 

@Ee

)
: Ėe + T: Ėp � 0; (32)

where  =  ̌ (Ee). By the same reasoning as in the previous section we obtain the
constitutive relation

T =
@ ̌ (Ee)
@Ee

=
@ ̌ (E � Ep)

@E
(33)

and the reduced dissipation inequality

D = T : Ėp � 0; (34)

which immediately leads to the evolution equation for the plastic strain rate as

Ėp = �̇
@˚

@T
: (35)

Equation (35) forces ˚ to be a function of the stress tensor T. Generally, a yield
function formulated in terms of the stress work-conjugate to the elastic strain measure
is a natural requirement of the thermodynamically based plasticity.

The Mises-type yield function (22) written in terms of the stress tensor T takes
the form (see [10–12])

˚ = kdevTk �
√

2
3

Y: (36)

As with (28) we thus obtain

devT =

√
2
3

Y

Ėp∥∥∥Ėp

∥∥∥ : (37)

For small elastic (but large plastic) strains one may set Ee = 0. Thus, in the case of
pairwise distinct principal stretches �1 6= �2 6= �3 6= �1, the plastic strain rate can
be given in view of (7) and (31) as

Ėp = Ė =
3∑
i

f0 (�i) �̇iPi +
3∑
i

f (�i) Ṗi: (38)
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Further, we specify our solution for simple shear loading. Thereby, the eigenvalues
of the right Cauchy-Green tensor

C =

⎡⎣ 1 � 0
� 1 + �2 0
0 0 1

⎤⎦ ei ˝ ej (39)

take the form

�2
1;2 = 1 +

�2 ˙
√

4�2 + �4

2
; �2

3 = 1: (40)

The relation (37) primarily requires that

trĖp = 0: (41)

Thus, in view of the identities trPi = 1 and trṖi = 0 (i = 1; 2; 3) and with the aid
of (38), we can write

3∑
i

f0 (�i) �̇i = 0: (42)

By virtue of (40) this leads to the algebraic equation

f0 (�) � f0 (��1) ��2 = 0 8� > 0; (43)

where we set �1 = � and consequently �2 = ��1. With the aid of the Laurent series
expansion

f0 (�) =
1∑

k=�1
ak�

k; f0 (��1) ��2 =
1∑

k=�1
ak�

�k�2 (44)

and in view of (8), the solutions of (43) can be given as

fr (�) =

⎧⎨⎩
1
2r

(�r � ��r) for r 6= 0 ;

ln� for r = 0 :
(45)

The functions fr (45) yield the generalized strain measures

E(r) =

⎧⎪⎪⎨⎪⎪⎩
1
2r

(Ur � U�r) =
1
2r

(
Cr/2 � C�r/2

)
for r 6= 0 ;

lnU =
1
2
lnC for r = 0 ;

(46)

among which only the logarithmic one (r = 0) belongs to Seth’s family (9). Hence-
forth, we deal only with the generalized strains (46) as able to provide the traceless
deformation rate (41). For these strains (37) takes the form

devT(r) =

√
2
3

Y

Ė(r)∥∥∥Ė(r)
∥∥∥ ; (47)
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where T(r) denotes the stress tensor work-conjugate to E(r). Note that T(r) itself has
no physical meaning and should be transformed to the Cauchy stresses. In the case
of the incompressible deformations which we deal with, the Cauchy stress tensor
coincides with the Kirchhoff stress tensor given by

� = FSFT = 2F
@ 

@C
FT=F

[
@ 

@E(r) : 2
@E(r)

@C

]
FT = F

[
T(r): Pr

]
FT; (48)

where

Pr = 2
@E(r)

@C
(49)

denotes a projection tensor of the fourth order. With the aid of the relation

Pr: I = 2
d

ds
E(r) (C + sI)

∣∣∣∣
s=0

= 2
d

ds

3∑
i

fr

(√
�2
i + s

)
Pi

∣∣∣∣∣
s=0

=
3∑
i

f0
r (�i)�

�1
i Pi (50)

and in view of (45) one gets the identities

Pr: I =
1
2

(
Cr/2�1 + C�r/2�1

)
; F [Pr: I]FT =

1
2

(
br/2 + b�r/2

)
; (51)

where b = FFT denotes the left Cauchy-Green tensor. Thus, � (48) takes the form

� = F
[
Pr: devT(r)

]
FT + �̂ (52)

with the abbreviation

�̂ =
1
6
trT(r)

(
br/2 + b�r/2

)
: (53)

Since the tensors br/2 and b�r/2 are coaxial we can represent �̂ (53) in the spectral
form as

�̂ =
1
6
trT(r) [(�r + ��r) (p1 + p2) + 2p3] ; (54)

where � is given by (40)1 and pi (i = 1; 2; 3) denote the eigenprojections of b. Thus,
in the shear plane 1-2, �̂ has the double eigenvalue 1

6 trT(r) (�r + ��r) and causes
equibiaxial tension or compression. Hence, in this plane the stress tensor �̂ (53) is
shear free and does not influence the shear stress response. Inserting (47) into (52)
and taking (39) and (49) into account, we finally obtain

� =

√
2
3

YF

[
Pr:A: Pr

kPr:Ak

]
FT + �̂; (55)



On the applicability of generalized strain measures in large strain plasticity 109

where

A =
1
2�̇

Ċ =

⎡⎣ 0 1/2 0
1/2 � 0
0 0 0

⎤⎦ ei ˝ ej: (56)

The projection operator Pr (49) appearing in (55) can be expressed by means of the
closed-form basis-free solution for the derivative of an isotropic tensor function (see,
e.g., [18–21]). Accordingly, for all second-order tensors X,

Pr:X = 2
2∑

q;p=0

qpC
qXCp; (57)

where the coefficients qp (q; p = 0; 1; 2) are given as:

00 =
3∑
i

�4
j�

4
kf

0
r (�i)

2�iD2
i

�
3∑

i;j6=i

�2
i �

2
j�

4
k [fr (�i) � fr (�j)](
�2
i � �2

j

)3
Dk

;

01 = 10 = �
3∑
i

(
�2
j + �2

k

)
�2
j�

2
kf

0
r (�i)

2�iD2
i

+
3∑

i;j6=i

(
�2
j + �2

k

)
�2
i �

2
k [fr (�i) � fr (�j)](

�2
i � �2

j

)3
Dk

;

02 = 20 =
3∑
i

�2
j�

2
kf

0
r (�i)

2�iD2
i

�
3∑

i;j6=i

�2
i �

2
k [fr (�i) � fr (�j)](
�2
i � �2

j

)3
Dk

;

11 =
3∑
i

(
�2
j + �2

k

)2
f0
r (�i)

2�iD2
i

�
3∑

i;j6=i

(
�2
j + �2

k

) (
�2
i + �2

k

)
[fr (�i) � fr (�j)](

�2
i � �2

j

)3
Dk

;

12 = 21 = �
3∑
i

(
�2
j + �2

k

)
f0
r (�i)

2�iD2
i

+
3∑

i;j6=i

(
�2
i + �2

k

)
[fr (�i) � fr (�j)](

�2
i � �2

j

)3
Dk

;

22 =
3∑
i

f0
r (�i)

2�iD2
i

�
3∑

i;j6=i

fr (�i) � fr (�j)(
�2
i � �2

j

)3
Dk

; i 6= j 6= k 6= i; (58)

and

Di =
(
�2
i � �2

j

) (
�2
i � �2

k

)
; i 6= j 6= k 6= i = 1; 2; 3: (59)
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Of particular interest is the shear stress as a function of the amount of shear. Af-
ter algebraic manipulations with the equations (55-59) (performed with the aid of
MAPLE) we obtain

�12

�Y
=

2
√

(4 + �2)�2f0
r
2 (�) + 4f2

r (�)
4 + �2 ; (60)

where

� =
�

2
+

√
4 + �2

2
(61)

and the functions fr are given by (45).
The formula (60) is illustrated graphically in Fig. 1. For all represented values of

r a non-constant shear stress behavior is observable.

5 Discussion of results

We have examined and compared shear stress responses resulting from the mul-
tiplicative decomposition of the deformation gradient (model A) and the additive
decomposition of the generalized strain measures (model B) in finite simple shear.
Both models are applied to an ideal plastic material described by a von Mises-type
yield criterion. Assuming small elastic but large plastic deformations (rigid-plastic
material) we have obtained analytical solutions for both models. These solutions
are valid independent of the elastic material law so that a particular elastic strain
energy function or elastic material symmetry need not be specified. Since both mo-
dels include neither a hardening nor a softening law, a constant shear stress response,
even for large amounts of shear, is expected. Indeed, model A delivers true constant
shear stress response. Examining model B, we have first seen that only one particular
family of generalized strain measures (46) including the logarithmic one is able to
provide the deviatoric deformation rate required by the pressure-independent yield
criterion. However, even for these strain measures, model B exhibits a non-constant
shear stress response (see Fig. 1). This restricts the applicability of this model to
moderate plastic shears. Indeed, in the vicinity of the point � = 0, the power series
expansion of (60) takes the form

�12

�Y
= 1 +

1
4
r2�2 +

(
1
16
r4 � 3

4
r2 � 1

)
�4 + O

(
�6) : (62)

Thus, in the case of simple shear, the amount of shear is limited for the logarithmic
strain (r = 0) by �4 � 1 and for other generalized strain measures by �2 � 1.

It is seen that at moderate plastic shears the logarithmic strain is most appropriate
for model B. Furthermore, in some loading cases, model B based on the logarithmic
strain can be shown to coincide with model A. For an illustration we consider a
special case in which the principal axes of the right Cauchy-Green tensor do not
rotate during the deformation such that

Ṗi = 0; i = 1; 2; 3: (63)
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Fig. 1. Simple shear of an ideal plastic material: comparison between shear stress responses for
the multiplicative decomposition of the deformation gradient and the additive decomposition
of the generalized strain measures (46)

Such deformations take place, for example, under uniaxial loading. For the logarith-
mic strain rate the relation (38) yields in this case

Ėp = Ė(0) =
3∑
i

�̇i�
�1
i Pi: (64)

With the aid of the expression (see, e.g., [13])

S =
m∑
i

f0 (�i)
�i

PiTPi + 2
m∑

i;j6=i

f (�i) � f
(
�j
)

�2
i � �2

j

PiTPj (65)

and in view of (5), (12), (47) and (64) we further obtain

T(0) = USU = RT�R; (66)
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which implies the identity of the yield functions (22) and (36),

˚ =
∥∥∥devT(0)

∥∥∥ �
√

2
3

Y � kdev�k �

√
2
3

Y: (67)

Thus, in the case of small elastic but large plastic strains, model B yields, by virtue
of (47) and (66),

dev� = R
(
devT(0)

)
RT =

√
2
3

Y

RĖ(0)RT∥∥∥Ė(0)
∥∥∥ : (68)

By virtue of the relation

D =
1
2
R
(
U̇U�1 + U�1U̇

)
RT = RĖ(0)RT (69)

the same result follows directly from (28) for model A as well. Thus, we observe that,
under the additional condition (63), both plasticity models deliver the same stress
response.

We conclude with remarks concerning the assumption of small elastic strains.
This assumption is not restrictive as regards engineering practice. Indeed, in many
engineering problems, as, for example, in metal forming processes, large plastic de-
formations are accompanied by small elastic strains. Further, since model B exhibits
incorrect shear stress response already at small elastic strains, its applicability for
large elastic and large plastic shears may likewise be questioned. A similar argument
may also be applied in respect of the restriction to the isotropic yield function. In-
deed, since model B fails already in the isotropic case, its application to anisotropic
materials, at least at large plastic shears, is disputable.
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A nonlocal formulation of plasticity

F. Marotti de Sciarra, C. Sellitto

Abstract. This paper deals with a formulation of nonlocal plasticity with internal variables.
The constitutive model complies with local internal variables which govern kinematic harde-
ning and isotropic softening and with a nonlocal corrective internal variable. The constitutive
problem is cast in the framework provided by convex analysis and the potential theory for
monotone multivalued operators which provide suitable tools for performing a theoretical ana-
lysis of such nonlocal problems. Several variational formulations with different combinations
of state variables are provided.

1 Introduction

Most materials usually adopted in engineering show a loss of positive definiteness of
the tangent stiffness operator which yields to the localization of plastic deformations
in narrow bands until cracks appear.

The deformation pattern in a body in which a localization phenomenon occurs
suddenly evolves from relatively smooth into one in which shear bands of highly
strained material appear whereas the remaining part of the body unloads.

The nonlocal theory introduces, in the constitutive model, state variables defined
in an average form over a finite volume of the body and the material length parameter
determines how the value of the variable at a certain point is weighted.

In this paper a nonlocal plasticity model with internal variables is addressed. We
introduce local internal variables, which govern kinematic hardening and isotropic
softening, and a nonlocal internal variable which is defined as the sum of a new
internal variable and its spatial weighted average.

The nonlocal internal variable is added to the local variables, governing isotropic
hardening, in the definition of the elastic domain.

Convex analysis and the potential theory for monotone multivalued operators
provide suitable tools for performing a theoretical analysis of the nonlocal consti-
tutive problem. The validity of the maximum dissipation theorem is assessed and
constitutive variational formulations of the rate model are provided.

The structural problem is then formulated. The nonlocal variational formulation
in the complete set of state variables is given and the methodology for deriving varia-
tional formulations, with different combinations of the state variables, is explicitly
provided. In particular three variational formulations with different combinations of
state variables are given.

These formulations show that two different approaches can be followed in order
to perform a finite element approximation of the proposed nonlocal plastic model.
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In the former approach the expression of the dissipation has to be approximated
and in the latter formulation the indicator of the elastic domain can be expressed in
terms of plastic multipliers and a predictor-corrector algorithm can be adopted. A
discussion of approximation methods and of finite-step nonlocal plasticity deserves
further analysis and will be the subject of a forthcoming paper.

2 Nonlocal plasticity

We analyze a nonlocal elastoplastic structural problem defined on a regular bounded
domain ˝ of a Euclidean space. The inelastic model is cast in the framework of
internal variable theories of associated type and the generalized standard material
(GSM), proposed by Halphen and Nguyen [3], is considered.

The dual spaces of strains " and stresses 
 will be labelled by D and S respec-
tively. The internal variables account for the evolution of the hardening/softening
phenomena; the kinematic internal variables are denoted by � 2 Y, ˛1 2 Y1,
˛2 2 Y2 and the dual static internal variables are X 2 Y0, �1 2 Y0

1, �2 2 Y0
2. The

symbol (( �; �)) denotes the inner product in the dual spaces.
The free energy is provided by the saddle (convex-concave) differentiable func-

tional ˚ : D � Y � Y1 � Y2 7! R̄ and the convex elastic domain C is defined in
the product space S � Y0 � Y0

1 � Y0
2.

The free energy is additively decomposed as the sum of a strictly convex poten-
tial ˚e(e), representing the elastic energy, and a saddle functional ˚in(˛1; ˛2; �),
convex in (˛1; ˛2) and concave in �, which accounts for the inelastic phenomena.
Such a decomposition, usually adopted in literature concerning local plasticity [6–8],
corresponds to the mechanical assumption that the elastic behavior does not depend
on the evolution of inelastic phenomena.

Nonlocal effects can then be modeled by giving the following expression to the
free energy:

˚(e; ˛1; ˛2; �) = ˚e(e)+˚in(˛1; ˛2; �) = ˚e(e)+˚L(˛1; �)+˚NL(˛2); (1)

where the free energy component ˚L(˛1; �) is convex in ˛1, concave in � and
˚NL(˛2) = ˚NL(	(˛2)) is the convex nonlocal part of the free energy.

In fact a nonlocal plastic behavior can be modeled by assuming that the functional
˚NL at a point x of the body ˝ depends on the entire field ˛2. This task can be
achieved by considering the nonlocal variable 	 2 Z which has the parametric
representation

	(x) = (R˛2)(x); (2)

where R : Y2 7! Z denotes a suitable linear regularization operator [10]. The
kinematic internal variable 	 turns out to be nonlocal since its value at the point x of
the body ˝ depends on the entire field ˛2.

A nonlocal field 	 can be obtained as a spatial weighted average of the variable
˛2 in the form

	(x) = (R˛2)(x) =
1

Vr(x)

∫
˝
ˇx(y)˛2(y)dy; Vr(x) =

∫
˝
ˇx(y)dy; (3)
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where ˇx(y) is a spatial weighting function depending on a material parameter l
called the internal length scale.

If a linear nonlocal softening behavior is assumed, the expression of˚NL is then
given as

˚NL(˛2) = 1
2 (( ĥ	(˛2); 	(˛2))) = 1

2 (( ĥR˛2;R˛2 )) =

=
∫
˝ ĥ

[
1

Vr(x)

∫
˝ ˇx(y)˛2(y)dy

]2
dx;

(4)

where ĥ : Z 7! Z0 is positive.
With the expression (2) of the nonlocal variable 	, the constitutive relations can

be obtained from the saddle free energy (1) as:

(
;�1; �2;�X) = d˚(e; ˛1; ˛2; �) ()

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩


 = d˚e(e)

�1 = d˛1˚L(˛1; �)

�2 = d˛2˚NL(	(˛2)) =

= R0d˚NL(	) = R0�

�X = d�˚L(˛1; �);

(5)

where � = d˚NL(	) 2 Z0 and R0 : Z0 7! Y0
2 denotes the dual operator of R.

Assuming the expression (4) for the nonlocal convex part˚NL of the free energy, we
have �2 = R0 ĥ	(˛2) = (R0 ĥR)˛2 = h˛2.

Accordingly the static internal variable �2, which is dual of the (local) kinematic
internal variable ˛2, is defined as

�2(x) = (R0�)(x) 8 x 2 ˝; (6)

and turns out to be a nonlocal variable since its pointwise value depends upon the
entire field � over the body ˝.

The constitutive model is completed by introducing the elastic domain C which
is defined in the space of stresses and of static internal variables f
;�1; �2; Xg as
the level set of a convex yield mode G : S � Y0

1 � Y0
2 � Y0 7! R [ f+1g in the

form

C = f(
;�1; �2; X) 2 S � Y0
1 � Y0

2 � Y0 : G(
;�1; �2; X) � 0g ; (7)

provided that the minimum of G is negative.
The nonlocal elastoplastic constitutive model can be formulated in a more con-

venient way by defining the following generalized variables collecting together local
and nonlocal variables:

"� =

⎡⎢⎢⎣
"
0
0
0

⎤⎥⎥⎦=
[

"
0

]
e�=

⎡⎢⎢⎣
e
˛1
˛2
�

⎤⎥⎥⎦=
[
e
�

]
p
�=

⎡⎢⎢⎣
p

�˛1
�˛2
�

⎤⎥⎥⎦=
[
p
�

]
��=

⎡⎢⎢⎣


�1
�2
X

⎤⎥⎥⎦=
[

�
X

]
:

(8)
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The vectors "�, e�, p
� and �� represent the generalized vectors of total strain, elastic

strain, plastic strain and stress. Accordingly two generalized spaces are introduced:

D� = D � Y1 � Y2 � Y = D̄ � Y; S� = S � Y0
1 � Y0

2 � Y0 = S̄ � Y0; (9)

and the scalar product between generalized vectors is denoted by the symbol � �; � �
defined as

� ��; e� � = ((�; e)) + ((X; �)) = ((
; e)) + ((�1; ˛1 )) + ((�2; ˛2 )) + ((X; �)):

(10)

In the sequel, for simplicity, the term generalized is omitted since no confution can
arise.

3 The elastic domain

In the applications the yield mode, defining the elastic domain C given by (7), is
usually written in the form

G(��) = G(�; X) = G(
;�1; �2; X) = g(
;�1) � �2 � X� 
o; (11)

where g is a convex function and 
o represents a constant scalar value which cha-
racterizes the initial yield limit.

The flow rule can be formulated in terms of the normal cone NC to the elastic
domain C as follows:

ṗ
�

2 NC(��) = @tC(��) () (ṗ;� ˙̨ 1;� ˙̨ 2; k̇) 2 NC(
;�1; �2; X); (12)

and can be reformulated in three equivalent forms:

ṗ
�

2 NC(��); �� 2 @D(ṗ
�

); tC(��) +D(ṗ
�

) = � ��; ṗ�
�; (13)

whereD : D� 7! R[ f+1g is the support functional of the elastic domainC defined

by

D(ṗ
�

) = supf� ��; ṗ�
� j �� 2 Cg =

= supf((
̄; ṗ)) � (( �̄1; ˙̨ 1 )) � (( �̄2; ˙̨ 2 )) + ((X̄; k̇))j(
̄; �̄1; �̄2; X̄) 2 Cg:
(14)

The functional D has the physical meaning of dissipation associated with the plastic
flow ṗ

�
.
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Explicitly the relations (13) can be rewritten as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ṗ;� ˙̨ 1;� ˙̨ 2; k̇) 2 NC(
;�1; �2; X);

(
;�1; �2; X) 2 @D(ṗ;� ˙̨ 1;� ˙̨ 2; k̇);

tC(
;�1; �2; X) +D(ṗ;� ˙̨ 1;� ˙̨ 2; k̇) = ((
; ṗ)) � ((�1; ˙̨ 1 ))+

�((�2; ˙̨ 2 )) + ((X; k̇)):

(15)

It is useful to express the flow rule (13)1 in terms of the plastic multiplier �. To
this end we note that the indicator of the elastic domain C can be expressed in terms
of the non-positive scalars R� as

tC(��) = tR� [G(��)]: (16)

The assumption that G is continuous in C, a subdifferential rule given in [5], yields:

@ t C(��) = @(tR� ı G)(��) = @ t R� [G(��)]dG(��) 8 (��) 2 C: (17)

Since the subdifferential of tR� [G(��)] coincides with the normal cone

NR� [G(��)], the flow rule (13)1 can be rewritten in the following equivalent forms:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ṗ; k̇) 2 NC(�; X);

(ṗ; k̇) 2 NR� [G(�; X)]dG(�; X);

(ṗ; k̇) = �dG(�; X) with � 2 NR� [G(�; X)];

(ṗ; k̇) = �dG(�; X) with � � 0; G(�; X) � 0; �G(�; X) = 0:
(18)

From the expression (11) of the yield mode, the relation (18)4 is explicitly given
by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ṗ= �d
G(
;�1; �2; X) = �d
g(
;�1);

� ˙̨ 1 = �d�1G(
;�1; �2; X) = �d�1g(
;�1);

� ˙̨ 2 = �d�2G(
;�1; �2; X) = ��;

k̇= �dXG(
;�1; �2; X) = ��

(19)

under the complementarity conditions

� � 0; g(
;�1) ��2 �X�
o � 0; �[g(
;�1) ��2 �X�
o] = 0: (20)

As a result the rate of the kinematic internal variable˛2 coincides with the plastic
multiplier and the kinematic internal variable � is equal to the opposite of the plastic
multiplier. Accordingly the parametric representation of 	̇ is given by 	̇ = R�.
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4 The constitutive model

The constitutive model of nonlocal plasticity can be formulated by considering the
additivity of strains " = e+p, the constitutive relations (5) and the flow rule (13) in
the form:⎧⎪⎨⎪⎩

" = e + p additivity of strains,

(ṗ; k̇) 2 NC(�; X) flow rule,

(�;�X) = d˚(e; �) elastic relation.

(21)

For a linear elastic and hardening behavior of the type (4), the free energy is
given by

˚(e; �) = 1
2 � H(e; ˛1; ˛2; �); (e; ˛1; ˛2; �) � =

= 1
2 ((Ee; e)) + 1

2 ((H1˛1; ˛1 )) + 1
2 ((H2˛2; ˛2 )) + 1

2 ((W�; �)) ;
(22)

where H = diag [E;H1;H2;W] denotes the matrix collecting the elastic and har-
dening/softening moduli. We note that, in the case of the linear nonlocal behavior
previously introduced – see (4) – we have H2 = R0ĥR .

In order to derive a variational formulation of the nonlocal elastoplastic model,
it is compelling to consider alternative expressions of the free energy. To this end we
introduce the conjugate [4] saddle functional ˚� : S� 7! R̄, which represents the

complementary free energy, defined by

˚�(�; X) = inf
�

sup
e

f((�; e)) + ((X; �)) �˚(e; �)g (23)

and the convex functionals� : S � Y0
1 � Y0

2 � Y 7! R̄ and�� : D � Y1 � Y2 �
Y0 7! R̄, associated with the free energy ˚, defined as

�(�; �) = � infX f((X; �)) �˚�(�; X)g = supe f((�; e)) �˚(e; �)g;

��(e;�X) = � inf� f((X; �)) �˚(e; �)g = sup� f((�; e)) �˚�(�; X)g:
(24)

The elastic relation (21)3 can then be rewritten in the following equivalent forms:{
(�;�X) = d˚(e; �); (e; �) = d˚�(�;�X);

(e; X) = d�(�; �); (�; �) = d��(e; X)
(25)

and in terms of Fenchel’s equalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

���(e; X) +˚(e; �) = �((X; �));

�(�; �) +˚(e; �) = ((�; e));

��(�; �) +˚�(�;�X) = �((X; �));

��(e; X) +˚�(�;�X) = ((�; e));

��(e; X) +�(�; �) = ((�; e)) + ((X; �));

˚(e; k) +˚�(�;�X) = ((�; e)) � ((X; �)):

(26)
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5 The structural problem for nonlocal plasticity

We now analyze an elastoplastic structural model having a nonlocal constitutive
behavior. Displacements are assumed to belong to the Sobolev space U = Hm(˝)
of fields which are square integrable in˝ together with their distributional derivatives
up to orderm [2]. Conforming displacement fields satisfy linear constraint conditions
and belong to a closed linear subspace L 	 U .

The kinematic operator B 2 Lin fU;Dg is a bounded linear operator from U to
the Hilbert space of square integrable strain fields " 2 D [1].

With F denoting the subspace of external forces, which is the dual of U, the
continuous operator B0 2 Lin fS;Fg , the dual of B, is the equilibrium operator.
The symbol h �; � i denotes the duality pairing between U and its dual F .

Let ` = ft;bg 2 F be the load functional where t and b denote the tractions and
the body forces. For simplicity, imposed strains and displacements are not considered.

The equilibrium equation between external forces f and stresses 
 is

f = B0
; 
 2 S; f 2 F; (27)

and the compatibility condition is

" = Bu; u 2 U; " 2 D: (28)

The external relation between reactions and displacements is assumed to be given
by

r 2 @�(u); (29)

where � : U 7! R [ f� 1g is a concave functional. Accordingly, the relation
between external forces f = `+ r and displacements is expressed as

f 2 `+ @�(u); or equivalently u 2 @��(f� `); (30)

where the concave functional �� : F 7! R [ f� 1g represents the conjugate [4]
of �.

Different expressions can be given to the functional �(u) depending on the type
of external constraints.

We now give the expression of � in the case of external frictionless bilateral
constraints with homogeneous boundary conditions. The orthogonal complement
of the subspace L of conforming displacements is denoted by R and provides the
subspace of the external constraint reactions. The functional � and its dual �� are
thus given in the form

�(u) = uL(u) =
{

0 if u 2 L
�1 otherwise,

��(r) = uL?(r): (31)

Accordingly the relation r 2 @�(u) is equivalent to the state u 2 L and r 2 R = L?.
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We now derive the variational formulation for the nonlocal structural problem in
order to provide the structural response of the body˝ to a given load ` starting from
a known state.

With the pair of dual operators defined as

B =

⎡⎣B
0
0

⎤⎦ : U 7! D; B0 = [B0; 0; 0] : S 7! F; (32)

the relations governing the nonlocal elastoplastic structural problem for a given load
history `(t) are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
0
� = `+ r equilibrium,

Bu= e + p compatibility,

(�;�X) = d˚(e; �) elastic relation,

(ṗ; k̇) 2 NC(�; X) flow rule,

u2 @��(r) external relation.

(33)

The evolutive analysis of a nonlocal elastoplastic constitutive problem can be
performed by solving a sequence of problems in which the strain increment is applied
and updating the state variables at the end of each increment [6,11].

Attention is focused on a single step of the procedure for which the strain incre-
ment is given. Accordingly we need to evaluate the finite increments of the unknown
variables corresponding to the increment of strain when their values are assigned at
the beginning of the step. Let ( � )o denote the known quantities ( � ) at the beginning
of each step.

By adopting a fully implicit time integration scheme (Euler backward difference),
the finite-step formulation of the elastoplastic constitutive model is achieved by
enforcing the relations of the plastic flow rule at the end of the step in the form:

(p � po; �� �o) 2 NC(�; X) () (�; X) 2 @D(p � po; �� �o); (34)

where the time derivatives ṗ and k̇ are replaced by the relevant finite increment
ratios and the time increment is neglected since NC is a convex cone. In order to
derive the variational formulation of the nonlocal elastoplastic finite-step structural
problem it is convenient to reformulate the elastic relation in terms of the partial
convex conjugate�� of˚ and the finite-step flow rule in terms of the dissipationD.

The nonlocal elastoplastic finite-step structural problem is then defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
0
� = `+ r equilibrium rate,

Bu= e + p compatibility rate,

(�; �) = d��(e; X) elastic relation,

(�; X) 2 @D(p � po; �� �o) finite-step flow rule,

u2 @��(r) external relation.

(35)
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The structural problem can be recast in an operator form 0 2 S(w) + ho which is
explicitly given as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 B
0

0 0 0 0 �IF
B 0 �ID 0 �ID 0 0
0 �IS d�� 0 0 0
0 0 0 �IY 0
0 �IS 0 0 @D 0
0 0 0 �IY0 0

�IU 0 0 0 0 0 @��

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
�
e
X

p � po
�� �o
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

`
po
o
�o
o
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The conservativity of the structural operator is based on the conservativity of the
constitutive operator and on the property that the subdifferential relations @ t N and
@�� admit the potentials tN and �� [9].

A direct integration can thus be performed:

˝(w) =
∫ 1

0
� S(w�wo); (w�wo) � dt�h`; ui�h�;po i�hX; �o i; (36)

where w = (u;�; e; X;p; k; r) and wo = (0;o;o; 0;�po;��o; 0). The following
potential in the complete set of state variables is thus obtained:

˝(u;�; e; X;p; �; r) = ��(e; X) +D(p � po; �� �o) +��(r) + ((�; B̄u)) +

�((�; e + p)) � ((X; �)) � h`+ r; ui:
(37)

The potential ˝ is linear in (u;�), convex in (e; X;p; �) and concave in r. The
following proposition thus holds.

Proposition 4. A set (u;�; e; X;p; �; r) is a solution of the nonlocal elastoplastic
finite-step structural problem if and only if it is a stationarity point for ˝.

A family of potentials can be recovered from ˝ by enforcing the relations (33).
Then a solution of the structural problem can be obtained as a stationary point of
each of the potentials of the resulting family.

5.1 Variational principles

The external reactions can be eliminated from ˝ by enforcing the external relation
(35)5 in terms of Fenchel’s equality,

�(u) +��(r) = hr; ui; (38)

to obtain

˝1(u;�; e; X;p; �) = ��(e; X) +D(p � po; �� �o) ��(u) + ((�; B̄u)) +

�((�; e + p)) � ((X; �)) � h`; ui;
(39)

which is convex in (u; e; X;p; �) and linear in �.
Then we have the following result.
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Proposition 5. The set (u;�; e; X;p; �) is a solution of the saddle problem

min
u;e;X;p;�

stat
�

˝1(u;�; e; X;p; �)

if and only if it is a solution of the nonlocal elastoplastic structural model.

We now enforce in the expression (39) of ˝1 the constitutive relation (35)3, in
terms of Fenchel’s equality (26)1, and the compatibility condition (35)2 to get the
potential

˝2(u;p; �) = ˚(B̄u� p; �) +D(p � po; �� �o) ��(u) � h`; ui; (40)

which is convex in (u;p) and locally subdifferentiable in �. We then have our next
result.

Proposition 6. The set (u;p; �) is a solution of the optimization problem

min
u;p

stat
�

˝2(u;p; �)

if and only if it is a solution of the nonlocal elastoplastic structural model (35).

Enforcing in (40) the flow rule

tC(�; X) +D(p � po; �� �o) = ((�;p � po )) + ((X; �� �o ));

we see that

˝3(u;p;�; X; �) = ˚(B̄u� p; �) � t C(�; X) ��(u)+
+((�;p � po )) + ((X; �� �o )) � h`; ui;

(41)

which is convex in (u;p) and concave in (�; X; �). Thus we obtain our last result.

Proposition 7. The set (u;p;�; X; �) is a solution of the saddle problem

min
u;p

max
�;X;�

˝3(u;p;�; X; �)

if and only if it is a solution of the nonlocal elastoplastic structural model (35).

6 Conclusions

A nonlocal model of plasticity is presented and is cast in the framework of con-
vex analysis and of the potential theory for monotone multivalued operators. As a
consequence a theoretical analysis can be performed in analogy with local standard
plasticity, and variational formulations for the nonlocal model are given. The pro-
posed treatment of plasticity is rather general and can be applied to further different
material behaviors which can be described within the theory of internal variables
such as damage and rate-dependent plasticity.
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Consistent order extended thermodynamics
and its application to light scattering

I. Müller, D. Reitebuch

Abstract. The new theory of consistently ordered extended thermodynamics is described and
compared to the earlier theory of extended thermodynamics with respect to the efficiency with
which these theories describe light scattering spectra. It turns out that the new theory is more
efficient, albeit only slightly.

1 Introduction

Extended thermodynamics is a field theory for gases, in particular rarefied gases.
The fields are moments of the distribution function and the field equations are the
equations of balance for the moments as they follow from the Boltzmann equation.
The system of equations requires closure. Different closure procedures have been
proposed and they distinguish different versions of extended thermodynamics.

There is extended thermodynamics proper, described in the monograph [1] and
here abbreviated by ET, where closure is achieved by the exploitation of the entropy
principle. And there is consistent order extended thermodynamics [2], called COET
in the sequel, which makes use of combinations of moments as fields and those
combinations – called G-moments – may be assigned an order of magnitude in a
rational manner. Closure in this theory is an automatic consequence of the assignment
of order.

We briefly motivate the choice of the G-moments and explain the criterion by
which they are ordered. At this time COET has only been formulated for the BGK
model for the Boltzmann collision term [3]. We write the full set of equations of
first and second order in a one-dimensional setting and as appropriate for the BGK
theory.

Light scattering in rarefied gases is a process that calls for the equations of ET
and we recall from the published literature (cf. [4,5,1]) that very many moments
have to be pressed into service in order to reach a satisfactory representation of light
scattering spectra.

There is hope that COET, because of its more judicious selection of variables,
gets away with a lesser number of G-moments and that expectation is confirmed.
To be sure, however, we still need a considerable number of fields. The scattering
spectra calculated by COET are compared with the predictions of the Yip & Nelkin
exact solution of the BGK-Boltzmann equation (cf. [6]).
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2 Field equations in consistent order extended thermodynamics

2.1 Equations of balance for moments

The field equations of the extended thermodynamics of gases are the equations of
transfer for the moments of the phase density f, viz.,

@FA
@t

+
@FiA
@xi

=
1
�

(
FE
A � FA

)
; where

FA = m
∫
cAfdc;

FiA = m
∫
cicAfdc:

(2.1)

The index A here is a multi-index; we have

cA =

{
1

ci1ci2 :::ciA

A = 0
A = 1; 2 ; :::

: (2.2)

It is often useful to replace the moments FA by the internal moments F̂A which
correspond to the FA’s in the rest frame of the gas. The moments F̂A and F̂iA are
also defined by (2.1)2;3, except that the velocity ci in the definitions must now be
replaced by the relative velocity Ci = ci � vi. There is a one-to-one correspondence
between FA und F̂A which reads1:

Fi1i2 :::iA = F̂i1i2:::iA +
(
A
1

)
F̂(i1i2:::iA�1 viA) +

(
A
2

)
F̂(i1i2:::iA�2 viA�1 viA) +

+ ::: +
(

A
A�1

)
F̂(i1 vi2 ::: viA) + F̂ vi1 vi2 ::: viA :

If we let A run from 0 to 1, the system (2.1) represents an infinite system of
balance equations. In gas dynamics and extended thermodynamics this system is cut
off at a finite value N of A. Such a cut-off leaves us with a closure problem because
the occurence of the last flux F̂iN prevents us from having a closed system for the
moments F̂A (A = 1; 2; :::; N) automatically.

The question is where to close – i.e., at which N – and how to close? Generally
the idea is to makeN as big as possible and that idea seems to be a sound one. Indeed
the treatment of light scattering in rarefied gases becomes more and more satisfactory
whenN increases. Even so, however, further moments – moments with A > N – are
by no means small; thus even for large values of A all even-ranked moments have
non-vanishing equilibrium values.

In ET the last flux F̂iN is related to the moments F̂A (A = 1; 2; :::; N) by the
exploitation of the entropy principle. This is the manner in which ET closes the
system, e.g., see [1]. Recently objections have been raised to this closure agreement
(cf. [7]) because the exploitation of the entropy principle may lead to a loss of
hyperbolicity of the system in the immediate neighborhood of equilibrium.

1 Round brackets indicate symmetrization and angular brackets denote traceless symmetric
tensors.
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2.2 G-moments

We have therefore proposed in [2] to choose new variables, namely, combinations
of the moments F̂A and these are introduced as moments of the orthonormal irredu-
cible Hermite polynomials  r;hi1i2:::ili of the velocity components Ci. Thus the new
variables read

Gr;hi1i2:::ili = m
p
�

2r+l
∫
 r;hi1i2:::ili fdc; (2.3)

wherem is the atomic mass and� stands for k
mT. In [2] we have motivated the choice

of these moments at some length. The variable Gr;hi1i2:::ili represents a tensor of rank
2r+ l in which r pairs of indices have been contracted.

There is a one-to-one correspondence between the moments F in (2.1) or the
internal moments F̂, and the G-moments in (2.3) and for the first few low-ranked
moments Table 1 exhibits that correspondence. For higher-ranked tensors the rela-
tionship may be taken from the formulae of [2]. All tensors Gr;hi1i2:::ili except G0
vanish in equilibrium.

Since the F’s and G’s are related, the moment equations (2.1) dictate equations
for the G-moments which, however, cannot be written in such a compact form as
(2.1).

Table 1. Some Hermite polynomials and their moments

l n r 0 1 2

0
 0 = 1

G0 = %

 1 = � 1p
6
C2�3�

�

G1 = 0

 2 = 1
2

p
30

C4�10�C2+15�2

�2

G2 = 1
2

p
30

(
F̂rrss � 15%�2

)

1
 0;i =

Cip
�

G0;i = 0

 1;i = � 1p
10

(C2�5�)Ci
p
�

3

G1;i = � 1p
10
F̂irr

 2;i =
1

2
p

70
(C4�14�C2+35�2)Ci

p
�

5

G2;i = 1
2

p
70

(
F̂irrss � 14�F̂irr

)

2
 0;hiji = 1p

2
ChiCji
�

G0;hiji = 1p
2
F̂hiji

 1;hiji = � 1
2

p
7
(C2�7�)ChiCji

�2
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2.3 Order of magnitude of G-moments

For essentially one-dimensional problems, i.e., problems with rotational symmetry
about the x1-axis, we may use the subset

 r;l =  r;h11 :::1i︸ ︷︷ ︸
l times

of Hermite polynomials and the corresponding subset

Gr;l = m
p
�

2r+l
∫
 r;lf dc (2.4)

of G-moments. In that case the conservation laws of mass, momentum and energy
read, with v = (v; 0; 0):

@�

@t
+ v

@�

@x
+ �

@v

@x
= 0,

�
@v

@t
+ � v

@v

@x
+ �

@�

@x
+�

@�

@x
+

2p
3
@G0;2

@x
= 0,

�
@�

@t
+ � v

@�

@x
+

2
3
��

@v

@x
�

p
10
3

@G1;1

@x
+

2
3

√
4
3
G0;2

@v

@x
= 0.

(2.5)

All higher moment equations are of the generic form

Gr;l = G̃r;l

(
�
@�

@t
; �

@�

@x
; �

@v

@t
; �

@v

@x
; Gp;q; �

@Gr;s

@t
; �

@Gr;s

@x

)
: (2.6)

There are, of course, infinitely many of them and the system needs to be closed.

We use Eqs. (2.6) to calculate nth iterates
(n)
Gr;l from the (n� 1)st iterates by

virtue of the prescription

(n)
Gr;l = G̃r;l

⎛⎝�@�
@t
; �

@�

@x
; �

@v

@t
; �

@v

@x
;

(n�1)
Gp;q; �

@
(n�1)

Gr;s

@t
; �

@
(n�1)

Gr;s

@x

⎞⎠ (2.7)

with the initiation agreement
(0)
Gr;l = � ır0 ıl0: Thus the iterates

(n)
Gr;l now contain

expressions of the type(
�
@v

@t

)n
;

(
�n
@nv

@tn

)
;

(
�
@v

@x

)n
;

(
�n
@nv

@xn

)
and analogous ones for � instead of v: We regard these as of “order of magnitude
n” in the rates of change and in the steepness of gradients of v and �:

In this manner the G-moments may be ordered as shown in Table 2. Inspection
shows that – roughly speaking – the order of magnitude grows with the tensorial
rank of the G-moments. Also we see that the so-called 14-moment theory – popular
with mathematicians – in which the variables are �; v; �; G0;2; G1;1; G2;0 has no
standing within this ordering scheme. Indeed, if we adopt the second order quantity
G2;0 into the list of variables, there is no reason to leave out the other second order
quantities, viz., G0;3 through G2;2:
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Table 2. Orders of magnitude and tensorial rank 2r+ l of the  r;l-moments Gr;l.
The table holds for stationary and instationary heat conduction and one-dimensional motion.
Rows: Highest tensorial rank 2r+ l of the  r;l-moments Gr;l.
Columns: Order of magnitude

0 1 2 3 4 5 6

0 % - - - - - -

1 v - - - - - -

2 T G0;2 - - - - -

3 - G1;1 G0;3 - - - -

4 - -
G2;0

G1;2

G0;4

- - - -

5 - -
G2;1

G1;3
G0;5 - - -

6 - -
G3;0

G2;2

G1;4

G0;6
- - -

7 - - -
G3;1

G2;3

G1;5

G0;7 - -

8 - - -
G4;0

G3;2

G2;4

G1;6

G0;8
- -

9 - - -
G4;1

G3;3

G2;5

G1;7
G0;9 -

10 - - - -
G5;0

G4;2

G3;4

G1;8

G0;10
-

11 - - - -
G5;1

G4;3

G3;5

G2;7

G1;9
G0;11

12 - - - -
G6;0

G5;2

G4;4

G3;6

G1;8

G1;10

G0;12
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2.4 Field equations for the G-moments

We write the field equations (2.5), (2.6) of first order by omitting all terms of order
2 and obtain:

first order

MB 0 = d%
dt + d% v

dx ;

IB 0 = % dv
dt + d%�

dx + % v dv
dx + 2p

3
dG0;2
dx ;

EB 0 = 3
2 %

d�
dt + 3

2 % v
d�
dx + %� dv

dx �
√

5
2
dG1;1
dx + 2p

3
G0;2

dv
dx ;

G0;2 = � 2p
3
%��dvdx ;

G1;1 =
√

5
2 %��d�dx :

(2.8)

Similarly the field equations of second order read:

second order

MB 0 = d%
dt + @% v

@x ;

IB 0 = % dv
dt + @%�

@x + % v @v
@x + 2p

3
@G0;2
@x ;

EB 0 = 3
2 %

d�
dt + 3

2 % v
@�
@x + %� @v

@x �
√

5
2
@G1;1
@x + 2p

3
G0;2

@v
@x ;

G0;2 = �
(2)
� @G0;2

@t �
(2)
v � @G0;2

@x �
(1)

2p
3
%� � @v

@x �
(2)

7
3 G0;2 �

@v
@x +

(2)
2
√

2
15 �

@G1;1
@x ;

G1;1 = �
(2)
� @G1;1

@t �
(2)
v � @G1;1

@x +
(2)

2
√

2
15 � � @G0;2

@x

+
(1)

√
5
2 %� � @�

@x +
(2)

7
√

2
15 G0;2 �

@�
@x �

(2)

16
5 G1;1 �

@v
@x ;

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A)
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(2)
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(2)
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@x ;

G2;2= +
(2)

2
√
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5 �G1;1 �
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@x :

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B)

(2.9)

The most important feature in these equations is that they are closed. This feature
persists in higher orders as well and we conclude that: no specific closure agreement
is needed. Or else: closure is an automatic consequence of the assignment of order.

Another feature, which is first seen in the equations of second order, is that that
system – and all subsequent ones – decomposes into subsystem (A) which is itself
closed and subsystem (B) which allows us to calculate the remaining G-moments
of the order under consideration by differentiation after system (A) is solved. We
observe that subsystem (A) of the equations (2.9) of second order is identical to
the popular 13-moment equations of Grad [8], which represent the prototype of all
extensions of thermodynamics.

The field equations of higher order than 2 are not listed here, because they are too
long. However, subsystem (A) of third order is listed in [2]. Systems of still higher
order are available on computer but cannot be printed on a few pages.

Such systems generally require boundary and initial values for theG-moments of
higher order and that presents a problem. Indeed, there is no way to apply and control
such values in practice. The problem of boundary values was recently considered in
[9] in solving a fourth order system of stationary heat conduction in a gas at rest.

Here, however, we proceed with a phenomenon that does not require boundary
and initial values, viz., light scattering in a rarefied gas.
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3 Light scattering in ET

3.1 Experiment

In a light scattering experiment, a laser beam of frequency!(i) is scattered by density
fluctuations of a gas. The experimental set-up is shown in Fig. 1. While most of the
light passes the gas unscattered, a small part is deflected and most of this scattered
light has the frequency !(i), the same frequency as the incident light. However,
neighboring frequencies ! can also be detected in the scattering spectrum S (!;p).
That spectrum depends on the pressure p which is small for a strong degree of
rarefaction.

Figure 1 also shows a typical schematic plot of S (!;p) measured for a gas at
large pressures. The graph is characterized by three peaks, the central one located at
the incident frequency.

Fig. 1. Light scattering experiment

3.2 Calculation of the scattering spectrum

The Onsager hypothesis about the equivalence of the mean regression of a fluctuation
and the solution of macroscopic field equations makes it possible to calculate a
scattering spectrum from a thermodynamic field theory.

Thus, for instance, if we use the Navier-Stokes-Fourier theory, we obtain spectra
of the type shown in Fig. 2 for different pressures. Here y is a dimensionless pressure
and x is a dimensionless frequency. For the large pressure y = 4 the plot agrees well
with experiments while for smaller values of y the Navier-Stokes-Fourier theory
cannot describe the scattering spectrum properly.

This is where extended thermodynamics has found its most fruitful field of ap-
plication. Indeed, small values of y correspond to an advanced degree of rarefaction
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Fig. 2. Light scattering spectra, calculated with NSF theory

Fig. 3. Spectra measured and calculated with ET20, ET35, ET56, ET84

of the gas and that is the regime in which extended thermodynamics is expected to
be useful. Weiss [4] calculated the scattering spectra for extended thermodynamics
with N = 3; 4; 5 and 6 for y = 1 (cf. Fig. 3; see also [5,1]). He compared these
spectra with measured data by Clark [10] and found that none of these theories is
satisfactory.

This only means that N is not yet big enough. And indeed, if N = 7 is chosen,
theory and experiment agree perfectly (cf. Fig. 4). What is more: there is a conver-
gence, because when N is pushed up to 8; 9, and 10 there is no longer significant
improvement. This is quite satisfactory, because it shows that extended thermodyna-
mics can reproduce the measured data. Moreover, the convergence indicates that we
do not even need measured data in order to determine which value ofN is appropriate
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Fig. 4. Spectra measured and calculated with ET120, ET165, ET220, ET286

for a given degree of rarefaction: it is the value of N for which an increase does not
significantly improve the calculated spectrum, e.g., N = 7 for y = 1.

However, there is also disappointment, becauseN = 7 means 120 moments. [The
relation between the independent number n of moments and their highest tensorial
rank N is given by

n =
1
6
(N+ 1)(N+ 2)(N+ 3) ] (3.1)

Therefore for good agreement between theory and experiment we need many mo-
ments in ET, the theory based on the moments FA (cf. (2.1)). It may be hoped that
COET, the consistently ordered extended thermodynamics, succeeds with fewer G-
moments. We proceed to investigate that proposition.

4 Consistent order extended thermodynamics
and light scattering

4.1 The Yip & Nelkin solution as a reference

COET has so far been worked out only for the BGK model, which is known to be
unsatisfactory if we require quantitatively correct results. Therefore it is not possible
to compare the results of the theory with experimental data or with those of ET.
The latter theory was applied to light scattering by use of the Maxwell interaction
potential between atoms. Those are much more realistic than the BGK model.

It so happens, however, thatYip & Nelkin [6] have solved the Boltzmann equation
for the BGK collision term exactly.We may calculate light scattering spectra from that
solution and then use those as reference solution in order to judge the appropriateness
of COET of any given order.
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Fig. 5. Light scattering spectra for ET and COET for y = 1



138 I. Müller, D. Reitebuch

4.2 Discussion of results

Figure 5 provides a three-way comparison of results. For the low dimensionless
pressure y = 1 we have plotted:

� the spectra predicted by Yip & Nelkin;
� the spectra from ET, recalculated for the BGK-ansatz;
� the prediction of COET for second, third and fourth orders.

The two uppermost pictures are identical, because ET13 and COET in second
order are governed by the same field equations as was mentioned in Sect. 2.4. Both
disagree strongly with the Yip & Nelkin solution which is not surprising, since that
solution is exact while both ET13 and second order COET provide poor descriptions
for a rarefied gas with y = 1.

The main part of Fig. 5 on the left-hand side shows the emerging agreement
between the exactYip & Nelkin solution and ET forN = 5 through 9 corresponding
to 56 through 220 independent moments. In order to have a quantitative measure for
the agreement we have calculated a norm for the deviation, viz.,


 =
1

100

99∑
i=0

(S (xi; y) � SY&N (xi; y))
2 ; where

xi =
3 i
99

(i = 0; 1; :::; 99): (4.1)

The value of that norm is given in the frames of Fig. 5 and we observe that
it becomes smaller rapidly for increasing N. For the fully satisfactory theory with
N = 9 or 220 moments we have 
 = 2:75 � 10�7.

The right-hand side of Fig. 5 exhibits the improving agreement of COET of
increasing order with the Yip & Nelkin solution. In third order the agreement is
already fairly good to the naked eye, but a glance at the norms shows that in fourth
order it is really excellent, better than ET220.

What about the relative number of variables? In COET the system (A) in third
order contains 13 variables (cf. (2.9)), while ET84 – which is comparable, actually
bigger in norm – contains 16 one-dimensional equations for the 16 moments2

F; F1; F̂ll; F̂h11i; F̂ll1; F̂h111i; F̂llkk; F̂llh11i; F̂h1111i

F̂llkk1; F̂llh111i; F̂h11111i; F̂llkkjj; F̂llkkh11i; F̂llh1111i; F̂h111111i:

Therefore COET of third order is slightly more efficient than ET84 because the
quotient of variables is 13:16. This increased efficiency becomes more pronounced
for higher order, albeit slowly. Thus fourth order COET versus ET220 – which has a
similar norm – has a quotient of 24:30. Therefore COET is preferable, since it needs
less fields for the purpose of adequately describing the light scattering spectrum.

2 It is not immediately obvious that the one-dimensional equations are appropriate for light
scattering. But it can be shown that that is indeed the case: the equations that are coupled
to the density field form exactly the same system as the one-dimensional equations.
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On instability sources in dynamical systems

S. Rionero

Abstract. A basic characteristic Lyapunov functional V is introduced for the dynamical sy-
stems generated by a pair of reaction-diffusion PDEs. with non-constant coefficients. The sign
of the derivative of V, along the solutions, is linked through an immediate simple relation to
the eigenvalues. This allows us to localize the sources of instability, i.e., the points at which
the instability begins.

1 Introduction

We consider the dynamical systems generated by the binary system of PDEs.⎧⎨⎩
ut = a1(x; R; C) u+ a2(x; R; C) v+ �1�u+ f(u; v;ru;rv; �u; �v);

vt = a3(x; R; C) u+ a4(x; R; C) v+ �2�v+ g(u; v;ru;rv; �u; �v)
(1)

with f and g nonlinear and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai : (x; R; C) 2 ˝� (IR+)2 ! ai(x; R; C) 2 IR;

ai 2 C(˝� (IR+)2); i 2 [1; 2; 3; 4];

(u = v = 0) ) f = g = 0;

u : (x; t) 2 ˝� IR+ ! u(x; t) 2 IR;

v : (x; t) 2 ˝� IR+ ! v(x; t) 2 IR;

(2)

where˝ is a bounded domain in IR3 with smooth boundary @˝ and R; C are positive
dimensionless parameters characteristic of the phenomenon described by (1).

To (1) we append the Dirichlet boundary conditions

u = v = 0 on @˝� IR+ (3)

or the Neumann boundary conditions, where n is the unit outward normal to @˝,

du

dn
=
dv

dn
= 0 on @˝� IR+ (4)
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with the additional conditions∫
˝
ud˝ =

∫
˝
vd˝ = 0 8 t 2 IR+ (5)

in case (4). Furthermore we denote the L2(˝)-norm by k � k and by H1
0(˝); H1

�(˝)
the Sobolev functional spaces such that⎧⎪⎪⎨⎪⎪⎩

' 2 H1
0(˝) ! f'2 + (r')2 2 L2(˝); ' = 0 on @˝g;

' 2 H1
�(˝) !

{
'2 + (r')2 2 L2(˝);

d'

dn
= 0 on @˝; '̄ = 0

}
with

'̄ =
∫
˝
'd˝ ;

we assume that the solutions belong toH1
0(˝) in case (3) and toH1

�(˝) in case (4–5)
[9–12].

Our goal is to obtain conditions sufficient for the linear instability of the critical
point O � (u � v � 0). To this end we associate to (1) its linear version⎧⎨⎩

ut = b1(x; R; C) u+ b2(x; R; C) v+ f�;

vt = b3(x; R; C) u+ b4(x; R; C) v+ g�
(6)

with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b1(x; R; C) = a1(x; R; C) � �1 ¯̨2 ; b4(x; R; C) = a4(x; R; C) � �2 ¯̨2;

b2(x; R; C) = a2(x; R; C) ; b3(x; R; C) = a3(x; R; C);

f� = �1(�u+ ¯̨2 u) ; g� = �2(�v+ ¯̨2 v);

(7)

where ¯̨2(˝) is the positive constant given by

1
¯̨2 = max

k'k2

kr'k2 ; (8)

respectively, in H1
0(˝) and H1

�(˝) [1].
Our aim is to precisely characterize for (6) the critical instability values (RC;CC)

for the parameters and the spatial location in ˝ of the points x0 at which the insta-
bility with respect to (kuk2 + kvk2) arises, at least in the class of the kinematically
admissible perturbations (u; v), i.e. those such that, according to their own reference
spaces, (u; v) 2 (H1

0)
2 or (u; v) 2 (H1

�)
2. The points x0 will play then the role of

instability sources.
The plan of the paper is as follows. In Sect. 2 we show that exists a basic charac-

teristic Lyapunov functional such that the sign of its derivative along the solutions
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of (6) strictly depends on the signs of the eigenvalues of (6) through the product A I,
with⎧⎨⎩

A(x; R; C) = b1b4 � b2b3;

I(x; R; C) = b1 + b4 :
(9)

In Sect. 3, we obtain the following basic result.

Theorem 1. Let (R̄; C̄) 2 (IR+)2 and suppose that there exists a point x0 2 ˝ such
that⎧⎨⎩

A(x0; R̄; C̄) > 0;

I(x0; R̄; C̄) > 0 :
(10)

Then, for (R = R̄; C = C̄), the critical point O � (u = v = 0) is unstable.

Further we determine a procedure for obtaining the critical values of the parame-
ters R and C and for localizing in ˝ the instability sources at least when one of the
coefficients ai (i = 1; 2; 3; 4) depends on x (Sect. 3). Finally, in Sect. 4, we apply
Theorem 1 to obtain an instability condition for doubly diffusive convection in a
rotating porous medium, uniformly heated and salted from below. In this case the
coefficients ai are independent of x. The dependence on x appears when the layer is
not uniformly heated and/or salted from below [8].

2 The basic characteristic Lyapunov functional

We set

('1; '2) =
∫
˝
'1 '2 d˝; (11)

and introduce the basic characteristic Lyapunov functional

V =
1
2

[∫
˝
A(u2 + v2)d˝+ kb1v� b3uk2 + kb2v� b4uk2

]
: (12)

Since

dV

dt
=

⎧⎨⎩
[(Au; ut) + (Av; vt)] + ((b2

1 + b2
2)v; vt)+

((b2
3 + b2

4)u; ut) � [((b1b3 + b2b4)v; ut) + ((b1b3 + b2b4)u; vt)] ;
(13)

and since along the solutions of (6) one easily obtains⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u; ut) = (b1 u; u) + (b2 u; v) + (u; f�);

(v; vt) = (b3 u; v) + (b4 v; v) + (v; g�);

(v; ut) = (b1 u; v) + (b2 v; v) + (v; f�);

(u; vt) = (b3 u; u) + (b4 u; v) + (u; g�);

(14)
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by straightforward calculations we see that

dV

dt

∣∣∣∣
(6)

=
∫
˝
A I(u2 + v2)d˝+� (15)

with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
� = (˛1u� ˛3v; f�) + (˛2v� ˛3u; g�);

˛1 = A+ b2
3 + b2

4; ˛2 = A+ b2
1 + b2

2;

˛3 = b1b3 + b2b4 ;

(16)

where
dV

dt

∣∣∣∣
(6)

denotes the derivative of V evaluated along the solutions of (6).

3 Instability sources: proof of Theorem 1

Let x0 = (x0; y0; z0) satisfy (10). In view of (2)2 we may assume that exists a d > 0
such that the cube D⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 � d � x � x0 + d;

y0 � d � y � y0 + d;

z0 � d � z � z0 + d

(17)

is strictly contained in ˝ and that, for all x 2 D,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A(x) � A(x0)

2
;

I(x) � I(x0)
2

:

(18)

We now consider a kinematically admissible perturbation (ū; v̄) such that ū and v̄
satisfy in ˝, at each instant, the system⎧⎨⎩

�U = �˛2U in D;

U = 0 on @D;
(19)
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and are defined by continuity in ˝ � D.1 In view of (19), we obtain f� = g� = 0
and, along (ū; v̄), we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V(ū; v̄) =
1
2

[∫
D
A(ū2 + v̄2)dD+ kb1v̄� b3ūk2 + kb2v̄� b4ūk2

]
;

dV

dt

∣∣∣∣
(6)

=
∫
D
AI(ū2 + v̄2)dD � A(x0)I(x0)

4

∫
D
(ū2 + v̄2)dD :

(20)

But one may assume that∫
D
(ū2 + v̄2)dD � m = positive constant (21)

and hence the instability immediately follows. In fact, with

k2

5
= maxfA(x0); b2

1(x0); b2
2(x0); b2

3(x0); b4
4(x0)g ; (22)

in view of (12) it follows that

V >
k2

2
(kuk2 + kvk2) : (23)

Setting

k3 =
2mA(x0) I(x0)

k2
(24)

from (15) and (24) we conclude that, for all t � 0,

dV

dt

∣∣∣∣
(6)

> k3 V; (25)

i.e., the instability when

V � V(0)ek3 t : (26)

It remains to show that Theorem 1 allows to localize in ˝ the instability sources
(i.e., the points x0 2 ˝ at which the instability begins) and the critical instability

1 For instance, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
u =

˛2
1 d

2

�2 h(t) sin�
x� x0

d
sin�

y� y0
d

sin�
z� z0
d

v =
h1(t)
h(t)

u

with h1 and h smooth functions defined on IR+ and ˛2
1 = constant.
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values (RC;CC) for the parameters R and C. In fact let⎧⎪⎪⎨⎪⎪⎩
m1 = inf

˝�(IR+)2
A(x; R; C);

m2 = inf
˝�(IR+)2

I(x; R; C)
(27)

under the conditions⎧⎨⎩
A(x; R; C) > 0;

(x; R; C) 2 ˝� (IR+)2

I(x; R; C) > 0 :
(28)

� In the case m1 � m2, if f(xi; Ri; Ci)g (i = 1; 2; :::) is the set of solutions of the
equation

A(x; R; C) = m1; (x; R; C) 2 ˝� (IR+)2 ; (29)

then the critical values RC and CC for R and C are⎧⎨⎩
RC = inf Ri;

i = 1; 2; :::
CC = inf Ci ;

(30)

and the instability sources in ˝ are the points x0 such that

A(x0; RC; CC) = m1 : (31)

� In the case m1 � m2, one has to substitute in (29-31) m2 for m1 and I for A.

Remark 2. We emphasize the relevance of (30-31) in relation to the phenomena
modeled by (1) with non-constant coefficients. For instance, if (1) models the growth
of a disease in the human body, (30-31) allows us to determine the conditions for the
onset of the disease and to localize where the disease will begin. Analogously if (1)
models the perturbations to a financial equilibrium, (30-31) allows us to determine
the condition for the loss of financial equilibrium and to localize where it will happen.

Remark 3. We observe that Theorem 1 also allows to determine instability conditions
in the case of more than two reaction-diffusion equations. For instance, in the case⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut = a1 u+ a2 v+ a3w+ �1�u;

vt = a4 u+ a5 v+ a6w+ �2�v;

wt = a7 u+ a8 v+ a9w+ �3�w

(32)
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with ⎧⎨⎩
�i = constant > 0; i = 1; 2; 3;

a9 6= �3 ¯̨2

under the boundary conditions

u = v = w = 0 on @˝ ; (33)

on considering the “perturbations" (u; v;w) with

wt = 0; �w = �¯̨2w

from (32)3, we see that (32) reduces to the binary system
(
� = 1

�3˛
�2�a9

)
⎧⎨⎩
ut = (a1 + �a7) u+ (a2 + �a8) v+ �1�u;

vt = (a4 + �a7) u+ (a5 + �a8) v+ �2�v :
(34)

to which one can apply Theorem 1.

4 Double diffusive convection in rotating porous media:
instability conditions

The Darcy-Oberbeck-Boussinesq (DOB.) equations governing the motion of a binary
porous fluid mixture bounded by two horizontal planes uniformly rotating around
the vertical axis z are [2–4]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rp = ��

k
v + �fg � 2

�0

�
!� v;

r � v = 0;

A Tt + v � rT = kT�T;

�Ct + v � rC = kC�C;

(35)

where �f = �0[1 � �T(T � T0) + �C(C � C0)]; p1 is the pressure field, p =

p1 � 1
2
�0[!�x]2; ! = !k is the constant angular velocity, �C; �T are, respectively,

the thermal and solute expansion coefficients, � is the porosity of the medium, T0 is
a reference temperature, C0 is a reference concentration, v is the seepage velocity
field,C is the concentration field,� is the viscosity,T is the temperature field, kT; kC
are, respectively, the thermal and salt diffusivity, c is the specific heat of the solid,

�0 is the fluid density at reference temperature T0, A =
(�0 c)m
(�0 cp)f

, cp is the specific
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heat of fluid at constant pressure and the subscript,m and f refer the porous medium
and the fluid, respectively. To (35) we append the boundary conditions⎧⎨⎩

TL = T0 + (T1 � T2)=2; CL = C0 + (C1 � C2)=2 on z = 0;

TU = T0 � (T1 � T2)=2; CU = C0 � (C1 � C2)=2 on z = d
(36)

with T1 > T2 and C1 > C2. We introduce the dimensionless quantities⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = dx� ; t =

Ad2

kT
t� ; v =

kT
d

v� ;

P� =
k (p+ �0 g z)

�kT
; T� =

T� T0

T1 � T2
; C� =

C� C0

C1 � C2
;

omitting the asterisks, the dimensionless equations are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rP = �v + (RT� CC)k + T v � k;

r � v = 0;

Tt + v � rT = �T;

"LeCt + Lev � rC = �C;

(37)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� = �=�0 is the kinematic viscosity,
" = �=A is the normalized porosity,
T = 2k!=� � is the Taylor-Darcy number,
Le = kT=kC is the Levis number,

R =
�T g (T1 � T2)d k

� kT
is the thermal Rayleigh number,

C =
�C g (C1 � C2)d k

� kT
is the solutal Rayleigh number :

To (37) we append the boundary data{
TL = 1=2; CL = 1=2 on z = 0;
TU = �1=2; CU = �1=2 on z = 1: (38)

Thus (37-38) admit the steady state solution (motionless state)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vs = 0; rps(z) = (�R+ C)

(
z� 1

2

)
k;

T(z) = �
(
z� 1

2

)
; C(z) = �

(
z� 1

2

)
:

(39)
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With u = (u; v; w); �; �; � the dimensionless perturbations to the (seepage) ve-
locity, temperature, concentration and pressure fields, respectively, the equations
governing the perturbations u = (u; v; w); �; Le�; � are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

r� = �u + (R�� LeC�)k + T u � k;

r � u = 0;

�t + u � r� = ��;

" Le�t + Leu � r� = w+ ��

(40)

with the boundary conditions

w = � = � = 0 on z = 0; 1 : (41)

In the sequel we assume that the perturbation fields are periodic functions of x
and y of periods 2�=ax; 2�=ay, respectively and we denote the periodicity cell by
˝ = [0; 2�=ax] � [0; 2�=ay] � [0; 1]. Lastly, to ensure that the steady state (39) is
unique, we assume that ∫

˝
ud˝ =

∫
˝
vd˝ = 0 :

By taking the third component of the double curl of (40)1 and linearizing we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�w+ T2wzz = �1(R�� LeC�);

�t = w+ ��;

" Le�t = w+ ��;

(42)

where �1 =
@2

@x2 +
@2

@y2 : We observe that the set I of the kinematically admissible

perturbations is characterized by (41), (42)1, the periodicity and regularity conditi-
ons.

It is easily verified that, setting⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w̄ = ˛(R�̄� LeC �̄);

�̄ = �̂(x; y; t) sin(�z);

�̄ = �̂(x; y; t) sin(�z)

(43)

with⎧⎪⎪⎨⎪⎪⎩
˛ =

a2

	+ T2�2 ; 	 = a2 + �2;

a2 = a2
x + a2

y

(44)
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and �̂; �̂ satisfying the plan form equation

�1� = �a2 � ; (45)

it follows that (w̄; �̄; �̄) 2 I. Along this, the perturbations (42)2 � (42)3 become⎧⎨⎩
�̄t = ˛R�̄� ˛LeC �̄+ ��̄;

" Le�̄t = ˛R�̄� ˛LeC �̄+ ��̄ :
(46)

As
��̄ = �	�̄; ��̄ = �	�̄;

it follows that the constant ¯̨2 appearing in (8) is given by 	, and (46) can be written
(omitting the bar) as⎧⎨⎩

�t = b1 �+ b2�;

�t = b3 �+ b4�;
(47)

with⎧⎪⎨⎪⎩
b1 = ˛R� 	; b2 = �˛LeC;

b3 =
1
" Le

˛R; b4 = �˛

"
C � 1

" Le
	 :

(48)

Therefore, introducing the functional (12) with the bi given by (48), and observing
that⎧⎪⎪⎪⎨⎪⎪⎪⎩

A = � 	

"Le
(˛R� Le˛C � 	);

I = ˛R� ˛

"
C �

(
1 +

1
" Le

)
	

(49)

are constant, we conclude from (15) that

dV

dt

∣∣∣∣
(9)

= I A(k�k2 + k�k2) : (50)

We now consider the system⎧⎨⎩
A > 0;

I > 0;
(51)

i.e., in view of (49),⎧⎪⎪⎨⎪⎪⎩
	+ Le˛C � ˛R > 0;

˛R� ˛

"
C �

(
1 +

1
" Le

)
	 > 0 :

(52)
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But Eqs. (48) imply that(
Le� 1

"

)
C >

1
" Le

	

˛
� 1
" Le

RB (53)

with

RB = �2
(
1 +

√
1 + T2

)
; (54)

hence, only if⎧⎪⎪⎨⎪⎪⎩
" Le > 1;

C � C� =
RB

Le(" Le� 1)
;

(55)

can (49) hold.

Theorem 2. Let

" Le > 1 ; C � C� : (56)

Then

R > RC =
C
"

+
(

1 +
1
" Le

)
RB (57)

implies instability.

Proof. We have to show that, for any k > 0,

R =
C
"

+
(

1 +
1
" Le

)
(RB + k) (58)

implies instability. To this goal, we show that there exists suitable a2 such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
R� LeC � 	

˛
< 0;

R� C
"

�
(

1 +
1
" Le

)
	

˛
> 0;

(59)

i.e.,

R� C
"

+
(

1
"

� Le

)
C <

	

˛
<

"Le

1 + " Le

(
R� C

"

)
: (60)
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In view of (55) and (56), inequality (60) becomes

RB � C � C�

" Le
(" Le� 1) <

	

˛
< RB + k : (61)

But

	

˛
=

(a2 + �2)[a2 + �2(1 + T2)]
a2 (62)

takes its infimum value at ā2 = �2
p

1 + T2:(
	

˛

)
a2=ā2

= RB; (63)

hence in ]ā2; a2
� [ with

ā2 < a2
� :

(
	

˛

)
a2=a2�

= RB + k (64)

there exists suitable a2 > 0 such that inequality (61) holds. Then for such a2 we
obtain

dV

dt

∣∣∣∣
(9)

= I A(k�k2 + k�k2) > 0 (65)

which implies instability.

Remark 4. The problem arises of establishing, in case (56), whether RC given by
(57) represents the effective threshold of instability. That this is the case, is proved
in [r2]

Remark 5. The stability-instability of a double diffusive convection in a porous me-
dium (in different circumstances) was also considered in [5,6].
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Tangent stiffness of elastic continua on manifolds

G. Romano, M. Diaco, C, Sellitto

Abstract. Non-linear models of beams, shells and polar continua are addressed from a general
point of view with the aim of providing a clear motivation of the fact that the tangent stiffness
of these structural models may be nonsymmetric. Classical and polar models of continua are
investigated and a critical analysis of the commonly adopted strain measures is performed.
It is emphasized that the kinematic space of a polar continuum is a non-linear differentiable
manifold. Accordingly, by choosing a connection on the manifold, the Hessian operator of
the elastic potential is defined as the second covariant derivative of the elastic potential. The
Hessian operator can be expressed as the difference between the second directional derivative
along the trial and test fields and the first directional derivative in the direction of the covariant
derivative of the test field along the trial field. It follows that the evaluation of the Hessian
operator requires the extension of the local virtual displacement to a vector field over the
non-linear kinematic manifold. In any case the tensoriality of the Hessian operator ensures
that the result is independent of the choice of the extension, and its symmetry depends on
whether or not the assumed connection is torsionless. Conservative and nonconservative loads
are considered and it is shown that, at equilibrium points, the tangent stiffness is independent
of the chosen connection on the fiber manifold and symmetry holds for conservative loads.

1 Introduction

Polar models of beams and shells have been investigated by an ever increasing
number of scholars since the pioneering contributions of J.C. Simo and co-workers
who, in the years 1985-1989, the problem of providing a geometrically exact theory
of polar beams and shells undergoing large deformations and a numerical imple-
mentation scheme for the related elastostatic and elastodynamic problems (see [4–
6,8,9,12,13,15,17,18]).

By now, a number of papers have been devoted to the formulation of a suitable
interpolation of the kinematic variables in finite element approximations of polar
continua (see, e.g., [36,39,42,43,53]).

A list of recent contributions to the theoretical and computational analysis of
polar beams and shells is provided in the references at the end of the paper.

Polar models of continua include one-dimensional polar beams (also called
Timoshenko beams or shear deformable beams), two-dimensional polar shells
(Reissner-Mindlin shells or shear deformable shells) and three-dimensional polar
continua (Cosserat continua).

On special feature of polar models is that the evolution processes of the body take
place in an ambient space which is no longer the usual three-dimensional euclidean
space but instead a more general geometrical object, a non-linear manifold. This is
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due to the fact that the polar structure of the continuum is represented by means of
an additional set of kinematic variables which, at each point of the parent classical
continuum, vary over a non-linear manifold, the fiber manifold. In polar beams the
fiber manifold is the special orthogonal group of rotations which allows us to monitor
the orientation of the cross sections of the beam, assumed to be rigid bodies, hinged
to the beam axis, which can rotate indenpendently of the position of the beam axis. In
polar shells the fiber manifold is the unit sphere, i.e., the locus to which the thickness-
directors belong. Indeed the shell is described by a field of needles (or rigid hairs)
attached at each point of the middle surface. The common length of the needles is
equal to the constant thickness of the shell but they can be combed independently
of the position of the middle surface. This model is referred to in the literature as a
shell without drilling rotations since rotations of the needles around their axes are
not taken into account. To accomodate for the interaction between shell and beam
models assembled together to design a stiffened shell, another shell model has also
been introduced, in which the polar structure is described by the rotations of a triad
hinged at each point of the middle surface. This model is referred to in the literature
as a shell with drilling rotations.

In Cosserat continua the fiber manifold is the special orthogonal group of ro-
tations depicting the orientation of the rigid balls centered at each particle of the
three-dimensional body which can rotate independently of the position of the parent
particle.

The ambient spaces in which the evolution processes of these polar continua
take place are trivial fiber bundles formed by the cartesian product of euclidean
three-space and a non-linear fiber manifold.

The analysis of such polar models requires us to deal with non-linear geometrical
objects and hence to rely on concepts and results of differential geometry. This aspect
was underestimated in the initial investigations on polar beams, [4–6], and in the pre-
sent authors’ opinion has not yet been fully digested in spite of the contribution [14]
provided by Simo to explain why the tangent stiffness of the polar beams evaluated
in [5,6] was apparently nonsymmetric. Indeed the discussion given in [14] takes no
account of the way in which the directional derivatives of the virtual displacement are
defined, makes reference only to Riemannian connections and hence cannot explain
why a nonsymmetric but tensorial tangent stiffness may occur. Further in [14] it is
claimed that the right symmetric tangent stiffness can be obtained by simply taking
the symmetric part of the nonsymmetric one, at least for conservative loadings. It
can be shown [50] that this special property holds only for the polar beam model and
that its validity is strictly connected to the special extension of virtual displacements
considered in [14].

As we shall see, in general the expression of the tensorial tangent stiffness at
nonequilibrium points depends on the choice of the connection over the fiber mani-
fold which describes the polar behavior of the continuum. At an equilibrium point,
however, the tangent stiffness is independent of the chosen connection and symmetry
holds for conservative referential loads. At a nonequilibrium point a nonsymmetric
but tensorial stiffness may occur if the torsion of the connection does not vanish and
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the covariant derivative of the chosen extension of the virtual displacement vanishes
identically [49,50].

The aim of the present paper is to provide an outline of a self-consistent treatment
of non-linear equilibrium problems of an elastic continuum endowed with a polar
structure. Special emphasis is put on the problem of the evaluation of the tangent
stiffness of polar continua.

The basic notions of configuration maps and tangent (virtual) displacements are
reformulated in an way suitable to deal with polar models.

The appropriate ambient space for polar continua is a non-linear manifold which
has the geometric structure of a fiber bundle. In structural models of engineering
interest this fiber bundle is simply the cartesian product of the physical space (three-
dimensional euclidean space) and a non-linear manifold which characterizes the local
structure of the polar continuum.

The space of configurations is a non-linear manifold of continuously differentia-
ble mappings which map the base manifold of a reference placement into the actual
placement in the ambient manifold. Virtual displacements are defined as tangent
vectors to the manifold of admissible configurations.

A general discussion of finite strain measures is provided and the equilibrium
condition of the polar continuum in a reference placement is formulated by invoking
a consistency property of finite strain measures.

It is shown that the notion of a connection over the fiber manifold allows one to
define, on the manifold of configuration maps, the covariant derivative of one-forms
which have the physical meaning of force systems acting on the body. The covariant
differentiation leads to the notion of absolute (or covariant) time derivative which,
applied to the equilibrium condition, provides the incremental equilibrium condition
governed by the tangent stiffness operator.

We emphasize the fact that the evaluation of the covariant derivative of one-forms
requires that the virtual displacement tangent at a given configuration be extended
to vector fields in a neighborhood of the configuration.

The roles played, in evaluating the tensorial tangent stiffness, by the connection
assumed on the fiber manifold and by the chosen extension of the virtual displace-
ments, are discussed in detail. It is shown that, at an equilibrium point, the tangent
stiffness is independent of the assumed connection and its symmetry depends on
whether the referential loads are conservative or not.

2 Differentiable manifolds

We provide here, for the sake of completeness and clarity, basic facts and definitions
about differentiable manifolds (see, e.g., [7]).

� Let M be a set and E a Banach space. A chart fU;' g on M is a pair with
' : U 7! E a bijection from the subset U 	 M onto an open set in E . A Ck-
atlas A on M is a family of charts f fUi; 'i g j i 2 I g such that f [Ui j i 2 I g
is a covering of M and that the overlap maps are Ck-diffeomorphisms.
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� Two atlases are equivalent if their union is a Ck-atlas, and the union of all
the atlases equivalent to a given one A is called the differentiable structure
generated by A .

� A Ck-differentiable manifold modeled on the Banach space E is a pair f M;D g ,
where D is an equivalence class of Ck-atlases on M . The space E is called
the model space.

� A subset O of a differentiable manifold M is said to be open if for each x 2 O
there is a chart fU;' g such that x 2 U and U 	 O .

� A morphism between two differentiable manifolds M1 and M2 is a differen-
tiable map � : M1 7! M2 .

� A Ck-diffeomorphism � 2 Ck(M1 ; M2) is a morphism which is invertible and
Ck , along with its inverse.

� The tangent space TM(x) at a point x 2 M is the linear space of tangent
vectors fx ;vg : Cr(x; U) 7! Cr�1(x; U) where Cr(x; U) is the germ of scalar
functions which are r-times continuously differentiable in a neighborhood U
of x 2 M . Tangent vectors at a point are uniquely defined by requiring that they
satisfy the formal properties of a point derivation:⎧⎪⎨⎪⎩

(v1 + v2)(f) = v1(f) + v2(f) ; additivity;

v(af) = av(f) ; a 2 R ; homogenity;

}
R-linearity,

v(fg) = v(f) g+ f(v(g)) ; Leibniz rule,

where f 2 Cr(x; U) . This point of view, which identifies the tangent vectors at
a point with the directional derivatives of smooth scalar functions at that point,
is the most convenient for obtaining the basic results of differential geometry.

� The tangent bundle TM of the manifold M is the disjoint union of the pairs
fx ;TM(x)g with x 2 M . An element fx ;vg 2 fx ;TM(x)g is said to be a
tangent vector applied at the base point x 2 M . We denote by �

M
: TM 7! M

the projection on the base point: �
M

(fx ;vg) = x .

� The cotangent bundle T�
S

of the manifold M is the disjoint union of the pairs
fx ;T�

M
(x)g , where T�

M
(x) is the topological dual space of TM(x) . The ele-

ments of the cotangent bundle are called covectors. We denote by TM(P) 
 TM

the disjoint union of the pairs fx ;TM(x)g with x 2 P 
 M .

� A finite-dimensional differentiable manifold is a manifold modeled on a finite-
dimensional normed linear space. All the tangent spaces of a finite-dimensional
differentiable manifold are finite-dimensional linear spaces of the same dimen-
sion.
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� ACk-fiber bundle with typical fiber theCk-manifold F and base theCk-manifold
B is a Ck-surjective map �

S
: S 7! B which is locally a cartesian product. This

means that the Ck-manifold B has an open atlas f fUi; 'i g j i 2 I g such that
for each i 2 I there is a Ck-diffeomorphism �i : ��1

S
(Ui) 7! Ui � F such that

�i ı�i = �
S

, where �i : Ui�F 7! Ui is the canonical projection. If S = B�F

the fiber bundle is said to be trivial. If the fiber F is a vector space the bundle is
said to be a vector bundle. The tangent bundle TM of a manifold M is a vector
bundle whose fibers are the tangent spaces to M .

� A fiber bundle morphism � : S 7! S0 between two differentiable manifolds
S;S0 is a morphism satisfying the fiber preserving property:

�
S
(x) = �

S
(y) =) (�

S
0 ı �)(x) = (�

S
0 ı �)(y) 8 x;y 2 S :

A fiber bundle morphism induces a base morphism �
B

: B 7! B0 according to
the relation

�
B

ı �
S

= �
S

0 ı � :

� A section of the fiber bundle �
S

: S 7! B is a smooth map s : B 7! S such
that

(�
S

ı s)(x) = x 8 x 2 B :

Vector fields v̂ : M 7! TM on a manifold M are sections of the tangent vector
bundle �

M
: TM 7! M ; indeed they satisfy the property

(�
M

ı v̂)(x) = x 8 x 2 M :

This means that the applied vector v̂(x) 2 TM has x 2 M as base point or,
equivalently, that v̂(x) 2 TM(x) .

� A submanifold P 	 M is a subset of the manifold M such that, for each x 2 P ,
there is a chart fU;' g in M , with x 2 U , satisfying the submanifold property:

' : U 7! E = E1 � E2 ; '(U \ P) = '(U) \ (E1 � f 0 g) :
Every open subset of the manifold M is a submanifold.

Let A;B;C be Banach spaces; we denote by BL (A;B ; C) the space of bo-
unded maps taking values in C and separately linear in the arguments ranging in
A and B . In the sequel square brackets denote linear dependence on the enclosed
arguments.

� A Riemannian metric on the manifold S is a field of twice covariant, symmetric
and positive definite tensors g

S
: S 7! BL (TS;TS ; R) .

Any tensor field, say, T
S

: S 7! BL (TS;TS ; R) , lives at points in the sense that
at each x 2 S there exists a tensor Tx 2 BL (TS(x);TS(x) ; R) such that

T
S
(x) [X;Y] = Tx [X(x);Y(x)] 8 X;Y 2 TS :

A Riemannian metric is naturally induced in each submanifold M 	 S of a Rie-
mannian manifold fS ;g

S
g by the canonical injection of the tangent space TM(x)

at any x 2 M into the tangent space TS(x) at the same point x 2 S .



160 G. Romano, M. Diaco, C, Sellitto

3 Polar continua

The description of a polar continuum in mechanics is based on the following concepts.

� The ambient space S is a finite-dimensional differentiable manifold without
boundary in which the body undergoes evolution processes. The ambient space
of a polar continuum is a fiber bundle with projection �S : S 7! E and typical
fiber F . Then locally the manifold S can be diffeomorphically related to the
cartesian product E � F of the base manifold E and the fiber manifold F .
Both are finite-dimensional differentiable manifolds without boundary. The fiber
manifold F provides the geometric description of the local kinematics of the
polar continuum. The base manifold E is called the physical space and its points
are called positions.

� The material body B is a set of particles which, at each time t 2 I , are located
at points of a differentiable submanifold of the physical space E .

� The base configuration map �t : B 7! E is a bijection of the material body
B onto the base placement Bt = �t(B) 
 E which is a submanifold of the
physical space E .

� The polar structure st : Bt 7! S is a map from the base placement at time t
onto the placement Pt = st(Bt) . The map st : Bt 7! S has the property

(�
S

ı st)(p) = p 8 p 2 Bt 	 E ;

and is then a section of the fiber bundle S defined on the submanifold Bt 	 E .

� A spatial configuration of the polar body at time t 2 I is an injective map
ut : B 7! S which assigns a placement Pt := ut(B) 	 S to the material body
B and is given by the composition of the base configuration map with the polar
structure

ut = st ı �t :

In nonpolar continua the section st : Bt 7! S reduces to the identity on Bt .

Remark 1. An important property of the polar models of interest in structural me-
chanics is that the base manifold E and the fiber manifold F are both embedded
in finite-dimensional affine spaces, respectively denoted by fE ;gEg and fF ;gFg ,
which are endowed with the euclidean metrics gE 2 BL (TE;TE ; R) and gF 2
BL (TF;TF ; R) .

The ambient space S is a then a Riemannian manifold with the metric g
S

2
BL (TS;TS ; R) induced by the euclidean metrics in E and F via the inclusions
TE 
 TE and TF 
 TF .
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Remark 2. In polar models of beams and shells and in Cosserat continua, the fiber
bundle S is a trivial bundle, that is, a cartesian product S = E � F . The physical
space E is the euclidean space E(3) .

The fiber manifold F is SO(3) (the special orthogonal group of rotations) for
beams and Cosserat continua, and is S2 (the unit sphere) for shells without drilling
rotations and SO(3) for shells with drilling rotations.

Other examples of polar continua are provided by the mathematical models of
liquid crystals (see, e.g., [3, p. 139]) which are modeled by assuming that E = E(3)
and

� F = S2 for cholesteric liquid crystals (inextensible directed rod-like molecules),
and

� F = P2 for nematic liquid crystals (inextensible undirected rod-like molecules),
where P2 is the real projective two-space obtained by identifying the antipodal
points on S2 .

Let us : B 7! S and ut : B 7! S be the reference and the current configuration
of the body in the ambient space S and let �s : B 7! E be the base map of the
reference configuration.

� The change of base configuration from �s to �t is the diffeomorphism �t;s 2
Ck(Bs ; Bt) defined by

�t;s ı �s = �t ;

where the index k denotes a suitable integer.

� The change of configuration from us to ut is the map ut;s : us(B) 7! ut(B) 	
S defined by

ut;s ı us = ut :

The composition rules are given by

u�;t ı ut;s = u�;s ; ��;t ı �t;s = ��;s :

Since �s;s 2 Ck(Bs ; Bs) and us;s : Ps 7! Ps are identity maps, the maps �t;s 2
Ck(Bs ; Bt) and ut;s : us(B) 7! ut(B) are invertible and the inverses are given by

(�t;s)
�1 = �s;t ; (ut;s)

�1 = us;t :

Remark 3. The requirement of regularity of the configuration changes must be ex-
pressed in terms of maps between manifolds. Now, while the base placements
Bs = �s(B) and Bt = �t(B) are manifolds, the placements Ps = us(B) and
Pt = ut(B) are not manifolds but instead images of sections of the fiber bundle S

defined on submanifolds of the physical space. Accordingly we require that

ut;s ı ss 2 Ck(Bs ; S) ;

but simply write ut;s 2 Ck(Bs ; S) .
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� The base configuration changes can be depicted as a two-parameter family of
diffeomorphisms �t;s : B 7! Ck(S;S) which is called a flow of the material
manifold B into the physical space S . The flow �t;s maps the position �s(p)
at time s 2 I of a particle p 2 B into its position �t(p) at time t 2 I and, as
seen above, satisfies the Chapman-Kolmogorov composition rule [7]

��;s = ��;t ı �t;s ; �t;t(x) = x ; 8 x 2 Bt :

� The space of configuration changes from us is the differentiable manifold M :=
Ck(Bs ; S) modeled on the Banach space Ck(Bs ; Rd) , d = dim S .

When a reference configuration us is fixed, we often refer to a configuration change
ut;s simply as a configuration by identifying it with ut = ut;s ı us .

� The push forward of a vector field vs 2 Ck(Bs;TS) along the flow �t;s is the
vector field �t;s �vs 2 Ck(Bt;TS) locally defined by

((�t;s �vs)f)(�t;s p) = (vs(f ı �t;s))(p) 8f 2 C1(�t;s p; U) ;p 2 Bs :

The set C1(x; U) is the germ of continuously differentiable functions in the
neighborhood U of x 2 Bt . The push forward maps tangent vectors applied at
points of a manifold into the corresponding deformed tangent vectors applied at
the transformed points.

� The pull back ��
t;s

= ��1
t;s � is the push forward induced by the inverse diffeo-

morphism.

� The push forward of a tensor field as 2 Ck(S;BL (TS;TS ; R)) is the tensor
field �t;s �as 2 Ck(S;BL (TS;TS ; R)) locally defined by the relation

(�t;s �as) (�t;s �vs;�t;s �ws) := �t;s � (as (vs;ws))

for any vs;ws 2 Ck(S;TS) .

� The Lie derivative of a tensor field at 2 Ck(S;BL (TS;TS ; R)) along a flow
��;t : B 7! Ck(S;S) , evaluated at the configuration at time t 2 I , is the time
derivative of the tensor field pulled back to the configuration at time t 2 I ,

LXt
at :=

d

d�

∣∣∣∣
�=t

�t;��a� ;

where Xt is the velocity field vt of the flow ��;t at time t 2 I ,

d

d�

∣∣∣∣
�=t

��;t = Xt :
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3.1 Finite deformation measures

A finite deformation measure is a non-linear operator

A 2 C2(M ; C0(Bs ;D)) ;

that maps the configuration changes ut;s 2 M = Ck(Bs ; S) into the corresponding
finite deformation fields Au = A(ut;s) 2 C0(Bs ;D) . The space D is the finite-
dimensional linear space of local strain values. Deformation measures are differential
operators and hence the value Au(p) at a point p 2 Bs is independent of the values
of the map ut;s outside any given neighborhood of p 2 Bs . This locality property is
in fact characteristic of (linear or non-linear) differential operators (see [3, p. 189]).

The definition of the subset R 	 M of rigid configuration changes is a corner-
stone in the formulation of a continuous structural model. It is natural to assume that
the identity map is a rigid configuration change.

The basic property satisfied by a deformation measure is that it vanishes if and
only if the configuration change is rigid:

ut;s 2 R () A(ut;s) = 0 2 C0(Bs ;D) :

� Two deformation measures A1;A2 2 C2(M ; C0(Bs ;D)) are said to be equi-
valent if

A1(ut;s) = 0 () A2(ut;s) = 0 :

Let D = D1 ˚D2 be a decomposition of the linear space D into the direct sum
of two complementary subspaces and let the associated projectors be denoted
by ˘1 2 BL (D ;D1) , ˘2 2 BL (D ;D2) .

� A deformation measure A 2 C2(M ; C0(Bs ;D)) is said to be redundant if
there exists a nontrivial decomposition D = D1 ˚D2 such that

(˘1 ı A)(ut;s) = 0 =) A(ut;s) = 0 :

A nonredundant deformation measure is be said to be minimal in its equivalence
class.

� In a referential description of kinematics it is also essential to require that the
deformation measure satisfies the consistency property

A(u�;s) = A(ut;s) + S(A(u�;t);ut;s) ;

where S is a non-linear differentiable operator such that

A(u�;t) = 0 =) S(A(u�;t);ut;s) = 0 8 ut;s 2 M :

The latter requirement ensures that the deformation measure is indifferent to su-
perimposed rigid changes of configuration and hence also ensures the invariance
of the deformation measure under a change of observer.
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The relevance of the consistency property is clearly illustrated in Sect. 5.

Finite deformation fields are evaluated pointwise according to the following
scheme. At any point x = (u ı s)(p) ; p 2 B , we consider a local operator
Ax 2 C2(M ;D) defined by

Ax(u) := N(Du)x ;

where D is a linear differential operator of order k acting on the space variable
p 2 B and N is a smooth local non-linear operator mapping the local values of
the field Du into the linear space D . The operator A is then defined pointwise by
setting

Au(x) := Ax(u) 8 u 2 M ; 8 x 2 (u ı s)(B) :

3.2 Virtual displacements

A referential virtual displacement at the configuration ut;s 2 M = Ck(Bs ; S) is a
vector field tangent to M at ut;s 2 M , that is, a map X 2 Ck(M ; T

M
) such that

X(ut;s) 2 T
M

(ut;s) :

Virtual displacements are then vector fields which are defined on the space M of
admissible configurations and take values in its tangent bundle T

M
.

Since the reference placement Bs is fixed, virtual displacements can be repre-
sented as vector fields ıut;s 2 Ck(Bs ; TS

) defined on the base reference placement
Bs and taking values in the tangent bundle T

S
of the ambient space S ([3, p. 170]).

Accordingly the linear space of virtual displacements can be defined as

T
M

(ut;s) = f ıut;s 2 Ck(Bs ; TS
) j �

S
ı ıut;s = ut;s g ;

so that

ıut;s(p) 2 T
S
(ut;s(p)) 8 p 2 Bs :

The fields ıut;s are also called referential virtual displacements.

A virtual displacement at the configuration ut;s 2 M is a field of vectors on Bt

tangent to the ambient space S , that is, a map vt 2 Ck(Bt ; TS
) such that

vt(x) 2 T
S
(x) 8 x 2 Pt = ut;s(Ps) :

Hence a virtual displacement vt 2 Ck(Bt ; TS
) and the corresponding referential

virtual displacement ıut;s 2 Ck(Bs ; TS
) are related by the composition rule

ıut;s = vt ı �t;s :
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4 Classical and polar models of continua

We present here basic models of classical and polar continua to illustrate the general
topics analyzed in the previous sections.

4.1 Cauchy continua

A placement B of a Cauchy continuum is a regular region of the three-dimensional
euclidean space E3 .

The tangent space at each point p 2 B is the three-dimensional linear space V3

of translations in E3 endowed with the usual inner product.
The tangent bundle TB is the disjoint union of copies of the linear translation

space V3 attached at each point of the affine space E3 .
The local structure of a Cauchy continuum reduces to that of its tangent bundle.

Therefore Cauchy’s model lacks a polar structure.
The ambient space S is the affine space E3 .
A placement at time t 2 I of the material body B is a diffeomorphism

�t 2 Ck(B ;E3) :

A flow is given by a two-parameter family of diffeomorphisms �t;s : B 7! C(E3 ;E3)
defined by

�t;s ı �s = �t :

Rigid configuration changes are isometric transformations in E3 described by a
translation vector and a rotation. The set of configuration changes from a given
placement is then a six-dimensional manifold.

Green’s finite deformation measure D(�t;s) associated with the flow �t;s is the
twice covariant tensor field defined (see, e.g., [40]) by

D(�t;s) (X;Y) =
1
2
(�s;t�gS

� g
S
) (X;Y) ;

where X;Y 2 TS are tangent vector fields on �s(B) and g
S

is the metric tensor
of the euclidean space S .

Green’s strain measure satisfies the consistency property since

�s;��gS
� g

S
= (�s;t� ı �t;��)gS

� g
S

= �s;t�(�t;��gS
� g

S
) + (�s;t�gS

� g
S
) :

The tangent deformation at time t 2 I associated with Green’s strain measure at the
configuration �t is given [40] by

1
2

(Lv g
S
)t(X;Y) =

d

ds

∣∣∣∣
s=t

(�t;s� g
S
)(X;Y) = g

S
((sym @vt)X;Y) ;

where @vt is the spatial derivative of the velocity vt of the flow �t;s and X;Y 2 TS

are tangent vector fields on �t(B) .
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4.2 Cables and membranes

A placement B of a cable is a one-dimensional manifold (a curve) embedded in
the euclidean space S = E3 . The tangent bundle TB is the disjoint union of the
one-dimensional tangent spaces to B .

A placement B of a membrane is a two-dimensional manifold embedded in
the euclidean space S = E3 The tangent bundle TB is the disjoint union of the
two-dimensional tangent spaces to B .

The models of cables and membranes lack polar structures.
Rigid configuration changes are isometric transformations of the one- or two-

dimensional manifolds and hence the set of configuration changes from a given
placement is not a finite-dimensional manifold.

We next consider the metric tensor field on B ,

g
B

(X;Y) := g
S
(˘TX;˘TY) ;

Green’s deformation measure for the cable (or for the membrane) is given [40] by

D(�t;s) (X;Y) = 1
2

[
(�s;t�gS

� g
S
) (˘TX;˘TY)

]
;

where X;Y 2 TB are tangent vectors fields on �s(B) and ˘ 2 BL (TS ; TB) is
the orthogonal projector from TS onto TB . Its transpose ˘T 2 BL (TB ; TS) is the
canonical injection of TB into TS .

The tangent deformation at time t 2 I associated with Green’s strain measure is
given [40] by

1
2 (Lv g

B
)t(X;Y) :=

d

ds

∣∣∣∣
s=t

(�t;s� g
S
)(˘TX;˘TY)

=g
B

((sym (˘ @vt ˘
T))X;Y) ;

where vt 2 Ck(B;TS) is a virtual displacement and X;Y 2 TS are tangent vector
fields on B = �t(B) .

4.3 Cosserat continua

In the Cosserat continuum the ambient space is the trivial fiber bundle defined by the
projection �

S
: S = E3 � SO(3) 7! E3 onto the three-dimensional euclidean space

E3 . The fiber manifold SO(3) is the compact three-dimensional special orthogonal
group of rotations. The tangent bundle TS is the disjoint union of the linear spaces
V3 � (so(3)Q) with Q 2 SO(3) ; here so(3) 	 BL (V3 ;V3) is the linear subspace
of skew-symmetric mixed tensors and the linear space so(3)Q is defined [40] by

so(3)Q = f T 2 BL (V3 ;V3) : T = WQ ; W 2 so(3) ;Q 2 SO(3) g :
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A base configuration at time t 2 I of a Cosserat continuum is an injective map
�t : B 7! E3 whose image is a compact domain in E3 . A configuration at time
t 2 I is an injective map ut : B 7! E3 � SO(3) defined at each particle p 2 B by

ut(p) = f�t(p) ;Qt(p)g 2 E3 � SO(3) ;

where Qt 2 B 7! SO(3) is a rotation field with respect to a given reference triad.
A flow is represented by a pair f�t;s ;Qt;sg with

�t;s ı �s = �t ; Qt;s ı Qs = Qt :

A finite deformation measure for the Cosserat continuum is given [40] by

D(�t;s;Qt;s) = fC(Qt;s) ;�(�t;s;Qt;s)g ;

where{
C(Qt;s) := ˝t;s ; curvature change,

�(�t;s;Qt;s) := QT
t;s
@�t;s � Is ; strain gap,

with Is 2 L(V3 ;V3) the identity at time s 2 I and

˝t;s[h] := axial (QT
t;s
@Qt;s [h]) 8 h 2 V3 :

Then ˝t;s 2 L(V3 ;V3) and D = L(V3 ;V3) � L(V3 ;V3) .

4.4 Timoshenko beams

A placement of a Timoshenko beam is described by a regular curve in E3 named
the axis of the beam, and by a field of rotations Q 2 SO(3) , attached at each point
of the beam axis, which simulate the rigid body kinematics of the cross sections of
the beam. The ambient space S is the trivial fiber bundle �

S
: E3 � SO(3) 7! E3 .

A base configuration at time t 2 I is an injective map rt : B 7! E3 whose
image is a regular curve in E3 . A configuration at time t 2 I is an injective map
ut : B 7! E3 � SO(3) defined at each particle p 2 B by

ut(p) = frt(p) ;Qt(p)g 2 E3 � SO(3) ;

where Qt 2 B 7! SO(3) is a rotation field with respect to a given reference triad.
A flow is represented by a pair frt;s ;Qt;sg , where

rt;s ı rs = rt ; Qt;s ı Qs = Qt :

A finite deformation measure is provided [5,40] by the pair

D(rt;s;Qt;s) = fc(Qt;s) ;ı(rt;s;Qt;s)g ;



168 G. Romano, M. Diaco, C, Sellitto

where⎧⎨⎩ c(Qt;s) := axial (QT
t;s

Q0
t;s

) flexural-torsional curvature change,

ı(rt;s;Qt;s) := QT
t;s

r0
t;s

� ts axial-shear sliding,

with ts 2 V3 the unit tangent to the beam axis at time s 2 I and c(Qt;s) 2 V3 .
Then D = V3 � V3 .

The prime (�)0 denotes the derivative with respect to the curvilinear abscissa
along the beam axis at the initial configuration of the time step, so that Q0

t;s
is

derived with respect to 	s and Q0
�;t

is derived with respect to 	t .

4.5 Polar shells

Two basic models of polar shells have been proposed in the literature. In one the
local polar structure is simulated by means of oriented rigid hairs attached at the
points of the middle surface. No drilling rotations of the hairs (i.e., rotations around
their axes) are considered. The other is the two-dimensional analogue of the three-
dimensional Cosserat continuum and is referred to as the Cosserat shell model or
shell with drilling rotations: a rigid trihedron is attached at the points of the middle
surface and arbitrary rotations are allowed. Both models are illustrated briefly in the
sequel.

Polar shells with drilling rotations. A placement of a Cosserat shell is described
by a regular surface in E3 , the middle surface of the shell, and by a field of rotations
Q 2 SO(3) defined at each point of the middle surface which simulate rigid body
kinematics along the thickness of the shell. The ambient space S is the trivial fiber
bundle �

S
: E3 � SO(3) 7! E3 . A base configuration at time t 2 I is an injective

map �t : B 7! E3 whose image is a regular surface in E3 . A configuration at time
t 2 I is an injective map ut : B 7! E3 � SO(3) defined at each particle p 2 B by

ut(p) = f�t(p) ;Qt(p)g 2 E3 � SO(3) ;

where Qt 2 B 7! SO(3) is a rotation field with respect to a given reference triad.
A finite deformation measure is provided [19,20] by the pair

D(�t;s;Qt;s) = fC(Qt;s) ;�(�t;s;Qt;s)g ;

where{
C(Qt;s) := ˝t;s ; curvature change,

�(�t;s;Qt;s) := QT
t;s
@�t;s � Is ; strain gap,

with Is 2 L(V3 ;V3) the identity at time s 2 I and

˝t;s[h] := axial (QT
t;s
@Qt;s [h]) 8 h 2 T

Bt
(�t(p)) :

Then ˝t;s 2 L(V2 ;V3) and D = L(V2 ;V3) � L(V3 ;V3) .
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Polar shells without drilling rotations. A placement of a polar shell without drilling
rotations is described by a middle surface in E3 and by a field of unit vectors attached
at each of its points which simulate the kinematics of the shell in the transverse
direction. The ambient space is the trivial fiber bundle �

S
: S = E3 �S2 7! E3 . The

fiber manifold is the two-dimensional unit sphere S2 in E3 . The finite deformation
measure proposed and analyzed in [8,9] consists of the triplet

A(ut;s) :=

∣∣∣∣∣∣
"(�t;s)
ı(ut;s)
�(ut;s)

∣∣∣∣∣∣
composed of:

"(�t;s)(a;b) := g(�t;s�a; �t;s�b) � g(a; b) ; membrane strain ;

ı(ut;s)(a) := g(dt; �t;s�a) � g(ds; a) ; shear sliding ;

�(ut;s)(a;b) := g(@�t;s�a
dt; �t;s�b) � g(@ads; b) ; curvature change ;

where a ;b 2 V3 = TE3 and g is the metric tensor on E3 .
These measures vanish if and only if the shell undergoes a rigid body transfor-

mation, i.e., when the membrane deformation vanishes and the directors and tangent
planes to the middle surface are rotated according to a constant rotation field. Indeed
the vanishing of the membrane strain imposes that the middle surface transforma-
tion be isometric and the vanishing of the shear sliding implies that the directors be
invariant when seen by observers co-rotating with the tangent planes.

From the vanishing of the flexural curvature, which is an extrinsic quantity, one
infers that the second fundamental form of the surface does not change and hence
that the surface must undergo a rigid body transformation with a rotation equal to
the rotation of the directors.

This finite strain measure for shells is not redundant since the vanishing of any
proper subset of the strain measures does not ensure that the transformation is rigid.

4.6 Consistency, redundancy and physical plausibility

It is interesting to underline the formal analogy existing between the deformation
measures pertaining to Timoshenko beams, to polar shells with drilling rotations and
to Cosserat continua. Such measures satisfy the consistency condition. Indeed for
the Timoshenko beam,

QT
�;s

Q0
�;s

= (Q�;tQt;s)
T(Q�;tQt;s)

0 = QT
t;s

QT
�;t

(Q�;tQt;s)
0

= QT
t;s

QT
�;t

(
Q0
�;t

d	t
d	s

Qt;s + Q�;tQ
0
t;s

)
= QT

t;s

(
QT
�;t

Q0
�;t

d	t
d	s

)
Qt;s + QT

t;s
Q0
t;s
:
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Then the semisymmetric curvature tensor C(Qt;s) = QT
t;s

Q0
t;s

satisfies the relation

C(Q�;s) = QT
t;s

C(Q�;t)Qt;s

d	t
d	s

+ C(Qt;s) :

In the same way,

QT
�;s

�0
�;s

� r0
s
= QT

t;s
QT
�;t

r0
�;s

� r0
s

= QT
t;s

(QT
�;t

r0
�;t

� r0
t
)
d	t
d	s

+ (QT
t;s

r0
t;s

� r0
s
) :

Then the axial-shear sliding satisfies the relation

ı(r�;s;Q�;s) = QT
t;s

ı(r�;t;Q�;t)
d	t
d	s

+ ı(rt;s;Qt;s) ;

and the consistency property is proved.
A similar proof can be carried out for the deformation measure pertaining to polar

shells and to Cosserat continua.
The formal analogy between the deformation measures of Timoshenko beams,

of polar shells with drilling rotations and of Cosserat continua, has led some authors
to consider the first two as special, respectively one- and two-dimensional, cases of
the third [21].

In any case, despite the increasing popularity of Cosserat continua, and their!!! CE: refs?
application to modeling special phenomena in various field of structural mechanics
(see, e.g.,), a simple analysis shows that the finite deformation measure of the three-
dimensional Cosserat continuum is redundant (see Sect. 3.1). Indeed it can be proved
[51] that the vanishing of the field of strain gaps implies the vanishing of the field of
curvature changes:

�(�t;s;Qt;s) = 0 =) C(Qt;s) = 0 :

The redundancy is due to the integrability conditions satisfied by the field @�t;s . A
redundancy argument, which is more difficult to be prove, should then also apply
to the two-dimensional model of polar shells with drilling rotations while the one-
dimensional beam model is certainly nonredundant due to the absence of integrability
conditions.

But for the three-dimensional Cosserat continua worse things are to come: if the
redundant field of curvature changes is removed, in the attempt to obtain a nonredun-
dant deformation measure, the three-dimensional Cosserat continuum collapses into
a Cauchy continuum [51]. This shortcoming should lead to the conclusion that the
three-dimensional Cosserat continuum is based on an ill-posed kinematical model.

On the other hand we observe that, despite their wide acceptance (see, e.g.,
[8,9,12,43]), the deformation measures reported in Sect. 4.5 and commonly adopted
in the literature for polar shells without drilling rotations, lead to physically implau-
sible results in the case of significant membrane strains. Indeed a simple computation
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reveals an unrealistic behavior of an inflated polar spherical baloon since an increase
of flexural curvature is measured when the radius increases. The effect is due to the
amplification of the convected tangent vectors due to the deformation.

To eleminate this shortcoming we may redefine the deformation measures for
polar shells without drilling rotations as:

"(�t;s)(a;b) := g(�t;s�a; �t;s�b) � g(a; b) ; membrane strain ;

ı(ut;s)(a) := g(dt; �t;s�a) � g(ds; a) ; shear sliding ;

�(ut;s)(a;b) := g(@�t;s�a
dt; Rt;sb) � g(@ads; b) ; curvature change ;

where Rt;s is the isometric transformation associated with the push forward �t;s�
according to the polar decomposition formula. The new expression for the curvature
change correctly predicts no flexural curvature in the inflated polar spherical baloon
when the radius is changed. A detailed discussion of these topics is provided in [57].

5 Equilibrium

The proof of the virtual work principle, which is the basic theoretical result in con-
tinuum mechanics, requires that virtual displacements be considered as vector fields
belonging to a larger space. More precisely virtual displacements at any u 2 M

are assumed to belong to the Sobolev space Hk(Bt ; TS
) � Ck(Bt ; TS

) and the
differential of the strain measure from u 2 M is assumed to be a bounded linear
differential operator of Korn type [34,40],

@A(it) 2 BL (Hk(Bt ; TS
) ; L2(Bt ;D)) ;

where it = ut;t is the identity on Pt .
Virtual displacements in the kernel of the tangent deformation operator @A(it)

are said to be rigid at u 2 M .
Since virtual displacements belong to the Hilbert space Hk(Bt ; TS

) , the force
systems f t 2 BL (Hk(Bt ; TS

) ; R) belong to the dual Hilbert space.
Equilibrium of a force system is expressed by the condition of orthogonality to

any admissible rigid virtual displacement,

hf t;vt i = 0 8 vt 2 Ker@A(it)
? 	 Hk(Bt ; TS

) :

In the presence of kinematic constraints, admissible virtual displacements belong
to a closed linear subspace V(Bt ; TS

) 
 Hk(Bt ; TS
) and referential admissible

virtual displacements to the closed linear subspace V(Bs ; TS
) 
 Hk(Bs ; TS

) .

� The virtual work theorem [40] ensures that, if a force system

f t 2 BL (Hk(Bt ; TS
) ; R)

is in equilibrium, there exists a stress field � 2 L2(Bt ; S) satisfying the varia-
tional condition∫

Bt

�xt
: (@A(it) � v)xt

d�t = hf t;vt i 8 vt 2 V(Bt ; TS
) :
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The local values �xt
of the stress field belong to the finite-dimensional space S

dual to D .
When transformed to the reference configuration, the virtual work condition reads∫

B

Sxs
:
(
@A(ut;s) � ıut;s

)
xs
d�s = hG(ut;s) � f t; ıut;s i

8 ıut;s 2 V(Bs ; TS
) ;

where G(ut;s) � f t is the equivalent force in the reference configuration, defined by
the identity

hG(ut;s) � f t; ıut;s i := hf t; ıut;s ı ��1
t;s

i 8 ıut;s 2 V(Bs ; TS
) ;

and S 2 L2(B ; S) is the referential stress measure conjugate to the finite deforma-
tion A(ut;s) 2 C0(Bs ;D) , locally defined as

Sxs
= Lxs

(ut;s)
�T � �xt

;

where

Lxs
(ut;s) := @1Sxs

(0;ut;s) 2 BL (S ; S)

is assumed to be invertible. The non-linear operator S was introduced in Sect. 3.1
in stating the consistency property and @1 denotes the partial derivative with respect
to the first argument.

The directional derivative @A(ut;s) � ıut;s is defined pointwise by considering a
virtual trajectory through ut;s with tangent ıut;s and setting

(@A(ut;s) � ıut;s)xs
:= @ıut;s

Axs
(ut;s) =

@

@t
Axs

(ut;s)

= @N((Dut;s)xs
) � @
@t

(Dut;s)xs
= @N((Dut;s)xs

) � (Dıut;s)xs
:

The dot denotes linear dependence on the subsequent term.

6 Elastic equilibrium

Green’s elastic energy is a scalar function 'xs
2 C2(D ; R) that maps the local

values of the finite elastic deformation Dxs
2 D into the corresponding elastic

energy 'xs
(Dxs

) per unit volume in the reference placement Ps .

� The elastic law relates the local deformation measure Dxs
2 D to the conjugate

local stress state Sxs
2 S :

Sxs
= @'x(Dxs

) :
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The reference placement Ps is assumed to be a natural state for the material.
This means that Sxs

= (@'xs
)(Dxs

) vanishes if Dxs
= 0 . The global elastic energy

' 2 C2(L2(Bs ;D) ; R) of the body is the integral of the specific elastic energy over
the base manifold,

'(D) =
∫

B

'xs
(Dxs

)d�s :

Hereafter the suffices t; s are dropped whenever not strictly necessary.
The global elastic potential � 2 C2(Ck(Bs;Pt) ; R) provides the elastic energy

associated with the configuration change u 2 Ck(Bs;Pt) and is given by

�(u) := (' ı A)(u) =
∫

B

('x ı Ax)(u)d� :

Enforcing the constitutive law in terms of the elastic potential, the referential equi-
librium of the body at time t 2 I is expressed by

h@�(u); ıui = hG(u) � f ; ıui 8 ıu 2 V(Bs ; TS
) :

The bounded linear functionals G(u) � f 2 BL (V(Bs ; TS
) ; R) and @�(u) 2

BL (V(Bs ; TS
) ; R) provide, respectively, the referential applied load and the re-

ferential elastic response of the body. In the sequel the terms form, covector and
bounded linear functional should be considered as synonyms.

With Gf (u) := G(u) � f , the equilibrium condition may be written equivalently
by imposing the vanishing of the resultant force system on the body:

(@�� Gf )(u) = 0 :

6.1 Incremental equilibrium

The incremental equilibrium is imposed by taking the total time derivative of the
non-linear condition along the equilibrium path:

d

dt

[
(@�� Gf )(u)

]
= 0 :

Since both the configuration change u and the force map f depend on t 2 I , the
incremental equilibrium condition is given by

@u̇(@�� Gf )(u) = G(u) � ḟ ;

where as usual a superimposed dot denotes the time derivative.
The total tangent stiffness of the body is the directional derivative

K(u) := @(@�� Gf )(u) ;

and the incremental equilibrium is accordingly written as

K(u) � u̇ = G(u) � ḟ :
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However, when dealing with polar continua, the directional derivative of the form-
valued map (@��Gf ) at a configuration u 2 M cannot be taken in the classical way
since the ambient space S is a non-linear manifold and hence also the configuration
space M = Ck(Bs ; S) is a non-linear manifold of maps. Indeed in this case the
evaluation of the directional derivative would require us to take the limit of differences
between covectors defined on distinct tangent spaces and these differences would
have no meaning until a further geometric structure is given to the space manifold.
The issue is illustrated in the subsequent sections.

7 Affine connections and covariant differentiation

An affine connection on a differentiable manifold M is a map X 7! rX which
associates to any vector field X : M 7! TM a tensor field

rX : M 7! BL (TM ; TM)

of type (1; 1) such that, for any pair of tangent vectors Yu;Zu 2 TM(u) , the
following characteristic properties of a derivation are met:

i) rf = @f ;

ii) rX [˛Yu + ˇZu] = ˛rX [Yu] + ˇrX [Zu] ;

iii)

{
r(X1 + X2) = rX1 + rX2 ;

r(fX) [Yu] = (@f [Yu])X + f (rX [Yu]) ;

where ˛;ˇ 2 R , f 2 C1(u; U) where U(u) 
 M is a neighborhood of u 2 M

and @ denotes the directional differentiation.

� Property i) asserts that directional and covariant derivative are the same for
scalar fields.

� Property ii) expresses the (1; 1) tensoriality of rX .

� Properties iii1; iii2) are characteristic of a derivation.

The local value at u 2 M of the tangent vector field rYu
X : M 7! TM is

the covariant derivative of the tangent vector field X : M 7! TM along the tangent
vector Yu 2 TM(u) .

The covariant derivative of a tensor field a 2 BL (TM;TM ; R) is defined so that
Leibniz rule holds:

(rZ a)(X;Y) := @Z(a(X;Y)) � a(rZX;Y) + a(X;rZY) :

The definition is well-posed because the left-hand side does not depend on the exten-
sion of the vectors Xu;Yu 2 TM(u) to vector fields X;Y : U(u) 7! TM , even if
each one of the summands in the right-hand side depends on such an extension.
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This property ensures that the expression above defines a three-times covariant
tensor field on M and can be easily assessed by applying the following tensoriality
criterion [2,50].

Theorem 1. A multilinear application

A :

k times︷ ︸︸ ︷
T

M
� : : :� T

M
7! R ;

which is linear on the space C1(M) in the sense that

A(v1; : : : ; fvi; : : : ;vk) = fA(v1; : : : ;vk) 8 i = 1; : : : ; k ; 8f 2 C1(M) ;

can be pointwise represented by a unique tensor field T on M . In other words,
A = AT , where

AT(v1 : : :vk)(p) := T(p)(v1(p); : : : ;vk(p)) 8 p 2 M ;

is the multilinear application pointwise defined by the tensor field T on M .

7.1 Parallel transport and connection

It is known from differential geometry (see, e.g., [3]) that the parallel transport
TS

�;	
: TS(c(	)) 7! TS(c(�)) along a regular curve c in the ambient space manifold

S is a solution of the ordinary differential equation

rċ(�)(T
S

�;	
v	) = 0 8�; 	 2 I :

By the uniqueness of the solution of an ODE we infer the validity of the composition
rule

TS

�;�
= TS

�;	
ı TS

	;�
:

Parallel transport induces a connection r on the manifold according to the formula
for covariant differentiation,

rċ(�)v� :=
@

@	

∣∣∣∣
	=�

(TS

�;	
v	) ;

where v� := v(c(�)) 2 TS(c(�)) is a vector field tangent to S . Note that the time
derivative makes sense since

TS

�;	
v	 2 TS(c(�)) 8 	 2 I :

It is easy to check that the field TS

�;	
v	 is parallel-transported along c according to

the connection since

rċ(�)(T
S

�;	
v	) =

@

@�

∣∣∣∣
�=�

(TS

�;�
TS

�;	
v	) =

@

@�

∣∣∣∣
�=�

(TS

�;	
v	) = 0 :
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A connection on the finite-dimensional space manifold S , which is modeled on the
linear space Rd , induces a corresponding connection on the infinite-dimensional
manifold M = Ck(Bs ; S) of admissible configuration changes which is modeled
on the Banach space Ck(Bs ; Rd) .

Indeed the notion of parallel transport TM

�;t
of a vector feld ıut;s 2 T

M
(ut;s)

along curves f ut;s ; t 2 I g on the manifold M is defined pointwise by setting

(TM

�;t
ıut;s)(p) := TS

�;t
(ıut;s(p)) 8 p 2 Bs :

Accordingly the covariant derivative on M is also defined pointwise by

(rM

u̇t;s
ıut;s)(p) := rS

u̇t;s(p)
ıut;s(p) 8 p 2 Bs ;

and is related to the parallel transport by the relation

rM

u̇t;s
ıut;s =

@

@�

∣∣∣∣
�=t

(TM

t;�
ıu�;s) :

8 Tangent stiffness

Once a connection is defined on the manifold M of admissible configuration changes,
the total tangent stiffness may be computed by performing covariant derivatives
instead of directional derivatives to get the expression

K(u) := rM(@�� Gf )(u) = rM˛(u) ;

where

˛ = @�� Gf

is the equilibrium gap resulting from the difference between the covector fields
representing the elastic response @� : M 7! T�

M
and the referential load Gf :

M 7! T�
M

.
Accordingly the bounded linear functional ˛(u) 2 T�

M
(u) = BL (T

M
(u) ; R)

provides the resultant referential force corresponding to the configuration change
u 2 M .

As shown in Sect. 7, the covariant derivative ru̇ ˛(u) is defined by means of a
formal application of the Leibniz rule of calculus,

(rM

u̇
˛(u)) [ıu] := @u̇ (˛(u) [ı̂u]) � ˛(u)[rM

u̇
ı̂u] :

The vector field ı̂u 2 T
M

(U(u)) is an extension of the vector ıu 2 T
M

(u) to
a neighborhood U(u) 
 M of u 2 M . Recall that u 2 M is an admissible
configuration and that ıu 2 T

M
(u) is a virtual displacement from that configuration.
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Although both derivatives in the right-hand side of the Leibniz formula depend
on the assumed extension of the virtual displacement ıu , the left-hand side is inde-
pendent of such an extension and hence is tensorial in ıu by the tensoriality criterion
provided in Theorem 1.

Hereafter the suffix M is dropped unless necessary.
The Hessian of the elastic potential � = 'ıA provides the constitutive stiffness

and is the twice covariant tensor field on the manifold M defined by

r2
u̇ ıu

�(u) := (ru̇@�(u)) [ıu] = @u̇ @ı̂u �(u) � @�(u) [ru̇ ı̂u] :

Applying the chain rule to �(u) = (' ı A)(u) and the Leibniz rule, the evaluation
of the first term of the right-hand side yields

@u̇(@'(A(u)) � @A(u) � ı̂u) = @2'(A(u)) � (@A(u) � ı̂u) � (@A(u) � u̇) +
+ @'(A(u)) � (@u̇ @ı̂uA)(u):

The first term of the right-hand side is the elastic tangent stiffness which is a sym-
metric bilinear form in u̇ ; ıu 2 T

M
(u) . The symmetry of the second directio-

nal derivative of the functional ' 2 C2(L2(Bs ;D) ; R) is a classical result since
L2(Bs ;D) is a linear space.

The remainder provides the geometric tangent stiffness, a bilinear form in u̇,
ıu 2 T

M
(u) given by

@'(A(u)) �
[
(@u̇@ı̂u � @ru̇ı̂u

)A
]
(u) = @'(A(u)) �

(
r2

u̇ ıu
A
)
(u) :

We remark that the directional derivative of A at u is well defined since A(u)
belongs to the linear space L2(Bs ;D) .

8.1 Torsion and symmetry

The torsion of the connection rS is the mixed tensor field TS 2 L(TS;TS ; TS) ,
twice covariant and one time contravariant, defined by

TS(v;w) = r2
v;w

� r2
w;v

= [v;w] � rvw + rwv :

The second equality follows from the formula for the second covariant derivative of
a scalar field f 2 C2(S ; R) :

r2
v;w

f = @v@w f� (rvw)f ;

where hf := @f � h denotes the directional derivative of f 2 C2(S ; R) along
h 2 TS . Hence,

TS(v;w)f = (r2
v;w

� r2
w;v

)f = (@v@w � @w@v � rvw + rwv)f :

The formula then follows by recalling the definition of the Lie bracket,

[v;w]f = (@v@w � @w@v)f :
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A well-known result of differential geometry states that the Lie bracket is equal to
the Lie derivative, according to the formula

[X;Y]s = (LXY)s :=
d

dt

∣∣∣∣
t=s

�s;t�Yt :

The torsion TM 2 L(TM;TM ; TM) of the connection rM on the infinite-
dimensional manifold M = Ck(Bs ; S) is defined pointwise in terms of the parent
torsion TS of rS by the identity(

TM(Xu;Yu)
)
p = TS((Xu)p; (Yu)p) 2 T

S
(up) 8 p 2 Bs :

Hence,

TM(Xu;Yu) = (r2
Xu;Yu

� r2
Yu;Xu

) = [Xu ;Yu] � rXu
Yu + rYu

Xu :

A vanishing torsion TS implies that the Hessian of any f 2 C2(S ; R) is symmetric.
The finite dimensionality of D also ensures that the Hessian

(r2
Xu;Yu

Ax)(u) 2 D ;

of the local deformation map Ax 2 C2(M ;D) is symmetric. If follows that the
geometric tangent stiffness is also symmetric.

9 Conservative versus nonconservative loads

Suppose that the referential force system acting on the body is positional and con-
servative in the sense that there exists a scalar potential Ff 2 C1(M ; R) linearly
dependent on f such that

Gf (u) = G(u) � f = �@Ff (u) :

Then, in terms of the total potential P = � + Ff , the sum of the elastic potential
� = 'ıA and the referential load potential Ff , the condition of elastic equilibrium
becomes

@P(u) = o :

A solution u 2 M is then a critical point of P . Accordingly, the incremental equi-
librium condition can be expressed as

ru̇ @P(u) = �@Fḟ (u) ;

and, in variational form, as

r2
u̇ ıu

P(u) = @u̇ @ı̂u P(u) � @P(u) [ru̇ ı̂u] = @u̇ @ı̂u P(u) = �h@Fḟ (u); ıui
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8 ıu 2 T
M

(u) and 8 ı̂u 2 T
M

(U(u)) , which is an extension of ıu to a neig-
hborhood U(u) 
 M . The second equality in the formula above holds since the
derivative @P(u) vanishes at equilibrium points u 2 M .

From the previous results we see that the Hessian of the total potential at a critical
point can be computed as the second directional derivative of the potential (the
classical formula) by performing an arbitrary extension of the virtual displacement.
Remarkably the result is tensorial and symmetric since it depends neither on the
extension nor on the choosen connection. Since a torsionless connection can be
considered, we infer that the Hessian has to be symmetric. It follows that the tangent
stiffness K(u) at equilibrium points u 2 M is symmetric and defined by

hK(u) u̇; ıui := @u̇ @ı̂u P(u) :

This observation was made in [5], but with some contradictions, and in a clearer
but still incomplete form in [7]. Indeed the discussion given in [14] takes no account
of the way in which the directional derivatives of the virtual displacement are defined
and makes reference only to Riemannian connections.

Numerical evidence of the symmetry of the tangent stiffness at equilibrium points
in the case of positional and conservative loads was provided in [5].

It is worth noting that the authors of [5] found a nonsymmetric but tensorial
expression of the tangent stiffness for polar beams by adopting the expression above
at nonequilibrium points. Indeed at noncritical points the Hessian should be evaluated
by the tensorial formula

hK(u) u̇; ıui := r2
u̇ ıu

P(u) = @u̇ @ı̂u P(u) � @P(u) [ru̇ ı̂u] ;

which requires the definition of a connection and the choice of an extension of the
virtual displacements.

The relevance of the role played by the torsion of the connection and by the
extension chosen for the virtual displacement, in explaining why a nonsymmetric
but tensorial stiffness may occur, was illuminated in [46] when the author was not
yet aware of the paper [14].

More generally, if the referential load is nonconservative, the tangent stiffness
has to be defined by the formula

hK(u) u̇; ıui := (rM

u̇
˛(u)) [ıu] = @u̇ (˛(u) [ı̂u]) � ˛(u)[rM

u̇
ı̂u] ;

where the resultant referential force, given by

˛ = @�� Gf : M 7! T�
M
;

vanishes at equilibrium points. In the general case the tangent stiffness is then ten-
sorial but possibly nonsymmetric at equilibrium points as well. In any case, at these
points the expression of the tangent stiffness is independent of the chosen connection
and is given by the formula

hK(u) u̇; ıui = (rM

u̇
˛(u)) [ıu] = @u̇ (˛(u) [ı̂u]) :
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In [14] it was claimed that the correct symmetric stiffness for polar beams is obtained
by taking the symmetric part of the nonsymmetric one. We remark that this statement
is correct only for the special extension of the virtual dispacement chosen there. A
comprehensive analysis of the evaluation of the tangent stiffness for polar beams can
be found in [49,50].

10 Conclusions

On a non-linear manifold there is no preferential way of defining a connection among
tangent spaces at different points.

The choice of a connection determines the covariant differentiation of vector
fields belonging to the tangent bundle and of related covector and tensor fields. On
the contrary, in the special case of an affine manifold, there is a standard connection,
the euclidean connection.

If the non-linear manifold is embedded in an affine space endowed with a euc-
lidean metric, there is a canonical way to define a Riemannian metric through the
Levi–Civita connection. This connection is uniquely determined as the one that mi-
mics some basic properties of euclidean geometry, namely, invariance of the local
metric and symmetry of the second covariant derivative of scalar fields.

This connection is also the most natural to be considered due to the simple
computation of the related covariant derivative in terms of the directional derivative
in the ambient euclidean space.

In fact, in the polar models that we have considered, the fiber manifold is al-
ways embedded in a linear space with inner product and, according to the LeviCivita
connection, the covariant derivative on the manifold is given by the orthogonal pro-
jection of the directional derivative in the parent linear space onto the tangent bundle.

Our analysis reveals that, in a general model of polar elastic continua, the tangent
stiffness must be defined as the covariant derivative of the resultant referential force
which is a covector field on the manifold of configuration changes.

At equilibrium points the resultant referential force vanishes and the tangent
stiffness is indepenedet of the assumed connection on the fiber manifold but in
general may fail to be symmetric.

The circumstance that at nonequilibrium points the expression of the tangent
stiffness of polar continua and its symmetry property depend directly on the connec-
tion chosen on the fiber manifold, should not affect any physical interpretation. In
fact it is known that, also in the euclidean space, nonconventional connections may be
defined to obtain special geometric models capable, e.g., of providing mathematical
models of continuous distributions of dislocations [1].

In the special case of conservative referential loads, the tangent stiffness is pro-
vided by the Hessian of the total potential and is then tensorial and symmetric at
equilibrium points independently of the choice of the connection and of the exten-
sion of virtual displacements required for its evaluation.
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Basic issues in convex homogenization

G. Romano, A. Romano

Abstract. The basic results in homogenization theory are revisited in the abstract context
of continuum mechanics in which the constitutive behaviour and the kinematic constraints
are governed by pairs of conjugate convex potentials. The theory and the methods of this
generalized elastic model are briefly recalled and applied to extend the classical linear theory
of homogenization to the non-linear and possibly multivalued constitutive framework.

1 Prolegomena

The fundamentals of homogenization theory are here revisited with reference to an
abstract structural model whose constitutive properties are characterized by mono-
tone conservative multivalued laws governed by closed convex potentials.

The theory of such constitutive behavior, termed generalized elasticity, was de-
veloped by the first author and his co-workers in a number of papers (see [10,12])
and is illustrated in detail in [17].

The topic of nonlinear homogenization theory was investigated by Talbot, Willis
and Toland in a series of papers [7–9]. Their approach was based on the theory of
conjugate convex problems as developed in [5]. The present approach makes direct
reference to an abstract structural problem and is carried out along the guidelines of
the theory of generalized elasticity.

2 The continuum model

In continuum mechanics the fundamental theorems concerning the variational for-
mulations of equilibrium and of tangent compatibility are founded on the property
that the tangent kinematic operator has a closed range and a finite-dimensional kernel
at every configuration in the admissible manifold.

The abstract framework is the following. Let V and D be the finite-dimensional
linear spaces of local values of tangent (virtual) displacememts (also referred to as
kinematic fields) and tangent strains respectively. Further, let S be the linear space
of local values of stress fields, the dual space of D .

A continuous structural model, defined on a regular bounded connected domain
˝ of an n-dimensional euclidean space En , is governed by a kinematic operator B .
This operator is the regular part of a distributional differential operator B : V˝ 7!
D0
S of order m acting on Green-regular kinematic fields u 2 V˝ and ranging over

the space of tangent strain distributions Bu 2 D0
S in ˝ . Tangent strain distributions
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are linear functionals, defined on the linear space DS = C1
o (˝ ; S) of test stress

fields which have compact support in ˝ and which are continuous according to the
uniform topology on compact subsets of ˝ (see, e.g., [4,16]).

Piecewise Green-regular kinematic fields u 2 V˝ are square-integrable fields
u 2 HV = L2(˝ ; V) such that the corresponding distributional tangent strain
fields Bu 2 D0

S are square-integrable on a finite subdivision Tu(˝) of ˝ (see
[16,18,19]). The kinematic space V˝ is a pre-Hilbert space when endowed with the
topology induced by the norm

k u k2
V˝

= k u k2
HV

+ k Bu k2
HD
;

where HD = L2(˝ ; D) is the space of square-integrable tangent strain fields on
˝ . The subdivision Tu(˝) is said to be a support of regularity of the kinematic
field u 2 V˝ .

The kinematic constraints on a continuum are imposed by a sequence of two
requirements. The first is a regularity requirement on the tangent displacements
and is expresseed by considering a basic finite subdivision T(˝) of ˝ and by
requiring that the tangent displacements have T(˝) as a support of regularity. The
closed linear subspace V(T(˝)) 	 V˝ of T(˝)-regular tangent displacements is
a Hilbert space for the topology of V˝ .

The second requirement is that tangent displacements belong to a conformity
subspace, a closed linear subspace L = L(T(˝)) 	 V(T(˝)) .

In boundary value problems the Hilbert space L is the kernel of a bounded linear
operator which prescribes an additional linear constraint on the boundary values of
the tangent displacements u 2 V(T(˝)) .

The operator BL 2 BL (L ; HD) , which yields the regular tangent strain field
Bu 2 HD corresponding to a conforming tangent displacement u 2 L , is linear
and continuous.

The tangent kinematic operator B 2 BL (V˝ ; HD) is assumed to be Korn-
regular in the sense that, for any conformity subspace L 	 V˝ , the following
conditions [13,14] are met:{

dim Ker BL = dim ( Ker B \ L) < + 1 ;

k Bu kH � cB k u kL=KerBL
; 8 u 2 L () Im BL closed in HD :

The requirement that these properties hold for any conformity subspace L 	 V˝ is
motivated by the requirement that, in engineering structural models, the equilibrium
condition can be imposed by a finite number of scalar equations and that the existence
results hold for any choice of linear kinematic constraints. The Korn-regularity of
B 2 BL (V˝ ; HD) is the basic tool for the proof of the theorem of virtual powers [16]
which ensures the existence of a stress field � 2 HS = L2(˝ ; S) in equilibrium
with an equilibrated system of active forces, i.e., bounded linear functionals f 2 L0

such that h f ; v i = 0 for all v 2 Ker B\ L . It can be shown [14] that a necessary
and sufficient condition for the Korn-regularity of B 2 BL (V˝ ; HD) is the validity
of an inequality of Korn’s type,

k Bu kHD
+ k u kH � ˛ k u km 8 u 2 Hm(˝ ; V) ;



Basic issues in convex homogenization 187

where Hm(˝ ; V) is the Sobolev space of tangent displacements which are square-
integrable on ˝ and which have distributional derivative up to the order m . The
formal adjoint of B 2 BL (V˝ ; HD) is the distributional differential operator B0

o :
HS 7! D0

V of order m defined by the identity

h B0
o� ; v i : = (( � ; Bv )) 8 v 2 D0

V ; 8 � 2 H(˝) :

The space S˝ of piecewise Green-regular stress fields on ˝ is then defined as
the linear space of stress fields � 2 HS such that the corresponding body force
distributions B0

o� 2 D0
V; are square-integrable on a finite subdivision T�(˝) of ˝

(see [16,18]). The space S˝ is a pre-Hilbert space when endowed with the induced
norm

k � k2
S˝

= k � k2
HS

+ k B
0

o� k2
HF
;

where B
0

o 2 BL (S˝ ; HS) is the regular part of the distributional differential opera-
tor B0

o : HS 7! D0
V . Any pair of Green-regular tangent displacement fields v 2 V˝

and Green-regular stress fields � 2 S˝ satisfies Green’s formula [15] for the opera-
tor B 2 BL (V˝;HD) ,

(( � ; Bv )) = (B
0

o� ; v ) + hh N� ; �v ii 8 v 2 V˝; 8 � 2 S˝;

where by definition

(( � ; Bv )) : =
∫
˝

� : Bv d� ; (B
0

o� ; v ) : =
∫
˝

B
0

o� � v d� ;

and the duality pairing hh N� ; �v ii is the extension by continuity of a sum of
boundary integrals over @Tv�(˝) = [ @˝e; e = 1; : : : ; nelements ,∫

@Tv�(˝)

N� � �v d :

where Tv�(˝) = Tv(˝) _ T�(˝) is finer than Tv(˝) and T�(˝) .
The trace � and the flux N are differential operators, with order ranging bet-

ween 0 and m � 1 , associated to the operator B and defined by m subsequent
applications of the rule of integration by parts.

2.1 Averaging operators

Let M˝ 2 BL (HD ; D) and med 2 BL (HD ; D) be the surjective averaging ope-
rators defined by

M˝(") : =
∫
˝

"(x) d� ; med˝ =
1

vol (˝)
M˝ :
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The dual operator M�
˝ 2 BL (S ; HS) of M˝ 2 BL (HD ; D) is defined by the

identity
h M�

˝(T) ; " i = h T ; M˝(") i 8 T 2 S; 8" 2 HD :

When applied to T 2 S the operator M�
˝ 2 BL (S ; HS) provides the constant field

in HS = L2(˝ ; S) given by

(M�
˝(T))(x) = T 8 x 2 ˝ :

Note that the roles of the spaces D and S may be interchanged in the preceeding defi-
nitions. We remark that med˝ 2 BL (HS ; S) is a right inverse of M�

˝ 2 BL (S ; HS)
since

(med˝ ı M�
˝)(T) = T 8 T 2 S :

The surjectivity of M˝ 2 BL (HD ; D) yields

Im M�
˝ = ( Ker M˝)? ;

which implies that a square-integrable field, orthogonal to any square-integrable field
with vanishing mean value, is constant. Trivially we also have that

Ker M�
˝ = ( Im M˝)? = f 0 g :

To simplify the notation we also denote by the same symbols M˝ and M�
˝

the operators M˝ 2 BL (L1(˝ ; R) ; R) , M�
˝ 2 BL (R ; L1(˝ ; R)) , where

L1(˝ ; R) is the space of real-valued integrable functions on ˝ and L1(˝ ; R)
is the dual space of essentially bounded functions on ˝ .

2.2 Conjugate convex potentials

A structural model is defined by considering a subdivision T(˝) of the domain ˝
and the associated Hilbert space V = V(T(˝);V) of T(˝)-regular displacements
defined as those giving rise to distributional tangent strain fields which are square-
integrable in each element of the subdivision. Force systems are the bounded linear
functionals of the dual space F = BL (V(T(˝);V) ; R) .

The model is further characterized by a bounded linear tangent kinematic operator
B 2 BL (V ; H) which provides the tangent strain field corresponding to any T(˝)-
regular tangent displacement field. The operator B 2 BL (V ; H) is assumed to
satisfy an inequality of Korn type so that the kernel Ker B 	 V is finite-dimensional
and, for any set of linear constraints defining a closed linear subspace L 	 V of
conforming displacements, the image BL is closed in H . The dual equilibrium
operator B0 2 BL (H ; F) is defined by the identity

h � ; Bv i = h B0� ; v i 8 v 2 V ; 8 � 2 HS = L2(˝ ; S) :

The constitutive properties of the elastic material are described, according to Green,
by a field of local potentials 'e : D � ˝ 7! R , where R = R [ f + 1 g is the
upper-extended real line [15]. We consider a generalized Green elasticity in which,
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at each x 2 ˝ , the local potential is assumed to be proper, convex and everywhere
subdifferentiable on its domain dom 'e(�;x) 	 D . Convex analysis provides the
mathematical tools to deal with such problems [3,5,6,12]. In this context a potential
theory for monotone conservative multivalued operators was developed by the first
author and his coworkers [10,17].

The convex global constitutive potential ˚e : H 7! R is a function of the
(small) strain fields " 2 H and is defined by the integral

˚e(") : =
∫
˝

(˚e("))(x) d� ;

where the potential ˚e : H 7! L2(˝ ; R) is given by

(˚e("))(x) : = 'e("(x);x) ;

and d� is the volume form on ˝ .
We consider a general nondecreasing monotone and conservative stress-strain

relation G 	 HS � HD . Monotonicity means that

h �2 � �1 ; "2 � "1 i � 0 8 f�1 ;"1g 2 G; 8 f�2 ;"2g 2 G ;

and conservativity means that∮
˘"

h E(") ; d" i = 0 ()
∮
˘�

h E�1(�) ; d� i = 0 ;

where ˘" 	 HS , ˘� 	 HD are closed polylines and E : HD 7! HS , E�1 :
HS 7! HD are the left and right multivalued maps associated with the relation G
and defined by

E(") : = f � 2 L2(˝ ; S) j f� ;"g 2 G g ;
E�1(�) : = f " 2 L2(˝ ; D) j f� ;"g 2 G g :

The domains dom E 2 L2(˝ ; D) , dom E�1 2 L2(˝ ; S) , the loci where the
images E(") and E�1(�) are non-empty, are assumed to be convex sets.

It can be shown that the integrals along segments are independent of the special
representative in the sets E(") and E�1(�) chosen to evaluate the integrands [10].
A multivalued monotone and conservative relation is governed by a pair of conjugate
convex potentials ˚e : HD 7! R and ˚�

e : HS 7! R related by the involutive
relation

˚�
e(�) : = sup

"2HD

f h � ; " i �˚(") g ;

˚e(") : = sup
�2HS

f h � ; " i �˚�(�) g :

The conjugate convex potentials ˚e : HD 7! R and ˚�
e : HS 7! R can be

evaluated by direct integration of the multivalued maps along a segment or by the
conjugacy relations above.
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The effective domains dom ˚e(") 	 HD and dom ˚�
e(�) 	 HS are the convex

sets where the potentials ˚e : HD 7! R and ˚�
e : HS 7! R assume finite values in

R . The convex potentials ˚e : HD 7! R and ˚�
e : HS 7! R are subdifferentiable

in their domains. The subdifferentials are the convex sets defined by [3,6,11],

@˚e(") : = f � 2 HS j ˚e(") �˚e(") � h � ; " � " i g ;
@˚�

e(�) : = f " 2 HD j ˚�
e(�) �˚�

e(�) � h � � � ; " i g :

The global generalized elastic law is expressed by the subdifferential maps

� 2 @˚e(") ; " 2 @˚�
e(�) :

By definition we have that

˚e(") +˚�
e(�) � h � ; " i 8 " 2 HD 8 � 2 HS ;

˚e(") +˚�
e(�) = h � ; " i () � 2 @˚e(") () " 2 @˚�

e(�) :

Recalling that the elastic law is pointwise defined, we observe that the convex con-
jugate '�

e : S�˝ 7! R of the local potential 'e : D�˝ 7! R is given by

'�
e(T;x) : = sup

D2D
f h T ; D i � 'e(D;x) g :

The global convex potential ˚�
e : HS 7! R , convex conjugate to ˚e : HD 7! R ,

can then be evaluated by each one of the following procedures [17]:

˚�
e(�) : = sup

�2HD

f h � ; � i �˚e(�) g ;

˚�
e(�) : =

∫
˝

(˚�
e(�))(x) d� :

In an analogous way, kinematic constraints are described by a conservative mul-
tivalued monotone nonincreasing relation G 	 F � V and by the pair of conjugate
proper superdifferentiable concave functional J : V 7! R and J� : F 7! R where
R : = R [ f � 1 g is the lower-extended real line [17].

We remark that kinematic constraint conditions are global in character and ac-
cordingly J : V 7! R and J� : F 7! R are global functionals which may not be
defined as integrals of local functionals.

The constraint map is nonincreasing since it provides the relation between the
displacement fields of the constraint and the force systems that the constraint applies
to the structure, that is, the opposite of the force systems of the structure on the
constraint. This change in sign turns the monotone nondecreasing constitutive map
into a nonincreasing one.

Multivaluedness of the constraint relations is the rule rather then the exception:
the simplest linear frictionless bilateral kinematic constraint relation is described by
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multivalued maps. If L is the subspace of conforming virtual displacements the
constraint relation is

G : = f fr ;vg 2 F � V j v 2 L ; r 2 L? g :

Both the left and right maps are constant,

M(v) : = L? ; M�1(r) : = L :

In general reactive force systems are conjugate to the displacements with respect to
the concave functional J : V 7! R , namely,

r 2 @J(u) () J(v) � J(u) � h r ; v � u i 8 u 2 V :

The inverse multivalued law is expressed by the condition

u 2 @J�(r) () J�(r) � J�(r) � h r � r ; u i 8 r 2 F :

By definition,

J(v) + J�(r) � h r ; v i 8 v 2 V 8 r 2 F ;

J(u) + J�(r) = h r ; u i () r 2 @J(u) () u 2 @J�(r) :

The concave conjugate potentials J : V 7! R and J� : F 7! R are related by

J�(r) : = inf
u2V

f h r ; u i � J(u) g ;

J(u) : = inf
r2F

f h r ; u i � J�(r) g :

2.3 Variational formulations

We consider a convex structural problem governed by a kinematic operator B 2
BL (V ; H) under the constitutive law defined by a convex potential ˚ : H 7! R
and the constraint condition defined by a concave potential J : V 7! R , according
to the rules {Bu = " ;

B0� = f ;

{
� 2 @˚(") ;

f 2 @J(u) ;

which respectively impose the kinematic compatibility, the equilibrium, the global
stress-strain law and the force-displacement law.

The stress-strain law is multivalued and monotone nondecreasing while the force-
displacement law is multivalued and monotone nonincreasing.

Recalling the duality between the equilibrium operator B0 2 BL (HS ; F) and
the kinematic operator B 2 BL (V ; HD) ,

h � ; Bv i = h B0� ; v i 8 u 2 V ; 8 � 2 HS = L2(˝ ; S) ;



192 G. Romano, A. Romano

we see that the equilibrium condition B0� = f may be rewritten in variational terms
by the virtual work principle

h � ; Bv i = h f ; v i 8 v 2 V ;

or, explicitly, ∫
˝

h �(x) ; (Bv)(x) i d� = h f ; v i 8 v 2 V :

The convex structural problem defined above can be associated with a family of ten
basic functionals whose stationary points are the solutions of the structural problem
[17]. By introducing the product Hilbert spaces

H = V � HS � HD � F ;

H0 = F � HD � HS � V ;

the operator A : H 7! H0 governing the structural problem is given by

A =

⎡⎢⎢⎢⎢⎢⎣
O B0 O �IF

B O �ID O

O �IS @˚ O

�IV O O @J�

⎤⎥⎥⎥⎥⎥⎦ :

The operator A : H 7! H0 is clearly self-adjoint and, hence, by integrating along a
ray in H , we get the potential

L(";�;u; f) = ˚(") + J�(f) + h � ; Bu i � h � ; " i � h f ; u i ;

which is convex in " , concave in f and linear in u and � .
A solution f ";�;u; f g is then a minimum point with respect to " , a maximum

point with respect to f and a stationary point with respect to u and � .A progressive
elimination of state variables, based on the conjugacy relations, leads to a family of
potentials according to the tree-shaped scheme:

f ";�;u; f g

f ";�;u g f �;u; f g

f ";� g f �;u g f u; f g

f " g f � g f u g f f g:

The family is composed of the ten basic functionals:

L(";�;u; f) = ˚(") + J�(f) + h � ; Bu � " i � h f ; u i;
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H1(";�;u) = ˚(") � J(u) + h � ; Bu � " i;

H2(�;u; f) = �˚�(�) + J�(f) + h � ; Bu i � h f ; u i;

R1(";�) = ˚(") + J�(B0�) � h � ; " i;

R2(u;�) = �˚�(�) � J(u) + h � ; Bu i;

R3(u; f) = ˚(Bu) + J�(f) � h f ; u i;

P(") = ˚(") � (J� ı B0)�(");

G(�) = �˚�(�) + J�(B0�);

F(u) = ˚(Bu) � J(u);

Q(f) = �(˚ ı B)�(f) + J�(f):

All ten functionals of the family have the same value at a solution.
Assuming that the solution fu ;�g 2 V�HS of the structural problem is unique,

we can determine as the minimum point of the extremum problem

F(u) = min
v2V

F(v) = min
v2V

f˚(Bv) � J(v) g ;

or as the maximum point of the extremum problem

G(�) = max
s2HS

G(s) = max
s2HS

f J�(B0s) �˚�(s) g :

Moreover, at the solution,

max
s2HS

G(s) = G(�) = F(u) = min
v2V

F(v) :

This relation provides a basis for bounding techniques which are applied in the sequel
to the effective response of homogenized media.

3 Periodic homogenization

Let C be a periodicity cell (a parallelepiped in En ) and u] 2 L2(En ; V) the
C-periodic extension of a vector field u 2 HV = L2(C ; V) , defined by

u](x + khi) : = u(x) 8 x 2 C ;

for any integer k and each oriented side hi ; i = 1; :::; n, of the periodicity cell.
We then consider a convex structural problem in the cell C with kinematic con-

straints which require that a conforming displacement field u 2 LPER(C) , belonging
to a conformity linear subspace LPER(C) , is such that the corresponding C-periodic
extension u] 2 L2(En;V) is Green regular, that is, such that∫

!

k u](x) k2
V

+ k (Bu])(x) k2
D
d� < + 1
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for any compact subset ! in the euclidean space En .
That this condition is satisfied means that there are no jumps of the boundary

traces of the C-periodic extension displacement field across the interfaces of a regular
mesh of repetitive periodicity cells. This condition is equivalent to requiring that the
boundary traces of the displacement are equal on opposite faces of the cell. It follows
that the mean value of the corresponding strain field vanishes, since

medC (Bu) = sym
∫
@C

�u ˝ n dS = 0 :

Homogenization can be carried out by solving the direct structural problem of
the cell under the action of a constant strain field " = Im M�

C 	 H(C) so that
"(x) = D 2 D for almost all x 2 C . Setting ˝ = C and T(˝) = f C g we
denote by V(C ; V) 	 VC the kinematic space of displacements fields which are
Green-regular in C .

Conforming displacements fields belong to the closed linear subspace LPER(C) 	
V(C ; V) . The problem is well-posed since strain fields corresponding to conforming
displacements have null mean value and hence any constant strain field is effective
as an imposed strain. The homogenized local constitutive law is the one that relates
the mean value of the elastic stress field to the imposed constant strain field.

3.1 Orthogonal decomposition

A basic property of conforming displacements considered in periodic homogeniza-
tion problems is that they have null mean value,

LPER 	 Ker MC = ( Im M�
C)? ;

where LPER stands for LPER(C) . We then consider the closed linear subspace of
displacement fields which can be expressed as the sum of a conforming field and of
a constant-strain field,

L : = f v 2 V(C ; V) j Bv 2 BLPER � Im M�
C g :

Then the following relations hold:

BLPER = BL \ Ker MC ; (BLPER)? = (BL)? � Im M�
C ;

BL = BLPER � Im M�
C ; (BL)? = (BLPER)? \ Ker MC :

By Korn’s inequality the linear subspace BL is closed in HD and hence the follo-
wing direct sum decomposition holds

HD = BL � (BL)? :

It follows that the Hilbert space HD can be decomposed as the direct sum of three
mutually orthogonal subspaces,

HD = Im M�
C � BLPER � (BL)?

= Im M�
C � BLPER � (BLPER)? \ Ker MC :
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This direct sum decomposition in orthogonal complements plays a basic role in
subsequent developments.

3.2 Conjugate potentials for the cell problem

The stress-strain law is assumed to be expressed by a generalized elastic law governed
by two regular conjugate global convex potentials ˚e(") and ˚�

e(�) . The conjugate
potentials governing the kinematic constraint for the cell problem are given by

J(u) : = uLPER
(u � uD) ;

J�(f) : = uL?
PER

(f) + h f ; uD i ;

where uD 2 L is a displacement field such that (BuD)(x) = D for all x 2 C .
Then BuD 2 Im M�

C . The symbol uA denotes the concave indicator of the set A ,
defined by

uA(x) : =
{0 x 2 A ;

� 1 x 62 A :

The functionals

F(u) = ˚(Bu) � J(u) ; u 2 V ;

G(�) = J�(B0�) �˚�(�) ; � 2 H ;

take the explicit form

F(u) = ˚e(Bu) ; u 2 uD + LPER ;

G(�) = h � ; BuD i �˚�
e(�) ; � 2 (BLPER)? :

Recalling the orthogonal decomposition (BLPER)? = Im M�
C � (BL)? , we can

conveniently rewrite

FD(v) = ˚e(M�
CD + Bv) ; v 2 LPER ;

GD(s;T) = h M�
CT ; M�

CD i �˚�
e(M

�
CT + s) ; s 2 (BL)? ; T 2 S :

3.3 Effective response

The global effective potential of the homogenized constitutive law is defined by

˚H(M�
CD)= minfFD(v) j v 2 LPER g

= maxfGD(s;T) j s 2 (BL)? ;T 2 S g ;

or, explicitly,

˚H(M�
CD)= minf˚e(M�

C D + �) j � 2 BLPER g
= maxf h M�

CT ; M�
CD i �˚�

e(M
�
CT + s) j s 2 (BL)? ;T 2 S g :
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The global effective potential is convex, as it is the inf-convolution of the two
convex functionals. Indeed,

˚H(M�
CD)= minf˚e(M�

C D � �) j � 2 BLPER g
= minf˚e(M�

C D � �) + t
BLPER

(�) g

= (˚e � t
BLPER

)(M�
C D) :

We recall that the epigraph of the inf-convolution of two convex functionals is
the convex sum of the two convex epigraphs and that

˚e � t
BLPER

= (˚�
e + t

(BLPER)
?)� :

The local potential of the homogenized constitutive law is then defined as

'H(D) =
1

vol (C)
(˚H ı M�

C)(D) =
1

vol (C)

[
(˚e � t

BLPER
) ı M�

C

]
(D) :

Observing that ˚e = MC 'e and that

h M�
CT ; M�

CD i = vol (C) h T ; D i ;

we get the following expression for the local homogenized potential:

'H(D)= minf medC('e(M
�
C D � �)) j � 2 BLPER g

= maxf h T ; D i � medC('�
e(M

�
CT + s)) j s 2 (BL)? ;T 2 S g

= max
T2S

{
h T ; D i � 1

vol (C)
(˚�

e � t
(BL)?) ı M�

C(T)
}
:

Hence, setting

 H(T) =
[

1
vol (C)

(˚�
e � t

(BL)?) ı M�
C

]
(T) ;

we get the conjugacy relation
'H = ( H)� :

By the properties of the inf-convolution we know that, setting

˚H(M�
CD) = minf˚e(M�

C D � �) j � 2 BLPER g = ˚e(M�
C D � "D)

= (˚e � t
BLPER

)(M�
C D) ;

with "D = BuD and uD 2 LPER , we have{
M�

C D � "D 2 @˚�
e(�D) ;

"D 2 @ t
(BLPER)

? (�D) ;

where
�D 2 @(˚e � t

BLPER
)(M�

C D) = @˚H(M�
CD) ;

is the stress solution of the direct problem [17].
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By the chain rule of subdifferential calculus,

@(˚H ı M�
C)(D) = MC @˚H(M�

C D) ;

and, from the definition of 'H , we eventually get the relation

med(�D) 2 @'H(D) ;

that justifies the homogenization role played by the potential 'H .

3.4 Inverse effective response

An alternative procedure for carrying out the homogenization process, consists in
solving the inverse structural problem of the cell under the action of a constant
stress field � = Im M�

C 	 HS(C) = L2(C ; S) so that �(x) = T 2 S for
almost all x 2 C . Setting ˝ = C and T(˝) = f C g we denote by V(C ; V) the
kinematic space of displacements fields which are Green-regular in C . Conforming
displacement fields are assumed to belong to the subspace LPER(C) 	 V(C;V) .
Self-equilibrated stresses then belong to the linear subspace L?

PER(C) . The problem
is well-posed if every stress field is assumed to be the sum of the prescribed constant
field and any self-equilibrated field with zero mean value. Indeed in this case any
constant stress field is effective as an imposed stress.

According to the inverse homogenization procedure the homogenized local con-
stitutive law is the one that relates the mean value of the strain field to the imposed
constant stress field.

The conjugate pairs of convex potentials governing the monotone stress-strain
and force-displacement relations are given as:

˚�(�) : = ˚�
e(�) + t

KerMC
(� � M�

CT) ;

˚(") : =
(
˚e � (t

ImM�
C

+ h M�
CT ; � i

)
(") ;

J�(f) : = uL?
PER

(f) ;

J(u) : = uLPER
(u) :

Recalling that (BL)? = (BLPER)? \ Ker MC and setting

� = M�
CT + s with s 2 (BL)? ;

we see that the functionals

F(u) = ˚(Bu) � J(u) ; u 2 V ;

G(�) = J�(B0�) �˚�(�) ; � 2 H ;

take the explicit forms

FT(v;D) = inf
D2D

{
˚e(Bv + M�

CD) � h M�
CT ; M�

CD i
}

� uLPER
(v) ;

GT(s) = �
(
˚�

e(M
�
CT + s) + t

(BL)?(s)
)
:
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The global effective potential of the homogenized medium is the convex functional
�H : H 7! R defined by one of the equivalent relations

��H(M�
CT) : = min

v2LPER

FT(v) = min
v2L

f˚e(Bv) � h M�
CT ; Bv i g ;

��H(M�
CT) : = max

s2(BL)?
GT(s) = max

s2(BL)?
f �˚�

e(M
�
CT + s) g ;

= � min
s2(BL)?

f ˚�
e(M

�
CT � s) + t

(BL)?(s) g ;

= �(˚�
e � t

(BL)?)(M�
CT) :

The local potential of the homogenized constitutive law is then defined as

 H(T) : =
1

vol (C)
(�H ı M�

C)(T) :

Recall that the corresponding convex potential for the direct problem is defined by
the equivalent relations

˚H(M�
CD) : = min

v2LPER

FD(v) = min
v2LPER

˚e(M�
CD + Bv) ;

˚H(M�
CD) : = max

s2(BLPER)?
GD(s) = max

s2(BLPER)?
f h s ; M�

CD i �˚�
e(s) g :

Hence, as (BLPER)? = (BL)? � Im M�
C , we have

˚H(M�
CD) = max

s2(BLPER)?
f h s ; M�

CD i �˚�
e(s) g ;

= max
T2S

max
s2(BL)?

{
h M�

CT ; M�
CD i � ˚�

e(M
�
CT + s)

}
= max

T2S

{
h M�

CT ; M�
CD i ��H(M�

CT)
}

= (�H)�(M�
CD) :

By the properties of the inf-convolution we also have

�H(M�
CT) = minf˚�

e(M
�
C T � s) j s 2 (BL)? g = ˚�

e(M
�
C T � sT)

= (˚�
e � t

(BL)?)(M�
C T) ;

with sT 2 (BL)? and {
M�

C T � sT 2 @˚e("T) ;

�T 2 @ t
BL ("T) ;

where
"T 2 @(˚�

e � t
(BL)?)(M�

C T) = @�H(M�
CT) ;

is the strain solution of the inverse problem [17].
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By the chain rule of subdifferential calculus we infer that

@(�H ı M�
C)(T) = MC @�H(M�

C T) ;

and from the definition of  H we eventually get the relation

med("T) 2 @ H(T) ;

that justifies the homogenization role played by the potential  H .

Remark 4. The conjugacy relation between the potentials of the direct and the inverse
cell problems can also be obtained by applying the following conjugacy rules:

(˛f)�(x�) = ˛f�(
1
˛

x�) 8˛ > 0 ;

(f ı L)�(x�) = inf f f�(y�) j L0(y�) = x� g ;
(f� g)�(x�) = inf f f�(x�

1) + g�(x�
2) j x�

1 + x�
2 = x� g ;

which hold under reasonable global regularity conditions of the involved potentials
[3,5,6]. Less stringent local conditions were contributed in [12].

Indeed,

('H)�(T) =
[

1
vol (C)

(˚e � t
BLPER

) ı M�
C

]�
(T)

=
1

vol (C)

[
(˚e � t

BLPER
) ı M�

C

]�
(vol (C)T)

=
1

vol (C)
inf

{
(˚e � t

BLPER
)�(�) j MC(�) = vol (C)T

}
=

1
vol (C)

inf
{

(˚�
e + t

(BLPER)?)(�) j MC(�) = vol (C)T
}

=
1

vol (C)
inf

{
(˚�

e(M
�T + s) + t

(BL)?(s)
}

=
[

1
vol (C)

(˚�
e � t

(BL)?) ı M�
C

]
(T) =  H(T) :

Note that, from the relation (BLPER)? = (BL)? � Im M�
C , we have argued that

the conditions
� 2 (BLPER)? ; MC(�) = vol (C)T ;

are equivalent to the assumption that � = M�T + s with s 2 (BL)? .

3.5 Bounds on the effective response

In computing the local potential of the homogenized constitutive law we can get a
rough estimate by taking respectively � = 0 and s = 0 in the expressions to be
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minimized and maximized as reported in Sect. 3.3. The upper and lower bounds so
obtained are the generalized Voigt (upper) and Reuss (lower) bounds for the effective
potential of the homogenized medium:

maxf h T ; D i � medC('�
e(M

�
C T)) j T 2 S g � 'H(D) � medC('e(M

�
C D)) :

To get the Voigt bound we consider a constant strain field M�
C D , evaluate the

corresponding local potential ' at any point of the cell and take its mean value. In
this way an arithmetic mean approximation is obtained.

In the linear elastic case the Voigt approximation amounts to taking the compo-
sition of the local elastic stiffnesses by a parallel scheme of elastic springs, and the
effective elastic stiffness is given by the average of the local stiffnesses.

To get the Reuss bound we consider a constant stress field M�
C T , evaluate

the corresponding conjugate local potential '� at any point of the cell, take the
mean value and evaluate the conjugate local potential. In this way a harmonic mean
approximation is obtained.

In the linear elastic case the Reuss approximation amounts to taking the com-
position of the local elastic stiffnesses by a serial scheme of elastic springs, and the
effective compliance is given by the average of the local compliances.

Better bounds can be found by computing approximate solutions of the cell
problem either directly, in terms of conforming displacements with zero mean strain,
to get upper bounds, or in the complementary way, in terms of self-stresses with zero
mean value, to get lower bounds.

Another approach to the problem of bounding the effective properties of the
homogenized medium is provided by polarization techniques which were first applied
to elasticity problems by Hashin and Shtrikman in 1962 [1,2] and then extended and
generalized to the non-linear setting by Talbot and Willis in 1985 [7] and by Willis
and Toland-Willis in 1989 [8,9].

3.6 Uniform local bounds

We now assume that the field of local potentials 'e is uniformly bounded from
above and from below,

'� � 'e � '+ ;

where '�; '+ : D 7! R are convex functions. From the Voigt-Reuss inequalities

maxf h T ; D i � medC('�
e(M

�
C T)) j T 2 S g � 'H(D) � medC('e(M

�
C D)) ;

where
('+)� � '�

e � ('�)� ;

medC('e(M
�
C D)) � '+(D) ;

medC('�
e(M

�
C T)) � ('�)�(T) ;
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'�(D)= maxf h T ; D i � ('�)�(T) j T 2 S g

� maxf h T ; D i � medC('�
e(M

�
C T)) j T 2 S g ;

we infer that the same bounds hold for the local potential of the homogenized con-
stitutive law, that is,

'� � 'e � '+ =) '� � 'H � '+ :

3.7 Geometric constraints

We remark that the analysis carried out above relies only on the property that con-
forming displacements belonging to the subspace LPER have zero mean value, that
is, that LPER 	 Ker MC .

We could thus also choose the conforming subspace

Lo(C) : = f v 2 V(C) j �v = 0 g = Ker � 	 Ker MC ;

instead of LPER(C) . Since Lo(C) 	 LPER(C) , denoting by 'oH and  oH the direct
and inverse local effective potentials under the constraints defined by Lo(C) , we
get the inequalities

'H � 'oH ;  H �  oH :
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Tangent stiffness of polar shells
undergoing large displacements

G. Romano, C. Sellitto

Abstract. The paper deals with the definition and evaluation of the tangent stiffness of hyper-
elastic polar shells without drilling rotations. The ambient space for such bodies is a non-linear
differentiable manifold. As a consequence the incremental equilibrium must be expressed as
the absolute time derivative of the non-linear equilibrium condition expressing the balance
between the elastic response and the applied forces. In the absolute time derivative the classical
directional derivative is replaced by the covariant derivative according to a fixed connection on
the manifold. The evaluation of the tangent stiffness requires us to take the second covariant
derivative of the finite deformation measure and this in turn requires an extension of the virtual
displacement field in a neighborhood of the given configuration of the shell. It is explicitly
shown that different choices of this extension lead to the same tangent stiffness, which is
symmetric since the chosen connection is torsionless.

1 Introduction

The evaluation of the tangent stiffness of an hyperelastic body is of crucial importance
when dealing with finite changes of configuration. The tangent stiffness provides the
linear relationship between the rate of change of configuration and the corresponding
rate of change of elastic response of the body in terms of forces. The analysis of
small vibrations of a finitely deformed elastic body, the instability of equilibrium
configurations and the prediction of the way in which an elastic body tends to move
under a loading path, are all governed by the properties of the tangent stiffness.

There are many different ways of defining a deformation measure of the body
and the choice of a special measure changes the way in which the modeling of the
constitutive properties of the material is performed. The basic requirements with
which a deformation measure has to conform, are that the measure must be indepen-
dent of superimposed rigid changes of configuration and must be a local field in the
sense that its value at a point must not be affected by a change of the placement map
outside any neighborhood of that point.

The definition of a rigid change of configuration is a basic item that must be given
in describing the kinematical properties of the body in its motion in the ambient
space. In hyperelastic bodies Green’s potential defines the local elastic properties of
the material in terms of its deformation from a given natural state. The deformation
field depends in turn on the map which defines the placement of the body with respect
to a reference configuration in the ambient space.

Once a deformation measure has been chosen, the local elastic potential can be
expressed as the composition of the local elastic energy and the deformation measure.
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It is then a function of the configuration change from a reference configuration in
which the material is assumed to be in a natural state. The global elastic potential is
obtained by integrating the local elastic potential over the whole body in the reference
configuration.

In finite deformation analysis all the state variables defined in the actual confi-
guration are transformed into the corresponding ones in the reference configuration.
Accordingly, in an evolution process, the equilibrium condition at the actual confi-
guration is expressed by imposing the equality between the directional derivative of
the global elastic potential along a conforming virtual (tangent) displacement and the
corresponding virtual work of the referential forces. The derivative of the global ela-
stic potential is the elastic response of the body to the change of configuration. Both
the elastic response and the referential forces are bounded linear forms on the linear
space of conforming virtual displacements. The condition of incremental equilibrium
is then obtained by taking the time derivative of the equilibrium condition.

In classical structural analysis the time derivative of the elastic response is ex-
pressed by means of the chain rule, as the directional derivative of the elastic response
along the velocity field of the body. When dealing with polar bodies this procedure
must be revised to take into account the non-affine geometrical structure of the phy-
sical space. In such a situation the time derivative must be replaced by the absolute
differentiation with respect to time, defined as the covariant derivative of the elastic
response along the velocity field.

To grasp the motivation of this new approach one has to consider that, when the
ambient space is a non-linear differentiable manifold, the tangent spaces of virtual
displacements and their dual counterparts, the cotangent spaces of force systems,
change from point to point. In general there is no way to perform a classical diffe-
rentiation of a vector or of a covector field on a differentiable manifold since this
would necessitate taking the difference of unrelated vectors belonging to different
linear spaces.

In structural mechanics the non-linear differentiable manifold defining the am-
bient space is usually embedded into a larger affine space with a euclidean structure.
In this case the covariant differentiation simply amounts to taking the component of
the directional derivative on the subspace tangent to the manifold.

This definition of the covariant differentiation is equivalent to considering the
Levi–Civita connection on the manifold associated with the Riemannian metric in-
duced by the euclidean metric of the larger affine space.

One more essential point remains to be fixed. The directional derivative of a field
of linear forms on a linear space satisfies the Leibniz rule of calculus: the directional
derivative of a linear form at a vector field is equal to the difference between the
directional derivative of its value at the vector field and its value corresponding to
the directional derivative of the vector field.

By analogy the covariant differentiation of a linear form is defined by means of a
formal application of the Leibniz rule: the value of the covariant derivative of a linear
form at a vector field is equal to the difference between the covariant derivative of its
value at the vector field and its value corresponding to the covariant derivative of the
vector field. The definition is well-posed since, although both terms in the difference
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depend on the values that the vector field takes in a neighborhood of the point, their
difference is local and hence the covariant derivative of the linear form is tensorial.

From the discussion above it follows that the tangent stiffness must be properly
defined as the covariant derivative of the elastic response. As the covariant derivative
of a linear form, the tangent stiffness is then a two-times covariant tensor. The eva-
luation of the tangent stiffness of polar elastic bodies is then a remarkable example
of the application of differential geometry, and specifically of calculus on manifolds,
to issues of mechanics.

In previous treatments, in dealing with models of polar beams and shells, the
geometric tangent stiffness was simply evaluated as the inner product of the refe-
rential stress and the second directional derivative of the deformation measure. It is
apparent that such an evaluation requires the extension of the virtual displacement
along which the first derivative is taken, to a vector field defined in a neighborhood
of the given configuration.

In finite deformation analysis of polar shells without drilling rotations the ambient
space is the trivial fiber bundle defined by the cartesian product of the euclidean
space (the base manifold) and the unit sphere (the fiber). The corresponding tangent
stiffness, computed by taking the second covariant derivative of the deformation
measure, is local and symmetric when the space manifold is endowed with the Levi–
Civita connection induced by the larger affine space.

Two different extensions of the virtual displacement are investigated and it is
shown that the one yields a symmetric second directional derivative of the deforma-
tion measure while the other leads to a non-symmetric second directional derivative.
It is further shown, by explicit calculation, that the corresponding second covari-
ant derivative of the deformation measure is, however, symmetric in both cases, as
required by the theory.

2 Polar shells

The general theory of polar models developed in [12] was applied in [13] to the ana-
lysis of the polar model of shear deformable beams undergoing finite configuration
changes.

Here we investigate in detail a polar model of shear deformable shells in finite
deformations which is referred to in the literature as the shell without drilling rotations
[7].

Let E3 be euclidean space and V3 the associated linear space of translations.
The material shell B is a set of particles which, at each time t 2 I , are located

at points of a differentiable submanifold of the physical space E = E3 .
The polar model of a shell without drilling rotations is a two-dimensional structu-

ral model characterized by a middle surface B and by vectors of prescribed length in
V3 attached at each of its points to simulate the constant thickness of the transversely
undeformable shell. The corresponding versors, called directors, range over the unit
sphere S2 which is a compact differentiable manifold without boundary embedded
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in V3 ,

S2 := (d 2 V3 : kdk = 1) :

The ambient space, in which the motion of the shell takes place, is then the differen-
tiable manifold without boundary

S = E3 � S2 ;

a trivial fiber bundle having the euclidean space E3 as base manifold and the unit
sphere S2 as typical fiber.

The base configuration map �t : B 7! E of the shell at time t 2 I is a bijection
of the material shell B onto the base placement Bt 	 E which is the middle surface
of the shell.

The polar structure st : Bt 7! S is a map from the middle surface at time t onto
the placement Pt = st(Bt) . The map st : Bt 7! S , defined by

st(pt) := f pt ;dt g 2 Bt � S2 ;

is a section of the fiber bundle S on the submanifold Bt 	 E .
A spatial configuration of the polar shell at time t 2 I is an injective map

ut : B 7! S which assigns a placement Pt := ut(B) 	 S to the material shell
B and is given by the composition of the base configuration map with the polar
structure

ut = st ı �t :

We consider the change of base configuration �t;s 2 Ck(Bs ; Bt) from �s to �t
defined by

�t;s ı �s = �t :

The configuration change from us to ut is the map ut;s : us(B) 7! ut(B) 	 S

defined by

ut;s ı us = ut :

To extract the base point and the director from a pair f pt;dt g we introduce the
cartesian projectors

P1f pt;dt g := pt ; P2f pt;dt g := dt :

Accordingly we define the map d̂t : Bt 7! S2 , which provides the director associated
to a base point on the middle surface,

d̂t(pt) := (P2 ı st)(pt) ; pt 2 Bt :

To simplify the notation we drop the ˆ and simply write dt for d̂t .
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We consider the finite deformation measure for the polar shell model without
drilling rotations that was proposed and analyzed in [7]. It consists of the triplet

A(ut;s) :=

∣∣∣∣∣∣∣∣
"(�t;s)

ı(ut;s)

C(ut;s)

∣∣∣∣∣∣∣∣
composed of

"(�t;s)(a;b):= g(�t;s�a; �t;s�b) � g(a; b) ; membrane strain ;

ı(ut;s)(a):= g(dt; �t;s�a) � g(ds; a) ; shear sliding ;

C(ut;s)(a;b):= g(@�t;s�a
dt; �t;s�b) � g(@ads; b) ; flexural curvature ;

where a ;b 2 TBs
(ps) . The push forward �t;s� 2 BL (TBs

; TBt
) associated with

the map �t;s 2 Ck(Bs;Bt) is defined (see [1–3]) by

�t;s�(ps;a) := f�t;s(ps) ; @a�t;s(ps)g :

The push forward maps a given tangent vector applied at a point of a manifold into
the corresponding deformed tangent vector applied to the transformed point. The
tangent space at fx ;dg 2 S = E3 � S2 is the product manifold

TS(x ;d) = TE3(x) � TS2(d) = V3 � TS2(d) :

The virtual displacements ıut;s 2 Hk(Bs ; TS
) are defined by

ıut;s(ps) = ft(ut;s(ps)) ;X(ut;s(ps))g with

{
t (ut;s(ps)) 2 TE3(pt) ;

X(ut;s(ps)) 2 TS2(dt)

for any ps 2 Bs and f pt;dt g = ut;s(ps) , where ut;s(ps) is an abbreviation for
(ut;s ı ss)(ps) .

Remark 1. We observe that, despite their wide acceptance (see, e.g., [4–6]) the de-
formation measures reported above in this section and commonly adopted in the
literature for polar shells without drilling rotations, lead to physically implausible
results in the case of significant membrane strains. Indeed a simple computation re-
veals an unrealistic behavior of an inflated polar spherical baloon since an increase
of flexural curvature is measured when the radius increases. The effect is due to the
amplification of the convected tangent vectors due to the deformation.

To eliminate this shortcoming we redefine the deformation measures for polar
shells without drilling rotations as

"(�t;s)(a;b) := g(�t;s�a; �t;s�b) � g(a; b) ; membrane strain ;

ı(ut;s)(a) := g(dt; �t;s�a) � g(ds; a) ; shear sliding ;

C(ut;s)(a;b) := g(@�t;s�a
dt; Rt;sb) � g(@ads; b) ; curvature change ;
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where Rt;s is the isometric transformation associated with the push forward �t;s�
according to the polar decomposition formula �t;s� = Rt;s Ut;s where Ut;s is the
right Cauchy stretch tensor. The new expression for the curvature change correctly
predicts no flexural curvature in the inflated polar spherical baloon when the radius
is changed. Indeed in this problem the rotation Rt;s reduces to the identity and
dt ı �t;s = ds so that

(@�t;s�a
dt) ı �t;s = @ads :

The computation of the tangent stiffness for this new shell model is dealt with in a
forthcoming paper.

Fig. 1. Inflated polar spherical baloon

2.1 Tangent stiffness

Let vX := ftX ;Xg and vY := ftY ;Yg be referential virtual displacements at
the placement Pt . For any ps 2 Bs the position at time t is given by f xt;dt g =
ut;s(ps) 2 Pt , and hence the referential virtual displacements are functions of the
point ps 2 Bs and of the configuration change ut;s 2 Ck(Bs;S) . To simplify the
notation we write vX or vX(ut;s) , dropping the explicit dependence on ps 2 Bs .

The constitutive tangent stiffness of the shell is evaluated by taking the directional
derivative of the elastic potential along a virtual displacement and by subsequently
taking the absolute time derivative of the directional derivative. As we have seen, by
applying the Leibniz rule the tangent stiffness is decomposed as the sum of an elastic
part and a geometric part.
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The symmetric elastic tangent stiffness is the bilinear form in vX;vY given by
the formula

@2'(A(ut;s)) � (@A(ut;s) � vY ) � (@A(ut;s) � vX ) ;

where the virtual displacement vX is indeed the velocity vector along the equilibrium
path, which is the unknown of the incremental elastic equilibrium problem.

The geometric tangent stiffness is the bilinear form in vX;vY given by

@'(A(ut;s)) �
[
r2

vXvY
(A(ut;s))

]
=

@'(A(ut;s)) �
[
(@vX

@v̂Y
� @rvX

v̂Y
)(A(ut;s))

]
:

To compute the second covariant derivative of the deformation measure it is tempting
to choose a connection on the space manifold. Such a choice determines whether
symmetry of the geometric tangent stiffness is ensured or not. Indeed a torsionless
connection implies the symmetry of the second covariant derivative of the defor-
mation measure and hence the symmetry of the geometric tangent stiffness. On the
other hand, if the connection is not symmetric, the second covariant derivative can
fail to be symmetric.

To provide a symmetric expression of the Hessian of the deformation measure,
we assume that the manifold S = E3 � S2 is endowed with the Riemannian metric
g 2 BL (TS;TS ; R) induced by the usual metric in E3 . The Levi–Civita connection
r on fS ;gg is uniquely defined by the requirements that it is metric and torsionless:

i) @c (g (a;b)) = g (rca;b) + g (a;rcb) ;

ii) T(a;b) := rab � rba � [a;b] = o ;

where a ;b ; c 2 C1(S ; T
S
) are spatial vector fields.

The covariant derivative on S2 corresponding to this natural choice of the connec-
tion, can easily be computed as the projection of the directional derivative in E3 on
the tangent space to S2 . Alternatively recourse can be made to the general formula
due to Koszul [9]:

2g (ra b; c) = da (g (b; c)) + db (g (c;a)) � dc (g (a;b)) + g ([a;b]; c)+

�g ([b; c];a) + g ([c;a];b) :

This more involved procedure, which requires the computation of the Lie brackets
appearing in the last three terms, was adopted in [8].

The evaluation of both terms of the right-hand side in the expression of the second
covariant derivative r2

vX vY
(A(ut;s)) requires an extension v̂Y := ft̂Y ; Ŷg of

the virtual displacement vY := ftY ;Yg along virtual trajectories in the physical
space. However, as we show, the second covariant derivative does not depend on
how the extension is performed. Note that the extension of the vector tY is trivial
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and consists in assuming it to be constant in the affine euclidean space E3 . On the
other hand, different extensions of the virtual displacement Y tangent to S2 at dt
change the second directional derivative while the second covariant derivative of the
deformation measure is unchanged.

2.2 Extensions of the virtual displacements

We consider two extensions of the virtual displacement. The covariant derivative
of the virtual displacement and the second directional derivative of the strain mea-
sure assume different expressions corresponding to the two extensions. In any case,
as is to be expected from the general results, the same expression is obtained for
the geometric tangent stiffness which is symmetric since the relevant connection is
torsionless as it is induced by a Riemannian metric.

First extension. We first recall that, for any ps 2 Bs , we have f pt;dt g = ut;s(ps) 2
Pt . The tangent vectors X(ut;s);Y(ut;s) 2 TS2(dt) can be expressed as

X(ut;s) = WX P2 ut;s = WX dt = !X � dt ;

Y(ut;s) = WY P2 ut;s = WY dt = !Y � dt ;

where WX and WY are semisymmetric tensors in V3 characterized by axial
vectors !X and !Y which are assumed to be orthogonal to dt .

We now consider a virtual trajectory u�;t 2 Ck(Bt;P�) starting at Pt and having
velocity vX(ut;s) 2 Hk(Bs ; TS

) at time t . We may choose the following extension
for the virtual displacement vY(ut;s) = ftY(ut;s) ;Y(ut;s)g :⎧⎨⎩ t̂Y(u�;s) := tY(ut;s) ;

Ŷ(u�;s) := WY d� = !Y � d� ;

where u�;s = u�;tıut;s . Since the vector field t̂Y(u�;s) is taken constant in V3 along

the virtual trajectory, the evaluation of the covariant derivative of v̂Y = ft̂Y ; Ŷg
at fxt ;dtg along vX = ftX ;Xg amounts to computing the covariant derivative of

Ŷ(u�;s) at ut;s along X(ut;s) . To this end we observe that

@X dt =
@

@�

∣∣∣∣
�=t

P2 ı u�;s = P2 ı vX = X :

The directional derivative is then given by

(@XŶ)(ut;s) = WYWXdt = !Y � (!X � dt) =

= g(!Y ;dt) !X � g(!Y ;!X)dt =

= �g(!Y ;!X)dt = �g(X ;Y)dt ;

since g(!Y ;dt) = 0 by assumption.
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With ˘ denoting the orthogonal projector in E3 on the tangent space TS2(dt)
at the point dt , the formula of the covariant derivative yields

(rXŶ)(ut;s) = ˘ (@XŶ)(ut;s) = �g(!Y ;!X) ˘ dt = o

8 X 2 TS2(dt) ;

since ˘ dt = o .
As a consequence (rv̂Y)(ut;s) = o and the second covariant derivative of the

deformation measure at ut;s coincides with the second directional derivative, that
is,

r2
vX vY

(A(ut;s))(dt) = @vX
@v̂Y

(A(ut;s))(dt) :

We then compute the second directional derivative of the components of the strain
measure. To this end we first observe that

@tX �t;s = tX ; �t;s�a = @a �t;s ;

@tX @a �t;s = @a @tX �t;s = @a tX :

The second directional derivative of the membrane strain yields, for a ;b 2 TBs
,

the expression

@vX
@vY

[
"(�t;s)(a;b)

]
= @vX

@vY

[
g(�t;s�a; �t;s�b) � g(a; b)

]
= @vX

[
g(@atY ;�t;s�b) + g(�t;s�a ; @btY)

]
= g(@atY ; @btX) + g(@atX ; @btY) ;

which is clearly symmetric in X;Y .
The second directional derivatives of the shear sliding yields, for a 2 TBs

, the
expression

@vX
@vY

[
ı(ut;s)(a)

]
= @vX

@vY

[
g(dt; �t;s�a) � g(ds; a)

]
= g(@XŶ ;�t;s�a) +g(Y ; @atX) + g(X ; @atY)

= �g(X ;Y)g(dt ;�t;s�a) +g(Y ; @atX) + g(X ; @atY) :
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The second directional derivative of the flexural curvature is given by

@vX
@vY

[
C(ut;s)(a;b)

]
= @vX

@vY

[
g(@�t;s�a

dt; �t;s�b) � g(@ads; b)
]

= @vX

[
g(@�t;s�a

Y ;�t;s�b) + g(@�t;s�a
dt ; @btY) + g(@@atY

dt ;�t;s�b)
]

= g(@�t;s�a
(@XŶ) ;�t;s�b) + g(@�t;s�a

Y ; @btX) + g(@�t;s�a
X ; @btY)

+g(@@atX
Y ;�t;s�b) + g(@@atX

dt ; @btY)

+g(@@atY
X ;�t;s�b) + g(@@atY

dt ; @btX) :

= �g(@�t;s�a
(g(X ;Y)dt) ;�t;s�b) + g(@�t;s�a

Y; @btX) + g(@�t;s�a
X; @btY)

+g(@@atX
Y ;�t;s�b) + g(@@atX

dt ; @btY)

+g(@@atY
X ;�t;s�b) + g(@@atY

dt ; @btX) :

From the expressions above it is apparent that the second directional derivatives
of the shear sliding and of the flexural curvature are symmetric with respect to
exchanging of X and Y , as was to be expected. Indeed the second directional
derivative coincides with the second covariant derivative for the adopted extension
of the virtual displacements.

The same results are obtained by considering another, perhaps simpler, extension
for the virtual displacement Y = Y(ut;s) , defined as:

Ŷ(u�;s) := (I � d� ˝ d�)Y ; d� = P2u�;s ;

so that

Ŷ(ut;s) = (I � dt ˝ dt)Y = Y :

The directional derivative of Ŷ along X at ut;s is given by

(@XŶ)(ut;s) = �(X ˝ dt + dt ˝ X)Y = �g(X ;Y)dt

and the covariant derivative by

(rXŶ)(ut;s) = ˘ (@XŶ)(ut;s) = �g(X ;Y) ˘ dt = o :

Second extension. We now choose a different extension of the virtual displacement
vY(ut;s) by setting⎧⎨⎩ t̂Y(u�;s) := tY(ut;s) ;

Ŷ(u�;s) :=
[
1 � g(d� ;Y)

]
(!Y � d�) ; d� = P2u�;s;
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so that, since g(dt ;Y) = 0 and !Y � dt = Y , we have

Ŷ(ut;s) =
[
1 � g(dt ;Y)

]
(!Y � dt) = Y :

The directional derivative of Ŷ along X at dt is given by

(@XŶ)(ut;s) = �g(X ;Y) (!Y � dt) +
[
1 � g(dt ;Y)

]
(!Y � X)

= �g(X ;Y) (!Y � dt) + !Y � (!X � dt)

= �g(X ;Y)Y � g(!Y ;!X)dt = �g(X ;Y) (Y + dt) ;

and the covariant derivative by

(rXŶ)(ut;s) = ˘ (@XŶ)(ut;s) = �g(X ;Y)Y :

The second directional derivative of the shear sliding is now given by

�g(X ;Y)g(Y + dt ;�t;s�a) + g(Y ; @atX) + g(X ; @atY) ;

and that of the flexural curvature by

�g(@�t;s�a
(g(X ;Y)(Y + dt)) ;�t;s�b) + g(@�t;s�a

Y ; @btX)

+g(@�t;s�a
X ; @btY) + g(@@atX

Y ;�t;s�b) + g(@@atX
dt ; @btY)

+g(@@atY
X ;�t;s�b) + g(@@atY

dt ; @btX) :

Both these expressions are non-symmetric due to the lack of symmetry of the first
terms.

Symmetry is however recovered by taking into account the additional term appea-
ring in the expression of the second covariant derivative of the deformation measure
which does not vanish since (rXŶ)(ut;s) = �g(X ;Y)Y .

In fact, for the shear sliding we have

@rvX
v̂Y

[
ı(ut;s)(a)

]
= �g(X ;Y)g(Y ;�t;s�a) ;

and for the flexural curvature

@rvX
v̂Y

[
C(ut;s)(a;b)

]
= �g(@�t;s�a

(g(X ;Y)Y) ;�t;s�b) :

By subtracting the last two terms from the second directional derivatives we get the
symmetric expressions of the second covariant derivatives of the shear sliding and
of the flexural curvature, coinciding with the ones found with the first extension.
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Global existence of smooth solutions and stability of
the constant state for dissipative hyperbolic systems
with applications to extended thermodynamics

T. Ruggeri

Abstract. The entropy principle plays an important role in hyperbolic systems of balance
laws: symmetrization, principal subsystems and nesting theories, equilibrium manifold. After
a brief survey on these questions we present recent results concerning the local and global
well-posedness of the Cauchy problem for smooth solutions with particular attention to the
genuine coupling Kawashima condition. These results are applied to the case of extended
thermodynamics and we prove that the K-condition is satisfied in the case of the 13-moment
Grad theory with the consequence that there exist global smooth solutions for small initial
data and the solutions converge to constant equilibrium states.

1 Introduction

Recently, non-equilibrium theories and in particular extended thermodynamics have
generated a new interest in quasi-linear hyperbolic systems of balance laws with
dissipation due to the presence of production terms (systems with relaxation). On
this subject it is very important to find connections between properties of the full
system and the associated subsystem obtained when certain parameters (relaxation
coefficients) are equal to zero. The requirement that the system of balance laws
satisfies an entropy principle with a convex entropy density gives strong restrictions.
In fact, as is well-known, it was shown that eyery system of balance laws can be
put into a very special hyperbolic symmetric system, given the introduction of the
main field variables [1,2]. As was observed by Boillat and Ruggeri [3], the main
field also allows us to recognize that non-equilibrium systems have the structure of
nesting theories. In fact it is possible to define the principal subsystems so obtained by
freezing those components of the main field which preserve the existence of a convex
entropy law and for which the spectrum of the characteristic eigenvalues is contained
in that of the full system (sub-characteristic conditions). A particular subsystem is
the equilibrium subsystem. Here we give a brief summary on these results with a
particular attention to the local and global well-posedness of the relative Cauchy
problem for smooth solutions and to the stability of constant solutions. At the end
we apply our results to the extended thermodynamics which governs the processes
of rarefied gas.
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2 Systems of balance laws, entropy and generators

We consider a general hyperbolic system of N balance laws:

@˛F˛(u) = F(u); (1)

where the densities Fo, the fluxes Fi and the productions F are RN-column vectors
depending on the space variables xi; (i = 1; 2; 3) and the time t = xo; (˛ =
0; 1; 2; 3; @˛ = @=@x˛) through the field u � u(x˛) 2 RN.

Now we assume, following Friedrichs and Lax [4], that the system (1) satisfies
an entropy principle, i.e., there exists an entropy density �ho(u) and an entropy flux
�hi(u), such that every solution of (1) also satisfies a new balance law (entropy
law):

@˛h
˛ = ˙ � 0 (2)

with a non-negative entropy production �˙(u). The compatibility between (1) and
(2) implies the existence of a main field u0 such that [4,2]

@˛h
˛ �˙ � u0 � (@˛F˛ � F) : (3)

As a consequence of the above identity, we have

dh˛ = u0 � dF˛; ˙ = u0 � F � 0: (4)

Boillat [1] (in a covariant formulation see Ruggeri and Strumia [2]) was able to
introduce four potentials h0˛:

h0˛ = u0 � F˛ � h˛; (5)

such that from (4)1

F˛ =
@h0˛

@u0 : (6)

It follows that, upon selecting the main field as the field variables, the original
system (1) can be written with Hessian matrices in the symmetric form

@˛

(
@h0˛

@u0

)
= F () @2h0˛

@u0@u0 @˛u
0 = F (7)

provided that h0 is a convex function of u � F0 (or equivalently the Legendre
transform h00 is a convex function of the dual field u0). The Euler equations were
already written in this form by Godunov [5].



Dissipative hyperbolic systems 217

3 Principal subsystems

We split the main field u0 2 RN into two parts, u0 � (v0;w0); v0 2 RM; w0 2
RN�M (0 < M < N); so that the system (7) with F � (f ;g) reads:

@˛

(
@h0˛(v0;w0)

@v0

)
= f(v0;w0); (8)

@˛

(
@h0˛(v0;w0)

@w0

)
= g(v0;w0): (9)

Given an assigned value w0
�(x

˛) of w0 (in particular, a constant), we call the
system [3]:

@˛

(
@h0˛(v0;w0

�)
@v0

)
= f(v0;w0

�) (10)

a principal subsystem of 7. In other words a principal subsystem (there are 2N�2 such
subsystems) coincides with the first block of the system (8), (9), where w0 = w0

�.
Principal subsystems have two important properties: they also admit a convex sub-
entropy law and the spectrum of characteristic velocities is contained in that of the
full system (sub-characteristic conditions) [3].

4 Equilibrium subsystem

A particular case of (8), (9) is given when the first M equations are conservation
laws, i.e., f � 0. In this case it is possible to define the equilibrium state as usual in
thermodynamics.

Definition 16. An equilibrium state is a state for which the entropy production �˙jE
vanishes and hence attains its minimum value.

It is possible to prove the following theorem [3,6].

Theorem 1 (Equilibrium manifold). In an equilibrium state, under the assumption
of dissipative productions, i.e., if

D =
1
2

{
@g
@w0 +

(
@g
@w0

)T
}∣∣∣∣∣

E

is negative definite; (11)

the production vanishes and the main field components vanish except for the firstM.
Thus,

gjE = 0; w0jE = 0: (12)

Therefore in the main field components the equilibrium manifold is linear,w0 = 0,
and this confirms once again the importance of the main field.

There is another important characteristic property of the equilibrium state [7,8].
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Theorem 2 (Maximum entropy). At equilibrium the entropy density �h is maxi-
mal, i.e.,

h > hjE 8 u 6= ujE; where hjE = h (v;wjE(v)) :

Hence we also find at this general level the well-known thermodynamical statement
of maximum entropy in equilibrium.

In the present case, when we limit our attention to the case of one-dimensional
space, the system (8), (9) assumes the form:

⎧⎨⎩
vt + (k0

v0)x = 0

wt + (k0
w0)x = �G (v0;w0)w0

(13)

where v = h0
v0 ; w = h0

w0 and G is a definite positive (N�M) � (N�M) matrix.

5 Qualitative analysis

In this section we discuss the importance of the entropy principle to the Cauchy
problem.

5.1 Local well-posedness

In the general theory of hyperbolic conservation laws and hyperbolic-parabolic con-
servation laws, the existence of a strictly convex entropy function is a basic condi-
tion for well-posedness. In fact if the fluxes Fi and the production F are sufficiently
smooth in a suitable convex open set D 
 Rn, it is well-known that system (1) has a
unique local (in time) smooth solution for smooth initial data [4,9,10].

However, in the general case, and even for arbitrarily small and smooth initial
data, there is no global continuation for these smooth solutions; continuations may
develop singularities, shocks or blow-up in finite time (see, e.g., [11,12]).

On the other hand, in many physical examples, thanks to the interplay between
the source term and the hyperbolicity, there exist global smooth solutions for a
suitable set of initial data. This is the case for example of the isentropic Euler system
with damping. Roughly speaking, for such a system the relaxation term induces a
dissipative effect. This effect then competes with the hyperbolicity. If the dissipation
is sufficiently strong to dominate the hyperbolicity, the system is dissipative, and we
observe that the classical solution exists for all time and converges to a constant state.
Otherwise, if the dissipation and the hyperbolicity are equally important, we expect
that only part of the perturbation diffuses. In the latter case the system is called of
composite type by Zeng [13].

5.2 The Kawashima condition

In general, there are several ways to identify whether a hyperbolic system with
relaxation is dissipative or of composite type. One way is completely parallel to the
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case of the hyperbolic-parabolic system, which was discussed first by Kawashima
[9] and for this reason it is now called the Kawashima condition [14] or genuine
coupling [8]:

in the equilibrium manifold no characteristic eigenvector is in the null space of
rF.

5.3 Global existence and stability of constant state

For dissipative one-dimensional systems (13) satisfying the K-condition it is possible
to prove the following global existence theorem due to Hanouzet and Natalini [14].

Theorem 3 (Global existence). Assume that the system (13) is strictly dissipative
and the K-condition is satisfied. Then there exists ı > 0 such that, if

∥∥u0(x; 0)
∥∥

2 � ı;
there is a unique global smooth solution satisfying

u
0 2 C0([0;1);H2(R) \ C1([0;1);H1(R)):

Moreover Ruggeri and Serre [8] have proved that the constant states are stable.

Theorem 4 (Stability of constant state). Under natural hypotheses of strongly con-
vex entropy, strict dissipativeness, genuine coupling and "zero mass" initial for the
perturbation of the equilibrium variables, the constant solution stabilizes:∥∥u (t)

∥∥
2 = 0

(
t�1=2) :

The technique employed here via Liapunov function, may look rather classical, invol-
ving an ”energy’ (actually entropy) estimate, plus a compensation term as introduced
by Kawashima for other purposes [9],

L" (u;p) = h (u) + "

{
1
2

jpj2 � 1
2

pTAv � pTBw
}
;

where p is the potential,

px = v ; pt = k0
v0 ;

A and B are suitable constants matrices and T denotes the transpose.
This method has the nice feature that it applies to weak entropy solutions. It is

therefore valid in the presence of shock waves. Due to the finite propagation velocity
of the support of a solution, it is natural to assume that the initial total mass of the
conserved components of the unknown vanishes:∫

v0 (x)dx = 0:

Under this condition, we find a t�1=2 decay rate of the L2-norm of the solution,
although the decay can be no better than t�1=4 in general, that is, when a non-zero
mass is present at the initial time.

In [14] the authors report several examples of dissipative systems satisfying
the K-condition: the p-system with damping, the Suliciu model for isothermal vis-
coelasticity, the Kerr-Debye model in nonlinear electromagnetism and the Jin-Xin
relaxation model.
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5.4 A counterexample of global existence without the K-condition

Zeng [13] considered a toy model for a vibrational non-equilibrium gas in Lagrangian
variables, proving that, also if the system is of composite time, global existence holds.
Therefore the K-condition is only a sufficient condition for the global existence of
smooth solutions.

An intriguing open problem is whether there exists a weaker K-condition that
is also necessary to ensure global solutions. And if there is such a condition, what
is its physical meaning so as to consider it as a possible new principle of extended
thermodynamics adding to the convexity of entropy [15]?

6 Extended thermodynamics

Kinetic theory describes the state of a rarefied gas through the phase densityf(x; t; c),
where f(x; t; c)dc is the number density of atoms at point x and time t that have
velocities between c and c + dc. The phase density obeys the Boltzmann equation

@f

@t
+ ci

@f

@xi
= Q; (14)

where Q represents the collisional terms. Most macroscopic thermodynamic quan-
tities are identified as moments of the phase density

Fk1k2���kj =
∫
fck1ck2 � � � ckjdc; (15)

and, due to the Boltzmann equation (14), the moments satisfy an infinity hierarchy
of balance laws in which the flux in one equation becomes the density in the next:

@tF+ @iFi = 0
.

@tFk1 + @iFik1 = 0
.

@tFk1k2 + @iFik1k2 = Pk1k2
.

@tFk1k2k3 + @iFik1k2k3 = Pk1k2k3
...

@tFk1k2:::kn + @iFik1k2:::kn = Pk1k2:::kn
...

Taking into account thatPkk = 0, we recognize the first five equations as conservation
laws which coincide with mass, momentum and energy conservation respectively,
while the remaining ones are balance laws.
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6.1 The closure of extended thermodynamics

When we cut the hierarchy at the density with tensor of rankn, we have the problem of
closure because the last flux and the production terms are not in the list of densities.
The idea of rational extended thermodynamics (Müller and Ruggeri [15]) was to
view the truncated system as a phenomenological system of continuum mechanics
and then to consider the new quantities as constitutive functions:

Fk1k2:::knkn+1 � Fk1k2:::knkn+1 (F;Fk1 ; Fk1k2 ; : : : Fk1k2:::kn)

Pk1k2:::kj � Pk1k2:::kj (F;Fk1 ; Fk1k2 ; : : : Fk1k2:::kn) ; 2 � j � n:

In accordance with the continuum theory, the restrictions on the constitutive equa-
tions come only from universal principles, i.e., the entropy principle, the objectivity
Principle and causality and stability (convexity of the entropy).

The restrictions are so strong (in particular the entropy principle) that, at least for
processes not too far from the equilibrium, the system is completely closed and in
the case of 13 moments the results are in perfect agreement with the kinetic closure
procedure proposed by Grad [16].

6.2 Principal subsystems in ET

Now that we have stated that for any n we may use the closure of ET, the following
question arises: what relation exists between two closure theories with different
indices, a theory Sn and a theory Sm with n > m, say? Boillat and Ruggeri [3] have
proved the following result.

Theorem 5 (Nesting theories). For n > m, Sm is a principal subsystem of Sn obtai-
ned from Sn by setting u0˛ = 0; ˛ = m+ 1; :::; n, and neglecting the corresponding
equations for ˛ = m+ 1; :::; n, i.e.,

Sn :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
@ua(u0b; u0ˇ)

@t
+
@Fai (u

0b; u0ˇ)
@xi

= ˘a(u0b; u0ˇ);

@u˛(u0b; u0ˇ)
@t

+
@F˛i (u

0b; u0ˇ)
@xi

= ˘˛(u0b; u0ˇ);

(16)

a = 0; : : : ; m; ˛ = m+ 1; : : : ; n:

Sm :
@ua(u0b; 0)

@t
+
@Fai (u

0b; 0)
@xi

= ˘a(u0b; 0): (17)

In particular the Euler system becomes the equilibrium subsystem of any ET theory.

6.3 The one-dimensional case of the Grad 13-moment theory

The most simple case of extended thermodynamics is the 13-moment theory ET13

known as the Grad system [16]. In the one-dimensional case and with the usual
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symbols the equations are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇+ �vx = 0;

�v̇+ (p� 
)x = 0;

�ė+ qx + (p� 
)vx = 0;

�

[

̇� 8

15qx + 7
3
vx

]
� 4

3�vx = �
;

�q
[
q̇+ 16

5 qvx � 7
2 (p� )x
� 1

� (p+ 
)
x + 

� px

]
+ �Tx = �q;

(18)

�
 =
�

p
; �q =

2
5
�

p2 ��;
�

�q

=
2
3
; p = R�T; R =

k

m
:

The dot indicates the material derivative, � = @t+v@x, while�; v; p; e = 3p=(2�); q; 

are, respectively, mass density, velocity, pressure, internal energy, heat flux and shear
stress and k, � and � denote the Boltzmann constant, heat conductivity and shear
viscosity.

The first three equations are the usual conservation laws of mass, momentum and
energy, while the remaining two are the new evolution balance laws corresponding
to the non-equilibrium variables q and 
. The last two equations when the relaxation
times are negligible reduce to the Navier-Stokes and Fourier equations respectively.

As the system (18) is compatible with a convex entropy principle and is a parti-
cular case of (13) we check if in the present case the K-condition holds.

With field u � (�; v; p; 
; q)T the associated eigenvectors d and eigenvalues �
in equilibrium are:

first and second sound:

d(1;2;4;5)
0 �

(
1;
c

�
W;

5
9
c2W2;�4

9
c2W2;

1
6
c3W

(
�9 + 5W2))T

with

W =
(v� �)

c
roots of 25W4 � 78W2 + 27 = 0;

c =

√
5
3

RT the sound velocity;

and the contact wave:

d(3)
0 �

(
1; 0;

5
3
p

�
;
5
3
p

�
; 0
)T

; � = v:
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Taking into account that, in the present case,

rF0�

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 � 1
�


0

0 0 0 0 � 1
�q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
;

we may easily check that no eigenvector is in the null space of rF0 and therefore
the Kawashima condition is satisfied. For the previous theorems on the qualitative
analysis we conclude that, if the initial data are sufficiently small, classical solutions
of ET13 exist for all time and converge to a constant state of the equilibrium Euler
manifold!
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Central schemes for conservation laws
with application to shallow water equations

G. Russo

Abstract. An overview is given of finite volume central schemes for the numerical solution of
systems of conservation and balance laws. Well-balanced central schemes on staggered grids
for the Saint-Venant model or river flow are considered. A scheme which is well-balanced for
channels with variable cross section is introduced. Lastly, a scheme which preserves non-static
equilibria is introduced, and some numerical results are presented.

1 Introduction

The numerical solution of hyperbolic systems of conservation laws has been a chal-
lenging and fascinating field of research for many decades.

The solution of conservation laws may develop jump discontinuities in finite
time, and the uniqueness of the (weak) solution is guaranteed only by recurring to
an additional selection rule, such as the entropy condition (see, e.g., [1] for a recent
account of the theory of hyperbolic systems of conservation laws). The dissipation
mechanism of a quasilinear hyperbolic system is concentrated at the shocks, and its
effect can be described in terms of the balance laws and entropy condition.

The schemes more commonly used in this context are the so-called shock captu-
ring schemes. At variance with front tracking methods, such schemes solve the field
equations on a fixed grid, and the shocks are identified by the regions with large gra-
dients. Among shock capturing schemes, the most commonly used are finite volume
schemes, in which the basic unknowns represent the cell average of the unknown
field. In finite difference schemes, the basic unknown represents the pointwise value
of the field at the grid node.

The necessity of high accuracy and sharp resolution of the discontinuities encou-
raged the development of high order schemes for conservation laws.

Most modern high order shock capturing schemes are written in conservation
form (in this way the conservation properties of the system are automatically satis-
fied), and are based on two main ingredients: the numerical flux function, and the
non-oscillatory reconstruction. High order accuracy in the smooth regions, sharp re-
solution of discontinuities, and absence of spurious oscillations near shocks strongly
depend on the characteristics of these two essential features (see, e.g., the books [2,3]
or the lecture notes [4]).

Among finite volume methods, we distinguish between semidiscrete and fully
discrete schemes. The first are obtained by integrating the conservation law in a spatial
cell, by using a numerical flux function at the edge of the cell, and by providing a
suitable reconstruction of the field at the two sides of each edge of the cell in terms of
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the cell averages. In this way one obtains a set of ordinary differential equations that
can be then solved by an ODE solver such as Runge-Kutta. High order semidiscrete
schemes are described, e.g., by Shu in [4, Chap. 4].

Alternatively, fully discrete schemes are obtained by integrating the conservation
law on a cell in space-time. The flux function appearing in the scheme is consistent,
to the prescribed order of accuracy, with the time average of the flux at the edge of
the cell in one time step. A second-order fully discrete method can be obtained, for
example, by combining the second-order Lax-Wendroff method with a first-order
method by suitable flux limiter, which prevents formation of spurious oscillations
(see [2] for examples).

Another distinction can be made between upwind and central schemes. Roughly
speaking, we say that a scheme is upwind if it makes extensive use of the characteri-
stic information of the system, so that the scheme can take into account the direction
of propagation of the signal, while a scheme is central if characteristic information
is not used. The prototype of upwind schemes is first-order upwind, or its version
for quasilinear systems, which is the first-order Godunov method, based on the so-
lution of the Riemann problem at cell edges. The prototype of a central scheme is
the first-order Lax-Friedrichs scheme, which requires neither Riemann solvers nor
characteristic decomposition.

Generally speaking, upwind-based methods guarantee sharper resolution than
central schemes for the same order of accuracy and grid spacing, but are usually more
expensive, and more complicated to implement. For this reason, central schemes have
attracted a good deal of attention in the last fifteen years. Following the original work
of Nessyahu and Tadmor [5], where a second-order, shock capturing, finite volume
central scheme on a staggered grid in space-time was introduced and analyzed,
several extensions and generalizations have been made for central schemes, both
fully discrete and semidiscrete (see [6] and its references for a review of central
schemes).

The distinction between the upwind and the central worlds is not sharp, and in
fact characteristic information can be used to improve the performance of central
schemes. For example, by using different estimates of the negative and positive
characteristic speeds, Kurganov et al. [7] improved the original semidiscrete central
scheme [8]. The latter, in turn, is related to the finite volume schemes used by Shu,
when a local Lax-Friedrics flux (also called a Rusanov flux) is used [4, Chap. 4].
Qiu and Shu [9] showed that, by using a reconstruction in characteristic variables
for the computation of the staggered cell average in central schemes, one eliminates
the spurious oscillations produced by high order central schemes for the integration
of the Euler equation of gas dynamics near discontinuities.

Although semidiscrete schemes are attractive because of their flexibility and
simplicity of use, fully discrete schemes sometimes provide better performance with
the same grid spacing. For this reason, it is of interest to consider the use of fully
discrete central schemes for systems with source term.

High order central schemes on staggered grids for conservation laws have been
derived. See, e.g., [10,11] for recent results in this field, and [9] for a comparison
between semidiscrete and fully discrete high order central schemes.
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When a source is introduced in the system (i.e., when dealing with a quasilinear
system of balance laws) then several new interesting problems arise in extending
shock capturing schemes for conservation laws to this new case.

Straightforward extensions can be obtained by integrating the source term in
space (for semidiscrete schemes) and in space and time (for fully discrete schemes)
and using a suitable quadrature formula to compute the contribution of the source.
Another general technique that is commonly used for systems with source is based
on the fractional step (also called time-splitting) method. Both approaches, however,
perform poorly in two cases, which require a more detailed “ad hoc” treatment.

One case concerns the problem of hyperbolic systems with stiff source. Here
the source has to be treated by an implicit scheme, to avoid an excessive restriction
on the time step due to the small characteristic time of the source term. The flux,
on the other hand, is in general not stiff, and an explicit scheme is certainly more
convenient because the nonlinearity of the space discretization (mainly due to the
non-linear reconstruction) makes an implicit treatment excessively expensive.

Implicit-explicit (IMEX) time discretization is a natural choice for this kind of
problem. See, e.g., [12] for a second-order IMEX scheme based on central discre-
tization in space, and [13] for a review of recently developed IMEX schemes.

Another important problem consists in the integration of systems in which the
source term is nearly balanced by flux gradients. In this case the solution is a small
perturbation of a stationary one. For this problem it would be desirable to construct
numerical schemes that maintain the stationary solutions at a discrete level.

Such schemes are often called well-balanced, after the paper by Greenberg and
Leroux [14], and their development and analysis has interested many researchers
in the recent years [15–20], although ideas based on characteristic decomposition
were introduced earlier (see [21] for linear problems and [22] for the extension to
quasilinear problems). See also [23] for a detailed explanation of various numerical
methods for shallow water equations.

Most well-balanced schemes have been derived either for semidiscrete or for fully
discrete schemes on a non-staggered grid. However, staggered central schemes are
attractive since they have an automatic mechanism for controlling spurious oscillati-
ons. In many cases, they allow better resolution than the non-staggered counterpart.
It is therefore attractive to explore the possibility of constructing well-balanced sche-
mes on a staggered grid.

An example of a well-balanced central scheme on a staggered grid was presented
at the HYP2000 conference, and is briefly described in [24].A well-balanced second-
order central scheme for the Saint-Venant equations that preserves static equilibria
was derived.

Here we extend the result by presenting a well-balanced central scheme on a
staggered grid that also works for channels of variable cross section, and a scheme
that preserves non-static equilibria (in the case of subcritical flow).

The rest of the section is devoted to a brief review of hyperbolic systems of
conservation laws and conservative schemes for their numerical approximation.

The next section is a review of shock capturing central schemes for balance laws.
Section 3 presents central schemes that preserve static solutions, with application
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to the Saint-Venant model of shallow water. Section 4 is techincal, and describes in
detail the derivation of a central scheme for the Saint-Venant equations that preserves
stationary, non-static equilibria. Applications of the schemes are given in Sects. 3
and 4.

1.1 Hyperbolic systems

We consider a hyperbolic system of balance laws. It takes the form

@u

@t
+
Df(x; u)
Dx

= R(x; u); (1)

where u 2 Rm; f;R : Rm ! Rm, A = @f=@u has real eigenvalues and basis of
eigenvectors. Here Df=Dx = @f=@x+ Aux.

Such a system may develop discontinuities in finite time (shocks) and therefore
one has to abandon the hope of finding regular solutions (strong solutions), and one
looks for weak solutions.

An admissible discontinuity that propagates in the media has to satisfy the so-
called jump conditions, which can be derived directly from the balance law, written in
the original integral form. Such conditions, also called Rankine-Hugoniot conditions
can be written in the form

�V˙ [[u]] + [[f]] = 0; (2)

where V˙ denotes the speed of the moving discontinuity ˙, and, for any function
h(x; t), [[h]] � (h+ � h�) denotes the jump of the quantity across the discontinuity
˙.

A function u that satisfies Eq. (1) in the regions of regularity and conditions (2)
at discontinuities is a weak solution of the balance equation. However, uniqueness
is not guaranteed for such a solution. In order to restore uniqueness of the solution,
one has to resort to additional selection rules. The entropy condition, for example,
is often used to select the unique solution of a conservation law. For a review of
the modern theory of hyperbolic systems of conservation laws see, e.g., the book by
Dafermos [1].

Conservation form, jump conditions, and entropy conditions are used as guide-
lines in the development of modern shock capturing schemes, in order to guarantee
that the numerical solution of the scheme converges to the unique entropic solution
when the grid is refined.

1.2 Numerical schemes

A numerical scheme for balance laws has to admit the possibility of capturing dis-
continuous solutions, giving correct shock speed. For a system of conservation laws
(i.e., in the case of zero source term) it is desirable that a numerical scheme maintains
the conservation properties of the exact solution of the system. For both purposes it
is essential that the scheme is written in conservation form.
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The so-called shock capturing finite volume schemes are usually derived by in-
tegrating the system of balance laws on a suitable region of space-time.

We divide space into equally spaced cells Ij � [xj�1=2; xj+1=2] of size �x,
centered at xj, j 2 Z.

Semidiscrete schemes are obtained by integrating the conservation law (1) in
each cell in space, and approximating the flux function at the border of the cell by
a suitable numerical flux function that depends on the values of the field across the
edge of the cell. These values, in turn, are obtained by a suitable reconstruction of
the function from the cell averages. In this way, one obtains a system of ordinary
differential equations for the cell averages, of the form

dūj
dt

= �Fj+1=2 � Fj�1=2

�x
+ R̄j;

where ūj is an approximation of the cell average

ūj  1
�x

∫ xj+1=2

xj�1=2

u(x; t)dx;

and

Fj+1=2 = F(u�
j+1=2; u

+
j+1=2)

is the numerical flux function, u˙
j+1=2 are the reconstructed values of the field across

the edge xj+1=2.
For an account of modern semidiscrete high order schemes for conservation laws,

see, e.g., the chapter by Shu in [4].
Fully discrete schemes are obtained by integrating the conservation law on a

suitable cell in space-time. Integrating the equation on a cell Ij � [tn; tn+1] one
typically obtains a scheme of the form

Un+1
j = Un

j � �t

�x
(Fj+1=2 � Fj�1=2) + �t R̄n+1=2

j ;

where Fj+1=2 is the so-called numerical flux function, which is consistent, to the
prescribed order of accuracy, with the time average of the flux f at the edge xj+1=2

of the cell, and R̄n+1=2
j is an approximation of the space-time cell average of the

source.
The piecewise constant solution Ũn(x) =

∑
j �j(x)U

n
j , where �j(x) is the cha-

racteristic function of the interval Ij, satisfies discrete jump conditions, and, if it
converges to a function U(x; t) as �x ! 0, then U(x; t) is a weak solution of (1)
(Lax-Wendroff theorem, see [25]). A nice description of a fully discrete scheme of
this form is presented, e.g., in [2].

2 Staggered central schemes for balance laws

A different family of schemes is obtained by integrating the conservation laws on a
staggered grid in space-time (see Fig. 1).
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j-1/2x x j+1/2

tn

tn+1

x j x j+1

tn+2

Fig. 1. Staggered grid in space-time and central scheme

After integration one obtains

�x ūn+1
j+1=2 =

∫ xj+1

xj

u(x; tn)dx�
∫ tn+1

tn
(f(uj+1(t)) � f(uj(t)))dt

+
∫ xj+1

xj

dx

∫ tn+1

tn
dt R(x; u(x; t));

with uj � u(xj; t). The above formula is exact for piecewise smooth solutions. To
convert the formula in a numerical scheme one must:

(i) reconstruct u(x; tn) from ūnj and use it to compute ūnj+1=2;

(ii) approximate integrals in time by a quadrature formula;

(iii) compute an approximation of uj(t) on the quadrature nodes;

(iv) approximate the integral of the source on the cell in space-time by a quadrature
formula.

The celebrated second-order Nessyahu-Tadmor (NT) scheme [5] is obtained (for
R = 0) by:

(i) approximating u(x; tn) by a piecewise linear function;

(ii) integrating the flux by the midpoint rule;

(iii) using the first-order Taylor expansion for the computation of u(xj; tn + �t=2).
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Its generalization to a system of balance laws (with no explicit dependence of
flux and source on x) can be written as a simple two-line predictor-corrector scheme:

un+1=2
j = unj � �

2f
0
j + �t

2 R(un+ˇj ) predictor

un+1
j+1=2 = 1

2 (unj + unj+1) + 1
8 (u0

j � u0
j+1) � �

(
f(un+1=2

j+1 )
corrector ,

�f(un+1=2
j )

)
+ �t

2 (R(un+ˇj ) + R(un+ˇj+1 )

(3)

where � = �t=�x denotes the mesh ratio, and u0
j=�x, f0

j=�x are first-order appro-
ximations of space derivatives.

The NT scheme can be made (discretely) entropic and total variation diminishing
(TVD). These properties depend on the reconstruction of the derivatives. In order
to avoid spurious oscillations, suitable slope limiters for u0 and f0 are required. The
simplest choice is given by the so-called minmod limiter, which is defined as

MinMod(a; b) =
{

sign(a) min(jaj; jbj) if ab > 0
0 if ab � 0

Therefore u0
j can be computed as

u0
j = MinMod(uj+1 � uj; uj � uj�1);

and f0
j can be computed either by using the minmod function or by f0

j = A(uj)u0
j.

Better slope limiters (e.g., Harten’s UNO limiter) can be used. For an account of
different slope limiters see, e.g., [2] or [5].

Note that the contribution of the source term can be completely explicit (ˇ = 0)
or implicit (ˇ = 1=2). Both cases result in a second-order scheme in space and
time. The time restriction due to the flux term, in absence of source, is the Courant-
Friedrichs-Lewy (CFL) condition, which for the NT scheme reads

�Cmax � 1
2
; (4)

where Cmax is the maximum spectral radius of the Jacobian matrix A on the com-
putational domain.

High order central schemes for conservation laws (R � 0) are obtained by using
high order non-oscillatory reconstruction, such as WENO, and higher order time
evolution, such as Runge-Kutta schemes with natural continuous extension (see [10])
or central Runge-Kutta [11].

The time step restriction due to the source term depends on the use of explicit
(ˇ = 0) or implicit (ˇ = 1=2) predictor, and on the stiffness of the source, i.e., on its
relaxation time. If the restriction introduced by explicit treatment of the source is more
severe than the CFL condition (4), then it is preferable to use an implicit discretization
of the predictor step. Note that the above scheme withˇ = 1=2 is a simple example of
implicit-explicit (IMEX) time discretization, obtained by coupling an explicit RK2
scheme (modified Euler scheme) with an A-stable second-order scheme (midpoint
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method). In the case of very stiff relaxation terms, the above scheme is not suitable,
and an L-stable scheme is needed for a proper treatment of the source. An example
of an IMEX central scheme for hyperbolic systems with stiff sources is presented in
[12]. Other examples of IMEX schemes applied to relaxation systems are given in
[26] and its references.

We remark here that finite volume schemes are not suitable for high order appro-
ximation of hyperbolic systems with stiff source, because the averaging of the source
couples all the cells, making implicit schemes expensive. Finite difference schemes
are more natural in this case, because the pointwise value of the function rather than
its cell average is used as basic unknown, and therefore the cells are decoupled (at
the level of the source term). See [4, Chap. 4], for an illustration of high order finite
difference schemes in conservation form.

3 A well-balanced scheme that preserves static equilibria

In this section we develop a well-balanced central scheme for a system of balance
laws, with particular application to the Saint-Venant equations of shallow water.

Consider a problem in which the solution of the system

@u

@t
+
Df(x; u)
Dx

= R(x; u)

is a small deviation from the stationary solution ũ(x), for which

@f(ũ)
@x

= R(ũ): (5)

In this case, fractional step schemes or a scheme of the form (3) perform poorly,
because they do not preserve the equilibria (5), even at a discrete level.

We consider here the specific case of the Saint Venant model of shallow water
equations. We start with the one-dimensional equations in a channel of constant cross
section. The equations can be written in the form:

@h

@t
+
@q

@x
= 0; (6)

@q

@t
+

@

@x

(
q2

h
+

1
2
gh2

)
= �ghBx; (7)

where h(x; t) denotes the water depth, q(x; t) the water flux, B(x) the bottom profile,
and g the constant gravity acceleration; see Fig. 2.

Several well-balanced schemes have been developed in the literature; they satisfy
different requirements. We mention here the works by Greenberg and Leroux [14],
Gosse [15], LeVeque [16], Perthame et al. [20], Jin [18], Kurganov and Levy [19],
Bouchut et al. [27], Gallouët et al. [17], just to mention a few names.

The usual requirement for a well-balanced scheme is the preservation of static
equilibria, which means a stationary solution of Eq. (5), for which the fluid does not
flow, i.e., q = 0.
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Fig. 2. Water height and bottom profile of the Saint-Venant model of shallow water

In addition, other common requirements are:

(i) preservation of all equilibria;
(ii) preservation of non-negativity of h;
(iii) capability of treating dry zones (i.e., zones for which h = 0);
(iv) numerical entropy condition.

A recent scheme derived by Bouchut and collaborators [27] is able to fulfill all these
requirements.

We consider, as a test, the initial condition

q(x; 0) = q0; h(x; 0) =
{

1:01 if jx� 0:2j < 0:05
1 otherwise

; (8)

with q0 = 0, and we let the bottom profile be given by

B(x) =
{

1 + cos(10x� 5) if jx� 0:5j < 0:1
0 otherwise

: (9)

If we use scheme (3) (with ˇ = 0) then we obtain the solution shown in Fig. 3,
where the total height H = h + B is reported at initial time (dashed line) and final
time t = 0:7. In all calculations we set the constant g of gravity to 1. The number of
grid points used in the calculation is N = 200. The dashed line represents the initial
condition.

Flat boundary conditions were used here and for all calculations presented in the
paper.

The spurious effect present in the center of the computational domain is due to
the fact that the scheme is not able to preserve stationary solutions of Eqs. (6), (7).

How can we construct well-balanced schemes that preserve equilibria? Several
approaches have been considered in the literature.

The paper by Kurganov and Levy [19], for example, provides an example of a
semidiscrete central scheme that preserves static equilibria. The scheme they present,
however, cannot be generalized straightforwardly in the case of staggered grids,
because the NT scheme is not able to preserve solutions of the equation

@u

@t
= 0;
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Fig. 3. Numerical solution of system (6), (7), with the use of scheme (3), with ˇ = 0. 200 grid
points

unless u � constant.
With this taken into account, a well-balanced central scheme that preserves static

solutions was derived and presented at the hyperbolic conference in Magdeburg [24].
The guidelines in the development of such a scheme are:

(1) reformulate the problem using H = h+ B as conserved variable;
(2) compute a predictor by a non-conservative form using f0 = ıf+A(u)u0, where
ıf  �x @f=@x;

(3) in the corrector use a suitable approximation of functions and space derivatives.

The last requirements are obtained, for example, by setting (at even time steps):

Bj =
1
2

(B(xj + �x=2) + B(xj � �x=2)) ;

B0
j

�x
=
B(xj + �x=2) � B(xj � �x=2)

�x
:

The scheme applied to the SV equations takes the form:
predictor:

Hn+1=2
j = Hn

j � �

2
q0
j;

(10)
qn+1=2
j = qnj � �

2
(
2vnjq

0
j � (vnj)

2(H0
j � B0

j) + gH0
j(Hj � Bj)

)
;
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Fig. 4. Numerical solution of system (6), (7), with the well-balanced central scheme (10), (11).
The thin line represents the reference solution and is obtained by the well-balanced scheme
with N = 1600 gridpoints

corrector:

Hn+1=2
j+1=2 = Hn

j+1=2 � �(qn+1=2
j+1 � qn+1=2

j );

qn+1=2
j+1=2 = qnj+1=2 � �( n+1=2

j+1 �  n+1=2
j ) (11)

� g
�

2
(Hn+1=2

j B0
j +Hn+1=2

j+1 B0
j+1);

where the staggered cell averagesHn
j+1=2 and qnj+1=2 are computed as in scheme (3),

v � q=(H� B),  n+1=2
j �  (Hn+1=2

j ; qn+1=2
j ) and

 (H;q) � q2

H� B
+

1
2
H(H� B) :

It is easy to check that H = constant, q = 0 is a solution for this scheme.
The scheme is applied to problem (6)-(8), and the numerical results are shown

in Fig. 4. Note that no spurious profile appears where B 6= 0.

Variable cross section. The Saint-Venant equations for a channel of variable cross
section have the form:

@A

@t
+
@Q

@x
= 0;

@Q

@t
+

@

@x

(
Q2

A

)
+ gA

@H

@x
= 0;
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where A(x; t) is the cross section of the part of the channel occupied by the water,
and Q is the flux. The above approach can be extended to the case of a channel with
rectangular cross section, A(H;x) = hW(x). A well-balanced scheme is obtained as
follows. Let A = W(x)h(x; t) = W(x)(H(x; t) � B(x)). Reformulate the problem
usingH and q = Q=W as unknown conservative variables. This choice will not alter
the jump conditions. Then the system becomes

@H

@t
+
@q

@x
= �qWx(x)

W(x)
;

@q

@t
+

@

@x

(
q2

H� B(x)
+
g

2
H(H� 2B(x))

)
(12)

= �gHBx(x) � q2

H� B(x)
Wx(x)
W(x)

:

The scheme used before preserves static solutions of this system, because the two
additional terms vanish as q = 0.

As an application of the scheme we consider two test cases. The initial conditions
are given by Eq. (8), and the bottom profile by Eq. (9).

The results corresponding to these two cases are reported in Fig. 5. The first
corresponds to the choice

W(x) = 1 � B(x);

while, in the second, it is

W(x) =
1

1 � B(x)
:

Notice that in the second case the area of the cross section of the channel correspon-
ding to the static solutionH = 1 is basically constant, and this reduces the amplitude
of the reflected wave, while in the first case the cross-sectional area at the center of the
channel becomes narrower than that in the case of constant cross section, resulting
in a larger reflected wave.

4 A well-balanced scheme for subcritical flows

The approach described above cannot be directly applied to the case in which the
stationary solution is not static. Even if the scheme preserves the equilibrium

Df

Dx
= R

at a discrete level, the Nessyahu-Tadmor scheme does not preserve a solution of the
trivial equation @u=@t = 0 unless u is also constant in space.

One possibility to obtain a scheme that preserves stationary solutions is to perform
a change of variables in such a way that in the new variables the equilibrium is
represented by constants.
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Fig. 5. Numerical solution of Saint-Venant equations with variable cross section, at time t =
0:7, 200 grid points. The thin dotted line represents the reference solution obtained by 1600
points. Upper: W(x) = 1 � B(x); lower: W(x) = (1 � B(x))�1
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Scalar equation. We consider the scalar case first. We denote a stationary solution
by ũ(x), i.e.,

Df(x; ũ)
Dx

= R(x; ũ): (13)

Then we look for a solution of the form

u(x; t) = ũ(x)v(x; t):

The equation for u becomes

ũ(x)
@v

@t
+
Df(x; ũv)

Dx
= R(x; ũv):

Integrating on a staggered cell in space-time one has

�x ūn+1
j+1=2 =

∫ xj+1

xj

ũ(x)vn+1(x)dx =
∫ xj+1

xj

ũ(x)v(x; tn)dx

�
∫ tn+1

tn
(f(xj+1; ũj+1vj+1(t)) � f(xj; ũjvj(t)))dt

+
∫ xj+1

xj

dx

∫ tn+1

tn
dt R(x; ũ(x)v(x; t)): (14)

A second-order discretization of the conservation equations is obtained as follows.
We define the quarter cell values of the equilibrium solution (which coincide with
their average to second order) by

ũj˙1=4 � ũ(xj ˙ �x=4) = ũ(xj˙1=4):

The cell average at time tn+1 (left-hand side of Eq. (14)) is discretized as

1
�x

∫ xj+1

xj

ũ(x)vn+1(x)dx  1
2
(ũj+1=4 + ũj+3=4)v̄n+1

j+1=2:

The first term on the right-hand side (staggered cell average) is discretized as follows.
Assume vn(x) is approximated by a piecewise linear function

vn(x) 
∑
j

�j(x)Lj(x);

where �j is the characteristic function of the jth interval, and

Lj(x) = vnj + v0
j(x� xj)=�x:

Here v0
j=�x denotes a first-order approximation of the space derivative of vn(x), and

vnj denotes an approximation of the pointwise value of vn(x) (which agrees with its
cell average to second order).
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In each cell one has

ūnj  1
2
(ũj�1=4 + ũj+1=4)vnj :

The staggered cell average at time n is computed as∫ xj+1

xj

ũ(x)vn(x)dx = IRj + ILj+1

=
∫ xj+1=2

xj

ũ(x)Lj(x)dx+
∫ xj+1

xj+1=2

ũ(x)Lj+1(x)dx:

To second-order accuracy, the integrals are evaluated as

IRj = �x ũj+1=4

(
1
2
vnj +

1
8
v0
j

)
;

ILj = �x ũj�1=4

(
1
2
vnj � 1

8
v0
j

)
;

and therefore the staggered cell average is

1
�x

∫ xj+1

xj

ũ(x)vn(x)dx  1
2
(ũj+1=4v

n
j + ũj+3=4v

n
j+1)

+
1
8
(ũj+1=4v

0
j � ũj+3=4v

0
j+1):

Remark. A better approximation of the staggered cell value can be obtained by using∫ h=2

0
ũ(xj + 	)	d	 =

1
8
ũxj+h=3h

2 + O(h4);

however, this requires the storage of an additional value of the stationary solution,
and it does not improve the overall order of accuracy.

The contribution of flux and source is computed by a predictor-corrector type
scheme

1
�x

∫ �t

0
f(xj; uj(tn + �)d�  f(xj; ũ(xj)v

n+1=2
j ):

Predictor step. This can be computed by a non-conservative scheme

un+1=2
j = unj � �

2

(
ıfj +

@f

@u
u0
j

)
+
�t

2
R(xj; unj);

where ıfj=�x denotes a first-order approximation of the space derivative of f and

u0
j = ũ0

jv
n
j + ujv

0
j:
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Here

u0
j = �x

du

dx

∣∣∣∣
(xj;uj)

; v0
j = �x

@v

@x

∣∣∣∣
(xj;uj)

+ O(�x2); ũ0
j = �x

dũ

dx
:

Once the stationary equation (13) is solved for ũ, the quantity ũ0 is obtained from the
differentiation of Eq. (13) as

Aũ0 = �x

(
R(x; ũ) � @f

@x

)
:

Corrector. The contribution of the source term is obtained by a suitable quadrature
formula

1
�x

∫ xj+1

xj

∫ tn+1

tn
R(x; u)dxdt  �t R̃(ũjv

n+1=2
j ; ũj+1v

n+1=2
j+1 ):

The formula has to be consistent with the well-balanced property of the scheme, i.e.,

�(f(xj; ũj) � f(xj+1; ũj+1)) + �t R̃(ũj; ũj+1) = 0;

in fact, this relation can be used to define the function R̃ in the numerical scheme.
The extension to a system of equations is obtained by repeating the above steps

component by component.
We apply this technique to the shallow water equations. We consider 1D shallow

water equations in the form:

@H

@t
+
@q

@x
= 0;

@q

@t
+

@

@x

(
q2

H� B(z)
+

1
2
gH(H� 2B(x))

)
= �gHBx:

The stationary solution is q = q0 and H = H̃(x), obtained by solving the equation

@

@x

(
q2

0

H̃� B(z)
+

1
2
gH̃(H̃� 2B(x))

)
= �gH̃Bx:

Integrating the equation one has

q2
0

2(H̃� B)2
+ gH̃ = gH0 +

q2
0

2(H0 � B0)2
:

Therefore H̃ is obtained as solution of a cubic equation.
If, in the whole channel, the stationary flow is subcritical, i.e., if juj <

p
gh,

then the cubic equation has only one real solution. This is the case we consider.
The quantities H̃j, H̃j+1=2, H̃j+1=4, H̃j�1=4 are precomputed and stored at the

beginning of the calculation.
Particular care has to be used in the approximation of the derivatives. Here we

distinguish between predictor and corrector steps.
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Predictor. We use the non-conservative form of the equation. In particular

qn+1
j = qnj � �

2
K;

with

K = 2
q

h
q0
j �

(
q2

h2 � gh

)
(H0 � B0) + gHB0;

H0 = v0H̃+ vH̃0:

Here h = H � B; B0 = Bx�x; H̃0 = H̃x�x, and H̃x is computed exactly by
differentiating the equation for H̃.

Corrector. The source has to be computed with a well-balanced formula. For exam-
ple, for the flux one has

qn+1
j+1=2 = qnj+1=2 � �(fn+1=2

j+1 � fn+1=2
j )

+ (H̃jv
n+1=2
j + H̃j+1v

n+1=2
j+1 )Sj+1=2;

with

Sj+1=2 =
f(H̃(xj); q0) � f(H̃(xj+1); q0)

H̃j + H̃j+1
:

Remark. In the new scheme the derivative of the bottom is computed exactly, and
not by finite difference, as in the earlier well-balanced scheme (10), (11).

4.1 Numerical results

We consider here a case in which the solution is a small perturbation of a stationary
non-static equilibrium. The initial condition is given by Eq. (8), but with q0 = 0:17.
The numerical solution for the total height at two different times is reported in Fig. 6,
where only 50 grid points are used. The main difference between the earlier well-
balanced scheme and the new one which preserves non-static equilibria is noticeable
near the middle of the channel, where the bottom is higher, and the water profile
becomes lower. To enhance the effect, in Fig. 7 we report the quantity

I(x; t) =
q2

2(H� B)2
+ gH;

which is invariant at equilibrium. Notice the spurious effect near the center of the
channel in the numerical result obtained using scheme (10), (11). We remark, howe-
ver, that these effects are rather small, and quickly disappear as the grid is refined.
Fig. 8, for example, represents the same quantity with 200 grid points, and the effect
is barely noticeable.

In all cases, the reference solution is obtained using the earlier well-balanced
scheme with 1600 points.
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Fig. 6. Small perturbation of stationary, non-static, equilibria. H(x; t) at different times: t =
0:1 (top) and t = 0:6 (bottom). Well-balanced central scheme that preserves static equilibria
(left), and scheme that preserves non-static equilibria (right). Number of grid points N = 50
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Fig. 7. Plot of the equilibrium invariant at different times. Time t = 0:1 (top) and t = 0:6
(bottom). Earlier well-balanced scheme (left) and new well-balanced scheme (right). Number
of grid points N = 50
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Fig. 8. Same as in the previous figure, but with N = 200 grid points
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5 Conclusions

Staggered central schemes can be used for:

� systems with stiff source (implicit-explicit schemes);
� quasi-stationary flows (well-balanced schemes);
� accurate solutions (high order central schemes).

They may be more effective than non-staggered central schemes in some cases
(higher resolution with the same number of grid points).

High order schemes can be constructed for problems with stiff source (high order
finite difference discretization + IMEX time discretization).

The construction of well-balanced central schemes on staggered grids that pre-
serve static equilibria is possible, but requires the solution of the stationary problem.

Future work in this topic may include the construction of schemes that do not
require this information. Second-order schemes that preserve only static equilibria
perform well even when the unperturbed solution is non-static. The performance
improves with the increase of the accuracy of the scheme. An interesting problem
is the construction of a third-order well-balanced scheme (on staggered or non-
staggered grids).
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[3] Godlewski, E., Raviart, P.-A. (1996): Numerical approximation of hyperbolic systems
of conservation laws. (Applied Mathematical Sciences, vol. 118). Springer, New York

[4] Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E. (1998): Advanced numerical appro-
ximation of nonlinear hyperbolic equations. (Lecture Notes in Mathematics, vol. 1697).
Springer, Berlin

[5] Nessyahu, H., Tadmor, E. (1990): Nonoscillatory central differencing for hyperbolic
conservation laws. J. Comput. Phys. 87, 408–463

[6] Russo, G. (2002): Central schemes and systems of balance laws. In: Meister, A., Struck-
meier J. (eds.): Hyperbolic partial differential equations. Vieweg, Braunschweig, pp.
59–114

[7] Kurganov, A., Noelle, S., Petrova, G. (2001): Semidiscrete central-upwind schemes for
hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23,
707–740

[8] Kurganov, A., Tadmor, E. (2000): New high-resolution central schemes for nonlinear
conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282

[9] Qiu, J., Shu, C.-W. (2002): On the construction, comparison, and local characteristic
decomposition for high-order central WENO schemes. J. Comput. Phys. 183, 187–209

[10] Levy, D., Puppo, G., Russo, G. (1999): Central WENO schemes for hyperbolic systems
of conservation laws. M2AN Math. Model. Numer. Anal. 33, 547–571

[11] Pareschi, L., Puppo, G., Russo, G. (2004): Central Runge-Kutta schemes for conservation
laws. SIAM J. Sci. Comput., accepted



246 G. Russo

[12] Liotta, S.F., Romano,V., Russo, G. (2000): Central schemes for balance laws of relaxation
type. SIAM J. Numer. Anal. 38, 1337–1356

[13] Kennedy, C.A., Carpenter, M.H. (2003): Additive Runge-Kutta schemes for convection-
diffusion-reaction equations. Appl. Numer. Math. 44, 139–181

[14] Greenberg, J. M., Leroux, A.Y. (1996): A well-balanced scheme for the numerical pro-
cessing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16

[15] Gosse, L. (2001): A well-balanced scheme using non-conservative products designed
for hyperbolic systems of conservation laws with source terms. Math. Models Methods
Appl. Sci. 11, 339–365

[16] LeVeque, R.J. (1998): Balancing source terms and flux gradients in high-resolution
Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146,
346–365
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Regularized 13 moment equations
for rarefied gas flows

H. Struchtrup, M. Torrilhon

Abstract. A new closure for Grad’s 13 moment equations is presented that adds terms of
super-Burnett order to the balances of the pressure deviator and heat flux vector. The resulting
system of equations contains the Burnett and super-Burnett equations when expanded in a
series in the Knudsen number. However, other than the Burnett and super-Burnett equations,
the new set of equations is linearly stable for all wavelengths and frequencies. The dispersion
relation and damping for the new equations agree better with experimental data than those for
the Navier-Stokes-Fourier equations, or the original 13 moments system. The new equations
allow the description of Knudsen boundary layers, and yield smooth shock structures for all
Mach numbers in good agreement with experiments and DSMC simulations.

1 Introduction

Processes in rarefied gases are well described by the Boltzmann equation [1,2], a
non-linear integro-differential equation that describes the evolution of the particle
distribution function f (x; t; c) in phase space. Here x and t are the space and time
variables, respectively, and c denotes the microscopic velocities of particles. The
distribution function is defined so that f (x; t; c)dcdx gives the number of gas
particles in the phase space cell dcdx. Thus f is a function of seven independent
variables, and the numerical solution of the Boltzmann equation, either directly [3]
or via the direct simulation Monte Carlo (DSMC) method [4], is very time expensive.
In particular that is the case at low Mach numbers in the transition regime. Since
this regime is important for the simulation of microscale flows, e.g., in MEMS, there
is a strong desire for accurate models which allow the calculation of processes in
rarefied gases at lower computational cost.

Macroscopic models can be derived from the Boltzmann equations, in particular
for smaller values of the Knudsen number Kn, defined as the ratio between the mean
free path of the molecules and the relevant macroscopic length scale. In this paper
we present a new model, the regularized 13 moment equations, or R13 equations
[5,6], which agrees with the Boltzmann equation up to third order in the Knudsen
number.

Before we discuss the new equations in detail, we give an overview of methods
for deriving macroscopic equations from the Boltzmann equation. Then we introduce
the R13 equations and discuss their main features.
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2 Macroscopic models for rarefied gas flows

2.1 Chapman-Enskog expansion

The best known approach to deriving macroscopic transport equations from the
Boltzmann equation is the Chapman-Enskog method [1,2,7] where the distribution
function is expanded in powers of the Knudsen number, f = f(0) + Knf(1) +
Kn2f(2) + � � � . The expansion parameters f(˛) are determined successively by plug-
ging this expression into the Boltzmann equation, and equating terms with the same
factors in powers of the Knudsen number; see, e.g., [1,2,7] for details.

To zeroth order the expansion yields the Euler equations, the first order correction
results in the equations of Navier-Stokes and Fourier, the second order expansion
yields the Burnett equations [2,7], and the third order expansion yields the so-called
super-Burnett equations [8,9].

The equations of Navier-Stokes and Fourier cease to be accurate for Knudsen
numbers above 0.05, and one is lead to think that the Burnett and super-Burnett
equations are valid for larger Knudsen numbers. Unfortunately, however, the higher
order equations become linearly unstable for processes involving small wavelengths,
or high frequencies [8], and they lead to unphysical oscillations in steady state pro-
cesses [10], and thus cannot be used in numerical simulations .

There is no clear argument why the Chapman-Enskog expansion leads to unstable
equations. It seems, however, that a first order Chapman-Enskog expansion leads
generally to stable equations, while higher order expansions generally yield unstable
equations, although exceptions apply; e.g., see [11,12].

In recent years, several authors presented modifications of the Burnett equati-
ons that contain additional terms of super-Burnett order (but not the actual super-
Burnett terms) to stabilize the equations to produce the “augmented Burnett equati-
ons” [13,14], or derived regularizations of hyperbolic equations that reproduce the
Burnett equations when expanded in the Knudsen number [15,16]. These models are
only partially successful: the augmented Burnett equations still are unstable in space
[6], and both approaches lack a rational derivation from the Boltzmann equation [6].

2.2 Grad’s moment method

In the method of moments of Grad [17,18], the Boltzmann equation is replaced by
a set of moment equations, first order partial differential equations for the moments
of the distribution function. Which and how many moments are needed depends on
the particular process, but experience shows that the number of moments must be
increased with increasing Knudsen number [19–23].

For the closure of the equations, the phase density is approximated by an expan-
sion in Hermite polynomials about the equilibrium distribution (the local Maxwel-
lian), where the coefficients are related to the moments.

Only a few moments have an intuitive physical meaning, i.e., density %, momen-
tum density %vi, energy density %e, heat flux qi and pressure tensor pij. This set of
13 moments forms the basis of Grad’s well-known 13 moment equations [17] which
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are commonly discussed in textbooks. However, the 13 moment set does not allow
the computation of boundary layers [24,25,20] and, since the equations are symme-
tric hyperbolic, leads to shock structures with discontinuities (sub-shocks) for Mach
numbers above 1.65 [19,26]. With increasing number of moments, one can compute
Knudsen boundary layers [27,20,28] and smooth shock structures up to higher Mach
numbers [26,22]. As becomes evident from the cited literature, for some problems, in
particular for large Mach or Knudsen numbers, one has to face hundreds of moment
equations.

2.3 Reinecke-Kremer-Grad method

In most of the available literature, both methods - moment method and Chapman-
Enskog expansion – are treated as being completely unrelated. However, using a
method akin to the Maxwellian iteration of Truesdell and Ikenberry [29,30], Reinecke
and Kremer extracted the Burnett equations from Grad-type moment systems [31,32].

Which set of moments one has to use for this purpose depends on the model for
the collisions of particles. For Maxwell molecules it is sufficient to consider Grad’s
classical set of 13 moments.

In [25] it was shown that this iteration method is equivalent to the Chapman-
Enskog expansion of the moment equations. In the original Chapman-Enskog method
one first expands, and then integrates, the resulting distribution function to compute
its moments. In the Reinecke-Kremer-Grad method, the order of integration and
expansion is exchanged.

2.4 Regularization of Grad’s 13 moment equations

The original derivation of the regularized 13 moment equations uses a different
combination of the methods of Grad and Chapman-Enskog. The basic idea is to
assume different time scales for the 13 basic variables of the theory on one side, and
all higher moments on the other. Under that assumption, one can perform a Chapman-
Enskog expansion around a non-equilibrium state which is defined through the 13
variables.

This idea was also presented by Karlin et al. [33] for the linearized Boltzmann
equation. Based on the above idea they compute an approximation to the distribution
function, which they then use to derive a set of 13 linear equations for the 13 moments.
These equations correspond to Grad’s 13 moment equations for linear processes plus
additional terms.

Our derivation of the R13 equations in [5] exchanges the order of expansion
and integration. The derivation of the equations is based on the non-linear moment
equations for 26 moments, instead of the linearized Boltzmann equation, so that we
obtain a set of non-linear equations. Also, the use of moment equations allows for
a much faster derivation of the equations, and yields explicit numerical expressions
for coefficients that were not specified in [33]. The Karlin et al. equations follow
from our equations by linearization.
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A closer inspection of the regularized equations shows that the terms added to the
original Grad equations are of super-Burnett order. The additional terms, which are
obtained from the moment equations for higher moments, place the new equations
in between the super-Burnett and Grad’s 13 moment equations in as much as the
new equations keep the desirable features of both, while discarding the unwelcome
features.

In particular, the R13 equations

� contain the Burnett and super-Burnett equations as can be seen by means of a
Chapman-Enskog expansion in the Knudsen number,

� are linearly stable for all wavelengths, and/or frequencies,
� show phase speeds and damping coefficients that match experiments better than

those for the Navier-Stokes-Fourier equations, or the original 13 moments sy-
stem,

� exhibit Knudsen boundary layers,
� lead to smooth shock structures for all Mach numbers.

The most important of these features are discussed in the sequel.
Hyperbolic partial differential equations imply finite wave speeds and disconti-

nuities that make them difficult to handle with standard analysis. Regularization is
a method for adding parabolic terms which change the character of the equations so
that no discontinuities occur, but a narrow smooth transition zone [34,35]. We deci-
ded to adopt the notion of regularization for the new equations since the additional
terms indeed are smoothing out the discontinuities (sub-shocks) that occur in Grad’s
13 moment system for Mach numbers above 1.65. It is important to note, though, that
the shocks in Grad’s moment equations (at Ma = 1:65 for 13 moments, at higher
Mach numbers for extended moment sets; see [26]) are artefacts of the method, and
thus unphysical. The parameter that controls our regularization is the mean time of
free flight, which is a physical parameter. In other words, the regularization of Grad’s
13 moment system removes artificial discontinuities, and replaces them by a shock
structure which is based in physics.

2.5 Order of magnitude / order of accuracy approach

The weak point in the derivation of the R13 equations as outlined above is the
assumption of different time scales for the basic 13 moments, and higher moments.
While this assumption leads to a set of equations with the desired behavior, it is
difficult to justify, since the characteristic times of all moments are of the same
order.

Only recently, an alternative approach to the problem was presented by Struchtrup
in [36]. This approach is an extension of an idea developed by Müller et al. in [37].

Müller et al. [37] considered the infinite system of coupled moment equations
of the BGK equation [38]. From these they determined the order of magnitude of
moments in terms of orders in powers of the Knudsen number, and declared that
a theory of order � needs to consider all terms in all moment equations up to the
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order O
(
"�
)
. At first, these are the moment equations for all moments of order

ˇ � � under omission of higher order terms. However, these equations split into two
independent subsystems, and only a smaller number of equations (and variables)
remain as equations of importance [37].

The extension of this idea in [36] does not ask for the order of terms in all moment
equations, but of the order of magnitude of their influence in the conservations laws,
i.e., on the heat flux and stress tensor. This is quite different. For example, in order
to compute the heat flux with third order accuracy, as is necessary in a third order
theory, other moments are needed only with second order accuracy, while others can
be ignored completely. Müller et al. [37], on the other hand, requires higher order
accuracy for these moments, and a larger number of moments. The new method was
applied to the special cases of Maxwell molecules and the BGK model in [36], and
it was shown that it yields the Euler equations at zeroth order, the Navier-Stokes-
Fourier equations at second order, Grad’s 13 moment equations (with omission of a
non-linear term) at second order, and the regularized 13 moment equations at third
order.

The lone scaling parameter in this method is the Knudsen number, and the as-
sumption of different time scales is not needed for the derivation of the R13 equations.
Thus, one can consider this derivation of the R13 equations to be better founded than
the original derivation in [5].

3 Regularized 13 moment equations

The regularized 13 moment equations for monatomic gases were derived in [5,36],
and here we just present the results. The R13 equations are a set of field equations for
the 13 variables �A =

{
%; %vi; %" = 3

2%RT;
ij; qi
}

, where % is the mass density,
vi is the gas velocity, " is the specific internal energy, T is the temperature, R is the
specific gas constant, 
ij is the trace-free part of the pressure tensor, and qi is the
heat flux vector. The field equations for these variables are the conservation laws for
mass, momentum and energy,
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plus additional field equations for the stress deviator,
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and the heat flux,
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Here, p = %RT is the pressure, and � denotes the viscosity. Indices in angular
brackets denote the symmetric trace-free parts of tensors. The above equations con-
tain the additional quantities mijk; Rik ; �, and constitutive equations are required
to close the equations. With the choice

mijk = Rik = � = 0 (4)

the above set of equations is reduced to the well-known set of 13 moment equations
of Grad [17,18]. The regularization of the Grad equations yields
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In the resulting system (1)-(3) with (5), second order derivatives appear in the balance
equations of the stress tensor and heat flux which lead to a regularization of the
original 13 moment case of Grad.

The R13 equations were derived from the Boltzmann equations for the special
case of Maxwell molecules, that is, particles that interact in a repulsive 5-th power
potential. The corresponding viscosity is proportional to temperature as

� = �0

(
T

T0

)s

(6)

with s = 1. It is well-known [4] that the viscosity is also of this form for other
interaction potentials if one only adjusts the exponent s. In particular one computes
s = 1=2 for hard spheres, and one measures s  0:8 for argon. For the purpose of
this paper we shall use s = 1 exclusively.

4 Chapman-Enskog expansions

The idea of the Chapman-Enskog expansion is to expand the distribution function in
a series in the Knudsen number Kn as

f = f(0) + Knf(1) + Kn2f(2) + Kn3f(3) + � � � ;
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where the f(˛) are obtained from the Boltzmann equation [7,2]. In our case, we
operate on the level of moments and moment equations, and thus we expand the
pressure deviator and heat flux in a series as


ij = 

(0)
ij + Kn
(1)

ij + Kn2

(2)
ij + Kn3


(3)
ij + � � � ;

qi = q
(0)
i + Knq(1)

i + Kn2q
(2)
i + Kn3q

(3)
i + � � � :

In order to expand properly, one needs to consider the dimensionless forms of Eqs.
(2) and (3), into which the above expressions are inserted. Then terms with equal
powers in Kn are equated to find the
(˛)

ij , q(˛)
i . Note that the dimensionless equations

have Kn� instead of � in Eqs. (2), (3), (5). The dimensions are restored after the
expansion is performed.

In the Chapman-Enskog method it is customary to express the time derivatives of



(˛)
ij , q(˛)

i by time derivatives of the hydrodynamic variables %;T; vi. Some details
on how this must be done successively can be found in [5] for the linear case, and
for the non-linear case in [25].

From the R13 equations as given above we find the Euler equations at zeroth
order,



(0)
ij = q

(0)
i = 0; (7)

and the first order corrections are the Navier-Stokes-Fourier equations



(1)
ij = �2�

@vhi
@xji

and q
(1)
i = �15

4
R�

@T

@xi
: (8)

The second order terms yield the Burnett equations for Maxwell molecules, that can
be written as
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and
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where we have used the abbreviation

Sij =
@vhi
@xji

:

It is not surprising that the Burnett equations arise from the second order expansion
of the R13 equations, since it is an established fact that the Burnett equations can
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already be obtained from Grad’s 13 moment equations [31,32,25], i.e., with the Grad
closure (4).

Indeed, a closer inspection of the closure relations (5) of the R13 equations shows
that these contribute terms of super-Burnett order. The derivation of the super-Burnett
equations is a cumbersome task, and they are difficult to find in the literature. Thus, we
expanded the R13 equations for two special cases only: the three-dimensional linear
equations and the one-dimensional non-linear equations. For the three-dimensional
linear case one obtains [5]
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�3
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(
5
3
RT
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RT
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@xk@xk

@vhi
@xji

)
;

(11)
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R2T2

�

@3%

@xi@xk@xk

)
:

These are the same equations that Shavaliev found from the Boltzmann equation [9].
It can also be shown that the third order Chapman-Enskog expansion of the non-
linear one-dimensional R13 equations agrees with the corresponding super-Burnett
equations [6], but we refrain from printing these here.

From the above discussion it follows that the R13 equations agree up to the super-
Burnett order with the Boltzmann equation. Note that Grad’s classical 13 moment
equations agree up to Burnett order, but not to super-Burnett order.

Moreover, the R13 equations have several advantages over the Burnett and super-
Burnett equations. (a) They can be derived much easier, and faster, so that errors can
be excluded with higher certainty. (b) The R13 equations contain only space deriva-
tives of first and second order while the super-Burnett equations contain derivatives
of up to fourth order. Thus, the R13 equations fit existing numerical methods more
conveniently. Note that their mathematical structure is very similar to the NSF equa-
tions, so that methods for these can be used as well for solving the R13 equations. (c)
Most important, however, is the fact that the R13 equations are linearly stable [5] as
is shown below, while the Burnett and super-Burnett equations are linearly unstable
[8,10].

5 Linear stability

We start our analysis of the R13 equations by considering the linear stability. For this,
we consider small deviations from an equilibrium state given by %0; T0; vi;0 = 0,
and consider one-dimensional processes where x1 = x, and vi =

{
v (x; t) ; 0; 0

}
.

Dimensionless variables %̂; T̂; v̂; 
̂; q̂ are introduced as

% = %0 (1 + %̂) ; T = T0

(
1 + T̂

)
; p = %0RT0

(
1 + %̂+ T̂

)
;

v =
p
RT0v̂ ; 
11 = %0RT0
̂ ; q1 = %0

p
RT0

3
q̂ :
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Moreover, we identify a relevant length scale L of the process, and use it to non-
dimensionalize the space and time variables according to

x = Lx̂ ; t =
Lp
RT0

t̂ :

The corresponding dimensionless collision time is then given by the Knudsen num-
ber, which we define here as

Kn =
�
p
RT0

L
=

�0

%0
p
RT0L

:

Linearization in the deviations from equilibrium %̂; T̂; v̂; 
̂; q̂ yields the dimen-
sionless linearized system in one dimension as
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This set of equations is equivalent to the equations proposed by Karlin et al. [33],
who, however, did not give explicit numerical expressions for the factors that multiply
the second derivatives of 
̂ and q̂, but presented them as integrals over the linearized
collision operator which are not further evaluated.

For comparison, we shall also consider the Chapman-Enskog expansion to va-
rious orders (7-10), in which case we have to replace the last two equations with the
relevant terms of
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We assume plane wave solutions of the form

� = �̃ exp
{
i
(
!t̂� kx̂

)}
;

where �̃ is the complex amplitude of the wave, ! is its frequency, and k is its wave
number. The equations can be written as

AAB (!; k) ũB = 0 with ũB =
{
%̃; T̃; ṽ; 
̃; q̃

}
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and nontrivial solutions require

det [AAB (!; k)] = 0 ;

the resulting relation between ! and k is the dispersion relation.
If a disturbance in space is considered, then the wave number k is real, and the

frequency is complex, ! = !r (k) + i!i (k). The phase velocity vph and damping ˛
of the corresponding waves are given by

vph =
!r (k)
k

and ˛ = !i (k)

Stability requires damping, and thus !i (k) � 0.
If a disturbance in time at a given location is considered, then the frequency !

is real, while the wave number is complex, k = kr (!) + iki (!). The phase velocity
vph and damping ˛ of the corresponding waves are given by

vph =
!

kr (!)
and ˛ = �ki (!) :

For a wave traveling in the positive x-direction (kr > 0), the damping must be
negative (ki < 0), while for a wave traveling in the negative x-direction (kr < 0),
the damping must be positive (ki > 0).

It is convenient to chose the mean free path as reference length, and the mean free
time as reference time, so that Kn = 1. Then the wave number is measured in units of
the inverse mean free path, and the wave frequency in terms of the collision frequency
1=�. This implies that the Knudsen number for an oscillation with dimensionless
frequency ! is Kn! = !, and for a given wave number k the Knudsen number is
Knk = k.

We test the stability against local disturbances of frequency !. As we have seen,
stability requires different signs of real and imaginary part of k (!). Thus, if k (!)
is plotted in the complex plane with ! as parameter, the curves should not touch the
upper right nor the lower left quadrant.

Figure 1 shows the solutions for the different sets of equations considered in
this paper; the dots mark the points where ! = 0. Grad’s 13 moment equations
(Grad13), and Navier-Stokes-Fourier equations (NSF) give two different modes each,
and none of the solutions violates the condition of stability (upper left in Fig. 1). This
is different for the Burnett (3 modes, upper right) and super-Burnett (4 modes, lower
left) equations: the Burnett equations have one unstable mode, and the super-Burnett
have two unstable modes. The R13 equations, shown in the lower right, have 3 modes,
all of them stable.

In a similar manner it can be shown that the R13 equations are stable with respect
to a disturbance of given wave length, or wave number k, while the Burnett and super-
Burnett equations are unstable [5,8].

6 Dispersion and damping

Next we compare phase speed and damping with experiments performed by Meyer
and Sessler [39]. Figure 2 shows the inverse phase speed and the damping (as ˛=!)
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Fig. 1. The solutions k (!) of the dispersion relation in the complex plane with ! as parameter
for Navier-Stokes-Fourier, Grad’s 13 moments, Burnett, super-Burnett, and Regularized 13
moment equations. The dots denote the points where ! = 0

as functions of the dimensionless inverse frequency 1=!, computed with the NSF,
Grad 13, and R13 equations, and experimental data from [39]. Here we consider only
those modes that yield the speed of sound as ! ! 0.

As can be seen, the R13 equations reproduce the measured values of the damping
coefficient ˛ for all dimensionless frequencies less than unity, while the NSF and
Grad13 equations already fail at ! = 0:25 and ! = 0:5, respectively. The agreement
of the R13 prediction for the phase velocity is less striking, but the other theories
also do not match well. One reason for this might be insufficient accuracy of the
measurement. Altogether, the R13 equations give a remarkably good agreement with
the measurements for values of ! < 1.

Equations from expansions in the Knudsen number can be expected to be good
only for Kn < 1. We conclude that the R13 equations allow a proper description of
processes quite close to the natural limit of their validity of Kn! = 1. It is not surpri-
sing that all theories show discrepancies to the experiments for larger frequencies.
The reasonable agreement between the NSF phase speed and experiments must be
seen as coincidence.
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Fig. 2. Inverse phase velocity (above) and damping (below), theoretical results from Navier-
Stokes-Fourier, Grad’s 13 moments, and regularized 13 moments and measurements by Meyer
and Sessler [39] (squares)

7 Knudsen boundary layers

In this section we briefly study boundary value problems for the linearized R13
equations. The goal is to show that the R13 equations lead to Knudsen boundary
layers.

To this end we consider a simple steady state Couette flow problem: two infinite,
parallel plates move in the fx2; x3g-plane with different speeds in the x2 direction.
The plate distance is L = 1 in dimensionless units, and the plates have different
temperatures. In this setting, we expect that all variables will depend only on the
coordinate x1 = x. Since matter cannot pass the plates, we will have v1 = 0.
Moreover, for symmetry reasons, there will be no fluxes in the x3 direction, so that

vi =
{
0; v (x) ; 0

}
and q3 = 
13 = 
23 = 0 :

Under these assumptions, the linearized R13 equations can be split into the flow
problem with the equations
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and the heat transfer problem with the equations
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Two more non-trivial equations serve to compute %, and 
22, viz.,
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The linear equations are easy to integrate, and we obtain the solution of the flow
problem as

v (x) = v0 � 
12
x
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� 2
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with q2 (x) = A sinh
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5
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2
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9
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)
;

where v0, 
12, A, B are constants of integration.
The solution of the heat transfer problem reads

T (x) = T0 � 4
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x

Kn
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with 
11 (x) = C sinh
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5
6
x� 1
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6
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)
;

where T0, q1, C, D are constants of integration.
Thus, in order to obtain the fields of temperature and velocity between the plates,

we need 8 boundary conditions. The velocities and temperatures of the two plates give
only four boundary conditions, and thus additional boundary conditions are required.
As of now, the problem of how to prescribe meaningful boundary conditions for the
R13 equations is unsolved, and we hope to be able to present proper boundary
conditions (that, of course, allow for temperature jumps and velocity slips) in the
future.

Nevertheless, it is worthwhile to study the general solutions (13, 14). In the
linear Navier-Stokes-Fourier case, both, temperature and velocity, are straight lines
according to

vNSF (x) = v0 � 
12
x

Kn
and TNSF (x) = T0 � 4

15
q1

x

Kn
;

that is, for the NSF case one finds q2 (x) = 
11 (x) = 0.
With the R13 equations, on the other hand, these functions are non-zero as given

in (13, 14). From that, we identify � 2
5q2 (x) and � 2

5
11 (x) as the Knudsen boundary
layers for the velocity and temperature according to the R13 equations. Indeed, these
functions have the typical shape of a boundary layer, their largest values are found at
the walls, and the curves decrease to zero within several mean free paths away from
the walls.



260 H. Struchtrup, M. Torrilhon

The curves are governed by the Knudsen number, so that, for small Knudsen
numbers, q2 (x) and
11 (x) are equal to zero almost everywhere between the plates.
The boundary layers are confined to a small region adjacent to the wall, and contribute
to temperature jump and velocity slip. In this case, the Navier-Stokes-Fourier theory
can be used with proper jump and slip boundary conditions.

As Kn grows, the width of the boundary layers is growing as well. For Knudsen
numbers above �0.05 one can no longer speak of boundary layers, since the functions
q2 (x) ; 
11 (x) as given in (13, 14) are non-zero everywhere in the region between
the plates. In this case boundary effects have an important influence on the flow
pattern.

Since, at this point, we have no recipe for prescribing all boundary values required,
we cannot say whether the boundary layers obtained from the R13 equations coincide
well with those of the Boltzmann equation. Note that similar problems arise with the
Burnett and super-Burnett equations which, however, lead to unphysical oscillations
in space [10].

8 Shock structure computations

Now we turn to the non-linear equations. The shock profile connects the equilibrium
states of density �0, velocity v0, and temperature T0 before the shock at x ! �1
with the equilibrium �1, v1, T1 behind the shock at x ! 1. The process is modeled
as one-dimensional flow. Hence, velocity, pressure deviator and heat flux have only
one single non-trivial component in the direction normal to the shock wave. The field
quantities are related to their values at x ! �1 by definition of the non-dimensional
quantities

�̂ =
�

�0
; v̂ =

vp
RT0

; T̂ =
T

T0
; 
̂ =




�0RT0
; q̂ =

q

�0
p
RT0

3 ;

�̂ =
�

�0
= T̂s :

As in the linear case, 
̂ = 
h11i represents the non-trivial component of the pressure
deviator, called stress in the following, and q̂ denotes the normal heat flux.

A dimensionless space variable is introduced as

x̂ =
x�0

p
RT0

�0
;

where �0 is the viscosity of the state before the shock. From the viscosity follows
the mean free path (see, e.g., [4] or [2]) calculated for x ! �1, viz.,
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Thus, the relation
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8
x̂  0:783 x̂ (16)
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holds for our dimensionless space variable. In the plots we shall always use x=�0
as space variable. For the sake of simplicity we drop the “hats” of non-dimensional
variables in the sequel.

The Mach number of the shock

M0 = v0/

√
5
3

acts as parameter for the computations. Shock structures are formally solutions of
the one-dimensional R13 equations with the boundary conditions:

at (x ! �1) : %0 = 1 ; v0 =

√
5
3
M0 ; T0 = 1 ;

at (x ! 1) : %1 =
%0v0
v1

; v1 =

√
5
3
M2

0 + 3
4M0

;

T1 =
(5M2

0 � 1)(M2
0 + 3)

16M2
0

:

and 
0 = 
1 = 0; q0 = q1 = 0. The values behind the shock are given by the
Rankine-Hugoniot relations. The density follows from the velocity by means of the
mass balance as

� (v) =

√
5
3
M0

v
; (17)

and the relations for the stress 
 and heat flux q as functions of velocity and tempe-
rature follow from the conservation laws for momentum and energy as
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q (v; T) =

√
5
12
M0

(
5
3
M2

0 + 5v2 � 3T
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5
3
M2

0

)
: (19)

The R13 equations were solved numerically with a method outlined in [6]. We pro-
ceed to discuss the general behavior of shock structure solutions of the R13 equations.

8.1 Transition from Grad’s 13 moment equations

Grad’s 13 moment case was derived as an improvement on the NSF theory in the
description of rarefied flows. Unfortunately, the equations fail to describe continuous
shock structures, since they suffer from a subshock in front of the shock beyond the
Mach numberM0 = 1:65; see [17] and [18]. This subshock grows with higher Mach
numbers and at M0  3:5 a second subshock appears in the middle of the shock.
Both subshocks are artefacts from the hyperbolic nature of the 13-moment equati-
ons [40]. It turned out that any hyperbolic moment theory yields continuous shock
structures only up to the Mach number corresponding to the highest characteristic
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Fig. 3. Regularization process of Grad’s 13 moment equation. Profiles for three different Mach
numbers are shown with different values of ı = 0:0; 0:1; 0:5; 1:0. The results of Grad’s
equation (ı = 0) exhibit kinks as well as up to two subshocks of increasing strength. These
singularities vanish in the R13 case where ı = 1

velocity, see [41] and [26]. Further validation of results with measurements shows
that moment theories succeed in describing shock thickness data accurately only for
Mach numbers far below this critical value. In particular, Grad’s 13 moment case
describes the shock thickness accurately only up to M0  1:1. Recent results from
[22] required up to 900 moments to calculate a smooth shock structure forM0 = 1:8
that fits to experimental data. For more information on shock structures in moment
theories see the textbook [19].

One of the reasons for deriving the regularized 13 moment equations (R13) in
[5] was to obtain field equations which lead to smooth and stable shock structures
for any Mach number. Since the equations are based on Grad’s 13 moment case, it
must be emphasized that physicality of the R13 solutions is still restricted to small
Mach numbers. However, the range of validity is extended by including higher order
expansion terms into the R13 equations.

Figure 3 shows the transition to smooth shock structures for three different Mach
numbers by means of the normalized velocity field vN. The results are obtained
with s = 1, i.e., Maxwell molecules. For this, we multiplied the right-hand sides
of Eqs. (5) with a parameter ı that assumes values between zero and unity. The
structures with ı = 0 represent solutions of the classical 13 moment case, Eqs. (4).
For these, at M0 = 1:651 a kink at the beginning of the shock indicates that the
highest characteristic velocity is reached before the shock. The kink develops into a
pronounced subshock at M0 = 3. In the case M0 = 6 a second subshock is present
towards the end of the structure.

The curves for ı = 0:1 follow mainly the results of Grad’s 13 moment case. The
subshocks are still clearly visible, albeit smoothed out by increased dissipation.

At ı = 1, however, the additional terms in the regularized 13 moment equations
succeed in completely annihilating the subshocks and an overall smooth shock struc-
ture is obtained. At M0 = 6 the R13 solution (ı = 1) exhibits obvious asymmetries
which start to appear in the structure with Mach numbersM0 > 3. Since experiments
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as in [42] or DSMC simulations predict almost perfect s-shaped profiles we conclude
that the validity of R13 solutions may be lost beyond Mach numbers M0  3:0.

8.2 Comparison with DSMC results

In this section we compare the shock structures obtained with the R13 equations to
the results obtained with the direct simulation Monte-Carlo method (DSMC) of Bird
[4]. For the DSMC results we used the shock structure code which is available from
Bird’s website. For the actual setup (interval length, upstream temperature, etc.) we
adopted the values of Pham-Van-Diep et al. [43]. Note that the calculation of a single
low Mach number shock structure by a standard DSMC program takes several hours
which is several orders of magnitude slower than the calculation with a continuum
model.

We compare results to DSMC solutions for Maxwell molecules, computed with
Bird’s code; see [4]. Since the DSMC code uses physical units we fixed the mean
free path of the upstream region �0 as �0 = 0:0014m, which corresponds to our
definition (15) and also reproduces the shock thickness results of [43].

In the next figures we compare the profiles of density and heat flux. The heat flux
in a shock wave follows solely from the temperature and velocity via the relation
(19). Hence, its profile gives a combined impression of the quality of the temperature
and velocity profile. The soliton-like shape of the heat flux also helps to give a more
significant judgement of the quality of the structure. Since it is a higher moment
the heat flux is more difficult to match than the stress. We suppress the profiles of
velocity, temperature and stress in the following. The density is normalized to give
values between zero and unity for each Mach number. Similarly, the heat flux is
normalized so that the DSMC result gives a maximal heat flux of 0.9.

Before we present the results of the regularized 13 moment equations we discuss
briefly the failure of the classical theories and the standard Burnett models. Figure 4
shows the density and heat flux profile of an M0 = 2 shock calculated with the NSF
and Grad’s 13 moment system as well as with the Burnett and super-Burnett equati-
ons. The NSF results simply mismatch the profile, while the Grad 13 solution shows
a strong subshock. Burnett and super-Burnett solutions are spoiled by oscillations in
the back of the shock.

In the Burnett case the oscillations arise if the length of a grid cell is below half
of the mean free path. This is in correspondence to the result of the linear analysis
which predicts spatial instabilities. It also explains the appearance of the oscillations
in the downstream region, because the mean free path is smaller in that region.
Since the oscillations stick to a wave length corresponding to the length of a grid
cell, high resolution calculations are impossible. The super-Burnett result shows the
same behavior; however the oscillation wave length is a multiple of the length of a
grid cell. Still, the oscillations increase with grid refinement and convergence cannot
be established.

The oscillations of both models, Burnett and super-Burnett, increase for shocks
with higher Mach number and are also present for other values of the viscosity
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Fig. 4. Shock structure solutions of the system of Navier-Stokes-Fourier, the classical 13
moment case of Grad, and Burnett and super-Burnett equations for Maxwell molecules at
Mach number M0 = 2 (solid lines). Both Burnett results exhibit non-physical oscillations in
the downstream region. The squares represent the DSMC solution

exponent. Hence, for the description of shock structures the Burnett equations and
super-Burnett equations have to be rejected.

Figure 5 shows shock structures for the Mach numbers M0 = 1:5, 2, 3, 4 calcu-
lated with the R13 equations, displayed together with the DSMC results. For smaller
Mach numbers the shape of the heat flux is captured very well by the R13 equati-
ons, and the density profiles exhibit no visible differences to DSMC. The deviations
from DSMC solutions become more pronounced for higher Mach numbers. The R13
results begin to deviate from the DSMC solution in the upstream part.

From the figures presented we may conclude that the results of the R13 system
for Maxwell molecules agree well with DSMC results. For higher Mach numbers,
however, the R13 equations deviate from DSMC data, and the applicability of the
theory is no longer given, when quantitative features must be captured.

9 Conclusions

We conclude that the R13 equations are superior to all competing models, i.e., Bur-
nett and super-Burnett equations, models derived from them, and Grad’s 13 moment
equations. They are unconditionally stable, and stand in good agreement with expe-
riments for dispersion and damping, and shock structures. The equations discussed
above are derived for the special case of Maxwell molecules. Other molecular in-
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Fig. 5. Shock structures in a gas of Maxwell molecules with Mach numbers M0 = 1:5, 2:0,
3:0, 4:0. Solid lines show the solution of the R13 equations, while squares correspond to the
DSMC solution

teraction models can be incorporated ad hoc by adjusting the viscosity coefficient
s in Eq. (6). However, the proper derivation is discussed in [36] where it becomes
clear that more than 13 moments will be needed for a proper third order theory for
non-Maxwellian molecules. The most pressing question at present is to find proper
boundary conditions for the R13 equations, and we hope to be able to present these
in the future.
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der Physik. Bd. 12. Thermodynamik der Gase. Springer, Berlin, pp. 205–294

[19] Müller, I., Ruggeri, T. (1998): Rational extended thermodynamics. 2nd edition. (Springer
Tracts in Natural Philosophy, vol. 37). Springer, New York

[20] Struchtrup, H. (2002): Heat transfer in the transition regime. Solution of boundary value
problems for Grad’s moment equations via kinetic schemes. Phys. Rev. E 65, 041204

[21] Struchtrup, H. (1997): An extended moment method in radiative transfer: the matrices
of mean absorption and scattering coefficients. Ann. Physics 257, 111–135

[22] Au, J.D. (2003): Lösung nichtlinearer Probleme in der Erweiterten Thermodynamik.
Dissertation. Technische Universität Berlin, Berlin

[23] Au, J.D., Torrilhon, M., Weiss, W. (2001): The shock tube study in extended thermody-
namics. Phys. Fluids 13, 2423–2432

[24] Struchtrup, H. (2000): Kinetic schemes and boundary conditions for moment equations.
Z. Angew. Math. Phys. 51, 346–365

[25] Struchtrup, H. (2004): Some remarks on the equations of Burnett and Grad. In: Ben
Abdallah, N. et al. (eds.): Transport in transition regimes. (The IMA Volumes in Mathe-
matics and its Applications, vol. 135). Springer, New York, pp. 265–277



Regularized 13 moment equations for rarefied gas flows 267

[26] Weiss, W. (1995): Continuous shock structure in extended thermodynamics. Phys. Rev.
E 52, R5760–R5763

[27] Reitebuch, D., Weiss, W. (1999):Application of high moment theory to the plane Couette
flow. Contin. Mech. Thermodyn. 11, 217–225

[28] Struchtrup, H. (2003): Grad’s moment equations for microscale flows. In: Ketsde-
ver, A.D., Muntz, E.P. (eds.): Rarefied Gas Dynamics. (AIP Conference Proceedings,
vol. 663). American Institute of Physics, Melville, NY, pp. 792–799

[29] Ikenberry, E., Truesdell, C. (1956): On the pressures and the flux of energy in a gas
according to Maxwell’s kinetic theory. I. J. Rational Mech. Anal. 5, 1–54

[30] Truesdell, C., Muncaster, R.G. (1980): Fundamentals of Maxwell’s kinetic theory of a
simple monatomic gas. Academic Press, New York

[31] Reinecke, S., Kremer, G.M. (1990): Method of moments of Grad. Phys. Rev. A 42,
815–820

[32] Reinecke, S., Kremer, G.M. (1996): Burnett’s equations from a (13+9N)-field theory.
Cont Mech. Thermodyn. 8, 121–130

[33] Karlin, I.V., Gorban, A.N., Durek, G., Nonnenmacher, T.F. (1998): Dynamic correction
to moment approximations. Phys. Rev. E, 57, 1668–1672

[34] Serre, D. (1999): Systems of conservation laws. I. Hyperbolicity, entropies, shock waves.
Cambridge Univ. Press, Cambridge

[35] Jin, S., Xin, Z.P. (1995): The relaxation schemes for systems of conservation laws in
arbitrary space dimensions. Comm. Pure Appl. Math. 48, 235–276

[36] Struchtrup, H. (2004): Stable transport equations for rarefied gases at high orders in the
Knudsen number. Phys. Fluids, to appear

[37] Müller, I., Reitebuch, D., Weiss, W. (2003): Extended thermodynamics – consistent in
order of magnitude. Contin. Mech. Thermodyn. 15, 113–146

[38] Bhatnagar, P.L., Gross, E.P., Krook, M. (1954): Model for collision processes in gases.
I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev.
(2) 94, 511–525

[39] Meyer, E., Sessler, G. (1957): Schallausbreitung in Gasen bei hohen Frequenzen und
sehr niedrigen Drucken. Z. Physik 149, 15–39

[40] Torrilhon, M. (2000): Characteristic waves and dissipation in the 13-moment-case. Con-
tin. Mech. Thermodyn. 12, 289–301

[41] Ruggeri, T. (1993): Breakdown of shock-wave-structure solutions. Phys. Rev. E (3) 47,
4135–4140

[42] Alsmeyer, H. (1976): Density profiles in argon and nitrogen shock waves measured by
the absorbtion of an electron beam. J. Fluid Mech. 74, 497–513

[43] Pham-Van-Diep, G. C., Erwin, D.A., Muntz, E.P. (1991): Testing continuum descriptions
of low-Mach-number shock structures. J. Fluid Mech. 232, 403–413



Hydrodynamic calculation for extended differential
mobility in semiconductors

M. Trovato

Abstract. By using the maximum entropy principle (MEP) we present a general theory to
obtain a closed set of balance hydrodynamic equations (HD) for hot carriers including the
full-band effects with a total energy scheme. Furthermore, under spatially homogeneous con-
ditions, a closed set of balance equations for the fluctuations of these variables is constructed.
We analyze, in the linear case, the different coupling processes, as functions of the electric
field, with a full set of scalar and vectorial moments. We prove that, for n-type Si, the coupling
between the different moments can lead to a strongly non-exponential decay of the corre-
sponding response functions. To check the validity of this theoretical approach numerical HD
calculations are found to compare well with those obtained by an ensemble Monte Carlo (MC)
simulator.

1 Introduction

In recent years significant attention has been given to the hydrodynamics models [1–
4] based on the moment balance equations and to the possibility of their use to de-
scribe charge transport in submicrometer devices when extremely high electric fields
and field gradients are present locally. Recently the formal derivation of HD moment
equations from the microscopic dynamics of the system has been intensively studied
using the extended thermodynamic and the maximum entropy principles [5–17]. The
MEP approach offers a definite procedure for the construction of a macroequivalent
distribution function [5,18,19] which determines the microstate corresponding to the
given set of macroscopic variables. The use of this theoretical approach has also been
proven to be a useful tool to describe the small-signal analysis in the homogeneous
case [14,15]. The small-signal coefficients are of fundamental and applied importance
for the description and characterization of the thermodynamic state of hot carriers in
semiconductor materials and devices [20–28]. In particular, the study of the eigen-
values of the response matrix and the analysis of the decay in time of the response
functions provides valuable information both on the coupling processes and on the
relaxation processes of the relevant macroscopic variables of interest [14,15,23–27].

The aim of this paper is to develop and apply a theoretical study of MEP for the
case of semiconductor materials under the influence of arbitrarily high electric fields.
To this end, by generalizing the results given in earlier papers [14,15,21,22,25–27],
we consider as relevant variables a full set of scalar and vectorial moments using
a linear approximation of the MEP. With this approach it is possible to include the
full-band effects with a total energy scheme and to obtain a closed set of coupled
differential equations for the macroscopic variables of interest.
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Furthermore, the moment equations for the charge carriers can be generalized,
in the homogeneous case, to a set of balance equations describing the fluctuations
around the stationary state of the macroscopic variables. This enables us to calculate
both the generalized response matrix and the response functions of the relevant
macroscopic variables in parabolic and non-parabolic approximations. Because of
the electric field these equations are coupled and the time behavior of the response
functions deviates from a simple exponential decay. The theory is applied to the case
of n-type Si. In particular we report numerical results for the small-signal response
in homogeneous bulk materials; a comparison with MC simulations is displayed.

2 General theory for a hydrodynamic approach

The microscopic description of hot carrier transport is governed on the kinetic BTE
for the single particle distribution function F(k; r; t),

@ F
@ t

+ ui
@ F
@ xi

� e

�
Ei
@ F
@ ki

= Q(F); (1)

coupled with Poisson’s equation for the self-consistent electric field Ei;

E = �5�; " 4 � = �e (ND �NA � n); (2)

where e is the unit charge, " the dielectric constant,� the electrical potential,ND and
NA the donor and acceptor concentration respectively, ui the carrier group velocity,
ki the wavevector, � the reduced Planck constant and

Q(F) =
V

(2�)3

{∫
dk0 S(k;k0)F(k0; r; t) �

∫
dk0 S(k0;k)F(k; r; t)

}
(3)

the collision integral under non-degenerate conditions, where S(k, k0) is the total
electron scattering rate for the transition k0 ! k and V the crystal volume.

In the framework of the moment theory, to pass from the kinetic level of the
BTE to the extended HD level, within the general many-valley band model, we must
consider the set of generalized kinetic fields

 A(k) = f"m; "mui1 ; : : : ; "mui1 � � � uisg; (4)

where "(k) is a general single particle band energy dispersion of arbitrary form,
m = 0; 1; :::; N and s = 1; 2; :::;M:With this approach, we have the corresponding
macroscopic quantities FA = fF(m); F(m)ji1 ; : : : ; F(m)ji1���isg, where

FA =
∫

 A(k) F(k; r; t)dk; (5)

and the set of moment equations [5–16]

@FA
@t

+
@FAk
@xk

= � e

�
RAiEi + PA ; A = 1; : : : ;N; (6)
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where N is the fixed number of moments used, andFAk,RAi,PA indicate, respectively,
the fluxes, external field productions, and collisional productions defined as:

FAk =
∫

 A(k) ukF(k; r; t)dk ; (7)

RAi =
∫

@ A(k)
@ki

F(k; r; t)dk ; (8)

PA =
∫

 A(k) Q(F)dk : (9)

In particular, for N = M = 1, we have the usual physical quantities, which have
a direct physical interpretation, such as F(0) = n (numerical density), F(1) = W
(total energy density), F(0)ji = nvi (velocity flux density), F(1)ji = Si (energy flux
density), while, for N;M > 1, we obtain macroscopic additional field variables,
which become the fluxes of the preceding equations. With this procedure, we obtain
a system of balance equations of finite order in which there are unknown constitutive
functions HA = fFAk; RAi; PAg that must be determined in terms of the variables
FA:

Following information theory, one can determine systematically the unknown
constitutive functions by introducing the MEP in terms of the generalized kinetic
fields (4). The MEP is based on the assumption that the least biased distribution
function assignment to a physical system is obtained from the solution of the va-
riational problem of maximizing the entropy subject to the constraints imposed by
the available information. For this reason, assuming that the information expres-
sed by a fixed number N of moments describes the thermodynamical state of hot
carriers satisfactorily, we look for the distribution that makes best use of this in-
formation [5,6,9,10,12,14,17–19]. In this approach the distribution function has the
explicit form

F = FM exp (�˘); ˘ =
N∑

A=1

 A �̂A ; (10)

where �̂A are the non-equilibrium part of the Lagrange multipliers [5,6,9,10,12,14,17]
and FM the local Maxwellian. Since, for a band of general form, only the total aver-
age electron energy is a well-defined quantity, the MEP must be applied with a total
energy scheme [11,14–16]. Consistently with this choice, the local distribution fun-
ction should be defined in terms of the total average energy of the single carrier,
as FM = � exp (�ˇ"(k)), where � = �(n;W) and ˇ = ˇ(W=n) are appropriate
functions which can be determined by means of the local equilibrium conditions [14]

n(r; t) =
∫

FM dk ; W(r; t) =
∫

"(k) FM dk : (11)

By expanding the distribution function (10)1 around the Maxwellian FM; up to the
fixed order R, we obtain by means of the moments (5) a set of non-linear equations
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in the non-equilibrium quantities �̂A, namely,

FA � FA jE =
∫
 A FM

R∑
r=1

(�1)r

(r)!

( N∑
B=1

 B �̂B

)r

dk: (12)

By expressing �̂B in Eqs. (12) in polynomial terms of the non-equilibrium varia-
bles FB, the non-linear system can be inverted and the Lagrange multipliers obtai-
ned [5,6,9,10,12,17].

In this way, with an analytic expression for the �̂A determined, both the distri-
bution function F and the constitutive functionsHA can be estimated, up to order R,
as polynomials in the non-equilibrium variables whose coefficients depend on the
local equilibrium quantities fn(r; t); W(r; t)g:

In particular, to evaluate the collisional production PA, we consider in Eq. (3) the
collision rate for acoustic intravalley transitions, within the elastic and equipartition
approximations,

Sac(k;k0) = 2
�E2

l KBT0

�V�U2
l

ı["(k0) � "(k)] ; (13)

and, for intervalley transitions with no polar optical and acoustic phonons,

S(k;k0) =
��2



V �!

[
N +

1
2

˙ 1
2

]
ı["(k0) � ("(k) ˙ �!)] ; (14)

whereEl is the acoustic deformation potential, � the crystal density,Ul the longitudi-
nal sound velocity, � the intervalley deformation potential, ! the phonon angular
frequency, and N the phonon occupation number, here taken as the equilibrium
Planck distribution, with the ˙ signs referring to emission and absorption cases,
respectively.

We stress that the previous closure scheme can be developed using two diffe-
rent levels of approximation that depends both on the number of moments used as
constraints and on the order of the expansion of F. A first level of approximation
is closely related to the Grad moment method, and is obtained by considering a
linear expansion of the distribution function but using an arbitrary number of mo-
ments [14]. A second level of approximation, that clearly differs from that in Grad’s
method, is obtained by considering the maximum entropy formalism in a strong
non-linear context but using only the most important macroscopic variables of direct
physical interpretation (the first 13 moments of the distribution function [6,9–11]).
We note that, although the linear approach is capable of describing accurately the
transport properties of hot carriers both in spatial homogeneous conditions and in
the small gradient approximation, only a higher-order expansion of the distribution
function can be fruitfully applied to describe transport phenomena in conditions far
from thermodynamic equilibrium, as those present in submicron devices, with very
high electric fields and field gradients (see, e.g., [9–11]).
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3 General theory for small-signal analysis

Linear-response functions around the bias point are known to play a fundamental
role in the investigation of hot-carrier transport in bulk semiconductors [21,22,25–
27]. In the time domain they reflect both dynamic and relaxation processes inherent
in the hot-carrier system. In the frequency domain they provide the a.c. coefficients
of interest such as the usual differential mobility spectrum [20–22,25,26] and the
noise temperature [27]. The aim of this section is to provide a general theoretical
investigation for the linear response analysis in the framework of moment theory.

3.1 Hydrodynamic approach

Under spatially homogeneous conditions, the balance equations of the single particle
moments F̃A take the form

@F̃A
@t

+
e

�
R̃AiEi + P̃A = 0: (15)

By assuming that at the initial time the system of carriers is perturbed by an electric
field ıE	(t) along the direction of E (where 	(t) is an arbitrary function of time
satisfying j	(t)j � 1), we calculate the deviations from the average values of the
moments denoted by ıF̃A:After linearizing Eqs. (15) around the stationary state, we
obtain a system of equations which can be written as

d ıF̃˛(t)
d t

= �˛ˇıF̃ˇ(t) � e ıE 	(t)�(E)
˛ ; (16)

where the relaxation of the system to the stationary state is related to the response
matrix�˛ˇ which describes the time evolution of the moments after the perturbation

of the electric field E and where the �eıE	(t) �
(E)
˛ are the fluctuating forces.

Equation (16) has the formal solution [25]

ıF̃(t) = exp (Γt) ıF̃(0) � e ıE

∫ t

0
K(s)	(t� s)ds; (17)

where

exp (Γt) = Φ diagfexp (�1t); � � � ; exp (�N�1t)g Φ�1; (18)

K(s) = exp (Γs) Γ(E) (19)

with �˛ the eigenvalues of �˛ˇ and Φ the matrix of its eigenvectors.
The eigenvalues �˛ can be real or complex and they correspond to the generalized

relaxation rates �˛ = ��˛; even if an exact correspondence between these rates and
the respective relaxation processes exists only in the relaxation time approximation
for the collision integral (3) and in the absence of coupling between the variables
F̃˛: The response function K(t) depends on the eigenvalues �˛ and determines the
linear response of the moments F̃A to an arbitrary perturbation of the electric field.
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The initial values of the response functions can be calculated in an analytic way as
functions of the electric field using Eq. (19) for s = 0: It is worth noting that in this
case we have

KA(0) = �
(E)
A : (20)

Since at time t = 0 the moments are as yet unperturbed, we assume that ıF̃(0) = 0
in Eq. (17), and the small-signal analysis, in the time and frequency domains, is
described by the explicit form of the function 	(t): In particular, the linear responses
of hot carriers to a step-like switching of electric field and to a small harmonic field
are of special interest.

In the first case 	(t) = 1 for all t > 0 and the differential response ıF̃˛(t)=ıE is
the solution of the differential equation

K˛(t) = � 1
e ıE

d ıF̃˛(t)
d t

: (21)

This means that, to a step-like variation of electric field, the linear response function
K˛(t) is proportional to the time derivative of the corresponding perturbation ıF̃˛(t)
and that K˛(t) = 0 corresponds to one extreme position of ıF̃˛ at time t which
evidently represents the same relaxation phenomenon. Analogously, by a further
derivation of relation (21) we observe that

d K˛(t)
d t

= � 1
e ıE

d2 ıF̃˛(t)
d t2

; (22)

to one extreme position of the response function K˛(t) at time t0 is associated a flex
point of the corresponding perturbation ıF̃˛(t0):

As a second case we consider a small harmonic perturbation 	(t) = exp (i!t)
(along the direction of E) applied to the electron system. For large values of time
the upper limit in the integral of Eq. (17) can be replaced by infinity and we obtain a
perturbation of the single-carrier moments which is also harmonic ıF̃(t) = ıF̃(!)
exp (i!t), since

ıF̃˛(!) = �0
˛(!) ıE; with �0

˛(!) = �e
∫ 1

0
K˛(s) exp (�i!s)ds: (23)

If we consider real and imaginary parts separately, �0
˛(!) = X˛(!) + iY˛(!), we

observe that, in the low frequency limits, the real parts Re[�0
˛(!)] = X˛(!) of

the a.c. generalized differential mobility tend to the corresponding d.c. generalized
differential mobility values dF̃˛=dE:

If we consider the integrals of the functions X˛ and Y˛=! over the entire range
of frequencies, we find that∫ 1

0
X˛ d! = ��

2
e �(E)

˛ = ��

2
e K˛(0) ; (24)∫ 1

0

1
!
Y˛ d! = ��

2
e ��1

˛ˇ �
(E)
ˇ = ��

2
X˛(0) ; (25)



Hydrodynamic calculation for differential mobility in semiconductors 275

analogously, if we consider the integrals of the functions [!Y˛�e�
(E)
˛ ] and [!2X˛�

e �˛ˇ �
(E)
ˇ ], we have∫ 1

0

[
! Y˛ � e �(E)

˛

]
d! =

�

2
e �˛ˇ �

(E)
ˇ =

�

2
e

[
dK˛

dt

]
0+

; (26)∫ 1

0

[
!2 X˛ � e �˛ˇ �

(E)
ˇ

]
d! =

�

2
e �2

˛ˇ �
(E)
ˇ =

�

2
e

[
d2K˛

dt2

]
0+

: (27)

It is worth noting that all the previous relations (17-27) are natural generalizations
of results found in [14,21,25,26] for a.c. and d.c. generalized differential mobility in
the framework of moment theory.

The advantages of the approach proposed here, based on the MEP with a total
energy scheme, are that:
i) the formulation of a.c. and d.c. theory can be obtained, as at kinetic level, without
the need of introducing external parameters and can carried out by using an energy
dispersion of general form (full-band approach);
ii) if we explicitly know the response matrix �˛ˇ and the vector �(E)

˛ , we can
construct an analytic formulation of the theory.

In the following sections we consider an explicit application of the total energy
scheme; in particular, the HD equations with numerical and analytic results are
explained in detail with the purpose of validating the maximum entropy approach in
a linear context.

4 Application of the total energy scheme

A simplified way to consider the total-energy scheme is to describe the full complexity
of the band modeled in terms of a single particle with an effective mass which is a
function of the average total energy W̃ of the single carrier [11,14–16]. In this way the
mass becomes a new constitutive function which should be independently determined
by fitting experiments and/or from MC calculations of the bulk material [11]. The
advantage of this simple approach of applying the total-energy scheme is that (i)
all the constitutive relations are obtained in an analytic way, and (ii) the same set
of balance equations describe the transport properties of hot carriers for both the
parabolic (where m� is constant) and the full-band cases (where m� = m�(w̃)).

4.1 Expansion with an arbitrary number of moments

A general formulation of the MEP and the construction of self-consistent closure
relations with an arbitrary number of moments, was recently developed in [14]. With
this approach we have as unique independent mean quantities the traceless parts
F(p)j<i1���is> of the tensors F(p)ji1���is . In particular, for problems with axial symmetry
we assume that Ei = fE; 0; 0g; so that only the independent components

F(p)jhsi = F(p)jh1 � � � 1︸ ︷︷ ︸
s times

i
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are of concern and, in homogeneous conditions, we obtain for the initial value of the
response functions the analytic expression

K(p)j<s>(0) = p F̃(p�1)j<s+1> +
s2

2s� 1

[
2(p+ s) + 1

2s+ 1

]
1
m� F̃(p)j<s�1>: (28)

In this way for s = 0 we obtain the scalar moments F̃(p); for s = 1 the vectorial

moments of components F̃(p)ji = fF̃(p)j1; 0; 0g and, in general, for s > 1 the traceless

tensorial moment of rank s of which the unique independent component is F̃(p)jhsi =
F̃(p)jh1���1i. We remark that, for the quantities of direct physical interpretation fW̃ =
F̃(1); v = F̃(0)j1; S̃ = F̃(1)j1g, we have

Kw̃(0) = v; Kv(0) =
1

m�(w̃)
; Ks̃(0) = F̃(0)j<11> +

5
3

W̃

m�(w̃)
; (29)

where, in particular, fv; 1=m�g are the well-known [21] response functions for mo-
ments fW̃; vg evaluated at t = 0:

4.2 Linear expansion with full set of scalar and vectorial moments

In this section we consider a linear expansion of the distribution function using
only scalar and vectorial quantities and apply in general terms the theory for small-
signal analysis to a full set of these moments. In this way, by considering only the
variables fF̃(p); F̃(p)jig, in a linear context, all the constitutive functions F(p)jhiji are
zero and, in homogeneous conditions, the balance equations for p = 1; � � � ; N and
q = 0; 1; � � � ; N read as

@ F̃(p)

@ t
= �epF̃(p�1)j1 E� P̃(0)

p �
N∑
l=2

˛
(0)
p l �̃(l) ; (30)

@F̃(q)j1
@t

= � e

m�
2q+ 3

3
F̃(q)E�

N∑
l=0

˛
(1)
q l F̃(l)j1 ; (31)

where �̃(p) = F̃(p) � F̃(p)jE are the non-equilibrium parts of the scalar moments

F̃(p) (where F̃(p)jE = (2p+1)!!=3p W̃p ), and the closure relations for the quantities

fP̃(0)
p ; ˛

(0)
p l ; ˛

(1)
q l g are explicitly reported in [14]. In stationary conditions Eqs. (30-31)

consist of a system of algebraic equations whose numerical solution [14] allows us
to determine the moments as a function of the electric field E: By considering the
time evolution of a small perturbation of the scalar and vectorial moments, around
the stationary state, system (16) can be expressed in term of the 2N+ 1 quantities

ıF̃˛(t) =
{
ıW̃; ıF̃(2); � � � ; ıF̃(N) ; ıv; ıS̃; ıF̃(2)j1; � � � ; ıF̃(N)j1

}
;

with

�(E)
˛ =

{
v; 2 S̃; � � � ; N F̃(N�1)j1;

1
m� ;

5
3
W̃

m� ;
7
3
F̃(2)

m� ; � � � ; (2N+ 3)
3

F̃(N)

m�

}
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and the non-symmetric (2N+ 1) � (2N+ 1) response matrix �˛ˇ given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�(1)w �˛(0)
12 �˛(0)

13 � � � �˛(0)
1N �eE 0 � � � 0 0

�(2)w �˛(0)
22 �˛(0)

23 � � � �˛(0)
2N 0 �2eE � � � 0 0

...
...

...
...

...
...

...
...

...
...

�(N)w �˛(0)
N2 �˛(0)

N3 � � � �˛(0)
pN 0 0 � � � �NeE 0

�(0)j1w 0 0 � � � 0 �˛(1)
00 �˛(1)

01 � � � �˛(1)
0(N�1) �˛(1)

0N

�(1)j1w 0 0 � � � 0 �˛(1)
10 �˛(1)

11 � � � �˛(1)
1(N�1) �˛(1)

1N

�(2)j1w � 7
3
eE
m� 0 � � � 0 �˛(1)

20 �˛(1)
21 � � � �˛(1)

2(N�1) �˛(1)
2N

...
...

...
...

...
...

...
...

...
...

�(N)j1w 0 0 � � � � 2N+3
3

eE
m� �˛(1)

N0 �˛(1)
N1 � � � �˛(1)

N(N�1) �˛(1)
NN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where in general the elements of the first column are complicated functions of the
quantities f�(p), �(q)j1, �0

(p); �
0
(q)j1g, where f�(0)j1 = v=E; �0

(0)j1 = dv=dEg are
the usual chord mobility and differential mobility respectively, and where the quan-
tities f�(p) = F̃(p)=E; �(q)j1 = F̃(q)j1=E; �

0
w = dW̃=dE; �0

(p) = dF̃(p)=dE;

�0
(q)j1 = dF̃(q)j1=dEg are the generalized chord mobility and the generalized diffe-

rential mobility of the remaining moments.
With this approach all the elements of the matrix�˛ˇ can be explicitly evaluated

to start from stationary values of the system. Analogously, the vectorial response
function K(t) is expressed in terms of its 2N+ 1 components for the fluctuations of
scalar and vectorial moments

K(t) = fKw; K(2); � � � ; K(N); Kv; Ks; K(2)j1; � � � ; K(N)j1g:

In closing we remark that, in accord with Eq. (20), we have, for p = 1; 2; � � � ,N and
q = 0; 1; � � � , N,

K(p)(0) = p F̃(p�1)j1; K(q)j1(0) =
2q+ 3

3
1

m�(w̃)
F̃(q); (32)

which, at the present level of approximation, coincides with the results (28).

5 Numerical results for n-Silicon

In this section we consider the application of the theoretical results reported in the
preceding sections to the case of n-Si. By considering the electric field applied along
the h111i crystallographic axes we keep the axial symmetry; full-band effects have
been described by introducing an effective mass as a function of the electron total
energy [11]. For the collisional processes, scattering with phonons of f and g type are
considered with six possible transitions (g1; g2; g3; f1; f2; f3). The HD calculations
were carried out by using the physical scattering parameters used in [29] and the
MC simulations were obtained by using a full-band model [30]. For the differential
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mobility�0
v as a function of electric field, we also report experimental data evaluated

both in the low frequency limits [31] and at f = 123:3 GHz [20] for n-Si samples
oriented in the h111i crystallographic direction.

5.1 Eigenvalue spectrum

Figure 1 reports the generalized relaxation rates �˛ = ��˛ obtained using, in a
linear approximation, an increasing number of scalar and vectorial moments (i.e.,
N = 2; N = 3; N = 5), both in the parabolic (P) and non-parabolic (NP) band
models, respectively.

As a general trend, all the vectorial rates increase with increasing field because
of the increased efficiency of the scattering mechanisms while all the scalar rates
decrease at the highest field because of the smaller efficiency of scattering to dis-
sipate the excess energy gained by the field. The eigenvalue spectrum behavior is
intricate and, in the case of complex values, the continuous lines and the dashed
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Fig. 1. Eigenvalues of the relaxation matrix as a function of the electric field
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lines represent the real part ��R and the imaginary part ��I of the eigenvalues of
�˛ˇ; respectively. The numerical results show different regions which correspond to
the different characters of the eigenvalues. For small, intermediate and large values
of the electric field there are couples of complex conjugate eigenvalues due to the
strong coupling between scalar and vectorial moments. In particular the velocity and
energy relaxation rates are coupled by the electric field for all values of N with an
extension of the coupling region up to about 120 KV/cm forN = 5 in a non-parabolic
approximation and with an imaginary part ��I comparable with the real part ��R
on the right-hand side of this region.

From Fig. 1 we see that the width of the region with complex values and the num-
ber of coupled eigenvalues depends both on the increasing number of moments used
and on the non-parabolicity. In fact, in both cases we find that, while the generalized
vectorial rates are squeezed towards lower values, on the other hand, the generalized
scalar rates are squeezed towards higher values with the consequent extension of the
coupling regions.

In particular, forN = 5 the spectrum of�˛ˇ shows another pair of complex con-
jugate eigenvalues with a smaller coupling region when compared with the analogous
region for velocity and energy relaxation rate.

A complex eigenvalue indicates the presence of deterministic relaxation [23]
in the system, in the present case, the joint action of electric field and emission of
optical phonons. In the extreme case this is well-known as the condition of streaming
motion [23,24]. The carrier is accelerated by the field up the energy of the optical
phonon. From there, by emitting an optical phonon, it is scattered back to the bottom
of the band and the cycle starts again. As a matter of fact, for the case of electrons
in Si at T0 = 300 K, carriers undergo many scattering events apart from optical
phonon emissions, and therefore the streaming-motion regime is not fully achieved.
By using many moments, the regions with complex values of the eigenvalues are
deeply enlarged towards higher fields.At these fields, the other scattering mechanisms
are still efficient and the processes of dissipation are now so strong that, to describe
the ordering in the system, it is necessary to use many scalar and vectorial moments.

When the electric field is increased further, the eigenvalues again become real. At
these very high fields energy thermalization of the carrier system becomes so efficient
that any deterministic character is washed out and the transport takes on a full chaotic
character. It should be noted that the dissipative processes associated to the streaming
character of the transport have been observed in previous papers [23–27] by using
only the usual HD equations for v and w̃ with the relaxation time approximation.
Although the results are similar to those obtained in this work, there are differences
in the extension of the region where velocity and energy relaxations are strongly
coupled.

This discrepancy is mainly attributed to the number of moments used to calculate
the spectrum of �˛ˇ: The eigenvalue spectrum is rather sensitive both to the increa-
sing number of moments and to the order of expansion with the direct consequence
of a much more pronounced extension of the coupling regions and of the number of
coupled complex eigenvalues. Probably, in a strong regime, which is far from equili-
brium, the variables fv; w̃g no longer constitute a complete set of relevant variables.



280 M. Trovato

In fact the analysis of the eigenvalue spectrum suggests that, for large values of the
field, a detailed investigation of processes of dissipation involves higher moments of
velocity and energy. On the basis of these results, it is reasonable to think that only by
using many moments is it possible to describe the complete spectrum of dissipation
processes for the whole range of values of electric field.

5.2 Response functions and differential response

Figure 2 shows the initial values (t = 0) of the response functions for the full set of
scalar, and vectorial moments fW̃; F̃(2); F̃(3); F̃(4); F̃(5)g and fv; S̃; F̃(2)j1; F̃(3)j1;

F̃(4)j1; F̃(5)j1g respectively, as functions of the electric field strength, with parabolic
(P) and non-parabolic (NP) band models at T0 = 300oK. As general trend, the
hot-carrier effects are responsible for a systematic increase of almost all the initial
values fK(p)(0); K(p)j1(0)g which exhibit asymptotic behaviors steeper for higher
moments. The net effect of non-parabolicity is to suppress systematically the increase
of all moments with field (cf. Figs. 1–3 in [14]) and, consequently, in accordance
with the analytical calculations (32), also of the corresponding initial values of the
response functions. In particularKv is practically constant with small changes due to
increasing values of the mass m� for the non-parabolic band, so that Kv = 1=m�(w̃)
slightly decreases. At increasing fields Kw̃(0) increases with saturation effects that
coincide automatically (see Eq. (29)1) with the analogous region of saturation for
the drift velocity.
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Fig. 2. Initial values (t = 0) of the response functions fKw̃, K(2), K(3);K(4), K(5)g and fKv;
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Fig. 3. Time dependencies of response functions fKv; Kw̃g and of differential responses
fıv=ıE; ıw̃=ıEg to the step-like switch-on of electric field for N = 2 and N = 5

Figure 3 shows the velocity-response function Kv normalized to its initial va-
lue, the energy-response function KW̃ and the corresponding differential responses
fıv=ıE; ıW̃=ıEg to the step-like switch-on of electric field for parabolic and non-
parabolic band models and increasing electric fields. The decay with time of the
response functions is controlled essentially by the momentum and energy relaxation
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rates. Figure 3 shows that, at low electric fields, the shape of the velocity-response
function is practically exponential, with a characteristic time constant which corre-
sponds to momentum relaxation. The presence of higher electric fields couples the
two relaxations processes, thus giving a non-exponential shape to the decay. The
shape of Kv becomes more complicated by exhibiting a negative part which corre-
spond to the velocity overshoot of carriers. In fact the differential response ıv=ıE
quickly increases with twhenKv(t) > 0 reaches a maximum at time t corresponding
to Kv(t) = 0 and then falls with t when Kv(t) < 0: This is in agreement with the
general relations (21-22), where (see the inserts of Fig. 3) to one extreme position of
ıF̃˛ (light square) corresponds a zero value of K˛, and, analogously, to one extreme
position of the response function K˛ (dark square) is associated a flex point of the
corresponding perturbation ıF̃˛:

The response function Kw clearly shows the coupling between velocity and
energy relaxation through a non-monotonic behavior with a maximum which separa-
tes the velocity from the energy relaxation [28] while the corresponding differential
response ıW̃=ıE increases in a monotone way as a function of the time for different
values of the electric field. The response Kw̃ is always positive with a maximum
which is reached at times t0 shorter (see circles in the inserts) than the minimum of
Kv. At increasing fields, because of the increased efficiency of the scattering mecha-
nisms, the corresponding value Kv(t0) tends to approach the value Kv(t) = 0 and
analogously the corresponding value of ıv(t0)=ıE tends to approach its maximum
value. Therefore if initially the carriers, gained by the field, obtain extra velocity
(since their initial momentum relaxation time is somewhat longer than that in the
new steady state), at a given time t0 the energy relaxation starts to affect the mo-
mentum relaxation time which becomes shorter; at a later time, due to the scattering
mechanisms, the corresponding fluctuation reaches its maximum, decreases and the
extra velocity of the carriers is lost.

5.3 Differential mobility

The validity of this approach has been confirmed by the satisfactory agreement with
the numerical results of full-band Monte Carlo (MC) simulations and available ex-
perimental data for the case of electrons in Si bulk. In Fig. 4 we report the differential
mobility f�0

v; �
0
w̃g for the moments fv; W̃g; as a function of electric field for elec-

trons in Si at T0 = 300 K. The lines refer to parabolic (P) and non-parabolic (NP)
calculations obtained, for N = 5; from the real parts of the a.c. differential response
coefficients Re[�0

v(f)] and Re[�0
w̃(f)] in the low frequency limits (f  108Hz). The

symbols refer to the d.c. differential mobility�0
v = dv=dE and�0

w̃ = dW̃=dE obtai-
ned from the full-band MC simulations performed along the h111i crystallographic
direction [30]. For �0

v we also report the derivative dv=dE of the experimental data
for the drift velocity obtained with the microwave time-of-light technique along the
h111i crystallographic direction [31].

We note that in the non-parabolic case the HD results are in good agreement both
with the full-band MC calculations and with the experimental data for the whole
range of electric field 1KV � E � 200KV:
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As a test to validate the HD model in the high frequency range as well, we
calculate the differential mobility for electrons in Si at T0 = 293oK with f = 123:3
GHz and we compare the numerical results with the experimental data. Thus, we
report the real part of the mobility that we obtained, for the non-parabolic case (NP),
from HD simulation (for N = 2 and N = 5) at 123:3 GHz in Fig. 5 as a function of
low electric fields. We note that the HD calculations exhibit small variations (al most
within 15%) from the number of moments used. In any case the numerical results
converge for N = 5 in both the parabolic and non-parabolic case.

The non-parabolic HD results (for N = 5) agree well with the experimental
data obtained at this frequency. The experimental data were deduced with the help
of a measurement method of microwave transmission of n-Si samples in the h111i
crystallographic axis with an experimental uncertainty that can be estimated at about
5% [20].

We believe that the present hydrodynamic method can be fruitfully applied to
describe transport properties of hot carriers with the advantage of providing a closed
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analytical approach and a reduced computational effort in comparison with other
competitive numerical methods at kinetic level.
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Small planar oscillations of an incompressible, heavy,
almost homogeneous liquid filling a container

D. Vivona?

1 Introduction

The problem of small oscillations of an inviscid, incompressible, heavy, heteroge-
neous liquid in a container, was studied by a few authors: Rayleigh [1], Love [2] and
Lamb [3].

In a paper published in 1993, Capodanno proved that the problem is not a classical
problem of eigenvalues [4]. But he described the spectrum exactly only in a particular
case, not for an arbitrary container.

This research was solicited from Capodanno by Philips and Transoft Internatio-
nal, which create software for the transport of the liquids.

It is thus of interest to study the problem for an arbitrary container, at least
for particular densities. We study the case where the density of the liquid in the
equilibrium position can be approximated by a linear function of the height of the
particle, which differs very little from a constant. In this case, the liquid is called
almost homogeneous.

For an inviscid liquid, we prove the existence of the essential spectrum.
For a viscous liquid, we have a point spectrum, analogous to that of small oscil-

lations of a liquid with free surface.

2 Inviscid liquid

Following Rayleigh and Love, we consider only planar motions. The liquid fills the
domain ˝ bounded by a regular curve S. The origin O belongs to ˝ and the axis
Ox2 is vertical.

? This research was supported by GNFM of MURST (Italy).
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2.1 Equations of motion

We denote by u(x1; x2; t) the displacement of a particle with respect to the equili-
brium position, �0(x2) the known density at the equilibrium, p(x1; x2; t) the dyna-
mical pressure. At the first order we have the equations:

�0ü = � grad p+ �
0

0 gu2e2 in ˝ ; (1)

div u = 0 in ˝ ; (2)

u � n = 0 on S ; (3)

where �
0
0 gu2e2 is obtained by the continuity equation. We assume �

0
0(x2) < 0:

2.2 Variational formulation and spectral problem

It is easy to see that∫
˝
�0 ü w d˝ = �

∫
˝
�

0

0(x2) u2 w2 d˝

for all u such that div u = 0 in ˝ and u � n = 0 on S.
We seek solutions of the form u(x1; x2; t) = ei!tU(x1; x2); putting

U = (
@ 

@x2
;� @ 

@x1
);

w = (
@'

@x2
;� @'

@x1
);

we introduce the space V0 of the functions of H1
0 equipped with the scalar product

( ; ')V0 =
∫
˝
� grad  � grad ' d˝

and so we obtain the following eigenvalue problem.

Find  (x1; x2) 2 V0 and a real positive number !2 such that

!2( ; ')V0 = a( ; ') 8 ' 2 V0 ;

where a( ; ') =
∫
˝ ��0

0(x2) g @ 
@x2

@ 
@x1

d˝ :
As a(�; �) is continuous on V0 � V0; there exists a bounded linear operator A of

V0 in V0 such that a( ; ') = (A ; ')V0 :
We get the spectral problem

A = !2 ;  2 V0 :

It is easy to see that A is symmetric, and we can prove that A is positive definite.
But A is not compact and its spectrum is not discrete.

One can describe the spectrum exactly if the container is a rectangle [5], in
particular in Rayleigh’s case �0 = ke�ˇx2(k; ˇ constant > 0):We can calculate the
eigenvalues which form a set which is dense in [0; ˇ g], and the essential spectrum
is [0; ˇ g] (formed by the eigenvalues and their points of accumulation).
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2.3 Definition of an almost homogeneous liquid

Let h be the maximal vertical dimension or height of the container; thus, jx2j < h
in ˝:

Now we assume that �0(x2) has the form

�0(x2) = f(ˇx2);

where f(0) > 0; f0(0) < 0 andˇ is a positive constant such that ˇh is small enough
so that (ˇh)2; (ˇh)3; . . . are negligible with respect to ˇh: Then, as jˇx2j < ˇh in
˝, we get

�0(x2) = f(0) + ˇx2f
0(0) + : : : :

In this case the liquid is called almost homogeneous in ˝.
Now, changing notation, we write

�0(x2) = �(1 � ˇx2) + o(ˇh) :

(In particular, this is the Rayleigh’s case under the preceding condition)

2.4 Equations of small oscillations and operator of the problem

By replacing �0 with � and �
0
0 with ��ˇ, we have the approximate equation of

small oscillations, analogous to that of Boussinesq [6] in the theory of convective
fluid motions:

ü = �1
�

grad p� ˇgu2e2 (4)

to which we must add Eqs. (2) and (3).
We can assume that u 2 J0(˝), where

J0(˝) = fu 2 L2(˝) = [L2(˝]2 : div u = 0; un = 0 in H�1=2(S)g (5)

and that p 2 H1(˝), so that grad p and � 1
� grad p belong to G(˝) which is the

space of potential fields [6].
By using the orthogonal decomposition of Weyl [6, 7],

L2(˝) = J0(˝) ˚ G(˝);

and by denoting the projector of L2(˝) on J0(˝) by P0, we have

ü = �ˇgP0(u2e2) :

By introducing the operatorK of J0 to itself, defined byKu = ˇgP0(u2e2);we
get the equations of small oscillations

ü +Ku = 0 8 u 2 J0 : (6)

It is easy to see that K is symmetric, bounded (jjKjj � ˇg) and non-negative.
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2.5 Study of the spectrum �(K) of the operator K

We want to prove that 
(K) = [0; ˇg]. By using Weyl’s theorem [6], it is sufficient
to prove that, for every �, 0 < � < 1, there exists a sequence fulg 2 J0(˝) such
that

jj 1
ˇgKul � �uljj

jjuljj
! 0 when l ! +1 :

In order to construct fulg, we consider q 2 D(˝) and u 2 J0(˝)) with

u = (u1 =
@�q

@x2
; u2 = �@�q

@x1
) :

It is possible to calculate Ku.
We take the sequence funmg, with q(x) = qnm(x) = ei(nx1+mx2) (x), where

 (x) 2 D(˝) and is equal to 1 in the disk C : jx� x0j � r; C 	 ˝:We prove that

1
ˇg

Kunm � n2

n2 +m2 unm = O(n2 +m2);

where O(n2+m2)
n2+m2 is uniformly bounded in ˝ and

c0(n2 +m2)3 � jjunmjj2 � c1(n2 +m2)3

with c1; c0 constant > 0.
Let 0 < � < 1. For every " > 0, we can find a rational number m̄

n̄ such that

� <
n̄2

n̄2 + m̄2 < �+ " :

Choosingm = lm̄; n = ln̄, we find easily that the sequence fu ln̄; lm̄g satisfies Weyl’s
theorem.

Remark
If !2 2 
(K), by Weyl’s theorem there exists a sequence fvig such that

jjvijj = 1 and (K � !2I)vi ! 0 in J0(Ω);

we can say that there is a kind of resonance.

3 Viscous liquid

3.1 Operator equation of the problem

Always in the almost homogeneous case, the approximate equation becomes

ü = �1
�

grad p+ ��u̇ � ˇgu2e2 ; (7)
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where the constant � is an approximate value of the kinematic coefficient of viscosity
and the condition on the wall is the adhesion condition

u̇jS = 0 :

In order to obtain the variational equation of the problem, it is sufficient to recall
that it expresses the principle of virtual work. Now we introduce, together with J0(˝)
given by (5), the space

J0
1(˝) = fu 2 H0

1(˝) = [H1
0(˝)]2 : div u = 0g ;

equipped with the norm associated to the scalar product

E(u; v) = 2
∫
˝
"ij(u)"ij̇(v̄) d˝;

which is equivalent in J0
1(˝) to the classical norm of H0

1(˝).
As ��E(u̇; v) is the virtual work of the viscosity forces in the fields of displace-

ments v, we obtain the variational equation∫
˝

ü � v̄ d˝+ �E(u̇; v) + (ˇgu2x2; v)L2(˝) = 0 (8)

8 v 2 J0
1(˝):

The injection of J0
1(˝) in J0(˝) is dense, continuous and compact. Therefore,

calling A0 the unbounded operator associated to E(�; �); we can easily deduce from
the variational equation (8), the operator equation

ü + �A0u̇ +Ku = 0 8 u 2 J0
1(˝) : (9)

3.2 The spectrum of the problem

Seeking the normal oscillations, i.e., the solution of the form u = e��tU(x) and,
then, putting A1=2

0 U = V 2 J0
1(˝); we obtain the equation

V = ���1A�1
0 V +

1
�
��1K0V ; V 2 J0(˝) ;

where A�1
0 and K0 = A�1=2

0 KA�1=2
0 are operators of J0(˝) to itself. The operator

A�1
0 is classically self-adjoint, positive definite and compact. The operator K0 is

self-adjoint and non-negative; it is compact, as K is bounded and A�1=2
0 is compact.

Therefore, we can apply the Askerov-Kreı̆n-Laptev theorem [8] which states
that there are countably many eigenvalues whose real part is positive, and that there
are infinitely many aperiodic arbitrary strongly damped motions (� ! +1) and
infinitely many aperiodic arbitrary weakly damped motions (� ! 0).
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If �2 > 4jjA�1
0 jj jjK0jj, i.e., the viscosity is large, all eigenvalues are real and

there are no oscillatory damped motions.
If �2 � 4jjA�1

0 jj jjK0jj; there are at most a finite number of non-real eigenvalues,
which are in the annulus

�

2jjA�1
0 jj � j�j � 2jjK0jj

�
;

corresponding to oscillatory damped motions.

Thus, viscosity suppresses the essential spectrum, which is replaced by a point
spectrum analogous to the spectrum of oscillations of a viscous liquid with free
surface.
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Thermodynamics of simple two-component
thermo-poroelastic media

K. Wilmanski

Abstract. The paper is devoted to the thermodynamic construction of a two-component model
of poroelastic media undergoing, in contrast to earlier works on this subject, nonisothermal
processes. Under the constitutive dependence on partial mass densities, deformation gra-
dient of skeleton, relative velocity, temperature, temperature gradient and porosity (simple
poroelastic material) as well as the assumption of small deviations from the thermodynamic
equilibrium we construct explicit relations for fluxes, prove the splitting of the free energy
into partial contributions without mechanical couplings and construct a chemical potential
for the fluid component important for the formulation of boundary conditions on permeable
boundaries. We discuss as well a modification of the porosity balance equation in which we
account for time changes of equilibrium porosity. This modification yields the behavior of the
model characteristic for granular materials.

1 Introduction

Thermodynamic modeling of saturated poroelastic materials by means of a two-
component continuum has been limited to isothermal processes. R. M. Bowen who
initiated the work in this field [1,2] constructed a model for a multicomponent system
with large deformations of the skeleton and internal variables (volume fractions) for
which he postulated evolution equations. Such an approach may be appropriate for
some biomaterials but it fails for granular media. For the latter, relaxation processes
for internal variables are almost immaterial and the main mechanism driving changes
of porosity are volume changes of components. Such phenomena are described wit-
hin the model with the porosity balance equation. For a two-component system this
was proposed in [4] and developed in [5]. Fundamental properties, its microscopic
motivation and a transition to a linear model are presented in [6]. As a model belon-
ging to the so-called extended thermodynamics it was extended to multicomponent
systems in [7,9]. All these papers concern so-called simple poroelastic materials in
which there is no constitutive dependence on higher gradients of fields. Linearization
of such models does not lead to Biot’s model which is successfully applied in various
fields of geotechnics. It has been shown that additional couplings appearing in Biot’s
model require an extension of constitutive variables; the thermodynamics of such
a model in which the gradient of porosity is the constitutive variable is the subject
of [8].

In the present work we present a thermodynamic analysis of a model of simple
poroelastic materials which differs from those mentioned above in two essential
points:
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� processes are not isothermal; the system is characterized by a single temperature
field which may vary in space and time;

� the porosity balance equation is extended by changes of equilibrium porosity.

Changes in the porosity balance equation result from the analysis of earlier models
for granular materials. Micro-macro transition as well as solutions of simple boundary
problems show that the original model yields a very stiff behavior of the skeleton
which is appropriate for rocks but not for granular materials (compare [10]). In
addition, if we neglect the relaxation of porosity the modified equation of porosity
yields in the linear case changes of porosity indicated by Gassmann relations.

We base our considerations on the assumption that deviations from thermody-
namic equilibrium are small. As these deviations are described by three variables,
temperature gradient G := GradT, Lagrangian (relative) velocity X́F and a devia-
tion of porosity from its equilibrium value �n := n�nE, this assumption means that
we assume the dissipation to be a quadratic function of these variables.

Under this assumption we prove the following properties: 1) the Helmholtz free
energy splits into two partial potentials which are not coupled by mechanical varia-
bles (simple mixture), 2) thermal parts of energy and entropy fluxes are connected by
the classical Fourier relation, and 3) the flux of porosity contains only a linear con-
tribution of the Lagrangian velocity with a coefficient proportional only to volume
changes of the skeleton.

We complete the work with a presentation of a few simplified models. We show
that the fully linear model does not coincide with the classical Biot’s model due to
the lack of coupling between partial stresses. This property was proven earlier for
isothermal processes in simple poroelastic materials.

2 Balance equations

We use the Lagrangian description referring to the reference configuration B of
the skeleton [3] in which its deformation gradient FS = 1. In the two-component
medium considered in this work the partial balance equations for the skeleton are
defined on a family of volume measurable sets

{
PS

∣∣PS 	 B
}

material with respect
to the skeleton, i.e., independent of time. Simultaneously partial balance equations
for the fluid are defined on a time dependent family of volume measurable sets{

PF
∣∣PF 	 B

}
with the kinematics defined by the Lagrangian field of the relative

velocity

X́F (X; t) = FS�1 (x́F � x́S
)
; X 2 B 	 R3; t 2 T 	 R; (1)

in which x́F; x́S are the velocities of the fluid component and of the skeleton, respec-
tively. Clearly, for the existence of a function of motion of the skeleton, we require
the following conditions to be satisfied:

Ḟ :=
@FS

@t
+ Grad x́S = 0; GradFS =

(
GradFS

)23
T
: (2)
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We say that a field 'S; describing a property of the skeleton, whose flux is ΨS

and supply is '̂S, satisfies a balance equation if, for any set PS,

d

dt

∫
PS

'SdV =
∮
@PS

ΨS � NdS+
∫

PS

'̂SdV; (3)

where @PS is the oriented boundary of PS, and N is the field of its unit outward
normal vectors. A similar equation is assumed to hold for a field 'F describing a
property of the fluid.

Quantities appearing in the above equations are assumed to have at most finite
singularities on a set of volume measure zero. For the purpose of this work it is
sufficient to assume that this set forms an oriented surface S given by the equation

S (X; t) = 0 =) N =
Grad S

jGrad Sj ; U = �
@S
@t

jGrad Sj ; X 2B; (4)

whereU (X; t) is its normal speed of propagation through the reference configuration
B:

Under this assumption we can write the above equations in the following local
form (e.g., [6]):

� at regular points a.e. in B

@'S

@t
= Div ΨS + '̂S;

@'F

@t
+ Div

(
'FX́F

)
= Div ΨF + '̂F; (5)

� at singular points on S

�U
[[
'S
]]

=
[[

ΨS
]]

� N;
[[
'F

(
X́F � N � U

)]]
=
[[

ΨF
]]

� N; (6)

where [[: : :]] = (: : :)+ � (: : :)� denotes the difference of limits on both sides of
the surface S.

Furthermore, the fields appearing in the balance equations are partial mass den-
sities in the reference configuration �S; �F, partial momentum densities �Sx́S; �Fx́F,
partial energies �S

(
"S + 1

2 x́
S2
)
; �F

(
"F + 1

2 x́
F2
)
, porosity n, and partial entropies

�SS; �FF. If we neglect a mass exchange between components then they have the
form:

� partial mass conservation laws at regular points a.e. in B and singular points on
S

RS :=
@�S

@t
= 0; RF :=

@�F

@t
+ Div

(
�FX́F

)
= 0; (7)

U
[[
�S
]]

= 0;
[[
�F

(
X́ � N � U

)]]
= 0;
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� partial momentum balance equations at regular points a.e. on B

MS := �S
@x́S

@t
� Div PS � p̂ = 0; (8)

MF := �F
(
@x́F

@t
+ X́F� Grad x́F

)
� Div PF + p̂ = 0;

where PS;PF denote Piola-Kirchhoff partial stress tensors, and p̂ is the source
of momentum, and at singular points on S

�U
[[
�Sx́S

]]
=
[[

PS
]]

N;
[[
�Sx́S

(
X́F � N � U

)]]
=
[[

PS
]]

N; (9)

� partial energy balance equations at regular points a.e. on B

@
(
�S"S + 1

2�
Sx́S2

)
@t

+ Div
(
QS � PSTx́S

)
= 0; (10)

@
(
�F"F + 1

2�
Fx́F2

)
@t

+ Div
((

�F"F +
1
2
�Fx́F2

)
X́F + QF � PFTx́F

)
= 0;

and at singular points on S

�U
[[
�S

(
"S + 1

2 x́
S2)]] +

[[
QS � PSTx́S

]]
� N = 0;[[

�F
(
X́F � N � U

) (
"F + 1

2 x́
F2)]] +

[[
QF � PFTx́F

]]
� N = 0; (11)

� porosity balance equation at regular points a.e. on B

N :=
@�n
@t

+ Div J � n̂ = 0; �n := n� nE; (12)

where J denotes the flux of porosity, n̂ is its source, and nE is the porosity in
thermodynamic equilibrium, and at singular points on S

�U [[�n]] + [[J]] � N = 0; (13)

� partial entropy balance equations at regular points a.e. on B

@
(
�SS

)
@t

+Div HS = ̂S;
@
(
�FF

)
@t

+Div
(
�FFX́F + HF

)
= ̂F; (14)

and at singular points on S

�U
[[
�SS

]]
+
[[

HS
]]

= 0; (15)[[
�F

(
X́F � N � U

)
F

]]
+
[[

HF
]]

� N = 0:
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The partial energy balance equations and partial entropy balance equations are
used solely in the bulk form which we explain further in this work. This means that
we add corresponding partial equations to each other. After easy calculations, the
following balance equation for the internal energy follows:

E :=
@ (�")
@t

+Div Q�PS � Grad x́S �PF � Grad x́F �
(
FSTp̂

)
� X́F = 0; (16)

where

� := �S + �F; �" := �S"S + �F"F; (17)

Q := QS + QF + �F"FX́F;

i.e., ";Q are the so-called intrinsic parts of the bulk internal energy and energy flux,
respectively.

Simultaneously for the entropy we obtain

̂S + ̂F =
@ (�)
@t

+ Div H; (18)

where

� := �SS + �FF; H := HS + HF + �FFX́F: (19)

For the purpose of this work we use conditions on the singular surface only for
the boundary of the skeleton on which U � 0. We then have[[

�FX́F � N
]]

= 0;
[[

PS
]]

N = 0;
[[
�FX́F � Nx́F

]]
=
[[

PF
]]

N;[[
�FX́F � N

( 1
2 x́

F2)]] +
[[

Q � PFTx́F
]]

� N = 0; (20)

[[H]] � N = 0:

In addition, according to the compatibility condition (2)1, on S we have

�U
[[

FS
]]

=
[[

x́S
]]

˝ N =)
[[

x́S
]]

= 0 for U � 0: (21)

3 Fields and field equations

For two-component poroelastic materials we have the (macroscopic) fields

F :=
{
�S; �F; x́S; x́F;FS; T; n

}
; (22)

where the first two fields are partial mass densities of the skeleton, and the fluid in
the reference configuration, respectively, x́S; x́F are macroscopic velocities of these
two components, FS is the deformation gradient of skeleton, T denotes the common
temperature of components, and n is the porosity.
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The balance equations of the previous section form field equations for the seven
fields F (22) provided the constitutive quantities

C :=
{
PS;PF; p̂; ";Q; nE;J; n̂

}
; (23)

are given as sufficiently smooth functions of the constitutive variables

V :=
{
�S; �F;FS; X́F; �n; T;G

}
; G := GradT: (24)

This set of constitutive variables defines the simple two-component thermo-poro-
elastic medium.

Substitution of the functions C (V) in the balance equations yields field equations
whose solutions are called thermodynamic processes. These processes are thermo-
dynamically admissible if the entropy production ̂S + ̂F is nonnegative, i.e., the
entropy inequality

@ (�)
@t

+ Div H � 0;  =  (V) ; H = H (V) ; (25)

where  is the entropy density, and H – its flux, is identically satisfied. This is the
second law of thermodynamics for thermo-poroelastic media.

All constitutive quantities depend as well on an initial constant porosity n0. This
dependence is not limited by the second law because the initial porosity does not
evolve in time. It shall not be indicated in subsequent relations in this work.

In the next section we exploit the second law of thermodynamics.

4 Conditions following from the second law of thermodynamics

In the exploitation of the second law we use the standard procedure of Lagrange
multipliers. According to Liu’s theorem the following inequality should hold for
arbitrary fields:

@ (�)
@t

+ Div H � ��SRS � ��FRF�

�ΛS � MS � ΛF � MF � �"E� ΛF � F � �nN � 0; (26)

where the multipliers ��S; ��F;ΛS;ΛF;�";ΛF;�n are functions of variables V.
After application of the chain rule of differentiation we see that the above ine-

quality is linear with respect to the time derivatives{
@�S

@t
;
@�F

@t
;
@x́S

@t
;
@x́F

@t
;
@T

@t
;
@�n
@t

;
@G
@t
;
@FS

@t

}
: (27)

This yields the relations

��S =
@�

@�S
� �" @�"

@�S
; ��F =

@�

@�F
� �" @�"

@�F
; (28)
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ΛS = ΛF = 0; (29)

�n =
@�

@�n
� �" @�"

@�n
; ΛF =

@�

@FS
� �" @�"

@FS
; (30)

@�

@T
� �" @�"

@T
= 0;

@�

@G
� �" @�"

@G
= 0: (31)

The linearity with respect to the spatial derivatives{
Grad�S;Grad�F;Grad x́S;Grad x́F;GradFS;GradG;Grad�n

}
; (32)

is investigated under two simplifying assumptions.
First of all we assume that a dependence on vectorial variables X́F;G is li-

near. This is justified later. Consequently, for isotropic materials, constitutive vector
functions must have the representation

Q = QVX́F �KG; H = HVX́F +HTG; (33)

J = ˚X́F + JTG; FSTp̂ = ˘VX́F +˘TG;

where all scalar coefficients are independent of X́F and G.
Secondly we assume that the dissipation D is quadratic in variables describing a

deviation from the thermodynamic equilibrium. The dissipation D is determined by
the residual inequality which follows after the elimination of the linear part containing
the derivatives (27) and (32). Under assumption (33) it has the form

D :=
@HV

@T
X́F � G+

@HT

@T
G2 � �"

(
@QV

@T
X́F � G � @K

@T
G2

)
�

��n

(
@˚

@T
X́F � G +

@JT
@T

G2
)

+�"
(
˘VX́F � X́F +˘TX́F � G

)
+�nn̂ � 0; (34)

G2 := G � G:

As the quantity �n describes the deviation of porosity from its equilibrium value the
above assumption yields

n̂ = ��n
�
; (35)

where � is independent of vector variables and of �n, and, simultaneously, the mul-
tiplier �n must be a homogeneous linear function of �n. Consequently,

@˚

@T
= 0;

@JT
@T

= 0: (36)

In addition �" must be independent of �n. Then, according to (30)1; both " and 
are quadratic even functions of �n.

We return to the conditions following from the linearity with respect to the deri-
vatives (32). We have:
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@HV

@�S
X́F +

@HT

@�S
G��"

(
@QV

@�S
X́F � @K

@�S
G
)

�

��n

(
@˚

@�S
X́F +

@JT
@�S

G
)

= 0; (37)

@HV

@�F
X́F +

@HT

@�F
G � Λ�F � �"

(
@QV

@�S
X́F � @K

@�S
G
)

��n

(
@˚

@�S
X́F +

@JT
@�S

G
)

= 0; (38)

�
[
HV � �F��F � �"QV � �n˚

]
FS�T + �"PS + ΛF = 0; (39)

[
HV � �F��F � �"QV � �n˚

]
FS�T + �"PF = 0; (40)

sym
23

{
�
[
HV � �F��F � �"QV � �n˚

] (
FS�T ˝ X́F

)
+

+
(
@HV

@FS
˝ X́F +

@HT

@FS
˝ G

)
�

��"

(
@QV

@FS
˝ X́F � @K

@FS
˝ G

)
� �n

(
@˚

@FS
˝ X́F +

@JT
@FS

˝ G
)}

= 0; (41)

HT + �"K� �nJT = 0; (42)

@HV

@�n
X́F+

@HT

@�n
G��"

(
@QV

@�n
X́F � @K

@�n
G
)

��n

(
@˚

@�n
X́F +

@JT
@�n

G
)

= 0: (43)

These conditions must hold for arbitrary X́F;G; �n. Hence we obtain a series
of identities which we proceed to investigate.

Condition (42) immediately yields

JT = 0; HT + �"K = 0: (44)

According to the conditions following from (37), (41) for coefficients of G, we obtain

@HT

@�S
+�" @K

@�S
=0;

@HT

@�F
+�" @K

@�F
=0;

@HT

@FS
+�" @K

@FS
=0:

Consequently, bearing (44) in mind, we see that

�" = �" (T) :
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We now turn our attention to the coefficients of X́F. We have

@HV

@�S
��" @QV

@�S
� �n @˚

@�S
=0;

@HV

@�F
��" @QV

@�F
� �n @˚

@�F
=��F;

�
[
HV � �F��F � �"QV � �n˚

]
FS�T +

(
@HV

@FS
��" @QV

@FS
� �n @˚

@FS

)
= 0:

Consequently,

@˚

@�S
= 0;

@˚

@�F
= 0; ˚FS�T =

@˚

@FS
=) ˚ = ˚0J

S; ˚0 = const:

(45)

where (36) was used.
There remain the identities

@

@�S
(HV � �"QV) = 0;

@

@�F
(HV � �"QV) = ��F;

[
HV � �F��F � �"QV

]
FS�T =

@

@FS
(HV � �"QV) : (46)

The integrability condition of the first two conditions immediately yields

@��F

@�S
= 0: (47)

On the other hand, substitution of (46)2 in (46)3 leads to the equation

�F
@��F

@�F
FS�T +

@��F

@FS
= 0:

This equation can easily be integrated1 and we obtain

��F = ��F
(
T; �Ft

)
; �Ft := �FJS�1: (48)

1 For isotropic materials considered later in this section the dependence of��F on FS reduces
to a dependence on the three invariants I; II; III of the tensor CS. Then

@��F

@FS
=
@��F

@I

@I

@FS
+
@��F

@II

@II

@FS
+
@��F

@III

@III

@FS
=

= 2
@��F

@I
FS + 2

@��F

@II
FS(I1 � CS) +

@��F

@JS
JSFS�T:

Hence we obtain the equation(
�F
@��F

@�F
+ JS

@��F

@JS

)
1 + 2

(
@��F

@I
+ I

@��F

@II

)
CS � 2

@��F

@II
CS2 = 0:

According to the Cayley-Hamilton theorem tensors
{
1;CS;CS2

}
span the space of ten-

sor functions of CS. Consequently, the coefficients in this equation should vanish separately,
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It is convenient to introduce the notation

 := "� �"�1: (49)

Obviously  corresponds to the classical Helmholtz free energy function.
Before we proceed with the exploitation of the above results we summarize the

results for multipliers which follow from the above considerations. We have

��S = ��" @� 

@�S
; ��F = ��" @� 

@�F
; (50)

�n = ��" @� 

@�n
; ΛF = ��" @� 

@FS
;

@� 

@G
= 0:

Consequently, the integration of (48) yields the splitting of the free energy into two
constitutive parts

� = �S S +�F F;  S =  S
(
T; �S;FS; �n

)
;  F =  F

(
T; �Ft ; �n

)
: (51)

This separation justifies the name simple porous materials. As with simple mixtures
of fluids, partial free energies of components depend only on their own measures of
deformation: the skeleton on the deformation gradient FS, and the fluid on the current
mass density of the fluid �Ft . There is no energy of interaction between components.

We are now in a position to integrate the relations between HV and QV. After
intergration of (46)2 we obtain

HV � �"QV = ��"�F F: (52)

Hence the fluxes can be written in the following final form:

H = �"
(
Q � �F FX́F

)
; i.e. HS + HF = �"

(
QS + QF

)
;

J = ˚0J
SX́F; (53)

HT = ��"K; HV = �"QV � �"�F FX́F;

where the relations (17) and (19) have been used.
We now consider an impermeable boundary between a saturated porous material

and a fluid which is physically identical with the fluid filling pores of the skeleton. If
the temperature is continuous on this boundary and simultaneously jump conditions

i.e.,

@��F

@I
= 0;

@��F

@II
= 0;

�F
@��F

@�F
+ JS

@��F

@JS
= 0:

Integration of this equation yields the relation (48). It can easily be shown that this is also
a solution in the general case without the assumption of isotropy.



Thermodynamics of simple two-component thermo-poroelastic media 303

(20) are satisfied, we call it an ideal wall for the fluid component. This surface is
material simultaneously with respect to the skeleton and the fluid, i.e.,

X́F = 0 =)
[[

x́F
]]

= 0 =)
=) [[Q]] � N = 0 & [[H]] � N = 0 =)
=) [[�"]] = 0:

As the multiplier in the fluid outside the porous material is the reciprocal of the
temperature the above result yields

�" =
1
T
; (54)

in the porous material as well.
Finally inspection of relations (39), (40) for partial stresses shows that they satisfy

the relations

PF = ��F2
t

@ F

@�Ft
JSFS�T �˚0

@� 

@�n
JSFS�T;

PS =
@�S S

@FS
+˚0

@� 

@�n
JSFS�T: (55)

Transformation to Cauchy stresses yields

TF := JS�1PFFST = �pF1; pF := �F2
t

@ F

@�Ft
+ ˇ�n; (56)

TS := JS�1PSFST = �St
@ S

@FS
FST + ˇ�n1; �St := �SJS�1;

ˇ := ˚0
@2� 

@�2
n

; (57)

where we use the property that the free energy is a quadratic even function of �n.
Bearing the above results in mind we analyze a jump condition on the permeable

boundary of the skeleton. According to relations (20) and (21) we have[[
�FX́F � N 1

2 x́
F2 + Q � N

]]
=
[[

x́F � PFN
]]

=

=
[[
�FX́F � N

(
pF

�F
JS � x́F � x́S

)]]
:

Hence the relations (20)5 and (53)1 immediately yield

[[
�F

]]
= 0; �F :=  F +

pF

�Ft
+ 1

2

(
x́F � x́S

)
�
(
x́F � x́S

)
: (58)

The quantity �F is the chemical potential of the fluid component. Its continuity
on the permeable boundary replaces the mechanical condition on continuity of partial
pressures on impermeable boundaries.
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It remains to rewrite the residual inequality (34) in which we account for the
above results. We obtain

D =
1
T
KG2 �

[
QV

T
+ T

@

@T

(
�F F

T

)
�˘T

]
X́F � G+˘VX́F � X́F +

ˇ

˚0�
�2
n � 0:

(59)

It is now obvious that the simplifying assumptions which we have made in this section
amount indeed to a quadratic form of the dissipation D, i.e., to small deviations

of processes from the thermodynamic equilibrium in which X́F
∣∣∣
E

= 0; GjE =
0; �njE = 0. Consequently, material parameters should satisfy the conditions

K > 0; ˘V > 0; K˘V +
[
QV

T
+ T

@

@T

(
�F F

T

)
�˘T

]2

> 0; (60)

ˇ

˚0�
> 0:

Further restrictions on material parameters follow from the stability analysis of ther-
modynamic equilibrium. We do not consider this problem in the present work.

5 Particular cases

In this section we demonstrate a few examples of simplified models of a thermo-
poroelastic material which have an important bearing in applications. We begin with
the exploitation of the isotropy assumption with respect to deformations of the ske-
leton. Obviously, contributions of the fluid are already isotropic.

We use the right and left Cauchy-Green deformation tensors

CS := FSTFS; BS := FSFST;

I = trCS � trBS; II = 1
2

(
I2 � trCS2) � 1

2

(
I2 � trBS2) ; (61)

III � JS2 = detCS � detBS;

where I; II; III are the main invariants common to both deformation tensors.
According to the polar decomposition theorem we have

FS = RS
p

CS; RST = RS�1: (62)

Under the assumption of material objectivity the free energy function  S is inde-
pendent of rotations RS. Consequently, if we drop a trivial dependence on �S, we
have

 S =  S
(
T;CS; �n

)
=  S (T; I; II; III; �n) ; (63)

where the second part of the relation follows from the assumption on isotropy.
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Bearing this relation in mind we obtain from (56) the following relation for the
partial Cauchy stress in the skeleton:

TS = ��1BS�1 + �01 + �1BS + ˇ�n1; (64)

where

��1 := �2�St III
@ S

@II

∣∣∣∣
�n=0

BS�1; �0 := 2�St

(
II
@ S

@II
+ III

@ S

@III

)∣∣∣∣
�n=0

;

�1 := 2�St
@ S

@I

∣∣∣∣
�n=0

; (65)

and the Cayley-Hamilton theorem,

BS3 � IBS2 + IIBS � III1 = 0; (66)

has been used.
Problems with the practical determination of the elasticities ��1;�0;�1 for poro-

elastic materials yield the necessity of a further simplification. In classical elasticity
theory a quadratic isotropic model was proposed by Signorini. The constitutive rela-
tion for this model follows from the above model by the truncation on the second term
in the expansion around the point (T = T0;FS = 1) (i.e., I = 3; II = 3; III = 1)
and it has the form

TS = TS
0 +

[
�SIe + cSIIe + 1

2

(
�S + �S � 1

2c
S
)
I2e
]
1+

+2
[
�S �

(
�S + �S + 1

2c
S
)
Ie
]
eS + 2cSeS2 � ˛ST

T� T0

T0
1 + ˇ�n1; (67)

where

eS :=
1
2
(
1 � BS�1) ; Ie := tr eS; IIe := 1

2

(
I2e � tr eS2

)
; (68)

eS is the Almansi-Hamel deformation tensor, ˛ST is the thermal expansion coefficient
of the skeleton which may be linearly dependent on Ie, while material parameters
�S; �S; cS depend only on the reference temperature T0.

Finally the classical linear model for small deformations,∥∥eS∥∥ � 1;
∥∥eS∥∥ := min (f�1; �2; �3g) ;

j�j � 1; � :=
�F0 � �Ft
�F0

;

det
(
eS � �i1

)
= 0; i = 1; 2; 3;

follows from (67) in the form

TS = TS
0 + �SI1 + 2�SeS � ˛ST

T� T0

T0
1 + ˇ�n1; (69)

TF = TF
0 � ��F0�1 � ˛FT

T� T0

T0
1 � ˇ�n1;



306 K. Wilmanski

where � is the compressibility coefficient of the fluid, and ˛ST; ˛
F
T denote constant

thermal expansion coefficients of the skeleton and fluid, respectively.
The last model corresponds to the classical Biot’s model but it does not contain

Biot’s coupling term.

6 Concluding remarks

We have shown that the assumption on a quadratic form of the dissipation yields a
quite explicit form of constitutive relations for thermo-poroelastic materials. Their
mechanical part does not differ from that derived earlier for isothermal processes.
Relations for energy and entropy fluxes justify the assumption made in the earlier
papers on the proportionality of their intrinsic parts (see (53)) which was basic for
the formulation of the second law of thermodynamics for isothermal processes. In
addition we have shown that, as with classical miscible mixtures, a chemical potential
for the fluid component is continuous on the permeable boundary of the porous body.
This property is fundamental for the formulation of boundary conditions on such a
boundary.
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